Skip to content

Commit 2ea5b92

Browse files
committed
Progress
1 parent 799838f commit 2ea5b92

File tree

2 files changed

+61
-18
lines changed

2 files changed

+61
-18
lines changed

src/elementary-number-theory/maximum-rational-numbers.lagda.md

Lines changed: 0 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -128,21 +128,6 @@ abstract
128128
( x≤z , y≤z)
129129
```
130130

131-
### If both `x` and `y` are less than or equal to `z`, so is their maximum
132-
133-
```agda
134-
abstract
135-
leq-max-leq-both-ℚ : (z x y : ℚ) → leq-ℚ x z → leq-ℚ y z → leq-ℚ (max-ℚ x y) z
136-
leq-max-leq-both-ℚ z x y x≤z y≤z =
137-
forward-implication
138-
( max-is-least-binary-upper-bound-Decidable-Total-Order
139-
( ℚ-Decidable-Total-Order)
140-
( x)
141-
( y)
142-
( z))
143-
( x≤z , y≤z)
144-
```
145-
146131
### If `a ≤ b` and `c ≤ d`, then `max a c ≤ max b d`
147132

148133
```agda

src/real-numbers/multiplication-real-numbers.lagda.md

Lines changed: 61 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,9 @@ module real-numbers.multiplication-real-numbers where
99
<details><summary>Imports</summary>
1010

