diff --git a/src/elementary-number-theory.lagda.md b/src/elementary-number-theory.lagda.md
index aecd69e5ec..815543ad14 100644
--- a/src/elementary-number-theory.lagda.md
+++ b/src/elementary-number-theory.lagda.md
@@ -33,6 +33,7 @@ open import elementary-number-theory.binomial-theorem-integers public
open import elementary-number-theory.binomial-theorem-natural-numbers public
open import elementary-number-theory.bounded-sums-arithmetic-functions public
open import elementary-number-theory.catalan-numbers public
+open import elementary-number-theory.closed-intervals-rational-numbers public
open import elementary-number-theory.cofibonacci public
open import elementary-number-theory.collatz-bijection public
open import elementary-number-theory.collatz-conjecture public
@@ -123,7 +124,9 @@ open import elementary-number-theory.multiplicative-units-integers public
open import elementary-number-theory.multiplicative-units-standard-cyclic-rings public
open import elementary-number-theory.multiset-coefficients public
open import elementary-number-theory.natural-numbers public
+open import elementary-number-theory.negative-integer-fractions public
open import elementary-number-theory.negative-integers public
+open import elementary-number-theory.negative-rational-numbers public
open import elementary-number-theory.nonnegative-integers public
open import elementary-number-theory.nonpositive-integers public
open import elementary-number-theory.nonzero-integers public
diff --git a/src/elementary-number-theory/closed-intervals-rational-numbers.lagda.md b/src/elementary-number-theory/closed-intervals-rational-numbers.lagda.md
new file mode 100644
index 0000000000..86535643cd
--- /dev/null
+++ b/src/elementary-number-theory/closed-intervals-rational-numbers.lagda.md
@@ -0,0 +1,227 @@
+# Closed intervals of rational numbers
+
+```agda
+{-# OPTIONS --lossy-unification #-}
+
+module elementary-number-theory.closed-intervals-rational-numbers where
+```
+
+Imports
+
+```agda
+open import elementary-number-theory.decidable-total-order-rational-numbers
+open import elementary-number-theory.inequality-rational-numbers
+open import elementary-number-theory.maximum-rational-numbers
+open import elementary-number-theory.minimum-rational-numbers
+open import elementary-number-theory.multiplication-rational-numbers
+open import elementary-number-theory.negative-rational-numbers
+open import elementary-number-theory.positive-rational-numbers
+open import elementary-number-theory.rational-numbers
+open import elementary-number-theory.strict-inequality-rational-numbers
+
+open import foundation.action-on-identifications-binary-functions
+open import foundation.action-on-identifications-functions
+open import foundation.binary-transport
+open import foundation.conjunction
+open import foundation.dependent-pair-types
+open import foundation.identity-types
+open import foundation.propositions
+open import foundation.subtypes
+open import foundation.transport-along-identifications
+open import foundation.universe-levels
+```
+
+
+
+## Idea
+
+A [rational number](elementary-number-theory.rational-numbers.md) `p` is in a
+{{#concept "closed interval" Disambiguation="rational numbers" WDID=Q78240777 WD="closed interval" Agda=closed-interval-ℚ}}
+`[q , r]` if `q` is
+[less than or equal to](elementary-number-theory.inequality-rational-numbers.md)
+`p` and `p` is less than or equal to `r`.
