-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3-LG.py
137 lines (112 loc) · 4.54 KB
/
3-LG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import pandas as pd
import numpy as np
import sys
import xlwt
import seaborn as sns
import matplotlib.pyplot as plt
import requests
import time
from scipy import stats
import warnings
warnings.filterwarnings('ignore')
# Loading dataset
training_dataset = pd.read_excel('training_dataset.xlsx')
# If error, please get rid of folloing line: training_dataset.set_index(["Unnamed: 0"], inplace=True)
training_dataset.set_index(["Unnamed: 0"], inplace=True)
training_dataset = training_dataset.T
for i in training_dataset.columns:
if len(str(i)) == 1:
training_dataset.rename(columns={i:'00000'+str(i)}, inplace=True)
if len(str(i)) == 2:
training_dataset.rename(columns={i:'0000'+str(i)}, inplace=True)
if len(str(i)) == 3:
training_dataset.rename(columns={i:'000'+str(i)}, inplace=True)
if len(str(i)) == 4:
training_dataset.rename(columns={i:'00'+str(i)}, inplace=True)
if len(str(i)) == 5:
training_dataset.rename(columns={i:'0'+str(i)}, inplace=True)
if len(str(i)) == 6:
training_dataset.rename(columns={i:str(i)}, inplace=True)
# split the data into independent 'X' and dependent 'Y' variables
X = training_dataset.T.iloc[:, 1:106].values
Y = training_dataset.T.iloc[:, 0].values
# split the dataset into 80% training and 20% testing
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
# scale the data
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.fit_transform(X_test)
# fitting LG to the Training set
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state=0)
classifier.fit(X_train, Y_train)
print('LogisticRegression Training Accuracy(Before): ', classifier.score(X_train, Y_train))
# predicting
Y_pred = classifier.predict(X_test)
# making the confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(Y_test,Y_pred)
print('LogisticRegression Confusion Matrix (Before): ',cm)
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(Y_test,Y_pred)
print('LogisticRegression Testing Accuracy (Before): ',accuracy)
# GridSearchCV to tune
from sklearn.model_selection import GridSearchCV
C = list(np.power(10.0, np.arange(-10,10)))
# max_iter = [1, 10, 100, 500]
# class_weight = ['balanced', None]
# solver = ['liblinear','sag','lbfgs','newton-cg']
parameters = {'C':C,
# 'max_iter':max_iter,
# 'class_weight':class_weight,
# 'solver':solver
}
grid_search = GridSearchCV(estimator=classifier,
param_grid=parameters,
scoring='accuracy',
cv = 4,n_jobs = -1)
grid_search = grid_search.fit(X_train,Y_train)
accuracy_after = grid_search.best_score_
# GridSerchCV results
print('LogisticRegression Best Params: ',grid_search.best_params_)
print('LogisticRegression Training Accuracy (After): ',accuracy_after)
classifier = LogisticRegression(
# class_weight=grid_search.best_params_['class_weight'],
C=grid_search.best_params_['C'],
# max_iter=grid_search.best_params_['max_iter'],
# solver=grid_search.best_params_['solver']
)
classifier.fit(X_train,Y_train)
Y_pred = classifier.predict(X_test)
accuracy_after = accuracy_score(Y_test,Y_pred)
cm_after = confusion_matrix(Y_test,Y_pred)
print('LG Confusion Matrix (After): ',cm_after)
print('LG Testing Accuracy (After): ',accuracy_after)
# draw pic
C = list(np.power(10.0, np.arange(-10,10)))
accuracy_train = []
accuracy_test = []
for i in C:
classifier = LogisticRegression(C=i,random_state=0)
classifier.fit(X_train,Y_train)
accuracy_train.append(classifier.score(X_train, Y_train))
Y_pred = classifier.predict(X_test)
accuracy_test.append(accuracy_score(Y_test,Y_pred))
plt.figure(figsize=(6,4))
ax = plt.gca()
X_axis = C
ax.set_ylim(0.575,0.68)
ax.set_xlim(min(C),max(C),1)
plt.xticks(size=12)
plt.yticks(size=12)
plt.xlabel('parameters_C',size=16)
plt.ylabel('AUC',size=16)
x = np.arange(len(C)).tolist()
plt.semilogx(C,accuracy_train, color='black',alpha=0.8,label='AUC_train',linestyle='--')
plt.semilogx(C,accuracy_test,color='black',alpha=0.8,label='AUC_test')
plt.axvline(x = C[accuracy_test.index(max(accuracy_test))],ymin=0,ymax=max(accuracy_test),color='black',alpha=0.8,linestyle='--')
plt.scatter(x = C[accuracy_test.index(max(accuracy_test))],y=max(accuracy_test),color='red',marker='.',alpha=0.4,s=500)
plt.legend(loc='best')
plt.show()