Skip to content

Commit cd5cda7

Browse files
committed
make pre-commit
1 parent 95164ea commit cd5cda7

7 files changed

+31
-19
lines changed

src/linear-algebra/scalar-multiplication-vectors-on-rings.lagda.md

+2-1
Original file line numberDiff line numberDiff line change
@@ -20,8 +20,9 @@ open import group-theory.homomorphisms-abelian-groups
2020
open import linear-algebra.vectors
2121
open import linear-algebra.vectors-on-rings
2222
23+
open import module-theory.left-modules-rings
24+
2325
open import ring-theory.homomorphisms-rings
24-
open import ring-theory.left-modules-rings
2526
open import ring-theory.rings
2627
```
2728

src/module-theory.lagda.md

+9
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,9 @@
1+
# Module theory
2+
3+
```agda
4+
module module-theory where
5+
6+
open import module-theory.left-modules-rings public
7+
open import module-theory.linear-maps-left-modules-rings public
8+
open import module-theory.right-modules-rings public
9+
```

src/ring-theory/left-modules-rings.lagda.md renamed to src/module-theory/left-modules-rings.lagda.md

+8-7
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Left modules over rings
22

33
```agda
4-
module ring-theory.left-modules-rings where
4+
module module-theory.left-modules-rings where
55
```
66

77
<details><summary>Imports</summary>
@@ -28,8 +28,11 @@ open import ring-theory.rings
2828

2929
## Idea
3030

31-
A (left) module `M` over a ring `R` consists of an abelian group `M` equipped
32-
with an action `R → M → M` such
31+
A
32+
{{#concept "left module" WD="left module" WDID="Q120721996" Agda=left-module-Ring}}
33+
`M` over a [ring](ring-theory.rings.md) `R` consists of an
34+
[abelian group](group-theory.abelian-groups.md) `M` equipped with an action
35+
`R → M → M` such that
3336

3437
```text
3538
r(x+y) = rx + ry
@@ -42,10 +45,8 @@ with an action `R → M → M` such
4245
1x = x
4346
```
4447

45-
In other words, a left module `M` over a ring `R` consists of an abelian group
46-
`M` equipped with a ring homomorphism `R → endomorphism-ring-Ab M`. A right
47-
module over `R` consists of an abelian group `M` equipped with a ring
48-
homomorphism `R → opposite-Ring (endomorphism-ring-Ab M)`.
48+
Equivalently, a left module `M` over a ring `R` consists of an abelian group `M`
49+
equipped with a ring homomorphism `R → endomorphism-ring-Ab M`.
4950

5051
## Definitions
5152

src/ring-theory/linear-maps-left-modules-rings.lagda.md renamed to src/module-theory/linear-maps-left-modules-rings.lagda.md

+6-5
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Linear maps between modules over rings
22

33
```agda
4-
module ring-theory.linear-maps-left-modules-rings where
4+
module module-theory.linear-maps-left-modules-rings where
55
```
66

77
<details><summary>Imports</summary>
@@ -18,7 +18,8 @@ open import foundation.universe-levels
1818
1919
open import group-theory.abelian-groups
2020
21-
open import ring-theory.left-modules-rings
21+
open import module-theory.left-modules-rings
22+
2223
open import ring-theory.rings
2324
```
2425

@@ -27,9 +28,9 @@ open import ring-theory.rings
2728
## Idea
2829

2930
A
30-
{{#concept "linear map" Agda=is-linear-map-left-module-Ring Disambiguation="over modules" WD="linear map" WDID=Q207643 }}
31-
between [left modules](ring-theory.left-modules-rings.md) is a map `f` with the
32-
following properties:
31+
{{#concept "linear map" Agda=is-linear-map-left-module-Ring Disambiguation="over left modules" WD="linear map" WDID=Q207643 }}
32+
between [left modules](module-theory.left-modules-rings.md) is a map `f` with
33+
the following properties:
3334

3435
- Additivity: `f (a + b) = f a + f b`
3536
- Homogeneity: `f (c * a) = c * f a`

src/ring-theory/right-modules-rings.lagda.md renamed to src/module-theory/right-modules-rings.lagda.md

+4-2
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Right modules over rings
22

33
```agda
4-
module ring-theory.right-modules-rings where
4+
module module-theory.right-modules-rings where
55
```
66

77
<details><summary>Imports</summary>
@@ -28,7 +28,9 @@ open import ring-theory.rings
2828

2929
## Idea
3030

31-
A right module over a [ring](ring-theory.rings.md) `R` consists of an
31+
A
32+
{{#concept "right module" WD="right module" WDID=Q120722061 Agda=right-module-Ring}}
33+
over a [ring](ring-theory.rings.md) `R` consists of an
3234
[abelian group](group-theory.abelian-groups.md) `M` equipped with a
3335
[ring homomorphism](ring-theory.homomorphisms-rings.md) from `R` to the
3436
[opposite ring](ring-theory.opposite-rings.md) of the

src/ring-theory.lagda.md

-3
Original file line numberDiff line numberDiff line change
@@ -47,8 +47,6 @@ open import ring-theory.joins-right-ideals-rings public
4747
open import ring-theory.kernels-of-ring-homomorphisms public
4848
open import ring-theory.left-ideals-generated-by-subsets-rings public
4949
open import ring-theory.left-ideals-rings public
50-
open import ring-theory.left-modules-rings public
51-
open import ring-theory.linear-maps-left-modules-rings public
5250
open import ring-theory.local-rings public
5351
open import ring-theory.localizations-rings public
5452
open import ring-theory.maximal-ideals-rings public
@@ -75,7 +73,6 @@ open import ring-theory.quotient-rings public
7573
open import ring-theory.radical-ideals-rings public
7674
open import ring-theory.right-ideals-generated-by-subsets-rings public
7775
open import ring-theory.right-ideals-rings public
78-
open import ring-theory.right-modules-rings public
7976
open import ring-theory.rings public
8077
open import ring-theory.semirings public
8178
open import ring-theory.subsets-rings public

src/ring-theory/algebras-rings.lagda.md

+2-1
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,8 @@ open import foundation.dependent-pair-types
1212
open import foundation.identity-types
1313
open import foundation.universe-levels
1414
15-
open import ring-theory.left-modules-rings
15+
open import module-theory.left-modules-rings
16+
1617
open import ring-theory.rings
1718
```
1819

0 commit comments

Comments
 (0)