@@ -1359,6 +1359,13 @@ Section Univ.
13591359 apply eq0_leq0_universe.
13601360 Qed .
13611361
1362+ Lemma eq_universe_sup_mon φ u1 u1' u2 u2' : eq_universe φ u1 u1' -> eq_universe φ u2 u2' ->
1363+ eq_universe φ (Universe .sup u1 u2) (Universe .sup u1' u2').
1364+ Proof using Type .
1365+ intros H1 H2; unfold_univ_rel.
1366+ rewrite !val_sup. lia.
1367+ Qed .
1368+
13621369 Lemma leq_universe_sup_l φ u1 u2 : leq_universe φ u1 (Universe.sup u1 u2).
13631370 Proof using Type . unfold_univ_rel. rewrite val_sup; lia. Qed .
13641371
@@ -2290,6 +2297,12 @@ Tactic Notation "unfold_univ_rel" "eqn" ":"ident(H) :=
22902297
22912298Ltac cong := intuition congruence.
22922299
2300+ Lemma eq_relevance_eq {cf φ} {s s'} :
2301+ eq_sort φ s s' -> relevance_of_sort s = relevance_of_sort s'.
2302+ Proof .
2303+ now destruct s, s'.
2304+ Qed .
2305+
22932306Lemma leq_relevance_eq {cf φ} {s s'} :
22942307 leq_sort φ s s' -> relevance_of_sort s = relevance_of_sort s'.
22952308Proof .
@@ -2302,6 +2315,12 @@ Proof.
23022315 now destruct s, s'.
23032316Qed .
23042317
2318+ Lemma eq_relevance {cf φ} {s s' rel} :
2319+ eq_sort φ s s' -> isSortRel s rel -> isSortRel s' rel.
2320+ Proof .
2321+ now destruct s, s'.
2322+ Qed .
2323+
23052324Lemma leq_relevance {cf φ} {s s' rel} :
23062325 leq_sort φ s s' -> isSortRel s rel -> isSortRel s' rel.
23072326Proof .
@@ -2319,6 +2338,16 @@ Proof using Type.
23192338 now destruct s.
23202339Qed .
23212340
2341+ Lemma eq_sort_product_mon {cf} ϕ s1 s1' s2 s2' :
2342+ eq_sort ϕ s1 s1' ->
2343+ eq_sort ϕ s2 s2' ->
2344+ eq_sort ϕ (Sort.sort_of_product s1 s2) (Sort.sort_of_product s1' s2').
2345+ Proof .
2346+ destruct s2 as [| | u2], s2' as [| | u2']; cbnr; try absurd;
2347+ destruct s1 as [| | u1], s1' as [| | u1']; cbnr; try absurd; trivial.
2348+ apply eq_universe_sup_mon.
2349+ Qed .
2350+
23222351Lemma leq_sort_product_mon {cf} ϕ s1 s1' s2 s2' :
23232352 leq_sort ϕ s1 s1' ->
23242353 leq_sort ϕ s2 s2' ->
0 commit comments