-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.py
166 lines (122 loc) · 5.75 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
'''
Alex Gavin
Fall 2020
Implementation of flexible, fully connected neural networks
from scratch for training classifiers.
'''
import argparse
import re
import numpy as np
from sklearn.metrics import log_loss
from sklearn.preprocessing import OneHotEncoder
from DataSet import DataSet
from architectures.NN import NN
from Utils import calc_num_updates
# TODO: REMOVE ME, used for debugging Relu
np.seterr(all='raise')
# Utilities
def parse_all_args() -> argparse.Namespace:
# Parses command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("C", help="The number of classes if classification or output dimension if regression (int)",
type=int)
parser.add_argument("inputs", help="Input data (npz)")
parser.add_argument("targets", help="Target data (npz)")
parser.add_argument("-f1", type=str, help="The hidden activation function: \"relu\", \"tanh\", \"sigmoid\", or \"identity\" ("
"string) [default: \"relu\"]", default="relu")
parser.add_argument("-L", type=str, help="A comma delimited list of nunits by nlayers specifiers"
"(string) [default: \"32x1\"]", default="32x1")
parser.add_argument("-split_pctgs", type=str, help="A comma delimited list denoting train, dev, and test percentages, respectively."
"(string) [default: \"70,20,10\"]", default="70,20,10")
parser.add_argument("-lr", type=float, help="The learning rate (float) [default: 0.1]", default=0.1)
parser.add_argument("-mb", type=int,
help="The minibatch size (int) [default: 1]", default=1)
parser.add_argument("-report_freq", type=int,
help="Dev performance is reported every report_freq updates (int) [default: 1000]", default=1000)
parser.add_argument("-e", type=int,
help="The number of training epochs (int) [default: 1000]", default=1000)
return parser.parse_args()
def load_data(inputs_path: str, targets_path: str, split_pctgs: str) -> (DataSet, DataSet, DataSet):
# Convert split percentages to floats for data sampling
splits_str = re.split(",", split_pctgs)
if not splits_str:
print(f"\tError: Data splits \"{split_pctgs}\" specified incorrectly.")
exit()
splits_float = [float(split_pctg)/100 for split_pctg in splits_str]
split_sum = sum(splits_float)
if split_sum <= 0 or 1 < split_sum:
print(f"\tError: Data splits \"{split_pctgs}\" specified incorrectly.")
exit()
# Load inputs
# Load targets, convert to one hot enc
inputs = np.load(inputs_path).astype(np.float32)
int_targets = np.load(targets_path).astype(np.int64).reshape([-1, 1])
enc = OneHotEncoder(sparse=False)
targets = enc.fit_transform(int_targets)
# Generate random indices for data sampling
n, _ = inputs.shape
rand_indices = np.arange(0, n)
np.random.shuffle(rand_indices)
# Sample and initialize data
train_size = int(n * splits_float[0])
dev_size = int(n * splits_float[1])
train_indices = rand_indices[:train_size]
train_inputs = np.take(inputs, train_indices, axis=0)
train_targets = np.take(targets, train_indices, axis=0)
dev_indices = rand_indices[train_size:(train_size + dev_size)]
dev_inputs = np.take(inputs, dev_indices, axis=0)
dev_targets = np.take(targets, dev_indices, axis=0)
test_indices = rand_indices[(train_size + dev_size):]
test_inputs = np.take(inputs, test_indices, axis=0)
test_targets = np.take(targets, test_indices, axis=0)
train_data = DataSet(train_inputs, train_targets)
dev_data = DataSet(dev_inputs, dev_targets)
test_data = DataSet(test_inputs, test_targets)
return train_data, dev_data, test_data
def train(model: NN, train_data: DataSet, dev_data: DataSet,
mb: int, lr: float, epochs: int, report_freq: int):
num_train_updates = calc_num_updates(train_data.len, mb)
for epoch in range(1, epochs+1):
print(f"->\tEpoch {epoch}")
for ix in range(num_train_updates):
bottom_bound = ix * mb
upper_bound = bottom_bound + mb
X = train_data.inputs[bottom_bound:upper_bound, :].T
y = train_data.targets[bottom_bound:upper_bound, :].T
y_pred = model.forward(X) # TODO: Eval and print loss
model.backward(y, lr)
if (ix % report_freq) == 0:
dev_acc = test(model, dev_data)
print(f"{epoch:03d} -- dev acc: {100*dev_acc:0.1f}%")
print()
def test(model: NN, data: DataSet):
acc = 0.0
N = data.len
mb = 64
num_updates = calc_num_updates(data.len, mb)
for ix in range(int(data.len/mb)):
bottom_bound = ix * mb
upper_bound = bottom_bound + mb
X = data.inputs[bottom_bound:upper_bound, :].T
y = data.targets[bottom_bound:upper_bound, :].T
y_pred = model.forward(X)
# Reset data saved for backprop in forward
# Not needed for testing
model.pre_activations = []
model.post_activations = []
model.input = None
matched_outputs = np.argmax(y_pred, axis=0) == np.argmax(y, axis=0)
acc += matched_outputs.sum()
acc /= N
return acc
if __name__ == "__main__":
args = parse_all_args()
# Load data
train_data, dev_data, test_data = load_data(args.inputs, args.targets, args.split_pctgs)
# Init NN
model = NN(train_data.dim, args.L, args.C, args.f1)
# Train model
train(model, train_data, dev_data, args.mb, args.lr, args.e, args.report_freq)
# Test model
test_acc = test(model, test_data)
print(f"Model test accuracy: {100*test_acc:.1f}%")