@@ -62,9 +62,7 @@ lemma mulStab_mul_ssubset_mulStab (hs₁ : (s ∩ a • C.mulStab).Nonempty)
6262 rw [smul_mulStab hd, smul_mulStab hc, mem_mulStab hCne, ← smul_smul,
6363 (mem_mulStab hCne).mp hy, (mem_mulStab hCne).mp hx]
6464 apply subset_trans (div_subset_div_right this) _
65- have hsing : (x * y) • C.mulStab = {x * y} * C.mulStab := by rw [singleton_mul]; rfl
66- simp_rw [hsing, singleton_mul, div_singleton, image_image, div_eq_mul_inv, mul_comm, comp_def,
67- mul_inv_cancel_right, image_id', subset_refl]
65+ simp [singleton_mul, div_eq_inv_mul, smul_smul, mul_assoc]
6866 have : (a * b) • C.mulStab = (a * c * (b * d)) • C.mulStab := by
6967 rw [smul_eq_iff_eq_inv_smul, ← smul_assoc, smul_eq_mul, mul_assoc, mul_comm c _, ← mul_assoc, ←
7068 mul_assoc, ← mul_assoc, mul_assoc _ a b, inv_mul_cancel (a * b), one_mul, ← smul_eq_mul,
@@ -302,7 +300,7 @@ theorem mul_kneser :
302300 obtain hstab | hstab := ne_or_eq (s * t).mulStab 1
303301 · have image_coe_mul :
304302 ((s * t).image (↑) : Finset (α ⧸ stabilizer α (s * t))) = s.image (↑) * t.image (↑) :=
305- sorry -- image_mul (QuotientGroup.mk' _ : α →* α ⧸ stabilizer α (s * t))
303+ image_mul (QuotientGroup.mk' _ : α →* α ⧸ stabilizer α (s * t))
306304 suffices hineq :
307305 #(s * t).mulStab *
308306 (#(s.image (↑) : Finset (α ⧸ stabilizer α (s * t))) +
@@ -390,10 +388,10 @@ theorem mul_kneser :
390388 have hbt₁ : b ∈ t₁ := mem_inter.mpr ⟨hb, mem_smul_finset.2 ⟨1 , one_mem_mulStab.2 hC, mul_one _⟩⟩
391389 have hs₁ne : s₁.Nonempty := ⟨_, has₁⟩
392390 have ht₁ne : t₁.Nonempty := ⟨_, hbt₁⟩
393- set C₁ := C ∪ s₁ * t₁ with hC₁
394- set C₂ := C ∪ s₂ * t₂ with hC₂
391+ set C₁ := C ∪ s₁ * t₁
392+ set C₂ := C ∪ s₂ * t₂
395393 set H₁ := (s₁ * t₁).mulStab with hH₁
396- set H₂ := (s₂ * t₂).mulStab with hH₂
394+ set H₂ := (s₂ * t₂).mulStab
397395 have hC₁st : C₁ ⊆ s * t := union_subset hCst (mul_subset_mul hs₁s ht₁t)
398396 have hC₂st : C₂ ⊆ s * t := union_subset hCst (mul_subset_mul hs₂s ht₂t)
399397 have hstabH₁ : s₁ * t₁ ⊆ (a * b) • H := by
0 commit comments