+
+## Definition
+
+```agda
+module _
+ (p q : ℚ)
+ where
+
+ closed-interval-ℚ : subtype lzero ℚ
+ closed-interval-ℚ r = (leq-ℚ-Prop p r) ∧ (leq-ℚ-Prop r q)
+
+ is-in-closed-interval-ℚ : ℚ → UU lzero
+ is-in-closed-interval-ℚ r = type-Prop (closed-interval-ℚ r)
+
+unordered-closed-interval-ℚ : ℚ → ℚ → subtype lzero ℚ
+unordered-closed-interval-ℚ p q = closed-interval-ℚ (min-ℚ p q) (max-ℚ p q)
+
+is-in-unordered-closed-interval-ℚ : ℚ → ℚ → ℚ → UU lzero
+is-in-unordered-closed-interval-ℚ p q =
+ is-in-closed-interval-ℚ (min-ℚ p q) (max-ℚ p q)
+
+is-in-unordered-closed-interval-is-in-closed-interval-ℚ :
+ (p q r : ℚ) →
+ is-in-closed-interval-ℚ p q r →
+ is-in-unordered-closed-interval-ℚ p q r
+is-in-unordered-closed-interval-is-in-closed-interval-ℚ p q r (p≤r , q≤r) =
+ transitive-leq-ℚ
+ ( min-ℚ p q)
+ ( p)
+ ( r)
+ ( p≤r)
+ ( leq-left-min-ℚ p q) ,
+ transitive-leq-ℚ
+ ( r)
+ ( q)
+ ( max-ℚ p q)
+ ( leq-right-max-ℚ p q)
+ ( q≤r)
+
+is-in-reversed-unordered-closed-interval-is-in-closed-interval-ℚ :
+ (p q r : ℚ) → is-in-closed-interval-ℚ p q r →
+ is-in-unordered-closed-interval-ℚ q p r
+is-in-reversed-unordered-closed-interval-is-in-closed-interval-ℚ
+ p q r (p≤r , q≤r) =
+ transitive-leq-ℚ
+ ( min-ℚ q p)
+ ( p)
+ ( r)
+ ( p≤r)
+ ( leq-right-min-ℚ q p) ,
+ transitive-leq-ℚ
+ ( r)
+ ( q)
+ ( max-ℚ q p)
+ ( leq-left-max-ℚ q p)
+ ( q≤r)
+```
+
+## Properties
+
+### Multiplication of elements in a closed interval
+
+```agda
+abstract
+ left-mul-negative-closed-interval-ℚ :
+ (p q r s : ℚ) →
+ is-in-closed-interval-ℚ p q r → is-negative-ℚ s →
+ is-in-closed-interval-ℚ (q *ℚ s) (p *ℚ s) (r *ℚ s)
+ left-mul-negative-closed-interval-ℚ p q r s (p≤r , r≤q) neg-s =
+ let
+ s⁻ = s , neg-s
+ in
+ reverses-leq-right-mul-ℚ⁻ s⁻ r q r≤q ,
+ reverses-leq-right-mul-ℚ⁻ s⁻ p r p≤r
+
+ left-mul-positive-closed-interval-ℚ :
+ (p q r s : ℚ) →
+ is-in-closed-interval-ℚ p q r → is-positive-ℚ s →
+ is-in-closed-interval-ℚ (p *ℚ s) (q *ℚ s) (r *ℚ s)
+ left-mul-positive-closed-interval-ℚ p q r s (p≤r , r≤q) pos-s =
+ let
+ s⁺ = s , pos-s
+ in
+ preserves-leq-right-mul-ℚ⁺ s⁺ p r p≤r ,
+ preserves-leq-right-mul-ℚ⁺ s⁺ r q r≤q
+
+ left-mul-closed-interval-ℚ :
+ (p q r s : ℚ) →
+ is-in-closed-interval-ℚ p q r →
+ is-in-unordered-closed-interval-ℚ (p *ℚ s) (q *ℚ s) (r *ℚ s)
+ left-mul-closed-interval-ℚ p q r s H@(p≤r , r≤q) =
+ let
+ p≤q = transitive-leq-ℚ p r q r≤q p≤r
+ in
+ trichotomy-le-ℚ
+ ( s)
+ ( zero-ℚ)
+ ( λ s<0 →
+ is-in-reversed-unordered-closed-interval-is-in-closed-interval-ℚ
+ (q *ℚ s)
+ (p *ℚ s)
+ (r *ℚ s)
+ ( left-mul-negative-closed-interval-ℚ p q r s H
+ ( is-negative-le-zero-ℚ s s<0)))
+ ( λ s=0 →
+ let
+ ps=0 = ap (p *ℚ_) s=0 ∙ right-zero-law-mul-ℚ p
+ rs=0 = ap (r *ℚ_) s=0 ∙ right-zero-law-mul-ℚ r
+ qs=0 = ap (q *ℚ_) s=0 ∙ right-zero-law-mul-ℚ q
+ in
+ leq-eq-ℚ
+ ( _)
+ ( _)
+ ( ap-binary min-ℚ ps=0 qs=0 ∙
+ idempotent-min-ℚ zero-ℚ ∙ inv rs=0) ,
+ leq-eq-ℚ
+ ( _)
+ ( _)
+ ( rs=0 ∙
+ inv (ap-binary max-ℚ ps=0 qs=0 ∙ idempotent-max-ℚ zero-ℚ)))
+ ( λ 0Imports
+
+```agda
