Skip to content

Commit 9da572a

Browse files
committed
implement PollardRhoBrentMontgomery for 31 bit numbers
1 parent 409f8f1 commit 9da572a

File tree

1 file changed

+202
-0
lines changed

1 file changed

+202
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,202 @@
1+
/*
2+
* java-math-library is a Java library focused on number theory, but not necessarily limited to it. It is based on the PSIQS 4.0 factoring project.
3+
* Copyright (C) 2018-2024 Tilman Neumann - [email protected]
4+
*
5+
* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
6+
* as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
7+
*
8+
* This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
9+
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
10+
*
11+
* You should have received a copy of the GNU General Public License along with this program;
12+
* if not, see <http://www.gnu.org/licenses/>.
13+
*/
14+
package de.tilman_neumann.jml.factor.pollardRho;
15+
16+
import java.math.BigInteger;
17+
18+
import org.apache.logging.log4j.Logger;
19+
import org.apache.logging.log4j.LogManager;
20+
21+
import de.tilman_neumann.jml.base.Rng;
22+
import de.tilman_neumann.jml.factor.FactorAlgorithm;
23+
import de.tilman_neumann.jml.gcd.Gcd31;
24+
import de.tilman_neumann.util.Ensure;
25+
26+
/**
27+
* Brents's improvement of Pollard's Rho algorithm using Montgomery multiplication.
28+
*
29+
* The main reason why Montgomery multiplication is helpful for Pollard-Rho is that
30+
* no conversions to/from Montgomery form are required.
31+
*
32+
* In this implementation I managed to use the Montgomery reducer R=2^32, which simplifies
33+
* the Montgomery multiplication a good deal.
34+
*
35+
* Another small performance improvement stems from using the polynomial x*(x+1) instead of x^2+c,
36+
* which saves us the addition modulo N after each Montgomery multiplication.
37+
*
38+
* @see [Richard P. Brent: An improved Monte Carlo Factorization Algorithm, 1980]
39+
* @see [http://projecteuler.chat/viewtopic.php?t=3776]
40+
* @see [http://coliru.stacked-crooked.com/a/f57f11426d06acd8]
41+
*
42+
* 31/32 bit version.
43+
*
44+
* @author Tilman Neumann
45+
*/
46+
public class PollardRhoBrentMontgomery32 extends FactorAlgorithm {
47+
private static final Logger LOG = LogManager.getLogger(PollardRhoBrentMontgomery32.class);
48+
private static final boolean DEBUG = false;
49+
50+
private static final Rng RNG = new Rng();
51+
52+
// The reducer R is 2^32, but the only constant still required is the half of it.
53+
private static final int R_HALF = 1 << 31;
54+
55+
private int n;
56+
57+
private int minusNInvModR; // (-1/N) mod R, required for Montgomery multiplication
58+
59+
private Gcd31 gcd = new Gcd31();
60+
61+
@Override
62+
public String getName() {
63+
return "PollardRhoBrentMontgomery32";
64+
}
65+
66+
@Override
67+
public BigInteger findSingleFactor(BigInteger N) {
68+
if (N.bitLength() > 31) { // this check should be negligible in terms of performance
69+
throw new IllegalArgumentException("N = " + N + " has " + N.bitLength() + " bit, but " + getName() + " only supports arguments <= 31 bit");
70+
}
71+
int factorInt = findSingleFactor(N.intValue());
72+
return BigInteger.valueOf(factorInt);
73+
}
74+
75+
public int findSingleFactor(int nOriginal) {
76+
this.n = nOriginal<0 ? -nOriginal : nOriginal; // RNG.nextInt(n) below would crash for negative arguments
77+
78+
// n==9 would require to check if the gcd is 1 < gcd < n before returning it as a factor
79+
if (n==9) return 3;
80+
81+
int G, x, ys;
82+
83+
setUpMontgomeryMult();
84+
85+
// number of iterations before gcd tests.
86+
