You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
| $\mathcal{Y}^{\text{i}}_a$ | Milestone years where asset $a$ is investable | $y \in \mathcal{Y}^{\text{i}}_a$ | $\mathcal{Y} \subseteq \mathcal{Y}$ ||
63
+
| $\mathcal{Y}^{\text{i}}_f$ | Milestone years where flow $f$ is investable | $y \in \mathcal{Y}^{\text{i}}_f$ | $\mathcal{Y} \subseteq \mathcal{Y}$ ||
62
64
| $\mathcal{V}$ | All years | $v \in \mathcal{V}$ | $\mathcal{V} \subset \mathbb{N}$ ||
63
65
| $\mathcal{P}_y$ | Periods in the timeframe at year $y$ | $p_y \in \mathcal{P}_y$ | $\mathcal{P}_y \subset \mathbb{N}$ ||
64
66
| $\mathcal{K}_y$ | Representative periods (rp) at year $y$ | $k_y \in \mathcal{K}_y$ | $\mathcal{K}_y \subset \mathbb{N}$ | $\mathcal{K}_y$ does not have to be a subset of $\mathcal{P}_y$ |
@@ -95,7 +97,7 @@ In addition, the following subsets represent methods for incorporating additiona
| $p^{\text{init units}}_{a,y}$ | $\mathbb{R}_{+}$ | $a \in \mathcal{A}$, $y \in \mathcal{Y}$ | Initial number of units of asset $a$ available at year $y$ |[units]|
98
-
| $p^{\text{init units}}_{a,y,v}$ | $\mathbb{R}_{+}$ | $ (a,y,v) \in \mathcal{D}^{\text{compact investment}} \cup \mathcal{D}^{\text{operation}}$ | Initial number of units of asset $a$ available at year $y$ commissioned in year $v$ |[units]|
100
+
| $p^{\text{init units}}_{a,y,v}$ | $\mathbb{R}_{+}$ | $ (a,y,v) \in \mathcal{D}^{\text{compact investment}}$ | Initial number of units of asset $a$ available at year $y$ commissioned in year $v$ |[units]|
99
101
| $p^{\text{availability profile}}_{a,v,k_y,b_{k_y}}$ | $\mathbb{R}_{+}$ | $a \in \mathcal{A}$, $v \in \mathcal{V}$, $k_y \in \mathcal{K}_y$, $b_{k_y} \in \mathcal{B_{k_y}}$ | Availability profile of asset $a$ invested in year $v$ in the representative period $k_y$ and timestep block $b_{k_y}$ |[p.u.]|
100
102
| $p^{\text{group}}_{a}$ | $\mathcal{G}^{\text{a}}$ | $a \in \mathcal{A}$ | Group $g$ to which the asset $a$ belongs |[-]|
101
103
@@ -215,51 +217,53 @@ In addition, the following subsets represent methods for incorporating additiona
215
217
216
218
### Expresssions for the Objective Function
217
219
220
+
There are two types of investment methods for multi-year investment modelling: simple method and compact method. The simple method aggregates all units available in a year, regardless of when they were invested. The compact method tracks availability by investment and operational year, enabling vintage-specific constraints while reducing model size. For more information on this topic, refer to the [How to use](@ref how-to-use) or [Wang and Morales-España (2025)](@ref scientific-refs).
221
+
218
222
For available units across years, we define the following expresssions:
219
223
220
224
```math
221
225
\begin{aligned}
222
-
v^{\text{available units simple method}}_{a,y} & = p^{\text{initial units}}_{a,y} + \sum_{i \in \{\mathcal{Y}^\text{i}: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{inv}}_{a,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{decom simple}}_{a,i} \\
226
+
v^{\text{available units simple method}}_{a,y} & = p^{\text{initial units}}_{a,y} + \sum_{i \in \{\mathcal{Y}^\text{i}_a: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{inv}}_{a,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{decom simple}}_{a,i} \\
223
227
& \forall a \in \mathcal{A}^{\text{simple investment}} \cup \mathcal{A}^{\text{operation}}, \forall y \in \mathcal{Y} \\
224
228
v^{\text{available units compact method}}_{a,y,v} & = p^{\text{initial units}}_{a,y,v} + v^{\text{inv}}_{a,v} - \sum_{i \in \{\mathcal{Y}: v < i \le y\} | (a,i,v) \in \mathcal{D}^{\text{compact investment}}} v^{\text{decom compact}}_{a,i,v}
v^{\text{available energy units simple method}}_{a,y} & = p^{\text{initial storage units}}_{a,y} + \sum_{i \in \{\mathcal{Y}^\text{i}_a: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{inv energy}}_{a,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{a} + 1 \le i \le y \}} v^{\text{decom energy simple}}_{a,i} \\
228
232
& \forall a \in \mathcal{A}^{\text{se}}_y, \forall y \in \mathcal{Y} \\
229
-
v^{\text{available export units simple method}}_{f,y} & = p^{\text{initial export units}}_{f,y} + \sum_{i \in \{\mathcal{Y}^\text{i}: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{inv}}_{f,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{decom simple}}_{f,i} \\
233
+
v^{\text{available export units simple method}}_{f,y} & = p^{\text{initial export units}}_{f,y} + \sum_{i \in \{\mathcal{Y}^\text{i}_f: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{inv}}_{f,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{decom simple}}_{f,i} \\
230
234
& \forall f \in \mathcal{F}^{\text{t}}_y, \forall y \in \mathcal{Y} \\
231
-
v^{\text{available import units simple method}}_{f,y} & = p^{\text{initial import units}}_{f,y} + \sum_{i \in \{\mathcal{Y}^\text{i}: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{inv}}_{f,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{decom simple}}_{f,i} \\
235
+
v^{\text{available import units simple method}}_{f,y} & = p^{\text{initial import units}}_{f,y} + \sum_{i \in \{\mathcal{Y}^\text{i}_f: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{inv}}_{f,i} - \sum_{i \in \{\mathcal{Y}: y - p^{\text{technical lifetime}}_{f} + 1 \le i \le y \}} v^{\text{decom simple}}_{f,i} \\
232
236
& \forall f \in \mathcal{F}^{\text{t}}_y, \forall y \in \mathcal{Y} \\
233
237
\end{aligned}
234
238
```
235
239
236
-
In addition, we define the following expressions to determine the available units. This expression takes a few forms depending on whether the asset uses _simple_ or _compact_ investment method.
