Skip to content

Commit 9ad7f85

Browse files
committed
apply first improvement by Dave McGuigan
1 parent bc499dd commit 9ad7f85

File tree

2 files changed

+22
-36
lines changed

2 files changed

+22
-36
lines changed

src/main/java/de/tilman_neumann/jml/factor/pollardRho/PollardRho31.java

+12-19
Original file line numberDiff line numberDiff line change
@@ -25,6 +25,9 @@
2525
/**
2626
* 31-bit implementation of Pollard's Rho method.
2727
*
28+
* Improvement by Dave McGuigan:
29+
* Use squareAddModN31() instead of nested addModN(squareModN())
30+
*
2831
* @author Tilman Neumann
2932
*/
3033
public class PollardRho31 extends FactorAlgorithm {
@@ -55,14 +58,14 @@ public int findSingleFactor(int nOriginal) {
5558
this.n = nOriginal<0 ? -nOriginal : nOriginal; // RNG.nextInt(n) below would crash for negative arguments
5659

5760
int gcd;
58-
long x = RNG.nextInt(n); // uniform random int from [0, n)
59-
long xx = x;
61+
int x = RNG.nextInt(n); // uniform random int from [0, n)
62+
int xx = x;
6063
do {
6164
int c = RNG.nextInt(n); // uniform random int from [0, n)
6265
do {
63-
x = addModN(squareModN(x), c);
64-
xx = addModN(squareModN(xx), c);
65-
xx = addModN(squareModN(xx), c);
66+
x = squareAddModN31(x, c);
67+
xx = squareAddModN31(xx, c);
68+
xx = squareAddModN31(xx, c);
6669
gcd = gcdEngine.gcd((int)(x-xx), n);
6770
} while(gcd==1);
6871
} while (gcd==n); // leave loop if factor found; otherwise continue with a new random c
@@ -71,22 +74,12 @@ public int findSingleFactor(int nOriginal) {
7174
}
7275

7376
/**
74-
* Addition modulo N, with <code>a, b < N</code>.
75-
* @param a
76-
* @param b
77-
* @return (a+b) mod N
78-
*/
79-
private long addModN(long a, int b) {
80-
long sum = a + b;
81-
return sum<n ? sum : sum-n;
82-
}
83-
84-
/**
85-
* x^2 modulo N.
77+
* x^2+c modulo N.
8678
* @param x
8779
* @return
8880
*/
89-
private long squareModN(long x) {
90-
return (x * x) % n;
81+
private int squareAddModN31(int x, int c) {
82+
// internal computation must be long, not only for the multiplication, but also for the addition of 31 bit numbers
83+
return (int)( ((long)x*x+c) % n);
9184
}
9285
}

src/main/java/de/tilman_neumann/jml/factor/pollardRho/PollardRhoBrent31.java

+10-17
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,9 @@
2727
*
2828
* 31 bit version.
2929
*
30+
* Improvement by Dave McGuigan:
31+
* Use squareAddModN31() instead of nested addModN(squareModN())
32+
*
3033
* @author Tilman Neumann
3134
*/
3235
public class PollardRhoBrent31 extends FactorAlgorithm {
@@ -69,14 +72,14 @@ public int findSingleFactor(int nOriginal) {
6972
do {
7073
x = y;
7174
for (int i=1; i<=r; i++) {
72-
y = addModN(squareModN(y), c);
75+
y = squareAddModN31(y, c);
7376
}
7477
int k = 0;
7578
do {
7679
ys = y;
7780
final int iMax = Math.min(m, r-k);
7881
for (int i=1; i<=iMax; i++) {
79-
y = addModN(squareModN(y), c);
82+
y = squareAddModN31(y, c);
8083
final long diff = x<y ? y-x : x-y;
8184
q = (int) ((diff*q) % n);
8285
}
@@ -90,7 +93,7 @@ public int findSingleFactor(int nOriginal) {
9093
} while (G==1);
9194
if (G==n) {
9295
do {
93-
ys = addModN(squareModN(ys), c);
96+
ys = squareAddModN31(ys, c);
9497
int diff = x<ys ? ys-x : x-ys;
9598
G = gcd.gcd(diff, n);
9699
} while (G==1);
@@ -102,22 +105,12 @@ public int findSingleFactor(int nOriginal) {
102105
}
103106

104107
/**
105-
* Addition modulo N, with <code>a, b < N</code>.
106-
* @param a
107-
* @param b
108-
* @return (a+b) mod N
109-
*/
110-
private int addModN(int a, int b) {
111-
long sum = a + (long)b; // long is needed for the addition of 31 bit numbers
112-
return (int) (sum<n ? sum : sum-n);
113-
}
114-
115-
/**
116-
* x^2 modulo N.
108+
* x^2+c modulo N.
117109
* @param x
118110
* @return
119111
*/
120-
private int squareModN(long x) {
121-
return (int) ((x * x) % n);
112+
private int squareAddModN31(int x, int c) {
113+
// internal computation must be long, not only for the multiplication, but also for the addition of 31 bit numbers
114+
return (int)( ((long)x*x+c) % n);
122115
}
123116
}

0 commit comments

Comments
 (0)