Skip to content

Erdős-Heilbronn conjecture #36

@YaelDillies

Description

@YaelDillies

Define
$$A \hat + B = {a + b \mid a \in A, b \in B, a \ne b}$$

For $A$ an interval in $\mathbb Z$, $|A \hat + A| = 2|A| - 3$. The Erdős-Heilbronn conjecture says this is best possible.

Let $A, B$ be sets in $\mathbb F_p$ such that $1 \le |A| < |B|$ and $|A| + |B| \le p + 2$. Then
$$|A \hat + B| \ge |A| + |B| - 2$$

This is Theorem 2.7 in the lecture notes.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    Status

    Unclaimed

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions