|
| 1 | +/* |
| 2 | + * java-math-library is a Java library focused on number theory, but not necessarily limited to it. It is based on the PSIQS 4.0 factoring project. |
| 3 | + * Copyright (C) 2018-2024 Tilman Neumann - [email protected] |
| 4 | + * |
| 5 | + * This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License |
| 6 | + * as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. |
| 7 | + * |
| 8 | + * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 9 | + * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
| 10 | + * |
| 11 | + * You should have received a copy of the GNU General Public License along with this program; |
| 12 | + * if not, see <http://www.gnu.org/licenses/>. |
| 13 | + */ |
| 14 | +package de.tilman_neumann.jml.primes; |
| 15 | + |
| 16 | +import java.math.BigDecimal; |
| 17 | +import java.math.BigInteger; |
| 18 | +import java.util.ArrayList; |
| 19 | + |
| 20 | +import org.apache.logging.log4j.Logger; |
| 21 | +import org.apache.logging.log4j.LogManager; |
| 22 | + |
| 23 | +import de.tilman_neumann.jml.Divisors; |
| 24 | +import de.tilman_neumann.jml.base.BigDecimalMath; |
| 25 | +import de.tilman_neumann.jml.precision.Magnitude; |
| 26 | +import de.tilman_neumann.jml.precision.Scale; |
| 27 | +import de.tilman_neumann.jml.smooth.CANEntry; |
| 28 | +import de.tilman_neumann.jml.smooth.CANIterator; |
| 29 | +import de.tilman_neumann.jml.transcendental.EulerConstant; |
| 30 | +import de.tilman_neumann.jml.transcendental.Exp; |
| 31 | +import de.tilman_neumann.jml.transcendental.Ln; |
| 32 | +import de.tilman_neumann.util.ConfigUtil; |
| 33 | +import de.tilman_neumann.util.SortedMultiset; |
| 34 | +import de.tilman_neumann.util.SortedMultiset_BottomUp; |
| 35 | +import de.tilman_neumann.util.Timer; |
| 36 | + |
| 37 | +import static de.tilman_neumann.jml.base.BigDecimalConstants.F_0; |
| 38 | + |
| 39 | +/** |
| 40 | + * Tests Robin's Riemann hypothesis tests on colossally abundant numbers (CANs). |
| 41 | + * |
| 42 | + * From page 4 of http://www.math.lsa.umich.edu/~lagarias/doc/elementaryrh.pdf: |
| 43 | + * "Robin showed that, if the Riemann hypothesis is false, then there will necessarily exist a counterexample |
| 44 | + * to the inequality (1.2) that is a colossally abundant number; the same property can be established for inequality (1.1)" |
| 45 | + * |
| 46 | + * Inequality (1.1) (Lagarias): sigma(n) <= Hn + exp(Hn)*ln(Hn) |
| 47 | + * |
| 48 | + * Inequality (1.2) (Robin): sigma(n) <= exp(gamma) n ln(ln(n)) for each n >=5041 |
| 49 | + */ |
| 50 | +public class RiemannRobinHypothesisAnalyzer { |
| 51 | + private static final Logger LOG = LogManager.getLogger(RiemannRobinHypothesisAnalyzer.class); |
| 52 | + |
| 53 | + private static final boolean DEBUG = false; |
| 54 | + |
| 55 | + private static final Timer timer = new Timer(); |
| 56 | + |
| 57 | + /** |
| 58 | + * Test inequality (1.2) with CANs. |
| 59 | + * |
| 60 | + * >24k CANs checked. Typical timings: |
| 61 | + * Tested CAN(24003) with 118278 digits... t0=2297, t1=16, t2=0, t3=0, t4=16, t5=281 |
| 62 | + * Tested CAN(24004) with 118284 digits... t0=0, t1=26, t2=0, t3=0, t4=0, t5=297 |
