-
Notifications
You must be signed in to change notification settings - Fork 210
/
Copy pathquantize.py
576 lines (537 loc) · 25.5 KB
/
quantize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
"""
Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
"""
import re
from dependencies import this
import torch
from torch import nn
from brevitas import nn as qnn
from brevitas.core.function_wrapper import CeilSte
from brevitas.core.function_wrapper import FloorSte
from brevitas.core.restrict_val import RoundSte
from brevitas.core.stats import NegativeMinOrZero
from brevitas.core.zero_point import ParameterFromStatsFromParameterZeroPoint
from brevitas.graph.quantize import layerwise_quantize
from brevitas.quant.base import ParameterFromRuntimeZeroPoint
from brevitas.quant.experimental.float import Fp8e4m3Act
from brevitas.quant.experimental.float import Fp8e4m3ActPerTensorFloat
from brevitas.quant.experimental.float import Fp8e4m3WeightPerChannelFloat
from brevitas.quant.experimental.float import Fp8e4m3WeightPerTensorFloat
from brevitas.quant.experimental.float_quant_fnuz import Fp8e4m3FNUZActPerTensorFloat
from brevitas.quant.experimental.float_quant_fnuz import Fp8e4m3FNUZWeightPerChannelFloat
from brevitas.quant.experimental.float_quant_fnuz import Fp8e4m3FNUZWeightPerTensorFloat
from brevitas.quant.experimental.float_quant_ocp import Fp8e4m3OCPActPerTensorFloat
from brevitas.quant.experimental.float_quant_ocp import Fp8e4m3OCPWeightPerChannelFloat
from brevitas.quant.experimental.float_quant_ocp import Fp8e4m3OCPWeightPerTensorFloat
from brevitas.quant.experimental.mx_quant_ocp import MXFloat8e4m3Act
from brevitas.quant.experimental.mx_quant_ocp import MXFloat8e4m3Weight
from brevitas.quant.experimental.mx_quant_ocp import MXFloat8e4m3WeightMSE
from brevitas.quant.experimental.mx_quant_ocp import MXInt8Act
from brevitas.quant.experimental.mx_quant_ocp import MXInt8Weight
from brevitas.quant.experimental.mx_quant_ocp import MXInt8WeightMSE
from brevitas.quant.experimental.mx_quant_ocp import ShiftedMXUInt8Weight
from brevitas.quant.experimental.mx_quant_ocp import ShiftedMXUInt8WeightMSE
from brevitas.quant.fixed_point import Int8ActPerTensorFixedPoint
from brevitas.quant.fixed_point import Int8ActPerTensorFixedPointMSE
from brevitas.quant.fixed_point import Int8WeightPerChannelFixedPoint
from brevitas.quant.fixed_point import Int8WeightPerChannelFixedPointMSE
from brevitas.quant.fixed_point import Int8WeightPerTensorFixedPoint
from brevitas.quant.fixed_point import Int8WeightPerTensorFixedPointMSE
from brevitas.quant.scaled_int import Int8ActPerTensorFloat
from brevitas.quant.scaled_int import Int8ActPerTensorFloatMSE
from brevitas.quant.scaled_int import Int8WeightPerChannelFloat
from brevitas.quant.scaled_int import Int8WeightPerChannelFloatHQO
from brevitas.quant.scaled_int import Int8WeightPerChannelFloatMSE
from brevitas.quant.scaled_int import Int8WeightPerTensorFloat
from brevitas.quant.scaled_int import Int8WeightPerTensorFloatHQO
from brevitas.quant.scaled_int import Int8WeightPerTensorFloatMSE
from brevitas.quant.shifted_scaled_int import GaussianUint8WeightPerChannelFloat
from brevitas.quant.shifted_scaled_int import ShiftedUint8ActPerTensorFloat
from brevitas.quant.shifted_scaled_int import ShiftedUint8ActPerTensorFloatMSE
from brevitas.quant.shifted_scaled_int import ShiftedUint8WeightGroupQuantFloat
from brevitas.quant.shifted_scaled_int import ShiftedUint8WeightPerChannelFloat
