|
| 1 | +/* |
| 2 | + * java-math-library is a Java library focused on number theory, but not necessarily limited to it. It is based on the PSIQS 4.0 factoring project. |
| 3 | + * Copyright (C) 2018-2024 Tilman Neumann - [email protected] |
| 4 | + * |
| 5 | + * This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License |
| 6 | + * as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. |
| 7 | + * |
| 8 | + * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 9 | + * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
| 10 | + * |
| 11 | + * You should have received a copy of the GNU General Public License along with this program; |
| 12 | + * if not, see <http://www.gnu.org/licenses/>. |
| 13 | + */ |
| 14 | +package de.tilman_neumann.jml.modular; |
| 15 | + |
| 16 | +import static org.junit.Assert.assertEquals; |
| 17 | + |
| 18 | +import java.security.SecureRandom; |
| 19 | + |
| 20 | +import org.apache.logging.log4j.Logger; |
| 21 | +import org.junit.BeforeClass; |
| 22 | +import org.junit.Test; |
| 23 | +import org.apache.logging.log4j.LogManager; |
| 24 | + |
| 25 | +import de.tilman_neumann.jml.primes.probable.BPSWTest; |
| 26 | +import de.tilman_neumann.util.ConfigUtil; |
| 27 | + |
| 28 | +public class ModularSqrtTest { |
| 29 | + private static final Logger LOG = LogManager.getLogger(ModularSqrtTest.class); |
| 30 | + |
| 31 | + private static final int NCOUNT = 100000; |
| 32 | + |
| 33 | + private static final SecureRandom rng = new SecureRandom(); |
| 34 | + private static final BPSWTest bpsw = new BPSWTest(); |
| 35 | + private static final JacobiSymbol jacobiEngine = new JacobiSymbol(); |
| 36 | + private static final ModularSqrt31 mse31 = new ModularSqrt31(); |
| 37 | + |
| 38 | + @BeforeClass |
| 39 | + public static void setup() { |
| 40 | + ConfigUtil.initProject(); |
| 41 | + } |
| 42 | + |
| 43 | + @Test |
| 44 | + public void testCase5Mod8() { |
| 45 | + LOG.info("Test correctness of " + NCOUNT + " p with p%8==5"); |
| 46 | + int[] pArray = createPArray(5, NCOUNT); |
| 47 | + int[] nArray = createNArray(pArray); |
| 48 | + for (int i=0; i<NCOUNT; i++) { |
| 49 | + int a = nArray[i]; |
| 50 | + int p = pArray[i]; |
| 51 | + int tonelli = mse31.Tonelli_Shanks(a, p); |
| 52 | + assertEquals((tonelli * (long)tonelli) % p, a%p); |
| 53 | + |
| 54 | + int case5Mod8 = mse31.case5Mod8(a, p); |
| 55 | + assertEquals((case5Mod8 * (long)case5Mod8) % p, a%p); |
| 56 | + assertEquals(tonelli, case5Mod8); // both returned the smaller sqrt |
| 57 | + } |
| 58 | + } |
| 59 | + |
| 60 | + private static int[] createPArray(int wantedPMod8, int count) { |
| 61 | + int[] pArray = new int[count]; |
| 62 | + int i = 0; |
| 63 | + while (i<count) { |
| 64 | + // get non-negative random n |
| 65 | + int n = rng.nextInt(Integer.MAX_VALUE); |
| 66 | + // add n to the test set if it is an odd prime with the wanted modulus mod 8 |
| 67 | + if (n>2 && (n&7) == wantedPMod8 && bpsw.isProbablePrime(n)) { |
| 68 | + pArray[i] = n; |
| 69 | + i++; |
| 70 | + } |
| 71 | + } |
| 72 | + return pArray; |
| 73 | + } |
| 74 | + |
| 75 | + /** |
| 76 | + * Create positive n having Jacobi(n|p) == 1 for all p in pArray. |
| 77 | + * @param pList |
| 78 | + * @return |
| 79 | + */ |
| 80 | + private static int[] createNArray(int[] pList) { |
| 81 | + int count = pList.length; |
| 82 | + int[] nArray = new int[count]; |
| 83 | + int i = 0; |
| 84 | + while (i<count) { |
| 85 | + // get non-negative random n |
| 86 | + int n = rng.nextInt(Integer.MAX_VALUE); |
| 87 | + // add n if it has Jacobi(n|p) = 1 |
| 88 | + int p = pList[i]; |
| 89 | + if (jacobiEngine.jacobiSymbol(n, p) == 1) { |
| 90 | + nArray[i] = n; |
| 91 | + i++; |
| 92 | + } |
| 93 | + } |
| 94 | + return nArray; |
| 95 | + } |
| 96 | +} |
0 commit comments