|
1 |
| -import pytest |
2 |
| -from langchain_deeplake import DeeplakeVectorStore |
3 | 1 | from langchain_community.embeddings import FakeEmbeddings
|
4 |
| -import requests |
| 2 | +from langchain_core.documents import Document |
| 3 | +from langchain_deeplake import DeeplakeVectorStore |
| 4 | +import pytest |
5 | 5 | import re
|
| 6 | +import requests |
6 | 7 |
|
7 | 8 |
|
8 | 9 | def test_vectorstore_creation():
|
@@ -39,8 +40,24 @@ def download_and_chunk_text():
|
39 | 40 | vectorstore = DeeplakeVectorStore.from_texts(
|
40 | 41 | dataset_path="mem://test_search",
|
41 | 42 | texts=texts,
|
42 |
| - embedding=FakeEmbeddings(size=384, seed=42), |
| 43 | + embedding=FakeEmbeddings(size=384), |
43 | 44 | )
|
44 | 45 | assert len(vectorstore) == len(texts)
|
45 |
| - results = vectorstore.similarity_search("how we think", top_k=5) |
| 46 | + results = vectorstore.similarity_search("how we think", k=5) |
| 47 | + assert len(results) == 5 |
| 48 | + |
| 49 | + vectorstore = DeeplakeVectorStore("mem://test_search_2", embedding_function=FakeEmbeddings(size=384)) |
| 50 | + ids = vectorstore.add_texts(texts) |
| 51 | + assert len(ids) == len(texts) |
| 52 | + results = vectorstore.similarity_search("how we think", k=5) |
| 53 | + assert len(results) == 5 |
| 54 | + vectorstore.delete(ids) |
| 55 | + assert len(vectorstore) == 0 |
| 56 | + results = vectorstore.similarity_search("how we think", k=5) |
| 57 | + assert len(results) == 0 |
| 58 | + |
| 59 | + docs = [Document(page_content=content) for content in texts] |
| 60 | + vectorstore.add_documents(docs) |
| 61 | + assert len(vectorstore) == len(texts) |
| 62 | + results = vectorstore.similarity_search("how we think", k=5) |
46 | 63 | assert len(results) == 5
|
0 commit comments