-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
181 lines (150 loc) · 6.24 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
from transformers import AutoTokenizer
from sklearn.metrics import f1_score, recall_score, precision_score, roc_auc_score, average_precision_score
from tqdm import tqdm
from pathlib import Path
import numpy as np
import json
import nni
import gc
from preprocessor import read_data
from model import BERT
from config import config
# set environment
torch.cuda.set_device(config['gpu_id'])
device = torch.device(f"cuda:{config['gpu_id']}" if torch.cuda.is_available() else "cpu")
torch.manual_seed(config['seed'])
# set training
def train(train_dataloader, dev_dataloader, config):
# use scaler to prevent gradient underflow when using automatic mixed precision (AMP)
scaler = torch.amp.GradScaler('cuda')
# check if num_labels is consistent
assert config['num_labels'] == train_dataloader.dataset.y.shape[1] == dev_dataloader.dataset.y.shape[1]
# get tuner parameters
tuner_params = nni.get_next_parameter()
config.update(tuner_params)
print(f'tuner_params: {tuner_params}')
# initiate tokenizer and training model
tokenizer = AutoTokenizer.from_pretrained(config['model_name'])
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(BERT(config)).to(device)
else:
model = BERT(config).to(device)
# initiate weighted loss function
total = len(train_dataloader.dataset)
weights = [0 for _ in range(config['num_labels'])]
for i in range(config['num_labels']):
count = np.sum([x[i] for x in train_dataloader.dataset.y])
weights[i] = (total - count) / count
loss_fn = torch.nn.BCEWithLogitsLoss(pos_weight=torch.Tensor(weights).to(device))
# initiate optimizer
if config['optimizer'] == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'])
elif config['optimizer'] == 'AdamW':
optimizer = torch.optim.AdamW(model.parameters(), lr=config['lr'])
else:
raise ValueError(f'Invalid optimizer name: {config["optimizer"]}')
# initiate trainer
dev_metrics = {}
best_metrics = {'f1_macro': 0.}
best_epoch = 0
best_state_dict = {}
best_dev_metrics = {}
no_improve = 0
# training loop
for epoch in range(1, config['epochs'] + 1):
model.train()
total_loss = .0
for x, y in tqdm(train_dataloader):
optimizer.zero_grad(set_to_none=True)
embeddings = tokenizer(list(x), padding=True, truncation=True, max_length=config['max_seq_len'],
return_tensors='pt')
# use automatic mixed precision (AMP) to reduce memory usage
with torch.amp.autocast('cuda'):
logits = model(**embeddings.to(device))
loss = loss_fn(logits, y.to(device))
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
'''logits = model(**embeddings.to(device))
loss = loss_fn(logits, y.to(device))
loss.backward()
optimizer.step()'''
total_loss += loss.item()
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
gc.collect()
ave_loss = total_loss / len(train_dataloader)
print(f'Epoch {epoch} loss: {ave_loss}')
dev_metrics.update(evaluate(dev_dataloader, tokenizer, model))
print(
f"""Epoch {epoch} dev
f1_macro: {dev_metrics["f1_macro"]}
recall: {dev_metrics["recall"]}
precision: {dev_metrics["precision"]}
pr_auc: {dev_metrics["pr_auc"]}
roc_auc: {dev_metrics["roc_auc"]}"""
)
nni.report_intermediate_result(dev_metrics['f1_macro'])
if dev_metrics['f1_macro'] > best_metrics['f1_macro']:
epsilon = dev_metrics['f1_macro'] - best_metrics['f1_macro']
best_metrics.update(dev_metrics)
best_epoch = epoch
best_state_dict = {
'optimizer_state_dict': optimizer.state_dict(),
'model_state_dict': model.state_dict()
}
best_dev_metrics = json.dumps(dev_metrics, indent=4)
if epsilon >= .01:
no_improve = 0
else:
no_improve += 1
# no_improve = 0
elif best_metrics['f1_macro'] != 0:
no_improve += 1
if no_improve == config['epochs_stop']:
print(f'Early stopping at epoch {epoch}.')
break
nni.report_final_result(dev_metrics['f1_macro'])
# save best model
if config['save_model']:
model_folder = Path(config['model_path'], f'seed{config["seed"]}')
Path.mkdir(model_folder, exist_ok=True, parents=True)
torch.save(best_state_dict, Path(model_folder, f'epoch{best_epoch}.pt'))
with open(Path(model_folder, f'epoch{best_epoch}_metrics.json'), 'w+') as f:
f.write(best_dev_metrics)
print(f'Epoch {best_epoch} model saved.')
return None
# set evaluator
def evaluate(dataloader, tokenizer, model):
metrics = {}
y_true = []
y_pred = []
model.eval()
with torch.no_grad():
for x, y in tqdm(dataloader):
embeddings = tokenizer(list(x), padding=True, return_tensors='pt')
with torch.amp.autocast('cuda'):
logits = model(**embeddings.to(device))
y_true.extend(y.tolist())
y_pred.extend(logits.sigmoid().round().tolist())
metrics['f1_macro'] = f1_score(y_true, y_pred, average='macro', zero_division=0)
metrics['recall'] = recall_score(y_true, y_pred, average='macro', zero_division=0)
metrics['precision'] = precision_score(y_true, y_pred, average='macro', zero_division=0)
metrics['pr_auc'] = average_precision_score(y_true, y_pred, average='macro')
metrics['roc_auc'] = roc_auc_score(y_true, y_pred, average='macro', multi_class='ovr')
return metrics
if __name__ == '__main__':
# reset environment
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
gc.collect()
# read data
train_dataloader = read_data(config, 'train')
dev_dataloader = read_data(config, 'dev')
# train model
train(train_dataloader, dev_dataloader, config)
# clean up
del train_dataloader, dev_dataloader
torch.cuda.empty_cache()
gc.collect()