Skip to content

Commit 2e854ab

Browse files
gnawindatejada
andauthored
[docs] Minor edits multi year docs (#1186)
--------- Co-authored-by: Diego Alejandro Tejada Arango <[email protected]>
1 parent 94b7c96 commit 2e854ab

File tree

2 files changed

+30
-16
lines changed

2 files changed

+30
-16
lines changed

docs/src/40-formulation.md

+23-15
Original file line numberDiff line numberDiff line change
@@ -59,6 +59,8 @@ In addition, the following flow sets represent methods for incorporating additio
5959
| Name | Description | Elements | Superset | Notes |
6060
| ------------------- | ----------------------------------------------------------------- | ------------------------------- | ---------------------------------- | -------------------------------------------------------------------------------- |
6161
| $\mathcal{Y}$ | Milestone years | $y \in \mathcal{Y}$ | $\mathcal{Y} \subset \mathbb{N}$ | |
62+
| $\mathcal{Y}^{\text{i}}_a$ | Milestone years where asset $a$ is investable | $y \in \mathcal{Y}^{\text{i}}_a$ | $\mathcal{Y} \subseteq \mathcal{Y}$ | |
63+
| $\mathcal{Y}^{\text{i}}_f$ | Milestone years where flow $f$ is investable | $y \in \mathcal{Y}^{\text{i}}_f$ | $\mathcal{Y} \subseteq \mathcal{Y}$ | |
6264
| $\mathcal{V}$ | All years | $v \in \mathcal{V}$ | $\mathcal{V} \subset \mathbb{N}$ | |
6365
| $\mathcal{P}_y$ | Periods in the timeframe at year $y$ | $p_y \in \mathcal{P}_y$ | $\mathcal{P}_y \subset \mathbb{N}$ | |
6466
| $\mathcal{K}_y$ | Representative periods (rp) at year $y$ | $k_y \in \mathcal{K}_y$ | $\mathcal{K}_y \subset \mathbb{N}$ | $\mathcal{K}_y$ does not have to be a subset of $\mathcal{P}_y$ |
@@ -95,7 +97,7 @@ In addition, the following subsets represent methods for incorporating additiona
9597
| $p^{\text{economic lifetime}}_{a}$ | $\mathbb{Z}_{+}$ | $a \in \mathcal{A}$ | Economic lifetime of asset $a$ | [year] |
9698
| $p^{\text{technology-specific discount rate}}_{a}$ | $\mathbb{R}_{+}$ | $a \in \mathcal{A}$ | Technology-specific discount rate of asset $a$ | [year] |
9799
| $p^{\text{init units}}_{a,y}$ | $\mathbb{R}_{+}$ | $a \in \mathcal{A}$, $y \in \mathcal{Y}$ | Initial number of units of asset $a$ available at year $y$ | [units] |
98-
| $p^{\text{init units}}_{a,y,v}$ | $\mathbb{R}_{+}$ | $ (a,y,v) \in \mathcal{D}^{\text{compact investment}} \cup \mathcal{D}^{\text{operation}}$ | Initial number of units of asset $a$ available at year $y$ commissioned in year $v$ | [units] |
100+
| $p^{\text{init units}}_{a,y,v}$ | $\mathbb{R}_{+}$ | $ (a,y,v) \in \mathcal{D}^{\text{compact investment}}$ | Initial number of units of asset $a$ available at year $y$ commissioned in year $v$ | [units] |
99101
| $p^{\text{availability profile}}_{a,v,k_y,b_{k_y}}$ | $\mathbb{R}_{+}$ | $a \in \mathcal{A}$, $v \in \mathcal{V}$, $k_y \in \mathcal{K}_y$, $b_{k_y} \in \mathcal{B_{k_y}}$ | Availability profile of asset $a$ invested in year $v$ in the representative period $k_y$ and timestep block $b_{k_y}$ | [p.u.] |
100102
| $p^{\text{group}}_{a}$ | $\mathcal{G}^{\text{a}}$ | $a \in \mathcal{A}$ | Group $g$ to which the asset $a$ belongs | [-] |
101103

