-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtils.py
46 lines (32 loc) · 1.02 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
'''
Alex Gavin
Fall 2020
General utilities. Weight initialization, activation functions.
'''
import numpy as np
from scipy.special import expit as sigmoid
# Activation function stuff
def relu(z: np.ndarray) -> np.ndarray:
z[z < 0] = 0
return z
def relu_deriv(z: np.ndarray) -> np.ndarray:
z[z < 0] = 0
z[z >= 0] = 1
return z
def sigmoid_deriv(z: np.ndarray) -> np.ndarray:
sigmoid_output = sigmoid(z)
return sigmoid_output * (1 - sigmoid_output)
def tanh_deriv(z: np.ndarray) -> np.ndarray:
return 1 - (np.tanh(z) ** 2)
# Weight initialization
def kaiming(input_dim, output_dim):
return np.random.randn(input_dim, output_dim) * np.sqrt(2./input_dim)
# Misc
def calc_num_updates(data_size: int, mb: int) -> int:
# If num train data points not perfectly
# divisible by minibatch size, inc updates.
# Ensures final chunk of data not ignored.
num_train_updates = int(data_size / mb)
if data_size % mb != 0:
num_train_updates += 1
return num_train_updates