1111
```agda
12+
open import elementary-number-theory.absolute-value-rational-numbers
1213
open import elementary-number-theory.addition-rational-numbers
14+
open import elementary-number-theory.additive-group-of-rational-numbers
1315
open import elementary-number-theory.closed-intervals-rational-numbers
1416
open import elementary-number-theory.decidable-total-order-rational-numbers
1517
open import elementary-number-theory.inequality-rational-numbers
@@ -18,18 +20,23 @@ open import elementary-number-theory.minimum-rational-numbers
1820
open import elementary-number-theory.multiplication-rational-numbers
1921
open import elementary-number-theory.positive-rational-numbers
2022
open import elementary-number-theory.rational-numbers
23+
open import elementary-number-theory.difference-rational-numbers
2124
open import elementary-number-theory.strict-inequality-rational-numbers
2225
open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers
2326
2427
open import foundation.cartesian-product-types
28+
open import order-theory.posets
2529
open import foundation.conjunction
2630
open import foundation.dependent-pair-types
2731
open import foundation.disjoint-subtypes
2832
open import foundation.empty-types
2933
open import foundation.existential-quantification
3034
open import foundation.logical-equivalences
35+
open import foundation.identity-types
3136
open import foundation.propositional-truncations
3237
open import foundation.subtypes
38+
open import foundation.transport-along-identifications
39+
open import foundation.action-on-identifications-functions
3340
open import foundation.universe-levels
3441
3542
open import real-numbers.absolute-value-real-numbers
@@ -261,9 +268,60 @@ module _
261268
let
262269
min = min-ℚ (min-ℚ (a *ℚ c) (a *ℚ d)) (min-ℚ (b *ℚ c) (b *ℚ d))
263270
max = max-ℚ (max-ℚ (a *ℚ c) (a *ℚ d)) (max-ℚ (b *ℚ c) (b *ℚ d))
264-
⟨a+δ⟩⟨c+θ⟩-ac≤ε : leq-ℚ (abs-ℚ ((a +ℚ δ) *ℚ (c +ℚ θ) -ℚ (a *ℚ c))) ε
265-
⟨a+δ⟩⟨c+θ⟩-ac≤ε =
266-
{! transitive-leq-ℚ !}
271+
|⟨a+δ⟩⟨c+θ⟩-ac|≤ε :
272+
leq-ℚ (rational-abs-ℚ ((a +ℚ δ) *ℚ (c +ℚ θ) -ℚ (a *ℚ c))) ε
273+
|⟨a+δ⟩⟨c+θ⟩-ac|≤ε =
274+
calculate-in-Poset ℚ-Poset
275+
chain-of-inequalities
276+
rational-abs-ℚ ((a +ℚ δ) *ℚ (c +ℚ θ) -ℚ (a *ℚ c))
277+
≤ rational-abs-ℚ (a *ℚ θ +ℚ δ *ℚ (c +ℚ θ))
278+
by
279+
leq-eq-ℚ
280+
( rational-abs-ℚ ((a +ℚ δ) *ℚ (c +ℚ θ) -ℚ (a *ℚ c)))
281+
( rational-abs-ℚ (a *ℚ θ +ℚ δ *ℚ (c +ℚ θ)))
282+
( ?)
283+
in-Poset ℚ-Poset
284+
≤ rational-abs-ℚ (a *ℚ θ) +ℚ rational-abs-ℚ (δ *ℚ (c +ℚ θ))
285+
by
286+
ap
287+
( rational-ℚ⁰⁺)
288+
( triangle-inequality-abs-ℚ
289+
( a *ℚ θ)
290+
( δ *ℚ (c +ℚ θ)))
291+
in-Poset ℚ-Poset
292+
≤ (rational-abs-ℚ a *ℚ rational-abs-ℚ θ) +ℚ
293+
(rational-abs-ℚ δ *ℚ rational-abs-ℚ (c +ℚ θ))
294+
by
295+
leq-eq-ℚ
296+
( rational-abs-ℚ (a *ℚ θ) +ℚ
297+
rational-abs-ℚ (δ *ℚ (c +ℚ θ)))
298+
( (rational-abs-ℚ a *ℚ rational-abs-ℚ θ) +ℚ
299+
(rational-abs-ℚ δ *ℚ rational-abs-ℚ (c +ℚ θ)))
300+
( ap-add-ℚ
301+
( ap rational-ℚ⁰⁺ (abs-mul-ℚ a θ))
302+
( ap rational-ℚ⁰⁺ (abs-mul-ℚ δ (c +ℚ θ))))
303+
≤ ε
304+
by ?
305+
in-Poset ℚ-Poset
306+
{- inv-tr
307+
( λ q → leq-ℚ q ε)
308+
( ap rational-abs-ℚ
309+
( equational-reasoning
310+
(a +ℚ δ) *ℚ (c +ℚ θ) -ℚ (a *ℚ c)
311+
= (a *ℚ (c +ℚ θ) +ℚ δ *ℚ (c +ℚ θ)) -ℚ (a *ℚ c)
312+
by ap (_-ℚ (a *ℚ c)) (right-distributive-mul-add-ℚ a δ (c +ℚ θ))
313+
= ((a *ℚ c +ℚ a *ℚ θ) +ℚ (δ *ℚ c +ℚ δ *ℚ θ)) -ℚ (a *ℚ c)
314+
by ap (_-ℚ (a *ℚ c)) (ap-add-ℚ (left-distributive-mul-add-ℚ a c θ) (left-distributive-mul-add-ℚ δ c θ))
315+
= (a *ℚ c +ℚ (a *ℚ θ +ℚ δ *ℚ c +ℚ δ *ℚ θ)) -ℚ (a *ℚ c)
316+
by ap (_-ℚ (a *ℚ c)) (associative-add-ℚ (a *ℚ c) (a *ℚ θ) (δ *ℚ c +ℚ δ *ℚ θ))
317+
= a *ℚ θ +ℚ δ *ℚ c +ℚ δ *ℚ θ
318+
by is-identity-left-conjugation-add-ℚ (a *ℚ c) (a *ℚ θ +ℚ δ *ℚ c +ℚ δ *ℚ θ)))
319+
( transitive-leq-ℚ
320+
(rational-abs-ℚ (a *ℚ θ +ℚ δ *ℚ c +ℚ δ *ℚ θ))
321+
(rational-abs-ℚ (a +ℚ θ +ℚ δ *ℚ c) +ℚ rational-abs-ℚ (δ *ℚ θ)
322+
( ε)
323+
324+
)-}
267325
intro-exists (min , max) {! !}
268326
where
269327
open

0 commit comments

Comments
 (0)