Skip to content

Commit 330a587

Browse files
Azax4mjpost
andauthored
Disambiguate Kun Zhange (#4936)
Co-authored-by: Matt Post <[email protected]>
1 parent ace5e84 commit 330a587

8 files changed

+20
-8
lines changed

data/xml/2022.coling.xml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7016,7 +7016,7 @@
70167016
</paper>
70177017
<paper id="533">
70187018
<title>Meta-<fixed-case>CQG</fixed-case>: A Meta-Learning Framework for Complex Question Generation over Knowledge Bases</title>
7019-
<author><first>Kun</first><last>Zhang</last></author>
7019+
<author id="kun-zhang-ucas"><first>Kun</first><last>Zhang</last></author>
70207020
<author><first>Yunqi</first><last>Qiu</last></author>
70217021
<author><first>Yuanzhuo</first><last>Wang</last></author>
70227022
<author><first>Long</first><last>Bai</last></author>

data/xml/2022.emnlp.xml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11009,7 +11009,7 @@
1100911009
<title><fixed-case>C</fixed-case>ausal<fixed-case>NLP</fixed-case> Tutorial: An Introduction to Causality for Natural Language Processing</title>
1101011010
<author><first>Zhijing</first><last>Jin</last></author>
1101111011
<author><first>Amir</first><last>Feder</last></author>
11012-
<author><first>Kun</first><last>Zhang</last></author>
11012+
<author id="kun-zhang"><first>Kun</first><last>Zhang</last></author>
1101311013
<pages>17-22</pages>
1101411014
<abstract>Causal inference is becoming an increasingly important topic in deep learning, with the potential to help with critical deep learning problems such as model robustness, interpretability, and fairness. In addition, causality is naturally widely used in various disciplines of science, to discover causal relationships among variables and estimate causal effects of interest. In this tutorial, we introduce the fundamentals of causal discovery and causal effect estimation to the natural language processing (NLP) audience, provide an overview of causal perspectives to NLP problems, and aim to inspire novel approaches to NLP further. This tutorial is inclusive to a variety of audiences and is expected to facilitate the community’s developments in formulating and addressing new, important NLP problems in light of emerging causal principles and methodologies.</abstract>
1101511015
<url hash="ae117c13">2022.emnlp-tutorials.4</url>

data/xml/2022.findings.xml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4472,7 +4472,7 @@
44724472
<paper id="285">
44734473
<title>Incorporating Dynamic Semantics into Pre-Trained Language Model for Aspect-based Sentiment Analysis</title>
44744474
<author><first>Kai</first><last>Zhang</last></author>
4475-
<author><first>Kun</first><last>Zhang</last></author>
4475+
<author id="kun-zhang"><first>Kun</first><last>Zhang</last></author>
44764476
<author><first>Mengdi</first><last>Zhang</last></author>
44774477
<author><first>Hongke</first><last>Zhao</last></author>
44784478
<author><first>Qi</first><last>Liu</last></author>

data/xml/2023.acl.xml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12781,7 +12781,7 @@
1278112781
<author><first>Kun</first><last>Huang</last><affiliation>Nanjing University of Science and Technology</affiliation></author>
1278212782
<author><first>Xiaocui</first><last>Yang</last><affiliation>School of Computer Science and Engineering, Northeastern University,</affiliation></author>
1278312783
<author><first>Pengfei</first><last>Hong</last><affiliation>Singapore University of Technology and Design</affiliation></author>
12784-
<author><first>Kun</first><last>Zhang</last><affiliation>Nanjing University of Science and Technology</affiliation></author>
12784+
<author id="kun-zhang"><first>Kun</first><last>Zhang</last><affiliation>Nanjing University of Science and Technology</affiliation></author>
1278512785
<author><first>Soujanya</first><last>Poria</last><affiliation>Singapore University of Technology and Design</affiliation></author>
1278612786
<pages>15960-15973</pages>
1278712787
<abstract>Document-level relation extraction (DocRE) aims to infer complex semantic relations among entities in a document. Distant supervision (DS) is able to generate massive auto-labeled data, which can improve DocRE performance. Recent works leverage pseudo labels generated by the pre-denoising model to reduce noise in DS data. However, unreliable pseudo labels bring new noise, e.g., adding false pseudo labels and losing correct DS labels. Therefore, how to select effective pseudo labels to denoise DS data is still a challenge in document-level distant relation extraction. To tackle this issue, we introduce uncertainty estimation technology to determine whether pseudo labels can be trusted. In this work, we propose a Document-level distant Relation Extraction framework with Uncertainty Guided label denoising, UGDRE. Specifically, we propose a novel instance-level uncertainty estimation method, which measures the reliability of the pseudo labels with overlapping relations. By further considering the long-tail problem, we design dynamic uncertainty thresholds for different types of relations to filter high-uncertainty pseudo labels. We conduct experiments on two public datasets. Our framework outperforms strong baselines by 1.91 F1 and 2.28 Ign F1 on the RE-DocRED dataset.</abstract>

