@@ -9,7 +9,9 @@ module real-numbers.multiplication-real-numbers where
99<details ><summary >Imports</summary >
1010
1111``` agda
12+ open import elementary-number-theory.absolute-value-rational-numbers
1213open import elementary-number-theory.addition-rational-numbers
14+ open import elementary-number-theory.additive-group-of-rational-numbers
1315open import elementary-number-theory.closed-intervals-rational-numbers
1416open import elementary-number-theory.decidable-total-order-rational-numbers
1517open import elementary-number-theory.inequality-rational-numbers
@@ -18,18 +20,23 @@ open import elementary-number-theory.minimum-rational-numbers
1820open import elementary-number-theory.multiplication-rational-numbers
1921open import elementary-number-theory.positive-rational-numbers
2022open import elementary-number-theory.rational-numbers
23+ open import elementary-number-theory.difference-rational-numbers
2124open import elementary-number-theory.strict-inequality-rational-numbers
2225open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers
2326
2427open import foundation.cartesian-product-types
28+ open import order-theory.posets
2529open import foundation.conjunction
2630open import foundation.dependent-pair-types
2731open import foundation.disjoint-subtypes
2832open import foundation.empty-types
2933open import foundation.existential-quantification
3034open import foundation.logical-equivalences
35+ open import foundation.identity-types
3136open import foundation.propositional-truncations
3237open import foundation.subtypes
38+ open import foundation.transport-along-identifications
39+ open import foundation.action-on-identifications-functions
3340open import foundation.universe-levels
3441
3542open import real-numbers.absolute-value-real-numbers
@@ -261,9 +268,60 @@ module _
261268 let
262269 min = min-ℚ (min-ℚ (a *ℚ c) (a *ℚ d)) (min-ℚ (b *ℚ c) (b *ℚ d))
263270 max = max-ℚ (max-ℚ (a *ℚ c) (a *ℚ d)) (max-ℚ (b *ℚ c) (b *ℚ d))
264- ⟨a+δ⟩⟨c+θ⟩-ac≤ε : leq-ℚ (abs-ℚ ((a +ℚ δ) *ℚ (c +ℚ θ) -ℚ (a *ℚ c))) ε
265- ⟨a+δ⟩⟨c+θ⟩-ac≤ε =
266- {! transitive-leq-ℚ !}
271+ |⟨a+δ⟩⟨c+θ⟩-ac|≤ε :
272+ leq-ℚ (rational-abs-ℚ ((a +ℚ δ) *ℚ (c +ℚ θ) -ℚ (a *ℚ c))) ε
273+ |⟨a+δ⟩⟨c+θ⟩-ac|≤ε =
274+ calculate-in-Poset ℚ-Poset
275+ chain-of-inequalities
276+ rational-abs-ℚ ((a +ℚ δ) *ℚ (c +ℚ θ) -ℚ (a *ℚ c))
277+ ≤ rational-abs-ℚ (a *ℚ θ +ℚ δ *ℚ (c +ℚ θ))
278+ by
279+ leq-eq-ℚ
280+ ( rational-abs-ℚ ((a +ℚ δ) *ℚ (c +ℚ θ) -ℚ (a *ℚ c)))
281+ ( rational-abs-ℚ (a *ℚ θ +ℚ δ *ℚ (c +ℚ θ)))
282+ ( ?)
283+ in-Poset ℚ-Poset
284+ ≤ rational-abs-ℚ (a *ℚ θ) +ℚ rational-abs-ℚ (δ *ℚ (c +ℚ θ))
285+ by
286+ ap
287+ ( rational-ℚ⁰⁺)
288+ ( triangle-inequality-abs-ℚ
289+ ( a *ℚ θ)
290+ ( δ *ℚ (c +ℚ θ)))
291+ in-Poset ℚ-Poset
292+ ≤ (rational-abs-ℚ a *ℚ rational-abs-ℚ θ) +ℚ
293+ (rational-abs-ℚ δ *ℚ rational-abs-ℚ (c +ℚ θ))
294+ by
295+ leq-eq-ℚ
296+ ( rational-abs-ℚ (a *ℚ θ) +ℚ
297+ rational-abs-ℚ (δ *ℚ (c +ℚ θ)))
298+ ( (rational-abs-ℚ a *ℚ rational-abs-ℚ θ) +ℚ
299+ (rational-abs-ℚ δ *ℚ rational-abs-ℚ (c +ℚ θ)))
300+ ( ap-add-ℚ
301+ ( ap rational-ℚ⁰⁺ (abs-mul-ℚ a θ))
302+ ( ap rational-ℚ⁰⁺ (abs-mul-ℚ δ (c +ℚ θ))))
303+ ≤ ε
304+ by ?
305+ in-Poset ℚ-Poset
306+ {- inv-tr
307+ ( λ q → leq-ℚ q ε)
308+ ( ap rational-abs-ℚ
309+ ( equational-reasoning
310+ (a +ℚ δ) *ℚ (c +ℚ θ) -ℚ (a *ℚ c)
311+ = (a *ℚ (c +ℚ θ) +ℚ δ *ℚ (c +ℚ θ)) -ℚ (a *ℚ c)
312+ by ap (_-ℚ (a *ℚ c)) (right-distributive-mul-add-ℚ a δ (c +ℚ θ))
313+ = ((a *ℚ c +ℚ a *ℚ θ) +ℚ (δ *ℚ c +ℚ δ *ℚ θ)) -ℚ (a *ℚ c)
314+ by ap (_-ℚ (a *ℚ c)) (ap-add-ℚ (left-distributive-mul-add-ℚ a c θ) (left-distributive-mul-add-ℚ δ c θ))
315+ = (a *ℚ c +ℚ (a *ℚ θ +ℚ δ *ℚ c +ℚ δ *ℚ θ)) -ℚ (a *ℚ c)
316+ by ap (_-ℚ (a *ℚ c)) (associative-add-ℚ (a *ℚ c) (a *ℚ θ) (δ *ℚ c +ℚ δ *ℚ θ))
317+ = a *ℚ θ +ℚ δ *ℚ c +ℚ δ *ℚ θ
318+ by is-identity-left-conjugation-add-ℚ (a *ℚ c) (a *ℚ θ +ℚ δ *ℚ c +ℚ δ *ℚ θ)))
319+ ( transitive-leq-ℚ
320+ (rational-abs-ℚ (a *ℚ θ +ℚ δ *ℚ c +ℚ δ *ℚ θ))
321+ (rational-abs-ℚ (a +ℚ θ +ℚ δ *ℚ c) +ℚ rational-abs-ℚ (δ *ℚ θ)
322+ ( ε)
323+
324+ )-}
267325 intro-exists (min , max) {! !}
268326 where
269327 open
0 commit comments