Skip to content

Commit 740f5bf

Browse files
TroyGardenfacebook-github-bot
authored andcommitted
add NJT/TD support for EBC and pipeline benchmark (pytorch#2581)
Summary: # Documents * [TorchRec NJT Work Items](https://fburl.com/gdoc/gcqq6luv) * [KJT <> TensorDict](https://docs.google.com/document/d/1zqJL5AESnoKeIt5VZ6K1289fh_1QcSwu76yo0nB4Ecw/edit?tab=t.0#heading=h.bn9zwvg79) {F1949248817} # Context * As depicted above, we are extending TorchRec input data type from KJT (KeyedJaggedTensor) to TD (TensorDict) * Basically we can support TensorDict in both **eager mode** and **distributed (sharded) mode**: `Input (Union[KJT, TD]) ==> EBC ==> Output (KT)` * In eager mode, we directly call `td_to_kjt` in the forward function to convert TD to KJT. * In distributed mode, we do the conversion inside the `ShardedEmbeddingBagCollection`, specifically in the `input_dist`, where the input sparse features are prepared (permuted) for the `KJTAllToAll` communication. * In the KJT scenario, the input KJT would be permuted (and partially duplicated in some cases), followed by the `KJTAllToAll` communication. While in the TD scenario, the input TD will directly be converted to the permuted KJT ready for the following `KJTAllToAll` communication. * ref: D63436011 # Details * `td_to_kjt` implemented in python, which has cpu perf regression. But it's not on the training critical path so it has a minimal impact on the overall training QPS (see test plan benchmark results) * Currently only support EBC use case WARNING: `TensorDict` does **NOT** support weighted jagged tensor, **Nor** variable batch_size neither. NOTE: All the following comparisons are between the **`KJT.permute`** in the KJT input scenario and the **`TD-KJT conversion`** in the TD input scenario. * Both `KJT.permute` and `TD-KJT conversion` are correctly marked in the `TrainPipelineBase` traces `TD-KJT conversion` has more real executions in CPU, but the heavy-lifting computation is in GPU, which is delayed/blocked by the backward pass of the previous batch. GPU runtime has a small difference ~10%. {F1949366822} * For the `Copy-Batch-To-GPU` part, TD has more fragmented `HtoD` comms while KJT has a single contiguous `HtoD` comm Runtime-wise they are similar ~10% {F1949374305} * In the most commonly used `TrainPipelineSparseDist`, where the `Copy-Batch-To-GPU` and the cpu runtime are not on the critical path, we do observe very similar training QPS in the pipeline benchmark ~1% {F1949390271} ``` TrainPipelineSparseDist | Runtime (P90): 26.737 s | Memory (P90): 34.801 GB (TD) TrainPipelineSparseDist | Runtime (P90): 26.539 s | Memory (P90): 34.765 GB (KJT) ``` * increased data size, GPU runtime is 4x {F1949386106} # Conclusion 1. [Enablement] With this approach (replacing the `KJT permute` with `TD-KJT conversion`), the EBC can now take `TensorDict` as the module input in both single-GPU and multi-GPU (sharded) scenarios, tested with TrainPipelineBase, TrainPipelineSparseDist, TrainPipelineSemiSync, and TrainPipelinePrefetch. 2. [Performance] The TD host-to-device data transfer might not necessarily be a concern/blocker for the most commonly used train pipeline (TrainPipelineSparseDist). 2. [Feature Support] In order to become production-ready, the TensorDict needs to (1) integrate the `KJT.weights` data, and (2) to support the variable batch size, which are almost used in all the production models. 3. [Improvement] There are two major operations we can improve: (1) move TensorDict from host to device, and (2) convert TD to KJT. Currently they are both in the vanilla state. Since we are not sure how the real traces would be like with production models, we can't tell if these improvements are needed/helpful. Differential Revision: D65103519
1 parent c040f38 commit 740f5bf

