|
| 1 | +/* |
| 2 | + * java-math-library is a Java library focused on number theory, but not necessarily limited to it. It is based on the PSIQS 4.0 factoring project. |
| 3 | + * Copyright (C) 2018-2024 Tilman Neumann - [email protected] |
| 4 | + * |
| 5 | + * This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License |
| 6 | + * as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. |
| 7 | + * |
| 8 | + * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 9 | + * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
| 10 | + * |
| 11 | + * You should have received a copy of the GNU General Public License along with this program; |
| 12 | + * if not, see <http://www.gnu.org/licenses/>. |
| 13 | + */ |
| 14 | +package de.tilman_neumann.jml.factor.pollardRho; |
| 15 | + |
| 16 | +import java.math.BigInteger; |
| 17 | + |
| 18 | +import org.apache.logging.log4j.Logger; |
| 19 | +import org.apache.logging.log4j.LogManager; |
| 20 | + |
| 21 | +import de.tilman_neumann.jml.base.Rng; |
| 22 | +import de.tilman_neumann.jml.factor.FactorAlgorithm; |
| 23 | +import de.tilman_neumann.jml.gcd.Gcd31; |
| 24 | +import de.tilman_neumann.util.Ensure; |
| 25 | + |
| 26 | +/** |
| 27 | + * Brents's improvement of Pollard's Rho algorithm using Montgomery multiplication. |
| 28 | + * |
| 29 | + * The main reason why Montgomery multiplication is helpful for Pollard-Rho is that |
| 30 | + * no conversions to/from Montgomery form are required. |
| 31 | + * |
| 32 | + * In this implementation I managed to use the Montgomery reducer R=2^32, which simplifies |
| 33 | + * the Montgomery multiplication a good deal. |
| 34 | + * |
| 35 | + * Another small performance improvement stems from using the polynomial x*(x+1) instead of x^2+c, |
| 36 | + * which saves us the addition modulo N after each Montgomery multiplication. |
| 37 | + * |
| 38 | + * @see [Richard P. Brent: An improved Monte Carlo Factorization Algorithm, 1980] |
| 39 | + * @see [http://projecteuler.chat/viewtopic.php?t=3776] |
| 40 | + * @see [http://coliru.stacked-crooked.com/a/f57f11426d06acd8] |
| 41 | + * |
| 42 | + * 31/32 bit version. |
| 43 | + * |
| 44 | + * @author Tilman Neumann |
| 45 | + */ |
| 46 | +public class PollardRhoBrentMontgomery32 extends FactorAlgorithm { |
| 47 | + private static final Logger LOG = LogManager.getLogger(PollardRhoBrentMontgomery32.class); |
| 48 | + private static final boolean DEBUG = false; |
| 49 | + |
| 50 | + private static final Rng RNG = new Rng(); |
| 51 | + |
| 52 | + // The reducer R is 2^32, but the only constant still required is the half of it. |
| 53 | + private static final int R_HALF = 1 << 31; |
| 54 | + |
| 55 | + private int n; |
| 56 | + |
| 57 | + private int minusNInvModR; // (-1/N) mod R, required for Montgomery multiplication |
| 58 | + |
| 59 | + private Gcd31 gcd = new Gcd31(); |
| 60 | + |
| 61 | + @Override |
| 62 | + public String getName() { |
| 63 | + return "PollardRhoBrentMontgomery32"; |
| 64 | + } |
| 65 | + |
| 66 | + @Override |
| 67 | + public BigInteger findSingleFactor(BigInteger N) { |
| 68 | + if (N.bitLength() > 31) { // this check should be negligible in terms of performance |
| 69 | + throw new IllegalArgumentException("N = " + N + " has " + N.bitLength() + " bit, but " + getName() + " only supports arguments <= 31 bit"); |
| 70 | + } |
| 71 | + int factorInt = findSingleFactor(N.intValue()); |
| 72 | + return BigInteger.valueOf(factorInt); |
| 73 | + } |
| 74 | + |
| 75 | + public int findSingleFactor(int nOriginal) { |
| 76 | + this.n = nOriginal<0 ? -nOriginal : nOriginal; // RNG.nextInt(n) below would crash for negative arguments |
| 77 | + |
| 78 | + // n==9 would require to check if the gcd is 1 < gcd < n before returning it as a factor |
| 79 | + if (n==9) return 3; |
| 80 | + |
| 81 | + int G, x, ys; |
| 82 | + |
| 83 | + setUpMontgomeryMult(); |
| 84 | + |
| 85 | + // number of iterations before gcd tests. |
| 86 | + // Brent: "The probability of the algorithm failing because q_i=0 increases, so it is best not to choose m too large" |
| 87 | + final int Nbits = 32 - Integer.numberOfLeadingZeros(n); |
| 88 | + final int m = 2*Nbits; |
| 89 | + |
| 90 | + do { |
