上回讲到,为了让所有的动物都能参加赛马,Java 7 引入了 invokedynamic
机制,允许调用任意类的“赛跑”方法。不过,我们并没有讲解 invokedynamic
,而是深入地探讨了它所依赖的方法句柄。
今天,我便来正式地介绍 invokedynamic
指令,讲讲它是如何生成调用点,并且允许应用程序自己决定链接至哪一个方法中的。
invokedynamic
是 Java 7 引入的一条新指令,用以支持动态语言的方法调用。具体来说,它将调用点(CallSite
)抽象成一个 Java 类,并且将原本由 Java 虚拟机控制的方法调用以及方法链接暴露给了应用程序。在运行过程中,每一条 invokedynamic 指令将捆绑一个调用点,并且会调用该调用点所链接的方法句柄。
在第一次执行 invokedynamic 指令时,Java 虚拟机会调用该指令所对应的启动方法(BootStrap Method
),来生成前面提到的调用点,并且将之绑定至该 invokedynamic 指令中。在之后的运行过程中,Java 虚拟机则会直接调用绑定的调用点所链接的方法句柄。
在字节码中,启动方法是用方法句柄来指定的。这个方法句柄指向一个返回类型为调用点的静态方法。该方法必须接收三个固定的参数,分别为一个 Lookup 类实例,一个用来指代目标方法名字的字符串,以及该调用点能够链接的方法句柄的类型。
除了这三个必需参数之外,启动方法还可以接收若干个其他的参数,用来辅助生成调用点,或者定位所要链接的目标方法。
import java.lang.invoke.*;
class Horse {
public void race() {
System.out.println("Horse.race()");
}
}
class Deer {
public void race() {
System.out.println("Deer.race()");
}
}
// javac Circuit.java
// java Circuit
public class Circuit {
public static void startRace(Object obj) {
// aload obj
// invokedynamic race()
}
public static void main(String[] args) {
startRace(new Horse());
// startRace(new Deer());
}
public static CallSite bootstrap(MethodHandles.Lookup l, String name, MethodType callSiteType) throws Throwable {
MethodHandle mh = l.findVirtual(Horse.class, name, MethodType.methodType(void.class));
return new ConstantCallSite(mh.asType(callSiteType));
}
}
我在文稿中贴了一段代码,其中便包含一个启动方法。它将接收前面提到的三个固定参数,并且返回一个链接至 Horse.race 方法的 ConstantCallSite
。
这里的 ConstantCallSite 是一种不可以更改链接对象的调用点。除此之外,Java 核心类库还提供多种可以更改链接对象的调用点,比如 MutableCallSite
和 VolatileCallSite
。
这两者的区别就好比正常字段和 volatile 字段之间的区别。此外,应用程序还可以自定义调用点类,来满足特定的重链接需求。
由于 Java 暂不支持直接生成 invokedynamic 指令,所以接下来我会借助之前介绍过的字节码工具 ASM 来实现这一目的。
import java.io.IOException;
import java.lang.invoke.*;
import java.nio.file.*;
import org.objectweb.asm.*;
// javac -cp /path/to/asm-all-6.0_BETA.jar:. ASMHelper.java
// java -cp /path/to/asm-all-6.0_BETA.jar:. ASMHelper
// java Circuit
public class ASMHelper implements Opcodes {
private static class MyMethodVisitor extends MethodVisitor {
private static final String BOOTSTRAP_CLASS_NAME = Circuit.class.getName().replace('.', '/');
private static final String BOOTSTRAP_METHOD_NAME = "bootstrap";
private static final String BOOTSTRAP_METHOD_DESC = MethodType
.methodType(CallSite.class, MethodHandles.Lookup.class, String.class, MethodType.class)
.toMethodDescriptorString();
private static final String TARGET_METHOD_NAME = "race";
private static final String TARGET_METHOD_DESC = "(Ljava/lang/Object;)V";
public final MethodVisitor mv;
public MyMethodVisitor(int api, MethodVisitor mv) {
super(api);
this.mv = mv;
}
@Override
public void visitCode() {
mv.visitCode();
mv.visitVarInsn(ALOAD, 0);
