-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
137 lines (118 loc) · 4.85 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import importlib
import numpy as np
import random, torch
from functools import reduce
from typing import Tuple, Any
from xKV.patch import KVCompress
from xKV.configurations import generate_consecutive_xKV_config
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from loguru import logger
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
# Set seed for reproducibility
def set_seed(seed=0):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def get_model_numel(model):
param_cnt = 0
for name, module in model.named_modules():
if hasattr(module, '_nelement'):
param_cnt += module._nelement()
return param_cnt
def get_model_size(model):
param_size = 0
for param in model.parameters():
param_size += param.nelement() * param.element_size()
buffer_size = 0
for buffer in model.buffers():
buffer_size += buffer.nelement() * buffer.element_size()
size_all_mb = (param_size + buffer_size) / 1024**3
return size_all_mb
def get_module_by_name(module, module_name):
names = module_name.split(sep='.')
return reduce(getattr, names, module)
def load_model_and_tokenizer(model_name_or_path, use_flash_attn2=False):
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="cuda",
#device_map="auto",
attn_implementation="flash_attention_2" if use_flash_attn2 else "sdpa",
)
model.eval()
return model, tokenizer
def apply_kv_compress_patch(model, args, verbose=True) -> Tuple[Any, KVCompress]:
logger.info("Generating the kv compress configs")
if args.customized_merge_config:
logger.info(f"Loading the customized merge config from {args.customized_merge_config}")
patch = KVCompress(yaml_path=args.customized_merge_config)
else:
logger.info("Generating the default merge config (consecutive)")
xKV_config = generate_consecutive_xKV_config(
num_layers=model.config.num_hidden_layers,
rank_k=args.rank_k,
rank_v=args.rank_v,
group_size=args.layer_group_size,
layer_merge_impl=args.layer_merge_impl,
slerp_t=args.slerp_t,
slerp_gamma=args.slerp_gamma,
merge_key=args.merge_key,
merge_value=args.merge_value,
start_layer=args.start_layer_idx,
end_layer=args.end_layer_idx if args.end_layer_idx != -1 else model.config.num_hidden_layers - 1,
)
patch = KVCompress(xKV_config=xKV_config)
logger.info("compression config: {}".format(patch.config))
logger.info("Applying the patch to the model")
model = patch(model)
return model
def add_common_args(parser: argparse.ArgumentParser):
parser.add_argument('--model_name_or_path', type=str, help='model to load')
parser.add_argument('--flash2', action='store_true', help='whether to use flash-attention2')
parser.add_argument('--xKV', action='store_true', help='whether to enable xKV patch')
# online svd options
# SVD-related parameters
parser.add_argument("--rank_k", type=int, default=256, help="Rank for SVD compression of keys")
parser.add_argument("--rank_v", type=int, default=768, help="Rank for SVD compression of values")
parser.add_argument(
'--layer_group_size',
type=int,
default=1,
help='The number of layers that will be grouped and decompose jointly'
)
parser.add_argument(
'--layer_merge_impl',
type=str,
default='svd',
help='The implementation for layer merge'
)
parser.add_argument(
'--slerp_t',
type=float,
default=0.5,
help='The interpolation ratio for SLERP'
)
parser.add_argument(
'--slerp_gamma',
type=float,
default=0.05,
help='The gamma for identifying divergent token in SLERP',
)
# Merge control
parser.add_argument("--merge_key", action="store_true", help="Enable merging for keys")
parser.add_argument("--merge_value", action="store_true", help="Enable merging for values")
parser.add_argument("--start_layer_idx", type=int, default=0, help="The starting layer index for layer merging")
parser.add_argument("--end_layer_idx", type=int, default=-1, help="The ending layer index for layer merging. If -1, it will be the last layer.")
parser.add_argument('--customized_merge_config', type=str, help='custom config file')
return parser