Skip to content

Commit f29d2a0

Browse files
committed
Bump mathlib
1 parent d35d438 commit f29d2a0

File tree

3 files changed

+4
-15
lines changed

3 files changed

+4
-15
lines changed

LeanCamCombi/Mathlib/Combinatorics/SimpleGraph/Copy.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -104,7 +104,7 @@ protected lemma IsIndContained.isContained : G₁ ⊴ G₂ → G₁ ⊑ G₂ :=
104104
protected lemma Iso.isIndContained (e : G ≃g H) : G ⊴ H := ⟨e⟩
105105
protected lemma Iso.isIndContained' (e : G ≃g H) : H ⊴ G := e.symm.isIndContained
106106

107-
protected lemma Subgraph.IsInduced'.isIndContained {G' : G.Subgraph} (hG' : G'.IsInduced') :
107+
protected lemma Subgraph.IsInduced.isIndContained {G' : G.Subgraph} (hG' : G'.IsInduced) :
108108
G'.coe ⊴ G :=
109109
⟨{ toFun := (↑)
110110
inj' := Subtype.coe_injective
@@ -120,12 +120,12 @@ lemma isIndContained_of_isEmpty [IsEmpty α] : G ⊴ H :=
120120
map_rel_iff' := fun {a} ↦ isEmptyElim a }⟩
121121

122122
lemma isIndContained_iff_exists_iso_subgraph :
123-
G ⊴ H ↔ ∃ (H' : H.Subgraph) (_e : G ≃g H'.coe), H'.IsInduced' := by
123+
G ⊴ H ↔ ∃ (H' : H.Subgraph) (_e : G ≃g H'.coe), H'.IsInduced := by
124124
constructor
125125
· rintro ⟨f⟩
126126
refine ⟨Subgraph.map f.toHom ⊤,
127127
(Subgraph.Copy.map ⟨f.toHom, f.injective⟩ _).comp Subgraph.topIso.symm, ?_⟩
128-
rintro _ _ ⟨a, -, rfl⟩ ⟨b, -, rfl⟩
128+
rintro _ ⟨a, -, rfl⟩ _ ⟨b, -, rfl⟩
129129
simp [Relation.map_apply_apply, f.injective]
130130
· rintro ⟨H', e, hH'⟩
131131
exact e.isIndContained.trans hH'.isIndContained

LeanCamCombi/Mathlib/Combinatorics/SimpleGraph/Subgraph.lean

Lines changed: 0 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -27,16 +27,5 @@ def ofLE (h : H ≤ G) : G.Subgraph where
2727
edge_vert _ := Set.mem_univ _
2828
symm := H.symm
2929

30-
open scoped Classical
31-
32-
/-- A subgraph is called an *induced subgraph* if vertices of `G'` are adjacent if they are adjacent
33-
in `G`. -/
34-
def IsInduced' (G' : Subgraph G) : Prop :=
35-
∀ ⦃v w⦄, v ∈ G'.verts → w ∈ G'.verts → G.Adj v w → G'.Adj v w
36-
37-
@[simp] protected lemma IsInduced'.adj {G' : G.Subgraph} (hG' : G'.IsInduced') {a b : G'.verts} :
38-
G'.Adj a b ↔ G.Adj a b :=
39-
⟨coe_adj_sub _ _ _, hG' a.2 b.2
40-
4130
end Subgraph
4231
end SimpleGraph

lake-manifest.json

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
"type": "git",
66
"subDir": null,
77
"scope": "",
8-
"rev": "3543cd86729039b24e8ac9551a954830f1b28053",
8+
"rev": "eab98761167237d45662033394ebd5ee28613aac",
99
"name": "mathlib",
1010
"manifestFile": "lake-manifest.json",
1111
"inputRev": null,

0 commit comments

Comments
 (0)