240
+
In addition, we define the following expressions to determine the available units. This expression takes a few forms depending on whether the asset uses simple or compact investment method.
237
241
238
-
- If the asset uses _simple_ investment method
242
+
- If the asset uses simple investment method
239
243
240
244
```math
241
245
\begin{aligned}
242
246
v^{\text{available units}}_{a,y} & = v^{\text{available units simple method}}_{a,y} \quad \forall a \in \mathcal{A}, \forall y \in \mathcal{Y}
243
247
\end{aligned}
244
248
```
245
249
246
-
- If the asset uses _compact_ investment method
250
+
- If the asset uses compact investment method
247
251
248
252
```math
249
253
\begin{aligned}
250
254
v^{\text{available units}}_{a,y} & = \sum_{v \in \mathcal{V} | (a,y,v) \in \mathcal{D}^{\text{compact investment}}} v^{\text{available units compact method}}_{a,y,v} \quad \forall a \in \mathcal{A}, \forall y \in \mathcal{Y}
251
255
\end{aligned}
252
256
```
253
257
254
-
- Storage assets with energy method always use _simple_ investment method
258
+
- Storage assets with energy method always use simple investment method
255
259
256
260
```math
257
261
\begin{aligned}
258
262
v^{\text{available energy units}}_{a,y} & = v^{\text{available energy units simple method}}_{a,y} \quad \forall a \in \mathcal{A}^{\text{se}}_y, \forall y \in \mathcal{Y}
259
263
\end{aligned}
260
264
```
261
265
262
-
- Transport assets always use _simple_ investment method
266
+
- Transport assets always use simple investment method
263
267
264
268
```math
265
269
\begin{aligned}
@@ -270,6 +274,8 @@ In addition, we define the following expressions to determine the available unit
270
274
271
275
### Economic Representation for the Objective Function
272
276
277
+
The model accounts for discounting in multi-year investment modelling. For more information on this topic, refer to the [How to use](@ref how-to-use) or [Wang and Tejada-Arango (2025)](@ref scientific-refs).
278
+
273
279
#### Discounting Factor for Asset Investment Costs
Maximum output flow constraints depend on the chosen investment method (simple or compact). For more information on this topic, refer to the [How to use](@ref how-to-use) or [Wang and Morales-España (2025)](@ref scientific-refs).
Copy file name to clipboardExpand all lines: docs/src/45-scientific-references.md
+7-1
Original file line number
Diff line number
Diff line change
@@ -9,7 +9,7 @@ Depth = [2, 3]
9
9
10
10
## Flexible Connection of Energy Assets
11
11
12
-
Tejada-Arango, D.A., Morales-España, G., Kiviluoma, J., 2024. Debunking the Speed-Fidelity Trade-Off: Speeding-up Large-Scale Energy Models while Keeping Fidelity. ArXiv. <https://arxiv.org/abs/2407.05451>
12
+
Tejada-Arango, D.A., Kiviluoma, J., & Morales-España, G. (2025). Debunking the speed-fidelity trade-off: Speeding-up large-scale energy models while keeping fidelity. International Journal of Electrical Power & Energy Systems, 168, 110674. <https://doi.org/10.1016/j.ijepes.2025.110674>
13
13
14
14
## Flexible Temporal Resolution
15
15
@@ -34,3 +34,9 @@ Damcı-Kurt, P., Küçükyavuz, S., Rajan, D., Atamtürk, A., 2016. A polyhedral
34
34
Morales-España, G., Ramos, A., García-González, J., 2014. An MIP Formulation for Joint Market-Clearing of Energy and Reserves Based on Ramp Scheduling. IEEE Transactions on Power Systems 29, 476-488. doi: 10.1109/TPWRS.2013.2259601.
35
35
36
36
Morales-España, G., Latorre, J. M., Ramos, A., 2013. Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem. IEEE Transactions on Power Systems 28, 4897-4908. doi: 10.1109/TPWRS.2013.2251373.
37
+
38
+
## Multi-year Investments
39
+
40
+
Wang, Ni and Tejada-Arango, D.A., 2025. Discounting Approaches in Multi-Year Investment Modelling for Energy Systems. ArXiv. <https://arxiv.org/abs/2504.21709>
41
+
42
+
Wang, Ni and Morales-España, G., 2025. Vintage-Based Formulations in Multi-Year Investment Modelling for Energy Systems. ArXiv. <https://arxiv.org/abs/2505.00379>
0 commit comments