+open import elementary-number-theory.addition-integer-fractions
+open import elementary-number-theory.addition-positive-and-negative-integers
+open import elementary-number-theory.integer-fractions
+open import elementary-number-theory.integers
+open import elementary-number-theory.multiplication-integer-fractions
+open import elementary-number-theory.multiplication-integers
+open import elementary-number-theory.multiplication-positive-and-negative-integers
+open import elementary-number-theory.negative-integers
+open import elementary-number-theory.positive-and-negative-integers
+open import elementary-number-theory.positive-integer-fractions
+open import elementary-number-theory.positive-integers
+open import elementary-number-theory.reduced-integer-fractions
+
+open import foundation.identity-types
+open import foundation.propositions
+open import foundation.subtypes
+open import foundation.transport-along-identifications
+open import foundation.universe-levels
+```
+
+
+
+## Idea
+
+An [integer fraction](elementary-number-theory.integer-fractions.md) `x` is said
+to be
+{{#concept "negative" Disambiguation="integer fraction" Agda=is-negative-fraction-ℤ}}
+if its numerator is a
+[negative integer](elementary-number-theory.negative-integers.md).
+
+## Definitions
+
+### The property of being a negative integer fraction
+
+```agda
+module _
+ (x : fraction-ℤ)
+ where
+
+ is-negative-fraction-ℤ : UU lzero
+ is-negative-fraction-ℤ = is-negative-ℤ (numerator-fraction-ℤ x)
+
+ is-prop-is-negative-fraction-ℤ : is-prop is-negative-fraction-ℤ
+ is-prop-is-negative-fraction-ℤ =
+ is-prop-is-negative-ℤ (numerator-fraction-ℤ x)
+```
+
+## Properties
+
+### The negative of a positive integer fraction is negative
+
+```agda
+abstract
+ is-negative-neg-positive-fraction-ℤ :
+ (x : fraction-ℤ) → is-positive-fraction-ℤ x →
+ is-negative-fraction-ℤ (neg-fraction-ℤ x)
+ is-negative-neg-positive-fraction-ℤ _ = is-negative-neg-is-positive-ℤ
+```
+
+### The negative of a negative integer fraction is positive
+
+```agda
+abstract
+ is-positive-neg-negative-fraction-ℤ :
+ (x : fraction-ℤ) → is-negative-fraction-ℤ x →
+ is-positive-fraction-ℤ (neg-fraction-ℤ x)
+ is-positive-neg-negative-fraction-ℤ _ = is-positive-neg-is-negative-ℤ
+```
+
+### An integer fraction similar to a negative integer fraction is negative
+
+```agda
+is-negative-sim-fraction-ℤ :
+ (x y : fraction-ℤ) (S : sim-fraction-ℤ x y) →
+ is-negative-fraction-ℤ x →
+ is-negative-fraction-ℤ y
+is-negative-sim-fraction-ℤ x y S N =
+ is-negative-right-factor-mul-positive-ℤ
+ ( is-negative-eq-ℤ
+ ( S ∙
+ commutative-mul-ℤ (numerator-fraction-ℤ y) (denominator-fraction-ℤ x))
+ ( is-negative-mul-negative-positive-ℤ
+ ( N)
+ ( is-positive-denominator-fraction-ℤ y)))
+ ( is-positive-denominator-fraction-ℤ x)
+```
+
+### The reduced fraction of a negative integer fraction is negative
+
+```agda
+is-negative-reduce-fraction-ℤ :
+ {x : fraction-ℤ} (P : is-negative-fraction-ℤ x) →
+ is-negative-fraction-ℤ (reduce-fraction-ℤ x)
