|
| 1 | +from unittest import TestCase |
| 2 | +from unittest.mock import MagicMock, patch |
| 3 | + |
| 4 | +import numpy as np |
| 5 | + |
| 6 | +from speech_recognition import AudioData, Recognizer |
| 7 | + |
| 8 | + |
| 9 | +@patch("speech_recognition.io.BytesIO") |
| 10 | +@patch("soundfile.read") |
| 11 | +@patch("torch.cuda.is_available") |
| 12 | +@patch("whisper.load_model") |
| 13 | +class RecognizeWhisperTestCase(TestCase): |
| 14 | + def test_default_parameters( |
| 15 | + self, load_model, is_available, sf_read, BytesIO |
| 16 | + ): |
| 17 | + whisper_model = load_model.return_value |
| 18 | + transcript = whisper_model.transcribe.return_value |
| 19 | + audio_array = MagicMock() |
| 20 | + dummy_sampling_rate = 99_999 |
| 21 | + sf_read.return_value = (audio_array, dummy_sampling_rate) |
| 22 | + |
| 23 | + recognizer = Recognizer() |
| 24 | + audio_data = MagicMock(spec=AudioData) |
| 25 | + actual = recognizer.recognize_whisper(audio_data) |
| 26 | + |
| 27 | + self.assertEqual(actual, transcript.__getitem__.return_value) |
| 28 | + load_model.assert_called_once_with("base") |
| 29 | + audio_data.get_wav_data.assert_called_once_with(convert_rate=16000) |
| 30 | + BytesIO.assert_called_once_with(audio_data.get_wav_data.return_value) |
| 31 | + sf_read.assert_called_once_with(BytesIO.return_value) |
| 32 | + audio_array.astype.assert_called_once_with(np.float32) |
| 33 | + whisper_model.transcribe.assert_called_once_with( |
| 34 | + audio_array.astype.return_value, |
| 35 | + language=None, |
| 36 | + task=None, |
| 37 | + fp16=is_available.return_value, |
| 38 | + ) |
| 39 | + transcript.__getitem__.assert_called_once_with("text") |
| 40 | + |
| 41 | + def test_return_as_dict(self, load_model, is_available, sf_read, BytesIO): |
| 42 | + whisper_model = load_model.return_value |
| 43 | + audio_array = MagicMock() |
| 44 | + dummy_sampling_rate = 99_999 |
| 45 | + sf_read.return_value = (audio_array, dummy_sampling_rate) |
| 46 | + |
| 47 | + recognizer = Recognizer() |
| 48 | + audio_data = MagicMock(spec=AudioData) |
| 49 | + actual = recognizer.recognize_whisper(audio_data, show_dict=True) |
| 50 | + |
| 51 | + self.assertEqual(actual, whisper_model.transcribe.return_value) |
| 52 | + |
| 53 | + def test_pass_parameters(self, load_model, is_available, sf_read, BytesIO): |
| 54 | + whisper_model = load_model.return_value |
| 55 | + transcript = whisper_model.transcribe.return_value |
| 56 | + audio_array = MagicMock() |
| 57 | + dummy_sampling_rate = 99_999 |
| 58 | + sf_read.return_value = (audio_array, dummy_sampling_rate) |
| 59 | + |
| 60 | + recognizer = Recognizer() |
| 61 | + audio_data = MagicMock(spec=AudioData) |
| 62 | + actual = recognizer.recognize_whisper( |
| 63 | + audio_data, |
| 64 | + model="small", |
| 65 | + language="english", |
| 66 | + translate=True, |
| 67 | + temperature=0, |
| 68 | + ) |
| 69 | + |
| 70 | + self.assertEqual(actual, transcript.__getitem__.return_value) |
| 71 | + load_model.assert_called_once_with("small") |
| 72 | + whisper_model.transcribe.assert_called_once_with( |
| 73 | + audio_array.astype.return_value, |
| 74 | + language="english", |
| 75 | + task="translate", |
| 76 | + fp16=is_available.return_value, |
| 77 | + temperature=0, |
| 78 | + ) |
0 commit comments