|
238 | 238 | }, |
239 | 239 | { |
240 | 240 | "cell_type": "code", |
241 | | - "execution_count": 4, |
| 241 | + "execution_count": null, |
242 | 242 | "metadata": {}, |
243 | 243 | "outputs": [], |
244 | 244 | "source": [ |
|
337 | 337 | " transform=transform,\n", |
338 | 338 | " )\n", |
339 | 339 | " qham = huz_builder.build()\n", |
340 | | - " result[active][\"huz\"] = {}\n", |
341 | | - " result[active][\"huz\"][\"qham\"] = HamiltonianConverter(qham)._intermediate\n", |
342 | | - " result[active][\"huz\"][\"terms\"] = len(qham.terms)\n", |
343 | | - " result[active][\"huz\"][\"n_qubits\"] = count_qubits(qham)\n", |
344 | | - " result[active][\"huz\"][\"classical_energy\"] = driver._huzinaga[\"classical_energy\"]\n", |
345 | | - " result[active][\"huz\"][\"ground\"] = None\n", |
346 | | - " result[active][\"huz\"][\"e_ccsd\"] = driver._huzinaga[\"e_ccsd\"]\n", |
| 340 | + " result[active][\"huzinaga\"] = {}\n", |
| 341 | + " result[active][\"huzinaga\"][\"qham\"] = HamiltonianConverter(qham)._intermediate\n", |
| 342 | + " result[active][\"huzinaga\"][\"terms\"] = len(qham.terms)\n", |
| 343 | + " result[active][\"huzinaga\"][\"n_qubits\"] = count_qubits(qham)\n", |
| 344 | + " result[active][\"huzinaga\"][\"classical_energy\"] = driver._huzinaga[\"classical_energy\"]\n", |
| 345 | + " result[active][\"huzinaga\"][\"ground\"] = None\n", |
| 346 | + " result[active][\"huzinaga\"][\"e_ccsd\"] = driver._huzinaga[\"e_ccsd\"]\n", |
347 | 347 | " print(\"Huzinaga finished.\")\n", |
348 | 348 | "\n", |
349 | 349 | " # untapered_mu = mu_builder.build(taper=False)\n", |
|
366 | 366 | }, |
367 | 367 | { |
368 | 368 | "cell_type": "code", |
369 | | - "execution_count": 5, |
| 369 | + "execution_count": null, |
370 | 370 | "metadata": {}, |
371 | 371 | "outputs": [], |
372 | 372 | "source": [ |
|
382 | 382 | " embeddings = pd.concat([threes, twos], axis=0)\n", |
383 | 383 | " full_vals = pd.DataFrame([v for v in df[\"full\"].to_list()], index=df[\"mol_name\"])\n", |
384 | 384 | " mu_vals = pd.DataFrame([v for v in embeddings[\"mu\"]], index=embeddings.index)\n", |
385 | | - " huz_vals = pd.DataFrame([v for v in embeddings[\"huz\"]], index=embeddings.index)\n", |
| 385 | + " huz_vals = pd.DataFrame([v for v in embeddings[\"huzinaga\"]], index=embeddings.index)\n", |
386 | 386 | "\n", |
387 | 387 | " energies = pd.concat(\n", |
388 | 388 | " [df[\"e_dft\"], full_vals[\"e_ccsd\"], mu_vals[\"e_ccsd\"], huz_vals[\"e_ccsd\"]],\n", |
389 | | - " keys=[\"DFT\", \"Full\", \"Mu\", \"Huz\"],\n", |
| 389 | + " keys=[\"DFT\", \"Full\", \"Mu\", \"huzinaga\"],\n", |
390 | 390 | " axis=1,\n", |
391 | 391 | " )\n", |
392 | 392 | " energies[\"dft_diffs\"] = (\n", |
|
396 | 396 | " (energies[\"Mu\"] - energies[\"Full\"]) / energies[\"Full\"]\n", |
397 | 397 | " ).apply(lambda x: np.log10(abs(x)))\n", |
398 | 398 | " energies[\"huz_diffs\"] = (\n", |
399 | | - " (energies[\"Huz\"] - energies[\"Full\"]) / energies[\"Full\"]\n", |
| 399 | + " (energies[\"huzinaga\"] - energies[\"Full\"]) / energies[\"Full\"]\n", |
400 | 400 | " ).apply(lambda x: np.log10(abs(x)))\n", |
401 | 401 | " energies = energies.reindex(\n", |
402 | 402 | " [\n", |
|
581 | 581 | }, |
