-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
88 lines (66 loc) · 3.12 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import torch.nn as nn
from typing import Any
from torch.utils.data import Dataset
class BilingualDataset(Dataset):
def __init__(self, ds , tokenizer_src, tokenizer_tgt, src_lang, tgt_lang, seq_len ) -> None:
super().__init__()
self.ds = ds
self.tokenizer_src = tokenizer_src
self.tokenizer_tgt = tokenizer_tgt
self.src_lang = src_lang
self.tgt_lang = tgt_lang
self.seq_len = seq_len
self.sos_token = torch.tensor([tokenizer_tgt.token_to_id("[SOS]")], dtype=torch.int64)
self.eos_token = torch.tensor([tokenizer_tgt.token_to_id("[EOS]")], dtype=torch.int64)
self.pad_token = torch.tensor([tokenizer_tgt.token_to_id("[PAD]")], dtype=torch.int64)
def __len__(self):
return len(self.ds)
def __getitem__(self, index: Any)-> Any:
src_target_pair = self.ds[index]
src_text = src_target_pair['translation'][self.src_lang]
tgt_text = src_target_pair['translation'][self.tgt_lang]
enc_input_tokens = self.tokenizer_src.encode(src_text).ids
dec_input_tokens = self.tokenizer_tgt.encode(tgt_text).ids
enc_num_padding_tokens = self.seq_len - len(enc_input_tokens) - 2 # Two tokens start and end
dec_num_padding_tokens = self.seq_len - len(dec_input_tokens) - 1 # one token in the input only
if enc_num_padding_tokens < 0 or dec_num_padding_tokens < 0:
raise ValueError("Sentence is too long...")
# Add sos eos and pad
encoder_input = torch.cat(
[
self.sos_token,
torch.tensor(enc_input_tokens, dtype=torch.int64),
self.eos_token,
torch.tensor([self.pad_token]* enc_num_padding_tokens, dtype=torch.int64)
]
)
# Add SOS to the decoder input
decoder_input = torch.cat(
[
self.sos_token,
torch.tensor(dec_input_tokens, dtype = torch.int64),
torch.tensor([self.pad_token]* dec_num_padding_tokens, dtype=torch.int64)
]
)
# Adding the eos to the label
label = torch.cat([
torch.tensor(dec_input_tokens, dtype = torch.int64),
self.eos_token,
torch.tensor([self.pad_token]* dec_num_padding_tokens, dtype=torch.int64)
])
assert encoder_input.size(0) == self.seq_len
assert decoder_input.size(0) == self.seq_len
assert label.size(0) == self.seq_len
return {
'encoder_input':encoder_input,#(seq_len)
'decoder_input': decoder_input,#(sdeq_len)
'encoder_mask': (encoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int(), #(1,1,seq_len)
'decoder_mask': (decoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int() & causal_mask(decoder_input.size(0)), #(1, seq_len) & (1,seq_len,seq_len)
'label': label,
'src_text': src_text,
'tgt_text': tgt_text
}
def causal_mask(size):
mask = torch.triu(torch.ones(1,size,size), diagonal=1).type(torch.int)
return mask==0