-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
286 lines (265 loc) · 12 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import argparse
import json
import logging
import os
import random
import sys
import nltk
import pandas as pd
import numpy as np
from datasets import load_metric,Dataset
from utils import DataTrainingArguments, ModelArguments, load_json
from glob import glob
import torch
import transformers
from transformers.trainer_utils import is_main_process
from transformers import (BartForConditionalGeneration, BertTokenizer,
HfArgumentParser,DataCollatorForSeq2Seq,Seq2SeqTrainer,
Seq2SeqTrainingArguments)
from get_best_predict_softsize import merge_save_best_result
# Metric
# from rouge import Rouge
# rouge = Rouge()
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
while '' in preds:
idx=preds.index('')
preds[idx]= '10' #'。'
return preds, labels
def compute_metrics(eval_preds, tokenizer, data_args):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
# zay
from bleu_metric import Metric
metric = Metric(None)
metric.hyps = [pred.split() for pred in decoded_preds]
metric.refs = [[label.split()] for label in decoded_labels]
bleu_score = metric.calc_bleu_k(4)
# from utils_hw import Smoother # 来自 heywhale 的 baseline 的文件
from evaluate_hw import CiderD
# metrics_hw = Smoother(100)
res, gts = [], {}
for i, (pred, label) in enumerate(zip(decoded_preds, decoded_labels)):
res.append({'image_id':i, 'caption': [pred]})
gts[i] = [label]
CiderD_scorer = CiderD(df='corpus', sigma=15)
cider_score, cider_scores = CiderD_scorer.compute_score(gts, res)
hw_score = (cider_score*2.0 + bleu_score)/3.0
result = {"cider": cider_score, "bleu": bleu_score, "hw_score": hw_score}#metrics_hw.value()
# zay
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
result = {k: round(v, 4) for k, v in result.items()}
# zay
# print(result)
return result
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def preprocess_function(examples, tokenizer, data_args, text_column='article', summary_column='summarization', max_target_length=80, padding=False):
inputs = examples[text_column]
targets = examples[summary_column]
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
def inference(model_paths, input_data_path, output_data_path):
print('start inference...')
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..'))
parser = argparse.ArgumentParser()
print('16...')
parser.add_argument("--model_path",default=model_paths,type=str)
parser.add_argument("--lr",default=2e-5,type=float)
parser.add_argument("--batch_size",default='50',type=str)
parser.add_argument("--eval_batch_size",default='500',type=str)
parser.add_argument("--epoch",default='5',type=str)
parser.add_argument("--load_state_files",default="./data/best_model.*.bin",type=str)
parser.add_argument("--dataset", default="lcsts",type=str)
parser.add_argument("--data_dir",default="./data/contest_data/preliminary_b_test.csv",type=str)
# parser.add_argument("--output_dir",default="./data/submission",type=str)
parser.add_argument("--output_dir",default="./data",type=str)
print('11...')
#args = parser.parse_args()
#print('12...')
#arg_dict=args.__dict__
arg_dict = {"model_path":model_paths, "lr":2e-5, "batch_size":'50', "eval_batch_size":'100', "epoch":'5', "load_state_files":"./data/best_model.*.bin", "dataset":"heywhale", "data_dir":"./data/contest_data/preliminary_b_test.csv", "output_dir":"./data"}
print('13...')
logger = logging.getLogger(__name__)
print('14...')
dataset_name=arg_dict['dataset']
print('15...')
outdir = arg_dict['output_dir']
print('1...')
if not os.path.exists(arg_dict['output_dir']):
os.mkdir(arg_dict['output_dir'])
print('2...')
seed=len(os.listdir(outdir))+1
outdir=outdir+'/'+str(seed)
length_map={'lcsts':'30','csl':'50','adgen':'128', 'heywhale':'85'}
print('3...')
args=[
'--model_name_or_path',arg_dict['model_path'],
'--do_train','--do_eval','--do_predict',
'--train_file',os.path.join(arg_dict['data_dir'],'train.json'),
'--validation_file',os.path.join(arg_dict['data_dir'],'dev.json'),
'--test_file',input_data_path,#os.path.join(arg_dict['data_dir'],'test.json'),
'--output_dir',outdir,
'--per_device_train_batch_size',arg_dict['batch_size'],
'--per_device_eval_batch_size',arg_dict['eval_batch_size'],
'--overwrite_output_dir',
'--max_source_length=186',#512
'--val_max_target_length='+length_map[arg_dict['dataset']],
'--predict_with_generate=1',
'--seed',str(1000*seed),
'--num_train_epochs',arg_dict['epoch'],
'--save_strategy','no',
'--evaluation_strategy','epoch',
'--learning_rate',str(arg_dict['lr']),
# zay
## '--preprocessing_num_workers', '4',
]
print('#'*100)
print(sys.argv)
if sys.argv[0] == '':
sys.argv[0] = 'predict.py'
print(sys.argv)
print('4...')