@@ -215,51 +217,53 @@ In addition, the following subsets represent methods for incorporating additiona
215217

216218
### Expresssions for the Objective Function
217219

220+
There are two types of investment methods for multi-year investment modelling: simple method and compact method. The simple method aggregates all units available in a year, regardless of when they were invested. The compact method tracks availability by investment and operational year, enabling vintage-specific constraints while reducing model size. For more information on this topic, refer to the [How to use](@ref how-to-use) or [Wang and Morales-España (2025)](@ref scientific-refs).
221+
218222
For available units across years, we define the following expresssions:
219223

220224
```math
221225
\begin{aligned}
222-
v^{\text{available units simple method}}_{a,y} & = p^{\text{initial units}}_{a,y} + \sum_{i \in \{\mathcal{Y}^\text{i}: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{inv}}_{a,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{decom simple}}_{a,i} \\
226+
v^{\text{available units simple method}}_{a,y} & = p^{\text{initial units}}_{a,y} + \sum_{i \in \{\mathcal{Y}^\text{i}_a: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{inv}}_{a,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{decom simple}}_{a,i} \\
223227
& \forall a \in \mathcal{A}^{\text{simple investment}} \cup \mathcal{A}^{\text{operation}}, \forall y \in \mathcal{Y} \\
224228
v^{\text{available units compact method}}_{a,y,v} & = p^{\text{initial units}}_{a,y,v} + v^{\text{inv}}_{a,v} - \sum_{i \in \{\mathcal{Y}: v < i \le y\} | (a,i,v) \in \mathcal{D}^{\text{compact investment}}} v^{\text{decom compact}}_{a,i,v}
225229
\\
226-
& \forall (a,y,v) \in \mathcal{D}^{\text{compact investment}} \cup \mathcal{D}^{\text{operation}} \\
227-
v^{\text{available energy units simple method}}_{a,y} & = p^{\text{initial storage units}}_{a,y} + \sum_{i \in \{\mathcal{Y}^\text{i}: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{inv energy}}_{a,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{decom energy simple}}_{a,i} \\
230+
& \forall (a,y,v) \in \mathcal{D}^{\text{compact investment}} \\
231+
v^{\text{available energy units simple method}}_{a,y} & = p^{\text{initial storage units}}_{a,y} + \sum_{i \in \{\mathcal{Y}^\text{i}_a: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{inv energy}}_{a,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{decom energy simple}}_{a,i} \\
228232
& \forall a \in \mathcal{A}^{\text{se}}_y, \forall y \in \mathcal{Y} \\
229-
v^{\text{available export units simple method}}_{f,y} & = p^{\text{initial export units}}_{f,y} + \sum_{i \in \{\mathcal{Y}^\text{i}: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{inv}}_{f,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{decom simple}}_{f,i} \\
233+
v^{\text{available export units simple method}}_{f,y} & = p^{\text{initial export units}}_{f,y} + \sum_{i \in \{\mathcal{Y}^\text{i}_f: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{inv}}_{f,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{decom simple}}_{f,i} \\
230234
& \forall f \in \mathcal{F}^{\text{t}}_y, \forall y \in \mathcal{Y} \\
231-
v^{\text{available import units simple method}}_{f,y} & = p^{\text{initial import units}}_{f,y} + \sum_{i \in \{\mathcal{Y}^\text{i}: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{inv}}_{f,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{decom simple}}_{f,i} \\
235+
v^{\text{available import units simple method}}_{f,y} & = p^{\text{initial import units}}_{f,y} + \sum_{i \in \{\mathcal{Y}^\text{i}_f: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{inv}}_{f,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{decom simple}}_{f,i} \\
232236
& \forall f \in \mathcal{F}^{\text{t}}_y, \forall y \in \mathcal{Y} \\
233237
\end{aligned}
234238
```
235239

236-
In addition, we define the following expressions to determine the available units. This expression takes a few forms depending on whether the asset uses _simple_ or _compact_ investment method.
240+
In addition, we define the following expressions to determine the available units. This expression takes a few forms depending on whether the asset uses simple or compact investment method.
237241

