diff --git a/src/scripts/data_file_processing/healthsystem/consumables/generating_consumable_scenarios/generate_consumable_availability_scenarios_for_impact_analysis.py b/src/scripts/data_file_processing/healthsystem/consumables/generating_consumable_scenarios/generate_consumable_availability_scenarios_for_impact_analysis.py index bc05f733e0..ae8f3ec405 100644 --- a/src/scripts/data_file_processing/healthsystem/consumables/generating_consumable_scenarios/generate_consumable_availability_scenarios_for_impact_analysis.py +++ b/src/scripts/data_file_processing/healthsystem/consumables/generating_consumable_scenarios/generate_consumable_availability_scenarios_for_impact_analysis.py @@ -32,11 +32,6 @@ from tlo.methods.consumables import check_format_of_consumables_file -# Set local Dropbox source -path_to_dropbox = Path( # <-- point to the TLO dropbox locally - '/Users/sm2511/Dropbox/Thanzi la Onse' -) - # define a timestamp for script outputs timestamp = datetime.datetime.now().strftime("_%Y_%m_%d_%H_%M") @@ -55,7 +50,7 @@ #------------------------------------------------------ tlo_availability_df = pd.read_csv(path_for_new_resourcefiles / "ResourceFile_Consumables_availability_small.csv") # Drop any scenario data previously included in the resourcefile -tlo_availability_df = tlo_availability_df[['Facility_ID', 'month', 'item_code', 'available_prop']] +tlo_availability_df = tlo_availability_df[['Facility_ID', 'month', 'item_category', 'item_code', 'available_prop']] # 1.1.1 Attach district, facility level, program to this dataset #---------------------------------------------------------------- @@ -66,13 +61,6 @@ tlo_availability_df = tlo_availability_df.merge(mfl[['District', 'Facility_Level', 'Facility_ID']], on = ['Facility_ID'], how='left') -# 1.1.2 Attach programs -programs = pd.read_csv(path_for_new_resourcefiles / "ResourceFile_Consumables_availability_and_usage.csv")[['category', 'item_code', 'module_name']] -# TODO See if programs can be extracted from a different location as ResourceFile_Consumables_availability_and_usage.csv is now deprecated in master -programs = programs.drop_duplicates('item_code') -# manually add category for the two consumables for which it is missing -tlo_availability_df = tlo_availability_df.merge(programs, on = ['item_code'], how = 'left') - # 1.2 Import scenario data #------------------------------------------------------ scenario_availability_df = pd.read_csv(outputfilepath / "regression_analysis/predictions/predicted_consumable_availability_regression_scenarios.csv")