|
| 1 | +import LogicFormalization.Chapter2.Section4.Term |
| 2 | + |
| 3 | +inductive Formula.Atomic (L: Language) (V := ULift ℕ) |
| 4 | +| true | false |
| 5 | +| rel (R: L.ρ) (ts: Fin (arity R) → Term L V) |
| 6 | +| eq: Term L V → Term L V → Formula.Atomic L V |
| 7 | + |
| 8 | +inductive Formula (L: Language) (V := ULift ℕ) |
| 9 | +| atomic: Formula.Atomic L V → Formula L V |
| 10 | +| not: Formula L V → Formula L V |
| 11 | +| or: Formula L V → Formula L V → Formula L V |
| 12 | +| and: Formula L V → Formula L V → Formula L V |
| 13 | +| exists: V → Formula L V → Formula L V |
| 14 | +| forall: V → Formula L V → Formula L V |
| 15 | + |
| 16 | +namespace Formula |
| 17 | + |
| 18 | +universe u |
| 19 | +variable {V: Type u} {L: Language} |
| 20 | + |
| 21 | +instance : Coe (Formula.Atomic L V) (Formula L V) where |
| 22 | + coe := atomic |
| 23 | + |
| 24 | +/-! We take exercise 1 as the *definition* of subformulas. -/ |
| 25 | + |
| 26 | +def subformulas : Formula L V → Set (Formula L V) |
| 27 | +| φ@(.atomic _) => { φ } |
| 28 | +| .not φ => { .not φ } ∪ subformulas φ |
| 29 | +| .or φ ψ => { .or φ ψ } ∪ subformulas φ ∪ subformulas ψ |
| 30 | +| .and φ ψ => { .and φ ψ } ∪ subformulas φ ∪ subformulas ψ |
| 31 | +| .exists x φ => { .exists x φ } ∪ subformulas φ |
| 32 | +| .forall x φ => { .forall x φ } ∪ subformulas φ |
| 33 | + |
| 34 | +def occursFreeIn (v: V) : Formula L V → Prop := |
| 35 | + go ∅ |
| 36 | +where go (context: Set V) : Formula L V → Prop |
| 37 | +| .atomic .true | .atomic .false => False |
| 38 | +| .atomic (.eq t₁ t₂) => |
| 39 | + (Term.occursIn v t₁ ∨ Term.occursIn v t₂) ∧ v ∉ context |
| 40 | +| .atomic (.rel _ ts) => |
| 41 | + ∃ i, Term.occursIn v (ts i) ∧ v ∉ context |
| 42 | +| .and φ ψ | .or φ ψ => go context φ ∨ go context ψ |
| 43 | +| .not φ => go context φ |
| 44 | +| .forall x φ | .exists x φ => go (insert x context) φ |
| 45 | + |
| 46 | +abbrev isSentence (φ: Formula L V) := |
| 47 | + ∀ v, ¬Formula.occursFreeIn v φ |
| 48 | + |
| 49 | +end Formula |
| 50 | + |
| 51 | +@[reducible] |
| 52 | +def Sentence (L: Language) (V := ULift ℕ) := |
| 53 | + { φ : Formula L V // φ.isSentence } |
| 54 | + |
| 55 | +namespace Formula |
| 56 | + |
| 57 | +universe u |
| 58 | +variable {V: Type u} {L: Language} |
| 59 | + |
| 60 | +def AreVarsFor (x : Set V) (φ : Formula L V) := |
| 61 | + ∀ v, occursFreeIn v φ → v ∈ x |
| 62 | + |
| 63 | +def replace [DecidableEq V] (φ: Formula L V) |
| 64 | + (x: Set V) [DecidablePred (· ∈ x)] (t: x → Term L V): Formula L V := |
| 65 | + match φ with |
| 66 | + | .atomic .true | .atomic .false => φ |
| 67 | + | .atomic (.rel R ts) => .atomic (.rel R fun i => (ts i).replace x t) |