238-
- If the asset uses _simple_ investment method
242+
- If the asset uses simple investment method
239243

240244
```math
241245
\begin{aligned}
242246
v^{\text{available units}}_{a,y} & = v^{\text{available units simple method}}_{a,y} \quad \forall a \in \mathcal{A}, \forall y \in \mathcal{Y}
243247
\end{aligned}
244248
```
245249

246-
- If the asset uses _compact_ investment method
250+
- If the asset uses compact investment method
247251

248252
```math
249253
\begin{aligned}
250254
v^{\text{available units}}_{a,y} & = \sum_{v \in \mathcal{V} | (a,y,v) \in \mathcal{D}^{\text{compact investment}}} v^{\text{available units compact method}}_{a,y,v} \quad \forall a \in \mathcal{A}, \forall y \in \mathcal{Y}
251255
\end{aligned}
252256
```
253257

254-
- Storage assets with energy method always use _simple_ investment method
258+
- Storage assets with energy method always use simple investment method
255259

256260
```math
257261
\begin{aligned}
258262
v^{\text{available energy units}}_{a,y} & = v^{\text{available energy units simple method}}_{a,y} \quad \forall a \in \mathcal{A}^{\text{se}}_y, \forall y \in \mathcal{Y}
259263
\end{aligned}
260264
```
261265

262-
- Transport assets always use _simple_ investment method
266+
- Transport assets always use simple investment method
263267

264268
```math
265269
\begin{aligned}
@@ -270,6 +274,8 @@ In addition, we define the following expressions to determine the available unit
270274

271275
### Economic Representation for the Objective Function
272276

277+
The model accounts for discounting in multi-year investment modelling. For more information on this topic, refer to the [How to use](@ref how-to-use) or [Wang and Tejada-Arango (2025)](@ref scientific-refs).
278+
273279
#### Discounting Factor for Asset Investment Costs
274280

275281
```math
@@ -330,7 +336,7 @@ Where:
330336
\begin{aligned}
331337
assets\_investment\_cost &= \sum_{y \in \mathcal{Y}} \sum_{a \in \mathcal{A}^{\text{i}}_y } p_{a, y}^{\text{discounting factor asset inv cost}} \cdot p^{\text{inv cost}}_{a,y} \cdot p^{\text{capacity}}_{a} \cdot v^{\text{inv}}_{a,y} \\ &+ \sum_{y \in \mathcal{Y}} \sum_{a \in \mathcal{A}^{\text{se}}_y \cap \mathcal{A}^{\text{i}}_y } p_{a, y}^{\text{discounting factor asset inv cost}} \cdotp^{\text{inv cost energy}}_{a,y} \cdot p^{\text{energy capacity}}_{a} \cdot v^{\text{inv energy}}_{a,y} \\
332338
assets\_fixed\_cost &= \sum_{y \in \mathcal{Y}} \sum_{a \in \mathcal{A}^{\text{simple investment}} \cup \mathcal{A}^{\text{operation}} } p_{y}^{\text{discounting factor operation cost}} \cdot p^{\text{fixed cost}}_{a,y} \cdot p^{\text{capacity}}_{a} \cdot v^{\text{available units simple method}}_{a,y} \\
333-
& + \sum_{(a,y,v) \in \mathcal{D}^{\text{compact investment}} \cup \mathcal{D}^{\text{decom units operation mode}} } p_{y}^{\text{discounting factor operation cost}} \cdot p^{\text{fixed cost}}_{a,v} \cdot p^{\text{capacity}}_{a} \cdot v^{\text{available units compact method}}_{a,y,v} \\
339+
& + \sum_{(a,y,v) \in \mathcal{D}^{\text{compact investment}} } p_{y}^{\text{discounting factor operation cost}} \cdot p^{\text{fixed cost}}_{a,v} \cdot p^{\text{capacity}}_{a} \cdot v^{\text{available units compact method}}_{a,y,v} \\
334340
& + \sum_{y \in \mathcal{Y}} \sum_{a \in \mathcal{A}^{\text{se}}_y \cap (\mathcal{A}^{\text{simple investment}} \cup \mathcal{A}^{\text{operation}}) } p_{y}^{\text{discounting factor operation cost}} \cdot p^{\text{fixed cost energy}}_{a,y} \cdot p^{\text{energy capacity}}_{a} \cdot v^{\text{available energy capacity simple method}}_{a,y} \\
335341
flows\_investment\_cost &= \sum_{y \in \mathcal{Y}} \sum_{f \in \mathcal{F}^{\text{ti}}_y} p_{f, y}^{\text{discounting factor flow inv cost}} \cdot p^{\text{inv cost}}_{f,y} \cdot p^{\text{capacity}}_{f} \cdot v^{\text{inv}}_{f,y} \\
336342
flows\_fixed\_cost &= \frac{1}{2} \sum_{y \in \mathcal{Y}} \sum_{f \in \mathcal{F}^{\text{t}}_y} p_{y}^{\text{discounting factor operation cost}} \cdot p^{\text{fixed cost}}_{f,y} \cdot p^{\text{capacity}}_{f} \cdot \left( v^{\text{available export units}}_{f,y} + v^{\text{available import units}}_{f,y} \right) \\
@@ -345,12 +351,14 @@ unit\_on\_cost &= \sum_{y \in \mathcal{Y}} \sum_{a \in \mathcal{A}^{\text{uc}}_y
345351