+is-negative-reduce-fraction-ℤ {x} =
+ is-negative-sim-fraction-ℤ
+ ( x)
+ ( reduce-fraction-ℤ x)
+ ( sim-reduced-fraction-ℤ x)
+```
+
+### The sum of two negative integer fractions is negative
+
+```agda
+is-negative-add-fraction-ℤ :
+ {x y : fraction-ℤ} →
+ is-negative-fraction-ℤ x →
+ is-negative-fraction-ℤ y →
+ is-negative-fraction-ℤ (add-fraction-ℤ x y)
+is-negative-add-fraction-ℤ {x} {y} P Q =
+ is-negative-add-ℤ
+ ( is-negative-mul-negative-positive-ℤ
+ ( P)
+ ( is-positive-denominator-fraction-ℤ y))
+ ( is-negative-mul-negative-positive-ℤ
+ ( Q)
+ ( is-positive-denominator-fraction-ℤ x))
+```
+
+### The product of two negative integer fractions is positive
+
+```agda
+is-positive-mul-negative-fraction-ℤ :
+ {x y : fraction-ℤ} →
+ is-negative-fraction-ℤ x →
+ is-negative-fraction-ℤ y →
+ is-positive-fraction-ℤ (mul-fraction-ℤ x y)
+is-positive-mul-negative-fraction-ℤ = is-positive-mul-negative-ℤ
+```
diff --git a/src/elementary-number-theory/negative-rational-numbers.lagda.md b/src/elementary-number-theory/negative-rational-numbers.lagda.md
new file mode 100644
index 0000000000..509bde6870
--- /dev/null
+++ b/src/elementary-number-theory/negative-rational-numbers.lagda.md
@@ -0,0 +1,272 @@
+# Negative rational numbers
+
+```agda
+{-# OPTIONS --lossy-unification #-}
+
+module elementary-number-theory.negative-rational-numbers where
+```
+
+Imports
+
+```agda
+open import elementary-number-theory.difference-rational-numbers
+open import elementary-number-theory.inequality-rational-numbers
+open import elementary-number-theory.integer-fractions
+open import elementary-number-theory.integers
+open import elementary-number-theory.multiplication-rational-numbers
+open import elementary-number-theory.negative-integer-fractions
+open import elementary-number-theory.negative-integers
+open import elementary-number-theory.nonzero-rational-numbers
+open import elementary-number-theory.positive-and-negative-integers
+open import elementary-number-theory.positive-integer-fractions
+open import elementary-number-theory.positive-integers
+open import elementary-number-theory.positive-rational-numbers
+open import elementary-number-theory.rational-numbers
+open import elementary-number-theory.strict-inequality-rational-numbers
+
+open import foundation.binary-transport
+open import foundation.dependent-pair-types
+open import foundation.identity-types
+open import foundation.logical-equivalences
+open import foundation.propositions
+open import foundation.sets
+open import foundation.subtypes
+open import foundation.transport-along-identifications
+open import foundation.universe-levels
+```
+
+
+
+## Idea
+
+A [rational number](elementary-number-theory.rational-numbers.md) `x` is said to
+be {{#concept "negative" Disambiguation="rational number" Agda=is-negative-ℚ}}
+if its negation is positive.
+
+Negative rational numbers are a [subsemigroup](group-theory.subsemigroups.md) of
+the
+[additive monoid of rational numbers](elementary-number-theory.additive-group-of-rational-numbers.md).
