Skip to content

Commit 50df9af

Browse files
CopilotWenyinWei
andcommitted
Implement enhanced parallelism capabilities with modern C++ features
Co-authored-by: WenyinWei <[email protected]>
1 parent c93059a commit 50df9af

11 files changed

+2971
-0
lines changed

include/diffeq.hpp

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -36,6 +36,13 @@
3636
#include <signal/signal_processor.hpp> // Generic signal processing
3737
#include <interfaces/integration_interface.hpp> // Unified interface for all domains
3838

39+
// Enhanced parallelism capabilities with modern C++ features
40+
#include <execution/parallelism_facade.hpp> // Unified parallelism interface (Facade pattern)
41+
#include <execution/parallelism_facade_impl.hpp> // Implementation details
42+
#include <execution/parallel_builder.hpp> // Fluent interface for configuration (Builder pattern)
43+
#include <execution/modern_executor.hpp> // Modern C++ executor support with coroutines
44+
#include <execution/hardware_support.hpp> // Hardware-specific execution (CUDA, OpenCL, FPGA, MPI)
45+
3946
/**
4047
* @file diffeq.hpp
4148
* @brief Modern C++ ODE Integration Library with Real-time Signal Processing
Lines changed: 341 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,341 @@
1+
#pragma once
2+
3+
#include <diffeq.hpp>
4+
#include <vector>
5+
#include <iostream>
6+
#include <chrono>
7+
#include <random>
8+
9+
namespace diffeq::examples::parallelism {
10+
11+
/**
12+
* @brief Robotics Control Systems Example
13+
*
14+
* Demonstrates real-time integration with feedback signals from sensors
15+
* with low latency and deterministic performance requirements.
16+
*/
17+
namespace robotics_control {
18+
19+
// Robot arm dynamics (simplified)
20+
struct RobotArmSystem {
21+
double mass = 1.0;
22+
double length = 0.5;
23+
double damping = 0.1;
24+
double gravity = 9.81;
25+
26+
void operator()(double t, const std::vector<double>& state, std::vector<double>& derivative) {
27+
// state = [angle, angular_velocity]
28+
// Simple pendulum with control input
29+
double angle = state[0];
30+
double angular_vel = state[1];
31+
32+
// Control input (placeholder - would come from feedback controller)
33+
double control_torque = -2.0 * angle - 0.5 * angular_vel; // PD controller
34+
35+
derivative[0] = angular_vel;
36+
derivative[1] = -(gravity / length) * std::sin(angle) -
37+
(damping / (mass * length * length)) * angular_vel +
38+
control_torque / (mass * length * length);
39+
}
40+
};
41+
42+
void demonstrate_realtime_control() {
43+
std::cout << "\n=== Robotics Control System with Real-time Parallelism ===\n";
44+
45+
// Configure for real-time robotics control
46+
auto parallel_config = diffeq::execution::presets::robotics_control()
47+
.realtime_priority()
48+
.workers(4) // Dedicated cores for control
49+
.batch_size(1) // Single step processing
50+
.disable_load_balancing() // Deterministic scheduling
51+
.build();
52+
53+
// Create integrator for robot dynamics
54+
auto robot_system = RobotArmSystem{};
55+
auto integrator = diffeq::ode::factory::make_rk4_integrator<std::vector<double>, double>(robot_system);
56+
57+
// Initial state: [angle=0.1 rad, angular_velocity=0]
58+
std::vector<double> state = {0.1, 0.0};
59+
double dt = 0.001; // 1ms timestep for 1kHz control
60+
double simulation_time = 1.0;
61+
62+
std::cout << "Running real-time robot control simulation...\n";
63+
std::cout << "Target frequency: 1kHz (1ms timestep)\n";
64+
65+
auto start_time = std::chrono::high_resolution_clock::now();
66+
67+
// Simulate real-time control loop
68+
for (double t = 0.0; t < simulation_time; t += dt) {
69+
// Execute control step with real-time priority
70+
auto control_future = parallel_config->async([&]() {
71+
integrator->step(state, dt);
72+
});
73+
74+
// Simulate sensor reading (parallel)
75+
auto sensor_future = parallel_config->async([&]() {
76+
// Placeholder for sensor data processing
77+
std::this_thread::sleep_for(std::chrono::microseconds(50));
78+
return state[0]; // Return angle measurement
79+
});
80+
81+
// Wait for both to complete
82+
control_future.wait();
83+
double measured_angle = sensor_future.get();
84+
85+
// Output every 100ms
86+
if (static_cast<int>(t * 1000) % 100 == 0) {
87+
std::cout << "t=" << t << "s, angle=" << state[0]
88+
<< " rad, measured=" << measured_angle << " rad\n";
89+
}
90+
}
91+
92+
auto end_time = std::chrono::high_resolution_clock::now();
93+
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time);
94+
95+
std::cout << "Simulation completed in " << duration.count() << "ms\n";
96+
std::cout << "Average loop time: " << duration.count() / (simulation_time / dt) << "ms\n";
97+