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses(args)
##############################################################################################################################
print('5...')
set_seed(training_args.seed)
datasets={}
data_files = {}
print('6...')
testB = pd.read_csv(data_args.test_file, header=None).fillna('')
print('7...')
if len(testB.to_dict('records')[0]) == 3:#
# 原来是'diagnosis':"0 0",不在字典里,会跳过,相当于""空字符串,所以报错
js_testB = [{'report_ID':x[0], 'description':x[1], 'diagnosis':"10", 'clinical': x[2]} for x in testB.to_dict('records')]
else:
js_testB = [{'report_ID':x[0], 'description':x[1], 'diagnosis':x[2], 'clinical': x[3]} for x in testB.to_dict('records')]
testB = []
for x in js_testB:
d = dict()
d['id'] = x['report_ID']
d['article'] = x['description'].strip()
if x['clinical']:
d['article'] += ' ' + x['clinical'].strip()
d['summarization'] = x['diagnosis'].strip()
testB.append(d)
print('8...')
json.dump(testB, open('./data/test.json', 'w'))
data_files["test"] = './data/test.json'
datasets['test']= load_json(data_files["test"]) # testB #
# zay
# data_args.preprocessing_num_workers = 2
training_args.load_best_model_at_end=True
training_args.metric_for_best_model='eval_cider'
training_args.greater_is_better=True
# training_args.save_steps=500
training_args.save_strategy='epoch' #no
training_args.save_total_limit=8 #None
# training_args.resume_from_checkpoint=None
training_args.lr_scheduler_type='cosine'#linear
training_args.load_best_model_at_end=True#False
# training_args.label_smoothing_factor=0.0
# training_args.generation_max_length=None
training_args.generation_num_beams=6 #None
training_args.dataloader_num_workers=8 #0
training_args._n_gpu=1 #使用的 GPU 数量
training_args.do_train = False #取消训练
training_args.do_eval = False #取消验证
training_args.fp16 = True #半精度,可以不注释,900s基础上快40s,但score没变
column_names = datasets["test"].column_names
max_target_length = data_args.val_max_target_length
padding=False
##############################################################################################################################
tokenizer=BertTokenizer.from_pretrained(model_args.model_name_or_path)#, use_fast=True)#use_fast=True
model=BartForConditionalGeneration.from_pretrained(model_args.model_name_or_path)
model.config.max_length=data_args.val_max_target_length
# 如需半精度推理,只需要取消注释以下该行
# model.half() # 半精度
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
test_dataset = datasets["test"]
test_dataset = test_dataset.map(
lambda x: preprocess_function(x, tokenizer=tokenizer, data_args=data_args, max_target_length=max_target_length, padding=padding),
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
print('9...')
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
# train_dataset=train_dataset if training_args.do_train else None,
# eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=lambda x: compute_metrics(x, tokenizer=tokenizer, data_args=data_args) if training_args.predict_with_generate else None,
)
print('10...')
predictions, labels, metrics = trainer.predict(test_dataset, metric_key_prefix="predict")
test_preds = tokenizer.batch_decode(
predictions, skip_special_tokens=True,
)
print(metrics)
test_preds = [pred.strip() for pred in test_preds]
data = [{'id':i, 'diagnosis':s} for i, s in enumerate(test_preds)]
# 把所有 推理结果 放进 results
results = [data]
other_models = glob('./my_model/other_models/pytorch_model*.bin')
if len(other_models) > 1:
for path in other_models:
print("*"*50)
print(f"load model...{path}")
data = []
model.load_state_dict(torch.load(path))
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
# train_dataset=train_dataset if training_args.do_train else None,
# eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=lambda x: compute_metrics(x, tokenizer=tokenizer, data_args=data_args) if training_args.predict_with_generate else None,
)
print('10...')
predictions, labels, metrics = trainer.predict(test_dataset, metric_key_prefix="predict")
test_preds = tokenizer.batch_decode(
predictions, skip_special_tokens=True,
)
print(metrics)
test_preds = [pred.strip() for pred in test_preds]
data = [{'id':i, 'diagnosis':s} for i, s in enumerate(test_preds)]
results.append(data)
merge_save_best_result(results, output_data_path)
# pd.DataFrame(data).to_csv(output_data_path, index=None, header=None)
# print('10...')
if __name__ == '__main__':
inference('./my_model', './data/test.csv', './data/pred.csv')