File tree

4 files changed

+79
-18
lines changed

4 files changed

+79
-18
lines changed

torchrec/distributed/embeddingbag.py

+44-14
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,7 @@
2727

2828
import torch
2929
from fbgemm_gpu.permute_pooled_embedding_modules import PermutePooledEmbeddings
30+
from tensordict import TensorDict
3031
from torch import distributed as dist, nn, Tensor
3132
from torch.autograd.profiler import record_function
3233
from torch.distributed._tensor import DTensor
@@ -90,7 +91,12 @@
9091
)
9192
from torchrec.optim.fused import EmptyFusedOptimizer, FusedOptimizerModule
9293
from torchrec.optim.keyed import CombinedOptimizer, KeyedOptimizer
93-
from torchrec.sparse.jagged_tensor import _to_offsets, KeyedJaggedTensor, KeyedTensor
94+
from torchrec.sparse.jagged_tensor import (
95+
_to_offsets,
96+
KeyedJaggedTensor,
97+
KeyedTensor,
98+
td_to_kjt,
99+
)
94100

95101
try:
96102
torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops")
@@ -662,9 +668,7 @@ def __init__(
662668
self._inverse_indices_permute_indices: Optional[torch.Tensor] = None
663669
# to support mean pooling callback hook
664670
self._has_mean_pooling_callback: bool = (
665-
True
666-
if PoolingType.MEAN.value in self._pooling_type_to_rs_features
667-
else False
671+
PoolingType.MEAN.value in self._pooling_type_to_rs_features
668672
)
669673
self._dim_per_key: Optional[torch.Tensor] = None
670674
self._kjt_key_indices: Dict[str, int] = {}
@@ -1171,26 +1175,37 @@ def _create_inverse_indices_permute_indices(
11711175

11721176
# pyre-ignore [14]
11731177
def input_dist(
1174-
self, ctx: EmbeddingBagCollectionContext, features: KeyedJaggedTensor
1178+
self,
1179+
ctx: EmbeddingBagCollectionContext,
1180+
features: Union[KeyedJaggedTensor, TensorDict],
11751181
) -> Awaitable[Awaitable[KJTList]]:
1176-
ctx.variable_batch_per_feature = features.variable_stride_per_key()
1177-
ctx.inverse_indices = features.inverse_indices_or_none()
1182+
if isinstance(features, KeyedJaggedTensor):
1183+
ctx.variable_batch_per_feature = features.variable_stride_per_key()
1184+
ctx.inverse_indices = features.inverse_indices_or_none()
1185+
feature_keys = features.keys()
1186+
else: # features is TensorDict
1187+
ctx.variable_batch_per_feature = False # TD does not support variable batch
1188+
ctx.inverse_indices = None
1189+
feature_keys = list(features.keys()) # pyre-ignore[6]
11781190
if self._has_uninitialized_input_dist:
1179-
self._create_input_dist(features.keys())
1191+
self._create_input_dist(feature_keys)
11801192
self._has_uninitialized_input_dist = False
11811193
if ctx.variable_batch_per_feature:
11821194
self._create_inverse_indices_permute_indices(ctx.inverse_indices)
11831195
if self._has_mean_pooling_callback:
1184-
self._init_mean_pooling_callback(features.keys(), ctx.inverse_indices)
1196+
self._init_mean_pooling_callback(feature_keys, ctx.inverse_indices)
11851197
with torch.no_grad():
1186-
if self._has_features_permute:
1198+
if isinstance(features, KeyedJaggedTensor) and self._has_features_permute:
11871199
features = features.permute(
11881200
self._features_order,
11891201
# pyre-fixme[6]: For 2nd argument expected `Optional[Tensor]`
11901202
# but got `Union[Module, Tensor]`.
11911203
self._features_order_tensor,
11921204
)
1193-
if self._has_mean_pooling_callback:
1205+
if (
1206+
isinstance(features, KeyedJaggedTensor)
1207+
and self._has_mean_pooling_callback
1208+
):
11941209
ctx.divisor = _create_mean_pooling_divisor(
11951210
lengths=features.lengths(),
11961211
stride=features.stride(),
@@ -1209,9 +1224,24 @@ def input_dist(
12091224
weights=features.weights_or_none(),
12101225
)
12111226

1212-
features_by_shards = features.split(
1213-
self._feature_splits,
1214-
)
1227+
if isinstance(features, KeyedJaggedTensor):
1228+
features_by_shards = features.split(
1229+
self._feature_splits,
1230+
)
1231+
else:
1232+
feature_names = [feature_keys[i] for i in self._features_order]
1233+
feature_name_by_sharding_types: List[List[str]] = []
1234+
start = 0
1235+
for length in self._feature_splits:
1236+
feature_name_by_sharding_types.append(
1237+
feature_names[start : start + length]
1238+
)
1239+
start += length
1240+
features_by_shards = [
1241+
td_to_kjt(features, names)
1242+
for names in feature_name_by_sharding_types
1243+
]
1244+
12151245
awaitables = []
12161246
for input_dist, features_by_shard, sharding_type in zip(
12171247
self._input_dists,

torchrec/distributed/train_pipeline/tests/pipeline_benchmarks.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -160,7 +160,7 @@ def main(
160160

