Skip to content

Commit b1a6b11

Browse files
committed
tests locally working
1 parent 1c6936d commit b1a6b11

File tree

7 files changed

+22
-30
lines changed

7 files changed

+22
-30
lines changed

Project.toml

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -22,17 +22,14 @@ SoleModels = "4249d9c7-3290-4ddd-961c-e1d3ec2467f8"
2222
SolePostHoc = "cf1aa0c3-12c9-4ebe-9bdc-bd6c2ca79b72"
2323
XGBoost = "009559a3-9522-5dbb-924b-0b6ed2b22bb9"
2424

25-
[sources]
26-
SolePostHoc = {rev = "devPaso", url = "https://github.com/aclai-lab/SolePostHoc.jl"}
27-
2825
[compat]
29-
CategoricalArrays = "1"
26+
CategoricalArrays = "0.10 - 1"
3027
DataFrames = "1"
3128
DataTreatments = "0.2"
3229
DimensionalData = "0.29"
3330
Imbalance = "0.1"
3431
JLD2 = "0.6"
35-
MLJ = "0.22"
32+
MLJ = "0.20 - 0.22"
3633
MLJDecisionTreeInterface = "0.4"
3734
MLJParticleSwarmOptimization = "0.1"
3835
MLJXGBoostInterface = "0.3"

TODO.md

Lines changed: 0 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -66,13 +66,6 @@ rivederne la propagazione: ad oggi non è ancora formalmente testata
6666
# ---------------------------------------------------------------------------- #
6767
Bisogna pensare anche ai modelli non supervisionati: apply(m, X)
6868

69-
# ---------------------------------------------------------------------------- #
70-
# timeout #
71-
# ---------------------------------------------------------------------------- #
72-
l'algoritmo è pronto, sia il mio che quello mio di perry
73-
il più performante vince
74-
ma lo sviluppo sarà su un altra repo.
75-
7669
# ---------------------------------------------------------------------------- #
7770
# multi thread #
7871
# ---------------------------------------------------------------------------- #

docs/src/index.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -15,8 +15,8 @@ Key features:
1515
* Works also on time-series based datasets using modal logic.
1616
* View rules and their metrics.
1717
* Inspect logical formulas and their evaluation.
18-
* View modal rule associations.
19-
* Integrated GUI.
18+
<!-- * View modal rule associations. -->
19+
<!-- * Integrated GUI. -->
2020

2121
## Installation
2222
```julia
@@ -78,7 +78,7 @@ SoleXplorer extensively uses the following packages:
7878
* [`SoleLogics`](https://github.com/aclai-lab/SoleLogics.jl): modal and temporal logic systems.
7979
* [`MLJ`](https://github.com/JuliaAI/MLJ.jl): provides all machine learning frameworks.
8080
* [`SolePostHoc`](https://github.com/aclai-lab/SolePostHoc.jl): for rule extraction.
81-
* [`ModalAssociationRules`](https://github.com/aclai-lab/ModalAssociationRules.jl): for mining association rules.
81+
<!-- * [`ModalAssociationRules`](https://github.com/aclai-lab/ModalAssociationRules.jl): for mining association rules. -->
8282

8383
## About
8484
The package is developed by the [ACLAI Lab](https://aclai.unife.it/en/) @ University of Ferrara.

docs/src/symbolic_analysis.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ ModelSet
2020
dsetup(m::ModelSet)
2121
solemodels(m::ModelSet)
2222
rules(m::ModelSet)
23-
associations(m::ModelSet)
23+
<!-- associations(m::ModelSet) -->
2424
performance(m::ModelSet)
2525
```
2626

docs/src/treatement.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ With multidimensional datasets there are two possible types of work:
1818
treatment(X::AbstractDataFrame, treat::Symbol)
1919
```
2020

21-
Windowing strategies availables for reduce/aggregation time-series datasets.
21+
<!-- Windowing strategies availables for reduce/aggregation time-series datasets.
2222
2323
```@docs
2424
MovingWindow
@@ -27,21 +27,21 @@ SplitWindow
2727
adaptivewindow
2828
AbstractWinFunction
2929
WinFunction
30-
```
30+
``` -->
3131