+
+## Definitions
+
+### The property of being a negative rational number
+
+```agda
+module _
+ (q : ℚ)
+ where
+
+ is-negative-ℚ : UU lzero
+ is-negative-ℚ = is-positive-ℚ (neg-ℚ q)
+
+ is-prop-is-negative-ℚ : is-prop is-negative-ℚ
+ is-prop-is-negative-ℚ = is-prop-is-positive-ℚ (neg-ℚ q)
+
+ is-negative-prop-ℚ : Prop lzero
+ pr1 is-negative-prop-ℚ = is-negative-ℚ
+ pr2 is-negative-prop-ℚ = is-prop-is-negative-ℚ
+```
+
+### The type of negative rational numbers
+
+```agda
+negative-ℚ : UU lzero
+negative-ℚ = type-subtype is-negative-prop-ℚ
+
+ℚ⁻ : UU lzero
+ℚ⁻ = negative-ℚ
+
+module _
+ (x : negative-ℚ)
+ where
+
+ rational-ℚ⁻ : ℚ
+ rational-ℚ⁻ = pr1 x
+
+ fraction-ℚ⁻ : fraction-ℤ
+ fraction-ℚ⁻ = fraction-ℚ rational-ℚ⁻
+
+ numerator-ℚ⁻ : ℤ
+ numerator-ℚ⁻ = numerator-ℚ rational-ℚ⁻
+
+ denominator-ℚ⁻ : ℤ
+ denominator-ℚ⁻ = denominator-ℚ rational-ℚ⁻
+
+ is-negative-rational-ℚ⁻ : is-negative-ℚ rational-ℚ⁻
+ is-negative-rational-ℚ⁻ = pr2 x
+
+ is-negative-fraction-ℚ⁻ : is-negative-fraction-ℤ fraction-ℚ⁻
+ is-negative-fraction-ℚ⁻ =
+ tr
+ ( is-negative-fraction-ℤ)
+ ( neg-neg-fraction-ℤ fraction-ℚ⁻)
+ ( is-negative-neg-positive-fraction-ℤ
+ ( neg-fraction-ℤ fraction-ℚ⁻)
+ ( is-negative-rational-ℚ⁻))
+
+ is-negative-numerator-ℚ⁻ : is-negative-ℤ numerator-ℚ⁻
+ is-negative-numerator-ℚ⁻ = is-negative-fraction-ℚ⁻
+
+ is-positive-denominator-ℚ⁻ : is-positive-ℤ denominator-ℚ⁻
+ is-positive-denominator-ℚ⁻ = is-positive-denominator-ℚ rational-ℚ⁻
+
+ neg-ℚ⁻ : ℚ⁺
+ neg-ℚ⁻ = (neg-ℚ rational-ℚ⁻) , is-negative-rational-ℚ⁻
+
+neg-ℚ⁺ : ℚ⁺ → ℚ⁻
+neg-ℚ⁺ (q , q-is-pos) = neg-ℚ q , inv-tr is-positive-ℚ (neg-neg-ℚ q) q-is-pos
+
+abstract
+ eq-ℚ⁻ : {x y : ℚ⁻} → rational-ℚ⁻ x = rational-ℚ⁻ y → x = y
+ eq-ℚ⁻ {x} {y} = eq-type-subtype is-negative-prop-ℚ
+```
+
+## Properties
+
+### The negative rational numbers form a set
+
+```agda
+is-set-ℚ⁻ : is-set ℚ⁻
+is-set-ℚ⁻ = is-set-type-subtype is-negative-prop-ℚ is-set-ℚ
+```
+
+### The rational image of a negative integer is negative
+
+```agda
+abstract
+ is-negative-rational-ℤ :
+ (x : ℤ) → is-negative-ℤ x → is-negative-ℚ (rational-ℤ x)
+ is-negative-rational-ℤ _ = is-positive-neg-is-negative-ℤ
+
+negative-rational-negative-ℤ : negative-ℤ → ℚ⁻
+negative-rational-negative-ℤ (x , x-is-neg) =
+ rational-ℤ x , is-negative-rational-ℤ x x-is-neg
+```
+
+### The rational image of a negative integer fraction is negative
+
+```agda
+abstract
+ is-negative-rational-fraction-ℤ :
+ {x : fraction-ℤ} (P : is-negative-fraction-ℤ x) →
+ is-negative-ℚ (rational-fraction-ℤ x)
+ is-negative-rational-fraction-ℤ P =