Handle h = new Handle(H_INVOKESTATIC, BOOTSTRAP_CLASS_NAME, BOOTSTRAP_METHOD_NAME, BOOTSTRAP_METHOD_DESC, false);
mv.visitInvokeDynamicInsn(TARGET_METHOD_NAME, TARGET_METHOD_DESC, h);
mv.visitInsn(RETURN);
mv.visitMaxs(1, 1);
mv.visitEnd();
}
}
public static void main(String[] args) throws IOException {
ClassReader cr = new ClassReader("Circuit");
ClassWriter cw = new ClassWriter(cr, ClassWriter.COMPUTE_FRAMES);
ClassVisitor cv = new ClassVisitor(ASM6, cw) {
@Override
public MethodVisitor visitMethod(int access, String name, String descriptor, String signature,
String[] exceptions) {
MethodVisitor visitor = super.visitMethod(access, name, descriptor, signature, exceptions);
if ("startRace".equals(name)) {
return new MyMethodVisitor(ASM6, visitor);
}
return visitor;
}
};
cr.accept(cv, ClassReader.SKIP_FRAMES);
Files.write(Paths.get("Circuit.class"), cw.toByteArray());
}
}
你无需理解上面这段代码的具体含义,只须了解它会更改同一目录下 Circuit
类的 startRace(Object)
方法,使之包含 invokedynamic 指令,执行所谓的赛跑方法。
public static void startRace(java.lang.Object);
0: aload_0
1: invokedynamic #80, 0 // race:(Ljava/lang/Object;)V
6: return
如果你足够细心的话,你会发现该指令所调用的赛跑方法的描述符,和 Horse.race
方法或者 Deer.race
方法的描述符并不一致。这是因为 invokedynamic 指令最终调用的是方法句柄,而方法句柄会将调用者当成第一个参数。因此,刚刚提到的那两个方法恰恰符合这个描述符所对应的方法句柄类型。
到目前为止,我们已经可以通过 invokedynamic 调用 Horse.race
方法了。为了支持调用任意类的 race
方法,我实现了一个简单的单态内联缓存。如果调用者的类型命中缓存中的类型,便直接调用缓存中的方法句柄,否则便更新缓存。
// 需要更改ASMHelper.MyMethodVisitor中的BOOTSTRAP_CLASS_NAME
import java.lang.invoke.*;
public class MonomorphicInlineCache {
private final MethodHandles.Lookup lookup;
private final String name;
public MonomorphicInlineCache(MethodHandles.Lookup lookup, String name) {
this.lookup = lookup;
this.name = name;
}
private Class<?> cachedClass = null;
private MethodHandle mh = null;
public void invoke(Object receiver) throws Throwable {
if (cachedClass != receiver.getClass()) {
cachedClass = receiver.getClass();
mh = lookup.findVirtual(cachedClass, name, MethodType.methodType(void.class));
}
mh.invoke(receiver);
}
public static CallSite bootstrap(MethodHandles.Lookup l, String name, MethodType callSiteType) throws Throwable {
MonomorphicInlineCache ic = new MonomorphicInlineCache(l, name);
MethodHandle mh = l.findVirtual(MonomorphicInlineCache.class, "invoke", MethodType.methodType(void.class, Object.class));
return new ConstantCallSite(mh.bindTo(ic));
}
}
可以看到,尽管 invokedynamic 指令调用的是所谓的 race 方法,但是实际上我返回了一个链接至名为“invoke”的方法的调用点。由于调用点仅要求方法句柄的类型能够匹配,因此这个链接是合法的。
不过,这正是 invokedynamic 的目的,也就是将调用点与目标方法的链接交由应用程序来做,并且依赖于应用程序对目标方法进行验证。所以,如果应用程序将赛跑方法链接至兔子的睡觉方法,那也只能怪应用程序自己了。
在 Java 8 中,Lambda 表达式也是借助 invokedynamic 来实现的。
具体来说,Java 编译器利用 invokedynamic 指令来生成实现了函数式接口的适配器。这里的函数式接口指的是仅包括一个非 default 接口方法的接口,一般通过 @FunctionalInterface
注解。不过就算是没有使用该注解,Java 编译器也会将符合条件的接口辨认为函数式接口。
int x = ..