// Brent: "The probability of the algorithm failing because q_i=0 increases, so it is best not to choose m too large"
87+
final int Nbits = 32 - Integer.numberOfLeadingZeros(n);
88+
final int m = 2*Nbits;
89+
90+
do {
91+
// start with random y from [0, n)
92+
int y = RNG.nextInt(n);
93+
if (DEBUG) Ensure.ensureGreaterEquals(y, 0);
94+
int r = 1;
95+
int q = 1;
96+
do {
97+
x = y;
98+
for (int i=r; i>0; i--) {
99+
y = montMul32(y, y+1, n, minusNInvModR);
100+
}
101+
int k = 0;
102+
do {
103+
ys = y;
104+
final int iMax = Math.min(m, r-k);
105+
for (int i=iMax; i>0; i--) {
106+
y = montMul32(y, y+1, n, minusNInvModR);
107+
final int diff = x<y ? y-x : x-y;
108+
q = montMul32(diff, q, n, minusNInvModR);
109+
}
110+
G = gcd.gcd(q, n);
111+
// if q==0 then G==n -> the loop will be left and restarted with new y
112+
k += m;
113+
if (DEBUG) LOG.debug("r = " + r + ", k = " + k);
114+
} while (k<r && G==1);
115+
r <<= 1;
116+
if (DEBUG) LOG.debug("r = " + r + ", G = " + G);
117+
} while (G==1);
118+
if (G==n) {
119+
do {
120+
ys = montMul32(ys, ys+1, n, minusNInvModR);
121+
final int diff = x<ys ? ys-x : x-ys;
122+
G = gcd.gcd(diff, n);
123+
} while (G==1);
124+
if (DEBUG) LOG.debug("G = " + G);
125+
}
126+
} while (G==n);
127+
if (DEBUG) LOG.debug("Found factor " + G + " of N=" + nOriginal);
128+
return G;
129+
}
130+
131+
/**
132+
* Finds (1/R) mod N and (-1/N) mod R for odd N and R=2^32.
133+
*
134+
* As before, EEA31 would not work for R=2^32, but with a minor modification
135+
* the algorithm from http://coliru.stacked-crooked.com/a/f57f11426d06acd8
136+
* still works for R=2^32.
137+
*/
138+
private void setUpMontgomeryMult() {
139+
// initialization
140+
int a = R_HALF;
141+
int u = 1;
142+
int v = 0;
143+
144+
while (a != 0) { // modification
145+
a >>>= 1;
146+
if ((u & 1) == 0) {
147+
u >>>= 1;
148+
v >>>= 1;
149+
} else {
150+
u = ((u ^ n) >>> 1) + (u & n);
151+
v = (v >>> 1) + R_HALF;
152+
}
153+
}
154+
155+
// u = (1/R) mod N and v = (-1/N) mod R. We only need the latter.
156+
minusNInvModR = v;
157+
}
158+
159+
/**
160+
* Montgomery multiplication of a*b mod n. ("mulredcx" in Yafu)
161+
* @param a
162+
* @param b
163+
* @param N
164+
* @param Nhat complement of N mod 2^32
165+
* @return Montgomery multiplication of a*b mod n
166+
*/
167+
public static int montMul32(int a, int b, int N, int Nhat) {
168+
// Step 1: Compute a*b
169+
long ab = (long)a*b;
170+
// Step 2: Compute t = ab * (-1/N) mod R
171+
// Since R=2^32, "x mod R" just means to get the lower int of x.
172+
// That would give t = (int)((ab & 0xFFFFFFFFL) * Nhat);
173+
// but even better, the long product just gives the lower int.
174+
int t = (int)(ab * Nhat);
175+
// Step 3: Compute r = (a*b + t*N) / R
176+
// Since R=2^32, "x / R" just means to get the high int of x.
177+
long tN = (long)t*N;
178+
int r = (int) ((ab+tN) >>> 32);
179+
// If the correct result is c, then now r==c or r==c+N.
180+
// This is fine for this factoring algorithm, because r will
181+
// * either be subjected to another Montgomery multiplication mod N,
182+
// * or to a gcd(r, N), where it doesn't matter if we test gcd(c, N) or gcd(c+N, N).
183+
184+
if (DEBUG) {
185+
LOG.debug(a + " * " + b + " = " + r);
186+
// 0 <= a < N
187+
Ensure.ensureSmallerEquals(0, a);
188+
Ensure.ensureSmaller(a, N);
189+
// 0 <= b < N
190+
Ensure.ensureSmallerEquals(0, b);
191+
Ensure.ensureSmaller(b, N);
192+
193+
// In a general Montgomery multiplication we would still have to check
194+
r = r<N ? r : r-N;
195+
// to satisfy 0 <= r < N
196+
Ensure.ensureSmallerEquals(0, r);
197+
Ensure.ensureSmaller(r, N);
198+
}
199+
200+
return r;
201+
}
202+
}

0 commit comments

Comments
 (0)