+ is-positive-neg-is-negative-ℤ (is-negative-reduce-fraction-ℤ P)
+```
+
+### A rational number `x` is negative if and only if `x < 0`
+
+```agda
+module _
+ (x : ℚ)
+ where
+
+ abstract
+ le-zero-is-negative-ℚ : is-negative-ℚ x → le-ℚ x zero-ℚ
+ le-zero-is-negative-ℚ x-is-neg =
+ tr
+ ( λ y → le-ℚ y zero-ℚ)
+ ( neg-neg-ℚ x)
+ ( neg-le-ℚ zero-ℚ (neg-ℚ x) (le-zero-is-positive-ℚ (neg-ℚ x) x-is-neg))
+
+ is-negative-le-zero-ℚ : le-ℚ x zero-ℚ → is-negative-ℚ x
+ is-negative-le-zero-ℚ x-is-neg =
+ is-positive-le-zero-ℚ (neg-ℚ x) (neg-le-ℚ x zero-ℚ x-is-neg)
+
+ is-negative-iff-le-zero-ℚ : is-negative-ℚ x ↔ le-ℚ x zero-ℚ
+ is-negative-iff-le-zero-ℚ =
+ le-zero-is-negative-ℚ ,
+ is-negative-le-zero-ℚ
+```
+
+### The difference of a rational number with a greater rational number is negative
+
+```agda
+module _
+ (x y : ℚ) (H : le-ℚ x y)
+ where
+
+ abstract
+ is-negative-diff-le-ℚ : is-negative-ℚ (x -ℚ y)
+ is-negative-diff-le-ℚ =
+ inv-tr
+ ( is-positive-ℚ)
+ ( distributive-neg-diff-ℚ x y)
+ ( is-positive-diff-le-ℚ x y H)
+
+ negative-diff-le-ℚ : ℚ⁻
+ negative-diff-le-ℚ = x -ℚ y , is-negative-diff-le-ℚ
+```
+
+### Negative rational numbers are nonzero
+
+```agda
+abstract
+ is-nonzero-is-negative-ℚ : {x : ℚ} → is-negative-ℚ x → is-nonzero-ℚ x
+ is-nonzero-is-negative-ℚ {x} H =
+ tr
+ ( is-nonzero-ℚ)
+ ( neg-neg-ℚ x)
+ ( is-nonzero-neg-ℚ (is-nonzero-is-positive-ℚ H))
+```
+
+### The product of two negative rational numbers is positive
+
+```agda
+abstract
+ is-positive-mul-negative-ℚ :
+ {x y : ℚ} → is-negative-ℚ x → is-negative-ℚ y → is-positive-ℚ (x *ℚ y)
+ is-positive-mul-negative-ℚ {x} {y} P Q =
+ is-positive-reduce-fraction-ℤ
+ ( is-positive-mul-negative-fraction-ℤ
+ { fraction-ℚ x}
+ { fraction-ℚ y}
+ ( is-negative-fraction-ℚ⁻ (x , P))
+ ( is-negative-fraction-ℚ⁻ (y , Q)))
+```
+
+### Multiplication by a negative rational number reverses inequality
+
+```agda
+module _
+ (p : ℚ⁻)
+ (q r : ℚ)
+ (H : leq-ℚ q r)
+ where
+
+ abstract
+ reverses-leq-right-mul-ℚ⁻ : leq-ℚ (r *ℚ rational-ℚ⁻ p) (q *ℚ rational-ℚ⁻ p)
+ reverses-leq-right-mul-ℚ⁻ =
+ binary-tr
+ ( leq-ℚ)
+ ( negative-law-mul-ℚ r (rational-ℚ⁻ p))
+ ( negative-law-mul-ℚ q (rational-ℚ⁻ p))
+ ( preserves-leq-right-mul-ℚ⁺
+ ( neg-ℚ⁻ p)
+ ( neg-ℚ r)
+ ( neg-ℚ q)
+ ( neg-leq-ℚ q r H))
+```
+
+### Multiplication by a negative rational number reverses strict inequality
+
+```agda
+module _
+ (p : ℚ⁻)
+ (q r : ℚ)
+ (H : le-ℚ q r)
+ where
+
+ abstract
+ reverses-le-right-mul-ℚ⁻ : le-ℚ (r *ℚ rational-ℚ⁻ p) (q *ℚ rational-ℚ⁻ p)
+ reverses-le-right-mul-ℚ⁻ =
+ binary-tr
+ ( le-ℚ)