IntStream.of(1, 2, 3).map(i -> i * 2).map(i -> i * x);
举个例子,上面这段代码会对 IntStream
中的元素进行两次映射。我们知道,映射方法 map
所接收的参数是 IntUnaryOperator
(这是一个函数式接口)。也就是说,在运行过程中我们需要将 i->i2 和 i->ix 这两个 Lambda 表达式转化成 IntUnaryOperator
的实例。这个转化过程便是由 invokedynamic 来实现的。
在编译过程中,Java 编译器会对 Lambda 表达式进行解语法糖(desugar),生成一个方法来保存 Lambda 表达式的内容。该方法的参数列表不仅包含原本 Lambda 表达式的参数,还包含它所捕获的变量。(注:方法引用,如 Horse::race,则不会生成生成额外的方法。)
在上面那个例子中,第一个 Lambda 表达式没有捕获其他变量,而第二个 Lambda 表达式(也就是 i->ix)则会捕获局部变量 x。这两个 Lambda 表达式对应的方法如下所示。可以看到,所捕获的变量同样也会作为参数传入生成的方法之中。
// i -> i * 2
private static int lambda$0(int);
Code:
0: iload_0
1: iconst_2
2: imul
3: ireturn
// i -> i * x
private static int lambda$1(int, int);
Code:
0: iload_1
1: iload_0
2: imul
3: ireturn
第一次执行 invokedynamic 指令时,它所对应的启动方法会通过 ASM
来生成一个适配器类。这个适配器类实现了对应的函数式接口,在我们的例子中,也就是 IntUnaryOperator。启动方法的返回值是一个 ConstantCallSite,其链接对象为一个返回适配器类实例的方法句柄。
根据 Lambda 表达式是否捕获其他变量,启动方法生成的适配器类以及所链接的方法句柄皆不同。
如果该 Lambda 表达式没有捕获其他变量,那么可以认为它是上下文无关的。因此,启动方法将新建一个适配器类的实例,并且生成一个特殊的方法句柄,始终返回该实例。
如果该 Lambda 表达式捕获了其他变量,那么每次执行该 invokedynamic 指令,我们都要更新这些捕获了的变量,以防止它们发生了变化。
另外,为了保证 Lambda 表达式的线程安全,我们无法共享同一个适配器类的实例。因此,在每次执行 invokedynamic 指令时,所调用的方法句柄都需要新建一个适配器类实例。
在这种情况下,启动方法生成的适配器类将包含一个额外的静态方法,来构造适配器类的实例。该方法将接收这些捕获的参数,并且将它们保存为适配器类实例的实例字段。
你可以通过虚拟机参数-Djdk.internal.lambda.dumpProxyClasses=/DUMP/PATH
导出这些具体的适配器类。这里我导出了上面这个例子中两个 Lambda 表达式对应的适配器类。
// i->i*2 对应的适配器类
final class LambdaTest$$Lambda$1 implements IntUnaryOperator {
private LambdaTest$$Lambda$1();
Code:
0: aload_0
1: invokespecial java/lang/Object."<init>":()V
4: return
public int applyAsInt(int);
Code:
0: iload_1
1: invokestatic LambdaTest.lambda$0:(I)I
4: ireturn
}
// i->i*x 对应的适配器类
final class LambdaTest$$Lambda$2 implements IntUnaryOperator {
private final int arg$1;
private LambdaTest$$Lambda$2(int);
Code:
0: aload_0
1: invokespecial java/lang/Object."<init>":()V
4: aload_0
5: iload_1
6: putfield arg$1:I
9: return
private static java.util.function.IntUnaryOperator get$Lambda(int);
Code:
0: new LambdaTest$$Lambda$2
3: dup
4: iload_0
5: invokespecial "<init>":(I)V
8: areturn
public int applyAsInt(int);
Code:
0: aload_0
1: getfield arg$1:I
4: iload_1
5: invokestatic LambdaTest.lambda$1:(II)I
8: ireturn
}
可以看到,捕获了局部变量的 Lambda 表达式多出了一个 get$Lambda 的方法。启动方法便会所返回的调用点链接至指向该方法的方法句柄。也就是说,每次执行 invokedynamic 指令时,都会调用至这个方法中,并构造一个新的适配器类实例。
这个多出来的新建实例会对程序性能造成影响吗?