3232
# [Featuresets](@id featuresets)
3333

3434
### Basic Statistics
3535
Standard statistical measures: `maximum`, `minimum`, `mean`, `median`, `std`, `cov`
3636

37-
### Catch22 Features
37+
<!-- ### Catch22 Features
3838
Canonical time-series characteristics covering:
3939
- Distribution properties and extreme events
4040
- Linear and nonlinear autocorrelation structures
4141
- Forecasting performance and scaling properties
42-
- Symbolic dynamics and transition patterns
42+
- Symbolic dynamics and transition patterns -->
4343

44-
### Predefined Feature Sets
44+
<!-- ### Predefined Feature Sets
4545
4646
- [`base_set`](@ref): Minimal statistical features (4 features)
4747
- [`catch9`](@ref): Curated subset combining statistics + key Catch22 (9 features)
@@ -52,20 +52,20 @@ Canonical time-series characteristics covering:
5252
5353
The Catch22 features are based on the Canonical Time-series Characteristics:
5454
- **Repository**: https://github.com/DynamicsAndNeuralSystems/catch22
55-
- **Paper**: Lubba, C.H., Sethi, S.S., Knaute, P. et al. "catch22: CAnonical Time-series CHaracteristics." *Data Min Knowl Disc* 33, 1821–1852 (2019). https://doi.org/10.1007/s10618-019-00647-x
55+
- **Paper**: Lubba, C.H., Sethi, S.S., Knaute, P. et al. "catch22: CAnonical Time-series CHaracteristics." *Data Min Knowl Disc* 33, 1821–1852 (2019). https://doi.org/10.1007/s10618-019-00647-x -->
5656

57-
```@docs
57+
<!-- ```@docs
5858
base_set
5959
catch9
6060
catch22_set
6161
complete_set
62-
```
62+
``` -->
6363

6464
See also: [`treatment`](@ref), [`setup_dataset`](@ref)
6565

6666
## All Catch22 Features
6767

68-
```@docs
68+
<!-- ```@docs
6969
mode_5
7070
mode_10
7171
embedding_dist
@@ -88,4 +88,4 @@ low_freq_power
8888
centroid_freq
8989
transition_variance
9090
periodicity
91-
```
91+
``` -->

src/extractrules.jl

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -31,12 +31,13 @@ function extractrules(
3131
X_test, y_test = get_X(ds, :test)[i], get_y(ds, :test)[i]
3232
RuleExtraction.modalextractrules(
3333
extractor,
34+
model,
3435
scalarlogiset(X_test; allow_propositional = true),
35-
y_test,
36-
model
36+
y_test
3737
)
3838
end
3939
end
40+
# TODO swap model and y_test as soon as we introduce new algo in PostHoc
4041

4142
# ---------------------------------------------------------------------------- #
4243
# LumenRuleExtractor #
@@ -108,7 +109,8 @@ function extractrules(
108109
solem :: Vector{AbstractModel}
109110
)::Vector{DecisionSet}
110111
map(enumerate(solem)) do (i, model)
111-
X_test = get_X(ds, :test)[i]
112+
X_test = DataFrame(get_X(ds, :test)[i])
112113
RuleExtraction.modalextractrules(extractor, model, X_test; params...)
113114
end
114115
end
116+
# TODO open a PR to let Trepan accepts AbstractDataFrame

test/robustness.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ using SoleXplorer
33
const SX = SoleXplorer
44

55
using MLJ, DataFrames, Random
6-
using JLD2
6+
using CategoricalArrays, JLD2
77

88
Xc, yc = @load_iris
99
Xc = DataFrame(Xc)

0 commit comments

Comments
 (0)