| 63 | + * Tested CAN(24005) with 118289 digits... t0=1735, t1=15, t2=0, t3=0, t4=16, t5=281 |
| 64 | + * Tested CAN(24006) with 118295 digits... t0=0, t1=18, t2=0, t3=0, t4=0, t5=313 |
| 65 | + * Tested CAN(24007) with 118300 digits... t0=1187, t1=31, t2=0, t3=0, t4=0, t5=282 |
| 66 | + * Tested CAN(24008) with 118306 digits... t0=0, t1=18, t2=0, t3=0, t4=0, t5=297 |
| 67 | + * Tested CAN(24009) with 118311 digits... t0=1703, t1=32, t2=0, t3=0, t4=0, t5=296 |
| 68 | + * Tested CAN(24010) with 118314 digits... t0=0, t1=30, t2=0, t3=0, t4=0, t5=297 |
| 69 | + * Tested CAN(24011) with 118319 digits... t0=609, t1=16, t2=0, t3=0, t4=15, t5=282 |
| 70 | + * Tested CAN(24012) with 118325 digits... t0=0, t1=24, t2=0, t3=0, t4=0, t5=297 |
| 71 | + */ |
| 72 | + private static void runRobinsRHTest() { |
| 73 | + long t0, t1, t2, t3, t4; |
| 74 | + |
| 75 | + Scale scale = Scale.valueOf(30); // precision in after-floating point decimal digits |
| 76 | + BigDecimal expGamma = Exp.exp(EulerConstant.gamma(scale), scale); |
| 77 | + |
| 78 | + CANIterator canIter = new CANIterator(); |
| 79 | + for (int m=1; ; m++) { |
| 80 | + timer.capture(); |
| 81 | + CANEntry canEntry = canIter.next(); |
| 82 | + BigInteger n = canEntry.getCAN(); |
| 83 | + t0 = timer.capture(); |
| 84 | + |
| 85 | + BigDecimal n_flt = new BigDecimal(n, 0); |
| 86 | + BigDecimal lnln_n = Ln.ln(Ln.ln(n_flt, scale), scale); |
| 87 | + t1 = timer.capture(); |
| 88 | + |
| 89 | + BigDecimal robin = expGamma.multiply(n_flt).multiply(lnln_n); |
| 90 | + t2 = timer.capture(); |
| 91 | + |
| 92 | + // Fast sumOfDivisors computation with known prime factorization |
| 93 | + SortedMultiset<BigInteger> factors = toSortedMultiset(canEntry.getPrimes(), canEntry.getExponents()); |
| 94 | + t3 = timer.capture(); |
| 95 | + if (DEBUG) LOG.debug("factors(n)=" + factors); |
| 96 | + BigInteger sigma = Divisors.sumOfDivisors(factors); |
| 97 | + BigDecimal diff = BigDecimalMath.subtract(robin, sigma); |
| 98 | + t4 = timer.capture(); |
| 99 | + if (DEBUG) LOG.debug("sigma(n)=" + sigma + ", robin=" + robin + ", diff=" + diff); |
| 100 | + if (diff.compareTo(F_0) < 0) { |
| 101 | + LOG.info("Found RH counterexample candidate!"); |
| 102 | + LOG.info(" m=" + m + ": n has " + Magnitude.of(n) + " digits"); |
| 103 | + LOG.info(" n=" + n); |
| 104 | + } else { |
| 105 | + LOG.info("Tested CAN(" + m + ") with " + Magnitude.of(n) + " digits... t0=" + t0 + ", t1=" + t1 + ", t2=" + t2 + ", t3=" + t3 + ", t4=" + t4); |
| 106 | + } |
| 107 | + } |
| 108 | + } |
| 109 | + |
| 110 | + private static SortedMultiset<BigInteger> toSortedMultiset(ArrayList<BigInteger> primes, ArrayList<Integer> exponents) { |
| 111 | + SortedMultiset<BigInteger> factors = new SortedMultiset_BottomUp<>(); |
| 112 | + for (int i=0; i<primes.size(); i++) { |
| 113 | + factors.add(primes.get(i), exponents.get(i)); |
| 114 | + } |
| 115 | + return factors; |
| 116 | + } |
| 117 | + |
| 118 | + public static void main(String[] argv) { |
| 119 | + ConfigUtil.initProject(); |
| 120 | + runRobinsRHTest(); |
| 121 | + } |
| 122 | +} |
0 commit comments