-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathm_d_nucleus.c
170 lines (140 loc) · 4.35 KB
/
m_d_nucleus.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*
mandelbrot-numerics -- numerical algorithms related to the Mandelbrot set
Copyright (C) 2015-2018 Claude Heiland-Allen
License GPL3+ http://www.gnu.org/licenses/gpl.html
gcc m_d_nucleus.c -lm -Wall -Wextra
./a.out
*/
#include <stdio.h>
#include <complex.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
const double pi = 3.141592653589793;
const double twopi = 6.283185307179586;
//
const double epsilon = 4.440892098500626e-16;
// epsilon^2
static const double epsilon2 = 1.9721522630525295e-31;
enum m_newton { m_failed, m_stepped, m_converged };
typedef enum m_newton m_newton;
int sgn(double z) {
if (z > 0) { return 1; }
if (z < 0) { return -1; }
return 0;
}
bool odd(int a) {
return a & 1;
}
double cabs2(double _Complex z) {
return creal(z) * creal(z) + cimag(z) * cimag(z);
}
bool cisfinite(double _Complex z) {
return isfinite(creal(z)) && isfinite(cimag(z));
}
// ******************************************************************************************
// **************************** Naive ****************************************************************
// *****************************************************************************************
m_newton m_d_nucleus_naive_step(double _Complex *c_out, double _Complex c_guess, int period) {
double _Complex z = 0;
double _Complex dc = 0;
for (int i = 0; i < period; ++i) {
dc = 2 * z * dc + 1;
z = z * z + c_guess;
}
#if 0
if (cabs2(dc) <= epsilon2) {
*c_out = c_guess;
return m_converged;
}
#endif
double _Complex c_new = c_guess - z / dc;
double _Complex d = c_new - c_guess;
if (cabs2(d) <= epsilon2) {
*c_out = c_new;
return m_converged;
}
if (cisfinite(d)) {
*c_out = c_new;
return m_stepped;
} else {
*c_out = c_guess;
return m_failed;
}
}
m_newton m_d_nucleus_naive(double _Complex *c_out, double _Complex c_guess, int period, int maxsteps) {
m_newton result = m_failed;
double _Complex c = c_guess;
for (int i = 0; i < maxsteps; ++i) {
if (m_stepped != (result = m_d_nucleus_naive_step(&c, c, period))) {
break;
}
}
*c_out = c;
return result;
}
// ******************************************************************************************
// ********************************************************************************************
// *****************************************************************************************
m_newton m_d_nucleus_step(double _Complex *c_out, double _Complex c_guess, int period) {
double _Complex z = 0;
double _Complex dc = 0;
double _Complex h = 1;
double _Complex dh = 0;
for (int i = 1; i <= period; ++i) {
dc = 2 * z * dc + 1;
z = z * z + c_guess;
// reject lower periods
if (i < period && period % i == 0)
{
h = h * z;
dh = dh + dc / z;
}
}
// build function
dh = dh * h;
double _Complex g = z;
double _Complex dg = dc;
double _Complex f = g / h;
double _Complex df = (dg * h - g * dh) / (h * h);
// newton step
double _Complex c_new = c_guess - f / df;
// check convergence
double _Complex d = c_new - c_guess;
if (cabs2(d) <= epsilon2) {
*c_out = c_new;
return m_converged;
}
if (cisfinite(d)) {
*c_out = c_new;
return m_stepped;
} else {
*c_out = c_guess;
return m_failed;
}
}
m_newton m_d_nucleus(double _Complex *c_out, double _Complex c_guess, int period, int maxsteps) {
m_newton result = m_failed;
double _Complex c = c_guess;
for (int i = 0; i < maxsteps; ++i) {
if (m_stepped != (result = m_d_nucleus_step(&c, c, period))) {
break;
}
}
*c_out = c;
return result;
}
// ******************************************************************************************
// ************************ Main ********************************************************************
// *****************************************************************************************
int main(void){
int period = 1;
double _Complex c0 = 0.0; // A reasonable starting guess for Newton's method is within the atom domain of the component.
double complex nucleus; // output
m_newton result = m_d_nucleus( &nucleus, c0, period, 100);
if (result == m_converged )
{ fprintf(stdout, "nucleus = %.16f %+.16f period = %d\n ", creal(nucleus), cimag(nucleus), period); }
else {fprintf(stdout, "Newton method failed = %d\n ", result);}
return 0;
}