from brevitas.quant.shifted_scaled_int import ShiftedUint8WeightPerChannelFloatHQO
from brevitas.quant.shifted_scaled_int import ShiftedUint8WeightPerChannelFloatMSE
from brevitas.quant.shifted_scaled_int import ShiftedUint8WeightPerGroupFloatHQO
from brevitas.quant.shifted_scaled_int import ShiftedUint8WeightPerTensorFloat
from brevitas.quant.shifted_scaled_int import ShiftedUint8WeightPerTensorFloatHQO
from brevitas.quant.shifted_scaled_int import ShiftedUint8WeightPerTensorFloatMSE
from brevitas_examples.common.generative.nn import LoRACompatibleQuantConv2d
from brevitas_examples.common.generative.nn import LoRACompatibleQuantLinear
from brevitas_examples.common.generative.quantizers import Fp8e4m3DynamicActPerGroupFloat
from brevitas_examples.common.generative.quantizers import Fp8e4m3OCPDynamicActPerGroupFloat
from brevitas_examples.common.generative.quantizers import FP8e4m3OCPDynamicActPerRowFixedPoint
from brevitas_examples.common.generative.quantizers import FP8e4m3OCPDynamicActPerRowFloat
from brevitas_examples.common.generative.quantizers import Fp8e4m3OCPWeightPerChannelFixedPointMSE
from brevitas_examples.common.generative.quantizers import Fp8e4m3OCPWeightPerChannelFloatMSE
from brevitas_examples.common.generative.quantizers import Fp8e4m3OCPWeightSymmetricGroupQuant
from brevitas_examples.common.generative.quantizers import Fp8e4m3WeightSymmetricGroupQuant
from brevitas_examples.common.generative.quantizers import Int8DynamicActPerGroupFloat
from brevitas_examples.common.generative.quantizers import Int8DynamicActPerRowFixedPoint
from brevitas_examples.common.generative.quantizers import Int8DynamicActPerRowFloat
from brevitas_examples.common.generative.quantizers import Int8DynamicActPerTensorFloat
from brevitas_examples.common.generative.quantizers import IntWeightSymmetricGroupQuant
from brevitas_examples.common.generative.quantizers import RuntimeDynamicStatsZeroPoint
from brevitas_examples.common.generative.quantizers import ShiftedUint8DynamicActPerGroupFloat
from brevitas_examples.common.generative.quantizers import ShiftedUint8DynamicActPerRowFloat
from brevitas_examples.common.generative.quantizers import ShiftedUint8DynamicActPerTensorFloat
WEIGHT_QUANT_MAP = {
'int': {
'float_scale': {
'stats': {
'per_tensor': {
'sym': Int8WeightPerTensorFloat, 'asym': ShiftedUint8WeightPerTensorFloat},
'per_channel': {
'sym': Int8WeightPerChannelFloat,
'asym': ShiftedUint8WeightPerChannelFloat,
'gauss': GaussianUint8WeightPerChannelFloat},
'per_group': {
'sym': IntWeightSymmetricGroupQuant,
'asym': ShiftedUint8WeightGroupQuantFloat}},
'mse': {
'per_tensor': {
'sym': Int8WeightPerTensorFloatMSE,
'asym': ShiftedUint8WeightPerTensorFloatMSE},
'per_channel': {
'sym': Int8WeightPerChannelFloatMSE,
'asym': ShiftedUint8WeightPerChannelFloatMSE}},
'hqo': {
'per_tensor': {
'sym': Int8WeightPerTensorFloatHQO,
'asym': ShiftedUint8WeightPerTensorFloatHQO},
'per_channel': {
'sym': Int8WeightPerChannelFloatHQO,
'asym': ShiftedUint8WeightPerChannelFloatHQO},
'per_group': {
'asym': ShiftedUint8WeightPerGroupFloatHQO}},},
'po2_scale': {
'stats': {
'per_tensor': {
'sym': Int8WeightPerTensorFixedPoint},
'per_channel': {
'sym': Int8WeightPerChannelFixedPoint},
'per_group': {
'sym': MXInt8Weight, 'asym': ShiftedMXUInt8Weight}},
'mse': {
'per_tensor': {
'sym': Int8WeightPerTensorFixedPointMSE},
'per_channel': {
'sym': Int8WeightPerChannelFixedPointMSE},
'per_group': {
'sym': MXInt8WeightMSE, 'asym': ShiftedMXUInt8WeightMSE}}}},
'float': {
'float_scale': {
'stats': {
'per_tensor': {