std::cout << "Final robot state: angle=" << state[0] << " rad, velocity=" << state[1] << " rad/s\n";
98+
}
99+
100+
} // namespace robotics_control
101+
102+
/**
103+
* @brief Stochastic Process Research Example
104+
*
105+
* Demonstrates Monte Carlo simulations requiring thousands/millions of integrations
106+
* with focus on throughput rather than latency.
107+
*/
108+
namespace stochastic_research {
109+
110+
// Geometric Brownian Motion for financial modeling
111+
struct GeometricBrownianMotion {
112+
double mu = 0.05; // drift
113+
double sigma = 0.2; // volatility
114+
115+
void operator()(double t, const std::vector<double>& state, std::vector<double>& derivative) {
116+
derivative[0] = mu * state[0]; // deterministic part
117+
}
118+
119+
void diffusion(double t, const std::vector<double>& state, std::vector<double>& noise_coeff) {
120+
noise_coeff[0] = sigma * state[0]; // stochastic part
121+
}
122+
};
123+
124+
void demonstrate_monte_carlo_simulation() {
125+
std::cout << "\n=== Stochastic Process Research with GPU-Accelerated Monte Carlo ===\n";
126+
127+
// Configure for high-throughput Monte Carlo
128+
auto parallel_config = diffeq::execution::presets::monte_carlo()
129+
.auto_target() // Let system choose best hardware
130+
.workers(std::thread::hardware_concurrency() * 4) // Oversubscribe for throughput
131+
.batch_size(10000) // Large batches for efficiency
132+
.enable_load_balancing() // Dynamic load balancing
133+
.build();
134+
135+
// Print available hardware
136+
diffeq::execution::hardware::HardwareCapabilities::print_capabilities();
137+
138+
const size_t num_simulations = 100000;
139+
const double T = 1.0; // 1 year
140+
const double dt = 1.0/252; // daily steps
141+
const double S0 = 100.0; // initial stock price
142+
143+
std::cout << "\nRunning " << num_simulations << " Monte Carlo simulations...\n";
144+
std::cout << "Each simulation: " << static_cast<int>(T/dt) << " steps over " << T << " years\n";
145+
146+
auto start_time = std::chrono::high_resolution_clock::now();
147+
148+
// Prepare simulation parameters
149+
std::vector<double> final_prices(num_simulations);
150+
std::vector<std::future<double>> simulation_futures;
151+
152+
// Create the SDE system
153+
auto gbm_system = GeometricBrownianMotion{};
154+
155+
// Launch parallel simulations
156+
for (size_t i = 0; i < num_simulations; ++i) {
157+
simulation_futures.push_back(parallel_config->async([=]() {
158+
// Create integrator for this simulation
159+
auto integrator = diffeq::ode::factory::make_rk4_integrator<std::vector<double>, double>(gbm_system);
160+
161+
// Random number generator for this thread
162+
std::mt19937 rng(std::random_device{}() + i);
163+
std::normal_distribution<double> normal(0.0, 1.0);
164+
165+
std::vector<double> state = {S0};
166+
double t = 0.0;
167+
168+
while (t < T) {
169+
// Deterministic step
170+
integrator->step(state, dt);
171+
172+
// Add stochastic component (simplified Euler-Maruyama)
173+
double dW = normal(rng) * std::sqrt(dt);
174+
state[0] += gbm_system.sigma * state[0] * dW;
175+
176+
t += dt;
177+
}
178+
179+
return state[0]; // Return final price
180+
}));
181+
}
182+
183+
// Collect results
184+
for (size_t i = 0; i < num_simulations; ++i) {
185+
final_prices[i] = simulation_futures[i].get();
186+
}
187+
188+
auto end_time = std::chrono::high_resolution_clock::now();
189+
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time);
190+
191+
// Calculate statistics
192+
double mean_price = 0.0;
193+
double min_price = final_prices[0];
194+
double max_price = final_prices[0];
195+
196+
for (double price : final_prices) {
197+
mean_price += price;
198+
min_price = std::min(min_price, price);
199+
max_price = std::max(max_price, price);
200+
}
201+
mean_price /= num_simulations;
202+
203+
// Calculate variance
204+
double variance = 0.0;
205+
for (double price : final_prices) {
206+
variance += (price - mean_price) * (price - mean_price);
207+
}
208+
variance /= (num_simulations - 1);
209+
210+
std::cout << "\nMonte Carlo Results:\n";
211+
std::cout << " Simulation time: " << duration.count() << "ms\n";
212+
std::cout << " Throughput: " << (num_simulations * 1000.0) / duration.count() << " simulations/second\n";
213+
std::cout << " Mean final price: $" << mean_price << "\n";
214+
std::cout << " Price range: $" << min_price << " - $" << max_price << "\n";
215+
std::cout << " Standard deviation: $" << std::sqrt(variance) << "\n";
216+
std::cout << " Expected price (theoretical): $" << S0 * std::exp(gbm_system.mu * T) << "\n";
217+
}
218+
219+
} // namespace stochastic_research
220+
221+
/**
222+
* @brief Multi-Hardware Benchmark
223+
*
224+
