-
Notifications
You must be signed in to change notification settings - Fork 41
Open
Description
Our project has gotten bigger and now supports different experimental settings, but the directory layout is inconsistently structured in places:
capymoa.datasets
capymoa.datasets.ocl
capymoa.evaluation.ocl
capymoa.ocl
capymoa.classifier
capymoa.regressor
capymoa.ssl.classifier
capymoa.drift.detectors
capymoa.drift.eval_detector
I propose a consistent layout capymoa.{ocl,ssl,drift,anomaly,classifier,regressor}.{__init__,datasets,base,evaluation}
capymoa.*.__init__.pywould contain learner classes. For example:
from capymoa.classifier import AdaptiveRandomForestClassifiercapymoa.*.evaluationwould contain evaluation functions and classes. For example:
from capymoa.classifier.evaluation import prequential_evaluationcapymoa.*.datasetswould contain classification datasets. For example:
from capymoa.classifier.datasets import ElectricityTinycapymoa.*.basewould contain base classes of the experimental setting. For example:
from capymoa.classifier.base import Classifierfrom capymoa.classifier import AdaptiveRandomForestClassifier
from capymoa.classifier.datasets import ElectricityTiny
from capymoa.classifier.evaluation import prequential_evaluation
stream = ElectricityTiny()
learner = AdaptiveRandomForestClassifier()
prequential_evaluation(stream, learner)Common classes and functions would be moved to capymoa.core.{instance,stream} module.
Any thoughts?
Metadata
Metadata
Assignees
Labels
No labels