346352
#### Maximum Output Flows Limit
347353

354+
Maximum output flow constraints depend on the chosen investment method (simple or compact). For more information on this topic, refer to the [How to use](@ref how-to-use) or [Wang and Morales-España (2025)](@ref scientific-refs).
355+
348356
```math
349357
\begin{aligned}
350358
\sum_{f \in \mathcal{F}^{\text{out}}_{a,y}} p^{\text{capacity coefficient}}_{f,y} \cdot v^{\text{flow}}_{f,k_y,b_{k_y}} \leq p^{\text{availability profile}}_{a,y,k_y,b_{k_y}} \cdot p^{\text{capacity}}_{a} \cdot v^{\text{available units simple method}}_{a,y} \quad
351359
\\ \\ \forall y \in \mathcal{Y}, \forall a \in (\mathcal{A}^{\text{simple investment}} \cup \mathcal{A}^{\text{operation}}) \cap \left(\mathcal{A}^{\text{cv}} \cup \left(\mathcal{A}^{\text{s}} \setminus \mathcal{A}^{\text{sb}}_y \right) \cup \mathcal{A}^{\text{p}} \right), \forall k_y \in \mathcal{K}_y,\forall b_{k_y} \in \mathcal{B_{k_y}} \\ \\
352360
\sum_{f \in \mathcal{F}^{\text{out}}_{a,y}} p^{\text{capacity coefficient}}_{f,y} \cdot v^{\text{flow}}_{f,k_y,b_{k_y}} \leq p^{\text{capacity}}_{a} \cdot \sum_{v \in \mathcal{V} | (a,y,v) \in \mathcal{D}^{\text{compact investment}}} p^{\text{availability profile}}_{a,v,k_y,b_{k_y}} \cdot v^{\text{available units compact method}}_{a,y,v} \quad
353-
\\ \\ \forall y \in \mathcal{Y}, \forall a \in (\mathcal{A}^{\text{compact investment}} \cup \mathcal{A}^{\text{operation}}) \cap \left(\mathcal{A}^{\text{cv}} \cup \left(\mathcal{A}^{\text{s}} \setminus \mathcal{A}^{\text{sb}}_y \right) \cup \mathcal{A}^{\text{p}} \right), \forall k_y \in \mathcal{K}_y,\forall b_{k_y} \in \mathcal{B_{k_y}}
361+
\\ \\ \forall y \in \mathcal{Y}, \forall a \in \mathcal{A}^{\text{compact investment}} \cap \left(\mathcal{A}^{\text{cv}} \cup \left(\mathcal{A}^{\text{s}} \setminus \mathcal{A}^{\text{sb}}_y \right) \cup \mathcal{A}^{\text{p}} \right), \forall k_y \in \mathcal{K}_y,\forall b_{k_y} \in \mathcal{B_{k_y}}
354362
\end{aligned}
355363
```
356364