'sym': Fp8e4m3WeightPerTensorFloat},
'per_channel': {
'sym': Fp8e4m3WeightPerChannelFloat},
'per_group': {
'sym': Fp8e4m3WeightSymmetricGroupQuant}}}},
'float_ocp': {
'float_scale': {
'stats': {
'per_tensor': {
'sym': Fp8e4m3OCPWeightPerTensorFloat},
'per_channel': {
'sym': Fp8e4m3OCPWeightPerChannelFloat},
'per_group': {
'sym': Fp8e4m3OCPWeightSymmetricGroupQuant}},
'mse': {
'per_channel': {
'sym': Fp8e4m3OCPWeightPerChannelFloatMSE}}},
'po2_scale': {
'stats': {
'per_group': {
'sym': MXFloat8e4m3Weight}},
'mse': {
'per_channel': {
'sym': Fp8e4m3OCPWeightPerChannelFixedPointMSE},
'per_group': {
'sym': MXFloat8e4m3WeightMSE}}}},
'float_fnuz': {
'float_scale': {
'stats': {
'per_tensor': {
'sym': Fp8e4m3FNUZWeightPerTensorFloat},
'per_channel': {
'sym': Fp8e4m3FNUZWeightPerChannelFloat}}}}}
INPUT_QUANT_MAP = {
'int': {
'static': {
'float_scale': {
'stats': {
'per_tensor': {
'sym': Int8ActPerTensorFloat, 'asym': ShiftedUint8ActPerTensorFloat}},
'mse': {
'per_tensor': {
'sym': Int8ActPerTensorFloatMSE,
'asym': ShiftedUint8ActPerTensorFloatMSE}}},
'po2_scale': {
'stats': {
'per_tensor': {
'sym': Int8ActPerTensorFixedPoint}},
'mse': {
'per_tensor': {
'sym': Int8ActPerTensorFixedPointMSE}}}},
'dynamic': {
'float_scale': {
'stats': {
'per_tensor': {
'sym': Int8DynamicActPerTensorFloat,
'asym': ShiftedUint8DynamicActPerTensorFloat},
'per_row': {
'sym': Int8DynamicActPerRowFloat,
'asym': ShiftedUint8DynamicActPerRowFloat},
'per_group': {
'sym': Int8DynamicActPerGroupFloat,
'asym': ShiftedUint8DynamicActPerGroupFloat}}},
'po2_scale': {
'stats': {
'per_row': {
'sym': Int8DynamicActPerRowFixedPoint,},
'per_group': {
'sym': MXInt8Act}}}}},
'float': {
'static': {
'float_scale': {
'stats': {
'per_tensor': {
'sym': Fp8e4m3ActPerTensorFloat}}}},
'dynamic': {
'float_scale': {
'stats': {
'per_group': {
'sym': Fp8e4m3DynamicActPerGroupFloat}}}},
'no_scale': {
'sym': Fp8e4m3Act,}},
'float_ocp': {
'static': {
'float_scale': {
'stats': {
'per_tensor': {
'sym': Fp8e4m3OCPActPerTensorFloat}}}},
'dynamic': {
'float_scale': {
'stats': {
'per_row': {
'sym': FP8e4m3OCPDynamicActPerRowFloat},
'per_group': {
'sym': Fp8e4m3OCPDynamicActPerGroupFloat}}},
'po2_scale': {
'stats': {
'per_row': {
'sym': FP8e4m3OCPDynamicActPerRowFixedPoint},
'per_group': {
'sym': MXFloat8e4m3Act}}}}},
'float_fnuz': {
'static': {
'float_scale': {
'stats': {
'per_tensor': {
'sym': Fp8e4m3FNUZActPerTensorFloat}}}}}}
def generate_quantizers(
dtype,
weight_bit_width,
weight_param_method,
weight_scale_precision,
weight_quant_type,
weight_quant_granularity,
weight_group_size,
quantize_weight_zero_point,
weight_quant_format='int',
weight_group_dim=None,
input_bit_width=None,
input_quant_format='',
input_scale_precision=None,
input_scale_type=None,
input_param_method=None,
input_quant_type=None,
input_quant_granularity=None,
input_group_size=None,
kv_quant_type=None,
kv_quant_granularity=None,
quantize_input_zero_point=False,
scale_rounding_func_type=None,
device=None,
weight_kwargs=None,
input_kwargs=None,
quant_attn_mode=None,
scaling_min_val=1e-4):
"""
Replace float layers with quant layers in the target model
"""
# Retrive base input and weight quantizers
# match against custom float format
if re.compile(r'e[1-8]m[1-8]').findall(weight_quant_format):
format = re.compile(r'e[1-8]m[1-8]').findall(weight_quant_format)[0]
weight_quant_format = weight_quant_format.replace('_' + format, '')
weight_float_format = {
'exponent_bit_width': int(format[1]), 'mantissa_bit_width': int(format[3])}
else:
