|
| 1 | +""" |
| 2 | +Pre-multiply by random orthogonal matrix |
| 3 | +""" |
| 4 | +function qmult!(A::Matrix{T}) where {T} |
| 5 | + n, m = size(A) |
| 6 | + |
| 7 | + d = zeros(T, n) |
| 8 | + for k = n-1:-1:1 |
| 9 | + |
| 10 | + # generate random Householder transformation |
| 11 | + x = randn(n - k + 1) |
| 12 | + s = norm(x) |
| 13 | + sgn = sign(x[1]) + (x[1] == 0) |
| 14 | + s = sgn * s |
| 15 | + d[k] = -sgn |
| 16 | + x[1] = x[1] + s |
| 17 | + beta = s * x[1] |
| 18 | + |
| 19 | + # apply the transformation to A |
| 20 | + y = x' * A[k:n, :] |
| 21 | + A[k:n, :] = A[k:n, :] - x * (y / beta) |
| 22 | + end |
| 23 | + |
| 24 | + # tidy up signs |
| 25 | + for i = 1:n-1 |
| 26 | + A[i, :] = d[i] * A[i, :] |
| 27 | + end |
| 28 | + A[n, :] = A[n, :] * sign(randn()) |
| 29 | + return A |
| 30 | +end |
| 31 | + |
| 32 | +""" |
| 33 | +Random Matrix with Pre-assigned Singular Values |
| 34 | +=============================================== |
| 35 | +*Input options:* |
| 36 | +
|
| 37 | ++ row_dim, col_dim, kappa, mode: `row_dim` and `col_dim` |
| 38 | + are the row and column dimensions. |
| 39 | + `kappa` is the condition number of the matrix. |
| 40 | + `mode = 1`: one large singular value. |
| 41 | + `mode = 2`: one small singular value. |
| 42 | + `mode = 3`: geometrically distributed singular values. |
| 43 | + `mode = 4`: arithmetrically distributed singular values. |
| 44 | + `mode = 5`: random singular values with unif. dist. logarithm. |
| 45 | +
|
| 46 | ++ dim, kappa, mode: `row_dim = col_dim = dim`. |
| 47 | +
|
| 48 | ++ dim, kappa: `mode = 3`. |
| 49 | +
|
| 50 | ++ dim: `kappa = sqrt(1/eps())`, `mode = 3`. |
| 51 | +
|
| 52 | +*References:* |
| 53 | +
|
| 54 | +**N. J. Higham**, Accuracy and Stability of Numerical |
| 55 | +Algorithms, second edition, Society for Industrial and Applied Mathematics, |
| 56 | +Philadelphia, PA, USA, 2002; sec. 28.3. |
| 57 | +""" |
| 58 | +struct RandSVD{T<:Number} <: AbstractMatrix{T} |
| 59 | + m::Integer |
| 60 | + n::Integer |
| 61 | + kappa::T |
| 62 | + M::AbstractMatrix{T} |
| 63 | + |
| 64 | + function RandSVD{T}(m::Integer, n::Integer, kappa::T, mode::Integer) where {T<:Number} |
| 65 | + m >= 0 || throw(ArgumentError("$m < 0")) |
| 66 | + n >= 0 || throw(ArgumentError("$n < 0")) |
| 67 | + kappa >= 1 || throw(ArgumentError("Condition number must be at least 1.")) |
| 68 | + mode ∈ 1:5 || throw(ArgumentError("mode not in 1:5")) |
| 69 | + |
| 70 | + # create matrix |
| 71 | + p = min(m, n) |
| 72 | + if p == 1 # handle 1-d case |
| 73 | + return ones(T, 1, 1) * kappa |
| 74 | + end |
| 75 | + |
| 76 | + if mode == 1 |
| 77 | + sigma = ones(p) ./ kappa |
| 78 | + sigma[1] = one(T) |
| 79 | + elseif mode == 2 |
| 80 | + sigma = ones(T, p) |
| 81 | + sigma[p] = one(T) / kappa |
| 82 | + elseif mode == 3 |
| 83 | + factor = kappa^(-1 / (p - 1)) |
| 84 | + sigma = factor .^ [0:p-1;] |
| 85 | + elseif mode == 4 |
| 86 | + sigma = ones(T, p) - T[0:p-1;] / (p - 1) * (1 - 1 / kappa) |
| 87 | + elseif mode == 5 |
| 88 | + sigma = exp.(-rand(p) * log(kappa)) |
| 89 | + end |
| 90 | + |
| 91 | + M = zeros(T, m, n) |
| 92 | + M[1:p, 1:p] = diagm(0 => sigma) |
| 93 | + M = qmult!(copy(M')) |
| 94 | + M = qmult!(copy(M')) |
| 95 | + |
| 96 | + return new{T}(m, n, kappa, M) |
| 97 | + end |
| 98 | +end |
| 99 | + |
| 100 | +# constructors |
| 101 | +RandSVD(n::Integer) = RandSVD(n, sqrt(1 / eps())) |
| 102 | +RandSVD(n::Integer, kappa::Number) = RandSVD(n, kappa, 3) |
| 103 | +RandSVD(n::Integer, kappa::Number, mode::Integer) = RandSVD(n, n, kappa, mode) |
| 104 | +RandSVD(m::Integer, n::Integer, kappa::T, mode::Integer) where {T<:Number} = RandSVD{T}(m, n, kappa, mode) |
| 105 | +RandSVD{T}(n::Integer) where {T} = RandSVD(n, sqrt(1 / eps(T))) |
| 106 | +RandSVD{T}(n::Integer, kappa::T) where {T} = RandSVD{T}(n, kappa, 3) |
| 107 | +RandSVD{T}(n::Integer, kappa::T, mode::Integer) where {T} = RandSVD{T}(n, n, kappa, mode) |
| 108 | + |
| 109 | +# metadata |
| 110 | +@properties RandSVD [:illcond, :random] |
| 111 | + |
| 112 | +# properties |
| 113 | +size(A::RandSVD) = (A.m, A.n) |
| 114 | + |
| 115 | +# functions |
| 116 | +@inline Base.@propagate_inbounds function getindex(A::RandSVD{T}, i::Integer, j::Integer) where {T} |
| 117 | + @boundscheck checkbounds(A, i, j) |
| 118 | + return A.M[i, j] |
| 119 | +end |
0 commit comments