@@ -123,7 +123,7 @@ theorem integral_cpow {r : ℂ} (h : -1 < r.re ∨ r ≠ -1 ∧ (0 : ℝ) ∉ [[
123123 refine hasDerivAt_ofReal_cpow_const' (ne_of_mem_of_not_mem hx hab) ?_
124124 contrapose! hr; rwa [add_eq_zero_iff_eq_neg]
125125 replace h : -1 < r.re := by tauto
126- suffices ∀ c : ℝ, (∫ x : ℝ in ( 0 ) ..c, (x : ℂ) ^ r) =
126+ suffices ∀ c : ℝ, (∫ x : ℝ in 0 ..c, (x : ℂ) ^ r) =
127127 (c : ℂ) ^ (r + 1 ) / (r + 1 ) - (0 : ℂ) ^ (r + 1 ) / (r + 1 ) by
128128 rw [← integral_add_adjacent_intervals (@intervalIntegrable_cpow' a 0 r h)
129129 (@intervalIntegrable_cpow' 0 b r h), integral_symm, this a, this b, Complex.zero_cpow hr]
@@ -175,7 +175,7 @@ theorem integral_pow_abs_sub_uIoc : ∫ x in Ι a b, |x - a| ^ n = |b - a| ^ (n
175175 · calc
176176 ∫ x in Ι a b, |x - a| ^ n = ∫ x in a..b, |x - a| ^ n := by
177177 rw [uIoc_of_le hab, ← integral_of_le hab]
178- _ = ∫ x in ( 0 ) ..(b - a), x ^ n := by
178+ _ = ∫ x in 0 ..(b - a), x ^ n := by
179179 simp only [integral_comp_sub_right fun x => |x| ^ n, sub_self]
180180 refine integral_congr fun x hx => congr_arg₂ Pow.pow (abs_of_nonneg <| ?_) rfl
181181 rw [uIcc_of_le (sub_nonneg.2 hab)] at hx
@@ -271,7 +271,7 @@ lemma integral_exp_mul_I_eq_sinc (r : ℝ) :
271271 ring
272272
273273/-- Helper lemma for `integral_log`: case where `a = 0` and `b` is positive. -/
274- lemma integral_log_from_zero_of_pos (ht : 0 < b) : ∫ s in ( 0 ) ..b, log s = b * log b - b := by
274+ lemma integral_log_from_zero_of_pos (ht : 0 < b) : ∫ s in 0 ..b, log s = b * log b - b := by
275275 -- Compute the integral by giving a primitive and considering it limit as x approaches 0 from the
276276 -- right. The following lines were suggested by Gareth Ma on Zulip.
277277 rw [integral_eq_sub_of_hasDerivAt_of_tendsto (f := fun x ↦ x * log x - x)
@@ -285,7 +285,7 @@ lemma integral_log_from_zero_of_pos (ht : 0 < b) : ∫ s in (0)..b, log s = b *
285285 · exact tendsto_nhdsWithin_of_tendsto_nhds (ContinuousAt.tendsto (by fun_prop))
286286
287287/-- Helper lemma for `integral_log`: case where `a = 0`. -/
288- lemma integral_log_from_zero {b : ℝ} : ∫ s in ( 0 ) ..b, log s = b * log b - b := by
288+ lemma integral_log_from_zero {b : ℝ} : ∫ s in 0 ..b, log s = b * log b - b := by
289289 rcases lt_trichotomy b 0 with h | h | h
290290 · -- If t is negative, use that log is an even function to reduce to the positive case.
291291 conv => arg 1 ; arg 1 ; intro t; rw [← log_neg_eq_log]
@@ -444,31 +444,31 @@ theorem integral_sin_sq : ∫ x in a..b, sin x ^ 2 = (sin a * cos a - sin b * co
444444 field_simp [integral_sin_pow, add_sub_assoc]
445445
446446theorem integral_sin_pow_odd :
447- (∫ x in ( 0 ) ..π, sin x ^ (2 * n + 1 )) = 2 * ∏ i ∈ range n, (2 * (i : ℝ) + 2 ) / (2 * i + 3 ) := by
447+ (∫ x in 0 ..π, sin x ^ (2 * n + 1 )) = 2 * ∏ i ∈ range n, (2 * (i : ℝ) + 2 ) / (2 * i + 3 ) := by
448448 induction' n with k ih; · norm_num
449449 rw [prod_range_succ_comm, mul_left_comm, ← ih, mul_succ, integral_sin_pow]
450450 norm_cast
451451 simp [-cast_add, field_simps]
452452
453453theorem integral_sin_pow_even :
454- (∫ x in ( 0 ) ..π, sin x ^ (2 * n)) = π * ∏ i ∈ range n, (2 * (i : ℝ) + 1 ) / (2 * i + 2 ) := by
454+ (∫ x in 0 ..π, sin x ^ (2 * n)) = π * ∏ i ∈ range n, (2 * (i : ℝ) + 1 ) / (2 * i + 2 ) := by
455455 induction' n with k ih; · simp
456456 rw [prod_range_succ_comm, mul_left_comm, ← ih, mul_succ, integral_sin_pow]
457457 norm_cast
458458 simp [-cast_add, field_simps]
459459
460- theorem integral_sin_pow_pos : 0 < ∫ x in ( 0 ) ..π, sin x ^ n := by
460+ theorem integral_sin_pow_pos : 0 < ∫ x in 0 ..π, sin x ^ n := by
461461 rcases even_or_odd' n with ⟨k, rfl | rfl⟩ <;>
462462 simp only [integral_sin_pow_even, integral_sin_pow_odd] <;>
463463 refine mul_pos (by simp [pi_pos]) (prod_pos fun n _ => div_pos ?_ ?_) <;>
464464 norm_cast <;>
465465 omega
466466
467- theorem integral_sin_pow_succ_le : (∫ x in ( 0 ) ..π, sin x ^ (n + 1 )) ≤ ∫ x in ( 0 ) ..π, sin x ^ n := by
467+ theorem integral_sin_pow_succ_le : (∫ x in 0 ..π, sin x ^ (n + 1 )) ≤ ∫ x in 0 ..π, sin x ^ n := by
468468 let H x h := pow_le_pow_of_le_one (sin_nonneg_of_mem_Icc h) (sin_le_one x) (n.le_add_right 1 )
469469 refine integral_mono_on pi_pos.le ?_ ?_ H <;> exact (continuous_sin.pow _).intervalIntegrable 0 π
470470
471- theorem integral_sin_pow_antitone : Antitone fun n : ℕ => ∫ x in ( 0 ) ..π, sin x ^ n :=
471+ theorem integral_sin_pow_antitone : Antitone fun n : ℕ => ∫ x in 0 ..π, sin x ^ n :=
472472 antitone_nat_of_succ_le integral_sin_pow_succ_le
473473
474474/-! ### Integral of `cos x ^ n` -/
0 commit comments