Skip to content

Commit 9d58e0a

Browse files
committed
update data
1 parent a4a9edc commit 9d58e0a

File tree

2 files changed

+6
-6
lines changed

2 files changed

+6
-6
lines changed

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -144,8 +144,8 @@ For the ***label skew*** scenario, we introduce **16** famous datasets:
144144
- **GTSRB**
145145
- **Shakespeare**
146146
- **Stanford Cars**
147-
- **COVIDx** (chest X-ray images for covid-19)
148-
- **kvasir** (endoscopic images for gastrointestinal disease detection)
147+
- **COVIDx**
148+
- **kvasir**
149149

150150
The datasets can be easily split into **IID** and **non-IID** versions. In the **non-IID** scenario, we distinguish between two types of distribution:
151151

@@ -165,7 +165,7 @@ For the ***feature shift*** scenario, we utilize **3** widely used datasets in D
165165
### ***real-world*** scenario
166166

167167
For the ***real-world*** scenario, we introduce **5** naturally separated datasets:
168-
- **Camelyon17** (tumor tissue patches extracted from breast cancer metastases in lymph node sections, 5 hospitals, 2 labels)
168+
- **Camelyon17** (5 hospitals, 2 labels)
169169
- **iWildCam** (194 camera traps, 158 labels)
170170
- **Omniglot** (20 clients, 50 labels)
171171
- **HAR (Human Activity Recognition)** (30 clients, 6 labels)

docs/data.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -199,8 +199,8 @@ <h3><em><strong>Label Skew</strong></em> Scenario</h3>
199199
<li><strong>GTSRB</strong></li>
200200
<li><strong>Shakespeare</strong></li>
201201
<li><strong>Stanford Cars</strong></li>
202-
<li><strong>COVIDx</strong> (chest X-ray images for covid-19)</li>
203-
<li><strong>kvasir</strong> (endoscopic images for gastrointestinal disease detection)</li>
202+
<li><strong>COVIDx</strong></li>
203+
<li><strong>kvasir</strong></li>
204204
</ul>
205205

206206
<p>The datasets can be easily split into <strong>IID</strong> and <strong>non-IID</strong> versions. In the <strong>non-IID</strong> scenario, we distinguish between two types of distribution:</p>
@@ -225,7 +225,7 @@ <h3><em><strong>Real-World</strong></em> Scenario</h3>
225225

226226
<p>For the <strong>real-world</strong> scenario, we introduce <strong>5</strong> naturally separated datasets:</p>
227227
<ul>
228-
<li><strong>Camelyon17</strong> (tumor tissue patches extracted from breast cancer metastases in lymph node sections, 5 hospitals, 2 labels)</li>
228+
<li><strong>Camelyon17</strong> (5 hospitals, 2 labels)</li>
229229
<li><strong>iWildCam</strong> (194 camera traps, 158 labels)</li>
230230
<li><strong>Omniglot</strong> (20 clients, 50 labels)</li>
231231
<li><strong>HAR (Human Activity Recognition)</strong> (30 clients, 6 labels, see examples <a href="#exp-har">here</a>)</li>

0 commit comments

Comments
 (0)