You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
: ∏ (Γ : C) (A B : TC Γ), isweq (typecat_idtoiso_triangle _ A B).
351
+
Proof.
352
+
intros Γ A B.
353
+
set (f := typecat_is_triangle_idtoiso_fiber_disp_weq A B).
354
+
set (g := (idtoiso_fiber_disp ,, is_univalent_in_fibers_from_univalent_disp _ D_is_univalent _ A B)).
355
+
use weqhomot.
356
+
- apply (weqcomp g (invweq f)).
357
+
- intros p. induction p.
358
+
use total2_paths_f.
359
+
+ apply eq_iso, idpath.
360
+
+ apply homset_property.
361
+
Defined.
362
+
348
363
End TypeCat_Disp_is_univalent.
349
364
350
365
Section TypeCat_Disp_Cleaving.
351
366
352
367
Context {C : category}.
353
-
Context (TC : typecat_structure C).
354
368
355
369
(* NOTE: copied with slight modifications from https://github.com/UniMath/TypeTheory/blob/ad54ca1dad822e9c71acf35c27d0a39983269462/TypeTheory/Displayed_Cats/DisplayedCatFromCwDM.v#L114-L143 *)
356
370
Definition pullback_is_cartesian
371
+
(TC : typecat_obj_ext_structure C)
357
372
{Γ Γ' : C} {f : Γ' --> Γ}
358
-
{A : typecat_disp TC Γ} {A' : typecat_disp TC Γ'} (ff : A' -->[f] A)
373
+
{A : typecat_disp TC Γ} {A' : typecat_disp TC Γ'} (ff : A' -->[f] A)
0 commit comments