我再次请出测试反射调用性能开销的那段代码,并将其改造成使用 Lambda 表达式的 v6 版本。
// v6版本
import java.util.function.IntConsumer;
public class Test {
public static void target(int i) { }
public static void main(String[] args) throws Exception {
long current = System.currentTimeMillis();
for (int i = 1; i <= 2_000_000_000; i++) {
if (i % 100_000_000 == 0) {
long temp = System.currentTimeMillis();
System.out.println(temp - current);
current = temp;
}
((IntConsumer) j -> Test.target(j)).accept(128);
// ((IntConsumer) Test::target.accept(128);
}
}
}
测量结果显示,它与直接调用的性能并无太大的区别。也就是说,即时编译器能够将转换 Lambda 表达式所使用的 invokedynamic,以及对 IntConsumer.accept
方法的调用统统内联进来,最终优化为空操作。
这个其实不难理解:Lambda 表达式所使用的 invokedynamic 将绑定一个 ConstantCallSite,其链接的目标方法无法改变。因此,即时编译器会将该目标方法直接内联进来。对于这类没有捕获变量的 Lambda 表达式而言,目标方法只完成了一个动作,便是加载缓存的适配器类常量。
另一方面,对 IntConsumer.accept 方法的调用实则是对适配器类的 accept 方法的调用。
如果你查看了 accept 方法对应的字节码的话,你会发现它仅包含一个方法调用,调用至 Java 编译器在解 Lambda 语法糖时生成的方法。
该方法的内容便是 Lambda 表达式的内容,也就是直接调用目标方法 Test.target。将这几个方法调用内联进来之后,原本对 accept 方法的调用则会被优化为空操作。
下面我将之前的代码更改为带捕获变量的 v7 版本。理论上,每次调用 invokedynamic 指令,Java 虚拟机都会新建一个适配器类的实例。然而,实际运行结果还是与直接调用的性能一致。
// v7版本
import java.util.function.IntConsumer;
public class Test {
public static void target(int i) { }
public static void main(String[] args) throws Exception {
int x = 2;
long current = System.currentTimeMillis();
for (int i = 1; i <= 2_000_000_000; i++) {
if (i % 100_000_000 == 0) {
long temp = System.currentTimeMillis();
System.out.println(temp - current);
current = temp;
}
((IntConsumer) j -> Test.target(x + j)).accept(128);
}
}
}
显然,即时编译器的逃逸分析又将该新建实例给优化掉了。我们可以通过虚拟机参数 -XX:-DoEscapeAnalysis
来关闭逃逸分析。果然,这时候测得的值约为直接调用的 2.5 倍。
尽管逃逸分析能够去除这些额外的新建实例开销,但是它也不是时时奏效。它需要同时满足两件事:invokedynamic 指令所执行的方法句柄能够内联,和接下来的对 accept 方法的调用也能内联。
只有这样,逃逸分析才能判定该适配器实例不逃逸。否则,我们会在运行过程中不停地生成适配器类实例。所以,我们应当尽量使用非捕获的 Lambda 表达式。