|
| 1 | +/* |
| 2 | + * java-math-library is a Java library focused on number theory, but not necessarily limited to it. It is based on the PSIQS 4.0 factoring project. |
| 3 | + * Copyright (C) 2018-2024 Tilman Neumann - [email protected] |
| 4 | + * |
| 5 | + * This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License |
| 6 | + * as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. |
| 7 | + * |
| 8 | + * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 9 | + * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
| 10 | + * |
| 11 | + * You should have received a copy of the GNU General Public License along with this program; |
| 12 | + * if not, see <http://www.gnu.org/licenses/>. |
| 13 | + */ |
| 14 | +package de.tilman_neumann.jml.quadraticResidues; |
| 15 | + |
| 16 | +import static org.junit.Assert.assertEquals; |
| 17 | + |
| 18 | +import java.util.ArrayList; |
| 19 | +import java.util.List; |
| 20 | +import java.util.TreeSet; |
| 21 | + |
| 22 | +import org.apache.logging.log4j.Logger; |
| 23 | +import org.junit.BeforeClass; |
| 24 | +import org.junit.Test; |
| 25 | +import org.apache.logging.log4j.LogManager; |
| 26 | + |
| 27 | +import de.tilman_neumann.util.ConfigUtil; |
| 28 | + |
| 29 | +/** |
| 30 | + * QA tests for quadratic residue computations modulo p^n for odd primes p. |
| 31 | + * |
| 32 | + * Resulting sequences: |
| 33 | + * n= 3: 1, 2, 4, 11, 31, 92, 274, 821, 2461, 7382, 22144, 66431, 199291, 597872, 1793614, ... |
| 34 | + * = A039300(n), Number of distinct quadratic residues mod 3^n. |
| 35 | + * n= 5: 1, 3, 11, 53, 261, 1303, 6511, 32553, 162761, 813803, 4069011, ... |
| 36 | + * = A039302(n), Number of distinct quadratic residues mod 5^n. |
| 37 | + * n= 7: 1, 4, 22, 151, 1051, 7354, 51472, 360301, ... |
| 38 | + * = A039304(n), Number of distinct quadratic residues mod 7^n. |
| 39 | + * n=11: 1, 6, 56, 611, 6711, 73816, 811966, ... (not in OEIS) |
| 40 | + * |
| 41 | + * @author Tilman Neumann |
| 42 | + */ |
| 43 | +public class QuadraticResiduesModPPowNTest { |
| 44 | + |
| 45 | + private static final Logger LOG = LogManager.getLogger(QuadraticResiduesModPPowNTest.class); |
| 46 | + |
| 47 | + private static final boolean DEBUG = false; |
| 48 | + private static final boolean SHOW_ELEMENTS = false; |
| 49 | + |
| 50 | + // the prime bases to test |
| 51 | + private int[] pArray = new int[] {3, 5, 7, 11}; |
| 52 | + |
| 53 | + private static final int[] nMaxForP = new int[20]; |
| 54 | + |
| 55 | + @SuppressWarnings("unchecked") |
| 56 | + private static ArrayList<Integer>[] correctCountsForP = new ArrayList[20]; |
| 57 | + |
| 58 | + @BeforeClass |
| 59 | + public static void setup() { |
| 60 | + ConfigUtil.initProject(); |
| 61 | + |
| 62 | + computeCorrectCounts(3, 13); |
| 63 | + computeCorrectCounts(5, 9); |
| 64 | + computeCorrectCounts(7, 7); |
| 65 | + computeCorrectCounts(11, 6); |
| 66 | + } |
| 67 | + |
| 68 | + private static void computeCorrectCounts(int p, int nMax) { |
| 69 | + nMaxForP[p] = nMax; |
| 70 | + // reference computation is brute force |
| 71 | + ArrayList<Integer> correctCounts = new ArrayList<Integer>(); |
| 72 | + for (int n=0; n<=nMax; n++) { |
| 73 | + long m = (long) Math.pow(p, n); |
| 74 | + TreeSet<Long> quadraticResidue = QuadraticResidues.getQuadraticResidues(m); |
| 75 | + if (DEBUG) LOG.info("n = " + n + " has " + quadraticResidue.size() + " quadratic residues modulo " + p + "^" + n + (SHOW_ELEMENTS ? ": " + quadraticResidue : "")); |
| 76 | + correctCounts.add(quadraticResidue.size()); |
| 77 | + } |
| 78 | + LOG.info("correctCounts modulo " + p + "^n = " + correctCounts); |
| 79 | + correctCountsForP[p] = correctCounts; |
| 80 | + } |
| 81 | + |
| 82 | + @Test |
| 83 | + public void testV2() { |
| 84 | + for (int p : pArray) { |
| 85 | + ArrayList<Integer> counts = new ArrayList<Integer>(); |
| 86 | + for (int n=0; n<=nMaxForP[p]; n++) { |
| 87 | + List<Long> quadraticResidue = QuadraticResiduesModPPowN.getQuadraticResiduesModBPowN(p, n); |
| 88 | + if (DEBUG) LOG.debug("v2: n = " + n + " has " + quadraticResidue.size() + " quadratic residues modulo " + p + "^" + n + (SHOW_ELEMENTS ? ": " + quadraticResidue : "")); |
| 89 | + counts.add(quadraticResidue.size()); |
| 90 | + } |
| 91 | + LOG.info("v2 counts modulo " + p + "^n = " + counts); |
| 92 | + assertEquals(correctCountsForP[p], counts); |
| 93 | + } |
| 94 | + } |
| 95 | + |
| 96 | + @Test |
| 97 | + public void testV3() { |
| 98 | + for (int p : pArray) { |
| 99 | + ArrayList<Integer> counts = new ArrayList<Integer>(); |
| 100 | + for (int n=0; n<=nMaxForP[p]; n++) { |
| 101 | + List<Long> quadraticResidue = QuadraticResiduesModPPowN.getQuadraticResiduesModBPowN_testAll(p, n); |
| 102 | + if (DEBUG) LOG.debug("v3: n = " + n + " has " + quadraticResidue.size() + " quadratic residues modulo " + p + "^" + n + (SHOW_ELEMENTS ? ": " + quadraticResidue : "")); |
| 103 | + counts.add(quadraticResidue.size()); |
| 104 | + } |
| 105 | + LOG.info("v3 counts modulo " + p + "^n = " + counts); |
| 106 | + assertEquals(correctCountsForP[p], counts); |
| 107 | + } |
| 108 | + } |
| 109 | + |
| 110 | + @Test |
| 111 | + public void testV4() { |
| 112 | + for (int p : pArray) { |
| 113 | + ArrayList<Integer> counts = new ArrayList<Integer>(); |
| 114 | + for (int n=0; n<=nMaxForP[p]; n++) { |
| 115 | + List<Long> quadraticResidue = QuadraticResiduesModPPowN.getQuadraticResiduesModBPowN_testAll_v2(p, n); |
| 116 | + if (DEBUG) LOG.debug("v3: n = " + n + " has " + quadraticResidue.size() + " quadratic residues modulo 3^" + n+ (SHOW_ELEMENTS ? ": " + quadraticResidue : "")); |
| 117 | + counts.add(quadraticResidue.size()); |
| 118 | + } |
| 119 | + LOG.info("v4 counts modulo " + p + "^n = " + counts); |
| 120 | + assertEquals(correctCountsForP[p], counts); |
| 121 | + } |
| 122 | + } |
| 123 | +} |
0 commit comments