582 | 582 | { |
583 | 583 | "cell_type": "code", |
584 | | - "execution_count": 7, |
| 584 | + "execution_count": null, |
585 | 585 | "metadata": {}, |
586 | 586 | "outputs": [], |
587 | 587 | "source": [ |
|
591 | 591 | " print(\"\\nQUBITS\")\n", |
592 | 592 | " qubits = pd.concat(\n", |
593 | 593 | " [full_vals[\"n_qubits\"], mu_vals[\"n_qubits\"], huz_vals[\"n_qubits\"]],\n", |
594 | | - " keys=[\"Full\", \"Mu\", \"Huz\"],\n", |
| 594 | + " keys=[\"Full\", \"Mu\", \"huzinaga\"],\n", |
595 | 595 | " axis=1,\n", |
596 | 596 | " )\n", |
597 | 597 | " print(qubits)\n", |
598 | 598 | "\n", |
599 | 599 | " print(\"\\nTERMS\")\n", |
600 | 600 | " terms = pd.concat(\n", |
601 | 601 | " [full_vals[\"terms\"], mu_vals[\"terms\"], huz_vals[\"terms\"]],\n", |
602 | | - " keys=[\"Full\", \"Mu\", \"Huz\"],\n", |
| 602 | + " keys=[\"Full\", \"Mu\", \"huzinaga\"],\n", |
603 | 603 | " axis=1,\n", |
604 | 604 | " )\n", |
605 | 605 | " print(terms)\n", |
|
615 | 615 | " print(\"\\nMolecule Results\")\n", |
616 | 616 | " mol_results = pd.concat(\n", |
617 | 617 | " [\n", |
618 | | - " energies[\"Full\"] - energies[\"Huz\"],\n", |
| 618 | + " energies[\"Full\"] - energies[\"huzinaga\"],\n", |
619 | 619 | " energies[\"Full\"] - energies[\"Mu\"],\n", |
620 | | - " qubits[\"Huz\"],\n", |
| 620 | + " qubits[\"huzinaga\"],\n", |
621 | 621 | " qubits[\"Mu\"],\n", |
622 | | - " terms[\"Huz\"],\n", |
| 622 | + " terms[\"huzinaga\"],\n", |
623 | 623 | " terms[\"Mu\"],\n", |
624 | 624 | " ],\n", |
625 | 625 | " axis=1,\n", |
|
1122 | 1122 | }, |
1123 | 1123 | { |
1124 | 1124 | "cell_type": "code", |
1125 | | - "execution_count": 13, |
| 1125 | + "execution_count": null, |
1126 | 1126 | "metadata": {}, |
1127 | 1127 | "outputs": [], |
1128 | 1128 | "source": [ |
|
1206 | 1206 | " transform=transform,\n", |
1207 | 1207 | " )\n", |
1208 | 1208 | " qham = huz_builder.build(qubits, taper=False)\n", |
1209 | | - " result[active][\"huz\"] = {}\n", |
1210 | | - " result[active][\"huz\"][\"qham\"] = HamiltonianConverter(qham)._intermediate\n", |
1211 | | - " result[active][\"huz\"][\"terms\"] = len(qham.terms)\n", |
1212 | | - " result[active][\"huz\"][\"n_qubits\"] = count_qubits(qham)\n", |
1213 | | - " result[active][\"huz\"][\"classical_energy\"] = driver._huzinaga[\"classical_energy\"]\n", |
1214 | | - " result[active][\"huz\"][\"ground\"] = None\n", |
1215 | | - " result[active][\"huz\"][\"e_ccsd\"] = driver._huzinaga[\"e_ccsd\"]\n", |
1216 | | - " result[active][\"huz\"][\"nmos\"] = len(driver.localized_system.active_MO_inds)\n", |
| 1209 | + " result[active][\"huzinaga\"] = {}\n", |
| 1210 | + " result[active][\"huzinaga\"][\"qham\"] = HamiltonianConverter(qham)._intermediate\n", |
| 1211 | + " result[active][\"huzinaga\"][\"terms\"] = len(qham.terms)\n", |
| 1212 | + " result[active][\"huzinaga\"][\"n_qubits\"] = count_qubits(qham)\n", |
| 1213 | + " result[active][\"huzinaga\"][\"classical_energy\"] = driver._huzinaga[\"classical_energy\"]\n", |
| 1214 | + " result[active][\"huzinaga\"][\"ground\"] = None\n", |
| 1215 | + " result[active][\"huzinaga\"][\"e_ccsd\"] = driver._huzinaga[\"e_ccsd\"]\n", |
| 1216 | + " result[active][\"huzinaga\"][\"nmos\"] = len(driver.localized_system.active_MO_inds)\n", |