* Demonstrates the same computation running on different hardware targets
225+
* to showcase the unified interface abstraction.
226+
*/
227+
namespace multi_hardware_demo {
228+
229+
// Simple ODE for benchmarking: dx/dt = -k*x (exponential decay)
230+
struct ExponentialDecay {
231+
double k = 1.0;
232+
233+
void operator()(double t, const std::vector<double>& state, std::vector<double>& derivative) {
234+
derivative[0] = -k * state[0];
235+
}
236+
};
237+
238+
void benchmark_hardware_targets() {
239+
std::cout << "\n=== Multi-Hardware Parallelism Benchmark ===\n";
240+
241+
const size_t num_integrations = 10000;
242+
const double dt = 0.01;
243+
const double end_time = 1.0;
244+
const std::vector<double> initial_state = {1.0};
245+
246+
std::vector<diffeq::execution::HardwareTarget> targets = {
247+
diffeq::execution::HardwareTarget::CPU_Sequential,
248+
diffeq::execution::HardwareTarget::CPU_ThreadPool,
249+
diffeq::execution::HardwareTarget::GPU_CUDA,
250+
diffeq::execution::HardwareTarget::GPU_OpenCL,
251+
diffeq::execution::HardwareTarget::FPGA_HLS
252+
};
253+
254+
auto system = ExponentialDecay{};
255+
256+
for (auto target : targets) {
257+
std::string target_name;
258+
switch (target) {
259+
case diffeq::execution::HardwareTarget::CPU_Sequential: target_name = "CPU Sequential"; break;
260+
case diffeq::execution::HardwareTarget::CPU_ThreadPool: target_name = "CPU Thread Pool"; break;
261+
case diffeq::execution::HardwareTarget::GPU_CUDA: target_name = "GPU CUDA"; break;
262+
case diffeq::execution::HardwareTarget::GPU_OpenCL: target_name = "GPU OpenCL"; break;
263+
case diffeq::execution::HardwareTarget::FPGA_HLS: target_name = "FPGA HLS"; break;
264+
default: target_name = "Unknown"; break;
265+
}
266+
267+
std::cout << "\nBenchmarking " << target_name << "...\n";
268+
269+
// Configure parallelism for this hardware target
270+
diffeq::execution::ParallelConfig config;
271+
config.target = target;
272+
config.max_workers = std::thread::hardware_concurrency();
273+
config.batch_size = num_integrations / 10;
274+
275+
auto parallel_facade = std::make_unique<diffeq::execution::ParallelismFacade>(config);
276+
277+
if (!parallel_facade->is_target_available(target)) {
278+
std::cout << " Hardware not available, skipping...\n";
279+
continue;
280+
}
281+
282+
auto start_time = std::chrono::high_resolution_clock::now();
283+
284+
// Create vector of initial conditions
285+
std::vector<std::vector<double>> states(num_integrations, initial_state);
286+
287+
// Parallel integration using the unified interface
288+
parallel_facade->parallel_for_each(states.begin(), states.end(), [&](auto& state) {
289+
auto integrator = diffeq::ode::factory::make_rk4_integrator<std::vector<double>, double>(system);
290+
291+
double t = 0.0;
292+
while (t < end_time) {
293+
double step_size = std::min(dt, end_time - t);
294+
integrator->step(state, step_size);
295+
t += step_size;
296+
}
297+
});
298+
299+
auto end_time_chrono = std::chrono::high_resolution_clock::now();
300+
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end_time_chrono - start_time);
301+
302+
// Verify results (should be approximately e^(-k*t) = e^(-1) ≈ 0.368)
303+
double expected_result = std::exp(-system.k * end_time);
304+
double mean_result = 0.0;
305+
for (const auto& state : states) {
306+
mean_result += state[0];
307+
}
308+
mean_result /= num_integrations;
309+
310+
double error = std::abs(mean_result - expected_result);
311+
312+
std::cout << " Execution time: " << duration.count() << "ms\n";
313+
std::cout << " Throughput: " << (num_integrations * 1000.0) / duration.count() << " integrations/second\n";
314+
std::cout << " Average result: " << mean_result << " (expected: " << expected_result << ")\n";
315+
std::cout << " Error: " << error << "\n";
316+
std::cout << " Max concurrency: " << parallel_facade->get_max_concurrency() << "\n";
317+
}
318+
}
319+
320+
} // namespace multi_hardware_demo
321+
322+
/**
323+
* @brief Demonstration function that runs all examples
324+
*/
325+
void demonstrate_all_parallelism_features() {
326+
std::cout << "=== Enhanced Parallelism Capabilities Demo ===\n";
327+
std::cout << "Demonstrating modern C++ parallelism with unified hardware interface\n";
328+
329+
// Run robotics control example
330+
robotics_control::demonstrate_realtime_control();
331+
332+
// Run stochastic research example
333+
stochastic_research::demonstrate_monte_carlo_simulation();
334+
335+
// Run multi-hardware benchmark
336+
multi_hardware_demo::benchmark_hardware_targets();
337+
338+
std::cout << "\n=== All Parallelism Demonstrations Complete ===\n";
339+
}
340+
341+
} // namespace diffeq::examples::parallelism

0 commit comments

Comments
 (0)