Skip to content

Commit 501acea

Browse files
kim-emclaudeYaelDillies
authored
fix: remove unused arguments from theorem statements (#44)
* fix: remove unused arguments from theorem statements Remove unused arguments from: - theorem_1_2: unused Group.FG instance - theorem_1_8: unused _hK parameter - theorem_4_4: unused _hK parameter These are placeholder theorem statements with incomplete proofs. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <[email protected]> * fix --------- Co-authored-by: Claude <[email protected]> Co-authored-by: Yaël Yanis Dillies <[email protected]>
1 parent 34a573b commit 501acea

File tree

2 files changed

+3
-2
lines changed

2 files changed

+3
-2
lines changed

LeanCamCombi/GrowthInGroups/Lecture1.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,6 +44,7 @@ def HasPolynomialGrowth : Prop :=
4444
/-- **Gromov's theorem**.
4545
4646
A group has polynomial growth iff it's virtually nilpotent. -/
47+
@[nolint unusedArguments]
4748
lemma theorem_1_2 [Group.FG G] : HasPolynomialGrowth G ↔ IsVirtuallyNilpotent G := showcased
4849

4950
lemma fact_1_3 [Fintype G] (hn : X ^ n = univ) : log (card G) / log #X ≤ n := by
@@ -74,7 +75,7 @@ lemma proposition_1_7 :
7475
∃ a : Fin 10000000 → SL(2, ℝ), (X : Set SL(2, ℝ)) ⊆ ⋃ i, a i • A := showcased
7576

7677
/-- The **Breuillard-Green-Tao theorem**. -/
77-
lemma theorem_1_8 (_hK : 0 ≤ K) :
78+
lemma theorem_1_8 :
7879
∃ C > 0, ∀ {G} [Group G] [DecidableEq G] (A : Finset G) (_hA : σₘ[A] ≤ K),
7980
∃ (N : Subgroup G) (D : Subgroup N) (_hD : D.Normal),
8081
upperCentralSeries (N⧸ D) C = ⊤ ∧ ((↑) '' (D : Set N) : Set G) ⊆ (A / A) ^ 4

LeanCamCombi/GrowthInGroups/Lecture4.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ lemma corollary_4_3 (K C₀ : ℝ) :
3030
#F ≤ C ∧ A ⊆ F * Z := sorry
3131

3232
/-- The **Breuillard-Green-Tao theorem**. -/
33-
theorem theorem_4_4 (_hK : 0 ≤ K) :
33+
theorem theorem_4_4 :
3434
∃ C > 0, ∀ {G} [Group G] [DecidableEq G] (A : Set G) (_hA : IsApproximateSubgroup K A),
3535
∃ (H : Subgroup G) (N : Subgroup H) (_hD : N.Normal) (F : Finset G),
3636
upperCentralSeries (H ⧸ N) C = ⊤ ∧ ((↑) '' (N : Set H) : Set G) ⊆ (A / A) ^ 4

0 commit comments

Comments
 (0)