1217 | 1217 | " print(\"Huzinaga finished.\")\n", |
1218 | 1218 | "\n", |
1219 | 1219 | " # untapered_mu = mu_builder.build(taper=False)\n", |
|
1236 | 1236 | }, |
1237 | 1237 | { |
1238 | 1238 | "cell_type": "code", |
1239 | | - "execution_count": 14, |
| 1239 | + "execution_count": null, |
1240 | 1240 | "metadata": {}, |
1241 | 1241 | "outputs": [], |
1242 | 1242 | "source": [ |
|
1245 | 1245 | " active_atoms = range(1, 6)\n", |
1246 | 1246 | " mu_qubits = [cyclopentane[str(i)][\"mu\"][\"n_qubits\"] for i in active_atoms]\n", |
1247 | 1247 | " mu_terms = [cyclopentane[str(i)][\"mu\"][\"terms\"] for i in active_atoms]\n", |
1248 | | - " huz_qubits = [cyclopentane[str(i)][\"huz\"][\"n_qubits\"] for i in active_atoms]\n", |
1249 | | - " huz_terms = [cyclopentane[str(i)][\"huz\"][\"terms\"] for i in active_atoms]\n", |
| 1248 | + " huz_qubits = [cyclopentane[str(i)][\"huzinaga\"][\"n_qubits\"] for i in active_atoms]\n", |
| 1249 | + " huz_terms = [cyclopentane[str(i)][\"huzinaga\"][\"terms\"] for i in active_atoms]\n", |
1250 | 1250 | " full_terms = cyclopentane[\"full\"][\"terms\"]\n", |
1251 | 1251 | " full_n_qubits = cyclopentane[\"full\"][\"n_qubits\"]\n", |
1252 | 1252 | " full_nmos = cyclopentane[\"full\"][\"nmos\"]\n", |
1253 | 1253 | " mu_energies = [cyclopentane[str(i)][\"mu\"][\"e_ccsd\"] for i in active_atoms]\n", |
1254 | | - " huz_energies = [cyclopentane[str(i)][\"huz\"][\"e_ccsd\"] for i in active_atoms]\n", |
| 1254 | + " huz_energies = [cyclopentane[str(i)][\"huzinaga\"][\"e_ccsd\"] for i in active_atoms]\n", |
1255 | 1255 | " mu_orbitals = [cyclopentane[str(i)][\"mu\"][\"nmos\"] for i in active_atoms]\n", |
1256 | | - " huz_orbitals = [cyclopentane[str(i)][\"huz\"][\"nmos\"] for i in active_atoms]\n", |
| 1256 | + " huz_orbitals = [cyclopentane[str(i)][\"huzinaga\"][\"nmos\"] for i in active_atoms]\n", |
1257 | 1257 | "\n", |
1258 | 1258 | " active_atoms = [0, *active_atoms]\n", |
1259 | 1259 | "\n", |
|
1944 | 1944 | }, |
1945 | 1945 | { |
1946 | 1946 | "cell_type": "code", |
1947 | | - "execution_count": 17, |
| 1947 | + "execution_count": null, |
1948 | 1948 | "metadata": {}, |
1949 | 1949 | "outputs": [ |
1950 | 1950 | { |
|
2008 | 2008 | " if n_data:\n", |
2009 | 2009 | " if n_data[\"mu\"].get(\"qham\", False):\n", |
2010 | 2010 | " n_data[\"mu\"].pop(\"qham\")\n", |
2011 | | - " if n_data[\"huz\"].get(\"qham\", False):\n", |
2012 | | - " n_data[\"huz\"].pop(\"qham\")" |
| 2011 | + " if n_data[\"huzinaga\"].get(\"qham\", False):\n", |
| 2012 | + " n_data[\"huzinaga\"].pop(\"qham\")" |
2013 | 2013 | ] |
2014 | 2014 | }, |
2015 | 2015 | { |
|
3899 | 3899 | ], |
3900 | 3900 | "metadata": { |
3901 | 3901 | "kernelspec": { |
3902 | | - "display_name": "nbed-1_9TTDE1-py3.10", |
| 3902 | + "display_name": ".venv", |
3903 | 3903 | "language": "python", |
3904 | 3904 | "name": "python3" |
3905 | 3905 | }, |
|
3913 | 3913 | "name": "python", |
3914 | 3914 | "nbconvert_exporter": "python", |
3915 | 3915 | "pygments_lexer": "ipython3", |
3916 | | - "version": "3.10.11" |
| 3916 | + "version": "3.13.1" |
3917 | 3917 | } |
3918 | 3918 | }, |
3919 | 3919 | "nbformat": 4, |
|
0 commit comments