+ ( negative-law-mul-ℚ r (rational-ℚ⁻ p))
+ ( negative-law-mul-ℚ q (rational-ℚ⁻ p))
+ ( preserves-le-right-mul-ℚ⁺
+ ( neg-ℚ⁻ p)
+ ( neg-ℚ r)
+ ( neg-ℚ q)
+ ( neg-le-ℚ q r H))
+```
diff --git a/src/elementary-number-theory/positive-and-negative-integers.lagda.md b/src/elementary-number-theory/positive-and-negative-integers.lagda.md
index 844b95a8b8..9f35831163 100644
--- a/src/elementary-number-theory/positive-and-negative-integers.lagda.md
+++ b/src/elementary-number-theory/positive-and-negative-integers.lagda.md
@@ -51,6 +51,15 @@ is-not-negative-and-positive-ℤ (inl x) (H , K) = K
is-not-negative-and-positive-ℤ (inr x) (H , K) = H
```
+### No integer is both nonnegative and negative
+
+```agda
+is-not-negative-and-nonnegative-ℤ :
+ (x : ℤ) → ¬ (is-negative-ℤ x × is-nonnegative-ℤ x)
+is-not-negative-and-nonnegative-ℤ (inl x) (H , K) = K
+is-not-negative-and-nonnegative-ℤ (inr x) (H , K) = H
+```
+
### Dichotomies
#### A nonzero integer is either negative or positive
diff --git a/src/elementary-number-theory/positive-rational-numbers.lagda.md b/src/elementary-number-theory/positive-rational-numbers.lagda.md
index a30df38014..04f5c23411 100644
--- a/src/elementary-number-theory/positive-rational-numbers.lagda.md
+++ b/src/elementary-number-theory/positive-rational-numbers.lagda.md
@@ -14,6 +14,7 @@ open import elementary-number-theory.addition-rational-numbers
open import elementary-number-theory.additive-group-of-rational-numbers
open import elementary-number-theory.cross-multiplication-difference-integer-fractions
open import elementary-number-theory.difference-rational-numbers
+open import elementary-number-theory.inequality-integers
open import elementary-number-theory.inequality-rational-numbers
open import elementary-number-theory.integer-fractions
open import elementary-number-theory.integers
@@ -160,15 +161,14 @@ positive-rational-positive-ℤ : positive-ℤ → ℚ⁺
positive-rational-positive-ℤ (z , pos-z) = rational-ℤ z , pos-z
one-ℚ⁺ : ℚ⁺
-one-ℚ⁺ = positive-rational-positive-ℤ one-positive-ℤ
+one-ℚ⁺ = (one-ℚ , is-positive-int-positive-ℤ one-positive-ℤ)
```
-### Embedding of nonzero natural numbers in the positive rational numbers
+### The rational image of a positive natural number is positive
```agda
positive-rational-ℕ⁺ : ℕ⁺ → ℚ⁺
-positive-rational-ℕ⁺ n =
- positive-rational-positive-ℤ (positive-int-ℕ⁺ n)
+positive-rational-ℕ⁺ n = positive-rational-positive-ℤ (positive-int-ℕ⁺ n)
```
### The rational image of a positive integer fraction is positive
@@ -587,6 +587,42 @@ preserves-le-right-mul-ℚ⁺ p⁺@(p , _) q r q