| 91 | + // start with random y from [0, n) |
| 92 | + int y = RNG.nextInt(n); |
| 93 | + if (DEBUG) Ensure.ensureGreaterEquals(y, 0); |
| 94 | + int r = 1; |
| 95 | + int q = 1; |
| 96 | + do { |
| 97 | + x = y; |
| 98 | + for (int i=r; i>0; i--) { |
| 99 | + y = montMul32(y, y+1, n, minusNInvModR); |
| 100 | + } |
| 101 | + int k = 0; |
| 102 | + do { |
| 103 | + ys = y; |
| 104 | + final int iMax = Math.min(m, r-k); |
| 105 | + for (int i=iMax; i>0; i--) { |
| 106 | + y = montMul32(y, y+1, n, minusNInvModR); |
| 107 | + final int diff = x<y ? y-x : x-y; |
| 108 | + q = montMul32(diff, q, n, minusNInvModR); |
| 109 | + } |
| 110 | + G = gcd.gcd(q, n); |
| 111 | + // if q==0 then G==n -> the loop will be left and restarted with new y |
| 112 | + k += m; |
| 113 | + if (DEBUG) LOG.debug("r = " + r + ", k = " + k); |
| 114 | + } while (k<r && G==1); |
| 115 | + r <<= 1; |
| 116 | + if (DEBUG) LOG.debug("r = " + r + ", G = " + G); |
| 117 | + } while (G==1); |
| 118 | + if (G==n) { |
| 119 | + do { |
| 120 | + ys = montMul32(ys, ys+1, n, minusNInvModR); |
| 121 | + final int diff = x<ys ? ys-x : x-ys; |
| 122 | + G = gcd.gcd(diff, n); |
| 123 | + } while (G==1); |
| 124 | + if (DEBUG) LOG.debug("G = " + G); |
| 125 | + } |
| 126 | + } while (G==n); |
| 127 | + if (DEBUG) LOG.debug("Found factor " + G + " of N=" + nOriginal); |
| 128 | + return G; |
| 129 | + } |
| 130 | + |
| 131 | + /** |
| 132 | + * Finds (1/R) mod N and (-1/N) mod R for odd N and R=2^32. |
| 133 | + * |
| 134 | + * As before, EEA31 would not work for R=2^32, but with a minor modification |
| 135 | + * the algorithm from http://coliru.stacked-crooked.com/a/f57f11426d06acd8 |
| 136 | + * still works for R=2^32. |
| 137 | + */ |
| 138 | + private void setUpMontgomeryMult() { |
| 139 | + // initialization |
| 140 | + int a = R_HALF; |
| 141 | + int u = 1; |
| 142 | + int v = 0; |
| 143 | + |
| 144 | + while (a != 0) { // modification |
| 145 | + a >>>= 1; |
| 146 | + if ((u & 1) == 0) { |
| 147 | + u >>>= 1; |
| 148 | + v >>>= 1; |
| 149 | + } else { |
| 150 | + u = ((u ^ n) >>> 1) + (u & n); |
| 151 | + v = (v >>> 1) + R_HALF; |
| 152 | + } |
| 153 | + } |
| 154 | + |
| 155 | + // u = (1/R) mod N and v = (-1/N) mod R. We only need the latter. |
| 156 | + minusNInvModR = v; |
| 157 | + } |
| 158 | + |
| 159 | + /** |
| 160 | + * Montgomery multiplication of a*b mod n. ("mulredcx" in Yafu) |
| 161 | + * @param a |
| 162 | + * @param b |
| 163 | + * @param N |
| 164 | + * @param Nhat complement of N mod 2^32 |
| 165 | + * @return Montgomery multiplication of a*b mod n |
| 166 | + */ |
| 167 | + public static int montMul32(int a, int b, int N, int Nhat) { |
| 168 | + // Step 1: Compute a*b |
| 169 | + long ab = (long)a*b; |
| 170 | + // Step 2: Compute t = ab * (-1/N) mod R |
| 171 | + // Since R=2^32, "x mod R" just means to get the lower int of x. |
| 172 | + // That would give t = (int)((ab & 0xFFFFFFFFL) * Nhat); |
| 173 | + // but even better, the long product just gives the lower int. |
| 174 | + int t = (int)(ab * Nhat); |
| 175 | + // Step 3: Compute r = (a*b + t*N) / R |
| 176 | + // Since R=2^32, "x / R" just means to get the high int of x. |
| 177 | + long tN = (long)t*N; |
| 178 | + int r = (int) ((ab+tN) >>> 32); |
| 179 | + // If the correct result is c, then now r==c or r==c+N. |
| 180 | + // This is fine for this factoring algorithm, because r will |
| 181 | + // * either be subjected to another Montgomery multiplication mod N, |
| 182 | + // * or to a gcd(r, N), where it doesn't matter if we test gcd(c, N) or gcd(c+N, N). |
| 183 | + |
| 184 | + if (DEBUG) { |
| 185 | + LOG.debug(a + " * " + b + " = " + r); |
| 186 | + // 0 <= a < N |
| 187 | + Ensure.ensureSmallerEquals(0, a); |
| 188 | + Ensure.ensureSmaller(a, N); |
| 189 | + // 0 <= b < N |
| 190 | + Ensure.ensureSmallerEquals(0, b); |
| 191 | + Ensure.ensureSmaller(b, N); |
| 192 | + |
| 193 | + // In a general Montgomery multiplication we would still have to check |
| 194 | + r = r<N ? r : r-N; |
| 195 | + // to satisfy 0 <= r < N |
| 196 | + Ensure.ensureSmallerEquals(0, r); |
| 197 | + Ensure.ensureSmaller(r, N); |
| 198 | + } |
| 199 | + |
| 200 | + return r; |
| 201 | + } |
| 202 | +} |
0 commit comments