weight_float_format = {}
if re.compile(r'e[1-8]m[1-8]').findall(input_quant_format):
format = re.compile(r'e[1-8]m[1-8]').findall(input_quant_format)[0]
input_quant_format = input_quant_format.replace('_' + format, '')
input_float_format = {
'exponent_bit_width': int(format[1]), 'mantissa_bit_width': int(format[3])}
else:
input_float_format = {}
weight_quant = WEIGHT_QUANT_MAP[weight_quant_format][weight_scale_precision][
weight_param_method][weight_quant_granularity][weight_quant_type]
if input_kwargs is None:
input_kwargs = dict()
if scale_rounding_func_type is not None:
scale_rounding_func_dict = {'ceil': CeilSte, 'floor': FloorSte, 'round': RoundSte}
scale_type = scale_rounding_func_dict[scale_rounding_func_type]
input_kwargs = {**input_kwargs, **{'restrict_value_float_to_int_impl': scale_type}}
if scaling_min_val is not None:
input_kwargs = {**input_kwargs, **{'scaling_min_val': scaling_min_val}}
if input_bit_width is not None and input_scale_type == 'no_scale':
input_quant = sym_input_quant = linear_input_quant = INPUT_QUANT_MAP[input_quant_format][
input_scale_type][input_quant_type]
elif input_bit_width is not None:
input_quant = INPUT_QUANT_MAP[input_quant_format][input_scale_type][input_scale_precision][
input_param_method][input_quant_granularity][input_quant_type]
# Some activations in MHA should always be symmetric
sym_input_quant = INPUT_QUANT_MAP[input_quant_format][input_scale_type][
input_scale_precision][input_param_method][input_quant_granularity]['sym']
linear_input_quant = INPUT_QUANT_MAP[input_quant_format][input_scale_type][
input_scale_precision][input_param_method][input_quant_granularity][input_quant_type]
if kv_quant_type is not None:
q_scaled_quant = attn_output_weights_quant = None
else:
q_scaled_quant = attn_output_weights_quant = sym_input_quant
kv_quant_type = kv_quant_type if kv_quant_type is not None else input_quant_type
kv_quant_granularity = kv_quant_granularity if kv_quant_granularity is not None else input_quant_granularity
v_quant = k_transposed_quant = INPUT_QUANT_MAP[input_quant_format][input_scale_type][
input_scale_precision][input_param_method][kv_quant_granularity][kv_quant_type]
extra_kwargs = {
'bit_width': input_bit_width,
'quantize_zero_point': quantize_input_zero_point,
'dtype': dtype,
'device': device}
input_kwargs = {**input_kwargs, **extra_kwargs, **input_float_format}
input_quant = input_quant.let(**input_kwargs)
sym_input_quant = sym_input_quant.let(**input_kwargs)
linear_input_quant = linear_input_quant.let(**input_kwargs)
v_quant = v_quant.let(**input_kwargs)
k_transposed_quant = k_transposed_quant.let(**input_kwargs)
q_scaled_quant = q_scaled_quant.let(**input_kwargs) if q_scaled_quant is not None else None
attn_output_weights_quant = attn_output_weights_quant.let(
**input_kwargs) if attn_output_weights_quant is not None else None
else:
input_quant = None
sym_input_quant = None
linear_input_quant = None
q_scaled_quant = attn_output_weights_quant = v_quant = k_transposed_quant = None
# Modify the weight quantizer based on the arguments passed in
weight_quant = weight_quant.let(
**{
'bit_width': weight_bit_width,
'narrow_range': False,
'quantize_zero_point': quantize_weight_zero_point},
**weight_float_format)
if scale_rounding_func_type is not None:
scale_rounding_func_dict = {'ceil': CeilSte, 'floor': FloorSte, 'round': RoundSte}
scale_type = scale_rounding_func_dict[scale_rounding_func_type]
weight_quant = weight_quant.let(**{'restrict_value_float_to_int_impl': scale_type})
if weight_group_dim is not None:
weight_quant = weight_quant.let(**{'group_dim': weight_group_dim})
if scaling_min_val is not None:
weight_quant = weight_quant.let(**{'scaling_min_val': scaling_min_val})
if weight_kwargs is not None:
weight_quant = weight_quant.let(**weight_kwargs)
# Set the group_size is we're doing groupwise quantization
if weight_quant_granularity == 'per_group':
weight_quant = weight_quant.let(**{'group_size': weight_group_size})
# weight scale is converted to a standalone parameter
weight_quant = weight_quant.let(scaling_impl_type='parameter_from_stats')
# weight zero-point is converted to a standalone parameter
# This is done already by default in the per_group quantizer
if weight_quant_type == 'asym' and weight_quant_granularity != 'per_group':
weight_quant = weight_quant.let(zero_point_impl=ParameterFromStatsFromParameterZeroPoint)
if quant_attn_mode == 'sdpa':
kv_permute_dims = (0, 1, 3, 2)
kv_broadcastable_shape_lambda = lambda x, shape: x.view(shape[0], 1, shape[-2], shape[-1])
elif quant_attn_mode == 'mha':
kv_permute_dims = (0, 2, 1)
kv_broadcastable_shape_lambda = lambda x, shape: x.view(shape[0], 1, shape[-1])
# Modify the input quantizers based on the arguments passed in
if input_bit_width is not None:
# Input Quant
if input_quant_granularity == 'per_row':
input_quant = input_quant.let(
**{
'dynamic_scaling_broadcastable_fn': lambda x,
shape: x.view(*shape[:-1], 1),
'permute_dims': None,
'stats_reduce_dim': 1})
elif input_quant_granularity == 'per_group':
input_quant = input_quant.let(**{'group_size': input_group_size})
# QKV/Softmax Quant
if kv_quant_granularity == 'per_row':
q_scaled_quant = q_scaled_quant.let(
**{
'dynamic_scaling_broadcastable_fn': lambda x,
shape: x.view(*shape[:-1], 1),
'permute_dims': None,
'stats_reduce_dim': 1}) if q_scaled_quant is not None else None
v_quant = v_quant.let(
**{
'dynamic_scaling_broadcastable_fn': kv_broadcastable_shape_lambda,
'permute_dims': kv_permute_dims,
'stats_reduce_dim': 1})
k_transposed_quant = k_transposed_quant.let(
**{
'dynamic_scaling_broadcastable_fn': kv_broadcastable_shape_lambda,
'permute_dims': kv_permute_dims,
'stats_reduce_dim': 1})
elif kv_quant_granularity == 'per_group':
q_scaled_quant = q_scaled_quant.let(
**{
'group_dim': -1, 'group_size': input_group_size
}) if q_scaled_quant is not None else None
v_quant = v_quant.let(**{'group_dim': -1, 'group_size': input_group_size})
k_transposed_quant = k_transposed_quant.let(
**{
'group_dim': -2, 'group_size': input_group_size})
v_quant = k_transposed_quant
attn_output_weights_quant = q_scaled_quant
# Input to Linear Layer Quant
if input_quant_granularity == 'per_row':
linear_input_quant = linear_input_quant.let(
**{
'dynamic_scaling_broadcastable_fn': lambda x,
shape: x.view(*shape[:-1], 1),
'permute_dims': None,
'stats_reduce_dim': 1})
elif input_quant_granularity == 'per_group':
linear_input_quant = linear_input_quant.let(
**{
'group_dim': -1, 'group_size': input_group_size})
return linear_input_quant, weight_quant, input_quant, q_scaled_quant, k_transposed_quant, v_quant, attn_output_weights_quant
def generate_quant_maps(
linear_input_quant,
weight_quant,
input_quant,
q_scaled_quant,
k_transposed_quant,
v_quant,
attn_output_weights_quant,
dtype,
device,
input_quant_format,
quantize_embedding):
quant_linear_kwargs = {
'input_quant': linear_input_quant,
'weight_quant': weight_quant,
'dtype': dtype,
'device': device}
quant_conv_kwargs = {
'input_quant': input_quant, 'weight_quant': weight_quant, 'dtype': dtype, 'device': device}
