|
| 1 | +# Density Estimation of Moon Data. This exampled is adapted from "In Depth: Gaussian Mixture Models" chapter of |
| 2 | +# the Python Data Science Handbook by Jake VanderPlas. The original code can be found |
| 3 | +# at https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html |
| 4 | + |
| 5 | +import matplotlib.pyplot as plt |
| 6 | +import numpy as np |
| 7 | +from matplotlib.patches import Ellipse |
| 8 | +from sklearn.datasets import make_moons |
| 9 | + |
| 10 | +from gmmx import EMFitter, GaussianMixtureModelJax |
| 11 | + |
| 12 | + |
| 13 | +def draw_ellipse(position, covariance, ax=None, **kwargs): |
| 14 | + """Draw an ellipse with a given position and covariance""" |
| 15 | + ax = ax or plt.gca() |
| 16 | + |
| 17 | + # Convert covariance to principal axes |
| 18 | + if covariance.shape == (2, 2): |
| 19 | + U, s, Vt = np.linalg.svd(covariance) |
| 20 | + angle = np.degrees(np.arctan2(U[1, 0], U[0, 0])) |
| 21 | + width, height = 2 * np.sqrt(s) |
| 22 | + else: |
| 23 | + angle = 0 |
| 24 | + width, height = 2 * np.sqrt(covariance) |
| 25 | + |
| 26 | + # Draw the Ellipse |
| 27 | + for nsig in range(1, 4): |
| 28 | + ax.add_patch( |
| 29 | + Ellipse( |
| 30 | + xy=position, |
| 31 | + width=nsig * width, |
| 32 | + height=nsig * height, |
| 33 | + angle=angle, |
| 34 | + **kwargs, |
| 35 | + ) |
| 36 | + ) |
| 37 | + |
| 38 | + |
| 39 | +def plot_gmm(gmm, X, label=True, ax=None): |
| 40 | + """Plot the GMM""" |
| 41 | + ax = ax or plt.gca() |
| 42 | + |
| 43 | + labels = gmm.predict(X) |
| 44 | + |
| 45 | + if label: |
| 46 | + ax.scatter(X[:, 0], X[:, 1], c=labels, s=10, cmap="viridis", zorder=2) |
| 47 | + else: |
| 48 | + ax.scatter(X[:, 0], X[:, 1], s=10, zorder=2) |
| 49 | + ax.axis("equal") |
| 50 | + |
| 51 | + w_factor = 0.2 / gmm.weights_numpy.max() |
| 52 | + for pos, covar, w in zip( |
| 53 | + gmm.means_numpy, gmm.covariances.values_numpy, gmm.weights_numpy |
| 54 | + ): |
| 55 | + draw_ellipse(pos, covar, alpha=w * w_factor, ax=ax) |
| 56 | + |
| 57 | + |
| 58 | +def fit_and_plot_gmm(n_components, ax=None): |
| 59 | + """Fit and plot a GMM""" |
| 60 | + ax = ax or plt.gca() |
| 61 | + x, y = make_moons(200, noise=0.05, random_state=0) |
| 62 | + ax.scatter(x[:, 0], x[:, 1]) |
| 63 | + ax.text( |
| 64 | + 0.95, |
| 65 | + 0.9, |
| 66 | + f"N Components: {n_components}", |
| 67 | + ha="right", |
| 68 | + va="bottom", |
| 69 | + transform=ax.transAxes, |
| 70 | + ) |
| 71 | + ax.set_xticks([]) |
| 72 | + ax.set_yticks([]) |
| 73 | + |
| 74 | + gmm = GaussianMixtureModelJax.from_k_means(x, n_components=n_components) |
| 75 | + |
| 76 | + fitter = EMFitter(tol=1e-4, max_iter=100) |
| 77 | + result = fitter.fit(x=x, gmm=gmm) |
| 78 | + |
| 79 | + plot_gmm(result.gmm, x, ax=ax) |
| 80 | + return ax |
| 81 | + |
| 82 | + |
| 83 | +if __name__ == "__main__": |
| 84 | + fig, axes = plt.subplots(4, 4, figsize=(9, 9)) |
| 85 | + |
| 86 | + for idx, ax in enumerate(axes.flat): |
| 87 | + ax = fit_and_plot_gmm(idx + 1, ax=ax) |
| 88 | + |
| 89 | + plt.tight_layout() |
| 90 | + plt.show() |
0 commit comments