@@ -47,7 +47,7 @@ public class QuadraticResiduesModPPowN {
47
47
* @param n exponent of the modulus m=p^n
48
48
* @return true if 'a' is a quadratic residue modulo p^n
49
49
*/
50
- public static boolean isQuadraticResidueModBPowN (long a , int p , int n ) {
50
+ private static boolean isQuadraticResidueModPPowN_v1 (long a , int p , int n ) {
51
51
long m = (long ) Math .pow (p , n );
52
52
if (a >= m ) a %= m ; // now 0 <= a < m
53
53
@@ -73,14 +73,14 @@ public static boolean isQuadraticResidueModBPowN(long a, int p, int n) {
73
73
}
74
74
75
75
/**
76
- * Implementation following https://en.wikipedia.org/wiki/Quadratic_residue.
76
+ * Implementation following https://en.wikipedia.org/wiki/Quadratic_residue. Much faster than the first approach.
77
77
* @param a
78
78
* @param p
79
79
* @param n
80
80
* @return true if 'a' is a quadratic residue modulo p^n
81
81
*/
82
82
// TODO return -1, 0, 1 to check for non-residues, too ?
83
- public static boolean isQuadraticResidueModBPowN_v2 (long a , int p , int n ) {
83
+ public static boolean isQuadraticResidueModPPowN /*_v2*/ (long a , int p , int n ) {
84
84
long m = (long ) Math .pow (p , n );
85
85
if (a >= m ) a %= m ; // now 0 <= a < m
86
86
@@ -114,11 +114,11 @@ public static boolean isQuadraticResidueModBPowN_v2(long a, int p, int n) {
114
114
* @param n
115
115
* @return list of quadratic residue modulus p^n
116
116
*/
117
- public static List <Long > getQuadraticResiduesModBPowN_testAll (int p , int n ) {
117
+ static List <Long > getQuadraticResiduesModPPowN_testAll (int p , int n ) {
118
118
List <Long > list = new ArrayList <>();
119
119
long m = (long ) Math .pow (p , n );
120
120
for (long a =0 ; a <m ; a ++) {
121
- if (isQuadraticResidueModBPowN (a , p , n )) {
121
+ if (isQuadraticResidueModPPowN_v1 (a , p , n )) {
122
122
list .add (a );
123
123
}
124
124
}
@@ -132,24 +132,24 @@ public static List<Long> getQuadraticResiduesModBPowN_testAll(int p, int n) {
132
132
* @param n
133
133
* @return list of quadratic residue modulus p^n
134
134
*/
135
- public static List <Long > getQuadraticResiduesModBPowN_testAll_v2 (int p , int n ) {
135
+ static List <Long > getQuadraticResiduesModPPowN_testAll_v2 (int p , int n ) {
136
136
List <Long > list = new ArrayList <>();
137
137
long m = (long ) Math .pow (p , n );
138
138
for (long a =0 ; a <m ; a ++) {
139
- if (isQuadraticResidueModBPowN_v2 (a , p , n )) {
139
+ if (isQuadraticResidueModPPowN /*_v2*/ (a , p , n )) {
140
140
list .add (a );
141
141
}
142
142
}
143
143
return list ;
144
144
}
145
145
146
146
/**
147
- * Compute all quadratic residues modulus p^n.
147
+ * Compute all quadratic residues modulus p^n. This is the fastest implementation yet.
148
148
* @param p
149
149
* @param n
150
150
* @return list of quadratic residues
151
151
*/
152
- public static List <Long > getQuadraticResiduesModBPowN (int p , int n ) {
152
+ public static List <Long > getQuadraticResiduesModPPowN (int p , int n ) {
153
153
if (n == 0 ) return Arrays .asList (new Long [] {0L });
154
154
155
155
List <Long > pResidues = getBaseResidues (p );
@@ -186,7 +186,7 @@ public static List<Long> getQuadraticResiduesModBPowN(int p, int n) {
186
186
}
187
187
188
188
private static List <Long > getBaseResidues (int p ) {
189
- // We use the Jacobi symbol to compute the quaratic residues modulo p only because it is faster than the Legendre symbol.
189
+ // We use the Jacobi symbol to compute the quadratic residues modulo p only because it is faster than the Legendre symbol.
190
190
// Note that the result will be correct only for p being an odd prime.
191
191
// For some reason, Arrays.asList(new Long[] {0L, 1L}) would throw an UnsupportedOperationException if we add Longs to the list...
192
192
ArrayList <Long > result = new ArrayList <>();
@@ -198,7 +198,7 @@ private static List<Long> getBaseResidues(int p) {
198
198
result .add (Long .valueOf (i ));
199
199
}
200
200
}
201
- // LOG.debug("p=" + p + ": result = " + result);
201
+ if ( DEBUG ) LOG .debug ("p=" + p + ": result = " + result );
202
202
return result ;
203
203
}
204
204
0 commit comments