quant_mha_kwargs = {
'in_proj_input_quant': input_quant,
'in_proj_weight_quant': weight_quant,
'in_proj_bias_quant': None,
'softmax_input_quant': None,
'attn_output_weights_quant': attn_output_weights_quant,
'attn_output_weights_signed': 'float' in input_quant_format,
'q_scaled_quant': q_scaled_quant,
'k_transposed_quant': k_transposed_quant,
'v_quant': v_quant,
'out_proj_input_quant': input_quant,
'out_proj_weight_quant': weight_quant,
'out_proj_bias_quant': None,
'out_proj_output_quant': None,
'batch_first': True,
# activation equalization requires packed_in_proj
# since it supports only self-attention
'packed_in_proj': True,
'dtype': dtype,
'device': device}
quant_sdpa_kwargs = {
'softmax_input_quant': None,
'attn_output_weights_quant': attn_output_weights_quant,
'attn_output_weights_signed': 'float' in input_quant_format,
'q_scaled_quant': q_scaled_quant,
'k_transposed_quant': k_transposed_quant,
'v_quant': v_quant,
'attn_output_quant': None,
'dtype': dtype,
'device': device}
layer_map = {
nn.Linear: (qnn.QuantLinear, quant_linear_kwargs),
nn.Conv2d: (qnn.QuantConv2d, quant_conv_kwargs),
'diffusers.models.lora.LoRACompatibleLinear':
(LoRACompatibleQuantLinear, quant_linear_kwargs),
'diffusers.models.lora.LoRACompatibleConv': (LoRACompatibleQuantConv2d, quant_conv_kwargs),
nn.MultiheadAttention: (qnn.QuantMultiheadAttention, quant_mha_kwargs),
qnn.ScaledDotProductAttention: (qnn.QuantScaledDotProductAttention, quant_sdpa_kwargs)}
if quantize_embedding:
quant_embedding_kwargs = {'weight_quant': weight_quant, 'dtype': dtype, 'device': device}
layer_map[nn.Embedding] = (qnn.QuantEmbedding, quant_embedding_kwargs)
return layer_map
def quantize_model(
model,
dtype,
weight_bit_width,
weight_param_method,
weight_scale_precision,
weight_quant_type,
weight_quant_granularity,
weight_group_size,
quantize_weight_zero_point,
weight_quant_format='int',
name_blacklist=None,
input_bit_width=None,
input_quant_format='',
input_scale_precision=None,
input_scale_type=None,
input_param_method=None,
input_quant_type=None,
input_quant_granularity=None,
input_group_size=None,
quantize_input_zero_point=False,
quantize_embedding=False,
device=None,
weight_kwargs=None,
input_kwargs=None):
linear_input_quant, weight_quant, input_quant, q_scaled_quant, k_transposed_quant, v_quant, attn_output_weights_quant = generate_quantizers(
dtype=dtype,
weight_bit_width=weight_bit_width,
weight_param_method=weight_param_method,
weight_scale_precision=weight_scale_precision,
weight_quant_type=weight_quant_type,
weight_quant_granularity=weight_quant_granularity,
weight_group_size=weight_group_size,
quantize_weight_zero_point=quantize_weight_zero_point,
weight_quant_format=weight_quant_format,
input_bit_width=input_bit_width,
input_quant_format=input_quant_format,
input_scale_precision=input_scale_precision,
input_scale_type=input_scale_type,
input_param_method=input_param_method,
input_quant_type=input_quant_type,
input_quant_granularity=input_quant_granularity,
input_group_size=input_group_size,
quantize_input_zero_point=quantize_input_zero_point,
device=device,
weight_kwargs=weight_kwargs,
input_kwargs=input_kwargs)
layer_map = generate_quant_maps(
linear_input_quant,
weight_quant,
input_quant,
q_scaled_quant,
k_transposed_quant,
v_quant,
attn_output_weights_quant,
dtype,
device,
input_quant_format,
quantize_embedding)
model = layerwise_quantize(
model=model, compute_layer_map=layer_map, name_blacklist=name_blacklist)
return model