161161
tables = [
162162
EmbeddingBagConfig(
163-
num_embeddings=(i + 1) * 1000,
163+
num_embeddings=max(i + 1, 100) * 1000,
164164
embedding_dim=dim_emb,
165165
name="table_" + str(i),
166166
feature_names=["feature_" + str(i)],
@@ -169,7 +169,7 @@ def main(
169169
]
170170
weighted_tables = [
171171
EmbeddingBagConfig(
172-
num_embeddings=(i + 1) * 1000,
172+
num_embeddings=max(i + 1, 100) * 1000,
173173
embedding_dim=dim_emb,
174174
name="weighted_table_" + str(i),
175175
feature_names=["weighted_feature_" + str(i)],

torchrec/modules/embedding_modules.py

+10-2
Original file line numberDiff line numberDiff line change
@@ -12,13 +12,19 @@
1212

1313
import torch
1414
import torch.nn as nn
15+
from tensordict import TensorDict
1516
from torchrec.modules.embedding_configs import (
1617
DataType,
1718
EmbeddingBagConfig,
1819
EmbeddingConfig,
1920
pooling_type_to_str,
2021
)
21-
from torchrec.sparse.jagged_tensor import JaggedTensor, KeyedJaggedTensor, KeyedTensor
22+
from torchrec.sparse.jagged_tensor import (
23+
JaggedTensor,
24+
KeyedJaggedTensor,
25+
KeyedTensor,
26+
td_to_kjt,
27+
)
2228

2329

2430
try:
@@ -226,7 +232,7 @@ def __init__(
226232
self._feature_names: List[List[str]] = [table.feature_names for table in tables]
227233
self.reset_parameters()
228234

229-
def forward(self, features: KeyedJaggedTensor) -> KeyedTensor:
235+
def forward(self, features: Union[KeyedJaggedTensor, TensorDict]) -> KeyedTensor:
230236
"""
231237
Run the EmbeddingBagCollection forward pass. This method takes in a `KeyedJaggedTensor`
232238
and returns a `KeyedTensor`, which is the result of pooling the embeddings for each feature.
@@ -237,6 +243,8 @@ def forward(self, features: KeyedJaggedTensor) -> KeyedTensor:
237243
KeyedTensor
238244
"""
239245
flat_feature_names: List[str] = []
246+
if isinstance(features, TensorDict):
247+
features = td_to_kjt(features)
240248
for names in self._feature_names:
241249
flat_feature_names.extend(names)
242250
inverse_indices = reorder_inverse_indices(

torchrec/sparse/jagged_tensor.py

+23
Original file line numberDiff line numberDiff line change
@@ -15,6 +15,7 @@
1515
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
1616

1717
import torch
18+
from tensordict import TensorDict
1819
from torch.autograd.profiler import record_function
1920
from torch.fx._pytree import register_pytree_flatten_spec, TreeSpec
2021
from torch.utils._pytree import GetAttrKey, KeyEntry, register_pytree_node
@@ -3027,6 +3028,28 @@ def dist_init(
30273028
return kjt.sync()
30283029

30293030

3031+
def td_to_kjt(td: TensorDict, keys: Optional[List[str]] = None) -> KeyedJaggedTensor:
3032+
if keys is None:
3033+
keys = list(td.keys()) # pyre-ignore[6]
3034+
values = torch.cat([td[key]._values for key in keys], dim=0)
3035+
lengths = torch.cat(
3036+
[
3037+
(
3038+
(td[key]._lengths)
3039+
if td[key]._lengths is not None
3040+
else torch.diff(td[key]._offsets)
3041+
)
3042+
for key in keys
3043+
],
3044+
dim=0,
3045+
)
3046+
return KeyedJaggedTensor(
3047+
keys=keys,
3048+
values=values,
3049+
lengths=lengths,
3050+
)
3051+
3052+
30303053
def _kjt_flatten(
30313054
t: KeyedJaggedTensor,
30323055
) -> Tuple[List[Optional[torch.Tensor]], List[str]]:

0 commit comments

Comments
 (0)