-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
244 lines (189 loc) · 9.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
from dataset import BilingualDataset, causal_mask
from model import build_transformer
from config import get_config, get_weights_file_path
from datasets import load_dataset
from tokenizers import Tokenizer
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
from tokenizers.pre_tokenizers import Whitespace
from torch.utils.tensorboard import SummaryWriter
from pathlib import Path
from tqdm import tqdm
import wandb
import torchmetrics
def greedy_decode(model, source, source_mask, tokenizer_src, tokenizer_tgt, max_len, device):
sos_idx = tokenizer_src.token_to_id('[SOS]')
eos_idx = tokenizer_src.token_to_id('[EOS]')
# Precompute the encoder output and reuse it for every token we get from the decoder
encoder_output = model.encode(source, source_mask)
# Initialize the decoder input with the sos tokens
decoder_input = torch.empty(1,1).fill_(sos_idx).type_as(source).to(device)
while True:
if decoder_input.size(1)== max_len:
break
# Build mask for the raget (decode input)
decoder_mask = causal_mask(decoder_input.size(1)).type_as(source_mask).to(device)
# Calculate the output of the decoder
out = model.decode(encoder_output, source_mask, decoder_input, decoder_mask)
#Get the next token
prob = model.project(out[:,-1])
# Select the token with the max probability (because it is a greedy search)
_, next_word = torch.max(prob, dim=1)
decoder_input = torch.cat([decoder_input, torch.empty(1,1).type_as(source).fill_(next_word.item()).to(device)], dim=1)
if next_word == eos_idx:
break
return decoder_input.squeeze(0)
def run_validation(model, validation_ds, tokenizer_src, tokenizer_tgt, max_len, device, print_msg, global_step, writer, num_examples=2):
model.eval()
count = 0
source_texts = []
expected = []
predicted = []
try:
# get the console window width
with os.popen('stty size', 'r') as console:
_, console_width = console.read().split()
console_width = int(console_width)
except:
# If we can't get the console width, use 80 as default
console_width = 80
with torch.no_grad():
for batch in validation_ds:
count += 1
encoder_input = batch["encoder_input"].to(device) # (b, seq_len)
encoder_mask = batch["encoder_mask"].to(device) # (b, 1, 1, seq_len)
# check that the batch size is 1
assert encoder_input.size(0) == 1, "Batch size must be 1 for validation"
model_out = greedy_decode(model, encoder_input, encoder_mask, tokenizer_src, tokenizer_tgt, max_len, device)
source_text = batch["src_text"][0]
target_text = batch["tgt_text"][0]
model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy())
source_texts.append(source_text)
expected.append(target_text)
predicted.append(model_out_text)
# Print the source, target and model output
print_msg('-'*console_width)
print_msg(f"{f'SOURCE: ':>12}{source_text}")
print_msg(f"{f'TARGET: ':>12}{target_text}")
print_msg(f"{f'PREDICTED: ':>12}{model_out_text}")
if count == num_examples:
print_msg('-'*console_width)
break
if writer:
# Evaluate the character error rate
# Compute the char error rate
metric = torchmetrics.CharErrorRate()
cer = metric(predicted, expected)
writer.add_scalar('validation cer', cer, global_step)
writer.flush()
# Compute the word error rate
metric = torchmetrics.WordErrorRate()
wer = metric(predicted, expected)
writer.add_scalar('validation wer', wer, global_step)
writer.flush()
# Compute the BLEU metric
metric = torchmetrics.BLEUScore()
bleu = metric(predicted, expected)
writer.add_scalar('validation BLEU', bleu, global_step)
writer.flush()
def get_all_sentences(ds, lang):
for item in ds:
yield item['translation'][lang]
def get_or_build_tokenizer(config, ds, lang):
tokenizer_path = Path(config['tokenizer_file'].format(lang))
if not Path.exists(tokenizer_path):
tokenizer = Tokenizer(WordLevel(unk_token='[UNK]'))
tokenizer.pre_tokenizer = Whitespace()
trainer = WordLevelTrainer(special_tokens=['[UNK]', '[EOS]', '[SOS]', '[PAD]'], min_frequency=2)
tokenizer.train_from_iterator(get_all_sentences(ds, lang), trainer=trainer)
tokenizer.save(str(tokenizer_path))