@@ -489,7 +497,7 @@ e^{\text{flow above min}}_{a,k_y,b_{k_y}} - e^{\text{flow above min}}_{a,k_y,b_{
489497
\sum_{f \in \mathcal{F}^{\text{out}}_{a,y}} v^{\text{flow}}_{f,k_y,b_{k_y}} - \sum_{f \in \mathcal{F}^{\text{out}}_{a,y}} v^{\text{flow}}_{f,k_y,b_{k_y}-1} \leq p^{\text{max ramp up}}_{a,y} \cdot p^{\text{duration}}_{b_{k_y}} \cdot p^{\text{availability profile}}_{a,y,k_y,b_{k_y}} \cdot p^{\text{capacity}}_{a} \cdot v^{\text{available units simple method}}_{a,y} \quad
490498
\\ \\ \forall y \in \mathcal{Y}, \forall a \in (\mathcal{A}^{\text{simple investment}} \cup \mathcal{A}^{\text{operation}}) \cap\left(\mathcal{A}^{\text{ramp}}_y \setminus \mathcal{A}^{\text{uc basic}}_y \right), \forall k_y \in \mathcal{K}_y,\forall b_{k_y} \in \mathcal{B_{k_y}} \\
491499
\sum_{f \in \mathcal{F}^{\text{out}}_{a,y}} v^{\text{flow}}_{f,k_y,b_{k_y}} - \sum_{f \in \mathcal{F}^{\text{out}}_{a,y}} v^{\text{flow}}_{f,k_y,b_{k_y}-1} \leq p^{\text{max ramp up}}_{a,y} \cdot p^{\text{duration}}_{b_{k_y}} \cdot p^{\text{capacity}}_{a} \cdot \sum_{v \in \mathcal{V} | (a,y,v) \in \mathcal{D}^{\text{compact investment}}} p^{\text{availability profile}}_{a,v,k_y,b_{k_y}} \cdot v^{\text{available units compact method}}_{a,y,v} \quad
492-
\\ \\ \forall y \in \mathcal{Y}, \forall a \in (\mathcal{A}^{\text{compact investment}} \cup \mathcal{A}^{\text{operation}}) \cap\left(\mathcal{A}^{\text{ramp}}_y \setminus \mathcal{A}^{\text{uc basic}}_y \right), \forall k_y \in \mathcal{K}_y,\forall b_{k_y} \in \mathcal{B_{k_y}}
500+
\\ \\ \forall y \in \mathcal{Y}, \forall a \in \mathcal{A}^{\text{compact investment}} \cap\left(\mathcal{A}^{\text{ramp}}_y \setminus \mathcal{A}^{\text{uc basic}}_y \right), \forall k_y \in \mathcal{K}_y,\forall b_{k_y} \in \mathcal{B_{k_y}}
493501
```
494502

495503
#### Maximum Ramp-Down Rate Limit WITHOUT Unit Commitment Method
@@ -498,7 +506,7 @@ e^{\text{flow above min}}_{a,k_y,b_{k_y}} - e^{\text{flow above min}}_{a,k_y,b_{
498506
\sum_{f \in \mathcal{F}^{\text{out}}_{a,y}} v^{\text{flow}}_{f,k_y,b_{k_y}} - \sum_{f \in \mathcal{F}^{\text{out}}_{a,y}} v^{\text{flow}}_{f,k_y,b_{k_y}-1} \geq - p^{\text{max ramp down}}_{a,y} \cdot p^{\text{duration}}_{b_{k_y}} \cdot p^{\text{availability profile}}_{a,y,k_y,b_{k_y}} \cdot p^{\text{capacity}}_{a} \cdot v^{\text{available units simple method}}_{a,y} \quad
499507
\\ \\ \forall y \in \mathcal{Y}, \forall a \in (\mathcal{A}^{\text{simple investment}} \cup \mathcal{A}^{\text{operation}}) \cap\left(\mathcal{A}^{\text{ramp}}_y \setminus \mathcal{A}^{\text{uc basic}}_y \right), \forall k_y \in \mathcal{K}_y,\forall b_{k_y} \in \mathcal{B_{k_y}} \\
500508
\sum_{f \in \mathcal{F}^{\text{out}}_{a,y}} v^{\text{flow}}_{f,k_y,b_{k_y}} - \sum_{f \in \mathcal{F}^{\text{out}}_{a,y}} v^{\text{flow}}_{f,k_y,b_{k_y}-1} \geq - p^{\text{max ramp down}}_{a,y} \cdot p^{\text{duration}}_{b_{k_y}} \cdot p^{\text{capacity}}_{a} \cdot \sum_{v \in \mathcal{V} | (a,y,v) \in \mathcal{D}^{\text{compact investment}}} p^{\text{availability profile}}_{a,v,k_y,b_{k_y}} \cdot v^{\text{available units compact method}}_{a,y,v} \quad
501-
\\ \\ \forall y \in \mathcal{Y}, \forall a \in (\mathcal{A}^{\text{compact investment}} \cup \mathcal{A}^{\text{operation}}) \cap\left(\mathcal{A}^{\text{ramp}}_y \setminus \mathcal{A}^{\text{uc basic}}_y \right), \forall k_y \in \mathcal{K}_y,\forall b_{k_y} \in \mathcal{B_{k_y}}
509+
\\ \\ \forall y \in \mathcal{Y}, \forall a \in \mathcal{A}^{\text{compact investment}} \cap\left(\mathcal{A}^{\text{ramp}}_y \setminus \mathcal{A}^{\text{uc basic}}_y \right), \forall k_y \in \mathcal{K}_y,\forall b_{k_y} \in \mathcal{B_{k_y}}
502510
```
503511