data/xml/2023.findings.xml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -15270,7 +15270,7 @@
1527015270
</paper>
1527115271
<paper id="48">
1527215272
<title><fixed-case>R</fixed-case>e<fixed-case>FSQL</fixed-case>: A Retrieval-Augmentation Framework for Text-to-<fixed-case>SQL</fixed-case> Generation</title>
15273-
<author><first>Kun</first><last>Zhang</last></author>
15273+
<author id="kun-zhang-ucas"><first>Kun</first><last>Zhang</last></author>
1527415274
<author><first>Xiexiong</first><last>Lin</last></author>
1527515275
<author><first>Yuanzhuo</first><last>Wang</last></author>
1527615276
<author><first>Xin</first><last>Zhang</last></author>
@@ -23331,7 +23331,7 @@
2333123331
</paper>
2333223332
<paper id="672">
2333323333
<title><fixed-case>F</fixed-case>act<fixed-case>S</fixed-case>potter: Evaluating the Factual Faithfulness of Graph-to-Text Generation</title>
23334-
<author><first>Kun</first><last>Zhang</last></author>
23334+
<author id="kun-zhang-inria"><first>Kun</first><last>Zhang</last></author>
2333523335
<author><first>Oana</first><last>Balalau</last></author>
2333623336
<author><first>Ioana</first><last>Manolescu</last></author>
2333723337
<pages>10025-10042</pages>

data/xml/2024.lrec.xml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17745,7 +17745,7 @@
1774517745
<title>Visual-Linguistic Dependency Encoding for Image-Text Retrieval</title>
1774617746
<author><first>Wenxin</first><last>Guo</last></author>
1774717747
<author><first>Lei</first><last>Zhang</last></author>
17748-
<author><first>Kun</first><last>Zhang</last></author>
17748+
<author id="kun-zhang-ustc"><first>Kun</first><last>Zhang</last></author>
1774917749
<author><first>Yi</first><last>Liu</last></author>
1775017750
<author><first>Zhendong</first><last>Mao</last></author>
1775117751
<pages>17384–17396</pages>

data/xml/P19.xml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -480,7 +480,7 @@
480480
<author><first>Mingxiao</first><last>An</last></author>
481481
<author><first>Fangzhao</first><last>Wu</last></author>
482482
<author><first>Chuhan</first><last>Wu</last></author>
483-
<author><first>Kun</first><last>Zhang</last></author>
483+
<author id="kun-zhang-ustc"><first>Kun</first><last>Zhang</last></author>
484484
<author><first>Zheng</first><last>Liu</last></author>
485485
<author><first>Xing</first><last>Xie</last></author>
486486
<pages>336–345</pages>

data/yaml/name_variants.yaml

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10727,6 +10727,18 @@
1072710727
id: r-thomas-mccoy
1072810728
variants:
1072910729
- {first: Tom, last: McCoy}
10730+
- canonical: {first: Kun, last: Zhang}
10731+
comment: University of Science and Technology of China
10732+
id: kun-zhang-ustc
10733+
- canonical: {first: Kun, last: Zhang}
10734+
comment: Inria Saclay-Île-de-France
10735+
id: kun-zhang-inria
10736+
- canonical: {first: Kun, last: Zhang}
10737+
comment: University of Chinese Academy of Sciences
10738+
id: kun-zhang-ucas
10739+
- canonical: {first: Kun, last: Zhang}
10740+
comment: May refer to multiple people
10741+
id: kun-zhang
1073010742
- canonical: {first: Xuan Long, last: Do}
1073110743
variants:
1073210744
- {first: Do Xuan, last: Long}

0 commit comments

Comments
 (0)