@@ -12,19 +12,24 @@ let ogWeights = RData.load("test/weightMatrix.RData")["weightMatrix"]
12
12
end
13
13
rel_eff = RData. load (" test/Rel_Eff.RData" )[" rel_eff" ]
14
14
rPsis = RData. load (" test/Psis_Object.RData" )[" psisObject" ]
15
- with_rel_eff = psis (logLikelihoodArray, rel_eff)
16
- juliaPsis = psis (logLikelihoodArray)
17
- logLikelihoodMatrix = reshape (logLikelihoodArray, 32 , 1000 )
18
- chainIndex = vcat (fill (1 , 500 ), fill (2 , 500 ))
19
- matrixPsis = psis (logLikelihoodMatrix; chain_index= chainIndex)
20
- logPsis = psis (logLikelihoodArray; lw= true )
21
15
22
16
@testset " ParetoSmooth.jl" begin
17
+
18
+ # All of these should run
19
+
20
+ with_rel_eff = psis (logLikelihoodArray, rel_eff)
21
+ juliaPsis = psis (logLikelihoodArray)
22
+ logLikelihoodMatrix = reshape (logLikelihoodArray, 32 , 1000 )
23
+ chainIndex = vcat (fill (1 , 500 ), fill (2 , 500 ))
24
+ matrixPsis = psis (logLikelihoodMatrix; chain_index= chainIndex)
25
+ logPsis = psis (logLikelihoodArray; lw= true )
26
+
27
+
23
28
# RMSE from R version is less than .1%
24
29
@test sqrt (mean ((with_rel_eff. weights ./ rWeights .- 1 ). ^ 2 )) ≤ .001
25
30
# RMSE less than .2% when using InferenceDiagnostics' ESS
26
31
@test sqrt (mean ((juliaPsis. weights ./ rWeights .- 1 ). ^ 2 )) ≤ .002
27
- @test count (with_rel_eff. weights .≈ rWeights) ≤ 10
32
+ @test count (with_rel_eff. weights .≉ rWeights) ≤ 10
28
33
@test count (juliaPsis. weights .≉ matrixPsis. weights) ≤ 10
29
34
@test sqrt (mean ((logPsis. weights .- log .(rWeights)). ^ 2 )) ≤ .001
30
35
end
0 commit comments