-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
48 lines (42 loc) · 1.55 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from setuptools import setup, find_packages
from setuptools import Extension, setup
from Cython.Build import cythonize
with open('README.md') as _f:
_README_MD = _f.read()
_VERSION = '0.1'
ext_modules = [
Extension(
"random_forest_distillation.kernels",
["random_forest_distillation/kernels.pyx"],
extra_compile_args=['-fopenmp'],
extra_link_args=['-fopenmp'],
),
# Extension(
# "random_forest_robustness.c_lower_bound_manager",
# ["random_forest_robustness/c_lower_bound_manager.pyx"],
# extra_compile_args=['-fopenmp'],
# extra_link_args=['-fopenmp'],
# language="c++"
# )
]
setup(
name='random_forest_distillation',
version=_VERSION,
description='Approximate a sklearn RandomForestClassifier using a single Decision Tree.',
long_description=_README_MD,
classifiers=[
],
url='https://github.com/Whadup/random_forest_distillation',
download_url='https://github.com/Whadup/random_forest_distillation/tarball/{}'.format(_VERSION),
author='Lukas Pfahler',
packages=find_packages(include=['random_forest_distillation*']),
test_suite="testing",
setup_requires=["pytest-runner", "Cython", "scikit-learn>=1.0", "numpy", "tqdm"],
ext_modules = cythonize(ext_modules, language_level = "3"),
tests_require=["pytest", "pytest-cov"],
include_package_data=True,
license='MIT',
python_requires=">3.7",
keywords='scikit-learn random forest to decision tree distillation'
)