-
Notifications
You must be signed in to change notification settings - Fork 208
/
Copy path_weasel.py
373 lines (329 loc) · 13.4 KB
/
_weasel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
"""WEASEL classifier.
Dictionary based classifier based on SFA transform, BOSS and linear regression.
"""
__maintainer__ = []
__all__ = ["WEASEL"]
import math
import numpy as np
from joblib import Parallel, delayed
from numba import set_num_threads
from scipy.sparse import hstack
from sklearn.linear_model import LogisticRegression, RidgeClassifierCV
from sklearn.utils import check_random_state
from aeon.classification.base import BaseClassifier
from aeon.transformations.collection.dictionary_based import SFAFast
class WEASEL(BaseClassifier):
"""
Word Extraction for Time Series Classification (WEASEL).
As described in [1]_. Overview: Input ``n`` series length ``m``
WEASEL is a dictionary classifier that builds a bag-of-patterns using SFA
for different window lengths and learns a logistic regression classifier
on this bag.
There are these primary parameters:
- alphabet_size: alphabet size
- p-threshold: threshold used for chi^2-feature selection to
select best words.
- anova: select best l/2 fourier coefficients other than first ones
- bigrams: using bigrams of SFA words
- binning_strategy: the binning strategy used to discretise into SFA words.
WEASEL slides a window length *w* along the series. The *w* length window
is shortened to an *l* length word through taking a Fourier transform and
keeping the best *l/2* complex coefficients using an anova one-sided
test. These *l* coefficients are then discretised into alpha possible
symbols, to form a word of length *l*. A histogram of words for each
series is formed and stored.
For each window-length a bag is created and all words are joint into
one bag-of-patterns. Words from different window-lengths are
discriminated by different prefixes.
*fit* involves training a logistic regression classifier on the single
bag-of-patterns.
predict uses the logistic regression classifier
Parameters
----------
anova : bool, default=True
If True, the Fourier coefficient selection is done via a one-way
ANOVA test. If False, the first Fourier coefficients are selected.
Only applicable if labels are given.
bigrams : bool, default=True
Whether to create bigrams of SFA words.
binning_strategy : str, default="information-gain"
The binning method used to derive the breakpoints.
one of {"equi-depth", "equi-width", "information-gain"}.
window_inc : int, default=2
WEASEL create a BoP model for each window sizes. This is the
increment used to determine the next window size.
p_threshold : int, default=0.05 (disabled by default)
Feature selection is applied based on the chi-squared test.
This is the p-value threshold to use for chi-squared test on bag-of-words
(lower means more strict). 1 indicates that the test
should not be performed.
alphabet_size : default = 4
Number of possible letters (values) for each word.
feature_selection : str, default: "chi2"
Sets the feature selections strategy to be used. One of {"chi2", "none",
"random"}. Large amounts of memory may beneeded depending on the setting of
bigrams (true is more) or alpha (larger is more).
``chi2`` reduces the number of words, keeping those above the ``p_threshold``.
``random`` reduces the number to at most ``max_feature_count``,
by randomly selecting features.
``none`` does not apply any feature selection and yields large bag of words.
support_probabilities : bool, default: False
If set to False, a RidgeClassifierCV will be trained, which has higher accuracy
and is faster, yet does not support predict_proba.
If set to True, a LogisticRegression will be trained, which does support
predict_proba(), yet is slower and typically less accurate. predict_proba() is
needed for example in Early-Classification like TEASER.
class_weight{“balanced”, “balanced_subsample”}, dict or list of dicts, default=None
From sklearn documentation:
If not given, all classes are supposed to have weight one.
The “balanced” mode uses the values of y to automatically adjust weights
inversely proportional to class frequencies in the input data as
n_samples / (n_classes * np.bincount(y))
The “balanced_subsample” mode is the same as “balanced” except that weights
are computed based on the bootstrap sample for every tree grown.
For multi-output, the weights of each column of y will be multiplied.
Note that these weights will be multiplied with sample_weight (passed through
the fit method) if sample_weight is specified.
random_state : int, RandomState instance or None, default=None
If `int`, random_state is the seed used by the random number generator;
If `RandomState` instance, random_state is the random number generator;
If `None`, the random number generator is the `RandomState` instance used
by `np.random`.
See Also
--------
MUSE
Multivariate version of WEASEL.
Notes
-----
For the Java version, see
- `Original Publication <https://github.com/patrickzib/SFA>`_.
- `TSML <https://github.com/uea-machine-learning/tsml/blob/master/src/main/java
/tsml/classifiers/dictionary_based/WEASEL.java>`_.
References
----------
.. [1] Patrick Schäfer and Ulf Leser, "Fast and Accurate Time Series Classification
with WEASEL", in proc ACM on Conference on Information and Knowledge Management,
2017, https://dl.acm.org/doi/10.1145/3132847.3132980
Examples
--------
>>> from aeon.classification.dictionary_based import WEASEL
>>> from aeon.datasets import load_unit_test
>>> X_train, y_train = load_unit_test(split="train")
>>> X_test, y_test = load_unit_test(split="test")
>>> clf = WEASEL(window_inc=4)
>>> clf.fit(X_train, y_train)
WEASEL(...)