| 68 | + | .atomic (.eq t₁ t₂) => .atomic (.eq (t₁.replace x t) (t₂.replace x t)) |
| 69 | + | .and φ ψ => .and (replace φ x t) (replace ψ x t) |
| 70 | + | .or φ ψ => .or (replace φ x t) (replace ψ x t) |
| 71 | + | .not φ => .not (replace φ x t) |
| 72 | + | .forall v φ => .forall v (replace φ (x \ {v}) (fun ⟨y, hy⟩ => t ⟨y, hy.left⟩)) |
| 73 | + | .exists v φ => .exists v (replace φ (x \ {v}) (fun ⟨y, hy⟩ => t ⟨y, hy.left⟩)) |
| 74 | + |
| 75 | +/-- Lemma 2.5.1 -/ |
| 76 | +lemma isSentence_of_replace [DecidableEq V] {φ: Formula L V} |
| 77 | + {x: Set V} [DecidablePred (· ∈ x)] {t: x → Term L V} |
| 78 | + (hφ: AreVarsFor x φ) (ht: ∀ x, (t x).varFree): |
| 79 | + isSentence (replace φ x t) := by |
| 80 | + intro v hn |
| 81 | + induction φ with |
| 82 | + | atomic a => |
| 83 | + match a with |
| 84 | + | .true | .false => exact hn |
| 85 | + | .rel R ts => |
| 86 | + unfold occursFreeIn occursFreeIn.go at hn |
| 87 | + simp [replace] at hn |
| 88 | + simp [AreVarsFor, occursFreeIn, occursFreeIn.go] at hφ |
| 89 | + sorry |
| 90 | + | .eq t₁ t₂ => sorry |
| 91 | + | not φ ih => sorry |
| 92 | + | or φ ψ ih => sorry |
| 93 | + | and φ ψ ih => sorry |
| 94 | + | «forall» v' φ ih => sorry |
| 95 | + | «exists» v' φ ih => sorry |
| 96 | + |
| 97 | +end Formula |
| 98 | + |
| 99 | +namespace Language |
| 100 | + |
| 101 | +inductive OrName (ϝ C: Type*) |
| 102 | +| base: ϝ → OrName ϝ C |
| 103 | +| name: C → OrName ϝ C |
| 104 | + |
| 105 | +instance {ϝ} {C} [Arity ϝ] : Arity (OrName ϝ C) where |
| 106 | + arity |
| 107 | + | .base f => arity f |
| 108 | + | .name _ => 0 |
| 109 | + |
| 110 | +@[reducible] |
| 111 | +def withNames (L: Language) (C: Type*) : Language := |
| 112 | + { ρ := L.ρ, ϝ := OrName L.ϝ C } |
| 113 | + |
| 114 | +variable {L: Language} {C: Type*} |
| 115 | + |
| 116 | +@[simp] |
| 117 | +lemma ρ_withNames: (withNames L C).ρ = L.ρ := |
| 118 | + rfl |
| 119 | + |
| 120 | +@[simp] |
| 121 | +lemma ϝ_withNames: (withNames L C).ϝ = OrName L.ϝ C := |
| 122 | + rfl |
| 123 | + |
| 124 | +@[simp] |
| 125 | +lemma arity_OrName {ϝ: Type*} [Arity ϝ] {c: C}: arity (F := OrName ϝ C) (.name c) = 0 := |
| 126 | + rfl |
| 127 | + |
| 128 | +end Language |
| 129 | + |
| 130 | +namespace Structure |
| 131 | + |
| 132 | +def withNames {L: Language} {A: Type*} [Nonempty A] (𝒜: Structure L A) (C: Set A := .univ): |
| 133 | + Structure (L.withNames C) A where |
| 134 | + interpRel := 𝒜.interpRel |
| 135 | + interpFun |
| 136 | + | .base f => 𝒜.interpFun f |
| 137 | + | .name c => fun (_: Fin 0 → A) => c |
| 138 | + |
| 139 | + |
| 140 | +end Structure |
0 commit comments