Skip to content

Commit b71db05

Browse files
committed
Merge branch 'master' into AKLV/typecat-comprehension_cat_equiv
2 parents 268192a + bf85f4e commit b71db05

File tree

1 file changed

+26
-9
lines changed

1 file changed

+26
-9
lines changed

TypeTheory/ALV2/TypeCat_ComprehensionCat.v

Lines changed: 26 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -111,10 +111,10 @@ Section TypeCat_Comp_Ext_Compare.
111111

112112
Definition typecat_comp_ext_compare
113113
{Γ : C} {A B : TC Γ}
114-
: (A = B) → obj_ext_typecat Γ A --> obj_ext_typecat Γ B.
114+
: (A = B) → iso (obj_ext_typecat Γ A) (obj_ext_typecat Γ B).
115115
Proof.
116116
intros p. induction p.
117-
apply identity.
117+
apply identity_iso.
118118
Defined.
119119

120120
Definition typecat_idtoiso_dpr
@@ -148,7 +148,7 @@ Section TypeCat_Comp_Ext_Compare.
148148
Proof.
149149
intros p. induction p.
150150
use tpair.
151-
- apply identity_iso.
151+
- apply typecat_comp_ext_compare, (idpath _).
152152
- apply id_left.
153153
Defined.
154154

@@ -229,7 +229,7 @@ Section TypeCat_Disp.
229229
apply (isofhleveltotal2 2).
230230
+ apply homset_property.
231231
+ intro. apply isasetaprop. apply homset_property.
232-
Defined.
232+
Qed.
233233

234234
Definition typecat_disp
235235
{C : category} (TC : typecat_obj_ext_structure C)
@@ -345,26 +345,41 @@ Section TypeCat_Disp.
345345
apply isaprop_is_iso_disp.
346346
Defined.
347347

348+
Definition typecat_disp_is_disp_univalent_implies_typecat_idtoiso_triangle_isweq
349+
(D_is_univalent : is_univalent_disp (typecat_disp TC))
350+
: ∏ (Γ : C) (A B : TC Γ), isweq (typecat_idtoiso_triangle _ A B).
351+
Proof.
352+
intros Γ A B.
353+
set (f := typecat_is_triangle_idtoiso_fiber_disp_weq A B).
354+
set (g := (idtoiso_fiber_disp ,, is_univalent_in_fibers_from_univalent_disp _ D_is_univalent _ A B)).
355+
use weqhomot.
356+
- apply (weqcomp g (invweq f)).
357+
- intros p. induction p.
358+
use total2_paths_f.
359+
+ apply eq_iso, idpath.
360+
+ apply homset_property.
361+
Defined.
362+
348363
End TypeCat_Disp_is_univalent.
349364

350365
Section TypeCat_Disp_Cleaving.
351366

352367
Context {C : category}.
353-
Context (TC : typecat_structure C).
354368

355369
(* NOTE: copied with slight modifications from https://github.com/UniMath/TypeTheory/blob/ad54ca1dad822e9c71acf35c27d0a39983269462/TypeTheory/Displayed_Cats/DisplayedCatFromCwDM.v#L114-L143 *)
356370
Definition pullback_is_cartesian
371+
(TC : typecat_obj_ext_structure C)
357372
{Γ Γ' : C} {f : Γ' --> Γ}
358-
{A : typecat_disp TC Γ} {A' : typecat_disp TC Γ'} (ff : A' -->[f] A)
373+
{A : typecat_disp TC Γ} {A' : typecat_disp TC Γ'} (ff : A' -->[f] A)
359374
: (isPullback _ _ _ _ (pr2 ff)) -> is_cartesian ff.
360375
Proof.
361376
intros Hpb Δ g B hh.
362377
eapply iscontrweqf.
363378
2: {
364379
use Hpb.
365-
+ exact (Δ ◂ B).
380+
+ exact (obj_ext_typecat Δ B).
366381
+ exact (pr1 hh).
367-
+ simpl in B. refine (dpr_typecat B ;; g).
382+
+ simpl in B. refine (π B ;; g).
368383
+ etrans. apply (pr2 hh). apply assoc.
369384
}
370385
eapply weqcomp.
@@ -384,7 +399,9 @@ Section TypeCat_Disp.
384399
* exact (pr1 H).
385400
Defined.
386401

387-
Lemma cleaving_typecat_disp : cleaving (typecat_disp TC).
402+
Lemma cleaving_typecat_disp
403+
(TC : typecat_structure C)
404+
: cleaving (typecat_disp TC).
388405
Proof.
389406
intros Γ Γ' f A.
390407
unfold cartesian_lift.

0 commit comments

Comments
 (0)