|
| 1 | +from contextlib import nullcontext as does_not_raise |
| 2 | +from pathlib import Path |
| 3 | + |
| 4 | +import pytest |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | +from flwr.common.typing import Config |
| 8 | +from torch.nn.modules.loss import _Loss |
| 9 | +from torch.optim import Optimizer |
| 10 | +from torch.utils.data import DataLoader, TensorDataset |
| 11 | + |
| 12 | +from fl4health.clients.basic_client import BasicClient |
| 13 | +from fl4health.metrics import Accuracy |
| 14 | +from fl4health.mixins.personalized.utils import ensure_protocol_compliance |
| 15 | +from fl4health.parameter_exchange.packing_exchanger import FullParameterExchangerWithPacking |
| 16 | +from fl4health.parameter_exchange.parameter_packer import ( |
| 17 | + ParameterPackerAdaptiveConstraint, |
| 18 | +) |
| 19 | + |
| 20 | + |
| 21 | +def test_ensure_protocol_compliance_does_not_raise() -> None: |
| 22 | + # arrange |
| 23 | + class MyClient(BasicClient): |
| 24 | + def get_model(self, config: Config) -> nn.Module: |
| 25 | + return self.model |
| 26 | + |
| 27 | + def get_data_loaders(self, config: Config) -> tuple[DataLoader, DataLoader]: |
| 28 | + return self.train_loader, self.val_loader |
| 29 | + |
| 30 | + def get_optimizer(self, config: Config) -> Optimizer | dict[str, Optimizer]: |
| 31 | + return self.optimizers["global"] |
| 32 | + |
| 33 | + def get_criterion(self, config: Config) -> _Loss: |
| 34 | + return torch.nn.CrossEntropyLoss() |
| 35 | + |
| 36 | + @ensure_protocol_compliance |
| 37 | + def some_method(self, x: int) -> int: |
| 38 | + return x + 1 |
| 39 | + |
| 40 | + # setup client |
| 41 | + client = MyClient(data_path=Path(""), metrics=[Accuracy()], device=torch.device("cpu")) |
| 42 | + client.model = torch.nn.Linear(5, 5) |
| 43 | + client.optimizers = {"global": torch.optim.SGD(client.model.parameters(), lr=0.0001)} |
| 44 | + client.train_loader = DataLoader(TensorDataset(torch.ones((1000, 28, 28, 1)), torch.ones((1000)))) |
| 45 | + client.val_loader = DataLoader(TensorDataset(torch.ones((1000, 28, 28, 1)), torch.ones((1000)))) |
| 46 | + client.parameter_exchanger = FullParameterExchangerWithPacking(ParameterPackerAdaptiveConstraint()) |
| 47 | + client.initialized = True |
| 48 | + client.setup_client({}) |
| 49 | + |
| 50 | + # act/assert |
| 51 | + with does_not_raise(): |
| 52 | + client.some_method(2) |
| 53 | + |
| 54 | + |
| 55 | +def test_ensure_protocol_compliance_does_raise_type_error() -> None: |
| 56 | + # arrange |
| 57 | + class MyClient: |
| 58 | + """My Client DOES not satisfy the protocol of BasicClient.""" |
| 59 | + |
| 60 | + @ensure_protocol_compliance |
| 61 | + def some_method(self, x: int) -> int: |
| 62 | + return x + 1 |
| 63 | + |
| 64 | + client = MyClient() |
| 65 | + |
| 66 | + # act/assert |
| 67 | + with pytest.raises(TypeError, match="Protocol requirements not met."): |
| 68 | + client.some_method(2) |
0 commit comments