>>> y_pred = clf.predict(X_test)
"""
_tags = {
"capability:multithreading": True,
"algorithm_type": "dictionary",
}
def __init__(
self,
anova=True,
bigrams=True,
binning_strategy="information-gain",
window_inc=2,
p_threshold=0.05,
alphabet_size=4,
feature_selection="chi2",
support_probabilities=False,
class_weight=None,
n_jobs=1,
random_state=None,
):
self.alphabet_size = alphabet_size
# feature selection is applied based on the chi-squared test.
self.p_threshold = p_threshold
self.anova = anova
self.norm_options = [False]
self.word_lengths = [4, 6]
self.bigrams = bigrams
self.binning_strategy = binning_strategy
self.min_window = 6
self.max_window = 100
self.feature_selection = feature_selection
self.window_inc = window_inc
self.highest_bit = -1
self.window_sizes = []
self.n_timepoints = 0
self.n_cases = 0
self.SFA_transformers = []
self.clf = None
self.support_probabilities = support_probabilities
self.random_state = random_state
self.n_jobs = n_jobs
self.class_weight = class_weight
set_num_threads(n_jobs)
super().__init__()
def _fit(self, X, y):
"""Build a WEASEL classifiers from the training set (X, y).
Parameters
----------
X : 3D np.ndarray
The training data shape = (n_cases, n_channels, n_timepoints).
y : 1D np.ndarray
The class labels shape = (n_cases).
Returns
-------
self :
Reference to self.
"""
# Window length parameter space dependent on series length
self.n_cases, self.n_timepoints = X.shape[0], X.shape[-1]
win_inc = self._compute_window_inc()
self.max_window = int(min(self.n_timepoints, self.max_window))
if self.min_window > self.max_window:
raise ValueError(
f"Error in WEASEL, min_window ="
f"{self.min_window} is bigger"
f" than max_window ={self.max_window},"
f" series length is {self.n_timepoints}"
f" try set min_window to be smaller than series length in "
f"the constructor, but the classifier may not work at "
f"all with very short series"
)
self.window_sizes = list(range(self.min_window, self.max_window, win_inc))
self.highest_bit = (math.ceil(math.log2(self.max_window))) + 1
parallel_res = Parallel(n_jobs=self.n_jobs, prefer="threads")(
delayed(_parallel_fit)(
X,
y,
window_size,
self.word_lengths,
self.alphabet_size,
self.norm_options,
self.anova,
self.binning_strategy,
self.feature_selection,
self.bigrams,
self.n_jobs,
)
for window_size in self.window_sizes
)
all_words = []
for sfa_words, transformer in parallel_res:
self.SFA_transformers.append(transformer)
all_words.append(sfa_words)
if type(all_words[0]) is np.ndarray:
all_words = np.concatenate(all_words, axis=1)
else:
all_words = hstack(all_words)
# Ridge Classifier does not give probabilities
if not self.support_probabilities:
self.clf = RidgeClassifierCV(
alphas=np.logspace(-3, 3, 10), class_weight=self.class_weight
)
else:
self.clf = LogisticRegression(
max_iter=5000,
solver="liblinear",
dual=True,
class_weight=self.class_weight,
penalty="l2",
random_state=self.random_state,
n_jobs=self.n_jobs,
)
self.clf.fit(all_words, y)
self.total_features_count = all_words.shape[1]
if hasattr(self.clf, "best_score_"):
self.cross_val_score = self.clf.best_score_
return self
def _predict(self, X) -> np.ndarray:
"""Predict class values of n instances in X.
Parameters
----------
X : 3D np.ndarray
The data to make predictions for, shape = (n_cases, n_channels,
n_timepoints).
Returns
-------
1D np.ndarray
Predicted class labels shape = (n_cases).
"""
bag = self._transform_words(X)
return self.clf.predict(bag)
def _predict_proba(self, X) -> np.ndarray:
"""Predict class probabilities for n instances in X.
Parameters
----------
X : 3D np.ndarray
The data to make predictions for, shape = (n_cases, n_channels,
n_timepoints).
Returns
-------
2D np.ndarray
Predicted class labels shape = (n_cases).
"""
bag = self._transform_words(X)
if self.support_probabilities:
return self.clf.predict_proba(bag)
else:
raise ValueError(
"Error in WEASEL, please set support_probabilities=True, to"
+ "allow for probabilities to be computed."
)
def _transform_words(self, X):
parallel_res = Parallel(n_jobs=self._n_jobs, prefer="threads")(
delayed(transformer.transform)(X) for transformer in self.SFA_transformers
)
all_words = list(parallel_res)
return (
np.concatenate(all_words, axis=1)
if type(all_words[0]) is np.ndarray
else hstack(all_words)
)
def _compute_window_inc(self):
return 1 if self.n_timepoints < 100 else self.window_inc
@classmethod
def _get_test_params(cls, parameter_set="default"):
"""Return testing parameter settings for the estimator.
Parameters
----------
parameter_set : str, default="default"
Name of the set of test parameters to return, for use in tests. If no
special parameters are defined for a value, will return `"default"` set.
Returns
-------
dict or list of dict
Parameters to create testing instances of the class.
Each dict are parameters to construct an "interesting" test instance, i.e.,
`MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
"""
return {
"window_inc": 4,
"support_probabilities": True,
"bigrams": False,
"feature_selection": "none",
"alphabet_size": 2,
}
def _parallel_fit(
X,
y,
window_size,
word_lengths,
alphabet_size,
norm_options,
anova,
binning_strategy,
feature_selection,
bigrams,
n_jobs,
):
rng = check_random_state(window_size)
transformer = SFAFast(
word_length=rng.choice(word_lengths),
alphabet_size=alphabet_size,
window_size=window_size,
norm=rng.choice(norm_options),
anova=anova,
binning_method=binning_strategy,
bigrams=bigrams,
feature_selection=feature_selection,
remove_repeat_words=False,
save_words=False,
n_jobs=n_jobs,
)
all_words = transformer.fit_transform(X, y)
return all_words, transformer