else:
tokenizer=Tokenizer.from_file(str(tokenizer_path))
return tokenizer
def get_ds(config):
ds_raw = load_dataset('opus_books', f"{config['lang_src']}-{config['lang_tgt']}", split='train')
# Build tokenizers
tokenizer_src = get_or_build_tokenizer(config, ds_raw, config['lang_src'])
tokenizer_tgt = get_or_build_tokenizer(config, ds_raw, config['lang_tgt'])
# Keeping 90% for trainng and 10% for validation
train_ds_size = int(0.9 * len(ds_raw))
val_ds_size= len(ds_raw) - train_ds_size
train_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size])
train_ds = BilingualDataset(train_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
val_ds = BilingualDataset(val_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
max_len_src= 0
max_len_tgt=0
for item in ds_raw:
src_ids = tokenizer_src.encode(item['translation'][config['lang_src']]).ids
tgt_ids = tokenizer_tgt.encode(item['translation'][config['lang_src']]).ids
max_len_src = max(len(src_ids), max_len_src)
max_len_tgt = max(len(tgt_ids), max_len_tgt)
print(f"Max length of source sentence: {max_len_src}")
print(f"Max length of source sentence: {max_len_tgt}")
train_dataloader= DataLoader(train_ds, batch_size=config['batch_size'])
val_dataloader = DataLoader(val_ds, batch_size=config['batch_size'])
return train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt
def get_model(config, vocab_src_len, vocab_tgt_len):
model = build_transformer(vocab_src_len, vocab_tgt_len, config['seq_len'], config['seq_len'], config['d_model'])
return model
def train_model(config):
device = "cuda" if torch.cuda.is_available() else "mps" if torch.has_mps or torch.backends.mps.is_available() else "cpu"
print(f"Using device {device}")
Path(config['model_folder']).mkdir(parents=True, exist_ok=True)
train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt = get_ds(config)
model = get_model(config, tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size()).to(device)
writer = SummaryWriter(config['experiment_name'])
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], eps=1e-9)
initial_epoch = 0
global_step = 0
if config['preload']:
model_filename = get_weights_file_path(config, config['preload'])
print(f"Preloading Model {model_filename}")
state =torch.load(model_filename)
initial_epoch= state['epoch'] + 1
optimizer.load_state_dict(state['optimizer_state_dict'])
global_step = state['global_step']
loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer_src.token_to_id('[PAD]'), label_smoothing=0.1).to(device)
for epoch in range(initial_epoch, config['num_epochs']):
torch.cuda.empty_cache()
model.train()
batch_iterator = tqdm(train_dataloader, desc=f"Processing epoch {epoch:02d}")
for batch in batch_iterator:
encoder_input = batch['encoder_input'].to(device) #(B, seq_len)
decoder_input = batch['decoder_input'].to(device) #(B, seq_len)
encoder_mask = batch['encoder_mask'].to(device) #(B,1,1, seq_len)
decoder_mask = batch['decoder_mask'].to(device) #(B, 1, seq_len, seq_len)
# RUn the thensors through the transformer
encoder_output = model.encode(encoder_input, encoder_mask) #(B, seq_len, d_model)
decoder_output = model.decode(encoder_output, encoder_mask, decoder_input, decoder_mask) #(B, seq_len, d_model)
proj_output = model.project(decoder_output)
label = batch['label'].to(device) #(B, seq_len)
#(B, seq_len, tgt_vocab, size) --> (B * seq_len, tgt_vocab_size)
loss = loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1) )
batch_iterator.set_postfix({f"loss": f"{loss.item():6.3f}"})
# log the loss
writer.add_scalar('train loss', loss.item(), global_step)
writer.flush()
#Backpropagate the loss
loss.backward()
#update the weights
optimizer.step()
optimizer.zero_grad()
global_step+=1
# Run validation at the end of every epoch
run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step, writer)
#Save the model at the end of every epoch
model_filename = get_weights_file_path(config, f"{epoch:02d}")
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'global_step': global_step
}, model_filename)
if __name__ == '__main__':
config = get_config()
train_model(config)