-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathembedder.py
162 lines (129 loc) · 6.25 KB
/
embedder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import json
from abc import ABC
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Any, Literal, Optional
from pydantic import BaseModel, Field, SecretStr
from unstructured_ingest.v2.interfaces.process import BaseProcess
if TYPE_CHECKING:
from unstructured_ingest.embed.interfaces import BaseEmbeddingEncoder
class EmbedderConfig(BaseModel):
embedding_provider: Optional[
Literal[
"openai",
"huggingface",
"ollama",
"aws-bedrock",
"vertexai",
"voyageai",
"octoai",
"mixedbread-ai",
]
] = Field(default=None, description="Type of the embedding class to be used.")
embedding_api_key: Optional[SecretStr] = Field(
default=None,
description="API key for the embedding model, for the case an API key is needed.",
)
embedding_model_name: Optional[str] = Field(
default=None,
description="Embedding model name, if needed. "
"Chooses a particular LLM between different options, to embed with it.",
)
embedding_aws_access_key_id: Optional[str] = Field(
default=None, description="AWS access key used for AWS-based embedders, such as bedrock"
)
embedding_aws_secret_access_key: Optional[SecretStr] = Field(
default=None, description="AWS secret key used for AWS-based embedders, such as bedrock"
)
embedding_aws_region: Optional[str] = Field(
default="us-west-2", description="AWS region used for AWS-based embedders, such as bedrock"
)
def get_huggingface_embedder(self, embedding_kwargs: dict) -> "BaseEmbeddingEncoder":
from unstructured_ingest.embed.huggingface import (
HuggingFaceEmbeddingConfig,
HuggingFaceEmbeddingEncoder,
)
return HuggingFaceEmbeddingEncoder(
config=HuggingFaceEmbeddingConfig.model_validate(embedding_kwargs)
)
def get_ollama_embedder(self, embedding_kwargs: dict) -> "BaseEmbeddingEncoder":
from unstructured_ingest.embed.ollama import OllamaEmbeddingConfig, OllamaEmbeddingEncoder
return OllamaEmbeddingEncoder(config=OllamaEmbeddingConfig.model_validate(embedding_kwargs))
def get_openai_embedder(self, embedding_kwargs: dict) -> "BaseEmbeddingEncoder":
from unstructured_ingest.embed.openai import OpenAIEmbeddingConfig, OpenAIEmbeddingEncoder
return OpenAIEmbeddingEncoder(config=OpenAIEmbeddingConfig.model_validate(embedding_kwargs))
def get_octoai_embedder(self, embedding_kwargs: dict) -> "BaseEmbeddingEncoder":
from unstructured_ingest.embed.octoai import OctoAiEmbeddingConfig, OctoAIEmbeddingEncoder
return OctoAIEmbeddingEncoder(config=OctoAiEmbeddingConfig.model_validate(embedding_kwargs))
def get_bedrock_embedder(self) -> "BaseEmbeddingEncoder":
from unstructured_ingest.embed.bedrock import (
BedrockEmbeddingConfig,
BedrockEmbeddingEncoder,
)
return BedrockEmbeddingEncoder(
config=BedrockEmbeddingConfig(
aws_access_key_id=self.embedding_aws_access_key_id,
aws_secret_access_key=self.embedding_aws_secret_access_key.get_secret_value(),
region_name=self.embedding_aws_region,
)
)
def get_vertexai_embedder(self, embedding_kwargs: dict) -> "BaseEmbeddingEncoder":
from unstructured_ingest.embed.vertexai import (
VertexAIEmbeddingConfig,
VertexAIEmbeddingEncoder,
)
return VertexAIEmbeddingEncoder(
config=VertexAIEmbeddingConfig.model_validate(embedding_kwargs)
)
def get_voyageai_embedder(self, embedding_kwargs: dict) -> "BaseEmbeddingEncoder":
from unstructured_ingest.embed.voyageai import (
VoyageAIEmbeddingConfig,
VoyageAIEmbeddingEncoder,
)
return VoyageAIEmbeddingEncoder(
config=VoyageAIEmbeddingConfig.model_validate(embedding_kwargs)
)
def get_mixedbread_embedder(self, embedding_kwargs: dict) -> "BaseEmbeddingEncoder":
from unstructured_ingest.embed.mixedbreadai import (
MixedbreadAIEmbeddingConfig,
MixedbreadAIEmbeddingEncoder,
)
return MixedbreadAIEmbeddingEncoder(
config=MixedbreadAIEmbeddingConfig.model_validate(embedding_kwargs)
)
def get_embedder(self) -> "BaseEmbeddingEncoder":
kwargs: dict[str, Any] = {}
if self.embedding_api_key:
kwargs["api_key"] = self.embedding_api_key.get_secret_value()
if self.embedding_model_name:
kwargs["model_name"] = self.embedding_model_name
# TODO make this more dynamic to map to encoder configs
if self.embedding_provider == "openai":
return self.get_openai_embedder(embedding_kwargs=kwargs)
if self.embedding_provider == "huggingface":
return self.get_huggingface_embedder(embedding_kwargs=kwargs)
if self.embedding_provider == "ollama":
return self.get_ollama_embedder(embedding_kwargs=kwargs)
if self.embedding_provider == "octoai":
return self.get_octoai_embedder(embedding_kwargs=kwargs)
if self.embedding_provider == "aws-bedrock":
return self.get_bedrock_embedder()
if self.embedding_provider == "vertexai":
return self.get_vertexai_embedder(embedding_kwargs=kwargs)
if self.embedding_provider == "voyageai":
return self.get_voyageai_embedder(embedding_kwargs=kwargs)
if self.embedding_provider == "mixedbread-ai":
return self.get_mixedbread_embedder(embedding_kwargs=kwargs)
raise ValueError(f"{self.embedding_provider} not a recognized encoder")
@dataclass
class Embedder(BaseProcess, ABC):
config: EmbedderConfig
def run(self, elements_filepath: Path, **kwargs: Any) -> list[dict]:
# TODO update base embedder classes to support async
embedder = self.config.get_embedder()
with elements_filepath.open("r") as elements_file:
elements = json.load(elements_file)
if not elements:
return [e.to_dict() for e in elements]
embedded_elements = embedder.embed_documents(elements=elements)
return embedded_elements