504512
### [DC Power Flow Constraints](@id dc-opf-constraints)

docs/src/45-scientific-references.md

+7-1
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ Depth = [2, 3]
99

1010
## Flexible Connection of Energy Assets
1111

12-
Tejada-Arango, D.A., Morales-España, G., Kiviluoma, J., 2024. Debunking the Speed-Fidelity Trade-Off: Speeding-up Large-Scale Energy Models while Keeping Fidelity. ArXiv. <https://arxiv.org/abs/2407.05451>
12+
Tejada-Arango, D. A., Kiviluoma, J., & Morales-España, G. (2025). Debunking the speed-fidelity trade-off: Speeding-up large-scale energy models while keeping fidelity. International Journal of Electrical Power & Energy Systems, 168, 110674. <https://doi.org/10.1016/j.ijepes.2025.110674>
1313

1414
## Flexible Temporal Resolution
1515

@@ -34,3 +34,9 @@ Damcı-Kurt, P., Küçükyavuz, S., Rajan, D., Atamtürk, A., 2016. A polyhedral
3434
Morales-España, G., Ramos, A., García-González, J., 2014. An MIP Formulation for Joint Market-Clearing of Energy and Reserves Based on Ramp Scheduling. IEEE Transactions on Power Systems 29, 476-488. doi: 10.1109/TPWRS.2013.2259601.
3535

3636
Morales-España, G., Latorre, J. M., Ramos, A., 2013. Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem. IEEE Transactions on Power Systems 28, 4897-4908. doi: 10.1109/TPWRS.2013.2251373.
37+
38+
## Multi-year Investments
39+
40+
Wang, Ni and Tejada-Arango, D.A., 2025. Discounting Approaches in Multi-Year Investment Modelling for Energy Systems. ArXiv. <https://arxiv.org/abs/2504.21709>
41+
42+
Wang, Ni and Morales-España, G., 2025. Vintage-Based Formulations in Multi-Year Investment Modelling for Energy Systems. ArXiv. <https://arxiv.org/abs/2505.00379>

0 commit comments

Comments
 (0)