Skip to content

Upper bound on intersecting antichains #37

@YaelDillies

Description

@YaelDillies

Let $\mathcal A \subseteq X^{(\le \frac n2)}$ be an intersecting antichain. Then
$$\sum_{A \in \mathcal A} \binom{n - 1}{|A| - 1}^{-1} \le 1$$
In particular, $|\mathcal A| \le \binom{n - 1}{r - 1}$.

This is Theorems 1.15 and 1.16 in the lecture notes.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    Status

    Unclaimed

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions