diff --git a/aeon/similarity_search/__init__.py b/aeon/similarity_search/__init__.py index f576c41f03..26b79c7da2 100644 --- a/aeon/similarity_search/__init__.py +++ b/aeon/similarity_search/__init__.py @@ -1,7 +1,5 @@ """Similarity search module.""" -__all__ = ["BaseSimilaritySearch", "QuerySearch", "SeriesSearch"] +__all__ = ["BaseSimilaritySearch"] -from aeon.similarity_search.base import BaseSimilaritySearch -from aeon.similarity_search.query_search import QuerySearch -from aeon.similarity_search.series_search import SeriesSearch +from aeon.similarity_search._base import BaseSimilaritySearch diff --git a/aeon/similarity_search/_base.py b/aeon/similarity_search/_base.py new file mode 100644 index 0000000000..a2345ee558 --- /dev/null +++ b/aeon/similarity_search/_base.py @@ -0,0 +1,81 @@ +"""Base class for similarity search.""" + +__maintainer__ = ["baraline"] +__all__ = [ + "BaseSimilaritySearch", +] + + +from abc import abstractmethod +from typing import Union + +import numpy as np +from numba.typed import List + +from aeon.base import BaseAeonEstimator + + +class BaseSimilaritySearch(BaseAeonEstimator): + """Base class for similarity search applications.""" + + _tags = { + "requires_y": False, + "fit_is_empty": False, + } + + @abstractmethod + def __init__(self): + super().__init__() + + @abstractmethod + def fit( + self, + X: Union[np.ndarray, List], + y=None, + ): + """ + Fit estimator to X. + + State change: + Changes state to "fitted". + + Writes to self: + _is_fitted : flag is set to True. + + Parameters + ---------- + X : Series or Collection, any supported type + Data to fit transform to, of python type as follows: + Series: 2D np.ndarray shape (n_channels, n_timepoints) + Collection: 3D np.ndarray shape (n_cases, n_channels, n_timepoints) + or list of 2D np.ndarray, case i has shape (n_channels, n_timepoints_i) + y: ignored, exists for API consistency reasons. + + Returns + ------- + self : a fitted instance of the estimator + """ + ... + + @abstractmethod + def predict( + self, + X: Union[np.ndarray, None] = None, + ): + """ + Predict method. + + Can either work with new series or with None (for case when predict can be made + using the data given in fit against itself) depending on the estimator. + + Parameters + ---------- + X : Series or Collection, any supported type + Data to fit transform to, of python type as follows: + Series: 2D np.ndarray shape (n_channels, n_timepoints) + Collection: 3D np.ndarray shape (n_cases, n_channels, n_timepoints) + or list of 2D np.ndarray, case i has shape (n_channels, n_timepoints_i + None : If None type is accepted, it means that the predict function will + work only with the data given in fit. (e.g. self matrix profile instead) + """ + ... diff --git a/aeon/similarity_search/_commons.py b/aeon/similarity_search/_commons.py deleted file mode 100644 index 1d20a6a5b0..0000000000 --- a/aeon/similarity_search/_commons.py +++ /dev/null @@ -1,504 +0,0 @@ -"""Helper and common function for similarity search estimators and functions.""" - -__maintainer__ = ["baraline"] - -import warnings - -import numpy as np -from numba import njit, prange -from numba.typed import List -from scipy.signal import convolve - -from aeon.utils.numba.general import ( - get_all_subsequences, - normalise_subsequences, - sliding_mean_std_one_series, - z_normalise_series_2d, -) - - -@njit(cache=True, fastmath=True) -def _compute_dist_profile(X_subs, q): - """ - Compute the distance profile between subsequences and a query. - - Parameters - ---------- - X_subs : array, shape=(n_samples, n_channels, query_length) - Input subsequences extracted from a time series. - q : array, shape=(n_channels, query_length) - Query used for the distance computation - - Returns - ------- - dist_profile : np.ndarray, 1D array of shape (n_samples) - The distance between the query all subsequences. - - """ - n_candidates, n_channels, q_length = X_subs.shape - dist_profile = np.zeros(n_candidates) - for i in range(n_candidates): - for j in range(n_channels): - for k in range(q_length): - dist_profile[i] += (X_subs[i, j, k] - q[j, k]) ** 2 - return dist_profile - - -@njit(cache=True, fastmath=True) -def naive_squared_distance_profile( - X, - q, - mask, - normalise=False, - X_means=None, - X_stds=None, -): - """ - Compute a squared euclidean distance profile. - - Parameters - ---------- - X : array, shape=(n_samples, n_channels, n_timepoints) - Input time series dataset to search in. - q : array, shape=(n_channels, query_length) - Query used during the search. - mask : array, shape=(n_samples, n_timepoints - query_length + 1) - Boolean mask indicating candidates for which the distance - profiles computed for each query should be set to infinity. - normalise : bool - Wheter to use a z-normalised distance. - X_means : array, shape=(n_samples, n_channels, n_timepoints - query_length + 1) - Mean of each candidate (subsequence) of length query_length in X. The - default is None, meaning that these values will be computed if normalise - is True. If provided, the computations will be skipped. - X_stds : array, shape=(n_samples, n_channels, n_timepoints - query_length + 1) - Standard deviation of each candidate (subsequence) of length query_length - in X. The default is None, meaning that these values will be computed if - normalise is True. If provided, the computations will be skipped. - - Returns - ------- - out : np.ndarray, 1D array of shape (n_samples, n_timepoints_t - query_length + 1) - The distance between the query and all candidates in X. - - """ - query_length = q.shape[1] - dist_profiles = List() - # Init distance profile array with unequal length support - for i in range(len(X)): - dist_profiles.append(np.zeros(X[i].shape[1] - query_length + 1)) - if normalise: - q = z_normalise_series_2d(q) - else: - q = q.astype(np.float64) - for i in range(len(X)): - # Numba don't support strides with integers ? - - X_subs = get_all_subsequences(X[i].astype(np.float64), query_length, 1) - if normalise: - if X_means is None and X_stds is None: - _X_means, _X_stds = sliding_mean_std_one_series(X[i], query_length, 1) - else: - _X_means, _X_stds = X_means[i], X_stds[i] - X_subs = normalise_subsequences(X_subs, _X_means, _X_stds) - dist_profile = _compute_dist_profile(X_subs, q) - dist_profile[~mask[i]] = np.inf - dist_profiles[i] = dist_profile - return dist_profiles - - -@njit(cache=True, fastmath=True) -def naive_squared_matrix_profile(X, T, query_length, mask, normalise=False): - """ - Compute a squared euclidean matrix profile. - - Parameters - ---------- - X : array, shape=(n_samples, n_channels, n_timepoints_x) - Input time series dataset to search in. - T : array, shape=(n_channels, n_timepoints_t) - Time series from which queries are extracted. - query_length : int - Length of the queries to extract from T. - mask : array, shape=(n_samples, n_timepoints_x - query_length + 1) - Boolean mask indicating candidates for which the distance - profiles computed for each query should be set to infinity. - normalise : bool - Wheter to use a z-normalised distance. - - Returns - ------- - out : np.ndarray, 1D array of shape (n_timepoints_t - query_length + 1) - The minimum distance between each query in T and all candidates in X. - """ - X_subs = List() - for i in range(len(X)): - i_subs = get_all_subsequences(X[i].astype(np.float64), query_length, 1) - if normalise: - X_means, X_stds = sliding_mean_std_one_series(X[i], query_length, 1) - i_subs = normalise_subsequences(i_subs, X_means, X_stds) - X_subs.append(i_subs) - - n_candidates = T.shape[1] - query_length + 1 - mp = np.full(n_candidates, np.inf) - - for i in range(n_candidates): - q = T[:, i : i + query_length] - if normalise: - q = z_normalise_series_2d(q) - for id_sample in range(len(X)): - dist_profile = _compute_dist_profile(X_subs[id_sample], q) - dist_profile[~mask[id_sample]] = np.inf - mp[i] = min(mp[i], dist_profile.min()) - return mp - - -def fft_sliding_dot_product(X, q): - """ - Use FFT convolution to calculate the sliding window dot product. - - This function applies the Fast Fourier Transform (FFT) to efficiently compute - the sliding dot product between the input time series `X` and the query `q`. - The dot product is computed for each channel individually. The sliding window - approach ensures that the dot product is calculated for every possible subsequence - of `X` that matches the length of `q` - - Parameters - ---------- - X : array, shape=(n_channels, n_timepoints) - Input time series - q : array, shape=(n_channels, query_length) - Input query - - Returns - ------- - out : np.ndarray, 2D array of shape (n_channels, n_timepoints - query_length + 1) - Sliding dot product between q and X. - """ - n_channels, n_timepoints = X.shape - query_length = q.shape[1] - out = np.zeros((n_channels, n_timepoints - query_length + 1)) - for i in range(n_channels): - out[i, :] = convolve(np.flipud(q[i, :]), X[i, :], mode="valid").real - return out - - -def get_ith_products(X, T, L, ith): - """ - Compute dot products between X and the i-th subsequence of size L in T. - - Parameters - ---------- - X : array, shape = (n_channels, n_timepoints_X) - Input data. - T : array, shape = (n_channels, n_timepoints_T) - Data containing the query. - L : int - Overall query length. - ith : int - Query starting index in T. - - Returns - ------- - np.ndarray, 2D array of shape (n_channels, n_timepoints_X - L + 1) - Sliding dot product between the i-th subsequence of size L in T and X. - - """ - return fft_sliding_dot_product(X, T[:, ith : ith + L]) - - -@njit(cache=True) -def numba_roll_1D_no_warparound(array, shift, warparound_value): - """ - Roll the rows of an array. - - Wheter to allow values at the end of the array to appear at the start after - being rolled out of the array length. - - Parameters - ---------- - array : np.ndarray of shape (n_columns) - Array to roll. - shift : int - The amount of indexes the values will be rolled on each row of the array. - Must be inferior or equal to n_columns. - warparound_value : any type - A value of the type of array to insert instead of the value that got rolled - over the array length - - Returns - ------- - rolled_array : np.ndarray of shape (n_rows, n_columns) - The rolled array. Can also be a TypedList in the case where n_columns changes - between rows. - - """ - length = array.shape[0] - _a1 = array[: length - shift] - array[shift:] = _a1 - array[:shift] = warparound_value - return array - - -@njit(cache=True) -def numba_roll_2D_no_warparound(array, shift, warparound_value): - """ - Roll the rows of an array. - - Wheter to allow values at the end of the array to appear at the start after - being rolled out of the array length. - - Parameters - ---------- - array : np.ndarray of shape (n_rows, n_columns) - Array to roll. Can also be a TypedList in the case where n_columns changes - between rows. - shift : int - The amount of indexes the values will be rolled on each row of the array. - Must be inferior or equal to n_columns. - warparound_value : any type - A value of the type of array to insert instead of the value that got rolled - over the array length - - Returns - ------- - rolled_array : np.ndarray of shape (n_rows, n_columns) - The rolled array. Can also be a TypedList in the case where n_columns changes - between rows. - - """ - for i in prange(len(array)): - length = len(array[i]) - _a1 = array[i][: length - shift] - array[i][shift:] = _a1 - array[i][:shift] = warparound_value - return array - - -@njit(cache=True) -def extract_top_k_and_threshold_from_distance_profiles_one_series( - distance_profiles, - id_x, - k=1, - threshold=np.inf, - exclusion_size=None, - inverse_distance=False, -): - """ - Extract the top-k smallest values from distance profiles and apply threshold. - - This function processes a distance profile and extracts the top-k smallest - distance values, optionally applying a threshold to exclude distances above - a given value. It also optionally handles exclusion zones to avoid selecting - neighboring timestamps. - - Parameters - ---------- - distance_profiles : np.ndarray, 2D array of shape (n_cases, n_candidates) - Precomputed distance profile. Can be a TypedList if n_candidates vary between - cases. - id_x : int - Identifier of the series or subsequence from which the distance profile - is computed. - k : int - Number of matches to returns - threshold : float - All matches below this threshold will be returned - exclusion_size : int or None, optional, default=None - Size of the exclusion zone around the current subsequence. This prevents - selecting neighboring subsequences within the specified range, useful for - avoiding trivial matches in time series data. If set to `None`, no - exclusion zone is applied. - inverse_distance : bool, optional - Wheter to return the worst matches instead of the bests. The default is False. - - Returns - ------- - top_k_dist : np.ndarray - Array of the top-k smallest distance values, potentially excluding values above - the threshold or those within the exclusion zone. - top_k : np.ndarray - Array of shape (k, 2) where each row contains the `id_x` identifier and the - index of the corresponding subsequence (or timestamp) with the top-k smallest - distances. - """ - if inverse_distance: - # To avoid div by 0 case - distance_profiles += 1e-8 - distance_profiles[distance_profiles != np.inf] = ( - 1 / distance_profiles[distance_profiles != np.inf] - ) - - if threshold != np.inf: - distance_profiles[distance_profiles > threshold] = np.inf - - _argsort = np.argsort(distance_profiles) - - if distance_profiles[distance_profiles <= threshold].shape[0] < k: - _k = distance_profiles[distance_profiles <= threshold].shape[0] - elif _argsort.shape[0] < k: - _k = _argsort.shape[0] - else: - _k = k - - if exclusion_size is None: - indexes = np.zeros((_k, 2), dtype=np.int_) - for i in range(_k): - indexes[i, 0] = id_x - indexes[i, 1] = _argsort[i] - return distance_profiles[_argsort[:_k]], indexes - else: - # Apply exclusion zone to avoid neighboring matches - top_k = np.zeros((_k, 2), dtype=np.int_) - exclusion_size - top_k_dist = np.zeros((_k), dtype=np.float64) - - top_k[0, 0] = id_x - top_k[0, 1] = _argsort[0] - - top_k_dist[0] = distance_profiles[_argsort[0]] - - n_inserted = 1 - i_current = 1 - - while n_inserted < _k and i_current < _argsort.shape[0]: - candidate_timestamp = _argsort[i_current] - - insert = True - LB = candidate_timestamp >= (top_k[:, 1] - exclusion_size) - UB = candidate_timestamp <= (top_k[:, 1] + exclusion_size) - if np.any(UB & LB): - insert = False - - if insert: - top_k[n_inserted, 0] = id_x - top_k[n_inserted, 1] = _argsort[i_current] - top_k_dist[n_inserted] = distance_profiles[_argsort[i_current]] - n_inserted += 1 - i_current += 1 - return top_k_dist[:n_inserted], top_k[:n_inserted] - - -def extract_top_k_and_threshold_from_distance_profiles( - distance_profiles, - k=1, - threshold=np.inf, - exclusion_size=None, - inverse_distance=False, -): - """ - Extract the best matches from a distance profile given k and threshold parameters. - - Parameters - ---------- - distance_profiles : np.ndarray, 2D array of shape (n_cases, n_candidates) - Precomputed distance profile. Can be a TypedList if n_candidates vary between - cases. - k : int - Number of matches to returns - threshold : float - All matches below this threshold will be returned - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestamp - exclusion_size` and - :math:`id_timestamp + exclusion_size` which cannot be returned - as best match if :math:`id_timestamp` was already selected. By default, - the value None means that this is not used. - inverse_distance : bool, optional - Wheter to return the worst matches instead of the bests. The default is False. - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(n_matches)``, contains the distance between - the query and its best matches in X_. The second array, of shape - ``(n_matches, 2)``, contains the indexes of these matches as - ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - # This whole function could be optimized and maybe made in numba to avoid stepping - # out of numba mode during distance computations - - n_cases_ = len(distance_profiles) - - id_timestamps = np.concatenate( - [np.arange(distance_profiles[i].shape[0]) for i in range(n_cases_)] - ) - id_samples = np.concatenate( - [[i] * distance_profiles[i].shape[0] for i in range(n_cases_)] - ) - - distance_profiles = np.concatenate(distance_profiles) - - if inverse_distance: - # To avoid div by 0 case - distance_profiles += 1e-8 - distance_profiles[distance_profiles != np.inf] = ( - 1 / distance_profiles[distance_profiles != np.inf] - ) - - if threshold != np.inf: - distance_profiles[distance_profiles > threshold] = np.inf - - _argsort_1d = np.argsort(distance_profiles) - _argsort = np.asarray( - [ - [id_samples[_argsort_1d[i]], id_timestamps[_argsort_1d[i]]] - for i in range(len(_argsort_1d)) - ], - dtype=int, - ) - - if distance_profiles[distance_profiles <= threshold].shape[0] < k: - _k = distance_profiles[distance_profiles <= threshold].shape[0] - warnings.warn( - f"Only {_k} matches are bellow the threshold of {threshold}, while" - f" k={k}. The number of returned match will be {_k}.", - stacklevel=2, - ) - elif _argsort.shape[0] < k: - _k = _argsort.shape[0] - warnings.warn( - f"The number of possible match is {_argsort.shape[0]}, but got" - f" k={k}. The number of returned match will be {_k}.", - stacklevel=2, - ) - else: - _k = k - - if exclusion_size is None: - return distance_profiles[_argsort_1d[:_k]], _argsort[:_k] - else: - # Apply exclusion zone to avoid neighboring matches - top_k = np.zeros((_k, 2), dtype=int) - top_k_dist = np.zeros((_k), dtype=float) - - top_k[0] = _argsort[0, :] - top_k_dist[0] = distance_profiles[_argsort_1d[0]] - - n_inserted = 1 - i_current = 1 - - while n_inserted < _k and i_current < _argsort.shape[0]: - candidate_sample, candidate_timestamp = _argsort[i_current] - - insert = True - is_from_same_sample = top_k[:, 0] == candidate_sample - if np.any(is_from_same_sample): - LB = candidate_timestamp >= ( - top_k[is_from_same_sample, 1] - exclusion_size - ) - UB = candidate_timestamp <= ( - top_k[is_from_same_sample, 1] + exclusion_size - ) - if np.any(UB & LB): - insert = False - - if insert: - top_k[n_inserted] = _argsort[i_current] - top_k_dist[n_inserted] = distance_profiles[_argsort_1d[i_current]] - n_inserted += 1 - i_current += 1 - return top_k_dist[:n_inserted], top_k[:n_inserted] diff --git a/aeon/similarity_search/base.py b/aeon/similarity_search/base.py deleted file mode 100644 index 5b0ce8c555..0000000000 --- a/aeon/similarity_search/base.py +++ /dev/null @@ -1,232 +0,0 @@ -"""Base class for similarity search.""" - -__maintainer__ = ["baraline"] - -from abc import abstractmethod -from collections.abc import Iterable -from typing import Optional, final - -import numpy as np -from numba import get_num_threads, set_num_threads -from numba.typed import List - -from aeon.base import BaseCollectionEstimator -from aeon.utils.numba.general import sliding_mean_std_one_series - - -class BaseSimilaritySearch(BaseCollectionEstimator): - """ - Base class for similarity search applications. - - Parameters - ---------- - distance : str, default="euclidean" - Name of the distance function to use. A list of valid strings can be found in - the documentation for :func:`aeon.distances.get_distance_function`. - If a callable is passed it must either be a python function or numba function - with nopython=True, that takes two 1d numpy arrays as input and returns a float. - distance_args : dict, default=None - Optional keyword arguments for the distance function. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - normalise : bool, default=False - Whether the distance function should be z-normalised. - speed_up : str, default='fastest' - Which speed up technique to use with for the selected distance - function. By default, the fastest algorithm is used. A list of available - algorithm for each distance can be obtained by calling the - `get_speedup_function_names` function of the child classes. - n_jobs : int, default=1 - Number of parallel jobs to use. - - Attributes - ---------- - X_ : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input time series stored during the fit method. - - Notes - ----- - For now, the multivariate case is only treated as independent. - Distances are computed for each channel independently and then - summed together. - """ - - _tags = { - "capability:multivariate": True, - "capability:unequal_length": True, - "capability:multithreading": True, - "fit_is_empty": False, - "X_inner_type": ["np-list", "numpy3D"], - } - - @abstractmethod - def __init__( - self, - distance: str = "euclidean", - distance_args: Optional[dict] = None, - inverse_distance: bool = False, - normalise: bool = False, - speed_up: str = "fastest", - n_jobs: int = 1, - ): - self.distance = distance - self.distance_args = distance_args - self.inverse_distance = inverse_distance - self.normalise = normalise - self.n_jobs = n_jobs - self.speed_up = speed_up - super().__init__() - - @final - def fit(self, X: np.ndarray, y=None): - """ - Fit method: data preprocessing and storage. - - Parameters - ---------- - X : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - Input array to be used as database for the similarity search - y : optional - Not used. - - Raises - ------ - TypeError - If the input X array is not 3D raise an error. - - Returns - ------- - self - """ - prev_threads = get_num_threads() - X = self._preprocess_collection(X) - # Store minimum number of n_timepoints for unequal length collections - self.min_timepoints_ = min([X[i].shape[-1] for i in range(len(X))]) - self.n_channels_ = X[0].shape[0] - self.n_cases_ = len(X) - if self.metadata_["unequal_length"]: - X = List(X) - set_num_threads(self._n_jobs) - self._fit(X, y) - set_num_threads(prev_threads) - self.is_fitted = True - return self - - def _store_mean_std_from_inputs(self, query_length: int) -> None: - """ - Store the mean and std of each subsequence of size query_length in X_. - - Parameters - ---------- - query_length : int - Length of the query. - - Returns - ------- - None - - """ - means = [] - stds = [] - - for i in range(len(self.X_)): - _mean, _std = sliding_mean_std_one_series(self.X_[i], query_length, 1) - - stds.append(_std) - means.append(_mean) - - self.X_means_ = List(means) - self.X_stds_ = List(stds) - - def _init_X_index_mask( - self, - X_index: Optional[Iterable[int]], - query_length: int, - exclusion_factor: Optional[float] = 2.0, - ) -> np.ndarray: - """ - Initiliaze the mask indicating the candidates to be evaluated in the search. - - Parameters - ---------- - X_index : Iterable - Any Iterable (tuple, list, array) of length two used to specify the index of - the query X if it was extracted from the input data X given during the fit - method. Given the tuple (id_sample, id_timestamp), the similarity search - will define an exclusion zone around the X_index in order to avoid matching - X with itself. If None, it is considered that the query is not extracted - from X_ (the training data). - query_length : int - Length of the queries. - exclusion_factor : float, optional - The exclusion factor is used to prevent candidates close or equal to the - query sample point to be returned as best matches. It is used to define a - region between :math:`id_timestamp - query_length//exclusion_factor` and - :math:`id_timestamp + query_length//exclusion_factor` which cannot be used - in the search. The default is 2.0. - - Raises - ------ - ValueError - If the length of the q_index iterable is not two, will raise a ValueError. - TypeError - If q_index is not an iterable, will raise a TypeError. - - Returns - ------- - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - query_length + 1) - Boolean array which indicates the candidates that should be evaluated in the - similarity search. - - """ - if self.metadata_["unequal_length"]: - mask = List( - [ - np.ones(self.X_[i].shape[1] - query_length + 1, dtype=bool) - for i in range(self.n_cases_) - ] - ) - else: - mask = np.ones( - (self.n_cases_, self.min_timepoints_ - query_length + 1), - dtype=bool, - ) - if X_index is not None: - if isinstance(X_index, Iterable): - if len(X_index) != 2: - raise ValueError( - "The X_index should contain an interable of size 2 such as " - "(id_sample, id_timestamp), but got an iterable of " - "size {}".format(len(X_index)) - ) - else: - raise TypeError( - "If not None, the X_index parameter should be an iterable, here " - "X_index is of type {}".format(type(X_index)) - ) - - if exclusion_factor <= 0: - raise ValueError( - "The value of exclusion_factor should be superior to 0, but got " - "{}".format(len(exclusion_factor)) - ) - - i_instance, i_timestamp = X_index - profile_length = self.X_[i_instance].shape[1] - query_length + 1 - exclusion_LB = max(0, int(i_timestamp - query_length // exclusion_factor)) - exclusion_UB = min( - profile_length, - int(i_timestamp + query_length // exclusion_factor), - ) - mask[i_instance][exclusion_LB:exclusion_UB] = False - - return mask - - @abstractmethod - def _fit(self, X, y=None): ... - - @abstractmethod - def get_speedup_function_names(self): - """Return a dictionnary containing the name of the speedup functions.""" - ... diff --git a/aeon/similarity_search/collection/__init__.py b/aeon/similarity_search/collection/__init__.py new file mode 100644 index 0000000000..dea25853be --- /dev/null +++ b/aeon/similarity_search/collection/__init__.py @@ -0,0 +1,11 @@ +"""Similarity search for time series collection.""" + +__all__ = [ + "BaseCollectionSimilaritySearch", + "RandomProjectionIndexANN", +] + +from aeon.similarity_search.collection._base import BaseCollectionSimilaritySearch +from aeon.similarity_search.collection.neighbors._rp_cosine_lsh import ( + RandomProjectionIndexANN, +) diff --git a/aeon/similarity_search/collection/_base.py b/aeon/similarity_search/collection/_base.py new file mode 100644 index 0000000000..9bd6f7cb31 --- /dev/null +++ b/aeon/similarity_search/collection/_base.py @@ -0,0 +1,112 @@ +"""Base similiarity search for collections.""" + +__maintainer__ = ["baraline"] +__all__ = [ + "BaseCollectionSimilaritySearch", +] + +from abc import abstractmethod +from typing import final + +import numpy as np + +from aeon.base import BaseCollectionEstimator +from aeon.similarity_search._base import BaseSimilaritySearch + + +class BaseCollectionSimilaritySearch(BaseCollectionEstimator, BaseSimilaritySearch): + """ + Similarity search base class for collections. + + Such estimators include nearest neighbors on whole series or subsequences with + indexing or concenssus motifs search over a collection. + """ + + # tag values specific to CollectionTransformers + _tags = { + "input_data_type": "Collection", + "capability:multivariate": True, + "X_inner_type": ["numpy3D"], + } + + @final + def fit( + self, + X: np.ndarray, + y=None, + ): + """ + Fit method: data preprocessing and storage. + + Parameters + ---------- + X : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) + Input array to be used as database for the similarity search. If it is an + unequal length collection, it should be a list of 2d numpy arrays. + y : optional + Not used. + + Raises + ------ + TypeError + If the input X array is not 3D raise an error. + + Returns + ------- + self + """ + self.reset() + X = self._preprocess_collection(X) + self.n_channels_ = self.metadata_["n_channels"] + self.n_cases_ = self.metadata_["n_cases"] + self._fit(X, y=y) + self.is_fitted = True + return self + + @abstractmethod + def _fit(self, X: np.ndarray, y=None): ... + + @final + def predict(self, X, **kwargs): + """ + Predict function. + + Parameters + ---------- + X : np.ndarray, 3D array of shape = (n_cases, n_channels, n_timepoints) + Collections of series to predict on. + kwargs : dict, optional + Additional keyword arguments to be passed to the _predict function of the + estimator. + + Returns + ------- + indexes : np.ndarray, shape = (n_cases, k) + Indexes of series in the that are similar to X. + distances : np.ndarray, shape = (n_cases, k) + Distance of the matches to each series + + """ + self._check_is_fitted() + X = self._preprocess_collection(X, store_metadata=False) + self._check_predict_series_format(X) + indexes, distances = self._predict(X, **kwargs) + return indexes, distances + + def _check_predict_series_format(self, X): + """ + Check whether a series X in predict is correctly formated. + + Parameters + ---------- + X : np.ndarray, shape = (n_channels, n_timepoints) + A series to be used in predict. + """ + if self.n_channels_ != X[0].shape[0]: + raise ValueError( + f"Expected X to have {self.n_channels_} channels but" + f" got {X[0].shape[0]} channels." + ) + + @abstractmethod + def _predict(self, X, **kwargs): ... diff --git a/aeon/similarity_search/collection/motifs/__init__.py b/aeon/similarity_search/collection/motifs/__init__.py new file mode 100644 index 0000000000..b7169f1ade --- /dev/null +++ b/aeon/similarity_search/collection/motifs/__init__.py @@ -0,0 +1 @@ +"""Motif discovery for time series collection.""" diff --git a/aeon/similarity_search/collection/neighbors/__init__.py b/aeon/similarity_search/collection/neighbors/__init__.py new file mode 100644 index 0000000000..f5cf0d925b --- /dev/null +++ b/aeon/similarity_search/collection/neighbors/__init__.py @@ -0,0 +1,7 @@ +"""Neighbors search for time series collection.""" + +__all__ = ["RandomProjectionIndexANN"] + +from aeon.similarity_search.collection.neighbors._rp_cosine_lsh import ( + RandomProjectionIndexANN, +) diff --git a/aeon/similarity_search/collection/neighbors/_rp_cosine_lsh.py b/aeon/similarity_search/collection/neighbors/_rp_cosine_lsh.py new file mode 100644 index 0000000000..167ec538c6 --- /dev/null +++ b/aeon/similarity_search/collection/neighbors/_rp_cosine_lsh.py @@ -0,0 +1,320 @@ +"""Random projection LSH index.""" + +import numpy as np +from numba import get_num_threads, njit, prange, set_num_threads + +from aeon.similarity_search.collection._base import BaseCollectionSimilaritySearch +from aeon.utils.numba.general import AEON_NUMBA_STD_THRESHOLD, z_normalise_series_3d + + +@njit(cache=True) +def _bool_hamming_dist(X, Y): + """ + Compute a hamming distance on boolean arrays. + + Parameters + ---------- + X : np.ndarray of shape (n_timepoints) + A boolean array + + Y : np.ndarray of shape (n_timepoints) + A boolean array + + Returns + ------- + d : int + The hamming distance between X and Y. + + """ + d = np.uint64(0) + for i in range(X.shape[0]): + d += X[i] ^ Y[i] + return d + + +@njit(cache=True, parallel=True) +def _bool_hamming_dist_matrix(X_bool, collection_bool): + """ + Compute the distances between X_bool and each boolean array of collection_bool. + + Each array of collection_bool represent the hash value of a bucket in the index. + + Parameters + ---------- + X_bool : np.ndarray of shape (n_timepoints) + A 1D boolean array + collection_bool : np.ndarray of shape (n_cases, n_timepoints) + A 2D boolean array + + Returns + ------- + res : np.ndarray of shape (n_cases) + The distance of X_bool to all buckets in the index + + """ + n_buckets = collection_bool.shape[0] + res = np.zeros(n_buckets, dtype=np.uint64) + for i in prange(n_buckets): + res[i] = _bool_hamming_dist(collection_bool[i], X_bool) + return res + + +@njit(cache=True, fastmath=True) +def _nb_flat_dot(X, Y): + n_channels, n_timepoints = X.shape + out = 0 + for i in prange(n_channels): + for j in prange(n_timepoints): + out += X[i, j] * Y[i, j] + return out >= 0 + + +@njit(cache=True, parallel=True) +def _collection_to_bool(X, hash_funcs, start_points, length): + """ + Transform a collection of time series X to their boolean hash representation. + + Parameters + ---------- + X : np.ndarray of shape (n_cases, n_channels, n_timepoints) + Time series collection to transform. + hash_funcs : np.ndarray of shape (n_hash, n_channels, length) + The random projection vectors used to compute the boolean hash + start_points : np.ndarray of shape (n_hash) + The starting index where the random vector should be applied when computing + the distance to the input series. + length : int + Length of the random vectors. + + Returns + ------- + res : np.ndarray of shape (n_cases, n_hash) + The boolean representation of all series in X. + + """ + n_hash_funcs = hash_funcs.shape[0] + n_samples = X.shape[0] + res = np.empty((n_samples, n_hash_funcs), dtype=np.bool_) + for j in prange(n_hash_funcs): + for i in range(n_samples): + res[i, j] = _nb_flat_dot( + X[i, :, start_points[j] : start_points[j] + length], hash_funcs[j] + ) + return res + + +class RandomProjectionIndexANN(BaseCollectionSimilaritySearch): + """ + Random Projection Locality Sensitive Hashing index with cosine similarity. + + In this method based on SimHash, we define a hash function as a boolean operation + such as, given a random vector ``V`` of shape ``(n_channels, L)`` and a time series + ``X`` of shape ``(n_channels, n_timeponts)`` (with ``L<=n_timepoints``), we compute + ``X.V > 0`` to obtain the boolean result. + In the case where ``L k - current_k: + candidates = candidates[: k - current_k] + top_k[current_k : current_k + len(candidates)] = candidates + top_k_dist[current_k : current_k + len(candidates)] = dists[ + ids[_i_bucket] + ] + current_k += len(candidates) + _i_bucket += 1 + + return top_k[:current_k], top_k_dist[:current_k] + + def _collection_to_hashes(self, X): + return _collection_to_bool( + X, self.hash_funcs_, self.start_points_, self.window_length_ + ) diff --git a/aeon/similarity_search/collection/neighbors/tests/__init__.py b/aeon/similarity_search/collection/neighbors/tests/__init__.py new file mode 100644 index 0000000000..89bc3412fb --- /dev/null +++ b/aeon/similarity_search/collection/neighbors/tests/__init__.py @@ -0,0 +1 @@ +"""Tests for similarity search for time series collection neighbors module.""" diff --git a/aeon/similarity_search/collection/neighbors/tests/test_rp_cosine_lsh.py b/aeon/similarity_search/collection/neighbors/tests/test_rp_cosine_lsh.py new file mode 100644 index 0000000000..82c1d102f3 --- /dev/null +++ b/aeon/similarity_search/collection/neighbors/tests/test_rp_cosine_lsh.py @@ -0,0 +1 @@ +"""Tests for RandomProjectionIndexANN.""" diff --git a/aeon/similarity_search/collection/tests/__init__.py b/aeon/similarity_search/collection/tests/__init__.py new file mode 100644 index 0000000000..d136a8571e --- /dev/null +++ b/aeon/similarity_search/collection/tests/__init__.py @@ -0,0 +1 @@ +"""Tests for similarity search for time series collection base class and commons.""" diff --git a/aeon/similarity_search/collection/tests/test_base.py b/aeon/similarity_search/collection/tests/test_base.py new file mode 100644 index 0000000000..7f538cdd59 --- /dev/null +++ b/aeon/similarity_search/collection/tests/test_base.py @@ -0,0 +1,19 @@ +"""Test for collection similarity search base class.""" + +__maintainer__ = ["baraline"] + +from aeon.testing.mock_estimators._mock_similarity_searchers import ( + MockCollectionSimilaritySearch, +) +from aeon.testing.testing_data import FULL_TEST_DATA_DICT, _get_datatypes_for_estimator + + +def test_input_shape_fit_predict_collection(): + """Test input shapes.""" + estimator = MockCollectionSimilaritySearch() + datatypes = _get_datatypes_for_estimator(estimator) + # dummy data to pass to fit when testing predict/predict_proba + for datatype in datatypes: + X_train, y_train = FULL_TEST_DATA_DICT[datatype]["train"] + X_test, y_test = FULL_TEST_DATA_DICT[datatype]["test"] + estimator.fit(X_train, y_train).predict(X_test) diff --git a/aeon/similarity_search/distance_profiles/__init__.py b/aeon/similarity_search/distance_profiles/__init__.py deleted file mode 100644 index 4be73f9d8e..0000000000 --- a/aeon/similarity_search/distance_profiles/__init__.py +++ /dev/null @@ -1,18 +0,0 @@ -"""Distance profiles.""" - -__all__ = [ - "euclidean_distance_profile", - "normalised_euclidean_distance_profile", - "squared_distance_profile", - "normalised_squared_distance_profile", -] - - -from aeon.similarity_search.distance_profiles.euclidean_distance_profile import ( - euclidean_distance_profile, - normalised_euclidean_distance_profile, -) -from aeon.similarity_search.distance_profiles.squared_distance_profile import ( - normalised_squared_distance_profile, - squared_distance_profile, -) diff --git a/aeon/similarity_search/distance_profiles/euclidean_distance_profile.py b/aeon/similarity_search/distance_profiles/euclidean_distance_profile.py deleted file mode 100644 index 1dd781e467..0000000000 --- a/aeon/similarity_search/distance_profiles/euclidean_distance_profile.py +++ /dev/null @@ -1,102 +0,0 @@ -"""Optimized distance profile for euclidean distance.""" - -__maintainer__ = ["baraline"] - - -from typing import Union - -import numpy as np -from numba.typed import List - -from aeon.similarity_search.distance_profiles.squared_distance_profile import ( - normalised_squared_distance_profile, - squared_distance_profile, -) - - -def euclidean_distance_profile( - X: Union[np.ndarray, List], q: np.ndarray, mask: np.ndarray -) -> np.ndarray: - """ - Compute a distance profile using the squared Euclidean distance. - - It computes the distance profiles between the input time series and the query using - the squared Euclidean distance. The distance between the query and a candidate is - comptued using a dot product and a rolling sum to avoid recomputing parts of the - operation. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a numba TypedList - of 2D arrays of shape (n_channels, n_timepoints) - q : np.ndarray, 2D array of shape (n_channels, query_length) - The query used for similarity search. - mask : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Boolean mask of the shape of the distance profile indicating for which part - of it the distance should be computed. - - Returns - ------- - distance_profiles : np.ndarray - 3D array of shape (n_cases, n_timepoints - query_length + 1) - The distance profile between q and the input time series X. - - """ - distance_profiles = squared_distance_profile(X, q, mask) - # Need loop as we can return a list of np array in the unequal length case - for i in range(len(distance_profiles)): - distance_profiles[i] = distance_profiles[i] ** 0.5 - return distance_profiles - - -def normalised_euclidean_distance_profile( - X: Union[np.ndarray, List], - q: np.ndarray, - mask: np.ndarray, - X_means: Union[np.ndarray, List], - X_stds: Union[np.ndarray, List], - q_means: np.ndarray, - q_stds: np.ndarray, -) -> np.ndarray: - """ - Compute a distance profile in a brute force way. - - It computes the distance profiles between the input time series and the query using - the specified distance. The search is made in a brute force way without any - optimizations and can thus be slow. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a numba TypedList - of 2D arrays of shape (n_channels, n_timepoints) - q : np.ndarray, 2D array of shape (n_channels, query_length) - The query used for similarity search. - mask : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Boolean mask of the shape of the distance profile indicating for which part - of it the distance should be computed. - X_means : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Means of each subsequences of X of size query_length. Should be a numba - TypedList if X is unequal length. - X_stds : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Stds of each subsequences of X of size query_length. Should be a numba - TypedList if X is unequal length. - q_means : np.ndarray, 1D array of shape (n_channels) - Means of the query q - q_stds : np.ndarray, 1D array of shape (n_channels) - - Returns - ------- - distance_profiles : np.ndarray - 3D array of shape (n_cases, n_timepoints - query_length + 1) - The distance profile between q and the input time series X. - - """ - distance_profiles = normalised_squared_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - # Need loop as we can return a list of np array in the unequal length case - for i in range(len(distance_profiles)): - distance_profiles[i] = distance_profiles[i] ** 0.5 - return distance_profiles diff --git a/aeon/similarity_search/distance_profiles/squared_distance_profile.py b/aeon/similarity_search/distance_profiles/squared_distance_profile.py deleted file mode 100644 index a42beeac2f..0000000000 --- a/aeon/similarity_search/distance_profiles/squared_distance_profile.py +++ /dev/null @@ -1,319 +0,0 @@ -"""Optimized distance profile for euclidean distance.""" - -__maintainer__ = ["baraline"] - - -from typing import Union - -import numpy as np -from numba import njit, prange -from numba.typed import List - -from aeon.similarity_search._commons import fft_sliding_dot_product -from aeon.utils.numba.general import AEON_NUMBA_STD_THRESHOLD - - -def squared_distance_profile( - X: Union[np.ndarray, List], q: np.ndarray, mask: np.ndarray -) -> np.ndarray: - """ - Compute a distance profile using the squared Euclidean distance. - - It computes the distance profiles between the input time series and the query using - the squared Euclidean distance. The distance between the query and a candidate is - comptued using a dot product and a rolling sum to avoid recomputing parts of the - operation. - - Parameters - ---------- - X : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a numba TypedList - 2D array of shape (n_channels, n_timepoints) - q : np.ndarray, 2D array of shape (n_channels, query_length) - The query used for similarity search. - mask : np.ndarray, 3D array of shape (n_cases, n_timepoints - query_length + 1) - Boolean mask of the shape of the distance profile indicating for which part - of it the distance should be computed. - - Returns - ------- - distance_profile : np.ndarray - 3D array of shape (n_cases, n_timepoints - query_length + 1) - The distance profile between q and the input time series X. - - """ - QX = [fft_sliding_dot_product(X[i], q) for i in range(len(X))] - if isinstance(X, np.ndarray): - QX = np.asarray(QX) - elif isinstance(X, List): - QX = List(QX) - distance_profiles = _squared_distance_profile(QX, X, q, mask) - if isinstance(X, np.ndarray): - distance_profiles = np.asarray(distance_profiles) - return distance_profiles - - -def normalised_squared_distance_profile( - X: Union[np.ndarray, List], - q: np.ndarray, - mask: np.ndarray, - X_means: np.ndarray, - X_stds: np.ndarray, - q_means: np.ndarray, - q_stds: np.ndarray, -) -> np.ndarray: - """ - Compute a distance profile in a brute force way. - - It computes the distance profiles between the input time series and the query using - the specified distance. The search is made in a brute force way without any - optimizations and can thus be slow. - - Parameters - ---------- - X : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a numba TypedList - 2D array of shape (n_channels, n_timepoints) - q : np.ndarray, 2D array of shape (n_channels, query_length) - The query used for similarity search. - mask : np.ndarray, 3D array of shape (n_cases, n_timepoints - query_length + 1) - Boolean mask of the shape of the distance profile indicating for which part - of it the distance should be computed. - X_means : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Means of each subsequences of X of size query_length - X_stds : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Stds of each subsequences of X of size query_length - q_means : np.ndarray, 1D array of shape (n_channels) - Means of the query q - q_stds : np.ndarray, 1D array of shape (n_channels) - Stds of the query q - - Returns - ------- - distance_profiles : np.ndarray - 3D array of shape (n_cases, n_timepoints - query_length + 1) - The distance profile between q and the input time series X. - - """ - query_length = q.shape[1] - QX = [fft_sliding_dot_product(X[i], q) for i in range(len(X))] - if isinstance(X, np.ndarray): - QX = np.asarray(QX) - elif isinstance(X, List): - QX = List(QX) - - distance_profiles = _normalised_squared_distance_profile( - QX, mask, X_means, X_stds, q_means, q_stds, query_length - ) - if isinstance(X, np.ndarray): - distance_profiles = np.asarray(distance_profiles) - return distance_profiles - - -@njit(cache=True, fastmath=True, parallel=True) -def _squared_distance_profile(QX, X, q, mask): - """ - Compute squared distance profiles between query subsequence and time series. - - Parameters - ---------- - QX : List of np.ndarray - List of precomputed dot products between queries and time series, with each - element corresponding to a different time series. - Shape of each array is (n_channels, n_timepoints - query_length + 1). - X : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a numba TypedList - 2D array of shape (n_channels, n_timepoints) - q : np.ndarray, 2D array of shape (n_channels, query_length) - The query used for similarity search. - mask : np.ndarray, 3D array of shape (n_cases, n_timepoints - query_length + 1) - Boolean mask of the shape of the distance profile indicating for which part - of it the distance should be computed. - - Returns - ------- - distance_profiles : np.ndarray - 3D array of shape (n_cases, n_timepoints - query_length + 1) - The distance profile between q and the input time series X. - - """ - distance_profiles = List() - query_length = q.shape[1] - - # Init distance profile array with unequal length support - for i_instance in range(len(X)): - profile_length = X[i_instance].shape[1] - query_length + 1 - distance_profiles.append(np.full((profile_length), np.inf)) - - for _i_instance in prange(len(QX)): - # prange cast iterator to unit64 with parallel=True - i_instance = np.int_(_i_instance) - - distance_profiles[i_instance][mask[i_instance]] = ( - _squared_dist_profile_one_series(QX[i_instance], X[i_instance], q)[ - mask[i_instance] - ] - ) - return distance_profiles - - -@njit(cache=True, fastmath=True) -def _squared_dist_profile_one_series(QT, T, Q): - """ - Compute squared distance profile between query subsequence and a single time series. - - This function calculates the squared distance profile for a single time series by - leveraging the dot product of the query and time series as well as precomputed sums - of squares to efficiently compute the squared distances. - - Parameters - ---------- - QT : np.ndarray, 2D array of shape (n_channels, n_timepoints - query_length + 1) - The dot product between the query and the time series. - T : np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - Q : np.ndarray - 2D array of shape (n_channels, query_length) representing query subsequence. - - Returns - ------- - distance_profile : np.ndarray - 2D array of shape (n_channels, n_timepoints - query_length + 1) - The squared distance profile between the query and the input time series. - """ - n_channels, profile_length = QT.shape - query_length = Q.shape[1] - _QT = -2 * QT - distance_profile = np.zeros(profile_length) - for k in prange(n_channels): - _sum = 0 - _qsum = 0 - for j in prange(query_length): - _sum += T[k, j] ** 2 - _qsum += Q[k, j] ** 2 - - distance_profile += _qsum + _QT[k] - distance_profile[0] += _sum - for i in prange(1, profile_length): - _sum += T[k, i + (query_length - 1)] ** 2 - T[k, i - 1] ** 2 - distance_profile[i] += _sum - return distance_profile - - -@njit(cache=True, fastmath=True, parallel=True) -def _normalised_squared_distance_profile( - QX, mask, X_means, X_stds, q_means, q_stds, query_length -): - """ - Compute the normalised squared distance profiles between query subsequence and input time series. - - Parameters - ---------- - QX : List of np.ndarray - List of precomputed dot products between queries and time series, with each element - corresponding to a different time series. - Shape of each array is (n_channels, n_timepoints - query_length + 1). - mask : np.ndarray, 3D array of shape (n_cases, n_timepoints - query_length + 1) - Boolean mask of the shape of the distance profile indicating for which part - of it the distance should be computed. - X_means : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Means of each subsequences of X of size query_length - X_stds : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Stds of each subsequences of X of size query_length - q_means : np.ndarray, 1D array of shape (n_channels) - Means of the query q - q_stds : np.ndarray, 1D array of shape (n_channels) - Stds of the query q - query_length : int - The length of the query subsequence used for the distance profile computation. - - Returns - ------- - List of np.ndarray - List of 2D arrays, each of shape (n_channels, n_timepoints - query_length + 1). - Each array contains the normalised squared distance profile between the query subsequence and the corresponding time series. - Entries in the array are set to infinity where the mask is False. - """ - distance_profiles = List() - Q_is_constant = q_stds <= AEON_NUMBA_STD_THRESHOLD - # Init distance profile array with unequal length support - for i_instance in range(len(QX)): - profile_length = QX[i_instance].shape[1] - distance_profiles.append(np.full((profile_length), np.inf)) - - for _i_instance in prange(len(QX)): - # prange cast iterator to unit64 with parallel=True - i_instance = np.int_(_i_instance) - - distance_profiles[i_instance][mask[i_instance]] = ( - _normalised_squared_dist_profile_one_series( - QX[i_instance], - X_means[i_instance], - X_stds[i_instance], - q_means, - q_stds, - query_length, - Q_is_constant, - )[mask[i_instance]] - ) - return distance_profiles - - -@njit(cache=True, fastmath=True) -def _normalised_squared_dist_profile_one_series( - QT, T_means, T_stds, Q_means, Q_stds, query_length, Q_is_constant -): - """ - Compute the z-normalised squared Euclidean distance profile for one time series. - - Parameters - ---------- - QT : np.ndarray, 2D array of shape (n_channels, n_timepoints - query_length + 1) - The dot product between the query and the time series. - T_means : np.ndarray, 1D array of length n_channels - The mean values of the time series for each channel. - - T_stds : np.ndarray, 2D array of shape (n_channels, profile_length) - The standard deviations of the time series for each channel and position. - Q_means : np.ndarray, 1D array of shape (n_channels) - Means of the query q - Q_stds : np.ndarray, 1D array of shape (n_channels) - Stds of the query q - query_length : int - The length of the query subsequence used for the distance profile computation. - Q_is_constant : np.ndarray - 1D array of shape (n_channels,) where each element is a Boolean indicating - whether the query standard deviation for that channel is less than or equal - to a specified threshold. - - Returns - ------- - np.ndarray - 2D array of shape (n_channels, n_timepoints - query_length + 1) containing the - z-normalised squared distance profile between the query subsequence and the time - series. Entries are computed based on the z-normalised values, with special - handling for constant values. - """ - n_channels, profile_length = QT.shape - distance_profile = np.zeros(profile_length) - - for i in prange(profile_length): - Sub_is_constant = T_stds[:, i] <= AEON_NUMBA_STD_THRESHOLD - for k in prange(n_channels): - # Two Constant case - if Q_is_constant[k] and Sub_is_constant[k]: - _val = 0 - # One Constant case - elif Q_is_constant[k] or Sub_is_constant[k]: - _val = query_length - else: - denom = query_length * Q_stds[k] * T_stds[k, i] - - p = (QT[k, i] - query_length * (Q_means[k] * T_means[k, i])) / denom - p = min(p, 1.0) - - _val = abs(2 * query_length * (1.0 - p)) - distance_profile[i] += _val - - return distance_profile diff --git a/aeon/similarity_search/distance_profiles/tests/__init__.py b/aeon/similarity_search/distance_profiles/tests/__init__.py deleted file mode 100644 index 566dda7367..0000000000 --- a/aeon/similarity_search/distance_profiles/tests/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""Tests for distance profiles.""" diff --git a/aeon/similarity_search/distance_profiles/tests/test_euclidean_distance.py b/aeon/similarity_search/distance_profiles/tests/test_euclidean_distance.py deleted file mode 100644 index 2eafff78bb..0000000000 --- a/aeon/similarity_search/distance_profiles/tests/test_euclidean_distance.py +++ /dev/null @@ -1,208 +0,0 @@ -"""Tests for naive Euclidean distance profile.""" - -__maintainer__ = [] - - -import numpy as np -import pytest -from numba.typed import List -from numpy.testing import assert_array_almost_equal, assert_array_equal - -from aeon.similarity_search._commons import naive_squared_distance_profile -from aeon.similarity_search.distance_profiles.euclidean_distance_profile import ( - euclidean_distance_profile, - normalised_euclidean_distance_profile, -) -from aeon.utils.numba.general import sliding_mean_std_one_series - -DATATYPES = ["float64", "int64"] - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_euclidean_distance(dtype): - """Test Euclidean distance.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - expected = [T**0.5 for T in naive_squared_distance_profile(X, q, mask)] - dist_profile = euclidean_distance_profile(X, q, mask) - - assert_array_almost_equal(dist_profile, expected) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_euclidean_constant_case(dtype): - """Test Euclidean distance profile calculation.""" - X = np.ones((2, 1, 10), dtype=dtype) - q = np.zeros((1, 3), dtype=dtype) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - expected = [T**0.5 for T in naive_squared_distance_profile(X, q, mask)] - dist_profile = euclidean_distance_profile(X, q, mask) - - assert_array_almost_equal(dist_profile, expected) - - -def test_non_alteration_of_inputs_euclidean(): - """Test if input is altered during Euclidean distance profile.""" - X = np.asarray([[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]]) - X_copy = np.copy(X) - q = np.asarray([[3, 4, 5]]) - q_copy = np.copy(q) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - _ = euclidean_distance_profile(X, q, mask) - assert_array_equal(q, q_copy) - assert_array_equal(X, X_copy) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_normalised_euclidean_distance(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search_space_size = X.shape[-1] - q.shape[-1] + 1 - - X_means = np.zeros((X.shape[0], X.shape[1], search_space_size)) - X_stds = np.zeros((X.shape[0], X.shape[1], search_space_size)) - - for i in range(X.shape[0]): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds[i] = _std - X_means[i] = _mean - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - - dist_profile = normalised_euclidean_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - expected = [ - T**0.5 for T in naive_squared_distance_profile(X, q, mask, normalise=True) - ] - - assert_array_almost_equal(dist_profile, expected) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_normalised_euclidean_distance_unequal_length(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = List( - [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6]], dtype=dtype), - ] - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - X_means = List() - X_stds = List() - - for i in range(len(X)): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds.append(_std) - X_means.append(_mean) - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - mask = List( - [np.ones(X[i].shape[1] - q.shape[1] + 1, dtype=bool) for i in range(len(X))] - ) - - dist_profile = normalised_euclidean_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - expected = [ - T**0.5 - for T in naive_squared_distance_profile( - X, q, mask, normalise=True, X_means=X_means, X_stds=X_stds - ) - ] - for i in range(len(X)): - assert_array_almost_equal(dist_profile[i], expected[i]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_euclidean_distance_unequal_length(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = List( - [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6]], dtype=dtype), - ] - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - mask = List( - [np.ones(X[i].shape[1] - q.shape[1] + 1, dtype=bool) for i in range(len(X))] - ) - expected = [T**0.5 for T in naive_squared_distance_profile(X, q, mask)] - dist_profile = euclidean_distance_profile(X, q, mask) - for i in range(len(X)): - assert_array_almost_equal(dist_profile[i], expected[i]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_normalised_euclidean_constant_case(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = np.ones((2, 2, 10), dtype=dtype) - q = np.zeros((2, 3), dtype=dtype) - - search_space_size = X.shape[-1] - q.shape[-1] + 1 - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - - X_means = np.zeros((X.shape[0], X.shape[1], search_space_size)) - X_stds = np.zeros((X.shape[0], X.shape[1], search_space_size)) - for i in range(X.shape[0]): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds[i] = _std - X_means[i] = _mean - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - - dist_profile = normalised_euclidean_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - expected = [ - T**0.5 for T in naive_squared_distance_profile(X, q, mask, normalise=True) - ] - - assert_array_almost_equal(dist_profile, expected) - - -def test_non_alteration_of_inputs_normalised_euclidean(): - """Test if input is altered during normalised Euclidean distance profile.""" - X = np.asarray([[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]]) - X_copy = np.copy(X) - q = np.asarray([[3, 4, 5]]) - q_copy = np.copy(q) - - search_space_size = X.shape[-1] - q.shape[-1] + 1 - - X_means = np.zeros((X.shape[0], X.shape[1], search_space_size)) - X_stds = np.zeros((X.shape[0], X.shape[1], search_space_size)) - - for i in range(X.shape[0]): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds[i] = _std - X_means[i] = _mean - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - _ = normalised_euclidean_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - - assert_array_equal(q, q_copy) - assert_array_equal(X, X_copy) diff --git a/aeon/similarity_search/distance_profiles/tests/test_squared_distance.py b/aeon/similarity_search/distance_profiles/tests/test_squared_distance.py deleted file mode 100644 index cdb7b35cbc..0000000000 --- a/aeon/similarity_search/distance_profiles/tests/test_squared_distance.py +++ /dev/null @@ -1,200 +0,0 @@ -"""Tests for naive Euclidean distance profile.""" - -__maintainer__ = [] - - -import numpy as np -import pytest -from numba.typed import List -from numpy.testing import assert_array_almost_equal, assert_array_equal - -from aeon.similarity_search._commons import naive_squared_distance_profile -from aeon.similarity_search.distance_profiles.squared_distance_profile import ( - normalised_squared_distance_profile, - squared_distance_profile, -) -from aeon.utils.numba.general import sliding_mean_std_one_series - -DATATYPES = ["float64", "int64"] - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_euclidean_distance(dtype): - """Test Euclidean distance.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - expected = naive_squared_distance_profile(X, q, mask) - dist_profile = squared_distance_profile(X, q, mask) - - assert_array_almost_equal(dist_profile, expected) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_euclidean_constant_case(dtype): - """Test Euclidean distance profile calculation.""" - X = np.ones((2, 1, 10), dtype=dtype) - q = np.zeros((1, 3), dtype=dtype) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - expected = naive_squared_distance_profile(X, q, mask) - dist_profile = squared_distance_profile(X, q, mask) - - assert_array_almost_equal(dist_profile, expected) - - -def test_non_alteration_of_inputs_euclidean(): - """Test if input is altered during Euclidean distance profile.""" - X = np.asarray([[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]]) - X_copy = np.copy(X) - q = np.asarray([[3, 4, 5]]) - q_copy = np.copy(q) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - _ = squared_distance_profile(X, q, mask) - assert_array_equal(q, q_copy) - assert_array_equal(X, X_copy) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_normalised_euclidean_distance(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search_space_size = X.shape[-1] - q.shape[-1] + 1 - - X_means = np.zeros((X.shape[0], X.shape[1], search_space_size)) - X_stds = np.zeros((X.shape[0], X.shape[1], search_space_size)) - - for i in range(X.shape[0]): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds[i] = _std - X_means[i] = _mean - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - - dist_profile = normalised_squared_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - expected = naive_squared_distance_profile(X, q, mask, normalise=True) - - assert_array_almost_equal(dist_profile, expected) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_normalised_euclidean_distance_unequal_length(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = List( - [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6]], dtype=dtype), - ] - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - X_means = List() - X_stds = List() - - for i in range(len(X)): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds.append(_std) - X_means.append(_mean) - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - mask = List( - [np.ones(X[i].shape[1] - q.shape[1] + 1, dtype=bool) for i in range(len(X))] - ) - - dist_profile = normalised_squared_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - expected = naive_squared_distance_profile(X, q, mask, normalise=True) - for i in range(len(X)): - assert_array_almost_equal(dist_profile[i], expected[i]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_euclidean_distance_unequal_length(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = List( - [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6]], dtype=dtype), - ] - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - mask = List( - [np.ones(X[i].shape[1] - q.shape[1] + 1, dtype=bool) for i in range(len(X))] - ) - - expected = naive_squared_distance_profile(X, q, mask) - dist_profile = squared_distance_profile(X, q, mask) - for i in range(len(X)): - assert_array_almost_equal(dist_profile[i], expected[i]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_normalised_euclidean_constant_case(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = np.ones((2, 2, 10), dtype=dtype) - q = np.zeros((2, 3), dtype=dtype) - - search_space_size = X.shape[-1] - q.shape[-1] + 1 - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - - X_means = np.zeros((X.shape[0], X.shape[1], search_space_size)) - X_stds = np.zeros((X.shape[0], X.shape[1], search_space_size)) - for i in range(X.shape[0]): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds[i] = _std - X_means[i] = _mean - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - - dist_profile = normalised_squared_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - expected = naive_squared_distance_profile(X, q, mask, normalise=True) - - assert_array_almost_equal(dist_profile, expected) - - -def test_non_alteration_of_inputs_normalised_euclidean(): - """Test if input is altered during normalised Euclidean distance profile.""" - X = np.asarray([[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]]) - X_copy = np.copy(X) - q = np.asarray([[3, 4, 5]]) - q_copy = np.copy(q) - - search_space_size = X.shape[-1] - q.shape[-1] + 1 - - X_means = np.zeros((X.shape[0], X.shape[1], search_space_size)) - X_stds = np.zeros((X.shape[0], X.shape[1], search_space_size)) - - for i in range(X.shape[0]): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds[i] = _std - X_means[i] = _mean - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - _ = normalised_squared_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - - assert_array_equal(q, q_copy) - assert_array_equal(X, X_copy) diff --git a/aeon/similarity_search/matrix_profiles/__init__.py b/aeon/similarity_search/matrix_profiles/__init__.py deleted file mode 100644 index d04f1cbfd3..0000000000 --- a/aeon/similarity_search/matrix_profiles/__init__.py +++ /dev/null @@ -1,14 +0,0 @@ -"""Distance profiles.""" - -__all__ = [ - "stomp_normalised_euclidean_matrix_profile", - "stomp_euclidean_matrix_profile", - "stomp_normalised_squared_matrix_profile", - "stomp_squared_matrix_profile", -] -from aeon.similarity_search.matrix_profiles.stomp import ( - stomp_euclidean_matrix_profile, - stomp_normalised_euclidean_matrix_profile, - stomp_normalised_squared_matrix_profile, - stomp_squared_matrix_profile, -) diff --git a/aeon/similarity_search/matrix_profiles/stomp.py b/aeon/similarity_search/matrix_profiles/stomp.py deleted file mode 100644 index 509e68ad49..0000000000 --- a/aeon/similarity_search/matrix_profiles/stomp.py +++ /dev/null @@ -1,633 +0,0 @@ -"""Implementation of stomp for euclidean and squared euclidean distance profile.""" - -from typing import Optional - -__maintainer__ = ["baraline"] - - -from typing import Union - -import numpy as np -from numba import njit -from numba.typed import List - -from aeon.similarity_search._commons import ( - extract_top_k_and_threshold_from_distance_profiles_one_series, - get_ith_products, - numba_roll_1D_no_warparound, -) -from aeon.similarity_search.distance_profiles.squared_distance_profile import ( - _normalised_squared_dist_profile_one_series, - _squared_dist_profile_one_series, -) -from aeon.utils.numba.general import AEON_NUMBA_STD_THRESHOLD - - -def stomp_euclidean_matrix_profile( - X: Union[np.ndarray, List], - T: np.ndarray, - L: int, - mask: np.ndarray, - k: int = 1, - threshold: float = np.inf, - inverse_distance: bool = False, - exclusion_size: Optional[int] = None, -): - """ - Compute a euclidean euclidean matrix profile using STOMP [1]_. - - This improves on the naive matrix profile by updating the dot products for each - sucessive query in T instead of recomputing them. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a TypedList - of 2D arrays of shape (n_channels, n_timepoints) - T : np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - L : int - The length of the subsequences considered during the search. This parameter - cannot be larger than n_timepoints and series_length. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - length + 1) - Boolean mask of the shape of the distance profiles indicating for which part - of it the distance should be computed. In this context, it is the mask for the - first query of size L in T. This mask will be updated during the algorithm. - k : int, default=1 - The number of best matches to return during predict for each subsequence. - threshold : float, default=np.inf - The number of best matches to return during predict for each subsequence. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestomp - exclusion_size` and - :math:`id_timestomp + exclusion_size` which cannot be returned - as best match if :math:`id_timestomp` was already selected. By default, - the value None means that this is not used. - - References - ---------- - .. [1] Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one - Hundred Million Barrier for Time Series Motifs and Joins. Yan Zhu, Zachary - Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah - Mueen, Philip Berisk and Eamonn Keogh. IEEE ICDM 2016 - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(series_length - length + 1, n_matches)``, - contains the distance between all the queries of size length and their best - matches in X_. The second array, of shape - ``(series_length - L + 1, n_matches, 2)``, contains the indexes of these - matches as ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - MP, IP = stomp_squared_matrix_profile( - X, - T, - L, - mask, - k=k, - threshold=threshold, - exclusion_size=exclusion_size, - inverse_distance=inverse_distance, - ) - for i in range(len(MP)): - MP[i] = MP[i] ** 0.5 - return MP, IP - - -def stomp_squared_matrix_profile( - X: Union[np.ndarray, List], - T: np.ndarray, - L: int, - mask: np.ndarray, - k: int = 1, - threshold: float = np.inf, - inverse_distance: bool = False, - exclusion_size: Optional[int] = None, -): - """ - Compute a squared euclidean matrix profile using STOMP [1]_. - - This improves on the naive matrix profile by updating the dot products for each - sucessive query in T instead of recomputing them. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a TypedList - of 2D arrays of shape (n_channels, n_timepoints) - T : np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - L : int - The length of the subsequences considered during the search. This parameter - cannot be larger than n_timepoints and series_length. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - length + 1) - Boolean mask of the shape of the distance profiles indicating for which part - of it the distance should be computed. In this context, it is the mask for the - first query of size L in T. This mask will be updated during the algorithm. - k : int, default=1 - The number of best matches to return during predict for each subsequence. - threshold : float, default=np.inf - The number of best matches to return during predict for each subsequence. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestomp - exclusion_size` and - :math:`id_timestomp + exclusion_size` which cannot be returned - as best match if :math:`id_timestomp` was already selected. By default, - the value None means that this is not used. - - References - ---------- - .. [1] Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one - Hundred Million Barrier for Time Series Motifs and Joins. Yan Zhu, Zachary - Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah - Mueen, Philip Berisk and Eamonn Keogh. IEEE ICDM 2016 - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(series_length - length + 1, n_matches)``, - contains the distance between all the queries of size length and their best - matches in X_. The second array, of shape - ``(series_length - L + 1, n_matches, 2)``, contains the indexes of these - matches as ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - XdotT = [get_ith_products(X[i], T, L, 0) for i in range(len(X))] - if isinstance(X, np.ndarray): - XdotT = np.asarray(XdotT) - elif isinstance(X, List): - XdotT = List(XdotT) - - MP, IP = _stomp( - X, - T, - XdotT, - L, - mask, - k, - threshold, - exclusion_size, - inverse_distance, - ) - return MP, IP - - -def stomp_normalised_euclidean_matrix_profile( - X: Union[np.ndarray, List], - T: np.ndarray, - L: int, - X_means: Union[np.ndarray, List], - X_stds: Union[np.ndarray, List], - T_means: np.ndarray, - T_stds: np.ndarray, - mask: np.ndarray, - k: int = 1, - threshold: float = np.inf, - inverse_distance: bool = False, - exclusion_size: Optional[int] = None, -): - """ - Compute a euclidean matrix profile using STOMP [1]_. - - This improves on the naive matrix profile by updating the dot products for each - sucessive query in T instead of recomputing them. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a TypedList - of 2D arrays of shape (n_channels, n_timepoints) - T : np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - L : int - The length of the subsequences considered during the search. This parameter - cannot be larger than n_timepoints and series_length. - X_means : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Means of each subsequences of X of size L. Should be a numba TypedList if X is - unequal length. - X_stds : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Stds of each subsequences of X of size L. Should be a numba TypedList if X is - unequal length. - T_means : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) - Means of each subsequences of T of size L. - T_stds : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) - Stds of each subsequences of T of size L. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - length + 1) - Boolean mask of the shape of the distance profiles indicating for which part - of it the distance should be computed. In this context, it is the mask for the - first query of size L in T. This mask will be updated during the algorithm. - k : int, default=1 - The number of best matches to return during predict for each subsequence. - threshold : float, default=np.inf - The number of best matches to return during predict for each subsequence. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestomp - exclusion_size` and - :math:`id_timestomp + exclusion_size` which cannot be returned - as best match if :math:`id_timestomp` was already selected. By default, - the value None means that this is not used. - - References - ---------- - .. [1] Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one - Hundred Million Barrier for Time Series Motifs and Joins. Yan Zhu, Zachary - Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah - Mueen, Philip Berisk and Eamonn Keogh. IEEE ICDM 2016 - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(series_length - length + 1, n_matches)``, - contains the distance between all the queries of size length and their best - matches in X_. The second array, of shape - ``(series_length - L + 1, n_matches, 2)``, contains the indexes of these - matches as ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - MP, IP = stomp_normalised_squared_matrix_profile( - X, - T, - L, - X_means, - X_stds, - T_means, - T_stds, - mask, - k=k, - threshold=threshold, - exclusion_size=exclusion_size, - inverse_distance=inverse_distance, - ) - for i in range(len(MP)): - MP[i] = MP[i] ** 0.5 - return MP, IP - - -def stomp_normalised_squared_matrix_profile( - X: Union[np.ndarray, List], - T: np.ndarray, - L: int, - X_means: Union[np.ndarray, List], - X_stds: Union[np.ndarray, List], - T_means: np.ndarray, - T_stds: np.ndarray, - mask: np.ndarray, - k: int = 1, - threshold: float = np.inf, - inverse_distance: bool = False, - exclusion_size: Optional[int] = None, -): - """ - Compute a squared euclidean matrix profile using STOMP [1]_. - - This improves on the naive matrix profile by updating the dot products for each - sucessive query in T instead of recomputing them. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a TypedList - of 2D arrays of shape (n_channels, n_timepoints) - T : np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - L : int - The length of the subsequences considered during the search. This parameter - cannot be larger than n_timepoints and series_length. - X_means : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Means of each subsequences of X of size L. Should be a numba TypedList if X is - unequal length. - X_stds : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Stds of each subsequences of X of size L. Should be a numba TypedList if X is - unequal length. - T_means : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) - Means of each subsequences of T of size L. - T_stds : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) - Stds of each subsequences of T of size L. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - length + 1) - Boolean mask of the shape of the distance profiles indicating for which part - of it the distance should be computed. In this context, it is the mask for the - first query of size L in T. This mask will be updated during the algorithm. - k : int, default=1 - The number of best matches to return during predict for each subsequence. - threshold : float, default=np.inf - The number of best matches to return during predict for each subsequence. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestomp - exclusion_size` and - :math:`id_timestomp + exclusion_size` which cannot be returned - as best match if :math:`id_timestomp` was already selected. By default, - the value None means that this is not used. - - References - ---------- - .. [1] Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one - Hundred Million Barrier for Time Series Motifs and Joins. Yan Zhu, Zachary - Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah - Mueen, Philip Berisk and Eamonn Keogh. IEEE ICDM 2016 - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(series_length - length + 1, n_matches)``, - contains the distance between all the queries of size length and their best - matches in X_. The second array, of shape - ``(series_length - L + 1, n_matches, 2)``, contains the indexes of these - matches as ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - XdotT = [get_ith_products(X[i], T, L, 0) for i in range(len(X))] - if isinstance(X, np.ndarray): - XdotT = np.asarray(XdotT) - elif isinstance(X, List): - XdotT = List(XdotT) - - MP, IP = _stomp_normalised( - X, - T, - XdotT, - X_means, - X_stds, - T_means, - T_stds, - L, - mask, - k, - threshold, - exclusion_size, - inverse_distance, - ) - return MP, IP - - -def _stomp_normalised( - X, - T, - XdotT, - X_means, - X_stds, - T_means, - T_stds, - L, - mask, - k, - threshold, - exclusion_size, - inverse_distance, -): - """ - Compute the Matrix Profile using the STOMP algorithm with normalised distances. - - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a TypedList - of 2D arrays of shape (n_channels, n_timepoints) - T : np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - L : int - Length of the subsequences used for the distance computation. - XdotT : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Precomputed dot products between each time series in X and the query series T. - X_means : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Means of each subsequences of X of size L. Should be a numba TypedList if X is - unequal length. - X_stds : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Stds of each subsequences of X of size L. Should be a numba TypedList if X is - unequal length. - T_means : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) - Means of each subsequences of T of size L. - T_stds : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) - Stds of each subsequences of T of size L. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - length + 1) - Boolean mask of the shape of the distance profiles indicating for which part - of it the distance should be computed. In this context, it is the mask for the - first query of size L in T. This mask will be updated during the algorithm. - k : int, default=1 - The number of best matches to return during predict for each subsequence. - threshold : float, default=np.inf - The number of best matches to return during predict for each subsequence. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestomp - exclusion_size` and - :math:`id_timestomp + exclusion_size` which cannot be returned - as best match if :math:`id_timestomp` was already selected. By default, - the value None means that this is not used. - - Returns - ------- - tuple of np.ndarray - - MP : array of shape (n_queries,) - Matrix profile distances for each query subsequence. - - IP : array of shape (n_queries,) - Indexes of the top matches for each query subsequence. - """ - n_queries = T.shape[1] - L + 1 - MP = np.empty(n_queries, dtype=object) - IP = np.empty(n_queries, dtype=object) - for i_x in range(len(X)): - for i in range(n_queries): - dist_profiles = _normalised_squared_dist_profile_one_series( - XdotT[i_x], - X_means[i_x], - X_stds[i_x], - T_means[:, i], - T_stds[:, i], - L, - T_stds[:, i] <= AEON_NUMBA_STD_THRESHOLD, - ) - dist_profiles[~mask[i_x]] = np.inf - if i + 1 < n_queries: - XdotT[i_x] = _update_dot_products_one_series( - X[i_x], T, XdotT[i_x], L, i + 1 - ) - - mask[i_x] = numba_roll_1D_no_warparound(mask[i_x], 1, True) - ( - top_dists, - top_indexes, - ) = extract_top_k_and_threshold_from_distance_profiles_one_series( - dist_profiles, - i_x, - k=k, - threshold=threshold, - exclusion_size=exclusion_size, - inverse_distance=inverse_distance, - ) - if i_x > 0: - top_dists, top_indexes = _sort_out_tops( - top_dists, MP[i], top_indexes, IP[i], k - ) - MP[i] = top_dists - IP[i] = top_indexes - else: - MP[i] = top_dists - IP[i] = top_indexes - - return MP, IP - - -def _stomp( - X, - T, - XdotT, - L, - mask, - k, - threshold, - exclusion_size, - inverse_distance, -): - n_queries = T.shape[1] - L + 1 - MP = np.empty(n_queries, dtype=object) - IP = np.empty(n_queries, dtype=object) - for i_x in range(len(X)): - for i in range(n_queries): - Q = T[:, i : i + L] - dist_profiles = _squared_dist_profile_one_series(XdotT[i_x], X[i_x], Q) - dist_profiles[~mask[i_x]] = np.inf - if i + 1 < n_queries: - XdotT[i_x] = _update_dot_products_one_series( - X[i_x], T, XdotT[i_x], L, i + 1 - ) - - mask[i_x] = numba_roll_1D_no_warparound(mask[i_x], 1, True) - ( - top_dists, - top_indexes, - ) = extract_top_k_and_threshold_from_distance_profiles_one_series( - dist_profiles, - i_x, - k=k, - threshold=threshold, - exclusion_size=exclusion_size, - inverse_distance=inverse_distance, - ) - if i_x > 0: - top_dists, top_indexes = _sort_out_tops( - top_dists, MP[i], top_indexes, IP[i], k - ) - MP[i] = top_dists - IP[i] = top_indexes - else: - MP[i] = top_dists - IP[i] = top_indexes - - return MP, IP - - -def _sort_out_tops(top_dists, prev_top_dists, top_indexes, prev_to_indexes, k): - """ - Sort and combine top distance results from previous and current computations. - - Parameters - ---------- - top_dists : np.ndarray - Array of distances from the current computation. Shape should be (n,). - prev_top_dists : np.ndarray - Array of distances from previous computations. Shape should be (n,). - top_indexes : np.ndarray - Array of indexes corresponding to the top distances from current computation. - Shape should be (n,). - prev_to_indexes : np.ndarray - Array of indexes corresponding to the top distances from previous computations. - Shape should be (n,). - k : int, default=1 - The number of best matches to return during predict for each subsequence. - - Returns - ------- - tuple - A tuple containing two elements: - - A 1D numpy array of sorted distances, of length min(k, - total number of distances). - - A 1D numpy array of indexes corresponding to the sorted distances, - of length min(k, total number of distances). - """ - all_dists = np.concatenate((prev_top_dists, top_dists)) - all_indexes = np.concatenate((prev_to_indexes, top_indexes)) - if k == np.inf: - return all_dists, all_indexes - else: - idx = np.argsort(all_dists)[:k] - return all_dists[idx], all_indexes[idx] - - -@njit(cache=True, fastmath=True) -def _update_dot_products_one_series( - X, - T, - XT_products, - L, - i_query, -): - """ - Update dot products of the i-th query of size L in T from the dot products of i-1. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - Input time series on which the sliding dot product is computed. - T: np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - L : int - The length of the subsequences considered during the search. This parameter - cannot be larger than n_timepoints and series_length. - i_query : int - Query starting index in T. - - Returns - ------- - XT_products : np.ndarray of shape (n_cases, n_channels, n_timepoints - L + 1) - Sliding dot product between the i-th subsequence of size L in T and X. - - """ - n_channels = T.shape[0] - Q = T[:, i_query : i_query + L] - n_candidates = X.shape[1] - L + 1 - - for i_ft in range(n_channels): - # first element of all 0 to n-1 candidates * first element of previous query - _a1 = X[i_ft, : n_candidates - 1] * T[i_ft, i_query - 1] - # last element of all 1 to n candidates * last element of current query - _a2 = X[i_ft, L : L - 1 + n_candidates] * T[i_ft, i_query + L - 1] - - XT_products[i_ft, 1:] = XT_products[i_ft, :-1] - _a1 + _a2 - - # Compute first dot product - XT_products[i_ft, 0] = np.sum(Q[i_ft] * X[i_ft, :L]) - return XT_products diff --git a/aeon/similarity_search/matrix_profiles/tests/__init__.py b/aeon/similarity_search/matrix_profiles/tests/__init__.py deleted file mode 100644 index 3feb8d4ca5..0000000000 --- a/aeon/similarity_search/matrix_profiles/tests/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""Tests for series methods.""" diff --git a/aeon/similarity_search/matrix_profiles/tests/test_stomp.py b/aeon/similarity_search/matrix_profiles/tests/test_stomp.py deleted file mode 100644 index ffcf7d0b6a..0000000000 --- a/aeon/similarity_search/matrix_profiles/tests/test_stomp.py +++ /dev/null @@ -1,205 +0,0 @@ -"""Tests for stomp algorithm.""" - -__maintainer__ = ["baraline"] - -import numpy as np -import pytest -from numba.typed import List -from numpy.testing import assert_almost_equal, assert_array_almost_equal, assert_equal - -from aeon.distances import get_distance_function -from aeon.similarity_search._commons import get_ith_products -from aeon.similarity_search.matrix_profiles.stomp import ( - _update_dot_products_one_series, - stomp_normalised_squared_matrix_profile, - stomp_squared_matrix_profile, -) -from aeon.utils.numba.general import sliding_mean_std_one_series - -DATATYPES = ["int64", "float64"] -K_VALUES = [1] - - -def test__update_dot_products_one_series(): - """Test the _update_dot_product function.""" - X = np.random.rand(1, 50) - T = np.random.rand(1, 25) - L = 10 - current_product = get_ith_products(X, T, L, 0) - for i_query in range(1, T.shape[1] - L + 1): - new_product = get_ith_products( - X, - T, - L, - i_query, - ) - current_product = _update_dot_products_one_series( - X, - T, - current_product, - L, - i_query, - ) - assert_array_almost_equal(new_product, current_product) - - -@pytest.mark.parametrize("dtype", DATATYPES) -@pytest.mark.parametrize("k", K_VALUES) -def test_stomp_squared_matrix_profile(dtype, k): - """Test stomp series search.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - - S = np.asarray([[3, 4, 5, 4, 3, 4, 5, 3, 2, 4, 5]], dtype=dtype) - L = 3 - mask = np.ones((X.shape[0], X.shape[2] - L + 1), dtype=bool) - distance = get_distance_function("squared") - mp, ip = stomp_squared_matrix_profile(X, S, L, mask, k=k) - for i in range(S.shape[-1] - L + 1): - q = S[:, i : i + L] - - expected = np.array( - [ - [distance(q, X[j, :, _i : _i + L]) for _i in range(X.shape[-1] - L + 1)] - for j in range(X.shape[0]) - ] - ) - id_bests = np.vstack( - np.unravel_index( - np.argsort(expected.ravel(), kind="stable"), expected.shape - ) - ).T - - for j in range(k): - assert_almost_equal(mp[i][j], expected[id_bests[j, 0], id_bests[j, 1]]) - assert_equal(ip[i][j], id_bests[j]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -@pytest.mark.parametrize("k", K_VALUES) -def test_stomp_normalised_squared_matrix_profile(dtype, k): - """Test stomp series search.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - - S = np.asarray([[3, 4, 5, 4, 3, 4, 5, 3, 2, 4, 5]], dtype=dtype) - L = 3 - mask = np.ones((X.shape[0], X.shape[2] - L + 1), dtype=bool) - distance = get_distance_function("squared") - X_means = [] - X_stds = [] - - for i in range(len(X)): - _mean, _std = sliding_mean_std_one_series(X[i], L, 1) - - X_stds.append(_std) - X_means.append(_mean) - X_means = np.asarray(X_means) - X_stds = np.asarray(X_stds) - - S_means, S_stds = sliding_mean_std_one_series(S, L, 1) - - mp, ip = stomp_normalised_squared_matrix_profile( - X, S, L, X_means, X_stds, S_means, S_stds, mask, k=k - ) - - for i in range(S.shape[-1] - L + 1): - q = (S[:, i : i + L] - S_means[:, i]) / S_stds[:, i] - - expected = np.array( - [ - [ - distance( - q, - (X[j, :, _i : _i + L] - X_means[j, :, _i]) / X_stds[j, :, _i], - ) - for _i in range(X.shape[-1] - L + 1) - ] - for j in range(X.shape[0]) - ] - ) - id_bests = np.vstack( - np.unravel_index(np.argsort(expected.ravel()), expected.shape) - ).T - - for j in range(k): - assert_almost_equal(mp[i][j], expected[id_bests[j, 0], id_bests[j, 1]]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_stomp_squared_matrix_profile_unequal_length(dtype): - """Test stomp with unequal length.""" - X = List( - [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6]], dtype=dtype), - ] - ) - L = 3 - mask = List( - [ - np.ones(X[0].shape[1] - L + 1, dtype=bool), - np.ones(X[1].shape[1] - L + 1, dtype=bool), - ] - ) - S = np.asarray([[3, 4, 5, 4, 3, 4, 5, 3, 2, 4, 5]], dtype=dtype) - - distance = get_distance_function("squared") - mp, ip = stomp_squared_matrix_profile(X, S, L, mask) - - for i in range(S.shape[-1] - L + 1): - q = S[:, i : i + L] - - expected = [ - [ - distance(q, X[j][:, _i : _i + q.shape[-1]]) - for _i in range(X[j].shape[-1] - q.shape[-1] + 1) - ] - for j in range(len(X)) - ] - assert_almost_equal(mp[i][0], np.concatenate(expected).min()) - - -@pytest.mark.parametrize("dtype", DATATYPES) -@pytest.mark.parametrize("k", K_VALUES) -def test_stomp_squared_matrix_profile_inverse(dtype, k): - """Test stomp series search for inverse distance.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - S = np.asarray([[3, 4, 5, 4, 3, 4, 5, 3, 2, 4, 5]], dtype=dtype) - L = 3 - mask = np.ones((X.shape[0], X.shape[2] - L + 1), dtype=bool) - distance = get_distance_function("squared") - mp, ip = stomp_squared_matrix_profile( - X, - S, - L, - mask, - k=k, - inverse_distance=True, - ) - - for i in range(S.shape[-1] - L + 1): - q = S[:, i : i + L] - - expected = np.array( - [ - [ - distance(q, X[j, :, _i : _i + q.shape[-1]]) - for _i in range(X.shape[-1] - q.shape[-1] + 1) - ] - for j in range(X.shape[0]) - ] - ) - expected += 1e-8 - expected = 1 / expected - id_bests = np.vstack( - np.unravel_index(np.argsort(expected.ravel()), expected.shape) - ).T - - for j in range(k): - assert_almost_equal(mp[i][j], expected[id_bests[j, 0], id_bests[j, 1]]) - assert_equal(ip[i][j], id_bests[j]) diff --git a/aeon/similarity_search/query_search.py b/aeon/similarity_search/query_search.py deleted file mode 100644 index 393439148d..0000000000 --- a/aeon/similarity_search/query_search.py +++ /dev/null @@ -1,428 +0,0 @@ -"""Base class for query search.""" - -__maintainer__ = ["baraline"] - -from typing import Optional, final - -import numpy as np -from numba import get_num_threads, set_num_threads - -from aeon.similarity_search._commons import ( - extract_top_k_and_threshold_from_distance_profiles, -) -from aeon.similarity_search.base import BaseSimilaritySearch -from aeon.similarity_search.distance_profiles.euclidean_distance_profile import ( - euclidean_distance_profile, - normalised_euclidean_distance_profile, -) -from aeon.similarity_search.distance_profiles.squared_distance_profile import ( - normalised_squared_distance_profile, - squared_distance_profile, -) - - -class QuerySearch(BaseSimilaritySearch): - """ - Query search estimator. - - The query search estimator will return a set of matches of a query in a search space - , which is defined by a time series dataset given during fit. Depending on the `k` - and/or `threshold` parameters, which condition what is considered a valid match - during the search, the number of matches will vary. If `k` is used, at most `k` - matches (the `k` best) will be returned, if `threshold` is used and `k` is set to - `np.inf`, all the candidates which distance to the query is inferior or equal to - `threshold` will be returned. If both are used, the `k` best matches to the query - with distance inferior to `threshold` will be returned. - - - Parameters - ---------- - k : int, default=1 - The number of best matches to return during predict for a given query. - threshold : float, default=np.inf - The number of best matches to return during predict for a given query. - distance : str, default="euclidean" - Name of the distance function to use. A list of valid strings can be found in - the documentation for :func:`aeon.distances.get_distance_function`. - If a callable is passed it must either be a python function or numba function - with nopython=True, that takes two 1d numpy arrays as input and returns a float. - distance_args : dict, default=None - Optional keyword arguments for the distance function. - normalise : bool, default=False - Whether the distance function should be z-normalised. - speed_up : str, default='fastest' - Which speed up technique to use with for the selected distance - function. By default, the fastest algorithm is used. A list of available - algorithm for each distance can be obtained by calling the - `get_speedup_function_names` function. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - n_jobs : int, default=1 - Number of parallel jobs to use. - store_distance_profiles : bool, default=False. - Whether to store the computed distance profiles in the attribute - "distance_profiles_" after calling the predict method. It will store the raw - distance profile, meaning without potential inversion or thresholding applied. - - Attributes - ---------- - X_ : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input time series stored during the fit method. This is the - database we search in when given a query. - distance_profile_function : function - The function used to compute the distance profile. This is determined - during the fit method based on the distance and normalise - parameters. - - Notes - ----- - For now, the multivariate case is only treated as independent. - Distances are computed for each channel independently and then - summed together. - """ - - def __init__( - self, - k: int = 1, - threshold: float = np.inf, - distance: str = "euclidean", - distance_args: Optional[dict] = None, - inverse_distance: bool = False, - normalise: bool = False, - speed_up: str = "fastest", - n_jobs: int = 1, - store_distance_profiles: bool = False, - ): - self.k = k - self.threshold = threshold - self.store_distance_profiles = store_distance_profiles - self._previous_query_length = -1 - self.axis = 1 - - super().__init__( - distance=distance, - distance_args=distance_args, - inverse_distance=inverse_distance, - normalise=normalise, - speed_up=speed_up, - n_jobs=n_jobs, - ) - - def _fit(self, X: np.ndarray, y=None): - """ - Check input format and store it to be used as search space during predict. - - Parameters - ---------- - X : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - Input array to used as database for the similarity search - y : optional - Not used. - - Raises - ------ - TypeError - If the input X array is not 3D raise an error. - - Returns - ------- - self - - """ - self.X_ = X - self.distance_profile_function_ = self._get_distance_profile_function() - return self - - @final - def predict( - self, - X: np.ndarray, - axis=1, - X_index=None, - exclusion_factor=2.0, - apply_exclusion_to_result=False, - ) -> np.ndarray: - """ - Predict method : Check the shape of X and call _predict to perform the search. - - If the distance profile function is normalised, it stores the mean and stds - from X and X_, with X_ the training data. - - Parameters - ---------- - X : np.ndarray, 2D array of shape (n_channels, query_length) - Input query used for similarity search. - axis : int - The time point axis of the input series if it is 2D. If ``axis==0``, it is - assumed each column is a time series and each row is a time point. i.e. the - shape of the data is ``(n_timepoints,n_channels)``. ``axis==1`` indicates - the time series are in rows, i.e. the shape of the data is - ``(n_channels,n_timepoints)``. - X_index : Iterable - An Interable (tuple, list, array) of length two used to specify the index of - the query X if it was extracted from the input data X given during the fit - method. Given the tuple (id_sample, id_timestamp), the similarity search - will define an exclusion zone around the X_index in order to avoid matching - X with itself. If None, it is considered that the query is not extracted - from X_. - exclusion_factor : float, default=2. - The factor to apply to the query length to define the exclusion zone. The - exclusion zone is define from - :math:`id_timestamp - query_length//exclusion_factor` to - :math:`id_timestamp + query_length//exclusion_factor`. This also applies to - the matching conditions defined by child classes. For example, with - TopKSimilaritySearch, the k best matches are also subject to the exclusion - zone, but with :math:`id_timestamp` the index of one of the k matches. - apply_exclusion_to_result : bool, default=False - Wheter to apply the exclusion factor to the output of the similarity search. - This means that two matches of the query from the same sample must be at - least spaced by +/- :math:`query_length//exclusion_factor`. - This can avoid pathological matching where, for example if we extract the - best two matches, there is a high chance that if the best match is located - at :math:`id_timestamp`, the second best match will be located at - :math:`id_timestamp` +/- 1, as they both share all their values except one. - - Raises - ------ - TypeError - If the input X array is not 2D raise an error. - ValueError - If the length of the query is greater - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(n_matches)``, contains the distance between - the query and its best matches in X_. The second array, of shape - ``(n_matches, 2)``, contains the indexes of these matches as - ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - self._check_is_fitted() - prev_threads = get_num_threads() - set_num_threads(self._n_jobs) - - query_dim, query_length = self._check_query_format(X, axis) - - mask = self._init_X_index_mask( - X_index, - query_length, - exclusion_factor=exclusion_factor, - ) - - if self.normalise: - self.query_means_ = np.mean(X, axis=-1) - self.query_stds_ = np.std(X, axis=-1) - if self._previous_query_length != query_length: - self._store_mean_std_from_inputs(query_length) - - if apply_exclusion_to_result: - exclusion_size = query_length // exclusion_factor - else: - exclusion_size = None - - self._previous_query_length = query_length - - X_preds = self._predict( - self._call_distance_profile(X, mask), - exclusion_size=exclusion_size, - ) - set_num_threads(prev_threads) - return X_preds - - def _predict( - self, distance_profiles: np.ndarray, exclusion_size: Optional[int] = None - ) -> np.ndarray: - """ - Private predict method for QuerySearch. - - It takes the distance profiles and apply the `k` and `threshold` conditions to - return the set of best matches. - - Parameters - ---------- - distance_profiles : np.ndarray, 2D array of shape (n_cases, n_timepoints - query_length + 1) # noqa: E501 - Precomputed distance profile. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestamp - exclusion_size` and - :math:`id_timestamp + exclusion_size` which cannot be returned - as best match if :math:`id_timestamp` was already selected. By default, - the value None means that this is not used. - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(n_matches)``, contains the distance between - the query and its best matches in X_. The second array, of shape - ``(n_matches, 2)``, contains the indexes of these matches as - ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - - """ - if self.store_distance_profiles: - self.distance_profiles_ = distance_profiles - # Define id sample and timestamp to not "loose" them due to concatenation - return extract_top_k_and_threshold_from_distance_profiles( - distance_profiles, - k=self.k, - threshold=self.threshold, - exclusion_size=exclusion_size, - inverse_distance=self.inverse_distance, - ) - - def _check_query_format(self, X, axis): - if axis not in [0, 1]: - raise ValueError("The axis argument is expected to be either 1 or 0") - if self.axis != axis: - X = X.T - if not isinstance(X, np.ndarray) or X.ndim != 2: - raise TypeError( - "Error, only supports 2D numpy for now. If the query X is univariate " - "do X = X[np.newaxis, :]." - ) - - query_dim, query_length = X.shape - if query_length >= self.min_timepoints_: - raise ValueError( - "The length of the query should be inferior or equal to the length of " - "data (X_) provided during fit, but got {} for X and {} for X_".format( - query_length, self.min_timepoints_ - ) - ) - - if query_dim != self.n_channels_: - raise ValueError( - "The number of feature should be the same for the query X and the data " - "(X_) provided during fit, but got {} for X and {} for X_".format( - query_dim, self.n_channels_ - ) - ) - return query_dim, query_length - - def _get_distance_profile_function(self): - """ - Given distance and speed_up parameters, return the distance profile function. - - Raises - ------ - ValueError - If the distance parameter given at initialization is not a string nor a - numba function or a callable, or if the speedup parameter is unknow or - unsupported, raisea ValueError. - - Returns - ------- - function - The distance profile function matching the distance argument. - - """ - if isinstance(self.distance, str): - distance_dict = _QUERY_SEARCH_SPEED_UP_DICT.get(self.distance) - if distance_dict is None: - raise NotImplementedError( - f"No distance profile have been implemented for {self.distance}." - ) - else: - speed_up_profile = distance_dict.get(self.normalise).get(self.speed_up) - - if speed_up_profile is None: - raise ValueError( - f"Unknown or unsupported speed up {self.speed_up} for " - f"{self.distance} distance function with" - ) - self.speed_up_ = self.speed_up - return speed_up_profile - else: - raise ValueError( - f"Expected distance argument to be str but got {type(self.distance)}" - ) - - def _call_distance_profile(self, X: np.ndarray, mask: np.ndarray) -> np.ndarray: - """ - Obtain the distance profile function and call it with the query and the mask. - - Parameters - ---------- - X : np.ndarray, 2D array of shape (n_channels, query_length) - Input query used for similarity search. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - query_length + 1) - Boolean array which indicates the candidates that should be evaluated in - the similarity search. - - Returns - ------- - distance_profiles : np.ndarray, 2D array of shape (n_cases, n_timepoints - query_length + 1) # noqa: E501 - The distance profiles between the input time series and the query. - - """ - if self.normalise: - distance_profiles = self.distance_profile_function_( - self.X_, - X, - mask, - self.X_means_, - self.X_stds_, - self.query_means_, - self.query_stds_, - ) - else: - distance_profiles = self.distance_profile_function_(self.X_, X, mask) - - return distance_profiles - - @classmethod - def get_speedup_function_names(self) -> dict: - """ - Get available speedup for query search in aeon. - - The returned structure is a dictionnary that contains the names of all - avaialble speedups for normalised and non-normalised distance functions. - - Returns - ------- - dict - The available speedups name that can be used as parameters in - similarity search classes. - - """ - speedups = {} - for dist_name in _QUERY_SEARCH_SPEED_UP_DICT.keys(): - for normalise in _QUERY_SEARCH_SPEED_UP_DICT[dist_name].keys(): - speedups_names = list( - _QUERY_SEARCH_SPEED_UP_DICT[dist_name][normalise].keys() - ) - if normalise: - speedups.update({f"normalised {dist_name}": speedups_names}) - else: - speedups.update({f"{dist_name}": speedups_names}) - return speedups - - -_QUERY_SEARCH_SPEED_UP_DICT = { - "euclidean": { - True: { - "fastest": normalised_euclidean_distance_profile, - "Mueen": normalised_euclidean_distance_profile, - }, - False: { - "fastest": euclidean_distance_profile, - "Mueen": euclidean_distance_profile, - }, - }, - "squared": { - True: { - "fastest": normalised_squared_distance_profile, - "Mueen": normalised_squared_distance_profile, - }, - False: { - "fastest": squared_distance_profile, - "Mueen": squared_distance_profile, - }, - }, -} diff --git a/aeon/similarity_search/series/__init__.py b/aeon/similarity_search/series/__init__.py new file mode 100644 index 0000000000..1ecc20614a --- /dev/null +++ b/aeon/similarity_search/series/__init__.py @@ -0,0 +1,15 @@ +"""Similarity search for series.""" + +__all__ = [ + "BaseSeriesSimilaritySearch", + "MassSNN", + "StompMotif", + "DummySNN", +] + +from aeon.similarity_search.series._base import ( + BaseSeriesSimilaritySearch, +) +from aeon.similarity_search.series.motifs._stomp import StompMotif +from aeon.similarity_search.series.neighbors._dummy import DummySNN +from aeon.similarity_search.series.neighbors._mass import MassSNN diff --git a/aeon/similarity_search/series/_base.py b/aeon/similarity_search/series/_base.py new file mode 100644 index 0000000000..6139835e77 --- /dev/null +++ b/aeon/similarity_search/series/_base.py @@ -0,0 +1,119 @@ +"""Base similiarity search for series.""" + +__maintainer__ = ["baraline"] +__all__ = ["BaseSeriesSimilaritySearch"] + +from abc import abstractmethod +from typing import final + +import numpy as np + +from aeon.base import BaseSeriesEstimator +from aeon.similarity_search._base import BaseSimilaritySearch + + +class BaseSeriesSimilaritySearch(BaseSeriesEstimator, BaseSimilaritySearch): + """ + Base class for similarity search applications on single series. + + Such estimators include nearest neighbors on subsequences extracted from a series + or motif discovery on single series. + """ + + _tags = { + "input_data_type": "Series", + "capability:multivariate": True, + } + + @abstractmethod + def __init__(self, axis=1): + super().__init__(axis=axis) + + @final + def fit( + self, + X: np.ndarray, + y=None, + ): + """ + Fit method: data preprocessing and storage. + + Parameters + ---------- + X : np.ndarray, 2D array of shape (n_channels, n_timepoints) + Input series to be used for the similarity search operations. + y : optional + Not used. + + Raises + ------ + TypeError + If the input X array is not 2D raise an error. + + Returns + ------- + self + """ + self.reset() + X = self._preprocess_series(X, self.axis, True) + self.n_channels_ = self.metadata_["n_channels"] + timepoint_idx = 1 if self.axis == 1 else 0 + self.n_timepoints_ = X.shape[timepoint_idx] + self.X_ = X + self._fit(X, y=y) + self.is_fitted = True + return self + + @abstractmethod + def _fit( + self, + X: np.ndarray, + y=None, + ): ... + + @final + def predict(self, X, **kwargs): + """ + Predict function. + + Parameters + ---------- + X : np.ndarray, shape = (n_channels, n_tiempoints) + Series to predict on. + kwargs : dict, optional + Additional keyword argument as dict or individual keywords args + to pass to the estimator. + + Returns + ------- + indexes : np.ndarray, shape = (k) + Indexes of series in the that are similar to X. + distances : np.ndarray, shape = (k) + Distance of the matches to each series + + """ + self._check_is_fitted() + X = self._preprocess_series(X, self.axis, False) + self._check_predict_series_format(X) + indexes, distances = self._predict(X, **kwargs) + return indexes, distances + + @abstractmethod + def _predict(self, X, **kwargs): ... + + def _check_predict_series_format(self, X): + """ + Check wheter a series X is correctly formated regarding series given in fit. + + Parameters + ---------- + X : np.ndarray, shape = (n_channels, n_timepoints) + A series to be used in predict. + + """ + channel_idx = 0 if self.axis == 1 else 1 + if self.n_channels_ != X.shape[channel_idx]: + raise ValueError( + f"Expected X to have {self.n_channels_} channels but" + f" got {X.shape[channel_idx]} channels." + ) diff --git a/aeon/similarity_search/series/_commons.py b/aeon/similarity_search/series/_commons.py new file mode 100644 index 0000000000..646c38e5ff --- /dev/null +++ b/aeon/similarity_search/series/_commons.py @@ -0,0 +1,255 @@ +"""Helper and common function for similarity search series estimators.""" + +__maintainer__ = ["baraline"] + +import numpy as np +from numba import njit +from scipy.signal import convolve + +from aeon.utils.numba.general import AEON_NUMBA_STD_THRESHOLD + + +def _check_X_index(X_index: int, n_timepoints: int, length: int): + """ + Check wheter a X_index parameter is correctly formated and is admissible. + + Parameters + ---------- + X_index : int + Index of a timestamp in X_. + n_timepoints: int + Number of timepoints in the serie X_ + length: int + Length parameter of the estimator + + """ + if X_index is not None: + if not isinstance(X_index, int): + raise TypeError("Expected an integer for X_index but got {X_index}") + + max_timepoints = n_timepoints - length + if X_index >= max_timepoints or X_index < 0: + raise ValueError( + "The value of X_index cannot exced the number " + "of timepoint in series given during fit. Expected a value " + f"between [0, {max_timepoints - 1}] but got {X_index}" + ) + + +def fft_sliding_dot_product(X, q): + """ + Use FFT convolution to calculate the sliding window dot product. + + This function applies the Fast Fourier Transform (FFT) to efficiently compute + the sliding dot product between the input time series `X` and the query `q`. + The dot product is computed for each channel individually. The sliding window + approach ensures that the dot product is calculated for every possible subsequence + of `X` that matches the length of `q` + + Parameters + ---------- + X : array, shape=(n_channels, n_timepoints) + Input time series + q : array, shape=(n_channels, query_length) + Input query + + Returns + ------- + out : np.ndarray, 2D array of shape (n_channels, n_timepoints - query_length + 1) + Sliding dot product between q and X. + """ + n_channels, n_timepoints = X.shape + query_length = q.shape[1] + out = np.zeros((n_channels, n_timepoints - query_length + 1)) + for i in range(n_channels): + out[i, :] = convolve(np.flipud(q[i, :]), X[i, :], mode="valid").real + return out + + +def get_ith_products(X, T, L, ith): + """ + Compute dot products between X and the i-th subsequence of size L in T. + + Parameters + ---------- + X : array, shape = (n_channels, n_timepoints_X) + Input data. + T : array, shape = (n_channels, n_timepoints_T) + Data containing the query. + L : int + Overall query length. + ith : int + Query starting index in T. + + Returns + ------- + np.ndarray, 2D array of shape (n_channels, n_timepoints_X - L + 1) + Sliding dot product between the i-th subsequence of size L in T and X. + + """ + return fft_sliding_dot_product(X, T[:, ith : ith + L]) + + +@njit(cache=True, fastmath=True) +def _inverse_distance_profile(dist_profile): + return 1 / (dist_profile + AEON_NUMBA_STD_THRESHOLD) + + +@njit(cache=True) +def _extract_top_k_from_dist_profile( + dist_profile, + k, + threshold, + allow_trivial_matches, + exclusion_size, +): + """ + Given a distance profile, extract the top k lowest distances. + + Parameters + ---------- + dist_profile : np.ndarray, shape = (n_timepoints - length + 1) + A distance profile of length ``n_timepoints - length + 1``, with + ``length`` the size of the query used to compute the distance profiles. + k : int + Number of best matches to return + threshold : float + A threshold on the distances of the best matches. To be returned, a candidate + must have a distance below this threshold. This can reduce the number of + returned matches to be below ``k`` + allow_trivial_matches : bool + Whether to allow returning matches that are in the same neighborhood by + ignoring the exclusion zone defined by the ``exclusion_size`` parameter. + If False, the exclusion zone is applied. + exclusion_size : int + The size of the exlusion size to apply when ``allow_trivial_matches`` is + False. It is applied on both side of existing matches (+/- their indexes). + + Returns + ------- + top_k_indexes : np.ndarray, shape = (k) + The indexes of the best matches in ``distance_profile``. + top_k_distances : np.ndarray, shape = (k) + The distances of the best matches. + + """ + top_k_indexes = np.zeros(k, dtype=np.int64) - 1 + top_k_distances = np.full(k, np.inf, dtype=np.float64) + ub = np.full(k, np.inf) + lb = np.full(k, -1.0) + # Could be optimized by using argpartition + sorted_indexes = np.argsort(dist_profile) + _current_k = 0 + if not allow_trivial_matches: + _current_j = 0 + # Until we extract k value or explore all the array or until dist is > threshold + while _current_k < k and _current_j < len(sorted_indexes): + # if we didn't insert anything or there is a conflict in lb/ub + if _current_k > 0 and np.any( + (sorted_indexes[_current_j] >= lb[:_current_k]) + & (sorted_indexes[_current_j] <= ub[:_current_k]) + ): + pass + else: + _idx = sorted_indexes[_current_j] + if dist_profile[_idx] <= threshold: + top_k_indexes[_current_k] = _idx + top_k_distances[_current_k] = dist_profile[_idx] + ub[_current_k] = min( + top_k_indexes[_current_k] + exclusion_size, + len(dist_profile), + ) + lb[_current_k] = max(top_k_indexes[_current_k] - exclusion_size, 0) + _current_k += 1 + else: + break + _current_j += 1 + else: + _current_k += min(k, len(dist_profile)) + dist_profile = dist_profile[sorted_indexes[:_current_k]] + dist_profile = dist_profile[dist_profile <= threshold] + _current_k = len(dist_profile) + + top_k_indexes[:_current_k] = sorted_indexes[:_current_k] + top_k_distances[:_current_k] = dist_profile[:_current_k] + + return top_k_indexes[:_current_k], top_k_distances[:_current_k] + + +# Could add aggregation function as parameter instead of just max +def _extract_top_k_motifs(MP, IP, k, allow_trivial_matches, exclusion_size): + criterion = np.zeros(len(MP)) + + for i in range(len(MP)): + if len(MP[i]) > 0: + criterion[i] = max(MP[i]) + else: + criterion[i] = np.inf + idx, _ = _extract_top_k_from_dist_profile( + criterion, k, np.inf, allow_trivial_matches, exclusion_size + ) + return ( + [IP[i] for i in idx], + [MP[i] for i in idx], + ) + + +def _extract_top_r_motifs(MP, IP, k, allow_trivial_matches, exclusion_size): + criterion = np.zeros(len(MP)) + for i in range(len(MP)): + criterion[i] = len(MP[i]) + idx, _ = _extract_top_k_from_dist_profile( + _inverse_distance_profile(criterion), + k, + np.inf, + allow_trivial_matches, + exclusion_size, + ) + return [IP[i] for i in idx], [MP[i] for i in idx] + + +@njit(cache=True, fastmath=True) +def _update_dot_products( + X, + T, + XT_products, + L, + i_query, +): + """ + Update dot products of the i-th query of size L in T from the dot products of i-1. + + Parameters + ---------- + X: np.ndarray, 2D array of shape (n_channels, n_timepoints) + Input time series on which the sliding dot product is computed. + T: np.ndarray, 2D array of shape (n_channels, series_length) + The series used for similarity search. Note that series_length can be equal, + superior or inferior to n_timepoints, it doesn't matter. + L : int + The length of the subsequences considered during the search. This parameter + cannot be larger than n_timepoints and series_length. + i_query : int + Query starting index in T. + + Returns + ------- + XT_products : np.ndarray of shape (n_channels, n_timepoints - L + 1) + Sliding dot product between the i-th subsequence of size L in T and X. + + """ + n_channels = T.shape[0] + Q = T[:, i_query : i_query + L] + n_candidates = X.shape[1] - L + 1 + + for i_ft in range(n_channels): + # first element of all 0 to n-1 candidates * first element of previous query + _a1 = X[i_ft, : n_candidates - 1] * T[i_ft, i_query - 1] + # last element of all 1 to n candidates * last element of current query + _a2 = X[i_ft, L : L - 1 + n_candidates] * T[i_ft, i_query + L - 1] + + XT_products[i_ft, 1:] = XT_products[i_ft, :-1] - _a1 + _a2 + + # Compute first dot product + XT_products[i_ft, 0] = np.sum(Q[i_ft] * X[i_ft, :L]) + return XT_products diff --git a/aeon/similarity_search/series/motifs/__init__.py b/aeon/similarity_search/series/motifs/__init__.py new file mode 100644 index 0000000000..56e3bc276f --- /dev/null +++ b/aeon/similarity_search/series/motifs/__init__.py @@ -0,0 +1,7 @@ +"""Motif discovery for single series.""" + +__all__ = [ + "StompMotif", +] + +from aeon.similarity_search.series.motifs._stomp import StompMotif diff --git a/aeon/similarity_search/series/motifs/_stomp.py b/aeon/similarity_search/series/motifs/_stomp.py new file mode 100644 index 0000000000..0f43bbf487 --- /dev/null +++ b/aeon/similarity_search/series/motifs/_stomp.py @@ -0,0 +1,528 @@ +"""Implementation of STOMP with squared euclidean distance.""" + +__maintainer__ = ["baraline"] +__all__ = ["StompMotif"] + +from typing import Optional + +import numpy as np +from numba import njit +from numba.typed import List + +from aeon.similarity_search.series._base import BaseSeriesSimilaritySearch +from aeon.similarity_search.series._commons import ( + _extract_top_k_from_dist_profile, + _extract_top_k_motifs, + _extract_top_r_motifs, + _inverse_distance_profile, + _update_dot_products, + get_ith_products, +) +from aeon.similarity_search.series.neighbors._mass import ( + _normalized_squared_distance_profile, + _squared_distance_profile, +) +from aeon.utils.numba.general import sliding_mean_std_one_series + + +class StompMotif(BaseSeriesSimilaritySearch): + """ + Estimator to extract top k motifs using STOMP, descibed in [1]_. + + This estimators allows to perform multiple type of motif search operations by using + different parameterization. We base oursleves on Figure 3 of [2]_ to establish the + following list, but modify the confusing naming for some of them. We do not yet + support "Learning" and "Valmod" motifs : + + - for "Pair Motifs" : This is the default configuration: { + "motif_size": 1, + } + + - for "k-motifs" : the extension of pair motifs: { + "motif_size": k, + } + + - for "r-motifs" (originaly named k-motifs, which was confusing as it is a range + based motif): { + "motif_size":np.inf, + "dist_threshold":r, + "motif_extraction_method":"r_motifs" + } + + Parameters + ---------- + length : int + The length of the motifs to extract. This is the length of the subsequence + that will be used in the computations. + normalize : bool + Wheter the computations between subsequences should use a z-normalied distance. + + Notes + ----- + This estimator only provides an exact computation method, faster approximate methods + also exist in the litterature. We use a squared euclidean distance instead of the + euclidean distance, if you want euclidean distance results, you should square root + the obtained results. + + References + ---------- + .. [1] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael + Yeh, Gareth Funning, Abdullah Mueen, Philip Brisk, and Eamonn Keogh. 2016. + Matrix profile II: Exploiting a novel algorithm and GPUs to break the one hundred + million barrier for time series motifs and joins. In 2016 IEEE 16th international + conference on data mining (ICDM). IEEE, 739–748. + .. [2] Patrick Schäfer and Ulf Leser. 2022. Motiflets: Simple and Accurate Detection + of Motifs in Time Series. Proc. VLDB Endow. 16, 4 (December 2022), 725–737. + https://doi.org/10.14778/3574245.3574257 + """ + + def __init__( + self, + length: int, + normalize: Optional[bool] = False, + ): + self.normalize = normalize + self.length = length + super().__init__() + + def _fit( + self, + X: np.ndarray, + y=None, + ): + if self.normalize: + self.X_means_, self.X_stds_ = sliding_mean_std_one_series(X, self.length, 1) + return self + + def fit_predict(self, X, **kwargs): + """ + Fit and predict on a single series X in order to compute self-motifs. + + Parameters + ---------- + X : np.ndarray, shape = (n_channels, n_tiempoints) + Series to fit and predict on. + kwargs : dict, optional + Additional keyword argument as dict or individual keywords args + to pass to the estimator during predict. + + Returns + ------- + indexes : np.ndarray + Indexes of series in the that are similar to X. + distances : np.ndarray + Distance of the matches to each series + """ + self.fit(X) + return self.predict(X, is_self_computation=True, **kwargs) + + def _predict( + self, + X: np.ndarray, + k: Optional[int] = 1, + motif_size: Optional[int] = 1, + dist_threshold: Optional[float] = np.inf, + allow_trivial_matches: Optional[bool] = False, + exclusion_factor: Optional[float] = 0.5, + inverse_distance: Optional[bool] = False, + motif_extraction_method: Optional[str] = "k_motifs", + is_self_computation: Optional[bool] = False, + ): + """ + Exctract the motifs of X_ relative to a series X using STOMP matrix prfoile. + + To compute self-motifs, X is set to None. + + Parameters + ---------- + X : np.ndarray, shape=(n_channels, n_timepoint) + Series to use to compute the matrix profile against X_. Motifs will then be + extracted from the matrix profile. + k : int + The number of motifs to return. The default is 1, meaning we return only + the motif set with the minimal sum of distances to its query. + motif_size : int + The number of subsequences in a motif excluding the motif candidate. This + means that the number of subsequences in the returned motifs will be + ``motif_size + 1``. For example, with the default is 1, this means that we + extract motif pairs (the motif candidate from X and its best match in X_) + dist_threshold : float + The maximum allowed distance of a candidate subsequence of X to a query + subsequence from X_ for the candidate to be considered as a neighbor. + allow_trivial_matches: bool, optional + Whether a neighbor of a match to a query can also be considered as matches + (True), or if an exclusion zone is applied around each match to avoid + trivial matches with their direct neighbors (False). + exclusion_factor : float, default=0.5. + A factor of the query length used to define the exclusion zone when + ``allow_trivial_matches`` is set to False. For a given timestamp, + the exclusion zone starts from + :math:`id_timestamp - floor(length*exclusion_factor)` and end at + :math:`id_timestamp + floor(length*exclusion_factor)`. + inverse_distance : bool + If True, the matching will be made on the inverse of the distance, and thus, + the farther neighbors will be returned instead of the closest ones. + motif_extraction_method : str + A string indicating the methodology to use to extract the top k motifs from + the matrix profile. Available methods are "r_motifs" and "k_motifs": + - "r_motifs" means we rank motif set by their cardinality (number of matches + with a distance at most dist_threshold to the candidate motif), with higher + is better. + - "k_motifs" means rank motifs by their maximum distance to their matches. + For example, if a 3-motif has distances to its matches equal to + ``[0.1,0.2,0.5]`` will have a score of ``max([0.1,0.2,0.5])=0.5``. + is_self_computation : bool + Wheter X is equal to the series X_ given during fit. + + Returns + ------- + np.ndarray, shape = (k, motif_size) + The indexes of the best matches in ``distance_profile``. + np.ndarray, shape = (k, motif_size) + The distances of the best matches. + + """ + if motif_extraction_method not in ["k_motifs", "r_motifs"]: + raise ValueError( + "Expected motif_extraction_method to be either 'k_motifs' or 'r_motifs'" + f"but got {motif_extraction_method}" + ) + + MP, IP = self.compute_matrix_profile( + X, + motif_size=motif_size, + dist_threshold=dist_threshold, + allow_trivial_matches=allow_trivial_matches, + exclusion_factor=exclusion_factor, + inverse_distance=inverse_distance, + is_self_computation=is_self_computation, + ) + if motif_extraction_method == "k_motifs": + return _extract_top_k_motifs( + MP, IP, k, allow_trivial_matches, int(self.length * exclusion_factor) + ) + elif motif_extraction_method == "r_motifs": + return _extract_top_r_motifs( + MP, IP, k, allow_trivial_matches, int(self.length * exclusion_factor) + ) + + def compute_matrix_profile( + self, + X: np.ndarray, + motif_size: Optional[int] = 1, + dist_threshold: Optional[float] = np.inf, + allow_trivial_matches: Optional[bool] = False, + exclusion_factor: Optional[float] = 0.5, + inverse_distance: Optional[bool] = False, + is_self_computation: Optional[bool] = False, + ): + """ + Compute matrix profile. + + The matrix profile is computed on the series given in fit (X_). If X is + not given, computes the self matrix profile of X_. Otherwise, compute the matrix + profile of X_ relative to X. + + Parameters + ---------- + X : np.ndarray, shape = (n_channels, n_timepoints) + A 2D array time series against which the matrix profile of X_ will be + computed. + motif_size : int + The number of subsequences in a motif. Default is 1, meaning we extract + motif pairs (the query and its best match). + dist_threshold : float + The maximum allowed distance of a candidate subsequence of X to a query + subsequence from X_ for the candidate to be considered as a neighbor. + inverse_distance : bool + If True, the matching will be made on the inverse of the distance, and thus, + the worst matches to the query will be returned instead of the best ones. + exclusion_factor : float, default=0.5 + A factor of the query length used to define the exclusion zone when + ``allow_trivial_matches`` is set to False. For a given timestamp, + the exclusion zone starts from + :math:`id_timestamp - floor(length * exclusion_factor)` and end at + :math:`id_timestamp + floor(length * exclusion_factor)`. + is_self_computation : bool + Wheter X is equal to the series X_ given during fit. + + Returns + ------- + MP : TypedList of np.ndarray (n_timepoints - L + 1) + Matrix profile distances for each query subsequence. n_timepoints is the + number of timepoint of X_. Each element of the list contains array of + variable size. + IP : TypedList of np.ndarray (n_timepoints - L + 1) + Indexes of the top matches for each query subsequence. n_timepoints is the + number of timepoint of X_. Each element of the list contains array of + variable size. + """ + if is_self_computation and self.normalize: + X_means, X_stds = self.X_means_, self.X_stds_ + elif not is_self_computation and self.normalize: + X_means, X_stds = sliding_mean_std_one_series(X, self.length, 1) + + X_dotX = get_ith_products(X, self.X_, self.length, 0) + exclusion_size = int(self.length * exclusion_factor) + + if np.isinf(motif_size): + # convert infs here as numba seem to not be able to do == np.inf ? + motif_size = X.shape[1] - self.length + 1 + + if self.normalize: + MP, IP = _stomp_normalized( + self.X_, + X, + X_dotX, + self.X_means_, + self.X_stds_, + X_means, + X_stds, + self.length, + motif_size, + dist_threshold, + allow_trivial_matches, + exclusion_size, + inverse_distance, + is_self_computation, + ) + else: + MP, IP = _stomp( + self.X_, + X, + X_dotX, + self.length, + motif_size, + dist_threshold, + allow_trivial_matches, + exclusion_size, + inverse_distance, + is_self_computation, + ) + return MP, IP + + @classmethod + def _get_test_params(cls, parameter_set: str = "default"): + """Return testing parameter settings for the estimator. + + Parameters + ---------- + parameter_set : str, default="default" + Name of the set of test parameters to return, for use in tests. If no + special parameters are defined for a value, will return `"default"` set. + There are currently no reserved values for transformers. + + Returns + ------- + params : dict or list of dict, default = {} + Parameters to create testing instances of the class + Each dict are parameters to construct an "interesting" test instance, i.e., + `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance. + """ + if parameter_set == "default": + params = {"length": 3} + else: + raise NotImplementedError( + f"The parameter set {parameter_set} is not yet implemented" + ) + return params + + +@njit(cache=True, fastmath=True) +def _stomp_normalized( + X_A, + X_B, + AdotB, + X_A_means, + X_A_stds, + X_B_means, + X_B_stds, + L, + motif_size, + dist_threshold, + allow_trivial_matches, + exclusion_size, + inverse_distance, + is_self_mp, +): + """ + Compute the Matrix Profile using the STOMP algorithm with normalized distances. + + X_A : np.ndarray, 2D array of shape (n_channels, n_timepoints) + The series from which the queries will be extracted. + X_B : np.ndarray, 2D array of shape (n_channels, series_length) + The time series on which the distance profile of each query will be computed. + AdotB : np.ndarray, 2D array of shape (n_channels, series_length - L + 1) + Precomputed dot products between the first query of size L of X_A and X_B. + X_A_means : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) + Means of each subsequences of X_A of size L. + X_A_stds : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) + Stds of each subsequences of X of size L. + X_B_means : np.ndarray, 2D array of shape (n_channels, series_length - L + 1) + Means of each subsequences of X_B of size L. + X_B_stds : np.ndarray, 2D array of shape (n_channels, series_length - L + 1) + Stds of each subsequences of X_B of size L. + L : int + Length of the subsequences used for the distance computation. + motif_size : int + The number of subsequences to extract from each distance profile. + dist_threshold : float + The maximum allowed distance of a candidate subsequence of X to a query + subsequence from X_ for the candidate to be considered as a neighbor. + allow_trivial_matches : bool + Whether the top-k candidates can be neighboring subsequences. + exclusion_size : int + The size of the exclusion zone used to prevent returning as top k candidates + the ones that are close to each other (for example i and i+1). + It is used to define a region between + :math:`id_timestamp - exclusion_size` and + :math:`id_timestamp + exclusion_size` which cannot be returned + as best match if :math:`id_timestamp` was already selected. By default, + the value None means that this is not used. + inverse_distance : bool + If True, the matching will be made on the inverse of the distance, and thus, the + worst matches to the query will be returned instead of the best ones. + is_self_mp : bool + Whether X_A == X_B. + + Returns + ------- + MP : TypedList of np.ndarray (n_timepoints - L + 1) + Matrix profile distances for each query subsequence. n_timepoints is the + number of timepoint of X_. Each element of the list contains array of + variable size. + IP : TypedList of np.ndarray (n_timepoints - L + 1) + Indexes of the top matches for each query subsequence. n_timepoints is the + number of timepoint of X_. Each element of the list contains array of + variable size. + """ + n_queries = X_A.shape[1] - L + 1 + _max_timestamp = X_B.shape[1] - L + 1 + MP = List() + IP = List() + + for i_q in range(n_queries): + # size T.shape[1] - L + 1 + dist_profile = _normalized_squared_distance_profile( + AdotB, X_B_means, X_B_stds, X_A_means[:, i_q], X_A_stds[:, i_q], L + ) + + if i_q + 1 < n_queries: + AdotB = _update_dot_products(X_B, X_A, AdotB, L, i_q + 1) + + if inverse_distance: + dist_profile = _inverse_distance_profile(dist_profile) + + if is_self_mp: + ub = min(i_q + exclusion_size, _max_timestamp + 1) + lb = max(0, i_q - exclusion_size) + dist_profile[lb:ub] = np.inf + + _top_indexes, top_dists = _extract_top_k_from_dist_profile( + dist_profile, + motif_size, + dist_threshold, + allow_trivial_matches, + exclusion_size, + ) + top_indexes = np.zeros((len(_top_indexes), 2), dtype=np.int64) + for i_idx in range(len(_top_indexes)): + top_indexes[i_idx, 0] = i_q + top_indexes[i_idx, 1] = _top_indexes[i_idx] + MP.append(top_dists) + IP.append(top_indexes) + + return MP, IP + + +@njit(cache=True, fastmath=True) +def _stomp( + X_A, + X_B, + AdotB, + L, + motif_size, + dist_threshold, + allow_trivial_matches, + exclusion_size, + inverse_distance, + is_self_mp, +): + """ + Compute the Matrix Profile using the STOMP algorithm with non-normalized distances. + + X_A : np.ndarray, 2D array of shape (n_channels, n_timepoints) + The series from which the queries will be extracted. + X_B : np.ndarray, 2D array of shape (n_channels, series_length) + The time series on which the distance profile of each query will be computed. + AdotB : np.ndarray, 2D array of shape (n_channels, series_length - L + 1) + Precomputed dot products between the first query of size L of X_A and X_B. + L : int + Length of the subsequences used for the distance computation. + motif_size : int + The number of subsequences to extract from each distance profile. + dist_threshold : float + The maximum allowed distance of a candidate subsequence of X to a query + subsequence from X_ for the candidate to be considered as a neighbor. + allow_trivial_matches : bool + Wheter the top-k candidates can be neighboring subsequences. + exclusion_size : int + The size of the exclusion zone used to prevent returning as top k candidates + the ones that are close to each other (for example i and i+1). + It is used to define a region between + :math:`id_timestamp - exclusion_size` and + :math:`id_timestamp + exclusion_size` which cannot be returned + as best match if :math:`id_timestamp` was already selected. By default, + the value None means that this is not used. + inverse_distance : bool + If True, the matching will be made on the inverse of the distance, and thus, the + worst matches to the query will be returned instead of the best ones. + is_self_mp : bool + Wheter X_A == X_B. + + Returns + ------- + MP : TypedList of np.ndarray (n_timepoints - L + 1) + Matrix profile distances for each query subsequence. n_timepoints is the + number of timepoint of X_. Each element of the list contains array of + variable size. + IP : TypedList of np.ndarray (n_timepoints - L + 1) + Indexes of the top matches for each query subsequence. n_timepoints is the + number of timepoint of X_. Each element of the list contains array of + variable size. + """ + n_queries = X_A.shape[1] - L + 1 + _max_timestamp = X_B.shape[1] - L + 1 + MP = List() + IP = List() + + # For each query of size L in X_A + for i_q in range(n_queries): + Q = X_A[:, i_q : i_q + L] + dist_profile = _squared_distance_profile(AdotB, X_B, Q) + if i_q + 1 < n_queries: + AdotB = _update_dot_products(X_B, X_A, AdotB, L, i_q + 1) + + if inverse_distance: + dist_profile = _inverse_distance_profile(dist_profile) + + if is_self_mp: + ub = min(i_q + exclusion_size, _max_timestamp + 1) + lb = max(0, i_q - exclusion_size) + dist_profile[lb:ub] = np.inf + + _top_indexes, top_dists = _extract_top_k_from_dist_profile( + dist_profile, + motif_size, + dist_threshold, + allow_trivial_matches, + exclusion_size, + ) + top_indexes = np.zeros((len(_top_indexes), 2), dtype=np.int64) + for i_idx in range(len(_top_indexes)): + top_indexes[i_idx, 0] = i_q + top_indexes[i_idx, 1] = _top_indexes[i_idx] + MP.append(top_dists) + IP.append(top_indexes) + + return MP, IP diff --git a/aeon/similarity_search/series/motifs/tests/__init__.py b/aeon/similarity_search/series/motifs/tests/__init__.py new file mode 100644 index 0000000000..d0d8f2c42c --- /dev/null +++ b/aeon/similarity_search/series/motifs/tests/__init__.py @@ -0,0 +1 @@ +"""Tests for series motif search methods.""" diff --git a/aeon/similarity_search/series/motifs/tests/test_stomp.py b/aeon/similarity_search/series/motifs/tests/test_stomp.py new file mode 100644 index 0000000000..67ff930de1 --- /dev/null +++ b/aeon/similarity_search/series/motifs/tests/test_stomp.py @@ -0,0 +1,149 @@ +""" +Tests for stomp algorithm. + +We do not test equality for returned indexes due to the unstable nature of argsort +and the fact that the "kind=stable" parameter is not yet supported in numba. We instead +test that the returned index match the expected distance value. +""" + +__maintainer__ = ["baraline"] + +import numpy as np +import pytest +from numpy.testing import assert_almost_equal, assert_array_almost_equal + +from aeon.similarity_search.series._commons import ( + _extract_top_k_from_dist_profile, + _inverse_distance_profile, + get_ith_products, +) +from aeon.similarity_search.series.motifs._stomp import _stomp, _stomp_normalized +from aeon.similarity_search.series.neighbors._dummy import ( + _naive_squared_distance_profile, +) +from aeon.testing.data_generation import make_example_2d_numpy_series +from aeon.utils.numba.general import ( + get_all_subsequences, + sliding_mean_std_one_series, + z_normalise_series_3d, +) + +MOTIFS_SIZE_VALUES = [1, 3] +THRESHOLD = [np.inf, 0.75] +THRESHOLD_NORM = [np.inf, 4.5] +NN_MATCHES = [True, False] +INVERSE = [True, False] + + +@pytest.mark.parametrize("motif_size", MOTIFS_SIZE_VALUES) +@pytest.mark.parametrize("threshold", THRESHOLD) +@pytest.mark.parametrize("allow_trivial_matches", NN_MATCHES) +@pytest.mark.parametrize("inverse_distance", INVERSE) +def test__stomp(motif_size, threshold, allow_trivial_matches, inverse_distance): + """Test STOMP method.""" + L = 3 + + X_A = make_example_2d_numpy_series( + n_channels=2, + n_timepoints=10, + ) + X_B = make_example_2d_numpy_series(n_channels=2, n_timepoints=10) + AdotB = get_ith_products(X_B, X_A, L, 0) + + exclusion_size = L + # MP : distances to best matches for each query + # IP : Indexes of best matches for each query + MP, IP = _stomp( + X_A, + X_B, + AdotB, + L, + motif_size, + threshold, + allow_trivial_matches, + exclusion_size, + inverse_distance, + False, + ) + # For each query of size L in T + X_B_subs = get_all_subsequences(X_B, L, 1) + X_A_subs = get_all_subsequences(X_A, L, 1) + for i in range(X_A.shape[1] - L + 1): + dist_profile = _naive_squared_distance_profile(X_B_subs, X_A_subs[i]) + # Check that the top matches extracted have the same value that the + # top matches in the distance profile + if inverse_distance: + dist_profile = _inverse_distance_profile(dist_profile) + + top_k_indexes, top_k_distances = _extract_top_k_from_dist_profile( + dist_profile, motif_size, threshold, allow_trivial_matches, exclusion_size + ) + # Check that the top matches extracted have the same value that the + # top matches in the distance profile + assert_array_almost_equal(MP[i], top_k_distances) + + # Check that the index in IP correspond to a distance profile point + # with value equal to the corresponding MP point. + for j, index in enumerate(top_k_indexes): + assert_almost_equal(MP[i][j], dist_profile[index]) + + +@pytest.mark.parametrize("motif_size", MOTIFS_SIZE_VALUES) +@pytest.mark.parametrize("threshold", THRESHOLD_NORM) +@pytest.mark.parametrize("allow_trivial_matches", NN_MATCHES) +@pytest.mark.parametrize("inverse_distance", INVERSE) +def test__stomp_normalised( + motif_size, threshold, allow_trivial_matches, inverse_distance +): + """Test STOMP normalised method.""" + L = 3 + + X_A = make_example_2d_numpy_series( + n_channels=2, + n_timepoints=10, + ) + X_B = make_example_2d_numpy_series(n_channels=2, n_timepoints=10) + X_A_means, X_A_stds = sliding_mean_std_one_series(X_A, L, 1) + X_B_means, X_B_stds = sliding_mean_std_one_series(X_B, L, 1) + AdotB = get_ith_products(X_B, X_A, L, 0) + + exclusion_size = L + # MP : distances to best matches for each query + # IP : Indexes of best matches for each query + MP, IP = _stomp_normalized( + X_A, + X_B, + AdotB, + X_A_means, + X_A_stds, + X_B_means, + X_B_stds, + L, + motif_size, + threshold, + allow_trivial_matches, + exclusion_size, + inverse_distance, + False, + ) + # For each query of size L in T + X_B_subs = z_normalise_series_3d(get_all_subsequences(X_B, L, 1)) + X_A_subs = z_normalise_series_3d(get_all_subsequences(X_A, L, 1)) + for i in range(X_A.shape[1] - L + 1): + dist_profile = _naive_squared_distance_profile(X_B_subs, X_A_subs[i]) + # Check that the top matches extracted have the same value that the + # top matches in the distance profile + if inverse_distance: + dist_profile = _inverse_distance_profile(dist_profile) + top_k_indexes, top_k_distances = _extract_top_k_from_dist_profile( + dist_profile, motif_size, threshold, allow_trivial_matches, exclusion_size + ) + + # Check that the top matches extracted have the same value that the + # top matches in the distance profile + assert_array_almost_equal(MP[i], top_k_distances) + + # Check that the index in IP correspond to a distance profile point + # with value equal to the corresponding MP point. + for j, index in enumerate(top_k_indexes): + assert_almost_equal(MP[i][j], dist_profile[index]) diff --git a/aeon/similarity_search/series/neighbors/__init__.py b/aeon/similarity_search/series/neighbors/__init__.py new file mode 100644 index 0000000000..047bfbe9c4 --- /dev/null +++ b/aeon/similarity_search/series/neighbors/__init__.py @@ -0,0 +1,9 @@ +"""Subsequence Neighbor search for series.""" + +__all__ = [ + "DummySNN", + "MassSNN", +] + +from aeon.similarity_search.series.neighbors._dummy import DummySNN +from aeon.similarity_search.series.neighbors._mass import MassSNN diff --git a/aeon/similarity_search/series/neighbors/_dummy.py b/aeon/similarity_search/series/neighbors/_dummy.py new file mode 100644 index 0000000000..399297b5c9 --- /dev/null +++ b/aeon/similarity_search/series/neighbors/_dummy.py @@ -0,0 +1,207 @@ +"""Implementation of NN with brute force.""" + +from typing import Optional + +__maintainer__ = ["baraline"] +__all__ = ["DummySNN"] + +import numpy as np +from numba import get_num_threads, njit, prange, set_num_threads + +from aeon.similarity_search.series._base import BaseSeriesSimilaritySearch +from aeon.similarity_search.series._commons import ( + _check_X_index, + _extract_top_k_from_dist_profile, + _inverse_distance_profile, +) +from aeon.utils.numba.general import ( + get_all_subsequences, + z_normalise_series_2d, + z_normalise_series_3d, +) +from aeon.utils.validation import check_n_jobs + + +class DummySNN(BaseSeriesSimilaritySearch): + """Estimator to compute the on profile and distance profile using brute force.""" + + _tags = {"capability:multithreading": True} + + def __init__( + self, + length: int, + normalize: Optional[bool] = False, + n_jobs: Optional[int] = 1, + ): + self.normalize = normalize + self.n_jobs = n_jobs + self.length = length + super().__init__() + + def _fit( + self, + X: np.ndarray, + y=None, + ): + prev_threads = get_num_threads() + + set_num_threads(check_n_jobs(self.n_jobs)) + + self.X_subs = get_all_subsequences(self.X_, self.length, 1) + if self.normalize: + self.X_subs = z_normalise_series_3d(self.X_subs) + set_num_threads(prev_threads) + return self + + def _predict( + self, + X: np.ndarray, + k: Optional[int] = 1, + dist_threshold: Optional[float] = np.inf, + exclusion_factor: Optional[float] = 0.5, + inverse_distance: Optional[bool] = False, + allow_neighboring_matches: Optional[bool] = False, + X_index: Optional[int] = None, + ): + """ + Compute nearest neighbors to X in subsequences of X_. + + Parameters + ---------- + X : np.ndarray, shape=(n_channels, length) + Subsequence we want to find neighbors for. + k : int + The number of neighbors to return. + dist_threshold : float + The maximum distance of neighbors to X. + inverse_distance : bool + If True, the matching will be made on the inverse of the distance, and thus, + the farther neighbors will be returned instead of the closest ones. + exclusion_factor : float, default=0.5 + A factor of the query length used to define the exclusion zone when + ``allow_neighboring_matches`` is set to False. For a given timestamp, + the exclusion zone starts from + :math:`id_timestamp - floor(length * exclusion_factor)` and end at + :math:`id_timestamp + floor(length * exclusion_factor)`. + X_index : int, optional + If ``X`` is a subsequence of X_, specify its starting timestamp in ``X_``. + If specified, neighboring subsequences of X won't be able to match as + neighbors. + + Returns + ------- + np.ndarray, shape = (k) + The indexes of the best matches in ``distance_profile``. + np.ndarray, shape = (k) + The distances of the best matches. + + """ + if X.shape[1] != self.length: + raise ValueError( + f"Expected X to have {self.length} timepoints but" + f" got {X.shape[1]} timepoints." + ) + + X_index = _check_X_index(X_index, self.n_timepoints_, self.length) + dist_profile = self.compute_distance_profile(X) + if inverse_distance: + dist_profile = _inverse_distance_profile(dist_profile) + + exclusion_size = int(self.length * exclusion_factor) + if X_index is not None: + _max_timestamp = self.n_timepoints_ - self.length + ub = min(X_index + exclusion_size, _max_timestamp) + lb = max(0, X_index - exclusion_size) + dist_profile[lb:ub] = np.inf + + if k == np.inf: + k = len(dist_profile) + + return _extract_top_k_from_dist_profile( + dist_profile, + k, + dist_threshold, + allow_neighboring_matches, + exclusion_size, + ) + + def compute_distance_profile(self, X: np.ndarray): + """ + Compute the distance profile of X to all samples in X_. + + Parameters + ---------- + X : np.ndarray, 2D array of shape (n_channels, length) + The query to use to compute the distance profiles. + + Returns + ------- + distance_profile : np.ndarray, 1D array of shape (n_candidates) + The distance profile of X to X_. The ``n_candidates`` value + is equal to ``n_timepoins - length + 1``, with ``n_timepoints`` the + length of X_. + + """ + prev_threads = get_num_threads() + set_num_threads(check_n_jobs(self.n_jobs)) + if self.normalize: + X = z_normalise_series_2d(X) + distance_profile = _naive_squared_distance_profile(self.X_subs, X) + set_num_threads(prev_threads) + return distance_profile + + @classmethod + def _get_test_params(cls, parameter_set: str = "default"): + """Return testing parameter settings for the estimator. + + Parameters + ---------- + parameter_set : str, default="default" + Name of the set of test parameters to return, for use in tests. If no + special parameters are defined for a value, will return `"default"` set. + There are currently no reserved values for transformers. + + Returns + ------- + params : dict or list of dict, default = {} + Parameters to create testing instances of the class + Each dict are parameters to construct an "interesting" test instance, i.e., + `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance. + """ + if parameter_set == "default": + params = {"length": 20} + else: + raise NotImplementedError( + f"The parameter set {parameter_set} is not yet implemented" + ) + return params + + +@njit(cache=True, fastmath=True, parallel=True) +def _naive_squared_distance_profile( + X_subs, + Q, +): + """ + Compute a squared euclidean distance profile. + + Parameters + ---------- + X_subs : array, shape=(n_subsequences, n_channels, length) + Subsequences of size length of the input time series to search in. + Q : array, shape=(n_channels, query_length) + Query used during the search. + + Returns + ------- + out : np.ndarray, 1D array of shape (n_samples, n_timepoints_t - query_length + 1) + The distance between the query and all candidates in X. + + """ + n_subs, n_channels, length = X_subs.shape + dist_profile = np.zeros(n_subs) + for i in prange(n_subs): + for j in range(n_channels): + for k in range(length): + dist_profile[i] += (X_subs[i, j, k] - Q[j, k]) ** 2 + return dist_profile diff --git a/aeon/similarity_search/series/neighbors/_mass.py b/aeon/similarity_search/series/neighbors/_mass.py new file mode 100644 index 0000000000..695dce8844 --- /dev/null +++ b/aeon/similarity_search/series/neighbors/_mass.py @@ -0,0 +1,296 @@ +"""Implementation of NN with MASS.""" + +from typing import Optional + +__maintainer__ = ["baraline"] +__all__ = ["MassSNN"] + +import numpy as np +from numba import njit + +from aeon.similarity_search.series._base import BaseSeriesSimilaritySearch +from aeon.similarity_search.series._commons import ( + _check_X_index, + _extract_top_k_from_dist_profile, + _inverse_distance_profile, + fft_sliding_dot_product, +) +from aeon.utils.numba.general import ( + AEON_NUMBA_STD_THRESHOLD, + sliding_mean_std_one_series, +) + + +class MassSNN(BaseSeriesSimilaritySearch): + """ + Estimator to compute the subsequences nearest neighbors using MASS _[1]. + + Parameters + ---------- + length : int + The length of the subsequences to use for the search. + normalize : bool + Whether the subsequences should be z-normalized. + + References + ---------- + .. [1] Abdullah Mueen, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krishnamurthy + Viswanathan, Chetan Kumar Gupta and Eamonn Keogh (2015), The Fastest Similarity + Search Algorithm for Time Series Subsequences under Euclidean Distance. + """ + + def __init__( + self, + length: int, + normalize: Optional[bool] = False, + ): + self.normalize = normalize + self.length = length + super().__init__() + + def _fit( + self, + X: np.ndarray, + y=None, + ): + if self.normalize: + self.X_means_, self.X_stds_ = sliding_mean_std_one_series(X, self.length, 1) + return self + + def _predict( + self, + X: np.ndarray, + k: Optional[int] = 1, + dist_threshold: Optional[float] = np.inf, + allow_trivial_matches: Optional[bool] = False, + exclusion_factor: Optional[float] = 0.5, + inverse_distance: Optional[bool] = False, + X_index: Optional[int] = None, + ): + """ + Compute nearest neighbors to X in subsequences of X_. + + Parameters + ---------- + X : np.ndarray, shape=(n_channels, length) + Subsequence we want to find neighbors for. + k : int + The number of neighbors to return. + dist_threshold : float + The maximum allowed distance of a candidate subsequence of X_ to X + for the candidate to be considered as a neighbor. + allow_trivial_matches: bool, optional + Whether a neighbors of a match to a query can be also considered as matches + (True), or if an exclusion zone is applied around each match to avoid + trivial matches with their direct neighbors (False). + inverse_distance : bool + If True, the matching will be made on the inverse of the distance, and thus, + the farther neighbors will be returned instead of the closest ones. + exclusion_factor : float, default=1. + A factor of the query length used to define the exclusion zone when + ``allow_trivial_matches`` is set to False. For a given timestamp, + the exclusion zone starts from + :math:`id_timestamp - floor(length * exclusion_factor)` and end at + :math:`id_timestamp + floor(length * exclusion_factor)`. + X_index : int, optional + If ``X`` is a subsequence of X_, specify its starting timestamp in ``X_``. + If specified, neighboring subsequences of X won't be able to match as + neighbors. + + Returns + ------- + np.ndarray, shape = (k) + The indexes of the best matches in ``distance_profile``. + np.ndarray, shape = (k) + The distances of the best matches. + + """ + if X.shape[1] != self.length: + raise ValueError( + f"Expected X to have {self.length} timepoints but" + f" got {X.shape[1]} timepoints." + ) + X_index = _check_X_index(X_index, self.n_timepoints_, self.length) + dist_profile = self.compute_distance_profile(X) + if inverse_distance: + dist_profile = _inverse_distance_profile(dist_profile) + + exclusion_size = int(self.length * exclusion_factor) + if X_index is not None: + _max_timestamp = self.n_timepoints_ - self.length + ub = min(X_index + exclusion_size, _max_timestamp) + lb = max(0, X_index - exclusion_size) + dist_profile[lb:ub] = np.inf + + if k == np.inf: + k = len(dist_profile) + + return _extract_top_k_from_dist_profile( + dist_profile, + k, + dist_threshold, + allow_trivial_matches, + exclusion_size, + ) + + def compute_distance_profile(self, X: np.ndarray): + """ + Compute the distance profile of X to all samples in X_. + + Parameters + ---------- + X : np.ndarray, 2D array of shape (n_channels, length) + The query to use to compute the distance profiles. + + Returns + ------- + distance_profiles : np.ndarray, 2D array of shape (n_cases, n_candidates) + The distance profile of X to all samples in X_. The ``n_candidates`` value + is equal to ``n_timepoins - length + 1``. If X_ is an unequal length + collection, returns a numba typed list instead of an ndarray. + + """ + QT = fft_sliding_dot_product(self.X_, X) + + if self.normalize: + distance_profile = _normalized_squared_distance_profile( + QT, + self.X_means_, + self.X_stds_, + X.mean(axis=1), + X.std(axis=1), + self.length, + ) + else: + distance_profile = _squared_distance_profile( + QT, + self.X_, # T + X, # Q + ) + + return distance_profile + + @classmethod + def _get_test_params(cls, parameter_set: str = "default"): + """Return testing parameter settings for the estimator. + + Parameters + ---------- + parameter_set : str, default="default" + Name of the set of test parameters to return, for use in tests. If no + special parameters are defined for a value, will return `"default"` set. + There are currently no reserved values for transformers. + + Returns + ------- + params : dict or list of dict, default = {} + Parameters to create testing instances of the class + Each dict are parameters to construct an "interesting" test instance, i.e., + `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance. + """ + if parameter_set == "default": + params = {"length": 20} + else: + raise NotImplementedError( + f"The parameter set {parameter_set} is not yet implemented" + ) + return params + + +@njit(cache=True, fastmath=True) +def _squared_distance_profile(QT, T, Q): + """ + Compute squared Euclidean distance profile between query and a time series. + + This function calculates the squared distance profile for a single time series by + leveraging the dot product of the query and time series as well as precomputed sums + of squares to efficiently compute the squared distances. + + Parameters + ---------- + QT : np.ndarray, 2D array of shape (n_channels, n_timepoints - query_length + 1) + The dot product between the query and the time series. + T : np.ndarray, 2D array of shape (n_channels, series_length) + The series used for similarity search. Note that series_length can be equal, + superior or inferior to n_timepoints, it doesn't matter. + Q : np.ndarray + 2D array of shape (n_channels, query_length) representing query subsequence. + + Returns + ------- + distance_profile : np.ndarray + 2D array of shape (n_channels, n_timepoints - query_length + 1) + The squared distance profile between the query and the input time series. + """ + n_channels, profile_length = QT.shape + query_length = Q.shape[1] + _QT = -2 * QT + distance_profile = np.zeros(profile_length) + for k in range(n_channels): + _sum = 0 + _qsum = 0 + for j in range(query_length): + _sum += T[k, j] ** 2 + _qsum += Q[k, j] ** 2 + + distance_profile += _qsum + _QT[k] + distance_profile[0] += _sum + for i in range(1, profile_length): + _sum += T[k, i + (query_length - 1)] ** 2 - T[k, i - 1] ** 2 + distance_profile[i] += _sum + return distance_profile + + +@njit(cache=True, fastmath=True) +def _normalized_squared_distance_profile( + QT, T_means, T_stds, Q_means, Q_stds, query_length +): + """ + Compute the z-normalized squared Euclidean distance profile for one time series. + + Parameters + ---------- + QT : np.ndarray, 2D array of shape (n_channels, n_timepoints - query_length + 1) + The dot product between the query and the time series. + T_means : np.ndarray, 1D array of length n_channels + The mean values of the time series for each channel. + T_stds : np.ndarray, 2D array of shape (n_channels, profile_length) + The standard deviations of the time series for each channel and position. + Q_means : np.ndarray, 1D array of shape (n_channels) + Means of the query q + Q_stds : np.ndarray, 1D array of shape (n_channels) + Stds of the query q + query_length : int + The length of the query subsequence used for the distance profile computation. + + + Returns + ------- + np.ndarray + 2D array of shape (n_channels, n_timepoints - query_length + 1) containing the + z-normalized squared distance profile between the query subsequence and the time + series. Entries are computed based on the z-normalized values, with special + handling for constant values. + """ + n_channels, profile_length = QT.shape + distance_profile = np.zeros(profile_length) + Q_is_constant = Q_stds <= AEON_NUMBA_STD_THRESHOLD + for i in range(profile_length): + Sub_is_constant = T_stds[:, i] <= AEON_NUMBA_STD_THRESHOLD + for k in range(n_channels): + # Two Constant case + if Q_is_constant[k] and Sub_is_constant[k]: + _val = 0 + # One Constant case + elif Q_is_constant[k] or Sub_is_constant[k]: + _val = query_length + else: + denom = query_length * Q_stds[k] * T_stds[k, i] + + p = (QT[k, i] - query_length * (Q_means[k] * T_means[k, i])) / denom + p = min(p, 1.0) + + _val = abs(2 * query_length * (1.0 - p)) + distance_profile[i] += _val + + return distance_profile diff --git a/aeon/similarity_search/series/neighbors/tests/__init__.py b/aeon/similarity_search/series/neighbors/tests/__init__.py new file mode 100644 index 0000000000..00ef2e73ec --- /dev/null +++ b/aeon/similarity_search/series/neighbors/tests/__init__.py @@ -0,0 +1 @@ +"""Tests for series neighbors search methods.""" diff --git a/aeon/similarity_search/series/neighbors/tests/test_dummy.py b/aeon/similarity_search/series/neighbors/tests/test_dummy.py new file mode 100644 index 0000000000..e064b39fbf --- /dev/null +++ b/aeon/similarity_search/series/neighbors/tests/test_dummy.py @@ -0,0 +1,31 @@ +""" +Tests for stomp algorithm. + +We do not test equality for returned indexes due to the unstable nature of argsort +and the fact that the "kind=stable" parameter is not yet supported in numba. We instead +test that the returned index match the expected distance value. +""" + +__maintainer__ = ["baraline"] + +import numpy as np +from numpy.testing import assert_almost_equal + +from aeon.similarity_search.series.neighbors._dummy import ( + _naive_squared_distance_profile, +) +from aeon.testing.data_generation import make_example_2d_numpy_series +from aeon.utils.numba.general import get_all_subsequences + + +def test__naive_squared_distance_profile(): + """Test Euclidean distance with brute force.""" + L = 3 + X = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + Q = make_example_2d_numpy_series(n_channels=1, n_timepoints=L) + + dist_profile = _naive_squared_distance_profile(get_all_subsequences(X, L, 1), Q) + + for i_t in range(X.shape[1] - L + 1): + S = X[:, i_t : i_t + L] + assert_almost_equal(dist_profile[i_t], np.sum((S - Q) ** 2)) diff --git a/aeon/similarity_search/series/neighbors/tests/test_mass.py b/aeon/similarity_search/series/neighbors/tests/test_mass.py new file mode 100644 index 0000000000..b6bf1953ea --- /dev/null +++ b/aeon/similarity_search/series/neighbors/tests/test_mass.py @@ -0,0 +1,44 @@ +"""Tests for MASS algorithm.""" + +__maintainer__ = ["baraline"] + +import numpy as np +from numpy.testing import assert_almost_equal + +from aeon.similarity_search.series._commons import fft_sliding_dot_product +from aeon.similarity_search.series.neighbors._mass import ( + _normalized_squared_distance_profile, + _squared_distance_profile, +) +from aeon.testing.data_generation import make_example_2d_numpy_series +from aeon.utils.numba.general import sliding_mean_std_one_series, z_normalise_series_2d + + +def test__squared_distance_profile(): + """Test squared distance profile.""" + L = 3 + X = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + Q = make_example_2d_numpy_series(n_channels=1, n_timepoints=L) + QX = fft_sliding_dot_product(X, Q) + dist_profile = _squared_distance_profile(QX, X, Q) + for i_t in range(X.shape[1] - L + 1): + assert_almost_equal(dist_profile[i_t], np.sum((X[:, i_t : i_t + L] - Q) ** 2)) + + +def test__normalized_squared_distance_profile(): + """Test Euclidean distance.""" + L = 3 + X = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + Q = make_example_2d_numpy_series(n_channels=1, n_timepoints=L) + QX = fft_sliding_dot_product(X, Q) + X_mean, X_std = sliding_mean_std_one_series(X, L, 1) + Q_mean = Q.mean(axis=1) + Q_std = Q.std(axis=1) + + dist_profile = _normalized_squared_distance_profile( + QX, X_mean, X_std, Q_mean, Q_std, L + ) + Q = z_normalise_series_2d(Q) + for i_t in range(X.shape[1] - L + 1): + S = z_normalise_series_2d(X[:, i_t : i_t + L]) + assert_almost_equal(dist_profile[i_t], np.sum((S - Q) ** 2)) diff --git a/aeon/similarity_search/series/tests/__init__.py b/aeon/similarity_search/series/tests/__init__.py new file mode 100644 index 0000000000..4762fe16ce --- /dev/null +++ b/aeon/similarity_search/series/tests/__init__.py @@ -0,0 +1 @@ +"""Tests for base class and commons functions.""" diff --git a/aeon/similarity_search/series/tests/test_base.py b/aeon/similarity_search/series/tests/test_base.py new file mode 100644 index 0000000000..33b78082c3 --- /dev/null +++ b/aeon/similarity_search/series/tests/test_base.py @@ -0,0 +1,19 @@ +"""Test for series similarity search base class.""" + +__maintainer__ = ["baraline"] + +from aeon.testing.mock_estimators._mock_similarity_searchers import ( + MockSeriesSimilaritySearch, +) +from aeon.testing.testing_data import FULL_TEST_DATA_DICT, _get_datatypes_for_estimator + + +def test_input_shape_fit_predict_collection_motifs(): + """Test input shapes.""" + estimator = MockSeriesSimilaritySearch() + datatypes = _get_datatypes_for_estimator(estimator) + # dummy data to pass to fit when testing predict/predict_proba + for datatype in datatypes: + X_train, y_train = FULL_TEST_DATA_DICT[datatype]["train"] + X_test, y_test = FULL_TEST_DATA_DICT[datatype]["test"] + estimator.fit(X_train, y_train).predict(X_test) diff --git a/aeon/similarity_search/series/tests/test_commons.py b/aeon/similarity_search/series/tests/test_commons.py new file mode 100644 index 0000000000..abed374318 --- /dev/null +++ b/aeon/similarity_search/series/tests/test_commons.py @@ -0,0 +1,171 @@ +"""Test _commons.py functions.""" + +__maintainer__ = ["baraline"] +import numpy as np +import pytest +from numba.typed import List +from numpy.testing import assert_, assert_array_almost_equal, assert_array_equal + +from aeon.similarity_search.series._commons import ( + _extract_top_k_from_dist_profile, + _extract_top_k_motifs, + _extract_top_r_motifs, + _inverse_distance_profile, + _update_dot_products, + fft_sliding_dot_product, + get_ith_products, +) +from aeon.testing.data_generation import ( + make_example_1d_numpy, + make_example_2d_numpy_series, +) + +K_VALUES = [1, 3, 5] +THRESHOLDS = [np.inf, 1.5] +NN_MATCHES = [False, True] +EXCLUSION_SIZE = [3, 5] + + +def test_fft_sliding_dot_product(): + """Test the fft_sliding_dot_product function.""" + L = 4 + X = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + Q = make_example_2d_numpy_series(n_channels=1, n_timepoints=L) + + values = fft_sliding_dot_product(X, Q) + # Compare values[0] only as input is univariate + assert_array_almost_equal( + values[0], + [np.dot(Q[0], X[0, i : i + L]) for i in range(X.shape[1] - L + 1)], + ) + + +def test__update_dot_products(): + """Test the _update_dot_product function.""" + X = make_example_2d_numpy_series(n_channels=1, n_timepoints=20) + T = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + L = 7 + current_product = get_ith_products(X, T, L, 0) + for i_query in range(1, T.shape[1] - L + 1): + new_product = get_ith_products( + X, + T, + L, + i_query, + ) + current_product = _update_dot_products( + X, + T, + current_product, + L, + i_query, + ) + assert_array_almost_equal(new_product, current_product) + + +def test_get_ith_products(): + """Test i-th dot product of a subsequence of size L.""" + X = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + Q = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + L = 5 + + values = get_ith_products(X, Q, L, 0) + # Compare values[0] only as input is univariate + assert_array_almost_equal( + values[0], + [np.dot(Q[0, 0:L], X[0, i : i + L]) for i in range(X.shape[1] - L + 1)], + ) + + values = get_ith_products(X, Q, L, 4) + # Compare values[0] only as input is univariate + assert_array_almost_equal( + values[0], + [np.dot(Q[0, 4 : 4 + L], X[0, i : i + L]) for i in range(X.shape[1] - L + 1)], + ) + + +def test__inverse_distance_profile(): + """Test method to inverse a TypedList of distance profiles.""" + X = make_example_1d_numpy() + X_inv = _inverse_distance_profile(X) + assert_array_almost_equal(1 / (X + 1e-8), X_inv) + + +def test__extract_top_k_motifs(): + """Test motif extraction based on max distance.""" + MP = np.array( + [ + [1.0, 2.0], + [1.0, 4.0], + [0.5, 0.9], + [0.6, 0.7], + ] + ) + + IP = np.array( + [ + [1, 2], + [1, 4], + [0, 3], + [0, 7], + ] + ) + IP_k, MP_k = _extract_top_k_motifs(MP, IP, 2, True, 0) + assert_(len(MP_k) == 2) + assert_array_equal(MP_k[0], [0.6, 0.7]) + assert_array_equal(IP_k[0], [0, 7]) + assert_array_equal(MP_k[1], [0.5, 0.9]) + assert_array_equal(IP_k[1], [0, 3]) + + +def test__extract_top_r_motifs(): + """Test motif extraction based on motif set cardinality.""" + MP = List() + MP.append(List([1.0, 1.5, 2.0, 1.5])) + MP.append(List([1.0, 4.0])) + MP.append(List([0.5, 0.9, 1.0])) + MP.append(List([0.6, 0.7])) + + IP = List() + IP.append(List([1, 2, 3, 4])) + IP.append(List([1, 4])) + IP.append(List([0, 3, 6])) + IP.append(List([0, 7])) + + IP_k, MP_k = _extract_top_r_motifs(MP, IP, 2, True, 0) + assert_(len(MP_k) == 2) + assert_array_equal(MP_k[0], [1.0, 1.5, 2.0, 1.5]) + assert_array_equal(IP_k[0], [1, 2, 3, 4]) + assert_array_equal(MP_k[1], [0.5, 0.9, 1.0]) + assert_array_equal(IP_k[1], [0, 3, 6]) + + +@pytest.mark.parametrize("k", K_VALUES) +@pytest.mark.parametrize("threshold", THRESHOLDS) +@pytest.mark.parametrize("allow_nn_matches", NN_MATCHES) +@pytest.mark.parametrize("exclusion_size", EXCLUSION_SIZE) +def test__extract_top_k_from_dist_profile( + k, threshold, allow_nn_matches, exclusion_size +): + """Test method to esxtract the top k candidates from a list of distance profiles.""" + X = make_example_1d_numpy(n_timepoints=30) + X_sort = np.argsort(X) + exclusion_size = 3 + top_k_indexes, top_k_distances = _extract_top_k_from_dist_profile( + X, k, threshold, allow_nn_matches, exclusion_size + ) + + if len(top_k_indexes) == 0 or len(top_k_distances) == 0: + raise AssertionError("_extract_top_k_from_dist_profile returned empty list") + for i, index in enumerate(top_k_indexes): + assert_(X[index] == top_k_distances[i]) + + assert_(np.all(top_k_distances <= threshold)) + + if allow_nn_matches: + assert_(np.all(top_k_distances <= X[X_sort[len(top_k_indexes) - 1]])) + + if not allow_nn_matches: + same_X = np.sort(top_k_indexes) + if len(same_X) > 1: + assert_(np.all(np.diff(same_X) >= exclusion_size)) diff --git a/aeon/similarity_search/series_search.py b/aeon/similarity_search/series_search.py deleted file mode 100644 index 3c36cf9c4a..0000000000 --- a/aeon/similarity_search/series_search.py +++ /dev/null @@ -1,436 +0,0 @@ -"""Base class for series search.""" - -__maintainer__ = ["baraline"] - -from typing import Union, final - -import numpy as np -from numba import get_num_threads, set_num_threads - -from aeon.similarity_search.base import BaseSimilaritySearch -from aeon.similarity_search.matrix_profiles.stomp import ( - stomp_euclidean_matrix_profile, - stomp_normalised_euclidean_matrix_profile, - stomp_normalised_squared_matrix_profile, - stomp_squared_matrix_profile, -) -from aeon.utils.numba.general import sliding_mean_std_one_series - - -class SeriesSearch(BaseSimilaritySearch): - """ - Series search estimator. - - The series search estimator will return a set of matches for each subsequence of - size L in a time series given during predict. The matching of each subsequence will - be made against all subsequence of size L inside the time series given during fit, - which will represent the search space. - - Depending on the `k` and/or `threshold` parameters, which condition what is - considered a valid match during the search, the number of matches will vary. If `k` - is used, at most `k` matches (the `k` best) will be returned, if `threshold` is used - and `k` is set to `np.inf`, all the candidates which distance to the query is - inferior or equal to `threshold` will be returned. If both are used, the `k` best - matches to the query with distance inferior to `threshold` will be returned. - - - Parameters - ---------- - k : int, default=1 - The number of best matches to return during predict for each subsequence. - threshold : float, default=np.inf - The number of best matches to return during predict for each subsequence. - distance : str, default="euclidean" - Name of the distance function to use. A list of valid strings can be found in - the documentation for :func:`aeon.distances.get_distance_function`. - If a callable is passed it must either be a python function or numba function - with nopython=True, that takes two 1d numpy arrays as input and returns a float. - distance_args : dict, default=None - Optional keyword arguments for the distance function. - normalise : bool, default=False - Whether the distance function should be z-normalised. - speed_up : str, default='fastest' - Which speed up technique to use with for the selected distance - function. By default, the fastest algorithm is used. A list of available - algorithm for each distance can be obtained by calling the - `get_speedup_function_names` function. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - n_jobs : int, default=1 - Number of parallel jobs to use. - - Attributes - ---------- - X_ : array, shape (n_cases, n_channels, n_timepoints) - The input time series stored during the fit method. This is the - database we search in when given a query. - distance_profile_function : function - The function used to compute the distance profile. This is determined - during the fit method based on the distance and normalise - parameters. - - Notes - ----- - For now, the multivariate case is only treated as independent. - Distances are computed for each channel independently and then - summed together. - """ - - def __init__( - self, - k: int = 1, - threshold: float = np.inf, - distance: str = "euclidean", - distance_args: Union[None, dict] = None, - inverse_distance: bool = False, - normalise: bool = False, - speed_up: str = "fastest", - n_jobs: int = 1, - ): - self.k = k - self.threshold = threshold - self._previous_query_length = -1 - self.axis = 1 - - super().__init__( - distance=distance, - distance_args=distance_args, - inverse_distance=inverse_distance, - normalise=normalise, - speed_up=speed_up, - n_jobs=n_jobs, - ) - - def _fit(self, X, y=None): - """ - Check input format and store it to be used as search space during predict. - - Parameters - ---------- - X : array, shape (n_cases, n_channels, n_timepoints) - Input array to used as database for the similarity search - y : optional - Not used. - - Raises - ------ - TypeError - If the input X array is not 3D raise an error. - - Returns - ------- - self - - """ - self.X_ = X - self.matrix_profile_function_ = self._get_series_method_function() - return self - - @final - def predict( - self, - X: np.ndarray, - length: int, - axis: int = 1, - X_index=None, - exclusion_factor=2.0, - apply_exclusion_to_result=False, - ): - """ - Predict method : Check the shape of X and call _predict to perform the search. - - If the distance profile function is normalised, it stores the mean and stds - from X and X_, with X_ the training data. - - Parameters - ---------- - X : np.ndarray, 2D array of shape (n_channels, series_length) - Input time series used for the search. - length : int - The length parameter that will be used to extract queries from X. - axis : int - The time point axis of the input series if it is 2D. If ``axis==0``, it is - assumed each column is a time series and each row is a time point. i.e. the - shape of the data is ``(n_timepoints,n_channels)``. ``axis==1`` indicates - the time series are in rows, i.e. the shape of the data is - ``(n_channels,n_timepoints)``. - X_index : int - An integer indicating if X was extracted is part of the dataset that was - given during the fit method. If so, this integer should be the sample id. - The search will define an exclusion zone for the queries extarcted from X - in order to avoid matching with themself. If None, it is considered that - the query is not extracted from X_. - exclusion_factor : float, default=2. - The factor to apply to the query length to define the exclusion zone. The - exclusion zone is define from - ``id_timestamp - query_length//exclusion_factor`` to - ``id_timestamp + query_length//exclusion_factor``. This also applies to - the matching conditions defined by child classes. For example, with - TopKSimilaritySearch, the k best matches are also subject to the exclusion - zone, but with :math:`id_timestamp` the index of one of the k matches. - apply_exclusion_to_result : bool, default=False - Wheter to apply the exclusion factor to the output of the similarity search. - This means that two matches of the query from the same sample must be at - least spaced by +/- ``query_length//exclusion_factor``. - This can avoid pathological matching where, for example if we extract the - best two matches, there is a high chance that if the best match is located - at ``id_timestamp``, the second best match will be located at - ``id_timestamp`` +/- 1, as they both share all their values except one. - - Raises - ------ - TypeError - If the input X array is not 2D raise an error. - ValueError - If the length of the query is greater - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(series_length - length + 1, n_matches)``, - contains the distance between all the queries of size length and their best - matches in X_. The second array, of shape - ``(series_length - L + 1, n_matches, 2)``, contains the indexes of these - matches as ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - self._check_is_fitted() - prev_threads = get_num_threads() - set_num_threads(self._n_jobs) - series_dim, series_length = self._check_series_format(X, length, axis) - - mask = self._init_X_index_mask( - None if X_index is None else [X_index, 0], - length, - exclusion_factor=exclusion_factor, - ) - - if self.normalise: - _mean, _std = sliding_mean_std_one_series(X, length, 1) - self.T_means_ = _mean - self.T_stds_ = _std - if self._previous_query_length != length: - self._store_mean_std_from_inputs(length) - - if apply_exclusion_to_result: - exclusion_size = length // exclusion_factor - else: - exclusion_size = None - - self._previous_query_length = length - - X_preds = self._predict( - X, - length, - mask, - exclusion_size, - X_index, - exclusion_factor, - apply_exclusion_to_result, - ) - set_num_threads(prev_threads) - return X_preds - - def _predict( - self, - X, - length, - mask, - exclusion_size, - X_index, - exclusion_factor, - apply_exclusion_to_result, - ): - """ - Private predict method for SeriesSearch. - - This method calculates the matrix profile for a given time series dataset by - comparing all possible subsequences of a specified length against a reference - time series. It handles exclusion zones to prevent nearby matches from being - selected and supports normalization. - - Parameters - ---------- - X : np.ndarray, 2D array of shape (n_channels, series_length) - Input time series used for the search. - length : int - The length parameter that will be used to extract queries from X. - axis : int - The time point axis of the input series if it is 2D. If ``axis==0``, it is - assumed each column is a time series and each row is a time point. i.e. the - shape of the data is ``(n_timepoints,n_channels)``. ``axis==1`` indicates - the time series are in rows, i.e. the shape of the data is - ``(n_channels,n_timepoints)``. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - length + 1) - Boolean mask of the shape of the distance profiles indicating for which part - of it the distance should be computed. In this context, it is the mask for - the first query of size L in T. This mask will be updated during the - algorithm. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestamp - exclusion_size` and - :math:`id_timestamp + exclusion_size` which cannot be returned - as best match if :math:`id_timestamp` was already selected. By default, - the value None means that this is not used. - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(series_length - length + 1, n_matches)``, - contains the distance between all the queries of size length and their best - matches in X_. The second array, of shape - ``(series_length - L + 1, n_matches, 2)``, contains the indexes of these - matches as ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - if self.normalise: - return self.matrix_profile_function_( - self.X_, - X, - length, - self.X_means_, - self.X_stds_, - self.T_means_, - self.T_stds_, - mask, - k=self.k, - threshold=self.threshold, - inverse_distance=self.inverse_distance, - exclusion_size=exclusion_size, - ) - else: - return self.matrix_profile_function_( - self.X_, - X, - length, - mask, - k=self.k, - threshold=self.threshold, - inverse_distance=self.inverse_distance, - exclusion_size=exclusion_size, - ) - - def _check_series_format(self, X, length, axis): - if axis not in [0, 1]: - raise ValueError("The axis argument is expected to be either 1 or 0") - if self.axis != axis: - X = X.T - if not isinstance(X, np.ndarray) or X.ndim != 2: - raise TypeError( - "Error, only supports 2D numpy for now. If the series X is univariate " - "do X = X[np.newaxis, :]." - ) - - series_dim, series_length = X.shape - if series_length < length: - raise ValueError( - "The length of the series should be superior or equal to the length " - "parameter given during predict, but got {} < {}".format( - series_length, length - ) - ) - - if series_dim != self.n_channels_: - raise ValueError( - "The number of feature should be the same for the series X and the data" - " (X_) provided during fit, but got {} for X and {} for X_".format( - series_dim, self.n_channels_ - ) - ) - return series_dim, series_length - - def _get_series_method_function(self): - """ - Given distance and speed_up parameters, return the series method function. - - Raises - ------ - ValueError - If the distance parameter given at initialization is not a string nor a - numba function or a callable, or if the speedup parameter is unknow or - unsupported, raisea ValueError. - - Returns - ------- - function - The series method function matching the distance argument. - - """ - if isinstance(self.distance, str): - distance_dict = _SERIES_SEARCH_SPEED_UP_DICT.get(self.distance) - if distance_dict is None: - raise NotImplementedError( - f"No distance profile have been implemented for {self.distance}." - ) - else: - speed_up_series_method = distance_dict.get(self.normalise).get( - self.speed_up - ) - - if speed_up_series_method is None: - raise ValueError( - f"Unknown or unsupported speed up {self.speed_up} for " - f"{self.distance} distance function with" - ) - self.speed_up_ = self.speed_up - return speed_up_series_method - else: - raise ValueError( - f"Expected distance argument to be str but got {type(self.distance)}" - ) - - @classmethod - def get_speedup_function_names(self): - """ - Get available speedup for series search in aeon. - - The returned structure is a dictionnary that contains the names of all - avaialble speedups for normalised and non-normalised distance functions. - - Returns - ------- - dict - The available speedups name that can be used as parameters in - similarity search classes. - - """ - speedups = {} - for dist_name in _SERIES_SEARCH_SPEED_UP_DICT.keys(): - for normalise in _SERIES_SEARCH_SPEED_UP_DICT[dist_name].keys(): - speedups_names = list( - _SERIES_SEARCH_SPEED_UP_DICT[dist_name][normalise].keys() - ) - if normalise: - speedups.update({f"normalised {dist_name}": speedups_names}) - else: - speedups.update({f"{dist_name}": speedups_names}) - return speedups - - -_SERIES_SEARCH_SPEED_UP_DICT = { - "euclidean": { - True: { - "fastest": stomp_normalised_euclidean_matrix_profile, - "STOMP": stomp_normalised_euclidean_matrix_profile, - }, - False: { - "fastest": stomp_euclidean_matrix_profile, - "STOMP": stomp_euclidean_matrix_profile, - }, - }, - "squared": { - True: { - "fastest": stomp_normalised_squared_matrix_profile, - "STOMP": stomp_normalised_squared_matrix_profile, - }, - False: { - "fastest": stomp_squared_matrix_profile, - "STOMP": stomp_squared_matrix_profile, - }, - }, -} diff --git a/aeon/similarity_search/tests/test__commons.py b/aeon/similarity_search/tests/test__commons.py deleted file mode 100644 index a97519ad31..0000000000 --- a/aeon/similarity_search/tests/test__commons.py +++ /dev/null @@ -1,49 +0,0 @@ -"""Test _commons.py functions.""" - -__maintainer__ = ["baraline"] - -import numpy as np -from numpy.testing import assert_array_almost_equal - -from aeon.similarity_search._commons import ( - fft_sliding_dot_product, - naive_squared_distance_profile, - naive_squared_matrix_profile, -) - - -def test_fft_sliding_dot_product(): - """Test the fft_sliding_dot_product function.""" - X = np.random.rand(1, 10) - q = np.random.rand(1, 5) - - values = fft_sliding_dot_product(X, q) - - assert_array_almost_equal( - values[0], - [np.dot(q[0], X[0, i : i + 5]) for i in range(X.shape[1] - 5 + 1)], - ) - - -def test_naive_squared_distance_profile(): - """Test naive squared distance profile computation is correct.""" - X = np.zeros((1, 1, 6)) - X[0, 0] = np.arange(6) - Q = np.array([[1, 2, 3]]) - query_length = Q.shape[1] - mask = np.ones((X.shape[0], X.shape[2] - query_length + 1), dtype=bool) - dist_profile = naive_squared_distance_profile(X, Q, mask) - assert_array_almost_equal(dist_profile[0], np.array([3.0, 0.0, 3.0, 12.0])) - - -def test_naive_squared_matrix_profile(): - """Test naive squared matrix profile computation is correct.""" - X = np.zeros((1, 1, 6)) - X[0, 0] = np.arange(6) - Q = np.zeros((1, 6)) - - Q[0] = np.arange(6, 12) - query_length = 3 - mask = np.ones((X.shape[0], X.shape[2] - query_length + 1), dtype=bool) - matrix_profile = naive_squared_matrix_profile(X, Q, query_length, mask) - assert_array_almost_equal(matrix_profile, np.array([27.0, 48.0, 75.0, 108.0])) diff --git a/aeon/similarity_search/tests/test_query_search.py b/aeon/similarity_search/tests/test_query_search.py deleted file mode 100644 index f97f6a50bf..0000000000 --- a/aeon/similarity_search/tests/test_query_search.py +++ /dev/null @@ -1,176 +0,0 @@ -"""Tests for QuerySearch.""" - -__maintainer__ = ["baraline"] - -import numpy as np -import pytest -from numpy.testing import assert_almost_equal, assert_array_equal - -from aeon.similarity_search.query_search import QuerySearch - -DATATYPES = ["int64", "float64"] - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_mean_std_equal_length(dtype): - """Test the mean and std computation of QuerySearch.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(normalise=True) - search.fit(X) - _ = search.predict(q, X_index=(1, 2)) - for i in range(len(X)): - for j in range(X[i].shape[1] - q.shape[1] + 1): - subsequence = X[i, :, j : j + q.shape[1]] - assert_almost_equal(search.X_means_[i][:, j], subsequence.mean(axis=-1)) - assert_almost_equal(search.X_stds_[i][:, j], subsequence.std(axis=-1)) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_mean_std_unequal_length(dtype): - """Test the mean and std computation of QuerySearch on unequal length data.""" - X = [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6, 5]], dtype=dtype), - ] - - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(normalise=True) - search.fit(X) - _ = search.predict(q, X_index=(1, 2)) - for i in range(len(X)): - for j in range(X[i].shape[1] - q.shape[1] + 1): - subsequence = X[i][:, j : j + q.shape[1]] - assert_almost_equal(search.X_means_[i][:, j], subsequence.mean(axis=-1)) - assert_almost_equal(search.X_stds_[i][:, j], subsequence.std(axis=-1)) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_threshold_and_k(dtype): - """Test the k and threshold combination of QuerySearch.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(k=3, threshold=1) - search.fit(X) - dist, idx = search.predict(q) - assert_array_equal(idx, [(0, 2), (1, 2)]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_inverse_distance(dtype): - """Test the inverse distance parameter of QuerySearch.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(k=1, inverse_distance=True) - search.fit(X) - _, idx = search.predict(q) - assert_array_equal(idx, [(0, 5)]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_euclidean(dtype): - """Test the functionality of QuerySearch with Euclidean distance.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(k=1) - search.fit(X) - _, idx = search.predict(q) - assert_array_equal(idx, [(0, 2)]) - - search = QuerySearch(k=3) - search.fit(X) - _, idx = search.predict(q) - assert_array_equal(idx, [(0, 2), (1, 2), (1, 1)]) - - _, idx = search.predict(q, apply_exclusion_to_result=True) - assert_array_equal(idx, [(0, 2), (1, 2), (1, 4)]) - - search = QuerySearch(k=1, normalise=True) - search.fit(X) - q = np.asarray([[8, 8, 10]], dtype=dtype) - _, idx = search.predict(q) - assert_array_equal(idx, [(1, 2)]) - - _, idx = search.predict(q, apply_exclusion_to_result=True) - assert_array_equal(idx, [(1, 2)]) - - search = QuerySearch(k=1, normalise=True) - search.fit(X) - _, idx = search.predict(q, X_index=(1, 2)) - assert_array_equal(idx, [(1, 0)]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_euclidean_unequal_length(dtype): - """Test the functionality of QuerySearch on unequal length data.""" - X = [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6, 5]], dtype=dtype), - ] - - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(k=1) - search.fit(X) - _, idx = search.predict(q) - assert_array_equal(idx, [(0, 2)]) - - search = QuerySearch(k=3) - search.fit(X) - _, idx = search.predict(q) - assert_array_equal(idx, [(0, 2), (1, 2), (1, 1)]) - - _, idx = search.predict(q, apply_exclusion_to_result=True) - assert_array_equal(idx, [(0, 2), (1, 2), (1, 4)]) - - search = QuerySearch(k=1, normalise=True) - search.fit(X) - q = np.asarray([[8, 8, 10]], dtype=dtype) - _, idx = search.predict(q) - assert_array_equal(idx, [(1, 2)]) - - _, idx = search.predict(q, apply_exclusion_to_result=True) - assert_array_equal(idx, [(1, 2)]) - - search = QuerySearch(k=1, normalise=True) - search.fit(X) - _, idx = search.predict(q, X_index=(1, 2)) - assert_array_equal(idx, [(1, 0)]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_speedup(dtype): - """Test the speedup functionality of QuerySearch.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(k=1, speed_up="fastest") - search.fit(X) - _, idx = search.predict(q) - assert_array_equal(idx, [(0, 2)]) - - search = QuerySearch( - k=1, - distance="euclidean", - speed_up="fastest", - normalise=True, - ) - search.fit(X) - q = np.asarray([[8, 8, 10]], dtype=dtype) - _, idx = search.predict(q) - assert_array_equal(idx, [(1, 2)]) diff --git a/aeon/similarity_search/tests/test_series_search.py b/aeon/similarity_search/tests/test_series_search.py deleted file mode 100644 index a10109359c..0000000000 --- a/aeon/similarity_search/tests/test_series_search.py +++ /dev/null @@ -1,74 +0,0 @@ -"""Tests for SeriesSearch similarity search algorithm.""" - -__maintainer__ = ["baraline"] - - -import numpy as np -import pytest - -from aeon.similarity_search.series_search import SeriesSearch - -DATATYPES = ["int64", "float64"] -K_VALUES = [1, 3] -normalise = [True, False] - -# See #2236 -# @pytest.mark.parametrize("k", K_VALUES) -# @pytest.mark.parametrize("normalise", normalise) -# def test_SeriesSearch_k(k, normalise): -# """Test the k and threshold combination of SeriesSearch.""" -# X = np.asarray([[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]]) -# S = np.asarray([[3, 4, 5, 4, 3, 4]]) -# L = 3 -# -# search = SeriesSearch(k=k, normalise=normalise) -# search.fit(X) -# mp, ip = search.predict(S, L) -# -# assert mp[0].shape[0] == ip[0].shape[0] == k -# assert len(mp) == len(ip) == S.shape[1] - L + 1 -# assert ip[0].shape[1] == 2 - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_SeriesSearch_error_predict(dtype): - """Test the functionality of SeriesSearch with Euclidean distance.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - S = np.asarray([[3, 4, 5, 4, 3, 4, 5]], dtype=dtype) - L = 100 - - search = SeriesSearch() - search.fit(X) - with pytest.raises(ValueError): - mp, ip = search.predict(S, L) - L = 3 - S = np.asarray( - [ - [3, 4, 5, 4, 3, 4], - [6, 5, 3, 2, 4, 5], - ], - dtype=dtype, - ) - with pytest.raises(ValueError): - mp, ip = search.predict(S, L) - - S = [6, 5, 3, 2, 4, 5] - with pytest.raises(TypeError): - mp, ip = search.predict(S, L) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_SeriesSearch_process_unequal_length(dtype): - """Test the functionality of SeriesSearch on unequal length data.""" - X = [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6, 5]], dtype=dtype), - ] - S = np.asarray([[3, 4, 5, 4, 3, 4]], dtype=dtype) - L = 3 - - search = SeriesSearch() - search.fit(X) - mp, ip = search.predict(S, L) diff --git a/aeon/testing/estimator_checking/_yield_estimator_checks.py b/aeon/testing/estimator_checking/_yield_estimator_checks.py index d583104e6b..6cf4ee7948 100644 --- a/aeon/testing/estimator_checking/_yield_estimator_checks.py +++ b/aeon/testing/estimator_checking/_yield_estimator_checks.py @@ -22,6 +22,7 @@ from aeon.regression import BaseRegressor from aeon.regression.deep_learning.base import BaseDeepRegressor from aeon.segmentation import BaseSegmenter +from aeon.similarity_search import BaseSimilaritySearch from aeon.testing.estimator_checking._yield_anomaly_detection_checks import ( _yield_anomaly_detection_checks, ) @@ -231,9 +232,10 @@ def check_inheritance(estimator_class): # Only transformers can inherit from multiple base types currently if n_base_types > 1: - assert issubclass( - estimator_class, BaseTransformer - ), "Only transformers can inherit from multiple base types." + assert issubclass(estimator_class, BaseTransformer) or issubclass( + estimator_class, BaseSimilaritySearch + ), "Only transformers or similarity search estimators can inherit from multiple" + "base types." def check_has_common_interface(estimator_class): diff --git a/aeon/testing/mock_estimators/__init__.py b/aeon/testing/mock_estimators/__init__.py index 219fc3e987..e9e83aa263 100644 --- a/aeon/testing/mock_estimators/__init__.py +++ b/aeon/testing/mock_estimators/__init__.py @@ -30,7 +30,8 @@ "MockMultivariateSeriesTransformer", "MockSeriesTransformerNoFit", # similarity search - "MockSimilaritySearch", + "MockSeriesSimilaritySearch", + "MockCollectionSimilaritySearch", ] from aeon.testing.mock_estimators._mock_anomaly_detectors import ( @@ -64,4 +65,7 @@ MockSeriesTransformerNoFit, MockUnivariateSeriesTransformer, ) -from aeon.testing.mock_estimators._mock_similarity_search import MockSimilaritySearch +from aeon.testing.mock_estimators._mock_similarity_searchers import ( + MockCollectionSimilaritySearch, + MockSeriesSimilaritySearch, +) diff --git a/aeon/testing/mock_estimators/_mock_similarity_search.py b/aeon/testing/mock_estimators/_mock_similarity_search.py deleted file mode 100644 index 55c9c435c7..0000000000 --- a/aeon/testing/mock_estimators/_mock_similarity_search.py +++ /dev/null @@ -1,21 +0,0 @@ -"""Mock similarity searchers useful for testing and debugging.""" - -__maintainer__ = ["baraline"] -__all__ = [ - "MockSimilaritySearch", -] - -from aeon.similarity_search.base import BaseSimilaritySearch - - -class MockSimilaritySearch(BaseSimilaritySearch): - """Mock similarity search for testing base class predict.""" - - def _fit(self, X, y=None): - """_fit dummy.""" - self.X_ = X - return self - - def predict(self, X): - """Predict dummy.""" - return [(0, 0)] diff --git a/aeon/testing/mock_estimators/_mock_similarity_searchers.py b/aeon/testing/mock_estimators/_mock_similarity_searchers.py new file mode 100644 index 0000000000..ddf001daf3 --- /dev/null +++ b/aeon/testing/mock_estimators/_mock_similarity_searchers.py @@ -0,0 +1,38 @@ +"""Mock series transformers useful for testing and debugging.""" + +__maintainer__ = ["baraline"] +__all__ = [ + "MockSeriesSimilaritySearch", + "MockCollectionSimilaritySearch", +] + +from aeon.similarity_search.collection._base import BaseCollectionSimilaritySearch +from aeon.similarity_search.series._base import BaseSeriesSimilaritySearch + + +class MockSeriesSimilaritySearch(BaseSeriesSimilaritySearch): + """Mock estimator for BaseMatrixProfile.""" + + def __init__(self): + super().__init__() + + def _fit(self, X, y=None): + return self + + def _predict(self, X): + """top-1 motif start timestamp index in X, and distances to the match in X_.""" + return [0], [0.1] + + +class MockCollectionSimilaritySearch(BaseCollectionSimilaritySearch): + """Mock estimator for BaseMatrixProfile.""" + + def __init__(self): + super().__init__() + + def _fit(self, X, y=None): + return self + + def _predict(self, X): + """top-1 motif start timestamp index in X, and distances to the match in X_.""" + return [0, 0], [0.1] diff --git a/aeon/testing/testing_config.py b/aeon/testing/testing_config.py index be7d04f0a7..b17b9626d1 100644 --- a/aeon/testing/testing_config.py +++ b/aeon/testing/testing_config.py @@ -59,10 +59,6 @@ "ClaSPSegmenter": ["check_non_state_changing_method"], "HMMSegmenter": ["check_non_state_changing_method"], "RSTSF": ["check_non_state_changing_method"], - # Keeps length during predict to avoid recomputing means and std of data in fit - # if the next predict calls uses the same query length parameter. - "QuerySearch": ["check_non_state_changing_method"], - "SeriesSearch": ["check_non_state_changing_method"], # Unknown issue not producing the same results "RDSTRegressor": ["check_regressor_against_expected_results"], "RISTRegressor": ["check_regressor_against_expected_results"], diff --git a/aeon/testing/testing_data.py b/aeon/testing/testing_data.py index eb134cddda..3337f83b0c 100644 --- a/aeon/testing/testing_data.py +++ b/aeon/testing/testing_data.py @@ -10,7 +10,8 @@ from aeon.forecasting import BaseForecaster from aeon.regression import BaseRegressor from aeon.segmentation import BaseSegmenter -from aeon.similarity_search import BaseSimilaritySearch +from aeon.similarity_search.collection import BaseCollectionSimilaritySearch +from aeon.similarity_search.series import BaseSeriesSimilaritySearch from aeon.testing.data_generation import ( make_example_1d_numpy, make_example_2d_dataframe_collection, @@ -219,50 +220,6 @@ }, } -EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH = { - "numpy3D": { - "train": ( - make_example_3d_numpy( - n_cases=10, - n_channels=1, - n_timepoints=20, - random_state=data_rng.randint(np.iinfo(np.int32).max), - return_y=False, - ), - None, - ), - "test": ( - make_example_2d_numpy_series( - n_timepoints=10, - n_channels=1, - random_state=data_rng.randint(np.iinfo(np.int32).max), - ), - None, - ), - }, - "np-list": { - "train": ( - make_example_3d_numpy_list( - n_cases=10, - n_channels=1, - min_n_timepoints=20, - max_n_timepoints=20, - random_state=data_rng.randint(np.iinfo(np.int32).max), - return_y=False, - ), - None, - ), - "test": ( - make_example_2d_numpy_series( - n_timepoints=10, - n_channels=1, - random_state=data_rng.randint(np.iinfo(np.int32).max), - ), - None, - ), - }, -} - EQUAL_LENGTH_MULTIVARIATE_CLASSIFICATION = { "numpy3D": { "train": make_example_3d_numpy( @@ -401,50 +358,6 @@ }, } -EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH = { - "numpy3D": { - "train": ( - make_example_3d_numpy( - n_cases=10, - n_channels=2, - n_timepoints=20, - random_state=data_rng.randint(np.iinfo(np.int32).max), - return_y=False, - ), - None, - ), - "test": ( - make_example_2d_numpy_series( - n_timepoints=10, - n_channels=2, - random_state=data_rng.randint(np.iinfo(np.int32).max), - ), - None, - ), - }, - "np-list": { - "train": ( - make_example_3d_numpy_list( - n_cases=10, - n_channels=2, - min_n_timepoints=20, - max_n_timepoints=20, - random_state=data_rng.randint(np.iinfo(np.int32).max), - return_y=False, - ), - None, - ), - "test": ( - make_example_2d_numpy_series( - n_timepoints=10, - n_channels=2, - random_state=data_rng.randint(np.iinfo(np.int32).max), - ), - None, - ), - }, -} - UNEQUAL_LENGTH_UNIVARIATE_CLASSIFICATION = { "np-list": { "train": make_example_3d_numpy_list( @@ -553,30 +466,6 @@ }, } -UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH = { - "np-list": { - "train": ( - make_example_3d_numpy_list( - n_cases=10, - n_channels=1, - min_n_timepoints=10, - max_n_timepoints=20, - random_state=data_rng.randint(np.iinfo(np.int32).max), - return_y=False, - ), - None, - ), - "test": ( - make_example_2d_numpy_series( - n_timepoints=10, - n_channels=1, - random_state=data_rng.randint(np.iinfo(np.int32).max), - ), - None, - ), - }, -} - UNEQUAL_LENGTH_MULTIVARIATE_CLASSIFICATION = { "np-list": { "train": make_example_3d_numpy_list( @@ -685,30 +574,6 @@ }, } -UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH = { - "np-list": { - "train": ( - make_example_3d_numpy_list( - n_cases=10, - n_channels=2, - min_n_timepoints=10, - max_n_timepoints=20, - random_state=data_rng.randint(np.iinfo(np.int32).max), - return_y=False, - ), - None, - ), - "test": ( - make_example_2d_numpy_series( - n_timepoints=10, - n_channels=2, - random_state=data_rng.randint(np.iinfo(np.int32).max), - ), - None, - ), - }, -} - X_classification_missing_train, y_classification_missing_train = make_example_3d_numpy( n_cases=10, n_channels=1, @@ -825,12 +690,6 @@ for k, v in EQUAL_LENGTH_UNIVARIATE_REGRESSION.items() } ) -FULL_TEST_DATA_DICT.update( - { - f"EqualLengthUnivariate-SimilaritySearch-{k}": v - for k, v in EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH.items() - } -) FULL_TEST_DATA_DICT.update( { f"EqualLengthMultivariate-Classification-{k}": v @@ -843,12 +702,6 @@ for k, v in EQUAL_LENGTH_MULTIVARIATE_REGRESSION.items() } ) -FULL_TEST_DATA_DICT.update( - { - f"EqualLengthMultivariate-SimilaritySearch-{k}": v - for k, v in EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH.items() - } -) FULL_TEST_DATA_DICT.update( { f"UnequalLengthUnivariate-Classification-{k}": v @@ -861,12 +714,6 @@ for k, v in UNEQUAL_LENGTH_UNIVARIATE_REGRESSION.items() } ) -FULL_TEST_DATA_DICT.update( - { - f"UnequalLengthUnivariate-SimilaritySearch-{k}": v - for k, v in UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH.items() - } -) FULL_TEST_DATA_DICT.update( { f"UnequalLengthMultivariate-Classification-{k}": v @@ -879,12 +726,6 @@ for k, v in UNEQUAL_LENGTH_MULTIVARIATE_REGRESSION.items() } ) -FULL_TEST_DATA_DICT.update( - { - f"UnequalLengthMultivariate-SimilaritySearch-{k}": v - for k, v in UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH.items() - } -) FULL_TEST_DATA_DICT.update( { f"MissingValues-Classification-{k}": v @@ -916,9 +757,12 @@ def _get_datatypes_for_estimator(estimator): FULL_TEST_DATA_DICT. Each tuple is formatted (data_key, label_key). """ datatypes = [] - univariate, multivariate, unequal_length, missing_values = ( - _get_capabilities_for_estimator(estimator) - ) + ( + univariate, + multivariate, + unequal_length, + missing_values, + ) = _get_capabilities_for_estimator(estimator) task = _get_task_for_estimator(estimator) inner_types = estimator.get_tag("X_inner_type") @@ -1012,19 +856,19 @@ def _get_task_for_estimator(estimator): or isinstance(estimator, BaseEarlyClassifier) or isinstance(estimator, BaseClusterer) or isinstance(estimator, BaseCollectionTransformer) + or isinstance(estimator, BaseCollectionSimilaritySearch) ): data_label = "Classification" # collection data with continuous target labels elif isinstance(estimator, BaseRegressor): data_label = "Regression" - elif isinstance(estimator, BaseSimilaritySearch): - data_label = "SimilaritySearch" # series data with no secondary input elif ( isinstance(estimator, BaseAnomalyDetector) or isinstance(estimator, BaseSegmenter) or isinstance(estimator, BaseSeriesTransformer) or isinstance(estimator, BaseForecaster) + or isinstance(estimator, BaseSeriesSimilaritySearch) ): data_label = "None" else: diff --git a/aeon/testing/tests/test_testing_data.py b/aeon/testing/tests/test_testing_data.py index ef69f55a90..891bd5851a 100644 --- a/aeon/testing/tests/test_testing_data.py +++ b/aeon/testing/tests/test_testing_data.py @@ -6,19 +6,15 @@ from aeon.testing.testing_data import ( EQUAL_LENGTH_MULTIVARIATE_CLASSIFICATION, EQUAL_LENGTH_MULTIVARIATE_REGRESSION, - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH, EQUAL_LENGTH_UNIVARIATE_CLASSIFICATION, EQUAL_LENGTH_UNIVARIATE_REGRESSION, - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH, FULL_TEST_DATA_DICT, MISSING_VALUES_CLASSIFICATION, MISSING_VALUES_REGRESSION, UNEQUAL_LENGTH_MULTIVARIATE_CLASSIFICATION, UNEQUAL_LENGTH_MULTIVARIATE_REGRESSION, - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH, UNEQUAL_LENGTH_UNIVARIATE_CLASSIFICATION, UNEQUAL_LENGTH_UNIVARIATE_REGRESSION, - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH, ) from aeon.utils.data_types import COLLECTIONS_DATA_TYPES from aeon.utils.validation import ( @@ -108,30 +104,6 @@ def test_equal_length_univariate_collection(): EQUAL_LENGTH_UNIVARIATE_REGRESSION[key]["test"][1].dtype, np.floating ) - for key in EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH: - assert is_collection( - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0], include_2d=True - ) - assert is_univariate(EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0]) - assert is_equal_length( - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not has_missing( - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not is_collection( - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - # assert is_univariate( - # EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0], - # ) - assert is_equal_length( - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - assert not has_missing( - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - def test_unequal_length_univariate_collection(): """Test the contents of the unequal length univariate data dictionary.""" @@ -181,33 +153,6 @@ def test_unequal_length_univariate_collection(): UNEQUAL_LENGTH_UNIVARIATE_REGRESSION[key]["test"][1].dtype, np.floating ) - for key in UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH: - assert is_collection( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0], - include_2d=True, - ) - assert is_univariate( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not is_equal_length( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not has_missing( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not is_collection( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - # assert is_univariate( - # UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0], - # ) - assert is_equal_length( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - assert not has_missing( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - def test_equal_length_multivariate_collection(): """Test the contents of the equal length multivariate data dictionary.""" @@ -257,33 +202,6 @@ def test_equal_length_multivariate_collection(): EQUAL_LENGTH_MULTIVARIATE_REGRESSION[key]["test"][1].dtype, np.floating ) - for key in EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH: - assert is_collection( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0], - include_2d=True, - ) - assert not is_univariate( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert is_equal_length( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not has_missing( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not is_collection( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - # assert not is_univariate( - # EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0], - # ) - assert is_equal_length( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - assert not has_missing( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - def test_unequal_length_multivariate_collection(): """Test the contents of the unequal length multivariate data dictionary.""" @@ -345,33 +263,6 @@ def test_unequal_length_multivariate_collection(): UNEQUAL_LENGTH_MULTIVARIATE_REGRESSION[key]["test"][1].dtype, np.floating ) - for key in UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH: - assert is_collection( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0], - include_2d=True, - ) - assert not is_univariate( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not is_equal_length( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not has_missing( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not is_collection( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - # assert not is_univariate( - # UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0], - # ) - assert is_equal_length( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - assert not has_missing( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - def test_missing_values_collection(): """Test the contents of the missing value data dictionary.""" diff --git a/aeon/testing/utils/estimator_checks.py b/aeon/testing/utils/estimator_checks.py index b2e0973dbf..d556ff0249 100644 --- a/aeon/testing/utils/estimator_checks.py +++ b/aeon/testing/utils/estimator_checks.py @@ -7,7 +7,7 @@ import numpy as np -from aeon.similarity_search.base import BaseSimilaritySearch +from aeon.similarity_search import BaseSimilaritySearch from aeon.testing.testing_data import FULL_TEST_DATA_DICT from aeon.utils.validation import get_n_cases diff --git a/aeon/utils/base/_identifier.py b/aeon/utils/base/_identifier.py index cf2722cfcb..03e8d8beaf 100644 --- a/aeon/utils/base/_identifier.py +++ b/aeon/utils/base/_identifier.py @@ -55,6 +55,8 @@ def get_identifier(estimator): identifiers.remove("collection-estimator") if len(identifiers) > 1 and "transformer" in identifiers: identifiers.remove("transformer") + if len(identifiers) > 1 and "similarity-search" in identifiers: + identifiers.remove("similarity-search") if len(identifiers) > 1: TypeError( diff --git a/aeon/utils/base/_register.py b/aeon/utils/base/_register.py index 1d81c2512c..5e81e29b33 100644 --- a/aeon/utils/base/_register.py +++ b/aeon/utils/base/_register.py @@ -24,7 +24,9 @@ from aeon.forecasting.base import BaseForecaster from aeon.regression.base import BaseRegressor from aeon.segmentation.base import BaseSegmenter -from aeon.similarity_search.base import BaseSimilaritySearch +from aeon.similarity_search._base import BaseSimilaritySearch +from aeon.similarity_search.collection import BaseCollectionSimilaritySearch +from aeon.similarity_search.series import BaseSeriesSimilaritySearch from aeon.transformations.base import BaseTransformer from aeon.transformations.collection import BaseCollectionTransformer from aeon.transformations.series import BaseSeriesTransformer @@ -36,6 +38,7 @@ "estimator": BaseAeonEstimator, "series-estimator": BaseSeriesEstimator, "transformer": BaseTransformer, + "similarity-search": BaseSimilaritySearch, # estimator types "anomaly-detector": BaseAnomalyDetector, "collection-transformer": BaseCollectionTransformer, @@ -44,14 +47,21 @@ "early_classifier": BaseEarlyClassifier, "regressor": BaseRegressor, "segmenter": BaseSegmenter, - "similarity_searcher": BaseSimilaritySearch, "series-transformer": BaseSeriesTransformer, "forecaster": BaseForecaster, + "series-similarity-search": BaseSeriesSimilaritySearch, + "collection-similarity-search": BaseCollectionSimilaritySearch, } # base classes which are valid for estimator to directly inherit from VALID_ESTIMATOR_BASES = { k: BASE_CLASS_REGISTER[k] for k in BASE_CLASS_REGISTER.keys() - - {"estimator", "collection-estimator", "series-estimator", "transformer"} + - { + "estimator", + "collection-estimator", + "series-estimator", + "transformer", + "similarity-search", + } } diff --git a/aeon/utils/numba/general.py b/aeon/utils/numba/general.py index 10e96abde6..58ab9d15e9 100644 --- a/aeon/utils/numba/general.py +++ b/aeon/utils/numba/general.py @@ -8,7 +8,9 @@ "first_order_differences_3d", "z_normalise_series_with_mean", "z_normalise_series", + "z_normalise_series_with_mean_std", "z_normalise_series_2d", + "z_normalise_series_2d_with_mean_std", "z_normalise_series_3d", "set_numba_random_seed", "choice_log", @@ -20,6 +22,8 @@ "slope_derivative_2d", "slope_derivative_3d", "generate_combinations", + "get_all_subsequences", + "compute_mean_stds_collection_parallel", ] @@ -273,7 +277,7 @@ def z_normalise_series_2d_with_mean_std( Parameters ---------- - X : array, shape = (n_channels, n_timestamps) + X : array, shape = (n_channels, n_timepoints) Input array to normalise. mean : array, shape = (n_channels) Mean of each channel of X. @@ -282,7 +286,7 @@ def z_normalise_series_2d_with_mean_std( Returns ------- - arr : array, shape = (n_channels, n_timestamps) + arr : array, shape = (n_channels, n_timepoints) The normalised array """ arr = np.zeros(X.shape) @@ -376,10 +380,10 @@ def get_subsequence( Parameters ---------- - X : array, shape (n_channels, n_timestamps) + X : array, shape (n_channels, n_timepoints) Input time series. i_start : int - A starting index between [0, n_timestamps - (length-1)*dilation] + A starting index between [0, n_timepoints - (length-1)*dilation] length : int Length parameter of the subsequence. dilation : int @@ -408,10 +412,10 @@ def get_subsequence_with_mean_std( Parameters ---------- - X : array, shape (n_channels, n_timestamps) + X : array, shape (n_channels, n_timepoints) Input time series. i_start : int - A starting index between [0, n_timestamps - (length-1)*dilation] + A starting index between [0, n_timepoints - (length-1)*dilation] length : int Length parameter of the subsequence. dilation : int @@ -451,15 +455,56 @@ def get_subsequence_with_mean_std( return values, means, stds +@njit(cache=True, fastmath=True, parallel=True) +def compute_mean_stds_collection_parallel(X): + """ + Return the mean and standard deviation for each channel of all series in X. + + Parameters + ---------- + X : array, shape (n_cases, n_channels, n_timepoints) + A time series collection + + Returns + ------- + means : array, shape (n_cases, n_channels) + The mean of each channel of each time series in X. + stds : array, shape (n_cases, n_channels) + The std of each channel of each time series in X. + + """ + n_channels = X[0].shape[0] + n_cases = len(X) + means = np.zeros((n_cases, n_channels)) + stds = np.zeros((n_cases, n_channels)) + for i_x in prange(n_cases): + n_timepoints = X[i_x].shape[1] + _s = np.zeros(n_channels) + _s2 = np.zeros(n_channels) + for i_t in range(n_timepoints): + for i_c in range(n_channels): + _s += X[i_x][i_c, i_t] + _s2 += X[i_x][i_c, i_t] ** 2 + + for i_c in range(n_channels): + means[i_x, i_c] = _s / n_timepoints + _std = _s2 / n_timepoints - means[i_x, i_c] ** 2 + if _s > AEON_NUMBA_STD_THRESHOLD: + stds[i_x, i_c] = _std**0.5 + + return means, stds + + @njit(fastmath=True, cache=True) def sliding_mean_std_one_series( X: np.ndarray, length: int, dilation: int ) -> tuple[np.ndarray, np.ndarray]: - """Return the mean and standard deviation for all subsequence (l,d) in X. + """ + Return the mean and standard deviation for all subsequence (l,d) in X. Parameters ---------- - X : array, shape (n_channels, n_timestamps) + X : array, shape (n_channels, n_timepoints) An input time series length : int Length of the subsequence @@ -468,14 +513,14 @@ def sliding_mean_std_one_series( Returns ------- - mean : array, shape (n_channels, n_timestamps - (length-1) * dilation) + mean : array, shape (n_channels, n_timepoints - (length-1) * dilation) The mean of each subsequence with parameter length and dilation in X. - std : array, shape (n_channels, n_timestamps - (length-1) * dilation) + std : array, shape (n_channels, n_timepoints - (length-1) * dilation) The standard deviation of each subsequence with parameter length and dilation in X. """ - n_channels, n_timestamps = X.shape - n_subs = n_timestamps - (length - 1) * dilation + n_channels, n_timepoints = X.shape + n_subs = n_timepoints - (length - 1) * dilation if n_subs <= 0: raise ValueError( "Invalid input parameter for sliding mean and std computations" @@ -493,7 +538,7 @@ def sliding_mean_std_one_series( _sum2 = np.zeros(n_channels) # Initialize first subsequence if it is valid - if np.all(_idx_sub < n_timestamps): + if np.all(_idx_sub < n_timepoints): for i_length in prange(length): _idx_sub[i_length] = (i_length * dilation) + i_mod_dil for i_channel in prange(n_channels): @@ -510,7 +555,7 @@ def sliding_mean_std_one_series( _idx_sub += dilation # As long as subsequences further subsequences are valid - while np.all(_idx_sub < n_timestamps): + while np.all(_idx_sub < n_timepoints): # Update sums and mean stds arrays for i_channel in prange(n_channels): _v_new = X[i_channel, _idx_sub[-1]] @@ -534,17 +579,17 @@ def normalise_subsequences(X_subs: np.ndarray, X_means: np.ndarray, X_stds: np.n Parameters ---------- - X_subs : array, shape (n_timestamps-(length-1)*dilation, n_channels, length) - The subsequences of an input time series of size n_timestamps given the + X_subs : array, shape (n_timepoints-(length-1)*dilation, n_channels, length) + The subsequences of an input time series of size n_timepoints given the length and dilation parameter. - X_means : array, shape (n_channels, n_timestamps-(length-1)*dilation) + X_means : array, shape (n_channels, n_timepoints-(length-1)*dilation) Mean of the subsequences to normalise. - X_stds : array, shape (n_channels, n_timestamps-(length-1)*dilation) + X_stds : array, shape (n_channels, n_timepoints-(length-1)*dilation) Stds of the subsequences to normalise. Returns ------- - array, shape = (n_timestamps-(length-1)*dilation, n_channels, length) + array, shape = (n_timepoints-(length-1)*dilation, n_channels, length) Z-normalised subsequences. """ n_subsequences, n_channels, length = X_subs.shape @@ -755,8 +800,8 @@ def get_all_subsequences(X: np.ndarray, length: int, dilation: int) -> np.ndarra Parameters ---------- - X : array, shape = (n_channels, n_timestamps) - An input time series as (n_channels, n_timestamps). + X : array, shape = (n_channels, n_timepoints) + An input time series as (n_channels, n_timepoints). length : int Length of the subsequences to generate. dilation : int @@ -764,11 +809,11 @@ def get_all_subsequences(X: np.ndarray, length: int, dilation: int) -> np.ndarra Returns ------- - array, shape = (n_timestamps-(length-1)*dilation, n_channels, length) + array, shape = (n_timepoints-(length-1)*dilation, n_channels, length) The view of the subsequences of the input time series. """ - n_features, n_timestamps = X.shape + n_features, n_timepoints = X.shape s0, s1 = X.strides - out_shape = (n_timestamps - (length - 1) * dilation, n_features, np.int64(length)) + out_shape = (n_timepoints - (length - 1) * dilation, n_features, np.int64(length)) strides = (s1, s0, s1 * dilation) return np.lib.stride_tricks.as_strided(X, shape=out_shape, strides=strides) diff --git a/aeon/utils/tags/_tags.py b/aeon/utils/tags/_tags.py index e1bacdd5ad..2c132902e4 100644 --- a/aeon/utils/tags/_tags.py +++ b/aeon/utils/tags/_tags.py @@ -138,7 +138,7 @@ class : identifier for the base class of objects this tag applies to "point belongs to.", }, "requires_y": { - "class": ["transformer", "anomaly-detector", "segmenter"], + "class": ["transformer", "anomaly-detector", "segmenter", "similarity-search"], "type": "bool", "description": "Does this estimator require y to be passed in its methods?", }, @@ -155,9 +155,9 @@ class : identifier for the base class of objects this tag applies to "values?", }, "input_data_type": { - "class": "transformer", + "class": ["transformer", "similarity-search"], "type": ("str", ["Series", "Collection"]), - "description": "The input abstract data type of the transformer, input X. " + "description": "The input abstract data type of the estimator, input X. " "Series indicates a single series input, Collection indicates a collection of " "time series.", }, diff --git a/docs/api_reference/similarity_search.rst b/docs/api_reference/similarity_search.rst index eb13cafd23..c62b0636f3 100644 --- a/docs/api_reference/similarity_search.rst +++ b/docs/api_reference/similarity_search.rst @@ -4,56 +4,70 @@ Similarity search ================= The :mod:`aeon.similarity_search` module contains algorithms and tools for similarity -search tasks. +search tasks. First, we distinguish between `series` estimator and `collection` +estimators, similarly to the `aeon.transformer` module. Secondly, we distinguish between +estimators used `neighbors` (with sufix SNN for subsequence nearest neighbors, or ANN +for approximate nearest neighbors) search and estimators used for `motifs` search. -Similarity search estimators ----------------------------- +Series Similarity search estimators +----------------------------------- -.. currentmodule:: aeon.similarity_search +.. currentmodule:: aeon.similarity_search.series.neighbors .. autosummary:: :toctree: auto_generated/ :template: class.rst - QuerySearch - SeriesSearch + DummySNN + MassSNN -Distance profile functions --------------------------- - -.. currentmodule:: aeon.similarity_search.distance_profiles +.. currentmodule:: aeon.similarity_search.series.motifs .. autosummary:: :toctree: auto_generated/ - :template: function.rst + :template: class.rst + + StompMotif - euclidean_distance_profile - normalised_euclidean_distance_profile - squared_distance_profile - normalised_squared_distance_profile -Matrix profile functions --------------------------- +Collection Similarity search estimators +----------------------------------- -.. currentmodule:: aeon.similarity_search.matrix_profiles +.. currentmodule:: aeon.similarity_search.collection.neighbors .. autosummary:: :toctree: auto_generated/ - :template: function.rst + :template: class.rst + + RandomProjectionIndexANN - stomp_normalised_euclidean_matrix_profile - stomp_euclidean_matrix_profile - stomp_normalised_squared_matrix_profile - stomp_squared_matrix_profile -Base ----- +Base Estimators +--------------- -.. currentmodule:: aeon.similarity_search.base +.. currentmodule:: aeon.similarity_search._base .. autosummary:: :toctree: auto_generated/ :template: class.rst BaseSimilaritySearch + + +.. currentmodule:: aeon.similarity_search.series._base + +.. autosummary:: + :toctree: auto_generated/ + :template: class.rst + + BaseSeriesSimilaritySearch + + +.. currentmodule:: aeon.similarity_search.collection._base + +.. autosummary:: + :toctree: auto_generated/ + :template: class.rst + + BaseCollectionSimilaritySearch diff --git a/docs/api_reference/utils.rst b/docs/api_reference/utils.rst index 40dea9f67c..8c4891dde0 100644 --- a/docs/api_reference/utils.rst +++ b/docs/api_reference/utils.rst @@ -87,7 +87,8 @@ Mock Estimators MockUnivariateSeriesTransformer MockMultivariateSeriesTransformer MockSeriesTransformerNoFit - MockSimilaritySearch + MockSeriesSimilaritySearch + MockCollectionSimilaritySearch Utilities ^^^^^^^^^ @@ -193,7 +194,9 @@ Numba first_order_differences_3d z_normalise_series_with_mean z_normalise_series + z_normalise_series_with_mean_std z_normalise_series_2d + z_normalise_series_2d_with_mean_std z_normalise_series_3d set_numba_random_seed choice_log @@ -205,6 +208,9 @@ Numba slope_derivative_2d slope_derivative_3d generate_combinations + get_all_subsequences + compute_mean_stds_collection_parallel + .. currentmodule:: aeon.utils.numba.stats diff --git a/docs/getting_started.md b/docs/getting_started.md index cf74ab9319..ccf29cee33 100644 --- a/docs/getting_started.md +++ b/docs/getting_started.md @@ -21,8 +21,9 @@ classical techniques for the following learning tasks: - [**Clustering**](api_reference/clustering), where a collection of time series without any labels are used to train a model to label cases ([more details](examples/clustering/clustering.ipynb)). -- [**Similarity search**](api_reference/similarity_search), where the goal is to evaluate - the similarity between a query time series and a collection of other longer time series +- [**Similarity search**](api_reference/similarity_search), where the goal is to find + time series motifs or nearest neighbors in an efficient way for either single series + or collections. ([more details](examples/similarity_search/similarity_search.ipynb)). - [**Anomaly detection**](api_reference/anomaly_detection), where the goal is to find values or areas of a single time series that are not representative of the whole series. @@ -309,45 +310,38 @@ new data. ### Similarity Search -The similarity search module in `aeon` offers a set of functions and estimators to solve -tasks related to time series similarity search. The estimators can be used standalone -or as parts of pipelines, while the functions give you the tools to build your own -estimators that would rely on similarity search at some point. - -The estimators are inheriting from the [BaseSimiliaritySearch](similarity_search.base.BaseSimiliaritySearch) -class accepts as inputs 3D time series (n_cases, n_channels, n_timepoints) for the -fit method. Univariate and single series can still be used, but will need to be reshaped -to this format. - -This collection, asked for the fit method, is stored as a database. It will be used in -the predict method, which expects a single 2D time series as input -(n_channels, query_length). This 2D time series will be used as a query to search for in -the 3D database. - -The result of the predict method will then depends on wheter you use the [QuerySearch](similarity_search.query_search.QuerySearch) -and the [SeriesSearch](similarity_search.series_search.SeriesSearch) estimator. In [QuerySearch](similarity_search.query_search.QuerySearch), the 2D series is a subsequence -for which we want to indentify the best (or worst !) matches in the 3D database. -For [SeriesSearch](similarity_search.series_search.SeriesSearch), we require a `length` parmater, and we will search for the best -matches of all subsequences of size `length` in the 2D series inside the 3D database. -By default, these estimators will use the Euclidean (or squared Euclidean) distance, -but more distance will be added in the future. - +The similarity search module in `aeon` offers a set of estimators to solve tasks +related to time series similarity search. The estimators can be used standalone for +data analysis purposes or as parts of pipelines, to perform other tasks such as +classification or clustering. + +Similarly to the transformation module, similarity search estimators are either defined +for single series or for collection of series. The estimators are inheriting from the +[BaseSimiliaritySearch](similarity_search._base.BaseSimiliaritySearch) class, which +both [BaseSeriesSimiliaritySearch](similarity_search.series._base.BaseSeriesSimiliaritySearch) +and [BaseCollectionSimiliaritySearch](similarity_search.collection._base.BaseCollectionSimiliaritySearch) +inherit from. + +All estimators use a `fit` `predict` interface, where `predict` outputs both the +indexes of the neighbors or motifs and a distance or similarity measure linked to them. +For example, using `StompMotif` to compute the matrix profile between two series : ```{code-block} python >>> import numpy as np ->>> from aeon.similarity_search import QuerySearch ->>> X = [[[1, 2, 3, 4, 5, 6, 7]], # 3D array example (univariate) -... [[4, 4, 4, 5, 6, 7, 3]]] # Two samples, one channel, seven series length ->>> X = np.array(X) # X is of shape (2, 1, 7) : (n_cases, n_channels, n_timepoints) ->>> top_k = QuerySearch(k=2) ->>> top_k.fit(X) # fit the estimator on train data -... ->>> q = np.array([[4, 5, 6]]) # q is of shape (1,3) : ->>> top_k.predict(q) # Identify the two (k=2) most similar subsequences of length 3 in X -[(0, 3), (1, 2)] +>>> from aeon.similarity_search.series import StompMotif +>>> X1 = np.array([1, 1, 2, 4, 6, 6, 7]) # single series (univariate) +>>> X2 = np.array([0, 1, 2, 2, 4, 5, 7, 9, 4, 6]) # single series (univariate) +>>> top_k = StompMotif(4).fit(X1) # 4 is length of the motif to search +>>> distances, indexes = top_k.predict(X2, k=1) ``` -The output of predict gives a list of size `k`, where each element is a set indicating -the location of the best matches in X as `(id_sample, id_timestamp)`. This is equivalent -to the subsequence `X[id_sample, :, id_timestamps:id_timestamp + q.shape[0]]`. +Some things to note on this example : + +- We defined `1D` series of shape `(n_timepoints)`, but internally, series estimator +will use a `2D` representation as `(n_channels, n_timepoints)`. +- The output of predict gives a two lists of size `k` (the number of motifs to extract) +which can be read as follows : `distances[i] = d(X1[:, indexes[i][0]],X2[:, indexes[i][1]])` + +For more examples and use cases you can check the example section of the module, +starting with the general [similarity search notebook](examples/similarity_search/similarity_search.ipynb) ## Transformers diff --git a/examples/similarity_search/code_speed.ipynb b/examples/similarity_search/code_speed.ipynb index f31155333d..0433b44962 100644 --- a/examples/similarity_search/code_speed.ipynb +++ b/examples/similarity_search/code_speed.ipynb @@ -27,15 +27,7 @@ "import pandas as pd\n", "from matplotlib import pyplot as plt\n", "\n", - "from aeon.similarity_search._commons import (\n", - " naive_squared_distance_profile,\n", - " naive_squared_matrix_profile,\n", - ")\n", - "from aeon.similarity_search.distance_profiles.squared_distance_profile import (\n", - " normalised_squared_distance_profile,\n", - " squared_distance_profile,\n", - ")\n", - "from aeon.similarity_search.matrix_profiles import stomp_squared_matrix_profile\n", + "from aeon.similarity_search.series import DummySNN, MassSNN\n", "from aeon.utils.numba.general import sliding_mean_std_one_series\n", "\n", "ggplot_styles = {\n", @@ -158,9 +150,9 @@ "for size in sizes:\n", " for query_length in query_lengths:\n", " X = rng.random((1, size))\n", - " _times = %timeit -r 7 -n 10 -q -o get_means_stds(X, query_length)\n", + " _times = %timeit -r 3 -n 3 -q -o get_means_stds(X, query_length)\n", " times.loc[(size, query_length), \"full computation\"] = _times.average\n", - " _times = %timeit -r 7 -n 10 -q -o sliding_mean_std_one_series(X, query_length, 1)\n", + " _times = %timeit -r 3 -n 3 -q -o sliding_mean_std_one_series(X, query_length, 1)\n", " times.loc[(size, query_length), \"sliding_computation\"] = _times.average" ] }, @@ -172,7 +164,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADM0AAAOcCAYAAADnnKdhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hUVf7H8c9MeoEUEjoBRLrSpNrAgiKLgg3BBqKoi33VVde1rmVtq4tY9ycqKizgqlgQBaTYRUFApKhAQiedkGQySeb+/ggZZpKZZJLMJJO579fz8DDl3HPP3O+dyfnee889FsMwDAEAAAAAAAAAAAAAAAAAAAAAAAAhxNrUDQAAAAAAAAAAAAAAAAAAAAAAAAD8jUEzAAAAAAAAAAAAAAAAAAAAAAAACDkMmgEAAAAAAAAAAAAAAAAAAAAAAEDIYdAMAAAAAAAAAAAAAAAAAAAAAAAAQg6DZgAAAAAAAAAAAAAAAAAAAAAAABByGDQDAAAAAAAAAAAAAAAAAAAAAACAkMOgGQAAAAAAAAAAAAAAAAAAAAAAAIQcBs0AAAAAAAAAAAAAAAAAAAAAAAAg5DBoBgAAAAAAAAAAAAAAAAAAAAAAACGHQTMAAAAAAAAAAAAAAAAAAAAAAAAIOQyaAQAAAAAAAAAAAAAAAAAAAAAAQMhh0AwAAAAAAAAAAAAAAAAAAAAAAABCDoNmAAAAAAAAAAAAAAAAAAAAAAAAEHIYNAMAAAAAAAAAAAAAAAAAAAAAAICQw6AZAAAAAAAAAAAAAAAAAAAAAAAAhBwGzQAAAAAAAAAAAAAAAAAAAAAAACDkMGgGAAAAAAAAAAAAAAAAAAAAAAAAIYdBMwAAAAAAAAAAAAAAAAAAAAAAAAg5DJoBAAAAAAAAAAAAAAAAAAAAAABAyGHQDAAANejSpYssFossFot27tzZ1M0JCWxTAAAAwB19ZP9jmwIAAAD1Q1/a/9imAAAAQP3Rn/Y/tikAM2LQDAAAMJUHH3zQmfj5+u+RRx7xuX7DMPT+++/roosuUrdu3RQTE6PU1FQNHjxYDz30kDIyMgL46QAAAAAEC7vdrjVr1uill17StGnTdPzxxys8PNyZZ0ydOrXedQcq71izZo1mzJihPn36qGXLlmrZsqX69OmjGTNmaM2aNfVuLwAAAICmtXnzZs2cOVMTJ05Unz59lJCQoIiICKWkpGjw4MG65ZZbtG7dOp/r27lzZ53PtRx77LF1bvOdd96pfv36KTk5WXFxcerRo4emTJmi5cuX13UTAAAAAAgSzfXaLc6hAM1beFM3AAAANF+jRo3SqlWrJEkrVqzQqFGjmrZBTWzv3r264oor9MUXX7i9brPZlJWVpZ9++klPP/20nn/++QZdIAcAAACYSXPMO2bNmqXbb79ddrvd73UHIu+w2+2688479fzzz8swDLf3Nm/erM2bN+vll1/WLbfcoieffFIRERH++jgAAABAs9Lc8pOlS5fqtttu06ZNmzy+n52drezsbP3000+aOXOmLr74Yr388stKTk5u5Ja6e/TRR/XQQw+ptLTU7fXffvtNv/32m+bMmaPJkyfrlVdeUYsWLZqolQAAAEDTa245SqBxDgWANwyaAQAApjVkyBANHTrUp3K1OXTokM4++2z98ssvzteGDh2qvn37Kj8/X1988YXy8vJ0+PBhXXXVVbJarbryyisb1H4AAAAAwSkrKysgA2YClXdMnz5dc+bMcT4/5phjNHz4cEnSd999p+3bt8swDD333HM6dOiQXnvtNb9/NgAAAAD+99NPP7kNmLFYLOrXr5969OihpKQkZWZm6quvvlJmZqYkaeHChfr111+1atUqtWrVyqd1tGjRwqe8IzU11af67r//fv3jH/9wPm/Xrp1OOeUURUdHu32eefPmKTs7W5988onCw7n0BQAAAGiOmsO1W5xDAUIDRw4AAIBpjR07Vg8++KBf6rrxxhudSVdycrIWLlyo008/3fl+YWGhrrvuOr3zzjuSKhKqE088Uccee6xf1g8AAAAg+HTq1ElDhgxxnvR56aWX9O6779a7vkDkHbNnz3ae7LFarXrmmWd08803y2q1SpIcDodmzpyp22+/XQ6HQ7Nnz9bIkSO5CQAAAADQjAwYMEDTp0/XJZdcUm0wjN1u17PPPqt7771X5eXl2rRpk2bMmKH58+f7VHdycrJmzZrll3YuX77cbcDMnXfeqUceeUSRkZHO1+bNm6dp06bJZrPp888/12OPPab777/fL+sHAAAA0LiC/dotzqEAocPa1A0AAABo7n755RdnQiVJc+fOdUu6JCkuLk5z5szRiSeeKKniJBQncQAAAIDQdNVVV2n//v3KyMjQ//73P9199906/fTTFRcXV+86A5F3lJSUuJ2M+utf/6pbb73VebJHqjgJdOutt+rOO+90vnb//fcHZCYdAAAAAP7Vo0cPffDBB1q3bp1mzJjhcfaYyMhI3XXXXXrqqaecry1YsEBbtmxpzKZKku655x7n40mTJunJJ590GzAjSZMnT9azzz7rfP70008rKyur0doIAAAAIPhwDgVAbRg0AwAA0EAvvfSSHA6HJGn06NE6++yzPZazWq168sknnc8XLFjAiRwAAAAgBHXu3Flt2rTxa52ByDs+/PBD7dq1S5KUkJCg++67z+v677//frVs2VKSlJ6erk8++aRenwMAAABA47ngggs0fvx4n8refPPNat++vfP54sWLA9Usj9asWaM1a9ZIqp7XVHXdddepe/fukqSCggK99dZbjdJGAAAAAMGJcygAasOgGQBoQg6HQ2+++aZGjx6ttm3bKjo6Wl26dNH48eP1wQcfOMuNGjVKFotFFotFK1eu9FhXly5dnGV27txZ67qnTp3qLP/GG2/UWt4wDL3//vuaMmWKevTooYSEBEVHR6tTp06aMGGC3nzzTZWVldVYx86dO53r7NKli/P1r776Stdcc4169eqlhIQEWSwW3XrrrVq3bp2zfFJSkmw2W63tlCoOjsfHxzuX3bBhg0/L+UNpaaneeustTZw4Ucccc4xatGihuLg4de3aVZMnT9b7778vwzBqrGPlypXOto8aNcr5+hdffKFJkybpmGOOUXR0tFq1aqVTTz1Vs2bNUmlpqc9tLC4u1rPPPquTTjpJKSkpiomJUbdu3TR58mQtX77cWa6mfary9VWrVjlfO+2005yvu/7zZf/avXu37rvvPvXv31+JiYmKi4tTr169dNNNNyk9Pd3nz9YUDMPQhx9+6Hx+1VVX1Vj+pJNOck7rWV5e7rYsAABAIJB3VCDvcEfeQd4hye034JJLLlFsbKzXOmNjYzVx4kTn8/fff9+XpgMAALghP6lAfuKO/CQ48pOwsDANGzbM+dyX75U/uf4GnHnmmerUqZPXshaLRVOmTHE+Jz8BAAD1RY5SgRzFHTlKcOQovuIcCgCfGACAJrFv3z5j2LBhhiSv/84//3zj0KFDxsiRI52vrVixwmN9nTt3dpbZsWNHreufMmWKs/zrr79eY9n169cbAwYMqLGtkoyePXsamzZt8lrPjh07nGU7d+5slJSUGNddd53Hum655RbDMAzjhBNOcL729ttv1/q5DMMw/vOf/ziXGTJkiE/LeFOX7bpixQqjW7dutW6n4cOHG7t3766xnsqyI0eONEpKSozp06fXWOegQYOMzMzMWj/Phg0bam3jddddZ9jt9ho/e22f0fVf1f2rar3vv/++kZCQ4HX5mJgY4+OPP671s/nqgQcecNb9wAMPNLi+rVu3urV37969tS7jGs/LLruswW0AAADwhryDvKOmesg7Apd3eOP6nZgyZYrPywUq72jXrp2zzNy5c2ut85133nGW79Chg8/tBwAAMAzyE/IT8pNgy088ueCCC5ztmDFjhtdyVfdtfxgxYoSzzscee6zW8l9//bWzfFhYmGGz2fzSDgAAYB7kKOQoNdVDjhK4HKW5XLvFORQgtIQLANDo8vLydPrpp2vz5s3O17p27aoRI0YoKipKmzZt0g8//KD3339fVmvTTgq2evVqnXvuuTp06JAkKSIiQkOGDFH37t0VERGhnTt36quvvpLNZtPWrVt14okn6ttvv1Xv3r1rrfu2227TK6+8Ikk6/vjj1b9/f0VERGjbtm3Oz33ttdfquuuukyS99tpruuyyy2qt97XXXnM+vuaaa+r8metj4cKFuuyyy5x3DYiJidHw4cPVpUsXWa1Wbdu2Td9++63Kysr03XffacSIEVqzZo3atGlTa93XXnut3nzzTVmtVg0bNky9evWSw+HQd999p61bt0qS1q5dqyuvvFKLFy/2Ws/vv/+uM844Q5mZmc7Xjj/+eA0YMEBWq1U///yz1q9fr1deeUUtWrSosU033HCDpIpR8Xv37pUkTZgwQR06dKhWtqZ9YdmyZbr++utVXl6utLQ0jRgxQi1bttSOHTu0cuVKlZWVqbi4WBMnTtQvv/yirl271tiuujpw4IDefvttbdu2TYcPH1ZiYqI6duyok08+WT169PCpDtfvcdu2bdWuXbtalxk0aJDH5QEAAPyJvKMCeQd5R1PnHf4QiLwjPz9f+/bt81jelzr37NmjQ4cOqWXLlrUuBwAAQH5SgfyE/CTY85ONGzc6H9c004ursrIyLV26VD/++KOysrIUHR2tlJQUDR48WEOHDlVUVJRP9bj+PviSnwwcOND5uLy8XNu2bdPxxx/v07oAAADIUSqQo5CjNHWOEqzXbnEOBQhBTT1qBwDMaNq0ac5RxZGRkcZrr71Wrcz333/vHNUdGRnZJHcr2Ldvn9G6dWtnuSuvvNLjSOz9+/cb559/vrPc8ccfb5SVlVUr53q3grCwMEOS0alTJ2P16tXVylbeDaqgoMCIj483JBkWi8X4448/avxcmzZtcq4jLi7OOHToUK3boia+bNdffvnFiImJcbbxjjvuMHJzc6uV++OPP4yTTz7ZWd8555zjsT7XuxVERUU577qwefNmt3IOh8N47rnn3EbKr1q1ymOdDofDOPXUU53lWrVqZSxZsqRaueXLlxutW7c2LBaL237n7bP7cieNqly3aVRUlBEXF2e89dZbhsPhcCv3yy+/GB06dHCWveqqq3yqvzaudyuo6d+gQYOM999/v9b6nnjiCecyw4YN86kNn3zyiXOZ2NjYBn4iAAAAz8g7yDvIO5ou7/CmvjPNBCLv+P77793iWlRUVGudhYWFbsv88MMPPn8GAABgbuQn5CfkJ8GXn1TlOnOLJGPNmjVey7ru2zX9S0pKMu69916joKCgxnUfOHDAbbmqsfcmNTXVucyCBQvq9HkBAIC5kaOQo5CjcO0W51AAc2naIbAAYELbtm3T66+/7nz+6quvatq0adXKDR06VJ9//rliY2Nlt9sbs4lO9957rw4ePChJuvnmm/Xmm296HIndpk0bLVy4UKeffrqkirtQvfvuuzXWXV5ertjYWC1btkynnHJKtfcr7zoVHx+vyZMnS5IMw9Ds2bNrrNf1TgUTJ06sddS9P9x8880qLi6WJD3zzDN66qmnlJiYWK3cMcccoyVLlqhPnz6SpE8//VTff/99jXWXlJSoe/fu+uKLL9SrVy+39ywWi2655RZddNFFztfmzZvnsZ7PPvtMq1evliRZrVYtWrRIZ599drVyp59+uj755BNZrdZG2e/sdrveffddXX755bJYLG7v9e3b13k3C6nijhBlZWUBb1OltWvX6vzzz9f06dNVXl7utVx2drbzsS93n5Aq7mpQqaioSCUlJfVvKAAAgAfkHRXIO8g7pODOO3wViLzDtc6WLVsqJiam1jpjY2Pd9vecnByf2gIAAMyN/KQC+Qn5iRS8+YnD4dCtt97qfD5s2DANHjy4wfXm5ubq0Ucf1eDBg7Vt2zav5VzzE6l+eQ/5CQAA8BU5SgVyFHIUKXhzFKlpr93iHAoQehg0AwCN7LXXXpNhGJIqkqspU6Z4LdujRw+3A9SNKTMzU2+//bakik7iE088UWP5sLAwPfroo87n77zzTq3ruPHGG32aRnH69OnOx2+88YbXTnBpaaneeust5/PGmN5z/fr1+uKLLyRVTANfW7zi4uJ03333OZ/7sp3++c9/Kj4+3uv7ron7Dz/84LGMa0I6adIknXTSSV7rGzx4sK688spa2+UP48aN05gxY7y+P3bsWGeScvjwYY/TYdZHr1699Pe//13Lly/Xvn37ZLfbVVBQoI0bN+qpp55Sx44dnWX/7//+T7fccovXug4fPux87EuC5Kmcax0AAAD+QN5xFHkHeUdT5R3+FIi8oz51Vi1LLgMAAHxBfnIU+Qn5SbDmJ//4xz+0Zs0aSRUX8D399NO1LtOiRQtNnTpV//3vf7V161YdPnxYJSUl2rVrlxYuXKgzzzzTWXbr1q0aM2aMMjMzPdZVNbeoT95DfgIAAHxFjnIUOQo5CtduVa+jvnVWLUuOAgQXBs0AQCNbsWKF8/EVV1xRa/maErNAWrZsmXO0+gUXXKDo6Ohalxk2bJji4uIkSV999VWt5SdNmuRTW4YMGaIBAwZIkvbs2aPPPvvMY7kPP/zQebC9T58+OvHEE32qvyEWL17sfDx58uRqI+49qbyrg1T7doqOjta5555bY5mBAwc6H+/cudNjmVWrVjkfX3755bW20Zcy/nDxxRfX+L7FYlH//v2dz719vrq46aabtHnzZv3jH//Q6aefrrZt2yoiIkLx8fE67rjjdMcdd2jTpk0655xznMu88MILXmNls9mcjyMjI31qQ+XdOCpV3u0CAADAX8g7jiLvIO9oirzD3wKRd9Snzqr1kssAAABfkJ8cRX5CfhKM+clHH32khx56yPn8rrvu0sknn1zjMu3atdPevXv1+uuv65JLLlGPHj0UFxenyMhIdezYURdddJGWLl2qV155xbmP7NixQ/fcc4/H+lzzE6l+eQ/5CQAA8BU5ylHkKOQoXLtVgXMoQOgLb+oGAICZGIah9evXO5+PGDGi1mV69Oih5OTkRp+u79tvv3U+3rBhg2688cY6LZ+bm6vCwkJnIlZVRESEjj/+eJ/ru/baazVjxgxJFSPvx44dW62M64j8q6++uk7trS/X7bRixQqlp6fXukzl3SokadeuXTWW7dmzpyIiImos06pVK+fjQ4cOVXt/z549bnfuGjZsWK1tHDJkiCwWi1tbA8GXfaC2z1dXrvV507JlS7377rsaMGCAfvvtN0nSE0884fEkketBCV+nRa06pWdd7kgAAABQG/KOo8g7KpB3NH7e4W+ByDvqU2fVesllAABAbchPjiI/qUB+Elz5yZo1azR58mTn5z7zzDP18MMP17pcVFRUtYvMPLn22muVnp6uxx57TFLFXckfffRRtWnTxq1c1QtA7Xa7TxeFkp8AAIC6Ikc5ihylAjkK125JnEMBzIBBMwDQiPLz8906UWlpaT4tl5aW1uiJ1969e52Pv/rqK5/uPlBVbm6u18QrKSlJ4eG+/xm67LLLdOedd6qwsFAfffSRMjMzlZqa6nx/9+7dzrsYREZGNtoUla7b6dNPP63z8rm5uTW+n5CQUGsdrolZWVlZtfddk67Y2FglJyfXWmeLFi2UkJCgvLy8Wss2RF0/X2lpaSCb4yY2NlZ33XWXc6rYL774Qna7vdrdA1ynX/X1DgFVy9U0hSsAAEBdkXccRd5RgbwjePMOXwUi76hPnVXLkssAAIDakJ8cRX5SgfwkePKTX3/9Veecc44KCwslVVyU9/7779dpP/XFPffco2effVbFxcUqLy/X0qVLq901u2puUVxc7NOgGfITAABQV+QoR5GjVCBHCZ4cpaqmvHaLcyhA6LE2dQMAwEwOHz7s9jw2Ntan5bwlL4GUn5/f4Do8JQGV6jqSumXLlrrkkkskVXS+58yZ4/b+G2+8IYfDIUkaP368UlJS6tja+mnodiovL6/xfV+mDK2N637n6z4nNU7H3R+fL5DOPPNM5+OioiKPd6NwvfvBgQMHfKp3//79zsexsbE+3Y0NAADAV+QdR5F3VCDvCO68wxeByDuq3hnOZrPVWmdRUZEKCgqcz305sQcAAMyN/OQo8pMK5CfBkZ/s2LFDo0ePVnZ2tiSpb9++WrJkSUC2QXx8vNudtDdv3lytTNU7Tdcn7yE/AQAAviBHOYocpQI5SnDkKN401bVbnEMBQg+DZgCgEVXtyBYVFfm0XOUdnvypMknxxjXZ+9e//iXDMOr8r0uXLn5t8/Tp052PXafzNAxDr7/+uvN55ejyxuC6nd577716badAc93vfN3npMDsd81Nu3bt3J5nZWVVK9OzZ0/nY1+meJWkjIwM5+NevXrVs3UAAACekXc0DHlH/ZB3BFYg8g7XOn2t17VOT3UAAABURX7SMOQn9UN+UrM9e/bojDPOcN6Ru1u3blq6dGlAL+hyPd/i6VxL69atlZiY6HzuS35is9nc7tjN+RYAAOALcpSGIUepH3KU+muqa7c4hwKEHgbNAEAjSkhIcJsesGpHyZtdu3bVWqa2aR6rqm2UfZs2bZyPXUdWN6Xhw4erX79+kiruQvXtt99KklasWKHt27dLkjp37uw2wjzQgnE7VeV654aioqJapxWVKu5wEOjpPZuDqsmnpzuH9O7d2/l4//79Pu0Ha9eu9bg8AACAP5B3NAx5R/2QdwRWIPKOhIQEt5NN69atq1OdHTp0UMuWLWtdBgAAmBv5ScOQn9QP+Yl3Bw4c0BlnnKEdO3ZIkjp27Khly5ZVuxDN31zPt3i7S7tr3lLX/CQsLEw9evRoQAsBAIBZkKM0DDlK/ZCj1F9TXbvFORQg9DBoBgAakcViUf/+/Z3Pv/vuu1qX+e2335xTo9fEtZPlS/mNGzfW+L7rNOlff/11rfU1Fk93LHC9c8FVV10lq7Xx/rwF63Zy1bFjR7fk6/vvv691mR9//NGnOykE+xSdDVU14Wnfvn21Mt27d1fHjh2dz1euXFlrvatWrXI+Pv300+vfQAAAAA/IOxqOvKPuyDsCK1B5x2mnneb3OgEAAFyRnzQc+UndkZ94lp2drdGjR2vr1q2SKmZ3WbZsmd/vPu6J6/kWT+dapIblJyeeeKKioqLq30AAAGAa5CgNR45Sd+Qo9deU125xDgUILQyaAYBG5tqZevvtt2stP2fOHJ/qdT2g/fPPP9dY9scff3TeQcqbs88+W+Hh4ZKkb775RuvXr/epHYF2+eWXKyYmRpI0f/587d69W++9954kyWq1atq0aY3annHjxjkfv/feezpw4ECjrt9XI0eOdD5+5513ai3vy74pSdHR0c7HpaWldW9YkJs9e7bzcd++fd0S2EoWi0XnnXee8/kbb7xRY53ffvuttm3bJqnizmfnnnuufxoLAADggryjYcg76oe8I3AClXdMmDDB+Xj+/PkqLi72WmdxcbEWLFjgcVkAAICakJ80DPlJ/ZCfuDt06JDOPvts54WZSUlJWrp0qXr27BnwdS9btsztzuyjRo3yWM41x1i2bJl2795dY72ueRH5CQAAqAtylIYhR6kfcpT6acprtziHAoQWBs0AQCO7+uqrnY+/++67Gju4v//+u5599lmf6nUdNf/mm296LVdWVqZbbrml1vo6dOigyy+/XJJkGIauvPJKHTp0yKe2OBwOZWZm+lS2rhITEzVx4kRJFdNQXnTRRbLZbJKks846S506dQrIer0ZOnSo8+B+cXGxrrjiCtntdp+WtdvtPk236Q+uCencuXNrvFPG2rVra9yHXLVq1cr5eM+ePfVvYCM5fPiwz2XfffddzZ071/m88vvgyfXXX++8S8Znn32mpUuXeizncDj017/+1fn84osvVmpqqs9tAgAA8BV5R8OQd9QPeUdgBSLvOO+885x3X8vLy9Ojjz7qdf3/+Mc/lJeXJ0nq3Lmz24lIAACAmpCfNAz5Sf2QnxxVVFSkP/3pT/rpp58kSS1atNCSJUvUr1+/etVnt9t9jnlmZqauv/565/PevXtr0KBBHssOGTJEQ4YMkSSVl5fr7rvv9lrvq6++6rzIrUWLFrryyit9bT4AAAA5SgORo9QPOUqF5nTtFudQgNDCoBkAaGQ9evTQ1KlTnc+vueYaj53cH3/8UaNHj1ZhYaEiIyNrrfeSSy5xdvy+/fZb3X333SovL3crs3v3bo0bN07ffPONT1OUP/roo2rXrp0kacOGDRo6dKg+//xzr+V3796tZ599Vj179tT8+fNrrb++XKf5dJ2u8pprrgnYOmvy/PPPKz4+XpK0dOlSnXrqqTVOo7lt2zb94x//UJcuXRptWtBzzjlHJ598sqSKzv+5556rZcuWVSu3cuVKjR07VuXl5T7td8cdd5zz8bvvvuvTtKBN6ZlnntHo0aP1v//9z+vo//z8fD3wwAOaNGmS8/N07dq1xgMWxx9/vC677DLn88mTJ1eblrOwsFBTp07VV199JUmKjIzUP/7xjwZ+IgAAAM/IOxqOvKPuyDsCKxB5R1RUlB566CHn88cff1wzZ86Uw+FwvuZwODRz5kw98cQTztcefvhhn2IHAAAgkZ/4A/lJ3ZGfVCgpKdGECROcOUJMTIw+/vhjDR06tN517t27V926ddOTTz6p9PR0j2UMw9Ann3yiIUOG6I8//pBUcffnp59+2vm99eTxxx93Pn7nnXd09913V7tb9oIFC3Trrbc6n99xxx0e7zYNAADgDTlKw5Gj1B05SoXmdO0W51CA0BLe1A0AADP617/+pW+//VZbt25VSUmJpk6dqocfflgjRoxQVFSUNm3apB9++EGGYeiCCy5Qdna2Vq1aVWOdnTt31vXXX68XX3xRkvTEE09o3rx5OvXUUxUdHa0//vhDX3/9tex2u84880y1bdu21mkc27dvr0WLFmns2LHKysrS1q1bdfbZZ6tDhw4aOnSoUlNTVVpaqqysLP3yyy+1ThvqLyeddJL69u2rTZs2OV9r3bq12zSLjem4447TvHnzdMkll6ioqEjff/+9hg8frm7dumnQoEFKTk6WzWbTwYMHtWHDhiYZ1W+xWDR79myNGDFC2dnZysrK0ujRo9W/f38NGDBAkrR+/Xrn9LB33HGHFi5c6DzZ4e0ExgUXXKC//e1vzpMf/fr104knnqgWLVo4y0yaNEmDBw8O6OfzlWEYWrZsmZYtW6aoqCj17dtXxx57rBITE2W327Vz5059//33bklZSkqKFi9e7Jxa1ptZs2Zp7dq12rRpk7Kzs3Xaaadp2LBh6tOnjw4dOqQvvvjC7e4Ur776qo499tiAfVYAAADyjoYh76g78g53lZ/ZVUZGhvPxhx9+6LFM5fbxJBB5x7Rp07Ry5Uq99dZbcjgcuuWWWzRz5kwNHz5cUsWdFisvcpOkq666irs4AwCAOiM/aRjyk7ojP6lw3333ud1huXfv3lqwYIEWLFhQ67KtWrVyu0DM1e7du3XXXXfprrvuUpcuXXT88ccrJSVFERERyszM1Pfff6+9e/e6LfPkk09q7NixNa7zjDPO0N///nc98sgjkiq+12+99ZZOOeUURUdH66efftIvv/ziLD969Gj97W9/q/WzAAAAVEWO0jDkKHVHjlKhuV27xTkUIIQYAIAmsWfPHmPw4MGGJK//zjvvPOPQoUPGyJEjna+tWLHCa53FxcXG2LFja6xz3LhxRm5urjFlyhTna6+//nqNbd25c6dxxhln1Fiv6782bdoYS5YsqVbPjh07nGU6d+7coO333HPPua3zjjvuaFB93nTu3Nm5jh07dtRY9ueffzZOOOEEn7dTly5djHXr1lWrZ8WKFc4yI0eO9KmdrvXW1sauXbvW2K5rr73WsNvtRvv27Z2v5ebmeq3znnvuqbG+qvtXXbapYRh12ldr88ADD/gcH0nGmDFjjN27d/tc/549e4zTTz+9xjrj4+ON2bNnN+hzAAAA+Iq8o3ODth95hzvyjrqpS+7h67Y1jMDkHSUlJcaNN95oWCwWr3VaLBbj5ptvNux2e0M2CwAAMDHyk84N2n7kJ+7IT3zjWldd/3nbZ133a1/+dejQwVi0aJHPbXY4HMY//vEPIyIiosZ6J02aZOTn5zdo+wAAAHMjR+ncoO1HjuKOHMU3zfHaLc6hAKGBmWYAoIm0b99e3333nebMmaN33nlHGzZsUH5+vtq0aaP+/ftrypQpuvDCC2WxWHyuMzo6Wh9//LHmzZunN998U2vXrlV+fr5at26t/v37a+rUqbrooovqVKdUcSeEZcuW6dtvv9XChQu1evVq7dq1S7m5uQoPD1erVq3UvXt3DR48WGeddZZGjRql8PDA/om54IIL3KZeb6rpPV31799fP/74oz7//HN98MEH+vrrr7V3717l5eUpKipKqamp6tmzp4YNG6azzz5bI0aMqHMs/NHGX375RS+//LIWLlyobdu2qaioSO3atdPQoUM1ffp0nXHGGZLkHFlvtVrVsmVLr3U+9thjOvnkk/X666/rp59+0oEDB1RUVNQon6eu7rzzTo0cOVLffPONvvvuO6Wnpys7O1vZ2dmyWCxKTExU9+7ddeKJJ2ry5Mnq379/nepv3769li1bpvfff1/vvPOO1q5dq3379ik+Pl5paWk699xzdfXVVystLS1AnxAAAMAdeUfDkHfUv41mzjsCLRB5R2RkpJ5//nldccUVmj17tlauXOm8016HDh00atQoXX311RoyZEigPhYAADAB8pOGIT+pfxvJT/yrc+fO2rhxo7799lt988032rRpk7KyspSdna2ioiK1bNlS7dq105AhQ3TOOefo/PPPV0REhM/1WywW/f3vf9eFF16o//u//9Pnn3+uXbt2qbS0VO3atdOIESM0ZcoUnXnmmQH8lAAAwAzIURqGHKX+bTRzjtIcr93iHAoQGiyGYRhN3QgAQM1GjRrlnOJzxYoVGjVqVNM2KAi8+eabmjp1qiTp5JNP1pdfftm0DQoxv/32m3r06CFJ6tWrlzZv3tzELQIAAECgkXdUR94RWOQdAAAA8Ib8pDryk8AiPwEAAEBNyFGqI0cJLHIUAPAva1M3AACA+njttdecj6dPn96ELQlN8+fPdz5mFDwAAADMirwjsMg7AAAAAN+RnwQW+QkAAABQN+QogUWOAgD+xaAZAECzs27dOufdCZKTkzVx4sQmblFo2bFjh55++mnn80svvbQJWwMAAAA0DfKOwCLvAAAAAHxHfhJY5CcAAABA3ZCjBBY5CgD4H4NmAADNis1m00033eR8fv311ys6OroJW9S8nHXWWVqyZInKyso8vv/JJ5/o5JNPVn5+viRpwIABOuussxqziQAAAECTI+9oGPIOAAAAwH/ITxqG/AQAAADwL3KUhiFHAYCmEd7UDQAAoDazZs3S77//rry8PC1fvly7d++WJKWkpOj2229v4tY1L0uXLtXSpUuVlJSkQYMGqVOnToqMjFRWVpZ++OEH57aVpBYtWmjOnDmyWhljCwAAgNBH3uE/5B0AAABAw5Cf+A/5CQAAANBw5Cj+Q44CAE2DQTMAgKD37rvvatWqVW6vhYWF6bXXXlNycnITtap5y83N1fLly72+3717dy1cuFDHH398I7YKAAAAaDrkHf5H3gEAAADUD/mJ/5GfAAAAAPVHjuJ/5CgA0LgYNAMAaFaSkpJ04okn6p577tFJJ53U1M1pdn755Rd98MEH+uabb5Senq6srCzl5OQoOjpaqampGjp0qMaNG6dJkyYpLCysqZsLAAAANAnyjoYh7wAAAAD8h/ykYchPAAAAAP8iR2kYchQAaBoWwzCMpm4EAAAAAAAAAAAAAAAAAAAAAAAA4E/Wpm4AAAAAAAAAAAAAAAAAAAAAAAAA4G8MmgEAAAAAAAAAAAAAAAAAAAAAAEDIYdAMAAAAAAAAAAAAAAAAAAAAAAAAQg6DZgAAAAAAAAAAAAAAAAAAAAAAABByGDQDAAAAAAAAAAAAAAAAAAAAAACAkMOgGQAAAAAAAAAAAAAAAAAAAAAAAIQcBs0AAAAAAAAAAAAAAAAAAAAAAAAg5DBoBgAAAAAAAAAAAAAAAAAAAAAAACEnvKkbgOYtKysrIPWGhYUpKSnJ+Tw3N1fl5eUBWReaHvE2F+JtHsTaXIi3uQRDvFNSUhp1fWgeApWfSMGx36PxEG/zINbmQrzNhXibS1PHm/wE3pCjwB+ItbkQb3Mh3uZCvM0jGGJNjgJvuM4L/kC8zYV4mwvxNg9ibS7BEO9gyFGYaQYAAAAAAAAAAAAAAAAAAAAAAAAhh0EzAAAAAAAAAAAAAAAAAAAAAAAACDkMmgEAAAAAAAAAAAAAAAAAAAAAAEDIYdAMAAAAAAAAAAAAAAAAAAAAAAAAQg6DZgAAAAAAAAAAAAAAAAAAAAAAABByGDQDAAAAAAAAAAAAAAAAAAAAAACAkMOgGQAAAAAAAAAAAAAAAAAAAAAAAIQcBs0AAAAAAAAAAAAAAAAAAAAAAAAg5DBoBgAAAAAAAAAAAAAAAAAAAAAAACGHQTMAAAAAAAAAAAAAAAAAAAAAAAAIOQyaAQAAAAAAAAAAAAAAAAAAAAAAQMhh0AwAAAAAAAAAAAAAAAAAAAAAAABCTnhTNwAAgJqUlpaqqKhIdrtdhmHIMIymbhJ8ZLFYlJWV5XxeWlpK/EIY8TaX+sbbarUqPDxc0dHRioqKktXKGH4AQPPicDhUUlIim82msrIyORyOpm4S6oA+q7kQb3OpT7wtFossFosiIyMVGxuriIiIQDcTqLOa+h78zpkHsTYX4h26ODYKAAAAAADQdBg0AwAISoZhKD8/X8XFxU3dFDSA68k8LigMfcTbXOoTb4fDobKyMtlsNlksFiUmJio6OjpQTQQAwK9sNpvy8vK4YK2Zo89qLsTbXOob77KyMhUVFSkmJkYJCQmyWCyBaB5QZ770PfidMw9ibS7EOzR5OjYaFxfX1M0CAAAAAAAwBQbNAACC0uHDh6sNmOGuW80PMTMX4m0u9Ym364xhhmEoNzdXSUlJDJwBAAQ9m82m3Nxct9cqZyhA80Kf1VyIt7nUJ96uFyIXFxcrLCxMLVq08GezgHrxte/B75x5EGtzId6hydOxUavVqqSkpCZuGQAAAAAAQOhj0AwAIOiUlZXp8OHDzuctWrRQbGwsJ4qaofDwo12NsrKyJmwJGgPxNpf6xNswDNntdhUWFqqkpESSlJeXp9atW/MbDwAIWg6HQ3l5ec7nUVFRiouLU2RkJINmmiH6rOZCvM2lPvF2OBwqKipSQUGBpIqbuMTExLjVBTS2uvQ9+J0zD2JtLsQ7NHk6NpqTk6O2bdtybBQAAAAAACDAOPoCAAg6lScLJCkuLk7x8fGcMACAEGCxWBQVFaWkpCRFRUVJqjhZ7Pq7DwBAsCkpKXHeDdj17xgDZgCg+bNarYqPj1dcXJzzNfITNDX6HgAQmrwdG3W9iRwAAAAAAAACgyuQAQBBx/XihJiYmCZsCQAgECwWi9tFaTabrQlbAwBAzVz/TsXFxXHBKgCEINfjTwyaQVOj7wEAoa3qsdFDhw41YWsAAAAAAADMgUEzAICgU15eLqnixEF4eHgTtwYAEAiRkZHOC3/KysqauDUAAHhX+XfKYrEoMjKyiVsDAAiE8PBwZ35SeVwKaCr0PQAg9LkeG7Xb7U3cGgAAAAAAgNDHoBkAQNBxOBySKk4McydFAAhNrr/xlb/7AAAEI/ITAAh95CcIJvQ9ACD0uf7GM2AXAAAAAAAg8Bg0AwAAAAAAAAAAAAAAAAAAAAAAgJDDoBkAAAAAAAAAAAAAAAAAAAAAAACEHAbNAAAAAAAAAAAAAAAAAAAAAAAAIOSEN3UD4B+rV6/Wli1btH37dmVkZKisrEwzZszQqFGjmrppAAAAAAAAAAAAAAAAAAAAAAAAjY5BMyFi/vz5yszMVIsWLZSUlKTMzMymbhIAAAAAAAAAAAAAAAAAAAAAAECTsTZ1A+Af1113nV544QW99tprGj16dFM3BwDQDO3evVu33367hgwZoo4dOyo1NVWpqalavHixX9dTWe+TTz5Z7b2vv/7a+f7XX3/t1/XCvObNm+fcrzIyMpq6OQAAAPAB+QlCFfkJAAQn+h4IVfQ9AAAAAAAAAGaaCRn9+vVr6iYAAJqx3bt368wzz1R2dnZTNwUAAACAyZGfAACAxkTfAwAAAAAAAABCm+kHzeTn5+v333/X77//rj/++EN//PGHCgoKJEkjR47UDTfc4HNdmZmZ+vTTT7V27VplZ2crPDxcbdu21YgRI3T22WcrKioqUB8DAIAG+de//uX82/W3v/1NI0aMUFxcnCSpU6dOTdw6NAcZGRk64YQTJEkvvPCCJk6cGND1ff3115owYYIk6YMPPtBJJ50U0PUBAACg8ZCfoKGq5ieXXnppQNdHfgIAzRt9DzSUa99j5syZmjx5ckDXR98DAAAAAAAAqBvTD5qZPn26X+r58ccf9fzzz6u4uNj5WklJiXMgzvLly3XPPfeobdu2flkfAAD+tHr1aknSOeeco5tuuqmJWwP41+TJkwN+ohoAAAD+Q36CUEZ+AgDBh74HQhl9DwAAAAAAAIBBM25SUlLUoUMHrV+/vk7L7dixQ88995zsdruio6M1YcIEHXfccbLb7fr666+1fPly7du3T48//rj++c9/KiYmJkCfAACA+tm3b58kqVu3bk3cEgAAAABmR34CAAAaE30PAAAAAAAAAAhtph80c9FFF6lbt27q1q2bEhMTdfDgQd144411quONN96Q3W5XWFiY/v73v6tHjx7O94477ji1a9dOb7/9tvbt26ePPvpIEydOrFbHnDlzVFpa6vM6x44dq3bt2tWpnQAAeGO32yVJERERTdwSAAAAAGZHfgIAABoTfQ8AAAAAAAAACG3Wpm5AU5s4caJOOOEEJSYm1mv533//XZs3b5YknXbaaW4DZiqNGzdOHTp0kCR9+umnKisrq1Zm6dKl+uyzz3z+l5OTU6/2AgBQad68eUpNTVVqaqrztaeeesr5WmpqqttA0kGDBlV7zZMbb7xRqampGjRoUMDa7guHw6H33ntPU6dO1YABA9SpUyd16tRJw4YN0/XXX68PP/zQ64BVu92u2bNna8KECerVq5fat2+vPn36aNKkSVq4cKEcDofX9Vb9/AcOHNADDzygYcOGKS0tTccff7yuvvpqbdmyxW25jIwM3XPPPRo2bJg6deqkPn366Prrr9eOHTu8ruvJJ590i2F+fr6eeOIJnXzyyercubO6d++uCRMm6L333qtxW1XW8eSTT9ZYbvz48UpNTdX48eOrLX/CCSc4n99www1u+5Gnunfu3KkXX3xRl112mQYNGuSMz8CBA3XNNddo+fLlHtuQkZGh1NRUTZgwwfnahAkTqq1v3rx5zvdd9/WMjAyvny8rK0uPPfaYTjvtNHXr1k0dO3bUoEGDNGPGDH333Xc1bpuq34/ff/9dt912mwYNGqQOHTqoT58+mjJlin788cca6wEAADAr8hPyk0qByE+SkpLIT8hPAMANfQ/6HpX83fe4+eabG3xsdNmyZR7bQN8DAAAAAAAAdeEwDB04VKJvfs/S29+l67ll25q6SU3G9DPNNNQPP/zgfHzaaad5LGO1WjVy5EjNnTtXhYWF2rRpk/r37+9W5q233gpoOwEAMJOMjAxNmTJFv/zyS7X3tm/fru3bt+t///ufPvjgA5100knVlp00aZJ+++03t9czMzO1fPlyLV++XG+++abeeustJSUl1diOX375RZdccokOHjzofK24uFgffvihli1bpvnz52v48OH68ssvNXXqVB06dMhZzmaz6X//+5+WL1+ujz76SL169apxXenp6brooou0c+dO52tFRUX6+uuv9fXXX2vx4sV6+eWXFR7e9N2/9PR0DRkyxON7u3fv1u7du7Vo0SJdfPHFmjlzZqO0ecWKFbr66qtVUFDg9vquXbu0a9cuLVy4UNOmTdPjjz8uq7XmceeffPKJZsyYoaKiIudrmZmZWrx4sT777DO99NJLOv/88wPyOQAAABB8yE8qkJ/4jvwEANAQ9D0qNPe+x8SJE/XCCy80SpvoewAAAAAAADRv+cVlysgtVnquTRm5NmXkHPk/1yZb2dGb4Fgs0qT+rRRuacLGNpGmPzLYzG3dulWSFBUVpWOOOcZruT59+rgtU3XQDAAAjW3s2LEaMGCAJOnUU0+VJF111VW66qqrnGXqOxNbUzp48KD+9Kc/af/+/ZKkU045RZdccom6d+8ui8Wi9PR0ffXVV/rwww+rLXv48GFdeOGFzpOrY8eO1aWXXqq2bdsqPT1dr732mr755ht9//33uuyyy/TRRx8pLCzMYzuKi4s1depUlZaW6t5779WJJ56osLAwffHFF3ruuedUVFSkG264QQsXLtSVV16pli1b6q677tIJJ5ygsrIyffzxx3rllVeUl5enW2+9VUuWLKnxc0+fPl0ZGRmaOnWqzj33XLVs2VKbNm3S888/rz/++EOLFi1S27Zt9cgjjzRsA3uwevVq7d+/XxMnTpQk3XvvvTr77LPdyqSkpDgfl5eXKzIyUqeddppGjhypnj17KjExUXl5efrjjz80e/ZsbdmyRQsXLlTnzp111113OZdt166dVq9erXXr1umWW26RJP373//WwIED3dbXvn17n9u/ceNGXX755bLb7YqIiNDVV1+tMWPGKDY2Vhs3btTMmTOVnp6u2bNnKy4uTvfff7/XujZv3qxFixapTZs2+vOf/6wBAwbIMAytWLFCM2fOlM1m0+23365TTjnFbZsAAACYHfkJ+Ym/eMpPxo4dq/LycmcZ8hPyEwCg70Hfw1+q9j3uuecenXPOOW5l6tP3WLBggbp06aI777zTuSx9DwAAAAAAAPMqtpdrV17FQJj0KgNj8m1lPtVhGNLuXJu6JEcFuLXBh0EzDbR7925JUtu2bb0eGJbcD05WLgMAqD+HYSi/2Lc/9KEgISZcVot/h/cmJCQoISHB7bWUlBT17t3br+tpbH/961+dJ4Xvv/9+3XTTTW7vDxw4UBMmTNCDDz6osjL3fejpp592nhT+y1/+onvuucf5Xv/+/XXuuedqxowZevfdd7VmzRrNmTPH7US6q6ysLBmGoc8++0xdu3Z1vn7CCScoOTlZd999tzIyMvSnP/1JrVu31ieffOJ2onDYsGEKDw/XrFmz9NNPP2nDhg3q16+f18+9bt06vfLKK7rgggucrw0YMEDjx4/XuHHjtGnTJv3nP//RZZdd5vcY9+7dW3Fxcc7n7du3r3Edbdq00U8//aS2bdtWe+/UU0/V1KlTdfPNN+u///2vXnzxRf35z39Wy5YtJUkRERHq3bu3cnJynMt07ty5QZ/p9ttvl91uV1hYmN555x232QMHDhyo8847T+PGjdPWrVv1wgsvaOLEiV7vbrlhwwb1799f77//vlq0aOF8ffDgweratav+/Oc/q6CgQO+++66uv/76ercZAAAEH3KUBtZHfkJ+4iee8pM+ffpU276VyE/IT4DmqLLfERZuOF8r9/I7Fyroe/iGvkfT9z3atWvX4GOjt956q+bOnasXXnhB1113HX0PAAAAAAAAkygrd2jvIbsyclxmjTny70CB3S/rSM8tZtAM6sZutzunqW7VqlWNZePj4xUVFaWSkhJlZ2f7vS3Lly/Xli1bJFVMnV752qZNmyRJvXr10hlnnOFzfb62saaBQg1RdWrv2qb6RvNGvM3Fl3hbfDj5mV9cptEvrvVbu4Ld0hmDlBQb0dTNaBCLxSLDMGov2AC///67Fi9eLKniTohVTwq7io+Pd3teUlKit99+W1LF382//vWv1ZaxWCx68skn9cUXXygnJ0evvfaa1xPDknT33Xe7nRSudOmll+rBBx+UzWZTVlaWZs2a5fHOelOnTtWsWbMkSd99912NJ4bPOusst5PCrp/zX//6l84++2w5HA698cYbeuKJJ7zWU19Vv7c1xTsuLs7tRLKnuh5++GEtXLhQRUVFWrVqlc4991y/trfS2rVrtW7dOknSFVdc4XZSuFJiYqKeeeYZjRs3Tg6HQ7Nnz9aTTz7ptc5///vfbieFK1144YV66KGHtH//fn333XfN+sRwXeLta32B6lciNDR1fiLRZzUb4m0e/spPJHKU5sBTHyaQyE+aLj/xxFuflfyk+ecnkn9zFPIT+CKQOQrHRj1rjn0Pf/H1N46+R3D1Pbypre9htVr1yCOPaP78+SosLNTq1as1bty4gLSFvkfw4fhDaON4k3kQazSFpj6Pwn5vLsTbXIi3uRBv8yDWTcswDB0ssB+ZMaZY6TnFysipeLwnr0RlDv9fYxkTEaauKXHqmhqnpNhIU54HYdBMA9hsNufj6OjoWstHR0erpKTEbTl/2bJli1atWuX22tatW7V161bn87oMmvnzn//sU7kFCxb4XGdDVL3bF0Ib8TYXT/GuvAud1WpVeLjnP1Wud1E0g7DwcK/bwp9q2ua+lvHWia7a0fJUj2uZsLCwOn/m5cuXO08Yz5gxo07L//TTT8rPz5dUceI2KsrzaOqkpCRNmDBBs2fP1tatW5WVleV2V8DKz2+xWHThhRd6bEOLFi10zDHH6Ndff1ViYqLOOussjxdEdOvWTS1atFBBQYF27dpVrS7XbX355Zd7/bxDhw5Vr169tGXLFn355Zdey9UW28o2WiyWGmPn6XlNSktLdfDgQR0+fFjl5eXO15OTk5WZmanNmzfr/PPP91p/bfuKa9nwKt+lL7/80vn4yiuv9FrPSSedpJ49e2rr1q01bsM+ffqof//+XtvSr18/7d+/X+np6Y3ynW4s9U2kKvfhiIgIJSUl+bNJCDHBlp9I9FnNhnibR33zE4kcJRD8nZ/U1GclPwmt/MTTcr72WclPQkN9chTyE9RFIHMUjo161hz7HrWVq2/fw9tvHH2P4Oh71LXfWFvf49dff9WECRPclqHvERo8nUvh+IO5EG/zINZoDMF2HoX93lyIt7kQb3Mh3uZBrAMjr8iu7VmF2pFZqB1ZFf+2ZxVqZ1ahikvLa6+gjsKtFqUlx1YMjjkyQKZrSpyOSYlXm5ZRAb+hYLDjaFQD2O1Hpzny5cBeZRnX5fzlhhtu0A033OD3egEAaE42bNggqeIClyFDhtRp2c2bNzsfn3DCCTWWHTx4sGbPnu1czvXEcKVWrVrVeJFNZbJxzDHH1NghbdmypQoKCnT48OEa2zRw4MAa3z/hhBO0ZcsW/f7777Lb7YqMjKyxfKCVlpbqjTfe0IIFC7Rhw4Ya+0eBmKWvUmXcIyMjdfzxx9dY9oQTTtDWrVv1xx9/eN2GPXr0qLGOyn2itngCAACg+SM/8Y78xDPyEwBAQ9D38I6+h2f0PQAAAAAAABqm2F6undkug2IyC7Uj67B2ZBUqt6g0IOtsnxDtHBDTNSVeXVNi1TUlXh2TYhQRxqxB3jBopgFcDwaWlZXVWr6yTFMfiPXFSy+91NRNAACgzipPICYlJdX5721ubq7zcWpqao1lW7du7XE5VzExMTXWUXkXOV/Lud5l0JPa2lz5vmEYysvLc/sMjS03N1cXXHCBfv75Z5/KB2KWvkp5eXmSKvaZ2gZBV26zmrahv+IJwB35CQCgOSI/qf198hN35CdA80GOgmBE36P29+l7uKPvAQBA6CBHAQAACJzScod25xZr55GZYioHxezILNTe/MAcu0mKjXAOijnGOUAmTl1axSkm0vNM1KgZg2YaIDo62vnYlwOWlWVclwtWrVq18qmct4PhDWW1Wt2m+8rPz5fD4QjIutD0iLe5+BLv0tJS52veBiXGR0hLZwwKXEODTHyEbwM0G8rhcNS6ntrKePv+lpeXyzCMGutxPVlWXl5e589cWb9hGHVe1rXdtX3GmtrpWk9NddS1rZ7a5Lqu2rZX1XZ5Klvb566pzVVPdFaNt6u77rrLeVJ47NixuvTSS9WnTx+lpKQoOjraeXfJAQMGaM+ePR4/W132FdeyVT+7r/HyVLY+27Au6wtmFotFYWFHE7Ca4l0Th8Mhh8Oh0tLSOvcra7pbKUJPU+cnEn1WsyHe5uGv/EQiRwkEf+cn5eXl1fowNdVDflJz+4I5P/G0nLc+K/mJb+sLdv7IUchPUBeBzFF8PTa67IYTZHXZ7x31zM2bi+bY96itnK9/T3z9jaPvERx9j9raUlvfw2q1KiwsTMcdd5z27NnT4H4qfY/gVdn3cMXxh9DG8SbzCIZYk6OYT1OfRwmG/R6Nh3ibC/E2F+JtHsS6OsMwlHnYrvQcm9Jzi5WeU6yMI4/35JWozOH/Y6/REValJUWrc1KMOifHKC254nFacrQSYyI8LFEuW+Eh2Qrrtp5giHcw5CgMmmmAyMhItWjRQgUFBbVOjX348GGVlJRI8j1RaQ4a605ADoeDuw6ZCPE2F0/x9uXkrtViUVKsp44BAqXyLnC1xaeoqMjj641x0r7yb2xeXp7sdnud7qjo2jE7ePCgunXr5rXswYMHPS7XlDIzM9WhQ4ca35cqTrInJia6vWexWGQYRq2dYW+xlarH11u8CwoK9MEHH0iSLrroohrvelR5p8NAqoxfbm6uysrKaryjYmXcPW1Ds/E13nWpj7/98IfG3I/os5oL8TaP+uYnEjlKY6tPfuLvPkxtyE+aLj/xxFO8yU9Chz+/3+Qn8Kf67Eu+HhtNjAl3+50oK7PUeV3wXUOPjTaEr79x9D2Cq+/hiS99j8r45ufnuz0PBPoewYfjD+ZCvM2DWCOYcJ0XAoF4mwvxNhfibR5mivUhW5kycm0Vg2JybRWPc23alWtTcan/B5KEWS3qkBClzknRSkuKPjIwJlqdkqKVGh8pq8Xzcd1AxsNM8XbFoJkG6tixozZv3qz9+/dXu1ulq71797otAwBAcxMfHy+p9guFtm/f3git8axfv35auHChSktLtWbNGp100kk+L9urVy/n47Vr12rEiBFey65du9bjck1p3bp1NZ4Yrrx74THHHFPthHl8fLwKCgpqjK1hGNqxY4fX9y1eOvBVbd++XaWlpZKkCRMmeC3322+/qbCwjsPi66Eyfna7Xb/88osGDBjgtey6desked6GAAAAaFzkJ3J739NyTYn8pH7ITwAgeNH3kNv7npZrSqHW99i2bZsOHz7sU50NQd8DAAAAAACEIltpuXbllSg9p1i78mxHZoypGCCTVxyY2W/btIisGBRz5F/npGilJceofctIhYdZA7JO1A2DZhqoZ8+e2rx5s0pKSrR9+3Z1797dY7lff/3VbZlQ4W2QUENV3rHL23OEFuJtLr7E29cTTGhcaWlp2rRpkzZs2CDDMDzGacuWLdq0aZPH5Svv2BdIo0eP1v333y/DMPTqq6/W6cRw//79lZCQoPz8fM2fP19//vOfPe6fhw8f1ocffiip4m9627Zt/db+hpg/f77GjRvn8b1169Zp8+bNkqRTTz212vuVsV2/fr3X+pctW+a8u6En0dHRzsclJSVe411WdjTxqOnujG+88YbX9zytr75Gjhypxx57TJI0d+5cryeG16xZo61bt0ryvA3Npur3v6Hfb4vFErB+JcwlkPsRfVZzId7mQX7SfNUnP/HUhwkk8pOmy0+ioqKcjyvzBU99VvKT0OHPHIX8BP5Un33J179P/s7NUbOGHhttCF9jTd8jOPoedrvdazlf+h4Wi0Wvv/662/Oq6HuELo4/hDaON5kHsUYw4zov+APxNhfibS7E2zxCIdZlDkN7821Kz7EpI6dY6bnFzsf7C7wfn2mIxJhwpSXFHJktJkadkysGxqQlRismMnjPK4RCvP2BQTMNNHToUOc02itWrPA4aMbhcGjVqlWSpLi4OPXt27cxmxhQjTXtekJCQqOsB8GBeJuLp3hnZWXJMAxZrVaFh/OnqjHVtM1PPvlkffrpp9q/f78++OADXXzxxW7vFxQU6LbbbvNad9UDcJ7W5VomLCyszvHv2bOnxo0bp48++kiLFy/Wiy++qJtvvtlj2cLCQpWWlioxMVGSFB4eriuuuEKzZs3S5s2b9eyzz+quu+5yW8YwDN1zzz3Kzs6WJE2fPr1aG107lTW1v/Jkp8Vi8elzetperutasmSJPvroI51//vluZQ4fPqw77rjDWX7atGnV6jn55JO1adMm/fTTT/rxxx81fPhwt/cPHDigv/3tb25tr1pHamqqIiMjZbfbtWPHDq8HXLt37+48sT9//nxddNFF1U78fvrpp3rttddq/Ozt27d3Ps7IyKhxG7q2JTw83K3s0KFDNXDgQK1bt05vvfWWxo8fr5EjR7otn5+f77YNr7nmGq/rq+13y9f9o7mp7wH2yu0RERHRaP1KhLbG3I/os5oL8TYP8pPg4u/8pGqfxfU5+Ulo5SetW7d2y08kz31W8pPQzE+k+uUo5CcIhPrsS/XtezDYq+H83feo7Te4vn0Pb7Gm7xEcfY/09HSvn8nXvsd//vOfGtdH3yM0eLpAheMP5kK8zYNYI5hwnRcCgXibC/E2F+JtHsEaa8MwdLCgRNszC7Ujq1A7sg5rR1ahtmcVKiO7SGUO/99EKDrCqq4p8TomJU5dK/+lxqlrqzglxYXG7LvBGu9A42hUAx177LHq3bu3Nm/erBUrVmjUqFHq0aOHW5mPP/5Ye/bskSSdc845HAQEADRLEydO1D//+U8VFBTo5ptv1o4dO3T66afLYrHo559/1osvvqi9e/eqX79+2rBhQ5O18+mnn9aPP/6offv26YEHHtDy5cs1efJk9ejRQxaLRRkZGfryyy/13nvvac6cOTr55JOdy/71r3/Vxx9/rJ07d+qf//ynfv31V1166aVq27at0tPT9Z///EdfffWVJGnIkCGaOnVqE33K6gYOHKjp06fr66+/1vjx49WiRQtt2rRJ//73v/Xbb79Jkq655hodd9xx1ZadMmWKXnvtNZWVlWny5Mn661//quHDh8tut+v777/Xiy++qNLSUnXr1k1//PGHx/WHh4dr4MCB+v777/XOO++oX79+Ov744xURESGp4gBsUlKSkpOTNXr0aH3++edavny5LrjgAk2bNk2dOnVSZmamPvroI82dO1ddunRRfn6+srKyPK6vU6dOat++vfbu3atZs2apffv26t69u/MkcGpqqlq0aOHTtvv3v/+tM888U3a7XRMnTtS1116rMWPGKDY2Vhs2bNBzzz2nnTt3SpJuvPFG9enTx6d6AQAAEDjkJ+Qn5CfkJwDQmOh70Peg70HfAwAAAAAABEZ+Uam2HxkQU/Vfkb3c7+sLs1qUlhx7dFBMSlzFIJnUOLVpES2r1bfZwNG8mH70xpYtW7R//37n80OHDjkf79+/XytXrnQrP2rUqGp1TJ06Vffdd5/sdrseeeQRnX/++erbt6/sdru++eYbLVu2TJLUrl07nXvuuQH5HAAABFpKSopmzpypa665RjabTY8//rgef/xx5/sxMTF6+eWX9dlnnzXpieHWrVtr8eLFuvTSS7V582atXr1aq1ev9mnZFi1aaNGiRbr44ou1bds2ffjhh/rwww+rlRs2bJjmzZsXVHfwfP311zV+/Hi99tprbndBrnTeeefp0Ucf9bhs79699dBDD+nee+9VXl6e250TpYqTum+//bYee+wxryeGJem2227T5MmTlZOTo+nTp7u9d9ddd+nuu++WJD3zzDM655xztHv3bq1cubJaf6tjx456++23NXHixBo/81/+8hfdcccdSk9P12WXXeb23gsvvKBLL720xuUrHX/88Zo3b56mTp2qgoICzZo1S7NmzapW7pprrtEDDzzgU50AAAAILPKTo8hPPCM/AQD4E32Po+h7eEbfAwAAAAAAwDtbabl2ZhdqR2bFTDGuA2NyCu0BWWe7hGi3gTGV/zolxyoirPoMsAhtph80s3z5cq1atcrje1u3btXWrVvdXvM0aKZr16669dZb9fzzz6u4uFjz5s2rVqZdu3a65557FBMT45d2B4vc3NyA1Gu1Wt2mf8rPz5fD4QjIutD0iLe5+BLv0tJS52tlZWWN2j6zczgcNW7zcePGafHixZo5c6a+//57HTp0SKmpqTr55JN14403qlevXvr00089LlteXi7DODoloqd1lZeXuz2ub/w7duyoFStWaOHChfrwww+1YcMG5eTkKDw8XO3bt9cJJ5ygc889V0OGDKm2jvbt22vFihV666239OGHH2rLli0qKChQYmKijj/+eF100UW68MILZbVaPbbPdX+uqf2V28IwDJ8+p6ft5bquDh06aNmyZXrhhRe0ePFi7d69W+Hh4erbt6+uvPJKXXTRRTW26dprr9Wxxx6rl19+WevWrVNxcbHatm2rM844QzfddJM6duxYY5stFovOPvtsLVq0SC+//LLWrl2r7OxslZaWVmt/27ZttXz5cj3//PP69NNPtXv3bkVFRalTp04aO3asrr32WiUmJtb42aWKu0C2atVKb775pjZt2qTc3FxnOdf9x3W/Kisr81jXqaeeqh9++EGvvPKKli1bpvT0dNntdqWmpmr48OGaMmWKhg8fLofDUePfqNq+Q77uH8HOYrG4XRhR9fvtq8rtWVpaWud+ZWNNH4/mJVD5iUSf1WyIt3mQnwQ3f+cn5eXl1fowNa2L/MS7YM9PJOnMM8905ifr1q1TVlYW+YmH913b0pz5I0chP0Eg1CdH8bXv4a/cHEf5u+9R22+wr32PusaavkfT9D3OOOMMvffee3r11Ve1bt26eh8bve6669SqVSu3bUXfIzR52p4cfwhtHG8yj2CINTkKvOE6L/gD8TYX4m0uxNs8AhXrMoehffklSs8pVkZusdJzbErPKVZ6brH2HwrMwJiW0eHqnBytzskx6pwUo87J0UpLjlFaYrRiIj3d9KVUhw/lB6QtwSoYvtvBkKNYDJMfQX/hhRe8DprxZMGCBV7fy8zM1OLFi7V27Vrnwee2bdtq+PDhGjNmjKKiovzR5KDibVrwhgoLC3P7guTm5rod1EVoId7m4ku8Dxw4IIfDIavVqjZt2jR2E+FH4eFHx+dyEsz/nnzyST311FOSKvohTY14m4s/4t2Q3/uUlJR6rROhLVD5iUSf1WyIt3mQn5gPfdbACbb8RCLeZtPQeJOfIBDqk6PUZV/kd848iHV1wdj38BfibQ6Vv/fR0dHq3r27JI4/hDqON5lHMMSaHAXecJ0X/IF4mwvxNhfibR4NibVhGMoqLFV6jk0ZubaKwTG5Nu3KtWl3XonKHP4flhAVblVaUrTzX+ekaKUlVzxOjInw+/pCTTB8t4MhRzH9TDM33HCDbrjhBr/UlZqaqilTpmjKlCl+qQ8AAAAAAAAAAAAAAAAAAAAAgMZSYCtTeu6RgTE5NqXnFh8ZJGNTcan/ZykJs0gdEqPdB8ccGRiTGh8pq8Xi93XCXEw/aAYAAAAAAAAAAAAAAAAAAAAAALOwlZYrPbtIG3dma2d20ZFBMsXKyLEptzgws9+2jo9QWlKMc6aYzkcGyHRIiFJ4mDUg6wQkBs2ggcLCwgJSr9VqrfE5QgvxNhdf4m1hVHBIqBpHi8Uiw/D/9IsIDsTbXPwdb4vFErB+JcwlkPsRfVZzId7mQX5iLvRZzYV4m4s/401+An+qz77ka9+D3znzINbmQrzNjeMPoY3jTeZBrBHMuM4L/kC8zYV4mwvxDk1lDkP78kuUnlOsjNxipedUzBazK69Ee/OLFYjDDi2jw9U5OVqdk2OODIyJUefkGHVKilZsJMffGxvf7QoMmkGDJCUlNcp6EhISGmU9CA7E21w8xTsrK0uGYchqtSo8nD9VoYILTvzPtQMbbN8V4m0u9Y135T4cERHRaP1KhLbG3I/os5oL8TYP8hNzoc/qX8Gcn0jE22zqE2/yEwRCffal+vY9+J0zD2JdIdj7Hv5CvEOXpwtUOP5gLsTbPIg1ggnXeSEQiLe5EG9zId7Nh2EYyiwo0fasQu048m97ZqF2ZB1WRk6RSsv9PzImOsKqLq3idExqnLqmxKlrSry6psTpmJQ4JcVF+n198B+zfrdD9wgiAAAAAAAAAAAAAAAAAAAAAADNXH5xqXZWDopxDpA5rB2ZhSq0l/t9fWFWizolxRwdFJNaMSima0qc2raMltXq26zZQDCwGMznDAAIMr/99pvsdrusVqvatWvX1M0BAATIvn375HA4FBkZqe7duzd1cwAA8Ij8BADMgfwEwYK+BwCYA30PAAAAAIAnttJypWcXaUfW4YqBMZlHZ4/JLrQHZJ1tW0ZXDIxxGRTTJSVOnZJiFRlefaZUoDliphk0SG5ubkDqtVqtbtM/5efny+FwBGRdaHrE21x8iXdpaanztbKyskZtH/zHYrEoLCzM+by8vFyM1Q1dxNtc/BVvh8Mhh8Oh0tLSOvcrG2v6eDQvgcpPJPqsZkO8zYP8xFzos5oL8TYXf8Sb/ASBUJ8cxde+B79z5kGszYV4m0dl38MVxx9CG8ebzCMYYk2OAm+4zgv+QLzNhXibC/FuPOUOQ/sOlSg9p1jpOTZl5BY7H+8/VKJAHAloERWmLskxSkuOUZdWMerdsVXF4JhWcSqzFXqIdakKC/JVGIC2oHEFw3c7GHIUBs2gQcrL/T+dlycOh6PR1oWmR7zNxVO8OQEUGqrGkbiGNuJtLv6Ot2EY/O2HXzTmfkSf1VyIt3mQn4Q2+qzmQrzNxZ/xJj+BP9VnX/J1/+V3zjyItbkQb3Pj+IO5EG/zINYIJlznhUAg3uZCvM2FeDeMYRjKLixVRq5NGbk2pR/5PyOnWLvzS1Ra7v+cPyrcqrSkaHVKjFLn5BilJUUrLSlanZOilRATLovFIkkKCwtzG8SQW0SszcSs320GzQAAAAAAAAAAAAAAAAAAAAAAUAeHS8qOzBbjOjimWBk5NhWV+n82jzCL1D4hSmlJMUpLrhgQUzk4pnWLSFmPDIwB4I5BMwAAAAAAAAAAAAAAAAAAAAAAVFFS5tDuvCODYlwGyGTkFiunqCwg60yNjzgyGCamYmBMcsXAmA4JUYoIswZknUAoY9AMAAAAAAAAAAAAAAAAAAAAAMCUyh2G9h0qcRkQc+Rfjk37DpXICMA6W0SFqXNyxcCYNJcZY9KSohUbGRaANQLmxaAZNEhYWGB+lK1Wa43PEVqIt7n4Em8LUwSGhKpxtFgsMoxApA8IBsTbXPwdb4vFErB+JcwlkPsRfVZzId7mQX5iLvRZzYV4m4s/401+An+qz77ka9+D3znzINbmQrzNjeMPoY3jTeZBrBHMuM4L/kC8zYV4m4sZ4m0YhrILS5WeW1wxY0xOsdJzbUrPKdbuPJtKy/2fg0eFW50DYTonx6hzcozzcWJMeJOcizRDrHEU8a5gMTjKBgAIMr/99pvsdrusVqvatWvX1M0BAATIvn375HA4FBkZqe7duzd1cwAA8Ij8BADMgfwEwYK+BwCYA30PAAAAAAicQ7ZS7cwq1I6sQm3PrPi/8t/hkjK/ry/MalHHpBh1TYlT15Q4HZMSp64p8eqaGqd2LaNltXKTPqCpMdMMAAAAAAAAAAAAAAAAAAAAAKBZsJWWKyOnyDkoxjlIJqtQWYdLArLONi2jjgyMiT8yMCZOXVPj1CkpVpHh5py9A2guGDQDAAAAAAAAAAAAAAAAAAAAAAga5Q5De/OKtT2rUDsyDzsHxezIKtSevGIZhv/X2SI6XMekugyKOfKvS0qc4qO47B5orvj2okFyc3MDUq/ValVCQoLzeX5+vhwOR0DWhaZHvM3Fl3iXlpY6Xysr8/90iGgcFotFYWFhzufl5eUyApGpICgQb3PxV7wdDoccDodKS0vr3K9MSkqq8/oQ+gKVn0j0Wc2GeJsH+Ym50Gc1F+JtLv6IN/kJAqE+OYqvfQ9+58yDWJsL8TaPyr6HK44/hDaON5lHMMSaHAXecJ0X/IF4mwvxNpemirdhGMopKlV6jk3pOcXKyC12Pt6VZ1Npuf/z4qhwq9KSotUpKVqdk2PU+cj/ackxSooJl8ViqbKEQ6VFBcot8ntTmgTfbXMJhngHQ47CoBk0SHl5eaOsx+FwNNq60PSIt7l4ijcngEJD1TgS19BGvM3F3/E2DIO//fCLxtyP6LOaC/E2D/KT0Eaf1VyIt7n4M97kJ/Cn+uxLvu6//M6ZB7E2F+Jtbhx/MBfibR7EGsGE67wQCMTbXIi3ufg73odLypSRa1NGrk3pORX/78q1KT3XpkK7//crq0VqnxCltKRodU6KUVpStNKSo9U5KVqtW0TKWm1gTAUzDh7hu20uZo03g2YAAAAAAAAAAAAAAAAAAAAAAPVmL3Nod96RgTFHBshk5NqUkWNTdlFpQNaZEhdRMTAmOVppRwbHdE6KVofEKEWEWQOyTgDND4NmAAAAAAAAAAAAAAAAAAAAAAA1KncYOlBgV0ZusXPGmMp/+w6VyBGASVPjo8LU2TlTzJFZY5Ki1SkpWnGRYf5fIYCQwxA6AABQL4MGDVJqaqpuvPHGau9lZGQoNTVVSUlJmjt3br3XMW/ePKWmpio1NVUZGRnV3h8/frxSU1M1fvz4eq8DaG5uvPFGpaamatCgQU3dFAAAgKBCjgI0DXIUAGbkS78jNTVV8+bNq/c66HcA1dHvAAAAAIDGYRiGsgvtWrf7kD7YeFAzV2Xojg+2aeLrG3TKv9fovP/8rBvf3aqnvkjX/HUH9O3OfO3Jb9iAmcgwi7qlxOi07kmaOrSd7j/7GP3f5D5aOmOQVtx4gt68/Dj9Y+yxumZEB53Vq5V6tYljwAwAnzHTDAAAAAAAAAAAAAAAAAAAAACYyOGSMu3KLVF6brF259m1r3CndmQVakdmoQpKyvy+PqtFatcyyjlrTMWMMTHqnBStNi0jZbVY/L5OAJAYNAMAAABUM2/ePN18882SpJ9++klpaWkBXd+TTz6pp556SpKUmZkZ0HUBAAAAaH7IUQAAQGOh3wEAAAAAocVe5tCe/IqBMRk5NmXkVvxLz7Upu7A0IOtMiYtQWlK0OidXDIpJS4pW56RotU+IUmS4NSDrBICaMGgGDRIWFpipzaxWa43PEVqIt7n4Em8LI8abvbS0NGVlZbn9nbBYLDKMBszB6cGiRYv8Wh/qr+r3NhDxRoVZs2Zp1qxZTdoGf8fbYrEErF8JcwnkfkSf1VyIt3mQn5gHOYr5kKM0nlDLUchP4E/12Zd87XvwOxe80tLSAnrhf2Ws6XeEJr7bNQuGfkcgcfwhtHG8yTyINYIZ13nBH4i3uRDv5qPcYehAQYnSc2xKzyl2DpBJzynWvkMlcgQgtYyPClPn5Jgjs8bEqHNSjHOQTFwUx1iDGd9tcyHeFRg0gwZJSkpqlPUkJCQ0ynoQHIi3uXiKd1ZWlgzDkNVqVXg4f6qCna9xqs8BONdlwsPD2R+akeZ+gVFj73uuyUhz3M/rG+/Kzx0REdFo/UqEtsbcj+izmgvxNg/yk9BAjgJPyFHqxow5CvkJAqE++1J9+x7N/XeuuQpkH9FbTIm1uTRFvOl3NA5PF6hw/MFciLd5EGsEE67zQiAQb3Mh3k3LMAxlF9q1I6tQOzILtT2rUDuyDmtHVqF2ZhfJXubw+zojw63q2ipOXVPi1DU1ruJxasXzVnGR3HwuRPDdNhezxts8R50AAAAAAAAAAAAAAAAAAAAAIEgdLinTzqwjg2Iyjw6M2Z5VqAJbmd/XZ7VIHZNiKwbGpMTpmCODYrqmxKldQozCrAyMAdD8mXN+HQAA4Gbfvn168MEHNXLkSKWlpSk1NVU9evTQiSeeqKuvvlpz587VoUOHfK4vIyNDSUlJSkpK0ty5c72Wy8vL04MPPqihQ4eqXbt26t69uyZMmKAPPvjAp/WMGzdOSUlJGjdunE9tWLFihSZNmqSePXuqTZs26t+/v/7yl79oz549ta4rJydH999/v4YMGaJ27dqpR48eOv/88/Xxxx9LkubOnetcX0ZGhk/tr4uCggLNmjVL5513nnr27KnWrVsrLS1Np556qv7617/qu+++87psVlaWHnnkEZ166qnq3Lmz2rZtq379+um6667Tt99+W+N6+/Xrp6SkJM2YMUOStH79ek2fPl19+/ZVu3btNGjQIN17773Kzs52W+7777/X1KlTddxxx6lt27YaOHCgHnjgARUUFHhdV9V4/vbbb7r11lvVv39/tW3bVr169dJVV12lNWvWeK3jq6++csbhq6++qvGzVZb75z//WW35G264wfla//79nWW91b1mzRo98sgjGjdunFt8hg8frr/85S/asmWLxzZU7jdPPPFEtXa5/nPdp2bMmKGkpCT169evxs+3adMm3XrrrTrhhBPUvn17derUSSNGjNDf/va3GvdRf393AAAA6oMchRzFG3IUchSJHAWAf9HvoN/hDf0O+h0S/Q4AAAAAgVFSVq7fDxbo80379cqqP3T3/zZo4ivfasijy3TcA59p3PNf6eZ56/Tssm364Oe9Wr87v8EDZlJbRGlo12RNGtJJ95zTS69ecYKW/eVUbf7HGK3+62l6c9pQPXheX105ootO6Z6qjkmxDJgBEDKYaQYNkpubG5B6rVar2/RP+fn5cjj8P3UcggPxNhdf4l1aWup8razM/6Pj4e7bb7/VZZddVu2EXWZmpjIzM7V582a99957SkxM1FlnnVVteYfDUS1OnuJWXl4uwzCcz7dt26YLL7xQ+/fvd75ms9m0atUqrVq1Sp9//rlGjBjhVmfVeivrMwyjxjaUl5frgQce0MyZM93KZGRk6PXXX9dHH32kRYsWqUePHtXaLUm//vqrLrroImVmZrq1deXKlVq5cqWuvPJKDR48uMa2NsSqVat03XXXVTv5Wlpaqo0bN2rjxo36z3/+49a+SitWrNDVV19dLb67du3Srl27tGDBAk2bNk2PP/64rFbv46kdDofmzp2r2267TXa73fn6jh079OKLL+qzzz7TJ598ojZt2uj555/XAw884BbvnTt3aubMmVq5cqUWLVqk+Pj4autwjeeSJUt09dVXq6ioyPn+gQMH9MEHH+jDDz/UQw89pOuvv75aHeXl5W6PfYmD6z7sunxNXOueN2+ebr755mplSktLtXXrVm3dulVz5szRY489pmnTpnltb01c9ynX30xvn++5557T448/Xu33dcuWLdqyZYtmz56tZ555RpdcconHdbm2r7bvzscff6xjjz3WLd6+cjgccjgcKi0trXO/srGmj0fzEqj8RKLPajbE2zzIT4ITOQo5CjkKOUrVdbm2L1A5CvkJAqE+OYqvfQ+LxaKwsDDn86p/1+CbQPc7vP3217Xf4aoy1vQ7gqvfsWjRIrVp00YvvPCCHnrooQb1O5YuXaqrrrpKhYWFzvfpdwRnv6Om705tKvserjj+ENo43mQewRBrchR4w3Ve8AfibS7Eu2EchqH9h0qUkWNTem6x0nNsSs8pVkZusfbml8gRgEM58ZFh6twqRp2TopWWHKPOSTHqnBytTknRio/ydMl4mYoKDqlIxNtMiLW5BEO8gyFHYdAMGsTXg5kN5XA4Gm1daHrE21w8xZuTu42npKRE1157rQoKChQfH6+rrrpKJ510klJSUlRaWqqMjAz98MMPWrx4cYPX5RrXgoICTZw40XlSeMKECbrkkkuUmpqqP/74Qy+99JLmzZvn9Q50dfXWW29pzZo1OvHEEzVlyhR169ZN+fn5mj9/vhYsWKCsrCzdcsst+vTTT6stm5+fr0suucR50nXixIm64IILlJKSou3bt+s///mP5syZo02bNvmlrVV99dVXmjRpksrKyhQWFqaLL75Y55xzjjp06KCSkhJt3bpVy5cv1+eff15t2Y0bN+ryyy+X3W5XRESErr76ao0ZM0axsbHauHGjZs6cqfT0dM2ePVtxcXG6//77vbZj06ZNev/999W1a1fNmDFDffr00eHDhzV37lwtXLhQf/zxh+677z6de+65uv/++zV48GBdc801OvbYY5Wdna3//Oc/WrZsmTZs2KB//etfNa5r//79uv766xUeHq57771XJ510knNbPP/88yooKNB9992ntLQ0jR07tuEb2cWAAQO0evVqffrpp3r88cclSQsWLFDbtm3dyqWlpTkfl5WVKTExUWPGjNGIESN0zDHHKDY2Vvv373eetM/Oztbdd9+t7t2765RTTnEuO3bsWA0YMECvv/66Xn/9dUnS6tWrq7WrXbt2Pn+G2bNn69FHH5UkpaSk6KabbtLQoUNVXl6u1atXa9asWSoqKtJNN92k5ORkjR492mtdvnx3brrppgb/RhiGwd9++EVj7kf0Wc2FeJsH+UnTI0chRyFHcUeO4q4xchTyE/hTffYlX/seVcvRZ6m7xux3uGpov6Ousabf0Tj9jgcffFB/+tOf9OCDDza43zF9+nSFhYXpvvvucw6eot/hm8bud3j77tQXxx/MhXibB7FGMOE6LwQC8TYX4l2dYRjKLSpTRq7tyL9ipR95vCvXJnu5/4/ZRIZZ1DExWp2To5WWVPGvc1KM0pKilRQbLovF8+wwdY0d8TYPYm0uZo03g2YAAM2T4ZDFFri7yQcbIzpJsni/0119/fDDD86Ts6+88kq1uyUOHjxYF1xwgR555BEVFxf7bb3PPPOM9uzZI0m69957deuttzrf69+/v84991xdeumlWrlypV/Wt2bNGl1xxRV65pln3BLDU089VZGRkXr77bf1448/asOGDerXr5/bsk899ZRzGz3yyCO67rrr3Np63nnn6aqrrvLribFKNptNf/7zn1VWVqbY2FjNnTvXeXFWpaFDh+qKK65wbk9Xt99+u+x2u8LCwvTOO+/otNNOc743cOBAnXfeeRo3bpy2bt2qF154QRMnTlSvXr08tuWXX37RkCFD9O677yo2Ntb5+sknnyybzaaPPvpI7733npYtW6bzzjtPr776qtvdTkeOHKlx48bpxx9/1DvvvKO//e1vCg/33BXdvn27WrZsqU8//dTtLn1DhgzROeeco7Fjx6qgoEB33323Ro8erYiICN82qA/i4uLUu3dv/fzzz87XunXr5nYiuKozzzxTF154odt2kaR+/frprLPO0vTp03Xeeedp06ZNeuKJJ9xODCckJCghIUEpKSnO13r37l3v9mdlZemhhx6SJLVt21ZLlixRhw4dnO8PGzZMZ599ts4991wVFRXp9ttv108//eR1G9b03YmOjtacOXO0Zs0aj98dAABMhxzFL8hRyFHIUdyRo7gjRwGOONLvsIQd/d2ylIf2jHiB6HvQ76Df4c9+x/vvv6/ly5dr3Lhx+r//+78G9zs+//xz9ezZ0znzCf2O2jVmv6O27w4AAACA0FNoL9euXFvFgJicYmVUPs616XCJ/y8+t1qkdi2j1DmpYpaYtKTKQTIxatMiUmFWzwNjAACeMWgGANAsWWy5avXa0KZuRqPJvvoHGTGt/F7vwYMHnY8r71jnSXh4uFq0aOGXddrtdr3zzjuSpL59++qWW26pViYiIkL//ve/NXjwYJWWljZ4nW3atNHjjz/u8U4KN9xwg95++21J0nfffed2cqukpET//e9/JVWcSHU9KVwpLCxMTz/9tFasWCGbzdbgtrpasGCB86T03/72t2onhV25nvyTpLVr12rdunWSpCuuuMLtpHClxMREPfPMMxo3bpwcDodmz56tJ5980mP9FotFzz33XLWTn5I0bdo0ffTRRyovL1dJSYmee+45t5PCUsV2uuKKK/Tjjz8qJydHW7duVd++fb1+nttvv93tYrRKvXr10m233aaHH35Y+/bt06effqrzzjvPaz2NobY7HbZs2VJ33XWXrrzySn3//ffKyclRcnJyQNoyb948FRUVSZIefvjhavuFVHHC+pZbbtHjjz+uffv2afHixRo/frzH+mr67tx4442aM2eOpOrfHQAAzIgcxT/IUchRyFEajhyFHAWhz2z9DikwfQ/6HfQ7AtHv+Ne//tXgfsedd96pnj17VnudfkfNGrPfUdN3BwAAAEDz90dWkb7dka/03GKl51QMjMkqbHiO7kmruAh1Tjo6Y0xacsWsMR0SohQZ7v+blwGAWfGLCgCAibVp08b5eO7cuY2yzvXr1ysvL0+SdMkll3idErR9+/YaNWqUX9Z57rnnKioqyuN7xx57rOLi4iRJ6enpbu/9/PPPys/PlyRddNFFXutv3bq1xxOvDfX5559LkmJjY3XFFVfUadlVq1Y5H1922WVeyw0bNsx54dfq1au9luvTp4/HC8QkuZ3gHTVqlJKSkmotV3Vbu7JYLLrkkku8vj958mTnflNTm5tKYWGhMjIytGXLFm3evFmbN292u3Pkpk2bArbuyu2RkJCgcePGeS13+eWXV1vGk5q+O927d1d8fLykmuMJAABQF+Qo5CjkKP5HjgIAntHvoN/h737HyJEj/dLvmDx5stf36Xd415j9jpq+OwAgSWXlDu3KKdI3v2cptygwF9gCAAD/2n+oRG98v1eT39yoS97YqOdWZej9DZlau7ugwQNm4iLD1KdNnMb0bqVrT+ygR/7UTW9dfpxW3nSCPvvzIL06qY/+fvYxunJoe406NlldW8UwYAYA/IyZZgAAMLFhw4apS5cu2rlzp/7+97/rf//7n8aOHasRI0Zo4MCBioyM9Ps6N2/e7Hw8YMCAGssOGjRIS5cubfA6u3fvXuP7iYmJKiws1OHDh91e37Jli/Nx//79a6yjf//++vTTT+vfSA82btzorNvTXQxrUtn2yMhIHXfccTWWHTRokLZt26bt27fLbrd7jHu3bt28Lp+QkFDnclW3tavOnTurVSvvdw5NSUlRWlqa0tPT9euvv3ot15iys7P10ksv6eOPP9b27dtlGEaNZQOl8vvVr18/RUREeC3XunVrpaWlKSMjw+07WVVt352EhAQdPny4xngCAADUBTlKBXIUcpSGIkchRwFQO/odFeh30O9oKLP2O7x9dwCYg2EYyi0q095DJdqdZ9Pe/BLtzS/RniP/7y+wq9xR8Xv4r/N76tRuiU3bYAAA4FFeUamWbcvRZ1uytW53QYPqigyzqGNitDonH501pnNSjDolRSs5NtzrjTMAAI2DQTMAAJhYRESE3n77bU2bNk3btm3TunXrtG7dOklSTEyMhg8frksuuUQTJkxQWFiYX9aZm5vrfJyamlpj2dre91VMTEyN71utFXdnKC8vd3u98q6PUsXJyJrU9n595OTkSHK/66WvKrdzYmKi2538PGndurWkigP8eXl5zueuatqGldtPUo0nsF3LVd3WrnzZlqmpqUpPT3eLUVNZv369Jk6c6IxXbWw2W8DaUrk9fNmGrVu3VkZGRo3bsL7fHQAAgPoiR6lAjkKO0hDkKOQoAHxDv6MC/Q7/9Tt8LUe/IzDodwDwt2J7ufa4DITZm1+i3flHB8gUlzp8qmd3XkmAWwoAAOqi2F6uVX/k6rPN2fpmZ75zoKsvLJLaJ0Q5B8WkJVUOkolRmxaRCrMyMAYAghWDZgAAzZIRnaTsq39o6mY0GiM6KWB19+zZU6tXr9Znn32mzz77TN9++6127Nih4uJirVixQitWrNBLL72kefPm+e1EbSXuohB4zXEbN6c22+12XXPNNcrJyVFERISuueYajRkzRt26dVNiYqKioqIkSTt37tSQIUMkqcY7LfpLc9qGAACECnIU/yFHCW3NcRs3pzaTowDmUNnvCA87epqvrLysCVsUeIHqe9DvCG3NcRs3pzbT7wDQ3JU5DB04VKK9h0q0J6/EZYBMxcCYnCL/9K/25AduwCAAAPBNWblD36Uf0pLNWVr5W65sZbUPfm0dH6HhXRLVOTlanY8MkOmQGK2ocGutywIAgg+DZtAg/rqzVlWud1vy9ByhhXibiy/x9umEhsUqI6aVv5plemFhYRo7dqzGjh0rSdq/f7+++OILzZ49W+vXr9f69et1xx136M0336z3OiwWiwzDUGJiovO1gwcPqlu3bl6XyczMrPf6/MG1rVlZWTW2NSsry+/rT05O1t69e3XgwIE6L5uUVHEhQW5ursrKymq8o+LBgwclVcTI9TM3RGW868OXuFeWqdpe198Ph8P7QY7CwsJ6ta2qL7/8Ujt37pQkPfHEE7riiis8lmusuz4mJibqwIEDPm3DyrjXJ+ZVf6cbeiLaYrEErF8JcwnkfkSf1VyIt3n4LT+RyFH8jBzFM3KU+iNHcUeOUnNd5Cfwl/rsS74eG1VsigzX+svLG+Vi9FDUGP2OSv7odzTkb1pd0O9oGlXj7ine9Ds8a6x+RyBx/CG0cbyp8RmGodyiUu3JL9HuvIqBMHvybBWDY/Js2n+oROUB/pMaHxUuiRwDwYPrvOAPxNtcmnO8HYah9XsK9OmvmVq6JVt5xbUPiG0RFabRvVJ0Tp8UDezY0nQzxzTneKNuiLW5EO8KDJpBg1QedA60hISERlkPggPxNhdP8c7KypJhGLJarTWezELgdOzYUVdeeaUmT56s0aNHa/369fr8889VWlqqmJgYt7Ke4uQpbpUH4I477jjnaxs2bNApp5zitR0///yzW51V6608CWixWGpsQ1hYmE/7UtXP0qdPH+fjX375RSeddJLXZTds2FBjW+ujf//+2rt3r9avXy+73a7Y2Fifl+3Tp4/ee+892e12bd68WQMHDvRatnI7d+vWzes66vp99HTAtbaYVMYzPT1dhw4dUnJysse6s7KylJGRIanic7rW43qSs6CgwGub09PTnY9r24driudvv/3mfHzRRRd5Lee6f3j67K7bq7bt7Jq4VC3bp08fHThwwLk+b3VlZmZq165dzmWqft6a2uqJp++gLyo/S0RERKP1KxHaGnM/os9qLsTbPMhPghc5SgVylKPIUchRalKfHIX8BIFQn32pvn0PLsT0H3/2O6r+btW33+GqMtb0O7xrqn5HTeXq0u/Iyclx9juqfrfpdwRfv6O+uaKnC1Q4/mAuxNs/iuxl2pVTrIycIu3KKdKu3CP/5xRrV26RiuzlAV1/uNWiDkkx6pQUq07JseqUHKO05Fjn86TYCGbAQlDhOi8EAvE2l+YQ7y37D2nRz3v14c97tSevuNbyUeFWndmnjcb3b6+RPVMVFc4xlkrNId7wD2JtLmaNtzmHCgEAAJ9EREQ4T4aWlZUpPz+/wXUOGDDAefJu/vz5Xu+KuHfvXq1YsaLB62uIgQMHqmXLlpKkBQsWeC138OBBffHFF35f/5gxYyRJRUVFdb6T5ahRo5yP3377ba/lfvjhB23ZskWSNHLkyLo3MgAMw9B///tfr+/PnTvXud+4fk5JSktLcz5et26d1zrefffdGtsQFRXlfFxSUuK1XFnZ0TuRFBUVeSzjcDg0Z84cv6yvNpUxzM/P10cffeS13FtvveV1GwIAAAQzchRylKZAjkKOAsCc6HfQ72gK9DvodwBwV1bu0K6cIn39e5b++0OGnvpsi26at04TXvhagx9Zqj73f6azn1ut6XN+1MMf/6rXv96pZZsPauuBAr8NmEltEaVBaYmaMKC9bjr9WD15UT/Nmz5cX911mrY+co5W3Xma3r5mmB6/4HjNGHWsxvVrr/6dEpUcF8mAGQAAGsnu3CK9uPJ3jXlutcY896VeWvlHjQNmwqwWndojVf+a2F8/3TdaL1w6SGf1bcuAGQAIYQyaAQDAxL755htt377d6/t2u11ff/21JCk+Pl4pKSkNXmdUVJQuu+wySdLGjRs1c+bMamXKysp0yy23yG63N3h9DREdHa1JkyZJktauXauXX365WhmHw6HbbrtNNpvN7+ufOHGi2rdvL0l65JFHnLHwZM+ePW7PTzjhBOcdFOfMmaNVq1ZVWyY/P1+33XabpIq72k2bNs1fTW+wp556yu1OhZW2bt2qZ555RpLUtm1bjR071u39xMRE9e3bV1LFCeTc3NxqdXz77bd65ZVXalx/mzZtnI937NjhtVy3bt2cj+fOneuxzEMPPaT169fXuL62bdv6tL7aXHbZZc47Yv7973/X3r17q5XZuHGjnn32WUlS+/bt9ac//ane6wMAAPA3cpSakaM0HXKU+iFHARDM6HfUjH5H06HfUT/0O4DmyTAMZR0u0bqMXC36eY9eWPG77np3gy79z3c65ckv1PO+JTrlyRW67P++193vbdQLK/7QR+v36uddeco67J+/lfFR4erVtoXO6tNGV5/cVQ+e20ezpw7W0ttO1eaHx2jNvWfqvRkn6blJA3X7WT01cXAnjejWSh2TYhVmZVAMAABNJafQrre+S9dFL32jk59YoSeXbNWW/QU1LjMwLVEPnddX391zhuZMG6oLBnVUfFTDZ0sFAAQ/fu3RIJ4OtvqD1Wp1m/4pPz9fDocjIOtC0yPe5uJLvEtLS52vud6pDP63cuVKPfPMMxo+fLhGjx6tPn36qFWrVrLZbPrjjz/05ptvOk9oXXrppZKqx8ThcFR7zVPcysvLnXdv+8tf/qL3339fe/fu1YMPPqgNGzZo4sSJSklJ0fbt2/XSSy9p3bp1GjBggH7++WdnnVXrrazPMIwa21BeXu7TvuTps9xxxx364IMPdPDgQd1zzz1at26dLrzwQrVq1Uo7duzQq6++qjVr1mjQoEFau3ZtndZXm/DwcL3wwgu6+OKLVVRUpAkTJujiiy/W2LFj1a5dO9ntdv32229atmyZPvvss2onh5955hmNGTNGdrtdEydO1DXXXKOzzjpLcXFxzpPyO3fulCTdcMMN6tGjh9d2e9o2NXGNd6XaYlJZvmvXrsrOztbo0aN10003Oe/o+fXXX2vmzJk6dOiQJOmxxx6T1WqtVs+0adN0++236+DBgzrnnHN0++23q1u3bsrLy9PSpUv1+uuvq3///lqzZo3Xz9a3b19FR0fLZrPp0UcfldVqVadOnZx3BGvXrp1iYmJ06qmnKjU1VZmZmXr00UeVnp6usWPHqlWrVtq+fbvefvttrV69WkOHDtUPP/zg9bMPGjTI+fiee+7RbbfdpjZt2jjXl5aWpvDwcGd7PW1TqeLE+AMPPKC77rpLe/fu1ahRo3TzzTdr6NChKisr0+rVqzVr1iwVFhbKYrHo6aeflsVicavHl++OxWJRWNjRO6x4+g76wuFwyOFwqLS0tM79ysaaPh7NS6DyE4k+q9kQb/MgPwk+5CjuyFHIUSqRo3iPk+SfHIX8BIFQnxzF175H1f3e0+8catYY/Q5Pv1v16Xe4qow1/Y7g63fUVK4+/Y5bbrlFJ554ogzDoN8RRP2OquraL3Vdrmr+yfGH0Gbm403F9nLtybdpd16J9h75f0++TXuP/F9cGtjtEG61qF3LKHVIjFKHhGi1T4xSx4ToiueJ0UqIDvcyI0yZbIWHZCus2/qCIdbkKPCG67zgD8TbXIIt3kX2cq38LUef/pqp73bmq8xR+7GQrq1iNLZPqsb0SVHHxOiKF8uKlJvrecZMMwu2eCNwiLW5BEO8gyFHYdAMGqS83D/T2dbG4XA02rrQ9Ii3uXiKNyd3G5fD4dA333yjb775xmuZc845R3//+98btB7XuLZs2VLz58/XhRdeqIMHD+q9997Te++951Z+0qRJOvHEE3XzzTc3aL0NlZSUpPnz5+viiy9WVlaWFixYoAULFriVmTRpkoYPH+48MRwVFeW39Z988sl65513dN111ykvL0/z5s3TvHnzfFr2+OOP19tvv62rr75aBQUFevHFF/Xiiy9WKzdt2rQGx7eqhnyP27Vrp0ceeUTTp0/XI488Uu19q9WqBx54QOeee67H5S+//HItX75cixcv1tatW3Xttde6vd+nTx+9/vrrOu6447y2IT4+XtOnT9fzzz+vDRs26OKLL3Z7/4MPPtBJJ52kuLg4zZo1S1OmTJHNZtObb76pN998063sSSedpH/+85865ZRTvK7vmGOO0fjx47Vo0SKtXLlSK1eudHv/p59+UlpamtflXU2bNk35+fn65z//qczMTN13333VykRFRemZZ57R6NGjfaqzqqrxbejvtmEY/O2HXzTmfkSf1VyIt3mQnwQHcpSakaPUDznKUeQotdfF3334S332JV/3X3/n5mbVWP0OVw3tdzRmrOl3NL527drp8ccf17Rp0/Twww9Xe59+R80ao98RSBx/MJdQineZw9CBQyXak1+ivfkV/1c8tmlPXolyiwN/E5JWcRHqkBClDglRap9wZHDMkeetW0TWOCNMoC8WC6VYo/njOi8EAvE2l6aId1m5Q9/uzNeSzdla9XuubGW1/+1u0yJSZ/VqpTG9W6lHaqxzgCz7at3w/TYPYm0uZo03g2YAADCxGTNmqE+fPlq9erU2btyo/fv3KysrS5LUunVrDRw4UBMnTtRZZ53l93X36tVLX331lZ5//nl98skn2rNnj+Lj49W7d29dccUVuuCCC3w+ARpoxx13nL766ivNnDlTS5Ys8djWl19+2Vm+ZcuWfl3/6aefrh9//FGvv/66Pv/8c/3xxx/Kz89XbGysunbtqhEjRujCCy/0uOxpp52mH374Qa+88oqWLVum9PR02e12paamavjw4ZoyZYqGDx/u1/b6w1lnnaWlS5dq1qxZ+uqrr3TgwAElJCRo2LBhmjFjhoYMGeJ1WavVqtmzZ+vNN9/Uf//7X23dulVSxV0ax48fr+uvv14xMTG1tuG+++5T165dtWDBAm3dulWHDh3ymDCcfvrpWrp0qWbOnKkvv/xS2dnZSkhIUI8ePXTRRRfpsssu0+7du2td30svvaQBAwboo48+0u+//67Dhw/X+0TNbbfdprPOOkuvvfaavvzySx04cEAWi0UdO3bUqFGjdN111/l8ohkAAKAxkaP4hhyl8ZGjkKMACD30O3xDv6PxnX322friiy/0/PPPa/Xq1fQ76oh+B+B/hmEot6hMew+VaHeezTkwZu+Rf/sPlag8wGM64yKtap8Q7TIo5ugAmfYJUYqOCKu9EgAA0Gw4DEPr9xRoyeZsLduWo3wfBuG2jA7TGT1a6ZzerTSgYwtZPc4kBwAwK4vBrafQAJUnD/wtLCzMbSqm3NxcU45qMwvibS6+xPvAgQNyOByyWq1q06ZNYzcRfhQefnR8bllZ4O8i1ZRuvfVWvfPOO2rfvr3Wr1/f1M1pEg2N9/jx4/XNN9/oxBNP1KJFi/zZNASAP77fDfm9T0lJqdc6EdoClZ9I9FnNhnibB/mJ+ZCjmAs5irk0NN7kJwiE+uQoddkXzfR3zeyCPdb0OxrOtd/xySefOF8PxnjDPyp/76Ojo9W9e3dJHH8IdcF+vKnYXu4yQ0yJ9uTb3AbGFJcGdjaWMKtF7VpGHhkIE+0+a0xilBKiw513iA92wRBrchR4w3Ve8AfibS6NGW/DMPR7VrGWbM7SZ5uztb/AXusyUeFWjTw2SWN6t9KILgmKCLMGpG1mwffbPIi1uQRDvIMhR2GmGQAAgAYqLi7WkiVLJEknnHBCE7cGAAAAgNmRowAAgMZCvwMAmocyh6EDh1wHxVQ+tmlPXolyfbh7e0O1iotwHwyTEO2cNaZ1i0iFWZvHoBgAAOBfe/NLtGRzlpZsztb27OJay4dZpGFdEjSmd4pGHpukuEhmnAMA1I5BMwAAALXYsWOHunTp4vEOVuXl5brzzjuVnZ0tSZo0aVJjNw8AAACAyZCjAACAxkK/AwCaB8MwlFtU5jZDjPP/vBIdKChRuRHYNsRFWp2zxFQOhql83D4hStERXNAKAAAq5BaVaunWbC3ZnK0New/7tEy/9vEa07uVzuzRSslxEQFuIQAg1DBoBgAAoBbPPPOM1q1bp/PPP1+DBg1SSkqKbDabfv31V7311lvasGGDJGnkyJEaPXp0E7cWAAAAQKgjRwEAAI2FfgcABI9ie7nLDDElbgNk9uaXqLjUEdD1h1ktatcy8shAmGj3WWMSo5QQHe5xkCUAAIAkFdrLter3XC3ZnKXvd+b7NKD3mFYxGtO7lc7u1UodEqMD30gAQMhi0AwAAIAPtm3bpieeeMLr+0OHDtWrr77qdjJg3759ysvLq/O6YmNj1blz5/o0EwAAAIBJkKMAAIDGQr8DABpHmcPQgUMlbjPFVDy2aU9eiXKLywLehlZxEe6DYRKi1T4hSh0To5QaH6kwK4NiAACA70rLHfp2Z76WbM7Wqt9zVVJW+yDfNi0iNaZ3K43pnaJjU2IYlAsA8AsGzQAAANTi1ltvVbdu3bR69Wrt2rVLWVlZKisrU1JSkgYMGKAJEybo/PPPl9VqdVvu0Ucf1fz58+u8vhNPPFGLFi3yV/MBAAAAhBhyFAAA0FjodwCA/xiGoexCuzJyirRlV6Z25xYfHSCTV6IDBSU+3XG9IeIirc6BMO2PDI6pHCDTPiFK0RFhgW0AAAAIeQ7D0M+7C/Tp5mwt35atQ7byWpdJiA7XmT2TNaZ3K/Xv0EJWBsoAAPyMQTMAAAC1OPbYY3Xbbbfptttua+qmhDROhgMAAAC+IUdpHOQoAADQ72gs9DuA0FFsL3eZIaZEe/Jt2pNfon35du09VKIie+0XjTZEmNWidi0jjwyEiXafNSYxSgnR4dytHQAA+J1hGNqWWaQlm7P1+ZZsHSiw17pMdLhVI49N0pjerTS8S4Iiwqy1LgMAQH0xaAYAACBAZs2apVmzZjV1MwAAAABAEjkKAABoPPQ7AISqMoehA4dcB8VUPrZpT16JcovLAt6GVnER7oNhjswc0zExSqnxkQqzMigGAAA0jt15Nn22JVufbc7W9uziWsuHWaThXRI1pncrjTw2SbGRzHIHAGgcDJpBg4SFBabTUnUK96rPEVqIt7n4Em/ubhQaqsbRYrHIMAI8pzyaDPE2F3/H22KxBKxfCXMJ5H5En9VciLd5kJ+YC31WcyHe5uLPeJOfwJ/qsy/52vfgd848iLW5EG9z4/hDcDAMQ7lFpdqdVzFLzN78Eu3OO/r/gUMlKg/w1zIuMkwdEl0Hw0SrQ2LFzDHtE6IUE0F/NZhxbBHBjOu84A/E21w8xTun0K7Pt2Tr01+ztGFvgU/1DOjQQuf0TdWZPVspOTYiEE2FH/D9Ng9ibS7EuwKDZtAgSUlJjbKehISERlkPggPxNhdP8c7KypJhGLJarQoP509VqOCCE3Mh3uZS33hXJmERERGN1q9EaGvM/Yg+q7kQb/MgPzEX+qzmQrzNpT7xJj9BINRnX6pv34PfOfMg1uZCvEOXpwtUOP7QeApLyrQrt0i7coq1K6dIGTlF2p1b8f+unGIVl5YHdP3hVos6JMUoLTlWHZNilZYcq07JMep05HFibAQ38QghfLcRTLjOC4FAvM3hcEmZPt+0Xx/8vFdf/56lckfto4h7tmmh8QPb69x+7dUpObYRWgl/4/ttHsTaXMwab870AwAAAAAAAAAAAAAAICSUlTu0L992ZBDMkcEwuRUDZHblFCm70B7wNqS2iKoYDFM5OCY5tmJQTKtYtW0ZrTArg2IAAEBws5c5tHLrQS1av1fLfj2gkjJHrct0SIzReQPaa/yA9urVtmUjtBIAAN8waAYAAAAAAAAAAAAAAADNgmEYyi60OwfF7M4tVkZ2kXYdmS1mX77Np7ufN0R8VLg6HRkU0yn56GwxlbPHREcwUxQAAGh+HA5D3+/I0Yfr92jxxv3KLy6tdZmk2Aj9qV87jR/QQSekJcnK4GAAQBBi0AwaJDc3NyD1Wq1Wt+mf8vPz5XDUPlIZzRPxNhdf4l1aWup8raysrFHbB/+xWCwKCzt6QqC8vFyGEdgTFGg6xNtc/BVvh8Mhh8Oh0tLSOvcrG2v6eDQvgcpPJPqsZkO8zYP8xFzos5oL8TYXf8Sb/ASBUJ8cxde+B79z5kGszYV4m0dl38MVxx/cFdnLtSffpj15Jdqbb9PuvJIjz23ak18iW2lgt1W41aJ2CVHqkBClDgnR6pBY+X/F44TocFksni4ILVPx4UMqrvIqx5vMIxhiTY4Cb7jOC/5AvEOPYRjaerBQn/6apSW/Zung4dpn5YuOsOq07sk6p0+qhndJUESYVZKUn58X4NYikPh+mwexNpdgiHcw5CgMmkGDlJeXN8p6HA5Ho60LTY94m4uneFceYHY4HDIMw8sBZwS7qifyOLEX2oi3ufgj3q4nhS0WC3/74ReNuR/RZzUX4m0eteUnDodDVqu1KZoGP6DPai7E21waGm/DMMhPEBD12Zd87XvwO2cexNpciLc5uB4bdR0kZbbjD2XlDu0vsGtvfon25pdoz5F/e48MlMktDvyNK1rFRRwZFFMxIKZ9QpTaJ0SpY2KUUuMjFVbDXdIbeoGR2eJtZsQawYTrvBAIxLv52p1n05LN2VqyOUs7c2y1lg+3WnRi10Sd1StZI7slKSaysi9rsA+EKL7f5kGszcWs8WbQDAAg6ERERDjvomiz2RQTE9PELQIA+FtRUZHzcWRkZBO2BACAmkVGRjrzk6KiIsXHxzdxiwAA/mazHb0oICIioglbAtD3AAAzcD02Ghsb24QtCSzDMJRbVFYxO4xzQMyRATJ5JTpQUKLyAI8Li4u0ug2GcQ6QSYxWu5ZRio7gxhgAAMBcsgtLtXRrxUCZX/YV+rTM0C7JOm9Ae409vp0s9kJTXmgNAGj+GDQDAAg60dHRKi6umLQ8Pz/f+RozzgBA82YYhsrKylRcXKzCwqMH4EL5xDAAoPmLjY11XtBUUFAgh8OhmJgYhYeHk6MAQDNnGIZsNpvz+JMkbt6CJkffAwBCk7djo0lJSU3YqoYrspc7Z4mp+P/IAJm8iue2sobNxlKbMKtF7VtGHhkUE+0yKKZikExCNH8/AQAADpeUaeVvuVqyJVs/pOfL4cPA5e6psTq7Vyud0zdVfbu0c76ea/dtoA0AAMGGQTMAgKATFRWlyMhI2e12GYahvLw8SZLVyt2emhvXmDV0mnoEP+JtLvWJt2EYMgz3I3AxMTHcyRkAENQiIiIUExPjHNhfWFiowsJCWSwWLrxphuizmgvxNpf6xLtqucjISGbCRJOrS9+D3znzINbmQrxDk6djo7GxsYqKimqiFvmmrNyh/QX2ozPEOAfI2LQnr0S5xWUBb0OruIijg2FcZo3pmBil1PhIhVnJzQEAAKqylzn0zY48LdmcrS+356qkrPaRMu1aRmpM7xSd3auVjk2tuPFlWFhYoJsKAECjYNAMACDoWCwWJSUlKTc3V3a73fk6J4eaN+JnLsTbXOob7/j4eMXHx/u5NQAA+F9CQoLCwsJ0+PBh52ueLnhC80Kf1VyIt7nUJ96RkZFKSkpiQCSCQn36HvzOmQexNhfiHbri4+OVkJDQ1M2QYRjKLSo7OkPMkcExe4/MFnOgoETlAU594yKtzsEwHY4MiKmYLSZa7VpGKTqCm+oBAAD4otxhaN3uQ1qyOVvLt+WooKS81mUSY8I1umcrjendSv3ax3NsDAAQshg0AwAISlarVcnJybLb7SouLlZpaSknh5oZi8XiNntEaWkpFxWGMOJtLvWNt9VqVVhYmKKiohQVFaXwcNIRAEDzYLFY1KJFC8XExKikpEQlJSUqLy8nR2lm6LOaC/E2l4bkKJWzekRGRnJRAIKGL30PfufMg1ibC/EOXZ6OjTZW36PIXu4yS4zt6OO8isExtrL/Z+/P49u67zvf/41zsHEFwEWiJIqLxEWLl8SJl9jOHsd2pFjO2s500nTL9Pamndzezsxv0mnnzsydpXfa9LY3ncl0OkubtmnWxrIt23FiO47tJF7iXQspUly0UeICgCCJ/ZzfH4BIQQtBiwAI8ryejwceJMFz8P1KH0A6Bzjv76e857am4dLWRm++Q4x/qWtMMBeQCfgr93cBAACw0di2rYHzC3r0yJQeH5jW5Fy66D41HkPv6w3pnl0turWzUW6TkDIAYOPjKjUAQNVyuVyLHx5g/TFNU6FQaPHncDisbLb4KhZYn6i3s1BvAIBTud1uud1u1dXVrfVUcA04hnEW6u0s1Bsb1XLHHjzvnYNaOwv1xrXIZC1NxFJLHWIWQzG5gEw4nin7HFrqPEsdYi50jQnmfm6t98o0CMUAAACU0slwQo8dndJjx6Y1NpMour1puHR7d0D37G7Re3YEVeM1KzBLAACqB6EZAAAAAAAAAAAAAACAKmTbtmYWMjoTTSwGYs5c1CnmXCypbJkbEtV5jaUwTMC3FJAJ+rWl0Se/h9XJAQAAym1qPqXvH5vRY0endHhifkX73NTeoLt3N+uDfU0K1niK7wAAwAZFaAYAAAAAAAAAAAAAAGCNzCczOj45r5MzcZ2OJpY6xuSDMYmMVdbxTcOlrY3efIcYv7Y2XgjF5AIyAb9bLhfdYgAAACptLpnRU8fDeuzolF4cn5W1grB0X2ut7tndrA/valZbo6/8kwQAYB0gNAMAAAAAAAAAAAAAAFAmmayliVhKZy50iYkmdWY2pYm5jE7NLGh6PlX2ObTUeZY6xFzoGhPM/dxa75VpEIoBAACoBsmMpR+PRPTokSk9eyKi1AraCm4L+HT37mbdvatZO1tqKzBLAADWF0IzAAAAAAAAAAAAAAAA18i2bc0sZHQmmsh1iLkQjsl3ijkXS2oF1zquSp3XWArDBHxLAZmgX1saffJ7jPJOAAAAANcsa9n62clZPXZ0Wk8en9FcMlt0n1CNW3ftatY9u5t1/ZZ6OgMCALAMQjMAAAAAAAAAAAAAAADLWEhlF7vEnI4mlr7PB2MSGaus45uGS1sbvfkOMX5tbbwQiskFZAJ+NxdKAgAArCO2bevouXk9dnRajx+b1tR8uug+tR5D7+tt0j27m3VLR6PcJsFoAABWgtAMAAAAAAAAAAAAAABwtEzW0kQstRiGWQrF5AIy4Xim7HNoqfPkQzE+bWv0L30f8Km13ivTIBQDAACw3o2HE3rs6JQeOzqt8XCi6PZuw6XbuwO6Z3eL3rMzKL/HrMAsAQDYWAjNAAAAAAAAAAAAAACADc22bc0sZHQmmsh3i8kHY/KdYs7Fksra5Z1DndfQtkAuDNMe8qt3S5M6mmq1valGdUrKw0LhAAAAG9LUXEqPD0zrsSPTOnJufkX73NTeoHt2t+iDfU0K1HCpLwAAq8H/pAAAAAAAAAAAAAAAYN1bSGWXOsREE4uhmAsBmUTGKuv4bsOlLY3efIcYv7Y2+tQe9GlrIHcL+N1yuXLdYkzTVCgUWtw3HM4om82WdX4AAAConLlkRk8Mzuh7R6f10slZWSsIaPdtqtW9u1t0V3+T2hp95Z8kAAAOQWgGq2Ka5Wn1ZxjGsj9jY6HezkK9nYNaOwv1dhbqjWpVrvMTiee901Bv56DWzkK9nYV6Owv1RrXiHAWlQK2dhXoXl85aOhdL6XQkkQ/D5LvGRBI6HU0ovJAp+xxa6j3aFvCrPZjrGLMtH5DZFvRrU71XpuFa0eNQb2eh3s5BrVHNuM4LpUC9l5fMWHpmOKxHj0zq2eGwUitoZdge9Ome3a26Z0+LdrbUVmCWK0e9nYV6Owe1dhbqneOybbvMDYYBAAAAAAAAAAAAAACWZ9u2puZSOhle0MmZC7e4xmcWdDK8oLPRhLIrWaJ7Fep9bm1vqtX2UI06mmq1vak2/7VG7aFa+T3lC0UCAABg/clatn4yPK2Dr57WY29OKJYsHuRuqfdq/w1bdd/bturt24OL3QgBAEB50GkGAAAAAAAAAAAAAABUXCKd1ZPHzuvQG2d1/FxMJ2fiiqezZR3TY7q0LViTC8Y01Wp7aCkUsz1Uq2Cth4sWAQAAsCzbtvX6qagOvnpGD71+RpOxZNF96rym7r6uTQfetk137GyW23TmSv8AAKwFQjMAAAAAAAAAAAAAAKAibNvWKycj+s7PTumh185oNlF8Je63alODb6lDTKhG7YvdYmrV1uiXaRCKAQAAwFs3PDmng6+e0YOvntbo9ELR7T2mS+/r36T737ZNH9y9ia6FAACsEZdt2+XtXYwNLRwOl+VxDcNQIBBY/DkajcqyrLKMhbVHvZ2FejsHtXYW6u0s1VDvUChU0fGwPpTr/ESqjuc9Kod6Owe1dhbq7SzU21nWut6cn+BqOEdBKVBrZ9no9Z6YTerQ4Uk9/OakRmfiq3qseq+prUGf2oN+bQ34tC3g17agX9sCPm0N+NbFxYgbvd4oRL2doxpqzTkKrobrvFAKTqz3+VhS3zs6rUePTuroxHzR7V2S3tnRqHv2tOpD/c1q9K/fte2dWG8no97OQa2dZbHeti0lZxVNypHnKOv3f2NUhWy2vK2xL7Asq2JjYe1Rb2eh3s5BrZ2FejsL9Ua1qOTzkOe9s1Bv56DWzkK9nYV6Owv1RrXgHAXlQK2dZSPUO57K6onjM3rk8JReHJ/VSlf0dBsubWn05gIxQb+2NvrUHswFYrYGfAr43XK5rt4tZj3+vW2EemPlqLdzUGtUE67zQjls1HrHEhk9cXxG3zs6rZdWeBy7a3Ot7tnVort2NWlzg2/x/o3097NR640ro97OQa03Flc8LDM6JjM6KjMyKnN2XIqdlGaGpWxa1m8cVtaBISlCMwAAAAAAAAAAAAAAoCQs29bLJ2f18OEpPTE4o3i6+IUY79jeoLv6m9XdXKNtAZ9a670yjauHYgAAAIBSS6QtPXsirO8dm9azJyJKZ4tHZdqDPt2zq0X37G5WV3NNBWYJAIDkSkRygZjomMzIqIzoRd8no8vvO39eqmmp0EyrB6EZAAAAAAAAAAAAAACwKuPhhA4dntQjR6Z0djZVdPvtQZ/27W3VR/a0aGvAV3R7AAAAoNQylq2Xxmf12NEpPXV8RvOp4oHv5lqP7trVpHt2t2hvW92yHRABALhWrkQ03y1mLBeKiYwu/ZyMXPPjmpERZQjNAAAAAAAAAAAAAAAAFBdLZPT4wLQOHZ7S62fmim5f7zN1V3+z9u9t0Q1b67nAEAAAABVn27YOT8zrsaNT+v6xGU0vpIvuU+c19IHeJt29u0Xv7GiUm66IAIAScCVnc2GYyKiM6Fg+FJPrGmMkwmUZ04iMSltuLstjVzNCMwAAAAAAAAAAAAAAYEUylq2fjkZ16PCknh4KK5W1l93ecEm3dQW0f2+r3rMzJL/HqNBMAQAAgCWj03E9dnRajx2b0qlIsuj2HtOlO3cEdfeuZt25g+NYAMC1uRCMMfJdYsyLvpYrGGMbblkN7coGO2WFuuXfsldq2iE171DKbpCWfytnQyI0AwAAAAAAAAAAAAAAlnV8ckEPvzmpx45Or2g17p0tNdq/t1X37m5WS723AjMEAAAACp2PpfT4sWk9enRKA+cXim7vkvTOjkbdvbtZH+xtUoOfS2wBAMW5kjGZkZHLusWYkTEZiZmyjGm7TFmN7coGu5QNdCob6Fr83mrYJpkeSZJpmvKHQks7hsNSNluWOVUz/kcHAAAAAAAAAAAAAACXmZlP67FjU3r48JQGV3CRYajGrXt2t2jf3hb1b6qVy+WqwCwBAACAJbOJjJ4cnNGjR6f08snYihbT3725Tnfvbtbdu5rVSuAbAHAFrlRMRuTiQMxoLiATHZMRL2cwZlsuEBPozIViFoMx7YvBGBRHaAYAAAAAAAAAAAAAAEiSUhlLPxoO69CRKf14JKqstfxlhm7DpXfvDGr/3lbd0R2Q2zQqNFMAAAAgJ5G29MxwWI8dm9ZzJyLKFDmGlaTtQZ/u2d2iu3c3q6uppgKzBABUu1wwZmwxDGNeFJIx4tNlGdN2GbIa2pUNXugWs9Q1hmBM6RCaAQAAAAAAAAAAAADAwWzb1uGJeT385qQeH5jWbCJbdJ+9bXXav7dVd+1qUrCGCzgAAABQWRnL1otjUT12dFpPHZ/RQtoquk9znUcf3tWse3Y1a09bHZ0RAcCBXKk5GRd3irkQkomMlj8Ys9gtJh+MCXTJatwmmXQ5KzdCMwAAAAAAAAAAAAAAONC5WFKPHJnSw4enNDaTKLr9pnqPPrKnRfv2tqq7mdW4AQAAUFm2bevNs3N67Oi0vj8wrZmFTNF96rymPtDXpHt2N+ud2xtlGgRlAGCjWwzGXNItxoyOyliYKsuYuWDMtsu7xQQ6lW1sJxizxgjNAAAAAAAAAAAAAADgEPFUVk8NhfXw4Um9ODYru8j2PrehD/SFtH9vKxcZAgAAYE2MTMf12NEpPXZ0WqejyaLbe0yX7twR1D27W3TnjqB8bqMCswQAVFRqfjEIc3G3GDM6JmNhsixD2nLlgjHBrqWuMYEuWcELwRhfWcbF6hGaAQAAAAAAAAAAAABgA7NsWy+fjOnQ4Uk9MTijhbRVdJ+b2hu0f2+rPtjfpDqvWYFZAgAAAEvOxZL63tFpPXZsWoPnF4pu75J0c0ej7tndovf3htTg5/JYAFj30gtL3WIWv47KiIzJXDhfliFzwZiti4GYbKBTVjDXNYZgzPrFUQEAAAAAAAAAAAAAABvQyXBChw5P6ZEjUzozW3xF7vagT/v2tOgje1q0LeivwAwBAACAJdF4Rk8Mzuixo1N65VSsaFdESdrTVqd7djfrw/3Naqn3ln2OAIASSy/IjI4vBmIuhGOMyGj5gzGXdosJdCkb2E4wZgMiNAMAAAAAAAAAAAAAwAYRS2T0/YEZPXx4Uq+fmSu6fZ3X1Id3NWnf3lbduLVeLperArMEAAAAchLprH40HNFjR6f045GoMlbxqExHyK97djfr7l3N6myqqcAsAQCrko7nwjAXdYsxI2MyoqMy58+VZchcMGZLLhgT6FrqFhPoVLaxQ3ITjHESQjMAAAAAAAAAAAAAAKxjGcvW86NRPXx4Uk8PhZXKLn+hoeGSbusMaN91rXrvzpD8HqNCMwUAAAByx68vjEX12NFp/fD4jBbSVtF9Wuo8+vCuZt27u0W7NtcS9gaAapOO5zrGRC+EYi4EY8Zkzk+Ubdhs/ZbFMIwVuCgYE+gkGINFhGYAAAAAAAAAAAAAAFiHhiYXdOjwlB45OqXp+XTR7Xc012j/3hbdu6dFrfXeCswQAAAAyLFtW2+cndOjR6b1g4FpheOZovvU+0x9oLdJ9+5p1k3tjTINgjIAsKYyiSt3i4mUOxjTpmw+EGMFOvPBmC5lAx2S21+2cbFxEJoBAAAAAAAAAAAAAGCdCC+k9djRaT18eFID5xeKbh+sceue3c3av7dV/ZtYkRsAAACVNTy1oMeOTut7R6d1ZjZZdHuv6dK7d4Z0z+5m3d4dlM9NV0QAqKgLwZgL4ZjIaK5bTHRU5ly5gzGXdIvJfyUYg9UiNAMAAAAAAAAAAAAAQBVLZSw9eyKihw9P6rmRqLKWvez2bsOld+8Mat/eFt3RHZTH5EJDAAAAVM7EbFLfO5YLygxOFg96Gy7p5o5G3bO7Re/vDanex6WtAFBW6YQUHpFmTsh36k25wicWQzLG3IRcWv59h2uVrWtTNth5SbeYfMcYT01ZxgQkQjMAAAAAAAAAAAAAAFQd27b15tk5HTo8qcePzSiayBTdZ09bnfbvbdGHdzUrWOOpwCwBAACAnEg8rScGZ/TY0Wm9ciq2on32ttXpnt0tumtXk1rqvGWeIQA4TCYpc3Y81y0mOiYjMprrFhMdl2JnpHwwprbEw2brNue7xXTmAjEXusYEOiRPqUcDVobQDAAAAAAAAAAAAAAAVeJsNK7vvnJa33phXCMz8aLbt9Z79JE9Ldq3p0U7Wrj4BAAAAJUTT2X11PFpPXZkSj8eLd4RUZI6m/y6Z1ez7tndou0hfwVmCQAbWDYpM3oyF4aJjMrId4sxo6MyYmfL1zGmdpOs4MWBmAvfE4xBdSI0AwAAAAAAAAAAAADAGkqks/rhsRl9b2BQzw5NyS5yTYvPbegDvSHt29uimzsCMg1XZSYKAAAAx0tnLT17fEoHXz2t7x2eUDxtFd2ntd6ju/NBmf5NtXK5OH4FgBVbDMZc3C0mF44xYmfKHIy5pFtM/ivBGKw3hGYAAAAAAAAAAAAAAKgwy7b1yqmYHj48pScGprWwgosNb2pv0L69LfpgX5PqfXzcDwAAgMp6YmBa/88TP9NkLFl02wafqQ/2Neme3c16e3sjQW8AWE42JXP2pIzI2GLXmMVgzNwZuezi7xlck/rNSjd2KhvoKAzHBDolb115xgTWAO+iAQAAAAAAAACAdSmeyup0LKHpkwmNTM2pv61R79ziXetpAQCwrFORhA4dntKhw1M6M1v8YsNtAZ/27W3RR/a0qD3or8AMAQAAgMt9/eUJfenJsWX7GfjcLr17R0j37G7W7d1Bed1GxeYHAFUvm5I5eyrfLaYwHGPETpctGGPVtuQCMflOMXbTDtVvv15q2iH5GjQXDiubzZZlbKBaEJrBqpimWZbHNQxj2Z+xsVBvZ6HezkGtnYV6Owv1RrUq1/mJxPPeaai3c1BrZ6HezkK9N5Z01tLpSFJj4bjGZxL5r3GNzSR0fi5VsO3H375Nt2zrXqOZAoU4R0EpUOuNI5bM6PtHp/Xw4fN65VSs6PYNPrfu2tWs/de16m3bGuRysSr3RsPr21mot3NQa1QzrvPCtbJtW//lmZP67z85dcXfGy7p1s6g7t3bovf30hFxI+H17SzUu0SyKRkXgjGRkVznmMiIjMhoeYMxNS2ygrlOMQVfA52Sr6FgW8MwpECg8GdsWLy2c1y2bS8X/AUAAAAAAAAAACgry7J1djahkcl5jUzN6cTUvEan5jUyNa+T4biy1so+ynjb9qAe+PwdZZ4tAAArk7VsPXN8Ut95+bQePzyhZGb5C2MMl3Rnb6s+cdM23b23TX5P+cJ3AAAAwEpkspZ+74E39fUXT172uxu3B/Wxt23Vvhu2qrXBtwazA4A1kk1L4TFp5oQ0MyxNDy99Hzkp2WXq2lLXmusO07RTat6x9H3TDsnfWJ4xgQ2CSC8AAAAAAAAAACg727Y1PZ/S6NS8TuQDMbmQzLxGp+eLXki8EiNT8yWYKQAAqzMwEdPfv3xK333ltM7HkkW379tcr0/c1K77375Nmxv9FZghAAAAUFwindU/+btX9PiRc5f97p9+uE+ff38PHREBbFzZtBQZLwzEXPg+Ml6+YExti9S88wrhmB2SP1B8fwBXRGgGAAAAAAAAAACUTCyR1ujUgkam5xc7x4zkgzKxRKYsY24N+NXdWqfuljqlMpa8bqMs4wAAcDXTc0k9+NoZfeflU3rz9GzR7UO1Hh142zZ94qZ2XbetkYsNAQAAUFWi8bQ+99WX9MLITMH9hkv69x+7Xv/glo41mhkAlFA2I0UudIw5kQ/F5IMx4bEyBmOalzrENF/ylWAMUBYu27bttZ4E1q9wOFyWxzUMQ4HA0j/80WhUlrX6VQZRnai3s1Bv56DWzkK9naUa6h0KhSo6HtaHcp2fSNXxvEflUG/noNbOQr2dhXqXXypj6WQkofGZuMbChV+n5tNlGTNY41ZnU406Q351NNWos6lGHSG/Optr1dbStLhdpevN+QmuhnMUlAK1rm7prKVnhsN66M1JPTscVsZa/qN3t+HSu3eG9NHrWnXnzpA8ZmHIk3o7C/V2FurtHNVQa85RcDVc54WVOh9L6Te/dUTHJxcK7veaLv0/9+/Sx27esXgf9d7YeH07y4att5WRMXtaRmREZmRURnRUZnhURmRURuyUXFZ5Fnqy/CFZwS5lg92ygp3KBrtk5b+3fWsbjNmwtcYVVUO9q+EchU4zWJVstkwpyktYllWxsbD2qLezUG/noNbOQr2dhXqjWlTyecjz3lmot3NQa2eh3s5Cva9N1rI1MZvUeDiRC8TkbyfDCZ2dTarIdcHXpNZjqKPJr+1BvzpDNepo8qsjlLs1+q/8kYZpFq7MT71RLThHQTlQ67Vn27aOTMzr4cNTevzYtKIr6KK2Z3Od9u1t0d27mhWs9Vx4pKK1pN7OQr2dhXo7B7VGNeE6L6zE2Excv/XtAZ2ZTRbcX+8z9cf39+nmrsKLXqm3s1BvZ1lX9bYyMmKnZUbGZEZHZUZGZUbHciGZMgdjsoFcICYb6JK1+H2n7OU6xlTZ3+u6qjVWzan1JjQDAAAAAAAAAIBD2bat6fn0YiBmMRwzE9epaFLpbOmTMW7Dpe1BnzrynWIu3DpDfjXXeeRyuYo/CAAAFXY+ltIjR6Z06PCkRmYSRbdvrffo3t0t2re3RTtbaiswQwAAAGB1jkzM6QvfGVA4XnhxeXOdR3/2yV3qbeW4FsAasjIyYmeWAjH5cIwRHZM5e0ouqzwd0C1fcDEIkw12yQp0KRvsVDbQtXwwBkBVITQDAAAAAAAAAMAGF0tkFgMxJxfDMXGNzyS0kLZKPp5L0pZGX0GnmAu3tkaf3AbBGABA9Uuks3rqeFiHjkzphbFo0S5rPrdL7+tp0v69LbqlMyCT/+8AAACwTjw/FtU/e2DwsveJOkJ+ffkT/doW9K/RzAA4ipWVMZcPxlzcLSY6WuZgTGAxGJMLxXRd1DEmWJYxAVQWoRkAAAAAAAAAADaARNrSqUhhIGY8ktD4TOKyFUJLpbnOc1m3mI6QX9uCfvncRlnGBACgnGzb1iunYnr48JSeGJzWfKp4uPTt7Q3at7dFH+prUr2Pj+ABAACwvjx+bFr/6pFhZS5Jie/eXKc//Xi/muo8azQzABuSlZUxdzYfilkKxxiRUZmzJ8sYjGlUNh+IsfJdY7KBfDCmJlSWMQFUD96xAwAAAAAAAABgnchkLZ2ZTWn84mBMvnPMuViqLGPWeU11NuUCMdsXwzE12h7ycWEwAGDDOBVJ6NDhKT1yZEqno8mi228L+PSRPS3at7dF7ay6DQAAgHXq6y9P6EtPjunSpoq3dDbqDw/0qc5rrsm8AKxzF4Ix+U4xuW4xY7mQTPSkXFZ53su2vA2LYRgr3ynmws+2Pyi56AgLOBWfZgEAAAAAAAAAUEUs29bkXC4YMzaT0MnwUjDmdDSprHXpZQyr5zVdFwVi/OoI1Sx2jwnVuuXiw0QAwAY0l8zoB4MzOnR4Sq+cihXdvs5r6EP9zdq/t0U3bmuQwf+PAAAAWKds29ZXnjul//nTM5f97q7+Jv2be3fKSxdhAMuxLRmxs/kgTC4cY+S7xpjR8bIHYy7tFpMNdsn2hwjGALgiQjMAAAAAAAAAAKyBSDyd6xgzkwvEjIeXAjKJjFXy8UyXtDXg0/Z8p5iOkF8d+Q4ymxq8XPgLAHCErGXrhbGoHj48pR8OzSiZWT6MarikWzoD2r+3Re/rCcnvYaVtAAAArG8Zy9YffH9ED7wxednvfu7tm/U7H+jkfSIAObYlY25CZmREZnRsKRQTGZU5Oy5XtlzBmPordovJBjtl+5sIxgB4ywjNAAAAAAAAAABQJguprE5GCoMx4+G4xsMJzSayZRlzU70n1ymmya+OYC4Y0xHya1vAJ4/JCqEAAGc6MbWghw9P6dGjU5qcSxfdfkdzjfbtbdG9u1u0qcFbgRkCAAAA5ZdIW/q9Q0P64VD4st/9xp3t+pVbt9JxGHCafDDGHTspDZ+TpoelmRE1Tg7KiI6VLxjjqZcVvBCI6cyHYrryHWMIxgAoLUIzAAAAAAAAAACsQjpr6XQkqbF8p5ixi4IxK7ko91oE/O5cp5iLusVsD/m1PehXrZcV8AEAkKTIQlqPHZvWocNTOnpuvuj2gRq37t7VrP17W7R7cx0XCwIAVic5J2VTkjhHA1AdYomMfueBQb18KlZwv+GSvnhXtz52w6Y1mhmAsrvQMWaxW8xFHWOi43Jlk5ftUoojGMtTd0m3mKWuMXZNM8EYABVDaAYAAAAAAAAAgCIs29a52VRBIObC7Uw0Kcsu/Zh+t3FZt5gL4Zhgjaf0AwIAsAGks5aeOxHRw4en9OyJiDJF/pM2DZfu3BHU/r0tunNHkK5sAIC3JpPMXXAaHZUZGZU7OibNnZKmh6S5Cbk/9rfKbrttrWcJAJqcS+m3vn1MQ1Pxgvu9pkv/YX+P3tfbtEYzA1AytiVj/pzMyKiMxUDMqMzImMzo2BWDMaVQEIy5KBSTDRKMAVA9CM0AAAAAAAAAACDJtm2FFzIaDyc0dlEwZmwmoVORhFLZ0idjTMOl9qCvIBDTGfKrI1Sj1noPK9wDALACtm3r6Ll5PXx4St87Nq1oPFN0n92b67Rvb4vu3tWsUC1hVADAMrJpGbFTuQtPFy8+HcldkBo7I5eufq5oREYkQjMA1tjYTFy/9e0BnZktvGC+3mfqj+/v003bG9doZgDeMtuSMX8+H4y5qFtMZFTm7LhcmUR5hvXULgZhcuGYpe/t2haCMQCqHqEZAAAAAAAAAICjzCUzBZ1ixsMJjc8kNBZOaD6VLcuYbQ1edTQtBWI6QrnOMVsCPrkNPlAEAOBaTM6l9MiRKR06PKUT0/Gi27fUeXTvnhbt29OintbaCswQALBuWFkZc2cvC8XkgjGn5LKKBzKvxIyMlnaeAPAWHZmY0xe+M6DwJcHy5jqP/uyTu9TLcTFQfWxbxvy5K3SLyYVkyhmMcTXtlJp3SE07NO/fonRjRz4Y00owBsC6RmgGAAAAAAAAALDhJNJZjc8s6MTkvI6cnNTYTHwxHDO9kC7LmE21bm3Ph2I686GYjpBf7UG//B6jLGMCAOA0iXRWPxwK69DhKT0/FpVVpBGcz+3Se3uatH9vi27pDBBWBQAns20Z8+dzq7IvhmJGciu0R8fkyqZKPqQRGSn5YwLASj0/FtU/e2BQC2mr4P6OkF9f/kS/tgX9azQzAEvHJfkwzGJHu/xxSab4whDXNKy7JtcpJtiV7xaz1DXGaGhTqKlpcdtUOKxstjyLTAFApRGaAQAAAAAAAACsS1nL1tnZ5GK3mLGZhMbDcZ2MJHV2Nim7yEW016LOaxR0irn41uDnLXcAAMrBtm29ejqmhw9P6QcDMyvqDPe2bQ3av7dFH+pvUr2P/6MBwDFsW67EzNKFpxdCMflV2l3phbIMa9W2KhvskhXaId+W3VLTTqm5R/NGqCzjAUAxjx+b1r96ZFiZS1LmuzfX6U8/3q+mOs8azQxwENuWa2FyKQxzoWvMhWBMmY5LFoMxF8IxwS5lA52yAl2y6jZdvWMMnWQAbGC8OwgAAAAAAAAAqFq2bWtqPq2xmYRORnKdYsbCua4xpyLJyz74LwWP6dL24EWBmCa/OoK5r821Hrn48BAAgIo4HUno0JEpHTo8pdPRZNHttzb6tG9vi/btbVE7q2YDwIbmSsYWu8UY0YsDMqMykrNlGdPyBZUNdudWZA92L67QbgW7ZHvrJUmmacoXuigoEw5LrNAOoMK+/vKEvvTkmC591+yWzkb94YE+1XnNNZkXsCHZtlwLU0vdYi4Jx5QvGOPPB2MKu8VYgU5ZdZsJwADAJQjNAAAAAAAAAADW3Gwik+8WE1/sHHPhFk9bJR/PcElbGn0FnWI6m/zqCNVoc4NXpsGHigAArIW5ZEZPDM7o0OEpvXwqVnT7Oq+hD/Y1a9/eFr29vUEGFwYBwMaRXli68PSiUIwZGZURny7LkJanXtYloZgL39v+YFnGBIBSsW1bX3nulP7nT89c9ru7+pv0b+7dKa/bWIOZAevcYjDmkm4xkVEZ0TEZ6fnyDGv6lrrF5L9aF8IxdZskF69nAFgpQjMAAAAAAAAAgIpIpLM6GUleMRgTiWfKMuamBp+2B33qCPly3WOa/OoM1WhbwMdFAgAAVImsZevF8agePjylp46HlcwsH5h1KbdK9v69rXp/b0h+DytlA8C6lU3KjJ7MXXwaHsl3jRmRGRmTOT9RliFt03dRIGYpFJMNdsuuaWZldgDrUsay9QffH9EDb0xe9rtPv32z/ukHOgmYAyth23JP/EzesR/lA7tjMiJjMtJz5RnO9Ckb6Fg6Ngl0ygpeCMZsJhgDACVCaAYAAAAAAAAAUDKZrKXT0aROhhMauyQYcy6WKsuYDT4z1y0mH4jpaq7VdZ2b1NVSp3qfW+FwWNlstixjAwCAazcyHdfDhyf16JEpnZ9LF92+q8mv/Xtbde+eZm1u8FVghgCAkrAyMmZPLXaJWbxFR2XETstll767qG14lG3crmywe/HC0wsXo1r1bVyACmBDSaQt/d6hIf1wKHzZ737jznb9yq1b5SIwAyzLDJ+Qb+AB+QYflDl7sqSPbZveXKeYxa4xXbnOdhyXAEDFEJoBAAAAAAAAALwllm3rfCx1WbeY8XBCpyMJZe3Sj+lzG/mOMX51NtXkQjIhvzpDfgVq3AUf/JumqVAoUPpJAACAVYvE0/re0WkdOjKlIxPzRbcP+N368K5m7d/boj1tdVzsBwDVyrZkzE3ku8RcFIqJjMicPSmXVfruorbLkNXQrmz+otOljjFdshq2SQaXRQHY+GKJjH7ngUG9fCpWcL/hkr54V7c+dsOmNZoZUP1cC1PyHX9IvoGD8px/Y1WPVRCMuahbDMEYAKgOnB0CAAAAAAAAAC5j27ai8UxBt5ixmbhORpIaDyeUzJR+JWDTJW0L5sIw2/OBmAvhmE0NXhlcJAsAwLqUzlp6biSiQ4en9MxwRBlr+YStabh0R3dA+/e26s4dQXndXFwEAFXBtuVamMoFY6KjlwRkxuTKJssybLa+bTEUk7sANR+OaWyXTDqPAXCuybmUfuvbxzQ0FS+432u69B/29+h9vU1rNDOgiqUX5DvxffkGHpDn5HNy2SvvUG4bXmUDHbmA7mLXmM7cMUrdZskwyzhxAMBqEJoBAAAAAAAAAAdbSGULOsWMheMan8l9H0uu/APDt2Jzg3cxDHOhW8z2kF/bAj65TS6KBQBgI7BtW8fOLejQkUk9dnRakXjxDgO7Ntdq/95W3b2rWaFaTwVmCQC4Elc8XBiKieaCMUZkVEa6eJewa2HVNF/UKaY7H5LJXYgqT01ZxgSA9WxsJq7f+vaAzswWBhbrfab++P4+3bS9cY1mBlQhKyPPyR/LN3hQvhOPy5VeKLpLJrhD6c73Lh2fXOgYQzAGANYlQjMAAAAAAAAAsMGlMpZOR5MaC8d1MpzUeDiusXwwZmo+XZYxgzXugmBMR8ivzqYabQ/65PfwwSIAABvV1FxKjxyZ0sOHp3RiOl50++Y6jz6yu0X79raop7W2AjMEAEiSKxWTsdglZnSpY0xkREYyWpYxLV9j/sLTC6GY/MrsgS7ZvoayjAkAG9GRiTl94TsDCl8STG+u8+jPPrlLvRxXA5Jty33+DfkGH5Tv+EMyFqaK7mLVtijZu1/JvgPKbLpeovM5AGwYhGYAAAAAAAAAYAPIWrbOxVIFgZiT4YTGwgmdnU3Ksks/Zo3HuEowxq9ADW8/AwDgFIm0paeHwzr05qR+OhYtetzhNV16b09I+/e26taugNwGFyIBQFlkEjIjY1foGjOyogtHr4Xtqc2HYjov6xpj+0NcfAoAq/T8WFT/7IFBLaStgvu3B336s0/u0ragf41mBlQHY/ZkLigzcFDu8HDR7W13jZI771ay74DS22+XDN7XBoCNiH/dAQAAAAAAAGCdsG1bMwuZXDAmnNB4PhwzHk7oVCShVLb0yRi34VJ70JcLxIRq1NHk1/agX51NfrXUeeTigicAABzJtm29dnpODx+e1PcHZjSfyhbd58Zt9dq/t1Uf6mtSg5+PqgGgJLIpmbOnckGYfKeYxc4xc2fLMqRteq8QiunOBWNqWwnGAECZPH5sWv/qkWFlLkmp795cpz/9eL+a6jxrNDNgbbniYfmGH5Vv4AF5zv6s6Pa2y1B6+51K9t+vZPeHJG9dBWYJAFhLvBMJAAAAAAAAAFVmLplZ7BZTeItrPmUVf4C3yCVpS6NP20M+dYRq1Nm01DmmrdHH6u8AAGDRmWhShw5P6tCRKZ2KJItuv6XRq317WrVvb4u2h1j1GgCuiZWVETudC8JcHIqJjMqInZLLLv15om24lW3cLivfJeZCKCYb6JLVsEVyGSUfEwBwdV9/eUJfenJMly6Zc0tno/7wQJ/qvOaazAtYM5mkvKNPyjfwgLxjT8tlpYvukt50vZL9B5Ts2S+7rrUCkwQAVAtCMwAAAAAAAACwBhJpS6ciVw7GzCxkyjJmc61HHflAzIVuMR0hv9qDfvncXPAEAACubD6V1RMDM3r48KRePhUrun2tx9AH+5u1b0+LbtreIIOOAwBQnG3JmD+XC8VERvNdY0ZzAZno+IouBH3LQ8olq2HbRaGYzsWuMVbDNsmkYwEArDXbtvVfnzul//HTM5f97q7+Jv2be3fKy/t6cArbkuf0C/INHpR36FEZqeLnp9mG9lxQpv+AsqGdFZgkAKAaEZoBAAAAAAAAgDLJWLYmZpMXdY2Jayyc0MlwQhOzqctWhiyFOq+pzpB/MRxz8a3ex1vCAABgZbKWrRfHZ3Xo8KSePB5WMrN8FwOXpJs7G7V/b6ve3xNSDStdA8DlbFuan5R5+lW5Z4aXQjGREZnRMbkyibIMm63brGywK981Jt8xJtilbGOH5PaVZUwAwOplLFt/8P0RPfDG5GW/+/TbN+uffqCTgDocwZwekG/goHyDB2XOTRTd3vIFlOzdp2T/AWXa3iHxOgEAx+MTUgAAAAAAAABYBdu2NTmX1ng4rvFwcjEYMx5O6HQkqYxV+miM13Rp+yWBmM5QjTpCfoVq3XLxISAAALhGo9NxPXx4Uo8enda5WKro9p1Nfu3f26J7d7eorZELrwFAklyJaD4Ik+sW446OSrGT0swJKTmrxjKMadU0LXaJWQzFBLuVDXRKntoyjAgAKKdE2tLvHRrSD4fCl/3uN+5s16/cupX3ALGhGXMT8g0+JN/gQbmnjhbd3ja9SnV/SMm++5TqfK9keiswSwDAekFoBgAAAAAAAABWIBrPFARiToYTi11j4unlV16/FoZL2hrwXdItpkadIb82N3pZRRIAAJRMJJ7W48emdejwlA5PzBfdvtFv6u5dzdq3t1V72+q4WA+AM6XmF0MxZmQk/zXXOcZIXH6BcylY3obFUMylXWNsXzmiOACAtRBLZPQ7Dwzq5VOxgvsNl/TFu7r1sRs2rdHMgPJypWLyDn9PvoGD8pz6iVxFerXbcim97VYl++9Xauc9sn0NFZopAGC9ITQDAAAAAAAAAHnxVFYnI7lQzFg4ofGZ3PfjkYSi8UxZxmyt9xQEYraH/OoM+bUt6JPHNMoyJgAAQCZr6bmRqB4+PKlnhiNFu+OZhku3dwe0f2+r3r0jKK+b4xQADpBJyoyOFXSNMSOjMiKjMhfOl2VI211T0CVm8ftgl2x/k0RQEQA2tKm5lH7rOwM6PrlQcL/XdOnf7+/R+3ub1mhmQJlkU/KOPyPfwAPyjjwhVzZZdJdMU5+Su+5Xsvejshq2VmCSAID1jtDMBjAzM6Of/OQneuWVV3T69GlFIhHV19erv79fBw4cUG9v71pPEQAAAAAAAKgaqYyl0em4RqfnF7vG5MIxcZ2fS5dlzEa/uRiM6ciHYjqa/Noe9KvWa5ZlTAAAgEvZtq2B8ws6dHhKjx2dUngFoeD+TbXav7dVd+9qVlOdpwKzBIAKy6ZlzJ7Kh2JGFrvFmJERGbGzRVc4vxa26c0FYi4KxeQ6x3TJqttMMAYAHGo8nNBvfuuYzswWhgbqfab++P4+3bSdrmLYIGxb7olX5Bs8KN/xQyvq0pet26xk331K9t+vbMuuCkwSALCREJrZAB599FEdPHhQmzdv1o033qjGxkadPXtWL774ol588UV94Qtf0O23377W0wQAAAAAAAAqxrJtnY+lFrvFnIomdSZ2XCNT8zoZjitbZCX1a+FzG7kwzEXdYjqacj8Ha7jAFAAArJ2puZQePTqthw9PangqXnT75lqP7t3TrP17W9XTWluBGQJAmVlZGXNnLwvFmJFRGbOn5LKzJR/SdpmyGttzQZjQDvm37pWad0pNOxWx6pQt/WkpAGAdOzIxpy98Z+CyYHtznUd/9sld6uW4HBuAER6Rf/CgfAMHZc6OF93e8tQr1XOPkv0HlN56q2SwABUA4NoQmtkAenp69K//9b/Wnj17Cu4/evSo/u2//bf6i7/4C918883yePhgHgAAAAAAABuHbduKxDOLwZjxcFxj4YROhhM6GUkomSn9FUim4dK2gG8xHHMhFNMR8qu13iuD1YABAECVSGYsPT0U1sOHJ/XT0aiKZYa9pkvv7Qlp395W3dYVkNvguAbAOmPbMubP5YIwkZF8MCZ/i47LZaVKP6Rcshq25rrFBHIdYy58bzW2S2buOg3TNOUPhZZ2DIelbOmDOgCA9en5saj+2QODWkhbBfdvD/r0Z5/cpW1B/xrNDFg918KUfMcPyTd4UJ5zrxXd3jbcSnW8V8n+A0p1f1By8/wHAKweoZkN4NZbb73i/bt379Z1112n1157TePj49q5c2eFZwYAAAAAAACs3lwyo5PhpMYjCY3PxDUeTiyGY2LJ8lxk1NbgXQzD5IIxNeoM+bWl0Su3aZRlTAAAgNWybVuvnZnTocOT+v7AjOZWcKx0w9Z67dvborv6m9Xo5+NjAFXOtuVKzCx1jFkMxYzKjI7JlV4oy7DZ2k2ygl25QMzFAZlAp+T2lWVMAIAzPH5sWv/qkWFlLkm5795cpz/9eL+a6lgoG+tQOi7vyPflHzgoz/gzK+rql267Scn++5XsuVd2TVMFJgkAcBLHv+sZjUY1NDSkoaEhDQ8Pa3h4WLFYTJL03ve+V5///OdX/FiTk5N69NFH9fLLL2t6elput1ttbW1617vepbvvvls+X+XfKDFNs+ArAAAAsBq2bWtyLqU3Jic1MBFT1rb1czfwhhUAAFi9VMbSqUhC4+HC21g4oen5dFnGDNW4FwMxHSHfYjCmPeiT38P7aQAAYP04E03qkSNTOnR4UicjyaLbtzV4tW9vi/btbVVHiFV7AVQfV3L2olDMiIzo6GJQxkjFyjKm5Q9dFIhZ6hpjBTple+vLMiYAwNm+/vKEvvTkmC5tCnlLR6P+8P4+1Xl5jxLriJWV59RP5Bt4QN4Tj8tIzxfdJRPsVrL/gJJ998kKdFZgkgAAp3J8aOZzn/tcSR7npZde0pe//GXF4/HF+5LJ5GIQ54knntAXv/hFtbW1lWS8lZiamtIbb7yhUCikjo6Oio0LAACAjSGeymp4Oq6hqQUNTS5oaDL3fSSeWdympd5HaAYAAKxY1rI1MZtcDMOM57vFjIcTOjublHXpp8MlUOsx1NHkV2dTrfq3hrSjpU5dLXUKudOq87hKPyAAAECFzKeyemJgRoeOTOpnJ4tfQF7jMfTBvibt39uim7Y3ynBxLARgjaUXlrrERJZCMWZ0VEZ8pixDWt76xS4xS51jupUNdMn2B8oyJgAAl7JtW//1uVP6Hz89c9nv7upv0r+5d6e8brpdYx2wbZmTh+UfOCjf8YdkLEwW3cWqaVKy96NK9t+vzKbrJc5NAQAV4PjQzMVaWlq0bds2vfbaa29pv5GREf3Jn/yJUqmU/H6/7r//fl133XVKpVJ67rnn9MQTT+js2bP6j//xP+oP/uAPVFNTU6Y/wZJMJqMvf/nLSqfT+oVf+AUZBgfRAAAAuLKsZetUJKGhqXguHJMPyZyKJC9b1ehSU3NJzcynFPCzyhEAAMixbVvT8+mCTjHj4YTGZ+I6FU0qnS19MsZjutQe8KmjqUYdIb86Q3515G/NdR65XC6ZpqlQKLS4TzgcVjabLflcAAAAyilr2Xp+LKqHD0/qqcGwEhlr2e1dkm7uaNS+vS36QG+TalipGkClZZMyo+MFoRjjQkhm/lxZhrTd/qVuMYGljjHZYJfsmmYuzAQArKmMZesPvj+iB964PFzw6bdv1j/9QCcBd1Q9Y/aUfIMPyjdwUO7wUNHtbbdfyR0fVrL/gNLtd0impwKzBABgieNDM5/85Ce1c+dO7dy5U8FgUOfPn9dv/uZvvqXH+Mu//EulUimZpqnf+73fU19f3+LvrrvuOm3ZskV/8zd/o7Nnz+qhhx7Spz/96cse46tf/arS6fSKx/zIRz6iLVu2XPF3lmXpv/yX/6KjR4/qgx/8oN7znve8pT8PAAAANq6Z+XQuFDO1oOOTcQ1PLmh4Oq5kkQsslnN8ckHv3N5QwlkCAID1IJbIFHSLyX0f1/hMQgvpaz+2uBqXpK0BnzpCfm3PB2IuhGPaGn0yDT5IBgAAG9fw5Jy+87NT+s7PTupcLFV0+46QX/v3tugje1rU1uirwAwBOJqVkTF7KheKiY7KjIwtBWTmzshll/4c0TY8ygY6FsMxVnApHGPVbZZcLCwKAKg+ibSl3zs0pB8OhS/73W/c2a5fuXWrXARmUK3iYXnf+Jq8x74rz5kXi25uuwyl2+9Qsv+AUjvuku2tr8AkAQC4MseHZq4UYHkrhoaGdPToUUnS+9///oLAzAX79+/XU089pdOnT+vRRx/Vxz/+cbndhX/13//+95VMJlc87m233XbF0IxlWfrKV76iZ599Vu9+97v1uc997i3+iQAAALARJNKWRqbj+XBMLiQzPBnX9MLKg9rLqfGY6mtr0K7NDQrUOP60AgCADSuRtnQqUhiIGY8kND6TUDieKcuYzXWegk4xF27bgn753Fz0BAAAnGVyLqUvfPcF/Wjw8lWoL9XoN/Xh/mbtv65Ve9vquNgOQGnZlozY2XwoZqlrjBkZkRE7JZdV+nNE22XIamxf6hoT7F4KyTRslQzemwYArB+xREa/88CgXj4VK7jfcElfvKtbH7th0xrNDFhGJikdeVB6/RvS8cdVly2+iEOmda8S/fcr2btfdh3PawBAdeAdhFV64YUXFr9///vff8VtDMPQe9/7Xn3ta1/T/Py8Dh8+rBtvvLFgm7/+679e9VwudJj50Y9+pDvuuEOf//znZRhcSAAAALCRWbatM9GkhiYvhGNyQZmT4YQse/WP75K0PeRXT0uNelpr1dtaq77N9bq+a4uM/Gru4XBY2Wx29YMBAIA1kbFsnY0mC4Mx+Q4yEytYxfxa1PvMgk4xHU016gz51R70qd7HW5YAAACSNJfM6PPfPKrjkwtX3cZ0Sbd3B7Vvb4veszMkLyFjAKth23ItTC4FYqIXhWOi43JlV74Q6FuRrd9SEIpZ7BrT2C6Z3rKMCQBAJU3NpfRb3xm47Njea7r07/f36P29TWs0M+AKbEvuMy/JP/CAvMOPSsnZortkG7Yp2X9Ayb4Dyjb1VGCSAAC8NXwCvUoDAwOSJJ/Ppx07dlx1uz179hTsc2loZrUuDszcfvvt+q3f+i0CMwAAABtMJJ7W0GQuFDN0oXvMVFzxtFWSxw/VuNXbWqudrbXqbalVT2uNdjTXyO8xC7YzTXMxMAMAANafSDytB16f1GunYxoLJ3Q6mlS2FGnbS/jcLm0PXtwtpkYdTbmgTLDGzcrnAAAAy8hYtn73oaGrBmb6NtVq354W3bO7Rc11ngrPDsC6ZttyJcJXCMWMyYiMykjPl2VYq7blok4x3bmQTKBL2UCH5Kkpy5gAAFSD8XBCv/mtYzozWxg+rfeZ+uP7+3TT9sY1mhlQyJwelG/wQfkGD8qMnSm6veULKNnzESX771dmy02Si+tVAQDVi9DMKp06dUqS1NbWJtM0r7rd1q1bL9unVCzL0le+8hX96Ec/0m233UZgBgAAYJ1LZSyNzMRzwZgLIZmpBU3OpUvy+D63Szuaa9XTUpMLyLTWqqellgssAADY4E5HEvrbn03owTcmlciUJnRruqStAV9BIGZ7voPMpgavDIIxAAAAb5lt2/rSk6P68Wi04P6mOq8+sqdZ+/a0qLe1do1mB2C9cKViMiIXQjFjua/RUZmRURnJaPEHuAaWL5jvGNO1FIoJdssKdsr2NpRlTAAAqtmRiTl94TsDCsczBfc313n0Z5/cxXE91pwxd06+4w/JN3BQ7qkjRbe3Ta9SXR9Qsv+AUp3vlUxfBWYJAMDqEZpZhVQqpVgsJklqbm5edtv6+nr5fD4lk0lNT0+XdB7f/va39fTTT8vv92vr1q36zne+c9k2t9xyi7q6ulb8mCud43JBodW4NPRDCGhjo97OQr2dg1o7C/W+NrZt6+xsUscnF3T8/IKOT85raHJBYzNxZUu02Pv2oF89rbXqyYdjelvrtD3kl7mKTjHUG5W21ucnEs97p6HezuGUWh+ZmNNfPX9aPxiY1rU2lNnc4M11i2mqUWeoRp1NfnU21WhrwCePuT7+3pxSb+RQb2eh3qg0zlFQbn/74hl969XzBfc11Xn1wP9+hwLutCyrNAFoVB9e285Sknqn47kQTGRUZuRErlNMZFRmeERGfKpEMy1ke+qUDXXLCl4IxOS6xljBbtk1oSvuwzOZ17eTUGushbU+R+F5f2U/HY3od757TAupwuP37SG/vvLpPdoW9K/RzFaHem8AqTl5hx6T99gDcp98Ti6t4IODzjulGz6t2fb3yfLmuiOV710PrBVe385BrZ2FeucQmlmFRCKx+L3fX/wg1u/3K5lMFuxXCpOTk4vz+fu///srbrNp06a3FJr5jd/4jRVt981vfnPFj7kagUCgIuOgOlBvZ6HezkGtnYV6Xy4aT2tgIqaBiVkdnYhpYCKmwYmYYslM8Z1XIFjr0a62Bu1qa9Sutgb1tzWob3OD6nzlP+Sn3ii3ajs/kXjeOw31do6NVGvbtvXM8Sn9+Y+G9dzQyj40D9V61N1Sp+6WenW31Oa/1qmrpVa13o33NuJGqjeKo97OQr1RbpyjoJwePzyhLz01WnCf123oL37xHepoZhVqp+G17SxXrXcmJYVHpekhaWZYmh7Of39Cmj1dnsm4/VLTjtytuUdq3pn72rRTrvpNctNVdNV4fTsHtUYlVNs5Cs976aHXzuj//PZRpS9ZKfH6bQH9r1++WS31G6c7B/VeJ7JpafhJ6fVvSMcekTLx4vu07pJu+Dnp+k9Jwe2SJKrtLLy+nYNaO4tT673xPu2uoFQqtfi92138r/LCNhfvVwqf//zn9fnPf76kjwkAAIBrk8pYOjE1p4GJmI6ezYVkBiZiOhMtTXDaaxrq2VS/GIzZtSUXktnU4JOLDyoBAHC8dNbSodfP6s9/dEJHz85edTu34dL+G7bo3b2t6m6tU3dznUJ13grOFAAAAJd641RUX/j6q7IvWeT3jz51o97R2bQ2kwJQGdmMFB2Xpk/kgzFDuXDMzLAUGZfsMnSYMtxSqDsXiGnamQ/G5L9v3CY5dOVZAABW6y+fG9G/efjIZcf1d/Q0688/807VV2DRQ0CSZNvS6Z/lgjJvfkdaWMECWw1bpOs+kQvLtF0vcQ0CAGCD4AhsFbzepQsJMpniK4Rf2Obi/arVV77ylbWeAgAAQFWzbVtno4lcOCYfjBmYiGl4cu6yFYOuVXuoZikck+8g09VSJ4/Jh5VwFs5PAKC4+WRG33jxpP7HsyM6Hbn6CnF1XlM/f0uHfuXObm0L1lRwhgAAbByco6AczkTi+tW/elHxdLbg/n/64T7dd+PWNZoVgJKyLCl2prBTzIVwTHhUstKlH9NlSIHtBZ1iFsMxgQ7J5JIRANgIOEepDrZt64+/P6gvPzl02e/237BFX/r0jfK5zTWYGRxnelh641u5sMzMieLbe+ul3fdJN/6c1PVuyeB5CgDYeHgHZBX8fv/i94lE8ZXDL2xz8X7Vqrm5eUXbhcPhsoxvGEZB+6doNCrLKsPqOagK1NtZqLdzUGtn2ej1nktmNDS5oKGpBR0/v6DjkwsampxXLJktvvMK1PtM9bbWqbe1Vr2batXTUque1torrDKU0dxstCRjrkY11DsUClV0PKyttT4/karjeY/Kod7OsRFqPT2f0td/NqFvvjKh2cTVF3VprvPoH7xjiz719jY1+t2SnVA4XJpOeOvFRqg3Vo56O8ta15vzE+fhHAWlNp/M6pf/9g2djyUL7v/oda36Rze1FtxHrTc2XtsbgG3LtTApMzIqIzIqM3xCxoXvo6NyZcpzHmbVtykb7JYV7Mp9DXXnvjZul9y+K+80GyvLXHBlvL6doxpqzTmK86z1OUo1PO/XWsay9R++N6zvvn7+st/93E1t+ucf6tJCbFYLazC3UqPe1cm1MC3v8YflPfaA3BOvFN3eNtxKd75Xqf4DSu+4S/LkF9mKFnawp97OQr2dg1o7SzXUuxrOUQjNrILX61VDQ4NisZimp5dvXTc3N6dkMvdG90pPVNaDbLY0F4oWY1lWxcbC2qPezkK9nYNaO8t6rXfGsjU+E9fQVDwXjJla0PBkXGdmk8V3XgG34VJXk189rUvBmJ6WGm1u8Mp1hbbG6+XvcL3WGxtPJZ+HPO+dhXo7x3qq9dhMXH/z0oQOHZ5Uapkudx0hv37x5i26d0+LfO5ct7r18mcst/VUb6we9XYW6o1qwTkKViJj2frnBwd0fLLw8rl3bG/Q797VJdsuPNaj1s5CvauXKxGRGRmVGRmRGR1d/N6IjMlIz5VlTKumWdl8KCYb6Lro+w7JU3v1HXkOVSVe385BrVFNuM6rPBJpS793aEg/HLo8lPQbd7brV27dKtuytFH/RpxW76qSjss78gP5Bw7Kc/IZuayrL6y1uMvmtyvZf0DJ3o/IrrnoOtYV1pB6Owv1dg5q7SxOrTehmVVqb2/X0aNHNTExoWw2K9O8cmu6M2fOFOwDAACAtWPbtqbm0xqazHeNmYpraGpBI9NxpZe56PSt2NzgzQdjatSbD8l0NvnlMY2SPD4AAHCmN87E9NUXz+qHx8Na7qjlhq31+sWbt+g9PSEZVwjnAgAAYO3Ztq0vPTmmH48UdhbubPLrDw/08T4SsMZcqbnFDjFmZCQfjBnLhWOSkbKMafkaLwnFdMkK5MIxtq+hLGMCAIBrF0tk9DsPDOrlU4Ud3AyX9MW7uvWxGzat0cywYVlZeU7/VL6BB+Qd/p6M9HzRXbKBTiX671ey7z5Zwa7yzxEAgCpEaGaV+vv7dfToUSWTSZ04cUK9vb1X3O7IkSMF+2wUVwsJrZZhGMv+jI2FejsL9XYOau0s1VzvhVRWw1O5cMzxyXkNTS5oaHJBkXjxVVZWos5r5jrGtNaqr7VWPa116mmtVaN/4x5qV3O94WzlOj+ReN47DfV2jvVSa8u29cxwWH/1/Bm9cmp22W3f2xPSL926TW9rb6zQ7NaP9VJvlAb1dhbqjWrFOQqK+dpLZ/StV88V3BescevLn9yjUJ1PErV2Guq9BjIJGReCMPlgjBEeyf28MFmWIW1PbS4ME+yWt2231LxTau7RrKdVWW9AusLCBzwT1j9e385BrVHNuM6rtKbnU/qNbxy9rGuk13TpP97Xpw/0NV9lz/XNqfVeU7Ytc+qIvMcekHfgoIz580V3sWqalOr7qFK77ld289skl0suSW/1XwHq7SzU2zmotbNQ75yNeyVfhdxyyy164IEHJElPPfXUFUMzlmXp6aefliTV1dVp7969lZxiWYVCoYqMEwgEKjIOqgP1dhbq7RzU2lnWot5Zy9bo9LwGJmI6dnZWxyZiGjgX09j0QvGdV8A0XNrRUqf+tgbt3tKo/s0N6m9rUHuoRi6Hr97O6xvVolLnJxLPe6eh3s5RbbVOZrI6+OoZ/bcfndDQ+bmrbuc1DX3s7dv0ufd0q2cTKw+vVLXVG+VFvZ2FeqNacI6C5Xz/yDn90ZOjBfd53Yb++2dv1g1dTVfdj1o7C/UukUxKioxJ08PSzLA0PZT7fnpYmj0tLdvH8xqZPqlpRy4Q07RDau7Jf79TroY2ua/wnjJLHzgLr2/noNaoJlznVVq/e+hnlwVmGnxu/cVn36nbdmzMwMyVOKXeayJyUnrjW9Lr35Qmjxbf3l0j7don3fBpGTs/IL/pkb/EU6LezkK9nYNaO4tT601oZpV6enq0e/duHT16VE899ZTe9773qa+vr2Cbhx9+WKdPn5Yk3XvvvXK7+WsHAABYjclYMheOmciHYyZiGjwXUzJjleTxNzf61N/WqF1tDdrVlgvH9Gyql89dvhViAQAALphNpPW158f1v54b0bnZ5FW3a/C79Qu3duqX7+jS5sZSf/QFAACAcnnzdFT/5O9ekX3Jdfp/9Kkb9c5lAjMAlmFlpejJpTDMxeGYyLhkZ0s/puGWgp2LnWIWQzLNPVLjNsng/WQAADaqyEJK3zs8UXBfa4NPf/XLt2jPVqKwWIV4RDpyMBeUGXu2+PYuQ+p+r3TDz0m790s+FtYCAOBKHJ/eOHbsmCYmlg5gZ2dnF7+fmJjQD3/4w4Lt3/e+9132GL/0S7+k3//931cqldK/+3f/Th/72Me0d+9epVIp/fjHP9YPfvADSdKWLVv00Y9+tCx/DgAAgI0onsrq+PmYjk3EdOxsTAPnZjUwEdPUXKokj1/rNdW3ueGicEwuKBOq85bk8QEAAN6KiWhC/+u5Ef3t8+OaS2auul1bo1+/eme3fv6W7Wrweyo4QwAAAKzWmUhcv/KXLyqeLryA/3fu6tN9N25do1kB64RtS7Nn8oGYfChm5kTu+/CIlC3N+8aFXFJgez4McyEck/8+2CGZnJMBAOBEzw5NybooBO9zG/r737hd25tq125SWL8ySen449Lr35AGv7ey49q2G3JBmes+ITVuKf8cAQBY51y2fekaRs7yn//zf9bTTz+94u2/+c1vXvH+l156SV/+8pcVj8ev+PstW7boi1/8otra2q5pntUqHA6X5XENwyho/xSNRmVZpVk5HtWHejsL9XYOau0sq623Zds6FUloaHJBx88v6PjkvIamFjQ+k1ApDlYNl9QRqlFPa61687ee1jptC/pkuFwlGMFZquH1Xan28VhfynV+IlXH8x6VQ72do1pqPTy5oK++cFqPHJlSxrr60c/Olhp99tZtumd3izymUcEZbgzVUm9UBvV2lrWuN+cnuBrOUXCp+WRWv/y3b+j45ELB/R+9rlX/5iM9cl3hfSpq7SzUW5JtyxWflhEZlRk+kfsaGZUROSEzMiZX5sqfx6+WVbdZ2WCXrNCO3Ndgl7LBHbIC2yV3eTp7Um9nod7OUQ215hwFV8N1XqXzrx8Z0sE3zi/+fHt3UP/503vWcEaV48R6l4VtyX3mJXmPfVee44dkJGeL7pJt2KZU/wGldt0vq7mvApOk3k5DvZ2DWjtLNdS7Gs5RHN9pplTe+c536o/+6I/0yCOP6OWXX9bMzIzcbrfa2tp022236Z577pHP51vraZZcNluGNtZXYFlWxcbC2qPezkK9nYNaO8ty9Y4spDU0taChqbiOTy5oaHJBw1NxJTKlORhvrvVoZ2uNelry4ZiWWnU318jvufzCUtuyxLNy9Xh9o1pU8nnI895ZqLdzVLLWtm3rlVMx/fWLZ/XMiciy275je4M+c/NW3dEdyF9IafOcLAFe285CvZ2FeqNacI6Ci2UsW/+/g4OXBWbesb1Bv3tX14o/qKbWzuKIemfT8ow/I9+J78mcHpAZGZGRmivLUJa/Sdlg10W3bmUDXcoGOiVv3TJz5DNxlB71dg5qjWrCdV6lYdu2fjxSGEB6V1dgQ/+Zl7PR611q5syQfAMPyDf4oMzY6aLbW94GpXo+okT//cpsfafkyl/3sEZ/59TbWai3c1BrZ3FqvR0fmvn85z+vz3/+8yV5rNbWVn32s5/VZz/72ZI8HgAAwHqWzFgamY7nAjKTuZDM0OSCpubTJXl8n9vQzuYa7WytVW8+JNPTUqumOk9JHh8AAKAcspatp4fC+uqLZ/Tm2fmrbueS9IG+Jn3m5i26bkt95SYIAACAkrNtW196ckzPjUQK7u8I+fWf7uujiyCcx7bkPvuyfIMPyjf0iIxE6Va9t7wNi4EYK3BROCbYJdvXWLJxAACAcw1PxTU5V/iZ97u6AlfZGpBc8+flO/6w/AMPyD15uOj2tuFVqut9Svbfr1Tn+yT3xlusHQCASnN8aAYAAACrY9m2JiIJvXT2nI6dndWxczEdOR3R+ExcWXv1j++S1B70qSffNSb3tUbtQb9Mw7X6AQAAACogkbZ06Mik/ubFszoZSV51O5/bpY/ubdUvvHOLtof8FZwhAKw/rlRMRmRUnuiYlDgrTQ9JXXdKO+9f66kBQIGvv3xO33r1XMF9gRq3/r9P9CtQw8e1cA5zejAXlFnhqtpXY7trcmGYQFdh55hAl+yaZsnF+8YAAKB8fjoaLfi5rcGrzibey8UlUvPynXhcvoGD8px6Ti67eHfR9Nableg7oFTPvbL9wfLPEQAAB+FdWKyKaZpleVzDMJb9GRsL9XYW6u0c1Hpjmk1kdHxyXkOTCzp+fkHHJxc0NDWvhVTxN3hWIljjVm9rrXpa69TbWqve1lrtbKlVjbc8xxy4Nry+Ua3KdX4i8bx3GurtHJWodTSe1jdfmdDf/eyswguZq24X8Lv16Zva9PM3tampzlvyeYDXttNQ7w0km5IRHZcZPiEjMiIzPCIjciL3dWHy8u1tS0bvxys/T+AKOEeBJD09NKM/fmqs4D6P6dKffHyXOpvriu5PrZ1lI9bbFTsr7+CD8h57QO6poyvezza9sgIdyga7ZAV35L6GupUNdsuu23zFYMx6+9vaiPXG1VFv56DWqGZc51UaP7kkNHPHjpDcbudchum0er8lVkbu8WfkPfaAvMOPy5WJF90l29SjVP/HlNp1n6zG7ZKq67iWejsL9XYOau0s1DvHZdt2Cdb/BgAAwEaSylganpzTwERMRydmNTAR08BETGejiZI8vtdtqHdTvfrbGrS7rVH9bQ3a1dag1gafXKwCCAAANoCTMwv6H8+O6JsvndRCKnvV7bYFa/S5d3fr0zdvV63XOR+sAkABy5JmT+c6xUwPSdPDS99HxqQVrMS5qO0G6X97pnxzBYC34M3TUX3qv/5E8XTh8eCf/vzbdOBt29ZoVkAFxCPSkYPSG9+SRp+VtIJLEtpvkfbcJ23aIzXvlALbJYPFlAAAQHWJp7K68d8+rlRm6b2K//qPbtI9121Zw1lhTdm2dOZl6fVvSm98W1qYKr5P/Wbp+k9JN3w6914W10gAAFB2fBIPAADgYLZt60w0oYGJWR09G1sMxwxPziljlSZbvb2pRv2bG7V7S8NiOKaruU5u05mpdQAAsLEdPhPVf/vRCT38+llllzme2ru1Ub/+3p36yHVtHBcBcI6FmYuCMRcHZIalFay8uSLTw7mLFbjYAMAaOxuN61f/6sXLAjP/5119BGawMaUT0vHv5S4WPP64lE0V36elT7r+09L1n5Sauss/RwAAgFX66ch0QWDGNFy6vadlDWeENTMzkguJv/6N3HtcxXjqciHxGz4tdb+XgDgAABVGaAYAAMAhZhNpDU7EdGwipmP57jHHJmKKJTIlefxAjWcxFLMr3z2mv61B9T4OOQEAwMZm27aeG5rWn/9oWM8cX34VuXf3tujX37NTd/Q002EPwMaUWpBmTly5a0x8pvTjuQwp2CE19yzdrIxkeko/FgCs0Fwyo1/5y5d0bjZZcP/Hb9qm3/pAzxrNCigDK5vrJPPGN6UjD0nJaPF96ttyIZnrPyVtuZGgKwAAWFeeHpgs+PmmjqAa/bwH4Rjz09Lhv88FxU+9UHx7lyn1fFC64eek/nslb1355wgAAK6IKxixKuFwuCyPaxiGAoHA4s/RaFSWZS2zB9Yz6u0s1Ns5qPXaSWctjc8kdHxyQccn5zU0uaDjkws6e8mH9NfKbbjU3Vyj3tZa9W6qU09Lrfo316u3vXXxws8L9U4vxBReKMmwqCLV8PoOhUIVHQ/rQ7nOT6TqeN6jcqi3c6y21hnL1g+OTeuvXjitY+fmr7qd6ZI+vLtFn71lm/o35z4Ui0Qi1zxvXBte285CvcvMysiYPS0jckJmeERGZERmeERm+ISMuTPlGbK2RdngDlmhbmWD3bJCO5QN7ZDVuF2Gt2ZN6835Ca6GcxRnyli2fvs7R3X07GzB/e/Y3qh/8YHtb/k4kFo7y7qot23LnDws78BBeQcfkjE3UXwXb4NSPfco1X+/Mu23La2q7fDzonVRb5QM9XaOaqg15yi4Gq7zWr0fHjtX8PPN2+vLeu5XjZxUb0lSJiHPiR/Ie+wBecZ+KJdVfFHSzOYbldr1MaX69suuzXcimk/lbuuM4+rtcNTbOai1s1RDvavhHIXQDFYlm80W36gELMuq2FhYe9TbWai3c1Dr0rNtW5NzaQ1N5UIxQ1MLGp6Ma2QmrnTWLskYbQ1e9bTWqre1VjtbatTTUquuJr/cplGwnWmaBSulU29nod6oFpV8HvK8dxbq7RwrrXU8ldXBNyf1tZcmdGaZYLLfbehjN2zSP3xHm7YEfJIq+28Vlsdr21mo9zWwbbkWpmRGRi6/RcflstIlH9Ly1MkKdikb7FY2uCP/Nfez7WtYZkfrkh+pN6oD5yjO9IdPjOrZE5GC+zpCfv2n+3plyF51nai1s1RTvY3Zk/INPijfwINyh4eKbm8bXqW63qtk3wGlut4vuf35X0iqkj9TtammeqP8qLdzUGtUE67zWp0z0aRGZ+IF993W2bgh/6xvxYast5WV58zz8g0clHfoMRnpuaK7ZBs7lOw/oETfAVmh7ot+sbH+bjZkvXFV1Ns5qLWzOLXehGYAAADWgYVUVsNTCxqaiucCMvmQzGyiNAewdV5TPa25UExva616WnIhmQY/h4sAAAAXzMyn9c1Xzulbr55TNHH11eRCNW793E1t+uTbNilY46ngDAHgrXOlYjIio/lAzKjM8InF71dyQcBbZRtuZRs7lA3tWAzEXLjZta3SRQsyAMB68/WXJ/TNVwpXng7UuPWnH+9XoIb32bD+uOIz8g09It/AQXkmXl7RPumttyrRf59SO++V7Q8U3wEAAGCd+MlopODnYI1bu/KdxbExmFPH5Bt4QL7Bh2TOF++oaPlDSvbuU7LvgDJtb+d9LQAAqhjvzgIAAFSRjGXrVDhxUfeYuIYmF3Q6evUVzN8K03CpM+TPd4/JhWR6WmrV1ugt6BQDAACAJSfDCf3NS2f18OFJJTNX7+i3PejTP7p5i/btaZXfY1x1OwCouGxK5uzJXBjmolCMGRmRsTBZniHr2y7qFrPUMcZqbJcMPpoAsPE8MxzWHz81VnCfx3TpSwf6tD3kX6NZAdcgvSDvyA/kH3hQnpPPyGVdfcGACzLNu5Tsv0/J3o/KathagUkCAABU3k9HowU/39oZkMFn7OueETsj3/GH5Bs4KPf0QNHtbdOn1I4PKdF3v9Idd0qmtwKzBAAAq8UnUwAAAGvAtm1NL6Q1NBlf7BozNLWgE1NxpbJXvxDzrdhU78mFYlrzt5YadTXVyOvmAk4AAICVePPsnP76xbN6cnBGyx2h7W2r02dv2ar39oRkGnxICmCN2JaMuYl8IKbwZsyeksu2Sj6k5QvkgzFdyoaWOsZkA52Sp7bk4wFAtTp2bl6/+/CQrEsOGv+ve3bobe0NazMp4K2wMvKcfE6+wQflO/G4XOmFortkG7Yq2Xufkv33KdvcX4FJAgAArJ1M1tILY4WhmXd101VvvXIlZ+UdfizXUfH083It+wmAZMuldPu7lOw/oNTOu2V7Oc8DAGC9ITSDVTFNsyyPaxjGsj9jY6HezkK9nYNaL4mnszqR7xxz/HwuHDN4fl6RePEV+lai1mtoZ0utelvr1JsPyPS21ipQ4ynJ468E9XYW6o1qVa7zE4nnvdNQb+e4Uq1t29azJyL6q+dP62cnZ5fd/z07Q/rFW7fqpvZGuvatA7y2nWUj19uViMgIn5AZPiEjMiIzPCIjckJmZFSuTKLk49mmL9chJh+KyX3dISvULbum6Yr7lO+o7Mo2cr2xvnGO4gznZpP67e8OKp4uDCf+b3du177rNq/68am1s1S03rYt89yr8h47KO/gwzLiU0V3sfxBpXv3Kdl/v7Jb3yG5cvOr9P/9GwWvb2eh3s5BrVHNuM7r2r12Zl7zqcJj/jt2NJX1vK9ardt6Z1PyjP5Q3mMPyDPyA7myqaK7ZFp2K7XrY0r13ye7vk2StE7+tCWzbuuNa0K9nYNaOwv1znHZtl2apcwBAAAcLmvZGp9Z0MDErI6ejWlgIqaBczGNTs+rFEdchkvqbqnTrrZG7WprUH9bg3a1Nao9VCODFc0BAABWJZWx9OBrZ/TffjSswXNzV93OY7p04G3b9I/fs0N9m1lNDkCZpOPS9LA0PZS/XfR9fKb047kMKdghNfdcdNuZ+9rYLjn0AxQAKGY+mdGn/utPdORsYdj642/fpi99+kaC1ahOU0PSG9+UXv+mFB4pvr3bL/V/RLrh09LOD0pub/nnCAAAUGX+6HsD+rOnhhZ/3r2lUY9+4d1rOCOsiG1LJ5+XXv+GdPi7UjxcfJ/GbdL1n8od/27eW/45AgCAiqDTDAAAwDWYnktqYCKmoxMxDUzMLgZkEpesKHmtWht82tXWkA/H5EIyPZvq5fc4b6UaAACAcool0vr6Cyf1P54d0cTs1Ts01Pvc+oVbO/TLd3SrLeCv4AwBbFhWVoqMXRKOyQdkoifLM2bdpsJATHOP1NIrhbokt688YwLABpW1bP3W371yWWDmlu4m/cdPXE9gBtUlNiG9+fe5sMyZV4pv7zKkHe+Trv+0tHu/5GPBAAAA4GxPD04W/PzevtY1mglWZHJwKSgeGSu+va9R2nNAuuHnpM47WEAGAIANiNAMAADAMhLprIbOz+nYREzHzs5q4FxMxyZimowlS/L4NR5TfZvrtautMd85JtdBprmei5UAAADK6fxsQv/zuVH97fNjiiUyV91uU4NPv3pnt/7BrR1q9HsqOEMAG4JtS3PnLw/FTA/lVnbPpko/pre+MBRzcecYf6D04wGAQ/3fDx/Rk8fOF9zX3VKnP/9H75DPzcI3qAKJWenoQ7mLBUd+JNkrWPBp6025FbX3flxq2Fz+OQIAAKwD03NJvXkmWnDfe/pa1mg2uKq589Kb38l1lVlJUNzwSH1357rK9N0jeVgsCwCAjYzQDFYlHF5By8JrYBiGAoGlD3Cj0agsqzQr96P6UG9nod7Osd5qbdm2zkSTOj65oOPn5zU0uaChyQWNheOy7NU/vkvS9pBfPa216mutU09rrXo31WpbwC/TuGTVyfSCwuGF1Q9aQeut3lidaqh3KBSq6HhYH8p1fiJVx/MelUO9N7aR6QV99YUzOnR4Uuns1Q/0uptr9NlbturePa3yug1l43MKxys4UZQcr21nqXi9kzGZkVEZkRMywyMyIiMywyMyIyNypWIlH8423LICHcoGd8gKdSsb2iErmPtq17ZKV+puELekePmOl9bSWr++OT/B1XCOsnH93c/O6i9/PFpwX7DGrT/5eJ+Umlc4NV+ysai1s6y63tmUPGNPy3vsAXlO/ECubPHFn7KBLqV2HVCq/4Cs0I7cnRlJZfw3DDm8vp2FejtHNdSacxRcDdd5XZvvHZmUfdFbyTUeQz0BV1nP+apZVdU7vSDv8OPyHvuu3OPPymVni++y9Waldt2vdO8+2f5g7s65uCQ+ALiSqqo3yo56Owe1dpZqqHc1nKMQmsGqZLPFDzRLwbKsio2FtUe9nYV6O0c11Toaz2hoakHHJxc0PLWgocm4hqcWtJAuzcFgqMatntba3K2lRj0ttdrZUiO/5worTNqWquSvpaSqqd4oP+qNalHJ5yHPe2eh3hvDq6dj+uoLZ/Sj4ciy2729vUG/ePMW3bEjKMPlkmRT/w2K17azlKTe2ZTM2ZMyLwrEmJFRmZETMhYmSzPRS4esb1M22J2/7VA22KVssFtWY7tkXOXtfT7Y4vWNqsE5ysb0zHBYf/TESMF9HtOlPzrQp22N3rLXgVo7y4rqbVtyn3lJvsGD8g09KiMZXX57SVZNs5K9+5XsP6DMphuWArc8t9YUr29nod7OQa1RTbjO69o8O1wYjnlnR6MM3jdeVPF6Wxl5Tj4n38BB+Ua+L1e6+IKkmeAOJXfdr2TffbIaty/9ghq+ZRvt9Y3lUW/noNbO4tR6E5oBAAAbVipjaXQmrqGpeC4gM7mgoakFnZ9Ll+TxfW6Xuptr1NtSq52tteppqVVva62a6zwleXwAAACsjmXb+tFQWF998axePzN31e1cLunuPW36B29v1d622grOEEDVsS0ZcxMXBWJGZEZOyIyMyJg9JZdd+kCK5WvMB2K6lQ11L4VkAp2Sh3+TAKCaHDs3r999eOiyztT/6u4delt7w9pMCo5lTg3kgjLHH5IZO1N0e8tTp9SOu5TsO6D09tuvHsAFAADAIsu29fxoYSj5XV2Bq2yNsrFtuc+/kTv+HXxIRny66C5WbYuSvR9Vov+Asq3XXbkzMwAAcAzeCQMAAOuebduamE0tdo8ZmopraHJBY+GEspd+gn2NtgV86mmtVW9LrXpac91j2kN+uQ3eWAEAAKg2yYylR45M6a9fPKvxcOKq23lNlz7xju363Lu7taO1XuFw2JGr6gBO5EpE8oGYkcLOMdFRuTJX/3fjWtmmV9lAl7KhfDgm3zEmG+yW7Q/xoT0ArAPnYyn99ncHFL+kW/Wv375N9+5pWaNZwWmM2Bn5Bh+Sb/Cg3NMDRbe3DbfSHe9Rou8+pbo/JHlqKjBLAACAjeP45IKmFwoX5by9O7g2k3EgY/ZkrqPMwEG5IyeKbm+7a5TceTdBcQAAcBmOCgAAwLoyl8xoaDKeD8fkb5NxzadKc3FjwO/WzpYa9bbWqqe1Vj0tNdrRUqs6r1mSxwcAAED5zCYy+var5/SNl89d9kHmxRp8pj719s36h+/cqp72zRWcIYCKSselmRPS9JD8p96Qa2Z4sYOMkQiXfDjbZchqaC8IxFy4WQ1bJJdR8jEBAJWxkMrq//jugCYv6WD9kT0t+rV3bVujWcEpXImIvEOPyj/4oDxnXljRPukt71Cy74CSPffKrmkq8wwBAAA2rp+MFHaZaQ/61B70r9FsnMEVD8s3/Kh8Aw/Ic/ZnRbe3XYbS2+9Usv9+Jbs/JHnrKjBLAACw3hCaAQAAVSmTtTQ6k8iHYpa6x0zEUiV5fI/pUndTzWIwpqe1Vr2ttWqp88jFCr8AAADrysRsUl/72YS++/r5y1b+vlhbg1e/8M4tOnB9q2q9pkyTYDSw7llZGbHT+TDMCZmR0cVgjGKnFzcr5ZrqVm3LRYGYiwIygQ7J9JVwJABANchatv7lw0MaPL9QcP9N7Q36vQ93814iyiMdlwYfU93P/lae0R/KZV19UYALMk29Svbdp2TffbIa2yswSQAAgI3vJ6ORgp/f1RVYm4lsdJmkvKNPyjfwgLxjT6/o+De96QYl+w8o2btfdi3dPwEAwPIIzQAAgDVl27bOz6UWu8cMT+UCMiPTcWUsuyRjbGn0qqcl3zkmH5LpDPnlNlnlFwAAYD07Prmgr754Ro8fm1F2mWPHvtZafebmLbqrv4ljQGA9sm254tO5MEz4RD4UkwvGmNFxuazSLK5wMctTJ+sKHWOywW7ZvoaSjwcAqF7/7w/H9MyJSMF9HSG//tOBXnndHFuihKys3Kd/Ij39qHT0ISk5K2+RXbJ1bUr2fVTJvvuUbdktEeICAAAomflUVq+dniu4713dwbWZzEZkW/KcfkG+wYPyDj0iIzVXdJds4/ZcUKbvgLKhHRWYJAAA2CgIzWBVyrUiq2EYy/6MjYV6Owv1do4r1Xo+mdXQ1IKOT85raHJBxydzXWRmE5mSjFnvM9XbWqve1rrFzjE7W2vV4OOQp9x4bTsL9Ua1KmfHCJ73zkK9q5tt23ppfFZ/+fxp/Xgksuy2t3QG9Eu3btNtXYErrgBOrZ2Feq8DqTmZ4REZkRP5ryMyw7mAjCsVK/lwtuGWFehQNrhDVigXiLFC3cqGdsqubb3iRac8a6oTr29UK85R1r+/+9lZff3lcwX3Bfxu/X+f3K3men9F5kCtNzjblnn+TXkHHpB38CEZ8+eL7mJ5G5Tu3afUrgPKbLtVcuWeE/TRXH94fTsL9XYOao1qxnVeb83Lp6IFC326DZdu7Qo5voP5auttTB2T79h35R14UMbc2aLbW/6gUr37ldr1MWW33LT4np2zq1A5G/X1jSuj3s5BrZ2Feue4bNsuzRLuAAAAeZmspdHpeR09G9PAREzHJmIaODerkzPxkjy+23BpZ2u9dm1pUH9bg3a1NWhXW6O2BPxXvBgSAAAA618ma+mxwxP686dP6I3T0atuZ7ikfTds1a+/Z4eu2xao4AwBrEgmJYVHpemhi27Dua9zE+UZs3Gb1LxTau4pvAU7JZNFFgAAV/bksXP6tb96SRc3NPSahv7m127VLd1NazcxbAwzJ6Q3vi29/k1p+njx7U2f1He3dMOnpd4PS25f+ecIAADgcL//wJv665+OLf58244mff0fv2sNZ7SORU9Lb+aPf8+9WXx70yf13yvd8HNSz4ckd7EejAAAAMvjE0EAAHDNbNvWZCypYxMxHZuYzX09G9PQ5JxSGaskY2wJ+PPBmEbtasuFZHa21svrdmbiGQAAwGniqay+9bOT+u/PjGh8ZuGq2/k9hn7undv1a+/eoe1NtRWcIYDLWJYUO3N5KGZ6SAqPSXa29GP6A1Jz71IgpiX/tWmH5K0r/XgAgA3t8JmofvNrrxQEZiTpP33yBgIzuHZzk9Lh70pvfFM69eIKdnBJ3e+Wrv+0tPujUk2w3DMEAADARZ4enCz4+b19m9ZoJutUYlY6+qD0+jekkWckFVvb3SV13ZkLyuy5L/d+HwAAQIkQmgEAACuykMpo8Nycjp3NhWMG8kGZ8EK6JI9f73Orb3O9dm3Jh2M254IygVpPSR4fAAAA68vMfEp/9eNRffUno8seczbVefXZd3XpM+/qVFMdq80BFbUwUxiIuRCQmRmW0lcPuV0z05fvGLOzMCDT3CPVNkl0HgUAlMBENKFf/cuXtJAqDHn+Hx/q1f1v37ZGs8K6lZyTBh7Jrag9/OTKwsNtN+Q6ylz3Calxa/nnCAAAgMuMTs1ftojTe/pa1mg260gmJQ0/kQvKDDwqZRLF99m0N3f8e/0npUB7+ecIAAAcidAMViUcDpflcQ3DUCCwlBaPRqOyrNJ0LED1od7OQr2rX9aydSqS0OD5eQ1NLmhoakHHzy/oVCRRdN2PlTBdUkdTjXpba9XbWqee1lr1barVlkafXJdc4GQl5xROlmBQlB2vbWephnqHQqGKjof1oVznJ1J1PO9ROdR7bZ2KJPQ3L57RwdfPK7FM98L2oE+fuWWbPnpdq2o8ppSaVzg1/5bGotbOQr2vUSYhIzIqMzwiM3JCRnhEZmRERviEjETp/++15ZLV2C4r1K1saIes4A5lg92yQt2yGrZKrit0HU1JSkUK7qLezrLW9eb8BFfDOcr6s5DK6le/9qYmZgsv7Nq3t1W/eFNLWWt6NdR6Hcqm5R5/Vt6BB+QdflyuTLz4Lo3bleo/oMzuj6lhxzsX76feGxuvb2eh3s5RDbXmHAVXw3VeK/fYa2cLfm6p82iLP7sm5wTV5rJ6RyJynXlJ3mMPyDv48IreM7Tq25TqP6BU//3Ktu7O3ymJv9+qsxFf37g66u0c1NpZqqHe1XCOQmgGq5LNrmA1pBKwLKtiY2HtUW9nod5ra2Y+nQvFTC5oaCqu4ckFDU/HlVzm4sS3YlODT/1tDdq9pVHtDYZ2NPnV3Vwjn/vyi5w48N5YeG07C/VGtajk85DnvbNQ78o4MjGnv37xrJ4YnJG1TFp7z+Y6/eItW/T+3iaZRi50Xar6UGtnod4XsbIyYqdlRkbyt1GZkRO5cEzsrFwlWULhkiFrmpUN5oIx2WBX7vtgt7KNHZLbd5WdbEnXVjPq7SzUG9WCc5T1JWvZ+hcPDurYucIg9tvbG/Qv7+qqmvcvqXWVsm25J16Wb/BB+Y4/IiMxU3QXyx9Ssnefkn33KdN2k+RyyTTNwm2ot6NQb2eh3s5BrVFNuM5r5Z4bLgxv3NoZqJpzgqoxNSS98U3Vv/p3MqPjRTe3vPVK7bxXyf4DSm+9RTLyx77r/LniNBvh9Y2Vo97OQa2dxan1JjQDAIADJNKWRqbj+XBM/ja5oJmFTEke3+82tLMl1z2mp7VWPS016tvcoB3bNi1uEw6HHXmwBQAAgKuzbVs/GY3qqy+c1UsnZ5fd9vbugH7x5q16x/aGyzoUAlgB25YrPn1RMGZEZvhELiATHZfLSpV+SE/tUhim4NYl29dY8vEAAFiNP/nhuJ4ZjhTc1xHy6w8P9Mp7hUWAAEkyw8PyDRyUb/AhmbPFLxS03X4lu+/KXSi4/U7J9FRglgAAAHgr0lnrsver39UduMrWzmNOvCJ95z9Kp17I/bzMtrbhVqrzfUr2H1Cq6wOS21+ZSQIAAFyC0AwAABuIZds6E03mwjH57jHHJxd0KpJYdrXulTJcUnvQnwvHtNSop7VWva212hrwybjkwsVLV8QDAAAALshkLT0+MKOvvnBGQ1Pxq25nGi7ds6tZn7l5i3paays4Q2D9cqXmZERGC8Mx+ZuRmiv5eLbhVraxYzEMkw12y8qHY6y6TRIhNwDAOvCNlyf0dy9PFNwX8Lv1Jx/vV7CGUAMKGXPn5Dv+kHyDD8o9ebjo9rbLVHr7HUr2H1Cy+y7JW1eBWQIAAOBavXY6pnh6qauMS7lOM5B8AwdV/+S/kLLLL8CTbrtJyf77ley5V3ZNU4VmBwAAcHWEZgAAWKci8bSGJuOLXWOGphY0PBUvePNmNZpq3eppudA5plY9rTXa0Vwjv4cwDAAAAK7NfCqrB14/r6/9bELnYlf/UK3WY+hjN2zSP3hHm9oafRWcIbBOZFMyZ09d1C1mRGZkVEZkRObC+fIMWd92xY4xVkM7K6QDANa1Z4fD+tJTYwX3uQ2X/vBArzpCrIKMHFcyJu/wY/INHpTn1E/lUvFVqtKb36Zk331K9u6TXdtSgVkCAACgFH48Ei34effmOoVqHf7+l22r9oU/Ve2LX77qJplgdy4o3nefrEBnBScHAABQHKEZAACqXCpjaWQm1zFmOB+SOT65oKn5dEke3+d2aUfzhXBMzWJIprnO4W/6ALgyKyMjdkqafFGaPi5lktJ1v7zWswIAVLmp+ZS+8fI5ffvVc4ols1fdrrnOo39wU5s+ceMmNfh52woOZ1sy5s/lQzGFnWOM2VNy2Vd/LV0ry9eobHDHYseYi8Mx8tDtCQCw8Qyen9fvPjx0WZfuf3XPDt20vXFtJoXqkU3KO/pD+QYflHf0SbmKrKYt5S8U7DugZN9HZQW7yj9HAAAAlNxPRwtDM7d1O7zLTCahhif+uXzHD13+u9oWJfr2K9F7QJlN19N1GgAAVC2uPgAAoErYtq2zsykdz3eNGZrM3cbDCWWLL1pXlEvStqBPvflQzM6WGvW21qo96Jdp8MYFgEKu+IzMyAmZ4dHc18gJmeERmdFxuayLLhDwB6S9v7Rm8wQAVLfRmbj+9qWzevjwlNLLHNR2Nvn1mZu36CO7W+R1GxWcIbD2XIlo/nhrZLFjzIWvrky85OPZplfZwCWhmFCXssEdsv0hPtgGADjG+VhK/8ffD2jhks7dn3vXNn1kD11BHMu25Dn9gnyDB+UdfkxGcrboLlZtq5K9+5Xsu48LBQEAANa5qbmUBicXCu67vSu4NpOpAq6FKTUe+nV5zr16+S9v+XXp7n+v+OycstnSL/ADAABQSoRmAABYA7FEZrFjzNBUXEOTCxqeWtB8yiq+8woEatzqbalVT2uNelpyXWR2NteoxmuW5PEBbBDZpMzIWO6izPCFCzVz4RgjGVnZYySicsWnJV+orFMFAKwvr5+J6asvnNXTQ2Etl/++cVu9PnPzFr1nZ0gGF5ZhI8sklo67Cm6jMhIzJR/OlktWY/slHWN2KBvsltWwRXIRTgMAONtCKqvf/u6Azs8VdvO+d3ez/vHt29ZoVlgzti1z+ph8AwflO/6QzLmJortYnnqldt6tZP8BpbfdJhm89w4AALARXNplps5r6rotdWs0m7VlTg2o8dCvyYydKbjfdhly3fufpFs+t0YzAwAAeOsIzWBVTLM8bwAbhrHsz9hYqLezOLHetm3rtdMx/Wg4rOPn53V8ckHnYqniO66Ax3RpR3OtejfV5kMyterdVKeWOo9ca3zRoRNr7WTUu4rZtlxzEzIjIzLCw7lwTPiEjPAJGbHTctmrD+u5o6Oyt7ACK9Zeuc5PJP6dcxrqfW0s29aPhsL6q+dP69XTsWW3fV9vkz57y1a9rb2xQrO7MmrtLGWvt5WVETstIx9GNsIj+a8nZMTOyLVshOwah6xpUTbULSvYnfsa2qFscIeswHbJ7b9se5ckp1zOyevbWag3qhXnKNUpa9n6vUcGNXC+cPXot7c36F9/pFfuKut8SK3Lx5g9Je/AQXkHDsqcHiy6vW14lO56n1K77le6+4OLx1ulfKVTb2eh3s5CvZ2DWqOacZ1XcT8dK+w0eGtXQD6vZ41ms3bcI0+p/tHflCs9X3C/7W3Qwr7/rLobDyzet57rjeI20usbxVFv56DWzkK9c1y2bZf+01oAAKBoPK3vvnxKX3thXIPn5lb9eO2hGu1qa9Sutgb1tzVo95YGdTXXyW068yAGwCWSMWl6SJoayn2dPi5NHZemh6VL3swsCX9QaumVmnuld/3vUtv1pR8DALAuJDNZPfDKaf23H53Q8OTV/8/xmoY+ftM2/dq7d6hnU30FZwiUkG1L85P5460Lt+Hc15kTUrY0CyQU8NRJzTul5p788VdP7uemnVJNsPTjAQCwwf3bh47ofz43UnBfV3Otvvu/36FQnXeNZoWKWZiRDn9XeuNb0vhPVrZP5x3S9Z+S9hyQapvKOz8AAACsmaxl653/7vsKLyx1pPwPH7te//DWjjWcVYXZtvT8n0vf+6J06eKLwQ7pH35T2rR7beYGAACwCnSaAQCghGzb1munovra82N68LUzSqTfegeHRr9bu7YshWN2tTWqb3O9GvzOW70EwCWyGSk6ng/GXAjF5C/WjJ0t/XiGR2rqzgVjWnryX/MXatY2S2vc0QoAsLai8bS+9vy4/tdzIzofS151uwa/W5+5rVO/dHuXNjVe3vkCqErJ2FIYZvFrPpCcnC2+/1tluKVQVz4Qc8mtoY3jLgAASuSrPxm9LDATrPXof/7SzQRmNrLUgjT4qPT6t6ShH0hWuvg+m/ZKN3xKuu6TUnB7+ecIAACANffm6WhBYEaS3tPXskazWQPZjPTY/0968b9f/rv2W6Sf/5pU31r5eQEAAJQAoRkAAEpgLpnRwVdP62vPj+vwmZVdQOUxXdrZWp8Px+RCMru2NKit0S8XF0QBzjY/fUm3mKHc1/BIeVYvr2/Lh2F2FgZjgp2SySkDAKDQ2Whc//PZEf3dCyc1l8xcdbstAb9+9c5u/fwtHar38f8JqlAmJUXGCrvGXOjaNzdRnjEbtubDyJfcgh2SyUIJAACU01PHzutfP3i44D6P6dKf/6N3aEcrnRA3nGxGGnk611Hm6ENSagXd4Bvbpes/Kd3waWnz3vLPEQAAAFXlR4OTBT/vaK1Te6h2jWZTYYmo9K1fkoafvPx3139Kuu/PJA+LYgEAgPWLKxawKuFwuCyPaxiGAoHA4s/RaFSW9da7NWB9oN7OstHqPXBuXt9+dUKPHJnUQmr5P8f2kF8f7GtW36Za9bbWqrOpITtgBQABAABJREFURh7TKNzISigSSZRxxpWz0WqN5VHva5BJyoiOyQyfkBkelhEekRk5ISN8QkYiUvLhbHeNsqFuWaEdygZ3KBvaKSvUrWywW/I1XHmn2dgV766GeodCoYqOh/WhXOcnUnU871E51PvKhibn9dUXzujRI1PKWPZVt+tpqdVnb92qu3e3yGMaSi/EFF6o4ETfAmrtALYl19w5mZERuSMjqlk4k+8YMyQ7PCaXnS35kJavcfGY68LxlhXqVjbQJXnrrrzT7Aou4sRbwuvbWda63pyf4Go4R6keA+fn9fmvvaFLD2P/r3t71Bcyylqr1aLWb4Ftyzz3urwDD8g7+JCMhamiu1i+gNK9H1Fq1/3KbL1ZcuXfs1+j5wT1dhbq7SzU2zmqodaco+BquM5reU8cOVvw820djVV9rlAqRnRc9Q/+qsyZ45f9Ln7bbytxyz+R5uKS4rntN0i9sTLU21mot3NQa2ephnpXwzkKoRmsSjZb+gsLrsSyrIqNhbVHvZ1lPdY7kc7q+wMz+s5r5/Tm2flltzUNl97XE9Inbtykd3Y0yijoIGOvuz/7aqzHWuPaUe8825Yxf05m5ITMfCjGDJ+QGRmVETsll13aExBbLlmN7coGu/LBmB3KBruVDe2QVbd56UP/S62yVtQb1aKSz0Oe987i5Hrbtq2XT8X01RfO6rmRyLLbvnN7oz5z8xbd3h3Id05cf8e7Tq71eudKRGVGRvK33PFW7vtRuTLxK++zivFs06tsoCt3rHXhFsr9bPubpKt1D+X5tWZ4fTsL9Ua14BylOkzOpfSFbx+9bNGjz71rm+7Z1bTu/t6o9eWMyIh8gw/JP3BQZnS06Pa26VOq+4NK9t2nVOd7JNOX+4VlS6quv1vq7SzU21mot3NQa1QTrvO6urlkRm+cKVxQ8NbOxnX353ir3GdfUsOh35CRmCm43za9in3wPynV91GpyEW167HeuHbU21mot3NQa2dxar0JzQAAsEInphb096+f16HDU4ollz9o2NLo1cdu2KT7rm9VS523QjMEsFZcqTkZkRG5wxdfqJn73pUu/dL6li+QD8VcuEgz/32gS3L7Sj4eAMB5spatp47P6KsvntWRiasHxQ2X9IHeJn3m5i3au6W+gjOEI2USMqNjuUBM+MRFIZnRyz7ULYXCQHJ3wc2q3yIZZsnHBAAApRVPZfXb3x3QuViq4P57djfrH9++bY1mhVJwLUzJd/xh+QYOynP+9aLb2y5D6fZ35YIyO++W7b1K52UAAAA40gtjs8pe1JnSa7r0ju0b+5jRN3BQ9U/8C7mswvMlq6ZZs/v+XJm2t6/RzAAAAEqP0AwAAMtIZSw9eXxG33ntvF45FVt2W8Ml3bkjqE/cuFm3dQVkGqtZtxhA1bGyMmKnli7QvPhCzflzJR/ONjzKBjoWO8VcHJJZdvVyAABWIZG29PDhSf3NS2d1KpK86nY+t0v3XdeqX3jnFrUH/RWcITY8Kytj7sxFx1qji8dcRuyMXLKLP8ZbHbKm+ZJQTFfu+Kuxg0AyAADrWNay9S8PDenYucIFTd62rUG/f/eOfHdErCeu1Jy8Jx6Xb+BBeU49t6IuzunW65TsP6Bk737ZdZsqMEsAAACsRz8ZjRT8/Pb2Bvk9G3TRHNtW7Qt/otoX/+yyX2Wa+jS7/y9kNbavwcQAAADKh9AMAABXMB5O6LuvnddDhycViWeW3ba13qP7r9+kA9e3qq2RC6qA9c4Vn8mHYi50jDmR+z46ftkqO6WQrd10SceYHbnVyxvbJYPDdQBAZUTiaX371fP6xssTCi9z/BuocevTb9usT799s0K1ngrOEBuKbcsVn76oU8zIRQGZsbIcc9meWmWD3XJv6peae6TmHs16Nyvd2CHb11jy8QAAwNr7k6fH9aPhSMF97UGf/uhAr3xuY20mhbcum5J3/Bn5Bg/KO/KEXJlE8V0aO5Tsv0/JvgPKhnZUYJIAAABYz2zb1k9GogX3vasruDaTKbdMQg1P/HP5jh+67Fepzvcqdvef0pURAABsSFyFBwBAXiZr6YdDYf39a+f1wvjsstu6JL2rK6CPv22T7twRkpuuMsD6kk3KjIwtXaAZXgrHGMlIyYez3TX5jjH5YMyFVcxD3bzpCABYU2eiSf3tS2d18I1JJTJXX6V5W8Cnf/iONt13XatqvBt0dT2UnCs1J2OxU8xoQUDGSC3fyfNa2IZb2cbtsvLHWplg9+L3Vt0mmW63QqHQ4vbZcFh2NlvyeQAAgLX3rVfO6e9+NlFwX6Pf1J9+vF9Bwt/Vz7bkPvuyfIMH5Rt6VEYiXHQXq6ZJyZ59SvYfUGbz2+jSDAAAgBUbm0loIla4kM+7ugNrNJvycc1PqvGR/02ec69e9rv4Db+o+Tv/JYs6AgCADYujHACA452JJvXd18/rwTcnNT2fXnbbplq37ruuVfffsEntQX+FZgjgmti2jPlzS51iIicWO8gYsVNy2Ve/MPiahpNLVmO7ssGugo4x2WC3rPo2ycUKpgCA6nHs3Ly++uJZPTEwrax99e12ba7VL968VR/oayIojivLpmXOnlwKw1zcNWb+XHmGrGvLH3N1X3TM1SWroV0yuQgWAACne+5ERH/45GjBfW7DpT880KfOppq1mRRWxJwelG/wQfkGH5QZO110e9tTq2T3XUr236d0+x0cCwIAAOCa/Hg0UvDzpnqPdjRvrHMHc2pAjYd+TWbsTMH9tsvU/Lt/X4kbPrNGMwMAAKgMQjMAAEfKWLaeOxHRd147p5+MRLXMdYKSpJs7GvXxGzbpfb0heUwufAeqydIK5ifkvjgcExmRK71Q8vEsXyAfisl3i7nwfaBLcvtKPh4AAKVi27aeH5vVV188oxfGlu+s+K6ugD5z8xbd3NEoFys0w7ZlzE8shWHCF3WMmT0pl136bi2Wt6EghLx4C3RK3rqSjwcAADaGwfPz+uJDx2Vd8obv793drXdsb1ybSWFZxtxZ+QYfkm/wQbmnjhbd3jbcSm9/txL99ynV/SHJU1uBWQIAAGAj++lItODn27qCG+p9cc/oU2r43hdkpOcL7re89Yrd/WWlO9+zRjMDAACoHEIzAABHOR9L6YE3zuvgG5M6d0l73UsF/G7t39uij924SV2sQAisLSsrI3ZKZngpELP4fRlWMLcNj7KBjotWL89fsBnqlu1vkjbQm6QAgI0vY9n6wcC0vvriWQ2ev3qg1HRJH97VrM/cvEV9mwglOJErEV061iq4jcqViZd8PNv0KhvoXDrWCnYrG8p1kOGYCwAAvFWTcyn99ncHtZAu7C78a7dt0/69rWs0K1yJKzkr79Cj8g0elOf0C3IVXdZKSrfdpGT/ASV77pVd01yBWQIAAMAJEmlLPzsVK7jv9u7AGs2mxGxb/tf/SnXP/nu57MLzpGxDu2b3/4WyzX1rNDkAAIDKIjQDANjwLNvWT0ej+vvXzuuZ4bCyRT5/u3FbvT5x42Z9sK9JPjddZYBKcsXDuU4xix1jTuRWM4+MyWUtH3S7FtnaTZd0jMldsGk1tksGh8oAgPVtIZXVwTcm9bWfndXZ2av/P1rjMXT/DZv0D29q05YAXdMcwcrKc+YFuc+9dlEYeVRGYqbkQ9lyyWrYdtEx19LNqt8iGWbJxwQAAM4TT2X1298duGyhpHt2N+vX79i2RrNCgUxS3tGn5Bs8KO/oD1f0Xl8m1KNk/31K9t0nq3F7BSYJAAAAp3n19KySmaVAieGSbuncAKEZK6O6Z/5v1bzxN5f9Kt12k2Y/8hXZtS1rMDEAAIC1wZWAAIANa3o+rYfenNR3Xz+v09HkstvWeU3t29uij9+wST2ttRWaIeBQ2aTMyNglHWNyQRkjGSn5cLa7ZrFLTOEq5t2yvQ0lHw8AgLU2M5/WN16Z0LdePafZRPaq2zXVuvXzN7XpEzduVqCGt4g2PNuWOXVUvoEH5Bt8SObC+ZI+vFXTfEkoJtcxJhvolNyEsQAAQPlkLVu/98iwjp0r7Kp447Z6/f7dO+Sie93asbLynHlevoEH5R1+TEYqVnSXbN1mJXv3K9l/QNmWPXQfBAAAQFn9ZCRa8PPetno1+tf3++Wu5KwaHvsn8p585rLfJfru09wH/oD3bAEAgOOs7yM8rDnTLM9qoIZhLPszNhbq7Szlrrdt23ppfFbffnVCTw7OKGMt31Zm75Z6ffJtm3X3rhbVeFnhuJR4bTvLZfV2ueSKT8oMn5ARHs4FY8IjMiInZMyeuqz982rZcslq3CYrlOsWYwV35rrGhLpl17dJrsuffzwjrx2vb1Srcp2fSDzvnWa91ntsJq6/fvGMHnrjvFLLtFfsCPn1i7ds1f7rNjm+s+J6rfVbYcyeknfgoLzHHpA5c3xVj2V7anMdYvJhZCvfPcYKdsv2X3n1xWo6y3JCvbGEejsL9Ua14hylMv7fH47o6aFwwX3bg379vx/frVqfZ41mVTrrrta2LXPycO4YdOBBGfPniu/ibVCq516ldt2vzLZbF7sRVtOxZKWsu3pjVai3s1Bv56DWqGZc53W5n44Vhmbu2BEq67lcuRnRcdU/+CsyZ4Yu+138tt9W4pZ/InOVwfT1XG+8ddTbWai3c1BrZ6HeOS7btpe/mhgAgHUgPJ/Sd14+pa89P64TU/PLblvrNXXgbdv0C7d26LptG6CtLrCWknP/f/buOzyOq9wf+Hdmq3pvlqxe3B07sWM7iVvcYlu2UyGBwA38IDckgVx6gAAXQuASLiQESKMECMnFaXZsuZc4xSXFcZNtddmWZPVedrbM/P6QI2e8siRrd2d3Nd/P8/DAOWfmzGu9q2VHO+85QEt5/3+ay4CWsgv/XQE4hv5dHBVrNBCfB8TlAXE5F/93bDZgsnr/ekREREHg47NteHZfJbafrMdQf+WZkR6Ne+fnYOmkJBhErtY8pvW1AcUbgGPrgbP7r+xc0QjEZAJxuRf+k3Pxf0ekcKVvIiIiCij/PHgGj2w4oeqLCjHh9a/NQ05CuJ+i0qm2auD4K8CxV4DmkuGPN5iBvGXAtDuAvOX82x4RERERaa6uvQ/zfrVH1ff61+ZhZnqMnyLy0NmDwP/dBfS2qPsNFmDdn4Cpt/knLiIiIqIAwJ1miIgoaCmKgo/OtOFfh86i6Ph52J1D71wxMSUSn7s2HWuvGocIa/CvMEikGdkFtJ8Bmi8UxwwUxpQDXee9fz3RBMRm9RfDxOdeKJDJ7S+QCY3jg5pEREQAZFnB3pJGPPt2Jd6vah3y2CUTE3HvghxckxEDgf8/OnY5bEDZ9v5CmbIdgMs+/DlJU4G0ay4WxcTnAdHpgIH3S0RERBT49pY04icb1QUzJoOAZ+++mgUzWulpAYpf7y+WOXdoBCcIQOb1wNTbgUlrgJAgfRiRiIiIiMaEd8qaVO2oEBOmp0X7JxhPHVsPbLzf/e/CYQnAZ18Gxs/yT1xEREREAYJFM0REFHQ6bQ68cbgW/zp0BqUN3UMeazGKKJw+Dnddm44Z46P5kCDRUHpbL9kt5kKRTGvlyB66vFLhyRcezrxQGBN/oTgmOgMw8GMqERHRYOxOGRuP1OK5tytR1nj5z8Img4B1V6Xiq/OzkZcUoWGEpClZ7t9J5ti/geKNgNQx/DlR6f0rCk67A0ic6PsYiYiIiHzg1PlOPPCvw5Av2WnxV7dMw5zsOP8EpRf2HqBka/9DeRW7Adk5/DlJU4FptwNTbgOiUn0fIxERERHRCOwrVRfNXJ8XH3y7tMsy8NYvgbd/7T6WOAm469/9CyURERER6RyfRiSPtLW1+WReURQRFRU10O7o6IAsD72DBAUv5ltfRptvRVFwsr4br3zcgO2nm2FzDH1OVlwIbrsqCaunJCLS2v9/d+3t7R7FTleGv9sByilB7DgDQ1slxLZKGNoqYWivhNhWBdHm/f9fV4whcMVkQY7Jhis6u/+/Y7Lhis4CLJd5gLezy+txkHcFwu93TAxXIiV3vro/AQLjdU/aCcR8d0lOvH6kAf/68Dyaui9fzBpuNuC2GUm48+oUJEZYADh9+rsR7AIx1yMhNpfAcvoNmEvehNhdN+zxsiUKjryVsE+4Gc5x1wCC2D+gs9dGsOabRof51hd/55v3J3Q5vEfxjaZuO+75xzH02F2q/v83Nw2Ls8PG3OffgMi17ITx7Lswl2yEuWI7BEfvsKe4IlJhL1gL+4R1kOPyL8wD3X0GvVIBkW/SDPOtL8y3fgRCrnmPQpfD57wucsoK3rmkaOaa1NDgup9w2hC241swlxW5DTkyFqL7pqcAJcLrn8GDMd80esy3vjDf+sFc60sg5DsQ7lFYNEMecblcwx/kBbIsa3Yt8j/mW1+Gy3ev3YVtp1rw+rEGnG4Y+os4k0HAjfmxuGVaImakRQzsKsPXU2Dg77aGFAViTwMM7ZUwtFXB0F418L/FrhoIinc/9CoQIEemwpBQMLBbTJclBY7IdMjhyRcfyrwUXw9jBn+/KVBo+Trk615f/Jnvpm47Xv6oHq8dbXR7KPDTEsJNuOvqFNw8LQHhlv4/9/A1euUC+Xdb7D4PS+kmWEo2wthyetjjFdEMe9ZiSAVrYc9YABgs/QOyAiAw/41aC+R8k/cx3/rCfFOg4D2K9/XZXfjGq6dQ36UuJF8+IQ73zhuni5+BZrlWFBgbjsBSshGW8iKIfa3Dx2aJhpS3ElL+WjhTZl78u6AO8uIrevndpn7Mt74w3/rBXFMg4XNeFx2v60KXpI7x2vTIgI/7E0JPEyK33AtTw1G3sb5pX0TP9T8ARKMmn8WDId/kPcy3vjDf+sFc64te882iGSIiCkiljT147Wgjtp1qRo996Af806ItuGVaIgqnJCAm1KRRhEQBwN4zUBBjbLtQGNNeBbG9GqKjx+uXky1RcEVnwxWdeWG3mGy4YrLgisqEwRKqqgh3trVB1uGHayIiIm+pbO7FPz+sx9aTzXDKymWPy44Lwd2zUrBiYhxMhssUqlLQEqQumCu2wVK6EaaagxBw+dfCJ+yp10IqWAd7zgoolkgNoiQiIiLShktW8KMtFTjVoP671/TUcPx4RfbAIkrkGUNbJSylG2EpfROGjrPDHq8YrbBn3Qgpfy3s6TcABrMGURIREREReeZAVYeqnRMfgsSI4Pgsa2g+jciir8DQpd6FXBEM6Jn/Y9imft5PkREREREFLhbNEBFRwLA5ZOwqacFrRxtx/Hz3kMcaRAELcqJx61VJmJUeCZFfiNJYJbsgdtX0F8d8UhjT1l8cY+hp8PrlFNEEV1Q6XNFZFwpjsgaKYxRrLMDfNSIiIp9RFAVHarvwj/fP453K9iGPnZkWgS/MSsG87Gh+Fh5rXHaYz74NS8lGmKt2QXDZhz3FGZsPqWAdpPxCyBHjNAiSiIiISHsbjjdiX3mbqi81yoLfrM2HxcgCck8IPY2wlG2GpWQjTE0nhj1eEUQ40q6DVLAG9uxlUMzhGkRJREREROQ9B6rbVe25mVH+CeQKmar3ImL7N9wW0ZTN4eha/hQcGfP9FBkRERFRYGPRDBER+V1VSx9eP9qIzcVNbtvfXiol0ox10xKxdkoC4sODY5UPopEQ+touFMRUDewe0//fZyDIwz8oeaVcoYmQo7PgjPmkKKa/QEaOTOvfppmIiIg045IV7Ctvwz8/OD9k8bgAYFFeDL4wexympPChtDFFUWCs/wiWko2wlG2BKLUPe4orLBlSfiGkgnVwxU/wfYxEREREfqQoCl75WL2ATKTVgCdvLeDu46Mk2LtgrtgOS+mbMNUcgKAMveM7ADiSpkPKXwMpbzWU0HgNoiQiIiIi8r72PgdO1quLTuZmRfsnmJFSFFiP/R1h7/7C7bO7KyINnaufhysu30/BEREREQU+PhFJRER+ITld2HaiHn9/rxKHz3UOeawoANdlR+PW6UmYmxkFg8iVtClIuSQYOs5e3CmmrfJCcUw1RFvb8OdfIcUYcmHHmKyLO8ZcaCvmCK9fj4iIiK6M5JRRVNyMFz88j7NttsseZzYIWD0lAZ+/JgXpMVYNIyRfM7RVwFKyAZaSN2Hoqhn2eNkcDnvOTZAK1sIxbjYgGjSIkoiIiMj/Shp7Ud7cp+r7yYocZMaG+CmiIOWyw3xmHyylb8JctRuCSxr+lKhM2ArW9u9qGJ2lQZBERERERL71/plOyMrFtsUo4qrUAP7+XHYi7O2fIeTEv9yGHMkz0bnqGSghcX4IjIiIiCh4sGiGiIg0dbatD88cqMcrH9WgtWfo3TMSwk1YNzURa6cmIDnSolGERB5SFIg9DQPFMAOFMW1VELtqRrRi4xVdDgLkiNQLhTEXd4xxRWdBDk8GBNGr1yMiIiLPdfQ58erRBvz7cD1ae52XPS7SasDtVyXhjhnJiAvj6tljhdDTCEvZZlhKNsLUdGLY4xXRBHvGAkgF62DPXAQYWThFRERE+lNU3KxqJ0eYcUNOtH+CCTaKDGPdh7CUboSlfCtEqWPYU+TQeEh5qyHlr4UzcSogcCErIiIiIho7DlSrPxNfPT4CFmNgfq8uSJ2I2PZ1mM+94zZmy1+L7sW/BIx8noaIiIhoOCyaISIin3O6ZOyraMdrRxvw/pmhd5UBgLmZUbh1eiKuz4mBkbvKUKCy9/TvFtNeCWNbFcT2KhjbKyG2V0N09Ax//hWSLVEXdorJvFAYk91fKBOVyT+CERERBYnzHRJe+qgeG443os9x+ULa5AgzPj8rBWumJCDUzJ1ExgLB3g1z5c7+Qpma90ZUSO1IuQZSwVpIOTdBCYnRIEoiIiKiwOR0ydh2Sl00s3JyPEQWcgzJ0FzSXyhTtgmGrrphj5dNYbBnL+vf1TBtLiDya2QiIiIiGnsURcHB6nZV37ysaL/EMhyx4ywiN38FxrZyt7Geax9C3zUPsMCdiIiIaIT4104iIvKZ8x0S3jjeiI3Hm9DS4xjy2JgQI9ZOTcC6aYlIi+bKyRQgZBfErpr+4pi2qgs7xlzYQaan3uuXU0QTXFHp/TvFDOwY018co1hj+QcvIiKiIFXa2IN/fnAeO063wKVc/rj8xFB8YVYKluTHwmgIzFXt6Aq4HDCdexeWko2wVO2E4LQNe4ozJqe/UCZ/DeTI8RoESURERBT49ld3oK1PvUPjqknxfoomsIlddbCUboKldCOMLSXDHq+IRtjTF0AqWAN75o2AKUSDKImIiIiI/KeiuQ9N3ernV+ZkRvkpmssznv8QkUX3QbS1qvoVgxldSx6HPW+1nyIjIiIiCk4smiEiIq9yyQreq2rH60cb8V5lO4Z4JhAAMCs9EjdPS8SivBiY+GAg+YnQ13ahIKZqYPeY/v8+A0G2e/16rtBEyNFZcMZ8UhTTv4OMHDmeKzgSERGNEYqi4IOznfjHB+dxsLpjyGNnZ0TiC7PG4dqMSAgskg1uigJjw1FYSjbAUlbk9oXmYOTQBEh5hbAVrIUrYTILpYmIiIgusflEk6o9bVw4MmJZ3PEJwdYOc/lWWEvfhKnu/RGdw10NiYiIiEivDlzy9/pxkRZkxATWwq6Wkg0I3/2w27MKckgcOlc9C2fyDD9FRkRERBS8+FQmERF5RWOXHRuPN2LD8SY0dA1dZBAVYsLtV6fhzmvTEWt0wOVyaRQl6ZpLgqHj7IWdYqou/nd7FURbm9cvpxhDLuwYk3Vxx5gLbcUc4fXrERERUWBwygp2l7binx/U4XRD72WPMwjAkoI43D0rBROSwjSMkHxBbK+CteRNWEo3wtBxZtjjZVMY7NnLIBWsgyNtLiAaNIiSiIiIKPh09DnxTmW7qm/VZO4yA6cN5uo9sJRshPnMPgjy0Du9A4AzNg9S/lpI+YWQI9M0CJKIiIiIKPAcqG5XtedkRQXOYlaKjNBDTyD0wz+6DTlj89G5+s+QI1P9EBgRERFR8GPRDBERjZqsKDhU3YHXjzXi7fI2uIbZVmbauHDcPiMZt8/JhdXU/1BYW5v3ixVIxxQFYk/DQDFMf2FM/w4yYlcNBEX27uUgQI5IvVAY88mOMf1FMnJ4MiBw9yQiIiK96LO78OaJJvzrw3rUdUqXPc5qFLFuWgLuujoF46IsGkZI3ib0NsNSVgRL6ZswNRwZ9nhFMMCRPh+2gjWwZy0BTKG+D5KIiIgoyO043QLHp/7wbDYIWFoQ58eI/Eh2AVVvI/TDF2Eq3wbR0T3sKa7wZEh5hZAK1sIVN4G7GhIRERGRrvXZXfi4pkvVNzczyk/RXMJpQ8Su78BSvsVtyJ6xAF3Ln+TinEREREQe0Kxopre3f3XV0NDBHwh46qmnsH79ejQ3NyMrKwv33XcfCgsLtQqPiIiuQGuPA2+eaMIbxxpR23H5BwIBIMxswMpJ8bh1eiJyE0JhMBgGCmaIRs3ec6EwphKG9moY2iphbK+E2F4N0dHj9cvJlshP7RSTfaFAJguuqAzAGFhbNRMREZG22nodWP9xA9Z/3IAOm/Oyx8WEGPGZmcm47apERIeYNIyQvMrRB3PVTlhLNsJ09h0IyvC7ZjqSZkAqWAMpdyWUUK6KTkRERHQlNhc3qdrzc2IQadXZmoBOG7DnUeDwP4HuegxXei9bImHPWQEpfy0cqbO5sA8RERER0QUf1XSpivINooBZ6ZF+jKif0NOEyC33wtRw1G2sb/p/oOe6hwFRZ/dBRERERF6myaepTZs2Yd26dQgPD0dNTQ0iItRVz1/60pfw97//HQCgKApKS0uxfft2PProo3j44Ye1CJGIiIahKAo+OteJ1442Ym9ZG5zy0NvKTEoKwy1XJWJ5QRxCzCySoVGQXRC7agd2iukvkKnq/9899V6/nCKa4IpK/1RhTNZAcYxijeUqjERERKRS027Dix+cx6biJkjOy382Tou24PPXpGD15ARYTXxYLSjJTphqDsBSsgHmyp0jKtJ2RWXAVrAOUv4ayNGZvo+RiIiIaAyqbulDcb36s9fqyfoqQha7zyNiy31A4/Ehj1MMZtgzF0PKXwN75kLAwF0tiYiIiIgudaCqXdWeNi4c4Rb/FqMYmk8jsugrMHTVqfoVwYCe+T+Bbern/BQZERER0diiyae+7du3Q1EUrFmzxq1g5t1338ULL7wAQRAQGhqK/Px8nD59Gn19ffjxj3+MwsJCTJkyRYswiYhoEB19TmwubsLrxxpxptU25LEhJhErJsbhlmlJmJgcplGEFOyEvjZ1Qcwn/7v9DATZ7vXryaEJcEVnwxnzSVFMNlzRmZAjx3N1FiIiIhpW8flu/POD89hT1oqh6sgnJYfhC7NSsCgvFgaRxbdBR1FgaDoBa8lGWMo2Q+xtGvYUOSQWUt5qSAXr4EycxqJrIiIiIg8VnWxWteNCTZiTFe2fYPzAeP5DRG69H2Jv86DjCgQ40ub2F8rkrIBiiRj0OCIiIiIi6negukPVnpMZ5adI+pmq9yJi+zfcFmqSzeHoWv4UHBnz/RQZERER0dijyZOhBw8ehCAIWLRokdvYc889BwAYN24cDhw4gLS0NJw7dw7XX389ampq8Oyzz+Kpp57SIkwiIrpAURQcq+vGa0cbsaukBXbX0LvK5CWE4tbpiVgxMc7vq3BQgHJKEFvKYGgpu1AQUwVDW39xjGhr8/rlFGPIhR1jsi7uGHOhrZj55TERERFdGUVR8F5lO/7xQR0+Otc15LHXZUXjC7NTMDMtAgKLJoKO2HEO5tNvwFKyEca2imGPV4xWSNnLIBWshSPtOsBg0iBKIiIiorHPJSvYcknRzIqJcTDqpCDdUvxvhO/7CQTZ4TbmTJgMW/5a2PNWQw5P8kN0RERERETBp7bdhrNt6oVi52VG+ycYRYH12AsIe/cxCIqsGnJFjkfn6ufhis3zT2xEREREY5QmTzY3NjYCAAoKCtzGtm3bBkEQ8OCDDyItLQ0AMH78eDz44IP47ne/i3379mkRIo2SwWDwybyiKA7ZprGF+Q4cXZITW4qb8OrHDShv7h3yWItRxLIJcbjtqmRMHRc+4gcCme8xTFEg9DTC0FYBsa0SxvYqoOss0FIOtJ9B1CV/7PH4chAgR6ZCjunfLUaOzukvkonJhhKeDAjury2+2nyHv9v6wnxToPLV/QnA173efJJfu1PGpqN1ePqtMpQ3Xf7zsVEUcNOkeHxh9jjkJnDHxWAiiiLQ2woUvwEcW4+ocweHPUcRRDjTr4e9YB3sOcsAczgAwHfvQOQtfC/XF+ZbX5hvClS8Rxm9D861o6FLvQv1mmlJPv2ZBgSXAyHvPArr0b+7j8XmALf/DT2hmZBlGQL4GXQsGuu/26TGfOsL860fzDUFMj0/53XorHpBrJhQIyaNi4Co9eJXLgdC3v5vWI+/6DbkTLka3aufA0LjAvqzfjDkm7yH+dYX5ls/mGt9Yb77aVI009TUBACIiFCv7F5cXIzm5mYIgoC1a9eqxq655hoAwJkzZ7QIkUYpJiZGk+tERfl3O0zSFvOtvWM17fjXwbN482gd+hyuIY/NSQjD567NwC0zUxEdavb42sx3EJK6+wthPvlPcxnQUga0VAD2bu9fzxoFxOUB8XlAXO6F/86DEJsFgykEBgBczzvw8HdbX5hvChRa3Z8AfN2Pdd2SE39+pxJ/ebcK5ztslz0u3GLEXdem457rMpESFaJhhOQxRx9Qug04th4o2wkMsoK3m5SrgGmfgTDlVpgikmACwBKp4Mb3cn1hvvWF+aZAwXuU0duxQ/394KSUSFxbkOanaDTS2wqs/xJQ/Y77WM6NwG1/AUJiMLYyTcMZa7/bNDTmW1+Yb/1grimQ6Pk5rw9r1DuLz89PRFxsrLZB9LUDr3wVqNzrPjbtMzAW/h7RJqu2MXlBIOabfIf51hfmWz+Ya33Ra741KZr5pEq9tbVV1f/uu+8CABISEtx2ofnkQ7rNdvmHU4iIaPR6JCfePFqHlw6dxfHajiGPNRkE3DQlBXddm45rs2JHvKsMBTHZBbSfvaQophxoLge66rx/PdEExGb1F8fE5QwUxiA+DwiNA/iaIyIiIg0oioJNx87j55tPoqlLuuxxiREW3HNdFu66Nh1RISzfDRqyC6h+t79Q5tSbgNQ5/DnR6cC0zwBT7wAS8n0fIxERERGhW3Ji24l6Vd8tM1P9FI1GGoqBl+8E2gdZTHDeg8CS/wbEQF5rmoiIiIgocDlcMvZXtKj6FuQnaBtEaxXw0meA5hL3sUU/BOZ/h89FEBEREfmQJkUzqampKC8vx5EjR7Bw4cKB/qKiIgiCgBtuuMHtnI6O/ge44+PjtQiRiEg3Tp3vxL8OncGGj+vQLTmHPDYjLhR3zk7HbVenIT7colGEpKneVnVhTPOF4pjWSsBl9/71wpMuFMPkqnePic4ADJp8LCEiIiIaVFVzDx7ZcALvljdf9pichDDcOz8Ha2eMg8XIB9aCgqIADSeAY/8Gjr82sgLwkBhg8i39xTLjZ/OLSiIiIiKNbTl+XrUjukEUsPaqMVw0c/JN4I3/BBw96n6DBVjze2D6Z/0TFxERERHRGHH4TJvb8zE35GlYNHPmAPDvzwG96sIdGK3Auj8BU27VLhYiIiIindLk6dQbbrgBZWVl+MMf/oDPf/7ziI+PxwcffIBt27YBAJYvX+52zqlTpwAAycnJWoRIo9TW1uaTeUVRVG3/1NHRAVmWfXIt8j/m2/dsDhd2nG7Ba0cacKyua8hjDQKwIC8Wt1+VjNmZURAFAXD0oq2t1yuxMN9+4JQgdpyFoa0CYnsVDG2VMLRVQmyrhGjz/vu4YgyBKyYLckw2zMmTBgpjOkyJkE1hg5/UOfTrkgIff7f1JRDyrdX28RRcfHV/AgTG6558Q3LKeOFgLf56sAZ2lzLoMTPSIvHFa8fhhpwYiIKA3q5OeOfTMfmK0FUHc8lGWE5vgKFlkJX7LmW0AgU3oSdnFezp8wGDub+/vd2ncZK2+F6uL8y3vvg737w/ocvhPcrorH+/WtW+LisaRqf3/kYdMBQZ1kNPIuTQk25DclgSulc/B1fydIgdHWM21+RuLP9ukzvmW1+Yb/0IhFzzHoUuR6/Pee04fk7VnpAUptk9hvn0Gwjd9T0IlyxaKofGo7vwebiSZwA+vHf0hUDPN3kX860vzLd+MNf6Egj5DoR7FE2KZr72ta/hhRdeQFVVFbKzs5Gfn4+TJ0/C6XQiNjYWn/nMZ9zO2bNnDwRBwKRJk7QIkUbJ5XINf5AXyLKs2bXI/5hv76lu6cNrxxpRVNyETtvQP9PkCDPWTUvE2qkJSAjvf0BMkWX4OhPMt5coCsSeRhjaK2H4pDCmvQqG9kqInTUQFO9+yFEgQI5IhSsmC67obLiis+CK6f9vOTwZEEQYDAaYP/VhR25rY651hL/b+sJ8U6DQ8nXI1/3YcOhMB/5nVzXOttkGHV+Qn4Cv35iL7EgBLpdLk8/HNHqC1Alz+VZYSzbCVHdo2OMVCHCmzYXp6s8BEwsBaxTsn3xm5e+3LvC9XF+Yb31hvilQ8B7lytV1SPjwbKeqb+WkuDHxb1Ox9yBi17dhqdzhNuRImoHOlX+CEpY46OfSsZJrGhnmW1+Yb31hvvWDuaZAotfnvPZXtqvaczIifR+fIiP00BMI/fCPbkPOuAJ0rnoecmTqmPhbdKDlm3yL+dYX5ls/mGt90Wu+NSmamTlzJh5//HF85zvfQXd3Nw4fPgwAMJlMeP755xEREaE6vqOjA0VFRQCAhQsXahEiEdGYYXfK2FvehteONOBwzdC7d4hC/yp9t05PxNysaBhEQaMoadTsPReKYaoGimOM7ZUQ26shOnq8fjnZEnlJUUx2f6FMVEb/atxEREREQai5x47f7T2L7adbBh1PijDjv9dOwfLJyRAEwacrhJOHXBLM1W/BUrIR5uq9EGT7sKc44ydCyl8LKb8QQlRqQKxqQ0RERET9tpxsVrUjrQbMzxlbn9fEjrOILLoXxtZStzHbxNvQvfBngMHih8iIiIiIiMae1h4HTjWon6WYkxnt24s6bYjY9R1Yyre4DdkzFqJr+RNQzBGDnEhEREREvqJJ0QwA/Nd//ReWLFmCV199FfX19UhJScGdd96JgoICt2PfeustzJo1CwCwevVqrUIkIgpqNe02vH60EW+eaEJ7n3PIY+PDTFg3NRHrpiUgOZJfvgUc2QWxq7Z/15i2qoEdYwxtVTD01Hv9copogisqvb8w5pLiGMUaCwgspiIiIqKxwSUreP1oI/747jl0S+4rpxgE4LMzk3HfDRlIS473Q4Q0IooMY92HsJZsgLliK0Spc9hTXOEp/YUyBWvgirv4tyiDL+MkIiIioiuiKAqKiptUfcsK4mA2in6KyPtMNfsRsfVBiFK7ql8RDOi5/mHYpv0H/x5LRERERORFh850qNqhJhHTU8N9dj2hpwmRW+6FqeGo21jf9P9Az3U/AET+ZZqIiIhIa5oVzQDA1KlTMXXq1GGPW7t2LdauXatBREREwc3pkvF2RTteO9qAQ2eGf1BsTmYUbp2eiBuyo2E0jJ0vGoOVYGuHoa3yU8Uxlf0FMh1nILiGXyH7SsmhCXBFZ8MZk/Wp3WOyIEeOB0RNPxIQERERae50Qw8e21mFk/WD7843NSUcDy/NRH5iGAwGfmEViAwtpbCUvglL6UYYuuqGPV42R8CeuxK2grVwjpsFCLwHIiIiIgpkR+u6ca5dUvWtmjxGitkVBdZj/0DYu7+AoKgL+GVLFLpWPAXH+Ov8FBwRERER0dh1oFpdNHNNeiRMPnpextB8GpGb/x8M3edV/YpgQM/8n8A29XM+uS4RERERDY9PyBIRBaH6TglvHGvExuNNaO5xDHlsTIgRa6Ym4OZpiUiLtmoUIakoCgxNJ2Cu2d9fJNPWXxwj2tq8fyljyIUdYzIv7hhzYQcZxcLtfYmIiEh/uiUnnnmvBus/boCsuI9HWAx4cH461k1LgMgVnQOO2N0AS9kmWEo2wth8ctjjFdEMe+ZCSAXrYM9YCBi5syYRERFRsLh0l5n0GCumpPhuBWjNuCSE7/sprCfXuw05Y/PQuepZyFEZfgiMiIiIiGhskxUFB6vbVX1zM6N9ci1T9V5EbP8GRId64S7ZHI6uFX+AI/0Gn1yXiIiIiEaGRTNEREHCJSvYX9WO1442Yn9V+6AP/H3a1eMjcMv0JCzKjYHZyBWV/cHQWg5L2WZYSjfB0FHttXkVCJAjUuFS7RjT/99yeDJX0CYiIiICoCgKdpW04n/3nrlsofnKSfF4aEE6YsNMGkdHQxHsXTBXbIelZCNMNQcgYJibHwCOcbNhK1gLe85NUKxRGkRJRERERN5kc8jYWdKq6ls9OR5CkBe2Cz1NiNz6NZjqD7uNSVlL0L30f6GYx0BhEBERERFRACpt7EVrr1PVNzfLy38/VhRYj72AsHcfg6DIqiFX5Hh0rn4ertg8716TiIiIiK6YV4tm3n77bW9ON2D+/Pk+mZeIKBg0ddux8XgT3jjWiIYu+5DHRloNWD05AbdMS0RmXIhGEdKniZ21/YUyZZtgbD7l0VyyJfKSophPdo3JAIzcNYiIiIjocmrabfifXdU4UN0x6HhGrBUPL8nENeksrggYLjvMZ9+BpWQDzFW7IbikYU9xxuZBKlgHKa8QcmSqBkESERERka+8XdGGbsk10BbQX+QezIwNxxCx9T4YuuvdxnpnPYje2V/nAkhERERERD504JJdZsZHW5AW7cVnLVwOhL3zM4SceMltyJFyNTpXPg0lJM571yMiIiKiUfNq0czChQu9vuKTIAhwOp3DH0hENIbIioL3z3TgtaONeLu8Da5hFlaeNi4ct0xPxJL8OFhN/JJNa0JvMyzlW2Ap3TToioFDUUQTXFHpF4phPlUcE5MFxRoLBPlKikRERERasjtl/OOD8/jboVpITvcP0RajgC/NScXd16RwN8ZAoCgw1h+GpfRNWMqKINrahj3FFZYEKb8QUv5auOIn8vMyERER0RixubhJ1Z6VHonkSIufovGcpWQjwvc87FYMrhhD0LXkcdhzb/JTZERERERE+nGgSr2w1pzMaK/OH3rot4MWzNgK1qF78WOAIXjvaYiIiIjGGq8WzQCAogzzZDcREV1Wa48Db57o31WmtmPolZXDzCJWTorHLdOTkJcQqlGE9AlB6oS5YgcsZZtgqtnvts3uYFyR4+FImwdnTM6FApksyJHjAdHr/3dMREREpDsfnO3Ar3ZV40yrbdDxeZlR+O6STO+uIkejYmirhKV0Iywlb8LQeXbY42VTOOw5yyEVrIUjdQ4gGjSIkoiIiIi00txtx8FLdolcOTlId5mRXQg98DhCP37ebcgVkYrOVc/2F38TEREREZFP9dhdOFrXreqbl+W93ecFexdCjr7gft1r/wt919zPBZ+IiIiIAoxXn9Ldu3fvZcfsdjt+9KMf4YMPPkBCQgLuuOMOzJ49G0lJSQCAhoYGfPDBB1i/fj0aGxsxa9Ys/OIXv4DJZPJmiEREAUdRFHx0rguvH2vEntJWOOWhiw8nJYXhlumJWDYhDqFmPiymKUcfzNV7YCnbBHP1PgiyfdhT5NAESHmrIOUVwpk0nX8YISIiIvKylh4Hnth3BltPtgw6nhBuwrcWZeDG/Fiv745LIyf0NsNStgmWko0wNR4f9nhFNMKevgBSwVrYs24EjCx2IiIiIhqrtp5qwaf/LB5iErE4L9Z/AY2SIHUiYsdDMJ/Z5zbmGHctOm96CkpInB8iIyIiIiLSnw/OdsD1qRsNoyjg6vGRXpvfXLUXguviMyOKYEDXst/BnrfKa9cgIiIiIu/xatHMggULBu1XFAUrV67Ehx9+iC9/+ct44oknEBYW5nbc3XffjV/96ld46KGH8Oc//xm//e1vsWXLFm+GSEQUMDr6nCg62YTXjjZedjXsT1iNIlZMjMMt0xMxKTlcowgJAOCyw3T23f4H/Kp2QXD0DnuKbInqXwk7vxCOcddyJWwiIiIiH5AVBa8fbcQf3zmHLsnlNi4KwGdmJOPe61IRbuHOfn5h74GlaicsJRtgOrcfguKep0s5kmdCKlgHKfcmKCHB96AkEREREV0ZRVGwubhJ1XdjfmzQLRhlaKtERNFXYWyvchvrm3o3eq7/IWDgQoFERERERFo5WKXezXJGWoRX7zPM5UWqtiP9ehbMEBEREQUwTZ4a+ctf/oLt27dj6dKleP559+3IPy00NBTPPfcczpw5g+3bt+O5557DV7/6VS3CJCLyOUVRcPx8N1470ohdpS2QnEPvKpMbH4JbpyfhpklxfNBPS7ILprr3YSndBHPFdohS+7CnKKZQSFlLIOUVwpF+PWAw+z5OIiIiIp0qaezBL3dW4cT5nkHHJyWH4QdLszAhyX3BDvIx2QnTuXdhKXkTlsodEJx9w57ijM7qL5TJXwM5Kl2DIImIiIgoUJQ09qKiWf2ZcfXkeD9FMzqm6r2I2PEQRHu3ql8RTehe8FNIkz/rp8iIiIiIiPRJURQcqFYXzczJjPLa/IK9C+azb6v6pNyVXpufiIiIiLxPkyewX3jhBQiCgK997WsjPuf+++/Hzp078fe//51FM0QU9LolJ7aebMFrRxtQ3jz0Q2Nmg4ClBXG49apETE0JhyAIGkWpc4oCY+Ox/kKZsiIYehuHP0U0w54xH1J+IeyZiwFTqAaBEhEREelXj92FZ9+rwf8droc8SP15uMWAB24Yj5unJcIg8nO0Zj75LF2yEZayzRD7WoY9RQ6Nh5S3GlL+WjgTpwK87yEiIiLSpaLiZlU7JdKMmeMj/RTNFVIUhHz8HEL3Pw4B6hsUOSQWnTc9Dee4a/wUHBERERGRfp1rl1DbIan65nqxaMZctReCyz7QVkQT7FlLvTY/EREREXmfJkUzp0+fBgCkp498tdDx48erziUiCkan6nvw2tEGbDvVAptTHvLYjFgrbp2eiFWTEhAVwl1ltGJoKYWlbBMsZZth6Dg77PGKIMKRNhdSXiHsOcuhWILkC1wiIiKiIKYoCvaUteF/91Sjsdsx6DE3TYzDNxamIz6MO/5pRew4A0vJm7CWbICho3rY4xVTKKTsZZDy18Ixfh4g8r6HiIiISM+cLhnbTqmLZlZOiocYDAXVjj6E73kY1rJNbkPOhMnoXPkM5IhxfgiMiIiIiIgOVLWr2nFhJuQleG8RVHPFFlXbMX4eFKv3inKIiIiIyPs0eTrBZrMBAM6dO4cZM2aM6Jxz584BACRJGuZIIqLA0md3YfvpFrx2tBGnGnqGPNYoClicH4tbpiXi6vER3FVGI2LnOVhKN8NStgnGlpIRneNIngEprxBS7kooYQk+jpCIiIiIPlHbbsOvd5/Be5d8yfWJ9Bgrvr8kE7Mz+IWUFoS+FljKtsBSshGmho+HPV4RDHCkXw8pfx2k7CXcnZGIiIiIBrxX1YG2Pqeqb+WkeD9FM3JiVx0it/wnjE3FbmNS3ip0Lf4fwBTih8iIiIiIiAgADlZ3qNpzM6O89jyOYO+C+cw+VZ+Us9IrcxMRERGR72hSNJObm4vjx4/jmWeewZo1a0Z0zjPPPAMAyMnJ8WVoREReU9bUi9ePNmDLyRb02F1DHpsaZcEt0xNRODkBsWEmjSLUN6GnCZbyIlhKN4/o4T4AcMZP7C+UyVsFOTLNxxESERER0ac5XDL++cF5/OVgLSSn4jZuNgj40pxUfGFWCsxG0Q8R6oijD+aqXbCWbITp3DsQZOfwpyRNh5S/FlLeKiihgf/gIxERERFpb3Nxk6o9bVw4MmIDu9jEeP5DRG69H2KveoccBQJ6534bfTPvBbg4FhERERGR39idMj4426nqm5PpvUW3zFV7IbjsA21FNMGevdRr8xMRERGRb2hSNHPHHXfg2LFj2L59O772ta/ht7/9LaxW66DHSpKEb33rW9i2bRsEQcBnP/tZLUIkIhoVm0PGrtIWvH60Ecfquoc81iAA83NjcOv0RMzOiILIL858TrB1wFyxDZayTTDVHoKgyMOe44rKgJRfCClvNVyxeRpESURERESX+uhcJ361swpVrbZBx+dkRuF7N2ZifMzgf1sgL5BdMNUcgKV0I8wV2yE6ht5FEwBcUemQ8tfClr8WckyWBkESERERUbBq73PgnYp2Vd+qyYFdbG0p/jfC9/0EguxQ9cvmcHQtewKOzEV+ioyIiIiIiD5xtK4LNufFZ0MEAHO8uFO9uWKLqu0YPw+K1XvzExEREZFvaFI0881vfhMvvvgiTp8+jWeffRYbNmzAHXfcgVmzZiExMRGCIKChoQEffPABXnnlFdTX1wMACgoK8M1vflOLEImIrkh1Sx9eP9aIzcVN6LQNvatMUoQZN09LxNqpCUgIN2sUoY45emGu2gVL6WaYz77t9gXmYFxhybDnrYKUtxrOxKlcCZCIiIjIT9p6HXhy31lsLm4edDwuzIRvLcrA0oJYCPzM5n2KAkPzSVhLNsJcugmG3sZhT5GtsZDyVkEqWAtn0lX8LE1EREREI7LzdCuc8sUdJc0GAcsK4vwY0RBcDoS9+wuEHP+n+1BUJjpXPQtXbK4fAiMiIiIioksdqOpQtScmhyE61OSVuQV7F8xn9qn6pJyVXpmbiIiIiHxLk6IZq9WKvXv3YtWqVTh8+DDq6+vx1FNPDXqsovT/gXzGjBnYvHkzLBaLFiESEQ3L7pSxt7wNrx9twEfnuoY8VgBwXXY0bp2eiHlZ0TCIfHDMp1wSzGffgaV0E8xVuyE4+4Y9RbbGQMpZASm/EM5xswBB1CBQIiIiIhqMrCjYeLwJT719dtCidFEAbr8qCfddn4ZwiyZ/ytAVsbMGltI3YSnZCGNb+bDHK0Yr7FlLYCtYB8f46wGDd75wJCIiIiL92FzcpGovyI1BhDXwPusLfa2I2PYgzLUH3cbs6Tega9mTXFWaiIiIiCiAHKhWF83MzfTiLjNVeyG47ANtRTTBnr3Ua/MTERERke9o9tfnpKQkHDp0CM888wyefvppnDx5ctDjJk6ciPvuuw/33XcfDAaDVuEREV1WTbsNbxxrxJvHm9DW5xzy2LgwE9ZNTcC6qYlIiWLRn0/JLphqD8JSthnmim0Qpc7hTzGFwZ69FFLeaj7cR0RERBQgypp68cudVThW1z3o+MSkMDy8NBOTksM1jmxsE2ztsJRvgaVkI0znPxz2eEUQ4UibB6lgLezZy6CYmQ8iIiIiGp3qlj4U1/eo+lZNTvBTNJdnaC5BZNFXYeiqcRvrnfH/0Dv3u4DI7zKJiIiIiAJFU7cdZU29qr65WdFem99csUXVdoyfxyJ6IiIioiCh6ZJNBoMB999/P+6//37U19fj+PHjaG1tBQDExMRg6tSpSElJ0TIkIqJBOV0y3qlsx2tHG3HwklUoBnNtRiRunZ6E+TnRMBq4Y4nPKAqM9R/DUrYZlvItEHubhj/FYIY9YyGk/ELYMxYBphANAiUiIiKi4fTaXXhufw1e/qgeLsV9PMxswP03pOHW6UncudFbnBLM1XthKd0Ac/VbEGTH8KckTIYtfy3seashhydpECQRERERjXWX7jITF2rCHC+u/uwN5ortiNj1bQgO9QN3isGM7kWPQZpws58iIyIiIiKiy7n0+Z5wiwFTUryzAJRg74b5zD5Vn5Sz0itzExEREZHv+W2f8+TkZCQnJ/vr8kREg6rvlLDhWBM2HG9Ec8/QD5BFhxixZkoCbp6WiPExVo0i1CFFgaGlBJbSTbCUbR50VT+3UwQDHOPnQcor7F8F2xKhQaBERERENBKKomBfeRse33MGDV32QY9ZNiEO31yYjvhws8bRjUGKDFPt+7CUboS5fCtEe9ewp7giUiHlr4FUsBau2DwNgiQiIiIivXDJCracbFb1rZgYB2OgFMorMkLffwqhH/zebcgVloSulc/AmTTND4EREREREdFwDlxSNDMrPdJr9xrmqj0QXBe/01BEI+zZS7wyNxERERH5nt+KZoiIAoVLVnCgqn9Xmfeq2iEPssr1p81Mi8CtVyVhUW4MzEbuKuMrYseZgUIZY2vZiM5xpFwDKb8QUs4KKKHxPo6QiIiIiK5UXYeEx3dX453K9kHH06It+P6STMzJjNY0rrHI0FwCS+kGWErfhKG7ftjjZUsUpNyVkArWwZkyExB4r0NERERE3vfB2U40dqsXrFo9JcFP0agJ9m6E7/oOLJU73MYcSTPQufJPUMIS/RAZERERERENxyUrOHRGXTQzLyvaa/ObK7ao2o7x10Gxem9+IiIiIvItFs2QRwwGg0/mFUVxyDaNLf7Kd1O3HRuONeD1ow2o7xx8hetPRFgMWDM1EbdMT0J2fKgm8Y1VQ+Vb6G6AuXQTzKWbYGw4OqL5nAmTYS9YA3veaiiRqf1zei9c8gDfy/WF+dYX5psCla/uTwC+7j3lcMl48YM6PPdeDWxO2W3cZBDwpTmpuGdOGiwBUJgerPkWus7DXLIR5pINMDafHvZ4xWCGI2sJ7BPWwpGxEDBaAAC++00KPMGaaxod5ltfmG99Yb4pUPEexd3WUy2qdkFiGCYk+3+ncLHjLMI3fQWGlhK3MWnS7ehd9CjEC5+XtRasuabRYb71hfnWF+ZbP5hrCmRj+TmvUw1d6Ohzqvquy4n1zr/Z3g3zmX2qLkfeKp/e8wWyQMg3aYf51hfmWz+Ya31hvvsJiqIMs6eC9zidThQVFeGdd95BZWUlurq64HK5hjxHEATs3r1bowiJaKyTZQXvVTTjXwfPYtepBjiH2VZmZno0PndtBlZNS4HVpM+bXZ/rbQVObgROvAZUvwtgBP+3FJcLTLkNmHobEJ/n8xCJiIiIaPTer2rFjzYcR2lD96Dj1+XG4edrpyA7IVzjyMYIWwdw8k3g2L9H+HlaADKvB6bdAUxcA4REaxAkERERERHQLTkx69Fd6HNc/G7wkdWT8OXrs/wYFYDKfcArXwT62tT9ggFY/gvg2v8EBME/sRERERER0Yj8fncZfruzdKCdmxiOXd9c4J3Jj78KvPbli23RCHy7DAiN9c78RERERORzmu008+677+Luu+/G2bNnB/qGqtcRBAGKokDgH6GJyAtauiW88lENXn7/LM609A55bLjFiHUzxuGu2RmYNC5Sowh1RuoCTm8BTrwKVOwBZOfw50SmAlNu6S+WSZnOLymJiIiIAlxrjx2/3HIKr3xUM+h4fLgFj6yeiDXTx/He/0o57UD5zv5CmZJtgEsa/pykKcDU2/sLz6PSfB8jEREREdElthw/ryqYMYgC1l41zn8BKQrw/nPAtocB5ZJF/qzRwO0vADmL/BEZERERERFdobdLm1Tt+XkJ3pu8+A11O3shC2aIiIiIgowmRTOnT5/GihUr0NfXB0VRYDabkZeXh9jYWN1u8UNEvqcoCg5VteKlQ2ex7UQ97C55yOOnpEbic9dmYM30cQizaFZTqB8OW/+DfcdfBUq3A86+4c8JjQcmr+svlBl/LcD/zyAiIiIKeLKs4JWPzuGXW0+jvdfhNi4IwOevzcC3lxcgKsTkhwiDlCwD5w71F8oUvwHY2oc/J2IcMO12YOodQPIUn4dIRERERDSU1y4pqF+Yn4D4cIt/gnFKQNE3gY9fdB9LmAjc+RIQm619XEREREREdMU6+hz4+Fy7qm9+frx3Jpe6gLKd6r7JN3tnbiIiIiLSjCZPhT/22GPo7e2FwWDAf//3f+PrX/86wsPDtbg0+VhbW9vwB42CKIqIiooaaHd0dECWhy54oODl7Xx39Dmw+UQTXjvSgKrWoQszrCYRKybG47arkjE5pf99yd7bBfvQm9HQSMlOGM/th7nkTZgrtkOwdw17imKOgD1nGewFa+Acf13/trYA0NHh42DJ2/heri/Mt74EQr5jYmI0vR4FB1/dnwCB8boPBuVNPfjF9kocqR38c9+EpDD8cFk2poyLgGzrRptN4wBHKJDyLbaWw3z6DZhLNsLQOfiuPZ+mmCNgz1sJ+4R1cKZeCwgXCs99+PsRzAIp1+R7zLe+MN/64u988/6ELof3KBfVtttwqKpV1be8INqnP6PLEXoaEV70nzCeP+w2Zs9eip7lvwOE8ID5DB1suSbPMN/6wnzrC/OtH4GQa96j0OWM1ee8dpW0wCUrA22LUURBjOiVf6+pZCPCP7XbuyIa0ZF8HZQAuV/wB3/nm7TFfOsL860fzLW+BEK+A+EeRZOimT179kAQBHzjG9/AD37wAy0uSRpxuVzDH+QFsixrdi3yv9HkW1EUHD/fjdePNmJnSQskpzLk8TnxIbh1eiJWTopH+IVdZfga8xJFhrH+MCylm2Ep3wKxr2X4UwwW2DMXQ8ovhD1jIWC8sLqgAoB5GTP4Xq4vzLe+MN8UKLR8HfJ1r9Znd+H5A7X410f1qi+mPhFmFnHf9eNx21VJMIpC0P3stM630NMIS+kmWEs3wthUPOzximiCPXMhpPy1sGcuvvh5WlYABNfP2t/4u60vzLe+MN/6wnxToOA9ykWbjjeo2pFWA67PitI8ZmPDMURsuQ+Gnnq3sd5ZD6J39tf7C88D+GcZ6Lkm72K+9YX51hfmWz+YawokY/U5r/2V6gL9GWkRMIne+feGlhap2o60eXCaIgL6nkFrfJ/TF+ZbX5hv/WCu9UWv+dakaKa5uRkAcPPN3JqQiLyrW3Ji26kWvHa0EWVNQ28PYzYIWFIQh1unJ2LauHAIgqBRlDqgKDA0n4KlbBMsZZth6Kob/hzRCGQvQk/2TbBlLoZijvB9nERERETkdfvK2/D47mrUd9kHHV+SH4tvLspAYoRZ48iCi2DvhrlyBywlG2Gq2Q9BGX5lF8e4WZDy10DKXQnFGu37IImIiIiIRkFRFBSdbFb1LSuIg9koahqHpWQjwvc8DOFTq0QDgGIMQdeSx2HPvUnTeIiIiIiIyHOKomB/VYeqb05m1GWOvjKCvRvmM2+p+qTclV6Zm4iIiIi0pUnRTEJCAurq6hASEqLF5YhIB07V9+D1Yw3YdqoFfY6hHyZLj7Hi1umJWDU5HtEhJo0i1Aexvap/R5myTTC2VQx7vAIBztTZMM34LDBxLRAWB3tbGxQdVq0SERERBbv6TgmP7zmDfeVtg46nRlnwvSWZmJcVrW1gwcTlgOncu7CWbIC5ahcEp23YU5wxuZAK1kLKXwM5Mk2DIImIiIiIPHO0rhs17epCldVTErQLQHYh9MDjCP34ebchV0QqOlc9C1f8RO3iISIiIiIir6lutaHhkkW95nmpaMZUvQeC6+LcimiEPXupV+YmIiIiIm1pUjRz/fXXY/369Thx4gRmzpypxSWJaAzqs7uwvaQFrx9pxMmGniGPNYoCFuXF4NbpSbh6fAR3lfEisasOlrKi/kKZpuIRneNInAoprxD2vJUQotIQExPj4yiJiIiIyFecLhkvfVSP5/bXwuZ0L2A3igK+ODsF91ybCqtJ25Wjg4KiwNhwBJaSjbCUFUG0tQ57ihyaACl/DWwFa+GKnwTw/oaIiIiIgkhRcZOqnR5jxeTkME2uLUidiNj+DZjPvu025hh3LTpvegpKSJwmsRARERERkfcdqG5XtZMizMiK887C3pbyraq2I20ed30nIiIiClKaFM1885vfxGuvvYYnn3wSd911F4xGTS5LRGNEeVMvXjvaiC0nm9FjH3pHktQoC26elog1UxIQG8ZdZbxF6GuBpXwbLGWbYKr7YETnOGNyIeWvhpS3GnJ01kC/wVdBEhEREZHPHantwi93VqGiuW/Q8avHR+DhJVnI9NIXUmOJ2FYFa+lGWEo3wtBxdtjjZVMY7DnLIRWsgyN1DiDykzQRERERBR+bQ8aO0+pC8dWT4zVZ6MrQVoGIonthbK9yG+ubejd6rv8hYOD3CEREREREwexAVYeqPSczyiv3G4K9G+Yz+1R9Uu5Kj+clIiIiIv/QpHpl1qxZeOKJJ/D1r38dt9xyC/76178iPj5ei0sTUZCyOWTsLm3B68cacbS2e8hjDQIwPzcGt0xLxLWZURC56rJXCPYumCt3wlK6CaZz70FQhi5YAgBXRCqkvNWQ8gvhipvAFbCJiIiIxoj2Pgf+8PY5bDjeNOh4TIgR/7UoAzdNjOMuj58i9DbDUrYZltI3YWo4OuzximiEI30+bPlrYM9aAphYfEREREREwW1fRZtqMSwBwMpJvv+O0FS9FxE7HoJoV3+/oIgmdC/4KaTJn/V5DERERERE5Fs2h4zDNZ2qvrmZUV6Z21S9B4JLGmgrohH27KVemZuIiIiItKdJ0czPfvYzAMDs2bOxefNmZGRkYOnSpZgwYQJCQ0OHPf/HP/6xr0MkogBR0dSNv+6rwuYTTeiwOYc8NinCjHVTE7B2aiISI8waRTjGOW0wV78FS9kmmKv3qv4AcDlySByk3JWQ8gvhTJ7JQhkiIiKiMURRFGwubsaT+86ivc/987kA4ObpiXjghvGItHJXWQCAoxeWyl2wlG6A6ey7Iyo+dyTNgFSwFlLeSighcRoESURERESkjaIT6sL7WemRSI60+O6CioKQw88h9MDjEKCohuSQWHTe9DSc467x3fWJiIiIiEgzH9d0QnJe/NwvCsDsDO8UzVjKt6rajrR5UKzRXpmbiIiIiLSnyRMtP/3pTwdWmhUEAX19fdi0aRM2bdo0ovNZNEM0trlkBZuP1eFfB8/iQGXLkMcKAOZlRePWqxIxLysaRpEFGh5zOWCqeQ+W0s0wV+6E6Bh6Zx8AkM0RsOesgJRfCEfqtYDIBySJiIiIxhpZUfDdjWV4q7xt0PH8hFA8vDQTU8dFaBxZAJKdMJ3bD0vpRlgqd0Bw9A57iisqE7aCdZDyCyFHZ/o+RiIiIiIijTV323HwTIeqb9VkH+4y4+hD+J6HYS1z//7RmTAZnSufgRwxznfXJyIiIiIiTR2oVt9vTEkJ984CX/YemM/sU3VJuSs9n5eIiIiI/Eazp5wVRRmyTUT6VNNuwyNFFTh+fuhCjbgwE9ZOTcDNUxOREuXDVej0QpFhrPsQlrJNsJRvg2hrHf4UoxX2rBsh5RXCnjEfMDAPRERERGPZe5XtgxbMhJpE3HtdGj4zM1nfReyKAmPj8f5CmbLNEHubhz1FDomFlFcIqWAtnInTuEsjEREREY1pW0+1QP7U14EhJhGL82J9ci2xqw6RW/4TxqZitzEpbxW6Fv8PYArxybWJiIiIiMg/Dl5SNDM30zu7zJir90BwSQNtRTTCnr3UK3MTERERkX9oUjQjy7IWlyGiIKIoCoqKm/Hr3dXodVz+PWJ2RiRunZ6EBTnRMBpEDSMcgxQFhqYTsJRugqW8CIbu+uFPEU1wpN/Q/2Bf1o2AOUyDQImIiIgoEOw47b4L5OK8GHxrcQaSIvRbQC12nO0vlCl5E8b2ymGPV4whkLKXQipYC0fadYDBpEGURERERET+pSgKNhc3qfpuzI9FiNng9WsZz3+IyC1fg9invodRIKB37rfRN/NeFqwTEREREY0x9Z0SKlv6VH1zs6K9MrelfIuq7UibB8XqnbmJiIiIyD8022mGiOgTXTYnHttZhZ0lg+9uEh1iROGUBNwyLRHjY6waRzf2GNoq+gtlSjfB0FE97PEKBDhSr4WUXwh7zgre+BMRERHpkM0hY98lu8zcd30avjwn1U8R+ZfQ1wZrySZYSjbAVH942OMVQYRj/HWQCtZBylrK4nMiIiIi0p2Sxl5UNKsfYFs9Od7r17EU/xvh+34CQXao+mVzOLqWPQFH5iKvX5OIiIiIiPzv0l1moqxGTEzywt/i7T0wn9mn6pJyV3o+LxERERH5FYtmiEhTH9d04pGiCtR32d3GMuNC8V9L8zEn1QqDoPghurFD7KqDpWwTLKWbYWw+OaJzHEnTIeUVwp67EnJ4ko8jJCIiIqJAdrC6XbUjpABg7ZQE/wXkD44+oGQrcGw9osp3QpCdw5+SOBVSwVpIuauhhOns50VERERE9CmX7jKTEmnGzPGR3ruAy4Gwd3+BkOP/dB+KykTnqmfhis313vWIiIiIiCigHLikaGZ2RiQMouc7TJqr90BwSQNtRTTCnr3U43mJiIiIyL9YNENEmnDKCv68vxZ/PVQLeZB6mDuuScNPCicjzGJEW1sbXC6X9kEGOaG3GZbyLbCUbhrR6tcA4IzNg5RfCClvNeSoDB9HSERERETBYsclu0LOHB+B+HCzn6LRmFNCyIHfA8f/Bdi7APQXDV2OK3J8f6FM/lq4YrK1iZGIiIiIKIA5XDK2nWpR9a2cFA9R8PwBNgAQ+loRse0BmGsPuY3Z029A17InoVijvHItIiIiIiIKPE5ZwaEz6qKZuZnRXpnbUr5F1XakzYVi9c7cREREROQ/mhfNtLa24m9/+xt27dqFEydOoLW1/0Gc2NhYTJkyBUuWLME999yD2NhYrUMjIh+pabfhkaIKHD/f7TYWYTHgkRU5uGNunh8iC36C1AlzxQ5YyjbBVLMfgiIPe44rcjykvNWQ8gvhiivQIEoiIiIiCiY2hwvvVLSp+pYWxPkpGm0ZWssRseMhGJtPDXmcbI2BlLcKUv4aOJNnAl56+I+IiIiIaCzYX9WB9j71To2rJntnJ0ZD82lEFt0LQ1eN21jvjP+H3rnfBUSDV65FRERERESBqfh8N7ol9WK8c7O8UDhv74H5zD5Vl5S7yvN5iYiIiMjvNC2aefbZZ/Htb38bvb29AABFubjdRG1tLerq6rBjxw789Kc/xf/+7//iq1/9qpbhEZGXKYqCLSeb8evd1eixuxdzzEyLwM9W5iA1JtQP0QUxRx/M1XtgKdsEc/U+CLJ92FPk0IT+h/ryCuFMms6H+oiIiIjost6tbEef4+Lnd1EAFuWN8YUtFAWW4v9D+LuPQnDaBj/EYIE960ZIBetgT78BMOhk5x0iIiIioiu0ubhJ1Z42LhzpMVaP5zW0VSDqtTsgOnpU/YrBjO5Fj0GacLPH1yAiIiIiosB3sFq9y0xufAgSwj3/m725eg8ElzTQVkQj7NlLPZ6XiIiIiPxPs6KZX/3qV/jhD384UCgTFRWFGTNmIDk5GQBQX1+Pjz/+GB0dHejp6cF9992H9vZ2fPe739UqRCLyom7JiV/urMb20y1uYwZRwH3XpeHuWSkwiCzeGBGXHaZz78FSugnmql1uXwoORrZEwZ6zHFJ+IRzjruXqekREREQ0IrtKWlXta8ZHIi7M5KdofE/oa0P43h/AUrljsFEgaz56clfDlrUUijlC8/iIiIiIiIJJe58D71S0q/pWTY73ytyhBx53+9u4KywJXSufgTNpmleuQUREREREgW9/VbuqPTcz2ivzWsq3qtqOtLlQrN6Zm4iIiIj8S5OimRMnTuCRRx6BoihISUnB448/jttvvx0mk/qhG6fTiVdeeQXf+c53UFdXhx/96EdYtWoVJk+erEWYROQlR2q78EhROc53uu+AMj7agkdX5WJySrgfIgsysgumuvdhLtsMS/k2iFL7sKcoxhBIWUtgzy/k6tdEREREdMX67C68U9mu6ltSEOefYDRgqjmI8J3fgqGn3n0wcRJw65+BpMmwt7VBcbm0D5CIiIiIKMjsON0Cp6wMtM0GAcu8cE8hdp+HuWqPqs+RNAOdK/8EJSzR4/mJiIiIiCg4tPc5cLJeXUw/NyvK84ntPTCfeUvVJeWu9HxeIiIiIgoImhTN/OEPf4DL5UJCQgIOHDiA9PT0wYMxGnHnnXfi+uuvx6xZs9DU1IQ//OEPePrpp7UIk4g85JQV/OVALf5ysBaf+k5swJopCfj24gyEmrnjyWUpCoyNx/p3lCnfAkNPw/CniGbYM+ZDyi+EPXMxYArVIFAiIiIiGoveqWyH5JQH2gYBWJwX48eIfMTlQOj7TyLko2cgwP3mxTbtC7AW/howhfghOCIiIiKi4LW5uFnVXpAbgwir519HWk6+AkG5WMiumELRueZvUCzcDZKIiIiISE/eP9Op+qu+1SjiqlTP7wvM1XsguKSBtiIaYc9a6vG8RERERBQYNCma2bNnDwRBwMMPP3zZgplPGz9+PL73ve/hW9/6Fnbv3q1BhETkqdp2Gx7ZUoFjdd1uYxEWA364LGtMr1DtKUNLKSxlm2Ap2wxDx9lhj1cEEY60uZDyCmHPXgbF6oVVM4iIiIhI93aWtKjaszKiEB1quszRwUnsOIuIHf8FU8MRtzHZGoPuG/8HrtxlsLJghoiIiIjoilS19Lmt+LxqcoLnE8tOWIv/reqy5a9hwQwRERERkQ4dqGpXta9Jj4TZKHo8r6V8q6rtSJsLJWQMLipGREREpFOaFM3U1tYCAObNmzfic6677joAQF1dnU9iIiLv2XKyGf+zqwo9dtltbGZaBH62MgfJkRY/RBbYxM5zsJRuhqVsE4wtJSM6x5E8A1JeIaTclVDCvPBlIxERERHRBT12F/Zf8mXTkoJY/wTjI5aSjQh768cQHe7F/va0eehe8hvI4Ung3phERERERFeuqLhJ1Y4LM2FOpucLPpmr98LQU6/qs025y+N5iYiIiIgouCiKggPVHao+b9xzwN4D85m3VF1S7krP5yUiIiKigKFJ0YzB0P+4idPpHPE5Llf/Fuui6HklOBH5RrfkxK92VWPbqRa3MYMo4N55qfji7HEwiIIfogtMQk8TLOVFsJRuhqnh4xGd44ybACm/EFLeasiRaT6OkIiIiIj06p2KNkhOZaBtEAUsyh0bRTOCvQth+34Ka8kGtzFFNKJ3zjfRN+MrgMC/QRARERERjYZLVrDlZLOq76aJcTB64fsB64mXVG1H0nS4EiZ7PC8REREREQWX8uY+NPc4VH1zvVKovweCSxpoK6IR9qylHs9LRERERIFDk6KZ9PR0nDp1Crt37x7xbjO7d+8eOJeIAs/R2i48UlSBuk7JbSwt2oJHV+ViSkq4HyILPIKtA+bK7bCUboKp9iAExX1Hnku5otL7d5TJL4QrNk+DKImIiIhI73aWtKra12ZEIipEkz8b+JSx4Sgitj8EQ+dZtzFXVAa6lj0BZ9I0P0RGRERERDR2fHC2E43d6ofXVk32fLd0seMsTGffUfXZJnOXGSIiIiIiPTpQ1a5qp0ZZkB5j9XheS/lWVduRNhdKSIzH8xIRERFR4NDk6ZelS5fi5MmT+M1vfoN169Zh6tSpQx5/4sQJPP744xAEAcuWLdMiRCIaIaes4C8HavGXg7WQFffxwsnx+PaNmQgzG7QPLpA4emGu2g1L2WaYz+yDIDuGPcUVlgx73ipIeavhTJwKCNyhh4iIiIi00S05sf+SL5uWFcT5JxhvkV0IOfwcQt9/AoLsvvOtbcIt6Jn/EyhmFvsTEREREXmqqLhJ1c5PDEVeQqjH81qL/w0BF7+MkM0RkPJWeTwvEREREREFn4PVHar2nMwoCJ4+W2PvgfnMW6ouKXelZ3MSERERUcDRpGjmoYcewjPPPIPu7m5cf/31eOSRR3DPPfcgLk79AE5LSwv+9re/4Re/+AW6urpgtVrx0EMPaREiEY1AXYeEHxWV41hdt9tYuMWAHy7NwtIJQf5gnSdcdpjPvg1L6SaYq3ZDcPYNe4psjYGUswJSfiGc42YBgqhBoEREREREavvK2+BwXXwQzSgKWJAbvKuoid31CN/5LZhrD7qNyeZwdC/8Oez5a/wQGRERERHR2NMtObGnrE3Vt3pyvOcTu+ywnlqv6pIm3AKYQjyfm4iIiIiIgkqf3YWPa7tUfXMzozye13xmLwSXNNBWBAPsWUs9npeIiIiIAosmRTMZGRl49tlncc8996C7uxvf+9738P3vfx9ZWVlITEyEIAhoaGhAVVUVFEWBoigQBAHPPvss0tPTtQiRiIax7VQzfrmzGj12l9vYjLQI/HxlDpIjLX6IzM9kF0y1B/t3lKnYBlHqHP4UUxjs2Ush5a2GY/z1gMGkQaBERERERJe3s6RV1Z6bGYUIqyZ/MvA6c+VOhO/+PkSp3W3MkTwDXct+BzlyvPaBERERERGNUbtLWyE55YG2QRSwYoLnRTPmyh0Q+9T3KrYpd3o8LxERERERBZ+PznWqFv8yiAKuSY/0eF5L2RZV2zF+HpSQ4F1UjIiIiIgGp9kTMF/4whcQFxeHe++9F3V1dVAUBRUVFaisrAQAKMrFD7Xjxo3Dc889h5UrudUhkb91S078z+5qbD3Z4jZmEICvXpeG/5g9DgbRw+1Og4miwNhwBJbSTbCUb4HY2zT8KQYz7BkLIeUXwp6xiCvhEREREVHA6LQ5cbC6Q9UXlDtIOm0Ie/cxhJz4l9uQIojou+Zr6J31ICAGZzEQEREREVGgKipuVrXnZUUhNszzxaKsJ15StR3jZsMVm+fxvEREREREFHwOXPI9xvRx4Qi3ePj3fnsPzGfeUnVJuXxekYiIiGgs0vRJkVWrVqG6uhpvvPEGdu3ahRMnTqC1tX+FqNjYWEyZMgVLlizBunXrYDJx5wUifztW14VHiipQ2yG5jaVGWfCL1bmYkhLuh8j8w9BcAkvZJljKNsPQeW7Y4xXBAMf4eZDyCmHPXgbFEqFBlEREREREV2ZfeRuc8sWFLMwGAfNzov0X0CgYmksQseMbMLaWuY25wpPRtfR3cKbO9kNkRERERERjW227DYdrulR9qyZ5vsuMoa0C5tpDqr4+7jJDRERERKRblxbNzMmM8nhO85m9EFwXn4lSBAPsWUs9npeIiIiIAo/my6sajUbcfvvtuP3227W+NBGNkFNW8LeDtfjzgVp8amfTAasnx+M7N2YizGzQPjiNiR1n+neUKds86AN4g3GkXAMpvxBSzgoooZ5/OUhERERE5Es7T6t3lZyXFe356mxaURRYj/8TYe/9EoLL7jYsZS9H9+LHoFijtY+NiIiIiEgHtpxU7zITaTVgfk6Mx/NaT7ysasvWWNhzlns8LxERERERBZ/adhvOttlUffOyoj2e11K+VdV2pM2DEuL5/QwRERERBZ4geQqGiLRS1yHhkS3lOFrb7TYWbjHgB0uzsGxCnB8i047Y3QBzeREspZtgajw2onOcCZMh5a2GlLcacsQ4H0dIREREROQd7X0OHDrbqepbUhDrp2iujNDXgojd34e5eo/bmGK0ovuGRyBN+gwgCH6IjoiIiIho7FMUBUWXFM0sK4iD2Sh6NrHTBsvp11Rdtkm3AQaLZ/MSEREREVFQunSXmZgQI/ITQz2b1N4Dc/VeVZeUt9KzOYmIiIgoYLFohogGbDvVjF/urEaP3eU2dlVqBH6+MgcpUWPzSymhrw3mim2wlG2CqfZ9CBhki51LOKOzYM8rhJRfCFdMtgZREhERERF511tlbXDJFz/7WowCbvDCqtC+Zjr3HsJ3fhuG3ka3MWf8JHQtfwKumBw/REZEREREpB9Ha7tR0y6p+lZPSfB4XktZEURJXdxvm/xZj+clIiIiIqLgdGnRzJysKIgeLphlPrMXguvi/YwiGGDPWurRnEREREQUuDQpmjl+/DjWrl0Lg8GAt956C6mpqUMeX1tbiwULFkBRFGzduhX5+flahBm07HY7Xn75ZVRWVqK+vh7d3d0IDQ1FcnIyFi9ejBtuuAFGI+uj6PK6JSd+vfsMtlyyIhwAGATgK/PScM+142AQx9gKzfYeWKp29e8oc+4dCLJz2FNc4ckXdpQphCthMletJiIiIqKgtrOkRdW+LisaYWaDn6IZAZcdoQd/i9CPnx90uG/6PeiZ9x2uQE1EREREpIHNxU2qdkasFZOTwzye13riZVXbPv4GyFEZHs9LRERERETBx+mS8eFZddHM3Mxoj+e1lG9VtR1p86CEBP6iYkREREQ0OppUUrz44ouorq7G8uXLhy2YAYDU1FTk5+dj+/btePHFF/Gzn/1MgyiDl81mw44dO5Cbm4sZM2YgMjISPT09OHLkCJ5++mns378fDz/8MERR9HeoFICO1XXhkaIK1HZIbmOpURY8uioHU8dF+CEyH3FKMJ95C5ayzTBX74HgtA17imyNhZR7E6T8QjhTrgYE/i4RERERUfBr63Xgw7Pq1ZuXFsT5KZrhie1ViNj+EExNJ9zG5JA4dC35NRwZC7UPjIiIiIhIh2wOGTtLWlV9qyfHQ/BwoSlD00mYGj5WX2vKnR7NSUREREREwetYXTd67LKqb05GlGeT2ntgrt6r6pJyb/JsTiIiIiIKaJoUzezbtw+CIGDNmjUjPmft2rXYtm0bdu/ezaKZYYSHh+Pvf/+7224yLpcLjz76KI4ePYojR45g5syZfoqQApFLVvC3Q3V4fn8NXIr7+MpJ8fjujRkIt4yBXYpkJ0w1B2Ap3QRz5Q6I9q7hTzGFw56zDFLeajjS5gEGkwaBEhERERFpZ09Zq+pewGoUcX12tN/iuSxFgeX0awh/+78hOHrdhu3pN6BryW+ghMb7ITgiIiIiIn3aV9GGHrtroC0AuGmi55/JrcXqXWZcYUmwZy72eF4iIiIiIgpOB6rVu8xMSApFbJhnz/CYz+yF4Lq4uLAiGGDPXubRnEREREQU2DR5Gr60tBQAMG3atBGfM2XKFABASUmJT2IaS0RRHHQXGYPBgFmzZqG4uBj19fV+iIwC1fkOCY9sqcCRWvfikTCzAQ8vzcQKL3y55VeKDGP9YVhKN8NSvgViX8vwpxgssGcuhpRfCHvGQsBo8X2cRERERER+suuSVaFvyIlGiNngp2gGJ0idCH/rEVjKNruNKaIJPfO+C9v0/+BukEREREREGis60aRqz0qPRHKkZ39TF+zdsJRsVPVJk+7golZERERERDp2oLpd1Z6bGe3xnJbyraq2I20elJAYj+clIiIiosClSdFMd3c3gP4dUUbqk2M7Ozt9EtMnOjo6UF5ejvLyclRUVKCiogJdXf2FBAsWLMD9998/4rmampqwdetWHD58GC0tLTAajUhOTsbcuXOxfPlyWCzaPoAvyzKOHj0KABg/frym16bAtf10C365swrdksttbHpqOH6+MhfjooK0WERRYGg+BUvZJljKNsPQVTf8KYIBjvTrIeUVwp69BIo5QoNAiYiIiIj8q6XHgY/Oqe+3lxTE+SmawRnPf4SIHf8FQ1et25gzOhtdy5+AK2GyHyIjIiIiItK3pm47Dp5Rr/a8arLnC3FZSt+E6OgZaCuCCNukOzyel4iIiIiIglNLjwOnG9Q70M/JjPJsUnsPzGfeUnVJuTd5NicRERERBTxNimZiYmLQ3NyM+vp6TJ8+fUTnfLIzSkSEbx9g/8pXvuKVeT788EM89dRT6OvrG+iTJGmgEGf37t14+OGHkZyc7JXrDcbpdOL1118HAHR1deHEiROora3FwoULMXXqVJ9dl4JDj92FX++qRtHJZrcxgwD8v7mpuGdOKoyi4IfoPCO2V/XvKFO2Cca2imGPVyDAOW4WpPxCSDkroITEahAlEREREVHg2FPaClm52A4xibguK9pv8ajILoR8+CeEfvAUBMW92N826Q503/AIYAr1Q3BERERERLT1ZLPqfiLUJGJxnod/Z1cUWE+8pOqyZy6GHDHOs3mJiIiIiChoHbqkWD/MLGLauJEv2j0Y85m9EJy2gbYiGGDPXurRnEREREQU+DQpmsnLy0NzczO2bduG5cuXj+icrVv7t0HMycnxZWgq8fHxSE1NHdidZaSqqqrwxBNPwG63w2q1Yt26dZgyZQrsdjvee+897N69G+fPn8cvf/lL/OpXv0JISIhP4nc6nXj11VcH2oIgoLCwEHfddZdPrkfB48T5bvxwczlqOyS3sdQoC36+KgfTxgXXDiti93lYyopgLt0EU9OJEZ3jSJgCe34hpLxVkMNTfBwhEREREVHg2lnSomrPz4mB1ST6KZqLxK46ROz8Jkx1H7iNyZZIdC96DHau+EZERERE5DeKomBzsXpxrhvzYxFiNng0r7HhKIzNp1R9til3ejQnEREREREFtwPV7ar2NelRMBk8+y7DUr5V1XakzeNiu0REREQ6oEnRzPLly7F//34899xz+OpXv4qJEycOeXxxcTGef/55CIKAFStW+DS22267DTk5OcjJyUF0dDQaGxvxwAMPXNEcL7zwAux2OwwGA370ox8hPz9/YGzKlClISUnBiy++iPPnz2PTpk244w73reT/8Y9/wOFwjPiaK1euREqK+qF/q9WK9evXQ5ZltLW14aOPPsLLL7+M0tJSPPzwwwgN5Sq8euOSFfztUB2e318Dl+I+ftOkOHzvxkyEWzR5K/CY0NcKS8U2WEo3wVj3AQQM8o+6hDMmF1L+akh5qyFHZ2kQJRERERFRYGvqtuPjmi5V39IJ/v9CyFy+FeF7fwBR6nQbc4ybja6l/8tVpomIiIiI/KyksReVLX2qvlWTEzye99JdZlwRaXCMv8HjeYmIiIiIKDjJioKDVeqdZuZmRnk2qaMX5jNvqbokLtRFREREpAuaPCl/33334de//jV6e3uxePFiPP/881i9evWgx7755pu499570dfXh9DQUNx///0+jW2wApYrUV5ejlOn+le+WrRokapg5hOrV6/G3r17UVtbi61bt+KWW26B0aj+0e/cuROS5L4LyOXMmTPHrWjmE6IoIi4uDsuWLUNERAR+97vf4fXXX8fnP//5K/iXUbCr75TwyJYKt4fhACDMbMDDSzOxYmK8HyK7MoK9C+bKnbCUboLp3HsQFNew57giUiHlrYaUXwhX3ARAEDSIlIiIiIgoOOwubVWVn4eZRczNjPZXOICjF+Hv/BzWk+vdhhTBgN7ZD6Lv6q8BomcrVxMRERERkec2Fzep2imRZswc79lO9oKtA5ayzao+2+TP8h6AiIiIiEjHSht70dbnVPXN8bBoxly9F4LTNtBWBAPs2Us9mpOIiIiIgoMmRTPx8fF45plncPfdd6OxsRFr165FdnY2rr/++oHCj/Pnz+Odd95BVVUVFEWBIAh4+umnkZSUpEWIo/b+++8P/O9FixYNeowoiliwYAFeeukl9PT0oLi4GNOnT1cd889//tMn8X1ynZMnT/pkfgpMO0634LGdVeiW3AtMpo0Lx89X5iA12uqHyEbIaYO5YjcsZZv6b1hdwxeUySFxkHJXQsovhDN5JgtliIiIiIguY2dJi6o9PzcGFqPol1gMTcWI2P4QjO2VbmOuiDR0LfstnClX+yEyIiIiIiK6lMMlY9sp9f3EyknxED38e7yl5HXV9wCKaIRt0u0ezUlERERERMHtQHW7qp0eY0Wah886Wcq3qNqOtHlQQmI9mpOIiIiIgoMmRTMA8LnPfQ6yLOO+++5Db28vKioqUFmpfihGUfrXug0LC8PTTz8dFDujlJSUAAAsFguys7Mve9ykSZNU51xaNOMrra2tAACDgatx6UGP3YXHd1djc3Gz25goAP9vbiq+NCcVRjEAC0pcDqByH3DiVUSf2gTB3j3sKbI5Avac5ZDyCuFImwOImr2lEREREREFpYYuCUdr1Z+1lxXEaR+IIsN69AWE7X8cgmx3G5byVqN74aNQLJ6tWE1ERERERN7zXlU72i9Z6XnV5ATPJlUUWE+8rOqyZy+DEhrv2bxERERERBTUDlR1qNqe7jIDRy/MZ95SdUm5N3k2JxEREREFDU2fML/77ruxdOlS/P73v0dRURFOnDgxUCgjiiKmTp2KwsJCPPDAAwG/w8wnampqAADJyclDFqaMGzfO7RxvxpCQkACLxaLqlyQJ//jHPwAAM2bM8Oo1KfCcON+NHxWVo6bdfVeWcZEW/HxVDqanBuADZ4oC84l/Awd/A/Q0AQCGKulRjFbYs26ElLca9owFgMEyxNFERERERPRpu0tbVe1wiwHXZnj4RdMVEnqbEbHrOzCffdttTDGFonv+TyFNuIW7RxIRERERBZiiSxbsmjYuHOkxnq30bKx7H8a2ClWfbcpdHs1JRERERETBrVty4midegGweR4WzZir90Jw2gbaimCAPXupR3MSERERUfDQfFuG5ORkPPbYY3jsscfgdDoHdkKJjY2F0Rhcu0TY7XZ0dXUBAOLihl6ZNzw8HBaLBZIkoaWlZchjr9T+/ftRVFSECRMmICEhASEhIWhtbcWRI0fQ1dWFiRMnYvXq1Vc050hj9NUONqIoDtmmi1yygr8drMUz756FS3EfXzkpHt9flo0ISwD+fjn6ELrnh7Ccfn3IwxTRCEfGAtjz18CRvQQwhwEAuH9ScOLvt34w1/rCfOsL801a8/f9CTB2Xvc7S9RFM4vzYhFiMWl2fWP1Wwjb8W2Ife67YzoTp6FnxZOQY7L8/ll/rOSbhsdc6wvzrS/Mt74w36Q1Pd6jtPc58E5Fu6pvzdREj/+NocXqXWZc0dmQ06+DgUX0A/gepy/Mt74w3/rCfOsHc03+4O97FG+/7g/XdsAlX3wIymQQMDszxqP4rRXbVG3n+HkQwz3cOVOn+D6nL8y3vjDf+sFc6wvz3c+vT9EbjUYkJib6MwSP2GwXq8+t1uFX0rJarZAkSXWeN1x99dVoa2tDaWkpSktLYbPZEBoaivT0dFx33XVYtGjRFd803HfffSM6bv369aMJ+YpFRWm78nGwqGvvw0OvHsH7Va1uY+EWIx5dNwXrZqT6IbIRaC4HXr0baDx5mQMEIPN6YOptECaugTk0FmZNAySt8PdbP5hrfWG+9YX5Jl8LtPsTIDhf9zVtvTh+ycpsN8/KRExMjO8v7pSAXT8FDv5p8PHrvgHjoh8hyhiYn/qDMd80Osy1vjDf+sJ86wvzTb6mx3uUTaer4fzUQ2tmo4jb5+QiKsSDIvzuJqBc/eCa4dr/h5jY2NHPqQN8j9MX5ltfmG99Yb71g7kmLQTaPYqnr/uPamtU7dlZsRiXFD/6Ce09QPVeVZdp+u3afD+iA3yf0xfmW1+Yb/1grvVFr/kOwK0ngofdbh/43yPZJeeTYz59njfk5OQgJyfHq3NS4Cs6dh4Pv34MnTan29jM9Gg8+dkZGB8b6ofIRuDkRmDD/YC9y30s9Wpgym3A5JuByBTtYyMiIiIiGqO2HD+vakeFmHBdjgdfMo1UUwnw6peBhuPuY+HJwM3PADmLfB8HERERERGN2msfqR9aWzopybOCGQA48iIgOy62DRZg+p2ezUlEREREREFNURTsK21S9c3P83BHmNLtgLPvYlswABNWezYnEREREQUVzYtmysrK8I9//AMHDhxAfX09+vr6sH37duTm5g4cc+LECZw9exZhYWFYsGCB1iGOmNl8cQVcp9O9cOFSnxzz6fMC1dNPP+3vEOgyeiQnfvpmMV655AsqABAF4MHFeXhwcS6MhgDcPsvlAHb+BDj4R/cxcwSw7o/ApLXax0VEREREAY33J95RdExdNLNicjLMRh/eNygKcPjvwNbvq7+M+kT+TcDaPwBhGhTuEBERERF5kd7uUcobu3C0pkPVd9vMNM8mlWXgw7+p+6bcAoRylxkiIiIiois1lu5Rqpp7UNOm/k5hfr6HRTMnN6jbWfOBsDjP5iQiIiKioKJZ0Ywsy/jud7+LJ598ErIsQ1H6t3AXBMFt55WzZ89i9erVMBqNqKqqQmpqqlZhXhGr1Trwv20227DHf3LMp88LVHFxI7sxaGtr88n1RVFUbf/U0dEBWZZ9cq1gUny+Cw9vKsO5NvfXW0qkBY8V5uGqtEh0dXYMcrZ/Cd31CN/yAIznP3Qbc8VPgOGz/wLi+4vnmO+xjb/f+sFc6wvzrS+BkG9ul64v/r4/AQLjde+J2nab20NuC7IjfPYzE2ztCN31fZgrtrmNKQYz+m74EaRpdwN2AbD7Lm+jFez5ppFjrvWF+dYX5ltf/J1v3p/oj97uUV5874yqHR9mwpQEo0f/PuOZfYhoV8/bWXAbXD78mQUrf7/HkbaYb31hvvWF+daPQMg171H0x9/3KN583W87ql4ALD7chCSLc/SxO3oRXbodwqe6erKWwc57j1ELhPc50g7zrS/Mt34w1/oSCPkOhHsUzYpm7r33Xvz1r3+FoihITU3F3Llz8eqrrw567MqVK5GVlYXq6mq8+uqr+MY3vqFVmFfEbDYjIiICXV1daGlpGfLY7u5uSJIEYOQ3KsHA5XJpch1ZljW7ViByyQr+8UEdnnmvFi5ZcRtfMTEO31+SiXCLMSB/TqaaA4jY/g2Ife6/J7aCm9F342OIiR830Kf3fOsN860fzLW+MN/6wnxToNDydRhsr/ttJ5tU7agQI2amhfvk32CsPYSInd+EobvebcwZm4euZU/CFV/Qv7J0kAi2fNPoMdf6wnzrC/OtL8w3BYqxcI/ikhUUFTeq+lZMjIOgyPDkcqHHXlS1nXETYE+YDo8m1Qm+x+kL860vzLe+MN/6wVxTIAmG57z2V6qLWeZmRHn0UKe5YhcE58XFiRXBAFvmEij8vfQavs/pC/OtL8y3fjDX+qLXfItaXGT37t34y1/+AgD4wQ9+gOrqaqxfv37Ic26//XYoioI9e/ZoEeKopaX1bz9fX18/5Auorq7O7RyikajvlHDf+lP44zs1bgUzYWYRP1uZg0dX5SLcolkN3MgpMkI+/BMiN37BrWBGEc3oWvgoupc8DphC/BQgEREREZE+7CpVfx5fnBcLoyhc5uhRcjkQevC3iHrjc4MWzPRN/Tza79jQXzBDRERERERB4YOzHWjqdqj6Vk9O8GhOsfs8zFXq7/9sU+4CBC/foxARERERUVCxO2V8eLZT1TcnK9qjOS3lW1VtR9pcKCGxHs1JRERERMFHk6fsn3vuOQD9O8g8+uijIzpn9uzZAIDi4mKfxeUNBQUFOHXqFCRJQmVlJfLy8gY97uTJk6pzxgqDweCTeUVRHLKtFztPN+PR7ZXotDndxqaOC8djhflIi7b6IbLhCbYOhO74JsxVu93GXJFp6Fn5NFxJU2EA8603zLd+MNf6wnzrC/NNgcpX9ydAcL/uz7b14XRDr6pv+cR4r/68xI5zCNv2dRjrP3Ybk63R6F3yazhylsF3GfKuYM43XRnmWl+Yb31hvvWF+aZANRbuUbacVBfgFySGoSA5wqM5radehaBcXIhOMYXCMfFmn/68ghnf4/SF+dYX5ltfmG/9YK4pkAX6c17HznXB5ry4q4wAYF52zOjjdvTCfGavuit/Fe89PMT3OX1hvvWF+dYP5lpfmO9+mhTNHDhwAIIg4Mtf/vKIz/n0Di6BbPbs2diwYQMAYO/evYMWzciyjH379gEAwsLCMHnyZC1D9KmYmBhNrhMVFaXJdQJFj+TEf28qxvoPa9zGRAF4YHEevr44F0ZDgL5x1R0B1n8BaD/jPpa3HIabn0Fk6OVXbdBbvvWO+dYP5lpfmG99Yb4pUGh1fwIE1+v+pSPqh9ziw81YMi3De/cTx14Bir4JSJ3uY1nzId78LMIjx3nnWn4STPkmzzDX+sJ86wvzrS/MNwWKYL9H6bI5sKesVdV3x+wMz/5dLidwcr2qS5h2B2KS00c/p87wPU5fmG99Yb71hfnWD+aaAkmgP+f18QH1c4LTxkcja1zi6AMpfgtw2i62BQPCZn4GYWHa3avpAd/n9IX51hfmWz+Ya33Ra741KZppbGwEAGRmZo74HJPJBABwOt132Agkubm5mDhxIk6dOoW9e/di4cKFyM/PVx2zefNm1NbWAgBuuukmGI2a/NgpSB2racc3/u8Iqpp73MZSo0PwxGevwqzMAN0mVFGAj14Atn4PcEnqMUEEFv0QuP6bgE6rFImIiIiI/GHzsfOq9oopyd4pmJG6gC3fAY6+7D4mGvs//1/3DUDkim1ERERERMFo6/F62BwXV3k2igLWXuVhQXzZdqCrTt13zZc8m5OIiIiIiMaEfaVNqvaCvHjPJix+Q93Omg+ExXk2JxEREREFJU2qN8LCwtDe3o6mpqbhD76gpqZ/h43YWN8WB5w+fVq1m01n58WVcevr6/HWW2+pjl+4cKHbHP/xH/+BRx55BHa7HY8++ihuvvlmTJ48GXa7Hfv378euXbsAACkpKSgsLPTJv4PGhm0nzuOBlz6GU1bcxgqnj8Oj66YgKsTkh8hGwN4LFH0LOPqS+1hoPHDbX4DshZqHRURERESkZxVN3Th1Xr0DzOppXtj1pfYj4NUvA21V7mMxWcCtfwHSrvb8OkRERERE5DevHq5RtRcWJCA+3OLZpB/+Vd1OvRpIme7ZnEREREREFPQaOm04Xd+l6ltQkDD6Ce09QOkOdd/kdaOfj4iIiIiCmiZFM9nZ2Th8+DBOnjyJpUuXjuicrVu3AgAmT57sy9Cwe/du7Nu3b9CxkpISlJSUqPoGK5rJysrCQw89hKeeegp9fX14+WX3VXZTUlLw8MMPIyQkxCtxB4q2tjafzCuKomr7p46ODsiyPMQZwa9HcuHb64+6FcyEmkV8f2k2Vk9OgGzrRpvtMhP4kdhWhbAt98HYfNptzJlyNbpX/hFKeDJwmdeLHvOtZ8y3fjDX+sJ860sg5Fur7eMpuPjq/gQIjNf9aLx66JyqHR9mQm6UMPqflSLD8tGzCDnwvxBk951hpYm3oHfhzwBz+GU//weDYM03XTnmWl+Yb31hvvXF3/nm/QldTjDfo9S22/B+Vauqb3lBjEf/JrHjLCLLd0P4VF/PxM/AHsT3Dlrw93scaYv51hfmW1+Yb/0IhFzzHoUuJ5Cf89p2vFHVDrcYkB4++phNZUUId/YNtBXBgI6UG6Dw/sNjgfA+R9phvvWF+dYP5lpfAiHfgXCPoknRzLJly/DRRx/hj3/8Ix588EGIojjk8SdPnsQLL7wAQRCwcuVKLUL02DXXXIPf/OY32LJlCw4fPozW1lYYjUYkJydjzpw5WLFiBSwWD1ffCkAul0uT68iyrNm1/GXziQZ029X/xikpYXh0VS7Soq0B+39I5ortCN/1XYiObrexvulfQs+87wIGE3AF+dNDvuki5ls/mGt9Yb71hfmmQKHl6zBYXvfbTzWr2ovzYwFFvpKP5wPE7gaE7/oWzDUH3MZkUzh6Fv4cUsGa/o4g+NlciWDJN3mOudYX5ltfmG99Yb4pUATzPcqbxxtU7UirAddlRnp0DcuxlyDg4sJhsjkCfTkrx9z9g6/xPU5fmG99Yb71hfnWD+aaAkkgP+f1boW6aP/ajCgIo/w+AwBCSzar2o60uXCao3j/4QN8n9MX5ltfmG/9YK71Ra/51qRo5utf/zp+//vfo6KiAv/5n/+JP/3pTzAaB7/0zp07cc8998BmsyEuLg5f+cpXfBrb/fffj/vvv98rcyUkJOCLX/wivvjFL3plPtIPRVHwyhH1F1BzMqPwxM35MBqGLjLzG5cDoQceR+iRv7gNyaZwdN/4K9hzb/JDYEREREREBAAVzb2obOlT9S0riBvVXOaqXQjf/X2INvcV2BxJV6Fr2e8gR6WPam4iIiIiIgosiqKgqFhdgL+sIA5mowffV7jssJ5ar+qSJtwCmEJGPycREREREY0JLlnB+2c6VX1zM6Muc/QIOHphPrNX1SXxGSYiIiIiXdOkaCYpKQnPPPMMvvCFL+Avf/kLtm/fjlWrVg2MP/nkk1AUBe+99x5Onz4NRVEgiiJeeOEFhIeHaxEikV8dqe1CRbP6YbbPX5MSsAUzYncDIrZ/HabzH7qNOWPz0HXTn+CKyfZDZERERERE9IldJepV2RLDTZiWeoX32E4bwt77JUKOv+g2pEBA3zX3oXfW1/t3lyQiIiIiojHhaG03ajskVd/qKQkezWmu3AGxT32PYptyp0dzEhERERHR2HCqoQcdNqeqb44HRTPmM29BcNoG2opggD172ajnIyIiIqLgp0nRDAB87nOfg8lkwr333otz587h2WefhSAIAIA///nPAPpXrgKA8PBw/P3vf1cV1lBgMhgMPplXFMUh22PNq0ebVO3xMVbMzY6BeOF3JJAYaw4gbMuDEPua3cakCbegd/GjgCkUV/LK0Fu+9Y751g/mWl+Yb31hvilQ+er+BAi+172iKG5FM0snxMN0mV1fB+VyIHzTl2CqPeQ2JIenoGf57+BMm3NFn/2DRbDlm0aPudYX5ltfmG99Yb4pUAXrPUrRSfXf/zNjQzAtNXLge73RCCl+WdV2pM4GEiaMyfsJb+N7nL4w3/rCfOsL860fzDUFskB9zuvgJbvMZMeFIDUmdNTxWCu2qdrOtLkQwz1bCIAu4vucvjDf+sJ86wdzrS/Mdz/NimYA4I477sCNN96IP/3pT9i0aROOHDkCp/NilfjkyZOxZs0afOMb30BiYqKWodEoxcTEaHKdqCgPttwMcE1dEvaUtqj6vjgvC3GxsX6K6DJkGXjvCWDPzwFFVo8ZzMBN/wPL1ffA4oVCn7Gcb3LHfOsHc60vzLe+MN8UKLS6PwEC/3V/ur4TVa3q3SxvmZV1ZT+jj18EBimYwcRCiIW/R0RogN2z+FCg55u8h7nWF+ZbX5hvfWG+KVAE4z2KzeFyK8C/fVY6Yj35zqKpFKg5qOoyzblX05/PWML3OH1hvvWF+dYX5ls/mGsKJIH6nNcH506p2osmJo8+VnsPULVH1WW66nbef/gQ3+f0hfnWF+ZbP5hrfdFrvjUtmgGAuLg4PPLII3jkkUcgyzJaW1vhcrkQGxsLk8mkdThEfrf+w3NwuJSBtsUo4rar0/wY0SD62oA37gNKt7qPRaUDd/wdSJ2pfVxERERERDSozUfPq9rjoqyYMT565BMoCnDoGXWfMQS46VfAzC8CAbgrJhEREREReW57cT26pIsL3gkCcMvMVM8m/ehv6nZoHDCx0LM5iYiIiIhoTOjodeDjs22qvvn5HuwKU7YDcH5qUTHBAEzg/QcRERGR3mleNPNpoigiPj7enyEQ+ZVLVvCvg2dUfWumj0N0qNlPEQ3i/FHg33cD7Wfcx/KWATc/C+hohWkiIiIiokCnKAqKjquLZlZNS4EoXkGhy9kDQP1xdd+tfwYmrvZChEREREREFKheO1yral+XE4+UqJDRT+joA478S9034/OA0TL6OYmIiIiIaMx4r6IZ8sW1hmExirg2y4PnkIo3qNtZNwBhcaOfj4iIiIjGBL8WzVDwa2trG/6gURBFUbX9U0dHB2RZ9sm1/OmtslbUddhUfWsnx/rs53pFFAXm4n8j9K0fQ3DZ1UMQYJv7LdhmfQ2QBEDyLF695Jv6Md/6wVzrC/OtL4GQb26hToPx5efoQHjdj1RJQw+qmntUffMzw6/o5xP2zlP4dCm/KyoDnUlzgUC4V9FAMOWbPMNc6wvzrS/Mt774O9+8P6HLCbZ7lMYuO94ta1L1LS+I9ujfYT75KsJsHaq+jtxbIOvk3sIb/P0eR9pivvWF+dYX5ls/AiHXvEehywnE57x2Hq9Rta8eH4m+7k70Xeb4ITl6EV26HZ9eQqwncxnsvP/wqkB4nyPtMN/6wnzrB3OtL4GQ70C4R9GkaMbhcKCsrAwAkJOTA4tFvXqUzWbDD3/4Q6xfvx7Nzc3IysrCfffdhwcffFCL8MgDLpdLk+vIsqzZtbS0/rB69edJyWGYkBji/3+row/h+34C6+nX3IbkkFh0LXsCjvHXoX+pB+/HOlbzTYNjvvWDudYX5ltfmG8KFFq+DgP5db/tZKOqPS7SckX3GWJXHUwV21V9fVM/D5ePPv8Hg0DON3kXc60vzLe+MN/6wnxToAi2e5SiEw2qFZ5DTSIW5kR7NK/5mHqXGfv4G+CISAP4OzpqfI/TF+ZbX5hvfWG+9YO5pkASaM95KYqC/VXtqr5rMyJHHae5cjcE58VyG0UwwJa1BAp/B32K73P6wnzrC/OtH8y1vug135oUzbzxxhu48847ERsbi5qaGrfxm2++GTt27ICi9P8l/vTp03jooYdQUlKCP/zhD1qESKS5c202HKhWr652+1VJformIrG9GpFb74ex5bTbmCN5JrpW/B5yeIofIiMiIiIiouEoioKdJa2qviUFsRAE4TJnuLOeeAmCcvEPJIopFNLE27wWIxERERERBR5FUbC5uFnVd2N+LELMhlHPaWg6CVPDx6o+25Q7Rz0fERERERGNLVUtfWjosqv65mVFj3o+S/lWVduRNgdKSNyo5yMiIiKisUPU4iLbt2+HoihYt26d2y4zRUVF2L69fwXbtLQ03HzzzUhNTYWiKHj66aexf/9+LUIk0txrRxtU7UirAUsL/HujZq7Yjuj1awctmOmbfg86bn6JBTNERERERAHsVEMPajskVd8V3Wc4bbAW/5+qyzbhFiiWSG+ER0REREREAep0Qy8qW/pUfasmJ3g0p7X4ZVXbFZYEe+Zij+YkIiIiIqKx49LFhpMizMiMtY5uMkcfzNV7VV1Szk2jDY2IiIiIxhhNdpo5fPgwBEHAggUL3Mb++te/AgDy8/Px/vvvIyIiAh0dHZg3bx5Onz6NP//5z5g3b54WYRJpxuaQ8eaJJlVf4eQEWE2a1LG5czkQevA3CP34z25DsikM3Tf+CvbclX4IjIiIiIiIrsSlu8ykRVswISl0xOdbSjdBtLWp+mxT7/ZKbEREREREFLg2F6u/s0iJNGPm+IhRzyfYu2Ep2ajqkybdARhMo56TiIiIiIjGlkuLZuZlRUEQhFHNZT7zFgTnxYUAFMEAe84yj+IjIiIiorFDk6KZxsZGAEBubq6qX5Zl7N69G4Ig4MEHH0RERP8f36OiovDAAw/g/vvvx4EDB7QIkUbJYDD4ZF5RFIdsB7vdJ1vQaXOp+m6fmeKzn+dQhJ5GhG15AKa6993GXHH56F71NOSYHPgysrGeb1JjvvWDudYX5ltfmG8KVL78PB0Mr3tFUbDrkqKZZRPiYTSO8NZfURBy7O+qLkf6DUBCgU/vBwJRMOSbvIO51hfmW1+Yb31hvilQBcs9isMlY/vpFlXf6imJMI30XmIQ5vLNEB09A21FEGGfeqdfvgcJdnyP0xfmW1+Yb31hvvWDuaZAFkjPedkcLnxc06Xqm5cdO+oYrRVbVW1n2lyI4YmjmouGxvc5fWG+9YX51g/mWl+Y736aFM00NzcDAEJCQlT9R44cQWdnJwRBwKpVq1RjU6ZMAQCcO3dOixBplGJiYjS5TlRUlCbX0crrx0+q2jfkxeOqnHHaB1L1DvDql4CeRvexaZ+BYfXvEGUO0zyssZZvGhrzrR/Mtb4w3/rCfFOg0Or+BAjM1/3HZ9twvlNS9d02OxsxMZEjm6D6PaD5lKrLdP2Dmv5cA1Ug5pt8g7nWF+ZbX5hvfWG+KVAEyz3KjuJ6tPc5VX13zctFTMwovx9QFKD4/1RdQv4KRKdPHm2I9Cl8j9MX5ltfmG99Yb71g7mmQBJIz3ntK22C5JQH2gZRwLLpGYgKGcXulPZeoHqvqss0/TZ+v6ERvs/pC/OtL8y3fjDX+qLXfGtSNGOxWOB0OgeKZz7x9ttvAwDS0tKQkZGhGvtk1xmXS70bB1GwO1bTjqPn2lV9d8/JGPxgX5FlYP+TwO6fAYqsHjOYgRW/Aq75EjDKLU+JiIiIiEh7RcfOq9rZ8WGYmBIx8gkOPaNux2QBuUu9EBkREREREQWy1w7XqNpXZ8QgK96DBbVqPwIajqv7rvnS6OcjIiIiIqIxZ19Jk6o9Y3z06ApmAKBsB+DovdgWDMDEQg+iIyIiIqKxRpP9dT4piDl06JCqf9OmTRAEAfPnz3c7p7W1FQCQkJDg+wCJNPTiwTOq9rgoKxZP0HA70L524N+fA3b91L1gJiod+NI2YNaXWTBDRERERBREZFlB0XF10cyqaSkQRvq5vv0ccHqzum/2VwGdbstLRERERKQXbT127Dmt3o3+1plpnk364V/V7eh0IGexZ3MSEREREdGY8naZumhmfr4Hzwie3KBuZ90AhMWPfj4iIiIiGnM02Wlm0aJFKC4uxlNPPYWbb74ZEydOxJtvvom33noLALBy5Uq3c06cOAEASElJ0SJEGqW2tjafzCuKomr7p46ODsiyPMQZwaHT5sTGI3WqvpunJaKrs0OT6xsaTyBsy9dg6DjrNubIWIie5b+DEhID+CivlzNW802DY771g7nWF+ZbXwIh39xOnQbjq/sTIDBe90M5UtOJ8x02Vd/8zLAR/0ys7/0RIZ8qqldMoWjPWqX5vUGgCPR8k/cw1/rCfOsL860v/s4370/ocoLhHuX/PjoPh0sZaJsNAq5PDxl17IKtA1HHX8Wny/f7Jn0Gto7OUc1H/n+PI20x3/rCfOsL860fgZBr3qPQ5QTKc17nOyWUN3ar+mYkW0YXn6MP0SXbVPcgPZnLYNfp9xtaCIT3OdIO860vzLd+MNf6Egj5DoR7FE2KZh588EE899xzaGxsxJQpUxATE4O2tjYoioK0tDTceuutbufs2LEDgiBg2rRpWoRIo+RyuTS5jizLml3LlzYcrYfkvPhGYxQFFE6J0+TfZjm5HuH7fgLBZVf1KxDQe+1D6Lvma4AgAgHwcx4r+aaRYb71g7nWF+ZbX5hvChRavg4D7XW/41Szqp0Va0VmjGVkMTptsBx/WdVlm3ArXMawgLg/CASBlm/yHeZaX5hvfWG+9YX5pkARDPcom46rd5lZkBuDUJMw6titJ1+B4JIG2opoRO+E26Dwd9Jr+B6nL8y3vjDf+sJ86wdzTYEkUJ7zer9KXdASFWJEfkLIqOIzV+6G4OwbaCuCAbasJbwH0RDf5/SF+dYX5ls/mGt90Wu+RS0ukpeXh3/+858IDQ2FoihobW2FoiiIjo7Gyy+/DLPZrDq+vr4eO3fuBAAsXszt2mlskBUFrx1Vf/m0OD8W8WHmy5zhJU4bwnd/DxF7HnYrmJGtsehc8wL6Zj3QXzBDRERERERBR1YU7CptUfUtnRAHQRAuc4aapfRNiFK7qs827W5vhUdERERERAGqsrkXJxt6VH2rJieMfkJFgfWEuiDfnr0MSmj86OckIiIiIqIxp7nHoWpPSgqDQRzZdxqXspRvUbUdqddCCYkbdWxERERENDZpstMMANx+++1YsGABioqKUF9fj5SUFKxZswaxsbFuxx47dgx33XUXAGDlypVahUjkU++f6cTZNpuq77bpiT69pthejchtD8DYfMptzJE0A10rfg85YpxPYyAiIiIiIt86WtuFpm71F0xL8t3vtQelKAg5+ndVlz39BrhicrwVHhERERERBaiik+odK+PCTJiTGTXq+Yx178PYVqHqs025a9TzERERERHR2GR3yap2iGmUC/06+mCu3qvqknL5rCERERERudOsaAYAEhMTcc899wx73LJly7Bs2TINIiLSzqtHGlTt7LgQzEiL8Nn1zJU7EL7rOxDt3W5jfdP/Az3zvgcYfLzLDRERERER+dyO062qdk58CLLjQ0d0rrHufRhbTqv6+qZ90WuxERERERFRYHLJCrZcUjRz08Q4GEe5ujMAhJx4SdV2RmfBkTpn1PMREREREdHYJDnVRTMW4+iKZsxn3oLg7BtoK4IB9hw+c0hERERE7jQtmiHSq4YuCW9XtKn6br8qCYIw+i+fLkt2IvTAbxD68fPuQ6YwdC/+Jex5q7x/XSIiIiIi0pxLVrCnVF00s7QgbsTnX7rLjCsqA46MBV6JjYiIiIiIAtcHZzvcdqxcPTlh1PMJvc0wV2xX9dmm3AX44nsQIiIiIiIKananomqPtmjGUr5F1XakXgslZOTfkRARERGRfrBohkgDbxxtgvyp+71Qk4ibJnn/Jk3oaUTk9m/AVPe+25gzNg9dN/0Rrpgcr1+XiIiIiIj84+OaLrT0qh90W1oQO6Jzxc5amKt2qvr6pt0NCKP7coqIiIiIiILH5mL1LjMFiaHITRjZjpWDsZ56DYJ88d5EMZghTbhl1PMREREREdHYZbtkpxnzaIpmHH0wV+9Vddlzb/IkLCIiIiIaw1g0Qx4xGAw+mVcUxSHbwcThkrHheKOqb9WUBESFWrx6HWPNQYRtfQBib7PbmFSwFr2LHwPMYfBNxjwzlvJNw2O+9YO51hfmW1+YbwpUvro/AQL3db/rkl1mChLDkJ0QPqJzQ4pfgqBc/GJKMYXBMfkOn/4cg0Wg5pu8j7nWF+ZbX5hvfWG+KVAF6j1Kt+TEW2Vtqr41UxNHH68iw1r8sqrLnr8aYhhXePYGvsfpC/OtL8y3vjDf+sFcUyALlOe8HLJ6p5kQk+GKYzNVvg3B2TfQVgQRzryV/I5DA3yf0xfmW1+Yb/1grvWF+e7HohnySExMjCbXiYqK0uQ6vrD5WB2ae9QrP395QT5iYiK9cwFFAd57Etj9M0BxqcdEE3DTr2C55suwCIJ3rqeBYM43XTnmWz+Ya31hvvWF+aZAodX9CRAYr3unS8beSx90m5E2sp+DvRc4+W9VlzDjc4hJzvBmiGNGIOSbtMFc6wvzrS/Mt74w3xQoAvUe5f+z9+dhcp3lnfh9V1XvWlurJe+WLe+yTQzYLAazY+xgwDa7DQQmARKSTDIkuSbhze83TJZ5MzNJgOQNYTUEAjisBpPYxlisYfNuI2+yZMuytbdaUnd1d9V5/xBu9emWWrLUdaq6n8/nunKln6fOqbpb3+rjfuhz1/MfP12f+2TntnIpXn/hydE7+zA/7OvBmyJ2Ppqb6nzOu6OzwO8/Ja5xaZF3WuSdFnmnQ9a0kla5zysr5W9ZnDe75+nXtu7G3LB0wvNj/tEnP73nYEq4zqVF3mmRdzpknZZU89Y0Aw32mR+ty42fdcKCOO2oKWqYGdgR8dX3RKz55sTH5h0bceWnI475tal5LQAAoKX8+OFtsXX3UG7u0lXLDu3ku74UMZBvuIln/ZcpqgwAAGhl//aLDbnxC09dHIsOt2EmIuJnn8yPl54VccwzD//5AACAGa06kv9Q4M72p7k7zNCeiPv/PT935uVHVhQAADOaphlooPuf7I//XLstN/eWC6fok5s33hnxxasjtq+d+NjJL4l47T9H9CyYmtcCAABazjfvejw3PvvoeXH8wlkHPzHLIv7zn/JzJ78kYtEpU1gdAADQih7dtid+Mu7vFq97xjGH/4R9GyLW3JCfO//tEaXS4T8nAAAwow0O13Pjzrby03uCB2+MGN6zb1wqR5x22RRUBgDATKVphiOyffv2gx90GMrlcm77p76+vqjX65Oc0Zo+fuvDufGCnva44OjOI/5367jni9Fzy59FqVbNzWdRisELfj8Gn/XbEdVSRLUx+Uy1mZI3h0be6ZB1WuSdllbIu6jt45leGrU+iWiN9/1Yw7V63HDXxtzci06Zf0j/Bm2P/SjmbLonN9d/5ptjpIH/ftNNq+VN48g6LfJOi7zT0uy8rU84kFZco/zLDx7Njed2tcUzjuo47Fq7fvzR6M72fUp01t4TO459WYT1xZRp9jWOYsk7LfJOi7zT0QpZW6NwIK1yn9fuwfz9TvXh6tOqbdZtX4iOMePhYy6MXcNt1iEFaYXrHMWRd1rknQ5Zp6UV8m6FNYqmGY5IrVY7+EFToF6vF/ZaU2X3UC2uv3tTbu7VZy+OcmSH/72MDMbsW/88uu770oSH6l290f+y/xvDxz0/op5FxPT69xprOubN4ZN3OmSdFnmnRd60iiLfh81+3//n2h2xY2AkN/fiU3oPqaae2z6ZG9fmnRDVY54X4ef4gJqdN8WRdVrknRZ5p0XetIpWW6NkWRbfGPd3i5eftiAqpcP8u0V9JDru/tfc1ODKX49aW4/1RQO5xqVF3mmRd1rknQ5Z00pa5T6v8TvNtJefRm3DA9G+9ju5qeqKV/g5ayLXubTIOy3yToes05Jq3ppmoEFuuHdL7B7at8grlyJeu2rJYT9fuW9dzL3ht6Nty70THhteel70v+Lvoz5n+WE/PwAAMH3cuGZbbnzmUbNi+bzOg55X3rkhOtbelJsbWPXWiFJ5SusDAABaz+0b+mNDX/4TnV915uLDfr6OR26Jyu4ncnODZ73psJ8PAABIQ3Uk3zTT2Xbof6PoWHdrlEYGRsdZqRzVk142ZbUBADAzaZqBBsiyLP7tjvyntT3vpPmx7BBuYtufjodvjNk3/bcoD/VPeGxg1dWx+7l/ElHp2M+ZAADATDNcq8ctD+SbZl566sJDOrfr7s9GKdv3x6h6+6yonv66Ka0PAABoTdffsyU3Pn5BV5x51KzDfr6uuz+XGw8vPSdqi8887OcDAADSML5ppqOtdMjndj70rdx4+OgLIutZNCV1AQAwc2magQa44/Fd8cDmPbm5K89d+vSfqD4SPT/+39Hzi49OeChr74n+i/8ihlZedrhlAgAA09B/rtsZ/dX8VrkvOXXBwU8cHoiue76Qm6qe/rrIOuZMZXkAAEALGhyux01rtubmLj1zUZRKh35z2ljlvvXRvv57+dc40y4zAADAwQ3V8k0zXYe608zwQHSs/U7+uU5+5VSVBQDADFZ408wdd9wR3/ve9+Lhhx+O/v7+qNVqkx5fKpXi4x//eEHVwdS47vYnc+Nj5nfGs0+Y97Seo7R7c8z999+N9sf/c8JjI70nR/8rPxK1BScfUZ0AAMD0M/5Gt1XLZ8dRcw++q2Xn/V+LcrUvNzdw9tVTWhsAANCavvvgttg9tO/GtFJEXHLG4X8ac9c9X4hSZKPjesecqJ7yqiMpEQAASMSEnWYqh9Y007Hu1iiNDIyOs1I5qie9bEprAwBgZiqsaWbNmjXxjne8I3784x8f8jlZlmmaYdrZtns4blqzLTd3xTlLo/w0Pq2tbcNPYu6/vy/KezZPeGzwlMti18X/M6Jj1hHXCgAATC9DI/X47oPbc3MvPXXhwU/Msui+49P55zr+BVHvPXEqywMAAFrUN+/Zkhs/8/i5sXTOwZvv96s2FF33fTE3VT3ttRHt3YdbHgAAkJDqSJYbdx7iTjOdD30rNx4++tmR9Rz+hwEAAJCOQppmNmzYEBdddFFs2bIlsmzvL72zZ8+O3t7eKJcPcXtFmCa+dvemGKnvW9x1tpXi0rMOcYGWZdF928ei50f/3yhl+V2YsnJ77H7ef4/Bs98S8TQacAAAgJnjx+v6Ylc1v1Z48coFBz2vfcOPo23b/bm5gVXXTGltAABAa9pVHYn/XJffdfLSMxcf9vN1PPwfUR7If3jY4FlvPOznAwAA0pFl2YSdZg6paWZ4IDoeuSU3NXTyJVNZGgAAM1ghTTP/83/+z9i8eXOUSqV45zvfGX/4h38YK1euLOKlabBKpdKQ5x3fTDVdmqtq9Sz+7Y5NubmXn7YoFs7uOqTzu37w19H9s3+cMF+fvTx2veojUTvqvGjMv3hzTde8OTzyToes0yLvtMibVtWo9UlE67zvx+9qed4xc2LZ/IN/mnP3XdfmxrX5J0b9xBdGpeTnd39aJW8aT9ZpkXda5J0WedOqWmWNsmn3YNTzH+QcLzl10WHX133P53Pj4aOfFbH4tBn594tW4BqXFnmnRd5pkXc6ZE0ra4X7vIbGNcxERHR3th20tvaHvxel4T2j46xUjpFTXtnQdRf75zqXFnmnRd7pkHVa5L1XIU0z3/72t6NUKsXVV18dH/3oR4t4SQrS29tbyOvMmzevkNc5Ujfd+2Q8sXMoN/eOF6yM3t75Bz95+yMRP/+nifMrXhzl1/5zzJ21cEpqnA6mS95MDXmnQ9ZpkXda5E2rKGp9EtGc9/3gcC1ufXB7bu7yZxx38O97+7qIh2/KTVUufHf0LkhnjXGkXOfSIeu0yDst8k6LvGkVrbJGybbnb0qb09UWy5cuOrwX2nx/xGM/zk21X/CbhX6vqXONS4u80yLvtMg7HbKmlbTCfV59A8MT5pYs7I3eeQf5gLB1N+aGpROeF/OPPuWw6mNquc6lRd5pkXc6ZJ2WVPMupGnm8ccfj4iIq6++uoiXg6b5zI/X5cZnHz0vzjnmEC8u//lPEdnYP1yVIl74xxEX/beIsk9FAACA1N16/+bYPVQbHZdKEa8866iDn/jTj+XXGh1zIs55YwMqBAAAWtH4m9LmdrUf/pP9/JP5cc/CiNMvO/znAwAAklIdqU2Y62o7yH1RwwMR9/97fu6My6euKAAAZrxC9td5qkt9/vz5RbwcNMW6rbtj9QObc3NvveD4KJVKBz95sC/iF9fm5579W3ubZjTMAAAAEXH9nRtz42efuCCWzO2a/KSh3RG/+HR+7rw3R3TNneLqAACAVrVzcCQ3ntd9mE0zwwMRt/9Lfu68t0S0dR5mZQAAQGqqw/UJc53tB7mF8YEbI4Z37xuXyhGn//oUVwYAwExWyE4z559/fnzrW9+K+++/P84777wiXpKCbN++vSHPWy6Xc9s/9fX1Rb0+cdHUSj5x6yORZfvGczor8bzjuw/p36jzF/8cPUO7RsdZqRw7T39T1Bv079tqpmPeHD55p0PWaZF3Wloh76K2j2d6adT6JKL57/uB4VrcdO8TubmLT55/0O+5467PxazBvtxc36mvT2atcbianTfFkXVa5J0Weael2Xlbn3AgrbJGeWJrfk0wq/3wauu497qJ64uTX2t90WDNvsZRLHmnRd5pkXc6WiFraxQOpBXu89q0dc+EuT39O6NaPvCHEs+6/QvRMWY8fPQFsWu4LcJapCla4TpHceSdFnmnQ9ZpaYW8W2GNUkjTzPve97745je/GR/96Efj9a9/fREvSUFqtYlbZjZCvV4v7LUOx+BwPb5656bc3GVnLY6O8iH8G9VHovO2T+Smhk56eQzPXh7Rwt9zI7V63kwteadD1mmRd1rkTaso8n1Y9Pt+9QNbY2DMp6+VSxEvXDF/8hqyLDpv/2Ruauj4F8bw3OOSXWscLte5dMg6LfJOi7zTIm9aRausUfoGhnPj2Z2Vw6qt4878LjNDxz4/huccY31RMNe4tMg7LfJOi7zTIWtaSSvc5zUwlN8Js61cisjqB15WjAxG+9rv5KaqJ7/Sz1ULcZ1Li7zTIu90yDotqeZ9kL0Np8ZLX/rS+KM/+qO45ZZb4t3vfncMDw8f/CSYRm66f2v0DeYXda87Z8khndvx0Lejsmtjbm7g3HdMWW0AAMD0d9Oabbnx+cfOjYWz2ic9p33Dj6Jt2wO5uYFV10x5bQAAQGvrr+b/fjGn8+l/pl5l873R/uRtubnBs954RHUBAADpqY7kP9W8s23y2xc71t0apeF9u9NkpXJUT3pZQ2oDAGDmKmSnmWuvvTZOP/30eM5znhMf/ehH4xvf+EZcccUVcdppp0VPT89Bz7/66qsLqBIO33W3P5kbP/v4uXH8gu6Dn5hl0X3bx3NTw0vPi5Flz5jK8gAAgGlsYKgW33t4R27uJacuPOh5XXd8OjcemX9iDB/3vKksDQAAmAZ2DuY/NXBuV+VpP0fXPZ/PjWuzlsbQCS86oroAAID0TGyaKU16fOeD38yNh49+dmQ9i6a8LgAAZrZCmmbe9ra3Ram07xfcjRs3xoc+9KFDOrdUKmmaoaXd98TuuHvj7tzclecuPaRz2574ebRvujM3N3Deb0xZbQAAwPT3vYd35P6IVClFvOiU3knPKe98NDrW3pybG1x1dUSpkA1nAQCAFtI/mN9pZvbT3GmmNLQrOtd8LTdXPeOqiMrku18CAACMN/R0dpoZGYyOR27Jn3/yJY0oCwCAGa6QppmIiCzLinopKNR1d+R3mVk6pyOet2LyG9ieMn6XmdqcY2LopJdOWW0AAMD0d+OarbnxM4+fF/N7Jr85reuuz0Yp9q3D6+2zo3raaxtSHwAA0Nr6q0e200zn/V+P8vC+Dw/LSuUYPOOqKakNAABIy+C4ppmOSZpmOtbdGqXhPaPjrFSO6kkva1htAADMXIU0zaxdu7aIl4HC7RwciW/fl7+B7TWrlkRbefKtQyMiyn3rouPhG3NzA+e8LaJcWC8bAADQ4nYP1eKHa3fk5l5y6oLJTxreE133fjE3VT3jisg6Zk9xdQAAwHSwc9xOM3O7nsbfIbIsuu7+XG5q6IQXRX3O8qkoDQAASMxQLf/B25PtNNP54Ldy4+Gjnx1Zz6KG1AUAwMxWyN35xx9/fBEvA4W7/p7NUR3zCQiVcikuP3vxIZ3bfcen8p/83DE7qmdcMeU1AgAA09f3Htoe1ZF964ZKuRQXnzx500zXmq9GubpzdJxFKQbOfmvDagQAAFpbfzXfNDO789D/PNj25B3RtuW+3NzgWW+ckroAAID0VMftNNNZOUDTzMhgdDzyndzU0MmXNKosAABmuAO3agOTyrIsrrt9U27uRaf0xqLZHQc9tzTYF133XZebGzzj9ZF1zJnSGgEAgOntxjXbcuNnHz835nVPcoNblkXXndfmpoaPf2HU55/QgOoAAIDpoH+wlhvP7aoc8rnjd5mpzTkmho99/pTUBQAApGdC08wBdprpWHdrlIb3jI6zUjmqJ72sobUBADBzaZqBw/TT9Ttj/fbB3NwV5y49pHO77v3XcQu7SgyuumZK6wMAAKa3XdWR+OHaHbm5l526cNJz2h/7YbRteyA3N3COtQYAAKRquFaPwXE3pc09xJ1mSoN90fnA9bm5wTPfEFE+9KYbAACAscY3zXS0lfZ7XOeD38qNh5c/K7KeRQ2rCwCAmU3TDBymL93+ZG580sLueMYxh7BTTG04uu7If/Lz0MmviPrco6eyPAAAYJq79cHtMVzLRsdt5VK84OTeSc8Zv8vMyPyTYvjY5zakPgAAoPXtHLfLTETEnK5Da5rpXPPlKNWqo+Os3BaDZ1w5ZbUBAADpGTqUnWZGBqPjke/kzzvlVY0sCwCAGe7Q/lfxQ/SiF70oIiJKpVLcfPPNE+YPx/jnorVUKo35NLFyuTzpuNme3FmN1Q9uz81d9Yyjoq3t4D9S7Q9cH5XdT+Tmqs94V8P+LaeDVs+bqSXvdMg6LfJOi7xpVY38nboZ7/ub7s+vOZ5z4vyYP6vzgMeX+9ZHx9r8+nno3LdFpa29IfXNZK5z6ZB1WuSdFnmnRd60qlZYo+wZHpowN7+nIyqVg/ycZFl03/353NTwipdHec7Sp1coR8w1Li3yTou80yLvdMiaVtYK93kN5Xtmoqu9MqGu9rXfi9LwntFxVirHyCmvTPreqlbiOpcWeadF3umQdVrkvdeUNs1897vfjYi9jS7j50ulUmRZtp+z9u+p48c/F62lt3fyTzmeKvPmzSvkdQ7VJ392f4z5wOfo6ajEm597SszpOsjNaFkWcecn8nPHXhBzT7946oucxlotbxpL3umQdVrknRZ50yqKWp9ENP5937dnOH78yI7c3GvOP27y7/EnfxMRYxYqnXOj58J3RE/nIeyIyaRc59Ih67TIOy3yTou8aRWtsEZZ258fd7WXY+nihQd/wke+H7H9odxUx3N+KzoK/J7YP9e4tMg7LfJOi7zTIWtaSSvc51WqbMyN5/Z0T6xr3Y35c45/bsw/+pQpq4+p5TqXFnmnRd7pkHVaUs17SptmLrroov02uRxoHqaj4Vo9Pv+T9bm515x39MEbZiIi1v0gYuMd+bnn/PYUVgcAAMwE/3HvEzE8plO/o60cLzl9kk90ru6K+MVn8nPnvSVCwwwAACStb2A4N57XfYg7Uf5s3AeALTwl4oTnT1FVAABAqgZHarlxZ/u4TzofHohY8+383JmXN7YoAABmvIbsNHOo8zAd/cc9T8bm/mpu7i0XHH9oJ//oI/lx7wkRp14yNYUBAAAzxvV35j9p7YUrF0/eqH/nFyKqfWMmShHPfGdjigMAAKaNneOaZuYeygeA7docce/X83PnvyPCB+QBAABHqDpcz4272iv5Ax68KWJ4975xqRxx+q8XUBkAADPZlDbNkJ7t27c35HnL5XJu+6e+vr6o1+uTnFGcT37/wdz43KPnxFFdtYP+W5S3Pxxz19wQY/+ktGfV26Lat7MBVU4vrZw3U0/e6ZB1WuSdllbIu6jt45leGrU+iSj2fb9jYDh+8OCW3NwLV8w98PeXZTH3R/8QY/+sNHTii2J3eUFEA/9NZrJWuM5RDFmnRd5pkXdamp239QkH0gprlCe29uXGs9pLB62r82f/HD31fc02WaUz+k54ZWTWF03R7GscxZJ3WuSdFnmnoxWytkbhQFrhPq/+PQO5cX14KFfXrNu+EB1jHh8++tmxa7jd3ztaSCtc5yiOvNMi73TIOi2tkHcrrFE0zXBEarXawQ+aAvV6vbDXmszarQPxs/X5Jpcrzl1ySLV13faJKEU2Oq53zIk9p742ogW+r1bTKnlTDHmnQ9ZpkXda5E2rKPJ92Mj3/c2/3BIj9X1rh862Ujz3xHkHfL32R38QlW355v6Bs6/2czmFXOfSIeu0yDst8k6LvGkVrbBG2TFup5k5nZXJ68rq0XnX53JT1VNeFSPtc/w9o0W4xqVF3mmRd1rknQ5Z00pa4T6vweH8fEdlTF0jg9G+9ubc49UVr/Qz1OJc59Ii77TIOx2yTkuqeZebXQBMJ9fd/mRu3NvdFi86ZcFBzysN7oiu+67LzQ2e9caIjllTWh8AADD93bhma2783BPnx6yOygGOjui649O58Ujvihg+9rkNqQ0AAJhe+gdHcuPZXQdeW0REtK//flR2PpqbGzzrTVNeFwAAkKbqSP5TzTva9t2+2LHu1igN7xkdZ6VyVFe8vLDaAACYuTTNwCHaM1SL6+/Zkpu7fNWS3OLtQLru/nyURgZHx1m5LQZXXT3lNQIAANPb9j3DE3a3fOmpCw94fLlvfXQ88p3c3OCqqyNKpYbUBwAATC/91fwnBs7tbJv0+K578rvMjCw6PUaWnjvVZQEAAIkaqmW5cdfYppkHb8g9Nrz8WZH1LCqkLgAAZjZNM3CIvn3f1tg9tO+PS6WIeO2qJQc/sTYUXXdem5uqnnxJ1Gcvm+IKAQCA6e47D2yLsX8v6morx/NOmn/A47vv+myUYt8J9Y7ZMXjqaxpYIQAAMJ3sHLfTzNyuAzfNlHdtjI6145ryz3qTpnwAAGDKVIfH7TRT+dXtiyOD0fnIzbnHhk6+pKiyAACY4TTNwCHIsiy+dPuTubnnrZgfy+Z1HvTczge+GZU9m3Jzg+e8fUrrAwAAZoab1mzLjZ+/Yn50d1T2f/DQ7ui894u5qerpV0V0zGpUeQAAwDTTP5jfaWZ25wHWFxHRee+XopTtO77ePiuqK3+9YbUBAADpqdbyTTOd7XtvX+xYd2uUhveMzmelclRXvLzQ2gAAmLk0zcAhuPPxXfHA5j25uSvPXXrwE7Msum//RG5qePmzYmTpqqksDwAAmAG27h6Onz+6Mzf3klMXHvD4rjVfjfJQ/+g4i1IMrHpLw+oDAACmn/7qIe40Ux+Jrnu+kJuqrvz1yDpmN6o0AAAgQdWRcU0zlb07W3Y8eENufnj5MyPrWVRYXQAAzGyaZuAQXDdul5mj53XGBSfMO+h57Rt+FG1b7s3NDZz3G1NaGwAAMDN85/5tUc/2jbvby/HcE+fv/+Asi647P52bGjrhRVGfd3zjCgQAAKad8TvNzOna/04zHY/cEpXdT+TmBs96Y8PqAgAA0jQ0vmmmrRwxMhgdj3wnf9zJryqyLAAAZjhNM3AQ23YPx033b8vNve6cJVEulQ56bvdt+V1mavOOj6ETXjSl9QEAADPDjWu25sYXreiNrvb9L9vbH/1BtG1/KDc3eM41DasNAACYnnaO22lmTuf+d5rpuvtzufHw0nOjtvjMhtUFAACkqTqS5cYdbeXoWHdrlId3j85lpXJUV7y86NIAAJjBNM3AQXz97s0xXNu3YOuolOLXz1p80PMq2x+KjnW35OYGzn1HRMmPHQAAkLd511Dc9lh/bu6lpy044PHd43aZGek9OYaPeU5DagMAAKanepbF7mp+p5m5XRObZsp966N9/fdyc3aZAQAAGqG6n51mOh68ITc3vPyZkfUsKrIsAABmOHfvwyRq9Sy+fMem3NxLT10Y83vaD3pu1+2fzI3rnfNi8LTXTml9AADAzHDz/dti7Gerzeoox4UnzN/vseW+ddH+SL5Bf3DV1RGHsBsmAACQjl3VWmTj5uZ0ViYc13XPF6I05sh659yonvyqBlcHAACkJsuyCU0z3TEUHY98Jzc3ZD0CAMAU2/8e7AV47LHH4oknnog9e/bEM5/5zOju7m5WKXBAP1q7Ix7fWc3NXXne0oOeVxrYFl2//HJubvCsN0W090xpfQAAwMxw45qtufFFJ/dGZ9v+P+ei+87P5m9o65gTg6de3sjyAACAaWjn4MiEuTnjd5qpDUXXfV/MTVVPe21Eu7/bAQAAU2uknk1o7F+0+YdRHt49Os5K5aiueHmxhQEAMOMVutNMf39//Nmf/Vkce+yxcfzxx8ezn/3suPjii2Pt2rW54/71X/81rrrqqnjXu95VZHkwwZduz+8yc9rSnjjzqFkHPa/r7s9Fqbav2SYrt8fg2W+d8voAAIDp78n+atyxYVdu7mWnLtz/wUO7o3P8DW1nXBXRcfB1CgAAkJZd1VpuXClF9LTn/zTY8fB/RHlgW25u8Mw3Nrw2AAAgPeN3mYmIWLj+P3Lj4eXPjKxnUVElAQCQiMJ2mnnggQfikksuiYcffjiybF/PeKlUmnDsBRdcEG95y1siy7K45ppr4nnPe15RZcKox3YMxg/X7sjNXXHu0v2+Z3Nq1ei+6zO5qeopr4r67IPvUAMAAKTn5vvzN6jN7qzEs4+ft99ju9Z8JcpD+xpssijFwNlvaWh9AADA9DR+p5k5XW0T/sbRdffncuPh5c+O2oKTG14bAACQnupIfp+ZzhiKuY/dkpsbOvmSIksCACARhew0Mzg4GK961avioYceip6ennj/+98f119//QGPP+GEE+Liiy+OiIivf/3rRZQIE3z5jk25LUFnd1biFacd4NOex+i8/xtR3rMlNzdw7jumuDoAAGCmuPGX+aaZF57cGx1t+1muZ/XouvPa3NTQiS+O+rzjGlkeAAAwTY1vmpnblf8svcr2h6Jjw3/m5gbOsssMAADQGON3mnlB+Y4oj+wZHWelclRPennRZQEAkIBCdpr5x3/8x3jwwQdj1qxZ8b3vfS/OPffcg57zyle+Mm6++eb40Y9+1PgCYZzqSD2+dvfm3NxlZy2OrvbK5CdmWXTf/onc1NDRF0Rt8ZlTXSIAADADbOyrxl0bd+XmXnrq/pv12x/9QbRtfyg3N7jq6obVBgAATG+7qrXceHZn/m8cXXd/Pjeudy+IoRUva3hdAABAmobGNc28qpJv4h9e/szIZi0usiQAABJRSNPMl7/85SiVSvG7v/u7h9QwExFxzjnnRETEAw880MDKOFKVykGaSA5TuVyedNxo37lva/QN5D+B7arzlh30+21b971o27omN1f9tf/SsH+nmaLZeVMseadD1mmRd1rkTatq5O/djXrff+eB7bnx3K62uPCk3qhUJj5/97hdZmoLTo768c+PSqk0JbWwj+tcOmSdFnmnRd5pkTetqtlrlF1D+RvS5nW176tpZDA6f/lvuceHzrgqKh09U1soR8w1Li3yTou80yLvdMiaVtbs+7yGs31fd8ZQvLj8i9zjI6dc6h6racB1Li3yTou80yHrtMh7r0KaZu67776IiHjZyw7906kWLtz7ybo7duxoRElMkd7e3kJeZ968eYW8zlO+fNe9ufFzT14Y5528/OAnfvPT+fHCU2LOua+JSPQCc7iKzpvmknc6ZJ0WeadF3rSKotYnEVP3vv/Og/fkxq88a1ksWbSfnWa2PhTxyC25qcqF74neBQumpA4m5zqXDlmnRd5pkXda5E2raPYaZSiezI0Xzu3eV9Ptn4uo7sw93vXc34quAmvm8LjGpUXeaZF3WuSdDlnTSpp9n1fHmCXIC8p3xOzS4JhHS9Hza6+PnjnWJNON61xa5J0WeadD1mlJNe9C7uTftWtXRETMnj37kM+pVqsREdHe3t6QmuBA7t7QF7et35Gbe+sFxx/8xE33RTx4U37uwvdomAEAAPbr0W174o7H+nJzr1q1bP8H//RjETH2I9jmRZzzhsYVBwAATHt9A8O58dzuMX9z+9kn8geveHHEghMLqAoAAEhVdbg2+vUllf/MP3jC8yLmLC24IgAAUlHI3fxP7RrzyCOPHPI599yz99N2jzrqqEaUBAf0L/+5LjdeOrczXnL6ISzKfvwP+XH3gohVbmIDAAD27/o7N+bGvT3tceGK/ewyU+2PuO2z+blnvDWiY1YDqwMAAKa7nYMjufG8p5pmNt4Z8dhP8wef/46CqgIAAFJVHalHRERnDMVLyr/IP3jGq5tQEQAAqWgr4kWe8YxnxLe+9a1YvXp1vPa1rz2kc6699toolUpx4YUXNrg6jsT27dsb8rzlcjm3/VNfX1/U6/WGvNZY/YMj8ZXbNuTmXrNqSfTv7DvAGXuV9myJeXf8a5TGzA2c/eYY3F2N2F1tQKUzS7PypjnknQ5Zp0XeaWmFvIvaPp7ppVHrk4jGvO+/ftujufGLTlkQu/az9ui849roqe4cHWdRip2nvj7qDfx+U9cK1zmKIeu0yDst8k5Ls/O2PuFAmr1G2bpzT27cESOxffv26Pnh/y86x8zXZy2NviXPjrDGaEnNvsZRLHmnRd5pkXc6WiFraxQOpNn3eW3ZsfdvHc8t3x2zS4Oj81mUom/5RZFZk0wLrXCdozjyTou80yHrtLRC3q2wRimkaeaKK66Ib37zm/HRj340/ut//a9x3HHHTXr83/7t38bq1aujVCrFG9/4xiJK5DDVarWDHzQF6vV6Ia/19buejMHhfReCSrkUrz5r0UFfu/uOz0SpNjQ6zsodsefMN0dW0L/PTFNU3rQGeadD1mmRd1rkTaso8n14pO/7R7cPxn1P7s7NvXhl78TnzOrRcfunclNDJ744hmcvj/BzVxjXuXTIOi3yTou80yJvWkWz1yh9A8O58az2ctQH+qL9l1/NzQ+e8fqoZSVrjGnCNS4t8k6LvNMi73TImlbS7Pu8Bof27oZ5Umljbn5k6bkx0rXQmmSacp1Li7zTIu90yDotqeZdLuJF3vrWt8aqVaticHAwXvjCF8YNN9wQWZaNPl4qlSLLsvjpT38ab37zm+MP/uAPolQqxfOf//x45StfWUSJEFmWxZdufzI3d/HJvbF4dsfkJ45Uo/uuz+Smqisvi2zW4qkuEQAAmCFuXLM1N17Q0xbPOHbuhOPa138/2nY8nJsbXHV1Q2sDAABmhv5q/g+fc7sq0Xn/16M8vK+BPyuVY/DMq4ouDQAASFB1ZO8HGXfESG4+627+J48DADCzFbLTTLlcjq9//evxvOc9Lx555JG49NJLo6enJ0qlUkREvPCFL4z+/v6oVqsRsbd5YcWKFfHFL36xiPIgIiJ+9ujOWLdtMDd3xblLD3pe5/1fi/LAttzcwLnvmNLaAACAmeWmNfk1xItOWRBt5dKE47rv/HRuPLLglBg+5jkNrQ0AAJgZ+gfzN6LN6axE122fy80NnfCiqM9eVmRZAABAop5qmmkf3zRTbm9GOQAAJKSQnWYiIo477ri4/fbb441vfGOUy+XYvXt3ZFkWWZbF5s2bY3BwcHT3mauuuip+8pOfxJIlS4oqD+JLt+V3mTlxQVf82rFzJj8py6L79k/kpoaOfW7UFp021eUBAAAzxCPbBuL+zXtycy85deGE48o71kbHuu/m5gZXXR1RmthcAwAAMFaWZbFz3E4zy3ffG21b7svNDZ71piLLAgAAEvZU00xbKb9WiYqmGQAAGquQnWaesmDBgviXf/mX+Iu/+Iv45je/GT/72c9i06ZNUavVYuHChXHeeefFZZddFitXriyyLIhN/UNx64Pbc3OvO3fp6G5IB9K+fnW0bXsgNzdw7m9MeX0AAMDMMX6XmYWz2uO8YyY27Hff9dncuN45NwZPvbyRpQEAADPE4HA9avUsN3fcun/LjWtzjonh455fZFkAAEDChmp71ygTd5op9BZGAAAS1JTfOI8//vh4z3ve04yXhv36yp2bojbmb0ddbeW49MxFBz1v/C4zIwtOieHjLprq8gAAgBnkP365NTd+8coFUSnnG/ZLQ7ui897rcnODZ1wV0d7T8PoAAIDpb2c1fxPa3NgVvetuyM0NnvXGiFK5yLIAAICEPbXTTHuM32mmownVAACQEv9LOMkbqdXjq3dtys298oxFMbtz8p6yypY10fHo93NzA+e8PeIgu9MAAADpemjLnnh460Bu7mWnLpxwXOcvvxzl4V2j46xUjsGz39rw+gAAgJmhfzB/E9rrKt+Lcq06Os7K7TF4+hVFlwUAACRsX9OMnWYAACiWphmSd+tDO2LzruHc3BXnLjnoed135HeZqXcviOqpr57S2gAAgJnlpjXbcuPFs9tj1dGz8wdl9ei689rc1NCJL4763GMaXR4AADBD9Od2msniLW035x4fWvGyyHoWFVsUAACQtAM1zUS5vQnVAACQksLbtOv1etx7773x8MMPR39/f9RqtYOec/XVVxdQGam67vYnc+NVy2fHqUtmTXpOaffm6Fzz9dzc4FlviWjrmvL6AACAmSHLsrhxzdbc3EtWLozyuN0q29d/L9p2rM3NDa6yLgYAAA7dzjE7zSyPrbGi9Hju8cEz31R0SQAAQOKGnmqaKeXvF7TTDAAAjVbYb5x79uyJD37wg/Gxj30stm7devATfqVUKmmaoWHWbh2In67fmZu78tylBz2v++7PRqk+NDrOKh0xcPabp7w+AABg5nhoy0A8sm0wN/fS0xZMOK77zk/nxiMLTonhoy9saG0AAMDM0j+475Obl5a25x7LKp0xfPSziy4JAABI3OCBdpqpdDShGgAAUlJI08yuXbvi4osvjl/84heRZVkRLwmH5N/uyO8yM7+7LV68cuJNazkjg9F117/kpqqnXh5Zz6KpLg8AAJhB/mPcLjNL53TEWctm5+bKO9ZGx7pbc3MDq66JGLcbDQAAwGT6q/s+uXlhKf/hYfWehdYYAABA4YZqe+8bbBvfNFNub0I1AACkpJCmmQ9+8IPx85//PCIiLrjggvgv/+W/xDnnnBPz58+PcrlcRAkwwcBQLb5x95bc3KvPXhwdbZO/Jzt/+ZUoD+Y/lW3gnLdPeX0AAMDMkWVZ3LRmW27upacuiPK4G9W67/xMblzvnBfVU1/d8PoAAICZZeeYnWYmNM10Lyy6HAAAgKj+aqeZjqjl5rNKIbcwAgCQsEJ+47zuuuuiVCrFJZdcEl/72tc0ytASvv3LrbF7aN8irBQRr121ZPKTsnp03/6J3NTQcc+P2sKVDagQAACYKe7fvCfWbx/Mzb3k1PyNaqWh/ui8799yc4NnXBXR3tPw+gAAgJmlvzqmaSb6co9lmmYAAIAmGPpV04ydZgAAKFoh3SsbNmyIiIj3ve99GmZoCVmWxZdufzI399yT5sfR87smPa993a3RtuPh3NzAue+c8voAAICZ5cZfbs2Nl8/tjDOPmpWb67zvy1Ee3jU6zkrlGDz7LYXUBwAAzCz9g/s+NGxhqT/3mJ1mAACAZhj8VdNM+7immUzTDAAADVZIB8uSJXt371i0aFERLwcHdffGXXH/pj25uSvOXXrQ87pv/3huPLJgZQwf+9wprQ0AAJhZsiyLG9dsy8295NQFUSqVxhxUj+47r80dM3TiS6I+95giSgQAAGaYnWN3minld5qpdy8ouhwAAIDRnWbaS7X8AxVNMwAANFYhTTPPetazIiJizZo1RbwcHNSXbt+UGx89rzMuPGHepOdUNt8bHY/9KDc3cO5vRIy90Q0AAGCc+57cHRv6qrm5l56a/2Tn9vWro9L3SG5ucNXVjS4NAACYoXI7zcTO3GOZnWYAAIAmqB5wp5m2ZpQDAEBCCmma+f3f//2IiPjwhz8cWZYV8ZJwQDv2DMeNa7bm5l57zpKolCdvfum+/RO5cb1nUVRPvWzK6wMAAGaW8bvMHDO/M05b2pOb677j07nxyIKVMXz0BQ2vDQAAmJl2Du67CW1RKd80U+/RNAMAABRvqLb3vsHxTTNRttMMAACNVUjTzHOe85z467/+6/jhD38Yb3jDG2LHjh1FvCzs19fu3hzDtX3NWx2VUrz6rMWTnlPe9WR0PnB9bm7g7LdEVDobUiMAADAzZFkWN41r2n/pqQujNGbHyvL2tdGxfnXumIFzrrGrJQAAcNh2VffdhLZgfNOMnWYAAIAmGPzVTjNtUcvNZxVNMwAANFZhexv+4R/+YaxYsSLe9a53xbHHHhsvfelLY+XKldHT03PQcz/wgQ8UUCEpqNWz+PIdm3JzLzl1YczvmXzx1XXXZ6JUHx4dZ5XOGDzrTQ2pEQAAmDnueWJ3bNw5lJt7yakLcuPuu67Njeud86K68tUNrw0AAJi5dg7uvQmtFPVYEP25xzTNAAAAzTD0q6aZDjvNAABQsMKaZjZt2hRf+cpXoq+vL+r1enzta1875HM1zTBVfvRIX2zoq+bmrjx3yeQnDe+Jrrs/n5saPO01kfmjEgAAcBA3/jK/y8xxvV2xcvG+D48oDfVH533/ljtm8MzXR7R3F1IfAAAw8wzX6qOf4Dw39kR7adynOHcv2N9pAAAADZNlWVR/tU5pH980Y6cZAAAarJCmma1bt8ZFF10UDzzwQGRZVsRLwn5dd/uTufHKJT1x1rLZk57T9cuvRLm6Izc3eM7bp7o0AABghqlnWdx0/7bc3EtPXRClUml03Hnfv0V5ePfoOCuVY/CstxRWIwAAMPP0D+5rkllU6pvwuJ1mAACAotXqWdR/ddtg2/jG/nJhn/sNAECiykW8yF/8xV/E/fffH1mWxRVXXBHf+c53YuvWrVGr1aJerx/0/2AqbNgxGD94eEdu7spzl+ZuWJsgq0f37Z/ITQ0d/8KoLTi5ARUCAAAzyV2P74on+4dycy89dczNaVk9uu+8Nvf40Ikvjfrco4soDwAAmKF2Vvd9avPC2Jl7rN4xO6Kts+iSAACAxD21G2bEfnaaKdtpBgCAxiqkTfvrX/96lEqleMtb3hKf/vSni3hJmODLd26KsfsczeqoxCtOm/zT1Doe+U5U+h7JzQ2c9xtTXxwAADDj3LQmv8vMiQu6YsWi7tFx+7pbo9K3LnfM4KqrC6kNAACYufoH992AtqDUn3sss8sMAADQBEMj++7aao9xO81UOoouBwCAxBTSNLNhw4aIiHjHO95RxMtRoEql0pDnLZfLk46frqGRenztrs25uV8/e0nM7p580TV+l5mRRadH/bjnRWWy3Wl42qY6b1qbvNMh67TIOy3yplU1an0S8fTf9/Usi5vuzzfNvOz0RdHWtm8Z3nNXfpeZkYWnRf2451hvtADXuXTIOi3yTou80yJvWlWz1ii7h/fdjLao1Jc7LutZ1NC6mHqucWmRd1rknRZ5p0PWtLJm3uc1nA2Pfj1+p5lyW4d1yjTiOpcWeadF3umQdVrkvVchTTOLFi2KDRs2xJw5c4p4OQrU29tbyOvMmzfviM7/6m0bYsdAfsH1Gy9YGb29sw980uO3RWz4z9xU2/N+N3oXLDiiWji4I82b6UXe6ZB1WuSdFnnTKopan0Qc/H3/k7XbYvOuodzcFc86KXp7f7Uu3vJAxLrVucfbnvMe640W5TqXDlmnRd5pkXda5E2raNYapVbZM/r1wtiZO65t7lGF1sXUc41Li7zTIu+0yDsdsqaVNPM+r20ju0a/bhu308zc+QsjrFOmLde5tMg7LfJOh6zTkmrehbQKPf/5z4+IiLvvvruIl4MJPvPjdbnxc1YsjJOXTNIwExHxo3/Ij2cfFXHW66a4MgAAYCb65p2P58anLp0Tpywd80ESP/lo/oTu3oizryygMgAAYKbbObDvE5wXlvJNMzFrUcHVAAAARAwOP9Uok0VnKf/Bx1FpL7weAADSUkjTzB/8wR9Ee3t7/M3f/E0MDg4W8ZIw6p7H++Ln67bn5t56wfGTn9S3IeKeL+fnnvWuiLaOKa4OAACYib7/4Jbc+NJVy/YNBvsibv9c/oRnXBPR0VNAZQAAwEy3c3DfDWgLJjTNLC64GgAAgIjqSD0iJu4yExERFfdjAQDQWG1FvMgznvGM+NjHPhbvfOc742Uve1l87GMfi5UrVxbx0jTY9u3bD37QYSiXy7ntn/r6+qJerx/Wc33i1ody48WzO+LXlnVMWnv39/8+uur7/qiUtXVF38mvjaxB32/qpjJvWp+80yHrtMg7La2Qd1HbxzO9NGp9EvH03vfDtXo8smV3bu7spZ2j9XXe9onoGdo1+lhWKkffyiutN1pIK1znKIas0yLvtMg7Lc3O2/qEA2nWGuXJ7f2j84vGNc3sKc+KqrXHtNLsaxzFknda5J0WeaejFbK2RuFAmnmf15ZtfRGx/6aZvl17ol6xTpkuWuE6R3HknRZ5p0PWaWmFvFthjVJI08w73vGOiIg444wz4vvf/36cccYZsWrVqli5cmX09Ez+SbqlUik+/vGPF1Emh6FW20/3fwPU6/XDeq1d1ZH45j2bc3OXn704ypEd+PmGdkfH3flPfR487XUx0jE3oqDvN3WHmzfTk7zTIeu0yDst8qZVFPk+nOx9/8iWPVHL8nMn9HbsPT6rR+cdn8o9NnTiS2Nk1lHWGy3MdS4dsk6LvNMi77TIm1bRrDVK38Dw6PzCyDfNjHT2+vmY5lzj0iLvtMg7LfJOh6xpJc28z2tgaO+HF3fEyITja1GOup+Tact1Li3yTou80yHrtKSadyFNM5/61KeiVCpFxN4mmHq9HnfccUfccccdk56XZZmmGY7I9fdsicGRfd1wlVLEa1YtmfScrvuui3I1/0ekgXPe3pD6AACAmefhrQO58aJZ7TG7c+/yu33drVHpW597fOCcawqrDQAAmPn6B/fdhLaw1Jd7LOteUHQ5AAAAUf3V/Vv722kmK7cXXQ4AAIkppGnmuOOOG22agaJkWRb/dvuTubkXnNwbS+Z0HPikei26x33qc/WEF0e998QGVAgAAMxEj2wbzI1PWtg9+nX3nZ/OPTay8LQYWf6sQuoCAADS0F/dexNaJWqxoLQr91i9e1EzSgIAABI3VNvbNNO+n51mQtMMAAANVkjTzCOPPFLEy0DOzx/tj7Xjbla78rylk57TsfamqOwc96nP5/3GlNcGAADMXGvH7TRzwq+aZirbH4qO9d/LPTZwzjURPmQCAACYQjt/tdNMb+ya8Fi9Z2HR5QAAAMTgr3aaaS/tZ6eZiqYZAAAaq9zsAqBRrhu3y8zxC7ri/GPnTnpO9+2fyI1HFp/pU58BAICnZe22fNPMiQv2Ns103fmZ3Hy9c35UV/56YXUBAABp2PWrnWYWlvpy81mUIuua34SKAACA1A2NTLbTTCGf+w0AQMI0zTAjbd41FLc8uD03d+W5S6M0ySc4tz15R7Rv/FlubuDc3/CpzwAAwCGrZ1msG7fj5YkLu6JU7Y+uX/5bbn7wzDdEtHUVWR4AAJCAp3aaWVjamZvPuua7GQ0AAGiK6kgWEQdqmrHTDAAAjaVphhnpq3duilo9Gx13tZXjVWcsmvSc8bvM1GYdFdWTX9mQ+gAAgJlpY181qr/6tLSnnLCwOzrvuy5Kw3tG57JSJQbPfnPR5QEAADNcPctGd5pZFPmmmXr3wmaUBAAAMPq3k/ao5eazcrsPNAYAoOE0zTDjjNTq8eU7N+XmXnnGwpjTdeBPTyv3Px4dD96QmxtcdXVEpaMhNQIAADPT2q0DufGczkos7CpH953X5uaHTnpp1OcsL7I0AAAgAbuqtXjqI8UWlvpyj2WaZgAAgCbZ1zQzbqcZu2ECAFCAKf2ts1KpREREqVSKkZGRCfOHY/xzwcGsfmhHbN41nJu74tylk57Tdeeno5Tt+ySDrK07Bs98Q0PqAwAAZq612wZz4xMXdkfH+tVR2bk+Nz+w6poiywIAABLRP7jvb2oLSv25x+o9mmYAAIDmGPpV00zbuKaZrNLejHIAAEjMlDbNZFn2tOahEa67/cnc+Oxls+PUJbMOeHxpaFd03fOvubnB06+IrGteQ+oDAABmrvE7zZy4sHvCLjMji06PkeXPLLIsAAAgEf3VfR8QtjDyO83U7TQDAAA0yehOM6Va/gE7zQAAUIAp/a3z//P/+f88rXmYao9sG4ifrN+Zm7vi3CWTntN575eiPLRrdJxFKQbOeVsjygMAAGa4R7blm2ae0f1kdDzwvdzcwKprIkqlIssCAAASsXPMTjOLSvm/l9S7FxRdDgAAQEREVGt7P3S7Y/xOM+WOZpQDAEBiNM0wo/zbHZty43ndbfGSUyf55LT6SHTf8anc1NBJL4n6/BOmvjgAAGBGy7Jswk4zz9/xtdy43tUb1ZWXFVkWAACQkNxOM+OaZjI7zQAAAE3y1E4zbeOaZuw0AwBAEcrNLgCmysBQLb5x9+bc3KvPWhydbQd+m3c8fGNU+h/LP8+572xIfQAAwMy2dc9w7ga1ubE7jn/8+twxg2e+IaKtq+jSAACARPSP2WlmQYzfaUbTDAAA0BxDv2qaaY9abj6rtDejHAAAElNIq/bq1asjIuKZz3xmdHd3H9I5g4OD8ZOf/CQiIi666KKG1cbM8e9rtsauMTeolSLitecsmfSc7ts/nhsPL1kVI8t+rRHlAQAAM9z4XWbe0L46KiP75rJSJQbPelPRZQEAAAnZOaZpZvxOM/UeTTMAAEBzVEebZsbvNKNpBgCAxiukaeaFL3xhlMvluPPOO+OMM844pHM2bNgwet7IyMjBTyBpWZbFl257Mjf3nBPnxzHzD/wJzm0bfxHtT9yWmxs49x0RpVJDagQAAGa2sU0z5ajH29r+IyLb9/jQSS+L+pzlTagMAABIxVO7X3bGUMwt5Rv7MzvNAAAATXLAphk7zQAAUIByUS+UZdnBD5rC80jLPU/sjjWb9uTmrjz3ILvM3PHJ3Lg2e1kMrXjFlNcGAACkYe3WwdGvLy7fFsuzfGP/wDnXFF0SAACQmP5f7TSzIPonPFbvXlB0OQAAABGxr2mmrVTLzWd2mgEAoACFNc08XfX63l+UK5VKkythOvjuA9ty4+VzO+PCE+cf8Pjyzsei46Fv5+YGV13j0wsAAIDD9si2fZ/i/IbKd3OPjSw6I0aWnV9sQQAAQHJ2/mqnmYWlvtx8Vm6LrHNuM0oCAACIodreD87uGL/TTLmtCdUAAJCalm2aWbduXUREzJs3r8mVMB2M32XmpactiEq5dMDju+/4dJSy+ui43j4rBs98fcPqAwAAZr61W/c1zZxRfiT32MDZb44oHXiNAgAAMBV2/WqnmYWl/E4z9a4FEaWW/bMgAAAwwz2100z7uKaZzAccAwBQgIa0aq9fv36/8xs3bozZs2dPem61Wo2HHnoo/uzP/ixKpVKceeaZjSiRGeb+cU0zpy+ddcBjS9X+6Lz3i7m56hlX+oQ1AADgsO2qjsSW3cMREVGJWhwV+d0wR5ac3YyyAACAxOys/qppJsbtNNOzsBnlAAAARMS+ppm2qOUfsNMMAAAFaMhvnSeeeOKEuSzL4mUve9nTfq6rr756KkpiBtuyeyi27hnOzZ2yuOeAx3fd+4UoD+8aHWelcgysuqZh9QEAADPf2F1mlsb2qJSy3OP12cuKLgkAAEjQzsG9N6AtLO3Mzde7Nc0AAADNc8CdZsodzSgHAIDENKRpJsuypzW/P11dXfG+970v3vGOd0xVWcxQD4zbZaa7vRzHzO/a/8H1kei641O5qaGTXhb1ecc1qDoAACAFD49pmlle2pJ7LGvriqyrt+iSAACABO16aqeZCU0zC5pRDgAAQEREDI02zYzbaabS3oRqAABITUOaZj75yU/mxm9/+9ujVCrF//gf/yOOPvroA55XKpWiq6srli1bFuedd17Mnj27EeUxw6wZ1zRzyuKeqJRL+z2246FvR2XXxtzcwLm/0bDaAACANDyydXD06+WlrbnHarOXR5T2v0YBAACYKlmW7dtpJvJNM5mdZgAAgCYa3WmmlN9pJsoNuX0RAAByGvJb5zXXXJMbv/3tb4+IiMsvvzzOOOOMRrwkCXtg88Smmf3Ksui+7eO5qeGl58XIsmc0qjQAACARa7ft22nm6HFNM/U5y4suBwAASNDgcD1G6llE7G+nGU0zAABAc4zUs6jtXapEe+SbZrKynWYAAGi8Qlq1b7nlloiIOPHEE4t4ORJz/6bdufHKJftvmml74ufRvunO3NzAee9oWF0AAEA61m7d1zSzTNMMAADQBP3V2ujXE5pmejTNAAAAzfHULjMREe1Ryz9Y0TQDAEDjFdI084IXvKCIlyFBg8P1WLd9MDd36pJZ+z22+7ZP5Ma1OUfH0Ekva1htAABAGgaH6/F4X3V0vLy0Jfd4bbamGQAAoPF2Du77xObxTTOZnWYAAIAmGco1zdhpBgCA4pWbXQAciYe27Il6tm9ciogVC7snHFfuWxcdD/9Hbm7gnLdFlAvpGwMAAGaw9dsHYsyyJI4ev9PM7GXFFgQAACSpv/rUzWdZLIq+3GP17gXFFwQAABD5nWba7DQDAEATaJphWrt/857c+LgFXdHdUZlwXPcdn47SmNvY6u2zo3rGlQ2vDwAAmPke3jqQGx9dHtc0M0fTDAAA0Hg7B/fefNYT1egqDeceq9tpBgAAaJKxTTMdpfE7zfjAYwAAGk/TDNPa/Zt258YrF/dMOKY02Bdd930pN1c98/WRdcxpaG0AAEAaHtk6OPr17NgTcyO/TqnNWV50SQAAQIKe2mlmYalvwmOaZgAAgGaZdKeZsp1mAABoPE0zTGvjd5pZuWRi00zXvf8apeF9x2WlcgysuqbhtQEAAGlYu23fTjPLStsmPF6fbacZAACg8aoj9aiUS7Eodubms7auiPaJfz8BAAAowlAtG/26PfI7zWiaAQCgCPY3ZNqqZ1k8sGlc08ziWfmDasPRdce1uamhFa+I+tyjG10eAACQiLVb9zXNLC9tzT1W714Y0dZVdEkAAECCXnfO0njtqiURD+yI+I998/XuhRGlUtPqAgAA0jY4vG+nmfFNM1lF0wwAAI1np5kZ6Ktf/WpcddVVcdVVV8X999/f7HIa5vG+auwZs6iKmLjTTOeDN0Rl9xO5uYHz3tnw2gAAgDSM1LNYv31wdLy8tCX3eG3O8qJLAgAAElYqlaJreHturt69oEnVAAAARAzVxjbN1PIPln3mNwAAjadpZoZZv359fOlLX4rOzs5ml9Jwa8btMtPb3RaLZo359IEsi+7bP5Y7ZnjZr8XI0nOKKA8AAEjAhh2DMVLPRscTdpqZrWkGAAAoVnlgW26cdS9sUiUAAAAR1RE7zQAA0FyaZmaQkZGR+MhHPhInnHBCPOtZz2p2OQ13/6bdufHKJT1RKpVGx22P/zTaNt+TO2bg3N8opDYAACANa7cO5MYntuVvTqvPWVZkOQAAAFEeGNfMr2kGAABoorFNM22l8TvNdBRcDQAAKdI0M4N8+ctfjsceeyze/e53R7k886O9f3N+p5mVi2flxt23fzw3rs09NoZOfEnD6wIAANKxdlu+aeaEcU0zNTvNAAAABSuNb5rp0TQDAAA0z9immY7xO82U24ouBwCABCX9W2dfX188+OCD8eCDD8ZDDz0UDz30UPT390dExAte8IJ473vfe8jPtXnz5rjhhhviF7/4RWzdujXa2triqKOOigsvvDBe/vKXR2dnZ6O+jYiIePjhh+MrX/lKXHXVVXHMMcc09LVaxf2bxjXNLOkZ/bq8Y210rL059/jAOW+LKFeKKA0AAEjE2q2DufGy0pbcuD5H0wwAAFCs8TvNZHaaAQAAmmhoJBv9um1c00xU2guuBgCAFCXdNPOud71rSp7nZz/7WXzoQx+KgYF9nzBcrVZHG3Fuvvnm+JM/+ZM46qijpuT1xhseHo6PfOQjccIJJ8SrX/3qhrxGq+kbGIkn+4dyc6cs3tc0033Hp6MU+xZc9Y45UT39isLqAwAA0vDI1n3rwFLUY/6IphkAAKC5ygP5HTDr3QuaVAkAAEB+p5n2qOUes9MMAABFKDe7gFaxaNGiOOecc572eWvXro2//du/jYGBgejq6oo3vOEN8cEPfjA+8IEPxItf/OKIiNi4cWP85V/+Za6pZip94QtfiI0bN8a73/3uKJfTiPSBzbtz445KKU5Y0BUREaXBHdF133W5xwfPfENkHbMLqw8AAJj5siyLR7btW+ctir6oZPlPSKvN1jQDAAAUq7Qnv9NM3U4zAABAE1VrY5tmxu00U+4ouBoAAFKUdKv2FVdcEStWrIgVK1bE/PnzY9OmTfHbv/3bT+s5PvWpT8XQ0FBUKpX40z/901i5cuXoY2eddVYsW7YsPvvZz8bGjRvjG9/4Rlx11VUTnuPaa6+N4eHhQ37NSy65JJYtWxYREffff3984xvfiCuvvDKOO+64p1X7dLZm057ceMWinmir7G0Y6rr781Ea2XfjWlaqxOCqqwutDwAAmPme7B+KPcP7/tBzdCl/Y1pW7oisx81pAABAgbJ6lAfH7zRjXQIAADRPfqeZcU0zlaRvXwQAoCBJ/9a5vwaWp+PBBx+M++67LyIiLr744lzDzFMuvfTSuOWWW2LDhg1xww03xGtf+9poa8v/s994441RrVYP+XUvuOCCWLZsWdRqtfjIRz4Sxx9/fFx++eVH9L1MN/ePa5o5ZXHP3i9qQ9F157W5x6onXxL1OT7dGQAAmFqbdg1Fd3s5Bn7VOHNi+7gb02YfFVFKYzdQAACgNZSqO6NUz9+EppkfAABopqGxTTOlWu6xrNxedDkAACQo6aaZI/WTn/xk9OuLL754v8eUy+V4wQteEJ/73Odi9+7dcc8998Q555yTO+Yzn/nMYb3+4OBgbNy4MSIi3vSmN+33mD/90z+NiIg//MM/jGc961mH9Tqt6IHN+aaZlUv2Ns10PvDNqOzZlHts8Nx3FFYXAACQjlXL58St7zs/NvUPxdqtA7F8zY8jHtz3eG3OsuYVBwAAJKk8sHXCXL17QRMqAQAA2GvsTjNtE3aa0TQDAEDjaZo5AmvWrImIiM7OzjjppJMOeNwZZ5yRO2d808zham9vjxe96EX7fey+++6LjRs3xvnnnx9z586NJUuWTMlrtoLhWj0e3jqQmzt1SU9ElkX37Z/IH7v8WTGydFWR5QEAAAkpl0px1NzOOGpuZ8x6tC/3WH22HS8BAIBilQbG7YDZMTui0tmkagAAACKqI9no1x3jmmbsNAMAQBE0zRyBxx57LCIijjrqqKhUKgc8bvnyfTdKPXXOVOjo6Ijf+q3f2u9jH/nIR2Ljxo1x+eWXx8qVK6fsNVvBw1sHYqSe5eZOWdwT7Rt+HG1b7s3ND9hlBgAAKEh518bcuD5H0wwAAFCs8p78TjNZ98ImVQIAALDX2J1m2qOWf1DTDAAABdA0c5iGhoaiv78/IiIWLpz8Dw6zZ8+Ozs7OqFarsXXr1kmPbRWHWudkzUJHolwuH3D84JbB3GNHz+uMeT2d0X3HJ3PztXknRG3FS6NSbkyNTJ3J8mbmkXc6ZJ0WeadF3hSt2euTiEN731fGNc1k845paE00jutcOmSdFnmnRd5pkTdFa+U1SqWa32km61lkXTLNucalRd5pkXda5J0OWdMMzV6jHOx9Pzzmw5Hbxu00U27vtGaZZlzn0iLvtMg7HbJOi7z30jRzmAYH9zVudHV1HfT4rq6uqFarufNa2bvf/e5DOu6LX/xigyvZa968eaNfr+vL34h21jHzo7e2JWLtzbn5ynN/O3oXLiqkPqbW2LyZ+eSdDlmnRd5pkTeN1mrrk4gDvO/HNc3MWrYyZvX2FlQRjeQ6lw5Zp0XeaZF3WuRNo7X0GiXbk5tvm7cseq1LZhTXuLTIOy3yTou80yFritBqa5Tx7/taPNUUk0VHKb/TzNz5CyOsWaY117m0yDst8k6HrNOSat6aZg7T0NDQ6NdtbQf/Z3zqmLHnNdJ73/veeO9731vIaxXt3o19ufHpy+ZG3POV/EFd8yPOfVNxRQEAAGkbHojYsyU/N/eY5tQCAACka/fm/HiWDxcDAACaqzqyt1GmLWoTH6x0FFwNAAAp0jRzmDo69v3CPjIyMsmR+WPGntfK/vEf/7HZJexXlmVx38b+3NwZy+ZGrHkof+CZr4nomFVgZQAAQKO06vokp2/DxLl5RxdfBwAA0HAtvUbZPa6Zv0fTDAAAzHQtvUaJiOpIPSIi2mM/99hV3L4IAEDj+a3zMHV1dY1+PTg4eNDjnzpm7HmtbOHChYd03Pbt2xvy+uVyObf9U19fX9Tr9di4sxp9A8O5Y4+elcXwloejfczcnp6jo9qg2ph6B8qbmUne6ZB1WuSdllbIu9c27Ulp9vok4uDv+7YN98WcMcfXO+dF356RiD3WJdNRK1znKIas0yLvtMg7Lc3O2/okPa28RpndtzH/95LyLH8vmeaafY2jWPJOi7zTIu90tELW1ijpafYa5WDv+92DQxER0b6fnWZ27BqILKxZppNWuM5RHHmnRd7pkHVaWiHvVlijaJo5TB0dHTFnzpzo7++PrVu3Tnrsrl27olqtRsShL1Kmi1ptP9tmNkC9Xo9arTZhl5nZnZVYMqstyjsfzc2PzF5eWG1MvafyJg3yToes0yLvtMibVlHk+3D8+75t3E4z9TnWJDOJ61w6ZJ0WeadF3mmRN62iGWuU0p7836xGOnv9PMwwrnFpkXda5J0WeadD1rSSou/zespkO83UslJkfkamNde5tMg7LfJOh6zTkmre5WYXMJ0dc8wxERHxxBNPTPrmefzxxyecw+F5YPOe3Hjl4p4o1YejvOuJ3Hxtrn9nAACgOOVdj+fGtdnLm1QJAACQsvJAvmkm65lZH+YGAABMP9XhAzfNRKWj4GoAAEiRnWaOwKmnnhr33XdfVKvVePjhh+OUU07Z73H33ntv7pyZpFKpNOR5y+Xyfsf3j2uaOXXp7GjfsylKkeXmS/OPb1htTL0D5c3MJO90yDot8k6LvGlVjVwDHOx937ZrY26czT3ammQac51Lh6zTIu+0yDst8qZVFb5GqY9EaXBH/sBZi61NpjnXuLTIOy3yTou80yFrWlnR93k9Zai2976uttLED6Uut3dGWLNMK65zaZF3WuSdDlmnRd57aZo5As961rPiq1/9akRE3HLLLfttmqnX63HrrbdGRMSsWbPizDPPLLLEhuvt7S3kdebNmxcREQ9uGczNn3fi4piXPZQ/uHNuzD/q+IhSqZDamHpP5U0a5J0OWadF3mmRN62iqPVJxH7e94ObcsOuJSdFV4H10Fiuc+mQdVrknRZ5p0XetIrC1yi7NkWM+5CxectWRMy2NplJXOPSIu+0yDst8k6HrGklRd/n9ZSnmmY69rPTTO/CJRGV9kLqojFc59Ii77TIOx2yTkuqeafZKjRFTj755Dj99NMjYm/TzP333z/hmOuvvz42bNgQERGvfOUro61Nn9LhqtWzWLl0Tiyf1zU6d8ayuRE71ucPnH+chhkAAKBYfY/lx/OObU4dAABAunZvHjdRiuhe0JRSAAAAnlId2bvDTFtM3Gkmyu6lAwCg8ZL+rfOXv/xlPPHEE6PjnTt3jn79xBNPxHe/+93c8S984QsnPMfb3va2+LM/+7MYGhqKD37wg/Ga17wmzjzzzBgaGoof/vCHcdNNN0VExLJly+Kyyy5ryPeRikq5FB+75vyIiNi+eyjue2JnnLJ0dsSa/TTNAAAAFCXL9tM0c0xzagEAANI1vmmmZ0FEJek/BQIAAE1Wq2cx/KudZtrH7zRTbvfByAAAFCLp/6X85ptvjltvvXW/j61ZsybWrFmTm9tf08yJJ54Yv/d7vxcf+tCHYmBgID7/+c9POGbZsmXxJ3/yJ9Hd3T0ldbeS7du3N+R5y+Vybvunvr6+qNfruWNOX1CJPf07IzY9GJ1j5ge7l8RAg+qiMQ4lb2YOeadD1mmRd1paIe+ito9nemnU+iRi8vd9aWBbzB8ZzB2/I+ZEZl0ybbXCdY5iyDot8k6LvNPS7LytTziQotcolU2PxOwxx9S6FsRO65Jpr9nXOIol77TIOy3yTkcrZG2NwoE04z6vgaF9u8t0jGuaySrtscOaZdpphescxZF3WuSdDlmnpRXyboU1StJNM1Pl/PPPj7/5m7+Jb33rW/GLX/witm3bFm1tbXHUUUfFBRdcEK94xSuis7Pz4E80DdVq+9k2swHq9foBX6vc92huPDL7mMLqojEmy5uZR97pkHVa5J0WedMqinwfjn3fV3bk1yRZqRIjXQsj/FzMGK5z6ZB1WuSdFnmnRd60iqLXKJXdW/JzXQv8LMxArnFpkXda5J0WeadD1rSSZtzntac6PDrfFvnXz8ptfj5mANe5tMg7LfJOh6zTkmreSTfNvPe97433vve9U/JcixcvjmuuuSauueaaKXk+Dl25/7HcuD736CZVAgAApKiy6/HcuD57aUQ56eU2AADQBEMnvjh2zloa5YGtUd6zNWqzj2p2SQAAQOKqtX2fYt5eyu80E+X2gqsBACBV7uJheqsNRXnXk/mpOcc0qRgAACBF5f7xTTPLmlQJAACQsvrcY2No7rHNLgMAAGBUdSQb/bp9/E4zFU0zAAAUQ9MMR6RSqTTkecvl8qTj0fn+J6MUWW6u1Htcw+qiMQ41b2YGeadD1mmRd1rkTatq5Dpgsvd92+4nco9lc462JpnmXOfSIeu0yDst8k6LvGlVzVqjMLPIOi3yTou80yLvdMiaVtaM+7zG9MxEe0zcacbfU6Yf17m0yDst8k6HrNMi7700zXBEent7C3mdefPm7f+Bbbfnx53zYv5RJzS6HBrsgHkzI8k7HbJOi7zTIm9aRVHrk4hx7/vBzbnHOhafFB0F1kLjuc6lQ9ZpkXda5J0WedMqmrZGYUaTdVrknRZ5p0Xe6ZA1raQZ93l17CqNft02bqeZSntXoesmGsN1Li3yTou80yHrtKSad5qtQswcO9bnx/OPa04dAABAunZuyI/nHdOcOgAAAAAAAFpIdXhfo0zH+J1mKu0FVwMAQKo0zTC9aZoBAACare+x/Hjesc2pAwAAAAAAoIUMjtRHv27XNAMAQJO0NbsAprft27c35HnL5XJu+6e+vr6o1+sTjuvZ9GB0jhkPdi+JgQbVROMcat7MDPJOh6zTIu+0tELetmpnfxq1PomY5H1fG4r5/U9EacyxO0tzo2ZdMq21wnWOYsg6LfJOi7zT0uy8rU84kKasUZhxZJ0WeadF3mmRdzpaIWtrFA6kGfd5bd2xc3S+rVTLnTeSlaLf31OmnVa4zlEceadF3umQdVpaIe9WWKNomuGI1Gq1gx80Ber1+n5fq7zz0dx4ZPbRhdVE4xwob2YmeadD1mmRd1rkTaso8n341Pu+vPPxKEWWe2y4Z2lkfiZmFNe5dMg6LfJOi7zTIm9aRTPWKMx8sk6LvNMi77TIOx2yppU04z6vgaF9u8uM32kmK7f7+ZgBXOfSIu+0yDsdsk5LqnmXm10AHInyzg25cX3uMU2qBAAASFG5//HcuN4+K7LOuU2qBgAAAAAAoHUMjez7FPP9Nc0AAEARNM0wfdWqUd79ZH5K0wwAAFCgyvimmTnLI0qlJlUDAAAAAADQOqqTNM1Eua3gagAASJWmGaatcv/GKEWWm6vPObpJ1QAAACkq7xrXNDN7WZMqAQAAAAAAaC1jm2baopZ7LKt0FF0OAACJ0q7NEalUKg153nK5POk4IqJt/M1pnXOj3NPbkHporEPJm5lD3umQdVrknRZ506oatT6JOPD7vm3XE7n5bO7RDa2DYrjOpUPWaZF3WuSdFnnTqpqxRmHmkXVa5J0WeadF3umQNa2sGfd5De/rmYmOUn6nmVKl3d9UpiHXubTIOy3yToes0yLvvTTNcER6e4tpUpk3b97EyYe35Ybl3uMLq4fG2m/ezFjyToes0yLvtMibVlHkemD0fT+4OTffuWRFdFqXzDiuc+mQdVrknRZ5p0XetIqmrFGY8WSdFnmnRd5pkXc6ZE0racZ9XuW2TaNft0e+aaaja1Z0+JvKtOc6lxZ5p0Xe6ZB1WlLNO81WIWaGHevz4/nHN6cOAAAgXX2P5cfzjm1OHQAAAAAAAC1mcGTfVjNtUcs/WGkvuBoAAFKlaYbpa0LTzHHNqQMAAEhTlkX0PZqfm3t0c2oBAAAAAABoMdXhfY0yHeN2mtE0AwBAUdqaXQDT2/bt2xvyvOVyObf9U19fX9Tr9dwxc7Y8nHsD7+lYFNUG1UNjHUrezBzyToes0yLvtLRC3kVtH8/00qj1ScT+3/fZwPaYP7Qrd1xfaW7UrUumvVa4zlEMWadF3mmRd1qanbf1CQdS9BrFdW5mknVa5J0WeadF3ulohaytUTiQZtzn1bd7YHR+/E4zgyNZDPibyrTTCtc5iiPvtMg7HbJOSyvk3QprFE0zHJFarXbwg6ZAvV6f8FqlnY/lxiOzlxdWD421v7yZueSdDlmnRd5pkTetosj3Yb1ej9iRX5NkUYrh7kURfh5mHNe5dMg6LfJOi7zTIm9aRdFrFO/7NMg6LfJOi7zTIu90yJpW0oz7vMbuNNM+bqeZrFTx8zEDuM6lRd5pkXc6ZJ2WVPPWNMP0VKtGZfeT+am5xzapGAAAIEW1+SfG9td/PSr9j0d518YoDe6IqHQ2uywAAAAAAICWMDiy71PM20vjmmbK7UWXAwBAojTNMC2V+x+fMFefc3QTKgEAAJLV1hm1xWdGbfGZza4EAAAAAACg5QyNZKNft8e4TzQvu3URAIBilJtdAByOys4NuXG9c15knXOaVA0AAAAAAAAAAABjVcfuNBPjdpqpdBRdDgAAidI0w7RU3vloblyfe0yTKgEAAAAAAAAAAGC8odq+ppm2CTvNtBdcDQAAqdI0w7RU6c/vNFObc3STKgEAAAAAAAAAAGC8wTE7zXSM22kmym0FVwMAQKr85skRqVQqDXnecrk86bhtXNNMNu/YhtVC4x0sb2YWeadD1mmRd1rkTatq5JrA+z4t8k6HrNMi77TIOy3yplVZozAVZJ0WeadF3mmRdzpkTStrxn1ewyPZ6Nfjd5optXe632sacp1Li7zTIu90yDot8t5L0wxHpLe3t5DXmTdvXn5izxO5YdfSldFVUC003oS8mdHknQ5Zp0XeaZE3raKo9UmE931q5J0OWadF3mmRd1rkTauwRqERZJ0WeadF3mmRdzpkTStpxn1eQ/s2mon2Un6nmZ7Zc6PH/V7TnutcWuSdFnmnQ9ZpSTXvNFuFmP52rM+P5x/XnDoAAAAAAAAAAACYoDqyr2umI/JNM1HpKLgaAABSpWmG6Wd4MGJXfqcZTTMAAAAAAAAAAACtozpcG/26LWr5B8vtBVcDAECq2ppdANPb9u3bG/K85XI5t/1TX19f1Ot7P3mgvP3hGL8x1PaYG9GgWmi8yfJm5pF3OmSdFnmnpRXyLmr7eKaXRq1PIlrjfU9x5J0OWadF3mmRd1qanbf1CQdijcJUkHVa5J0WeadF3ulohaytUTiQZtznNTiyr1GmfdxOM7sGh2LY/V7TTitc5yiOvNMi73TIOi2tkHcrrFE0zXBEarXawQ+aAvV6ffS1yjvW5x/rnB+1tp6Igmqh8cbmzcwn73TIOi3yTou8aRVFvg+979Mi73TIOi3yTou80yJvWoU1Co0g67TIOy3yTou80yFrWknR93nV6lkM17LR+fE7zdRLbX4+ZgDXubTIOy3yToes05Jq3uVmFwBPV2Xno7lxfe7RTaoEAAAAAAAAAACA8YZr+U8w7xi300yUfd43AADF0DTDtFPeuSE3rs05pkmVAAAAAAAAAAAAMN7gSL5ppr2Ub5rJyu1FlgMAQMI0zTDtVPofy43rczXNAAAAAAAAAAAAtIqhkSw3bota/oCKnWYAACiGphmmnYk7zRzdpEoAAAAAAAAAAAAYrzpup5mOGL/TTEeR5QAAkDBNM0w7dpoBAAAAAAAAAABoXeObZibsNFO20wwAAMXQNMP0MjIY5T2bc1O1OZpmAAAAAAAAAAAAWsX4ppn28TvNVNqLLAcAgIRp1+aIVCqVhjxvuVze77i884mJB/ce17A6KMaB8mZmknc6ZJ0WeadF3rSqRq4LvO/TIu90yDot8k6LvNMib1qVNQpTQdZpkXda5J0WeadD1rSyou/zGslKY2azaC/ld5opt3dFuOdr2nGdS4u80yLvdMg6LfLeq5RlWdbsIuCQPXhTxGdft2/cvSDij9Y2rx4AAAAAAAAAAAByVt+/Oa7+xE8iYu8uMw90XZ0/4Ld/HrHo5CZUBgBAatJsFWL62rE+P55/XHPqAAAAAAAAAAAAYL+qI/XRr9tjZOIBlfYCqwEAIGWaZphetq/LjzXNAAAAAAAAAAAAtJTB4dro122aZgAAaKK2ZhfA9LZ9+/aGPG+5XI558+aNjvv6+qJer8eszQ9Gx5jjBruXxkCDaqA4B8qbmUne6ZB1WuSdllbIu7e3t9DXY3po1PokojXe9xRH3umQdVrknRZ5p6XZeVufcCDWKEwFWadF3mmRd1rknY5WyNoahQMp+j6vbX39o3MdUZtw3o7+PZHV3Pc13bTCdY7iyDst8k6HrNPSCnm3whpF0wxHpFabuKBphHq9HrVaLUp9j+XmR2YvL6wGivNU3qRB3umQdVrknRZ50yqKfB9636dF3umQdVrknRZ5p0XetAprFBpB1mmRd1rknRZ5p0PWtJKi7/MaGNq3u8z+dpqpRSUyPx/TnutcWuSdFnmnQ9ZpSTXvcrMLgKej3P94blybc0yTKgEAAAAAAAAAAGB/hmr7PsG8vTSxaSYr+7xvAACK4TdPppXt19wa5f7Ho9K/Ico7H4uRJWc1uyQAAAAAAAAAAADGqI6MaZqJ/XyaeaW9wGoAAEiZphmml0pH1OefEPX5JzS7EgAAAAAAAAAAAPZjaCQb/bo9Ju40E6VKgdUAAJCycrMLAAAAAAAAAAAAAGaOwdxOM/mmmazcEVEqFV0SAACJ0jQDAAAAAAAAAAAATJmhXNNMLf9gpa3gagAASJmmGQAAAAAAAAAAAGDKVCfdaaa96HIAAEiYphkAAAAAAAAAAABgylRr+5pm2krjd5rRNAMAQHE0zQAAAAAAAAAAAABTpjq8r2mmY8JOM21FlwMAQML89gkAAAAAAAAAAABMmTefvywuPmVBVGv1WP7k+ohfjnmw3NG0ugAASI+mGY5IpVJpyPOWy+VJx8ws8k6LvNMh67TIOy3yplU1an0S4X2fGnmnQ9ZpkXda5J0WedOqrFGYCrJOi7zTIu+0yDsdsqaVFX2f1zOOmx/P+NVc+wNz800zlbaGrploHNe5tMg7LfJOh6zTIu+9SlmWZc0uAgAAAAAAAAAAAJiB7vxSxJffuW+85MyI9/ywefUAAJCUNFuFAAAAAAAAAAAAgMarD+fHlfbm1AEAQJI0zQAAAAAAAAAAAACNURvKjzXNAABQoLZmF8D0tn379oY8b7lcjnnz5o2O+/r6ol6vN+S1aD55p0Xe6ZB1WuSdllbIu7e3t9DXY3po1PokojXe9xRH3umQdVrknRZ5p6XZeVufcCDWKEwFWadF3mmRd1rknY5WyNoahQNp5n1enf07o2fMeDgrxa4GrplonFa4zlEceadF3umQdVpaIe9WWKNomuGI1Gq1Ql6nXq8X9lo0n7zTIu90yDot8k6LvGkVRb4Pve/TIu90yDot8k6LvNMib1qFNQqNIOu0yDst8k6LvNMha1pJM+/zqo9Uc+Os1OZnY4ZwnUuLvNMi73TIOi2p5l1udgEAAAAAAAAAAADAzFSqD+UnKu3NKQQAgCRpmgEAAAAAAAAAAAAaoz6SG2ZlTTMAABRH0wwAAAAAAAAAAADQEKXacH5C0wwAAAXSNAMAAAAAAAAAAAA0xvidZiqaZgAAKI6mGQAAAAAAAAAAAKAxakP5cbmtOXUAAJAkTTMAAAAAAAAAAABAQ5Tqw/mJsp1mAAAojqYZAAAAAAAAAAAAoDHqI7lhVtE0AwBAcTTNAAAAAAAAAAAAAA1RqtlpBgCA5tE0AwAAAAAAAAAAADRGPd80k5XbmlQIAAAp0jQDAAAAAAAAAAAANERpXNNMVOw0AwBAcTTNAAAAAAAAAAAAAI1RG8kNs3JHkwoBACBFmmYAAAAAAAAAAACAhpiw00y5rTmFAACQJE0zAAAAAAAAAAAAQGPUxjXNVNqbUwcAAEnSNAMAAAAAAAAAAAA0xridZjI7zQAAUCC/fXJEKpVKQ563XC5POmZmkXda5J0OWadF3mmRN62qUeuTCO/71Mg7HbJOi7zTIu+0yJtWZY3CVJB1WuSdFnmnRd7pkDWtrJn3eZXrI7lxqa2zoWsmGsd1Li3yTou80yHrtMh7r1KWZVmziwAAAAAAAAAAAABmoH9+UcSGn+8b//qHI57x1ubVAwBAUtJsFQIAAAAAAAAAAAAarzaUH1fam1MHAABJ0jQDAAAAAAAAAAAANEZtJD/WNAMAQIHaml0A09v27dsb8rzlcjnmzZs3Ou7r64t6vd6Q16L55J0WeadD1mmRd1paIe/e3t5CX4/poVHrk4jWeN9THHmnQ9ZpkXda5J2WZudtfcKBWKMwFWSdFnmnRd5pkXc6WiFraxQOpJn3ec0dHozKmPGugaEYbuCaicZphescxZF3WuSdDlmnpRXyboU1iqYZjkitVivkder1emGvRfPJOy3yToes0yLvtMibVlHk+9D7Pi3yToes0yLvtMg7LfKmVVij0AiyTou80yLvtMg7HbKmlTT1Pq/aUH4YFT8bM4TrXFrknRZ5p0PWaUk173KzCwAAAAAAAAAAAABmqPpIflz2Wd8AABRH0wwAAAAAAAAAAADQEKXacH6i0t6cQgAASJKmGQAAAAAAAAAAAKAx6vmmmUzTDAAABdI0AwAAAAAAAAAAADREaVzTTJQ1zQAAUBxNMwAAAAAAAAAAAEBj1MbtNKNpBgCAAmmaAQAAAAAAAAAAAKZeVo9SVsvPlduaUwsAAEnSNAMAAAAAAAAAAABMvfrwhKmsYqcZAACKo2kGAAAAAAAAAAAAmHq1kYlzZU0zAAAUR9MMAAAAAAAAAAAAMOVK+9lpRtMMAABF0jQDAAAAAAAAAAAATL36xJ1msoqmGQAAiqNpBgAAAAAAAAAAAJhypdrQxEk7zQAAUCBNMwAAAAAAAAAAAMDUqw9PmLLTDAAARdI0AwAAAAAAAAAAAEy5Un1k4mS5rfhCAABIlqYZAAAAAAAAAAAAYOrV8jvNZFGKKFWaVAwAACnSNAMAAAAAAAAAAABMvXq+aSYq7RGlUnNqAQAgSZpmAAAAAAAAAAAAgClXGr/TTLm9SZUAAJAqTTMAAAAAAAAAAADA1Bu/04ymGQAACqZpBgAAAAAAAAAAAJhypfpIfqLS1pxCAABIlqYZAAAAAAAAAAAAYOrVhnLDzE4zAAAUTNMMAAAAAAAAAAAAMOUm7DSjaQYAgIJpmgEAAAAAAAAAAACmXn04N8wqmmYAACiWphkAAAAAAAAAAABgypVqdpoBAKC52ppdANNbpVJpyPOWy+VJx8ws8k6LvNMh67TIOy3yplU1an0S4X2fGnmnQ9ZpkXda5J0WedOqrFGYCrJOi7zTIu+0yDsdsqaVNes+r3KMa5qptDd0vURjuc6lRd5pkXc6ZJ0Wee9VyrIsa3YRAAAAAAAAAAAAwAzzs09GXP97+8bHPCvinTc2rRwAANKTZqsQAAAAAAAAAAAA0Fj1iTvNAABAkTTNAAAAAAAAAAAAAFOvNpQfa5oBAKBgbc0ugOlt+/btDXnecrkc8+bNGx339fVFvV5vyGvRfPJOi7zTIeu0yDstrZB3b29voa/H9NCo9UlEa7zvKY680yHrtMg7LfJOS7Pztj7hQKxRmAqyTou80yLvtMg7Ha2QtTUKB9Ks+7w6d+2MnjHHD9dLsauB6yUaqxWucxRH3mmRdzpknZZWyLsV1iiaZjgitVqtkNep1+uFvRbNJ++0yDsdsk6LvNMib1pFke9D7/u0yDsdsk6LvNMi77TIm1ZhjUIjyDot8k6LvNMi73TImlbSrPu8spFq/vFSxc/FDOI6lxZ5p0Xe6ZB1WlLNu9zsAgAAAAAAAAAAAICZp1Qfzk9UOppTCAAAydI0AwAAAAAAAAAAAEy92khumJXbmlQIAACp0jQDAAAAAAAAAAAATLkJO82U25tTCAAAydI0AwAAAAAAAAAAAEy9CU0zdpoBAKBYmmYAAAAAAAAAAACAqVfLN81klY4mFQIAQKo0zQAAAAAAAAAAAABTrlQfyU+U25tTCAAAydI0AwAAAAAAAAAAAEy9+vidZtqaVAgAAKnSNAMAAAAAAAAAAABMuVJtKD9hpxkAAAqmaQYAAAAAAAAAAACYevWR3DDTNAMAQME0zQAAAAAAAAAAAABTrlQbzk9UNM0AAFAsTTMAAAAAAAAAAADA1Bu300yU25pTBwAAydI0AwAAAAAAAAAAAEy9+lBumJXtNAMAQLE0zQAAAAAAAAAAAABTrjR+p5mKphkAAIqlaQYAAAAAAAAAAACYerXh3NBOMwAAFE3TDAAAAAAAAAAAADDlSvV804ydZgAAKJqmGQAAAAAAAAAAAGDq1Udyw6zc1qRCAABIlaYZAAAAAAAAAAAAYMqVakP5ibKdZgAAKJamGQAAAAAAAAAAAGDqjd9pptLRpEIAAEiVphkAAAAAAAAAAABg6tWG8+NyW3PqAAAgWZpmAAAAAAAAAAAAgClXqo9vmmlvTiEAACRL0wwAAAAAAAAAAAAw9cY1zWQVO80AAFAsTTMAAAAAAAAAAADAlCvVxu8009GcQgAASJamGQAAAAAAAAAAAGDq1Udyw6xspxkAAIqlaQYAAAAAAAAAAACYWlk9SlktP1dpb04tAAAkS9s2AAAAAAAAAAAAMLXqwxOmsrKmGZiphoeHY8+ePTE0NBRZlkWWZc0uiaehVCrFli1bRsfDw8MynKFknZbDzbtcLkdbW1t0dXVFZ2dnlMvTe68WTTMAAAAAAAAAAADAlCrVJjbNhKYZmHGyLIu+vr4YGBhodikcobE30tfr9SZWQqPJOi2Hk3e9Xo+RkZEYHByMUqkU8+fPj66urkaV2HCaZgAAAAAAAAAAAICptZ+mmayiaQZmml27dk1omJnuOxKkSm7pkHVaDifvsTuGZVkW27dvj97e3mnbOKNpBgAAAAAAAAAAAJha9ZGJc2W3LMJMMjIyErt27Rodz5kzJ3p6etyQP021te27Ro+M7Ocazowh67QcTt5ZlsXQ0FDs3r07qtVqRETs2LEjlixZMi2v8dOvYgAAAAAAAAAAAKClleoTd5oJO83AjPLUjdQREbNmzYrZs2dPy5upAcgrlUrR2dkZvb290dnZGRF7G2nGXvenE23bM8R73/ve2Lx5834fO+OMM+LP//zPiy0IAAAAAAAAAACAdO2naSYra5qBmWTszdPd3d1NrASARiiVSjFr1qzR6/3g4OC0vN5rmplBenp64pJLLpkwv2TJkiZUAwAAAAAAAAAAQKpKtf3sNKNpBmaUWq0WEXtvqm5rc0sywEzU0a8EMLQAAHWvSURBVNERpVIpsiyLkZGRZpdzWPwXagaZNWtWXHXVVc0uAwAAAAAAAAAAgNSN22kmK5UjypUmFQM0Qr1ej4i9TTOlUqnJ1QDQCE9d47MsG73uTzflZhcAAAAAAAAAAAAAzCwTdpop+4xvAACKl/xvoX19ffHggw/Ggw8+GA899FA89NBD0d/fHxERL3jBC+K9733vIT/X5s2b44Ybbohf/OIXsXXr1mhra4ujjjoqLrzwwnj5y18enZ2djfo2IiJieHg4vvvd78a2bduip6cnVqxYEaecckpDXxMAAAAAAAAAAAAmGL/TTLmjSYUAAJCy5Jtm3vWud03J8/zsZz+LD33oQzEwMDA6V61WRxtxbr755viTP/mTOOqoo6bk9fZnx44d8Q//8A+5uRUrVsTv/u7vNvR1AQAAAAAAAAAAIKc+kh/baQYAgCbwW+gYixYtiqOPPjruuOOOp3Xe2rVr42//9m9jaGgourq64vLLL4+zzjorhoaG4gc/+EHcfPPNsXHjxvjLv/zL+Ku/+qvo7u6e8tpf+MIXxumnnx7HHntsdHV1xcaNG+P666+P1atXx//4H/8j/uZv/qYhrwsAAAAAAAAAAADjlWr5nWai0t6cQgAASFryTTNXXHFFrFixIlasWBHz58+PTZs2xW//9m8/ref41Kc+FUNDQ1GpVOJP//RPY+XKlaOPnXXWWbFs2bL47Gc/Gxs3boxvfOMbcdVVV014jmuvvTaGh4cnzB/IJZdcEsuWLRsdX3nllbnHTzjhhNHvY/Xq1XHzzTfHpZde+rS+LwAAAAAAAAAAADgs9fz9cJmmGQAAmiD5ppn9NbA8HQ8++GDcd999ERFx8cUX5xpmnnLppZfGLbfcEhs2bIgbbrghXvva10ZbW/6f/sYbb4xqtXrIr3vBBRfkmmYO5CUveUmsXr06fvnLX2qaAQAAAAAAAAAAoBClcU0zUU7+dkWAKfHYY4/F//2//zdWr14dGzduHL3/+NOf/nRccsklU/Y6ixcvjoiI//bf/lu8//3vzz32gx/8IC6//PKIiPjqV78az33uc6fsdUnX5z//+Xjf+94XERE///nP47jjjmtyRcwUfgs9Qj/5yU9Gv7744ov3e0y5XI4XvOAF8bnPfS52794d99xzT5xzzjm5Yz7zmc80pL65c+dGRDythhwAAAAAAAAAAAA4IrVxO82UO5pUCMDM8dhjj8VLXvKS2Lp1a7NLAZg2ys0uYLpbs2ZNRER0dnbGSSeddMDjzjjjjAnnFOGBBx6IiH3dngAAAAAAAAAAANBopfpIfsJOMwBH7P/8n/8TW7dujba2tvjABz4QN9xwQ6xevTpWr14dF110UbPLYxpYv3599Pb2Rm9vb3zuc59r+Ov94Ac/iMWLF8fixYvjBz/4QcNfD/bHb6FH6LHHHouIiKOOOioqlcoBj1u+fPmEc6bKhg0bYtGiRdHZ2Tlh/l/+5V8iIuJ5z3velL4mAAAAAAAAAAAAHND4nWYq7U0qBGDmWL16dUREvPKVr4zf+Z3faXI1MLXe+MY3xhvf+MZml8EMpGnmCAwNDUV/f39ERCxcuHDSY2fPnh2dnZ1RrVanfEu0H/zgB/HNb34zTj/99Fi0aFF0dXXF448/HrfddlvUarW4/PLLczvdHIpDrXGyRqEjUS6XJx0zs8g7LfJOh6zTIu+0yJuiNXt9EuF9nxp5p0PWaZF3WuSdFnlTNGsUiiTrtMg7LfJOi7zTIWuaodlrlMne9+Wo5R4rVdobulai8Vzn0nIoeZdKpaLK4Vc2btwYERErVqyY0ucdn6VsZ679ZZ1lWZOqodGmOu9SqTQtf5/TNHMEBgcHR7/u6uo66PFdXV1RrVZz502Fs846KzZs2BCPPPJI3HfffTE0NBRz5syJ8847L17+8pfHOeec87Sf893vfvchHffFL37xaT/34Zg3b14hr0NrkHda5J0OWadF3mmRN43WauuTCO/71Mg7HbJOi7zTIu+0yJtGs0ahmWSdFnmnRd5pkXc6ZE0RWm2Nknvfd+Z3lmnr6Ine3t5C6qAYrnNp2V/eW7ZsiSzLolwuR1ubW5KLMDQ0FBERnZ2dDf03H3tT/P7yHft4pVKR/zQyvuGh0Q0Q3iut5XDzfqpxsr29fVr+PqfN9wg89R+eiDikH+Cnjhl73lQ444wz4vd///fj7/7u7+LTn/50fP7zn4+PfvSj8f73v/+wGmYAAAAAAAAAAADgiNSH8+NK+/6PA2BSn/vc56K3tzd3o/pf//Vfj8719vbGe97zntHHVq1aNWFuf97znvdEb29vrFq1qmG1H4p6vR7XXXddXH311XHWWWfFsmXLYtmyZXH++efHu971rvja174Ww8PD+z13aGgoPvaxj8Vll10WJ598cixZsiROPfXUuPLKK+MLX/hC1Ov1A77u+O//ySefjD/7sz+L888/P5YvXx5nnHFGvP3tb4/77rsvd9769evjj/7oj+L888+PZcuWxcqVK+Nd73pXrF279oCv9Vd/9Ve5DPv6+uIv//Iv48ILL4xjjjkmTjzxxLjsssviuuuum/Tf6qnn+Ku/+qtJj7v00kujt7c3Lr300gnnj723/L3vfW/ufbS/537kkUfiwx/+cLzhDW+IVatWjeZz9tlnxzve8Y646aab9lvD+vXro7e3Ny677LLRucsuu2zC633uc58bfXzse339+vUH/P62bNkSH/zgB+Oiiy6K448/Po466qhYtWpV/OZv/mb86Ec/mvTfZvzPxwMPPBC/+7u/G6tWrYqlS5fGypUr4y1veUv89Kc/nfR5mF60ah2Bjo6O0a9HRkYOevxTx4w9r1X94z/+Y7NLAAAAiAjrEwAAoLVYowAAAK2kpdcotXEfLq1pBoBx1q9fH295y1virrvumvDYQw89FA899FBcd9118Y1vfCOe97znTTj3yiuvjPvvvz83v2nTprjpppvipptuik996lOjjRiTueuuu+LKK6+MJ598cnRuYGAgvvrVr8aNN94YX/rSl+LCCy+M1atXx1vf+tbYuXPn6HGDg4Nx3XXXxU033RTf+ta34vTTT5/0tdatWxevec1rJjTZfP/734/vf//78a1vfSs++tGPtsSOLOvWrYvzzjtvv4899thj8dhjj8VXvvKVuOqqq+IjH/lIITV/5zvfibe97W3R39+fm3/00Ufj0UcfjS9+8Yvxzne+M/76r/96dHeUA7n++uvjN3/zN2PPnj2jc5s3b45vfvOb8e1vfzs++tGPxmtf+9qGfB8Uq/k/TdNYV1fX6NeDg4MHPf6pY8ae16oWLlx4SMdt3769Ia9fLpdzW/n19fVN2u3J9CbvtMg7HbJOi7zT0gp5T8dtPjl8zV6fRLTG+57iyDsdsk6LvNMi77Q0O2/rk/RYo1AkWadF3mmRd1rknY5WyNoaJT3NXqNM9r7v2rUzusccO1SP2N3AtRKN1wrXOYpzKHkPDw+Pzh3Kh89zeF7+8pfH6tWrIyLioosuioiIt7/97fH2t7999Jj58+dPyKBer0+ay9g8a7VaVCqV3Hiy5xn7eK1WO6z8N23aFC9/+cvjiSeeiIiI5z//+fH6178+TjnllCiVSrFu3br4/ve/H1//+tcnvMauXbvi1a9+dTzyyCMREXHJJZfEm970pjjqqKNi3bp18fGPfzx++MMfxo9//ON4/etfH9/4xjdy39/Y739gYCDe+ta3xtDQUPz3//7f4znPeU5UKpX4zne+E3/7t38bu3fvjt/6rd+KL33pS/HmN7855s6dG3/0R38Uv/ZrvxYjIyNx/fXXxz/90z/Fjh074nd+53fi29/+9oTvdey/9dvf/vZYt25dvO1tb4vLLrss5s6dG/fcc0986EMfioceeii+8pWvxJIlS+KDH/zgAf/tDpZtlmWj/3/scatXr44nn3wyrrzyyoiI+O///b/HK17xitHjIyIWLVo0ek61Wo2Ojo64+OKL4wUveEGceuqpMX/+/NixY0c89NBD8YlPfCJ++ctfxhe/+MU47rjj4o/+6I9Gn2fx4sWxevXquO222+J3f/d3IyLi7/7u7yY04Sxfvnz09ca+r0ZGRiZ8j3fddVe88Y1vjKGhoWhvb4/f+I3fiFe84hXR09MTd911V/z93/99rFu3Lj72sY9Fd3d3fOADHzjgv9E999wTX/nKV2Lp0qXx7ne/O84999zIsixuueWW+Pu///sYHByM3/u934vnPOc5sWjRogM+T6srlUoTfrbH5n2o6vV61Ov1GB4eftq/V7bCGkXTzBHo6OiIOXPmRH9/f2zdunXSY3ft2hXVajUiDn2hMh2MvTg1Ur1eL+y1aD55p0Xe6ZB1WuSdFnnTKop8H3rfp0Xe6ZB1WuSdFnmnRd60CmsUGkHWaZF3WuSdFnmnQ9a0kmbc55WN22kmK7X5mZhhXOfSsr+8D+XG63qWRd9AWg0187rbolwqTd3zzZuXa2CK2NvYcLAdTZ6O8Vkezk31T9f73//+0YaZD3zgA/E7v/M7ucfPO++8uPzyy+PP//zPJzRP/M3f/M1ow8x//a//Nf7kT/5k9LFzzjknLrvssnjPe94T1113Xfz0pz+Na6+9NtdkNNaWLVsiy7L493//9zjxxBNH53/t134tFixYEH/8x38c69evj1e96lWxZMmS+OY3v5lronj2s58dbW1t8eEPfzh+/vOfx5133hmrVq064Pd92223xT/90z/ldjA599xz49WvfnVceumlcc8998Q///M/x5vf/OYpzTgi4vTTT49Zs2aNjpcvXx6nnXbaAY9funRp/PznP4+jjjpqwmMXXXRRvO1tb4v3ve998a//+q/xD//wD/Hud7875s6dGxER7e3tcfrpp8e2bdtGzzn++OOP6Hv6gz/4gxgaGopKpRL/8i//EhdffPHoY+edd178+q//elx66aWxZs2a+MhHPhJXXXXVAb+/O++8M84555z4yle+EnPmzBmdP//88+PEE0+Md7/73dHf3x/XXXdd/NZv/dZh19xsU/2znWXZtPxvv6aZI3TMMcfEfffdF0888cSELsuxHn/88dw5AAAAAAAAAAAAMGPVhnPDrNzepEKAZuobGImX/sMvml1GoW58zzOit8c1bzIPPvhgfOtb34qIvbvEjG+YGWv27Nm5cbVajc9+9rMREXHaaafF+9///gnnlEql+F//63/Fd77zndi2bVt8/OMfP2DTTETEH//xH+caZp7ypje9Kf78z/88BgcHY8uWLfHhD394v7uOvO1tb4sPf/jDERHx4x//eNKmmZe97GW5hpmx3+f/+T//J17+8pdHvV6PT33qU/HXf/3XB3yeIsyaNSvXZDNeqVSK//f//X/jS1/6UuzZsyduvfXWuOyyyxpSyy9+8Yu47bbbIiLirW99a65h5inz58+P//2//3dceumlUa/X4xOf+ET8r//1vw74nH/3d3+Xa5h5yute97r4f/6f/yeeeOKJ+PGPfzytm2bYS9PMETr11FPjvvvui2q1Gg8//HCccsop+z3u3nvvzZ0zUxyoSehIlcvlScfMLPJOi7zTIeu0yDst8qZVNWp9EuF9nxp5p0PWaZF3WuSdFnnTqqxRmAqyTou80yLvtMg7HbKmlTXjPq9ylv8U8lJbR0PXSjSe61xaDiXv0hTupkJzjc+y0dneeOONozte/OZv/ubTOveOO+6Ivr6+iIh4wxvecMD/tsyZMyde/epXxyc/+clYs2ZNPPHEE/vdMaVUKsWrX/3q/T5Hd3d3nHTSSXHvvffG/Pnz40UvetF+jzv++ONj9uzZsWvXrli3bt2k9b/xjW884GPPeMYz4rTTTotf/vKXsXr16kmf53DtL+tD3X1keHg4Nm/eHLt27crtNrJgwYLYvHlz3HPPPQ1rmrn11ltHv37zm998wOOe/exnx8qVK+P++++f9N/wjDPOiDPPPHO/j5VKpTj77LPjiSeeGN3RaLo6krwP9HzT8fc5TTNH6FnPelZ89atfjYiIW265Zb9NM/V6ffQHddasWQf8AZuOent7C3md8dvKMbPJOy3yToes0yLvtMj7/9/efYdHVeb//3/NpFIkBAhFEGkiXbq0FQVlAVFQkRW7iL23XdyVD7qyoiL7dRXF1VWwUGRdUUEUBaWIhbr0GlAUCJ2EkjBJZn5/5DezmUzJBKae+/m4rr12Zs6Z+9yZ17nvM2+vuTmIF9GqTyTOe9OQtznI2izkbRbyNgt5I15QoyASyNos5G0W8jYLeZuDrBFPYvI7rxTvH9inVaqitCjWSog85jmz+Mv74MGDcrlcstvtSk72/5PkpOTT/3F2okpKTg74eYRLsM881H1KL4Qq+yP40s/9tVN6e1JSUoX/3vXr10uSUlJS1K1btwq9f+vWrZ7HXbp0CfreLl26aPLkyZKkbdu2qUGDBp5t7r+/Zs2aysrKCtiG+9xv0qSJUlIC30EoIyNDx48f18mTJ336VPqz7ty5c9A+d+rUSZs3b1Z2dracTqdSU1N99ikvW/dCCZvNFjQ7f8/LKiws1JQpUzRz5kytXbtWDocj4L5Hjhw5o3Ol9L7JZcbRli1bJEmpqalq37590HY6d+6srVu3aseOHQE/w+bNmwdto0aNGpKkEydORHw8R9PpLnhxn8MpKSlR/W/f4cIy3zPUrFkztWzZUlLJopnSE7HbnDlztHv3bknSgAEDLDVwAAAAAAAAAAAAAAAAAADwUVzmR7VJvj9YBQCY6dChQ5JKFnX6W9AQzJEjRzyPgy12kaTatWv7fV9plSpVCtqGe7FAqPuVvgOLP+X12b3d5XLp6NGjQfeNtCNHjqhfv3764x//qBUrVgRdMCNJBQUFEeuL+7PIzMws97f47tyDfYbhyhOJwfjVG5s3b1ZOTo7neV5enudxTk6OFi5c6LX/xRdf7NPGrbfeqtGjR8vhcGjs2LG66qqr1Lp1azkcDn3//feaP3++JKlevXoRu+UUAAAAAAAAAAAAAAAAAABxo7jI+7k98L/OD8C6qldK1jcPdo11N6KqeiXjf54dNe47qiSSROrzqFGj9N///leSdPnll+uGG25Q69atlZWVpfT0dM/f0qZNG+3evVsuV+TvLJVInx/ih/Gz8oIFC7Ro0SK/27Zs2eK5lZObv0UzjRs31sMPP6xXX31V+fn5mj59us8+9erV05NPPlnuqrREE2jV5Zmy2+1et/LLzc2V0+mMyLEQe+RtFvI2B1mbhbzNEg95J+JtPhF5kapPpPg47xE95G0OsjYLeZuFvM0S67ypTxAINQrCgazNQt5mIW+zkLc54iFrahQEEovfeVXOP660UvsWFBYrP4K1EiIvHuY5RE8oeRcWFnpeKyoqs1CulGqpZv3I3VlcrEiPDKfTGfAzL32HjGC5HD9+3PO4uLhYSUlJXs+DHav09vKO40+NGjUklVyfTp48WaG7zZQ+L/fu3atGjRoF3Hfv3r2ex9WqVfPqZ+nzOVj/3QtBXC5XSH+nv8+r9LH27t2r+vXrB3z/vn37JJUsDqlatapXWzabzdOPYH05ceJEwD6XvXNKcXGx38Uux44d06xZsyRJQ4cO1aRJkwK2476by5meK6X3Lfs3unM/fPiwCgoKgt5txn1DDX+foVuwMeTeXrovicpms/mM7dNZ3OR0OuV0OlVYWFjh75XxUKMYv2gmXDp37qyXXnpJc+fO1apVq3T48GElJyerbt266tatm/r376+0tLTyG0ow0brllNPp5PZWBiFvs5C3OcjaLORtFvJGvIjmech5bxbyNgdZm4W8zULeZiFvxAtqFEQCWZuFvM1C3mYhb3OQNeJJTH7nVezw3mZLYkxYDPOcWfzlHY27SqDiqlatKul/CxkC2bFjh+dx2SwjnW27du3073//W4WFhVq+fLl69uwZ8ntbtGjhebxq1Sp179494L6rVq3y+75YWr16ddBFM+47uzRp0sRnMVHVqlV17NixoNm6XC7t3Lkz5P4EynrHjh0qLCyUJA0ZMiTg+7dt2+ZZpBNJ7vwcDofWr1+v9u3bB9x39erVkvx/hqYJ99h2uVwJee03ftHMfffdp/vuuy8sbWVlZemWW27RLbfcEpb2AAAAAAAAAAAAAAAAAABISM5Cr6eupJQYdQQAzNKwYUNt2LBBa9eulcvlks3me6efzZs3a8OGDTHoXYnLLrtM//d//yeXy6U333yzQotmLrjgAmVkZCg3N1cffvih7rnnHs/ddUo7fvy4PvvsM0nS+eefr7p164at/2fiww8/1KBBg/xuW716tTZt2iRJuuiii3y2u7Nds2ZNwPbnz5+v3NzcgNtL3wTi1KlTAfcrfXeVkydPBtxvypQpAbdJUnp6ekjHK0/v3r313HPPSZKmTZsWcNHM8uXLtWXLFkn+P0OYyXeGAAAAAAAAAAAAAAAAAAAAOAO24iLvF+xm/0vvABAtPXr0kCTl5OTo448/9tl+/PhxPfzww1HulbemTZtq4MCBkqS5c+dq4sSJAfc9ceKE151V0tLSdOONN0qSNm3apAkTJvi8x+Vy6U9/+pMOHTokSbr99tvD2Psz8+WXX+qTTz7xef348eN67LHHJEl2u93vTRzc2a5cuVI//fSTz/Z9+/bpz3/+c9Dj16hRw3P3lWB3pGncuLFnwdWMGTP83qFk3rx5evvtt4Mer06dOp7HP//8c9B9g+nYsaNnocz777+vxYsX++yTl5enxx9/XFLJZ3jbbbed9vFgLcbfaQZnJikpKSLtll3x6W8FKKyDvM1C3uYga7OQt1nIG/EqUvWJxHlvGvI2B1mbhbzNQt5mIW/EK2oUhANZm4W8zULeZiFvc5A14lksfudlc3kvmrElp0a0VkLkMc+ZJZS8/d3BBLE3dOhQvfjiizp27Jgefvhh7dy5U5dccolsNpvWrFmjSZMmae/evWrbtq3WrVsnyTfLaGT74osvauXKlcrJydEzzzyjb775Rtddd53OO+882Ww27dq1S999950++eQTTZ482etuNI8//rg+//xz/fzzz3rxxRe1ceNGDR8+XHXq1NGuXbv09ttva+nSpZKkLl266Oabb4743xOq9u3b6+6779b333+vK6+8UmeddZY2bNigV199Vdu3b5ckjRgxQq1bt/Z5780336zJkyerqKhIN954ox577DF169ZNDodDy5Yt06RJk1RUVKQmTZpox44dfo+fkpKiDh066KefftLUqVPVpk0btWnTRsnJJcsKMjMzlZmZqRo1aujSSy/V119/rW+++UbXXnutbr31Vp1zzjk6cOCA5syZoxkzZujcc89VXl6eDh486Pd4DRo00Nlnn609e/bo9ddf19lnn61mzZp55pTatWuratWqIX12f//739W/f385HA4NHz5cI0eOVL9+/VSlShWtW7dOr7zyimdhzn333aeWLVuG1K6V+Rvb/hZAVaS9RPw+x6IZnJHMzMyoHCcjIyMqx0F8IG+zkLc5yNos5G0W8ka8iFZ9InHem4a8zUHWZiFvs5C3Wcgb8YIaBZFA1mYhb7OQt1nI2xxkjXgSk9952bx/kFm5aoYqR7FWQuQxz5nFX94HDx6Uy+WS3W73/OAe0RHsM69bt65eeeUVjRw5UgUFBXrhhRf0wgsveLZXqlRJb7zxhubNm+dZNFP2R/Cln/s7VuntSUlJp5X/2WefrS+++ELXX3+9Nm3apCVLlmjJkiV+9y17jOrVq+vTTz/Vtddeq61bt2rOnDmaM2eOz/suvPBCTZ8+XWlpaT7bSi8EC9Z/96IDm80W0t/p7/MqfawpU6Zo8ODBmjx5siZPnuzz/iuvvFLjxo3ze6w2bdromWee0V/+8hcdPXpUo0eP9tqemZmpDz74QM8995x27NgRsM+PPPKIhg8frsOHD+uuu+7y2vanP/1Jo0aNklSySGXAgAH67bfftGjRIi1atMhr3wYNGmjq1KkaNmxYwL9dkh599FE9/vjj+uWXX3TTTTd5bXvttdd0/fXXS/I+r5KTk33a6tChg6ZPn65bb71Vx44d0+uvv67XX3/d53gjR47U008/HXRxZ3nzVqjnR6I53QUv7s8jJSUlqv/tO1xY5gsAAAAAAAAAAAAAAAAAAMLLWej9PMk6PzgFgHg3ZMgQzZs3T4MGDVKtWrWUmpqq+vXra/jw4VqwYIEGDx4c6y5Kkho1aqQlS5bo9ddfV79+/VS3bl2lpKSoUqVKatasma677jpNnTpV3bt393lvw4YNtWTJEr344ovq2bOnatSooZSUFNWuXVt9+/bVG2+8oblz58bdD/zPPfdcLVy4UI8++qjOP/98Va5cWdWqVVOPHj30z3/+U++++27QRRr33nuvPvroI/Xt21fVq1dXWlqazj33XI0cOVKLFi1Sjx49yu3D73//e3366acaOHCg6tWrp5SUFL/7NWjQQIsWLdIDDzygZs2aKS0tTdWqVVObNm30pz/9SUuWLFGLFi3KPd7tt9+u9957T3369FFWVtYZLULp06ePVq1apUcffVRt27bVWWedpbS0NDVo0EDXXnut5s6dq/Hjx3M3NHixuc7k/joAAAAAAAAAAAAAAAAAAABlvXmxtGf1/54Pfk3qcGPMugMg/LZt2yaHwyG73a569erFujtA3Hr++ec9d/s5cuRIjHsDVNzevXvldDqVmpqq8847L9bdqTCWbuOMRGrittvtXrfyy83NldPpjMixEHvkbRbyNgdZm4W8zRIPecfbvwKC+BDJ/7AUD+c9ooe8zUHWZiFvs5C3WWKdN/UJAqFGQTiQtVnI2yzkbRbyNkc8ZE2NgkBi8TuvsxwFXj9QPFHgkIMfCie0eJjnED2h5F1YWOh5raioKKr9Q3jZbDYlJSV5nhcXF4v7MoRP6bET67FC1mYJV95Op1NOp1OFhYUV/l4ZDzUKi2ZwRoqLi6NyHKfTGbVjIfbI2yzkbQ6yNgt5m4W8ES+ieR5y3puFvM1B1mYhb7OQt1nIG/GCGgWRQNZmIW+zkLdZyNscZI14EpPfeRUXevdBSYwJi2GeM4u/vPmhvXWUzZJsrYuszRLuvF0uV0Je++2x7gAAAAAAAAAAAAAAAAAAALAWm9Ph/UJSSmw6AgAAAKOxaAYAAAAAAAAAAAAAAAAAAISXs8jrqcvOohkAAABEH4tmAAAAAAAAAAAAAAAAAABAWNmKC71fYNEMAAAAYiA51h1AYktKSopIu3a7PehzWAt5m4W8zUHWZiFvs5A34lWk6hOJ89405G0OsjYLeZuFvM1C3ohX1CgIB7I2C3mbhbzNQt7mIGvEs5j8zqvMnWbsKakRrZUQecxzZgklb5vNFq3uIMLKZmmz2eRyuWLUG+v54x//qD/+8Y+x7oYksjZNuPO22WwJ+X3O5uIsBwAAAAAAAAAAAAAAAAAA4fRcA8lx7H/PR3wlNbwwdv0BEHbbtm2Tw+GQ3W5XvXr1Yt0dAECE7N27V06nU6mpqTrvvPNi3Z0KY5kvAAAAAAAAAAAAAAAAAAAIL2eh9/OklNj0AwAAAEZj0QwAAAAAAAAAAAAAAAAAAAivYof3cxbNAAAAIAaSY90BJLYjR45EpF273a6MjAzP89zcXDmdzogcC7FH3mYhb3OQtVnI2yzxkHdmZmZUj4fEEKn6RIqP8x7RQ97mIGuzkLdZyNsssc6b+gSBUKMgHMjaLORtFvI2C3mbIx6ypkZBIFH/nZezWJku7/M/90SBnBGslRB58TDPIXpCybuwsNDzWlFRUVT7h/Cy2WxKSkryPC8uLpbL5YphjxApZG2WcOXtdDrldDpVWFhY4e+V8VCjsGgGZ6S4uDgqx3E6nVE7FmKPvM1C3uYga7OQt1nIG/Eimuch571ZyNscZG0W8jYLeZuFvBEvqFEQCWRtFvI2C3mbhbzNQdaIJ1H/nVfRKd8+uGxyMiYshXnOLP7y5of21lE2S7K1LrI2S7jzdrlcCXntt8e6AwAAAAAAAAAAAAAAAAAAwDpsTofvi0mp0e8IAAAAjMeiGQAAAAAAAAAAAAAAAAAAED7FRT4vuezJMegIAAAATMeiGQAAAAAAAAAAAAAAAAAAED7OQt/X7CnR7wcAAACMx6IZAAAAAAAAAAAAAAAAAAAQNjan751mlMSiGQAAAEQfi2YAAAAAAAAAAAAAAAAAAED4FDt8XnJxpxkAAADEQHKsO4DElpSUFJF27XZ70OewFvI2C3mbg6zNQt5mIW/Eq0jVJxLnvWnI2xxkbRbyNgt5m4W8Ea+oURAOZG0W8jYLeZuFvM1B1ohn0f6dl11O3z6kpEn2yNVKiDzmObOEkrfNZotWdxBhZbO02WxyuVwx6g0iiazNEu68bTZbRP/bd6TYXJzlAAAAAAAAAAAAAAAAAAAgXHLWSW/0+t9zm10acyR2/QEQEdu2bZPD4ZDdble9evVi3R0AQITs3btXTqdTqampOu+882LdnQpjmS8AAAAAAAAAAAAAAAAAAAifYof386TU2PQDAAAAxmPRDAAAAAAAAAAAAAAAAAAACJ/iIu/n9pTY9AMAoHbt2ikzM1P33nuvz7Zdu3YpMzNTmZmZmjZt2mkfY9q0aZ52du3a5bN90KBByszM1KBBg077GECiuffee5WZmal27drFuivGS451B5DYjhyJzC0z7Xa7MjIyPM9zc3PldDojcizEHnmbhbzNQdZmIW+zxEPemZmZUT0eEkOk6hMpPs57RA95m4OszULeZiFvs8Q6b+oTBEKNgnAga7OQt1nI2yzkbY54yJoaBYFE+3deybmHdFap/Zz2ZOVGsE5CdMTDPIfoCSXvwsJCz2tFRWUWyyHuOJ1On5wC5VZcXCyXyxVy28XFxV5tlm3X3ZbL5eJciTGbzaakpCTP84pmjdCVnjNjdd6HK2+n0ymn06nCwsIKf6+MhxqFRTM4I6UvcpHkdDqjdizEHnmbhbzNQdZmIW+zkDfiRTTPQ857s5C3OcjaLORtFvI2C3kjXlCjIBLI2izkbRbyNgt5m4OsEU+i/Tsve+Epr9dd9hTGgwUxz5nFX9780N66yNa6ymab6FlPnz5dDz74oCRp5cqVatiwYUSP9+KLL2r8+PGSpAMHDkT0WOEQ7rxdLldCXvtZNAMAAAAAAAAAAAAAAAAAAMLHWeZfU0/ip4oAEI8aNmzo+eF/cnLk5upPP/00Ym0D8WrixImaOHFirLsBSfZYdwAAAAAAAAAAAAAAAAAAAFiHrdjh/YI9JTYdAQAAgPFYNAMAAAAAAAAAAAAAAAAAAMKnzJ1mXCyaAQAAQIywaAYAAAAAAAAAAAAAAAAAAISNzVno/UISi2YAIBxycnL017/+VX369FGTJk1Ur149tWrVShdddJHuvPNOTZ8+XceOHQu5vV27dikrK0tZWVmaNm1awP2OHj2qv/71r+revbvOOecctWzZUtdcc40+/fTTkI4zePBgZWVlafDgwUH7MH36dEnSwoULdcMNN6hVq1aqX7++OnXqpCeeeEJ79uwp91iHDx/WM888o27duumcc85Rq1atNHToUH3++eeSpOnTp3uOt2vXrpD6XxHHjx/X66+/rquuukqtWrXS2WefrcaNG+uSSy7RqFGj9NNPPwV878GDB/Xcc8/pkksuUdOmTdWgQQN17NhR9957r3788cegx+3YsaOysrJ0//33S5LWrFmju+++WxdccIHOOeccdenSRaNHj9ahQ4e83rds2TKNGDFC7du3V4MGDdSlSxf99a9/1fHjxwMeq2ye27dv16OPPqpOnTqpQYMGat26tW6//XatWLEiYBtLly715LB06dKgf5t7vxdffNHn/Q8++KDntU6dOnn2DdT2ihUr9Nxzz2nw4MFe+fTs2VNPPPGEtmzZ4rcP7vNm/PjxPv0q/b/S59T999+vrKwsdezYMejft3HjRj366KPq2rWrGjZsqEaNGqlXr1566qmngp6joY6dRx99VLt37w7aB6tLjnUHAAAAAAAAAAAAAAAAAACAhRRzpxkACLcffvhBN9xwg8+imAMHDujAgQPatGmTZs2apZo1a6pfv35hO+7WrVt1zTXXKCcnx/NaQUGBFi9erMWLF2vBggXq3r172I737LPP6pVXXvF6bdeuXZoyZYrmzJmjTz/9VM2bN/f73o0bN2ro0KE6cOCAV18XLVqkRYsW6eabb1bnzp3D1teyFi1apLvuustnYUphYaHWr1+v9evX6+233/bqn9u3336r22+/3SffX3/9Vb/++qv+/e9/a8SIERo3bpzs9uD3zZg5c6YeeeQRORwOz2s///yz3njjDX399df6/PPPVadOHb366qsaM2aMXC6X136vvvqqFi1apE8//VRVq1YNeqz58+fr9ttv18mTJz2v7d+/X5999pnmzJmjZ555RnfffXfQNqJl+vTpXots3AoLC7V161Zt3bpV77//vp577jmNGDEiKn16+eWXNW7cODmdTq/Xt2zZoi1btmjKlCmaMGGC/vCHP5TbVqCxM3nyZM2ePVtz5sxR06ZNw9r/RMGiGQAAAAAAAAAAAAAAAAAAEDY2p8P7BTs/VQSAM3Hq1CndeeedOnbsmKpWrarbbrtNPXv2VK1atVRYWKhdu3Zp2bJlmjt3bliPe+zYMQ0bNsyzYGbIkCH6wx/+oKysLGVnZ2vSpEmaPn26Nm/eHJbjvf/++1q+fLl69OihW265RU2bNlVubq4+/PBDzZw5UwcPHtRDDz2kL774wue9ubm5+sMf/uBZkDJs2DBdffXVqlWrlnbs2KG33npL7733njZs2BCWvpb13Xff6brrrlNRUZGSkpJ07bXXasCAAapfv75OnTqlLVu2aMGCBfrqq6983rtu3TrdeOONcjgcSklJ0e23367+/furcuXKWrdunV555RX98ssveuedd1SlShX93//9X8B+bNiwQbNmzVLjxo117733qlWrVjp+/LimTZumf//738rOztbo0aN1xRVX6P/+7//UuXNnjRw5Us2aNdOhQ4f01ltvaf78+Vq7dq3+/ve/Bz1WTk6O7r77biUnJ+svf/mLevbs6fksXn31VR07dkyjR49Ww4YNNXDgwDP/kEtp3769Fi9erC+++ELjxo2TVLJYqG7dul77NWzY0PO4qKhI1atXV//+/dW9e3c1adJElStXVk5OjtatW6e33npLhw4d0qhRo3Teeefpd7/7nee9AwcOVPv27TV58mRNnjxZkrR48WKfftWrVy/kv+Gdd97R3/72N0lSrVq19MADD6hr164qLi7W4sWLNXHiRJ08eVIPPPCAatSoocsuuyxgW6GMnQceeCDsc0Si4JsozkhSUlJE2i27ArK8FZFIbORtFvI2B1mbhbzNQt6IV5GqTyTOe9OQtznI2izkbRbyNgt5I15RoyAcyNos5G0W8jYLeZuDrBHPov07L7ur2HvH5NSI1kmIDuY5s4SSt81mK78hl1O2giPh6lZCcKVnSrbwjo9ly5Z5Fq7885//9LmTTOfOnXX11Vdr7Nixys/PP+Pj2Ww2uVwuTZgwQbt375Yk/eUvf9HDDz/s2eeCCy7QFVdcoeuvv14LFy4842NK0vLly3XTTTdpwoQJXufXRRddpNTUVH3wwQdasWKF1q5dq3bt2nm9d/z48Z7PaOzYsbrrrru8+nrllVfqtttu87vg5kwVFBTonnvuUVFRkSpXrqxp06Z5FpC4de3aVTfddJPn8yztsccek8PhUFJSkqZOnapLLrnEs61Dhw668sorNWjQIG3ZskWvvfaahg0bphYtWvjty/r169WlSxd99NFHqly5suf1Xr16qaCgQLNnz9bHH3+s+fPn68orr9Rbb73lNb579+6tQYMGacWKFZo6dar+/Oc/KznZ/5KDHTt2qFq1avriiy+87v7TpUsXDRgwQAMHDtSxY8c0atQoXXbZZUpJCd+d56pUqaKWLVvqv//9r+e1pk2bei2SKevSSy/VNddc4/W5SFK7du3Ur18/3XHHHbryyiu1YcMGvfDCC16LZjIyMpSRkaFatWp5XmvZsuVp9//gwYN65plnJEl169bVl19+qfr163u2X3jhhfr973+vK664QidPntRjjz2mlStXBvwMA42d3r17Kz09Xe+9956WL1+udevWqW3btqfdb5vNlpDf6Vg0gzOSmZkZleNkZGRE5TiID+RtFvI2B1mbhbzNQt6IF9GqTyTOe9OQtznI2izkbRbyNgt5I15QoyASyNos5G0W8jYLeZuDrBFPov47rzTvH3SmpFaKap2E6GCeM4u/vA8ePCiXyyW73R7wR/W2k4eU8XbXSHcvruTeuUquyjXD2ubBgwc9j3v16hXw805OTlZ6errfbf5yCtROUlKSHA6Hpk6dKklq3bq1HnvsMZ+FUsnJyZo4caI6dOigwsJCz2tl23W/z2azBe1D3bp1NX78eL8LAx588EF98MEHkkoWCHTs2NGz7dSpU5oxY4YkqWPHjrrvvvt83p+cnKyXX35Z3377rQoKCgL29XR89NFHngU7o0ePVu/evQPue+6553o9X7lypVavXi1Juvnmm/3eTaRWrVp6+eWXNWDAADmdTk2ZMkUvvfSS3/ZtNpteffVVVatWzWfbHXfcodmzZ6u4uFinTp3Syy+/rNTUVK99kpOTdeutt2rFihU6fPiwtm/frjZt2vgcw+2JJ55Qq1atfI7Vpk0bPfbYY3r66ae1d+9effXVVxo8eLBne+mFF0lJSSHl4O8cLt1OeXmec845QduvUaOG/vznP+uGG27QTz/9pLy8PNWoUcOnD6WPV15/A+374Ycf6uTJk5Kkv/3tbz7nhVRyLj/yyCP629/+pr1792revHkaMmSI3zaDjZ37779f7733nqSSBXgdOnQI2u9gf0tKSkpCfqdjmS8AAAAAAAAAAAAAAAAAAAifYof386RU//sBAEJSt25dz+Np06ZF5Zj//e9/dfToUUnS8OHDA95ZqH79+l53RjkTV155pdLS0vxuO++881S1alVJ0s8//+y1bfXq1crNzZUkDRs2LGD7tWvXVp8+fcLS19LmzZsnqeTuJzfffHOF3lv6Lj033XRTwP26deum888/X5K0aNGigPu1bt3as19ZpRe/XHzxxQEXP5Te75dffgl4LJvNpuHDhwfcfsMNN3jOm3DdjSicTpw4oV27dmnTpk3auHGjNm7c6LUQZf369RE7tjvDjIwMXXHFFQH3K30+BfsMT3fsmIJFMwAAAAAAAAAAAAAAAAAAIHycRd7Pk3z/1XMAQOi6deumRo0aSZKefPJJ9e3bV3//+9/1448/yuFwBH/zadq4caPncXl3pujUqVNYjnneeecF3e6+49Hx48e9Xt+0aZPn8QUXXBC0jdO5y0Z51q5d6zl25cqVK/Red99TU1PVtm3boPu6P+fs7OyAuTdr1izg+0vfMapp06Yh7Xfs2LGA+5177rmqWTPwXZVq1aqlhg0bSvI+n2Lp0KFD+utf/6ouXbronHPO0QUXXKAePXqoZ8+e6tmzp/7whz947Rsp7twvuOACv3eHcatdu7bnMyx9npd1umPHFGd+PykY7ciRIxFp1263e024ubm5cjqdETkWYo+8zULe5iBrs5C3WeIh70S8zSciL1L1iRQf5z2ih7zNQdZmIW+zkLdZYp039QkCoUZBOJC1WcjbLORtFvI2RzxkTY2CQKL9O6/0E3mqVGo/R7FLJyJYJyE64mGeQ/SEkndhYaHntaKiMovl/n+2Yv+vW1lRcZFcAT6P02Wz2fTBBx9oxIgR2rp1q1atWqVVq1ZJkipVqqRu3brpD3/4g4YMGaKkpCS/bTidTp+cAuVWXFzstWCgRo0aAfeV5LVwoqioyGdfl8vl+f9gfUhLSwt6HLu95H4RhYWFXvsdPnzY8zgzMzNoG6W/L/nr6+lwH7927doVbs/93urVq3v6FEitWrUklXyOBw8eVO3atX32Ke8zdHMv7ikuLvbk41Z6rJf9rN3Hd/envGNlZWXpl19+0ZEjR7z2LS4u9nocSp/9ncOl2ykvzzVr1mjYsGFe50swJ06c8Gmv9GdTXp+D7ev+blazZs1y26ldu7Z27drl8xmGMnZsNpuSkpI8Y+d0z3mn0ymn06nCwsIKf6+MhxqFRTM4I6UnmkhyOp1ROxZij7zNQt7mIGuzkLdZyBvxIprnIee9WcjbHGRtFvI2C3mbhbwRL6hREAlkbRbyNgt5m4W8zUHWiCfR/p2Xq+iU9+v2FMaDBTHPmcVf3mV/aO+PKz1Th25fFqluxSVXemR+IH7++edr8eLFmjdvnubNm6cffvhBO3fuVH5+vr799lt9++23mjRpkqZPn66srKwzOlbZbG022xm1h/LF6jMOZRwHkkjnhcPh0MiRI3X48GGlpKRo5MiR6t+/v5o2barq1asrLS1NkvTzzz+rS5cuks7sswlVpD/Dsn/Dmf5NLpcrIa/9LJoBAAAAAAAAAAAAAAAAAABh43NnCTs/VQSMZbPLValm+fshJElJSRo4cKAGDhwoScrJydE333yjd955R2vWrNGaNWv0+OOP69133z3jY7nvfCJJ+/fvV9OmTQPue+DAgTM+3pko3deDBw8G7evBgwfDfvwaNWpoz5492rdvX4Xf674Lh/suIsnJga+Z+/fvl1Sy0KL03xwroeTu3qdsf0svFgl217ITJ06cXufKWLJkiX7++WdJ0gsvvKCbbrrJ735Hjx4Ny/HKU716de3bty+kz9Cdezxknqjsse4AAAAAAAAAAAAAAAAAAACwEGeh11OXPSVGHQEAa6tbt66uv/56ffHFF2rXrp0k6auvvlJ+fv4Zt92yZUvP4//+979B9129evUZH+9MnH/++Z7Ha9asCbpvedtPh/uzX7NmjU6ePFmh97Zo0UJSyZ1Q1q9fH3Rf9+fcpEkTpaamnkZPw+uXX37R4cOHA24/ePCgdu3aJcn7fJKkqlWreh4HW6iSnZ0dtA+h3qlly5YtnsdXXXVVwP3KO9fDdWcY9+exdu1aFRUVBdzvwIED+vXXX73eg4pj0QwAAAAAAAAAAAAAAAAAAAifMotmuNMMAERWSkqKevToIUkqKipSbm7uGbd5wQUXeO5sMXPmTLlcLr/77d27VwsXLjzj452J9u3bq1q1apKkjz76KOB++/fv17fffhv24/fr10+SdPLkSb333nsVem/v3r09j6dNmxZwv+XLl3sWflx00UWn0cvwc7lcmjlzZsDtM2bM8Jw3ZfvcsGFDz+NgC1VmzZoVtA9paWmexw6HI+B+pRemBLp7jdPp1Pvvvx/y8U6dOhV032Dcn0dubq7mzJkTcL+pU6cG/AwROhbNAAAAAAAAAAAAAAAAAACAsLEVl1k0kxT7fw0fABLZDz/8oB07dgTc7nA49P3330uSqlSpolq1ap3xMdPS0jR8+HBJ0vr16zVx4kSffYqKivTII48EXawQDenp6Ro2bJikkrux/POf//TZx+l06vHHH1dBQUHYj3/ttdeqXr16kqRx48Zp6dKlAffds2eP1/OOHTuqffv2kqT3339fixcv9nlPXl6eHn/8cUmS3W7XbbfdFqaen7kJEyZo+/btPq9v3bpV/+///T9JUp06dTRgwACv7dWrV1fr1q0lSdOnT9eRI0d82vjxxx/15ptvBj1+nTp1PI937twZcL8mTZp4Hs+YMcPvPmPHjtXatWtDPt7PP/8cdN9ghg8frsqVK0uSxowZo7179/rss379er388suSpHr16mngwIGnfTzTsXwbAAAAAAAAAAAAAAAAAACEj7PI66nLnhKjjgCANSxZskQTJkxQt27ddNlll6lVq1aqWbOmCgoKlJ2drXfffdfzY/8bbrhBycnh+Yn4448/rk8//VR79uzRX//6V61fv17Dhg1TrVq1tGPHDk2aNEmrV69W+/btg94tJBr++Mc/6rPPPtP+/fv11FNPae3atbrmmmtUs2ZN7dy5U2+++aaWL1+ujh07atWqVZIkm80WlmOnp6fr9ddf17XXXquTJ09q6NChuvbaazVw4EDVq1dPDodD27Zt0/z58zVv3jzt3r3b6/1///vf1b9/fzkcDg0fPlwjR45Uv379VKVKFa1bt06vvPKKZ4HGfffdp5YtW4al32eqcePGOnTokPr3768HHnhAPXv2lCQtXbpUr7zyivLy8iSVLCRKTfVdQDtixAg99thjOnDggK644go99thjatq0qY4ePaqvv/5akydP1gUXXKDly5cH7EO7du2Unp6ugoICPf/880pJSdE555zjybZevXqqVKmSLrnkEmVlZenAgQMaN26cfv31Vw0cOFA1a9bUjh079MEHH2jx4sXq2rWrli1bFvB4Xbp08Tx+6qmn9Mgjj6hOnTqe4zVs2DCk8VerVi2NGTNGf/rTn7Rnzx717dtXDz74oLp27aqioiItXrxYEydO1IkTJ2Sz2TRhwgSlpPB96nSxaAYAAAAAAAAAAAAAAAAAAISNzVn2TjP8VBEAzpTT6dT333/vuaOMPwMGDNBTTz0VtmNWq1ZNH374oa655hrt379fH3/8sT7++GOvfa677jr16NFDDz74YNiOezoyMzP14Ycf6tprr9XBgwc1c+ZMzZw502uf6667Tt26dfMsmklLSwvb8Xv16qWpU6fqrrvu0tGjRzV9+nRNnz49pPe2bdtWH3zwgW6//XYdO3ZMr7/+ul5//XWf/UaMGBHWfM9UvXr1NHbsWN1xxx0aO3asz3a73a4xY8boiiuu8Pv+G2+8UQsWLNDcuXO1ZcsW3XnnnV7bW7VqpcmTJ6tNmzYB+1C1alXdcccdevXVV7V27Vpde+21Xts/+eQT9ezZU1WqVNHEiRN1yy23qKCgQO+++67effddr3179uyp559/Xr/73e8CHq9JkyYaPHiwPv30Uy1cuFALFy702r5y5Uo1bNgw4PtLGzFihHJzc/X888/rwIEDGj16tM8+aWlpmjBhgi677LKQ2oR/fBMFAAAAAAAAAAAAAAAAAABhc6LnkzrZ6Z6SxTPOQjmr1I11lwAgod17771q1aqVFi9erHXr1iknJ0cHDx6UJNWuXVsdOnTQsGHD1K9fv7Afu0WLFvruu+/06quv6vPPP9fu3btVtWpVtWzZUjfddJOuvvrqkBeHRFqbNm303Xff6ZVXXtGXX37pt69vvPGGZ/9q1aqF9fh9+vTRihUrNHnyZH311VfKzs5Wbm6uKleurMaNG6t79+665ppr/L73kksu0bJly/TPf/5T8+fP1y+//CKHw6GsrCx169ZNt9xyi7p16xbW/oZDv3799PXXX2vixIn67rvvtG/fPmVkZOjCCy/Uvffe63VnlrLsdrveeecdvfvuu5oxY4a2bNkiqeQONoMHD9bdd9+tSpUqlduH0aNHq3Hjxpo5c6a2bNmivLw8FRcX++zXp08fff3113rllVe0ZMkSHTp0SBkZGWrevLmGDh2qG264Qb/99lu5x5s0aZLat2+v2bNna/v27Tp+/LicTme57/PnkUceUb9+/fT2229ryZIl2rdvn2w2mxo0aKCLL75Yd911V8iLcBCYzeVyuWLdCSQu9wU33JKSkpSZmel5fuTIEb+TF6yBvM1C3uYga7OQt1niIe9atWpF9XhIDJGqT6T4OO8RPeRtDrI2C3mbhbzNEuu8qU8QCDUKwoGszULeZiFvs5C3OeIha2oUBMLvvBAO5G2WUPLet2+fnE6n7Ha76tSpE+0uIsySk/93L4aioqIY9iSyHn74YU2dOlVnn3221qxZE+vuxMSZZj148GB9//336tGjhz799NNwdg0REI6xfSbzfTzUKPZYdwAAAAAAAAAAAAAAAAAAAAAAgEjKz8/Xl19+KUnq1KlTjHsDIFqSy98FCCwpKSki7drt9qDPYS3kbRbyNgdZm4W8zULeiFeRqk8kznvTkLc5yNos5G0W8jYLeSNeUaMgHMjaLORtFvI2C3mbg6wRz/idF8KBvM0SSt42my1a3UGElc3SZrPJ5XLFqDenb+fOnWrUqJHfc7O4uFhPPPGEDh06JEm67rrrot29uGCVrBGacOdts9ki+t++I8Xm4iwHAAAAAAAAAAAAAAAAAAAAUAHbtm2Tw+GQ3W5XvXr1Yt0dQPfee69WrVqlq6++Wp06dVJWVpby8/O1YcMGvffee1qzZo0k6eKLL9bHH3/Mwq/TNGjQIC1dulQ9e/bUnDlzYt0dRMHevXvldDqVmpqq8847L9bdqTDuNAMAAAAAAAAAAAAAAAAAAAAASHhbtmzRuHHjAm6/8MIL9fbbb3stmNmzZ4+OHj1a4WNVqVJF55577ul0E0AUsWgGAAAAAAAAAAAAAAAAAAAAAJDQHnnkETVt2lSLFi3Srl27dOjQIRUWFqpGjRpq3769rrrqKl1zzTWy2+1e7xs7dqymT59e4eNxpxUgMbBoBmfkyJEjEWnXbrcrIyPD8zw3N1dOpzMix0LskbdZyNscZG0W8jZLPOSdmZkZ1eMhMUSqPpHi47xH9JC3OcjaLORtFvI2S6zzpj5BINQoCAeyNgt5m4W8zULe5oiHrKlREAi/80I4kLdZQsm7sLDQ81pRUVFU+4fwstlsSkpK8jwvLi6Wy+WKYY9OT+PGjfXQQw/poYceCriP0+n0OZdPdy5zuVwJd+6HI+tPPvnE8zjR/n7ThGtsu8dNYWFhhb9XxkONwqIZnJHi4uKoHMfpdEbtWIg98jYLeZuDrM1C3mYhb8SLaJ6HnPdmIW9zkLVZyNss5G0W8ka8oEZBJJC1WcjbLORtFvI2B1kjnvA7L0QCeZvFX96JuKgC/pXN0rRsJ06cqIkTJ8a6G1FhetamCXfeLpcrIa/99vJ3AQAAAAAAAAAAAAAAAAAAAAAAABILi2YAAAAAAAAAAAAAAAAAAAAAAABgOSyaAQAAAAAAAAAAAAAAAAAAAAAAgOWwaAYAAAAAAAAAAAAAAAAAAAAAAACWw6IZAAAAAAAAAAAAAAAAAAAAAAAAWA6LZgAAAAAAAAAAAAAAAAAAAABUiN1e8jNkl8sll8sV494AACKh9BzvnvcTTWL2GgAAAAAAAAAAAAAAAAAAAEDMJCUlSSr5QXVRUVGMewMAiASHw+FZNJOcnBzj3pweFs0AAAAAAAAAAAAAAAAAAAAAqJC0tDTP4/z8/Bj2BAAQCS6XSydOnPA8T09Pj2FvTl9iLvUBAAAAAAAAAAAAAAAAAAAAEDOlF82cOHFCdrtdlStXlt3Ov+kPAInM5XLJ4XDoxIkTOnXqlCTJZrN5zfuJhEUzAAAAAAAAAAAAAAAAAAAAACokOTlZVatW1fHjxyVJx44d07Fjx1g0k6BK5+Z0OmPYE0QaWZvldPJ2uVxyuVxer1WvXj1h53cWzQAAAAAAAAAAAAAAAAAAAACosKpVq6q4uFj5+fme1/gRfuIjQ3OQtVlOJ2+bzabq1asrPT09Aj2KDhbNAAAAAAAAAAAAAAAAAAAAAKgw94+pq1SpopMnT8rhcPi9QwHim81mU0pKiud5YWEhGVoUWZvldPO22+1KTk5Wenq60tLSEvYOM24smgEAAAAAAAAAAAAAAAAAAABw2lJSUpSRkRHrbuA0JSUlKTMz0/P8yJEjKi4ujmGPEClkbRbyLpHYS34AAAAAAAAAAAAAAAAAAAAAAAAAP7jTDM5IUlJSRNotewunRL+lE4Ijb7OQtznI2izkbRbyRryKVH0icd6bhrzNQdZmIW+zkLdZyBvxihoF4UDWZiFvs5C3WcjbHGSNeMbvvBAO5G0W8jYLeZuDrM1C3iVsLpfLFetOAAAAAAAAAAAAAAAAAAAAAAAAAOFk5lIhAAAAAAAAAAAAAAAAAAAAAAAAWBqLZgAAAAAAAAAAAAAAAAAAAAAAAGA5ybHuABLbkSNHItKu3W5XRkaG53lubq6cTmdEjoXYI2+zkLc5yNos5G2WeMg7MzMzqsdDYohUfSLFx3mP6CFvc5C1WcjbLORtlljnTX2CQKhREA5kbRbyNgt5m4W8zREPWVOjIBB+54VwIG+zkLdZyNscZG2WeMg7HmoUFs3gjBQXF0flOE6nM2rHQuyRt1nI2xxkbRbyNgt5I15E8zzkvDcLeZuDrM1C3mYhb7OQN+IFNQoigazNQt5mIW+zkLc5yBrxhN95IRLI2yzkbRbyNgdZm8XUvO2x7gAAAAAAAAAAAAAAAAAAAAAAAAAQbiyaAQAAAAAAAAAAAAAAAAAAAAAAgOWwaAYAAAAAAAAAAAAAAAAAAAAAAACWkxzrDiCx1apVKyLtHjp0SMOGDZMkTZo0STVr1ozIcRAfyNss5G0OsjYLeZuFvBGvIlWfSJz3piFvc5C1WcjbLORtFvJGvKJGQTiQtVnI2yzkbRbyNgdZI57xOy+EA3mbhbzNQt7mIGuzkHcJ7jQDAAAAAAAAAAAAAAAAAAAAAAAAy2HRDAAAAAAAAAAAAAAAAAAAAAAAACyHRTMAAAAAAAAAAAAAAAAAAAAAAACwHBbNAAAAAAAAAAAAAAAAAAAAAAAAwHJYNAMAAAAAAAAAAAAAAAAAAAAAAADLYdEMAAAAAAAAAAAAAAAAAAAAAAAALIdFMwAAAAAAAAAAAAAAAAAAAAAAALAcFs0AAAAAAAAAAAAAAAAAAAAAAADAclg0AwAAAAAAAAAAAAAAAAAAAAAAAMuxuVwuV6w7AQAAAAAAAAAAAAAAAAAAAAAAAIQTd5oBAAAAAAAAAAAAAAAAAAAAAACA5bBoBgAAAAAAAAAAAAAAAAAAAAAAAJbDohkAAAAAAAAAAAAAAAAAAAAAAABYDotmAAAAAAAAAAAAAAAAAAAAAAAAYDksmgEAAAAAAAAAAAAAAAAAAAAAAIDlsGgGAAAAAAAAAAAAAAAAAAAAAAAAlsOiGQAAAAAAAAAAAAAAAAAAAAAAAFgOi2YAAAAAAAAAAAAAAAAAAAAAAABgOSyaAQAAAAAAAAAAAAAAAAAAAAAAgOWwaAYAAAAAAAAAAAAAAAAAAAAAAACWkxzrDgBlHThwQF988YVWrVqlQ4cOKTk5WXXr1lX37t31+9//XmlpabHuYkLKzc3V9u3btX37dmVnZys7O1vHjh2TJPXu3Vv33XdfhdpbvXq15s+fr+zsbOXl5alatWpq2rSpLr30UnXo0CGkNoqLi7VgwQJ999132r17twoKClSjRg21bdtWAwYM0DnnnBNSO3l5efriiy+0fPlyHThwQJKUlZWlLl26aODAgTrrrLNCamfXrl368ssvtW7dOh0+fFjp6emqX7++evXqpb59+yopKSmkdmItOztbq1ev1ubNm/Xbb78pLy9PSUlJqlGjhs4//3z16dNHLVq0CLk9so5fJ0+e1OrVqz1j+vDhw8rLy5PD4VCVKlXUoEEDdejQQX369Anps9myZYvmzZunzZs3Kzc3V5UrV1ajRo3Uu3dv9erVK+R+fffdd1q4cKF++eUXnTx5UhkZGWrRooX69++v5s2bh9TGqVOn9OWXX+rHH39UTk6OioqKVLNmTXXs2FEDBgxQVlZWSO2Yck354IMP9Nlnn3mejxkzRq1btw76HsZ2/Bs2bFhI+7Vq1UpPP/100H3IGzgzplxPoon6pHxWmueoUcpnlbypUcpnyjWFGqWEVca2GzVKcFbLG/HNlOtJNFGjlM9K8xw1Svmskjc1SvlMuaZQo5SwytiWqE/KY6WsEf9MuZZEGzVK+awy11GflM8qWVOflM+Uawr1SQmrjG03apTg4iFvm8vlckX8KECIVqxYoVdffVX5+fl+t9erV09PPvmk6tatG+WeJb5gE3JFiimn06k333xT33zzTcB9+vTpozvvvFN2e+CbWeXl5WncuHHKzs72uz0lJUUjRoxQ3759g/Zn27ZtGj9+vI4ePep3e2Zmpp544gk1a9YsaDvz58/XO++8o6KiIr/bmzVrplGjRqlatWpB24m1MWPGaNOmTeXud9FFF+nuu+9WcnLgtZNkHd9ZS9LatWs1duzYcvc766yz9MADD6h9+/YB95k5c6b+85//KNDXgo4dO+rRRx9VampqwDYcDocmTJig1atX+91us9k0dOhQXXvttUH7m5OTo3Hjxmnv3r1+t1eqVEkPPvigOnXqFLQdU64pP//8s5588kkVFxd7XgtWTDG2439su4WjmCLvxMkb8cuU60m0UZ+YM89Ro5iVNzUKNYpEjeJmpbHtRo0SmBXzRvwy5XoSbdQo5sxz1Chm5U2NQo0iUaO4WWlsS9QnwVgta8Q3U64lsUCNYsZcR31iTtYS9Qn1SQnqkxJWGttu1CiBxUveLJpB3Ni5c6dGjx4th8Oh9PR0DRkyRG3atJHD4dDSpUu1YMECSSUXv+eff16VKlWKcY8TS+kJuVatWqpfv77WrFkjqWLF1LRp0/TJJ59Ikho3bqwrr7xSderU0b59+/TZZ59p586dkqQhQ4bo+uuv99uG0+nU008/rc2bN0uSunbtqksvvVRVq1bVtm3b9PHHHys3N1c2m02jRo0KuDLy4MGDGjVqlGeF/eWXX+75crVy5Up9/vnnKi4uVkZGhp5//nnVrFnTbzurVq3SCy+8IJfLpYyMDF199dU677zzdPz4cc2fP1/Lli2TJLVo0UJPP/100ItNrD3wwAPat2+fMjMz1b17d7Vo0UK1atWS0+nU1q1bNWfOHB0+fFiS1LNnTz300EMB2yLr+M5aKimmJk2apNatW6tJkyaqVauWqlevLpfLpUOHDunHH3/UsmXL5HQ6lZycrOeee06NGjXyaefrr7/WW2+9JUmqU6eOrrrqKjVs2FBHjhzR3LlztWHDBknlnzMvv/yyvv/+e0lS69atNXDgQGVmZmrXrl2aNWuW9u3bJ0m68847demll/ptIz8/X6NGjfIUUn379lXPnj2Vmpqq9evX65NPPlFBQYHS0tL07LPP+v17JHOuKU6nU3/5y1+UnZ2tjIwM5ebmSgpeTDG2439su7mv3f369VO/fv0C7peenq7atWv73UbeiZM34pMp15NYoD4xZ56jRjErb2oUahRqlBJWG9tu1Chm5Y34ZMr1JBaoUcyZ56hRzMqbGoUahRqlhNXGtkR9YlLWiF+mXEtihRrFjLmO+sScrCXqE+oT6hM3q41tN2qU+M878NJTIMqmTJkih8OhpKQkPfXUU163dmvTpo3q1aunDz74QHv37tXs2bNDXpWHEkOHDlXTpk3VtGlTVa9eXfv379f9999foTb27Nmj2bNnS5KaNm2qZ555xrMauVmzZurcubOefvppZWdna/bs2erTp4/flb0LFy70TMj9+vXTyJEjPduaNWumDh066E9/+pPy8/M1efJktWvXzu+tt2bMmKG8vDxJ0oMPPqju3bt7trVs2VJNmjTRyy+/rNzcXM2YMcNvwVhUVKTJkyfL5XKpUqVKevbZZ7363L59e/3rX//SV199pc2bN2vx4sW6+OKLK/S5RVP9+vU1fPhwdevWzefi0bx5c1100UUaPXq09u7dq6VLl+qyyy5Tq1atfNoh6/jPWiqZGydNmhRwe48ePbRs2TK99NJLKioq0kcffaTHH3/ca5/jx49r6tSpkkr+Q8vf/vY3rxW7nTp10vjx47Vy5UotXbpUl156qd8v6evXr/cUUp06ddITTzzhOQfd58yoUaN08OBBTZ06Vd26dVPVqlV92vnss888hdSNN96oK6+80rOtefPmat26tZ5++mmdOnVKU6ZMCbjq2pRryhdffKHs7GzVr19fXbp08XxpDoSxnRhju6xq1aqpYcOGFX4feSdm3ogvplxPYoH6xJx5jhrFrLypUahRqFGsObbLokb5HxPyRnwx5XoSC9Qo5sxz1Chm5U2NQo1CjWLNsV0a9cn/WD1rxB9TriWxQo1ixlxHfWJO1hL1CfUJ9YlkzbFdFjXK/8Rb3omx/AqWt337ds+tBi+55BKvi57boEGDVL9+fUklF49At2mCf8OGDVOnTp1UvXr1025j7ty5ntvC3XbbbT6370tLS9Ntt90mSSouLtacOXP8tuOe2KtWraqbbrrJZ3vdunV11VVXSSq5fZ97JWFpR48e1ZIlSyRJF1xwgdeE7NajRw9dcMEFkqTFixf7vUXYsmXLPKuir7rqKr8XkZtuuklVqlSRVPJFL56NGjVKPXr0CLjaslq1arr55ps9z3/88Ue/+5F1/GctKaRVtV27dtXZZ58tSX5v6bpgwQKdPHlSknTDDTf43OLObrdr5MiRnmMF+lzcWSclJXnt71atWjXdcMMNkqQTJ074vYVgUVGRvvjiC0kl/2Fg0KBBPvucf/75uuSSSyRJGzdu1Pbt2332MeWacvDgQX344YeSpDvuuCPobXjdGNuJMbbDhbzNyhvhZ8r1JFaoT8yZ56hRzMqbGoUahRrFmmM7XMjbrLwRfqZcT2KFGsWceY4axay8qVGoUahRrDm2w4GszckakWHKtSSWqFHMmOuoT8zJWqI+oT6hPpGsObbDhbwjnzeLZhAXSg8690WyLLvdrt69e0squRC7byOH6HC5XFq+fLmkki85/r6cSCUrhN1f3FasWCGXy+W1fc+ePdq9e7ckqXv37kpLS/PbTunVgv4m5dJtBzpnSrfjcrm0YsUKn+3uv6nsMUtLS0vzTPq//fab9uzZE/B4iaD06nH3Bak0srZO1m7uW1IWFhb6bHN/LpUqVdKFF17o9/01a9ZU27ZtJZX8SwP5+fle2/Pz87Vu3TpJUtu2bQPeau/CCy/09MVf1hs2bPAUdr179w5YLJZ3zphyTfnXv/6lgoIC9e7d2++/JFIWY9t6YzsY8jYrb0SGKdeTRMU8Z615jhrFrLwlahR/rHBNoUYpYfLYDoa8zcobkWHK9SRRMc9Za56jRjErb4kaxR8rXFOoUUqYPLYDIWtzskbkmHItSWTMddaZ66hPzMnajfrElxWuKdQnJUwe28GQd3TyZtEM4sKWLVsklZz8TZo0Cbhf6YuF+z2Ijv379+vIkSOSSm6tFYw7p8OHD+vAgQNe29y3/Sq9nz/Vq1dXvXr1JPnPOtR2Sm8r/Z6yr5199tlB/3UGK517pVda+/uyStbWyVoq+SL0888/S5Jnxb1bUVGRZwV/8+bNg65gd38uhYWFys7O9tqWnZ3tOa+CZZScnOz5Qlf6PW6hZt20aVPPFzp/GZlwTfn++++1atWqgCvC/WFsJ27ep4O8zcobkWHC9SSRMc9Z67yjRjErb2oUa15TqFF82zFtbJeHvM3KG5FhwvUkkTHPWeu8o0YxK29qFGteU6hRfNsxbWwHQ9bmZI3IMeFakuiY66xz7lGfmJO1RH1i1WsK9YlvO6aN7fKQd3TyZtEM4sJvv/0mqeS2T0lJSQH3c6+QK/0eREfpz7vsF7KyguVUkXbc2w8dOqSCggK/7VSuXDnoZJqZmelZ8exeQelWUFCgQ4cO+fQ5WF/8tZNoNm7c6HnsLwOyTvysT506pb1792rOnDkaM2aM57Z9AwcO9Npvz549cjqdkkLPSPL9XEpnXd7n695eXFysnJycgO0E609SUpLnVn3+MrL6NeXEiROaMmWKJP+3Wg2EsZ24Y/vHH3/UI488ohtvvFE333yzHnzwQU2cOFHr168P+B7yTty8ET+sfj1JdMxz1prnqFGsnzc1irWvKdQo/2PK2KZGKWFK3ogfVr+eJDrmOWvNc9Qo1s+bGsXa1xRqlP8xYWxTn5QwIWvEF6tfS6yAuc46cx31ifWzpj6x9jWF+uR/TBnb1Cgl4jHvwEsNgShxOBw6duyYJAW81Ztb1apVlZaWplOnTnkGE6Kj9OddXk61atXy+z6pZHWjW40aNYK24z6Oy+XS4cOHvSZOd7vl9cXdn19//dWnLxX5m0pvP3jwYLnHjFdOp1OffPKJ53mPHj189iHrxMx64cKFev311wNuHzJkiHr16uX12ulkJPlmfSafb4MGDXz6k5aWpipVqpTbzi+//KK8vDwVFhYqJSVFkhnXlA8++EBHjx7V+eefrz59+oT8PsZ2Yo5tybfAycnJUU5OjhYvXqwuXbrovvvuU+XKlb32Ie/EzRvxwYTrSaJjnrPOPEeNYt28qVGoUcrD2E7MsS1Ro/jrm5XzRnww4XqS6JjnrDPPUaNYN29qFGqU8jC2E3NsU5/49s2qWSN+mHAtsQLmOmvMddQn1s2a+oT6pDyM7cQc2xI1ir++xUveLJpBzJVeoZaenl7u/unp6Tp16pTPyjZEVkVyct9Or+z7JCk/Pz8s7bifh3LOuNs5k76U3p7I597nn3/uuU1j165d/d7SkKytkbVbo0aNdOedd6pZs2Y+28KVUbg+X3c7Fcna3Y67mLL6NWXTpk365ptvlJSUpDvuuEM2my3k9zK2E29sp6WlqVOnTmrbtq3q16+v9PR05eXlaePGjfr666917NgxLV++XC+++KKeeuopr1vvknfi5Y34YvXriRUwz1lnnqNGMStviRqlPIl2TaFGMWtsU6OYlTfii9WvJ1bAPGedeY4axay8JWqU8iTaNYUaxZyxTX1iTtaIP1a/llgFc5015jrqE3OydqM+CS7RrinUJ2aNbWqU+M+bRTOIOYfD4XlcehIIxL1P6fch8iqSk/tLTdn3SVJhYWFY2nE/D+WcKb0y+XT7Unp76fclko0bN2ratGmSpIyMDN1xxx1+9yPrxMy6S5cueumllySV/P379u3TDz/8oGXLlukf//iHbr31VnXq1MnrPeHK6HQ/30DtVCTrsu1Y+ZpSVFSkN998Uy6XS5dffrkaNmxYofczthNvbL/xxht+/zWOdu3aqX///ho3bpx27typjRs36quvvvK6NS95J17eiC9Wvp5YBfOcNeY5apTQ+pKoeVOj+D622jWFGsW8sU2NYlbeiC9Wvp5YBfOcNeY5apTQ+pKoeVOj+D622jWFGsWssU19Yk7WiD9WvpZYCXNd4s911Ceh9SVRs6Y+8X1stWsK9Yl5Y5saJf7ztkesZSBEqampnsdFRUXl7u/ep/T7EHkVyan0pFU2p9IT7Zm0434eyjnjbudM+lJ6e+n3JYpff/1V48ePV3FxsVJSUvTII48oIyPD775knZhZV6lSRQ0bNlTDhg3VrFkz9ezZU48//rjuv/9+7d+/Xy+++KIWLlzo9Z5wZXS6n2+gdiqSddl2rHxN+fjjj7V7927VqlVLQ4cOrfD7GduJN7aD3b62evXqevTRR5WUlCRJ+vLLL722k3fi5Y34YuXriVUwzyX+PEeNYv28qVF8H1vtmkKNYt7YpkYxK2/EFytfT6yCeS7x5zlqFOvnTY3i+9hq1xRqFLPGNvWJOVkj/lj5WmIlzHWJPddRn1g/a+oT38dWu6ZQn5g3tqlR4j9vFs0g5ip6W6WK3PYJ4VORnE6dOuX3fZJUqVKlsLTjfh7KOeNu50z6UtFbAcaT/fv3a+zYsTpx4oTsdrsefvhhtWrVKuD+ZJ24Wftz0UUXqVu3bnK5XHr77bd1/Phxz7ZwZRSuz9fdTkWyLtuOVa8pu3fv1ieffCJJGjFixGn1l7FtrbEtSXXq1FG7du0kSTk5OTp8+LBnG3lbL29El1WvJ1bCPJfY8xw1ill5l0WNElyiXFOoURjb/lCjBGbFvBFdVr2eWAnzXGLPc9QoZuVdFjVKcIlyTaFGYWyXRX0SmNWyRvRZ9VpiNcx1iTvXUZ+Yk7U/1CfBJco1hfqEse0PNUpg0cqbRTOIudTUVJ111lmSpEOHDgXd9/jx454BVrNmzYj3Df9T+vMuL6eDBw/6fZ8k1ahRw/O49KTvj/s4NpvN632l2y2vL6X7E6wv5bVTenutWrXKPWa8OHz4sJ599lkdOXJENptN99xzj7p06RL0PWSdmFkH48781KlT+u9//+t5/XQyknw/34qcM8E+X3d/Tp06pRMnToTUTrVq1bxWF1v1mvL555+rqKhIderU0alTp7R06VKf//3666+e/devX+953f2lkrFtvbEtSQ0aNPA8Lp0HeVszb0SPVa8nVsI8l7jzHDWKb1+snHcg1Cj+JdI1hRqFsR0INUrwvkjWyhvRY9XriZUwzyXuPEeN4tsXK+cdCDWKf4l0TaFGYWz7Q30SvC+SdbJGdFn1WmI1zHWJOddRn/j2xapZB0N94l8iXVOoTxjbgVCjBO+LFNm8kyPWMlABDRo00KZNm5STk6Pi4mLPLajK2rNnj9d7ED2lP+/du3cH3TdYTmXbadSoUcB23MepWbOmz+rBBg0aaMeOHTp58qSOHj2q6tWr+23jyJEjys/PlyTVr1/fa1ulSpVUs2ZNHTp0yKvPwfrir514lZeXp7Fjx2rfvn2SpNtuu029e/cu931knXhZl6datWqexwcOHPA8Pvvss2W32+V0OsvNOtjnUjrr8j5f9/akpCTVrVvXp52ffvrJc7zmzZv7baO4uFg5OTl+++Jux2rXFPdtDPft26d//OMf5e7/n//8x/N44sSJSk9PZ2xbcGxLJYWLP+RtzbwRXVa8nlgJ81xiznPUKP9jQt7BUKMk/jWFGoWxHQg1SvC++GsHCJUVrydWwjyXmPMcNcr/mJB3MNQoiX9NoUZhbPtDfRK8L/7aAUJlxWuJ1TDXJd5cR33yP1bPujzUJ4l/TaE+YWwHQo0SvC/+2gkn7jSDuHD++edLKll1umPHjoD7bdy40ec9iI7atWsrMzNTkrRp06ag+7q316hRQ1lZWV7bWrRo4XlcOs+yjh49qr1790ryn3Wo7ZTeVvo9ZV/bs2ePjh49GlI7iXDunTx5Un/729/022+/SZKuv/569e/fP6T3knViZR2KQLfyS05OVrNmzSRJW7duVVFRUcA23J9LSkqKmjZt6rWtadOmSk5O9trPn6KiIm3dutXnPW6hZp2dne35lwP8ZcQ1xT/GtjXzds/zkvcKffK2Zt6ILq4n8Y15LvHOO2oUs/IuDzVK8L8pUDtWw9i2Zt7UKOW3Y6W8EV1cT+Ib81zinXfUKGblXR5qlOB/U6B2rIaxbb28qU/Kb8cqWSP6uJbEP+a6xDr3qE/MyToU1CfB/6ZA7VgNY9uaeVOjlN9OJPNm0QziQteuXT2Pv/32W7/7OJ1OLVq0SJJUpUoVtW7dOip9Qwmbzea59d/u3bs9X4jK2rp1q2fVX+fOnX1WRp599tmelYA//PCD5wtRWQsXLvQ8Ln1+uJVuO9A5U7odm82mzp07+2wvfQvL0scs7dSpU/rhhx8klaygPPvsswMeLx6cOnVK48aN086dOyVJV199tYYMGRLy+8k6cbIOlftvkqSGDRt6bXN/Lvn5+Z7V/2UdOnRI69atkyS1adNGlSpV8tpeqVIltW3bVpK0bt26gLfT++mnnzwri/1l3bp1a1WuXFmStGjRIrlcLr/tlHfOWPGact9992nmzJlB/zd06FDP/mPGjPG8Xrt2bUmMbSuO7f3792vt2rWSpDp16ngVU+RtvbwRfVa8nlgJ81xizXPUKGblHQpqFF+Jdk2hRmFs+0ONstBnu2TdvBF9VryeWAnzXGLNc9QoZuUdCmoUX4l2TaFGYWyXRX2y0Ge7ZM2sERtWvJZYDXNd4sx11CfmZB0q6hNfiXZNoT5hbPtDjbLQZ7sU3bxZNIO40KxZM7Vs2VJSyQDzN+DnzJnjGewDBgzwWbmKyBs4cKDs9pJpY/LkyXI4HF7bHQ6HJk+eLKnklnyXX36533auuOIKSdLx48f1wQcf+GzPycnRrFmzJEl169b1OylXr15dv/vd7yRJa9as0Y8//uizzw8//KA1a9ZIki666CK/twjr2rWr6tSpI0maNWuW51aApb3//vs6ceKEJOnKK6/0+zfFi6KiIr300kvasmWLpJLMrrvuugq3Q9bxn7VU8kWibDZlzZkzR6tXr5ZUsiLZPde69e3b11PATJs2TceOHfPa7nQ69a9//UtOp1NS4M/FnXVxcbHefvttz/5ueXl5mjp1qqSS4qVPnz4+bSQnJ2vAgAGSSr78zZ4922efrVu3er6ItWrVyvMvKJTGNSUwxnZijG1JWrFihYqLiwNuP3r0qCZMmOD5l0N+//vf++xD3omTN+IT15P4xzyXGPMcNYpZeVOjUKNUFGM7Mca2RI1iWt6IT1xP4h/zXGLMc9QoZuVNjUKNUlGM7cQY29Qn5mSN+MW1JDEw18X/XEd9Yk7WEvUJ9UnFMbYTY2xL1CiJkrfNFWh5HxBlO3fu1OjRo+VwOJSenq6rrrpKrVu3lsPh0Pfff6/58+dLkurVq6fnn3/eZwUsgtu8ebPXhJOXl+eZEM8//3z17dvXa/+LL77YbzvTpk3TJ598Iklq3LixBg8erDp16mjfvn369NNPPavehwwZouuvv95vG06nU2PGjPF84b/wwgvVt29fVa1aVdu3b9d//vMf5ebmymazadSoUerQoYPfdg4ePKhRo0YpLy9PSUlJGjRokDp16iRJWrlypebMmaPi4mJVq1ZNL7zwgmrWrOm3nVWrVumFF16Qy+VSRkaGrrnmGjVr1kzHjx/XggULPKuyW7RooaefftpzYYpHL730kpYtWyapZKX4rbfeGnT/5OTkgCszyTq+s5ZKVqXn5+frwgsvVIsWLVSnTh2lp6eroKBAu3bt0pIlSzyffXJyskaNGqV27dr5tPP111/rrbfeklSyivnqq69Ww4YNdeTIEX3++efasGGDJKlnz5566KGHAvbn5Zdf1vfffy+p5F8TuPzyy5WZmaldu3bp448/1r59+yRJd955py699FK/beTn52vUqFGe2/9deuml6tGjh1JTU7VhwwbNmjVLBQUFSk1N1dixY9WoUSO/7Zh4TZk5c6Y++ugjSSX/AkGgf1WBsR3/Y1sqGd9FRUW68MIL1bx5c9WuXVupqanKy8vTxo0b9fXXX3v+40eLFi00evRopaSk+LRD3omRN+KXideTaKE+MWeeo0YxK29qFGqU0qhRrDO2JWoU0/JG/DLxehIt1CjmzHPUKGblTY1CjVIaNYq1xjb1iRlZI76ZeC2JJmoUM+Y66hNzspaoT6hPvFGfWGdsS9QoiZI3i2YQV1asWKFXX33Vc1u3surVq6cnn3xSdevWjXLPEt9rr73muUVdKGbOnOn3dafTqX/+859Bb7nVp08f3XnnnUEnr7y8PI0bN07Z2dl+t6ekpGjEiBE+RV5Z27Zt0/jx43X06FG/26tXr64nnnhC5513XtB25s+fr3feecezkrOsZs2aadSoUapWrVrQdmJt2LBhFdo/KytLr732mt9tZB3fWUslX7YOHDhQ7n41a9bUPffc47eQcps5c6b+85//BLxVZocOHfTYY48pNTU1YBsOh0MTJkzw/IsHZdlsNl1zzTXlnqc5OTkaN26cp6Aqq1KlSnrwwQc9X8ICMe2aEmoxxdiO/7EthT6+L7zwQt19992qUqWK3+3knRh5I76Zdj2JFuoTc+Y5ahSz8qZGoUYpjRrFOmNbokYxLW/EN9OuJ9FCjWLOPEeNYlbe1CjUKKVRo5g3tqlPEj9rxD/TriXRRI1ixlxHfWJO1hL1CfWJN+oT64xtiRolUfJm0QzizoEDBzR37lytWrVKhw8fVnJysurWratu3bqpf//+SktLi3UXE1K4iim3VatWaf78+crOztaxY8d01llnqWnTprrssssCrjwsq7i4WAsWLNB3332n3bt3q6CgQDVq1FCbNm00cOBAnXPOOSG1k5eXp7lz52r58uWeC0/t2rXVuXNnXX755TrrrLNCamfXrl364osvtH79eh0+fFjp6emqX7++evXqpb59+yopKSmkdmIpnMWUG1nHrz179mjVqlXavHmz9u3bp6NHj+r48eNKTU1VtWrV1KhRI3Xq1Endu3cPae7csmWL5s2bp02bNik3N1dVqlTRueeeq4svvli9evUKuV/fffedFi5cqF9++UUnTpxQRkaGWrZsqf79+6t58+YhtVFQUKB58+bpxx9/VE5OjoqKilSzZk116NBBAwcOVFZWVkjtmHRNCbWYcmNsx7eNGzdq48aN2rp1q/bt26djx44pPz9f6enpqlmzppo3b66LL7445DFF3sCZMel6Ei3UJ+WzyjxHjWJW3tQo5TPpmkKNYp2xLVGjhMJKeSP+mXQ9iRZqlPJZZZ6jRjErb2qU8pl0TaFGsc7Ypj4pn1WyRmIw6VoSTdQo5bPCXEd9Yk7WEvVJKEy6plCfWGdsS9QooYiHvFk0AwAAAAAAAAAAAAAAAAAAAAAAAMsJfG8eAAAAAAAAAAAAAAAAAAAAAAAAIEGxaAYAAAAAAAAAAAAAAAAAAAAAAACWw6IZAAAAAAAAAAAAAAAAAAAAAAAAWA6LZgAAAAAAAAAAAAAAAAAAAAAAAGA5LJoBAAAAAAAAAAAAAAAAAAAAAACA5bBoBgAAAAAAAAAAAAAAAAAAAAAAAJbDohkAAAAAAAAAAAAAAAAAAAAAAABYDotmAAAAAAAAAAAAAAAAAAAAAAAAYDksmgEAAAAAAAAAAAAAAAAAAAAAAIDlsGgGAAAAAAAAAAAAAAAAAAAAAAAAlsOiGQAAAAAAAAAAAAAAAAAAAAAAAFgOi2YAAAAAAAAAAAAAAAAAAAAAAABgOSyaAQAAAAAAAAAAAAAAAAAAAAAAgOWwaAYAAAAAAAAAAAAAAAAAAAAAAACWw6IZAAAAAAAAAAAAAAAAAAAAAAAAWA6LZgAAAAAAAAAAAAAAAAAAAAAAAGA5LJoBACCMGjVqJJvNpltvvTXWXQEAAAAAahQAAAAAcYUaBQAAAEC8oD4BAHOwaAYAAAAAAAAAAAAAAAAAAAAAAACWw6IZAAAAAAAAAAAAAAAAAAAAAAAAWI7N5XK5Yt0JAAAAAAAAAAAAAAAAAAAAAAAAIJy40wwAAAAAAAAAAAAAAAAAAAAAAAAsh0UzAAAAAAAAAAAAAAAAAAAAAAAAsBwWzQAAEMCePXs0atQodezYURkZGUpJSVGdOnXUtm1bDR8+XFOmTFFeXp7Xexo1aiSbzaZbb73V6/Wff/5ZNpst5P9dfPHFAfv17bff6pZbblGTJk1UuXJlVatWTW3bttUTTzyhPXv2ROCTAAAAABAPqFEAAAAAxBNqFAAAAADxgvoEABBMcqw7AABAPFqyZIkGDRrkUyzt379f+/fv1/r16zVjxgzVqlVLgwYNikqfCgoKdNttt2nGjBk+29avX6/169dr0qRJmj59uq644oqo9AkAAABAdFCjAAAAAIgn1CgAAAAA4gX1CQCgPCyaAQCgjFOnTum6665TXl6ezjrrLN1zzz265JJLVLt2bTkcDu3cuVPff/+9Zs2aFXKb9evX17p164LuM3PmTD377LOSpHPPPddrm8vl0tChQ/X5559Lkq644goNGzZMTZo0kd1u17JlyzRhwgTt2rVLQ4cO1dKlS9W5c+cK/uUAAAAA4hE1CgAAAIB4Qo0CAAAAIF5QnwAAQmFzuVyuWHcCAIB48s0336hv376SpNmzZwf8FwaKiop08uRJVatWzfNao0aN9Msvv+iWW27RlClTQj7mihUrdNFFFyk/P18tW7bUjz/+6NXuW2+9pTvvvFMpKSn67LPP1L9/f582jhw5ot/97nfasGGDevbsqe+++y7k4wMAAACIX9QoAAAAAOIJNQoAAACAeEF9AgAIhT3WHQAAIN7k5OR4Hl900UUB90tOTvYqeE7Xnj17NHjwYOXn56tGjRqaPXu2V7sul0svvPCCJOnBBx/0W0hJUmZmpsaPHy9JWrp0qbZt23bGfQMAAAAQe9QoAAAAAOIJNQoAAACAeEF9AgAIBYtmAAAoo169ep7HkydPjuix8vPzNWTIEO3Zs0fJycn66KOP1LRpU699Nm7cqOzsbEnS0KFDg7ZXuvj74Ycfwt9hAAAAAFFHjQIAAAAgnlCjAAAAAIgX1CcAgFCwaAYAgDJ69eqlJk2aSJIefvhhde3aVePGjdPSpUvlcDjCeqwRI0Zo+fLlkqRXXnlFl1xyic8+K1as8Dzu3r27bDZbwP9VrVrVs2/pf0kBAAAAQOKiRgEAAAAQT6hRAAAAAMQL6hMAQChYNAMAQBkpKSmaPXu2WrZsKUlavny5/vznP6tXr16qXr26+vfvr2nTpqm4uPiMjvPss89qxowZkqR7771X99xzj9/99u/ff1rtnzx58rT7BgAAACB+UKMAAAAAiCfUKAAAAADiBfUJACAUybHuAAAA8ahVq1Zat26dZs+erdmzZ2vx4sXavn278vPzNW/ePM2bN09///vfNXfuXNWuXbvC7f/nP//RmDFjJEl9+/bVP/7xj4D7li7aZs+erUaNGoV0jNPpFwAAAID4RI0CAAAAIJ5QowAAAACIF9QnAIDysGgGAIAAkpKSNGTIEA0ZMkSStHfvXn355Zd67bXXtHLlSq1cuVJ33XWXZs2aVaF2V69erZtvvlkul0vNmjXTzJkzlZwc+JJcs2ZNz+Pq1aurTZs2p/X3AAAAAEhs1CgAAAAA4gk1CgAAAIB4QX0CAAjGHusOAACQKOrVq6fbbrtNP/zwgzp27ChJmjNnjvLz80NuIycnR4MHD9bJkyeVkZGh2bNnq0aNGkHf06FDB8/jpUuXnl7nAQAAAFgONQoAAACAeEKNAgAAACBeUJ8AAEpj0QwAABWUkpKi3r17S5KKiop09OjRkN5XUFCgIUOG6Ndff1VSUpJmzJihFi1alPu+jh07qkGDBpKkN998UwUFBafddwAAAADWQ40CAAAAIJ5QowAAAACIF9QnAACJRTMAAPhYsmSJtm/fHnC7w+HQokWLJElVq1ZVVlZWSO2OHDlSP/30kyRp/Pjx6t+/f0jvs9vt+vOf/yxJ2rFjh26++WadOnUq4P55eXmaOHFiSG0DAAAAiH/UKAAAAADiCTUKAAAAgHhBfQIACEVyrDsAAEC8WbBggZ599ln97ne/0+WXX6527dopKytL+fn52rp1q9544w2tWrVKknT77bcrObn8y+k777yjqVOnSpL69Omjyy67TOvXrw+4f5UqVdS4cWPP87vvvltff/21Zs2apX//+99atWqV7rrrLnXt2lUZGRnKy8vT5s2btXDhQn322WdKT0/X/ffff4afBAAAAIB4QI0CAAAAIJ5QowAAAACIF9QnAIBQsGgGAAA/nE6nFi1a5PmXBvwZPHiwxo0bF1J7u3bt8jz+5ptv1LZt26D79+7dWwsXLvQ8t9ls+vDDD/XQQw/pjTfeUHZ2tv74xz8GfH/t2rVD6hcAAACAxECNAgAAACCeUKMAAAAAiBfUJwCA8rBoBgCAMh5//HG1a9dO8+fP1+rVq7Vnzx7t379fklS3bl117dpVN998sy6//PKo9islJUWvv/667rnnHr311ltauHChdu3apePHj6tq1apq3LixOnXqpAEDBmjQoEFR7RsAAACAyKFGAQAAABBPqFEAAAAAxAvqEwBAKGwul8sV604AAAAAAAAAAAAAAAAAAAAAAAAA4WSPdQcAAAAAAAAAAAAAAAAAAAAAAACAcGPRDAAAAAAAAAAAAAAAAAAAAAAAACyHRTMAAAAAAAAAAAAAAAAAAAAAAACwHBbNAAAAAAAAAAAAAAAAAAAAAAAAwHJYNAMAAAAAAAAAAAAAAAAAAAAAAADLYdEMAAAAAAAAAAAAAAAAAAAAAAAALIdFMwAAAAAAAAAAAAAAAAAAAAAAALAcFs0AAAAAAAAAAAAAAAAAAAAAAADAclg0AwAAAAAAAAAAAAAAAAAAAAAAAMth0QwAAAAAAAAAAAAAAAAAAAAAAAAsh0UzAAAAAAAAAAAAAAAAAAAAAAAAsBwWzQAAAAAAAAAAAAAAAAAAAAAAAMByWDQDAAAAAAAAAAAAAAAAAAAAAAAAy2HRDAAAAAAAAAAAAAAAAAAAAAAAACyHRTMAAAAAAAAAAAAAAAAAAAAAAACwHBbNAAAAAAAAAAAAAAAAAAAAAAAAwHJYNAMAAAAAAAAAAAAAAAAAAAAAAADLYdEMAAAAAAAAAAAAAAAAAAAAAAAALIdFMwAAAAAAAAAAAAAAAAAAAAAAALAcFs0AAAAAAAAAAAAAAAAAAAAAAADAclg0AwAAAAAAAAAAAAAAAAAAAAAAAMth0QwAAAAAAAAAAAAAAAAAAAAAAAAsh0UzAAAAAAAAAAAAAAAAAAAAAAAAsBwWzQAAAAAAAAAAAAAAAAAAAAAAAMByWDQDAAAAAAAAAAAAAAAAAAAAAAAAy/n/AFla1NLBSW8eAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADM0AAAOrCAYAAAD+45B0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Qd0HNX1+PGrXfVidfdesY3BGEwxvWPTCTWEHgIh1FDSSPiREBJawh8IpAEJNZBQTLApBkyvwcYYG1e5V3Wrt93/uU/a9UraJmm2aOf7OWfPrqTZmdm9s6t35819L8ntdrsFAAAAAAAAAAAAAAAAAAAAAAAASCCOWO8AAAAAAAAAAAAAAAAAAAAAAAAAYDWKZgAAAAAAAAAAAAAAAAAAAAAAAJBwKJoBAAAAAAAAAAAAAAAAAAAAAABAwqFoBgAAAAAAAAAAAAAAAAAAAAAAAAmHohkAAAAAAAAAAAAAAAAAAAAAAAAkHIpmAAAAAAAAAAAAAAAAAAAAAAAAkHAomgEAAAAAAAAAAAAAAAAAAAAAAEDCoWgGAAAAAAAAAAAAAAAAAAAAAAAACYeiGQAAAAAAAAAAAAAAAAAAAAAAACQcimYAAAAAAAAAAAAAAAAAAAAAAACQcCiaAQAAAAAAAAAAAAAAAAAAAAAAQMKhaAYAAAAAAAAAAAAAAAAAAAAAAAAJh6IZAAAAAAAAAAAAAAAAAAAAAAAAJByKZgAAAAAAAAAAAAAAAAAAAAAAAJBwKJoBAAAAAAAAAAAAAAAAAAAAAABAwqFoBgAAAAAAAAAAAAAAAAAAAAAAAAmHohkAAAAAAAAAAAAAAAAAAAAAAAAkHIpmAAAAAAAAAAAAAAAAAAAAAAAAkHAomgEAAAAAAAAAAAAAAAAAAAAAAEDCoWgGAIAgRo8eLUlJSea2fv36WO9OQuA9BQAAADqjjWw93lMAAACgd2hLW4/3FAAAAOg92tPW4z0FYEcUzQAAAFv5v//7P2/iF+7tjjvuCHv9brdbXnrpJTnzzDNl3LhxkpGRIcXFxbLffvvJ7bffLhs3bozo6wMAAAAQH5qbm+WLL76QRx55RC699FKZNm2aJCcne/OMiy++uNfrjlTeoft71VVXyZQpU2TAgAHmpo/1d/o3AAAAAP3Tt99+Kw888ICcffbZpo2fm5srKSkpUlRUZPKI6667ThYvXhz2+vTCup72tYwfP77H+3zzzTfLXnvtJQUFBZKVlSUTJ06Uiy66SN5+++1evAsAAAAA4kF/vXaLPhSgf0uO9Q4AAID+64gjjpD33nvPPF64cKH52c62bt0qF1xwgbzzzjudft/Y2ChlZWXy5Zdfyr333isPPvhgny6QAwAAAOykP+YdDz30kNx4442mcKY/5B26n3oxmj5HO5O6Xqimtz//+c/mQrq7777bXFwHAAAA2FF/y08WLFggN9xwgyxbtszv38vLy81N8wgtqjnrrLNM21+LVGLpt7/9rbmYraWlpdPvV69ebW5PPPGEnHfeefKXv/xFcnJyYrafAAAAQKz1txwl0uhDARAIRTMAAMC2Zs6cKfvvv39Yy4Wya9cuOf744+Wbb77x/k7XPXXqVKmurjbJWFVVldTW1soll1wiDodDLrzwwj6/BgAAAADxRzteIlEwE6m84/LLLzcXnXmMHTtWDjzwQPP4008/lZKSEtMRdP/995t9ePTRRy1/bQAAAACspxeE+RbM6AjNOnOLztiSn58vpaWl8uGHH5p79e9//1uWL19uLrorLCwMaxtatBJO3qEjO4fjV7/6lfzmN7/x/jxkyBA59NBDJT09vdPrefbZZ03Bz7x588ysngAAAAD6n/5w7RZ9KEBi4MwBAACwrTlz5pgpP61w9dVXe5MuHYFNO5aOOuoo79/r6urkiiuukKefftqbUM2aNUvGjx9vyfYBAAAAxJ8RI0aYjhxPp88jjzwi//nPf+Iq73jssce8nT3aQXTffffJtddeax4rl8tlRpzWmXP0sS5/+OGHMwgAAAAA0I9Mnz7d5AfnnHNOt2IYLfj/4x//KL/4xS+kra3NFKVcddVV8txzz4W1bs1NdLZNK7z99tudCmZ0NOc77rhDUlNTvb/TYplLL73UjBT95ptvyp133mkKbQAAAAD0P/F+7RZ9KEDiaP/UAgAAoNc04fIkVOqZZ57plHSprKwsk0RpsuXphKITBwAAAEhMOkLZ9u3bZePGjfLCCy/IT3/6U5MjaF4QT3lHU1NTp86oW265Ra6//npvZ4/Sx/o7vVjNQ9cZiZl0AAAAAFhLZ5R5+eWXZfHixaYQxt/sMVqQ8pOf/ETuuece7++ef/55WbFiRZT3VuRnP/uZ9/G5554rd999d6eCGXXeeeeZIh+Pe++918z2CQAAAMC+6EMBEApFMwAAAH2ko0XraAHq2GOPNVN9+qOJknbw+HY60ZEDAAAAJJ5Ro0bJoEGD4j7veOWVV2TTpk3mcW5urvzyl78MuH3t5BkwYIB5vGHDBpk3b16fXg8AAACAyDvjjDPk1FNPDWtZHS156NCh3p/nz58v0fTFF1+Ym7+8pisdHXrChAnmcU1NjTz55JNR208AAAAA8Yc+FAChUDQDADGkDbV//vOfpqE2ePBgSU9Pl9GjR5uT1zrqk8cRRxwhSUlJ5vbuu+/6XZc+z7PM+vXrQ2774osv9i7/j3/8I+TybrdbXnrpJbnooovMqFTaENT9HTFihJx22mnmdbS2tgZdh+6XZ5u6vx4ffvihfP/735c99tjDrFf/rhXYOuqVZ/n8/HwzzXo49OR4dna297lff/21REtLS4s5MX/22WfL2LFjJScnx1Spjxkzxox8pe+hvpfBaIw9+66x93jnnXfMqFq6Xn3vdTSwww47zEx5r9sNV0NDgxmB6+CDD5aioiLJyMiQcePGmf3Tae/DOaY8v3/vvfe8vzvyyCO9v/e9hXN8bd682SQWe++9t+Tl5Zn3TI+Ha665xiQS8UzjqUmS74jSwej77pnWs62trdNzAQAAIoG8ox15R2fkHeQdyvc74JxzzpHMzMyA69S/6THnoccZAABAT5GftCM/6Yz8JD7yE6fTKQcccID353A+V1by/Q445phjzGctEH2f9bPpQX4CAAB6ixylHTlKZ+Qo8ZGjhIs+FABhcQMAYmLbtm3uAw44QFvgAW+nn366e9euXe7DDz/c+7uFCxf6Xd+oUaO8y6xbty7k9i+66CLv8o8//njQZZcsWeKePn160H3V26RJk9zLli0LuB7dL8+yur9NTU3uK664wu+6rrvuOvOcfffd1/u7p556yh2Ov/3tb97nzJw5090XPXlfNTbjxo0L+T4deOCB7s2bNwddj2dZjb2+T5dffnnQdc6YMcNdWloa8vV8/fXXIfdRY9Lc3Bz0tYd6jb63rsdX1/W+9NJL7tzc3IDPz8jIcL/66qtuq9x2223edevjvlq5cmWn/d26dWvI5/jG8/zzz+/zPgAAAARC3kHeEWw95B2RyzvC+Uzo41jnHUOGDPEu88wzz4Rc59NPP+1dftiwYWHvPwAAgCI/IT8Jth7yk+jnJ/6cccYZ3v246qqrwj62rXDQQQd513nnnXeGXP6jjz7yLu90Ot2NjY2W7AcAALAPchRylGDrIUeJXI7SX67dog8FSCzJ4ZXWAACsVFVVJUcddZR8++233t9pNftBBx0kaWlpsmzZMvn8889NxbFOCRhL77//vpx88smya9cu83NKSorMnDnTTHmuj7WKXUcb0JEEVq5cKbNmzZJPPvlEJk+eHHLdN9xwg/zlL38xj6dNm2Yq1XWdq1at8r7uH/zgB2aKdfXoo4/K+eefH3K9upyHjoIQDf/+97/NvnlGDdARAA488EBT8a+vRV+Tvi86osOnn35qYq1TzA8aNCjkuvU90NEgdD06wpdW8etIF7oefc/VokWL5MILL5T58+cHXM+aNWvk6KOPltLSUu/v9H2fPn26WfdXX30lS5YsMTHRURaC+dGPfmTu9RjdunWreayjVgwbNqzbssGOhbfeekuuvPJKU7U/cuRI877oVJXr1q0zozbo+6WjK2gl/jfffGM+J1basWOHPPXUUyY+tbW1ZqSE4cOHyyGHHGJG5QiH7+dYRx0ZMmRIyOfMmDHD7/MBAACsRN7RjryDvCPWeYcVIpF3VFdXy7Zt2/wuH846t2zZYj6z+l4CAACEQn7SjvyE/CTe85OlS5d6Hweb6cWX7vOCBQvkf//7n5SVlZkRt3W07P3220/2339/8xkPh+/3Qzj5yT777ON9rO+nHnMaXwAAgHCQo7QjRyFHiXWOEq/XbtGHAiSgWFftAIAdXXrppd6q4tTUVPejjz7abZnPPvvMW9Wty8RitAIdUWHgwIHe5S688EK/ldjbt283Iyt4lps2bZq7tbU16GgFOuKT3o8YMcL9/vvvd1vWMxpUTU2NOzs72yyblJTkXrt2bdDXpaMleLaRlZVlRnvoi3De12+++cZU1Hv28aabbnJXVlZ2W073/ZBDDvGub/bs2SFHK0hLS/OOuvDtt992Ws7lcrnvv//+TpXy7733nt916rKHHXaYd7nCwkL366+/3m25t99+28RcX4fvcRfotYczkkaw91Rfn8bpySefNPvY9X3VqnvPspdcconb6tEKQo0AoSMphHLXXXd5n6MjkIRj3rx53udkZmZa8KoAAAC6I+8g7yDviF3eYfVMM5HIO/Tz7xvX+vr6kOusq6vr9JzPP/887NcAAADsjfyE/IT8JP7yk2Azt+jtiy++CLis77Ed7Jafn+/+xS9+YY7rYHbs2NHpeV1jH0hxcbH3Oc8//3yPXzMAALAvchRyFHIUrt2iDwWwl9iWwAKADWlV9OOPP+79+a9//atceuml3ZbTkZfefPNNyczMlObmZomFX/ziF7Jz507z+NprrzUV8/4qsbXiXqv1dQQGzyhU//nPf4KuW6vT9bVptfqhhx7a7e+eUaeys7PlvPPOM491ZsnHHnss7JEKtMI9VNW9FfS90Yp6dd9998k999xjqt67Gjt2rLz++usyZcoU8/Nrr70mn332WdB1NzU1mZEh3nnnHTNKga+kpCS57rrr5Mwzz/T+7tlnn/W7njfeeMOMPKF0ZIK5c+fK8ccf3205jeG8efPMMtE47nQbeqx873vfM6/H19SpU72jWSg9xnT0gmjRESBOP/10ufzyy83xGkh5ebn3cTijT3hGNfCor683cQYAALASeUc78g7yjnjPO8IVibzDd5060pmOuheKfp58j/eKioqw9gUAANgb+Uk78hPyk3jOT3SU7Ouvv977s46erTPF9FVlZaX89re/NevS74JAfPOT3uY95CcAACBc5CjtyFHIUeI5R4n1tVv0oQCJh6IZAIgyTQw0gfAkVxdddFHAZXWKQd8T1NGk00Dq1IeeRuJdd90VdHmn02lOens8/fTTIbdx9dVXhzWNojZ8Pf7xj38EbATr9JpPPvlkVKf31CkxNSnyTAMfKl5ZWVnyy1/+skfv0+9//3uTgAbim7jr1LChEtJzzz1XDj744IDr044LnS40Gk466SQ54YQTAv59zpw53iRFp+D0Nx1mb2gSe+utt8rbb79tptLUBLCmpsacNNDEWaf59Pj73/9uEtxAdL88wkmQ/C3nuw4AAAArkHfsRt5B3hGrvMNKkcg7erPOrsuSywAAgHCQn+xGfkJ+Eq/5yW9+8xv54osvzGO9OO/ee+8N+Ry9GOziiy+Wf/3rX7Jy5Uqzv3qh2aZNm8zFdMccc4x3Wf27vm79nPnTNbfoTd5DfgIAAMJFjrIbOQo5CtdudV9Hb9fZdVlyFCC+UDQDAFG2cOFC7+MLLrgg5PLBErNI0lEEPNXqZ5xxhqSnp4d8jo46pYmF+vDDD0MurwlAOGbOnCnTp083j7ds2WIq7/155ZVXvCfbdUSAWbNmSaTNnz/f+1hHVehace+PZ1SHcN4nfd9PPvnkoMtowuexfv16v8u899573sc6MkAo4SxjhbPOOivo3/X93HvvvUO+vp645pprTAKnHUAaC03sUlJSTHK75557yk033STLli2T2bNne5/zpz/9KWCsGhsbvY9TU1PD2gfPaBwentEuAAAArELesRt5B3lHLPIOq0Ui7+jNOruul1wGAACEg/xkN/IT8pN4zE/++9//yu233+79+Sc/+YkccsghQZ+jo5tv3brVjNB+zjnnmAst9bOguYVe3KYjbS9YsMCMSu05RtatWyc/+9nP/K7PNz/pbd5DfgIAAMJFjrIbOQo5CtdutaMPBUh8ybHeAQCwEx2lQKvbPQ466KCQz9GTzAUFBVGfru+TTz7xPv7666/NyAI9nW69rq7Om4h1pQ3dadOmhb2+H/zgB3LVVVd5K++1ij1YRf5ll10m0X6fNKnesGFDyOd4RqtQOtpWMJMmTTLvVTCFhYXex7t27er2d01WfUfu0gQ5nGRXkx7ffY2EcI6BUK+vp3zXF4hOq6lTj2rCv3r1avM7HbHDXyeR70mJcKdF7TqlZ09GJAAAAAiFvGM38o525B3RzzusFom8ozfr7LpechkAABAK+clu5CftyE/iKz/R2WX0wkLP69bZYX7961+HdSFY14vMAh3Heozceeed3lHJdfTzQYMGdVqu6wWgmqOEc1Eo+QkAAOgpcpTdyFHakaNw7ZaiDwVIfBTNAEAUVVdXd2pEjRw5Mqzn6XLRTrx0dCgPrdIOZ/QBf8lXoMQrPz9fkpPD/zd0/vnny80332ySOR3xShOJ4uJi7983b97sHcVAq7ujNUWl7/v02muv9eo9CiY3NzfkOnwTs9bW1m5/9026MjMzTSIfSk5Ojtl2VVWVRFJPX59O4xot+l7paGqeqWJ1Klf9/HYdPcB3+tVwRwjoulywKVwBAAB6irxjN/KOduQd8Zt3hCsSeUdv1tl1WXIZAAAQCvnJbuQn7chP4ic/Wb58uRm5WY8xz0V5L730Uo+O03Do7DJ//OMfTS7R1tZmZqDpOmp219xClw2naIb8BAAA9BQ5ym7kKO3IUeInR4mna7foQwESjyPWOwAAdlJbW9utYReOQMlLpJPEvvKXBPS2klqrx3V6d0/j+4knnuj0dx2ZyuVymcennnqqFBUVSX94n7RzIJhwpgztyXEX7jEXrYa7Fa8vknRENY/6+nq/o1H4jn6wY8eOsNa7ffv2TjEJZzQ2AACAcJF37Ebe0Y68I77zjnBEIu/oOjJcY2NjyHVqXlRTU+P9OZyOPQAAYG/kJ7uRn7QjP4mP/GTdunVy7LHHSnl5ufl56tSp8vrrr0fkPdB1+o6k/e2334Ycabo3eQ/5CQAACAc5ym7kKO3IUeIjR4m3a7foQwESD0UzABBFXRuy2lAKh2eEJyt5kpRwkr0//OEPZqrHnt5Gjx5t6T5ffvnlfqfz1G09/vjj3p891eXR4Ps+vfjii716n6J53IV7zEXquOtvhgwZ0unnsrIyv9OweoQzxavauHGj9/Eee+zRp30EAADoiryjb8g7eoe8I7IikXf4rjPc9fqu0986AAAAuiI/6Rvyk94hPwluy5YtcvTRR3tH5B43bpyZ/SWSF3T59rf462sZOHCg5OXl9Sg/0YvWfEfspr8FAACEgxylb8hReoccpf9du0UfCpB4KJoBgCjS6Qx9pwfs2lAKZNOmTX2e5rGnVfaDBg3yW1kdSwceeKDstdde3lGoPvnkE/N44cKFUlJSYh6PGjWqU4V5pMXj+9SV78gNmniFmlbUM8JBpKf37A+6Jp/+Rg6ZPHlyp2MgnONg0aJFfp8PAABgBfKOviHv6B3yjsiKRN6h3xW+nU2LFy/u0TqHDRtmRhYEAAAIhvykb8hPeof8JDAddVkLZnSmGTV8+HB56623ul2IFsn+lkCjtPvmLT3NT5xOp0ycOLHP+wkAABIfOUrfkKP0DjlK/7t2iz4UIPFQNAMAUaTTGe69997enz/99NOQz1m9erV3avRgfBtZ4Sy/dOnSoH/3nSb9o48+knjhb8QC35ELLrnkEnE4ovfvLV7fJ1/a4eGbfH322Wchn/O///0vrJEU4n2Kzr7qmvAMHTq02zITJkww77HHu+++G3K97733nvfxUUcd1ef9BAAA8EXe0XfkHT1H3hFZkco7jjzySMvXCQAA4Iv8pO/IT3qO/MQ//Zwce+yxsnLlSu/sLlowY/Xo46H6W/z1tfQ1P5k1a5akpaX1eT8BAEDiI0fpO3KUniNH6Z/XbtGHAiQWimYAIMp8G1NPPfVUyOWfeOKJsNbre0L7q6++Ctmo9owgFcjxxx8vycnJ5vHHH38sS5YskXjwve99TzIyMszj5557TjZv3mym1lSacF166aVR3Z+TTjrJ+1j3Q0foikeHH3649/HTTz8dcvlwjk2Vnp7ufdzS0iKJ5rHHHvM+njp1aqcE1jf5POWUU7w//+Mf/wi6Th1lY9WqVd6Rz04++WRL9xkAAECRd/QNeUfvkHdETqTyjtNOO837WI/1hoaGgOvUvz3//PN+nwsAABAM+UnfkJ/0DvlJZ7t27TLHuOfCzPz8fFmwYIFMmjQp4tvWwhzfkdmPOOIIv8v55hj6HD3Wg/HNi8hPAABAT5Cj9A05Su+Qo/S/a7foQwESC0UzABBll112WafRCoI1cNesWSN//OMfe1w1/89//jPgcjr953XXXRdyfTpFoCY5SqvWL7zwQnNCPRwul0tKS0slEvLy8uTss8/2TkN55plnSmNjo/n5uOOOkxEjRkg07b///t6T+9r4veCCC6S5uTms5+py4Uy3aQXfhPSZZ54JOlKGThUZ7BjyVVhY6H28ZcsWiXd6zITrP//5j3mvPDyfB3+uvPJK7ygZb7zxhuloCvTZuOWWW7w/n3XWWVJcXBz2PgEAAISLvKNvyDt6h7wjsiKRd2gnkmf0taqqKvntb38bcPu/+c1vzDJq1KhRnToiAQAAgiE/6Rvyk94hP9mtvr5eTjzxRPnyyy/Nzzk5OfL666/LXnvt1av1aRzDjbl+LjSX8Zg8ebLMmDHD77IzZ840N9XW1iY//elPA673r3/9q/ciN309+nkFAAAIFzlK35Cj9A45Sv+7dos+FCCxUDQDAFE2ceJEufjii70/f//73/fbyNURBXSK9Lq6OklNTQ253nPOOcfb8NNqaD2RrCeUfWllvzbIdPSBcKYo14bekCFDzOOvv/7aJBlvvvlmwOV1/Zoo6qhUWl0djWk+faer1PcyFh588EHJzs42j7XBfdhhhwWdRlNP4mtDWUeYiNa0oLNnz5ZDDjnE2/jXCnkdpasrnUpyzpw55tgJ57jbc889OyUq4UwLGkv33Xef+Vy98MILAav/q6ur5bbbbpNzzz3X+3rGjBkT9ITFtGnT5Pzzz/f+fN5553WbllM/y/rZ//DDD83P+v7qcQAAABAJ5B19R97Rc+QdkRWJvEM/o7fffrv359/97nfywAMPmPh56GP93V133eX93a9//euwYgcAAKDIT/qO/KTnyE/aNTU1mRGOPTmCjgj+6quvmmO7t7Zu3Srjxo2Tu+++WzZs2OB3GX1f5s2bZ4pg1q5d6x39+d577/V+bv3RnMR39G39XHcdLVtHb77++uu9P990001+R5sGAAAIhByl78hReo4cpf9du0UfCpBY2uduAwBE1R/+8AeTHK1cudKcrNbGmDaWDjroINPYWrZsmXz++eem0XfGGWdIeXm5vPfee0HXqRXKWjH98MMPm5+1Ifbss8+aJECnYdQT0trI1wr5Y445RgYPHhxyGsehQ4fK3LlzTUO8rKzM7K9O/akjGWgSplXWeqJa//bNN9+EnDbUKgcffLCZblHfJ4+BAwd2mmYxmjT50Pdak18drUuTrgMPPNB0GOhoWQUFBWZEhZ07d5oENhZV/doRodNV6jGmx5PGTBOQvffeW6ZPn26W0WlcPdPDagfDv//9b29nR6AODD0+f/7zn3s7P3RUslmzZplRvTw0gdlvv/0kHuh+asKpN/2s6XE0fvx4MwqGfjbWr19v4ueblGlHy/z5871Tywby0EMPmZEe9LjU91in89VRRKZMmWJG+njnnXc6jU6ho6DptgEAACKFvKNvyDt6jryjM89r9rVx40bv41deecXvMp73J1p5h45upx1HTz75pOnc0U4n7eDR40vpaHeei9zUJZdcwijOAACgx8hP+ob8pOfIT9r98pe/7DTCss70okUnegtnxGrfC8S6Xoz5k5/8xNz0QkO9QE37U1JSUsyI5npMaHGNLy2y0c9WMEcffbTceuutcscdd3g/15qrHHrooeZzrbPl6GfPQ2Oq8QAAAOgpcpS+IUfpOXKU/nntFn0oQAJxAwBiYsuWLe799ttPS6ED3k455RT3rl273Icffrj3dwsXLgy4zoaGBvecOXOCrvOkk05yV1ZWui+66CLv7x5//PGg+7p+/Xr30UcfHXS9vrdBgwa5X3/99W7rWbdunXeZUaNG9en9u//++ztt86abbnJHgu6nZxu6/8F89dVX7n333Tfs92n06NHuxYsXd1uPxtizjMY+HL7rDbWPY8aMCbpfP/jBD9zNzc3uoUOHen+nx0wgP/vZz4Kur+vx1ZP3VPXkWA3ltttuCzs+ejvhhBPcmzdv7tHn+qijjgq6zuzsbPdjjz3Wp9cBAAAQLvIO8g7yjujnHR49yT3CfW8jlXc0NTW5r776andSUlLAderfrr32WhM3AACA3iA/IT8hP4l+fuK7rp7eAh2zvsd1OLdhw4a5586dG/Y+u1wu929+8xt3SkpK0PWee+657urq6j69PwAAwN7IUchRyFG4disc9KEAiYGZZgAgRnQkAK00fuKJJ8z04lrFrlMLDho0yFSQX3TRRfKd73zHVJmHS0cl0CnVtXJepw3Vymldp1by6zp1VIQzzzyzR+v0jISg1d06woJWsL///vuyadMmU3mdnJxsRpqaMGGCqUg/7rjj5IgjjjC/jyStkvedej1W03v60vdYp2bVaVBffvllMzqEjqJVVVVlKuN1dAed/lQr2HXUBx05oKexsGIfdWSJP//5zyaWOt2ojrCgU7nqCBQ6faqO4qU8lfU6UsGAAQMCrvPOO+8004c+/vjjZoSvHTt2mHXGo5tvvlkOP/xwM82tfv50NAYdWUBvGgsdtUCPZR1xQafp1Perp59r/ay89NJL5nOtn8Ft27aZKWBHjhxppla97LLLzGMAAIBoIO/oG/KO3u+jnfOOSItE3pGamioPPvigXHDBBWakOx01zTPSno5YqJ83XefMmTMj+MoAAECiIz/pG/KT3u8j+Ym19POxdOlS8/nQ/hYdxVlHyda+Fn0f9L3T91fzh9mzZ8vpp59uZqAJlx4jOtuMfh/8/e9/N8eXfv50BHVdrx5H+n2ho7MDAAD0BTlK35Cj9H4f7Zyj9Mdrt+hDARJDklbOxHonAADBacPKM8XnwoULzc92p4mlJpJKG/0ffPBBrHcpoaxevVomTpxoHu+xxx7y7bffxnqXAAAAEGHkHd2Rd0QWeQcAAAACIT/pjvwksshPAAAAEAw5SnfkKJFFjgIA1nJYvD4AAKLi0Ucf9T7WCntY67nnnvM+pgoeAAAAdkXeEVnkHQAAAED4yE8ii/wEAAAA6BlylMgiRwEAa1E0AwDodxYvXuwdnaCgoEDOPvvsWO9SQlm3bp3ce++93p+/+93vxnR/AAAAgFgg74gs8g4AAAAgfOQnkUV+AgAAAPQMOUpkkaMAgPUomgEA9CuNjY1yzTXXeH++8sorJT09Pab71J8cd9xx8vrrr0tra6vfv8+bN89MmVpdXW1+nj59unkOAAAAYCfkHX1D3gEAAABYh/ykb8hPAAAAAGuRo/QNOQoAxEZyrHcAAIBQHnroIVmzZo1UVVXJ22+/LZs3bza/LyoqkhtvvDHWu9evLFiwwNzy8/NlxowZMmLECElNTZWysjL5/PPPve+tysnJkSeeeEIcDmpsAQAAkPjIO6xD3gEAAAD0DfmJdchPAAAAgL4jR7EOOQoAxAZFMwCAuPef//xH3nvvvU6/czqd8uijj5opPtFzlZWVJokNZMKECfLvf/9bpk2bFtX9AgAAAGKFvMN65B0AAABA75CfWI/8BAAAAOg9chTrkaMAQHRRNAMA6Fe0yn7WrFnys5/9TA4++OBY706/880338jLL78sH3/8sWzYsMGMUlBRUWGmSS0uLpb9999fTjrpJDn33HNNcgsAAADYEXlH35B3AAAAANYhP+kb8hMAAADAWuQofUOOAgCxkeR2u90x2jYAAAAAAAAAAAAAAAAAAAAAAAAQEY7IrBYAAAAAAAAAAAAAAAAAAAAAAACIHYpmAAAAAAAAAAAAAAAAAAAAAAAAkHAomgEAAAAAAAAAAAAAAAAAAAAAAEDCoWgGAAAAAAAAAAAAAAAAAAAAAAAACYeiGQAAAAAAAAAAAAAAAAAAAAAAACQcimYAAAAAAAAAAAAAAAAAAAAAAACQcCiaAQAAAAAAAAAAAAAAAAAAAAAAQMKhaAYAAAAAAAAAAAAAAAAAAAAAAAAJJznWO4D+raysLCLrdTqdkp+f7/25srJS2traIrItxB7xthfibR/E2l6It73EQ7yLioqiuj3YOz+Jl+Me0UO87YNY2wvxthfibS+xjjf5CQIhR4EViLW9EG97Id72QrztIx5iTY6CQLjOC1Yg3vZCvO2FeNsHsbaXeIh3URzkKMw0AwAAAAAAAAAAAAAAAAAAAAAAgIRD0QwAAAAAAAAAAAAAAAAAAAAAAAASDkUzAAAAAAAAAAAAAAAAAAAAAAAASDgUzQAAAAAAAAAAAAAAAAAAAAAAACDhUDQDAAAAAAAAAAAAAAAAAAAAAACAhEPRDAAAAAAAAAAAAAAAAAAAAAAAABIORTMAAAAAAAAAAAAAAAAAAAAAAABIOBTNAAAAAAAAAAAAAAAAAAAAAAAAIOFQNAMAAAAAAAAAAAAAAAAAAAAAAICEQ9EMAAAAAAAAAAAAAAAAAAAAAAAAEg5FMwAAAAAAAAAAAAAAAAAAAAAAAEg4FM0AAAAAAAAAAAAAAAAAAAAAAAAg4STHegcAAAimpaVF6uvrpbm5Wdxut7mhf0hKSpKysrJOsSR+iYt420tv4+1wOCQ5OVnS09MlLS3N/AwAQH/icrmkqalJGhsbpbW11fyM/oM2q70Qb3vpTbz1OXpLTU2VzMxMSUlJicKeAta1Pfiesw9ibS/EO3FxbhQAAAAAACB2KJoBAMQl7QSqrq6WhoaGWO8K+sC3M48LChMf8baX3sRbl9OLfPRiH70AIC8vz3QSAwDQH+j/r6qqKi5Y6+dos9oL8baX3sZbcxQdsCUjI0Nyc3NNrgL0l7YH33P2QazthXgnJn/nRrOysmK9WwAAAAAAALZA0QwAIC7V1tZ2K5hh1K3+h5jZC/G2l97E23fGML2vrKyU/Px8CmcAAHFPL2rS/1v+ZihA/0Kb1V6It730Jt6+FyLreSin0yk5OTkW7xkQubYH33P2QazthXgnJn/nRjXWen4UAAAAAAAAkUXRDAAg7uhIW1o046EXK2RmZtJR1A8lJyd3iisSG/G2l97EWzuDm5ubpa6uTpqamszvdNTcgQMH8h0PAIhbekG1/r/ySEtLM6MBp6amUjTTD9FmtRfibS+9ibd+x+ssMzU1NeZnPR+lM874rguI57YH33P2QazthXgnJn/nRisqKmTw4MGcGwUAAAAAAIgwzr4AAOKOp7NAaYdwdnY2HQYAkAD04h692EdHT9R7T2ex7/c+AADxRv9PeUYD9v0/RsEMAPR/er5Jzzvp+ScP8hPEGm0PALDXuVHfQeQAAAAAAAAQGVyBDACIO74XJ+jongCAxOsg9r0orbGxMab7AwBAML7/p/T/FxesAkDi8T3/RNEMYo22BwDY69zorl27Yro/AAAAAAAAdkDRDAAg7rS1tXk7DpKTk2O9OwCACEhNTfVe+NPa2hrr3QEAICDP/yn9v6X/vwAAiUfPP3nyE895KSBWaHsAgL3OjTY3N8d6dwAAAAAAABIeRTMAgLjjcrnMvXYYMJIiACQm3+94z/c+AADxiPwEABIf+QniCW0PAEh8vt/xFOwCAAAAAABEHkUzAAAAAAAAAAAAAAAAAAAAAAAASDgUzQAAAAAAAAAAAAAAAAAAAAAAACDhUDQDAAAAAAAAAAAAAAAAAAAAAACAhEPRDAAAAAAAAAAAAAAAAAAAAAAAABIORTMAAAAAAAAAAAAAAAAAAAAAAABIOBTNAAAAY/PmzXLjjTfKzJkzZfjw4VJcXGxu8+fPt3Q7nvXefffd3f720Ucfef+ujwErPPvss97jauPGjbHeHQAAAISB/ASJivwEAOITbQ8kKtoeAAAAAAAAgEhyrHcA1nj//fdlxYoVUlJSYk54tra2ylVXXSVHHHFErHcNANBPOoWPOeYYKS8vj/WuAAAAALA58hMAABBNtD0AAAAAAAAAILEx00yCeO655+Stt96S0tJSyc/Pj/XuAAD6mT/84Q+mUzg5OVl+9atfyWuvvWYKMvV22GGHxXr30A9o0a62QfT2zDPPRHx7jLwJAACQuMhPYEV+orkC+QkAIBy0PWBV20NvOrNLpNH2AAAAAAAAAHqGmWYSxBVXXCFDhgwxJ0dffvnlqHQGAwASh3YAq9mzZ8s111wT690BLHXeeeeZGwAAAPoH8hMkMvITAIg/tD2QyGh7AAAAAAAAABTNJIy99tor1rsAAOjHtm3bZu7HjRsX610BAAAAYHPkJwAAIJpoewAAAAAAAABAYrN90Ux1dbWsWbPG3NauXWtuNTU15m+HH364/OhHPwp7XaWlpWbK9kWLFnmncR88eLAcdNBBcvzxx0taWloEXwkAAL3X3Nxs7lNSUmK9KwAAAABsjvwEAABEE20PAAAAAAAAAEhsDrG5yy+/XO666y554YUX5KuvvvIWzPTU//73P7npppvk1Vdfla1bt0pTU5PU1dWZIpynnnpKbrnlFtm+fbvl+w8AQG89++yzUlxcbG4e99xzj/d3erv66qu9f5sxY0a33/mjf9fldPlYcrlc8uKLL8rFF18s06dPlxEjRpjbAQccIFdeeaW88sor0tLSErCj/LHHHpPTTjtN9thjDxk6dKhMmTJFzj33XPn3v/9t1h3u69+xY4fcdtttZrsjR46UadOmyWWXXSYrVqzo9LyNGzfKz372M7Oc7qduT/dz3bp1Abd19913d4qhFgNru+aQQw6RUaNGyYQJE8xr0PchGM86dH3BnHrqqWY5ve/6/H333df7sxYd+x5H/ta9fv16efjhh+X8888375UnPvvss498//vfl7ffftvvPuj7pOvT1+Whj7tuT49vf8e6Pj+QsrIyufPOO+XII480I4sOHz7c7NtVV10ln376adD3puvnQwuyb7jhBvP7YcOGmXhedNFFps0IAACA7shPyE8imZ/k5+eTn5CfAEAntD1oe0Sq7XHttdf2+dzoW2+95XcfaHsAAAAAAAAAvWP7mWZ8FRUVmRN3S5Ys6dHz9ITt/fffb04ip6enm5OTe+65p/n5o48+Mp2qOrX77373O/n9738vGRkZEXsNAACgvfNQO+G++eabbn8rKSkxNy2Yffnll+Xggw/u9lztAF69enW3GeX0f7re/vnPf8qTTz5pLrwKRrd/zjnnyM6dO72/a2hoMJ3S2vH53HPPyYEHHigffPCB6cDetWuXd7nGxkazj7q9//73v6aDOpgNGzbImWeeaTpcPerr601bRG/z58+XP//5z2YmvFjTfZ05c6bfv23evNnc5s6dK2eddZY88MADUdnnhQsXmg77rgXUmzZtMje9IODSSy817TmHI3jd+bx580xnsr7/vsePxuCNN96QRx55RE4//fSIvRYAAADEF/KTduQn4SM/AQD0BW2PxGh7nH322fKnP/0pKvtE2wMAAAAAACDxVDW0yLryBllf2SRbarbK6p01squhVZ743lSxo9ifGYwxPYGqo+XoLS8vz5y4DTVKVFf/+Mc/TIGM0+mUW2+9VSZOnOj9mxbPDBkyxMw2o4UzemJXT3J29cQTTwQc0cmfOXPmmPUCANBb+r9ERxlUhx12mLm/5JJLzM1D/zf2N/q//MQTT/TO8HbooYeazlkdWTApKcl0Sn744Yemc7ar2tpa+c53vuPtXNX36Lvf/a4MHjzYPO/RRx+Vjz/+WD777DMzCqD+X9f///5oB7B29ur/91/84hcya9Yss+w777xjim2101BHPNYOxwsvvFAGDBggP/nJT8yohK2trWb2ur/85S9SVVUl119/vbz++ushZ8/TTm3d5sknn2zWt2zZMnnwwQfNzHfa0aqv44477hCrvf/+++b99rRx9PUef/zx3YqTPdra2iQ1NdWMWnj44YfLpEmTzLGmr1X3VUey1NEm9b3RUSH1ffHQ9o9ub/HixXLdddeZ3/2///f/zCiMvnQEzHAtXbpUvve975n2XEpKiukgPuGEEyQzM9P8TS+M0/jrfmVlZcmvfvWrgOv69ttvzXs9aNAg+eEPf2g+Y26323Q863q0w//GG280x6XvewIAAGB35CfkJ5HMT/S90zzEg/yE/AQAaHvQ9ohU20NnzJk9e3anZXrT9nj++edl9OjRcvPNN3ufS9sDAAAAAAAAXVXVt8ja8gZTIFOit7L2x+X1/usSappaJTM5SezG9kUz/gpYekKnl9YTgEpPbvoWzHicdNJJ5mTgli1b5LXXXpMzzjij20hGCxYskKamprC3qyMvUTQDwM5cbrdUN7SKXeRmJIsjydqGSm5urrn50o6qyZMnS392yy23eDuFtQPvmmuu6fR37UDUWeH+7//+z3TA+rr33nu9ncI//vGPTQenx9577206XHWUvP/85z/yxRdfmKJX3450X2VlZaZDUEfPGzNmjPf32vFbUFAgP/3pT01HrnZiDxw40IzA59tReMABB5j2wkMPPSRffvmlfP3117LXXnsFfN3aUaodydrO8NBOyVNPPdW0RbST+G9/+5vp0LY6xro+7TD17ZQNtg3tNNXXpB3VXelFCtq5fe2118q//vUvefjhh00Hq3Z0K+241XVXVFR4n6MXrvXlNWlHracA+umnnzZtOt/j5ZRTTjHv4cqVK83ojtp+DDS6pcZJj5WXXnpJcnJyvL/fb7/9zHGgr0VHbNRj6Morr+z1PgMAgPhDjtLH9ZGfkJ9EMD+ZMmVKt/fXg/yE/AToz+0OZ7Lb+7u2AN9ziYK2R3hoe8S+7aH9t309N6qFQs8884z5X3/FFVfQ9gAAAAAAALA5PddWWd/aXhRTXt+pQKayh33U68oaZOrgTLEb2xfN9NXnn3/ufex7EtGXTlOtIwXpyc26ujpzYlZPGPrSacwBAOHTTuFjH14kdrHgqhmSn5kS692Ie1rMOn/+fO9IiF07hX1lZ2d3+lmLV3VmOKWdftrB3JWOxnj33XebERG1Y1JHVwzUMay089e3U9hDR2jUjmkdWU87kLXz19/IetpBqn9Tn376adCO4eOOO65Tp7Dv6/zDH/5gZn5xuVxmhry77rpLYkk7kX07kv29z7/+9a/NSJM66uR7771nOuUjYdGiRaZTXV1wwQV+23M60uN9991nOof1PdRRFfU4CERHd/TtFPbQkTpvv/12c+GCxpOOYQAAEgs5CroiPyE/6SnyEwDhslu7Q9H2CI22R+K0PXRGnOeee870K9P2AAAAAAAAsFdxjM4Qo0UxaztmjDGPyxssG8BxbVm9LYtmHLHegf5OR9VRaWlpMnbs2IDL6WiGXZ8DAACspTO3acNR6Qh8PbFkyRKprq42j88991wzsp4/2uGnIxR6/qd7Rm7017npWa6rjIwMb7tBOx2POuoov8vpKIGeDuwNGzYE3f/zzjsv4N9mzJjhHf3v/fffl3jT0tIiW7dulVWrVpkZ/PSm76uOOqm04DhStNPZQ0eaDERHt/TMKBjsPdQ239SpUwMeE9OmTTOPPaN2AgAAIHGRn/hHfhIY+QkAoC9oeyRO22Pbtm20PQAAAAAAABKYnscrrW2WzzZUy78WbZffvrlOvv/scjnmT4vkhEcWyw+fXyH3vrNBXliyUxZtrul1wUyKM0kmFGfKSXsNkR8fO1EeOX+GHDIuX+yImWb6aPPmzeZep9AOdAJZDR06tNtzAACAtZYuXWruU1JSZL/99uvRc1esWNGpIzUY/fvjjz/ufZ62A7oqLCyU/PzADcwBAwaYex1tUTsMA8nNzZXa2lpzC2afffYJ+Xfd17Vr10pzc7OkpqZKrDuDn3jiCTNas8ZN9ykQHbkyUjxx1/djzz33DBl37bwuKSkJ+B6OHz8+6Do8x4SOEgkAAIDERn4S/O/kJ92RnwAA+oK2R/C/0/bojrYHAAAAAABANIpjWqSkvF5KyhukpKzB3OvsMTVNbZZtJ9WZJKMLMmRMYYaMLcqQsYXtj4fnpUtaSnKnc3WVlZXS1mbdtvsLimb6QE8I1tTUeE/+BqMjIelsNDq9eXl5ueX78vbbb3tPbG7cuNH7O8/oQzqC0tFHHx32+sLdx2CFQn3hcDiC/ozEQrztJZx4B+skQ/+lcfWMdBgpnv9fOkJhTzs+tTHoUVxcHHTZgQMH+n1e1xETg/Ec++EuF6qhWlRUFPTvntekMaiqqur0GqzQ9XMbLN76np111llmBMtwNDQ0WLKPgfbFc8wkJwdvGnves2DvYah4et6n/p549CTe4a4vUu1KJIZY5yeKNqu9EG/7ID+xF39tmEgiP4ldfuJPoDYr+Un/z0+szlHITxDrHIW2B3r7HUfbI77aHoH0tO3R2NgY0X1RtD3iB+cfEhvnm+yDWMOO/Sgc9/ZCvO2FeNsL8bYPYm09PWeyo6ZZ1pbVdxTG1JvH68oapLbZunMhacmO9sIYUxyT2X4rzJBheemS7PB/bpl4t6Nopg98T1Kmp6eHXF6X0aKZSJzc1IIZ3ym0PdOi682jJ0UzP/zhD8Na7vnnn5do0JGkYB/E2178xbusrMw0IvSfc6COmsIcp7xz7f5iF3kZyeKIQod5sPc83GUCNaq6noDztx7fZfRxqH0J1Omm9z19ru9+63ODPT/YfnZdj1X76u/98t2WjiAZblwCvb5QsQ22z13jG+yE66233urtFD7xxBPl/PPPl6lTp5rOa20vebajoxtu2bIl5PZCHSu+y3Z97Z73JdxjP9B6fJfpSRwSRW9PsHveDz1+g40+CsRbfqJos9oL8baP3uYnihwl/vOTYG1W8pPEyk/8PS9Qm5X8ZPc6EklvchTyE8RLjsK50cRpe4Rarrf/TwJ9x9H2iI+2R6i2QE/bHl3X79lGuNuj7RG//PWlcP7BXoi3fRBr2LEfhePeXoi3vRBveyHe9kGsw+dyuWVrdYOs3lkrq3fUyOodtebxmp21UtvUatl20lMcMn5gtkwcmCPjB7XfTxiULcPzM8UZoDgmXLk2jTdno/rAd6rscE7seZYJNsV2b/3oRz8yNwCwC+0gLchMifVu2LIDx+VyBV2uvr5eYsUz85uOkKf/b3syoqLvBTE7d+6U8ePHB1xW/+7vebGk+zR8+PCAfy8tLTX32umqIwf6G50yGrHdtWuXvPTSS+axjqj417/+NeCy1dXVEmme96KiokJaW1uDtuk8cff3HgIAAJCjRBf5yW7kJ71HfgKgv6LdEX20PXaj7dF7tD0AAAAAAAD6T3HMliotjqmRVVoYs0MLY2pMgUy9hTPHZKQ4TTHMhI6imAlaKDMoR4blZYijj8Ux6IyimT7wPdmsJxJD8SzT0ynRY+GRRx6J9S4AAOJMdna2ua+qqgq63Jo1ayRW9t57bzM6TktLi3zxxRdy8MEHh/3cyZMnex9/+eWXMmvWrIDL6t/9PS+WFi9eHLRjeNGiReZ+3Lhx3doiGtuampqgsdWO45KSkj7vp65D46NOP/30gMutWrVKamtrA/7dM+JiX3nipxcSLF26VPbZZ59evYcAIov8BADQFfnJbuQnvUd+AqC3yFHsh7bHbrQ9eo+2BwAAiBRyFAAAgN4Xx2yqrPfOGGNmj+mYOaahxbrimKxUp4wflNNRFNNeJKMzyVAcEz0UzfSBTpHt0djYGHJ5zzK+z4tXntGoQtHRqiI1Ypfv9E86mlKoEZ7QfxFvewkn3tpp5PldOEWJsI6+74He85EjR8qyZctkyZIlJkb+OuZWrFhhlvGnra3NdC4G25Yu4/u4p/E/+uij5dZbbzXbefjhh+WAAw4I+7l77rmnOTb1mHz22Wfliiuu8I4g6Us7K19++WXzeNKkSVJUVNRpP32P52D773kv9D6c1+nv/fLd1jPPPCOzZ88O2Gn87bffmseHHnpot/V4YqvLBdqXBQsWeEc39LfPKSm7RzdtamrqFm/fv/m+l4G29+ijjwZ97b6jHuooj8HeQ9/jSpfzXVbfD48nn3xSpk2b5ncdeqGBHt+e5wTaXrDPkOfvvvvSX+nn3+l0en8OFO9Q9P3Qm36n9LRdGS8jmcIe+YmizWovxNs+yE/slZ9om6VrGybYtshP+m9+4psveHIQf21W8pPEyE+sylHITxAvOUq4bQ+rcnNEru0R6js43LZHuLGm7REfbY+GhoaA6wmn7aHxfvzxx70/h9oebY/+y9P28MX5h8TG+Sb7iIdYk6PYT6z7UeLhuEf0EG97Id72Qrztw46xbtOZY6obZW1Zg5SU1cu68gZZW1Yv68sbpLHVZWlxzNiiDBlbmGnuxxXpfaYMzkn1c06xSaqrd58vSuR458dBjkLRTB/oKDo5OTlm9KHy8vKgy+qJT8+J0HATlf7A90RrJOmHM1rbQuwRb3vxF286d+OTji742muvyfbt2+XFF1+U73znO93+111//fUBnx+NuOood3PmzJF58+bJ/Pnz5aGHHpKrr77a77J1dXWmgzsvL8/8nJaWJt/73vfkT3/6k+lEve++++Tmm2/u9hp+8pOfeP/vX3bZZRIvXn/9ddNhfdppp3WLy4033uhtAF900UV+Y6sdwzpK5GeffdatQ33Hjh3y85//PGTDVttGOirhunXrAsZ7zJgxJgHQv//rX/8y+9s1IXjjjTc6XZTmz6BBg7yP169fL701Y8YMmT59unz11VemY/ikk06Sww47rNMyu3btkptuusn7Hl5yySVid13j29fPtz6f//2wQjSPI9qs9kK87YP8JLHzE6vbMKGQn8QuPykoKOiUnwSKN/lJ4rDy801+Aiv15lgK9/iN9v81u+vrudG+CDfWtD3io+0RrC0QTttDX8vf/va3oPGm7ZG4OP9gL8TbPog14gnXeSESiLe9EG97Id72kUixbtXimKrG9qKY8gZzX1LWIOsrGqS5zbpzqNlpThlbqMUxGTKmUItj2u8HZvsrjuk8mEisuRIo3j1B0Uwf6VTfevJYT5J3Ha3S19atWzs9BwCA/ubMM8+Uu+++2xSLagewXnh05JFHmkaejrCoUz5v27bNjEa3dOnSmO2n7qN2cOr/5ttvv13eeecdOffcc2XChAlmXzdu3Cgffvih6UTVEfsOPvhg73O18087lbWjUdezfPlyOe+880wnpD5PL5T66KOPzLIzZ86UCy+8UOKFdm5eeeWV8vHHH8spp5xiCnu1s/fBBx+UNWvWmGUuvfRSmTp1arfn6uvQ90JH99POce1IPvDAA00n7+eff25iq38bO3aslJSU+N2+jm64zz77mI7lp59+2oxOqTfPqIdaVKM37UA+5phjzOiMGpuzzjpLLr74YhkxYoSUlpbKq6++ajqMR40aZTpky8rK/G5P21NDhw41bSwdOVMfjx8/3jsC5sCBAyU7Ozus9+4Pf/iDnHDCCeb1ary///3vy3HHHSdZWVnmWH7ggQe8nc8/+tGPZPLkyWFGBQAAAJFCfkJ+Eio/0X3Q5TU/2WuvvWTKlCnkJwCAXqPtQdsj3LaHznqjx0Ffzo2OHj3ajPhJ2wMAAAAAAMC/1jaXbK5qkhItium4aYHMBouLY3LSfGaO8SmQKcpK8Vscg/hF0Uwf6dTjWjSjs8joiVI96eyPnlj2fU6iCFQk1Fddp3z3NwU8Egfxtpdw4k1jIj4VFRXJH//4R7niiiuksbFR7rrrLnPzyMjIMCMRvvnmm347hj0j6EWadgj+97//NZ2d+j/6gw8+MLdwaEfiCy+8YDqSV69ebTop9dbV/vvvL0899VTE/g/2xt///nczwqV28OqtKx0l8De/+Y3f5+6xxx5y2223yS9/+Uupqqoy9760Q/ef//yn/P73vw/YMazxveGGG0zHakVFhTlOfOnIlLfccot5fM8995j92bx5s7z33nvm1rXT94knnjDrCkYvUNB1btiwQS644IJOf9PO3FDP99BObI2njo6pFz5oR7PeutKO9VtvvTWsdSa6rt/Tff186/Pj6fOE/iuSxxFtVnsh3vZBfmKv/MRfGybSyE9ik5948oXzzz/f5CeXX355p7+RnyQeK3MU8hNYqTfHUrj/n6zOzRHZc6N90ZNY0/aIXdvjuuuuM0U3Vpwb1ff37LPPDvqdQNsjMXH+IbFxvsk+iDXiGdd5wQrE216It70Qb/voT7FuaXPJxspGKSmrby+O0fuOmWN0Vhmr5KYny9iiTFMgM07vdRaZosyEKI7pT/GOJIpm+khPDOtoTGrhwoV+i2Z0GiPPCU8dlcffKEb9lZ4ojobc3NyobAfxgXjbi7946+hp2umn/5w9I7EhOkK959rxqKPc3X///fLpp5+akXaLi4vlsMMOk2uuucaMMvfWW2+FdQLO37Z8l9HHvY2/jqqnncHPP/+8+T/99ddfS3l5uVnfsGHDZL/99pOTTz5ZDjnkkG77pSMG6miL2hE6d+5c07msnYX6P087EHX0P70Fajz6/j7Y/nsa03ofzuv09375bmvcuHHy7rvvmtETdUTITZs2meV1RMOLLrrI28kayNVXX23ipyMn6miUDQ0NMnjwYDn22GPl2muvNaMdei4ECLTPxx9/vHnP/vznP8vixYvNZ7mlpaXb/usozdo20uPotddeM/ualpYmI0eOlBNPPNGMCpmXlxf0tSu98E338R//+Ie5GKGystKM+tj1+PGNsf7O37r0dS5atMi8fh3pUUdP1NEV9fg+6KCD5JJLLjH3ff0MhXt82OUEu+f9SElJiVq7EoktmscRbVZ7Id72QX6S2PlJ1zaL78/kJ4mXn8yePZv8xKb5SW9zFPITREJvjqXetj3iqYChv7K67RHqO7i3bY9QsabtEZu2x5w5cyLS9gi0Pdoe/Z+/zxHnH+yFeNsHsUY84TovRALxthfibS/E2z7iIdbNrS5ZX14nq3bUyOodtbJ6Z/v9urI6S4tjCrJSZcLAbJkwKFsmDsqR8fp4YI4UZaf2++KY/hTvWEhyM+xUJzt37jQnRtXhhx9uppkORUcf0pPGetJRpzqfOHFip7+/8sorZoQez/TtoU7MAoDd6Sh22iGjHQZDhgyJ9e4AcUtHN/R01mqnKNDfbNu2zRSYp6amBpyxEQCAWCM/AcJDfoL+jvwE8YK2BxAe2h7o72h7AAAAAADsqKm1zRTCrNpRK2u0QGZnrSmUWV9eL20WFsdoEYwWw2hxTHuRTI65L8xOs2wb6F9sP4TLihUrZPv27d6fdVQoD/29jkrk64gjjui2josvvthM1a2dGHfccYecfvrpZjYZ/fnjjz/2jiqlnRs6chMAAAAAAAAAAAAAAAAAAAAAAImmsaVNSkrrvDPGmPudtbLB4uKY4pw0UwzjmTXGc68zygC+bF808/bbb5spsP1ZuXKluYUqmhkzZoxcf/31Zspvna772Wef7baMFsz87Gc/k4yMDEkkkRq5SUdQ853+qbq62oy0g8REvO0lnHi3tLR4f9fa2hr1fYQ1dLpCnYXNo62tTZjgzlq+n51Yf1aIt71YFW89hvWm3/s9bVdGa/p49C+RHFmWNqu9EG/7ID+xF9qs9slPFPG2FyviTX6CeMlRwm178D1nH8S6f7Q9rEK87cPT9vDF+YfExvkm+4iHWJOjIBCu84IViLe9EG97Id72YWWstThmfUWDlJQ1yNqyeikp18f1srmqUSysjZHi7FQZW5gh44oyZWxRhozV+8IMyc1I6b5wc51UNtdZt/F+Lh4+2/lxkKPYvmjGKvvtt5/ce++9Mn/+fFm0aJFUVFRIcnKyDB48WA488EA54YQTJC0t8aZ00hO10aAfzmhtC7FHvO3FX7zpAEoMXeNIXBMb8bYXq+Otz+d/P6wQzeOINqu9EG/7ID9JbLRZ7YV424uV8SY/gZV6cyyFe/zyPWcfxNpeiLe9cf7BXoi3fRBrxBOu80IkEG97Id72QrztI5xYa3HMuvJGKSmvl3XlDbK2vMHcb6lqEivPXgzKSZUxhRnmNq7jXm8D0v2XPHCM9pzLpp9t2xfN/OhHPzI3KxQXF8tFF11kbgAAAAAAAAAAAAAAAAAAAAAA9Af1zbtnjjGzxnQUx2yttr44xlMUY2aO6XicnWb70gZECEcWAAAAAAAAAAAAAAAAAAAAAAA2UNvUKmt21srqHTWydGOZrC2tN7PIbNvVbOl2hgxonzlmXGGmt0BmdEE6xTGIOo44AACAfuqWW24xNwAAAACINfITAAAQTbQ9AAAAAAAAwiuO0ZlizKwxZe2zxpRUNMh2i4tjhuWmtRfFdNzGdNwyU52WbgfoLYpm0CdOZ2S+zBwOR9CfkViIt72EE++kpKQo7hEipWsc9We328pJGhFPiLe9WB1vfX6k2pWwl0geR7RZ7YV42wf5ib3QZrUX4m0vVsab/ARW6s2xFG7bg+85+yDW9kK87Y3zD4mN8032QawRz7jOC1Yg3vZCvO2FePdvNY2tsrasvqM4pt4UyOjMMTtqrCuO0bMWw/PSZUyRFsZkyji9L8qUMQUZkkFxTNzis90uyc1ZNgBAnFm9erU0Nzebf85DhgyJ9e4AACJk27Zt4nK5JDU1VSZMmBDr3QEAwC/yEwCwB/ITxAvaHgBgD7Q9AAAAAAC9UV3fIqt31siqHbXmfnXH/Y5dTZZtw5EkMrIgUyYMypEJA7Nl4qAcGT8wW8YVZ1Mcg36LmWYAAAAAAAAAAAAAAAAAAAAAAIgDlXXNsnpnrazaUSNrdtZ6C2VKa6wtjhldmCUTBmXLhIE53vuxxVmSnkJxDBILRTMAAAAAAAAAAAAAAAAAAAAAAERReW2TKY4xtx27Z44pq222bBtOR5KMLsw0BTETB2XL+I4ZZLQ4Ji2Z4hjYA0Uz6JPKysqIrNfhcEhubq735+rqajM9NRIT8baXcOLd0tLi/V1ra2vU9xHWSEpKEqdzd6O6ra1N3G53TPcJkUO87cWqeOt3vd70e7+n7cr8/Pwebw+JL1L5iaLNai/E2z7IT+yFNqu9EG97sSLe5CeIlxwl3LYH33P2QazthXjbh6ft4YvzD4mN8032EQ+xJkdBIFznBSsQb3sh3vZCvCNHc/uK+hYpKWuQkvJ6WVtW731cWW9d/2OyI0lG5qfL2KJMGVeUIWMLM2VsUYaMKsiQFKejS6wHeH8m1oktHj7b+XGQo1A0gz7RE7XRoB/OaG0LsUe87cVfvOkASgxd40hcExvxther463P538/rBDN44g2q70Qb/sgP0lstFnthXjbi5XxJj+BlXpzLIV7/PI9Zx/E2l6It71x/sFeiLd9EGvEE67zQiQQb3sh3vZCvHtO8/hyb3FMg6wrb7/XW3WDtcUxowrSZWxhhowp1OKY9tuI/PROxTE+exY0lsTaXlw2jTdFMwAAAAAAAAAAAAAAAAAAAAAAhFEcU1bX0l4Q06lApl52NVpXjJDiTJJRHTPHeApkxhVmyPC8NEn2WxwDIBCKZgAAAAAAAAAAAAAAAAAAAAAA8CmO2VnbbApi1pbtnjlG72uarCuOSXUmyeiCDBlb1HnmmGF56WZWGQB9R9EMAAAAAAAAAAAAAAAAAAAAAMCWxTE7aprbZ47pmD3GUyBT12xdcUxackdxTKFvgUymDMtNEyfFMUBEUTSDPnE6nRFZr8PhCPozEgvxtpdw4p2URAMwEXSNo/6sCQYSE/G2F6vjrc+PVLsS9hLJ44g2q70Qb/sgP7EX2qz2Qrztxcp4k5/ASr05lsJte/A9Zx/E2l6It71x/iGxcb7JPog14hnXecEKxNteiLe92CHeLrdbtu9qap81pqxe1pbVdxTK1Et9s8uy7aSnOLwFMVocM64o0zweGifFMXaINXYj3u2S3JxlAwDEmdWrV0tzc7P55zxkyJBY7w4AIEK2bdsmLpdLUlNTZcKECbHeHQAA/CI/AQB7ID9BvKDtAQD2QNsDAAAAACLH5XLLlqoGWb2zRlbtqJXVettZI2t21kq9hTPHZKY6ZfzAbJkwMEcmDMqWiYPaHw/LyxBHHBTHANiNmWYAAAAAAAAAAAAAAAAAAAAAAP1Gm8stmyvrTVHMKi2KMcUxtaY4pqHFuuKYLC2OGZQjE7VApqMwRu+H5lIcA/QXFM0AAAAAAAAAAAAAAAAAAAAAAOKyOGZjhRbH1JiiGM/92tJaaWxxWbadnLRkGW+KYnTWmBwzi4zeD8lNl6QkimOA/oyiGfRJZWVlRNbrcDgkNzfX+3N1dbWZnhqJiXjbSzjxbmlp8f6utbU16vuI8MyYMUM2bdok55xzjjz00EOd/rZx40bZd999zeM//elP8t3vflfa2trE7Xb3aBvPPvusXHvttebxl19+KSNHjuz091NPPVU+/vhjmTVrlsydO7fPrwm9p4mh0+n0/tybeCM8V199tTz33HMyYsQIWbRoUb+Ot37X602/93varszPz+/x9pD4IpWfKNqs9kK87YP8JLGQo8AXOUr0JEqOQn6CeMlRwm178D3XP9odDzzwgJx33nm92oZvu2PJkiXedocn1rQ7EhOf7fhvd1jF0/bwxfmHxMb5JvuIh1iToyAQrvOCFYi3vRBve4mHeLeamWMapaS8XkrKGmRtWb15vL68QZrbrMuPs9OcMq4oU8YWZrTfdzwemJPavTjG3ShVVY2SSOIh1rBXvPPjIEehaAZ9oidqo0E/nNHaFmKPeNuLv3jTAZSYiKu94ku8E5vV8dbn878fVojmcUSb1V6It32Qn9gLsU1s5Cj2YmW8yU9gpd4cS+Eev3zP2RexTmx8tu2N8w/2Qrztg1gjnnCdFyKBeNsL8baXSMa7tc0lm6uaZG15g6wrb5ASvZXVy4bKRmmxsDhmQLpTxhZmypjCDFMUM7ao/b4oK8XvzDF2LRzhs20vLpvGm6IZAAAAoIcjiFvt7rvvlnvuucc8Li0tjei2AAAAAPQ/5CgAACBaaHcAAAAAAKzS0uaSTWbmmPbCGC2QWVvWIBsrG82sMlbJTU/2FsT4FsgUZvovjgFgPxTNAAAAy2knmnZuJSdHtqkxd+7ciK4fiEcPPfSQuQEAACB85ChA5JCjAID/dkek0e6AHdHuAAAAAID4LY7ZUNG4e9aYjgIZnTmmzcLimPyM5G6zxuhMMvmZyRTHAAiKohkAAAAAAAAAAAAAAAAAAAAAQEDNrS5TCGOKYsoaZG15vSmO0dlk2qyrjZGCzGRTDKMFMuOKds8ek5+ZYt1GANgKRTMAAAAAAAAAAAAAAAAAAAAAAGlsaZOVO+tkzc7a9pljytpnj9lc1SgWThwjhVkpMq6wvSjGWyBTkCF5FMcAsJjD6hUCAID+Z/v27fLrX/9ajjrqKBk7dqwMGTJEpkyZIocddpj84Ac/kGeffVZqamrCXt/GjRuluLhY8vPz5Zlnngm4XFVVldnuQQcdJCNGjJDJkyfLd77zHZk7d25Y2zn11FPNdvQ+0D7oTfdfvfvuu3L++eeb1zZs2DDZd9995eabb5atW7eG3FZFRYXcfvvtcuCBB5p91XWceeaZMm/ePPN33YZne7ptq9XW1srDDz8sp59+utn20KFDZcyYMXLkkUfKT3/6U/nss88CPresrEzuvPNOs+y4ceNk+PDhMmPGDLnqqqvk008/DbpdXU5f09VXX21+XrJkiVx55ZWy9957m/dh5syZ8stf/lLKy8s7Pe/zzz+XSy+9VKZPn262p8tprPV1hBvPNWvWyI9//GMTJ13H1KlT5bLLLpP//e9/Adfx0UcfeeOgj4PxLHf33Xd3e/61117r/Z1u37NsoHXrPul7rPvuG5+DDz7YHGMrV670uw+e4+aee+7ptl++N99jSmOhv9PYBLN8+XLz/u2///4ycuRIGT16tBxyyCFy6623Bj1Gw/3s6Lq3bNkSdB8AAAB6ixyFHCUQchRyFEWOAqA/tDt8v7f8od0RPju2O1avXi3XX3897Y44bXeE+9kBAAAAgP5QHLNiR53MX14mD763QS5/4n9yxD0LZcqvXpdzH18it85bK499ulXeXVMpGyt7XzBTnJ0i+48aIOfNGCw/P3aM/P28KfL2j/aVN344Qx4+e7LcfPRoOXP6INln+AAKZgBEBDPNoE+cTmdE1utwOIL+jMRCvO0lnHgnJSVFcY/wySefmA6frh2/paWl5vbtt9/KSy+9JIWFhXLcccf1ejsaV7d7d+a0atUq0wmsndIejY2N8v7775vb22+/bTqMrfKb3/xGHnjggW4dYP/4xz/k1VdfNZ3REydODNjBpp3A+n747ut7771nbhdeeKHst99+Eim6jSuuuKJb52tLS4t888035vboo4922j+PhQsXms7UrvHdtGmTuf373/82Hbi/+93vQn7/Pv/883LDDTdIc3Oz93fr16+XP//5z7JgwQLTST5o0CB58MEH5bbbbusUb11Of6+vRd/r7OzsoNt66623zH7X19d7f7dz50555ZVXTLy0k147qOOBdp76diT7xkePc709+eSTpuNY3+touP/++01MXS5Xp99rB7Xe9Li/77775Jxzzun1Z+fxxx+X//73vyYe48eP7xTv3nw/RKpdCXuJ5HFEm9VeiLd9kJ/EJ3IUchRylL4hR+lbjkJ+Aiv15lgKt+3Rdbmu/9cQX+2OrvrS7uhNrGl3RL7doe+htjv+9Kc/mXZBX9odur5LLrlE6urqvL+j3RFf7Y5wPju9wfmHxMb5Jvsg1ohnXOcFKxBveyHeiaOhuU3WVeiMMfWy1swaUy/rytpnjrHyjNKgnFQZW5gpY4syZGxRpow1s8dkSk46l6vHEz7b9kK82/EthD7R0TmjITc3NyrbQXwg3vbiL9468pt2KOk/5+Rk/lVFUlNTk+lw1E7DnJwc0xF36KGHmlHUtPNvw4YNZlQ8vdAoUDz8/d7fcr4n4Hbt2iVnn322t1NYRwg877zzzHZ15F4dNVA723xHoNN1dl2v5+IAvQ+2D0899ZR5HTqy3cUXX2wunqmurpZ//etf5qbHnI7a9+abb3bbb13u3HPP9Xa6akeadhIXFRVJSUmJ6RR94oknTOdxsH3trQ8++MBsv7W11byHuv05c+aY0QW1c1rfI7146/XXX++2zaVLl8r3vvc9E8uUlBS5/PLLZfbs2ZKZmSlff/216TzUGD/22GOmo1Y7WwPR16cXCOhomzqan46qpyMj6nurHcZr1641oyqefPLJ8qtf/cqMnqjbmzBhgunQ/stf/mI6ez3b/b//+79u2/DEc8eOHabTV1+PrlNHAPS8F//v//0/c7zq73W0whNPPDHgcaaPw4mD7zGsHfw6UuL8+fPlt7/9rfndCy+8IIMHD+70nFGjRnmfo99XeXl5Ji6zZs0y71FWVpZs27bNvF597foe6KiXe+yxhxml1OOUU04xIxNqx77GQfkbBVJHrvRszzdx8ff6/v73v3v3XY/T6667Tg444ABpa2szHfPaQa8d7tdcc435zHW94KOnnx1dj7/PTjg8r0WPz2i1K5HYonkc0Wa1F+JtH+QnsUeOQo5CjkKOEqschfwEkdCbY6m3bQ+KveKz3eHvu7837Q5/sabdEV/tDn2+tju0TdHXdoc+V18v7Y74b3cE+uyEw98FKpx/sBfibR/EGvGE67wQCcTbXoh3/KtrapU1O2tltd521LTf76yRzZUNYuV4K8PyMmT8wGyZMDBbJg7KkfGDss3PA9KZJaY/4rNtL7k2jTc9/QCA/sntkqSGSrELd0a+SJL1Fb6fffaZ6bxSf/3rX+WEE07o9Hft3NNOUB0Fznc03b665557ZMuWLeaxdvD9+Mc/9v5t+vTpcuqpp5rO0HfeeceS7WnH1kUXXSR//OMfO43Cefjhh0tqaqrp2P3iiy9MJ95ee+3V6bl33XWX9z3S0el8R/Dz7KuOpqgdiVbTjl/tuNdOYe3Mfe6557ydpB7a4afb37x5c7fna4eddgprB6l24h111FHev82YMUNOO+0001G8YsUKeeihh8x7PnnyZL/7op3M+++/v+kc1n3x0AsJ9AIDHVHvxRdfNJ3U2tmpnZy+nbRHHHGE2Za+zzqy4K233hqw01Y7mQcMGGA6GydNmuT9vW5fO1+PP/540zl8yy23mE5N7fS2inboaqf3V1995f2ddoaOHDky4HOOOeYY8znxfV+UHku6rz/4wQ9MB/ayZcvMMeTbMaxJiN60g9ZDt99b2lGrI2irIUOGmPdQLyLwOPDAA00c9H3UzmEdHVNfa6D3sC+fHQAAbIccxRLkKOQo5CidkaN0Ro4C2LPdEam2B+0O2h20Ozqj3dEZ7Q4AAAAA8ay2qdVbFKNFMqv08Y5a2VLVYOl2tDhm4qBsmTAoxxTI6L0Wx2Sncfk5gP6Fby0AQL+kncK5f50hdlH9g0Xiziy0fL06ap2HjgIXiHbgaUedFbSjUkdoU1OnTjUdU11pJ9UDDzwg++yzj7S0tPR5mzoSnnbw+nZseejIgNq5pT755JNOnVva4fnMM894O1J9O4U9tPNTO820E1s7cq2knbmeTmnfUQX98e38U19++aUsWrTIPNaOY99OYQ8dAVD3XTsKXS6XGdHv3nvv9bt+fe80Jl07P9Vll11mOoZ1tD59z3S0xK6jm+rP2sGonYgVFRWmM3rPPfcM+HpuvvnmTp3CHtpxfeONN5rRGLdu3Wo65LVzPpaGDh0a9O/a8fvzn/9czj//fPn000/N6y8oKIjIvjz99NPeizjuuOOObseF0mNcLxrQERf1PdTRUvUiASs/OwAA2BE5ijXIUchRyFH6jhyFHAWJz27tjki1PWh30O6g3dF3tDtodwAAAACIrF2NLe0zx3QUxXhmkNlabW0ePqIgQyYObJ8xZsLAHFMoM644W7IojgGQIPg2Q59UVkZmJDOdjtp3+ied6lpPWCMxEW97CSfe2hHo+Z2OIudPUpv/3yeq1rZWcQd4L/rCdwQ3HeFOR+7rKY1V1zj5i5t2GrrdbtNhWVVVZX53zjnnmN/7M2jQIDMC34IFC7zr7LpeXZ/nPtg+nHTSSaZj0t9+jRkzxoygpyPLlZSUdFrmf//7nzlG1Xe+852Ax6N28h155JHy2muvBdzX3nj99dfNvXbGfve73+3ROn1Hogz23P32208mTpwoq1atknfffTfgcjrC37hx4/z+fY899vA+1pjptN6eeAdaTt9r35+VZ3nthDzrrLMC7oseN7fffrtZfuHChWakQg/f40kfh/Oe+TuGfdfT03jqsVReXm46aH1fk8eSJUvMKJRd98F3e6H2N9CyGkOl37Pa4R9oXXpMaMew0vdQPyM9+ezo65kwYYJkZ2dLbW2trFu3rlfHvL4Wven3fk/bldGaPh79S6TyE0Wb1V6It31YlZ8ochRrkKOQo5CjkKPEKkchP0G85CicG41e2yMa7Y6u3/29bXf48vxPo90Rf+0OnYEkJycn5HKh2h3nnXee9/dd2zC0O2Lf7gj12elp28MX5x8SG+eb7CMeYk2OgkC4zgtWIN72Qryjp6axVdaW1UtJeYOU6H1Zg/l5Z22zZdvQ7Gx4XrqMKcqQcUWZMrYwQ8YWZcqYggzJSHX6jXdlPfFORHy27SUe4p0fBzkKRTPok0An862mH85obQuxR7ztxV+8u17Egsg54IADZPTo0bJ+/Xq59dZb5YUXXpA5c+bIQQcdZEYyTE1NtWxbnrh+++233t9Nnz496HN0BEN/HcM9pRfOBKOjCmrnll5Y40tH/PPYe++9g65D/+7pGLbK0qVLvev2N4phMJ591xgGG7XQ8z5rx7B27ulol/7irp3Cgfg2qj3L+fsc+y7X9b32NWrUKCksDDxyaFFRkYwcOVI2bNggy5cvl3igHcGPPPKIvPrqq+Z9DPY9pstGiufzpSMb6qikgQwcONC8hxs3buz0mQz3s+N5fRpTjWVNTU2f9lvXx/9+WCGaxxFtVnsh3vZBfhJ75CjtyFHIUfqKHKX3OQr5CazUm2OJtkditjs8rGh39PQYod0R/XZHqOV60u7oGm/aHbFvd4T67PQF5x/shXjbB7FGPOE6L0QC8bYX4t131Q2tsk4LY8ytvUhGfy6t7ftssx6OpI7iGC2K6bjp49EFGZKe4vD7HH9xJd72QaztxWXTeFM0AwCAjWnH0VNPPSWXXnqp6RhcvHixuamMjAw58MADzch1p512mhlRzerRa3xHc/Qn1N/Dpa8lVDW16toY9Iz66OmMDCbU33ujoqLCO7Jkb99n7bhLTg7e5NNOQqWdmfqaPT+H+x563j8VrAPbd7lgDe9w3ks9NrRj2DdGsaKjI5599tneeIXS2GjtFLm+PO9HOO+hxlk7hoO9h7397AAAAPQWOUo7chRylL4gRyFHARAe2h3taHdY1+4IdznaHZFBuwNAPGlzuWVLZYOsKa2RcbkOyUrZPesWAACwh6qGFjNbjKcopr1IpkHK66wrjnFqcUx+urcoxlMgMzI/cHEMANgVRTMAgH7JnZ4v5Zd9LnZ6vZEyadIkef/99+WNN94wt08++UTWrVsnDQ0NsnDhQnPTUeKeffZZyzpqPZKSOEEcaf3xPe5P+6yjT37/+983ncJ6oYU+PuGEE8yoktopn5aWZpbTEUtnzpwZtRFj+9N7CABAoiBHsQ45SmLrj+9xf9pnchTAXu2OZOfubr7WtlZJZJFqe9DuSGz98T3uT/tMuwMARJpbXbKxslHWV7RfDLuuov3xhopGaWp1mWX+dNZkOWDUgFjvKgAAiJDK+pb2gphOBTL1UlHfamlxzIiO4pixhZkypihDxpnimHRJTaY4BgDCQdEMAKB/SnKIO6Mw1nuRMHSkxDlz5pib2r59u7zzzjvy2GOPmZHi9HbTTTfJP//5zz5vSzvLPHbu3Gk60AIpLS2VWPLd17KysqD7qn+3WkFBgWzdulV27NjR4+fm5+d7R1VsbW0NOqKixsHTmej7mmMlnLh7lum6v74dojqVZCB1dXVihQ8++MB0+qq77rpLLrjgAr/LRWvUR30/9HgJ5z30xD0eYg4AQEIgR7EUOYp/5CixQY7Se+QoQGTbHW6f71J3a2IXzUQS7Q7/aHfEBu2O3qPdASCSaptaZX1FY3thjCmOaZD15Q2ypbpJXCHqAXV5imYAAOjfdAAALYJZV14va8s6zxxT1WBhcYwjSUblp3eaNWZsUXtxTIqT4hgA6AuKZgAAQDeDBw+W7373u3LWWWeZkeG+/vprefPNN80IixkZGX1a9+TJk72Pv/rqKznooIMCLrt48WKJJR1p0kM7xw844ICAy+rfrbbXXnuZjmFdd319vWRmZob93D322MM72t8333wj06dPD/k+jx07VlJTUyXWNmzYYEYn1I7xQJ3wGzdu7HY8qezs7LA6Y9euXWvJaIQrV670Pj799NMDLqfHuhXbC0XfD+0Y1s9ssAsCtON406ZN3ucAAADEO3KUduQosUGO0nvkKAD6I9od7Wh3xAbtjt6j3QHAiothy+tbTDHMuvJGb2GM3pfWtvR6vXpRLQAA6F82VzXKRyVVstY7c0yDVFtYHJOsxTEFnpljMrxFMlock0xxDABEBN+uAAAgoJSUFJk1a5Z5rJ1M1dXVfV7n3nvv7R297fnnnzcnoP3Ztm2bvPvuuxJL2pk6YED7yE//+c9/go5Kt3DhQsu3f9xxx5l77RR+4oknevTcww8/3Pv4mWeeCbjcF1984e3cPOywwyQe6DGhx0Yg//rXv7zHTdd9HjlyZFidsS+99FLQfUhLS/M+1s71QPRzEWqERh3V8cknnwx7e01NTdJbnvdDP6uvvvpqwOWefvrpgO8hAABAPCNHIUeJBXIUchQA9kS7g3ZHLOgxoW2LQGh3BEa7A0C42lxucyHsB2sr5YnPt8rtr5fIJU8vk6Me+lJOeGSxXPn8Crnr7fXy/OId8vnGXX0qmBmQniwOrswCAKBf2NXYKi8u2SmXPbtMTvv7ErnnnQ3m58Wba3pdMJPiTJIJxZly3B6FcuXBw+XuUybIfy7ZSz68bj957uK95HcnT5DLZw2XYyYVytiiTApmACCC+IYFAMDGPvnkEykpKQn4d+0Q+/jjj83jrKwsKSoq6vM2tQPsvPPOM491lL+HHnrIb2fbDTfcELRDLhrS09Pl7LPP9o44+Je//MVvp99NN90kjY2Nlm9fR7McMmSIefy73/1OPvroo4DL6qiLvmbMmOEdQVE7Jd9///1uz9m1a5fZd+VwOOSSSy6ReHHffffJmjVruv1+1apV8sc//tE8HjRokMyePbvT3/Wig6lTp5rHzz77rFRWVnZbx6effip//etfg25f1+2xbt26gMvpCJQegTqz77jjDjO6YbjbW79+vfSWfrY8o27edttt5gKLrvRzd//995vHenzNmTOn19sDAACwGjlKcOQosUOO0jvkKADiGe2O4Gh3xM4999wjq1ev7vZ72h3B0e4A0FVTq0vWlNbLghXl8tePN8vP/rtazvvnUjnsgS/MhbA3vLRKHnh/k/z3m1JZuq1Wapraer2tgdkpsv+oAXLOPoPkZ8eOkWcuP0A+/8XRsuS24+Tnx42z9HUBAADrtLa55P21lfKTV1bL8Y8skjsXrJMlW2p7vJ5UZ5JMLM6UEyYXyg8PGS73nDpBXrh0L/ngupny7EXT5M6Txsv3DxomR00skNGFGRTHAEAM+J+TGAAA2MIHH3xgLvw58MAD5dhjj5UpU6ZIYWGh6eRcu3at/POf//R2aJ1//vmSnGxN00E7I+fOnWs6M3/961+bjirtgNWOZ+2ofuSRR0xHrHZsBhsRLxpuueUWeeWVV8yIibfeeqt5P77zne+Y90k7DLWDUUck1I7YRYsWmeckJSVZ1jH98MMPmw5iHVHxzDPPNI+1I0879LTjXDtP33rrLXnjjTdky5YtnZ7/hz/8QU444QSznHYYfv/73zcjNGon/9KlS+WBBx7wdkL+6Ec/ksmTJ0s8GDNmjJSXl5t9v+aaa+Tggw82v9eOcd1n7dD2dJanpqZ2e/6ll14qN954o5SWlsrJJ59sHo8bN06qqqpkwYIF8vjjj5tRPTVugey1117m/dfPwu9//3szsuiIESO8sdX3PyMjQ4488kgpLi4229L92bRpk4mPHh96LD/11FOmU37//feXzz//POD2Zs6c6X2sx5leGKGdxZ7t6SiR4Xz+9DOkHcI/+clPzOfr6KOPlmuvvdZsXy+40H3RizF05Eddt37+9bUBAADEC3KU0MhRoo8chRwFQGKi3REa7Y7YtTv0mLzuuuvkoIMOMr+n3UG7A0BgtU2tsq68QdaVN8q6igZZr48rGmRrdZO4/E/q1iuOJJHheekyuiBdxhRmyJiCDHPRq/6cnbb7e8rpdEp+fr51GwYAAJbSmSe/3VEn85aVyRsryqWqB7PIpCUnyeiCDBlbmCFjizJMm2BcYaYMzU0TpzYWAABxi6IZ9Ikm+5GgIzoF+xmJhXjbSzjxtqpTDeHR0QB1xETPqIn+6Ih12lnVFxpXTTzVgAED5LnnnjMdrNrh+uKLL5qbr3PPPVdmzZplOrViSU9q675qh2xZWZk8//zz5tZ1X7Vz3dMxrCNGWuWQQw6Rp59+Wq644grTsakjBOotHNOmTTMdk5dddpnU1NSYTma9+etI7Wt8g8W7p7TTVUcgvPzyy819V/q9oZ2f2unrz/e+9z15++23Zf78+bJy5Ur5wQ9+0OnvegGEdg7vueeeAfchOzvbbP/BBx80FwNo/H29/PLL5kI57WTXjtaLLrrIdCLrxRR686XLaefyoYceGnRUxlNPPdVcMPHuu++am68vv/zSdA6HQ+NZXV1ttqkd1r/85S+7LaPHqHYKa+d7b3T9nu7r97Y+P1LtSthLJI8j2qz2Qrztg/wkPpGjBEeO0jvkKLuRo4ReF/kJrNKbYync49ffcd/b7zk7i1a7w1df2x3RjDXtjujTdocWoOh+aVFVV7Q7Yt/uiCTOPyQ2zjf1jf7vK6tr6SiOqe+4b5CS8nopq22xdFtpyQ5zMaxeBKtFMXpRrD4emZ8hqcmh40asEc+4zgtWIN72kkjx3r6rSeYtKzU3bUeEkpeRLAePzZdxRVogkyljbVAck0jxRnDE2l6IdzuKZtAn0RodIzc3NyrbQXwg3vbiL97a+aYnPvWfs1Wj98E/7XTVzkPthNLR9bZt22befzVw4EDZd9995ZxzzpHjjz8+4Dr8xclf3LqegNNOuU8//VTuv/9+mTdvnmzevNl0xmmn3YUXXmhGDnzmmWc6rbPrej0XB+h9sH3QbYdzLAU65nRUR8++vvbaa373VUeA9CgoKLD02NUREHVUyUcffdSMmrhmzRrT8ZeZmWk6FLUDXffB3za14087rHX/dCRBHT1RR1fUEQB1lMJLLrnEO1phMD39PPo74RoqJr7x1BEJ33nnHdMxqyMA7tixw3xf6L7qyI86OmAwTzzxhOn81U507RxWo0ePltNPP12uuuoqMxJiqNd2++23y/jx4+Vf//qXrFixwozi2NbW1m3/NT66r3p86Ail+hnSfZ00aZLpUL7gggvMMRPstau//e1vZlROHb1TR8msra01F2543jvPc3wTl0Axufnmm80FHX//+9/N+7d9+3bzvOHDh5sRIH/4wx8G7GjuzWfH32cwHJ7XoiM6MuoarBDN44g2q70Qb/sgP4k9cpTQr0WRo5CjkKNYn6OQnyASenMs9bbtQbFXfLY7An1v9bTd4S/WtDvir90RbLmetDv0mKPd0X/aHb3NFf1doML5B3sh3v61udyyqaJe1uyslTWlte33O2tlbWmt1DSGPwp8OHIzUmT8wGwZX5zdft9xG5aXIQ4LL4Yl1ognXOeFSCDe9tLf4q0z0r3+zXZ5cdFm+aSkXEKNQZHqdMjRkwfK6fsMkyMmDQyrYDaR9bd4o/eItb3k2jTeSW6GnQIAxBntENGOK+0w0FHVgP7Syf7kk0/K0KFDZdmyZbHenX7ppJNOko8++siMPvjqq6/GencQBXoxinZ+p6amyoQJE2K9OwAA+EV+gv6KHKXvyFHshfwE8YK2B/oj2h19R7vDfmh7wO4aW9pkXVmdtyhGC2TW7qyVkrI6aW5tL5qzyuAB6d6CmHE+RTJF2anMMAwAQIIW4X60pswUyry+bLs0toRuW+w7Kt8Uypy01xDJy0yNyn4CAKKL4TEBAAD6qKGhQebPn28ez5w5M9a7AwAAAMDmyFEAAEC00O4AAART3dDSPlNMl5ljNlXWhxzpvSecjiQZVZDZXhTjUxijP2encWkUAAB2sGL7Lnlx0RZ5efEW2VnTFHL5EQUZcvo+w02xzJiirKjsIwAgdsgM0SeVlZURWa+OoOY7/ZNOs+6ZghuJh3jbSzjxbmlp8f6utdXaabYRPToyk9Pp9P7c1tYm/XWCu3Xr1sno0aP9jjalr+uGG26Q8vJy8/PZZ59ty+PWinh7ltd7O76Hdvx863e93vR7v6ftymhNH4/+JVL5iaLNai/E2z7IT+yFHMVeyFHsxYp4k58gXnKUcNseifR/DcHFOta0O6LDt93hi8924vK0PXxx/iGxJfL5Jv2eKq1tkXXl9bKuvKHj1v64rK7F0m2lJztkVEGGjCncfRtbmCkj8tMlNdnRdc+kpb5GKuvFdrEmR0EgXOcFKxBve4n3eJfVNsvr35bJq9+UysqddSGXz05zynF7FMlJexbL9GE5Hblus1RWNkdlf+NdvMcb1iHW9hIP8c6PgxyFohn0iZ6ojQb9cEZrW4g94m0v/uJNB1Bi6BrH/hzX++67TxYvXiynn366zJgxQ4qKiqSxsVGWL18uTz75pHz99ddmucMPP1yOPfZYsaNEijeiH299Pv/7YYVoHke0We2FeNsH+UliS6Q2KzmKveKN6Mab/ARW6s2xFO7xy/ecfcQ61rQ7YovPtr1w/sFe+mO821xu2VLd5C2M2VDRIOv0Vt4odc3Wvpbc9GQZXZguYwoyZLQWx3QUygwekCoOP4WcWiATr+9nf4w1EhfXeSESiLe9xEO8G1tc8t7aSpm3rFQ+W18tbSHSJmeSyKwxeTJnSpEcOi5f0lPaC20pEOgf8UZ0EGt7cdk03hTNAAAAhGHVqlVy1113Bfz7/vvvL3/96187jbi4bds2qaqq6vG2MjMzZdSoUb3eVwAAAACJjxwFAABEC+0OALAXvRB1Y6UWxDTKes/MMRUNsrGyUVpCXZXaQ4NyUmV0QbopiBntmUGmIEPyM5P9znIGAADsyeV2y+LNNTJvWZm8vapc6ppDF7xMHpRlCmWO36NQCrJSorKfAID4RdEMAABACNdff72MGzdO3n//fdm0aZOUlZVJa2urmTZw+vTpctppp5mRFnUqQ1+//e1v5bnnnuvx9mbNmiVz58618BUAAAAASCTkKAAAIFpodwBA4trV2OotiNHimPUVjebnrdVNYmVpjI7uPjy/fdaY9uKY9iKZUQUZkpXqtHBLAAAg0ayvaJD5y8vkteVlsm1Xc8jlB2anyOwpRaZYZlxRZlT2EQDQP1A0AwAAEML48ePlhhtuMDdEDp3hAAAAQHjIUaKDHAUAANod0UK7A0CkuN1uKa1tMYUxWhCz3lsk0yjl9S2Wbist2eFn1ph0GZGfLinOzsWVAAAAgVQ1tMiCFRUyb3mpfLOtLuTyGSkOOWpCgZw4tUj2HTFAnA5mqwMAdEfRDAAAQIQ89NBD5gYAAAAA8YAcBQAARAvtDgCIrlaXW7ZUNXoLYtZ7imQqGqWuuc3SbeVmJHfMGpPuUxyTIYMGpIojiYtUAQBAzzW3uuTDkiozq4zea9smGG1x7D9qgJlR5sgJBZLJ7HUAgBAomgEAAAAAAAAAAAAAAADiXGOLSzZUemaNaS+S0cebqhqlpS34xaU9NSgn1VsQM7owvaNQJkPyM1Ms3Q4AALDvjHjfbKuVecvK5M2V5bKrMXSh79jCDDOjzOzJRTIwJzUq+wkASAwUzQAAAAAAAAAAAAAAAABxorqhtX3WGDNzjBbGtM8es7W6SawsjXE6kmREXpophvGdNWZUQTojtgMAgIjQ2fFe+7bczCqzsbIx5PIFmcly/OQiOXFKkUwamClJzGwHAOgFimYAAAAAAAAAAAAAAACAKI+uvrO22VsQozPGmBlkKhqkor7V0m2lJzu8s8WM7iiM0QKZ4XlpkuJ0WLotAACArmqbWuWtlRWmUGbR5pqQy6c6k+Tw8fly4tRiOXDUAEmmvQIA6COKZgAAAAAAAAAAAAAAAIAIaHW5ZVNVg3yxtUnWlNbKmp21snJbtawvr5e6Zpel28rLSPaZNSa9/b4gQwYNSBUHo7IDAIAot4E+XV8t85aVyvtrK6WpNfR8eTOG58icKUVy9MQCyUnn8mYAgHX4rwIAAAAgppg+GQAQz/g/BQAAoom2BwAA/VdjS5usr+g6a0yjbKxsNBeNWmlwTmp7cYx31pj2WWTyMlMs3Q4AAEBPZ9JbubNe5i0vkze+LQtr9ryR+emmUGb25EIZlpcelf0EANgPRTMAgLjjcDjE5XKZmyZTdBQDQOLxfM8rvucBAPHM83/K879L8xUAQGLR80+e/ITvecQabQ8AsNe5UafTGevdQS9UNbS0F8d0FMasq2iQ9eWNsm1Xk1hZGuN0JMnIvLT2whjP7DEFGTKqIF0yUzl2AABA/NhZ0yyvfVsm85aVSUl5Q8jlB6Q75bhJhXLi1CLZc0g21wwAACKOohn0SaRO4nXtBKJTKLERb3sJJ95paWnS2to+0kBjY6NkZGREbf9gna4Jrf6sF6EgMRFve7Ei3vX19d7H6enpdA7DEpE8jmiz2gvxto9wYq3/p2pra73/v7Kzs6O2f7AWbVZ7Id720td46/kn3/NS5CewSm+OpXDbHnzP2QexthfibQ+ec6Ma38zMTO/vOf8QX/Szt6OmuWPGmHpz8afncWUYI6b3REaKwxTGjC3MNMUxntvwvHRJcXJc9DecW0Q84zovWIF420uweNc3t8k7q8pl3rJS+Wx9dcji4WRHkhw6Ll9O2rNYDhmbL6nJHDvxhs+3fRBreyHe7ZLcnGUDAMQZ7RTetGmTtLW1mQ6D/Px8UzjDqAIA0L9p6tHS0mI6hfW7Xr/XNREbO3asuTANAIB4pBdSr1u3zjsTpl64qhc1paSkkKMAQD+n3+sNDQ1SWVlpHuvFQyNGjKBAEjFF2wMAEhPnRuNXa5tLNlTUy5qdtea2Vu9L2+/rmtss3VZhVqqMG5gt44qzZfzA3bchA9LF4eD/PAAAiH9tLrd8WlIuLyzaLK9/s90UzoQyfUSenDFjmJy011ApyEqNyn4CANAVM80AAOJOVlaWKZLRixa0cKaiosL8XjsP6BgGgP7bKey5KU+ncG5uLp3CAIC4pqO96/+r6upqc/GqXtzkucDJcwMA9D+am+j3uocWzOj5KD0vBcQSbQ8ASDycG40P9c2tUlJa5y2OMQUypbWyvrxOWtqsHWt2WF5Gp6IYcyvOlnwuEgUAAP3U6h018sKiLfLy4i2yfdfuWZuDtYdO32eYnD5jmCkYBgAg1phpBgAQl7RDeOPGjaZwxrcjAQDQv/le4FNcXCyFhYVc8AMAiHuaj5SXl0tpaan3Z3IUAEisHEULZkaOHGkuYAVijbYHACQmzo1GR2Vds5kpxrc4Rm9bqhos3U6KM0lGF2aZghjfmWPGFmdJZirj1wIAgP6vrLZJXvlqq7y0eIss3VIdcvnstGSZM22wnDFjuOw/uoCZ9AAAcYWiGfRJZWVlRNbrGVnHwzOiGhIT8baXnsRb/0U1NTWZwpnm5maOi35GO3qSk3d3CrS2ttK5n8CIt730Nt76P0BHb9ZRc/Xmu46eys/P7/VzkbgilZ8o2qz2Qrzto6ex1v95jY2N5qazYnJc9C+0We2FeNtLX3KU1NRUUzCjo7z39qJV8hNEKkcJ1vbge84+iLW9EO/E5e/cKOcfek8/F9trmmVdWb2sK28wt5LyBllfUS+V9a2Wbisz1SGjCzJkTGGmjCnMkLGF7Y+H5aVJijP8gmvibR/xEGtyFATCdV6wAvFObE2tLnlvdYXMW1YqH5VUSqgJ+bQu5qAxeXLS1IFy+IR8yUhxRmtXEQF8vu2DWNtLPMQ7Pw5yFIa3QJ9oJ0006IczWttC7BFvewkV75SUFHND/6OdP76NHT0Bx2c7cRFve7Eq3hwjsFo0jynarPZCvO0jVKw9MxHoDf0PbVZ7Id72YkW86RBEJPT1eydY24PvOfsg1vZCvO3DX1w5/9Bda5tLNlc1ybqK9sIYvV9f3ijrKxqkocXa9ltBZrIpjhmtRTGmSCbd/DwoJzVAcbW7T/Ei3vZBrBFPuM4LkUC8E6MgecmWWpm3vFQWrKyQ2qbQ8Zw4MFPmTCmSEyYXSlFWqvf3HAuJhc+3fRBre3HZNN4UzQAAAAAAAAAAAAAAACAmGprbZH1Fo7c4Roti1pc3yMaqJmlzWTvb0tABaTK6ML2jMKa9SGZ0QbrkZTCIHwAAsJdNlY0yf3mZuW2pbgq5/MCcNFMkM3tyoUwozozKPgIAYBWKZgAAAAAAAAAAAAAAABBRVfUtHYUx7QUyWhijRTLba5ot3U6yI0lG5utMMemmMMYUx+gsMgXpkp7itHRbAAAA/Ul1Q6ssWFluCmW+3lobcvn0FIecMHWwnDFjuBw8vkh2VVfZcnYCAED/R9EMAAAAAAAAAAAAAAAA+szldsuOXc2dZ43RWWTKG6SqodXSbWWmOMxMMbtnjWmfQWZYXropnAEAAIBIS5tLPlpXJfOXlckHJVXS0hZ8Jj9tRe03coCcOKVIjtmjWIYPLoravgIAECkUzQAAAAAAAAAAAAAAACBsrW0u2VTVZIphvLPGmPtGaWx1WbqtgsxkM1OM76wxYwrTZWB2qiQlURwDAADQldvtluXb62Te8jJ5Y0W5mWEmFJ2V76SpxXLC5EIZPCDN/M7pZJY+AEBioGgGAAAAAAAAAAAAAAAA3dQ3t5nZYtpnjWn0PtaCmTZX8FHKe0JLX4bmpnkLYjwzyOjPuRlc2gIAABCO7buaZP7yMlMss6GiMeTyeRnJcvwehXLi1CKZPCiLgmQAQMLizAIAAAAAAAAAAAAAAICNVda3+Mwa02ju9ecdNc2WbifZkSQj89PbZ43RopjC9sej8tMlPYWRzAEAAHqqtqlV3llVaYpl/rdpV8jlU5xJcti4fFMoM2t0riQ7HVHZTwAAYomiGQAAAAAAAAAAAAAAgATncrtl+67mjllj2m/rOgpkqhtaLd1WVqqjY9aYDJ/7dBmWl24KZwAAANB7rS63fLGh2swos3B1pTS1ukI+Z+9h2XLilGI5ZlKBDEjn0mEAgL3wnw8AAAAAAAAAAAAAACBBtLS5ZFOlFsM0egtk9H5DRaM0hnFBZU8UZqa0zxZjZo1pL47Rx8XZKZKURHEMAACAlVaX1su8ZaXy2rflUl7XEnL5YblpZkaZOVOKZHheelT2EQCAeETRDAAAAAAAAAAAAAAAQD9T19wm672zxrQXyOisMZsrG6XNbd12tPRlaG6atyBGi2Q8s8cwSjkAAEBkldU2y+vflptZZbRoJpScNKccM6nQFMvsPTSbQmYAACiaAQAAAAAAAAAAAAAAiE9ut1sq61tNMYzvrDFaJLOjptnSbaU4k2RkfvusMVoQY2aOKUiXkfkZkp7isHRbAAAACKyxpU3eXVMp85eVyacbqsUVoiDa6UiSWWNy5cQpRXLouHxJS6btBgCAL4pmAAAAAAAAAAAAAAAAYsjldsvW6ibvbDHrvfeNUt3Yaum2slKdMqawvThGC2M8s8bobDLJDkYiBwAAiFV7cNGmGjOjzDuryqWu2RXyOVMGZcmcqUVy/B6Fkp+ZEpX9BACgP6JoBgAAAAAAAAAAAAAAIApa2lyysbJRNlQ2yfb6Mlmzs9bcSkprpbE19IWRPVGYldIxa0y6tzBGb0VZKZKURHEMAABAPNBiaS2UeW15mWwPYybBQTmpMmdKkblp2w4AAIRG0QwAAAAAAAAAAAAAAICF6prbfGaL0ftGM4vMlqpGaXNbtx0tfRmWl+Yza0x6e3FMQYbkpHNJCAAAQDyqqm+RN1aUy/zlZbJse13I5TNTHHLUxAI5cWqR7DtigDgogAYAoEc4QwIAAAAAAAAAAAAAANBDbrdbKupbTTHM+ooGc+8pktlZ22LptlKdSTIyv70gxnfWGP1dWrLD0m0BAADAes2tLvmgpMoUynxYUiVtruCV1I4kkf1H5cqJU4rkiPH5kpHqjNq+AgCQaCiaAQAAAAAAAAAAAAAACMDldsu26iYzW4xn9hhPocyuxjZLt5Wd5vQ7a8zQ3DRx6pWTAAAA6FdF1ku31cq8ZWWyYGV5WG3HcUUZctLUYjlhcqEUZ6dGZT8BAEh0FM2gT5zOyFQvOxyOoD8jsRBveyHe9kGs7YV42wvxht3yE8Vxby/E2z6Itb0Qb3sh3vZCvBGvyFFgBWJtL8Q7Pkb/3ljZXhBTosUx5lYvGyoapanVZem29ALICYNyZPzAbHMbnJlkimSKslIkKYnimETD59s+iDXiGdd5wQrEOzybqxpl3rJSc9tU2Rhy+cKsFJk9pUhOmjpQJg7MjJv2IPG2F+JtH8TaXoh3uyS3lrICAAAAAAAAAAAAAADYQE1ji6wtrZM1O2u9t7WltbKxol7aXNZdQqETw4wsyDRFMeOKs2VcR4GMPs7NSLFsOwAAAIi96oYWmb90m7y4aLN8sb4y5PJpyQ45bupgOWPGMDl0fJEkO+15ETMAANHATDMAAAAAAAAAAAAAACCh6PihpbVN7QUxnuKY0vb7HbuaLN1WarJDxhZleWeN8dxGF2ZJekrkZh4DAABAbLW0ueT9VaXy4uItsmD5DjNzYSgHjCmQ78wYLidMGywD0imkBgAgGiiaAQAAAAAAAAAAAAAA/ZLODLOlskHWlNZ0mjlGb7saWy3dVk56cntBTHHn4pjh+Zni1GllAAAAYIvi7GVbd8kLizbLK19tlfK65pDP0QJrnVHm1OnDZERBZlT2EwAA7Jbk1v/gQC9VVoaeRrA3HA6H5Obmen+urq4Wlyt0FTb6J+JtL8TbPoi1vRBve4mHeOfn50d1e7B3fhIvxz2ih3jbB7G2F+JtL8TbXmIdb/ITBEKOAisQa3sh3sHpqN0bKhtkXVmDrCtvkHUVel8vGyoapSmMEb17ojg7VcYUZpjbWHOfaR4XZqVIUpI1xTHE216It33EQ6zJURAI13nBCnaOt85WOH95qbz6TamUlDeEXD43PVlOmFIkJ04tlj2HZFvWjowmO8fbjoi3fRBre4mHeOfHQY7CTDPok7a2tqhsRz+c0doWYo942wvxtg9ibS/E216IN+JFNI9Djnt7Id72QazthXjbC/G2F+KNeEGOgkgg1vZi13jXNrXK+orG9sKYjuKY9eUNsqW6SVwWDgmqE8MMy02T0VoUU9BeIKO30QXpkp3m/1KKSF5UYtd42xXxtg9ijXjCdV6IhESPd31zm7yzukLmLy+TLzbsklDN0WRHkhw6Lk9OnFIkB4/NkxSnw/w+US5GT/R4ozPibR/E2l5cNo03RTMAAAAAAAAAAAAAACDq3G63rNhRL2+sKJNVO+tNgUxpbYul20hLTpJR+RkdxTHpHYUxGTIyP11Sk9svYgQAAAA82lxu+WLjLlMo886qCmkMY1bDaUOy5cSpRXLMpALJy0iJyn4CAIDwUTQDAAAAAAAAAAAAAACiprqhVV77tkxeWVoqq0rrLVlnTprTWxBjZo0pSDeFMkMGpIlTp5UBAAAAglhTWm8KZbSdGk4h99ABaTJnSpHMmVpkCrIBAED8omgGAAAAAAAAAAAAAABElMvtlv9t3CVzl5bKwtUV0tzm7tV6BmandMwak9GpSKYgM1mSkiiOAQAAQPjK61rMrIfzlpXJyp2hi7mzUp1y7KQCUywzfXiOOGh/AgDQL1A0AwAAAAAAAAAAAAAAImJHTZP895sy+e83pbKluims5+jEMMPz0mV0QXrHrDEZplBGf85O4zIHAAAA9F5ji0veX1tpZpX5ZF2VhKrldiaJHDg6T06cWiSHjcuX9BRHtHYVAABrudrErjibBAAAAAAAAAAAAAAALNPS5pIP1lbJy0t3yqfrq8UV4kLEwTmpMntKkUwamGlmjhmZny6pyVyMCAAAAOtmPVyypcbMKLNgZYXUNYe+aFjbplooc/weRVKYlRKV/QQAwApJzbXirFwrzoo1klJVIlK7UaR0pUhzrchln4kdUTQDAAAAAAAAAAAAAAD6bH15g8xdWiqvLiuVyobWoMumOJPkiPH5cuq0Ypk5MlecOr0MAAAAYKGNlY0yf1mZmVVm667Qsx4WZ6fI7MlFMmdKkYwvzozKPgIA0CtutyQ1lJvimOSOAhlTKFO5Rpy12wM+LamhQiQ1V+yGohkAAAAAAAAAAAAAANAr9c1t8tbKCjOrzNdba0MuP64owxTKzJlcJHmZjNgNAAAAa1U3tMqCleVmVpml20K3T9OTHXLUxAIzq8x+IwZQzA0AiC9ulzhqtrYXw1RogUxHcUzFWnE0VfV4dc6KNdI6eF+xG4pmAAAAAAAAAAAAAABA2Nxut3yzrdbMKvPminKpb3EFXT4r1SHH7VFkimWmDs6SpCQuRAQAAIB1Wtpc8lFJlcxbXiYfrK2SVpc76PLaGp05coDMmVokR00okMxUZ9T2FQAAv9qaxVm9wRTDmAIZzwwylSWS1Npg2WYcFWtEKJoBAAAAAAAAAAAAAADorqq+xVyIqMUyJeWhL9iYPizHFMocM7FAMrgQEQAAABYXci/bXmdmlHlzZbmZYSaUsYUZMmdKkcyeUiiDctKisp8AAHTSXNdRDOO5tc8g49y1UZJcof+Xhcud5BDXgBHSVjBBUodOFSmaJFI8SZpTBosdUTQDAAAAAAAAAAAAAAD8anO55fMN1aZQ5t01lSFH7S7ITJYTpxbLqXsWy+jCjKjtJwAAAOxhW3WTzP+2zBTLbKxsDLl8fkaynDC5yBTL7DEok1kPAQBRkdRQbophkjtmjfHOIFO7zdLtuJ2p0pY3VtoKxklr/nhpyx8nbXqfN1okOU2cTqek5ufvfkJlpUhbm9gNRTMAAAAAAAAAAAAAAKDbxYivfFNqbjtqmoMu60gSmTUmz8wqc+jYPEl2OqK2nwAAAEh8tU2t8vaqClMos2hzTcjlU51Jcvj4fDlxSpEcODqX9ikAIDLcLnHUbGsvhqlcK8kVHQUylWvF0Vhp6aZcqTntxTAFWhTTUSBTME5cOcNFHMzuGwpFMwAAAAAAAAAAAAAAQJpbXWY2mblLd8rnG3ZJ8DllRIblpplCmZOmFsvAnNQo7SUAAADsQGc4/Gx9tcxbXibvramQptZQrVORfYbnmBlljplYIDnpXB4LALBIW4s4d20Up6copmJN+wwyVeskqaXe2k1lDuwojOmYNaZjBhl3ZrEIs6X1Gq0CAAAAAAAAAAAAAABsbE1pvcxdWirzvy2T6obWkKN2Hz2xwBTLzBgxQBxcsAEAAAALrdpZZ2aUef3bcimvbwm5/PC8NDOjzOwpRTI8Lz0q+wgASFAt9eKsLJFkM1vMGnFWtM8a46xeL0mu4OdLesKd5BDXgOGmMKZVC2N8ZpBxpw2wbDvYjaIZAAAAAAAAAAAAAABsprapVd5cUWFmlVm2vS7k8pMGZppCmRMmF8kARu0GAACAhUprm02RzLxlpbKmrCHk8jlpTjluj0I5cWqRTBuSLUkUcgMAeiCpobK9GKZyjSSbwpiOGWRqtli6HbczVdryxrTPGKMFMp4ZZPLGiCSnWbotBMeZLAAAAAAAAAAAAAAAbMDtdsuSLbWmUGbBygppbHUFXT47zSmzJxfKqdMGyh6DsqK2nwAAAEh8Dc1t8u6aSpm/vEw+21AtLnfw5Z2OJDlkbJ6ZVUbvU5Md0dpVAEB/5HaLo3abtzhGZ43xzCDjaKiwdFOu1Oz2YhgtjukojNEZZFwDRog4nJZuC71D0QwAAAAAAAAAAAAAAAmsvK5FXl1WKq98UyobKhpDLr/viBw5bdpAOXJCgaSncDEiAAAArOFyu+XLTbtk/rIyeXtVhdS3BC/iVlMHZ8mcKUVy/B6FkpeZEpX9BAD0I65WcVZv9BbGeGeNqSwRR0udtZvKLDbFMG0FHQUyHTPIuLIGijDrWVyjaAYAAAAAAAAAAAAAgATT6nLLJ+uqZO7SUvmgpEraQgzdXZSVIifvWSyn7FksI/LTo7afAAAASHzryhvMjDJ621HTHHL5QTmpplBGZ5UZXZgRlX0EAMS5lgZxVpVIcqfCmLXirFovSa4WyzbjliRxDRhuCmI6F8iMF3d6rmXbQXRRNAMAAAAAAAAAAAAAQILYXNVoCmV0ZpnS2uAXjTgdSXLo2Dw5dVqxHDQmT5IdjIoKAAAAa1TWt8gbK8rNrDLLd4Qe6T8zxSFHTyo0hTIzRuSIgxH7AcCWkhqrvLPGJJvCmPbHjpotkiTBBwTpCbcjRdryRptimLaCjgIZfZw/ViSZwUQSDUUzAAAAAAAAAAAAAAD0Y40tLlm4ukJeXrpTvtxUE3L5kfnpplDmxKlFUpSVGpV9BAAAQOJranXJB2srZd7yMvl4XXXI2Q61ZvvAUbkyZ2qRHDE+X9JTnFHbVwBADLnd4qjb0T5TTIVn1pg1pkjGUV9m6aZcKVkdM8XsnjWmNX+8uHJHiDgopbALIg0AAAAAAAAAAAAAQD+0YkedzF26U17/tlxqmtqCLpue7JBjJhXIadMGyt7DsiWJkbsBAABgAbfbLUu21sr85WWyYEXodqmaWJwpc6YUyQmTC6UomyJuAEhYrlZx7NrUPmNMRcesMaZAZq04mmut3VRGoZkpprWgo0CmYwYZV9ZgEc6B2B5FMwAAAAAAAAAAAAAA9BO7Glvl9W/LZO7SUlm5sz7k8lMGZ5lCmeP2KJDsNC4RAAAAgDU2lNfJsx9vkleX7ZTNVU0hly/MSpHZkwtNsczEgVlR2UcAQJS0Noqzap2ZNcYUyHhmkKlaL0muZks31ZYz3BTDmAIZM3tM+2N3ep6l20Fi4YwYAAAAAAAAAAAAAABxzOV2y6JNu0yhzDurK6Sp1R10+dz0ZHMx4qnTimV8cWbU9hMAAACJraXNJf/6fKP858vN8r8NlSGXT0t2yJET8uXEKUUyc1SuJDsY6R8A+rOkpl3txTCmMGaNJJvZY9aa2WSSJPi5ip5wO1KkLW90x4wxHQUyWhyTN1YkJcOy7cA+KJoBAAAAAAAAAAD9Ul1zm2yorJetq2tk5Y4a2X90gRw4PD3WuwUAgGV21jTLq8tKTbHMlurgo3fr5Yf7jxogp04bKEeMz5fUZEfU9hMAAACJr6y2WW6au1q+2VYbctn9RgwwRdxHTcxntkMA6G/cbnHU7TRFMU6fWWN0BhlHfam1m0rJbJ8tpqMwxjNrTNuAESLOFEu3BXujNYI+cTqdEVmvw+EI+jMSC/G2F+JtH8TaXoi3vRBv2C0/URz39kK87YNY2wvxthfinZijmG6oaJDVpfWytqy+/b60vtvFw7WNrTJr5OiY7SfgixwFViDW9uKJr/7fe2fFTnnq4xL5qKRSXCEGah2ckyqnTBsop+41UIbmUjzaX/D5thfibR/EGvGM67zQF8u21cqPX1whO2ubAy4zuiBDTtqzWGZPKaJdmiD4fNsL8bYPb2xdbSKV6yV1w2JJKl/dMYPMGnFUrBVHc42l23RlFJhiGJcWxRSM77hNEHf2EJGk7rOQRe7Mqv3w2W6X5Ha7rZsLCQAAAAAAAAAAoJdcLrdsqWqQFdtrZNWOmvb77TWytrRWWkNdMSwiew3PlVeuPiQq+woAgNX0/93zX2ySFxZtkbLa4LPKpDiT5Ngpg+ScmSPlkPFF4nR0v8AEAAAAsMIrS7bKzf9eIk2trm5/y89MkVP2HipnzBhuzssk+bnwGQAQY61NIuVrREpXipStar/Xm/6uLfj5hx7LHSFSNFGkeJLP/SSRrEJrtwP0EDPNAAAAAAAAAACAqNOLgVdur9l921Ejq3fUSF1zW6/XqYU2Wnjj4MJhAEA/Ud/cKvO+3ibP/2+TfLG+MuTyEwdly9n7jZDT9xkmhdlpUdlHAAAA2JOeY/nDglXy0MI13f42oiBDfnniFDli0kBJTbbniPUAEHcaq0XKVncUx2hhzKr2+8r1Iu7uhY+95kgWKRjbuSimeKJI4QSRtGzrtgNYiKIZAAAAAAAAAAAQMbVNraaYRWeM8cwgo0Uy5XXNlqxf62PGFGXJpME5MmnQAGluc0m6w2nJugEAiAS32y1LNlfLc19skv8u2Wr+VwaTleqUk/ceKmfPHCH7jMhj9G4AAABEXF1Tq9zw3Ffy5vId3f524NgCefj8faUgKzUm+wYAtuZ2i9Tu7CiK8Zk5Ru9rtlm7rZRMkaIJu4tizP2k9oIZZ4q12wIiLMmtZ+SAXqqsDD3aUW84HA7Jzc31/lxdXS0ul4VVjogrxNteiLd9EGt7Id72Eg/xzs/Pj+r2YO/8JF6Oe0QP8bYPYm0vxNteiHdstLS5ZH1Fg6wprW+/lbXfb61usmwbg3NSZVxxpkwozpRxRXqfJWOLs2RgYX7M4k1+gkDIUWAFYp1YqhpaZP6yUnlpyU7zfzKU6cNy5NS9BspxexRJZioFoYmGz7e9EG/7iIdYk6MgEK7zQri2VjfK9S+skNWl3dusZ+0zWO48cx9JcbbPLkO8Exufb3sh3nHG7RLHrs3iqFgjTs+tco352dG0y9JNudLzpa1gvLgKxktb/jjvY1fOUJEkZhPr7+Lhs50fBzkKM82gT9ra2qKyHf1wRmtbiD3ibS/E2z6Itb0Qb3sh3ogX0TwOOe7thXjbB7G2F+JtL8TbWi632xTCrC1rMBf8mvvSetlQ2ShtLmvG6RqQ7pTxRe2FMeOKMmS8FskUZkhOevdujY5rNHbvH/FGnCBHQSQQ6/75f/PzDdUyd2mpvLumUlragv+vLMxKle/sO1zO3m+4FKa0euNN3BMfn297Id72QawRT7jOC+FYtGmX3PLKaqlq6DwbojNJ5KajRsu5+w31Fswo4m0vxNteiHeUtDWJs2q9OCvXirNirSRXanHMWnFWlkhSW5O1m8oeIm3548VVOF7Sh+/lnTmmutnpP9bmfD/HQKJx2fSzTdEMAAAAAAAAAADwq7yuRdbqjDE+xTEl5Q3S0GLNKGRpyUkytjBTxhdlmAKZ8cXt90VZKZKUlGTJNgAAiIXtu5rklW9K5b/flMq2Xc1Bl3UkiRw0Ok9O33uQnLLfWElNdkR8xioAAACgq5e+3im/f2t9t0FRctOT5fenjJeZI3ePUg8A6Jmk5tqOwhhPUcxaSdZZY3ZtkiS3dQUM7iSntOWOkraCcaZAxswcY25jxZ2abZZxOp2S7jvzRzPnH5D4KJoBAAAAAAAAAMDm6prbpMQUxzS0F8mUtt9XdhlVtLf0YuCR+ekds8d0zBxTlCnDctPEqX8EACABNLe65P21lWZWmU/XV0uo+df0/+DJexbLyXsWyaCcNHPRiqdgBgAAAIiWVpdb/rhwgzy3eEe3v40pSJc/njFJhuelx2TfAKBfcbslqaHcWxDj9MwaU7FWnHXbrd1Ucrq05Y2VVi2IMQUyE9rvc0eJOFMt3RaQCCiaAQAAAAAAAADAJlraXLKhorHTzDF6v3VXk2XbGJST2l4YY2aOaS+SGV2QIWlcBAwASFBaaKqFMvOWl0l1iILTVGeSHDmhQE6dViz7jRwgDmZWAwAAQAztamyVn/53tXy+YVe3vx0yNk/uOHGcZKdxmSkAdOJ2iaNma3tRTMVaSfYpjnE0VVm6KVdabvtMMQXts8a0F8mMF1fOMJEkzrkD4aI1AwAAAAAAAABAgnG53bK1uqm9MMbMHNNeHLOhslHaXKHGvQ9PbnqyKYgZ5zt7TGGG5KTT9QAAsMcsbW+uKJe5S3fKN9vqQi4/sTjTFMqcMLlIcjP4XwkAAIDYW1/eIDe8tFI2VXUfTOXCmUPkR4eOYIZgAPbW1izO6g3tM8V0FMYka3FMZYkktTZYu6mswR0zxuito0CmYLy4MwpFGHAD6DPOxgEAAAAAAAAA0I+V17WYEe59Z48pKW+QhhaXJevXGWLGFurMMe0FMuOL2++LslIkic46AICNuN1uWbK11swq89bK8pD/a7NSnTJ7cqGcOm2g7DEok/+bAAAAiBsflVTJz19dY4rBu86M+IvjxsiJU4tjtm8AEHXNdR3FMJ5b+wwyWjCT5O78PdkX7iSHuAaMNMUw7cUxnhlkxoo7Ncey7QDojqIZAAAAAAAAAAD6Ab2IocQUxzS0F8mUtt9XNrRasn5nksiI/HQZ7ztzTFGmDMtNY1RRAICtVdS1yLzlZWZWmfUVjSGXnzE8x8wqc/TEAklPcUZlHwEAAIBwC8Gf/nK7PPDeRuk6GXFhVorcd9pE2XNIdqx2DwAiKqmh3BTDJHfMGuOdQaZ2m6XbcTvTTCGMmS1GZ43xzCCTN1rEmWbptgCEh6IZAAAAAAAAAADiSEubSzZUNHaaOUbvt+5qsmwbg3JSuxTHZMjoggwzqwwAABBpc7nlk/XVplDm/bVV5udg9ALDk6cWySnTBsrI/PSo7ScAAAAQruZWl/xuwTr577Kybn+bPChL7j1tggzK4WJuAP2c2yWOmm3txTCVayW5oqNApnKtOBorLd2UK21Ax4wx7TPHeGaQceUME3EwiAYQTyiaAQAAAAAAAAAgBlxut2ytbupWHLOhsjHkhbnhyk1PNgUxOmPM+OKO+6IMyU6jewAAAH82VzXKK9+UyqvflMrO2paQs7QdPDZPTttroMwakyfJzMwGAACAOFVe1yI3z10lX2+t7fa3YycVyG0njGWWRAD9S1uLOKs3dBTErPGZQaZEklobrN1U1qCO4phx0tZRGKMzyLgzi0SSOBcA9Af0igEAAAAAAAAAEEFut1sq6ls7imPqZU1pg7kvKW+QhhaXJdvQGWLGFWpRTIaMK24vjNGZZHTU+yQ67QAACKqp1SULV1fI3KWl8sXGXSGX15lkTtmzWE6aWiRF2alR2UcAAACgt1bsqJMbX14lO2qau/3th4cMl0sPGMr5IwDxq6XeFMKYghifWWO0YCbJ1WrZZtxJDnENGG5mjWn1Fse0F8i403Is2w6A2KBoBgAAAAAA4P+zdyfgbZz3nfi/M4OLBEkQIEFSEkWJN3VQ8iXZsePbjuNDhyXbObttk023iZOmTXfbppt2e6RttmnT/Ou0aZNmm7SJ0zjWZdmWbMexHd+WD928KYkiJd4geOGcmf8zA4gSCImgRBDXfD/Pg2eAwQDzSi8gzQze7/sjIiJKkqmgrAdiLqwco4VlxnzJ+fFOm9FeG6gbqRyTr4dktHDMUocVEme3JyIiuixtg1N6UGZ/yzDG/XLCgOpdDS5saXbj6spCDiokIiIioqzwi7YR/Nm+bvjDsRO35JlF/MV9tbi93pW2thERXUjweWaqxphGo9VjtMcTfUndjypZIBdXRyvH1CHsiiy1dTBZk7ovIsocDM0QEREREREREREREV2mkKzg5Kg/WjnmfDjm7Hj8jJ1XqqLQEg3HaBVkItVjVrjy9EG7REREdGUm/GE81zqih2VaBqYSbr+63I7NzW58dFUJCqz8eZ2IiIiIsoOiqvj+G334/pvxg82XFFnwrQcbUe/OT0vbiMjAVBXi5NmZcIw02gVT9L7oG03qrhRLwUylGDkajNEqyChFywFRSuq+iCjz8aoeEREREREREREREdEcAwzOeAN6IKZzyDdTReaUxw9ZUZOyD4fNFKkYc0HlGG3JgblERETJoaoq3u+dwO4jg/hl+ygC4bn/Dy+ySbh3ValeVaahzJ6ydhIRERERJYMvKOP/7OvCLzs8cc9pVRP/dnM9nPnmtLSNiAxCCUPy9swEY2aqxni6IYamkrurfLcehpFd0YBMtIKMYi8DWCWWiKL4ixsRERERERERERERGZ42mHZkOhSpGHNB5ZjuYR/8YSUp+9AqxNSW5KH2gnCMVj2mxG6GwB/viIiIkm5oMoinjw3hqSNDOD0WSLj9xqoibFlXhtvqnKzsRkRERERZqX88gK/sbkf74HTcc1ub3fjDu1bCLPFYl4iSJOSDNNYNU0wwpgvS2EkISihpu1Eh6BVitEBMOFo15lxARrU5krYfIspdDM0QERERERERERERkaFMBsLoHvHNVI7RwjFaSGbMF07K+0sCUOW0RSvHRIIx2nKpwwpJZDiGiIhoMYVlBa+dGMOeI0N4o3sMcoLCcOWFFmxa48amtaVYVmxLVTOJiIiIiJLuYN8E/mBPO0anY69xaZejvnL7Cnzs6nJO3EJEV0Twj81UjTHpwZjIfXGiDwKSU5Fdo4oWyMUrZ6rGzFSQKa4GTDxnJ6Irx9AMEREREREREREREeWkYFhB19AkPugeQvvAJDqHIyGZs+PBpO2jotASDcdEKsdoy5WuPFg4Oz0REVFKnRr14amjQ3j62DBGpuaezVYLsd5aW4wtzWW4YaWDoVYiIiIiynpadcW/fuEEwkrs4PVCq4S/2VSvH/cSEc1JVQFvHzDcBgy1I7/vMMQRrXpMJ0TfSFJ3pZgLIOsVY6JVY1yRgIxWTQYih7YTUfLxXxYiIiIiIiIiIiIiymqKquKMN6BXjNGqx2hVZE6MBnBieCpuoMCVcuSZZirGnAvHaLcCKy+zExERpYs/JOMX7aN6VZkPeicSbl/tsulBmftWl8JlN6ekjUREREREi0m79vWPr/Tg8ff6455b4bLhW1sbsMKVl5a2EVGGUsIQx09HKsaMnqsa0wnTWDcQnJzZzJqMXeWV6KGYsOtcOCZSQUaxlwOsfEVEKcRf84iIiIiIiIiIiIgoK6iqipHpELqGfegcmo4sh6fRPeyDP6wkZR9Wk4jakjzUXlA9ps6dh5J8MwT+iEdERJQRxwMtA1PYfWQIz7WMYCooz7l9nlnE3Y0l2NLsxrqlBfz/nIiIUkcOA8rc/08RES3EhD+MP366E2+e9MY996GVDvz1A3UotHGIKJFhhf2Qxk5EAjFaQEYPyXRCGjsJQUleNXYVApTCZdHKMXV6xZhz91VbcdL2Q0S0EDwiIiIiIiIiIiIiIqKMMxkI6xVjtMoxXVoFmeFISGbMF07K+0sCUOW0oU4Px+TPVJFZVmyFyMG0REREGcfrC2Nfy7BeVaZjaDrh9s1LCvSgzN1NJbBbpJS0kYiIDCo0rQ9INY12weQ9AUyeAoY7gJFOSNt+Crn8qnS3kIhy0KlRH76yux2nRv1xz33q2gp86dYqmERe4yIyAiEwHgnD6MGYTv2YRLuvVZMRkJxK7BpVNEMuXqlXioncohVkimsAMytaEVFmY2iGiIiIiIiIiIiIiNImGFZwyuOPVo7RwjGRkMzZ8eTNdFdRZNErxpyrHKMtV7ryYDGJSdsHERERJZ+iqjjQM64HZV7uGEVQnnuwT3GeCfevLsXmZrcehiUiIkomwTcCKToIdWa2du020XfJ12gDWMHQDBEl2Vsnvfjq3g5MBGKrWWkhmT++u1o/HiaiHKOqEKcG9VDMzDFItIKMOD2U3H1ZCoDSegSKqhEurpmpGiMXLQckc3L3RUSUIgzNEBEREREREREREVFKBr2e8Qb0cMy5YIxWOUYLzMhKcma7c+SZ9IoxdW471q9wo7GiAPXlhZB9k5Dl2EEERERElLn6xwN4+tgwnjoyhDPjgTm31ebO/tBKhz4w8NY6J8wSQ7FERLQAqgJxom9mEOrMoFRPN0S/57LfThvYSkSULKqq4mcfDOAfXjqF2XlyV74Jf7ulAVctK0xX84goGRRZrxATOQ7pnAns6pVjghPJ3VWeK1ItRqsa46qFWtKAwuprgaJlgCBg2uPhdXUiyhkMzRARERERERERERFRUn+8H5kOoXMoEow5F5DpHvbBH1aSsg+bSURNaZ4+g3zduaU7DyX5ZgiCAEmS4HQ6Z7b3+JKyWyIiIlpEIVnBr7rGsOfIoD5zdqJM7ZIiCzavdWPTWjcqiqypaiYREeWKcADS2InobO3dMEWX2k2Q5w5sXg5xtCtp70VExqYdL//fX5zE7iPxFSUa3Pn41oMNPC4mytJjEZMejIlWkBk7AUFOXhV2jVy4DLIWjNECMueqxjhroeadv4au0a6rwxG7jogoVzA0Q0RERERERERERERXZDIQ1qvFaLdOvXJMJCTj9YWT8v6SAKxwaaGY8wGZOnc+ljqsEAVtXnkiIiLKdidGfHpQ5pljw/AkOIYwSwJuq3NiS3MZNq4o4vEAERElJPjHzleL0avHaMGYLn0GdwHJqXqqUSFAKaqE4qyFeelaoLQeKG3EtLk8afsgIuPyTIfwB0914IPe+CoTd9Q78ef31iLPIqWlbUQ0NyEwET0WiYZiRrtg8nRAHO+FoCZnkimNKpogO1ZGwjHRYIxeQcZZA5jzk7YfIqJsxdAMEREREREREREREc0pGFZwcvTCcIwPnUPT6J9I3ox32mzxsZVj8rHCaYPFJCZtH0RERJQZpoMynm8bwVNHhnD4zGTC7bXjg63ryvDRVSUozjOnpI1ERJRFVAXiZL8eipHGzg1GjQRlRN9IcnclWSAXV0dna6+NDkat1dfBnBdX+VT1eABZTmobiMhYOoam8ZVdbTg7Hn8d7nMfWobP3biMYXKidFNVCNPD0cp1kaDuTGh3aiC5uzLl6UGYsKt+5nhEdtVBLqoCJJ4vExFdCkMzRERERERERERERKRTVBV9Y4GZijH6cmgaPR4/5CRNwOvIM0UqxpTmR8MxeagpyUOBlZeriYiIcpmqqjhydhJ7jgzhhdYRTIfmnlHXbhFxz6pSbFnrxuoKOwQOBCQiIjkIaewkJL1aTGQwaiQc0w0h7EvqrhSr4/xA1HPhGFctlMJKQGQ1ByJKjZc7RvEnz3bBN+vY2WoS8ef31uCuxpK0tY3IkBQZ4kRf5BhkJhgTWYqB8eTuyuY8fxyihWL0+3VQCpcAAieaIiK6XPwVkoiIiIiIiIiIiMiAg1ZHpkPoHPLFBGS6h33wh+cewDpfNpOImplwTJ5eOUZbluSbOeiViIjIQDzTITxzfFivKtM9knhA89WVhXpQ5s4GF/IsHJRMRGREQmDigkGo3TMDU8Xx0xDU5FZtkQuW6ANQtUDMhZVj1LwSgOeuRJTGa3c/eOsM/uX13rjnygst+PutDWgqt6elbUSGoCrRijEd0Qp25wIy3RDkwCIfi0Tu68ciRESUNAzNEBEREREREREREeWwyUAYXXooxofO4emZkIzXF07K+0sCsMKVpwdizlWO0YIySx1WiBxgREREZEiyouLtU17sPjyIX3WNIazMXbJOC9Xev6YUm5vdWOnKS1k7iYgojVQV4tRAdADqBbfRLkjTg8ndlWiGXLwyOkN7jT4wNawti2sACwedE1Fm8Ydk/MVzJ/B860jcc+uWFuCbWxpQYjenpW1EuU4L6Fpbd8HWuhPS+Omkva8qSJAdK6LBmHNVYyJhXR6LEBGlBkMzRERERERERERERDkgGFZwcvTCcIwPnUPT6J8IJm0fS4ossyrH5GOF0waLSUzaPoiIiCh7nfEG9Ioye48NYSDBMYgoADdVF2PLOjc+XF0Mk8TjCSKinCSHII33nA/EzARkuiGGJpO6K8VSMDMINTIgtUafrV0pqgQkDjAnosw3MBHA/9zdgZaBqbjnNq0pxVfvruZ1OKJkC07B2rUf1tYdsPS9vaC3Uk22mMp1MxVkHCsAyZK0JhMR0eVjaIaIiIiIiIiIiIgoiyiqir6xwEzFGH05NI0ejx/y3JO4z1txnmlWOCYPNSV5KLDykjIRERHFCoQVvNzpwZ4jgzhwahyJDkcqi63Y0uzGA2vccBdw0BARUc4ITsE0u2qMpxuS9yQEJTmVTs+R7eUXhGNqI4NRi2uh2MsAVjwloix19Owkfn93O0amQnFh89+5tQqfurYCAv+NI0oOVYHpzAHYWnbA2rUPQmj6sl6uWIujVWO0gEw0GKMFdQuXAgKDbUREmYi/cBIRERERERERERFlIFVV9R/JOy+oHNM1NI3uER/8YSUp+7CZRNRowZjSfNS58/TKMdp9V76JP8ITERHRnDqGpvWgzL7jI/D65x4MbTUJuKPBhS1ry3DN8kKIPM4gIspOqgphehgmT2ckEHPhcrI/ubsSJH1Wdq1azMws7XpIpgaqpTCp+yIiSrdnjw/j6891IzhrRhy7RcJfP1CHm2qK09Y2olwijp+GtXUXbK07IY2fnl9Q11UfDenWzVSQUfNKGNQlIsoyDM0QERERERERERERpdlkIKyHYs6FY7TKMV0jPnh9yZmNVxIFrHDaYirHaOGYpQ4rB60SERHRZR2zPNc6gj2Hh3B8YCrh9k3l+XpQ5qOrSlBo40/TRERZQwlDHO+NVo6JBmNGuyCNdUEMjCd1V6o5H+HiGn0g6kxARhuQ6qgCJFYkI6LcJisq/unV0/iPA2fjnltebMW3HmxEdUleWtpGlDOCU7B27Ye1dQcsfW/Pq4pMoGET/Ku2Q3avZTiGiChH8MokERERERHNW1hR0T06hZNdkzjS64XVJOLRm5aku1lEREREWSMYVnByVAvH+NA1PI3OociyfyKYtH0sKbLogZjzAZl8PTBjMYlJ2wcREREZq/rdwb4J7D48hF+0jyKQoOJdoVXCR1eVYkuzG03l9pS1k4iIrkDIB2lMqxTTFQnIaMEYbTl2EoKSvPNUjZJfOjM7+4U3pWAJB6MSkWED6V97pguvdY/FPbdxRRH+5oF6OPI4vJPoiqgKTGcOwNayA9aufRBC03NvLkgIrbgV/qbtCFbfDkjWlDWViIhSg0dVRERERER0yZmNTo369FlDW/qn0DIwhbbB6ZiBEaUFFnzhxoq0tpOIiIgoU4+lzngDsZVjhqfR4/FDVpOzj+I806xwTB5qSvJQYOVlXyIiIlq44akgnj46jKeODunHMIlct7wIW9e5cVudCzYzw7pERJlE8I1Eq8V0RqvHRG8TfUndjyqIUIqW62GY2QEZ1eZI6r6IiLJZ75gfX9nVju4RX9xzH7u6HL93+wqYRAYKiS6XOH4a1tZdsLXuhDR+OuH2YVc9Aqsegr9hC1S7OyVtJCKi9OCvpzlgdHQUb775Jj744AP09fVhbGwMBQUFaGxsxJYtW1BfX5/uJhIRERFRhlNUFac9fj0YczwakGkdmIIvNPfMocOTQQxMBOG289SCiIiIjDvz+shUSA/H6NVj9HCMD10jvoSzsM+XzSTqgRitYkydO7oszYcr3wSBs/ESERFRkqsMv3FiDHuODOG1Lk/CsK+7wIxNa93YvNaNymJbqppJREQXoyoQJ/r0YIwWkDF5OqPhmG6Ifk9yd2WyQS6uOR+McdVCLtZuKwETZ2YnIprLgR4v/uipTnj94Zj1kijgj+5aiQfXlaWtbURZKTgFa9d+WFt3wNL3dsLNFWsxAg2b4F+1HbJ7LSveEREZBEe25YB9+/Zhz549KC8vx/r161FUVISzZ8/iwIED+u3LX/4ybrzxxnQ3k4iIiIgyaGBnnzcwE445V0VmKihf0fu19E/CXVuc9HYSERERZZrJQDhSNUYLyAz59MoxWjjG64v9gftKaT+Mr3DaYirHaOGYpQ4rRP5wR0RERItIm0xFqyiz9+gQhqdCCY9Zbqktxpa1btxQXcwZsImIUi0cgDR2YqZaTCQc063fBDmQ1F0pNlc0EFODsKsOsrMGsrMOSuFSQGBVMSKiy/XzDwbwd788GRdO1ypK/+3melyzvChdTSPKLqoC05kDsLXsgLVrH4TQ9NybCxJCK26Fv2k7gtW3AxJDvkRERsPQTA6oq6vDn/3Zn2H16tUx61taWvAXf/EX+P73v48NGzbAbDanrY1ERERElL6ATP94EMf1cMykvtQqyIz7rywgc86y4jysq3SgudKBmtL8pLWXiIiIKBMEwwpOjmrhmEgw5lxApn8imLR9LC2yxoVjVrhsMEscdERERESp4Q8p+GXHKHYfHsT7vRMJt9eOVbSgzP1r3Cix83dHIqLFJvjHZoIxejhmtAvSWBfE8V4IanIqm2pUCFAKl0XCMc46hKPBGC0go+a5krYfIiIjC8sKvvnLU9hxaDDuubrSPHzrwUZ94hwimps4fhrW1l2wte6ENH464fZhVz0CTdvhb9wK1e5OSRuJiCgzMTSTA66//vqLrl+1ahXWrl2LQ4cOoaenB7W1tSlvGxERERGlNiAzOBk8Xz2mf0oPyYwtcObz8kILVpXbsarCri/XLC1C7bLzZcE9Hg9keWEhHCIiIqJ0kBUVZ7wBvXKMXkFmSFtOo8fjj5vt8Upps0RqgZg6dx5qtWVpHqpL8lBg5aVZIiIiSg9tQhUtKLO/dQSTgbmv6dhMIu5uKsGWZjfWLy2AwOp3RETJpSoQJ/shjXbqgRhpVKsco1WN6YToG0nuriQL5OJqyE4tHFOLcHSprYM5L6n7IiKi88Z8IfzhUx1473R8UP3WOif+4r5a2C1SWtpGlBWCU7B27Ye1dQcsfW8n3FyxOhBo2IxA0zaEy5oBnscSERFDM4DX60VnZ6d+6+rq0m8TE5ED1FtvvRWPPvrovN9raGgI+/btw/vvv4+RkRGYTCZUVFTgQx/6EO655x5YralPg0uSFLMkIiIiotwxPBWMBGO0gEw0KDMyHVrQe5bkm7FaC8dU2LG63I6mCjtK7ZaYbXhsSURERNkYLh6aDOLI0BDaBybQ2j+B430ePSgTCCdndt48s4iaktjKMVpIhrOwExERUSYY94ex7/gw9hwdQvvgdMLt1y6xY0tzGe5udDHsS0SUDHIQGGwBhtuBoXbknzkKabQD0tgJCKHE/y5fDsVaFA3G1J0Px7hqoRRWAiKv7xMRpZI2Qc9XdrWjzxuIe+4zNyzFb99UCZED+oniqQpMZw7A1rID1q59CY+XVEFCaMWt8DdtR7D6dkBi5SYiIopl+Cucn/vc55LyPu+++y4ee+wx+Hy+mXWBQGAmiPPiiy/iq1/9qh6iSZXh4WEcOXIETqcTVVVVKdsvERERESWfZzqkB2POB2QmMTgZWvCs56vPVZDRQzIFcBeYOWMoERERZbXJQBidwz79B+nOochSC8d4/QurvneOJApY4bTNCsfkYanDyh+4iYiIKKMoqor3To9jz5Eh/LJ9FMEEpfQceSbct7oUW9a69WMdIiK6fEJgApKnS68UI+kVY7T7XZC8PYB6vrpXMoZxygVLosGYGsiuupnKMWpeCWdUJyLKAL/q8uBrT3diOhQ7aY/VJOBPP1qLe5pK0tY2okwljp+GtXUXbK07IY2fTrh92FWPQNN2+Bu3QrW7U9JGIiLKToYPzVyotLQUy5Ytw6FDhy7rdSdOnMC3v/1tBINB2Gw2bN26FWvXrtUfv/7663pg5uzZs/ibv/kbfOMb30Be3uKXtQ2Hw3qIJxQK4VOf+hREUVz0fRIRERFRcnh94UgwZmBSrx6j3T87HlzQexbZJKwqt2N1RUF0aUd5oYUBGSIiIspawbCCE6NaKMaHzqFIMKZzeBoDEws7brrQ0iIrat3ngzHacoXLBrPEa21ERESUuQYngth7bAhPHRm66IzWF9KuDF2/0qEHZW6tc8Ji4nEOEVFCqgpxauB8IObcbbQL0vRgcnclmiEXr4RcrAVjItVjwlpIprgGsNiTui8iIkpe1esfvXMW//TqacyOrWsTGP791gb9N1siigpOwdq1H9bWHbD0vZ1wc8XqQKBhMwJN2xAua2ZYmIiI5sXwoZmHHnoItbW1+q24uBiDg4P44he/eFnv8cMf/lAPyEiShK997WtoaGiYeU4LzyxZsgQ//vGP9eDM3r178cgjj8S9x3/8x3/oAZf5uu+++/T3vRhFUfDP//zPaGlpwZ133olbbrnlsv48RERERJTamdBbL6ggoy0TDWZIxG6JBGQi1WMiy2UOKwMyRERElJVkRdWPjyKVY86HY057/EgwWfq8OfNMcZVjakrz9eMqIiIiomwQlhX8qmtMryrz5skxKAmOkyoKLdjc7MamNW4scSSj3gERUQ6SQ/oM53rVmNELAzLdEEOTSd2VYi6IhmLO38LOOihFlYBkTuq+iIho8QTCCr7+XDf2tYzEPbemwq4HZkoLLGlpG1FGURWYzhyArWUHrF37IISm595ckBCqugX+VdsRrL4DkHgeS0REl8fwoZmLBVguR2dnpx5O0dx+++0xgZlzHnjgAbz00kvo6+vDvn37sG3bNphMsX/1L7zwAgKB+Q+OvOGGGy4amtECM9/97nfx2muv4eabb8bnPve5K/pzEREREVHyTQdltA3GBmR6PP4FvWeeWYwEZKLhGG253GmDyIAMERERZeEMjMNToWg4RqsgM43OYR+6R3z6j83JkG+R0FBeiMbyQlQ5JFS7bHpIxmXnACQiIiLKTidHfHpQ5pnjQxidDs+5rUkUcHu9E1ua3dhQ5YAk8voREZEuOAWTFoYZ64Y02jkTjJG8pyAo85/8dF4KlwClDfAXrkBYqx6jVY3RwjH2Ms6STkSU5YYmg/ifu9txrH8q7rl7V5fgax+pgZWVHcngxPHTsLbugq11px5OTiTsqkegaTv8jVugasdLREREV8jwoZmFeuedd2bua6GZixFFEbfeeisef/xxTE1N4dixY1i/fn3MNv/5n/+54LacqzDzq1/9CjfddBMeffRRfd9ERERElHr+kBaQmZ4Jx7T0T+LkqD+uBPfl0C6iNpblY3U0HKOV7a5y2jjAgYiIiLLOhD+MrhHfTOUYLSCjLb3+uQd6zpd2fLTSZUNtaT7qSvP0ZWN5AVavqIAYPXbyeDyQZTkp+yMiIiJK9cQsv2gbxZ6jgzjUl7jSgVZFTwvK3LeqFMX5DAsTkUGpKoTp4Ug4Rr9p4ZjuyHKyP7m7EiTIjhUzgRhtqZY2oKj6WsBWpG/j4zkpEVFOOd4/id/f3Y6hydiwpXYl8tGbl+PXNy6BwHAkGVVwCtau/bC27oCl7+2EmytWBwINmxFo2oZwWTODxURElBQMzSxQW1ubvrRaraipqbnkdqtXr455zezQTDIDMzfeeCO+9KUvMTBDRERElCLazOcdQ9No6Z/C8YFIQEabEV1ZQELGIgmod58LyBToy5UlefqMoERERETZdJx0cvR8OKYzGo4ZmAgmbR9Li6yodefpFWO0AaHacoXLBrMUe21MkqSZwAwRERFRNlblO3h6DP/5ehf2Hx/CdGjuSnz5ZhH3rCrBluYyrKmwc4AeERmHIuszmJ8Px3RBGtWqyHRBDIwndVeqOT9SLcZVFxOQ0QIzkCxx56TnAjNERJRb9rcM4y+f60YgrMYdk3/9gTrcUutMW9uI0kZVYDpzALaWHbB27YMQmp57c0FCqOoW+FdtR7D6DkCypqypRERkDAzNLFBvb6++rKioiFzkuISlS5fGvSaZgZnvfve7emDmhhtuYGCGiIiIaBGFZAWdQz4cH5hEa7SKTOewD/ICEjJaEEYLyKyqsGN1uV1f1moBmVkDPYmIiIgylXYs1OcNRMMx0/rxkbY87fFDXkipvQs480yoc58PxmjLmtJ82C2XviZHRERElAthmZ8d6MEPXjuB9oHEVWXWLyvA1uYy3NXgQh6Pk4gol4V8kMa0SjFd0YBMN6TRTkhjJyEoyZuoQaPklyLsrIU866YUVAACr+MTERmVoqr47mu9+Pe3z8Q9t8xhxbcebNArYBMZiRZetrbugq11J6Tx0wm3D7vqEWjaDn/jFqj2spS0kYiIjImhmQUIBoOYmJjQ75eUlMy5bUFBgV6NJhAIYGRkJKntePLJJ/HKK6/AZrPp4ZwdO3bEbbNx40asXLly3u853zbOFRRaiNmhH4aAchv721jY38bBvjaWXO1vLSCjVYw5fnZSL6mt3bSKMqEFjPyUBKBWryBTMHPTAjMWU/b8neVqf1PmSvf5iYafe2NhfxsH+/rKBm0OTYb0QEzH0JQektGqx5wY9sEfnnu28/nKM4uRUIw7Xz9O0n5Y1pYue+wsvZeL/W0s7G9jYX9TqvEchVJ57PXXL5zAkx/0z7mdK9+MTWvd2LKuDNUlHJSXzfjdNhb29/wI0yN6MEbUAjF61ZjOyP2JvqTuRxVEKEVVkF21UPTKMbWR+846qDZHfLu0/+sv4/3Z38bBviYjnqMY9XP/o7cuHpi5rqoI39zaiOI8M3KRUfvbqObV38EpWDr3wdLyJMy9byV8T8XqQLBxC4KrH4Jc1gwIAvgpygz8fhsH+9pY2N8RDM0sgN/vn7mvBVYS0bbRQjMXvi4ZhoaGZtqzc+fOi25TVlZ2WaGZz3/+8/Pa7oknnkAqOBzxF6Eod7G/jYX9bRzsa2PJxv7WZkfvHJzEkT4vjvSO4XCfF8fPjCOwgMGfogDUlxWiudKBdZUONC9zYNWSItjMuTXLZzb2N2WXTDs/0fBzbyzsb+NgX8fy+kLoGJhAa/8E2i9Yjk2HkvL+WrW9WncBGioK0VRRiIbyyHJZcR5E7UBqkbG/jYX9bSzsb1psPEehVPnW822XDMxoh0u3NZbhkeuW485VZTCzYnFO4nfbWAzd34oCeHuAoXZgWLu1AcMdwFAb4BtN7r5MeUBpHVDaCJQ2AO4GfSm4aiGZbZcVhFkIQ/e3wbCvyYjnKEb43GuTL/77W+/Erf/0DVX4P5vWGOr43Aj9TRfpb+34recN4ODjwLHdQGhq7hcKElB3F3DVJyE23gubyYrEI24p3fj9Ng72tbE4DNrfDM0ssNLMOSZT4r/Kc9tc+LpkePTRR/UbEREREc2PoqjoHp7Ckb4xHO7VQjJeHDszDl9IvuL3FASgptSOdZXFejhGC8msXlqEfAsPuYmIiCiz+UMyuoYm0dY/gbaBCX3Z3j+BM97kTfyy3JWHxvJCNM6EY4pQXWrPqmp7RERERKn0w9dP4B9/2Rm3vsqVj0euq8RD1y5HhYNDjIgoy4T8wGhXJAyjh2PaI0GZkQ4gnNzJR5FfEgnF6MGYaEBGuzmWa9PqJndfRERkOId7xzAZCMes+8sta/BrH5r/pNZEWclzEjj0X5GwzNipxNu7V+lBGax7BCisSEULiYiILooj+BbAYrHM3A+HYw+CL+bcNhe+LlN997vfTXcTiIiIiJJCVVWcGpnWK8foFWSiAZnZFzEvlzbIUwvH6LdKB9YsLUKhLTdLbBOlG89PiIiSyzMVxO6DfThwclQPyJwcmdar7iVDaYFFD8Vo4ZhzIZn68kIUWHkZkoiIcgfPUWixPXXoDP786eNxlWX+7uH12HrVspRU5SMiWhCfJ1o1JhqOOVdBRhtYqV55dfd4AlC8fFbVmOh9e0kS90NElNl4jpJ6r3eOxDzWKmgzMEM5KzAJtDwVCcqcfDXx9rZioPnhSFhm6dWRGUiJiIjSjL9WL4DNdn72Jr8/8awn57a58HWZqqRkfheQPB7PouxfFMWY8k9erxeKVtKPchL721jY38bBvjaWTOlvLSBzxhvA8f7J6G1KX04GrryCjGaZw4rVFQVYvaRAX64qt6PQFnsoHfZNwuODIWRCfzudzpTuj4x9fpIpn3tKHfa3cRipr7XjpPd7x7Hj4AB+0TaCkLywkEyeWURdaT7q3OdudtSV5sFlj58sJjQ9Ac800s5I/U3sb6NJd3/z/MR4eI5Ci+mtE2P4ypMtUGcdrn19azO2XVPJvs5x/G4bS9b3t6pCmDgDydMFabRTv4n6/S6IvuHk7kqyQC6ugeKqheysheyqi9wvrgHMefEvCGq3xft/2JD9TVnV1zxHMZ50n6Nkwuc+1X7V1h/z+JplBYt6DphJjNjfhqQqMPW9A2vLDlg6ngVCU3NvLkgIrbgVwdUPIVR9J2CyRp4YG0tNeykp+P02Dva1sWRCfzsz4ByFoZkF0CrGFBYWYmJiAiMjsenx2SYnJxEIBC7rRCUbyPLCBqDOl/blTNW+KP3Y38bC/jYO9rWxpKK/tYGfAxNBtAxowZgpfdnSPwWvf2EVZMoLLVhdYdeDMdqyqdyO4rz4CjL8PJ/H7zdlilR+Dvm5Nxb2t3HkYl+P+UJ45tgwdh0exMnRxJO+zCaJAla6bHpAprY0Tw/I1JbkYYnDCvEis8Nl099fLvY3XRr721jY35QpeI5Cl+vY2Ul8ZVcrwrOqAP7+3Q345PVV+n32tbGwv40lY/tbDkLyntLDMNJYJBRj8nRCGjsBIZTcGRIUa1EkFOOsg+ysQVhbumqhFFYConSJ9mXg31k29zclHfuaMgnHeSWHPyTjUN9EzLrrqgpz+s9s5P42GnH8NKytu2Br3Qlp/HTC7cOuegSatsPfuAWqvez8E/xM5AR+v42DfW0sikH7m6GZBaqsrERLSwv6+/v1D5AkXfxCzZkzZ2JeQ0RERESXZ2gyqIdjWmdCMpMYnV5YQMZdYI6GYyLVY7Sbyx4fkCEiIiLKJlq4+IPeCT0o82L7KILzrCqjVdfTgjG10QoyWjhmhcsGsyQuepuJiIiIjO7kqA9f3tkGXyh2lsePXVOBL95Rl7Z2EZFxCIGJSNWY2TdvDwQ1uYNp5IIlM8EYrWqMVjEm7KqDmlcCXGSCBiIiokxy6MxkTCVvUQCuqSxMa5uIFiQ4BWvXflhbd8DS93bCzRWrA4GGzQg0bUO4rJnHb0RElBUYmlmgxsZGPTSjVZHp7u5GfX39Rbc7fvx4zGtyxaVCQskoBTXXY8ot7G9jYX8bB/vaWJLd36NTQRzr18IxkzO34cnQgt7TlW/WK8doAZnVS7SQTAHKCi0Lek+j4vebjHZ+ouHn3ljY38aRa32tVZV5+ugQdh4cwIlR35zbmiUBdzaUYOMKRyQgU5qPfMvi/TuaCXKtv2lu7G9jYX9TpuI5Cs3X4EQAX3yyFWO+2Ali7llVij/6SC2ECwYgsa9zG7/bxpKW/lZVCFMDkaoxnk6I2nK0M3J/ajC5uxLNUIpXRirHuOqguM5XkIHFHrd9rn/a+f02DvY1ZTKO80qOd0/HVplZU1EAR74VRmG0/s5ZqgJT3zuwHH8Sls5nE1cQFCSg7i5MNWxFcOUdgCnymc/tXxWMh99v42BfGwv7O4KhmQXauHEjdu/erd9/6aWXLhqa0coYvfLKK/p9u92ONWvWIFc4nc6U7MfhcKRkP5QZ2N/Gwv42Dva1sVxOf3umgjjS59Vvh3vHcKTXizNe/4L278w3o7myGOuWOdBc6UDzMgeWOGwxAwwoefj9JqOdn2j4uTcW9rdxZGNfa1VlDpz04PG3T+HZo/0IhmNnJp+txm3HJzdWYds1lXDZjR0gzsb+pivH/jYW9jdlCp6j0Hx4p0P4nR8eQf94MGb9zfWleOxTG2Axxf6Izb42Fva3sSS1v+UQ4DkJDLUBw+0X3DqAwDiSylIIuBuA0kagtB5wa8sGCM6VkCQzB1JeAr/fxsG+pkzCcV7J8X7f+cmzNTc3lqf0/C/T5Hp/5xztGPHQfwEHHwfGTiXe3t0EXPUpYN0jQGEFtOhzfPyZchW/38bBvjYWh0H7m6GZBaqrq8OqVav0ajNaaOa2225DQ0NDzDZPP/00+vr69Pv33nsvTCb+tRMREZExeX0hHNXDMVpIZkxf9nrmngU9kUKbCev0YExxdOlApTOPARkiIiLKaWPTQex4vw8/facHnYOTc25rkUTc21yBT2yswvXVLh4nEREREWUIX1DGZ390AG0DsTNVa9e4vvvpa+MCM0REcQKT58Mww9GAzFA7MNoNKAur3h6ncIkehtFvejCmPhKUKawAeJ5JREQG+r37SO9YzLqb6krT1h6ieR8ztjwVCcqcfDXx9rZioPlh4KpPAkuv5rEeERHlBMOnN1pbW9Hf3z/zeHz8/Kwq2vqXX345ZnstFDPbb/zGb+BP/uRPEAwG8fWvfx0PPvigXk1Ge/zGG2/gF7/4hb7dkiVLsGnTpkX98xARERFligl/CMfOjOuVYw5rlWR6x3ByJEFJ3wQKrCasWVoUCcdEK8msKMnnwE8iIiIyBK2qzLuntKoyPXjmyNnEVWVK7fjk9awqQ0RERJSJQrKCLz7+vn58N/sY7t9/Y4N+HYyISKeqwNRQtGqMdus4X0FmPDJ5Z9IIEuCqiQZjogEZvYJMHWAz5ky0REREF3rnxCgU9fxjLeh+7QrjVpmhDKYoQM8bkaDMsd1AaGru7QURqLs7EpRpvBcwWVPVUiIiopQQVO3XdgP7p3/6J7zyyivz3v6JJ5646Pp3330Xjz32GHy+i8+UrgVmvvrVr6KiogK5xOOJvZCfLKIoxpR/8nq9ULQDOcpJ7G9jYX8bB/vaWPxhFb1T0AMyR/q8ONgzipMjPizkQNNmFrGq3I7VFQUztyqXDSIDMmmXCd9vI5c4p9Sfn2TK555Sh/1tHNnS19rshc8cG8KOgwPoHpm7Sp9ZEnBnQwm2X1WOa5cXMVychf1NycH+NpZ09zfPT+hSeI5Cl6L9PPtnz3biqaNDMevdBRb88NNrsdRhm1nHvjYW9rfB+9szCoydgjTaCdHTpS8lTxdE7XHg/OSfyaCa8yE7ayG76qBEl9pjpXgFIHHShcXA77dxZEJf8xyFLoXjvBbub39xAj997+zM4w1VRfjeJ9bCSIzU39lI9J6GpWWHfpPGTyfcXnbVI7D6YQSbtkK1l8W/H/vbUNjfxsG+NpZM6G9nBpyjcIqiJLnuuuvwd3/3d3j22Wfx/vvvY3R0FCaTSQ/J3HDDDfjoRz8KqzX30reyLKdkP9qXM1X7ovRjfxsL+9s42Ne5wx9S0DE0heP9U2gZiCxPjvpiZtS5XFaTgAa3Hasq7FhdHlmudOVBEmMHeara52jhfwRKMn6/KVOk8nPIz72xsL+NI5P6WhtIeahvEjsOD+DFtlEE5bkPtqqcNmxbV4YH1pSiON+sr+PF7ezpb1p87G9jYX9TpuA5Cl3KP77SExeYKbRKeGx7I8oLzHP2JfvaWNjfOSrkgzTWDcl7Apjui1SMGW5H0UgnBDmY1F0p+aWQi2sRdtVGQjLRm1JQEZlN/GL4mUsJfr+Ng31NmYTjvBbunVNjMY+1iYty9c86X7nc31kjOAVr135YW3fA0vd2ws0VqwOBhs0ING1DuKwZODf51jz6kf1tLOxv42BfG4ti0P42fGjm0Ucf1W/J4Ha78eu//uv6jYiIiCgXBMMKOoenZwIyLf1T6BqeRoIxmwlnP69358+EY7RqMjUleTBJl/iBjoiIiMhAxv1hPHNsGLsOD86rqszt9S49LHPt8kJWlSEiIiLKAj8+cBb/ceD8zNTnJpT5h22NqHPnp61dRJR8gm9UrxSjVYwxebohebTKMd0QJ/ogXKRO+5We0amCCKWoErKzDuELgjHaTbWdn0mWiIiIFmZkKoSu4dhrthtXFKWtPWRwqgLTmXdha3kS1q59EELTc28uiAhV3Qr/qu0IVt8BSLk3ATwREdFcDB+aISIiIqKIsKwFZHwz1WNaBibROeRDeAElZLRKMXWleVith2MK9GVtaR7MDMgQERERxVaVOTOJnYcG8WL7CALhxFVlHoxWlXFGq8oQERERUeZ7+tgQvv1KT8w6SQC+sakeVy0rTFu7iGgBVEUPwUTCMV0wRYMx2mPR70nurkw2yMU1kJ01CDvrIGvVY4q120rAxEGPREREi+3d0+Mxj/PNoj5RJFEqieO9sLbugq11J6Tx2PPLiwm76hFo2g5/4xao9rKUtJGIiCgTMTRDCyJJ0qK8ryiKcz6m3ML+Nhb2t3GwrzObFoQ5MTKN42cn9YDM8f5JtA9OISgvLCBTX1aA5mUO1JdYsao8H/VldlhN7Ptcw+83Ge38RMPPvbGwv40j3X2tVZV5+ugQdh7qj5uhcDaTKODOxhJsX1+O66qKWFUmC/ubUov9bSzsb8pUPEehC73aNYq/3N8dt/5P763DbQ2ll3wd+9pY2N8ZLOyHOHZSrxpzrnqMqN/vhiAHkrorJc+lV4lRXHWRijGuyH2lcBkgxH8mFu9/G0omfr+Ng31NmYzjvBbm3Z7Y0My1VQ5YLcab1Mgo/Z1RglOwdO6DpeVJmHvfSri5YnUg2LgFwdUPQS5rBgQBV9pL7G9jYX8bB/vaWNjfEYKqTWVJRERERDlLVlR0D03icK8XR/q8ONw7huNnx+EPKVf8ntoYzTp3AZorHVi3zIHmymKsXlKEPAt/niMiIiKai3Yp7r1THjz+Tg+eOXwWgfDcx2TVpXZ8YuNybL+mEiUFnDmYiIiIKBu9d2oUn/q3t+Oux3313ib8j1tr09YuIroInwcYageGtVvb+ftjp/SqMskjAMXLgdJGoLQBcDdEltpje0kS90NERETJcsvfvoSe0emZx1+7fxX++801aW0T5TBFAXreBA7+BDi2GwhNzb29Fq6uuxu46pNA472sREhERDQLK80QERER5RBFUXFyZCoajvHiSK8XR894MR2UF/S+NaV2PSCjVZFZV1mMNUuLYLfyUJKIiIhovrzTIez8oBc/facH7QOTc25rlgTcs6YCn7y+Ch+qKWFVGSIiIqIs1j4wgc/88N24wMznbq5mYIYoXbR5Rb290WBM9KaHY9qAqaHk7kuyAiV1QGk94I4GZLSbts6Sn9x9ERER0aI5PTodE5jR3Fh76YqRRFfMcwo49F/AoccBz8nE27ubgKs+Bax7BCisSEULiYiIshJHOhIRERFl8Szl2oU5LSCjhWO0kMzRPi8mAuEFve+KkvxoOEYLyRRjzbIiFNmMV1aaiIiIKBnHa+/3ePCTt+dXVWZlST4+sbEKD13LqjJEREREuaBvzIf/9oN34PWFYtZvu2YZvnrvqrS1i8gwwkFgtDsShpkJxmi3jsQzdV8umyNSJebCijHa/eIVgMgK7URERNnuza6RmMcuuwVNFYVpaw/lmOAUcPypSFWZk68m3t5WDDQ/HKkqs/RqgBNvERERJcTQDC2Ix+NZlPcVRREOh2PmsdfrhaKVHKScxP42Fva3cbCvkz/g8ux4AMf7p3C8fxLHz06iZWAK4/6FBWSWFFmxusKO1UsKsLqiAKvK7XDkxQZkZN8kPL6534f9bSyZ0N9OpzOl+yNjn59kyueeUof9bRyL1dfaMdozx4aw8+AAOodjZx+czSQKuKPBhe1XVeC6qiKI2o9boWl4PHO/ji4fv9vGwv42lnT3N89P6FJ4jmJsnukQPvOTo+gf98esv7nWiT+6Yzm83rF5vQ/72ljY31coMA7J0wVpVLt1QozeF72nIKgLq8I+m1KwFLKrNnJz1kGJLtX80osPVvSOX/K92N/Gwv42jkzoa56j0KVwnNeVe6nlTMzjaysL531Mn2uM0N8poSownTkAy/EnYel4FkKCULcqiAituA3B1Q8hVH0nYIpOvDW2uJ9D9rexsL+Ng31tLJnQ384MOEdhaIYWRJaTe5HxUrQvZ6r2RenH/jYW9rdxsK8vLyAzNBnC8YFJtPRP6bfjA1MY8y0sIFNeaNFDMasq7JFluR3O/PgKMsnoJ/a3sbC/KVOk8nPIz72xsL+NYyF9rR3DHT4ziV2HB/FC2wgCYXXO7SuLrXhwXRk2rXHDZY8ck6na/q9o73Ql+N02FvZ3jlJViJNnIXpPAoGzwFAbUHUDlOV3s78pI/AcxbimgzK+9PMWnByNnYlm3dIC/M0DtRChXnF/sa+Nhf096//9qUFIns5IQMbTHb3fDWlqILm7Es2Qi1dCLq6JhmNqEXbW6o9hsV/8RUkYbML+Nhb2t3GwrymTcJwXrvja7zunvDHrrl1emFN/xoXItf5ebOJ4L6ytu2Br3QlpvCfh9mFXPQJN2+Fv3ALVXnb+iTT9nbO/jYX9bRzsa2NRDNrfDM0QERERpdnwVDASjNECMgOR28hUaEHvWZJv1ivIaAGZ1eV2NFXYUWq3JK3NRERERBQxoVWVOT6sh2W6hn0Jq8rcXu/UwzIzVWWIiCgxOQBp7FTs4FhPF0xj3RBCsypzBSeB5Xenq6VERAjJCv7gqQ4c64+dJbimJA//8GAjbGYpbW0jygpKGJK35/z/+aOdkMYi//eL2v/zydyVuWAmFBNzK1oOSPETThEREZExnRjxxf1+v3HF+dnaiRIKTcPatR/Wlh2w9L2VcHPF6kCgYTMCTdsQLmu+eEVDIiIiuiwMzRARERGlkGc6pIdiZgIy/ZMYnFxYQKY4z6QHY1bNhGQK4C4wQ+CFEyIiIqJFm1nwyNlJ7Do0iOfbRhEIK5ddVYaIiOIJfm/czPEmbYDs+GkI6jxnPdOqzRARpYmiqvizfd1466Q3rgL0Yw81wpHHn2aJ4oQDsJx8CdaufZCGWyF5T0FQFnbNfDbZXg7ZWQPZWRcNxkTuK9pM3byOTkRERAkc6BmPO75fXmxNW3soS6gKTGfeha11Byyd+yCGpubeXBARqroV/lXbEay+A5D4GSMiIkomXpklIiIiWiTj/nA0GKOFZCb1+2fHgwt6zyKbhFXldqyuKIgu7fpFOQZkiIiIiFJTVebZaFWZzgRVZSStqkydE9vWs6oMEVEMVYE4cTYajoncTNGQjOgbWfj7D3do6cZktJSI6LKD1d966RSea439t0wLyvzTQ00oL+SAJ6K4AYRtu2Hp2gcxML7wtxQkyI6qaChGC8fUQHbVQS6ugWotTEqziYiIyJhmh2Y2VBXx93m6JHG8F9bWXbC17oQ03pNw+7CrHoGm7fA3boGqhbqJiIhoUTA0Q0RERJQEk4EwWi+oIKMt+7yBBb2n3RIJyESqx0SWyxxWXoAjIiIiSvHgx6NnJ7FznlVltOM1varMWjdKWFWGiIwsHIA0dnKmYkwkHNMFaawbQtif1F2pZjsEdwNQqt3qATkICPz5g4hS69/fPoP/en8gZl2eWcT/t60RK0vy0tYuokwijXbC2rYb1vanIE30XdF7qOZ8hIu1SjG1kF0XBGQcKwDJkvQ2ExERkbHJior3TseGZrRJkohihKZh7doPa8sOWPreSri5YnUg0LAZgaZtCJc1s/ohERFRCvBXI1oQSZIW5X1FUZzzMeUW9rexsL+NI5f7ejooRwMykzO3U6MLG/Cj/YC+qqJArxyjVZHRbsudtqyZkTyX+5visb/JaOcnGn7ujYX9bRxz9XWkqswQdhwcQMfQ9JzvY9KqytS7sO2qcmxc4ciaYzij4XfbWNjfqSP4PBBHO2eqxoij2rITovc0BCS34otiL58ZIKtoM8frM8nXQihaCkdx8cx2otcLKHOHHIlSgecoxrHz0AD++bXeuGPEv3+wCesrHQt6b/a1seRifwtTg7C074WldTdMg0fm/Tolv1T/f37m/3xt6aqDWlABCPF/L4v3L+7iycX+pktjfxsH+5oyGcd5Xb7WwUlMBOSYdTesdC7q+V6my+X+vvzqiQdgOf4kLB3PQghNzb25ICK04jYEVz+EUPWdgClSjTTTP0nsb2NhfxsH+9pY2N8RgqpNl0lEREREF+ULyjh+1ovDvV4c6fXicJ8XXUOTWMgRlM0sYs1SB5qXObCuMnKrLi2AJHJwJREREVE6aZfJPjg9hp++3YO9h8/AH5p7wHWVKx+f2FiFh66thLsw8gMXEVFOUmRgrAcY7gCG22Nv0yPJ3ZdoAlw10aoxF97qARtnciWizPPcsX58/sfvQZl1vfD/+/hV2HLVsnQ1iyi9glNA6zPA4Z8BXb/UBxTOTQBWfhhYsxUob478v5/vSlFjiYiIiC7tX17pwjf2tc48rim145f/87a0tonSzHMKOPRfwKHHAc/JxNu7m4CrPgWsewQorEhFC4mIiOgiWGmGiIiIKMofktHaP4EjvWORkEyfF+0DE3E/eF8Oi0nE6iVFekCmORqQqXMXwCQZM7FNRERElInG/SHs/qAPj7/dox8PzkWbMfwja8rxyY0rcGNtCUQGn4kolwSngZHOaCBGC8i0RZbauvDCKqzGsRZFBsSWNkaXDYC7EXCuBCRzcvdFRLRI3uoewZd++kHc9cP/s2k1AzNkPHIYOPFKJCjT8jSQYKZtnXsVsP5jQPPDgKMyFa0kIiIiuiyvdw7HPL6xriRtbaE0h8KPPwUc/Alw8tXE29uKgeaHImGZpVcDrE5PRESUdgzNEBERkSEFwwra+idwuG8MR/silWS0x+EFJGTMkoCmiqJIOCYakmkoL4SZARkiIiKijKwqc/D0mB6UmW9VmY9vXI6Hr13OqjJElN200qlTw/EVY7Tb2Gltg+Tur2jZxcMxBeUcMEBEWe34mXF87kfv6tcZL/To7bX4zZuq09YuopQfV/QfBg79DDj6JDA5kPg1BRWRAYTrPgZUNPN4gIiIiDKWdqx/4ORozLoba0vT1h5KMUUBet4EDj4OHN8NBCfn3l4Qgbq7gKs+CTTcC5htqWopERERzQNDM7QgHo9nUd5XFEU4HI6Zx16vF4p2IEo5if1tLOxv48ikvg7JCrpHfDh+dhLH+yO3jqFphOQrHwgkCUCtOx+rKwpmbvXufL2yzHkKJse9MIJM6m8yRn87nc6U7o+MfX6SKZ97Sh32d26bCISx79gQnjw4oB8TJqoqc1u9C9vXl2PjSgdEbTBXeBoez9yvo8zE77axsL+1U1IZ4vhpSKNdED2d+lLyaPe7IPrHkrorVTRDKV4J2VUH2VkLxVUL2andrwYsBfEvCAMYG8uZ/ub5CV0Kz1FyV++YH7/x4yP6seWFHlxXhs9uKEtq37OvjSVb+lsY74O1bTcsrbshjXYk3F415yNY91EEGx9EePmNgChFnkji8UA2ypb+puRgfxtHJvQ1z1HoUjjO6/K8d9obN9nSqhJpUc/1skGu9vc52vU0S8tOWFp2QPL2JNxedtUjsPphBJu2QrWXRVZO+gBot+yX6/1NsdjfxsG+NpZM6G9nBpyjMDRDCyLLckr2o305U7UvSj/2t7Gwv40jVX0tKypOjPjQOjCF4wNTaOmfQvvQFALhKw/IiAJQXZKH1eV2rKqw6wGZutJ82MyzK8io/DxH8bttLOxvyhSp/Bzyc28s7O/cqCpzrH8KOw8N4vnWEfhnzQY+2zKHVR/w+MDaUpTaLZH30D4HKWovpQa/28aS0/0dmobk6YbJ0w1JC8foyy5IYychKMGk7kqxFumhmMitRg/GhJ01UIqWA+Ilfm5Iw997Tvc3ZRWeo+SmkakQPv+zY/ryQrfVOfGHd61c9B+c2dfGkkn9LQTGYencB1vbHpjPvJ1we1WQEKr6MAINWxGouQsw50efSM/xQTbIpP6mxcf+Ng72NWUSjvO6PG+fiA34NpTlo9Ai5sSfLZlyor9D07B27Ye1ZQcsfW8l3FyxOhBo2IRA03aEyy6onpjtfw9G6W+aN/a3cbCvjUUxaH8zNENERERZS1FV9Iz6Z8Ixxwcm0TYwnXAQ5Fy0SxkrXLZIOKa8QF82uvORZ4nOfEdEREREWWNSqypzfAS7Dg+ifR5VZW6tc+phmY0riiJVZYiIMoWqQpgehkkLw8zcoiGZybNJ351cuCwaiokEZMLRpZpXcn4QABGRQY8vf2dHK3rHAjHrr6ksxF89UKcfUxLlFDkIy6lXYG3bA8vJFyHIiQO5obJmBBq3IFC/CWp+aUqaSURERLQYDvSMxzzeWFWUtrbQIlBVmM4cgK11hx4OF0NTc28uiAhV3QL/qu0IrrwTMFlT1lQiIiJaOIZmiIiIKGtmB9d+jI4EZCZxvH8KbYNTmAoubObGKqcNq7QKMtEqMo1l+Siw8hCJiIiIyChVZZa78vDxDVV4+LpKmMM+Q86qQ0QZRAlD9J6G6cKKMdGbGJxI6q5UyQK5uHqmasy5YIy2bmYmeCIimhEIK/ifuzvQNhgbxq535+PvtzbAappdlZooiwcP9r+vB2WsHc9ADMTOsH6pwK0elGncqh9PEBEREWU7X1DGkbOTMeuuq3KkrT2UPOJ4L6ytu2Br3QlpvCfh9mFXPQJN2+Bv3ArVXpaSNhIREVHycUQoERERZeRAxzPeAFoGpvRwTKsWlBmYwkRgYQMYlzmsM+GY1RV2NJXZUWjj4RARERFRrsz6vb9lBDu1qjKzBjLOJokCbqktxsNXL8FHr1oJMTojuMfjS1FricjohODkrFBM9L73FAQllNR9KdZiyK7aWVVjaqAUVgIiq6oSEc2HrKj4k2c68e7p8bjrjY9tb+Q1RsoJoucEbO179LDMfAYPKtYiBOruQ6DxQYSXXAMIDI4RERFR7vigb0I/D7jwmvLVlYVpbRMtQGga1q79sLbsgKXvrYSbK1YHAg2bEGjajnBZMysvExER5QBewSUiIqK0B2QGJoIzARlt2dI/Ba8/vKD3LS+06MEYLSSjB2TK7SjOMyet3URERESUGceS2jGkFpR5riVxVZmlRVZsXefG5rVulBZYIEnSTGCGiCjpVBXi1CCkuKox3ZCm+pO7KwhQiir1MIxcXIvwTEimBmpeSVL3RURkxGPO//viSfyywxOz3pVvwnceatKPK4myleAb0avJWNt2wzxwKOH2qmhBcOXtelWZ4MrbAMmaknYSERERpdqBntjA/JoKO+wWTj6SdRUUzxyArXUHLJ37IIam5t5cEBGqugX+VdsRXHknYOKxLhERUS5haIaIiIhSamgyOBOMiYRkJjE6vbCAjLvAHA3HFEQqyZTb4bIzIENERESUqy6rqowA3FLnxLZ1Zbh+pQMiZ4QjomSTQ3qFmPMVY86FZLohhiaTuitVskaCMc4ahJ110fu1kIurAZMtqfsiIqKI773Rh52HBmPW2S0i/nF7E5Y7+W8vZaGQD5YTv4CtbQ/MPb+CoCau8B5augH+hi0I1t0L1VackmYSERERpdOBHm/M441VjrS1hS6PON4La+su2Fp3zquCYthVj0DTNvgbt0K1l6WkjURERJR6DM3Qgmgzsi4GURTnfEy5hf1tLOxv49D6dngygCO9Xhzu9eL9k8M41j+B4cnQgt7XlW/WK8doAZnVS7SQTAHKCjmbY7rxu20s7G8y2vmJhp97Y2F/Z3JVmUnsODiA/S3D8IUSVJVxWLFtfTk2N5fBfYnZv9nXxsL+NpZF6e/AeCQYM6rdOiFGK8eI3h4IysImg5hNySvRwzDKuYoxrloozjooRcsAIf7PYvR5Tvn9pkzFc5Ts98T7Z/H9N/ti1pklAd/atgprlhalpA3sa2NZtP5WZJh634KldRcsXfshBBMHe7VwbrBpG4KNW6A4lkfak5zWUBS/38bC/jYO9jVlMo7zmh+vL4S2gdjJmq6vLl7Uc7xskpH9HZrWq8lYjj8Jc++bCTdXrA4EGzcjuOohyOXrAEHgsW429TctGva3cbCvjYX9HSGo2ogDIiIiogXyTAVxpM+r3w73julhmTNe/4Le05lvRnNlMdYtc6C50oHmZQ4scdggcHZwIiIiIsOY8Iew5+AZ/PSdHhw7Mz7ntpIo4K5VZfjk9Stwc10pRJHHjUR0mbTL5eN9wHA7MNwBDLWdvz/Zn9x9aeGX4hWAuxEorQdKG87f8l3J3RcREV22pw+fwZd++oH+X8M52mXJf/rkNbiveUk6m0Y0f/1HgcM/A448CUycSby93Q2sfQhY9wiw9OrIh56IiIjIYPYfPYvf/vH7M4+tJhGH/+wjsJoYmsko2snaqTeAg48Dx3cDiYLh2rW4uruAqz4JNNwLmFk5lIiIyEhYaYaIiIiuaGaVo3o4RgvJjOlBmdOjvgW9Z6HNhHV6MKY4unSg0pnHgAwRERGRAWlzvGjHmI+/3YOnDp3BdFCec/tlxXn4xMbleOS65Sgr4g9dRDQP4QAw2h0JxAxpoZhztw4gNJXcfZnzgZK6aDimIRqQaQRcNfxxnogoQ73WMYzf+9nBmMCM5i+3rGVghjKftw84+iRw+Alg4Gji7U15wKoHgHUfB2puAyQOISAiIiJje6NrJObxhpUuBmYyiecUcOi/gEOPA56Tibd3N0WCMus+BhRWpKKFRERElIF4xYuIiIgSzuytzeitVY45rFWS6R3DyZHYUsSXq8BqwtplRXow5lwlmRUl+QzIEBERERncZCCMPQf79LDMfKvKfGJjFW6ud+uPiYji+DzxFWOG2yI/qKtKcvdlL7t41ZiiZVqt++Tui4iIFo1WRft//Oe7CMmxiZnfu6sBn75hRdraRTQn/zjQshc4/F/AiVe1qQgSz7JdfSuw/uNA0/2AtTBVLSUiIiLKeK93Dsc8vrGuJG1toajgFHD8KeDgT4CT2vFuArZioPmhSFhm6TWsoEhEREQMzdDCeDyeRXlfURThcDhmHnu9XihKkn/EpozB/jYW9ndm8wVltA5OoaV/Esf7p3D87CROjvoS/bw2pzyzpAdkGt15WFVux+qKAlS5bBBjLkoEMTYWTMKfgNKF321jyYT+djqdKd0fGfv8JFM+95Q67O/UO3Z2EjsPDWDf8SH4QnP/XVcUWbBtfTm2NJejrNCirxv3jl3RftnXxsL+zmGqAnHiDMTRTkieLkijXZDGumHydAFTQ8ndlSBBcayA7KqB4qyF7KqD7KzV76s2x0VeoH/YktoGyrzvN89P6FJ4jpJ9To368Js/OYKpWZUOP3ZNBX7tmpJF7dNLYV8by2X1txyCqedVWFt3wtz1AgQ5kPD9w+7VCDZtQ7BhE9SC8sjK6TAwnfrPNvH7bTTsb+PIhL7mOQpdCsd5JTY4EUTXUGwV4ma3JS3nApkqZf2tqjCdeQeW40/C0vEshATVoVVBRHjFrQisfgih6jsBU7TC89iV/X5Auff9psTY38bBvjaWTOhvZwacozA0Qwsiy7E/GiwW7cuZqn1R+rG/jYX9nT7+kIKOoSk9HNMyEFlqARllAQkZq0lAg9uOVRV2rFlSiA81LkWtu0Cf9Vu7iHSur1Wt35P3R6EMxO+2sbC/KVOk8nPIz72xsL8XhzYQcX/LMHYdHkTrwNyVDCUBuLnWiQfXleGGlY6ZqjLJ7hf2tbGwv7NQOABp7EQkGOPp1pdaMEYLyAhhf1J3pZjtkJ01eiAmstTCMTWQHVWAZL34i/h5yhj8flOm4DlKdhmaDOLzPzsGjxYguMDdjS585baqjBk4wL42lrj+1gYODh6GtW03rB1PQ/SNJnwPuWAJAg1bEGjcDLmk8YIn+DnKNPx+Gwv72zjY15RJOM4rsbdPxoZjCqwS6t15Wfvnycb+Fsd7YW3dBVvrTkjjPQm3D7vqEWjaBn/jVqhaJehz2GeLIpu/33T52N/Gwb42FsWg/c3QDBERkQEEwwo6h6dnAjIt/VPoGp6GvICAjFkSUO/Ox+rySEhGqyBT7bLBJIn685IkweksTN4fgoiIiIhygnYsuvPwIJ5rGcZ0oqoyhRZsXVeGLc1uuAsiVWWIKPcJPk80GNN1Phjj6YY4fhrCgmqhxpPt5ReEY87daqDYK4CYCqlERJTLxv1hfPHJVpwdj62GvbGqCH9+b+1MaJsoXURvD6zte2Bt2wPT2ImE2yuWAgTr7tPDMqFlGwEhct2eiIiIiOZ2oGc85vE1lYUw8Xxg8YWmYe3aD2vLDlj63kq4uWItQqBhMwJN2xEua+Z1PCIiIkqIoRkiIqIcE5a1gIxvpnpMy8AkOod8CC+ghIz2o3BdaR5WV9ixqrxAX9aW5sEcDcgQERERESWqKvNcywh2Hh6YV1WZD9c6sW1WVRkiyjGKDHGib6ZqjMnTGa0e0w3Rn3jG9MsimiA7ViB8YcUYLRxTXAPVyskeiIiMTqvI/ZVd7ega9sWsX1Vuxze3NsBi4jVQSpPpUVgO/wSWlp0w97+fcHNVNCG44jYEGrcguPIOwGRLSTOJiIiIcoWqqjhwyhuzbuMKR9rak/O0KopnDsDWugOWzn0QQ1Nzby6ICFXdAv+q7QiuvBMwXaIaNBEREdFFMDRDRESUxbQgzMkR30w4Rlt2DE0juIASMtogxZrSfP1HYf1WYdcrylj54zARERERXabWgSnsOHR5VWU2r3WjrJBVZYhyRsgHaexEtGKMFoqJhmPGTkCQA0ndlTaj+rkwjFJSj/zl64HSBsBVjfHxSUOWmiciosTXV7/6dAcO9k3ErK9y2vD/bWuE3SKlrW1kUGE/cGw3cPgJoON52JVQwpeEKq5GoHErAnX3Qc1zpaSZRERERLmozxtA/0Rs9cnrlhelrT25ShzvhbV1F2ytOyGN9yTcPuyqR6BpG/yNW6Hay1LSRiIiIso9DM0QERFlCVlRcWrUh+MDU/rgQy0g0zY4jUB47sGHc9Hm7K4uyZsJx2gVZBrc+bCZ+WMwEREREV15VZnnW0ew89CgXv1wPlVlHlxXhg+xqgxR9lJVCL6RaKUYLRzTNVNBRqsmI+DKJ3a4GLmgIhKOmbnVIOysg5rvBoTIvyOSJCHf6UzqfomIKPdmkf6r50/g1a6xmPWldjO+81ATXHZz2tpGBqMqkRm223brM2wjGBviuhitip42aDDQsBlK8cqUNJOIiIgo171zajzmsSvfhNrSvLS1J6eEpmHt2g9ryw5Y+t5KuLliLdKPdQNN2xEua5655kdERER0pRiaISIiykCKquK0x68PMoxUkYkEZXwJZudORJshUQvGaCEZbdlYZkc+Z0skIiIioiTQjld3Hh7E/uOJq8qUF1r0oAyryhBlGSWszwSphWFM5yrGnAvHBGIHHC+UKpohF6+cCcVoy7CzFkpxNVRLQVL3RURExvSdV09j79GhmHUFVgmPPdSEpQ5r2tpFxiGNdsDatgfW9j2QJs4k3F6xORGofwCBxi0Il1/FgYNERERESXagxxvz+LoqBwQec105VY2Ew1t36OFwMTT3JFuqICJUdQv8q7YjuPJOwMTzMiIiIkoehmaIiIgyYEZDrcxvS/+UXkWmJRqS0WboXojKYms0HFOgL5vK81Fg5X/9RERERJQ800EZz7WOYNehQf1Ydi5aEZkP1xRj2/pyVpUhynSh6Wgw5nzFGH05dhKCEkzqrhRLIWRnHWTXrHBM0XJA5DksEREtjp+8exY/eudszDqrScA/PNiAend+2tpFuU+YGoS142m9qoxp6FjC7VXJimD1nfA3PohQ1c2AxApIRERERIs1sem7PbGVZjZWFaWtPdlMm3TH2roLttadkMZ7Em6vVZAOrNquV1JU7WUpaSMREREZD391JCIiSnFApn88GA3HTOpLbUbucf/CAjJLiiznAzIVdjSV2eHI43/zRERERJQZVWW2NruxudmN8kLODEeUMVQVwvRwXMUYSXs8GTuIOBnkwmUzoZhzwRhtqeaVcJZ0IiJKqWePD+MfXo4duCUJwF8/UI+rKzkojhZBcArWEy/A2rob5t7XIaiJKsoLwMoPA+s/jrElN0M22VPUUCIiIiLj6h72weMLx6y7jqGZ+QtNw9q1H9aWHbD0vZVwc8VahEDDZgSatiNc1szrg0RERLToOJqWFkSSpEV5X1EU53xMuYX9bSxG7O+JQBj7jg3hlU4PjvdPYmzWhZbLpQ061MIx5wIyqyoK4MrPvNnljNjXRsb+Nhb2Nxnt/ETDz72xsL8vXVVmf8swdhzsx/H+xFVlbq51YvtV5bix2pmxVWXY18Zi2P5WwhC9PZBGOyFqwZhRLRzTCXG0C2JwIqm7UiUL5OIaKHrVmFq9eoyih2NqAHP8rP2L2QOG7W+DYn9TpuI5SuZ5rcuDv9jfHbf+ax+txR2NpchE7OsspYRhOv06LC27YOl6DkLYl/Alckkjgqu2IW/DpwFHpb5O9HoBJVHIhrIVv9/Gwv42DvY1ZTKO87q0d0/HXidb6rBiRQnDyxcz07+qCpx6A/YDP4S5/RkIobl/N1AFEeEVtyKw+iGEqu8ETDZ9/eKdOVMy5ML3m+aP/W0c7GtjYX9HCKo25T0REREl3ZFeL37y9insOXgGvtCVVZIpLbBifaUDzZUOrKt0YO0yB8oKIxcOiIiIiIhS4WifFz99p0c/rp0MzB0AX+qw4WMbqvDIhkosceSlrI1EBCAwAQy3A8MdkeVQW+T+aDeghJK7rzwnUNoIlNYDpQ2AO3q/eAUg8mduIiLKTO/3ePCp778dd632Dz/ahM/fVpu2dlEO0X52P3sIOPwz4MiTwNRg4tcULgGaHwLWfQwoX8sZtomIiIjS5L//6AB+0XL++O2R6yrxtw+tT2ubMlZgEnj7u8AHPwY8JxNvr11HvPpTQPMjQNGSVLSQiIiIKA4rzRARESXRdDCMvYfO4Cdv9+Bwr/eyXuuyW9C8LBKOiSyLUV5khcAfyYiIiIgoxaYCkeNaLSxzKMFxrVZE5o6mMnzy+irc2lCWsVVliHJmIObE2YuHYybOJHlnAlBcFQnF6MGY6FK72TNzJn4iIqJL6RiYwGd+eCAuMPPZD1fjt2+tSVu7KEeM9QCHn4jchtsSb28pAFZtBtY9AlTfwtAxERERUZqFZQVvd4/GrLupjte/LspzCnj8EWCode7tbA6g+WHgqk8CS69hOJyIiIjSjqEZIiKiJGjrn8Djb5/Czvf7MJFg9m2NI898QThGqyRTrM/KzYAMEREREaXTsTNePP72/KrKLNGryizHI9ctx9JiVpUhSio5FKkQo4djtGBMdKmFY4ITyd2XyQaUaBVj6s9XjNGCMSV1gJnfbSIiyn5nxnz4b//vHYxNx1Zee/DqZfjf963iNVm6Mj4PcHxPJChz6vXE2wsSUHdnpKJM432AJT8VrSQiIiKieTjS540b5/GhmpK0tSdj9b0PPP6xS1dUFESg7q5IUKbhXsBsS3ULiYiIiC6JoRlaEI/HsyjvK4oiHA7HzGOv1wtFURZlX5R+7G9jyaX+DoQVvNg2gicP9uOD3rkHLUkCcGu9C3c3lmLt0gIsc8yqIKP6MTbmRy7Jpb6mxNjfBiKHYJo4jUJfX2QGIUWG95ovpLy/nU5nSvdHxj4/0fDfOWMxWn/7gjL2twxj56EBHD07Oee2WhGZD9c4sf2qctxY44RJW6H64fFk57Gs0fra6DKyvwPjkDxdkEa1WydE7b6nC6K3B4KSeEKGy6HklUB21kJx1epL2VULxVkHpWhZ5Aft2Sa173V2frcztr8pZ/ub5yd0KTxHSb8xXwif+fFRnPXG/p92U00xvnrncni9Y8h07OsMEg7AfOplWFp3w3ziRQhyMPFLytcj2LQVwYZNUPOjs5VPBSK3i2B/Gwv721jY38aRCX3NcxS6FI7zurgXj/bGPK4pyYNZ9sHj8aWtTZnG3P0C7Pt+B0I4/u9EdtUhsPphBBu3Qi0oj6yc1Lbj318uyPbvN10e9rdxsK+NJRP625kB5ygMzdCCyHJsGfvFon05U7UvSj/2t7FkY3/3ePzYdWgQTx0bgtc39yCm8kILtja7saW5DGWFlpn1RjzIzMa+pivH/s4BchCS9xSk0Q59AKdJX3ZAGjsJQblgZlZbMZT1/wOyAf9do8yTyn93+O+cseRqf7cPTmHnoUHsaxnGVHDuf8fLCsz6Me2WZjcqiqyRlar294Kckqt9TWnub1WFOHkWkqcbkqczuuyCSQvHTA8ld1eCCKWoErKzDmFnTSQcoy2La6HmXeJitKJq/4si1/H7bSzsb8oUPEdJfzj8Sz9vwYnR2IFazUsK8I0H6iBCzcq/M/Z1iqkqTP3vwdq2B9aOZyAGvAlfIhdWItC4BYHGrfqx2PknLr/f2N/Gwv42Fva3cbCvKZNwnNfFvXMyNkx/XVVRVrV/sdkO/Qj2V/8SArTriBdwrwK2fAfj+TXnfyvm31vOy7bvNy0M+9s42NfGohi0vxmaISIimoewrODlTo8+qPCdnvE5t9Xqx9xYXYztV5XpS332bSKiTCUH9CCMFogxjXbqARk9HOM9Ob/Zzf1jEKaHAZsrFa0lIqIkDBx8rm1ED4Ef65+ac1vtMPam6mI8uJ7HtUTzP646FR+OGeuGEJpO6q5UU54+ADN8LhSjL2shO1YCpmiwjYiIyODXc//wqQ4cPRt7zFvtsuEftjUgzyKlrW2UHbRjOWv7Hj0sI42fTri9YnUgUH+/HpYJV1wLXFhpnoiIiIgyViCs4NCZiZh1G6uK0taejKLIsL/+N8g79O/xz1XfCnzsPwGbQythlI7WEREREV0WhmaIiIjmcNYbwK4jg9hzZAgjUxdUVrgIV75Jn337wXVlWOrgICUiyjBhbRBn9wXhmEgFGa2ajKAubPYA7b3CS69PWlOJiGhxqsrsOjyIZ4+PYCooX35VGSKaIfi9ehjm/K0bJk8nxPHTENTkVt9T8kujwZjzFWNkVx2UggpAEJO6LyIiolyhqCr+fH833jjpjasK/thDTSjOM6etbZTZtIlhtGoy1rbdMA8eTri9KloQrL5DD8oEV9wKSDx/IiIiIso2R85MIBA+X0FFmzvqmuUMzSDkQ+ELvwdr9wtxTwVWPQTr9u8CJktamkZERER0JRiaISIimkVWVLxxYgw7Dg3i9e6x2QVm42yoKsL29WW4tc4Js8RBS0SUZmF/ZEbzmWBMJCQjjvckdxBnQTngbtJvSl5J8t6XiIiSWlXmea2qzOHBuBm2Z9N+CNSqyWxjVRmiCFWBOHE2tmJMNCQj+kaSuytBguyomhWMqYVcXANVm6mRiIiI5k1VVfzDyz3Y1xL7/7XDZsJ3HmpiKJzihXywnPgFbFpQpufVeU0uE1q6EX4tKFN7L4/XiIiIiLLcOz3jMY+byuwoshl7SKUWJi96+nMXDZJPXf97CF7/O7AyMENERERZxthHeERERBcYmgzqFWW0QYUDE8E5t9V+ZH1gTSkeXF+Gla68lLWRiGhGaHpWOKYTJk8HRO9pCAnjfvMn28shu+r1Gc3DzjrIJfVAaSOKl1TPbKNoJbflhVWrISKi5OkYmsbOQwOsKkM072p8J2YqxsyEY8a6IYT9Sd2VYrZHQjHnwjHasZW2dFRxVnIiIqIk+dE7Z/HT9/pj1tlMIr69rQHVJbyOS1GKDHPfW3pFGUvXcxBDc08yoNGq/wUatyLQsBlKUWVKmklEREREi+/dWaGZ66qMXWVG+825aO9nIU30xqxXRTMm7/yGfkwsCZx0i4iIiLIPQzNERGRoiqrinVPj2HFoAL/q9EBOMM58/bICbF9fjjsbXLCaWFWGiFIgOBUZuDnaHgnGaCEZj1Y5pje54ZiCJXowRnbWI1xSHxnE6aqDao2/MCxJUtL2S0REyasq80LbKHYeHkhYVUb7OeummmI8uK5MX7KqDBmB4BuF5D0JdJ8Fhtv1W9Fga9IDxzOh45lwzLlbDRR7BcAflImIiBbN7iOD+M6rp2PWSaKAv91Sj+alhWlrF2UOabgV1rZdsLbvhTQ1kHB7Jb8UgfpNelUZ2b2Wx3JEREREOWYyEMaxs5Mx6zauMG5oxtz7Jgr3fQFiIDZIpFiLMH7fvyC87Pq0tY2IiIhooRiaISIiQ/JMh7D36BB2Hh5E71hgzm3tFhH3rXZj+/oy1LnzU9ZGIjIWITgBabQrWjWmAyZPtILMxJmk7kcuXHa+aoyrIRKUcdVCtXDwCBFR9laVGcSzx4cTVpVxa1Vl1pZh6zpWlaEcpcgQJ/pmqsbox1N69ZhuiP7RuM0XEgNWRRNkx4rYijFaOKa4BqqVx1VERESp9nLnKP76+RNx6//sozW4sbo4LW2izCBOnoW1/SlY2/bANNKWcHvVlIdAzUcQaNyC0PKbAJE/pxMRERHlqoO9EzETq2oTTK03aODe2roLBb/8KgQlFLNeLlqO8Qf+Tf9NmYiIiCib8SofEREZhqqqONg3gR2HBvFi+yhCCcrKrCq360GZjzSVIN/CqgpElBxCYDwajDlXNSYSkpEm+5O6H+0CpjaA83zVGG1ZA9VSkNT9EBFR6vlDMp5vHcWuw4M4MmsWvNm0eZC1QYIPrnfjwzVOVpWh3BDyQRo7oYdj9Ip80ZCMtk6Q554U4XIploKZMEykKl80HFNUBUjmpO6LiIiIrswHveP43093Qpl1ufcrt1fh3tWl6WoWpXlyGkvnc7C274a5962ElQVVQUSo8iY9KKMFZmCxp6ytRERERJQ+7/TEVlRZt7QAeUYbG6KqyDvwHdjf+XbcU6Hy9Ri//3tQ83leRURERNmPoRkiIsp5E/4wnjk+jB0HB3Bi1D/ntjaTiHtWlehhmdUVHFhORFdO8I/pwZiYqjHa46mBpO1DhQDFsRxhZ30kFKNVkNEHc9YCZlbGIiLKNZ1aVZnDkaoyk4H5VZXZ0uzGEgerylAWUlUIvpFZFWMi4RitmkyigY+XSy6oiIRhZm41emU+Nd8NCAybERERZXLlxd/b1Y5AOPbY4Dc2LsEnr12StnZRGsghmHteha19Nyzdv5hXmDrsXgN/wxYEGjZBtZelpJlERERElDnenRWaua6qCIYiB1Hw0v+GrXVn3FNamHzi7m8B5ry0NI2IiIgo2RiaISKinK0qc6x/Sq8q83zrCAJhZc7ta0ry8NBVZbhvdSkKrPzvkYjmT/CNRqrGaIM5R9oheSIVZMTpoaTtQ5vtUimqiqkaE45WjoHJlrT9EBFRZlaVeaFtFDsPza+qzIeqHdi2voxVZSh7KGGI470XCcd0QQx4k7orVTRDKKkFShv021T+MoSKVrIaHxERUZbqG/Pji0+2xgXKN69149Gbl6etXZRCqgrTwCFY23bD2vEMRP9owpfIBUsQ0IIyjVsglzSkpJlERERElHk80yG0D03HrNtY5YBRCIFxFO77Aiy9b8Y951v/GUzd9EeAaLCqO0RERJTTOCqYiIhyynRQxv6WEew4NIC2wdgLHLNZJAF3NrqwfX051i8tgMDZg4loDsL0sB6GkWaqxnREwjG+kaTtQxUkyMUro8GYaNUYVwPk4mrAxCoBRERGcjlVZUrtZr2izNbmMlaVocwVnII0dgKmaCAmEo7phDR2CoISTOquFEth9HgqUjFGqxwTdtZCcK6Es8R9vkkeD2R57u8XERERZabRqZAemBmZCsWsv6W2GH/8kWpe681xovcUrG1Pwda2G5L35LyOD4N198LfuBXhpRsAQUxJO4mIiIgoc713OrbKjM0kYs0SO4xAHO9D0dOfhWm0I24ix6mb/wT+df8tbW0jIiIiWiwMzdCCSNLiJMpFUZzzMeUW9rexLFZ/tw1OYcfBfjx7bBhTwbkHPVU5bdh+VTk2rS2DM9+clP1TPH63jSVn+ltVIUwP6ZVj9Koxox0Q9YCMFo4ZTd5uRBOU4mq9YowWjtFmtdTuK8UrLxqOybQ5fHKmvynnLNb5iYafe2NJV3/7tKoyrSPYcXAAh89MzLmtNgTwxppiPQB+c52LVWWuEL/bi3csJZ4Lx4xGbuLkmaTvTi5cBkUPxkRuinZc5ayFml8KzBooqz1ifxsL+9tY2N+UqXiOsjgmA2F8eWcbTo8FYtZfXVmE/7ulEVZzpl1JWRgj9/WFBJ8HlvanYWnbBdPZ9+dVZTC08jYEmx5EqPqOmWrNmf7pYH8bC/vbWNjfxsG+pkzGcV7nHTgdew3+muVFsFlyf/yINHAYBU99BuL0cMx61ZSHqXsfQ6jmroTHzNnY33Tl2N/Gwv42Dva1sbC/IwRVVdXofSIioqziD8l4+vBZ/OTtU/igZ2zObbVBhPesqcAnr6/Ch2pKIHJQIZGxaYfAE/3AUAsw1AYMtUaWgy2Af+5/Ty6LaAZK6wF3I+BuOn9z1QAmS/L2Q0REWa2tfwI/facHO9/vxbg/POe2ZYVWfGzDcjxy3XIsd+WnrI1EMeQw4DkBDLdHbx2RYyltGfAmd1+SFSipixxTlTZEjqu0+9o6izFmfiQiIqLzAmEZv/nvB/BGV2zl36aKQvzsf3wIjrzcH+RmKCE/0L4POPwE0PE8oMx9vqRbfj2w7hFgzTYg35WKVhIRERFRFrr9717GieGpmcdfvbcJ/+PWWuS0tn3Ak58BQtOx6wvKgU/+DFh6dbpaRkRERLToWGmGiIiyTufgJB5/uwc73u+F1xeac9tlxXl6UObh6ypRVhiZSY6IDBaOGT8TG44ZjAZkkjmgU7KcH8TpXnU+JOOqBiQO1iAioksHwLWwzHunPHNuqxXMuKXerR/X3tFUBrNkzJlfKA0CE+dDMdryXDBmtBtQ5j4Xu2x5TqC0MT4cU7wCEDN9PnAiIiJKBVlR8ZWfHYoLzKL8/oYAAQAASURBVFQ68/Cjz2xkYCZXKApw6nXg8M+A43uAwHji17hqgXUfA9Y9HJmshoiIiIhoDmfGfDGBGc1NdaXIaW//K7D/jwBViV2v/bb9qSeA4qp0tYyIiIgoJRiaISKirBAMK3juWL9eVeat7tE5t9WKyGiDCT91/Qrc0uCGxKoyRMYIx3hPX1A15oJwTDC2tPaCmGzRyjFNsTfnSkDioTURESXWPjChB8DnU1XGrVWVuW65XlmGVWVocSvwnZ1VMSZ6f+JMkncmRH581UIxejAmutRu9hz/UZqIiIgWTAucP3PkbMy6ErsF//nZ61FexAmTsp5WAVoLyhz+OTDem3j7/BJg7XZg3ceBZddEZhsgIiIiIpqH2UF8LYC/akkRcpIiA89/DXjrn+Ofq74FeOQ/gbzidLSMiIiIKKU4so8WxOOZezbcKyWKIhwOx8xjr9cLRZtZinIS+9tYLre/e8f82HloALsPD8AzPfegwtICMx5cV44H15djSZFVXzfuHUti6+ly8LttLCnrb1WBON4HcbQDknYbaYc02qnfhNBU8nZjskF21UF2NehLpaQesqseStHyi890Pp7EYE4WyITvt9PpTOn+yNjnJ5nyuafUSXZ/a1VlXmgbwY6DAzjUN/f/Gdowrw9VF2P7VeW4udYZrSoTgMcTuOL906UZ8rutqpD634elfS9MZz+A5OmCEJxM7i4kK2RnDRRXLWSndkxVC8VZC7m4GjDnxb8gqN0W799wQ/e3gbG/jSXd/c3zE7oUnqMkj6qq+MGvumLW5VtE/ONDTSiWgvB4tAOK3JTLfS1MDcLS9hQsrTthGjo+r+PMUO3dCDRtQ7jq5vMVnsdy53eAXO5visf+Nhb2t3FkQl/zHIUuheO8Il46HjtZ0LXLC3NzbEnIB/tzX4al6/m4pwKrHsL0nX8N+FXA78np/qaFYX8bC/vbONjXxpIJ/e3MgHMUhmZoQWRZTsl+tC9nqvZF6cf+NpaL9XdYUfFalwc7Dg3irZNeqAne44aVDmxbV4Zbaoth0gcVpu7fJ5o/freNZcH9rcgQJ3ph0gMx0YDMaCdM2qDOsC9p7VTN+QhrAzhdWiimDmFnPeSSeiiFywBBvMgL9H9gkrb/XMHvN2WKVH4O+bk3livt767haew6PIhnjg1jIjD360vsZmxpdmPLWjeWFZ+bJVvl5yzFcvm7rYWNre1Pwdq+F9LEPGbungclzwXZWRs5ntJvNfryksdSmgz6+83l/qZ47G9jYX9TpuA5SvIc7JvAidHYa0J/cV8tGt15Of3nzsm+Dk7B2v08rG27Ye59A4I69w/0KgSEKm9AoHErgrX3QLUUnn8ym/8ejNLfdFnY38bC/jYO9jVlEo7zigTyD5yKDchct7wwY9t7pYTpYRQ981swDxyKe27q+t+F77ovRqbxSsKfO5P7m5KP/W0s7G/jYF8bi2LQ/mZohoiIMsbARAC7Dw9hz5FBDE6G5ty2OM+EzWvdeHBdGZY7zw0qJKKso4VjxnsuCMdowZho5Rg5eTPqK+aCaOWYOn2287BWOcaphWOWXHpAJxER0RXwhxT8on1ED8sc6ptMWFVGC4A/OCsATpQs4sQZWDv2wtr2FEwjrVf0HqogQimqhFxci7DrgnBMcS3UvPTPCERERETGsOfIUMzj5cVW3FrLY5GsoYRhPv26HpSxdr8wr0lxwiWNelAm0LAJSsGSlDSTiIiIiHLfKY8/bjzKxqrzM6/nAu239qK9n42bPEkVzZi88xv6cTYRERGR0TA0Q0REaaWoKt44MaZXlXm1ywMlQVmZayoLsW19Ge6od8Fi4qBCoqyhhCF5e2KrxmjLsW4IcjB5u7EURKvG1CPsrJupIKP/sC5oQ5OJiIgWR/fwNHZeRlUZLQC+tfnCqjJEySH4RmHt2q9XlTGfOTDv16mmPD0ME76gYox+c6wETNZFbTMRERHRXCYDYbzQOhKzbktzGQRe68lsqgpp6ChsWlCmfS9EX2wfXoxsL0egYbM+iE8ubUpJM4mIiIjIWN7tGY95XGo3Y4Urd67Tm3vfQuG+z0MMxP45FWsRJu79rl7FkYiIiMiIGJohIqK0GJoI4OfvncaP3zyJM965q0kUWiU8sEarKuNGTWl+ytpIRFdADgGj3TCfeBeW4XaYPB2QRrRwzEkIShLDMdaiSCDmgqoxejjGXs5wDBERpbSqzIt6VZkhHOybSLi9VlVmG6vK0GIITcNy4hewte+FuedXEJRwwpeEi6sRrN+EUMXV0ZBxBSvwERERUUZ6vnUU/rAy81gSgAfWlqa1TXRp4ngvrO17YG3bA5OnK+H2itmOYO1HEWjcgtCyGwBRSkk7iYiIiMiY3jnljXm8YUVRzgTytcqOBS/+EQQltpKOXFiJ8U0/0K8DExERERlVykIz09PT+jI//+KDnR977DE88cQTGB4eRnV1NT7/+c9j06ZNqWoeERGlgKqqOHDKiz37TuD5Y/0IyXOXlVm7xI7t68txd6MLNjN/KCPKKHIQ0tiJaMWYTpg8nYC3Gxjp1KvKFCRpN4q1GHJJbNWYsKsear6b4RgiIkprVRktKPPM8SGM+xNUlck3Y3Mzq8rQIpBDMJ9+Ta8oY+1+AULYN7+Zu+sf0Gfvlt1reDxFREREWWH3kcGYxzfXOlFqt6StPRRP8Hth6XwWtvY986p2qAoSQlW3wN+4BcHquwBzXkraSURERETGpqgq3jsdOwHWhuUOZD1VRd6B78D+zrfjngqVr8f4/d+Dms+JB4iIiMjYUhKa2bt3L7Zu3YqCggL09vaisLAw5vnPfOYz+NGPfjQzoLq9vR3PPfccvv71r+OrX/1qKppIRESLyOsL4+ljQ9h5eBCnRv1zbptnFnHv6lJ9Bu6mcnvK2khElxAORMMxHXowRq8aoy21yjHq3IOEL4eS59KrxUSqxtSdD8fklXAwJxERZW1VmQfXleFWVpWhZFIVmM6+HwnKdD4L0e+ZV4U+febuhs0ILd3ImbuJiIgoq3QMTeN4/1TMui3N7rS1hy4gB2A5+bJeUcZy8qV5VZnWBuwFGrYgUH8/B+0RERERUcq1D07D64+t0r2hqghZTQ6i4KWvwda6I+6pQM3dmLj7HxhSJyIiIkpVaEYLwGhhmM2bN8cFZl577TX88Ic/1MscalVoGhoa0NraCp/Phz/90z/Vq82sXbs2Fc0kIqIk0v7dP3J2EjsODuKFthEEE1SVaXDnY9v6Mnx0VQkKrCkrhEZE54T9kDzdetUYabQ9EozR7ntPQVCVpO1GyS+9oGpMPcKuSEBGD8cQERFloM7BCfz7r05g79HBeVeV0QbxVbKqDCWRNNwWCcp07IU00Zdwe1WyIlh9JwINmxBccSsgWVPSTiIiIqJk2zOryoy7wIwPVRenrT2Gp6ownX0P1rbdkRB3wJvwJXLRcgQat+hhGdlZk5JmEhERERFdzLs94zGPK4utWOLI3munQmAchfu+AEvvm3HP+db/JqZu+ionUSIiIiKKSsmo5LfeeksPxdx+++1xz33ve9/Tl0uXLsWbb76JyspKnD59Gh/+8If1qjT/+q//isceeywVzSQioiSYDISx7/gIdhwaQOewb85trSYR9zSV4MF1bqxdUqD/X0FEiyzkg+Tpgmm0IxKK8XTq98Xx08kNx9jL9Eox56vGNEB21kLNcyZtH0RERIslGFaw64Ne/PTt03jn5GjC7a9fUYRt68txS20xzKwqQ0kijvfC2r5XD8uYRtsTbq8KIkLLb9IrygRr7oZqiZ24hoiIiCjbBMIKnj0+HLNu01o3TCKvI6eaNtmOHpRp2wNpojfh9orVoVeTCTRuRbjiGlaSJiIiIqKM8E5PbOh7Q5UD2Uoc70PR05/Vf+uffZ146sNfg3/9r6etbURERESGDc0MDkZmgWpsbIx7bv/+/fog6S996Ut6YEazfPly/fEf/MEf4JVXXklFE4mIaIFaB6b0oMz+lhH4QnMPvK912/Gp61dg+zWVUAKTkOW5Z+wmoisQnILJ0wVJC8fowRitcowWjumFgLkrP10O2V6hV4xRSuphW74ecK8C3A3w+sHvNhERZaW+MT9+d1c7TozMHQB35Zuwea0bW9eVsaoMJY3gG4G1c58elDGffW9erwmVX61XlNEGJar5pYveRiIiIqJUealjNK7ao3YMTqkhTA/D2vG0HpYxDx5JuL0qWhCsvkMPykSqHVpS0k4iIiIiovkIywo+6J2IWbehqgjZyDRwGEXP/BbE6aGY9aopDxP3fBvB6rvS1jYiIiIiQ4dmhoYiB2iFhbEzXB47dgzDw8N6aGbLli0xz1133XX68tSpU6loIhERXQFfUMbzbVpVmUEc75+ac1tt9r87Glx4+OoK3LVuxUxVGU8gRY0lylFCcDJSMUavGtMxE46RJvqSuh+5cGm0akx9pIKMq05/rFojx3eSJMHmvKCKjN+T1P0TERGlQtfwNL74ZCuGJkNzVpV5cF0Zbq1zsqoMJUdwCtYTL0SCMj2vQVATB4/DzjoEGjcjUL8JiqMqJc0kIiIiSrU9R2IHgG2sKmJgfbGFfLCceAE2LSgzz2PT0NKN8GtBmbp7oVqzc9AhEREREeW+o/1TcRPAXrc8+45fLSdeROFzX4YQjp34S8kvxfj930e4fF3a2kZEREQEo4dmtEGUmtHR0Zj1r732mr50u91xVWic0UGXfr8/FU0kIqLLHEy489Agnjk+jMnA3D+aLXNY9UGF2gyALrtZ/z/hXGCGiOZPCEzMqhrTHgnKTJ5N6n7kwko9EBPWQjF6OKYesrMWqqUgqfshIiLKNEfPTuLLO9rg9YfjnnPlm7Fpbal+XMtBepQUchCWnlf1oIzlxC8ghBNf/5ILKvSQTKBhM+TSVQDPq4iIiCiH9Y75caBnPGbd5mZWmVkUigxz31uwtu6Cpft5iKG5J8g6H+Leqh+bKkXLUtJMIiIiIqKFeHfW+UVdaZ4+hiWb2A7/B+yv/iUENTb8o016Of7AD3hsTkRERJTu0MyyZcvQ2dmJgwcP4rbbbptZ/8wzz+gDp2+++ea413i9Xn1ZWlqaiiYSEVECgbCCX7aPYufhwbiStbNJAnBLnRPb1pXh+pUOiBzMRTRvgt+rV4zRAjEmLSRzrorMVH/S9qFCgFK0PBqOOV81JuysBSz2pO2HiIgoWxzo8eL3d7VjetYscw3lBfjynQ3YsNQCEWra2kc5QlVgOvMurO17YO3cBzEQufY1F8VajEDdvfpgxPDS6wCB1Y2IiIjIGJ46Gltlpsgm4fZ6V9rak3NUFdJwC6xtu2Ft3wtpejDhS7SZqwP1m+Fv3ALZvYYhbiIiIiLKKu+cir0eu2GFA1lDkWF//RvIO/T/4p4KVn4IE/f+M6s+EhEREWVCaEYLxXR0dOA73/kOPv3pT+tBmAMHDmD//v368/fcc0/ca1paWvRlRUVFKppIRESX0OPxY9ehQTx1bAheX/ys2xcqL7Rga7MbW5rLUFZoSVkbibKR4PNEq8ZowZgLwjHz+IH6ssIxjqpoMCYSjtFmgdQqx8Ccl7T9EBERZbOXO0fxx3s7EZRjQzHXrnDi//3GBjjyzPB4PJDluSssEs05GLH9KVg79kKaTByEVk02BKvv0oMywaqbAYnnVkRERGQsYUXF3lmhmftWl8JqYoB4ocSJM3pIRgvLmEbbE26vmvIQqL0HgYYtCC2/ERBT8tMyEREREVFS+UMyjpydjFm3oSpLQiYhHwpf+Aqs3c/HPeVv2obJ2/+K15CJiIiI5iElVza/8IUv4Ic//CFOnDiBmpoaNDQ04Pjx4wiHw3C5XPjYxz4W95pf/vKXehWa1atXp6KJRER0gbCs4JWuMew4NIB3TsWWqJ1Nm0vuQ9UObF9fjptqimESObsc0YUE38isqjEd+n3RN5K0faiCCNmxYiYYIzvrES6ph1xcDZhsSdsPERFRrnn62BD+cn83ZuVlcGN1Mf7tNzci38IBYXRlRG+PHpKxtj0Fk6cz4faqICFU9WF9MGKg+i5W/yMiIiJDe/PEGIYmQzHrtIma6MoIgQlYuvbrQRlz39sQElTR1K41hpbfhEDjVgSq7+axKRERERFlvYN9kwhd8EOAJADXVBYi0wnTwyh65rdgHjgU99zUxt+Fb8MXWQGSiIiIaJ5SMvrjmmuuwTe/+U38r//1vzA5OYn3339fX282m/H9738fhYWxB6FerxfPPPOMfv+2225LRROJiAhA/3gAuw4PYveRIYxMxf4oOZsr36T/UPngujIsdVhT1kaijKSqejhGm53xXMWYcyEZ0T+avN0IEuTilbFVY1wNkJ0rAYnfQyIiosvxX+/34+9+eSpu/V0NLvz15gYGZuiKfsC0djyjz9xtHvhgXq8JLblWrygTqLsXal7JoreRiIiIKBto16cvtKbCjnp3ftrak5XkICw9r+pBGcuJFyHIgYQvCbvXwK8FZeo3QbW7U9JMIiIiIqJUeLfHG/N4VYUdBdbM/g1A8nShaO9nIY2fjlmvimZM3vE3CDQ9mLa2EREREWWjlB39/d7v/R7uuusuPPnkk+jv78eSJUvwiU98Ao2NjXHbvvzyy9iwYYN+/4EHHkhVE4mIDElWVLxxYgw7Dw3i9RNjUOaeZE4vUbt9fRlurXPCLImpaiZR5oRjpoeigZiO2HBMYCx5uxHN58MxzrpI1RgtIFOshWNYWpmIiGghVFXF99/sw/fe6It7bmuzG1+9u5rHuTRvQnAClu4XYG1/CubTb0BQ5YSvCbvqIxVlGh6AUrQ8Je0kIiIiyhbDk0G81uWJWccqM/OkqjANHIS1bQ+sHU9D9Mf+PV6MXLg0cmzauEW/FklERERElIve6RmPebyhyoFMZup7G0XP/jbEQGy7FUshJu77LkKVH0pb24iIiIiyVUoj083NzfotkS1btug3ynySJC3K+4qiOOdjyi3s7/QYmgxi9+EB7Dw0gP7x4JzbFtlM2Nzsxvb1FVhZkreg/bK/jSOr+1oLx0z2R4MxHZBGIktRu826MLWg3UgWyMU1UErqotVjGiCX1ENxrAAkc9z2i/O/bnJkdX/TZWN/k9HOTzT83OcGRVXx9y+exE/fOxv33K9vXIov37YCgiCwvw3kivo6HID51CuwtO2BufsX85q1Wy5chmDjZgQbt0ApbdLXCRl+fJeL+N02Fva3sbC/KVPxHOXyPdsyAvmCiZ1sZhH3rnEv6t9lpkvU1+LYSVhad8HSuhuSN76a5mzaQLtQwwMINm1FeOkGQIi8n3H/hjNLrn636eLY38bC/jYO9jVlMiOO85rwh9E6MBWz7vqVxRl7jqEd2+e/8AcQlFDMermoEpNbfgjFVZf2Y/dM7m9KPva3sbC/jYN9bSzs7whB1aZYJSIiQ1C0qjJdI/jJ26fwwvEBhBOUlbl2hROfur4K9zUvgc2c7tNuokWgHQZ5e4GhNmCoFRhqid5vA5IYjoFkBUobAHcjUNYEuKM3ZzUgZXbZZyIiolwRlhX84Y4j2PF+b9xz/+ueRnzhtlo9MEN0UYoMnHodOPJz4PgewO9N/Jo8F7DmQaD5YWD59drVx1S0lIiIiChraT9Z3v53L+PkyPTMuoevrcQ3H16f1nZlpKkR4NhO4PDPgN4DibcXzUDDPcC6R4D6ewCzLRWtJCIiIiJKu+eP9eO3/vO9mccWk4jD/+cjmTcGRhu78KtvAi/9VfxzS68BPvkzoIBVOImIiIiuFEdpEhEZwOhUEE++dxqPv90T84PjxRRYTdh2zTJ88voqNFUUpayNRItKUQDv6WggpuWCkEwbEJxM3n5Mtmg4pmlWOGYlIGbYRTciIiID8Ydk/M5PP8Dzxwdi1msZmb/cshafvmFF2tpGGUz7kfLsoUhQ5uhOYOJM4teY7UDT/ZGgTO3tF60eSEREREQX9/aJ0bjr1x/fuDxt7ck4IR/Qtg84/ATQ+QKghBO/Rgtvr/tYJMyd70pFK4mIiIiIMoo2seyFrq1yZl5gJhwEnv5d4OBP4p9rvB/Y/m+AJT8dLSMiIiLKGUkNzfzqV7/CYrjlllsW5X2JiHJ9Vr4DJz14/O1TePZIP4KyMuf2a5cV4dPXr8Cm9UthtzJTSVkcjhk7FQ3EREMx+rIdCMWWXF4Qc34kHFO2KlI9Rg/HNALFKxiOISIiyjCTgTB+6z/ejfthzCQK+PtH1mPLVcvS1jbKUCNdwJEnI2GZkY7E24smoO6uSFCm8V7AYk9FK4mIiIhyzs8OnI55XFdWgGuqnGlrT8YITAC//Dpw8PH5Vcd21QLrPx45PnVVp6KFREREREQZ642u4ZjHN9WVIKP4xoAn/htw4pX45274AvCRr3MMAhEREVESJHVU9G233QZBm6Y1ibT3C4fnMVMSpYXH41mU9xVFEQ6HY+ax1+uFog2EppzE/k6uCX8YTx8bwpMf9KN7xDfntjaziI+uKsVDV1VgzZICfV1wegLBuYvRLAj72zgWta8VGeL4aUgj7ZBGOyCOdkbue7oghP3JC5+Z8yG76iO3kshSKamHUrgMEMT4F3jn8aN1juJ321gyob+dTg6aodSdn2TK554u35gvhC/+vAXHzsZWlrOaRHxzawNuXpF/0c8N+9s4Zvp6YgA4thPhg/8FU//Beb02tHQjgk1bEKq7D2pe9P+lqWDkRhmJ321jYX8bS7r7m+cndCk8R7m869rPHjkbs27TmhKMjY3ByITxPhTu/Syk4dY5t1PyShBs2IRg01bI5esjZTU1i/gZpMWRa99tmhv721jY38aRCX3NcxS6FKON8xqZCqJ9IPb3gbVl1kU9V7sc4ngvCp76jD7W4UIqBPhu/VMErvrNjByDkKn9TYuD/W0s7G/jYF8bSyb0tzMDzlFMi1HZgIxDluWU7Ef7cqZqX5R+7O8r+7f3eP8UdhwaxHOtIwiE5/4PraYkD9vXl+G+1aUotEX+K0jX3zn72ziuqK+VMCRvjx6MkTydkEY7YdLvd0GQkzcYUTEXRMMxdfotHA3KKAUVFw/HKNrxDj+3c+F321jY35QpUvk55Oc+8w1OBPHFJ1vjguR2i4Rvb2vA1ZVF8+5D9nduEgITsJx4Huh+FjjxK0BVEl4oC5euQqBhEwL1m6AULj3/BD8fWYnfbWNhfxsL+5syBc9R5u+Zo4Mx17W1ypD3NpVk9Z9poUwDh1H0zOcgTsfOjH2OKlkRrLkb/satCC3/MCCZI09wgENOyfbvNl0e9rexsL+Ng31NmcRo47zeOhEbjrFbRDSV5WVE26TBIyh8WjveH4pZr5psmPjIt/Vj/Wy57pwp/U2pwf42Fva3cbCvjUUxaH8nNTTz0ksvXfK5YDCIr33tazhw4ADcbjceeeQRbNy4EeXl5frzAwMD+nNPPPEEBgcHsWHDBvzVX/0VzOboBV4iIoozHZT1kMyOQwNoHZi7PIxZEnBXowvb15Vj/bKCpFcGI1oQOQTJe0oPxUiejkgwRr9/AoKSxHCMpXAmHHMuGKPdV+xaOIbfCSIiolzRO+bHF55oxZnxQMx6Z54Jjz3UhKZye9raRmkWDsBy6mVY25+C5eQv5xXElgsrI0GZhs2QSxpS0kwiIiIio9l9ZDDm8a11Trjsxv2N0NL1HApf+MpFqmoLCC2/Ef6GzQjW3gPVUpimFhIRERERZb53e2KrtGiTaWkB/XSznHgRhc99GUI4dtIvJb8U4/d/H+HydWlrGxEREVGuSmpo5tZbb71kBYT77rsP7777Lj772c/i29/+Nuz2+AEqv/Zrv4ZvfOMb+N3f/V3827/9G771rW/h2WefTWYTiYhyQsfQNHYeGsCzx4cxFZx71rjlxVZsX1+OB9aUojjfuD8yUoaQg5DGTupVY0wj56rHdOjrBCWUtN0oVoceiAnrlWOi4RinFo4pYziGiIgox3UOTePRJ1sxMhV7bFFeaME/PdyEla68tLWN0kSRYe57KxKU6doPMTiZ+CV5LgTq7teDMuGKq3kMSURERLSIWgem0DYYOynU1mY3DElVkffB92B/42/jnyttBD7xU0yKLkPOBElEREREdLkOzArNbKgqQrrZDv8n7K/+BQQ1dqxP2FmH8U0/gFJUmba2EREREeWypIZmLuUHP/gBnnvuOdx99934/ve/P+e2+fn5+N73vodTp07pr9Hu/9Zv/VYqmklElNH8IQW/aB/BzkODOHxm7kFekijgtjontq8vw3VVRRA5wItSTQ5A9PQAfWeAwVZgqBVFA8ch6uGYcNJ2o9ics8IxdQg766Hml3JgIxERkQEdOTOBL+9sw7g/dgBZldOGf364CRVF1rS1jVJMVWEaPKIHZawdT0OcHkr8GksBAjUfgb/+AYQqbwQkTjpARERElAq7D8dWmakotGDjCgcMRw6i4JX/A9vxJ+Kfq7kNePhHQF4x4PGko3VERERERFmlb8yPPm8gc0Izigz7699A3qH/F/dUcNkNmLjvu1Ct6Q/1EBEREeWqlIRmfvjDH0IQBHzhC1+Y92seffRRvPDCC/jRj37E0AwRGdrJUZ8elHn62FDc4L/ZlhRZ8OC6MmxudqPUbklZG8nAwgFIY93RqjEdkEa1yjGdkLynIKixn1dpAbtR8kqiwZgGPRijVY0Jl9RDzStZ8B+BiIiIcsNbJ734n7vb4Q/Hzs7WWJaPx7Y3wWVnAMIIJE83rO179bCM5D2ZcHtVNEOovxtofhho+CimpwKctZuIiIgohfwhGftaRmLWbVrr1ieGMhLB70Xh/kdh6X0z7rnA2k/A+uBjDHUTEREREV2GA6djq8wU55lQ585PT2NCPhS+8BVYu5+Pe8rf+CAm7/hrQOIYHyIiIqKsD820trbqy6qqqnm/Zvny5TGvJSIykpCs4KUOjx6WeXfWifxs2m+HN9UUY/v6cnxopcNwPyZSioR8kDxdMHmioZjRDphGOyCOn44rG7wQSr77gqox9XoJYi0ko+a5krYPIiIiyj0vto/ifz/dibCixqy/alkhvr2tAQXWlFz+oDQRJ/th6XhGD8qYh44m3F6FgNCyjQg0bIbccD+Kl1Sff3IqduZBIiIiIlr8Y/mp4PnQsnZ1e/NaN4xE9J5C0d7/DtNYd9xx6/RNf4Tgtb8FKwMzRERERESX5d2e2LE21y0vgiikfjyNMD2Momd+C+aBQ3HPTW38Xfg2fBFIQ7uIiIiIjCYlo0b8fr++PH36NK6++up5vUbbVhMIcLACERmrPOyuw4N46ugQRqfDc25bajdja3MZtq5zo6LImrI2Uo4LTcOkhWKi4RgtGKMt9XAMYgehLoRsL48GY+oiwZiSer16jGorTto+iIiIyBj2HBnEXz1/ArPyMrix2oG/3VwPm3kh9e4ok2fitnQ/FwnK9L41r2PVsHuNHpQJ1N8PpWCJvk6S+PkgIiIiSqc9R4ZiHt+w0oElDuNc7zadeRdFz/42RL8nZr1qysPER76FYM1HIHEAHRERERHRZVFVFQdmhWY2rChKeTu0iUmL9n4W0nhkHOSFFdC16jKBpm0pbxMRERGRUaUkNFNXV4cjR47gX/7lX7B58+Z5vUbbVlNbW7vIrSMiSi9tNuzXuj3YeXAQb570Jhzqdf2KIr2qzC21xTBJYopaSblGCE7qF2i0ijEXhmOkid7k7qhoGeBu0m9T9uUIFddGKsdYU39BioiIiHLPj989i2+/3BO3/iNNJfjze2tg5vFybgn7YTn5Sz0oYzn5CgQlmPAlsqMqGpTZpB+HEhEREVHmODXqw/u9EzHrtjQbp8qMtW0PCl78o7jjWjm/DOMPfA9yWXPa2kZERERElM1OjPgwMhWKWbehypHSNpj63o4E5AOx4R3FUoiJ+/4ZocobU9oeIiIiIqNLSWjmkUceweHDh/Hcc8/hC1/4Ar71rW/BZrNddFutsszv//7vY//+/RAEAR//+MdT0UQiopQbnAhi95FB7D48iMHJ2JP12YrzTNi01o1t68qw3Hnxfz+JLkYITMyqGtMReTxxJqn7kQuXna8a42qIBGNKG+CsqJrZJujxQJblpO6XiIiIjDtL3L+83osfvBV/TLN9fRn+4M6VkETOxpwTlDDMvW9GgjJdz0MMTSZ+SX4pAnX362GZcPl6gDNzExEREWVFlRntOvitdU7kPFVF/jv/iPwD/xj3VLh0FcYf+P5MZUQiIiIiIrp878yqMlNeaMHyYmuKA/J/CEEJxY2rGN/0A8iu+pS1hYiIiIhSGJr5yle+gh//+MdobW3Fv/7rv2L37t16kGbDhg0oKyvTwzEDAwM4cOAAfv7zn6O/v19/XWNjo/5aIqJcoagq3jrpxc5Dg3i1ywM5QVmZayoLsW19Ge6od8Fi4izZdGlCYDy+aoynA9Jk5P/UZJGLlkN21iHs0sIx9ZGbswaqpSBuW0mSkrpvIiIionPH1N988RR+fnAg7rnfvH4pvvDhSv06A2UxVYVp4BCs7Xtg7XgGom8k4UsUcwGCtffoQZlQ5Q2AmJJLXkRERER0hcKygmeODcesu391ae5XiwwH9MFzto69cU8FV9yOiXu+fdFrrURERERENH/vzgrNbKgqSs3vBqqKvHf/Cfa3/yHuqVBZM8bv/z5Uu3GqaxIRERFlkpSMINCqyrz00ku4//778f777+uhmMcee+ySs8Vqrr76ajz99NOwWlOX8iYiWixa2de9R4ew6/Ag+ryBObctsEp4YE2pXlWmpjQ/ZW2k7CD4x6LBmPZoMKYT0kgHpOnBpO1DhQDFsRxhZzQU44qGZJy1gJmfSSIiIkrvwLo/39+NfS3xIYov3bIcv75xaVraRcmhHd9qFWWs7Xshjfck3F4VLQiuvE0PygRX3g6YWJWTiIiIKFu81j2GkenYWZe3NOf24DHBN4KiZ34b5v73457zrf8NTN30x4DIiYiIiIiIiBZCVlS8dzo+NLP4Ow6h4OWvwdbyZNxTgeq7MPGRf+B4CyIiIqI0Stm0m+Xl5Xj77bfxL//yL/jud7+L48ePX3S7VatW4fOf/7x+4wz1RJTNtBDge6cnsOPQAF7q8CCszF1WZu0SO7atK8dHmlywmfnvn9EJvlG9coxJC8bolWM6YPJ0QpyOnX1xIVRBhFJUhXCJVi0mUjlmJhzDAYdERESUYfwhBV/d24FXu8di1mtzw/3xR6rx4LqytLWNrpw4eRbW9qf1sIxp+OLXimYHvLVKMoGGLXplGdWagh87iYiIiCjpdh8Zinm8bmlBTk8ipQXEi57+75DGT8ddo526+U/hX/draWsbEREREVEuaRucwkRAjlm3ocqxqPsUAhMo3P8oLKdfj3uOAXkiIiIig4VmNFoI5tFHH9VvWrWZI0eOYHR0VH/O6XSiubkZS5YsSWWTiIiSzusL45njQ9hxaBCnRv1zbptnFnHv6khVmaZye8raSBlCVfXZBU16KCZSNcakVY3xdED0jSZvN4IE2bEitmqMqwFycTVgYkU3IiIiynyTgTC+sqsd7/dOxKw3iQK+fn8t7mosSVvb6MqqJ1o698HWvhemM+9AwNwTDGhCZc2RijJ190MpKE9JO4mIiIhocQxMBPDGidgw/Nbm3A3Bm0+/jsJ9j0IMxp7PKOYCTHz0HxFacWva2kZERERElGveORVbZWaFy4ayQsui7U8c70PR05/Vx33MngBq6ub/Df/631y0fRMRERFRhoZmLlRRUaHfiIhyparMkbOT2HloEC+0jSAQnnvQV707H9vXl+Gjq0pQYE3bP8WUSiEfzAMfQBo5XzVGC8qIfk/SdqGKJsiOlbPCMfWQi1cCEsMxRERElJ080yH8zo42tAxMxay3mkR8c0s9bqwuTlvb6DKEfLCcfBHW9r2wnHoFghJK+BLt2NbfuAWB+k1QnNUpaSYRERERLb69R4dxYWF2u0XEXY0u5CLrsZ+h4JU/haCEY9bLhUsxfv+/QS5tTFvbiIiIiIhy0bunY0MzG5YvXrVybcyHY/enIU7HVtJUTTZMfOTbCNbcvWj7JiIiIqLLw5HaREQLnPF6f8uIXlWmY2h6zm2tJgF3N5boYZm1SwogCELK2klpoiow970Fa+tuWLqegxiaTM7bima9SkwkGFM/E5LRqslAWrwZUoiIiIjSMQP1oz9vxclZFRwLrBK+va0RVy0rTFvbaB7kEMy9b8Da/hQs3S9ADE0lfkl+GYL1DyDQsAnhsmaA501EREREOUVRVew9Gjug7CNNJci3SMgpqoL8N/4W+R98P+6pUNk6jN//Pah2d1qaRkRERESUq4L/P3v3AR7VdeZ//Dd91FGhgwAJEB033LtNNbZxd5zEu8mm991kk81mk032n7Ipu5vuxJtk053Yjo0L1ca9xL1QRe8dCfXp9//MEANHAiShmauZud/P8/DI59yZe1/0DmMdzX3PG0vojU4d62eMKsvY9Yqf+JcuBTOJgko1z/+FYoOnZey6AAAA6D2KZgDgNKzb15YqlFm69qA6oolTPnZ0RVA3Th+kayYNVFkBb7tOkOwkkyyUCaxfKE/r3tM+j+X2K15ec1zXmPFHimNKqyWPL60xAwAAZJvtjSF97N612tsSMeYrCr368c0TNH5QUb/FhlOwLHn3vp7qKBPYuEjujoZun5LwlyhSO0fhuusUHXae5M6zGyYBAABw1Kvbm7WrKWzMXT91kPJKtF0lj31Wgc3LuxwK185Vy9XflXwF/RIaAAAAkM9W7WlVOHbsHp7klkxnj8zM5lvuw1vk2/uGMRcrH6vma3+pROmIjFwTAAAAp8/Wu7djsZgWLVqkZ599Vps3b1ZLS4vi8fgpn5PsxLBixQrbYgSAkwlF41q+rkF/eWufVu899Q7JXrdLV46vSHWVOWtECV1lHMDVfjB1Y2Cw/kF5D6zu1XMtT0Dx8tq/FcYc6RoTKx+nRNlIyU2hFQAAcJ76/W365P3r1NAeM+aHlPj101snqro82G+x4cQ8h9anOsokfyb2tOzs9vGWx6/I6KtSHWUioy6XvAFb4gQAAED/WrjS3IV5bFWBJg/Jn4J4d+s+lSz6kHwHVnU51n7WR9R+wWcll7tfYgMAAADy3Svbm43x+EGFGlCQmQ1JOxfJJzvMNN10r6xg5jrbAAAA4PTZdifuc889p/e+973avn370TnLsk76+OQN5snj3GgOoL9tPtiuB97er0dXH1Rr+NSFfsPLArph2iBdN2WgKoroBJL3oh3yb3lMwfqF8m1/Ti7r1K8Py+VWvGqiYqnCmHeKY8YqUZosjmE3bQAAgKQ3d7XoMw/Ud/nZO9nB8Se3TNDgEoorsoW7ZfeRjjLrH5b30LpuH5/8eTg64sIjhTI1s2UFMrPDHwAAALLT4Y6ontxgdiJcMG1Q3nwW6Dm4VqWPfqBL93HL7VXr5d9QeNLN/RYbAAAA4AQvb28yxjOqSzN2Lf8ms2gmXDOLghkAAACnF82sW7dOc+bMUUdHR6oQxu/3a9y4caqoqJDbzW5KALJPJJbQExuSXWX2642dLad8rMclXVJbnuoqc97oMrnz5AM+nISVkG/XSwrUL5R/41K5o63dPiVWWadw3Q0Kj79OieLBtoQJAACQi17Yclj//NAGhWMJY37i4CL98KY6lRdSmN7fXB0NCmxamiqU8e1+pUfPiQ6envpZODz2GllFAzMeIwAAALLTkjWHFI0f21DP73Fp7sQq5QPf1idVsuzTckfNLvWJQKla5v5U0REX9FtsAAAAgBO0R+Jatcf8eXxGdWaKWNyte+Tb96YxF6mdnZFrAQAAIIeKZr75zW+qvb1dHo9HX/va1/SpT31KxcXFdlwaAHplR2Mo1VXmkVUHdLgjdsrHDir2pXbBu37qQHa7dgBPwwYF1i1UYP1D8rTu6fbx8cJBqR20wxNuSHWXAQAAwKk9tu6Qvrx4k2IJsyvtWSNK9N83jFdxwLZmuegs2i7/lscVrH9Yvh3PypU49VopKTagRuG66xQed60SA0bbEiYAAACyV3JTvYUr9xtzl4+rUFlB7v+cH3zrNyp67utyWWbxf7ysWs3zf6l4eU2/xQYAAAA4RXJD3Phxny943C6dOSIz3c79mx8zxgl/iaLDz8vItQAAAJAetvwm+oknnki1Vv/0pz+tf/3Xf7XjkgDQY7F4Qs9sOqy/vLVPL21rPuVjkz1kLhhTppumD9ZFNQPkddNVJp+52g8qsOERBdc9KO+B1d0+3vIWKFw7W+G6BYqOuFBye2yJEwAAINc9+PZ+fXP5FpnlMsmOjgP0rfnjFPTRpdZ28ah8O55LdZQJbH5MrlhH908pGqzwuPkK112veNUkiS6cAAAA+JvVe9u06aD5M+WCqTnehTARU9GzX1fByt91ORQdNkPNc38qq6CiX0IDAAAAnObV7eb9PlOGFqnQn5l7NvyblhnjyJirJI8/I9cCAABADhXNHDx4MPX1hhtusONyANAje5vDWvj2gdTudgfboqd8bEWhV9dPHZT6EG/4gKBtMaIfxEKpXUGC9Qvl2/6sXFb8lA+35FJ05IUK192gcM0syV9kW6gAAAD54Dcv79aPntnRZX7uxEr9+5waeT0UzNjGSsi75/UjhTIbF8sdauz2KYlAqSK1cxUef13qxkAKxwEAAHAiD3XqMjO8LKBzqkuVq1yRFpUs+7T8257ucixUt0CtV35T8tChHgAAALDLy9ubjPGMkWUZuY6ro0G+3S8bc5HkvSIAAADIarYUzQwcOFC7d+9WQUGBHZcDgJNKtmJ9cUuyq8x+Pb/lsI7rzHpCM6pLdeO0Qbp8XLl83KyXv6yEfLteUqB+ofwbl8odbe32KbHKulRHmeTNgYniIbaECQAAkE8sy9JPnt2hX7+8p8uxW84YrH++apTcdCqxhefguiOFMhsekadld7ePtzyB1M55yY4ykepLuBkQAAAAp9QeiWvZ2kPG3HVTB+bsz/vult0qffQD8h6q73Ks7bzPqOOcT9B1EQAAALDR4Y6o1u9vN+ZmjMpMkb5/yxNyWYmjY8sbVKT60oxcCwAAADlWNHPxxRfr3nvv1apVq3TWWWfZcUkAMBxsjeihVQf04Fv7tbclcsrHlgY9unbyQN0wfZBGV1Dsl888DRtThTKB9Q/16ObAROFAhcZfp/CEGxSvmmhLjAAAAPlazP7tFVv1wFvmbtNJ/3D+MH3kohFycZNZRrmbdyqw/pFUsYy3YX23j7dcHkVHXpQqGo/UzJTlL7YlTgAAAOS+x+oPqT167KYyt0up38HnIu++t1W66INytx805i2PXy1XfVuR8df1W2wAAACAU722o0XH75kb8Lo1dWhmfocd2LzMGEeqL5N83FsEAACQ7Wwpmvmnf/on/eUvf9EPfvAD3XHHHfJ6bbksbODxeDJyXrfbfcox8kum8p2wLL28rUl/eXOfntrQoFg3bWWmDy/RzWcM1tV1lQr6MvPaRv//+3a1H5S//mH51z0o7/6V3T7e8hYoUjtbkYk3KDbyIsl95P9hvEKyP9ewF/l2FvINp61Pknjdp080ntCXF2/U8nXmTtNJ/3TFaL333GHqb/mab1f7Ifk3LJK//iF597zWo+fEhp6lSLKjzNh5soqO3NiYH9+N/M41Tox8Owv5dhbyjWzFGuWIh1eZBSYX1ZRr6IDcu6nMt2GJipb/o1yxkDGfKKhU6/y7FR92dkZ+b5xLuUbfkW9nId/OQr6dg1wjm+XrfV7JopnjnTmiRAUBX/ovFGmVb8dzxlRs3NyMrv2yUX/nG/Yi385Cvp2DXDsL+T7CZVnWqe8iT5Of/vSn+tSnPqV58+bpV7/6laqqquy4LAAHamiL6P7XduiPL23X1kNm+9XOigNe3XDmcN1xXrUmDs1Ma1ZkgWiHVL9YeutP0sYVkhXv5gkuqeYyadrt0sT5UqDEpkABAADyW0ckro/+4TU9VX/AmE/uNP2fN07TrTNG9ltseSvcIq1bLK28T9r0RA9+FpY0cII09RZpyk1SxRg7ogQAAECe2rCvRTP/5xlj7ufvPVuzJw9Rzkh+lPr896XHv9r1WFWddMef+bkZAAAA6EdX/tdT2nyg7ej483Pq9LHLx6b/Qqv+It3//mPj5Kar/7xJKhiQ/msBAAAgrWxp+fIf//Efqa/nnnuuHn30UY0aNUozZ87UhAkTVFhY2O3zv/KVr9gQJYBclqz/e3Vbo/7w121avHKvIvHEKR8/ZXip3n3eKF03fZiKAnS/ykuJhLTteentP0lrHpbCzd0/Z9AkafrtR24QLO3/Hc4BAADySVNHVB/4zSt6ZWujMe/3uPWD28/Q3KlD+y22vBOLSJtWHCmUSRbMxDq6f07pCGnqTUd+Fh48RXK57IgUAAAAee7Pr+wwxlXFAV05YZBy6mfrRf8ovfH7rsdqLpdu+Q03yAEAAAD9aG9TyCiYSbqoNkObea99xByPuYz1AAAAQI6wpdNMso2P67ibLZKXPH7cnXi8B7ugAnCk5lBUD76+S394aZvW72s95WODPreunz5c7z6/WtNGsGjNWwfqj3SUSd4g2GR+IHtCxYOP3Bg47TZpyFRuDgQAAMiAg61h3fnLl7Vmj1nIXOj3pHaZvmTcwH6LLa+Kxre/cOTn4NULpdDh7p9TUC5NWiBNu1UaeX7yFzh2RAoAAACHCMfiuuBbT6S6w7/jI5fV6l/mTlBO6GiU/vxeaeuzXY+d9XfSNf8leXz9ERkAAACAv3ng9Z36p3vfOjouCXr15ldmyZNscZ9O0ZD03Vopcty9SfO/L53zvvReBwAAABlhW3uFzrU5NtTqwAaNjeYOwekstCorKzs6bmpqUiJ5AxDy0unke/WeVt3/5l4tXXtQoeipH1tbVaCbzxiiayYPTC2OJStjr130z79vV/tB+dc/Iv/aB+Xd/3a3j7e8BYrUzlZk4g2KjbzoSMvcpMM9uLEQPcZ7ubOQb2fJhnyXl5fbej3khkz+jJcNr/tctac5rI/+ebW2NYSM+ZKARz++ZZKmVHmz7ufznMm3ZclzcI389Q+n/rhb93T/FG+BojUzFam7XtFRl0ge/5EDTU1yopzJNdKCfDsL+XaW/s436xOcjNPXKI+tO2gUzCTNGV+adT//n4j78FYVP/x+eRo3G/OWXOq45F8VPvMDUnOrPbHkQK6RPuTbWci3s5Bv58iGXLNGgZPu83pqzW5jfPbIUjU3pf/eD9/mFSo+rmAmuTZoGnKRrBxY3+Tj+xzsQ76dhXw7B7l2lmzId3kWrFFsKZrhH1L+sqsLUPI1RMch5zhZvtsjcS1bd0h/eWuf1u1rP+U5fB6Xrq6r0E3TBmv68OKj3a14HWWf0/73HQvJv+VxBdctlG/7M3JZpz5H8hcW0REXKFy3IFUwY/mL3zmQfGGcZvToDd7LnYV8Owv5Rraw83XI675nth7q0MfvX6d9LeaNcpVFPv3k5gkaO7AwJ76P2ZZvd9N2BdY/rMD6R+Rt3Njt4y2XR9HqSxQef73CY66S/EXHDmbR3ysbZFuukVnk21nIt7OQb2QLp69RHnxrnzE+a0SJRpT5sy7Ozry7X1HJ4o/KHWrsUoDeMuu/FamZdaTTYz/Jxlwjc8i3s5BvZyHfzkGukU3y7T6v5KbdL20zN4Q6Z2RJRq5dsHGJMY4NO0exYAW/Y+d9znHIt7OQb+cg186ScGi+bes0AwCna+OB9lShzOI1B9UWOfUHUSMHBHTT9MGaP7lKAwp9tsUIm1gJ+Xa9rED9Qvk3LZH7+La3JxGrGK/whAUKj79OieKhtoQJAAAAad2+Nn3i/nU63BEz5oeXBfSTWyZoxIBgv8WWi5LdFQMbFqUKZXz73ujRc6JDz0n9HBweO0dWQWXGYwQAAADesacprL9uNW9eu37qQGW75O+ei1d8Ua6EWfgfLxyk5vl3Kz5oar/FBgAAAMC083C4y6ZdM6pL03+hREz+zY8bU+Ga2em/DgAAADKGohkAWSkUTWjF+mRXmf16e/epCyM8bpcuH1uum6YP0jnVpXL/rasM8oencZMC6x5UYP1D8rSYrXVPJFFYldpFO1S3QPGqiRKvCQAAAFu9vqNZ//hgfZei95rKAv345gkaVOLvt9hyiSvSIv/mxxSof1i+nc/LZXW/m3Wssu5Iocy4+UqUjrAlTgAAAKCzh1cdSDX5fkdxwKOrxlcoa1mWCl/+gQpf+VGXQ7GqiWqe/79sygQAAABkmZe3m4X6lYW+1OcQ6ebb/bLc4cPGXKRmZtqvAwAAgMyhaAZAVtl0oFX/98wWPbLygJpC5o7UnQ0p8euG6YN0/ZSBqirmprv83En70dTOfr79K7t9vOUNKlwzS+G6BYqOvEhy8784AACA/vDcpkZ94ZENCseOv0VOmjSkSD+8qU4DCugIeUrxsPzbnk51lPFvWSFXPNz9U0qG/61Q5lrFq+psCRMAAAA4mXjCShXNHG/uxEoFfR5lpVhYxSu+oOCGR7ocioy6Qi2zvy/LX9wvoQEAAAA4uVe3Nxvj5Ea7rgxsqurftNwYxwZOZtMqAACAHGP7HcUNDQ36v//7Pz3++ONatWpVapxUUVGhKVOm6Oqrr9b73ve+1BiAM8QSlha9vUd/eGmbXth06JSPdbuki2oG6KZpg3TBmAGpLjPII7FQ6sbAYLJQZtvTclnxUz7ckkvRERekCmUitbP54BIAAKCfLV17UP++ZHPqJrnjzagu1fcWjFeRP0tvkutviXhqp7rA+ofl37RU7nBz908JVig8bp7C469VbMhZksttS6gAAABAd17a1qR9LRFj7vqpg5SNXB2HVLroI/Ltfb3LsY7pf6+2i/5VcrOOAQAAALJNwrL0SqeimeRnEWlnJeTfbBbNhGtnp/86AAAAyJ+imZ///Of63Oc+p/b29tTYso7dRLNr1y7t3r1by5cv11e/+lX913/9lz70oQ/ZGR6AfrD5YLu+unSz1uxtO+Xjqop8WjB1kBZMG6ghpQHb4oMNrIS8u15KFcr4Ny6WO9La7VNiFeMUrrtB4brrlCgeakuYAAAAOLX739ynbz++VWa5jHT52HJ9Y/5YBbwUdRgsS54DqxRMdpTZ8Kg8bfu6f4qvUOExM1M/B0dHXCR56NoDAACA7PPQSrPLTN2gQk0YXKRs42nYqNJHPyBP8w5j3nK51XbJVxSa9t5+iw0AAADAqW062KHDHbGMF814973d5ff3kRqKZgAAAHKNbUUz//mf/6kvfelLRwtlysrKdOaZZ2rIkCGp8d69e/XGG2+oqalJbW1t+uhHP6rDhw/r85//vF0hArBRcufpP7y6Rz97fqci8c631R1z3qhS3TR9sC6tHSCvh5vs8sqB9dLbf1Lpm3+Sp2VXtw9PFFYpPO46hSYsULxqkpSBlroAAADoveQ6//9e2q2fPrezy7FrJlXpy3Nq5KVD5FHuw1sUWP9oqquM9/Dmbh9vub2KVF+W6igTGXOV5Cu0JU4AAADgdDS0RfX0xkZjLrkhVrbx7XheJUs+LnekxZhP+IrVMueHio66rN9iAwAAANC9l7c1GeNhpQENHxBM+3X8m5cZ41h5reIVY9N+HQAAAORB0cyqVav05S9/OXUjzdChQ/Xd735Xt9xyi3w+c0fUWCym++67T//8z/+c6jrzb//2b7rmmms0efJkO8IEYJPtjSF9dckmvb37xB1FBhR4de2Ugbpx2iCNLE//ghb9x9VxSIGNi6UND0u7X0/NeU7xeMsbVLhmlsJ1CxQdeZHktrVBGgAAALqRXOf/8Okd+t2re7ocu/2swfqnK0bJTbGzXG37Fdi4SIH6h+Xb/3aPnhMddm6qUCZcO1dWQXnGYwQAAADSYfGag4oljm2UFfC6NGdipbJJYPWfVPzUV+Sy4sZ8vGSYmq/5heJVdf0WGwAAAICeeXV7szGeMao0Ix3jA5vMoplIzaz0XwcAAAAZZ8vdxz/+8Y8Vj8c1cOBAvfjii6qurj5xMF6v3vWud+niiy/WjBkzdODAgdRz77rrLjvCBJBhCcvSvW/s04+e2aFwLNHleM3AIn36qnE6f3hQHtfJu88gx8TC8m95XMH6hfJtf0auhNketzNLLkVHnJ8qlInUzpHlL7YtVAAAAPSue+Q3H9uih1Ye6HLsQxcO1wcvGC6XgwtmXOEW+TctU2DDw/LtfFEuq+saqLNY1aQjhTLj5itRMsyWOAEAAIB0FtUvXLnfmLtqfKVKglmyGZKVUOEL31HhG//b5VB00DQ1X3O3rKKB/RIaAAAAgJ5LFuq/vrNT0Ux1+otmPIfWy9O0zZijaAYAACA32fJb6ieeeCJ1o8wXv/jFkxbMHG/kyJH6whe+oM9+9rNasWKFHSECyLDdTWF9bekmvbajpcux5G10/3DxGH1udp2CPo8aGxtThXbIYVZC3t2vKlj/oPwbF8sdOXFXoePFKsYpXHeDwnXXKVE81JYwAQAAcHoisYS+vHiTVqxv6HLss1eM0rvOHiLHFoxve0qB9Q/Lv/UJueKRbp8SLx15pFBm/HWKV4yzJUwAAAAgE5Ld5bc2hIy5BVOzpAgl2q6Sx/5Jgc2PdTmU7O7YcvV3JV9Bv4QGAAAAoHfW7m1VW8TcqOqcDBTN+DebXWbixUMVGzQ17dcBAABAnhTN7Nq1K/X1wgsv7PFzLrrootTX3bt3ZywuAPbsLPfg2wf0/ae2qT3adWflEQMC+tq8cbpq2qh+iQ/p5WncrED9gwrUPyRPy5H3/lMqGqTQ+GvVMf56xasmSQ7eiRwAACBXdETi+ueHN+ivW5uMeY9L+vKcGs2fnCU3xdklEZdv11+PFMpsWtqjgvFEQaXC465JFcrEBp/Bz8EAAADICws7daGsLg/qzBEl6m/u1n0qWfQh+Q6s6nKs/eyPqv38f5Jc7n6JDQAAAEDvvbzd7DJTU1mgqiJ/2q8T2GQWzURqZ/P7fAAAgBxlS9GMx+NJfY3FYj1+zjtdJtxufkkN5Kp9LWF9fdkWvdjpZrp33HLGYH3q0pEqLkj/whX2cXUcUmD9owrUL5Rv/9vdPt7yBuWaMF+afrtUc4U6mlvoLAQAAJAjmkMxfeaB+tQO0sfzeVz61vyxunxchRzBsuTdvzJVKBPY8Kjc7ebNgSeS8BUpUjMrVSgTHXmh5LblVzIAAACALVrDMT227pAxd92UgXL18w1lnoNrVfroB+Rp3WvMW26vWi//hsKTbu632AAAAACcnlc7Fc3MyECXGXfTNnkPrTPmwjWz034dAAAA2MOWOzSqq6u1du1arVixosfdZpKPfee5AHKvu8yi1Qf1vSe3qTXctRhiSIlfX5lTo3NHlfVLfEiDWFj+rSsUWLdQ/u1Py5U4dVGkJZeiI85XuG6BYuPmqXwI7+0AAAC55mBbRJ+4b502Huww5gt9bv3XDeM1o7rMGZ0Vk4Uy6x+Wp2lbt4+33D5FRl2mcN31ioy+UvIGbYkTAAAAsNvydQ0KxRJGJ8r5U6r6NSbf1idVuuxTckXbjflEoEwtc3+i6IgL+i02AAAAAKcnFE3orV0tGS+aCWxabowTBRWKDT077dcBAABAHhXNzJw5U2vWrNH3vvc9LViwQFOnTj3l41etWqXvfve7qd2nZs2aZUeIANJ4I903lm/Rs5sOn/D49VMH6h8vr1ZxgF2Vc46VkHf3qwrWPyj/xiVyR8xfQpxIrGKcwnU3KDz+WiVKhhndxwAAAJA7djeF9bH71mrn4bAxXxb06gc31WnK0GLlrebdCrz+B/nWLZTvwKpuH54qGB9+XqqjTKR2jqxg/hcTAQAAAAtX7jfGl9SWq6qon7rMW5aCb/9GRc99Qy7rWCFPUrysWs3zf6l4eU3/xAYAAACgT1buaVEkbh0du13S2SPTXzTj37zMGEfGzJTc3O8CAACQq2y5a/0zn/mMfvazn6m1tVUXX3yxvvzlL+t973ufKisrjccdOnRI//d//6dvfOMbamlpUTAYTD0XQG5Yvu6Qvv34VjWFunYdGVjs05dm1ejimgH9Ehv6uJt2/YMK1D8kT8uubh+fKKhM3SAYqlug+MDJkstlS5wAAADIjM0H2/Xx+9fpQGu0y8/4P755gmqrCpV3Im3S649Ib98rbX1OhTr2AdzJxAZOTv0cHB43X4niIbaECQAAAGSDDQfatWZvmzG3YOrA/gkmEVPRs19XwcrfdTkUHTZDzXN/Kqugol9CAwAAANB3L29rNsYTBhWpJJjeWyDdrfvk2/uGMReuZeNvAACAXGZL0cyoUaP085//PFUokyyc+cIXvqB/+Zd/0ZgxYzRo0KBUR5l9+/Zpy5Ytsiwr9Sc5l3xOdXW1HSEC6IPD7VH95+Nb9fj6hhMenzupUv985WiVpnmRisxxdTQosOFRBeoXyrfvrW4fb3mDCo+ZqfCEBYqOvFhyk2sAAIB8sHpPqz71QL2aOszC+OFlAf30lgkaPiCofOPd95ZKl3xcat3T7WOTu1SHx1+f6qwYL6+1JT4AAAAg2zzUqctMssD+/DH2b6DlirSoZOmn5N/+TJdjyU2eWq/8puQJ2B4XAAAAgPR5dbtZNDNjVAa6zGx5zBgn/MWKjrgg7dcBAACAfWy7q/nOO+9MdZb58Ic/rN27d6cKYzZt2qTNmzenjifH7xg2bJjuvvtuzZs3z67wAJympzY06JuPbVFDe9fuMhWFXn1x5hhdMY5d23JCLCz/1hUKrFso//an5Up0zenxLLkUHX6ewhNuUKR2tix/iW2hAgAAIPMOd0T1mRMUzIytKkh1mKkq9ivfBNber+KnvixXPHLSxyQKq1LdZJLFMrFBU+msCAAAAEcLxxJavOagMXftlIHyuu39OdndvEulj35A3ob1XY61nfcZdZzzCX52BwAAAHJcazimNXtbjbkZ1Rkomtm0zBhHRl9JAT4AAECOs7UVwDXXXKOtW7fqwQcf1OOPP65Vq1apoeFIZ4qKigpNmTJFV199tRYsWCCfz2dnaAB6qTkU03ef2Kolaw6d8PjV4yv0hatHq7yQf8tZzUrIu+c1Bdc9KP/GxXJHWrp9SqxinMJ1CxQef50SJcNsCRMAAAD2W7T6oBo7FcxMHVqs799Yp7KCPOssGI+q6PlvqeDt35zwcLJAPFw7O/UzcHT4+ZLbY3uIAAAAQDZ6ckODmkNxY+66KQPt7xa56ENyt5vFO5bHr5arvq3I+OtsjQcAAABAZryxs0XxY/typ4r1zxie3g1eXaHD8u16yZiL1MxO6zUAAABgP9vvcvF6vbrllltSfwDkpuc3H9bXl2/WgdZol2NlQW+qWGbWhMp+iQ09427comD9gwrUPyRPy85uH58oqEzdIBiqW6D4wMnsyAcAAOAAS9eaBfLJD55+eFOdCv35VTDi6mhQydJPyr/rr10PjjxfuuBjOjzwXMVdbAgAAAAAdPbQygPG+NzqUo0YELTt+v6NS1Ty2GflioeN+URBhZrn/UyxoWfbFgsAAACAzHp5e7MxnjasWEFfej+z8G9ZIZd1bGMAyxNQZNSlab0GAAAA7JdnW8MCyHSb0+8/tV0LO30I9o5LagfoS7PGqKrIb3ts6NnNgIENjypQv1C+fW91+/jUwr9mpkITblB05MWSm/9lAAAAOMXWhg6t3ddmzH3ggmF5VzDjObBGpYs/Ik/Lrq4Hz/uoNOvrkscrNTZKcXP3bAAAAMDpdh4O6ZVON61dP22QPRe3LBW8/nMVvfjdLodi5WPVPP9/lSirticWAAAAALZ4tdP6Y0Z1adqv4d+83BinCmZ8hWm/DgAAAOzFHdAAeuSV7U362pLN2tsS6XKsOODR564YpWsmV8lFB5LsEgvLv/WJVKGMf9tTciVip3y4JZeiw89TuO4GRcbOluVPbxtbAAAA5IZlnbrMVBR6dU51mfKJf/0jKnniX+SKhYx5y+NX+5XfVNFFH+y32AAAAIBc8PAqc4Ot0qBHl48tz/yF4xEVP/VlBdfe3+VQZORFapnzY1mB9N88BwAAAKD/NLRFteFAuzE3I92fW0Ta5N/+jDlVMyu91wAAAED+Fs2sXLlS119/vTwej5566ikNHz78lI/ftWuXLrvsMlmWpSVLlmj8+PF2hAngBDoicf3wmR267819Jzx+/ugyfXn2GA0uCdgeG07CsuTd86qC6x6Uf+NiuSMt3T4lVjFO4boFCo+/TomSYbaECQAAgOyUXIsvW2cWzcyaUCmvO08K5BNxFf71eyp8/e4uh+JFQ9Qy7y5Zw85UUb8EBwAAAOSGWMLSI52KZuZNqlLA687odV2hwypZ8jH5d73U5Vho0m1qvexrkseX0RgAAAAA2O+1HWaXmQKfW5OHpvc3+f7tT8sVP7aZsOX2KjL6yrReAwAAAHlcNPP73/9eW7du1ezZs7stmElKPiZZKLNs2bLUc//jP/7DjjABdPLmzhZ9dekm7Twc7nKs0OfWZy4fpRumDaS7TJZwH96iYP1CBeofkqd5R7ePTxRUKjz+WoXqFig+cIpEHgEAACBp7b42bW80u6/MmVilfOAKNalk+afl3/5sl2PRoWerec5PZBUNlKdfogMAAAByx4tbDutAa9SYu37qoIz/PF92/y3yHt7cpYN6+0X/oo4z/oHfcwMAAAB56uXtZtHMmcNL5POkt2g/sGmZMY4OP19WcEBarwEAAIA8Lpp5+umnUzfVX3fddT1+TrIzzdKlS7VixQqKZgCbhaIJ3fXcDv3xtb2yTnD87JEl+srsGg0fEOyH6HA8V0eDAhsWKVC/UL59b3b7eMsTUKRmZqpQJjryYnbcAwAAQBdL1ppdZoaXBTR5SO73XfEcWq/SxR+Rp2lbl2Mdk9+ltku/Inn8/RIbAAAAkGsWrjS7zCTXDOMGFmb0moUv/U/XghlvgVpm/bciNbMyem0AAAAA/evV7U3GeMaosvReIB6Wb+tTxlSkdnZ6rwEAAID8LppZv3596uu0adN6/JwpU6akvtbX12csLgBdrdrTqq8u2aStDebO0kkBr1ufvHSkbj1zsNzs1tZ/YmH5tz6RKpTxb3tKrkSs26dEhp+ncN2NioydLctfYkuYAAAAyD3xhKXl68yimTkTK3O+u6R/83IVP/Y5uaNtxrzl9qWKZUJT7ui32AAAAIBcc7Atouc2NRpzC6ZltsuMoh2p34kfL144SM3z71Z80NTMXhsAAABAv9rbHNaOw2FjbkZ1aVqv4dvxgtzRVqOjZXjM1Wm9BgAAAPK8aKa19cgPlMXFxT1+zjuPbW42WysCyIxILKH/fXGXfvPybiVO0F5m2rBi/fucGo2qKOiP8GBZ8u55TYH6BxXYuFjucPfvjbHysQrXLVC47nolSobZEiYAAABy22s7mnWoLWrMzZlYpZxlJVT48o9U+MoPuxxKFFapec5PFBt2Tr+EBgAAAOSqR1cdVPy4zxGCXrdm1lVk9JqBTUvkjrQYN7A13fBHJcrHZPS6AAAAAPrfK9vNe2RKgx6NH5TeTpeBzcuNcWzoWbKKMrw5AAAAAPKraKa8vFwHDx7U3r17NX369B49J/nYpJISOiIAmVa/v03/vniTNh7s6HLM53HpoxeN0LvPGSqPO7d3l85F7sNbFKxfqED9Q/I07+j28YmCSoXHX6tQ3QLFB06RcnxHcAAAANhr6Vqzy0zdoEKNqczNwnlXpCXVXSaw5fEux6KDpqpl3l1KFA/tl9gAAACAXGVZlh5aud+YmzmhUsWBzH7kGFz9Z2Mcrb6EghkAAADAIV7e3mSMzx5ZKnc674dJxOTfbH6WEKmZlb7zAwAAwBlFM+PGjUsVzSxdulSzZ8/u0XOWLFmS+lpbW5vh6ADnisUT+r+XdusXf92t+Anay0waXKSvzq1RTVV6d2fAqbk6GhXYuEiBdQ/Kt+/Nbh9veQKK1FytUN0Nio68WPL4bIkTAAAA+SUcS+iJDQ150WUmWXxeuugj8jZu7HIs+XNz6xXfkLyBfokNAAAAyGWv72zRjsNhY27B1IEZvaancZN8e1415kKTbsvoNQEAAABkT+H+q506zZxbXZbWa/h2vyp3yPx8JEzRDAAAQF6xpWgmWSjzwgsv6O6779aHPvQhTZw48ZSPX716tf73f/9XLpdLc+bMsSNEwHE2HWzXV5ds1tp9bV2OJTvKfPCC4fr7c4fK63H3S3yOEw/Lv+VJBeoflH/b03Ilot0+JTL8PIXrblCkdo6sAF25AAAA0DfPbz6s1nD86Di5R9usCRXKNb5tT6lk2WfkjrQY85bLo7aLv6jQtL+nIyMAAABwmhZ26jIzpiKoacOKM3rNQKcuM8mO65ExV2b0mgAAAACyw7aGkA60mvfQzKguTes1/JuXGeNY1SQlyqrTeg0AAAA4oGjmox/9qL7zne+ovb1dV155ZaogZv78+Sd87MMPP6wPf/jD6ujoUGFhoT7+8Y/bESLgGMmOMr9/dY9+9vxOReNdu8uMG1iY6i5TN6ioX+JzFMuSd89rqUKZwMbFcofNnTFOJFZemyqUCdddr0TJMFvCBAAAgDMsXXvQGJ85okSDS3KoG4tlqeD1n6vwxe/JJXOtkwiWq2X2DxQdeVG/hQcAAADkupZQTE+sN3dfvn7aoNQmeBkTjyi47kFjKjThRsnjz9w1AQAAAGSNVzp1mRlY7NOoimD6LmBZ8m9ebkyFa+kyAwAAkG9sKZqpqqrSz372M733ve/V/v37df3116umpkYXX3yxhg4dmnrMnj179Oyzz2rLli2ptorJX7DfddddGjx4sB0hAo6wraFDX1u6WW/vbu1yzOOS/u68YakOMz66y2SU+/AWBesfUqD+IXmat3f7+ERBhcLjrlW4boFig6ayKzYAAADSrjUc03ObDxtzcyZWKWdE21XyxL8osGFRl0OxyglqvuZnSpSO7JfQAAAAgHyxdO0hhWPHCtS9bpeumZTZdYN/y+Nyh8xCnfCkWzN6TQAAAADZ4+XtTcb4nOrStBbue/evlKd1rzEXqZmdtvMDAADAQUUzSe9+97uVSCRSXWeSHWc2bdqkzZs3G49JFsskFRUVpQpm3vOe99gVHpDXEpalP7++Tz9+dofCsUSX42Mqgvrq3FpNHlrcL/E5gaujUYGNixRYt1C+fW90+3jLE1Ck5mqF6m5QdOTFksdnS5wAAABwpic3NCoSN29+u2p8hXKBu3mnShd/RN6Da7scC4+dp5arvi35CvslNgAAACCfLFy53xhfNrZc5YWZ/d11cPW9xjg67FzFy2syek0AAAAA2XO/02s7zE4z51aXpfUa/k3LjHFswBjFK8al9RoAAABwUNFMUrLTzMyZM/XDH/5QixYt0qpVq44Wyrjdbk2dOlXXXnutPvGJT9BhBkiTXYdDqe4yr+9s6XIsue/Ce84Zqo9cPEIBL91l0i4eln/rUwqse0D+bU/LlYh2+5TosPMUmrBAkdq5sgIltoQJAAAALF170BhfOKZMZQW2/srgtPh2vqCSpZ+SO9RozFtyqf2Cz6njrA/TqREAAABIg3X72lS/v92YWzB1YMYL5H07njPmQnSZAQAAABxj/f52NYfixtyM6tL0XcCyFNi01JiK1MzicwUAAIA8ZPsdMEOGDNE3v/nN1J9YLKaGhiMt1SsqKuT1Zv8NOdkoEononnvuSXXu2bt3r1pbW1VYWJj6Xl955ZW65JJL+N46ULIg7S9v7dcPnt6ujmjX7jIjBwT073NrdcZwCjPSyrLk3ftaqqNMYONiucNmm9gTiZXXKly3QOHx1ytROtyWMAEAAIB3HGyL6JXt5k5tcyZWKatZloJv/1pFz31LLsv8wCzhL1HL7O8rOuryfgsPAAAAyDcL3za7zAwp8evcUend4bmz4Nr75JJl/KwfHjs3o9cEAAAAkD06f3aRvNdpSGkgbef3NGyQp2mrMRepnZ228wMAACB79GslRbKQY9CgQf0ZQl4IhUJavny5xo4dqzPPPFOlpaVqa2vTm2++qbvuuksvvPCCvvjFL6a6+cAZ9jaH9fXlW/TXrScu2Lj1zMH65CUjVeD32B5bvnIf3qpg/UIF6h+Sp3l7t49PFFQoPO7aVLFMbNBUdqkAAABAv3lsXYMSx+5DU4HPrUtrByhrxcIqfurfFFz3QNdD5WPVPO9nSpSP6ZfQAAAAgHwUisa1dN0hY+66qQPlcWfw99qJuAJr7jemkr9PlzeYuWsCAAAAyCqvbDPvezqnOr2F+/7Ny4xxvHjIkXt4AAAAkHdoP5IHiouL9Zvf/KZLN5l4PK6vf/3reuutt1IFNGeddVa/xQj7uss8uvqgvvfENrVFzN2Wk4aW+vWVOTWakeZFpFO5OhpT3WQC9Q/Kt/eNbh9vefyKjLlaobobFK2+RPL4bIkTAAAAOJWlaw8a48vHlSvoy84Ce3frHpUs/ph8+9/uciw85mq1zvyeLD/dNAEAAIB0WrG+Qa3hY585JEtlrpsyMKPX9G1/Rp62vcZcaPJtGb0mAAAAgOwRjSf0xq4WY+7c6tK0XiOw+TFjHKmZJbnYlBoAACAf2V40s2HDBv32t7/Viy++qL1796qjo0PLli1LdUl5x6pVq7R9+3YVFRXpsssuszvEnJPsIHOiLjIej0czZszQ6tWrU99r5LeDrRF9Y/kWPbv58AmP3zBtoD59WbWKA9TK9Uk8LP/Wp1KFMsmvrkS026dEh52n0IQFitTOlRXgBj4AAABkjx2NIa3e22bMzZlQpWzk3fOqSpd8XO52s8gnqX3Gp9R+7if5MAsAAADIgIdWHjDG548u05DSQEavGVzzZ2McHTRV8aqJGb0mAAAAgOyxek+bOqIJY+6cNBbNuJt3yHtgtTEXqZmdtvMDAAAgu9h293wikdDnP/95/eAHP0j9d7IjRpLL5VIkEjEemyyYmT9/fqpzypYtWzR8+PCMxdXU1KSNGzem/mzatCn1p6XlSJV6smDn4x//eI/PdeDAAS1ZskSvv/66Dh06lIp/yJAhuuCCCzR79mwFApn9AKGz5Pc52WUmaeTIkbZeG/ZJ/ltatu6Qvrtim5pCsS7HBxX79G+za3ThmAH9El9esCx5976uwLoHU51l3GGz/euJxAbUKDxhgcLjr1eidIQtYQIAAAC9lVxLHK+8wKvzRqV3p7Z0CKy6R8XPfK1L0XrCV6TWq7+rSC0fZAEAAACZsK2hQ6/vNHd3vn5qZrvMuNr2y7/lCWMuPOnWjF4TAAAAQHZ5Zbt5b864gYUqL/Sl7fz+TcuNcSJYoeiwc9J2fgAAADi0aObDH/6wfvWrX6Vu8E8WwSQLSe6///4TPnbevHkaM2aMtm7dmnrMpz/96YzF9cEPfjAt53n11Vf1ox/9KNU55x3hcPhoIc6KFSv0xS9+MVVEkymxWEwPPPBA6r+ThT/Jjj27du3S5ZdfrqlTp2bsuug/je1RfeuxLXpiQ+MJj18zqUqfvXKUSoN0lzkd7sNbFax/SIH1C+Vp2t7t45ML6PD4+QrX3aDYoKnJqkBb4gQAAABOR3J9vmSt2bXl6rpKeT1Z1K0lHlHRs/9PBav+2PVQWbWa5/1c8crx/RIaAAAA4AQPrzK7zAwo8OqyseUZvWZw3QNyWfGjY8tboPD4azN6TQAAAADZ5ZXtzRnrMpMU2LzMGEfGXCW5ub8KAAAgX9nyk16yYOSXv/xlqqvMv/7rv+prX/uaPB6P3O6T34hzyy236Dvf+Y6eeOKJjBbNHK+qqipV0PNOd5aeSnbD+f73v5/qmBMMBrVgwQJNmTIlNX7++edTf/89e/boW9/6lv7zP/9TBQUFGSuaOb4QKfn9vvbaa3XHHXdk5HroX0+sb0gVzDR2dO0uU1Ho1b/OGqPLx1b0S2y5zBU6rMCGRQrUPyjf3je6fbzl8Ssy5mqF6m5QtPoSyZO+XS0AAACATKrf365tDSFjbs7ESmULV/tBlS75uHx7Xu1yLFJ9iVpm/UBWsKxfYgMAAACcIBZP6NFVZqH9/MlV8mWy0N6yFFzzZ2MqPO4aWf6SzF0TAAAAQFYJReN6e3erMXduGotmXG0H5N3zujEXpqM9AABAXrOlaObuu+8+2kHm61//eo+ec+6556a+rl69OqOx3XzzzaqtrU39GTBggPbv369PfOITvTrHr3/961SBTLIQ6N/+7d80fvyxXW6TxTNDhw7V73//+1ThzCOPPKJbb+3aQv63v/2totFoj6+Z/F4mz3u8ZMHOvffeq0QiocbGRr322mu65557tH79+lSXm8LCwl79vZCdmjpi+t4TW7Vk7aETHp9ZV6EvXDVaA9LYkjTvxcPyb30qVSiT/OpKdP9vMTrsXIXqFigydq6sQHp3swAAAADssLRTl5lhpQFNG1asbODd97ZKFn9Unra9XY61n/UhtZ//Ocnt6ZfYAAAAAKd4bvNhHWo3f19+/dRBGb2mb9dfu3R+D026LaPXBAAAAJBd3tzVoljCOjr2uKQzR6SvkD6w5TG5dOz8CV+xoiMuTNv5AQAA4NCimRdffDHV9eQf/uEfevycESNGpL7u3dv1Bpl0OlEBS29s3LhRa9euTf33FVdcYRTMvGP+/Pl68skntWvXLi1ZskQ33nijvF7zW//YY48pHA73+Lrnn39+l6KZdyQ7+FRWVmrWrFkqKSnR//zP/+iBBx7Qe97znl7//ZB9H1B9fdlmHWzrWtRRVuDVv1w1WjMnZM/O0FnNsuTd+7oC9QtTnWXc4aZunxIbUKPwhAUKj79eidIj71EAAABALoonLC1bZxbiz55YmVq797fAugdU/OSX5IpHjHnLG1TLld9SZPx1/RYbAAAA4CQLVx4wxski+zGVBRm9ZmDNvcY4VjFOsSFnZvSaAAAAALLLK9ubjfGkIcUqDqTvNkf/puXGODr6cskbSNv5AQAA4NCimWT3lqTRo0f3+Dk+35EuGbFYTNns5ZdfPvrfyaKZkxWxXHbZZfrjH/+otra2VPec6dOnG4/53e9+l5H43rnOmjVrMnJ+2KM1HNN/P7ldD68yP6B6x2Vjy/XFmaNVVeS3PbZc427apuC6hQqsX9hlt7oTSQQrFB4/X+G6GxQbNFXKgpsIAQAAgL56Y2eLDrSaxfhzJvZzAX4ipqLn/1MFb/1fl0PxkmFqnvczxQdO7pfQAAAAAKfZ3xLRC1sOG3MLMtxlxhU6rMCmpV27zPB7eQAAAMBRXtlmFs2cU12atnO7Qk3y7XrRmAvXzk7b+QEAAODgopmioiIdPnxYBw6c+Ib/E9m5c2fqa0VFhbJZfX196msgEFBNTc1JHzdp0iTjOZ2LZjKloaEh9dXj8dhyPaTfS9ua9B9LN2tfi7nLclJxwKN/vnKU5k2qyoodobNV6oO2jYsVWPegfHtf7/bxlsevyJirFa5boEj1pZLnSBEfAAAAkC+WrTtojMcNLFRtVWG/xePqaFTJsk/Kv9P8oCopMvw8tcz5kawCumoCAAAAdnlk9QElrGPjIr9bV9dl9jO7ZGf44ztOWm6/wnXXZ/SaAAAAALJLcyimdfvbjLlzR6WvaMa/9Qm5EjHzHqHqy9J2fgAAADi4aCZZTPL666+nup3MnDmzR89ZsmRJ6uvkydm9i+w7xT1Dhgw5ZWHKsGHDujwnnTEMHDgwVbhzvHA4rN/+9rep/z7zzN61rj906FCPHpepYpxkd55TjZ2gPRLX95/aqvve2HfC4xeOGaCvzKnV4NLcbw+akXzHwvJtfVL+ZKHM1ieND9pOJjr8XEUm3KjouLmyAmWpOcrN0o9/385Brp2FfDsL+Ybd+nt9km+v+0gsocfrj2yw8I65k6r6bbMFz4G1Knr0g/I0d10rh6b/vTou+ZLcNhey51O+cWrk2lnIt7OQb2ch37Bbvq9REpalh1eaG+HNmThQJQUZ7HZvWSpYc68xFR07W+7igXI63uOchXw7C/l2FvLtHOQaTlyjpPN1/+auw0YBv9/j0hkjytIWe2DLcmMcrb5UnoL0FeU4Ae9zzkK+nYV8Owe5dhbybWPRzKxZs/Taa6/pJz/5iT75yU92+81OFtf8+te/TnXOmDdvnrJVJBJRS0tL6r8rK0+9421xcXGqqCVZyNLThUpPvfDCC1q0aJEmTJiQKp4pKChIdZh58803U/FNnDhR8+fP79U5P/rRj/bocffea36AkSllZUcKGJzi5S0N+tx9K7W9ob3LsSK/R/82f5JunzEyb7vLnHa+LUva+Yr01j3Sqgek0OHun1M5Vpp+uzT1VvnKR4meMvZz2r9vJyPXzkK+nYV8I9OybX2S66/75av3qiUcN+ZuPb9W5eX90Glm9YPSwo9J0U5rH49fmv8/Cp75HgXV/3I53+gdcu0s5NtZyLezkG9kWr6vUZ7feFC7msLG3J0Xj1V5+QBlzM5XpUP1xpT//A/IX16euWvmKN7jnIV8Owv5dhby7RzkGk5co/Tldf/2vt3G+JzRFRo6qCpNN/u1SdueMab8025k3dFHvM85C/l2FvLtHOTaWcocmm9bimY+9alP6Yc//KE2bdqkj3zkI/rpT38qr/fEl37sscf0vve9T6FQKFWI8sEPflDZKhnjO4LB7m/jST4mWTRz/PPS4eyzz1ZjY6PWr1+f+pM8f2Fhoaqrq3XRRRfpiiuu6Lcdg9E74Vhc31lar189vyVV/9HZBTWV+s7N0zSyoh9uZstmDZult++V3v7zkf/uTmGlNOUmadrt0vCzpDwtPgIAAABO5KG3zA+cZowu1wi7C2YScemJr0vP/XfXYyVDpdt+L404x96YAAAAAKT86ZUdxnjCkBJNG5HhD1Jf+7U5HjBKGn1pZq8JAAAAIOski/iPd2HtqTey7pWNK6TYcfftuTxS3dz0nR8AAADOLpoZPHiwfvazn+nOO+/UL3/5Sy1btkzXXHPN0eM/+MEPZFmWnn/+ea1bty7138luNMluM8kOLdncaeYdJysCOt47jzn+eelQW1ub+pNOd911V1rPh5756sOrdc/L5odRSQU+j/5l7gS99/xRcrsp8EhpbziyK3WyUGbHS90/3hM4stBNdpUZe7XkoacMAABArmB9kj6t4ZgeX7PPmLvujOH2BtFxWHrgg9KG5V2PjThXuu13UskQe2MCAAAAeiGf1yiNbREtW7XXmLst053vwy1Huscf76w7Jbc7c9cEAAAA8ki+rFH2t4S0YX+rMXfh2DR1mUla+4g5Hn2xVFiRvvMDAADA2UUzSe9+97vl8/n04Q9/WDt27NDPf/7zo79g/8UvfpH6miyWSUoWyvzmN78xCmuykd/vP/rfsVis28e/85jjn5etkl1+eiLZ4SYTkkVTx7d/ampqUiKRUD7bdTh0woKZM4aX6GvXjFV1eYGamg4rH/U43/GIfFuflH/tg/JtfUKuePcFaNFh5yoy8UZFx82VFfjbNZrNBTbs5cR/305Frp2FfDtLNuS7nDbpjtLf65Nsed2nw6Or9iscOxa31+3SRSMLMvq9O567YaOKH/mQPIe7dogMT75d7Zd/TYoFkslUf8qXfKN75NpZyLezkG9n6e98sz5xnnxeo/zx1T2KxI+dx+9x6YoxRRn9u/hX/UlF0bajY8vlUdOY+bL6eV2QLfr7PQ72It/OQr6dhXw7RzbkmjWK8/T3GiVdr/vH1xwwxkV+j0YWWemJOx7RgPolOn47gPZRVyvMuiMn3+dgH/LtLOTbOci1s2RDvsuzYI1iW9FM0q233qqrrrpKP/3pT/XII4/ozTffNIpNJk+erOuuu06f/vSnNWjQIGW7YDB49L9DoeNaN57EO485/nm5Lh6P23Kd5D9Ou67VnzevHc/nceljF4/UHWcPkcftyvu//0nzbVny7n1DgfqFCmxYJHe4+8Kh2IAxCtctULjueiVKRx474KDvYS5xwr9vHEGunYV8Owv5Rraw83WYq6/7xavND5zOH12m0oDblr+Lf8vjKl7+WbmjZhG75faq7ZKvKDTlDim5uUYWfl9zNd/oPXLtLOTbWci3s5BvZItcW6MkN7d74C2zy8wV4ypU7M/smsG/6h5jHBl9hWIFVVm5NsgGvMc5C/l2FvLtLOTbOcg1skm23+f10lbznqCzRpTIZSXP1feYfNuekyvSYsyFRl+lBP8++4z3OWch385Cvp2DXDtLwqH5trVo5p3K9i9/+cupP8lvekNDQ+obX1FRkepEk0uSHWNKSkrU0tKiQ4cOnfKxra2tCofDvaruh3MkP4havOagMbdg6kC9d8ZQOZW7aXuqUCZYv1Cepm3dPj4RrFB43DUKT7hBsUHTjtxsBwAAAOCoQ21RvbytyZibM9GG9amVUMGrP1HRS9/vcihRUKHmOT9RbPi5mY8DAAAAwCmt3tumTQc7jLkF0wZm9Jqeg+vk2/eWMReedGtGrwkAAAAgO72yrdkYn1NdmrZzBzYtM8bRwWcqUTw4becHAABAdrO9aKZzu5+qqirlshEjRmjt2rXau3dvqvjH4/Gc8HG7d+82ngN0/iBqe6PZrWjepNz+t3FaOhql1Q+q5LU/yLvn1W4fbnn8ioy+KlUoE6m+VPLkVuEdAAAAYKfH6w8pbh0bB71uXVqb2Ra4rkirih//vAKbzQ+jkqIDp6hl3l1KlAzLaAwAAAAAeuahlfuN8fCygM4emb6b1E4kuObPxjheNFiRUZdl9JoAAAAAss+uwyHtbj6yIfU7zh1Vlp6TJ+Lyb3nMmIrUzkrPuQEAAJAT+rVoJh/U1dWlimaSXWQ2b96scePGnfBxa9asMZ6TL05WJJSOgqpTjfPNkrVmp6Lq8qCmjyiTyyHdUryNG6XHfiTVL5HikW7fmKLDzlVk4g2KjpsnK3BkgZyZVyIywWn/vp2MXDsL+XYW8g2nrU/y5XW/bF2DMb58XIVKCvwZu5778FYVP/oheQ6t73IsWfjeftW35PIGs/Jn+XzIN3qGXDsL+XYW8u0s5BvZKpfWKO2RuJatMz+rWDBtsHzeDH6UGAulOs4fLzLpFnl8gcxdMwfxHucs5NtZyLezkG/nINfIZtl8n9erO1uN8YACr8YPLpY7DfdOefe+JneH+RlJbNzcjK7Z8hnvc85Cvp2FfDsHuXYW8m1j0Uw0GtWGDRtS/11bW6tAwPxldygU0pe+9CXde++9OnjwoMaMGaOPfvSj+uQnP6lsd+6552rhwiO/0H/yySdPWDSTSCT09NNPp/67qKhIkydPVr4oL8/srsTvKCtL084BWSgSS2h5pw+ibjq7WhUVFXKEt/4sPfJpKdZx6sdVjpWm3S5Nu0W+8tGip0z+yOd/3zCRa2ch385CvuG09Ukuvu63H2rX27tbjLlbzxudue/ZxhXS/e+TQk3mvMstzfx/ClzwcQVyaJOAXMs3Th+5dhby7Szk21nIN7JFLq1RHnt1h9ojiaNjt0t678XjVF4WVMa8fa8UbjamCi74gAps/L7lIt7jnIV8Owv5dhby7RzkGtkkm+/zemvPVmN80biBqkzXvVMvPWWOB09R2Zgz03Nu8D7nMOTbWci3c5BrZylzaL5tKZp58MEH9a53vStVBLBz584ux2+44QYtX75clmWlxuvWrdNnPvMZ1dfX68c//rGy2dixYzVx4sRUt5lk0czll1+u8ePHG4959NFHtWvXrtR/z507V95M7sqFnPP0+gNqbI8aczecOVx5LxaRlv2r9Mr/nvwxBRXSlJuk6bdLw8+WcuimOgAAACCbPPL2bmNcXujTJeMGpv9CyXX9Cz+SHv93yTp2w11KQbl08/9JtVek/7oAAAAA+uTPr+wwxlfUDdKQTBbMJL3+W3Ncc7lUMSaz1wQAAACQdZL3DL6wydxw+MLaynSdXFr7iDk38dr0nBsAAAA5w5bqjWXLlqV+uF2wYEGXLjOLFi1KHXe5XBoxYoRmzJihl19+OVVkctddd+mOO+7QhRdemLHYkgU6e/fuPTpubj62o1Vy/qmnzErzZFFMZ3//93+vL3/5y4pEIvr617+eKgJKdpNJjl944QU9/vjjqccNHTpU117LD90wPfiGWUh2zqhyVVcWKq817ZLu+ztp5ytdj3n8Ut3cI11lxl4tef39ESEAAACQN5Lr8YVvHNnI4R3zpg6Vz5PmlruRdunhT0qr7u96bNBk6fY/cAMcAAAAkIU27GvRa9sajbnbZozM7EUPbZK2PmvOnXVnZq8JAAAAICtt2N+qg61hY+6i2qr0nHzPm1KTuUkARTMAAADOY0vRzOuvv54qirnsssu6HPvVr36V+prszpIslikpKVFTU1OqUCZZ0PKLX/wio0UzK1as0NNPP33CY8lON8k/3RXNjBkzJtUZ50c/+pE6Ojp0zz33dHlMsmDmi1/8ogoKCpRPGhvND1HSxe12G+2fkq+JRKLTLsV5oCUU0+Nr9hlzsyeUZ+z7mg28O15Q0ZJPyt1h7hCRcs77pau+oqaI+0i+W9okJf8gnzjl3zfItdOQb2fJhnzb1T4euSWTP0dnw+v+dNXvb0t94HS8K2tL0/r9cjfvVNGjH5b3wOouxyJj56lt5nclV1EyScoFuZxv9A65dhby7Szk21n6O9+sT5Dra5TfPLfFGFcW+XTGYF9G4y944W4d38cmESxX0+CLcmbN4KT3ONiLfDsL+XYW8u0c2ZBr1ijItfu8Hnt7jzEeUuJXqTusxsZIn2MLvnGfjr9bL142Ss2+oaw9cvx9DvYh385Cvp2DXDtLNuS7PAvWKLYUzezfvz/1dezYscZ88hueLFpJFtR88pOfTBXMJCUT84lPfEIf//jH9eKLLyoXnHPOOfre976nxYsXp4qEGhoa5PV6NWTIEJ1//vmaM2dOly47+SAej9tyneRrxa5r2WnZ2gOKxK2jY5/HpavGlefl3zXZ7rTgjbtV+OL35LLMN1vLE5Dr2u9LZ9yRGidCjfn5PYCj/n2jK3LtLOTbWcg3soWdr8Ncet0vXnVkTf6OwSV+TR1amLb4fTv/qpKln5Q71GDMW3Kp/fx/VMfZH5NcrmSClKtyKd/oG3LtLOTbWci3s5BvZItcWKNE4wk9uuqAMTd/cpXcsjIXfzwq/1qzQ2W47gbFXd6cXjfYhfc4ZyHfzkK+nYV8Owe5RjbJ1vu8Xt522BjPqC5N242cvo1LjXG4Zpbi3BScVrzPOQv5dhby7Rzk2lkSDs23LUUzBw8eTH3t3GXlzTffVHNzc6po5pprrjGOTZkyJfV1x45O7RHTLFmYk/yTDgMHDtTf/d3fpf4APbF4zZF/G++4uGaASoO2/LO0lSvSouLHP6/A5uVdjsVLR6pt/s9UOv7ifokNAAAAyGcJy9KydWaXxzkTK+VOFrH0lWUpuPJ3Knr263JZ5i9UEv5itcz8H0XHXNn36wAAAADImKc3NupwR8yYu37qoIxe07/1Cbnbzc9HQpNvzeg1AQAAAGSnWMLSazuajblzqkvTcm5Pw0Z5GzcZc5Ha2Wk5NwAAAHKLLXfnJzusxGKxo8Uz73jmmWdSX0eMGKFRo0YZx97pOuPESiY4w+6msN7Y2WLMXTOpSvnGc2i9SpZ8TN7DW7oci4y6Qi0z/0vuoop+iQ0AAADId2/tatG+logxN2diGtYd8bCKn/p3Bdfe1+VQbECNWq75ueLlNX2/DgAAAICMemil2WXmrBElqi4PZvSawTX3GuPokLMUrxiX0WsCAAAAyE71+9rUGjbvD5xRXZaWc/s7be4bLxqs2ODpaTk3AAAAcostRTPJgpg1a9bopZde0lVXXXV0/pFHHkl1mbn00ku7PKehoeFo9xZkL4/Hk5Hzut3uU47zwdJOuz2XBb26dFylPJ78+bv66h9W0eNfkCvWYcxbcil0wT8pNOPjcrvcjsg3jiHfzkGunYV8Owv5htPWJ7n8ul+67sja+h21VQWqG1ycWoufLlfrPhUv+rC8e9/sciwy5iq1zf4fKVCqzGUj83I13+g9cu0s5NtZyLezkG9kq2xfo+xuCumvW5uMuRvPGJLRuF0tu+XbfmRTvXdEpr4ro9fMdbzHOQv5dhby7Szk2znINbJZNt7n9WqnDYdHVxRo6ICCtMQV6FQ0E62dLY/Xl5ZzOxnvc85Cvp2FfDsHuXYW8m1j0cwVV1yh1atX60c/+pFuuOEGTZw4UQ8//LCeeuqp1PF58+Z1ec6qVatSX4cOHWpHiDhN5eXltlynrCw9OwhkC8uytHTtW8bctWcM06CqSuWFeFRa/mXppbu6Hisol+umX6hg7NUqcEi+cWrk2znItbOQb2ch33Da+iRXXveRWEIr1ptFMzeeXa2Kij50etzxsvTn90it+7oeu/Sf5b/8X+XPw1+w5EK+kR7k2lnIt7OQb2ch38gW2b5G+fWr62UdNy4JenXzebUK+jJYwPLW3ZKVODb2l6hoxrtV5C/K3DXzDO9xzkK+nYV8Owv5dg5yjWySjfd5vbl7vTG+ZPyg9MR5eLu0f6UxFTzjZgVtXKc5Be9zzkK+nYV8Owe5dpYyh+bblqKZT37yk7r77ru1f/9+TZkyJfWDbWNjY6pwYMSIEbrpppu6PGf58uWpnW+nTZtmR4iArd7a2aTNB9uMuRvOHKG80LxHuu/vpR1/7Xps6BnSrb+Vykf1R2QAAACAozy74YAOt0eNueumDzv9E77+W2nRZ6V4xJz3FUk33CVNuv70zw0AAADAVvGEpfte3WHMLThjeGYLZhJx6Y3fmXNTb5YomAEAAAAcKRyL65Wt5uZfF9amacPhtY+a44JyadRF6Tk3AAAAco4t27+OGzdOv/vd71RYWJgqlGloaEh9HTBggO655x75/X7j8Xv37tVjjz2W+u8rr7zSjhABWz34+k5jPLqyUGdVD1DO2/q89PNLT1wwc9ad0vuXUTADAAAA2OShN3cb4+SaY2RF4el1kkwWyzz8ya4FM+WjpQ88RsEMAAAAkGOe23hQu5tCxtxtM0Zm9qKbn5SazEIdnf13mb0mAAAAgKz1xvbDCkWPdaJ0uaTza9JVNPOIOa6bJ3ls2V8cAAAAWci2nwRvueUWXXbZZVq0aFGqKGbo0KG67rrrVFFR0eWxb7/9tu64447Uf8+bN8+uEHEakh2DMsHtdhvtn5qampRIHFsk5bJoPKGH3txlzM2ZUKnDhw8rZ1mWAm/8UgXPfUsuK24e8vjVfvn/U2TKbVJrh6TkH+fkG12Rb+cg185Cvp0lG/JtV/t45JZMrU+y5XXfG+2RuJav2WvMzao70vW1N1ztB1W0+GPy7Xq5y7Fo9SVqm/sjWf4ByW++8kmu5Runj1w7C/l2FvLtLP2db9YnyMU1yu+e32SMJw4u0vDCREZjLvrrL3X8NnqxgZPUEhyVd+uJfHuPg73It7OQb2ch386RDblmjYJcuc9rxSpz0+G6QUVSpE2NkbY+xeNqO6Cy7S/Kddxc68grFGXtkTfvc7AP+XYW8u0c5NpZsiHf5VmwRrG1fHrQoEF63/ve1+3jZs2alfqD7BePmwUSmZL8x2nXtTLtuU2NOtwRM+bmTKzI2b+fK9Kq4ie+qMDGxV2OxUuGq3nuTxQfNDX5YnFkvtE98u0c5NpZyLezkG9kCztfh9n+un+i/qCxO5vHJV05trx3MUc7NOAv75K3YUOXQ+1n/IPaL/y85Pb26mf9XJXt+Ub6kGtnId/OQr6dhXwjW2TrGqWhLaqnNjQYc9dPHZjReJMF+b7NjxlzoUm3Kc6H8b3Ge5yzkG9nId/OQr6dg1wjm2TbfV4vbzM3GJ4xsjQtMQY2LZdL1tGx5StUaPiFjvg8oz/wPucs5NtZyLdzkGtnSTg03/QcBGy2ePVBYzxtWLFGDAgqF3kaNqpkycfkbTR3pEuKVF+qlpn/Laug/6sDAQAAAKdZuvaQMT5vVJkqiny9Okdw3V+6FMxYnoBar/yWwnXXpyVOAAAAAPZbvOagYoljN5AFvC7NnlCZ0WsG1z0oVyJ6dGx5gwqPvy6j1wQAAACQvdojca3aY3aUOae6NC3nDmxaZowjoy6XvIG0nBsAAAC5iaIZwEYtoZie2WS2+pw3qUq5yL9xiYpXfEHuaNeWqO0zPqX2GZ+Q3J5+iQ0AAABwssb2qP661dydbfbEXt4AZ1kKrvyDMRUvHqrmeXcd6SQJAAAAICdZlqWFK/cbc1eNr1RJMIMfGVqWAmvuNabCtXNlBdJzQxwAAACA3PPGzhbFjyvm97hdOnNESZ/P6wo3y7fzRWMuXDu7z+cFAABAbqNoBrDRivUNisSPLfh8Hpdm1mV297a0S8RU+MJ3VPjmL7seCpSmustER1/RL6EBAAAAOLLuOG7ZoYDXrcvHVfTqHN69r8nbsN6Ya73yPymYAQAAAHLc27tbtbUhZMwtmDowo9f07nlV3sObjbnQ5Nsyek0AAAAA2e2V7U3GeMrQIhX6+745r3/rk2aXS7df0VGX9fm8AAAAyG0UzQA2WrzmoDG+uGaAygpy55+hq+2ASpd9Wr7dL3U5FquapOa5P1GirLpfYgMAAABwxNK1h4zxpbUDVNTLD5qCK/9ojONl1YqOvDAt8QEAAADoPwtXHjDG1eXBtOzmfCrB1X8yxrEBNYoNPSej1wQAAACQ3V7Z3myMz60uS8t5/ZuWGePoyItk+TO75gEAAED2y5279ZGVPJ6+V/ifiNvtPuU4F+1uCun1nS3G3PwpgzL2PUw3z+5XVbz4Y3K37e9yLDzxJrVf+Q25vEGdzt8mH/ONkyPfzkGunYV8Owv5RrbK5M/WufK6T6473txlrjvmTe7dusPV0aDApiXGXHjqu+Xx+uQUuZJv9B25dhby7Szk21nIN7JVtq1RWsMxPVZvFtnfMH2wvN7MfVzoCjcpsNFcX0Sm3C5PBq+Zb3iPcxby7Szk21nIt3OQa2SzbLnP63BHVOv3txtz544e0Pf4oh3yb3/GnBo3N2fuzcoVvM85C/l2FvLtHOTaWcj3EfxGGn1SXl5uy3XKytKzm0B/+sMbG4xxWYFP888eo4A3yxdmliW99HNp+ZekRMw85vFLc7+twNnvU8DlStsl8yHf6Dny7Rzk2lnIt7OQbzhtfZLNr/t73trYZd1xzVlj5Pf24pcea34nxSPHxh6/Ci/4oAqL7Pv+ZptszTfSj1w7C/l2FvLtLOQb2SLb1ihLXtquUDRxdOxxu/Tui8aqvCSYucBevl+Kh4+N3T4Vnv9+FRY7d33RV7zHOQv5dhby7Szk2znINbJJttzn9dKuPbKOGwd9bl06eWTf76Fa+7wU6zg2drlVdObNKnLw5xt24H3OWci3s5Bv5yDXzlLm0HxTNAPYwLIsPfDGLmNu/rSh2V8wE26VHvm0tOr+rsdKR0i3/VYafnZ/RAYAAADgBB5+c7cxnjd1SO8KZhIJ6dVfmXOTFkhFlWmKEAAAAEB/+fOrO4zxVRMGaVAmC2aSm3K9/htzbsI8qXhg5q4JAAAAIOttbzC7zEwbMSA991CtfcQcj7qIzzcAAACQQtEMYIO3dzZp84E2Y+7Gs4Yrqx3cKP35PdKBtV2P1Vwu3fQrFpYAAABAFlm3t1nr9rYYc9dN7+W6Y8tTUuMWc27GP6QhOgAAAAD9ae2eZr2147Axd/u5IzN70T1vSntXmnNn3ZnZawIAAADIesd3wEwqK/D1/aSxiLR+iTk38bq+nxcAAAB5gaIZ9EljY2NGzut2u432T01NTUokdzzOUff8dbMxHjkgqDElmfv+9ZVv41IVPfY5uSKtXY51zPi4Quf/kxRxS5H0xJ9v+capkW/nINfOQr6dJRvybVf7eOSWTP58nQ2v++7c+9dtxnhQsV/jy129+r4UvfAz+Y8bxyvr1Fw8PvnNlZPkQr6RHuTaWci3s5BvZ+nvfLM+QS6sUX773JYu64WpA30ZjbHwhbsVOG4cLxmu5oozHbe+yPX3ONiLfDsL+XYW8u0c2ZBr1ijI9vu8mlrNjYfdVrzPsXm3PaOSUJMxd3joxbJYf+Tl+xzsQ76dhXw7B7l2lmzId3kWrFEomkGfxONxW66T/Mdp17XSLRZPaNmag8bcnImV2fk/mERMhX/9bxW+/vOuh/zFap35X4qMuVqyUsnPXBg5nG/0Hvl2DnLtLOTbWcg3soWdr8Nse91blqUlaw4Yc7MnVMpKxtnDc7hb98q3+XFjrmPyuxTPxrWLzbIt38gccu0s5NtZyLezkG9ki2xZo8QSlhat3m/MXTulSi4r+ZwMBRRtl6/+YWMqNPEWxROpDxgydFFn4D3OWci3s5BvZyHfzkGukU2y5T6vjoh5zO/ue2zBDWaXmejg6YoVDsro/U04gvc5ZyHfzkK+nYNcO0vCofmmaAbIsBe3NqmxI2bMzZtUpWzjaj+okmWfln/XX7sciyV3l577UyUGjO6X2AAAAACc2lu7W7WnOWLMzZ5Y2atzBNbcJ5d17Bcjlq9Q4QkL0hYjAAAAgP6xuyms5pD5Iei1UwZm9JqBDYvljh7rZm+53ApPvCmj1wQAAACQGyIxc7OugNfdtxMm4gpsecy8Rs3svp0TAAAAecX2opm33npLzz77rDZv3qyWlpZuK5VcLpd++ctf2hYfkG6LO3WZmTasWCPLg8om3r1vqGTJJ+Rp29vlWKhugVov/7rkK+iX2AAAAAB0b9lac90xuiKoukGFPT9BIqbg6j8ZU+Fx18ryl6QrRAAAAAD9pDVsbuzl97g0YkBmP6cIrvmzMY5WX6pEybCMXhMAAABAbgjHkx0oj/H3sWjGu+8NudvNz0nCNbP6dE4AAADkF9uKZurr6/X+979ff/1r1y4WJ2NZFkUzyGktoZie3tiYvV1mLEvBVX9Q0bNflysRNQ+5fWq7+EsKTX1Psnqt30IEAAAAcGqxeEKP1TcYc3MmVqXW0z3l3/pklyL6jqnvTluMAAAAAPpPW8TcwK7I78no9TyH1su393VjLjTp1oxeEwAAAEDuCKe500xg03JjHKsYr0T5mD6dEwAAAPnFlqKZXbt26dJLL9XBgwdThTBJxcXFKi8vl9vdx/aKQBZbsb5BkeN2R/C6Xbq6rkJZIdqh4qf+TcH6hV0OxYuGqGXOjxQbela/hAYAAACg517a1qzDHebO0bMnVPbqHMli+uNFB09XfODktMQHAAAAIMuKZgKZLZoJrrnPGCcKqxQZfWVGrwkAAAAgd0TSWTRjWfJvWmaev3b26Z8PAAAAecmWoplvfOMbOnDgQGqX2w984AP63Oc+p/Hjx9txaaBfLV5jtv68uGaABhT41N/ch7eqdMnH5T20rsuxyPDz1TL7B7IKs6gjDgAAAICTWrrOXHdMGVqkkeXBHj/f3bRd/u3PGnOhKXekLT4AAAAA/astbBbNFGay00w8rED9g8ZUaMJNkqf/PxsBAAAAkJ1FM36P67TP5Tm4Rp6WncZcuGbWaZ8PAAAA+cmWopmlS5emCmbuvPNO3X333XZcEjbxeDLzwUrnDkS52JFod1NIr+9sMebmTxmUse9ZT/k2P67CZf8od8SMLSl09ofVceE/y+225a0hr/KNniPfzkGunYV8Owv5RrbK5M/a2fq674jE9dSGRmNu7qTerTsK1vzJGCcCpYrVXdfva5f+lK35RvqRa2ch385Cvp2FfCNbZcsapSNmGePigDdjsfk2rZA7ZK5RolNud/T6oq94j3MW8u0s5NtZyLdzkGtks2y5zyscN9coQf/pr1GCWx4zxvHSkdLgKfK4Tr8QB6fG+5yzkG9nId/OQa6dhXwfYcud8bt37059TRbNIL+Ul5fbcp2ysjLlmj+8scEYlxX4dO05YxTw9tMHQ4m49OQ3pWe/1/WYv0Ra8FMFJ12nnu9HnTm5mG+cPvLtHOTaWci3s5BvOG19kk2v+2ff2q2O6LEd2dwu6Zbza1Re0sOf7GNhae39xpT7jHerfNCwdIea07Il38g8cu0s5NtZyLezkG9ki2xZo8Tdh4xxeVEwc7HV/8Ucj75EZTVnZeZaDsV7nLOQb2ch385Cvp2DXCObZMt9XnGZN2pWlBaffmxbHjeGnsnXq7yi4vTOhdPC+5yzkG9nId/OQa6dpcyh+balaCb5Q+3+/fs1YMAAOy4H9DvLsvTAG7uMuWumDe2/gpm2Q9Jf/kHa/GTXYwMnSLf9Xqoa1x+RAQAAAOiDh9801x0Xja3SoJ4WzCStfURqN2+g0znvT1N0AAAAALJBazhmjIuDGfp4sGGLtPkpc+6sv8vMtQAAAADkrFA0bowDvtPc7fzgBunAWnNu4nV9iAwAAAD5ypb+Ouecc07q6/r16+24HNDv3t7ZpM0H2oy5G88c3j/B7HpNuvuyExfMTLlJ+sAKCmYAAACAHNTYFtFT9QeMueum97JDzCu/NMejL5EGjk9DdAAAAACyRVunopmiQIaKZt74vTkODpAmXpuZawEAAADIWZFYwhgHT3cT4uTGYMcrHiyNmNGHyAAAAJCvbOk086lPfUqLFi3S3Xffrdtuu82OS8ImjY2NGTmv2+022j81NTUpkTAXTNnsnr9uNsYjBgRUU5q579cJWZb8q+5R4dNflSseMQ+5veq45EsKT/97qT0qtdsYVx7mG71Dvp2DXDsL+XaWbMi3Xe3jkVsy+fN2NrzuO/vLm3sVS1hHx36PS+ePCPb4++A+tF5l218w5lon3qaoneuWLJWN+UZmkGtnId/OQr6dpb/zzfoE2b5GOdTcbox9Viz9sSViKnv9d8ZufaEJC9TR2iEp+Qe5+h4He5FvZyHfzkK+nSMbcs0aBdl+n1d7JGqMo+H204qtZNVC4+bH8Jir1d7U1OvzIPfe52Af8u0s5Ns5yLWzZEO+y7NgjWJL0czMmTP1hS98Qd/+9rf10Y9+VD/84Q/l8/nsuDQyLB4322VmSvIfp13X6qtYPKFlaw4ac3MnVtn7BhMLqfjpf1dw7f1dDsULB6llzo8UG3ZO8hurbJRL+UbfkW/nINfOQr6dhXwjW9j5OsyG1/3i1WaXmUtqy1XgdfU4ruBbvzPGiYJKhUZflfxGpjXOfJAN+YY9yLWzkG9nId/OQr6RLbJljdLaqdNMgc+d9tj8W56Qu22fMdcx4Rb+LWYA73HOQr6dhXw7C/l2DnKNbJIt93mFo+b9Sl5X72Nzt+yWd99bxlxozCz+vfUD3uechXw7C/l2DnLtLAmH5tuWopnf/va3mjhxoi688MJUt5lHHnlEN998syZMmKDCwsJun3/nnXfaESaQFi9ubVJjh/kB1NxJVbZd3920XaVLPyHvgdVdjkWHnavm2T+UVTTQtngAAAAApN/e5rBe39lizM2ZWNnzE0TbFah/0JgKTbpV8vjTFSIAAACALNEWNj8ALQ540n6NwJp7jXF08HTFqyak/ToAAAAAcl8kbhbNBLzH96zsGf/m5cY4EShVdPh5fY4NAAAA+cmWopm///u/l8vlOjres2ePfvSjH/XoucnnUTSDXLK4U5eZqUOLVV0etOXavq1PquSxz8od7tpqtOOMf1DbBf8seejyBAAAAOS65esOdbnp7cIxA3r8/MCGR+WOtB4dW3IpNPn2tMYIAAAAIDu0R8yimSJ/eotm3K375N/6pDEXmnRbWq8BAAAAIH+EY1bai2Yio6/inigAAAD0b9FMkmWZP+wC+ag1HNPTGxuNuXl2dJlJxFX4yo9U8MqP5ZL5b83yFarlyv9UZNw1mY8DAAAAgC2WdiqauXJcRa8+VAqu/IMxjo66TInSEWmLDwAAAED2aO1UNFOY5qKZwLq/yGXFjc8l+EwCAAAAwInEE5ZiCfPeJr/n2GbcPeHqOCTf7leMuUjt7LTEBwAAgPxkS9HMli1b7LgM0O8eX9+gSPzYws7rdmnmhIqMXtMVOqyS5f8o//ZnuhyLldeqZe5PFa8Ym9EYAAAAANhn88F2rd/fbszNmVjZ4+d7970t34FVxlzHlHenLT4AAAAA2aUtk51mrISCa+41psLj5svyF6fvGgAAAADyRiSW6DLX204z/i0r5LKOncfyFihSfUla4gMAAEB+sqVoZtSoUXZcBuh3i1cfNMYX1QzQgILMtf707F+l0iUfl6dlZ5dj4dq5ar3qP/lgCgAAAMgzyzp1makq8unskaU9fn5w1R+NcbxkWKrTDAAAAID81BY2i2aKA+krmvHtfFGe5h3GXGjSbWk7PwAAAID8Ek5D0Uxg0zJjHEl+xuEN9jk2AAAA5C9bimYAJ9jTFNbrO1uMuXmTqjJ2vcCa+1T89FfkikeMecvlUduFX1DojPdLrt61LwUAAACQ3SzL0tK1ZtHMrAmV8rh79rO/K9yswIZHjLnQ5Nsldxp3mgYAAACQNWIJS6FON6Wls9NMcM2fzetV1ik2eHrazg8AAAAgv4TjfSuacYVb5NvxgjEXqZmdltgAAACQvyiaAdJkyVqzy0xJwKNLagak/0KxsIqf+VqXD6KSEoVVap79Q8WGn5f+6wIAAADod6v2tGpXU9iYmzOxssfPD6x7QK5Y6OjYcnsVmnhLWmMEAAAAkD06ImaXmaRCf+92cT4ZV0eD/JseM+ZCk25lQy8AAAAAJxWJWV3m/L0omvFte1KuxLENhi23T5HRV6QtPgAAAOQnimbQJx5PZnYjdrvdpxxn427PS9Z03u25SgUBX1qv427eqaJFH5V3/8oux2JDz1brvJ/KKh6sXNsjOtfyjb4h385Brp2FfDsL+YbT1ifZ9LpfVt9gjKvLg5oyrFSuntyUZlkqWH2PMRWtmSV36dB0h5nzsiXfyDxy7Szk21nIt7OQb2SrbFijdMRjXeZKC/xpiS2w/iHzZjWPX7FJN2X07+1EvMc5C/l2FvLtLOTbOcg1slk23OcV7VozowK/t2efcyS7XW553BjHRl4kd2EGNjXGSfE+5yzk21nIt3OQa2ch3xkomrnyyitTX5M/xK5YsaLL/OnofC5kl/LycluuU1ZWpmz29s7D2tLQYczdfkFNer8/Gx+X/vIBqaOx67HzPiLvzP+nAV6/8kG25xvpRb6dg1w7C/l2FvINp61P+ut1H4sn9HinopkbzhqpioqKnp1g6/NSw0Zjyn/hR+S38fuWq3ifcw5y7Szk21nIt7OQb2SLbFij7A+3dJkbPqhKbncfu8FYlrTufmPKNel6DRg6pm/nRbd4j3MW8u0s5NtZyLdzkGtkk2y4zyvQaq5FAl53zz/niHZIW58ypnzTbrR17YWueJ9zFvLtLOTbOci1s5Q5NN9pLZp56qkjP5R2rvxOzifnkt04euqdx/e0ihzoTw+8vssYj6wo0Dmj0rQgSySkZ78nPfnN5KdQ5jFfoXTdj6SpN6fnWgAAAACy1gubDulg67FdnJOuP2NYz0/w6i/NceVYacylaYoOAAAAQDZqDUeNcXHA2/eCmaSdr0gH1plzZ93Z9/MCAAAAyGvhWKJL0UyPbXpSirYdG7vcUt28NEYHAACAfJXWoplLL730hEUuJ5sH8kE0ntAjb+025m44Y3h6XvPJrjIPfFjasKzrsYpa6bbfS4Mn9f06AAAAALLewjfNYv1pI8pUM7C4Z09uPSCtedicO+f9yR0r0hghAAAAgGzTGo4b46KAJz0nfu035riiRhp9SXrODQAAACBvhaLmGiXg68UaZe0j5rj6Aql4YJoiAwAAQD7LSKeZns4j9zU2NmbkvG6322j/1NTUpESy40oWenZTgw61mbs9X1lb0ufvjefAGhUt+og8Tdu7HIvUzlbbzO9K/tJkEpTrcinf6Dvy7Rzk2lnIt7NkQ75psw471yfZ8LpPfoi0dNUeY27m+PIe/50Dr9ytwsSxHaYtj19No+fJyoP1RD7mG/Yh185Cvp2FfDtLf+eb9QmyeY2y79BhY1zodfc9rnCLBqz6i44vwW+fcLPCh81rIT/e42Av8u0s5NtZyLdzZEOuWaMgm+/zOnS42Rj73T2MKx5V2bpFOr4vTfuoqxTmcw5Hvs/BPuTbWci3c5BrZ8mGfJdnwRolrUUzcJ543Kz+z5TkP067rtVbj6zcb4ynDC3SiDJ/n+INrHtAxU/+m1zxsDFvudxqv+Bz6jjzQ0d2hM7S70k+5xvpR76dg1w7C/l2FvKNbGHn69Du1/3TGw6pPXLslxbJm9OuHl/esxishAIr/2hMhcdeo5ivJG/XFOnG+5xzkGtnId/OQr6dhXwjW2TDGqU5dKx4PqnQ7+5zXMF1C+WKdRwdWy6POupulMW/O1vwHucs5NtZyLezkG/nINfIJtlwn1dHJGaM/R5Xj+Ly7XhR7nCTMRcaM1MJ/n31O97nnIV8Owv5dg5y7SwJh+abohmgD1rDMT2zydyxYN6kqtM/YTysome/oYJVf+hyKFFQoZbZP1B0xIWnf34AAAAAOWnp2kPG+JzqUg0s9vfoub7tz8rTstOYC019d1rjAwAAAJCd2sLmh59FAU+fzxlYc68xjoy5UlbRwD6fFwAAAED+i8TMXc0DvuN7x5ycf/NyYxwdNFWJkmFpjQ0AAAD5i6IZoA9WrG9QOGYdHXvcLs2qqzzt8xU/9e8Krr2vy3x08BlqmftjJYqHnva5AQAAAOSm5lBMz285bMzNntjzdUdwldllJlY1UbHBZ6QtPgAAAADZqy3SqWjG37eiGc+BNfLtX2nMhSbd1qdzAgAAAHCOcNwsmvF7elA0YyXk32QWzURqZqc7NAAAAOQximaAPli85qAxvmhMmQYU+k7rXJ7GzScsmOmY+h61Xfyvkidw2nECAAAAyF1PrG9QNH6sWN/ncemqcRU9eq67Zbf8W58w5kJT7pBcrrTHCQAAACD7tKe5aCbYqctMvGiIotWX9umcAAAAAJwj3LnTjLf7ohnv3jflad9vzEVqKZoBAABAz1E0A5ymvc1hvbajxZibN6nqtM8XXPl7Y2x5Amq94hsKT7jhtM8JAAAAIPctXXvIGF9cM0AlwZ4t54Nr/iyXdewDqISvSOHx16U9RgAAAAAO6DQTCylQv9CYCk+6WXL3rRAHAAAAgHNEYsc2Cetp0Yx/8zJjHCsfq3h5TdpjAwAAQP7qQX9DACeyZK3ZZaY44NElteWnd7JImwLr/mJMdUz/OwpmAAAAAIfb3xLRazuajbnZEyp79uR4VIHV5i7Q4boFsvzF6QwRAAAAQBZrDXcqmgmcfoFLYOMSuSPHNhOz5FJo4i19ig8AAACAszvN+D2uUz/BshTYtNyYitTOykRoAAAAyGMUzQCnwbIsLV5tFs3MrKvo0e4HJxJc/5DckVbzg6Ypd/Q5TgAAAAC5bXn9IR2/51qR362La3pWrO/fskKe9v3GXGjKu9IcIQAAAACndJoJrjGL8qMjL1aidMRpnw8AAACA83QumunuXivPoXXyNG83z1EzOyOxAQAAIH9RNAOchnX72rWlIWTMzZtUdXonsywFV/7emIqOvkKJ0pF9CREAAABAHli29pAxvmJchYK+ni3lg6v/aIyjQ85UvGpiWuMDAAAAkN3aI4m0FM14GjfLt/tlYy40+bY+xQYAAADAeSLx3hXNdO4yEy8ZrvjAyRmJDQAAAPmLohngNCxeY3aZGVYa0PThJad1Lu+eV+U9VG/MdUx9T5/iAwAAAJD7tjZ0aO2+NmNuzsSeFeu7D2+Rf8fzxlxoyrvTGh8AAAAA53SaCXTqMpMoqFBkzFV9ig0AAACA84RjljH2d1M049+8zBhHkl1mXK6MxAYAAID8RdEM0EuxhKVl68yimbmTKuU+zQVZwcrfGeN42ShFqy/pU4wAAAAA8q/LTGWhT+dUl/boucFV9xjjRGCAwmPnpTU+AAAAANmvLdypaCZwGkUz8YiC6/5iTIUm3Ch5/H0NDwAAAIDDhGM97zST3CCs80bE4drZGYsNAAAA+YuiGaCX/rq1SQ3tMWNu3qSe7fbcmattv/ybzB0ROpK7P7v4pwkAAAA4mWVZWrrWLNafOaFCXncPivVjYQXXdrqhbeJNkjeQ7jABAAAAOKDTjH/LE3J3NBhz4Um39jk2AAAAAM4T6Vw04zn5PVKBzcuNcaKgUrEhZ2YsNgAAAOQvb39deOfOndq7d6/a29s1Y8YMFRQU9Fco6AOP5zR2JOsBt9t9ynF/WtJpt+cpQ4tVM7D4tM4VXHuvXIljBTiWN6jYlNsy9n3NVtmcb6Qf+XYOcu0s5NtZyDeyVSZ/jrb7db96T4t2HA4bc/MmD+rR39G/fqnc4cPGXHTaux23zugL3uecg1w7C/l2FvLtLOQb2aq/1yjJYvzORTMlQV+v4ypY+2djHB02Q6oaL1YY9uA9zlnIt7OQb2ch385BrpHNsuE+r0jcMsZBv+ekcXUumonWzpLHR8fL/sb7nLOQb2ch385Brp2FfPdD0UxLS4u+853v6Ne//rV27959dH7lypWaNGnS0fGf/vQnPfDAAyorK9P//u//2hkieqm8vNyW6yRfC9mgJRTVUxvM3dRumTHq9L4P8ai0+k/GlGvqLRowdLScLlvyDXuQb+cg185Cvp2FfMNp6xM7XvdPPLfHGI+qLNQlk0bK5epBp5lON7RpzGUqqzk7zRE6C+9zzkGunYV8Owv5dhbyjWzR32uUUDSuWMK8IW3YwAqVlxf1/MSHt0vbnjWmfOf+g61/N5h4j3MW8u0s5NtZyLdzkGtkk2y4zyvhMgtkBpQUnTiu5t3S3jeNqcAZNyvAWiTr8D7nLOTbWci3c5BrZylzaL5tK5rZsGGD5s2bp82bN6d2tnrHiW74Of/88/We97wn9bi/+7u/08UXX2xXmMApLVm1V+Hj2oR63S5dO33Y6Z1s3aNSi3kjnM79YB8jBAAAAJDr4glLj7x9bKOJpOunD+tZwczeVdKOl8y5Gf+Q5ggBAAAA5ILW8LFO9+8oDvbyo8E3/pDsWXNsHCiTJl2fhugAAAAAOFE4ZnbDDPhO0v1m3SJznFyLjL40g5EBAAAgn9nSXycUCumaa67Rpk2bVFhYqM9//vN69NFHT/r40aNH64orrkj998MPP2xHiECPPPj6LmN8ed1AVRSdZtvPl39hjkecKw2d3ofoAAAAAOSDFzcd0oGWsDF33Rk9LNZ/9VfmuHiIVDcvjdEBAAAAyBWtoRMUzQR6UTSTiEtv/N6cm3aL5C9MQ3QAAAAAnCgUPbZZcVLAe5LbF9d2umewbo7kPc17tAAAAOB4tnSaueuuu7Rx40YVFRXp2Wef1RlnnNHtc+bOnasVK1boxRdftCNEnKbGxsaMnNftdhvtn5qampRImIsmu+1tDuuvmw8Zc7PGDzit74H7YL3Ktj1nzLVNvkORDH0/s1025huZQ76dg1w7C/l2lmzIt13t45FbMrU+sft1f9/LW4zxhMFFqvTFuv/7RVo14K0/6fh+NB2TblWouTUjceazbHifgz3ItbOQb2ch387S3/lmfYJsXaPsPmCuBbxul9pbmtTRky6WycdvfVIlzTuNueaxCxR36GcZTn2Pg73It7OQb2ch386RDblmjYJsvs+rPRwxxvFwqEtcro4GlW193vi8o3XkFYqyFskK2fA+B/uQb2ch385Brp0lG/JdngVrFFuKZh544AG5XC59+tOf7lHBTNL06Uc6bmzYsCHD0aEv4nGzZWamJP9x2nWtk1m0ar+s48bFAY8uGlN2WnEF3/qtMU4UVKijZlbyG5qGSHNfNuQb9iHfzkGunYV8Owv5Rraw83WYqdd9OJbQ4/Vmsf7sCZU9ulZw7YNyRduOji2XWx0Tb1GCf599xvucc5BrZyHfzkK+nYV8I1v09xqlJRQ1xkV+T68+DC1ceY8xjg6cokjlRD7L6Ge8xzkL+XYW8u0s5Ns5yDWySTbc55X8HOR4PrfV5bGBjY/JZR2bs7xBhUZczFokS/E+5yzk21nIt3OQa2dJODTfJ+lvmF5r165NfZ01a1aPn1NZWZn6evjw4YzFBfSUZVlavOagMXf1+IqTtwg9BVekRYH6hcZcaPLtkifQ5zgBAAAA5LbnNx9WW+TYLyeSu6jNmlDR/RMtS8FVfzSmIqOvVKJkWCbCBAAAAJADjl9bvFM001OutgPyb33CmAtPvi1tsQEAAABwps5FMye69yqweZkxjlRfKvkKMh4bAAAA8pctRTOtrUfavxcXF/f4OeFwOPXV5/NlLC6gp+r3t2vzoQ5jbt6kqtM6V2Ddg3J32v05NPldfY4RAAAAQO5butYs1j9zRIkGl3RfYO/d96a8B49sWPGO0BTWGQAAAICTtYU7Fc0Eel40E1z3gFyJ2NGx5S1QePy1aY0PAAAAgPNEYpYx9ncqmnFFWuXb/pz5nNrZtsQGAACA/GVL0cw7XWO2bt3a4+esXr069XXIkCEZiwvoqUWduswMLfXrjBElvT9RcvfnlX8wpiJjrmb3ZwAAAABqDcf03Gaz2+rcHhbrd+4yEy8ZoejIS9IaHwAAAACHdJpJfpax5s/GVHjsPFn+0/hcBAAAAACOE+qm04xv29NyJSJHx5bbq8joK22LDwAAAPnJlqKZs846K/X1mWee6fFzfvvb38rlcumCCy7IYGRA92IJS8vXHupy45rb5er1uXy7XpS3caMxF5r6nj7HCAAAACD3PbG+UZH4sR3WvG6XrhxX0e3zXKHDCmxY1LXLjLvnu0gDAAAAyP+imUJ/zz4W9O5+WZ6mbcZcaPKtaY0NAAAAgPNYlqVIN0Uzgc3LjHF0xAWyAqW2xAcAAID8ZUvRzM0335z6offuu+/W9u3bu33897///aMFNu9617tsiBA4uZe2NulQe9SYm9fD3Z47C779e2McK69VdMSFfYoPAAAAQH5Yus7scHnhmDKVFXi7fV5g3QNyxcNHx5bbp9DEmzMSIwAAAID87zQTXG12mYmVj1VsyNlpjQ0AAACAMzcuPrZ12BF+z3GbFsfC8m19yjgerpltT3AAAADIa7YUzbz3ve/VtGnTFAqFdPnll2vJkiWpIpp3JDvKJMevvPKK3v3ud+uzn/1sau6SSy7R3Llz7QgROKnFa8wb1yYNKdLoioJen8fdukf+LY8bc6Ep707+A+hzjAAAAABy28HWiF7d3mzMzZnYg2J9y1Jw1R+NqUjtbFmFp1foDwAAACB/tIXNopniQPdFM65QkwKblhhzoUm38lkGAAAAgD4Ld+oy07nTjG/H83JH246OLbkUqZlpW3wAAADIX91vWZsGbrdbDz/8sC6++GJt3bpV8+fPV2FhYaowJilZSNPS0qJw+MjOuMkCmtraWt177712hAecche2pzY2pqfLzKp75LKOfUBl+QoVnnBjn2MEAAAAkPseq29Q4rjt1Qp9bl1aO6Db5/l2vSjv4S3GXMeUOzIRIgAAAAAHdJoJ1C+UKx4xOlmGJ9yQkfgAAAAAOEs4Zp2yaCaweZlxLDb0bDYJAwAAQO50mkmqrq7Wm2++qXe9612pIpq2trZUcUzyz4EDB1JdaN7pPnPrrbfq5Zdf1qBBg+wKDzihJ9Y3GLsceNwuzZ5Q2fsTxSMKrvmzMRWqWyArUJKOMAEAAADkuCVrzQ6Xl4+rUNDn6VFx/vFi5WMVG3Zu2uMDAAAA4ICimWQny06fZSR3dbYKKjIRHgAAAACHiZyg04z/naKZREz+LSuMY+Ha2XaFBgAAgDxnS6eZd1RUVOgPf/iDvvnNb2rRokV69dVXtX//fsXjcVVWVurMM8/Utddeq/Hjx9sZFnBSi9eYN65dOLpM5YW+Xp/Hv2mp3O3muUJT39Pn+AAAAADkvu2NIa3Z22bMzZnYfbG+q+2A/JuXG3OhKe+S/tbVFQAAAICzdS6aKeymaMa7/215D9Ubc6HJt2ckNgAAAADOc/zGxZ07zfh2vyJ3qNE4FqmZZVtsAAAAyG+2Fs28Y9SoUfrYxz7WH5cGemxfS1ivbm825uZNOr2WnwUrf2+Mo8POVbyyrk/xAQAAAMgPyzp1mSkv8Orc6tJunxdce69cidjRseUNKjzhxozECAAAACD3tIU7dZoJnLpoJrja7DITLxmh6IgLMhIbAAAAAOcJx82iGY9L8rqPbATm37TMOBYbOFmJ0hG2xgcAAID89bf+hgA6W7LmkKzjxkV+jy6pLe/1eTwH18q35zVjroMuMwAAAACShS6WpaXrDhlzV9dVyuvpZrmeiCu4+k/GVHjctbIC3RfbAAAAAHBmp5niU3WaibTJv+FRYyo06RbJxUeJAAAAADLTacb/ty4zshLyb37MfGztbDtDAwAAQJ7jN93ASW5cW7zG3O356roKBX29/ydT8PbvjHG8cBDtQwEAAACk1O9v17aGkDE3Z2Jlt8/zbXtanpbdxlxoyh1pjw8AAABA/hTNJDcHO5nAxkVyR9uOji2XW+GJN2c0PgAAAADOEulUNBP4W9GMd9/b8rTtNR/LvVUAAABII69slkgktGbNGm3evFktLS2Kx81f2J/InXfeaUtswPE3rm0+1GHMzZtU1evzuMLNCqx/2JgLT75d8vj6HCMAAACA3Ld0rVmsP6w0oGnDirt9XsGqPxrj6MApig2elvb4AAAAAOSu9k5FM4WnKJoJrr7XGEdHXa5E8ZCMxQYAAADAecIx64RFM/7Ny4z52IAaxcvH2hobAAAA8pttRTPt7e36+te/rl/84hc6dOhQj5/ncrkomoHtOneZGVLi15kjSnp9nsDav8gVO1Z8Y7m9CiWLZgAAAAA4Xjxhadk6c308e2Jlah18Ku7mnfJte8qYo8sMAAAAgOMlLEttkUSPOs14DtXLt+8NYy40+baMxgcAAADAecKdOs34PS7JshTYZBbNRGpnJ28atDk6AAAA5DNbimZaW1t1xRVX6PXXX5dlmRXjQLaJJW9cW2veuDZ3UpXcvV2MWQkVrPx9l9ahieLB6QgTAAAAQI57Y2ezDrRGjbk5Eyu7fV5w9Z/k0rG1dcJfrPD4azMSIwAAAID86DKTVBw4cdFMcI3ZZSZeOEiRUZdnLDYAAAAAzhSJJ7p0mvE0rJenaZv5uJpZNkcGAACAfGdL0Uyyw8xrr72W+u/zzz9fH/rQhzR9+nQNGDBAbveRNovITR7PiT9g6avOrws7Xyd/3daoQ+3mjWvXTh3U67+rd9vz8jRtNeYi0+/M2Pcsl/VnvmE/8u0c5NpZyLezkG9kq0z+rJ2J1/2ydQ3GeNzAQo0f3E2Hy3hEwbX3GVORiTfJE+x9Z0ycHO9zzkGunYV8Owv5dhbyjWzVn2uUUCzW5TmlBf6uMcVCCtQvNKYik2+RxxdIZ7joA97jnIV8Owv5dhby7RzkGtmsv+/zipo1Mwr4PApuecyYSxQPkzX0DHnoNJO1eJ9zFvLtLOTbOci1s5BvG4tm7r//frlcLs2bN08PPfSQY7/Z+ai8vNyW65SVlckuj20wC12mjSjTWWOH9/5ES/9kjgdOVMmUObQPzbJ8o/+Rb+cg185Cvp2FfMNp65N0vO7DsbhWrDeLZm48u7r7v8OqB6T2g8ZU8KKPKmjj392JeJ9zDnLtLOTbWci3s5BvZIv+XKMcjLR0ecywQZXyejp9Rrfyfil02JgquOADKmCNkbV4j3MW8u0s5NtZyLdzkGtkk/6+z8vjbzLGRUG/CrY8bsy5J1+v8oqKjMaH9OJ9zlnIt7OQb+cg185S5tB821K9smvXrtTXT33qUxTMIKu1hmNatnqvMXfDmadRMHN4u7R+qTl37gcomAEAAACQ8nT9ATWHzJ2fr50+tPsnvvorc1x9oTRoYpqjAwAAAJAPn3ccr8Dn6Vowk/Tar83xmMukipoMRwcAAADAicKdWs2M1F5p30rzQRPn2xsUAAAAHMGWCpZBgwalvlZVVdlxOeC0LV21V6HjFmget0vXTh/W+xMlb2Szjlvo+UukabelKUoAAAAAue6hN3cb43NHV2hEeeGpn3RgvbT1WXPunPdnIDoAAAAA+VY0Uxz0dn3QoU1d1xhn3ZnhyAAAAAA4VTgWN8bnhV80H1BYJVVfYG9QAAAAcIQT/IY8/c4991zt3LlT9fX1OvPMM+24JGzS2NiYkfMmOxId3/6pqalJiYS520Am3PvyVmN84ZgB8kTb1djY3vOTxEIqe+03RkVaaOKN6miPSe2Z+X7luv7KN/oH+XYOcu0s5NtZsiHfdrWPR27J1Pok3a/75M1rj6/dZ8xdPX5At/EXPH+XgseNEwUVahp6SfIvflpxILvf52APcu0s5NtZyLez9He+WZ8gG9coew81GY8v9Lm6xBN88RcqOG6cCA5Q05CLWGNkmf5+j4O9yLezkG9nId/OkQ25Zo2CbL3P63CLef/VWW1mEX94zNVqb2rOSIzIr/c52Id8Owv5dg5y7SzZkO/yLFij2FI084//+I964IEH9OMf/1i33XabXC6XHZeFDeJxcweATEn+48z0tfa1hPXKNvNDpLkTK3t93UD9o3J3NBhzHZPvsO17lQ/syDeyB/l2DnLtLOTbWcg3soWdr8O+vO5X1B9UOGZ2uLxy7IBTny8Wkn/t/cZUaOLNiru8yb/4acWBnuN9zjnItbOQb2ch385CvpEt+nON0tIRNY4X+TxmPPGoAmvuMx4TrrtBcZePNUaW4z3OWci3s5BvZyHfzkGukU36+z6vUPRYR8yBatTY8BrzeM1M/r3kIN7nnIV8Owv5dg5y7SwJh+b7+GYYGXPhhRfq29/+tl544QXdfvvtOnz4sB2XBXpl6dpDso4bF/k9urS295VtwZW/N8aRERcoXjE2DRECAAAAyAfL1h4yxheMLtOAQt8pnxPY8KjcYXN3tdDk2zMSHwAAAIDc1x41P/Qs9HuMsX/bU3K3HzDmQpNutSU2AAAAAM50/IZisz2vGscS/mJFR1zQD1EBAADACWzpNJP0uc99TrW1tfrgBz+okSNHaubMmRo/frwKCwu7fe5XvvIVW2KEc1mWpcVrDhpzV42vUNDXu7oy77635dv3pjEXmvretMQIAAAAIPcdaovq5U4dLudMrOz2ecFV9xjjSPUlSpSNSnt8AAAAAPJDa9gsmikKmEUzwdV/NsbRIWcqXjneltgAAAAAOFM4dmw749nuV4xjkdFXSp5AP0QFAAAAJ7CtaGb//v168MEH1dTUlGrr89BDD/X4uRTNINPWH2jXpoMdxty8SVV97jITLx6iyJir+hwfAAAAgPzwWP0hxY9rcRn0unVZNx0uPQdWdy3On3JHpkIEAAAAkAfaIp2KZo7rNONu3SPf9qeN46FJt9kWGwAAAABnisSPdJopU6sucK8xj9XM6qeoAAAA4AS2FM0cOnRIl156qTZs2JDq6AFkm8WrzS4zQ0r8OmtkSa/O4epoVGDDo8ZcaPK7JLdttWkAAAAAstyytYeM8eXjylVw3M1rJxJc9UdjHC8acmTHNQAAAAA4jaKZwNr75bKO3KyWlPAVKzx2nq3xAQAAAHCecOzIOuRS99vyuo6tSSxPQJHqS/sxMgAAAOQ7tx0X+eY3v6n169enCmZuvvlmPfHEE6lCmng8nuo6090fIJNiCUtL15k3rs2dVCW3y9Wr8wTX3idXPHx0bLl9Ck2+PW1xAgAAAMhtOw+HtHJPqzE3Z0LlKZ/jirQouP5hYy40+TaK8wEAAACcUlu4c9HM3z4StBIKrrnPOBYeP1/yF9kZHgAAAAAHF80McTUY89EhZ7ImAQAAQEbZcpfNww8/LJfLpfe85z36zW9+Y8clgR57ZVuTDrVFjbl5k6p6d5JEvMvuz+Gxc2UV9vI8AAAAAPLWsk7F+mUFXp0/uuyUzwnUPyRXtP3o2HJ5FJ50a8ZiBAAAAJAf2jt3mgkc6TTj2/G8PC27jGPhSbfZGhsAAAAAZ4rErNRXn2LGvOUv7qeIAAAA4BS2dJrZtevIL9/f//7323E5oFcWrzlojCcOLtKYyoJencO3/Rl5mncYc6Gp70lLfAAAAAByX7Lz6tJOa4+rx1fI6znFstyyuhTnR8ZcpUTxkEyFCQAAACBPtHUumvEfKZoJrrnXmI9VTVRs0FRbYwMAAADg7E4zfpdZNCO3r38CAgAAgGPYUjRTVXWk20ZJSYkdlwN6tdPakxsa+9ZlRlLByt8Z41jVJMWGnNXn+AAAAADkhw0H2rWlIWTMzZlYecrnePe+Ju+hemMuNOWOjMQHAAAAIL+0nqBoxtVxSP7NjxnzoWQnS5fL5ugAAAAAOFE4njhxpxkPRTMAAADIg6KZSy65JPV11apVdlwO6LEnNjQo9LddDJI8Lmn2hFPfuNaZu2mbfNueMeY6kl1m+JAJAAAAwN8sWXvIGA8p8Wv68FNvLBFcdY8xjpdVKzryoozEBwAAACC/tIW7Fs0E1z0oVyJ6dM7yBBQef30/RAcAAADAyZ1mfDLXK3J7+ycgAAAAOIYtRTOf/exn5fP59L3vfU+hkLmzLtCfFq85aIzPHz1AFUW9270guPIPcsk6Ok4EShUef13aYgQAAACQ2xKWpeXrzKKZ2RMr5T5Fob2ro0GBDYuNudDkd0kuW5bxAAAAAHJce5dOM24F1txrzIXHzpUVLLM5MgAAAABOFYmduNOM3HSaAQAAQGbZcrfNWWedpV/84hdav369Zs2alfoK9Lf9LRG9sq3ZmJs3uap3J4l2KLj2fmMqPOFmyVeQjhABAAAA5IE3d7ZoX0vEmJsz8dRrj+Dav8iVOPYcy+1XaOJNGYsRAAAAQH5p61Q0M7TlbXkbNxlzoUm32RwVAAAAACeLxI5sSuzvVDRjefz9FBEAAACcwpbehu9///tTXydNmqTnnnsu9XXatGkaP368CgsLT/lcl8ulX/7yl3aECYdZuvbgcf1hjuyydlltea/OEdjwqNzhJmOuY+odaYoQAAAAQD5Y2qnLTE1lgcZWnaLQ3koouPqerjtAF1RmKkQAAAAAebZ7cyR+/Ccg0ohtC41xbMAYxYbNsDkyAAAAAE4W+lunGa/MIn86zQAAACAvimZ+/etfp4pfkpJfE4mE3nrrrdSfU7Esi6IZZMziNQeN8ZXjKxX09aL5kmWpYOXvjKlI9SVKDBiTrhABAAAA5LhoPKEV9Q3G3JyJlUfXyCfi2/GCPE3bjLnQFIrzAQAAAPRMe6cuMwFFVLF9mTEXnnRr8kM7myMDAAAA4GSR+JGiGZ+rc6cZimYAAACQB0Uz1dXVp7whCLDb+v1t2niww5i7ZlLvdm327ntT3gOrjbnQ1PemJT4AAAAA+eHFrU1qCpkf/syecOq1R3DVH41xrGK8YkPPzkh8AAAAAPJPa6eimWrXfrnjIWMuNOFGm6MCAAAA4GQJy1L0bx0x/TI/NxFFMwAAAMiHopmtW7facRngtLvMDC7x66yRpb06R3Dl741xvGS4IqMuT0t8AAAAAPLD0rWHjPG0YcUaPiB40se7W/fKv+Xxrl1m2IgCAAAAwGl2mqlwtRjjhL9EVmGVzVEBAAAAcLJI7EiXmSRfp6IZy03RDAAAADLLneHzA1knnrC63Lg2d2Kl3L24Cc3VflCBDYuNudCUd0tuT9riBAAAAJD7N6o9vbHRmJsz8dRdZgJr7pPLOnaDm+UrVHjCgozFCAAAACD/tHUqmhnqazPGVkG5zREBAAAAcLpw7EiXmRMVzYiiGQAAAGQYRTNwnFe2N+lgW9SYmzepdzuqBZM3siUiR8eWx6/QpFvSFiMAAACA3JcsmAkft3OaxyVdPf4URTOJmIKr/2RMhcddK8tfkskwAQAAAOSZtrBZNDPYaxbNJIIVNkcEAAAAwOnCp+o046FoBgAAAJlF0QwcZ9Gag8Z4wuBC1VQV9vwEibiCq/9oTIXHXiOrgA+ZAAAAABzTucPleaPKVFF08g9+/FuflKdtrzHXMeWOjMUHAAAAID+1duo0U+Xu1GkmOMDmiAAAAAA4XSR+rGjG76LTDAAAAOxF0QwcpT0S15PrG/vUZca/9Ql5WnYbc6Fp701LfAAAAADyQ2N7VH/detiYm9PN2iO4yizOjw6ervigKRmJDwAAAED+ao8cuxktqcrTaowTwXKbIwIAAADgdMd3mvHKLPSn0wwAAAAyzZvOk3k8ntRXl8ulWCzWZf50dD4X0BdPbmhQ6LhFmMclzZ7Qu6KZ4MrfG+PooKmKDZ6ethgBAAAA5L7H6xsUt46NA163Lht78hvT3E3b5dv+rDEXmkyXGQAAAAC919ap00yFWoyxRdEMAAAAgH4smvGJTjMAAADI4aIZy7J6NQ/YbfGag8b4vNFlqizq+cLL3bhF/h3PGXOhqe9JW3wAAAAA8sOK9Q3G+NLaASryn3xDieDqP8mlY2vnRKBU4XHXZDRGAAAAAPmpLWwWzQxQp04zBRTNAAAAALBXJGadtGiGTjMAAADIqaKZf//3f+/VPGCnA60RvbK92ZibN6l3XWYKVpldZhKBAQqPm5+W+AAAAADkh+TGEesPtBlzV9dVnvwJ8bCCa+4zpsITbpR8BZkKEQAAAICDOs2UyvxsxAoOsDkiAAAAAE4Xjh/rNOPv0mnGb39AAAAAcBSKZuAYS9ceUuK4pkdFfrcuH9uL3dSi7Qqs/YsxFZp0i+QNpjFKAAAAALmusT2m5pB5k1rdoMKTPt6/aZncIbMzTWjyuzIWHwAAAABnFc2UJMyimUSwwuaIAAAAADhdOJY4aacZedJ6CyMAAADQBT9xok88Hk9Gzut2u085Ph2L1xw0xleNr1RRsOc7FfjXPCJ3pOXo2JJL0el3Zux74CSZyDeyF/l2DnLtLOTbWcg3slUmfzbvzet+2+FWY+z3uDSivFAet+uEjy9YfY8xjo44XxpYJ1Ya/Yf3Oecg185Cvp2FfDsL+Ua26q81Snv02M1oSUVxs2jGVVTBZxs5hPc4ZyHfzkK+nYV8Owe5Rjbrz/u8jquZkc9lFvq7vAHWKDmE9zlnId/OQr6dg1w7C/m2sWjmmWeeSX2dMWOGCgoKevScUCikl19+OfXfl156aUbjw+krL+9Fp5Y+KCsr69Pz1+xu1oYD7cbc7efX9Dx+y5JW/9GYco2bpbLR0/oUFzKTb+QW8u0c5NpZyLezkG84bX3S3et+/3rzhrSagcWqqjzJTs7710q7jqx93+E7/0O2/l3QPd7nnINcOwv5dhby7SzkG05fo4QTxwr2Pfr/7N0HmGRVmT/gU9VhemJPzwxhAMk5SFAR0RXEhJjAgIgR06oYMO2uu5hWdv2LuuuKyq6rq6sIoqKYQEUlKCYUAzlnBpjYE7t7uqv+z7ls9VR1mp6Zyud9n6eeqVvh1un63XurDtyvvpEwc2TTD4JFc7ffPQ6ubmOjuhzj0iLvtMg7LfJOh6xpJo08z6tzxrpJO83M7V1gjtLCHOfSIu+0yDsdsk5Lb6J516Vo5thjj82qkv7617+GAw88cFrPeeCBB0afNzw8piUjbKHv/un+iuXFvT3hqD0XTn8F9/42hIevr7ztyDdWaXQAAEA7ueORTf/jJ9pr+zmTP/gPX65cnr1dCPs/v0YjAwAAUrB2cNP/V+sNlfOTzKxJivoBAABqZKCsI+bYopnQ0V3/AQEAkJS69dcpxk4ddXwelIwUiuF7f36w4rYXHrZzyOc3/dLaZl3z35XLfXuEsNfTqzRCAACgndy+dG3F8l7bTVI0M7QuhL9cUHnb4a8KodP/HAIAALbe2oFNJ6D15Sq7zGRmKpoBAADqa3B4ZPR6V9h0PaNoBgCAdug0szUKhUeryzs6Oho9FKawcuXKmqw3dhgqb//U398/uk1sqd/ctSo8smaw4rZn7DV32mPPrXsk9N74vVBeYrP+4FPDYH//Vo2H2uZN85N3OmSdFnmnpRnyrlf7eFpLreYnW7rd3/bQ6orlxbNyE46t+/oLw+zBTY8thlxYvc9JoVDDv4PWOc5RH7JOi7zTIu+0NDpv8xOabY6yZsPQ6O19obJoptg9N6xaE7vPTNCBhqbU6GMc9SXvtMg7LfJORzNkbY5CM57ntXL12kk7zaxevyGM+H8jLaMZjnPUj7zTIu90yDotzZB3XxPMUZq2aOaee+7J/i0PieYzMjKm8r9G4s65ta/1g+sfrljeb/tZYfcFM6a9vpl/PT/kCpsma8WOGWHDfi8KxTr97SnalrxpPfJOh6zTIu+0yJtmUc/tcLLtfmDjSFiyurJof9e+7gkf2/3Xr1Usb9ztmLBx9k7xD6nBiNkWjnPpkHVa5J0WeadF3qQ+R1k7tOl1F4zpNFPomW//aHGOcWmRd1rknRZ5p0PWNJNGnucV//9JlAuF0JWrvG8kdNhPWpjjXFrknRZ5p0PWaSkkmndNimbuvffeCW9fsmRJmDNnzpTPHRwcDHfccUf4wAc+EHK5XDjooINqMUQSsX5oJFx+a+UvEZxw4KLpr2BkY+i54YKKmwb3fUEo9syv1hABAIA2cveKgYrl2LFyt76ecY/rfPivoWvp9RW3DRx8as3HBwAAtLdisRjWDW76H57zc5t+zTkq9DT+F/0AAID0DA0/+mvmXWH8CZrFfNP+7jcAAG2iJt8499hjjwn/I/2znvWsLV7Xq1/96iqNihRdftuKMPB/k64onwvh2QcsnPbzu+/6WehYV9mpZsMhr6zqGAEAgPZx94oNFcuL580IPV0d4x43tjh/ZM7iMLTbsTUfHwAA0N42bCyEYtnyglDZacaPggEAAI0wOPzoTKUrDI+/M99d/wEBAJCUmhTNxAKZLbl9Ij09PeEd73hHeN3rXlfFkZGaS25cVrF81G69YdHs6U+0eq77WsXyxh0ODyPbH1y18QEAAO3l7uWVnWZ2XzC+y0xucHWYcev3K24bOOiUEPLji2sAAAC2xPqhyl9tHtdpZuaCOo8IAAAghMGRwqRFM8WOrgaMCACAlNSkaObLX/5yxfJpp50Wcrlc+OhHPxp23nnnSZ8XHxOLZRYvXhwOP/zwMGfOnFoMj0QsXTsUrrl3dcVtJxy0aNrP71h+a+h+4HcVtw089lVVGx8AAND+nWZ2Xzhz3GNm3PzdkBveVFxTzHeGgQNPrsv4AACA9rZ2TNGMTjMAAEAzGBouFc1UzlkyeUUzAAC0YNHMa17zmnFFM9GJJ54YDjzwwFq8JIzz45uWh0JZc6NZXflw7N59035+z/VfH/fra4N7H1/NIQIAAO1eNLNgTNFMsRh6rj+/4qahPZ4ZirO3r8fwAACANrdusPIEtEX5yqKZQs/0/z8JAABAtQwOT95pJug0AwBAKxbNjHX55Zdn/+6xxx71eDnIXHLjsorl4/ZdEHq6Oqb13NzQmuzXn8sNHPiyEDpmVHWMAABA+xgpFMO9Kzd1kIl2X9BTsdz54DWhc+XtFbcNHPzyuowPAABof+vGdprJr6tYLiqaAQAAGlk0kxtfNFNUNAMAQDsUzRxzzDH1eBkYddvS9dml3AkHLpr282fcfHHIb9z0P5KKuXwYOPjUqo4RAABoL0tWD4ahkbJ2l/HHIxZWdpoZ22VmeP4eYeMuR9dlfAAAQIJFM7k1IZRNUwozFc0AAABN1mkmr2gGAIDaytd4/dAQl9xQ2WVm+zld4XGPmTe9JxeLoee68ypuGtrj6aEwd6dqDhEAAGgzdy/fULHc29MZ5s/c9FsVufXLwow7flzxmIGDXh5CLle3MQIAAGkVzfSGNRXLxZ75dR4RAABAGP3Rse4xRTPFfGcIOacwAgBQW75x0nZGCsXw45sri2aOP2BR6MhP70S0rgd+GzpX3l5x28Ahr6rqGAEAgPZz14qBiuXdFvSEXFlBTM9NF4VcYePocrGjOwwe8OK6jhEAAGhv6wY3Fc3kQyHMLa6tuL/Qs6ABowIAAFI3aaeZWDQDAAA1pmiGtnPNvavD0rWbTkSLTjhw0bSfP7bLzPD8PcPGXY6u2vgAAID2dPeKyk4zeyycuWmhWAg9N1xQcf/g3s/1K88AAEDNOs3MC+tCPjz6a84lxZ6+BowKAABI3WRFM8V8V4NGBABAShTN0HYuubGyy8y+288Ke283a1rPza9dErrvvKzitoFDXhFC2a9DAwAATOSu5ZVFM7sv2FQ003XvL0PH6vvGzzUAAABqVDSzILdm3P2FmQr3AQCA+hsqFc3kNs1ZMh2KZgAAqD1FM7SVDUMj4fLbVmx9l5kbvhFyxU2Ts2LXrDC4/4urOkYAAKD9FIvFcZ1mdl/QM3q95/rzK+4bXnRAGN7hsLqNDwAASMP6sqKZ+WFtxX2FrtkhdMxowKgAAIDUDY0UJ+k0092gEQEAkBJFM7SVy29fGTZsfPSXCaJ8LoTjD1g4vSePDGVFM+UG9n1hKM6YW+1hAgAAbWbVhuGweqDy19H2WPhop5n8mgdD992/qLhv4OBTdbQEAACqbu0UnWaKPbrMAAAAjTFQ6jQzpmhGpxkAAOpB0Qxt5ZIbl1UsH7Vbb1g0e3q/SNB9x09Cfn3l8wcOeVVVxwcAALSnu5ZXdpnp7siFxfMe/QXnnhu/GXLFQsWvOw/u+4K6jxEAAGh/6wY3Fc30jSmaKfT0NWBEAAAAIQyNFs1U/gBZMa9oBgCA2lM0Q9tYtnYo/P6e/orbTjho0bSfP/O68yqWN+70hDCyaL+qjQ8AAGhfd68YqFjeta8ndMTWlyMbw4wbLqy4b3C/F4Zi95w6jxAAAEjBurJOM31hbKcZRTMAAED9FYvFMPh/RTPdOs0AANAAimZoGz++aXkoFDctz+rKh2P3nt7/AOpYdnPoWvKHits2HPLKag8RAABoU3evqOw0s/uCmdm/3Xf/InSsf6TivoGDT63r2AAAgDSLZhbk1lbcV5ipaAYAAKi/kUJx9JyurrFFM/nOhowJAIC0KJqhbVxy47KK5eP2XRB6ujqm9dye675WsVyYtV0Y2vNZVR0fAADQvu5ePnHRTM/1X6+4feOOh4eRRQfUdWwAAEA61g89+uvN0fxxnWbmN2BEAABA6gZHNv0KcleusmimmO9uwIgAAEiNohnawu1L14dbl66vuO2EAxdN67m5wdWh55bvVdw2cNApIXSYlAEAANNz94qBiuXdF/aE/Kq7Qvd9V1fcrssMAABQS+sGyzvNVBbNFHoWNGBEAABA6gY3biru7wyb5iyZjq76DwgAgOQomqEt/OTm5RXL28/pCo97zLxpPXfGzReF3PCmX4Uu5joeLZoBAACYhoGNI2HJ6sFxnWZ6bvhGxW2FGfPD4N4n1Hl0AABAStYObToBbX5ubcV9Os0AAACNMDSyqWimO4zpNKNoBgCAOlA0Q1u44rYVFcvP3n9R6MjnNv/EYiH0XPf1ipuG9nxWKMzZsdpDBAAA2tQ9KwdCccxtu83NhZ6bLqq4bfCAF4fQ2VPXsQEAAOkYLhTD4PCmk9EWhDGdZmb2NWBUAABA6srnKV1jimZCXtEMAAC1p2iGlnf3ig3hrhUDFbc9bd/p/Y+frvt+HTpX3VVx28Ahr6zq+AAAgPZ295j5yOJ53WH+fT8N+YGVFbdvOOjldR4ZAACQkvVlXWYm7jSjaAYAAGiuohmdZgAAqAdFM7S8K2+vPBFt4eyucPDiOdN6bs91X6tYHl6wT9i48xOrOj4AAKC93b18Q8Xy7gtmhhk3f7fitqFdjg6Fvj3qPDIAACAl6wY3Fc3kQiH0je00o2gGAABogKGR4uj1rpxOMwAA1J+iGdquaOaYvftCPpfb7PPyax4M3Xf/YnyXmWk8FwAAoLz7ZbndF84MHctvrbht8ICX1nlUAABAataVdZqZG9aHjtymE9Oi4kxFMwAAQGM7zXSP7TSjaAYAgDpQNENLW7Z2KFz34NqK247de3r/06fn+vNDrrhpUlbomhMG9zux6mMEAADa290rBiqW95zfEfLrl1bcNrxg7zqPCgAASM3asqKZBbnKLjORTjMAAECji2a6xhTNhA5FMwAA1J6iGVralXesDOW/kza7uyM8Ydd5m3/i8GDoueHCipsG9z8pFLvnVH+QAABA2xopFMM9YzrN7DtrbchVzFRCKMxZXOeRAQAAqVlfVjTTFyp/cKzYOTOEzp4GjAoAAEjdUFnRTGfYNG+JdJoBAKAeFM3Q0q68bWXF8pP3nB+6Oja/Wc+4/ZKQH1hRcdvAIa+o+vgAAID2tmT1YBgaqSyQ2aNrVcVysbMnFHvm13lkAABAatYNlhXNjOk0UzAnAQAAGmSgrGimW6cZAAAaQNEMLWvt4HD4/b2rK247du++aT2357rzKpaHdj4qjCzYp6rjAwAA2t/dyyu7zMzr6QjzNz5ScdtI7DKTy9V5ZAAAQGrWlXWaWTCmaKY4c0EDRgQAABA7zWz68bGuMUUzOs0AAFAPnXV5FaiBX9/VH4YLZZOqjlw4eo/ezT6v45HrQtfDf664beCQV9VkjAAAQHu7e8VAxfLuC2aGjnVLKm4rxKIZAACAGjtsl7nhzGfvkXWcOei+jhAe2HSfTjMAAECjDI1s6jTTlRvbaaa7/gMCACA5imZoWZfftqJi+Qm7zgtzZmx+k545psvMyOwdw9Cez6j6+AAAgPZ394oN44pm8mvGFs3sWOdRAQAAKYrzkXiJZg0VKopmij19jRsYAACQtIHhwqSdZoJOMwAA1EG+Hi8C1TY0XAi/vmtVxW3H7r1gs8/LbVgZZtz6g4rbBg5+eQh59WMAAMCWu2tc0UxPyK/VaQYAAGis/MDKiuWCohkAAKCB53mVdIeRivuKHc7ZAgCg9hTN0JL+cN/qsC7+Str/yYUQnrr3/M0+r+emb4fcyODocjHfFQYOOqVm4wQAANrb3SsGKpZ3XzgzdIwpmhlRNAMAANRZbkzRjE4zAABAowwNF0ev6zQDAEAjKJqhJV1xe+X/7Dlkpzlh0ezuqZ9ULISe68+vuGlwr+NDcdaiWgwRAABoc6vWbwz9Gyr/584eC2aO7zQzV9EMAABQX/mBVRXLhZmKZgAAgMYYLOs00zmmaKbYoWgGAIDaUzTThi6++OJw8sknZ5dbb701tJtCsRiuHFM0c+zem/+fPV33XBk6Vt9bcdvAY19Z9fEBAABpuGvFhorlro5cWDw7hPyGFRW3F3SaAQAAGtxpptAzv2FjAQAA0jY4sqlopis3UnlnfjM/kgwAAFXQWY2V0Dzuvffe8K1vfSvMmDEjDA4OhnZ0/ZK1Yfm6jRW3HbvPgs0+b+Z151UsDy86IAzv+Liqjw8AAEjDwYvnhG+85pBw94oN4e4VA2Hd0Ejo3vDwuMcV5uzUkPEBAADpyo8pmin2bP7/owAAANS600y3TjMAADSAopk2Mjw8HD73uc+F3XffPey4447hl7/8ZWhHV9xW+T969lw4M+za1zPlc/L992adZsptOOSVIeRyNRkjAADQ/ro68mHv7WZll5KO+39b8ZhC15xQnDG3AaMDAACSVSyG3MCqipt0mgEAABplqKxopmtM0UzIK5oBAKD28nV4DerkO9/5Trj//vvDW97ylpDPt2e0xWIxXHF7ZdHMsfv0bfZ5Pdd/PeRCcXS50D03DO77gpqMEQAASFd+7ZKK5cKcHRs2FgAAIE25obUhVxjz680zdZoBAAAa32lmbNGMTjMAANRD0p1m+vv7w+23355d7rjjjuyyZs2a7L5jjjkmnH766dNe19KlS8Oll14arr322rB8+fLQ2dmZdXt50pOeFJ797GeHGTNm1PAvCeHOO+8M3/3ud8PJJ58cdtlll9Cu7lq+Idy7cqDitmP33kzRzPBA6Lnx2xU3DR7wkhC6Nv0aNAAAQG2KZhY3bCwAAECacgMrxt2m0wwAANAog8ObfuhYpxkAABoh6aKZN77xjVVZzx/+8IdwzjnnhA0bNozeNjg4OFqI8/Of/zy8//3vz4poamHjxo3hc5/7XNh9993DC1/4wtDOxnaZ2WFudzhgh9lTPmfGrT8M+cFVFbdtOOQVNRkfAACQtnFFM3MVzQAAAPWV31D5/1KKHTNC6JzZsPEAAABpGxrZ1GmmOzem04yiGQAA6iBfjxdpBYsWLQqHHnroFj/vrrvuCp/+9Kezgpmenp5wyimnhLPOOit88IMfDE9/+tOzxyxZsiR87GMfqyiqqaYLL7wwe423vOUtIZ/PJ1U0c8zefSGXy03+hGIx9Fz3tYqbhh7zN6Ewf49aDREAAEhYx9qHKpZHdJoBAADqLDdQ+f9SCj19IUz1/1IAAABqaHB4U9FMZxipvLND0QwAALWXdKeZl7zkJWGvvfbKLvPnzw+PPPJIeNvb3rZF6/jKV74ShoaGQkdHRzjzzDPDvvvuO3rfwQcfHBYvXhzOO++8rKjlBz/4QTj55JPHreOrX/1q1i1muk444YRsvdGtt96arfelL31p2HXXXUM7e2TNULjxoXUVtx27d9+Uz+l8+C+ha+n1FbcNPPaVNRkfAADAuE4zimYAAIA6y48pminOnPr/pQAAANSraKYrVHaaCTrNAABQB0kXzUxUwLIlbr/99nDTTTdl15/2tKdVFMyUPO95zwuXX355eOCBB8Kll14aXvSiF4XOzsq3/bLLLguDg4PTft2jjjoqK5oZGRkJn/vc58Juu+0WTjzxxNDutpvTFc5/9cHh8ttWhitvXxkeWjMYjthl7pTPGdtlZmTuzmFot6fVeKQAAECq8msUzQAAAI2VG1hVsVzomd+wsQAAAAxNUTRT1GkGAIA6SLpoZlv9/ve/H70ei2Ymks/nwzHHHBPOP//8sG7dunDDDTeEQw89tOIxX/taZWHHdA0MDGQdbKJTTz11wsfE7jfRe9/73nDkkUeGVpbL5cK+28/OLn/75F1C/4bh0NmRn/zxG5aHGbddUnHbwMGnhpDvqMNoAQCA5GzcEPKDY05Om6toBgAAqK/8hhUVy8UenWYAAIDGGRwujl7v1mkGAIAGUDSzDW655Zbs3xkzZoQ999xz0scdeOCBFc8ZWzSztbq6usJxxx034X2xA04sqHn84x8f5s2bF7bffvvQbnpnTr359tz4rZArDI0uF/PdYeDAl9ZhZAAAQIo61lZ2mYlGZu/YkLEAAADpGtdpZuaCho0FAABgcGSqTjPdDRgRAACpUTSzDe6///7s3x133DF0dEzevWSnnXYa95xq6O7uDm9+85snvO9zn/tcVjRz4oknhn333XeL1718+fJpPW6qv3tbxA49Uy1vVmEk9Fx/fsVNQ/s+L+TntF/xUDvY5rxpKfJOh6zTIu+0yJt6a/T8ZLrbfef6hyuWCzPmhY6Z82o2JmrHcS4dsk6LvNMi77TIm3pr9jlKx5gOmGHmgpqOhdpyjEuLvNMi77TIOx2yJsU5yua2+6HhR4tm8qEQOnKbus5kt3XNiAOrybioDce5tMg7LfJOh6zTIu9HKZrZSkNDQ2HNmjXZ9YULF0752Dlz5mTdaAYHB6c9SWm0t7zlLdN63De/+c1QD729vVv2hJsvCWHNAxU3zXjK6WFGX191B0Zz5E1Lk3c6ZJ0WeadF3qQ2P5l0u7+7v2Ix3/uY0GcO0hYc59Ih67TIOy3yTou8CanPUYbXVtw3c8HOYaa5SdtwjEuLvNMi77TIOx2yJsU5ytjtfnCkOGGXmeyxfQtDMF9paY5zaZF3WuSdDlmnpTfRvNMsFaqCgYGB0es9PT2bfXzpMeXPo4au+e/K5cWHhbDz4xo1GgAAIAWrH6xc7t25USMBAABStn7MD7jNWtCokQAAAIkrFoujnWYmKpoJHd31HxQAAMnRaWYbOs2UdHZu/m0sPab8ebV0+umnZ5etde6554aWtez2EO74ReVtR74xhFyuUSMCAAC2QcvMT/rvr1yep2gGAADaUdPPUdavqFxWNAMAAG2tmecog/9XMBMpmgEAoFEUzWyl7u5NX9iHhyf4Qj9G6THlz2tmCxcunNbjVq5cWZPXz+fzFe2f+vv7Q6GwaRI1lZm/+lwo7/1T6Jkf+nd5ehxsDUZKo/Om9cg7HbJOi7zT0gx592nTnpRGz0+mu93PWX536Cpb3tC9MAyYh7SkZjjOUR+yTou80yLvtDQ6b/OT9DT1HKVYDPPXLw/lPyO2ergrjJibtKxGH+OoL3mnRd5pkXc6miFrc5T0NHqOMtV2v3pg03l1XWFk3HNXrVkfihvNV1pJMxznqB95p0Xe6ZB1Wpoh774mmKMomtlKPT2byjIGBgY2+/jSY8qf1w5GRsZPZmoh7pzTeq2N60P3jd+quGnggJeEkVxXHGztBkhj8qYtyDsdsk6LvNMib5pFPbfDibb73JoHK5aHZ+9g32gTjnPpkHVa5J0WeadF3qQ8R8kNrQ25wsaK+4a7e0PBPtE2HOPSIu+0yDst8k6HrEn9PK8Ng5vmJ9258T9MPRzyzulqcY5zaZF3WuSdDlmnpZBo3vlGD6BVxY4xc+fOza4vX758yseuXbs2DA4OblFlP1tnxq3fD/mhNaPLxZALAwe/oqFjAgAA0pBfu6RiuTBnx4aNBQAASFNuYPwvNBd75jdkLAAAAIPDm37FvCuML5oJ+a76DggAgCQpmtkGu+yyS/bvQw89NGXF1YMPPjjuOdRAsRhm/vVrFTdt3O2YUOjdtWFDAgAA0pAbWhPyQ2srbhuZs7hh4wEAANKU31BZNFPMd4di1+yGjQcAAEjb5otmOus7IAAAkuRb5zbYb7/9wk033ZR1kbnzzjvDPvvsM+HjbrzxxorntJOOjo6arDefz0+5POFYHrgmdC6/ueK2wUNfU7Mx0ti8aV3yToes0yLvtMibZlXL7/6b2+7z6x8Z95xc7y7mIy3KcS4dsk6LvNMi77TIm2bViDlKx1B/xe3FmfNDR6f/HdjKHOPSIu+0yDst8k6HrGlmjTjPa7iYm7RoppjvMl9pQY5zaZF3WuSdDlmnRd6P8q1zGxx55JHh4osvzq5ffvnlExbNFAqFcOWVV2bXZ8+eHQ466KDQTvr6+uryOr29vZt/0M+/Ubnct3uYe9iJce+u2bhoYN60DXmnQ9ZpkXda5E1q85MJt/vlayqXZy0MfdvpNNMuHOfSIeu0yDst8k6LvEl6jnLvUMXt+dnb1XUc1J5jXFrknRZ5p0Xe6ZA1qZ/n1d1fHL3eFUYqHpfr6DZfaQOOc2mRd1rknQ5Zp6U30bxVE2yDvffeOxxwwAGjRTO33nrruMf88Ic/DA888EB2/TnPeU7oVB1fG2seDuHG71fe9vjXK5gBAADqo//Red+oeTs3aiQAAEDKNqyoXJ61oFEjAQAACIPDhUk7zYSOrvoPCACAJCVdwXHzzTeHhx56aHR59erVo9fj7VdccUXF44899thx63jta18bPvCBD4ShoaFw1llnhZNOOinrJhOXf/3rX4ef/exn2eMWL14cnv/859f070na9ReFUNi4abmzJ4TDX9nIEQEAAClZPaZopneXRo0EAABI2frllcuKZgAAgAYaHN7UXaYrN7Zoprv+AwIAIElJF838/Oc/D1deeeWE991yyy3ZZXNFM3vssUc444wzwjnnnBM2bNgQLrjggnGPiQUz73//+8PMmTNDu1m5cmVN1pvP5yvaP/X394dCYdMvD4w16/4/hxlly4N7PTusH8yFMFib8dHYvGlt8k6HrNMi77Q0Q95atVPP+cl0tvtZS++smJMMzFgUNtRwPLT/cY76kHVa5J0Weael0Xmbn9BMc5SZK5eEnrLHDXbMCevNTVpao49x1Je80yLvtMg7Hc2QtTkKzXSe17KVm37EuntMp5lCrjP0m6+0nGY4zlE/8k6LvNMh67Q0Q959TTBHSbpoploe//jHh09+8pPhkksuCddee21YsWJF6OzsDDvuuGM46qijwvHHHx9mzCg/fap9jIxs+jWAWoo751Svleu/t2J5eMF+dRsb9c+b9iLvdMg6LfJOi7xpFvXcDsdu97k1D1aOZfYO9os24jiXDlmnRd5pkXda5E3Kc5TchhWVY5jRa39oM45xaZF3WuSdFnmnQ9akfp7XwMayTjNjimaKHZ32jzbgOJcWeadF3umQdVoKieaddNHM6aefnl2qYbvttguvec1rsgv117H6gYrlkXk7N2wsAABAevJrllQsF+YsbthYAACAdOUGKn+ludCzoGFjAQAAGBouTF40k+9uwIgAAEhRvtEDgG1WGAn5tZW/6lyY95iGDQcAAEhMsRg61j1UcdOIohkAAKAB8hsqi2aKPfMbNhYAAICBKYpmQj7p3/sGAKCOfPNkm3R0dNRkvfl8fsrlcrl1D4VcYcykav6uNRsbjc2b1ifvdMg6LfJOi7xpVrWcA0y13ecG+kNu4/qK+3O9u5iTtDDHuXTIOi3yTou80yJvmlUj5ij5wVWVD5y90NykxTnGpUXeaZF3WuSdDlnTzBpxnldZzUzoyo2MGVC3+UoLcpxLi7zTIu90yDot8n6Uohm2SV9fX11ep7e3d/I7+2+oXO6aFebvtHcIuVzNx0UD8qbtyDsdsk6LvNMib1Kbn4zb7h96YMy9udC7y/4hdHbXbTzUluNcOmSdFnmnRd5pkTfJzlGKxRDGdJqZu91ucSB1Gwe15xiXFnmnRd5pkXc6ZE3q53nlOpdN2mmmc8bMus6bqA3HubTIOy3yToes09KbaN5plgrRXlbeU7k8fzcFMwAAQP2sHlM0M2d7BTMAAED9Da0LYWSw8rZZCxo1GgAAgDA4PDJp0UzsNAMAAPWgaIbWt+reyuX5uzZqJAAAQIr6769cnrdzo0YCAACkbMOK8bcpmgEAABpocLgwRdFMV/0HBABAkjobPQBa28qVK2uy3nw+X9H+qb+/PxQKmyZR5WY9cmuYUbY8MGvHsKFG4yI0PG9an7zTIeu0yDstzZC3Vu3Uc36yue2+55E7wsyyxw7N3C6sMydpac1wnKM+ZJ0WeadF3mlpdN7mJzTLHCX30N1hXtljivnOsGr9SAgbzE9aWaOPcdSXvNMi77TIOx3NkLU5Cs10nlf/2vWjt3eHTV1noqFCzv9PaUHNcJyjfuSdFnmnQ9ZpaYa8+5pgjqJohm0yMlI5mamVuHNO9lr5/vsqlofn7Fy3cVH/vGk/8k6HrNMi77TIm2ZRz+2wfLvPrX6gchyzd7RPtBnHuXTIOi3yTou80yJvUp2j5Ncvr7it2NMXRvzP7rbjGJcWeadF3mmRdzpkTerneQ1uHJm000wx12n/aAOOc2mRd1rknQ5Zp6WQaN75Rg8AtlV+9f0Vy4V5uzRsLAAAQHryax+qWC7MWdywsQAAAOnKj+koU+iZ37CxAAAARIMjxdHrXbnKopnQ4fe+AQCoD0UztLaRoXEnqI0omgEAAOqoY+2SiuWRuYpmAACA+ssNVBbNFHsWNGwsAAAA0eDwpu6XXaHyF82L+a4GjAgAgBQp16al5dcuCbmw6RcJosJcRTMAAECdFIs6zQAAAE1hcO/nhJEFe4fcwKqQH1gZCjMVzQAAAI01VFE0M7bTTHf9BwQAQJIUzdDSOlbfX7Fc6J4bij29DRsPAACQltzAipAbGay4TdEMAADQCMXZ24eNs7dv9DAAAAAm6TRTWTSj0wwAAPWiaIZt0tHRUZP15vP5KZdLOtc+ULFc6H1MzcZE7Uw3b9qDvNMh67TIOy3yplnVci4w2Xbfsf6RituLuXzIzVscOvLmJa3McS4dsk6LvNMi77TIm2bViDkK7UfWaZF3WuSdFnmnQ9Y0s0ac5zU0Upy0aCbX2e08rxbkOJcWeadF3umQdVrk/ShFM2yTvr6+urxOb+8k3WOGllUsdi7cs25jogF505bknQ5Zp0XeaZE3zaKec4HR7f7h1RW35+bsGPoWble3cVAfjnPpkHVa5J0WeadF3iQ9R6HtyTot8k6LvNMi73TImtTP8xou5kavd+cqi2Z6Zs0NPc7zanmOc2mRd1rknQ5Zp6U30bzTLBWifay8p3J5/m6NGgkAAJCi/srul6F350aNBAAAAAAAoKkMDhcm7TQTOrrrPyAAAJKkaIbWtmpM0UyfohkAAKCOVo8pmpmnaAYAAAAAACAa3DgyRdFMV/0HBABAkjobPQBa28qVK2uy3nw+X9H+qb+/PxQKm355oKR3xd0VlV9rOxeEjTUaE7Uz3bxpD/JOh6zTIu+0NEPe9WofT2up1fxkqu1+1rK7woyyxw3MWBQ2mJO0vGY4zlEfsk6LvNMi77Q0Om/zE5ppjkL7kXVa5J0WeadF3ulohqzNUWim87w2bNxUKNMZNhXQZPcNDYcB/0+l5TTDcY76kXda5J0OWaelGfLua4I5iqIZtsnISOVkplbizjnutYYHQn790oqbNs7ZqW5jos5507bknQ5Zp0XeaZE3zaKe22Fpu8+vebDi9uHZO9of2pDjXDpknRZ5p0XeaZE3Kc9RaH+yTou80yLvtMg7HbIm9fO8BjduOiGze0ynmUKu0/7RBhzn0iLvtMg7HbJOSyHRvMubdEBL6VjzwLjbRubu0pCxAAAAacqvWVKxXJizuGFjAQAAAAAAaCaDI8XR611jimaK+a4GjAgAgBQpmqFl5VffV7Fc6FkQQvfsho0HAABITLEQ8userripMGfHhg0HAAAAAACgWQwXimGkUFY0k6ssmgkdimYAAKgPRTO0rI7V91csj8zTZQYAAKif3PplIVfYWHGbTjMAAAAAAAAhDA0XKpbHd5rprvOIAABIlaIZWlZ+TNFMQdEMAABQR/mBVaEwc+HocjHfGQqzFjV0TAAAAAAAAM1YNNMdRiofoNMMAAB10lmvF4Jq02kGAABopJGF+4YVr/99CMODIb/uoZBfvzyEfEejhwUAAAAAANBwA5vtNOPURQAA6sM3T7ZJR0dtTgjL5/NTLmevvaayaKbYu2vNxkNtTSdv2oe80yHrtMg7LfKmWdVyPjDldt8xK4QZe4bigj2DGUl7cJxLh6zTIu+0yDst8qZZNWyOQluRdVrknRZ5p0Xe6ZA1zaze53kNF3MVt3eOKZrJd81wrlcLcpxLi7zTIu90yDot8n5UrlgsFv/vOrSWj+8RwoYVm5ZfcVEI+zyjkSMCAAAAAAAAAABI3s0PrQ7Hf/qXo8tXz3hH2Dm3bNMDTv1WCPs+qzGDAwAgKWmWCtH6BtdUFsxEfbs1ajQAAAAAAAAAAAD8n4GNhYrlrjGdZkJHV30HBABAshTN0JpW3Tv+tt7HNGIkAAAAAAAAAAAAlBncOFKx3J0bWzTTXd8BAQCQrM5GD4DWtnLlypqsN5/Ph97e3tHl/v7+UChs+vWBrvtvCHPKHl+YvX3oX7shhBAvtJrN5U17kXc6ZJ0WeaelGfLu6+ur6+uR9vykWbZ76kfe6ZB1WuSdFnmnpdF5m58wGXMUqkHWaZF3WuSdFnmnoxmyNkehWc7zWr5q9ZSdZlavHwgjNZw30b7HOepH3mmRdzpknZZmyLuvCeYoimbYJiMjlb8IUCtx5yx/ra5V91SOY+4udRsL9c+b9ibvdMg6LfJOi7xpFvXcDm33aZF3OmSdFnmnRd5pkTfNwhyFWpB1WuSdFnmnRd7pkDUpn+e1fmjjlEUzI6HD/tEGHOfSIu+0yDsdsk5LIdG8840eAGyNjtUPVCyPzNulYWMBAAAAAAAAAABgk6HhYtlSMXSPKZoJ+a56DwkAgEQpmqEl5VffV7FcUDQDAAAAAAAAAADQFAaHC6PXO8Km65tuVDQDAEB9KJqhJXWsvr9ieWTeYxo2FgAAAAAAAAAAACYumuka22Um9p5RNAMAQJ0omqH1FIshv6ayaKYwd+eGDQcAAAAAAAAAAIBNhkY2Fc10T1A0E/KKZgAAqA9FM7Sc3GB/yA+trbhNpxkAAAAAAAAAAIDmoNMMAADNQtEMLSe/urLLTDGXD4U5ixs2HgAAAAAAAAAAADYZGi5OWTQT8t31HRAAAMlSNEPL6RhTNFOYs2MIfnkAAAAAAAAAAACg+TrN5HSaAQCgcTob+Nq0gY6OjpqsN5/PT7rcufaBivsK8x5Ts3FQH1PlTfuRdzpknRZ5p0XeNKtazgts92mRdzpknRZ5p0XeaZE3zcochWqQdVrknRZ5p0Xe6ZA1zaze53kNFTZ1mumeoNNMR1dPCHnnfLUax7m0yDst8k6HrNMi70cpmmGb9PX11eV1ent7Ny0MLq24r2vRXnUbB6H+edP25J0OWadF3mmRN82invMC231a5J0OWadF3mmRd1rkTbMwR6EWZJ0WeadF3mmRdzpkTcrneeXKOsl0hpExj8qFvoWL6jIeastxLi3yTou80yHrtPQmmneapUK0tlX3VC737daokQAAAAAAAAAAADDGwMbC6PWusZ1mOrrrPyAAAJKlaIbWs3JM0cx8RTMAAAAAAAAAAADNYnB4U3eZbkUzAAA0UGcjX5zWt3LlypqsN5/PV7R/6u/vD4VCIYRiMcxfdU/IlT12TWdfGK7ROKiPSfOmLck7HbJOi7zT0gx516t9PK2lVvOTZtnuqR95p0PWaZF3WuSdlkbnbX7CZMxRqAZZp0XeaZF3WuSdjmbI2hyFZjnP6xn7zA97LegOgxsLYXH/IyHcsek5hXxn6He+V0tqhuMc9SPvtMg7HbJOSzPk3dcEcxRFM2yTkZFNvwhQS3HnjK+VW78s5IYHKu7bOHunUKjTOAh1zZs0yDsdsk6LvNMib5pFPbdD231a5J0OWadF3mmRd1rkTbMwR6EWZJ0WeadF3mmRdzpkTcrneT11z97sEnXde1dF0Uwx32XfaBOOc2mRd1rknQ5Zp6WQaN75Rg8AtkTH6vsrluMEqjB7h4aNBwAAAAAAAAAAgCkUNlYud3Q1aiQAACRI0QwtJb/6vorlwtzFIeQ7GjYeAAAAAAAAAAAAJpcbGaq8Ia9oBgCA+lE0Q0t3mhmZ95iGjQUAAAAAAAAAAIDNKAxXLBZ1mgEAoI4UzdBS8msqi2YKc3du2FgAAAAAAAAAAACYWq6wsfIGnWYAAKgjRTO0FJ1mAAAAAAAAAAAAWshIZdGMTjMAANSTohlaSsfq+yqWR+bt0rCxAAAAAAAAAAAAMDWdZgAAaKTOhr46bKENh78hdKy8K+TX3J91nSn07t7oIQEAAAAAAAAAADCZkaGKRZ1mAACoJ0UztJSBg09t9BAAAAAAAAAAAACYptyITjMAADROvoGvDQAAAAAAAAAAALSzQmXRTLGju2FDAQAgPYpmAAAAAAAAAAAAgNooDFcu5zsbNRIAABLk2yfbpKOjoybrzefzUy7TXuSdFnmnQ9ZpkXda5E1q85PIdp8WeadD1mmRd1rknRZ506zMUagGWadF3mmRd1rknQ5Z08waeZ5XvlhZNJPr6K7pnInacZxLi7zTIu90yDot8n5UrlgsFv/vOgAAAAAAAAAAAED1/PTMEH59zqblQ08N4aRzGzkiAAASkmapEAAAAAAAAAAAAFB7Ixsrlzu6GjUSAAASpGgGAAAAAAAAAAAAqI2Rocrlju5GjQQAgAR1NnoAtLaVK1fWZL35fD709vaOLvf394dCoVCT16Lx5J0WeadD1mmRd1qaIe++vr66vh5pz0+aZbunfuSdDlmnRd5pkXdaGp23+QmTMUehGmSdFnmnRd5pkXc6miFrcxSa8TyvWevXhhllywPDhbChhnMm2vs4R/3IOy3yToes09IMefc1wRxF0QzbZGRkpC6vE3fOer0WjSfvtMg7HbJOi7zTIm+aRT23Q9t9WuSdDlmnRd5pkXda5E2zMEehFmSdFnmnRd5pkXc6ZE0zaeR5XsUxnWYKuU77RptwnEuLvNMi73TIOi2FRPPON3oAAAAAAAAAAAAAQHvKFTZW3pD3W98AANSPohkAAAAAAAAAAACgNkYqi2aKHV0NGwoAAOlRNAMAAAAAAAAAAADURG5M0UzIdzdqKAAAJEjRDAAAAAAAAAAAAFAbBZ1mAABoHEUzAAAAAAAAAAAAQJ06zSiaAQCgfhTNAAAAAAAAAAAAALVRGKpY1GkGAIB6UjQDAAAAAAAAAAAA1IZOMwAANJCiGQAAAAAAAAAAAKAmcoXhyhsUzQAAUEeKZgAAAAAAAAAAAIDaKFR2mil2KJoBAKB+FM0AAAAAAAAAAAAANZEbqSyaCYpmAACoI0UzAAAAAAAAAAAAQG0UhioWi3lFMwAA1I+iGQAAAAAAAAAAAKAmdJoBAKCRFM0AAAAAAAAAAAAAtVGoLJop5rsbNhQAANKjaAYAAAAAAAAAAACoCZ1mAABoJEUzAAAAAAAAAAAAQG0UhisWi/nOhg0FAID0+PbJNuno6KjJevP5/JTLtBd5p0Xe6ZB1WuSdFnmT2vwkst2nRd7pkHVa5J0WeadF3jQrcxSqQdZpkXda5J0WeadD1jSzhp3nVSyGXKGy00y+qycOqCbjobYc59Ii77TIOx2yTou8H5UrFovF/7sOAAAAAAAAAAAAUB3DQyGctV3lbW+/NoSFezVqRAAAJCbNUiEAAAAAAAAAAACgtkaGxt/W0dWIkQAAkChFMwAAAAAAAAAAAECdima6GzESAAAS1dnoAdDaVq5cWZP15vP50NvbO7rc398fCoVCTV6LxpN3WuSdDlmnRd5paYa8+/r66vp6pD0/aZbtnvqRdzpknRZ5p0XeaWl03uYnTMYchWqQdVrknRZ5p0Xe6WiGrM1RaLbzvHLrlob5Y56zas36UByu3ZyJ9j7OUT/yTou80yHrtDRD3n1NMEdRNMM2GRkZqcvrxJ2zXq9F48k7LfJOh6zTIu+0yJtmUc/t0HafFnmnQ9ZpkXda5J0WedMszFGoBVmnRd5pkXda5J0OWdNMGnWeV37j4PixhHwo2jfaguNcWuSdFnmnQ9ZpKSSad77RAwAAAAAAAAAAAADaUGHjuJuK+a6GDAUAgDQpmgEAAAAAAAAAAACqLjcyvmgm5DsbMRQAABKlaAYAAAAAAAAAAACoeaeZYq4jhHxHw4YDAEB6FM0AAAAAAAAAAAAAte8009HVqKEAAJAoRTMAAAAAAAAAAABA9RWGKhaLeUUzAADUl6IZAAAAAAAAAAAAoOp0mgEAoNEUzQAAAAAAAAAAAADVN6ZoppjvbthQAABIk6IZAAAAAAAAAAAAoOpyBZ1mAABoLEUzAAAAAAAAAAAAQPUVhisWi/nOhg0FAIA0KZoBAAAAAAAAAAAAqm9kqHI5r9MMAAD1pWgGAAAAAAAAAAAAqLpcYWPlDR2KZgAAqC9FMwAAAAAAAAAAAED1jVQWzRTz3Q0bCgAAaVI0AwAAAAAAAAAAAFSdTjMAADSaohkAAAAAAAAAAACg9p1mFM0AAFBnimYAAAAAAAAAAACAqssVhipvyCuaAQCgvhTNAAAAAAAAAAAAANVXGK5YLOY7GzYUAADSpGgGAAAAAAAAAAAAqLrcyMbKGzq6GzUUAAASpWgGAAAAAAAAAAAAqL4xRTPFfFfDhgIAQJoUzQAAAAAAAAAAAABVlyuM7TSjaAYAgPpSNAMAAAAAAAAAAABU38hQxaJOMwAA1JuiGQAAAAAAAAAAAKD6dJoBAKDBFM0AAAAAAAAAAAAAVZcbqSya0WkGAIB6UzQDAAAAAAAAAAAAVF9huHJZ0QwAAHXWWe8XpL10dHTUZL35fH7KZdqLvNMi73TIOi3yTou8SW1+Etnu0yLvdMg6LfJOi7zTIm+alTkK1SDrtMg7LfJOi7zTIWuaWaPO88oXK4tmcp3dNZ0vUVuOc2mRd1rknQ5Zp0Xej8oVi8Xi/10HAAAAAAAAAAAAqI4LTg3hlh9tWj7uzBCe+r5GjggAgMSkWSoEAAAAAAAAAAAA1NbIUOVyR3ejRgIAQKIUzQAAAAAAAAAAAADVp2gGAIAG62z0AGhtK1eurMl68/l86O3tHV3u7+8PhUKhJq9F48k7LfJOh6zTIu+0NEPefX19dX090p6fNMt2T/3IOx2yTou80yLvtDQ6b/MTJmOOQjXIOi3yTou80yLvdDRD1uYoNNt5XnMGN4SussevG9wYhmo4X6L9j3PUj7zTIu90yDotzZB3XxPMURTNsE1GRkbq8jpx56zXa9F48k6LvNMh67TIOy3yplnUczu03adF3umQdVrknRZ5p0XeNAtzFGpB1mmRd1rknRZ5p0PWNJOGnec1ptNMIddpv2gjjnNpkXda5J0OWaelkGje+UYPAAAAAAAAAAAAAGg/ucLGyhvyfucbAID6UjQDAAAAAAAAAAAAVN9IZdFMMd/VsKEAAJAmRTMAAAAAAAAAAABA9Y3tNNPR3aiRAACQKEUzAAAAAAAAAAAAQNXldJoBAKDBFM0AAAAAAAAAAAAAdeg0o2gGAID6UjQDAAAAAAAAAAAA1LzTTNBpBgCAOlM0AwAAAAAAAAAAAFRfYahisajTDAAAddZZ7xcEAAAAAAAAAAAA2l+uMFx5g04z0LY2btwY1q9fH4aGhkKxWMwutI5cLheWLVtWkacM25Os07K1eefz+dDZ2Rl6enrCjBkzsuVWpmgGAAAAAAAAAAAAqL6RjRWLOs1A+4knX/f394cNGzY0eihso/IT6QuFQkPHQm3JOi3Frcg7Pm54eDgMDAxkhTfz58/PCmhalaIZAAAAAAAAAAAAoLoKIyFXHKm8TacZaDtr164dVzDT6h0JUiW3dMg6LfmtyLu8Y1j8d+XKlaGvr69lC2cUzQAAAAAAAAAAAADVVRged5NOM9BeYheCWDRTMnfu3DBr1iwn5Leozs7OimxpX7JOS+dW5B0LZYaGhsK6devC4OBgdtuqVavC9ttv35LH+NYbMQAAAAAAAAAAANDUcoWh8TfqNANtpXQidTR79uwwZ86cljyZGoBKuVwuzJgxI+suE/8tFdKUH/dbiU8mAAAAAAAAAAAAoLpGNo67qdjR3ZChALVRfvL0zJkzGzoWAGpTPDN79uzR5YGBgdCKFM0AAAAAAAAAAAAAVZWboGhGpxloLyMjI6MnVXd2djZ6OADUQHd3d3acj4aHh0MrUjQDAAAAAAAAAAAAVFdh/EmVxbyT6qGdFAqF7N94MnXphGoA2kuu7BhfOu63GkUzAAAAAAAAAAAAQHUVhsbf1qHTDAAA9aVoBgAAAAAAAAAAAKiq3MjG8TfmFc0AAFBfimYAAAAAAAAAAACA6ipUFs0UY8FMLtew4QAAkCZFMwAAAAAAAAAAAEBtO8106DIDAED9KZoBAAAAAAAAAAAAat9pBgAA6kzRDAAAAAAAAAAAAFBVuZGhyht0mgGoivvvvz+85z3vCU94whPCLrvsErbbbrvscskll1T1dUrrPfvss8fdd/XVV4/eH69DNVxwwQWj29W9997b6OHQRjobPQAAAAAAAAAAAACgzRSGKxZ1mgGoTsHMM57xjLB8+fJGDwWgZeg0AwAAAAAAAAAAAFRVrrCx8gZFMwDb7N/+7d+ygpnOzs7wwQ9+MFx66aXhqquuyi5PfepTGz08WkDs4NLX15ddzj///Jq/nq5ENAOdZgAAAAAAAAAAAIDqGqksmil2KJoB2FaxOCZ6znOeE97+9rc3ejhQVS9/+cuzC1SbTjMAAAAAAAAAAABAVeXGFM3oNAOw7ZYsWZL9u9deezV6KAAtQ9EMAAAAAAAAAAAAUF2FoYpFnWYAtt3Q0KPH1q4ux1SA6VI0AwAAAAAAAAAAAFSXTjMAVXHBBReE7bbbLruUfOITnxi9LV7e9ra3jd53xBFHjLttIvH++Lj4+EYqFArhO9/5Tnjta18bDjvssPCYxzwmuzzxiU8Mb37zm8P3v//9sHHjmM+UsiKi//mf/wknnnhi2H///cNOO+0UDjzwwHDKKaeEb33rW9m6p/v3P/zww+FDH/pQ9rq77rprOOSQQ8LrX//6cPPNN1c879577w3vf//7s8fFccbXi+O86667Jn2ts88+uyLD/v7+8PGPfzw85SlPCbvttlvYZ599sr8hvg9TKa0jrm8qL3zhC7PHxX/HPv9xj3vc6PLpp59esR1NtO677747fP7znw+veMUrsveqlM/hhx8e3vCGN4Sf//znE44hvk9xffHvKonXx75e3L4n2tbj8yezbNmy8K//+q/haU97WtZ1aZdddsnG9ta3vjX89re/nfK9Gbt/3H777eFd73pXdvvOO++c5fma17wm/OEPf5hyPbSWzkYPAAAAAAAAAAAAAGgvuULlCc46zQAwViyMiAUK119//bj77rzzzuxy0UUXhYsvvjg8+clPHvfcWBxz2223Vdy+dOnSrJAjXv73f/83fO1rXwt9fX1TjiO+/ste9rLwyCOPjN62YcOGrGDnZz/7WbjwwgvDUUcdFX75y19mxT2rV68efdzAwEA2xvh6P/jBD7Linancc8894SUveUlWjFKyfv36cPXVV2eXSy65JPznf/5n6Oxs/Gn+caxPeMITJrzv/vvvzy7f+973wktf+tLwmc98pi5jvvzyy7NipjVr1lTcft9992WXWCz1ute9LnzsYx8L+fzU/UV+9KMfZYU28f0v335iBj/5yU/CueeeG0466aSa/S3UT+P3JgAAAAAAAAAAAKC9FIYrl/PdjRoJQEs74YQTsg4s0VOf+tTs39NOOy27lMyfPz+0mlig8tznPjc89NBD2fLf/M3fZIUrsetKLpfLCjZ+9atfZYUrY61duza8+MUvHi08ie/RqaeeGnbcccfseV/60pfCr3/96/C73/0u65ASi1k6OjomHEcsjomFMLGbzT/90z+Fo48+OnvsL37xi/DpT386K6iIHVliMcarX/3qMG/evPD3f//3WceW4eHh8MMf/jD813/9V1i1alU444wzwo9//OMp/+43vvGNWcFPfM3nP//52fpuuOGGcM4554Q77rgjK0KJf8dZZ50Vqu2qq67K3u+TTz45W45/77Of/eyKxyxatGj0+sjISOju7s46uhxzzDFhv/32y7a1+LfGscYuP7ETT3xvYsec+L6ULF68OHu9P/3pT+Gd73xndtt//Md/ZB1qysXuQNN13XXXhVe+8pVZh6Gurq6seOb4448Ps2bNyu6LhTsx/ziu2bNnhw9+8IOTruumm27K3usddtghvOUtb8n2sWKxmBXlxPXEYqj3vOc92XZZ/p7QmhTNAAAAAAAAAAAAAFWVG6nsNBPyTleEFBWKxdC/YUwRXZvrndkZ8rlc9dbX25tdysWT+A844IDQyv7u7/5utGAmFje8/e1vr7g/FleceOKJ4cMf/nBWnFLuk5/85GjBzLvf/e7w/ve/f/S+Qw89NCtGiR1Evv3tb4drrrkmfPWrX60oMiq3bNmyrFgidhbZY489Rm+PRTELFiwI//AP/5AVucQCn+233z7rTlJeRPHEJz4x67Dy2c9+Nvzxj38Mf/3rX8NjH/vYSf/uWEQSi2xe9KIXjd4WCzZe+MIXhuc973lZAc1///d/Z8U+1c44ri8Wk5QXrEz1GrGgJP5NsYhnrFjAFQt/3vGOd4RvfOMb4fOf/3xWfBKLgKJY1BLXvWLFitHnxMKabfmbYhFLLJiJRU1f//rXs2Ke8u3lBS94QfYe3nLLLeFzn/tcVhw0WeefmFPcVr773e+GuXPnjt7++Mc/PtsO4t8Su9nEbejNb37zVo+Z5uBbKAAAAAAAAAAAAFBdhaGKxWJHV8OGAjROLJh55uevDSm57K1HhL5ZjnlTuf3228Mll1wy2iVmbMFMuTlz5lQsDw4OhvPOOy+7HgsiYvHNWLFTzdlnn511i4lFG7HzzGRFM1EsjCkvmCmJ3Wti0U7sOhKLa2JhzERdR2LxSLwv+u1vfztl0cyznvWsioKZ8r/z3/7t37LOL4VCIXzlK18JH//4x0MjxQKb8iKbid7nf/7nf846zcSOPFdeeWVWsFQL1157bVZwFL3qVa+qKJgpiV1wPvWpT2WFM/E9jB1n4nYwmdj5prxgpiR2MfrIRz6SFXXFPBXNtD5FM20itv1aunTphPcdeOCB2QEbAAAAAAAAAAAAGtJpRtEMAP/nsssuy7q7RH/7t3+7Rc/9y1/+Evr7+7Prp5xyStZ1ZCKxGCJ2b/nyl7+cdR6JBRATdUyJhR/xcROZOXNm2HPPPcONN96YFWQcd9xxEz4udlCJRS9r164N99xzz5Tjf/nLXz7pfUcccURWCHTzzTeHq666KjSbjRs3Zuerx79zZGRk9PbYkSfeHrvk1KpoJhbklMQuPJOJnX/23XffcOutt075Hsbz6w866KAJ74vbxCGHHJJtM6WORrQ2RTNtZNasWVm15VixFRgAAAAAAAAAAADUTaGyaKaYVzQDwKOuu+667N+urq7w+Mc/foueGwtKyotMphLvj0UzpedNVDSzcOHC0NfXN+k65s2bl/0bO9HEYorJ9Pb2ZsUk8TKVww8/fLP3x7HecccdYWhoKHR3d4dGF8p89atfzbrJxNzimCYTu/rUSin3+H4cfPDBm809Fs3ceeedk76He++995TrKG0T69at26Zx0xwUzbSR2P7q5JNPbvQwAAAAAAAAAAAASNz4TjONPekXgOaxfPny7N/YvWVLi0JWrlw5en277bab8rHljQfKnze2m8xU8vn8Fj2uvAPLRBYtWjTl/aW/KXbiWbVqVUObJ8T37KUvfWnW3Wc6NmzYUNOxlLaZzs6pSyBK79lU7+Hm8iwVSG0uT1qDohkAAAAAAAAAAACgunSaAWL3jZmd4bK3Tt0NpB3/Zupjqs4vzaqVxvxP//RPowUzJ5xwQjj11FPDgQcemBX+9PT0jP4thx12WHjggQeyIpVaa6X3j+aR/FG5v78/3H777dkltrGKlzVr1mT3HXPMMeH000+f9rqWLl0aLr300nDttddmFZCxii228XrSk54Unv3sZ4cZM2bUvP3VFVdckbW2mjVrVthrr73CPvvsU9PXBAAAAAAAAAAAgM13mlE0AynK53Khb5b9v55KHU82V8Cwfv360CgLFy7M/o1dQIaGhrao20xfX9/o9UceeSQ7X3oy8f6JntdI8XzznXfeecr7S8UhsatKuXhbzLVQKNQ823g+/cUXX5xdf8lLXhLOPffcSR8bc6y1Un6x48zw8PCU3WZKuU/0HpKm5Itm3vjGN1ZlPX/4wx/COeecU9FWanBwcLQQ5+c//3l4//vfnxXR1Eo84Hz+85+vuC1+ELzzne+s6esCAAAAAAAAAADA1J1mkj9dEaAu5syZM61ChjvvvDM0ymMf+9jwrW99K2sYcM0114QnP/nJ037u/vvvP3o9NjqIzQ0mE++f6HmN9Kc//WnKopk///nP2b977rnnuGKimG0sZpkq21hUc9ddd21zp5a4fcR8ohNPPHHSx912221h3bp1odZK+cUiq+uvvz7rbjPVezzZe0iaHi0lJBNbRR166KFb/Lx4YPn0pz+dFczEVlOnnHJKOOuss8IHP/jB8PSnPz17zJIlS8LHPvaxiqKaajr22GOz1/vv//7v8LWvfS2cffbZ4alPfWpWsPPRj360Zq8LAAAAAAAAAAAA44ztNJPXaQKgHnbdddfs37/+9a+Tdpu5+eabww033BAa5ZnPfOZo8cYXvvCFLXpuPNe7t7c3u37hhRdO2nVl7dq14fvf/352fb/99muaBgRxzFMVe9x0003Z9Xge+GTZ/uUvf5l0HT/72c9Cf3//pPfPmDGjokHEZGI3l+l0rvnKV74SphLPrZ/O623OMcccM3r9/PPPn/RxsQjrlltumfQ9JE3Jl27HdlGxG0u8xPZLsR3T2972ti1aR9zZY9VaR0dHOPPMM8O+++47et/BBx8cFi9eHM4777yscOYHP/hBOPnkk8et46tf/epoNd50nHDCCdl6S1760pdW3L/77ruP/h1XXXVV1unmec973hb9XQAAAAAAAAAAALA1cmM7zXR1PPecAABXuUlEQVT4pXeAejj66KPDpZdeGh566KHwne98J7z4xS8eV0xyxhlnhEaK523Hc6F/9KMfhUsuuSR89rOfnfT87djFJJ5jHc/zLhV9vPKVrwyf+9znsgKTT33qU+F973tfxXNisdDf//3fh+XLl2fLr3/960Oz+PGPfxwuvvjicd1bYi7vec97suv5fD685jWvmTDbWOz0xz/+Mfzud78LT3ziEyvuf/jhh8M//uM/Tvn6CxYsyLqvxHPfp+pIs8cee2SFTfG9/MY3vpGNd2yXmp/85CfhS1/60pSvt8MOO4xev/vuu8PWOuKII7LuMrETT2wwEc+LH1sUs3r16vDe97539D087bTTtvr1aC/JF81MVMCyJW6//fbRir6nPe1pFQUzJXGnvPzyy8MDDzyQfQi96EUvCp2dlW/9ZZddtkXVc0cddVRF0cxknvGMZ2RFM7EiVNEMAAAAAAAAAAAAdaHTDEDDGgqcffbZYc2aNVlxTCyMiOc4x4KH2KHk3HPPzRoBHHLIIeG6665r2DjjGGPxRyzu+chHPhJ+8YtfhFNOOSXss88+2Vjvvffe8Ktf/SorMPnyl78cnvzkJ48+NxZGxIKbWIQR13PjjTeGl7/85VmBRnxeLOS4+uqrs8c+4QlPCK9+9atDs4iFH29+85vDr3/96/CCF7wgzJ07NyuEOeecc7Lz0qPXve514aCDDhr33Ph3xPcidoGJhUOxyCaeUx4LYH7/+99n2cb79txzz3DnnXdO+PrxHPbDDz88K7r5+te/njWIiJfSue19fX3ZJRbXxPPQ4znuMZvY4OG1r31teMxjHhOWLl0afvjDH2bFNLvttltWrLJs2bIJX2+XXXYJO+20U3jwwQfD5z//+ez63nvvnRW1RNtvv32YM2fOtN67f/u3fwvHH3989vfGvN/whjeEZz3rWWH27NnZtvyZz3xmtDDn9NNPDwcccMA0U6HdJV80s63iAaYkfqBMJO7UsSVUbAUVqx3jgS22BisXK95qYd68edvczgoAAAAAAAAAAAC2RK4wVHlDh6IZgHpYtGhR+Pd///fwt3/7t2FgYCB8/OMfzy4lM2fOzLq0/PSnP21o0UwslvjBD36QFYLEBga//OUvs8t0xCKLiy66KCuyue2227ICjngZ68gjjwznnXde6OjoCM3ii1/8Ytb9Jxa/xMtYsUnCRz/60Qmfu//++4cPfehD4QMf+EBYtWpV9m+5WOzyv//7v+H//b//N2nRTPSud70rKzpZsWJFtp2Ui117/u7v/i67/olPfCIbz/333x+uvPLK7DK2IOarX/1qtq6pxOKtuM577rknvOpVr6q4Lxa6bO75JbHQK+YZOwfForBYhBMvY8WiozPPPHNa6yQNj5ZosdVuueWW0VZfsSpvMgceeOC459RD/CCItttuu7q9JgAAAAAAAAAAAIkb02mmqNMMQN288IUvDJdcckl47nOfmxXRdHd3h5133jm87GUvy4plYoeTZrD77ruHyy+/POuy8sxnPjPrFNPV1ZUV9uy1117h5JNPzhoTxG4qY+26667hiiuuyApEjj766KwzSnxuPGf6uOOOy4opYlFOLCRpJrEzy89+9rOskGTfffcNs2bNypokPOlJT8o6xcRCmlLXl4nELjUXXnhh1uxh/vz52TnscZ2xUCR2hInr2ZxnP/vZ4Xvf+1444YQTwo477pi9bxOJ28zPf/7z8La3vS3LI75WHGvsghOLa2J2++2332Zf77TTTsv+rmOPPTbLZ6q/b3Pi3x2bXsT3L3bIiZ164rhiAU/sshQzj0VipU42EOWKxWLRW7HJI488ku3YUewOE1szTaVUqRYPNrGabjJr167NDkZRPHC/+93vrtqYH3jggewDLe7wY2+P7cpiJeGHP/zhisKdapmslda2ihWd5R9SK1euDCMjIzV5LRpP3mmRdzpknRZ5p6UZ8o7ff6Fe85Nm2e6pH3mnQ9ZpkXda5J2WRudtfsJkzFGoBlmnRd5pkXda5J2OZsjaHIVmOs+r96KXha4lfxi9b+2xHw0DB59ak3GQznGO5sr74YcfDoVCITs5PRY70NrKCxmGh4cbOpZ2c/bZZ4+eZ7506dJGD0fWiemsQt7bcrxvhjnK1pdpEYaGhrKCmWjhwoWbbQMWi1oGBwfD8uXLqzqOq6++OvzoRz8KBxxwQLZR9fT0hAcffDD86U9/yr6gnHjiiVtcMDPdMdaqXdnY6j7Vfu1N3mmRdzpknRZ5p0Xe1Fuj5yeR7T4t8k6HrNMi77TIOy3ypt7MUagnWadF3mmRd1rknQ5Zk+IcZartPleo7DST65xR07kStec4l5bp5J3L5eo4ImppbJZxWV+G9iTrtFQ771wu15Lf5xTNbIOBgYHR67FQZXPiY2LRTPnzqiG2lopdZe6+++5w0003ZcU8sdXU4YcfnrXPOvTQQ7d4nW95y1um9bhvfvOboR56e3vr8jo0B3mnRd7pkHVa5J0WeVNrzTY/iWz3aZF3OmSdFnmnRd5pkTe1Zo5CI8k6LfJOi7zTIu90yJoU5ygV232uUHHf7Lnzw+yyrhW0Pse5tEyUd+xiFU++jgU15Z0MaH2teFJ8MysvOmu2fUXWaenYyrxL23BXV1dFF7JW0Vx7XYuJxSlbcgArPab8edUQu8hsaScZAAAAAAAAAAAAqJmRyk4zoaOrUSMBACBhima2QXd39+j14eHhzT6+9Jjy5zWrc889t9FDAAAAyJifAAAAzcQcBQAAaCZNPUcZGfPj0h3Nf94cAADtR9HMNujp6Rm9PjAwsNnHlx5T/rxmtXDhwmk9buXKlTV5/djCqbyVX39/fygUKtt10j7knRZ5p0PWaZF3Wpoh71Zs80nrzk+aZbunfuSdDlmnRd5pkXdaGp23+Ul6zFGoJ1mnRd5pkXda5J2OZsjaHCU9jZ6jTLXdz9s4GDrKHrtmw1AYruFciTSOczRX3hs3bhy9bTo/Pk/zyuVyoaNj01F7ZGQkFIvFho6pnZTvO43eV2SdlmrlXSgUsks87m/p98pmmKMomtkGsWPM3Llzw5o1a8Ly5cunfOzatWvD4ODgFk1UWkHcceoh7mT1ei0aT95pkXc6ZJ0WeadF3jSLem6Htvu0yDsdsk6LvNMi77TIm2ZhjkItyDot8k6LvNMi73TImtTP88qN6TRTyHXYJ9qM41xaJsrbifbtY2yWsq2uv/u7v8suzUDWaal23sVisSU/+/ONHkCr22WXXbJ/H3rooSk3gAcffHDccwAAAAAAAAAAAKAtFSp/Sb+Y72rYUAAASJeimW203377Zf/GLjJ33nnnpI+78cYbxz0HAAAAAAAAAAAA2tLIxsrlfGejRgIAQMJ8C91GRx55ZLj44ouz65dffnnYZ599JmxJd+WVV2bXZ8+eHQ466KDQLjo6Omqy3nw+P+Uy7UXeaZF3OmSdFnmnRd6kNj+JbPdpkXc6ZJ0WeadF3mmRN83KHIVqkHVa5J0WeadF3umQNc2sEed55QpDlfd19dR0rkTtOc6lZTp553K5Oo6IWhqbZVwuFosNGw+1I+u0VDvvXC7Xkt/nFM1so7333jsccMAB4aabbsqKZo499tiw7777Vjzmhz/8YXjggQey6895znNCZ2f7vO19fX11eZ3e3t66vA7NQd5pkXc6ZJ0WeadF3qQ2P4ls92mRdzpknRZ5p0XeaZE3zcIchVqQdVrknRZ5p0Xe6ZA1SZ/nFU/GHNNpZl7fwjiQuoyD+nCcS8tEeS9btiw7+ToW1LTTubHU9gdhaC6yTkvHVuZdKpzs6uqq63/7rpbkP6Fuvvnm8NBDD40ur169evR6vP2KK66oeHwsihnrta99bfjABz4QhoaGwllnnRVOOumkrJtMXP71r38dfvazn2WPW7x4cXj+859f078HAAAAAAAAAAAAGqowEitnKm/r6G7UaAAASFjyRTM///nPw5VXXjnhfbfcckt22VzRzB577BHOOOOMcM4554QNGzaECy64YNxjYsHM+9///jBz5swqjh4AAAAAAAAAAACazMjQ+Ns6uhoxEgAAEpd80Uy1PP7xjw+f/OQnwyWXXBKuvfbasGLFiqzV3I477hiOOuqocPzxx4cZM2aEdrNy5cqarDe2cCpv5dff3x8KhUJNXovGk3da5J0OWadF3mlphrxbsc0nrTs/aZbtnvqRdzpknRZ5p0XeaWl03uYnTMYchWqQdVrknRZ5p0Xe6WiGrM1RaJbzvHKD/WH+mMeuWrshFEPt5kqkcZyjufLeuHHj6G3Dw8N1HyPVk8vlQkdHx+jyyMhIKBbHdAyjLcg6LdXKu1AoZJd43N/S75XNMEdJvmjm9NNPzy7VsN1224XXvOY12SUVcceph7iT1eu1aDx5p0Xe6ZB1WuSdFnnTLOq5Hdru0yLvdMg6LfJOi7zTIm+ahTkKtSDrtMg7LfJOi7zTIWtSPs8rt3Fw/BhCPhTtE23FcS4tE+XtRPv2MTZL2bYvWael2nkXi8WW/OzPN3oAAAAAAAAAAAAAQPvIjWwcf2O+qxFDAQAgcYpmAAAAAAAAAAAAgOopjC+aKSqaAQCgATob8aK0j46OjpqsN5/PT7lMe5F3WuSdDlmnRd5pkTepzU8i231a5J0OWadF3mmRd1rkTbMyR6EaZJ0WeadF3mmRdzpkTTOr93le+TAyfgzdPSHkazdXovYc59IynbxzuVwdR0Qtjc0yLheLxYaNh9qRdVqqnXcul6vpf/uulVzRVg4AAAAAAAAAAABUy8M3hHDu0WU35EL40Mp4pmUDBwVU22233RaGhoaygprFixc3ejgA1MiSJUtCoVAI3d3dYZ999gmtRpkvAAAAAAAAAAAAUD0jQ5XLHd0KZgAAaAhFMwAAAAAAAAAAAED1jGwcXzQDQEM89rGPDX19feGtb33ruPvuvffe7L54Of/887f6NeJzS+uJ6xzrec97XnZf/BdSEfe5uN3HfZDG6mzw69PiVq5cWZP1xlZ9vb29o8v9/f1ZSyfak7zTIu90yDot8k5LM+QdJ5RQr/lJs2z31I+80yHrtMg7LfJOS6PzNj9hMuYoVIOs0yLvtMg7LfJORzNkbY5Cs5zn1dm/Iswte1wh3xn6azhPIp3jHM2V98aNG0dvGx4ervsY2TIxq7E5TZbbyMhIKBaL0153fHz5Oseut7Su+K9tpbFyuVzo6OjY6qyZvvJjZqO2+2rlXSgUsks87m/p98pmmKMommGblH/I1VLcyer1WjSevNMi73TIOi3yTou8aRb13A5t92mRdzpknRZ5p0XeaZE3zcIchVqQdVrknRZ5p0Xe6ZA1KZ/nld84WHF7Md9lf2hDjnNpmShvJ9q3L9mmk22rZ33BBReEd7zjHdn1P/7xj2HXXXet6eudffbZ4ROf+ER2fenSpSG1vIvFYkt+9iuaAQAAAAAAAAAAAKpnZKhyucOpigDNKBYYlE787+ys3bH6e9/7Xs3WDc3qs5/9bHah8fKNHgAAAAAAAAAAAADQPnKFjZU35LsaNRQAABKnaAYAAAAAAAAAAAConpHKopliR3fDhgIAQNoUzQAAAAAAAAAAAABVo9MMQG089NBD4Z//+Z/DcccdF/bcc8+wePHicOCBB4anPvWp4U1velO44IILwpo1a6a9vnvvvTdst9122eX888+f9HGrVq3KXvdJT3pSeMxjHhMOOOCA8OIXvzh873vfm9brvPCFL8xeI/471Rji+KMrrrgivOIVr8j+tp133jk87nGPC+973/vCgw8+uNnXWrFiRfjIRz4SjjrqqGyscR0veclLwo9+9KPs/vgapdeLr11ta9euDZ///OfDSSedlL32TjvtFPbYY4/wtKc9LfzDP/xD+N3vfjfpc5ctWxb+9V//NXvsXnvtFXbZZZdwxBFHhLe+9a3ht7/97ZSvGx8X/6a3ve1t2fJf/vKX8OY3vzkceuih2fvwhCc8IXzgAx8Iy5cvr3je73//+/C6170uHHbYYdnrxcfFrOPfMd08b7/99vDud787yymu46CDDgqvf/3rwx/+8IdJ13H11VeP5hCvT6X0uLPPPnvc89/xjneM3hZfv/TYydYdxxTf4zj28nye/OQnZ9vYLbfcMuEYStvNJz7xiXHjKr+Ub1Mxi3hbzGYqN954Y/b+HXnkkWHXXXcNu+++e3jKU54SzjzzzCm30enuO+9+97vDAw88EFLW2egB0No6Ojpqst58Pj/lMu1F3mmRdzpknRZ5p0XepDY/iWz3aZF3OmSdFnmnRd5pkTfNyhyFapB1WuSdFnmnRd7pkDXNrN7neeWLI2MG0FXTeRL14TiXlunkncvl6jgifvOb32Qnw48tilm6dGl2uemmm8J3v/vdsHDhwvCsZz1rm14rZlssFrPrt956a1YgEwt2SgYGBsJVV12VXX7+859nxTTV8tGPfjR85jOfGVcc8JWvfCX88Ic/zAp19t1330mLD2KBTHw/ysd65ZVXZpdXv/rV4fGPf3yolfgaf/u3fzuuMGXjxo3h+uuvzy5f+tKXKsZXcvnll2eFJmPzve+++7LLt771ray45WMf+9hmj7/f/OY3w7ve9a4wNDQ0etvdd98d/vM//zNcdtllWQHRDjvsEM4555zwoQ99aDTr0uPi7fFvie/1nDlzpnytn/3sZ9m4169fP3rbI488Er7//e9necUCpli80wxiYUl5kU15PnE7j5evfe1rWVFNfK/r4dOf/nSWaaFQqLg9Fu/ES9zuP/WpT4WXvexlW73vfPnLXw4/+MEPsjz23nvviry35tjQit/pFM2wTfr6+uryOr29vXV5HZqDvNMi73TIOi3yTou8SW1+Etnu0yLvdMg6LfJOi7zTIm+ahTkKtSDrtMg7LfJOi7zTIWuSPs+rp7KzTOeMWXWdJ1EfjnNpmSjv2BUjnnwdT+Dv7HRKci0NDg5mxRixoGLu3LnhtNNOC3/zN3+TdZiIhRH33HNP1jEkFkNMlsdEt0+WW+mk+NWrV4eTTz55tGAmdk95+ctfnr1u7C4SO6rEQoTy7hxxnWPXWyqwiv9ONYbzzjsv+zti14/Xvva12Qn+/f394Rvf+EZ2idvcGWecEX7605+OG3N83CmnnDJakBKLDGIBzaJFi8Kdd96ZFYx89atfzQprphrr1vrlL3+Zvf7w8HD2/sXXP+GEE7LOK7FwJ75HscDkxz/+8bjXvO6668IrX/nKLMuurq7wxje+MTznOc8Js2bNCn/961+zwoqY8f/8z/9kRSyxEGUy8e+LxVOxE1HsdBI7jsSuMfG9jcU0d9xxR9Zx5vnPf3744Ac/mHWWia+3zz77ZMU+//Vf/5UV1pRe98Mf/vC41yjl+fDDD2cFMfHvieuM3VFK78V//Md/ZNtrvD12cnnuc59bsY7ywot4fTo5lG/DsfgpdpG55JJLwr/8y79kt1100UVhxx13rHjObrvtNvqceLyaP39+lsvRRx+dvUezZ88OS5Ysyf7e+LfH9yB2BNp///2zDk4lL3jBC7KuLbHoKeYQTdQhJ3b1Kb1eeXHTRH/fF7/4xdGxx+30ne98Z3jiE58YRkZGsqKlWLy0bt268Pa3vz3b58YWw23pvvP2t799wn1nOkp/S9w+W/E7nU8oAAAAAAAAAAAAoHpGNlYud1QW0QAJKRZCbsPKkJLizL4QctXtxPS73/0uO7E/+sIXvhCOP/74ivtj4UMsEIkdMso7fmyrT3ziE+GBBx7Irsfih3e/+92j9x122GHhhS98YVYo8otf/KIqrxdP+n/Na14T/v3f/72ik9ExxxwTuru7s6KXa665JitweOxjH1vx3I9//OOj71Hs3FHe3aQ01thpJhZZVFssiolFTbFgJha6XHjhhaMFJCWxGCK+/v333z/u+bEQKBbMxOKRWOBw3HHHjd53xBFHhBNPPDErorn55pvDZz/72ew9P+CAAyYcSyzAOfLII7PCmTiWklhkFYuvYveY73znO1kBTywEiQUg5QUsxx57bPZa8X2OXVfOPPPMSQtaYgHOvHnzskKM/fbbb/T2+PqxMOXZz352Vjjzd3/3d1nBRyy4qJZY7BILgv785z+P3hYLRXbddddJn/OMZzwj20/K35cobktxrG9605uy4p4bbrgh24bKi2Zi4WC8xOKVkvj6WysWscQuP9HixYuz9zAWWJUcddRRWQ7xfYyFM7FzUPxbJ3sPt2XfSYGiGQAAAAAAAAAAAKB6RoYql/OKZiBVsWCm9wtHhJT0v+naUJy1sKrrjB09SmKHjMnE4oZYxFANsYgjdq+IDjrooOyk/bHiCfyf+cxnwuGHHx42bhxTMLkVYpeQWPxSftJ/SeyaEk/8j37zm99UnPgfi0HOP//80SKT8oKZklgYEgsKYoFPLHKppljoUirYKe+4MpHywojoj3/8Y7j22muz67GoprxgpiR2R4ljj0UUhUIh63byyU9+csL1x/cuZjK2MCR6/etfnxXNxE4m8T2LnWTKC2aiuByLL2KBxYoVK7JCnYMPPnjSv+d973tfRcFMSSzqec973pN1qnnwwQezYqVYuNRIO+2005T3x6KYf/zHfwyveMUrwm9/+9vs71+wYEFNxvL1r399tMDtrLPOGrddRHEbjwVVsRtNfA9jJ6lYQFXNfScVimbYJitX1qb6N7ZwKm/lF9tDxYM87UneaZF3OmSdFnmnpRnybsU2n7Tu/KRZtnvqR97pkHVa5J0Weael0XmbnzAZcxSqQdZpkXda5J0WeaejGbI2R6FZzvPqWdsfZpY9bqiQC+tqOE8ineMczZV3LJIo3RY7bEwkNzLx7e1seGQ4FCd5P7ZWeXeL2P0jdjXZUjGrsTlNllssqojFHKtWrcqWX/ayl2W3TWSHHXbIupNcdtllo+scu95isTj671RjeN7znpcVbUw0rj322CPrLhK7btx5550Vj/nDH/6QbaPRi1/84kn/rlgA8bSnPS1ceumlk451a/z4xz/O/o2FKqeeeuoWrbO8S89Uz3384x8f9t1333DrrbeGK664YtLHxe4ne+2114T377///qPXY2bxu2PMtZTPRI+L73X5clR6fCzQeOlLXzrpWOJ285GPfCR7/OWXX551cSkp357i9em8ZxNtw+Xr2dI847a0fPnyrHil/G8q+ctf/pJ16Bk7hvLX29x4J3tszDCKx9lYDDXZuuI2EYtmovgexn1kS/ad+Pfss88+Yc6cOWHt2rXhrrvu2qptPv4t8RKP+1v6vbIZ5iiKZtgmk30AVlvcyer1WjSevNMi73TIOi3yTou8aRb13A5t92mRdzpknRZ5p0XeaZE3zcIchVqQdVrknRZ5p0Xe6ZA1KZ/nVRiu7DRTzHfaH9qQ41xaJsp77In21M4Tn/jEsPvuu4e77747nHnmmeGiiy4KJ5xwQnjSk56UdXnp7u6u6uvFbG+66abR5cMOO2zKx8fuLqWimW0RT+6fSuy4Egsd4sn/5WI3lJJDDz10ynXE+0tFM9Vy3XXXja57og4vUymNPWY4VUeX0vsci2ZiIUvsBDRR7rFgZjLlhXClx020H5c/bux7XW633XYLCxdO3lVp0aJFYddddw333HNPuPHGG0MziEUy5557bvjhD3+YvY9THcfiY2ultH/Fri+xY9Nktt9+++w9vPfeeyv2yenuO6W/r7e3N8tyzZo12zTuuL5W/OxXNAMAAAAAAAAAAABUTW5kbNHM5CeDArB58aT68847L7zuda/Liib+9Kc/ZZdo5syZ4aijjsq6epx44olZt4lqKO8mUd7pZiKbu3+64t+yuQ5I0diT9ksdcUqFGlPZ3P1bY8WKFaNdd7b2fY4FQZ2dU5/aHwsoSoUL8W8uLU/3PSy9f9FUxT3lj5uqQGI672XcNmLRTHlGjRI7x5x88smjeW3OwMBAzcZSej+m8x7GnGPRzFTv4dbuO6lQNAMAAAAAAAAAAABUT2Fj5XKHohlIVbGnLyx//e9Dan9zLey3337hqquuCj/5yU+yy29+85tw1113hQ0bNoTLL788u8QOGhdccEHVilhKcrlcVddHe7zHrTTm2JnnDW94Q1YwE4vQ4vXjjz8+67gTC5ZmzJiRPS52c3rCE55Qt25arfQetjJFMwAAAAAAAAAAAEDV5ArDlTfoNAPpyuVDcebCRo+ibcQuMieccEJ2iR566KHwi1/8IvzP//xP1kUjXt773veG//3f/93m14qFBCWPPPJIVlwwmaVLl4ZGKh/rsmXLphxrvL/aFixYEB588MHw8MMPb/Fz+/r6RjvODA8PT9ltJuZQKrQo/5sbZTq5lx4zdrzlxSKFQmHS569bty5Uwy9/+cusICb6+Mc/Hl71qldN+Lh6dcSJ70fcXqbzHpZyb4bMW9Wm3kkAAAAAAAAAAAAA22qkstNMsaO7YUMBaGc77rhjOPXUU8Oll14aHvvYx2a3/fSnP826z2yrAw44YPT6n//85ykf+6c//Sk0UuzCUxILh6ayufu3Rum9j+tev379Fj13//33H+2Ecv3110/rfd5zzz1Dd3fjP1vvueeerHPLVAVK995777jtKZozZ860ClXuuOOOqnRqueWWW0avn3TSSZM+bnPberU6w5Tej7/+9a9ZsdRkYlHNfffdV/EctpyiGQAAAAAAAAAAAKBqcoXKopmQn/xX8wHYdl1dXeHoo4/OrscT8Pv7+7d5nYceeuhoZ4tvfvOboVgsTvi4JUuWhCuuuCI00mGHHRbmzZuXXf/2t789ZceOyy+/vOqv/6xnPSv7NxbMfPWrX92i5x5zzDGj188///xJH3fNNdeMFn489alPDc0gbhNx25jMN77xjdHtZuyYd91112kVqnz3u9+dcgwzZswYvR4LjyZTXpgyWfea2PHma1/72rRfb3BwMGyt0vsR99Uf/vCHkz7u61//+qTvIdPnmyjb3OatFvL5/JTLtBd5p0Xe6ZB1WuSdFnmT2vwkst2nRd7pkHVa5J0WeadF3jQrcxSqQdZpkXda5J0WeadD1jSzep/nlStU/mJ6rrO7pvMk6sNxLi3TybtaHRfYvN/85jdhhx12yDqMTCQWC/z617/Ors+ePTssWrRom14vZhuLA17+8peHc889N+uA8tnPfja8/e1vH1eI8K53vWvKYoV66OnpCSeffHL44he/mHVj+a//+q/wt3/7t+MKIt773veGgYGBqr/+S1/60vCJT3wiKyD62Mc+Fg455JDw5Cc/ecLHPvjgg2GnnXYaXT7iiCOyop9YOBILNp73vOeNK45YvXp1NvbSvnjaaadVbewx68kKoqbjU5/6VHjGM54R9t5774rbb7311vDv//7v2fW47T7nOc+puD8WZB100EHhhhtuCBdccEF429veFvr6+ioe89vf/jZ84QtfmPL147pL7rrrrnHjKCnfd2Ixzzvf+c5xjznrrLOyzi/Tfb277767osvRloj71ic/+cms0OpDH/pQeOITnxgWL15c8Zi4333605/Orsf7TjjhhC1+nbHH6dw2Hrfj81vxO52iGbbJ2INTrfT29tbldWgO8k6LvNMh67TIOy3yJrX5SWS7T4u80yHrtMg7LfJOi7xpFuYo1IKs0yLvtMg7LfJOh6xJ+jyvMedS9syeF3rqOE+iPhzn0jJR3suWLctOto8n8Xd2OiW5lq6++uqsKONJT3pS1tUkFhvEwpgNGzaEO+64I3z5y18ePdn/Va96VVZEMtZEOU2WW+mk+L//+78P3/ve97JCj3/+53/OChxOOeWUsN1224Xbb789fP7znw/XXnttOPzww7NildI6x663dKJ+/HeqMcTXnc62NNHf8o//+I/hBz/4QXj44YfDmWeeGa677rqsmCW+T3feeWf4z//8z/D73/8+PO5xjwt//OMfJx3r1pgzZ05WqPOiF70oK4J4yUteEl72spdlRQ4777xz1pHktttuC5dddlm49NJLszGW+8xnPpMVnsTio1hM8aY3vSkcf/zxYdasWVmusXAiFmhEsbgkFuVsyXszlYkKIDaXSSnPWIgSjwNxrLEI5SlPeUp2+69+9atszLHYJzr77LOzv2WsN7zhDVnR1dKlS8MLXvCCrDBon332CStXrgw//elPw5e+9KWsoCjmNtnfFre9uL3HYqiPf/zj2fXHPOYxo4V+sdhk5syZ4ZnPfGa23cbXioVN999/f1agtHDhwmz7iB2Crrzyyqx45Xe/+92kf3vcB0s++MEPhne/+91hxx13HH1PYged0nPKiw3Hric+5yMf+Uh43/vel+1fMf8zzjgjHHnkkVkxWhzLOeeck3XFieuO72f8O7Ykp4nkJtgHp6P0t8SuVvX8b9/V4hMKAAAAAAAAAAAAqJ4DXxjCon1CGBkKYWRjCI85qtEjAmh5sVNKLJ6Jl8nEIo14In81i6W+/e1vh5NOOikr9LjooouyS7lTTz0166py+umnh0aKJ/J/61vfygpXYiHHhRdemF3GjjUWPZSKZiYqLtpaf/M3f5N1MImFIKtWrQpf//rXs8t0xCKY2G3lta99bVizZk3W1Sdexorrjl1JmkUsSPnXf/3X8LrXvS4rqpqo0CIWhsSCmIm8+tWvDj/72c/Cj370o3DzzTdnf1+5Aw88MCtm2X///Scdw9y5c7Mio1h49Je//CXLv1wspIrFPLEDU+ya9MpXvjIrsPnKV76SXcrFx8UCn6OPPnrS14uFQnF/+O53vxt+8YtfZJdycQyxcGY64t/b39+fvYePPPJIVvg1Vuz4FAtmYrEcW0/RDAAAAAAAAAAAAFA9B5346AWAqojdRWJ3mSuuuCLroLJkyZKsMCTafvvts+4psbPJs5/97Kq/9gEHHBB+85vfZCfux+KG2KEjdlaJBQ2x6CF2VTn//PNDM4jFJ7/97W+zscaOLhONNRZOlMybN6+qr//0pz89/PnPf846pPzkJz/JuvHEoojYZSUWW8RijDiGiRx33HFZ1544vtiRJnaWiZ1nYneUWOhz2mmnVXQ5aRZxm4uFI7ErylVXXZUVV8ViqzjWWEgVO6dMJhbV/O///m/WKSkWDd1yyy3Z7bvvvntWmPLWt751XHeViXz4wx8Oe+21V1a0FItvYoebkZGRCfOJY43bxy9/+ctsH4pj3W+//bKuRLFLU9xmNid2FYodcL7//e9nHYTWrl2bFbVtjfe85z3Ze/jFL34xe/8eeuih7H3ZZZddwtOe9rTwlre8ZdpFOEwuV4x90WArxfZXtRB39vJWfvEDY2sPJjQ/eadF3umQdVrknZZmyLsV23zSuvOTZtnuqR95p0PWaZF3WuSdlkbnbX7CZMxRqAZZp0XeaZF3WuSdjmbI2hyFyTjPi2qQd1qmk3cs3IgnpsfH7rDDDg0YJdWSy+VCR0fH6HLMtV1PMT/jjDOyDjA77bRT1hUkNdXI+oUvfGH49a9/nRUBfe9736vBKGm2ffvhhx/OPgPiumKHoVabo+g0wzaZqAqvFuJOVq/XovHknRZ5p0PWaZF3WuRNs6jndmi7T4u80yHrtMg7LfJOi7xpFuYo1IKs0yLvtMg7LfJOh6xpJs7zohbknZaJ8m7XoooUjc2yXbPdsGFD+PGPf5xdj915UpRK1tQm72Kx2JKf/flGDwAAAAAAAAAAAAAAALbFXXfdNWlRQDzR/33ve19Yvnx5tnzKKafUeXRAo+g0AwAAAAAAAAAAAABAS/vUpz4V/vSnP4WTTjopHHHEEWHRokVhYGAg3HjjjeFrX/ta+Otf/5o97phjjgnPfOYzGz1coE4UzQAAAAAAAAAAAAAA0PJuvfXW8PGPf3zS+4888sjwhS98IeRyudHblixZElatWrXFrzVr1qyw2267bfVYgfpQNAMAAAAAAAAAAAAAQEs744wzwl577RWuuuqqcN9994Vly5aF4eHh0NfXFw477LBw4oknZl1o8vl8xfP+5V/+JVx44YVb/HpHH310+N73vlfFvwCoBUUzAAAAAAAAAAAAAAC0tL333ju8613vyi7UjkIhWo2iGQAAAAAAAAAAAAAAkvTZz342uwDtqbK3FAAAAAAAAAAAAAAAALQBnWbYJh0dHTVZbz6fn3KZ9iLvtMg7HbJOi7zTIm9Sm59Etvu0yDsdsk6LvNMi77TIm2ZljkI1yDot8k6LvNMi73TImmbmPC+qQd5pmU7euVyujiOilsZmGZeLxWLDxkPtyDot1c47l8vV9L9910quaCsHAAAAAAAAAAAAALbAbbfdFoaGhrKCmsWLFzd6OADUyJIlS0KhUAjd3d1hn332Ca1GmS8AAAAAAAAAAAAAAABtR9EMAAAAAAAAAAAAALBVisVio4cAQA0VW/w439noAdDaVq5cWZP1xlZ9vb29o8v9/f1ZSyfak7zTIu90yDot8k5LM+Td19dX19cj7flJs2z31I+80yHrtMg7LfJOS6PzNj9hMuYoVIOs0yLvtMg7LfJORzNkbY7CZJznRTXIOy3TyXtkZCS7LZfLhY0bN2b/0ppidh0dHRXZtvpJ8kxM1mmpRt7FYjE71sd/4/O39HtlM8xRFM2wTeKGXw9xR6vXa9F48k6LvNMh67TIOy3yplnUczu03adF3umQdVrknRZ5p0XeNAtzFGpB1mmRd1rknRZ5p0PWNBPneVEL8k7LRHnHwpoonkg9PDwcurq6GjQ6ttXYk+gVUbQvWaelGnkPDQ2NPi8W4LTiZ/+jn1YAAAAAAAAAAAAAANM0Y8aM0esbNmxo6FgAqL5isRjWrVs3utzT0xNakU4zAAAAAAAAAAAAAMBWF83Ek6pj55lZs2aNdqABoHWLZYaGhrJj++DgYHZbLperOO63EkUzAAAAAAAAAAAAAMAW6ezsDHPmzAlr167NltesWZNdFM20pvLcCoVCQ8dCbck6LfmtyDsWzcRLufnz57fs8V3RDAAAAAAAAAAAAACwxWLRzMjISNiwYcPobU7Cb30yTIes01LYirxjh5lYMNPT0xNalaIZAAAAAAAAAAAAAGCrT6aePXt2WL9+fRgaGpqwQwHNn2NXV9fo8saNG2XYpmSdlq3NO5/PZ93EYqHMjBkzWrbDTImiGQAAAAAAAAAAAABgq8WTsnt7exs9DLZSR0dH6OvrG11euXJl1kGI9iPrtMj7Ua1d8gMAAAAAAAAAAAAAAAATUDQDAAAAAAAAAAAAAABA21E0AwAAAAAAAAAAAAAAQNtRNAMAAAAAAAAAAAAAAEDb6Wz0AGhtHR0dNVlvPp+fcpn2Iu+0yDsdsk6LvNMib1Kbn0S2+7TIOx2yTou80yLvtMibZmWOQjXIOi3yTou80yLvdMiaZuY8L6pB3mmRd1rknQ5Zp0Xej8oVi8Xi/10HAAAAAAAAAAAAAACAtpBmqRAAAAAAAAAAAAAAAABtTdEMAAAAAAAAAAAAAAAAbaez0QOgta1cubIm683n86G3t3d0ub+/PxQKhZq8Fo0n77TIOx2yTou809IMeff19dX19Uh7ftIs2z31I+90yDot8k6LvNPS6LzNT5iMOQrVIOu0yDst8k6LvNPRDFmbozAZ53lRDfJOi7zTIu90yDotzZB3XxPMURTNsE1GRkbq8jpx56zXa9F48k6LvNMh67TIOy3yplnUczu03adF3umQdVrknRZ5p0XeNAtzFGpB1mmRd1rknRZ5p0PWNBPneVEL8k6LvNMi73TIOi2FRPNWNMM2WbRoUU3Wu3z58nDyySdn188999ywcOHCmrwOzUHeaZF3OmSdFnmnRd6kNj+JbPdpkXc6ZJ0WeadF3mmRN83KHIVqkHVa5J0WeadF3umQNc3MeV5Ug7zTIu+0yDsdsk6LvB+V/79/AQAAAAAAAAAAAAAAoG0omgEAAAAAAAAAAAAAAKDtKJoBAAAAAAAAAAAAAACg7SiaAQAAAAAAAAAAAAAAoO0omgEAAAAAAAAAAAAAAKDtKJoBAAAAAAAAAAAAAACg7SiaAQAAAAAAAAAAAAAAoO0omgEAAAAAAAAAAAAAAKDtKJoBAAAAAAAAAAAAAACg7eSKxWKx0YMAAAAAAAAAAAAAAACAatJpBgAAAAAAAAAAAAAAgLajaAYAAAAAAAAAAAAAAIC2o2gGAAAAAAAAAAAAAACAtqNoBgAAAAAAAAAAAAAAgLajaAYAAAAAAAAAAAAAAIC2o2gGAAAAAAAAAAAAAACAtqNoBgAAAAAAAAAAAAAAgLajaAYAAAAAAAAAAAAAAIC2o2gGAAAAAAAAAAAAAACAtqNoBgAAAAAAAAAAAAAAgLbT2egBwFhLly4Nl156abj22mvD8uXLQ2dnZ9hxxx3Dk570pPDsZz87zJgxo9FDbEn9/f3h9ttvzy533HFHdlmzZk123zHHHBNOP/30LVrfn/70p/Czn/0sW8/q1avDvHnzwl577RWe8YxnhMMPP3xa6xgZGQk///nPw69+9avwwAMPhIGBgbBgwYJwyCGHhOc85znhMY95zLTWE18/bjPXXHNNtv1E2223XXjCE54QTjjhhDB37txprefee+8NP/7xj8N1110XVqxYEXp6esLOO+8cnvKUp4SnP/3poaOjI7SCmEnM5+abbw73339/9v7Escf3dr/99gvHHXdc2H///ae9Plk3r/Xr12f5lPbp+LfE92hoaCjMnj077LLLLllGMfPpvDe33HJL+MlPfpJtO/GYMWvWrLD77rtnx4j43kxXzPmKK64I99xzTzbG3t7ebJs7/vjjw7777jutdQwODmYZ/fa3vw0PPfRQGB4eDgsXLgxHHHFEts3E3Kcjlc+U8847L3z/+98fXf7Qhz4UDjrooCmfY99ufieffPK0HnfggQeGD3/4w1M+Rt6wbVL5PKkn85O0jnPmKOnkbY6yeal8ppijtNe+XWKOklbeNLdUPk/qyRwlreOcOUo6eZujbF4qnynmKO21b0fmJ+lkTfNL5bOk3sxR0jnWmZ+kk7X5yeal8pliftJe+3aJOUrz550rFovFmr8KTNMf/vCHcM4554QNGzZMeP/ixYvD+9///uyDkOodkLdkMlUoFMIXvvCF8Itf/GLSx8Qvbm9605tCPp+f8kD6sY99LDuoT6Srqyu87nWvyw6GU7ntttvCJz7xibBq1aoJ7+/r6wvve9/7wt577z3leuIHzP/8z/9kX9gmEp//D//wD9mHTzOLX6BuuummzT7uqU99anjzm9+cfbGcjKybO+vor3/9azjrrLM2+7j4xeTtb397OOywwyZ9zDe/+c1w0UUXhcm+FsRJzLvf/e7Q3d096TriJO5Tn/pU9qVtIrlcLrzkJS8JL33pS6ccb5w8xW1myZIlE94/c+bM8I53vCM87nGPm3I9qXym3H333dnfEb/oTmcyZd9u/n27mpMpebdO3jSvVD5P6s38JJ3jnDlKWnmbo5ijROYo7bdvl5ijpJU3zSuVz5N6M0dJ5zhnjpJW3uYo5iiROUr77duR+Uk6WdPcUvksaQRzlDSOdeYn6WQdmZ+Yn0TmJ+23b5eYozR/3opmaBp33XVX+MAHPpB9GMcKshNPPDEcfPDB2fLVV1+dVbyVPvz+3//7f9mHKVt3QF60aFFWofeXv/xliydT559/frj44ouz63vssUd4wQteEHbYYYfw8MMPZ9WvMcco5nfqqadOemCPB/1Y5RwdeeSRWQXknDlzsoPsd77znaz6OX7xigfCySojly1blt1fqrB/7nOfO/rl6o9//GP40Y9+lH25iNXPcZuJ1csTiZXJH//4x7MvkfGxL3rRi8I+++wT1q5dmx2sf//732ePixXUcdxTfdg0WvzCHLOIH0axwjqOOeYd3/Nbb701/PCHP8yqNKMnP/nJ4Z3vfOek65J1c2ddmkyde+652ZfmPffcM8t6/vz52d8Xq+1j9X78m2IOceL8r//6r9kvCox12WWXhf/+7//OrseMTzrppLDrrruGlStXhksuuSTccMMN09pmPv3pT4df//rX2fU4plhJHLfFWCX83e9+N9t2ovilLW4HE4kTn5h1aSIVv5jF142TuOuvvz7bJmPVc/zlgI9+9KMT/j0pfabEbP/pn/4p+4Ibt+m4P21uMmXfbv59e+xn97Oe9azsMpm4jW+//fYT3ifv1smb5pTK50kjmJ+kc5wzR0krb3MUcxRzlPbct0vMUdLKm+aUyudJI5ijpHOcM0dJK29zFHMUc5T23Lcj85N0sqZ5pfJZ0ijmKGkc68xP0sk6Mj8xPzE/ac99u8QcZWHT5z156SnU2Ve+8pXsQy7uXGeeeWZFa7f4ARg/8GJbsvgB+4Mf/GDaVXk8Klb9xvZc8RK/bD3yyCPhbW972xat48EHH8ze+yiu5yMf+choNXKs9Hv84x+fHbTih3p8XKxonKiyN7bzKx2Q44fDG97whtH74nriQfjv//7vsy9VX/7yl8NjH/vYCVtvfeMb38gOyFGsRo6Th5IDDjgg+3IZv9zFA3x87EQTxli5GF8jHpDjl6n45ax8zLFi+4tf/GL46U9/mo35qquuCscee2xoVnGS/PKXvzwcddRR4z484j4Vf3kgfsGM+1H8QvnMZz4zq1wdS9bNn3Xp2BgnU5M5+uijsy8Vn/zkJ7O//9vf/nZ473vfW/GY+OXj61//enY9Tsb+5V/+paJiN37RidXC8YtO3GbiF6iJvqTHiU5pIhWfEyuIS9tgaZuJX6Lil6n4enEbjV/Exopf7koTqVe+8pXZF7/ybTi+dtz2YlvP+LkxWdV1Kp8psfVh3A/jvh9bHpa+NE/Gvt0a+/ZYcZ+M/4FjS8m7NfOmuaTyedII5ifpHOfMUdLK2xzFHMUcpT337bHMUdLKm+aSyudJI5ijpHOcM0dJK29zFHMUc5T23LfLmZ+kkzXNJ5XPkkYxR0njWGd+kk7WkfmJ+Yn5SXvu22OZozRv3q1RfkXbu/3220dbDT7taU+r+NAred7znpd9WJQ+PCZr08TE4heF+AUnTqS2VqxELrWFO+2008a174sVwfH2KD4uVrtPpHRgj1+kXvWqV427Px4UYwV0qX1fqZKwXGz39ctf/jK7fuihh1YckMu/SMb7ongwnahFWFx3qSo6vuZEHyJxjLNnzx79otfM4pfV+HdPVm0ZP5Bf/epXjy7HCvWJyLr5s46mU1UbK4V32mmn7PpELV1jJf769euz6694xSvGtbiLrxG/OJVea7L3pZR1/AJV/viSuN64/mjdunUTthCMx/V4fI/i8T4e98fab7/9ss+J6MYbb8w+P1L9TIkT0wsvvDC7/sY3vnHKNrwl9u3W2LerRd5p5U31pfJ50ijmJ+kc58xR0srbHMUcxRylPfftapF3WnlTfal8njSKOUo6xzlzlLTyNkcxRzFHac99uxpknU7W1EYqnyWNZI6SxrHO/CSdrCPzE/MT85P23LerRd6h5nkrmqEplO90pQ/JseIHc2wvWfogLrWRoz5ipd8111yTXY9fQCb6chLF20tf3P7whz9kzxtbDfnAAw9k1+OBNB7IJ1JeLTjRQbl83ZNtM+XriY+Nzxmr9DeNfc1ycYylg/7999+f/Q2trLx6vPSBVE7W7ZN1Sakl5caNGyd9X+JjnvjEJ074/Ng675BDDhn9pYFYZVwuLl933XXZ9fi4yVrtxfWXxjJR1vG4XprYxeP9ZJPFzW0zqXymxCrr2MI0/h0T/ZLIWPbt9tu3pyLvtPKmNlL5PGlVjnPtdZwzR0kr78gcpT0/U8xRHpXyvj0VeaeVN7WRyudJq3Kca6/jnDlKWnlH5ijt+ZlijvKolPftycg6naypnVQ+S1qZY137HOvMT9LJusT8pD0/U8xPHpXyvj0VeT+pLnkrmqEp3HLLLaMbf2zZNJnyD4vSc6iP2OZz5cqVo621plLKacWKFWHp0qUV95XafpU/biLxlxJiW73Jsp7uesrvK3/O2NviB8lUv87QTtteeaX1RF9WZd0+WUfxS8Tdd9+dXS9V3JdvC6UK/viFaqoK9tL7EidkscVfubhc2q6myiiuv/SFrvw5W5p1bD9Y+kI3UUYpfKbEFqnXXnvtpBXhE7Fvt27eW0PeaeVNbaTwedLKHOfaa7szR0krb3OU9vxMMUcZv57U9u3NkXdaeVMbKXyetDLHufba7sxR0srbHKU9P1PMUcavJ7V9eyqyTidraieFz5JW51jXPtue+Uk6WUfmJ+35mWJ+Mn49qe3bmyPvA+uSt6IZmkKsDoti66XY8m0ypQq58udQH+Xv99gvZFuS05asp3T/8uXLsyrbidYza9asKQ+mfX19oxXPpQrKkrjOuO6xY55qLBOtp9XEVodTZSDr1s96cHAwLFmyJGvB96EPfWi0bd8JJ5wwbqJVKBS2KKOJ3pfyrDf3/pbuj2OK7f0mW89U44mfE6VWfRNl1O6fKfEXE77yla9M2mp1Mvbt1t23Y4vld73rXeGVr3xl1nr5He94R/jsZz+b/SLIZOTdunnTPNr986TVOc6113HOHKX98zZHae/PFHOU9PZtc5S08qZ5tPvnSatznGuv45w5SvvnbY7S3p8p5ihp7dvmJ+lkTXNp98+SduBY1z7HOvOT9s/a/KS9P1PMT9Lbt81RmjfvyUsNoU6GhobCmjVrsuuTtXoriZWWsaI0flEo7UzUR/n7vbmcFi1aNOHzStWNJQsWLJhyPaXXia274vPKD5yl9W5uLKXx3HfffePGsiV/U/n9y5YtC60qfnG++OKLR5ePPvrocY+RdWtmfcUVV4TPf/7zk95/4oknhqc85SnbnFFUzfd3l112GTeeeJyfPXv2Ztdzzz33hNWrV2e/itDV1ZXMZ8p5550XVq1aFfbbb79w3HHHTft59u3W3LcnmuDE/xARL1dddVV4whOeEE4//fRsklJO3q2bN80hhc+TVuc41z7HOXOU9s3bHMUcZXPs2625b0fmKGnlTXNI4fOk1TnOtc9xzhylffM2RzFH2Rz7dmvu2+Yn6WRN80jhs6QdONa1x7HO/KR9szY/MT/ZHPt2a+7bkTlK8+ataIaGK69Q6+np2ezj42PiB9/YyjaaJ6dSO72xz4s2bNhQlfWUlqezzZTWsy1jKb+/lbe9H/3oR6NtGo888sgJWxrKuj2yLtl9993Dm970prD33nuPu69aGVXr/S2tZ0uyLq2nNJlq98+Um266KfziF7/IflnhjW98Y8jlctN+rn279fbt+Hc/7nGPC4ccckhWUR//hvgfEOIvyVx22WXZfzi45pprwtlnnx3OPPPMita78m69vGku7f550g4c59rnOGeOklbekTlKe32mmKOktW+bo6SVN82l3T9P2oHjXPsc58xR0so7Mkdpr88Uc5R09m3zk3Sypvm0+2dJu3Csa49jnflJOlmXmJ+012eK+Ula+7Y5ykDT561ohoaL1aIl5QeByZQeU/48miun0peasc+LYqVwNdZTWp7ONlNemby1Yym/v/x5rSR++J5//vnZ9d7e3uyL2ERk3ZpZxyrkT37yk6N//8MPPxx+85vfhN///vfhP/7jP8JrX/va7EtZLTLa2vd3svVsSdZj19POnynDw8PhC1/4Qlbd/dznPjfsuuuuW/R8+3br7dv/+Z//OeGvcTz2sY8Nxx9/fPjYxz4W7rrrruz4/tOf/rSiNa+8Wy9vmks7f560C8e59jjOmaO0d97mKO3/mWKOkt6+bY6SVt40l3b+PGkXjnPtcZwzR2nvvM1R2v8zxRwlrX3b/CSdrGk+7fxZ0k4c61r/WGd+0t5Zm5+0/2eK+Ul6+7Y5ylDT552v2Zphmrq7uys+KDan9Jjy59FcOZUftMbmVH6g3Zb1lJans82U1rMtYym/v/x5rSK2P/vEJz4RRkZGsvG/613vyiZUE5F1a2Ydv3DFL9fxEn9t4MlPfnJ473vfG972treFRx55JKtQjq09a5HR1r6/k61nS7Ieu552/kz5zne+Ex544IGspeFLXvKSLX6+fbv19u2p2tfOnz8/vPvd785+jSL68Y9/XHG/vFsvb5pLO3+etAvHudY/zpmjtH/e5ijt/5lijpLevm2OklbeNJd2/jxpF45zrX+cM0dp/7zNUdr/M8UcJa192/wknaxpPu38WdJOHOta+1hnftL+WZuftP9nivlJevu2OUp30+etaIaG29K2SlvS9onG5BRb4E30vGjmzJlVWU9peTrbTGk92zKWLW0F2EziF+mzzjorrFu3LuTz+XDGGWeEAw88cNLHy7p1s57IU5/61HDUUUdlVetf+tKXwtq1a6ueUbXe39J6tiTrsetp18+UOIm6+OKLs+uve93rtmq89u322rejHXbYIfs1guihhx4KK1asGL1P3u2XN/XVrp8n7cRxrrWPc+YoaeU9ljlKe3ymmKPYtydijpJW3tRXu36etBPHudY+zpmjpJX3WOYo7fGZYo5i3x7L/CSdrKm/dv0saTeOda17rDM/SSfriZiftMdnivmJfXsi5iiNz1vRDA0Xq8vmzp2bXV++fPmUj41fAko72MKFC+syPsK493tzOS1btmzC50ULFiwYvV5+0J9I6XVyuVzF88rXu7mxlI9nqrFsbj3l98fq31YR3+OPfvSjYeXKldn7+Ja3vCVr7zgVWbdm1lMpZR6Pn3/+85+3KaOJ3t8t2Wamen9L44njjJP/6axn3rx5FdXF7fqZ8qMf/SirqI5fnuOYr7766nGX+EsjJddff/3o7aUvlfbt9tu3o1122WXCPOTdnnlTP+36edJOHOda9zhnjpJW3pMxR2n9zxRzFPv2ZMxRph5Lu+VN/bTr50k7cZxr3eOcOUpaeU/GHKX1P1PMUezbEzE/mXos7ZQ19dWunyXtxrGuNY915ifpZD0V85PW/0wxP7FvT8YcpbF5d9ZszbCFB4Kbbropq56LbQVLLajGevDBByueQ/2Uv9+xEnYqU+U0dj277777pOspvU48mI6tHozrufPOO8P69evDqlWrsvZlE4mTiA0bNmTXd95553GVjHHd8YBbPuapxjLReprV6tWrs18eePjhh7Pl0047LRxzzDGbfZ6sWy/rzYkTjpKlS5eOXt9pp52yX6UoFAqbzXqq96U86829v6X743F+xx13HLee3/3ud6Ovt++++064jvg5ET8vJhpLu36mlNoYxv35P/7jPzb7+Isuumj0+mc/+9lsv7Jvt9++XZq4TETe7Zk39dWOnyftxHGuNY9z5ihp5T0Vc5TW/0wxR7FvT8YcZeqxTLQemK52/DxpJ45zrXmcM0dJK++pmKO0/meKOYp9eyLmJ1OPZaL1wHS142dJu3Gsa71jnflJOllvjvlJ63+mmJ/YtydjjtLYvHWaoSnst99+2b+xqjLuaJO58cYbxz2H+th+++1DX19fdj1+SZlK6f5YKbjddttV3Lf//vtPmOdY8UC7ZMmSSbOe7nrK7yt/ztjb4kE5vma7bHvxw+pf/uVfwv33358tn3rqqeH444+f1nNl3VpZT8dkrfw6OzvD3nvvnV2/9dZbswr3zb0vsdp/r732qrgvLsd1lT9uInH98XXGPmdLs77jjjtGfzlgoox8pkzMvt2eeZeO82Mr9OXdnnlTXz5PmpvjXOttd+Yo/7+9+4+1uq7/AP6+CNkUITExpib4a4LipjKSFFLJiYmC5hz+k2hNxZy2lc3cmm24ISNapfaLxLbSiDTyB5RTfoUC+Ysp+CvBH7SRUUszI2TW/e71/u6cXe4953Lwx+VzPp/HYzvjc+/53M/5nPM+7/f782R7fd7HVKq9d0VG6f09NTtO2ejb5WxvGaVa7U3fMp8Um3Gu/b53Mkq12ntXZJTe31Oz45SNvl2+9pZPqtPW9D1zSfEZ69rruyefVKetWyGf9P6emh2nbPTtcra3jLJn21vRDIUwduzY+vby5csb7hMVsitXrszb++67bzr22GP77Pz4/wrH2tJ/UdVXuyDqLn5fq/obM2ZMj8rIqHiuVQKuWbOmfkHU3YoVKxp+P2q6HrvZd6brcWLf+Jvuui5h2fU1u4pzjHOtVVDGeyiyON9Zs2alV155Jf98wQUXpKlTp7b899q6fdq6VbX3FD75yU82/Fyi4rdW/d9dVPuuX78+bx933HG5Crir+Hn06NF5O/ZrtpxeHL9WWdyorWNc32efffJ2jPednZ3v6TtTxjnly1/+clq4cGGvjwsvvLC+/4033lj/fVxUB327fH1769at6ZlnnsnbsaRr1zClvcvX3vS9Ms4nZWKca69xTkapVnu3QkZp/zlFRtG3G5FRqtXe9L0yzidlYpxrr3FORqlWe7dCRmn/OUVG0be7k0+q09bsGWWcS8rGWNc+Y518Up22bpV80v5zinyibzcio6zY4+2taIZCiArYkSNH1jtYow7/wAMP1Dv72Wef3aNylQ/f5z73ubzEX7jjjjvSjh07dno+fo7fh1gm75xzzml4nHPPPTf/+/bbb6df/OIXPZ6PpfYWLVqUt2NZv0aDciz3NX78+Lz99NNPp7Vr1/bYJwbSeC5MmDCh4RJhceyYgEK8Zm0pwK5+/vOfp3//+995+7zzzktFFhXe3/72t9OLL75Yb7Np06bt9nG0dfHbunYh0b1tGo2d69aty9txUV0ba2smTpxYDzB33XVX+te//tUjdPz0pz/N//b2udTaOpbJvP322+v7d11G9s4776yHlzPOOKPHMWJcj/E9xHh///3399gn5ofahdioUaPqd1DoypzSnL7dHn07PPHEE7k/NRPV93Pnzq3fOeSss87qsY/2bp/2ppjMJ8VnnGuPcU5GqVZ7yygyyu7St9ujbwcZpVrtTTGZT4rPONce45yMUq32llFklN2lb7dH35ZPqtPWFJe5pD0Y64o/1skn1WnrIJ/IJ7tL326Pvh1klAlt0d4dnc3K+6CPRbX0N7/5zdyxY1m5888/P1eExs+rV69ODz/8cN5v2LBh6eabb+5RAUvvXnjhhZ0GnLiwqQ2IsZxVXFB1ddpppzU8Tlxs/fa3v83bI0aMSFOmTMmD2l//+td077331qveo+I9lopsJC6yojq2dsH/qU99Kr/+wIED08aNG9M999yT/vnPf+bqw+uvvz6dcMIJDY/z97//PT8f7yUmgcmTJ6eTTjopP/fkk0/mi6WYiAYNGpRmz56dDjjggIbHeeqpp/LzMRwOHjw4ff7zn88XYzFpLF26tF6VHUuFfetb36pPTEUUQeqxxx6rV4pPnz691/3jArJZZaa2LnZb16rSo6I/Ptc452ifGD+3b9+eNm/enFatWlX/7KOt4zM8/vjjexznoYceSvPmzcvbcYy4a0XcqeCNN95IixcvTs8++2x+7pRTTknXXntt0/P57ne/m8frEON3XJjFsoFxLr/5zW/ydydcfvnl6bOf/WzDY8T7ifOsLf8X+336059OH/nIR/J5xMVTvL/4+aabbkrDhw9veJwqzilxt4G77747b0e/a3ZXBX27+H271r8jKMVne/TRR+f/DInvfXxWsSRl9Nvaf37E+4rveyyr2532bo/2priqOJ/0FfmkOuOcjFKt9pZRZJSuZJTy9O0go1SrvSmuKs4nfUVGqc44J6NUq71lFBmlKxmlXH1bPqlGW1NsVZxL+pKMUo2xTj6pTlsH+UQ+6Uo+KU/fDjLK7LZob0UzFK7a7pZbbqkv69ZdTHrf+MY3cnUbu+e2226rL1HX6qTcbED98Y9/3OuSW1FZHBdLvQ1eMZDG0pKbNm1q+HxMCJdddlmPkNfdSy+9lObMmZMrMRuJ6sXrrrsuHXXUUb0eJy6s5s+fX6/k7C4G6ZgAYoAvsosuumi39j/wwAPzd6MRbV3stq5dbP3tb3/b5X5xQTJjxoyGQaprn48LomaXBXFx9NWvfjVfzDUTQSUqomt3POguLrTiomdX39P4j5/4ztQCVXcRfK655pr6RVgzVZtTWg1T+nbx+/bu9O8INldeeWW+s0cj2rs92ptiq9p80lfkk+qMczJKtdpbRpFRupJRytO3g4xSrfam2Ko2n/QVGaU645yMUq32llFklK5klOr1bfmk/dua4qvaXNKXZJRqjHXySXXaOsgn8klX8kl5+naQUY5qi/ZWNEPhxMCxZMmSXF32j3/8I1fNxkR38sknp0mTJqW99957T59ipcNUTbRPDGQxqEYF5H777ZeOOOKIdOaZZzatPOwuqgyjUvCRRx7Jy+dFVfGQIUNy5XwsNXbooYe2dJwY4OM78/jjj9cnnqjUHDNmTK6AjnNrRVRJ/+53v0sbNmzI372oWj744IPTqaeemieHqJYsug8yTNVo6+LasmVLbp+4w0hUE8fFSVTgRuCJC4iozo/AMW7cuJbGzqgufvDBB9Pzzz+fq4nj4uywww7LdySJz6ZV0c6xpOhrr72Wl86LCuFYRjPG8KikbkV8R+JcYmm/CFdxwRShML5z8Z2J724rqjSntBqmavTtYou7DMQjlp2N/h1tFP8xEO8p+kL0peibrfYp7Q3vT5Xmk74in1RnnJNRqtXeMsquVWlOkVHK07eDjFKt9qb4qjSf9BUZpTrjnIxSrfaWUXatSnOKjFKevi2fVKetaQ9Vmkv6koxSjbFOPqlOWwf5ZNeqNKfIJ+Xp20FGaY/2VjQDAAAAAAAAAAAAAABA6TRfmwcAAAAAAAAAAAAAAADalKIZAAAAAAAAAAAAAAAASkfRDAAAAAAAAAAAAAAAAKWjaAYAAAAAAAAAAAAAAIDSUTQDAAAAAAAAAAAAAABA6SiaAQAAAAAAAAAAAAAAoHQUzQAAAAAAAAAAAAAAAFA6imYAAAAAAAAAAAAAAAAoHUUzAAAAAAAAAAAAAAAAlI6iGQAAAAAAAAAAAAAAAEpH0QwAAAAAAAAAAAAAAAClo2gGAAAAAAAAAAAAAACA0lE0AwAAAAAAAAAAAAAAQOkomgEAAAAAAAAAAAAAAKB0FM0AAAAAAAAAAAAAAABQOopmAAAAAAAAAAAAAAAAKB1FMwDwARo+fHjq6OhI06dP39OnAgAAIKMAAACFIqMAAABFIZ8AVIeiGQAAAAAAAAAAAAAAAEpH0QwAAAAAAAAAAAAAAACl09HZ2dm5p08CAAAAAAAAAAAAAAAAPkhWmgEAAAAAAAAAAAAAAKB0FM0AAAAAAAAAAAAAAABQOopmAKCJLVu2pOuvvz6deOKJafDgwWnAgAHpoIMOSqNHj04XX3xx+tnPfpbeeuutnf5m+PDhqaOjI02fPn2n37/66qv5960+TjvttKbntXz58nTJJZekww8/PO2zzz5p0KBB+Zyuu+66fM4AAEA5ySgAAECRyCgAAEBRyCcA9KZ/r88CQEWtWrUqTZ48uUdY2rp1a35s2LAhLViwIH384x/P+/WF7du3p0svvTS/bndxPvH44Q9/mH75y1+mc889t0/OCQAA6BsyCgAAUCQyCgAAUBTyCQC7omgGALp555130rRp03KQ2m+//dKMGTPS6aefnoYOHZp27NiRXnnllbR69eq0aNGilo958MEHp/Xr1/e6z8KFC9PMmTPz9mGHHbbTc52dnenCCy9Mixcvzj9HWLrooovyXQj69euXHnvssTR37ty0efPmvN+jjz6axowZ857ePwAAUCwyCgAAUCQyCgAAUBTyCQCt6OiM0RkAqFu2bFmaOHFi3r7//vub3mHg3XffTdu2bcvLZnZdtvO1117Ly2rGsp6teuKJJ9KECRPSf/7znzRy5Mi0du3anY47b968dPnll+elQ++77740adKkHsd444030vjx49Ozzz6bTjnllPTII4/s5jsHAACKSEYBAACKREYBAACKQj4BoBX9WtoLACrk9ddfr29HwGmmf//+OwWe92rLli1pypQpOUgNGTIkB7iux4361tmzZ+fta665pmGQCvvvv3+aM2dO3o47ELz00kvv+9wAAIA9T0YBAACKREYBAACKQj4BoBWKZgCgm2HDhtW377jjjg/1tSJATZ06NQeqCGd33313OuKII3ba57nnnkubNm3K27EkZ2+6hr81a9Z8SGcNAAD0JRkFAAAoEhkFAAAoCvkEgFYomgGAbk499dR0+OGH5+2vfOUraezYsWnWrFm5qn/Hjh0f6Gtddtll6fHHH8/b3//+99Ppp5/ecEnPmnHjxqWOjo6mj4EDBza8kwIAANC+ZBQAAKBIZBQAAKAo5BMAWqFoBgC6GTBgQF46c+TIkfnnCDs33HBDDlkf+9jH8rKZd911V/rvf//7vl5n5syZacGCBXn7qquuSjNmzGi439atW9/T8bdt2/a+zg8AACgGGQUAACgSGQUAACgK+QSAVvRvaS8AqJhRo0al9evX51AVjz/84Q9p48aNeZnNBx98MD++853vpCVLlqShQ4fu9vHvueeedOONN+btiRMnpu9973tN9+0a2uJchg8f3tJrvJfzAgAAiklGAQAAikRGAQAAikI+AWBXFM0AQBN77bVXmjp1an6Ev/zlL+n3v/99uu2229KTTz6ZH1dccUVatGjRbh133bp16Qtf+ELq7OxMRx55ZFq4cGHq37/5lHzAAQfUt+MOCMcdd9z7eFcAAEC7klEAAIAikVEAAICikE8A6E2/Xp8FAOqGDRuWLr300rRmzZp04okn5t898MAD+a4ErXr99dfTlClT8pKagwcPzncUGDJkSK9/c8IJJ9S3H3300ffxDgAAgDKRUQAAgCKRUQAAgKKQTwDoStEMAOymAQMGpM985jN5+913301vvvlmS3+3ffv2fDeDP//5z/nuBgsWLEjHHHPMLv8ugtshhxySt3/yk5/k4wAAANTIKAAAQJHIKAAAQFHIJwAERTMA0M2qVavSxo0bmz6/Y8eOtHLlyrw9cODAdOCBB7Z03C996Uvpj3/8Y96eM2dOmjRpUkt/169fv3TDDTfk7Zdffjkv+fnOO+803f+tt95Kt956a0vHBgAAik9GAQAAikRGAQAAikI+AaAV/VvaCwAqZOnSpWnmzJlp/Pjx6ZxzzknHH398DkyxPOef/vSn9KMf/Sg99dRTed8vfvGLqX//XU+n8+fPT3feeWfePuOMM9KZZ56ZNmzY0HT/fffdN40YMaL+85VXXpkeeuihtGjRovTrX/86v/4VV1yRxo4dm5f/jAD1wgsvpBUrVqT77rsvffSjH01XX331B/J5AAAAe5aMAgAAFImMAgAAFIV8AkArFM0AQAP/+9//8l0GancaaGTKlClp1qxZLR1v8+bN9e1ly5al0aNH97p/LAsawaimo6Mj/epXv0rXXnttDnObNm1KX//615v+/dChQ1s6LwAAoD3IKAAAQJHIKAAAQFHIJwDsiqIZAOjma1/7Wr7rwMMPP5zWrVuXtmzZkrZu3Zqf+8QnPpGr/mPpzLg7QV8aMGBA+sEPfpBmzJiR5s2bl8NWhLS33347Lx8adyw46aST0tlnn50mT57cp+cGAAB8eGQUAACgSGQUAACgKOQTAFrR0dnZ2dnSngAAAAAAAAAAAAAAANAm+u3pEwAAAAAAAAAAAAAAAIAPmqIZAAAAAAAAAAAAAAAASkfRDAAAAAAAAAAAAAAAAKWjaAYAAAAAAAAAAAAAAIDSUTQDAAAAAAAAAAAAAABA6SiaAQAAAAAAAAAAAAAAoHQUzQAAAAAAAAAAAAAAAFA6imYAAAAAAAAAAAAAAAAoHUUzAAAAAAAAAAAAAAAAlI6iGQAAAAAAAAAAAAAAAEpH0QwAAAAAAAAAAAAAAAClo2gGAAAAAAAAAAAAAACA0lE0AwAAAAAAAAAAAAAAQOkomgEAAAAAAAAAAAAAAKB0FM0AAAAAAAAAAAAAAABQOopmAAAAAAAAAAAAAAAAKB1FMwAAAAAAAAAAAAAAAJSOohkAAAAAAAAAAAAAAABKR9EMAAAAAAAAAAAAAAAApaNoBgAAAAAAAAAAAAAAgNJRNAMAAAAAAAAAAAAAAEDpKJoBAAAAAAAAAAAAAACgdBTNAAAAAAAAAAAAAAAAUDqKZgAAAAAAAAAAAAAAACgdRTMAAAAAAAAAAAAAAACksvk/gu7o5RZC12sAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -233,17 +225,20 @@ "for size in sizes:\n", " for _query_length in query_lengths:\n", " query_length = int(_query_length * size)\n", - " X = rng.random((1, 1, size))\n", + " X = rng.random((1, size))\n", " q = rng.random((1, query_length))\n", " mask = np.ones((1, size - query_length + 1), dtype=bool)\n", " # Used for numba compilation before timings\n", - " naive_squared_distance_profile(X, q, mask)\n", - " _times = %timeit -r 3 -n 7 -q -o naive_squared_distance_profile(X, q, mask)\n", + " mass = MassSNN(length=query_length).fit(X)\n", + " mass.compute_distance_profile(q)\n", + " dummy = DummySNN(length=query_length).fit(X)\n", + " dummy.compute_distance_profile(q)\n", + "\n", + " _times = %timeit -r 3 -n 3 -q -o dummy.compute_distance_profile(q)\n", " times.loc[(size, _query_length), \"Naive Euclidean distance\"] = _times.average\n", - " # Used for numba compilation before timings\n", - " squared_distance_profile(X, q, mask)\n", - " _times = %timeit -r 3 -n 7 -q -o squared_distance_profile(X, q, mask)\n", - " times.loc[(size, _query_length), \"Euclidean distance as dot product\"] = (\n", + "\n", + " _times = %timeit -r 3 -n 3 -q -o mass.compute_distance_profile(q)\n", + " times.loc[(size, _query_length), \"Euclidean distance with MASS\"] = (\n", " _times.average\n", " )" ] @@ -256,7 +251,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADM0AAAOcCAYAAADnnKdhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOz9eXSc5X3//79mRqu1jGYk25J3a/eCzeIdY0k2toFCQ2hKkk/SQNKQpJg26a/pafg0OefTtP0kPUmbfEta0qYkYQn5BEhCC4nBixbjDWMMNjbW7lW2bGlmNNo10sz9+0MwlrEs3bI0WuZ+Ps7xydwz13Vf18xbE/TWfb+vy2YYhiEAAAAAAAAAAAAAAAAAAAAAAAAgitgnegIAAAAAAAAAAAAAAAAAAAAAAADAWKNoBgAAAAAAAAAAAAAAAAAAAAAAAFGHohkAAAAAAAAAAAAAAAAAAAAAAABEHYpmAAAAAAAAAAAAAAAAAAAAAAAAEHUomgEAAAAAAAAAAAAAAAAAAAAAAEDUoWgGAAAAAAAAAAAAAAAAAAAAAAAAUYeiGQAAAAAAAAAAAAAAAAAAAAAAAEQdimYAAAAAAAAAAAAAAAAAAAAAAAAQdSiaAQAAAAAAAAAAAAAAAAAAAAAAQNShaAYAAAAAAAAAAAAAAAAAAAAAAABRh6IZAAAAAAAAAAAAAAAAAAAAAAAARB2KZgAAAAAAAAAAAAAAAAAAAAAAABB1KJoBAAAAAAAAAAAAAAAAAAAAAABA1KFoBgAAAAAAAAAAAAAAAAAAAAAAAFGHohkAAAAAAAAAAAAAAAAAAAAAAABEHYpmAAAAAAAAAAAAAAAAAAAAAAAAEHUomgEAAAAAAAAAAAAAAAAAAAAAAEDUoWgGAAAAAAAAAAAAAAAAAAAAAAAAUYeiGQAAAAAAAAAAAAAAAAAAAAAAAEQdimYAAFFtwYIFstlsstlsOn369ERPJyrwmQIAAAA3ht+lxx6fKQAAADA++N177PGZAgAAADeG36XHHp8pgGhH0QwAAJiy2tvb9eSTT6qkpERz5sxRfHy85syZo40bN+rHP/6x2tvbp8z4hmGoqqpKzz33nL761a9q3bp1mjZtWjghXbBgQeTeCAAAAIBRi5b8pLy8PJyHmP135513RvS9AQAAAIisicpnAoGA3nrrLT355JP6whe+oJtuukkxMTHhXOPhhx+OyLgAAAAAJq+Jyk9Onjypf/3Xf9WDDz6oxYsXy+l0KjY2VhkZGVqxYoW++tWv6p133onI2AAiL2aiJwAAACZOcXGxKioqJEllZWUqLi6e2AmNwIEDB/SZz3xGp06duur5hoYGNTQ0qKysTN/73vf0/PPPa/Xq1ZN6/MOHD2vTpk1qbW0d83kCAAAAUwX5ydQdHwAAALA68pmR+9GPfqS/+qu/UiAQGLNzAgAAACA/GamdO3fqL//yL3XixIlBX/d4PPJ4PHr77bf1r//6r/rjP/5j/fjHP5bb7R6T8QGMD4pmAADAlHP06FFt2bIlvHJAbGysNm7cqDlz5ujcuXMqLS1VX1+f6uvrtWXLFu3bt09Lly6dtOO3t7dTMAMAAABMUdGWnww0a9YsffzjHx+2XWFh4ajeAwAAAICJMZH5THNzMwUzAAAAAMImKj95++23ryqYsdlsWrZsmfLz8+VyudTU1KS9e/eqqalJkvTiiy/q/fffV0VFhdLT00c9PoDxQdEMAACYUnp7e/VHf/RH4QRp+fLlevnll7VgwYJwm9OnT+v+++/X0aNH1draqj/6oz/SiRMnFBMz+l99Ijm+y+XSihUrtHLlSq1cuVJVVVX6xje+Meo5AwAAAIiMaM5PJCkvL08/+tGPRj1PAAAAAJPPROczH5o7d274usiqVav05JNP6qWXXhqz8wMAAACY/CZDfnLzzTfrkUce0Sc/+clrimECgYB+8IMf6G//9m8VDAZ14sQJPfroo/rVr341JmMDiDz7RE8AAABgJH7yk5+orq5OUn+RyWuvvXZVgiRJCxYs0Pbt2+VyuSRJ1dXV+ulPfzppx1++fLlqamrk9Xq1Y8cO/eM//qPuv/9+zZw5c0zmDAAAACAyojE/AQAAAGANE51PfP7zn1djY6POnj2rX//61/rGN76hjRs3KikpaUzODwAAAGDqmMj8JD8/Xy+//LLeeecdPfroo4PuHhMXF6e/+Zu/0fe+973wcy+88IIqKytHPT6A8UHRDAAAmFL+7d/+Lfz461//ujIzMwdtl5WVpb/6q78atN9kG9/lcik3N3dM5gcAAABg/ERjfgIAAADAGiY6n5g/fz6LhwEAAACQNLH5yQMPPKCPfexjptr+xV/8hWbNmhU+/v3vfz/q8QGMD4pmAGAUQqGQnn76aW3evFmZmZlKSEjQggUL9LGPfUwvv/xyuF1xcbFsNptsNpvKy8sHPdeCBQvCbU6fPj3s2A8//HC4/c9//vNh2xuGod/+9rd66KGHlJ+fL6fTqYSEBM2dO1f333+/nn76afX19Q15jtOnT4fHHFjJvXfvXn3xi19UYWGhnE6nbDabvva1r+mdd94Jt3e5XOru7h52npLU1tam5OTkcN9jx46Z6jcWent79eyzz+rBBx9Udna2UlJSlJSUpIULF+rTn/60fvvb38owjCHPUV5eHp57cXFx+PnS0lJ96lOfUnZ2thISEpSenq4NGzboRz/6kXp7e03PsaurSz/4wQ90++23KyMjQ4mJicrJydGnP/1p7d69O9xuqJ+pD5+vqKgIP1dSUhJ+fuA/Mz9f58+f17e+9S0tX75caWlpSkpKUmFhof78z/9cZ86cMf3ehlNbW6v3338/fPzwww8P2X7g68eOHVN9ff2UHh8AAGAo5Cf9yE+uRn5CfhKp8QEAAMYS+Uw/8pmrkc9Ebz4DAAAwmZGf9CM/uRr5CfmJJDkcDq1evTp8bOZ7DWCSMAAAN+TixYvG6tWrDUnX/ffxj3/caG1tNYqKisLPlZWVDXq++fPnh9ucOnVq2PEfeuihcPuf/exnQ7Y9evSocfPNNw85V0lGQUGBceLEieue59SpU+G28+fPN3p6eowvf/nLg57rq1/9qmEYhnHbbbeFn3vuueeGfV+GYRg/+clPwn1Wrlxpqs/1jORzLSsrM3Jycob9nNasWWOcP39+yPN82LaoqMjo6ekxHnnkkSHPeeuttxpNTU3Dvp9jx44NO8cvf/nLRiAQGPK9D/ceB/776M/XR8/729/+1nA6ndftn5iYaLz66qvDvjcz/uM//iN83vz8fFN98vLywn1+8pOfTKnxf/azn131nQMAALge8hPyk6HOQ35CfjKS8T/6MwMAABBp5DPkM0Odh3wmOvOZoQz8Tj700EMRGwcAAGAw5CfkJ0Odh/zEevnJYB544IHw2I8++ui4jg3gxsUIADBiLS0t2rhxo06ePBl+buHChVq7dq3i4+N14sQJHTp0SL/97W9lt0/spl579uzRfffdp9bWVklSbGysVq5cqby8PMXGxur06dPau3evuru7VVVVpXXr1unAgQNatGjRsOf+y7/8S/3Hf/yHJOmmm27S8uXLFRsbq+rq6vD7/tKXvqQvf/nLkqSnnnpKn/nMZ4Y971NPPRV+/MUvfnHE7/lGvPjii/rMZz4TrvBPTEzUmjVrtGDBAtntdlVXV+vAgQPq6+vTwYMHtXbtWr311lumto3/0pe+pKefflp2u12rV69WYWGhQqGQDh48qKqqKknSkSNH9LnPfW7ILRtra2u1adMmNTU1hZ+76aabdPPNN8tut+vdd9/V0aNH9R//8R9KSUkZck7btm2TJP32t7/VhQsXJEn333+/Zs+efU3boX4Wdu3apa985SsKBoOaN2+e1q5dq9TUVJ06dUrl5eXq6+tTV1eXHnzwQR0/flwLFy4ccl7DGfidu/XWW031ufXWW1VTU3NN/6k4PgAAwGDIT/qRn5CfkJ+M/fhdXV165ZVXdPToUXm9XiUlJWnmzJlavXq1brnlFsXE8OdlAAAwOuQz/chnyGesls8AAABMRuQn/chPyE/IT4b23nvvhR/PnTt3XMcGMAoTXbUDAFPRF77whXC1cFxcnPHUU09d0+bNN98MV2DHxcVNyMoCFy9eNGbMmBFu97nPfc64cOHCNe0aGxuNj3/84+F2N910k9HX13dNu4ErCzgcDkOSMXfuXGPPnj3XtO3u7jYMwzDa2tqM5ORkQ5Jhs9mMurq6Id/XiRMnwmMkJSUZra2tw34WQzHzuR4/ftxITEwMz/HrX/+64fP5rmlXV1dnrF+/Pny+u+++e9DzDVxZID4+PrxCwsmTJ69qFwqFjB/+8IdXVeFXVFQMes5QKGRs2LAh3C49Pd147bXXrmm3e/duY8aMGYbNZrvq5+56793MqhcfNfAzjY+PN5KSkoxnn33WCIVCV7U7fvy4MXv27HDbz3/+86bOP5S77747fL6/+Zu/MdXnr//6r8N97rnnnik1PjvNAAAAM8hPyE/IT8hPxnL8gT8zQ/2bNWuW8b3vfc8IBAKjeh8AAMDayGfIZ8hnrJnPDIWdZgAAwEQhPyE/IT8hPxnOvn37rortW2+9NW5jAxidiS13BYApqLq6Wj/72c/Cx//5n/+pL3zhC9e0W7VqlXbs2KFp06YpEAiM5xTD/vZv/1aXL1+WJP3FX/yFnn76aWVlZV3TbubMmXrxxRe1ceNGSf3V0C+99NKQ5w4Gg5o2bZp27dqlO+6445rX4+PjJUnJycn69Kc/LUkyDEM//elPhzzvwFUFHnzwwWEr5MfCX/zFX6irq0uS9M///M/63ve+p7S0tGvaZWdn67XXXtPixYslSdu3b9ebb7455Ll7enqUl5en0tJSFRYWXvWazWbTV7/6VX3iE58IP/fLX/5y0PO8/vrr2rNnjyTJbrfrv//7v7V169Zr2m3cuFG/+93vZLfbx+XnLhAI6KWXXtJnP/tZ2Wy2q15bsmRJeOUJqX/1hr6+vlGN5/F4wo/NrOogSZmZmeHHXq93So8PAADwUeQn/chPyE8k8pPxHv/ChQv667/+a23YsEGXLl0a1bkAAIA1kc/0I58hn5Gsl88AAABMNuQn/chPyE8k8pPrCYVC+trXvhY+Xr16tVasWDEuYwMYPYpmAGCEnnrqKRmGIak/EXrooYeu2zY/P/+qX5TGU1NTk5577jlJ/b8k/tM//dOQ7R0Oh/7xH/8xfPyLX/xi2DEee+wx5efnD9vukUceCT/++c9/rmAwOGi73t5ePfvss+Hj8diK8+jRoyotLZUk3XLLLcPGKykpSd/61rfCx2Y+p+9+97tKTk6+7usDk+xDhw4N2mZg8vipT31Kt99++3XPt2LFCn3uc58bdl5j4d5779Vdd9113dfvueeecJLS3t4+6u0w29vbw48TExNN9RnYbmD/qTg+AADAR5GfXEF+Qn5CfjJ240+fPl2PPvqofvvb36q+vl6dnZ3q7u5WfX29nn76aa1cuTLc9uDBg7rvvvvCFx8BAADMIp+5gnyGfMZq+QwAAMBkQ35yBfkJ+Qn5yeD+/u//Xm+99Zak/iKn73//++MyLoCxQdEMAIxQWVlZ+PGf/MmfDNt+qCQqknbt2hWuLH/ggQeUkJAwbJ/Vq1crKSlJkrR3795h23/qU58yNZeVK1fq5ptvliQ1NDTo9ddfH7Td//zP/6ipqUmStHjxYq1bt87U+Ufj97//ffjxpz/96Wuq4wfz4QoM0vCfU0JCgu67774h29xyyy3hx6dPnx60TUVFRfjxZz/72WHnaKbNWPjjP/7jIV+32Wxavnx5+Ph678+s7u7u8OO4uDhTfT5c5ULSqG/imujxAQAAPor85AryE/IT8pOxGX/FihU6f/68/u3f/k3333+/Fi5cqMTERMXHx2vhwoX63Oc+pzfffPOqC4hvvfWW/vmf//kG3wkAALAq8pkryGfIZ6yWzwAAAEw25CdXkJ+Qn5CfXOuVV17R3/3d34WP/+Zv/kbr16+P+LgAxk7MRE8AAKYSwzB09OjR8PHatWuH7ZOfny+32z3u25QfOHAg/PjYsWN67LHHRtTf5/Opo6MjnDR9VGxsrG666SbT5/vSl76kRx99VFJ/lfw999xzTZuB1fN/+qd/OqL53qiBn1NZWZnOnDkzbJ8PV5aQpHPnzg3ZtqCgQLGxsUO2SU9PDz9ubW295vWGhoZw8ij1J7PDWblypWw221VzjQQzPwPDvb+RGJjsm91utKenJ/zY7GoEk3V8AACAgchPriA/6Ud+Qn4yFuMPtTLeh2w2m7797W+rrq5Ozz//vCTpX/7lX/SNb3xDMTH8yRkAAAyPfOYK8pl+5DPWymcAAAAmE/KTK8hP+pGfkJ8M9NZbb+nTn/50+HO/88479e1vfzuiYwIYe1zBBIAR8Pv9V/1iNm/ePFP95s2bN+5J0oULF8KP9+7da2qlgI/y+XzXTZJcLteIboT5zGc+o7/+679WR0eHXnnlFTU1NWn69Onh18+fPx9ecSAuLm7ctpMc+Dlt3759xP19Pt+QrzudzmHPMTCJ6uvru+b1gQnStGnT5Ha7hz1nSkqKnE6nWlpahm07GiN9f729vaMab+DNW2ZXCRjYzszNX5N5fAAAgIHIT64gP+lHfkJ+Mp7jS9K3v/3tcNGMz+fTwYMHWVkNAACYQj5zBflMP/IZa+UzAAAAkwn5yRXkJ/3IT8hPPvT+++/r7rvvVkdHh6T+wqXf/va3LCAGTEH2iZ4AAEwl7e3tVx1PmzbNVL/rJRqR5Pf7R32OwX5h/9BIK7RTU1P1yU9+UlL/L8rPPPPMVa///Oc/VygUkiR97GMfU0ZGxghne2NG+zkFg8EhXzezvedwBv7cmf2Zk8bngsVYvL+RGLhKwaVLl0z1aWxsDD82k2BO5vEBAAAGIj+5gvykH/kJ+cl4ji9JOTk5WrBgQfj45MmToz4nAACwBvKZK8hn+pHPWCufAQAAmEzIT64gP+lHfkJ+IkmnTp3S5s2b5fF4JElLlizRa6+9xiICwBRF0QwAjMBHf+Hp7Ow01e/DSuOx9GFCcT0DE7N/+Zd/kWEYI/438MaXsfDII4+EHw/cetMwDP3sZz8LH3/xi18c03GHMvBz+s1vfnNDn1OkDfy5M/szJ0Xm526iFRQUhB+b2TpVks6ePRt+XFhYOKXHBwAAGIj8ZHTIT24M+ckVE50fTPT4H8rKygo/bm5uHpNzAgCA6Ec+MzrkMzeGfOaKyZJPAAAATAbkJ6NDfnJjyE+umIz5SUNDgzZt2hTetSgnJ0c7d+5kAQFgCqNoBgBGwOl0Ki4uLnw88JevoZw7d27YNsNtyfhRw1XEz5w5M/x4YGX1RFqzZo2WLVsmqX/12QMHDkiSysrKVF9fL0maP3++7rzzznGb02T8nD5q4CoLnZ2dw24BKvWvRhDprTgnwqJFi8KP33nnHVN9jhw5Mmj/qTg+AADAQOQno0N+cmPIT66Y6Pxgosf/0MALdBOxsiIAAJiayGdGh3zmxpDPXDFZ8gkAAIDJgPxkdMhPbgz5yRWTLT+5dOmSNm3apFOnTkmS5syZo127dl21iBiAqYeiGQAYAZvNpuXLl4ePDx48OGyfmpqa8BZ9Q0lNTQ0/NtP+vffeG/L11atXhx/v27dv2PONl8FWFxi4ysDnP/952e3j95+nyfo5DTRnzpyrEqU333xz2D6HDx82terBeG+nOVolJSXhx1VVVbp48eKQ7S9cuKCamprw8caNG6f0+AAAAAORn4we+cnIkZ9cMdH5wUSPL/VfyKuqqgofz5o1a9TnBAAA1kA+M3rkMyNHPnPFZMgnAAAAJgvyk9EjPxk58pMrJlN+4vF4tHnz5vC1jxkzZmjXrl1jvkMTgPFH0QwAjNDAX9Kee+65Yds/88wzps478Berd999d8i2hw8fDlcyX8/WrVsVExMjSdq/f7+OHj1qah6R9tnPflaJiYmSpF/96lc6f/68fvOb30iS7Ha7vvCFL4zrfO69997w49/85je6dOnSuI5vVlFRUfjxL37xi2Hbm/nZlKSEhITw497e3pFPbJzl5eVp8eLF4eOnn356yPYDX7/pppuUnZ09pccHAAD4KPKT0SE/uTHkJ/0mOj+Y6PEl6fnnn1dPT4+k/otwGzZsGPU5AQCAdZDPjA75zI0hn+k3GfIJAACAyYT8ZHTIT24M+Um/yZKftLa2auvWreHiNZfLpZ07d6qgoGBMzg9gYlE0AwAj9Kd/+qfhxwcPHhzyl9Ha2lr94Ac/MHXegRXuQ/3i19fXp69+9avDnm/27Nn67Gc/K0kyDEOf+9zn1NraamouoVBITU1NptqOVFpamh588EFJ/VtGfuITn1B3d7ckacuWLZo7d25Exr2eVatWqbi4WJLU1dWlP/mTP1EgEDDVNxAImNoacywMTB6ff/75IVe1OHLkyLDJw4fS09PDjxsaGm58guPo0UcfDT/+/ve/f93EtrGxUd///vfDx9u2bYuK8QEAAAYiPxkd8pMbQ35yxUTnB2M9fmdnp0KhkKmxa2pq9I1vfCN8vGXLFs2YMcNUXwAAAIl8ZrTIZ24M+cwVE53PAAAATCbkJ6NDfnJjyE+umOj8pLOzU3/wB3+gt99+W5KUkpKi1157TcuWLRuT8wOYeBTNAMAI5efn6+GHHw4ff/GLXxz0F9LDhw9r8+bN6ujoUFxc3LDn/eQnPxnehvLAgQP6xje+oWAweFWb8+fP695779X+/fsVHx8/7Dn/8R//UVlZWZKkY8eOadWqVdqxY8d1258/f14/+MEPVFBQoF/96lfDnv9GDdySc+DWkl/84hcjNuZQnnjiCSUnJ0uSdu7cqQ0bNgy55WV1dbX+/u//XgsWLBi3LTzvvvturV+/XlJ/Envfffdp165d17QrLy/XPffco2AwaOrnbunSpeHHL730kqktPCfal770JeXk5Ejq3xLz7rvv1pkzZ65qc+bMGd1zzz3yer2S+r+3A//A8VHl5eWy2Wzhf+Xl5eM6PgAAwI0iPxk98pORIz+5Itryk0OHDmnJkiV68skndfny5UHbBINBPffcc1q7dq08Ho8kKS4uTv/0T/903XkCAAAMhnxm9MhnRo585oqJzmcAAAAmE/KT0SM/GTnykysmMj/p6enR/fffr71790qSEhMT9eqrr2rVqlVj8M4ATBYxEz0BAJiK/uVf/kUHDhxQVVWVenp69PDDD+vb3/621q5dq/j4eJ04cUKHDh2SYRh64IEH5PF4VFFRMeQ558+fr6985Sv693//d0nSP/3TP+mXv/ylNmzYoISEBNXV1Wnfvn0KBAK68847lZmZOeyWi7NmzdJ///d/65577lFzc7Oqqqq0detWzZ49W6tWrdL06dPV29ur5uZmHT9+fNgtPsfK7bffriVLlujEiRPh52bMmKE//MM/HJfxP2rp0qX65S9/qU9+8pPq7OzUm2++qTVr1ignJ0e33nqr3G63uru7dfnyZR07dmxCKvBtNpt++tOfhm9Kam5u1ubNm7V8+XLdfPPNkqSjR4+Gt3L9+te/rhdffDGcPHyYgH/UAw88oP/9v/+3DMPQ7373Oy1btkzr1q1TSkpKuM2nPvUprVixIqLvbyRiY2P161//WuvXr1d7e7veeecd5eXladOmTZo9e7bOnz+v0tLS8Paiqamp+vWvfx3ennayjv/FL35Rhw8fvuq5D5M8Sbpw4UI41gP913/916SKDwAAGH/kJ6NDfjJy5CdXRGN+UllZqUcffVSPPfaYcnNztWTJErndbtntdjU2NurAgQNqbm4Ot3c4HHrmmWe0fPnyMXlPAADAWshnRod8ZuTIZ66Y6HxG0qDXPc6ePRt+/D//8z+DtvkwPgAAAGOJ/GR0yE9GjvzkionMT771rW9p586d4eNFixbphRde0AsvvDBs3/T0dP3d3/3dqOcAYBwYAIAb0tDQYKxYscKQdN1/f/iHf2i0trYaRUVF4efKysque86uri7jnnvuGfKc9957r+Hz+YyHHnoo/NzPfvazIed6+vRpY9OmTUOed+C/mTNnGq+99to15zl16lS4zfz580f1+f3whz+8asyvf/3rozrf9cyfPz88xqlTp4Zs++677xq33Xab6c9pwYIFxjvvvHPNecrKysJtioqKTM1z4HmHm+PChQuHnNeXvvQlIxAIGLNmzQo/5/P5rnvOxx9/fMjzffTnaySfqWEYI/pZHYn9+/cP+1lkZ2cbBw4cGPZcA2M23Pc0EuMbhnHV/0+M5J+ZuQIAgOhHfjJ/VJ8f+cnVyE9GLlryk4+OPdy/goICY9++fWY/JgAAgEGRz8wf1edHPnM18pmRm8h8ZiT5h9nYAgAAjAb5yfxRfX7kJ1cjPxm5ichPBr6Xkf4b7XcGwPhhpxkAuEGzZs3SwYMH9cwzz+gXv/iFjh07Jr/fr5kzZ2r58uV66KGH9Ed/9Eey2Wymz5mQkKBXX31Vv/zlL/X000/ryJEj8vv9mjFjhpYvX66HH35Yn/jEJ0Z0Tql/1YJdu3bpwIEDevHFF7Vnzx6dO3dOPp9PMTExSk9PV15enlasWKEtW7aouLh4TFeJGswDDzygr33ta+HjidqKc6Dly5fr8OHD2rFjh15++WXt27dPFy5cUEtLi+Lj4zV9+nQVFBRo9erV2rp1q9auXTviWIzFHI8fP64f//jHevHFF1VdXa3Ozk5lZWVp1apVeuSRR7Rp0yZJks/nk9S/qkBqaup1z/l//+//1fr16/Wzn/1Mb7/9ti5duqTOzs5xeT+jsXbtWh07dkzPPPOMXnjhBVVXV8vj8Sg9PV35+fl68MEH9bnPfS681Wq0jQ8AADAQ+cnokJ/c+BzJT/pNdH4wVuPfcccdOnz4sA4cOKD9+/erqqpKHo9HHo9HPT09cjqdmjt3rlavXq0//MM/1F133TXuP3cAACD6kM+MDvnMjc+RfKbfROczAAAAkwn5yeiQn9z4HMlP+pGfAIgUm2EYxkRPAgCiXXFxcXg7zrKyMhUXF0/shCaBp59+Wg8//LAkaf369XrjjTcmdkJRpqamRvn5+ZKkwsJCnTx5coJnBAAAgMmC/ORa5CeRRX4CAACAsUI+cy3ymcginwEAAMD1kJ9ci/wksshPAODG2Sd6AgAAa3rqqafCjx955JEJnEl0+tWvfhV+vHLlygmcCQAAADD5kZ9EFvkJAAAAEDnkM5FFPgMAAACYR34SWeQnAHDjKJoBAIy7d955J7ySgNvt1oMPPjjBM4oup06d0ve///3w8f/6X/9rAmcDAAAATG7kJ5FFfgIAAABEDvlMZJHPAAAAAOaRn0QW+QkAjA5FMwCAcdXd3a0///M/Dx9/5StfUUJCwgTOaGrZsmWLXnvtNfX19Q36+u9+9zutX79efr9fknTzzTdry5Yt4zlFAAAAYMogPxkd8hMAAABg4pDPjA75DAAAADB2yE9Gh/wEACIvZqInAACIfj/60Y9UW1urlpYW7d69W+fPn5ckZWRk6K/+6q8meHZTy86dO7Vz5065XC7deuutmjt3ruLi4tTc3KxDhw6FP1tJSklJ0TPPPCO7nRpZAAAA4EPkJ2OH/AQAAAAYX+QzY4d8BgAAABgd8pOxQ34CAJFH0QwAIOJeeuklVVRUXPWcw+HQU089JbfbPUGzmtp8Pp9279593dfz8vL04osv6qabbhrHWQEAAACTH/nJ2CM/AQAAAMYH+czYI58BAAAAbgz5ydgjPwGAyKFoBgAwrlwul9atW6fHH39ct99++0RPZ8o5fvy4Xn75Ze3fv19nzpxRc3OzvF6vEhISNH36dK1atUr33nuvPvWpT8nhcEz0dAEAAIBJjfxkdMhPAAAAgIlDPjM65DMAAADA2CE/GR3yEwCIPJthGMZETwIAAAAAAAAAAAAAAAAAAAAAAAAYS/aJngAAAAAAAAAAAAAAAAAAAAAAAAAw1iiaAQAAAAAAAAAAAAAAAAAAAAAAQNShaAYAAAAAAAAAAAAAAAAAAAAAAABRh6IZAAAAAAAAAAAAAAAAAAAAAAAARB2KZgAAAAAAAAAAAAAAAAAAAAAAABB1KJoBAAAAAAAAAAAAAAAAAAAAAABA1KFoBgAAAAAAAAAAAAAAAAAAAAAAAFGHohkAAAAAAAAAAAAAAAAAAAAAAABEnZiJngCmtubm5oic1+FwyOVyhY99Pp+CwWBExsLEI97WQrytg1hbC/G2lskQ74yMjHEdD1NDpPITaXL83GP8EG/rINbWQrythXhby0THm/wE10OOgrFArK2FeFsL8bYW4m0dkyHW5Ci4Hu7zwlgg3tZCvK2FeFsHsbaWyRDvyZCjsNMMAAAAAAAAAAAAAAAAAAAAAAAAog5FMwAAAAAAAAAAAAAAAAAAAAAAAIg6FM0AAAAAAAAAAAAAAAAAAAAAAAAg6lA0AwAAAAAAAAAAAAAAAAAAAAAAgKhD0QwAAAAAAAAAAAAAAAAAAAAAAACiDkUzAAAAAAAAAAAAAAAAAAAAAAAAiDoxEz0BAAAAAAAAAAAAINo4HI6Indtutw95jOhBrK2FeFsL8bYW4m0dxBoAAAAAJh+KZgAAAAAAAAAAAIAx5nK5xm0sp9M5bmNhYhFrayHe1kK8rYV4WwexBgAAAICJx3IGAAAAAAAAAAAAAAAAAAAAAAAAiDoUzQAAAAAAAAAAAAAAAAAAAAAAACDqxEz0BAAAAAAAAAAAAIBo4/P5InZuu90up9MZPvb7/QqFQhEbDxOHWFsL8bYW4m0txNs6JkOsXS7XuI4HAAAAAJMdRTMYFYfDEZHz2u32IY8RXYi3tRBv6yDW1kK8rYV4AwAAAAAwvGAwOG5jhUKhcR0PE4dYWwvxthbibS3E2zqINSYT7vPCWCDe1kK8rYV4Wwexthbi3Y+iGYzKeK1OMXAVDkQ/4m0txNs6iLW1EG9rId4AAAAAAAAAAADA5MZ9XogE4m0txNtaiLd1EGtrsWq8rVkqBAAAAAAAAAAAAAAAAAAAAAAAgKhG0QwAAAAAAAAAAAAAAAAAAAAAAACiTsxETwBTm8/ni8h57Xb7Vds/+f1+hUKhiIyFiUe8rYV4WwexthbibS2TId7jtX08AAAAAAAAAAAAEA24zwtjgXhbC/G2FuJtHcTaWiZDvCfDfV4UzWBUgsHguIwTCoXGbSxMPOJtLcTbOoi1tRBvayHeAAAAAAAAAAAAwOTGfV6IBOJtLcTbWoi3dRBra7FqvO0TPQEAAAAAAAAAAAAAAAAAAAAAAABgrFE0AwAAAAAAAAAAAAAAAAAAAAAAgKhD0QwAAAAAAAAAAAAAAAAAAAAAAACiDkUzAAAAAAAAAAAAAAAAAAAAAAAAiDoUzQAAAAAAAAAAAAAAAAAAAAAAACDqUDQDAAAAAAAAAAAAAAAAAAAAAACAqEPRDAAAAAAAAAAAAAAAAAAAAAAAAKIORTMAAAAAAAAAAAAAAAAAAAAAAACIOhTNAAAAAAAAAAAAAAAAAAAAAAAAIOpQNAMAAAAAAAAAAAAAAAAAAAAAAICoQ9EMAAAAAAAAAAAAAAAAAAAAAAAAok7MRE8AAAAAAAAAAAAAAAAAAABEjsPhiMh57Xb7kMeILsTbWoi3tRBv6yDW1kK8+1E0AwAAAAAYU3v27FFlZaXq6+t19uxZ9fX16dFHH1VxcfFETw0AAAAAAAAAAMCSXC7XuIzjdDrHZRxMDsTbWoi3tRBv6yDW1mLVeFM0AwAAAAAYU7/61a/U1NSklJQUuVwuNTU1TfSUAAAAAAAAAAAAAAAAAFgQRTMAAAAARqQvZGhvTbNeOXpBN89L0115KRM9JUwyX/7yl5WVlaXp06fr5Zdf1vPPPz/RUwIAAEAUa+vuU/k757X9vUb99dYCZcRN9IwAAAAAWNnp5g69fqJR75xt0f/9g4UTPR0AAAAAFhYMGTpy1qed71+SMzFW20pyJ3pKE4KiGQAAAADDChmG3j3fpp1VHu2q9srX2SdJqrzUprvyFk/w7DDZLFu2bKKnAAAAgCjn6+xVRa1PpdVeHTrbqr6QIUlaMsupz92WMcGzAwAAAGAlhmGopqlTZTU+ldf6VNPUGX7t4ZUzlZuRMIGzA67w+XwROa/dbpfT6Qwf+/1+hUKhiIyFiUe8rYV4Wwvxtg5iHf26e4N684xfZdVe7anzydfZK0nKciboM7dkyDCMcZ2Py+Ua1/EGQ9EMAAAAgEEZhqETjR16vdKj3VUeXW7vvabN0XMtamjpVmZK7ATMMPr4/X7V1taqtrZWdXV1qqurU1tbmySpqKhI27ZtM32upqYmbd++XUeOHJHH41FMTIwyMzO1du1abd26VfHx8ZF6GwAAAEBEXG4LqKzGq9Iar94536bQINd0th+/SNEMAAAAgIgLGYaOXWhXeY1XZTU+Nfh7Bm23u9qj3IzZ4zw7YHDBYHBcxgmFQuM2FiYe8bYW4m0txNs6iHV0aOnq1d66FlXU+XTglF/dfdcWQl30d+vExTYVTE+cgBlOLIpmAAAAAIQZhqGqy53aWeXRzkqvLrQOfpFnoNcrm/XQyqxxmF30e+SRR8bkPIcPH9YTTzyhrq6u8HM9PT3hQpzdu3fr8ccfV2Zm5piMBwAAAERKQ0u3ymp8Kq3x6tiF9mHbVza26ayvS7NT48ZhdgAAAACspDcY0tvnWlVa41NFrU+ejmsXG/uosmqvvryOohkAAAAAY6+hpVsVdT6V1/j0bsPgi419VFm1VwXTrZejUDQDAAAAQPXNndpR6dWOKo/O+rpN9blptlP3Lc/SHfOTIjw7a8rIyNDs2bN19OjREfU7deqUfvjDHyoQCCghIUH333+/li5dqkAgoH379mn37t26ePGivvOd7+i73/2uEhOtt3oEAAAAJrfTni7trvGqrMarykudpvrExdi1IS9Ddy3NUvo0CmYAAAAAjI3u3qAOnPartMarN+pa1N5jbgXujOQ4bV48U7fPT5ZhGLLZbBGeKQAAAIBo9+FiyOU1PlXU+VTTZO4aiiQVZqZoy+KZumOBNe/zomgGAAAAsKhzvm7tqPJoR6VHdc1dw3eQlJuRqK2LpuuPV2drQUZ/EuXz+dimdYx84hOfUE5OjnJycpSWlqbLly/rscceG9E5fv7znysQCMjhcOib3/ym8vPzw68tXbpUWVlZeu6553Tx4kW98sorevDBB685xzPPPKPe3uFXyPvQPffco6wsdhsCAADAjTEMQzVNnSqt7t9Rpt5jLj9JiLFrfXaaNhVk6L4VC5Uc33/JgxwFAAAAwGi0dvfpjTqfymt92n/Kr56+kKl+Walx2pifro/dtkC3zXfJYbeRnwAAAAAYlb5gSG+fb1NFbf+Ol5faAqb62W3SzbNTVJKfro/dtlDz0qdJsu41FIpmAAAAAAu56O/RziqPdlZ5dfJSh6k+81wJ2lqYrs0FbmVnTJPD4ZDLZc1VByJtsAKWkaitrdXJkyclSSUlJVcVzHzo3nvvVVlZmRoaGrR9+3Y98MADiom5OjXcuXOnenp6TI+7Zs0aimYAAAAwIoZh6ERjh3ZX9+8oc77F3O+fyfEO3ZGTpk15bq1ZkKaEWLscDke4YAaYTBwOR8TObbfbhzxG9CDW1kK8rYV4Wwvxnvya2gMqr/GqtNqjw2db1RcyTPXLyUhUSV66NhW4VTAjSQ6HQ06nM/w6sQYAAAAwUh2BoA6calFFrU9761vUZnLHy/gYu9YucKo416X12WlKmxb7wX1e0yI848mPq0gAAABAlGtuD2hXtVc7Kj06dqHdVJ9ZqfHaXOjWlsJ05U+fJpvNFuFZYiwcOnQo/LikpGTQNna7XUVFRXr++efV0dGhEydOaPny5Ve1efbZZyM6TwAAAFhTMGToaEObSmu8KqsxvxpaWmKMinNd2pjv1sp5qYp1cNMZpgaXyzVuYw28MRPRjVhbC/G2FuJtLcR7cjjj6dDrJxr1+olLOnLWJ8NcnYyWz03TXUsytXXJTGVPTx6yLbEGAAAAYEZze0B76lpUXuvVW2db1Rs0l6CkJcZoQ45LRbkurZ6fqoTYyC3mNJVRNAMAAABEoZbOXu2u6S+UOXKuTWbSqOnJsdpckK4thelakplEocwUVFVVJUmKj49Xdnb2ddstXrz4qj4fLZoBAAAAxkpfMKTD51pVWuNTeY1X3s4+U/0ykmJVkufWpnyXbp6Tqhg7+QkAAACA0TEMQ5WNbXr9RKNeO96oysY2U/0cdptWLXDrrqWZ2rJkprKciRGeKQAAAAArOO3pUnmtTxW1Pr130dxCyJI0Jy1exbkuFee6ddOsZDm4hjIsimYAAACAKNHW3aeyGp92Vnl06IxfZhYccE+L0ab8/h1lls9OkZ1CmSnt/PnzkqTMzEw5HNdfOWLWrFnX9AEAAADGSk9fSG+e8au02qs9dT61dgdN9ZuVGq+N+S6V5PVf5CE/AQAAADBaoZChd861aMeJRr12olFnPJ2m+sXF2LUhL0NblmTqzkUz5U6Ki/BMAQAAAES7kGHovQvtqqj1qbzWp7O+btN9F2cmqTi3f0eZ7PREFkMeIYpmAAAAgCmsIxDUG3U+vV7p0cHTflNbc6YmOLQxz63Nhem6bS4rNkeLQCCgtrb+VfHS09OHbJucnKz4+Hj19PTI4/GM+Vx2796tyspKSdLZs2fDz504cUKSVFhYqE2bNpk+n9k5DlUoNFp2u33IY0QX4m0dxNpaiLe1EO/x1xkIal+9T7uqPNpb71NnIGSq3wJ3ojYVuLUpP12FM29sx0vijcnK5/NF7Nx2u11OpzN87Pf7FQqZ+95haiHW1kK8rYV4WwvxHl+9wZDePteq0mqPymq8am7vNdUvKc6h9Tkubcp3a91Cl5LiP/ibc6BDvkCHqXNMhli7XK5xHQ8AAADA9fX0hfTWGb/Ka316o65Fnk5z+UmM3aaV81JVlOvShhyXZqRQyD8aFM0AAAAAU0x3b0h7633aWeXV3nqfevqGL5RJirOrKNetLQVurV7gVKyDm8iiTXf3ldUnEhIShm2fkJCgnp6eq/qNlcrKSlVUVFz1XFVVlaqqqsLHIyma+bM/+zNT7V544QXT5xytgRc9Ef2It3UQa2sh3tZCvCPD39Wr0spL2v5eoyqqm9TTZ+5GsEVZqbp7aabuWpqpvBnJY74aGvHGZBEMmttlaSyEQqFxHQ8Th1hbC/G2FuJtLcR77HX3BnXwtF9lNT69UW9+x8u0xBgV57pUnOfWqnmpiou5cv1kLGJErAEAAADr8Xf1aW+9TxW1Ph047VdXr7nrJ0lxDt2enabiXJfWLXQqOZ5Sj7HCJwkAAABMAYG+kA6e8WtHpUd7an3qNJFMxcfYtSEnTVsK07VuYZriYyiUiWaBQCD8OCZm+FTvwzYD+42Vbdu2adu2bWN+XgAAAEw8T3uPdr5/Sa+daNS+2mZTu11K0vK5af2FMksytSAjKcKzBAAAAGAFbd192lvfotIarw6c8qvbZCF/ZkqcSvLcKslzafnsFDnsY1vIDwAAAMB6Lvp7VFHnU3mNT++cb5XJyyeakRyrolyXinJdum1uKgshRwhFMwAAAMAk1RcM6a2zrdpR5VVZjVftPcOvRBbrsOn2hWnaXJiuO7LTNC3OMQ4zxWQQF3dlG9a+vr5h23/YZmC/yerJJ5+c6CkAAABY2qXWbr1+olHb32vUm6c8Cpm40GOzSSsXuHXXkv4dZWalJUZ+ogAAAACiXnNHQBW1/TeivXW2VX1mEhRJC90JKs5za2OeW4Uzp435jpcAAAAArMUwDFU3dfbnJ7U+VV/uNN03Oz1RxXkuFeW4tCgzSXbyk4ijaAaj4nBE5iZMu90+5DGiC/G2FuJtHcTaWoj32AmGDL1zvlWvn2zWriqPWrqGL36Isdu0eoFTWxdlqDjPrZQIb81JvCenhISE8OPu7u5h23/YZmC/ySo9Pd1UO5/PF7E52O12OZ3O8LHf71coZG7VQkw9xNs6iLW1EG9rId6jd8HfrV1VHpVWe3W0oc1Unxi7TSvmpWpTQbpK8txKT/qgQNvols83/O+oN2qi4+1yucZtLAAAAMCKGlq6VfZBoczRhjaZXLBZi2cmqSTfpZJctxakU8gPAAAAYHT6QobePd+q8lqfKmp9utgaMNXPbpOWz05RUU7/jjJzXZP/Xp1oQ9EMRmW8LgYOvOCJ6Ee8rYV4WwexthbiPTKGYejI2Ra9cvSCfv/eRV1u6xm2j90mrc1J173LZumuJZlyJU3cbiHEe3KIi4tTSkqK2tra5PF4hmzb3t6unp7+nzOzBSlTQTA4/G5MYyUUCo3reJhYxNs6iLW1EG9rId7mnPZ2qbTaq9IaryovmVsRLc7RX8S/Kc+tO3JcciZeuewwUZ858QYAAACmNsMwVNfcpfJan0prvKZXbLbbpFvmpKgkz63iXJcyU+MjPFMAAAAA0a4zENSB035V1Pq0t96n1m5z1x/iY2xaPd+p4ly37shJk2tabIRniqFQNAMAAABMAMMwdLyhVa8eu6BXj11UQ0uXqX4rF7h03/JZuntplqancLEHV5szZ45OnjypxsZGBYPB6+4MeeHChav6AAAAwJoMw1BNU6dKq/tvRKv3mMtLEmLsuj07TRvz3VqfnaakuMjsSA4AAADAOkKGofcbO1Ra7VV5rU9nTe5WGevovxGtJM+lDTkubkQDAAAAMGqejl69UedTea1Ph874FQia2+/SmRijDdlpKsp1afV8pxK5fjJpUDQDAAAAjKOqxja9cvSCXj12Qac95lZGWz43Tfcty9I9N2VpVlpihGeIqaygoEAnT55UT0+P6uvrlZeXN2i7999//6o+AAAAsA7DMHTigxvRSmu8Ot8y/E6XkpQc79AdOWnamOfW2gVOJcRyoQcAAADA6PQFQzpyvk1lNT6V13rV1N5rqt+02P5C/pI8t9YtdCo5ntufAAAAAIzOGW//bpcVtT69d6Fd5spkpNnOeBXlulSc69Ky2SmKsdsiOk/cGLJGjIrP54vIee12u5xOZ/jY7/crFApFZCxMPOJtLcTbOoi1tRDvoZ3xdum1k83acbLZ9MrN+TOmaeuiDG0pzNCctIT+J41u+UyurBZJkyHeLpdrXMebKlatWqWXX35ZklRWVjZo0UwoFFJFRYUkKSkpSUuWLBnPKUbU9XbWGQt2u33IY0QX4m0dxNpaiLe1EO+rBUOG3m1o1e4qr0qrPbrUFjDVLy0xRsV5bm3KT9fqBU7FOibn50i8AQAAgKmjuzekN8/4VVbj1Rt1LfJ395nq50yMUVGOSyV5Lq2a71R8DL/3AwAAALhxH+52WV7jVUWtT6e85u/JWjQzKVwok5ORKJuNQpnJjqIZjEowGByXcUKh0LiNhYlHvK2FeFsHsbYW4i1d8PdoR6VHO6s8qrpsbkeZBe4EbSlM15aCdC1Iv7KjzGT/LIn35JGbm6tFixbp5MmTKisrU3FxsfLz869q8+qrr6qhoUGSdPfddysmJnrSwvEsphpYOIboR7ytg1hbC/G2FivGuzcY0sF6j7Yfb9SOE5fU3G5uR5kZKfG6a2mm7lqSqVUL3YqZpIUyQ7FivAEAAIDJrL2nT3vrW1RW49P+Uy3q6jW3ENfMlDgV57pUkufWzXNYsRkYrUgtPsZiFtZCvK2FeFsL8bYOK8c60BfSoTN+ldd6VVHrVbPJ3S5j7DbdNjdVJfluFeW6lZkaH+GZjh0rx3ug6Lk7CgAAAJhgl9sC2lXt0Y5Kj45f7DDVZ7Yzvr9QpjBduaw8YHmVlZVqbGwMH7e2toYfNzY2qry8/Kr2xcXF15zj4Ycf1re+9S0FAgH9wz/8gz7+8Y9ryZIlCgQC2r9/v3bt2iVJysrK0n333ReR9wEAAICJ0d0b1N6aZm0/3qhdJy/J32XuYs/stETdvTRTd9+UqVvmumTnRjQAAAAAo+Tt6FVFnU9lNV4dOtOqvpBhqt98d4I25rlVnOvS4swkrpsAY2i8Fh9jMQtrId7WQrythXhbR7TH2t/Vq/Kqy9px4pLKqy6rI2BuYeCkOIeKC2doy+KZKi6YIWdibIRnOj6iPd7XQ9EMAAAAMArejl7trvZqZ5VH75xvk5lLPjNT4rS5wK0thelaNJMLPrhi9+7dqqioGPS1qqoqVVVVXfXcYEUzCxcu1Ne+9jU98cQT6urq0i9/+ctr2mRlZenxxx9XYmLiNa8BAABgaukM9Km8qknbjzeqrPKy2nv6TPXLzkjSXUszdffSLC2dnUpeAgAAAGDULvp7VFbrVVmNT0cb2mSyTkaLZiapOM+ljXluLUzn79YAAAAARudCS5d2vn9JO9+/pIP1HtNF/NNT4rV58UxtWTxTa3PSFR8TmZ36MP4omgEAAABGyN/Vp7Jar3ZUenT4bKupiz7p02K16YNCmWWzkmXnhjRE0IoVK/T9739fv//973XkyBF5vV7FxMQoMzNTa9as0V133aX4+KmzVaxZPp8vYue22+1Xrbbh9/sVCoUiNh4mFvG2DmJtLcTbWqI93m09fdpT69PuKo/2n2pRT5+595Y3fZo2FaTrzvx0ZYd3ugyppaUlovONtImO93it1AsAAABMNoZh6JSnS6U1PpXXelV5qdNUP5ukW+akqDjPpZJct7Kc0ff3agAAAADjxzAMVV1q044Tl7Tj/UYdb2g13Td3RrK2LJ6pzYtnavmcNNnt3NMVjSiaAQAAAExo7+lTRa1PO6u8Onjab2oFAmdCjDbmu7Wl0K1b56TKQVKFYWzbtk3btm0bk3NNnz5dDz30kB566KExOd9UEAya20J3LIRCoXEdDxOLeFsHsbYW4m0t0RDvls5eldf5VFrt1aEzraZXRVuSmaSN+W5tzHNrrish/Hw0FRF9VDTEGwAAAJisDMPQicYOldd4VVrj01lft6l+MXabVs1P1cY8tzbkuOROio3wTAF8VKQWH5voxSwwvoi3tRBvayHe1hEtse4LGXr3fKvKa7wqr/Gqwd9jqp9N0vLZKSrOc6s4z6357iu7Xfr9LZGZ7ASaDPGeDIuPUTQDAAAAXEdXIKi99S3aUeXRvvoWBYLD35SWFOdQSZ5LWwrTtWpeqmIc9nGYKQAAAIBo1NQeUFmNV6XVPh05b26XS5ukm+ekaGOeWyV5LmWmsmIzAAAAgNH58Ga0shqfymt9utQWMNUvMdau2xemqTjPpfXZaUqO5zYlYCKN1wITLGZhLcTbWoi3tRBv65hKse7uDergab/Ka316o75F/q4+U/3iHDatnu9UUZ5Ld2S7lD6giH+qvPexMpXiPZbIRgEAAIABAn0h7T/doh2VXu2p9am7b/jK+sRYuzbkuLS50K21C9IUH0OhDAAAAIAbc8Hfo9Iar0qrvXrvQrvM7CfjsEkr5qVqY75bRbkuZSTFRXyeAAAAAKJbT19Ih874VVrj0546n+mb0ZwJMdqQk6aSfLdWzXMqIZZrJgAAAABunK+zV3vqfKqo9enNM3719Jm5ciKlJji0Ptul4lyX1ixwalqcI8IzxWRG0QwAAAAsry8Y0ptnWrWzyqOyGp86AsNX08c5bLo9O01bC9O1PjtNCbEkVgAAAABuzGlvl0qrvSqr8enkpQ5TfWIdNq2Z79TGfLc25LjkTOTP/QAAAABGp72nT/tO+VVe49W++hZ19g6/sJgkzUiOVfEHu13eMidVMXZbhGcKAAAAIJqd83WrorZ/p8tjF9oUMlcno6zUOBXnulWUm6abyU0wAFfRAAAAYEnBkKEj51u1o9Kj0mqf/N3Dr5AWY7dp7QKnNhema0NOmpLj+XUaAAAAwMgZhqHa5v5Cmd3VXtV7ukz1S4ix6/bsNJXkubQ+m5wEAAAAwOj5OntVUedTWbVPh8761Rs0dzfaPFeCSvJcKslza3Fmkuw2bkYDAAAAcGNChqGTjR0qr+3fUcbsdRNJKpgxTUW5/TvK5E2fJhu5CQbBFTUAAABYRsgwdKyhXTuqPNpd5ZWns3fYPg6btGJeqrYUpqskz63UBH6FBiYrhyNyOz7Z7fYhjxFdiLd1EGtrId7WMhnjbRiGTlxs1+5qj3ZXe3XO122qX3KcQxtyXdpUkK61C9OUyC6X15iM8QYAAAAms8bWHpXV+FRW49W7DeZXbS6YMU0lH+wok52eyM1oAAAAAG5YbzCkw2dbVVHrU0WdT03tw9/HJfXfy3Xr3FQV5bpUlONSljM+wjNFNOCOPwAAAEQ1wzD0fmOHdlR6tKvaq0ttgWH72CTdMidFWwrTtTHPLXdSbOQnCmDUXC7XuI3ldDrHbSxMPOJtHcTaWoi3tUxUvIMhQ2+f8Wn78Yt6/XijLvjNFcq4psVq8+KZuntpltblpis+hkKZkeD7DQAAAFzrtKdLpTVeldf49P6lDlN9bJKWz05RSV7/qs2z0xIiO0kAAAAAUa29p0/7TvlVXuPV/lN+dQSCpvolxtq1doFTxXlu3b4wTc5ESiAwMvzEAAAAIOoYhqGapk7trPJqR6VHDf4eU/1uykrW5kK37sxP14yUuAjPEgAAAEA06g2GdLDeo+3HG7XjxCU1t5vLR2akxGvrkkzdvTRTqxa6FeNgtxQAAAAAN84wDJ281BHeUea011wRf4zdplXzUlWc51ZRrkvpLCwGAAAAYBQutwW0p86n8lqfDp9tVZ/JrS7Tp8VqQ26ainJcWjnfqfgYrpvgxlE0AwAAgKhx2tOl1ys92lnlMX3xp2DGNG0pTNfmgnTNYrtOAAAAADegpy+ovTXN2n68UbtOXlJLZ6+pfrPTEnX30kzdtTRTt85zyW63RXimAAAAAKJZMGTo3YY2lX2wo0xjW8BUv4QYu9YtdGpjfv+qzSkJ3E4EAAAA4MYYhqF6T5fKa32qqPXp/UZzO11K0jxXgopzXSrOc2lpVrLsNq6bYGyQ5QIAAGBKO9/SrZ1VHu2o9KqmqdNUn+z0xA8KZdya706M8AwBjBefzxexc9vtdjmdzvCx3+9XKBSK2HiYWMTbOoi1tRBvaxmPeHcFgtpb79Puaq/21vnUEQia6jffnaBN+enaVJCuRTOTZPvggo/f3zKm87OSif5+u1yucRsLAAAA+KhAX0iHzvhV9sENaS1dfab6pSY4dEe2SyX5Lq2Zn6aEWFZtBgAAAHBjgiFDxy60qaK2f0eZ8y09pvvelJWsolyXinNdWpDOfVyIDIpmAAAAMOU0tvZoV5VXO6o8plcjmJsWH95RJnf6tAjPEMBECAbN3ag6FkKh0LiOh4lFvK2DWFsL8baWsYp3e0+f3qhrUWmNV/tP+dXTZ64wI2/6NG3Mc6kkz62cjMRwoQyFW5HB9xsAAADRriMQ1P76D3OTFnUEzOUWGUmxKslzqTjPrdvmpCjGQaEMAAAAgBvT3RvSm2f8Kq/1aW+dTz6TBfyxDptWzXOqKNelDTlpykiOi/BMAYpmAAAAMEU0dwS0+4NCmaMN7ab6ZKbEaXNhurYWpqtgxrTwjWkAAAAAYFZLZ6/K63wqrfbq0JlW9YUMU/0WZyZpY55bG/PdmudKiPAsAQAAAES7ls5e7alrUVmNV2+e8SsQNJebzEmLV0meWxvzXFqSlSw710oAAAAA3KCWzl7trW9Rea1PB06bX1wsOd6hO7LTVJTr0tqFaUqKc0R4psDVKJoBAADApNXS1avSap92Vnn09rlWmbk3LSMpVpsL0rW50K2bspIplAEAAAAwYs3tAZXV+FRa49WRc60ycy+aTdLNc1JUkufSxjy3MlPjIz5PAAAAANGtsbVH5bU+ldf4dOS8ueskkpQ/fZpKBtntEgAAAABG6nxLtypqfaqo9endhjbTecnMlDgV5bpUnOvSrex0iQlG0QwAAAAmlfaePpXX+LSj0qM3z7YqaCLTSkuM0aZ8t7YUpuvm2Sly2Ln4AwAAAGBkLvh7VFrjVWm1V+9daJeZaz4Om3TbvFRtzHOrOM+ljKS4iM8TAAAAQHQ77e1S+QdF/O83dpjqY5N006zkcG4yJ43dLgEAAADcGMMwVHmpUxW1PpXXelXb3GW6b970aSrOdako16WCGdMo4MekQdEMAAAAJlxXIKg99S3aUenR/lMt6jWxjHNKvEMleW5tKXRrxTynYiiUAQAAADBCZ7xdHxTK+HTykrmb0WIdNq2e79TGPLc25KYpLTE2wrMEAAAAEM0Mw1DV5U6V1nhVXuNTvcfcDWkOu00r56Wq+IOVmzOSKeIHAAAAcGP6giG9fb5N5TU+7anz6VJbwFQ/u026ZU6KinJdKspxaTYF/JikKJoBAADAhOjuDWn/qRbtrPJoT12LevpCw/aZFmtXUa5LWwrTtWaBU7Fs2wlgAIfDEbFz2+32IY8RXYi3dRBrayHe1nK9eBuGoZqmTu2u8mh3tUd1JldHS4i16/aFadpUkK47clxKjudP65MJ328AAABMNcGQoSPnWlVW61N5jVcXW83dkBYfY9e6hU6V5Lm1PjtNqQnkJgAAAABuTFt3ryqqm/S7d8/pjTqf2nuCpvolxNi1dqFTRbkurc9mcTFMDWTPAAAAGDe9wZDePO3X61Ue7an1qSMwfKFMfIxdd2SnaXNhum5fmKaEWG5+AjA4l8s1bmM5nc5xGwsTj3hbB7G2FuJtHYZh6HSroe3HL+m14xd12tNpql9KfIw2LZqhu5ZmqSh/uhLjIlegi7HF9xsAAACTUU9fUPvrPNpxolGvHb8oX2efqX4p8Q7dkeNSSZ5Laxc4lRBLbgIAAADgxjS3B/TGKb/2na7R/lqPAsHh792SJFdijDbkulSU69KqeU7u38KUQ9EMAAAAIqovZOjw2VbtrPKorMar1u7hVyWIsdu0bqFTWwrTtSHHpWncnAYAAABgBIIhQ2+f8Wn78Yt6/XijLvi7TfVzTYvV5sUzdffSLK3LTVd8DLkIAAAAgBvXGQhq/6kWlde2aF99i9p6zBXKpCfFqjjXpZI8t1bMTVGMgxvSAAAAAIycYRg67e1WRa1P5bVeHb/YYbrv3LR4Fee6VZTn0k1ZyXLYbRGcKRBZFM0AAABgzIUMQ0fOtWpHpUe7q73ydQ1/Echhk1bN7y+UKc51KSWBX1UBAAAAmNcbDOnNem9/ocyJS2pu7zHVb3pKvO5akqm7lmZq9UI3N6MBAAAAGJWWrl69Udeishqv3jzjV0+fYarfbGe8SvL6C2VumpUsu40b0gAAAACMXDBk6PjFdpXX+lRR69NZn7mFxSRpSWaSinJdKs51aWF6omzkJYgS3IkIAACAMWEYht4516JXj17UK0cb1NQeGLaPTdJtc1O1udCtTXlupU2LjfxEAUQtn88XsXPb7XY5nc7wsd/vVyhkbptiTD3E2zqItbUQ7+gU6Avp4OkW7a7yqKLWJ3+3uVWbM1PjtCk/XXcWpGvZ7JTwzWhtrf5IThcRMtHfb5fLNW5jAQAAYHK63BZQea1XZTU+HTnXqqC5OhnlZiSqJM+tkjyX8qZP44Y0AAAAADekuzekt876VVHr0546n7yd5q6XxDpsWjnPqQ05aSrKdWl6clyEZwpMDIpmAAAAcMMMw1DV5U7tqvZqV7VP531dpvotm5WsLYXpujPfrQySLQBjJBgMjttYoVBoXMfDxCLe1kGsrYV4T11dgaD2n/artNqrvfU+dQTMFUfMcyVoY55LG/PdWjQzKXwzmhEKiZ+E6ML3GwAAAOPhrK9bpdVeldd6dfxih+l+t85L04Zsp4py0jTXlRDBGQIAAACIZv6uPu2t96m81qeDp/3q6jV3vSQ5zqGNi2Zq8+KZKi6Yrr6udv6mjqhH0QwAAABGrL65UzsqvdpR5TG9hefimUnaXJiuzQVuZabGR3iGAAAAAKJJe0+f3qhrUWmNV/tP+dXTZ+7CT2Fmiu5amqnb503TAlc8qzYDAAAAuGGGYai6qVNl1T6V1XpV12xuITGH3aYVc1N17y1ztWXxTM1MTZDP5+OmNAAAAAAjdsHfo4panypqfXrnvPldLmckx6oo16WiXLdWLUjTjIz08Gsm10gGpjSKZgAAAGDKOV+3dlR5tKPSY/pCUG5GorYUpmtzQTqrpQEAAAAYkZauXlXU+lRa7dOhs371mrzys3hmkjYVpuuBldlamJEkSdyQBgAAAOCGBEOG3rvQrrIar8pqfLrQ2mOqX3yMTWsXpKk4z6U7sl1yJ8fL5XJFeLYAAAAAoo1hGKq63BkulKlu6jTdNycjUcW5LhXlurRoZlJ4YTGHwx6p6QKTFkUzAAAAuK6L/h7trPJoZ5VXJy91mOqTnZGkO/NdujPfpeyMaRGeIQAAAIBo0tweUFmNT6U1Xh05Z26FNJuk5bNTtDHfpY15/TtbOhwOuVxJEZ8vAAAAgOjTGwzp8NlWldb4tKfWJ09nr6l+SXEObchJU3GeW+sWOJUY54jwTAEAAABEo75gSO80tKm8pr9QprEtYKqf3dZ/vaQo16XiXJfmpLHAMfAhimYAAABwleb2gHZVe7Wj0qNjF9pN9ZnljNfHbpmje5dlaXFWqlpaWljFGQAAAIApF/09Kq3xqrTGq2MN7TKzn4zDJt02L1Ub89wqznMpIyku4vMEMHXt2bNHlZWVqq+v19mzZ9XX16dHH31UxcXFEz01AAAwSXQFgtp/2q/yGq/eqG9Re4+5axzp02K1IdeljXkurZiXqlhWbAYAAABwAzoDQR047Vd5rVf76lvU2m0uJ4mPsWvNAqeKcly6IydNrmmxEZ4pMDVRNAMAAAD5Onu1u9qrnVUeHTnXZuomtRnJsbqzIF1bCtO1bHaq3G53xOcJAAAAIDqc8Xb1F8pU+0zvahnrsGn1fKc25rm1ITdNaYlc+AFgzq9+9Ss1NTUpJSVFLpdLTU1NEz0lAAAwCfi7+vRGvU9lNT4dPN2inj4zV0ekWanxKslzqSTPrZtmJctht0V4pgAAAACiUXNHQG/Utaii1qdDZ/wKBM3lJM7EGG3ITlNRnktr5juVEMsul8BwKJoBAACwqLbuPpXV+LSjyqO3zvhlJu9yT4vRpvx0bSl0a/nsFNlt/ReCbDYuCAEAAAC4PsMwVNvcpdLq/h1l6pq7TPWLj7Hr9oVObcx3a312mpLj+ZM2gJH78pe/rKysLE2fPl0vv/yynn/++YmeEgAAmCDN7QGV1/pUWuPV2+faFAyZuyktJyNRJbluleS7lD99GtdFAExJDkdkbqi12+1DHiO6EG9rId7WQrzHx2lPl8prvSqr9uq9C+YWNpakOWnxKs5zqzjPreWzUxUziuJ9Ym0txLsfVxgBAAAspCMQ1J7a/kKZA6f86jNxMSg1waGNeW5tKUzXrXNHl3QBQCRF6mKPxB8RrIZ4WwexthbiPf4Mw9D7je3aVeXV7mqPzvm6TfVLinNoQ65Lm/LTtS47TYk3sEIa8bYW4o3hLFu2bKKnAAAAJtA5X7fKarwqr/Xp2IV20/2WZiWpJM+tkjy35rkSIjhDABgfLpdrXMZxOp3jMg4mB+JtLcTbWoj32AiFDL17vkU7TlzSzvcbVdfUYbrvsjlObV40U1uWZCp/ZnLEiveJtbVYNd4UzQAAAES57t6g9ta3aEelR/tOtainb/hCmaQ4u4pz3dpcmK7V81MV6+CGIwCT33hd7JGs+0cEqyLe1kGsrYV4R0YwZOjIWZ+2v9eo1080qqHF3I4yadNitXnRTN19U6Zuz81QfMzYFsMSb2sh3mPH7/ertrZWtbW1qqurU11dndra2iRJRUVF2rZtm+lzNTU1afv27Tpy5Ig8Ho9iYmKUmZmptWvXauvWrYqPj4/U2wAAABZjGIZqmjpVVuNTWY1XtSZ3unTYpFvnpqokz6XiXLdmpMRFeKYAAAAAolFPX1D76zzaceKSdp28pKa2HlP9Yuw2rc1J15bFM3Xn4pnKciZGeKaAdVA0AwAAEIUCfSEdOO3XziqPKmp96uoNDdsnIcauO3LStLUwXWsXpik+hkIZAAAAAMPrDYb0Zr1X249f1I73zV/8mZ4Sr61LZurupVlavdCtGIr1gUnnkUceGZPzHD58WE888YS6uq7csNrT0xMuxNm9e7cef/xxZWZmjsl4AADAekKGofcutKusxquyGp8a/ObykjiHTWsWOFWS59YdOWlKS4yN8EwBAAAARCN/Z6/Kqi5r5/uXVF51WR2BoKl+yfExKi6Yrs2LZ6q4YIac5CRARFA0AwAAECX6giG9dbZVOyo9Kqv1qb1n+OQrzmHTuoVp2lKYrjuy05QYN7arOQMAAACITj19Qe2rbdb29xq18+QltXT2muo3Oy1RW5dk6u6bMnXrPJccdluEZwpgrGRkZGj27Nk6evToiPqdOnVKP/zhDxUIBJSQkKD7779fS5cuVSAQ0L59+7R7925dvHhR3/nOd/Td735XiYmsnggAAMzpC4Z0+Fyrymp8Kq/1ydNhLi9JinNofXaaSvJcWrcwTdO4NgLAInw+X0TOa7fbr9r11e/3KxQaflFHTE3E21qIt7UQ75FrbO1ReY1XZTVeHTnXqr6QYapfRnKsinPdKs5za+U8p+I+WNg41N0uX3ckZ9yPWFvLZIi3y+Ua1/EGQ9EMAADAFBYMGXrnfJt2VHm0u9orf1ffsH0cdpvWzHdqc6FbxbkuJcfzKyGA6BCpiz3S5PgjAsYP8bYOYm0txHv0ugJB7TvVot1VHr1R5zO9Sto8V4I2FaRrU366FmcmyWbrL5Rp9bdEbK7E21omOt6T4WJPpHziE59QTk6OcnJylJaWpsuXL+uxxx4b0Tl+/vOfKxAIyOFw6Jvf/Kby8/PDry1dulRZWVl67rnndPHiRb3yyit68MEHrznHM888o95eczfBStI999yjrKysEc0TAABMDd29QR047VdZjU9v1PnUZmIBMUlyJcaoOM+l4ly3Vs5LDd+UBgBWEgya+//M0QqFQuM2FiYe8bYW4m0txPtahmGotrlL5TVeVdT5VHmp03Tf7PREFeW6VJTr0uLMJNltHy4qZkz450ysrcWq8eYOSQAAgCkmZBh670K7dlZ5tLPKa2rlNLtNWjE3VVsK01Wc51IaW3kCiELjmdRb9Y8IVkW8rYNYWwvxNqe9p09761u0u9qr/af86ukzV4iQm5GojflubcxzKycjMVwoM1GFK8TbWoj32BmsgGUkamtrdfLkSUlSSUnJVQUzH7r33ntVVlamhoYGbd++XQ888IBiYq6+fLVz50719PSYHnfNmjUUzQAAEEXauvv0Rn2LympGlpdkpcapOM+tjXkuLZuVwk6XAAAAAEasL2ToaEObymt9qqjx6UKrub9T2iQtm52s4ly3inJdmudKiOxEAQyJohkAAIApwDAMVV7q1I5Kj3ZWedTYFjDV75Y5Kdpc4Nam/HSlJ1EoAwAAAGB4LV29qqj1qbTap0Nn/eoNGqb6LZ6ZpI35bpXkuTTfnRjhWQKYCg4dOhR+XFJSMmgbu92uoqIiPf/88+ro6NCJEye0fPnyq9o8++yzEZ0nAACYfJo7Aiqv8am81qe3zrYqGDKXl2SnJ6o4z6WNeW4VzJgWLuAHAAAAALO6AkEdPONXeY1Pe+tb5O/uM9UvzmHT6gVOFeW6dEe2i3u1gEmEohkAAIBJyjAM1TV3aUeVRzsqPTrfYm6lgiWZSdpSmK47C9yamRIf4VkCAAAAiAbN7QGV1/pUWu3V2+daZaZOxiZp+ewUlXxwQ1qWk/wDwNWqqqokSfHx8crOzr5uu8WLF1/V56NFMwAAwBrOt3SrvMan0hqv3rvQLnNlMtLizCRtzHOrOM+lBRTwAwAAALgB3o5e7an3qaLWp0Nn/OrpM5eROBNitD47TcV5Lq2Z71RinCPCMwVwIyiaAQAAmGROe7u0s9KjnVVe1Xu6TPXJnzFNWwr6C2XmpLGdJwAAAIDhXfT3qLTGq9Iar441mLshzWGTbpubqo35bhXnupSRHBfxeQKYus6fPy9JyszMlMNx/YvFs2bNuqYPAACIfh8uHlZa41V5jU/VTZ2m+tlt0q1zUlWc51JxrkuZqRTwAwAAABi5s75uVdT6VF5r/jqJJM1KjVdRrktFuS7dPCdFMXZ2uAQmO4pmAAAAJoGGlm7trPJqR5VH1ZfNXRRa4E7QlsJ0bSlI14J0Vk4DAAAAMLyzvm6VVntVWu3V+5c6TPWJsdu0er5TG/NdKspxKW1abIRnCSAaBAIBtbW1SZLS09OHbJucnKz4+Hj19PTI4/GM+Vx2796tyspKSdLZs2fDz504cUKSVFhYqE2bNpk+n9k5DlUoNFp2u33IY0QPYm0txNtarBrvkGHo+IV2lVZ7VFrj1Tlft6l+cQ6b1ixI08Z8tzbkuuWaYnmJVeNtRcQaAABg8goZht5v7FBFbf+OMmYXM5akghnTVPxBoUze9Gmy2SiUAaYSimaigNfr1YEDB/TOO++ooaFBLS0tSk5OVkFBgT72sY8pLy9voqcIAAAGcbktoJ1VHu2s8uj4RXM3q812xvcXyhSmKzcjkQQMAAAAwJA+XLl5d3X/jjJ1zeYuAMXH2LVuoVOb8t1an52m5Hj+lAxgZLq7r9wAm5Aw/K64CQkJ6unpuarfWKmsrFRFRcVVz1VVVamqqip8PJKimT/7sz8z1e6FF14wfc7Rcjqd4zYWJhaxthbibS3RHO/eYEhv1nv1+olG7Xi/UZdae0z1S46PUUnhDG1dMlPFBTOiKi+J5njjasQaAABgYvUGQzp8tlXltT7tqfOpqb3XVD+HTbptbqo25PYvKJblZIdLYCqLnr8oWNj27dv13//935o5c6aWL1+u1NRUXbx4UW+99ZbeeustffWrX9W6desmepoAAECSt6NXu6v7d5R593ybqW09Z6bEaXOBW1sK07VoZhKFMgAAAACGZBiGTl7q6N9RpsansyZXbk6Ks2t9tksb891at8CpxLjI7ZAAIPoFAoHw45iY4S9HfdhmYL+xsm3bNm3btm3MzwsAAK6vuzeoPdVNeu1Eo3afvCx/l7kb09xJcdq8aKbuWpqpdbnpio8hLwEAAAAwMu09fdpb36KKWp/2n2pRRyBkqt+0WLvWLkxTca5Lt2enKTWB2+yBaMG3OQrk5ubq//yf/6PFixdf9fzJkyf17W9/Wz/5yU+0cuVKxcZOre2JAQCIFv6uPpXV9BfKHD7bqpCJSpn0abG6s8CtzYXpWjYrWXYKZQAAAAAMIWQYOtbQrt01XpVVe9XYZu6mc2dCjDbkurQpz6VV852Ki7FHeKYArCIuLi78uK+vb9j2H7YZ2G+yevLJJyd6CgAATEr+rl6VVV7W6ycaVV7VpK7eoKl+s5wJ2rIkU3ctzdSK+S7FOMhLAAAAAIzMpbYe7altUXmtV2+fa1OfmRu01H+P1oZcl4pyXVo5L1XxXCcBohJFM1Fg9erVgz6/aNEiLV26VEePHtXZs2eVk5MzzjMDAMC62nv6VFHr045Krw6e8StoIhFzJsZoY55bWwvdumVOqhx2CmUAAAAAXF9fyNDb51pVVu1VWa1Png5zKzenJ8WqJNelkny3bpuTwg1pACIiISEh/Li7e/gdrz5sM7DfZJWenm6qnc/ni9gc7Ha7nE5n+Njv9ysUMrdiJqYWYm0txNtaoiXeno6Aymu8Kq326tAZv+kb0xa6E7WxwK2SvHQtzkyS7YPFw9pa/ZGc7oSJlnhjeJMh1i6Xa1zHAwAAmAiGYaiuuUsVdT5V1Pj0/qUO030XuBNUlOtSca5LS7JYzBiwAssXzfj9ftXW1qq2tlZ1dXWqq6tTW1ubJKmoqEjbtm0zfa6mpiZt375dR44ckcfjUUxMjDIzM7V27Vpt3bpV8fHxkXob1+VwOK76XwAAEDldgaDeqG/RziqP9tW3KBAc/sJQUpxDG/Nc2lyYrlXzUrlZDQBGIZJ5j91uH/IY0YV4WwextpZoiXegL6Q3z7Rod5VX5TVe+buH371BkjJT47QpP12bCtK1bFZK1BfpR0u8YQ7xnpzi4uKUkpKitrY2eTyeIdu2t7erp6dHkvmClKkgGDS3uv5YCIVC4zoeJg6xthbibS1TKd4X/D0qq/GqrManow1tMlcmIy2emaTiPJdK8txamJ4Yft6KxSNTKd4YHWINAAAwdoIhQ8cutKm8xqeKOp/Ot/SY6meTdNOsZBV9sKPMAnfisH0ARBfLF8088sgjY3Kew4cP64knnlBXV1f4uZ6ennAhzu7du/X4448rMzNzTMYzo7m5We+9955cLpfmzZs3buMCAGAlPX0hHTjVotcrPXqjrkXdfcNf2EmMtWtDjktbCtO1doFTcWzrCQBjYjxXzxu4UiCiH/G2DmJtLVMp3l2BoCqqL2v78UaVnrysth5zhTIL0qfprqVZuntpppbNcYZXbraiqRRvjB7xnjzmzJmjkydPqrGxUcFg8LqF7hcuXLiqDwAAmFwMw1C9p0tlNT6V1XhVdbnTVD+7Tbp5doo25rtVnOtSZur4LzQKAAAAYGrr7g3q4Bm/Kmpb9EadTy1d5q6RxDlsWjnPqeI8l+7ISVNGUlyEZwpgMrN80cxAGRkZmj17to4ePTqifqdOndIPf/hDBQIBJSQk6P7779fSpUsVCAS0b98+7d69WxcvXtR3vvMdffe731ViYuQrFPv6+vTEE0+ot7dXn/nMZ1hZDwCAMdQXDOnNM63aUelRea1PHYHhV4eKj7Hp9oVp2lKYrvXZaUqIZRc4AAAAANfX1t2r0srL2v5eo8qrL6u719zKywUzU3TX0kzdfVOmCmamWLpQBsDEKygo0MmTJ9XT06P6+nrl5eUN2u7999+/qg8AAJh4IcPQ+40d4R1lzvq6TfWLddi0en7/jWlFOS65psVGeKYAAAAAok1LZ6/eqG9Rea1PB0/71WNiEWNJSol3aH1OmopyXFq7ME1JcdyfBaCf5YtmPvGJTygnJ0c5OTlKS0vT5cuX9dhjj43oHD//+c8VCATkcDj0zW9+U/n5+eHXli5dqqysLD333HO6ePGiXnnlFT344IPXnOOZZ55Rb2+v6THvueceZWVlDfpaKBTSv//7v+vkyZPatGmTNmzYMKL3AwAArhUMGXr7XKt2VnlUWu2Tv3v4VQti7DatXeDUlsJ0bch1kYgBAAAAGJKvI6CdJy/pteON2lvTrEDQ3EWgZXOc2rokU3cvzVT29OQIzxIAzFu1apVefvllSVJZWdmgRTOhUEgVFRWSpKSkJC1ZsmQ8pxhR19tZZyx8dLE0Fk+LXsTaWoi3tUzGePeFDB0516rSao/Kqr263B4w1S8x1q47clwqyUvX+pw0Jcdb/laUa0zGeCMyiDUAAMCNOd/SrfJan/bU+vRuQ5tChrl+mSlxKsp1qTjPpVtmpyjGwe9fAK5l+b9UDFbAMhK1tbU6efKkJKmkpOSqgpkP3XvvvSorK1NDQ4O2b9+uBx54QDExV3/0O3fuVE9Pj+lx16xZM2jRTCgU0pNPPqm9e/fqjjvu0COPPDLCdwQAAD4UMgwda2jX65UelVZ75ekcvsDVYZNWzndqc4FbJXlupSZY/tctABg3Pp8vYue22+1yOp3hY7/fr1DI3I3MmHqIt3UQa2uZrPFubg+otMar3VUevX3Wr6CJi0A2Sctnp2hTQbo25rs1y5nwwSu9Ef3v4VQyWeONyJjoeLtcrnEba6rJzc3VokWLdPLkSZWVlam4uPia6yivvvqqGhoaJEl33333NddPprLx/NkY+B1AdCPW1kK8rWWi4t3dG9Temma9dqJRu05eUouJayGS5JoWqzsXzdRdSzN1e26GEmJZOGwk+H5bB7EGAAAYnGEYqrzUqfJarypqfapt7jLdN3/6NBXlulSU61LBjGmy2WwRnCmAaBA9Vx4myKFDh8KPS0pKBm1jt9tVVFSk559/Xh0dHTpx4oSWL19+VZtnn3121HP5cIeZPXv26Pbbb9e2bdtYsQIAgBEyDEMnGju0s9KjXdVeXWobfhU1m6Rb5qRoS2G6NuW75ZoWG/mJAgCuEQwGx22sUCg0ruNhYhFv6yDW1jKR8b7o71FpjVdlNT4dbWiTmcXSHDbp1rmp2pjnVkmeSxnJceHX+LkdHt9vayHeY6eyslKNjY3h49bW1vDjxsZGlZeXX9W+uLj4mnM8/PDD+ta3vqVAIKB/+Id/0Mc//nEtWbJEgUBA+/fv165duyRJWVlZuu+++yLyPgAAwNXauntVWnlZO05cUlnVZXUGzP3ulOVM0NYlmdqyZKZWLXCzgjMAAACAEekNhvT2uTZV1Pq0p85n6r4sqf8ayS1zUsOFMrOc8RGeKYBoQ9HMKFVVVUmS4uPjlZ2dfd12ixcvvqrPR4tmRmtgwcy6dev053/+5xTMAABgkmEYqmnq1I5Kj3ZWedXgN7f7201ZydpSmK47C9yaPuCGNQAAAAD4qLO+bpVWe1Va7dX7lzpM9Ymx27R6vlMb810qynEpjQJ9AONs9+7dqqioGPS1qqqq8DWSDw1WNLNw4UJ97Wtf0xNPPKGuri798pe/vKZNVlaWHn/8cSUmJo7JvAEAwLWa23u06/1Leu1Eo/bXehQImtuZLzsjSVuXZuquJZlaNsfJCs4AAAAARqS9p08HTvlVXuvTvlMtau8xV7SfEGPX2oVOFeW6tD47TWmJXCMBcOMomhml8+fPS5IyMzPlcFx/u+FZs2Zd02eshEIhPfnkk9qzZ4/WrFlDwQwAACad8nRpR6VHO6o8OuPtNtWncOY0bS5I1+aCdFYtAAAAAHBdhmGorrlLpTX9hTK1zV2m+sXH2LVuoVMb89y6IydNyfH8CRfA1LdixQp9//vf1+9//3sdOXJEXq9XMTExyszM1Jo1a3TXXXcpPj76/s7i8/kidm673S6n0xk+9vv9CoXM3fyMqYVYWwvxtpbxiPcFf7fKqr0qrfHq3fOtCpnZ5lLSoplJ2pifrpJ8t7LTEz8olDHU0tIypvOzEr7f1jEZYu1yucZ1PAAAgI9qag/07yZT69Nb51rVGzSXjLinxeiOHJeKc11aOc+phFjuhQYwNrjiOgqBQEBtbW2SpPT09CHbJicnKz4+Xj09PfJ4PGM6j5deekkVFRVKSEjQrFmz9Otf//qaNqtWrdKCBQtMn9PsHIcqFBqNjxb9UAQU3Yi3tRBv65issT7n69aOyma9frJZNU2dpvrkZCRq66IMbSnM0Hw3K54OZrLGG5FBvAEAAAZnGIZOXuro31GmxqezPnPF+Ulxdq3PdmljvlvrFjiVGBeZv7kBwEht27ZN27ZtG5NzTZ8+XQ899JAeeuihMTnfVBAMmls1cyyEQqFxHQ8Th1hbC/G2lrGK9ylPf/F+WY1XlZfMXQexSbp5TopK8lwqznVftWgYhR2RwffbOog1AACwAsMwdMrTpYo6n8prfDrR2GG67zxXgopyXSrKdemmrGQ57OxuCWDsUTQzCt3dVy56JyQkDNs+ISFBPT09V/UbC01NTeH5/OY3vxm0zYwZM0ZUNPNnf/Znptq98MILps85GgNX4UD0I97WQrytYyJjfaGlS787dlGvHrugo+f9pvoszEjSvcuydO+yWSrITInwDKMP321rId4AAMDKQoahYw3t4ZvSLrYGTPVLTXCoKKe/UGbVfKfiYyhEBgAAADByhmHo/cYOldf6VFrj1RmvufsRYuw2rZqfqpI8tzbkuJSeFBvhmQIAAACIJsGQofcutquixqeKOvMLiUnS0qwkFeX2F+0vcCd8sLslAEQORTOjEAhcuQAeEzP8R/lhm4H9xsJYrvQGAEC0uNzWre3vNeqVoxd0+IzPVJ/ZaYm6d3mW7ls2S0tmpZKQAQAAABhUX8jQkXOtKq32qqzWJ09Hr6l+6dNiVZzXXyhz25wUxTgolAEAAAAwcn0hQ++eb1NZjVfltT5dajN3D0JirF3rFqapJM+l9dlpSo7nlhEAAAAA5nX3hnTorF8VtT7tqfXJ19Vnql+sw6aVc1NVlOfShhyXpifHRXimAHA1/gIyCnFxV/5Pu69v+P/j/7DNwH6T1ZNPPjnRUwAAYMS8HQG9drxRrx67oIP1HoWM4fvMSInXHyzL0n3LZ+mWuWkUygAAAAAYVKAvpENn/Cr9YMU0v8kLQTNT4rQxz62N+S4tm5Uih52cAwAAAMDI9XyQk5SNMCdxJsRoQ06aivPcWj3fqYRYivcBAAAAmNfS1au99S2qqPXpwCm/uvtCpvolxzu0PjtNRTkurV3opGgfwITi/4FGISEhIfy4u3v4bcU+bDOw32SVnp5uqp3PZ27l/pGy2+1yOp3hY7/fr1DI3H9oMfUQb2sh3tYxXrFu6+lTWbVXr59s1qEzfvWZqJRJS4zR5sJ0bSnM0C1zUsM3rbW0tIz5/KyC77a1TIZ4u1yucR0PAABYU3dvUPtP+VVa49UbdS3qCARN9ZubFq+N+W5tzHNrcWYSxfkAYFEOhyNi57bb7UMeI3oQa2sh3tZiJt4dPUHtrfeptNqjvfU+dQbM/R12enJcf06Sn65b56YqhuL9Ccf32zqINQAAiAbnvJ36n7cvqLTao3fPtyloYuFiqX8hsQ05LhXnuXTrnBTFOvhdCMDkQNHMKMTFxSklJUVtbW3yeDxDtm1vb1dPT48k8wUpU0EwaO5GgdEKhULjNhYmHvG2FuJtHWMZ685AUHvqfNpZ5dX+Uy3qNZGZpcQ7VJLn1pbCdK2YN+ACkRESP4Jjj++2tRBvAAAQTdp7+rS3vkWl1V7tH8GKadnpidqU79bGfLdyMxIplAEAjOuCDwMXt0B0I9bWQryt5cN4ezsC2vX+Jb12olF7a5oVCJrLSRakT9PWpZm6a0mmls9Jk51CmUmN77d1EGsAADBVnPF26WeHm7Tz/Us6ebHVdL/cjEQV5bpUnOtW4cxpXB8BMClRNDNKc+bM0cmTJ9XY2KhgMHjdVcMuXLhwVR8AADAy3b0h7T/Voh2VHr1R36IeEzeuTYu1qyjPpS0F6VqzwMnqBQAAAAAG1dLVqz21LSqt8erNM35ThfmStGhmkjbmu1SS59YCd2KEZwkAAAAgWl1o6dLrJxr1+olGHTrlVcjkKs6Ls1J119JMbV2SqfyZydycBgAAAGDETnu79NTBBr1+0mMqF7HbpJtnp6go16WiXJfmpCVEfpIAMEoUzYxSQUGBTp48qZ6eHtXX1ysvL2/Qdu+///5VfQAAwPB6gyEdPO3XjiqPKmp86uwdvlAmPsauO7LTtKUwXesWpikhlkIZAAAAANdqbg9od1WzSmu8evtsq8zUydgkLZudrJI8tzbmuTXLGR/xeQIAAACITk1tPXrh8Dm9fqJRx877TfWx2aQV813auqS/UGaue1qEZwkAAAAgWp3xdum/TBbLxMfYtXaBU0W5Lt2Rnaa0abHjM0kAGCMUzYzSqlWr9PLLL0uSysrKBi2aCYVCqqiokCQlJSVpyZIl4zlFAACmlL6QocNnW7Wj0qPyWq9au4PD9ol12LRuYZo2F7i1IcelaXGD7/wGAAAAwNoutHRp+/FGvXb8og6f9snM4s0Om3Tr3FRtzHOrJM+ljOS4iM8TABAdfD5fxM5tt9vldDrDx36/X6HQ8AvOYOoh1tZCvK3B0xHQ029e0IvvNKq7b/j4xthtWjXfqY35bhXlugfkJD3y+XoiO1mMGb7f1jEZYu1yucZ1PAAAMLWc8XbpqYMX9NrJ5iGLZdISY3RHjkvFuS6tnp+qhFjuxwIwdVE0M0q5ublatGiRTp48qbKyMhUXFys/P/+qNq+++qoaGhokSXfffbdiYqLnY3c4IvMfQbvdPuQxogvxthbibR0jiXXIMHTkXKt2VDZrV5VHvs6+Yc/vsEmrF6Rp66IMleS5lZIQPf99nYr4blsL8QYAAFPN+ZZu/dfBC/r9iaZhV0uT+m9KWz3fqZJ8l4pzXKyYBgC4IcHg8IvBjJVQKDSu42HiEGtrId7RxdPRq2ffuqAX372snmGKZRJi7Fq30KmSPLfWZ6dddQ2En4nowPfbOog1AACYLMwUyyTFOfTgyrm6e2mWslMlGRR6A4gOlr+7tLKyUo2NjeHj1tbW8OPGxkaVl5df1b64uPiaczz88MP61re+pUAgoH/4h3/Qxz/+cS1ZskSBQED79+/Xrl27JElZWVm67777IvI+Jsp4rU4xcBUORD/ibS3E2zo+GmvDMPTOuRa9cvSCfv/eRV1qHX41NJtNWrMwXfctn6W7lmbKncQKz5MV321rId6YLCJV1C9RLGY1xNs6iHX0u+Dv1k/2n9cr711WcJhimYQYu9Zlp2lTfrruyHUpJd7yfzqd0vh+WwvxBgAAk1lzR0DPHrqol44OXSyTEu/QhhyXSvJdWjPfySrOAAAAAMaEmWKZabF2fXpFlh67c7FcH9yP5fP5RO0vgGhh+Su/u3fvVkVFxaCvVVVVqaqq6qrnBiuaWbhwob72ta/piSeeUFdXl375y19e0yYrK0uPP/64EhMTx2TeAABMRYZh6MSFVr1y7IJePXpRDS1dpvqtmO/SvcuydM9NWZqRmhDhWQIApqrxKuqXKBazGuJtHcQ6elxo6dKPymr1wlvn1DfE1jJJcQ5tXDRTdy/NVHHBdE2Ls/yfS6MW329rId4AAGAyMFMs47DbdP/Ns/XxW2Yr32WTXSa2xgQAAAAAE8wWy3zy1kx9ZkWm0pMTwgUzABBtuAo8RlasWKHvf//7+v3vf68jR47I6/UqJiZGmZmZWrNmje666y7Fx8dP9DQBAJgQ1Zfa9OrRC3rl2EWdau4w1WfZHKfuWzZL9yzL0uw0ik4BAAAADO9Sa7f+vaxWvzx0ToHg4DelTYtz6J6bsnT30kzdnpvB6s0AAAAAxpSpYhmbdO/SGfqru5ZoXvo0SR+u4swyzgAAAABG56yvW08daNB2M8Uyt2UqbVrs+E4QACaA5Ytmtm3bpm3bto3JuaZPn66HHnpIDz300Jicbyrw+XwROa/dbr9qNUC/369Q6PpbVWNqI97WQrytoydo6NWTLXrx8HlVXWoz1Sdv+jRtXZShLYUZmuv6YEcZo1s+X3cEZ4qxwHfbWiZDvMdzRxEAADD5XW7r1o/L6/WLN89c96a0hFi7Hlq7QF/akK30ZBa3AQAAADC2zBbL/MGS6frCmlman54kl2vaOM8SAAAAQLSiWAYArs/yRTMYnfFa6SYUCrGqjoUQb2sh3tGnNxjSf7/XpP862KDm9t5h2893J2hLQbq2FKZrYfqVHWX4uZja+G5bC/HGZBGpon5pchSLYfwQb+sg1lOft7NXT7/ZoBeONKr7OjelxTls+uNbMvWFtXOVM3t6+HniHd34flvLRMebon4AAKzN/M4y0/X51bM0Jy1hnGcIAAAAIJpRLAMAw6NoBgAAjIlgyNBrJ5v1n/sb1ODvGbLtbGe8Nhe4taUwXXnTp8lms43TLAEA0Ww8i7coFrMW4m0dxHrqaOnq1S8ON+r/HWlUV+/gN6XFOmz6+LIZ+vzqWZqeHCeHw3HV68TbWoi3tRBvTBYf/W/PWLLb7UMeI3oQa2sh3lNLc3tATx9q0EvvXLpuEb/DJt130wz96do51xTLEG9rId7WQawBAMB4MVMskxhr16colgEAimYAAMDoGIahshqffrzvvOo9XddtNyM5TpsL3NpcmK4lmUkUygAAAAAYsbbuPj3/dqOef/uiOgKD35QWY7fpYzf1r+CcmRo/zjMEAOCK8dyFaOBuS4huxNpaiPfkdLmtW/9RUa/nDp65/s4ydps+cescbSvJ1bz0aabOS7ythXhbB7EGAABj7ZyvW08dbND295sVHKJY5pO3zNRnV2RRLAMAomgGAADcIMMw9OYZv/79jfN6/1LHddvdkZehbSW5ykuzyQgNfvEIAAAAAIbS3tOn/3fkkp47fFHtPYPvHuGwSfcuna4/XTNbs5wUywAAAAAYW2aKZWLsNv3RCItlAAAAAMAMimUA4MZRNAMAAEbs3YY2/fsb53TkfNt12yyfnaJv3LNEa3PSJUk+n0+D39oGAAAAAIPrDAT1q3ca9dxbjfJ39w3axm6T7lmcoS+una05aQnjPEMAAAAA0Y5iGQDAWNuzZ48qKytVX1+vs2fPqq+vT48++qiKi4snemoAgEmIYhkAGD2KZjAqDocjIue12+1DHiO6EG9rId5TW9WlDv3bG2f1Rp3vum3yZ0zTYxvmaUNuutLS0sLPE+voxnfbWog3AACItO7eoF5897KePnRBLV2DF8vYJG1dlK4vrp2tBe7E8Z0gAAAm+HzX/xvaaNntdjmdzvCx3+9XiF2eoxKxthbiPbk0twf08zcb9NK7l4Yslrl36XT96do5HxTx98jn6zF1fuJtLcTbOiZDrF0u17iOh5H71a9+paamJqWkpMjlcqmpqWmipwQAmIQolgGAsUPRDEZlvBLtgX9QQPQj3tZCvKeGuqZ2/WBntV49dvG6bbIzkvT/25Kve5ZmyW63XfM6sbYW4m0txBsAAIyV7t6QfnPskp5+86I8nb3XbXdnvltfWjdb2Rms4AwAmLyCwfHbdzkUCo3reJg4xNpaiPfEaO4I6JlDF/Xro5fU0zf4nWkOu033LcnQ51fP0uwPdrwcbayIt7UQb+sg1hjMl7/8ZWVlZWn69Ol6+eWX9fzzz0/0lAAAk8g5X7d+erBBvx+mWObBD4plXBTLAMCwKJoBAADX1dDSpf9vV7Veevu8QtdJwmY5E/S1O/P1wK2zFeNgtwkAAAAAIxfoC+nl9y7rZ29eUFP79YtlSvJc+tK6OcqbTrEMAAAAgLF1o8UyAACM1LJlyyZ6CgCASYhiGQCIHIpmAADANZraevRvZbV6/s2zCgQH3y48IzlO20py9b9Wz1N8jGOcZwgAAAAgGvQGQ/qf40366cELutQWuG67O3LS9OV1c1Q4M2kcZwcAAADACprbA3r6rYv6DcUyADDp+f1+1dbWqra2VnV1daqrq1NbW5skqaioSNu2bTN9rqamJm3fvl1HjhyRx+NRTEyMMjMztXbtWm3dulXx8fGRehsAAFyFYhkAiDyKZjAqPp8vIue12+1yOp3hY7/fr1Bo8Ju2MfURb2sh3pNba3efnjnUoF8cvqju3sHjkhzv0MOrZ+vTt2VpWpxDnW2t6hykHbG2FuJtLZMh3i6Xa1zHAwAAY6svGNLv3m/WUwcu6EJrz3XbrVvg1Jdun6OlWcnjODsAAAAAVkCxDABMPY888siYnOfw4cN64okn1NXVFX6up6cnXIize/duPf7448rMzByT8QAAGMz5lm49dYBiGQAYDxTNYFSCweC4jBMKhcZtLEw84m0txHty6AoE9f/eadQzhy6qrWfweCTE2PXp2zL1JyuzlJrQ/yvESGJHrK2FeFsL8QYAAGb1hQy9drJZ/3WgQedbrl8ss2p+qr68bo6Wz04Zx9kBAAAAsAKKZQAgOmRkZGj27Nk6evToiPqdOnVKP/zhDxUIBJSQkKD7779fS5cuVSAQ0L59+7R7925dvHhR3/nOd/Td735XiYmJEXoHAACrOt/SracOXtDvTzRdt1gmIaa/WOZPVlIsAwBjgaIZAAAsLNAX0m+OXdZPDzbI29k3aJtYh01/tHyGHl49SxlJceM8QwAAAADRIBgytLPKo58caNAZb/d12906J0VfuX2Obp2bOo6zAwAAAGAFFMsAwNT3iU98Qjk5OcrJyVFaWpouX76sxx57bETn+PnPf65AICCHw6FvfvObys/PD7+2dOlSZWVl6bnnntPFixf1yiuv6MEHH7zmHM8884x6e3tNj3nPPfcoKytrRPMEAEQfimUAYOJQNAMAgAX1hQz97kSTfrK/QY1tgUHb2G3SvUum65G1s5XljB/nGQIAAACIBiHDUGm1V/+5v0H1nq7rtls2K1l/tn6OVsxNlc1mG8cZAgAQOQ6HI2LnttvtQx4jehBrayHekdHUHtDTbzbopXcvqacvNGibGLtNf3jTDP3p2tma5RyfYhnibS3E2zqIdWQNVsAyErW1tTp58qQkqaSk5KqCmQ/de++9KisrU0NDg7Zv364HHnhAMTFX32K3c+dO9fRcfxflj1qzZg1FMwBgYRTLAMDEo2gGAAALCRmGdld59eS+8zrru/7qzpsL3PryujlakM5W0wAAAABGzjAMldf69B/7zqu2+frFMksyk/Rn6+do9XwnxTIAgKjjcrnGbSyn0zluY2FiEWtrId6jc7m1Wz+uqNcv3jwzZLHMH6+Yo0eLczXXPW2cZ3g14m0txNs6iPXkcujQofDjkpKSQdvY7XYVFRXp+eefV0dHh06cOKHly5df1ebZZ5+N6DwBANGBYhkAmDwomgEAwAIMw9C+U379+95zqr7ced1267PT9JXb56hwZtI4zg4AAABAtDAMQ3vrW/TjfedVNUTuUThzmr6ybo5uz06jWAYAAADAmLrc2q0nK+r0/Jtnp0SxDABg/FRVVUmS4uPjlZ2dfd12ixcvvqrPR4tmAAAYyvmWbv304AX9bphimT++Zab+ZEWW3EkUywBApFE0AwBAlDtyrlX/tvecjja0X7fNrXNS9Ogdc3Xz/5+9+46vurr/OP6+I8nNIoQQsthZLMXBEkTAURfIkFpt6+jQVtE6qra0apdWW2eLFVtr6/ppa1VQUFzIEEEBEWQkhLCzGNnz3tx7v78/EORykxAk997kfl/Px6OPknPOvd8PvnOBm/v9nJMRH8TKAAAAAIQLwzD06a5qPf1JkTaX1be6Ljs5Rj8Zm6EJWYk0ywAAAADoUDTLAACOp6ioSJKUmpoqm83W6rr09HS/xwAAcDw0ywBA50XTDE5KW28gT4bVam3za4QX8jYX8g6ezaV1+tvyPVq1q6rVNYNTY3XLOf00pn9Ch9+wRtbmQt7mQt4AAOAwwzC0Zk+Nnv6kSF+WtN6oPzApWjeMzdC5OT1kpVkGAGASlZWVAXtuq9WqhISEI19XV1fL6235BnF0bWRtLuT9zRyoc+m5T4v1+oZ9bTbLXHZKL/3orAylJzgkOVVZ6Qxuoccgb3Mhb/PoDFknJiYG9XpdhcvlUm1trSQpKSmpzbVxcXGKioqS0+lUeXl5h9eyePFi5efnS5L27NlzZGzz5s2SpEGDBum8885r9/O1t0bu80JHIG9zIe/2Kapq0j9XFmnhpv2tN8tEWPWd01N1zah09YiNDG6B7UTe5kHW5kLeh9A0g5MSrDfaR/9AAeGPvM2FvDvetn21evT9Ar27uazVNVm94nTnt3J04dDUoO3uTNbmQt7mQt4AAJjT53tr9PdPirSuqLbVNf16OHTD2N46P6eHbFaaZQAA5uLxeIJ2La/XG9TrIXTI2lzIu20H61x6fnWp3vhyn5zulu9Ms1ktumxYT/1gdIbSE6IkBffP5xNB3uZC3uZB1p1HU1PTkV87HI7jrnc4HHI6nT6P6yj5+flatmyZz9jWrVu1devWI1+fSNPMjTfe2K51r776aruf82Tw2aG5kLe5kLevPeUNenLJNr2+rlgeb8vvSaIjbLrmrH66/pyB6hkXFeQKTw55mwdZm4tZ86ZpBgCAMLG3okGPf1ig+V8Uq5X3YerTI1q3nZejaadncMMaACDsBGqHNImdN8yGvM2DrL+Z9UU1mrtir1bvrm51TZ/uDt0wrrcuHpLcad57kLe5kLe5kDcAAObS/maZZP1gdPqRZhkAgLm5XK4jv7bbj3/L3OE1Rz+uo8yaNUuzZs3q8OcFAATHnvIG/W1JoV5fVyR3KzdpOSKsuuas/rqhCzbLAEA4omkGAIAubn9Nk+Z8VKj/rNmj5lbO+OwVH6VbzsvWd0b0UaSdG0cAAOEpWCdhSubdecOsyNs8yLpt6/dW6bEPCrS84ECra3onRutn52VrxukZsts693sP8jYX8jYX8gYAIDzRLAMAOBmRkZFHfu12u4+7/vCaox/XWc2dOzfUJQCAKeytaNCTH9EsAwBdEU0zOCmVlZUBeV6r1erzwWZ1dbW8Xm9AroXQI29zIe+OU9XYrOc+LdZ/15Wpyd3yf8MEh10/GJOhK85IVXSETfW11aoPUn1kbS7kbS6dIe9gNkcAAGB2m4qr9fgHBVqcv7/VNekJDt18brZmntmbRn0AAAAAHepAnUvPry7RGxv2y9XK5mE0ywAAjsfhcBz5dVNT03HXH15z9OM6q6SkpHat4z4vdATyNhfyPqS4qkn/XFWkhZsOtN4sY7fqijNSdc2odCXFRkrNDaqsbAhypSeHvM2DrM2lM+TdGe7zomkGJ8Xj8QTlOl6vN2jXQuiRt7mQ94mrd3n08tpSvbS2TPWulv/bxURY9b0RafreiFTFRR366z7U/53J2lzI21zIGwCA8LSlpEZPfFig97fsa3VNSrco3TwpS1eM7KMouy2I1QEAAAAIdzTLAAA6UmRkpOLj41VbW6vy8vI219bV1cnpdEpqf0NKV8B9XggE8jYXs+VdXNWkf31WooWbD8rTSrNMlN2qK05L0fdHpikpNkJS6O/R6ihmy9vMyNpczJo3TTMAAHQRTc1evbZhn577rERVjS0fFx1ps+jbp6XoutHpSoyJCHKFAACEVqB2SJM6x84bCB7yNg+ybtn2Aw16+pO9+nBr6zcPJMVG6IdjMnT5aamKslvVUFujzr5fGnmbC3mbS6jz7gw7pAEAEE5OpFnmh6PTlUazDACgnXr37q28vDyVlZXJ4/HIZmt5E5iSkhKfxwAAzKW4qkn//qxEC47TLPPt03rp6pHpR5plAACdF00zAAB0cm6PV29tOqh/rirS/rrmFtfYLNLUU3vpR2PSlRLPh0MAAHMK5k4YZt15w6zI2zzMnvWuikY9s7JY7+eXq+WPgKTu0XZdNypdM0/rJUeETZLRZf+bmT1vsyFvcyFvAAC6pvY0y9itFl12SrJ+MIpmGQDAicvNzVVeXp6cTqd27Nih7OzsFtdt2bLF5zEAAHOgWQYAwhdNMwAAdFJew9D7+eV6+pMiFVU5W1xjkXTR4CTdMLa3+iQ6glsgAAAAgLCwt7JJz6wq1rt5B9XKZ0BKcNh19cg0XXF6imIiW96BEwAAAAC+CZplAADBMmrUKM2fP1+StGTJkhabZrxer5YtWyZJio2N1dChQ4NZYkC1drLOybJarW1+jfBC3uZilryLq5r07KoiLdh0QO5WPihx2K369umpunZ0upJiI4NcYXCYJW+QtdmQ9yE0zQAA0MkYhqFl2ys1d0WRth9sbHXdhKxE3Tiut7KSY4JYHQAAAIBwUVzVpGc/LdHbmw+olfvSFB9l0/dGpOnKM1IUF8WPEgEAAAB0HJplAADBlpWVpcGDBysvL09LlizRxIkTlZOT47Nm4cKFKi4uliRdfPHFstvD52diiYmJQblOQkJCUK6DzoG8zSXc8t5b0aC/LSnUa58Xtd4sE2HV1WP66YZzMpUcb673JOGWN1pH1uZi1rzD51/1AACEgdW7q/W3j/dqc1l9q2tG9e2mm8b30bC0uCBWBgAAACBclNU49eynJXpr0wF5WvkQKDbSpu+emarvnpmqeAc/QgQA4JsI1C7OErsDmglZm4tZ8t5f69S/PyvWG+v3tdksM/XUXvrhmAylJziCXGFwmCVvHELe5kHWgZWfn6+ysrIjX9fU1Bz5dVlZmZYuXeqzfuLEiX7Pcd111+nee++Vy+XS/fffr+nTp2vo0KFyuVxauXKlPvzwQ0lSWlqapkyZEpDfBwAgtPZWNOippYX639q2m2W+P7qfbpgwUL3iw/M9CQCYCZ94AwDQCWwsqdVTK4q0Zk9Nq2uGpcVq1vg+GtnXnJ2+AAAAAE7O/lqX/v1ZieZv3K/mVm5Mi46w6sozUvX9EWlKiOZHhwAAnIxg7eIsmXd3QDMia3MJt7zLqpv09LLtenn1Hrnc3hbXRNgs+vaIPrppYqZ6J8YEucLQCre80TbyNg+y7liLFy/WsmXLWpzbunWrtm7d6jPWUtPMgAEDdNttt2nOnDlqbGzUK6+84rcmLS1Ns2fPVnR0dIfUDQDoHGiWAQDz4pNvAABCaNuBBs1dsVfLt1e1uiarZ7RuGt9H4wd2l8ViCV5xAAAAAMLCwXqXnv+sVK9vaH0X5yi7VVecnqJrRqYpMSYiyBUCAAAACGc0ywAAOpsRI0bokUce0TvvvKN169apoqJCdrtdqampGjNmjC666CJFRUWFuswOV1lZGZDntVqtPg1i1dXV8npb/jsfXR95m0u45F1S3aRnVxXrrY37W2+WsVs18/QUXTsqQz3jIiV3oyorG4NcaWiFS944PrI2l86QdzA3mGoNTTM4KTabLSDPy3G15kLe5kLeh+ypbNTTK/bq3S0H1fJbMalPokM3nt1HFw7uKWsXbJYha3Mhb3MhbwAAuobKhma9sLpUr67fJ2crN6ZF2S26fHiKrh2VrqRYmmUAAAAAdJz2NstcMaKPbpqUpYzu7OYPAGjbrFmzNGvWrA55ruTkZF177bW69tprO+T5ugKPxxOU63i93qBdC6FH3ubS1fIuqXbq358V661NB+VppVkmym7RzOEpunpUmnrGRkoK3p+XnV1XyxvfHFmbi1nzpmkGJyVYnV8cV2su5G0uZsu7pKpRcz7aplfXFrX6Ziy1m0O3np+tmWf2VoQtfG5EN1vWZkfe5kLeAAB0LlWNzXppTan++8U+NTa3fmPajFN76brR6UqOiwxyhQAAmEOgdnGWOsfugAgOsjaXcMl7f+2hG9PeWN/6aZd2q0XTTu2lH57VW2ndoiSjSZWVTUGuNLTCJW+0D3mbR2fIujPs4gwAQCiVVjv1r89K9NamA202y1w+PEXXHNUsAwAIXzTNAAAQBOV1Tj21dLte/HR3q7up9YiN1E0TM/X9Mf3kiAjMSV4AAAAAwldNk1svry3TK+tKVe9q+X2H3WrR1FOS9YPR6UrtFhXkCgEAMJdg7tZn1t0BzYiszaWr5b2/1qXnV5do3pf722yWOfY9SVf6PQZSV8sbJ4e8zYOsAQAIHpplAACtoWkGAIAAqmlq1j+X79CzK3aq3tXyD0Pjo+y64ZyB+sHZAxQXxV/NAAAAAE5MndOtVz4v0/99XqY6Z8vvO2wWacqwZP1wTIbSE2iWAQAAANBx9te69NzqEs0/wWYZAAAAAOgIh5tlFmw6IDfNMgCAFnBnLk5KZWVlQJ63MxxXi+Ahb3MxS96NzR79d12Z/v1psWqa3C2ucdituvLMNF03Ol0J0RFqbqhVZUOQCw0gs2SNQ8jbXDpD3omJiUG9HgAAnVG9y6NXvyjTi2tKVdPUcrOM1SJdMqSnfnxWhnp3dwS5QgAAAADh7HCzzLwv96uZZhkAADo9m80WkOe1Wq1tfo3wQt7m0tnzLqlu0r9WFevNjfvbaJaxauZpKbpudIZ6xtEs05bOnjc6DlmbC3kfQtMMTkqwjpDluFpzIW9zCbe8mz1ezftyv579tETl9c0trrFbLZp+ai/9aEz6kTdj4fTfoDXhljXaRt7mQt4AAARXo8uj/63fpxfWlKqqseUmfYukiwYn6cdnZahfj+jgFggAAAAgrNEsAwBA1xSsTemO3nwP4Y+8zaWz5F1U2aCnlm7X/9bubfU9SZTdqu+N7qefThioXt3YVOyb6Cx5I/DI2lzMmjdNMwAAdACP19CiLQf1j5XFKqlxtrjm8A7P15+VoQx2eAYAAABwgpqavXp9wz49v7pEFQ0tN8tI0gW5PXT9WRka2DMmiNUBAAAACHftbZaZdkqyrqNZBgAAAEAHo1kGAPBN0TQDAMBJMAxDH22r1NMr9mpnRVOr687NTtRPx/XmpjUAAAAAJ8zlPnSi5b8/K9HBVk60lKRJ2Yn6ydjeykrmfQcAAACAjkOzDAAAAIBQolkGAHCyaJoBAOAbMAxDn+6q1lMripS3r77VdWP7J+jGs/tocGpsEKsDAAAAEA6aPV69ufGA/v1ZifbVulpdNz6zu34ytrcGpfC+AwAAAEDH2Vfr1HOflWr+RpplAAAIB5WVlQF5XqvVqoSEhCNfV1dXy+v1BuRaCD3yNpdQ511a49Szq4r05pf75fa23iwz87QUXTs6Q8lxkZKnUZWVjUGrMZyEOm8ED1mbS2fIOzExMajXawlNMwAAnKD1RbV6asVerSuqbXXNaRnxuuns3jqjT7cgVgYAAAAgHLg9Xi3cclDPripWaU3rzTJjByToJ2N7a2haXBCrAwAAABDuaJYBACA8eTyeoFzH6/UG7VoIPfI2l2DlXVbj1L8/K9GbGw+00Sxj0YxTU3TtqDT1jIuUFLw/58yC17d5kLW5mDVvmmYAAGin/H31emrFXq3cWd3qmtxeMbrp7D4aOyBBFosliNUBAAAA6OrcXkPvbjmoZ1YVq7ja2eq60f266SfjeuvU9PggVgcAAAAg3NEsAwAAACCU2tMsE2mz6PLhvs0yAAAcD00zAAAcx67yRj39SZE+LKhodU2/Hg7dOK63zs3pISvNMgAAAABOgMdr6IOt5frHymLtqWxqdd0ZveP103GcaAkAAACgY9EsAwAAACCUTqRZ5ppRaUqmWQYAcIJomgEAoBWl1U79Y1Wx3t58QK28H1NqfKR+Mq63Lh7SU3YrzTIAAAAA2s9rGFq8tUL/WFmknRWtN8sMz4jTjeN6a0TfhCBWBwAAACDctadZJsJ2qFnm2lE0ywAAAADoWDTLAACChaYZAACOcbDepX9/WqLXN+xv9Q1ZUkyEfjgmXdNP7aVIuzXIFQIAAADoygzD0NLCSv39kyIVHmxsdd2wtFj9dFxvje6XIAsnWgIAAADoIDTLAAAAAAilshqnnvusRPOP0ywzY3gvXTsqnWYZAMBJo2kGAICv1DS59cLqEv1n3T41ub0tromPsunaUen6zukpio60BblCAAAAAF2ZYRj6eEeV/v5Jkbbub2h13eCUWP1kXG+NG0CzDAAAXZnNFrifH1qt1ja/Rvgga3MJdN5lNU79+9NizftyX5vNMtNPTdEPxmTQLBNgvL7NhbzNg6zRmQXqPQrf9+ZC3ubS0XmX1Tj1r0+LNK+NjYwjbRZdflqqrhudoV7xNMsEE69v8yBrcyHvQ2iawUnhzRQ6AnmbS2fMu8Hl0ctrS/X86mLVOT0tromOsOp7I9J1zah0xTv467M9OmPWCBzyNhfyBgDgxBiGoVW7qvX0J0XaUlbf6rqc5BjdMC5DEzITaZYBACAMJCYmBu1aCQkJQbsWQouszaWj8i6patTcpdv13zV75fK0vGlYpM2q74zsoxsnZiq9e3SHXBcnhte3uZC3eZA1OpNgvUfh+95cyNtcvmneJVWNemppof67Zm+rDfyRdqu+O6qvbpyYqZRujpMpEx2E17d5kLW5mDVv7vrFSeHNFAKBvM0llHk3NXv08md79LclhSqvd7W4JtJm1ffH9NNNkzLVM44d1U4Gr21zIW9zIW8AAFpmGIZW76nR3z8p0pclda2uG5gUrZ+M661J2Ymy0iwDAAAAoIPQLAMAAAAglGiWAQB0FjTNAABMx+3x6vV1RfrLh9tUUt3U4hqb1aJvn9lbt5yXrQw+JAIAAABwgj7fe6hZZl1Rbatr+vVw6IaxvXVBbg+aZQAAAAB0GJplAAAAAIRSu96TfNUs89MJmUpNoFkGABBYNM0AAEzD6zX09sZSPfZBgXYerG913ZTh6br9/GwNTI4LYnUAAAAAwsH64lr9/ZMirdlT0+qaPt2jdP3Y3rpwUJJsVpplAAAIV5WVlQF7bqvV6nPya3V1tbzelm9CQddG1uZysnmX1Tj170+LNe/Lfa3u4hxhs2jG8BT9YHSGUrpFSUaTKitb3mAMgcXr21zI2zw6Q9aJiYlBvR66jkC9R+kM3/cIHvI2lxPNuz3vSSJtFs047dB7kl7xUZK3UZWVjR1eO04cr2/zIGtz6Qx5d4b3KDTN4KTwZgodgbzNJRR5G4ahj7dX6m8f71HB/oZW152TmaibxvdVbkqspOaAfqhtBry2zYW8zaUz5N0Z3kwBAHC0TaV1evqTIn26q7rVNRkJUfrxWRm6eEhP2WmWAQAg7Hk8nqBdy+v1BvV6CB2yNpf25l1W49Tzq0s0f+OBNptlpp3SS9eNTlNKfJSk4P45hePj9W0u5G0eZI3OJFjfi3zfmwt5m0trebfnPUmkzaLpp/bStaPS1Ss+UhLvSTo7Xt/mQdbmYta8aZrBSeHNFAKBvM0l0Hmv3VOjp1bs1Zclda2uOaN3vGaN76PhGfGSeEMWKLy2zYW8zYW8AQBmlldWr7+vLNKKHVWtrkmJj9SPz8rQlKE9ZbdZg1ccAAAAgLBWVuPUc5+V6M1NJ9YsAwAAAAAdYV/tofckJ9osAwBAsNE0AwAIS5tL6/TUir36bHdNq2uGpMbqprP7aHS/brJY2OUZAICuzmazBey5rVZrm18jvJC3eZxM1lv31evpT/Zq6baKVtckxx1qlpl2aooi7XwfhRqvbXMhb3MhbwCA2Rxulpm/8YDcXpplAAAAAATXoWaZUs3fuL/NBv7pp/bSdTTLAAA6AZpmAABhZfvBBj39SZGWbKtsdc3ApGjddHZvTchKpFkGAIAwkpiYGLRrJSQkBO1aCD3yNo/2ZL21rFZPfFigRZvKWl3TMy5KsyZl6qpRfeWICFxDH04Or21zIW9zIW8AQLiiWQYAAABAKO2rcerZVUU0ywAAuhyaZgAAYaGoqkl/X1mkd7eUq+W3ZFJGQpR+Mq63LhyUJJuVZhkAAAAA7Ve4v05/WbxNC78skdHKm46k2EjdODFT3xvdT9GRNMsAAAAA6Bg0ywAAAAAIpdLqRs1dul2vrN5z3GaZa0fxngQA0PnQNAMA6NL217r07KfFmr/xgDytfFCUHBehH43J0NRTkhVhswa5QgAAAABd2a6D9frr4m2av75YrbzlUPeYCP3knExdO7afYiL5cRsAAACAjlFW49SzK/cet1mGG9MAAAAABEJ5vUuPL9+k/6zeK5fH2+Ia3pMAALoCPsUHAHRJVQ3Nen51qV5dXyanu+UPihKi7frBqHTNPC1FjgiaZQAACHeVlZUBe26r1aqEhIQjX1dXV8vrbfkHw+j6yNs82sq6uKpJz6ws0sJN+9XKpmmKj7LpmlEZuvLMVMVF2eWsr5WzPhiV45vgtW0u5G0uoc47MTExaNcCAJhDSVWjnlpaqP+s3kuzDAAAAICQ2FhSq5/P36aKhuYW5zntEgDQldA0AwDoUuqcbr38eZn+b22p6l0t3/wQG2nV90ak6btf3bgGAADMwePxBO1aXq83qNdDaJG3eXi9XhVXNujZT0v01qbWT7OMjbTpu2em6rtnpireceg9B98jXQ+vbXMhb3MhbwBAV1Xd2KxHl23Uf9fsVXMr3fs0ywAAgG/KZrMF5HmtVmubXyO8kLc5LNpyQL99p1CuFt6XRNgsmjE8RT8YnaGUbrwnCSe8vs2DrM2FvA/hTmIAQJfQ1OzV/9bv03OrS1Td6G5xTZTdoitOS9W1o9LUPSYiyBUCAAAA6MrKqpv02Ps79MaGfa3u5BwTYdWVZ6bqe2emKSGaH6sBAAAA6Dg7yxt1+7ytKqpytjhPswwAADhZwTop9ejTYBH+yDu8GIahJz7cpr8s3uY3F2mz6spRfXTjxEylJUSHoDoEG69v8yBrczFr3ny6DwDo1Nwer+ZvPKBnPy3WgbqWj/u0WS2adkqyfjQmQ73iI4NcIQAAAICubH9tk55asl0vr94jl7vl0ywddquuOD1F14ykQR8AAABAx/t0V7V+uWCb6pz+J6Udbpa5blQ6n4EAAAAACJimZo/ueu1LLdhQ4jc3Prun/jzzVJplAABdFk0zAIBOyeM19F5+uf7+SZGKq1veVc0i6eIhPXXD2Az17u4IboEAAAAAuryl2yp079uFqnO2fprlzOEpumZUupJiaZYBAAAA0PFeW79PDy/eJc8xB15G2qyaPryXrh2ZRrMMAAAAgIDaX9ukG174XOv3VvnNXXNWP903eYjsNmvwCwMAoIPQNAMA6FQMw9Cywko9taJIO8obW103KTtRPxnbW1nJMUGsDgAAAEA4MAxDL60t01+X7ZHRwnyEzaIZp/bSD0anq2ccN6cBAAAA6Hhur6HHl+zWf7/Y5zd3SkaCnr76TMUYTfJ4/E+fAQAA+CYqKysD8rxWq1UJCQlHvq6urpbX2/Kp3uj6yDv8FOyv162v5ams1uUzbrVId58/UD89b/CRMfIOb7y+zYOszaUz5J2YmBjU67WEphkAQKdgGIY+212jp1bs1Zay+lbXje7XTTed3UdD0+KCWB0AAACAcNHs8eqhD3fpzY0H/ObsVoumnZKsH4xJV0p8VAiqAwAAAGAGdU63frWgUCt3VfvNXXJKqh799mmKjrSpsrIpBNUBAIBwFaxmXK/XS+OviZB31/bx9kr9emGhGpp9b56OjbTpwSlZGp+V5DNO3uZC3uZB1uZi1rxpmgEAhNyXJbX628d79fne2lbXnJoep5vO7q0RfRNaXQMAAAAAbaludOvutwpafO9x6alpumlsmlLiIkJQGQAAAACzKK5q0u3zCrSjvNFv7sdn9davppwqq9USgsoAAAAAmIVhGPq/z8v0l6V7ZBwzl94tSo/PyFFmz5iQ1AYAQCDQNAMACJktJTV66O08Ld/e+hHAOckxuuns3ho3sLssFj4kAgAAAPDN7K5o1O3zCrSnhZ2a774oVzdOyFRVVZUpd9UBAAAAEBzri2p155sFqmp0+4xH2Cy698KBmnJKCg0zAAAAAALK7fHqT4t3ad6XB/zmhmfE6ZGpOUqMYYMxAEB4oWkGJ8VmswXkea1Wa5tfI7yQt7lYrVbtOFCnxz/cpgUbSlpd1zfRoZvG99UFg5JkpVmmS+K1bS7kbS7kDQDoatbuqdbdb21TTZNvQ4zDbtXj3zlNF5+SFqLKAAAAAJjF25sP6P73d6rZ47uPc2K0XQ9Py9FpGfEhqgwAAACAWdQ0ufWLt7ZpzZ4av7lLhvTUPd8aoEg7n/8DAMIPTTM4KYmJiUG5TkJCQlCug86BvMOX2+PVn97N178+2SWP99jDPQ9JT3Do1vOzdfkZvWW38SYsnPDaNhfyNhfyBgB0ZvO/3K8HP/R/D9IzNkJ/mTlY4wbTMAMAAAAgcLyGobkrivTvz/w3EhuYFK0nZuQqPSEqBJUBAAAAMJM9lU267Y2t2lPZ5Dd309m99YPR6bKwsTEAIEzRNAMACIqmZo9+9soXen/Lvhbnk2IjNWtSlr47uq8cEYE5xQoAAACAeXi8huYs36OX1pb5zeX2itFj03OU3j0mBJUBAACzsNkC93NOToE1D7Lu2hqbPbp3YaEWF1T4zY0b2F0PXZajuKivP7Inb3Mhb3Mhb/MgawBAZ7R2T43ufqtANU0en/Eou1W/u3igzs9NClFlAAAEB00zAICAq2lq1vXPr9VnO/0/FIp32PWTcwbqB+MGKDaKv5YAAAAAnLwGl0f3vF2o5dur/OYmZiXqD5dkKjqSZn0AABBYiYmJQbsWp8CaB1l3HftqmvSTl9ZqY3G139x1Y/vrnksHy25r+0Zq8jYX8jYX8jYPsgYAhNr8L/frwQ93yeM1fMZ7xkbosek5GpIaF6LKAAAIHu5OxkmprKwMyPNarVafHxxUV1fL6/UG5FoIPfIObwfrXJr1vy0q2N/gMx5pt+pHZw/QVaf1VHyUTa6GWrkaWnkSdEm8ts2FvM2lM+QdzBuPAABdS1mNU3fMK1DBAf83GNeMTNPN5/SR1WIJQWUAAAAAzGJTcbV+/PxaldU0+YzbrBb99rKhunpMvxBVBgAAAMAsPF5DTy7fqxfXlvrN5fSK0ePTc5QSHxWCygAACD6aZnBSPB7P8Rd1AK/XG7RrIfTIO3wUVTVp1v/yVVzt9BmPj7LrmWtHaMzAJFVWVpK3SfDaNhfyNhfyBgB0FptK6/Tz+QUqr2/2GbdbLfrVBQN02SnJIaoMAAAAgFm8u6lMt/93vRqbfX9eFu+w66nvnaHx2bwvAQAAoWGzBeb0bavV2ubXCC/k3TU0uDz61YJtWlbovyn6pOweun9ytmIij/9nAnmbC3mbB1mbC3kfQtMMACAg8vfV69bXt6q8wfdmtaTYCL3wo9Eams4x1AAAAAA6zgf55frtu9vldBs+4wkOu/48NVtn9ukWosoAAIBZVVb635jSUTrDKbAIDrLuOgzD0HOfFeuvy/b4zfXp7tBfZg7SgCR7m382kLe5kLe5kLd5dIasExMTg3o9dB3B+t44+jWA8EfenU9JVaN+/J+1yiut8Zv7yYSB+sWFg2S1Wr7Rc5O3uZC3eZC1uZg1b5pmAAAdbu2eGv18/lbVu3x/+Ne7e5TmfmcoDTMAAAAAOoxhGHr20xI9/UmR31y/Hg49MT1XfRIdIagMAACYXTBPZeUUWPMg687J5fbqjx/s1MLNB/3mzugdrz9PzVb36IgTzo68zYW8zYW8zYOsAQDBtH5vla5/Ya0O1Dp9xiNsFj0w/RRdMaJPiCoDACC0aJoBAHSojwoq9Ou3C9Xs8d3dOadXjOZcPki9unGzGgAAAICO4XJ79Yf3d2jRlnK/uVF9u+mhy7LVzcGPvwAAAAAETlVDs+58c5vWF9f6zV02LFmzL+ivCJs1BJUBAAAAMJOFX5bo569ukNPtu8lx95gIPf39MzVmYFKIKgMAIPS4awAA0GHmfblfD36wU17ffhmd2Sdej07LUVwUf+0AAAAA6BgV9c26880CfVlS5zc3/dRe+sV5/WTnxjQAAAAAAbTjYINun1eg4mrfXZwtkm45p4+uHpkmi8USmuIAAACOUVlZGZDntVqtSkhIOPJ1dXW1vF5vG49AV0benY9hGPrnqiI99fFev7n+PaL1l5mD1DfR+o3+DCBvcyFv8yBrc+kMeScmJgb1ei3h7mUAwEkzDEPPflqipz8p8publJ2o+y/NUpSdm9UAAAAAdIztBxt0+xsFKqnxvzHt9kl9ddUZqdyYBgAAACCgVu2s0i8XFKre5fEZd9itun9ypiZm9QhRZQAAAC3zeDzHX9QBvF5v0K6F0CPv0HK6vbr/vR1alFfuNzeqbzc9dFm2ujnsHZYReZsLeZsHWZuLWfOmaQYAcFK8hqFHP9qt/36xz29u+qm99Mvz+8tm5WY1AAAAAB1j5c4qzW7hxrSYCKsemJyl8Zmh36UGAAAAQHh79YsyPfrRbnkM3/GU+Eg9Oi1Hg1JiQ1MYAAAAANOoqG/WnW8W6MuSOr+5GcN76e5z+8luY5NjAAAkmmYAACeh2ePVbxbt0Pv5/rsV/HhMhn4yLoPdnQEAAAB0mP+uK9OjS3bLe8yNaanxkXp8Rq6yk2NCUxgAAAAAU3B7DT22ZLdebWEjsSGpsXpsWo56xkWGoDIAAAAAZlJ4oEG3z9uq0hqXz7jVIt0+sZ+uPCOFe7YAADgKTTMAgG+kweXR3W9t06e7qn3GLZLuPLefvnNGamgKAwAAABB23N5DJ1z+b73/jWnD0mL1yLQc9YzlxjQAAAAAgVPndGv2gkKtOuZzEUk6P6eHfnvxQDkibCGoDAAAAICZfLKjSr9auE31Lq/PeGykVQ9MztbZA7uHpjAAADoxmmYAACesqqFZP3tjq7aU1fuM260W/e6STF04KClElQEAAAAIN3VOt365oNCvYV+SLsjtod9clClHhDUElQEAAAAwi6KqJt0xr0A7yhv95n48JkM3jMuQlV2cAQAAAASQYRj67xf79NiS3fIavnNp3SL1+PRcZSXHhKY4AAA6OZpmAAAnpLTaqZtfz9fuiiaf8egIqx6emqMx/RNCVBkAAACAcNPWjWnXn5WhG8ZmyMKNaQAAAAAC6IuiGt315jZVNbp9xiNtFt174UBdPKRniCoDAAAAYBZuj1cPf7Rbr2/Y7zd3SlqcHpmWo6TYiBBUBgBA10DTDACg3bYfbNAtr+Vrf12zz3hCtF1/nZGroWlxIaoMAAAAQLhZX1SrO98saPHGtPsuGqiLBnNjGgAAAIDAWrjpgO5/f6fcx2zj3CPGrkem5ejU9PgQVQYAAADALGqb3PrFgm1avbvGb+7CQUm676KBirJbQ1AZAABdB00zAIB22VBcq9vnbVVNk8dnPDU+Uk9+e5D694gOUWUAAAAAws3bmw/dmNbs4cY0AAAAAMHnNQw99fFePbe61G8us2e0Hp+eq/SEqBBUBgAAAMBMiqqadNsbW7Wroslv7qfjeutHY9JlsVhCUBkAAF0LTTMAgONasb1Sv1hQKKfb6zM+MClaT84cpF7xkSGqDAAAAEA48RqGnv6kSP/6tMRvjhvTAAAAAARDo8uj+xZt15JtlX5z4wZ01wOTMxUXxcfsAAAAAAJr3d4a3fXWNlU3un3Go+wW/eaiTH1rUFKIKgMAoOvhp3kAgDYt3HxAf3h3h47Z4Fmnpsfp8em5SojmrxIAAAAAJ6+p2aPfLNqhxQUVfnNjByToj5OzuDENAAAAQEDtr3Xpjvlblb+vwW/uqjNTdduEvrJZ2cUZAAAAQGAt2HRAD7y/U26v7w1bSTERenR6joalxYWoMgAAuibuNAAAtOqlNaV6Ytkev/GzB3bXQ1Oy5IiwhaAqAAAAAOHmYJ1Ld8wr0JZ99X5zV52Rqlsn9pWdG9MAAAAABFBeWb3umL9VB+qafcZtFunu8/vr8uEpIaoMAAAAgFl4DUN/+3ivnl9d6jeXnRyjx6fnKLVbVAgqAwCga6NpBgDgxzAM/XX5Xr24xv8N2KVDeureCwfIbrOGoDIAAAAA4Wbr/nrdMa9A+2pdPuM2i3TXef018zRuTAMAAAAQWB8VVOjed7bL6fb6jMdH2fTQZdka3S8hRJUBAAAAMItGl0f3vrNdSwsr/ebGZ3bX/ZdmKTaSDY4BAPgmaJoBAPhwew098N4OLdh80G/u6hFpumVCH1kt7PAMAAAA4OQtK6zUPW8XqrHZ98a0uCibHpqSrTH9uTENAAAAQOAYhqHnVpfobx8X+c316R6lx2fkqn+P6BBUBgAA0PFstsDcbG+1Wtv8GuGFvANjf61Tt76er/x99X5zV49M160T+8lmDf79WuRtLuRtHmRtLuR9CE0zAIAjmpo9mr2wUB9vr/Kb+9k5fXTNqPTgFwUAAAAg7BiGoZfWlumvy/bIOGYuIyFKT8zI1YAkbkwDAAAAEDgut1cPvL9Tb2/x30TszD7x+tNl2eoeHRGCygAAAAIjMTExKNdJSGAzJDMh75P3ZVGVfvziJu2vdfqM260W/WHaMF01qm+IKvNH3uZC3uZB1uZi1rxpmsFJYQcCdATy7hxqmty69bWtWl9c6zNus0j3XZyly07p1SHXIW/zIGtzIW9zIW8AwMlo9nj10Ie79ObGA35zp/eO18OXZat7DDemAQAAAAicyoZm3flmgTYU1/nNTT0lWb88v78ibPzMCwAAAEBgLdpYqttfXa+mZq/PeEJ0hOZ+/wyNzewZosoAAAgvNM3gpLADAQKBvINvX02TbvjPam3d59swE2W36m/fPUPnD0kJ2LXJ2zzI2lzI21zIGwDQXtWNbt39VoE+31vrNzd5aE/96oIBirRzYxoAAACAwNl+sEF3zCtQcbXvLs4WSbdO6KvvjUiVxWIJTXEAAAAATMEwDD21dLsefm+r39yAnrF69toRGpgcF4LKAAAITzTNAIDJ7ThQp6ufXa3iqkaf8W4Ou/513UiN6N8jRJUBAAAACCe7Kxp1+7wC7als8pu7eXwfXTsqjRvTAAAAAATUyp1Vmr2gUPUuj894dIRV91+apQlZwdkwEAAAIBQqKysD8rxWq9Vnk73q6mp5vd42HoGujLxPnsvt1R/e266Fmw74zY3s200PT8tVgr05YK/ZE0He5kLe5kHW5tIZ8g7WIR1toWkGAEzsy6IqXffvNaqod/mMp3SL0gs/HK3c1PgQVQYAAAAgnKzdU62739qmmibfG9Oi7Fb94ZJMnZtDsz4AAACAwPrvujI9umS3vIbveEp8pB6fnqOcXrGhKQwAACBIPB7P8Rd1AK/XG7RrIfTI+8RUNjTrrje3aX1xrd/ctFOS9Yvz+yvCZu20/03J21zI2zzI2lzMmjdNMzgp7ECAjkDeofHprir9fF6+Gly+/6379XDoqSuGqFeUOyCvcfI2D7I2F/I2l86Qd2fYgQAA0D7zv9yvBz/cJc8xd6Ylx0XosWm5GpzKjWkAAAAAAsftNfToR7v0v/X7/eaGpsbq0ek56hkbGYLKAAAAAJjJjoMNun1egYqrnT7jFkm3Tuyr752ZKovFEpriAAAIczTN4KSwAwECgbwD74P8ct37zna5j7lpbUhKrP5yea4SYyJ4faPDkbW5kLe5kDeOVVFRoVWrVumLL75QcXGxqqqqFBcXp9zcXE2dOlXZ2dmhLhFAEHi8huYs36OX1pb5zeX2itHj03PVK54b0wAAAAAETm2TW7MXFurTXdV+cxfk9tBvLsqUI8IagsoAAAAAmMmqnVX65YJC1bt8P1ePjrDqgclZOieTTSMBAAgkmmYAwGT+98U+/XnxLhnHjI/q100PT81RbKQtJHUBAIDwsWjRIr355ptKSUnR8OHD1a1bN5WWlmrNmjVas2aNbr31Vo0dOzbUZQIIoAaXR79+u1Afb6/ym5uYlag/XJKpaN57AAAAAAigoqom3fbGVu2qaPKbu/6sDF0/NkNWdnEGAAAAEGCvflGmRz/aLc8xN2ulxEfq8ek5yukVG5rCAAAwEZpmAMAkDMPQP1YW65lVxX5zF+T20O8uzlSknd3UAADAycvKytJvf/tbDRkyxGc8Ly9Pv//97/XMM89o5MiRioiICFGFAAKprMapO+YVqOBAg9/ctaPSNGt8H25MAwAAABBQXxTV6M43t6m60e0zHmmz6L6LBuqiwT1DVBkAAAAAs3B7DT22ZLde/WKf39zQ1Fg9Oj1HPWMjQ1AZAADmQ9MMAJiAx2voz4t36fUN+/3mvn1aiu48t59sVm5aAwAAHWP06NEtjg8ePFjDhg3Thg0btGfPHmVmZga5MgCBtqm0Tj+fX6Dy+mafcbvVol9dMECXnZIcosoAAAAAmMWCTQf0wPs75fb6buPcI8auR6fl6JT0+BBVBgAAAMAs6pxuzV5QqFW7qv3mLsjtod9clClHBJsbAwAQLDTNAECYc7m9uved7VpcUOE395OxGfrxWRmysMszAACdRnV1tQoLC1VYWKjt27dr+/btqq2tlSRNmDBBs2bNavdzHThwQIsWLdK6detUXl4uu92u1NRUnXXWWbrwwgsVFRUVqN9Gq2w2m8//AwgfH+SX67fvbpfT7XtjWoLDrj9PzdaZfbqFqDIAAIDQCOT7HqvV2ubXCB9k3X5ew9CcZXv03GfFfnPZyTF64vJBSk9whKCy9iNvcyFvcyFv8yBrAEBRVZPumFegHeWNfnPXn5Wh68dmyMq9WgAABBVNMwAQxuqcbt315jat2VPjM26R9Ivz+2vmaSmhKQwAALTq+uuv75DnWbt2rebMmaPGxq9/GOt0Oo804ixevFizZ89Wampqh1yvPQ4ePKiNGzcqMTFRffv2Ddp1AQSWYRh69tMSPf1Jkd9cvx4OPTE9V30SO/eNaQAAAIGQmJgYtGslJCQE7VoILbJuWYPLrdv+s17vb9nnN3fuoF7661WnKy6q6300Tt7mQt7mQt7mQdYAYC7ri2p155sFqmp0+4xH2iy676KBumhwzxBVBgCAuXW9nwwCANqlor5ZP3sjX/n7GnzGI2wW/eGSTJ2fmxSiygAAQHv17NlTGRkZ2rBhwwk9bufOnXriiSfkcrnkcDg0bdo0DRs2TC6XS5988okWL16s0tJSPfjgg3rooYcUHR0doN/B19xut+bMmaPm5mZ973vfY3c9IEw43V7d/94OLcor95sb1bebHrosW90c/PgJAAAAQOCUVjfqx8+v1eaSGr+5H589QLMvGSyblV2cAQAAAATW25sP6P73d6rZY/iM94ix65FpOTo1PT5ElQEAAO5aAIAwVFzVpJtfy9feKqfPeGykVY9My9HIvuxmAwBAZzVz5kxlZmYqMzNT3bt31/79+3XzzTef0HM899xzcrlcstlsuueee5STk3NkbtiwYUpLS9NLL72k0tJSLViwQFdccYXfc7zwwgtqbm5u9zUvueQSpaWltTjn9Xr11FNPKS8vT+edd57OOeecE/r9AOicKuqbdeebBfqypM5vbsbwXrr73H6y22iQAwAAABA4XxZV6cfPr9X+Wt/PQ+xWi/4wbZiuGsVJtwAAAAACy2sYmruiSP/+rMRvLrNntB6fnqv0hKgQVAYAAA6jaQYAwsy2Aw26+bV8ldf73uTaI8auv14+SINSYkNUGQAAaI+WGlhORGFhofLy8iRJkyZN8mmYOWzy5MlasmSJiouLtWjRIs2YMUN2u+/bww8++EBOp9Pvsa0ZM2ZMi00zXq9Xc+fO1YoVKzR+/Hhdf/31J/g7AtAZbT/YoNvfKFBJje+fE1aLdNvEvrrqjFRZLOzkDAAAzK2ysjJgz221WpWQ8PXmSNXV1fJ6vQG7HkKHrFv3Qf5B3fd2oZrcvv894qNsemT6II3qFx/Q12EgkLe5kLe5kLd5dIasExMTg3o9ADCzpmaP7ntnuz7a5v/eY9yA7npgcqbiorhNFwCAUONvYwAII18U1ej2eQWqc3p8xjMSovTkzEHqk+gIUWUAACBYVq9efeTXkyZNanGN1WrVhAkT9PLLL6u+vl6bN2/W8OHDfda8+OKLJ13L4RNmli9frnHjxmnWrFmyWjl1AujqVu6s0uwF21Tv8v2wPybCqj9OztLZmXwoDwAAIEkej+f4izqI1+sN6vUQOmQtGYahf31Workrivzm+iY69Pj0HPXrER0W/53I21zI21zI2zzIGgDC14E6l34+r0Bb9tX7zV11Zqpum9BXNisbjAEA0BnQNAMAYWJZYaV+tXCbnG7DZzw7OUZzLs9Vz7jIEFUGAACCaevWrZKkqKgoDRw4sNV1Q4YM8XnMsU0zJ+vohpmxY8fqlltuoWEGCAP/XVemR5fsltf3bYdS4yP1+IxcZSfHhKYwAAAAAKbgcnv1h/d3aNGWcr+5EX266U+XZSshmo/AAQAAAARW/r563TFvq/bXNfuM2yzSXef118zTUkJUGQAAaAk/MQSAMPDmxv164P2dfjeund47Xo9Ny1G8gz/uAQAwi6KiQ7uspqamymaztbouPT3d7zEdxev1au7cuVq+fLnGjBlDwwwQBtxeQ49+tFv/W7/Pb25YWqwenZarpNiIEFQGAAAAwCwq6pt155sF+rKkzm9u+qnJ+sV5/WW38fMHAAAAAIG1dFuF7nl7u5rcXp/xuCib/nRZtkb3SwhRZQAAoDXcRQ0AXZhhGHp+dame/Hiv39yErEQ9cGmWHBF8QAQAgFm4XC7V1tZKkpKSktpcGxcXp6ioKDmdTpWX++/OejJee+01LVu2TA6HQ+np6Xr99df91owaNUr9+/dv1/O1t762moRO1rFNPzQBhTfy9lXrdOsX8wu0aleV39yFg3vqtxdnyhERuNdfIJG1uZC3uZC3uZA3AIS/wgMNumNegUpqnD7jFkm3Teyr756ZKovFEpriAAAAAJiCYRh6YU2pnly+V8fsa6ze3aP0xPRc9U+KDkltAACgbTTNAEAX5TUMPbF0j17+vMxv7rJhyfrVtwbIbuUDIgAAzKSpqenIrx0Ox3HXOxwOOZ1On8d1hAMHDhyp54033mhxTa9evdrdNHPjjTe2a92rr77arnUdISGBHaLMxMx57ylv0I9e/lLb9vvv5Hzredm67fzssLoxzcxZmxF5mwt5mwt5A0B4+WRHlX61cJvqXb67OMdEWHX/5Cydk5kYosoAAAAAmEWzx6s/frBLCzYd8Js7o3e8/jw1W92jI0JQGQAAaA+aZgCgC3J7vPrdezu0aIv/rus/GJ2um87uHVY3rgEAgPZxuVxHfm23H//t3uE1Rz+uI8yaNUuzZs3q0OcEEHxrdlXoJy9+rop63z8jIu1WPTzzVE09LSNElQEAAAAwA8Mw9N8v9umxJbvlPWYb59T4SD0+I1fZyTGhKQ4AAACAaVQ1NOvut7ZpXVGt39yUYcn61QX9FWHj5GMAADozmmYAoItpdHn0iwXbtHJntd/cHZP66rtnpoWgKgAA0BlERkYe+bXb7T7u+sNrjn5cZzR37txQlwCYzhvrivTL1zfK5fHdyblnXKT+fvUIndmPnZwBAAAABI7b49XDH+3W6xv2+80NS4vVI9Ny1DO2c/88AwAAoLOx2WwBeV6r1drm1wgvZst7Z3mDbn0tX3urmnzGLZJ+NrGfrh2VHtYbG5stb7Mjb/Mga3Mh70NomgGALqSqsVm3v1GgjaV1PuM2q0W/vWigLh7SM0SVAQCAzsDhcBz5dVNTUxsrfdcc/bjOKCkpqV3rKisrA1aD1WpVQkLCka+rq6vl9XrbeAS6MjPn7TUMzf14r/65qshvLqtnjP4yc5DSuwX29RZMZs7ajMjbXMjbXEKdd2IizaQA0JFqm9z6xYJtWr27xm/uW4OSdN+FA+WIMOeH+wAAACcjWO9fj36PjvAXznmv2HZQN/7fJtU2+W5WGB1h0xNXnqYLh6aGqLLQCee84Y+8zYOszcWsedM0AwBdRFmNU7e8lq+dFb43wDrsVv15arbGDugemsIAAECnERkZqfj4eNXW1qq8vLzNtXV1dXI6nZLa35TS2Xk8nqBdy+v1BvV6CC2z5N3U7NFvFu3Q4oIKv7lxA7rrgcmZiouyh/V/C7NkjUPI21zI21zIGwC6rr2VTbp93lbtqvDfDOSGsRm6/qyMsN7FGQAAAEDn8NKnu/WbtzbL4zV8xlO7OfTPa0doWIY5bzgGAKCromkGALqAneWNuvm1fO2rdfmMJzjsemJGjk5Jjw9RZQAAoLPp3bu38vLyVFZWJo/HI5vN1uK6kpISn8cAMLeDdS7dMa9AW/bV+81ddWaqbpvQVzYrN6YBAAAACJzP99bo7je3qfqYXZyj7Bbdd1GmLhwUHpt+AAAAAOi8PF5D97+9Rf/+ZJff3Km9E/TMNSOU0s0R/MIAAMBJoWkGADq5TaV1uvX1rX4fEqXER+rJmYM0ICk6RJUBAIDOKDc3V3l5eXI6ndqxY4eys7NbXLdlyxafxwAwr63763XHvAK/Jn2bRbrrvP6aeVpKiCoDAAAAYBZvbTygP36wU+5jdnFOionQo9NzNCwtLkSVAQAAhI/KysqAPK/ValVCwtenblRXV8vr9QbkWgi9cM67zunW7LcKtGJHld/c+blJ+v2lWYr0NKqysjH4xYVIOOcNf+RtHmRtLp0h78TExKBeryU0zQBAJ7ZqZ5XuenObmty+f0H17+HQkzMHKbVbVIgqAwAAndWoUaM0f/58SdKSJUtabJrxer1atmyZJCk2NlZDhw4NZokB09qpOh3BarW2+TXCi5nyXrKtQr9eUKDGZt/3HHFRNj08NVdjBnQPTWFBYqasQd5mQ97mQt4A0HV5DUNPLt+rF9aU+s1lJ8fo8ek5fBYCAADQQTweT1Cu4/V6g3YthF645F1S7dTt87Zq+0H/hpgfjknXT8f1ltUSvNdRZxUueaN9yNs8yNpczJo3TTMA0Em9m3dQv1m0Q55jdlUblharJ2bkqnt0RIgqAwAAnVlWVpYGDx6svLw8LVmyRBMnTlROTo7PmoULF6q4uFiSdPHFF8tuD4+3hsHcmeLoXTgQ/sIxb8Mw9MzHO/TgonwZvm851LdHjP513Uhl9TLfTs7hmDVaR97mQt7mQt4A0DU0uDy6953tWlbov+P5+Mzuuv/SLMVGBm6DDAAAAACQpC9LanXn/AJVNLh9xiNsFt3zrQG6dGhyiCoDAAAdJTzujAKAMPPK52V6dMluv/Gz+ifoz5dlK5oPiQAACFv5+fkqKys78nVNTc2RX5eVlWnp0qU+6ydOnOj3HNddd53uvfdeuVwu3X///Zo+fbqGDh0ql8ullStX6sMPP5QkpaWlacqUKQH5fQDovFxur+6dv0n/XbvXb25U/x56+uoz1SM2MgSVAQAAADCLshqn7phXoIIDDX5z3x+RqlvO6Sub1RKCygAAAACYybt5B/X7d3fI5fHdYax7tF2PTMvRaRnxIaoMAAB0JJpmAKATMQxDT60o0r8/K/Gbu2hwkn5z0UBF2KwhqAwAAATL4sWLtWzZshbntm7dqq1bt/qMtdQ0M2DAAN12222aM2eOGhsb9corr/itSUtL0+zZsxUdHd0hdQPoGqoaXPrpS5/r0x0VfnOXn9Fbf5wxTFF2mvQBAAAABM7m0jrdMb9A5fXNPuM2q0Wzz++vaaf2ClFlAAAAAMzCaxj6xyfF+uenxX5zA5Oi9dj0HPXu7ghBZQAAIBBomgGATsLtNfTQBzs1f+MBv7mrzkzV7RP7ymphVzUAANA+I0aM0COPPKJ33nlH69atU0VFhex2u1JTUzVmzBhddNFFioqKCnWZHaqysjJgz221WpWQkHDk6+rqanm93oBdD6EVrnnvrmjUz17L057KJr+5n03oq+tGZ6ihtkb++zyHr3DNGi0jb3Mhb3MJdd6JiYlBuxYAdHUf5Jfrt+9ul9Ptu4tzN4dNf74sWyP6JrTySAAAAADoGE3NXv3u3e36YKv/BmNn9U/Qg1OyFBfFrbUAAIQT/mYHgE7A6fbq1wsLtbTQ/0bPm8f30bWj0mShYQYAAFOYNWuWZs2a1SHPlZycrGuvvVbXXntthzxfZ+fxeIJ2La/XG9TrIbTCIe81e6r1i7e2qabJ9/cRZbfqD5dk6tycHtxMrvDIGu1H3uZC3uZC3gDQ+RiGoWc/LdHTnxT5zfVNdOiJGbnqm8guzgAAAAAC62C9Sz+fV6DNZfV+c985PUW3T+onu5V7tAAACDc0zQBAiNU53bpjXoHWFdX6jFst0q8uGKBpp/YKUWUAAAAAwsH8L/frwQ93yeP13ck5OS5Cj03L1eDU2BBVBgAAAMAMnG6v7n9vhxbllfvNjezbTX+6LFvdHHxsDQAAACCwCvbX6/Z5BdpX6/IZt1mkn5/bT1ecnhqiygAAQKDx00cACKGDdS797PWtKjjQ4DMeabPoj5OzNDG7R4gqAwAAANDVebyG5izfo5fWlvnNDUqJ0WPTctUrPjIElQEAAAAwi4r6Zt35ZoG+LKnzm5t+ai/94rx+stusIagMAAAAgJks316pXy8sVGOz12c8NtKmh6Zk6awB3UNTGAAACAqaZgAgRIqqmjTrf/kqrnb6jMdG2vT49Byd0adbiCoDAAAA0NU1uDz69duF+nh7ld/cpOxE/f7iTEVH2oJfGAAAAADTKDzQoNvnbVVpje8uzlaLdNvEvrrqjFRZLJYQVQcAAADADAzD0P+tLdNflu2RccxcRkKUHp+eo4E9Y0JSGwAACB6aZnBSbLbA3GBjtVrb/BrhxYx55++r06xX81TR0Owz3jM2Qk9eMUS5vWJDVFngmTFvsyJrcyFvcyFvAOjcymqcumNegd+JlpJ03ag03TS+j6zcmAYAAAAggFbsqNKvF25Tvct3F+eYCKv+ODlLZ2cmhqgyAAAAAGbR7PHqTx/u0vyNB/zmTsuI18NTs5UYExGCygAAQLDRNIOTkpgYnB9oJyQkBOU66BzCPe+V2w/qhle2qM7p9hnvlxSjF384Wn2TzLV7Qbjnja+RtbmQt7mQNzqLQDX1SzSLmU1XzntTSa1ueyNf5fW+Dfp2q0X3XpSpy07pFaLKOqeunDVOHHmbC3mbC3kDQOdhGIZeWVemJ5bukfeYbZzTukXq8em5yko21+cgAAAAAIKvutGtX7y1TWv31vjNXTqkp379rQGKtPMzJAAAzIKmGQAIonc3lepnr6yXy+O7s9rQ9G567gejlBwfFaLKgADxuKXqPZJhSFa7ZIuUbBFf/TpCskYc+n92OgcAdIBgNfVLNIuZTVfJe+GXJfr5q5vldPu+3+geE6G/f/9MjR6YFKLKuo6ukjU6BnmbC3mbC3kDQGi4PV79+aPdemPDfr+5U9Li9Mi0HCXFsoszAAAAgMDaXdGo2+cVaE9lk9/crPG9dd2odFm4TwUAAFOhaQYAguTlz/bonvkb/XZWO2tgkv5xzZmKd/BBEcJIxQ7p8+el9f8n1fsfc+vHav+6gebYhpojvz68JvKoXx+13hZ5zLqItht1jv61z3PYW5hrz3ME7nQDAACAthiGoSc/KtSjHxT4zQ1MjtW/rh2p/j1jQ1AZAAAAALOoaXLrl29t0+o9/rs4XzgoSfddNFBR7OIMAAAAIMDW7qnW3W9tU02Tx2c8ym7V7y/J1Hk5PUJUGQAACCWaZnBSKisrA/K8VqvVZzfA6upqeb3eNh6Brizc8zYMQ8+sLNLcFXv95s7L6aEHpmTL3VinysYQFBcC4Z63qXlcitjxoaI2vqyIvStO7LFe96H/ubvuC8GQ5UgTjXGkCch+1K+PGre2MW6zS9bIQ2NfNQCd0HMcuWak7/WtdhlHNQIZ1sNNQId//dXX33A3FV7b5tIZ8g7miSIA0Jk1NXv0y9e/1Pz1JX5z47KS9NR3z1RCDA36AAAAAAJnT2WTbntja4u7OP90XG/9aAy7OAMAAAAIvPlf7teDH+6S55gdjZPjIvTYtFwNTmWDMQAAzIqmGZwUj8dz/EUdwOv1Bu1aCL1wyttrGHrko9169Yt9fnMzhvfSL87rL5vFCJvf7zcRTnmblbV6jxyb/ytH/muyNhwMdTkhY5EheVySx6Wu/PHvoSabrxtvvm7e+brR5kiTzZGmnK9O43HEHGnicbi98lpsXzXjRHzVDHRUs86RsYivn8MaIePYpp6jmn181n116o/fOqudU39CgD/L0VkEqqlf6hzNYgierpJ3Rb1Ld8zbqg3FtX5zl5+Wol+cP0BeZ50qnSEorovoKlmjY5C3uZC3uYQ6b5r6AZjZ2j01uvutghZ2cbbotxdl6oJBSSGqDAAAAIBZeLyG5izfo5fWlvnN5faK0ePTc9UrPjIElQEAgM6CphkACJBmj1e/WbRD7+eX+81df1aGbhibwc5q6Lo8zYrcuViOzf9R5N6PQ10NOpDlq1N/TvZPp6gOqeabMSzWE2y88T+953Dzjm+z0FfNQUev++o5/NYdcz2fWo55jkNjR59SZD+pU38AMwtm8xbNYubSGfMuPNCgO+YVqKTGtyPGapFun9hPV56RIovM3aD/TXTGrBE45G0u5G0u5A0AwTF/4349+IH/Ls5JsRF6dFqOhqXFhagyAAAAAGZR7/LonoWF+nhHld/cxKxE/eGSTEVHsvEmAABmR9MMAARAg8uju94s0Ge7a3zGLZLuPLefvnNGamgKA06StWbvoVNl8l6TteFAm2u9UQmynvZd6czrpB4DVFl+QN7mpkMNGd5myeuWPId/3fxVs0azLJ5DTRuHxg6tOzTWfNRjj1537NjhdUc9h8ftc92vx5q/bhL56jkO1eT2rcnrDs5/YHQIi+E9dOKPxxXqUk6KT2POkQadw004xzTe2I49Cch+1Nixp/n4Psehph3fa/mfDhThs85qj5RcSYeaiGx2yRMjyRrq/2QAYBord1Zp9oJtqnf57qAfE2HVHydn6exMdrsHAAAAEDger6Enl+/Vi2tL/eZykmP02PQcpXYL5bY6AAAAAMygrMap2+cVaNuBBr+560al6abxfWRls0oAACCaZgCgw1U2NOvWN7ZqS1m9z7jdatHvL8nUtwYlhagy4BvyNCty10dybH5FEXtWyCKjzeXNaWeqaehVcudOVmJy2tcTkbEybA5JOs4zdEKGcVSDzuHmnuajmnuOavTxNB/ToOOWPM0tNOgcGre04zkONQ41+6875jlaru9wk1DzcbND59JRp/4Eg/W6j+WJSw91GQBgCv9dV6ZHl+zWMRs5KzU+Uk/MyFVWckxoCgMAAABgCg0uj+55u1DLt1f5zZ2T2V33X5qlGHZxBgAAABBgm0rr9PN5BSpvaPYZt1st+vW3BmjKsOQQVQYAADojmmYAoAOVVjs167V87als8hmPjrDq4ak5GtM/IUSVASfOWlMsx5b/KGrLa7I17G9zrTeqm5y509U09Ep5knIkSTZbGH0warFItgjJFnGk7aRLtp94Pf7NOIcbatrTeHNU847vOreshkfRUfYjDUJNDXUy3C7/ZqGjThf6uqnomJOFfE4ickte11HPwak/nZFhiwh1CQAQ9txeQ49+tFv/W7/Pb+6UtDg9Mi1HSbH8eQwAAAAgcMpqnLpjXoEKWtjF+eqRabp5fB/ZrF1hCxgAAAAAXdn7+eX63bvb5XT73rmR4LDr4anZOqNPtxBVBgAAOiuaZgCgg2w/2KCbX8vXgTrfHQy6R9v1lxm5GpoWF6LKgBPgdX91qsx/FLF7+fFPlUk9Q01Dr5Qz6xIpIjpIReIbs9okq02Goo4MdVTzj81mU3Ri4pGvGysr5fF4OujZj3Lk1J9mn6adr8eObu45uuGn+ZgGHd/TenyagL5q7vFv+Dl23dHXb0fD0dHP2zXbrlpn5W0FAARSndOtXy4o1Ke7qv3mvjUoSfddOFCOCGsIKgMAAABgFq3t4myzWvSrC/pr6im9QlQZAAAAALMwDEP/XFWsv68s9pvr38OhJ2bkqnd3RwgqAwAAnR13twFAB9hQXKvb521VTZPvDeJp3SI1Z+Yg9e9BMwE6N2ttiRxb/quoLf+Trd5/9/KjeSPj5cydpqahV8nTMzdIFQJfCcdTfzzNxzTXfNWE4zmmaeerBh+/dUc1CbV+ipBvk1CHPIdx1N95Vk42QOcQyFPOrFZrm18jvHSmvIuqmvSz1/K0s7zRb+6n4/rohnG9ZbGwk/M31ZmyRuCRt7mQt7mQNwAEVlu7OP/psmyN6MsuzgAAAAACy+n26vfv7tB7+eV+c6P7ddNDU7IV7+B2WAAA0DL+lQAAJ2nF9kr9YkGhnG6vz/jApGg9OXOQesVHhqgy4Di8bkXuXirHplcUsXvZ8U+VSTldTcOulDPrUk6VAU5WAE/9CQabzabE7t2/avhpllHnlLze4z4OCLTEo068CrSEhISgXQuhF6q81+yq0E9e2qSKepfPeKTdqodnnqqpp2WEpK5wxmvbXMjbXMjbXMgbADpGW7s49+vh0BPTc9UnkV2cAQAAAARWeX2z7nqzQF+W1PnNzRzeS3ee2092G5uoAACA1tE0AwAnYeHmA/rDuzvkOeZO51PT4/T49FwlRPPHLDqfQ6fK/E9RW16Vrb6szbXeyDg5c6eraeiV8vQcFKQKAXQJFotkj5QUKVlcx10OADgxr39epNlvbJTL49uU2DMuUv+4ZoTO6Bu8JjEAAAAA5tPWLs6jvtrFuRu7OAMAAAAIsMIDDbrtja0qq/X9TNpqke6Y1E/fOT1FFoslRNUBAICugp9kAsA39OKaUv1l2R6/8fEDu+vBKVlyRNhCUBXQCq9HEbuXKXrzK4rYvVQWo+0TIZpTTlPT0CvlzL5UiogJUpEAAADweg099kGBnlxS6DeXmxKvZ68bod6J/PsMAAAAQOCU1zfrzvkF2ljqv4vz5cN76S52cQYAAAAQBCu2V+pXCwvV0Ox7j0tspFV/nJytcQO7h6YwAADQ5dA0AwAnyDAM/XX5Xr24ptRvbvLQnrrnWwP4sAidhrWuVFFb/ifHlv/KVnecU2Ui4uTMnXroVJnkIUGqEACAjlNZWRmw57ZarUpISDjydXV1tbzetptQ0XWFKu/GZo/ue7tQH27138n57IHd9eBlOYqVU5WVzoDXYha8ts2FvM2FvM0l1HknJnICHIDwwS7OAAAAAELNMAz9Z90+Pb50t7yG71xat0g9Pj1XWclsMAYAANqPphkAOAFur6EH3tuhBZsP+s1dPTJNPzunDx8WIfS8HkXsWS7H5v8octdHxz9Vptepahp2lZxZl0qRsUEqEgCAjufxeIJ2La/XG9TrIbSCkffBOpfumFegLfvq/eauOjNVt03oK5vVwvddgPHaNhfyNhfyNhfyBoBvhl2cAQAAAISa2+PVwx/t1usb9vvNnZoep0em5qhHbEQIKgMAAF0ZTTMA0E5NzR7NXlCoj3dU+c3dOqGvrh6ZFvyigKNY6/YpKu9VOba8KlttSZtrvRGxcuZcpqZhV8mTPDRIFQIAAKAl+fvq9fP5Bdp3zE7ONot013n9NfO0lBBVBgAA0PVVVFRo1apV+uKLL1RcXKyqqirFxcUpNzdXU6dOVXZ2dqhLBELOMAy9/HmZ/rJsD7s4AwAAhDGbzRaQ57VarW1+jfASyLxrmty6a36BVu+u9pu7ZEhP3XdxlqLsfH8FE69vcyFv8yBrcyHvQ2iaAYB2qGly6/Z5W7WhuM5n3GaR7r1woCYPSw5RZTA9r0cRez8+dKrMzo9kMdreRbU5edihU2Wyp3CqDAAAQCewtLBC9yzcria3707OcVE2/emybI3ulxCiygAAAMLDokWL9OabbyolJUXDhw9Xt27dVFpaqjVr1mjNmjW69dZbNXbs2FCXCYSM2+PVnxbv0rwvD/jNsYszAABAeElMTAzKdRIS+Lm2mXRU3rsO1uuHL2/QjgP1fnM/vyBHN5+bJYvF0iHXwjfH69tcyNs8yNpczJo3TTMAcBz7a1265fV8bT/Y6DMeZbfqoSlZGp8ZnB8qAEez1O+XI+9/cmz+r2y1xW2uPXSqzBQ1Db1Snl6nBKlCAAAAtMUwDL24plRzlu/VMRs5q3f3KD0xPVf9k6JDUhsAAEA4ycrK0m9/+1sNGTLEZzwvL0+///3v9cwzz2jkyJGKiKApAOZT3ejWLxds05o9NX5zFw9O0j0XDmQXZwAAAAAB9+mOcv30pc9V1dDsMx5lt+rRK4Zr8qnpIaoMAACEC5pmAKANuyoadctr+SqtcfmMx0fZ9MSMXA3PiA9RZTAlw6uIPSvk2PyKIncuPu6pMu7koWoaeqWcOZfJiIwLUpEAAAA4nmaPVw9+sEtvbfLfyfn03vF6+LJsdY/hpk0AAICOMHr06BbHBw8erGHDhmnDhg3as2ePMjMzg1wZEFq7Kxp1+7wC7als8pv76bje+tGYdHZxBgAAABBwr67dq1/P26hmj+8WY8nxUXrmmhE6rU/30BQGAADCCk0zANCKLWV1+tnrW1XV6PYZT46L0JzLBykrOSZElcFsLPUHjjpVpqjNtUZEjJzZk9U09Cq5U04NUoUAAABor+pGt+5+q0Cf7631m5sytKdmXzBAkezkDAAAOonq6moVFhaqsLBQ27dv1/bt21Vbe+jfMRMmTNCsWbPa/VwHDhzQokWLtG7dOpWXl8tutys1NVVnnXWWLrzwQkVFRQXqt9Eqm83m8/+AWazdU62739qmmibfjZmi7Fb97uKBOj83KUSVAQAAIJAqKysD8rxWq1UJCQlHvq6urpbX6w3ItRB6HZW31zA0Z9luPfdZid9cTq8Y/eXywUqNMwL2fYv24fVtLuRtHmRtLp0h78TExKBeryU0zQBACz7bXa275heoodn3L4a+iQ79beYgpSUE/wNcmIzhVcTelV+dKvOhLF53m8vdPYeoadhVcuZMkRHJCUgAAACdUVs7Od88vo+uHZXGTs4AAKBTuf766zvkedauXas5c+aosbHxyJjT6TzSiLN48WLNnj1bqampHXK99jh48KA2btyoxMRE9e3bN2jXBUJt/pf79eCHu+Tx+u7i3DM2Qo9Nz9GQVE4tBwAACFcej+f4izqA1+sN2rUQet8k7waXR/e+s13LCv0bYs7J7K77L81STKSN76NOiNe3uZC3eZC1uZg1b5pmAOAY7+eX6753tst9zAdGQ1Ji9ZfLc5UYExGiymAGloaDcuS9duhUmZo9ba417NFy5kxR09Ar5e51qsQNlgAAkwvk7tBWq7XNrxFeApH36t3VunNevmqdvj98ckRY9cDkbJ2bw07OocBr21zI21zI21zIOzh69uypjIwMbdiw4YQet3PnTj3xxBNyuVxyOByaNm2ahg0bJpfLpU8++USLFy9WaWmpHnzwQT300EOKjo4O0O/ga263W3PmzFFzc7O+973v8T0DU/B4Dc1ZvkcvrS3zm8vpFaPHp+coJZ4NwwAAAAAE1r5ap26fV6CC/Q1+c1ePSNPN5/SRzcr9LwAAoGPRNAMAR3n1izI9vHi3jGPGR/Xrpoen5ig2MnA3YsLEDK8iilbJsekVRe784PinyiQN+upUmakyojhVBgCAw4J5nOvRR9ci/J1s3q+s3qN752/xa8xP6RalZ68dqWEZfD91Fry2zYW8zYW8zYW8O87MmTOVmZmpzMxMde/eXfv379fNN998Qs/x3HPPyeVyyWaz6Z577lFOTs6RuWHDhiktLU0vvfSSSktLtWDBAl1xxRV+z/HCCy+oubm53de85JJLlJaW1uKc1+vVU089pby8PJ133nk655xzTuj3A3RF9S6P7llYqI93VPnNTcxK1O8vyVQMn38AAAAACLAtZXW6Y16BDtb7vse3WS2afUF/TTulV4gqAwAA4Y6mGQCQZBiG/rGyWM+sKvabuyC3h35/SaYibOw2iI5laTgoR/7rcmz+j2zVxztVxiFn9mQ1Db1K7pThnCoDAADQBXi8hh58J0//XLHTb25YRjf985qRSk1whKAyAACA9mmpgeVEFBYWKi8vT5I0adIkn4aZwyZPnqwlS5aouLhYixYt0owZM2S3+3589cEHH8jpdLb7umPGjGmxacbr9Wru3LlasWKFxo8fr+uvv/4Ef0dA11NWc2gX520H/HdxvnZUmmaN7yMrP28GAAAAEGAfbi3XbxbtkNPt9Rnv5rDpz5flaETfbiGqDAAAmAFNMwBMz+M19OfFu/T6hv1+c1ecnqI7z+3HB0boOIZXEcWfHjpVZscHsnjb3iHTnZSrpqFXyZk7VUYUPyAAAADoKuqdbt36ny/0YZ7/+4wLh6bo8e+cpphIfiwDAADC2+rVq4/8etKkSS2usVqtmjBhgl5++WXV19dr8+bNGj58uM+aF1988aRrOXzCzPLlyzVu3DjNmjVLVisbJSG8bSyp1Z3zt6m8wffn0HarRb/+1gBNGZYcosoAAAAAmIVhGPrXZyWau6LIb65vokNPzMhV30Q2GAMAAIHF3RkATM3l9ured7ZrcUGF39xPx/XWj8aky0LDDDqApbFcjrzDp8rsbnOtYYuSM/vSQ6fKpJ7OqTIAALRTZWVlwJ7barUqISHhyNfV1dXyer1tPAJd2cnmXVrj1G2v56lgv/9Ozj8Yk6Gbz+krZ32tnPUdUi5OAq9tcyFvcyFvcwl13omJiUG7VlezdetWSVJUVJQGDhzY6rohQ4b4PObYppmTdXTDzNixY3XLLbfQMIOw915+uX63aLtcHsNnPMFh18NTs3VGHzZpAgAAABBYLrdXf3h/hxZtKfebG9m3m/50Wba6ObiFFQAABB7/4gBgWnVOt+6cv01r99b4jFst0i/O76/Lh6eEqDKEDcM4dKrM5v8ocvv7snhdbS5398j+6lSZaTIcCW2uBQAA/jweT9Cu5fV6g3o9hNaJ5L2ptE4/n1fQ5k7Ohtcrvns6J17b5kLe5kLe5kLenUdR0aFdZFNTU2Wz2Vpdl56e7veYjuL1ejV37lwtX75cY8aM6ZCGmfJy/5t9WtLW7/lkHft7oAkofJ1o1oZh6O+f7NXfP/F/LQ3oEa2/zBysPuzi3Gnx2jYX8jYX8jYPsgaAQyobmnXnmwXaUFznNzf91F76xXn9ZLfxZyQAAAgOmmYAmFJ5fbN+9nq+th6z83OEzaL7L83SeTk9QlQZwoGlsUKO/DcUtfk/slftbHOtYYuSM+sSNQ27Su7UMzhVBgAAoAv7IL9cv313u5xudnIGAABwuVyqra2VJCUlJbW5Ni4uTlFRUXI6ne1uSGmv1157TcuWLZPD4VB6erpef/11vzWjRo1S//792/2cN954Y7vWvfrqq+1+zpN19GlLCG9tZd3U7NFdr32pBRtK/ObGZ/fUk989QwnREYEsDx2M17a5kLe5kLd5kDUAM9p+sEF3zCtQcbXTZ9wi6baJffXdM1Nl4f4YAAAQRDTNADCd4qom3fxavvZW+b4xi4206tFpORrRlx9a4RswDNlLVsux6RVFbX/v+KfKJGapadiVcuZOl+HoHpwaAQAAEBCGYejZT0v0dAs7Offv4dATM3LVuzs7OQMAAHNpamo68muH4/j/FnI4HHI6nT6P6wgHDhw4Us8bb7zR4ppevXqdUNMM0Bntr23SDS98rvV7q/zmrh7TT7+ZMoRdnAEAAAAE3MqdVZq9oFD1Lt9TgGMirHpgcpbGZyaGqDIAAGBmNM0AMJWC/fW65fWtKq9v9hnvEWPXXy8fpEEpsSGqDF2VpbFSUflvyLH5P7JX7WhzrWGLPHSqzNCr5E47k1NlAAAAwoDT7dX97+3Qojz/HdFH9eumP03JVryDH78AAADzcbm+3lTGbj/+v4cOrzn6cR1h1qxZmjVrVoc+59y5czv0+YCTlVdaox89t0Yl1b5NZ1aL9JspQ3Xt2P6hKQwAAACAqfx3XZkeXbJbXsN3PDU+Uo/PyFV2ckxoCgMAAKYXtLs2GhoaJEkxMS3/w2fOnDl69dVXdfDgQQ0YMEA33nijpkyZEqzyAJjAur01un1egd9OBhkJUXpy5iD1SWTnZ7STYcheuvarU2UWyeI53qkymWoaepWcgzhVBgAAIJxU1DfrzjcL9GVJnd/cjOG9dPe5/djJGQAAmFZkZOSRX7vd7uOuP7zm6Md1VklJSe1aV1lZGbAarFarEhK+PjW9urpaXq83YNdD6Bwv62WFFZr9VoEam33zj4206U9TczRuYEJAvxfRsXhtmwt5mwt5m0dnyDoxkVMcAASX22vo0Y9263/r9/nNDUuL1SPTctQztvO/3wcAAOErKE0zCxYs0LRp0xQXF6eioiLFx8f7zP/whz/U888/L0kyDEMFBQV67733dP/992v27NnBKBFAmFtaWKFfLSiUy+O7lUFOcoz+enmuesbxxgzHZ2mqUlT+vEOnylQWtrnWsEXKmXmxmoZeKXf6SE6VAQAACDOFBxp0x7wCldQ4fcatFun2if105RkpsvBvQAAAYGIOx9ebFDU1NbWx0nfN0Y/r6jwez/EXdRCv1xvU6yF0DmdtGIb+7/My/WXpHh2zibPSu0Xp8Rk5yuwZw/dFF8dr21zI21zI2zzIGkC4q3W6dff8rfp0V7Xf3LcGJem+CwfKEcEGYwAAILSC0jTz3nvvyTAMXXbZZX4NMytWrNBzzz0ni8WimJgY5eTkKD8/X42Njbrvvvs0ZcoUDRs2LBhlAghTb27crwfe3+l39OcZveP16LQcxTuCdugWuiLDkL30czk2v6KowneOf6pM94FqGnqlnINmyIhmBx8AAIBwtHJnlWYv2KZ6l+8OkTERVv1xcpbOzuTfgQAAAJGRkYqPj1dtba3Ky8vbXFtXVyen81AzcntPcQHMrNnj1Z8+3KX5Gw/4zQ3PiNMjU3OUGBMRgsoAAAAAmMme8gZd++JG7Sxv9Ju7YWyGrj8rgw3GAABApxCUO8U//fRTWSwWTZo0yW/uH//4hyQpPT1dq1atUu/evbV3716dffbZKioq0t///nfNmTMnGGUCCDOGYej51aV68uO9fnMTsxJ1/6VZ7GSAVlmaqhW19atTZSq2tbnWsEbKmXmhmoZdJXf6KE6VAQAACGP/WVemx5bs9mvKT+sWqcen5yorOSY0hQEAAHRCvXv3Vl5ensrKyuTxeGSz2VpcV1JS4vMYAK2rbmzWz+fl6/O9tX5zlwzpqXu+NUCRdj77AAAAABBYa3ZV6IYX1qqyodlnPNJm0X0XDdRFg3uGqDIAAAB/QWma2b9/vyQpNzfXb+7dd9+VxWLRLbfccuSDkD59+uiWW27R3XffrWXLlgWjRABhxmsYenzpHr3yeZnf3NRTkjX7ggGyW2lswDEMQ/aydXJsOnyqjLPN5e7uA+QceqWaBs2QEd0jSEUCAAAgFNxeQ49+tEv/W7/fb+6UtDg9Mi1HSbHs5AwAAHC03Nxc5eXlyel0aseOHcrOzm5x3ZYtW3weA6BlOw7U6boXN2pPZZPf3E1n99YPRqezizMAAACAgHv98yLNfmOjXB6vz3iPGLsenZajU9LjQ1QZAABAy4LSNHPgwKGjwePjff8xtHnzZh08eFAWi0VTp071mRsxYoQkaffu3cEoEUAYcXu8+t27O7Qor9xv7gej03XT2b350Ag+LM4aReUfPlWmoM21hjVCrsxvqWnoVWrOGMOpMgAAdCKt7VrdEaxWa5tfI7wcm2+dy6u75xVo1a4qv7UXDe6p316SpSh2cu6SeG2bC3mbC3mbC3l3XqNGjdL8+fMlSUuWLGmxacbr9R7ZQC02NlZDhw4NZokBxXsUdITD2X5SeFA3vvS5aprcPvMOu1V/mJyt83OTQlEeOhivbXMhb3Mhb/MgawDh7sXVJXpsyS6/8aye0Xp8eq7SEqKCXxQAAMBxBKVp5vCHAhUVFT7jK1askCQlJyf77RyWmJgoSWpq8t8pCQBa0+jy6BdvbdPKXdV+cz+f1E9XnZkagqrQKRmG7GVfyLH5P4oqfFsWd9t/33gS+qlp6JVqGny5jGg+fAQAoDM6/D4yGBISEoJ2LYTWnvIG/fD/Nqlwf53f3O3n5+hn52XRlB9GeG2bC3mbC3mbC3l3HllZWRo8eLDy8vK0ZMkSTZw4UTk5OT5rFi5cqOLiYknSxRdfLLs9KB9dBQXvUdBRXv5sj+57c5PcXsNnPKVblP55zUid0pv8wxWvbXMhb3Mhb/MgawDhpPBAg/6ydJff+NkDu+uByVmKjQzc5hEAAAAnIyifPGRkZKiwsFDr16/XxIkTj4y//fbbslgsGj9+vN9jqqsP3fDes2fPYJQIIAxUNTbrtje2alNpvc+4zWrR7y4eqIsG8+cJJIuzVlFb58ux+RXZy7e2udawRsg18AI1DTt8qgy7AAEAAJjJml0VuuGFtapsaPYZj7Rb9ci3h+uy4ekhqgwAACA48vPzVVZWduTrmpqaI78uKyvT0qVLfdYf/RnQYdddd53uvfdeuVwu3X///Zo+fbqGDh0ql8ullStX6sMPP5QkpaWlacqUKQH5fQBd2atr9+pX8zb6jQ/L6KZ/XjNSqQmOEFQFAAAAwGwMw9CfF++Sx7eXX98bkaafndNHNisbjAEAgM4rKE0z48eP17Zt2/Tkk0/q+9//vnr27Kk1a9bo3XfflSRdeOGFfo/Jy8uTJKWmcioEgOMrq3HqltfytbPC97QQh92qP0/N1tgB3UNTGDoHw5B93wY5Nr+iqG0Lj3+qTLe+X58qE0OzFQAAgBm9/nmRZr+xUS6P12e8Z1yk/nHNCJ3RN3i7hgMAAITK4sWLtWzZshbntm7dqq1bfTelaalpZsCAAbrttts0Z84cNTY26pVXXvFbk5aWptmzZys6OrpD6gbCRUW9Sw+8nec3fuHQFD3+ndMUExk+JzMBAAAA6Nzeyy/XuqJan7GfTBion45JlcfjCVFVAAAA7ROUn6TedNNNeu6557Rz504NHDhQOTk52rJli9xut3r06KHvfOc7fo/56KOPZLFYNGTIkGCUCKAL21neqJtfy9e+WpfPeILDrr9cnqthaXEhqgyhZnHWKqrgTTk2/0f2g/4fLB7NsNrlGvgtNQ29Us29z+JUGQAAuqDKysqAPbfValVCQsKRr6urq+X1ett4BLqyv3+yV0+v2Os3np0coycuH6T0+MB+vyF4eG2bC3mbC3mbS6jzTkykmfZ4RowYoUceeUTvvPOO1q1bp4qKCtntdqWmpmrMmDG66KKLFBUVFeoyOxzvUXCyHnhvu6obfU++/NFZvXXT+D5y1tfKWR+iwhAwvLbNhbzNhbzNozNkzXsUAB2tzunWE0v3+IxldI/WbeflqKm+ppVHAQAAdB5BaZo544wz9PDDD+uuu+5SXV2d1q1bJ0mKiIjQM888o/j4eJ/11dXVevvttyW1vCsZABy2saRWt71RoOomt894Snyknpw5SAOS2JnQdAxD9v0bD50qU7BAFndjm8sPnSrzHTUNnsmpMgAAdHHB3MXK6/Wya1aYWlxQ0WLDzNkDu+uByVmKjbSRfRjjtW0u5G0u5G0u5N1xZs2apVmzZnXIcyUnJ+vaa6/Vtdde2yHP1xXwHgUnI39fvd5Yv89nbMrwdN18Tl95PB6Rtjnw2jYX8jYX8jYPsgYQDv65qlgH630b+n8zZYiiI21qopkfAAB0AUE7s/v222/X+eefr9dee01lZWVKS0vTVVddpdzcXL+1S5cu1ciRIyVJkydPDlaJALqYlTurdPeb29Tk9t2VZUAPh+bMHKTUbuG3MyFaZ3HVKqpggRybXpH94JY21xpWu1wDzlfT0KvU3Gcsp8oAAABAkuR0e/WXY3ZKk6TvjUjTz87pI5vVEoKqAAAAAJiNYRh6+KNdMo4ai46w6VeXDJK8TSGrCwAAAID5bD/YoFc+L/MZm5ibrAuGpISoIgAAgBMXtKYZSTrllFN0yimnHHfd1KlTNXXq1CBUBKCrWrTloH777g55vIbP+ClpcXp8Ro66R0eEqDIEm33fl4dOldm2UJbmhjbXeuJ7q2nolYdOlYlNDlKFAAAA6Cpe+bxMJTVOn7F7Jw/RjKHd2Q0SAAAAQNC8l1+uDcV1PmM3n5ultIRoVVbSNAMAAAAgOAzD0J8X75LnqNuzImwW/XbKUFksbDQGAAC6jqA2zQBAR3jl8zI9umS33/jY/gn602XZio60haAqBJPFVafIggWK3vyK7Ac2t7nWsNjkGnDeoVNl+p7NqTIAAABoUXl9s/79WbHP2KgBPfTDcf1VVVUVmqIAAAAAmE6Dy6O/LPM9AbNvjxj96OwBIaoIAAAAgFm9l1+uz/fW+oxdOypD/XvGhqgiAACAb4ammTDgcrn0yiuvaMeOHSorK1NdXZ1iYmKUmpqqc889V+PHj5fdTtTo+gzD0FMrivTvz0r85i4enKTfXDRQdhsNEeHMtn/ToVNlChbI2lzf5lpPfIaahn5HTYO/LSO2V5AqBAAAQFf19CdFqnd5j3xtsUj3XjqEndIAAADwjdlsgdvgyWq1tvk1uq7nVhfpQF2zz9i9k4fIEXHo+4mswxuvbXMhb3Mhb/MgawDhor6Fhv60bpH64VkZIaoIAADgm+vQTorly5d35NMdcc455wTkecNFU1OT3n//fWVlZen0009Xt27dVF9fr/Xr12vu3LlauXKlZs+ezRtxdGlur6EHP9ipNzce8Jv77pmpum1iX1m5mS08ueoVtW2hHJtfUcT+jW0uPXSqzLmHTpXpc7Zk5dQhAAAAHF/hgQa9uXG/z9iM03vrlN4JIaoIAAAA4SAxMTFo10pI4N+u4WDXwXq9tKbUZ+ycnGSdP/jrjaHI2lzI21zI21zI2zzIGkBX9c+VxX4N/T+f1E/REdyLAwAAup4ObZqZOHFih+/AarFY5Ha7O/Q5w01cXJyef/55v9NkPB6P7r//fm3YsEHr16/XGWecEaIKgZPT1OzVr98u1LLCSr+5m8f30bWj0tj9OQzZDmw5dKrM1rdkba5rc60nPl1NQ66Qc/C35Y1LDVKFAAAACAeGYeixpbvlNb4ec0RYdfdFuaErCgAAAIAp/WHhFrk8X5+AabdadN9kTsAEAAAAEFw7Djbo5XVlPmNj+ydoQlbwNocAAADoSB3aNCMdutkEwWW1Wls8RcZms2nkyJHavHmzysrKWngk0PnVNrn18/kFWldU6zNutUi/+tYATTulVyuPRJfU3PDVqTL/UcS+DW0uNSxWufqfq6ahV6q57zmcKgMAAIBvZMWOKq3eXeMzdt3oDKV0c4SoIgAAAABmtCR/vxbn+56A+YNx/ZXVKy5EFQEAAAAwI8Mw9OfFu+U5arexCJtFd57Xn4Z+AADQZXVo08ySJUtanXO5XLrnnnu0Zs0aJScn64orrtCoUaOUkpIiSdq3b5/WrFmjV199Vfv379fIkSP1wAMPKCIioiNL9FNdXa3CwkIVFhZq+/bt2r59u2prD92cP2HCBM2aNavdz3XgwAEtWrRI69atU3l5uex2u1JTU3XWWWfpwgsvVFRUVKB+Gy3yer3asOHQTed9+vQJ6rWBjnCwzqVbXt+qbQcafMaj7BY9MDlLE7N6hKgydDTbwTw5Nv9HUVvny+o6zqkycWlqGvIdOYfMlDcuLUgVAgAAIBy5PV49sWyPz1ivuAhdMzI9RBUBAAAgnFRW+p+e3lGsVqsSEhKOfF1dXS2v19vGI9CZNXu8+s2bG33GkmIjdM2ZyaquriZrE+G1bS7kbS7kbR6dIevERE6CAPDNvb+1Qmv3+m42dvXINPVNZLMxAADQdXVo08yECRNaHDcMQ5dcconWrl2rH/3oR3riiScUGxvrt+7qq6/WQw89pNtuu03//Oc/9dhjj+mdd97pyBL9XH/99R3yPGvXrtWcOXPU2Nh4ZMzpdB5pxFm8eLFmz56t1NTUDrleS9xut9544w1JUm1trTZt2qTi4mJNnDhRp5xySsCuCwTC3som3fxavoqrnT7jcVE2PTYtR2f06RaiytBhXA3S5jcU/9kzspetb3OpYbHK1W/SoVNl+k3gVBkAAAB0iNc27NfuiiafsVnj+yg6kn9vAgAA4OR5PJ6gXcvr9Qb1euhYL60u0Z5K3/cmN4/vo2i7xe8mW7I2F/I2F/I2F/I2D7IG0JXUuzx6Yulun7HU+Ej9cDSbjQEAgK6tQ5tmWvPss8/qvffe0wUXXKBnnnmmzbUxMTH6xz/+od27d+u9997TP/7xD91www3BKFM9e/ZURkbGkdNZ2mvnzp164okn5HK55HA4NG3aNA0bNkwul0uffPKJFi9erNLSUj344IN66KGHFB0dHZD63W63XnvttSNfWywWTZkyRd/97ncDcj0gUPLK6nTz/7aoosHtM54UG6EnZw5SdnJMiCpDR7BW7ZJWPiB9+arkrG7zLyJPbKqcQ65Q05BvyxvPG3AAAAB0nOpGt/6xsshnbEhKrC4e0jNEFQEAAAAwo4N1Lv1zVbHP2LC0WF06lPcmAAAAAILrnyuLdaCu2Wfs5+f2kyOCzcYAAEDXFpSmmeeee04Wi0U33XRTux8za9YsffDBB3r++ecD2jQzc+ZMZWZmKjMzU927d9f+/ft18803n9BzPPfcc3K5XLLZbLrnnnuUk5NzZG7YsGFKS0vTSy+9pNLSUi1YsEBXXHGF33O88MILam5u9htvzSWXXKK0tDSfMYfDoVdffVVer1eVlZX6/PPP9corr6igoECzZ89WTAyNBuj8Vm4/qOtf2ax6l+9OK326R+nJmYOU0Z2jPrus5gbFrH1K0euflTyuVpcZsqi530Q1DbtKrn4TJGtQ/qoCAACAyfxzVbFqmnzfd9wxqZ+sFkuIKgIAAABgRnOW71VDs+9pMned25/3JgAAAACCasfBBr28rsxn7Kz+CZqYlRiiigAAADpOUO5Ezs/PlyT17du33Y/p06ePz2MDpaUGlhNRWFiovLw8SdKkSZN8GmYOmzx5spYsWaLi4mItWrRIM2bMkN3u+5/+gw8+kNPpbPd1x4wZ49c0c5jValVSUpK+9a1vKT4+Xo8//rjeeOMNff/73z+B3xkQfIs2lurW/6yXy+P74VBurxj99fJBSoqNCFFlOCmGocjt7yl2xf2y1ZW2uswTm/LVqTJXcKoMAAAAAmpXRaNeXb/PZ+z8nB46rXd8iCoCAAAAYEZfltTq7S0HfcYuG5asoWlxIaoIAAAAgBkZhqE/L94tj9c4MhZhs+iu8/rLQkM/AAAIA0FpmmlqapIk7d27V6effnq7HrN3715JOqFGklBYvXr1kV9PmjSpxTVWq1UTJkzQyy+/rPr6em3evFnDhw/3WfPiiy8GpL7D19myZUtAnh/oKP/32W7dM3+TDMN3fGTfbnp4arbiojhtpCuyVe5Q7PLfKXLvilZWWNTcb4Iah14pV/9JnCoDAABOis0WuKPhrVZrm1+ja5mzfK/fBz+3Tep/5HuIvM2DrM2FvM2FvM2FvAF0RV7D0MOLd/uMxUbaNGt8nxBVBAAAAMCsPthaobV7a3zGvj8iTX0THSGqCAAAoGMF5e7krKwsbdy4UU8//bQuu+yydj3m6aefliRlZmYGsrSTtnXrVklSVFSUBg4c2Oq6IUOG+Dzm2KaZQKmoqJAU2JvHgJP14uoSPbZkl9/4eTk99IdLMhVp50PuLqe5QTFr/qbo9c/K4m32n7fapVE/kUb/RHXqJo/HE/waAQBA2ElMDN7x8AkJCUG7FjrWysKDWlZY6TP2o7MHatiAlk9zlcjbTMjaXMjbXMjbXMgbnQWN/WjLmxv2KW9fvc/YT8/uo17dfG9KI2tzIW9zIW9zIW/zIGsAXU29y6PHl/o29KfGR+qHo9NDVBEAAEDHC0rTzBVXXKEvv/xS7733nm666SY99thjcjha7kJ2Op36+c9/rnfffVcWi0VXXnllMEr8xoqKiiRJqampbX74kZ7+9T8iDz+mI2tITk5WVFSUz7jT6dQLL7wgSe0+4QcIth0HG/TE0l1+45cP76W7z+svm5UjPrsUw1Dk9ncVu+J+2erKWlzS3HusIqY+ISXnHhqorGxxHQAAANDRPF5Dv1/oexJrz7hIzZrUuTfsAAAAQNdEYz9aU93YrL99vNZnLKtXnH563mBF2Nq+sZaszYW8zYW8zYW8zYOsAXR2/1xVrAN1vhvi3jGpn6Ij2aQbAACEj6A0zdxxxx166aWXlJ+fr7///e+aP3++rrjiCo0cOVK9evWSxWLRvn37tGbNGv3vf/9TWdmhG61zc3N1xx13BKPEb8Tlcqm2tlaSlJSU1ObauLg4RUVFyel0qry8vEPrWLlypd5++20NGjRIycnJio6OVkVFhdavX6/a2loNHjxYkydPPqHnbG+NgdoljZ03zOPJFUXyGr5jPz27j24Y21sWCw0zXYm1olAxS3+riL0rWpz3xqWqYfw98uROUUL37l8/jtd32OLPcnMhb3MhbwBd1f/W7lV+Wa3P2B0X5CreERGiigAAAACY0RMfFqii3uUz9pspQ47bMAMAAICur6KiQqtWrdIXX3yh4uJiVVVVKS4uTrm5uZo6daqys7NDXSJMZGd5o17+3HdT3LP6J2hSdvA2gQAAAAiGoDTNOBwOLVmyRJdeeqnWrVunsrIyzZkzp8W1hnHo7vnTTz9dCxcu9Ds9pTNpamo68uvWTs45msPhkNPp9HlcRzjzzDNVWVmpgoICFRQUqKmpSTExMerbt6/GjRunSZMmnXBzy4033tiuda+++uo3KfmEsfNGePp0R7mWF/qeMvKTCQP1y4sHh6gifCPOOmn5w9Kqv0neZv95q106a5as59ytuKg4v2le3+ZB1uZC3uZC3ugsKgN4gp3VavX5Xq+urpbX6w3Y9dDx6p0ePfxevs9YdnKMvpUV5/e9Q97mQdbmQt7mQt7mEuq8g3maCICur2BfrV5Ytdtn7FtDUjQ+OzlEFQEAACCYFi1apDfffFMpKSkaPny4unXrptLSUq1Zs0Zr1qzRrbfeqrFjx4a6TJiAYRj68+Jd8hy127HdatGd5/Zjo2MAABB2gtI0I0kpKSn67LPP9PTTT2vu3LnasmVLi+sGDx6sG2+8UTfeeGPATjHpKC7X1ztA2e3H/095eM3Rj+sImZmZyszM7NDnBALNMAw9+E6ez1jPuEjdci47ZnQZhiFtnie9f49UU9zymoETpYsflpJzgloaAAAwJ4/HE7Rreb3eoF4PJ+/ZVXtVXu/b5H3bxL6S4dXxoiRv8yBrcyFvcyFvcyFvdBY09uNYhmHonje2+NyUFmmz6JbxGa1+v5C1uZC3uZC3uZC3eXSGrGns79yysrL029/+VkOGDPEZz8vL0+9//3s988wzGjlypCIiOCEdgfXh1gqt2VPjM3b1yDT16xEdoooAAAACJ2hNM5Jks9k0a9YszZo1S2VlZdq4caMqKiokHXrDdsoppygtLS2YJZ2UyMjII792u93HXX94zdGP66zmzp0b6hIQ5t7eWKoNRdU+Y7een6O4qKD+sYRv6sBW6Z27pJ3LWp7vliFd+IA0ZJrE7hMAAAAIsZJqp/5vbanP2PiB3TW6HydlAQAAIHBo7MexPiqo0Ordvp+NXDMyXWnxEe3Oj6zNhbzNhbzNhbzNg6xxrNGjR7c4PnjwYA0bNkwbNmzQnj172EAZAdXg8ujxpb4nYKbER+qHo9NDVBEAAEBghezu9NTUVKWmpobq8h3C4XAc+XVTU9Nx1x9ec/TjOqukpKR2rQvULmmdYecNBE6zx6uH3vE9bWpgz1hdObKPJPLu1Fx1il49R1FfPCuL179Z0LBGqOmMH6tp5M1SZKxUVeW3hte3eZC1uZC3uXSGvNklDcCJmLN8j1yer3dytlktunVi3xBWBAAAAMBsmpq9Ld6Udt3orrOhIAAAQKhVV1ersLBQhYWF2r59u7Zv367a2lpJ0oQJEzRr1qx2P9eBAwe0aNEirVu3TuXl5bLb7UpNTdVZZ52lCy+8UFFRUYH6bbTKZrP5/D8QKP9cVaz9dc0+Y3dM6qfoSL73AABAeOJIh5MQGRmp+Ph41dbWqry8vM21dXV1cjqdktrfkNIVBGs3DHbeCC+vritTUZXTZ+zui3IVYbNKIu9OyTAUWfi2Ylf8Ubb6fS0ucfU5W/Xn/EaexIGHBtgVD8cga3Mhb3MhbwCd2YbiWn2wtcJn7Nun9VL/HtEhqggAAACAGb24pkSlNS6fsdsm9JUjgpvSAAAA2uv666/vkOdZu3at5syZo8bGxiNjTqfzSCPO4sWLNXv27KBuCH3w4EFt3LhRiYmJ6tuXTZ8QODvLG/V/n5f5jI3pn6Bzs9m0EAAAhC+aZk5S7969lZeXp7KyMnk8nlY7/UtKSnweA5hVndOtZ1YV+4ydmh6vC4d27ZOnwpmtYptil/9OkUWrWpz3xKWp/uxfy5V5kWSxBLk6AAAAoHVew9BjS3x3cu7msOn6s3hfDgAAACB4Squdem51ic/YGb3jdX5ujxBVBAAA0PX17NlTGRkZ2rBhwwk9bufOnXriiSfkcrnkcDg0bdo0DRs2TC6XS5988okWL16s0tJSPfjgg3rooYcUHR34DZjcbrfmzJmj5uZmfe9735PVag34NWFOhmHo4cW75PEaR8bsVovuOrefLNzzAwAAwlhQm2bcbrfefvttffzxx9qxY4dqa2uPuyO1xWLR4sWLg1ThicvNzVVeXp6cTqd27Nih7OzsFtdt2bLF5zGAWT2/ulTVjW6fsdsn8carM7K46hS9Zo6iNzwni9ftN29YI9R4+o/VMOImKSImBBUCAAAAbXsvr1yby+p9xn58VoYSotlDBAAAAEDwPLFsj5zur29Ks1qku87rz2cjAAAAJ2jmzJnKzMxUZmamunfvrv379+vmm28+oed47rnn5HK5ZLPZdM899ygnJ+fI3LBhw5SWlqaXXnpJpaWlWrBgga644gq/53jhhRfU3Nzc7mtecsklSktLa3HO6/XqqaeeUl5ens477zydc845J/T7AU7E4oIKrd5T4zN29cg09esR+OYwAACAUAraXSIrVqzQ1VdfrT179hwZMwyj1fUWi0WGYXT6HxaPGjVK8+fPlyQtWbKkxaYZr9erZcuWSZJiY2M1dOjQYJYIdBr7ap16+fNSn7FJ2Yk6rXe3EFWEFhmGIrctVOwnD8pWv6/FJa4+41V/zn3yJA4McnEAAABA+zQ1e/Tkx3t9xvomOvTt01JCVBEAAAAAM1qzp1qLCyp8xi4fnqLsZDajAgAAOFEtNbCciMLCQuXl5UmSJk2a5NMwc9jkyZO1ZMkSFRcXa9GiRZoxY4bsdt9b7D744AM5nc52X3fMmDEtNs14vV7NnTtXK1as0Pjx43X99def4O8IaL8Gl0ePLdntM5YSH6kfjk4PUUUAAADBE5Smmfz8fF100UVqbGyUYRiKjIxUdna2evTo0eWPk8zKytLgwYOVl5enJUuWaOLEiX5vqBYuXKji4mJJ0sUXX+z3Rqors9lsAXneY78vuvr3CQ75x8oSn53UbBbpZxP6k3cnYi0vUMzS3yiiaFWL8574DDWec6+aMy+ULBZ9kz8ByNs8yNpcyNtcyBtAV/DS2jLtq3X5jN06oa8ibPyZBQAAACA43F5DDy/2vSktwWHXT8f1DlFFAAAA5rZ69eojv540aVKLa6xWqyZMmKCXX35Z9fX12rx5s4YPH+6z5sUXXzzpWg6fMLN8+XKNGzdOs2bN4jM3BNSznxZrf53vCUm3T+yr6MjA3P8HAADQmQSle+OPf/yjGhoaZLPZ9Lvf/U4/+9nPFBcXF4xLH1d+fr7KysqOfF1T8/Xxg2VlZVq6dKnP+okTJ/o9x3XXXad7771XLpdL999/v6ZPn66hQ4fK5XJp5cqV+vDDDyVJaWlpmjJlSkB+H6GSmJgYlOskJCQE5ToInPyyGr21ab/P2FWj++r0LP/dCsg7BJy10tKHpM+elrxu/3lbpDT2FtnG/1xxkbEdemnyNg+yNhfyNhfyBtDZHKhz6bnPSnzGRvbtpnMyu4emIAAAAJhSoDYek9jQoqt4dX2pdpQ3+ozNOqevesRFtfs5yNpcyNtcyNtcyNs8yLpz27p1qyQpKipKAwcObHXdkCFDfB5zbNPMyTq6YWbs2LG65ZZb+F5BQO0qb9RLa8t8xkb366bzcnqEqCIAAIDgCkrTzEcffSSLxaJbb71Vv/rVr4JxyXZbvHixli1b1uLc1q1bj7xZOqylppkBAwbotttu05w5c9TY2KhXXnnFb01aWppmz56t6OjoDqkb6GoeWpQv4+tDZhQTadOt5/kfc4sgMwxp42vS+/dIdWUtr8k8T7r4z1LPrODWBgAAAHxDT328V01u75GvLTq0W5rFYgldUQAAADCdYG08JrGhRWdUXufU0yv2+owNSeumH00cJJv1m783IWtzIW9zIW9zIW/zIOvOpaioSJKUmpraZpN7evrXG8AefkxH8Xq9mjt3rpYvX64xY8Z0SMNMeXl5u9YFqrGfZrHOzTAMPfzRbnm8X9+4Zbda9MsLMmW3n/jto+RtLuRtLuRtHmRtLuR9SFCaZg4ePChJmj59ejAuFxIjRozQI488onfeeUfr1q1TRUWF7Ha7UlNTNWbMGF100UWKimr/rlFAOPmk8KCWbj3gM/aTczKVHM9rIqT2bZHeuUvavaLl+YQ+0kUPSoMmS9xcCAAAgC4if1+9Fm4+6DM29ZRk5fTq2BMTAQAAAPw/e3ceX0V973/8PTMn+54QkkAgEBBkUcBdXABbd+12rffWtlrb28VSrbXb9bb2eu/P29W2Vtta7W4Xe729tnVtrYhoxV1B2ZcQloQQyL6fnJn5/ZGQZJIAAc6Zc07m9Xw8eCTzPTPz/SQfApkz8/l+cDh3PrVFrd3ezu7/+e55x1UwAwAAgGMXDofV1tYmSSoqKjrsvtnZ2UpLS1NPT8+YC1LG6o9//KNWrVql9PR0TZo0Sf/3f/83Yp8zzjhD06ZNG/M5b7jhhjHt99BDD435nMeDYrHE8vhbe/XyzhbP2MfPr9SimZMOccTRWlpt+wABAABJREFUId/BQr6DhXwHB7kOlqDm25eimeLiYtXW1iZkl5Xly5dr+fLlUTlXcXGxrrvuOl133XVROV8yaGpqisl5TdP0/FC2tLTIcZzDHIFE5biu7nh0nWdsQlaKrjqpYODvD/n2WU+bMl6+S2lrfiXDtUe87Fqp6j7lE+o+fbmUkiE1N0d1evIdHOQ6WMh3sCRCvv1crRdA8nBdV99buVNDmlwqM8XUp84tj1tMAAAAAILn7T0t+sOruzxj7144SadPK4xTRAAAAOju7h74PD09/Yj7p6enq6enx3NcNOzfv38gnocffnjUfSZOnHhURTPAoXT0RHTH4xs8Y2V56brxgplxiggAACA+fCmaOffcc/XQQw9p3bp1OuWUU/yYEj6x7ZEP3MeC4zi+zYXo+uvGA9q4r8Mz9onF5UqzDv33h3zHiOsqbcsjynrhGzI794+6S7hiidrPu01O/vS+AR/yQL6Dg1wHC/kOFvINIFGs3NqkN/a0ecauP2uSJmSlxikiAAAABFmsFh6TEmNBC4zOdV195eF1codU82ekmPr04rJj+jtBroOFfAcL+Q4W8h0ciZBrFh4bXTgcHvg8FDryI3MH9xl6XDREc4Hng+69996ong/jxw9XbtPeFm/h121XzFVmqi+PjQIAACQMX377ueWWW/R///d/+sEPfqBrrrlmTBceAJJfOOLoR8/v9oxNK0zXu04qjlNEwWUd2Kzs525XSu0ro75u50xWx3m3KTz9nZJh+BscAAAAEAXhiKO7n/Ou5FyWm6prTi2LU0QAAAAIOj8XmGBBi8TxxIYDeqvWW8z/0bMmqSgzFJUcketgId/BQr6DhXwHB7lOHKmpg4srRSKRI+5/cJ+hxyWqoqKiMe0Xq8L+RCgWw0jVDV366XNVnrEzK/J01uS04/q7QL6DhXwHC/kODnIdLImQ70Qo7PeleuX000/XXXfdpZtuuknve9/79Itf/EITJkzwY2oAcfTQmn3a2+pdcePG86cqZFKU4Rejp02Zr/xA6W89IMMd+Uaca6Wq65RPqPOUT0kpGXGIEAAAAIiOh97cpz3NPZ6xG8+fqrSQGaeIAAAAAARNR9jW3au8xfzl+WkU8wMAACSA9PT0gc+7u7sPs6d3n6HHJTu/CrgoFos/13X1zb9vV8QZbIEZMg198YKKqD8kS76DhXwHC/kODnIdLEHNty9FM//1X/8lSTrjjDP02GOPqaKiQhdeeKFOPPFEZWZmHvH4r33ta7EOEUCUtXZH9IuXajxji8pzdP6M/PgEFDSuq7Qtf1HWC9+Q2Xlg1F3CFUvVft5tcvKn+RsbAAAAEGVNnb362bDrj5MnZevC2YVxiggAAABAEP3ipRod6Oj1jN2yrIJifgAAgASQmpqqnJwctbW1qaGh4bD7tre3q6enb5GmsXZxARLJii2Nenlnq2fsg6eValoRC+oCAIBg8qVo5vbbb5dh9HWWMAxDXV1devTRR/Xoo4+O6XiKZoDk88uXa9Xa7a1E/OySqQP/FiB2rAOblP3c7UqpfXXU1+2ccnWcf5vC094hkQ8AAACMA/ev3qP2Hu/1xy3LKrj+AAAAAOCbXU3d+t1rdZ6xxdPydF5lfnwCAgAAwAjl5eXauHGj6urqZNu2LMsadb/a2lrPMUAy6Qrb+v6z3g6YJTmp+thZk+MUEQAAQPz5UjQj9bX8O9w2ktOhLh6Pl2mah91GYqtt6db/vOG9MXTh7CItKM8bdX/yHSU9rcp46XtKW/sbGe7I1mmularuUz+l7tM/LYXSFZuf3iMj38FBroOFfAcL+UaiitX1icTf+0S2/UCnHl5b7xm7bO6EQ15/jAX5Dg5yHSzkO1jId7CQbwCJ4HsrdyriDN7/DJmGbrmAYn4AAIBEMnv2bG3cuFE9PT2qqqrSCSecMOp+GzZs8BwzXvCcVzD84pU92tcW9ox9/oJpyslIjcr5yXewkO9gId/BQa6DhXz38aVoxnEcP6ZBHBQUFPgyT17esT/sBP/9v6fWKGx7bwx95cqTVFCQNabjyfdRcl1p7R+kv39N6qgffZ9Zl8i45BvKKKxUojVaJd/BQa6DhXwHC/lGovDr+kTi730iuedPWzXk8kPpKaa++q6TVZAfvd98yXdwkOtgId/BQr6DhXwD8Ns/tjfpH1XNnrEPnFqqaYWJ9o48AABAsJ1xxhn685//LElauXLlqEUzjuNo1apVkqSsrCzNmzfPzxBjiue8xr/t+9v121drPWPnzCzS+8+aGbOCfvIdLOQ7WMh3cJDrYAlqvoNZKgQgZtbVtOhPa2o8Yx86q0LTJoytYAZHqe5t6ReXSH/+1OgFM/kV0gf+IF3zP1Jhpf/xAQAAADH07OZ6rdqy3zP2ifMqNSmKBTMAAAAAcDjhiKPvrtzpGSvKStHHzpoUp4gAAABwKDNnztScOXMk9RXNbNmyZcQ+jz32mGpq+p57ufTSSxUK+bImNXDcXNfV7Y+sV++QlcZSLEP/+a75dMAEAACBx2/1AKLqW3/dJHfIKs/ZaSHdeMHM+AU0XnU1Syu/Lr36U8kdpZuXlSadd4t0zmelFB4YBAAAwPgTsR399+MbPWMTc9L0ySUz4hQRAAAAgCD6/et12t3c4xm78fwpyk7jNiwAAEC0bdq0SXV1dQPbra2tA5/X1dXp2Wef9ey/dOnSEef4yEc+ottuu03hcFh33HGH3vve92revHkKh8NavXq1nn76aUlSWVmZrrzyyph8HUAs/HVdnZ7fesAz9tFzp2vmxOw4RQQAAJA4eLcWx6WpqSkm5zVN09P+qaWlRY4zSmEAEsqLO5pHXHx95MxJMns71dTUecjjyPdRcB2lbnxYGf/4psyuA6PuEp7+TnUt+ZqcvKlSe7ekbn9jPALyHRzkOljId7AkQr79ah+P5BKr6xMpMf7ew+uhN/Zqa327Z+zT55Yr3Nmm8KEvP8aEfAcHuQ4W8h0s5DtY4p1vrk+A4NrfHtbPX6rxjJ1Ulq3L5k6IU0QAAADj24oVK7Rq1apRX9u8ebM2b97sGRutaGb69Om6+eabdc8996irq0sPPvjgiH3Kysp06623KiNjfC1SynNe41dX2NZ/PrLOMzYxO1XXnlIc9byT72Ah38FCvoODXAdLIuQ7Ee6j+F4009jYqF/+8pd6+umntW7dOjU2NkqSCgsLNX/+fL3zne/U9ddfr8LCQr9DwzGwbduXeRzH8W0uHBvbcXXXymrPWHF2iv5l0cSjzh35Hp21f4OyV/2HUureGPV1O3eq2s+7Tb3TL+gfSI7vIfkODnIdLOQ7WMg3EoWffw/5ex9fbd0R/fgfuz1jsydm6rK5RTHJC/kODnIdLOQ7WMh3sJBvJArLsmJ2btM0D7sNf/zw+T3q6h28wWxI+vKF05USit4tWHIdLOQ7WMh3sJDv4CDXyeG0007TnXfeqSeeeEJvvPGGGhsbFQqFVFpaqrPOOkuXXHKJ0tLS4h1m1PGc1/j109W7VdcW9ox9bulUpVmxzzv5DhbyHSzkOzjIdbAENd++Fs3cd999+sIXvqDOzr4lX13XHXitpqZGtbW1euqpp3T77bfru9/9rj7xiU/4GR6A4/DkxgPast+7nPOnzilXekrsbgoGhdHTqsyXvqf0db+T4Y6s7nStNHWeeoO6TvmEFBp/b9oAAAAAw/38pRq1dEU8Y7csq5BpGHGKCAAAABjJz9Xzhq4UCH+8Vt2ox9fv94xdfdoUnTt3akznJdfBQr6DhXwHC/kODnIdXcuXL9fy5cujcq7i4mJdd911uu6666JyPiBedjZ26Tev7vWMnT41V++czaLlAAAAB/lWNPPNb35TX/nKVwYKZfLy8rRo0SKVlpZKkurq6vTmm2+qpaVFHR0duuGGG9Tc3KwvfelLfoUI4Bh19zq69x97PGOVRRm6Yl5xnCIaJ1xHaRsfVtaL35LZ1TjqLj3T36mO874qJ3eKz8EBAAAA8bG7qVt/eGOfZ2zZCQU6dUpunCICAAAAEDS24+r2R9d7xnLSQvriJbPjFBEAAACAIHJdV995ZqcizuDi5ZZp6EvvmCaDhcYAAAAG+FI0s27dOt12221yXVdlZWX6zne+o/e///1KSUnx7BeJRPS///u/+uIXv6ja2lp99atf1eWXX6558+b5ESaAY/Q/b9Zp37AWnzctmSrL5OLrWFn165T93O1KqXtz1Nft3KlqP/9r6p22zN/AAAAAgDi7+7ldnps/IdPQTefHdiVnAAAAABjqodd2a11Nq2fs5gtnaUI23eABAAAA+Gfl1ia9VN3iGbvm1FJNL8qIU0QAAACJyZeimR/+8IeybVvFxcV68cUXNXXq6A+zhEIhfeADH9C5556r008/Xfv379cPf/hD3XvvvX6ECeAYNHf16pcv13rGTpuSq3Om02L4WBjdLcp8+XtKX/d7Ga4z4nXXSlPnaTeoa9EnpBA33wAAABAsr+1q1cqtTZ6xfzmlRFMK0uMUEQAAAHBoTU1NR97pGJmmqby8wffhW1pa5Dgj31NG9LV2R/StJzd6xiqLMnTlibkxyTm5DhbyHSzkO1jId3AkQq4LCgp8nQ/Jw7KsmJzXNM3DbiM2usK2vrdyp2dsYnaqPnnO1JjlWiLfQUO+g4V8Bwe5Dhby3ceXoplnnnlGhmHo1ltvPWTBzFBTpkzRl7/8ZX3+85/XihUrfIgQwLH65Uu1au+xPWM3LZlCi8+j5TpK2/h/ylr9bZndjaPu0lN5oTrO/aqc3HKfgwMAAADiz3Zcff9Z782f/IyQPnbW5DhFBAAAAByebdtH3ilKHMfxdb4g+/FzO9XcFfGMff6CCplyfckBuQ4W8h0s5DtYyHdwkGskEr8KqoYWjiF2fva3TaprC3vGbrtynspLJ/gaB/kOFvIdLOQ7OMh1sAQ1374UzdTU1EiSFi9ePOZjzjnnHElSbW3tEfZEPLECQbDVNHfroTX7PGOXzJmgkyYf3T+oQc+3Vb9OmStvU6juzVFft/OmqXPpfygybZkMSbFbC8IfQc93kJDrYCHfwUK+AcTD4+sPaHN9p2fsk4vLlZPuy1sbAAAAAKBt+zv1x2H3RZadUKAzK4J5oxkAAABAfFTtb9dPn9vhGVs8o0hXnFwWp4gAAAASmy9PlhwsrIhEIkfYc9DBVRZ4AC+xsQJBsN3+tzfVa7sD2ymWoa9ceZIKCjKP67yByXdno/TMHdJrv5Dkjnw9lCGd/3lZZ9+onJR038PzS2DyDXIdMOQ7WMg3gFjrDNv60T92e8YqizL03gUT4xQRAAAAgKBxXVd3PrNTQ26LKC1k6HNLK+IXFAAAAIDAcV1Xtz+6QWHbGRgLmYb+693zZBhGHCMDAABIXL4UzUydOlUbN27UihUrxtxtZsWKFQPHAkg8b+9p0V/WeDtBXXv2NE0pPL6CmUBwHOnN30gr/lPqbBh9nxOvkC75hpTPv4EAAADAr1+pVUNHr2fs5qVTFTK5+QMAAADAHyu2NOq13a2esWtPn6RJeWlxiggAAAA4Ok1NTTE5r2mankX2Wlpa5DjOYY7A8XhmS4Oe27LfM3bNaWUqSonELMdDke9gId/BQr6Dg1wHSyLk268mHYfjS9HMhRdeqA0bNujOO+/Ue97zHp100kmH3X/dunX6zne+I8MwdNFFF/kRIoCj4Lquvv7ERs9YTnpIn1k2M04RJZHaN6XHvyDVvDb664WV0qXfkU54p79xAQAAAAmqrrVHv31tr2ds8bQ8LZ6eH5+AAAAAAAROd6+tu57d5RkryUnVdWeUxSkiAAAA4OjZtu3LPI7j+DZX0HT32vrO0zs8Y8XZKfrYWZPi9j0n38FCvoOFfAcHuQ6WoObbl6KZm2++WT/5yU/U3t6uc889V7fddpuuv/56FRUVefZraGjQL3/5S/33f/+32tralJ6erptvvtmPEHGMWIEgmP6xvUkvVnk7pFx/5iQp3KGmcMdRny8I+Ta6mpSx+jtKXfegDLkjXndD6eo+/UZ1n/KvUihN8mHlh3gJQr7Rh1wHC/kOlkTIdyKsQADAHz96frd6IoO/Q1tGX5cZAAAAAPDLr1/Zq7q2sGfsc0unKj3FilNEAAAAAILoFy/Xjrg2uXlphbJSuTYBAAA4HF+KZioqKnTffffp+uuvV3t7u7785S/r3/7t3zR9+nRNnDhRhmFo37592rFjh1zXleu6MgxD9913n6ZO5UGYRMYKBMFjO67uerbaM1aSk6qrF5ZELUfjKt+uo7QNDynrxTtldo9eCNNTebE6zv2KnNzJfQPj5Wsfo3GVbxwWuQ4W8h0s5BtArKzb264nN3oL9t+3YKIqJ2TGKSIAAAAAQVPb0qMHXq31jJ02JVfvmFUYp4gAAAAABNGupm795tW9nrHTpuTqotlcmwAAAByJL0UzknTttdeqqKhIn/zkJ1VbWyvXdbV9+3ZVVVVJklx3cNXYSZMm6f7779dll13mV3gAxujx9Qe0/UCXZ+yGc8qVnmLGKaLEFdr3lrKeu10p+9aO+nokf7o6zv8P9U49z9/AAAAAgCTguq6+t3KnZyw7zdInFpfHKSIAAAAAQXTXsztHdL/8wgUVMgwjjlEBAAAACBLXdfWdFdXqtYdcm5iGvvQOrk0AAADGwreiGUm6/PLLVV1drT/96U96+umntW7dOjU2NkqSCgsLNX/+fL3zne/Ue97zHqWkpPgZGoAx6O619ZMXdnvGTijO1KVzJ8QposRkdDUp86U7lb7+f2TIHfG6G8pQ52nL1bXoo5KVFocIAQAAgMT3982Nequ23TP2sbMmqyCT9wsAAAAA+OOVnS16Zqu3i/xVC0s0s5julwAAAAD88+y2Jr1Y3eIZu+aUUlVO4NoEAABgLHwtmpGkUCik97///Xr/+9/v99QAjtODb9Spvr3XM3bT+VNkmaxYIElybKVteEhZL94ps6d51F16ZlyqjnP/XU7OJH9jAwAAAJJIT8TRPc/t8oyV56fpnxeVxCkiAAAAAEETsR3d+Yy3+2VeRkifPIfulwAAAEhOlmXF5LymaR52G8enq9fWd1d6r02Ks1P1yXOnxiynh0O+g4V8Bwv5Dg5yHSzku4/vRTMAklNTZ69+9XKtZ+yMilydNS0vThElltC+tcpa9R9KqX971Ncj+dPVcf7t6p16rs+RAQAAAMnn96/v1d7WsGfspvOnKjUUzDdvAAAAAPjvf9fUq6qhyzO2/Nwpyk3n9ioAAACSU0FBgS/z5OXxLFE0/eKpzaobds/kq1fMVXnphDhF5EW+g4V8Bwv5Dg5yHSxBzTfv6gIYk5+/VKOOsOMZu+n8qTKMYHeZMboalfXinUrb8JAMuSNed0MZ6jz9M+paeL1kpcUhQgAAACC5HOgI65cveQv2TynP0bIT/LmZBwAAAACNHb26b/Uez9jsiZl690nFcYoIAAAAQBDtONCh+1ZVecbOqizUuxZMilNEAAAAycmXopm3335b7373u2VZlp599llNnjz5sPvX1NRoyZIlcl1XTz75pGbNmuVHmAAOYXdTt/53Tb1n7NK5RTqxJCtOESUAx1b6hv9R5ovfldnTPOouPTMvU8c5t8rJ4UIVAAAAGKuf/GOPOnsHC/YNSbcsqwh8wT4AAACSj2VZMTu3aZqH3cbxufeFHWrvsT1j/3ZhpVJT/F+PkFwHC/kOFvIdLOQ7OMg1gGhxXVf/+eh6he3BeyYh09B/vXs+90wAAACOki/v7P72t79VdXW1Lr744iMWzEjS5MmTNWvWLP3tb3/Tb3/7W/3Xf/2XD1ECOJQf/2O3bGewi0qKZejT50yJY0TxFapbo6xV/6GU/etGfT2SX6mOJberd8o5PkcGAAAAJLct9R36y9v7PWNXzJsQ7IJ9AAAAJK2CAv+6Jebl5fk213j31p5m/flt70Ji71k4SctOqohTRF7kOljId7CQ72Ah38FBrpFImpqaYnJe0zQ9f9dbWlrkOM5hjsBYrNzSoGc3e++ZfODUMhWnRmKWy7Eg38FCvoOFfAcHuQ6WRMi3n++VH4ovRTOrVq2SYRh617veNeZj3v3ud+uvf/2rVqxYQdFMAovVKmmsvJE43q5t0983N3rGPnBqmcoLM6M2R7Lk2+hqVMYL31ba+j+M+rqbkqmuM25Sz6KPSlaqYreGYHJLlnzj+JHrYCHfwUK+AcSC67r6/rO75A4Zy0gx9enzgluwDwAAAMBfjuPq9kfWyx1yYZKZaunfLp0Tv6AAAACAKLFt+8g7RYHjOL7NNV5199r6zoodnrEJWSn617MnJdz3lnwHC/kOFvIdHOQ6WIKab1+KZrZs2SJJOvnkk8d8zPz58yVJmzdvjklMiA6/Kr9YeSM+XNfVDx/a5BnLy0jR5y+Zr7zMlJjNm3D5dmzp9V9KK/6f1N08+j7z3ivjov9WZt5kRa+cKBgSLt+IGXIdLOQ7WMg3gGh4bnuzXt3V6hm77oxJKs5OjVNEAAAAAILmz2tq9MauZs/YjRecoNK89PgEBAAAACCQfvlyrfa2hj1jNy+dqqxUlvAFAAA4Fr4UzbS3t0uSsrOzx3zMwX1bW1uPsCeAWFmxsV6v7PB2mfnMspkxLZhJOLtflZ74vLR37eivT5gtXfZtqXKpr2EBAAAA40mv7egHq3Z5xkpyUvWh00rjFBEAAABw/JqammJ2btM0PYtYtLS0yHGcmM0XBO09EX398Q2esSkF6XrfvPyY5vJIyHWwkO9gId/BQr6DIxFy7dcCuABiY3dTtx54da9n7JTyHF18YlGcIgIAAEh+vhTNFBQU6MCBA6qrq9OCBQvGdExdXZ0kKScnJ5ahATiEiO3om3/1dpmZnJ+hD59dEaeIfNZxQHr6P6Q3fzv66ylZ0tIvS2feIIVY+RoAAAA4Hv+7Zp92NXV7xj5z3hSlp7BiGgAAAJKXbdu+zeU4jq/zjUf3v7BbBzp6PWOfXzpVluEm1PeWXAcL+Q4W8h0s5Ds4yDWAo+G6rr7zTLV6bXdgzDKkL71jmgzDiGNkAAAAyc2XopkTTjhBBw4c0F//+lddfPHFYzrmySeflCTNmDEjlqHhOMVqZa1EWHkj6B5es0/b6ts9Y58+t1xd7a3qivJcCZVvx1ba279X+ovfkdkzeqer8Kwr1XneV+Rml0ptHZI6/I0xySVUvhFT5DpYyHewJEK+WSUNGD+au3r109U1nrF5pVm6eA4rpgEAAADwR3Vjlx58vc4zds70fJ07g/cfAAAAAPhn1fYmrd7R4hn7l1NKNbM4M04RAQAAjA++FM1cfPHFWr16te6//3594hOf0Jw5cw67//r16/XTn/5UhmHokksu8SNEHCO/VsNg5Q1/dYVt/fgfuzxjsydm6sLZBb7kIV75Du19Q9nP3a7Q/vWjvh4pmKmOJbert/zsvgH+TkYFP9/BQa6DhXwHC/kGcDx+urpGbT3ef0NuWVYhkxXTAAAAAPjAdV1975mdijiDKzmHTEO3LJsax6gAAAAABE13r63vPrPTM1aUlaKPL54cp4gAAADGD9OPSW644QZlZWWpu7tbF1xwgR577LFD7vvII4/one98p7q6upSRkaHly5f7ESKAIX73ep0aOno9Y59dMnXcPrRmdB5Q9oovK///3j9qwYyTkqWOc25V8788NlgwAwAAAOC4VTd06Y9r9nnGLpxdqAWTc+IUEQAAAICg+UdVs1ZXe1dyvubUUlUUZsQpIgAAAABB9KuX92pva9gz9rmlU5Wd5su66AAAAOOaL79RTZgwQT/5yU/04Q9/WPX19Xr3u9+tyspKnXvuuSorK5Mk7d27V88//7x27Ngh13VlGIbuvfdelZSU+BEigH4NHb164JVaz9jiaXk6oyIvThHFkGMrfd3vlfny92T2tI66S/cJV6rznH+Tk13qc3AAAADA+HfXql2yBxdzVqpl6KbzWc0ZAAAAgD/CEUffXTlyJeePnc1KzgAAABh/LMuKyXlN0zzsNo5sV1OXHnjV+7zWqVNyddm8iTISbJFj8h0s5DtYyHdwkOtgId99fCtD/uAHPyjHcXTDDTeos7NT27dvV1VVlWcf1+17UiYrK0v33nuvPvShD/kVHoB+P3txjzp7nYFtQ9KNS8bfQ2uhva8re9XtCh3YMOrrkcIT1HH+7eotP8vnyAAAAHCsYnWzR+JNhFh4aUez/lHV7Bn70OmTVF6YGZ+AhiDfwUGug4V8Bwv5DhbyDeBY/f71Ou1p7vGM3XT+FGWlxu76EgAAAIiXgoICX+bJyxuHC/PGkOu6uuXPWxUessqYZRr6+j8tVGFhThwjGxvyHSzkO1jId3CQ62AJar597d334Q9/WBdeeKHuvvtuPf7441q3bt1AoYxpmjrppJN05ZVX6jOf+QwdZoA4qG7s0sNr6z1jV8yboBOK4//QWrQYnQeUtfpbSt/08KivOynZ6jzjJnWffK1kpfgcHQAAAI6HXzd7pOC+iRAttuPqB8+97RmbkJ2qz10yTznpifd7OPkODnIdLOQ7WMh3sJBvAGNR3xbWz1+q8YydPClbl82dEKeIAAAAAATR0xvrtXLzfs/YRxZP0+zSxC+YAQAASBa+Fs1IUmlpqb7+9a/r61//uiKRiBobGyVJhYWFCoV8DwfAED96freGLFqgtJChT55THr+AosmJKP3t3ynz5e/LDLeNukv3rHepc/G/ycmmaA8AAACIpf95dbc21Xl/L//8RbMTsmAGAAAAwPh093O71NXrDGwbkr54wTQZhhG/oAAAAAAESnevrf98dL1nrDgnTTe/84Q4RQQAADA+xbVKJRQKaeLEifEMAUC/tTVtWrm1yTP2gVNKVZqbFqeIoidU+5qyV/2HQg2bRn09UjhL7UtuV2TymT5HBgAAAARPW3evvvf3zZ6xE0tzdPVpU+IUEQAAAICgWbOnTX/d2OAZe8/JxZpTmhWniAAAAIDYa2pqOvJOx8A0TU/X15aWFjmOc5gjcNC9z+/SnqYuz9jNS6Yq0tWuYcMJg3wHC/kOFvIdHOQ6WBIh3wUFBb7ONxpauwCQ67r6wapdnrG8jJA+cuakOEUUHUbnAWW98E2lb/7TqK87KdnqPPNmdZ/0IcliRWsAAIBkF6ubPVJivIkwXvzg2Z060B72jN28ZIpaW5rjE9AoyHdwkOtgId/BQr6DJd75ToSbPQDGznZcffuZas9YdpqlT59LIT8AAADGN9u2fZnHcRzf5kpme5q79auXazxjp5Tn6KLZBUn1/SPfwUK+g4V8Bwe5Dpag5tv3opmtW7fqgQce0Isvvqi6ujp1dXXpb3/7m2bOnDmwz7p167Rr1y5lZWVpyZIlfocIBM6z25r0Vm27Z+xfz5qs7LQkratzIkp/+7fKfPn7MsPto+7SPfs96lj8ZblZdLsCAAAYL/y8qA/qmwjHq6a5W797rdYzdt6MfJ02JSehv5/kOzjIdbCQ72Ah38FCvgEczp/frteW+k7P2KfOKVdBJotrAQAAAPDPnc/sVNh2B7YtQ/rSO6bJMIw4RgUAADA++fZEvOM4+tKXvqQf/OAHchxHrtv3C59hGAqHvSvM7tq1S1dccYVCoZB27NihyZMn+xUmEDgR29E9z+32jE3OS9NVC5OzmCRU+6qyV92uUMOmUV+PFM1W+/m3KzL5DJ8jAwAAAHDPc7vVO/QGkGno5iVT4xgRAAAAgCBp6Yrox//Y4xmrLMrQVQuS854IAAAAgOT03PYm/aOq2TN29SmlmlmcGZ+AAAAAxjnfimY++clP6he/+IVc19XkyZN19tln649//OOo+1522WWaPn26qqur9cc//lGf/exn/QoTR8myrJic1zTNw24jev7vrf3a1dTtGbtxSYXSU/1bUS0a+TY66pXxj28qbdPDo77upuao66zPqWfBtZIZUmz+5mIs+PkODnIdLOQ7WMg3gGOxZk+bnt7S6Bm7emGJKgoz4hQRAAAYd1xXssNH3g9AYN23eo9auiKesS9cUKGQxXsbAAAAAPzR3evozhU7PWNFWSn65GIWFgcAAIgVX4pmVqxYoZ///OcyDEP//u//rv/8z/+UZVmHfbju/e9/v7797W/rmWeeoWgmgRUUFPgyT15eni/zBE17T0Q/Xf2aZ2xBeZ6uPmumTDN+rT6PKt92RHrlfunZb0g9raPvc/K/yLjwv5SZUyLWY0g8/HwHB7kOFvIdLOQbwJE4rqvvrfTeAMpNt/SvZ3MDCAAAHIPeTlnN1bKaq2Q171CouVpq2yk1bJdOuVY64wvxjhBAAtq2v1N/XLPPM3bBCQU6o4L3NQAAAAD459ev1Kq2tccz9tklU5Wd5tv65wAAAIHjy29a999/v6S+DjJ33HHHmI4544wzJEnr16+PWVxA0N3/XJUOtHtXXvy3S+fEtWDmqFS/ID3xRan+EP9OTJwnXX6nVLHY37gAAAAAeDy54YA27OvwjH1icbnyMrgBBAAADsGxZbbXymrqK4yxmncMft6+99DHNWzzL0YAScN1XX17RbUcd3AsLWTo5qUV8QsKAAAAQODsae7Wr1+p9YwtKs/RpXOK4hQRAABAMPjydMqLL74owzD0sY99bMzHlJeXS5Lq6upiFRYQaPWt3frpc1WesXecOFFnz0iCi7C2Oump26S3Hxr99bRcadlXpNP/VbJ4CA8AAACIp66wrR89v9szVlGYrqsWTIxTRAAAIJEY3c3egpiDH1uqZdjhI59guANbox8kgKT39OZGvbGnzTN23RmTNCkvLU4RAQAAAAii7z6zU2F7sJrfMqQvv2OaDCNJFjgGAABIUr48TV5fXy9JmjZt2piPSUlJkSRFIpFYhIQoaWpqisl5TdNUXl7ewHZLS4scx4nJXEH1rb9uV1evPbBtGtINiyfFLKeHM+Z8271KW/trZbx8l4xw+6jn6pnzPnWd829ysyZKrW2j7oP44uc7OMh1sJDvYEmEfBcUFPg6H4Bj95vX9qq+vdczdvOSqQpZZpwiAgAAvrPDslp2yWquktXU3zWm/3OzuzG6czVVS3avJH7XANCnK2zrrlW7PGNluam69vRJcYoIAAAAQBA9t71Jz1c1e8auXlSqmcWZ8QkIAAAgQHwpmsnKylJzc7P2798/5mP27NkjSSosLIxVWIgC27aPvFMUOI7j21xBsKOhS396a59n7Mr5xZpWmJYQ3+fR8h2qeVnZq/5DocbRV4qMTJij9iW3K1J2Wt9AAnwdGBt+voODXAcL+Q4W8g3gUOrbwnrglb2esTMqcnVuZX58AgIAALHjujI76vuKYZp39BfHVMlqrpLZukeGG/1Ceztnkuz8SjkFlUqfPF8qmilNOEFyQhILOSABWJYVs3ObpnnYbQx64LUa7Wvzdq665YLpykpPiVNER4dcBwv5DhbyHSzkOzjINYDRdPc6+u4zOz1jRZkp+uQ5k+MUEQAAQLD4UjRTWVmpN954Qxs2bNCFF144pmOefPJJSdK8efNiGRoQSPc8t0vOYKdPpYVMfXJxefwCOgyzfZ8yV39T6VseGfV1JzVHnWd+Tt0nfVAyffknDQAAAMAY/ej53eqODD6wahrSLUsrZBhGHKMCAADHJdwhq6VaVtPB4pj+j83VMntH7w59PJzUbNn5lbILKmXnTx/8mDdNSsmQ1FeYkD60G2UcumkDo/GzS+rQjrAYtLuxU79+pdYztnhGka46c0bSXpeQ62Ah38FCvoOFfAcHuUYiiVVhP8ViR/bbF2tV09LjGbt5WYXyMtPiFNGxI9/BQr6DhXwHB7kOFvLdx5cnzC+66CK9/vrr+tGPfqQbb7zxiN/sDRs26Fe/+pUMw9Bll13mR4hAYLy5p1XPbW/2jH3wtFJNzEmNT0CHYvcq461fK+OVu2X2doy6S/eJ/6SOxV+SmznB5+AAAAAAHMmGunY9vuGAZ+zdJ03UzOLMOEUEAADGzLFlttX0dYoZ6BjT3z2moy7q07lmSHbulP7imOl9H/sLZNyMIilJH2wHEH93PL5B4SGF/JZp6D+unJe0BTMAAADA8fCrsJ9iMa9dDZ36xcs1nrHTpxXoQ+fOGhfXJuQ7WMh3sJDv4CDXwRLUfPtSNHPTTTfp7rvv1vbt2/WpT31KP/7xjxUKjT713//+d11//fXq7u5WUVGRPv7xj/sRIhAIruvqB6t2ecbyM0K69vSyOEU0utCeF5Wz8msKNW4d9fXIhLlqX3K7ImWn+hwZAAAAgLFwXVffW+m99shKNfWpcxKzwyUAAEFldDUNKYwZUhzTvFOGE476fE7mhMGCmP6imEh+pZzccslKifp8AILt+a379bf1+zxjHz6rQrNLc+IUEQAAAIAg+q/H1o8o5v+vd88fFwUzAAAAycKXopmSkhL95Cc/0bXXXquf//zn+tvf/qbLL7984PUf/OAHcl1XL7zwgjZt2iTXdWWapn71q18pOzvbjxCBQFixpVHr9nq7tnz87MnKTvPln4Ija62Vnvqqctb936gvO6k56jzrFnXPv0YyEyRmAAAAACOs2NKoNTVtnrHrz5ysoiwehgUAwHd2j6zmnf3FMDtkNVX1F8dUy+xuivp0bih9sCimvzCmr1Bmmty03KjPBySypqbo/4wdZJqmZ0XAlpYWOY5zmCOCpdd29LU/v+0Zy88I6frTJ8Y0L7FAroOFfAcL+Q4W8h0ciZBrv7qJADiyFRv36emN9Z6xa8+u0Jwy3iMBAADwk29PnX/wgx9USkqKPvnJT2r37t267777Bqqlf/azn0nqW4lWkrKzs/XrX//aU1gD4Pj02o5+9Pxuz9iU/DS9b8HEOEU0hN0rvXC3tOpbUrh91F2651yljrO/KDdzgs/BAQAAADgaPRFH9zznvfaYlJumD5xaGqeIAAAIANeV2bFvSNeY/o4xTTtktu2R4Ub3AS1Xhpycyf1FMdMHu8cUVMrJLpUMM6rzAcnKtm3f5nIcx9f5Et2Dr+3VjoYuz9jy86YoK8VI+u8TuQ4W8h0s5DtYyHdwkGskklgVkCdCsVgi6u61RxTzF2WlJGUx/1DkO1jId7CQ7+Ag18GSCPlOhMJ+X1s1XH311XrHO96hH//4x3r00Ue1Zs0aRSKRgdfnzZund73rXfrsZz+riRMT4EF+YBx5eG29djf3eMaWnzdFKVZ8b2AbXQ3KeeLT0t7XRn09UjxP7effrkjZKT5HBgAAAOBY/M8bdapp8V573Hj+FKWFeHgWAIDjZYTbZTbvUKipv2vMweKY5h0yejujPp+TljukIOZgcUyl7PwKKZQe9fkAIBoaOnp1/+oaz9ickiy9a35xnCICAAAAEoNfBVwUi/X55Ut7Rr1fkhlK/mL+och3sJDvYCHfwUGugyWo+fa1aEaSioqKdNttt+m2226T4zhqbGyUbdsqLCxUSkqK3+EAgdDeE9FPX/TeIJpflqV3zCqMU0R9rMZtyn3sX2W17h7xmpOWq86zPq/ueR+QTCsO0QEAAAA4Wo0dvfr5S7WesQWTs/XO2fG99gAAIKk4EZmtewaKYaymqv7imGpZHfuiPp1rpsjOm9pXGNPfLaavMGaa3Iwiqb9jPAAkix89v1sdYe9N3y9cUCHL5N8zAAAAAP6oae7Wr1/x3i9ZODlHl8+dEKeIAAAAgs33opmhTNPUhAn8IgjE2gOv7lVzV8Qz9tklU2XE8YZ3yu4XlPPkcpnhthGv9cy9Wu1nf6HvpjwAAACApHHf6j0jHk67ZWlFXK89AABISK4ro7uxvyhmSMeYph2yWnbKcHqjPqWdOVFO/nRFDnaMKegrjHFyp0hmXG8VAEDUrNvbrkfW7feMXTZ3ghZMzolTRAAAAACC6Lsrd6on4g5sm4b0pXdwvwQAACBeuBMGjHP1bWH97rU6z9iSmQVaVJ4bp4iktHUPKnvVf8hwh7X3yi2X3v9LdWafIDeArb8AAACAZLZtf6f+9Fa9Z+zSuUWaV5Ydp4gAAEgAkR5ZLdUjC2Oaq2T2tER9OjeU0d8tpr8wZqB7zHS5qTwwDmB8c1xXdz5T7RnLTDF14/lT4hMQAAAAgED6x/YmPbe92TN29aISzZqYFZ+AAAAA4E/RTG9vr7Zu3SpJmjFjhtLS0jyvd3d36ytf+YoeeughHThwQNOnT9cNN9ygG2+80Y/wgHHtvtV71BNxBrYtQ7rxvDjdIHJsZa7+ljLX/Hzka5NOkT7woJRTKjU1+R8bAAAAgGPmuq7uWrVLzuCiaUoLmfpMvK49AADwk+vIbK/rK4hp3iGrqaqvQKZph8y2Ghlyj3yOo5lOhpzc8iEFMZUDH52sEskwozofACSLJ9Yf0Lq9HZ6xj509WcXZqXGKCAAAAEDQ9EQcfeeZnZ6xwsyQPrm4PE4RAQAAQPKpaOZPf/qTPvCBD6iwsFB79uwZ8fp73/tePfXUU3LdvpuHmzZt0s0336zNmzfrhz/8oR8hAuPStv2denTdfs/Yu0+eqGlFGf4H09upnKc+p7QdT494KTzzUqVe/QspNdP/uAAAAAActxd2tOilau9q+deeXqaSnLRDHAEAQPIxwm39XWL6u8Y0VclqrpbVvENGpCvq8zlpeX3dYg52jTlYHJNXIYX4PxYAhmrvieie53Z7xqYWpOsDp5TGKSIAAAAAQfTAK7WqaenxjN20ZKpy0n15TBMAAACH4MtvY3/729/kuq7e8573jOgy8/jjj+tvf/ubDMNQeXm5Tj/9dL3yyiuqqanRvffeq2uuuUaLFy/2I0xg3Pnh87s9Kz1npJj6xOLJvsdhttcp9/FPKLR//YjXOk+9QT3nfFGpFMwAAAAASSliO7rrWe+qacXZKbr29LI4RQQAwHFwIjJbd8tq2qFQc5XM5h0KNfUVyZid+498/FFyzRTZeRWDhTH5lbILpsnOr5SbURj1+QBgvPr5i7Vq6Oz1jN2yrEKpIbpvAQAAAPBHTXO3fvVKrWdsweRsXT53QpwiAgAAwEG+FM288cYbMgxDS5YsGfHaL37xC0nSrFmz9MorrygnJ0ctLS1avHixNm3apJ/97GcUzQDH4LVdLfpHVbNn7EOnlWlCVqqvcVj165T7+CdkdezzjLtmitqX3qGeuVfJMrhpBQAAACSr/1tbr+rGbs/Y8nOnKCPVilNEAAAcgevK6Gro7xizo79jTP/H1l0ynEjUp7SzSvq6xBzsFtP/uZMzWTJZaRQAjkd1Q5d+/0adZ+zcynydW5kfn4AAAAAABNJ3V+5UT2RwdWPTkL78jmkyDCOOUQEAAEDyqWimvr5ekjRz5kzPuOM4WrFihQzD0I033qicnBxJUl5enj7zmc9o+fLlevHFF/0IEcfIsmLzEJRpmofdxuE5rqu7n9vtGSvKStF1Z5bHLGejSdn+lLL++lkZkS5vfGl56rjiJ4qUny1L5DtoyHdwkOtgId/BQr4BHNTaHdH9q2s8Y3NKsnTZPFZNAwAkgN4uqbFKOrBV6XveltG4TVZzdV/XmJ7WqE/npmQOFsTkVyrS3z3GyZ8mNzU76vMBACTXdXXnyp2yncEH01IsQ59fVhHHqAAAAAAEzT+2N+m57c2esfcvLNGsiVnxCQgAAAAevhTNHDhwQJKUkZHhGV+zZo1aW1tlGIYuv/xyz2vz58+XJO3e7X3wH4mloKDAl3ny8vJ8mWe8eGRtrTbUdXjGPnfhbJWX+vTgmutKL/5Qeuo2Sa73tcJKmdf8r3ImzBz1UIl8Bw35Dg5yHSzkO1jINxBcP3uxRi3d3tX4b1k2VSarpgEA/OI6Mtvr+rvFVPV/7CuMUVutDr43lXH4s4x9OsOUk1Muu78gpq9zzLS+4pisEon/AwHAV89tb9ZL1S2esQ+eWqopBelxiggAAABA0PREHH3nmZ2escLMkD51TnmcIgIAAMBwvhTNpKWlKRKJDBTPHPTcc89JksrLy1VR4V3x6WDXGdu2/QgRGDd6Ira+87dNnrHK4iz98+lT/AnA7pWe+IL0+q9GvlZxjvTPv5UyC/2JBQAAAEDM7Grq1kNv7vOMXXBCgRaV58YpIgDAeGb0tA0pitnR96epSlZLtYxId9Tnc9IL+jrGFFQOdo8pqJSdN1Wy0qI+HwDg6PVEHH1vpffBtOLsFH30rMlxiggAAABAEP3m1b2qaenxjN10/lTlpPvyaCYAAADGwJffzCoqKrRhwwa9/PLLesc73jEw/uijj8owDJ1//vkjjmlsbJQkFRcX+xEiMG789qVd2t3Y5Rn78iUnKsUyYz95V7P00LXSjlUjX1twjXTlD6RQauzjAAAAABBzP1i1SxFnsLNkimXopiVT4xgRACDp2b2yWncPFsQ0DxbImJ0Hjnz8UXLNVNn5FX0dY/KnD3aPyZ8uN8OfDtsAgGP3u9dGfzAtM9WKU0QAAAAAgqa2pUe/fLnGM3bypGxdNm9CnCICAADAaHwpmlm2bJnWr1+ve+65R+9973s1Z84cPfLII3r22WclSZdddtmIY9atWydJKisr8yNEHKOmpqaYnNc0TeXl5Q1st7S0yHGcmMw1nrR1R3T301s8Ywsn5+j0stSY5eogs2WXsv9yvaym7SNe61r8RXWf9mmprUNSx8hjyXegkO/gINfBQr6DJRHyXVDAQ4xAPL22q0WrtnmvMf7llFKV56fHKSIAQNJwXRldDYNFMU1Vspqr+z5v3S3DiUR/ztzJ6s2tUGRYYYyTM1kyebAaAJLRvrYe/eKlWs/YyZOydcmcojhFBAAAACQ+y4rN+yCmaR52ezz73rO71BMZXGDMNKR/v2iGUkLjt8tMkPMdROQ7WMh3cJDrYCHffXz57ezGG2/U/fffr/r6es2fP18FBQVqamqS67oqLy/XP/3TP4045qmnnpJhGDr55JP9CBHHyLZtX+ZxHMe3uZLZz1/crZZu74MFNy2ZEvOHWEN7X1PO4zfI7G70jLtWmtou/K7CMy+VjiIG8h0s5Ds4yHWwkO9gId9AsNiOq++t3OUZy88I6WNnTYpTRACAhNTbJaulur8oZseQ7jE7ZIbboj6dk5LV3y2mUnZ+pdzCSmVXLJQKZ0hp2WpvauJ3VgAYR+5etVvdkcH7DoakL71jmgzDiF9QAAAAQILza1G6oYvvjWcrN9Xr2a3eZ6U+fFaFzjqxPE4RxUdQ8o0+5DtYyHdwkOtgCWq+fSmaOeGEE/Sb3/xGH/3oR9XR0aHGxr5fFvPz8/Xggw8qNTXVs39dXZ3+/ve/S5IuuOACP0IEkl5da48efL3OM3bBCQU6eVJOTOdN2/wXZa/4NxlO2DPuZE5Q6+X3K1KyIKbzAwAAAPDXo+v3a8v+Ts/Yp84pV3ba+F01DQBwCK4js63WWxhzsHtM+97oT2dYcnLLBzrFHOwaEymolJtZLA15UNqyLInuhAAwLr25p1V/29TgGXvPyRN1YklWnCICAAAAEETff3qLZ7soK1W3XDQ7TtEAAADgcHx7ouX973+/lixZoscff1x1dXUqKyvTu971LhUWFo7Y96233tI111wjSbrsssv8ChFIaj95YY/C9mC7T8s0tPy8KbGb0HWV+crdynz17hEvRYpmq/Xyn8rJnRy7+QEAAAD4riNs697n93jGKosy9J6TJ8YpIgCAH4zuFm9BzECBTLUMuyfq8zkZhSMKY+z86bLzpkpW6pFPAAAYt2zH1XdW7PSM5aRZ+vS5wVrJGQAAAEB8tXX36q09LZ6xL196ovIyUuIUEQAAAA7H12VgJ06cqOuvv/6I+1100UW66KKLfIgIGB+21Hfo8fUHPGPvO3miKgozYjNhpEfZK76s9K2PjngpXLFEbRf/QG5qbDvcAAAAAPDfr16uVUNnr2fsc0unKmQahzgCAJA07LCs1t39RTFVspqrBz43uxqjPp1rpcrOmya74GBxTP/H/Eq56cFsCw8AOLI/vVU/aufLgkweTAMAAACOpKmpKSbnNU1TeXmD7+e0tLTIcZyYzJUoXt3pLZgJmYaWVGTG7HucSIKY7yAj38FCvoODXAdLIuS7oKDA1/lG42vRDIDYuOe53XKHbGemmPr42bHp8mJ0HlDuEzcope6NEa91nXytOs79imTyTwsAAAAw3uxt6dHvXtvrGVs8PU9nT8+PT0AAgKPnujI69yvUVCWzeYdCzTsGC2Na98hw7ahPaWeX9RfEVMrOn9b3saBSTs4kyTCjPh8AYPxq7urVvf/wdr6cMSFD/7SwJE4RAQAAAMnFtqP/3s9oHMfxba54WVfb6tk+oThTluGO+697NEHINwaR72Ah38FBroMlqPnmyXYgyb1U3aIXq72rF1x7xiQVZkV/VTWrcatyH/1XWW3em1KuYarjvNvUffK1UZ8TAAAAQGL44fO7FbYHy/UtQ/rc0oo4RgQAOKTezr5OMc1Vspp29HeO2SGraYfM3vaoT+ekZvcXxUyXXTB9oDDGzquQUjKjPh8AIJj+9819aumOeMa+eEEFnS8BAAAA+G5DXYdne05pVpwiAQAAwFhQNAMkMcd1dfdzuzxjE7JS9MFTS6M+V8qufyjnr8tlhr0PVjgp2Wq7+C71TlsW9TkBAAAAJIa3a9v0t00NnrH3LSjR9KKMOEUEAJBjy2yvHegUYzVXD37eXhf16VzDkpM7RXZBpSL50/u7x/QVyLiZEySDB5YBALH12m7vSs7vmFWo06bmxSkaAAAAAEG2cZ+3aGYuRTMAAAAJjaIZIIn9dWODttR3esY+dU65MlKtqM6Tvu73ylp1uwzX247Lzpmk1st/JnvC7KjOBwAAACBxuK6r7630Futnp1n65OLJcYoIAILF6G7uL4bZ0d8tpr8wpmWnDDsc9fmcjKIhBTEHi2MqZedOkazodzYGAGAsHNfVpmEPpV02d0KcogEAAAAQZM2dvapp6fGMzS2haAYAACCRUTQDJKmeiKMfP7/bM1ZZlKEr5hdHbxLHVtYL31TG2l+MeKm3ZIFaL7tPblYU5wMAAACQcP62qUFv7/V2nPzXsycrP5MHpwEgauweWS27+otidvR3jun73OxujPp0rpU2pCBmWl9RTH+hjJuWG/X5AAA4Xrsau9URdjxjrOQMAAAAIB6Gd5lJCxmqnJAZp2gAAAAwFhTNAEnqoTf3qa7Nu5roZ86fopBpRGeCcIdynvqc0qpXjHipZ+Zlanvnd6RQenTmAgAAAJCQunsd3fOct1h/Sn6a/nlRSZwiAoAk5royO+qHFMQc7B5TJbN1jwzXOfI5jmY6GXJyJo3sGJM/XU5OmWSYUZ0PAIBYWl/nLeQvzk5RcXZqnKIBAAAAEGQbhhXNzJ6YFb3ntQAAABATFM0ASailK6JfvFTjGTulPEfnVeZH5fxm+17lPvYJhQ5sGPFa52mfVueZn+PBCgAAACAAfvf6Xu0bVqz/2SVTlWJxPQAAhxTuGCiGsZqrZTVVKdRcJbO5WmZvx5GPP0pOas5Al5iBj/l9HWRY8AQAMF4MX8l5bml2nCIBAAAAEHQb6rzXJ3NK6IIJAACQ6CiaAZLQL1+uUVuP7Rm7aclUGcbxr1pg1b+t3Mc/Katjn2fcNVPUvuy/1TPnn457DgAAAIxf4XBYDz74oKqqqlRXV6f29nZlZmaqtLRUF1xwgc477zyFQlyKJoPmrl796uVaz9ipU3K0ZGZBnCICgATi2DLb9vR3jOkvkGnqL5LpqIv6dK4Zkp07tb8oZlpfUUx/gYybUSRF4T0hAAASGQ+lAQAAAEgUG4d1wpxbyvUJAABAouNJJSDJ1Lb06H/e9Ba0XDi7UPPLjn9VtdSqp5Tz1C0yIl2ecSctX62X/ViRyWce9xwAAAAY37q7u/XUU09p5syZWrRokXJzc9XR0aE1a9bo3nvv1erVq3XrrbfKNOlUkuhW72hRV68zsG1IumVZRVSK9QEgWRhdTf0FMQc7x+zo/7NThhM+8gmOkpNZPNAlxi6oVCS/rzDGyS2XrJSozwcAiC3LsmJ27uHXVOP5GiviuNpc3+kZO2lSTky/v4kkSLkG+Q4a8h0s5Ds4TKdXqt8oHdgiHdgiq/JKKask3mEBiJID7WHVt/d6xuiECQAAkPgomgGSzL3/2K1e2x3YDpmGlp835fhO6rrKePNnylz9LRlyPS/ZedPUcuXP5ORPP745AAAAEAjZ2dn69a9/PaKbjG3buuOOO7R27VqtWbNGp5xySpwixFhtGLZS2uLp+Zo9kdXSAIxDdo+s5p2DBTFNVQOFMmZPc9Snc0PpsvOn9/0pqOwvkunbdtNyoj4fACB+Cgr869KYl5fn21x+21Dbqp6I4xlbfGK5CrJS4xRRfI3nXGMk8h0s5DtYyPc40NkoHdg6UBwz8HlTteTaA7vlTpwrlZ8YvzgBRNWGfd4umJkppioK0+MUDQAAAMaKohkgiWza16EnNzZ4xq5aOFHl+cdx8WX3KnvV15S+4aERL4Unn6m2S38sNz3/2M8PAACAQDFNc9RVEi3L0umnn67169errq4uDpHhaG2o8974OWkSK6UBSHI9bVL1Bmn/RunANmXXbZDZtENm2x4ZrnPk44+CK0NOzmTZBdMHi2IK+rvGZJdKBisKAwAwVm/XNHu2pxRmBLZgBgAA+MyxpZbdfQUx+zd7i2M6D4ztHAe2SLo8pmEC8M+Gvd57JyeWZMk0jDhFAwAAgLHyvWhm7dq1ev7551VVVaW2tjbZtn3Y/Q3D0M9//nOfogMSl+u6+sGqXZ6xrFRLHztr8jGf0+huUc5fP6PUPatHvNY95yq1L/1/ksWNJwAAAL+0tLRo27Zt2rZtm7Zv367t27erra1NkrRkyRItX758zOfav3+/nnzySb3xxhtqaGhQKBRSaWmpzj77bF188cVKS0uL1ZcxKsdxtHbtWknSlCnH2SkRMRdxXG2u9974mVdKlxkAycPoblFo/zqF9q/v+1O/TlZLtWeflCjM46Tl9RfFTBvsGlMwXXZehRRihUkAAKJh7Z4Wz/bJ5fnxCQQAAIxf4Q6pYdvIzjEN26RI9/Gde/+W6MQIICFs2Nfu2Z5XyoJjAAAAycC3opnNmzfrox/9qF566aUxH+O6LkUzQL8Xq1v06q5Wz9hHzixTQeaxPeJhtuxU7mMfV6hp+4jXOs7+orpO+aTESggAAAC++vjHPx6V87z22mu655571NXVNTDW09MzUIizYsUK3XrrrSotLY3KfKOJRCJ6+OGHJUltbW1at26dampqtHTpUp100kkxmxfRUXWgUz0R1zM2p4SiGQCJyehqVKh+SIHM/nWyWndH7fyumSI7b+qQbjEHO8dMl5teyPsnAIBDampqitm5TdNUXl7ewHZLS4scJ7qd0xLFm9UNnu0TClNj+r1NNEHKNch30JDvYCHfCcB1ZXTul9W0XWbjdllN2wc/b6uJ/nw5ZdKEE9SVO13dPv/uUlBQ4Ot8QFC4rquNdd4Fx+aw4BgAAEBS8KVopqamRueff74OHDgg1+176CY7O1sFBQUyTdOPEICkZjuu7h7WZWZidoo+cMqxPeQYqn1NuU98Sma3940ZN5Sutnd+V+GZlxxzrAAAAIiOCRMmaPLkyQPdWcZqx44duuuuuxQOh5Wenq73vOc9mj9/vsLhsF544QWtWLFCe/fu1Te+8Q1985vfVEZGRkzij0Qi+uMf/ziwbRiGrrzySl1zzTUxmQ/RtWHYTZ/JeWnKP8aCfQCIJqNjf38HmXWDHWTa90bl3HbmxL4uMfmV/cUx02XnT5eTWy6ZvjfsBgCMA7Zt+zaX4zi+zueXnoijrfs7PWMnTswcl1/rWI3XXGN05DtYyHewkO8Ysntlte7uL4qpGiiOsZq2ywy3RXUq1wzJzuvvPlswQ3ZBpdyiWcqdfoqUnitJ6m5qItfAOFHXGlZTV8QzNpeiGQAAgKTgy93e//7v/9b+/ftlGIb+9V//VV/4whc0a9YsP6YGxoUnNxzQtgNdnrFPnTNF6SnWUZ8rbfOflb3iVhlO2DPuZBar9fL7FSk5+bhiBQAAwLG76qqrNGPGDM2YMUP5+fmqr6/XZz7zmaM6x69+9SuFw2FZlqWvfvWrnmuv+fPnq6ysTL/97W+1d+9ePfroo7r66qtHnOOBBx5Qb2/vmOe87LLLVFZW5hlLT0/XQw89JMdx1NTUpNdff10PPvigtmzZoltvvVWZmZlH9XXBXxv2DVspjS4zAPzmujI76jwdZKz6dbI664/vvGaKVHyiVDxLXZmTFcmbrkjBdDn50+WmZkcndgAAEDVb93cq4gx2wTQknVjC9SQAAJCMnjZZzVWyGrf1Fcc09xfJtOyU4USOfIKj4KTmyC6Y2VccUzhDdsEMRfJn9C20YXkXG7Isa6BgBsD4MvzeSW66pcl5aXGKBgAAAEfDl6KZv/71rzIMQ9dee63uv/9+P6aETyzr6Is2xmJ4B6IgdyTq7rV17wt7PGMzJ2TqXSeXyDKNsZ/IdZX+0veV8crdI16KFJ2o9nf9XG7uZMUmo4dHvoOFfAcHuQ4W8h0s5Dt2RitgORrbtm3Txo0bJUnLli0bdbGCK664QitXrlRNTY2efPJJve9971Mo5L00/Pvf/66enp4xz3vWWWeNKJo5yDRNFRUV6aKLLlJOTo6+//3v6+GHH9aHPvSho/jK4LcNde2ebVZKAxBTriuzraa/QOZgkcw6mV2Nx3daK1WRohMVKZ6nSPE8uaULlDvzTCnUdyOblV4BAEh8G4d1wawoTFd2Gh3gAAAIDNeR2V43pFtM1eDH411YYxR2Trmna0ykoK9Axs0okoyjeD4DwLg0/N7JnJIsGfzbAAAAkBR8eVe5trZWknTttdf6MR18VFBQ4Ms8eXl5vsyTiO59drv2tXm7wnzlynmaUFQ49pP0dkt/+bS07v9GvnbCxQpd9XPlp+UcZ6TRE+R8BxH5Dg5yHSzkO1jId+J45ZVXBj5ftmzZqPuYpqklS5bo97//vTo6OrR+/XotWLDAs89vfvObmMR3cJ4NGzbE5PyIjp6Io237vZ0u55bSfQFAlLiOzJZdQ4pj1itUv15mT/PxnTaUrsiEOYoUz+8rkpk4X3bBTM9qr5ZlDRTMAACA5DDioTQK+gEAGJ8iPbKaq/u7xfQVxYT6PxqRriMffxRcK62/MKZSdv4MRQ4WyeRPl1IyojoXgPFleFE/904AAACShy9FMwUFBaqvr1d+fr4f0wHjRmNHWD9euc0ztnhGkZbOKh77Sdr3S3+4RtrzysjXzrxBuvi/JTMe/WUAAAAQbZs3b5YkpaWlqbKy8pD7zZ0713PM8KKZWGls7OsYEKuOlYiOrfs7FXHcgW1D0oklmfELCEDycmxZLdX9HWTWy+ovlDHD7Uc+9nCnTcmSXTx3oINMpHi+7IJKyWTVeQAAxpsN+7wPpc3joTQAAJKa0dXY3y1mm0JDusaYrbtlyD3yCY6Ck1Eku2BIUUz/HydnkmSYUZ0LSBaxuj9jmuZht8cDx3VHXJ/Mn5QTyHteQcg3BpHvYCHfwUGug4V89/HlTvJpp52mJ554Qlu2bNGiRYv8mBIYF374zDa19UQ8Y7deOmfsrT3rN0q/v1pq3uUdN0zp0m9LZ3w8SpECAAAgEezZs0eSVFpaetg36SdNmjTimGjGUFxcrLQ070r+PT09euCBBySJ68IEN3wl54rCdGWn8SA6gCNwIrKatg8UyIT2r1fowAYZvZ3Hd9rU7MHCmOL5fR1k8qfxcAsAAAHQFba1o2F4F0w6zQAAkPAcW2br7sFuMc1DimO6m6I6lWtYsvOm9hfE9HWOOdhFxk3Pj+pcwHhQUFDgyzx5eXm+zOOnHQc61N5je8YWnzhZBXl0qBqP+cahke9gId/BQa6DJaj59uWpl5tuukmPP/647r//fv3zP/+zH1PCJ01N0X1D4yDTND0/lC0tLXIcJyZzJao9zd164MVqz9ilcyeoPMsZ0/c9tPM5ZT+xXEa4zTPupmar/dIfKjJtqRSj/B0t8h0s5Ds4yHWwkO9gSYR8+/WmfjIJh8Nqa+v73a+oqOiw+2ZnZystLU09PT1qaGiIahyrV6/W448/rhNPPFHFxcXKyMhQY2Oj1qxZo7a2Ns2ZM0dXXHHFUZ1zrDHGcjWvIK28sWmf9wH3eWXBWyktSPkOOnJ9jOywrMatsvat6+seU79O1oGNMiLdx3VaJz1f9sSTZBfP6yuOmXiSnLwpIwpkjvVfJPIdLOQ7WMg3MD5tru/UkCaYsgxpVjFdMAEASBjhDlnNVZ6OMVbTdlnN1TKccFSnclKyB4phBrvGVMrOmypZaUc+AQAcp7f2NHu2J2SnqTQ3PT7BAAAA4Kj5UjRz4YUX6stf/rK+9a1v6YYbbtDdd9+tlJQUP6ZGjNm2feSdosBxHN/mShT3rNqpyJC7QSmWoU8tnjym70P6ut8ra9XtMlzvvnbOZLVe8VPZRbOlBP5+BjHfQUa+g4NcBwv5DhbynRi6uwcfVE5PP/Kb9Onp6erp6fEcFw2nnnqqmpqatGXLFm3ZskXd3d3KzMzU1KlTdc4552jZsmVHXYBxww03jGm/hx566FhCPibjeeWNTfu9KzmfVlkc+EK18ZxveJHrUfR2S/UbpL1rpL1r+/7sWy/Zx/nwS1axVLZQKlvQ92fSQpl5U2Qahvx615B8Bwv5DhbyDYwP64d1wZwxIVPpKcEq6AcAIO5cV2ZHvazmIUUxB/+010V9Oju7tK8gJr+/OKZwhuz8GXKyJkqGEfX5AGCs3trT4tleUJ4ng3+XAAAAkoYvRTMPPPCA5syZo8WLF+v+++/Xo48+qquuukonnniiMjOPvCLUtdde60OUQOJYv7ddT23yrqZ99cISTc4/wsOPjq2sF76hjLW/HPFSb8lCtV5+n9zMCdEMFQAAAAkiHB58eDkUOvKl3sF9hh4XDTNmzNCMGTOiek74p6Mnom313gfTTi7Pj08wAPwX7uwriNm7ZrBIpn6j5ESO77w5Zf3FMQsHCmSUU8bDLgAA4LA21HV4tueUZsUpEgAAAsAOy2rZ5S2KaaqS1VQls7f9yMcfBddMlZ1fIbtg5kDnmEhBpZz86XJTs6M6FwCvpqammJzXNE3PAhYtLS1yHCcmc8XLG9Xe57hOKEqL2fcz0QUh3xhEvoOFfAcHuQ6WRMh3IizU6kvRzEc+8hFPZfXevXt1zz33jOlYwzAomkGguK6rH6za5RnLSbP00bMmH/7AcIdyn7pZqdXPjHipZ+Zlanvnd6QQbUEBAADGq9TU1IHPI5EjP9x8cJ+hxyWqe++9N94hBMb62lYNaXgpyzQ0b1Ju/AICEDs97VLd294OMvs3Se5xvkGaN8VbIFO2QMopiUbEAAAgYDbu8xbNzKVoBgCA42Z0twwWxAztHtOyS4Yb3Y7yTlp+X6eY/s4xkYIZsgsq5eSWS6YvjysBGMa2o/tzfiiO4/g2lx9sx9Wmfd4CwhMnZoyrr/F4jLd84/DId7CQ7+Ag18ES1Hz7dhXquu6RdwKgF6qa9caeNs/Y9WdOUl7GoX9czfa9yn3sEwod2DDitc7TlqvzzJslw4x2qAAAAEgg6emDBdLd3d1H3P/gPkOPS1RFRUVj2i+WK3olwsobfnhpy17P9owJGepqb1VXnOKJl6DkGwHKdU+rQvvXy6pfJ6t+nUL162Q2VcnQ8b1fZ+dNlT3xJEWK58meOF/2xPlyMwq9O0UkJciKi4HJNySR76CJd74TYYU0YLxp645oV5P32nZuCSvPAwAwJq4js612SLeY7Qo1Vclq2iazq+HIxx/NVDLk5E7xdIyx+4tj3Iyxva8LAImuurFLXb3e9xnmlHJ9AgAAkEx8KZrZsWOHH9MASS/iuLr7ud2esdKcVP3zKaWHPMaqf1u5j31CVme9Z9w1U9R+wdfVc+L7YhIrAAAAEktqaqpycnLU1tamhobD3/hsb29XT0+PpLEXpCQDP1fCGK8rb6zb6y3gn1uSNS6/zqM1XvONkcZDro3uZoX2r1dof19xTGj/elktO4/7vJH86bKL5ylSPF+RifMUmTBPbnreyB2T6Ps3HvKNsSPfwUK+geQ3vMtMimVoZnFGnKIBACBBRbplNe/oK4pp3D7YOaZ5h4zIkRdWOhpuKEN2QaUi+f1FMYUzZOfPkJ1fIYUSf2EmADgeG+q81yclOakqykqJUzQAAAA4Fr4UzVRUVPgxDZD0Hlu/X1UN3jWcbzi3XGmh0bvEpG7/m3L+fsuIN7yctHy1XnavIpPPiFmsAAAASDzl5eXauHGj6urqZNu2LMsadb/a2lrPMcBBG+vaPdtzWSkNSGhG54H+Apn1gwUybXuO65yuYfatDHuwQKZ4nuziOXJTc6IUNQAAwJENfyjthOJMpVij3ysBAGBcc10ZXQ393WIGO8dYTVUy22qOu4vscHbmxIGuMYMfZ8jJLpUM/i8GEEzDr0/mlmbFKRIAAAAcK1+KZgAcmeu6+sWLtZ6xWcWZunTuhNF2VsabP1Xm6m+PeBMskj9drVf8TE7+tBhGCwAAgEQ0e/Zsbdy4UT09PaqqqtIJJ5ww6n4bNmzwHANIUmt3RLubezxj3PgBEofZvk/WwQ4y/R+t9rrjOqdrWLILT+grkJnYVyATmTBHSsmMUtQAAADHZsOwgv55XJsAAMY7JyKzZbdCzdsHimIGimN6WqI6lWuGZOdV9BXF5M/wFMm4ablRnQsAxoPh1yfcOwEAAEg+FM0ACWJ3c49qW70PqN20ZIpMw/DuaIeVveo/lL7hoRHnCE8+S22X/lhuel4sQwUAAECCOuOMM/TnP/9ZkrRy5cpRi2Ycx9GqVaskSVlZWZo3b56fIcbUoTrrRINpmofdHg8217d5tlMtQ7NKsmUFcDXnIOQbfRIy164ro622ryimfr1C9W/Lql8ns3P/8Z3WTJE9Ybbs4vmKTJwve+J82RNOlELpnv1i9y9p/CVkvhEz5DtYyDcw/oxcyZkumACAcaK7VWrYqtSda2Q0bB0skGnZKcPpjepUTmrOiI4xdsEM2blTJCslqnMBwHjVazvaur/TM8b1CQAAQPKhaAZIEG/VeB9QK8pK0ZkV3uIXo7tFOU9+Wqk1L404vnvu1Wpf8p+SlRrTOAEAAJC4Zs6cqTlz5mjjxo1auXKlli5dqlmzZnn2eeyxx1RTUyNJuvTSSxUKjZ/LwoKCAt/myssbf4XqVWsaPNtzJuVp4oSiOEWTWMZjvjE633PtulJTtbR3bf+fNX0fOxuOdOThWWlS6XypbIFUtlAqWyBj4lyFQqkKSUo7/sjHBX62g4V8Bwv5BpJbY0ev6trCnrE5JazkDABIIq4rs6NOVmN/15jmKoWaqqSWHVLbXklSNP9ns3MmeYti8isVKZghN3OCNHyRTgDAUdl+oEth2/WMcX0CAACQfKL6dNQFF1wgSTIMQytWrBgxfiyGnwsYr9bWelt5njwpW8aQN7DM5mrlPvZxhZqrPPu5MtS5+IvqWvQJ3vACAABIcps2bVJdXd3Admtr68DndXV1evbZZz37L126dMQ5PvKRj+i2225TOBzWHXfcofe+972aN2+ewuGwVq9eraefflqSVFZWpiuvvDImXweS01t7mj3bC8p52BSIKseRGqsGC2MOfuxuOb7zpmRKpSd5CmRUPJsVYwEAQNLasM/bZSY9ZGp6UUacogEA4DDsHlnN1X2dYg52jGnarlBzlYzeziMffxRcK1V2fuVA15jIwe4x+dP73hsAAMTE8C6Y5flpyk0fPwvSAQAABEVUf4M7+ACXMezB/WeffVaGYch13VGOGt3B/YefCxiv3qr1dppZMCln4PNQ7avKfeIGmd1Nnn3cULraLvyewjMu9iVGAAAAxNaKFSu0atWqUV/bvHmzNm/e7BkbrWhm+vTpuvnmm3XPPfeoq6tLDz744Ih9ysrKdOuttyojg4eOMOjtPd4H908uz49PIMB44NjSga3DOsi8JYXbjnjoYaXmSGUnewtkJpwgmVY0ogYAAEgIG+q8i4ydWJIly+R+IQAgfoyuJlnNQ4pimqpkNW2T2bpHhutEdS4no9DTLcYuqJRdOFNO9iSu/wEgDjbu816fzC3NjlMkAAAAOB5RLZo5//zzRy1yOdQ4gD5t3RFVHejyjJ08ue8iK23Tn5T9zL/LcMKe1+3MiWq7/D5FSk72LU4AAAAkh9NOO0133nmnnnjiCb3xxhtqbGxUKBRSaWmpzjrrLF1yySVKS0uLd5hR19TUdOSdjpFpmsrLG+y80tLSIseJ7g3xeGroCKu2pdszNi3HiOn3NJGN93xjUFRy7URkNWyVtX+drPr1CtW/LWv/BhmRriMfe7jTpuXKLp4ve+J8RSb2fXTyp0mG6d2xpXXU4zESP9vBQr6DJd75Ligo8G0uIAg2DlvJeW5pVpwiAQAEimPLbKsZ6BgTatrWXyRTJbO7MbpzGabs3KmyCw4WxvQXx+RXys3gd0sASCTrh1+flHB9AgAAkIxi0mlmrOMA+ry9t11D+zClWIZOLM5Q5kvfU+ZrPxqxf2TCHLVefr+cnEn+BQkAAICYW758uZYvXx6VcxUXF+u6667TddddF5XzJQPbtn2by3EcX+eLtbdrvA/dZ6SYmpKfOq6+xuMx3vKNQztiru2wrIYtCu1f3/9nnUIHNsmwe45v3vQCRYrnK1I8T5GJfR+d3CnS8EVoHFcSfxejhZ/tYCHfwUK+geTluq42UDQDAIil3s7+opgqT/cYq3mHDDt85OOPgpOS1VcMUzBDbuFMZUw5WZowSyqsVGtbJ7+zAkCC6+51tH3YIshcnwAAACSnqBbNADg2b9V4W3kumBhS0TO3KG3r4yP2DU+7QG0XfV9uKu0+AQAAAETH8IfS5pRkyTLpGIuAi/Qo1LCprzimfp1C+9fJatgiw+k9rtM6mROGFcjMl5NdNrJABgAAIIDq28Nq6PT+vjW3lPshAICj5LoyOvcr1DSkKOZgkUxbbdSns7NKB4pjhn50skoHrvcty1KGp0NhZ9TjAABE19b9HbKdwWWQDUmz6TQDAACQlCiaARLAW7VtA59PUIu+132P0rZuGLFf14Lr1XHOrZJp+RkeAAAAgHFutKKZwHJdpb3xM2nbo1Jvl2SYynXcvu6ghikZplwZ/Z8bkvo/HnzNMCQNbg+81j/mjnqcIVdD9h92vDvk+NHPeXD74GuD2wPzDcw5eLzn6xg4t9n3bRj4fLRzHu7r7zvec77+r8n1bHu/Dtczv6HDf08Pd87BeAe/p2bf3UwNP36IcIdUt05pVS/K3Pe2QvXrZDVuleEe34qvdlbpQOeYSPF82cXz5GSXHNc5AQAAxrPh1ybZaZbK89PiFA0AIOHZvbJadw0WxTRuk9XcVyRjhtuPfPxRcM0U2fnTZOdX9hXGFM7s/3y63NScqM4FAEgMw69PphdlKCuVZ7YAAACSEUUzQJxFHFfr9va9YVdp1OqB1G+qvOuAZx/XsNRx/n+o+6QPxiNEAAAAAOOY67raUOd9iGBuWUBXcnZdZb74HWW+cZ9nmFtg45M7tBDHiUhylXkc57Nzyvu7x8wb6CTjZk6IVrgAAACBMPyhtLklWTLpyAcAgWf0tPYXxgzrHNO6S4YTiepcTlpef6eYwa4xkYJKOblTJJNHbAAgSDbuY8ExAACA8YIreiDOth/oVGevo5Ai+mnKd1VueAtmnNRstV18j3orzo9ThAAAAADGs31tYTV1eR8umFcazBs/Ga//eETBDMYvQ67k2n1/jpKdVzHQPSYycb4iE+bKzSiIQZQAAADBMqKgP6DXJgAQSK4js21vX0FM82BxTKipSmbn/uhOJUNObnlfUUx+X1HMwSIZN6NoZIdaAEAgDS/qn8P1CQAAQNKiaAaIs7dq+m4AfcB6RjPMvZ7X7JxytV7xU9lFs+IRGgAAAJBULCt2/UBM0zzsdjLbWN/l2c5ND2lqYaaMgD0ckPbmz5X50vfiHQYSjCtDTsF0RSaeJHvi/L4/xXPlpuV59hs//yKMb+P533KMRL6DhXwD44PruiNXci4NaBdMABjPIt2ymqs9XWNCzVWymqpkRLqOfPxRcEPpsvMrZRdUKjLQOWam7PxpUig9qnMBAMaXzrCtHQ3e/5eCuuAYAADAeEDRDBBnb9W2KUtduin0sGc8UjRbLe9+QG7mhDhFBgAAACSXggL/ujzk5eUdeacksb1pn2d7wZR8FRYWximaOHn919Jz/2/k+AW3SUUzJNeRXLf/4/DPh/yRO8pro+w76n6j7ev27zvKXAP7usPOO4b9Rt33UDEN3/cQ5/Psd6TvwRi+Lrm+pX+AYUoTZkuTFkplC6SyhTJK58tKy1HsSvIQT+Pp33IcGfkOFvINJKealh61dnu7APJQGgAkKdeV0d04WBTTONg9xmzd09f9NYqczAn9RTEzBrrH2AUz5OSU9V3vAwBwlDbt6/D8b2WZhk4o5voEAAAgWVE0A8TZW7Xt+njocRUbrZ7x9iX/ScEMAAAAgJh7u6bZs31yecAeMn37j9Kjnx05ftmd0hkf9z8e9BlaxHPYYqAoFQ4ZllRYKaVmxvkLBwAACK71dd4uMwUZIZXkpMYpGgDAmDgRma27FeovjrGGfDR7mqM6lWtYsvMq+rvFzBj8mF8pNz1g72cBAGJuw7AumDMmZCg9hUJMAACAZEXRDBBHB9rDCrfs08fTHveM90x7hyKTTo9TVAAAAACCwnFcvbWnxTN20uT8+AQTD5uekB7+hEZ0NXnn7RTMxJth9P0RNyEBAACCYmNdu2d7bmm2DMOIUzQAgKGMcHtfQUzzsOKY5p0ynHBU53JSsweKYTzFMXlTJYtiSgCAPzYMK+qfW0KXGQAAgGRG0QwQR2tr23Vj6E/KMnoGxlzDVOfZX4hjVAAAAEByampqitm5TdNUXt7gipUtLS1yHCdm8/llZ2OX2rojnrFpObH9XiaK0K5/KPuRj8pwbc941+mfUfikj2ro+qTjJd8Yabz+bGN05DtYyHewxDvfBQUFvs0FjGcjHkor5aE0APCV68rs2DesY0z/5x11UZ/Ozi4bUhQzU3ZBpSIFM+RmFvcvpAEAQPyMVtQPAACA5EXRDBBHNVUbdaP1jGes58R/kl00K04RAQAAAMnLtu0j7xQljuP4Ol+srKtt9WwXZaaoKNMaF1/b4YRqX1P2ox+XYXtXQu1a8BF1nHGzrGEP2Y6XfOPIyHWwkO9gId/BQr6B5GM7rjbto2gGAHxhh2W17JTVuF1W89ACmSqZvR1HPv4ouFaq7Pzpg8Ux+TMUKaiUnT9dSuXfeQBAYmrtjmh3c49njOsTAACA5EbRDBBHZ+y8TynG4M3bXiNVnWd+No4RAQAAAAiS9aOs5GyM85U8rfq3lfvYx2REujzj3XOvVse5X2UlUwAAACAOdjZ2qbPXW7w+h4fSAOC4GN3Nw7rGVCnUtF1m6+4RnXePl5Ne2N8xplJ2wQxF+otknJxyybSiOhcAALG2cVhBf6plaMaEjDhFAwAAgGiIW9HMnj17VFdXp87OTp1++unKyOAXSwSLU/Omzu19wTO2s/Ia5WeXxSkiAAAAAEGzcZSimfHMatiivEeulxlu94z3nHCF2pfeQcEMAAAAECcbhj2UVpKTqglZqXGKBgCSiGPLbK/1FMeEmqpkNW2T2dUY1alcw5STWz7YLaZghuzCGbLzK+VmFEZ1LgAA4mn4vZMTijOVYplxigYAAADR4GvRTFtbm7797W/rV7/6lWprawfG3377bc2dO3dg+w9/+IMefvhh5eXl6ac//amfIQL+cF2lPP8Nz1Czm6XUc5bHKSAAAAAAQRNxXG0a9mDanNLsOEUTe2ZztfL+cq3M7ibPeM+0d6jtnXey6ikAAAAQRxsCVtAPAEett0tW847+opjtg0UyzTtk2D1RncpNyVQkv78opmDIx7xpUigtqnMBAJCI1td5F97i+gQAACQ1JyI1bJcaq6T2fdK0y+MdUVz4VjSzdetWXXbZZaqqqpLrugPjxiiruJ511ln60Ic+JNd1dd111+ncc8/1K0zAFyk7n1Xegdc9Y/+T/n79Uy4r8AAAAADwR3VDl7ojjmds3ji98WO21SrvLx+W2bnfMx4uX6y2S+6RrJQ4RQYAAABAGrmS85yS8XltAgCH5boyOvb3FcU0V/UXxvQXx7TVRH06O6tksChmSJGMk10qGaymDwAIruHXJ3PH8YJjAABgnHBsme17ZTVXy2qp7lt4o7laVnO1zLY9fYUzkmRY0vILJQVvUVFfima6u7t1+eWXa/v27crKytLy5ct1/vnn64orrhh1/2nTpmnZsmV65pln9Mgjj1A0g/HFsZW1+tueoT3uBFVNvTpOAQEAAADjg2XF7qLeNM3DbiejTfWdnu2y3DRNyEmPUzSxY3TUK+cv18pqq/WMR8pOU8e7fiYrJXPEMeMx3xgduQ4W8h0s5DtYyDeQ3CK2oy37eSgNQMCEOxRqWC9t2Crt3ywd2KK8/Ztl9rRGdRrXDMnOm+btGFMwU3bBdLmpOVGdCwCQ+GJ1H2U8XZc3doRV1xb2jM2flBPTe1DJZjzlG0dGvoOFfAcHuU5SriOjfZ+s5h0yDxbENO/o227ZJcMOj+EctkJtNVL+9NjHm2B8KZq59957tW3bNmVlZen555/XwoULj3jMpZdeqhUrVujFF1+MfYCAj9I2/1mhxi2ese/1XqUF5XSZAQAAAI5HQUGBb3Pl5eX5NlesbGva49leOLXA1++hLzobpQc/IjXv8I6XLVDouodVkD62PI6HfGNsyHWwkO9gId/BQr6B5LLtQJd6Iq5njE4zAMYV15HVtF2hurUK7XtTKfvWymrYLMP1dgA+nkeUnNSc/mKYStmFM2QXzFAkf4ac3HI67AIABvh1DyCZr8vX7Kv3bGekWDpl5mRZphGniBJfMucbR498Bwv5Dg5ynUBcV2qvlxq3Sw3bh3ys6vsY6TruKXLC9VLBKVEINrn4UjTz8MMPyzAMffaznx1TwYwkLViwQJK0devWGEaG48UKBEcp0q2sl+/yDG10purPzrn6yJT8wK5KMG7zjVGR7+Ag18FCvoOFfAPjw1t7WjzbJ5fnxyeQWOlulX77Pql+g3e8+ETpQ3+SxlgwAwAAgOQWDof14IMPqqqqSnV1dWpvb1dmZqZKS0t1wQUX6LzzzlMo5MvtMhzCxn3eLjPl+WnKyyAnAJKX0dWo0L61Sql7U6F9axXat1ZmuC0q57Zzyj1dYyIFfQUybkaRZPAwLwAAx2v4vZP5k3MpmAEAANHX2Sg1bBtWGLNdaqiSovQewggZBVLhDMkM5rPqvrzjvHHjRknSRRddNOZjioqKJEnNzc2xCAlRwgoER+mFu6X2Ws/QNyMfUGF2uk6aXiqDNzIljaN8Y0zId3CQ62Ah38FCvoHk0xOxtXFvq2dsQfk4+lkOd0q//2ep9k3veMF06cN/lrKK4hIWAAAA/Nfd3a2nnnpKM2fO1KJFi5Sbm6uOjg6tWbNG9957r1avXq1bb72VBSHiaENdu2ebLjMAkoodVujAJoX2rVGobo1S9r0pq2XXcZ3StdL6C2MqZefPUORgkUz+dCklI0qBAwCA0by1p9mzPe4WHAMAAP7pbukrhhlRGLNd6m6OzZxpuVJhpVQ0o69Apmhm/+eVUmZhbOZMEr4UzbS3973ZnZ2dPeZjenp6JEkpKbQKxjjR1SQ9/13P0Gp7rlY5J+viigIKZgAAAIDj1NTUFLNzm6bpKRBraWmR4zgxmy/W1u9tV6/tesbKs9yYfg99E+lR9mMfV8qu1Z5hJ7tMbe/5jRw7XTrC1zne8o1DI9fBQr6DhXwHS7zz7dfiUjg22dnZ+vWvfz2im4xt27rjjju0du1arVmzRqecckqcIsSGOm+nmXmlY7+fCAC+cl2Z7XsVqntTKXVr+gpl9q+TYYeP7XRmSEbJPKlsoVQ8W23pk9SbN11OziTJoJgTABB9sboHEO/r8mhxXVdrd3u/RzMKQuPj3kkUjZd8Y2zId7CQ7+Ag11EU7pDVUi2zuVpW0w6ZzTtkNfdtm10NMZnSDWXIzp8mJ396/8dpsgsq5eRPG7UTrWmaysuMb74T4T6KL0UzRUVFqqurU3V19ZhvOqxfv16SVFpaGsvQAP88/70RlYHfjHxAkqFTK+L/jwEAAACQ7Gzb9m0ux3F8nS/a1tV6u8xMLUhXZoqR1F+TJMmJKOevNypl53Pe4cwJan73b+RklUnH8DUme74xduQ6WMh3sJDvYCHfGMo0zVG7yFiWpdNPP13r169XXV1dHCKDJPVEHG070OUZm1tKpxkACSLcoZT6txXat1ahfX2FMmbn/mM+nZ1dqkjJIkVKFqi3dJHc0pNVMHHSwOuRpiY5/A4DAIghv66Vk/W6fF9bjw509HrGZhdnJOXX4qdkzTeODfkOFvIdHOT6CCLdslp2ymqultVS3fexvzDG6qyPyZSulSo7r0J2/jTZedP6imPypsnOny4na+KIwpgBYyiGCWq+fSmaOeWUU/TEE0/oueee0/ve974xHfPAAw/IMAydffbZMY4Ox4MVCMbGaKtV3ss/0dB/oh6zz9Jb7gxJ0gkBX5VgvOUbh0e+g4NcBwv5DpZEyHcirEAAJLORKzmPg4fSXEfZT39JaVVPeYadtDy1vOsBOQXT4xQYAABA8mppadG2bdu0bds2bd++Xdu3b1dbW5skacmSJVq+fPmYz7V//349+eSTeuONN9TQ0KBQKKTS0lKdffbZuvjii5WWlharL2NUjuNo7dq1kqQpU6b4OjcGbd3fKdsZ7IJpSJpdMg6uTwAkH9eR1VSlUN2avgKZfWtlNWyW4R7b+55uKF2RiSert2SBIqV9hTJOtnfBUMuyohE5AACIko3D7p1kp1maUpAep2gAAICv7LCs1t2DxTAt1bIOdo1pr5Mh98jnOEquGZKdO7WvU0x/YczBIhknp4wutFHmS9HMVVddpccff1z333+/brnlFk2dOvWw+99111167rnnZBiGPvCBD/gRIo4RKxCMTfbq73racve6lr4TuVqSlGIZmsWqBB7Jnm8cHfIdHOQ6WMh3sJBvIPlsqGv3bM9J9qIZ11XWs19T+pa/eIadlCy1vuuXsifMjlNgAAAAye3jH/94VM7z2muv6Z577lFX12BHkZ6enoFCnBUrVujWW29VaWnpYc5yfCKRiB5++GFJUltbm9atW6eamhotXbpUJ510UszmxeGt3+u9NplelKGsVB4iBxB7RlejQvvWKmXfmv5CmbUyw23HfL5IfqUipQsVKV2k3pIFsgtnSVZKFCMGAACxtn5Y0cyckiyZh1rFHQAAJB8nIrN1j6dbzMHPzbaaY14443Bcw5STU+4piDn4uZMzWTJ9KeWAfCqa+fCHP6zvf//7euutt7R06VL96Ec/0iWXXDLwumEYcl1Xr732mu666y794Q9/kGEYOu+883TppZf6ESIQM9aBzUrb9LBn7Pf2Bdrp9t38m1OSpbQQ1YAAAAAA/NEVtlXV0OUZm1uaHadoosB1lfnCN5Sx/kHvcChdrVf8TJGSBXEKDAAAYHyZMGGCJk+ePNCdZax27Nihu+66S+FwWOnp6XrPe96j+fPnKxwO64UXXtCKFSu0d+9efeMb39A3v/lNZWRkxCT+SCSiP/7xjwPbhmHoyiuv1DXXXBOT+TA2G/eNfCgNAKLODit0YJNC/QUyKfvWyGrZecync9LyFCldqN6ShYqULFSkZIHc9LwjHwgAABLa8OuTucm+4BgAAEHk2DLb93oKYqzmapkt1bJad8twIlGf0pUhJ6esvyBm+mC3mPxpsnPLJSs16nPi6PlSNGOaph555BGde+65qq6u1hVXXKHMzEwZ/ZXYS5cuVVtbm3p6eiRJrutqxowZeuihh/wID4iprBe/42nL1WVk6O7I+wa2T56UxA+nAQAAAEg6m/d3yhnSOdg0pNnFmfEL6DhlvHqPMtf83DPmmilqvfReRSafEaeoAAAAxoerrrpKM2bM0IwZM5Sfn6/6+np95jOfOapz/OpXv1I4HJZlWfrqV7+qWbNmDbw2f/58lZWV6be//a327t2rRx99VFdfffWIczzwwAPq7e0d85yXXXaZysrKPGPp6el66KGH5DiOmpqa9Prrr+vBBx/Uli1bdOuttyozM3l/J05mG+p4KA1AlLmuzPa9CtW9qZR9axWqe1Oh/etk2OFjO51hyZ5wonpLFylS0lco4+RPk1h1HgCAccV1XW0cpdMMAABIQK4rs2OfrOYdMocWx7TslNWy85jfAzgSO6tETt402fkVnuIYO69CCqXFZE5Ej289faZOnao1a9boxhtv1EMPPaSOjsFfMvfv3z/wuWEYuvrqq3XvvfeqoKDAr/CAmAjVvKzUnSs9Yz+3r1CDBlcaOnlSjt9hAQAAAAiwDXXtnu3KogxlpFpxiub4ZLz5M2W98gPPmGtYarv4B+qtOD9OUQEAAIwfoxWwHI1t27Zp48aNkqRly5Z5CmYOuuKKK7Ry5UrV1NToySef1Pve9z6FQt7bV3//+98HFl4bi7POOmtE0cxBpmmqqKhIF110kXJycvT9739fDz/8sD70oQ8dxVeGaOgI29oxogsmD6UBOErhDoX2r1NK3RqF9r2pUN1aWZ31x3w6O7tUkZJFipQs6CuUKZ4npcSmCxoAAEgcNS09aun2rjw/r5SFkAEAiBvXldHV0N8pZoe3c0zLThmRriOf4xg4GUWDxTD5QzvHVEgpLLyUzHwrmpGkwsJC/e53v9PXv/51Pf7443rttddUX18v27ZVVFSkRYsW6corrxz1pgmQdFxXWau/7RkKpxfpx82XesboNAMAAADAT8NXSpubpDd90tf9XlkvfMMz5spQ+zu/rfCMi+MUFQAAAIZ65ZVXBj5ftmzZqPuYpqklS5bo97//vTo6OrR+/XotWLDAs89vfvObmMR3cJ4NGzbE5Pw4vM37OjSkCaYs09AJxRTNADgM15HVVKVQ3RqF9q1Ryr41sho2y3CdYztdKF2RiSept2ShIqV9hTJOdmmUgwYAAMlg+L2T/IyQSnNT4xQNAADBYXQ1DRbDNO8Y+Nxs3imzt/3IJzgGTlp+f0HMweKYvs4xTt40uWk0QhivfC2aOaiiokKf/vSn4zE14JvU7X9Vyr41nrGXJl+vzub0ge3JeWmakM0FFgAAABANlhW7bimmaR52O5ls2Oe98TNvUk5Mv3exkLrpT8p89msjxjsvuEORuf+k4/1qxlO+cXjkOljId7CQ72Ah34lr8+bNkqS0tDRVVlYecr+5c+d6jhleNBMrjY2NkmJ7LYFD2zDsobQZEzKUnsLPL4BBRlfTQHFMX6HMWpnhtmM+XyS/UpHShYqULFRv6ULZhbMkKyWKEQMAgGQ1/PpkbkmWDMOIUzQAAIwvRk+brOYdMluqZTXv9BbH9LTEZE4nJVt2/jQ5nuKYvo9uRkFM5kRii0vRDDDu2b3KevFO71DeNP2Ps0zS4D/wJ09OzhWdAQAAgERUUODfGxt5eXm+zRVNLV292tnY7Rk7e1aZCgry4xPQsdj4qPTUFyTPmtSSLrpDWYs/o1isS52s+cbRI9fBQr6DhXwHC/lOHHv27JEklZaWHrYwZdKkSSOOiWYMxcXFSktL84z39PTogQcekCQtWrQoqnNibEYU9JfSZQYINDus0IFNCu3rK45JqXtTVsvOYz6dk5anSMkC9ZYuUqRkoSIlC+Sm8zsCAAAY3YZ93pXs55byTBcAAEcl3CGrZeeQrjGDnWPMrsaYTOmGMmTn9XWJ8RTG5E+Tm1EkUQCLISiaAWIgfcNDslqqPWMdZ39Ba1Z6H05bMIk2XgAAAAD8s77Gu0pLqmVqdmkSXZdsfVr63+sl1/aOL/k3afGN8YkJAAAAowqHw2pr6+sGUFRUdNh9s7OzlZaWpp6eHjU0NEQ1jtWrV+vxxx/XiSeeqOLiYmVkZKixsVFr1qxRW1ub5syZoyuuuOKozjnWGOmGeXgbh63kPL8sl64/oxgPucbYBSbfriujrbavQGbvmwrVvSmr/m0ZdvjYTmdYsovnKFK6SHbpQkVKF8nJn+55OCYRv5OByTckke8gIddA8nFcV5uGFfXPoagfAICRIt19hTHN1UOKY3bKbN4hq7M+JlO6VmpfYcyQ4hinvzjGySqhMAZj5nvRjOM42rBhg6qqqtTW1ibbto94zLXXXutDZECUhDuU+erdnqHekgWqLb1ANS1rPOMnT2JVAgAAAAD+WbvHWzRzYlmO0kJJ8lBa9QvS/3xQcnq942d/Rlr6b/GJCQAAAIfU3T24iFR6evoR909PT1dPT4/nuGg49dRT1dTUpC1btmjLli3q7u5WZmampk6dqnPOOUfLli076kKNG264YUz7PfTQQ8cS8jFJtg5LLZ292t3szfWZs8pUUJBcX0c8JFuucXzGTb7DHVLtm9KeV6U9r/X9aa879vPlTpYmnyqVny6Vny6jbIFCqZlJv2LouMk3xoR8Bwe5BhLfrsZudYQdz9hcimYAAEFlh2W17pbVXC1zaHFMS7XMtr0y5EZ9StcMyc6dMlAMM7RzjJNdKplJ8kwDEppv7xt1dnbqjjvu0M9+9rOjWiXMMAyKZpBUMtb8QmbnAc9Yx+Iv6+293hUJMlNMzZiQ6WdoAAAAwLjW1NQUs3Obpum5udnS0iLHcQ5zRGJ6rcq7usvs4vSYft+ixapbo5w/fUhGxPtQXc/8a9R5+uel5uaozjde8o0jI9fBQr6DhXwHS7zzXVBQ4NtcySQcHuwWEAod+XbUwX2GHhcNM2bM0IwZM6J6Thy/t2qaPdupoSTrggng0BxHatjqLZCpXy+5x/h/cyhDmrRIKj+t78/k06S8ydGNGQAABNqGYV1mirNTVJydGqdoAADwgRORGqukhu1Sw3Zl7N0gs6mqr2tM2x4Zx3oNfxiuYcrJKZedXyF7WHGMkzNZMpN9KQwkOl/+hrW3t2vZsmV644035LrRrzADEoXReUAZb/7UMxauWKrI5DP11rO7POPzJ2XLMmkLBgAAAETLWDqZRovjOL7OFy0b6to923MmZiX812Ed2KTsP18nI+yNvXvWu9W+5D/7HsaJsWTNN44euQ4W8h0s5DtYyHdiSE0dfMAoEokccf+D+ww9LlHde++98Q4h6b01rAvm3LJcpVhmnKIBcFw6G/uLY17t+1PzhtTTcuTjDqXohMECmfLTpYlzJSslevECAAAMM/zeydzS7DhFAgBAFLmOzLa9/Z1idvR1i2multlSLat1d1/hTL8j9wkf45Qy5OSUDRbF5E2Tc7A4JrdcshL/vV+MX74Uzdxxxx16/fXXJUlnnXWWPvGJT2jBggXKz8+XafIGOMaPzFd/KLN3cPUBV4Y6zv6SJGltbZtn3wWTWDENAAAAgH+aOnu1t9W7avfc0qw4RTM2ZtMO5f3lWpnDHrbpqbxI7e/8tmTwngIAAECiSk8fvNXa3d19mD29+ww9LlEVFRWNaT+6YR7a6zv2e7aTpQtmPCR7rnF0Ej7fdljWgU0K1b0pq26NQnvflNVSfcync9LyZJcuVKR0kSKlC2WXLpSbnu/dqbV91GPHg4TPN6KKfAdHIuSabpjA0dlQ5+00M6ckse+dAAAwwHVlduwbLIY5WBzTslNWy04ZdnS7eh9kZ5XIyZvW1zWmvzim72OFFEr893cRTL4Uzfzxj3+UYRi67LLL9Je//IVCGYxLZnO10tc/6BnrOfF9sifMVk/E0cZhrTxPnsSqBAAAAAD8s37YTZ/0kKlpRRlxiubIzNY9yvvLh2R2NXjGw1PPU9vFd9GeGQAAIMGlpqYqJydHbW1tamhoOOy+7e3t6unpkTT2gpRkQDfMQ1u/d3gXzMykij+eki3XOD5xzbfrymzfq9C+NUqpW6NQ3ZsK7V8vw+45ttMZluwJJ6q3ZKEipQvVW7JITv40yTC8Owb47zc/38FCvoODXAOJLeK42lzf6Rmbl+ALjgEAAsZ1ZXQ1DHSKsYYVxxiRrphM62QU9nWIOVgQc7A4Jq9CSuX/SiQfX54wqampkSTddNNNFMxg3Mp6+XsyhrQrc61UdZ55syRp074O9druwGuGpPllFM0AAAAA8M/GOu9DaSeWZClkGofYO76Mjnrl/eXDstrrPOO9k05X66X3SlZanCIDAADA0SgvL9fGjRtVV1cn27ZlWdao+9XW1nqOwfh2oCOsfW3J1QUTCITeToXq3+4rkNm3RqG6NbI664/5dHZWqSKlCxUpWaje0oWKFM+XUhJ38Q4AABBMOxq61BPxdoOi0wwAIB6Mrqb+gpjqwY/NO2Q275TZG6MurOn5UtEM9eRMVSS3QnZ+RX8Hmely03JiMycQJ74UzUycOFF79uzRhAkT/JgO8F1o31tK2/q4Z6zr5Ovk5EySJL1V6/0Pq3JChnLSWRUZAAAAgH82DOs0MydBH0ozuhqV95drZbXs8oz3TjxZrVf8lAdsAAAAksjs2bO1ceNG9fT0qKqqSieccMKo+23YsMFzDMa3jcOuTTJSTFUU8ns+4CvXkdVUNVAck7JvjayGzTJc58jHjna6ULoiE09Sb8kCRUoWKVK6QE52WZSDBgAAiL71wxYcm5SbpvzMlDhFAwAY74yetr5CmJZqWc07vcUxPS0xmdNJyZaTX9HfLaavc4xbWKncaYukzEJJUmdTE90RMe758tT+GWecoT179mjz5s1atGiRH1MC/nFdZa7+lmfISctV16mfGth+q7bN8/qCyVRgAgAAAPCP67ojimbmJWDRjNHTprxHPqJQ41bPeKRwllqv/IXcVK6lAAAAkskZZ5yhP//5z5KklStXjlo04ziOVq1aJUnKysrSvHnz/Awxpg7VWScaTNM87HYi21Tf6dmeU5qt1BQWGjuUZM41jl6s8m10NcmqW6NQ3ZsK1b0pq26NzHDbkQ88BDu/UpGyhYqULpJdukh20WzJGny41JAUu38Bxw9+voOFfAcHuQaSy/CifrpgAgCOW2/nsG4xg5+bXQ0xmdINZcjO6y+M6e8U01ckM01uRpFkGJ79LcuSMgtiEguQqHx5B/pzn/ucHn74Yf3whz/UP//zP8sY9sMHJLOUXc8pteYlz1jXqTfITc+X1Pdw2ls13lUJTp6U7Vd4AAAAAKD69rAaOns9Y3NKEuzGT2+nch/7mEL713uG7bxpann3A3IzeNMOAAAg2cycOVNz5szRxo0btXLlSi1dulSzZs3y7PPYY4+ppqZGknTppZcqFBo/xRMFBf79DpuXl+fbXMdrywFvkfyp04p8/V4lu2TKNY7fMeU7Epb2rZNqXpf2vNr3p7Hq2INIz5fKT5MmnyaVny5NPkVWZqEsSWnHflaMgp/vYCHfwUGugcQ2vGhmDkUzAICxiPTIatkpq3nHkOKYnX0dZDr2xWRK10rtK4wZUhzj9HePcbJKRhTGAPDy5c7D4sWL9a1vfUtf+tKX9C//8i+67777lJ+f78fUQGy5jrJWf9szZGeXquvkawe2a1p6RjyctmASqyMDAAAA8M/wLjPZaZamFKTHKZpRRHqU+8SnlLL3dc+wnTNJLe/5jdys4jgFBgAAEGybNm1SXV3dwHZra+vA53V1dXr22Wc9+y9dunTEOT7ykY/otttuUzgc1h133KH3vve9mjdvnsLhsFavXq2nn35aklRWVqYrr7wyJl8HEofrunq7psUzdlJ5fnyCAcYD15Va9kg1r0l7+v/sXSNFuo/tfIYllc4fLJApP00qnCHRJQEAAIxD4YijLfu9nTDnUTQDADjIDstq3SOzudpbHNNSLbNtrwy5UZ/SNUOyc6fIyZs20CnmYOcYJ7tUMunrChwr35br+sIXvqAZM2bo4x//uKZMmaILL7xQs2bNUmZm5hGP/drXvuZDhMDRS9v8F4UaNnnGOs/8nBQafPjsrVpvl5mCjJDK81l3CQAAAIB/hhfNzC3JkpkoK83Yvcr5641K3f2CZ9jJLFbLu38jJ2dSnAIDAADAihUrtGrVqlFf27x5szZv3uwZG61oZvr06br55pt1zz33qKurSw8++OCIfcrKynTrrbcqIyMjKnEjcdW2dOtAe9gztqCc1deBMQt3SLVv9neQ6S+Saa878nGHkjOprzDmYIFM2UIp9cj37wEAAMaDbQc6FXG8DzyfWELRDAAEihOR2VbT3ylmaHHMTplte2S4TtSndA1TTk657PyK/oKYweIYJ7dcMsdPJ24gkfj2k1VfX68//elPamlpkeM4+stf/jLmYymaQUKK9Cjz5e95hwpnqWf2ez1jb9W0ebZPnpwjI1EeTgMAAADGEcuK3aoq5rAVVYdvJ7qN+4YVzZTlxPT7NWaOrawVX1Rq9QrvcHqB2t73OxlFMxSPKJM93xg7ch0s5DtYyHewkO/Ed9ppp+nOO+/UE088oTfeeEONjY0KhUIqLS3VWWedpUsuuURpaeNvsammpqaYnds0TeXlDRabHLz/luhe3Nzg2c5NDynH6FFTU/gQRyBZc41j48m346ht55sya19XaO+bsurelNWwRYZrH9O53VC6IhNPkl26SJHSRYqULpSbU+bdqaOn7w98wc93sJDv4EiEXBcUFPg6H5Cshi84VlGYruw0HlQGgHHHdWS27R3sFNNfHGO2VMtq3SPD6Y3JtHZ2WX9BzPS+gpiDxTG55ZI1/t4LBRKdL7/lNTQ06Pzzz9fWrVvlutFvRwXEQ/rbv5XVVusZ61j8pRHtz4Z3mjl5UnbMYwMAAACCyM8bgUNveiY613W1cV+nZ+zMmSXxv3HqONKjN0lbHvWOp+XKvPZPypu0KD5xjSKZ8o3jQ66DhXwHC/kOFvIdPcuXL9fy5cujcq7i4mJdd911uu6666JyvmRg28f2YPuxcBzH1/mO1braVs/2nJJMHhg+SsmSaxwD15F1YL305ivS7pekPa8rp6flmE8XyZ+uSMlCRUoXqrdkoeyi2ZKV4t2Jv0sJhZ/vYCHfwUGugcQ1vGhmLl1mACB5ua7Mjn2ymqv7imGaqweLZFp2yrBjs2CLnTlxsBimv1tM38cKKZQekzkBHBtfima+/vWva8uWLZKkq666Sp/+9Ke1YMEC5efn03EDScnoaVXmaz/2jPVOOlO9FUs9Y+09EW074H04bcGknFiHBwAAAAADdjV2qqXLuzrOyVPy4xPMQa4r/e3fpTd/4x1PyZSueUhKoIIZAAAAANEz4qG0UhYaQ7AZ3c1K2fW8Unc+q9Rdz8nsajym8zhpuX0FMiUL1Vu6UJGSBXLT86MbLAAAwDizoc67EPKcUopmACChua6MrobBbjHDimOMSFdMpnUyCgeLYYZ0jrHzKqRU/u8AkoUvRTOPPPKIDMPQhz70If3617/2Y0ogpjJev09mT7NnrGPxl6RhRWDr9nbIGdJcKWQaOpFVCQAAAAD4aO0e76q0RVmpmpQX51VtVv639PK93jErVfqX30sVZ8cnJgAAAAAx5bquNuwbXjTDPRMEjOvKOrCxr0hm57MK1b0pwz26bkuuYcmecKJ6+7vIREoWys6fJhlmbGIGAAAYh7p7bVU1eB+upqgfABKD0d0sq3mHpyDG7P/cDLcf+QTHwEnL83SKcYYUybhpuTGZE4C/fCmaqampkSR99KMf9WM6IKbM9r3KWPtLz1jPjEsVKV04Yt+3ats82yeWZCo9hTesAQAAgFhoamqK2blN01ReXt7AdktLixzn6B5qiZdXttV5tueUZKq5uTk+wUhKe+1eZb7wHc+Ya1jquOxH6i1cKMUwj2OVzPnG0SHXwUK+g4V8B0u8811QUODbXEAy293co/Ye2zM2h4XGEABGuE0pu1crdeezStm5SlbHvqM63s4qUaR0kSIlC9RbukiR4vlSSkaMogUAAAiGTfWdnoWQTUOaXZwZv4AAIGCMcFtfIUzzDlnNOwe7xjRXj1jQPlqclGw5+RWe4pi+j9PlZvAeLzDe+VI0M2HCBNXU1CgnJ8eP6YCYynzlbhl2z8C2a1jqOOvzo+77Vq23qnXBJH4GAAAAgFixbfvIO0WJ4zi+znc8Nuz1XpfMKcmKW+zpb/1GmS98yzPmylDbhXcqXHGBlKDf02TKN44PuQ4W8h0s5DtYyDcShWVZMTu3aZqH3U5Em+o7PdtFWSmalJ8hwzDiFFFySMZcB57rymzcppTqlUqpXqlQ7asynMjYj58wS5r5TmnqWWrNnS07q8Tzcuz+ZYHf+PkOFvIdHOQaSA4b67xdMCuLMpSRym9aABBVvZ2yWnb2F8MM6xzT1RCTKd1Q+rCCmMHP3cwJEu9DAYHlS9HMeeedpz/84Q9at26dTjnlFD+mBGLCatyqtI1/9Ix1z/sXOQXTR+xrO67eHlY0c/JkimYAAAAA+Md2/j97fx5d11Xn+d+fe+6sWZ40eh4lO3YSOyEJFHGoIpAwhVTi4kdVEcYu0qaq6afp7idrQdezVvNbUE/zdPPrtIuuKqBSQJEmKUJSgbgKCE4YEhJsJ3ZiyYM8W5NtSdZ8x3OeP+RI3leydCXdSfe8X2tllfe+5+z9lb5W4aOzv3s7au02X/w01+ZnJ+dg6z+p7Jf/n0n9Q3f934pt+GDO4wEAAACyLZenEF172lKhOtnXabRvXF6tRYsW5SmahWsh5NqVYsPS6V9KJ3429l//ufTv9YWk1e+U1t89ViyzaOK9Y0UWQkXh4ufbXci3e5BroDC1dKdsOFZblqdIAGCBS0THCmPGT4oZOznG6j8z65NW0+VYASUrVxgFMfbVP9ulNZKHomUAk+WkaOY//If/oB/+8If62te+pl27dikUCuViWiDjSl76b/I49njb8Zdo5JY/n/La0z2jGo6ZuxlurecBCwAAAEDunOkd1WjcNvqa8/DiJ9D2nMp+8cik/qF3fFHRzX+U83gAAAAA5N4bF/qN9g2NLCDFAtdzUjrx07H/zvxGSkbTv7dqpbThPWOFMqveIfnD2YsTAAAAk7SknDSzOU8bjgHAgpCMyTtwQdY1J8V4r5yWt/+MrMFOeeRkfErH8skub7xaGLPaODnGLquTLE4HAzA7OSmaufnmm/XNb35Tn/70p3X33Xfrm9/8pjZs2JCLqYGM8XX8TsEzzxt9ozd+Sk7p0imvP9QxaLTrK4JaWhbIWnwAAAAAkKo15aVPTXlAi0v9OY3Bf2afyn/6740NCCRp+G3/XpEbP5HTWAAAAADkR9J29GaHWTSzrbEqP8EAcxWPSGd/ffU0mZ9KvafSv9cbkFbeMVYks/5uafE6yePJXqwAAAC4rqFoQmd7I0ZfUw1FMwDgGe2Veg6MbRLRc1Jl3Udl9Z2WNdguj5OceYBZcjyW7PKG8WIY4+SY8gbJm9v32gCKW06KZj75yU9Kkpqbm/XrX/9azc3N2rp1qzZs2KCSkpJp7/V4PPrWt76VizCB63Mclf7mr4wuO7xIozd9+rq3HG43j/Hc2sApMwAAAABy60hK0UxzjndK8194WRV7/608dsLoH7n5zzS6Y3dOYwEAAAByra+vL2tjW5alysqJk1r6+/tl2/Y0d+TXyUsjGomZiytWlDlZ/R4Vi4WW62JjDVyQ78w++c+8IP/5l+RJjKZ9r11Wp/iquxRffZfijXdIgWueya9cmXo+8u0q5NtdyLd7FEKuq6urczofsNAc7Tbfnfgsj9YvnX4NIwAUHceR1X9G/s4D8ncekK9jv3xXzM0hMlWykiyrmyiGufbkmIpGyRvM0CwAML2cFM089thj8lzdKcfj8ci2bR06dEiHDh2a9j7HcSiaQUEInPqp/N2vGX0jt/y5nMD1C2EOp5w0s7WeohkAAAAAudXSZRbz57Joxtd5UBU/+TfyJGNG/+gNf6qR2/8jO+oCAACg6CWTmd+B83ps287pfLP1RseA0a4tD6gy5C3omAtVoed6wUvGxhYMnX1BgbMvytd7Iu1bHY9Xibodiq26U7GVO5VctMF89p1D3si3u5BvdyHf7kGugcLTkrLh2PqlJQr4rDxFAwA5kozLd7lFvo79Vwtl9ssa7cnc8CXLrhbErDJPjqlcKflCGZsHAOYqJ0UzK1asGC+aARYcO6GSl79mdCUrVyiy+SPXvaVnOK7zV6JG39b68qyEBwAAAABTiSdtnbg0YvQ11eSmmN97qUUVz35Snrg5f2TT/Rp+53+hYAYAAABwmdSC/qYcn4IJTMca6pb/3IsKnHlB/vO/kRUfmvmmq+ySJYqt3KnYyp2KL3+7nGBFFiMFAABAJqQWzfB8AqAYeWKD8nW+Jn/nfvk6D8jf/bo8ici8xrRDiyaKYa4pjrErV067AT0AFIKcFM2cOXMmF9MAWRFseXLSsXPDt/0HyRu47j1vpJwyE/ZbWscxngAAAABy6OTlUcWSjtGXi5NmvL1tqvznh2TFzOei6Np7NPSur0gedmsDAAAA3CZ1UdrmWhZSII/shHzdrytw5uppMpdb0r7VkUeJ2hvHC2WSS5t5zgUAAFhgWrvN55NcvDsBgGyzBjvGimOuniLj7Tkmj2PPfiB/ibR0k7R4nUZL6pWoWDleJMNGEQAWspwUzQALVnxEpa/+P2bXshsUW3fvtLcd6jB3oLqhrkw+i52UAQAAAORO6qK05VVBVYSy+2sAq/+cKp75mKzRXqM/tnKnBu/+75LFryEAAAAAt4knbR1PPQWTRWnIMc/IZQXO/UqBsy/If+5XsqL9ad9rh6oVW/FOxVfuVGzFO+SEF2UxUgAAAGTTldG42vujRl9zDc8nABYYOylv74mJU2Q698s72DG3oUqWKF63Q/G6HbIbb1XF+jskr1+SFOnrUzKZzGTkAJA3rFYBphF+/duyRi4ZfSN3/KcZd4w6nHLSzNb68ozHBgAAAADTaekyi/mbsryTszXUpcpnPibvcLfRH2t4mwbu2TPtaZ0AAAAAitfJy6OKp56CyaI0ZJtjy3fxTfnPvqDA2Rfk6z4sj5yZ77sqvnSL4qvGTpNJLNsqWd4sBgsAAIBcaU3ZcCzo82jNkpI8RQMAaYqPynfxsPyd++Xv2C9f12uyYoMz3zeFRPU6Jeq2K163XfH6HbIrVkiesQ3hvV7veMEMABQbimaA6/CM9ih88O+MvtiKdyreeMe098US9qQHrK0N2V2cBgAAAACpUk+aac7iTs6ekcuqeOZj8g6cN/rjNTdq8H1/K/lCWZsbAAAAKFReb/YW2VuWNW27kLReNE+ZWVEdUlVpME/RLDwLKdf55on0y3ful/Kf2Sf/mRdljfakfa8dKFdi5TsVX7VT8ZV3yildNv5ZLstlyLe7kG93Id/uQa4xk1gspscff1ynTp1SV1eXhoaGVFJSotraWr3rXe/S7/3e78nnY0lftrR0m+9ONi4rlc/y5CkaAJiaZ7RH/s4D8nXsH/u/l47IY8dnPY5jBZRYtkXx+h1K1O1QvPZmOeHqLEQMAIWPf2ED11Hyuz2y4hM7MzvyaPiO/zTjfccuDiuWsmPaDXUUzQAAAADInUjc1snL5sK0zVkqmvFE+lX5zx+Xr++k0Z9Y0qSBD3xbToDnIQAAALhTdXXuFiFUVlbmbK7ZOtlrFtffuGJRTr83xaaQc51zjiN1vSGd+Kl04mfShVclx07//mWbpfXvltbfLWv5rQp4/Sq0M1LJt7uQb3ch3+5BrpEqEonopz/9qdatW6ebbrpJFRUVGh4e1uuvv65vfOMbeumll/TII49QcJUlqRuONXEKJoB8cxxZV86MnSLTeUC+zv3yXTk9p6HsYOXEKTJ1O5RYdoPkY+MSAJAyXDTz1o5ZHo9HiURiUv9cpI4F5ILVf06hN79v9EU3fkjJJU0z3nuoY8hor1kcVnmI+jQAAAAAuXP80rCureW3PGO7pWWaJzakimc/Jd/lVqM/UbVG/R98TE6IF8IAAACA2x260G+0tzbynIB5iAxIp14YK5Rp+7k02Jn+vf5Sae1d0ro/GCuWqWzMWpgAAADXU1ZWpn/4h3+YdJpMMpnUl7/8ZR06dEivv/66br755jxFWNxau8x1Xc1Z2nAMAK4rGZPvUov8nfvlu1ooY432zm2oiuUTBTJ125VctE7yUHQJAFPJ6Ep+x3Fm1Q8UqpLf/nfjODvHCmjkbf+vtO493D5otLc1sKsyAAAAkAvz2bBhJqk7uhX6Dm+t3aNGe/XisMrDGd4vNxFR2XN/Jn/3a0Z3sqJRQ/f/o6zymszOl0MLLd+YO3LtLuTbXci3u5BvoHBF4kkd7zbfm2xtrMpPMFiYHEe6dOzqaTI/lc69LNmz2HBxyQZp/d1jRTIrbmeHXQAAkHeWZU353Or1enXLLbfoyJEj6urqykNkxe/yUEwXh+JGX3Mt67oAZJcnOihf18Gxk2Q6DsjX/bo8yeisx3E8lpJLmhSv26F4/Q4larfLLlu472MBINcyWjTzl3/5l7PqBwqR9+IbCp141uiLbP1T2RUNM97rOM6kk2a21pdnND4AAAAAU6uurs7ZXJWVhb0z8snes0b7ppWLM/v9ScSkH/wb6cJvzf7yOnk//mNVLVqdubkKQKHnG5lDrt2FfLsL+XYX8o1C0dfXl7WxLcsy/q739/fLtu2szTdXh9oHlbQnNtezPFJDiZ3V702xWSi5zqj4iPznX5bvzD75z+yTd7A97Vsdb1CJ5XcovuouxVftlF25YuLDwRFJI5mPN4NcmW8XI9/uQr7doxByncvfledaf3+/2tra1NbWppMnT+rkyZMaHBwr0r7zzju1e/futMe6dOmS9u7dq4MHD6qnp0c+n0+1tbW6/fbb9Z73vEfBYG6LbW3b1qFDhyRJy5cvz+ncbtHSPWy0S/yWVi4K5SkaAMXKGuyQv2O/fF0H5O/YL2/PMXk0+4MHHH+J4rU3KVG7faxIpmabnACFfgAwVxTNAClKX/5vRtsOlGtk+8Np3dvRH1XPsLkjwdZ6/qECAAAAILcOXbhitLc2ZnDhaDIhPfWZsR1+r1WyWPrYM1KRFcwAAAAAc5VMJnM2l23bOZ0vXW92DBjtVYvCCnpz+70pNoWa6/myrpxR4OwLCpx9Qf72V+RJxtK+N1mxXLGVOxVbtVPxhtsk3zULHxf496pY842pkW93Id/uQa4z6zOf+UxGxtm/f78effRRjY5OnNoejUbHC3Gef/55PfLII6qtrc3IfFNJJBJ66qmnJEmDg4N688031d7erp07d+qGG27I2rxu1tplFs1sqimV5fHkKRoARcFOytt7XP6O/fJ37pev84C8Q51zGipZskyJ+h2K121XvG67kkuaJCujS7wBwNX4/6jANfznfqXA+d8YfaPbPysnnN4uHIdTTpmpCvu0opodCQAAAADkzmAkrlOXzRc/WxurMjO4bUv//OdSy9Nmf7BS+tMfSUs3ZmYeAAAAAEWhJWVR2uba0jxFgoKTiMrf8epYocyZF+TtP5P2rY7lV7zhVsVW7lR85U4lq1ZLLHYEAMB1lixZooaGhvHTWdJ1+vRpff3rX1csFlMoFNJ9992nLVu2KBaL6Te/+Y2ef/55dXZ26itf+Yq++tWvKhwOZyX+RCKhf/qnfxpvezwefeADH9BHP/rRrMwH6UiXua5rcy0bIQOYpfio/N2vy9d5YKxIpus1WbGhme+bQmLResXrtitRt0Px+h2yyxt5tgWALMpJ0cwvf/lLSdItt9yS9oNEJBLRq6++Kkl65zvfmbXYitHTTz+t73//+5KkL3/5y9qwYUOeI1ogHFulL/1/ja5kaa1Gt3087SEOdwwa7a31ZfLwDxkAAAAgJ/r6+rI2tmVZqqycOK2lv79ftm1nbb752H+uX841J3z7LI/qQsn5f38cR+EX/lKhw983u/0lGvzQt5UMrZCymINcWkj5xvyQa3ch3+5Cvt0l3/murk5v0yXAjVpSFqU1UTTjatZA+8RpMhdelicxOvNNVyXLaseLZGKNd0gB/i4BAOBGDzzwgNauXau1a9eqqqpKFy9e1Oc+97lZjfHYY48pFovJ6/Xqi1/8orGuasuWLaqrq9P3vvc9dXZ26tlnn9WuXbsmjfGd73xH8Xg87Tnvvfde1dXVGX2hUEhPPPGEbNtWX1+fDhw4oMcff1zHjx/XI488opKSkll9XZie4ziTTprh+QTATDwjl+XvPCB/5wH5OvfLd+mIPHZi1uM4VkCJmq1XT5HZoUTdzXJCVZkPGABwXTkpmtm5c6csy9Lhw4fV3Nyc1j1vHTdpWZYSidn/j4xbnTt3Tk8++aSCwaCi0Wi+w1lQgsefle9yi9E38rZ/Zx7hPoNDKSfNbK0vz0hsAAAAAGaWTCZzNpdt2zmdbzbeaB8w2uuWhuX1OPOL13FU8vJ/U+jwd8xub0AD7/sbxZfdKBXo9yMTCjnfyCxy7S7k213It7uQb6AwDEUTOtsbMfqa2cnZXZKxscVFZ19Q4OyL8vWeSPtWx+NVom67Yit3KrZyp5KLN7DjLgAAmLKAZTba2trU2toqSbrrrrum3Ij4/e9/v/bt26f29nbt3btX999/v3w+c4ndz372s1mty7rtttsmFc28xbIsLV68WHfffbfKy8v1P/7H/9BTTz2lP/mTP5nFV4aZdA3E1DdqrkFspmgGwLUcR94rp+Xr3C9/x375Ow/M6lTUa9nBqrFTZOq3j/3fpTdIvmBm4wUAzEpOimaksWrtXN7nRolEQnv27NGqVatUW1urX/3qV/kOaeFIRlXy2/9udCUWrVd00/1pDzEcS6rt0ojRt62Blz8AAAAAcqslZae0TCxKCx/4a5Uc/Bujz7F8GrjnrxVvvGPe4wMAAAAoPke7R3TtWz6f5dGGpeyWXeysoW75z72owJkX5D//G1nxoZlvusouWTJeJBNf/nY5wYosRgoAANzo1VdfHf/zXXfdNeU1lmXpzjvv1Pe//30NDw/ryJEj2rZtm3HNd7/73azE99Y8LS0tM1yJ2WrpNt+dVIS8aqhkATvgasmYfBffHD9Fxt95UFakd25DVa5QvHa74vU7lKjboWT1GsljZThgAMB85KxoZrZs25Ykeb3ePEeycDz11FO6cOGC/uqv/krPPPNMvsNZUEJvfF/ewQtG38jt/1Gy0v8ROdI5JPuatz9ey6OmGopmAAAAAORWa8qLn+aa+e2UFjr09ypN2WTA8VgavPt/KL5q6peKAAAAAJD6bLJuaVgBHwtGio6dkK/7dQXOXD1N5nL6CzwdeZSovXHiNJmlzSwqAgAAWXXs2DFJUjAY1Jo1a657XXNzs3FPatFMtvT2ji3WZr1c5rV0mcXcTTWl8nCSIeAqnuiAfJ0Hxk5E7TwgX/cheZLpnxr2FsfjVWJpsxJ12xWv26F43XY5pcuyEDEAIJMKtmjm7NmzkqTKysqszdHf36+2tja1tbXp5MmTOnnypAYHByVJd955p3bv3p32WJcuXdLevXt18OBB9fT0yOfzqba2Vrfffrve8573KBjMbmX6qVOn9KMf/Ui7du1SY2NjVucqNp7ooEr27zH64nU7FFv1rlmNc7jDfLjatKxEIT+/2AcAAACQO1dG4mrvN3+521w796KZYMsTKvvVlyf1D73rK4qtu3fO4wIAAAAofqmL0jJxCiYKg2e0R4Gzv1Tg7Avyn/uVrGh/2vfaoWrFVrxT8ZU7FVvxDjnhRVmMFAAAwHThwtiGurW1tdMWptTX10+6J5MxLF26dNJasmg0qu985zuSpJtuuimjc0Jq7UrZcIznE6C4OY6swQ75O/dfPUXmgLw9x+UxzsRNj+0vVaL2JsXrdihRd7PiNTdKgfltWggAyL2sFM2cO3duyv7Ozk6VlU3/D85oNKqTJ0/qS1/6kjwejzZv3pyNECVJn/nMZzIyzv79+/Xoo49qdHR0vO+tr+PkyZN6/vnn9cgjj6i2tjYj86WKx+Pas2ePVq1apQ996ENZmaOYhQ/+jaxIn9E3fMd/lma5m8Dh9kGjvbWhfN6xAQAAAMBspO7kHPR5tGZJyZzG8vaeUNkLX5rUP/TOv1S06YE5jQkAAAC4STZ3h7Ysa9p2IWhJWZS2ua6cHbPnoCBy7djydr8h/5l98p/ZJ2/34VktNEosu0HxVXcpvmqnkjXbJGvs70Hh/a3Nv4LIN3KGfLsL+XYPcl24YrHY+GbKixcvnvbasrIyBYNBRaNR9fT0ZDSOl156ST/5yU+0adMmLV26VOFwWL29vXr99dc1ODiopqYmvf/975/VmOnGmK1/jxf633vHcdSS8v5kSz3PJ3NV6PlGZi2YfNtJeS+3ytd5QL6O38nXsV/WUNfchiqtUaJ+hxL1tyhRv0PJJZska2KpdTH/f44Fk2/MG7l2F/I9JitFM6tXr57U5ziO7r777lmP9bGPfSwTIc1oyZIlamho0KFDh2Z13+nTp/X1r39dsVhMoVBI9913n7Zs2aJYLKbf/OY3ev7559XZ2amvfOUr+upXv6pwOJzx2H/wgx+os7NTX/3qV137F3murKEuhQ/9vdEXXXO3EnU3z2oc23F0uNPcMW1bPTsSAAAAAMitIymL0jYuK5XPmt2GAG8J/26PPHbC6Bu+/T8qsjU3z+kAAADAQlddXZ2zuSorK3M2Vzr6hmOTTsG8fUO9qqsr8hRR8chZrkf7pJO/kE78bOy/kcvp3xuslNbeJa2/W1r3B/KV18gnKfNvSYtfof1sI7vIt7uQb/cg14UjEomM/zkUCs14fSgUUjQaNe7LhO3bt6uvr0/Hjx/X8ePHFYlEVFJSohUrVujtb3+77rrrrlkXczz88MNpXffEE0/MJeRZK7S/96cvD2somjT67tjUoOpK/oWaCYWWb2RXweQ7Nixd2C+d+610/rfS+d9JscGZ75vKsmZpxW3S8tukFbfJqlqhgMejQGYjXpAKJt/IOnLtLm7Nd1aKZhxn6p2Frtc/lVAopL/4i7/QJz/5yUyFNckDDzygtWvXau3ataqqqtLFixf1uc99blZjPPbYY4rFYvJ6vfriF7+oDRs2jH+2ZcsW1dXV6Xvf+546Ozv17LPPateuXZPG+M53vqN4PJ72nPfee6/q6uokScePH9ezzz6rBx98UCtWrJhV7JBKXv2f8iQmHm4dj1cjt//HWY9z6vLopIerGyiaAQAAAJBjLV1mMX9z7dyOBrf6TivY9hOjb3TrxzS6/bNzjg0AAACAexxu7zfaQZ+l9TW8NylojiN1vymd+OlYkcz5VyTHTv/+ZZul9e8eK5RZfqvk9WcvVgAAgDmIxWLjf/b5Zl4y99Y1196XCW+tVUPuHL5wxWgvKQuqtmLmwikABWSwe6w45txvpXMvS52HJSc5832pvEGpYftYkcyK26Xlt0jh3G16AgDIn6wUzfz935snd3ziE5+Qx+PRf/2v/1UNDQ3Xvc/j8SgUCqmurk433XSTysqy+8vzqQpYZqOtrU2tra2SpLvuussomHnL+9//fu3bt0/t7e3au3ev7r///kkPXj/72c8UjUYn3Xs9t912m+rq6pRMJrVnzx6tXLlS991337y+Fjfy9rYp2Pqk0RdpflDJ6jWzHutwh7kwrbY8oJry4LziAwAAAIDZau02T5pprp3bc3XJwf8tzzWLo2x/qUZu/Xfzig0AAACAe7yRsihtc32F/F4rP8Hg+iID0ukXJwplBjvTv9dfOnaazLo/GCuWqWzMXpwAAAAZEAhMnBmQSCSmudK85tr7CtU3vvGNfIdQ0A5fMIv6tzVWyuPx5CkaADNyHOny8bHimHOvjP3fvtNzGyu8aKw4ZsXbxv5v3TbJx7pOAHCjrBTNPPTQQ0b7E5/4hCTpvvvuU3NzczamzItXX311/M933XXXlNdYlqU777xT3//+9zU8PKwjR45o27ZtxjXf/e535zR/JBJRZ+fYL68/+tGPTnnNF7/4RUnSF77wBd16661zmqdYlfz2a8YiMMcXnvMisMMd5tF+2xrK5xUbAAAAAMzWpaGYLg2Zp5g218z+pBlr4IKCx542+iI3/ImcUNU8ogMAAADcp6+vL2tjW5alysrK8XZ/f79sexangmTZ/tOXjfaGpaGsfj+KWUZz7TiyetvkP7NP/jP75OvYL48dn/m+q5LVaxVfdZfiq+5Son7HxEIjWxL5zYhC/9lGZpFvdyHf7lEIua6uZsf8qYRCEyeLRCKRGa9/65pr7ytUixcvTuu6bP2bvBD+3k/n4Jkeo71+cZDnk3ko9Hwjs3KS70RU3otvytfxO/k69svXeUBWZG4/o8nKVUrU71Ci/hYl6rfLrl4rXVskNzgiaSQzcRchfr7dg1y7SyHkuxCeUbJSNJNq3759kqTVq1fnYrqcOXbsmCQpGAxqzZrrn05ybaHQsWPHJhXNzJXf79e73vWuKT9rbW1VZ2enduzYoYqKCi1btiwjcxYLX+d+BU/9zOgbvfGTckrn9n1KPWlma312T0kCAAAAgFRHusznktKAVysWzf5lXvjg38hjT+yy5/hCGr3xk/OODwAAAHCbZDKZs7ls287pfDNp6TQ3G2taVlJQ8S1ks851fET+C79V4OwLCpx9Qd7B9rRvdbxBxRtvV2zlTsVW3im7coV5ATnNukL72UZ2kW93Id/uQa4LRyAQUHl5uQYHB9XT0zPttUNDQ4pGo5LSL0hZCHL1d7GQ/t4nbUdHu833J5uWhQsmvmJQSPlG9mUi355Iv3xdB+Xv2C9/5375Lh6WJxmb9TiO5VNiSbMSdTsUr9+heN12OSVLUgOeV6xux8+3e5Brd3FrvnNSNHPnnXfmYpqcu3DhgiSptrZWXq/3utfV19dPuicTAoGAPvvZz0752Z49e9TZ2an77rtPGzZsyNicRcFxVPqbvzK67NAijd78mTkN1zcS17k+cwcKTpoBAAAAkGutXcNGu6mmVNa1OyelwRrqUqjln4y+yOaPTP4FMwAAAABcx+WhmC6mnIK5uZbNxnLJunJmvEjG3/7KrBYfJSuWjxXJrNqpeMNtkq/wd1YHAABIV2Njo1pbW9XV1aVkMnnd9V4dHR3GPVi4zvSOajRuLppv4vkEyB3HkTV4Qf6rJ8j4O/fL13tiTkPZ/jIl6m5SvG77WKFMzTbJX5LhgAEAxSonRTPFKBaLaXBwbJesmXYUKCsrUzAYVDQanXGngkKRbpzTFQvNh2VZ07bnw3/yp/J3HTT6Im/7c1nhqjmN92ZXv9EO+S1trC2X15rd4jQ3y2a+UXjIt3uQa3ch3+5CvoHC1JJaNFNbOusxwq99Ux57YjGVYwU0etPcNhgAAAAA4E4t3eazSWnAmtMpmJiFRFT+jlfHCmXOvCBv/5m0b3Usv+INtyq2cqfiK3cqWbVamuUGDAAAAAvFxo0b1draqmg0qlOnTmn9+vVTXtfS0mLcg4UrdcOxmvKAFpf68xQN4AJ2Qt7LR+Xv3C9/5wH5Og/IO9w9p6GSZbVjxTF1Y6fIJBdvlKzsrFcFABQ/imbmKBKZOFkkFJr5F/2hUEjRaNS4r5A9/PDDaV33xBNPZDmSMZWVlZkZKJmQfvs1s69qpUp+b7dKfME5DXmsx/xH3U3Lq7V08aK5RghlMN9YEMi3e5BrdyHf7kK+gfxzHGdS0czmWRbNeEYuK3TkcaMv0vyA7LLaeccHAAAAwD1aOs1nk01zOAUTM7MG2hU496L8Z15Q4MJL8iRG0743WVY7XiQTb7xdToCdtgEAgDvceuutevrppyVJ+/btm7JoxrZtvfjii5Kk0tJSbd68OZchZtVC3Bx5vlovjhjtzXVlWfs+uEUh5xuZN2O+Y8Pydb0mX8f+sf+6XpMnbv5eIB2OPEou2ahE3Q4l6m9Ron6HnIoG4xp+crOPn2/3INfuQr7HUDQzR7HYxM67Pt/M38a3rrn2vmzavXu3du/enZO5FpTX/1G6fNzs+/3/Is2xYEaSDp7tM9rbV1bPeSwAAAAAmIuO/qj6Iwmjr7l2douewq9/W57ExEYPjser0Zv/LCPxAQAAAHCPlq4ho91cQ0FGRiTj0rnfKvzms/Kd/oV8vSfSvtXxeJWo267Yyp2Krdyp5OINnCYDAABcad26dWpqalJra6v27dunnTt3asOGDcY1P/7xj9Xe3i5Juueee9JaF7ZQVFfnZk1TIW24d+ySucH19tVLc/Z9cItCyjeyr9IzInX8Vjp39b+uNyQnOfuBfCGpYYe04m3SitvlabxFvnAVC5oLDD/f7kGu3cWt+eZ/Y+YoEAiM/zmRSExzpXnNtfcVsm984xv5DiHzYiPSC18x++q2SZvvn/uQCVuHLlwx+iiaAQAAAJBrqafMVIZ9qqtI//nTE7mi0BvfM/qiG++TXdGYkfgAAAAAuIPjOGrpNp9Pmmd5CiauspPyXm5VsPN30sXXpNO/lGKDCqV7e8kSxVbcqdiqnYovf4ecYEVWwwUAAMiFo0ePqqura7w9MDAw/ueuri698MILxvU7d+6cNMbHP/5xfelLX1IsFtOXv/xlffjDH9bmzZsVi8X00ksv6ec//7kkqa6uTh/4wAey8nUgN2IJWy2dA0bftsaq/AQDLFQDndKJf5XOviyd/63Ud2Zu45QsllbcLq24TVp+29i6Td/CWEsLACgOFM3MUSg08SvpSCQyzZXmNdfeV8gWL16c1nV9fX0zXzQHlmUZlWz9/f2ybXteY4Z+t0fhwU6jb/C2/6hEf/+cx3yjY1DRhBnX6orsfV+KVTbyjcJFvt2DXLsL+XaXQsg3O0ABptRFaZtrSuWZxa7B4UOPybrmqHTHY2lk+8MZiw8AAACAO3QOxHRl1NxsromimfQk4/JdOiJ/xyvyt78qX+d+WbGhme+7ypFHiZobFVt159hpMks3Sx4riwEDAADk3vPPP68XX3xxys+OHTumY8eOGX1TFc2sXr1an//85/Xoo49qdHRUjz/++KRr6urq9MgjjygcDmckbuTH8e5BxVLWdd3Q4M6d1YFZGeiQWp6RjjwtnX9FkjP7MRavGyuOWXHbWLHM4rWceAoAyCuKZuYoEAiovLxcg4OD6unpmfbaoaEhRaNRSekXoywUyeQcjtabA9u25zWXZ7RXwf3m6Tmx5e9QtOF2aR7jvnbeLLhZvSiksoCVs+9LsZpvvrGwkG/3INfuQr7dhXwD+dfSZS6kms2iNE90UKHD/2D0Rde9T3b16ozEBgAAAMA9Up9NKkM+NVQG8xRNgUtG5et+Q/6OV+Vvf1X+rgPyxEdmNYQdqlZsxTsVX7lTsRXvkBNelKVgAQAAisuOHTv0ta99Tc8995wOHjyo3t5e+Xw+1dbW6rbbbtN73/teBYPF9+/YhbQ5cib89niX0V5eFZIdHVJfNE8BFYlCzTfmxzPYqUDbcwqceE6+zgOzutexfEou26JE/S1K1G1Xon6HnJIl5kVXrmQuWGQNP9/uQa7dpRDyXQibI1M0Mw+NjY1qbW1VV1eXksmkvF7vlNd1dHQY9yD3Svb/9aTduIbv+E/zHvdwhznmtobyeY8JAAAAYG6u90yWCZZlTdvOJ9txdLTbXFi1pb4i7e9H6Mg/yooOGH3RWz+X1e9noSvkfCOzyLW7kG93Id/uQr6BwtHSZZ6C2VQ7u1Mwi1oiIn/X6/J1vCp/+yvyd70mT3L2q/USy25QbOXYaTKJZVsly73PbgAAwH12796t3bt3Z2SspUuX6qGHHtJDDz2UkfEWgoWyOXKmHOkcNNpNtaUFEVexKZR8Y/aswQ4FTv6Lgm3Pyd/1Wtr32YEyJWpvVrx+hxK12xWv2Sb5U07m4u9EUeDn2z3Itbu4Nd8UzczDxo0b1draqmg0qlOnTmn9+vVTXtfS0mLcg9yyBs4r9Mb3jL7Ihg+NHUs/D47j6HCH+XC1tZ6iGQAAACBfcrkzxbW7cORb28UhDcfMX2jcsalB1RWhmW+ODUuvf9vsa/qAKtfflsEIF75Cyjeyi1y7C/l2F/LtLuQbhcKNhf1HL6YU9NeVu7cgPz4iX8cB+dpfGfuv+5A8ydish0lWrZZ3ze9JK98hrdmpYTs0vhOkS7+zRa1Qf7aRHeTbXci3e5BroHCkFvU315TmKRKgcFiDHQq07VWwba/83WkWygQrpHV/IK28QwNVmxWrWssGDgCABYeimXm49dZb9fTTT0uS9u3bN2XRjG3bevHFFyVJpaWl2rx5foUamL2S3/4Peez4eNuxAhq57d/Pe9yugZguDcWNvq0NZfMeFwAAAABm4/CFK0a7piKomnQKZiRp/99LIz1m3+99ITOBAQAAAC7ntsJ+23bUmrIo7dZ1NTn9PuRVZEA6/4p05tfS2d9IHa9JdmL24yzdJK28Q1r5dmnl2+WtqDM+zn+mkUuF8LON3CHf7kK+3YNcA/kRTdhquzxq9DXXUjQDd7IG2hU8uVeBtr3yd7+e1j12oFyx1X+gxIb3q2zbByRfUJKU7OvjFBkAwIJE0cw8rFu3Tk1NTWptbdW+ffu0c+dObdiwwbjmxz/+sdrb2yVJ99xzj3y+4vqWZ2t3sEztvOG9+KZCx58x+qJb/0Se6lXz3n3rjZQXP5Uhn9YsKZXH45nnyO7DTivuQr7dg1y7C/l2F/INFJbDF/qN9tbGqvRujEekl/6n2bf+bqn+xozEBQAAAMBdzvQMazBqFomk/XyyEI32SWdfHiuQOfNrqeuw5NizH6dmy1iBzKq3SyvukMqWZj5WAAAAwGVOXBpR0nbG2x5JGzlpBi5iDVxQsO25sUKZi4fTuscOlCu25t2KrrtX8eV3SN7g2PrQqwUzAAAsZMVVwTFLR48eVVdX13h7YGBg/M9dXV164YUXjOt37tw5aYyPf/zj+tKXvqRYLKYvf/nL+vCHP6zNmzcrFovppZde0s9//nNJUl1dnT7wgQ9k5evIp1ztDjbnnTd+/N/NdrBCoXd/UaHS+cd97HK70d6xapEWLVo073HBTituQ77dg1y7C/l2F/KNQtHX15e1sS3LMv6u9/f3y7bnsBgqCw6eMU+K2bA4mNb3InjouyoZ6jb6Bm76s7EdolyukPONzCLX7kK+3YV8u0u+8+2aUzSAGaQW9C8rD6q2Ms1TMBeC4ctjBTJnX5LO/EbqflOSM+NtBo8l1W69pkjmdqmEd0sAAADIjULfHDmTWrtHjPbqxWFVhAN5iqa4FGK+McbqPy//iZ8ocOI5+dItlAlWKL7mbsXWv0+JFW+XvGM/J2/9fwvy7S7k2z3ItbuQ7zGuLpp5/vnn9eKLL0752bFjx3Ts2DGjb6qimdWrV+vzn/+8Hn30UY2Ojurxxx+fdE1dXZ0eeeQRhcPhjMSNNJ3cJ538hdn39n8nlS7OyPAHzpkLyW5eyYtRAAAAIJ+SOTwK3LbtnM53PYmkrWMXh4y+TcvCM8eWjCm4/6+NrljjHYotu5Ej1adQKPlG9pFrdyHf7kK+3YV8o1C4rbD/1TazKH9TTUlWvwfZ5hm+KF/7K/JdeEX+9lfk7T0x6zEcj1fJmhuUaHib4g23KVG/XQpWTFwQlRSd/ntUiLlG9pBvdyHf7kK+3aMQck1hP66n4DdHzqC23nNG+8aVi/jZyJJCyLer9Z6WWp6Wjjwtdb6e3j2hKqnp/VLzfbJW36mgL6B0z5Ih3+5Cvt2DXLuLW/Pt6qKZTNmxY4e+9rWv6bnnntPBgwfV29srn8+n2tpa3XbbbXrve9+rYJAj6nLKtqWf/6XZV1Yr3fZwRoYfjibU2jlo9G2naAYAAABAjp3sGVU0Ye5s3FRbOuN9wWNPyzvUafSN7tid0dgAAAAAt3NbYf+RLvO9SXNNad5jmg1rsEP+jlflb39Fvo7fyXfl9KzHcCy/EjXbFG+4VfH6tylee5MUSHlGm+f3pBByjdwh3+5Cvt2FfLsHuQby4/CFK0Z7W2NVXuIAsqL31FiRTMvTUueh9O4JV0ub3i9tvk9afafk9WcxQAAACo+ri2Z2796t3bszsyho6dKleuihh/TQQw9lZLyFIls7hM135w3/sWdUlvIPwuG3/TvFhmPScGze8b16tl9Je2Jhms/yaEWZs6B3TMunQthpBblDvt2DXLsL+XaXQsg3O0EBY1q7ho12Q2VQVeEZfsltJ1Ry4BtGV7xuu+INb8t0eAAAAABcImE7Oto9YvQ11cxc0J83jiNr4PzVIplX5e94Vd6B87MfxhtUvPZGJerfNlYoU3uT5AtlIWAAAAAA6RqOJtR2acjou6HRnTuqo4j0nJSO/GisUKbrjfTuCS8aP1FGq99JoQwAwNVcXTSD+cvVbhiz2nkjGVPFS18zuhLVazW68f557971ltfO9xvtDctKFLByu2tcMWOnFXch3+5Brt2FfLsL+Qby50hK0UxzOqfMnPiJvP3njL6RHZ+TPJ6MxgYAAADAPc70jCqaMDfU2JzG80nOOI6sK2fk73jlapHMK/IOdc1+GF/46qYDYyfJJGpukLzBLAQMAAAAZF6hbo6caQfPD8iZ2AtZPsujulCSzZAzpNDyXcysvlMKnHhO/hM/ke9ya1r32OFFiq99j2Lr7lWi8baJQpmBoelvvF4M5NtVyLd7kGt3KYR8F8LmyBTNoOiE3vz+pN3ARm7/gmRl7q/74Y5Bo72tvjxjYwMAAABAulq6zF9wN9eWTX+DYyu8/6+NrviyGxRf8XuZDg0AAACAixxJeTaprwiqqiSPO9g6jry9J+Tv+N14oYw1cmnWw9j+MiXqtyt+9SSZxNIt7MwLAACABasgN0fOgjc6Boz2miVh+dkMOWvyne9i4+07pUDbcwq27ZWv52ha99jhRYqueY9i6+5RvOFt5jrJDOeGfLsL+XYPcu0ubs03RTMoKp7YoEp+t8foi9ferNjqd2dsDttx9EaH+fJna/0MC9MAAAAAIMOiCVttl0eNvplOmgmc/Ff5+tqMvtEduzllBgAAAMC8tKacgtmU61NmHFvenmPyt791kszvZEV6Zz2MHaxUvP4WxetvVbzhViWXNGV0UzYAAAAA2Zf6fNJcU0CnYAJT8PadvKZQ5lha99jhxYquvVooU38rz64AAMyA/6VEUQkf/LtJL0GG3/6fM7oA7EzPqAajZoXd1gaKZgAAAADk1olLI0raznjbI2nTdC9+HEcl+81NBhKLNyq2+vezFCEAAAAAt2hJXZSW7aIZOyHfpRb5O16Vr/1V+Tt/Jys6MPN9qcOEF40VyLxVJLN4o+SxshAwAAAAgFxpSTkJs7mWdV0oPN7eNgXa9irY9px8vcfTumesUOa91xTKeLMcJQAAxYOiGSwoVv9ZeaIDsssb5ISqjWIYz/BFhV//tnF9dPUfKFG3I6MxHE45ZaamPKCa8mBG5wAAAACAmaS+9Fm1KKTSwPV/OR448wv5LrcafSM7drMgDAAAAMC8xBK2jl8aMfqyVTQTOPFjhY4+JV/HAVnxoZlvSGGXLFW84VbF6982ViRTvY6TNwEAAIAiMhBJ6PyVqNGX9aJ+IE3enuMKtu1V4ORe+XpPpHWPXbJkrFBm7T2K199CoQwAAHNE0QzmxevNzj/CLMuash1+8/sKvfZNSZLjC8uuaJBdPvaf1X9WnsTo+D2Ox1Lk7f854zG+0WnulratoTxr3we3uF6+UZzIt3uQa3ch3+5CvoHCkLqTc9N0O6U5jsKpp8xUrVFs7XuzERoAAAAAF2m7PKLENadgSlLTdKdgzlHw2D+r/Gf/flb3JMvqFG942/hJMnblKopkAAAAgCLW2m2+Owl4PVq7JJynaOB6jiNv79VCmba98vW1pXWbXbJU0bXvVXTdPWMbhlMoAwDAvFE0g3mprq7OyTyVlZVjf4hcHO/zJEbl7W2Tt3fqf0x6bvoTVa67NeOxpBbN3L6+JmffB7cYzzdcgXy7B7l2F/LtLuQbyI/Uopnpdkrzn/+N/N2HjL7RHQ/zS3YAAAAA85b6bLKiOqSyYIZfQTq2Sl79f2a8LFmx4upJMrco3vA22eWNFMkAAAAAV+V6c+R8OHrRPAVzw7JShQL+PEVTnAop3wXJcWT1HFPgxHMKnPiJvH0n07rNLl2m2Lp7FF9/r1Eok+83eeTbXci3e5BrdyHfYyiawcJy5Vx61/nC0s5HMj5973BMpy6bL3+2r6RgBgAAAEBujcSSOt0zavRtnqZopmT//zLayYrlim74YFZiAwAAAOAuqUUz0z2bzFXgzD55+89M6k9UrVai/tarp8ncIru8PuNzAwAAAMUi55sj50FbzymjfdPKxWyGnGVssCjJcaTuI1LL09KRp6WeE+ndV14nNX9Iar5P1vK3KWRZCmUzzgwg3+5Cvt2DXLuLW/NN0QwWGEfyWJJjT3/ZHZ+TKjL/YuTg2T6jHfZ71VRXkfF5AAAAAGA6R7uH5VzT9loerV869cI0X/ur8nf8zugb2f5ZyeJXAgAAAADmr6VryGg3ZaFoJvzat4x2YtEG9X/oH+SULsv4XAAAAAAWrsMX+o321kZ3LgpFDjiO1P3mWJFMy9NST1t695XXjxXKbL5ParxVculu/wAA5BorZDAvfX19M180B5ZlGZVs/f39sm1b2vWMZCdkDXXJGmyXNXBB1kD71T+3yxMfUnz52xXZ9lkpC7H95nin0d5cV6qhgf7rXI10XTffKErk2z3ItbuQb3cphHyzIxTcLnUn57VLwgr5p/6lesn+PUY7WVar6KYPZy02AAAAAO4RiSd1KuUUzObasozO4b34hvwdrxh9ozd9moIZAAAAAIbLQ1G1XzGfT7Y2VuUnGBQnx5G6Dl8tlHlG6j2Z3n0VDeMnyqjxFgplAADIA4pmMC/JZDIn89i2fc1cHiVL66TSOql2x9Q3OJKyENuhCwNG+4a6spx9D9zEzDeKHfl2D3LtLuTbXcg3kHst3WbRzObr7OTs63pdgfO/NvpGb/4zyRvMWmwAAAAAxni93qyNbaUssElt58qJzmHZ1xyDaXmk5rryjH7tJYf+3mjbJUuV2PShrH5/C0mh5Bq5Qb7dhXy7C/l2D3KNQpbzzZFz7KWT5tcX8lta7I9n7et2q0LJd844jryXjsh/4icKnNgrb/+ZtG6zy+oVW3+PYuvvVbL2Jslz9X8P+hfWBt2uy7fLkW/3INfuUgj5LoTNkSmaAdKUSNo60jVk9G2rz+xuaQAAAACQjpaUZ5OmmqmfTVJPmbFLlijSvCtrcQEAAACYkMsXgde+9Myl00euGO0NNeWqX7YkcxP0X5BO/MTosm77M1Uvrc3cHAtMvnKN/CDf7kK+3YV8uwe5RiHJz+bIuXOkw9wMedOyUsmxs7HvMq5RlBssOo68l95UsG2vgm175R04l9ZtyfJ6Rdfeo9i6e5Wo2SZ5PGMf2I6k4vgeFWW+cV3k2z3Itbu4Nd8UzQBpOnZxRNGEY/RtoWgGAAAAQI71jyZ04UrU6Gue4qQZ76UjCpz5hdE3euOnJV8oq/EBAAAAcI/DF64Y7a2NGV4U+urfSnZiou0LSzs+ldk5AAAAABSFlq5hoz3VuxPguhxHvotvKHByr4Jt/zKLQpkGRdddLZRZtnWiUAYAABQUimaANB3uMHdyXrUopKqwP0/RAAAAAHCr1m7zpU/A69G6JeFJ15Xs/4bRtkPVGt3y0azGBgAAAMBdDrf3G+0bGqsyN3h0UNr/mNl340elkkWZmwMAAABAUXAcRy3dFM1glhxHvouHFWh7bqxQZvBCWrclyxuvKZS5gUIZAAAWAIpmgDQd7hg02lvry/MUCQAAAAA3a+kyC/o3LCuRz2sZfd7eEwqc/Bejb/TGT0gBXhABAAAAudLX15e1sS3LUmXlxKku/f39sm07a/NNZTCa0KlL5qK01RVWxr7u4Ot/r5LoRFGOI48Gmv9Ydha/r4WoEHKN3CHf7kK+3YV8u0ch5Lq6ujqn8wGF4OJQTD3DcaOvqYZ3IpiC48jXfWisUObkv8g72J7WbcmK5WOFMmvvoVAGAIAFiKIZIA2O4+hQe0rRTENZnqIBAAAA4GYtXak7pU1+Ngnv/4Y8csbbdqBckRs+lvXYAAAAAExIJpM5m8u27ZzOJ0lHOgaMts/yaM2iYGbisJMKvvZtoyu2+vcVr1gp5fjrLDT5yDXyh3y7C/l2F/LtHuQayI3WlHcnZUGvlleH8hQNCo7jyNf9uoJtexU4uVfewY60bktWrlB07b2KrrtHyaWbKZQBAGABo2gG8+L1erMyrmVZ07ZzrXMgqotD5m4ENzVWZu3rd5tCyzeyi3y7B7l2F/LtLuQbyK/W7tSiGXOnNOvKGQVPPGv0RbZ+TE6Q0zIBAAAAZE5qQf+GpSUK+DLzO4LAqZ/JO3De6Bu98VMZGRsAAABA8WlJeXfSVFMqiwIHd3Ns+bquKZQZ6kzrtmTlSkXXXS2UWdJMoQwAAEWCohnMS66OdL326Np8+NU5s7q8MuzXTWvrZVn8ozgb8p1v5Bb5dg9y7S7k213IN5A7l4dj6h6MGX3NNWbRTMnBv5HHscfbjr9Eo9s+kZP4AAAAALhHatFMU0pB/3yEX/+m0Y4v3aJE/S0ZGx8AAABwo2LeHLm1a8Rob64rZzPkLCmEfF+XY8vb+ZoCJ36iQNteWekWylStVmz9vYqvv9colOFvUIHnGxlHvt2DXLsL+R5D0QyQhoNn+4z29pXVFMwAAAAAyLnWlEVpJX5LKxeFx9vWQLuCR58yrhnd8sdywrnZ8AAAAACAe6Q+n6SegjlXvs6D8ne9ZvRFbvwUu/sCAAAA81SsmyM7jqPWi+bzya3ranL29bpd3jdYtG3p/CtSy9NSyz9Lgx0z3iJJWrxOar5P2nyfvDVbFPZ4FJ7xJuQ938gp8u0e5Npd3JpvimaANByYomgGAAAAAHItdSfnTTWl8l5T0B9+7W/lsRPjbccb1OiNn8pZfAAAAADcoW8kro6BqNG3ubYsI2OHD/290U6W1Sq67p6MjA0AAACg+JzvHdWVkbjRt7XRnYtBXcO2pfO/lY48LbX+szSY3okyWrJhvFBGy5rZnAEAABehaAbz0tfXN/NFc2BZllHJ1t/fL9u2szLXTEZjSbV09Bt9Gxb5sva1u1Eh5RvZR77dg1y7C/l2l0LINztDwa2OdA0Z7Wt3craGuhVqecL4PLL5I3JKl+YkNgAAAADu0dptFvQHfZZWLZ7/nrzWwHkFTv6L0RfZ+pDk9c97bAAAAADF6XD7FaO9qDSghqocnBniONKpF6SBdql6tbR0o1S6JPvzupWdlM79duJEmaGu9O5bsnGsSKb5PmlZE4UyAAC4FEUzmJdkMpmTeWzbztlcqQ63DyjpTLS9HmnT0nDe4nGDfOYbuUe+3YNcuwv5dhfyDeSG4zhqTTlppvmanZzDr31TnmRs4nrLr9GbP5Oz+AAAAAC4x+RTMEvks+a/8Ch86B/kcSY25rD9pYps/si8xwUAAABQvJsjv9rWbbSbakp05cqVrM8beulrCv/ufxl9dniRkovWyV60XslF65RctF7JRevllC4rmmKNnObbTsrX8Tv5TzynQNteWSOX0rotuWi9YuvvVWz9+2Qv3jDxQQ7+XhSbfP98I7fIt3uQa3cphHwXwubIFM0AMzjcMWi0NywrVTjgzVM0AAAAANyqayCmvtGE0ffWSTOe0R6Fjnzf+CzS9Ieyy+pyFh8AAAAA92hJPQWzpuw6V6bPEx1QMOX0zGjzg3KCFfMeGwAAAEDxbo58pNNc29W0rDTr83si/Qod/NtJ/dZor6z2V6X2V41+O1CmZPVbhTTrlKheq+Si9bLL6yWPldVYsy3j+baT8ne8qkDbXgVP/auskctp3ZZYtF7Rdfcqtu4eJRetn/iAzR8zig013YV8uwe5dhe35puiGWAGhzvMFz9b6+f/4gcAAAAAZutIyqK0ypBPDZVBSVL49b+XJxEZ/8zxeDV685/lND4AAAAA7pF60sxbBf3zETryA1nxiXEdj6XRbR+f97gAAAAAipftODrabT6fNGXg+WQmweP/LE8ylvb1VmxIVvdr8ne/ZvQ7vrCS1WuUWLReyeq3CmrWya5cLlkuWtppJyYKZU7+q6zRnrRuSyzeqOi6exRbe4+Si9ZlOUgAALCQuehfVsDs2Y4z6aSZrQ3leYoGAAAAwHS83uydCGlZ1rTtXDh6cdRoN9eWyefzyRO5ovAb3zU+i226T55Fq8UZmXNTCPlGbpBrdyHf7kK+3YV8A7l1cTCmy8Nxo2/ei9KScYUO/4PRFVvzHtkVy+c3LgAAAICidq43ouGYbfRloqh/JqGUUzLnypMYle/SEfkuHTH6HSugZPVqJavXjhXULFo3VlRTtUryBjIyd97ZCfnbX5k4UWa0N63bEos3jRXKrLtXyeo1WQ4SAAAUC4pmgGmc7Y1oIGIeQbWNk2YAAACAglRdXZ2zuSorK3M211uOXz5mtG9evXjsa37hb6TYtafQeBT8/UcUzOH3o9jlI9/ID3LtLuTbXci3u5BvILtaus1TMEsDXq2oDs1rzMDJvfIOdRp9ozd+cl5jAgAAACh+LSmnzCwt82tpWXaLSrwX35TvcovR1//+bypZtVq+vjZ5e6/+19cmX99JeeIjs57DY8fk6zkmX88xBa/pdzxeJStXXi2iWavkovVKLFqnZNUayR+e51eWA+OFMs8peOqn6RfKLGlSdN09iq69V3b16iwHCQAAihFFM8A0DqWcMrOszK+a8iKp1gcAAACwYNi2ozcu9Bt9WxurpMiA9NtvmBdv/rC0ZH3uggMAAADgKi1d5qK0pppSWR7P3Ad0HIVf/7bRFa+9SYm6m+c+JgAAAABXaOkyi/qba7O/GXLqKTPJ8nrFV7xTsryKVa2SVv/BxIeOLWuoS97eE/L2tk0U1fS1yYoOzHpuj5OU78op+a6cMvodeWRXNCpZvW6siKZ63VhhzaK1cgLlc/kyM8dOyH/htwq2PafAqZ/JiqRbKNM8Viiz7h7ZVRTKAACA+aFoBpjG4XbzwWpbQ7k883nxAwAAAABzcKZnWIPRhNG3rbFK2v8NKXLFvPidX8hZXAAAAADcpzWlaKa5tnRe4/k6fif/xTeMvtEbPzWvMQEAAAC4w1RF/VkVH1Xw+D8bXdFND0iWd+rrPZbs8nrZ5fWKr7xzot9x5Bm5NPlkmt42WaM9sw7LI0fegfPyDpxX4Ow+47Nkae3VApp1SrxVTFO9Tk64etbzpC0Zl//Cywqe3Hu1UKYvrdsSSzcruvatQplV2YsPAAC4DkUzwDQOp5w0s7U+z5X3AAAAAK6rry+9X7jPhWVZqqysHG/39/fLtu2szZfq5WOXjPaSUr8Ckcuyf/OorGv6Y2vv1nCgXsri98IN8p1v5A65dhfy7S7k213yne/q6iwuMgEKjOM4kxalzbdoJvz6t4x2smK5YmvunteYAAAAAIpfwnZ07OKI0bd5ns8nMwme/BdZsYn1ZI48ijQ9MPuBPB45pcsUL12meOMd5kejvfL2nZx0Mo13qGtOMXuHu+Qd7pLO/9rot8OLJ06muaaoxilZKs1lU+lkXP4LLynYdrVQJnolrdviS7cotu5eRde9V3blytnPCwAAkAaKZjAvXu91quTnybKsadu5cGU0rjO9EaPvpuUVWfua3awQ8o3cId/uQa7dhXy7C/lGoUomkzmby7btnM73ZkpBf1NtqQJvPD5pt7GRmx/OaVxuket8I3/ItbuQb3ch3+5CvoHs6eiPqj9inoLZXFs25/GsK6cVOP280Te67aHr79IMAAAAAFed7hlVNGFumpHtk2ZCLU8a7fjyd8iuaMjoHE54kRLhRUrU36LoNf2e2KC8vSfHCmh6x06l8fadlDVwXh45s57HGu2RNdojf8crRr8drFCyevLJNHZ5neRJeS+ciMl3Zp/Cx39ytVCmP62548tuUGzdPYquvUd25YpZxw4AADBbFM1gXnK1g961uwTmymvd3UY75Lf0to2N8ntZFJpt+cg38od8uwe5dhfy7S7kG8i+lu4ho33DUp/Cr/2d0Rdb8U4larbmMiwAAAAALpN6ykxV2Ke6isCcxwsfesxY3GUHyhVtenDO4wEAAABwj5Yu891JfUVQVSX+rM1nXTk9qcAksnlX1uZL5QTKlai9UYnaG80P4qPyXjl1tYjm6sk0vW3y9p+Vx5n9piJWdEBW10H5uw6a8/tLlKheK3vReqlhi9RzUjr6Y5VH0i2U2TpWKLPuHtkVy2cdFwAAwHxQNANcx4GzfUZ7a2MVBTMAAAAAci5hOzraPWL0vSf+C3mHzUL/kVs+l8uwAAAAALhQS7dZNNNcUyqPxzOnsTyRKwq1/pPRF9n8ETmBuZ9cAwAAAOD6vN7snOhoWda07WxpTXl3srmuLGtfoySFjv7QaNuhaiXX3p3VOdPiLZNqtypRu1XGuaDJmKwrZ+TtPSFvzwl5+9pk9bTJe+WUPMnYrKfxxEfkv/iGdPEN6ehTad2TqNmm2Pr3Kb5+olDGI4mzRReOfP18Iz/It3uQa3ch32MomgGuY/8Zs2hm+8rcnKoDAAAAANc60zOqaMIeb/uUUPOZ7xjXxBpuU6Jue65DAwAAADCNbC6cyt+iNLNoZnN9+Zy/ztCR/yNPIjLediyfYjd9Iv8LzgoML7XdhXy7C/l2F/LtHuQahay6OjdrnyorK3Myz/HLEaO9fc3S7H2NycSkQhHrxo+qemltdubLlCU1kt5m9iUT0pWz0qWjV/87PvZ/Lx+X4iNTDjMrjbdIzfdJzR+Ur2oFC1SLTK5+vlEYyLd7kGt3cWu++TcJ5qWvr2/mi+bAsizjh7K/v1+2bU9zR2bFk7YOnb9i9G1c7M/a1+t2+c43cot8uwe5dhfy7S6FkO9c/VIfKARHuoaM9sdLfyv/cIfRN3rL7lyGBAAAACANuXx2zcWLTnuKUzBvXVc7t68zEZXeMDcD8Gz+sKpWbJ5PiK7g1pfabkW+3YV8uwv5dg9yDWRHNJFUa+eA0be1MYs/byd+Kg11m303/2n25ssmr09avHbsv03vm+i3bWnggnTpWEpBzTEp2j/9mI23Spvvk5o+KFUtz2r4AAAAc0HRDOYlmUzmZB7btnM2lyQd7RpSJGEu/NxSU5LTGNws1/lGfpFv9yDX7kK+3YV8A9nV0jWxk7MlW5/xPG18Hq+9WfGG23McFQAAAAC3OXV5WEPRhNE350Vpb/5w8oKz29kMAAAAAEB6jnUNKp50jL4tDVksmjloFv2rYYe0rCl78+WDZUlVK8b+W//uiX7HkQa7pMvHJgpqLp+QfCFp7buk5g9KlY35ixsAACANFM0AUzjcYe7kvHJRSFUl/jxFAwAAAMDNWq8pmnm/9bJqEuYpMyO37JY8nlyHBQAAAMBlDl+4YrRrKoKqqQjNfiDHkV7eY/atfIdUf9PcgwMAAAAwo76+vqyMa1mWcapSf3+/bNue5o75e/l4l9FetSis5OiQ+kYzP5dn+KIqT/xU176JGd70gGJZ+n4WppBUvU2q3iZr0xT5dtX3wl3y8fON/CHf7kGu3aUQ8p3LU9mvh6IZYAqH2geN9tb68jxFAgAAAMDNYglbxy+NSJI8svU539PG5/GlWxRfcWceIgMAAAAwk2wtSJPy86LzdycvGu2mmtI5fY2+c79RefebRt/Q1ocUZ5HVlArhpTZyh3y7C/l2F/LtHoWQ60JYkIbClEwmczKPbdtZn+tIh7m2q6mmJGtzho88KY8zMbbjL1Fk7T1ycvT9LHS5yDcKB/l2F/LtHuTaXdyab4pmgCmknjSzrb4sT5EAAAAAcLMTl0aUsB1J0t3Wfm2w2o3PRzllBgAAAChYuXzxmJNFaZ2ZWZRWevBvjXaycpUiK3ZKLnxROxdufantVuTbXci3u5Bv9yDXQHa0dg8b7aba0uxM5DgKtTxhdEXXvU9OgLVkAAAAC4mV7wCAQtM1EFX3YMzo20rRDAAAAIA8mHjp4+jPU06ZSSzaoNjqP8h5TAAAAADcJ2E7OnbRXJTWXDP7RWne3hMKnH3R6Bu98ZOSh1eWAAAAANITiSd16vKI0ddcm521Xb6OV+XtP2vO3/xgVuYCAABA9vAbaCDFGymnzJQHvVq1OJynaAAAAAC42ZGusUVpd1mva4t1xvhsZMe/ZWEZAAAAgJw4dXlE0YRj9M1lJ+fw69822nawSpFN988rNgAAAADucuziiJLXPJ5YHmnj0pKszJV6ykyiep0StTdnZS4AAABkD6trgBSHU4pmbqgvk+Xx5CkaAAAAAG7W0jUkydFf+H5k9CeqViu27t78BAUAAADAdVq6zVNmGiqDqgr7ZzWGZ+SygseeNvoiN3xU8rNxGQAAAID0tXSZzydrFocVDngzPo8nOqBg216jL9r8oMQ6MgAAgAWHohkgxaH2QaO9tb48T5EAAAAAcLPRWFKne0b1dutN3WS1mZ9tf1iyMv8CCAAAAACmkroorXkup8y88Y/yJGPjbccKaPSGP513bAAAAADcpaXb3BC5qbYsK/MEj/+zPMnoeNux/IpsvC8rcwEAACC7KJoBrjEaS+rYRfPFz7aG7DxYAQAAAMB0jl0cke1If+572uhPljcquuGD+QkKAAAAgCuNnYI5oalmlkUziYhCb37P6Ipu+ICc0mXzDQ0AAACAy6QW9W+eQ1F/OkItTxjt2Orfl1OyJCtzAQAAILsomgGu0dI9rKQz0fZ6pM1Z2o0AAAAAAKZzpGtIt3iO6jar1egf3f5nktefp6gAAAAAuE00Yavt0qjR1zzLdyfBY8/IGu01+kZv/OS8YwMAAADgLkPRhM72Roy+WRf1p8F76Yh8l44YfZHmXRmfBwAAALnhy3cAWNi8Xm9WxrUsa9p2trzRae5EsGFZqcrDgZzM7Wb5yjfyg3y7B7l2F/LtLuQbyI3W7mF9LvWUmdJaRZr+MD8BAQAAAHClE5dGlLAndhzzSNpUU5L+AI6t8OvfNrpiy9+h5JJNGYoQAAAAgFsc7R4x2j7Lo/VLZ/F8kqZQy5NGO1lWp/jyd2R8HgAAAOQGRTOYl+rq6pzMU1lZmZN5Wi+2Ge1b1yzJ2deICbnKNwoD+XYPcu0u5NtdyDeQHU7H67rTe9joG735M5I3mKeIAAAAALhRa5e54djKRSGVBdN/xeg/90v5+sz3L5wyAwAAAGAuWrqGjPb6pSUK+DK8wV8iouCxp42uaNMDkpWdzaUBAACQfWwJDVzlOI4OnOsz+m5eScEMAAAAgNwbjCT0wMgTRl8suEiR5j/KU0QAAAAA3Cp1UVpzbdms7g+/9i2jnVi0XvEV75x3XAAAAADcp7XbLOpvqi3N+BzBk/8qKzY43nbkUaTpgYzPAwAAgNyhaAa46tTlYV0ZiRt92ymaAQAAAJAHF46/pnd7Dxh9kZs+LfnDeYoIAAAAgFu1pCxKa57FojTv5VYFLrxk9I3e+EnJ48lIbAAAAADcpaVr7s8n6Qq2/MBox5e/XXZFY8bnAQAAQO6kf3Y6MIW+vr6ZL5oDy7JUWVk53u7v75dt21mZ6y2/auk22kvLAipxIurri2Z1XuQn38gf8u0e5NpdyLe7FEK+q6spbkZxW/bG3xjtAU+54lv/OE/RAAAAAHCr0VhSp3tGjb7ZLEoLv/5to22HFyu64UMZiQ0AAADA7Hi93qyMa1nWtO1MuTIaV3u/uY5rS31FRr8u68oZBdpfMfpiW/4oa9+7hShX+UZhIN/uQr7dg1y7C/keQ9EM5iWZTOZkHtu2sz7X6xcGjPbW+jIW++ZJLvKNwkG+3YNcuwv5dhfyDWSWt7dN6/teMPpeXvyH2h4oy09AAAAAAFzr2MUR2c5E2+uRNiwtSetea6hbwePPGn2jN/yp5AtmMkQAAAAAacrVpnTXbr6XSYcvXTLaQZ+lHevq5fNmcOHngf9ptsPVKtv+RzzHTCNb+UZhIt/uQr7dg1y7i1vz7c5SIWAKh9oHjfbWehakAQAAAMi98IFvyNLEqrQBJ6xLGzllBgAAAEDuHekaMtprl5Qo5E9vh+XQG9+Vx46Ptx1vUJEbPprR+AAAAAC4xxsXrhjtzfUVmS2YSSak179v9m39CAUzAAAARYCiGUBS/2hCp3sjRt+2hvI8RQMAAADAraz+s5N2Yv6H5Hu0rrE2TxEBAAAAcLOWrmGj3VRbmt6N8RGF3jQXm0U2fVhOeHGmQgMAAADgMocv9BvtrY1VmZ2g7efSUJfZd/OfZnYOAAAA5IUv3wEAheCNTnOntKDPo43LSvIUDQAAAAC3Kjnwv+VxkuPtESeof9S92rU4nMeoAAAAALhVa7dZNNOcZtFM6OhTsqLmgrbItk9kLC4AAAAAs9fX15eVcS3LUmVl5Xi7v79ftm1nfJ7Xz5nxr632ZfRrKn3lmwpc007UbNNgoF7K0vdtocpVvlEYyLe7kG/3INfuUgj5rq6uzul8U6FoBpB0uGPQaDfXlsmfyeM7AQAAAGAG1mCHgkd/ZPR9L/kHqq2pk9fy5CkqAAAAAG41GEnoXF/E6GuuKZv5Rjup8OvfNrpiK3cquWhdJsMDAAAAMEvJZHLmizLAtu2Mz3V5KKaLQzGjb9OykozN4xm+JP/pXxh9o00P5ux7tpBlI98oXOTbXci3e5Brd3FrvqkKACQdbjdPmtlan8ZLHwAAAADIoPDBv5XHjo+3o45ff5d4X9o7OQMAAABAJqWeMuP3erRu6cynYAbO/ELe/rNG3+hNn8pobAAAAADcpSXl+aTEb2nlolDGxg8dfUoeZ2LxqOMLK7bh/RkbHwAAAPlF0QxcL2E7erMztWimPE/RAAAAAHAjz/BFhVp+YPQ9nrxLl1RF0QwAAACAvGjpMhelbVhaIr935leLqafMJJY0Kd5we0ZjAwAAAOAurSnPJ5tqSmV5PJkZ3HEUannC6Iquu1dOgPVjAAAAxYKiGbhe26URRRK20cdJMwAAAAByKfzaN+VJxsbbMcerv02M7WDWXMvzCQAAAIDca+kyNxxLp6Df131Y/o5Xjb7RGz8lZWoxGwAAAABXOpLyfLI5g+9OfB2/k7f/jNEX2bwrY+MDAAAg/yiagesdah802iuqQ6ou8ecpGgAAAABu4xntVfjN7xt9P0y+Ux1aorKgV8urgnmKDAAAAICbpZ40k05BfyjllJlkaY2i69+X0bgAAAAAuIvjOJNOmmlKo6g/XamnzCSq1ihRuz1j4wMAACD/KJqB6x3uMHci4JQZAAAAALkUfv3b8iRGx9sJx9JfJz8oSWquKZWHHZkBAAAA5FjvcFxdgzGjr6lm+kVp1mCHgm3PGX2RrR+TvIGMxwcAAADAPboHY+obTRh96ZyEmQ5PdFDBk3uNvmjzLk7LBAAAKDIUzcD1Uk+a2VpfnqdIAAAAALiNJ9Kv0OHvGn3P2HfovFMjKXMvfQAAAABgNlq6zV2cQz5LqxeHp70ndPgf5HGS423HF1Zk80eyEh8AAAAA9ziScspMRcirhspgRsYOnnhWnkRkvO1YPkU2fTgjYwMAAKBwUDQDV+sejE7aKY2TZgAAAADkSuiN78iKT5x+aTse/XXiQ+Pt5lqeTwAAAADkXkvXkNHeVFMqr3X9nZY9sSGFjvwfoy/S9ICcUFU2wgMAAADgIq0pzydNNaXyZOgkmOCRHxjt2Krfl1OyJCNjAwAAoHBQNANXe6PDfKgqC3q1Zsn0O6UBAAAAQCZ4YkMKv/6Y0fec/TaddBrG25w0AwAAACAfWlN2cp7p2STY8qSs2MQ7F0cejW77eDZCAwAAAOAyLZOeTzKz4Zj3Uov8l940+iLND2ZkbAAAABQWimbgaodSima21pXJytBOBAAAAAAwndCb/ygresXo+1+J+8b/vKjEp5ryQG6DAgAAAOB6juNMsShtmqIZO6HwoceMrtiaP5BdtSrzwQEAAABwFcdx1NI9u6L+dIVanjDaydJaxVe8MyNjAwAAoLD48h0AFjav15uVcS3LmradKaknzWxrrMja14Try1W+URjIt3uQa3ch3+5CvoEMiI8q/Nq3jK7W8jt0NLJivN1cWyYPRf0AAADAgpXN9w3ZfDbvHoiqZyRu9G2pv/77E/+pf5F38ILRF7353/C+JUP4PYy7kG93Id/uQr7dg1wDmXX+SlRD0aTRl5GimUREwePPGF3Rpj+ULJ5jAAAAihFFM5iX6urqnMxTWVmZ8TEj8aSOpuxE8I5N9Tn7mnB92cg3Chf5dg9y7S7k213INzB7oZYfyBrtMfq+bf2h0W6qycxOaQAAAADyI5fvGzL5bP5Ke5fRLg/5tG1N3fWL+g8/Zrbrb1bF5ndLbAKQFfwexl3It7uQb3ch3+5BroH5aekyN0ReXOLXsrLAvMcNnvyprOiA0RdpemDe4wIAAKAwsZ0BXOvwhX4lbGe8bXmkbcur8hcQAAAAAHdIRhU++HdGV3T57+nHvQ1G3+ZM7JQGAAAAALP0RvsVo721sfL6BTPnXpEu/M7su+NzFMwAAAAAyIiWLnND5Oba0us/n8xCsPUJox1rvEN25Yp5jwsAAIDCRNEMXOvA2T6jvam2QmVBDl8CAAAAMu3pp5/Wrl27tGvXLh0/fjzf4eRdqPWH8g6bOze3bfi0RuO20ddUW5bLsAAAAABA0timY9fa2lh1/Ytf/l9mu3K51PShzAcFAAAAwJVau82imaYMbDhm9Z9T4MLLRl+k+cF5jwsAAIDCRYUA5qWvr2/mi+bAsizjiNr+/n7Ztj3NHbP3clu30d5SW5K1rwfTy0W+UTjIt3uQa3ch3+5SCPmurq7O6XyYu3PnzunJJ59UMBhUNBrNdzj5l4wrfOBvjK54/dv0anKjpFPjfTXlAS0u9ec4OAAAAACZlM13Dtl6NnccR4fOXzH61lT5pvxarP5zqjj6Y127x/PI1o8pOjA47zgwoRB+D4PcId/uQr7dhXy7RyHkmncoKBZJ29HR7tSTZua/4Vio9UmjbQcrFVvznnmPCwAAgMJF0QzmJZlM5mQe27YzOpfjODrUbr60uaGuNGdfD6aX6XyjsJFv9yDX7kK+3YV843oSiYT27NmjVatWqba2Vr/61a/yHVLeBY//s7yDF4y+kVt2q+XYkNHXnIGd0gAAAADkVy6flTP1bH7hSkQDkYTR17QsPOXYoYPfkseZWABq+8s0uulBOfyOIKv4PYy7kG93Id/uQr7dg1wDc3emd1SjcbPorKlmnu9P7ISCrU8ZXdGNH5J8wfmNCwAAgIJm5TsAIB/O9UXUP2q+9NlaP/+dCAAAAABMeOqpp3ThwgU9/PDDsiweP2UnFT7wDaMrXnOT4o13qKXL3CltcwZ2SgMAAACA2TqS8mxSHfappjww6TpPdGDS7szR5l1yguVZjQ8AAACAe7SmPJ/UlAe0uNQ/rzH9534l73CX0Rdp/qN5jQkAAIDCx0kzcKXDHeYuzktK/aqvZMcAAAAA5Fd/f7/a2trU1tamkydP6uTJkxocHDsh8c4779Tu3bvTHuvSpUvau3evDh48qJ6eHvl8PtXW1ur222/Xe97zHgWD2f3376lTp/SjH/1Iu3btUmNjY1bnWigCbc/Jd+W00Tdyy27FbUfHL40Y/U2cNAMAAAAgD1q7Uk/BLJPH45l0XejI4/LEJ55jHI+l0W0fz3Z4AAAAAObB6/VmZdzUjdMytZFa60Xz3cnmurJ5fw3hlOL/xLKtUs1mZec7U5yylW8UJvLtLuTbPci1u5DvMRTNwJUOdwwa7a31U7/0AQAAAHLpM5/5TEbG2b9/vx599FGNjo6O90Wj0fFCnOeff16PPPKIamtrMzJfqng8rj179mjVqlX60Ic+lJU5FhzHVsn+vza6Eks3K75yp9q6RxRPOsZnTTUUzQAAAADIvdRTMJunKuhPxhU69B2jK7b2vbIrGrIZGgAAAIB5qq6uzsk8lZWVGRnn2KWI0d6+eun8voahi9Lp540u362fyNn3pVhlKt9YGMi3u5Bv9yDX7uLWfLuzVAiud6jd3Clta0N5niIBAAAAprZkyRJt27Zt1vedPn1aX//61zU6OqpQKKSPfOQj+vKXv6z/8l/+i37/939fktTZ2amvfOUrRlFNJv3gBz9QZ2enHn74YdfuUJEqcOpn8vUeN/pGduyWPB61dJvPJ8urgqoIsccFAAAAgNxK2o6Ods9cNBNs2yvvcJfRN3rTp7MaGwAAAAB3iSVstXQOGH3bGqvmN+ihxyU7MdH2haUtfzi/MQEAALAgsAoHrjMYSehUj7k4cFt9WZ6iAQAAACY88MADWrt2rdauXauqqipdvHhRn/vc52Y1xmOPPaZYLCav16svfvGL2rBhw/hnW7ZsUV1dnb73ve+ps7NTzz77rHbt2jVpjO985zuKx+Npz3nvvfeqrq5OknT8+HE9++yzevDBB7VixYpZxV60HEcl+/cYXYlF6xVb825JU+3kzPMJAAAAgNw72zuqkbht9DWlFs04jsKvf9PoitdtV6Jm9ps+AAAAAMD1HO8eVCxhPp/c0DCPXdEdRzponpipzR+WQu7caR0AAMBtKJqB67zRae7iHPB6tHHZ5J3SAAAAgFybqoBlNtra2tTa2ipJuuuuu4yCmbe8//3v1759+9Te3q69e/fq/vvvl89nPhr+7Gc/UzQaTXve2267TXV1dUomk9qzZ49Wrlyp++67b15fSzHxn3tRvktHjL7R7f9W8oydwtM6qWiG5xMAAAAAudeScspMTXlAS0oDRp+v49XJzzc3firrsQEAAACYv76+vqyMa1mWKisnik/6+/tl2/Y0d8zslePdRnt5dUh2dEh96b++Mnjbf6eKnjajb3D9fUpk6XtSzLKRbxQu8u0u5Ns9yLW7FEK+q6urczrfVCiagescbjeLZppqSxXwWXmKBgAAAMicV199dfzPd91115TXWJalO++8U9///vc1PDysI0eOaNs2c0fg7373u3OaPxKJqLOzU5L00Y9+dMprvvjFL0qSvvCFL+jWW2+d0zwLiuOo5Hf/y+hKVq5SdP37JEmReFInL48Yn1M0AwAAACAfJp+COfnZJPzat4x2smKFYqv/IKtxAQAAAMiMZDKZk3ls2573XG92DhjtpprSeY0ZfvNxo52oWq1ozc1Sjr4nxSwT+cbCQb7dhXy7B7l2F7fmm6IZuM6hjkGjvbW+PE+RAAAAAJl17NgxSVIwGNSaNWuue11zc7NxT2rRzFz5/X69613vmvKz1tZWdXZ2aseOHaqoqNCyZcsyMmeh87e/LH/Xa0bfyPaHJcsrSTp2cURJZ+IzyyNt4iRMAAAAAHmQegpmU435bGL1nVbwzPNG3+i2j48/3wAAAABApkwq6q+Z+7sTT3RQwba9Rl+0+UHJ45nzmAAAAFhYKJqBqyRsR292mifNbKsvy1M0AAAAQGZduHBBklRbWyuv9/qLlurr6yfdkwmBQECf/exnp/xsz5496uzs1H333acNGzZkbM5CF/7dHqOdLG9QdOOHxtut3eZLn9WLwwoHWHAGAAAAILcSSVvHL6WeNGO+Pwkf+rbRtoMVijQ9kPXYAAAAALhLNGGr7fKo0TfVSZjpCp54Vp7ExHiO5VNk4/1zHg8AAAALD0UzcJW2SyMajdtG3w2cNAMAAIAiEIvFNDg4dqri4sWLp722rKxMwWBQ0WhUPT09uQhvXtKNcbpCofmyLGva9lS8HfsVaP+t0RfZ8bC8gdB4u7V7xPh8c21ZVr8OpGcu+cbCRK7dhXy7C/l2F/INzF/b5VFFE47Rd+1JM57RXoWOPmV8Htn8f0kBTsoEAAAAkFknLo0oaU88n3gkbZzHSTPBlieNdmzVXXJKl855PAAAACw8FM3AVQ53DBrt5VVBLS715ykaAAAAIHMikcj4n0Oh0DRXTlwTjUaN+wrVww8/nNZ1TzzxRJYjmVBZWTnzRT/532a7vE6ld3xGpf5rimYumkUzt6xdpurq6kyEiAxKK98oCuTaXci3u5BvdyHfwOylnoLZWBVUZXjiNWLoyOPyJCaeHx3Lp8jWP81ZfAAAAADc40jnkNFevTis0sDcNhzzXj4q/8XDRl+kadecYwMAAMDCRNEMXOVwh/lQtZVTZgAAAFAkYrHY+J99vpkf9d665tr7smn37t3avXt3TuYqCO0Hpbafm313/IV0TcHMYCSuU5fMhWlbG6tyEBwAAAAAmFq6zPcnzbVlE41kVOHD3zU+j65/v+yyulyEBgAAAMBlUov6m+ZxykyoxdxwLVlao/jKd855PAAAACxMFM3AVQ63pxTNNJRd50oAAABgYQkEAuN/TiQSM17/1jXX3leovvGNb+Q7hNn71f/PbJcskbZ/3Oh6o73faPu9Hm2qo7AfAAAAQO61dJmL0pqvWZQWPP6srJFLxuejN34yJ3EBAAAAcJ9Jzye1cyyaSUQVPPaM0RXddL9ksWQSAADAbfgXIFzj0lBMHQNRo28bJ80AAACgSIRCEyeYRCKRGa9/65pr7ytUixcvTuu6vr6+rMVgWZYqKyvH2/39/bJte+pr+06q4uhP5Lmmb+SmTyk6HJWGJ55JXjnRZdy3bmmJRgYHNJLRyDEXs8k3FjZy7S7k213It7vkO9/V1dU5mwvIhmjCVtvlUaNvfFGa4yj8+reNz2INtym5dHOuwgMAAADgIiOxpM70Xuf5ZJYCp34qK3rF6Is0PzjX0AAAALCAUTQD1zjcYZ4yUxrwavXicJ6iAQAAADIrEAiovLxcg4OD6unpmfbaoaEhRaNjxRvpFqQsBMlkMmdz2bZ93fnC+/9WHjkT1wbKNbr5/5KTcv2RjkGj3VxTmtOvAembLt8oLuTaXci3u5BvdyHfwOycuDSipD3xDOORtPHqSTP+87+Rr+eYcf3ojZ/KZXgAAAAAXOTYxWFd83gir+XR+qVzK5oJtT5ptGMNt8muXDmf8AAAALBAWfkOAMiVw+3mgrQb6svktTzXuRoAAABYeBobGyVJXV1d0y4S7OjomHQPMsMzfEnBoz8y+iJb/lhOYPIply1dw0a7aY47pQEAAADAfBzpNDcdW704rNKAV5IUfv1bxmeJqjWKr9qZq9AAAAAAuMyRlHcna5eEFfLPfomjNXBegfO/MfqizX80r9gAAACwcFE0A9c4lLKL89b6sjxFAgAAAGTHxo0bJUnRaFSnTp267nUtLS2T7kFmhA//gzx2bLztWAGNbnto0nVXRuLqGIgafZtreUYBAAAAkHut3SkF/VdPmfH2HFfg3C+NzyI3fkLy8HoRAAAAQHa0phTNNNfM9ZSZfzLadrBC0bV3zzkuAAAALGy+fAcA5EIkbuto94jRt7V+8k7PAAAAwEJ266236umnn5Yk7du3T+vXr590jW3bevHFFyVJpaWl2rx5cy5DzCqv15u1sS3LmrYtSYoNKfTmP5pdTR+WVVE36dKjlwaMdshnad0yTsMsFGnlG0WBXLsL+XYX8u0u5BuYn9RTMJuvnoIZPvT3Rr8dqlZk44dzFhcAAAAA92npMk/CbJ7LhmN2UsGUopnohg9JvtB8QgMAAMACRtEM5iVbi9Iy/ZLzeOewErYzMZ5H2tZYkdVFdUgfL7XdhXy7B7l2F/LtLuS7cK1bt05NTU1qbW3Vvn37tHPnTm3YsMG45sc//rHa29slSffcc498vuJ5LKyurs7ZXJWVlZM7X/6+FDWLYYI7v6DgFHGdunLZaG9uqNTSxYsyGiMyZ8p8oyiRa3ch3+5Cvt2FfAPpG44ldbpn1Ohrri2VZ+SygkefNvojN/yx5A/nMDoAAAAAbjIQSej8lajR91ZR/2z4z/9K3qEuoy/SvGtesQEAAGBhK57VUciLXC1Km+9LzuOHe432xtoKLa9dOq8xkT281HYX8u0e5NpdyLe7kO/MOXr0qLq6Jn6JPzAwUYDR1dWlF154wbh+586dk8b4+Mc/ri996UuKxWL68pe/rA9/+MPavHmzYrGYXnrpJf385z+XJNXV1ekDH/hAVr4OV0rGpZf/2uzb+D5p6YYpLz98od9ob23k5wgAAABA7h3rHpZzTdtrebRhWanCB74ljx0b73esgEa3/EnuAwQAAADgGke7zVMwA16P1i6ZfeF+6MgTRju+dIuSS5vnFRsAAAAWNopm4AoHzvYZ7e0rq/ITCAAAADCN559/Xi+++OKUnx07dkzHjh0z+qYqmlm9erU+//nP69FHH9Xo6Kgef/zxSdfU1dXpkUceUTjMDsEZ8+ZT0sAFs+/tf3Hdyw9fuGK0KZoBAAAAkA8tXeaitHVLwgoqptAb/2j0Rzd+SE4pm5EBAAAAyJ7U55P1S0vk91qzGsMzclmBM88bfVFOmQEAAHA9imZQ9BzH0cFJRTO5OSEHAAAAyIcdO3boa1/7mp577jkdPHhQvb298vl8qq2t1W233ab3vve9CgaD+Q4z4/r6+ma+aI4syzJOVerv75dt22MNx1H5L/+78YCdqNuuwfKN0hQxXRyM6uJg1OhbVW5lNX7MzrT5RlEh1+5Cvt2FfLtLvvOdqxPZgWxoSdnJubm2VMGjP5IV6TX6R2/8RC7DAgAAAOBCLV1DRru5tmzWY4SO/kgeOzHednwhRTd8YN6xAQAAYGGjaAbzkq1FXZl8yXmub1Q9wzGjb12VlwVpBSTfL7WRW+TbPci1u5BvdymEfBfrorTdu3dr9+7dGRlr6dKleuihh/TQQw9lZLyFIJlM5mwu27bH5/Of/aV8PUeNz0du+sx143mjY8Bolwa8aqj05zR+zM61+UZxI9fuQr7dhXy7C/kG0jdpUVpNicKH/t7oi634PSUXb8xlWAAAAABcKPWkmeba0tkN4DgKtj5pdEXXvldOsGK+oQEAAGCBo2gG85KrF4/zecn52vl+o724xK/aMh8vTQsYL7XdhXy7B7l2F/LtLuQbbhd+7W+NdqJqjWKrf/+616e+9GmqKZXl8WQlNgAAAAC4noFIQheumKdg3uG8Jl/fSaNv9MZP5TIsAAAAAC7UOxxX16C5KXJTzeyKZnxdByY9z0Sa/2jesQEAAGDhs/IdAJBth9rNXdK2NpTJw4I0AAAAABng6z6swIWXjb7Rmz4tea7/uD3vndIAAAAAIANSn00CXo/Wnf5Hoy+xaIPiy9+Ry7AAAAAAuFBLt/l8EvJZWr04PKsxQi3mKTPJylVK1N8y79gAAACw8FE0g6J3uGPQaG+tL89TJAAAAACKTfi1vzPadslSRTfed93rHcdRK0UzAAAAAApAa7e56dh7FnUp2J6yKcCNn5LYiAwAAABAlrV2mc8nm2pK5bXSfxbxxAYVPPEToy/S/CDPMwAAAJAk+fIdAJBNg5GETl0eNfq21pflKRoAAAAA2eT1erM2tmVZk9pW/zkFTv6L0R+58RPyBkuuO86FKxH1RxJG3w0NFVmNHbM3Vb5RnMi1u5BvdyHf7kK+gblJPWnm49ZzRtsuWaLoxg/kMiQAAAAALpV60sxsNxwLnPiJPImJNWKOx6vIpvszEhsAAAAWPopmUNTe7BySc03b7/VoUw27OAMAAADFqLq6OmdzVVZWSgd+LDn2RGegTCW/t1sl4arr3vfrcx1Ge1FpQM0ra+Vhp7OCVllZme8QkCPk2l3It7uQb3ch30B6ri2aqVGvbhr4hfH56A1/KnmDuQ4LAAAAgMs4jjOpqH+2RTOhlieNdmzVXXJKl807NgAAABQHtltDUTvcYR7d2VRTqqCPv/YAAAAAMmDn/1va9V2pYftYe/vHpWkKZiTpjfZ+o721sZKCGQAAAAA5d3k4pu7B2Hj7Id9PZTnJ8bbjCymy5aP5CA0AAACAy1waiqtnOG70NdeWpX2/t+eY/N2vG33R5l2ZCA0AAABFgpNmUNQOdQwa7W315XmKBAAAAEDRsbxS8welpg9IZ1+SFq2e8ZZD568Y7a0N7IIOAAAAIPdar9nFuUQR/bH3eePzyKb75YQX5TosAAAAAC7U0mVuilwW9KqxKv1TL1NPmUmWLFNs5Z0ZiQ0AAADFgaIZFK2k7ejNlJNmtjakvwsBAAAAgIWlr68va2NblqXKyokCl/7+ftm2PXFBZbOUlDRNDLbj6I32K0bfmmpfVuPG3MyYbxQNcu0u5NtdyLe75Dvf1dXVOZsLyJSWa4pmHvC+qErPsPF5ZNsnch0SAAAAAJdq6TafR5pqSmV5POndnIwqePRHRle06Q8li2WRAAAAmMC/DlG0Tl4e0UjcfDF6Qz1FMwAAAECxSiaTOZvLtu1Zz3e6Z1QjMfMZZdPScE7jxtzMJd9YmMi1u5BvdyHf7kK+gZm9VTRjydYnvf9ifBZb9S4lq9fkIywAAAAALnRtUb8kNdeWpn1v4NTPZUWvGH2RpgcyERYAAACKCEUzKFqHU06ZaagMaklpIE/RAAAAAHC7I13mM8qyMr+WlPGMAgAAACC3HMdRa/fY88m7rQNaZXUbn4/e+Kl8hAUAAAAgy7xeb1bGtSxr2vZ0HMdRa0rRzOa68rRjDbc+abTjjbfJs3itsvOVQppfvrHwkG93Id/uQa7dhXyPoWgGRetQ+6DR3trAKTMAAAAA8if1pU9zLc8oAAAAAHKvezCm3pGEJOlTvueMzxJLNyve8LZ8hAUAAAAgy6qrq3MyT2VlZdrXnu8dUX8kYfTdsalB1dUlM9/cd1Y692ujy3/LJ3P2dWLMbPKNhY98uwv5dg9y7S5uzbc7S4XgCqknzWyrL89TJAAAAAAgtaQUzTTVluYpEgAAAABu9tazyTZPm261jhmfjd74KcnjyUdYAAAAAFzo0IUrRntRaUANVeH0bn79HyU5E+1gpdT8wYzFBgAAgOJB0QyK0uWhmNr7o0bf1np2cQYAAACQH4mkreOXzKKZzRTNAAAAAHnx9NNPa9euXdq1a5eOHz+e73ByrqVrbNOxT6ecMpMsrVV03b35CAkAAACAS71xod9ob22slCedQn47Kb32j2bf1gclf5oFNwAAAHAVX74DALIh9ZSZ0oCltUvSOLYTAAAAALLgZM+oognH6GuqobAfAAAAyLVz587pySefVDAYVDQanfmGItTSNawGXdI91qtGf2TbxySvP09RAQAAAMi2vr6+rIxrWZYqKyvH2/39/bJtO617D5y5bLTXLw6mFafvzAsqH7hg9A2su0/JLH2NmDCffGPhId/uQr7dg1y7SyHku7q6OqfzTYWiGRSlwx2DRntLXZm8Vhq7EAAAAABYsLxeb9bGtixr2vZMjnaPGu3GqqAWlQXnHReyY775xsJBrt2FfLsL+XYX8o10JRIJ7dmzR6tWrVJtba1+9atf5TuknHMcRy3dw/p3vn+VzzPxYtTxlyjS/JE8RgYAAAAg25LJZE7msW07rblsx1Frl7kx8qZlJWndW/LmD4x2YulmxRY3STn6GjEh3XyjOJBvdyHf7kGu3cWt+aZoBkUp9aSZrfXleYoEAAAAQK7kcmeKa3fhSEdb33mjfeOKRQWxkwbSM9t8Y+Ei1+5Cvt2FfLsL+cb1PPXUU7pw4YL+6q/+Ss8880y+w8mL81eiUnRQHwnuM/ojTQ/ICfGzAwAAACB3zvVGNBwzdzlvri2d8T7PaI8Cp39u9EWaHsxobAAAACguFM2g6EQTtlq7h42+bQ1leYoGAAAAAKTDF/qN9rbGqvwEAgAAAMxCf3+/2tra1NbWppMnT+rkyZMaHBw76f3OO+/U7t270x7r0qVL2rt3rw4ePKienh75fD7V1tbq9ttv13ve8x4Fg9k9ifHUqVP60Y9+pF27dqmxsTGrcxWylq4h/ZH3BZV7Jk7DdOTR6LZP5C8oAAAAAK7UkrK+a2mZX0vLAjPeFzz6tDx2fLzteIOKbvhgxuMDAABA8aBoBkXnaPew4klnvO2RtKWOohkAAAAA+RGJJ3Wsa9Dou6GRHZwBAABQ+D7zmc9kZJz9+/fr0Ucf1ejoRKFGNBodL8R5/vnn9cgjj6i2tjYj86WKx+Pas2ePVq1apQ996ENZmWOhONo5oM/6/sXoi625W3blijxFBAAAAMCtWrvMopnm2jTWdzmOQq1PGl3Rte/l5EwAAABMi6IZFJ3DHUNGe+2SsMqC/FUHAAAAil1fX1/WxrYsS5WVEy9c+vv7Zdt2Wvcebh9UwjYL+xtLnKzGi/mZT76xsJBrdyHf7kK+3SXf+a6urs7ZXPm0ZMkSNTQ06NChQ7O67/Tp0/r617+uWCymUCik++67T1u2bFEsFtNvfvMbPf/88+rs7NRXvvIVffWrX1U4HM547D/4wQ/U2dmpr371q7IsK+PjLySV53+mRs9lo2/0pk/lKRoAAAAAbnaky1zj1VRTOuM9vq7X5Os9YfRFm3dlNC4AAAAUHyoJUHQOtZs7OG9tKM9TJAAAAAByKZlM5mwu27bTnu/NjgGjvXpxWCFfbuPF/Mwm31jYyLW7kG93Id/uQr4z54EHHtDatWu1du1aVVVV6eLFi/rc5z43qzEee+wxxWIxeb1effGLX9SGDRvGP9uyZYvq6ur0ve99T52dnXr22We1a9fkxU7f+c53FI/H057z3nvvVV1dnSTp+PHjevbZZ/Xggw9qxQp3n6aSTNq6e+CHY5X8V/VWbZFde3P+ggIAAADgSgnb0bGLI0bf5tqZi2ZST5lJVq5QvOFtGY0NAAAAxYeiGRQVx3F0uCOlaKY+jaM7AQAAACBLWrqGjXY6O6UBAAAAhWCqApbZaGtrU2trqyTprrvuMgpm3vL+979f+/btU3t7u/bu3av7779fPp/5+upnP/uZotFo2vPedtttqqurUzKZ1J49e7Ry5Urdd9998/paisHl4y9rm+ek0Re58dMKeDzXuQMAAAAAsuN0z6iiCfOU2Jnen3hiQwqe+LHRF2naJfFMAwAAgBlQNIOi0t4fVe9IwujbVs9JMwAAAADyp7XbLJppTmOnNAAAAKAYvPrqq+N/vuuuu6a8xrIs3Xnnnfr+97+v4eFhHTlyRNu2bTOu+e53vzun+SORiDo7OyVJH/3oR6e85otf/KIk6Qtf+IJuvfXWOc2zUJQd+pbR7tRSBZrvyVM0AAAAANyspWvIaNdXBFVV4p/2nkDbc/LEJ06ncTyWopvuz0p8AAAAKC4UzaCoHGo3T5lZVOJTY1UwT9EAAAAAcLvhWFKne0aNPopmAAAA4BbHjh2TJAWDQa1Zs+a61zU3Nxv3pBbNzJXf79e73vWuKT9rbW1VZ2enduzYoYqKCi1btiwjcxYqq/+sll/+pdH3QtWH9W6LV4UAAAAAcq+la/YbjoWOPGG0Yyvvkl1Wk9G4AAAAUJz4TTiKyuEOcxeCrfXl8nAEJwAAAIA8Odo9LOeattfyaMMyimYAAADgDhcuXJAk1dbWyuv1Xve6+vr6SfdkQiAQ0Gc/+9kpP9uzZ486Ozt13333acOGDRmbs1CFDz0m65qnkwEnrEtr2JEZAAAAQH60phTNNM1QNOPtOS5/92tGX7T5wYzHBQAAgOJE0QyKyuSimbI8RQIAAAAAk1/6rFsSVtBn5SkaAAAAIHdisZgGB8dOh1+8ePG015aVlSkYDCoajaqnpycX4c1LujFOVyg0X5ZlTds2xIYUbP0no+v/JN+lDcunL2ZCYZhVrrHgkW93Id/uQr7dg1wDM4slbB2/NGL0bZ6haCbU8qTRtkuWKrZyZ6ZDAwAAQJGiaAZFYyiaUFvKA9XWhvI8RQMAAAAA0pEus7C/eYaXPgAAAECxiEQi438OhUIzXh8KhRSNRo37CtXDDyKOs90AANp3SURBVD+c1nVPPPFEliOZUFlZef0PD/1Uik+8P0k4lh5LvEd7NzWqMuzPQXTIpGlzjaJDvt2FfLsL+XYPcg1M1nZ5RAnbMfo21Uzz/iQZVfDY00ZXZNP9kpfnGQAAAKSHohkUjTc7h3Xt45TP8qhpugcqAAAAAEWlYHZxvkZrt3nSzJa6CnZyXgDYDdI9yLW7kG93Id/uQr4LUywWG/+zzzfz66i3rrn2vmzavXu3du/enZO58u7NHxrNF+1tCi5ZScEMAAAAgLw4dtHcFHnlopDKgtd/bgycfl5WpNfoizQ/mJXYAAAAUJwomkHRONwxaLSbakoV9PFyFAAAAHCL6urqnM2Vzu6AV0ZiunAlavTdtrFO1dXsLLjQsBuke5BrdyHf7kK+3YV8F4ZAIDD+50QiMeP1b11z7X2F6hvf+Ea+Q0jfSK908nmj69nk7bqhgZ8TAAAAAPnRMxw32iurpz+dNNRinuIZr79VdtXqjMcFAACA4kXRDIrGoXazaGZrfVmeIgEAAAAA6fCFfqMd9FnaUFOep2gAAACA3AqFJhY9RSKRGa9/65pr7ytUixcvTuu6vr6+rMVgWZZRINbf3y/btiddF3jz/6jUnihaijh+/dy+WX+2OJDV+JA56eYaxYF8uwv5dhfy7R6FkOtcbjAFzMVgxNxYoSJ0/SWM1kC7/Od+bfRFmndlJS4AAAAUL4pmMC9erzcr41qWNW07VdJ29GbnsNF34/LKrMWHzJptvrGwkW/3INfuQr7dhXwD6Tl84YrRbq6vkN/LzwsAAADcIRAIqLy8XIODg+rp6Zn22qGhIUWjY6c0pluQshAkk8mczWXb9pTz+Y/9s9H+hX2ThlSiTcvCOY0PmXO9XKM4kW93Id/uQr7dg1wDkw1GzZ+J8uD1lzAGj/5QHjnjbTtQpuja92YtNgAAABQnimYwL7naneLaXTim0to5oOGY+UB1Z3OjqisKf0c6TDZTvlFcyLd7kGt3Id/uQr5RKAphF+drHTh92WhvXBpiJ+cFohB2g0RukGt3Id/uQr7dJd/5Zhfn62tsbFRra6u6urqUTCavu9FVR0eHcQ8ywzN8Uf4LvzX6nk3eLknauKw0HyEBAAAAgAaj5kkzZcHrbIpsJxVqfdLoim74oOQPZys0AAAAFCmKZlAUDpw1F54tXxTWMgpmAAAAAFcphF2cr3Wkc9Bob1pWwo6CCxS7QboHuXYX8u0u5NtdyHfh2Lhxo1pbWxWNRnXq1CmtX79+yutaWlqMe5AZwba9xo7MQ05Iv7BvUshnqSRwnUVpAAAAAJBlQ6knzYSmfj7xX3hJ3sEOoy/SvCtrcQEAAKB4UTSDonDm8rDR3tZYlZ9AAAAAAEDS5aGYLg7Fjb7NtWV5igYAAADIj1tvvVVPP/20JGnfvn1TFs3Ytq0XX3xRklRaWqrNmzfnMsSsut7JOplgWda0bUkKtf3EaP/U3qGoAloW8mU1NmRWOrlG8SDf7kK+3YV8uwe5BmaWetJMRXDqJYyhlieMdmJJk5JLt2QtLgAAABQvimYwL319fTNfNAeWZamysnK83d/fL9u2r3v9pX6zaKbCn73YkHmzzTcWNvLtHuTaXci3uxRCvqurq3M6HzBbLd3mM0qJ39LKRZyGCQAAAHdZt26dmpqa1Nraqn379mnnzp3asGGDcc2Pf/xjtbe3S5Luuece+XzF8+oql8+u1z6nS5KunJM6DxhdzyZvlyRVlwZ5rl7AJuUaRY18uwv5dhfy7R7kGphsMGKeNFM2xUkzntFeBU79zOiLNO+SPJ6sxgYAAIDiVDxvHpAXyWRy5osywLbtaefqHzV3cC4LWjmLDZk3U75RXMi3e5BrdyHf7kK+gclaOs2imU01pbJ4kQMAAIAF5ujRo+rq6hpvDwwMjP+5q6tLL7zwgnH9zp07J43x8Y9/XF/60pcUi8X05S9/WR/+8Ie1efNmxWIxvfTSS/r5z38uSaqrq9MHPvCBrHwdrvTmU0bzilOqX9s3SJIqw/58RAQAAAAAkqShqPlesXyKk2aCx56Rx55YD+Z4A4pu+FDWYwMAAEBxomgGRWEgknJsZ4i/2gAAAADyp6V7yGhvri3LUyQAAADA3D3//PN68cUXp/zs2LFjOnbsmNE3VdHM6tWr9fnPf16PPvqoRkdH9fjjj0+6pq6uTo888ojC4XBG4oakN39oNPcmb1X86mvBijDvUAAAAADkh+04Goya67zKgyknzTiOQi0/MLqia98rJ8TJTQAAAJgbfiuOojA4aQeCycd2AgAAAECuXLgSNdoba0ryFAkAAACQfzt27NDXvvY1Pffcczp48KB6e3vl8/lUW1ur2267Te9973sVDAbzHWbG9fX1ZW1sy7JUWTmxYKy/v1+2bY991ndSlV2HjeuftW8f/3PI62Q1NmTWdLlG8SHf7kK+3YV8u0ch5Lq6ujqn8wGzMRJLynbMvtSTZnzdh+TrPWH0RZsfzHZoAAAAKGIUzaAocNIMAAAAgELSn/KMsqTUn6dIAAAAgLnbvXu3du/enZGxli5dqoceekgPPfRQRsZbCJLJ5MwXZYht2+PzBY4+a3w24K3Wb+3m8XZ5wJvT2JBZ1+YaxY98uwv5dhfy7R7kGjANRSf/PJSHzM2RU0+ZSVasULzhtqzGBQAAgOJm5TsAIBMGUxaklVM0AwAAACBPbMfhGQUAAABAfjiOgifMoplXwr8n+5pXgmVBb+pdAAAAAJATgylFMx5JJYFrnlFiwwqc+IlxTaT5AcnDMkcAAADMHf+axIKXSNoaiZtH2VbwwgcAAABAngxHk7Ids6+SohkAAAAAOeDtOSpf30mjb5/vHUa7gucTAAAAAHmSuulYWdAry+MZbwfbnpMVHx5vOx5L0U1/mLP4AAAAUJz4rTgWvIHI5GM7eeEDAAAAuI/Xm73iecuypm1faygen9RXXRrManzIrNnkGwsbuXYX8u0u5NtdyDcwIXj8x0Y7WV6vA8l1kiLjfeUhnk0AAAAA5EfqSTPlQXONV6jlCaMdX3Gn7LLarMcFAACA4kZlARa8gWhiUl85RTMAAACA61RXV+dsrsrKyut+dn74itH2ez2qX7ZYnmt2SsPCMl2+UVzItbuQb3ch3+5CvlEocl7Y7zgKtplFM/ENH9DAG+ZRmJXhAEX9CwiFge5Cvt2FfLsL+XYPcg1MbzBlnde1Rf3e3jb5uw4an0c278pJXAAAAChuVBZgwUs9tjPo8yjo45cOAAAAAPLjyoh50kxlOEDBDAAAAOBCOS/sv7BfGrhg9Id2/LGG9ncZfQ1Lq3MaGzKLwkB3Id/uQr7dhXy7B7kGTIOR6580E0w5ZcYuWaLYyrtyEhcAAACKG5UFWPAGpnmYAgAAAIBc6x81i2aqSvx5igQAAACAq7zxT2Z78Toll90waSfnyjDPKAAAAADy47onzSRjCh39kfFZZNP9kpfnFwAAAMwf1QVY8FIfpipC/LUGAAAA3Kivry9rY1uWZewI2N/fL9u2p7y2o6ffaJf5PVmNDZk3m3xjYSPX7kK+3YV8u0u+882JHSgYgVIpXC2NXn3+2PKHk96hSBTNAAAAAMifwai5OXLZ1c2RA6d/ISvSa3wWbXowZ3EBAACguFFdgAVvIHKdHQgAAAAAuEoymZz5ogyxbfu6810ZiRnt8qA3p7Eh86bLN4oLuXYX8u0u5NtdyDcKRc4L+2/+nLTtz+Q7/2sFjj+ryIp361xXz6R77ciQ+uzRrMWGzMp3YSByi3y7C/l2F/LtHoWQawr7UciGUtd5BcfWeYVanzD643U7lKxek7O4AAAAUNwomsGCNxAxX35y0gwAAACAfBoY5TRMAAAAAPkq7LeUXP5ORZe/U5J0pWvIuM5neeS3HArLFjAKA92FfLsL+XYX8u0e5BowpZ40Ux70yhrskP/sL43+SPOuXIYFAACAImflOwBgvgZTdiCoCLIgDQAAAED+pJ6GWRHmGQUAAABAfqQuSKsIeeXxePIUDQAAAAC3G4ymnDQT8il49IfyyBnvs/1liq67J9ehAQAAoIhRNIMFb2DSCx8WpAEAAADIn/6UoplKnlEAAAAA5EnqxmNlbDwGAAAAII9SC/vLAh6FWv7J6Itu+IDkL8llWAAAAChyFM1gwUt94VMe8uYpEgAAAACYeidnAAAAAMiHgQjPJwAAAEAhe/rpp7Vr1y7t2rVLx48fz3c4WTeU8oyydvg1eQcvGH3R5l25DAkAAAAuQNEMFryBlKIZTpoBAAAAkE/9ozyjAAAAACgMk96hcNIMAAAAUDDOnTunJ598UsFgMN+h5MxA1HxGWd/xjNFOLN6kxLIbchkSAAAAXIDfjGPBS93FuTzILmkAAAAA8ofCfgAAAACS5PVm732FZVnTtt8yHLeNdkXYn9W4kHnp5hrFgXy7C/l2F/LtHuQa6UokEtqzZ49WrVql2tpa/epXv8p3SFlnO46Gr1nnVaVBLevcZ1wTaX5Q8nhyHRoAAACKHCt3sOC5YUFaPB7XyMiIYrGYHMeR4zj5DimjPB6PLl++PN6Ox+NF9zViAvl2D3LtLuTbXeaab8uy5PP5FAqFFAwGeVGEouQ4TtE/o9i2rWg0qkgkokQiIdu2Z75pgeF/19yDXLsL+XYX8u0uc8m3x+ORx+NRIBBQSUmJ/H5/tsOEC1VXV+dsrsrKyin7o84Fo72ksiSnceWCbdsaGhrSwMCAYrGYksnkzDctMBcvXsx3CMgh8u0u5NtdyLd7zDXXXq9XJSUlqqqqUigUynBUKDRPPfWULly4oL/6q7/SM888M/MNRWA4mtS1T+sf9v5alh0fbzvegKIb78t5XJnGOi8UE/LtLuTbPci1u7DOa0xxrdyBKw2mLEgrL6IFaY7jqL+/X6Ojo/kOJeuu/X/AxbjoDiby7R7k2l3It7vMJd+2bSuRSCgSicjj8fDSB0UpmrAVS5q/XKgsomeUSCSiK1euuOIXZvzvmnuQa3ch3+5Cvt1lrvlOJBIaGRlROBxWZWWlPOxmiyLTPxo32pXh4ioQGxwcVHt7+/hCNDc8qwAAgOIW+f+zd9fhTV2P/8DfSd0oBYq7e/EVlwk+XIc7FDYYg8nnM/9sMLZ9t+Fj2LACQ4e7O8V1DCvSAnVv0iS/P/rLJTfWJE3SNvf9ep4+T5tcObknN73vnHvOychAfHw8AgMDUapUKWYUHYmJifj333/x77//4v79+7h//z6Sk5MBAG3btkVYWJjF23r16hX27NmDS5cuITY2Fu7u7ihZsiSaN2+Ojh07wsvLy1EvAwDw4MEDbN26Ff3790fZsmUduq/8JDlTt4O7BgPcjoqeV1R+Bxrvwk4skX3xPi9yVaxvaWF9SwfrWlp4nxc7zVABl6VSI00pPnkLebnlUWnsLyUlxSBIFfSeeqa46usi41jf0sG6lhbWt7TYUt+6N69oNBrEx8cjKCioQAcqIn2Jep36AdeZaUbbWKtLO0K7K+L/NelgXUsL61taWN/SYkt96zYMpaenw83NDQEBAfYsFlGeS3LhTjPaDjNqtVp0PsvlcpfNKUREROS6NBoN1Go1NBoNZDIZEhMT4enpiWLFiuV10fKNsWPH2mU7Fy9exLx580T342RmZgodcQ4dOoRPP/0UJUuWtMv+9CmVSixYsAAVK1ZEjx49HLKP/Co583UbSojsPmrKn4iez6jd39lFsive50WuivUtLaxv6WBdSwvv82KnGSrgkjJUBo+5yg1pWVlZSElJEf4OCAiAr6+vy/6jcnd/XW9ZWYY3GpJrYX1LB+taWljf0mJLfWs0GigUCqSmpiIzMxMAkJCQgOLFi7vsNQ5JT7JeRpEB8HeBjv1qtRoJCQnC315eXvDz84Onp6fL3ozG/2vSwbqWFta3tLC+pcWW+lar1UhLSxNGJk5JSYGPj49oW0S5od/p3J7kcjkCAwOFvxMTE42OEBiXkiH6202tdGi5nEWtViMqKkpotHXljCKTyeDm9jpXqlQqzqjjwljf0sL6lhbWt3Tkpq51M4ru9Y61GSUoKMiq5QuiYsWKoUyZMrh69apV6z18+BC//vorFAoFvL290bNnT9StWxcKhQKnTp3CoUOHEBUVhVmzZmH27Nnw8fGxe9k3bNiAqKgozJ49W3LtY7ptKPqzzKgKlYOybHPnFsiOeJ8XuTLWt7SwvqWDdS0tvM+LnWaogEvKNDxxA1yk04z2AwYA/Pz84O/vn4elISIiIso9mUwGLy8veHp6Ij4+HpmZmdBoNMjMzHRIowNRXtCfaSbA2w1u8oJ/w5b2fAWyb0YLCgpyuRvRiIiISHrkcjn8/f2hVquRmpoKIPu6h51myF5UKsOBvxxFrVYb3Z/+TDP+nnKnlstR0tPTJZNR9G+y5Q3Wro31LS2sb2lhfUtHburaWEZJS0uDn5+fXctYUPXt2xdVqlRBlSpVULhwYbx8+RKTJ0+2ahsrV66EQqGAm5sb/vvf/6J69erCc3Xr1kWpUqWwZs0aREVFYceOHejf33Dmk1WrVkGpVBo8bkqXLl1QqlQpAMA///yDHTt2oF+/fihfvrxVZXcFKf//Pi8fZKC72xnRcxm1+gKygnfzpRbv8yIiIiJX42r3ebHlhwq0ZL0b0rzcZfByL7gBSpdumCqIHy5EREREpshkMvj5+QnXOxkZGbzeIZeRpN9pxss1YndGxuvRqf38/Fz2ZjQiIiKSJh8fH1GnGd6QRq4kKVPcQaaQd8GfCRNgRiEiIiLXxoxinLEOLNb4999/cfv2bQBA+/btRR1mtLp164YjR47g2bNn2LNnD3r37m0wsMKBAwdE9/TkJDQ0FKVKlYJKpcKCBQtQoUIF9OzZM1evpaBK/v/55B35RQTI0oXHNTI5Mmv1yati2QXv8yIiIiJX5Sr3ebnG3TskWUkZ4sYeV7khDXg9Ap1MJuPIhkRERORyPD09IZPJoNFoOM0r2Y2bm+Nu/tKfWtbUVLPJmWrR34E+7g4tl7Po5hNPT888Lo3j6d9wp/28ItfDupYW1re0sL6lJbf17e7uLqyjVqtd4vqNCMge1TzFRTv2a79LkEpGISIiImnRzSiuMEtgfnH+/Hnh9/bt2xtdRi6Xo23btli3bh1SU1Nx8+ZNhISEiJZZvXq1TfvPyMhAVFQUAGDw4MFGl/nvf/8LAPjoo4/QrFkzm/aTn2kHHnvT7bLocWW5VlD7l8qLItkN7/MiIiIiV+YK93nxCo0KtORM8YlXyNt13tJqdfbNdjKZjCOkERERkcvRXuNob0ojsoegoCCn7SswMNDo40pZnOjvogE+Ti2Xo8TExEClUkEmk8HDwyOvi+N0vHFWOljX0sL6lhbWt7TYUt9yuRwajQZubm4ucf1GBABpSjVUev3HArxc4/OQbShERETkytiG4hh3794FAHh5eaFy5coml6tdu7ZoHf1OM7by8PBAhw4djD53+/ZtREVFoUmTJihUqBCKFy9ul33mNymZKrhBhTbya6LHM6t0zKMS2Q8zChEREbkyV8gortPDgCQpSX+ENG/XaOwhIiIiIqKCKSFdKfq7sK9rjXjMhh4iIiJyVZyNiFxRcobhiH+uNPgYEREREZE1nj59CgAoWbKk2cEWSpcubbCOPXh6emLChAlGn1uwYAGioqLQs2dPVK9e3W77zG+SM7PQQPYvCstSRY8rK7TNoxIRERERkVTwm3Eq0JIyxNPQFvLiW5qIiIiIiPJOon6nGR/pzcpCRERERET5Q3KmuA1FBsDPRWaaISIiIiKyhkKhQHJyMgCgaNGiZpf19/eHl5cXMjMzERsb64zi5Zql5XTUTLxyudzs31opCjXau10RPZZVrCZkgWVR0JOKlAYd03+tHIjEtbG+pYX1LR2sa2mxd33LZDKHXVc6EnsYUIGmP0oaR0gjIiIiIpKu+Ph4h21bLpcjMDBQ+DsxMdHolLOvEsSjo3nJVA4tl7MolUrh9WZlGY5W7Wr0v+RRqVT8ktBFsa6lhfUtLaxvabFHfavVaqjVaiiVSquv34KCgqxanshZkvTaUPy93CCX0I1cRERERERaGRkZwu/e3t45Lu/t7Y3MzEzRevnZxIkTLVpu48aNDi5JNt32FF0ZKjnay6+IHnOv2dklcnVMTAw0Gg3kcjnc3aV1/1pBvGmWbMf6lhbWt3SwrqXF1vrWdoz28PAokNdv0rpCI5eTpDdKGjvNEBERERFJl0qlynkhO1Gr1Ub3pz/TjL+X3KnlchSp3WSs/3ql9vqlhHUtLaxvaWF9S4s961uj0bjE9RvlD45sbLZkJOdUhbijfyFvd5dpAOcozvy/5qpY39LC+pYW1rd0cBTn/EmhUAi/W9KhQbuM7nqOFBYWhrCwMKfsKy+5pUahjvyx+MFq7+RNYYiIiIhIUtjDgAo0/ZlmArz5RQEREREREeWdRL2MEsiO/UREREREkuXM0faMjeSscksR/R3k71UgRwA0hqM4k1SwvqWF9S0trG/pkOoozvmNp6en8Lsls6lrl9FdLz9btGhRXhfBIjWTz4n+VrgHwLNsszwqDRERERFJibS+RSaXk6R3QxpnmiFXM3nyZGzYsAHlypXDpUuX8ro4khcZGYnGjRsDAObOnYtBgwaJng8PD8f7778PAIiIiED58uVt2g/r3TZz5szBjz/+CAB49eqVwfONGjXCkydPMGDAAMyfP9/ZxSMiIolgRiFXxuvU/IX5JH9jPiEiovxAfybMQt4eeVQSIseYNGkSwsPDUa5cOVy7di2viyN5kZGRCAkJAQAsWLAAgwcPFj2/bt06YQT9q1ev2pxRWO+2mT17Nn744QcAQHx8vMHz9evXx5MnTzBo0CAsXLjQ2cUjInI4b29v4feMjIwcl9cuo7tefla0aFGLljP2P8Ae5HK5qCN/YmIi1Gq1wXINMs6L/n4VHArfpGSHlMnZlEql8Jot6ZhVkOnPgKVSqTh72v/nit+nF+T6ZjuK9ZxZ32xHyVsF+dwm69mrvtVqNdRqNZRKpdXXlflhIADDudqJCpDkTJXo7wAvjsZCtjl16hSCg4OFnzFjxuS4zuTJk4Xlybw5c+aIjm9QUJDwo/u47s/u3bvzuthEREREVtPvNMOZZsgWzCeOxXxCREREUpGk12km0IedZsg2J0+eFF03jxo1Ksd1Jk2aJCxP5s2ePVt0fC352bVrV14Xm4iIqEDx9PREQEAAACA2NtbssikpKcjMzARgeWeUgkKlUjnkR7+DjFqtNlxOkY6manGH14RSrR1WJmf/SOlGY/3Xmhevne0ojqXbjlKsWDFRFilWrBjbUVxYfji/yTlY19Ji7/rWaDRWXyvlB7x7hwo0juJMjvL333/j1q1bqF27dl4XhYjyOVcaMYKIiHInS6VGqkLcMFTImx37KfeYT4jIUswnRET5i6NGcQYsG8n5RUKK6G9vudqhZXImjuLs3BsZ9Bu2t23bhqlTp5rNKLrvR0fVkTP24QzGRmHPiUqlynevWbc8xsqn+z7KysqyufyuUu+Ac89vS4+bWq2263FlRnktP3yek3NwFOf8q2zZsrh9+zaio6OhUqlE9aTr+fPnonXIPuTPLsJfli56LKN86zwqDbkatqMQkaWYUYikiz0MqEBL1us0E8BOM2QnGo0Gc+bMwcqVK/O0HPPnz3e56QV/++03NGnSRPjbVC/ScuXKOatIdjNo0CCDqTwp/2DQISIiR9OfCRMACvkwo1DuMZ84DvMJ5RXmEyIiaXDmCHrakZx1JWWIZ5rx93TLN6P65ZaUbjLOjyN/MqM4DjOKtOSn85sZxfHyU32TYzlqFGfKvRo1auD27dvIzMzEgwcPUK1aNaPL3bp1S7QO2Yf8wRHR31fUleETWDKPSkOuhhnFcZhRKK8woxCRvfHuHSqwslRqpCn1RnH24ijOlHtFixZFbGwsdu3ahWvXrqF+/fp5XSSXUqFCBdHIDgV9FDAiIiIircQMw+uaQl6M3ZQ7zCeOxXxCREREriw5Q3wjSwBnwiQ7YEZxLGYUIiIix2nWrBm2bdsGADhy5IjRTjNqtRrHjh0DAPj5+aFOnTrOLKLDmZpdJ7fkcrnZvwHA+8kx0d9H1Q3Q39fTYWVyNplMltdFcBr91yqTyfK0MygzimPpZxTOlufa8tv5TY7DupYWe9e3/uyaBQXv3qECKynDyCjOnGmG7GDs2LH45ZdfkJmZiR9++AFr167N6yIRERERUQGQpNdpxttdDk93w4YhImswnxARERGRrfQzCttQyB6YUYiIiKigqlq1KmrVqoXbt2/jyJEjaNeuHapXry5aZufOnXj27BkAoHPnznB3d61r6KCgIKfsJzAwUPxA/CMg8b7ooeOahvigeFGX6WwSExMDjUYDuVzucu+bnOTFTbO6+xw/fjx+/vlnZGZmYs6cOVi/fr3RdXQ7c0mtjqyle6z067cg3SStW89ubm4Oq3dXfm85sr7z6ri5cn3lRkE6tyn3bK1v7fnj4eHhtOtKe+LdO1RgJWUajqwUwAYfsoPSpUtj6NChAID9+/fbPNWfWq3GiRMn8OWXX6JLly6oUaMGSpUqhSpVqqBdu3b48ssv8fTpU7PbmDx5MoKDg9GoUSPR4z/99BOCg4MRHByM+/fvm1j7tX79+iE4OBh16tQxOU3m7t27MWrUKDRo0ABly5ZFlSpV8NZbb+HHH39EQkKCxa/bUU6dOiW85lOnTpldVrvcnDlzzC537tw5TJ06FaGhoahUqRJKly6N+vXrY/DgwVi2bBkSExOtKmN4eLiw78jISJPL/fPPP5g8eTJCQkJQtmxZhISEYPz48bh8+bJV+3vx4gW+++47vPXWW6hWrRrKlCmDkJAQjB49Whj9xpSEhASsW7cOEydORMuWLVGhQgWULl0atWvXRr9+/bBq1SooFAqT60dGRgqvNTw8HABw9OhRvPfee6hduzbKlCmDxo0b48MPPxS+VMyt58+fY+bMmWjSpAnKli2LunXrYsiQITm+Vq1GjRohODgYkydPNvp8RkYGlixZgh49eqBmzZooVaoUqlWrhtDQUAwYMACLFi0S1eucOXMQHByMDRs2AACePHkiHBPdH10KhQL79u3Dxx9/jLfffhtVq1ZFqVKlUL16dXTs2BFz5sxBbGysVa/j33//xbRp09CoUSOUKVMGtWvXxvDhw3Hx4kWLjktkZCS++eYbvPnmm6hevTpKlSqFGjVqoFu3bpgzZw4ePXpkct2kpCT8+uuv6NKlC2rWrInixYujZs2aGDhwIP7++2+OQEBEkpOULs4ogT7MJ5R7zCfMJ8wn9ssnM2bMYD7R4er5pHTp0kI+2b59O/MJEUlSSqb+TDPMKJR7zCjMKMwozCjMKMwoRHnlzp07OHr0qPBz9uxZ4bno6GjRc0ePHjW6jREjRsDT0xMqlQr/+9//sHXrVvzzzz+4ceMGlixZgjVr1gAASpUqhe7duzvjZUnDvQOiP2M0hfDYq4bLdJihvFWmTBkMHz4cALBv3z5ERETYtB21Wo3jx4/j888/R8eOHVGlShUEBwejQoUKaN26NT7//HM8efLE7DYmTZqEoKAgg9lu5syZg6CgIAQFBVmUUfr06YOgoCDUrFnTZEbZtWsXRowYgbp166JkyZKoUKEC2rdvjx9++CFfZJSTJ08Kr/nkyZNml9UuN3v2bLPLnT17Fu+//z6aNm2K8uXLo3jx4qhTpw4GDBiAP/74w+qMsm7dOmHf5jLK3bt3MWnSJNSpUwclS5ZEnTp1MGbMGKvz8IsXL/Dtt9+iffv2qFSpEkqUKIE6depg5MiRJv9vaSUkJGDt2rUYN24cQkNDUbZsWRQvXhw1atRAnz59sHLlyhwziva1rlu3DkD2rGsDBw5EjRo1UKJECYSEhNj1Pq9nz57ho48+QoMGDVCyZEnUqlULgwYNyvG1atWvXx9BQUGYNGmS0eczMjLw+++/o1u3bqhatSqCg4NRqVIlNG3aFH379sWCBQtE9Tp79mwEBQUJGe3JkyfCMdH90aVQKLBnzx7MmDEDHTp0QMWKFREcHIzKlSvjrbfewuzZs3PMKPqv4969e/jggw9Qv359lChRAtWrV8eQIUNw4cIFi45LZGQkvvzyS7Rr1w6VK1dGcHAwqlSpgs6dO2P27NlmM0piYiL+7//+Dx07dkTVqlVF93kxo5AU8NtxKrCS9UZI83KXwYujOJOdfPDBB1i7di3S09Mxa9Ys/PXXX1Zv46effsKPP/5o8HhSUhJu3ryJmzdvYuXKlVi4cCG6du1q1bZ79+6NH374AQCwZcsWzJgxw+SyL1++xIkTJwAAvXr1MuglmpCQgFGjRgnLaGVmZuLq1au4evUqVqxYgVWrVqFJkyZWlTO/Sk9Px9SpU7FlyxaD56KiohAVFYUDBw4gNjYWM2fOtOu+t23bhsmTJyMzM1N47Pnz59iyZQv+/vtvo+8ZYzZt2oTp06cjLS1N9Pjz58/x999/4++//8Z7772Hn376yWiv+A4dOhgN869evRK+RFy5ciXCw8NRokSJHMvz7bffYu7cuaLHIiMjsWLFCuzYsQM7d+5ElSpVLHptxpw5cwbvvfcekpOThcdevHiBffv2Yd++fbmup+joaPTt2xd3794VPZ6QkICEhATcv38fhw8fRnR0NL7++mub9/Phhx8KDUS64uPjER8fj0uXLmHZsmVYtWoV3njjjRy3t2vXLkyaNEn0Pnj16hV2796Nffv2YdGiRejVq5fJ9RcsWIDvvvsOSqVS9HhcXBzOnTuHc+fO4dSpU9i+fbvBusePH8fYsWMRFxcnely3Xt566y388ccf8Pf3z/G1EBG5gkSO4kwOwnzCfMJ8Yp98snLlSuzcuRM7d+5EjRo1LHptxjCfGMd8QkSU/+jPNBPgxREjyT6YUZhRmFGYUQBmFGYUIuc7dOiQyc6Ad+/eNficateuncFylSpVwtSpUzFv3jykp6cLN87qKlWqFD799FP4+PjYpdwEg04zx9T1EeDvmUeFIVc0bdo0rF69Gunp6fj++++xefNmq7cxZ84cIUfoSkpKwo0bN3Djxg0sX75cuEnfGn379sWsWbMAZF+rfvzxxyaXffnypfBZ17t3b6MZZfjw4Th+/Ljo8czMTFy5cgVXrlzBsmXLsHbtWjRt2tSqcuZX6enpmDJlitF6ff78OZ4/f479+/cjNjYWn3zyiV33vXXrVkycONEgo2zevBnbt2/H//3f/1m0nY0bN+LDDz9EamqqQfm3bduGbdu2YejQofi///s/oxmlTZs2RjPKy5cvcfjwYRw+fBgrVqzAxo0bLcooX3/9NX799VfRY/r3eeUmo5w+fRoDBw4UZZTo6Gjs3bsXe/fuzXU9RUdHo1evXrhz547ocW1G+ffff3Ho0CFER0fj22+/tXk/U6dONXqtEB8fj4iICEREROCPP/7A2rVrERoamuP2du7cifHjxxtklF27dmHv3r1YsmQJevfubXL9efPm4dtvvzWaUc6ePYuzZ8/i5MmT2Llzp8G6x44dw6hRo8xmlLfffhvLly9nRiGXxTt4qMBKytAbIc2Lb2eyn5IlS2LEiBFYtGiRMEKJJRc2urKyslCiRAl06dIFTZs2RYUKFeDl5YXnz5/jwoULWL58OVJTUzFhwgQcOnTIYNpfcypXrozGjRsjIiICmzdvNtvgs23bNmHUgb59+4qey8zMRJ8+fXDt2jW4ubmhT58+eOutt1C+fHkolUqcOXMGixcvxqtXrzBo0CAcPnwY5cqVs+o45DdqtRrDhg0Teq1XrlwZI0eORIMGDeDj44MXL17gwoULRr/gzq3Lly9j4sSJyMrKgpeXF8aPH4+33noLXl5eiIiIwK+//oqZM2fm+F7Ytm0bJk2aBI1Gg4oVK2L06NGoXr06ihYtiidPnmDt2rU4ePAg1q5di4CAAKMX/yqVCo0bN8bbb7+NevXqoXjx4lAoFIiMjMRff/2Fw4cP4/r16xg3blyOx2L16tW4cOECWrRogeHDh6NKlSpITEzEhg0bsHHjRsTExGDKlCnYvXu3Tcft6dOnQmOPXC7HsGHD0L17dxQqVAg3b97E3LlzMWfOHDRo0MCm7QPAp59+KnyJ2q9fP3Tt2hUlS5aEm5sbXrx4gStXrmDPnj2idUaOHInu3btj1qxZ2LNnD0qWLImNGzea3Y9KpULFihXRpUsXNGzYEGXLloW7uzuePHmC48ePY926dYiLi8OIESNw/Phxg1HWdN2+fRvbt29HiRIlMHHiRDRo0AAajQZHjhzB3LlzkZGRgenTp6N169YoVqyYwfo///yzMEpHYGAgRo4ciVatWiEoKAhJSUm4du0adu7caXR0n3PnzmHgwIFQKpUIDg7GmDFjULduXZQpUwZRUVHYunUrNm7ciIMHD2Ly5MlYuXJlTlVAROQSkvVGcS7kzRvSyD6YT5hPmE/sn0/2799v03FjPjEuP+aTEiVK4NWrV8wnRCRpyZns2E+OwYzCjMKMwozCjMKMQlSQNWnSBD/99BN2796NS5cuIS4uDu7u7ihZsiRCQ0PRqVMneHl55XUxHSI+Pt4h25XL5QgMDBT+TkxMhFqtzv4jKwOFHx6D7ifmUVUD+HnKHVaevKBUKoXXnJWVlcPSBZtMJhN15FCpVE6fnUB39hWVSoVixYoJGeXw4cM4efKkQUYR3pMwXkcKhcKijDJ27FiTGcXUPsqXLy9klL/++gvTp083+do2bdokvL7evXuLtpOZmYkePXpYlFH69+9vc0bRfR36M91YWt/6dWTJeaFWqw2WU6vVGDx4sEUZRX993d+NlUG3jFlZWQbPX758GePGjTObUaZPny56Lxh7ndu2bcOECRNyzCirV6+Gn5+fzRnl2rVrGDVqlNGMoluulStXWpxRbDm/nz59KnSYMZVRZs+eLcoo5t4fxt4XM2bMEDrMmMsouusOHz4cXbt2zTGj6O5LqVRalFGGDh2aY0a5efMmtm7dajajTJ06FS1atMhVRjF2PM+dO4d+/frleJ/XgQMHMGHCBGYUF2Sv/91qtRpqtRpKpdLq6zj9mZzyAr8dpwKLjT2AWqNBYrprBC0399cfwCoTF0GBPu6QO3Fq1ilTpuDPP/9EWloafvjhB2zdutWq9YcMGYIZM2bAw8ND9HhISAg6d+6MMWPGoFOnToiKisKvv/6KhQsXWrX9Pn36ICIiAvfv38eVK1dMftmtHQmsSpUqBsv89NNPuHbtGgIDA7F582aEhISIng8NDUXfvn3RuXNnYRr7xYsXW1VOfY8fP8atW7eEv41NI+rp6ZmrWUnMWbp0qRCkunbtit9//93gC6933nkHn376KV68eGHXfc+cORNZWVnw8PDAxo0b0aJFC+G5Ro0aoVu3bujUqRNu3rxpchuxsbGYPn06NBoNBg8ejJ9//lk0wkBISAi6deuG7777Dr/++iuWLFmC4cOHo2rVqqLtbNmyxegxbtasGfr27Yt169bhgw8+wOnTp3H8+HG0adPGZJkuXLiAoUOH4ueffxY1DrRp0wbe3t5YtWoVLly4gGvXrhlMQWuJL774Qhh5YNGiRaIe9Q0aNECPHj3QrVs3XLlyxeptA9nTde7btw9A9lS5xkZB69ixIz7++GPRxV5wcDCCg4NRqFAhAICHhwdq1apldl8zZ85ExYoVDRpRGjRogO7du2PkyJHo0qULYmJisHTpUnz66acmt3Xt2jWEhIRg69atCAgIEB5v0qQJKlWqhIkTJyI5ORmbNm3ChAkTDNadM2cOgOzPhi1btqB06dKiZVq1aoVJkyYZTLuqVCoxadIkKJVKdOjQAStWrICvry8AwN3dHSEhIejUqRNCQ0Px4YcfYteuXTh69KjRkZyIiFyN/rU5M0rBlt8yCvMJ8wnzSe7ziaenJ9asWSPkk9q1a1t0rHQxnxiXH/MJkJ1ROnXqhBYtWmDq1KnMJ0QkKZlZamRmiRs+pTbTjNTyCcCMoosZxTbMKNmYUV5jRmFGIcpPwsLCEBYWZpdtBQcHY/jw4Rg+fLhdtldQGLu2cAS1Wi3syyPyNGRZGa/LoJHhuLo+anrKnVYeZ7DkxlPXyiivr7GYUSzDjGIbZpRszCivMaPwPi+ynv51Sm47u2o0mgJ5HSe9O3jIZSRliC+4AyQ4inNiehbeXngpr4vhNAcmNUKQr0fOC9pJcHAwRo8ejXnz5uHkyZM4efIkWrVqZfH65cuXN/t86dKlERYWhv/+97/Yu3cvNBqN0dGITOnZsyc+//xzqFQqbNq0yWiYevjwISIiIgAYjpCWkpKC5cuXAwA++eQTgyClVa5cOUyfPh0zZ87E33//jZ9//hl+fn4Wl1PfBx98kOMy5cqVw6VL9n9vq9VqLFiwAED28Z8/f77JEWLkcjlKlSplt31fvnxZuNgfNmyYKEhplSpVCl9//TXGjh1rcjsrV65EUlISSpUqhTlz5hidkhMAPv74Y2zYsAFRUVHYsGED/vOf/4iezymsDh48GH/88Qdu3LiB3bt3mw1TJUqUwKxZs4y+fydPnoxVq1YBAM6ePWt1p5kXL14IM9S88847Rqeg9Pf3x//93/+hY8eOVm1bKyEhQZi2snnz5maXzW2P50qVKpl9vnbt2hgyZAh+//137Nmzx2yYAoDffvtNFKS0+vTpg6+//hrR0dE4e/asQZhasGAB1Go1ZDIZlixZYhCkdJUpU0b099atWxEZGQlvb28sWLBA1Nija+jQoVizZg0uXbqE9evXM0wRkSToZ5RACXaaYUZxHOaTbMwn9iHVfBIWFoY1a9YAAM6cOWN1Yw/zScHNJ8OHD8eqVauYT4hIUvQHHgOAAC9pZRSp5ROAGUUXM4r1mFFeY0Z5jRmFGYWIKLc8Hx8V/X1JUw2J8JdcPgGYURyNGSUbM4p9MKMwowDSyii8z4ukQJ7XBSD7CAsLQ//+/Y3+fPXVV3ldPIdIyhD3UiskwTBFjjd58mT4+/sDAGbNmpWrbSUnJ+Px48e4c+cObt++jdu3bwsXIdrnrBEcHIy2bdsCyJ7GUXdqTC3t6AMADC5CT58+jaSkJABA9+7dze5Le4GpVCpx9epVq8qZn1y/fh3Pnz8HkH2hp61bZzh27Jjw+6BBg0wu17VrV9G0xfr27t0LIDtYmJsS2t3dHU2aNAEAXLx40WzZNBoNXrx4gfv37wvvzdu3bwth0tyICED2+8dUWapVqyYcZ2vf4wBw6tQpoVeyuePWqFEj1KxZ0+rtA9kBydPTEwCwceNGp06VnJCQgIcPH4o+F7T1f/fuXSHkGVO7dm3UqVPH6HMymQz16tUDADx69Ej0nFqtxqFDhwAALVu2tLojk/Y92Lx5c6PTgerSfnbk9B4kInIVhh37mVHIvphPsjGf5J5U80nVqlWF46x/nWwJ5hPmEyKigiQ5w3Ckv0ISHHyMHIsZJRszSu4xozCjGMOMQkTkAjQaeD46KnroiKoBAGkOjkyOx4ySjRkl95hRmFGMYUYhKth4B48L8fX1RZcuXQweL168eB6UxvGS9W5IK8Qb0sgBihQpgvHjx+Pnn3/G+fPncfjwYXTo0MHi9Z88eYIFCxZg//79ePLkidll4+LiULFiRavK17dvXxw+fBgvXrzAiRMnhHCltXnzZgBA48aNUblyZdFzuqGobt26Fu/z5cuXVpVR37Zt20TldOaF6/Xr14XfQ0NDnbZfALh9+zaA7ClJzR1vDw8P1KtXDydPnjR4TqVS4caNGwCAP//8E3/++adF+zZVZ/v378fKlStx5swZpKSkmFw/Li7O7ParVatm9vnAwECkpKSY3YcpulO8NmzY0OyyDRs2xJ07d6zeh5eXF3r27ImNGzdix44daNasGXr06IEWLVqgWbNmZsOtLW7duoXFixfj0KFDZs8ntVqNhIQEBAcHG31efypWfdrRElJTU0WPP378GImJiQBsOw+0nx1HjhwxWTZ9uf3cICIqKBI50ww5GPOJIeYT2zCfMJ9oMZ8QETmWm5vjbgKTy+Vm/05RiG++8fGQw8vTeTO5O5o1o/mS4zCjGLJ3RlGpVNBoNLnapqWYUcSckVFkMpkoo8hkMqvqmxmFGYXyJ/3rFGvPbWPbc+R1JZEjyRMewS0pUvTYUXUDAIA/B0cmB2BGMcR2FNtINaMAbEfRx4xC5Dp49elC/Pz80L9//7wuhtMkZerNNMMb0shBJk6ciKVLlyIxMRFz5syxOEwdPHgQo0ePRlpamkXLp6enW122zp07w9fXF2lpadi0aZMopFy9ehX37t0DkD2Fn75Xr15ZvT9by5lf6IaCEiVKOHXf8fHxAIDChQvn+KWmqQvU+Ph4m8Knfp1pNBpMmzYNa9eutWj9jIwMs8/7+PiYfV7bYK8dScAaCQkJwu859Xa39MLemNmzZyMxMRH79u3DkydPMH/+fMyfPx9yuRz169dHjx49MGzYMBQqVMjmfQDAmjVrMGPGDIvr0dyxz+m4a7+Q1z/uuT0PYmJirF6nIH9uEBFZQ3+mGWYUcgTmk9yXM79gPsnGfGKI+cRyzCdElN9pG7udweCGgBfikS0DfTydWh5Hi4mJgUajgVwuh7u78ezl5u6cjgb5iZu7u8njkavt6lwzurm5ifYxZcoUIaP8+OOPeOeddwCIO3IZK9OBAwcwYsQIizOKUqk02E5O++jevTs++ugjpKWlYcuWLXjzzTeF53QzSv/+/Q3Wj42Ntahc+hQKhdV1oPs69K/PLb1J2lwdmduv7nK617ulS5e2+nXoLm+sDLpldNd7r2pvAAoKCjI7+jIgHjBSv/y2ZhTd7Wg0GnzwwQdYvXq1RetnZGQYvFbdv/39/c0eS92MYu1N8drjBgAlS5Y0ux/d6+2cyqP//I8//oikpCTs3bvXIKOEhISgZ8+eGD58uNGb03I6T3WtXr0aH374ocX1aOxzQcvPz8/s/rTHWqVSGX0vAkCpUqWsPg9szSiO+Oym/MPWDi/a88fDw8OlruMobzmqA5apTv1eT46JHn+hKYxbmgoAgEAfD5fqEMaO/fkH21FyX05zctsZ1BpsR8nmzHYUmUwmyijW1jfbUdiOQvkTO/ZnY/KmAkt/phkpTtsZ6OOOA5Ma5XUx7MJN54tAlYmLjECfvPnICgwMxMSJEzF79mxERERg//79QqOPKbGxsZgwYQLS0tLg5+eHsLAwtG/fHhUrVkShQoWEKQJPnDhhMJ2mNfz9/dGpUyds2bIFu3btwo8//ghvb28Ar6fsdHNzQ8+ePQ3W1Z3m89ChQ/DwsGyUwdKlS9tcXsrdFyW6F8VDhgzBuHHjLFpP+37TWrt2rRCk6tati/Hjx6Nx48YoVaoUfHx8hAuasLAwbNy40WlhNyeO/JIpICAAa9aswaVLl7B9+3acOnUKN27cgEqlwpUrV3DlyhUsXLgQf/75J5o2bWrTPu7duycEqeDgYISFhaFVq1YoX748/P39hXNw7dq1mDp1KgDkm2OvS/s+fPPNN/Hll1+KntO9GLblJkQiooIuKUO/Yz8zSkGWXzMK84kY80nuMJ/YjvkkfzCXTwBmFCKStsR0/U4zrjPLjKUK+7jj8PvN8roYTlU4jzJKWFgYvv/+e1y8eBF79+5Fp06dzK4TGxuLsWPHIi0tDf7+/pg8eTI6dOiASpUqiTLK8ePH0aNHDwC2XYv4+/ujc+fO2Lx5M3bs2IGff/5ZyCibNm0CkH290KtXL4N1da8djh07ZvEN7WXKlLG6nPSavTLKsGHDMH78eIvW088oa9asETrM1KtXDxMnThQyiq+vr3CNOWHCBGzYsCHfXCc7MqMUKlQI4eHhiIiIwLZt23Dy5Elcv34dKpUKly9fxuXLlzF//nysWbMGzZrZ9rn7zz//CB1mgoODMWXKFLRp08Ygo6xZswZTpkyx58uzK+378K233sLXX3+dx6UhIjLkrA5YQkfKp+KZF46oGgDI/p9VIijApTqEWdKxv2iAmyQzitwB1ynmOo0XLVpUyCgRERE4ePAgOnXqZLYzr247iqUZxVhH8Zw6DBcuXFjIKLt27cIvv/wiZJRt27YJ2+3bt6/B+rrXndZmlILasV+/HM7s2K/dt7lzWkv3Wlx3Wd3Hrc0outtZvXq10I5iaUYx17HfmmNp7U3xuq/Zw8PDogEE9MtnbDn954OCgrB+/XqjGUW3HcVYRrF0v//884+oHcWSjGLu2Ob0XjJVLt06sOT9qM/WjMKO/a5Nqh37Jf+uTkxMxL///ot///0X9+/fx/3795GcnAwAaNu2LcLCwize1qtXr7Bnzx5cunQJsbGxcHd3R8mSJdG8eXN07Ngxx1FxckupVOLo0aOIi4uDr68vqlSpkuNUagUZR3EG5DIZgnxdo6FL959sVlb+G31h/PjxWLJkCeLi4vDDDz/keFPajh07hJGI/vzzT4PpNLW0vdJzo0+fPtiyZQuSk5Oxf/9+vPvuu1Cr1di6dSuA7M8yYz2zdf9pFStWLN/fbKZ7Ua17Q50+/SkKdRUpUkT4/cWLF079jCxcuDCA7DrPabQwU6ND6NaZRqNBrVq1bCrLmjVrAACVKlXC7t27TfZkt8f7M7d0RyV79eqV2QZHW0fV0NWoUSM0apR9o29KSgpOnTqF8PBw7Nq1C69evcLIkSNx4cKFHHv/GxMeHo6srCy4ublh+/btJt9/uqMuOIL+eWCtoKAgREdHQ6lUGrwHxZ/lzpuSl4hIy5EjWZgaJU2XfkYJ8vMqkKNrGGPpjReuklH0R0ZRqeT55iYYgPnEkSwdVYf5pGDmk9yOosR8Yn+OzCeGn+WqfPVZTvZlz1HSCuoIaUT62GkmO58UcYF8UhBMmDABixcvRlxcHGbPnp1jp5nt27cLGWX16tVo166d0eXscQ3Yr18/bN68GcnJydi3bx969OgBtVotdOxv166d0Yyie51StGjRfN8Zxh4ZpWjRosLvL168QPXq1e1TOAtor7Xj4uLsllFq165tU1lWrVoFAKhcuTL27duXr9tQtNkOAF6+fImyZcuaXNYeGaVx48Zo3LgxACA5ORknT55EeHg4duzYgVevXmH48OG4dOmSTRll3bp1QkbZuXOnyfefo4+7/nlgrSJFiiAqKgpKpdLm9yARkctQZgCRZ0UPHVE3EH4vxIxCDsSMkveYUZhRmFHsgxmFyH6k18tAz9ixY+2ynYsXL2LevHmiaakyMzOFjjiHDh3Cp59+ipIlS9plf8YkJCRg4cKFoseqVKmCDz74wKH7zSvJmeLRIQO82JBJjuPv74+wsDB8++23uHbtGnbt2mV2+Tt37gDIvvg1dUMaAFy5ciXXZevQoQOKFi2K2NhYbNmyBe+++y5Onz6NqKgoAEDfvn2NrlevXj3h93PnzhkdSS0/8ff3F343d9PO/fv3TT5Xv3594fczZ86gVatWdimbJWrVqoWtW7dCoVDgxo0bCAkJMbpcVlYWbty4YfQ5T09P1KxZE3fu3MH58+dtLov2/dmpUyeToUCj0eDatWs278NedC/WL1++bDb02+N80uXv74+OHTuiY8eO+Oyzz/DHH3/gxYsXOHfunOgLEktvIr579y4AoE6dOmZviLT369BXoUIFBAYGIjExEWfOnLF6/Xr16iE6OhpXrlyBQqEwGIWPiCgvOXMkC90bpwFArdYYdJopWzwIQUHi5QoqS0ZIc2XOvnE2p9G3ChcujClTpuDrr7/GtWvXsHfvXrOjIv3zzz8Ass+RN9980+R+da//bBkhDQDeeecdIZ9s3boVvXv3xokTJ4R80r9/f6PrNmjQQPj94sWLuZrxJif2GCFN90v/5ORkk8fj8ePHov3qLqftDAHA4BrTErkZIa1OnTpCPrlz547F+UR3G+7u7kI+uXDhgs2fDdrr5C5duiAgIMDoMhqNBtevXzdaDv2/HTlCWt26dYXfr127hgoVKphcVve63toR0owpXLgwunbtiq5du+KTTz7B77//jhcvXuDixYto3769sJx+vZui/VyoW7eu2Q5PV69eFW3P3iOkValSRcgnZ8+etfp9VL9+fSGfqNVqs/mEnSCkxZb6LugjpFH+5MhGc7lcLsoliYmJoptQXsQniZb3cdfki5sn7EWpVAqv19UHb8kPHUF1Z/BQqVQGx9zHx0doQ7l69Sq2b98uej/qL3/r1i0A2RmlVatWJuswIiLC7H7N7UOrbdu2Qkb566+/0LVrV5w8eRLPnz8HkN3x39i6derUEX4/ffq0Q9tQdF+H/ux4lta37nf9sbGxJo+H9vpbu1/d5XRf88mTJ9G8efOcC69Dd1vG6kv3tWVlZYmer1mzJgBAoVDgypUrZjOKbjbQ3YZcLhcyytmzZ23+bLh9+zYAoGPHjvDw8DC6HY1GI7pW1l8mp2Ohpd++YO35rT1uQHaWNndPwKVLl0yWV5f++8IUHx8fvP3223j77beFNpTo6GicOnVKlG91X4+57WqPe506dVC5cmWTy+q/DlPL5fQ6TH1+lClTRsgop06dsvp9VLduXURFReHy5ctIS0sTZZT88HlOzmGvular1VCr1VAqlVZfxzHTUL7g4Q1MuwncPwzc249X1w/glPr192uFvNl5hBwnICBAaEe5evUqdu7caXZ53fu8zH1Xf/ny5VyX7c033xQyyqZNm9CjRw+cOnVKyCj9+vUzup7uPU/nzp1zaDuKPeh+32/rfV66ueD06dNo3bq1Xcpmidq1a2PLli0W3eelm1F06d7nde7cOZvLon1/du7cucDd52Wu04zutb09BAQEoHPnzujcubPQjhIdHY2zZ8+K2lEsvc9Le9zr1q1rtsOWPT4XzNG9z+v06dNWr1+vXj0ho/A+L5I6w6FxJaxYsWIm/7mZ8/DhQ/z6669IT0+Ht7c3Bg4ciP/973/44osvhJtRoqKiMGvWLFGnGntq164dvvjiC/zxxx9YvXo15syZgzZt2uD+/fv49ttvHbbfvMSZZsjZRo8eLfTknzNnjtkvtrRf/GdmZprsLZ+Wloa//vor1+Vyd3fHu+++CwA4ePAgEhMTsXnzZgCAr68vOnfubHS9tm3bwtfXFwDwxx9/5PsvZcuXLy/8bq5TgXYEa2Pq1q0rdLpYs2YNUlJS7Fa+nOh2ntqwYYPJ5Xbt2mU2LHbs2BEAcO/ePRw+fNimsmjfn2lpaSaX2bNnj0290+2tZcuWwpfK5o7b5cuXhQYVR2jTpo3we1xcnOg57VS5mZmZZrehbVgxd9yjo6Oxb98+W4tpEblcjrfffhtA9pcK1oZm7QgsSUlJCA8Pt3v5iIgKqhRFFtR6l1NSHMmZnGfs2LFCPpk1a5bZ63ntdUhO+WTjxo25Lpe7uzt69uwJADhw4AASExOxadMmANn5pGvXrkbXa9eunZBPfv/99wKVT8x9Ga597cbo5pNVq1Y5NZ/oNvqZu6bbuXOn2XyizZv//PMPDh06ZFNZtO9Pc6PJ7d69G9HR0TZt355at24t5BNzx+3SpUtOyyexsbGi57QzXSsUCrPbsDSf7N2719ZiWkQulwuzZZ06dcrqfKJ9DyYlJWHt2rV2Lx8RUW6pVCqH/ehf16nVatHziWnimWb8Pd0cWh5n/+T360V70n+t+fW1sw3FMSzdL9tQshW0NpTcnt9sQ7E/R7ahFJTPc8o9e9e1RqOx+lqJyJT4+HiH/Ghn6NBKTEzMfk4hR3y5txDfYQ7aqBYiBb7CMrKsDIeVJy9+tB37tR03XfnHWEfvvCyDqf2PHDlS1I5irBO39kepzM7QmZmZUCgURreXlJQkuuYytl/9jrnGfgAIGeXAgQOIjY0V2md8fX3RsWNHo+u1atVKyCiLFy+GUql02PHNqWO/JdsoXbq0sE5ERITJ5XRzn/75U7NmTVE7SkJCgtWvxVy5zb0ndDvorF271uT2t2/fLsoo+s9rM8o///yD/fv321wnQPaM9Kae37Fjh6gdxdpjYeyYWFPf2p/mzZsLGUU7U4uxnwsXLogyirny2vK5qjuQ9qtXr0TPaTuNZGZmmt2G9nMhNTXV5DJPnz4VtaPk5nWY+vxQq9VCRjl16hQuXbpk1bHQvgeTkpKwevVqu9U1fwrWj73qW79jvzU/+YHkO8307dsXH3/8MZYsWYKFCxfaNPPMypUroVAo4Obmhv/+97/o3bs3qlevjrp162L8+PEYMmQIgOyOMzt27DC6jVWrVmHZsmUW/2hHaNXq168f6tati8DAQHh5eaFixYqYPHky2rRpg1evXtl840J+lqzXaSaAnWbIwfz8/DBlyhQA2aOgmTuvKleuDCD7i93t27cbPK9SqTBt2jS73fSjnU0mMzMTmzdvFkZI6NSpk2iGFl2BgYEYPXo0AODChQv473//a3Y6zJcvX2L16tV2Ka8tChcuLIxyFh4ebvQf6dmzZ7FkyRKT25DL5QgLCwMAPH/+HJMnTzZ5I5FarbbrTVmNGjUSRn1YuXIlzp49a7BMdHQ0vvrqK7PbGTduHPz8/AAA77//vtCr3ZT9+/fj5s2bose07899+/YZPY4PHz7Exx9/bHa7zlKyZEmhgWHv3r3Ytm2bwTIpKSmYPn26zft49OgRTp06ZXaZI0eOCL/rNj4CQIkSJQBkj8BvrhFRe9wfPHhgdKagtLQ0TJgwwSkdXSdNmgS5XA6NRoNx48YJI5YYo//cgAEDhC8lvvzyyxxHMTh79myOx5eIyBXo35AGAIV9OUoLOY6fnx8++OADANn55MCBAyaXrVKlCoDs6w1jN0ipVCq8//77Bt812Eo7ClpmZib++usv/P333wCyb243l0/GjBkDADh//jw+++yzHPOJdjr6vKCbT9atW2f0uvrMmTP4/fffTW5DLpfj/fffB5B9zTVx4kSz+cRe9QNkT1evHThm+fLlRmcgjI6Oxueff252OxMmTBDqdPLkyTnehLVv3z6DmTUtySczZswwu11nKVmyJLp06QIg+yY5Y+dTSkoKpk2bZvM+rM0n+rPdaEeWfvXqFZKTk01uQ/u5cP/+faMj3KWlpWHs2LFOySdTpkwR8sno0aPx7Nkzk8vqPzdo0CAhn3zxxRc5HrszZ84wnxCRZCRlihtCOfAYORrbUNiGkhtsQ7EN21Acg20oROTK8qpTf6ZCiXSluAOZn4cszzvjs2O/bQpKR1BmFMdkFEvrmxklW0HLKLk9v5lRHMMRGcVUXTOjuCZ27M8m+W/I+/fvn6v1//33X+GGgPbt2xudhqtbt244cuQInj17hj179qB3795wdxcf+gMHDuQ4uoqu0NBQlCpVKsfl3nrrLRw/fhx37txBt27dLN5+fpelUiNNKb7oK+TlZmJpIvsZMWIEFixYgBcvXhiM5qqrR48e+O6775CZmYn3338f169fR7t27VCoUCHcuXMHS5cuxdWrV9GsWTOjF1XWatasGSpUqIDHjx/j+++/F0bx6NOnj9n1Pv74Y5w+fRoRERFYsmQJTp06haFDh6Ju3brw9fVFYmIi7ty5g+PHj+PQoUOoVasWhg4dmquyPn78GLdu3RL+NvUPsUiRIsJFqtaoUaMwffp0vHr1Ct27d8f06dNRpUoVJCQk4MCBA1ixYgVCQkJw4cIFk/sfPXo09u/fj6NHj2LXrl1o06YNRo4ciQYNGsDHxwcvX75EREQEtmzZgj59+mDmzJm5er265syZg27dukGpVKJfv34YP3483nrrLXh5eSEiIgK//vor4uLiUKdOHYMApFW8eHHMnz8fo0aNwosXL/D2229j4MCBePPNN1GqVClkZWXh+fPnuHz5Mnbs2IFHjx5h7dq1QhAFsv/3ffXVV4iOjkbnzp0xZcoU1KpVCxkZGTh58iR+//13KBQK1K9fP19M3fnNN9/g2LFjSElJwYQJE3D69Gm8++67CAgIwM2bNzF37lzcv38fDRo0MDuCninPnj1Dz549UaNGDXTp0gUNGjQQ/sc+e/YM27ZtE74UqVu3Lho3bixav2nTpgCyA/hHH32EMWPGoEiRIsLz2hDVv39/LF26FGq1GoMHD0ZYWBjeeOMNeHt74+rVq1i8eDEePHhgt88Fc+rVq4eZM2di9uzZuH//Ptq0aYNRo0ahVatWCAoKQlJSEq5fv45du3bBzc1NFGK9vLywdOlS9OzZE6mpqejduzd69eqFzp07o3LlysIXEZcvX8bu3btx69YtzJo1Cy1btnToayIiAuDQ0SnkcjkCAwOFvxMTE0VfREe+EH+h5i6XQZGahPg0y6Z3zu+0I6QBr0f+dGUymUwYBQmA0xu8jI2QZsywYcMwb948g3yiv3z37t3x7bffIjMzE5MnT8bVq1dzzCfG9qs/wpEpjRs3FvLJ//73PyGf9O7d2+x6M2fOxKlTpxAREYHFixfjxIkTOeaTwYMHm9yeKbqv4+HDh6JrN7VabbSuzeWTly9fonPnzjnmE+0IUrpGjBiBPXv24OjRo9i5cydatGhhcT7R3Zax+jI2QpquH374QcgnvXv3tiif6G+jSJEimDdvHkaNGoXo6Gh06NDBonxSs2ZNYRvafBIVFYW3337bonyiX46cjoWWTCb+TLbl3P7qq69w5MgRpKSkYOzYsThx4kSO+cTc+17/ffH48WOr8kmDBg1E62vzilqtxrRp00zmk759+2LJkiVQq9UYMGCARfnE2PvI1Osw9ryW/nK1atUS8sm///6Lli1bWpxP3NzchHySkpKCHj16CPmkQoUKkMlkiI6OxtWrV7Fz504hn7zxxhsmy0oFkz3+d+uPkGaNoKAgq5YncgbDgcfYhkKOxzYUtqHkBttQbMM2FPtzVBuKuYzCNhQicnUpmYbXNAG8z4ucgBmFGSU3mFFsw4xif7zPi8g+JN9pJrd0P+zat29vdBm5XI62bdti3bp1SE1Nxc2bN4XRPLUcNfJQoUKFAOQ83XFBk5RhePHFUdLIGXx8fDB16lR8+umnZpcrXbo05syZg2nTpiEjIwPz5s3DvHnzRMv07NkTQ4cOzTHwWKp379745ZdfhCBVtGhRdOjQwew6Xl5e2LRpEyZPnoxdu3bh5s2b+OSTT0wuHxAQkOtyakfDzsm4cePw3XffiR4bMmQIDh06hN27d+Pu3bsYN26c6PnatWtjxYoVqFu3rsntyuVy/Pnnn5g8eTJ27NiB+/fv47///a/1L8QGjRs3xoIFCzBlyhRkZGTgt99+w2+//SY87+7ujjlz5uDcuXMmwxSQ3Rlz9erVmDJlCuLj47Fy5UqsXLnS6LJyuVyYnlVr3LhxOHr0KI4ePYr79+9j6tSpoud9fHwwf/58HDhwIF+EqfLly2PNmjUYMmQIUlJSsGLFCqxYsUK0zEcffQSZTGZTmNK6e/cu7t69a/L5atWqYeXKlQY32rVu3RpNmjTBxYsXsXnzZmzevFn0/KtXrwAADRs2xMcff4wffvgBiYmJ+P777w32MWnSJNSsWdPhYQoApk+fDrlcjjlz5iAxMRG//PILfvnlF4PlWrRoYfBYkyZNsG3bNowZMwbPnj3Dpk2bsGnTJpP7ssdnBxGRJZw5OoV2lDSthDTxqEaFvN3Mju5U0OTXUcIcpaCMksZ8kvtrDO1MLzlhPnGNfGKPc5v5xDGYTyi37Pm/WztCGlFBl5yp12nGi20o5HjMKGxDyQ0pZhR7YEZxDGYUIiL7SjbSacafGYWcgBmFGSU3mFFsw4ziGMwoRLnHq89c0n7oenl5CT0Mjaldu7ZoHf1OM45y7949AEBwcLBT9ucsSZmGI1cGsNMMOcnQoUMxf/58PHv2zOxygwcPRtWqVbFgwQKcP38eiYmJKFKkCOrUqYNBgwahZ8+edp3Krm/fvqILoXfffddgVitj/P39hWkkN2zYgLNnzyI6OhoZGRkICAhAxYoV0bBhQ7z99tsmOwc6i1wux/Lly/Hnn39i/fr1wmdwpUqV0KNHD0yYMAE+Pj45bsfX1xfLly/HyZMnER4ejnPnzuHly5dQqVQIDg5G3bp18c4776B37952fw29e/dGnTp1MHfuXBw/fhxxcXEoWrQomjVrhokTJ6Jx48Y4d+5cjtvp2LEjIiIisHr1ahw8eBB37txBQkIC3N3dUbx4cdSoUQOtW7dG9+7dhSkWtTw8PBAeHo4VK1Zg48aN+Oeff6DRaFCyZEm0bdsW48aNQ7Vq1XDgwAG7v35btWzZEidPnsRvv/2GgwcP4sWLFwgMDESDBg0wZswYdOjQAXPmzLFp26Ghodi2bRuOHDmCiIgIPHv2DK9evUJmZqYwXWy3bt0wcOBAeHl5Gawvl8vx119/Yd68edi3bx8ePXqEtLQ0ozfofPTRRwgJCcGSJUtw5coVpKWloVixYmjYsCFGjBiBdu3aITw83KbXYYtp06bh3XffxYoVK3D8+HE8ffoU6enpKFy4MKpXr462bdtiwIABRtdt0qQJzp07h/Xr12Pfvn24fv064uLiIJfLUbRoUVSrVg0tWrRA9+7dUbVqVae9JiKivJKULs4o7NRPzsJ8kneYT15jPmE+sQdH5pMaNWogNDSU+YSIJCVZb/AxzjRDzsKMkneYUV5jRmFGsQdmFCIi+9Hv1O/hJoOXu8zE0kT2xYySd5hRXmNGYUaxB97nRZQ7Mk1+HS41j7x8+RKTJ08GALRt2xZhYWFmlx89ejSSk5NRoUIF/PjjjyaXS0lJwahRowBkf2h/+OGHdivzs2fPUKxYMYMP+GfPnuHrr79GQkICvvrqK1HHnZyYm45Ql1wut6qslpLL5QgMDBT+TkxMFI3SfO1ZMoavuS787eUux9npoQ4pS16JioqCSqWCXC43mLrQ1chkMri5vW6wU6lU+XYkZ8o91rd0sK6lhfUtLfaq7xcvXkCtVsPNzU2YLtdSQUFBVu+PXF9MTIzDtu3m5iZ638XHx4tGIN905QVmH3wk/F2/tD+WD64DV6E9X6WQT7R0GyaysgwHbiDXwbqWFta3tLC+pSW39Z2b651ixYpZvT+ShrzMKN1+v4zo5NczYv5fr+poU8V1srTUMgr/p0kL61taWN/SwvqWDnvUNTMKOYKjMkpO+eTc40SE/XVH+LuIrzv2T2rskLLkFWYUcmWsb2lhfUsH61pamFE400yuKBQKJCcnA8ieHs8cf39/eHl5ITMz0+IOKZY6deoUdu3ahVq1aqFYsWLw9vbG8+fPcfnyZahUKvTs2dOqDjMAMHHiRIuW27hxoy1FtppuBxoAUL9Uip/38XC5GydjYmKg0Wggl8st6kXuSnRvwiXXx/qWDta1tLC+pcXW+tZ2wPbwcL1rOZKepAzONENERERERPlHcqbeTDNe/K6GiIiIiEjqHNWGqz/osv7fqQq16O8Ab3eXa0+WyaQzc47+a5XJZBxQ04WxvqWF9S0drGtpsXd96w+2XFDwLp5cyMjIEH739vbOcXlvb29kZmaK1rOHunXr4tmzZ3j06BFu374NhUKBgIAANGzYEB07dkRISIhd95cfJKUbdpohIiIiIiLKK+w0Q0RERERE+YVKrUGqQr/TDDMKEREREZHUOWsQO/3BkVVuyaK/C/t5u9yAehwcmaSC9S0trG/pYF1Li1QHR5bWFZqdKRSvp7W35GJXu4zuevZQu3Ztq2eSycmiRYvsuj17S2SnGSIiIiIiykcSM8Q3pAWy0wwREREREeWR5Mwsg8fYsZ+IiIiIiPIKB0cmIiIiorzGb8hzwdPTU/g9K8uwAUKfdhnd9fKrokWLWrRcfHy8Q/Yvl8tFow4kJiZCrX49VWd0XJJoeV93x5UlryiVSuE1W/L+Ksj0p+pSqVSc6s2Fsb6lg3UtLaxvabFXfavVaqjVaiiVSquv5QriiAXk2pINZprhSCxERERERJQ3kvU69QPMKERERERElHeSMsSdZtipn4iIiIicjVegueDt7S38npGRkePy2mV01yvoVCrDhhdHUKvVon0lponDlL+Xm9PK4ixSutFY/7VK6bVLEetbOljX0sL6lhZ717dGo3G5azmSniSDTjOM20RERERElDf0Z5pxl8vg5S7Po9IQEREREVF+kVeDI79KSBUt7yVXc3DkAowDakoL61taWN/SwbqWFg6OnI138eSCp6cnAgICkJycjNjYWLPLpqSkIDMzE4Dls7iQaUmZ4psqA3lDGhERERER5aFEvU4zgT7MKERERERElDeS9GaaKeTtBplMlkelISIiIiKi/CKvBkfWn2nG31PucgPqSelGYw6oKS2sb2lhfUsH61paODhyNt7Fk0tly5bF7du3ER0dDZVKJeqJpev58+eidSh3kvVuSAvwNn7ciYiIiIiInEF/ppkAL8ZtIiIiIiKpM9VmZA9yudzk36kKtei5Qt4eDi1LXpBSJyD91yqTyXgjgwtjfUsL61taWN/SYe+61h8VmqggStbr2M82FCIiIiJyNl6B5lKNGjVw+/ZtZGZm4sGDB6hWrZrR5W7duiVah3JH/4a0QpxphoiIiIiI8pB+RuFMM0REREREFBQU5LR9BQYGCr+r3JJFzxX283JqWZwhJiYGGo0Gcrkc7u7Syl+8aVZaWN/SwvqWFta3dNha19pO0R4eHi53LUfSk5wpbkPx9+JnIBERERE5l7S+RXaAZs2aYdu2bQCAI0eOGO00o1arcezYMQCAn58f6tSp48wiOpSjvsgxN0IaACRnikcgCPThKGkFGUfVkRbWt3SwrqWF9S0tHCWNSCxDqUZmlvgcYMd+IiIiIiLKK4npStHfgT4eeVQSIiIiIiIiIEXvPq8AtqEQERERkZPxCjSXqlatilq1auH27ds4cuQI2rVrh+rVq4uW2blzJ549ewYA6Ny5s0uNeOWs0Sx0R0gDgFSFWvR36WKFXW5kDY6SRlLB+pYO1rW0sL6lhaOkkdTpj5AGAIW8+TlIRERERER5g51miIiIiIgoP0nKELejBHCmGSIiIiJyMmndiW/EnTt3EB0dLfydlJQk/B4dHY2jR4+Klm/Xrp3BNkaMGIHPP/8cCoUC//vf/9CrVy/UqVMHCoUCp0+fxsGDBwEApUqVQvfu3R3yOqSGDT5ERERERJRfJKYbdpoJ8JJ83CYiIiIikrz4+HiHbVsul4sGHEtMTIRanT3g2KuEFNGyXnKVQ8uSF5RKpfB6s7IMM5kr0Z+hV6VScYZnF8b6lhbWt7SwvqXDXnWtVquhVquhVCqtvpbjQGWU3yTrzTRTiDPNEBEREZGTSf4K9NChQzh27JjR5+7evYu7d++KHjPWaaZSpUqYOnUq5s2bh/T0dISHhxssU6pUKXz66afw8fGxS7mlTKlSI1UhDlPsNENERERERHnF2AhpbnJZHpWGiIiIiIjyC5VKlfNCdqJWq4X9JWWIBx7z93RzalmcQUo3Geu/Vim9dilifUsL61taWN/SYe+61mg0LnctR9KiyFIjM0stesyfM80QERERkZNJvtOMvTRp0gQ//fQTdu/ejUuXLiEuLg7u7u4oWbIkQkND0alTJ3h5eeV1Me3OUSOTmRshLS5VYbC8RpGG+HjXGkmMo6TxS0JXxfqWDta1tLC+pYWjpBGJ6Xea4QhpRERERESUl5hRiIiIiIjIGN32PXuSy+Um/07PMOz0VdjX02FlySsymXQGU9N/rTKZjPcGuDDWt7SwvqWDdS0t9q5v/fvGCgrJf0seFhaGsLAwu2wrODgYw4cPx/Dhw+2yvYLAWaNZ6I6QFp9m2GnGz0PmciNrSOkfEEfVkRbWt3SwrqWF9S0tHCWNSCyRN6QREREREVE+kqx3U1qAd8FrwCQiIiIiIvtz1qB0ugMlx2elGDxftkQxeHu4Vk6JiYmBRqOBXC6Hu7u02okK4k2zZDvWt7SwvqWDdS0ttta3tmO0h4dHgRzsWJ7zIkT5S7LeDWle7jJ4ufOtTEREREREeSNJ74a0QrwhjYiIiIiI8lByprgdJcBLWjdsERERERFR/qE/E6aXu9zlOswQERERUf7HngZU4OjfkMbGHiIiIiIiykv6DT6caYaIiIiIiPJSUiY79hMRERERUf6QlK4U/V3IxyOPSkJEREREUsY7eajA0R8hjTekERERERFRXtLvNBPIjEJERERERHlEo9EgJYMzzRARERERkaH4+HiHbFculyMwMFD4OzExEWq1GgAQFZMgWtbfQ+6wcuQlpVIpvOasrKwcli7YZDIZ3NxeD86gUqmg0WjysETkSKxvaWF9SwfrWlrsVd9qtRpqtRpKpdLq67mgoCCr92dv/JacChz9G9ICOEIaERERERHlIYOZZnwYtYmIiIiIKG+kKdVQ6bV3BnixHYWIiIiIiLJvkHQGtVot7CshXSF6zt/LzWnlcCYp3Wis/1ql9NqliPUtLaxv6WBdS4u961uj0RTI6zneyUO5otvzzJ7kcrnJv1MUatFzgd4eDitHXpLJZHldBKfRf60ymYz/hF0Y61s6WNfSwvqWFnvXt/6IBkQFTaJ+pxnONENERERERHkkOcNwRGNmFCIiIiIiyivJGeIbKjk4MhERERHlBX5LTrnirOmSdKfwVGiiRM8VK+SbL6ZtsreYmBhoNBrI5XK4u0vrVOVNs7lTv359PHnyBIMGDcLChQtFz0VGRiIkJAQAsGDBAgwePNimfaxbtw5hYWEAgKtXr6J8+fI2l1dK9X3y5El0794dALBjxw60atVK9PykSZMQHh6OcuXK4dq1a3lRRIeSUl0XNPY8p7VY37br1q0bTp06hZYtW2Lnzp15XRyL2Frf2o7RHh4eLnk9R9JhMNOMl7Su34nMadSoEZ48eYIBAwZg/vz5ouciIyPRuHFjAMDcuXMxaNAgm/YRHh6O999/HwAQERFhl2sZKTh16hR69uwJANi2bRtatmwpen7y5MnYsGEDypUrh0uXLuVBCUmqeE7nLz169MDp06fRokULbN++Pa+LQ0QW0M8nMgB+nGmGSMCMkn8xo1B+xXM6f2FGISp4UjLFGSWAbShEIswo+RczCuVXPKfzF2aUgoNXoVTgJKYrRX8X8vHIo5KQK9HtzGCpCRMmYNasWQ4qEREREREVFEnp4lHSCvnwhjTKHd0v4S01btw4fPfdd44pEBEREREVGEl6ozj7e7lBLqGZ7ckxmFGIiIiIyFbJmXozzbBTP9kBMwoRERFZS57XBSCyln6nmcK+7DRDRGTOunXrEBQUhKCgIERGRuZ1cUii6tevj6CgIEyaNCmvi0K5dPLkSeEz5eTJk3ldHKJ8IUlvlLRAb45PQURkSnh4OIKDgxEcHMx8QnmmUaNGCA4OxuTJk/O6KJRLp06dEj5TmE+IsumP4lyI+YSIyCxmFMoPmFFchzajsA2F6DWDTjPMKEREZjGjUH7AjOI6mFFe41Uo5Up8fLxDtiuXyxEYGCj8nZiYCLVaDQCITU4XLeuhyXJYOfKSUqkUXnNWVlYOSxdsMpkMbm6vR5JQqVTQaDROLYNK9Tqkjxw5EiNHjsxxnSJFiuTrulGr1QblK126NF69eiX8bWv5dY9XVlaWVdvJD/WdV3SPm0qlMjhuc+fOxdy5cwHY97zPTX3lhpTruqCxx3vE0vo29tlEYtrjptFo8uWx0n2/6D5my/mtVquhVquhVCqtvp4LCgqyen9EjpCl1iBFr8GHN6WRPVmTTwqa8uXLi/IJ5S/z58/H/Pnz87oYREREZCX9mWYCvDmKM9kXMwrlFWYUIiKigiklQ9ze6c+ZZsjOmFEorzCjEBEVLLyTh3LF2E2TjqBWq4V9JemHKU+Z08rhTFK6sVz/teb1ay9WrBhq1aqVp2VwZfmtvslxWNfSwvqWttzWt0ajccnrOZIG/cYegDPNkH0xnxARERGRNfRnwizkxXxC9sWMQkRERETWMJhphhmF7IwZhYiIiCzBq1AqcPQ7zXAUZyIiIiIiAiCa8cre5HK50b9TlAqDZQv7ecHNTW7weEEmk8nyughOpf96ZTIZO4S6KNa1tLC+pYX1LW25qW/9mVSJCpoUvZlmOIozERERERHlJf2O/QHMKERERESUB9jbgAqcZL1OMwHsNEP5SHBwMABgxowZmDlzpsnlevTogdOnT6NFixbYvn27yeUiIyOxcuVKHDt2DE+ePEFycjIKFSqEatWqoU2bNujfvz8qVqxocfkiIyPRuHFjAMDcuXMxaNAgo8slJCRg7ty52LNnD54+fQp/f3/Url0bw4YNQ48ePSzeX0ZGBtasWYPdu3fjzp07SEhIQGBgIOrUqYM+ffqY3D8AKBQKHDlyBIcPH8alS5fw8OFDpKamIiAgAJUqVcKbb76J0aNHo2jRoia30ahRIzx58gQDBgzA/Pnz8e+//2LBggU4duwYXrx4gcDAQDRt2hRTpkxBkyZNLH5dpqSnp2Px4sXYvn07Hj58CC8vL1StWhWDBg3Ce++9l+P6kydPxoYNG1CuXDlcunTJ6DK7du3Chg0bcOXKFcTGxsLDwwPFihVDyZIl0bJlS3Ts2BGNGjUCAJw6dQo9e/YUra+tf13btm1Dy5Ythb8vXryI/fv349y5c7h37x4SEhLg5eWF0qVLo0WLFhgzZgxq1Khh0eu4du0aEhMTsWDBAvz999948uQJ3N3dUbt2bQwfPhx9+/bN8bikpKRg1apVOHDgAO7evSuUp2LFinjjjTfQq1cvvPHGG0bXValU+Ouvv/D333/j2rVriI+Ph5+fH6pVq4Zu3bphxIgR8PHxybEMptjjfQoAJ06cwOrVqxEREYGXL19CJpOhaNGiKFGiBN544w289dZbaN26tc3ltNc5HRkZiSVLluDo0aN4+vQp1Go1SpYsidatW2P06NGoX7++wTrazzutDRs2YMOGDaJlcvos1Kf73t62bRuaN2+OtWvXIjw8HPfu3YNCoUClSpXQs2dPTJgwAd7e3ka3o3/ORUdHY8mSJdi/fz+ePn2K1NRUg/MjJiYGS5YswYEDBxAZGYnMzEwUL14coaGhGDZsGEJDQ3Ms/8WLF7Fw4UKcPXsWSUlJKFGiBNq2bYtJkyahatWqZtcNDw/H+++/DwCIiIhA+fLljS5n6ec9ABw4cABbtmzBhQsX8OrVK6hUKpQoUQL16tVDx44d0aNHD/j6+oq2qdW9e3eD7eW0PyJHCgoKctq+AgMDAQAPk8WPe3vIUTLY/Od+QRQTEwONRgO5XA53d+llMGffOKu7v9wcc+058fHHH+OTTz4xuVy3bt1w6tQptGzZEjt37jS5XGRkJJYtW4Zjx44hMjJSyCfVq1dH27ZtMXDgQJP5xNjriIyMREhICABgwYIFGDx4sNF1ExIS8Ouvv2L37t148uQJ/P39UadOHYwYMQI9e/YUHS93d3eTxysjIwOrVq3Crl27cOfOHcTHxxvkE1PrKhQKHDp0CIcPH0ZERAQePHggXPdVrlwZb731FsaOHWv2uq9+/fp48uQJBg0ahIULF+LevXuYP38+jhw5IuSTZs2a4YMPPkDTpk1NbsdS6enpWLhwIbZu3Srkk2rVqmHw4MEYOnSo6Li5ubkZvPZJkyYhPDxcuK43ZufOnQgPD8eVK1cQExMDT09PFC1aFKVKlUKrVq3QqVMn4frh5MmTBtcOxvLJjh070KpVK+HvCxcuYN++fTh79izu3buH+Ph4eHt7C/lk3LhxqFmzpsnjoP86tPlkx44diIyMhLu7u/B+6t+/f47HNTk5GX/++Sf279+Pu3fvCuWpWLEiQkND0bt3b5PXhCqVChs3bsS2bdtw7do1xMXFwc/PD9WrV0f37t0xatSoXOeT3L5PAeD48eP4888/cfHiRVE+KVmyJEJDQ/H222+jTZs2NpfTXud0ZGQkFi9ejCNHjuDp06dQqVQoVaoUWrdujbFjx6JOnTqi5d3c3ITPOy1j+SSnz0J9uu/tHTt2oEWLFli9ejXWrl0ryie9e/fGpEmTTOYT/fdqdHQ0Fi1aJOSTlJQUg/MjJiYGixcvxv79+/H48WMhnzRv3hwjRoxA8+bNcyz/hQsXsGDBApw5cwaJiYkoUaIE2rdvj7CwMFSrVk3ofCSTyQzqYt26dQgLCwMAXL161Ww+seTzHgD279+PTZs24fz586J8EhISgk6dOqFnz55CPtFuU8tYPslpf7q0naI9PDycel1JZG8GM82wDYXyEbahiLENhW0oly5dMppR2IYi5iptKLVr1zZYh20ohtiGQuR69Dv2B3iz0wzlH8woYswozCjMKNLKKLzPixnFkv25En5TTgVKlkqNNKVa9FghjkBALmrBggX47rvvoFQqRY/HxcXh3LlzOHfuHE6dOmXVBYgl/vnnH/Tp0wfR0dHCYxkZGTh+/DiOHz+OQ4cOWXTTxY0bNzBs2DA8efJE9HhMTAyOHTuGY8eOYeXKlVi9ejWKFy9usP6HH35ocMEFAPHx8YiPj8elS5ewbNkyrFq1yuSFtK5du3Zh0qRJSEtLEx579eoVdu/ejX379mHRokXo1atXjtsx5cWLF+jduzf++ecf4bG0tDRcuHABFy5cwI4dOzBx4kSbt69SqTBu3Dj8/fffoscVCgVSU1Px+PFjnDt3DocOHcLBgwdt3o/uhZoupVKJf/75B//88w9Wr16N77//HqNGjcpxe/fu3UPfvn0RGRkpevzs2bM4e/YsLly4gB9++MHk+seOHcP48eMRGxtrUJ4bN27gxo0bWLZsGV69emWw7tOnTzFkyBDcvHlT9LhCocD58+dx/vx5rFixAuHh4ahSpUqOr8UYe7xP//vf/+L33383Wv6nT58iIiIC69evx927d20qo73O6Q0bNmD69OnIzMwUPf7w4UM8fPgQa9euxWeffYYPP/zQpnLaSqFQYNCgQTh8+LDo8Zs3b+LmzZvYtGkTNm/ejBIlSpjdzsWLFzFkyBCD95quI0eOYPTo0UhOFt8h/+TJEzx58gR//fUXRo0ahVmzZhnMSKG1ePFifPnll1CrX1/PREZGYvXq1di8eTOWLl2a00u2m7i4OIwdOxbHjx83eC4yMhKRkZHYtWsXAEgmHBHZIjFNfK1W2Mczj0pC5Fjz5s3Dt99+azSfaK/tTp48adWN5pa4e/cuevXqhaioKOGxjIwMIVMcPHgQLVq0yHE7169fx3vvvZdjPgkPDzeaT6ZOnYrw8HCDx+Pj4xEREYGIiAj88ccfWLt2rUVfru7cuRPjx483yCe7du3C3r17sWTJEvTu3TvH7Zjy4sUL9OjRQ3QNmZaWJlwH79ixA5MmTbJ5+yqVCmPGjMG2bdtEjysUCqSkpODx48c4e/YsDh48iCNHjti8H90b8nUplUrcvXsXd+/exapVqzB79myMGTMmx+2ZyidnzpzBmTNncOHCBfz4448m1z969CjGjBljNJ9cv34d169fxx9//IH4+HiDdZ88eYLBgwfjxo0boscVCoWQ8ZcvX44NGzbk+AW7KfZ4n3722WdYtGiRwePafHLx4kWsW7cO9+/ft6mM9jqn169fj6lTpxrkkwcPHuDBgwdYs2ZNnuWT/v3749ChQ6LHtfnkr7/+wrZt23LMJxcuXMCgQYPM5pPDhw9jxIgRJvPJxo0bMWbMGPzwww8m88nChQvx+eefG+STP//8E5s2bcLy5ctzesl2ExcXh1GjRuHYsWMGz2nzyY4dOwDA4k4wRFLFgcdIKtiGwjYUXQW1DeXff//FgAED2IYikTaUTz75BB999JFN5bQV21BsxzYUclWOGiBK/7zW/TtZr2N/YV9Pl5zhVX/WY1fGGZ6Nk0pGWbNmjdDZSBczihgzCjNKQcgouu0ozvosZ0axXX7KKDKZrEBez/GbcipQkvRGHwA4Shq5pp9//hmzZ88GkD2K+ciRI9GqVSsEBQUhKSkJ165dw86dO+0eupOTk9G/f3/hoqtnz54YMGAAgoODcf/+fSxatAjh4eG4c+eO2e08ePAAPXr0QFJSEgICAjBq1Cg0atQIZcqUQVxcHPbv34+VK1fi0qVLGDZsGHbs2AEPDw/RNlQqFSpWrIguXbqgYcOGKFu2LNzd3fHkyRMcP34c69atQ1xcHEaMGIHjx48bDWRat2/fxvbt21GiRAlMnDgRDRo0gEajwZEjRzB37lxkZGRg+vTpaN26NYoVK2b1ccvKysJ7770nBKl27dph5MiRKFOmDJ4+fYoVK1bgyJEjSEhIsHrbWitWrBCC1BtvvIEhQ4agYsWK8PX1RXx8PG7duoXDhw8jKSlJWKdBgwY4fvw49uzZg1mzZgEANm7ciJIlS4q2rduDOSsrC4ULF0anTp3QvHlzVK5cGb6+voiOjhZuAIuNjcUnn3yCatWqme0Vn56ejkGDBiE+Ph4fffQRWrVqBX9/f1y7dg0//fQTnj9/juXLl6Njx47o0KGDwfonT57EwIEDkZWVBTc3N/Tr1w+dO3dGmTJlkJmZibt37+LQoUPYv3+/wbpxcXHo1q0bnj17Bi8vLwwZMgQtWrRA+fLlkZqaiiNHjuCPP/7Aw4cPMXDgQBw6dAiFChWyrlKQ+/fp/v37hSClHVm5WrVqKFSoEJKSknDnzh0cP37c5IgUObHXOb1//35MmTIFGo0Gfn5+mDRpEtq0aQN3d3dcuHABv/32G2JjY/Htt98iMDAQo0ePFtadO3cu0tLShHJ07twZn376qWj7vr6+Nr0+AJg1axYuX74sOu+ePXuGFStW4OjRo7h79y6GDBmCvXv3mrxYT01NxciRI5GRkYFp06ahbdu28PX1xa1bt4QQdv36dQwZMgQKhQIeHh4YPXo0OnXqBF9fX1y/fh1z587F48ePsXz5cvj5+eGLL74w2M+uXbvw+eefAwAKFSqEKVOmCKMbnDhxAvPnz8fEiRNzHLHCHtLS0tCrVy/cunULABASEoJhw4ahZs2a8PLywrNnz3DmzBnRjbClSpXC8ePHcfnyZXzwwQcAgPnz56Nhw4ZQqV5fo5UuXdrh5SfKTxLT9TrN+HqYWJKo4Prxxx/x/fffA4Dwv75169YoUqQIEhMTcfXqVezYscPu+SQpKQl9+vQRbq7v1asXBg0ahODgYPz7779YuHAh1q5di9u3b5vdzoMHD9CtWzchn4wZMwaNGzcW8smePXuEfPLee+9h9+7dBvkkKysLFStWRLdu3dCoUSPRdd/Ro0exdu1axMXFYejQoTh9+rTZfHLr1i1s3boVJUqUQFhYGBo2bAiNRoPDhw/j119/RUZGBqZOnYo2bdrYnE8GDhwofBnfoUMHjBo1Ssgny5Ytw6FDh4x27LDUsmXLhOsE7UhMFStWhJ+fH+Li4nDz5k0cOnRIlE8aNmyIU6dOYffu3fjuu+8AAJs3bzbIJxUqVBC9lsKFC6NLly5o0aIFKleuDD8/P0RFReHatWv4/fffERsbi5kzZ6J69epmZz/Rzyft2rWDn58frl27hh9++AHPnz/H0qVL0alTJ7z55psG6584cQL9+vUT8smAAQPQpUsXlC1bFhkZGbh79y4OHjyIvXv3GqwbFxeHzp07C/lk2LBhaNmypZBPDh8+jN9//x0PHjxAv379cPToUWFGM2vk9n26d+9eocNMnTp1MGrUKNSoUQOFChVCYmIibt++jWPHjtmcT+x1Tu/btw+TJk2CRqOBv78/wsLC0LZtW7i7u+P8+fP45ZdfTOaTBQsWIDU1FX379kVUVBS6dOmC//znP6Lt+/n52fT6AOC7777DpUuXROfds2fPsGzZMhw5cgR37tzBoEGDcODAAbP5ZPjw4cjMzMT06dPRvn17+Pj4GOSTQYMGCflk7Nix6Ny5M3x9fXHt2jX8+uuvePz4MZYuXQpfX198/fXXBvvZuXOn8NoLFSqEDz74QJjF5vjx45g7dy7GjRtn0+eQtdLS0tC9e3chnzRo0ADDhw9HrVq1hHxy+vRpbN26VVinVKlSOHXqFC5fvozJkycDeJ1PdJUpU8bh5SfKb/TbUQI48Bi5ILahsA1FX0FtQ3nvvfdEGcXb25ttKDpcrQ3lu+++Q1BQENtQ2Ibi8PITmeOsmVW1321lKFVQqMQ34JYpXhRBQbZ//5JfxcTEQKPR5Gr2+IIqL26a1d2nPY55TtswNxszYHk7irn9GHtO929jM8YnJSWJrmeMfecaHh4uunnf2Oze+hnFXDvKsGHDjLajqNVqi76fHjFiRI7tKHfu3BEyiql2FO13p7ZmlCFDhggZxVg7ypEjR5CYmGj2+OveZK//3PLly4WMklM7inbdJk2aWNyOol1Ho9FY1I7yySefoGbNmkbbUbSvIz09HUOGDDHbjrJ8+XJ06dLFZDuKbkYx146if7z0M4qpdhRtRrG1HSW379O9e/eKMoq5dhRbPpfsdU7v27dPyCiWtqNoP1cXLlxoUTuKNa9P9zN79uzZZttR7t69i6FDhxptR9G+V1NTUzFq1Cij7SilS5eGu7u7QUYx1Y6yfPly+Pv7m2xH0c0oxtpRJk6cKHwOGfsfofsajNWV7nO66+gvp59RzLWjaNcvV66cxe0oltantg48PDycdl1pT9K6QqMCL0lv9AFA4qOkadSQZdh+k0t+InN7XY8ylWE9A4DGOwiQGe/RaU8xMTE53qABAFWrVjUIAPZw7do1zJkzBwBQpUoVbNmyxeDLs1atWmHSpEl49uyZXff9888/C9v8z3/+g6lTpwrPhYSEoHv37hg8eDCOHj1qdjuTJ09GUlIS6tWrh7/++svgy8u3334bHTt2xIABA4Te1UOHDhUtM3PmTFSsWNGgUatBgwbo3r07Ro4ciS5duiAmJgZLly41+AJZ17Vr1xASEoKtW7ciICBAeLxJkyaoVKkSJk6ciOTkZGzatAkTJkww+9qM+fPPP3H16lUAwLBhw/Dzzz8Lz4WEhKBr16744IMPsG7dOqu3raUdaaJx48bYtm2bwYVK27ZtMXHiRNGNb35+fqhVqxauXLkiPFalShWT0/wBwFtvvYU+ffoYfAFfv359vPPOOxg7dizeffdd3Lx5Ez/88IPZBp+YmBgoFArs27cPtWrVQlZW9rkdEhKCli1bom3btsjIyMCKFSsMGnwyMjIwceJEZGVlwdfXF+vWrRNNnQgAzZo1w9ChQ42eB5999hmePXuGcuXKYevWraIb7wCgZcuWePfdd9G9e3c8evQI8+bNM7jAt0Ru36faei1Xrhx27twJf39/g3KOHj3a5hsa7XFOK5VKTJ8+XWjs2bFjB+rVqyc836RJE3Tr1g2dO3fGixcv8MUXX6Bnz55CONUee+3nZaFChVCrVi2bXo8xly9fNnredenSBVOnTsXatWtx5coV/PnnnyZHzYiLi4Ofnx927tyJunXrCo/rhoTp06dDoVDAzc0Na9euRfv27UXLvfvuu+jWrRvu3r2LBQsWoH///qhZs6awjEKhwCeffCIcgz179qB69erC802bNkXnzp3RtWtXPHjwIPcHJgezZs0SgtSoUaMwe/Zs0ftYeww///xzobHaw8MDtWrVQlxcnLBchQoVULt2beH8JsprubkBPCdyuVz0xVtiYiLUajWexyaKlvPzkDm0HHlFqVQKo6eYPeddJKPIZDK4yV9/gaVSq4yOrOOojKLbkP7y5Utcv349x3XM5RO1Wm223rSvTaPRGCx37do14WY0U/mkefPmmDBhAp49e2ZyP8bKoPu3SqUyeH7OnDkmr2Xq1q2Lrl27GlzLZGVlGWxnwoQJJvOJTCZDhw4dhHxy8eJFrFmzxiCfzJgxw+h1X7169dClSxeMGDFCuO5bvHix2Xxy9epVo/mkYcOGqFChgpBP1q9fb1M+WbZsmZAB9K+T6tati06dOhnkE2PHX3fEJP3ntDeuN27cGFu3bjXIJ61atcL48eMRHx8vrOvl5YXq1asjIiJCWK5ixYpG84l2nfbt26Nnz54G+aR27dp48803MXr0aCGffP/990ZnKNG+Dv18on3ddevWRWhoqJBPli5dirZt24q2kZGRgXHjxpnNJ40bN8bgwYONngczZ840m09CQ0PRrVs3IZ/8+uuvNuWT3L5PtfVqKp+EhoZi5MiRonq1hj3OaaVSialTpwr55O+//xblk4YNG6JLly4G+aRo0aJQqVRCBwrtezYgIEB0Xa67X0vpfmZrG431z7uOHTsK+eTy5ctYtmyZQT7RvldN5ZP69esLZfvggw9M5pP69eujW7duQj6ZP38++vXrZ5BPZsyYAcB4PmnUqBE6duyIrl27CrMKGfsfofvajX3+6j6nu47+ct9++63ZfKI9hv/5z3+QkJCArKwsyGQyVK9eXTQioTafaPej/f9maX2q1Wqo1WoolUqrr+cKYuMQOYcjbxwyNZJzikLcaSZQyqM4u1A+kenkE7mJfAI4px2FbSiObUORyWRsQ7GBK7ShANnXMGxDec2V21CKFi0KmUzGNpT/z9XbUHTziS0K6ijORACQlKE0eEzSgyNr1JClF/yMYg2Nj+MzyqtXr4TPbXOqVavmsIyibUepWrUqtm3bZjCQS+vWrTF58mQ8ffrUrvv+8ccfheuZzz//XDTzdoMGDdCjRw8MHDjQYEYHfRMnTkRSUhLq16+PLVu2GNznpd+Osm7dOgwfPly0zKeffmr02k97LaDtVBsTE4MlS5aYvb68evUqGjRogO3bt4s6bzdt2hSVKlXC+PHjkZycjI0bN2LSpEnmD5IRK1asEHLA8OHD8euvvwrPNWjQAN26dcOUKVOwZs0aq7etpe1c26RJE+zYscMgo7Rr1w5hYWEGGaV27dqijFK1atUcM0rfvn2NZpSOHTti3Lhx6Nq1K27evIlZs2aZHXzMWEYBso9Jq1at0LJlS2RkZGDZsmUGnWYyMjIwfvx4IaNs2LBB6Fyg9cYbb2DYsGFGz4OPP/5YyCg7duwwyCitWrVCz5490aVLFzx69Ahz584VOjNYI7fvU229litXDnv37jXIKK1atcLYsWNtzij2OKeVSiWmTZsmdJjZvXu3KKM0bdoU3bt3R8eOHREdHS3KKMDr+7y079nAwEDhe3d7uHTpktHzrmvXrnj//fexevVqXL58GStWrMCYMWOMbiMuLs7oa2vUqJHw+9SpU4WMsn79elGubtSoEXr27InOnTvjzp07mD9/PgYOHCh63ysUCsycORNAdkbZv38/atSoITzfrFkzdOnSBZ06dRLaURzpu+++E/7XjRkzBnPmzBG9j7XH8MsvvxRllNq1axvNKFIl4atQsgdnT9uZqhB/keDlLoevl2uO5GxJg48sIx5FlzVzQmnyh9jR56HxcfzIMStWrMCKFStyXC4iIsLsRamtFixYALVaDZlMhiVLlpgdbcaeo2UqFAqsXbsWQHZPaO0IOLo8PDzw22+/oUmTJgbTiWqdOXMGFy5cAJDdM1U/SGnf22+99RZ69OiBrVu3Ijw83KDBp1KlSmbLW7t2bQwZMgS///479uzZY7bBBwB+++03UWOPVp8+ffD1118jOjoaZ8+etanBR/t+CQ4Oxrfffmt0me+++w779+9HTEyM1dsHsm+WBLIvXM317M3tTRqlSpUy+3yhQoXw8ccfY9iwYTh37hzi4uJQpEgRk8v/5z//ES4odadxrFy5Mjp37oytW7fi3LlzButt3LhR6DX/2WefGTT26NI/DyIjI4WQMnv2bIMgpVW/fn2MHj0a8+bNw/r1621q8Mnt+1Rbr/Xr1zcIUrpsqVd7ndO7du0S6uLDDz8UhQ2tcuXK4auvvsLEiRORlpaGtWvXIiwszCnTdpo77/73v/9h3759iImJwYoVK8xONTtlyhRRY4+uS5cu4fLlywCAoUOHihp7tAoXLoyff/4Z3bp1g1qtxvLly4XGewDYs2ePcBynT59u9Ma8WrVqYdq0afjmm29Mv2A7SExMxKpVqwBkN+x8//33Jq87PD09Ubx48Ry3mdtpWtngQ/aie+Omo6nVaqhUKiSkKUSPF/J2c2o5nMXSc5wZxf6YTxybT7TvbeYT6xTUfPLJJ5+IvvBmPpFOPnn//feZTySUTwDLr11MreuK13OUN5zZoUrbyT9VKX7/lyoa6JIduywZxVmWFotACeUTAEgcdwkaX/tnFN3vbSzNKFevXjWZUXIzivPChQuFjLJ8+XKzOcjUtZepMpgb1VP/emb69OkG/7Pc3d2FETu11zP6o4iePn1ayCiLFi0SZmnQp5tR1q9fj5EjR4qer1atmsnXBmRf0w0bNgyLFi3Cnj17cryZaP78+UY/KwYMGIBvvvkGUVFROHfunDAyqTVWrlwJAChevDhmzZpltO5/+OEHUUaxdhRnbUfaN954A97e3ibLYmw0a0tHfQWyrzXNKVKkCD777DO89957OHfuHJKSkgwyiu7r0G1D0S1L9erV0aVLF2zZsgXnzp0zKNOmTZuE67nPP//coOO/Lv3zQDejzJkzB1WqVDG6XqNGjTBmzBjMnTsXGzZswJdffmn2tRuT2/eptl5DQkJQuHBhk9sxN0q5KfY6p3fs2CHUxUcffWQwYi+QndW++eYbjB8/XpRRjH0nbo+R8nW3a+68mz17tiijjBs3zqAsWh988AEaNGhgdH8RERFCRhk2bBjefvttg2WKFSuGX3/9FZ07d4ZarcbKlSvx008/Cc/v3LlTOI4zZswwehNXvXr1MH36dHz11VcAHDeKs25GadCgAebMmWOy/cLd3d3gBlVjy9ra/lHQR3EmAoCkdGODI7vmfV6WkKXHI3BJo5wXdCGOyii6li9fjuXLl+e4nLmMkhtz584VMsqyZcvMtpWULVvWbvtVKBRCp446depg2rRpBst4eHhg7ty5ousZfadPn8b58+cBZOctU7O66WYUY51mcvp+uk6dOhg6dCgWLVqEXbt25fgd+Lx584zOdtivXz989dVXiIqKwpkzZ2zqNKN9vxQvXlyYIUjfrFmzsHfv3ly3ozRr1syh7Sg5zWIXGBgoZJSzZ89adZ+XrsqVKwsZ5ezZswbPr1+/Xphl/vPPPzfoMKNL/zyIjIwUBvWaM2dOju0oc+fORXh4uE2dZnL7PtXWa0hIiEPaUexxTu/cuVOoi+nTpxttRylfvjy+/vprg4ziDObOu++//x579uxBTEwMli1bZrLTDAC8//77Rl8bkJ1RtDOSDhs2zOjsrYULF8Yvv/wiZJRly5aJMsru3buF4zhjxgxRhxmt2rVrizKKoyQmJgrfrTRo0MCgU78ua9pRpIidZihXnD1tp/ql+IM+0Md1vxywqMHHTVqnsLubOzQOmsLUli+qzH3RZmuDj1qtxqFDhwBk9zzW7f1qLWsbfC5duiT0Mh00aJDJ0RXKly+P9u3bC9O56x8H7ePVqlUTRkE1pXnz5ti6davQQ97cMUtISEB8fDwyMjKEGx+05//du3eh0WhMlrl27doICQkxue369esjOjoajx8/tvqL6OjoaGHKw169epmcnr5w4cLo2bMnli5dCsD6Bp+SJUviwYMH2L9/Pz766COrph63psFHX2pqKmJjY5Gamiocdy8vL+H5O3fuGIxCoH0dMpkMffv2NVoOILuX/tatWxEfH4/U1FTR6P0HDhwAkD2KwsiRI60q86FDh6BSqeDr64uOHTuaPb9btmyJefPmITo6GlFRUTk2eOXE2vepdgrVM2fO4MmTJzmGM2vY65w+efIkgOz6HDZsmMm66N27Nz7++GMkJSXh2LFjJsOUvRt8LD3v7ty5g9jYWFEjtO45N2DAAJPlOnHihPC7uWPQsmVL1KhRA3fv3sWJEydEy2m3IZPJ8N5775ncxtChQ/Htt99Co9E4rMHn9OnTSEtLA5A98r7uOW0JNvgQiSVliBt8JD1CGrkc3XzSsmXLHK/v7enq1avCtcyAAQNMfvFXunRptGvXTrh+1Ldv3z4A2SNx5TRqjm4+ycrKsiifZGZmCtd92uvZu3fvQqlUms0nderUMfqcTCZDvXr1EB0djUePHpktrzG6+aRHjx4GN25o+fv7491337WoIdGYEiVK4MGDB9i3bx+mTp1qVT7JDW0+SUtLE467bj3dvHnT5EjOMpkMffr0Mblt7cja8fHxSExMFOUT7bWyr6+vQYeqnBw4cEDIJ/ojr+kLDQ0V8snTp09z3YBq7ftU+yX6mTNn8PDhQ7vmE3ud08ePHweQXZ+DBw82ub93333Xonxib5aed3fu3MGLFy9M3iRr7r167Ngx4ff33nvP5HJvvPEGqlevjn/++Uc4blq6x3HAgAEmtzFo0CAhnzjKiRMnhHwyduxYdqYnsoPEdMN2FCJXoVarcfDgQQDZbSjOzChXrlwRfd9q6nqmTJkyou9b9e3ZswdAdhuKqVygpc0oly9ftjij6H43bU1GMdVhV5tRoqKibM4od+7cAQCjs0hq+fv7i9pQrFWiRAncv38fe/fuxYcffuj0jKLbhqJbTzdu3DA5krN+G4q+Bg0aYMuWLUYzijbr+vn5YdiwYVaVed++fUJGMda5QVeLFi0wd+5cREVF4cmTJw5pQzH3PtVeL58+fdruGcVe57T2+lwmk2HIkCEm99ezZ0/MmDHD6RnF0vMup4zSr18/k/vQnYnHXGYODQ0V2lB0c43uNmQyGQYNGmRyG++99x6+/vprh2aU48ePCxll/PjxzCjkcmwd+T4ncrlc9L8qMTERarUaz14mi5bz9pAjNTkRqQ4pRd5SKpXCTMKmZr2Vqayfvbmgy1JlQWPDrNU5sWXAE3MzJavVarOzFWv/9+jPxqybUVq2bInatWvbNEu3qTKYm8E5IiJC9J2rqWNSokQJ0Xeu+sdh9+7dALLbUWrUqGFQBt0BMHUzSkZGhtXtKNrBxO7evYv09HSzGaVmzZomj2XdunURFRWFhw8fWn28dTPKu+++C09PT6Pb8Pb2FrWjGJtBW3vOA4bnffHixXH//n3s2bMH77//vlUZxdIZvo0x1o6ie6179epVg3YU7euQyWTo1auXQVm029HORBQfH4/Y2FjR5/7evXsBZLejDB482Koy79mzR8go7du3N7vuG2+8AQBCRnVEO4q596m2w/7p06dx7949u2YUe53TR44cAZBdnwMHDjR5PLt37y7KKKYGR87p89ESuq/F0vPuzp07ePbsmSij6J5zvXr1Mlku3Zl4zL0fmzRpIrSjHD161ORx7Nevn8ltDBgwQMgo+v8j9F+7ufPZ3Of9kSNHhIwyZswYo/sxx9h7ydbZMNVqNdRqNZRKpdXXlfnhvjDezUMFShIbe8gJPv74Y2H6Z2d7/PgxEhMTAWQHDWfSnarU2ChIuho3bmzyy2FtB5h79+5Z/I9O+09UfySomzdvYtGiRTh48CBevHhhcn21Wo2EhASTI0kZGzFVl7acKSkpFpVXl7XHzdYGn0GDBuH06dN48OABGjVqhO7du6Ndu3Zo3ry5XUf0BoDY2FgsWLAAO3bswP37981eIMXGxpp8rmjRomZHJ9B9fyQnJ4vC1LVr1wBk37hm6st8U7TvwbS0NBQrVszi9V6+fGlTg09u3qcDBw7E+vXrERcXhxYtWqBz585488030bx5c1SuXNnqsuiy1zmt3U6FChXMHk9PT0/Ur18fJ0+exO3bt20osW2sOe9u3bpltMHH398fFStWNLkN7evx9PQ0OUqB7v7u3r2L+/fvQ6FQwNPTU9g3kH0czX0ZUqxYMZQvXx6PHz82u5/c0J5fgPP/1xC5okT9TjNejNlkXzNmzBCmfnY23XwSGhrq1H3rXk+YGslUq1GjRiZvsNdeG/77778WjzxrKp/cunULixcvxqFDh4SRpIzJKZ9UrVrV7P6118mpqdY3Heset5yukxo1amRzp5kBAwYIHSuaNWuGrl27ol27dggNDc1xVDNrxcbGYtGiRdi5cycePHjgsHyiO2pxSkqKKJ9cv34dQO7zibbTvCVevnxpU2NPbt6nAwYMwMaNGxEXF4c2bdqgU6dOaN++PUJDQ3OdT+x1TmsbMy3JJ/Xq1cOpU6fyVT7RPe9u375tNJ/4+fmZzSfaY+Dp6Wny5lbd/f3zzz948OCBKJ9oj0l+yCfa8wtw/v8aIlel347Cjv1kb2xDYRuKNdiGwjYUtqFkYxvK6/2xDYUobzlrZlW1Wg2VSoXEdIXo8QAvN5ed3dUZsxyTcWxHYTuKNdiOYj6j6OdU3W2xHcW12lE8PDxEGcVZ/8fYjmI9R7Sj5La+NRpNgbym4zflVKBwhDRydboXpqZG8nEU3Z6fOYUgc8/bOi1lenq66O/Vq1fjww8/tLhXrP76unx8fMyuq53pwJZ/5PY6bjkZMmQIHj58iLlz5yIpKQlr164Vpo2vVKkSunTpgjFjxpi9ILTElStX0KdPH8TFxVm0fEZGhsnnLD3ugLgnOABh/7acB69evbJ6HcD8e8iU3L5P27Ztizlz5uDLL79Eeno6tm7dKkw5Wrp0abzzzjsYNWpUjo0MxtjrvakdxcCS9692ZGpHjVBkjDWvzVS5TM1Uo6U9BkFBQTnOkqM9BhqNBgkJCcLf1h5HR4apvPxfQ+SKktLF1w+FfDjyILkO3WtCqeeTNWvWYMaMGRZf9+XmOlk74pct+UR7zQEgx5ufcpNP3nvvPTx69Ajz589HUlISwsPDER4eDgCoWLEiOnfujFGjRuU6n1y9ehX9+/d3ej7RP/a5ySf2eg9aIrfv0zZt2mD27Nn4+uuvkZ6ejm3btmHbtm0AgFKlSuGdd97BiBEjcmxgMMZe57R2O5bc3JcX+cSa885UuXQbGo3Rrle4cGGb84k1xzE4ONih+SQv/9cQOYMjP4OMjeScrshCZpb4ezaZMh1O/Ch0Go7ibJwzRnG2xwijto7irHszS3BwcK7KYe0ozrrfqRUpUsTsvnVvptAfRdTW76+Tk5NFNy9Ze+2XkpJispOOl5eXRdsxNrJyTqw5brodSKwdxXngwIG4f/++kFF021ByyijWjOJsbUZJTU01+Tp8fHygUqlEs1jojvSqewOLQqEQbUe7/+LFi1tdJ+ZuCjMnJSXF6n3l9n3asmVLUUbRbUPJbUax1zmte22d0+vU5gHtOsZG9rX3KM7WnHcxMTEGI+cD2W0o5rahfT9qb6I0t6w2g2g0GsTExBjNKJYcx8ePHztsFGfdHF+0aFGr64OjOBOJJekNPBbAgcfIxbAd5TW2o4ixHcVybEfJxnaUbGxHMcR2FPvhlSjlirOn7YyOSxIt5+vu3A9sZ7KkwQceAYgdfd6JpXIMmUwGN7nOF8Jq418aaTwCAAc09gD5p8HHnuWwtsFHt7Ehp33rN0zoLqv9vU6dOli0aJHBujKZzKCzhEajETVw3bt3T+iIEBwcjLCwMLRq1Qrly5eHv7+/MO3h2rVrMXXqVKPlyOlYmHs91rDmuOnWr7UNPgDw6aefYsiQIdi0aRNOnDiBiIgIpKWl4eHDh1iwYAGWLFmC77//HiNGjDC5X3PHSaFQYOTIkYiLi4OHhwfGjBmDTp06oUqVKihcuDC8vLwAAI8ePULTpk1Nbk+/A4xuOXTPbUvKZe10gtptAdlfZGsbTyxRvnx5q/Zlr/fpyJEj0a1bN2zevBnHjh3D+fPnkZSUhOfPn2PlypX4888/MXXqVHz22WcWlw2w3zmtW2fmtqE7nStgugHA3g0+uTnvtK/bzc3Nbp8Rpo6lpcdRd1lHNfjol4UNPkS5k5ypN9OMxEdx1ngHuURGAQB3t9d1mWXiZjuNNz+LnEH/OsMa2v9bpvIJAIMblIDsL7a17t27J3yBbul1X34YVTA3x80S//nPfzBs2DCDfPLo0SMsWrQIS5cuNZpPLKVQKDBmzBir8kl+OO76tO8pW/KJNez1Ph09ejTeffddg3wSFRWFP//8E6tWrbIpn+iyx3vT0e9vW9mjXLqfSY7eV349jkSuxJmj7anVaiSkZho87uchK5Cj/uXEkv/7UssnADOKszCj2IYZxZD+886oJ2YUQ3l1be2M+mZGyR+kOoozEQCkZIrfu/5e0h54jBmFHIUZxTbMKPkDM4ohV762ZkahvCTtu3ko15w+bWeaeKYZf6lP2ymTQ+NjeuqvgkIDQK7To1PtoI4xziCTyaDRaEx2GtBKS0sz+rjuaD7mpih3BN0pFF++fIkqVaqYXNbcSGi6U2DWqlXL6DK6PXiN3awdHh6OrKwsuLm5Yfv27ahWrZrR7ej2/s8ruh38chohztYR5HSVK1cO06ZNw7Rp06BUKnH58mVs374dq1atQkZGBmbOnIlGjRqhfv36Vm/7xIkTePToEQDghx9+wNChQ40uZ+txtyZ4FSlSBM+fP7fpPNCeRykpKahevbrFF8rWsuf7NDg4GBMmTMCECROgVqtx/fp17N69G8uWLUNiYiJ++eUXNGzYEJ07d7a4fPY+p3N6/2o0GmGEuqCgIKcFbWvOO1s7WWjXi4+PR1ZWltlRCLTHQCaTiepA+7slnwPmljE3Q5MuU/9nAMP/NRUqVMixTDlhgw9JWaLeKGmBEu804yoZBQA0Op/3jhip2RmYT5hPzJF6PrEG80nByyfa/eiu4wzMJ8Y5O58QSVlypmG2DpDyTWnMJ/kOMwozijnMKJZjRmFGsRQzinHMKETOoz/wmORnmmFGyXeYUZhRzGFGsRwzCjOKpZhRjGNGcQ55zosQ5R9Jeg0+hbwl3NhD+ZK/vz8A8xdPGo0GDx8+NPpchQoVhIvzM2fO2L185ugGnytXrphd9vLlyyafq1evHgDg8ePHNgfCu3fvAsgexcDUBSqQczmdoXbt2sLv5o6LJc9by8PDA82aNcN3332HxYsXA8h+f+3YsUO0nKU9nrXHHQB69eplcjlnHHdtGLx69arZi0JjtO/BzMxMh5bVUe9TuVyOkJAQfPrpp9i8ebPw+Pbt263ajr3O6Zo1awLIPqfNTYmqVCpx7do1g31rOarnvTXnnfa1WEu7nkKhwI0bNyzaX+XKleHp6Sk8rj0mjx8/NjstbkxMDCIjI00+r/0/A2TPxGfK/fv3TT6n+2WLs//XELmipHTONEP5F/MJ84k5zCeWYz4pmPnk+vXrBvvWYj5hPiFyVUl6nfp9PORwd2NTIOUfzCjMKOYwo1iOGYUZxVLMKMYxoxA5T3IG7/Oi/I0ZhRnFHGYUyzGjFMyMwvu8mFGkht+UU4GSnMEb0ih/0077d/XqVZPLHDx40OQ/QLlcjrfffhsAcPr0aeHCxBlCQkKEHrIbN240OWtAVFQUjh49anI7nTp1ApB9Ub9kyRKbyqIdlcDcRXR0dDT27dtn0/btqWTJkqhevToA4O+//0Z6errR5VJTU/H33387rBxt2rQRfte/UNNOtwlkXwyaojsaRGpqqtFl1Go1Vq9ebWsxLfbOO+8AyH4PrFq1yqp1O3bsKFy4//7773Yvm5Yz3qe652VsbKzN6+bmnNa+tzQaDcLDw00ut2PHDiQlJQEA2rZta/C89n1o7j1oC0vPuxo1aqBkyZI27UP39axbt87kchcuXBBCtu45qfu3RqPBxo0bTW5j/fr1Zmdt0Z1e1lxI3rJli8nnWrVqBV9fXwDA0qVLrZ7hxdvbW/g9MzPTqnWJXI1GozG4KY0ZhfIT5hPmE+YT+2A+ycZ8kjPmE+OYT4ich20olN8xozCjMKPYBzNKNmaUnDGjGMeMQuQ8+rNh+kt9phnKd5hRmFGYUeyDGSUbM0rOmFGMY0ZxDnaaoQKFN6RRfteiRQsAQEREBM6dO2fw/IsXL/DZZ5+Z3cakSZMgl8uh0Wgwbtw4PH/+3OSy5p6zlpeXFwYNGgQAuHHjBubPn2+wTFZWFqZNm2b2Yqh9+/Zo1KgRAGDBggXYtm2b2f3eunXL4GKzcuXKAIAHDx7g/PnzBuukpaVhwoQJJi+gnG3EiBEAsqfr+/LLL40u8/nnn+dq2s6//vrL6BSnWkeOHBF+173YAoASJUoIv5sa/QJ4fdyB7As6Y/73v/85JeT369cPpUqVAgDMmjULp06dMrms/nlQtWpVvPvuuwCArVu3YtGiRWb39fjxY7MXnqbY4326detWs89fuXJFGNHE2qkV7XVOd+nSRQghv/zyC27dumWwzLNnz4T3vq+vL9577z2DZbTvQ+3UsPZi7rz74osvhPNOe57aolGjRmjQoAEAYPXq1Th+/LjBMklJSfjoo48AZH8xNnLkSNHzXbp0EY7Bzz//jH///ddgG3fv3sUvv/xitiy1atUSphFdtmyZ0TCzbds2s1/eBAYGYvjw4QCyv/z7z3/+YzLAKZVKg88uSz9TiKQgVaGCSu/0YUah/IT5hPmE+cQ+mE+yMZ/kjPmE+YQoryUZ3JDGUZwpf2FGYUZhRrEPZpRszCg5Y0ZhRiHKaymZ4v/PAZxphvIZZhRmFGYU+2BGycaMkjNmFGaUvMS7eahA0R+BIIANPuQAMTExuH37do7LeXt7o1KlSqLHhg0bhhUrViArKwtDhgzB9OnTERoaCoVCgfPnz2PRokXIyspC5cqV8eDBA6PbrVevHmbOnInZs2fj/v37aNOmDUaNGoVWrVohKCgISUlJuH79Onbt2gU3N7ccw4o1PvroI2zfvh3Pnz/HN998gxs3bqB///4oVqwYHjx4gEWLFuHy5cto0KCB2Z6vixcvRseOHREfH4+xY8di06ZN6NmzJypXrgw3NzfExcXh2rVr2LdvHy5cuIBJkyahY8eOwvr9+/fH0qVLoVarMXjwYISFheGNN96At7c3rl69isWLF+PBgwdo1qyZ0YtYZxs5ciTCw8Nx/fp1rFixAo8fP8aIESNQunRpPH/+HMuXL8fRo0dzPG7mTJo0CV9++SW6deuGpk2bomLFivDy8sKrV69w7NgxrFy5EgDg5+eHvn37itatX78+vL29kZGRgdmzZ8PDwwPlypUTeumXKlUKPj4+aN++PYKDg/Hq1SvMmjULT548QZcuXVC0aFE8ePAAa9aswfHjx51y3L29vbFw4UL069cPaWlp6Nu3L/r164cuXbqgVKlSUCgUuHfvHg4ePIh9+/bh2bNnovV//PFHXL16FY8ePcIXX3yBPXv2oH///qhZsyY8PT0RHx+Pmzdv4vDhwzhx4gS6dOmC3r17W1VGe7xPv/32W8yYMQOdOnVC8+bNUaVKFfj6+iI+Ph7nzp3D0qVLAQBubm4YMmSI1cfRHue0p6cnfv75ZwwZMgTJycno2rUrJk+ejNatW8PNzQ0XLlzA3LlzhQvub775BkWLFjUI/02bNsXJkydx+fJl/Pbbb3jzzTeFXvA+Pj5CeLZWgwYNjJ53K1asEL5kqFevXq7CFAD83//9Hzp16gSFQoFBgwZhzJgxeOedd+Dn54fr169j7ty5QlAMCwszmLrU09MTs2bNwqhRo5CQkIBOnTphypQpaNmyJTQaDU6dOoV58+YBACpVqmQypLi7u2PYsGH47bffcPv2bfTq1QtTpkxBmTJl8OrVK/z9999Yv349mjZtigsXLph8PZ988gmOHTuGW7duYdmyZbh48SKGDx+OWrVqwcPDA1FRUTh79iy2bNmCTz/9VAjmAFC2bFnhOM+fPx+lS5dG5cqVIZdn98cvXry4aHpRIleWlGE4gkchNviQnTGfMJ9Yi/nE/phPCn4+0cd84tr5pFq1akKDEfMJSQ1nmiFnYEZhRrEWM4r9MaMwo1iKGSV/ZBS2oZCUGd7nxYxC9seMwoxiLWYU+2NGKfgZhfd5MaNIgUxjbl4gohzExMQ4ZLtubm5C7zoAiI+Ph0qlQnyaEonpWUjKzEJShgrVgn1QIsDLzJYKrhcvXkCtVkMul4t6+rkqd/fXwdhcL2tHOXXqFHr27GnVOnXq1DE61d3ixYvx+eefG10nKCgIf/75J2bPno3Tp0+jRYsW2L59u9Flf/nlF8yZM8fs8TC2fqNGjfDkyRMMGDDAoMdxZGQkGjduDACYO3eu6J+j1p07d9CnTx+8fPnS6D4HDhyIFi1a4P333weQPdqCfo93ALh//z5GjhxpUTD9+OOPhZ67Wj/99BN++OEHk+tMmjQJNWvWNFsOc8dC1+TJk7FhwwaUK1cOly5dyrG8xkRHR6NXr15GexUDQLt27TBp0iT0798fQHYP4ZYtW1pcjuDg4BzLUKhQISxZsgRvvvmmwXPffPONcKGmT7cshw8fxvDhw5GRkWF02ZYtW2L27Nlo3bo1AOPvI93XoTtagf57OTw8PMf30eHDhzF+/HihF74pxkZ3ePHiBcaMGYOzZ8+aXRcABg0ahLlz5+a4nL7cvk+171FzvLy88OOPPxo9Xy1hr3N6/fr1+Oijj0xO0+jm5obPPvsMH374IQDD+o6KikLbtm0RHx9vsK65z0JjdD+zN27ciIULF5qcerRatWrYsmWL0Sk7rT33jxw5gtGjRyM5OdnkMqNGjcKsWbOEYKFvwYIF+Prrr432+Pf19cUff/yBBQsWmP0fkZaWhj59+uDixYtG92HJeQpkTwU7cuRInDlzxuTrMbX+ihUrMHPmTIuXNyU31zvFihWzanmSBkflE8B4RlEosxCnzSgZWUjMyEK7qkHCF5auRGr5BMjbjMJ88hrzCfOJPfPJpUuXTJ7bzCeul08++eQT0bmsW9/MJ9mYT8SYT8gRnJ1RUjMUiElVIiVThaSMLHi5yxFSJsBhZchLUssobEMxxIzCjKKLGSXBzCtnRjGHGYUZhRmFpMbZ93klpCuRkJ6FlEwVkjOyUC7IG2ULezukDHmNGcW5mFFeY0ZhRmFGsRwzymu8zysbM4q0Mgq7b1OBEuTrgSBfj7wuBpFZEyZMQPXq1bF48WJcvnwZ6enpKFmyJN58801MmTIFZcuWtWg706ZNw7vvvosVK1bg+PHjePr0KdLT01G4cGFUr14dbdu2xYABA+xe/po1a+LkyZOYN28edu3ahWfPnsHf3x+1atXC0KFD0bt3b4SHh+e4nSpVquDIkSPYvn07duzYgStXriA2NhYqlQpFihRB1apVERoaik6dOiEkJMRg/Y8++gghISFYsmQJrly5grS0NBQrVgwNGzbEiBEj0K5dO4vK4SwlS5bE4cOHsWjRImzbtg2PHj2Cp6cnqlWrhv79+2P48OE5XrCYc+LECRw4cADnzp3Do0eP8OrVKyQmJsLf3x/VqlVD+/btMWLECBQvXtzo+p9//jkqVaqEjRs34u7du0hKSoJKZTg6focOHXDgwAHMnTsXJ06cQGxsLAIDA1G9enX07dsX7733Hp4+fWrz67BWhw4dcPHiRaxYsQL79+/H/fv3kZiYCF9fX1SqVAnNmzdHnz59jK5bokQJ7NixA/v378fWrVtx8eJFvHz5EkqlEoGBgahUqRKaNm2Kjh07ClPuWiu379OtW7di3759OHPmDB48eICXL18iISEBPj4+qFixItq0aYMRI0agYsWKNpUPsN85rQ1dv//+O44ePYqnT59Co9GgRIkSaN26NcaMGYP69eubXL9UqVLYt28ffvvtN5w+fRpRUVEmQ7s1PD09sX79eqxatQobN27EvXv3oFQqUbFiRfTo0QMTJ06Ej49PrvcDZE9LfP78efz+++84ePAgHj9+DIVCgeDgYISGhmL48OEIDQ01u42wsDA0bdoUCxcuxPnz55GUlITixYujdevWCAsLQ/Xq1bFgwQKz2/D19cWWLVuwePFibNu2DQ8fPoS7uzuqVq2KAQMGYMSIEQajchhTtGhR/P3339i1axc2b96MiIgIxMbGQiaToWTJkqhfvz66dOmCbt26Gaw7cuRIlCxZEitXrsT169cRHx+fJ1+GEuU1N7kMwf6eCPb3zOuiEJnEfJKN+YT5xB6YTwpWPqldu7bJ9ZlPsrlSPgkODsbq1auZT0jyvD3cULYwZ7+k/I0ZJRszCjOKPTCjMKPkhBmFbShEea2wjwcK+/A+L8rfmFGyMaMwo9gDM0rByii8z4sZRWo40wzlirNHIJASjkBAroz1LR2sa2lxVn3rjkBgbDQPcg571HdBH4GA8h9nj+IspYwitXwC8DpGSljX0sL6lhZn1DfzSf6R2/pmPiFHYEZxHKllFF7DSAvrW1pY39LCjCIdbEOh/Ir3eTkOMwq5Mta3tLC+pYP3eUkLMwpnmqFccnNzzIhl+lNdmZr6ypXJZLK8LoLT6L9WmUxmdDozcg2sb+lgXUsL61ta7F3fMpnMYdeVREREREREREREREREREREREREJF3sNEO5ojtKgCMFBgY6ZT/5SUxMDDQaDeRyuaiHnxTwpllpYX1LB+taWhxZ37rbdnNzk9z/yfzI1vrWdoz28PBw2nUlERERERERERERERERkRRxcGTH4eDIHFDTVbG+pYX1LR2sa2nh4MjZeIchERERERERERERERERERERERERkQvj4MiOw8GRSSpY39LC+pYODo4sLVIdHFl63bqJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI5bG7FuVKfHy8Q7Yrl8tFow4kJiZCrVY7ZF/5lVKpFF5zVlZWHpfGsfSn6lKpVJzqzYWxvqWDdS0tzqxvlUol+t3V/0/mR/aqb7VaDbVaDaVSafV1ZUEcsYCIiIiIiIiIiIiIiIiIiIiIiIici51mKFd0b1p1JLVa7bR95RdSurFc/7VK6bVLEetbOljX0uLM+m7ZsiVevXrlsO1Tzuxd3xqNRnLXekRERETkGphPiIiIiIgoP2FGISJzODiy43BwZN4P4qpY39LC+pYOZ9Z1aGioKKO4+v/J/IiDI2djpxkiIiIiIiIiIiIiIiIiIiIiIiIiF8bBkR1HSjeVcwBVaWF9SwvrWzpY19LCwZGzyfO6AERERERERERERERERERERERERERERERERET2xk4zRERERERERERERERERERERERERERERERE5HLYaYaIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhcDjvNEBERERERERERERERERERERERERERERERkcthpxmifEouzz49NRoNNBpNHpeGiIiIyL50r3G01z1ElH8xnxAREZErYz4hKniYUYiIiMiVMaMQFTzMKEREROTKXCGjFMxSE0mAm5sbgOwPmqysrDwuDREREZF9KRQKIUy5u7vncWmIKCfa81Sj0UChUORxaYiIiIjsKysrS8gn2u9liSh/Y0YhIiIiV8aMQlTw8D4vIiIicmWucJ8XO80Q5VNeXl7C7+np6XlYEiIiIiL70mg0SE1NFf729vbOw9IQkSV0z9PU1FSOkkZEREQuRff7V93vZYko/2JGISIiIlfGjEJU8PA+LyIiInJVrnKfFzvNEOVTumEqNTUVKSkpUKvVeVgiIiIiotzRaDTIzMxEfHw8MjMzAQAymYwNPkQFgJeXF2QyGQCIzmPemEZEREQFmVqtRkpKiqixh/mEqGBgRiEiIiJXxIxCVHDxPi8iIiJyNa52n1fBnB+HSALc3d3h7++PlJQUAEBycjKSk5Mhl7tmXzfd18XQ6PpY39LBupYW1re02FLfGo3G4OaVwoULu+z1DZErkcvlKFy4MOLj4wFk35SWmZkJmUwm3Kjmavh/TTpY19LC+pYW1re02FLf+sv5+/vD3Z3NJkQFgdQyCv+nSQvrW1pY39LC+pYOW+uaGYWo4OJ9XuTKWN/SwvqWDta1tPA+L3aaoVxyc3NzyHb1T6iCeoLlVmBgINRqNdLS0oTHpPDPSQqvkV5jfUsH61paWN/SYkt9y2QyFClSBD4+Pg4oERE5gre3N4KCgpCQkCB8MWLsSxJXxP9r0sG6lhbWt7SwvqXFlvr28fGBv7+/A0pDRI4i1YzC/2nSwvqWFta3tLC+pcPWumZGISp4/P39oVKpkJ6eLjwmhc97KbxGeo31LS2sb+lgXUuLrfd5FS5cGN7e3g4okXOw0wzlSlBQkFP2ExgY6JT95EdFihRBRkYGEhISkJaWBpVKlddFIiIiIrKJm5sbPD09UahQIfj7+0u2YzRRQebt7Y3ixYsjMzMTGRkZyMrKcskv0GQyGTw8PIS/lUqly994J1Wsa2lhfUsL61tabKlv7WwUnp6e8PX1Fa1PZC+OGngM4OBjWn5+fvDx8UFGRgbS09NdMqPIZDLRCPNZWVn8n+bCWN/SwvqWFta3dOSmruVyOby8vODn58eMQlQAaW8m9fPzQ1paGhQKhUt27Of3btLC+pYW1rd0sK6lxdb6lsvlcHd3h7e3N7y8vAr8d9DsNENUAHh7e6NkyZJ5XQwiIiIiIiLI5XL4+Pi49ExRbm5uokEi4uPjOYCBi2JdSwvrW1pY39LC+qb8ylkDjwHSHnyMiIiIiIgoP/Hw8HDpjMbvYaSF9S0trG/pYF1LC+s7W8Hu8kNERERERERERERERERERERERERE9P/au/MgO6s6f8Cf7AmELAQIEMRAYghLUAg7yBbUsChBGcoVgVGUUXEZmYn+hoIpcCICUzouOKJC1QCDjAhDWGUx7MgSRglhjcgWkkBC0gQ6CZ3u3x9dfe2kby+BpHPv+z5PVapu9/u+556+33vOuR+Kc18AAKjCnWZ4V15//fUN0m7fvn3X2HG/bNmyNDc3b5DnYuNT73JR7/JQ63JR73KphXr35rf1AgAAAAAAAAAAUJ9smuFd6a3bMzU3N5fyVlBlpd7lot7lodblot7lot4AAADQ0Yb64rGkNr7Qgt6h1uWi3uWi3uWi3uVRC7X2xWMAAABrsmkGAAAAAAAA1rPe/IIJX2hRHmpdLupdLupdLupdHmpNLenXr98Gabdv375d/kyxqHe5qHe5qHd5qHW5qHcrm2YAAAAAAAAAAACgwHrrLkTt77ZE8al3uah3uah3eah1uZS13uXcKgQAAAAAAAAAAAAAAECh2TQDAAAAAAAAAAAAAABA4fTf2B0AAAAAAAAAAAAANpzXX399g7Tbt2/fDB8+vPLzsmXL0tzcvEGei41PvctFvctFvctDrculFuo9cuTIXn2+amyaAQAAAAAAAAAAgAJbvXp1rzxPc3Nzrz0XG596l4t6l4t6l4dal0tZ6913Y3cAAAAAAAAAAAAAAAAA1jd3muFd2WKLLTZIu4sXL84JJ5yQJLnooosyatSoDfI81Ab1Lhf1Lg+1Lhf1Lhf1plZtqHySeN+XjXqXh1qXi3qXi3qXi3pTq2QU1ge1Lhf1Lhf1Lhf1Lg+1ppb5/7xYH9S7XNS7XNS7PNS6XNS7lTvNAAAAAAAAAAAAAAAAUDg2zQAAAAAAAAAAAAAAAFA4Ns0AAAAAAAAAAAAAAABQODbNAAAAAAAAAAAAAAAAUDg2zQAAAAAAAAAAAAAAAFA4Ns0AAAAAAAAAAAAAAABQODbNAAAAAAAAAAAAAAAAUDg2zQAAAAAAAAAAAAAAAFA4Ns0AAAAAAAAAAAAAAABQOH1aWlpaNnYnAAAAAAAAAAAAAAAAYH1ypxkAAAAAAAAAAAAAAAAKx6YZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAKx6YZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAKx6YZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAKp//G7gCs7dVXX81NN92U2bNnZ/Hixenfv3+23nrr7L///vnIRz6SQYMGbewu1qVly5bl2WefzbPPPpt58+Zl3rx5eeONN5IkhxxySL7yla+sU3uPPvpobrvttsybNy8NDQ0ZNmxYxo0blyOOOCJ77LFHj9pYvXp1br/99txzzz15+eWXs2LFimy++eaZNGlSjjzyyLznPe/pUTsNDQ256aab8tBDD+XVV19Nkmy55ZbZe++9c9RRR2WzzTbrUTsvvPBCbr755jz22GNZsmRJBg8enDFjxuSggw7KlClT0q9fvx61s7HNmzcvjz76aJ588sm89NJLaWhoSL9+/bL55ptnp512yuGHH56JEyf2uD21rl1vvfVWHn300cqYXrJkSRoaGrJq1apsuumm2W677bLHHnvk8MMP79Fr89RTT+WWW27Jk08+mWXLlmWTTTbJ2LFjc8ghh+Sggw7qcb/uueeezJo1K88//3zeeuutDB8+PBMnTszUqVMzYcKEHrWxcuXK3HzzzXnggQeyYMGCNDU1ZdSoUdlzzz1z5JFHZsstt+xRO2VZUy677LJcd911lZ/POuus7Lrrrl1eY2zXvhNOOKFH5+2yyy45++yzuzxHveHdKct60pvkk+4VaZ6TUbpXlHrLKN0ry5oio7QqythuI6N0rWj1praVZT3pTTJK94o0z8ko3StKvWWU7pVlTZFRWhVlbCfySXeKVGtqX1nWkt4mo3SvKHOdfNK9otRaPuleWdYU+aRVUcZ2Gxmla7VQ7z4tLS0tG/xZoIcefvjh/PjHP05jY2PV49tss02+853vZOutt+7lntW/ribkdQlTzc3N+cUvfpE77rij03MOP/zwnHrqqenbt/ObWTU0NGTGjBmZN29e1eMDBgzIKaeckilTpnTZn2eeeSbnn39+li5dWvX4yJEjc8YZZ2T8+PFdtnPbbbfl17/+dZqamqoeHz9+fKZPn55hw4Z12c7GdtZZZ+WJJ57o9ryDDz44X/7yl9O/f+d7J9W6tmudJH/+859z7rnndnveZpttlq997Wv5wAc+0Ok5V111Va6++up09rFgzz33zLe+9a0MHDiw0zZWrVqVCy+8MI8++mjV43369Mnxxx+fv/u7v+uyvwsWLMiMGTPyyiuvVD0+ZMiQnH766Zk8eXKX7ZRlTfnrX/+a73znO1m9enXld12FKWO79sd2m/URptS7fupN7SrLetLb5JPyzHMySrnqLaPIKImM0qZIY7uNjNK5Itab2lWW9aS3ySjlmedklHLVW0aRURIZpU2RxnYin3SlaLWmtpVlLdkYZJRyzHXySXlqncgn8kkr+aRVkcZ2Gxmlc7VSb5tmqBnPPfdczjzzzKxatSqDBw/OtGnTsttuu2XVqlW59957c/vttydpXfy+//3vZ8iQIRu5x/Wl/YS8xRZbZMyYMfnTn/6UZN3C1BVXXJFrr702SbLDDjvkYx/7WEaPHp2FCxfmuuuuy3PPPZckmTZtWj796U9XbaO5uTlnn312nnzyySTJPvvskyOOOCJDhw7NM888k9/97ndZtmxZ+vTpk+nTp3e6M/K1117L9OnTKzvsjz766MqHq0ceeSQ33HBDVq9eneHDh+f73/9+Ro0aVbWd2bNn57zzzktLS0uGDx+ej3/843nf+96X5cuX57bbbsuDDz6YJJk4cWLOPvvsLhebje1rX/taFi5cmJEjR2b//ffPxIkTs8UWW6S5uTlPP/10rr/++ixZsiRJcuCBB+brX/96p22pdW3XOmkNUxdddFF23XXX7Ljjjtliiy0yYsSItLS0ZPHixXnggQfy4IMPprm5Of3798+//du/ZezYsR3aufXWW3PxxRcnSUaPHp3jjjsu22+/fV5//fXceOONefzxx5N0/5754Q9/mPvuuy9Jsuuuu+aoo47KyJEj88ILL+Saa67JwoULkySnnnpqjjjiiKptNDY2Zvr06ZUgNWXKlBx44IEZOHBg5syZk2uvvTYrVqzIoEGDcs4551T9e5LyrCnNzc35f//v/2XevHkZPnx4li1blqTrMGVs1/7YbtO2dn/4wx/Ohz/84U7PGzx4cLbaaquqx9S7fupNbSrLerIxyCflmedklHLVW0aRUWSUVkUb221klHLVm9pUlvVkY5BRyjPPySjlqreMIqPIKK2KNrYT+aRMtaZ2lWUt2VhklHLMdfJJeWqdyCfyiXzSpmhju42MUvv17nzrKfSySy+9NKtWrUq/fv3yL//yL2vc2m233XbLNttsk8suuyyvvPJKZs6c2eNdebQ6/vjjM27cuIwbNy4jRozIokWL8tWvfnWd2pg/f35mzpyZJBk3blz+9V//tbIbefz48dlrr71y9tlnZ968eZk5c2YOP/zwqjt7Z82aVZmQP/zhD+cLX/hC5dj48eOzxx575J//+Z/T2NiYSy65JLvvvnvVW29deeWVaWhoSJKcfvrp2X///SvHdt555+y444754Q9/mGXLluXKK6+sGhibmppyySWXpKWlJUOGDMk555yzRp8/8IEP5Je//GV+//vf58knn8xdd92VQw89dJ1et940ZsyYfOpTn8p+++3XYfGYMGFCDj744Jx55pl55ZVXcu+99+ZDH/pQdtlllw7tqHXt1zppnRsvuuiiTo8fcMABefDBB3PBBRekqakpv/3tb/Ptb397jXOWL1+eyy+/PEnrf2j53ve+t8aO3cmTJ+f888/PI488knvvvTdHHHFE1Q/pc+bMqQSpyZMn54wzzqi8B9veM9OnT89rr72Wyy+/PPvtt1+GDh3aoZ3rrruuEqQ++9nP5mMf+1jl2IQJE7Lrrrvm7LPPzsqVK3PppZd2uuu6LGvKTTfdlHnz5mXMmDHZe++9Kx+aO2Ns18fYXtuwYcOy/fbbr/N16l2f9aa2lGU92Rjkk/LMczJKueoto8goMkoxx/baZJS/KUO9qS1lWU82BhmlPPOcjFKuessoMoqMUsyx3Z588jdFrzW1pyxrycYio5RjrpNPylPrRD6RT+STpJhje20yyt/UWr3rY/sVhffss89WbjV42GGHrbHotTnmmGMyZsyYJK2LR2e3aaK6E044IZMnT86IESPecRs33nhj5bZwJ598cofb9w0aNCgnn3xykmT16tW5/vrrq7bTNrEPHTo0n/vc5zoc33rrrXPcccclab19X9tOwvaWLl2au+++O0ny/ve/f40Juc0BBxyQ97///UmSu+66q+otwh588MHKrujjjjuu6iLyuc99LptuummS1g96tWz69Ok54IADOt1tOWzYsJx44omVnx944IGq56l17dc6SY921e6zzz7Zdtttk6TqLV1vv/32vPXWW0mSz3zmMx1ucde3b9984QtfqDxXZ69LW6379eu3xvlthg0bls985jNJkjfffLPqLQSbmppy0003JWn9DwPHHHNMh3N22mmnHHbYYUmSuXPn5tlnn+1wTlnWlNdeey2/+c1vkiRf/OIXu7wNbxtjuz7G9vqi3uWqN+tfWdaTjUU+Kc88J6OUq94yiowioxRzbK8v6l2uerP+lWU92VhklPLMczJKueoto8goMkoxx/b6oNblqTUbRlnWko1JRinHXCeflKfWiXwin8gnSTHH9vqi3hu+3jbNUBPaD7q2RXJtffv2zSGHHJKkdSFuu40cvaOlpSUPPfRQktYPOdU+nCStO4TbPrg9/PDDaWlpWeP4/Pnz8/LLLydJ9t9//wwaNKhqO+13C1ablNu33dl7pn07LS0tefjhhzscb/ub1n7O9gYNGlSZ9F966aXMnz+/0+erB+13j7ctSO2pdXFq3abtlpRvv/12h2Ntr8uQIUOy7777Vr1+1KhRmTRpUpLWbxpobGxc43hjY2Mee+yxJMmkSZM6vdXevvvuW+lLtVo//vjjlWB3yCGHdBoWu3vPlGVN+eUvf5kVK1bkkEMOqfpNImsztos3trui3uWqNxtGWdaTemWeK9Y8J6OUq96JjFJNEdYUGaVVmcd2V9S7XPVmwyjLelKvzHPFmudklHLVO5FRqinCmiKjtCrz2O6MWpen1mw4ZVlL6pm5rjhznXxSnlq3kU86KsKaIp+0KvPY7op69069bZqhJjz11FNJWt/8O+64Y6fntV8s2q6hdyxatCivv/56ktZba3WlrU5LlizJq6++usaxttt+tT+vmhEjRmSbbbZJUr3WPW2n/bH216z9u2233bbLb2co0nuv/U7rah9W1bo4tU5aPwj99a9/TZLKjvs2TU1NlR38EyZM6HIHe9vr8vbbb2fevHlrHJs3b17lfdVVjfr371/5QNf+mjY9rfW4ceMqH+iq1agMa8p9992X2bNnd7ojvBpju37r/U6od7nqzYZRhvWknpnnivW+k1HKVW8ZpZhriozSsZ2yje3uqHe56s2GUYb1pJ6Z54r1vpNRylVvGaWYa4qM0rGdso3trqh1eWrNhlOGtaTemeuK896TT8pT60Q+KeqaIp90bKdsY7s76t079bZphprw0ksvJWm97VO/fv06Pa9th1z7a+gd7V/vtT+Qra2rOq1LO23HFy9enBUrVlRtZ5NNNulyMh05cmRlx3PbDso2K1asyOLFizv0uau+VGun3sydO7fyuFoN1Lr+a71y5cq88soruf7663PWWWdVbtt31FFHrXHe/Pnz09zcnKTnNUo6vi7ta93d69t2fPXq1VmwYEGn7XTVn379+lVu1VetRkVfU958881ceumlSarfarUzxnb9ju0HHngg3/zmN/PZz342J554Yk4//fT85Cc/yZw5czq9Rr3rt97UjqKvJ/XOPFeseU5GKX69ZZRirykyyt+UZWzLKK3KUm9qR9HXk3pnnivWPCejFL/eMkqx1xQZ5W/KMLblk1ZlqDW1pehrSRGY64oz18knxa+1fFLsNUU++ZuyjG0ZpVUt1rvzrYbQS1atWpU33ngjSTq91VuboUOHZtCgQVm5cmVlMNE72r/e3dVpiy22qHpd0rq7sc3mm2/eZTttz9PS0pIlS5asMXG2tdtdX9r68+KLL3boy7r8Te2Pv/baa90+Z61qbm7OtddeW/n5gAMO6HCOWtdnrWfNmpWf/exnnR6fNm1aDjrooDV+905qlHSs9bt5fbfbbrsO/Rk0aFA23XTTbtt5/vnn09DQkLfffjsDBgxIUo415bLLLsvSpUuz00475fDDD+/xdcZ2fY7tpGPAWbBgQRYsWJC77rore++9d77yla9kk002WeMc9a7felMbyrCe1DvzXHHmORmluPWWUWSU7hjb9Tm2ExmlWt+KXG9qQxnWk3pnnivOPCejFLfeMoqM0h1juz7HtnzSsW9FrTW1owxrSRGY64ox18knxa21fCKfdMfYrs+xncgo1fpWK/W2aYaNrv0OtcGDB3d7/uDBg7Ny5coOO9vYsNalTm2301v7uiRpbGxcL+20/dyT90xbO++mL+2P1/N774YbbqjcpnGfffapektDtS5GrduMHTs2p556asaPH9/h2Pqq0fp6fdvaWZdat7XTFqaKvqY88cQTueOOO9KvX7988YtfTJ8+fXp8rbFdf2N70KBBmTx5ciZNmpQxY8Zk8ODBaWhoyNy5c3PrrbfmjTfeyEMPPZQf/OAH+Zd/+Zc1br2r3vVXb2pL0deTIjDPFWeek1HKVe9ERulOva0pMkq5xraMUq56U1uKvp4UgXmuOPOcjFKueicySnfqbU2RUcoztuWT8tSa2lP0taQozHXFmOvkk/LUuo180rV6W1Pkk3KNbRml9utt0wwb3apVqyqP208CnWk7p/11bHjrUqe2DzVrX5ckb7/99nppp+3nnrxn2u9Mfqd9aX+8/XX1ZO7cubniiiuSJMOHD88Xv/jFquepdX3Weu+9984FF1yQpPXvX7hwYe6///48+OCD+dGPfpSTTjopkydPXuOa9VWjd/r6dtbOutR67XaKvKY0NTXlF7/4RVpaWnL00Udn++23X6frje36G9s///nPq34bx+67756pU6dmxowZee655zJ37tz8/ve/X+PWvOpdf/WmthR5PSkK81wx5jkZpWd9qdd6yygdHxdtTZFRyje2ZZRy1ZvaUuT1pCjMc8WY52SUnvWlXusto3R8XLQ1RUYp19iWT8pTa2pPkdeSIjHX1f9cJ5/0rC/1Wmv5pOPjoq0p8kn5xraMUvv17rvBWoYeGjhwYOVxU1NTt+e3ndP+Oja8dalT+0lr7Tq1n2jfTTttP/fkPdPWzrvpS/vj7a+rFy+++GLOP//8rF69OgMGDMg3v/nNDB8+vOq5al2ftd50002z/fbbZ/vtt8/48eNz4IEH5tvf/na++tWvZtGiRfnBD36QWbNmrXHN+qrRO319O2tnXWq9djtFXlN+97vf5eWXX84WW2yR448/fp2vN7brb2x3dfvaESNG5Fvf+lb69euXJLn55pvXOK7e9VdvakuR15OiMM/V/zwnoxS/3jJKx8dFW1NklPKNbRmlXPWmthR5PSkK81z9z3MySvHrLaN0fFy0NUVGKdfYlk/KU2tqT5HXkiIx19X3XCefFL/W8knHx0VbU+ST8o1tGaX2623TDBvdut5WaV1u+8T6sy51WrlyZdXrkmTIkCHrpZ22n3vynmlr5930ZV1vBVhLFi1alHPPPTdvvvlm+vbtm2984xvZZZddOj1freu31tUcfPDB2W+//dLS0pJf/epXWb58eeXY+qrR+np929pZl1qv3U5R15SXX3451157bZLklFNOeUf9NbaLNbaTZPTo0dl9992TJAsWLMiSJUsqx9S7ePWmdxV1PSkS81x9z3MySrnqvTYZpWv1sqbIKMZ2NTJK54pYb3pXUdeTIjHP1fc8J6OUq95rk1G6Vi9rioxibK9NPulc0WpN7yvqWlI05rr6nevkk/LUuhr5pGv1sqbIJ8Z2NTJK53qr3jbNsNENHDgwm222WZJk8eLFXZ67fPnyygAbNWrUBu8bf9P+9e6uTq+99lrV65Jk8803rzxuP+lX0/Y8ffr0WeO69u1215f2/emqL9210/74Flts0e1z1oolS5bknHPOyeuvv54+ffrktNNOy957793lNWpdn7XuSlvNV65cmf/7v/+r/P6d1Cjp+Pquy3umq9e3rT8rV67Mm2++2aN2hg0btsbu4qKuKTfccEOampoyevTorFy5Mvfee2+Hfy+++GLl/Dlz5lR+3/ah0tgu3thOku22267yuH091LuY9ab3FHU9KRLzXP3OczJKx74Uud6dkVGqq6c1RUYxtjsjo3Tdl6RY9ab3FHU9KRLzXP3OczJKx74Uud6dkVGqq6c1RUYxtquRT7ruS1KcWtO7irqWFI25rj7nOvmkY1+KWuuuyCfV1dOaIp8Y252RUbruS7Jh691/g7UM62C77bbLE088kQULFmT16tWVW1Ctbf78+WtcQ+9p/3q//PLLXZ7bVZ3Wbmfs2LGdttP2PKNGjeqwe3C77bbLX/7yl7z11ltZunRpRowYUbWN119/PY2NjUmSMWPGrHFsyJAhGTVqVBYvXrxGn7vqS7V2alVDQ0POPffcLFy4MEly8skn55BDDun2OrWuv1p3Z9iwYZXHr776auXxtttum759+6a5ubnbWnf1urSvdXevb9vxfv36Zeutt+7Qzh//+MfK802YMKFqG6tXr86CBQuq9qWtnaKtKW23MVy4cGF+9KMfdXv+1VdfXXn8k5/8JIMHDza2Czi2k9bgUo16F7Pe9K4iridFYp6rz3lORvmbMtS7KzJK/a8pMoqx3RkZpeu+VGsHeqqI60mRmOfqc56TUf6mDPXuioxS/2uKjGJsVyOfdN2Xau1ATxVxLSkac139zXXyyd8UvdbdkU/qf02RT4ztzsgoXfelWjvrkzvNUBN22mmnJK27Tv/yl790et7cuXM7XEPv2GqrrTJy5MgkyRNPPNHluW3HN99882y55ZZrHJs4cWLlcft6rm3p0qV55ZVXklSvdU/baX+s/TVr/27+/PlZunRpj9qph/feW2+9le9973t56aWXkiSf/vSnM3Xq1B5dq9b1Veue6OxWfv3798/48eOTJE8//XSampo6baPtdRkwYEDGjRu3xrFx48alf//+a5xXTVNTU55++ukO17Tpaa3nzZtX+eaAajWyplRnbBez3m3zfLLmDn31Lma96V3Wk9pmnqu/952MUq56d0dG6fpv6qydojG2i1lvGaX7dopUb3qX9aS2mefq730no5Sr3t2RUbr+mzprp2iM7eLVWz7pvp2i1JreZy2pfea6+nrvySflqXVPyCdd/02dtVM0xnYx6y2jdN/Ohqy3TTPUhH322afy+A9/+EPVc5qbm3PnnXcmSTbddNPsuuuuvdI3WvXp06dy67+XX3658oFobU8//XRl199ee+3VYWfktttuW9kJeP/991c+EK1t1qxZlcft3x9t2rfd2XumfTt9+vTJXnvt1eF4+1tYtn/O9lauXJn7778/SesOym233bbT56sFK1euzIwZM/Lcc88lST7+8Y9n2rRpPb5ereun1j3V9jclyfbbb7/GsbbXpbGxsbL7f22LFy/OY489liTZbbfdMmTIkDWODxkyJJMmTUqSPPbYY53eTu+Pf/xjZWdxtVrvuuuu2WSTTZIkd955Z1paWqq20917pohryle+8pVcddVVXf47/vjjK+efddZZld9vtdVWSYztIo7tRYsW5c9//nOSZPTo0WuEKfUuXr3pfUVcT4rEPFdf85yMUq5694SM0lG9rSkyirFdjYwyq8PxpLj1pvcVcT0pEvNcfc1zMkq56t0TMkpH9bamyCjG9trkk1kdjifFrDUbRxHXkqIx19XPXCeflKfWPSWfdFRva4p8YmxXI6PM6nA86d162zRDTRg/fnx23nnnJK0DrNqAv/766yuD/cgjj+ywc5UN76ijjkrfvq3TxiWXXJJVq1atcXzVqlW55JJLkrTeku/oo4+u2s5HP/rRJMny5ctz2WWXdTi+YMGCXHPNNUmSrbfeuuqkPGLEiHzwgx9MkvzpT3/KAw880OGc+++/P3/605+SJAcffHDVW4Tts88+GT16dJLkmmuuqdwKsL3/+q//yptvvpkk+djHPlb1b6oVTU1NueCCC/LUU08laa3ZJz/5yXVuR61rv9ZJ6weJtWuztuuvvz6PPvpoktYdyW1zbZspU6ZUAswVV1yRN954Y43jzc3N+eUvf5nm5uYknb8ubbVevXp1fvWrX1XOb9PQ0JDLL788SWt4Ofzwwzu00b9//xx55JFJWj/8zZw5s8M5Tz/9dOWD2C677FL5BoX2rCmdM7brY2wnycMPP5zVq1d3enzp0qW58MILK98c8pGPfKTDOepdP/WmNllPap95rj7mORmlXPWWUWSUdWVs18fYTmSUstWb2mQ9qX3mufqY52SUctVbRpFR1pWxXR9jWz4pT62pXdaS+mCuq/25Tj4pT60T+UQ+WXfGdn2M7URGqZd692npbHsf9LLnnnsuZ555ZlatWpXBgwfnuOOOy6677ppVq1blvvvuy2233ZYk2WabbfL973+/ww5Yuvbkk0+uMeE0NDRUJsSddtopU6ZMWeP8Qw89tGo7V1xxRa699tokyQ477JBjjz02o0ePzsKFC/O///u/lV3v06ZNy6c//emqbTQ3N+ess86qfODfd999M2XKlAwdOjTPPvtsrr766ixbtix9+vTJ9OnTs8cee1Rt57XXXsv06dPT0NCQfv365ZhjjsnkyZOTJI888kiuv/76rF69OsOGDct5552XUaNGVW1n9uzZOe+889LS0pLhw4fnE5/4RMaPH5/ly5fn9ttvr+zKnjhxYs4+++zKwlSLLrjggjz44INJWneKn3TSSV2e379//053Zqp1bdc6ad2V3tjYmH333TcTJ07M6NGjM3jw4KxYsSIvvPBC7r777spr379//0yfPj277757h3ZuvfXWXHzxxUladzF//OMfz/bbb5/XX389N9xwQx5//PEkyYEHHpivf/3rnfbnhz/8Ye67774krd8mcPTRR2fkyJF54YUX8rvf/S4LFy5Mkpx66qk54ogjqrbR2NiY6dOnV27/d8QRR+SAAw7IwIED8/jjj+eaa67JihUrMnDgwJx77rkZO3Zs1XbKuKZcddVV+e1vf5uk9RsIOvtWBWO79sd20jq+m5qasu+++2bChAnZaqutMnDgwDQ0NGTu3Lm59dZbK//xY+LEiTnzzDMzYMCADu2od33Um9pVxvWkt8gn5ZnnZJRy1VtGkVHak1GKM7YTGaVs9aZ2lXE96S0ySnnmORmlXPWWUWSU9mSUYo1t+aQctaa2lXEt6U0ySjnmOvmkPLVO5BP5ZE3ySXHGdiKj1Eu9bZqhpjz88MP58Y9/XLmt29q22WabfOc738nWW2/dyz2rfz/96U8rt6jriauuuqrq75ubm/Of//mfXd5y6/DDD8+pp57a5eTV0NCQGTNmZN68eVWPDxgwIKecckqHkLe2Z555Jueff36WLl1a9fiIESNyxhln5H3ve1+X7dx222359a9/XdnJubbx48dn+vTpGTZsWJftbGwnnHDCOp2/5ZZb5qc//WnVY2pd27VOWj9svfrqq92eN2rUqJx22mlVg1Sbq666KldffXWnt8rcY4898o//+I8ZOHBgp22sWrUqF154YeUbD9bWp0+ffOITn+j2fbpgwYLMmDGjEqjWNmTIkJx++umVD2GdKdua0tMwZWzX/thOej6+991333z5y1/OpptuWvW4etdHvaltZVtPeot8Up55TkYpV71lFBmlPRmlOGM7kVHKVm9qW9nWk94io5RnnpNRylVvGUVGaU9GKd/Ylk/qv9bUvrKtJb1JRinHXCeflKfWiXwin6xJPinO2E5klHqpt00z1JxXX301N954Y2bPnp0lS5akf//+2XrrrbPffvtl6tSpGTRo0MbuYl1aX2GqzezZs3Pbbbdl3rx5eeONN7LZZptl3Lhx+dCHPtTpzsO1rV69OrfffnvuueeevPzyy1mxYkU233zz7LbbbjnqqKPynve8p0ftNDQ05MYbb8xDDz1UWXi22mqr7LXXXjn66KOz2Wab9aidF154ITfddFPmzJmTJUuWZPDgwRkzZkwOOuigTJkyJf369etROxvT+gxTbdS6ds2fPz+zZ8/Ok08+mYULF2bp0qVZvnx5Bg4cmGHDhmXs2LGZPHly9t9//x7NnU899VRuueWWPPHEE1m2bFk23XTTvPe9782hhx6agw46qMf9uueeezJr1qw8//zzefPNNzN8+PDsvPPOmTp1aiZMmNCjNlasWJFbbrklDzzwQBYsWJCmpqaMGjUqe+yxR4466qhsueWWPWqnTGtKT8NUG2O7ts2dOzdz587N008/nYULF+aNN95IY2NjBg8enFGjRmXChAk59NBDezym1BvenTKtJ71FPuleUeY5GaVc9ZZRulemNUVGKc7YTmSUnihSval9ZVpPeouM0r2izHMySrnqLaN0r0xrioxSnLEtn3SvKLWmPpRpLelNMkr3ijDXySflqXUin/REmdYU+aQ4YzuRUXqiFupt0wwAAAAAAAAAAAAAAACF0/m9eQAAAAAAAAAAAAAAAKBO2TQDAAAAAAAAAAAAAABA4dg0AwAAAAAAAAAAAAAAQOHYNAMAAAAAAAAAAAAAAEDh2DQDAAAAAAAAAAAAAABA4dg0AwAAAAAAAAAAAAAAQOHYNAMAAAAAAAAAAAAAAEDh2DQDAAAAAAAAAAAAAABA4dg0AwAAAAAAAAAAAAAAQOHYNAMAAAAAAAAAAAAAAEDh2DQDAAAAAAAAAAAAAABA4dg0AwAAAAAAAAAAAAAAQOHYNAMAAAAAAAAAAAAAAEDh2DQDAAAAAAAAAAAAAABA4dg0AwAAAAAAAAAAAAAAQOHYNAMAAAAAAAAAAAAAAEDh2DQDAOvR2LFj06dPn5x00kkbuysAAAAyCgAAUFNkFAAAoFbIJwDlYdMMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIXTp6WlpWVjdwIAAAAAAAAAAAAAAADWJ3eaAQAAAAAAAAAAAAAAoHBsmgEAAAAAAAAAAAAAAKBwbJoBgE7Mnz8/06dPz5577pnhw4dnwIABGT16dCZNmpRPfepTufTSS9PQ0LDGNWPHjk2fPn1y0kknrfH7v/71r+nTp0+P/x166KGd9usPf/hDPv/5z2fHHXfMJptskmHDhmXSpEk544wzMn/+/A3wSgAAALVARgEAAGqJjAIAANQK+QSArvTf2B0AgFp0991355hjjukQlhYtWpRFixZlzpw5ufLKK7PFFlvkmGOO6ZU+rVixIieffHKuvPLKDsfmzJmTOXPm5KKLLsp///d/56Mf/Wiv9AkAAOgdMgoAAFBLZBQAAKBWyCcAdMemGQBYy8qVK/PJT34yDQ0N2WyzzXLaaaflsMMOy1ZbbZVVq1blueeey3333Zdrrrmmx22OGTMmjz32WJfnXHXVVTnnnHOSJO9973vXONbS0pLjjz8+N9xwQ5Lkox/9aE444YTsuOOO6du3bx588MFceOGFeeGFF3L88cfn3nvvzV577bWOfzkAAFCLZBQAAKCWyCgAAECtkE8A6Ik+LS0tLRu7EwBQS+64445MmTIlSTJz5sxOv2Ggqakpb731VoYNG1b53dixY/P888/n85//fC699NIeP+fDDz+cgw8+OI2Njdl5553zwAMPrNHuxRdfnFNPPTUDBgzIddddl6lTp3Zo4/XXX88HP/jBPP744znwwANzzz339Pj5AQCA2iWjAAAAtURGAQAAaoV8AkBP9N3YHQCAWrNgwYLK44MPPrjT8/r3779G4Hmn5s+fn2OPPTaNjY3ZfPPNM3PmzDXabWlpyXnnnZckOf3006sGqSQZOXJkzj///CTJvffem2eeeeZd9w0AANj4ZBQAAKCWyCgAAECtkE8A6AmbZgBgLdtss03l8SWXXLJBn6uxsTHTpk3L/Pnz079///z2t7/NuHHj1jhn7ty5mTdvXpLk+OOP77K99uHv/vvvX/8dBgAAep2MAgAA1BIZBQAAqBXyCQA9YdMMAKzloIMOyo477pgk+cY3vpF99tknM2bMyL333ptVq1at1+c65ZRT8tBDDyVJ/uM//iOHHXZYh3MefvjhyuP9998/ffr06fTf0KFDK+e2/yYFAACgfskoAABALZFRAACAWiGfANATNs0AwFoGDBiQmTNnZuedd06SPPTQQ/nud7+bgw46KCNGjMjUqVNzxRVXZPXq1e/qec4555xceeWVSZJ/+Id/yGmnnVb1vEWLFr2j9t9666133DcAAKB2yCgAAEAtkVEAAIBaIZ8A0BP9N3YHAKAW7bLLLnnssccyc+bMzJw5M3fddVeeffbZNDY25pZbbsktt9ySf//3f8+NN96Yrbbaap3bv/rqq3PWWWclSaZMmZIf/ehHnZ7bPrTNnDkzY8eO7dFzvJN+AQAAtUlGAQAAaomMAgAA1Ar5BIDu2DQDAJ3o169fpk2blmnTpiVJXnnlldx888356U9/mkceeSSPPPJIvvSlL+Waa65Zp3YfffTRnHjiiWlpacn48eNz1VVXpX//zpfkUaNGVR6PGDEiu+222zv6ewAAgPomowAAALVERgEAAGqFfAJAV/pu7A4AQL3YZpttcvLJJ+f+++/PnnvumSS5/vrr09jY2OM2FixYkGOPPTZvvfVWhg8fnpkzZ2bzzTfv8po99tij8vjee+99Z50HAAAKR0YBAABqiYwCAADUCvkEgPZsmgGAdTRgwIAccsghSZKmpqYsXbq0R9etWLEi06ZNy4svvph+/frlyiuvzMSJE7u9bs8998x2222XJPnFL36RFStWvOO+AwAAxSOjAAAAtURGAQAAaoV8AkBi0wwAdHD33Xfn2Wef7fT4qlWrcueddyZJhg4dmi233LJH7X7hC1/IH//4xyTJ+eefn6lTp/bour59++a73/1ukuQvf/lLTjzxxKxcubLT8xsaGvKTn/ykR20DAAC1T0YBAABqiYwCAADUCvkEgJ7ov7E7AAC15vbbb88555yTD37wgzn66KOz++67Z8stt0xjY2Oefvrp/PznP8/s2bOTJH//93+f/v27X05//etf5/LLL0+SHH744fnQhz6UOXPmdHr+pptumh122KHy85e//OXceuutueaaa/I///M/mT17dr70pS9ln332yfDhw9PQ0JAnn3wys2bNynXXXZfBgwfnq1/96rt8JQAAgFogowAAALVERgEAAGqFfAJAT9g0AwBVNDc3584776x800A1xx57bGbMmNGj9l544YXK4zvuuCOTJk3q8vxDDjkks2bNqvzcp0+f/OY3v8nXv/71/PznP8+8efPyT//0T51ev9VWW/WoXwAAQH2QUQAAgFoiowAAALVCPgGgOzbNAMBavv3tb2f33XfPbbfdlkcffTTz58/PokWLkiRbb7119tlnn5x44ok5+uije7VfAwYMyM9+9rOcdtppufjiizNr1qy88MILWb58eYYOHZoddtghkydPzpFHHpljjjmmV/sGAABsODIKAABQS2QUAACgVsgnAPREn5aWlpaN3QkAAAAAAAAAAAAAAABYn/pu7A4AAAAAAAAAAAAAAADA+mbTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhfP/Adhv3i4uo7qKAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADM0AAAOrCAYAAAD+45B0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Ql4W+WZ9/+fJe+bLFtesu+L7ZA4AbKwJRAgK2UNbacL3egCbWmnnbftzPC+03b6TudfptPpxnQ6Xaal5S1hhywQQkggJBDIHjvOvtiJF9nyvkv6X+ekNknsSE4sy7LO93NduiJZj855rFsG3z7PfT8xfr/fLwAAAAAAAAAAAAAAAAAAAAAAACCK2IZ6AgAAAAAAAAAAAAAAAAAAAAAAAECoUTQDAAAAAAAAAAAAAAAAAAAAAACAqEPRDAAAAAAAAAAAAAAAAAAAAAAAAKIORTMAAAAAAAAAAAAAAAAAAAAAAACIOhTNAAAAAAAAAAAAAAAAAAAAAAAAIOpQNAMAAAAAAAAAAAAAAAAAAAAAAICoQ9EMAAAAAAAAAAAAAAAAAAAAAAAAog5FMwAAAAAAAAAAAAAAAAAAAAAAAIg6FM0AAAAAAAAAAAAAAAAAAAAAAAAg6lA0AwAAAAAAAAAAAAAAAAAAAAAAgKhD0QwAAAAAAAAAAAAAAAAAAAAAAACiDkUzAAAAAAAAAAAAAAAAAAAAAAAAiDoUzQAAAAAAAAAAAAAAAAAAAAAAACDqUDQDAAAAAAAAAAAAAAAAAAAAAACAqEPRDAAAAAAAAAAAAAAAAAAAAAAAAKIORTMAAAAAAAAAAAAAAAAAAAAAAACIOhTNAAAAAAAAAAAAAAAAAAAAAAAAIOpQNAMAAAAAAAAAAAAAAAAAAAAAAICoQ9EMAAAAAAAAAAAAAAAAAAAAAAAAog5FMwCAqDZ+/HjFxMSYtxMnTgz1dKIC7ykAAABwZfhdOvR4TwEAAIDw4Hfv0OM9BQAAAK4Mv0uHHu8pgGhH0QwAABi2mpqa9Pjjj+vmm2/W6NGjlZCQYP57yy236D//8z/N54fL+f1+v0pLS/XEE0/okUce0XXXXafk5OSehNRITgEAAABErmjJT954442ePKS/t1tvvXVQvzcAAAAA0ZnPdHR0aMeOHea5P/OZz+iqq65SbGxsT67xqU99alDOCwAAACByDVV+UlJSop/+9Ke6//77VVBQIIfDobi4OLlcLl1zzTXmeq5du3YNyrkBDL7YMJwDAABEqEWLFmnz5s3m/U2bNpmPh4tt27bpYx/7mI4fP37B18vLy82b8f386Ec/0p///GfNmzcvos//3nvvafHixWpoaAj5PAEAAIDhgvxk+J4fAAAAsDrymcv385//XN/4xjfMwhkAAAAAoUN+cnk2bNigr3/96zpw4ECfz9fU1Ji3999/3yyqWbVqlVm8k5mZGZLzAwgPimYAAMCws2fPHt1+++09nQOMqn6jm4DRVeD06dN6/fXX1dXVpWPHjpnjtm7dqhkzZkTs+Y3jUDADAAAADE/Rlp+cb+TIkbr77ruDjps+ffqAvw8AAAAA1spn3G43BTMAAAAAhjw/MYphzi+YMXa9nDlzpqZOnSqn06nq6mq99dZb5r+G1atXq7i42CxMysrKGvD5AYQHRTMAAGBY6ezs1L333tuTIM2aNUvPP/+8xo8f3zPmxIkTuuuuu8xkyihGMcYbyU1sbGxEn99ItIztPK+99lrzVlpaqm9/+9sDnjMAAACAwRHN+YlhypQpZvdnAAAAANFnqPOZbmPGjOm5LjJ37lw9/vjjevrpp0N2fAAAAACRLxLyk6KiIj344IP68Ic/3KsYxij4//d//3f9wz/8g7xer3nehx56SH/5y19Ccm4Ag8821BMAAAC4HL/+9a919OjRniKT9evXX5AgGYzH69atM583HDp0SL/97W8j9vxGonf48GHV1tbq1Vdf1Q9+8AMzycvNzQ3JnAEAAAAMjmjMTwAAAABYw1DnE5/+9KdVUVGhU6dO6ZlnnjGbiBldpFNSUkJyfAAAAADDx1DmJ8aOMkaBzq5du8xCmL52j4mPj9e3vvUt/ehHP+r52lNPPaWDBw8O+PwAwoOiGQAAMKz84he/6Ln/zW9+U3l5eX2OGzFihL7xjW/0+bpIO7+RzE2ePDkk8wMAAAAQPtGYnwAAAACwhqHOJ8aNG0fzMAAAAABDnp/cc889uvPOO/s19qtf/apGjhzZ83jt2rUDPj+A8KBoBgAGwOfz6X/+53902223mb+oJSYmmhXNxi9RRvVxt0WLFikmJsa8vfHGG30ey3hd9xhjK8FgPvWpT/WM//3vfx90vN/v13PPPacHHnjArI52OBzmfI0tz40dLYzvo6urK+AxjHl1n/P8Su633npLn/vc5zR9+nTzuMbzX/va18zq6+7xRlFAW1ub+qOxsVGpqak9r927d6/CudXjH//4R91///2aOHGi0tLSzI5WEyZM0Ec/+lHzPTTey0CMGHfP3Yh9t9dff10f+chHzOMa771RlX7TTTfp5z//uXne/mptbTW3e7z++uvlcrmUlJSkSZMmmfPbuHFjvz5T3V/fvHlzz9duvvnmnq+ff+vP56usrEyPPvqouWNKRkaG+Z4Zn4evfOUrOnnypELlyJEjKi4uvuDnIJDznzc+R8eOHRvW5wcAAAiE/OQc8pMLkZ+QnwzW+QEAAEKJfOYc8pkLkc9Ebz4DAAAQychPziE/uRD5CfmJwW63a968eT2P+/NzDSBC+AEAV+Ts2bP+efPmGb8tX/J29913+xsaGvwLFy7s+dqmTZv6PN64ceN6xhw/fjzo+R944IGe8b/73e8Cjt2zZ4+/qKgo4FyN27Rp0/wHDhy45HGMeXWPNebb3t7u/8IXvtDnsR555BHzNVdffXXP15544gl/f/z617/uec21117rH4jLeV+N2EyaNCno+zR//nx/WVlZwON0jzVib7xPDz74YMBjzpkzx19dXR30+9m7d2/QORox6ejoCPi9B/sez79d/Pm6+LjPPfec3+FwXPL1SUlJ/pdfftkfCr/61a96jjt16tR+vWbKlCk9rzE+W8Pp/MZ7f/7PHAAAwKWQn5CfBDoO+Qn5yeWc/+LPDAAAwGAjnyGfCXQc8pnozGf6+zNp3AcAAAgn8hPyk0DHIT+xXn7Sl3vuuafn3A899FBYzw3gysUOddEOAAxHdXV1uuWWW1RSUtLzNaPyfMGCBUpISNCBAwf07rvvmlXoNtvQbuq1ZcsW3XHHHWpoaDAfx8XF6dprr9WUKVPM+0a1s9EZwKj6Ly0t1XXXXadt27YpPz8/6LG//vWv61e/+pV5/6qrrjKryo1jHjp0qOf7/vznP68vfOEL5v3f/OY3+tjHPhb0uMa4bkbHgnBYvXq1ObfuCn+jWn/+/Plmdb7xvRjfk/G+GN0Xtm/fbsZ6x44d/do23ngPjM4NxnGMSnOj4t7oSmEcx3jPDTt37tQnP/nJgFs2GlX1ixcvVnV1dc/XjPe9qKjIPPbu3bu1Z88eMyZGR4RAHn74YfNf4zN65swZ877RYWLUqFG9xgb6LLz22mv64he/KK/Xq7Fjx5rvS3p6uo4fP252WDDeL6MTgtGpYf/+/ebPyUCc/zM3Z86cfr3GGHf48OFerx+O5wcAAOgL+ck55CfkJ+QnoT+/8X699NJLZixra2vNLnLG58z47MyePVuxsfx5GQAADAz5zDnkM+QzVstnAAAAIhH5yTnkJ+Qn5CeB7du3r+e+sasTgGFiAAU3AGBZn/nMZ3qqhePj4/2/+c1veo155513eiqwjTFD0VnA6H6Qk5PTM+6Tn/yk/8yZM73GVVRUmF0QusddddVV/q6uroCdBex2u/nvmDFj/Fu2bOk1tq2tzfy3sbHRn5qaao6NiYnxHz16NOD3ZXQ26D5HSkqK2ZlhIPrzvu7fv9+sfu+e4ze/+U2/x+PpNc6Y+w033NBzvGXLlgXtLJCQkNDTIaGkpOSCcT6fz/+Tn/zkgir8zZs393lMY+xNN93UMy4rK8u/fv36XuM2btxoxtz4Ps7/3F3qe+9P14tA76nx/Rlx+uMf/2jO8eL3ddSoUT1jP/3pT/sHynjPu4/3rW99q1+v+bu/+7ue1yxfvnxYnZ+dZgAAQH+Qn5CfkJ+Qn4Ty/Od/ZgLdRo4c6f/Rj35kdrYDAAC4UuQz5DPkM9bMZwJhpxkAADBUyE/IT8hPyE+C2bp16wWx3bFjR9jODWBghrbcFQCGIaPC/He/+13P4//6r//SZz7zmV7j5s6dq1dffVXJycnq6OjQUPiHf/gHVVVVmfe/+tWvmtXtI0aM6DXOqI43KuuNbgnd1dBPP/10wGMbleTG92ZUlt944429njc6LBhSU1P10Y9+1Lxv7AL529/+tt9dBYxq9GAV8qFgvDdG9bvh3/7t3/SjH/1IGRkZvcZNnDhR69evV0FBgfl43bp1eueddwIeu7293ezi8Prrr5sdBc4XExOjRx55RPfdd1/P15588sk+j/PKK6+YXSIMRheBF154QUuWLOk1zojhmjVrzDHh+NwZ5zA+Kx//+MfN7+d8hYWFPZ0nDMZnzOg0MBA1NTU99/vT1cGQl5fXc9/ojDyczw8AAHAx8pNzyE/ITwzkJ+E9v9Gl7u/+7u900003qbKyckDHAgAA1kQ+cw75DPmMFfMZAACASEN+cg75CfmJgfykb8ZOQl/72td6Hhs7DF1zzTVhOTeAgaNoBgAuk/FLvPHLfnci9MADD1xy7NSpUy/4RSmcjC0bn3jiiZ5fEv/1X/814Hi73a4f/OAHPY//9Kc/BT3Hl7/8ZfN7DObBBx/suf/73//eTLD6YmyF+cc//jGsW3Ea21caCYxh9uzZQeOVkpKiRx999LLepx/+8Idmsngp5yfZxjauwZLHj3zkI7r++usveTzjl3Fja89wWLlypZYuXXrJ55cvX96TpDQ1NQ14O0zjGN2MLVP74/xx579+OJ4fAADgYuQnHyA/IT8hPwnd+bOzs/XQQw/pueee07Fjx9TS0qK2tjbzvnEB9tprr+0Zu337dt1xxx09Fx8BAAD6i3zmA+Qz5DNWy2cAAAAiDfnJB8hPyE/IT/r2/e9/Xzt27DDvGwVMjz32WFjOCyA0KJoBgMu0adOmnvuf+MQngo4PlEQNJqPiv7uy/J577lFiYmLQ1xjVz0YSYHjrrbeCjjd+We8PYzFNUVGReb+8vNysku/Liy++aCZ3BqN6/7rrrtNgW7t2bc99owPCxdXxfenuwNCf98l4343FQ4EYyVm3EydO9Dlm8+bNPfeNKv5g+jMmFFatWhXweeP9nDVrVtDvr7+MRVrd4uPj+/Wa7i4XhoEu4hrq8wMAAFyM/OQD5CfkJ+QnoTm/ceGtrKxMv/jFL3TXXXdpwoQJ5sUn47XGfeOinNFl7/wLiMZFIqNTHwAAwOUgn/kA+Qz5jNXyGQAAgEhDfvIB8hPyE/KT3l566SV997vf7Xn8rW99SzfccMOgnxdA6MSG8FgAEPWMjgJGJXq3BQsWBH2NUXmfmZkZ9m3Kt23b1nN/7969ZheAy+HxeNTc3NyTNF0sLi5OV111Vb+P9/nPf97sUttdJW9UnAeqnv/sZz+rcL9PRgJ88uTJoK/p7ixhOH36dMCx06ZNM9+rQLKysnruNzQ09HreSCy7k8fuZLY/iamRoJw/18HQn89AsO/vcpyf7Pd3u1FjS9TL7UYQqecHAAA4H/nJB8hPziE/IT8JxfkDdcbrZsTze9/7no4ePao///nP5td+/OMf69vf/rZiY/mTMwAACI585gPkM+eQz1grnwEAAIgk5CcfID85h/yE/OR8RuMwo/iq+32/9dZbzWskAIYXrmACwGWor6+/4BezsWPH9ut1xrhwJ0lnzpy5oPq9P50C+kqULpUkOZ3Oy1oI87GPfUx/93d/ZyZeRuW18Ut/dnZ2z/NGF9vujgNGxXi4tpM8/31at27dFb1HgTgcjqDHOD+J6urq6vX8+QlScnKymXQHk5aWZp67rq5Og+lyvz9jy9WBOH/xVn+7BJw/rj+LvyL5/AAAAOcjP/kA+ck55CfkJ+E8v8G4KNRdNGN8/rZv305nNQAA0C/kMx8gnzmHfMZa+QwAAEAkIT/5APnJOeQn5CfdiouLtWzZMvMz3l249Nxzz9FADBiGbEM9AQAYTpqami54bPzC2h+XSjQGO6EbqL5+Yb/SCu309HR9+MMf7vlF+Q9/+MMFz//+97+Xz+cz7995551yuVwaDu+T1+sN+Hx/tve8nM9dfz9z4bpgEYrv73Kc36WgsrKyX6+pqKjoud+fBDOSzw8AAHA+8pMPkJ+cQ35CfhLO8xsmTZqk8ePH9zwuKSkZ8DEBAIA1kM98gHzmHPIZa+UzAAAAkYT85APkJ+eQn5CfGI4fP67bbrtNNTU15uPCwkKtX7+eJgLAMEXRDABchot/4WlpaenX67orjUOpO6HoT2L24x//2Nwe8HJv5y98CYUHH3ywz603jXP97ne/63n8uc99TuFy/vv07LPPXtH7FM7PXX8/c4P1uRtqxvam3fqzdarh1KlTPfenT58+rM8PAABwPvKTgSE/uTLkJ5GTHwz1+buNGDGi577b7Q7JMQEAQPQjnxkY8pkrQz4TefkEAABAJCA/GRjykytDfhLZ+Ul5ebkWL17cs2uR0URsw4YNNBAAhjGKZgDgMrceNLaK7OuXr0BOnz494C0ZL7ciPjc3t8/K6qE0f/58zZw5s6f77LZt28z7mzZt0rFjx8z748aN06233hq2OUXi+3Sx87ssGElSsC1Au7sRDPZWnEMhPz+/5/6uXbv69ZqdO3f2+frheH4AAIDzkZ8MDPnJlSE/iZz8YKjP39cFuqHorAgAAIYn8pmBIZ+5MuQzkZdPAAAARALyk4EhP7ky5CeRm58Yu90YBTPGTjOG0aNH67XXXrugiRiA4YeiGQC4zK0HZ82a1fN4+/btQV9z+PDhni36gm1X2a0/4/ft2xfw+Xnz5vXc37p1qyJFX90Fzu8y8OlPf1o2W/j+9xSp79P5jF+8z0+U3nnnnaCvee+99/rV9SDc22kO1M0339xzv7S0VGfPng043qj2N34Gu91yyy3D+vwAAADnIz8ZOPKTy0d+Ejn5wVCfv/tCnnHubiNHjhzwMQEAgDWQzwwc+czlI5+JrHwCAAAgUpCfDBz5yeUjP4nM/MT4Ob3tttt6rn3k5OSYBTOh3qEJQPhRNAMAA/gl7Yknngg6/g9/+EO/jnv+L1a7d+8O+gtwdyXzpSxZskSxsbHm/bffflt79uxRJPj4xz+upKQk8/5f/vIXlZWVmdtgGozk6DOf+UxY57Ny5cqe+8Y8jErxSLRw4cKe+3/605+Cju/PZ9OQmJjYc7+zs1ORbsqUKSooKOh5/D//8z8Bx5///FVXXaWJEycO6/MDAABcjPxkYMhPrgz5SWTkB0N9fsOf//xntbe391yEu+mmmwZ8TAAAYB3kMwNDPnNlyGciJ58AAACIJOQnA0N+cmXITyIrP2loaDB/xrqL15xOpzZs2KBp06aF5PgAhhZFMwBwmT772c9e0Fkg0C+jR44c0b//+79fdoV7oF/8jK06H3nkkaDHGzVqlJmQGIwK809+8pPmL3b94fP5VF1drcGQkZGh+++/v2fLyPvuu09tbW3m49tvv11jxoxROM2dO1eLFi0y77e2tuoTn/iEOjo6+vVaY1x/tsYMhfOTR2NRUqCuFsb2k8GSh25ZWVk998vLyzUcPPTQQz33H3vssUsmtsb2qsbz3R5++OGoOD8AAMD5yE8GhvzkypCfRE5+EOrzGzvHGD9z/WF0cfv2t7/d89j4mTE6rgEAAPQX+czAkM9cGfKZyMlnAAAAIgn5ycCQn1wZ8pPIyU+M6yMrVqzQ+++/bz5OS0vT+vXrNXPmzJAcH8DQo2gGAC7T1KlT9alPfarn8ec+97k+fyE1qv+Nrfqam5sVHx8f9Lgf/vCHe7ah3LZtm7nwxOv1XjDGqMI3KuGNTgEJCQlBj/mDH/xAI0aMMO/v3bvXTAheffXVS443jm8kdUZ1tFH1H44tOc/fWtJ4L4fCz372M6Wmppr3jepwozNuoC0vDx06pO9///tmN4hwbeG5bNky3XDDDT1J7B133GFu/XixN954Q8uXLzc/O/353M2YMaPn/tNPP92vLTyH2uc//3lNmjSpZ0tM4705efLkBWOMx8b7UFtb2/Nze/4fOPp634yuyN0343E4zw8AAHClyE8Gjvzk8pGfRG9+8u6776qwsFCPP/64qqqq+hxjxNO4YLxgwQLznAYjvv/6r/96yXkCAAD0hXxm4MhnLh/5TOTkMwAAAJGE/GTgyE8uH/lJZOQn7e3tuuuuu/TWW2+Zj41dk15++WXzZwtA9Di3TxsA4LL8+Mc/NhOZ0tJS85cmI2n63ve+Zy4YMZKXAwcOmAtNjF8477nnHvMXuc2bNwc85rhx4/TFL35Rv/zlL83HxmKTJ5980vyF3dgy8ejRo+Yv5EY1+6233qq8vLygWy6OHDlSL7zwgvnLotvtNudrbCFodB0wfqnLzs42t2A0ntu/f3/QLT5D5frrrzcX4RjvUzejG+2HPvQhDQUjUTDeayNRNarGjQRp/vz55i/ic+bMUWZmptn9wFgwZCSbQ1GBb/zi/tvf/rZnUZIRMyMJnzVrloqKiswxxpar3Vu5fvOb39Tq1at7kofuBPxixufz7//+783P6po1a8zq+Ouuu86slu/2kY98RNdcc40iRVxcnJ555hkzaTS6U+zatcvcpnPx4sXmZ9tI9l9//fWe7UXT09PN8d3b00bq+Y0/Ehh/XDlfd5JnOHPmTE+sz/ff//3fERUfAAAQfuQnA0N+cvnIT6I7Pzl48KDZ0e3LX/6yJk+ebP58GJ87I25GBzfjvzdGzLvZ7Xb94Q9/MOMPAABwuchnBoZ85vKRz0ROPmPo67rHqVOneu6/+OKLfY7pjg8AAEAokZ8MDPnJ5SM/iYz85NFHHzULq7rl5+frqaeeMm/92dXnu9/97oDnACAM/ACAK1JeXu6/5pprjDLsS94+9KEP+RsaGvwLFy7s+dqmTZsueczW1lb/8uXLAx5z5cqVfo/H43/ggQd6vva73/0u4FxPnDjhX7x4ccDjnn/Lzc31r1+/vtdxjh8/3jNm3LhxA3r/fvKTn1xwzm9+85v+wWDMs/scxvwD2b17t//qq6/u9/s0fvx4/65du3odx4hx9xgj9v1x/nGDzXHChAkB5/X5z3/e39HR4R85cmTP14zPzKV85zvfCXi8iz9fl/OeGi7ns3o53n777aDvxcSJE/3btm0LeqzzYxbs53Qwzm84/78Tl3Prz1wBAED0Iz8hPyE/IT8JxfkvPnew27Rp0/xbt269rPcKAADgYuQz5DPkM9bNZy4n/+hvbAEAAAaC/IT8hPzEevnJ+d/L5d4G+jMDIHzYaQYArpBRtb99+3azm+qf/vQns+K8vr5eubm5ZrX3Aw88oHvvvdesCO8vo4OAsbWfUeVubPG5c+dO85hG1b1xTKODwX333XdZx+zuWmBs3Wh0QzCqzbds2aLTp0/L4/GY1dZGxbNRmW1Uj99+++1atGhRSLtEXaqi/Wtf+9qQb8V5PuM9Nnb6MLYsff75581ODsbuHnV1dWbHCKMTg7FV6bx588wODUaV/+XGIhRzNLpA/Od//qcZS2NrUKMbgrHtqtEtwtjq1KiwNxjx7e4qYFTXX8r//b//16zS/93vfqf3339flZWV5jEjnfH+Gz93xs+gUdlvvBdG1wXj82xsv3n//ffrk5/8ZM9Wq9F2fgAAgPORnwwM+cmVz5H8JDLyg1Cd/8YbbzQ/d8bP59tvv212KDSOY9yMzooOh0NjxowxP3dGd8ClS5eG/XMHAACiD/nMwJDPXPkcyWciI58BAACIJOQnA0N+cuVzJD85h/wEwGCJMSpnBu3oAACTkXR0b8e5adMm87HVGUmgkfQZjF/Q33zzzaGeUlQ5fPiwmSgYpk+frpKSkqGeEgAAACIE+Ulv5CeDi/wEAAAAoUI+0xv5zOAinwEAAMClkJ/0Rn4yuMhPAODK2QbwWgAArthvfvObnvtGNTxC6y9/+UvP/WuvvXZI5wIAAABEOvKTwUV+AgAAAAwe8pnBRT4DAAAA9B/5yeAiPwGAK0fRDAAg7Hbt2tXTSSAzM9PcNhGhc/z4cT322GM9j//mb/5mSOcDAAAARDLyk8FFfgIAAAAMHvKZwUU+AwAAAPQf+cngIj8BgIGhaAYAEFZtbW36yle+0vP4i1/8ohITE4d0TsPJ7bffrvXr16urq6vP59esWWNub1pfX28+LioqMl8DAAAAoDfyk4EhPwEAAACGDvnMwJDPAAAAAKFDfjIw5CcAMPhih3oCAIDo9/Of/1xHjhxRXV2dNm7cqLKyMvPrLpdL3/jGN4Z6esPKhg0bzJvT6dScOXM0ZswYxcfHy+1269133+15bw1paWn6wx/+IJuNGlkAAACgG/lJ6JCfAAAAAOFFPhM65DMAAADAwJCfhA75CQAMPopmAACD7umnn9bmzZsv+JrdbtdvfvMbcztOXD6Px2MmnJcyZcoUrV69WldddVVY5wUAAABEOvKT0CM/AQAAAMKDfCb0yGcAAACAK0N+EnrkJwAweCiaAQCElVERf9111+k73/mOrr/++qGezrCzf/9+Pf/883r77bd18uRJs6NAbW2tuaVpdna25s6dq5UrV+ojH/mImYgCAAAAuDTyk4EhPwEAAACGDvnMwJDPAAAAAKFDfjIw5CcAMPhi/H6/PwznAQAAAAAAAAAAAAAAAAAAAAAAAMLGFr5TAQAAAAAAAAAAAAAAAAAAAAAAAOFB0QwAAAAAAAAAAAAAAAAAAAAAAACiDkUzAAAAAAAAAAAAAAAAAAAAAAAAiDoUzQAAAAAAAAAAAAAAAAAAAAAAACDqUDQDAAAAAAAAAAAAAAAAAAAAAACAqEPRDAAAAAAAAAAAAAAAAAAAAAAAAKIORTMAAAAAAAAAAAAAAAAAAAAAAACIOhTNAAAAAAAAAAAAAAAAAAAAAAAAIOrEDvUEMLy53e5BOa7dbpfT6ex57PF45PV6B+VcGHrE21qIt3UQa2sh3tYSCfF2uVxhPR+snZ9Eyuce4UO8rYNYWwvxthbibS1DHW/yE1wKOQpCgVhbC/G2FuJtLcTbOiIh1uQouBTWeSEUiLe1EG9rId7WQaytJRLi7YqAHIWdZgAAAAAAAAAAAAAAAAAAAAAAABB12GkGA64+Gww2my3gY0QX4m0txNs6iLW1EG9rId4AAAAAAAAAAAAAAAAAgOGAohkMyPnbNQ0mh8MRlvMgMhBvayHe1kGsrYV4WwvxBgAAAAAAAAAAAAAAAABEIopmAAAAAAAAAAAAgBCz2+2Ddmx2gbUOYm0txNtaiLe1EG/rINYAAAAAEHkomgEAAAAAAAAAAABCzOl0hu1c7AJrHcTaWoi3tRBvayHe1kGsAQAAAGDoUTSDAfF4PINyXKPTxvl/OKivr5fP5xuUc2HoEW9rId7WQaythXhbSyTEO5wLjwAAAAAAAAAAAAAAAAAAwxNFMxgQr9cblvMYizDDdS4MPeJtLcTbOoi1tRBvayHeAAAAAAAAAAAAAAAAAIBIRNEMAAAAAAAAAAAAEGIejyeqd4FFeBBrayHe1kK8rYV4W0ckxNrpdIb1fAAAAAAQ6SiaAQAAAAAAAAAAAEIsnLuysgusdRBrayHe1kK8rYV4WwexBgAAAIChR9EMAAAAAAAAAAAAAAAAAABhsGXLFh08eFDHjh3TqVOn1NXVpYceekiLFi0a6qkBAAAAUYmiGQAAAAAAAAAAAAAAAAAAwuAvf/mLqqurlZaWJqfTad4HAAAAMHgomgEAAAAAAAAAAAAAAAAAIAy+8IUvaMSIEcrOztbzzz+vP//5z0M9JQAAACCqUTQDAAAAAAAAAAAAAAAAAEAYzJw5c6inAAAAAFgKRTMAAAAAAAAAAAAAAAAAgIhWX1+vI0eOmLejR4+at8bGRvO5hQsX6uGHH+73saqrq7Vu3Trt3LlTNTU1io2NVV5enhYsWKAlS5YoISFhEL8TAAAAAOFE0QwAAAAAAAAAAAAAAAAAIKI9+OCDITnOe++9p5/97GdqbW3t+Vp7e3tPIc7GjRv1ne98xyyiAQAAADD8UTQDAAAAAAAAAAAAAAAAABg2XC6XRo0apT179lzW644fP66f/OQn6ujoUGJiou666y7NmDHDfLx161azYObs2bP6l3/5F/3whz9UUlLSoH0PAAAAAMKDohkAAAAAAAAAAAAAAAAAQES77777NGnSJPOWkZGhqqoqffnLX76sY/z+9783C2Tsdrv+8R//UVOnTu15ziieGTFihJ544gmzcOall17S/fff3+sYf/jDH9TZ2dnvcy5fvtw8LgAAAIChQdEMAAAAAAAAAAAAEGLGIrzBYrPZAj5G9CDW1kK8rYV4Wwvxtg5iPbj6KmC5HEeOHFFJSYl5/+abb76gYKbbypUrtWnTJpWXl2vdunW65557FBt74RK7DRs2qL29vd/nnT9/PkUzAAAAwBCiaAYAAAAAAAAAAAAIMafTGbZzORyOsJ0LQ4tYWwvxthbibS3E2zqIdWR59913e+4bRTN9MQqdFi5cqD//+c9qbm7WgQMHNGvWrAvG/PGPfxz0uQIAAAAIHdoZAAAAAAAAAAAAAAAAAACiWmlpqflvQkKCJk6ceMlxBQUFvV4DAAAAYPhipxkMiN1uH5Tjsl2ttRBvayHe1kGsrYV4WwvxhtXyEwOfe2sh3tZBrK2FeFsL8bYW4g0AAAAA6I+ysjLz37y8vIDXFEaOHNnrNQAAAACGL4pmMCBOpzMs52G7Wmsh3tZCvK2DWFsL8bYW4g2r5ScGPvfWQrytg1hbC/G2FuJtLcQbkcLj8QzasY3isPM/6/X19fL5fIN2PgwdYm0txNtaiLe1EG/riIRYh/Nv5cNJR0eHGhsbzftZWVkBx6amppq70bS3t6umpibkc9m4caMOHjxo3j916lTP1w4cOGDenz59uhYvXtzv4/V3jjRHRigQb2sh3tZCvK2DWFsL8T6HohkAAAAAAAAAAAAgxLxeb9jOZSzEDOf5MHSItbUQb2sh3tZCvK2DWEeOtra2nvuJiYlBxxtjjKKZ818XKkbBzObNmy/4WmlpqXnrdjlFM1/60pf6Ne6pp55SONDMwlqIt7UQb2sh3tZBrK3FYdF4UzQDAAAAAAAAAAAAAAAAAIjqnWa6xcYGXzLXPeb814XKww8/bN4AAAAAhAdFMxgQj8cTtdvVInyIt7UQb+sg1tZCvK0lEuLtdDrDej5YOz+JlM89wod4WwexthbibS3E21qGOt7kJwAAAAAQ+eLj43vud3V1BR3fPeb810Wqxx9/fKinAAAAAEQ0imYwIOHaQpbtaq2FeFsL8bYOYm0txNtaiDciRTg/h3zurYV4WwexthbibS3E21qINwAAAADgYomJiT3329rago7vHnP+6yJVVlZWv8bRHBmhQLythXhbC/G2DmJtLZEQb2cENB+jaAYAAAAAAAAAAAAAAAAAELWMHWPS0tLU2NiompqagGObmprU3t5+WQUpwwHNkTEYiLe1EG9rId7WQaytxarxtg31BAAAAAAAAAAAAAAAAAAAGEyjR482/62oqAi4UPDMmTO9XgMAAABg+KJoBgAAAAAAAAAAAAAAAAAQ1aZNm2b+a+wic+zYsUuOKy4u7vUaAAAAAMMXRTMAAAAAAAAAAAAAAAAAgKg2d+7cnvubNm3qc4zP59PmzZvN+ykpKSosLAzb/AAAAAAMjthBOi4AAAAAAAAAAAAAAAAAABFh8uTJys/PV0lJiVk0s2jRIk2dOvWCMS+//LLKy8vN+8uWLVNsbPQsr7Pb7YNyXJvNFvAxogvxthbibS3E2zqItbUQ73Oi57d6AAAAAGFV39opuy1mqKcBAAAAAKaapnZlpsQP9TQAAAAAoCdHseZytMFz8OBBVVRU9DxuaGjouW98/Y033rhgvFEUc7FPfepTevTRR9XR0aF//ud/1t13323uJmM8fvvtt/Xaa6+Z40aMGKE77rhD0cTpdIblPA6HIyznQWQg3tZCvK2FeFsHsbYGr8+vprYuy8abohkAAAAAl6W0slkvbDqt53ed0SO3TtGHZ2YO9ZQAAAAAWFR7l09bD3u0vvSINh+q1tNfXKDxaUM9KwAAAABW5W7q0DP7j+mZneVyN7Vr7RfniPZjobNx40Zt3ry5z+dKS0vNW7CimQkTJuhrX/uafvazn6m1tVVPPvlkrzFGwcx3vvMdJSUlhXD2AAAAQHj5/X7tK68313i9tPeMbpqSrX+7f5asiKIZAAAAAEF1dPm08VCtVu+u1N4zTT1ff2L7Sd03IzxdqQAAAACg+yLPnjNNWnPArQ2lNWpq9/Y89+zOcv3twlFDOj+gm91uH7Rj22y2gI8RPYi1tRBvayHe1kK8o1tbp1dvHPbo5QNV2na8Tj7/B8/tONWgBeOt2ck5kl1zzTV67LHHtHbtWu3cuVO1tbWKjY1VXl6e5s+fr6VLlyohIWGopwkAAABckePuZr2wu1wv7j6jY+7mnq+/cqBCP+icocS4wfvbdaSiaAYAAADAJVU0tOuZPVV6fm+VPK1dvZ4v87Tq7eMeXccFHwAAAACDrLyuTWuL3VpT7FZZXXufY4xOaV++foTstHJGBHA6w9dkwuEgL7cKYm0txNtaiLe1EO/hz+fza8eJWrNwf+2+s2ps730NxfBKqUfLZ48P+/yi1cMPP2zeQiE7O1sPPPCAebMKj8czKMc1CgHP/+9afX29fD7foJwLQ494WwvxthbibR3EOnp3vXz1oNu8jnLg7AcNkc/X1N6ll94/oVunZUbt38ovhaIZAAAAABfw+f1692S9ntpVqbeOXdgR7WKxthgdqW6haAYAAADAoDAu4LxWWmsWyuwqaww6vr3Tp8PVzZqekxyW+QEAAACwXsfm53aW6dld5WZjsWD2ldXL6/PLbqOyH0PP6/1gp9bBZCy6Dde5MPSIt7UQb2sh3tZBrIf3NZRNhz1aX+I2d7kMtMar2+6yet082XrrvCiaAQAAAGBqaOvSS/urzZ1lTnnaAo7NSUvQ38wbq4/OHat4byvJMwAAAICQ6fL59c6JerNQZvORWrV3Bb7KYyw9WzApS/fMGa2lM/LU2dJIjgIAAAAgZOpaOvTy3rN6dmeZdp6qCzo+Od5u5ib3zhmt+ROzKJgBAAAAEDIdXT69fbxO60pq9OZRjzq8wStlxmYm686ikeYtK67LktdQKJoBAAAALO5gZbNW767U+pIatXcF3m716jFp+vCcEbp77iTF2W3m1zz96KQGAAAAAMEcrm7RmgPV5oWemubOoOPHOhO1stCllVflqmBcXs/XPS2DPFGgnzwez6Ad22azyeH4oBtgfX292RES0YdYWwvxthbibS3Ee/jp9Pq09VidXt5fpS1HPeoMshDNKIuZO86hO67K1d3XTlBKQuyQxdrpdIb1fAAAAAAGl7F75a6yBvP6ycZDtWpqD1704kyK1W3Ts7SiMEc3FY5RTEzMoP/dOpJRNAMAAABYkFEcYyRRq3dVat/ZpoBjU+JtWl6QrVVFOZroSpbdbu8pmAEAAACAgXA3d5gF/GsPuHWoOni1iyMxVrdPz9SKwmwV5qWYF3mMHAWIROHs1mcsxLRid0ArItbWQrythXhbC/GOTH6/XyWVzVpzwK1XDtaorrUr6GsmZCaa+cmygizlpiWY+Ul3wYyBWAMAAAC40vyktKpF60vcevVgjaqagjcbS46zadGUTC3NzzKL+mNt566hxPy1YMbKKJoBAAAALORMfbue3VOp5/dVB73YMzErSffPztWyApdS4lmEBgAAACA02jp9ZqdmYyHa9hN1CtKwWXZbjG6cmKEVhS5dPyFD8bEU8QMAAAAInYqGdrOY39j58nhtW9DxGUmx5iK0FQXZmp6bzAI0AAAAACFTVtdm5idGscyJfuQnxjWU6yY4tCzfpZsmZSgxjjVefaFoBgAAAIhyPr9f20/Ua/XuSr11tE7+IInULVOcWlWUq9mj07jQAwAAACBkHdF2lzeahTIbSmvV3BG803JBXopWFLi0ZHqWMpLjwjJPAAAAANbQ0uHV64drzV0vd5xqCHjtxBBnj9FNk5xmMf914x2KtVPMj+FnsHZqtdlsAR8juhBvayHe1kK8rYNYR57a5g5zt8t1xdXad6apX6+ZMybdbIR867QsZSRd+hoK8T6HohkAAAAgStW3dumlA9V6ZnelTte1Bxybkxqne2bl6q6rsuVKjQ/bHAEAAABEf0c0o1BmbbFb5fWB8xJDblq8lhe4zNuErKSwzBEAAACANXh9fr13usHMUV4/VKu2Ll/Q18wcmWoWytw2LUvpiSyzwvDmdDrDch6HwxGW8yAyEG9rId7WQrytg1gPjab2Lr16oELP7z6jrUfcZr4SzPS8NN01e5TumDVSozKu7BqKw6LxJpvDgNCBAKFAvK2FeFsHsbYW4h1Ziiua9NTOCnObzvYgF3zmjnNo1ew8LZzsVFw/u6IRbwAAAACBNLZ16bVDtXr5QLX2lAfviJYUZ9MtUzLNhWhXj0k3d8AEAAAAgFA55m7RmmK31hW7VdXUGXT8yPQEMz8xujaPdSaGZY4AAAAAol9Hl0+bD1Xrhd3leq2kUm2dwQv5jeKYO4tG6s6iUZqWlxaWeUYjimYwIHQgwGAg3tZCvK2DWFsL8Q6/tk6v1uw9qz9uP6ndp+sCjk1LiNW9V4/Wx+eP1eScgSdTxBsAAABAl8+v7cfrzIVom4941OEN3BHNKIu5dmy6uRDt5imZSo4fnAZNAAAAAKzJ09KpVw7WmLvKlFQ2Bx2fEm/XbdPOFfPPGpUmWwzF/AAAAAAGzufza8eJWnNHmbX7zqq+NXghvzM5TitnGoUyI3X1OKdiyE8GjKIZAAAAYBg7XduiP71zSk+9d1q1zR1Bt+j8xIJxuqtolFISSAUAAAAADIzf79eh6hZzEZqx02VtS1fQ14zPTNTKwmwtzc9SXnpCWOYJAAAAwDpdm7cc9ZjF/G8fr5fXF7iY3x4jzR+fYRbK3DTJqcQ4W9jmCgwFj8czKMe12WwXNNmrr6+Xzxe8azqGJ+JtLcTbWoi3dRDr8F0/WV9crfXFblU0Bl7TZTDyEaPJ2LKCbM0f71Cc/Vx+UlcXuHnycIi3M0ybdATCSjkAAABgGHYg2Hy4Wk9sO6nXS6vkD3DNJ9YWo2VXjdAn5o/TtePpPAAAAABg4NxNHVpXYnRsrtYRd2vQ8Y6kWC2ZnqUVBS4V5KWQlwAAAAAI6WK0fWebzGL+Vw/WqLHdG/Q1U3OSzfxkSX6WXCnxYZknEAm83uA/H6FgLMIM17kw9Ii3tRBvayHe1kGsQ+dMfbvZZGx9SY2O1QS/fmK3xWjBeIfZaGzhJKeS4u1/fcY/aDHxWTTeFM1gQOhAgFAg3tZCvK2DWFsL8Q4PY3vOF/ZWafXuCpXVtQccm5sWr3uLcnX3zFy5UuND0nkgkuIdCR0IAAAAACtp6/TqjSMerT3g1vaT9QrSsNks4L9x0rmOzddPyOjpiAYAAAAAoVBe19ZTzH86yDUTQ1ZKnJbnu7S80KUp2clhmSMAAACA6Odp6dRrpbVaV+LW3jNN/XrNrFGpWpbv0uKpmXImxw36HEHRDAaIDgQYDMTbWoi3dRBrayHeoVVc0aTVuyr1ammN2rsCr0ybOzZdq2bn6sZJTnORmmGwY0G8AQAAgOjk8/u1u6xRa4rdeq20Rs0dwYvlZ4xI0YqCbN02PVMZSVzoAQAAABA6Te1deu1QrVnMv7OsMej4hNgYLZqcaRbzzx3n6LluAgAAAAAD0dLh1eYjHnNHme0n6uQN0mjMMDErScsKsrRkuksjHQnhmCbOQ9EMAAAAEIHaOn3morSndlequKI54NiUeLvumOHSfbNyNT4rKWxzBAAAABCdTnnazEVoa4vdOtMQvGOzsdPl8gKXuRBtfCY5CQAAAIDQ6fL5tf1EvZmfbD5SG7S5mGHO6DQzPzG6NqcmsDQKAAAAwMB1eX1mbmLseGkUzLR1+fp1/WTJ9CwtK3BpsitJMTEU8g8VMkMAAAAggpTVtemZPVV6cV+16tu6Ao6dkp2sVUW5WpqfpeR4e9jmCAAAACD6NLR1aUNpjdYccGvvmaag45PjbOYCNGMh2pwx6bJxoQcAAABACJVWNZv5ySslNapp6Qw6fqwz0SzmN250bQYAAAAQCj6/X3vLm7S+xK0Nh2pV3xp4LZfBkRirxdMytSw/S7NGpXH9JEJQNAMAAAAMMa/Pr20n6rV6V6XePl6nQD3SYm0x5sK0VbNzNWtkKh0IAAAAAAyoK5qRi7x8wK0tRz3q9Abu2GxkH3PHpWtFYbZunuxUEsX7AAAAAELI3dSh9SU1WlPs1uHqlqDj0xPtun1allnMP2ME10wAAAAAhMaR6hazUOaVgzU629ARdHxCrE0LJzvNxscLxjsUZ7eFZZ7oP4pmAAAAgCFS19pp7ihj7CxTXt8edLvOe2bl6K6rcpSVEhe2OQIAAACILn6/X6VVLWbHZuOCj6cfXdEmZiWZi9CMiz25aXRsBgAAABA6bZ1evXHEo7UH3Np+sl6+wLX8sttidMPEDK0ocJn/xseyGA3oL7t9cJpf2Gy2gI8RXYi3tRBvayHe1kGs+3a2oV3ri6u1rp9F/PYYad74DC0vzNaiyZlKSYjMRmPE+xyKZgAAAIAw23+2SU/vrtSrB2vUEaST87xx6VpVlKsbJjnNXWYAAAAA4EpUN3WYF3qMjs1H3a1Bx2ckxZpFMisKsjU9N5mOzQAAAABCxuf3a1dZo1nMv/FQjZo7fEFfU5CXYhbKLJmepYxkmosBV8LpdIblPA6HIyznQWQg3tZCvK2FeFuHlWPtae7Qmn1n9eLuM3r3RG2/XjNnbIbuLBqlFTNHyJU6/BqNOSwab4pmAAAAgDBo6/SZRTJGsUxxZXPAsakJdt0xI1v3zsrR+MyksM0RAAAAQPR1bN502GMWyrzbj47NcfYY3Wh0bC7M1vUTHIq1W7PbGBDpXZwNdAe0DmJtLcTbWoi3tRDvc07Wturl/dVac6Da7OIcTG5avJmfGLeJrmQNB8QaAAAAiGytHV5tKKnUC7vKtflQtbqCXTyRNCk7RXcVjTKLZcZmDY/cBBeiaAYAAAAYRGV1bXpmd5Ve3F+t+raugGOnZidr1excLZ2epaT4yNyyEwAAAEBkMzo27zzdaBbKbCytUUtn8I7NM0emanmBS7dNy5IjicsGwHDr4mzl7oBWRKythXhbC/G2FivFu66lQy/tPatnd5Zp16m6oOOT4+1aNmOE7p0zSvMnZslmG967Xlop1gAAAECk6vL69OYRt7mjzCsHKtTS4Q36mrz0RH2oaKQ+NGukCkemKyZmeOcmVsfVLwAAACDEvD6/3j5ep9W7K7XteL38QTo53zo1U/cV5ZoL1UiwAAAAAFxpx+a1xW7zdrahI+j4EenxZqGM0bF5rDMxLHMEAAAAYA0dXT69UVqlZ3eWa+PBSnV6A3duNi6N3DDZpXvmjNKSwjwlx7OcCRgMHo9nUI5r7Kh0foFYfX29fL7gTTwwPBFvayHe1kK8rcMqsfb7/dp7pknriqv16kG3PC2Bmx0b0hLsunValpYXZmv26HTZzSJ+n+rqgjcAiFSREG9nGBtMXQpZJgAAABAidS2den5ftZ7dU6UzDe0Bx+alxeveohzdOSNHmSlxYZsjAAAAgOhR39qlDaU1WnPArX1nm4KOT4m3afHULK0odGn26DTZKNoHAAAAEMoFaWX15o4yL+45I09LZ9DXTMlJ1b1Xj9ZdRaOU56CYHxhsXm/wjuqhYCzCDNe5MPSIt7UQb2sh3tYRbbE+5m7R+oM1eqWkRuX1gddvGRJiY3TjRKeW5mfpugkZio+1nXvCb7wvijq+KIt3f1E0AwAAAAzwItCBimat3lVpLlbrCNItbf54h1YV5eqGiRl/7UYAAAAAAP3X6fXp7eP1WnOgWm8eqwvasdlIO+aNc5iFMosmO5UYZw/bXAGrG6wuzpHSHRDhQaythXhbC/G2lmiOd0VDu5mfrNlfreO1rUHHO5NjtSw/WytnZGt6bopijGJ+X6s8nuCvHQ4iIdaR0MUZAAAACKfKxnazSMYoljlU1RJ0vHHt5Nqx6VqW79KiKU6lJlBSEe2IMAAAAHAF2jq9euVgjZ7eXaWSyuagW3feMSNb987K0bjMpLDNEQAAAED0FOsfrGzRyweqzTykrrUr6GsmZiVpZaFLywpcyk6ND8s8AVwonN36rNod0IqItbUQb2sh3tYy3OPd3OHVpkO1WlPs1nunGhS4lF+Ks8do4SSnWcy/YLxDsfZznZujpXAommMNAAAARKr61i69frhW64rd2lXWGDQvMRTmpWhpvku3Tc+UK4VrJ1ZC0QwAAABwGU572vT07kq9dKBaDW2BL3JMy0nWqtm5Wjo9i27OQBjY7fZB7Q4Y6DGiC/G2DmJtLcTbWqIl3pUN7VpbXK2X91frWE3/OjYvLzjXsXlazl87NltAtMQbAAAAiGRen187TjVoTXG1Nh3yqK0reMHLrFGpWlGQrVunZSo9kSVKAAAAAAamrdOnN496zB1lth6rU5cveKnMWGeiluVnmcUyY5yJYZknIg8ZKQAAANCPC0Fbj9dp9a5KbTtRH7RbmnHx5/6iXM0YkWqZRWpAJHA6nWE7l8PhCNu5MPSIt3UQa2sh3tYynOLd0tGlVw5U6Jn3y7X1qFv+INd74u023VaQq3vmjNJNU7MV99eOzVY2nOINAAAARLqj7hatOeDWuhK3qps6g44f5UjQ8gKXeWNBGgAAAICBMgpj3jtVr3XFNXrjSK2aO4IX8LtS4nT79Cwty3dpem4y67dA0QwAAABwKZ6WTr2wr1rP7KnU2YaOgGNHpMfr3lm5+tCMbGWmxIVtjgAAAACGP5/Pr+3HavTMznKt239WLR2Bd7U0XD3OqXvnjNaKq0bIkUwOAgAAACB0aps79crBGnNXmYOVLUHHp8Tbdfv0THNXGWN3GRakAQAAABgIv9+vAxXNWl/i1oaDtapp6exXXrJ4aqaW5mfp6jHpstvIS/ABimYAAACAi5Ku/Web9NTuSr1WWqtOb+C2zgvGO7Rqdq6un5BBsgUAAADgshytbtKzO8v03M5ynalvCzp+tDNJ98wZrXtmj9J4V0pY5ggAAADAGtq7fHrzqMfcVebt43UKcnlE9hhpwYQMrShw6cZJTiXGseslAAAAgIE5UduqV0pqzGKZ03XtQcfH2WN0w8QMc0eZ6ydmKCGWvAR9o2gGAAAAkNTW6dX6gzVavatSpVWBu6alJ9p1R2G27ivK1RhnYtjmCCAwj8czaMe22WxyOBw9j+vr6+XzBd/yF8MT8bYOYm0txNtaIjneda2deqXErZf3V5sF+/3pjHbb9CytnJGt2aPTZTM7NnfI4wm8G6aVDHW8nU5n2M4FAAAAhLqR2J4zTWahzIbSGjW1B9/1clpOslYUurRkuktZKex6CQAAAGBgqps6zJ0ujWKZksrmoOONqyTXjk3Xkvws3TIlU2mJlEMgOD4lAAAAsLRTnjY9vbtSL+2vVmOQi0HTc5O1qihXS6ZnKTHOHrY5Augfrzf4Bd1QMRZhhvN8GFrE2zqItbUQb2sZ6nh3en3aeqxOa4rdevNonbp8gVs2G5tYzh/v0IrCbC2clNGTf/iN7yNMcx7OhjreAAAAQKQrq2vT2mK3eSvrR/dmV0qclhW4zF1lJmcnh2WOAELPbrcPWjOLQI8RXYi3tRBvayHe1hEJsW5s69LGQzVaV+zWjpP1CrLRpSk/L0XLC7J1+3SXctLiwzDL6BAJ8Y4EFM0AAADAcrw+v9485tHTu6u0/UR9wLHx9hjdNi1Lq2bnqjAvRTFmV2cAAAAACN6xubii2SyUMTqk1bd2BX3NZFeSVhZma2l+llypXPABAAAAENpFaa8dqjV3ldld3hh0fEKsTbdMcZq7ylw71iG7Ud0PYFgL106p5+8Gi+hHvK2FeFsL8baOcMW6rdOrTQer9MLuM3q9tEodXcF3jB+Xlaw7i0bpzqKRmpSdGpZ5RjuHRX+2KZoBAACAZdQ2d+qF/VV6ZneVKho7Ao4dmZ6ge4tydOeMbGUkx4VtjgAAAACGt4qGdq0rcZsL0U7UtgUdn5UcZxbJGAvRpuakhGWOAAAAAKyhy+szm4cZxfybj3jU4Q3ev/maMelmfnLL1EylxA/OrhQAAAAArNPYeNvRGr2wu1zr91eosT14gzFXaoLumDXCLJaZNdpBg2OEBEUzAAAAiPruznvPNOnp3ZVmB7XOABeEjBRrwQSHVhXl6roJGXRNAwAAANAvLR1evX64VmsPuLXjVIOCLUMzdrRcONno2Jyt+eMdiiX3AAAAABDC6yKlVS3ndr0scau2JfiitLHORK0sdGlZvksjHAlhmScAAACA6M1J9pXX6/ldZ/TS3jOqbmwP+prUhFgtKczTXbNHasHELMXabWGZK6yDohkAAABEpdYOr9YfrNHq3ZU6VNUScKwjMVYfmpFt7iwzOiMxbHMEAAAAMLy7o71/ukEvH3Dr9UO1auvyBX1N0ag0s2PzrVMzlZbIn+cBAAAAhE51U4fWFbvNYpmj7tag441rI7dPP7frZWFeCt2bAQvweDyDclybzSaHw9HzuL6+Xj5f8L+TYHgi3tZCvK2FeFvHYMX6ZG2r1he7ta6kWidr24KOj7PH6IaJTi0rcOnGSU4lxp3b6bKxoX7Ac0Fk/Ww7nU4NNa7KYUDsdvug/YAGeozoQrythXhbB7G2lkiKt5GAPbWzQi/ur1JTuzfg2IK8FH14zgjzolB34oXhFW8AAAAg3I7XtGrNgWqtK6lRZWNH0PGjHAnmIrTlBS6K9AEAAACEVFunV28c8ZjF/O+erJcvyLaXxi6XN07K0IoCl66fmKE4ujcDluL1Br52GirGIsxwnQtDj3hbC/G2FuJtHQOJtbu5QxsO1mpdiVvFFc1Bxxul+nPGpJm7XN4yNVPp5zUY4/MWHj6L/mxTNINhUfl1foUboh/xthbibR3E2lrCHe8ur08bD1bpie0n9eZhd8Cx8bE23TFzpD65YJxmjckI2xyjGT/fAAAAiHZ1LZ165WCN1hxwq7gy+EWflHi7bp+eqRUF2Zo1KpWOzQAAAABCxuf3a+fpRnNHmY2lNWrpDN4heMaIFDM/uW16pjKS4sIyTwAAAADRqam9S5sOe7S+xK0dpxqCFu8bpuUka2m+y7x2kpuWEI5pAhegaAYAAADDVnVju/6y45T+/M4pnakPvK3nmMwkfXzeOK26ZowyU+LDNkcAAAAAw1NHl09bj9eZHZvfOlYnb5CrPvYYaf74DK0sdOnGSU4lxtGxGQAAAEDonKht1dpit9YecKuiH7te5qXFa/lfd70cn5kUljkCAAAAiN5rJm8fr9O6khq9edSjDm/wSplRjgQtzc8yi2UmZJGTYGhRNAMAAIBhxe/36/2THv1h20mt239WnQGSMKOZ86Kp2frkgvG6aWq27Da6OwMAAAAInG8cqGjWmgPVevVgrerbuoK+ZmpOslYUuLQkP0suCvQBAAAAhFBda6c2HKzVmuJq7T8bfNfL5DibFk/N1IpCl+aMSZeNXS8BAAAADGiXywatL6nRxkO1amz3Bn2NMylWt03P0rL8LM0YkaoYchJECIpmMCAej2dQjmuz2eRwOHoe19fXy+cLvqUwhifibS3E2zqItbWEI96tHV6tLa7WU7sqdKiqJeBYR2Ks7pqZo/tm52l0RqL5tYb6upDOx8oi4efb6XSG9XwAAACIbhUN7WbH5jXFbp2sDbyLpSErJc684LOiMFtTspPDMkcAAAAA1tDp9Zm7XRo5yptH69QVZNdLo1/Y3HEOs5h/0WSnkuLtYZsrAAAAgOhrLlZa1aL1JW69erBGVU2d/SreXzQl09xVxshNYmlqjAhE0QwGxOsNXjUYCsYizHCdC0OPeFsL8bYOYm0toYz3idpWPb27Ui/td6u5I/AxC/NStKooV7dOy1JinM38Gp+7wcfPNwAAAIYjI794/VCt1hxw673TDUHHJ8TGaOHkTK0sdHHRBwAAAMCQ73o5MSvJzE+W5ruUk8aulwAAAACuXFldm7mjjFEsc6IfzcXsthhdN8GhZfku3TQpQ4lxFO8jslE0AwAAgIhjdE1786hHq3dV6t1TDUEXrt0+3aVVRTkqyEsN2xwBAAAADD9en187TjVoTXG1Nh3yqK0r+I6Jc0anaXmhS7dOzVRqAn9SBwAAADB0u15mJsdqSb7L3FVmWk6yYmIo5gcAAABwZdxN7Xp5zxk98/4p7TvT1K/XzB6dZu4os3hqpjKS4gZ9jkCocIUPAAAAEaOmuVPP7a0yb5WNHQHHjnIk6L6iXN0xw0USBgAAACCgo9UtenFfpdaVuFXd1Bl0/OiMBHMR2vICl0ZlJIZljgAAAACsoam9Sy/uq9JL+6r6tetlvN3Y9dKpFYXZmj8uXbF2W1jmCQAAACD6NHd4teVojTYcPqytR9xms7FgpmQna8n0LLNYJi89ISzzBEKNohkAAAAMKb/frz3lTXpqd6VeP1Rr7jJzKUa/tBsmZpjFMgsmOGSjgxoAAACAS6hpateLe87o2Z3l2ldeH3R8WoJdt03PMotlZo5MpWMzAAAAgJAxFqJtOVStZ3eWaf2BCrV1Bt/1smhUmlb8ddfLtESW9wAAAAC4Mp1en94+Xq/1JW5tOVqn9q7g+ciI9HgtzXeZxTKTs5PDMk9gMJFVAwAAYEi0dHjNLs9P767S4eqWgGMdSbG666ps3TMzhy7PAAAAAC6po8unN4/VaW2xW1uP1QUsyjfYY6TrJmSYC9FunORUQiwdmwEAAACEzpHqFq0pdpvXQ9z92PVylCPBzE+MXS9Hcz0EAAAAwBXy+f3aXdaodSU12nioRg1t3qCvMdZn3T4tU0vyXZpFczFEGYpmAAAAEFbHa1r19O5KvXzAbW75GciMESlaVZSrW6dlsXgNAAAAwCV3r9x3tklrDri1obR/F36m5SRrZWG22SEtMyUuLPMEYD12u33Qjm2z2QI+RvQg1tZCvK2FeEevmuYOrS926+UD1TpY2Rx0fGqCXUumu7RyRrZmjUpjYdowx882AAAAhvJ6idG4eH1JjV45WKPKxo6gr0mKs2vRFKd5vWT+uHTF2vn9FdGJohkAAAAMOqO78+YjHrNYZsephoBjE2JjzItDRrFMfl5K2OYIAAAAYHg5U99u7ihj3E552oKOd6XEaVmBSysKXJqcnRyWOQKwNqfTGbZzORyOsJ0LQ4tYWwvxthbiPby1dXr1Wkmlnt1Zrs2HquUNtuulLUaLpmbrnjmjtTg/R4lxg1dsi6HFzzasUNhPsZi1EG9rId7WQryHrzP1bVpn7HBZXK2j7tag42NtMbpparbuLBqp2wpy1dnaLJ/PF5a5Ivz42T6HohkAAAAMGndTh57bW2Xeqpo6A44dnZGg+4pydUdhtrndJwAAAABcrKm9SxsP1Zq7yuwsaww6PjHOpiWFeVoyNUNXj041F6YBAAAAQKi6OL930qNnd5bp5b1n1djWFfQ1M0al657Zo/WhopFypSaEZZ4AEO7CforFrIV4WwvxthbiHdlqmtq1dt9ZPb/7jN4/6enXa64Z59Sds0dp+Yw8ZZ2fj8QTaytxWPRnm9WIAAAACPlFovdP1+sv75/V64c9AbupGcvVbpiUofuLcjVvvEO2GBawAQAAALiQkVO8e7Jea4rd2nTYo/au4N3OrhmbrvvnjteyGXlKS4yTx+OR1+sNy3wBAAAARLeTNc3mjjLP7SrXqdqWoONz0xN01+xRZrHMtLy0sMwRAAAAQPRpbu/ShuJKvbC7XG8edqsryA6Xhqm5qbqzaJQ+NGukxmQmh2WeQCSiaAYAAAAh6/hsXCB6YttJlVYG7vickRSru67K1j2zcjXSQSc1AAAAAL0dqW4xC2XWFbvlbg68c6VhrDNRywtc5s248BOu7qkAcClGwd5gsdlsF3QErK+vl88XvKgQww+xthbibS3Ee3gxdpF59aBbL++v1u7y/u16uXhqllYWZuvacQ7FxdrlcHxQMEO8o1ck/GyTDwMAAESPTq9Pbx6u1vO7zpgFM62dwRuEjXQk6o6ikbqraJSm56UphibGAEUzAAAAGJhj7hY9s7daaw64zcKZQK4akapVs3O1eGqmEmJtYZsjAAAAgOGhtrlT6w+6zfyitCp4x+b0RLtun5alFYUuzRiRyoUfABElnDtcGQsx2VHLGoi1tRBvayHekafL69O2E/VmfrLlqEcd3sBdnGP+uuvligKXbp6aqZR4+7kn/D75fBfmKsTbOog1rFDYHwnFYggf4m0txNtaiHfk8Pn92lPeqHXF1dpwsEZ1rYHXYxkcibG6dXqWlhW4NHt0umzm9RKv6urqeo0l1tYSCfF2RkBhP0UzAAAAuKILRW8c8Wj17kq9fzpwRzWjOGZpfpZWFeVqem5K2OYIAAAAYHho7/LpzaMecyHa28frFGQdmuy2GF0/waEVhdm6cWKG4inIBwAAABAifr/fLOA38pP1JW55+rE4bVxmolYWurQs36W89ISwzBMArkS4CrgoFrMW4m0txNtaiHf4HaluMfOQVw7W6GxDR9DxxpqsmyZlmIUyC8Y7FGc/d73Eb8TuMs5LrK3FZ9F4UzQDAACAfnM3dejZvVV6bm+Vqps6A44dk5Gg+4pydceMbKUn8msnAAAAgAsXou0906Q1xW6zS1pje/A/zufnppg7yiyZniVnclxY5gkAAADAGqoaO7Su5Nyul8dqWoOOdyTFmrmJsatMQV4Ku14CAAAAuCIVDe1aX1JjFssccQfPRewx0rxxDi3Jz9KiKeftcAkgIFYvAgAAIOhitp1ljVq9q1Kbjnjk9V267bMtRlqcn6u7Z2TpmjGpf93qEwAAAADOKa9r09pit1ksU1bXHnR8dmqclhe4zNskV3JY5ggAAADAGlo7vOZ1jzUHqvXuyQYF2fRSsbYY3Tgpwyzmv35CRk8XZwAAAAC4HHWtnXqttNbcUWZXWWO/XjNzZKpZuH/btCxlptBYDLhcFM0AAACgT80dXq094Nbq3ZVBu6o5k2P1N/PG6aNzx2q0M1kej8eS2zgCAAAA6K2pvUuvHao18wujID+YxFibbp7q1IqCbF07Nl12ozofAAAAAELA5/fr/dMN5o4yGw/VqrXTF/Q1V41INQtlbp2WqYwkFqcBAAAAuHxtnV5tPlqn9cVuvX2iPmDT4m7jMxO1NN+lpflZGp2RGJZ5AtGKohkAAABc4Ki7RU/vrjQvGLUEuVhkdDFYVZSr2/OzlZudFbY5AgAAAIhsXT6/3j1Zr5cPuLX5SK3au4Jf/LlmTLpWFrp089RMpcTbwzJPAAAAANZwoqbV3PHS2PmysrEj6PgR6fE9u16Oy0wKyxwBAAAARN+1kndO1Gv9QbfeOOzpV9F+Tmqclkx3aUl+lqblJCsmhsZiQChQNAMAAAB1eX1644hHT+2qDNr52ej6vKwgS/cV5WpaTor5NbvdFqaZAgAAAIhkh6tbtOZAtdaV1KimuTPo+LHORLNQZlm+SyMcCWGZIwAAAABrqGvp1CsHa8ximeKK5qDjU+JtWjw1y9xVZvboNNlYnAYAAADgMvn9fu0726T1JTXacLBGntauoK9JS7Br8dRMc1cZIxex28hFgFCjaAYAAMDCqho79NzeKvPmDrKgzVjMZuwqYyxoS0vk10gAAAAA5xjFMetL3OZulYeqW4KOdyTG6vbpmVpRmK3CvBS6pAEAAAAImY4un946VmcWyhj/en2Bd7001qLNH+fQ8kKXFk12KjGOXS8BAAAAXL7jNa1aV+LWKyU1Kq9vDzo+ITZGN050aml+lq6bkKH4WBoWA4OJ1Y4AAAAW7Gjw/ulGrd5dqTcO18rrD3yx6KZJTq2anatrx6bTVQ0AAACAqa3Tpy1HPWahzPYTdQHzCoPRFe3GiRlmx+brufgDAAAAIMTXPfafbTLzk1dLa9TQ5g36msmuJK0szDYXqLlS48MyTwAAAADRpbKxXa8erDWLZQ5VBW8qZqzDMtZfLct3adEUp1ITWMYPhAs/bQAAABbR1N6ltcVuPb27SsdqWgOOzUyO1V0zc3TPzBzlpSeEbY4AAAAAInsh2p7yJq0prtaG0lo1tQdfiFaQl6IVBS4tmZ6ljOS4sMwTAAAAgDWcqW83r3sYt1OetqDjs5LjzCIZo5h/ak5KWOYIAAAAILo0tHVp46FarS9xa+fpRgXpKWYqzEvR0nyXbpueKVcKRfvAUKBoBgAAIModqW7R07srzYtGLZ2+gGNnjUrVqqJc3TIlk87PAAAAAExldW1mx2Yjpyivbw86PjctXssLXOZtQlZSWOYIAAAAwDoNwl4/5NHLB6q1s6wx6PiE2BgtnJxpFvPPG+9QrNHaGQAAAAAuQ1unT28d82hdSY22HqtTly94qcxYZ6KW5WdpSb7LvA9gaFE0AwAAEIU6vT5tOuzR6t2V2hXkolFirE3LClxaVZRDZzUAAAAApsa2Lr12qNYsltldHnwhWlKczSy+Nzo2Xz0mXXYWogEAAAAIEWNB2o6T9VpT7DavfbR3BW4QZpgzOk3LC126dWqmUhNYGgMAAADg8vOQ907Va11xjd44UqvmjuB5iCslTrdPz9KyfJem5yYrJoZrJUCk4C8DAAAAUaSysV3P7anWc/uqVNPcGXDsuMxEc1cZo7taWiK/FgIAAABWZ1wA2n6iXmsOVGvzEY86vIE7pRmXeq4dm24uRDMKZpLj7WGbKwAAAIDod6S6xSzkX1filjvINQ/DmIwErSjMNrs5j8qgkzMAAACAy+P3+3WgolnrS9zacLBWNS3B85CUeLsWT83U0vwsmooBEYzVkQAAAFGQsL13ukFP7arUliMeBVrXZuRlCyc7zWIZY3EbHQ0AAAAAlFY1mwvRXimp6dcFoPGZiVpZmG1eAMpLTwjLHAEAAABYg7u5w8xNjF1lDlW1BB2flmDXbdOzzAZhM0emct0DAAAAwGU7Udtq5iFGsczpuvag4+PsMbphYoa5o8z1EzOUEGsLyzwBXDmKZgAAAIappvYuvXzArad3V+pEbVvAsVnJcbprZrbunpnDojYAAAAAcjd1aP1fF6Idrg6+EM2RFKslf12IVpCXwkI0AAAAACHT1unTlqMes5h/+4m6gM3BDEbn5usnOLS8wKUbJzlZoAYAAADgslU3deiVgzVmsUxJZXPQ8cZVEaNB8ZL8LN0yJVNpiSzBB4YTfmIBAACGmSPVLXpqd6XWFbvV2ukLOHb26DTdV5SrW6Y4FWfnohEAAABg9YVom42FaPurtf1kvXxBFqLF2mJ046QMrSh06foJGeQUAAAAAELG5/drT3mj2RzstdJaNXd4g76mIDdFywtdZkG/MzkuLPMEgGhit9sH5bg2my3gY0QX4m0txNtarBDvxrYubTxUY6652nGyXkEuk5jy81K0vCBbt093KSctXtHACrHGB4j3ORTNAAAADAOdXp9eP+zR6l2V2l3eGHBsUpzN7K5mFMtMyU4O2xwBAAAAROZCtN1ljeaOMv1diDZjRIpWFGTrtumZykhiIRoAAACA0DntadPaYrd5K69vDzo+JzXOvOZh3Ca6uOYBAAPhdDrDch6HwxGW8yAyEG9rId7WEi3xbuv0atPBKr2w+4xeL61SR1fgBsWGcVnJurNolO4sGqlJ2amKdtESa/SPw6LxpmgGAAAgglU0tOu5vVV6fm+1alo6A44dn5moVUW5Zhfo1AR+zQMAAACs7HIXouWmxZuL0FYUuDQ+KykscwQAAABgDQ1tXdpQWqM1B9zae6Yp6HijOdgtUzLN6x1Xj0mX3RYTlnkCAAAAiA5en1/bj9Xo+V3lWr+/Qo3tXUFf40pN0B2zRpjFMrNGOxQTQx4CRBNWUwIAAEQYv9+vHacatHp3pbYc8cgbYC9Qe4y0cLJTq2bn6pox6SRsAAAAgIVd7kK05DibFk89txBtzph02cgnAAAAAIRIl9ent0/Um/nJlqMedQa62CHJyEauHZuu5YUus2AmOd4etrkCAAAAiI71VvvK680dZV7ac0ZVjcEbihlNiZcU5umu2SO1YGKWYu22sMwVQPhRNAMAABAhGtu6tKbYbRbLnKxtCzg2KyVO98zM0V0zs5WblhC2OQIAAACIvIVo285biNbRj4Voc8ela0Vhtm6e7FQSC9EAAAAAhHCR2sHKFq0prtb6khrVtQbv5jwhM9HMT5bmZykvnesdADCYPB7PoBzXZrPJ4XD0PK6vr5fP5xuUc2HoEW9rId7WMlzjfbK2VeuL3VpXUh10vZUh1hajGyc5tazAZf6bGHfuOkljQ72sYrjGGsM33k6nU0ONohkMiN1uH7Qf0ECPEV2It7UQb+sg1v1XWtWs1TsrzItIbZ2BfyE1uj9/eHaebp6aqbgI6m5AvK2FeAMAAAz9QrTSqhazUGZ9iVuefixEm5iVZO4oYyxEo/AeAAAAQChVNrZrXXGN1ha7daymNej4jKRYLZmeZeYo+bkpimHXSwAIC6/XG5bzGIsww3UuDD3ibS3E21oiOd7u5g5tOFirdSVuFVc0Bx1vZBxzxqRpWb5Lt0zNVHriB8vnI/V7DKdIjjVCz2fReFM0g2FR+XV+hRuiH/G2FuJtHcT6Qh1dPq3bf1Z/3HZS750M3NEnJd6uu+eM0ifmj9e0vDQNB8TbWog3AABAeFQ3dWhdsdvcofKou38L0YwimRUF2Zqem8xCNAAAAAAh09Lh1abDtWZ+suNkgwLveSnF2WN048QMc1eZ6yY4IqoxGAAAAIDI19TepU2HPWYzsR2nGuQLloRImpaTrKX5Lt0+PZOGYoDFUTQDAAAQRuV1rXrynVP6fztOyd3UEXDs5JxUfXLBON09e5TSEuPCNkcAAAAAkaOt06s3jnjMXWXeOVkf9CLQ+QvRrp/gUCwL0QAAAACEiNfn1/unG8z85PXDtWrt9AV9zcyRqVpe4NJt07LkSGKJCgAAAIDLa0r89vE6rSup0ZtHPerwBq+UGeVIMBuKGcUyE7KSwjJPAJGPv0gAAAAMMp/Pr61H3eauMq+VVAZc5Ga3xWhJYa65q8z8iZl0ggYAAAAsyOf3a1dZo142FqIdqlFzR/CFaFeNSNWKQhaiAQAAAAi94zWtWnOg2lyoVtkYuCGYYWR6glkos7zQpbHOxLDMEQAAAED0XCPZebpB60tqtPFQrRrbvUFf40yK1W3Ts7QsP0szRqSy3gpAL1w9xYB4PJ5BOa7NZpPD4eh5XF9fL58v+OIADE/E21qIt3UQa6mxrUsv7qvS6t0VOlnbFnCsKzVO987K1T2zcpXz1+1A6+rqNFwQb2uJhHg7nc6wng8AACAcTta2am2x27ydbQi+EG1Eevy5hWgFLo3LpFsaAAAAgNDxtHTqlYM1WnvAreLK5qDjU+JtunVallYUuFQ0Ok02FqkBAAAA6Ce/36/SqhatL3Hr1YM1qmrqDPqa5DibFk3JNHeVmTvOoVgbOQiAS6NoBgPi9Qav4AwFYxFmuM6FoUe8rYV4W4eVYl1a1aynd1dqXXGN2roCFxLMGZ2m+2fnatFkp2LtNvNr0fA+WSneIN4AAAADUd/apQ2lNWahzN4zTf26CLR4WpZWFro0m4VoAAAAAEKoo8unN4/VmbvKbD1eL6/PH3C8sSZt/niHVhRma+GkDCXG2cM2VwAAAADDX1ldm7mjjFEscyJIQ2KD3Raj6yY4tCzfpZvIQQBcBopmAAAAQnQhydgSdPXuyqAL3YxFbsYFpPuKcjTJlRy2OQIAAACIDF1en7kAzViIZixI6/QGX4g2b5yxEM1lFtxzEQgAAABAKDs67zvbpDUH3GZBf0Nb8AZJU7OTtbzQpaXTs+RKjQ/LPAEAAABEh9rmTr1aWqNXSmrMXKQ/jCZixo4yi6dmKiMpbtDnCCD6UDQDAAAwABUN7XpmT5We31slT2tXwLETs5K0qijXvJCUEs8iNwAAAMBqC9EOVrZoTXG12TWtLkj+0J1DGDvKLCtwKZuFaAAAAABCqLyuTetKasxi/tN17UHHZ6XEaVl+lpYXuDQ1JyUscwQAAAAQHZo7vHrjcK15feTdk/UK0kvMNCU7WUumZ5nFMnnpCeGYJoAoRtEMAADAZfL5/WYC99SuSr11rE4+f+BtQW+Z4tR9RbmaMzpNMTEx4ZwqAAAAgCFW1dihtcVu83aspjXoeGdSrJYWuLSiwKVpOcnkEAAAAABCpqm9S68dqtXaA27tLGsMOj4hNkaLJmeau17OHedQrLENJgAAAAD0Q6fXp20n6rWu2K0tR+vU3uUL+poR6fFamu8yi2UmZyeHZZ4ArIGiGQAAgH5qaOvSS/urzZ1lTnnaAo7NTo3TPTNzdNfMHDpCAwAAABbT2uHVpiMes2PzuycbFKxhWpw9RgsnOc2FaAvGOxRrt4VppgAAAACiXZfPr3dO1GtNsVubj9SqvSt4S2ejCZiRnyyemqnUBJaVAAAAAOh/I+LdZY3mrpYbD9Wooc0b9DWOpFjdPi1TS/JdmjkyVTaaiQEYBPx1AwAAIIiDlc1avbvS3CI0WNeDa8aka9XsXC2clMFCNwCWVVtbq23btmnXrl0qLy9XXV2dUlNTNW3aNN15552aMmXKUE8RAIBBuRC083SD1hxwa+OhWrV0Bu+YZlz8MRai3TYtS+mJ/KkWAAAAQOgcqmo28xPj2kZNS2fQ8WOdiVpe4DJvIx0JYZkjAAAAgOHP7/frcHWLmXu8crBGlY0dQV+TGGvToilOc1eZ+ePSWWMFYNBxJRYAAKAPRnGMsdBt9a5K7TvbFHBsSrxNKwqzdd+sHE10sTUoAKxbt04vvPCCcnNzNWvWLKWnp+vs2bPasWOHeXvkkUd03XXXDfU0AQAIiRO1reZCtLXF7n5dCBqZnmAWyhgL0cY4E8MyRwDA0LDb7YN2bJvNFvAxogexthbibS2DEe/qpg6tK67Wy/urzUVrwRjF+0vys7SyMEdXjUxVDB2dBw0/39ZBrAEAgFWcqW/X+pJzhfrHalqDjrfbYrRgvENL87O0cJJTSfGD97czALgYRTMAAAAXJXTP7qnU8/uqVdfaFXDsJFeSVhXlalmBSykkcgDQY/Lkyfqnf/onFRQUXPD1kpISfe9739Ovf/1rXXvttYqLixuyOQIAMBB1rZ3acLBWa4qrtf9sc9DxRqH9rdOytKLApaLRabKxEA0ALMHpdIbtXA6HI2znwtAi1tZCvK3lSuPd2uHVq8UVenZnud48XC2fP/D4WFuMbp6eo3vnjDL/TYjl+sZQ4OfbOog1AACIJp6WTr1WWqt1JW7tPRO4CXG3WaNStSzfpcVTM+VMZo0AgKFB0QwAALA8n9+v7SfqtXp3pd46Wid/kK4Ht0xx6v7ZuSoalUbXNQDow7x58/r8en5+vmbMmKE9e/bo1KlTmjRpUtjnBgDAler0+rT1eJ25q8ybR+vUFWQlmi1Gmj/eYe5KuXBShhLjWIgGAAAAIDR8Pr/ePVGrZ3eWae2+CjW1B24CZpg12qF75ozWypkjlJWaEJZ5AgAAABj+Wjq82nzEY+4os/1kvbzBKvUlTcxK0rKCLC2Z7tJIB/kHgKFH0QwAALCs+tYuvXSgWs/srtTpuvaAY3NS43TPrFzddVW2XKnxYZsjAOupr6/XkSNHzNvRo0fNW2Njo/ncwoUL9fDDD/f7WNXV1Vq3bp127typmpoaxcbGKi8vTwsWLNCSJUuUkBD+P07Z7fYL/gUAIJL5/X4VVzRrTbFbrxysMXOIYCa7krSyMFtL87PIHQAAAACE1LHqJj23q9zcVaa8rjXo+BGORN09e5TumTNKk3PSwjJHAAAAANHRSOzNo7Vas7/aLJhp6/IFfU1uWryWTM/SsgKXea2ERsQAIglFMwAAwHJKKprNXWVeOehWe1fg7gfXjk3XqqJc3TTZqVijVTQADLIHH3wwJMd577339LOf/UytrR9cPG9vb+8pxNm4caO+853vmEU04eJ2u7Vv3z45nU6NHTs2bOcFAOByVTS0mx3T1hyo1vHatqDjM5NjtTTfpZWFLk3NSQnLHAEAkc/j8QzasW02mxwOxwUNGHy+4IsXMPwQa2sh3tbS33jXt3bq1YM1enl/tfaeOddcJ5CkOJtunZallTNydPWYdNnNaxtdg/r/JQTHz7d1REKsjb/BAwAAXC6f36/3TtTq+d3lWrP3rDwtnUFf40iM1eJpmVo6PUtFo9Nko1AGQISiaAYAAFhCe5dPG0pr9PTuSu0/2xxwbEq83Vzsdl9RriZkJYVtjgBwMZfLpVGjRmnPnj2X9brjx4/rJz/5iTo6OpSYmKi77rpLM2bMMB9v3brVLJg5e/as/uVf/kU//OEPlZQ0+P+t6+rqMot4Ojs79bGPfcy8cAgAQCRp6fDq9cO1WnvArR2nGhS4vF6Kt8do4WSnVhRma/54B0X2AIBevF5v2M5lLMQM5/kwdIi1tRBv68bb6Or89vF6s5D/zWN16vQGzlCMbGTuuHQzP7l5slNJ8X/d5dlvHDMcs8fl4ufbOog1AACIdH6/X28dq9Mv3izTEXdL0PEJsTbdNCnD3FFmwXiH4uxc+wcQ+SiaAQAAUa28rk3P7q3SC/uqVdfaFXCssTXoqtm5WpbvUnL3BSUACLP77rtPkyZNMm8ZGRmqqqrSl7/85cs6xu9//3uzQMZut+sf//EfNXXq1J7njOKZESNG6IknnjALZ1566SXdf//9vY7xhz/8wSxw6a/ly5ebx73URcFf/vKXKikp0eLFi3XTTTdd1vcDAMBg8fr8ev90g9YccJsFM62dwTu/Fo1K04pCl26dmqm0RP68CgAAACB0C9WKK5rM/OSVgzVBr2kYJmYlmfnJ0vws5aYlhGWeAAAAAKLH/rNN+unmU9pZFnhXS3uMNG+cQ0vys7RoSqbZkBgAhhOu6gIAgKjcLnTb8XpzVxmjE0Kg/mtGN+jFUzO1qihXs0alKoZtQgEMsb4KWC7HkSNHzOIUw80333xBwUy3lStXatOmTSovL9e6det0zz33KDb2wvRww4YNam9v7/d558+f32fRjFEw8/jjj+utt97SjTfeqAcffPCKvi8AAELpSFWj/vz2SbNrc2VjR9DxoxwJ5kK05QUujc5IDMscAQAAAFjDmbpWPb+7XKt3nNLxmtag451JsVqa7zJzlGk5yVzXAAAAAHDZTnna9Is3T2vjodqA42aOTNWS6Vm6dVqWslLiwjY/AAg1imYAAEDUqG/t0ov7q81imfL6wAu9c9Pidc+sHN15VbZcKfFhmyMADLZ33323575RNNMXm82mhQsX6s9//rOam5t14MABzZo164Ixf/zjHwc8l+4dZrZs2aLrr79eDz/8sHluAACGQqfXpye2n9Tq905rT1l90PFGl7Tbp2dqRUE2BfYAAAAAQm77iTo98Uyp3j5aI3+g7l+S4uwxWjjJaRbKLBjvUKydv7EBAC6f3T44uwJcfO2Ha0HRjXhbC/GOPrXNHfqvt8v0zO5Kdfn6TkQmulJ09+xRumVSukY6WFMVjfjZthbifQ5FMwAAYNgrrmjS6l2VerW0Ru1dga8szR2Xbu4qc+Mkp7nLDABEm9LSUvPfhIQETZw48ZLjCgoKLnjNxUUzoSyYue666/SVr3zFsok3AGDoGd2a//faoyqpbA44zh4jzR+fYS5Eu2mSU4lx/L8LAAAAQOg7Ov/kjZPacrQu6FijgN8o5L91WqbSE1neAQAYGKfTGZbzOByOsJwHkYF4WwvxHr6a27v0328e139tOarmDm+fY0ZlJOkbt0/VXUWjZGNNlaXws20tDovGm7+qAACAYamt06fXSmu0enelDlQEXviWmmDXHYXZurcoR+Mzk8I2RwAYCmVlZea/eXl5ATuGjRw5stdrQlkw8/jjj5sFM/Pnz6dgBgAwZPx+v/6yq1I/23IqYIH91JxkrShwaUl+FjtRAgAAABgUTe1d+s22M3pyZ8UlOzobRjkStLzAZd7GOBPDOkcAAAAA0aXT69NfdpzWT147LHdTe59jHElxevjmSfrkgvFKjBucXckAYKhRNAMAAIaVsro2PbOnSi/uq1Z9W1fAsVOzk7Vqdq6WTs9SUjxJHYDo19HRocbGRvN+VlZWwLGpqanmbjTt7e2qqakJ6Tyefvppbd68WYmJiWZxzjPPPNNrzNy5czV+/Ph+Ha+/8wtUJDRQbFdrLcTbOoh1dKtq7NA/rT2ibSf67t7sSonTsoJsrZyRrak5KWGfHwYXP9/WQrwBAEAk8/r8eml/tX751mnVtvR9XSMtIdbcTcYo5jd2l4mJoaszAAAAgIE1FXvlQKX+v/UHdczddzPi+FibPn3deD20aLIcyXFhnyMAhBNFMwAAYFhcUNp2ol6rd1Xq7eN1unT/NSnWFmNeWFpVlKuZI7mwBMBa2traeu4bBSvBGGOMopnzXxcK1dXVPfN59tln+xyTk5PT76KZL33pS/0a99RTTylcrLpdrVURb+sg1tFj7b6z+vvn9qmupbPXc5NzUvUPy/N14xSXYu0srLcKfr6thXgDAIBIsfN0gx7bdFKHqlr6fD4rJV5/e/tU3TtntFqbGuT1esM+RwCAdXg8nkE5rtG84vxcvL6+Xj6fb1DOhaFHvK2FeA9Pu8sa9JM3TmpP+bmGmxczVlIZDcW+dONYjUhPkK+9SZ524m0lxNpaIiHeTqdTQ42iGQAAELHqWjvNHWWMnWXK6/veIrRbblq87p2VozuvylFWCt0PAFh3p5lusbHB073uMee/LhQefvhh8wYAQLg1tHXqn148oGd3lvf5/KevH69vLZ2uxDh2ogQAAAAweM7Ut+s/Np/SxkO1l2wA9jfXjNA3l89QeuK5axqtYZ4jAMB6wlWcaSzCpBDUOoi3tRDvyHa8plU/f/O0Nh+5dJHkdeMd+srCsZqSnWw+DhRP4m0dxNpafBaNN0UzAAAg4uw/26Snd1fq1YM16vAG2ldGmjcuXatm5+qGiU7zIhMAWFl8fHzP/a6urqDju8ec/7pI9Pjjjw/1FAAAw8A7x2r0t0/tUXld76VmuekJemzVLN04JXtI5gYAAADAGlo6vPr9u2f0xI6zl7y+cdOkDH1t0ThNcKX0FMwAAAAAwJWqburQf71dphf2Vct3iWVW+bkp+urCMbp2LLt0A7AmimYAAEBEaOv0mUUyRrFMcWVzwLGpCXbdMSNb983K0bjMpLDNEQAiXWJiYs/9tra2oOO7x5z/ukiUlZXVr3Eez6U75kTDdrUIH+JtHcQ6OnR0+fT4W6f0P++cUV/Xgm6fnqW/v32inCkXFokS7+jGz7e1DHW8nU5n2M4FAAAik8/v19pit36+5bTczZ19jpmYlaS/vXmc5o9nkRoAAACAgWtq79Ifd5zVn96rUFtX338PHeVI0EM3jtFt0zJli6EZMQDromgGAAAMqbK6Nj2zu0ov7q9WfVvgXRGm5iTr/qJcLZmepaR4e9jmCADDhbFjTFpamhobG1VTUxNwbFNTk9rb2y+rKCXShXP7WKtuV2tVxNs6iPXwc9TdokfXHNWh6pZez6XE2/WtW8drWX6WYmJiei2gJ97WQrythXgDAIBw2numUf/2+kkdqOi7IZgjMVZfuH6U7pmVq1gbi9QAAAAADEyn16dn9lTpv7eVq66177VWGUmx+tyCUbp3Vo7i7LawzxEAIg1FMwAAIOy8Pr/ePl6n1bsrte14fZ/doLvF2WN069RMrZqdq6tGpJqL3QAAlzZ69GiVlJSooqLCXChot/ddZHjmzJkLXgMAwHDr4vz/dlaYXZw7vL0zijmj0/TdZZM0wpEwJPMDAAAAEP0qG9vNnGRdSd/Na+wxMq9tPLhgtBxJLM0AAAAAMDB+v18bSmv1y7dOq6zuXIPMiyXE2vQ3V+fpgbkjlJpAHgIA3fgvIgAACJu6lk49v69az+6p0pmGvpO3bnlp8bq3KEd3zshRZkpc2OYIAMPdtGnTzKIZYxeZY8eOacqUKX2OKy4uvuA1AAAMp4Vp3113TO+eauj1nNG1+aEbRutj14yQnQ7OAAAAAAZBW6dXf9xxVv/z7lm1dV24o2W3BeMd+vqisZroSg77/AAAAABEn/dO1eunm0+ruLLvHS6NSyIfmpGtz183Wjlp8WGfHwBEOopmAADAoHc52H26Tr/Zclivlrj77AJ98YWk+4pydcPEDBa5AcAVmDt3rp5//nnz/qZNm/osmvH5fNq8ebN5PyUlRYWFhWGfJwAAV+LVgzX6lw3H1dju7fXcJFeSvr98kqbmpAzJ3AAAAABE//WOV0tr9dPNp1TZ2NHnmLHORP3torG6fmKGYmK4xgEAAABgYI5Ut+hnW05r6/G6S465aVKGvnzjGIr2ASAAimYAAMCgXTxas/es/nPzUe0rrw84Ni3BbnY7uLco17ygBAC4cpMnT1Z+fr6524xRNLNo0SJNnTr1gjEvv/yyysvLzfvLli1TbCypIQAgsjW2delfN57Q+pKaPp//2NV5eujGMUqItYV9bgAAAACiX0lFsx7bdEJ7ypv6fD41wa4HF4zS/bNzFWcnLwEAAAAwMBUN7frV1jK9fMCtS7UnvmpEqr66cIxmj04P8+wAYPhhZRQAAAg5r8+vf9t0Qk++fzbguOm5yVpVlKsl07OUGGcP2/wAIJIdPHhQFRUVPY8bGhp67htff+ONNy4YbxTFXOxTn/qUHn30UXV0dOif//mfdffdd5u7yRiP3377bb322mvmuBEjRuiOO+5QtLDbB+//JTabLeBjRBfibR3EenjYcbJe/3vNYVX00ck5Ny1e31sxRXPHOYIeh3hbC/G2FuINAAAGi7u5Q794s0wv76/uc6GaLUa6a2aOvnT9aDmT44ZghgAAAACirYnY7945o7/sqlB7V9/lMkZDYmNnmZunONnhEgD6iaIZAAAQUm2dPj269og2Hfb0+XycPUa3TcvSqqIczRiRSvIGABfZuHGjNm/e3OdzpaWl5i1Y0cyECRP0ta99TT/72c/U2tqqJ598stcYo2DmO9/5jpKSkhQtnE5n2M7lcARfnI3oQbytg1hHlvYurx57pVT//dZx+fu4LvShWSP1/TtnyHGFC9OIt7UQb2sh3gAAYKDau3x68v0K/XZ7uVo6fX2OuWZMur5xyzhNyU4O+/wAAAAARF8OsnpXpX77Trka2rx9jslKjtOD143SXVdlK5YdLgHgslA0AwAAQqaupVN/+/wh7T3T1Ou5EekJundWju68KptuawAQBtdcc40ee+wxrV27Vjt37lRtba1iY2OVl5en+fPna+nSpUpISBjqaQIA0KeDFQ362v/brYMVjb2eS0uM1T/fNUN3Fo0akrkBAAAAiF5+v19vHPHoJ2+cUnl9e59jRjkS9LVFY7VoMl2dAQAAAAyMz+/X+pIaPf7WaZ1t6OhzTFKcTZ+4doQ+fs0IJcfbwz5HAIgGFM0AAICQKKtr01efKdUpT1uvnWWMBW2LJ6ZK/r67sQEAPvDwww+bt1DIzs7WAw88YN4AABgOfD6/fvPWcf3olVJ1eHvnD9dNytJjq2ZpZEb07JQGAAAAIDIcrm7Rv71+Uu+dbujz+eQ4mz4zf5Q+enWeEmLp6gwAAABgYLafqNNPt5zWoaqWPp+322J0z8xsfW7BaGWl0KAYAAaCohkAADBgxRVN+tqzpapt6brg62kJsfrVJ6/WdZNc8ng88va9eygAACFh/L9msNhsNjkcjp7H9fX18vkoBo1WxNs6iHVkOdvQrv+95rDeO9V7gVq8PUZfWThOf3PNCNn8bfJcVKzfH8TbWoi3tQx1vJ1OZ9jOBQAAQs/T0qnHt5bp+b1V8vl7P2/sJbNyRrYevmG0XKnxQzFFAAAAAFHkYGWzfrrllN492XfBvmHx1Ew9fOMYjXUmhnVuABCtKJoBAAAD8taxOn37xcNq67pwMUpuWrz+8Nn5mpaXNmRzAwBYizeM1ZnGIsxwng9Di3hbB7EeOutL3PrhayfU1N77/Z+SnazvL5+kydnJ8hsxCtE5ibe1EG9rId4AAKA/Or0+PbWrUr/eVt5nLmKYNSpV37x5vPLzUsI+PwAAAADRpbyuzSzYX19Sc8kxc0an6asLx2rGiNSwzg0Aoh1FMwAA4Io9t7dKP9xwXF5/70VtP1+VT8EMAAAAgIAa2rrMYplXD9b02c3549eO0JeuH634WNuQzA8AAABA9PH7/dp6rE4/fuOUTl1iF0ujMdgjC8fqtmmZiokxshMAAAAAuDJ1rZ36zfYzenp3pTovXmT1VxOzkvTlm8boxokZ5CAAMAgomgEAAFd0Qek/t5aZCd3F5o5N1/935xQ5khOGZG4AAAAAhod3T9brn9YdVVVTZ6/n8tLi9d3lk3T1mPQhmRsAAACA6HS8plU/3nRS207U9/l8QqxNn5o7Qp+4doQS4+xhnx8AAACA6NHW6dWTOyv0+3fOqrmj790ts1Pj9IXrR2tlYbZibRTLAMBgoWgGAABclk6vT//8ynGtKXb3em5ZQZb+95KJirPTBRoAAABA39q7fPr5m6f15PsVfT5v5BXfWjxeqQn86RIAAABAaNS3dunX28q0elelLtHYWcvys8zOzrlpNAUDAAAAcOW8Pr9ePlCtX20t67NxmCEl3q5PzRuhj87Jo2AfAMKAK88AAKDfmtq79L9ePKx3Tzb0eu7T80bqoRtGs0UoAAAAgEsqrWrWo2uO6lhNa6/n0hPt+s6tE3Tb9KwhmRsAAACA6NPl8+vZPZX61dZy1bd19TmmMC9F37xlnK4amRb2+QEAAACIHn6/X28dq9PPtpzu8zqIwdhNZtXsXH123khlJMeFfY4AYFUUzQAAgH6pauzQI8+W6nB1ywVfN3YG/dat43XvrNwhmxsAAACAyO+q9sR7Z/X4W2XmorWLzRuXrv+zdJJy0uKHZH4AAAAAos/2E/X68aaTl1ys5kqJM3eWWV7gko2GYAAAAAAGYP/ZJv108yntLGu85Jgl07P0pRtGa3RGYljnBgCgaAYAAPTDUXeLvvpMqSobOy74emKsTf9yx2TdOMk5ZHMDAKCb3T5421bbbLaAjxFdiLd1EOvwOFPfpkfXHNHO0713rIy3x+iRReP1kavzBn2RGvG2FuJtLcQbAACc75SnTT9546S2HK3r83kjD/n4tSP0qbkjlRw/eH9PAgAAAGCN/OMXb57WxkO1lxwzd2y6vnLTWOXnpYR1bgCAD1A0AwAAAnrvVIO++cIhNbV7L/i6MylWP7lnmgpHpA7Z3AAAOJ/TGb4iTofDEbZzYegRb+sg1qHl9/v17M5y/Z8XD6ipvavX8wUj0vUfHynSlNy0IZkf8bYW4m0txBsAAGsy8o7fbDujJ3dW9LnDpeHWqZn6yk1jNIrOzgAAAAAGoLa5U7/eVq5n91bJe4n8Y2p2spl/zB/vUAy7WwLAkKJoBgAAXNL6Ere+u/6YOr0XJndjnYn66b3T2C4UAAAAQJ88zR36h+f3ae2+il7PGdeFvrhwkr5+61TFx7IbBAAAAICBMRaovbi/Wo+/dVq1Lb0L9g1Tc5L1zZvHac6Y9LDPDwAAAED0aOnw6k/vndUfd5xVS6evzzF5afH60g2jtazAJRvFMgAQESiaAQAAfXaENpK7n2453eu5q0ak6t/vnqqM5LghmRsAAACAyLblULW+uXqPqhrbez032pmkH99fpLkTModkbgAAAACiy/unG/Rvm07qUFVLn89nJsfqoRvG6I4Z2bLbWKwGAAAA4Mp0eX16fl+1fv12uWpaOvsck55o16fnjdL9s3OVQNMwAIgoFM0AAIBeHdmMC0xP7ars9dyiyU7984pJSoyzD8ncAAAIxOPxDNqxbTabHA5Hz+P6+nr5fH13DsLwR7ytg1iHVlunV/+x+aT+3/u9d5cxfGhGtv7u1glKTYgZ1P9mXwrxthbibS1DHW+n0xm2cwEAgHPO1LfrPzaf0sZDtX0+H2uL0Ufn5OmzC0YqNYFlEQAAAACuvPHwG0c8+tmW0zrlaetzTLw9Rh+ek6dPzxup9ETyDwCIRPzXGQAAXLDI7R/XHDWTvYsZXRC+cfM4OrEBACKW1+sN27mMRZjhPB+GFvG2DmJ95Q5WNuvRNUd0vLb3BSNHYqz+/vYJWjz13O4ykfIeE29rId7WQrwBAIheLR1e/e6dM/rTe2fV4fX3OeamSRn62qJxGutMDPv8AAAAAESP3eWN+unmU9p7pqnP540VVCsKXfri9aOVl54Q9vkBAPqPohkMiN1uH7TOgIEeI7oQb2sh3pHL09KpR545qH19JHpfXzROn5g7UjEx/S+YIdbWQrythXgDAIDzd6r8w44z+s+t5eb9i1033qH/vXSiXKnxQzI/AAAAANHB5/dr7QG3fv7mabmbO/scMzErSd+4ZZzmjftgBzoAAAAAuFzHa1rN3GNzH02Hz7/+8ZWFYzUlOzmscwMAXBmKZjAgTqczLOdxOPjDppUQb2sh3pHhZE2zPvvkHh13N1/w9Xi7TY/dP0sfmjVywOcg1tZCvK2FeAMAYE3ldW363+uOak9578L7hNgYPbJwrFYV5V5W8T0AAAAAXGzvmUY99vpJFVdceA3j/N0tjc7Od8/KUayN/AMAAADAlalu6tB/vV2mF/ZVq48+Yab83BR9deEYXTuWdRIAMJxQNAMAgMXtPl2nz/5+h2qaOy74enpirP7rk9do/sSsIZsbAAAAgMjj9/v10n63Hnv9hFo6fX1eMPr+8kkan5U0JPMDAAAAEB0qG9v1sy2ntb6kps/n7THSqtm5enDBaDmSWPoAAAAA4Mo0tXfpjzvO6k/vVaitq/d1D8MoR4IeunGMbpuWKRvNwgBg2OEvRwAAWNhrxZX68pM71XbRQreRjkT9/jNzNTU3bcjmBgAAACDy1LV06gcbjmvTYU+v54yGzp+aN1IPLhilOLttSOYHAAAAYPhr6/SaC9Z+/+5ZtV9iwdp14x36+s3jNIFifQAAAABXqNPr0zN7qvTf28pV19rV55iMpFh9bsEo3Tsrh2sfADCMUTSDAfF4ei+QCAWbzSaH44Pt6+rr6+Xz9f0HUQx/xNtaiHfkeHp3hf7l1WO9thOdmpOsn91XoOz4rgH9d55YWwvxtpZIiLfT6Qzr+QAAgLT1WJ2+98ox1TR39tlh7XvLJ2nWKArvAQAAAFz5rpavltbqp5tPqbKxo88x4zIT9fVF43TDxIywzw8AAABA9OQeG0pr9cu3Tqusrr3PMQmxNv3N1Xl6YO4IpSaw1BoAhjv+S44B8Xq9YTmPsQgzXOfC0CPe1kK8hybx++VbZfrdO2d6PTdvXLr+9UNTlJpgD3lciLW1EG9rId4AAER/l+f/2HxKq3dX9fn8h2Zk6xu3jFNKvD3scwMAAAAQHYormvRvm05qT3lTn88b1y2MXS3vn51Ld2cAAK6Q3W4ftIZ7gR4juhBva4nGeO84Wa+fvHFCxRXNfT5vi5HuvCpHX7xhjHLSEmQl0Rhv9I1YWwvxPoeiGQAALLatqNEZel1xTa/nVha69I+3T1AsF5sAAAAA/NWBs016dO1RnfK09XouIynWzCEWTckckrkBAAAAGP7czR36xZtlenl/tfyXWLB298wcffH60XImxw3BDAEAiB5OpzMs53E4HGE5DyID8baW4RzvgxUN+td1B7WptPqSY27Nz9W3lk7TlNy0sM4tUg3neOPyEGtrcVg03hTNAABgEU3tXfpfLxzWu6caej33ufmj9IXrRykmJmZI5gYAQCR3SDPQecNaiLd1EOtL6/L59dttZfr122Xm/YvdMDFD/2fZZLlS4zVcEG9rId7WQrwBABh+2rt8evL9Cv12e7laOn19jrl2bLr+9uZxmpKdHPb5AQAAAIgOZ+pa9eMNh/TMzjL5+6rUlzR7bIa+syxfcyfQJAwAohVFMwAAWEBlY7seeaZUR9ytF3zdHiN9+7YJZpc2AACGu3B1SLNy5w2rIt7WQazPOVnTrK//Zbd2nqrr9VxSnF3/sCJfH5s3dtgX3RNvayHe1kK8AQCIXH6/X5sOe/Qfm0+pvL69zzGjHAn6+qKxWjjZOezzDgAAAABDo761U79844h+v/WEWbTflwmuFP2vJdO0dEYeuQcARDmKZgAAiHJHqlv0yLOlqmzsuODribE2/fBDU8wO0QAAAABgLF77y47T+t7LxWrp8PZ6ftZoh/79w0WamJ06JPMDAAAAMLwdqmrWv206qfdPN/b5fHKcTZ+ZP0p/c3We4mPZOQ4AgFDzeDyDclxjx9fzG1jU19fL5+t7gTqGP+JtLcMx3kaBzF92ntVvtpWroa2rzzFZKXH6/PVjzCbDcXab6up6NxGzouEYb1wZYm0tkRBvZxib4F4KRTMAAESxHafq9c3nD6v5ogVvmcmx+sk901SQx2I3AAAAAJK7qV3ffmafXiup7PWc3Rajh2+erK/cMtm8eAQAAAAAl8PT0qnHt5bp+b1V8vl7P2/0c75jRrYeunG0XCnxQzFFAAAswevt3ShnMBiLMMN1Lgw94m0tkRxvn9+vdcVu/efWMp1tuLCxcLekOJs+ce0IffyaEUqOtxvtxCL2+4kEkRxvhBaxthafReNN0QwAAFFqfYlb/7TumLouugI11pmon947TaMzEodsbgAADKcOaZHSeQPhQ7ytg1ifs+VIrb677qhqWzp7PTfGmah/XjFFM0elqamhXsMZ8bYW4m0tQx3vSOiQBgBAJOr0+vSXXZX6723lamrvezHGrFGp+ubN45WflxL2+QEAAACIDttP1Omnm0/rUHVLn88bzcHumZmtzy0Ybe4yAwCwHopmAACIMn6/X//z7ln9/M3TvZ6bOTJVP757qjKSSAABANEnnJ0wrNp5w6qIt3VYLdatHV79+I1Tem5vVZ/P3z0zR19fNNbsthaN74vV4m11xNtaiDfOV1tbq23btmnXrl0qLy9XXV2dUlNTNW3aNN15552aMmXKUE8RAKLyOsVbx+r072+c0ilPW59j8tLi9dWFY3XbtEzFxBh7zQAAAADA5TlY2ayfbjmld082XHLM4qmZevjGMWaTYQCAdVE0AwBAFPH6/PrRxhN6ek/vRW83T3Hq+8snKzHONiRzAwAAABA59p9t0qNrjuh0XXuv55xJsXp06UTdNImdEwAAw9+6dev0wgsvKDc3V7NmzVJ6errOnj2rHTt2mLdHHnlE11133VBPEwCixjF3i1kss+1E3ztVJsba9Kl5I/Xxa0ZwvQIAAADAFSmva9PjW8u0vqTmkmPmjE4zC/VnjEgN69wAAJGJohkAAKJEW6dXf//yEW05WtfruY/MydXXF40ztxsFAAAAYF1dXp9+s/2Mfru9XF5/7+dvnJShR2+fqMwUdqcEAESHyZMn65/+6Z9UUFBwwddLSkr0ve99T7/+9a917bXXKi6O//cBwEDUt3bpv94u09O7K/vMNQzL8rP05ZvGKDctIdzTAwAAABAF6lo7zWscRt7ReYnEY2JWkpl33Dgxg10tAQA9KJoBACAKeFo69fXnSrX/bHOv5762aKw+dnUeiSAAAABgcac8bebuMgcqeucNSXE2/e3N43TXVdnkDgCAqDJv3rw+v56fn68ZM2Zoz549OnXqlCZNmhT2uQFANOjy+fXsnkr9amu56tu6+hxTmJeib94yTleNTAv7/AAAAABERyPhJ3dW6P9n707AoyqvP47/Zsm+kwQSdggkAURFBXEF3EURQaR7tVXbKi641Ba3Wpe6VlFUam3/tWq1BcRdREDEfUFcEEjYt0AIWci+zfJ/ZhDkZiISycydmfv9PM88k7zvnZkDhwm5c9/znic/3q76Fne7x2Qnx+i3x/XU2UOy5WRTYQBAGxTNAAAQ4bZUNenK54u0ZVezYTzGYdNtZ+bp1MJM02IDAAAAYD6v16u5X5XpwcWb1eTyBMwfkpuk28cOUK+MeFPiAwCEr+rqaq1du9Z/W7dunf9WW1vrnxs1apSmTJlywM+1c+dOzZs3T8uWLVNFRYWcTqdycnJ0zDHH6PTTT1dcXOi7DjgcDsM9AKBjPtpYrQcWb9L6isbvXLR2+Qm9dObgLNkpzgcAAADQQW6PV6+u2KnH39+qsrrWdo9JinXowqNz9ZMjchQfw2c8AID2UTQDAEAE+3p7nabOLdauRuPubSlxDv313Hwd0SvVtNgAAAAAmK+ivlW3z1+v99bvCphz2KRLju2pC4/uzq5rAIB2XXLJJZ3yPEuXLtWMGTPU2Pjtourm5ua9hTiLFi3StGnT/EU0oVJeXq7ly5crIyNDvXv3DtnrAkC0dLF88O1Nendd4HmGT6zDpp8Pz9WFI7orMZZFawAAAAA6vhmY77rGjHe2fGeRvu+6xvnDuumio7srPTEm5DECACILRTMAAESoJWurdMOra9XcZqfonJRYPXxegfpnJZoWGwAAAADzvb22UnfM3xBQZO/TOyNet4/N05DcZFNiAwBEnqysLPXo0UNffvllhx63YcMGTZ8+XS0tLYqPj9e5556rQw45xP/9+++/7y+Y2b59u+666y7dfffdSkhIULC5XC5/EU9ra6t+9rOfyW63B/01ASAa1DW79I8PS/TfZTvk8njbPeaU/C66clRvdU8LfQcxAAAAANGxgfDDSzZr2dbd3Y7bc3phpi49vqd6pseHNDYAQOSiaAYAgAg0+/Mduu+tjWp7TSq/a6Iemlig7ORYs0IDAAAAYLL6FrceWLxJLy3f2e78pMO66qpRvZXAjs8AgO8xadIk5eXl+W/p6ekqKyvT5Zdf3qHnePLJJ/0FMg6HQzfddJPy8/P3zvmKZ3Jzc/XMM8/4C2deeeUVTZ48OeA5nnrqKX+By4EaO3as/3nb4/F49Nhjj2nVqlU6+eSTdeKJJ3bozwMAVuT2ePXy1zv12LtbVNVOUb5PQddEXTumj47olRry+AAAAABER0fLR9/dokWrK7/zmBG9U3XFib01KCcppLEBACIfRTMAAEQQj9frP0H89yfbA+aO6Zumu88ZqCQWvgEAAACW9dW2Wt382jqVVDcHzGUmxujmM/rr+P7ppsQGAIg87RWwdMTatWv9xSk+Y8aMMRTM7HH22Wdr8eLFKikp0bx58zRx4kQ5ncbLVwsWLFBzc+D/bd9l5MiR7RbN+ApmZs6cqffee08nnHCCLrnkkh/05wIAK/lsS43+uniTVpc1tDvfJdGpy07opXFDsuWw20IeHwAAAIDIVlnfqic+LNHcr8r8Bfvtyc9O1BUn9tLIvmmy2TjvAAB0HEUzAABEiBaXR7fNX683VlUEzI07JFs3ntpXTofdlNgAAAAAmMvl9vgvKv3r420BHSl9Rg/I0I2n9VNGYowZ4QEALOqTTz7Z+7WvaKY9drtdo0aN0rPPPqv6+nqtWLFChx12mOGYp59++qBj2dNh5p133tFxxx2nKVOm+F8bANC+kl1NemjJZr21pqrdeafdpp8cmaOLRnZXchzLDgAAAAB0TEOLW/9Zul1Pf7pdDa2edo/JSYnVpcf31JmDs2SnWAYAcBD49AoAgAhQ2+TS719ao6VbagLmLjmmh35zbA92UgAAWJ7DEbxua20X07G4LrqRb+uIllxvrGjUja+u1srS+oC5xFi7rj+5n84Z2tXy5wzRkm8cGPJtLeQ7fBUXF/vv4+Li1L9//+88bvDgwYbHtC2a6cyCmWOPPVZXXHEF/04AYD8L13zF+L7Fay3u9nd5HjUgQ1NH9VavjPiQxwcAAAAg8jcBe3H5Tj3xQYkqGlrbPSY13qFfHd1Dk4d1U5yTz3AAAAePohkAAMJcaU2zrppbrHXljYZxh02adlo/nTu0q2mxAQAQTjIyMkL2WmlpaSF7LZiPfFtHpOXa6/Xq6Y826S+vr1JTO7uwHdUnQw9MPly9MxNNiS/cRVq+cXDIt7WQ7/CxdetW/31OTs5+i9y7d+8e8JjOLJiZOXOmv2Bm5MiRFMwAwHfweL16fUW5Hnl3i8rr21+41j8zQdee1EdH9+H/WgAAAAAdv6bx9toqzXhnizZXNbV7TKzDph8dkaNfHd1dqfEsbwYAdB7+VwEAIIyt2dmgq54vUlmd8QJVQoxdd48bqOP6p5sWGwAAAADzlNU06fdzvtKS1TsD5px2m64+NV+/G5Unh93a3WUAAOZpaWlRbW2t/+vMzMz9HpucnOzvRtPc3KyKiopOjWPOnDlasmSJ4uPj/cU5zz//fMAxI0aMUN++fQ/4OQ80RrphojOQa2sxK99fbK3R/W9t1Irtde3Opyc4denxvTTx8Bz/+QY6B+9vayHf1kGuAQAI9EVJrR5esllfbWv/nMN3lnHWkCz97rieykmNC3l8AIDoR9EMAABh6pNN1fr9S2tU3+I2jGcmxmj6xAINykkyLTYAAAAA5nnj6+2aNne5qhoCd3/Oy07S9B8N09Ce7PwMADBXU9O3O4b6Cla+j+8YX9HMvo/rDDt37i4w9T3v3Llz2z2ma9euHSqaufTSSw/ouFmzZilU6LBkHeTaWoKd7227GnXPG0V66Ytt7c77ivB/eUwfTT05X2mJMUGNBby/rYZ8Wwe5BgBY2YaKRn83yyVrq77zmGP7pumKUb01MDsxpLEBAKyFohkAAMLQayt26vb5G+TyeA3jfbrE6+GJBeqR/v0LDQAAsJqqqu/+sPVg+XYD3PfiZnV1tTweT9BeD+Yi39YRabmua3bpvoUb9PLXgd1lfH50RI6uGt1HCTGeoP5MjFSRlm8cHPJtLWbnOyMjI2SvFWmdZvZwOr//ctSeY/Z9XGeYMmWK/wYA+FZji1uPv7NOf1uyTk2t7f+fOSo/WzefPUgDuqaEPD4AAAAAkW1nXYv+/sFWvbR8p9osfdprULckXTmql4b3psAUABB8FM0AABBGvF6vnvxkmx59d2vA3GE9kvXAuQVKS+C/bwAA2uN2G7uzBZNvEWYoXw/mIt/WEc65/mJrrW55fZ221TQHzGUlxehPZ/TXMf3S/d+H658h3IRzvtH5yLe1kO/wEBsbu/drl8v1vcfvOWbfx4WrmTNnmh0CAPzgaxCvfLVdd7++Stuq2+/s1T87STefNVhjCruGPD4AAAAAkc23+dfTn27Xf5aWqsnVfoF+j7Q4XXZCL51a0EV2my3kMQIArIlVtwAAhAlfV5n7Fm3U81+WBcydNDBDt581QHFOuymxAQAAADBHq9ujx9/fqn9/sl3tbcbmO1e44bR+Sk+IMSE6AAC+W3z8t52Sm5raX5i9rz3H7Pu4cJWZmXlAx9ENE52BXFtLMPO9Ynud7l+0QV+U1LY7nxzn0O+O66XJR+QoxmGne2UI8P62FvJtHeGQa7phAgDMuJbhW+/0jw9LtKux/c1T0hOcuviYHjrvsK7+cw4AAEKJohkAAMJAY4tbN7y6Vu+u3xUw99MjczR1dG92VwAAAAAsZn15g25+fZ2KyxoC5pJi7fr9yX111uAs2ThXAACEIV/HmJSUFNXW1qqiomK/x9bV1am5ublDBSmRgG6YCAZybS2dke/yuhY9+u4WvbKivN15u02acGhX/e64nspI9BXje/k3ZhLe39ZCvq2DXAMAor2b5YLiSj323hZt3bX7s522fBsE+9Y+XTAiV8lxLFkGAJiD/4EAADBZZX2rpr5QrJWl9YZx37I3X7HMz47KNS02AAAAAKHn8Xo16/MdmvHOZjW7AvvLDOuZoj+fmafuaXGmxAcAwIHq2bOnVq1apdLSUv9CQYfD0e5x27ZtMzwGAHDwml0ePfvZdv3ro21qaG2/w8Hw3qm6ZkwfDcxODHl8AAAAACLb0s3VenjJFq3cYVzvtG+B/jmHZOs3x/ZU15TYkMcHAMC+KJoBAMBEm6uadMWcIpVUG3dbiHXYdNvYPJ1SED07awIAAAD4fmW1LfrzG+v08aaagDmn3ebf/fkXw3Pl8F1tAgAgzBUUFPiLZnxdZNavX6+BAwe2e9zKlSsNjwEAHNxOz4vXVOmhJZsDrj3s0SMtTleP7q1RAzLoXAkAAACgQ9bubNCMd7bo/Q27vvOYE/PSdfkJvdQ/iwJ9AEB4oGgGAACTLN9Wq6kvrFZ1o8swnhrv0APnFujwnimmxQYAAAAg9BYWV+gvCzaopskdMNc/M8FfWF/YLcmU2AAA+CFGjBihF1980f/14sWL2y2a8Xg8WrJkif/rpKQkDRkyJORxAkC0WF1Wr78u3qTPttS2O58YY9dFx/TQT47IUazTHvL4AAAAAESubbsadfdra/TK1zvl/Y5jhuYm68pRvTSsZ2qIowMAYP8omgEAwARvr6nUja+tVbPLeBqZmxqrGecVqm9mgmmxAQAAAAitumaX7l20Sa+vLG93/idH5mjK8b0UH8OiNgBAZBkwYIAGDRrk7zbjK5oZPXq08vPzDce8+uqrKikp8X995plnyunk0hUAdFRVQ6see2+rXlpeJk87q9d8vWTGHZKty07oqaykWDNCBAAAABChqhtb9djba/Xk+xvV7PK0e0zvjHhNOaGXThpIN0sAQHjiygMAACE26/NS3bdoU8CuC4XdEjV9YgEXrAAAAAALWbalRre8vk6ltS0Bc12TY/SnM/N0dJ80U2IDAKCoqEilpaV7v6+pqdn7tW/87bffNhzvK4pp68ILL9TNN9+slpYW3XHHHZowYYK/m4zv+w8++EALFy70H5ebm6tx48YpmjgcjqA9t91u3+/3iB7k2lo6mu9Wt0f//axUf/9gi+qaAztW+gzrmaLrTu6nwTnJnRorDh7vb2sh39ZBrgEA0eTl5WV6YPGn/sKZ9mQmxuiSY3vo3KHZcjr4Pw8AEL4omgEAIEQ8Xq8eeWeLnvp0e8DcsX3TdNc5A5UUG7wL6QAAAADCR4vLo5nvb9Uzn24PKKj3ObWgi/54Sj+lJfDxHQDAPIsWLdKSJUvanSsuLvbfvq9opl+/fpo6dapmzJihxsZGPffccwHH+Apmpk2bpoSE6Oq+nJGREbLXSkujyNYqyLW1fFe+vV6v3ioq052vrdL68vp2j+mRnqA/nlmosw/NZafnCMH721rIt3WQawBAJPKdc/zfx9s0872t7c4nxNj1i+G5+vlRuUpkrRMAIAJw1R0AgBAtiLv1jfV6s6giYG780GxNO6UvOy4AAAAAFrF2Z4O/u8zqnQ0Bc8lxDv3h5L46Y1AmC9sAAFHjqKOO0v3336/XX39dy5YtU2VlpZxOp3JycjRy5EidccYZiouLMztMAIgIa3bU6rZXV+rdNeXtzifEOHTp6Dz95sT+io9h8RoAAACAjhfMPLxki55eGrgpsMMmTTysqy4+pqcyk2JMiQ8AgB+CohkAAIKstsmla19crWVbawPmfntsD118TA8WwwEAAAAW6T753GelevTdLWpxB/aXObJXiv58Zp5yUlk0DAAID1OmTPHfOkN2drYuuOAC/w0A0HG7Glo0feEaPf3RJrk97fWrlCYM66HrzyhQblp0de4CAAAAEBq+c427FmzQi8t3BsydeUiOfntMrnqmxZoSGwAAB4OiGQAAgqi0pllXPl+s9RWNATsv3Hhaf50zNNu02AAAAACEzo7aZv153np9srkmYC7GYdNlx/fSz47KkZ2CegAAokZVVVXQnttutystLW3v99XV1fJ4PEF7PZiHXFtLe/lucbk15/NS/e29LapucrX7uENyk/X7k/vp0B4pkqdJVVVNIYwaPxTvb2sh39YRDrnOyMgI6esBAKJDq9ujW15fpwXFlQFzfz5niC44tq//sw63221KfAAAHAyKZgAACJLVZfW6am6xdta1GsYTY+y655yBOqZfummxAQAAAAid+UUVunvBBtU2B15IystK0B1nDdDA7ERTYgMAAMETykUkvoWYLFqxBnJtLR+sq9R9izYEbMy1R3ZyjC4/oZfOHJzlL8Dn30Zk4/1tLeTbOsg1ACASNLW6df3La/TBhuqATYHvnXSYzjuyp2mxAQDQGSiaAQAgCD7aWK0/vLxa9S3GXYMyk2L00MQCFXZLMi02AACilcPhCOrugPv7HtGFfFtHsHNd2+TSXQvWa97K8nbnfz48V5ef2EdxTv6NhQLvbWsh39ZCvgEA0WZDeb3ufG2lFq4qa3c+zmnTz4/K1QUjuisxNnifhwAAAACIfnXNLk2du1pflNQaxmMcNt1zTr4mUjADAIgCFM0AANDJXl2xU7fP3yC3x2sY79clXg+fV6jctDjTYgMAIJplZGSE7LXS0tJC9lowH/m2js7M9Qdry3Xt7K+0vbopYK57WrzuP/8wHTsgq9NeDx3He9tayLe1kG8AQKRqbHVr5uur9K/3N6jVbbzGsMcp+V105aje6s61BgAAAAAHqaqhVZfPKVJxWYNhPCHGrvvPzdex/buYFhsAAJ2JohkAADqJ1+vV/328TTPf2xowN6xniu4fn6+0BP7rBQAAAKJZU6tb988v1j/e29Du/PjDu+u28YcoLSEm5LEBAAAACF/1LW5d+Xyxvmyzu/MeBV0Tde2YPjqiV2rIYwMAAAAQfXbUNmvK7CJtrDRu/pUS59DD5xVoaPcU02IDAKCzsXIXAIBO4PJ4dc/CDXrhq50Bc6cWdNGtZ+Ypzmk3JTYAAAAAobFqe42u/t8XKioNXOSWGu/UHROG6pzDupsSGwAAAIDwLr6/em77BTNdEp267IReGjckWw67zZT4AAAAAESXzVVNmjJ7lbbXtBjGMxNj9Mj5hRqYnWhabAAABANFMwAAHKSGFremvbJW72/YFTD386NydOWo3rLbuJAFAECwVVVVBe257Xa70tLS9n5fXV0tj8cTtNeDuci3dXRWrj1er575ZJseeXezWt3egPkRfdL057EDlJMaF9SfVdg/3tvWQr6txex8Z2RkhOy1EFkcDkdQ/93v73tED3Id/ZpdHl330hot22osmIlx2PSz4d110cgeSo7jsn404v1tLeTbOsg1ACDcrdnZoMtnF6miodUwnpsaq8fOH6ReGfGmxQYAQLDw6RoAAAehor7Vv/vbyh31hnFficw1Y/roJ0fmmBYbAABW43a7Q/ZavkWYoXw9mIt8W8cPyXVpTbP+NG+dPtsSuCN0rMOmKSf08p8X+Arp+XcUXnhvWwv5thbyjXARyoKqfQvHEN3IdXRpcXl07TOf6aON1YbxLkmxevaSo1WYk2pabAg93t/WQr6tg1wDAMLJV9tqddXzxaptNn521rdLvB49v1DdUuJMiw0AgGCiaAYAgB9oY2Wj/0SypLrZMB7ntOm2sQN0cn4X02IDAAAAEFxer1dvrKrQPYs2qq7NxSWfgdmJun1sngZkJ5oSHwAAAIDw1ur26IrnlumtojLDeFpCjJ65iIIZAAAAAJ3r403VuvaF1WpyGTs0F3ZL1IzzCpWRGGNabAAABBtFMwAA/ABfltTqmhdWq7rJZRhPi3fqrxPydXiPFNNiAwAAABBc1Y0u3b1wgxYUVwbM+bpO/mJ4rn53XE/FOu2mxAcAAAAgvLk9Xl0z60vNX7HDMJ4S59TTF43Q4O4UzAAAAADoPIvXVOqGV9eq1e01jA/rmaIHJ+QrOY6lxACA6Mb/dAAAdNBbqyt18+tr1ewynkh2T43Tw5MK1LdLgmmxAQAAAAj+Tmx/nrdOZXWtAXM5KbH689g8HdmLBW4AAECqqqoK2nPb7XalpaXt/b66uloej3GnWEQHch19PF6vbn19rV75eqdhPCHGrkcnD9ahPdP3jpHv6Mb721rIt3WEQ64zMjJC+noAgPD26oqduv2N9WpTL6Nj+6Xp3nMGKj7GYVZoAACEDEUzAAB0wH+Xleqvb21Sm/NIDeqWpAcn5isrKdakyAAAAAAEU1OrR4++u0XPLSttd37s4Cxdf3IfdmMDAAB7ud3ukL2WbyFmKF8P5iHXkc3r9eovCzYEFMzEOe2aPrFAQ7snG8bJt7WQb2sh39ZBrgEAZq9zuv+tTQHjpxZ00W1j8xTjsJsSFwAAocZVfAAADnDnt4eXbNYzSwMXyB3XL113jRugxFh2XgAAAACiUXFZvW5+bZ3WVzQGzKXGO3TDqf10SkGmKbEBAAAAiJyCGd9itRe+MhbMxDpsemBCPh0rAQAAAHTq+cc/P9qmv72/NWBuwqHZ+uMp/eSw20yJDQAAM1A0AwDA92h2eXTrvHVaUFzZ7onkH07pJycnkgFs9TulN6+UNiyRYlOUkpApd2K2PEld5UnsKk9Stv/em5j1zViWZOdXEwAAAIQPt8erpz/d7r+o5PK07TcpHd0nVX86I09dU+g4CQAAAGD/C9YeXrJF//t8h2Hcd23h3nMG6ug+aabFBgAAACD6zj+mv71Z//kscGPgXxyVqytH9ZLNxjonAIC1sDIVAID9qGly6boXV2vZ1tqAud8d11MXjezOiWQ7nNs/U+obV0j131wAbKqWs2brfn/x8Momb0KXbwpo9hTXZH/79TdFNr6v5YwP1R8FAAAAFrWtull/mrdOn7dzLhDntOmKE3tr8rBusnM+AAAAAOB7PP5+iZ5eut0w5rDJ38X++LwM0+ICAAChV1lZqQ8//FCff/65SkpKtGvXLiUnJ6ugoEDjx4/XwIEDzQ4RQIRvBvaXBRv00nJjh0ufy47vqV8dzTonAIA1UTQDAMB32F7drCufL9KGyibDuK896c2n9dPZh2SbFlvY8noV/9VTSnr/L7J5XB16qM1XNtNYIXtjhaRV+z3WE5uytzuNv1vNvoU2+xTXeGNTJE72AQAA0MEd2F5bUa773tqo+hZPwHxB10TdPjZP/bMSTYkPAAAAQGT550cl+sdHJYYxX/P6288aoDEDu5gWFwAAMMe8efP00ksvqVu3bjrssMOUmpqq7du369NPP/XfrrrqKh177LFmhwkgArW6Pbr5tXVauLoyYO4PJ/fV+cO6mRIXAADhgKIZAADaUbSjXlfNLVZFfathPCnWrnvOydfIvmmmxRa2WhuUvPhGxa9+OegvZW+p9d9UtW6/x3kdcd8U03xbSLP3a1/Bjb/Ypqu/w43sjqDHDQAAgPC2q7FVt89bq7fWVAXM+UqxLzy6u35zbA/FOOymxAcAAAAgsjzz6XbNfG9rwLnFn87or9MKM02LCwAAmGfAgAG69dZbNXjwYMP4qlWrdNttt+mJJ57Q8OHDFRMTY1qMACJPU6tb17+0Rh9srA7ocPmnM/M0dnCWabEBABAOKJoBAKCNjzbu8p9INrQad5XOSorRQ+cVqKBrkmmxhSt71QalzrtMzsrVgZP9RkkjLlF92QbZ6spkry+TvWGnbN/c2xvKZfO6gxKXzd0sR+1W/21/vDaHPAmZ8u4trsn+tnPN3nvfeJbkiAtKrAAAADDXktU7de2sL1ReZyyc9+meGqfbxubp8J4ppsQGAAAAIPLM+rxU05dsDhi/4bR+OmsInewBALCqo48+ut3xQYMG6ZBDDtGXX36pzZs3Ky8vL+SxAYhMdc0uTZ27Wl+U1BrGYxw23TVugEYPoMMlAAAUzQAAsI9Xvt6pO97cILfHaxjvn5mgh88rUE4qBRNtxa6br+RF18veUhc4efw10kk3+bu4tORUye1upzjG45atqWpvMY293ldI821xzb73viKYYPAV7TgayiTfTSv2e6wnLv07imq+La7xJmXJG5Ms2Xx7BgIAACCcNba4dfe8Vfr3h5vanR83JEvXntRHyXF8jAYAADrG4QheZ2O73b7f7xE9yHVkmvvlDt27KPAc4w+n9NOkYbnf+TjybS3k21rIt3WQ6+Cqrq7W2rVr/bd169b5b7W1uxeJjxo1SlOmTDng59q5c6fmzZunZcuWqaKiQk6nUzk5OTrmmGN0+umnKy4uzrRziGCeSwCILpX1rbri+SIVlzUYxhNi7Prrufka0SfNtNgAAAgnXO0HAMDXacTr1T8+LNHjH5QEzB3RM0X3n5uv1Hj+2zTwuJT40QNKXPZ44FRsshpOe0DJR/3o+5/H7pA3MUtu321/x3m9srXUfVtQ801xze6ONeXfjH9TcNNcc1B/tP2G27zLf1Plmv0e53UmfFNc0zWwuGbP10nZ8sZnSDY+LAcAADDDtuomXfWvr7S2LLAAPC3BqRtP7aeT8tmBDQAA/DAZGRkhe620NBbBWAW5Dn9zl23VHfPXBYzfOHaQLjmxf4eei3xbC/m2FvJtHeS6c11yySWd8jxLly7VjBkz1NjYuHesubl5byHOokWLNG3aNH8RTaiUl5dr+fLl/vOI3r17h+x1AUSu0ppmXTa7SJurmgzjqfEOPXxeoQ7JTTYtNgAAwg2rfwEAludye3TXwo16afnOgLnTCjN16xn9FeukqGFftoZypbw5VbFbPwyYc2UWqObMR2XLHNDJL2qTNy5Fbt8t43taUbua9ulSU/7N/T5FNXsKbhoqZJOxq1CnhetqlKN6s/+2P167U57ErH2Ka7Lk9X/9beca/9cJWZIjJiixAgAAWPVi0m//t0ol1YHdDI/tm6ZbzuivrORYU2IDAAAAEJle/Wqbrpv9pW8PKIPrTsvvcMEMAADYv6ysLPXo0UNffvllhx63YcMGTZ8+XS0tLYqPj9e5556rQw45xP/9+++/7y+Y2b59u+666y7dfffdSkhIULC5XC5/EU9ra6t+9rOf0aEIwPfaVNmoKbOLVFrbYhjPTIrRo5MKNSA70bTYAAAIRxTNAAAsraHFrT++skYfbKgOmPvF8FxdcWIv2W02U2ILV87Sz5Uy73I56ksD5poKzlXd6NulmESZ2jDaGS9Pai//bb88LtkaK78pqtnZTnHNtx1sbB7jBw2dxeZxyVFX6r/tj9dX3pOQ8U2nmm8KadoW1/iKb5K6+v/+AQAA8N3K61r8u6+1LZiJd9p11ajemnR4V9k4DwAAAADQAfNXlOqq/34hT5uCmStOGqDLTxpoVlgAAESVSZMmKS8vz39LT09XWVmZLr/88g49x5NPPukvkHE4HLrpppuUn5+/d85XPJObm6tnnnnGXzjzyiuvaPLkyQHP8dRTT/kLXA7U2LFj/c/bHo/Ho8cee0yrVq3SySefrBNPPLFDfx4A1rO6rF6XzylSZYPLMN49NU6PTS5Uz/R402IDACBcUTQDALCs8voWTZ1brKIdDYZx39K4607qox8dEbpWyxHB61X81/9R0rt3yOYxfgDotceo/vgb1TT05/6OMBHD7pQ3qavcvtv+jvN6ZWuublNcs9PQuca2p9imtS4oofo64vgLfBorpYri/R7riUn2F9Ps7Viz935Pgc3ue29cWmTlCwAAoBNU1rfq0lmrtLmqyTCe3y1Zd48boN7pcabFBgAAoktVVVXQntu383RaWtre76urq/2L7RB9yHVkeHddla6ZWyR3m4qZX47orl8dlX3APw/It7WQb2sh39YRDrnOyMhQtGqvgKUj1q5d6y9O8RkzZoyhYGaPs88+W4sXL1ZJSYnmzZuniRMnyuk0LrFbsGCBmpsDO1h/l5EjR7ZbNOP7tzFz5ky99957OuGEE3TJJZf8oD8XAOv4sqTWv9apttm4yqVfl3g9ev4gdU2JNS02AADCGUUzAABL2ljRqCufL9a2GuMHWXFOm+44a4DGDOxiWmxhqbVRyW/fpPjiFwOm3Ek5qj1jhly5Ryhq2WzyxqfL7btlBn5watDa0KagZt/ONd/c++Z9xS9B4ivcse+qk3Zt2O9xXkfsPp1rstp0sNmnuCYhU7Kb2jsIAA6Ib1e4YF7o3N/3iC7kO3rtamzVlDlF2lBpLJgZ0DVZz14yUjHuJhasRDHe29ZCvq2FfCNcud373aalU/l+hwnl68E85Dr8fLypWte9UCxXm4KZycO66YoTeh7UOQb5thbybS3k2zrIdXj55JNP9n7tK5ppj++cctSoUXr22WdVX1+vFStW6LDDDjMc8/TTTx90LHs6zLzzzjs67rjjNGXKFM5nAezXRxurdd2Lq9XkMp5jDOqWpBnnFSg9Mca02AAACHcUzQAALOeLrbW65sVi1TQZP5xMS3DqwQn5OrR7immxhSP7ro1KnXeZnO10N2npMVK1pz8kb2KWKbGFpZhEedL6+G/75W6VvbE8oLjG5iuo2dvNxncrl81jbKnbWWzuFjlqS/y3/fHa7PImdGlTVGMsrrGl5EjJCVIMbX4BmCeUu+ftu1Mgoh/5jg7Vja268pmPtWansdNkv6wkPXvx0cpK9nWYocuMlfDethbybS3kGwAQKsu21OiaF1arxW0smJlwaLa/o72NTt8AAISV4uLd17zj4uLUv3//7zxu8ODBhse0LZrpzIKZY489VldccQUFMwD2663VlbrxtbVqbXPucUTPFD0wIV/JcSwFBgBgf/ifEgBgKQuLK3TL6+sCLmD1SIvTw+cVqE+XBNNiC0exGxYqecF1srfUBsw1HPFbNYy8RrLz68QP4oiRJznXf9svr0e2pqpvimv2FNO0vf+m4MbVGJRQbb4YGsr9BTwq/56D49Ok5Bwlx2fK7e9Uky3v3m42uzvX+L72xib7O/gAAACEQl2zSxf+6xMtL6k2jPfqkqBnLzlaXVMp/AUAAADQMV9tq9XUucVqbrPL89jBWZp2aj/Z+fwTAICws3XrVv99Tk7OfrvXd+/ePeAxnVkwM3PmTH/BzMiRIymYAfC9Xvl6p26fv15tmlvq+P7punvcQMXH8DMEAIDvwypXAIBlPPvZdj24eLPanENqcE6Spk8oUJck2pTu5XEr8eMHlfjZzMCpmGTVnXKvWvJONyU0y/F3ecmU23dT4f4PbamTbd/ONfsW1+z52jffvCt48TZV+2++d9P+3lFeZ/zuQprErL3davYU1HxbXJPt73Dj+zsAAAD4oRpaXPr1vz7V55uNvwN1T4vXsxePVG4ahfMAAAAAOmZlaZ2umFOshlZjwcypBV10yxn9KZgBACAMtbS0qLZ292aRmZmZ+z02OTnZ342mublZFRUVnRrHnDlztGTJEsXHx/uLc55//vmAY0aMGKG+ffse8HMeaIz7KxQ6GG2LfigCim7kO7SeXbpN9y3aGDB++qAs3X7WAMU4gvv3T76thXxbB7m2FvK9G0UzAICo5/F6Nf3tzXr2s9KAuRP6p+svZw9QQmxwPhyKRLbGSqW8OVWxW94PmHN1GaiaM2fKk9HPlNiwf77uLb7b9+bH3Sx7ffk+xTX7fP1N0Y2/+Kax3N9lJhhsriY5ajb7b/vjtTl2F9b4Cmj2La7Z8/XeYpssyREblFgBRI6qqqqgPbfvQ4O0tLS931dXV/t3g0N0It/Ro6nVraueL9Inm4wdZrKSYzTzR4OU6mg1jJPr6MZ721rIt7WYne+MjIyQvRYAwHyry+p1+Zwi1be4DeOjB2To9rF5ctopmAEAIBw1NTXt/dpXsPJ9fMf4imb2fVxn2Llz59545s6d2+4xXbt27VDRzKWXXnpAx82aNUuhsO85OqIf+Q4Or9erhxet1YPtFMz89Ojeun38IXKYcO5Bvq2FfFsHubaWNIvmm6IZAEBUa3Z59KfX12nh6sqAuYmHddX1J/flAtY+nDu+VMq8KXLUbQ+Yaxo4TnUn/UWKSTQlNnQiR5w8qT38t/3yuGVrqvqmsObbghr/fZsONjZ3c1BCtXndctTv8N+083vCjc/Yp4jGd5/9beeafe4VmxSUWAGYz+02LlYJJt8izFC+HsxFviNTi8uj615cHVAw0yXRqb+dP0g9UmMDFlSTa2sh39ZCvq2FfAMAgmV9eYOmzC5STZPx/5nj+u3eoMsZ5F2eAQDAwXWa2cPp/P4lc3uO2fdxnWHKlCn+GwDsr2DmjtdW6Z/vbQiY++2o/vrjGYWy0d0SAIAOoWgGABC1qhtduvbF1fqiZHeL5X1NOaGnLhzRnZPIPbxexa94Tknv3C6bx/ihn9fuVP1x09R06AUSf1/WYnfIm5glt++mwd99nNcrp7te6Y5mqbZUqtuhhp0b/V/vKarZe99SG7xwfQU+TVVS5er9HueJSZJ3b1HNniKbtsU12fLGZ/BvHgCACNXq9uiPr6zRBxuNBTNpCU49dv4g9c1MMC02AAAAAJFpc1WTLp1dpKpGl2F8RJ9U3Tt+oGKdFMwAABDOYmNj937tchn/P2/PnmP2fVy4mjlzptkhAOgkLrdH0+Yu1+zPtgbMXX9GgS4bPcCUuAAAiHQUzQAAotK26mZd+XyRNlYaWyX7WpPecno/nTUk27TYwo6rSclv36z4osDWz+7Erqo9c4ZcuUeZEhoihM0mb1yalJEhZRf4h5qrqtrf1dfV9G0Bzd7ONfsU1TSU+8dsDRWyyRuUcO2t9VJ1vRzVgW2M9+W1x8iTmLVP55pvi2v8RTd7x7IkO79WAwAQLlwer256bZ3eWbfLMJ4S59Cjkwo1IJvOiQAAAAA6pmRXky6dtUoV9a2G8SN6puiBc/MVR8EMAABhLz4+fu/XTU3GdQTt2XPMvo8LV5mZmQd0XFVVVVBe3263Ky0tbe/31dXVAV2+ET3Id/C0uDy64ZXVWrS60jDu2+rzj6f11+TDMoP2Pv4u5NtayLd1kGtrCYd8Z/jWFZqM1X0AgKhTtKNeV80tDrh4lRRr173j83V0n29/AbA6e/Vmpc6bImf5yoC51u5Hq+b0h+RNosAIncgZL09qL/9tvzwu2X2FMw37Ftf47vf92ndfHtAdqbPYPK1y1G333/bH6yvvSejybXHN3mKab+73drDp6v/zAwCA4HF7vLp13rqAC0q+c4EZkwpV2C3JtNgAAAAARKbSmmZdOqtIO2qNn0Me2j1ZD04sUHyMw7TYAADAgfN1jElJSVFtba0qKir2e2xdXZ2am5s7VJASCdrd9DAIfIswQ/VaMB/57hyNLW79/uU1+mhjtWHcYZNuPTNPZw7OCou/Z/JtLeTbOsi1tXgsmm+KZgAAUeWDDbv0h5fXqLHVWAmbnRyjhyYWKL8ri+T2iNnwllIWXit7c03AXMOwi9VwzO/pngHz2J3yJHeTkrtpv7+ie72yNe3aXUDj61Lj71bTptCm3te5plz21rqghOrriGNrrJC90ffh+qr9HuuJTd7brcZ37w0orvlmPC7V38EHAAAcOI/Xqzve3KA3VhkveCfE2PXQxEIdkptsWmwAAMCaHA5HUHcH3N/3iB7k2lw761p06ewibavZvWh2j8E5SXpk8mClxHXuZ+jk21rIt7WQb+sg1+GtZ8+eWrVqlUpLS/0LBb/rd/Zt27YZHgMAwVTb5PJvDvzVNuOahliHTXefM1An5pm/Oz8AAJGOlbAAgKjx4vIy3fXmBrm9xvH+mQl6+LwC5aTGmRVaePG4lfjpw0r89JHAqZgk1Z18j1oGnGlKaECH2XxdXjLk9t0yC/Z/bEv9N51qdhfSGLrX7Ftk02Tcmb4z2Vvq/DftWr/f47yOuG+Kab7tUvNtUc2eTjZd/R1uZGcnSwAAvF6v7lm4Ua98vdMwHue06cEJ+Tq8Z4ppsQEAAOvKyAjdopa0NLprWwW5Dp3yumZdNvsrbalqMowX5qTo2d+MVHpibNBjIN/WQr6thXxbB7kOLwUFBf6iGV8XmfXr12vgwIHtHrdy5UrDYwAgWCrrW3X580VaXdZgGE+MseuBCfk6qjf/jwAA0BkomokCLS0teu655/wnc76dEHwtQhMTE5WTk6OTTjpJJ5xwgpxOUg0guhfI/f2DEj3xYUnA3JG9UnT/+HylxPNz0MfWWKWUN69W7JZ3A+ZcGQNUO/YxuTPyTIkNCLrYJHl8t/S++z/O3bK7a82+BTb1O2Vr28GmsVw2jysoodrczXLUbvXf9sdrc8iTkCnv3uKafYtqvi2u8SRlSQ4KBwEA0Xs+8MDizXr+yzLDeIzD5j8X4IISAAAAgI6qqm/Rz//xsdaWGXd6Htg1Wf+5+OiQFMwAAIDON2LECL344ov+rxcvXtxu0YzH49GSJUv8XyclJWnIkCEhjxOANZTW+Ar1i7S5TaF+WrxTD51XoENyk02LDQCAaMMK4ijQ1NSkN998UwMGDNCwYcOUmpqq+vp6ffHFF5o5c6Y++OADTZs2jZavAKKSy+3RnQsCd5T2OWNQpm45vb9infz883Hu+Eopb0yRo/bbVtJ7NA8Yq9qT7vYXFQCW54iVJ6W7/7ZfXo9sTVW7C2gMnWv26WDzzdc2V2NQQrV53XI0lEm+m1bs91hPXFqbYppv7717vk7Kljcm2d/BBwCASCmYmfHOFj23rNQw7rDbdO85A3VMv3TTYgMAAAAQmaobW/XL//tERaW1hvF+WUn+gpnMZDanAQAgUvnWVg0aNMjfbcZXNDN69Gjl5+cbjnn11VdVUrJ7w84zzzwzqjYqdjgcQXnetmvSWKMW3ch359hY0ahL/7dSpbUthvGs5BjNnDxYA7LDY/0O+bYW8m0d5NpayPdu0fNbvYUlJyfr3//+d8BJmtvt1h133KEvv/zSX0BzxBFHmBYjAARDfYtbf3x5jT7cWB0wd+GIXF12Qi/ZWfjtF7fif0pecqtsnpaALhX1x01T02EXskge6CibXd6ETLl9t6zC7z7O65WttW5vcY2/Y42vk42/0Gan8b458OdZZ/E9t//5K9fs9zivM+GbjjVdvy2u8RfVfDtmS8mR0tJ8Z1FBixcAgAPh6zj51KfbDWMOm3TX2QN0Ql6GaXEBAAD4VFVVBe25fRc203zn5t+orq7274iN6EOuQ6u+2a1LZ63Q8m3GDjM90uI08/xCxbgbVVUVnA1yfMi3tZBvayHf1hEOuc7IiN7PxYqKilRa+u0GOjU1NXu/9o2//fbbhuN9RTFtXXjhhbr55pvV0tLiX1c1YcIEfzcZ3/e+jYkXLlzoPy43N1fjxo1TNAnVv4193wOIfuS741Zsq9bFz61QRb1xDU+vLgn6z0Uj1TszUeGKfFsL+bYOcm0taRbNN0UzUXLC3V7Vl293gOHDh2vFihWGE0YAiAbldS26am6xissaDON2m/T7k/rq/GHdTIstrLia/MUy8atmB0z5FsHXnDFDru7DTQkNsAybTd7YFLl9t4z++z/W1by7oMbfoaadopqGnbL5im8ay2XzBucCi68rjqN6s/+2X3anlNxNSu4qx+g75O6yn8IhAACC4P8+KtETH+7e8XHf84Hbzhqgk/K7mBYXAADAvpubhYpvIWYoXw/mIdfB09ji1pVziwMKZrqlxGrm5EHKSnKG/O+efFsL+bYW8m0d5LpzLVq0SEuWLGl3rri42H/7vqKZfv36aerUqZoxY4YaGxv13HPPBRzjK5iZNm2aEhISOjF6AJCWbqzUr578VLVNLsP4wK7Jeubio9UtNd602AAAiGaWL5rx7eiwdu1a/23dunX+W23t7lbbo0aN0pQpUw74uXbu3Kl58+Zp2bJlqqio8Hd+ycnJ0THHHKPTTz9dcXFxIT/x9nWZ8enVq1dIXxsAgmlDRaOufL5I22uMOy7EOe268+w8jR7AAjkfe80Wpc6bIufOFQFzrd2Hq+b0h+VN6mpKbAC+gzNOntQe/tt+edyyNVa2U1yzp4ONb3yn/97mNv6s7DQel1RT4r95bZY/rQAAhNgzS7frsfe2Bozfcnp/nV6YaUpMAAAAACJXU6tH17y4Wp9v3X2deI+spBh/wUz3tNBe5wUAAMF11FFH6f7779frr7/uX+dVWVm5d53XyJEjdcYZZ4R8nReA6PfO6p367dOfqbHVWEx5aM80/ftXI5SRFGtabAAARDvLr2675JJLOuV5li5duncHgj2am5v3FuL4djrw7UDgO7kKFpfLpblz5/q/9hX+fP311yopKfHvmjB06NCgvS4AhNLnW2t07YurVdNkPIFMT3DqwQn5Gto9xbTYwknMpreV8uY1sjdXB8w1HvZr1R97veSIMSU2AJ3A7pA3KVtu3y17yHcf5/XK1lyzu4jGX1izb8eafYtrdsreYlwQ0BEU4AEAQmnW56Wa/nZgR7QbTu2nsw/JNiUmAAAAAJGrxeXR9S+v1qebawzjGQlOf8FM7wx2egYAIFz4Nj/uyAbI+5Odna0LLrjAf7OKqqqqoDyv3W5XWlqaYRNr32bPiE7k+4dZUFSuG15ZI5fHaxg/sleqpp9XILXUq6qlXuGGfFsL+bYOcm0t4ZDvjIwMmc3yRTP7ysrKUo8ePfZ2ZzlQGzZs0PTp09XS0qL4+Hide+65OuSQQ/zfv//++/6Cme3bt+uuu+7S3XffHbTWnb6imTlz5uz93mazady4cfrpT38alNcDgFBbWFyhm19fp1a38QSyZ3qcHj6vkAtXPl6PEj+ZoYRPZ8gm49+TNyZRtSfdrZaBZ5kWHoAQs9nkjU+T23frMnD/x7Y27i6e2VNIs6eDzd4uNrvvfR1uDD9fHLHyxqf72hwG/Y8DAMCLX5Xp3kWbAsavO6mPJh5GEScAAACAjnG5PZr26lp9sMG4AVVavFOPTR6kfpnBua4LAABgBrfbuDlpsPgWYYbqtWA+8v39Xlpepjvf3KA29TI6oX+67ho3UPFOW8T8HZJvayHf1kGurcVj0Xxbvmhm0qRJysvL89/S09NVVlamyy+/vEPP8eSTT/oLZBwOh2666Sbl5+fvnfMVz+Tm5uqZZ57xF8688sormjx5csBzPPXUU2ptbT3g1xw7dqz/efflK9iZNWuW/x+zb2eAzz77TM8995xWr17t73KTmJjYoT8XAIST/yzdrgfb2U16SE6SHpxQoC5JdE2xNe1SyoJrFLtpScCcK72/asc+9v2L5gFYV0yCPGm9/bf9crfK2bJL6fZGqa5Maq7xF+cAABBsr67Y6b+o1NZVo3rrx0cEr7MvAAAAgOjk2+H5ptfWacla447ryXEOPTKpUAOzubYKAAAA4OA8+9l2PbA4cL3TGYMydesZ/eV02E2JCwAAq7F80Ux7BSwdsXbtWq1atcr/9ZgxYwwFM3ucffbZWrx4sUpKSjRv3jxNnDhRTqfxr37BggVqbm4+4NcdOXJkQNHMvm2UMjMzddpppyklJUUPPvig5s6dq5///Ocd/vMBgNncHq+mv71Zzy0rDZg7IS9dfzlrgBJiHbI6R9nXSp03RY7arQFzzXlnqO7ku+WNTTElNgBRxhEjb3KOr2/mt2NBauUOAMAebxZV6LY31rfppShdenxP/WJ4+5+PAAAAAMD+rj38+Y11Wri60jCeGGPXjPMKNCgnybTYAAAAAEQ+r9erv39Qoic+LAmYO++wrvrDKX1lZ3NKAABCxvJFMwfrk08+2fu1r2jmu4pYRo0apWeffVb19fVasWKFDjvsMMMxTz/9dFDi2/M6K1euDMrzA0AwNbV6dMvra/XWmsDF2JMO66rrTu4rp50TyLiVs5W85BbZ3C2Gca/NoYZjr1fj4RfRBQIAAAARa/GaSt382lp52lTMXDSyuy4a2cOssAAAAABEKI/Xq7sWbNC8lRWG8XinXQ+dV6Ch3dmACgAAAMDBnXM8uLj9DYIvHJGrKSf0ko11PAAAhBRFMwepuLjYfx8XF6f+/ft/53GDBw82PKZt0UywVFbu3h3J4aALA4DIsquxVde+uFpfltQFzF1+Qi9dMCKXE0hXs5Lf+bPiV/4vYMqTkKmaM2bI1eNoU0IDAAAAOsN766o07ZW1crcpmPnFUbn63XE9zQoLAAAAQATv9nzfok16cflOw3ic06YHJ+ZrWM9U02IDAAAAEPlcHq/unL9er6wob3e904VHdzclLgAArI6imYO0detW/31OTs5+C1O6d+8e8JjOjCE7O9tfuLOv5uZmPfXUU/6vhw0b1qmvCQDBVLKrSVfOLdamyibDuK+rzJ/O6K8zB2fJ6uw1JUqZd5lidn4dMNeac4Rqz3hEnuRupsQGAAAAdIaPNlbr+pfX+C8w7etHw7rpylHswgYAAACg4wUz09/erNlf7DCMxzhsum98vob3TjMtNgAAgFAI1qbLdrt9v98jupDv79bi8uiGV9fordW7Nzrfw3c1Y9pp/XX+sBxFGvJtLeTbOsi1tZDv3SiaOQgtLS2qra31f52ZmbnfY5OTk/1FLb5ClooKY6vvg/XBBx/otddeU2Fhob94JiEhwd9h5osvvvDHN2jQIJ199tkdes4DjZGTKXQG8m0t35fvFdvrdNXzq1RR32oYT4516K8TCzWiDxetnJuWKOmNq2Rv2hUw13T4hWo8/gbZHLEyu8cY721rId/WQr4BAMH22ZYaf+fJljYtZiYc2lXXndSHghkAAAAAHTbz/a36z2elhjGH3aa7xg3Qsf3STYsLAAAgVDIyMkLyOmlprOuwEvK9W0OLS1c+/ZneXVMZsEHwXycfpvGH91A0IN/WQr6tg1xbS5pF803RzEFoavq2A0J8fPz3Hu87xlc0s+/jOsORRx6pqqoqrV692n/zPX9iYqJ69+6t4447TmPGjOlwccull156QMfNmjVLoWDVN6hVkW/r5ntxUZmm/HeFGlrchmNyUuP15K+HqzAnVZbm8Ujv3i8t/otvTzzjXEyidM4MxQ+dpO//H8kcvLethXxbC/kGAHSmL0tqNXVusZpdHsP4uCFZmnZqXwpmAAAAAHTYPz4s0f99tM0wZrdJd56Vp9EDupgWFwAAAIDIV93Qql89+YmWbTZufhvntOuxnx2hkwd1My02AACwG0UzB9lpZg+n8/v/Kvccs+/jOkNeXp7/BgCR7L+fbNaNL34tt8dYDFLQLcVfMJObliBLa6yS5v5WWjM/cC5zgDT5aanbYDMiAwAAADqNr/Pklc8Xq7HVWDBzemGmbjq9v+wUzAAAgAjS0Q3NOoIusNZBrg/evz8u0d/e32oY851Z3HbWQJ0+OFvhhHxbC/m2FvJtHeQaAKxlZ22zfvHPj1VUWmsYT4p16B8XDNcxeZmmxQYAAL5F0cxBiI2N3fu1y+X63uP3HLPv48LVzJkzzQ4BgEV4vV49uGC1Hn5rbcDcsXmZ+tsvjlRqfIwsbftX0qxfSFUbA+cKz5bOnSnFW7wLDwAAACJecVm9Lp9TpPo2nSdPGpihP4/Nk8O3DTQAAEAEycjICNlr0QXWOsh1x/zr/Q2a/vamgPG7zxuqHw3vrXBHvq2FfFsL+bYOco1wUlVVFZTn9RWH7ftvvbq6Wh6PcWMkRA/y/a1t1U269H8rtbmqyTCeFu/Uo5MHqbCLPWjvu1Ah39ZCvq2DXFtLOOQ7I4SflX8XimYOQnx8/N6vm5qMv/i0Z88x+z4uXGVmHliFMydT6Azk27r5bnV7dO1/P9PLy8sCjhs7OEu3jh0gd2OdqhplWbEr5yjxrRtlczcbxr02uxqPvV7NR/5WanTv7kQTZnhvWwv5tpZwyHc4nEwBADrP2p0Numx2kWqbjQUzJ/RP151nD5CTghkAAAAAHfSfjzfpz6+sDBi/ffyQiCiYAQAA6Gxut/Hz12DxXTcM1WvBfFbN98aKRk2ZU6QdtS2G8aykGD16fqHyshKj8u/Fqvm2KvJtHeTaWjwWzTdFMwfB1zEmJSVFtbW1qqio2O+xdXV1am5u7lBBSiTgZArBQL6tobapVZf9Z5neXVMeMPero7vrsuN7yiavdf8tuJuV9M7tSljxXMCUJ6GLak9/SK09j/W9YRQpeG9bC/m2FvKNcOFwOIJaLLa/7xFdyHdobajYXTBT3Wjs4ntM33TdN6FQcc7g/f2Ta2sh39ZCvq2FfAMA2prz2Vbd+MLXAeM3nTVIvzimrykxAQAAAIgORTvqdcWcIlW1ua7RIy3OXzDTMz38N1UHAMBqKJo5SD179tSqVatUWlrqXyj4XYu0tm3bZngMAFjZjpom/epfn2rl9hrDuG/z6OtP7qtJh3eTldlrtyll3hTFlH0VMNfabZhqz5whT3KuKbEBABDOQtmBaN9uS4h+5Dt4NlXU69JZn6myodUwfkz/TP3fhcOVEBu8Yrj2kGtrId/WQr6thXwjXFRVVUV1F1iEBrnuuHkrd+qmV9cEjF9+Ym+dd0hGUN+bB4t8Wwv5thbybR3hkOtQflYOAFbzxdZaXTW3WPUtxk0l+2cm6LHzC5WVHGtabAAA4LtRNHOQCgoK/EUzvi4y69ev18CBA9s9buXKlYbHAIBVrdvZoKvmfq6SXY2Gcd/u0XeNG6AT86z9AV7MlveVMv8q2ZsCL9o1Dv2F6o+/QXJwgg0AAIDIt7WqQT994mPtqNndmXePo/pk6B8XHBXyghkAAIDOFsqurHSBtQ5yvX9vra7Uza+ukcdrHL/kmB66cERuxP3dkW9rId/WQr6tg1wDQPT4YMMu/f6lNWp2GYshh+Qk6aHzCpSeEGNabAAAYP/s3zOP7zFixIi9Xy9evPg7T4CXLFni/zopKUlDhgwJWXwAEE42Vjbqome/DiiYyUhw6vEfDbJ2wYzXo4Sljyn15QsDCma8znjVnvqA6kfdSsEMAAAAosL26kZ/wUzbc4PDeqXrX78arqQ49nkBAAAA0DHvrqvSDa+ulbtNwcwvh+fqN8f2MCssAAAAAFFgYXGFrnlhdUDBzFG9UvXY5EEUzAAAEOZYgXCQBgwYoEGDBvm7zfiKZkaPHq38/HzDMa+++qpKSkr8X5955plyOvlrB2A9uxpaNXVusaqbXIbxXhnxmnFegXqmx8uqbM01Sl5wneI2LgqYc6f1Uc2Zj8mdVWhKbAAARJKqqsBObZ3FbrcrLS1t7/fV1dX+DRIQnch3cO2sa9Elz32tzZVNhvHCbkl6eGK+XI11qjLW0gQNubYW8m0t5NtazM53RoaFN4IBgDDx0cZduv7lNXK1aTHz4yO66YoTe8lms5kWGwAAAIDI9tLyMt355oaAjpYn5KXr7nEDFedk73oAAMKd5as3ioqKVFpauvf7mpqavV/7xt9++23D8b6imLYuvPBC3XzzzWppadEdd9yhCRMm+LvJ+L7/4IMPtHDhQv9xubm5GjduXFD/PAAQjlpcHv3+5TXauqvZMD6sd7ruHz9QaXHWPXl0lBcpdd6lclRvDphr7neK6k65T964VFNiAwAg0rjd7pC9lm8RZihfD+Yi352nqqFVv/vfKm1qUzAzICtBj0wqUFKMzdS/a3JtLeTbWsi3tZBvALCWpZtrdO2La9TapsXMxMO66toxfSiYAQAAAPCDPbN0u6a/Hbim58xBmfrTGf3ldFh3zRMAAJHE8kUzixYt0pIlS9qdKy4u9t++r2imX79+mjp1qmbMmKHGxkY999xzAcf4CmamTZumhISEToweAMKf1+vV7W+u1+dbaw3jh/RI1TMXHa2WhlrLLmKIK3pByW/fJJvLuGDQa7Or4ehr1HjkbyUbJ9cAAACIDtWNLk2ZXaT1FcY2Mn27xOvR8wcpPSHGtNgAAAAARKYvS2p19QvFanYZO4yNG5KlP57Sl4IZAACAfTgcjqB1gN3f94guVsm3b73TzPe26IkPtgbMTR6Woz+c2k92C5xvWCXf2I18Wwe5thbyvZvli2Y6y1FHHaX7779fr7/+upYtW6bKyko5nU7l5ORo5MiROuOMMxQXF6dow8kUOgP5jm5/f3+L5q2sMIzlpMbrnxcMV1KcU64mC+bb3aKEd25X/FdPB0x5Erqo/owZcvU+TsH5CRs6vLethXxbC/kGAHRUXbNLl88p0uqdDYbxXulxmjl5kDKTKJgBAAAA0DErttfpyueL1dhqLJg5vTBTN53e3xIL2AAAADoiIyMjJK+TlpYWktdBeIjGfHs8Xt326ko92U7BzJQxebrutALLFuhHY77x3ci3dZBra0mzaL4tXzQzZcoU/60zZGdn64ILLvDfrIKTKQQD+Y4eL31R4t91YV+JsQ7988Kj1C013pr5ri6R5vxSKlkaONfjSNknP6WUtJ6KRpbLtcWRb2sh3wCA/alvcfsXsq3aUW8Y7566u2AmOznWtNgAAAAARKbisnpd8XyR/3xjXycNzNCfx+bJYbfmAjYAAAAAB8fl9uj657/S3GUlAXN/PLNQvxuVZ0pcAADg4Fi+aAYAEByfbarU7+d8ZRjzXaOa8ZNhGtLdoour1y+R5vxaaigPnDvqIumMuyRn9HUlAwAAgHU1trh19dxifbWtzjDeLSVWMycXKieV338BAAAAdMy68gZNmV2kmiZjwcwJ/dN159kD5KRgBgAAAMAP0Oxy64pnP9ebK3cYxn1NZe48d6h+enRv02IDAAAHh6IZAECn21zRoEue+kwtLo9h/OazB+vkQd1kOV6v9P50adFtktf4dyJnvHT2dOnwn5gVHQAAABAUTa0eXfviai3bWmsYz0yK8XeY6ZG+u/skAAAAAByoTZWNumxWkXY1ugzjI/um6e5zBirGYTctNgAAgHBXVVUVlOe12+1KS/t289Tq6mp5PG3WRiBqRGu+G1rcumZukT7eVG0Y9xXl337WQJ2RnxK091A4i9Z8o33k2zrItbWEQ74zMjJkNopmcFA4mUJnIN/RpbbJpQueXq7K+hbD+I+OyNH4QWn+/Foq3801SlpwnWLXvRkw5U7rrfqz/iZ39mDfD1RFG97b1kK+rSUc8h0OJ1MAgO/mK6C//uXV+mRzjWE8I8GpmecXqncGBTMAAAAAOmbrriZdOmuVKhpaDeNH9krR/eMHKs5JwQwAAMD+uN3GTn3B4rtuGKrXgvmiId/VjS5NnVus5dvrDONxTpvuGTdQx+dlRPyfsbNEQ75x4Mi3dZBra/FYNN8UzeCgcDKFYCDfkcvl9ui6F4q1obLRMH5s3zRdPbq3P7c2X89Si+TbUVGs1Ncvk6N6Y8BcS9+TVHvK/fLGp/l+mMoKojnXCES+rYV8AwDanhdMe3WtPthg3I0tLd6pxyYPUv+sRNNiAwAAABCZtlc363f/W6WyOmPBzKHdk/XghALFxzhMiw0AAABA5Cqvb9Hls4u0tty41ikp1u4/1ziiV6ppsQEAgM5D0QwAoFN4vV7dvXBjwE7SA7IS9JdxA/ztSq0krvhlJS++QTaX8aTaK5sajp6qxqMuk2zsegcAAIDo4vJ4ddNr67RkrbGTYnKcQ49MKtTAbApmAAAAAHRMWW2LLp29SqW1xg73g3OS9PB5BUqMpWAGAAAAwA8rzr9s9ipt2dVsGE9LcOqR8wo1KCfJtNgAAEDnomgGANApnv50u15cvtMwlpkYo+kTC5QcZ6H/btwtSnr/LiV89VTAlCc+Q7WnPajW3ieYEhoAAAAQTG6PV3+et04LV1caxhNj7JpxXgEXlwAAAAB0WEV9q79gZmubRWz5XRP9hfmWuv4AAAAAoNNsrGjUlDlF2tGmOD87OUaPTipU/yw2AQMAIJrwKSIA4KC9tbpSM97ZYhiLc9r1wIR85aTGySrsdaVKeeNyxZR+HjDX2nWoas94VJ7UHqbEBgAAAASTx+vVXxZs0LxVFYbxeKddD51XoKHdU0yLDQAAAEBk2tXQ6t/1eVNlk2G8f2aCfxFbajyXugEAAAB0XNGOel0+p0i7Gl2G8Z7pcf5zjR7p8abFBgAAgoNPEgEAB2VlaZ1ufn2dvG3GbxubpyG5ybKKmK0fKWX+lbI3GhcJ+jQO+bHqT7hFclqngAgAAADW4fV6de/CjXqpTefJOKdND07M17CeqabFBgAAACAy1TS5/Ls+rytvNIz3zojXY5MLlZEYY1psAAAAACLX51trNHXuatW3uA3jeVm7i/OzkmNNiw0AAAQPRTMAgB+stKZZV7+wWs0uj2H8ihN76eT8LrIEr1cJnz+hxA/vl81rPKH2OmJVN+p2NQ+eZFp4AAAAQLALZh54e7PmfFlmGI9x2HTf+HwN751mWmwAAABmczgcQXtuu92+3+8RPayY67pml658vljFZQ0Buz4/8ZMh6poSvRtUWTHfVka+rYV8Wwe5BoDw9f76Xbr+Zd86J+PWwIfkJumhiYVKS2A5LQAA0Yr/5QEAP/ii1dS5xaqobzWMjx+arV8Oz5UV2FpqlbzwD4pbPz9gzp3SUzVnPip310NMiQ0AAAAIRcHMo+9u0XOflRrGHXab7h43UMf2SzctNgAAgHCQkZERstdKS6NY2SqiPdf1zS5d/d9P9PX2OsN4j/QE/fe3I9UzI1FWEu35hhH5thbybR3kGgDCw4KiCt30+jq5PcaCmeG9U/XXc/OVGBu8jS8AAID5KJoBAHSYy+PVDa+u1dryxoATyWmn9JXNZlO0c1SsVsq8KXLuWh8w19JntGpP/au88SwSBAAAQPR64sMSPfnJdsOYwybdeVaeRg0I3QJRAAAAANGhqdWti/+9VEs3VRnGu6XG6dlLjrZcwQwAAECkdMOkw5K1RGK+5365Q3e8sU7Gchlp9MAuuvucfMU5w//PYJZIzDd+OPJtHeTaWsj3bhTNAAA67IHFm/TBhmrDWN8u8brnnIFyOqL/P9TYNa8q5a1psrU2GMa9sqlhxFVqHD5FskX/3wMAAACs68mPt+nvH5QYxnyl838em6dTCjJNiwsAAABAZGp2ufWbpz/Th+srDONZyb6CmZHqk5lkWmwAAADRIlTdMOmwZC3hnu8n3lmvO99YFzA+YVgP3TvpUMVYYJ2TlfKNzkW+rYNcW0uaRfNN0QwAoEP+u6xUsz7fYRhLT3Bq+sQCpcZH+X8r7lYlfXCPEr78V8CUJy5Ntac9qNY+o0wJDQAAAAiV/yzdrkfe3RIwfvPp/XXGoCxTYgIAAAhHVVXGbhmdybcb4L4XN6urq+XxeIL2ejCPFXLd6vbouheL9c7aqoBrDzMnF6qLszWo76dwYoV841vk21rIt3WEQ65DVRgBAOHM6/Xqr2+u1iOL1wbM/fKYPrp13BDZ7b7twAAAgBVE+epmBBttO9EZyHfkeHddpb/LzL5iHDY9OLHwgHd5i9R82+rLlPT6FMVs+zRgztX1ENWfNVOe1F4Kzk/FyBSpucYPQ76thXwDgHXN/nyHHnx7c8D4tFP76pyh2abEBAAAEK7cbnfIXsu3EDOUrwfzRFuuXR6vbnx1bUDBTEqcQ49MKlS/LvFR9ee1er6xf+TbWsi3dZBrAAg9j8erW19Zoac+NK5x8rl8zABde1q+bDYKZgAAsBKKZnBQaNuJYCDf4WnlthpNe3mNPF7j+P3nH6YxQ3tEd743vi/NvlCqLwucG/YLOcfer7SYeDMiiygRkWt0GvJtLeQbAKzhxeVlumfRxoDxa8f00XmHdTMlJgAAAACRy+1byDZvnRatrjSMJ8XaNWNSoQq7HdhmXQAAADgwwereFw4dlhA64Z5vX2H+ra+v1WsrdgbMXT26j345oqt27dplSmyRKNzzjc5Fvq2DXFtLOOQ7Iwy6YVI0AwD4XjtqmnTRvz9VfYtxB5yrT8nX+MN/eMFM2PN6pQ8flRbcInnb7P7jiJPG3icdeYFZ0QEAAAAh8/rKct05f0PA+BUn9tJPjswxJSYAAAAAkcvj9eqONzfojVUVhvGEGLseOq9Qh+QmmxYbAABAtApV1yM6LFlLOOW72eXRDa+u1ZI2nSx9PWVuOK2fJhzaNWxijVThlG8EH/m2DnJtLR6L5puiGQDAfjW0uHTxv5dqe3WTYXzCsB668uQBilrNtdJLl0srXwycS+st/egpqfswMyIDAAAAQmpBUYV/9+c2TSf1u+N66oIR3U2KCgAAAECk8nq9umfhRr3ytXHn5zinTQ9OyNfhPVJMiw0AAABAZGpocevaF1fr0801hnGH3abbx+bptMJM02IDAADmo2gGB4W2negM5Du8d3q77oViLS+pNowP65miP57U6we1K42EfNsr1yr51d/KUbUuYK61z4mqP/0heRMyfD8ETYkvUkRCrtF5yLe1hEO+w6FtJwBYwdtrKnXTa2vlaVMx86uju+uikRTMAAAAAOh4wcwDizfr+S/LDOMxDpvuH5+vo3p/+5kTAAAAAByI6kaXrppbpK+31wcU5t9zTr6O759uWmwAACA8UDSDg0LbTgQD+Q4fD729WYvXVBrGeqbH6b5zBsph83ZKnsIt37Fr5yl50R9kbzWeSPs0DL/Cf5Pd4fsBaEp8kSzcco3gIt/WQr4BIDq9t36X/vjKWrnbFMz8/KgcXXZ8T9lsNrNCAwAAABChBTOPvLtFzy0rDdj5+Z5zBuqYfixkAwAAANAx5XUtmjKnSOvKGw3jSbEOTZ+Yr2E9U02LDQAAhA+KZgAA7Zr7ZZmeXrrdMJYS5zuhLFB6YoyijrtVSR/ep4Qv/hkw5YlLVe2pD6i17xhTQgMAAABC7eNN1br+pdVytWkxM3lYN101qjcFMwAAAAA67IkPS/TvT4zXHRw26S9nD9CJeXQVBgAAANAx26qbddnsVdq6q9kwnp7g1COTClXYLcm02AAAQHihaAYA0O4CuXsWbgjY6e2+8QPVt0uCoo2tfqdS51+pmG2fBMy5sgar5sxH5UnrbUpsAAAAQKgt21Kja15YrZY2LWYmHJqt607qQ8EMAAAAgA578uNt+vsHJYYx35nFn8fm6eT8LqbFBQAAACAybaho1JTZq1RW12oY75oco8fOH6S+mdG3vgkAAPxwFM0AAAzWlzfoDy+vUZv1cbrx1H46qneaoo1z21KlvHGFHA1lAXNNheepbvRtkjPelNgAAACAUPtqW62mzi1Ws8tjGB87OEvTTu0nOwUzAAAAADro2c+265F3twSM33x6f50xKMuUmAAAAABErlWl9br8+SJVN7oM473S4/To+YPUPS3OtNgAAEB4omgGALBXZX2rps5drbpmt2H8V0d31zlDsxVVvF7Ff/Wkkt6/WzaP8STaa49V3Ym3qHnIjyUWBQIAAMAiVpbW6Yo5xWpoNRbMnFrQRbec0Z+CGQAAAAAdNueLHXpg8eaA8T+e0jf6rjsAAAAACLplW2p09QvFqm8xXssYkJWgR84vVFZSrGmxAQCA8EXRDADAr6nVo2tfXK1tNc2G8ZPzu+jS43sqqrTUK2XxNMWteS1gyp2cq9ozH5Or26GmhAYAAACYobisXpfPKVJ9i7GAfszADN0+Nk9OOwUzAAAAADrmpeVlunvhxoDxa8f00aTDu5kSEwAAAIDI9d76XfrDy6vV7PIaxofmJmv6xAKlJbAcFgAAtI/fEgAA8ni9+vMb67R8e51hfEhOkv58Zl5U7SjtqFqvlHmXyVm5JmCupdfxqj3tQXkTupgSGwAAAGCGdeUNmjK7SDVNxoKZ4/un6y9nD5DTYTctNgAAAACR6Y1V5bpj/oaA8StO7KWfHJljSkwAAAAAItf8ogrd8vo6uT3GgpkRvVN1/7n5Sox1mBYbAAAIfxTNAAD0+PtbtaC40jCWmxqrByYUKD4mehbIxa6br+SF18veaiwO8mk46jI1jJgq2TmJBgAAgHVsqmzUZbOKtKvRZRg/uk+q7jlnoGIomAEAAADQQQuLK/Sn19fJuJRN+u2xPXTBiO4mRQUAAACHIzjrIex2+36/R3QxI9/Pf1GqO+evDzjHGDOwi+46J19xTv7NBQvvb2sh39ZBrq2FfIe4aKahocF/n5iY2O78jBkzNGvWLJWXl6tfv3669NJLNW7cuFCFBwCW9eqKnfrnR9sMY0mxdj04oUCZSTGKCh6XEj+8X4mfPxE4FZuiulP/qpZ+J5sSGgAAAGCWrbuadOmsVapoaDWMH9krRX89l4tMAAAAADrunXVVuvG1dXK3Wc32q6O76+JjepgVFgAAACRlZGSE5HXS0tJC8joID8HO9+NL1umu+esDxice0UP3nneonGz+FVK8v62FfFsHubaWNIvmOyS/MbzyyitKSUlRbm6uamtrA+Z//etfa+rUqfrggw9UXFys+fPn69xzz9Vdd90VivAAwLKWbanRHfM3GMYcNunucQM1ILv9IsdIY2soV+pLv2y3YMaVWahdk1+kYAYAAACWs726Wb/73yqV1RkLZg7tnuwvoI+PoQMjAAAAgI75cMMu/eHlNXJ7jBUzPz0yR5cd31M2m8202AAAAABEFq/Xq/vmF+mueUUBcxce21f3TzqMghkAAHDAQvJbg68IxvdLzDnnnOMvntnXe++9pyeffHJvF5phw4YpPj7ef/wtt9yir7/+OhQhAoDlbK5q0u9fWiNXm4tXvz+5r47pl65o4Ny+TOn/O0exJR8HzDUVnKtdk+bIk97XlNgAAAAAs5TVtuh3s1aptLbFMD44J0kPn1egxFgKZgAAAAB0zKebq3XdS6vV2qbFzKTDuurq0b0pmAEAAABwwDwer255aYUeXbwuYO7KkwboT+MGy27nHAMAABw4p0Lgo48+8n8QOmbMmIC5v//97/777t2768MPP1TPnj21ZcsWHX/88dq6dasef/xxzZgxIxRh4gdwOIKzkMZut+/3e0QX8h16uxpbNXVusaqbXIbxnx2Vqx8d2T3y8+31Ku6rp5Twzh2yeYw7Z3vtMWoYdYtahv5cDi7SBRXvbWsh39ZCvgEgcpXX7y6YKaluNoznd03UI5MKlRwXko+KAAAAAESRL7bW6uq5q9XsMhbMnHNItq4/pS8FMwAAAGGiqqoqKM/ru1aYlpa29/vq6mp5PJ6gvBbMF+x8t7o9uvX1tXp9ZXnA3DVj+uoXw7tq165dnfZ62D/e39ZCvq2DXFtLOOQ7IyNDZgvJSoiysjL/fUFBQcDcG2+84f+g9IorrvAXzPj06tXL//3111+vJUuWhCJEhPk/4n3frIh+5Du4Wlwe/XbWx/5OM/s6ZVBX3TZxmBwh3omh0/PdUi+9cpW0fHbgXGoP2SY/paSeRympc18VB4D3trWQb2sh34j2on4fisWsJVrzXdnQqimziwLOBfKyEvS3Hw1RRmKMrCZac432kW9rId/WQr4BwDxfb6/TVXOL1OQyXmg/c1Cmbjytn+wUzAAAAIQNt9sdktfxLcIM1WvBfJ2Z72aXR9NeWaN31hmLYnxLmW44rZ/OHdqVf1sm4/1tLeTbOsi1tXgsmu+QFM3s3LnTf5+SkmIYX7FihcrLy/1FM+PHjzfMHXXUUf77TZs2hSJEALAEr9erP879Sp9sqDSMD+meqod+HPqCmU5XsU7638+lspWBc/1OlCb9S0rKMiMyAAAQZTtTUCxmLdGQ710NLbriqY+1rrzRMN4/O0n//c0xyk6JMy22cBINucaBI9/WQr6thXwDQGgU7ajX5XOKVN9iLJg5Ob+L/nRmXuRfcwAAAAAQMvUtbl37wmot3VJjGHfabbrjrDydUpBpWmwAACDyOUO5229lpXGR9nvvvee/z87ODuhCs2exU1OTcfdTAMAP9+jitZq7rMQw1i01Tv+8YLiS4kLyX0LwrHpVevFSqdl48ux3/NXSmJskR4T/GQEAAIAfoKapVRf83ydaud34u3KfzEQ9e/FICmYAAAAAdNjanQ2aMqdIdc3GXSlPzEvXnWfl+Re2AQAAAMCBqG506crni7SitN4wHue0677xA3Vsv3TTYgMAANEhJKuHe/ToobVr1+qLL77Q6NGj946/9tpr/i4zJ5xwQsBjqqur/fdZWXQECGdVVVVBeV673W7YDdD378HXDgrRiXyHxvxV5br/zdWGsfgYu6ZPLFCcp1FVVcYdpyMm3x6XEj64X/Gf/S1gyhubovrT/qrWvNOkmtof/hr4QXhvWwv5tpZwyHcoO4oAQCSra3bpV//6VF9u3f05yx490hP07CUjlZMWb1psAAAAACLTxopGXTZ7lX9h276O7Zumu8cNlNNhNy02AAAAAJGlvK7FX5C/rty4bikp1qGHJhbo8J4ppsUGAACiR0iKZnxFMWvWrNEjjzyin//85/5CmE8//VRvvPGGf/70008PeMyqVav89zk5OaEIET+Q223cPSpYfIswQ/VaMB/57nxfbavVLa+tMYz59ni786wBGpiVYOrf98Hk29ZQrpQ3pyp264cBc64u+aoZ+5g86f18P6w6IVIcLN7b1kK+rYV8I9qL+sOlWAyhEy35bmx164rZq/TZFmOHma7JsfrbjwYp0dukqiprd/iNllzjwJBvayHf1mJ2vinqx3dxOBxB/Xe/v+8RPcIt15urGvW72atU2WAsmBneO1V/nVio+Jjg/bu3gnDLN4KLfFsL+bYOcg0AB65kV5Mum12kkupmw3hGglMzJhWqsFuSabEBAIDoEpKimcsuu0xPPvmkNmzYoP79+ys/P18rV66Uy+VSly5d9KMf/SjgMW+99Za/C83gwYNDESIARPUJ5rUvrFaL22sYv3pMb40aELkX9J2lXyjljSly1JUGzDXlj1fdmDukmERTYgMAAOYIZfEWxWLWEon5bnZ5dM0LxQEFM5mJMZo5uVC5KTER92cKhUjMNX448m0t5NtayDfCRSgLqvYtHEN0MzPXW6sadNmsz1Ve12oYH943Q//+9Qglxobk0rOl8N62FvJtLeTbOsg1ALRvfXmDv8PMzjbnF91SYvXo+YXq2yXBtNgAAED0Ccl2BkcccYTuu+8+fxFMXV2dli1bpqamJsXExOiJJ55QSoqxhZ5vF7jXXnvN//Xo0aNDESIARKXaJpemzi1WVaNxx7dJh3XVT46I0E5eXq/il/9HaXN/HFAw47U7VXfirao79a8UzAAAAMCyWt0eXf/SGn28yVgwk57g1GOTC9WHC00AAAAAOmh7daN++sTHKtnVaBg/rFe6/u/C4RTMAAAAADhgK0vrdMn/VgUUzPTOiNc/fjyYghkAANDpQvbp5dVXX61TTjlFc+bMUWlpqXJzc/WTn/xEBQUFAce+/fbbGj58uP/rs88+O1QhAkBUcbk9+uMra7ShsskwPrJvmq47ua+/kDHitDYq+e2bFF/8YsCUO6mbas94RK7cI0wJDQAAAAiX84Bpr6zV+xt2GcZT4x167PxC5WVRXA4AAACgY8pqm/SzJz7W5soGw/iQ7ql66lcjlBIfY1psAAAAACLLZ1tqdM0Lxapv8RjGB2Yn6pFJhcpM4vwCAAB0vpBu+TN06FD/7fuMHz/efwMA/DBer1f3LNoUsLN0/8wE3T1ugJz2yCuYse/aqNR5U+SsKAqYa+lxtGpPf1jexCxTYgMAAADCgcvj1c2vr9Pba6sM40mxDv+FpvyuSabFBgAAYEVVVcbfyzqT3W5XWlra3u+rq6vl8RgXHCE6mJ3ryoZWXfLs11pf0djOgrYCeZrrVNUcsnCintn5RmiRb2sh39YRDrnOyMgI6esBwIF6b12V/vDKGjW7vIbxQ7sna/rEAqXG08ESAAAEB79lAEAU+s/SUr3wVZlhrEuiUw9NLFByXOT96I/dsEjJC66VvaU2YK5h2CVqOOY6yR55fy4AAACgs3i8Xt32xnotKK40jCfG2DVjUoEG5ySbFhsAAIBVud3ukL2WbyFmKF8P5gllrqsbXbp09qqAgpm+XeL9hfkpsXb+3QUZ721rId/WQr6tg1wDwG5vrCrXn+atl9tjLJg5uk+q7h+fr4RYh2mxAQCA6McKYwCIMm+vqdRDSzYbxuKcNj0woUC5aXGKKB63Ej+ZrsSljwVOxSSr7pR71ZJ3uimhAQAAAOFUMPOXNzfo9ZXlhvE4p92/M9uh3VNMiw0AAABAZKprdumK54u0uqzBMN4zPU4zJw9SZlKMabEBAAAAiCxzvtihexZulLFcRhozMEN3njVAsU67SZEBAACr6NSimXfeeUfBcOKJJwbleQEg2qwqrddNr60LOMn885l5OiQ3snaWtjVWKuXNqxW75b2AOVeXgao98zG5M/qbEhsAAAAQLrxer+5btEkvLt9pGI91+Arn83VEr1TTYgMAAAAQmepb3Lry+WKtLK03jOemxupvkwcpOznWtNgAAAAARJYnP96mR97dEjA+bkiWbjy9v5x2mylxAQAAa+nUopnRo0fLZuvcX2J8z+dyuTr1OQEgGpXWNOvqF4rV5PIYxi8/oZdOKchUJHHu+FIp86bIUbc9YK554NmqHfMXKTbJlNgAAACAcCqYmf72Zs3+Yodh3HeB6b7x+Tq6T5ppsQEAAACITE2tbl09t1hfbaszjHdNjvF3mMlJjbCO9gAAAABMu4bx6Ltb9OQngWt/fnxEN10zpo/snbzWFAAAICRFM3t+2QEAhH7Xt2teWK3y+lbD+LhDsnXBiFxFDK9X8SueU9I7t8vmaTFO2Z2qP26amg69wFdRaVqIAAAAQDjwff7y2Htb9Z/PSg3jDrtNd58zQMf1TzctNgAAAACRqdnl0bUvrtayrbWG8czE3QUzPdPjTYsNAAAAQOTweL26Z+FGPf9lWcDcJcf00G+O7dHpm7MDAACErGhm8eLF3znX0tKim266SZ9++qmys7M1efJkjRgxQt26dfPP79ixwz83a9YslZWVafjw4brzzjsVExPTmSECQNRxe7y68dW1Wr2zwTB+ZK8U3XBq38g5yXQ1KfntmxVfNDdgyp3YVbVnzpAr9yhTQgMAAADCzT8+LNG/Pt5mGLPbpDvPytPoAV1MiwsAAABAZGp1e/SHl9fo4001hvH0BKcem1yoPl0STIsNAAAAncPhcATlee12+36/R3T5vnz7zi3+NG+d5q0sD3jstSf11c+Hdw96jOg8vL+thXxbB7m2FvIdhKKZUaNGfefup2PHjtXSpUt10UUXafr06UpKSgo47he/+IXuvvtuTZ06Vf/4xz/0wAMP6PXXX+/MEAEg6jz49ia9t36XYax3RrzuPSdfMY7I+M/NXr1ZqfOmyFm+MmCutfsI1Zz+sLxJ2abEBgAAAISbJz/epsc/KDGM+Url/3xmnk4pyDQtLgAAAACRyeX26IZX1wZca0iNd+ix8wuVl5VoWmwAAADoPBkZGSF5nbS0tJC8DsLDvvluanXr988u08JV5QGbft098VBNHt7LhAjRmXh/Wwv5tg5ybS1pFs13SFZT//Of/9T8+fN1yimn6Iknnmi3YGaPxMRE/f3vf9epp57qf4zvawBA+/63rFT/XbbDMJaW4NRDEwv895HAueEtpc8a327BTMPhF6l6/FMUzAAAAADfeO6zUj3y7paA8ZtO76czB2eZEhMAAACAyO5mf8u89Vq8psownhTr0IzzCpXf9buv6wIAAADAHnXNLl34r0+0cFWZYTzGYdOjPz2CghkAAGCqkKyofvLJJ2Wz2XTZZZcd8GOmTJmiBQsW6N///rd+85vfBDU+/HC07URnIN8/zLvrqvTXxZsCTjQfmFCovlnhexFrb349bmnJPUpZck/AMd6YJNWfeq9aB56l4PyUQSjw3rYW8m0t5BsAzDHnix0B5wA+fzylr8YP7WpKTAAAAAAil8fr1e3z1+vNogrDeEKMXQ+fV6AhucmmxQYAAAAgclTVt/gLZr7cWm0Yj4+x6/FfHKVR+WyWCwAALFA0U1RU5L/v3bv3AT+mV69ehsciPNG2E8FAvr/fqu01mvbyanm8xvF7Jx2qkw/tqbDXUCk9f7G0blHgXFaBbD96WsnZBWZEhiDivW0t5NtayDcABN9Ly8t098KNAePXjOmtSYd3MyUmAAAAAJHL6/XqrgUb9eqKcsN4nNOu6RMLdFiPFNNiAwAAQHBUVRm7C3YW3wZ7+14vrK6ulsfjCcprwXxt871ma5l++9zXWl/RaDguOc6hGZMG6dBsZ9D+7SH4eH9bC/m2DnJtLeGQ74wQ1RuYXjTT1NTkv9+yZYuGDRt2QI/xHevT3Nwc1NgAINKU1TTpoic/VX2L2zB+1ckDNWFYBBTMbPtc+t8vperNgXODz5XGPyLFcTEOAAAA2GPeynLdMX9DwPjlJ/TST4/MNSUmAAAAAJFdMOPrYvnCV2WG8ViHTX89N19H9ko1LTYAAAAEj9ttXGcSLL5FmKF6LZhrc0WDLnz6K5VUG9d4ZiQ49cj5hSromsS/hSjD+9tayLd1kGtr8Vg03/ZQvMiAAQP893/7298O+DF7js3LywtaXAAQaRpb3Lr4qaXaVr27GHGPcw7rrqmnDFTYW/eW9K+xgQUzNod02p3S+U9SMAMAAADsY2Fxhf40b53aNJnUb47toQuP7m5SVAAAAAAiuWDm4Xe26L/LdhjGnXab7j1noEb2paMwAAAAgO+3eketJv3tg4CCmW4psXriJ4P9BTMAAADhIiSdZiZPnqyvvvpK8+fP12WXXaYHHnhA8fHx7R7r6yxz7bXX6o033pDNZtOPf/zjUISIH4i2negM5PvAeLxe/f7FYn21tdowfliPFN1wSm/t2rVL4Sxm7RtKeuNK2dwthnFPYrbqxz4iV4+jpTD/M6BjeG9bC/m2lnDIdzi07QSAYHt7baVufG2dPG0qZn51dHddckwPs8ICAAAAEMH+/kGJnv50u2HMYZPuGjdAx+fxeQsAAACA7/fFll268F+faFdDq2G8d0a8Hju/UDmpcabFBgAAYFrRzDXXXKNnnnlGRUVFevzxx/Xiiy/6C2mGDx+url27+otjduzYoU8//VSzZ89WaWmp/3EFBQX+xyJ80bYTwUC+2/fwks16a3WlYaxHWpzuHz9QTps3rP/O4opfVNLC62Xztomx9zGqOe0hueIzfT9QzAoPIcJ721rIt7WQbwDofO+v36U/vrxW7jYVMz89MkeXHd/T/1kKAAAAAHTE/31Uoic+LDGM2W3S7WcN0JiBXUyLCwAAAEDk+Hxrja6YvUr1Lcbrw/nZiZoxqVCZSTGmxQYAAGBq0Yyvq8zixYt11llnadmyZf6imBkzZnxnS3CfYcOG6dVXX1VcHFXHAPDiV2V6qs3Ob8lxDj00sUAZieF9shn/9bNKevsW2dRme+xDJkkT/iZvTR0FMwAAAMA+PtlUretfXi1Xm4KZ8w/vqqtH96ZgBgAAAECHPbN0ux57b6thzHdmccsZ/XVaYaZpcQEAAACIHE2tbl3/UnFAwcyh3ZP9a5hS4kOyHBUAAKDD7AqRbt266eOPP/YXywwePNhfHNPebdCgQXr44Yf1ySefKDc3N1ThAUBYL5i7a+FGw5jDbtO95wxU38wEhbOEZX9X8ts3BxbMHHGBNPHvkiO8C34AAAAAM3Zou+aF1Wp2GX+HHj80W78/uS8FMwAAAAA6bNbnpZr+9uaA8Wmn9tPZQ7JNiQkAAABA5JnzRZnK61oNY8f0TdejkwopmAEAAGEtpL+pOBwOTZkyxX/zdZtZvny5Kisr/XMZGRkaOnQohTIAsI8NFY26/uU1crfZYXraqX01ok+awpbXq8RPpivx00cCppqGXaz4cfdLLPYDAAAADJZvq9VVzxeryeUxjI8dnKUbTu0nO79DAwAAAPgBnezvXbQpYPy6k/po4mFdTYkJAAAAQORpbHHrqU+3GcZG9Oui6RPz5bC12UwXAAAgzJhW3puTk+O/AQDaV9XQqqlzi1XXbGxpesGIXJ07NIwvZHm9SnrvDiV8+WTAVP2Iq9QycqriWewHAAAAGKwqrdcVzxerodVYMHNqQRfdckZ/f7dJAAAAAOiI11bs1J1vbggYv2pUb/34CK7TAgAAADhwc74sU2WDyzB2w9hBinV65XYb1zYBAACEG7vZAQAAAjW7PLr2xdUqqW42jI8ZmKEpJ/RS2PK4lbz4hnYLZuqOu0GNI66kwwwAAADQxuqyek2ZsyqgYH70gAzdPjZPTgpmAAAAAHTQgqIK/fmN9Wq73/PvjuupXwzPNSkqAAAAABHbZeYTY5eZMQXZOrxXumkxAQAARESnGQBA+7xer257Y72+2lZnGB+ck+RfMGcP16ITd6tSFl6ruDWvGYa9sqlu9O1qPuQnpoUGAAAAhKv15Q26bHaRapqMBTPH9UvXX84eIKeD/U4AAAAAdMzbayp102tr5WlTMfPrkd118TE9zAoLAAAAQISa/cUOVTUau8xcdUq+afEAAACEddGMy+XSa6+9pnfffVfr169XbW3t97bms9lsWrRoUchiBACz/f2DEs0vqjCM5aTE6oEJ+YqPcSgsuZqU+sYVit34lmHYa3Oo9tT71ZJ/jmmhAQAAAOFqU2WjLp1dpF1tLjSN6JOqe8cPVKyTghkAAAAAHfPe+l364ytr5W5TMPPzo3J06XE9zQoLAAAAQIRq8HWZ+XS7Yeykwq50mQEAABElZEUz7733nn7xi19o8+bNhm4K+yuW8c377gHAKl5fWa4nPiwxjCXF2jV9YoGykmIVllrqlfrabxRb8pFh2GuPVe2ZM9TS7xTTQgMAAADC1dZdTbp01ipV1Lcaxo/omaIHzs1XHAUzAAAAADrok03Vuv6l1XK1aTFz/uHddNWo3lx3BQAAAPCDusy03fzrqpMHmhYPAABA2BbNFBUV6YwzzlBjY6O/ECY2NlYDBw5Uly5dZLezCAQAfD7fWqPb5683jNlt0l/OHqgB2YkKR7amaqW+cpFidnxuGPc6E1Rz1uNq7XWcabEBAAAA4aq0ptlfMFNWZyyYObR7sh6cWBC+HSYBAAAAhK1lW2p09Qur1dKmxcy5Q7P1+5P7UDADAAAA4Ad1mXm6TZeZE/MydBhdZgAAQIQJSdHMX/7yFzU0NMjhcOjPf/6zrrzySiUnJ4fipQEgImypatJ1L61Ra5uLWded1EfH9Q/PE01bQ7nSXr5QzvJVhnFPbIpqxv1TrtwjTYsNAAAACFc761r0u1mrtL2mxTA+uFuSHj6vQEmxFMwAAAAA6Jjl22o1dW6xml0ew/jYwVmadmo/2SmYAQAAAPADzPo8sMvMb47rZVo8AAAAYV0089Zbb/l3L7rqqqt0ww03hOIlASBiVDe6dNXcYv/9vn5yRI4mD8tROLLXblPqS7+Uc9cGw7gnvouqxz8pd/YQ02IDAAAAwlVFfau/w8zWXc2G8fzsRM2YVKjkuJB8TAMAAAAgiqwqrdcVzxerodVYMHNqQRfdckZ/OXwt7QEAAACgg+p9XWaWGrvMnJCXriG5bJYOAAAiT0hWY5SXl/vvJ0yYEIqXA4CI0er26PqXV2tzVZNh/Pj+6Zo6urfCkb16k9Je/IUctSWGcXdSN9WMf0ruLgNMiw0AAAAIV7saWnXZ7FXaWGn83b9/ZoIePb9QaQkUzAAAAADomDU7G3T5nCLVNbsN46MHZOj2sXlyUjADAAAA4Aea/fmOgA2Af3tsT9PiAQAAOBh2hUB2drb/PiEhIRQvBwARwev16i9vbtBnW2oDdpm+8+wBYbn7m6NitdKe/3FgwUxqL1VP/C8FMwAAAEA7appcumxOkdaVNxrGe2fE67HJhcpIjDEtNgAAAACRaUNFoy6btUrVTcZFbMf1S9dfzh4gpyMkl4EBAAAARGuXmU+NXWZOzEtXYbck02ICAAA4GCH5tPT444/333/99deheDkAiAhPfrJNr6zY3Ylrj6ykGD04MV9JsQ6FG0fZcqW98FM5GsoM466MPH/BjCctPDvjAAAAAGaqa3b5d35eXdZgGO+RFqe/TR6krKRY02IDAAAAEJl83esvnbVKVW12fR7RJ1X3jh+oWCcFMwAAAAB+uFmflwYU6P+GLjMAACCCheQT02uuuUYOh0MPPfSQXC7jL1MAYEULiyv06LtbDWPxTrsenFCgbilxCjfObZ8q7YWfy95UZRh3ZQ9R9cTn5EnOMS02AAAAIFw1tLh11dxirSytN4znpMT6C2a6plAwAwAAAKBjSnbtLpgpr281jB/RM0V/HZ+vOApmAAAAABzkZmDPfFpqGBs1IIMuMwAAIKKF5FPT4cOHa/r06fryyy81ceJElZcbOysAgJV8vb1Of5q3zjBmk3THWXkalBN+J5gxm99V2ssXyt5aZxhvzTlC1ec+I29CpmmxAQAAAOGqqdWtq18o1pclxt+js5Nj9LcfDVJuWvgVywMAAAAIb9t2Neo3/12hHbUthvGhucl6cGKBEsKwiz0AAACAyDLr8x0BXWYuOaaHafEAAAB0BqdC4LbbbvPfjxgxQq+++qr69OmjU089VYWFhUpMTPzex99yyy0hiBIAgm9bdbOueaFYzS6vYfyqUb01emAXhZvYdfOVMn+qbB7jBbiWnseq5qzHpZjv/xkOAAAAWE2zy6PrXlqjz7bUGsYzE2M0c/Ig9UyPNy02AAAAAJGprKZJP33iI/91hn0N6pakh88rUBIFMwAAAPgeDkdwfme02+37/R4R1mVmqbHLzJiBXTSke+re78m3tZBvayHf1kGurYV8h7Bo5tZbb5XN5uujIP99Y2OjXnnlFf/tQFA0E744mUJnsEq+a5td/p2mKxuMuzGcd3g3/fLoHnt/ToaL2KIXlPjmdbJ53Ybxlv6nqP7MR+Rw/rCFflbJN8i11ZBvayHfAPDdWt0e/eHlNfpoY7VhPD3BqccmF6pvlwTTYgMAAEB0XEPx4dzcOny5La9r1k//8bE2VjQY5gZmJ+qxHw1WekKMafGhc/HethbybS3k2zrINcJZRkZGSF4nLS0tJK+DzvfMojWqadNl5rozBysj47tzSr6thXxbC/m2DnJtLWkWzXdIimZ8vF7vfr9HZOJkCsEQjfl2uT268slPta680TB+wsAs3X3+EYpxhNkHZZ/+Q5p/beD40PMVe+5MxTo67wJcNOYb7SPX1kK+rYV8A8C3v/ff8Opavbd+l2E8Jc6hR88vVF4WnRoBAACsJFTXUHw4N49e1Q2t+vnfP9TasjrD+ICuyXruNyOVlRxnWmwIPt7b1kK+rYV8Wwe5BhApappa9Y/3NhjGTh/STUO683MMAABEvpAUzXg8nlC8DACEJV+R4J9eXqF315Qbxgd2TdajPwvDgpn3H5IWtNPh68gLpbMekOzB2x0RAAAAiFRuj1e3zFuvxWuqDONJsQ49MqlQBV2TTIsNAAAAQOS67dWVKiqtNYz1zUzUsxcfTcEMAAAAgE7z5PsbVd3Yahi76uR80+IBAACIyE4zAGBV/3xvg/7z8WbDWFZyrP7vwuFKje+8ji0HzdcBbPGd0jv3Bc4dc7l02h2SzWZGZAAAAEBY83i9un3+er1ZVGEYT4ix6+HzCjQkN9m02AAAAABErtU7ajX3862GsZ4ZCXr2kpHqmhpvWlwAAACITFVVxk2fOovdbjd0VaqurmaT7QhT2+zSE++sM4ydlN9FuQnugH835NtayLe1kG/rINfWEg75zghhV/bvQtEMDgonU+gM0Zzvt9dU6s7XigxjsQ6b/npugZJtzaqqalZY8HqU8M7tiv/iXwFTjUdPVdPwq6RduzrlpaI53zAi19ZCvq0lHPIdDidTALCns+RdCzbo1RXGzpJxTrumTyzQYT1STIsNAAAA0XkNJVzOzRF8d71a5N/vat9Olo//eIgSvE2qqmoyMzQECe9tayHf1kK+rSMccs01FHwXt9sdktfx/ZsP1Wuhc/znkxLVNhtzdskxPQ4oj+TbWsi3tZBv6yDX1uKxaL4pmsFB4WQKwRAt+S7aUa9pL6/WPtez/G49M09DchLD58/ocSt58Y2KXzU7YKruuBvUNOwiX1KC9/JRkm98P3JtLeTbWsg3ACsXzNz31ia98NXOgEL5Bybk68heqbCFvWIAAQAASURBVKbFBgAAAPOF8lyZc/Po8/X2Oi1eU2kYu/iE/uqeGkuuLYT3trWQb2sh39ZBrgGEu9oml579rNQwdtLADA3MTjQtJgAAgIgvmqmsrNS//vUvLVy4UF9//bX/e58uXbrokEMO0SmnnKJf/epX/u8BIFLtqG3W1S8Uq8llLDa59PieOq0wU2HD3aKUBdcqbu3rhmGvbKobc4eah/zYtNAAAACAcC+YeWjJZs36fIdh3Gm36d7x+Tq6z7e7SQIAAABARz323hbD9+mJMbr4hH5yNdaZFhMAAACA6PPcstKALjO/ObanafEAAABEfNHM448/ruuuu04NDQ17F5jsUVJSom3btunNN9/Urbfeqr/+9a/6zW9+E8rwAKBTNLS4dfULq7WzrtUwfvaQLP366O4KG64mpc67XLGbFhuGvTaHak+9Xy3555gWGgAAABDuZr6/Vc8sNe685rBJd48boOP7p5sWFwAAAIDI9+nman2yqcYwdtnoPKXEx6iq0bSwAAAAAFigy8zJ+V00gC4zAAAgyoSsaObuu+/WjTfeuLdQJi0tTcOGDVNOTo7/+9LSUn3++eeqrq5WfX29Lr30Uu3atUvXX399qEIEgIPm9nh142trtbpsd3HgHkf0TNGNp/WTzWZTOLC11Cnltd8qtuQjw7jXHqvaM2eopd8ppsUGAAAAhLt/fFii//tom2HMbpNuP2uARg+kcy4AAACAH853LfXRd41dZrqlxumXx/Q1LSYAAAAA0clXMFO3T5cZ36qmS47pYWpMAAAAEVs08/XXX+vmm2/2f8ibm5ur++67T+eff75iYmIMx7lcLs2ePVu///3v/V1nbrrpJp111lkaMmRIKMIEgIM2fclmvbtul2Gsd0a87h0/UDEOu8KBralaqa/8WjE7vjCMe50JqjnrcbX2Os602AAAAIBw99Qn2/S397caxnwXkf50Rn+dVphpWlwAAAAAosM763bp6+31hrErTx6o+BiHaTEBAAAAiM4uM88tM3aZOaWALjMAACA6hWQF9yOPPCK3263s7Gx9+OGH+ulPfxpQMOPjdDr1k5/8xH9M165d/Y/xPRYAIsHsz3fouTYtS9PinZo+sUDpCYE/88xgayhX2gs/DSiY8cSmqHr8vymYAQAAAPbjv8tK9fA7xh2ffXxdJc8akm1KTAAAAACiq5v9Y+8Zzzl6pcdr8lG9TIsJAAAAgHW6zFxMlxkAABClQlI089Zbb8lms2natGnq3bv39x7fq1cv/eEPf/B3plm0aFEoQgSAg/LBhl26/62NhjGn3ab7xg/0d5oJB/babUqb+2M5K4oM4574Lqqe8B+5co80LTYAAAAg3D3/5Q7d/9amgPHrT+6jcw/takpMAAAAAKLLm0UVWlfeaBi79IReYdPJHgAAAEB0qGly+Ytm2naZycuiywwAAIhOzlC8SElJif/+2GOPPeDHHHfc7m4H27ZtC1pcANAZ1u5s0LRX1sjtNY7fdHo/HdErVeHAvmuj0l76pRy1u38e7+FO6qaa8U/J3WWAabEBAAAA4e7l5WW6a4GxSN7n6tG9NXlYjikxAQAAAIguLrdHf3t/q2FsQFaCTh+UZVpMAAAAAKLTs0tLVd9i7DJzCV1mAABAFAtJ0YzD4fDfu1yuA36M2737lzK7nZ2TAISv8voWTZ1brPoWj2H8opHddfaQbIUDR0Wx0l66QPaGnYZxd2ovVZ/7tDypvUyLDQAAAAh3L31RoltfXxswPuWEnvrZUbmmxAQAAAAg+ry4fKdKqpsNY5ce30t2m2/5GgAAAAB0jupGl55btt0wdmphpvrTZQYAAESxkFSk9O7d23+/aNGiA37MnmP3PBYAwk1Tq1vXvrBapbUthvHTCjP1u+N6Khw4d3yltLk/DSiYcWUMUPXE/1IwAwAAAOzHvOXbdc2sL9WmqaR/t7VfHc2OawAAAAA6R1OrR//40Ngpfmhusk7MSzctJgAAAADR6dnPths2B/aV6V88srupMQEAAERFp5lTTz1VK1eu1P33369zzz1XQ4cO3e/xX3/9te677z7ZbDaddtppoQgRADrE4/XqT/PWa0VpvWH80O7J+tMZ/f0/v8zm3PapUl+5WPbWOsO4K3uIqs/5l7wJmabFBgAAoldLS4uee+45rV+/XqWlpaqrq1NiYqJycnJ00kkn6YQTTpDTGZJTUeCgLFy5Q1c897ncHmPJzAUjcvWbYymYAQAAANB5Zn+xQ+X1rQHdLcPhWgMAAACA6Ooy899lpQGbA9NlBgAARLuQdJqZOnWq4uLi/Iuljj/+eH/xTEVFRcBxvjHfnG8RVW1trf8xvscCQLh57N0tWrS60jDWIy1O94/PV5wzJD9a9ytm0ztKe/nCgIKZ1pwjVH3uMxTMAACAoGlqatKbb77p/3rYsGE666yzNGLECFVWVmrmzJm655575PF8u3sVEI4+WF+ly/6zTK42BTM/OSJHl5/Qi4VrAACEGVvdDmnVK9KCP0nr3zY7HADokLpml578eJthbESfVB3VO820mAAAAABEp/+012XmGDYKAwAA0S8k2/v26dNHjz/+uH71q1/5C2f+8Ic/6I9//KP69eunrl27+heb7NixQxs2bJDX6/XffGO+x/Tu3TsUIQLAAXtpeZme/GS7YSw5zqEHJ+SrS1KMzBa7br5S5l8lm8e4K11Lr+NUM/ZvUgy7QwAAgOBJTk7Wv//974BuMm63W3fccYe+/PJLffHFFzriiCNMixHYn02Vjbr2hWK1uI3FXZMO66prxvSmYAYAALO1Nsq582vFlH4h544v5dzxhRx1+3xW52qSRh5mZoQA0CH/WVqq6iaXYWzK8b1MiwcAAABAdNrV2Kr/fmbsMnP6oEz1y0wwLSYAAICoKprx+eUvf6nMzEz99re/1bZt2/yFMevWrdP69ev9877v9+jevbv+/ve/a+zYsaEKDwAOyNLN1frLgo2GMYdNuuecgWHRqjSu6AUlL/qDbF63Yby53ymqPf1hyRlnWmwAAMAa7Ha7/9aWw+HQ8OHDtWLFCpWWGj+QB8LJ4x+UqMllLJgZP7Srrj+lLwUzAACEmtcjx64NcpZ+7i+QidnxpRzlRQGffRls/TSUEQLAQalqaNV/lho36RozMENDcpNNiwkAAABA9BbsN7R+e/3DbpMuHkmXGQAAYA0hK5rxOeuss7Rx40a98MILWrhwob7++mtVVlb657p06aJDDjlEp5xyis4991zFxJjfrQEA9rWxolG/f2mN3J5vi/x8/nhqPx3dJ01mi1/+HyUvuSVgvCn/HNWdfK/k4OcqAADhrrq6WmvXrvXffJsM+G61tbX+uVGjRmnKlCkH/Fw7d+7UvHnztGzZMlVUVPg7v+Tk5OiYY47R6aefrri40BbTejwef5cZn1692DEX4Wl9eYMWFFUYxsYd1l03n9bHv2gXAAAEl62xcndxzDdFMr6bvWX378MHrHS55GqWbCG9/AEAP8iTH28zLFrzlen/7riepsYEAAAAIPrsamjV/5a16TJTmKm+dJkBAAAWEfKrRr6FWueff77/BgCRdPJ41dxi1TYbd7H8xfBcTTi0q8yWsOxxJX1wb8B445Afq37UbZLdYUpcAACgYy655JJOeZ6lS5dqxowZamxs3DvW3Ny8txBn0aJFmjZtmr+IJlhcLpfmzp3r/9pX+OPbNKGkpESjR4/W0KFDg/a6wMH4x0fbtG+JfHKcU7ePHyJvc73c+9nQHgAA/ADuZjl3rpJzxxdyln6xu4tMzeYf/nxxqVKPI6QeR/mfW06KZgCEt9KaZs3+YodhbOzgLOWFQVd7AAAAANHlP58Fdpm56Bi6zAAAAOvgqhEAfI8Wl0fXvrRaJdXNhvHRAzJ0xYkm75Lu9Srx4weUuPSxgKmGwy9Sw3HTJJtvbzoAABBpsrKy1KNHj73dWQ7Uhg0bNH36dLW0tCg+Pt7fydPX1dP3/fvvv+8vmNm+fbvuuusu3X333UpISAha0cycOXP2fm+z2TRu3Dj99Kc/DcrrAcHoMvOr4/oqPTFWVc31psUFAEBU8Hplr9msmFJf95gvdt92rpLN0/LDns5mlzuzUK3dDpOr2+HydD9Caf2Pkuz23QdUVYmKVwDh7p8flajF/W3ZvtNu02+OZdEaAAAAgBB0mRmUqb5d6DIDAACsg6IZANgPr9er2+ev15cldYbxQd2SdPvYPNnNLEjxepT07h1K+OrfAVP1I6aqcfjlFMwAABBhJk2apLy8PP8tPT1dZWVluvzyyzv0HE8++aS/QMbhcOimm25Sfn7+3jlf8Uxubq6eeeYZf+HMK6+8osmTJwc8x1NPPaXW1tYDfs2xY8f6n3dfvoKdWbNmyePxqKqqSp999pmee+45rV692t/lJjGRnXMRXv7ZTpeZi47vZ2JEAABELltzjZw7dhfI7C6U+VL2psof/HzupBy5cg6Xq9thau12uFxdD5Fivv190ve7796CGQCIAJurmvTy8p2GsQmHZqtHerxpMQEAAACITs8s3R7QZebikRTsAwAAawlJ0czy5cs1fvx4/4Wrt99+279b8v6UlJRo1KhR/sXq8+bNMyzyAoBQeuLDEs1bZdxtultKrB6YkK+EWIdpccnjVvLiGxW/anbAVN3xN6rp8F+bEhYAADg47RWwdMTatWu1atUq/9djxoxp91zq7LPP1uLFi/3nXb7zrYkTJ8rpNJ4aLliwQM3Nxi57+zNy5MiAopk97Ha7MjMzddpppyklJUUPPvig5s6dq5///Ocd/vMBwbKholFvfkeXGQAA8D08LjkqihVT+k0HGV+xTNW6H/x0XmeCXF2HqtVfJLO7UMaTnNOpIQOA2f72/lbt02RGcU67LmLRGgAAAIBOVuXrMvP5DsPYGYOy1IcuMwAAwGJCUjTj28V448aNOv3007+3YMbHd4xvcdf8+fP9j73ttttCESYAGMxbWa6/f1BiGEuMsev/2bsP8DjKO3/g35nZor5a1ZUtN0nuvWKbYkpoxhAghAChhVRCSMilHf9LLpc70rlLIQkJLWCSkOMIEMA2zYAptnGVe1NxUVnJ6nXbzPyfmZUljSTbK3mbdr6f55lndl7tzLzSb9fe2Xl/7+9XN0xBbloMB8/JPqS/9S3Yy9YamlUI6LjkIXhn3hKzrhEREVFsbdmypfexljRzuiQWbZKCv/3tb+js7MS+ffswd+5cw3OeffbZiPTv1Hn2798fkeMTjdQTm6oNVWZSbRKrzBAREQ1FVSF21AYTY9w7YdXWJ/dCCHhGdjgIkLNK+irIuOZBzpoMiFG5dUFEFBOH6zsHJe3fsiAfObG870BERERERAnp2a216B5YZWYZE/aJiIjIfKJy52nDhg0QBAHXXXddyPtolWlef/11rF+/nkkzRBR1pdXt+M83Kgxt2oXjT1aVYEpeasz6hYAHGeu+Btuxdw3NqmhB+yd+Cd+U0P+dJSIiosRz6NAhfW2321FUVHTa582YMcOwz8CkmUhpamrS11oVUqJ4rjJz68ICVpkhIiLS+Dphrd8TTJKp2wmLexekrvoRH05Jzu5JjpkbrCKTNweqPT2sXSYiinePflhl2E6zS7hz8ZiY9YeIiIiIiBK3yszzA6rMXD09B+OdSTHrExEREVFCJ80cPnxYX8+ZMyfkfWbNmmUY9EVEFC1VLR58++XD8Mv955oG/uWSCbig2Bmzfgm+DqSv+TJs1ZsN7apkQ/tVv4Nv0mUx6xsRERHFh6qq4MAbl8t1xsSUMWPGDNonnH3Izc3VE3f683q9WL16tf54/vz5YT0nUXirzIi4fXFBDHtEREQUI4oMqblMT5CxukthqSuF1HQEgto3G+lwaN9ZBXJn6skx/vy5CLjmQ0kfCwhC2LtORDSaJuz6oKLF0HbH4gI4kllhi4iIiIiIwmv11lp4An3f60isMkNEREQmFpVvYDs6OvR1WlpayPucem5bW1vE+kXnLlIzRIuieMZtSizxFO82TwAPvHgYLd0BQ/stC1347OLYXTgKnlakvXIXLO5SQ7tqSUbHtU9AHn8+Rst87fEUb4osxtpcGG9zYbzjk8/nQ3t7u/44Ozv7rNdbWlKLlsjS2GissHGuNm7ciDVr1mDatGl68kxycrJeYaa0tFTv3/Tp07Fq1aphHTPUPkaygg1f94mpoqFriCozY+BMNSZ9Md6Ji+9tc2G8zYXxPjuhs17/rknSEmS0pX63PmnLSMmOiQgUzIfsmqcnysi50wGpr3KblioTqU9rjDcRjQaqquIPH5wwtDmTLbh1gStmfSIiIiIiosTU1OnH/w2sMjMjB+NYZYaIiIhMKipJM06nEw0NDXC73Zg7d25I+2jP1aSnp0e4d3SusY0Gh8MRlfNQfIhVvH0BBV/9vy042tRtaL9kai4eunE+LFKMbrZ31AN//yxQt9fYbndA+Oz/IX38eRjN+P42D8baXBhvc2G844PH4+l9nJR09i+8tedoSTP99wuHhQsXorm5Wa84qi3a8VNSUjB+/Hicf/75uOSSS4ad3HLvvfeG9Lznn38e0cLXfWJ45vWjhiozaXYLvnb5dDhS+gb4ahhv82CszYXxNhfTx9vfDdTuAqq2AdXbgKrtQOvxkR8vKRMYuxAoXAwULtIfSylZcTOpi+njTURx6eNjrdhRFZzs4pR7lo5Fii1e/vUkIiIiIqJE8ewQVWY+v5RVZoiIiMi8opI0M3nyZD1p5vXXX8eVV14Z0j7r1q3T18XFxRHuHRFRcIa377+8B5sqjLNMT3Ol45HbFsQuYaa1Clj9SaCxzNiekg3c8RJQEFoiIhEREZmj0swpFsvZL/VOPaf/fuGgXcPxOo5Gg7L6dry6u8bQdvfyicgckDBDREQ06qgq0FjekxyzNZgoo03GohgrK4dMtAD5s4LJMVqSzNhFQHYxIGi1Y4iIKNR7EL//oMrQlp9uw6fm5sWsT0RERERElLhVZp4vNVaZWckqM0RERGRyUUma0RJlNm7ciMceewxf+tKXMH369DM+f9++fXj88cchCAKuuuqqaHSRiEzujxsq8Pw24w2r3HQ7nrx7sT7bdExogxtWXz941s/0McCdLwO5U2PTLyIiIopLNlvfQP9A4OwDIk89p/9+8erRRx+NdRcoAf12fZk+pvgU7XP/5y+YFMsuERERjUxXE1C9PZgcoyXJaI89LSM/nmM8ULgwmByjJckUzAGsyeHsMRGR6bxzpBkH6joNbV9aPhY2S4wm7CIiIiIiooS1emsNvAOrzCxjlRkiIiIyt6iMBL/33nvxi1/8Al1dXbj00kv1hJhVq1YN+dxXXnkFX/7yl9Hd3Y2UlBTcd9990egijVBzc3NEjiuKIhwOR+92a2srFKXvwzwllljH+62DDfj564cNbUkWEb+6YSpSVA+amz2INrHhENJfuh1i10lDu5wxDh03/g2KJU97A2I0inW8KXoYa3NhvM0lHuLtdDqjer7RICmpb3Yoj+fsn19OPaf/fvEqOzs7ptcn8fK6p/CpbOzCq7uMVWZuWeACfJ1o9nUy3ibCWJsL420uCRtv2Qfp5AFY6kohuUthqd0JqfXoiA+n2tIQyJuDgGseZNc8fa2mDqh60KF9boz+92OjKd68PiGiM5EVFY9+eMLQNt6ZhGtm5sasT0RERERElJgaO/34v9J6Q9vKmbkozIz/+4FEREREoz5pJicnB3/84x9xxx13oL6+Hp/85CdRVFSECy64AAUFBfpzamtr8cEHH6CyslIvUa5VmdFmE87Pz49GF2mEZFmOynm0G5zROhfFXjTjvbe2Az9Yc8TQJgD4r2uKMS0vOSavO0vdbqS/8jmIXuOMoAFnCdo++QyUNJf25kOi4PvbPBhrc2G8zYXxjg9axZj09HS0t7ejsbHxjM/t6OiA1+sdVkLKaBDN1yFf96PbYx+dQL8iM0i1ibhlQd5pY8p4mwdjbS6Mt7mMynirKsT2KljcpbDW7dITZSwn90GQfSM7nCBCzpqCQP5c+LUEmfy5kJ0lgCgZnzja/k6JEm8iSljr9jfgaJMx+fDe8wthEbW7EUREREREROGzessQVWaWjolpn4iIiIhMkzSj+exnP6vfqNKqzmgVZ8rLy1FRUWF4jpYso0lNTdUTZm6//fZodY+ITKi21YtvvXQY3kD/4XLA/ReNwyWTs2LSJ0vNVmS8+gWI/g5DeyB3Jlqv+zPU5MQZ1EpEREThV1hYiAMHDsDtduuDBCVpwADIHjU1NYZ9iMzkaGM33jhgTCz7zAIXMpOtMesTERGRRvC2w1K/O5gc494Fa10pxO4zJ0OfiZySp1eOCeQHE2T8ebMBW2pY+0xERGfmCyj408YqQ9vUvBRcNjU29yCIiIiIyNxOd98oHBVgz7RN0dHQ4cM/dhmrzKyalYcJ2eH9PojxNhfG21wYb/NgrM2F8Y5y0oxGqzRz+eWX47e//S3WrFmDvXv39ibKaAGYPXs2rr32Wnzta19jhRkiiqgObwAPvHQIjV1+Q/sNc3Jxx+JgBaxosx57Hxnr7oUQMM445y9YiLZVT0C1Z8SkX0RERDR6TJ06VU+a0arIaJMUTJ48ecjn7d+/37APkZk8sbl6UJWZ2xa6YtgjIiIyJSUAqekIrO6dsOhVZHZBaiqDYPhfKnSqJQmB3Fnw589FwDVfT5JR0goAgVUMiIhi6aXd9ahtM1YI++oF4yDy32ciIiIiigGn0xmV8zgcjqich4x+99F+ePpVmdGqW37rqplwOlMiel7G21wYb3NhvM2DsTYXh0njHdWkGY3L5cJPfvITfQkEAmhqatLbs7KyYLFEvTtEZEIBRcX/e7UM5Q3dhvYl4zPwvcsmQojBzSpb+RtIf+MbEBRjEo9v3PloW/lHwBrZC1giIiJKDEuWLMHLL7+sP3733XeHTJrRKoBu2LCht8rnzJkzo95PolhhlRkiIooVscMdTI5x74RVW9fvgRAwfjc1HAFnsZ4Yo1WR8bvmQc6aAkj8/4yIKJ50+2Q8tbmv0qtm3th0LJ9kzpvSREREREQUOfXtHvxl8zFD26cWFGJ8NscbEREREWlimqWiJcnk5eUxEkQUNVp1q/9+5yg2Hm01tE/MSsLPr5sMixT9smP2gy8hbf33IKiyod076RNov/K3gMUe9T4RERHR6FRSUoLp06fr1Wa0pJmLL74YU6ZMMTzntddeQ3V1tf746quv5uQFZCqsMkNERFHh74Klfi+sdaWwuEuDVWQ63SM+nJKUpSfI+F3BJBntMSsSExHFv7/vdA+qdn/fhYUxmbiLiIiIiIgS2x/fq4B3QJWZr11aEtM+EREREcUTjo4iIlP5+446/F9pvaHNmWzBr2+civSk6P+TmLTnL0jb8MNB7Z4p16Hjsl9whlAiIiKTOXjwINzuvgGVbW1tvY+19vfee8/wfC0pZqC7774bP/jBD+Dz+fDQQw/hhhtu0KvJaNsbN27E22+/rT+voKAA1157LRKJJEkRO7YoimfcpvhX2dg1qMrMrQvHIDstadBzGW/zYKzNhfE2l6jFW1UgNpXrFWS0BBnJvRNS4+FBk6OEfDjJBjl3BgIuLTlmPmTXPCiO8UC/AdZ85Q7G9zcRxZs2TwCrt9Qa2rQKM/MLmfRIRERERLHT3NwckeNq1+EOR19FxdbWVihKXwIHRdbJDh/++rGxysx1s/OQJnjR3OwN+/kYb3NhvM2F8TYPxtpc4iHeTqcTsRb1EeJHjhzB6tWrsWnTJn3QV3d3N9544w19RuRT9u7di+PHjyM1NRUrVqyIdheJKEG9X96M/3nXeJFokwQ8fP0UFGYOHigXack7/oTUjb8Y1N498xZ0rvhPQIzcoE8iIiKKT+vXr8eGDRuG/NmhQ4f05WxJM5MmTcIDDzyARx55RL/eeu655wY9R0uYefDBB5GcnIxEEs2L7P5fKNDo8B9vHB1QZUbCfZ+YDmeq7az7Mt7mwVibC+NtLmGLd8dJoHobULUtuK7eAXj7Ep2HzTkRKFwMjF0EFC6C4JoNi8XO2a7OEd/fRBRrz26tRbvXmED51QvGxaw/REREREQaWR7ZJB/DpQ3CjNa5CPjzpipDlRlJFHD3kgLGmyKC8TYXxts8GGtzUUwab0s0/8Df/e538Zvf/EZ/rKrBoSpaCXJtxuP+tISZVatWwWKxoLKyEmPHjo1WN4koQR2q78S/vVZmGCSn+ferijB3bHp0O6OqSPn4f5Cy7Q+DftQ17/PoOv9Bw+yhRERERMO1aNEiPPzww1i7di127NiBpqYm/frK5XJh6dKluOqqq2C322PdTaKoKavvwCu7agxtd58/MaSEGSIiMjG/B3Dv7kuQ0dYtxglZhsXuAMYu0JNjgokyC4HUnHD2mIiI4kBDpw/Pbe+rIqu5fGoWpuWnxqxPRERERESUuFVm/rGrztB23axcjHHwPiARERFRTJJmvvzlL+Opp57Sk2W0JJhly5bhhRdeGPK5K1eu1GdHPnr0qP6cb3zjG9HqJhEloPp2H7754iF0+43lxL5yfiGumh7lgQmqgtQPHkLy7mcG/ahzyQPoXvw1JswQERGZ2H333acv4ZCbm4u77rpLX4jM7nfvHNFy1w1VZr5wQVEsu0RERPFG+4+iqcKYIOPeAyj+kR1PkID8mcEEGb2KzGIguwQQxXD3nIiI4syfN9fA02+WZ1EAvnx+YUz7REREREREiemZLTXwyX03QCyigHvOGxPTPhERERGZNmlm/fr1ePLJJ/WqMv/v//0//OhHP4IkSRDPcIPw05/+NH7xi1/gnXfeYdIMEY1Yl0/GN186hPoO4wCHlTNy8PmlUb5IVGSkvfv/kHRgcMJgxwX/Bs+8e6LbHyIiIqIE09zcHLFja9evDoejd7u1tVWvokrxr7Kxa1CVmVsWugBfJ5p9nUPuw3ibB2NtLoy3uZwt3oKnFVJdKSzuUlhqd0Kq2wXRM/LPEkpaAQKu+Qi45kF2zUMgbzZgTTY+qbV1xMen+H5/O53OqJ2LiOJbbasX/9hVb2hbNTMXE7MG/J9AREREREQUhkmEXxxw/XHd7FwUsMoMERERUWySZh577LHeCjIPPfRQSPssWbJEX+/bty+ifSOixCUrKr6/pgyH6rsM7fML0/H9KybpiXzR64wP6W99C/aytYZmFQI6LnkI3pm3RK8vRERERAlKluWonUsbhBnN89HIPf7RCSj9qsykWEXcuiB/WPFjvM2DsTYXxttEZD+E2l2w1u4IJsloyTItlSM+nGpNQSB3Nvxackz+XATy50FJyx/ivHx9xQrf30QUK49trEKg3wWIVRLwpeVjY9onIiIiIiJKTKwyQ0RERBRnSTObNm3SB6d//vOfD3mfwsJgmXK32x3BnhFRIvvthuN4v7zF0DYu045ffnIybJbTV7oKu4AHGeu+Btuxdw3NqmhB+ycehm/KtdHrCxERERGRiRxt7MYbBxsNbZ9Z4EJmsjVmfSIioghTVYjtNbCe3A20HASqtgG1pcgIeEZ2OAiQs0r0xJhgksw8fRtiVL5aJyKiUaSysRtr9jcY2m6amw9XBmd5JiIiIiKi8FeZeWm3scrMJ2fn8vqDiIiI6DSicmevvj74AW3ixIkh72O1BgewBAKBiPWLiBLXC6V1+Ot2Y9JdRpKEX984NaoD5ARfB9LXfAm26o8N7apkQ/tVv4Nv0mVR6wsRERERkdk8ubl6UJWZzy5yxbJLREQUge9eLPW7YXHv0ivIWOt2Qew6OeLjKSk58Of3VJDRkmTyZkO1pYe1z0RElJj++FGV4foj2Sric5zlmYiIiIiIIuDpIarM8PqDiIiIKMZJM6mpqWhpacHJk6HfrKyqqtLXWVlZEewZESWizUdb8Mv1Rw1t2sXhLz85BROykqPWD8HTgoxX79EHa/SnWpLRds2f4B93ftT6QkRERERkNqwyQ0SUgBQZUlMZLHU79e9bLO5SSE1HIKDfCOVhUCU7Arkze6rIzEUgfz6U9DGAIIS960RElNgOuDux/nCToe22hS5kpfL6g4iIiIiIwquu3Tuoysz1rDJDREREFPukmaKiIuzYsQP79+/H5ZdfHtI+69at09czZ86McO+IKJGUnezC914pQ7/JFHT/dsUkLByXEbV+CF0NcPzzLlgaDxraFVs62q59EoGChVHrCxERERGRGbHKDBHR6Cd01sNaV6onx2hVZCz1eyH6O0d8vEDmpGAFmVOVZHKmAZItrH0mIiJz+sOHJwZVvr99UUHM+kNERERERInr6Y9r4e83MMoqCbibVWaIiIiIYp80c8UVV2D79u34/e9/j/vvvx+iKJ7x+VpyzdNPPw1BELBy5cpodJGIEkBjpx/ffOkQOn2yoV0rP3rtrNyo9UNsr0HGP++EpaXS0K4kZ6H1umcg586IWl+IiIiIiMzoaBOrzBARjTr+blhO7jMkyUgdtSM+nJKUCbFwMVC4CBi7CC1pxQhY08PaZSIiIs32E23YdLTV0Hbn4jFIT4rKbVgiIiIiIjIRd5sXL+9hlRkiIiKi4YrKt7Vf//rX8dvf/hbl5eX4yle+gj/84Q+wWIY+9VtvvYXPfe5z8Hg8yM7Oxhe/+MVodJGIRjmPX8G3Xj6E2jafof3yqVm494LCqPVDbDkKxz/vgNReY2iXU11ou341ZGdx1PpCREREZDaSJEXs2AMnfzjbZBAUW3/+uNZYZcYm4o4lY0N+jTDe5sFYmwvjHUdUBWJzhZ4cI51KkDl5AIIqj+xwogVyzgwEXPMgF8zXK8kgqwiOzMze5witrZAUJYy/BMUTvr+JKFZUVR1UZSY71YpbFuTHrE9ERERERJS4ntlSwyozRERERPGaNJOfn48//vGPuPPOO/Hkk0/ijTfewDXXXNP789/85jf6l8offfQRDh48qD/Wbmpp1WbS0tKi0UUiGsUUVcV/rCvH3tpOQ/usglT88KpiiIIQlX5IjYfg+OddELtOGtrljHFovf5ZKBnjotIPIiIiIrNyOp1RO5fD4YjauWh4yk92YN1+42fyu5dPQtHYvBEfk/E2D8baXBjvKOpsBKq3AVXbguvq7YDHOCP/sGSO16vH6FVkChdDcM2BxZp0xi+7GW9zYbyJKFo+qmjBruoOQ9sXlo5FkjVykzoQEREREZGZq8wY739cPzsP+emsMkNERER0NlGrC/7Zz34WVqsVX/7yl3HixAn86U9/gtAzkP2JJ57Q11qyjEZLlHnmmWcMiTVERKfz6IdVePtwk6FtTIYd/339VCRZozOrpKVuNzJe+RxEb4uhPeAsQdsnn4GS5opKP4iIiIiIzO5375QZqsyk2iR84cKiWHaJiMhcAl7AvReo2tqXKNNcOfLj2dKBsQuCCTKnEmXSRp4ISUTm4/P58Nxzz6GiogJutxsdHR1ISUmBy+XCpZdeigsvvBAWS9Rul1GCTej1hw+rDG1jHXZcPyc3Zn0iIiIiIqLE9eePh6oyUxDTPhERERGNFlG9C3DzzTfjsssuwx/+8Ae8+uqrKC0tRSAQ6P35zJkzcd111+Eb3/gG8vJ445OIzu7VvSf1i8L+tEFxv7pxCrJTrVHpg6VmKzJe/QJEv3E2uUDuTLRe9zTU5Kyo9IOIiIiIyOy0KjP/LK02tN21fCKyUm0x6xMRUULTJkFqPhqsHKMlyWgJMu7dgOwb2fEEEcibCRQu7EuQyZkCiJytn4hGzuPx4M0330RJSQnmz5+PjIwMdHZ26veoHn30UWzcuBEPPvggRDE6EzBR4nj7UBMOn+wytH1p+VhYJb6WiIiIiIgo/FVm/jmgyswNc1hlhoiIiChUUZ86Kzs7Gz/4wQ/0RVEUNDU1QZZlZGVl6ZVoiIhCte14G378pnGmUkkAfn5dCYpzUqLSB+uxDchY91UIAY+h3V+wEG2rnoRqT49KP4iIiIgIaG5ujtixtQF0Doejd7u1tVW/pqX48j+vHzFUmUmxibhpdtawXxuMt3kw1ubCeJ87wdsKyb0blrpSSLU7YanbBbG7ccTHU1LzEXDNR8A1D7JrHgJ5swFbqvFJrW0jOjbjbS6xjrfT6YzauWj40tLS8MwzzwyqJqPdm3rooYewa9cuPYFmwYIFMesjjT4BWcEfPzJWmSnKTsZV03Ni1iciIiIiIkpcT31cg0C/GyA2rcrMkjEx7RMRERHRaGKJ9Y2snBx+eUxEw3e0qRvffeWw4YJQ891PTMTSiZlR6YOt7HWkv/kABMVvaPeNOx9tK/8IWKOTuENEREREfYPeokUbhBnN81Fo1wjr9htnWfvMfBcy7OI5x4rxNg/G2lwY77NQApAaD8FatwsWd6meKGNpLh/x4VRLkp4U48+fh4C2uOZCSSsY/MQIxYTxNhfGmwbeixqqiowkSVi8eDH27dsHt9sdk77R6PXavgYcbzZOpnXvBYWQRCFmfSIiIiIiosRU2+rFK0NUmclLt8WsT0RERESjTUyTZoiIRqKly48HXjyENo/xxvdnF7rwqbn5UemD/eCLSFv/PQiqccZK76RPoP3K3wIWlj8lIiIiIoqmJzdXG6vMWEX9GoGIiEIjdtT2JsfoiTL1ewZV1h2OgLMEgfy5ehUZLVFGzp4CiPw6mmi00ar2lJWV6Ut5ebm+tLe36z9bsWIF7rvvvpCPdfLkSaxbtw47duxAY2OjXvnF5XJh2bJluPLKK2G326OeXKVVmdGMGzcuquem0c0bUPD4pmpD2wxXKi4uYdUpIiIiIiKKUpWZ81hlhoiIiGg4onKX0u/348iRI/rj4uLiQTc+PB4P/u3f/g3PP/88GhoaMGnSJNx77724//77o9E9IhpFfAEF33nlCKpavIb2FSVOfH3F+Kj0IWnPX5C24YeD2j1TPomOy34OSNao9IOIiIiIiPqqzLxxoNHQ9pkFLmSm8LM5EdGQfJ2wnNwL66kKMnW7IHXWjfhwSnKWXj3GryXJ6JVk5kC1Z4S1y0QUG1/84hfDcpxt27bhkUceQXd3d2+b1+vtTcRZv349HnzwQT2JJlICgQBefPFF/bGW+LN3715UV1fj4osvxuzZsyN2Xko8L5TWoa7dZ2i778JxEARWmSEiIiIioghUmdlrrDJz49w85KaxygwRERFR3CXNvPTSS7j11luRlZWFqqqqQT+/4YYb8Oabb0JVgxnRBw8exAMPPIBDhw7hd7/7XTS6SESjgPZvxENvVmJnVXAmw1Om5qXgoZXFkMTI35BK3v4npG76xaD27pm3ovPi/wQEMeJ9ICIiIiKiM1eZSWaVGSKiPqoCqalMT4yxuncGE2SaDg+qnhvy4UQbArkzEXDN7U2SUTLGARwoTJTwcnJyMHbs2N7qLKGqrKzEr3/9a/h8PiQlJeH666/HrFmz9O2PPvpIT5ipra3FT3/6U/zsZz9DcnJyxJJmXnjhhd5tLcHh2muvxW233RaR81Fi6vTJ+PPHNYa2ReMysGQ8k0WJiIiIiCj8nvq4GnK/GyB2i4C7l7DKDBEREVFcJs288cYb+mB37UbIwCoza9as0X+u3ZwoLCzE4sWLsWXLFn12r0cffVS/WbF8+fJodJOI4tyTm2uwdn+DoS0vzYpf3TAVyTYpsidXVaRs/m+kbH900I+65n0eXec/yMEhREREREQxcGyoKjPz81llhohMS+hqgFWrHtNbRWYPRH/HiI8nO8bDnz8fAS1BxjUPgZxpgGT8jpeIEtdNN92E4uJifcnMzER9fT2+9rWvDesYTz/9tJ4gI0kSvv/972PKlCm9P9OSZwoKCvCXv/xFT5x59dVXcfPNNw86xurVq+H3+0M+58qVK/Xj9qcl7Dz//PNQFAXNzc3Yvn07nnvuORw+fFivcpOSkjKs34vM6bntbrR0Bwxt911YyCozREREZNTdDDSWA41lELIXAElZse4REY1CNXqVGeM4qRvn5COHVWaIiIiI4jNpZseOHfqXxStWrBj0s6eeekpfazdJtGSZ9PR0tLa26okyWsWZJ554gkkzRITXDzTgjx8ZK1Vps0f/6sapyEuP8MWgqiD1g4eQvPuZQT/qPO8BdC/6GhNmiIiIiIhimFw/sMrM7YuMAySJiBJWwAvLyb3BKjI9iTJSe/WID6fYMxDICybHBKvIzIWazIE9RGY2VALLcJSVleHAgQP640suucSQMHPKqlWr8O677+qTqa1btw433ngjLBbj7au33noLXq835PMuXbp0UNLMKaIoIjs7G1dccYV+T+pXv/oVXnzxRdx+++3D/v3IXFq6/Xh2a62h7aLiTMwekx6zPhEREVEMyV5ILccgtVRCajkKqaWi9zG6+yb5sVz7OAITLo1pV4lodHpq8+AqM3ct4f0PIiIiorhNmtFmHtOUlJQY2rXZvNavX68n1Nx///36zQmNw+HQZyq77777sGnTpmh0kYji2K7qdvzn6xWGNlEAfrKqBFPzUiN7ckVG2rv/D0kHXhj0o44Lvg/PvM9F9vxERERERHTGKjNagn1/rDJDRAlLVSG2HA0mx9TtClaRaTgAQQmM7HCiBXL2VPjz5wUryOTPg5w5ERDEsHediMxLmyztFC1p5nRJLNqka3/729/Q2dmJffv2Ye7cuYbnPPvssxHp36nz7N+/PyLHp8TyzJZadPrk3m1tKq17LxgX0z4RERFRhKkKxA43pOZTCTHaoj0+CrG9GoKqnPUQYnMlMCEqvSWiBFLd4sGr+wZUmZnLKjNEREREcZ0009AQ/ACXnJxsaC8tLUVbW5ueNHPNNdcYfjZr1ix9feLEiWh0kYjiVFWLB996+TB8cr+powF88+IJuLDYGdmTyz6kv/Ut2MvWGppVCOi45MfwzvxMZM9PRERERERnxCozRJTIBE+LnhhjdfckyNTthuhtGfHx5PQxemKMVj3GryXJ5M4CLElh7TMR0UCHDh3S13a7HUVFRad93owZMwz7DEyaiZSmpiZ9LUlSVM5Ho9fJDh+e3+k2tF05PRuTc1Ni1iciIiIK7zV4b1KMniCjVY6phNR6FELAc07H1o5DRDRcT31cwyozRERERKMtaUa7GRIIBHqTZ055//339XVhYSEmTDBOq3Cq6ows983YRPEnUjeStJnlzrRNieV08W73BPDNFw+jpds4Y+rN81347OIxesJdxAQ8SFv3VViPvjtoFtbOK/4HganXgbdRR4bvb/NgrM2F8TYXxpviVSQHuvF1PzqqzNyysADZ6ec+AJzxNg/G2lziOt6yD1LDQVjcOyG5S2Fxl57ToBrVmopA/hy9goysJci45kNNzTM8J9G/14jreFPYMd7xq6qqSl+7XK4zfl4fM2bMoH3C2Yfc3Fz9XlV/Xq8Xq1ev1h/Pnz8/rOekxPPEpmp4A30D1iRRwJeXF8a0T0RERDRMAa+eBNObENNbPeYoRE8wmTqsBAlwToSSlBn+YxNRwk8w/NqAKjOf0qrMpLLKDBEREVFcJ81oCTFaafuPP/4Yl112WW/7q6++qg96v+iii047u5d2I4Pil9MZ4UofPRwOR1TOQ/FBi7dfVvC1f2xBZVO34WcrpuTiJzfNh0WK4I1vbzvw3BeBox8Y2yU7hJufQdrUqyN3bhPi+9s8GGtzYbzNhfEms12faPi6j73/evOYocpMik3C/ZfPgDMCN40Yb/NgrM0lZvFWVaDlOFC9DajaDlRtBWp3AbJ3hAcUgLzpQOEiYOwifS3kToNVlGANc9dHM76/zYXxjg8+nw/t7e364+zs7DM+Ny0tTU9q0RJZGhsbw9qPjRs3Ys2aNZg2bZp+zyk5OVm/B1VaWqr3b/r06Vi1atWwjhlqH5nYnxhONHvwzz0nDW3Xz8nDxJzUqJyfsTYXxttcGG9zYbyjRFUgttdA7EmIEZu15JhyiNrjtmoI6PeFYpgoqXmQMydBcRZBdhZBdRYhdfw8wDkBkKzwtbZCUpSwn5eIEtdTmwdWmRFxJ6vMEBEREcV/0swll1yCffv24ZFHHsENN9yg34B45ZVX8N577+k/X7ly5aB99u7dq68LCviBj8hsVFXFD17ei4/KjDcep+an43e3RThhpqsJ+OtNQPV2Y7s1Fbj1b0DRxZE7NxERERERhaTiZAdeLq02tN21fCKyOMsaEcUjTxtQswOo2hb8vkFLkuk0DrwdlrT83uQYfRkzH7AHq3YTEcUTj8fT+zgp6ezVALXnaEkz/fcLh4ULF6K5uRmHDx/WF+34KSkpGD9+PM4//3z9HtZwk1vuvffekJ73/PPPI1qYLBY5//lmKQIDBqx95+pZcDrOvcrlSDDW5sJ4mwvjbS6Mdxju6zeWBZeGI32PmyqAQHg/T+psaUB2SXDJmdzzuFhfi/Z0nGkEA2NNRMOtMrNmn/G7w5vm5rHKDBEREdFoSJq5//778dhjj6G+vh6zZs3SZ//VblBoA+MLCwvxqU99atA+b775pl6FZs6cOdHoIhHFkcfer8Dft54wtOWk2fHk3YuQnhTBOVI76oFnbwDqgkl7vewO4PYXgHFLInduIiIiIiIK2e/eKRtUZeaLFxbFsktEREFyADh5oCdBpqeSzMmD2hQhIzueJQkomNeXIKMlyzgKAUEId8+JiCJSaeYUi+Xst6NOPaf/fuFQXFysL0QjccjdPmTCvitGCTNERESm4u8OJsH0Jsf0rLWluyn85xMtgHMikD25NyGmN0FGm8CC1+JEFAVPalVm+n2VGKwyMyaWXSIiIiJKCFFJmpk8eTKeffZZ3HPPPejs7NTL3msyMzPx3HPPwWYzZkK73W689dZb+uNLL700Gl2kEdKSnyJBK0Xcf7aN1tZWKCxXm7D6x/v1vbX42TptMEmfJIuIX984BanwornZG5E+CG3VSH/pdr1Ec39KcjY6blgNOW2y9oKPyLnNhu9v82CszYXxNpd4iLeWiE8UreuTeHndU9Cxpu5Bg9Zunu+C4OtEs68zLOdgvM2DsTaXSMRb6KiDxb1TXyR3KSz1eyD4u0Z8PNlZhIBrHuT8+QgUzIecPRWQ+k0got0wb2k5pz6bBd/f5hLrePP6ZGj97/0EAoGzPv/UcwbeM4pHjz76aKy7QFHy8JuHoPYbsJZmt+ArK5iERUREFDaKDLRWAY1atZjyfpVjyoHWEyOfhOJM0gv6qsb0rx6TOd54DU5EFGUnmj1YO6DKzKfn5SE7lf82EREREY2KpBnNpz/9aaxYsQJr1qzRk2IKCgpw3XXXISsra9Bzd+/ejdtuu01/vHLlymh1kUZAluWonEe7wRmtc1Hs7K5qwQP/Wzroa68frSzGtLyUiL0GxJajyPjnHZDaawztcqoLbdevhuws1l7sETk38f1tJoy1uTDe5sJ4U7yI5uuQr/vYefyjE4YqM8lWEZ9dmB/ReDDe5sFYm8uw4+3vhuXkXli1JJm6XbDUlULqcI/8/ElOBPLnwp8/T19ri5rUN+i/F1+TYcH3t7kw3vEhKamvEofH4znr8089p/9+8So7Ozuk5zGxf3TbU9OOt/bXGdpuX1QQ1oT9UDDW5sJ4mwvjbS5mj7fQ3QSxuRJScznEFm1dCamlQr9XL8jhrTSoUW1pkDOLIDsnQXEWQc48tZ4I2NKG3qmtI2FizcR+otHpqc3Vhioz2iTDdy5mlRkiIiKiUZU0o8nLy8PnPve5sz7viiuu0BciMo/qlm58/plt8PiNXxZ97cJxuGzK4OS6cJEaD8Hxz7sgdhlnapAzxqP1+tVQMsZF7NxERERERDQ8x5s9WHegwdB28/x8OFM4yxoRhZmqQGqu0BNjLO5SWOt26d8hCOrIBuGrohWB3Bk9yTHz4M+fC8UxARCEsHediCheaBVj0tPT0d7ejsbGxjM+t6OjA16vd1gJKaMBE/tHt99tOGbYzky24NYIJ+yHgrE2F8bbXBhvc0nIeAc8kFqOQtKSYvTEmIrebdEb/qqpqmjR7+vLPckwepJM5iR9UVNyTn/NHeW/e0LGmogiU2Vmv/H+x6fn5yOLVWaIiIiIRl/SDBHRUDq8AXzx71txsj14U/SUT87OxV1LCiJ2XkvdbmS88rlBX9AFsiaj7bpnoKTlR+zcREREREQ0fE9uqh5UZUab6ZmI6FwJ3Y2wuHfBqiXJ6MtuiL72ER9PzhgXrCLj0qrIzEMgZwZgsYe1z0REo0FhYSEOHDgAt9utDxSUJGnI59XU1Bj2IYq1LcdaseV4m6Ht7vPGINU29GuYiIjINBQZYkdNT0JMZU9STM/j9r7PdOEkp7qCSTE9FWNOLUpGISBy2BMRJYYnh6gycwfvfxARERGFDa8eiSjmfri2DAfdxoEoi8dn4F8/MRFChGZctVRvQcZrX4ToN5ZYDuTOROt1T0NNjlx1GyIiIiIiGj5WmSGisAl4gdrdsB95H2LtzmAVmbbjIz6cYkvrqSAzF/78+QjkzwnOaEtERJg6daqeNKNVkamoqMDkyZOHfN7+/fsN+xDFkqqq+P0HJwxteWlW3DSXE20REZFJqCoET1NPtZieqjG9yzEIii/sp9SurXsrxTj7EmNkx0TAlhr28xERxdv9j4FVZrT7H6wyQ0RERBQ+TJohopgqrWrHO4ebDG0Ts5Lx8+smwyqJETmn9dgGZKz7KoSAx9DuL1iItlVPQrWnR+S8REREREQ0cqwyQ0QjJXhaYK3dBlvtdqB+J1C7C5B9SBnBsVRBgpw9FX49SWYeAq55+ky3ECLzHQYR0Wi3ZMkSvPzyy/rjd999d8ikGUVRsGHDBv1xamoqZs6cGfV+EvW3obwZ+9ydhrYvLi9EkpX/3xMRUYLxd0NqPdqXEKNXjwlui97WsJ9OFa2QHROCVWP05Ji+yjFqcjYQoQk1iYhG4/2POxbz/gcRERFRODFphohi6pmtxhLN2izRv71pOjKSIvPPk63sdaS/+QAExW9o9427AG0rHwWsIxkyQ0REREREiVRlRuioA6rWA5YkYNwSLfU+IuchosgQ22tgrdkGS+1WWGu2wtJ0ZMTHktNcweQYvYrMPATyZvG7AyKiYSgpKcH06dP1ajNa0szFF1+MKVOmGJ7z2muvobq6Wn989dVXw2JJnFtXkiRF7NiiKJ5xm0ZGVlQ8+mGVoW2cMwmfnJMPKUITfZ0NY20ujLe5MN7mErN4KzLE9mqIzeV61RjxVHKM9rijJjKnTCvoTYhRtKoxziIomUVQMsYC4uDPeon2yud7m4iG41hTd1TvfxARERGZVeLceSCiUae8oQsflLcY2u6/dLJ+A0qW5bCfz37wRaSt/x4EVTG0e4suR/uVvwEke9jPSUREREREo6vKjNhWjYwXPwN01Pa2ZTgmwO+aj0DBQvhdCyBnTQbEyA2AJKJhUFVIzeWw1GzVq8loSTJSe/XIDmVJRiBvDvyunioy+XOhpLnC3mUiotHk4MGDcLvdvdttbW29j7X29957z/B8LSlmoLvvvhs/+MEP4PP58NBDD+GGG27Qq8lo2xs3bsTbb7+tP6+goADXXnstEonT6YzauRwOR9TOlche2lmF8oZuQ9u3r5yGvJxsxAvG2lwYb3NhvM0lrPFWVaCzAWgs61mOAI3lQMMRoLlSr7YadnYHkFMCZGvLZCC7GMiZDGQVQbSl6okwHO4dxPc2EZ3Jk5trBleZidD9DyIiIiIzY9IMEcXMs1v7BqFpHMlWfGbxOPi62sN+rqQ9f0Hahh8OavdM+SQ6Lvs5IPErOyIiIiKieBTtKjOpm34BsV/CjEZqPaYvOPSyvq1Y0xBwzUPAtQD+ggX64HrVnh6R/hDRAEoAlpP7e5JktEoy2yF6mkZwIAFyVolePcafP1d/TwcT4vh1KRFRf+vXr8eGDRuG/NmhQ4f05WxJM5MmTcIDDzyARx55BN3d3XjuuecGPUdLmHnwwQeRnJwcxt4TDY8voOBXbxkr1E1zpePaOWNi1iciIiIDX2cwGUZPjCnvSY7pSZTxtIb/fJJNT4IJJsYU9yTH9CTKpOYAghD+cxIRmcjRpm68PuD+x2fm5yOTVWaIiIiIwo53gYkoJtxtXqw70Ghou2vZBKTaLfB1hfdcydv/pA98G6h75q3ovPg/AYHlkImIiIiI4tVTm41VZpIskasyI9Xvhf3Ia2d9nujvgO3Eh/qiUbXB99lT9Co0gYIF+lpxTODAAaJw8HfDWlcKS822YJKMeycE//C/OFAtSQi45sNafBEwfikwdiHaupWIVLolIqLBFi1ahIcffhhr167Fjh070NTUBIvFApfLhaVLl+Kqq66C3c5K4BRb/7vtBI43GT9nfOfKqRBFfq4nIqIokgNA63GgoWxw5Zi2kVVWPauMwn5VY/pVjskcz2rLREQR9OSA+x8p1sjd/yAiIiIyOybNEFFMPLfdDbnflZ/dIuKu5RPDexJVRcrm/0bK9kcH/ahr/hfQtfxfOYiNiIiIiCiOndCqzOyPZpWZh0e0nwAVlsZD+oJ9wZnTleSsfkk0CxHImwVYksLcY6LEI3haYK3dHqwkU7MNlpN7ISj+YR9HsTvgL1iEwJhF8I9ZjEDuTEi2ZDidzr4ndTeHt/NERAnovvvu05dwyM3NxV133aUvZtHcHLn/a0RRhMPh6N1ubW2FoigRO1+i6/bL+M3bxspJc8akY36+NaJxDAVjbS6Mt7kw3iaOt6qirbYcQlM5xOYKSC2VwXVzBcTW4yO6Dj4bxZ4BxVkE2VkEJVNbTwquMycC1tNU+2ttC3s/zCAe3tuG7z+IKG6rzLwxYLLhzyxwscoMERERUYQwaYaIoq7NE8BLu+sNbTcvGofstDDOJKgqSP3gv5C8e/WgH3We9wC6F32NCTNERERECUaSpIje6DzTNkXGUx/XQO5fZcYq4q6lhRGJteXERthOfGBsvOT7wJQr0X1kA8TqbbDUbofUdiKk44ndTbBXvq0vGlW0Qs6biUDBwt5FTcsP++9Bw8P3duwJ7TWwVGsJMlv0ajKSlnw2AkpaAQJjFsM/djECY5ZA0WbF7VdZVvtXg/E2F8bbXBhvilfRrGimDcRkBbWR+/u2GjR0GAco33dhYVwOXmeszYXxNhfGOwH5u/SEGG2xth4DOqt6KseUI8PbGvbTqaINcuYEyJmTehYtOWaivlaTnKe/P87XXUTxvU1EQ3li0+AqM59d5Ipll4iIiIgSGpNmiCjq/q+0Dl3+vhtNogB88cKi8J1AkZH2zoNIOviPQT/quOD78Mz7XPjORURERERxI5qz5/WfKZAi42hDJ9YOqDKjVacsHpsX/pOpKvB/A6rMpLmAZfcBthQkF8zpa293Aye2ACc+Dq5rSwHZd9ZTaDOEWtyl+oKdTwYbHeOBcUuAcecF1/mzAIlf1cQS39sRpr3XGg4DxzYCxzcBxzYBrcdHdqycKcD4ZcCE5fpazBwPmyDANoxDMN7mwnibC+NNRMPR4Q3gmS21hralEx1YOC4jZn0iIqJRRAlAbKvqTY7RF716zFFIne6InFJOHxNMiNETY4JJMXrlmLQxgBi5iYWIiCg8jjaepspMMqvMEBEREUUKR2IQUVR5/Ar+d4fxy8HLp+VgfHZKeE4g+5D+1rdgL1traFYhoOOSH8M78zPhOQ8REREREUXUI++UQe43zVqyVcKXwpls39+BV4CaHca2i7+nJ8wMku4CZlwXXDR+D1C7CzixuS+ZpvNkaOfVkgW0Ze8LwW1rKlC4sCeJ5jygcBGQHL1kMKKwkwOAe1cwOeZ4z9JlvBkcEkECtOS18cuBCcuCyTKpOZHoMREREZnQX7a60eoJGNq+ekFhzPpDRERxSFUhdDX0JMVU9KyPBpNj2o5DUIz/j4SDYnf0JsMYKsdkTgAsSWE/HxERRc/jm6rRr8gMUm2sMkNERESUcEkzu3btwgcffICKigq0t7eftQSpIAh48smeGViJaNR7bd9JNHUZvzS8+7wx4Tl4wIOMdffBduw9Q7MqWtB++X/DN3lVeM5DREREREQRrzLzcmm1oe3O5ROQnWaPzKD+9f9lbMsqBubfEdr+1iRg/HnB5VQljeZKYzWaun16Kv9Z+TuByveDyym50/pVozkPyC7RviwZzm9IFD2+LqB6W0+SzEbgxNbg63q4tME/hYt7KsksAwqXAPa0SPSYiIiITK6p04+/bjdWmblkshMzXPzsQURkSr5OY8WYfovo6wj76VTJBtmhVYqZBNmpJcT0PM4sgsqJVIiIElJlYzfePMgqM0REREQJmzRz6NAh3HPPPdi8eXPI+6jabB1MmiFKGNos0X/ZZrz5dN6EDEzLP/ebT4KvAxmvfQnWmo8HfdHYftXv4Jt02Tmfg4iIiIjiW3Nzc8SOLYoiHA5H73ZraysURYnY+czuv18/Yqgyk2QVcfOc7IjE2Lb3OaQ2HjG0dS39F6RI1pHHW3AC468MLhpvOyzuUlhqtwcXdykEX3toxzp5MLjsWK1vKkmZCBQshFywQF8H8ucC1uTQ+0YGfG+fG8HTAkvNNlhqtsJSvQVS/V4Iin/Yx1HsGQiMWRxcxi6GnDcbkGx9T+jyA13n/v5nvM2F8TaXWMfb6eSARqLR6uktNej29/17IQrAveezygwRUUKT/RDbqyA190+K0arHHIXUWRf206kQoKSPgeIsgtU1PTghSnYJWq258CfnA6IU9nMSEdEoqzKzsCCGPSIiIiJT8YZ/QojRIipJM9XV1bjooovQ0NCgJ8Jo0tLS9BtJ2s0sIjKHd480oarFa2i7a8mYsAzSyXj1HljrdhnaVWsK2lb+Ef5x55/zOYiIiIgo/p2tkmk4aYMwo3k+MznR7MHafScNbTfPy4fDLob/bx7wIGnzrw1N/txZ8JZcjZRwxtuSArlwObyFy3sOKENqKoPVrSXR7IDVvQNS67GQDiV6WmCrXA9oS09lzUDOdARcC+DXEmlcC/SBGDQyfG+fmdhRqyfIWGu2waolyjQdHtFx5FQXAmMWwT9mMfwFiyFnTwaEAd8RRiEOjLe5MN7mwngTUSjcbV68UGocHL1yRg6KcvpfDRAR0aikTdDadTKYENNc0ZMYczSYHNN2AoISCPsplSRnT6WYop5qMVr1mEmQHRP0iqqSJBmSrRVtchh+ZiUyJZ/Ph+eeew4VFRVwu93o6OhASkoKXC4XLr30Ulx44YWwWKI2DzZFUUVDF94aUGXmlgUuOJIZbyIiIgofrQiBqF0Dt2rXwUdhaTsGtFcBTeWA3wPcuxdmFJVPXD/+8Y9x8uRJvWrMF77wBXz729/GlClTonFqIooTWsLcM1uMVWam56di8fiMczqu0NUAxz/vhKXx0KBZattWPYlAwYJzOj4REREREUXXU5urIfebZi3JIuKOxZGZZS159zODZhDtWv7dwYP3w02UIOdM1RfMuq332sbq3gmLewestTtgqd8NQfad9VDaIA9r/R590X4fjZzm6pdEs1BPqkG/yjlEIVFVfTBRMEkmmCgjaV+mjkAgs6gvSWbMYijphYAghL3LRERE8UYbHBspAyel4yR1w/fk5hr4+l18WEQB9144PqJxGwnG2lwYb3NhvMPA16FXjBG1ZBgtOUZ/HKweow0SCjdVsuvJMIqWDOMsgtKTGKNkFkFNHrr64Kn/VRhv82Cs6Ww8Hg/efPNNlJSUYP78+cjIyEBnZydKS0vx6KOPYuPGjXjwwQf52jFFlRkJt7HKDBEREY2Ev1ufmDM4QURlb4KMtha7Gs64q9BZDyTnwGyikjTz+uuv6wkzd955Jx577LFonJKI4szW4204UNdpaLtzcYH+b8NIie01cLx8h/6PfH9KchZar3sGcu6MER+biIiIiIhiVGVmv/ELnE/Pz4czJfwJH4KnFcnb/2ho8407X69UGYshcmpKDnxFl+uLTvbBcnJ/XxJN7XZIXfUhHUvqcEMqWwt72drgsS1JCOTNgd+1QJ9YwO+aDzU5K5K/Do1GSiD4mqsNVpGx1m6D2N007MOogohAzgwEehJk/AUL9dc3ERGRGfWfTT7SHA5H1M6VCCpOduCVvcYKl589bzxmToz/AWuMtbkw3ubCeJ+G7AeajwGNR4DGsuDS0LPucEfghAKQOQ7QqqJmlwSXnOBayCiEJUyD2Blv82CsaaC0tDQ888wzg6rJaBVTH3roIezatUtPoFmwgJPEJpLyhi68fcj4feutrDJDREREZxLwBhNjTiXEtByFqD8+Bqlz5NfDUkslAkyaiYyamhp9rSXNEJE5PbMl+O/AKYWZdlw6ZeSDtLQZgrQKM1K78bhyqgtt16+G7Cwe8bGJiIiIiCiOqswsilCVmR1/guhtM7R1Lf024oZkQ8A1T1888+7Rq35oEwdY3Nv1JBqrewekhgMQVOWshxICHlhrtujLKYHMSX3VaAoWBq+hIl1hh+KL9rpwl8JSG6wiY3HvhOg3TnYR6iy7gfx58PdUkgloSVm2tIh0mYiIiChc/uetw5CVvouPJKuI+y4tiWmfiIhMTVWBdndPUoyWHFPekxxzBGg+Cqhy+M+Zkt2TFKMlxxT3JMdMBpyTAGtS+M9HRNRDqyAzVBUZreLh4sWLsW/fPrjdkUgKpFh6YqgqM4tcMewRERERxQXZB6mtCmJPlZj+lWPE9loIhk8Q4SG2HAUKFsNsLNGaSau+vh6ZmZnROB0RxZmDdZ34+JhxMNrtiwogiSOrMiM1HILjlTsHlRCTM8aj9frVUDLGnVN/iYiIiIgofqrMZKWGv8qM2OFG8q6nDW3ekpUI5M9B3BIEKBlj4dOWKdcF23ydsNbv7qtG494xKBHodCwtlfqSdPAf+rZiz9CTHXqr0eTNBWypkfyNKMq06kpaxSKrniSzFZb6vRAU/7CPE3ytLAxWkRmzCIG8WYBkj0ifiYiIiCJhX00rXttda2j73PmTkJfOAdJERBHnaetJjCk3Vo7Rtn0d4T+fJbknIabYWDlG205hFV6i0ai1tRVlZWX6Ul5eri/t7e36z1asWIH77rsv5GOdPHkS69atw44dO9DY2KhXfnG5XFi2bBmuvPJK2O3R/c5LURS9yoxm3DiOe0kkZScHV5m5baELGUmsMkNERGQKSgBiW5WhYkzw8TGI7VUhTZQ5XCoEKOljIWdOhOKchKSCGcFr4axi+JABM4rKJ69FixZh7dq1OHz4MObPnx+NUxJRHFm91XjzKSvFglUzc0d0LEvdbmS88jmI3hZDeyBrMtquewZKWv459ZWIiIiIiExQZWbrIxBkb++2KkjoPO9fMOrYUuEvXKYv3dq2qkBqrggmRrh3wKIl0rRUhHQoLdnGdmyDvuiHEkTIOdODSTQ9FWm0L9W05B0aHbTkMEvNVlhrt+lJMlLj4RHNRCSn5iOgVZEp0JJkFkPOnsKqRERERCFqbm6O2LG1makdDodh8KA2yI7O7mdrDhi20+wSbpmbHdF4nQvG2lwYb3NJ2HjLPohtJ/TvKMTmSn2GXLG5HFJzJcSuk5EZCJRRCMVZBNk5CUpmsb6WMydBTS8Y+hpW+1rIG91/9xM23hSXsdYmN05UX/ziF8NynG3btuGRRx5Bd7f+zarO6/X2JuKsX78eDz74oJ5EEymBQAAvvvii/lhL/Nm7dy+qq6tx8cUXY/bs2RE7L8W+yox2DaIlzRAREVECUWSIHbX9EmL6qsboiTFKICKnldNckB0Tg8kxmdq18MTgtmNc78SHWkXDpP7XCNr3oHIEKrrGuagkzXz961/HmjVr8Nhjj+Ezn/lMNE5JRHGiqsWDtw81Gto+s8CFJOvwB9hYqrcg47UvQvQbZxkK5M5E63VPQ03mbEBERERERKNRNKvMaAM2kvb/n6HNM+NmfXaVUU9LdMkq0RfvzOD3L0J3EyzuUj2JRq9GU78LQsBz9kOpCiwn9+kL9jyrt8kpecEqND3VaAK5M1hhJF6oqv6Fq54k05MoI7WdGNGhAplFPUkyi/QkGb2aK5OliIiIRkSO4o1HbSBmNM83WpVWt+ODcuMg6TsXFyDVKoyavx9jbS6Mt7mMqnirKsTOOv1aVF96kmOklgp99lxBDf/voSRn6YkwcmZRz3oiZC1RJmM8YDnN9xOKNkQ5Pv+moyredE4Y68jJycnB2LFje6uzhKqyshK//vWv4fP5kJSUhOuvvx6zZs3Stz/66CM9Yaa2thY//elP8bOf/QzJyckRS5p54YUXercFQcC1116L2267LSLnoxhWmTlsrDJz6wIX0lllhoiIaPRRFX3iwlNJMaKeIHOsJ1HmOATFF5HTavfpFe0a+FRCTG9izHjAGpnPqokoKp++Lr/8cnzve9/Dz3/+c9x777347W9/C6s1/ANfiCj+/HWbO/hdZI8Uq4hPzxt+NRjrsQ3IWHuvYTZojb9gIdpWPQnVnh6O7hIRERERUYJXmUn5+FeGgRuqJQndi+9HotImF/BPulRfdLIfloYDsGhJND3VaKQOY3XQ05G66iGVvw57+evBY0s2BPJm9ybRaGs1JSeSvw6dogQgNRyAtWZbb5KM2G2csCIUvRWFxizRE2S0a2zGkIiIiBKVqqr4/QfGxOKsFAtuWcAZnomITkfwtvclxvQkxZyaKVfwd4X9fNr3NMGEmMGLmtRXuYOIzOumm25CcXGxvmRmZqK+vh5f+9rXhnWMp59+Wk+Q0Wbc/v73v48pU6b0/kxLnikoKMBf/vIXPXHm1Vdfxc033zzoGKtXr4bf7w/5nCtXrtSP25+WsPP888/riVVa1cPt27fjueeew+HDh/UqNykpKcP6vSg+Pb6p2rDNKjNERERxTlUhdJ0cXDFGe9x6LKQJKkc8UcSphBh9mdSTGDMBsKVG5JxmE5WkGe1CYfr06Vi+fLlebUa7oNAuYqZNmxbSB/w777wzGt0kojBr7vLjlb3GEts3zMlDxjBnS7CVvY70Nx+AoBi/cPCNuwBtKx8FrPyigIiIiIhotIpmlRlL3W7Yy9Ya2rrn3A0lbfiJ/aOWZEUgf46+eOberTeJ7TWwuHf2JtFYGvaHVB5akH2w1m7XF+wMtmmz2QSTaBbqazlrMiBKkf6tEl/AA6u7FJZarZLMNj1eor9z2IdRJTsC+fPg1yrJjFmMgGseVBsnoSAiIiJz2Hy0FTur2g1t9ywdixQbP68SkcnJPr1aqVad15ggUwmxy/idTThoEzgoGYX9EmKKegcEKWkuvZIuEdHpDJXAMhxlZWU4cOCA/viSSy4xJMycsmrVKrz77ruorq7GunXrcOONN8JiMY5zeeutt+D1Gid9PZOlS5cOSpo5RRRFZGdn44orrkB6ejp+9atf4cUXX8Ttt98+7N+P4suRk11YP6DKjJYwwyozREREcZAY0904ICkmWDFGbD02ovuwoVDsmX1JMXqCzAQo+noSCwdEQVQ+gd199916CclTtEz8Rx55JKR9tf2YNEM0Ov3vjjp4A0rvtiQKuHWYsyXYD/wDae/8KwS17zgab9HlaL/yN4B0mlLbREREREQ0KkS1ysymXxq2FbsD3Qu/DLNT0sfApy2Trwk2+Lthqd/Tm0SjrUVPc0jH0spOawsOvRw8tjVNT8wIuBbAX7BAT9jgF35nJ3haYdETkrQkma2w1O8dNJFEKBRbOgIFwQQZLVEmkDeL19FERERkSopWZeZDY5UZV7oNN87Ji1mfiIiiSlUhdrqDyTDNxsoxYlvVoHux4aAkZweTYpx9STF6goxjHK9NiShmtmzZ0vtYS5o5XRLLihUr8Le//Q2dnZ3Yt28f5s6da3jOs88+G5H+nTrP/v37I3J8iq7HN1YZttPtEm5lpUsiIqKoETwthooxYv/HPuPkOuGi2NL0hBjFkByjXQ9PhJqUGZFzUmgs0Sx5TkTm0eWT8Xyp29B29fRsuDJC/wI0afezSHv/Pwa1e6Zej47Lfg6InHmBiIiIiGg0q2qJXpUZ6/EPYavaaGjrXvgVqPaMsJ9r1LMmIzB2ib70DqxpOQqrW0vi2AGLlkzTdCSkQ4n+DthOfKgv+qEgQM6e0lONZoG+VrSS0v0mWzEjscMNS81WWGu36UkyUuNhCBj+d2lyaj4CWhWZAi1JZrH+t+YMvURERETAO4ebcLCuy9D2peWFsFn4WYmIEovgbetLiOmtHKMNCKqEEOgO+/lUS3Lv4J9gcsyp6jHaLLn8zoWI4s+hQ4f0td1uR1FR0WmfN2PGDMM+A5NmIqWpKViVRJJYDXG0O1zfiXeOGCejYpUZIiKi8BN87cFkGP3695iheozobYnIOVVrSk8yjJYUM8FQPUZNzjb9ve94FZVPYZWVldE4DRHFkX/uOYk2j2xou2Nx6LNFJ2//I1IHzAKt6Z51GzpX/IiDfoiIiIiIEsCTm2uiU2VGVQZVmZFTXeiew8q2IREEKM5J8GrL9Jv6KqHUlfZVo6krheDvOvuhoMLSeEhfsO85vU1JzupLoilYiEDubMCSwDPOqqr+pa2eJNOTKCO1GWc9D1UgcxICWhWZnmoySsY4fglLRERENEBAUfHHj4wzPE/MSsLKmTkx6xMR0TmRvZBaT+hVYnqTYnoSZMTuxrCfThUkKBmFfQkx/SrHKKkuXocS0ahSVRX8XOhyuc6YmDJmzJhB+4SzD7m5uXriTn9erxerV6/WH8+fPz+s56Toe3xT9eAqMwtZZYaIiGhEfJ2QWo0JMb0VYyJwHaxRJfughBhtrWhVZFLzeC08CkUlaWbChAnROA0RxYmArOCv22oNbRcWZaI4J+XsO6sqkj76BZK3/WHQj7rmfwFdy/+V/9kQERERESVKlZl9Jw1tn54XmSoztrJ1sJ7ca2jrWvJ1wJIU9nOZhZrkgH/CCn3RKQG9OkpvEo17R8iJIGJ3E+yVb+uLfmzRikDurN5KNP6CBVC1Lx5HK+1v03AA1pptvUkyI/nyVhVEyDnT9eSYYCWZRVBTONCTiIiI6GzW7mvA0SaPoe0r5xfCIvJeAxHFMVXRq5L2Vo3prR5TCbG9CoKqhP2USkqOoVJMb+UYbYIGyRb28xERRZvP50N7e7v+ODs7+4zPTUtL05NatESWxsbwDsTcuHEj1qxZg2nTpunJM8nJyXqFmdLSUr1/06dPx6pVq4Z1zFD7GKkKNqIonnHbbA7VdeLdAVVmbl88Bo6UxJgsivE2F8bbXBhv84jLWAc8ELVKMdqEED2VY8SeiSLEzvqInFKVbPqkhLJzEpSeKqqn1mqaNknE4L+L9o3iaKsJGJfxjgHW+yOisHvjYCPc7T5D211L+mbhOC1FAV7/VyRv+9OgH3We9010L7qPCTNEREREFPWbPRp+iRB+f/64dlCVmbuXjg1/HGU/Ujf/j7HJWYzArJshiUOfi/EeAS1urtnwa8u8u9CtfWHYWa8n0Fhqt+uLVL8Xgmy8VhyKoPhhrdupL8l4Um+TMwoRKFgIWatEU7AAcs40QDz3r7UiEuuABxZ3qV5JxlK9BRb3Tgi+jhF9SRtwzUNgzBIExi5GwLUAsKf39fXce2o6fG+bC+NtLow3xSteo8SeL6DgsU3GmcGn56fi8um5EEfJ/QbG2lwYb3PR49vdAjSW6Uty9V6IzRX6og0KEgLa1XV4qdaUYIUYpzYIqAjKqcQY5yTAnjHkPqNtMFC84vvbPBjr+OXx9CVSJyWdfUIl7Tla0kz//cJh4cKFaG5uxuHDh/VFO35KSgrGjx+P888/H5dccsmwryXuvffekJ73/PPPIxocDgfM7M+vlRu2HclW3PuJ6chICv+kYfHA7PE2G8bbXBhv84harANeoPko0FgONJX3W1cAbeGt7tdLu6ecOQHILgayinvWRfpacIzTxwyY7brXYdL3NpNmiCisVFXF6q3GKjNzxqRhXmHfwJ4hyQHg1a8DpX8d9KOOC74Pz7zPhburRERERJRgnE5n1M5l1i8RwuVYYydeG1Bl5s7lE1FcmB/+k219Emg9amiSLv8POLNzQz4E4z1C2nuycCqAW4Pbfg9Quws4sRk4sQU48THQaXwdnI7UVqUvOPTPYIM1FShcCIw7L7gULgKSz/3fgBHFWhvgpP0uxzYCxzcBNTuBEJKDBrE7gPHnAeOXAROWQxgzH1aLHYl5GzU+8L1tLoy3uTDeFC94jRJ7T39UCXeb8bPZv14zE9lZWRitGGtzYbwTiCIDTZVA3R7AvReo2xtc9xsUFLZ6uIIEOCcC2SXBJadnnV0CIb0AllGSNJjo+P42D8Y6virNnGKxnH3I3Knn9N8vHIqLi/WFEtO+mla8sa/O0PaFCyYlbMIMERHRILIfaDluTIzRJovQHrdW6ZVVw06rCOMY1y8xpqQvOSZzPCDx/2Fi0gwRhdlHla0ob+geXpUZbTDRP+4B9vcMfuqhQkDHpT+Bd8bNkegqERERERHFyO/eKYOs9JWZSbKK+NJFReE/ka8L2PBzY9vYhcD0a8N/Ljo7a1JPUsh5wW1VBZor+xJotHXdPv1q8Kz8nUDl+8HllNxpwLglfYk02pehkRgI1FYLHN8IHNsUTJIJtc8DaSW9JywDxi8PrvNmAKepfkREREREw9flC+B375YZ2pZMysJFk3Ni1iciMglPW/BaUU+M2RNc1x8A/F3hPU9aPpA9OTgQSE+O0R6XBGfQtdjCey4iogRgs/X92xgIBM76/FPP6b9fvHr00Udj3QXq8Zu3jxi2M1OsuPv8iTHrDxERUcQmhtASY05VielfNab5GKDKETipADgKe6vE9FWNKQac2nWwPQLnpEQS1qSZSy+9VF8LgoD169cPah+Jgcciovi2ekuNYXtSVhIuLM48/Q6qitQ3HgDK1hqbRQvaL/9v+CavilRXiYiIiIgoRlVmXtxZbWi7c9lE5KRF4Eusjx8FOowzuuET/xGZRAoaPi0O2pea2jL3lr6BRdXb+hJpqrYB3rbQjnfyYHDZsTq4nZzVk0TTk0gzZgFgSxleH7XEHu0L3t4kmY3BkuEjoX1h2z9JxjmJr0UiIiKiCPrzR0fR0GGcFfy7V07V7z0SEYWFogAtR3sqx/RLkmk5Fr5z2NL6kmL0BJme2XK1dVJG+M5DRGQCSUl9Nb08Hs9Zn3/qOf33i1fZ2dkhPa+5uTki5xdF0VBVqbW1FYr2/6TJHKzrwJv7jfckbl9UgEB3B5qN8w+Paoy3uTDe5sJ4m0dIsVYVCO21kFqOQmyp7FkfhdRSAbH1BATFH5G+Kan5kDMnQsmc1LOeCNlZBMUxHrCc5nNZuzZJRZgnqkgg8fDedkaxKntUkmbee+89fT3wy2atXWtTtYEGITr1fH5xTTR67Klpx46qdkPbHYvHQDzD+9h+8EXYBibMSDa0XfV7+CeNPOGOiIiIiMwnUjd74uVLhETxP68PqDJjEfGZOVlhj5/gaUHGB7+C2K/NP+EidGTO1l4sZ9yX8Y6xrPnBZe6X9VmKxKYjsNRuDy41OyC1hpi00t0EHH49uPRMziDnzEBgzAIEChbqi+AoNMa6uQlC/T5YqrfAUrNVX8SuhmH/CqogQs6ZjsDYxQiMWYLAmEVQU/OMT2ppGfZx6dzwvW0ujLe5xDre8XCzh+ITr1Fip80TwKPvGavMXFjsRLFDiGhcIoGxNhfGO475OiE1HoLUcADSyQOwaOuGgxC0SqjnSrQAzonwZ0yArA0K0gYDObXBQUXBa8mh7rV2y0D36Pr3zOz4/jaPeIg1r1GGplWMSU9PR3t7OxobG8/43I6ODni93mElpIwGshyJWd8H017z0TpXPPnjhycM244kC26am5vwfwuzxtusGG9zYbxNQBvX314L8XgpxKYKPTFGuxcbXB+HIAc/D4WbkpID2TFRT4rpXeuPJwDWM0yCyNdjWCgmfW+HNWnmoosuGjLJ5XTtRJRYVm+tNWznpllx9YzTf3kgdtQh9cOHjI3WVHRc+zj8Y86LVDeJiIiIKEFF86LerF8inKuqFg9e21tvaPv0vHw4kqSw/z1TtvwOos+Y1N+x9NsjOg/jHVuyczL8zsnAjGA1GqGrAVb3TljcO2Ct3QFL/W4IsnEG8aEISkB/rrag9Gm9TUkrACYsDVaBqdmJjBMfQ/B1DLuP2uQPgfy58Bcsgn/MYgQKFkC1pQ/4Rfgaijd8b5sL420ujDfFC16jxM7Tm6vQ4TX+Pb5y/tiE+Bsx1ubCeMeAqkJsr4GlUUuK0ZJjDuoJMqI2WAihTxJ6poFBgezpCORMg5o3E6lF5wWrxlhs6GhuHhxvJlUkLL6/zYOxji+FhYU4cOAA3G63HhdJkoZ8Xk1NjWEforM5WNeJDWXGhNbbF7uQZg/r8EwiIqLh0wpYdDcGE2F6kmIsrceA9hNAUzng78KAu5phoSQ5exJiJhiSY7TKMYPuoxKN1kozobYTUeI42tSN944YL/5uW1gAq9R/Xud+VBWpG/4dorfN2P6pxxHIX87BRERERERECeipzTWQ+40vsVtE3LG4IOznETtqkbx7taHNO3kV5NyZYT8XRZ+akgNf0eX6opN9sJzc35dEU7sdUpcxOetMrxXse6l3O9QpXxRbml6pxl+wOJgkkz8bkOwj+XWIiIiIKMwaOn14brvb0Hb51CxMzUuNWZ+IKE4FPLA0Hu5JjjkAi1ZJpvHg4PuXI6BXO3UWI5AzHXL2ND1JRnusXdOeog3UTmU1CCKiqJo6daqeNKNVkamoqMDkyZOHfN7+/fsN+xCdzZ82Vhm2HckW3DzfFbP+EBGR+QjdzT1VYioNFWPElmMQ/cOfNDAUij2jLxnGUDFmItSkvuqLRPGAqcxEFBbPbq01zK2UZpdww5zc0z7ffvhV2CvfNjbO/jQw7RqgmaXEiYiIiIgSscrMmn0nDW03z8tHVqo17OdK2fJbQ+URbaBK53nfDPt5KE5oVV5c8/TFM++evlmB3dv1JBqre4c+AEpQRz47r5KSqyfHnKokI2dPBcShZ6EkIiIiotgn63sCfZ/9JEGrMsPZwYlMTbtO7HRD0qvGHOypInNQH0h0LteKpyhJWXpSTP/kGFmraMrJFYiI4s6SJUvw8ssv64/ffffdIZNmtOpAGzZs0B+npqZi5kxOxkRndsDdiQ/KWwxtdywqQKqN3yETEVF4Cd623ooxYk9STG9yjLc1IudUrKl6dRjZYawYoy1qUhYghDotIVFsMWmGiM7ZyQ4f1u5vMLR9el7+aUuMCl0NSH3/R8bG1Fzg6l9EsptERERERBRnVWZuj0CVGampDPYDLxjaPDNv0b/II5MQBCgZY+HTlinXBdt8nbDW7+6rRuPeccaZg7UvfYNJMlolmUVQHBP4hS8RERHRKFDT6sWLu4xVB6+dlYsJWckx6xMRRZns1b8b0CvHaIkxPWvRaxzIOhKqIELOLILckxgTTJSZDiU1j9eMRESjRElJCaZPn65Xm9GSZi6++GJMmTLF8JzXXnsN1dXV+uOrr74aFkviDK/TqpxFgiiKZ9xOdI9vCr5eTslMtuCWhWMi9veONbPH22wYb3NhvOOEr6OnQkywaozYUzlG2xa7myJyStWSpCfD6MkxzklQMrWlJzEmJXfIa16+OkYPvreDEudTPRHFzHPb3fD3G/1mkwR8ZkH+aZ+ftuE/Bn8xvfJhICUrkt0kIiIiIqI4qjLz6Xl5yI5ElZnN/22YJVa1JKNr0dfCfh4aZWyp8Bcu05dubVtVIDVXwFZXitTGPUCHG8gqRkfOHHjzF0DVBjwRERER0ajz2MYqBJS++xVWScAXlo2NaZ+IKHKEzpPB5JieyjHaY+1aT1Dlcz62Ys/QE2IC/RNksiYDlqSw9J2IiEbm4MGDcLvdvdttbX0T42jt7733nuH5WlLMQHfffTd+8IMfwOfz4aGHHsINN9ygV5PRtjdu3Ii3335bf15BQQGuvfZaJBKn0xmV8zgcDpjF7qoWvF/ebGj78ooSFLpyYBZmijcx3mbDeEeQrwtoqgCayoHG8p51z3ZHXWTOqVVDzZqk3xNFdlHPulhfC+kFsJg0kcKMHCZ9bzNphojOSYc3gH8MmLXtmpm5yEm1Dfl8W9k62MvXGdp8JSthm3l9RPtJRERERETxVWXmjsVjwn4ei7sU9oo3DW3d8z4HVatsSdSfNjtwVgl8uVOR6vxKb7O/uRmqfO6Dq4iIiIgo+ioaurB2f4Oh7aZ5+XBl2GPWJyIKE9mnJ8PoSTF6kswh/bHY3XjOh1Yh6DPnyr2VY4JJMkpaAavHEBHFofXr12PDhg1D/uzQoUP6crakmUmTJuGBBx7AI488gu7ubjz33HODnqMlzDz44INITmbFQjqzX799xLCdlWrDncsmxKw/REQUR/weoPloX2JMY1kwUUZ73F4TmXOKFsA5sS8hpicpRl9njAXExKyCRhQKJs0Q0Tl5obQenb6+AUXaV8d3LC4Y8rlCdxPSNvzQ0KYkOdF18Y8wdIoNERERERGNdlGrMqOqSNn0i0HXG93zvxTe8xARERERUVz640dV6FdkBilWEfecF/5kfSKKLKG7EZaGg72VYyyNByE1lUFQ/Od8bMWaBjlnarByTPa0YKJM9hTAmhKWvhMR0eixaNEiPPzww1i7di127NiBpqYmWCwWuFwuLF26FFdddRXsdiZf05ntOtGCdw4aJxr+0kVFSLVzSCYRkWkEfEDLsX7VYvpVjWk9oU/VEHaCBGSONybEnKoe4xgPSPx/iGgofGcQ0Yj5Agqe29FX9lZz6ZQsjHcOXZY89YP/GjTjU+eF/85Zn4mIiIiIEli0qsxYj78PW/XHhrauhfdCtaeH/VxERERERBRf9rs78M6RZkPbbQsL4EwJc7I+EYWPEoDUUhmsHNOTIKMlykhdxoGnIyVnjNcrx2gJMnLPWkkvZPUYIqJR7r777tOXcMjNzcVdd92lL2bR3Gz8zBwuoijC4XD0bre2tkJRFCS6X7150LCdmWzBtdMcEfs7xwuzxtusGG9zYbxPQwlAbKuGqF3DthyF2HIUUkuFvtbaBbVv0vlw0aqiKuljoGRO0qujKvoyCbJzEpSMQkA6zTT1be0hHZ+xNpd4iLfT6USsMWmGiEZs7f4GNHYaZ3W68zRVZmyVbyPp8CuGNu+kT8A75Vqw4BsRERERUWKKXpUZBambfmloktMK4Jl9e3jPQ0REREQ0DJIkRfRG55m2zebRD6sN244kC+5cOjaiMYgWxtpcEjXegqcVUsN+SCe1xJiepfEwBNl3zsdWrSmQs6cGq8bkagkyMyBr1WMGTKKhpcrE278IiRpvGhrjbR6MNcUzWQ7/oN6haIMwo3WuWPHLCjZWNA8aM2WXovd3jhdmiDf1YbzNxVTxVmSIHbV6UozUqiXFBBdRe9xWFZbqp0OR01yQHRODiTE9a33JGA9YzlD1LsxxMVWsCWaNN5NmiGhEZEXF6q21hrZF4zIwsyBtyC/CU9/9gaFNsWeg4+L/4mxOREREREQJ7M8fR6fKjO3Ia/qMtP11LXngzF8kEhEREREl0Ox5/WcKNJtN5Y3YdLTF0PbVS0ow3pWYVe7NHGszGnXxVmSgqQJw7wHq9gF1ewH3XqCtKjzHd4wHXLOA/JlA/izANRuCcxIsoqgPfBjt3wKMunjTOWG8zYOxJkpM5Q3d8PW/AQLgk7PzYtYfIiIKgapA7KzrqxZzKjmm9Zi+hGNih6EoKbnBRJhTSTG96wmANTki5ySiwZg0Q0Qj8n55M443ewxtdy0ZuspM6oc/HlRKvfOC70NN5cUiEREREVEiV5l5bV9D5KvMyD6kbv6VoSmQNRneaTeE9zxERERERBR3VFXFL984aGjLS7fjzmUTY9YnItPwtAJ1+3sSY7Qkmb1A/QHA33Xux7YkAXnTexNj9LWWKJOcGY6eExEREZ2zfe4Ow/a4TDscyRyKSUQUc6oKoasBUkuloWKM/lhLjAkYx7yGi5KU1Vclpl9ijOKYANU2eCJ6Ioo+flIjohHdhHpmS42hbUpuCpZOHDxDivXYe0g6+A9Dm2/CCnin3RjxfhIRERERUYyrzChqxKvMJO37X0htxw1tXUu/BYhS2M9FRERERETx5Z2D9dhx3Fhl5v7LJiPZxusBorBRFKDlaLBizKnKMXV7gBbjtfiIpY/pqR4zq2c9G8gqAiQOZSAiIqL4dcDdadie7uKAaCKiqNESYzxNxoSYnooxWgUZ0W/8NzpcFLtjQEJMX5KMas+IyDmJKHz4TROdE0mKzE0HURTPuE2xte14K/bWGj9Y3L10LCyWAf+keNuQ/u73DU1a1mzXZT+F1O+5jLe5MN7mwVibC+NtLow3EY2kysxNcyNQZcbXiZStjxia/K758E36RHjPQ0REREQ0As3NzRE7tnYt7nD0TWTV2toKRRvYbiKKquJna/cb2goz7biyJC2if/toY6zNJebx9nVCajwI6eQBWBoOQGo4qC9CGAYcqZINctZkyDnTIedOD65zpkNNdg5+cls7zCDm8aaoYrzNIx5i7XQO8W8rEYXV/gFJMzNcqTHrCxFRohI8rT0JMZV6UozYL0FG9EXmulGxpkHJnAA5c5IhQUZbD3n9SkSjRsySZqqqquB2u9HV1YXFixcjOTk5Vl2hUXCh3f8LBYq9v758xLBd6EzGzUtLYJEGDJh99T+AjlpDk3Dlj5E5fuYZj894mwvjbR6Mtbkw3ubCeBNRSFVmlhSE/TzJu/4MsbvR0Na57LuAIIT9XEREREREwyXLctTOpQ3EjOb54sEbBxtx5GSXoe1LywshQk3ov4UZY21mEYu3qkJsrw4mxjQehKVBWw5AbD0OAX3X8yOlpOQikDMNgexpemKM9ljO1KrHDDGZBl/Pvfj+NhfG2zwYa4onnBw5PDx+GeUNxmuR2WMyIvb3jTdmi7fZMd7mEpN4e9t7EmL6Jca0VAYrxngiMymKakkOVorpSYxR9Goxk/S1mpIz5L3mRHvl871tLox3DJJm2tvb8Ytf/AJPP/00ampqetv37NmDGTNm9G7//e9/x4svvqgPvnv88cej2UUiOosDtW1479BJQ9sXLywanDBT8R6w/Wlj26QVwIK7otBLIiIiIiKKtyozOam2sJ5H6G5C8g7jdwa+CRcjMHZJWM9DRERERETxJyAr+OOHJwxtRdnJuHJadsz6RBS3/N2wNB2B1BCsHmPRKsk0HAzLrLyqaIHsLEZAqxqTPU1fawky+iAjIiIiijucHDk8th9rhtwvz1gUgKVTxyLVHrP5y2Mq0eNNRoy3uYQt3r5OoKkCaCwHmsqD61OPO41jUcNGsgNZRUB2cd86uwTIKoaQ7oKFkzAa8L1tLg6Txjtqn9SOHDmClStXoqKiAqra96lRGOIfnqVLl+L222/Xn3fXXXfhggsuiFY3iegsHnu/wrDtTLHi04sKjU/ydgCv3G9ss6YC1z3CGZ+JiIiIiBJctKrMpGx7FKK/o3dbhYDOZd8J+3mIiIiIiCj+vLqvASdavIa2r15YCEkbrUZkVlr1mE63nhCjJ8doVWQaDkJqPQpBVc758EpSVrBiTE9ijJ4o4ywGpPBOkkFEREQU73ZXtRi2S/LSTJswQ0TUy98NNFX2JcXo64rgur02MucUrUDWJD0RxpAco21njNXKaUTmvEQ0KkXl05rH48E111yD8vJypKam4r777sNFF12EVatWDfn8iRMn4pJLLsE777yDV155hUkzcay5OTLlz7TST/0z2VpbW/WStRRbNa0evFJabWj7zHwXvJ3t8Hb2tSW/90MktRw3PK/r/O/BiwztRTPouIy3uTDe5sFYmwvjbS7xEO9ozYRFo0sky96zXG1oqls8WDOgysyn5+cjPyM5rOcR26qQtPcvhjbf1E8C+TMRjlcB420ejLW5MN7mwnibC+NNZC7egILHN1YZ2ma6UrGimN8VkIkEvJCajsCiJcg0BpNjtMei1ziAcyRUQYLsLEIg+1SCzFTI2dOhpOZxcjwiIiIiAHuqWg3bs8dmxqwvRERRFfABzUcHJMaUBZNj2rRxpf3KcIWLIAHOCf0SY7S1lhxTAjjGAWLkxggQUWKJStLMo48+irKyMj1h5oMPPsC8efPOus/VV1+N9evXY9OmTdHoIo2QLMtROY82CDNa56LT+8uWGkN50SSLiJvm5RpiY6negqRdzxj2849Zgq6Zt2ovmJDOw3ibC+NtHoy1uTDe5sJ4U7yIZjKVWcvVns3P39mNQL8qM0lWEV+/Ygac6UnhPdGGfwNkX9+2aIX9qh/BHqHXAONtHoy1uTDe5sJ4mwvjTZTY/q+0DvUdfkPbfReOg8DB/JSIVBVCZ32wckzjwd4qMlJzBQT13L+PU+yOYPWY7GDlGP1x1hTAYg9L94mIiCi+cHLk8Nh5rMmwPTnbGrG/bTwyW7zNjvE2YbzTUgBtwvTGcnRX74XQXAmppRJiy1GI7dVhqWQ6kCqIUNLHQsmcCDlzkmGtZBQCknXoHVvbwt4Xs+B721ziId7OOJgcOSpJMy+++KL+RfU3vvGNkBJmNHPnztXXR44ciXDviCgULd1+vLS73tB2/ZxcZCb3+0Di70b6O98zPEe1JKH90p8CAmd3JCIiIiJKZCeauvDCduNsz7efNwF54U6YqT8A7HrO2LboHsA5MbznISIiIiKiuNPhDeDPH9cY2paMz8CSCUyWowTh6wD2vgtUbwfq9sJRuwdid+M5H1aFAFkbdNSTGBPIng45ZxqUtAJWjyEiIjIRTo4cnmuSo03dhrZpeSkJ+/uaPd40GOOdmMT2Gtgq3oK98k2gZjugBCcrSQ7zeeS0guC1qWNiT2JM8LGsVYyRzjB5A19zEcf3trkoJo13VJJmDhw4oK+vuOKKkPfJzs7W1y0t515CmojO3f/trIMn0JdZKAnAbQsLDM9J3fw/kFqPG9o6l35L/4BDRERERESJ7ffvlg2qMvOlFUXhP9H6/wT6z2BkTQUu+k74z0NERERERHHnue1utHYHDG1fvXBczPpDFBa+TtiOvQv7kbWwHXsPkL29PxrJlHSKLc1YOUZbZ00GrClh7TYRERGRGR2s60LfnRBAEgVMzuXnLCIafbQKpraKN2ErfwPW+t1hO66ckgclcxLkzAl9STH6egJgCfNki0RE8ZY009HRoa/T0tJC3sfrDX4ZaLWepqwWEUWNxy/jf3fWGdqumJaNMY6+7F5L7Q4k7fqz4Tl+13x45twVtX4SERERkbk1NzcndLnaeFbd4hlUZeamefmwBrrR3Gycce1cSDXbkHForaGte/7n4fFbtBdA2M7DeJsHY20ujLe5MN7mEut4O53OqJ2LyMxauvz4y7ZaQ9uKEidmFYR+/5Eobvi79QQZ+5E1esKMEPCM6DCyY7xeNUZLkJFzpuprJb2Q1WOIiIiIImS/OzgO8pTJucmwW0aS6kxEFGWqCqlhP+zlb+jJMpamIyM+lJKcbUyI6a0YMwGwpYa120REoyppRqsa43a7cfToUSxYsCCkffbt26evXS5XhHtHRGfzyt6TaBkwc9udS8b0bQS8SHvnXyH0m0tBlWzouOzngChFs6tEREREZGLRLB9r1nK1p/PExhOGKjN2i4DbF7nC+zdSVaR9+DNDk5KUha5590CNcCwYb/NgrM2F8TYXxttcGG+ixPTCrnp0+voS4rSUgHvPL4xpn4iGJeCB7dgG2MvWwFb5DoRA6JNMqNYUBLKm9lWO0dbZU6HamDRGREREFE0H6joN29Pz+XmMiOKYIsPi3tmTKPMGpPbq0PdNdiLgmIBAb6WY4FpxTIRqT49kr4mIRm/SjJYos3btWrz//vu48cYbQ9pn9erVEAQBy5Yti3j/iOj0tIFvf9nqNrQtn+gwlBZN2fIbWJrLDc/pWvIAZGdx1PpJRERERESxqzLz6r4GQ9un5uYjJ9UW1vNYj70Ha+02Q1vX4q9CtfFLWSIiIiIiM9h2vM2wfdX0bJT0u1dBFJcCXtiOvw9b2VrYKtdD9BsHWQ5JtACTLgLGLkJH2iT4sqZAcYwHBM5gTkRERBRr+93Gz3MzXayoQERxRvbBWrVZT5KxV7wFsbsxpN0UuwP+ok/APvdTwPhlQEoW2pubOTkRESWMqCTN3HTTTVizZg0ee+wx/Mu//AvGjx9/xuf/+te/1hNstKSZW2+9NRpdJKLTePtQI2ravKetMmOp243knY8bfu7Pm4Pu+Z+PWh+JiIiIiCh2/vxxDeQBVWbuXFIQ3pMoMlI3/dLQJKePhWfWbeE9DxERERERxSVFVQfN6HzZ1KyY9YfojGQvrMc/ClaUqXgbor/jrLuoggT/uOXwT7kWqQs+rQ9O0vibm6FwgBIRERFRXGjp8qO61TiGagaTZogoHvi7YDv+AWwVbwYnbPC1h7SbnJIHX/EV8BVdAf+YJZBsSbA7nRHvLhFRwibN3HHHHfjVr36F3bt34+KLL8bvf/97XHXVVb0/15JjVFXFtm3b9ISZv//973rbhRdeiKuvvjoaXSSiIWjvy9VbawfNkLBwXM9MzrIXaeu/B0FV+vYRrei47GfBWbCIiIiIiCihRavKjP3wK7A0HjK0dZ33ACDZw3oeIiIiIiKKT8ebPOj0GRMHZrrSYtYfoiFn8j2hJcqshU2byTeEAUqqIMJfuAzekpX6ACU1OQuSJCE1hQOUiIiIKDK0zxqRIIriGbcTxaGTxuqXdouIkrw0SFJi/r5mjzcFMd7xS/C0wlq5HtbyN2A9tgFCwBPSfrJjPPzFV8FXciVk1/zeqqba/xCMt3kw1ubCeAdFZVS79sd95ZVXcMEFF+Do0aNYtWoVUlJS9MQYjZZI097eDq/X2ztQv7i4GM8//3w0ukdEp/HxsVYcru8ytN21ZEzvezdl2x9gaTps+HnX4vsgZ0+Naj+JiIiIiCiBq8zIXqR8/GtDUyBrCrxTPhne8xARERERjZIBaWa80XlgwL2K3DQbXI5kmIHZYj2qyH5YqjbCdniNPkhJ9LaGlCgTGHsefFNWwV98JdSUHL39VFQZb3NhvM2F8TYPxprimTNK1QMcDgcSUUWLcRKxmWMykJeTDbNL1HjT0BjvGGuvAw6tAQ68ClS+DyiB0PbLmwlMv1ZfpPyZkAQBSSHsxnibB2NtLg6TxjtqpSDGjx+P0tJS3H///XoyTGdnXwn1kydP9j7WBuPffPPNePTRR6P2QZ2IhvbMFmOVmfHOJKwoCb4vpZP7kbz9j4afB3JmoHvBV6LaRyIiIiIiio2aVm9Uqswk7X0OUnuVoa1z2XcAMXIDEImIiIiIwiGa97kS/UZneXONYXveeKdp7yMmeqzjnhwAjn4A7HspOEipuymEnQRgwvnAzOshTL8O1vR8WEM8HeNtLoy3uTDe5sFYEyWO3dXGJOk5hZkx6wsRmUjzUeDAa8Fr0BMfa9MxhLZf4eJgosy0VUB2caR7SUQU96KWNKPJysrCX//6V/zkJz/BmjVrsG3bNtTX10OWZWRnZ2P+/Pm49tprMWXKlGh2i4iGsN/dga3HjWVF71hcAEkU9Jmz0td/D0K/TGVVtKD9sp8DUqhf8xMRERER0Wj254+rI15lRvB1IGXb7w1t/oJF8E+8JKznISIiIiKi+LarqsWwPbeQg08pihQZOPYRsPdF4MArQFdjaPuNXwbMvAGYfh2QEeaqrEREREQUdbsHXJfM4XUJEUWCqgInDwaTZLRrUPee0PYTJGDiBT2JMtcAGWMi3VMiolElqkkzp0yYMAFf/epXY3FqIgrR6gFVZrJTrVg5I1giPnnHn2Bp2G/4efeCL0POnRHVPhIRERERUeyqzLyyNwpVZkqfgjhg1t7O5d/RytSG9TxERERERBS//LKC/TXGSb44ozNFJVHm+KZgRZn9rwCd9aHtV7gEmHVjMFHGMTbSvSQiIiIalubm5ogcVxRFQ1Wl1tZWKIqCRFLf7kNdm9fQNjFDiNjfNJ6ZId7Uh/GOElWFVLcLtrLXYS1/E1JLRWi7STb4J1wEf/GV8E/6BNTknqq8sv6P/rC7wXibB2NtLvEQb2ccVA2PSdIMEcW3E80evHPEODDt1gUu2C0ipMZDSNn6O8PPAlmT0bX4vij3koiIiIiIErrKTFcDknc+YWjzTrwMgYJFYT0PEREREVGkRHLwVDzc6IyWg3Ud8AaMv9v4NNU0g9PMFOuYUxVINdthO7IGtrK1EENMlAm45sE3eRV8JVdDzehJlNFCxAFKdBaMt7kw3uYRD7GOhwFpFJ9kWRtFHXnaaz5a54qWvQMS+VNtIgodtoT7PUciEeNNp8d4h5ESgLVmK2zlb8BW+RakDndou1nT4J94MbzFV8I3fgVgS+37YZhjw3ibB2NtLopJ482kGSIa5Nltteg3/k2/0PvU3Dz9g1ra+n+FoPh7f6YKIjou+wUg2WPTWSIiIiIiinmVmRsjUGUmZdsfIPo7e7dVCOha9q2wnoOIiIiIKJKieeMxkW907qluN2wXZtqRZhMT9vc1c6xjQlVgcZfCXrYWtrJ1kDpDG6Tkz5sNX8lKeEtWQsko7PsBByjROWC8zYXxNg/Gmigx7Hd3GLan5adCFISY9YeIRqmAF9aqjbDriTJvQ/SENtmCkpQFX9En4C26Av5xyzlWk4hoNCTNaBeD+/fvR0VFBdrb20O6MLzzzjuj0jciAho7/Xht78lBA+DSkyxI3vEnWOt3G37WPf+LCOTPiXIviYiIiIgonqrM3LU4vFVmxLYTSNr7N0Obd9oNkLOnhvU8REREREQ0+ganzXClxawvlCBUFZa6XT2JMmshddSGtFsgd6aeJOMtuRqKY0LEu0lERERE8eOAu2+SL82MfF6XEFFoBF8HrMc2wF7xBqxH3zNMGngmcpoLvqIr9YoygYKFgMgaCURE5yJq/4p2dXXhoYcewhNPPIHGxsaQ9xMEgUkzRFH09x1u+OS+AXAWUcCtC1yQmsuR8vGvDc8NZBaha8k3YtBLIiIiIiKKqyozaWGuMvPxr40VLkUbupY8ENZzEBERERHR6LB/4OA0V2rM+kKjPFGmfo+eJKMly0jt1SHtFsieBu/knooymZMi3k0iIiIiij+qqmJfHa9LiCh0QncTbJXvBBNlTnwIQfaFtF8gcxJ8xVfBV3QFAnmztQHUEe8rEZFZRCVppqOjA5dccgl27Nihf4gkovjU6ZPxQmmdoW3ljBzkpUpIe/F7hg9vKgR0XPYzwMJSf0REREREZhGNKjNSw0HYD/3T0OaZ/VkoGWPDeh4iIiIiIop/Hr+M8oYuQ9tMDk6jUKkqpIb9sB/pSZRpOx7SboGsKXqijK9kJWRnccS7SURERETxP6FYa3fA0MakGSIaSOyoha3iLdjK34C1ZisEVQ69qmnRFfAVXwnZWcJEGSKi0Zw0o1WY2b59u/546dKl+NKXvoS5c+ciMzMToihGowtEFIKXdtWj3dv3YU37+HXn4gIk7V4Nq3un4bmeuZ8Llv0jIiIiIiJTqI1SlZnUTQ9DQF9ijmJNQ9eir4b1HERERERENDocqu+C3G8+PlEApuVxcBqdJVGm8RDsR14LJsq0Hgtpt4CzGL6Sa+AtuRpy9pSId5OIiIiIRo8DA6rMOJItGOPgJMNEBIgtlbCXvwlbxZuw1pWGtI82Wbk27tJbfKVeUUbJKIx4P4mIKEpJMy+88AIEQcDKlSvxz3/+k4kyRHHILyv42/ZaQ9uKEieKpDqkbn7Y0C47xqNz6b9EuYdERERERBRLT31cE/EqM5aarbAde9fQ1r3gC1CTs8J6HiIiIiIiGh32u42D0yZlJyPZJsWsPxS/9ESZsrWwHVkLS0tFSPvIjonwTr5GX+SsKZzNl4iIiIiGtG/AdcmM/FR9LCQRmbWi6QHYK97UK8pYmg6Htptogb9wGbxFWqLM5VBTciLeVSIiikHSTHV1tb7++te/zoQZojj1+oFG1Hf4DW13Ls5H+jtfgRDwGNrbL/0ZYE2Ocg+JiIiIiCi2VWZORrbKjKoideMvDE1Kcja6594TvnMQEREREdGost/dYdie4UqLWV8o/khNZbCVrdWTZSxNR0LaR5sYzlvSkyiTPY2JMkRERER0VgcGJM1Md7H6JZGpqAos7p16koyWLCO1nQhtN0sSfONXwKdVlJl4CVR7RsS7SkREMU6aycvLQ1VVFXJymB1JFI8UVcXqLTWGtvmF6VjS9CqsNVsM7d2z70Bg7HlR7iERERERESV6lRnb0fWwuncY2roWfw2w8eYTEREREZFZDZzReSYHp5me2FwJe9lrsGsVZUKc0VfOGAdvyUp9kXNnMlGGiIiITEuSIlO1ceAk2ok0qbY2pupgnfG6ZNaYjIj9LUeDRI43DWbaeMt+WKo2w1b+Oqzlb0LsMk4ueDqKLR3+osvhL74C/gkreicmHy1/NdPG24QYa3NhvKOYNLNkyRI9aebQoUOYP39+NE5JRMPwYUULKpuM1WTunanN8vxzQ5ucPhady74T5d4REREREVHCV5lRZKRsetjQJGeMh2fmLeE7BxERERERjSrtngCONxvvXcxg0owpiS1H9WoyekWZhgMh7SOnj9GTZHwl1yCQN5uJMkREREQAnE5nVM7jcDiQKMrqO9Dhkw1t508bC2dGUsz6FG8SKd5k8nj7uoDyd4ADrwKH1wGe1tD2S80Dpl0DTL8W4sQLYbfYYEdiSOh4kwFjbS4Ok8Y7Kkkz3/zmN/Hiiy/id7/7HT7zmc9A4JeSRHHlmQFVZoqyknBx+c8h+LsM7R2X/pSzPBMRERERmUw0qszYD70ES9MRQ1vXed8EpDAm5hARERER0ahyYMBszlZJwOTclJj1h6JLbD0Oe9k62MvWwHJyX0j7yGkuPUlGS5YJ5M9logwRERERnbM91S2G7bx0O/KZMEOUOLpbgCNvBhNlyt4GBoyXPK3M8cD06/REGRQuBkTzVp8iIhotopI0s3z5cvz85z/Hd7/7Xdxyyy3405/+hMzMzGicmojOorS6HbuqOwxt/zVuK2yHPjK0eWZ8Bv5x50e5d0REREREFHdVZuaEucpMwIuULb8xNuVMh3fKqvCdg4iIiIiIRp39bmPSjJYwY5XEmPWHIk9sq9arydjK1sJavzukfeTUfPhKrg4myrjmAwJfI0REREQUPrtOGCtNzCnkmEeiUa+jHji4Bjj4GlCxAVD8oe2XOz2YJKMtLlY0JSIabaKSNKP59re/jeLiYnzxi1/EuHHjcPnll2PKlClISTn7jFD//u//HpU+EpnR6gFVZmantWNZ5SODZubqPP/BKPeMiIiIiIjissrMkvBWmUna+1dI7cbrks5l3+ZAJyIiIiIik9vnNk74NdOVGrO+UOSI7TWwlb8O+5E1sNaVhrSPkpILb/FV8E6+BoGChbx+JCIiIgpRc3NzRI4riiIcDkfvdmtrKxRFQSLYeazRsD052xaxv+NokcjxpsSNt9hWBWv5G7CWvQFLzVYI6Lv/eSZaFVNfyVXwF18JxVnU94MWYxWqRJEo8aazY6zNJR7i7XQ6YZqkmfr6erz00ku9f+h//vOfIe/LpBmiyKho6ML75f0/wKl4JO3PEFuMN6I6LvkxVHt61PtHRERERESxU9/uw6sRrjIjeNuRsu0Phjb/mPPgH78ibOcgIiIiIqLEqDQzw5UWs75QeIkdbtjK18F+ZC2s7h0h7aMkZ/dLlFkEiFLE+0lERESUaGRZjsp5tLGB0TpXJAUUFQfrjNcl0/NTEuJ3C6dEiTclXrylpjLYKt6AvfwNWE7uC2kfVRDhH7MEvuIr4Su6HEpav8kER8nvbdZ407lhrM1FMWm8o5I009jYiIsuughHjhyBqoaWoUlEkffs1lrD9u1JH2Fiy2ZDm2fajfBPuDjKPSMiIiIioljbeLRFvyEUySozyTsfh+gxzsjWufw7LGdORERERGRyjZ1+1LX7DG0zWGlmVBM662HXKsqUrYWlZltIs/oqSVnwagOVJq/UBy1BjNp8kERERERE+mTE3oBxFvYZ+bwuIYpbqgpL/R7YKt7UF0tzeWi7iTb4x50fvP6cdBnU5KyId5WIiKIvKt8s/uQnP8Hhw4f1xzfddBO++tWvYu7cucjMzITAgTBEMVHX7sW6A30lRHPRjH+TVgP9kgfllDx0XvD92HSQiIiIiGiYJEmKaLnaM20non21xtnTLizOQr4jOWzHFzpPIrn0KUObr/gKqGMXIdbzBZsx3mbFWJsL420ujLe5MN5EiWe/u8OwnWwVMTErfNcjFB1CV4M+o6/9yBpYaraElihjz9SvDb0l18BfuJSJMkREREQUM/sHVJkZk2FHZoo1Zv0hoiEoMiy12/RrTy1RRuowTiJ+Oqo1Bb4JF+uJMv4JK6Da0iPeVSIiiq2ofMv4yiuv6Mkxt99+O5555plonJKIzuK57e5+s0ar+Kntz0iWjTehOi/5L6hJjpj0j4iIiIhouJxOZ9TO5XAk/ufkA/Xdhu2lJXnh/Rtv/DEQ6HcOQYTtqodgi2IcQ2WGeFMQY20ujLe5MN7mwnhTvGBi/8gdqOsybE93pcFmNWfyxGiLtdDVCGv567AdXgNL9WYIqnFm7qEo9gz4tRl9p6xCoHA5IAUHIsZ6QoVYGG3xpnPDeJsL420ejDVR4tjvNibNsPolUZyQvbCe2Ai7VlGm8m2I3U0h7aZP0lD0CXiLrtQry8Bij3hXiYgofkTl2+Xq6mp9fc8990TjdER0Fm2eAF7cVd+7fZ24CZ8Qtxme45l8LXyTPhGD3hERERERUax1eAM4VNduaJs/PjN8J2iqALb/2dg27zYgd2r4zkFEREREFGNM7B+5w41HDNsLJ2ZH9e8Zz+Iy1l1NwIFXgX0vAZXvA6p89n3sDmDaNcDMGyAWXQy7xQYOVxol8aaIYbzNhfE2D8aaaPQ6MCBpZjqTZohix9cJ2/H3YdMqyhx9F6LfODn46cipLviKLodPqygzZjGrmRIRmVhU/gfIycnRE2fS01nCjCgevFBahy5/cGavbLTiP6xPG36uJGej86J/j1HviIiIiIgo1nafaIF6qjAlAKskYOaYMN7cfefHgBLo25bswMUPhu/4REREREQ0aqmqit1VrYa2OYVhTOKn8OhuBg6uAfa+CFRuMF7jnY4tHZi2Uk+UQfGlnNWXiIiIiOKWL6DgyEljBcyZTJohiirB0wJb5XrYtIoyxz+AIHtD2k92TIBXq2ZadCUC+XMAgVXfiIgoSkkzF154If7+979j7969WLBgQTROSUSn4Q0o+PsOd+/2j6xPI0swZl53rPgR1OSsGPSOiIiIiGjkmpubI3ZsURQNMwK2trZCUYKJ6Ilo4+Faw/bk3BR0d7ShOwzHlk7uQ8beFwxtnrl3oltJ1YKIeGC2eJsZY20ujLe5MN7mEut4s/oFUXhVNXejqdNnaJvLpJn40N0CHFobrChT/i6g+M++jzUVmHo1MOtGoPgywJoUjZ4SEREREZ2Twye7EFD6zS4GYFo+k2aIIk3sqIOt8i29ooy1+mMIoVQyBRDImQFv0RXwFV8BOWsKIAgR7ysREY0uUUma+da3voV//OMfePjhh3HzzTcjKYlfhhLFymv7TqKpKzjb11XiFqySPjb83Ft8NXwlV8eod0REREREIyfLoX1pGg7aIMxoni/adle3GbZnFaSF7fdN/fDnhm3FlobO+V+GGsd/z0SPN/VhrM2F8TYXxttcGG+KF0zsH5lNhxoM25nJFqQJHjQ3hzajbKKJeay97bBVvg3r4TWwHn8fgmxMaBqKakmGv+gy+Cavgn/ixYCl595whzYVQzimY0hcMY83RRXjbS6Mt3nEQ6yZ2E907g64Ow3bE7KSkGaPylBLItMRW47CrlWTKX8T1rqdIe2jQkDANR++4iv1ZBnFMT7i/SQiotEtKp/ktOoyTzzxBL7whS/giiuu0B9PmTIlGqcmon5kRcVftgZnjHaiDf9lfcrwcyXJiY4V/xGj3hERERERUTxQVRV7a43VKGcXpIXl2NaqzbAdf9/Q1r3gy1CTeROXiIiIiBIPE/tHZk9Nu2F7en4qBxVHOdaCrwPWo+/AXrYWtmMbQkyUSYJvwiXwTl4J34SLAWtK3w8T5LUZC4n03qazY7zNhfE2D8aaaHTa7zbeJ5nhYpUZorBRVUiNh2CreBP28jdgaTwY2m6iBf6xS4OJMpM+ATU1L+JdJSKixBGVpJl77rlHX8+YMQMffvihvp4zZ46eOJOS0u8L0yEIgoAnn3wyGt0kSnjvHmnCiZbgTGz/bn0WuYJx9ujOC/8dakpOjHpHRERERETxoLbN11udsn+lmXOmqkjZ9AtDk5KSi+65d5/7sYmIiIiIKGFwcFqM+Ltg0xJljmiJMu9BkM9e2UeVbHqCjLdkJXwTLwVsjBURERERJYb9dcZKMzPywzO5GJFpqQos7tJgokzFG5Baj4e2m2SHb8JF8BVdqV93qkl91dyIiIjiLmnm6aef1pNfNNpam0Vh165d+nK22W2ZNEMUHtr76ZktwSozl4nbcYP0keHnWva1d8q1MeodERERERHFiz0Dqsw4ki0ozLSf83G1L8GtdcbvAboW32+cfZiIiIiIiExNUVUcHDg4zcXBaRHj79YTZPSKMkffgRDwnHUXVdQSZS6Cr+Qa+CZdCtXG+BARERFRYun2yahs7Da0MZmfaARkP6w1W/R7hLbyNyF11Ye0m2JLg2/iZfAVXaFff/JeIhERjZqkmfHjx/cmzRBRbGw70YYDdZ3IQAd+YjUmoin2DHSu+E8tqy1m/SMiIiIioviwt8aYNDO7IO3cr+mVAFI2/7ehSXZMgGfGzed2XCIiIiIiSijHmzzo9CmGtpkcnBZeAQ9sxzb0Jcr4u866iypa4R9/YbCizKRPQLWnR6WrRERERBRekiRF5LiiKJ5xe7Q53NAJRe3blgRgekF6xP5+o02ixZvCHO+AB9bjH8Ba9jqsFW9D9LaGdB4lOQf+4svhK74SgXHLAcmmt/NdF118f5sHY20ujHcUk2aOHj0ajdMQ0RmcqjLzfctfkS+0GH7WecG/QUnLj1HPiIiIiIgonuwdUGlmVsG5zxpsP/giLM3lhrbOpf8CSNZzPjYRERERESWOfW7j9UhemhU5acGBMnQOZC9sxz+A7cha2Crfhug3VvMZiipa4B93fk+izOVQkxxR6SoRERERRY7T6YzKeRyO0f3ZsXJvs2F7cn46xuTlxKw/8W60x5vCEG9PG3DkTeDAK8CRt4EQrjmDBxsHTL9WX8Rx58EuSrCHvcd0Lvj+Ng/G2lwcJo13VJJmiCi2DtV3YvPRVqwQd+FmywbDz3wTVsA77VMx6xsREREREcUPX0DBwfrO8CbNBDxI+fg3xqbcmfCVrDy34xIRERERUcLZ7zZej8xwnXsSv2nJPlhPfAT7kdeCiTI+Y0LSUFRBgr9wObyTV8JXdAXUpMyodJWIiIiIKJ7srjJWxphbyM/FRIN0NgAH1wAHXwMq3tOvQUOSM7U3UQYFcwFBiHRPiYiIdEyaITKB1VtqkYYu/NT6uKFdsaah4+KH+OGTiIiIiIh0h092wS+rvdvalcKsgtRzOmby7mchdboNbZ3LvgMI5iz5S0REREREw0maObfrEdOR/bBWaYkyWkWZtyB62866iyqI8I9dCu/ka4KJMslZUekqEREREVG82lNtTJqZM86cs7ETDdJyIpgoc+BV4PhGQFVC22/M/GCSzLRrgdwpke4lERHRkJg0Q5Tgqls8eOtQI/7L8hzGCE2Gn3We/69Q0sfErG9ERERERBRf9tYaZx6emJWENPvIvzoQvG1I3v6ooc1XuAz+cReM+JhERERERJSYArKCwydZaWZEiTLVm2EvWwtb+RsQvcYBfkNRIcA/9jz4Jl8Dr5Yok5ITla4SERERUWw1NzdH5LiiKMLh6EssaW1thaKEOJg+zrR7AqhsMF6XTMwQI/a3G40SKd50dpbWY0g/sT6YKFOzM6R9tMkZAmMWw198JfzFV0DJKOz7Id9LcY3vb/NgrM0lHuLtdDoRa0yaIUpwf9nmxnnCPnzWst7Q7itcDu/MW2LWLyIiIiIiij97aoxJM7PGpJ/T8ZJ3PDZowFbXsu+y2iUREREREQ1S1tANb6Cv8qWGlWZOQwnAWv0x7EfWwFbxJkRPc0iJMtqgJW/JSniLr4KamhuVrhIRERFR/JBlOSrn0QZhRutc4banxlit0SoJKMqyj9rfJxpGc7xpaGLLUdjL1umTM1ga9oe0jypa4R+3HN6iK+GbdJlxcga+PkYtvr/Ng7E2F8Wk8Q5r0owkSfpaEAQEAoFB7SMx8FhEFLrmLj/e3nsCr1geM7Sr1hR0XPoTDlQjIiIiIqIzVpqZXTDyWZ3Fjjok7/qzoU0bmBXInzPiYxIRERERUeLa7zbO5lyYaUdGEuf/66XIwLGPkLLj77CWrYPY3RTSbv6ChfCWXANf8VVQ0vIj3k0iIiIiotHswIDrksm5KbBKYsz6QxQtYuvxnkSZNbCc3BfSPtoYRN/4FfAWXwH/hEug2s9tMj4iIqJICus3zaqqDqudiCLr+Z11+Ab+hnHiSUN757LvQMkYF7N+ERERERFR/Gnq9KO61Wtom1Uw8lmdk7f9DkLA07utChK6ln7rnPpIRERERESJa7/bmMQ/wzXyJP5RT5EhtlfB0nQEluZyoOMYUP4u0FkPewi7+13zg4kyJVqiTEEUOkxERERElBj2Dbgumcnql5TAxLYqvZqMrWwtrPV7QtpHsTv0SjK+4ivhG3cBYEmKeD+JiIjiLmnmhz/84bDaiShyun0yjux8D/9medPQ7h+zBJ7Zt8esX0REREREFJ/2DrgRlGwVUZSTMqJjiS2VSNr3v4Y27/SbIDuLzqmPRERERERknkozM8wwOE1Ljmk7DktTGaSmI5CaymBp1h6XQZCNkxqcjT9/LnwlK+EtvhpKxtiIdZmIiIiIyEyVZkydzE8JSWyrhr18XTBRpm5XaDul5gLTrwOmX4tWx0zIYPUlIiIafZg0Q5Sg1uw6gR8qf0D/z6iylIT2S38KCPzgSkRERERERntqBs7qnAqLKIzoWKmb/weCKvduq5IdXUu+fs59JCIiIiKixOTxyyhv6ErcGZ2VAMTWE7A0H+lLjtHWzeUQZN+ID+vPnQXf5JXwlqyEkjEurF0mIiIiIjKbpk4/3O3Gz+fT8xPouoRMS2yvga38ddiPaIkyO0PaR0nOgrf4KgSmrEL6rKsAUQr+oLkZkPvuARIREZkyaYaI4kNAVpCx9deYJNYZ2ruXfQtK5sSY9YuIiIiIiOLXvlpj0sysgpHNnibV79FLuffXPfcuKGmuc+ofERERERElrkP1XZDVvm0tf39a3igcnKYEILUe70mMORJMjNGqyLRUnFNyTH+B3Jl6koy35GoojglhOSYREREREWnVL433SZIsIiZlJ8esP0TnQuyoha3sddjL1sDqDjFRJklLlLlCr2LqH3seIFogSVJfwgwREdEoFpWkmffff19fL168GMnJoX2Q9Hg82LJli/74oosuimj/iBLNji0bcIv8GtBvUuiWrDkIzLkrlt0iIiIiIqI4JSsq9g24GTR7hEkzqZseNmwr9gx0L/jKOfWPiIiIiIgS2353p2FbG5iWbIvjQTmyH1LrsWBCTHO/5JjmSghKeJJjNEqSE3L2ZFgLZgG504HiS9EuZUPmrL5ERERERGG3v854XTItPxWSltFPNEqIHXWwla/TJ7ez1m4PaR/Fnglf8ZXwTr6mN1GGiIgoEUXlf7iLL74Yoihi9+7dmDFjRkj7VFdX9+4XCAQi3keiRKH6PZi544cQhb4p2XywQrnql8z6JiIiIiKiIVU2dqPTp5xzpRnriY9gO/GhoU1LmFGTHOfcRyIiIiIiMs+MzjNcI0vij0xyzNFgQkxv5ZgjkFqOQlD8YTuNkpwF2TkZgezJkJ0lkLNKEMiaDDU5G5LFAqfT2ffk5uawnZeIiIiIiE6fzD/DNQqrX5LpCJ31sJdrFWXWwlKzDQL6lXE9DcXuCCbK6BVllgKSNSp9JSIiiqWopYWqqhrV/YjMqvmtX2KKWm1oOzTlyyjIKolZn4iIiIiIKL7tHTBAzZVuQ06abXgHUVWkbPqloUlOzUf3nDvD0UUiIiIiIkpg+wYMTpsZ7cFpsk9PhAkmxgQTZKTmMkgtWuWY8E3upyRnI5ClJcVM6U2M0dZacgwREREREcWONkbxAJNmaJQQuhqCiTJHtESZLSEmymTAV3RFMFGmcDkTZYiIyHTitpaaogRnuJUkVsYgCpWlbjeKK1Yb2g6Kxci/7Gsx6xMREREREcW/vTXGpJnZY4Y/q7NW7t1av8fQ1rX4fsCafM79IyIiIiKixNXuCeB4syc6g9Nk7+DkGG3dejS8yTEpOcGEGK1qTPYUBHqqx6jJWWE7BxERERERhU9duw+NXf74rIBJdCpRpuJN2I6sgVVLlFGD42vPRLGlw1d0eTBRZtz5gDTMCfOIiIgSSNwmzRw7dkxfOxyOWHeFaHSQfbC88R1I6PtA7FMl7F/wI1zEzHAiIiIiIjqDPbXGpJlZBcO8EST7kbrpvw1NgcxJ8M74dDi6R0RERERECexAnXE2Z6skYHJuyrknxzRX9iTH9CTGaOvWYxBU+dyO3f80KXl6MozcUzHmVKKMmuwM2zmIiIiIiCjy9g+oMpNmlzAu0x6z/hBphO5G2MvfgK1sHazVm0NMlEmDb9In4C25Bv7xWqIMX8dEREQRS5o5fvz4kO21tbVISzvzwBuv14vy8nL84Ac/gCAImDlzJiNFFIKUbX9ASluZoe0p6SZct+i8mPWJiIiIiIjiX6dPRkVD9zklzdgPvKDPzNxf19JvAWLcztVBRERERERxOjhNS5ixSmJoOwe0yjEVp0mOOftgolDJqfm9yTF61ZjsnuSYpMywnYOIiIiIiOInmX9Gfqo+dvGsZG9wzcQEChOhuwm2ijdhL1sLa9XmkCZ+UKxp8BV9Ar6SlfCNv4CvRyIioiFEZPTKpEmTBrWpqoorrrhi2Me68847w9QrosQlndyPpG2PGtr2KRPgXXwvbJYQbywREREREZEp7Xd3QO23bREFTM1LDf0A/m6kbPmtsSlvNnzFV4Wvk0REREREo5AkSRE7tiiKZ9weTfYPGJw2qyD9tH87sfEwbIf+CanxsJ4gI4Y5OUZJc/VUjZkMOXuKvlayS6DaHYP7guhIpFjT2THe5sJ4mwvjbR6MNdHotM/dYdie4Tr7fRLr8Q+R/ta/QPA0wz/+QnQtvBeBMYsj2EtKVEJ3M2yVb8F+REuU2RhiokwqfJMu60mUuQiwMFGGiIgo6kkzWoLMcNqHkpSUhK9//eu45557wtgzogQk+5H+zr9CVAO9TX5Vwg+Fe/HwvIKYdo2IiIiIiOLfnhrjjaApeSlIsoZ+Izd592pIXfX/n707AY/rOg+7/86dDTsIggt2cKcILhIpiqK4mJRsWXstu7aS2G3kpHFiRW7jtE5TfbWTtlFrO3EbJwrjOGkTx3bk2k4tJ7ZF2ZIs0hSpjSIl7vuCnQsIglhn/55zIQzmDBZimzvL+f+eZx7MOffOzDvzAuQ9c+97jtbXd9fviUxkBjYAAAAgh5WVlTn2WqWlI4s6ssWJS31a+47F80b/7BrfEPn2feqM4/RftKRaZO4tg7d57/2cu1ysvFK7GMYrmSubc43JI99mId9mId/mINdA5lPXNB5PWgGzoaLoZg+Sot1/IFZ/h930Xdxt30KVt0vfuk9LaMHdnCfBuFwDXeI796L4z/xksFAmOnzt31hi3gIJLrhHAqpQpn6biCfPkVgBAMgFKSma+bu/+zut/Wu/9mv2coV/9Ed/JNXV1WM+Tu2jimUqKytl7dq1UlR0k4NPAJJ/8K/Fc+Wo1ve1yCOyat2dUuRPyZ84AAAAgBxypE0vmllVWTSpL/TzD/yV1hes3SKh2s0zFh8AAACA3HWlOyCtXQNa3621s0bfed+fT75gprTWLoYZLpBZITJnmUheyTSiBgAAALJTqlbDzPYVlho7+6U7oK/ssaq6ZNzPy+o8J+6uiyP6vW1vS+lPPiXh8ltkYP0TElr2kIiVW9dvZXu+08kV6BLv2RfFd/on4ml8VVzR0E0fE/PkS2jhPRJc+rCEFmwX8ebb/alb21ZHvs1Cvs1Brs1Cvgel5Ijs8ccfH1E0ozz66KPS0NCQipcEjOTuOCUFb/6F1ncyWiNfj31E/t/tFWmLCwAAAED2zJ6WXDSzehJFM6pgxgrc0Pp61SozAAAAADABh5qva+0Cn1sWzx1lTBIJi5z/xdhPVFr33ooxQwUyK0TmLhPxF6cgagAAACA7ObUaZratsPSLi/rql3OKfLKibr49AfiYTh8Y9zk9HSek6Ke/I/Lmn4ps+ncit31CxJubq4JkW74dN9AlcnKnyNHnRM68LDKBQhnx5Iss+6DIyg+La+kHxecrFJ9kBvJtFvJtDnJtllJD8+1IGfMrr7xi/1y4cKETLweYIRqWopd/X1zRYLwrEnPJ74V+Sz64ulLmFGbKoTIAAACATNXaFZBrffpy76urJlY0Y/W0Sf67f6/1BZY+JJF5q2Y0RgAAACBbdXZ2puy51WyAiSc3u7q6JBqNSrZ543S71r5lfqHc6NILaRR369tSklywf8//kMjclRKZvUTEVzjyydVYpy91OXBKruQaE0O+zUK+zUK+zZEJuXaqMALIFYebu7T26urS8QtmlPO7kzpco6+M2XlB5Cf/XmT3l0U2/rbI+l9n5UsTDNwQOfXCe4UyL4lEhq/vG5MnT2TpvXahjCy9T8Q/8UnuAABAhhTNbNu2zYmXAYyS/87fivfyIa3vbyIPy+HYYvnD9ZVpiwsAAABA9jjS3qu1Z+V7pLrUP6HHFrz5jLgigXg7Znmk987fnfEYAQAAgGwViUQcey11IaaTrzdTjrR1a+2G+QWjvg//Bf2CtHD5culv+KXhjix876blGlNDvs1Cvs1Cvs1BroHMdyipaGZNzazxHxCNjFwJ85E/E3F7RV79qsjVkyMf03NJ5KU/FNnzv0Q2/IbInU+IFM2difCRKQLdIicTC2WGz6GNye0fLpRZpgplWC0VAICsLpoBMLPcneek4I0/1frORivlT8P/Uu5eWib1s/PTFhsAAACA7HGktUdrr6osuvnsae+NSfzH/1HrG2h4TKKzWGEWAAAAwMTEYjE5llTI31Ax+ky63qY9WjtYuyWlsQEAAAC5KFWrYWbCCktTFYnG5HCLvtrl4jL3uJ+V+9IhKRnQC22uz71DYsWVInX3iffci5L31l+K59K7Ix8c6BLZ8z8l9toOCaz8JQms+5RES2okm2RzvmdcsFe8518W3+mfiPfCLm2yubHE3D4J1W+T4NKHJbTwnuFCmQxdLZV8m4V8m4NcmyUT8l2WAathUjQDZJtoRIpe/n1xJSzbGI255PdCvyUB8cmvbqhKa3gAAAAAssfhpFmdVdHMRBS8/j/FFRueHTHmyZe+O/7tjMcHAAAAIHe13QjK9f6w1tdQUThiP1fgxoiLzUJ1W1MeHwAAAJBrnFr1KJtWWDp7tU/6Q/pFo8vnjr4C5hDfxVe1dnjWIgkXzIuvgBlZ8AEZqH+/eFtek/y3/0p8TXtHPIcrPCB57/69+A//gwSWPiL9t/+WRGYvlWyUTfmeEaE+8V14Rfxnnrd/TqhQxvJJsG6rBJc+KMEF75dY4ooyWfbZGZdvw5Fvc5Brs0QNzTdFM0CWyTv8TfG2H9D6/i5yvxyILZPba4snfJEbAAAAALMFw1E5eblP65vIeEJdrOY/+4LW13/rJyVWOG/GYwQAAACQu4616ytfluZ7pLrUP2I/b/Nr4opF9Vl5q+5wJEYAAAAAuS159cv5xT4pL/SO+xhvs14EE6rdNHInl0tCNZvsm+fSocHimXM/E5fE9N2iYck7+Zx9Cyz8gPTf/oSEK26bzltCKoT6xXdx13uFMj+3i55uJmZ5JVS7RQKqUGbhByTmL3EkVAAAMDqKZoAsYnVdlMLXvqL1XYjOlz8JP2bff5xVZgAAAABM0KkrfRKKDJ+ccdlFMyNnddbEYlKw74+1rqi/VPrX/WaqwgQAAACQo44mXZzWML9QXC41MtF5G/do7VDVBhFPXsrjAwAAAGBe0cxoq19qwgHxtu7XulRhzLgPmb9Guh/8S3F3npX8A38t/pM/tItlkvnPv2TfgtUb7eKZUO1mu/gGaRIeEN/F3eI/8xPxnVeFMv03fUjM8th5CyxRhTL3Siyv1JFQAQDAzVE0A2SLWFSKX35qRKX674d+UwbEL0vnFshdCzjQBgAAADAxh1v1WZ0XludLkX/8rwm8Ta+Kr+V1rU+duGF2LAAAAADTXWlmrIvTfE2vam37wjEAAAAAcHBcMsTb/ra4IoF4O+ayJFS9cUKvFSlbLD3v/7L0bfgdyX/n/0je0e+OWoihzsOoW2juKvscTHDxB0Vc1oTfE6YhHBBf427xnX5e/BdeFleob2KFMjWbBgtlFqlCmVmOhAoAACaHohkgS+Qd+Y54W9/Q+v4+fK+8EVth3//VOypHnYENAAAAAEZzpE0/EbSysmj8B8SiUvjan2hdkaIK6V/zq6kIDwAAAEAOi8ZicuJS8ozOI8ckVtdFcd9o0vqCdVtTHh8AAACA3BeKROXUlb6bjksSeZv2ae3w3FWTXk0kWlwlvVu/IH3rn5T8Q38veYe+KVbgxsjXunJEvC88KeFZi6R/3W9JYPm/EHH7JvVamGihzC/Ed+Z58Z1/WayQPlYdTczlHiyUWfreijL5ZY6ECgAApo6iGSALWDdapGDfl7W+5tgc+XL4V+z7lSU+ufeW8jRFBwAAACAXimZW36Roxnf6J+K5clTr69vwWRGPPyXxAQAAAMhdF68NSG8wqvWtHGVGZ1+jvspMtGCORMqXpzw+AAAAALnv7NV+CUViWt+K+TdZaaZZL5pRhRNTFcufLX13/q70r/2UPZly3jt/K+6+yyP281w/J8U//30pePNPpf+235CBlb8k4i2Y8utCzQqnCmVeHSyUOfeSWCH9nNlo7FWFau56b0WZD9r5AwAA2YOiGSDTxWJS9Mr/N6KK/fdDn5I+ybPvf2J9pXgsVpkBAACA2dxud8qe27KscdvZ5lpvUFq6AlrfrTUlY3+GkZAUvvGnelfZYgmv/Ki4rdR97umSa/nG2Mi1Wci3Wci3Wcg3kH2OtusXJM0r8sqcopEzJnub9mjtYO0WERd/4wAAAABmflxSO8svJXljX07pCtwQz+XDWl+odupFM0NiviLpX/cp6b/1V8V/4jkpOPDX4u66OGI/d0+7FL36tBTs3yH9ax6XgTX/WmJ5s6b9+saIBMXbtFf8p38ivvMvihWcYKFM9Z0SXPKgBFShTMEcR0IFAAAzj6KZHPTDH/5Qnn32Wfv+008/LcuWLUt3SJgG/7Hvia9Jn0nt2fDdsje62r5fmu+RD62am6boAAAAgMxRVubc0uelpaWSzd5uu6S1C3xuWb+0WtxjFeO/9b9Fkk7QuD/4X6Ws3IyxSLbnGxNHrs1Cvs1Cvs1CvoHMd6xdnyisoWKUlS8jIfE2v6Z1hVTRDAAAAADMgONJ45IVo41LEnhbXhdXbHjFzJjbJ6HK22cuILdfAit/WQIrPia+szul4O2/Es/V4yN2swY6pfDNr0r+wb+RgZW/LAO3/bpEiypmLo5cK5Rp3if+088PFsoEbtz0ITFxSah6gwSXPCSBxfdRKAMAQI6gaCbHNDY2yve//33x+/0SCOizBiP7WD1tUrj3f2h9bbHZ8sXwJ+Ltx26bL/m+3JvZGQAAAEDqHGzq1NprakrHLpgJ9ors/mO9r+YOkVseTmGEAAAAAHLZsaQZnRsqCkfs47n87oiZf4O1m1MeGwAAAABTi/lHjksSeZv2ae1Q5XoRT97MB2a5Jbj0Ybtow9u42y6e8ba+NXK3UK8UvPN/JP/QtyRwy6PSt+43JTpr4czHk23em4DBf+Z58Z37mViBrgkVyoSrNkhgyQMSWHy/xArNmDQOAACTUDSTQ8LhsOzYsUMWLFggFRUVsmePvmQ9skwsJkWvfH7ECaGnQr8h3VJg3/d7LPmltfPTFCAAAACAbHWw8brWXls3zio9r/+lSI++Mo184L+IuMYosgEAAACAcYQiUTl1ue+mK834Gl/V2uHyWyRWOC/l8QEAAADIfQOhiJy9qo9LVt6saKY5qWimZpOklMslofrt0lW/XTxt+6Xg7a+L78LPR+4WDUrese+J//g/SnDx/dJ3+6clMnelGFco0/L6YKHMWVUoo58HG7tQZr0Eljz4XqEM400AAHIZRTM55Ac/+IE0NzfLl7/8Zfmnf/qndIeDafKffE58F3dpfc9F3ye7orfF24+uniuzCrxpiA4AAADIPJ2d+uopM8myLCktLY23u7q6JBqNSjaKRGPybpN+smBpmWfUz8/V3ymlr/6ZJJbHhOq3SU/pSvWBS67KpXxjfOTaLOTbLOTbLOnOd1nZOAXIAEY4e7VfgpHYTWd09iYVzQTrtqQ8NgAAAABmOHWlTxKHJZZLZPm8sYtmrJ528XSe1fpCtSkumkkQrlwvNx5eL+6rJyT/wNfFf/rH4orp332otioaUbdg3fuk7/YnJFx1R+5OghYNi7flDfGf/sngijIDEztvFaq83S6UUQVG0aKKlIcJAAAyg9FFM+rE2ZkzZ+zb2bNn7Vt3d7e9bdu2bfLkk09O+LmuXLkiO3fulAMHDkhHR4d4PB57tZe77rpL7rvvPvH7/Sl8JyLnzp2T5557Th577DGpqalJ6Wsh9Vy9l6Vwzx9pfT2e2fKHPf8q3na7RD6xvjIN0QEAAACZKRKJOPZa6iJMJ19vJp250ie9QT32hvkFo76fgjf/QlzBwXHykJ6Nn8va925ivjE55Nos5Nss5Nss5BvIbEfbe7R27Sy/lOTppyxdA13iufyu1heq3epIfAAAAABy37H2Xq29YHa+FPjcY+7vbX5Na0d9xRKeu0qcFplzi/R88E+l787flfyDfyN5x/9RXJHgiP18jb+wb6GKddJ/+6cluOBuEZclOVEo0/qm+E4/L/6zPxVr4NqEHhaqWCuBJQ9JcIkqlOF6OwAATGR00cynPvWpGXme/fv3yzPPPCP9/f3xvkAgEC/Eefnll+Wpp56yi2hSIRQKyY4dO2TBggXyoQ99KCWvAQfFYlK0+w/ECtzQuj8f/jdyQ4ri7XtvKZeq0tQWYwEAAADIPUfa9AvUKkt8MqfIN2oxf/7hb2l9A8v+hUTmNqQ8RgAAAADmXJzWUDF87iPxgrTEWZNjbr+EqtY7Eh8AAAAAE8clY68yo3ib9mrtUM1GEWvsIptUi5bWSe/2P5K+O/6d5L/7d5J3+B/ECunnfxRv+wHx/uQ3JTx7mV08E1j6kIiVZZeMRiPibX1LfGoVnbMviNXfMaGHhebfNriizJIHJFpclfIwAQBAZsuyI6DUmTNnjlRXV8u77+qzVt3M+fPn5atf/aoEg0HJy8uTRx99VFatWmW39+7daxfMtLW1yRe/+EX50pe+JPn5+TMe+3e/+137NdTzW1YOVIQbznf6x+I/96LWd3rOvfLD5rVa36/eQdU7AAAAgOkXzayqHHmBmuI/9SNtdrKY5bFnLgMAAACAVF+c5m3ao7VDVRtEPHkpjw0AAACAGY4lrYA5btFMLDZipZlQzWbJBLHCudK36T/aBTF5h79tF9BY/SNXX/FcOyXFL/57KXjjT6V/7adkYMVHRTwZPFlzNCKetrfFbxfK7BSr7+qEHhaat0aCSx6UgCqUKalJeZgAACB7GF0089GPflQWL15s32bNmiWXL1+Wz3zmM5N6jm984xt2gYzb7ZbPf/7zsmzZsvg2VTxTWVkp3/72t+2ilh/96Efy2GOPjXiOb37zm/ZqMRP14IMP2s+rnDp1yn7ej33sY1JXVzep2JF5XH1XpegX/1Xri+TPlt+58XGt764FpbJs3vgzHAAAAADAaA5PtGjmzPNaO7D0EXvmMgAAAACYqoFQRM5d7dP6ViavNBOLia8xqWimbosT4QEAAAAwQE8gLBevDdx0Bcwh7uvnxN3brvWFajdJJon5S6R//W9L/62/JnnHvy/5B/9G3N2tI/Zz32iSot1/IAVv/bm978CqT0jMXywZIRYVT9sB8Z/5ifjOvCDuvssTelho3uqEQpnalIcJAACyk9FFM6MVsEzGmTNn5Pjx4/b9u+++WyuYGfLwww/LK6+8Ii0tLbJz5075yEc+Ih6P/rG/+OKLEggEJvy6GzdutItmIpGI7NixQ+rr6+0VbpD9Cl/9H2INdGp9+5Z8To69pVf2P76BVWYAAAAATO1E0Lmr/Vrf6qqRJ4Ks7lbxXnpH6wssezjl8QEAAADIbScu90kkNty2XCLL5xVo+1hdF8Td3aL1BWu3OhUiAAAAgBx34lKfJAxLxG25ZOlcfVySyNu0T2tHCiskMmuRZCRvvgys+VUZWPkr4j/9Y8k/8HXxXDs9Yje1ckvha38i+W9/TQZW/2vpv/WTEiuYk55CmXZVKLNTfGd2irv30oQeFp67UgJLHhoslGHCNwAAMAFGF81M15tvvhm/r4pmRmNZlmzbtk2effZZ6e3tlaNHj8qtt96q7fOtb31rSq8/MDBgr2CjfPzj+kokQ9TqN8rnPvc52bBhw5ReB85w9XeK//SPtL7A4vvkjy42iEifthzo7bUlaYgQAAAAQLY7fqlXOxHksVyyfJRVLNWJiURRf4mEajJr1jQAAAAA2edYu77y5aLyfMn3ubU+X+OrWjtaMFci5SMnrgMAAACAmRiXLJ2bL36PNeb+3ua9WjtUc5eIyyUZze2VwC0flsDyD4nv/MuS//ZfjZgsTbGCPVLw9tck/52/lYGGx6R/7W9ItKTGgUKZd8R/5vn3CmX0VXzGEp7TIIGhFWVmLUhtjAAAIOdQNDMNJ0+etH/6/X5ZtGjs6vGGhgbtMclFM1Pl9XrlnnvuGXWbWgFHFdSsX79eSkpKZN68eTPymkgdb9MeccWi8XbMkye7F31OTh29ou33+IYqcWX6wAsAAABARjrcqp8IWjavYNQTQWpGr0TBRR8UcftSHh8AAACA3HasvVdrN1SMXPnS26QXzQRrt2T+BWkAAAAAsmqCsUQr5o8cl8RFI+Jtfl3rCtVulqzhsiS46F4JLvyAeFtet4tnfEljLnu3SEDyD39L8o48K4Flj0j/ut+a2ckLYjHxXHr3vUKZ58XdMzhR+M2Ey2+RwNIHJbD4QYmWLZy5eAAAgHEompmG5uZm+2dFRYW43fosWImqqqpGPGYm+Hw++fSnPz3qth07dthFM48++qgsWzb5A9iOjo4J7Tfe+54OtULPeO1c5G/co7XVLM7/+1BQ66sry5P3L59jLwuaS0zMt8nItznItVnIt1nIN5C9DrfpRTOrK0eeCLK6W8V76aDWp2btAgAAAICZL5pJWvkyEhJv82taV6huqxOhAQAAADB0XLIyeVySwHPliFjB7hHXdGUdl8teIUfd3JcPS8HbXxff2RfEJTF9t1hE8k7+0L4FFn5A+m//tIQr1k69UObyYfGd+Yk9WZu7u2VCDwvPXmYXygSXPCiRssVTe20AAIAkFM1MUTAYlO7uwQPi8vLycfctKiqyV6MJBAITLkZJtyeeeGJC+33ve98TJ5SWlkpOi0ZFGn+hdV2pulve/HmX1vfp7UtlTvlsyXU5n29oyLc5yLVZyLdZyDeQHWKxmBxNKppZNUrRjDpJkijqL8nOE0AAAAAAMkr3QFgaOwe0vpVJK814Lr0jVki/gC2YTbM4AwAAABmMyZFFOvtC0tIV0PpWVZeM+dn4W/Si/sjsJeIqrZLUfJIOqbxN+h7+mgx0npW8/V8X34nnxBUNjdjNf/4l+xaq2SgD639bwmpCA5dr/HzHYuK+fER8p38s3tM/EfeNiU0wrla1CS59yL5FZy+J92f155wjsunvG9NHvs1Brs1CvgdRNDNFAwPDX+rn5eXddH+1jyqaSXwcENd2UKTvqtb19dZFWntOkV8+sq7a4cAAAAAA5IrWroBc6wtrfaurRhbN+M88r7WDC+8VcftSHh8AAACA3Hbskl4M43W7ZMncfK3P17hHa4fnNEisYI4j8QEAAAC5rqysTEyfcO/QlSta2++x5PYlVeJ1j3HxaNsbWtO95B7HPseUK1svsmi9SNcfiry2Q+Ttb4iE+kbs5m1+3b5J5a0iW35XZMW/0LaXlpSItL0rcuyHIkefE+m8MLHXn7NMZOVHRFY+Ku55K0SNDvURIjJRJv99Y+aRb3OQa7OUGppvimamsdLMEI/n5h/j0D6Jj0ulJ5980r5N1de+9rUZjQc3cfolrRmatVi+fdKl9f3a5gWS56V+HgAAAMDUHE5aZWZWvkeqS/1an9XdKt72g1pfYMkDjsQHAAAAILcda9fHJMvmFoy4MM3b9KrWZpUZAAAAADPpUNN1rb2yqmTsgplQv0ijXjQjC7dJzimtEbn/iyJbPyfy5tdF3vi6yID+OdlUYcz3PylSvkRk8++IVKwROf7Pg4Uy185N7LXUY+1CmQ+LzFthr1wDAADgBIpmpsjnG55lNxzWZ+odzdA+iY/LZOXl5RPar7OzMyWvr5Z+Sqxk6+rqkmg0Krmq+MTz2h/ja67bJBobbhf63PLILaUp+7zTzbR8m458m4Ncm4V8myUT8p0zMzgBDjraps/qvKqySFxJJyN8Z3+qtaP+EglxkRoAAACAGXCsXR+TNFToK1+6Bq6L5/JhrS9Ut9WR2AAAAACY4VBLl9ZeUzNr7J2b3hCJBIbbLktkwRbJWYXlInf/fyKb/t3gqjOv/YVId9vI/TrOiPzzv534885eNFwoM38lhTIAACAtKJqZory8vPj9gYGBm+4/tE/i43JBJBJx5HXURZhOvZbTXP3XxN3+rtb3d1eWae2PrJknBV5Xzn4GJuUbI5Fvc5Brs5Bvs5BvIDscbuseUTSTzH/mea0dXPgBEXd2TP4AAAAAILuKZlZWFGptb/Nr4ooNT8oRc/slVLnesfgAAACAXMfkyCLvNOqfweIyz5ifS96xFyQ/oR2et1q6B2IiA7k56bFmxSdEln5UfCeek7z9fyXurguTeniktF6CSx+S0LKHJDKnYbhQ5vooK9ggo2XT3zemj3ybg1ybJRPyXZYBkyNTNDNFasWY4uJi6e7ulo6OjnH37enpkUAgMKkVXGAOX+Or4pLhZWWCVp7sCy+Ptz2WS37l9oo0RQcAAAAgFwTDUTl5uU/rW12lF81YPW3ibT+g9QWWPOhIfAAAAAByW0dvSC51B7W+hqSiGV/jHq0dqt4g4vE7Eh8AAABgAtMnR77SE7RviVbMKxgzVk/jXq0drNmUke8rZVwe6V/xMelf/hHxnX1BCg58XTxXjo65e6Skzj6vFFjygETmJqwow0XYOSVT/76RGuTbHOTaLFFD803RzDTU1NTI8ePHpb293f7lcbvdo+7X2tqqPQZI5L24S2vvizRIQIZncn6gYY7MK2ZmZwAAAABTd+pKn4Qiw8X6rlFmdVYnPBJFfcUSqt3sWIwAAAAActex9h6tXeC1pH52wpzNsZh4m17V9gnWbnUqPAAAAAAGrn5Z6LOkbnbeqPu6BrrEc/mw1heq3SRGstz2qjHBJQ+Kt3GPFBz4K/G2vDG4bVadDCx+QPoXq0KZVcOFMgAAABmGoplpWL58uV00o1aROXfunCxdunTU/Y4dO6Y9BoiLRkbMnPZS+Fat/at3VDocFAAAAIBcc7hVv0BtYXm+FPn1rwT8Z3Zq7eDCD4i4KeAHAAAAMPMXp90yv1Dc1vDFVNb1C+LubtH2CdVtcSw+AAAAAOYV86txiTVGkYe35XVxyfBkZDG3X0IVt4vRXC4J1b9PehbdLWXRayLRsMicZdJ//bqRs9UDAIDsYqU7gGy2YcOG+P1XXnllzCWMdu/ebd8vLCyUlStXOhYfMp+akcAauKb17YreFr+/bUmZfTEbAAAAAEzH4Tb9RNCqyiKtbfW0i7ftba0vsORBR2IDAAAAkPuOJl2c1pC88mWTPsFYpGCeRGYvcyQ2AAAAAGY4nlTM31ChnytJ5G3ep7VDVetFPP6UxZZ1yheLzF3OyjIAACBrUDQzDUuWLJEVK1bEi2ZOnTo1Yp8f//jH0tIyODPWAw88IB4Pi/tgmO/iYEHVkDPRKmmOzY23WWUGAAAAwEw4epOiGd/ZF7R21FckobrNjsQGAAAAILfFYrERK80kX5zmbXx15CozXHwFAAAAYAbHJUcvJY1L5uvF/Im8TUlFMzWcMwEAAMhmRldwnDhxQtrb2+PtGzduxO+r/l27dmn7b9++fcRzfPKTn5QvfOELEgwG5emnn5YPf/jD9moyqr1v3z556aWX7P0qKyvlkUceSen7QfbxNupFM68krDIzr8gra6rGntEAAAAAACaiozckLV0BrW910ljDf2an1g4u/ICImxnTAAAAgOlwu90pe27LssZtZ5LWrgG53h/W+lZXlwx/PpGg+Fpe17aH67el9PPLJtmUa0wf+TYL+TYL+TYHuQYyU2tXQLqSxiXJK2AOsXraxHP9nNYXqrkrpfEBAAAgtYwumnn55Zdl9269aGHIyZMn7dvNimYWLlwon/3sZ+WZZ56R/v5++c53vjNiH1Uw89RTT0l+fv4MRo9s5+rvEM+lQ1rfruit8ftra0rExSxqAAAAAKbpSNIqM/leSxaVD49PrZ528bbt1/YJLnnQsfgAAACAXFVWVubYa5WWlkqm2tfUprXLCryyakHF8DmQC3tFQvqMz0WrHxIpcu7zyyaZnGvMPPJtFvJtFvJtDnINZIbjSavMlOZ7pKrUP6FVZqL+UgnPXZnS+AAAAJBaRhfNzJT169fLV77yFXn++eflwIEDcu3aNfF4PFJRUSEbN26U+++/X/z+3JyhN1WzfJkw84avea+4JBZv90mevBW9Jd6+va7UmFnUTMg3hpFvc5Brs5Bvs5BvILuLZtTMaW5ruEDfd/YFbXvUVyTBui2OxQcAAAAgtx1qvq61V9fM0icNO/tz/QEVa0SK5joUHQAAAAATHG3Xi2Ya5heOOZmxt1kvmglVbxSxzLiGCwAAIFcZXTTz5JNP2reZMHfuXHn88cftm0mcmiUtJ2feaNmrNfdGVkpQvPH23StrpKysWEyUk/nGmMi3Oci1Wci3Wcg3kF1FM6sri7S2/8xOrR1c+AERd25O/AAAAADAee8mFc3cWpP0PUJy0cziexyICgAAAIBJjicXzVQUjr5jLDZipZlQ7aZUhgYAAAAHGF00A6RNNCJy9mWta1f01vj92YU+WTJPv5ANAAAAACYrEo3J0aSimVVVw2MNq+eSeNre1rYHlzzoWHwAAABALuvs7EzZc6tVXxMnsejq6pJoNCqZJhqLyeHmLq1v0SxP/LNx9XdKaetBSZzfuXv+Bgmn8LPLNtmSa8wM8m0W8m0W8m2OTMi1UxPgAtlCjUuOX9KLZlaMUTTj7jwr7r7LWl+wZnNK4wMAAEDqUTQDpEPLAZF+/YTPrshw0cwdC8rGXAIUAAAAACbqfEe/9IX0E7KrElaa8Z19QVwSi7ejviIJ1m1xNEYAAAAgV0UiEcdeS12I6eTrTWZM0hvU41oxLz8eq+/iHm1MEvPkSWD+berDczzWbJGpuUZqkG+zkG+zkG9zkGsg/RqvDYwYl6ysGH0yY2/TXq0dKaqQ6KwFKY0PAAAAqUfRDDJylrRMmHkjlfIO/7PkJ7TPu2qlRebG26vn56d0BrpMk+v5ho58m4Ncm4V8myUT8s0sacDEHElaZaayxCdzCn3xtv/sTm17cOEHRNx+x+IDAAAAkNuOtutjknlFXplTNDwm8TW9qm0PVd/JmAQAAADAjDqWtMrMnEKvzE0YlyTyNu/T2iG1ygwTHwMAAGQ9imYwLU7NhpFrM294LryitX8WWqO1b6suyqn3a3q+MT7ybQ5ybRbybRbyDWSuw0lFM4mrzLh6L4undb+2PbjkAcdiAwAAAJD7jrXrF6c1JM7mHIuJt3GPtj1Yu9Wp0AAAAAAY4lhSMX9DReHoO0bD4m15XesK1W5KZWgAAABwiOXUCwEY5Oq7Kt7Lh7W+XdHb4vcLfZYsnVuQhsgAAAAA5PpKM4lFM/6zL4hLYvF21FvEBWoAAAAAHLs4zX39nLh72rTtobotjsUGAAAAwAzjFvMn8Fw+IlZQH8MEayiaAQAAyAUUzQAO8zX+QmsHrHzZH10eb99aXSxui2U9AQAAAExPTyAs5672a32rqxKKZs7s1LYFF75fxON3LD4AAAAAuS0Uicqpy31jXpyWvMpMpHC+RMqWOBYfAAAAgNwXjsbk5IhxyegrzXib9+qPnb1UYoXzUhofAAAAnEHRDOAw38XdWvsta42ExBNvr6spSUNUAAAAAHJx5rThdWREPJZLls8bPBHk6r0snta3tP2DSx5wOEIAAAAAuezs1X4JRmJjXpzma3xV2xaq3SLiYlIxAAAAADPn3NU+CYSjWl/D/DGKZpr2ae0Qq8wAAADkDIpmACdFwyNmTnu+f5XWXltT7HBQAAAAAHLRkbYerb1sXoH4PYNfA/jP/lRcCSU1UW+RBOve53iMAAAAAHLX0XZ9TFI7yy8lee9NIhYJirf1DW17sG6Lk+EBAAAAMMCxS71au6rEL7MKvCN3DPWLt+2A3lVL0QwAAECuoGgGcJDn0rtiBbq0vlcit8Xv+z2uMZcABQAAAIDJOJxUNLO6sih+339mp7YtuPAeEY/fsdgAAAAAmLH6ZaKGiuExiaf9oLhCfdr2UO1mx2IDAAAAYOq4ZIxVZtreFlc0GG/HXG4JVd2Z8vgAAADgDIpmAAf5Lu7W2pf8C6VNyuPt1ZXF4nXzZwkAAABgemKxmBxpTSqaqRq8QM3Ve0U8rW9q24JLHnA0PgAAAABmX5zma9yjbQvPXSmx/OHzJQAAAAAwE45PtGimeZ/WDs9bIzF/cUpjAwAAgHO4Oh9wkO/iLq29R4ZXmVHW1jDYAgAAADB9rV0B6ewPa32r3ltpxn/up+KSWLw/6i2UYN37HI8RAAAAQO4aCEXk3FV9JZmVCSvNeJte1bYFa7c6FhsAAAAAMwTDUTl9pW9iRTNNe7V2qPaulMYGAAAAZ1E0AzjEns35ylGt7wfdK7X2ulqKZgAAAABM3+E2fZWZWfkeqS712/d9Z57XtgUX3CPiyXM0PgAAAAC57cTlPokM1+qL5RJZPq/Avu/qvyaey0e0/UN1W5wOEQAAAECOO3WlT8LRhIGJiNwyf2TRjGvg+ohrukI1m1MeHwAAAJzjcfC1kIPcbndKnteyrHHb2cjXvEdrhz2F8ubAsnjbY7nk1prSlH2mmSwX842xkW9zkGuzkG+zkG8g8x1JKppZXVkkLpfLLub3tr6lbQsuecDh6AAAAADkumPt+phkUXm+5PsGz394m/dpq1/GPPkSqlzneIwAAAAActvx9l6tXT87T4r8Iy+X9Da/njRGyZNQ5VpHYgQAAIAzKJrBtJSVlTnyOqWlpZL1WvdpzfMld0i4Z/hPcE1NqVTNm5OGwDJPTuQbE0a+zUGuzUK+zUK+gcwvmllZWWT/9J/7qbhi0Xh/1FsowfptjscHAAAAILcdS7o4raFicEyi+Bpf1baFqu8UcQ+ujAkAAAAAqSrmb6gYucrMUGF/olDlHYxRAAAAcgxTQgNOiIRFzv5c63o5cqvW3rCw3OGgAAAAAOSiYDgqJy/3aX2rqwYvUPOdeV7rDy24W8ST52h8AAAAAEwsmnnv4rRYTLxNe7RtwbotToYGAAAAwBDHLunjkpUJxfyJfE17tXao9q6UxgUAAADnUTQDOKH5LZGBLq3rHzqWae07F852OCgAAAAAuejk5V4JRWLxtss+EVQorr6r4m19S9s3sOTBNEQIAAAAIJd1D4SlsXNg1IvT3J1nxd3Trm0L1W51ND4AAAAAua8/GJHzHf1a34r5I1easbpbxd11QesL1mxOeXwAAABwlsfh10OO6ezsTMnzWpYlpaWl8XZXV5dEo1HJVnlHfiT5Ce3u0mXSdKlMu4ht8SxXyj7PTJdr+cb4yLc5yLVZyLdZMiHfZWXDx1IAdEfa9JnTFpbnS5HfI/7DPxVXbPhvNeotlGD9tjRECAAAAMCk2Zy9bpcsmTt4liR5lZlIUYVEyhY7Gh8AAACA3Hficq9Eh+cXE7dLZPm8ghH7eZv2ae2of5ZE5jY4ESIAAAAcRNEMpiUSiTjyOuoiTKdeKxW8F3Zp7aP567X2snkFUuBxZfV7nEnZnm9MDvk2B7k2C/k2C/kGMsvhth6tvapycEZn35nntf7QgrtFPHmOxgYAAAAg9x1r18cky+YWiNdt2fd9ja+OXGXGpaYWAwAAAICZc6xdL+ZfNKdA8rzuEft5m/WimVDNXSKuwfELAAAAcgdHeECKuXovi+fKUa3vp8E1WntdTYnDUQEAAADIVUda9QvUVlcViavvqnhb39T6A0sedDgyAAAAACZenNZQMVjIL5GAeFve0LYF67Y4GRoAAAAAY8clhSN3isXEl1w0U7sp1aEBAAAgDSiaAVLMd/EXWjvqK5J/vFKj9a2tKXY4KgAAAAC5qKM3JK03AiNWmvGf+5m4YtF4X8xbIMH6bWmIEAAAAIBpF6etfO/iNG/bAXGF++P9MXFJqIYL0gAAAACkfgXM0Ypm3NdOi9V3ResLMkYBAADISRTNACnmu7hLa3fM3SjdIf1Pj6IZAAAAADPhSJt+Eijfa8mi8nzxnXle6w8uuFvEk+dwdAAAAABy3dXeoFzqDo56cZq38VWtPzxvlcTyZzsaHwAAAIDcd2MgLE3X9QnGGua/twJmAm/SKjOR4iqJltanPD4AAAA4z5OG1wTMEQ2Lt0k/CXTQt15rL5ydJ2UFXocDAwAAAGBC0czKiiLxDHSIt+UNrT+w+EGHIwMAAABg4iozBV5L6mfn2/d9TXu0baHaLY7GBgAAAJjO7Xan5Hktyxq37bSTV7q1ttftkuUVReJ263H5ml/T2uHazeL2cDlltuUbqUW+zUK+zUGuzUK+B3GUB6SQp/2gWEF9IPaj/pVae21ticNRAQAAADClaGZVZaH4z/1MXLFovC/myZdg/bY0RAcAAAAg1x1r04tmbplfKG7LJa7+DvFcOaptC9ZtdTg6AAAAwGxlZWWOvE5paamk0/l3O7R2Q2WJzJtTru8UCYskTTjmv+U+8Tv0GeWSdOcbziLfZiHf5iDXZik1NN9mlgoBDvFd2KW1Q+UrZFebT+tbV1PscFQAAAAAclEkGpOjyUUzVUXiO7NT6wsuuFvEOzjTMwAAAADMpGPtI1e/VLxNe7X+mLdAwhVrHY0NAAAAgBkONXVp7TU1s0bu1HpAJGkiZFn4vhRHBgAAgHShaAZIIV/jbq19ad5m6Q5EtL7bqimaAQAAADB95zv6pS80vKKMcmtZULwtr2t9gSUPOhwZAAAAABPEYjE5eklfaaahotD+6Wt8VesPVd0p4tYnGQMAAACAmXCo+brWXlMzymzq5/RrumReg0jx/BRHBgAAgHTxpO2VgRxn9bSL5+pxre9Ntz5rWnWpXypK/A5HBgAAACAXHUlaZaayxCcVba+IKzZcSBPz5EuwfnsaogMAAACQ61q7AtLVHx5ZNBOLibdJL5oJ1m1xODoAAAAAnZ2dKXley7KktHS4MKWrq0uiUX2SL6d09AaltWtA61tQ4hrx3otOvSjehPZA1Z3Sn6LPJ9dkUr6ReuTbLOTbHOTaLJmQ77KyMkk3imaAFPE2/kJrR33F8kLXAvXPTbxvbQ2rzAAAAACYGYeTimZWVRaJ/+xOrS+44G4Rb77DkQEAAAAwwbF2fZWZ0nyPVJX6xd15Rty9l7RtobqtDkcHAAAAIBKJOPI66iJMp14r2ZGWG1o7z2NJ3Sy/Hk+oTzxtB7X9AtWb0hZztktnvuE88m0W8m0Ocm2WqKH5ttIdAJCrfBf1ZTyDtVvk7ZY+rY+iGQAAAAAz5XCrXjRzx9yweJtf1/oCSx5wOCoAAAAAphbNrJxfKC6XS7yN+iozkaJKicxa5HB0AAAAAExw7JI+LrllfqG4LZfW523dL65oMN6OudwSrr7DsRgBAADgPIpmgFSIhMTbpJ8Eap+zSTr6QlrfupoShwMDAAAAnPfDH/5QHnvsMft26tSpdIeTk3oCYTnf0a/1vS/yhrhiw7ODxDx5EqzfnoboAAAAAJjgaLteyN9QUWT/9DXtGbnKjEu/aA0AAAAAUlHM31BROGIfb/M+rR2ef6vEfEx8DAAAkMs86Q4A2c3tdqfkeS3LGred6Txtb4kV1E8O7bPWiUhXvD2nyCv15QX2LGumy/Z8Y3LItznItVnIt1nINyajsbFRvv/974vf75dAIJDucHL6JFAsoe2xXLLg8svaPsH6u0W8BY7HBgAAACD3RaIxOZE0o3NDZaFIJCDelje0/mDtFoejAwAAAGCCWCwmx0YU848smvElFc2EajelPDYAAACkF0UzmJaysjJHXqe0tFSyyv7X9HbFGtl/vUgrmtm4aI7Mnj3b+diyQNblG9NCvs1Brs1Cvs1CvjGWcDgsO3bskAULFkhFRYXs2aPPLoyZc7hNPwl0x5yw+Fv1C9MCSx5wOCoAAAAAprh4rV/6QtERF6d52/aLKzwQ74uJS0I1XJAGAAAAYOZd6g7Ktb7wqCtgDnH1d4r7yjGtL1iz2ZH4AAAAkD5MCQ2kwumX9PbSe+WN89e0rjsXUjADAACA3PaDH/xAmpub5YknnmBFohQ70qoXzXy04KC4YpF4O+bJk+CCu9MQGQAAAABTVr9MNL/YJ3MKfeJtfFXrD89bLbF8ZyZkAwAAAGD2uKTI75baWX6tz9vyurgkFm/HPPkSrrjNsRgBAACQHqw0A8y0rhaRy0e1rssV75OW6/rAbMPCcocDAwAAQKbr6uqSM2fO2LezZ8/at+7ubnvbtm3b5Mknn5zwc125ckV27twpBw4ckI6ODvF4PPZqL3fddZfcd9994vfrJwlm2rlz5+S5556Txx57TGpqalL6WqaLxWJyJGmlmbuC+oVpwfq7RbwFDkcGAAAAwBRHky5OU6vMKL4mfWwSqtviaFwAAAAAzHH8UtK4ZH6huFwurc/btFdrh6ruEHH7HIkPAAAA6UPRDKals7MzJc+rZqEuLS3VLh6MRqOSDXxH/kkGTwUNivpL5MWOeSJyPt5XmueROb5Qyj6/bJPN+cbkkW9zkGuzkG+zZEK+y8pyc1baT33qUzPyPPv375dnnnlG+vv7432BQCBeiPPyyy/LU089ZRfRpEIoFJIdO3bIggUL5EMf+lBKXgPDWroC0tkfjrfL5IZUdr6t7RNY8kAaIgMAAABgimPtPSOKZlx9V8VzRZ9kLFi71eHIAAAAAJji6CjjkmS+5n1aO1SzKeVxAQAAIP0omsG0RCIRR15HXYTp1GtNl+f8K1o7VLtF9jfrg7Lbaoolpt6Tw7Fli2zKN6aPfJuDXJuFfJuFfKfGnDlzpLq6Wt59991JPe78+fPy1a9+VYLBoOTl5cmjjz4qq1atstt79+61C2ba2trki1/8onzpS1+S/Pz8GY/9u9/9rv0a6vlVkRVSK3mVmUfzDoorNvw3GfPkSXDB3WmIDAAAAIAJQpGonLrSp/U1VBSJr2m31hf1Fkq44jaHowMAAABgglgsJsdHrIBZpLWtGy3i7rqo9QVrKZoBAAAwAUUzwEyKBMXbpM9IEKzfLgde69b61tUUOxwYAAAAssFHP/pRWbx4sX2bNWuWXL58WT7zmc9M6jm+8Y1v2AUybrdbPv/5z8uyZcvi21TxTGVlpXz729+2i1p+9KMfyWOPPTbiOb75zW/aq8VM1IMPPmg/r3Lq1Cn7eT/2sY9JXV3dpGLHzBTNfNj/lkhAH5OIt8D5wAAAAAAY4cyVfglFYlpfw/xC8b66R+sLVW8Ucfscjg4AAACACZqvB6Q7EBl3pRlv0ioz0bwyicxZ4Uh8AAAASC+KZoAZ5G17W6yQfsHapbmb5OK1Rq1vXU2Jw5EBAAAgG4xWwDIZZ86ckePHj9v37777bq1gZsjDDz8sr7zyirS0tMjOnTvlIx/5iHg8+tDwxRdflEAgoeriJjZu3GgXzagVh3bs2CH19fX2CjdwxuHW4THILOmWVQF9daLAkgfSEBUAAAAAUxxt18+L1JXlSbHfLd7GV7X+UN0WhyMDAAAAYOq4ZHaBR+YX60X73qa9WjtUc5eIy3IkPgAAAKQXRTPADPJe3K21Q3NXyf4OfQBW6LNk6TxmeQYAAMDMe/PNN+P3VdHMaCzLkm3btsmzzz4rvb29cvToUbn11lu1fb71rW9N6fUHBgbsFWyUj3/846Puo1a/UT73uc/Jhg0bpvQ6GBYIR+Xk5b54+4Pu/WLJ8ExqMbdfgvWj/y4AAAAAwEw41t47YjZn97VT4u67rPUHa7c6HBkAAAAAUxxPGpesmF8kLpdruCMWE1/SSjPBmk1OhQcAAIA0o2gGmEG+i7u0dqh+mxxs7tb6bq0qFo+VMCgDAAAAZsjJkyftn36/XxYtWjTmfg0NDdpjkotmpsrr9co999wz6ja1Ao4qqFm/fr2UlJTIvHnzZuQ1TXfqcq+Eo7F4+yHrDW17sH67iK8wDZEBAAAAMMXxS8kXpxWKt/F5rS9SXC3RWQscjgwAAACAKY5dGlnMn8jdcUqs/g6tL1RL0QwAAIApKJoBZojV3Sqea6e1vqAqmvmZXjSztrbY4cgAAABgiubmZvtnRUWFuN3uMferqqoa8ZiZ4PP55NOf/vSo23bs2GEXzTz66KOybNmyGXtN0x1u64nfL5Ue2ew+qm0PLHkgDVEBAAAAMMVAKCLnrg6vfqmsrCgS34E9Wl+odotI4izPAAAAADBDItGYnEgqmlmZVDTjTVplJlJcI9GSOkfiAwAAQPpRNAPMEO/F3Vo76p8l10pXyekr72j9a2tKHI4MAAAAJggGg9LdPViwXV5ePu6+RUVF9mo0gUBAOjr0WbUy0URjHK9QaLosyxq3nS5H2oZPAn3QvV88Eom3Y26/RBbfm9LPJVdlar4x88i1Wci3Wci3Wcg3kD4nLvdJZHjxS7FcIstnu8Xb8qa2X7Bui/PBAQAAADDChWv90h+Kan0rKoq0ti+paMZeZYbCfgAAAGNQNAPMEN/FXVo7VLdF3m3rk4RzReL3uKRhvj6TAQAAADATBgYG4vfz8vJuur/aRxXNJD4uUz3xxBMT2u973/ueOKW0tFQywbFLwzM6P2S9oW1zLb1XyubXpCGq3JMp+UbqkWuzkG+zkG+zkG/AOcfah1e/VBaV50tJx0FxRQLxvpi4JFSzKQ3RAQAAADDBsXZ9lZn5xT4pL/QOd0RC4mnRz6EEGaMAAAAYhaIZYCZEAuJtfk3rCtZvlwPNgzN9D1lVWSQ+D7McAgAAIDUrzQzxeG4+1BvaJ/FxqfTkk0/aN8ycy90D0tzZb98vlR7ZbB3Rd1j54fQEBgAAAMDYi9MaKorE2/i81heev0ZiebMcjgwAAACAueMSfUJjz+VDYoX0fUI1dzkSGwAAADIDRTPADPC27h8xuArWbZWDb7drfetqShyODAAAAKbw+Xzx++Fw+Kb7D+2T+LhM9bWvfS3dIWSkdxqvx+9/0L1fvK7I8Ea3X2TZfekJDAAAAIDRF6f5Tryq9YVqtzgcFQAAAACTV8BMLprxNu3T2uHyWyRWMMeR2AAAAJAZKJoBZoD34m6tHZq3Wno9ZXL80jmtf21NscORAQAAwBR5eXnx+wMDAzfdf2ifxMdlqvLy8gnt19nZmbIYLMuS0tLSeLurq0ui0aik0+unh4v0H7Te0LYFF2yT3r6wSF/qPpNclon5RmqQa7OQb7OQb7OkO99lZWWOvRaQSboHwtLYqY8/b5sVEM/V4yMmGQMAAACAVAhFonLqSt+IFTAT+Zr1oplQzSZHYgMAAEDmoGgGmAG+xl9o7VD9djnc1iORaCze57ZcsrpSH5QBAAAAM0WtGFNcXCzd3d3S0dEx7r49PT0SCAQmVZCSDSKRhJVWUkxdhOnk643mUEu3/bNUemSLdUTbFlj0QNrjyyWZkG84g1ybhXybhXybhXwDzjh2SV9lxut2yfL+t7W+qLdQwvNvczgyAAAAAKY4e7VfQpHh67OUFfMTVpoJ9Ymn/aC2PVhL0QwAAIBprHQHAGQ760aLeK6d1vqC9dvkYNPgBWxDGuYXSr7P7XB0AAAAMElNTY39s729fdyLBFtbW0c8BtlFFegfa++x73/QvV+8ruF8x9w+CS68J43RAQAAADDB0JhkyLK5BZLfvFfrC9XcJeL2OhwZAAAAAFMcTRqX1M7yS0ne8Dzi3ta3xBUNxdsxyyPhqjscjREAAADpx0ozmBa3OzVFIJZljdvOJL4mfZWZaF6ZxCrXysHdx7X+2+tKUvZ5Zbtsyjemj3ybg1ybhXybhXxnruXLl8vx48ftVWTOnTsnS5cuHXW/Y8eOaY9B9jnf0S99oah9/0HrjRFF/DEfq1wCAAAAY/nhD38ozz77rH3/6aeflmXLlqU7pKx0rL13xORhvqZXtb5Q7RaHowIAAABgkuPJ45IK/fyIt0kv7A/Pv5VzKAAAAAaiaAbTUlZW5sjrlJaWSsZq3ac1raUfkILSMjncps9k8L4VVY59Xtkuo/ONGUe+zUGuzUK+zUK+M8eGDRvsi7+UV155ZdSimWg0Krt377bvFxYWysqVKx2PE9M3NN4okR7ZbB3RtgUXP5imqAAAAIDM19jYKN///vfF7/fbEw5g5opmNhe3i9V3ResL1lE0AwAAAMC5ccmKikKt7Wt+TWuHajY7EhcAAAAyC1NCA9MRDoicG7zgMG7JvXKouUuC4cFZnxWXS+T2+tnOxwcAAACjLFmyRFasWBEvmjl16tSIfX784x9LS0uLff+BBx4Qj4e5FLLR4dbBopkPut8WnysS74+5fRJceE8aIwMAAAAyVzgclh07dsiCBQvsSQcwdVd7g3KpO6j1rQu/o7UjxTUSLV3gcGQAAAAATDEQisjZq31a38qEohlX/zXxXD2mbQ/WbnIsPgAAAGQOro4CpuPiPpFQ4owFLpEl75c337ym7baiokRK872OhwcAAIDscuLECWlvb4+3b9y4Eb+v+nft2qXtv3379hHP8clPflK+8IUvSDAYlKefflo+/OEP26vJqPa+ffvkpZdesverrKyURx55RHKJ2+1O2XNbljVu22lH2weLZh603tD6Q/XbxMpn9adcyzdSh1ybhXybhXybhXxjon7wgx9Ic3OzfPnLX5Z/+qd/Snc4OTWbc4HXkvkdr49cZUbNKgYAAAAAKXDqSp9EYsNtyyWyfN5w0Yw3aZWZmLdAwvNvdTJEAAAAZAiKZjAtnZ2dKXledVKztHT4Qq+uri6JRodXbskU+Ud+JHkJ7fD8NdIddMveU5e0/W6tKkzZZ5ULsiXfmBnk2xzk2izk2yyZkO+ysjLJRS+//LLs3p20kuF7Tp48ad9uVjSzcOFC+exnPyvPPPOM9Pf3y3e+850R+6iCmaeeekry8/Mllzj5e5H4N+C0GwMhOdfRLyXSK1usw9o2322PiS9H/z7SKZ35hrPItVnIt1nIt1nI98xR470zZ87Yt7Nnz9q37u5ue9u2bdvkySefnPBzXblyRXbu3CkHDhyQjo4Oe9XLiooKueuuu+S+++4Tv9+fwncicu7cOXnuuefksccek5qampS+lgmOtelFM2vmecTX+pbWF6rd6nBUAAAAAEwu5l8wO18KfMMTrHmb92nbQ1V3iLh9jsUHAACAzEHRDKYlEok48jrqIkynXmsyPBf0mb6DddskEArLO83DM4Irt1UXZWT8mSpT843UIN/mINdmId9mId+ZZ/369fKVr3xFnn/+efuCtGvXrsUvSNu4caPcf//9Kb8gDalzqKlLYjGRe623xedK+Ntz+0WW3Z/O0AAAAJBjPvWpT83I8+zfvz9e2D8kEAjEC3HUBAKqsF+NWVIhFArJjh07ZMGCBfKhD30oJa9hmmPvrX455P7i8+LqCMTbMZcloZq70hAZAAAAAFOLZlZWDK8yo/ia9KKZYM1mR+ICAABA5qFoBpgi60aTeDrPan3BBdvl1OVe6QvpM62vrS52ODoAAABkIzVL82Rmah7P3Llz5fHHH7dvyC3vNA2uYvmg+w19w5L3i+SVpCcoAAAA5Lw5c+ZIdXW1vPvuu5N63Pnz5+WrX/2qBINBycvLk0cffVRWrVplt/fu3WsXzLS1tckXv/hF+dKXvpSSFTG/+93v2q+hnl+tnorpicVicvSSfnHanTH99yI871aJ5bHqEwAAAADnivlXJBTNqOu63Dcate2h2k2OxQYAAIDMQtEMMEW+i7u1djRvtoTnrZYDb1/S+hfMzpPZhV6HowMAAADM09k5WEySCurCutLS4Qu+urq67FWW0uHNs1ekRHplq3VI6+9dcK8EU/gZmCST8o3UItdmId9mId9mSXe+y8rKJFd99KMflcWLF9u3WbNmyeXLl+Uzn/nMpJ7jG9/4hl0g43a75fOf/7wsW7Ysvk0Vz1RWVsq3v/1tu6jlRz/6kTz22GMjnuOb3/ymvVrMRD344IP28yqnTp2yn/djH/uY1NXVTSp2jK61KyBd/WGtb0HXm1o7VLfF4agAAAAAmKQnEJaL1wa0voaKovh9b9IqM9H82RIpX+5YfAAAAMgsFM0AM1Q0E6x/n4jLkgNNN7T+tTXM9AwAAAA4IRKJOPZa6iJMJ18vcUbnQ63d8gHrbfG5hl8/ZvlkoO5uiaUhJhOkK99wHrk2C/k2C/k2C/meOaMVsEzGmTNn5Pjx4/b9u+++WyuYGfLwww/LK6+8Ii0tLbJz5075yEc+Ih6PfvrqxRdflEAgMOHX3bhxo100o34PduzYIfX19fYKN5gZx9r1VWYW53VL/vVTWl+QohkAAAAAKXTiUp/EEtpuyyVL5xbE275mvWgmVHOXfV0XAAAAzETRDDAV4YB4kwdXddskGovJOy3dWv+6mmKHgwMAAACQq1q6AnK9PywPet/Q+oN1WyXmZ+wBAACAzPLmm8Orj6iimbFWCtq2bZs8++yz0tvbK0ePHpVbb71V2+db3/rWlF5/YGDAXsFG+fjHPz7qPmr1G+Vzn/ucbNiwYUqvY3rRzL8sPSXSNdyO+ookPE/PIQAAAADMpGPtPVp76dx88XveK4qJRUdc1xWs2eRkeAAAAMgwFM0AU+BtfVNc4eElPmPismdNO3e1X24M6DMYrqVoBgAAAMAMOdLWI8XSJ1utw1p/cMkDaYsJAAAAGMvJkyftn36/XxYtWjTmfg0NDdpjkotmpsrr9co999wz6ja1Ao4qqFm/fr2UlJTIvHnzZuQ1TXA06eK0rdYhrR2q3iji9jocFQAAAACTHL+kF/M3VBTF77s7TonVf03bHqrd7FhsAAAAyDwUzQBT4Lu4W2uH598msfzZcuBEu9ZfVeKXihK/w9EBAAAAyFWHW3vkA9bb4neF430xyyfBhR9Ia1wAAADAaJqbm+2fFRUV4na7x9yvqqpqxGNmgs/nk09/+tOjbtuxY4ddNPPoo4/KsmXLJvW8HR0dE9pvvPc8XWqFnvHaqRKJxuTE5eGL01wSlaV9B/R96rel9L2bJl25RnqQb7OQb7OQb3OQayA9K2A2zC+M3/c27dW2RUpqJVpS61hsAAAAyDwUzQBT4L24S2sH67fZPw82d2v9rDIDAAAAYKZXmvms+w2tL1S3RWJ+xh4AAADILMFgULq7B78zLy8vH3ffoqIiezWaQCAw4YKUdHriiScmtN/3vvc9cUppaakjr3P6Urf0BaPx9i2uJskL6DkrWP2QFJSVORKPiZzKNTID+TYL+TYL+TYHuQZm3vW+kLR0BbS+horhohlf8z5tW6hmk2OxAQAAIDMxnQEwSVZXo3iun9f6QvXbJBaLyYHkoplaLlwDAAAAMDMC4ai0XL4q77MO6f1LHkhbTAAAAMBYBgYG4vfz8vJuuv/QPomPQ+Z5t7lLaz9UcFzfYVa9yOxFzgYFAAAAwCjHL+mrzPg9LllUnj/YiITE2/qmtj1YS9EMAACA6VhpBpgk38XdWjuaP1vC81ZJ0/WAdPSGtG3rakocjg4AAAAwl9vtTtlzW5Y1btsJp9v75G7ZL35XON4Xs7wSWfLBlL53E2VCvuEMcm0W8m0W8m0W8p25K80M8XhufjpqaJ/Ex6XSk08+ad+m4mtf+5qY6lDzda19j++ISH9Cx+J7RFwux+MCAAAAYI6j7XrRzPJ5heJxD34X4Ln0rrhCfdr2UM1djsYHAACAzEPRDDBJvou7tHaw7n0iLksONN/Q+ssLvVI7y+9wdAAAAIC5ysrKHHut0tJScdrZo9flQfcbWp9ryftlVsUCx2MxTTryjfQg12Yh32Yh32Yh35nB5/PF74fDw4XfYxnaJ/Fxmaq8vHxC+3V2dqYsBlUclvi73tXVJdFoVFLtwIWO+H2/BGXZwBFte0/FnRJK4fs2UbpyjfQg32Yh32Yh3+bIhFw7+V05kAkrzTRUFMbve5v3advCc1ZILH9iYzgAAADkLopmgMkID4i35XWtK1i/3f55sKlb619XUywuZlMDAAAAMEOOn2+Sf2Ud0jsbHk1XOAAAAMC48vLy4vcHBgZuuv/QPomPy3aRSMSx11IXYqb69UKRqJy8PHxx2gbrhHhiwysDxVyWBKrulJiD79tETuQamYN8m4V8m4V8m4NcAzPvWHuP1l4xf7hoxte0V9sWrNnkWFwAAADIXIPrEgKYEG/LG+IKD2gngEJ1W+37B5v1opm1NcWOxwcAAAAgdxU3viR+1/AM3RGXR2T5A2mNCQAAABiLWjGmuHjwe/KOjuHVSUbT09MjgUBgUqu4wHlnrvRLKBKLt7dah7Xt4fm3SsxfkobIAAAAAJjiSk9QrvSEtL6VFUWDd4K94rn0jrYtVEvRDAAAAFhpBpgU38XdI08A5c2S9hsBab0xeEJvyLoaTgwBAAAATurs7EzZc1uWJaWlpfF2V1eXPUOgU672BGXTwKsi7uG+7srNEhuIiQyk7n2bKt35hnPItVnIt1nIt1nSne+ysjLHXivb1NTUyPHjx6W9vd2eXdvtTjigTdDa2qo9BpnpaNJszu/3HhEZrqGRUO3gJGMAAAAAkCrH2odXv1QKfZbUzR5csdTb+qa4osOTj8Usr4Qq73A8RgAAAGQeimaAaRTNBOu3j7rKTEmeWxbNyXc0NgAAAMB06iI8p6iLMJ18vaMXW+QB65DW57rlIQk7GIPJnM430odcm4V8m4V8m4V8Z47ly5fbRTNqFZlz587J0qVLR93v2LFj2mOQ+RenzZVOWRy7qG0P1m1JQ1QAAAAATHIsqZj/lvmFYrlc9n1f82vatnDFbSK+QkfjAwAAQGay0h0AkC2s6xfE3XVB6wvWb7N/Hkgqmrmtujg+IAMAAACA6YqcfFH8rlC8HRKPhBffm9aYAAAAgJvZsGFD/P4rr7wyZpHT7t2DE1YVFhbKypUrHYsPU784bat1WNsW9RVJeP6taYgKAAAAgEmOJ60001BRFL/vbdqrbQvWbHIsLgAAAGQ2VpoBprjKTLRgjkTmDp68O9h8Q9u2rqbE0dgAAAAA5LbaSz/X2ueL18tsP+MOAAAAZLYlS5bIihUr7NVmVNHM9u3bZdmyZdo+P/7xj6WlpcW+/8ADD4jHkzunrtxud8qe27KscdszrT8YkXMd/fH2VrdeNBOu3Sxurz+lMZjK6Vwjvci3Wci3Wci3Ocg1JuuHP/yhPPvss/b9p59+esSYCcNisZgcvZRUNDN/cCUZV99V8XSc0LaFaimaAQAAwKDcOfOAnDrhk4lfIvgb9aKZUP02cXu8cq03KBeuDWjb1teXpvRkWK7JxHwjdci3Oci1Wci3Wcg34KzowA25NfC2SMJiljfq75PZ6QwKAAAARjhx4oS0t7fH2zduDE8gpfp37dql7a+KYpJ98pOflC984QsSDAbtC8A+/OEP26vJqPa+ffvkpZdesverrKyURx55RHJJWVmZY69VWlqa0uc/c+GaRGOD910SHbHSjO+W+8Tn4Ps1WapzjcxCvs1Cvs1Cvs1BrjGexsZG+f73vy9+v18CgUC6w8l4rV0B6eoPa30NFYNFM97m17T+qLdQwvNYDRMAAACDKJpBVpzwSfuXCKF+kZY3tC7/yofEX1Ymrze3af0FPrdsXF4jHjcXj2ZtvuEo8m0Ocm0W8m0W8g2kVteRn8o8VyjeDsbcUrrmwbTGBAAAADO8/PLLsnu3PqHUkJMnT9q3mxXNLFy4UD772c/KM888I/39/fKd73xnxD6qYOapp56S/Pz8GYweM+ndpuvx+ytcjTLHNVxAZVt8j/NBAQAAAFksHA7Ljh07ZMGCBVJRUSF79uxJd0gZ73jSKjOl+R6pKh1c8dLXvE/bFq7aIOL2OhofAAAAMhdX9QMTceFVkXDCajIuK34C6I3z17Rdb68vo2AGAAAAwIzxnn5ea++31kjZ7DlpiwcAAACYrPXr18tXvvIVeeihh+wCGTWLcmFhoSxevFg+8YlPyB//8R/bF4khcx1q7orfT15lRsoWisxe6HxQAAAAQBb7wQ9+IM3NzfLEE0+IZXGd0UQcbdeLZhrmF4rL5Rp1pZlg7SZHYwMAAEBmY6UZYCJO/0xv12wQyR9cZefNpKKZOxfOdjIyAAAAADnMFeyR6mv6iZ5Ts++WZWmLCAAAACZ58skn7dtMmDt3rjz++OP2zRSdnZ0pe251UV3iyq9dXV0SjUZT9noHG4fPhWy1DmnbBmo2S38K36vpnM410ot8m4V8m4V8myMTcl1WNng9S65Rn+WZM2fs29mzZ+1bd3e3vW3btm2TGrtcuXJFdu7cKQcOHJCOjg7xeDx2If9dd90l9913n13on0rnzp2T5557Th577DGpqalJ6WvlkmPtPVq7oaLQ/ml1NYr7RpO2LVSz2dHYAAAAkNkomkFGnvDJhC8R4mIxKTn5grgTuvprtspAZ6d0D4TleNsNbfcVc3wpPRGWizIq30g58m0Ocm0W8m2WTMh3rp7wAZJ5L/xcvLFQvB2KuSWw8ANpjQkAAADAxEQiEcdeS43LU/V6NwbC0tQ5YN/Pk4DcYZ3UtgdrNzv6Xk2Xylwj85Bvs5Bvs5Bvc5DrmfOpT31qRp5n//798swzz0h/f3+8LxAIxAtxXn75ZXnqqadSthpmKBSSHTt2yIIFC+RDH/pQSl4jF0VjMTlxSV9pZsV7RTPe5n36vvnlEiln+jEAAAAMo2gG0+LUwD6dXyJYnefF3dWo9Q3UbbXjOdB4XWIJ/T63S26Zl88XHtPEl0ZmId/mINdmId9mId/IFG53Yqn7zBeLjddOFc/pnVp7b3SV3LKgNqXvFenLN5xHrs1Cvs1Cvs1CvoHUOtY+fGHandYJ8bvC8XbM5ZZQ9V1pigwAAACmmjNnjlRXV8u77747qcedP39evvrVr0owGJS8vDx59NFHZdWqVXZ77969dsFMW1ubfPGLX5QvfelLkp+fP+Oxf/e737VfQz0/49eJa7w2IL1BfRK/lRVF9k9f016tP1izScTlcjQ+AAAAZDaKZoCb8DXu0trRgrkSmdNg3z/QPLjM65BVlUXi9zCgBQAAANLByRWIEldbSplAj0Qad2tdP41tlP9yS7X4PRTNOMmRfCMjkGuzkG+zkG+zkG9gZh1r74nf32od0raF598qMX9xGqICAACAaT760Y/K4sWL7dusWbPk8uXL8pnPfGZSz/GNb3zDLpBRE1N9/vOfl2XLhlcjUcUzlZWV8u1vf9suavnRj34kjz322Ijn+OY3v2mvFjNRDz74oP28yqlTp+zn/djHPiZ1dXWTit10x5JWmZlT6JW5RT6RWFS8za9r20K1mxyODgAAAJmOohngJnwX9YvUgvXb4rMRHEwqmllXU+JobAAAAABy2KkXxB0JxJuhmFsa599DwQwAAACAtK00s9U6rG0L1m1NQ0QAAAAw0WgFLJNx5swZOX78uH3/7rvv1gpmhjz88MPyyiuvSEtLi+zcuVM+8pGPiMejX1734osvSiAw/N39zWzcuNEumolEIrJjxw6pr6+3V7jB1Iv5lYaKQvun++oJsQauadtCNZsdjQ0AAACZj6IZYDyhfvG2vDGyaEZE+oOREbMYrK1lNjUAAAAAM+Toc1pzX3SlLK2vTVs4AAAAAMy+OG2+XJPlVrO2LVS7JU1RAQAAAJPz5ptvxu+ropnRWJYl27Ztk2effVZ6e3vl6NGjcuutt2r7fOtb35rS6w8MDNgr2Cgf//jHR91HrX6jfO5zn5MNGzZM6XVMKOZXGiqK7J++5n1af6S0TqIl1Y7GBgAAgMxH0QwwDm/L6+KKBOPtmMsdPwF0uK1HItFYfJvbcsmaysEBGQAAAADndXZ2puy51Ymy0tLSeLurq0ui0WjKXk+CvTLr9IsyuMbloB9HN8racm9K3yfSlG+kDbk2C/k2C/k2S7rzXVZW5thrIbu43e6U/t6P154pV3qCcrknZN/f6tZXmYn6iiVWtVbcFqthppJTuUZmIN9mId9mId/mINeZ6+TJk/ZPv98vixYtGnO/hoYG7THJRTNT5fV65Z577hl1m1oBRxXUrF+/XkpKSmTevHkz8pq5IhyNycnLvaOuNONt2qv1B2s2ORobAAAAsgNFM8A4fBd3a+1w5TqJ+Uvs+webu7VtK+YXSL6PE0MAAABAukQiEcdeS12EmcrX8519UVyRQLwdirnlZ5H18on5BY6+TziTb2QOcm0W8m0W8m0W8o1M4WRBVWLh2Eza33Ypfn+rpRfNWIu3S1n53JS8LpzPNTIT+TYL+TYL+TYHuc4czc2DqyZWVFSMW+BeVVU14jEzwefzyac//elRt+3YscMumnn00Udl2bJlM/aaueLc1T4JhIcnNlYa5heKRILibX1L6w/VbnY4OgAAAGQDimaAscRi4ru4S+sK1m2L3z/QfEPbtrZmsJgGAAAAAKbLf2an1t4XXSlW/iypLvWnLSYAAAAA5jnUfN3+6ZKobEkqmpHFo8+SDQAAAGSaYDAo3d2Dk+OWl5ePu29RUZG9Gk0gEJCOjg7JBhONM1WrYaZ6haUTl/u1dlWpX8qL88TT8qa4wvq2aN3mlK76CVbUMg35Ngv5Nge5Ngv5HkTRDDAG9/Xz4r7RpPUFF2wf/BmOypG2Hm3buppiR+MDAAAAkKOCvSMK+H8SvVNWVRWJy+VKW1gAAAAAzPNuc5f9s8HVKOWuwYsM4yiaAQAAQJYYGBiI38/Ly7vp/mofVTST+LhM9sQTT0xov+9973uSjSssnenUV/xZWzd7cGXPd97Wd6xYI7OqFs/oa+PmWFHLLOTbLOTbHOTaLKWG5puiGWAM3qSL1CKF8yVSfot9/9ilXm3ZT3XZ2q3VFM0AAAAAmD7fxVfEFQnE2+GYJT+LrJdfqSxKa1wAAAAAJqezszNlz61mA0w8udnV1SXRaHRGXyMWi8m7jYPvYat1SNsWKV0gN6RUvckZfU2kJ9fIHOTbLOTbLOTbHJmQa7uYACNWmhni8dz8crmhfRIfl0pPPvmkfcP4K2AOWVPz3t/Yud36jou2ORgVAAAAsglFM8AYfBf1gVWo7n0i783qfLD5hrZt6dwCKcnjzwkAAADA9PnP7NTa+6Ir5boUy2qKZgAAAICsEolEHHstdSHmTL9e8/UB6RoI2/e3Woe1bcG6LY6+P6Q218hc5Nss5Nss5Nsc5Doz+Hy++P1wePAYdzxD+yQ+LpN97Wtfk1w1EIrIyXZ91cvVqmgm0C3Ssl/fedF2Z4MDAABA1uAqf2A0oT7xtrypdQXrhwdWB5v0wdjaGlaZAQAAADADQn3iS1r18ifRjfbqlg0VhWkLCwAAAIB5jrX32j/zZUDWWye1baHaLWmKCgAAAJi8vLy8+P2BgYGb7j+0T+LjMll5eXlaV8NM5QpLR1q7JRSJaX21hTHpPvozKY4OF0DFLK9cL1nBapiGrKgF55Bvs5Bvc5Brs2RCvssyYDVMimaAUfiaXxNXdHiJ1ZjlkVDtZvt+OBqTd1spmgEAAAAw83wXXhFXePiEXThmyc8it8vC8nwp8jOEBwAAAOCcY+099s87rRPidyVcjOZyS6hmYxojAwAAACZHrRhTXFws3d3d0tHRMe6+PT09EggEJlWMki2cWvVoJldYUkUziepn50m+xyWei3u0/nDFOolYfvUmZ+R1MXGsqGUW8m0W8m0Ocm2WqKH5ttIdAJCJvBd3a+1wxe0S8w8Wxpy+3Ce9Qb3Cbm1NiaPxAQAAAMhN/jM7tfa+6ErplBJZXVWUtpgAAAAAmL3SzFbrsNYfrlgrMR+TiQEAACC71NTU2D/b29vHvUiwtbV1xGOQ/mL+IQ0VhfZPb/M+rT9Ye5ejcQEAACC7UDQDJIvFxHdxl9YVrN8Wv3+g+caIGQzKC72OhQcAAAAgR4X6xHfxFa3r+eid9s/VlRTNAAAAAHBOJBqTE5eGimYOaduCdVvSFBUAAAAwdcuXL7d/qlVkzp07N+Z+x44dG/EYpM/R94r5h6ysKBJX31XxdJzU+kM1mx2ODAAAANmEohkgibvzrLi7W8YsmjnYrC/7ua6G2dQAAAAATJ8q3neFB+LtcMySn0bW2/dXUTQDAAAAwEEXr/VLXygqFdIhyyz9nEmodmva4gIAAACmasOGDfH7r7yiT2A1JBqNyu7du+37hYWFsnLlSsfiw0h9wYhcuNav9a2YXzhilZmot0jC89c4HB0AAACyiSfdAQCZxntxcPA7JFJYIZHywZkjorHYiKKZtTUljsYHAAAAYHRutztlz21Z1rjtmZB39gWt/Vq0QTqlRAp8liyZVyRuyzXjr4n05RuZgVybhXybhXybhXwDM+/Ye7M5b3Uf1vqj/hIJz1udpqgAAACAqVuyZImsWLFCjh8/bhfNbN++XZYtW6bt8+Mf/1haWgaLxh944AHxeHLr0rpUnUdJ1bj89NVeicaG226XyIrKYvHvek3bL1xzp7i9/hl5Tdwc38OYhXybhXybg1ybhXwPyq0je2CGZndOFKp/n4hr8OK0c1f7pWsgrG1npRkAAAAgM5SVlTn2WqWlpTP7hME+kQv6zHbPR++0f95WWyZzymfP7OshvflGxiLXZiHfZiHfZiHfyBTZXNh//HKf/XOrpRfNhGu3iNvrm9HXwvg4qW0W8m0W8m0W8m0Ocp06J06ckPb29nj7xo0b8fuqf9cu/XofVRST7JOf/KR84QtfkGAwKE8//bR8+MMftleTUe19+/bJSy+9ZO9XWVkpjzzyiOQap86jzNS4/PyRTq29rKJEquaWi7S8rvX7lt8rPgfPEUHH9zBmId9mId/mINdmKTU03xTNAImCveJt3a931Q8PopNXmaks8UlFCTMVAAAAAJim0z8TCQ1elKaEY5b8NHKHff+22llpDAwAAACAiYX9J64MiEuisiWpaMa34j4uRkszU09qm4p8m4V8m4V8m4Ncz5yXX35Zdu/ePeq2kydP2rebFc0sXLhQPvt+TwuEAACxmUlEQVTZz8ozzzwj/f398p3vfGfEPqpg5qmnnpL8/PwZjB5Tcai5S2uvqS4V6Twv0tWo77hwm7OBAQAAIOtQNAMk8LW8Jq5oMN6OWR4J1W6Ktw80D89SoaytKXE0PgAAAAA56tgPtebr0RVyTQbHG2vruCANAAAAgHOC4agcb70hK10XZLarR9+46O50hQUAAADMiPXr18tXvvIVef755+XAgQNy7do18Xg8UlFRIRs3bpT7779f/H4m0M0Eh5qva+01taUi517WdyqcJzJvhbOBAQAAIOtQNAMk8F7Ql2oNVd4uMV+xfT8Wi41YaWZdzeA2AAAAAOnX2dmZsue2LEubEbCrq0ui0ejMPHmoX2adfEFcCV0/iW6M319Yktr3BofzjYxCrs1Cvs1Cvs2S7nw7uZoI4IST7d0SjETlfW59lRmZvVikrD5dYQEAAMBwTz75pH2bCXPnzpXHH3/cvpkkVecaUjEuvzEQlgsdfVrfghJLggdeEl9CX6DmLum7rhfXILe/h4GzyLdZyLc5yLVZMiHfZRlwHoWiGWBILCa+Rn0Z11D98FKtzdcDcrU3pG1fS9EMAAAAkDEikYhjr6W+QJip1/Ode1lc4f54Oxyz5KeRO+z7VSV+mZXndvS9IbX5RmYj12Yh32Yh32Yh38gU2VrY/9qpdvvnVksvmhmo2Sz9FPQbeVIbziHfZiHfZiHf5siEXGfCBWnITE6NlWdiXH6k9YbW9rpdsqjMK56mfVp/sHoT3wGkGd/DmIV8m4V8m4NcmyVqaL4pmgHe4752WtzdrVpfsH5b/P6BZn0wVl7glbqyPMfiAwAAAJCb/Gee19qvR1fINSmx76+qKkpTVAAAAABMLew/0totBTIgt1sntf5g7WYjT6ZmGlNPapuKfJuFfJuFfJuDXANTc7y9V2svm1sgeZ0nxRrQC/lDtZscjgwAAADZiKIZTIvb7U7ZzBvjtVPB37RHa0eLKkXmrhC3y2W332np0bavqy0Rj4c/oWzNN9KHfJuDXJuFfJuFfAMzKNQvvguvaF3PRzfG76+upGgGAAAAgLOOtffIndZx8bmGL+6MWR4JVd+Z1rgAAAAAmONou36dVkNFofiaXtT6IqULJFpc5XBkAAAAyEZc8Y+sWNI1cenalGl5VWtay++Tstmz4+13WvXB2JblFSxpm835RsYg3+Yg12Yh32Yh38DU+S7uFle4P96OxFzy08j6eHtVZWGaIgMAAABgov5gRM519Msn3Ie0/nDFWon5itMWFwAAAACzHEtaaaahoki85/ZpfUFWmQEAAMAEMSU0oAS6RS6+pvctuTd+t/V6vzRdG76QTdmwcLigBgAAAACmwn/2ea39erRBOmSwEM3rdsnyeRTNAAAAAHDOyct9Eo2JbLUOa/3B2i1piwkAAACAWTp6Q3KpO6j1Nczxirf1La0vVLPZ4cgAAACQrVhpBlDO7RaJhobblldk0bZ4860L17TdS/I8snw+M6oBAAAAmIbwgPguvKJ1PR+9M35/+bwC8XmY6wIAAACAc46290ildMgSq1XrD9VtTVtMAAAAAGaG2+1OyfNaljVue7JOXunS2vleS5ZHT4krPBDvi4lLovWbU/ae4Fy+kdnIt1nItznItVnI9yCKZjAtnZ2dKXle9QdZWjo4u7LS1dUl0WhUUqXg6I/Fn9AOVd0hPX1hkb7B9/eLE23a/rfVFEtX1/WUxWMap/ON9CLf5iDXZiHfZsmEfJeVlTn6ekAq+C7uFleoL96OiiUvRO6It1dVFqUpMgAAAACmOtbeK1vc+iozUX+phOeuSltMAAAAALLr/FriecSpOHf9itZeXT1LZl19WetzVa6RWZULp/U6yIx8I7uQb7OQb3OQa7OUGppvimYwLZFIxJHXURdhpuy1YjHxJM3uHKx7n/Z6Bxr1GQzWVhc79t5NlNJ8I+OQb3OQa7OQb7OQb2Bq/Gee19r7ZYV0yPCXExTNAAAAAHDasfYe+Y/WIa0vVLtZxGL2ZgAAAADOONSsX6e1uqZU5NxufadF250NCgAAAFnNzPV1gATua6fE3dOu9QUXDA+srvWG5Py14eU9lbU1xY7FBwAAACAHhQfEd+HnWtc/hzZo7dUUzQAAAABw0I2BsLRc75ct1hGtP1i7JW0xAQAAADBLLBaTQ83Xtb51890iLW/rOy7c5mxgAAAAyGqsNAPj+S7u0tqR4iqJlC2Jt99p6da253stuWVegWPxAQAAAMg9vou7xRXqi7ejYskLkeGimbJ8j1SV+tMUHQAAAAATHWvvlZWuC1Lm6tH6QxTNAAAAADmhs7MzJc9rWZaUlpbG211dXRKNRqf0XO03AnK1J6j1rejdLxKLxNsxt0+ul6xQb2gaUSMT8o3MR77NQr7NQa7Nkgn5Lisrk3SjaAbG817Ul+8M1m0Tcbni7YPNetHMmqoi8bhZpAkAAADA1PnO7NTa5wtWy9WB4S8pVlUViSthXAIAAAAg+7jd7pSe6ByvPRUnLvfJVuuQ1hcpWySusjpJ3TtBOnKNzEW+zUK+zUK+zUGukckikeHCk1RSF2FO9bUOt9zQ2sV+t1Rce1PrC1WslYjlU29oWnEi/flG9iHfZiHf5iDXZokamm+KZmA0V7BbvG368p2hBdu19oFmfTC2tqbEkdgAAAAA5KjwgPgu/FzreiG2UWuvrixyOCgAAAAA2Tx7XuJMgVN16upZ+XX3Ya3PvfTejJgFEDOba2QP8m0W8m0W8m0Ocg1MzvFLvVp7RUWh+Jr3an2h2s0ORwUAAIBsx3QGMJq3aZ+4ouF4O2b5JFh9V7zdEwjLqct92mPW1RQ7GiMAAACA3OJr/IVYoeGTPjFxybe6btP2WUXRDAAAAACHnWlql3WuU3rn4nvSFQ4AAAAAAx1t79HaG2YHxHPttNYXqtnkcFQAAADIdqw0A6P5Lu7S2qHqO0R8hfH2Oy09EkvY7nW7ZCUXrwEAAAAZye12p+y5Lcsatz0Z/rMvaO2uObdLe/PwbIMutdJMdUlK3w+cyzcyG7k2C/k2C/k2C/kGpu/yjQFZ0HtQfL5IvC9mecW1YEta4wIAAABgjlgsJsfb9ZVmtniOau2or0jC81Y7HBkAAACyHUUzMFcsJt6Lv9C6gnXbtPbB5hsjZnv2ezjhCgAAAGSisrIyx16rtHS4yGVSQv0i51/Wuo7O/oBI83B72fxiqa2YO80IkRH5RtYh12Yh32Yh32Yh38gUnZ2dKXtuVRyW+Lve1dUl0Wh0ys+39/Q12Wod1vrCleukpy8k0pe69wHnc43MRr7NQr7NQr7NkQm5dvK7cmAmNV8PSHdguJBfWd53UGuHqjeKWFzyCAAAgMnhCBLGcnecFHdvu9YXqk8umunW2mtrih2JDQAAAECOOvOySLAnocMlPw7fISKBeM9ttbPSEhoAAACAmRWJ6Bd7pZK6EHM6r3ek9YZ83Dqk9QVrtzj6HuBMrpFdyLdZyLdZyLc5yDUwcUfbE8+fiMzOd0vJpde1vlDNJoejAgAAQC5gyQwYy3dxt9aOFNdIpGxxvD0QisjRpCU/11E0AwAAAGA6jv1Qb9dvll+06kPztXUUzQAAAABw1uWW87LYatP6QrVb0hYPAAAAAPMcT7pO6+65N8TdkzxOoWgGAAAAk8dKMzCW7+IurR1Uq8y4XPH24bYeiURj8bbbJbK6iqIZAAAAIFN1dnam7Lkty5LS0tJ4u6ury54hcFLCAzLr5E4ZHnWIXKq6R1pO9mu7LZ5lpfS9wKF8IyuQa7OQb7OQb7OkO99lZWWOvRaQCrFYTMqv6LM3B7wlEp67Mm0xAQAAAJh5brc7ZePy8doTdexSn9a+N++E1o4WzhOZs1zcCdd3wXkzlW9kB/JtFvJtDnJtFvI9iKIZGMkV6BZP29taX7B+u9Y+0NSttZfPL5RCX2oGjwAAAACmLxKJOPZa6iLMyb6e7/wucQV74u2YuORN/12q3CfeV+C1pG6W39H3gtTkG9mJXJuFfJuFfJuFfAOT09IVkPWRd0QSToH0V20SsTgnAgAAAOQSpyZ9SJzYYqLUxMYnL+srzayLHtHa1uK7pWz27GnHh/TnG9mLfJuFfJuDXJul1NB8m1kqBON5m14VV2z4pGnM8kmoZqO2z8FmvWhmXQ2rzAAAAACYOt+ZnVo7XHWHvH0tT+tbWVkkbosZ0gAAAAA453jbDdli6RejuRe9L23xAAAAADDP2Ss90hccvpbLkqjMufqmvtPCbc4HBgAAgJxA0QyM5Lu4W2uHqjeIeAuG25GoHG7Ti2bW1pQ4Fh8AAACAHBMOiO/8y1pXYMkDcrhteOUZZVVlkcOBAQAAADDd9fMHZJZLn9E5VLc1bfEAAAAAMM+7Tde19rbiNrEGOvWdFlE0AwAAgKnxTPFxQPaKxcSbVDQTrN+utY+190ogHIu31TzPt1Wz0gwAAACAqfE17RErNFwgExOX9C+8T4690qjtR9EMAAAAAKeVtr+mta/660SKq9IWDwAAAIDU6OxMKkKZIZZlSWlpabzd1dUl0Wh0Us+x/9xlrf1A4QmRhDqayKxFciNaqN7E9ANG2vON7EG+zUK+zUGuzZIJ+S4rK5N0o2gGxnFfPS7uPn2gFarXZyI42KyvMrNkboGU5vPnAgAAAGBqfGd2au1w1Xo5M1As/SH9iwiKZgAAAAA4KRKNybLe/YOzh73nesUmmZXOoAAAAACkRCQSceR11EWYk32tI636tVobou9q7WDtJsfiR+rzjexFvs1Cvs1Brs0SNTTfVroDAJzmS1plJlJSK5FZC7W+A803tPbaGlaZAQAAADBFkYD4zr+kdQUWPyCHW4dXnlGqS/1SXuh1ODgAAAAAJmu8dFVuldNaX97S7WmLBwAAAIB5QpGonLrSF2/7JSi1PUf0fWo2pSEyAAAA5AqKZmAc38VdWjtYv13E5dJmVXu3RZ+9YB1FMwAAAACmyNf4qljB4QKZmLgkuPh+OdymF82wygwAAAAAp3Wd3CNe1/CsgiHxSN4iLkYDAAAA4JyzV/slFInF2+us0+KODmjnVULVG9MUHQAAAHIBRTMwiitwQzztB7W+YP02rX36Sp/0BqNa320UzQAAAACYIt+Z57V2uPJ2iRbNl6MUzQAAAABIs7zmV7X2GX+DiK8wbfEAAAAAMM/Rdv18yf35J7R2eN4qieWVOhwVAAAAcokn3QEATvI2vSqu2PCMaTG3b8RMBAeab2jturI8mVPocyxGAAAAADkkEhDf+Ze0rsCSB6R7ICznOvq1/tVVFM0AAAAAucTtdqfsuS3LGrc9UQtu7NfaV+feJRUpjBvpyzWyA/k2C/k2C/k2B7kGJu94e6/W3uo+KjJ8eZeEajY7HxQAAAByCkUzMIrvwi6tHaq+U8Sbr/UdbO7W2utYZQYAAADAFHkb94oV1GdICy6+X44mnQDyul2ybG6Bw9EBAAAASKWysjLHXqu0dPKzLgevXpCyaIvWV7z6AUfjhjO5RvYi32Yh32Yh3+Yg18DNHUs4Z1IsfbIgeErbHqrdlIaoAAAAkEuYzgDmiEXF1/gLrStYv03fJRaTA0lFM2spmgEAAAAwRf4zz2vtUOXtEi2qkCNteiHN8nkF4vMwRAcAAADgnMvv7NTa12JFsnA1F6MBAAAAcM5AKCJnr/bF23dax8WSaLwdc/vscysAAADAdHBFDozhvnpcrL4rWl+wfrvWPtfRL139Ya1vXU2JI/EBAAAAyDGRgPjOv6R1BZY8YP9MLppZXUmxPgAAAABnRU6/rLXf8a6V0gJ/2uIBAAAAYJ5TV/okEhtub7GOaNvtghlPnvOBAQAAIKd40h0A4BTfxV1aO1JaJ9FZC7W+g0mrzFQU+6SylBNEAAAAACbP27RPrKA+xggufsBe4fJwUtHMqqoih6MDAAAAkGqdnZ0pe27LsqS0tDTe7urqkmh0eDbmm4pGZO6V17Su5rINKY0Zaco1sgr5Ngv5Ngv5Nkcm5LqsrMzR10P2cLvdKfu9H689nuOX+rX2dt8xSVhoRiK1W1IWN5zPN7IP+TYL+TYHuTYL+R5E0QyM4bu4e9xVZpQDSUUza2uZ7RkAAADA1PhP/2TEbGjRogpp7hwYscLlqopCh6MDAAAAkGqRSMSx11IXYk7m9Tzt70hBVC/mD9ducTRmOJNrZDfybRbybRbybQ5yjUziVEFVYuHYzZy5djF+f550yoJok7Y9f+UDkk8hWEabTL6R/ci3Wci3Oci1WUoNzbeZpUIwjmvgunjaD2p9wfptWlvN9nyw+YbWt66mxJH4AAAAAOSYSEB851/SugJLHrB/HklaZWZ2gUeqWOESAAAAgINcF36htU9Fq6W+fmHa4gEAAABgpkPN1+P3N1lH9Y3+UpGq25wPCgAAADmHohkYwdv0qrhiw2t3xtx+CVVv1PZp6QrIlZ6Q1re2hpVmAAAAAEyet2mfWEF9Jcvg4vvtn4eTimZWVRaJy+VyND4AAAAAZoue14tm9kZXy/J5BWmLBwAAAIB5ugdCcu5qb7y9xX1E32HhVhHL7XxgAAAAyDmedAcAOMF3cbfWDtVsFPHkaX0HmrpHzPZcX6bvAwAAACBzud2pO3FiWda47WR5Z1/Q2uHK28VVWiPuUVaaWVNdktLYkfp8I3uRa7OQb7OQb7OQb2ByXMFuKe04pPWdKV4vj3gZlwAAAAC5rLOzMyXPq8bhpaWl8XZXV5dEo8OTG49lf2OXxGJDrZhstvSimb6KOySQopjhfL6Rnci3Wci3Oci1WTIh32VlZZJuFM0g98WiI4pmgnXbRux2sPmG1l5bU8JszwAAAEAWcXKQnfiFwqha39SanjUfteMbCEXk1OU+bdumZZUZ8QUBppFv5AxybRbybRbybRbyDYzP2/y6WBKJt4MxtwSrNqQ1JgAAAACpF4kMjwNSSV2EOZHXOtwyfK3WIlebVLquadsD1Xc5FjNSn2/kBvJtFvJtDnJtlqih+Wa6NeQ895WjYvV3aH3B+pFFMwea9ZVm1tYUpzw2AAAAADmo/7pIV6Pet/B99o+jrV0SjsanTRNVp7+mdpbTEQIAAAAwmLfpVa29P7pcllTNSVs8AAAAAMx0rL03fn+TdVTbFimcL5FZi9IQFQAAAHIRK81gWtxud8qWghqvPRl5jb/Q2pFZC8VVvlgSI790IyAtXQFtv/X1s1L2/pC6fCPzkW9zkGuzkG+zkG/gJi7pJ3bE8orMWWbfPdh4Xdu0bF6xFPkZmgMAAABwjvviHq29J7pGNlcUpS0eAAAAAGY6fmm4aGaLdUTbFqrZNDjzGAAAADADuDIH01JWVubI65SWluod3e0iLW+L3PLQzR/crM+Y5l5+34i4f3GxRWuX5HnkjqXV4rYYfDmxzFdPT480NzdLMBg0cskvE12+fDndIcAh5Nos5NssU8m3Kkj2+XxSUlIiRUVFFNtgxnV2dqbsudXva+K4pKuryz6WHY3/wltSkNAOz14s3d3qxE+vvHlW/9tpmJ+f0rgxeaFQSPr6+rQlicPhsMRiwysEIXe4XC7xeIa/HiPXuY18m4V8m2Wq+VbHeH6/XwoLC8Xr9Wb89+TATLC6GsV346LW95qskcfn5KctJoxNjUsCgYD09vbGz6GoMQv/p+X2/2lXr16Nt8l3biPfZiHf5phqrtXj1E2dRykoKJjWGAXIBtf7QvEJji2Jyl1JK82EajelKTKMhzGKeTiGMQv5Nge5NstU821Zln3uJS8vzz6Xku3XeVE0g+zRf13ktb8QOfVTkfZD6s9Y5PfOihSWj/2YvmsiLfv1vqX3jtjtzfPXtPYdC2ZTMOOA7u5uaWlpsf/xHboBAIDcNjAwYB8DqAFZdXW1FBcXpzsk5BAnC7ATCyqSWZf1Ezvh8lvi+x5q6da2rawspHA8Q6jxiCqG6u/vt9uJX/iMVSCF3JCYX3Kd+8i3Wci3WaaS76ELO9SkPvn5+XaRtBqrALnM16RPNNYRK5bI3BXicWf3Cc9c/Q7l+vXr9lhFTUQydA6F/9NyX+L5MvKd+8i3Wci3OaaTazUJgJrUhzEKTFplZqXrgpS6+kauNIOMwhjFXBzDmIV8m4NcmyU2hXyr/dT4RB0DqHHJrFmz7AKabEXRDLKHJ0/ktR0ioaFBUkzk7Msiax4b+zFnfy4SS/jj9uSL1G+5adHMhoWzZyxsjF8wo/5RTfwHWF2Yxpc+AADk5uBL/Z8/NAhT/+erYwEKZ5CL3FdPaO3InBX2z6s9QWnvDmrbVlUUORobxqYulh0qmFHUv1eMT8yQ7TPiYHLIt1nIt1mmku/E7yXVcYC64IPxCXKdt1Evmnk1ulpWVJakLR6MTp2ITlyVdOjfK/VvHf+/5T5ybBbybRbybY6p5poxCkxytH24aGaLdUTbFi5bLNGiijREhbEwRjEbOTYL+TYHuTaLNYV8Jy6GoH6qY4GysrKsLZyhaAbTkngwPNN/nGrGjCFqtl91sF1Ys0l851+K9weP/Eh6a0euHDOk4OhPxJ/QDtVslJ4edRHU8IVQ1/pCcvpyj/a4FXO8KXtvGBw4tbW1xf8xVf+Aqi961PJd6oI0NcMjq87kLpVj9eXeEPKdu8i1Wci3Waaab7WPWqZbLdetlu1Wj7t48aJUVlZOenCmBmFARopGxHPtlNYVfq9o5kibPu4o9FmysDzf0fAwOjU7iiqaGaLGJyUlJfF/m9R25C61pPQQcp37yLdZyLdZppJv9T2lmsFZTfCjDK04k/hcQE6JhsXbvE/r2hNdLasqCtMWEkb/t0nN3jxEnTtR45Ohcyj8n5b7OIYxC/k2C/k2x1RzzRgFJjnWPvyd/KakohlWmcksjFHAMYxZyLc5yLVZPFPId/J1Xoo6Jpg3b15WFl0xqsK0qAsdnTr4Vq8VrN+mFc14Lu6WSCgoYg1ftBkXi4r34i6tK1C3bUTMBxqHD+qVPI8ly+bkOfbeTKRmRBm6sFYNoNSSXV6vN76di6xzW3J+yXfuItdmId9mmWq+1Zem6v9+n89nFyirAZV6rDoBpE76ALnA3XVBXOEBrS885xb75+GkopmVFUXitljFJBMMfcGjFBYWSlFRUVZ+yQMAACZH/X+v/t9X3z+rkz5DxwVckIZc5bl8WKzg4AWYQ/ZEVssvsQJmRhn6vkRR36OoiUMSz6EAAIDcxRgFJjl+afB33C9BucM6qW0L1VI0k0kYowAAYCbXGNd5qZ/ZeJ0XV4AgqwTrt2ttK9AlnksHR93Xc/mIWP3Xkh6/bcR+B5r1E0RrqovE4+ZPI9VLdiZekKb+YQUAAOZQ//erY4DRjg2AbOe+elxrRwrmSSy/3L5/uDWpaKaSC9MysWgmG7/cAQAA05P4/3/icQGQa7yNr2rtk9Ea6fHNkfrZeWmLCSNxDgUAADBGQa670hOUKz0h+/4667TkuQbvKzGXJaHqjWmMDskYowAAYDZXjlznRWUAskq0uErC5cu1Pt8FfTWZId6Lu7V2eNYiiZbWjdjvYPMNrb2upmRGYsXYhpb2Uv+QqgpEAABgHnUMMPSFKsu8Ipd4rp7Q2pH3VpkJR2PxWdOGrK6iaCZTDK00qv5dYtZGAADMo/7/HxqfsAI5cpmvaY/W3hNdLbfMLxSLC54yCudQAAAAYxTkumPtw+dLtliHtW3heasl5ufarUzCGAUAAPhy4DovrgRB1gnW3y2ejuFlOX0Xd0nfXZ8bsZ/qTxQaZZWZnkBYTl3u0/rW1hTPaLwYSS0lrKh/QJl9AAAAMw0dB6hlO4eODYBc4ElaaSY8Z4X989zVPukP6b/rqyoomskUjFEAADAb4xOYwBXoFk/7O1rfnugaaWBcknEYnwAAAMYoSBW3252S57Usa9x2ssbrwysobbaOatvCtZtTFiemRv1blPhvU/I4ZejfK+Qm8m0W8m0Ocm2Wmci3K2GMom7ZeLxG0QyyTnDBdik48FfaRWlWT7tEiyrifa7+a+K59K7+uFGKZt5t6ZFowt+91+2SlZwgAgAAADBF7qSVZsLvrTRzuK1H668u9cvsQq+jsQEAAABwVipPHE72ojRv2xviig3PUh6IeeSN6C3yUFVxVp7gNO0kdnKbixhyF/k2C/k2C/k2x0znWj2e4zXMlLKyMkdep7S0dNzt3aE2+2eJ9Mpq1zltW37D/ZLvUJyYmKtXr9r/jqlxp1oJKxn/RpmFfJuFfJuDXJvFPcV8D30H7fV6HTuunEkUzSDrhCvWStRfIlbgRrzPe3GXBFb+crzta3xVXDL8pUPMky+hqg0jnutg8/BzKKpgJs87/oklAAAAABiNq79T3L3tWl/kvZVmjrT1av2rKinWBwAAAHKdkycOb3ZRmrS/qTXfii6XAfHLXcurpaysILXBYVK4IA2JyLdZyLdZyLc5TL0gDRjPlZ7BlWY2WsfE7UooKvPkidTemb7AAAAAkLOoDkD2sTwSqtuqdfku7tLaqogmUajmLhGPf8RTHWju1tpra4pnNFQAAAAA5vB0HNfaMbdPIrMW2vePtOpjj9VVFM0AAAAAcNDZn2vNPdE1MrvQJzVl+WkLCQAAAICZrnQP2D83WUf1DXUbRbx56QkKAAAAOY2VZpCVgvV3i//0T+JtX9NekUhAxO0XiUbE17gnaf9tI55jIBSRY+36bM/rKJoBAAAAMEXuqye0dmT2Urvov3sgLOevDZ4AGsJKMwAAAAAcc71JpPO81rUnulrW1JSKy+VKW1gAAAAAnNXZ2ZmS51UrIyWuftnV1SXRaHTM/duv99s/t1hHtP6+ig0SSFGMmLpQKBTPZzgctseRiatoRSIRe7VM5CbybRbybQ5ybZaZync0GrVv6thgsseVmbB6JkUzyErB+vdJTFziksE/WleoT7wtb0mobot4Lh8Wa+DaTYtmjrT1SDg6/EdvuUTWVFM0AwAAAGBqPFf1lWbCc1bYP48mFet73S5ZNrfA0dgAAAAA5M4FaZO9KM17eo8klu1fjxXK8VidbCn3pzRGTA0XpJmNfJuFfJuFfJuDC9KQydTvoxPU7+54r3W1Nyjz5ZossVq1/mD1XY7FiIlL/jfsZm3kFvJtFvJtDnJtlpnOdywWy8pjNivdAQBTEcsvl/D8W7U+38Vd7/3crfWHyxZLtKR2xHMcaO7W2rfMK5RC3/AXFwBS67d/+7ftL+vWrVuX7lAgIo2NjTJ37lz79p3vfGfEdtU3tF3tO1Wf+cxn7Ocg75Pzx3/8x/HPfzTq81Tb1OcLAEgfT9JKM+E5t8QL9pPHHj4Pw3EgE8coHKtmDsYomY0xCgBMjDpxmKpbcoHM0EVpo92s9ne1fQ9FF0lMLFkxvyClMXKb2o0L0sw2lN+hcyhr165Nd0hI4fgk+e/5ySefZHySw+MT/j03R6ouSJvMDchkA6Go9AQisjlplZmov0TCc1emLS4A4+M6r8zCOZTMli1jFMA0XKWDrBWs3661fRdesX96G/WimVDSfkMOJhXNrK1hlRnkpr1798YPwtTtN37jNyZ8wDvWgRtGP8id6O35559Pd9gAAGCmRULivnZG7yofXGnmcKteNLOqMnGOZ8A8jFFSizEKAABI5rlyWGsfji20fzZUMDYBGJ+kFuMTAACQrKM3aP/c7D6q9YeqN4pYTHYMMEZJLcYoAGAuimaQtYIL9GIYd9cF8bQdEM+lQ/p+9dtGPDYUicqhpAvX1tZSNAMz/PM//7McO3Ys3WEAyALMGAEAE+e+fk5c0cETPUPCc1bYswAeaU8qmqniwjQgEWMUABPFGAUApiAWE8/lwyNWmplf7JPyQm/awgIyFeMTABPF+AQApqajL6QGKiNWmgnVbk5bTEAmY4wCYKIYowDj89xkO5CxInNXSrRgjlh9V+N9ha8+LS4ZXto25i2QUNX6EY89fqlXAuGo1ndbNUUzMIO6cFNVzX/jG99Iaxx/+Zd/ad/C4bDkij/7sz+TtWvX3nS/2tpayTa/8iu/Yt+QmQ4cOJDuEADAeJ6rJ7R2pKhSYnml0tw5IF39+vHOalaaATJ2jPLnf/7nkksYoyBdGKMAQOawbjSKFbih9R2OLpKGisK0xQRkskwan3AOJXswPslsjE8AILN09IZksatVKlydWn+oZlPaYgIyGWOU1GGMgnRhjAKkB0UzyF4uS4L12yXv+D/Gu7yX3tV2CaoBlds/4qEHmrq19uI5+TIrnxnVkPvKy8ulo6NDfvKTn8ihQ4dkzZo16Q4pp9TX18uKFSvSHQYAAEgD99XjWjsyZ/CY4HCbvsrM7AKPVJb4HI0NyGSMUVKLMQoAAEheZeZqrERapVw+UkExP5CM8UlqMT4BAADK1Z6Q3GklT0RWIZFZC9MWE5CpGKOkFmMUADCLle4AgOlQRTPjCdVvG7X/YLNeNLOuhlVmYIZPfepT4vcPFpJ9+ctfTnc4AAAAObvSTHjOLfbPI0lFM6sqi8TlcjkaG5DJGKMAAAA4WzRzOKouRHOx0gwwCsYnAAAAzqw0s9zVqPWFKu8Q4dwJMAJjFAAAZg5FM8hqodotErPGXjApWDeyaCYSjck7LXrRzNqakpTEB2Saqqoq+df/+l/b93/2s59Neam/aDQqe/bskT/8wz+UBx98UJYvXy6VlZWyePFi2b59u93f3Nw87nP89m//tpSVlcm6deu0/q985Ssyd+5c+3b27NmbxvKxj33M3nflypUSiURG3ef555+XX//1X5fbbrtNampq7Dg/8IEPyJ/8yZ/I9evXJd327t0bf8/q/niG9lNLr47njTfekM9+9rOyceNGWbhwoZ17NePExz/+cfk//+f/SFdX16Ri/M53vhN/7cZG/QusRKdOnZLPfOYzcuutt9qftcrLb/zGb0z6d+3SpUvy3//7f7fztHTpUqmurraf89/8m38ju3fvHvexKqfPPvusPPHEE7J582Z7Zgj1/hsaGuzfl29+85sSDAbHfLx6f0PvVb1vZdeuXfKJT3zCfg4Vy+233y6/93u/J62trTIT1PP8x//4H2X9+vX257Zq1Sr5V//qX930vQ5Rf0cqXvXZj2ZgYED++q//Wj70oQ/JLbfcYv+9qs9V/X780i/9knzta1/T8qp+v9Tzffe737XbTU1N8c8k8ZZIfaY7d+60P5d77rlHlixZYr/OsmXL5L777rOfU82AMpn3cebMGfnd3/1du1997urzf/zxx2X//v0T+lzUe/pv/+2/yfvf/347DhWP+vfq4YcftuO5cOHCmI+9ceOGfPWrX7X/jVOfmfodUr/P6vfgn//5n+0lkAEgkadDX2km/N5KM0da9aKZ1VXM5gxk8hhFHYswRmGMMhrGKIxRFMYoAHKhaOZQbJH9c8V8imaATB+fcA4l98cn6ifjE3PGJz/96U/j45MFCxYwPgFgrKu9QVnmatH6IuXL0hYPkMkYozBGYYzCGIVzKIxRMHPGrjYAskDMXyyhytvF1/LGiG3h2UslWlI9ov/0lT7pDeoHXGtZaQYG+Z3f+R35h3/4B+nv75cvfvGL8v3vf3/Sz6EGPGogMtrBx9GjR+3bN77xDfnLv/xLeeihhyb13B/5yEfisyP84Ac/sA/MxnL58mV7UKd8+MMfFrfbPeKgWg2ihvYZEggE5N1337Vvf/d3f2cfXKuD2Fyg8qoGUeqzS9bW1mbfXnzxRfugVh28z6Qf/vCH9kGw+nwTBwn/7//9P/mnf/qnUX9nRvOP//iP8h/+w3+Qvr4+rV89lzqIVTd1QKt+Dz2ekYcy6kBeHfwnu3Llij0oUjf1+6kGSvPnz79pPH/0R38kf/7nfz7iIF09x49//GP7vakD9al67bXX7PfT3d2tDSbVyRN1m26e2tvb5aMf/aicPHlyxN+HuqkvLX7+85/b+/3X//pfp/w6//7f//v44CtRZ2enfVMDajWQV39vd955502fTy0vrL50Sfw9UDlUX46oz0UNANXf/Vh27NhhD8hDoZDWf+3aNfvLBnVTX16o/CX7xS9+Yc/YovZN/jdHfRGlbmqg/zd/8zdSVMTF7wBEXH1Xxeq7qvVFym+RgVBUTl7pG7HSDAAdYxTGKIxRGKMojFEYowBIgVhUPJePal2Ho4ukLN8jxXmcIgRGw/iE8Um6xif/63/9rwk9D+MTxicK4xMA2b7SzFJLvzg/Mntp2uIBMh1jFMYojFEYoyiMURijYPr4RhxZL1R/96hFM8G69426/8FmfZWZ2ll+mVvkS1l8QKapqKiQT37yk/aBiDqofP311+0q5MkIh8P2QaiqzL3jjjvsCm+1HKg62H3rrbfkb//2b6W3t1c+/elPy8svvzypA81FixbZ1d1vv/22fRA+3mBKHbwPzTqgDhYTqQP6f/kv/6UcOnTIHmSp++rgp66uzj64Ugewf/VXf2UfnP3Kr/yKfTBZW1sr2UzNDPGrv/qrdl6HPstf+7Vfs2deyM/Ptw/QVX5GO3icroMHD9oV/+p3Q/0u/NZv/Zb9eRcUFNi5VAMpNSi42e+Cyqk6gFbV3WqWLTXjgHpMeXm5PUBSXwS89NJL9s/i4mJ7oJNM/U6o36F7771XVq9eLfPmzbOr49UASH15oHJ9+PBh+c3f/M2bfhbf+ta37M9s06ZNduW7mr1Czd6gBg3f+9735OrVq/YXFKryfirUTB1DAynLsuz8PfLII1JSUmJ/KaEGcapSXuVwqp566qn4QErNwKC+4FD/Dqi/C/U78c4774yIX/3eqDjUFy5qm9pfvd/xqM9d5UxV96sZA1S1vxrsqrypwYmaFUINTtS/P6qdPINBouPHj9u5Uf/OqN8r9f7V78Qrr7xifyZqRgU14N66davMmTNnxOP/5//8n/KlL33Jvl9aWmq/ny1bttiznqgvfdS/C2og7BpliW81yPrlX/5l+98JFaOaQUPNCKFiUZ+X+h1Vv0fq91B9eaAG1QDguaqvMhPz5EmktF5OtvXaK10OUf/qNFTwJQyQjDEKYxTGKIxRGKMwRgGQGu7rF8QK6atfHooukooSf9piAjId4xPGJ06OT9R9dfyrxifqeJLxiTnjEzUbtTr+Z3wCwESh7qsyx3VjxMTIAEbHGIUxCmMUxiicQ2GMgplB0QyyXnDBdincN/gPZqLQgu2j7n+gWR94ra0pSVlsmLpoLCZd/WExSWm+R6xR/mNPhX/7b/+t/P3f/71d2auq/Z977rlJPV4tJ6gGOV6vV+tXyyo+8MAD9sHH/fffb1e7q2Xv1EwEk6EGPmowpSqj1YHeWAeSQ1X26gA3eR9Vna4OmNSBlBqUqdgSqQGkGoCpeIeWiFSDq+m4ePGizJ49e9x9fD6fHW8q/O///b/jAyl1wPz1r3/dHswk+uAHP2gfXKv3PJPUxWZqIKV+J9RBtxp8KOpgWg1s1AG2GtyoAcJY1KwI6gBZHTSr5UXVAXHiDAMqh+p5VK7U75VahlINcNTykMm/F6N9xhs2bLBzrg7q1QBo37599kH9+943epGlogZSaqlbFUvigbd6jMrlt7/9bXsJSfW7ppZFnaw/+IM/iM88oL7gUDNwDFG/02qZTfWe1d/BVKhBh6rWV9QgdbQZBtSSmr//+79vzxIwZGhZTjWoU1ReV6xYcdPfAZWLoc9J/T4MvQ81MFMDGvUFjBqAqt9V9Xs4FvV5qnyrf5vUoHmImilELUOrBljqc1OzVagvbZIfO7Ssrfo9UL8PasnNRGpgpT6PlhZ92W81gFL96qeayULNUKIuqkz+G7rrrrvsGRfULAnqb04tVwzAbMlFM+Hy5SKWWw636RenLZ6TL4U+fcYkZA/TxihOjk8UxiiMURijMEYZwhhlGGMUANPluXxYa1+KzZLLUiYrS5hILBcwRkkdxieMT5wanwyNCxifmDE+URekJf67oH4nGJ8AMNGs3nNaO2L5JVqS3Re+w7zxicIYZRhjlKlhjDKIMcowzqEwRkFqUTSDrBcpWyKR4hpxdw8v3Rn1FkqocuQSfOo/6OSVZtbVDP8jjcyhBlL3/uUBMcmLv71Oygr0wUmqqIMkVdn9zDPPyKuvvmrf1MHFRKkq/vGoA5cnn3xSPv/5z8sLL7xg/+2NVuk7lkcffVS+8IUv2BXN6mBptMHU+fPn7QHXaLMP9PT02LMgKP/pP/2nEQOpIWrGAXXwrg4C1VKQ6oC5sLBQpkodoN+Mek21fGEqZh9QyxQOff5/8Rd/MWIgNURVuqvq8JmcfWDoYF9V0CcOpIaomNSBvFoKcSyqkltVh6vY1MHwaEtyKurAX80AoAbr6ud//s//Wdt+s8GqGqip5RaPHDliLwE53mBKVZ2rKvzRfn/V77gaTClqJo/JDqbUgFa9/tABeuJAaohaElLN3qAGPFOhluUcWrZSDQDGo6rzp0MNcsb7O29oaLC/iFGDfDWrwXiDKeXP/uzPtIFU4pct6ndJLTOqPvfkwZT6O1B/DyoWNeBOHkglqq6u1tpq8KZmqsjLy7OfJ3kgNUQNsFXu1d/y//2//5fBFABxXz2htSPlt9g/j7TqRTOrKlllJpuZNkZxcnyiMEYZxBhlZjBGYYyiMEYBgJFFM2qVGaWimJVmcgFjlNRhfDKI8Ymz45Onn35afv3Xf33M52F8kv3jk/EwPgFgUmHF/OBF7YrFvpKF9kRkyG6mjU8UxijDGKNMHmOUYYxRhnEOhTEKUstK8fMDqedy2avNJArV3CXiHjlT2oVrA3I9qap9LUUzMJRabk4dqCnqYHE6VCWwqr4/ceKEvdyeug0dhAxtm+xgb9u2bfZ9tUSeOjAaa/YBJfkgVFWWq4NyRVU+j2foAFMdcL777ruSrdQylGrZ1KEDvaHcOmH37t3x+2oJ1LGoWRHUjBBjUQPvoYHFWANBRQ2yVCW6oqr/x6MG8mrQomazGPrdVLehweR4MyIM/f6MFYuqth8afE/2d1zZu3dvfNnZ8T43tQTmLbcMXnw9WWqApGZKUNTMEEOzAjhBDeTUlx6J/y4M5V8tIzo0yBtr4LVy5cpRt6lBklqOVblw4YK2Tf1boZYKVjZv3jzpAe7Q76D6d2G05UBH+7fjZr+DAJylliRO1U19GZlItYe2eTv0opnovJV2/5F2vWhmTXVJSmPkNvVb8heCN2sjd8YoE80tY5TcGKMk51vN9sUYJXfHKMn57urqYoySw2by/2712MkeSwDZUjRz+L2imfnFrDQD3AznUAYxPnHuHArjk9wenyTjHAoAU93oD8sSadL6IrOXpi0eIJswRhnEGGX6GKMwRhkNYxSYgJVmkBP6135K/Cd+KFaoR2KWR/ru+Myo+73dNHhwNUSdGKoqZUY1mEktL/lbv/VbdtX9m2++KT//+c/tZeomqqmpya7Q/dnPfmbfH8+1a9fsJccnQ80qoGJSB8J79uyJD66GqKU4ldtvv10WLRo82TskcVC0atWqCb/m5cuXZTrUwE8dwKVrMJW4JKmT1EGyog7ax/u81dKP6iBYzXiRTA0q1IwAilpSVt3+//buA1yK6mDj+LmNfulViiAKghVF7F0j9hKDJcYu9hprotHEggZTrDFq1CS22HsJ9oaKQhRsiA0QEC5Fer33e97Dd9bZubP1bp35/55nn7t7d3d2ds6U8+7MOcc0ocy0XqpHg7Fjx9oeKZKtm8lssEHyH+jat29vlixZkvQzEvn0009j94cMGZL0tXpeoSRTCoLq0UNB6umnn7ZDl2ooUPUSofvJwm02FE41/OhLL72UdGhYhR6FLf1wEsQ/FGui3hK07L0UanUhXLbbgdt3vPrqqwnnLdf7DQC51dTeVDIR24euXmHM/K/inmvVb5hZVNXSzFq4Mu7/OwzqaTp0oNF+KdKw0voRVo2hgnpBshfEJugdKaz0fRP1CNXkaXsuLtZ99zldu3a1w3OPHj3aZhT9aL/77rvb57wN1xLNl3oSUk9c+oE0VUZRnSHZ9wt6bsSIEbGMohM4/l6I3Akf/fA/YMCAhPX1TDKKhrbPtBy8y0p1wEx6m0tVRqk+1/s6b31XOSnT7+F9fdA8eOdRz3mfd3VnZRT1aJfognb1PKUf4JU5/Z+ZbUaZM2dO4Hd98cUXbU95yig66ZjI/PnzG73f+3jgwIFJl6XLKEuXLs14mXszh9bjZO9XFnevT/Y6/3qh+wcffLDtTc5lFGUWradbb711yoySzr4g24yiXJcoB2ibTvZ5+o1FtOy9r9MJJpdRlMMyLZNsM0q+9t/lJJuGLG790u8XhaxXAnlTv8ZUz4m/kODjhrW93HdvS6MZIBXOoTTGOZTscA6Fcyje76SekzmHAiDK6pasMgMqp8f9r6rLAFO4S4KB8kVGaYyMkh0yChnF4TovRA1nzxAK9W17mQW/fNHUTH/HrOqxpalvt27g6yZMj78oYYtetfQYjEjTBWl33nmnrXxomMR0w5QqShr2UxfhpGPZsmUZz9vee+9tezHQZ2joTm+YUoXnyy+/jA3hF3SRUjaymc9S4Q0FGmqykHRRlwsWqS5KSVRB1TSyaR3vLzNd7Hruueea++67L633L1++POnzLVu2TOuCGteTQCYUJpxUrd3TrdgHufbaa+02rov09MOHLiTVTfOuCwQVrjTcatu2bU1TaBjLCy64IO1yTLbsUy13d+z2L/embge6YDpK+w0AOTLnc2Pqffu+bhuZCVN+2s9Lm+bVpn+XwvUQBJQrDY2uC0hUf1E9xjWaSWXMmDHm2GOPTTujpKoHJho50WWUhx9+OK7RjDLK5MmT7f1f/OIXjd4bxYyiBj/Fyiiurq0f4QudUfzroDLK2Wefbf7973/npMwTDS2fi4zisl06GaQpGUW/P2gbdw3cbrrpJnvTvG+22Wb2hNAxxxzT5JM/WubnnXde2uWYbNlnmw2buh2QUQA0RdX8r0zF6vh9wqT/H2mme1s6EwPSwTmUps9nqeAcylqcQ2mMcyjpI58A4ZCv0VK9HZ0EPXbmL11ttq6IbzRT0XVDRnEt8xF+ufYu3Bkl3fIlo4Qjo/jLm4wS3oyiZX7++eeTUSIi6Njd0NDQpOmVY/2NRjMIjfo23c2KDeOH7vPSBj5hevxIM0N6Ne3Agfxp17LajDltCxO171zwz2zXzgYqVbY+/PBD22pbQyYmows+TjnlFBtyNGShLmrbddddbQ8Dqoy5IQLVa4B/OM1MaNjJ4cOH296an332WdvbtHoB9vbgrAOvLqbx8w7zqSH81PI9Heuss07W84um/RDirRQfddRRZuTIkWm9z61v3gq9C1LqDUG9bKiXCg3TqQq6q6xpvVWr/KZU/nIpnz8i1dbW2pMx48ePN08++aQdLlS9PWiZ/+9//7O3W2+91fb6sNVWW2X1Gfpxw53sUfA788wzbS8Hffr0sduy2wZVNuecc469XyrLPmg91MW5l19+ebFnB0C5mLW2B52Y9usa06Kt+d+0tcNpO5v1bmeqKjlpUM7at6w2r5w1zETp+xaDMorqatdcc40dHlsX1SsXpMooJ510ks0oqnucccYZ9kRRv3794jLKG2+8YX9IzrYuomnrpI96Q1PvTurNzWUUnQAS1Tc1ikay+q5G0El3FIiePXtmPJ/IfUbRyQdli2wyiurirsGMemRTBncZRScQXUZRztboK1HIKNouH3jgAfs7hHryUy916lVPy3zChAn2phNAWnbqOS0basTmGsy4jLLTTjs1yij6DD1Xqtx6uMcee5jf//73xZ4dAGWmevZPPZbK9w2dTJ1Z2yCxey0jzYRB1M6jcA4lHudQyg/nULIXxnMoyifapjiHAqDQCjWyaqLOUOpXfGc6VsT37t+m31DNWEHmC9nRRck6NvlHlXZUh+hU2yJS51DceZTKPNRTko0E36lTp9g5FGUUNYZRLkg2Qrc3o6R7DiXVCPRBz6kBhjuHoozyl7/8JZZR9Duwm65GpPG/31v3yfQcSqajbnuXVarvmU0ZJftc7+uaOh/e1we93zuPei7osxNt04nq4t7Xev+f6TkU73R0/sRllHTPofjnOdWyCJLOd/fzfmfV4ZO9P9k2mWo+dKx+8MEHA8+heDNK0DmUdD9X51Bcg5l0z6EkW7aplmei+fKup9mUSbbnULLZ7sOmKssGL64stY4Uql6ZS5Q8IuP7H1eY2YtXNRppBqVJoaJDq/R+pEfTqNKqnpzVcve6665LecJHF4e5YfH0A7F/OM2gHmqzpd4FdHJn0aJF9mTUAQccYE/mPP744/Z5fXZQy2zvAVktu0v9RI63Uu09WeXnH6LQPwyro+ESUw03mUsKvq7MVRlNVqlK1DuEt8wUcAYNGpTVvKiyLgr3zz33XMKW7LlYP3P5Q6GWS7ILIrPtVcNriy22sDfRMKM68aML1fRjhaZ/3HHHmXHjxqVs/R9E01GQUtk/88wzZsCAAYE9EXh7XcgH/3aQKa2Hs2bNMqtWrcp6HQRQXPncvyv8e/fdqg/puN3yuw/M2p9711rZaaBZMn+++eCb+H33oC4tS+L4g2Da97t6mI5h/p5RVMdRHaVts+g0fKpfs8Ykrpk2jfdiH9331xvUAOa2226zGWXUqFH2h05vPdn/euUDl1E0dLs/o7jXe3sbcp+bqBecRL0q6aI2nfBRRlF902UU/U/02apT+N/v6szufiYZJdOeurzLKmj5ZjoNbR+JpuHNKHqP93Xe7zxjxgyz3npre7ZPl3daQd/Dux7pOe/zrnctrUMrVqyIlXHQtu0dht07DV045X2d6rjZzLtys8soqnt769var7jXenvT8n/XVMsiiL880uHtlWzmzJlJM4q3vp3sc5LNh0aV0S1RRtGJNn9GSbYv8GdDf0Zx+3Lve70jwfjXo3S/R7L58tYdtEwzLROXUVauXJn1OhgViY7dmVA56qb9Xqb1tnI8OYToNZqZ+P+jzFRXVpiOrfntPQw4j1IYnEMpPs6hcA4ljOdQgurtnEMBEAVrZn8W93hFRXPTvH3fos0PcptPOpJPCkKNB9w5FDXwT9XxmBoGu4yiBgq77LJL3uqAv/jFL2LnUDRKhhrhqA7vGvbrs4MyireeooZBpd6hWC4yir6nt26Wye+/uaprax3KVUYZPHhwVvPyr3/9y/7VOSStM6WcUbznvXRuqVevXnnNKGo8pJtom1LjGWUL/e6g6R9zzDG28X82GeX+++8PzCiFXu7+7SBT2nfo3IsySrbrIKIleCxEIIQmTF8U97hDy2qzbkfv5W1ANKl1sHohkI8//tj++JvM559/Hqv8JjrZI2rV3FTq2cBVjlyAeuedd2xlR9T7QBC1PHfee+89Uw5lkM4P4l999VXC5zT8ojN27FhTSO6HcV3Eo963ElFlO9Hz6klgww03tPfff//9rOfFrZ/6USBRKFBY07pebN7KunpSTiYX25N/ndtrr73sRaW6KNWFD//2km7vbV988UWsZ7pkQT7X38Nv3XXXjYX7bLYDt+/QfGp9BlB+9KNevm7+Hzz1WP+vnPNp3P9Xd9zQ/v/ruvjhzTfs2jKv88etaTf/RbWpHiM8GSXTsiWjlHdG8Ze3fkQno0QnowRt72SU8MjlsVvvzbQuAZSi6tnxx7iP6/vZv91qm+WlJ1wgrDiHUnxhzSd+nEMJfz7ZaKONOIcCIPKazZ0c93h283XVa1nR5gcoR+rwyY388NFHH9kL3tPNKIkazKRT50qHRqRzGeWRRx6xf9UYWR1ruUY1qerr5ZBRvJ1uZZtRXIdSLscVo66dTkbRCCepMkpTysytnxqlKEwZRY1Zcr3OaRmpkZEb1UcN2t99992sMopb7qmu88rFfiHdjJLNduAyiuaTjIJ0UOtEZIz3NZoZ0qs2r0M5A+XkhBNOiLXk/+Mf/5j0wgJ3IYB6603UWl5Dej788MNNni8Nhaee0URDiqrnA9eDs4ZgVGUwiE5E6Xm54447Sv4iRw1tmM4P4q53uCCqxLqeFtRTmHrBKhTviT8NhZmITiYmC4s6AeGGqX/llVeymhe3fmodTOT555/PqnV6rm2//fax3hqSLTdV7D/7LL7HnVzS8JqOt3drcUPlantPxvWGlmy5K6ypV4h80igQe+65ZyxMZRqaXQ8sCxcutL0zAEBKGv557tqT3s7qzhuaxStWm3lL43uKXLdj5j28AFFGRikuMspaZJRgZJT0kVEAFM2aVaa6Lr6B/8SGtSPNdG/brEgzBZQv8klxRSWf6GJH8slPyCe5Rz4B4HqMz8fNjWLh6HHQ61otiD+nMq9l37zNE7fc3dT5kBuhV8c1fwcieuxGcebW9Jt3+SZathoFz2WUUaNGxb3H/1qVn6uz6KLyoOnp+O6tc3k/N6jDmETzLi6jjBkzxo70/dBDD9nHyiCq0wa9b4cddohlFI2io3nO1/L15rRs113vaJ0ffvhhwtd5c5/bftxNDU5cRlFDCGWBTOcj2fdItk7suOOOsefuu+++hO/zZxT/dFxGmTx5sh39NNsyEWW0RM9rZBXVl5Otf+mWaaLySOe27bbbxjKKG6kl6KYRKr0ZJdfzoe3F0Ygz3ufUmMlt78mm4fYL3oziX3bTp083L7zwQk6+h3e78//fZRQ1sFNjo0yWhVsHtQ/TSFrZroNRuOXq2F3///UBrUOZ1idKAY1mEBkTpi+Me7xF77ZFmxeg1LRu3TrWC8Gnn35qXn755YSv1XCIrtKkITz9dEA999xz4yqrTeF6QlNlTid7XA8J+mHW27uYl1og6ySWqCJ66aWXJh0OU0MmquJUzOEb1buU6EfmoEqCWobffvvtSX/odr3dqYeGM844I2ELai2LXJWPaLh61+uDet3yt2IXfd4VV1yRdDojR46066KcddZZsVbtiShwffLJJ4Hrp04sBC3Hb775xlx00UWmFHTv3j12gkEh44knnmj0GoXCX//611l/xrfffmtDRTKvvvpq4MlH6datm/1bV1eX9CSiW+7qJSOoBwntLzRE8LJly0y+nXbaaXZ70IlerVOux5Ig/ucOO+yw2I8Sl19+ecpeDLSup1q+AMKtcskPpnL5/EaNZqYviD9Rrqb6Pds1L/DcAeWNjEJGaQoySnbIKPlBRgFQDFXzp5iKNfG5ZOL/jzTTvZZsAmSKfEI+KUQ+ueyyy5JOh3xS/vnk66+/Jp8AKLp8jebur0vocdDrOi/7Ju51i9qsV/SR6LmlvqUa4bfUG2GHUSEzSqblS0Yp74ziypuMEr1zKN5tnYwSPrk+djc0NGRcnygF1cWeAaAQZi9a2ejCNY00A+Anxx57rLnlllts71Fq6Z/IgQceaK6++mobblTh1TCMGr6zbdu2tvJ755132uE/hw0b1qQh4h1NR0Pxfffdd+aaa66J9VDy85//POn7VGFWRUgt+hVCVOH51a9+ZXsTU+8Emo7m94033rDhcdCgQfb5ptA8duzYMeXr9BpXSXWOP/54W2lWC/D999/f3u/fv79tsa/eF+6++247NKfCYSIKkAoYr732mu0xWb1fqXeJzTff3A5hqdCo5fHYY4/Z5XfhhReaXFHvevvtt59tRazhVDUU5B577GGX9QcffGD+8pe/2PVKodEfgJyuXbuam2++2S4LrYdqSX744Yfb4Vt79OhhWyur8qtew9SLgIKCejxwQVRGjBhhL3xTeFMvevqRQGW7fPly89Zbb5m///3vNmQq/JXC0J1/+MMfzOuvv26DisKG1ln1uqFhNbWcbrzxRhtQVIbJetBL5PvvvzcHHXSQGThwoNlnn33sdLQs3XMKcO5HEW0bW265Zdz7t9pqq1gAP//8882JJ54Yt467EKXlrm1fr1Mg0XLXe9XLmvYH6glEJ4NytV9INfSm1u1rr73WLjttB1qn1NOChhtW7wLab2kbUQ8Q3hDbvHlz+z20zJYsWWIOOeQQc/DBB9t1SfshfT+tm/pOzz33nP3xSb22qMc7ANFUNW9K3OP6mtamvm1vM3Vm/A966sm5WTV9VgCZIqOQUZqCjJIdMkrukVEAFEP17Ilxj6fWdzELzNpzIt0YaQbICvmEfJKPfKL6nvIE+SR6+WSbbbYxNTU15BMA0dLQYHqtnhr3r1UdNyja7ADljoxCRmkKMkp2wpxROIeCKKDRDCJhwveL4h63aV5l1u+8dkg/AGupsn3OOeeYSy65JOnrNMSkKs7qZUAV1JtuusnevFQRUTBJFXjSpQqNKuMuSHXq1MnstttuSd+jStEjjzxiW+Kr0qSK6cUXX5zw9aq8NtXZZ5+d1uvUKlqB1Ouoo46yoU4VtC+++MK+xmvw4ME2UKnCm4haXf/zn/+031lhQxVJ9b5QCKqEK4yrEq314oYbbrA3p7q62q43ap2eKEyJApl6g9B01IOAejTQLdH3dcOzOlpuCpO66ftrnfav5wpsCqilEKbU4v/ee++15a9ApTLWzUshpqKiIqsw5Wid0i2RDTbYwC5nfY6XhmQdOnSovahQPYDo5qXwL0OGDLE/YFx33XV2O73qqqsCewbQ8LL5DlOiHyO0fmid0/xo/6Gb33bbbdfof/q+ClgKjgqc2o/ols99B4DytarPDmbuCeNM9dzPTVXd56Zi1VJjKirN1PnL417Xu0OLos0jUM7IKGSUpiCjZIeMkh9kFADFbjTzccPaE+LCSDNAdsgn5JN855Prr7/ejB07lnziQT7JD/IJgGKpWDrHtDXxvd5Xdh5YtPkByh0ZhYzSFGSU7JBR8oOMgkKh0QwiYcK0hXGPN+9Za6oq4w8YAIwNQKpoqgKRzJFHHmnWX399W3lWxUiVFbVKVkvwI444woapXA5lp6E7vRUhtdBW5TwVDevphpH8z3/+Y/+qZboq+6oA9e3b11YC1dJ91113NcWkit9dd91lw9CDDz4Yq/j269fP9vqg1ukKAqkoXGg6am2vIUB1AZh6HtAQd126dLFh7Gc/+5kNqLmmaWodUKt59ewwb94807lzZ7P11lvbirRavwcNO++311572Z4SFKpeeukl21OEemJQmauXArWmVyVfPTW4IRYd9cql761A8tBDD5nJkyfb4QA1RObOO+9sw5aCg8JUqVDrdZWXwqe+r1q4a+hZLS9V6PXDgUJBNtRTmYKBhubUMtW2rQCkHkTccLEKsOrpQT9ABK2XDz/8sP3BREOhqtcHDcEZNESjQp+GcFUvD+PHj7evU/lrG1MPJ+qpRGVTKPrBR/sKrQtaH6dPn26HDdX3HjBggF0f1FtCEAUqravaFvW91WOB1mctD/2Yo3VIQUzroPaFAKKtoWVHs6rXdvbmTF8Q32imT3sazQDZIqMUDxnlJ2QUMkoukFGAaFLvh/mifUCixzWzJ8U9N7H+p0Yz67Rvkdf5QtP5L3gIehx07EM48om/vNNBPinffKK6nOrIyieq86kMUiGflG8+0Tzfcccd5JMIyPWxW++n/oYwqJ8df/Hv0obmpnWXPkWbHyAMOIdSPFHJKGo0kwoZpXwzCudQEDUVDfyqiiaoq6vLy3QV+DW0lqNWqKoIZGvE3R+br+cuiz0+c6fe5phh6zR5PpEdVRQ09JkOSm7oQm/FWEPzIdwo7+igrKOF8o6WXJR3UJ0gXQrrQKHySaYZ5fj7PzEfz/ipt7Rzduljjhq6dthklCYySrRR1tFCeUcL5R0tTS1v8glCY/UKY67paUz9qti/jlj5WzO2fiN7f8y5O5kNutGjYin78ssvzcqVK+3+qEcPsiQAAFE1c+ZMm1GaNWtmL/QDyv06rxXv3ml6fjAq9vjj+n6mduQLprYFfX6XOs6hgPKOFso7OijraKnmOi8T3w0VEEILlq6KazAjW/TihBAAAACA/Gg00kwHRpoBAAAAUCCzP41rMCOf1PeN3e/RPnUvpwAAAACQc3WT4x5+ZXqZNs0ZRQkAAACFQaMZhN7/vl8U97hFdaXZsFvros0PAAAAgPBavGK1mbc0vleO3u1pNAMAAACgQGZMiHv4dX13s9CsPSfSrmWNadOcXpwBAAAAFF7zBVPiHs+o6WsqKiqKNj8AAACIFn4ZR+iNnx7faGbTddqYmiraiwEAAADIvekLVsQ91umenu2aF21+AAAAABTP/Pnz8zbtyspK065du9jjH3/80dTX15tW37xnvAlkYsN6sfvdamvyOk/IjVWrVtmylNWrV9sLCauqfuqBe82aNaahoaGIc4h8oryjhfKOFso7OnJV1qoP6Ka6QaZ1uA4dOmT8eUBeNTSY2kVfx/1rbsufRsQEAAAA8o1GMwi9Cb5GM0N61RZtXgAAAACE29T5y+Med2/bzDSrptE+AAAAEEW6QLJQdEGlPq/qh4/j/v9xfb/Y/W5tmhV0npAd/0W1qR4jXCjvaKG8o4Xyjo5cl7XeTx0O5a5yyWzTfE389VsLa/sXbX4AAAAQPVy5g1BbvGK1+WL2krj/DenVtmjzAwAAACDcpi2IbzTTu0OLos0LAAAAgIhZvdxUzZsc96+J9evFNeoHAAAAgEKrmvdl3OMlDc1NRe06RZsfAAAARA+NZhBqH89YbOo9nXZUV1aYjXu0KeYsAQAAAAixab6RZvq0p9EMAAAAgMKorvvcVNSvjj2uNxXmk4a+scfdapsXac4AAAAARJm/0cyXDT1Np1rOnwAAAKBwaDSDUJswPX5oz416tDYtaljtAQAAAOTHVF+jmV6MNAMAAACgQKpnT4x7PLWip1liWsYeM9IMAAAAgGKo9o2I+WV9L9OpdU3R5gcAAADRQ+sBhNr46QvjHm/Rq23R5gUAAABA+E1f4BtphkYzAAAAAAqkynch2v/W9It73L0tI80AAAAAKP5IM5MbaDQDAACAwqou8OcBBbN8Vb35ZOaSuP8N6VVbtPkBAAAAEG6LV6w285aujvtf7/Y0mgEAAABQGEt2/oNZNuQkO+LM6hkfmec/jO9IrHstI80AAAAAKLCGhkaNZr5s6GV2pNEMAAAACohGMwitSTMXm9X1DbHHlRXGbLpOm6LOEwAAAIDwmr5gRdzjCmNMz3b05AwAAACgQCoqTH27PmZluz7m87a7mBfHTYo9VVVhTOc2NJoBAAAAUFiVS2aZypWL4/43uZ6RZgAAAFBYlQX+PKBgJkxfGPd4YNfWpk1z2okBAAAAyI+p85fHPe7etplpVk3sBgAAAFB4sxbGN+rv0qaZqVbvYgAAAABQQFVz40eZWdzQwswwnUzHVjSaAQAAQOFw9Q5Ca8L0RXGPh/SqLdq8AAAAAAi/aQviG8307tCiaPMCAAAAINpmLVoZ97hbW0aZAQAAAFB4VfPiG81Maehp2resMTVVXLYIAACAwmHYDTRJVVVVXqZbWVmZ9HEqq9bUm49nxA/tObRPu7zNLzJTUVGR8nFDQ0OB5wqFQnlHB2UdLZR3tOS6vPV+6mkIg2m+kWb6tKfRDAAAAIDSGGmme23zos0LAAAAgOiq9jWamVzfy3RqyygzAAAAKCwazaBJOnToUJDPadeuXUavHz91vlm+uj7uf7ts3Md0aE1PaqWgrq7OXlirxlDV1Y13Q1w0Gy2Ud3RQ1tFCeUdLtuXtGkbX1NQUrF4JFHKkmV6MNAMAAACgSGYtjB9ppjsjzQAAAAAogZFmJjf0Mp1a02gGAAAAhcU4hwil97+ZF/d4QLc2piMNZgAAAAAUcqQZGs0AAAAAKJJZixhpBgAAAECRNTSYqnlT4v71ZUMv05lruAAAAFBgjDSDSDSaGdavY9HmBQAAAED4LV6x2sxbujruf73b02gGAAAAQHEw0gwAAAAAv6qqqrxMt7KyMvBxxcLvTeWqxXHPTa7vZX7Wplne5gW5V1FRkfJxQ0NDgecKhUJ5RwvlHR2UdbTkurwrKirKsi5Hoxk0yfz58/MyXYWndu3axR7/+OOPpr6+Pq33rqlvMO9/Mzfufxt1aZG3eUXmVq1aFSvP1atXN9qBrlmzhgNwiFHe0UFZRwvlHS25Km/VB3RT3SDTulqHDh0y/jwgn6YviO/FWT859GxHT84AAAAACm/Vmnozd8mquP91b0s+AQAAAKKuUOfXYtd81X0Q9/+FDS3NTNPR9O7SjnN9ZaSurs6eC9b1fNXVjS83LceLZpE9yjtaKO/ooKyjpSrL8nYNo2tqasqyLkejGTSJLpAsBF1Mme5nfTF7iVm8Iv61m63TumDzitT8F9Wmeoxwobyjg7KOFso7WnJd3no/dTWUu6nzlzfqxblZdXzPagAAAABQCLMXrTT+pN69lpFmAAAAABTYnM/jHk5p6Gm7HetSS6N+AAAAFBZX8CB0JkxfFPe4V/vmpisngwAAAADk0bQF8Y1mendoUbR5AQAAABBtsxatjHvcqqbStGlOb5EAAAAACmx2fKOZyfW97F8azQAAAKDQGGkGoTN+2sK4x0N6tS3avADIrS222MJMmzbNHHbYYebmm2+Oe27q1Klmyy23tPdvvPFGc8QRR2T1GQ888IA566yz7P0PP/zQ9OnTJwdzHn5vv/22Oeigg+z9J554wmy//fZxz5922ml22fbu3duMHz++SHOJUtGlSxf794ILLjAXXnhh1tP54x//aEaPHm3vz5kzJ2fzBwDZmOYbaaZ3exrNAFFARildZBRkgowCIGxmLVwR97h72+amoqKiaPMDoDDIJ6WLfIJMkE8A5NP8+fPzMt3KykrTrl272OMff/zR1NfXm9qZE+MuTvyyYW2jmeb1K/I2L8i9VatW2fKU1atX23xZVfVTxwxr1qwxDQ3+8U4RFk0pbzJK+WUUV95klPDLZNsmo5S/XB276+vr7U11g0zrch06dDDFRqMZhIo2Yv9IM1v0qi3a/AClVslN18iRI83VV1+dt3kCgHJz4IEHmnfeeSf2+KKLLjLnn39+yvf9+c9/NqNGjYo93m677cyTTz6Z1mdq3619uOyyyy7m4YcfzmieP/roI3PfffeZ999/3/4QtWTJEtO8eXPTtWtXs95665nNN9/c7Ljjjmbrrbc2NTU1gdNQyNH8Pv3002bixImmrq7O/q+2ttb07NnTbLjhhmarrbYyO++8s+nfv39G8weEDSPNAOkjowBA05FRyChAJiPNdK9tVrR5AUod+QQAmo58Qj5B+dAFkoWgiyn1WSv77GyWVrU1C7//zPSqqDOT/7/RTMeWVQWbFzSd/6LaVI8RroxCeUcL5RsdYd+2ySj5zSgNDQ1lWZerLPYMALn03bzlZv6y1XH/G0KjGQAILfVqoNbsuqkXCpQ/hQdXpi5IlKJHHnkkrddlGoAchR9veHvjjTfMrFmz0nqvevdR7w577LGHufvuu80nn3xiFi5caMPK0qVLzbfffmteeeUVG/QOPvhgG7iCTJkyxey+++7m1FNPNc8995ydp2XLltnpq7eASZMm2eWgYLnNNtuY5cvjGwwAUR9ppg+NZgAgksgo4UNGWYuMApSXWQvjG810a9u8aPMCACge8kn4kE/WIp8A5WPp1mebD7e5yeyw4kaz8fI7zXv1g0yzqgrTpvlPPZ0DAKKDjBI+ZJS1yCjlgZFmECrjfaPMdG1TY3q242QQ4Bx33HH2lkrHjh1NudHwmgzbV7puvfVWO5wqIOW8rbZo0cKGhq+++soO7euGCw4yYcIEG0i870vXQw89ZFvlq8cAhSAFGAWzM888M+V7L774YvPPf/7T3u/WrZs55phjbC8BnTp1svOgUDRu3DjzwgsvmOnTpwdOY968eTZouQCnnhMOPfRQM3DgQNOyZUs7pPrkyZPNm2++aV5++WUbsoAoW7xitZm3NL7xfu/2NJoB0kFGQbGQUeBVztsqGYWMAgT5YeGKuMfd2zLSDJAO8gmKmU90Ux0LKOdtlXxCPgGCzF2yyv5dbFrZvz1a15iKiooizxVQHsgoKBYyCrzKeVslo5BRvGg0g1AZP31h3OMhvdoStACPzp07m0GDBhV7NgCgbLneEcaPH28DT7IwpedFr5k9e7YNMelyPRfsueeeNgC99NJLaYWpzz77zPzrX/+y9zfeeGPzxBNPmHbt2sW9RsHqkEMOscOJvvbaazYc+ekCUhek1JvBhRde2Og1GkpUwzwvWrTI/Pvf/zZVVfQIheiaviD+gjQlEBrvA+khowBA05BRfkJGAX4ya1H8SDPda2k0A6SDfAIATUM++Qn5BPhJ3f83mnE6tyafAOkiowBA05BRfrILGcVUFnsGgFxRK73x0/yNZmqLNj8AACCcRowYYf8++eSTZtWq+B95HfUYoCDjfX26PvjgA9vDgajV/y9+8YtYUProo4+Svle9CqhOJJdcckmjIBUUiLbeeutG/3/++eftXwXH888/P+k0amtrbaiqqalJ8c2A8Jo6f3mjXpybVRO3AQBAYZBR4pFREHXa5mY1GmmGRv0AAKAwyCfxyCfATyPNOJ1asz0AAIDCIaPEq41wRuEqHoTGjB9XmNmL43doW9BoBsh5q9s//vGPSV934IEH2tfpbzJTp041l19+udl9993NgAEDTI8ePexwcPvtt5/9jG+//Taj+dP03Dw+8MADCV+3YMEC84c//MFsu+22pnfv3rZHhp///Oe2UpQJtQi+8847bSvewYMHm3XWWSc2rXvvvTfp8JQrV640L774ornooots6+L111/ffn8th7322st+/7lz5yb9/C222MJ+1zPOOMM+1tCA5557rv1/z5497TxpqD5VynJBQ/L95S9/sRWvdddd187rPvvsY1sd19fXp3z/aaedZudX85fIs88+a44++miz6aab2u/Qt29fM3ToULtOqKW0Wnw7b7/9tp3eWWedFfufWnm7dcDd9DovLY9rrrnGrp+u3Pr162e2335728r6iy++SPo9tLy930NDF1577bVmhx12sMulf//+Zv/99zePPPKIScfixYvtcKYaHtE7P7vuuqsdevG9995L+F4N5fjggw+aI4880rY01zJTuey7777mb3/7W9bDKNbV1cWW3z333JN0Oej229/+NvA1N9xwg31e67a+Z6r9iduGDzrooNj/dN9fpsm2b22XN998s9ltt93s+qPbz372M7ut5nLIWM2XgoO2Uw1ZGUT/17LU67zfKR2u54L27dvbfcTee+9t2rRpE/dcIt9//33s/nrrrZfR5wZNR+t1ZSWRAUhl2oL4RjO9O7Qo2rwAUZKPjKKsQEYhozhkFDIKGWUtMgpQXhavWGOWroo/FjLSDJB/nEOJRz7JPJ906NCBfBKhfKL1hXxCPgGiO9JM9C7QBIqBjBKPjEJGETIK51DIKNFWXewZAHJlwvRFcY/bt6w2/To1HoYKQPHddNNN5sorr2zUcnfevHm28qibKsGZBpxUJk+ebMOOG4rOVb7eeOMNe1PlRyErlUmTJtlKv38IPlWc3LQ0bJ5CVdeuXRu9/7zzzjP/+c9/Gv1//vz59qbQ8I9//MNOI6hlcFAIUVhZunRp7H9z5swxzz33nA1tqlirsp6tH374wYZGLT9HnzVu3Dh7e/rpp82pp56a9fQVCtR6+amnnmoUOpcsWWK+++47u06ofDR0YbZUCfeGL0frob6bbgqHClvHH398yukpwB522GE2BHi9++679qZlc9111yV8/+uvv25OPvnkRsFZ86N1TDetBypLv+nTp5ujjjrKfPLJJ42W2fvvv29vd999t/3OCniZDu+rHzYULLUdHnvssY1eM3bs2Nh9f2B13nnnHft3s802iwWBfNKwmCoPLTevCRMm2JuGp9Q2lYtg0KlTJ/tDkFr7K9wMHz680Wtc6Nljjz1Mx44d0562ytD1XHDAAQeYZs3WXtSikKz9xuOPP25+//vfm+rq4Gq8txcArdP6sSYbms6KFSvMN998Y4Noos8DsNY030gzvdvTaAYoN2QUMooXGYWMkgtklLXIKEDhzVq0Mu5xhTGmK41mgLJCPiGfeJFPwplP3P/JJ+QTIArqlsRnFEaaAcoPGYWM4kVGCWdG4RwKGSUKWCoIjfG+RjNDetWaigqdDgJQSv70pz/ZFtui4eSOO+4423pbrdMXLlxoPv74Y/PMM8/kfPtdtGiRHTrPBSm1CFbFSy2aNTyeAocqnp9//nnS6Xz99de29brmVUPVqdLtWv0rDKpypQqbKm8KXAoa/qHsFB7UMlot+IcMGWJ69eplKyoKZwpi999/v52WKrF6rHlMRMP4KXR269bNBprNN9/cDtn36quvmhtvvNGGxV//+tdmxx13tJXkTKkS9ctf/jIWpNQDgcpM31cVelXY9Vnq2SFbmoYLUgqPCglaPq1atbLh8tNPPzWvvPKKXeaOvqeWjYYWVO8ErvLavXv3uGn36dMn7ruoRbcqvgrNap2tz9A6MXHiRHPHHXfYYKOW/xtssIFdZomodb+Wi8pJ4XinnXaygUHr7/XXX29mzJhh7rrrLtujhFrD+7311lvm8MMPt/NUVVVlh2VUK3MtV1VgFWQUHv/73/82eq8+U70yqIV48+bN7fLabrvt7HdV+FR56LuoEqzP0HTatm2bUZloepoHF4i8tJ56A6TKR+Wkbdi7rBXo3LTSoZ4KVKbads4+++xYLwbaRrzUS0MQbS9aT0866SS73FXW2ra1z9H/9cOCwrJ65sgFlZm2d5WReqLwDo+pddWVnRtyM116n5anG7LT+3kKUwrX2h7Us0IQ9eDhqLcV9U7h3Q7Spemo/LVNqJcJ/QDmgh1QyrRPzRf/jzHex9MXrIh7bt2OrfI6L8g9f90z6LEbFhnhorIdPXq0/UFdyCjhzijpliEZJRwZxXtSg4wS/oySy2O33ktdDuVs1sIVjS5Iq6mid0GgXHAOJTr5JF3kk3DkE86hRCufAIg31zfSTKfWbC9AOSGjkFH8yChkFCGjrEVGKS80mkFoTJj+00HWNZpBGWuoNxXL1x5MoqKhRQdjKvJ78lIt5FX5TkUtVv0BIBdU0XTD9Okz1MpWIcBLwUqt6b1Dz+WCKlRumqoYnHPOObHn1EJaQy1q+EO1Uk5GwxWqorTJJpuYhx9+2LZE9tJwi6rkaFoffvihHVbxV7/6VdxrLrzwQhsW/IFRAUHzobCioKXy0nCDl1xySdJlqvlXq2SFO0fDXWr4RwUsBUkNI3nKKaeYTP3zn/80H330kb2vcKjl6Ohz1SpaFV8FwGy5niY07KbWCX9L55133tl+D1fBlNatW9thUv/3v//F/qeW9skqjWoJrh4oFKD8lUaVmSrhavGtVv3qOSBZmFLZqKW4wtyGG24Yt0w0BKjmWUFWQdEfpvR/fR8FDs2Llp3e4zVs2DC73gRtB7/5zW/s/zXsrMpdwyp6aVr6HlqXNPytevxINLRmIgpAmne16v/yyy9tuHRcwNL3VqhUDxHqkUDrrKN1xg3VmW6Y0j5HZaqw6Oi76X/p0LqgbdK7LFUe2ib1P4UQfadchSkFNgUoBSn9GODdzrVOq5wV6BKFnkRczwVal7fZZpvY/7U+6scChX+FqkTTVdlfddVVtuwUJvUDhX4E0fv1w4/Wd/82EOTEE0+MlbV+GNAPQwr8Wjc1nWx7NgDyzfvDTr55f0SZ/mP8RWmDe3cu6Lyg6XRs1w/SagwV1OuKvXBWGWVZdDJKQ8v85RPvhcj64c7b01Uiqo8kyiiJys1x9W799b9O9Wl3ssdlFP3A7aVjqXqy0smERJ8TNA/ex/rO/uf//Oc/x+p7l112mf2R3lHdWL2I6cdx/ZDqnaZ/OmeeeabNKDrOP/bYY40yihsGXCeTlFFU3/DXiVTHDMooyhWaD9UNdFJC24rqBsnql1qmyjaqE3l/1FfdRnV29cKljKJ5VfbLlOp0LqPoe/z1r3+NW246+aVloh7hki1/L/9z7mSPvr9O9vmfV29U+gxlFPecjgvKiTpR46hnr2QZRXVKlUtQ/Uz1a2U4ZS5lFGVp1W39XCNOl1H047y3Dq1lonyiOrHqqPfcc0+juqT+r7JwGUX1TWVzL9XrlVWDtgOtDy6jqN7ozyj6fPVqp++kjHLLLbfYdT4Tqs+6jKKTnAMGDIg9px7r/BlFJ3e07IIyiqaVzrasvypT1fkdnZTT/xLxNqpVRtF67l2WKg9tk9oe9F30nU444QSTDe/2qnnV93UZReutdzvXY5dRVA7e7x+0b/RSzhKty/ou7nO1Puqk2MyZM+1rvJnQS2V/9dVX294NXUbRe3VSUstDuS2djKJ9hzej6Dtp36ZlqYziza2STaMXV3463lCXQzmbtTC+F+fubTk5GloRO4/COZS1OIfCORTOoYTjHIrWOzetdHAOZS3OoQDhaDTTuQ0jzYRSxPKJkFHWIqOQUcgo4cgoXOdFRokCGs0gFOYsXmmm+Xp33qJXZq0tUVoUpDr9Y5iJkrknvG8aWsZXzHNNFQndUlEIyKbFaiq6MKa+vt6GCA1HqIvRVKEM4r9QrSlU6b3vvvvs/Y022ijWutlfkVNrZ4UQ/3CijiqMGopRbr755kZBynsBlSqyqlCpVwN/mFLISWbw4MG2Vfnf//53W1lPFqZE8+0NUo6Cg4b3U+VLw0hmE6bc+qJeENQCOYguftGFWQoY2VClT7baaqukF+o09YIVXcyTjC7ou+iii2xo1EVXqtQnG25RPRV4g5T3IipVOhV03MVb/sqy6wlDwcgfpJJtB2r574Z01MWd/iDlqMKsC68UpBToswlT3mE5vWHKDdOp17gwpf95w5R6WHAXKXkDQT6p8h+0LLXeHHHEEbZHDvWWoB9DMu2RIYh6f9AFmepxRCHOu527i8r0vF6XLq1zbmhaXVjm/cFFF29pm9Z+NKjXA+8PDeppQfsQBUjtYzVNN1134Z/CoH70SbRdaB92wQUX2B41dBG5pqXvqpvos7UO6CJa9ejC6H6IskXLV5m6xfEXpfXtnPpHC5QfNZhpd/sWJip+HDneNLTKbz5xP9rplop+rM1HRlEdwZ9RElHPYbnMKK5RhzLKueeeG5hRNH/qkSlRRtGPn67np1tvvTVhRtGJBdVNVEfVj/n+H5hTZRTNo+o76rnt2WefTVm/VD00qM6lXpWuuOIKe5G98lU2jWbc+tK1a9fYCEF+6qVMvUU1NaPoh+R8ZpREvWs5qnMpM6j3M2W6VBlF5RJ0MkIZRfV1NeDQdPyUGVQmosYs/gYzybYDZRStV6KTp6kyitZp5eRMG8146/rKG95GMy5/aL5dRtH/vI1mipFRRo4cGbgstd6oLq4GX8ooier2mVL2UN1cJ0X9jeN0Qkb0fKYZZcyYMbEe0oIyin4f0faWLKPoNxl9Z21byiiappuutjGtH2qYp3U90XahE0fK7FrPlFE0LX1X3YIySj4uEgDKxaxF8edKutemv92jvETtPArnUOJxDoVzKH6cQ+EcSjKcQ1mLcyhA4dU3NDQeaaYVmT2MopZPhIwSj4xCRvEjo5BRkiGjrEVGKSzGY0coAta949ae2HdaN6syG3ThQjWglChEafhA0UUj3qHl8k0X2LlhJdWLb6KDvi7MUEvdRDTsn6jlrQJPMhoW0rWKThQYHc2bhljUkKHqIUI3V0nS0ImJwp1oPhQQg+h7uh5w1RI9U6rw6/NdpTBRq2UNV6mLV7LleqHQ8lVP44WiIS4VTrzL3Rvm1BNBIlq2qtgmopbvol4TvL0SixvOUcvTH7RT0UVFGvZV71VoT8aFGJWjeoPOhC5AdAHKhSfvjwqi4OLCi/817rG2c60fhZBOeSgUKPzlihuSUz9WaDhT0V93IWKmQ3bqIka3vQe91w3jqd4NXO/nQdRDgMpAvdX7A7n2RxoaVWFcF4EqcCei3lK0XSpYtWjRIu45rdf6sUcXAmp/5+0NBIia7+YujXusakbvjmQRoFwyivvBsdAZRcdOl1H0w2+ijKJjedDoIo6Ox6K6W6Jc4M8oqgukm1FUR9YP0rplklE0dHi+Morq76IfdJNlFD3f1IyihgDFyCje5e7NKJMmTUr4Xi1b77DvfurxLlFGcVlXP8zr5FIm9F6XUTSCSjonbdRAx9WfM8korqGMO3njzx/ajl0jlUSvUTYIOhmZD8nygCsPZRSVea7oNw+X29x09dflOPd8utSbodveR4wY0eh59z9lFHfiL4h6HFROOv/88wMzyvjx420jOL1OJ4yTndTUflu/UaTKKNrXAVH1wyJGmgHKEedQEuMcCudQ0sU5lMQ4h/ITzqEAhbVw+Wqzur4h7n+dWtNoBigHZJTEyChklHSRURIjo/yEjFI4jDSDsrZ4xWpz2XNfmTe/WltJcjbvWWuqKqPZEg5IRq1JdXAsBlVgXKXSBY1C8Q5V6i5MSVYJcb2d+rnKwpQpU2yL/HSoYqQKtf/1uvjptttuswHTtcBPFEIVthJ9Xqqh81yrfQWHpiw39W6darml00N4EAVcVdAVKFW5U2/ACrUKA6l6Xs6Uwpp6x37mmWfM119/bSvXyV6biHqfSNY7gYZrdDR8pbel+MSJE2MV/HSGTwxaB5cuXWqHcEyX1rFMe0ZXUNKQnW7oRtFwoQrmCpO64E2Verc+u/VcYc+FiXSH7MwFby8JyXqvcMOJ5oLWUQ3Bq2WiXgcUXtTDhNYr/V9DZmbC9f6sEOrtOdvRxafqOVzbpl6bLIzrO6v3Et30o4h6oNcwv/qr8hKV3x/+8Ae7Pqn3jSDa9rVtq7cJ9U6jm36g0jbreh3R8KD6wUUXlaY7zCqQL94hnnNNPYF49+eq1+g4/cl3dY16cV66aKGJb0qDUqc6m8rT/fCkY5160nF0fDNrkv9AHjar16w2DSlOCmTLLs8sMkqikxQqu2QnMFydT3+9r1P9059RNG/J6oiJBM2D97Gm633sbfygY3+y+dfx2P0gr9d5X+suCle9Ld0eu7S+q3ehpmQU1QOSZZRk38fVlVUvS3Xiyc/VpV19Otn7vdnPLX//tu34p6OGAKoHKzMo62SSUbzrt7+8mppR3CgdXm7fpYyinrYSfZ63Fy5lTDWQcVRPdOtis2bNMioXNXYQ1Sk7d+6c9vvUcCZVL3F+yheTJ0+2Jw7cPHoziurfLqPo5JjWU82TN6NoW0/2/YK2ZW+Z+rfloPd7ex9Mtzwy3RbEu66496tnP5dR1BudMop6RnQZRb0u+j/Lv2/00nvdutG/f/9Gr1P932UUvVYjxSSixkrKHbolyygajUr7h0QZRfNy5513pswoOimkE0CZZBSVn27ut5xMNLXXRCCXZi30N5phpBkgXZxD4RxKJjiHwjmUTM+haH3jHArnUICoqVvc+MJxGs0A6SOjkFEyQUYho3CdV3JklDoT9YzCSDMoW1/VLTVH3/tJowYzMmLI2tasAEqHhqPztzgvFO+FDqlCULLnsx2WUpUQr3vvvde2HtcFJcmClOMqrEFatmyZ9L2utwXvRT7pcr02SKqLn9INl0F0Uc0555xjW/9rSEUtl5NPPtmGDV3w87vf/S6rHhT8VAFU5V691qryl+piyKYsd11Y7fiXvdsWstkOcrUOpsMFIa2jClXigtXAgQPtOqGApqFDtSxdzwSqsC9atChuGoWQLJh6y8N7EVsuuF4B3FCd7m+mvQ/o4j8XlpO91z2nUJRubwoqLwWv0aNHm9dff92GXQ0t6/z1r39N2bu11nn1HqNhjxWudKGv9mWuhwMFsksvvTSt+QHySfvcfN38+w891v+/nRffPKZ3h+Z5nQ9u+bn56wWpHiO8GaVQZU1GKU5GSbd8ySjhyCjuOTJKNDOKTipnm1G0/mRalwBKyayFK+Ied69lpBmgHHAOJXr5JF3kk3DkE86hRDufcA4FUTZ3aXyjmXYtq01NFZcrAuWAjPITMko8Mkr6yCiJkVESI6PkDyPNoCy99MVc8/sXvjbLVsXvEDW4zFk79zHbr/dTy0+Up4YWHczcE943UfvOyL9EQ3amw1WKNUymWrGny9t7riql6glCvbMqgJx++um2gtKnTx87vGFNzdpeVe677z4bMErlIs2mLLd0/Pa3vzVHH320eeSRR8ybb75pWzmrcqYQpWWtXmSvueYac+yxx2Y1/ZUrV5oTTzzRBhktY90fPny47SlXvQU0b762x019ngJcqSz3ROugekB4/PHH036f1q9MeYOQenJWC38XprzPqUcRVer1Gg3f6obsVA/ebujQMFO4uf76623PJFpPFdTd/7PpfUAuu+wye0tG66d6O9D+JFNa7++55x7b87JCmfZHzz33nDnllFPSnobKV72FqKeF3XbbzW5j2nZdb3lAlEybH//jW+/28cPcIjyillHIJ4VDRskOGaU0kFFKDxmFjIJoW13fYOYsZqSZqCCjIB/IJ9khn5SGUs8n++yzD/mEfEI+QeTMXRLfaKZTK0aZCauo5RMhoxQGGSU7ZJTSUOoZhXMoZJT5EcsoNJpBWVlT32BufWua+ef7Mxs9175ltRm1//pmqz4/DY2GMlZRaRpadir2XMBXmdbBO1XrXVWAg3iHOPzhhx9MIXmHUFRralUkEpkzZ05aQ2BmOzSdWter4qKKyJNPPplwqEFv6/9i8Q41mWy5pPN8Onr37m3OPfdce9NwpxMmTLDL6F//+pftDUBDzmp4UA1pmClV8lwvBtddd13C4Q4Lsdy1LcyYMSOr7cBtRxp6UsM6aj3KF/WQoG1F4UABSUHWBSUN6eno/oMPPhh77q233ooNMdm2bVsTduutt54N4OPGjTO///3v7f/0uF+/fmlPQ/vVRx99NOPPzjZMuV4ZjjzySBumRMPYZkM/Lm255Za2BwodI7SdRSlMATJtga/RTAcazYQWGaXkkFHIKMmQUdJHRgkXMgoZBaUln/tFb4+L7vH8ZWvMGt/1AT3at8zrfCD/F7YEPbYXgpBRIpFPYuWdR+ST4uWTTC5kI5+k995Szicqb5dPNtlkE7sOleKFfbkU1Xzitu1c5RNNj/ocylWdr1F/5zY0mgkt8knJ4RwKGSUZzqGkL8wZRTiHEo2M4mwU8XMoNJpB2ViwbJX57TNTzHvfLWz03KBurc3oAzegxzQgj9Q6XkPxJats6kD6zTffBD6nof1UOf/xxx9jrZgLxRt8NCyeWkwnogp8IvoBWxUmtbZWRTibYRe/+OKLWAUkUZBy81lsgwcPjlsuI0aMyGq5ZUO9BAwbNsze1NpdFXmtX08//XRcmEr3hJJb7nLwwQcXdblr/hWmNIyofnxINtxk0DqoSveKFSvsvKoSm08KSgpT2mZnzpxpt28tc28PBC5Yffrpp2bu3Ll2SMhCD9lZbOptQPsGN9Rrsm0liALo999/b++rdwyt98moh46///3vNri89957Zuutt85qvrt3756TXkZyNR0gLCPN9KHRDFAwZBQyChklN8go4UNGIaOgdBTyhKPqNV/OX9t7pdO8utKst04XtoUyU1dXZ+sZOhleXd34VC4XzeaWd3kmWuaZ5JOFCxcmnIY3n2i79L5OF7YE5ZNsyjvoe3gfa5rex7owxvn444/NjjvumFb9VNPwTmezzTaL5RPVw7LJJ5MnT47NU7KL2lR3TTQfXqnK1NsAMdOyV13YOz+6eCWd+fUvf7905kOvUf1WN5WXLiDT+vXss8/ai9KCppVsOan3bOfQQw9N+DqtH8m+R7rL07teB61HLp+o59tM8one6/LJxIkTzdChQ00+qYdx5RNdbKSLOV0+2WmnnWLfSfddPtHvFy6fKLek2r4z3ZaD3h/0Pj/vfKSaZiLeuob//YcddlhcPjn88MMTfoZ/3yivv/56LJ+MHDkyrXyi3s2VTz744IOse8vu2bNnk5eLP58k2w6TlaF+k4jShWwI+UgzrWk0AxQK51A4h8I5lNzgHEr4cA6le06mU47iu6ECStiUOcvMuKmNG8zsv1Fnc8fhg2kwA+SZG/bP+8O+30svvWTDUqIf9fbcc097Xy2VvT+s55t+JHe9EKjFbqJem1RZfO211xJOR8M8it5/++23ZzUv6n0gWU8NMmvWLPPiiy+aYlMFSa3c5amnnjLLli0LfJ16ZNDz+eJOKIiG3fRyw22KTp6kWu5ufhO1Av/3v/9t8u1nP/tZbB1Q7wqZ2GuvvWKVVVWm880FIp3s+ec//2nvDxw40HTu3Dmu5wjtH7RdaJ7cPsDbS0EmWrT46WJzhcZycNBBB9kfnLQ+6u+BBx6Y1ZCdOuly3nnn2cCf7KZeOtxJFe3TvDLplc7744GG38xmOnqd259r3dT6AETJ4hWrzbylPx1jpHd7Gs0AhUJGIaOQUXKDjJIcGYWMApST7xfEHxt7tm8ZuROfQLHogrJUF+yMGTMmaT5x9bJC55PNN988lk9UD0h03NVFQq+++mrC6ey99972r95/22235TWfvPDCC6bYevToYeuiot6Uk+WTJ554oiD5RBc8Jconyeqy3nySaNkrn2SaF7Lhcq7mw9X5M3mvO+6p0US+uYyhCzDvueeewHyibJLLfJJumZaSQw45xNTW1tp5199kFz0GUS/YLp+cf/755uc//3nS269//etYPnHvLZV84n7LAqJk7tL4RjOdWzUr2rwAUcM5FM6hcA4lNziHkhznUDiHUk5oNIOyMbRPW3PGjj9toNWVFebiPfqa3w1fz7SoYVUGClWpUstXtXj10w/Cv/nNb5JO47TTTrOhSgffE044IdbiNtHJl1xRBeeII46w9ydNmmRuvvnmwMq2KijJKuS77rprrIeuW265JeVJDrXI9ociDfHnhshzw+V5qYJ9yimnJAwuhaaW/64yffnllwe+5rLLLmvSsJ0PP/xwXNjx856E8/+Y7O0FIlHvF97lHvQDuXPVVVcVJOSrtbpOpsmoUaNiw12msx2sv/765oADDrD3H3/88ZQnfdRbxmOPPZb1vHoD0R133JGwZwHXq4cLeNrOs+25y1umbqjVUqfevbT+TZ8+3f7NpLcvhXv1/idaZl26dEn5nk6dOsXKQSdjvaFz9OjRdvhQ/SiTjPaFt956a6MT8s7+++9vHnnkkaT7RDcMrnqpEPWcoHkDomT6gvgfffRzV892NOYHyjmjJMshZBQyikNG+QkZpTSRUcgoiK6ZP8aPhLlO+5ZFmxcgalw9RaMauF5a/fnkoosuSjqNM888M+1zKMmeyyaf/PKXv7T3NTrHjTfe2Og1qh+fffbZSY/Fu+22W6zX3JtuusnWD5P55JNPzPPPPx/3P424IzqeB+U85ZOTTjqpZPLJ8ccfHyvfSy+9NPA1v/3tb5uUT3QxTrr5xDXeyjSfuOUu999/f+BrVKdLdsFlrqiH33XWWSeWiZLlE/92oJ6/dfGTKHcoJ6fKJ6pjNmWkGcdlD+///PsHbz7JthfndMu0lCiPTJ061WYC/c00nzzzzDOxnJduPnHLXL+TePOJ8sLvfvc7e4FtMtoXaj/mystdcOvss88+9mK3TPKJepMmnyCK6hb7Rpppw0gzQKFwnRfnUDiHkhucQ0mOcyicQykn2Y0fChTJr7bqYT6dtcT87/tF5roDNjCb9awt9iwBZaWurs589tlnabUA7tevX9z/jj76aHP33XfbSu9RRx1le+nRgV8HWoUCVer0nCqtCgqJhhy88MILzbXXXmumTJliK2o6oaAfkFX5WLhwof0RUhULtcTNZc9b6nlIlQ5VTv/whz/YioR+eFdLas2v5l9DT6pHtWQ9wal3NLUCnz9/vj0xo8qGfoDX99Y8K1ToO/z3v/+1J8cUIPV6R59555132tbuRx55pDn99NPtj6Ra5jrZoOlrflQpCQpbhXbccceZBx54wH4nlb8q5wpYOmGhZXnXXXfZXhtSLbdktIwU1Pbbbz+z1VZb2ZbQCsBalhpy3fXO1bp1a3PooYc2GgJTy07DJWq90nCfagHtWukrtLRs2dIGYVVSNU0FmGnTptkftFXx0/K+9957zRtvvFGQ5a75VSVWoUrhWd9J9zU/ml9tU19++aXt0UNh3P+jgyrLWlcUNPTDvk4qar3acMMNTbNmzey6qZONr7zyinnzzTftdNWLV7a9UGhfoICg7TNRzwL6n07cuddsvPHGdpjebPTq1Su2fmk56b5CpBuCvmvXrraVf1hof+d6xdA2kC69VuusenxQr4qu1wNNS8tN+7Qdd9zR3lQeLuRo3dcPFCovF8I0VKj3pKhoHTz11FPtj2TqIVL7KW2bbdu2tZ+hY4n2f+7HNa17CnFA1KzTrrnNJdPmLzfTFiw3S1asMc2qadAPlFtGueSSS8zVV19tM4p6vyKjkFHIKGQULzJKesgoQDDtA/NF+yHvvk3b39B1WpjL9upvZi5cYX5YtML079wqr/OA/Fi1apWtm4nqs6pHqF7nrFmzJqNeKJGclqeji4pUz8wmnyiT/OMf/7Blpou7UuUTlaH/IqNBgwbZhjWqH7pzKLowTX8zySdaf/zT9j7Wd/Y/r55RdQGP6jxXXHGFvfAoVT7RNPzT0etcPlG20jE+VT5xvVeL6qLqAVrf4bDDDksrnwTNR7Jl4X8+aBmlS7lUdXd9J2UR1YlT5RPv8vdv30HzoQvwdFFbOvlE9Wzv+zfaaKNYPlHu1bEjKJ8oC7t8otcpZ6XKJ0HrUbrL07vd+ctPve/qgkaXT7T+ZJJPdAGQ1lWVhRoyaXtJlU9cQ5tMaZn584kuPvN/d/1POdafT1Ltz4PWXy0Dt37p4lFlpET5JJvyCCrXdHi/Rzbv907H+379brJ48WJ7f99990172nqttg/Vj9ToxuWTRYsW2XyiWyb5RA3SvJ89efJkc/LJJ5uLL7447XyifWumy0ZlqJvqBpnW6TK58A/Ip6O26mF26N/ezF2yyt4Gdm1V7FkCykopnEPhOi/OofhxDoVzKF6cQ0kP51BKA41mUFZ0cNTIMktXrjGd2zBkJ5ApVYZ1S0U/ovuHr1RFTRVe/TC/YMEC+9dLYUjD+qlCmyhMiRsSW69TJeAvf/mLvfll28NSIqoAqPKgYbl14kutsv0tsw8//HD7uWeddVbC6ahiqcqrQoYqE6rsJhtiU8OMew0ZMsSe9NKP9vr+11xzTWC40PIuhTClslKvYhoqUAFYFXTdvHbZZRc7z6rQZ0shJ9n6qfLTibKePXvG/V+VaoVa9fakk3gKJV4K5KroK4jp5MExxxxjg5fWVTcMpaPXab1U5TPf9APCfffdZ39Q1/akwKpbOrSt6Qd+VYDVY+HYsWPtLd11MFNaLq53Bx2Hg7ZNf8DKdshO55xzzrE/vCi8/+pXv4p7Tr0cuh5FwsANu6llm0mY0gkfnYzRDzOahgtT6sFBP+zoxJb248mGIlZAHTlyZGAIUrDXMLkK59oHJOpd0IXuG264IdaLJBAlbVtUm90HdCz2bABlrRQyik686FhMRiGjeJFRyCheZJTUyChA6otQ803bX98Oze2tWPOA3PBfQJ3qMcKVT9R4RcdOl0/+/Oc/25sf+SQc+STd7Zl8Es58ku3+nHwSvXyidYU6HcrVDuu1tzcA5ZtRuM4rWhklXWSUcGaUbJFRopdRyhWNZlB2WjWrsjcAhaferAYMGGBbyau1voaW1EF09913N2eeeaZtOZwOBSq12levazrQa6g7Tat9+/Z2+jvvvLPtQSzXFFDeeustW/FWq1+17FZlXL23qcKmVtrpVGjVUlcteNWjwdNPP21b3s+dO9dWXlTRVWtptdZVy+/NNtss8KI8/V/hQO9VK3T1hKCgpdb9CifpVqwLQWWsAKUWzQonavmu1sYa5l4BSgElWWU+FbWSHzNmjG3JrGkrWCloqmz0Geo9QMtFLc+DKNgr5KpC+cUXX9hW8EE/HO+22272c1QZ12eqzNRKXuucegH45S9/adfFQtH8qJcKBUj1WKGhD/W9W7VqZb+Peh5T+A+iCrPWPb1Pvf9pOvqRQD1N6Tvp/erNQb1fNPWHCb1fPTTIwIED7brqp+FU1fODWre7sNgU+rFCPUYo8Ko3BVXom9IzWamaOXOmXRdl6NChdltLl7YH9ZihQK3tUz3MqGzcDxsvv/yy3S61/KZOnWq3C4Us/TDh9lHaz+p+EO2b9QOFegEZN26c7TVNwzNrf6VePVQ++uFNw33qxxb9DwCAMGQUDVWuXn7IKGQUMgoZxYuMkhoZBQAAzqE45BPySS6QTxIjn6RGPgEAYC0yylpkFDJKLpBREiOjpEZGKQ0VDXRHhCbQhpsP2ti9w8VqJ0rPGeGhnbFaTKrloyoErpWzE8YDJuJR3tFBWUcL5R0tuSjvoDpBuoKCPZCvfCJklHAjo0QbZR0tlHe0UN7R0tTyJp8gH8goyAb5BJR3tFDe0UJ5RwfnUFCquM4L2SCjgPKOFso7OijraKkmo5jKYs8AAAAAAAAAAAAAAAAAAAAAAAAAkGs0mgEAAAAAAAAAAAAAAAAAAAAAAEDo0GgGAAAAAAAAAAAAAAAAAAAAAAAAoUOjGQAAAAAAAAAAAAAAAAAAAAAAAIQOjWYAAAAAAAAAAAAAAAAAAAAAAAAQOjSaAQAAAAAAAAAAAAAAAAAAAAAAQOjQaAYAAAAAAAAAAAAAAAAAAAAAAAChU13sGQAAAAAAAAAAAAAAAAAAAPlTVVWVl+lWVlYmfYzyVlFRkfJxQ0NDgecKhUJ5RwvlHR2UdbTkurwrKiryVq/MJxrNAAAAAAAAAAAAAAAAAAAQYh06dCjI57Rr164gn4PCqKursxfWqjFUdXXjy03L8aJZZI/yjhbKOzoo62ipyrK8XcPompqagtUrc4lm3QAAAAAAAAAAAAAAAAAAAAAAAAgdGs0AAAAAAAAAAAAAAAAAAAAgkEabAQAA0dVQ5nWBxuPlAUCeaYiu+vp6uwPVraKiotizBAAACszVA7zDdwJAsZBRAACINvIJgFJCPgEAAGQU5Mv8+fPzMl2tp+3atYs9/vHHH22dFuGwZs0aW57KJqtWrbLlXVVVFfd8uV9Ei8RU7pR3dFDe0UFZR0suyruhoSH2m6Xen2m9skOHDqbYaDQDoOCqq6vN6tWr7c5z5cqVpnnz5sWeJQAAUGCqA7gAproBABSTfiByGUV/a2pqij1LAACggFw9QLwnjgCgGDiHAgAAyCjIF13gWAi6oLJQn4X8035IjWUSZRQusg43f/lS3uFGeUcHZR0tuSjvlZ7rvFQ3KMe6Ht0RACi4Fi1axO4vWbKEAy4AABGjY7/qAEF1AwAoBu8JnmXLlhV1XgAAQOF5j/9cnA6g2DiHAgAAyCgASgkZBQCAaGsIyXVeNJoBUHD6UUfDfcmKFSvsMF3Lly8nVAEAEHI61rtjv/6K6gSc8AFQbN79kH7sWbx4se0JDwAAhJuO9zrue0/2kE8AFBvnUAAAiC4yCoBSREYBACCaGkJ2nVd1sWcAQPRUVlaa9u3b2x2paGdaV1cXe45QFX4qZ4eLEcONso4WyjtasilvHeP9x3nVCbzTAoBiqK6uNm3atLEnpGXRokX2vvZP+tGH41q4UYeJFso7WijvaMmmvP2vU31A9QIAKCbOoYA6TLRQ3tFCeUdHtmVNRgFQisgooA4TLZR3dFDW0VLJdV40mgFQHBqeq0OHDmbBggV2p+pClG4cgKOF8o4OyjpaKO9oyaa8dRG6glS5DtkJIHx0AnrNmjVm2bJlsf0UGSV6KOtoobyjhfKOlmzKu2XLlrY+AAClgHMocCjvaKG8o4Xyjo5sy5qMAqCUkFHgUN7RQnlHB2UdLfURvc6LRjMAikY7z65du5pVq1bZELVy5Up7kZp7jHDSwbOmpib2mPIOL8o6WijvaMm2vPXjqXpEUx1AQ3WWa88DAMLJ/cjTunVrs3z5crtfUz4RjmvhRR0mWijvaKG8oyWb8tZ7dGvWrJlp1apV3PsBoBRwDiWaqMNEC+UdLZR3dGRb1mQUAKWOjBJN1GGihfKODso6WrjOay0azQAoKu1E9YOPeiNwNJynuzgN4VNVVUV5RwRlHS2Ud7RQ3gDCTD8WuR7THPZz4cUxLVoo72ihvKOF8gYQVpxDiR6OadFCeUcL5R0dlDWAMCOjRA/HtWihvKODso4Wynut8m7yAwAAAAAAAAAAAAAAAAAAAAAAAASg0QwAAAAAAAAAAAAAAAAAAAAAAABCh0YzAAAAAAAAAAAAAAAAAAAAAAAACB0azQAAAAAAAAAAAAAAAAAAAAAAACB0aDQDAAAAAAAAAAAAAAAAAAAAAACA0KHRDAAAAAAAAAAAAAAAAAAAAAAAAEKHRjMAAAAAAAAAAAAAAAAAAAAAAAAIHRrNAAAAAAAAAAAAAAAAAAAAAAAAIHRoNAMAAAAAAAAAAAAAAAAAAAAAAIDQodEMAAAAAAAAAAAAAAAAAAAAAAAAQqe62DOA8ta5c+e8THfu3LlmxIgR9v7f/vY306lTp7x8DkoD5R0tlHd0UNbRQnlHC+WNqOUTYb2PFso7OijraKG8o4XyjhbKG6WKjIJcoKyjhfKOFso7Wijv6KCsUcq4zgu5QHlHC+UdLZR3dFDW0UJ5r8VIMwAAAAAAAAAAAAAAAAAAAAAAAAgdGs0AAAAAAAAAAAAAAAAAAAAAAAAgdGg0AwAAAAAAAAAAAAAAAAAAAAAAgNCh0QwAAAAAAAAAAAAAAAAAAAAAAABCh0YzAAAAAAAAAAAAAAAAAAAAAAAACB0azQAAAAAAAAAAAAAAAAAAAAAAACB0aDQDAAAAAAAAAAAAAAAAAAAAAACA0KHRDAAAAAAAAAAAAAAAAAAAAAAAAEKHRjMAAAAAAAAAAAAAAAAAAAAAAAAInYqGhoaGYs8EAAAAAAAAAAAAAAAAAAAAAAAAkEuMNAMAAAAAAAAAAAAAAAAAAAAAAIDQodEMAAAAAAAAAAAAAAAAAAAAAAAAQodGMwAAAAAAAAAAAAAAAAAAAAAAAAgdGs0AAAAAAAAAAAAAAAAAAAAAAAAgdGg0AwAAAAAAAAAAAAAAAAAAAAAAgNCh0QwAAAAAAAAAAAAAAAAAAAAAAABCh0YzAAAAAAAAAAAAAAAAAAAAAAAACB0azQAAAAAAAAAAAAAAAAAAAAAAACB0aDQDAAAAAAAAAAAAAAAAAAAAAACA0KHRDAAAAAAAAAAAAAAAAAAAAAAAAEKnutgzAPjNmTPHPP/882b8+PFm7ty5prq62nTv3t1su+22Zq+99jLNmzcv9iyWpR9//NFMmTLF3r766it7W7RokX1u5513NqeffnpG05swYYJ56aWX7HQWLlxo2rZta/r372/22GMPM2TIkLSmsWbNGvPyyy+bt956y3z//fdm+fLlpmPHjmaTTTYxe++9t+ndu3da09Hna50ZN26cXX+kS5cuZquttjL77LOPqa2tTWs6U6dONS+88IKZOHGimTdvnmnRooXp2bOn2WGHHczuu+9uqqqqTDlQmah8Pv/8czN9+nS7fDTvWrYDBw40u+22m9lwww3Tnh5lXbqWLl1qy8dt0/ouWkYrV640rVu3Nr169bJlpDJPZ9l88cUX5sUXX7TrjvYZrVq1Mn379rX7CC2bdKmcX3vtNfPdd9/ZeWzXrp1d54YPH24GDBiQ1jRWrFhhy+jdd981s2bNMqtXrzadOnUyW2yxhV1nVO7piMox5d577zVPPfVU7PHll19uNtpoo6TvYdsufSNGjEjrdYMHDzZXXHFF0tdQ3kDTROV4Ukjkk2jt58go0SlvMkpqUTmmkFHCtW07ZJRolTdKW1SOJ4VERonWfo6MEp3yJqOkFpVjChklXNu2kE+iU9YofVE5lhQaGSU6+zrySXTKmnySWlSOKeSTcG3bDhml9Mu7oqGhoSHvnwKk6YMPPjA33XSTWbZsWeDzPXr0MJdccok9ECJ3O+RMwlR9fb25/fbbzSuvvJLwNaq4jRw50lRWVibdkY4aNcru1IPU1NSY448/3u4Mk/nyyy/N6NGjzYIFCwKf79Chg7ngggvM+uuvn3Q6OsDcddddtsIWRO+/+OKL7cGnlKkC9dlnn6V83U477WROOeUUW7FMhLIu7bKWjz/+2Fx11VUpX6eKyZlnnmk233zzhK956KGHzKOPPmoSVQsUYs477zzTrFmzhNNQiPvTn/5kK21BKioqzKGHHmp+8YtfJJ1fhSetMzNnzgx8vmXLluass84yW265ZdLpROWY8u2339rvoYpuOmGKbbv0t+1chinKu3zKG6UrKseTQiOfRGc/R0aJVnmTUcgoQkYJ37btkFGiVd4oXVE5nhQaGSU6+zkySrTKm4xCRhEySvi2bSGfRKesUdqiciwpBjJKNPZ15JPolLWQT8gnQj4J37btkFFKv7xpNIOS8c0335jLLrvMHozVguyggw4yG2+8sX389ttv2xZv7uB37bXX2oMpstshd+7c2bbQ++ijjzIOU/fff7954okn7P1+/fqZAw44wHTr1s388MMPtvWrylFUfkceeWTCHbt2+mrlLMOGDbMtINu0aWN3so899pht/ayKl3aEiVpG1tXV2eddC/t99903Vrn68MMPzbPPPmsrF2r9rHVGrZeDqGXyddddZyuReu0hhxxiNthgA7N48WK7s37//fft69SCWvOd7GBTbKowqyx0MFILa82zylvLfPLkyeaZZ56xrTRl++23N2effXbCaVHWpV3WLkz97W9/s5Xm9dZbz5Z1+/bt7fdTa3u13td3UjkoOF9zzTW2RwG/MWPGmDvuuMPeVxkffPDBpk+fPmb+/PnmueeeM5988kla68xf//pX884779j7mie1JNa6qFbCjz/+uF13RJU2rQdBFHxU1i5IqWKmz1WImzRpkl0n1epZPQdceeWVgd8nSscUle1vf/tbW8HVOq3tKVWYYtsu/W3bf+z+2c9+Zm+JaB3v2rVr4HOUd/mUN0pTVI4nxUA+ic5+jowSrfImo5BRyCjh3LYdMkq0yhulKSrHk2Igo0RnP0dGiVZ5k1HIKGSUcG7bQj6JTlmjdEXlWFIsZJRo7OvIJ9EpayGfkE/IJ+Hcth0ySqeSL+/ETU+BArvnnnvsQU4b16WXXho3tJsOgDrgaVgyHWCffvrptFvlYS21+tXwXLqpsjV79mxzxhlnZDSNGTNm2GUvms7vf//7WGtktfQbOnSo3WnpoK7XqUVjUMteDefndsg6OJx44omx5zQd7YQvuugiW6m6++67zaabbho49NaDDz5od8ii1sgKD86gQYNs5VKVO+3g9dqgwKiWi/oM7ZBVmVLlzDvParF95513mv/+9792nt944w2zyy67mFKlkHzEEUeYbbbZptHBQ9uUeh5QBVPbkSqUe+65p2256kdZl35Zu32jwlQi2223na1UXH/99fb7P/LII+b888+Pe40qH/fdd5+9rzB29dVXx7XYVUVHrYVV0dE6owpUUCVdQccFKb1HLYjdOujWGVWiVJnS52kdVUXMT5U7F6SOOuooW/HzrsP6bK17GtZTx41Era6jckzR0IfaDrXta8hDV2lOhG27PLZtP22T+oEjU5R3eZY3SktUjifFQD6Jzn6OjBKt8iajkFHIKOHctv3IKNEqb5SWqBxPioGMEp39HBklWuVNRiGjkFHCuW17kU+iU9YoPVE5lhQLGSUa+zrySXTKWsgn5BPySTi3bT8ySumWd3k0v0LoTZkyJTbU4K677hp30HP2228/e7BwB49EwzQhmCoKquAoSGVLLZHdsHDHHXdco+H71CJY/xe9Tq3dg7gduypSv/rVrxo9r52iWkC74ftcS0IvDff15ptv2vubbbZZ3A7ZW5HUc6KdadAQYZq2axWtzww6iGgeW7duHavolTJVVvW9E7W21AH56KOPjj1WC/UglHXpl7Wk06pWLYXXWWcdez9oSFe1xF+6dKm9/8tf/rLREHf6DFWc3GclWi6urFWB8r7e0XQ1fVmyZEngEILar2v/Ltrfa7/vN3DgQHuckE8//dQeP6J6TFEw/c9//mPvn3TSSUmH4XXYtstj284Vyjta5Y3ci8rxpFjIJ9HZz5FRolXeZBQyChklnNt2rlDe0Spv5F5UjifFQkaJzn6OjBKt8iajkFHIKOHctnOBso5OWSM/onIsKSYySjT2deST6JS1kE/IJ+STcG7buUJ5m7yXN41mUBK8G507SPrpwKzhJd2B2A0jh8JQS79x48bZ+6qABFVORP93FbcPPvjAvs/fGvL777+397Uj1Y48iLe1YNBO2TvtROuMdzp6rd7j576T/zO9NI9upz99+nT7HcqZt/W4OyB5UdbhKWvHDUm5atWqhMtFr9l6660D36+h8zbZZJNYTwNqZeylxxMnTrT39bpEQ+1p+m5egspa+3UX7LS/TxQWU60zUTmmqJW1hjDV9wjqScSPbTt823YylHe0yhv5EZXjSbliPxeu/RwZJVrlLWSUcB5TyChrRXnbTobyjlZ5Iz+icjwpV+znwrWfI6NEq7yFjBLOYwoZZa0ob9uJUNbRKWvkT1SOJeWMfV149nXkk+iUtUM+CecxhXyyVpS37WQo720LUt40mkFJ+OKLL2Irv4ZsSsR7sHDvQWFomM/58+fHhtZKxpXTvHnzzJw5c+Kec8N+eV8XRD0laFi9RGWd7nS8z3nf4/+fDiTJemcI07rnbWkdVFmlrMNT1qJKxLfffmvvuxb33nXBteBXhSpZC3a3XBTINMSflx679SpZGWn6rkLnfU+mZa3hB12FLqiMonBM0RCp48ePT9giPAjbdvmWdzYo72iVN/IjCseTcsZ+LlzrHRklWuVNRgnnMYWM0ng6Udu2U6G8o1XeyI8oHE/KGfu5cK13ZJRolTcZJZzHFDJK4+lEbdtOhrKOTlkjf6JwLCl37OvCs+6RT6JT1kI+CecxhXzSeDpR27ZTobwHF6S8aTSDkqDWYaKhlzTkWyKuhZz3PSgM7/L2V8gyKadMpuOenzt3rm1lGzSdVq1aJd2ZdujQIdbi2bWgdDRNTds/z8nmJWg65UZDHSYrA8q6/Mt6xYoVZubMmXYIvssvvzw2bN8+++zTKGjV19dnVEZBy8Vb1qmWr3te86Th/RJNJ9n86DjhhuoLKqOwH1PUY8I999yTcKjVRNi2y3fb1hDL5557rjnqqKPs0MtnnXWWufnmm22PIIlQ3uVb3igdYT+elDv2c+Haz5FRwl/eZJRwH1PIKNHbtsko0SpvlI6wH0/KHfu5cO3nyCjhL28ySriPKWSUaG3b5JPolDVKS9iPJWHAvi48+zrySfjLmnwS7mMK+SR62zYZpXTLO3FTQ6BAVq5caRYtWmTvJxrqzVFLS7UoVUXBbUwoDO/yTlVOnTt3Dnyfa93odOzYMel03Odo6C69z7vjdNNNNS9ufqZNm9ZoXjL5Tt7n6+rqTLlSxfmJJ56IPd5uu+0avYayLs+yfu2118ytt96a8PmDDjrI7LDDDk0uI8nl8u3Vq1ej+dF+vnXr1imn891335mFCxfaXhFqamoic0y59957zYIFC8zAgQPNbrvtlvb72LbLc9sOCjj6IUK3N954w2y11Vbm9NNPtyHFi/Iu3/JGaYjC8aTcsZ8Lz36OjBLe8iajkFFSYdsuz21byCjRKm+UhigcT8od+7nw7OfIKOEtbzIKGSUVtu3y3LbJJ9Epa5SOKBxLwoB9XTj2deST8JY1+YR8kgrbdnlu20JGKd3yptEMis7bQq1FixYpX6/X6MDnb9mG0iknN5ye/32ybNmynEzHPU5nnXHTacq8eJ8v53Xv2WefjQ3TOGzYsMAhDSnrcJS107dvXzNy5Eiz/vrrN3ouV2WUq+XrppNJWbvpuDAV9mPKZ599Zl555RXbs8JJJ51kKioq0n4v23b5bdv63ltuuaXZZJNNbIt6fQf9gKCeZMaMGWN/OBg3bpz54x//aC699NK4oXcp7/Irb5SWsB9PwoD9XHj2c2SUaJW3kFHCdUwho0Rr2yajRKu8UVrCfjwJA/Zz4dnPkVGiVd5CRgnXMYWMEp1tm3wSnbJG6Qn7sSQs2NeFY19HPolOWTvkk3AdU8gn0dq2ySjLS768aTSDolNrUce7E0jEvcb7PpRWOblKjf99opbCuZiOe5zOOuNtmZztvHif976vnOjge//999v77dq1sxWxIJR1eZa1WiFff/31se//ww8/mLFjx5r333/f3HDDDebYY4+1lbJ8lFG2yzfRdDIpa/90wnxMWb16tbn99ttt6+59993X9OnTJ6P3s22X37Z92223BfbGsemmm5rhw4ebUaNGmW+++cbu3//73//GDc1LeZdfeaO0hPl4Ehbs58KxnyOjhLu8ySjhP6aQUaK3bZNRolXeKC1hPp6EBfu5cOznyCjhLm8ySviPKWSUaG3b5JPolDVKT5iPJWHCvq7893Xkk3CXNfkk/McU8kn0tm0yysqSL+/KvE0ZSFOzZs3iDhSpuNd434fSKifvTstfTt4dbVOm4x6ns8646TRlXrzPe99XLjT82ejRo82aNWvs/J977rk2UAWhrMuzrFXhUuVaN/U2sP3225vzzz/fnHHGGWb27Nm2hbKG9sxHGWW7fBNNJ5Oy9k8nzMeUxx57zHz//fd2SMNDDz004/ezbZfftp1s+Nr27dub8847z/ZGIS+88ELc85R3+ZU3SkuYjydhwX6u/PdzZJTwlzcZJfzHFDJK9LZtMkq0yhulJczHk7BgP1f++zkySvjLm4wS/mMKGSVa2zb5JDpljdIT5mNJmLCvK+99Hfkk/GVNPgn/MYV8Er1tm4zSrOTLm0YzKLpMh1XKZNgnFKecNARe0PukZcuWOZmOe5zOOuOm05R5yXQowFKiivRVV11llixZYiorK80555xjBg8enPD1lHX5lnWQnXbayWyzzTa21fo//vEPs3jx4pyXUa6Wr5tOJmXtn05YjykKUU888YS9f/zxx2c1v2zb4dq2pVu3brY3Apk1a5aZN29e7DnKO3zljcIK6/EkTNjPlfd+jowSrfL2I6OE45hCRmHbDkJGiVZ5o7DCejwJE/Zz5b2fI6NEq7z9yCjhOKaQUdi2/cgn0SlrFF5YjyVhw76ufPd15JPolHUQ8kk4jinkE7btIGSU4pc3jWZQdGpdVltba+/PnTs36WtVCXAbWKdOnQoyfzCNlneqcqqrqwt8n3Ts2DF237vTD+I+p6KiIu593ummmhfv/CSbl1TT8T6v1r/lQsv4yiuvNPPnz7fL8dRTT7XDOyZDWZdnWSfjylz7z//9739NKqOg5ZvJOpNs+br50Xwq/KcznbZt28a1Lg7rMeXZZ5+1LapVedY8v/32241u6mnEmTRpUuz/rlLJth2+bVt69eoVWB6UdzjLG4UT1uNJmLCfK9/9HBklWuWdCBml/I8pZBS27UTIKMnnJWzljcIJ6/EkTNjPle9+jowSrfJOhIxS/scUMgrbdhDySfJ5CVNZo7DCeiwJG/Z15bmvI59Ep6yTIZ+U/zGFfMK2nQgZpbjlXZ23KQMZ7gg+++wz23pOwwq6Iaj8ZsyYEfceFI53easlbDLJysk/nb59+yacjvsc7Uz9rQc1na+//tosXbrULFiwwA5fFkQhYtmyZfZ+z549G7Vk1LS1w/XOc7J5CZpOqVq4cKHteeCHH36wj4877jiz8847p3wfZV1+ZZ2KAoczZ86c2P111lnH9kpRX1+fsqyTLRdvWadavu557ee7d+/eaDrvvfde7PMGDBgQOA0dJ3S8CJqXsB5T3DCG2p5vuOGGlK9/9NFHY/dvvvlmu12xbYdv23bBJQjlHc7yRmGF8XgSJuznynM/R0aJVnknQ0Yp/2MKGYVtOxEySvJ5CZoOkK4wHk/ChP1cee7nyCjRKu9kyCjlf0who7BtByGfJJ+XoOkA6QrjsSRs2NeV376OfBKdsk6FfFL+xxTyCdt2ImSU4pY3I82gJAwcOND+VatKbWiJfPrpp43eg8Lo2rWr6dChg72vSkoy7nm1FOzSpUvccxtuuGFgefppRztz5syEZZ3udLzPed/j/592yvrMsKx7OlhdffXVZvr06fbxkUceaYYPH57Weynr8irrdCQayq+6utqsv/769v7kyZNtC/dUy0Wt/fv37x/3nB5rWt7XBdH09Tn+92Ra1l999VWs54CgMuKYEoxtO5zl7fbz/hb6lHc4yxuFxfGktLGfK7/1jowSrfJOhYyS/Dslmk7YsG2Hs7zJKNEqbxQWx5PSxn6u/NY7Mkq0yjsVMkry75RoOmHDth2+8iafRKesUXgcS0of+7ryWvfIJ9Ep63SQT5J/p0TTCRu27XCWNxmluOVNoxmUhGHDhsXuv/rqq4GvUQvZ119/3d5v3bq12WijjQo2f1jbwtEN/adWfa5C5Kf/u1Z/Q4cObdQyUi2eXUvAsWPHxipEfq+99lrg+uF4p51onfFOR6/Ve/y8Q1h6P9NL86h5dS0o9R1KmeZ31KhR5ptvvrGPDznkEHPQQQel/X7KunzKOl3uO0mfPn0Cl4ta/LrW/35q7Ttx4kR7f+ONN7atgL30eJNNNrH39bpEw+lp+q5lcVBZa7/eqlUre1/7+4aGhqzWmTAeU04//XTz0EMPJb0deuihsddffvnlsf+rUi1s2+HbtmfPnm0+/vhje19DunrDFOUdvvJG4YXxeBIm7OfKaz9HRolWeaeDjFL+xxQyCtt2EDJKtMobhRfG40mYsJ8rr/0cGSVa5Z0OMkr5H1PIKGzbfuST6JQ1iiOMx5KwYV9XPvs68kl0yjpd5JPyP6aQT9i2g5BRXit6edNoBiVBLWAHDRoU28CCNvhnnnkmtrHvvffejVquIv/22WcfO8Sf3H333WblypVxz+ux/i8aJm/fffcNnM7+++9v/y5evNjce++9jZ7XUHuPP/64va9h/YJ2yhrua8cdd7T3P/roI/Puu+82eo12pHpOdtppp8AhwjRtHYBEn+mGAvT697//bZYsWWLvH3DAAaaUqYX39ddfb7744otYmR1++OEZT4eyLv2ydhUJf9kE7TsnTJhg76tS7fa1zu677x4LMPfff79ZtGhRo9Bx55132r/Jlosraw2T+Y9//CP2eu8wsvfdd18svOy2226NpqH9uvbvov39008/3eg1Oj64itjgwYNjPSh4cUxJjG27PLZt+eCDD+z2lIha3//pT3+K9Ryy1157NXoN5V0+5Y3SxPGk9LGfK4/9HBklWuVNRiGjZIptuzy2bSGjRKu8UZo4npQ+9nPlsZ8jo0SrvMkoZJRMsW2Xx7ZNPolOWaN0cSwpD+zrSn9fRz6JTlkL+YR8kim27fLYtoWMslNZlHdFQ6LmfUCBqbX0ZZddZjdsDSt38MEH2xahevzOO++Yl156yb6uR48e5tprr23UAhbJff7553E7HFVs3A5Rw1mpQuW1yy67BE5Hla0nnnjC3u/Xr5858MAD7U7thx9+ME8++WSs1btavGuoyCCqZKl1rKvwb7311vbz27RpY6ZMmWIeffRR8+OPP9rWhxdffLEZMmRI4HTq6urs8/ouOgjst99+Zsstt7TPffjhh7aypANR27ZtzXXXXWc6deoUOJ3x48fb57U7bNeunfn5z39uK2M6aLz88suxVtkaKuyKK66IHZhKkYLU+++/H2spfuyxxyZ9vSqQiVpmUtalXdauVbpa9Gu5ap5VPtp/Ll++3EydOtW8+eabsWWvstYy3HTTTRtNZ8yYMeaOO+6w9zUN9Vqhngrmz59vnn32WfPJJ5/Y57bffntz9tlnJ5yfv/71r3Z/Ldp/q2KmYQM1L4899phdd2TkyJFmjz32CJyGvo/m0w3/p9dtt912plmzZnY+VHnS99Pjq666yvTt2zdwOlE8pqi3gUceecTe13aXqFcFtu3S37bd9q2gpGU7YMAA+2OI1nstKw1Jqe3W/fih76X1XcPq+lHe5VHeKF1RPJ4UCvkkOvs5Mkq0ypuMQkbxIqOEZ9sWMkq0yhulK4rHk0Iho0RnP0dGiVZ5k1HIKF5klHBt2+STaJQ1SlsUjyWFREaJxr6OfBKdshbyCfnEi3wSnm1byCjXlUV502gGJdfa7qabbooN6+ang94ll1xiW7chM7fccktsiLp0D8qJdqh///vfkw65pZbFqiwl23lpR6qhJb/66qvA53VAOP744xuFPL8vv/zSjB492rbEDKLWixdccIHZYIMNkk5HFau77ror1pLTTztpHQC0gy9lI0aMyOj1Xbp0setGEMq6tMvaVbbmzJmT8nWqkJx66qmBQcq7zatClKhaoMrRr3/9a1uZS0RBRS2iXY8HfqpoqdKTaj3VDz9aZ1yg8lPwOeuss2KVsESidkxJN0yxbZf+tp3J9q1gc8opp9iePYJQ3uVR3ihtUTueFAr5JDr7OTJKtMqbjEJG8SKjhGfbFjJKtMobpS1qx5NCIaNEZz9HRolWeZNRyCheZJTobdvkk/Iva5S+qB1LComMEo19HfkkOmUt5BPyiRf5JDzbtpBRNiiL8qbRDEqOdhzPPfecbV02b94822pWB7ptttnGDB8+3DRv3rzYsxjpMOWofLQj005VLSBra2tN//79zZ577pmw5aGfWhmqpeBbb71lh89Tq+KOHTvalvMaaqx3795pTUc7eK0z48aNix141FJz6NChtgW05i0daiX9/PPPm0mTJtl1T62We/bsaXbYYQd7cFBryVKXyzDlUNala8aMGbZ81MOIWhOrcqIWuAo8qkCodb4Cx7bbbpvWvlOti1988UXz2Wef2dbEqpytu+66tkcSLZt0qZw1pOh3331nh85TC2ENo6l9uFpSp0PriOZFQ/spXKnCpFCodU7rjNbddETpmJJumHLYtkubehnQTcPOavtWGemHAX0nbQvalrRtprtNUd5A00TpeFIo5JPo7OfIKNEqbzJKalE6ppBRwrNtCxklWuWN0hel40mhkFGis58jo0SrvMkoqUXpmEJGCc+2TT6JTlmjPETpWFJIZJRo7OvIJ9EpayGfpBalYwr5JDzbtpBRyqO8aTQDAAAAAAAAAAAAAAAAAAAAAACA0Ek8Ng8AAAAAAAAAAAAAAAAAAAAAAABQpmg0AwAAAAAAAAAAAAAAAAAAAAAAgNCh0QwAAAAAAAAAAAAAAAAAAAAAAABCh0YzAAAAAAAAAAAAAAAAAAAAAAAACB0azQAAAAAAAAAAAAAAAAAAAAAAACB0aDQDAAAAAAAAAAAAAAAAAAAAAACA0KHRDAAAAAAAAAAAAAAAAAAAAAAAAEKHRjMAAAAAAAAAAAAAAAAAAAAAAAAIHRrNAAAAAAAAAAAAAAAAAAAAAAAAIHRoNAMAAAAAAAAAAAAAAAAAAAAAAIDQodEMAAAAAAAAAAAAAAAAAAAAAAAAQodGMwAAAAAAAAAAAAAAAAAAAAAAAAgdGs0AAAAAAAAAAAAAAAAAAAAAAAAgdGg0AwAAAAAAAAAAAAAAAAAAAAAAgNCh0QwAAAAAAAAAAAAAAAAAAAAAAABCh0YzAAAAAAAAAAAAAAAAAAAAAAAACB0azQAAkEN9+/Y1FRUV5thjjy32rAAAAAAAGQUAAABASSGjAAAAACgV5BMAiA4azQAAAAAAAAAAAAAAAAAAAAAAACB0aDQDAAAAAAAAAAAAAAAAAAAAAACA0KloaGhoKPZMAAAAAAAAAAAAAAAAAAAAAAAAALnESDMAAAAAAAAAAAAAAAAAAAAAAAAIHRrNAAAAAAAAAAAAAAAAAAAAAAAAIHRoNAMAQAIzZswwF198sdliiy1Mu3btTE1NjenWrZvZZJNNzBFHHGHuueces3Dhwrj39O3b11RUVJhjjz027v/ffvut/X+6t1122SXhfL366qvmmGOOMeutt55p1aqVadu2rZ2nCy64wM4zAAAAgHAiowAAAAAoJWQUAAAAAKWCfAIASKY66bMAAETUm2++afbbb79GYWn27Nn2NmnSJPPggw+azp0729cVwvLly81xxx1nP9dP86Pb3/72N/PAAw+Y/fffvyDzBAAAAKAwyCgAAAAASgkZBQAAAECpIJ8AAFKh0QwAAD4rVqwwhx9+uA1StbW15tRTTzW77rqr6dq1q1m5cqX55ptvzDvvvGMef/zxtKfZs2dPM3HixKSveeihh8yVV15p76+77rpxzzU0NJhDDz3UPPvss/axwtKIESNsLwSVlZXm/fffN3/605/M1KlT7evefvttM3To0Ky+PwAAAIDSQkYBAAAAUErIKAAAAABKBfkEAJCOigbtnQEAQMwrr7xidt99d3v/6aefTtjDwOrVq83SpUvtsJneYTu/++47O6ymhvVM1wcffGB22mkns2zZMjNo0CDz7rvvxk33jjvuMCNHjrRDhz711FNm+PDhjaYxf/58s+OOO5pPPvnEbL/99uatt97K8JsDAAAAKEVkFAAAAAClhIwCAAAAoFSQTwAA6ahM61UAAETIrFmzYvcVcBKprq6OCzzZmjFjhjnwwANtkOrYsaMNcN7pqn3rddddZ++fddZZgUFKOnToYEaPHm3vqweCL7/8ssnzBgAAAKD4yCgAAAAASgkZBQAAAECpIJ8AANJBoxkAAHx69OgRu3/33Xfn9bMUoA466CAbqBTOHnnkEdO/f/+413z66afmq6++svc1JGcy3vA3duzYPM01AAAAgEIiowAAAAAoJWQUAAAAAKWCfAIASAeNZgAA8Nlhhx3MeuutZ++fc845ZtiwYWbUqFG2Vf/KlStz+lnHH3+8GTdunL1/4403ml133TVwSE9n2223NRUVFQlvbdq0CexJAQAAAED5IqMAAAAAKCVkFAAAAAClgnwCAEgHjWYAAPCpqamxQ2cOGjTIPlbY+c1vfmNDVvv27e2wmffff79Zs2ZNkz7nyiuvNA8++KC9f9ppp5lTTz018HWzZ8/OavpLly5t0vwBAAAAKA1kFAAAAAClhIwCAAAAoFSQTwAA6ahO61UAAETM4MGDzcSJE22o0u2NN94wU6ZMscNsvvjii/b25z//2Tz33HOma9euGU//0UcfNZdffrm9v/vuu5sbbrgh4Wu9oU3z0rdv37Q+I5v5AgAAAFCayCgAAAAASgkZBQAAAECpIJ8AAFKh0QwAAAlUVVWZgw46yN5k5syZ5oUXXjC33HKL+fDDD+3t5JNPNo8//nhG050wYYI5+uijTUNDg1l//fXNQw89ZKqrEx+SO3XqFLuvHhA23njjJnwrAAAAAOWKjAIAAACglJBRAAAAAJQK8gkAIJnKpM8CAICYHj16mOOOO86MHTvWbLHFFvZ/zzzzjO2VIF2zZs0yBx54oB1Ss127drZHgY4dOyZ9z5AhQ2L333777SZ8AwAAAABhQkYBAAAAUErIKAAAAABKBfkEAOBFoxkAADJUU1Njdt55Z3t/9erVZsGCBWm9b/ny5bY3g2nTptneDR588EGz4YYbpnyfgluvXr3s/dtvv91OBwAAAAAcMgoAAACAUkJGAQAAAFAqyCcAAKHRDAAAPm+++aaZMmVKwudXrlxpXn/9dXu/TZs2pkuXLmlN98QTTzTvvfeevT969GgzfPjwtN5XWVlpfvOb39j7X3/9tR3yc8WKFQlfv3DhQnPzzTenNW0AAAAApY+MAgAAAKCUkFEAAAAAlAryCQAgHdVpvQoAgAh5+eWXzZVXXml23HFHs++++5pNN93UBiYNzzl58mRz2223mfHjx9vXnnDCCaa6OvXh9K677jL33Xefvb/bbruZPffc00yaNCnh61u3bm369esXe3zKKaeYMWPGmMcff9w8/PDD9vNPPvlkM2zYMDv8pwLU559/bl577TXz1FNPmRYtWpgzzjgjJ8sDAAAAQHGRUQAAAACUEjIKAAAAgFJBPgEApINGMwAABKivr7e9DLieBoIceOCBZtSoUWlNb+rUqbH7r7zyitlkk02Svl7DgioYORUVFeY///mPOfvss22Y++qrr8yFF16Y8P1du3ZNa74AAAAAlAcyCgAAAIBSQkYBAAAAUCrIJwCAVGg0AwCAz/nnn297HXjppZfMhAkTzIwZM8zs2bPtc927d7et/jV0pnonKKSamhpz6623mlNPPdXccccdNmwppC1evNgOH6oeC7bcckuz9957m/3226+g8wYAAAAgf8goAAAAAEoJGQUAAABAqSCfAADSUdHQ0NCQ1isBAAAAAAAAAAAAAAAAAAAAAACAMlFZ7BkAAAAAAAAAAAAAAAAAAAAAAAAAco1GMwAAAAAAAAAAAAAAAAAAAAAAAAgdGs0AAAAAAAAAAAAAAAAAAAAAAAAgdGg0AwAAAAAAAAAAAAAAAAAAAAAAgNCh0QwAAAAAAAAAAAAAAAAAAAAAAABCh0YzAAAAAAAAAAAAAAAAAAAAAAAACB0azQAAAAAAAAAAAAAAAAAAAAAAACB0aDQDAAAAAAAAAAAAAAAAAAAAAACA0KHRDAAAAAAAAAAAAAAAAAAAAAAAAEKHRjMAAAAAAAAAAAAAAAAAAAAAAAAIHRrNAAAAAAAAAAAAAAAAAAAAAAAAIHRoNAMAAAAAAAAAAAAAAAAAAAAAAIDQodEMAAAAAAAAAAAAAAAAAAAAAAAAQodGMwAAAAAAAAAAAAAAAAAAAAAAAAgdGs0AAAAAAAAAAAAAAAAAAAAAAAAgdGg0AwAAAAAAAAAAAAAAAAAAAAAAgNCh0QwAAAAAAAAAAAAAAAAAAAAAAABCh0YzAAAAAAAAAAAAAAAAAAAAAAAACB0azQAAAAAAAAAAAAAAAAAAAAAAACB0aDQDAAAAAAAAAAAAAAAAAAAAAACA0KHRDAAAAAAAAAAAAAAAAAAAAAAAAEKHRjMAAAAAAAAAAAAAAAAAAAAAAAAIHRrNAAAAAAAAAAAAAAAAAAAAAAAAIHRoNAMAAAAAAAAAAAAAAAAAAAAAAIDQodEMAAAAAAAAAAAAAAAAAAAAAAAATNj8Hxq4rJU376/sAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -281,7 +276,7 @@ "id": "f10127f4-6515-4ea5-a1d9-e14671eb70be", "metadata": {}, "source": [ - "The same reasoning holds for the normalised (squared) euclidean distance, we can use the `ConvolveDotProduct` value for the `speed_up` argument in `TopKSimilaritySearch` to use this optimization for both normalised and non normalised distances. In the normalised case, the formula used to computed the normalised (squared) euclidean distance is taken from the paper [Matrix Profile I: All Pairs Similarity Joins for Time Series](https://www.cs.ucr.edu/~eamonn/PID4481997_extend_Matrix%20Profile_I.pdf), see MASS algortihm." + "The same reasoning holds for the normalised (squared) euclidean distance, we can use the `normalize` parameter of the two estimators to set this option. In the normalised case, the formula used to computed the normalised (squared) euclidean distance is taken from the paper [Matrix Profile I: All Pairs Similarity Joins for Time Series](https://www.cs.ucr.edu/~eamonn/PID4481997_extend_Matrix%20Profile_I.pdf), see MASS algortihm." ] }, { @@ -300,34 +295,22 @@ "for size in sizes:\n", " for _query_length in query_lengths:\n", " query_length = int(_query_length * size)\n", - " X = rng.random((1, 1, size))\n", + " X = rng.random((1, size))\n", " q = rng.random((1, query_length))\n", - " n_cases, n_channels = X.shape[0], X.shape[1]\n", - " search_space_size = size - query_length + 1\n", - " X_means = np.zeros((n_cases, n_channels, search_space_size))\n", - " X_stds = np.zeros((n_cases, n_channels, search_space_size))\n", - " mask = np.ones((n_channels, search_space_size), dtype=bool)\n", - " for i in range(X.shape[0]):\n", - " _mean, _std = sliding_mean_std_one_series(X[i], query_length, 1)\n", - " X_stds[i] = _std\n", - " X_means[i] = _mean\n", - " q_means, q_stds = sliding_mean_std_one_series(q, query_length, 1)\n", - " q_means = q_means[:, 0]\n", - " q_stds = q_stds[:, 0]\n", + " mask = np.ones((1, size - query_length + 1), dtype=bool)\n", " # Used for numba compilation before timings\n", - " naive_squared_distance_profile(\n", - " X, q, mask, normalise=True, X_means=X_means, X_stds=X_stds\n", - " )\n", - " _times = %timeit -r 3 -n 7 -q -o naive_squared_distance_profile(X, q, mask, normalise=True, X_means=X_means, X_stds=X_stds)\n", + " mass = MassSNN(length=query_length, normalize=True).fit(X)\n", + " mass.compute_distance_profile(q)\n", + " dummy = DummySNN(length=query_length, normalize=True).fit(X)\n", + " dummy.compute_distance_profile(q)\n", + "\n", + " _times = %timeit -r 3 -n 3 -q -o dummy.compute_distance_profile(q)\n", " times.loc[(size, _query_length), \"Naive Normalised Euclidean distance\"] = (\n", " _times.average\n", " )\n", - " # Used for numba compilation before timings\n", - " normalised_squared_distance_profile(\n", - " X, q, mask, X_means, X_stds, q_means, q_stds\n", - " )\n", - " _times = %timeit -r 3 -n 7 -q -o normalised_squared_distance_profile(X, q, mask, X_means, X_stds, q_means, q_stds)\n", - " times.loc[(size, _query_length), \"Normalised Euclidean as dot product\"] = (\n", + "\n", + " _times = %timeit -r 3 -n 3 -q -o mass.compute_distance_profile(q)\n", + " times.loc[(size, _query_length), \"Normalised Euclidean distance with MASS\"] = (\n", " _times.average\n", " )" ] @@ -340,7 +323,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADM0AAAOcCAYAAADnnKdhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3iUVdrH8d9MegKkESD0Gjoo0kF6L4pIEQuwAoKCbV3b7rquq772ssgKVpqKitIUkF5DFaRDAoQeAukhpM/M+0fMkJA26WW+n+viuqac55wzc89M5mae+xyDxWKxCAAAAAAAAAAAAAAAAAAAAAAAAKhEjGU9AQAAAAAAAAAAAAAAAAAAAAAAAKC4UTQDAAAAAAAAAAAAAAAAAAAAAACASoeiGQAAAAAAAAAAAAAAAAAAAAAAAFQ6FM0AAAAAAAAAAAAAAAAAAAAAAACg0qFoBgAAAAAAAAAAAAAAAAAAAAAAAJUORTMAAAAAAAAAAAAAAAAAAAAAAACodCiaAQAAAAAAAAAAAAAAAAAAAAAAQKVD0QwAAAAAAAAAAAAAAAAAAAAAAAAqHYpmAAAAAAAAAAAAAAAAAAAAAAAAUOlQNAMAAAAAAAAAAAAAAAAAAAAAAIBKh6IZAAAAAAAAAAAAAAAAAAAAAAAAVDoUzQAAAAAAAAAAAAAAAAAAAAAAAKDSoWgGAAAAAAAAAAAAAAAAAAAAAAAAlQ5FMwAAAAAAAAAAAAAAAAAAAAAAAKh0KJoBAAAAAAAAAAAAAAAAAAAAAABApUPRDAAAAAAAAAAAAAAAAAAAAAAAACodimYAAAAAAAAAAAAAAAAAAAAAAABQ6VA0AwAAAAAAAAAAAAAAAAAAAAAAgEqHohkAAAAAAAAAAAAAAAAAAAAAAABUOhTNAAAqtYYNG8pgMMhgMOj8+fNlPZ1KgecUAAAAKBy+Sxc/nlMAAACgdPDdu/jxnAIAAACFw3fp4sdzCqCyo2gGAABUWPHx8Zo7d6769u2runXrysXFRXXr1lW/fv00b948xcfHV5jxLRaLgoKC9M033+jpp59W9+7d5e7ubk1IGzZsWHIPBAAAAECRVZb8ZOvWrdY8xNZ/AwYMKNHHBgAAAKBklVU+k5KSov3792vu3Ll69NFH1bZtWzk6OlpzjcmTJ5fIuAAAAADKr7LKT06ePKnZs2dr3LhxatWqlTw9PeXk5KTq1aurY8eOevrpp/XHH3+UyNgASp5jWU8AAACUnT59+mjbtm2SpC1btqhPnz5lO6EC2L17tx566CGdO3cuy+1XrlzRlStXtGXLFr333nv67rvv1KVLl3I9/u+//67+/fsrLi6u2OcJAAAAVBTkJxV3fAAAAMDekc8U3Jw5c/Tcc88pJSWl2PoEAAAAQH5SUBs2bNCzzz6r48eP53h/ZGSkIiMjdeDAAc2ePVtjx47VvHnz5OPjUyzjAygdFM0AAIAK5/Dhwxo0aJB15QAnJyf169dPdevW1aVLl7R582alpaUpJCREgwYNUmBgoNq0aVNux4+Pj6dgBgAAAKigKlt+klnt2rV133335duuRYsWRXoMAAAAAMpGWeYzERERFMwAAAAAsCqr/OTAgQNZCmYMBoPatWungIAAeXt7Kzw8XDt37lR4eLgkaenSpTpx4oS2bdsmX1/fIo8PoHRQNAMAACqU1NRU3X///dYEqX379lqxYoUaNmxobXP+/HmNGjVKhw8fVlxcnO6//34dP35cjo5F/+pTkuN7e3urY8eO6tSpkzp16qSgoCC99NJLRZ4zAAAAgJJRmfMTSWrWrJnmzJlT5HkCAAAAKH/KOp/JUK9ePevvIp07d9bcuXP1008/FVv/AAAAAMq/8pCf3HHHHZo2bZrGjx+frRgmJSVFH330kf7xj3/IZDLp+PHjeuKJJ/TDDz8Uy9gASp6xrCcAAABQEF988YXOnj0rKb3I5LfffsuSIElSw4YNtXbtWnl7e0uSgoOD9fXXX5fb8du3b6/Tp08rKipK69ev15tvvqlRo0apZs2axTJnAAAAACWjMuYnAAAAAOxDWecTf/nLXxQWFqaLFy/q559/1ksvvaR+/frJw8OjWPoHAAAAUHGUZX4SEBCgFStW6I8//tATTzyR4+4xzs7OevHFF/Xee+9Zb/vxxx916tSpIo8PoHRQNAMAACqU//3vf9bLf/vb31SrVq0c2/n7++u5557L8bjyNr63t7eaNm1aLPMDAAAAUHoqY34CAAAAwD6UdT7RoEEDFg8DAAAAIKls85PRo0fr3nvvtantU089pdq1a1uvr1mzpsjjAygdFM0AQBGYzWYtXLhQAwcOVK1ateTq6qqGDRvq3nvv1YoVK6zt+vTpI4PBIIPBoK1bt+bYV8OGDa1tzp8/n+/YkydPtrZfsGBBvu0tFouWL1+uSZMmKSAgQJ6ennJ1dVW9evU0atQoLVy4UGlpaXn2cf78eeuYmSu5d+7cqalTp6pFixby9PSUwWDQM888oz/++MPa3tvbW0lJSfnOU5Ju3LihKlWqWI89cuSITccVh9TUVC1evFjjxo1T48aNVbVqVXl4eKhRo0aaMGGCli9fLovFkmcfW7dutc69T58+1ts3b96sBx54QI0bN5arq6t8fX3Vq1cvzZkzR6mpqTbPMTExUR999JF69Oih6tWry83NTU2aNNGECRO0adMma7u8XlMZt2/bts16W9++fa23Z/5ny+vr8uXLeuWVV9S+fXt5eXnJw8NDLVq00JNPPqkLFy7Y/Njyc+bMGZ04ccJ6ffLkyXm2z3z/kSNHFBISUqHHBwAAyAv5STryk6zIT8hPSmp8AACA4kQ+k458JivymcqbzwAAAJRn5CfpyE+yIj8hP5EkBwcHdenSxXrdlvc1gHLCAgAolKtXr1q6dOlikZTrv/vuu88SFxdn6d27t/W2LVu25NhfgwYNrG3OnTuX7/iTJk2ytp8/f36ebQ8fPmy544478pyrJEvz5s0tx48fz7Wfc+fOWds2aNDAkpycbJk+fXqOfT399NMWi8Viueuuu6y3ffPNN/k+LovFYvniiy+sx3Tq1MmmY3JTkOd1y5YtliZNmuT7PHXt2tVy+fLlPPvJaNu7d29LcnKyZdq0aXn22aFDB0t4eHi+j+fIkSP5znH69OmWlJSUPB97fo8x87/bX1+397t8+XKLp6dnrse7ublZfv3113wfmy0+++wza78BAQE2HdOsWTPrMV988UWFGn/+/PlZ3nMAAAC5IT8hP8mrH/IT8pOCjH/7awYAAKCkkc+Qz+TVD/lM5cxn8pL5PTlp0qQSGwcAACAn5CfkJ3n1Q35if/lJTkaPHm0d+4knnijVsQEUnqMAAAUWExOjfv366eTJk9bbGjVqpG7dusnFxUXHjx/Xvn37tHz5chmNZbup1/bt2zVy5EjFxcVJkpycnNSpUyc1a9ZMTk5OOn/+vHbu3KmkpCQFBQWpe/fu2r17t1q2bJlv388++6w+++wzSVLbtm3Vvn17OTk5KTg42Pq4H3vsMU2fPl2S9NVXX+mhhx7Kt9+vvvrKennq1KkFfsyFsXTpUj300EPWCn83Nzd17dpVDRs2lNFoVHBwsHbv3q20tDTt2bNH3bp10/79+23aNv6xxx7TwoULZTQa1aVLF7Vo0UJms1l79uxRUFCQJOngwYOaOHFinls2njlzRv3791d4eLj1trZt2+qOO+6Q0WjUoUOHdPjwYX322WeqWrVqnnOaOXOmJGn58uUKDQ2VJI0aNUp16tTJ1jav18LGjRs1Y8YMmUwm1a9fX926dVO1atV07tw5bd26VWlpaUpMTNS4ceN07NgxNWrUKM955Sfze65Dhw42HdOhQwedPn062/EVcXwAAICckJ+kIz8hPyE/Kf7xExMT9csvv+jw4cOKioqSh4eHatasqS5duujOO++UoyP/vQwAAIqGfCYd+Qz5jL3lMwAAAOUR+Uk68hPyE/KTvB09etR6uV69eqU6NoAiKOuqHQCoiB599FFrtbCzs7Plq6++ytZm79691gpsZ2fnMllZ4OrVq5YaNWpY202cONESGhqarV1YWJjlvvvus7Zr27atJS0tLVu7zCsLODg4WCRZ6tWrZ9m+fXu2tklJSRaLxWK5ceOGpUqVKhZJFoPBYDl79myej+v48ePWMTw8PCxxcXH5Phd5seV5PXbsmMXNzc06x7/97W+W6OjobO3Onj1r6dmzp7W/oUOH5thf5pUFXFxcrCsknDx5Mks7s9ls+fjjj7NU4W/bti3HPs1ms6VXr17Wdr6+vpbffvstW7tNmzZZatSoYTEYDFled7k9dltWvbhd5ufUxcXF4uHhYVm8eLHFbDZnaXfs2DFLnTp1rG3/8pe/2NR/XoYOHWrt78UXX7TpmOeff956zLBhwyrU+Ow0AwAAbEF+Qn5CfkJ+UpzjZ37N5PWvdu3alvfee8+SkpJSpMcBAADsG/kM+Qz5jH3mM3lhpxkAAFBWyE/IT8hPyE/yExgYmCW2+/fvL7WxARRN2Za7AkAFFBwcrPnz51uvf/7553r00UeztevcubPWr18vd3d3paSklOYUrf7xj3/o+vXrkqSnnnpKCxculL+/f7Z2NWvW1NKlS9WvXz9J6dXQP/30U559m0wmubu7a+PGjbr77ruz3e/i4iJJqlKliiZMmCBJslgs+vrrr/PsN/OqAuPGjcu3Qr44PPXUU0pMTJQkffDBB3rvvffk5eWVrV3jxo3122+/qVWrVpKktWvXau/evXn2nZycrGbNmmnz5s1q0aJFlvsMBoOefvppjRkzxnrbkiVLcuxn3bp12r59uyTJaDRq5cqVGjx4cLZ2/fr10+rVq2U0GkvldZeSkqKffvpJDz/8sAwGQ5b7WrdubV15QkpfvSEtLa1I40VGRlov27KqgyTVqlXLejkqKqpCjw8AAHA78pN05CfkJxL5SWmPHxoaqueff169evXStWvXitQXAACwT+Qz6chnyGck+8tnAAAAyhvyk3TkJ+QnEvlJbsxms5555hnr9S5duqhjx46lMjaAoqNoBgAK6KuvvpLFYpGUnghNmjQp17YBAQFZviiVpvDwcH3zzTeS0r8kvvPOO3m2d3Bw0Jtvvmm9/u233+Y7xqxZsxQQEJBvu2nTplkvL1iwQCaTKcd2qampWrx4sfV6aWzFefjwYW3evFmSdOedd+YbLw8PD73yyivW67Y8T2+//baqVKmS6/2Zk+x9+/bl2CZz8vjAAw+oR48eufbXsWNHTZw4Md95FYcRI0ZoyJAhud4/bNgwa5ISHx9f5O0w4+PjrZfd3NxsOiZzu8zHV8TxAQAAbkd+cgv5CfkJ+Unxje/n56cnnnhCy5cvV0hIiBISEpSUlKSQkBAtXLhQnTp1srbds2ePRo4caf3xEQAAwFbkM7eQz5DP2Fs+AwAAUN6Qn9xCfkJ+Qn6Ss9dff1379++XlF7k9P7775fKuACKB0UzAFBAW7ZssV5+5JFH8m2fVxJVkjZu3GitLB89erRcXV3zPaZLly7y8PCQJO3cuTPf9g888IBNc+nUqZPuuOMOSdKVK1e0bt26HNutWrVK4eHhkqRWrVqpe/fuNvVfFGvWrLFenjBhQrbq+JxkrMAg5f88ubq6auTIkXm2ufPOO62Xz58/n2Obbdu2WS8//PDD+c7RljbFYezYsXnebzAY1L59e+v13B6frZKSkqyXnZ2dbTomY5ULSUU+iausxwcAALgd+ckt5CfkJ+QnxTN+x44ddfnyZf3vf//TqFGj1KhRI7m5ucnFxUWNGjXSxIkTtXfv3iw/IO7fv18ffPBBIR8JAACwV+Qzt5DPkM/YWz4DAABQ3pCf3EJ+Qn5CfpLdL7/8otdee816/cUXX1TPnj1LfFwAxcexrCcAABWJxWLR4cOHrde7deuW7zEBAQHy8fEp9W3Kd+/ebb185MgRzZo1q0DHR0dH6+bNm9ak6XZOTk5q27atzf099thjeuKJJySlV8kPGzYsW5vM1fNTpkwp0HwLK/PztGXLFl24cCHfYzJWlpCkS5cu5dm2efPmcnJyyrONr6+v9XJcXFy2+69cuWJNHqX0ZDY/nTp1ksFgyDLXkmDLayC/x1cQmZN9W7cbTU5Otl62dTWC8jo+AABAZuQnt5CfpCM/IT8pjvHzWhkvg8Fg0H/+8x+dPXtW3333nSTpww8/1EsvvSRHR/7LGQAA5I985hbymXTkM/aVzwAAAJQn5Ce3kJ+kIz8hP8ls//79mjBhgvV5HzBggP7zn/+U6JgAih+/YAJAAcTGxmb5Yla/fn2bjqtfv36pJ0mhoaHWyzt37rRppYDbRUdH55okeXt7F+hEmIceekjPP/+8bt68qV9++UXh4eHy8/Oz3n/58mXrigPOzs6ltp1k5udp7dq1BT4+Ojo6z/s9PT3z7SNzEpWWlpbt/swJkru7u3x8fPLts2rVqvL09FRMTEy+bYuioI8vNTW1SONlPnnL1lUCMrez5eSv8jw+AABAZuQnt5CfpCM/IT8pzfEl6T//+Y+1aCY6Olp79uxhZTUAAGAT8plbyGfSkc/YVz4DAABQnpCf3EJ+ko78hPwkw4kTJzR06FDdvHlTUnrh0vLly1lADKiAjGU9AQCoSOLj47Ncd3d3t+m43BKNkhQbG1vkPnL6wp6hoBXa1apV0/jx4yWlf1FetGhRlvsXLFggs9ksSbr33ntVvXr1As62cIr6PJlMpjzvt2V7z/xkft3Z+pqTSucHi+J4fAWReZWCa9eu2XRMWFiY9bItCWZ5Hh8AACAz8pNbyE/SkZ+Qn5Tm+JLUpEkTNWzY0Hr95MmTRe4TAADYB/KZW8hn0pHP2Fc+AwAAUJ6Qn9xCfpKO/IT8RJLOnTungQMHKjIyUpLUunVr/fbbbywiAFRQFM0AQAHc/oUnISHBpuMyKo2LU0ZCkZvMidmHH34oi8VS4H+ZT3wpDtOmTbNezrz1psVi0fz5863Xp06dWqzj5iXz87Rs2bJCPU8lLfPrztbXnFQyr7uy1rx5c+tlW7ZOlaSLFy9aL7do0aJCjw8AAJAZ+UnRkJ8UDvnJLWWdH5T1+Bn8/f2tlyMiIoqlTwAAUPmRzxQN+UzhkM/cUl7yCQAAgPKA/KRoyE8Kh/zklvKYn1y5ckX9+/e37lrUpEkTbdiwgQUEgAqMohkAKABPT085Oztbr2f+8pWXS5cu5dsmvy0Zb5dfRXzNmjWtlzNXVpelrl27ql27dpLSV5/dvXu3JGnLli0KCQmRJDVo0EADBgwotTmVx+fpdplXWUhISMh3C1ApfTWCkt6Ksyy0bNnSevmPP/6w6ZiDBw/meHxFHB8AACAz8pOiIT8pHPKTW8o6Pyjr8TNk/oGuLFZWBAAAFRP5TNGQzxQO+cwt5SWfAAAAKA/IT4qG/KRwyE9uKW/5ybVr19S/f3+dO3dOklS3bl1t3LgxyyJiACoeimYAoAAMBoPat29vvb5nz558jzl9+rR1i768VKtWzXrZlvZHjx7N8/4uXbpYLwcGBubbX2nJaXWBzKsM/OUvf5HRWHp/nsrr85RZ3bp1syRKe/fuzfeY33//3aZVD0p7O82i6tu3r/VyUFCQrl69mmf70NBQnT592nq9X79+FXp8AACAzMhPio78pODIT24p6/ygrMeX0n/ICwoKsl6vXbt2kfsEAAD2gXym6MhnCo585pbykE8AAACUF+QnRUd+UnDkJ7eUp/wkMjJSAwcOtP72UaNGDW3cuLHYd2gCUPoomgGAAsr8Je2bb77Jt/2iRYts6jfzF6tDhw7l2fb333+3VjLnZvDgwXJ0dJQk7dq1S4cPH7ZpHiXt4YcflpubmyTphx9+0OXLl7Vs2TJJktFo1KOPPlqq8xkxYoT18rJly3Tt2rVSHd9WvXv3tl7+9ttv821vy2tTklxdXa2XU1NTCz6xUtasWTO1atXKen3hwoV5ts98f9u2bdW4ceMKPT4AAMDtyE+KhvykcMhP0pV1flDW40vSd999p+TkZEnpP8L16tWryH0CAAD7QT5TNOQzhUM+k6485BMAAADlCflJ0ZCfFA75Sbrykp/ExcVp8ODB1uI1b29vbdiwQc2bNy+W/gGULYpmAKCApkyZYr28Z8+ePL+MnjlzRh999JFN/WaucM/ri19aWpqefvrpfPurU6eOHn74YUmSxWLRxIkTFRcXZ9NczGazwsPDbWpbUF5eXho3bpyk9C0jx4wZo6SkJEnSoEGDVK9evRIZNzedO3dWnz59JEmJiYl65JFHlJKSYtOxKSkpNm2NWRwyJ4/fffddnqtaHDx4MN/kIYOvr6/18pUrVwo/wVL0xBNPWC+///77uSa2YWFhev/9963XZ86cWSnGBwAAyIz8pGjITwqH/OSWss4Pinv8hIQEmc1mm8Y+ffq0XnrpJev1QYMGqUaNGjYdCwAAIJHPFBX5TOGQz9xS1vkMAABAeUJ+UjTkJ4VDfnJLWecnCQkJGj58uA4cOCBJqlq1qn777Te1a9euWPoHUPYomgGAAgoICNDkyZOt16dOnZrjF9Lff/9dAwcO1M2bN+Xs7Jxvv+PHj7duQ7l792699NJLMplMWdpcvnxZI0aM0K5du+Ti4pJvn2+++ab8/f0lSUeOHFHnzp21fv36XNtfvnxZH330kZo3b64ffvgh3/4LK/OWnJm3lpw6dWqJjZmXTz75RFWqVJEkbdiwQb169cpzy8vg4GC9/vrratiwYalt4Tl06FD17NlTUnoSO3LkSG3cuDFbu61bt2rYsGEymUw2ve7atGljvfzTTz/ZtIVnWXvsscfUpEkTSelbYg4dOlQXLlzI0ubChQsaNmyYoqKiJKW/bzP/B8fttm7dKoPBYP23devWUh0fAACgsMhPio78pODIT26pbPnJvn371Lp1a82dO1fXr1/PsY3JZNI333yjbt26KTIyUpLk7Oysd955J9d5AgAA5IR8pujIZwqOfOaWss5nAAAAyhPyk6IjPyk48pNbyjI/SU5O1qhRo7Rz505Jkpubm3799Vd17ty5GB4ZgPLCsawnAAAV0Ycffqjdu3crKChIycnJmjx5sv7zn/+oW7ducnFx0fHjx7Vv3z5ZLBaNHj1akZGR2rZtW559NmjQQDNmzNCnn34qSXrnnXe0ZMkS9erVS66urjp79qwCAwOVkpKiAQMGqFatWvluuVi7dm2tXLlSw4YNU0REhIKCgjR48GDVqVNHnTt3lp+fn1JTUxUREaFjx47lu8VncenRo4dat26t48ePW2+rUaOG7rnnnlIZ/3Zt2rTRkiVLNH78eCUkJGjv3r3q2rWrmjRpog4dOsjHx0dJSUm6fv26jhw5UiYV+AaDQV9//bX1pKSIiAgNHDhQ7du31x133CFJOnz4sHUr17/97W9aunSpNXnISMBvN3r0aP3973+XxWLR6tWr1a5dO3Xv3l1Vq1a1tnnggQfUsWPHEn18BeHk5KSff/5ZPXv2VHx8vP744w81a9ZM/fv3V506dXT58mVt3rzZur1otWrV9PPPP1u3py2v40+dOlW///57ltsykjxJCg0NtcY6sy+//LJcxQcAAJQ+8pOiIT8pOPKTWypjfnLq1Ck98cQTmjVrlpo2barWrVvLx8dHRqNRYWFh2r17tyIiIqztHRwctGjRIrVv375YHhMAALAv5DNFQz5TcOQzt5R1PiMpx989Ll68aL28atWqHNtkxAcAAKA4kZ8UDflJwZGf3FKW+ckrr7yiDRs2WK+3bNlSP/74o3788cd8j/X19dVrr71W5DkAKAUWAEChXLlyxdKxY0eLpFz/3XPPPZa4uDhL7969rbdt2bIl1z4TExMtw4YNy7PPESNGWKKjoy2TJk2y3jZ//vw853r+/HlL//798+w387+aNWtafvvtt2z9nDt3ztqmQYMGRXr+Pv744yxj/u1vfytSf7lp0KCBdYxz587l2fbQoUOWu+66y+bnqWHDhpY//vgjWz9btmyxtundu7dN88zcb35zbNSoUZ7zeuyxxywpKSmW2rVrW2+Ljo7Otc+XX345z/5uf30V5Dm1WCwFeq0WxK5du/J9Lho3bmzZvXt3vn1ljll+79OSGN9isWT5nCjIP1vmCgAAKj/ykwZFev7IT7IiPym4ypKf3D52fv+aN29uCQwMtPVpAgAAyBH5TIMiPX/kM1mRzxRcWeYzBck/bI0tAABAUZCfNCjS80d+khX5ScGVRX6S+bEU9F9R3zMASg87zQBAIdWuXVt79uzRokWL9O233+rIkSOKjY1VzZo11b59e02aNEn333+/DAaDzX26urrq119/1ZIlS7Rw4UIdPHhQsbGxqlGjhtq3b6/JkydrzJgxBepTSl+1YOPGjdq9e7eWLl2q7du369KlS4qOjpajo6N8fX3VrFkzdezYUYMGDVKfPn2KdZWonIwePVrPPPOM9XpZbcWZWfv27fX7779r/fr1WrFihQIDAxUaGqqYmBi5uLjIz89PzZs3V5cuXTR48GB169atwLEojjkeO3ZM8+bN09KlSxUcHKyEhAT5+/urc+fOmjZtmvr37y9Jio6OlpS+qkC1atVy7fP//u//1LNnT82fP18HDhzQtWvXlJCQUCqPpyi6deumI0eOaNGiRfrxxx8VHBysyMhI+fr6KiAgQOPGjdPEiROtW61WtvEBAAAyIz8pGvKTws+R/CRdWecHxTX+3Xffrd9//127d+/Wrl27FBQUpMjISEVGRio5OVmenp6qV6+eunTponvuuUdDhgwp9dcdAACofMhnioZ8pvBzJJ9JV9b5DAAAQHlCflI05CeFnyP5STryEwAlxWCxWCxlPQkAqOz69Olj3Y5zy5Yt6tOnT9lOqBxYuHChJk+eLEnq2bOnduzYUbYTqmROnz6tgIAASVKLFi108uTJMp4RAAAAygvyk+zIT0oW+QkAAACKC/lMduQzJYt8BgAAALkhP8mO/KRkkZ8AQOEZy3oCAAD79NVXX1kvT5s2rQxnUjn98MMP1sudOnUqw5kAAAAA5R/5SckiPwEAAABKDvlMySKfAQAAAGxHflKyyE8AoPAomgEAlLo//vjDupKAj4+Pxo0bV8YzqlzOnTun999/33r9wQcfLMPZAAAAAOUb+UnJIj8BAAAASg75TMkinwEAAABsR35SsshPAKBoKJoBAJSqpKQkPfnkk9brM2bMkKuraxnOqGIZNGiQfvvtN6WlpeV4/+rVq9WzZ0/FxsZKku644w4NGjSoNKcIAAAAVBjkJ0VDfgIAAACUHfKZoiGfAQAAAIoP+UnRkJ8AQMlzLOsJAAAqvzlz5ujMmTOKiYnRpk2bdPnyZUlS9erV9dxzz5Xx7CqWDRs2aMOGDfL29laHDh1Ur149OTs7KyIiQvv27bM+t5JUtWpVLVq0SEYjNbIAAABABvKT4kN+AgAAAJQu8pniQz4DAAAAFA35SfEhPwGAkkfRDACgxP3000/atm1bltscHBz01VdfycfHp4xmVbFFR0dr06ZNud7frFkzLV26VG3bti3FWQEAAADlH/lJ8SM/AQAAAEoH+UzxI58BAAAACof8pPiRnwBAyaFoBgBQqry9vdW9e3e9/PLL6tGjR1lPp8I5duyYVqxYoV27dunChQuKiIhQVFSUXF1d5efnp86dO2vEiBF64IEH5ODgUNbTBQAAAMo18pOiIT8BAAAAyg75TNGQzwAAAADFh/ykaMhPAKDkGSwWi6WsJwEAAAAAAAAAAAAAAAAAAAAAAAAUJ2NZTwAAAAAAAAAAAAAAAAAAAAAAAAAobhTNAAAAAAAAAAAAAAAAAAAAAAAAoNKhaAYAAAAAAAAAAAAAAAAAAAAAAACVDkUzAAAAAAAAAAAAAAAAAAAAAAAAqHQomgEAAAAAAAAAAAAAAAAAAAAAAEClQ9EMAAAAAAAAAAAAAAAAAAAAAAAAKh2KZgAAAAAAAAAAAAAAAAAAAAAAAFDpOJb1BFA8tm/frlOnTikkJEQXL15UWlqannjiCfXp06espwYAAAAAAAAAAAAAAAAAAAAAAFDqKJqpJH744QeFh4eratWq8vb2Vnh4eKmMGxERUSL9Ojg4yNvb23o9OjpaJpOpRMZC2SPe9oV42w9ibV+It30pD/GuXr16qY6HiqGk8hOpfLzuUXqIt/0g1vaFeNsX4m1fyjre5CcVw5kzZ7R06VIFBQXJZDKpfv36Gj58uLp3715iY5KjoDgQa/tCvO0L8bYvxNt+lIdYk6MgN5znheJAvO0L8bYvxNt+EGv7Uh7iXR5yFIpmKonp06fL399ffn5+WrFihb777ruynhIAAAAAAAAAAECZO3bsmN588005Ozure/fucnNz0969e/Xxxx8rMjJSI0eOLOspAgAAAAAAAACAEkLRTCXRrl27sp4CAAAAAAAAAABAuWIymfTZZ5/JaDTqtddeU8OGDSVJY8aM0csvv6wlS5aoa9eu8vPzK9uJAgAAAAAAAACAEmH3RTOxsbE6c+aMzpw5o7Nnz+rs2bO6ceOGJKl3796aOXOmzX2Fh4dr7dq1OnjwoCIjI+Xo6KhatWqpW7duGjx4sFxcXErqYQAAAAAAAAAAAOA2x44d07Vr19SnTx9rwYwkubu767777tOnn36qbdu2acyYMWU3SQAAAAAAAAAAUGLsvmhm2rRpxdLP77//rk8++USJiYnW25KTk62FOJs2bdLLL7+sWrVqFct4AAAAAAAAAAAA5Vl5WLjs+PHjkqT27dtnu++OO+6QJJ04caKAjwwAAAAAAAAAAFQUdl80k1n16tVVp04dHT58uEDHnTt3Th9//LFSUlLk6uqqUaNGqU2bNkpJSVFgYKA2bdqkq1ev6q233tLbb78tNze3EnoEAAAAAAAAAAAA5UN5WLgsLCxMkuTv75/tPi8vL7m6uurq1avFMk8AAAAAAAAAAFD+2H3RzJgxY9SkSRM1adJEXl5eun79umbNmlWgPhYsWKCUlBQ5ODjon//8pwICAqz3tWnTRv7+/vrmm2909epV/fLLLxo3bly2PhYtWqTU1FSbxxw2bFiOP/AAAAAAAAAAAACUN2W1cFlCQoIkyd3dPcf+3dzcrG0AAAAAAAAAAEDlY/dFMzkVsBTEmTNndPLkSUlS3759sxTMZBgxYoS2bNmiK1euaO3atRo9erQcHbM+9Rs2bFBycrLN43bt2pWiGQAAAAAAAAAAUG6Vl4XLAAAAAAAAAACA/bL7opmi2rdvn/Vy3759c2xjNBrVu3dvfffdd7p586aOHz+u9u3bZ2mzePHiEp0nAAAAAAAAAABAaSoPC5dl7DCT224yiYmJ8vDwKNI8AQAAAAAAAABA+UXRTBEFBQVJklxcXNS4ceNc27Vq1SrLMbcXzQAAAAAAisbBwaHE+jYajXleR+VCvO0HsbYvxNu+EG/7Qrwrr+JYuKxWrVqSpKtXr2b7HScmJkZJSUlq2rRpCcweAAAAAMqXkvodhbzcvhBv+0K87Qvxth/E2r4Q73QUzRTR5cuXJaX/6JJXYlG7du1sxwAAAAAAio+3t3epjeXp6VlqY6HsEW/7QaztC/G2L8TbvhDvyqM4Fi5r1aqVVqxYocOHD6tHjx5Zjjt06FC24wEAAACgsiqt31HIy+0L8bYvxNu+EG/7Qazti73Gm6KZIkhJSdGNGzckSb6+vnm2rVKlilxcXJScnKzIyMhin8umTZt06tQpSdLFixettx0/flyS1KJFC/Xv39/m/mydIysQoDgQb/tCvO0HsbYvxNu+EG8AAAAAQGkojoXL2rZtq5o1ayowMFDDhg1Tw4YNJUkJCQlavny5HB0d1atXr+KfPAAAAAAAAAAAKBcomimCpKQk62VXV9d827u6uio5OTnLccXl1KlT2rZtW5bbgoKCrKuwSSpQ0czjjz9uU7sff/zR5j6Lwl6r2uwV8bYvxNt+EGv7QrztC/EGAAAAABS34lq4zMHBQdOnT9ebb76pV199Vd27d5ebm5v27t2r8PBwPfLII6pRo0aB5lbWC49JLGhhT4i1fSHe9oV42xfibT+INQAAAACUPxTNFEFKSor1sqNj/k9lRpvMxxWXmTNnaubMmcXeLwAAAABUFNHR0SXWt9FozFIgFhsbK7PZXGLjoWwRb/tBrO0L8bYvxNu+lHW8vb29S20se1KcC5e1adNGr7/+un788Uft2rVLJpNJ9evX10MPPaTu3bsXeG7lbeExiQUt7Amxti/E274Qb/tCvO0HsUZ5UtTfUVJTU3Xz5k0lJydnybsNBkOWc+fS0tJksViKNBbKL+JtX4i3fSHe9oNYVyxGo1GOjo5yc3OTq6trgQvzy/o3FKl8/I5C0UwRODs7Wy+npaXl2z6jTebjyqu5c+eW9RQAAAAAoEBMJlOpjWU2m0t1PJQt4m0/iLV9Id72hXjbF+JdORT3wmVNmzbV3//+9+KZHAAAAABUQIXNlS0Wi2JjY5WYmJhrm8wnXrJwSeVHvO0L8bYvxNt+EOuKw2QyKTU1VYmJiTIYDPLy8rJpoanc2OtvKBTNFEHmF1xOK5fdLqNNUV6opcXX19emdiW1knN5qGpD6SHe9oV42w9ibV+It30pD/EuDysQAAAAAABKTnleuIyFxwAAAADYk/j4+GwFM7evcF7QFc9RsRFv+0K87Qvxth/EuuKwWCzWnYAsFouio6Pl7e1dIeoRyhOKZorA2dlZVatW1Y0bNxQZGZln2/j4eCUnJ0uyvSClIiitSjN7rWqzV8TbvhBv+0Gs7Qvxti/EGwAAAABQ3MrzwmVlvfCYVD4WtEDpINb2hXjbF+JtX4i3/SgPsWbhMRSntLQ0xcfHW69XrVpV7u7u2U60zbxDqC0LH6BiI972hXjbF+JtP4h1xWGxWJSSkqKbN29aaxFiYmJUo0YNip8KgKKZIqpbt65OnjypsLAwmUwmOTg45NguNDQ0yzEAAAAAAAAAAADIWWVYuKw0F5hgQQv7QaztC/G2L8TbvhBv+0GsUdFl5FqS5OHhoSpVqpThbAAAAOyPwWCQi4uLnJ2dFR0dreTkZFksFiUnJ8vNza2sp1dhUF5URM2bN5eUniCEhITk2u7EiRPZjgEAAAAAAAAAAEDOMhYhy1i4LDcsXAYAAAAAJSNz0QwnZQIAAJQdg8EgDw8P63VbdmjHLRTNFFHnzp2tl7ds2ZJjG7PZrG3btklKr7hv3bp1qcwNAAAAAAAAAACgomLhMgAAAAAoWxkLGBgMBjk6OpbxbAAAAOybs7OzDAaDJCktLa2MZ1Ox8E22iJo2baqWLVvq5MmT2rJli/r06aOAgIAsbX799VdduXJFkjR06NBKlUA4ODiUSL9GozHP66hciLd9Id72g1jbF+JtX4g3AAAAAKA0dO7cWStWrJCUvnBZs2bNsrUpzwuXldRvKBK5uT0h1vaFeNsX4m1fiLf9INaobMxms6T0opmMEzQBAABQNjK+k1ksFuv3NNim8lRvFNKpU6cUFhZmvR4XF2e9HBYWpq1bt2Zp36dPn2x9TJ48Wa+88opSUlL0xhtv6L777lPr1q2VkpKiXbt2aePGjZIkf39/jRw5skQeR1nx9vYulXE8PT1LZRyUD8TbvhBv+0Gs7Qvxti/EGwAAAABQEir6wmWl9RuKRG5uT4i1fSHe9oV42xfibT+INQAAAACUvfLzy0EZ2bRpk3UFstsFBQUpKCgoy205Fc00atRIzzzzjD755BMlJiZqyZIl2dr4+/vr5ZdflpubW7HMGwAAAAAAAAAAoDxj4TIAAAAAAAAAAFDW7L5oprh07NhR77//vtasWaODBw8qKipKjo6OqlWrlrp27aohQ4bIxcWlrKcJAAAAAAAAAABQKli4DAAAAAAAAAAAlDW7L5qZOXOmZs6cWSx9+fn5adKkSZo0aVKx9FcRREdHl0i/RqMxyxa1sbGxMpvNJTIWyh7xti/E234Qa/tCvO1LeYi3t7d3qY4HAAAAACg7FXXhspL6DUUqH7k5Sgexti/E274Qb/tCvO1HeYg1v6EAAAAAQFZ2XzSDojGZTKUyjtlsLrWxUPaIt30h3vaDWNsX4m1fiDcAAAAAICf2vnBZaebK5Ob2g1jbF+JtX4i3fSHe9oNYAwAAAEDZM5b1BAAAAAAAAAAAAAAAAAAAAFD+zJo1S35+furQoUNZTwUVTIcOHeTn56dZs2Zlu+/ixYvy8/OTn5+flixZUgazKx68P27J77nI6/Vgq8ryuikLGc/bu+++m+2+JUuWWO+/ePFiGcwOKHnsNAMAAAAAqBQcHBxKrG+j0ZjndVQuxNt+EGv7QrztC/G2L8QbAAAAAABUBoGBgRo1apT1+r333qsvv/wyz2NmzZqlH374QZIUHh5ektOr8N5991299957Wa7/5S9/yfOYDh066NKlS+revbtWrlxZ0lOEnfLz8ytQ+9atW2vr1q0lMxkAqKQomgEAAAAAVAre3t6lNpanp2epjYWyR7ztB7G2L8TbvhBv+0K8AQAAAABAZbBq1SqdOHFCrVq1KuupVEoff/yxHnzwQbm4uJT1VACgUrp48aLuuusuSdLs2bM1YcKEMp4R7BlFMwAAAAAAAAAAAEAxYzdMFAdibV+It30h3vaFeNsPYg2gOFksFr377rtasGBBmc5jzpw5mjNnTpnOoSSEhoZq4cKFeuyxx8p6Knapfv367I50mzvuuEOzZ8/Ot52rq2spzKb4HTx4sKyngFxMmDCBghZUehTNAAAAAAAAAAAAAMWM3TBREoi1fSHe9oV42xfibT+INYDC8vX1VWRkpFavXq0jR46oXbt2ZT2lSiXj+f3vf/+rRx55RG5ubmU9JUDu7u5q2bJlWU8DAColimZQJCW1Shorb9gX4m1fiLf9INb2hXjbF+KN8io6OrrE+jYajVl+3IyNjZXZbC6x8VC2iLf9INb2hXjbF+JtX8o63qVZGAEAAAAAAOzDtGnT9NFHHyk5OVnvvPOOvv3227KeUqUya9Ysvfbaa7p+/brmz5+vJ554oqynBAAAShBFMyiS0voxkJU37Avxti/E234Qa/tCvCu3NJNZO06Ha9WhUN3VwFsPdK5f1lMCJEkmk6nUxjKbzaU6HsoW8bYfxNq+EG/7QrwrtxtJadp09rLWHgvTi0Oay9eJeAMAAAAoO+cibmrzqev6/XyU/vdgBxmNhrKeEoAKqHbt2nrkkUf05Zdfav369Tp48KA6dOhQ4H7MZrMCAwO1ceNG7d+/X2fPnlVcXJzc3d1Vr1499e7dW9OmTVPdunVz7WPWrFn64YcfVK9ePR08eNB6+7vvvqu33npLkrRnzx41adIkz7mMHTtWW7duVY0aNXTkyJEcF+xes2aNfvrpJx08eFARERFycXFRo0aNNHjwYE2bNk1eXl4Ffg5yMnLkSP300086fvy4PvnkE02aNEkeHh6F7u/EiRP68ssvtXPnToWFhcloNKpu3brq06ePHnvsMdWvn/Nv6hcvXtRdd90lSZo9e7YmTJigX3/9Vd98842OHTumiIgIdenSRStXrsy17cKFC3Xs2DElJCSoUaNGeuihhzR58mQ5OTlJkiwWi5YtW6ZFixYpODhYN2/eVNOmTTVx4kRNmjRJBkPOf6du3ryp9evXa8eOHfrjjz904cIFJSYmytPTUwEBARo8eLAmTZqkKlWqFOo5y+nxZFiyZImeeuopm/t6/vnn9cILL2S73WQyaenSpVq1apWOHDmi6OhoeXh4qFmzZhoxYoQmT56c7y5DwcHBmj17tnbs2KHIyEj5+vqqa9eumjFjhu68806b51jS7r33Xu3atUvdu3fXypUrc2337rvv6r333pMkhYeH59ruxo0bmj9/vjZs2KCgoCDFxMTIxcVFDRs2VJcuXXTfffepS5cuBZpjhw4ddOnSJY0fP15z5szJsY3JZNLChQv1ww8/KDg4WAaDQQ0bNtT999+vqVOnFmi8onye/P7771q/fr327t2r06dPWx9/7dq11b17d02dOlXNmzfP9fjbPzdjY2M1d+5c/frrr7p06ZIcHR3VqlUrTZo0SWPGjCnQ48rNzz//rEWLFun48eNKTU1V/fr1NWLECM2YMSPf87gyv+cOHDiQ42fW4cOH9fXXX2vPnj0KCwuTyWSSr6+vqlevrrvuukv9+vXT4MGDrZ8pfn5+WY5/6qmnsr2vb3/vnj9/XmvWrFFgYKBOnjxpfY1mjDFhwgT179/f5sdRt25dffPNN/r+++8VHBys1NRUNWzYUPfee69mzJghd3f3PJ8Xs9msFStWaNWqVTp06JAiIyMlpf+NvvPOOzVs2DANHTrU+nl7u507d2rJkiXau3evrl+/LgcHB9WrV0/9+vXTjBkzVKtWrTzHLy5mi0X7zkVp9ZFQ1fJ00wPtfUpl3PKGohkAAAAA+bJYLDp4MVqrDoVq9dGriohPkSQFX4+naAYAAABAqYtJSNXWs9HaHBylfRfilGa2SJLa1vHUIx2ql/HsgHTshoniQKztC/G2L8TbvhDvyi0lzayDl+K042y0doZE62J0kvW+3UFX1KpW4U/CLgx2wwQqj6efflrffvutEhMT9dZbb2np0qUF7uP999+3niCfWVxcnI4fP67jx49rwYIF+vTTTzV8+PAC9T1mzBhr0cyyZcv0/PPP59r2+vXr2rFjhyTpvvvuy1YwExMTo0cffdTaJkNycrIOHz6sw4cPa/78+Vq0aJE6duxYoHnmxGAw6IUXXtCkSZMUERGhL774Qs8880yh+vr444/11ltvZfvbHhQUpKCgIC1YsEAffPCBxo8fn2c/FotFM2fO1I8//mjTuC+88ILmz5+f5bbjx4/r73//uwIDA/XVV18pLS1Njz/+uH755Zcs7Y4eParnn39eR44c0Ycffphj/w8++KB27dqV7fbIyEjt3r1bu3fv1vz587VkyRI1a9bMpjmXpsuXL+vhhx/W8ePHs9yekpKiffv2ad++fdb551bwtWLFCs2aNUvJycnW20JDQ7Vs2TKtWrUqx/dWZbB161ZNnTrVWiCQITU1VceOHdOxY8f01Vdf5Vl0Uxjx8fGaMGGC9uzZk+X2o0eP6ujRo1q2bJk++uijfPsp6udJbkVbqampCg4OVnBwsBYvXqz/+7//06OPPprvfM6cOaPx48fr4sWLWW7fs2eP9uzZo/379+udd97Jt5/cpKWlafr06Vq1alWW20+dOqVTp07pp59+0k8//VTo/iVp3rx5evXVV7N9zoWGhio0NFRHjhzR/Pnzde7cuUIX0l24cEGdOnXK8b7Lly/r8uXLWrlypcaOHavZs2fL0THvEojExESNHTtW27dvz3L7iRMndOLECa1bt07Lli3LtWDy4sWLmjRpko4dO5btvpCQEIWEhOjnn3/WihUr1KNHjyz3JyUl6amnntLy5cuzHXvy5EmdPHlS8+fP1+eff67Bgwfn+TgKy2yx6GhovDYGRWljcJTC/zzPq663m8a3s898gaIZAAAAADmyWCw6efWGVh0O1S+HQ3UlJjFbm8OXYnQxMkH1ffNefQEAAAAAiiryZqq2nI7S5uAoHbgUJ5Mle5s1R69SNINyg90wURKItX0h3vaFeNsX4l3xXbuRrF3nYrUzJEb7LsQqMTXnIqjtZyLV3M+1lGcHoLKoVauWJk+erLlz52rr1q3as2ePunbtWqA+0tLSVLNmTQ0bNkydOnVSgwYN5OLiotDQUO3fv19ff/21bt68qRkzZmjTpk0KCAiwue/GjRvrrrvu0oEDB/Tzzz/nWTSzYsUK69++23dVSE5O1v3332/dfeb+++/XgAEDVL9+faWmpmr37t2aN2+ewsPDNWHCBG3evFn16tUr0POQk2HDhql9+/Y6fPiwPv30U02ZMkVVq1YtUB9ff/213nzzTUnpOyE8+eST6ty5s0wmk7Zv3645c+YoISFBTz75pHx8fDRw4MBc+/r88891/Phxde3aVX/5y1/UpEkTxcbGZjvRXpIWLlyoAwcOaMCAAXr44YdVt25dhYaG6r///a8OHDig1atX67vvvtOJEyf0yy+/6P7779fo0aNVs2ZNhYSE6L333tPp06e1ePFiDR8+PMedG9LS0tSqVSsNHTpUd955p2rVqqW0tDRdunRJa9as0cqVK3XhwgVNnDhRW7Zskatr8f29GzZsmO6444482/z73//W5s2bJSnbTklRUVEaMWKErly5IhcXFz388MPq3r276tevr5s3b2rLli364osvdO7cOT3wwAPatGmTqlWrlqWPP/74Q48//rjS0tLk4uKi6dOna8CAAXJxcdGBAwf08ccf64UXXijQe6Yi2LFjh8aOHau0tDQ5ODho7NixGjp0qOrUqaPk5GQFBQVp06ZNWr9+fbGP/cQTT1gLZjp06KAZM2aocePGun79ur7//nutWrVKf/vb3/Lsozg+T9LS0uTl5aUhQ4aoW7duaty4sdzd3RUWFqajR4/qiy++UGRkpF566SU1a9ZMd999d67zSUxM1EMPPaSoqCj99a9/Va9evVSlShUdOXJE77//vkJDQ/X1119r8ODB6tevX6Get1dffdVaMNO0aVPNmjVLrVu3VlxcnFatWqXFixdr2rRphepbSi/GyyiYadCggaZMmaI2bdrIy8tL8fHxOnPmjAIDA7V27dosx23fvl1hYWEaN26cJOnll1/W0KFDs7SpXv3W/+WbTCY5Ozurb9++6t27t5o3by4vLy/FxMTo7Nmz+vrrr3Xq1CktXbpUDRo00IsvvpjnvJ999lkdOHBA48eP17333qsaNWroypUrmjNnjvbv36+DBw/qww8/1CuvvJLt2OvXr2v48OEKCwuTJN19990aP368mjVrJoPBoAsXLmjnzp3ZCpWk9HOtHn30UW3YsEGSNHjwYN17771q0KCBjEajDh48qLlz5+ry5ct69NFHtXr16nw/72xlsVh0POymNpyK1MbgKF27kZKtzeXoRB2/Gq+WNe3vPC+KZlAkJbVKGqus2BfibV+It/0g1vaFeFcuF6MT9duJCP12MkLnIrMXytxu6b4QPdq1TinM7BZWSQMAAADsw7UbydpyOn1HmT8u31AOdTJZnAq7oYvRiapTzblU5gcAAADAPpjMFh29Gq/AkBgFhsQoODzBpuN2hsRoWrfS/Q0FKG1mi0VRCanW66a0tDKcTcnzdHOU0WAotfGefPJJLVy4UAkJCXrnnXdyXLU+Lw8//LCef/55OTk5Zbm9ffv2Gjp0qKZOnaohQ4bo6tWr+vjjj/Xpp58WqP/7779fBw4c0NmzZ3Xo0KFcT/xdtmyZJKlJkybZ2rz//vs6cuSIPD099fPPP6t9+/ZZ7u/atavGjBmjoUOH6tq1a3rzzTc1b968As0zNy+++KIefPBBRUdH67PPPsv3hPzMIiIi9Nprr0lKL3D67bffVKfOrc/8Ll26aPDgwRo5cqQSEhL03HPP6cCBA9likeH48eMaN26c5syZI0M+r7EDBw5o+vTpeuONN6y3tW/fXr1791bPnj116dIlvfHGG4qOjtYbb7yh6dOnZ2nXvXt3de3aVfHx8VqwYEGORTOzZ89WkyZNsuzmkJaWprvuukujRo3SQw89pHHjxunMmTP66aef9PDDD9v2xNnA09Mzyzkot/vqq6+sBTNjxozRgw8+mOX+v//977py5Yrq1aun5cuXq0GDBlnu79Gjh+655x6NHDlS58+f1yeffKJ//OMfWdq88MILSktLk5OTk3788Ud1797del+HDh00YsQIDRkyJNtONkWRkJCgkydP5tuudu3aeT4/hZWUlKTp06crLS1N7u7u+u6777LtoNG5c2c98sgjunLlSrGOvX79emvRxYABA7R48eIsr72BAwfq/fffz3dHluL4PBkwYIDuv/9+ubtnLSpo166dBg0apGnTpumee+7R8ePH9c477+RZNBMREaGUlBStXbtWLVq0sN7evn179ejRQ71791ZSUpLmz59fqKKZEydO6Msvv7TOb+XKlVl2eunVq5c6deqkWbNmFbjvDL/88ovMZrPc3d21Zs0a1ahRI8v93bp10yOPPKK4uLgsz1nLli2z7OLi7++vli1b5jpOzZo1deDAAdWqVSvbfb169dLkyZP11FNP6fvvv9enn36qxx9/PFuxW2b79+/Xp59+qrFjx1pva9++vfr376+BAwfq5MmT+uabb/Tyyy9n27XmhRdesBbM/Otf/9KTTz6Z5f4777xTo0aN0r///W+l3fa955tvvtGGDRvk5OSkxYsXZ/t87dixo8aNG6eRI0fq1KlT+sc//qHVq1fn+jjyY7FYdPLaTW0IitLGoEhdjcteKHO79aciKZoBCqq0Vj5hlRX7QrztC/G2H8TavhDviuf6jRStD4rU+pOROnHtpk3HtKlTTfe0r61eDTyINwAAAIBicyUmSZv/LJQ5ejXepmOcHY3q1ay6hrTxl687BTMAAAAAii4mMVW7z8Uq8FyMdp+LVWyS7YUAflVd1Le5n7rU88i/MVDBxSamaeCnB8t6GqVmwxMd5O2ec9FDSfDz89OUKVP0ySefaOfOndq5c6d69uxp8/H169fP8/7atWtr5syZ+uc//6nffvtNFosl34KNzEaNGqVXXnlFJpNJP/30U45FM+fOndOBAwckZd9lJj4+Xl9//bUk6aWXXsp2gnuGevXq6bnnntMLL7ygVatW6YMPPshyMnZhDRw4UB07dtTvv/+uuXPnaurUqfLy8rLp2CVLlighIb2I8j//+U+WgpkM7dq109NPP6233npLV69e1Zo1a3Tvvffm2J+np6feeecdm57/OnXq6NVXX812u7u7u8aPH6/3339fUVFR6tixY5aCmQwZuw/9+OOP1p09btekSZM859C7d28NGTJEa9as0dq1a4u1aCYv27dv1z//+U9J6cUrH330UZb7L168qBUrVkiS3n777WwFMxnatWtnfW99//33WYpm/vjjDx06dEiSNHHixCwFMxn8/f312muvFWkHj9sdOnRIvXr1yrfd7NmzNWHChGIbN8OPP/6oq1evSpJeeeWVbAUzmeX0ei+K+fPnS5JcXFz00UcfZStikKS//vWvWrVqVa6FRcX1eeLv75/nXKtVq6YXX3xREydO1N69exUVFSUfH59c27/00ktZCmYyNG7cWEOHDtXy5cu1d+/ePMfMzYIFC6yLGn/44YdZCmYyjB8/XsuXL9emTZsKNcb169clpX8m3F4wk1leBSy28PDwyPNz3WAw6D//+Y+WLl2qhIQEbdu2TSNHjsy1/fDhw7MUzGRwcXHRlClT9Le//U1RUVEKCgpS69atrfefOXNGa9askZS+69XtBTOZ3f58WywWzZ49W5I0bdq0HAsSJcnLy0uvvvqqJkyYoH379uns2bP5fubeLtVkVlhsih5bdVhXYpNtOqZ5zaoa3s5fvRraZ45C0QwAAABgp2ISU7UpOErrTkbatGKzJDXwcdXQln4a17WxGvulJ3/R0dEUzQAAAAAokgtRidp8OkqbgqN06pptKza7OBrVo5GnBrSorpF3NVJV1/QTVshRAAAAABSGxWJRcHiCdv65m8yxq/Ey2/LjiSSDpNb+Hrq7iY+G39lArfyryWg0kJ8AKBazZs3S/PnzFR8fr7feeqtIK9LfuHFDUVFRSkxMlMWS/iGXsTPAjRs3dOHCBTVs2NDm/vz8/NS7d29t3rxZK1as0H/+8x8ZjcYsbTJ2mZGk0aNHZ7lv165diouLk6Q8T36W0nczkKTU1FQdPnw4x0KGwnjxxRc1duxYxcXF6dNPP9Xf//53m47bvn27pPRilxEjRuTa7uGHH9Zbb71lPSa3opnBgwfneMJ7ToYPH57rjjWZT/7ObSxJatOmjX788UfFxMQoNjY2351LIiIiFBkZqZSUW7sY+Pr6SlKx7raSl7Nnz2rKlClKS0uTv7+/Fi5cKFdX1yxtNmzYIJPJJHd391xPWM/QtWtXffLJJwoLC9Ply5dVt25dSdK2bdusbfIqThk+fLg8PT0VGxtbhEdVfqxfv15SevHCxIkTS21ck8mkXbt2SZL69OmT404jkmQ0GjV+/Hj9+9//zvH+kvo8uXnzpiIjI5WQkGD93Mxc1HP8+PFcd5sxGAy6//77c+27ffv2Wr58uaKjo216H94u43OoVatWuRYJSdKDDz5Y6KKZmjVrSpKCg4N18OBBdejQoVD9FFRqaqrCw8MVHx+f5fu0j4+PwsPDdfz48TzjfHuRZmaZn6sLFy5k+dzcsGGDNc45FR3mJSgoSOfPn5dk+2tQkn7//fd8i2YsFouS08yKSzIpIcWs6IRUXYlJybdgpqGPqwa3rK4xnRurWc2qkuz3NxSKZgAAAAA7kpBi0rYz0Vp3KlK7z8fKZMOvPTWrOmtQC18NbuGr5jXc5ejoKG9v2/6zDgAAAAByYrFYFBKZqE3BUdocHKUzEYk2HefuZNTdTbzVL8BH3Rt6ys3ZQQ4ODtaCGQAAAAAoiIQUk/ZdiE0vlDkXo/D4VJuPrerioG6NvNSjkae6N/KSt7uTHBwc5O1dsJMdASA/Pj4+mj59uj744APt27dPmzdvVr9+/Ww+/tKlS/rf//6n9evX69KlS3m2jYqKKlDRjJR+YvLmzZt17do17dixQ717985y/88//yxJuuuuu9S4ceMs9x0+fNh6uU2bNjaPmbHzQXHo06ePunbtqj179uiLL77QjBkz8tw1IkPGbhft2rXLtYBFkmrUqKH69evr4sWLue6QIaWf9G6rvE6uznzSfV7tMu8KER8fn+PJ+nv37tVXX32lrVu3Kjo6Ote+oqKi8ptykcXGxurhhx9WTEyM3NzctHjx4hyLKzJ2iElISMi1+CIn169ftxbNZMTJ2dk5z9elk5OT2rZtq507dxbgkeSue/fuWrlyZbH0VRhHjx6VlF5Q4O7urrQ023fZK4rz589bd226884782yb1/3F+XkSGRmpuXPn6tdff1VISIi1iCInkZGRud7n6+ub5+dJ5p2tcnsf5iY5OVkhISGSlOMuX5kVpdBl9OjR+u9//6vk5GQNHz5c/fr108CBA9WlSxe1aNGiQLuT5Sc1NVWLFi3S0qVLdfTo0SxFerfL73OnWbNmud53+/OeWcb7wMnJSR07drRh1rdkfP5I0tChQ20+Lq+/acmpJsUlmxSXlKbktPRdhVzyWRa5vrerBjb30cDmvmpS3e3P87yq2jyfyoqiGQAAAKCSS0kza9e5GK07FantZ2OsSVRevN0cNaC5jwa3qK52darIWIxJLgAAAAD7ZLFYFHQ9Ib1Q5nSULkQl2XRcVRcH9Wrirf7NfdSlgadcHI35HwSUAw4ODiXW9+2r9t5+HZUHsbYvxNu+EG/7QrzLlwtRidp5Nlo7zkbr4OU4pZps3E5GUjM/d/Vs4q2ejb3Vrk5VORqz/n5CrAGUlMcff1xffvmlYmNj9e6779pcNLNx40ZNmTLFekJ6fhITbVvYJLOhQ4fK3d1dCQkJ+umnn7IUzRw+fFinT5+WpBx3WwgPDy/weIWdZ15eeukljRo1SvHx8ZozZ47+9a9/5XtMTEyMJKl69er5tq1Ro4YuXrxoPSYnBTlZ3s3NLdf7Mv/tydhFKL92Oe048O677+q9996zaT7FHY/bmUwmTZ06VWfOnJHBYNDs2bNz3VUjIiKiUGNkfgwZBUJeXl75/v+On59focYrjzKKEDJ2FiktmQuy8ns/1ahRI9f7iuvz5PDhwxo3bpzNxWBJSbn/P3de71Up//dhXmJiYqzFPPk9b0V5nTZr1kyfffaZ/vrXvyomJkbr16+37krk6+urfv366ZFHHsmyc0phREdHa+zYsVmKn/KS3+eOrZ+Ttz/vGUVQXl5ecnZ2tmkuGYrj80fSnzvKpGUplMlPHU8XDWrhqwHNfRTg516sxUyVBUUzAAAAQCWUZrbo94txWncqUltORyk+Of/k2sPZQX2beWtwC191auCZ7YceAAAAACgoi8Wi42E3rTvKXIlNtuk4TzdH9W2avqNMp/rV5OTAiWaoeLy9vUttrIKcWIOKjVjbF+JtX4i3fSHepSs5zaR956K0+dR1bTl1XecjbTtxXJLcnBzUo6mv+raooT7Na6iOV94nPt6OWMMeeLo5avNTna3XTaW0M0FZ8XQrm1MuPT099fjjj+vtt9/WgQMHtH79eg0aNCjPYyIjIzVjxgwlJCTIw8NDM2fOVN++fdWwYUNVq1bNejLwjh07NHr06ELPrUqVKhoyZIiWLVum1atX67333pOrq6skadmyZZLSF5YYNWpUtmPN5lsnA2/atCnPHVsyq127dqHnm5MePXro7rvv1o4dO/TVV19pxowZeZ6cn1lxnZhckotvFNT27dutBTMNGzbUrFmz1LVrV/n7+8vd3V2Ojunvg7ffflsffPBBic/nn//8p7Zu3SpJeu6553J8LWXIOAHe19dXy5cvt3mM+vXrZ7uNk85LX1Ge8+L4PElJSdHUqVMVFRUlJycnTZ06VUOGDFGTJk3k5eUlFxcXSem743Tq1EmS8tyFprSU9Gt15MiR6t27t1asWKHNmzdr7969ioiIUGRkpJYuXaqlS5dq/Pjxmj17dqGLxv/xj39YC2aGDRumBx98UK1atVL16tXl6upqfYx33HGHrly5Ui6e99tlLsD59ttvVa9ePZuOq169ulIyFcok2Vgo4+Jo1MRO/hrY3FctalIokx+KZgAAAIBKwmKx6EhovNaditTGoEhFJeT/H9Iujgb1bJxeKNOjsRcrNgMAAAAoMrPFoiNX4q07yly7kWLTcb4eTurXLL1Q5s661SjkBwAAAFBoV2MTtTUoXJtPXVfgmQglpNi+cnd9H3f1a1FDfZr7qWtjX7k6lZ+TmIHyyGgwyMf91mmIaWnk8yVl+vTp+vzzzxUVFaV33nkn36KZX375RbGxsZKkhQsXZtkBJrPMuzwU1v33369ly5bpxo0bWr9+ve655x6ZzWZr0ULv3r1z3Okg84IT1atXL/ZimIJ46aWXtGPHDiUkJGj27Nl644038mzv5eWla9eu2bS7xfXr163HVASLFy+WlD7fDRs2WHexSLutKK44Xjv5WbRokb788ktJ6Sfuv/DCC3m29/HxkSTFx8crICCgUMVIGXGKjo6WyWTKs4/C7m5S3DIKFTIXjuQkr12nfHx8FBoaqmvXrhXr3PKT+X2R3/OZ8V7KSXF8nuzYsUPnz5+XJL3zzjt65JFHcmyX165RpSVzcXZ+z1txvE6rVaumiRMnauLEiZKk4OBgrV27Vl9++aXCwsL0ww8/qG3btpo+fXqB+75x44ZWrFghSRozZozmzp2ba9uSfu59fX2t46SkpBRot5mMzx8p/flq2bJlnu2thTLJaQqPsK2w38nBKGezQb4eTqrj5aZhpbwzVEVG0QwAAABQgVksFp0OT9C6U5FafypSV+PyPxnNwSB1aeipwS181bupt6q4kBYAAAAAKJo0s0V/XI7T5uAobT4drcibqTYdV7Oqs/o181H/AB+1rV1FDhTKAAAAACgEk9miPy5Ga0vQdW0+Fa6TV+NsPtbRaFDnRj7q16KG+raoocbVPVilGUC5VKVKFc2cOVOvv/66jhw5otWrV+fZ/tSpU5LSTyTPrWBGkg4dOlTkufXr10++vr6KjIzUsmXLdM8992jXrl26evWqpPSToHPStm1b6+W9e/fqvvvuK/JcCqtz587q16+fNm/erIULF2rWrFl5tm/ZsqWuXbumI0eOKC0tzbr7yu3Cw8N16dIl6zEVQVBQkKT0HXgyCmZykrErREkJDAzUSy+9JCn9tTJnzpx8/0a3bdtWP//8s5KTk3Xo0CHdddddBR63ZcuWWr58uVJSUnTs2DG1b98+x3ZpaWk6duxYgfsvCVWqVJEka6Fcbs6ePZvrfe3atVNoaKgOHTqkhISEAhULFEXDhg3l5uamxMRE/fHHH3m2zevzqjg+TzJe+5LyPL44PjeLytXVVY0bN1ZISEi+88nveS2MgIAABQQEaMyYMerevbsSEhK0cuXKLEUztn6nDgkJUWpq+m8Kee0kdfr0ad28ebNI885Pu3bttHTpUqWmpmr//v3q0aOHzcdmfg3u27dPXbt2zdYmJc2sG8lpiksyKTHVtsJ+R6NB1VwdVc3VUW5ORl2/fkNm0pUC4+w4FElJbQl4+/Zchd2uCxUD8bYvxNt+EGv7QrxL38XoRP12IkK/nYzQuchEm47pUK+ahrSsrgHNfeXtbts2tDkh3gAAAAAkKdVk1v6L6YUyW89EKyYx/90uJamOp4v6BaQXyrSq5SEjJ6OhkirJ1VaNRmOW1SRjY2PzXUkUFROxti/E274Qb/tCvEtGTGKqdoXEaGdItHaFxCg2ybacRJKqezipR2Nv3d3EW10aemZaYCy1SKtXl4dYZ15lHUDlM2XKFM2bN0/h4eF699131aZNm1zbmkzpJ+MmJyfLbDbn+LtuQkKCli5dWuR5OTo66p577tH8+fO1ceNGxcbG6ueff5Ykubu7a+jQoTke17t3b7m7uyshIUFffPGFRo0aVaaFiy+99JI2b96spKQkffTRR3m27dWrl7Zu3arY2Fj9+uuvuZ7o/e2338pisViPqQgydpTJa1eSI0eO6MCBAyU2h3PnzunRRx9Vamqq/Pz8tHjxYrm7u+d73ODBg/Xaa6/JYrHos88+0+eff17gsXv37q3/+7//kyT98MMPuRbNrF69ulzsOCJJ9evXl5ReFBMfH28tosksMjJS27Zty7WPQYMG6bffflNCQoIWLlyoadOmldh8M3N0dFT37t21adMmbd26VWFhYapVq1a2dmazWT/88EOu/RTH50nm3ZRu3ryZ4/NoNputuzGVtd69eyskJEQnTpzQkSNH1K5duxzbfffddyU2hzp16qhJkyY6evSooqKistzn4uJivZySkvsiwJmf97w+dxYsWFD4idpo4MCB+te//iWLxaLPP/+8QEUz7dq1U+3atRUaGqrFixfrsccek6urq1JNf+4oU4RCGYr6i46iGRRJaSXamf9DAZUf8bYvxNt+EGv7QrxLRlhskn49EqpVh0N15HLeq4NkaFvHU/e0r60R7f3l7+lWIvMi3gAAAID9SE4za++FWG0KitL2s9G6kWzbDzwNfFzVP8BH/Zr5qHkNd37ggV3IODmpNJjN5lIdD2WHWNsX4m1fiLd9Id6FY7FYFByeoJ0hMQoMidGxq/EyW2w71iCptb+Hejb2Vs/GXgqo4Z6lgL+k4kGsARQ3Dw8PPfnkk/rXv/6lEydO6Nq1a7m2bdy4sSRZV/+/fdcEk8mkZ599VmFhYcUytzFjxmj+/PlKTk7Wzz//rF9//VWSNGTIkBxPPJfSf2ueMmWKPvnkE+3fv1///Oc/9frrr+e6cOP169e1bt06PfLII8Uy59vdeeedGjx4sNatW6dvvvkmywnft5swYYLef/99JSQk6NVXX1WXLl3k7++fpc2xY8f08ccfS5L8/f01bNiwEpl3cWvcuLFOnz6tvXv3KiQkxPpayhAREaGZM2eW2PhxcXF6+OGHFRUVJRcXFy1atEh16tSx6dimTZvqnnvu0cqVK7V8+XLdeeedevzxx3Ntf+HCBR04cECjR4+23tahQwe1a9dOR44c0YIFC3TPPfdk2zEiLCxM//73vwv1+EpC9+7d9fnnnyslJUVffPGFnn322Sz3p6am6tlnn1ViYu6Lso4dO1bvv/++QkND9cYbb6hVq1a5FgyEhoaqdu3axTb/v/zlL9q0aZOSk5P1t7/9TQsXLsy2qP/HH3+sEydO5NpHcXyeZH6tf//993r66aezHffGG2/oyJEjBX2IJWLixIlasGCBLBaLnnvuOa1YsUIeHh5Z2vz000/auHFjocdYs2aNevTokeu5QVeuXNGZM2ck3SreyuDj4yNnZ2elpKTo/PnzuY7RqFEjGQwGWSwWff/99zkWPK1bt05fffVVoR+HrZo0aaJhw4Zp9erVWrNmjebMmZPrzmM3b95UamqqvLy8JKUX0D/zzDN64YUXdP78eU2b8YReeetDpRlyLte4GX9D61Yt0+gHJ0lKL5Sp+mehjDuFMsWOohkAAACgHIu+maI1x65q1aFQ7TsfJYsNP/408fPQPe3raGR7fzX2y/k/HwEAAADAVkmpJgWei9Xm4CjtOButhFTbVkluWt3NuqNMY183fuABAAAAUGAJKSbtuxCbXihzLkbh8ak2H1vVxUHdGnmpRyNPdW/kJW93pxKcKQCUnsmTJ+t///ufrl27psjIyFzb3XvvvXrzzTeVnJysp556SkePHlWfPn1UrVo1nTp1Sl9++aUOHz6szp07a9++fUWeV+fOndWgQQNduHBB//d//6fY2PSFIO+///48j3vxxRe1a9cuHThwQJ9//rkCAwP1yCOPqE2bNnJ3d1dsbKxOnTql7du3a9OmTWrZsmWJFc1kzGf9+vVKSUnJc2eE6tWr69VXX9WLL76o0NBQ9e/fX0899ZQ6d+6stLQ0bd++XXPmzNHNmzdlMBj0wQcfyMmpYvwtGjdunNatW6eEhASNGDFCzzzzjNq3by+TyaT9+/dr7ty5un79ujp16qT9+/cX+/gvv/yygoODJUmPPfaYPDw8dPLkyVzbV69eXX5+ftbr7733ng4fPqzz58/rX//6l9auXatx48apRYsWcnZ2VnR0tI4fP67Nmzdrx44dGjZsWJaiGUl69913NWLECKWmpmrs2LGaPn26BgwYIBcXFx04cEAff/yxoqKi1Lp1ax0/frxYHndCQkKejzOz5s2bZykGGThwoOrVq6dLly7p7bffVlRUlIYPHy5XV1edOnVKX3zxhY4ePaqOHTvq999/z7FPV1dXzZs3T6NHj1ZCQoLGjBmjsWPHatiwYfL391dKSopOnz6tjRs3at26dbpy5UqxPG4pfYegjIK1devWafjw4Zo+fboaN26siIgIff/991qxYoXuuOMOHTp0KNd+ivp50rdvX/n5+Sk8PFxvvfWWLl26pGHDhsnX11chISH65ptvtH379mL73CyqNm3a6NFHH9VXX32lQ4cOaeDAgXryySfVqlUrxcXFadWqVVq0aFG+z1tePvvsMz3++OMaMGCA7r77bjVr1kzVqlVTbGysDh06pC+//NJajDV58uQsxzo6OuqOO+7Qvn379N1336lt27Zq06aNHB3Tyxe8vb3l7e0tHx8fDRgwQBs2bNDmzZs1duxYTZ48WfXq1VN4eLh+/fVXff/992rQoIHi4uIUERFRlKctX++++64OHDigsLAwvfbaa9q8ebMeeOABNWvWTAaDQRcvXtTOnTu1YsUKzZ8/31pclmYy655xD2nNhs3auuE3/bb6Fx09ckQjx05Qyzbt5VG1mhLib+jCubM6tH+vdm3dKGcXF02ZMlXVXB3k7uzA7ygliKIZAAAAoJyJT07ThhNhWnUoVDtORyjNhmXS6ni5aUR7f93TvrZa+VcjiQIAAABQJPHJadoZEqPNwVEKPBer5DTbCmVa1HS37ijTwKdkdrsEAAAAULldjE7SzpBo7QyJ0R+XbyjVZON2Mkov3u/R2Es9G3upbe2qcjTyewmAysfNzU3PPPOMXn755Tzb1a5dW++++66effZZJSUl6ZNPPtEnn3ySpc2oUaP0yCOP5FvYYqvRo0fro48+shbM+Pr6ql+/fnke4+Liop9++kmzZs3S6tWrdfz4cb300ku5tq9atWqxzDU3bdu21fDhw6075eTl0UcfVWxsrN5++22Fh4frlVdeydbGxcVFH3zwgQYOHFgS0y0R99xzjyZMmKAlS5bo6tWrevHFF7Pc7+DgoNdff12xsbElUjRz+fJl6+WcXre3e/755/XCCy9Yr3t7e+vXX3/V1KlTtWfPHu3evVu7d+/O9ficXlN33XWX/ve//+nJJ59UUlKS/vvf/+q///2v9X5HR0e9++672rt3b7EVzRw6dEi9evWyqe2ZM2ey7Pzh7OysTz/9VOPHj1dCQoLmzZunefPmWe93cHDQG2+8oZiYmFyLZiTp7rvv1vfff6+pU6cqJiZGS5Ys0ZIlSwr/oApg3rx5Gj9+vPbt26cDBw7osccey3J/27Zt9f7772vAgAG59lHUzxMPDw/NmTNHkyZNUlJSkhYuXKiFCxdmadOjRw+9/fbbuvvuuwvxKIvf66+/rrCwMK1evVqnT5/WU089leX+Bg0a6IsvvlCnTp0KPUZCQoJWrVqlVatW5Xi/0WjUCy+8kONuWk8//bR156jp06dnuS/ze/e9997TiBEjdPnyZW3btk3btm3L0rZu3bpatGiRJkyYUOjHYasaNWrol19+0cSJE3Xy5Ent2LFDO3bsyLGtyWRWVEKqbiSlKSHFJIukV96ZLU+f/2jVj9/qyqULmvfh27mO5edXXf6eue9qhuJD0QyKJDo6ukT6NRqNWf6gx8bGymy27UdZVDzE274Qb/tBrO0L8S665DSzAkOi9duJCO04G60kG05I83Z31MDm1TW0VXW1q1NVRoNBklkxMTElOtfyEG9vb+9SHQ8AAACwB3FJadp+NlqbgqO093ysUmw8Ma2tfxX1C/BRv2bequPlWsKzBAAAAFDZpKSZdfDyDQWGxGhnSLQuxSTbfKyro1GdGlRTj0bphTK1qnHCGQD78Mgjj2jOnDn57vTw4IMPqmnTpvrf//6nffv2KTY2Vj4+PmrdurUmTJigUaNGKTAwsNjmNWbMGH300UfW6/fcc491R4G8VKlSRQsWLNCePXv0ww8/aM+ePQoLC1NSUpKqVq2qhg0b6s4779TAgQPVt2/fYptvbl588UWtWbPGpt/Bn332WQ0aNEhfffWVduzYoWvXrslgMKhu3brq06ePpk+frvr165f4nIvb7Nmzdffdd2vx4sU6duyYUlJSVKNGDXXr1k1TpkxRhw4d9O6775b1NHNVs2ZN/fLLL1q/fr2WL1+u33//XdevX1dqaqo8PT3VqFEjderUSYMHD1b37t1z7GP06NFq3bq1Zs+ere3btysqKkq+vr7q3LmzHn/8cd11113au3dvKT+y3HXt2lWbNm3SRx99pO3btysyMlI+Pj7q1KmTHn/8cXXu3NmmmPXv31+HDh3SF198ofXr1+vs2bOKjY2Vu7u7GjVqpG7duhVboV1mVapU0cqVK7VgwQL9+OOPCg4OlsFgUMOGDTVq1ChNnz5d169ft6mfonye9OvXTxs2bNDs2bO1Y8cORUZGytPTUwEBARozZoweeuihLIVdZc3JyUkLFizQ0qVLtWjRIp04cUJpaWmqW7euhg0bppkzZ8rLy6vQ/X/22WfasGGDAgMDFRQUpOvXrysqKkouLi6qV6+eunXrpkmTJql169Y5Hj9o0CAtW7ZMn3/+uf744w9FRkYqNTX77pF16tTRpk2b9Mknn2jt2rW6fPmydYxhw4bpscceK9LjKKiGDRtqy5YtWrp0qVatWqUjR44oKipKjo6Oql27ttre0UF39x8snybtFBaXNX9xdHLSX//5uu4d95B+/fl7Hdq/R9fDQpWYkCB3Dw81qF9f7du3V//+/TVo0KBSe0z2zmCxWGxfjgG4TUltceXg4JDlRMjo6GiZTKYSGQtlj3jbF+JtP4i1fSHehZNmtuj3i7FadzJSW85EKz45/+fMw9lBfZt5a3ALX3Vq4FkmK6SVh3hXr169VMdDxVCSW/CWh9c9Sg/xth/E2r4Qb/tCvG0Xk5CqrWeitTk4Snsvxslkw06XBkl31q2qfgE+6tvMWzWrlu1JaWUdb/IT5IYcBcWBWNsX4m1fiLd9Id7ZXbuRrF3nYrUzJEb7LsQqMdX2xbnqeLqoZ2Mv9WjspbvqVZOLo7EEZ1ow5SHW5CgVw5kzZ7R06VIFBQXJZDKpfv36Gj58eK4nbheHwuQo165dk9lsltFoVM2aNXNtl7koIi0trVDzQ8VBvO0L8bYvxNt+EOuCMZktupGUprikNN38c0eZ/BgNBlV1dVA1F0d5uDj8uRhy0dn6/SwDOUo6dpoBAAAASpHZYtGR0HitOxmpTcGRikrIP/F0cTSoZ+P0Qpkejb3K1Y8/AAAAACqeiPgUbTkdrc2no3TwUpxs2VDGwSDdVa+a+gX4qE8zb1X3cC75iQIAAACoNExmi45ejVdgSIwCQ2IUHJ5g87EORoM61K2qHo291LORlxr4uMpQTCecAWXh2LFjevPNN+Xs7Kzu3bvLzc1Ne/fu1ccff6zIyEiNHDmyrKcIAABg90xmi24kpykuyaSbySZZbCiVMRoMqurioGquxVsog6KjaAYAAAAoYRaLRcHhCVp3MlLrT0Uq7EZKvsc4GA3q0qCaBrfwVe+m3qriwld3ID8ODg4l1rfRaMzzOioX4m0/iLV9Id72hXhnFxaXrM3BkdoYFKlDl2/YtAqao9GgLg091T/AV32a+cjb3anE51kYxBsAAAAon2ISU7X7XKwCz8Vo97lYxSbZvoK1r4eTejTyUs/GXurcoBq/k6DSMJlM+uyzz2Q0GvXaa6+pYcOGkqQxY8bo5Zdf1pIlS9S1a1f5+fmV7UQBAADskMlsUfyfhTLxKSZZLLYVylT5s1CmirODjEYKZcojMkoAAACghFyKTtK6U5H67WSEzkcl5dveIOnOulU1qIWvBgT4yKucnpAGlFeZt5MtaZ6enqU2Fsoe8bYfxNq+EG/7Yq/xvhiZoLXHrmrtsTAduhRj0zHOjkb1DvDT0Da11L9lTXm6Vby8xF7jjfKHwn4UB2JtX4i3fSHe9sVe4m2xWBR8PUE7zkZrZ0i0jobekNmWin2l/0bSxr+Kejbx1t1NvNW8pkeFXJXZXmKNwjt27JiuXbumPn36WAtmJMnd3V333XefPv30U23btk1jxowpu0kCAADYkfRCGZPiktMUn0yhTGVF0QwAAABQjK7fSNH6oEitPxmpE9du2nRMy5oeGtzCVwNb+KhmVZcSniEAAACAyuxseLzWHk0vlDkeGmfTMW5ODurbwk9D2/irb4sarOAMFBMK+1ESiLV9Id72hXjbl8oU75vJadp5JkJbTl3XlqDruhaXbPOx1Vwd1SvAT/1a1FDvAD/5Vql8v5FUplhXBrGxsTpz5ozOnDmjs2fP6uzZs7px44YkqXfv3po5c6bNfYWHh2vt2rU6ePCgIiMj5ejoqFq1aqlbt24aPHiwXFxyfj0fP35cktS+ffts991xxx2SpBMnThTwkQEAAKAgzGaL4lNMiktKL5Qx21AoYzAYVMX5z0IZFwc5UChTofDLFwAAAFBEMYmp2hQcpXUnI/XH5RuyZdG0hj6uGtzCV4Na+KqBj1uJzxEAAABA5WSxWBR07YbWHg3T2mNXFXwt3qbjqrg4qn/LGhrappZ6B9SQm3PJ7YgBAAAAoHI5F3FTm09d15ZT17XvXJRSTGabj21Rq6r6NK+hfi1qqEN9Lzk6sBMLSs+0adOKpZ/ff/9dn3zyiRITE623JScnWwtxNm3apJdfflm1atXKdmxYWJgkyd/fP9t9Xl5ecnV11dWrV4tlngAAALilaIUyDqri4kihTAVG0QwAAABQCDdTTNp2JlrrTkZqz4VYmcz5J1K1qjprUAtfDW7pqwA/dxkMJFJAcYqOji6xvo1GY5YVAWNjY2U22/5DMCoW4m0/iLV9Id72pbLH22Kx6OS1m9oUFKlNwZG6EJVk03HVXB3Vp6m3+jf3VdeGXnJ2TD85LelmnJJs2yizXCrreJfmbiIAAABAWUhOM2nfuShrocz5yASbj3VzclCPpr7q07yG+raooTpeLCSG8qF69eqqU6eODh8+XKDjzp07p48//lgpKSlydXXVqFGj1KZNG6WkpCgwMFCbNm3S1atX9dZbb+ntt9+Wm1vW13xCQvr7x93dPcf+3dzcrG0AAABQNGaLRTeT0wtlbthaKCODPFzSC2WqUihTaVA0AwAAANgoOc2sXeditO5kpHaERCs5Lf9EytvNUQOapxfKtKtdRUYKZYASYzKZSm0ss9lcquOhbBFv+0Gs7Qvxti+VId5mi0XHr8ZrU3CUNgdHKzQu2abjvN0c1aeZt/oH+KhjvWqZVnG2VPjnJDeVId6oHCjsR3Eg1vaFeNsX4m1fKmK8r8UlKzAkRjtCorX3fIwSU22fb10vF/Vs4q2ejb3Vsb6nXP4s2JclSdHRthX9V1TlIdYU9uduzJgxatKkiZo0aSIvLy9dv35ds2bNKlAfCxYsUEpKihwcHPTPf/5TAQEB1vvatGkjf39/ffPNN7p69ap++eUXjRs3rrgfBgAAAPJgLZRJTtONJFsLZSQPZwdVc3VUFVdHOVIoU+lQNIMicXBwKJF+jUZjntdRuRBv+0K87Qexti+VOd5pZov2X4jVbyfCtTk4SvEp+Z94VcXZQf0CfDSklZ86NfCsdIlUZY43AAAAUJ6YzBYdvnJDm09HaXNwlK7Hp9p0XHUPJ/Vt5qP+Ad66o261SpeTABUFhf0oCcTavhBv+0K87Ut5jLfJbNHRq/EKDIlRYEiMgsNt3+nCwWhQh7pV1aOxl3o28lIDH1cZrIuIVd6CfVuUx1jbs6IWsJw5c0YnT56UJPXt2zdLwUyGESNGaMuWLbpy5YrWrl2r0aNHy9Hx1il6GTvM5LabTGJiojw8PIo0TwAAAHtjsVh0M+XPHWWSTDLZWCjj/mehTFUXh0yLjqEyomgGRVJaq1NkXoUDlR/xti/E234Qa/tS0eNtNlt08GK0Vh0O1ZqjVxURn5LvMS6ORg1oWVMj29dWn+Z+cnUqmeLi8qiixxsAAAAoT9LMFh24FKfNwVHaejpakQm2FcrUrOqs/gE+6hfgwy6XAAAAAGwSk5iq3ediFXguRrvPxSo2Kc3mY309nNSjkZd6NvZS5wbVVMWFU5BQ+e3bt896uW/fvjm2MRqN6t27t7777jvdvHlTx48fV/v27a3316pVS5J09epVNW7cOMuxMTExSkpKUtOmTUtg9gAAAJXLrUIZk24kp8lkzr9QRkrfUaaqq6OqUShjV8hYAQAAAKUnUieuxmnV4VD9eviqrsQk5nuMo9Ggu5tV1z131NbAVrX4QQgAAABAoaSazNp3IU6bgqO07Wy0YhNtO1GtrpeL+jXzUf8AH7Wq5ZFpJWcAAAAAyM5isSg4PEE7/9xN5tjVeNl4XpkMklr7e6hnY2/1bOylgBruFOvD7gQFBUmSXFxcshW8ZNaqVassx2QummnVqpVWrFihw4cPq0ePHlmOO3ToULbjAQAAcIvFYlFCiklxyem7ythaKJN5RxknCmXsEmf1AQAAwK6di7ipVYdCterwFZ0Nv5lve4NB6tzQR/fcUVtD2/jLx8O5FGYJAAAAoLJJSjVrz4UYbQ6O1vaz0YpPNtl0XEMfV+uOMgF+7hTKAAAAAMhTQopJ+y7EphfKnItReLxtu1lKUlUXB3Vt6Kmejb3UvZGXvN2dSnCmQPl3+fJlSem7xTg4OOTarnbt2tmOydC2bVvVrFlTgYGBGjZsmBo2bChJSkhI0PLly+Xo6KhevXoV/+QBAAAqKIvFooRUs+KS0nQjKU1pthbKOP1ZKONKoQwomkERRUdHl0i/RqNRnp6e1uuxsbEym80lMhbKHvG2L8TbfhBr+1LR4n0tLlnrTkXot5MROhmWf6GMJLWq5aEhLf00qIWvalZzSb8x5aaiU2w7vjIpD/H29vYu1fEAAACA4pCYYlLguRhtCo7SzpAYJaba9j26mZ97eqFMM281ru5ewrMEAAAAUNFdjE7SzpBo7QyJ0R+XbyjVZON2MpKaVndTj8Ze6tnYS21rV5WjkUJ9QJJSUlJ048YNSZKvr2+ebatUqSIXFxclJycrMjIyy30ODg6aPn263nzzTb366qvq3r273NzctHfvXoWHh+uRRx5RjRo1CjS328fITV6FPrmxZbGO29sYDAZZLLZ/7qBiId72hXjbF+JtPypKrBNS0neTiStAoYzbn4Uy1Vwd5eRQuXMZg8Fg0/c7o9GY53V7QdEMisRksm31w6Iym82lNhbKHvG2L8TbfhBr+1Ie4x2TkKqNwVFafypSf1y+IVtSqUY+rhrcsroGtfBVfW9X6+3l7bGVtfIYbwAAAKC8iE9O086Q9EKZXedilZxmW6FMq5oe6vfnjjKZ8xEAAAAAuF1KmlkHL99QYEiMdoZE61JMss3Hujoa1alBNfVolF4oUytj4TAAWSQlJVkvu7rmn6e7uroqOTk5y3EZ2rRpo9dff10//vijdu3aJZPJpPr16+uhhx5S9+7dCzy3xx9/3KZ2P/74Y4H7joiIkMVikdFolKOjbacaFqY4BxUX8bYvxNu+EG/7UV5ibbFYlJBiUmxiqmITU5Vqsu33FHdnB3m6OcnTzVnOjpW/ICSj6MXJyalQiw5nXijZnlA0AwAAgErrZopJW09Had2pSO29ECeTDasO+Fdz1qAWvhrcwlfN/NxtWj0JAAAAADKLTUzT9rPR2hwcpT0XYm1e1bld7SrphTLNfFTbkxPVAAAAAOTu2o1k7ToXq50hMdp3IdbmnSwlqY6ni3o29lKPxl66q141udjBiWVAUaWkpFgv21I8ktEm83GZNW3aVH//+9+LZ3IAAAAVlMViUWKqSbEJ6YUyKTYWyrg5OcjTPb1QhnwGtqBoBgAAAJVKcppZgSExWncqUjtDopWclv/JaT7ujhrQPL1Qpm3tKjJSKAMAAACggKJupmrrmWhtPh2l/RdtK9o3GqQ76lRV/wAf9W3moxpVnUthpgAAAAAqIpPZoqNX4xUYEqPAkBgFhyfYfKyD0aAOdauqR2Mv9WzkpQY+riwaBhSQs/OtnD0tLS3f9hltMh9XUubOnVviYwAAABSX9EIZs2ITUxSbYHuhjKuTg7zcnOTp7iQXx/KxOw4qDopmAAAAUOGlmS3afyFW605FasvpaN1MMeV7jIezg/o189bglr7qWN9TjkZ+HAIAAABQMOHxKdpyOkqbgqP0x+UbsqFORg4GqWP9auoX4KM+TX3k6+FU8hMFUCYcHEruh1uj0ZjndVQexNq+EG/7QrztS2HjHZOYql0hMdoZEq1dITGKTcr/RP0M1T2c1KOxt+5u4q0uDT1VxYVThEoD7+3Ky9XV1Xo5KSkp3/YZbTIfV1J8fX1tahcdHV3gvlNTU2U2p5/ImluxkMFgyJL/mEwmWSy27bqLiod42xfibV+It/0oq1gnpZkVl5imuKQ0mwtlXByNqubqqGqujpl2lLHYVMRcWZnNZpnNZqWmptr0/c5oNMrT09N6PTY21vr9rrR4e3uX6ng5ISMGAABAhWS2WHQkNF7rTkZqU3CkohLyT4ZcHA26u3F6oUz3Rl5szwkAAACgwMLikrUpOEqbT0fpyJV42fIzkqPRoK4NPdWvmY96NfWSlxuFMoA9KM0fAjP/6InKjVjbF+JtX4i3fckt3haLRSeuxmnLqevaEhSuPy5G21ScL0kGg9S+rpf6taihfi1qqJV/NRlZMKzM8d6uPJydnVW1alXduHFDkZGRebaNj49XcnKyJNsLWkqDyZT/woO3s+UE2tvbcIJ15Ua87Qvxti/E236UVqwtFouS08yKSzIVqFDG2dEoT1dHVXVxkKsTO8rkxmKxFOr7ndlsLtRxFR1FMwAAAKgwLBaLgsMTtO5kpNafilTYjZR8j3EwGtS1gacGt/RV76be8nAmmQIAAABQMJdjkrQpOH1HmRNhN206xsXRoG4NvdQ/wEd3N/FiVWcAAAAAObqZnKadZyL+LJS5rmtxyTYfW83VUb0C/NSvRQ31DvCTbxWXEpwpgLp16+rkyZMKCwuTyWTKdXfJ0NDQLMcAAADYk/RCmfQdZZLTbCyUccjYUcZBLo5GGQwsAIDixa90AAAAKPcuRidp3ckIrTsVqfNR+W93bpB0Z92qGtzSV/2b+cjLnVWcAQAAABTMucjE9B1lgqMUHJ5g0zFuTkb1bOylfs181KOxl9wp2gcAAACQg3MRN7X51HVtOXVd+85F2bzisiS1qFVVfZqn7ybTob6XHB2MJThTAJk1b95cJ0+eVHJyskJCQtSsWbMc2504cSLLMeVFbkU+ebHlhNXb2xgMBnYnqMSIt30h3vaFeNuPkoh1yp+FMrGFKpRxlKsTeU1BGQwGm77fGY3GPK/bC4pmAAAAUC5du5GsDaeitO5UpE5es20l51Y1PTSopa8GNfdVjarOJTxDAAAAAJWJxWLRmYhEbQqK0ubTUQqJTLTpOA9nB/Vq6qX+zXzUtaEXP+wAsIqOji6xvo1Gozw9Pa3XY2NjZTbbfrItKg5ibV+It30h3vYlzSydikqzFsqcj7StMF+SXB2N6tzAUz2beKtnE2/5V7u1m8yNuNiSmC6KoDy8t729vUt1PHvSuXNnrVixQpK0ZcuWHItmzGaztm3bJkny8PBQ69atS3OKeSrMayMiIkIWi0VGo1GOjradaliY4hxUXBU93k888YSWLFmievXq6ciRI9nub9eunS5duqQJEybo008/LYMZFt13332nmTNnSpIOHz6s+vXrF7qvih7v/J6L/F4PtqoMrxup4se7uBXne6m8KWysk9NMik1IVWxiqhJTTTYd4+xglKe7kzzdnOTm5FDoHWVGjBihwMBA9ejRQ7/++muh+qioMopenJycCvX9LnO+Yk8omgEAAEC5EZOQqo3BUVp/KlJ/XL4hW9YwaOTjqsEtq2tQC1/V93Yt8TkCAAAAqDwsFotOXrupzcFR2hQcpUsxyTYd5+nqqF5NvdU/wEed61eTsyOFMgCyM5ls+6G4OJjN5lIdD2WHWNsX4m1fiHflc+1Gsnadi9XOkBjtuxCrxFTbCyfqeLqoZ2Mv9WjspbvqVZNLppyD10nFwnu7cmnatKlatmypkydPasuWLerTp48CAgKytPn111915coVSdLQoUNtLjQBJGnnzp0aOXKk9fp9992nr7/+Os9jMk7yl0p28QbYt4yT0wvi/PnzdntiNlCZpaSZFZOYotgE2wtlnByM8nRzkpebk9ycC18oAxQF38oBAABQpm6mmLT1dPqOMnsvxMlkzr9Uxr+aswa18NXgFr5q5udOMgUAAADAZmaLRUdD47U5OH1HmatxKTYd5+PuqD7NfNSvmY861qsqRwcKZQAAAADcYjJbdPRqvAJDYhQYEqPgcNt3k3EwGtShblX1aOylno281MDHld8+gBJw6tQphYWFWa/HxcVZL4eFhWnr1q1Z2vfp0ydbH5MnT9Yrr7yilJQUvfHGG7rvvvvUunVrpaSkaNeuXdq4caMkyd/fP0vxA1AYK1as0HPPPVeudiwCAJSc8rpLUUqaWbGJ6TvKJKSk2XRMRqGMp5uT3O2wUCZzIewvv/yinj17lvGMQNEMAAAASl1ymlmBITFadypSO0OilZyWf6GMj7ujBjRPL5RpV7uK3SVTAAAAAArPZLbowKU4bQqO0pbTUQqPT7XpOL8qTurbzEf9A3x0R52qcjCShwAAAAC4JSYxVbvPxSrwXIx2n4tVbJJtJ5BJkq+Hk3o08lLPxl7q3KCaqrhwCg9Q0jZt2qRt27bleF9QUJCCgoKy3JZT0UyjRo30zDPP6JNPPlFiYqJ1h4/M/P399fLLL8vNza1Y5l1cCrMLSWpqqszm9J2y0tJy/owzGAxycHCwXjeZTLJY8v/9F9ndvjOVxWLRW2+9pQULFuR6TEZ8pNxjVJwqW7zze/4OHjyY5/0VQebXVVpaWoEex+3xlqTt27fbdKybm1u5e87yey5mz56t2bNnW+8vKrPZXO6eg7xUtvd3cSvKe6mgSvq1Y0us00wWxSWlKS4pTQk27ijjaDSomqujqrk6yt05a//FLWO+FoulXL7PMj9mk8lUrHM0m80ym81KTU216fud0WjMsvNXbGxslr9/pcHb27tUx8sJGTeK5PYvRMXFaDTmeR2VC/G2L8TbfhBr+2JLvNPMFu07H6PfTkZoS3CU4lPyT4iquDiof4CvhrSsro4NPOXICWrlAu9vAAAAVASpJrP2hERq7bEw/Xb0qqISbCuU8a/mrH7NfNS/uY/a+FeRkYJ9AAAAAH+yWCwKDk/Qzj93kzl2NV5mG88jNBik9nW91K9FDXWs7aqm1V3JN4AKqmPHjnr//fe1Zs0aHTx4UFFRUXJ0dFStWrXUtWtXDRkyRC4uLmU9zWwKc8KqLSdL396GE6yLh6+vryIjI7V69WodOXJE7dq1K+spSSLe9ian+LZs2bIMZoLSwPvbfuQW61STWTeSTAUulKnq6qhqLo5ydzayCHIpslgshfp+ZzabS6SQqbyjaAZFUlqVX5kr3FD5EW/7QrztB7G2LxnxNpstOnAxWqsOhWrN0auKvJmS77GuTkb1b1lT97SvrT7N/eTiWDJFuig+vL8BAABQXqSkmbXvQqy2nInRtrPRirGxUKael4v6B/ioX4CPWtb04EcdAAAAAFYJKSbtuxCbXihzLsbmnSslqaqLg7o29FSvpj4admdD+VZJP4k+OjraLk9SAsrazJkzNXPmzGLpy8/PT5MmTdKkSZOKpT/gdtOmTdNHH32k5ORkvfPOO/r222/LekoAgEoo1WRWTEKqYpPSlGDDAsiS5GA0qJqLo6q6OsjD2YHfVFAhUDQDAACAYmWxWHQ8NE6/HA7VL4dDFRqblO8xjkaDegX46Z72tTWgVU1VceFrKgAAAADbJKWated8jDYFR2n72RjdtPFHnca+btYdZZpWd+NHHQAAAABWF6OTtDMkWjtDYvTH5RtKNdm+ynbT6m7q0dhLPRt7qW3tqnI0GuTg4CDvKuVv1wkAQPlVu3ZtPfLII/ryyy+1fv16HTx4UB06dCh0fxEREfr888+1YcMGXbx4UcnJyapRo4a6du2qiRMnqmvXrrke26FDB126dEnjx4/XnDlzdOjQIX3++ecKDAxUWFiYUlJSFB4enmPbw4cPa+7cudq9e7eioqJUq1YtDRkyRM8884x8fX2tY+zbt0/z5s3TwYMHFRERIX9/f40cOVJ//etfVaVKlRznZTabFRgYqI0bN2r//v06e/as4uLi5O7urnr16ql3796aNm2a6tatW+jn7fbHk+HixYu66667bO6ne/fuWrlyZY737dy5U0uWLNHevXt1/fp1OTg4qF69eurXr59mzJihWrVq5dl3TEyMZs+erbVr1+ry5cuqUqWKWrVqpYkTJ+ree++1eY4l7d1339V7770nSdbXS04CAwM1atQoSdKKFSvUo0ePHNuZzWatWLFCq1at0qFDhxQZGSkp/b1z5513atiwYRo6dKicnJxsnuOsWbP0ww8/qF69ejp48GCu7TZu3Kgvv/xShw4dUkJCgvz9/TVo0CA98cQT8vf3t3m8w4cPa/Hixdq5c6euXr0qSfL399fdd9+tGTNmqEmTJrkee/78ea1Zs0aBgYE6efKk9TmtXr267rrrLk2YMEH9+/fP9fglS5boqaeekiQdOHBAdevW1TfffKPvv/9ewcHBSk1NVcOGDXXvvfdqxowZcnd3t/lx3S4lJUVbtmzR5s2bdfDgQZ07d043b95U1apV1ahRI/Xv319TpkzJ8pmQkx07dmjx4sU6cOCArl+/LoPBIF9fX9WsWVNdunTRgAEDdPfddxd6nsX1Xrp48aI+//xzbd26VZcvX5bZbFatWrV09913a8qUKWrVqlW2Y+69917t2rXLev2HH37QDz/8kKVNXp8jObn9vdStWzd9++23WrJkiU6fPq3k5GTVrd9QfYeM0JhHpuS6S95b//ibflv1s2rVrqN12/cqKTZCi+d/qQ0bNujy5cu6efNmtvdqUf7mZPj999/16aefas+ePYqLi1PNmjXVu3dvPfHEE2ratGmex97++q5fv36O7TJ/ls+ePVsTJkzItc8NGzZo2bJl2r9/v8LDw2UymVSzZk21bdtWgwcP1r333it3d/cc/z5kxCGz/MZD8eNsRAAAABSLkPB4rTocqlWHQxUSfjPf9gaD1KWRj+5pX0dD29SSt4dzKcwSAAAAQGWQkGJSYEh6oUzguRglppptOi6ghnt6oUyAjxr5upXwLAEAAABUFClpZh28fEOBITHaGRKtSzHJNh/r4mhU5/rVrIUytapRHAMAKB5PP/20vv32WyUmJuqtt97S0qVLC9XPli1bNGXKFN24cSPL7ZcuXdKlS5e0dOlSPfroo3rrrbdkNBrz7GvBggV6+eWXlZaWlu+4P/74o5599lmlpKRYbzt//rzmzZunDRs2aOXKlapZs6b+97//6bXXXpPFYsnS7pNPPtG2bdu0cuXKHAtn3n//fWsRRmZxcXE6fvy4jh8/rgULFujTTz/V8OHD851vaUtKStJTTz2l5cuXZ7vv5MmTOnnypObPn6/PP/9cgwcPzrGP4OBg3X///QoLC8vS7/bt27V9+3Zt2rRJ3bp1K7HHUFYuXryoSZMm6dixY9nuCwkJUUhIiH7++ec8i24K65VXXtG8efOyjTlv3jz99NNPWrJkSb59mM1mvfrqq/rss8+yvO4l6ezZszp79qy++eYbvfPOO5o4cWK24y9cuKBOnTrl2Pfly5d1+fJlrVy5UmPHjtXs2bPl6Jj3qeKJiYkaO3astm/fnuX2EydO6MSJE1q3bp2WLVsmDw+PfB9bTv76179mKwCR0ndfjI6O1sGDB/XVV19p0aJF6tKlS459/POf/9Rnn32W7faMx3vgwAF9//33CgoKKtQci+u99MMPP+i5555TcnLWfOLcuXM6d+6cvv32W7300kt65plnCjXPwkpJSdEDEyZoy+bNWW4/HXRSp4NOav2vK/Thl9/Kt7pflvsdDAY5O6YvOObkYFTo6aN6+OGHrUVqOSmOvznz5s3Tq6++KrP51m8/Fy9e1OLFi/Xzzz/ryy+/LNDjL4qoqChNmzYt2/sjY04XL17U6tWrJYkimHKOohkUSXR0dIn0azQa5enpab0eGxub5cMPlQvxti/E234Qa/sQFpes9Scj9NupCJ0My79QRpJa+1fRkJbVNaiFr2pU/fOHo5Sbik6x7XiUvfLw/vb29i7V8QAAAFD24pPTtP1sjDYHR2n3+Rglp9m20nP7up7q09RLfZt6qa6XawnPEgAAAEBFce1Gsnadi9XOkBjtuxBrczG+JNXxdFHPxl7q0dhLd9WrJhfHvE8wBoDywMHBocDH2LIz7+1tDAZDtpPAUTi1atXS5MmTNXfuXG3dulV79uyxaXX+zI4eTT/BOSUlRU5OTpoyZYqGDBkid3d3HT16VLNnz9aFCxf09ddfy8PDQ//6179y7evQoUP66aefVKdOHc2aNUt33nmnUlJStHv37mxtjx8/ruXLl6tRo0Z64okn1KpVK8XHx+u7777T0qVLdfbsWf373//W8OHD9e9//1sdO3bU1KlT1bRpU0VGRuqLL77Qxo0bdeTIEX344Yc5zistLU01a9bUsGHD1KlTJzVo0EAuLi4KDQ3V/v379fXXX+vmzZuaMWOGNm3apICAgAI9d3nx9/fP8QTqzFauXKkPPvhAkrLtdmOxWPToo49qw4YNkmTdpaBBgwYyGo06ePCg5s6dq8uXL+vRRx/V6tWrdccdd2Tp48aNGxo3bpz1JP9Ro0Zp/Pjx8vPz09mzZzV37lwtWbJEp06dKvTjLI+7c1+/fl3Dhw+3Pu67775b48ePV7NmzWQwGHThwgXt3LlTq1atKvax582bZy2YqVWrlp5++ml16NBBSUlJ2rhxoz777DNNmTJFiYmJefbz0ksvaf78+ZKkbt266YEHHlCDBg3k7u6uY8eO6fPPP9epU6f03HPPqUaNGhoy5P/Zu/PAqKrz/+OfWZLJnkxCQhIIhC1hR0QRBNkVRaVCrXVpRautC1KXav3ZfbFqaVXcLd9q3bfWfUFQVgEVEEFZEpYAIZCErJM9s/7+QCIhM2GAZJLMvF//wMw5995n5smdyc09zznnN9ve5XIpPDxckydP1sSJE5Wdna2EhARVVlZq9+7devbZZ5WTk6P//ve/6t27t+6+++5W47n99tv11Vdf6fLLL9esWbPUvXt3FRQU6JFHHtH69eu1ceNGPfTQQ/r9739/Uu+by+VSZmamZsyYoZEjR6pnz54ym83av3+/Vq1apVdeeUXl5eW65pprtGrVKiUnNy/cWLJkSVPBzJAhQ3TNNddowIABiouLU1VVlXJycrRq1apWVwdqTVudS0uWLNG8efPk8XgUHR2tm2++WRMmTJDZbNb69ev1yCOPqKysTH/7298UHx+va6+9tmnbRx99VHV1dU1xXHDBBbrnnnua7f9UVvv581//pq3fbtaZZ5+jH1z2E6WkpulQUaHeef1Fbfh8tfbu3ql7brleT738lsLMZsVGmBUXYVJMuFmRYYd/f6itrdW1116rhoYG3X777Zo4caKioqK0bds2de/eXVLbfOd8+OGHTT9rcXFxmjdvXlPx22effabHH39cN91003FXJmoLdXV1mjVrlrZt2yZJGjFihK6++moNHDhQFotFBw4c0Oeff6533nmnaZsj3w9ff/21br31VknSI488opEjRzbbd3p6+inHZzAY/Pr97tjipOMVyAYrimZwSlwuV0CO43a7A3YsdDzyHVrId+gg18Gjss6hT3eUa3FOmb4uqD7+BpL6JEZo+qBumj4wSRnW7wep8TMRHDi/AQAA0F4q6x1atevwijJf7rPJ6T7+gAuDpBE9YnXRaT11/tBU9bRGqaKigt9ZAQAAgBDncnv0bWGN1uRVak1epXaU1Pm9rclo0Ok9Yw+vJtMnQb0TIzrlIFIAaM3JTEpXWloqj8cjo9Hoe6UCj1uGuu9nnA/2AYmeSKtkaJ/BpkcPfDWZTDKbzbr99tv1wgsvqLa2VvPnz29RCHD0wFdvObrzzjtlt9tlMpn02muvacqUKU1tZ555pmbPnq0LLrhAOTk5euKJJ3TFFVdo0KBBXuPLzc3V4MGD9dFHHzWbZPHss89u0XfLli0aPXq03n777WYDvSdNmiS73a53331Xb7/9tpYuXaqZM2fq2Wefbfb6p06dqgsuuEDr16/Xyy+/rD/84Q8tXt8111yje+65R2FhYc2eHzVqlC6++GLdcMMNOu+883Tw4EE98sgjXlepON77d3S/o9vNZrOGDRvms//XX3+tJ598UpKUnZ2tf/zjH822f/755/XJJ58oLCxMr7zyiqZNm9Zs+zFjxujKK69sys3vfvc7ffzxx836PPTQQzpw4ICkw6uf3HHHHc3eg1mzZunyyy/XsqNWljCbzcdddeR4duzYcdw+CQkJLQaE+/teezsPjnb33Xc3FTf86U9/ahqUfsSZZ56pSy+9VPfee6+cTmez7Y/et7f3orUYS0pKdP/990uSMjIy9MknnzQVCkjShAkTNG3aNP3whz9sWonJ22fn8uXLmwpmHn30Uf30pz9tEf8VV1yhH//4x1q1apV+85vf6Pzzz2+2nx49emjz5s1KTU3VsaZMmaLrr79et9xyi1555RU99dRTuuWWW5qds8e+F+vXr9fTTz+tH//4x03PjRgxQtOmTdPkyZO1fft2vfTSS/r9739/Uj8/v/nNb5SZmdni9+czzjhDs2bN0vXXX6/zzz9fpaWlevbZZ/Xb3/62Wb8jn3sZGRn6+OOPW6w8NXHiRN1www2qqKg4qfja4lxyOBy688475fF4FBMTo48++qjZZ8SYMWP0gx/8QNOnT1dRUZH+9Kc/afbs2U2FH/369ZOkps+zhISEVj9jWuNye1RV71BJzferfG39drMuvvQK3fnH+5qeyx4yTOdMPU/z/3i3PnzrDeVu/UZrPvqfbr7xFzIelasj50V5ebliYmK0aNGiZrEdverRqX7n2O32pmKhuLg4LVmyRNnZ2U3tY8eO1UUXXaTzzz9feXl5kg4Xjhyb9+Od60e3Hb3Nsf3+/ve/NxXMXH/99Zo/f36zn+NRo0Zp5syZ+vOf/6zKysqmYw0bNkw2m62pX9++fU86n94cyUlYWNhJ/X537OdBqAj231EBAADQBmrtLq3YWa7F28v05T6bXH5MDJQWF67pA5N03sAkDUiO4uYRAAAAAL+U1Tq0Yle5lu0o14b8Kr+uP4wG6fSecZqSZdXkAYlKjY9kdUIAAAAAqqx36PM9Nq3ZU6nP99hka3D6vW1SdJjG9UnQ+L4JGt07TjEWhtgAgDeG+grFLzy9o8MIGNsvNsoT1f6z2x+RnJys66+/Xo888og+++wzffbZZzrnnHP82varr75qWnnh6quvbjZ4+YiEhAQ9/PDDuuCCC+R2u/XMM8/on//8p899/uMf//BrsK3BYNCjjz7qdWWE6667Tu+++65cLpcaGxu1YMGCFjPlm0wmzZkzR+vXr1d5eblycnI0dOjQZn169erVagw9evTQvHnzdM8992jRokXyeDwBGbdQWFioq666SvX19bJarXr11VcVFxfX1O7xePTII49Ikm644YYWBTNHJCQk6C9/+Ysuu+wyffnll9q9e3fTwHq73a6XXnpJ0uGVN26//fYW24eFhenRRx/VyJEj5XA42uz1HVnxoTVXXHFFU9FQW9q5c6c+/PBDSdKFF17YomDmaMcWVpyqV199VXV1h4uu77333mYFM0dMmDBBV199tZ599lmf+1mwYIEkaebMmS0KZo6IiIjQ/PnzNWbMGO3fv1+fffaZJk+e3NQeHR2t6Ohon8cwGAy699579frrr6u2tlYrV67UzJkzffa/+OKLmxXMHGGxWPTzn/9cd9xxh8/z0B99+vRptX3IkCH66U9/qqeeekoffvhhi6KZQ4cOSTpcyNNaXk/mnkBbnUsffPCBCgsLJUm/+tWvvBZI9OrVS3/+8591ww03qK6uTi+//LJ++ctfnnDM3rjcHlU3OFRZ71B1g1Mej0e19u8nEktM6qZbft18pSCjwaDYCLPmP/CAvly1TKWlpXr5hed0y003+DzOL3/5S5/FH23xnfPRRx81vY933XVXs4KZIwYPHqxf/epX+tOf/uT7DWkDNptNzz33nCTptNNO0wMPPODzOyQ8PFwpKSntGg9OHVf0AAAA8KrR6daavEotzinT6rwKNTqPP1KtW4xFFw1P06S+sRrSPZJCGQAAAAB+OVRt17KdhwtlNh2olh8LyshkNOjMXnGampWoif2sSowOO/5GAAAAAIKax+PRjpI6rf5uNZkthTV+XV9Ih1etHJIWrfF9rRrXJ0HZ3aOazbAMAEBH+eUvf6lnn31W1dXV+tvf/tZixRFfVqxY0fR/X4PzpcMrIGRnZys3N1crV6702a9Hjx5eV5XxZsiQIV4HO0tqNuh+0qRJPge6H91v3759xx2sX1VVpYqKCtXV1cnjOfwLQGRkpCSpurpa+/btU2Zmpl/xn6z6+nr95Cc/UWFhocxms55//vkWBQM5OTnas2ePJLVayCA1X8Vn/fr1TUUzmzZtUmVlpaTDBSq+xmb06NFDkydP1pIlS072JXUqS5YsacrtTTfdFNBjHzk3EhISNGPGDJ/9fvKTn/gsmqmqqtLq1aslHT/32dnZSkpKUllZmdavX9+saOZYDodDhw4dUk1NTbMV1xMTE1VSUqItW7a0erwf/ehHPttOO+20pv/7cx76o7KyUhUVFWpoaGjK55FivNzcXDkcjmYrSB0pUFq7dq327Nlz3CKcE9FW59KRnw+DwaCf/OQnPo93ySWX6K677lJVVZVWrlx5SkUzbrdHVQ0O2b4rlHF7fF/4TJp+oSIiI5sKZeIjwxQXESaj0SApWpdccon+/e9/KycnR8XFxV6LwqTWf1ba4jvnyD4MBoOuuOIKn/u46qqr9Oc//7np56c9rFq1qqlQ7oYbbmhR3Imuh6IZAAAANHG6PVq/z6bFOWVavrOi2awDvsRYTJqalaRLR2dqbN8kmU1GVVRUNLsQBwAAAIBjFdoatfS7QplvDtb4tU2YyaAxveM1JStRE/pZFR/Jn7gBAACAUFdnd2ndPtvhQpk9lSqp8X8m9ViLSWMy4zW+b4LO7pMgaxTF+ACCV0VFxQlv43A45Ha7JUlOp/fVuozu0Lov7HQ55fHxXpyqo++xu1yupvc8Li5Ov/jFL/Tggw/qyy+/1JIlS5pm8D+SH6lljrZt2ybp8Az4gwYN8plDSRo5cqRyc3O1e/du1dXVKTw8vEWfwYMHy+VyNRs47HK5vA5a7tu3r8/jHb1Chr/9bDab13779+/XE088oSVLlmj//v0+X590eLWKnj17Nnuutffv2H6ttR8xd+7cppUW7rvvPo0dO7bFdl999VXT/88777zj7vOIwsLCpn1t2bKl6fnhw4cfN7dHBvo7nU6/XscRBoOhxUDxkpISv7Y99jj+vte+zgNJ2rx5s6TDK3+MHDnyhF7Lsfv29l60FuPWrVslqWmVDV/HHjRokMLDw2W321v83Hz99ddNx7j++ut1/fXX+xV3UVFRi+M5HA698MIL+u9//6tvv/1Wdrvd5/alpaUttj/6vThyHh6bb5fLpdjY2KbHvs5Df2zbtk1PP/20li5d2rRyjDdut1ulpaVKTk5ueu5HP/qRXnvtNZWXl+vss8/W+eefr8mTJ2vMmDHq27fvScVzRFudS0c+b3v37q2EhATf35lGo4YNG6Y1a9Zo27ZtPvv5+sxxe6SaRqeqGpyqaXS1WihztNNGjlSPhAjFWswyGg6f24cLZr5/bUd8++23Skr6fkW1Iz+z0dHR6tmzp8+Y2+I75+j3MT4+3uc+EhIS1KtXL+3bt08ej6fVn+/WPveOfv7Yz5tNmzY1/f/MM888pc+bY/d9qtxut9xutxwOh1+/3xmNxmarxNlstmafd4FwMitBtTXuKAIAAIQ4t8ejbw7UaHFOqT7JLVdl/fF/SbeYjZrQL0HTBybp7D4JirSEdYpfbgEAAAB0bvkVDVq243ChzLbiWr+2sZiNOrtPvKZmJWp83wTFWPizNoCuoT1nHzQaja0+RvAg16GFfIcW8n1q9pXXa/XuCn22u0IbC6rkcPk/w3D/blEa38+qc/pZNbxHrMzG9l9NhnyHDnKNzuxkJj30Zwb39pzlHd+76aab9O9//1s2m03z589vKpppzZGBtAkJCTKbW/+bWkpKiqTD+aysrGx6fLSEhIQW+faV/yMrvHhz9Gejv/28/fx++umnuu6665pWAjie+vp6v/qdrAcffFBvv/22JOnaa6/Vtdde67VfaWnpSe3/6PiPHiR9dHGBN8drb01nO7/LysokHf5Z9FbY1Z6OrEbSrVu3VvuZzWYlJCR4LQw52dwf+zNeUVGhH/3oR01FRMdzvJ/9I+eht/P7eOehP1566SXdddddfhcNNDQ0NHs8YcIEPfDAA/rzn/+s+vp6vfPOO3rnnXckSWlpaTrvvPN0zTXXnNQqOG11Lh3Zz/F+PqTvP2+P/Ewdj9vjUU2j64QKZQwyKCrs+79NZvdKU3zE998Dx+b66Lh9FWEcXXThTVt855zI+5icnKx9+/Ydt9/JKi8vb/q/r5V3OprH4zmp89LtdofkZNjcXQQAAAhBHo9HuYfqtDinTEtyylRc7XvGiSNMRoPGZsZr+sAkTexvVVQ4y04CAAAAOL680jot3VGuZTsrtLPEvxvYUWFGjeuboKlZiRrXJ0GRXH8A6IICOcHI8W5aI3iQ69BCvkML+W5do9OldXvKtSznkJbnHNLeMv+uLSQpIsyocf26afLAFE0emKIeCb4H5wYK+Q4d5BqhwBNhle0XG5seO13tswpLZ+GJ6JjJJOPj43XTTTfpgQce0FdffaUlS5b4vUqJwdA2BaKdqRCwrKxMN954o+rq6hQdHa25c+dq8uTJyszMVFxcXFNBxWeffabZs2e3ezzvv/++/v73v0s6PMD/vvvu89n36IHKL7/8sjIyMvw6hq9B5G2VX/jnVN7vo1d2ePDBB3XmmWf6tV1CQkKzx7/97W+bCmZmzJihK6+8UoMHD1a3bt0UERHRFONpp52mAwcOdGjx086dO5sKZpKTkzV37lyNHz9evXr1UkxMjMLCDq/0+PLLL+u2226T5L1Y67rrrtPMmTP15ptvauXKlVq3bp2qqqpUWFio559/Xi+88IJuu+02/eY3vznpWNviXGrL87G64fCKMtUnUCgTbTEqLsKsWItZ5bHfF5a1RVz+ThDU2d5H4AiKZgAAAELIvvJ6Lc4p0+KcMu0rbzhuf4Ok0zNiNX1gN03JsiohMqz9gwSAk8Qszmgr5Dt0kOvQQr4Dx+PxaMehOn2aW6aluWXaU+7fDI4xFpMm9k/U1Owkjc2MV0TYyX+3k+/QQr4BAACCU6GtXityS7Qs55DW7CpVnd3/mXB7JUZpysAUTcpO1pi+Sad0fQEAOA6DUZ6opKaHHj9XEsCJu+GGG7Rw4UKVl5fr73//+3GLZo5M5lBRUSGn09nqzP9HVsUwGAwtBuh3Ru+//75sNpsk6fnnn9fEiRO99vO1YkJb+uabb3TLLbfI4/GoT58++ve//93qe52YmNj0/7i4OA0aNOiEj3l0jg4dOqR+/fr57FtSUnLC+28PR//Nzu12+/wbXm2t7xXKk5IOf9ZUVlbKbrcHdLWZ+Ph4HTp06Ljvp9Pp9LmCyNETrERGRp5U7qurq5tWWbn00kv11FNP+ezr70om7enVV1+V0+mUyWTSu+++qwEDBnjt50+sycnJuvHGG3XjjTfK7Xbr22+/1UcffaRnnnlGNptNDz/8sEaOHKkLLrjA7/ja6lw6klt/zrcjn7fHfta6PZ6m4hhbg1P7K/0b1xUdblJshFmxEWafq2geL66j2092IqC2+M458n9/3sfW+hz7eeNLayuVHf1ZXVxcrN69ex83JnRuFM0AAAAEuaKqRn2SW67FOaXKKfZv5rXBqdGaPjBJ52YnKSU2sEvaAsDJYhZntBfyHTrIdWgh323L4/Foc4FNi7YUatG3Rcov9+/awxoVpvMGp+r8Yaka16+bws3tU+xAvkML+QYAAOiaXG6Pvs6v0PLcQ1qWU6LthVV+b2s2GjS6T6ImZx9eTaZfcjSzEwMAgk5MTIzmzp2rv/71r/rmm2/04Ycfttp/4MCBkiS73a4tW7botNNO89n366+/liT17ds3oIUIJysnJ0fS4fuDvgpmJGnTpk3tGkdxcbGuvvpq1dXVKS4uTi+//PJx71kOGzas6f/r1q3TmDFjTvi4RxdbbNq0SWPHjvXZ90huO1pMTEzT/ysrK5sNSD9aXl6ez30MHz5c//3vf+VwOLR+/XqNGzeuzeP0ZfDgwTp06JC2bNnSakHA1q1bZbfbvbYNHTpUBoNBHo9H69at049+9KMTjiMvL08Oh0OSdMkll/jst3PnzlYLkAIlNzdXkjRkyBCfBTPSiZ+rRqNRI0aM0IgRIzRjxgxNmzZNkvTuu++eUNFMW51LAwcO1Pr167Vv3z6Vlpb6XBnK4XDo22+/bdrG4/Go1u5SVYNL1Q1OuY4sKNPKwjIGSVHhpu9WlDHJbDr+fZWvv/5al112WavtR7+Wk9EW3zmDBg3Shg0btG/fPpWXl/v8nCgtLVV+fr7P/R/9eXOkwNKb3bt3+2wbPnx40/8///xzimaCAEUzAAAAQaiizqGlO8q1OKdMXxdU+7VN36RInTcwSdMHJinDGtHOEQIAAADo6txujzbmV+ijb4u0eGuRDlT6t6JMtxiLpg/prhnD0nRWn0S/bugAQFfUnrPZGo3GZgViNput1VkT0XWR69BCvkML+T6sst6htXmVWp1XobV5lbI1+L86QbfoMI3ra9X4flaNyYxXjOXIEBhHp5hV+2jkO3R0hlwHcoIpAIF33XXX6emnn1ZJSYnmz5+voUOH+uw7ceJE3XfffZKkV155xecA5vXr1zcNbJ8wYUKbx9weXK7DK9A1Njb6XLWkrq5O//3vf9sthoaGBs2ZM0cHDhyQyWTSwoULWy0KOGL48OFKT0/XwYMH9eKLL+oXv/iFIiJObIzGiBEjlJCQoMrKSr3xxhu68cYbvRYMFxYWasWKFSe07/bSq1evpv9v2rRJU6ZM8drv7bff9rmPc889V3/4wx/k8Xi0cOHCgBbNTJgwQStWrFBFRYUWL16sCy+80Gu/l19+2ec+unXrpjPOOEPr16/Xm2++qbvvvttncYUvzqNW82ptlYznnnvuhPbbXo7E21qsRUVFWrx48Ukf4+jzoays7KS3PZVzacKECXrxxRfl8Xj06quvat68eV77vf/++6qqOjw5wMizxmlHSZ1c7u8rZMLDLZIku6Nl4dWRQpk4Pwtljvbee+/pD3/4gyIjI1u01dbW6r333pMkZWdnKzU19YT2fURbfOcc/T4eyYc3r732mjwe35VFx37ejBgxwmu/t956y+c+xo8fr6ioKNXV1enf//63fvSjH8lk8n8F06M/1xsbG/3eDu2HohkAAIAgUdPo1IpdFVqyvUxf7rN9P/tAK9LjLDpvYKKmD+qm/t0imXUNAAAAQKucLrfW7S3Xx1uK9PGWIh2q9u8P/alxETp/aKpmDEvTqN5WmYxcewAIfkcG8ASC2+0O6PHQcch1aCHfoSVU8u3xeLSjpE6r8yq1Jq9SWwpr5PbjfoZ0eEblIWnRGt/XqnF9EpTdPUrGo+5rdKX3L1TyDXKNzuVEBnoe4c/942P7HFlFAe0jOjpa8+bN0x/+8Adt27ZNxcXFPvuefvrpOu2007Rp0ya9+OKLuuiii1oMUK6qqtKdd94p6XDh37XXXtvq8TtLvvv27Svp8ED8d999V7NmzWrW7nK5dPvtt6uoqKjdYrj99tv11VdfSZL+9Kc/aerUqX5tZzQaddttt+nXv/619u7dq7lz5+rJJ5+UxWLx2r+6ulqvv/66rr/++qbnLBaLrrjiCj311FPasmWLHn/88RaD9J1Op26//Xafq574oy3HkJx55pkym81yOp16+umnNXny5Bb7f/zxx7Vx40af++jXr59mzJihDz/8UB999JEef/xx3XLLLV771tbWyuFwKCEhoU3i//GPf6x//OMfqq+v1x/+8AedeeaZSklJadZnzZo1evHFF1vdz+23364rr7xS1dXV+tnPfqYXX3zR58rZjY2Neumll3TVVVc1DcDv06dP03n32muv6ZJLLmnxPi5evFjPPPPMCb9Gb+f3qerbt6+WLVumvLw8rVu3TqNHj27WXldXpxtvvFH19b4n5Xr77bd1/vnney34kA4XRRwpmj/R1UDa6lyaMWOGUlNTVVRUpIcfflhTp07V4MGDm/XZuSdfv//DHyRJEZGRmnTh7GYFM5KUlJyi/D27dXD/PklHFcpEmGU+hfsqhw4d0h//+EfNnz9fUvPc/va3v1VJSYkk6ZprrjnpY7TFd86MGTPUvXt3FRcX68EHH9S0adPUv3//Zn1yc3P18MMPtxrLoEGDZLVaVVFRoWeeeUaXX355i8/Yd955p6lYyJv4+HjNmTNHTz31lDZv3qzf/va3uv/++72eFw7H4YkbkpOTm57r3r170//37t3barwny2Aw+PX73bGFpd4KTUMBRTMAAABdWIPDrTV7KrV4e6nW7KlUo/P4f4xKigrTtOxETR+UpGFpMRTKAAgazOKMtkK+Qwe5Di3k++Q5XG6t32fT0h3lWrajTJX1/s38nB5v0bTsJE3NStLQ9JimwWxVtsp2jPYw8h1aOjrfzOIMAADQujq7S+v22Q4XyuypVEmNw+9tYy0mjcmM1/i+CTq7T4KsUWHtGCkABLeTuX4tLS2Vx+OR0WiU2ezfUMOTKc7BYUe/dyaTyed7fv311+vJJ59UUVFRs1UVvPV/9NFHNW3aNNntdl1xxRX6xS9+ofPPP19RUVH65ptvtGDBgqbBvLfccouGDRvmMz6j0dgiv77y7e/PTGv9jn7+2Pdj9uzZ+tvf/qbGxkb98pe/1NatWzV58mTFxcUpJydHCxcu1KZNm3TWWWfpyy+/9LqPI8f3drzjxfnSSy/pf//7n6TDKyNMmTJFO3bs8Ll9dHR0s8H8119/vVatWqUPPvhA7733nr799ltdc801GjVqlOLi4lRVVaWdO3dq9erV+vjjj2WxWFqsuHD33Xfr3Xff1cGDB/WXv/xFW7du1eWXX67k5GTt2rVLTz75pDZu3KiRI0fq66+/bnqN/p7LvrT2Oo+WkZGh2NjYpsdpaWn6wQ9+oDfffFPLly/XT3/6U11//fVKSUlRQUGBXn/9db333nsaPXq01q1bJ8l7zh566CFt3LhRhYWF+vOf/6zly5friiuuUFZWlgwGg/Lz8/XZZ5/prbfe0gsvvKDx48c3bXv0z6u396K1n4f09HT95je/0e9//3vl5+fr3HPP1W233aZRo0apoaFBn3zyiZ566imlpaWpvr5epaWlXn++L7jgAt144416+umn9fnnn2vcuHG69tprNWbMGCUmJqq2tlZ79uzR559/rvfff1+VlZW66qqrmvaTkpKic889V0uWLNGyZct02WWX6Wc/+5kyMjJUUlKi999/X6+88ooyMzNls9l8xnG898Lb+9/a55IvV1xxhf7973/L7Xbryiuv1Lx58zRmzBhFRERo06ZNeuqpp7R79+5m5+qx8fz1r3/VXXfdpRkzZujss89Wv379FB0drfLycn3xxRdauHBhU3xz5sw54Rjb4lwym81asGCBrrjiClVXV+uiiy7SLbfcotFnj1e9w6PPv/hSL/37SVWUH/7MvulXv1GCNbFFLENHnK6v132unC3f6JM3ntV5554rY3S0anR45ZL09HS/X9fROR45cqT+85//KD8/Xz/72c/Uo0cPHThwQM8++6yWLl0q6fAqWNdff/1Jf05Kp/6dYzabNX/+fM2ZM0eVlZU6//zzdeutt2r8+PHyeDxavXq1HnnkEUmHC7Ly8vJkMBhaxGU2m3XNNdfo4Ycf1vbt2zV79mzdeuut6tmzpw4dOqR3331Xr7zyynE/b373u99p5cqV2rZtm5555hl99dVXuuaaazR48GCFh4frwIED+vzzz/XWW2/pt7/9ra688sqmbTMzM5tWFXvyySfVs2dPDRgwoCkvycnJzT4jT8SRnISFhZ3U73e+CvWCHUUzAAAAXYzT5da6/Cot3l6mFbvKVWs//kCgGItJUwYcLpQZlRF3SrMPAEBnxSzOaC/kO3SQ69BCvltnd7r15XeFMqt2V6iqwb/3qpc1QlOzEjU1K1HZKVFNRfoet1sd+W6T79BCvgEAADpefkWDVudVaHVepb4uqJbD5f8M9P26RWp83wSN75ugYemx3NMAAOAYkZGRuv3223X33Xcft++wYcP06quv6pprrlF1dbUef/xxPf744y36XX/99frjH//YHuG2ix49eujBBx/UL3/5SzU0NOiRRx5pGkh9xKxZszRnzhxdcsklbX78goKCpv+vWrVK48aNa7X/uHHj9MEHHzQ9NhgMevbZZ/X//t//03/+8x/t2bOn1fe/W7duLZ6Lj4/X//73P82aNUvFxcV688039eabbzbrc+WVV2rcuHGaO3euvy/tuI73Wo946aWXdOGFFzZ77r777tOmTZu0e/duLV68WIsXL27WPnv2bF199dWt5iwlJUUfffSRrrzySm3fvl2rVq3SqlWrTvh1nIxbbrlFBQUF+te//qWDBw/q17/+dbP2pKQkPffcc8ddreO+++6T1WrVP/7xDxUXF+uBBx7w2Tc6OrpFcdqDDz6oCy64QAUFBVqxYoVWrFjRrL1nz5566aWXdNlll53Q62sPp59+uu655x7df//9stlsuvfee1v0ueWWWzRo0KCmohlvbDabXn31Vb366qte2y0Wix566CGNHDnyhGNsq3Np+vTpevzxx3XHHXeourpa999/f4s+JpNJP7vlDl3y4580ez4q3Kz4yDD9at6N+uB/r6iiokL3/vWvuvevf23qc+znyIn43e9+pyeeeEJLly5tKpI5WlZWll577bVTLqpri++cmTNn6i9/+Yv++Mc/ymaz6S9/+Uuz9qioKD377LN67LHHlJeX5zOWO++8U6tXr9b69eu1bt06XXXVVc3ax48fr/nz5+vss8/2uY+oqCi99957uvrqq7V27Vpt2rRJt912WyvvQHN33HGH7rzzTu3bt6/F8Z944olmRTZofxTNAAAAdAFuj0ebD1Rr8fYyfbqj3K+ZnS1moyb0S9D0QUk6OzNB4ebQXFoRAAAAgH8aHC6t3WPTsp3l+mx3hV8F+tLhAW1TBhwulOnXLZLVLAEAAIAQZHe6tbGgWmvyKrU6r0L7Kxv93tZiNmp0rziN+65QJjXO0o6RAgAQHObMmaNHH31UBw4cOG7fKVOmaOPGjXrqqaf0ySefaO/evbLb7UpOTtbYsWN17bXXauzYsQGIum1dddVV6t+/vx577DF9+eWXstlsSkpK0pAhQ3TVVVdp1qxZWr16dUeH6VNYWJgefPBB/exnP9MLL7yg1atXq6CgQLW1tU0r05x22mmaNm2apk+f7nUfgwYN0ueff64FCxboww8/VEFBgWJiYjR48GBdffXVuvTSS/XKK68E+JX5lpKSok8//VQLFizQBx98oIKCAkVFRWnQoEGaM2eOLrvsMr9ylpmZqc8++0xvvPGG3nnnHX3zzTcqKyuT2WxWjx49dMYZZ+jiiy9ul5/rBx54QFOmTNHChQu1ceNG1dfXKz09Xeeee67mzZunHj16HHcfBoNBv/71r/XjH/9Yzz77rD777DPt3btXVVVVioqKUo8ePTRs2DBNmTJFF154oSIjI5tt37NnT61cuVILFizQokWLtH//flksFvXq1UsXXnihbrzxRiUkJLT5az9Zv/71r3XaaafpX//6lzZu3Ki6ujp169ZNo0aN0rXXXqvJkye3+nP6/vvv6+OPP9batWu1a9cuHTp0SJWVlYqMjFSfPn00YcIEXXfddcrMzDzpGE/lXPJ4PKqzu2Srd2jk5Iv0/LvD9b+XntX6tZ/pUOFBuT1udUvurpGjx2r2lXPUL2ugJCkyzKT4qDAlRIZ/P6YrtqeWLl2qhx9+WGvWrNHBgwfV0NBw0q/riPDwcL3xxht67rnn9Prrr2vHjh1yOBzKzMzUrFmzNHfu3BY/ZyerLb5z5s2bp9GjR+uJJ57QF198oaqqKqWkpGjixIm65ZZblJ2drccee6zVfURFRendd9/Vk08+qbfeekt79uyR2WzWgAEDdPnll+tnP/uZX9+hSUlJ+vDDD/XBBx/of//7n9avX6+ysjIZDAalpqbqtNNO04wZMzRz5swW21533XVKSUnRc889p2+//VYVFRVyOo8/5g/tw+DxePyfzgM4Rmlpabvs12QyNVsyqqKigpkBgxj5Di3kO3SQ61Pn8XiUe6hOi7eXaUlumYqr7cfdxmQ06OzMeE0flKQJ/ayKCg/M0tfkO7R0hnx7m0kHaK/rE6lz/NwjcMh36CDXoYV8e1drd2l1XqWW7SjXmrxKNTj9K5TJTonS1KxETclKVGZi29xIaUvkO7R0dL65PoEvXKOgLZDr0EK+Q0sw5Lu4ulFr99i0Oq9S6/bZVO/w73pCknrEWzS+b4LG9U3QqIw4WYJ84q9gyDf80xlyzTUKfKmoqDjhbQoLC+VyuWQ0GtW9e3evfQwGQ7NVEFwulxiSGLzId2gh36GFfJ+YeodLVQ0uVTU45XD5dy0UYTYpLtKkuAizwk3tew20Zs2aplWb3nnnnWarRJHrrq24uFhut1smk0lpaWnH7W80GhUfH9/02Gazye32//q9LRx9jdRRWGkGAACgk9lbXt9UKLOv/PizBRgkjcqI0/RBSZoyIFHxkfyKBwAAAMC36ganVu2u0NId5fpir012l383QoamRWvKgMOFMj0TIto5SgAAAACdjcvt0beFNVqTV6k1eZXaUVLn97Ymo0Gn94zVuD6HV5PpnRjBKpUAEGAnU8DlzwDaY/sw6Da4ke/QQr5DC/luncfjUYPTraoGp6obXLL7WShjMRsVF2FWXIS500wWQK6Dg8fjOanf79xud0hO4sCISpySoysN25LRaGz1MYIL+Q4t5Dt0kOsTU1TVqCXbS/Xx9lJtL671a5uhaTE6f1A3nTuwm1Jiw9s5wtaR79BCvgEAALqeyjqHVuyu0LId5Vq3r0pO9/FvgBgkndYzVlMGJGryAKtS4yztHygAAACATqWy3qHP99i0Zk+lPt9jk63B6fe2SdFhGtfn8GoyZ/WOU4yFISoAAAAAug6Px6NGp7tpRZmuXCgDhDr+IoFTEqjlko5eFgrBj3yHFvIdOsh1S2U1jfro20K9v7lQ6/aW+7XNgJQY/eC0dF08Il29k6LbOcKTR75DC/kGAADonEpr7Vqx83ChzFf7q+TPgjJGw+GVLKdmJWpSf6u6xXRsgT4AAACAwPJ4PNpRUqfV360ms6WwRn7U3Es6XHg/JC1a4/taNa5PgrK7R8nIajIAAAAAupgGh+twoUyjU3anf4Uy4aYjhTImWcxGVtYEOhmKZgAAAAKousGhxVuL9d7mg1qzq1QuP+409bRG6uIR6Zo5Il0DU2O5qAIAAADgU3F1o5bvrNDSHeXaVFAtf8a2mYwGndUrTlOyEjWxv1XWqLB2jxMAAABA51Fnd2ndPtvhQpk9lSqpcfi9bazFpDGZ8RrfN0Fn90ngegIAAABAl3R4RRmnqhqcaqRQBgg6FM0AAAC0swaHS8tzDum9zQe1NOeQXzMQdIux6KLhabp4RLpO75XARRUAAAAAnw5UNmjZdyvKfFtY49c24SaDxmTGa0pWoib0syougj8VAwAAAKEkv6JBq/MqtDqvUl8XVMvhz9KU3+nXLVLj+yZofN8EDUuPldnIPQwAAAAAXc/JFMqEmYyKizApLsKsCAplgC6DO6E4JRUVFe2yX6PRqPj4+KbHNptNbrd/X0joesh3aCHfoSPUc+1wubVun00fby/V8h3lqrW7jrtNjMWkqVlJumBwN53RK16m724yVVZWtnO0py7U8x1qOkO+rVZrQI8HAADQ2ewrr9eyneVauqNcOcV1fm1jMRs1rk+8pmYnaXzfBEWHm9o5SgAAAACdhd3p1saCaq3Jq9TqvArtr2z0e1uL2ajRveI07rtCmdQ4SztGCgAAAADtx35UoUzDiRbKWMyKCOsahTLjxo1TSUlJR4cBdBoUzeCUuFzHHwDcFtxud8COhY5HvkML+Q4doZBrt8ejzQeqtXh7mT7dUa7Keudxt7GYjZrQL0HTByXp7MwEhZuNhxs8bnXltysU8o3vkW8AAID25/F4tLv0+0KZ3aX1fm0XFWbUOf2smpKVqLMz4xVJoQwAAAAQMoqrG7V2j02r8yq1bp9N9Q7/Jz/qEW9pKpIZlREny5H7FwCALstkOvG/C/kzKPjYPgaDQR6P/yuYoWsh36GFfIeWYM63w+VWVYNLVQ1O1Tv8G98SZjQqLvLwijKRYcF1byWYcx1KDAaDX7/fGY3GVh+HCopmAAAAToHH41HuoTot3l6mJbllKq62H3cbs9GgsZnxmj4oSRP6WRXFoDUAAAAAXhy53li6o1zLdpZrX3mDX9vFWkya0M+qqdmJOqt3PIPbAAAAgBDhcnv0bWGN1uRVak1epXaU+LcqpSSZjAad3jNW4/ocLpTpnRjRJWZPBgD4z2q1nvA2paWl8ng8MhqNMpv9G2p4MsU56LrId2gh36Glq+fb7nTLVu+Qrd6hOvvxJz6WJLPJqITIMMVHhikq3BQy10RdPdeh5kjRS1hY2En9fhcfH9/WIXUJFM0AAACchL3l9Vq8vUyLc8qUX3H8gWsGSaMy4jR9UJKmDEhUfCS/hgEAAABoyePxaGtRrZbmHi6UOWBr9Gu7hEizJvW3ampWos7oFacwE4UyAAAAQCiorHfo8z02rdlTqc/32GRr8G8wmCQlRYdpXJ8EjeuboLN6xynGwr0LAAAAAF2Xw+WWre5woUytv4UyRqPiI8MUHxWm6BAqlAFCDX/xAAAA8FNRVaOW5BwulMk95N/sbENSozV9UJLOzU5Sckx4O0cIAAAAoCtyuT365mC1lu2o0LKd5X6tYCkdHuA2ZYBVU7ISNbJnnMxGbuQAAAAAwc7j8WhHSZ1Wf7eazJbCGrk9/m1rkDQkLVrj+1o1rk+CsrtHyciAMAAAAABdmMP13YoydSdWKBMXaVZCZLiiLRTKAKGAohkAAIBWVNQ59GluuRbnlGnTgWq/tumbFKnpg5I0fWCSeiZEtHOEAAAAALoip9ujrwuqtDS3XMt3Vais1uHXdt1jwzUlK1FTByRqWHqMTBTKAAAAAEGvzu7Sun22w4UyeypVUuPf9YMkxVpMGpMZr/F9EzQ2M0GJ0WHtGCkAoDOrqKg44W0cDofcbrckyen0PhDZYDDIZDI1PXa5XPJ4/KzoRJdDvkML+Q4tXSnfTrdH1Q1OVTU4VWt3+bWNyWhQnMWsuAizoiwmHbm74nL5t30w6Uq5Rktut1tut1sOh8Ov3++MRqPi4+ObHttstqbf7wLFarUG9HjeUDQDAABwjJpGp1bsrNDinDKt22eTy49rgvQ4S1OhTP/kqPYPEgAAAECX43C5tT6/Skt3lGvlrgpV1vs341mPeMvhQpmsRA1JjWbGMwAAACAE5Fc0aHVehVbnVerrgmo5/LlZ8Z1+3SI1vm+CxvdN0LD0WFalBABIOrlBwUf+DuV2u+XxeLz+XerYQbYMug1u5Du0kO/Q0tnz7XS5Vd3oUlWDU3V2l/yJzmQwKDbCrLgIk6LDWVHmiM6ea/h2pGBGOvx72sn8fud2u0OyWIyiGQAAAEkNDrdW5x0ulFmTVym7HzefkqLCdO7ARE0fmKShaTFcWAEAAABoodHp1hd7bVq2o1yrdleoutG/P0L3TozQ1KxETRmQqOyUKK43AKALOnq2xrZmNBpbfYzgQa5DC/kOLcfm1+mWNuRX67PdFfosr0L7Kxr83leE2ajRveM1vp9V4/tZlRZnaetwcYo4v0MHuUawCQsLa1phpqGhQZGRkR0cEQAglDjdHtUctaKMP6UdRoNBsREmxVnMiraYZOT+CoJIXV1d0//Dw8M7MJKuh6IZAAAQspwut77cV6XFOWVauatctfbjLzsYazFpStbhQplRGXEyMTsbAAAAgGPU211au9empTvKtXp3heoc/i1x3r9bZNOKMn2TIimUAYAuzmq1BuxY8fHxATsWOha5Di3kO/gV2Rq0PPeQluUc0ppdpaqz+z/Ta0ZipKZkp2jywBSN6ZukiLD2K9ZE2+P8Dh3kGl1dRESE6uvrJUk2m63pOf5uBQBoLy63R9WNTlU1uFTb6JLHj1IZo8GgWItJcREUyiD4eDweOZ1O1dfXq7a2tun5qKioDoyq66FoBgAAhBS3x6PNB6r18fYyLd1Rrsp653G3iTAbNaG/VdMHJmlsZrzCzcwIBQAAAKC5mkanVudVatmOcq3ZY1Oj079CmUHdozUly6opAxLVO5GZOgEAAIBQUFzVoPs+2q73Nh+Ux5+pkiWZjQaN7pOoyd8VyvRLjmbAMgCg3VksFoWHh8tut8vj8aiyslJS66squd3+/V0MXRf5Di3kO7R0ZL6dbo+cbo9c7u/LZFpbR8MgyWQ0yGw0yGwwSI1SXaNU18o2+B7ndtfh8XjkOeaPB5GRkQoLC+ugiLomimYAAEDQ83g8yimu0+KcUn2SW67iavtxtzEbDRrbJ17TByZpQj+rosKZoQ0AAABAc1UNTq3aVaGlO8v1xV6bHC7/RrsNS4vR1KxETR5gVY+EiHaOEgAAAEBn4XC59dyavVrw6Q7V+rGqTHKsRZOzkzU5O0XjB3RTbAQDYgAAgWUwGGS1WlVRUSG7/fv77K0NrmXgbWgh36GFfIeW9s632+NRo9OtBodbjU63H+vJHC6UsZiNiggzKsJs1OF5BDxyu/2cjQBecW53LTExMYqJienoMLocimYAAEDQ2ltWr8U5ZVqcU6b8iobj9jdIOqNXnKYPTNLkAYmKj+RXJQAAAADNVdQ5tHJXhZbuKNe6/Cq5/LgRY5A0smespnxXKNM91tL+gQIAOlxFRUW77dtoNCo+Pr7psc1m4+Z2kCLXoYV8B7cN+TbdvyRPeWX1PvsYJA1Ni9H4flaN72fVwO7RMn63moyzvkYVvjdFJ8f5HTo6Q66tVmtAj4fgZzQalZiYKLvdrvr6ejkcjmY/1waDodlM5w6Ho8Vs6Age5Du0kO/QEoh8uz2H77OU1tpVUeeUP7UuBoNkjTKrW3S4EqPCZGTBzVPGud21GI1GmUwmWSwWWSwWmc2MaTwZvGsAACCoFFU1aklOmT7OKdOOQ/4tuDk0LVrTB3bTudmJ6hbT2sKeAAAAAEJRaY1dy3dWaNnOcn21v8qvmzgmgzSqV5ymDEjUpAFWdYvmWgMAQo3LdfwVBNqK2+0O6PHQcch1aCHfwaGkxq4FK/K1OKfMa3uMxaxJ2ckanRGtMb3ilBj9/cAlj9stfgKCE+d36CDXCBYGg6FpoOaxTCZTs2KtiooKfu6DGPkOLeQ7tLRXvhscbq3ZU6lPc8v02e5KNTiPX1AcZjJobGa8zs1O0oT+VkWHm045DnyPcxuhiKIZAADQ5VXUOfRpbrkW55Rp04Fqv7bp1y1S0wcm6byBSeqZENHOEQIAAADoaoqqGrVsZ7mW7ajQ5gPV8md+LbPRoNG94zQ1K1ET+1mVEBV2/I0AAAAABCWny63XNhZr4doC1Tm8Dwq77Iyeuvv8gUqKsTBICQAAAEDQaHS69fmeSn2SW65VuytU7+Oa6Ghmo0FjMuM1LTtRk/pbFWNhiDuAtsMnCgAA6JJqGp1asbNCi3PKtG6fTS4/RrD1iLfovIFJmj4wSf2To9o/SAAAAABdSkFlg5btKNfSHeXaWlTr1zbhJoPG9knQ1KxEndM3QbER/MkVAAAACHUb8qs0f+le5ZXVe23PTonSPef106ShvQIcGQAglJlM7TNLv9FobPUxggv5Di3kO7Scar7tTrc+31upT3LKtGJnuWrtx58U4PBkZPE6b2CSJmclKY57LAHBuR1ayPdhfLoAAIAuo8Hh1uq8w4Uya/IqZfejUiYpOkznZidq+sAkDU2LkcFgCECkAAAAALqKvWX1WrrzcKHMjkN1fm0TYTZqfN8ETclK1Li+CYoOb58BBwAAAAC6lpIauxasyNfinDKv7bEWk24en6HZI1IUHsZwDQBAYFmt1oAcJz4+PiDHQedAvkML+Q4t/uTb7nRrze5SfbC5UEu2Fam6wXncbUxGg87ul6QLh6Vp+pBUWaPD2yJcnALO7dASqvnmrzAAAKBTc7rc+nJflRbnlGnlrnLV2o+/XGesxaQpWYcLZUZlxMlkpFAGAAAAwGEej0e5xdV6a12+Ps0t8znz87Giw406p59VU7MSNTYzXhFhFMoAAAAAOMzpcuu1jcVauLZAdQ7v9zFmDk3WvAkZskaFBTg6AAAAAGg7Dpdbn+8u04ffFOrjrUWy1TuOu43RIJ3VJ0kXjUjT+UNSlRRjCUCkAPA9imYAAECn4/Z4tKmgWotzyvTpjnLZ6o8/C0GE2agJ/a2aPjBJYzPjFW4OzWUEAQAAAHhXWe/Qf9bn6v1vCrWntNavbeIiTJr4XaHM6N5cZwAAAABoaUN+leYv3euzID87JUp3T8vU8PTYAEcGAAAAAG3D6XLryz3l+uCbQn28pVAVdccvlDEYpDMzE3Xx8DRNH5qqlNiIAEQKAN5RNAMAADoFj8ejnOI6Lc4p1Se55Squth93G7PRoLF94jV9YJIm9rMqMpyZngEAAAA0Z3e69cbXxXrmiwOqbnQdt7810qxJAxI1NcuqMzLiZDZRKAMAAACgpZIauxasyNfinDKv7bEWk24en6HZI1JkMhoCHB0AAC1VVFS0y36NRqPi4+ObHttsNrnd3ldeQ9dHvkML+Q4tx+a7vKJSX+VXaklOqZbmlqvcj0IZSTqtR6zOG9RNU7OSlBIbfvhJZ70qKrxPNIDA49wOLZ0h31arNaDH84aiGQAA0KH2ltVrcU6ZFueUKb+i4bj9DZLO6BWn6QOTNHlAouIj+XUGAAAAQEsej0dLcsv1xKr9OljV2GrfbtFhmjwgUVOzEnVaz1iZGdAGAAAAwAeny63XNhZr4doC1Tm8DzKZOTRZ8yZkyBoVFuDoAADwzeU6/oQybcHtdgfsWOh45Du0kO/g53Z7tGFfhT785qA+/OagSmv9K5QZlhajcwcevs/SPdbS9Dw/L10D53ZoCdV8M8oUAAAEXFFVY1OhzI5DdX5tMzQtWtMHdtO52YnqFhPezhECAAAA6Mq+LqjSghX52lpU67NPaly4pnxXKDMsPUZGA4UyAAAAAFq3Ib9K85fuVV6Z9xmSs1OidPe0TA1Pjw1wZAAAAABw8kpr7frvpkP6YOtXKj7ORGRHDE6N1rnZSZqWlai0eMvxNwCADkTRDAAACIjyWrsWby/R4pwybT5Q49c2/bpFavrAJJ03MEk9EyLaOUIAAAAAXd2+8no9tmq/Vuyq8Nln5oh0XTe+jzKi3Sw1DwAAAMAvJTV2LViRr8U5ZV7bYy0m3Tw+Q7NHpMjEypUAAAAAuoj8iga9uL5QH24tkd3lOW7/gd2jNC0rSedmJ6oHY7kAdCEUzeCUmEymdtmv0Whs9TGCC/kOLeQ7dBiNRtU0OrXo20K9t/mg1u4qlR/XVuoRb9H5g7vp/EHd1D85uv0DRZvg3A4t5BsAAHQ2FXUO/d/nB/Tm5kNyub1feIzsGac//mCYTstIOLxNhe/CGgAAAACQJKfLrdc2Fmvh2gLVObwX3c8cmqx5EzJkjQoLcHQAAAAAcHK2Ftbo+XUHtXxnhY43nCsrOUrTshN1bnaSMqwUygDomiiawSmxWq0BOU58fHxAjoPOgXyHFvIdnFxuj175cp8e/ORLVdY5jts/Odaii4anaeaIdJ2WkSCDgVnYujrO7dBCvgEAQEdpcLj12sYi/efLg6q1u7z26WWN0C8nZmhKVjclJiYENkAAAAAAXdaG/CrNX7pXeWX1XtuzU6J097RMDU+PDXBkAAAAAHDiPB6Pvthr0/PrCrVhf1WrfbO7x2rKgARNzbIqMzEyQBECQPuhaAYAALSpL/PK9Kf3t2l7YesXV/GRYbpgaKpmjkjXWX2TZDJSKAMAAADAP26PRx9vL9MTn+1XcbXda5+ESLN+cXYPzR6eIrPJSHE+AAAAAL+U1Ni1YEW+FueUeW2PtZh08/gMzR6Rwr0NAAAAAJ2e0+3Rp7llemFdoXaU1PnsF2Yy6Ien99S14/ooOzVWFRUVcrm8T1gGAF0NRTMAAKBNHKys1/2LcvT+5oM++0SGmXTu4O6aOSJdE7KSFW42BjBCAAAAAMFgQ75NC1bmK6fY+40di9mgK0elac7oNMVY+PMnAAAAAP84XW69trFYC9cWqM7h9tpn5tBkzZuQIWtUWICjAwAAAIAT0+Bw6d1vS/TyhiIdrGr02S863KQfjkjRVWf2UHav7gGMEAACh7vGOCUVFRXtsl+j0aj4+PimxzabTW639z9Mousj36GFfAefRqdbL647qGe+KFCDj5tIk7OTNX1goib0TVBkuEmSVFttU20gA0W74twOLZ0h31arNaDHAwAAHW9PWb0eXZWvz3ZX+uwzY3A33Ty+p1LjLIELDAAAAECXtyG/SvOX7lVeWb3X9uyUKN09LVPD02MDHBkAAAAAnJjKeofe+LpYr39dLFu902e/btFhumJUqn44IkUxFrNMJlMAowSAwKJoBqckUEuvud1ulnkLIeQ7tJDvrsvj8WjV7ko9tHyfDti8z0YwMDVWf5o5RGP6JjUt2Um+QwPndmgh3wAAoD2V1Tq0cG2B3vnmkFwe733OyIjTbZN6aWD36MAGBwAAAKBLK6mxa8GKfC3OKfPaHmsx6ebxGZo9IkUmoyHA0QEAAACA/wptjXppQ6He/bZEDU7fE5/2skbo6jPTNGNwN4WbjQGMEAA6DkUzAADghO0tq9eDy/fp8702r+1xESbdfE4vXT9poMwmLq4AAAAAnLgGh0svf1Wk5788qDofq1r2SYzQrRN7aVzfBBkMDGADAAAA4B+ny63XNhZr4doCn9cbM4cma96EDFmjwgIcHQAAAAD4b2dJnV5Yd1BLcsp8Tj4mSUPTojVndLom9rfKyD0VACGGohkAAOC3mkannvn8oF7ZWCSXu+VVlkHS7BEpumlcTyXFRlAwAwAAAOCEudwefbStVE+t3q9DNQ6vfRKjzLphXE/9YFiKzMz2DAAAAOAEbMiv0vyle5VXVu+1PTslSndPy9Tw9NgARwYAAAAA/vF4PPpqf7VeWHdQa31MenzEuD4JmjM6TSN7xjIBGYCQRdEMAAA4LrfHo4+2luqxVftVVud90NppPWJ155TeGtg9OsDRAQA6m1WrViknJ0d5eXnKz8+X0+nUzTffrEmTJnV0aACATu7LfTY9siJfO0rqvLZbzEb99Iw0/XR0mqLDTQGODgAAAEBXVlJj14IV+VqcU+a1PdZi0s3jMzR7RIpMFOcDAIKQydQ+f08zGo2tPkZwId+hhXx3Pi63Ryt2luu5Lw9oS2GNz34mg3T+4GTNOStdA5L9G8tFvkMHuQ4t5PswimYAAECrthbW6B/L9mpLYa3X9uSYMN06sZemD0xiNgIAgCTp9ddfV0lJiWJjY2W1WlVSUtLRIQEAOrldJXV6dFW+1u7xPhuaQdJFQ5N107ieSokND2xwAAAAALo0p8ut1zYWa+HaAtU53F77zByarHkTMmSNCgtwdAAABI7Vag3IceLj4wNyHHQO5Du0kO+O0+Bw6e2vD+j/VuUpr9T7GC5Jigwz6fLRGbpufB/1tEad0jHJd+gg16ElVPNN0QwAAPCqvNahJ1bv13vflsjjpT3MZNBVo1L1szE9FMUMzwCAo9xwww1KS0tTcnKy3nnnHb3yyisdHRIAoJMqrbHr6TUFem9LidzeLjwkje4dp9sm9lJWCqtaAgAAADgxG/KrNH/pXuWV1Xttz06J0t3TMjU8PTbAkQEAAADA8VU1OPTSF/v0nzV7VVLd6LNfYnS45ozN1NVje8sazeRjAHAsimYAAEAzTpdbb2wq1sK1B1TT6PLa55y+Cbp9cm/1skYEODoAQFcwfPjwjg4BANDJ1dtdenFDoV5cX6h6HzM99+sWqVsn9tLYzHhWtQQAAABwQkpq7FqwIl+Lc8q8tsdaTLp5fIZmj0iRycj1BgAAAIDOpbiqQc+u3qOXv8xXTaPTZ7+e1kj9YkJf/WhUhiKZ9BgAfKJoBgAANPlyn00PLtvnc8a1XtYI3TG5t8b3TQhsYAAQImw2m3bt2qVdu3Zp9+7d2r17t6qrqyVJEydO1Ny5c/3eV0lJiRYtWqSNGzeqrKxMZrNZqampGjt2rKZPny6LxdJeLwMAAJ9cbo/e31Kip9cUqLTW4bVPt+gw3Ti+py4ekszgNQAAAAAnxOly67WNxVq4tkB1Pgr0Zw5N1rwJGbJGhQU4OgAAOlZFRUW77NdoNCo+Pr7psc1mk9vt/XsYXR/5Di3kO/D2lNXp+S8P6sOtJXK6PT77ZadE65qzemjawCSZjQY11FapofbUjk2+Qwe5Di2dId9WqzWgx/OGohkAAKCDtkY9vGKflu/0/keyqDCjrhvbQ1eOSlWYyRjg6AAgdPz85z9vk/1s2LBBjz32mOrrvy+CbGxsbCrEWbp0qe655x6lpqa2yfEAADgej8ejz/fa9MjKfO0u9V6kHxlm1NVnpuknZ6QxGxoAAACAE7Yhv0rzl+71OTFYdkqU7p6WqeHpsQGODACAzsHlcgXkOG63O2DHQscj36GFfLefbw5W64V1hVq5q0K+S2WkM3vFac7oNJ3VO14Gg0HyuNVeKSHfoYNch5ZQzTdFMwAAhLAGh0vPryvUC+sPqtHp/ZJrxuBumjchQ8kx4QGODgBCW7du3dSjRw9t3rz5hLbbs2ePFixYILvdroiICF1yySUaOnSo7Ha71qxZo6VLl6qwsFD333+/HnjgAUVGRrbTKwAA4LAdh2r1yMp8fbmvymu70SD9YFiybji7p7px3QEAAADgBJXU2LVgRb4W55R5bY+1mHTz+AzNHpHCapYAAAAAOg2Px6M1eZV6fn2hvi6o9tnPaJCmDEjU1aPTNDg1JoARAkDwoGgGAIAQ5PF4tHRHuRasyFdRtd1rn4Hdo3TXlEyN6MGMawAQKJdeeqn69eunfv36KSEhQYcOHdItt9xyQvt47rnnZLfbZTKZ9Lvf/U5ZWVlNbUOHDlVaWppeeuklFRYW6v3339dll13WYh8vvPCCHA6H38ecMWOG0tLSTihOAEDwO1Rt11NrCvTBlhKfs6Kd3Sdev5zQS/2TowIaGwAAAICuz+ly67WNxVq4tkB1DrfXPjOHJmvehAxZo8ICHB0AAAAAeOd0ufVxTpleXF+o3aXeV8qUpHCTQRcNTdZPz0hThjUigBECQPChaAYAgBCzq6RO/1y2Txv2e5/lOSHSrLnnZGjm0GRmXAOAAPNWwHIidu3ape3bt0uSJk+e3Kxg5oiLLrpIy5cv14EDB7Ro0SLNnj1bZnPzS8NPPvlEjY2Nfh93zJgxFM0AAJrU2l16Yd1BvbShSI1O7wPXspKj9MuJvTQmMz7A0QEAEDgmk6nd9m00Glt9jOBBrkML+fbfhnyb7l+Sp7wy7wPMBnaP1v87t2+nnhiMfIcW8h06yDUAAPClzu7SO98e0ssbilTsY5Jj6fBqmZee1l2Xn56qpGgmAACAtkDRDAAAIaKqwal/rSnQ/zYVy+VlmmeTQfrRyO76xdk9FRfBrwgA0BWtW7eu6f+TJ0/22sdoNGrixIl65ZVXVFtbq61bt2rEiBHN+rz44ovtGicAIDg53R69880hLVxboPI6p9c+KTFhunl8hi4Y3I0ifQBA0LNarQE7Vnw8haihglyHFvLdUnFVg/724Xa9t/mg1/a4CLPump6tK8/q3eWuOch3aCHfoYNcAwCA8lqHXv+6SP/dVKyqBpfPfikxYbryjDTNGp6i6PD2m4wFAEIRI2IBAAhyLrdH720p0ROf7VdlvfeBa2dkxOnOKb3VPzkqwNEBANpSbm6uJMlisahv374++w0ePLjZNscWzQAAcCI8Ho9W51Xq0ZX52lPe4LVPVJhRc85K11WjUhURxo0eAAAAACfG4XLruTV7teDTHaq1ex9kdtkZPXX3+QOVFGMJcHQAAAAA0FJBZYNe3lCo97aUqNHpZYbj7/RJjNDVo9N1/qAkhZlYpQ4A2gNFMwAABLHNB6r1z2X7tL241mt7amy4bpvUS1OzEmUwdK0Z1wAALRUUFEiSUlNTZTL5HpCcnp7eYhsAAE5GTnGtFqzI14b9VV7bTQZp1vAU/fzsnkqKDgtwdAAAAACCwee7y/SHd7do56Ear+1D0uP0lx8M1ajegVvhCwAAAAB8ySmu1fPrDmrpjnK5fdfKaESPGM0Zna7xfRNkZNwWALQrimYAAAhCpTV2Pbpqvz7aVuq13WI26Ooz0zVndBqzPANAkLDb7aqurpYkJSUltdo3JiZGFotFjY2NKisra/NYli5dqpycHElSfn5+03Nbt26VJA0cOFBTp071e3/+xthaodCpMhqNrT5GcCHfoYNcn7zCqkY9sSpfH24t8dlnQn+rbp3YW327dY4VLcl3aCHfoYV8o7OqqKhot30bjUbFx8c3PbbZbHK73e12PHQcch1ayHdzh6rtenj5Xn283fu9jliLSbdM6KUfnpYqk7F9P3fbA/kOLeQ7dHSGXFutFBECABBoHo9H6/Kr9MK6g/pyn/eJxo6Y0C9BV49O12k9YgMUHQCAohkAAIKI3enWqxuL9MznB1Tn8P7H18kDrLp9Um+lx1sCHB0AoD01NDQ0/T8iIuK4/SMiItTY2Nhsu7aSk5OjlStXNnsuNzdXubm5TY9PpGjmpptu8qvfG2+84fc+T9XRNz0R/Mh36CDXx1fV4NBTK3brmdV7ZHd6v+YY2iNOv5kxSGf36xbg6E4M+Q4t5Du0kG90Fi6XK2DHcrvdAT0eOg65Di2hmm+ny63XNhZr4doCn/c6Zg5N1rwJGbJGhUket4LhbQrVfIcq8h06yDUAAMHN5fZo2Y5yvbC+UNuLa332MxsNumBQkn56ZlqnmWwMAEIJRTMAAASJNXmVenD5PuVXeB/83CcxQndOzdRZvRk4AgDByG63N/3fbD7+pd6RPkdv11bmzp2ruXPntvl+AQAdx+Fy65Uv8/XI0p0qr/X+3ZEeH6G7zs/WD0b0kNFoCHCEAAAAAILBhvwqzV+6V3ll9V7bs1OidPe0TA1PZ0ZmAAAAAB2nweHWB1tL9OL6Qh2wNfrsFxVm1OwRKbpiVKq6xzLBMQB0FIpmAADo4vZXNOih5fv0WV6l1/bocJNuGNdDl53WXWaTMbDBAQACJjw8vOn/TqfzuP2P9Dl6u87qqaee6ugQACBkeTweLdlWrL8vylFeqfcZ0mItZt08ub+uHZepiDBTgCMEAAAAEAxKauxasCJfi3PKvLbHWky6eXyGZo9IkYkifQAAAAAdpKrBqf9uKtbrG4tUXuf7vnxilFmXn56qS0/rrrgIhmoDQEfjkxgAgC6qzu7Ss18c0MtfFcnh8rRoN0iaOSxZc8dnKDE6LPABAgACKiIioun/DQ3eVx072pE+R2/XWSUlJfnVr6Kiot1iMBqNio//frU2m80mt9vdbsdDxyLfoYNct27LwWo9tHyfvi6o8tpuNhp06cju+vnZGUqMClN9TZW8zwXdOZDv0EK+Q0tH59tqtQbsWAAABBuny63XNhZr4doC1Tm8f3/PHJqseRMyZI3iXgcAAACAjlFU1ahXvirS298cUr2PaxdJykiw6CdnpumiIcmymJncGAA6C4pmAADoYjwejxbnlOmRlfkqqXF47TM0LVp3TcnUkLSYAEcHAOgo4eHhio2NVXV1tcrKvM/IeURNTY0aGw8vEe1vQUpX4HK5AnYst9sd0OOhY5Hv0EGuDztoa9QTn+33OcOzJE0eYNUt52Sod2KkpMB+BrcV8h1ayHdoId8AAHQNG/KrNH/pXuWVeS+/z06J0t3TMjU8PTbAkQEAAADAYbtL6/Ti+kIt2l4ml7vlpMZHDO4eratHp2nygERWxwSAToiiGQAAupCc4lr9Y9lebT5Q47U9KSpM8yZkaMaQbjIauAADgFDTs2dPbd++XUVFRXK5XDKZTF77HTx4sNk2AABIUlWDU//54qBe+9r7apaSNDg1WrdP6qWRPeMCHB0AAACAYFFSY9eCFfk+C/VjLSbdPD5Ds0ekMNgMAAAAQIfYVFCt59cd1Gd5la32G5sZr6tHp+mMjDgZGKsFAJ0WRTMAAHQBlXUOPbmmQG9vPiRvQ9dMRoOuPD1V141NV4yFr3cACFXZ2dnavn27GhsblZeXpwEDBnjtt23btmbbAABCm8Pl1v82HdK/Pz8gW4PTa5/0OIvmTsjQudmJFOgDAAAAOClOl1uvbSzWwrUFqnO4vfaZOTRZ8yZkyBoVFuDoAAAAAIQ6t8ejVbsr9MK6Qn1z0PuExpJkNEjnZifp6tFpyk6JDmCEAICTxahaAAA6Mafbo7c2F+vpNQWqanB57TM2M16/mtxbmUmRAY4OANDZjB49Wu+8844kafny5V6LZtxut1auXClJio6O1pAhQwIZIgCgE/F4PFq6o1yPf7ZfBZWNXvvEWky6bkwPXTayu8LNxgBHCAAAACBYbMiv0vyle5VXVu+1PTslSndPy9Tw9NgARwYAAAAg1Dlcbi3aVqYX1x/UnvIGn/0sZqN+MCxZV41KVY+EiABGCAA4VRTNAADQSX21v0r/XLZPO0vqvLb3iLfojsm9NaFfAst7AgAkSf3799egQYO0fft2LV++XJMmTVJWVlazPh988IEOHDggSbrgggtkNgfPZaHJZGq3fRuNxlYfI7iQ79ARyrnefKBaDy3bq28OVnttNxsN+vHpqbr+7J5KiAyOGZ5DOd+hiHyHFvINAEDnVVJj14IV+VqcU+a1PdZi0s3jMzR7RIpMRu51AADQntrrPgrX5aGFfIeWYM93TaNTb20q1ksbClVSY/fZLz7CrB+fnqofj0pTYhCvihns+cb3yHVoId+HBc/oKAAAgkRRVaMeWZmvT3LLvbZHmI362Zh0XXVGmizM9AwAQSUnJ0dFRUVNj6uqqpr+X1RUpBUrVjTrP2nSpBb7uOaaa/T73/9edrtd9957r2bNmqUhQ4bIbrdr7dq1+vTTTyVJaWlpuvjii9vldXQUq9UasGPFx8cH7FjoeOQ7dIRCrveV1Wr+x7n68NtCn30uHJamX5+frd5J0QGMLPBCId/4HvkOLeQbAICO53S59drGYi1cW6A6h9trn5lDkzVvQoasQTzoDACAziRQ91G4Lg8t5Du0BEu+D1U36Lk1e/XiF/tU3eD02a9HQqSuP6ePfnxmhqLCQ2+4dbDkG8dHrkNLqOY79D7FAQDopBqdbr24vlD/+fKgGp3ebyCdNzBJv5yQodQ4S4CjAwAEwtKlS7Vy5Uqvbbm5ucrNzW32nLeimT59+ui2227TY489pvr6er366qst+qSlpemee+5RZGRkm8QNAOj8KmrtemzZLr34xV45XB6vfU7vlaDfXjhIo3onBjg6AAAAAMFkQ36V5i/dq7yyeq/t2SlRuntapoanxwY4MgAAAAChbE9prRauytObGwtk9zE2S5IGpsbqhol9ddHwdIWZmNAYAIIBRTMAAHQwj8ejlbsr9PDyfB2wNXrtMyA5SndN6a3TM+ICHB0AoCs644wz9M9//lMfffSRNm7cqPLycpnNZqWmpmrMmDE6//zzZbFQgAkAoaDR6dILa/fpsWU7VeVjtrReiVH6fxcM1AVDU2UwGAIcIQAAAIBgUVJj14IV+VqcU+a1PdZi0s3jMzR7RIpMRq49AAAAAATG5v2Venrlbn28tUge7/OKSZLO6pOoGyf106SsZO6XAECQoWgGAIAOtLesXv9cvk9f7LV5bY+LMOmmcRmaNSJFZm4gAUDQmzt3rubOndsm+0pOTtacOXM0Z86cNtlfV1BRUdFu+zYajc2WqLXZbHK7fc8+hK6NfIeOYM61x+PR4u1lemzVPh30UZwfH2HWL8b11I9GpirMZFRlZWVggwywYM43WiLfoaWj8221WgN2LAAAOiOny63XNhZr4doC1Tm8fwfPHJqseRMyZI0KC3B0AADgiPa6j9LR1+UILPIdWrpyvj0ejz7fU6nnvjyg9flVPvsZJE3OStQ1Z/XQsO9Wwwz2+yW+dOV848SQ69DSGfLdGe6jUDQDAEAHqGl06v/WHtBrXxfL5W45hYHRIM0enqIbx/dUQiQ3kAAA8IfL5QrYsdxud0CPh45FvkNHsOT664IqLViRr61FtV7bw0wGXT4yVdeOSVdchFmSJyhe94kKlnzDP+Q7tJBvAAACZ0N+leYv3au8snqv7dkpUbp7WqaGfzf4DAAAdJxAXStzXR5ayHdo6Qr5dro9+jS3TC+sK9SOkjqf/cJMBl04uJt+cmaaMhMjJQX2fnNX0BXyjbZBrkNLqOabohmcEpPJ1C77NRqNrT5GcCHfoSXU8+32ePTBlhI9unKfymodXvuM7Bmnu6f1UXb36ABH17ZCPdehhnyHFvINAEDntK+8Xo9/tl/Ld/qeMXL6wCTdPL6neiREBDAyAAAAAMGmpMauBSvytTinzGt7rMWkm8dnaPaIFJmMhgBHBwAAACDUNDhcevfbEr28oUgHqxp99osON+nS01J0xemp6hYTHsAIAQAdiaIZnJJALZd09LJQCH7kO7SEUr437a/UH9/bps37K722p8ZF6J4ZAzVzRLoMhuC7gRRKuQb5DjXkGwCAjlVR59D/fX5Ab24+5HUlS0ka2TNWt07spaFpMQGODgAAAEAwcbrcem1jsRauLVCdw+21z8yhyZo3IUPWqLAARwcAAAAg1FTWO/TG18V6/eti2eqdPvt1iw7TFaNS9cMRKYqxMHQaAEINn/wAALSzkupG/WNxjt7YUOC1Pdxk1M8n9NHNk/ormosyAAAAAH5qcLj12sYi/efLg6q1e19Cu5c1Qr+ckKGJ/a1BWZwPAAAAIHA25Fdp/tK9yiur99qenRKlu6dlanh6bIAjAwAAABBqCm2NemlDod79tkQNTu8F/ZLUOzFCPz0zTTMGdVO42RjACAEAnQkjcwEAaCcOl1vPr92rRz7dqepG7zMZTBuUot9fNFi9k6IDHB0AAMHHZDK1276NRmOrjxFcyHfo6Kq5dns8+nhbqR5btU9FVXavfRIizbphXIZ+eFp3hZm6xutqb1013zg55Du0kG8AANpXSY1dC1bka3FOmdf2WItJN4/P0OwRKTIZKdYHAAAA0H52ltTphXUHtSSnTC6P735D06I1Z3S6Jva3ysikYgAQ8iiawSmpqKhol/0ajUbFx8c3PbbZbHK7fVcDo2sj36ElVPL9xZ5KzV+6R3t8zLbWOzFCd07po/H9rJLsqqjwPtCtKwuVXOMw8h1aOkO+rVZrQI+HriGQPxdHnwMIfuQ7dHSFXH++u0x/+2ibthyo8toebjbquvF9dNOkfoqLCAtwdF1LV8g32g75Di3kGwCAtuF0ufXaxmItXFugOof3v//NHJqseRMyZI3i+gMAAABA+/B4PPpqf7VeWHdQa/faWu07rk+C5oxO08iesTJQLAMA+A5FMzglLpcrIMdxu90BOxY6HvkOLcGW7wOVDVqwMl/Ld3ovKowKM+r6sT10xahUhZmMQfXajyfYco3Wke/QQr4BAGh/uw5V64FFOfp0+yGffWaP7KFfTc9Wj4TIAEYGAAAAIBhtyK/S/KV7ledjcrDslCjdPS1Tw9NjAxwZAAAAgFDhcnu0cleFnl93UFuLan32MxkNmj4wSVefmab+yVEBjBAA0FVQNAMAQBtocLj03JeFemH9Qdl9rP154eBumjchQ91iwgMcHQAAAICuqqS6UQs+3aHX1u+Xy+39WmNM30T9dsZgDevJygoAAAAATk1JjV0LVuRrcU6Z1/ZYi0k3j8/Q7BEpMhmZtRkAAABA22t0uvXRtlK9uL5Q+RUNPvtFmI2aNTxFV52RqtQ4SwAjBAB0NRTNAABwCjwej5buKNfDK/JVXG332mdQ92jdNbU3s60BANDOKiq8r/TWFoxGo+Ljvx+MbrPZ5Ha72+146FjkO3R05lzXO1x6eX2h/vNlgers3mPqkxip2yb31jn9rDIY3O36ORgMOnO+0fbId2jp6HxbrdaAHQsAgPbidLn12sZiLVxboDqH9+/RmUOTNW9ChqxRYQGODgAAAEAoqGl06n+bDunVjUUqq3X47JcQadblp6fq0tNSlBDJ9QkA4PgomgEA4CTtKqnTP5bt1Vf7q722WyPNmjshQzOHJstoYLY1AADam8vlCtix3G53QI+HjkW+Q0dnyLXL7dGibaV6cvV+HarxfkMoMcqsX5zdU5cMT5HZaKAQ4CR1hnwjcMh3aCHfAACcmA35VZq/dK/yyuq9tmenROnuaZlMDgYAAACgXZTU2PXKV0V6a3Oxan1MJCZJPeItuuqMVM0cmqyIMFMAIwQAdHUUzQAAcIJs9U79a22B/repWG5Py3aTQbpsZKp+cXYPxUbwVQsAAADAP1/us+mRlfnacajOa7vFbNRPzkjV1aPTFR3OzSAAAAAAp6akxq4FK/K1OKfMa3usxaSbx2do9ogUmYxMDgYAAACgbe0tq9cL6wv10bZSOb0NwvpOVkqU5oxO19SsRJm5NgEAnARG8gIA4CeX26N3vy3RE6v3y1bv9NrnzF5xunNKb/XrFhXg6AAAAAB0VbtK6vToqnyt3WPz2m6QdNGQbrpxfE91j7UENjgAAAAAQcfpcuu1jcVauLZAdQ7vszjPHJqseRMyZI0KC3B0AAAAAILdNwer9cK6Qq3cVSHfpTLS6F5xunp0us7qHSeDgWIZAMDJo2gGAAA/bDpQrX8s3atcHzM+p8aG6/bJvTVlgJWLNAAAAAB+Ka2x6+k1BXpvS4nXVSwlaXTvON02sZeyUqIDGxwAAACAoLQhv0rzl+5VXlm91/bslCjdPS1Tw9NjAxwZAAAAgGDm8Xi0Jq9Sz68v1NcF1T77GQ3SlAGJunp0mganxgQwQgBAMKNoBgCAVpTU2PXoqnwt2lbmtd1iNmjO6HRdfWaaIsJMAY4OAAAAQFdUb3fpxQ2FenF9oep9zOrcNylSt03qpbGZ8RTmAwAAADhlJTV2LViRr8U53u93xFpMunl8hmaPSJHJyDUIAAAAgLbhdLn1cU6ZXlxfqN2l3ov3JSncZNDFQ5P1kzPSlGGNCGCEAIBQQNEMAABe2J1uvfJVkZ754oDPQWxTBlh1+6TeSou3BDg6AAAAAF2Ry+3R+1tL9PTqApXWOrz2SYoO003jeuqiockyM1ANAAAAwClyutx6bWOxFq4tUJ2P+x0zhyZr3oQMWaPCAhwdAAAAgGBVZ3fpnW8P6eUNRSqutvvsF2sx6dLTuuvy01OVFM01CQCgfVA0AwDAMVbvrtCDy/dpf2Wj1/a+SZG6c0pvje4dH+DIAABAa0ym9lv1zWg0tvoYwYV8h45A5nptXoUeXr5Pu0rrvLZHhBl1zege+unodEWFs4ple+DcDi3kO7SQbwAAvNuQX6X5S/cqr8z7bM7ZKVG6e1qmhqfHBjgyAAAAAMGqvNah178u0n83FauqweWzX0pMmK48I02zhqcomvsiAIB2RtEMAADfya9o0EPL92l1XqXX9hiLSTeO66lLR6TIbGLwBQAAnY3Vag3YseLjKZ4NJeQ7dLRHrrcdrNL9i7brs52lXtuNBumyMzJ0x7lZSomLaPPjwzfO7dBCvkML+QYAhLqSGrsWrMjX4pwyr+2xFpNuHp+h2SNSZGKFSwAAAABtoKCyQS9vKNR7W0rU6PT47Nc3KVJXn5mm6YOSFMb4KwBAgFA0AwAIeXV2l5754oBe3lAkp7vlRZtB0g+GJWvuORmyRrEMKAAAAIDjK7I16MElufrfxgJ5fNwbmpSdrHsuGKTsVGZ1BgAAAHDqnC63XttYrIVrC1TncHvtM3NosuZN4H4HAAAAgLaRU1yr59cd1NId5fIy7KrJiB4xmjM6XeP7JshooHgfABBYFM0AAEKWx+PRx9vL9OiqfJXUOLz2GZYWo7um9tbg1JgARwcAAACgK6ppdOpfK3fr/z7LU4OPQWoDU2P12wsH6ZwByQGODgAAAECw2pBfpflL9yqvrN5re3ZKlO6elqnh6RTtAwAAADg1Ho9H6/Kr9MK6g/pyX1WrfSf0S9DVo9N1Wg+uRQAAHYeiGQBASMoprtX8pXv1zcEar+1J0WGaNyFDMwZ3Y3YDAAC6iIqKinbbt9FoVHx8fNNjm80mt9v7YHh0feQ7dLRlrp1uj975plhPfbZf5XXei/JTYsI1d0IvXTgkWSajoV0/t9AS53ZoId+hpaPzbbVaA3YsAACOVVJj14IV+VqcU+a1PdZi0s3jMzR7RIpMRu53AAAAADh5LrdHn+SU6YX1hdpeXOuzn9lo0AWDu+mnZ6Sqb7eoAEYIAIB3FM0AAEJKZZ1DT6wu0DvfHJK3FUHNRoOuGJWq68akK8bC1yQAAF2Jy+UK2LHcbndAj4eORb5Dx8nk2uPxaHVepR5dma895Q1e+0SFGTXnrHRdNSpVEWEmyeMWP1Idj3M7tJDv0EK+AQChwOly67WNxVq4tkB1Pla5nDk0WfMmZMgaFRbg6AAAAAAEkwaHS//9qkD/WrFTBZWNPvtFhRn1wxHddfmo7uoeawlghAAAtI7RwACAkOB0e/TmpmI9vaZA1Y3eB02cnRmvO6b0VmZiZICjAwAAANAV5RTXasGKfG3YX+W13WSQLhmeol+c3VNJ0QxSAwAAANA2NuRXaf7Svcorq/fanp0SpbunZWp4emyAIwMAAAAQTGoanXp52U49t3avSmvsPvslRYXp8lHddemI7oqNYFgyAKDz4dsJABD0NuRX6Z/L9mpXqfebRz3iLfrVlN46p2+CDAZDgKMDAAAA0NUUVTXqydUF+mhbqc8+5/RN0LwJGerbLSqAkQEAAG9WrVqlnJwc5eXlKT8/X06nUzfffLMmTZrU0aEBwAkpqbFrwYp8Lc4p89oeazHp5vEZmj0iRSYj9zsAAAAAnLw9ZfW67a1cHbD5XlkmI8Gin56ZrguHdJPFbAxgdAAAnBiKZgAAQauoqlGPrMzXJ7nlXtsjzEZdNzZdV45K48INAAAAwHHVNDr13JcH9cpXRbK7PF77DOwepdsm9tIZveIDHB0AAPDl9ddfV0lJiWJjY2W1WlVSUtLRIQHACXG63HptY7EWri1QncPttc/MocmaNyFD1ihWuQQAAABwatbts+nX7+1UTaPLa/vg7tG6enSaJg9IpGAfANAlUDQDAAg6DQ63XtpQqP98eVCNTu83j84flKR5EzLUPdYS4OgAAAAAdDVOl1tvfXNIC9ceUGW902uf7rHhmntOhs4flCQjK1gCANCp3HDDDUpLS1NycrLeeecdvfLKKx0dEgD4bUN+leYv3au8snqv7dkpUbp7WqaGp8cGODIAAAAAwejdbw/pvk/2yuVuOXnY2X0SdPWZqRqVEScD90IAAF0IRTMAgKDh8Xi0YleFHl6er4NV3pcGzUqO0l1Te2tkz7gARwcAAACgq/F4PFq5q0KPrtqv/IoGr32iw0269qx0XX56qiLCWMESAIDOaPjw4R0dAgCcsOKqBv3xvR36eHup1/ZYi0k3j8/Q7BEpzOwMAAD8YjKZ2mW/RqOx1ccILuQ7eLk9Hj35Wb6e+fxAi7YRGQm6b9ZQ9YyW3G7vExij6+P8Dh3kOrSQ78MomgEABIU9ZfX657K9+nJfldf2+AizbhrfU7OGc/MIAAAAwPFtKazRIyvz9XVBtdd2k9GgH45I0c/H9pA1KizA0QEAEBg2m027du3Srl27tHv3bu3evVvV1Ye/GydOnKi5c+f6va+SkhItWrRIGzduVFlZmcxms1JTUzV27FhNnz5dFgsrQgOAJDlcbj23Zq8WfLpDtXaX1z4zhyZr3oQMrkUAAMAJsVqtATlOfHx8QI6DzoF8B4cGh0t3/nezPvimsEXbBUNT9dBlpykyvH0K79B5cX6HDnIdWkI13xTNAAC6tJpGpxauPaDXvy72uiyo0SD9cESKbhyXofhIvvYAAAhm7TVDmsTMG6GGfIcOb7k+aGvQYyvzfc7mLEmTByTqlxN7KzMpsr1DRBvi3A4t5Du0kO/28/Of/7xN9rNhwwY99thjqq+vb3qusbGxqRBn6dKluueee5SamtomxwOArmp7UY3+9Nw32lFc47U9OyVKd0/L1PD02ABHBgAAACBYldU06ucvbNDG/MoWbTdM7Ku7pw+UkQmKAQBdHKOHAQBdktvj0ftbSvTEZ/tVXuf02uf0nrG6c0pvZaVEBzg6AADQEQI1Q5oUujNvhCryHRpsdQ49seagnluzV3aX22ufET3j9dsLB2t0n8QAR4f2wLkdWsh3aCHf7aNbt27q0aOHNm/efELb7dmzRwsWLJDdbldERIQuueQSDR06VHa7XWvWrNHSpUtVWFio+++/Xw888IAiIylKBRCaPs0t058W5anB2fJ6JNZi0s3jMzR7RIpMDFYDAAAA0EZ2HarRz55br/zyumbPm4wG3XvJUF0xulcHRQYAQNuiaAYA0OVsKazR/KV7ta2o1mt799hw3Tqxl87NTpTBwM0jAAAAAL7ZnW699MU+PbpspyrrHF779LRG6tfnD9RFw9KYTQ0AEFIuvfRS9evXT/369VNCQoIOHTqkW2655YT28dxzz8lut8tkMul3v/udsrKymtqGDh2qtLQ0vfTSSyosLNT777+vyy67rMU+XnjhBTkc3r+nvZkxY4bS0tJOKE4A6Cgej0f//vyA/rX2gNf2mUOTNW9ChqxRYQGODAAABJuKiop22a/RaGw2gYXNZpPb7X1iInR95Dt4bMi36Y63clTd6Gr2fEy4Sf+4JFtj+sTKZrOR7xDC+R06yHVo6Qz5DuQkuL5QNAMA6DLKah16fFW+3t9a6rU9zGTQT89M07Wj0xUZbgpwdAAAAAC6mp3F1brhpa+UV+K9ID8uwqx5Uwbo6rN7y2LmGgMAEHq8FbCciF27dmn79u2SpMmTJzcrmDnioosu0vLly3XgwAEtWrRIs2fPltnc/PbVJ598osbGRr+PO2bMGIpmAHQJDQ63/rI4T0tyylq0DU6L06+n9tbQ1KgOiAwAAAQjl8t1/E5twO12B+xY6Hjku2v6YEuJ7l2yR063p9nzqbHhWjA7W/2To7zmlXyHFvIdOsh1aAnVfFM0AwDo9Jwut177ulj/t/aAau3ev6wn9rfq9km91DMhIsDRAQCAzqK9ZkiTOsfMGwgc8h0afM2gJklmo0E/Pj1V15/dUwmRYaqrrlJdB8SItsW5HVrId2jp6Hx3hhnSOqt169Y1/X/y5Mle+xiNRk2cOFGvvPKKamtrtXXrVo0YMaJZnxdffLFd4wSAjlBSY9ev3tmhbUUti/gvPzNDf/nBUNVW20JyEAMAAACA9uHxePT0mgI988XBFm2Du0frodlZ6hYd3gGRAQDQviiaAQB0al/srdQ/l+3T3vIGr+29EyP0q8m9dXafhMAGBgAAOp1ADiIJ1Zk3QhX5Dj4fby/VnxbltZhBTZKmZiXqlnMylGE9XJBP7oMX53ZoId+hhXx3Hrm5uZIki8Wivn37+uw3ePDgZtscWzQDAMFme1Gt7ngnVyU1jmbPGw3Sby8crJ+Ny5TBYJD3NTEBAAAA4MQ1Ot36y8d5WuxlpcvJA6z664x+iggzdUBkAAC0P4pmAACdUkFlgx5eka+Vu7zPGB8dbtTPx/bUj0/vrjCTMcDRAQAAAOiKPB6Pnlt3UE98VtCibUh6nO6c3EvD0qI7IDIAAIJTQcHh79zU1FSZTL4HXaSnp7fYBgCC1ae5Zfrjojw1OpuvihYdbtIDM7N08Rl9OigyAAAAAMGqss6hX727Q5sP1LRo++kZaZo3MUNGg6EDIgMAIDAomgEAdCr1dpeeW3dQL64vlN3VctZnSbp4SDfNnZDBcqAAAAAA/OZ0e/T3T/fo7W9KWrRNH9Jdj1w+UvU1VaxMAABAG7Hb7aqurpYkJSUltdo3JiZGFotFjY2NKitrOdvpqVq6dKlycnIkSfn5+U3Pbd26VZI0cOBATZ061e/9+Rtja4VCp8poNLb6GMGDXAcPj8ejhWsL9PTq/S3aeiZYtOCHgzQgJabZ8+Q7uHF+hxbyHTrINQCgs9lbXq/b3spVQWVjs+dNBumuqZm69LTuHRQZAACBQ9EMAKBT8Hg8+jS3XAtW5qu42u61z+Du0bpram8NS48NcHQAAAAAurI6u0v/7/2dWrvH1qLt2nGZ+t2Fg2UyGlTfAbEBABCsGhoamv4fERFx3P4RERFqbGxstl1bycnJ0cqVK5s9l5ubq9zc3KbHJ1I0c9NNN/nV74033vB7n6cqPj4+YMdCxyLXXVODw6W7/veN3t98sEXbWX0S9dRPRinRy0Rh5Du0kO/QQr5DB7kGAHSkr/ZX6a53d6iqofmEYdHhRj1w8QCN7ZPQMYEBABBgFM0AADrczpI6/WPpXm0sqPbabo0065YJGbp4aDJLgQIAAAA4IaU1dt32dq5yiuuaPW+Q9KspmbrlvCEdExgAAEHObv9+Yhyz+fi3o470OXq7tjJ37lzNnTu3zfcLAP4ormrQL17YoM0FLYv4Lz8zQ3/5wVCFm1mFAAAAAEDb+nBrif66eI+cbk+z57vHhuuR2dnqnxzVQZEBABB4FM0AADpMZZ1dD3ySp/9+XaRjrs8kHV4G9Menp+rnY3soNoKvLAAAAAAnJq+0Tr98M1dFx6xmaTEb9JcZ/XXeoOQOigwAgOAXHv79iglOp/O4/Y/0OXq7zuqpp57q6BAAdBFbDth0/fMbVFTVfBUto0H67YWD9bNxmTIwWRgAAACANuTxeLRw7QH93+cHWrQN6h6th2dlqVtM5//7CwAAbYkRyACAgHO5PXptfb7+uThXFXUOr31G94rTnVN6q283ZjUAAAAAcOI25Ffpznd3qKbR1ez5+EizHp6VpeHpsR0UGQAAoSEiIqLp/w0NDa30bN7n6O06q6SkJL/6VVRUtFsMRqNR8fHxTY9tNpvcbne7HQ8dh1x3XZ/klOoPH+5Sg7N5vmLCTbp/ZpbG90tQZWVlszbyHVrId2gh36GjM+TaarUG9HgAgM7D7nTrr4vztGh7WYu2if2tundGP0WGmzogMgAAOhZFMwCAgPrmQLX+/sIWbSus8tqeHmfR7ZN7aVJ/K7OrAQAAADgpi7aV6s8f58l5zJKWGQkWPfLDgepl7fyDcQEA6OrCw8MVGxur6upqlZW1HKhxtJqaGjU2NkryvyClK3C5XMfv1EbcbndAj4eOQ647P4/Ho39/fkD/WttyVuce8RY9PCtLfbtF+ZVH8h1ayHdoId+hg1wDAAKlss6hO9/dqU0Hqlu0XTUqVb+c2EsmI2OxAAChiaIZAEDA/G9Tsf65bF+LgWuSZDEbdM3odP30zHRFhBk7IDoAAAAAXZ3H49F/vjyoJ1cXtGgblhajh2ZlyRoV1gGRAQAQmnr27Knt27erqKhILpdLJpP3mUwPHjzYbBsA6KoaHG79ZXGeluS0LBY8vWes5s8coASuSQAAAAC0sfyKBt36Zo72VzY2e95okO6akqkfjezeQZEBANA5UDQDAGh3TpdbDy7fp/9uOuS1fWpWom6b2Etp8ZYARwYAAAAgWDjdHv390z16+5uSFm2TB1j11xn9KdAHACDAsrOztX37djU2NiovL08DBgzw2m/btm3NtgGArqikxq5fvbND24pqW7RdMixZd0/LVJiJaxIAAAAAbevrgird+c5O2RqczZ6PCjPq/osHaFzfhI4JDACAToSiGQBAu6qsd+j/vbdLG/ZXtWjL6h6jX03urVE9YzogMgAAEGx8zVrdFoxGY6uPEVzId9dT2+jS3e/t0Jq8yhZtV45K0x1TMmUyGlq0kevQQr5DC/kOLeS78xo9erTeeecdSdLy5cu9Fs243W6tXLlSkhQdHa0hQ4YEMsR2xTUK2gK57hq2F9XotjdzdKjG3ux5o0G6Y3KmrjwjTQZDy2uSY5Hv0EK+Qwv5Dh3kGgAQSB9tK9VfF+fJ4fI0e757bLgenpWlrJToDooMAIDOhaIZAEC7ySut0x3v7FDBMUt/StJNk/rpV+dmqbrKJpfL1QHRAQCAYGO1WgN2rPj4+IAdCx2PfHduh6oadMMb67X1YPNCfYNB+t2Fg3Xd+D5+74tchxbyHVrId2gh351H//79NWjQIG3fvl3Lly/XpEmTlJWV1azPBx98oAMHDkiSLrjgApnNwXPrimsUtAdy3fl89G2h7nhjixoc7mbPx1jMeuzKkZqcnXLS+ybfoYV8hxbyHTrINQCgPXg8Hv3f5we0cO2BFm3ZKVFaMDtbyTHhHRAZAACdU/DceQAAdCqf7a7Q7z7cpVp785tEFrNR8y8drh+c1qODIgMAAAAQLHYUV+va/6zXgcr6Zs9bzEYt+PFpumBYWgdFBgBAcMjJyVFRUVHT46qq74tUi4qKtGLFimb9J02a1GIf11xzjX7/+9/Lbrfr3nvv1axZszRkyBDZ7XatXbtWn376qSQpLS1NF198cbu8DgBoDx6PR48u3aWHP93Roq1XYpSemXOGBnSP7YDIAAAAAAQzu9Otvy7J06JtZS3azumXoL9d2F9R4e23+i0AAF0RRTMAgDbl8Xj0/LpCPfHZfnmOaUuOCdPDswdq/GAKZgAAAACcmrW7S3XDi1+pusHZ7HlrVJj+PedMjeoduJndAQAIVkuXLtXKlSu9tuXm5io3N7fZc96KZvr06aPbbrtNjz32mOrr6/Xqq6+26JOWlqZ77rlHkZGRbRI3ALS3BodLd/3vG72/+WCLtrP6JOqpn4xSYjSzOgMAAABoW7Z6p+56d4c2FlS3aLvi9FTdNqmXTEZDB0QGAEDnRtEMAKDNNDrdutfHTAZDUqP1z0uylBrPjW8AANA+Kioq2m3fRqNR8fHxTY9tNpvcbncrW6ArI9+d30dbS/THj3bJ6W5eqp9hjdBjlw5S7zj/PhPIdWgh36GFfIeWjs631Uqh5vGcccYZ+uc//6mPPvpIGzduVHl5ucxms1JTUzVmzBidf/75slgsHR1mm+MaBW2BXHc+h6rtuuPtHG0trGnRNmt4iu45r68M9lpV2GtPeN/kO7SQ79BCvkNHZ8g11ygAEJz2VzTo1rdylV/R0Ox5o0H61eTe+vHpqR0UGQAAnR9FMwCANlFSY9ed7+zQ1qKWN4EuGJSk357XVxFhxg6IDAAAhAqXyxWwY7nd7oAeDx2LfHceHo9H//nyoJ5cXdCibVhajB6alSVrVNhJ54tchxbyHVrId2gh321n7ty5mjt3bpvsKzk5WXPmzNGcOXPaZH9dAdcoaA/kumPlFNfqjrdzdajG0ex5o0G6bVIvXXF6qgzytFmOyHdoId+hhXyHDnINAGgLmwqq9at3d8hW72z2fGSYUfdf1F/j+1EwCQBAayiaAQCcsq2FNbrz3R0qOeYmkUHS3HMyNGd0mgwGlv4EAAAAcPKcbo/+/ukevf1NSYu2yQOs+uuM/hTqAwAAAGg3n+aW6Y+L8tTobL5aQHS4UfddNEDj+iZ0TGAAAAAAgtrH20v154/z5HB5mj2fHBOmBbOzlZ0S3UGRAQDQdVA0AwA4JR9vL9VfF+ep0dn8wiwqzKh7L+qvCcxkAAAAAOAU1dpduuf9nVq7x9ai7YrTU3XbpF4yGSnUBwAAAND2PB6PnvnioJ5e03LFyx7xFj00K0v9ukV1QGQAAAAAgllr1yJZKVF6eFaWusdaOiAyAAC6HopmAAAnxe3x6KnVBfrPlwdbtHGTCAAAAEBbKa2x69a3cpV7qK7Z8wZJt0/upStHpXVMYAAAAACCXoPDrb8sztOSnLIWbaf3jNX8mQOUEBXWAZEBAAAACGYOl1t/W7JHH2wtbdE2vm+C7ruov6LCTR0QGQAAXRNFM0GgvLxcn3/+ub7++msdOHBAlZWViomJUXZ2tn7wgx9owIABHR0igCBTa3fp9x/u0qrdlS3azsiI0wMz+yshkptEAAAAAE7N7tI63fpmroqq7c2et5gN+uuM/pqSldhBkQEAAByfydR+g1eMRmOrjxE8yHXHOVRt1x1v52hrYU2LtlnDU3TPeX0VZmrbfJDv0EK+Qwv5Dh3kGgBwqmz1Tv36vR36an91i7Yfj+yuOyb3lslo6IDIAADouiiaCQKLFi3Su+++q+7du2vEiBGKi4tTYWGh1q9fr/Xr1+vWW2/V2Wef3dFhAggSByobdMc7O7S7tL5F249OS9GvJveWuY1vEgEAAAAIPRvybbrz3Z2qaXQ1ez4+0qyHZ2VpeHpsB0UGAADgH6vVGrBjxcfHB+xY6FjkOjC2HLDp+pe2qKiqodnzRoP02wsH62fjMmUwtP8gNfIdWsh3aCHfoYNcAwBOREFlopT0/QABAABJREFUg259K1f7yltei9wxubcuPz21gyIDAKBro2gmCPTv319/+tOfNHjw4GbPb9++XX/5y1/0f//3fzrzzDMVFsaqDwBOzYb8Kt39/k7Z6p3NnjcZDbprSm9delr3DooMAAAAQDBZtK1Uf/44T063p9nzGQkWPfLDgepljeigyAAAAAAEu4++LdQdb2xSg8Pd7PkYi1mPXTlSk7NTOigyAAAAAMFs84Fq/eqdHao8ZlxWhNmo+y7urwn9Ajc5BwAAwYaimSBw1llneX1+0KBBGjp0qDZv3qz8/Hz169cvwJEBCCb/21SsfyzbJ9cxg9biI8z6+8wBOqNXXAdFBgAAACBYeDwe/efLg3pydUGLtmFpMXpoVpasUUwKAgAAAKDteTwePbZslx76ZEeLtozESD0z50xldWfFSwAAAABtb0lOmf60aLfsrubjspJjwvTwrGwN7B7dQZEBABAcQr5oxmazadeuXdq1a5d2796t3bt3q7q6WpI0ceJEzZ071+99lZSUaNGiRdq4caPKyspkNpuVmpqqsWPHavr06bJYLO31MnwymUzN/gWAE+V0ufXg8n3676ZDLdr6JkXqoVlZ6pnALM8AAAAATo3T7dHfP92jt78padE2eYBVf53RXxFhxg6IDAAA4ORUVFS0276NRqPi4+ObHttsNrnd7la2QFdFrgOjweHSnxbt1uLtpS3aTs+I0z8vyZY13Nmu57VEvkMN+Q4t5Dt0dIZcW62sRAAAXUVrk4llJUfp4dlZ6h4b+HGnAAAEm5Avmvn5z3/eJvvZsGGDHnvsMdXX1zc919jY2FSIs3TpUt1zzz1KTU1tk+P5o7S0VN9++62sVqt69eoVsOMCCB6V9Q79v/d2acP+qhZt5/RL0F9n9FOMJeS/SgAAAACcolq7S/e8v1Nr99hatF0xKlW3Tewlk9HQAZEBAACcPJfLFbBjud3ugB4PHYdct73SGrvueGeHthXVtmj7wbBk/b9pmQozGTvkfSffoYV8hxbyHTrINQDAF4fLrfuW7NH7W1sW74/rk6D7Lu6v6HAmSwcAoC0w0vko3bp1U48ePbR58+YT2m7Pnj1asGCB7Ha7IiIidMkll2jo0KGy2+1as2aNli5dqsLCQt1///164IEHFBkZ2U6v4HtOp1OPPfaYHA6HrrrqKhmNzMQK4MTkldbpjnd2qKCysUXbtWel66bxPWU0MGgNAAAAwKkpqbHrtrdylXuortnzBkm3T+6lK0eldUxgAAAAAIJeTnGt7ng7V4dqHM2eNxqkWyf20pWjUmXgXggAAACANlbV4NSv393pdSLjH52Wol9NyZSZycQAAGgzIV80c+mll6pfv37q16+fEhISdOjQId1yyy0ntI/nnntOdrtdJpNJv/vd75SVldXUNnToUKWlpemll15SYWGh3n//fV122WUt9vHCCy/I4XC0eN6XGTNmKC3N+6ARt9utJ598Utu3b9fUqVM1YcKEE3o9APDZ7gr97sNdqrU3XybaYjbo99P76vxB3TooMgAAAADBZHdpnW59M1dF1fZmz1vMBv11Rn9NyUrsoMgAAAAABLtPc8v0x0V5anQ2vxcSHW7UfRcN0Li+CR0TGAAAAICgVlDZoNveytXe8oZmzx+ZTOyK0yneBwCgrYV80Yy3ApYTsWvXLm3fvl2SNHny5GYFM0dcdNFFWr58uQ4cOKBFixZp9uzZMpubv/WffPKJGhtbrubgy5gxY7wWzbjdbj311FNavXq1zjnnHP385z8/wVcEIJR5PB49v65QT3y2X55j2pJjwvTPH2RpSFpMh8QGAAAAILhsyLfpznd3qqbR1ez5+EizHp6VpeHpsR0UGQAAAIBg5vF49MwXB/X0moIWbT3iLXpoVpb6dYvqgMgAAAAABLtvDlbrV2/vUEW9s9nzEWaj7r2onyb1ZzIxAADaQ8gXzZyqdevWNf1/8uTJXvsYjUZNnDhRr7zyimpra7V161aNGDGiWZ8XX3zxlGM5ssLMqlWrNG7cOM2dO1dGo/GU9wsgNDQ63bp3SZ4WbStr0TYkNVr/vCRLyTHhHRAZAACAf0wmU7vt+9hrK661ghv5bn8fbS3RHz/aJae7ebl+hjVCj106SL0TIwMSB7kOLeQ7tJDv0EK+AQD+anC49ZfFeVqS0/JeyOk9YzV/5gAlRIV1QGQAAAAAgt0nOWX646Ldsrua3xtJig7TglnZGpQa3UGRAQAQ/CiaOUW5ubmSJIvFor59+/rsN3jw4GbbHFs0c6qOLpg5++yzNW/ePG4MAvBbSY1dd76zQ1uLalu0XTAoSb89r68iwvhMAQAAnZvVag3YseLj4wN2LHQ88t12PB6PnlyxW/9YvLNF28heCfr31WcoKcbSAZEdRq5DC/kOLeQ7tJBvdBYU9qMtkOu2U1Jj1+1v5WhrYU2LtkuGp+g35/VVmKlj31/yHVrId2gh36GDXAMAjuXxePT8ukI9/tn+Fm39u0VqwexspcZ13L0RAABCAUUzp6ig4PCy3ampqa3e/EhPT2+xTVtxu9166qmntGrVKo0ZM4aCGQAnZGthje58d4dKahzNnjdImntOhuaMTpPBYOiY4AAAAAAEDafLrd+/u0Wvrmt5U2j6kO565PKRighrv4GlAAAAgUZhP9oDuT45Ww7YdP2LW1RU1dDseaNB+s2MQbpufJ9OeS+EfIcW8h1ayHfoINcAENqcLrfu/3Sv3v22pEXb2Mx43X9xf8VYGMYLAEB749v2FNjtdlVXV0uSkpKSWu0bExMji8WixsZGlZW1XO77VPzvf//TypUrFRERofT0dL355pst+owePVqZmZl+79PfGNtrljRm3ggt5LvjLNpWoj8v2q1Gp7vZ81HhRt13cZYm9k9s82OS79BBrkML+Q4t5BsAcKJqGp2a+/JGrdzR8qbQz8b10W8vHCSTsfMNUAMAAADQ9S36tlC3v7FJDY7m90JiLGY9dsVITR6Y0kGRAQCAULXq/7N35/FRlWf/x7+zJJOEhBDCkoWdJIiAigKiVQHBHRWs+rS1VrvYPoqKdddqf33UVquWarHFpVqrtj6PdUFREQURdwVxA7KwL1kggWTIOpOZc35/BIHjsAmZc5I5n/frxSuZ6z7LFa4MzMw5132/+65KSkq0Zs0abdiwQZFIRFdccYXGjx/vdGoA2lF9S0Q3vbJSn27YHjP2/SN76YaJA+Tn2ggAALagaeYQtLTsmokoJSVlv9unpKQoFApZ9msP1dXVO/N58cUX97hNr169vlPTzOWXX35A2z333HMHfMxDwcwb7kK9488wTN3/Zqn+9s7qmLF+3dP090tGqah3hi25UG/3oNbuQr3dhXqjo6itrY3bsb1er+V3PRgMyjCMfeyBzox6t68t9WFNf6FYJZsbLXGPpOtOHqCLRudqe7DOkdyotbtQb3eh3u7idL3tXE0EAHDgTNPUzLdXacZbZTFjfbun6vFLRtt2LQQAAGB3//d//6fq6mplZGQoKytr571fABJHeV2LrnmxVGu3We8V9UiaPr6fLjomp0OudgkAQKKiaeYQhMPhnd/7/fv/q/xmm933aw/Tpk3TtGnT2vWYABJXQyiia/73C80v3hwzdtygbP3toqOV1SXZgcwAAAAOTTQate1chmHYej44i3ofvNU1TZr+Qqmq6q2fhQT8Ht15ZoFOLureof5uqbW7UG93od7uQr3RUdDYj/ZArQ9OS2tUv5u7WvOKa2LGju7bVfdPGaKs5Ehcn6cHg3q7C/V2F+rtHh2h1jT2d3y/+tWvlJubq549e2r27Nn697//7XRKANrRssoGXftSqbY1RSzxgN+ru84arAmF3R3KDAAA96Jp5hAkJ++6qTwSiexjS+s2u+/XUc2aNcvpFADEwcZtTfrFP5eodHN9zNjFY/vrt2cfriSf14HMAAAAACSaJRuCuv7llWoIWW9a7pbq14ypRToijxmdAQBAYqOxH/FArfevpiGsa2eXaUVVY8zYuSN66uZJA5Tk83aKv0fq7S7U212ot3tQa+zJEUcc4XQKAOJkQdk2/fb1VQpFTEs8Oy1JM6YWaVhuukOZAQDgbjTNHIKUlJSd37e0tOxjS+s2u+/XUWVnZx/QdvGafakjzLwB+1BveyzZENQNs0tV12xt8vN7Pbpx0kBdMDJHDduDcc+DersHtXYX6u0uHaHezJIGAB3b6ytqdMcbaxQxrBeF+nYL6C/fP0x9szr+ZyMAAAAAOp+SzY269qVSbWlotcS9Hmn6uH760TE58ng8DmUHAAAOVTAY1KpVq7Rq1SqtXr1aq1evVn1926Sh48aN07Rp0w74WNXV1Zo7d66WLl2qrVu3yu/3KycnR8cdd5xOO+00BQKBeP0YABKQaZp6anGlZr67MWZscI9UPTB1iHIz+XcFAACn0DRzCJKTk5WRkaH6+npt3bp1n9s2NDQoFApJOvCGlM7ArtkwmHnDXah3+3v+i8267+31in7rhrXMFL/+eE6hRvXr6tjfOfV2D2rtLtTbXag3AOAbpmnqiU8qNOv9TTFjI3LTNWNqkbLSkhzIDAAAAECia5vRebVCEevkLl2Svfr95EKdMKibM4kBAIB2c9lll7XLcZYsWaKZM2equbl5ZywUCu1sxFmwYIFuueUW5eTktMv5ACS2SNTQHxes00tfVceMjR2QqXvOLlB6gFt1AQBwEv8TH6I+ffqouLhYVVVVikaj8vl8e9yuoqLCsg8A2CESNfSnhev1ny+2xIwNyk7VjKlF6tONGZ4BAAAAHLqIYeqP89fu8aLQhMIs3XlmgVKSvA5kBgAAACCRmaapxz+u0MMfxDbv52cGNGNqkQb3SHMgMwAAEE89evRQfn6+vvzyy++039q1a/XAAw8oHA4rJSVFU6ZM0fDhwxUOh/XBBx9owYIFqqys1N1336177rlHqampcfoJACSChlBEN72yUp+s3x4zNvWIXrppYn/5fVwbAQDAaTTNHKIhQ4aouLhYoVBIa9asUWFh4R63W7FihWUfAIi3uuZW3fzKKi3ZGPum7MTB3XTnmYOZxQAAAABAu2gMR3XLKyv14bpgzNgPj8nRNeP6yef1OJAZAAAAgETW0mroznlrNK9ka8zY0X0ydO85herGapcAACSM888/X4MHD9bgwYPVrVs3bdmyRVdeeeV3OsaTTz6pcDgsn8+n2267TUVFRTvHhg8frtzcXD3zzDOqrKzUnDlzdOGFF8Yc46mnnlJra+sBn/PMM89Ubm7ud8oTQMdXGQxp+oulWrO1OWZs+rh++vGoHHk8XBsBAKAj4G7pQzRmzBjNnj1bkrRw4cI9Ns0YhqFFixZJkrp06aJhw4bZmSIAF1pT06Rfv1Sm8mAoZuynx+bp8hP6yMubMgAAAADtoLohrOkvlqpsS5Ml7pF07YT++uExOc4kBgAAACCh1TSEde3sMq2oaowZO3dET908aYCSmNEZAICEsqcGlu9i1apVKi4uliRNmDDB0jDzjcmTJ2vhwoUqLy/X3Llzdd5558nvt95i99ZbbykUir0fY2/Gjh1L0wyQYJZVNui6l8q0tcnaQBfwe3THmQWaWNTdocwAAMCe0DRziAoKCjR06FAVFxdr4cKFGj9+fMwbqldffVXl5eWSpDPOOCPmjVRn5vP54nJcr9e7z8dILNS7fb27aptunbNSjeGoJR7we/X/zhisMw7v6VBmbai3e1Brd6He7kK9AQDfWF3TpKtfKNXm+rAlHvB7dOeZBTqZi0IAAAAA4qBkc6OufalUWxqsN6h5PW0zOv/oGGZ0BgAAsT799NOd30+YMGGP23i9Xo0bN07//ve/1djYqOXLl+vII4+0bPP000/HNU8AHdvbZdt0++urFYoYlnj3NL9mTB2i4bnpDmUGAAD2JnG6Nw5SSUmJqqqqdj7evn37zu+rqqr0zjvvWLYfP358zDEuvfRS3X777QqHw7rrrrs0depUDRs2TOFwWB9++KHmz58vScrNzdXZZ58dl5/DKVlZWbacJzMz05bzoGOg3gfHNE09vGiN7p1XItO0jvXuGtCjF4/SkX27OZLbvlBv96DW7kK93YV6A4A7LdkQ1PUvr1RDyNqw3y3VrxlTi3REXoZDmQEAAHQM8Zp4TGJCCzeh1rHml27V7a+uVMu3blDrkuzT3ecU6cTB9ly/jAfq7S7U212ot3tQ646ttLRUkhQIBDRo0KC9bnf44Ydb9vl20wwAdzJNU88sqdJfFm3Qt27N0qDsVD1w3hDlZQYcyQ0AAOyb65tmFixYoEWLFu1xrLS0dOebpW/sqWlm4MCBuuaaazRz5kw1Nzfr2WefjdkmNzdXt9xyi1JTU9slbwDYXUtrVLe8+LVe+rw8ZuzIvt306MXHqHfXFAcyAwAAAJCIXl9RozveWKOIYb0s1LdbQH/5/mHqm8X7DwAAALsmHpOY0MJN3Fxr0zT10Nur9Ke3ymLG+nZP1eOXjFZR78Rq3ndzvd2IersL9XYPat2xbNq0SZKUk5Ozzyb3vLy8mH0AuFvEMHXvgnV68cstMWNj+nfVH88uVEaK62/HBQCgw+J/6XYyatQo3X///Xr99de1dOlSbdu2TX6/Xzk5ORo7dqxOP/10BQJ0EQNof5u3t+iXT3+mLzfWxYxNOSpP93z/CKUkxW9GQwAAAADuYZqmnvikQrPej71QPCI3XTOmFikrLcmBzAAAAAAkspbWqG58/iu98mVFzNiYgd318I+PUfcuyQ5kBgAAOotwOKz6+npJUnZ29j63TU9PVyAQUCgU0tatW9s9lwULFqikpESStGHDhp2x5cuXS5IOO+wwTZw48YCPd6A5xms1TFZYchc31rshFNFNL5fpw7V1MWNTjuilW08dpCRfYv49uLHebka93YNauwv1buP6pplp06Zp2rRp7XKsnj176pJLLtEll1zSLsfrDGpra+NyXK/Xa5ltIxgMyjCMfeyBzox6H7zllfX69Yulqm4IW+IeSVeN66dLj81Xc8N2NTuT3h5Rb/eg1u5Cvd2lI9Tbztl6AQBtIlFD98xfp9lfV8eMTSjM0p1nFiglyZ0fsAEAAACIny3bW3TZXiYP+69RfXXnlOFK9vNeBAAA7FtLS8vO71NS9r9SdkpKikKhkGW/9lJSUqJFixZZYqWlpSotLd35+Ls0zVx++eUHtN1zzz13wMc8FKyw5C6JXu/yumb94tnFKt1cHzN20+mH6b/HDZLH43EgM2cker1hRb3dg1q7i1vr7fqmGRyaaDRqy3kMw7DtXHAe9T4wbxTX6M55axSKmJZ4WpJXd00u0EmDszrFDevU2z2otbtQb3eh3gCQ+BrDUd3yykp9uC4YM/bDY3J0zbh+8nndc1EIAADgQMRr4jGpY0xoAXu4vdbFVQ265oUSbfnW5GFej/TrCQN00ahcNdYH1ehQfu3N7fV2G+rtLtTbPTpCrZl4bM/C4V2vJ/z+/d8y9802u+/XXtpzkmcA8fPVpjr9/J9LVF0fssQDfq/+/F9H6cwRuQ5lBgAAviuaZgCgkzFMU7Pe36R/fFIRM5afGdCMqUUa3CPNgcwAAAAAJKLqhrCmv1iqsi1NlrhH0rUT+uuHx+Q4kxgAAEAHZ+cEE0xo4R5uqvWCsm367eurFYpYbzTukuzV7ycX6oRB3RL+hnM31RvU222ot3tQ644jOTl55/eRSGS/23+zze77dVSzZs1yOgUg4cxbXqXp//u5Wlqt7zmyuyTrsUtG6eh+NCgCANCZ0DQDAJ1IYziq219bpXdX18WMjerbVfecU6BuqUn2JwYAAAAgIa2uadLVL5Rqc711NsWA36M7zyzQyUXdHcoMAAAAQKIyTVOPf1yhhz/YFDPG5GEAAOBgpaSk7Py+paVlv9t/s83u+3VU2dnZB7RdvFbD7AgrLME+iV5v0zT1zOJK/XnhOpnfGhvYPVUzLxiq/Iz4ri7bkSR6vWFFvd2DWrtLR6h3R1gNk6YZAOgkyutadO3sMq2uaY4Zu+CoXrpuQn/5fV4HMgMAAACQiBZvCOqGl1eqIWSdCbNbql8zphbpiLwMhzIDAAAAkKhaWg3dOW+N5pVsjRkb2SdD951TqG5pTB4GAAC+u+TkZGVkZKi+vl5bt8a+1thdQ0ODQqGQpANvSOkM7Fr1iBWW3CWR6h0xTN2/YJ2e/3JLzNjofl117zmFykjxJ8zPezASqd7YP+rtHtTaXdxab5pmAKATWLJhu26as1LBZusSwT6vRzec3F/nH9XbocwAAAAAJKLXV9TojjfWKGJY51Hr2y2gv3z/MPXN6vizKwIAAADoXGoawrpudpmWVzXGjJ07oqdunjRASUweBgAADkGfPn1UXFysqqoqRaNR+Xy+PW5XUVFh2QdA4msIRXTrnFX6cF0wZuyc4T11yym8HwEAoDOjaQYAOrjnv9is+95er+i3blbLTPHrj+cUalS/rg5lBgAAACDRmKapJz6p0Kz3N8WMHZGXrhlTipjVGQAAAEC7K9ncqOtml2lzfdgS93qk6eP66UfH5Mjj8TiUHQAASBRDhgxRcXGxQqGQ1qxZo8LCwj1ut2LFCss+ABJb1faQfv1SmVZWN8WMTTuxjy4dk8f7EQAAOjmaZnBI9jbjwqHyer37fIzEQr33rDVq6P4F6/Tc51UxY4N7pOqB7w9Vn26db3Zn6u0e1NpdqLe7UG90VPF6fyLxe+82bq13a9TQ3W+t1UtfbYkZO7mou34/uVApSfF7njnBrbV2K+rtLtTbXag3AHRuC8q26bevr1YoYljiXZK9+v3kQp0wqJsziQEAgIQzZswYzZ49W5K0cOHCPTbNGIahRYsWSZK6dOmiYcOG2ZliXHGfF9pDotV7RVWDpr9QrJqGVks82efRHWcV6rShPRzKrGNItHpj36i3e1Brd6HebWiawSHJysqy5TyZmZm2nAcdA/WWahvDmv6vpfpozdaYsUlDe+nP/3WUMlISY3Zn6u0e1NpdqLe7UG90FHa9P5H4vXcbN9S7IRTRNf9aqkVl1TFjP/veQP3mrKHyeRN/FjU31Bq7UG93od7uQr0BoHMwTVOPf1yhhz+IXekyPzOgGVOLNLhHmgOZAQCARFVQUKChQ4equLhYCxcu1Pjx41VUVGTZ5tVXX1V5ebkk6YwzzpDfnzi313GfF+KhM9f7rRWbdfWzy9XcGrXEu3dJ1mM/OUbH9O/uUGYdV2euN7476u0e1Npd3FrvxHlVDwAJomxzvX7xzyXasC12yc8rxg/W9acOkdcFN6sBAAAAsMfm7S366T8Wa0Xldkvc45FuP+tw/eyEgQ5lBgAAACBRtbQaunPeGs0riZ08bGSfDN13TqG6pSXG5GEAAKD9lJSUqKqqaufj7dt3faZZVVWld955x7L9+PHjY45x6aWX6vbbb1c4HNZdd92lqVOnatiwYQqHw/rwww81f/58SVJubq7OPvvsuPwcAJxlmqb+8cE63fnaCpmmdWxQzy76x6Wj1T+7izPJAQCAuKBpBgA6kAXFmzX9f79QQyhiiQf8Xt17/hE696h8hzIDAAAAkIjKNtfr0ic+VUWwxRIP+L168AcjdfrwHIcyAwAAAJCoahrCum52mZZXNcaMnTO8p245ZYCSfF4HMgMAAB3dggULtGjRoj2OlZaWqrS01BLbU9PMwIEDdc0112jmzJlqbm7Ws88+G7NNbm6ubrnlFqWmprZL3gA6jkjU0J2vrtA/P1ofM3bcoGw9/ONjlEkDPwAACYemGRyS2trauBzX6/Valn8KBoMyDCMu54LzqHfbDAZPflKumYs26FsTGKhnerL+fN4QDctNi9tzzk7U2z2otbtQb3fpCPW2a/l4dC7xfK3UEX7vYR+31PvT9UFd91KJGkJRS7xbql8Pfn+ojsgPJMR7kH1xS63Rhnq7C/V2F6frzfsT7I3P54vbsb1e7z4fI3EkWq1LNjfomhdKtLk+bIl7JP16wgD9eHSuPB6PM8l1AIlWb+wb9XYX6u0e1LpzGDVqlO6//369/vrrWrp0qbZt2ya/36+cnByNHTtWp59+ugKBgNNptjvu80J76Mz1bgxFdfMrpXp/TV3M2DnDe+q20wfLCDWoNmR/bh1VZ643vjvq7R7U2l06Qr07wnUUmmZwSKLR6P43ageGYdh2LjjPbfUORQzd9eYazV2xNWZsWE4X3T+lSD3TkxP278Rt9XYzau0u1NtdqDc6Cjt/D/m9d5dErPfrK2p0xxtrFDGsbft9uwX0l+8fpr5ZKQn3Mx+IRKw19o56uwv1dhfqjY7CzguBu1/0RGLrzLV+Y1mlfv1/y9Xcav03Oj3g18wfjtSEw3o5lFnH1Znrje+OersL9XYPat2+pk2bpmnTprXLsXr27KlLLrlEl1xySbscrzPgPi/EQ2ep9+b6kH79YpnKqptixi4/oY9+dmyePDI7xc/ipM5Sb7QP6u0e1Npd3FpvmmYAwEHVDWFdP7tMy6saY8bOGJqt35w6SClJzDwDAAAAoH2YpqknPqnQrPc3xYwdkZeuGVOK1C0tyYHMAAAAACQq0zT10Nur9Ke3ymLG+nZP1eOXjFZR7wwHMgMAAADgBiWbG/Xrl0pV3dBqiSf7PPrt6YN0+tAeDmUGAADsQtMMADhkeWWDrn+5LOYNmUfStBP76pIxufJ4PM4kBwAAACDhRKKG7pm/TrO/ro4Zm1CYpTvPLKBpHwAAAEC7ammN6sbnv9IrX1bEjI0Z0F0PX3yMundJdiAzAAAAAG7w3upa3frqKjW3GpZ4Zqpff5pSpKPyaeAHAMANaJoBAAe8UVyjO+etUShiWuJpSV7dNblAJw3OcigzAAAAAImoMRzVLa+s1IfrgjFjPzomR9PH9ZPPS9M+AABAe6qtrY3bsb1erzIzM3c+DgaDMgxjH3ugs+rMta5uCOvaF0u0rLIhZuzcEb30m9MGyRNuVG240YHsOqbOXG98d9TbXai3e3SEWmdlcb8BAEjS/y6t0oyF62VYb89Sv6wUPXjeEPXNSnEmMQAAYDuaZgDARoZpatb7m/SPT2JnVMvPDGjG1CIN7pHmQGYAAAAAElV1Q1jTXyxV2ZYmS9wj6doJ/fXDY3KcSQwAACDBRaNR285lGIat54NzOkutSzY36rrZZdpcH7bEPZKmj++ni47JkUdmp/hZnNRZ6o32Qb3dhXq7B7VGR+Lz+eJyXK/Xu8/HSCydod5Rw9T9b6/V/35WFTN2dN+umjF1iDJTkxzIrPPpDPVG+6He7kGt3YV6t6FpBgBs0hiO6vbXVund1XUxY6P6dtU95xSoG2/IAAAAALSj1TVNuvqF0pgb1QJ+j+46q0ATCrs7lBkAAACARPV22Tb99vXVaolYZ9XvkuzV788q0AmDmf0eAADACXatQrT7aktIfB2t3o2hiK5+9nMtKNkSM3beyHzd/f0RCvjj00DmBh2t3ogv6u0e1Npd3FpvmmZwSJiBAO3BDfUur2vRNS+UaFVNU8zYhSNzdP3EAUryJd7PvSduqDfaUGt3od7uQr0BoHNYvCGoG15eqYaQdSbLbql+/XlqkUbkZTiUGQAAAIBEZJqmnvikQrPe3xQzlp8Z0IypRRrcI82BzAAAAAC4QVWwRT//52Itr9geM/brSUW6emKBPB6PA5kBAACn0TSDQ8IMBIiHRKv3R6u36op/fa3aplZL3O/16HfnDNOPx/Z3KLOOIdHqjb2j1u5Cvd2FegNAx/P6ihrd8cYaRQzTEu/bLaC/fP8w9c1KcSgzAAAAAImopdXQnfPWaF7J1pixkX0ydN85heqWluRAZgAAAADcYEXFdv3sycWq2t5iiSf7vLr3/CM0ZWS+Q5kBAICOgKYZAIijZz5er9+9sjzmRrVuaUmaddExOm5wtkOZAQAAAEhE+5rZ+Yi8dM2YUsSNagAAAADaVU1DWNfNLtPyqsaYsXOG99QtpwxQko+VigEAAJxWW1sbl+N6vV7LJHvBYFCGYcTlXHBeR6z3e6trdfMrpWoKW/PITPFrxnmH6ei+aXH7/U90HbHeiB/q7R7U2l06Qr3tWqRjX2iaAYA4aI0aumPOCj398fqYsaLe6fr7T0arX3aaA5kBAAAASFSRqKF75q/T7K+rY8YmFGbpzjMLlJLEjWoAAAAA2k/J5kZdN7tMm+vDlrhH0vTx/XTRMTnyeDzOJAcAAACLaDRqy3kMw7DtXHCe0/V+7vMq3f/2en1rPmP17RbQg98/TP2yUvh9bEdO1xv2ot7uQa3dxa31pmkGh4QZCNAeEq3edc2tunF2qRZv2B4zdlJBln4/uVDp3pBqa0MOZOe8RKs39o5auwv1dpeOUO+OMAMBAHQkjeGobn5lpT5aF4wZ+9ExOZo+rp98Xm5UAwAAANB+3i7bpt++vlotEevnQl2Svfr9WQU6YTCf3wAAAACIj6hh6oFFG/TsZ1UxYyP7ZOi+cwvVLTXJgcwAAEBHRNMMDgkzECAeOnO9V9c06dqXylQejG2I+emxebr8hD7yejyd9ueLh85cb3w31NpdqLe7UG8AcFZ1Q1jTXyxV2ZYmS9wj6doJ/fXDY3KcSQwAAABAQjJNU098UqFZ72+KGcvPDGjG1CIN7pHmQGYAAAAA3KA5HNVvXluld1fXxYydMTRbt582SMl+r/2JAQCADoumGQBoJ++trtVtr61SY9g6o1rA79Htpw3S6UN7OJQZAAAAgES1qrpJ018s1eb6sCUe8Ht011kFmlDY3aHMAAAAACSillZDd725Rm8Ub40ZG9knQ/eeU6isNGZzBgAAABAf1Q1h/fqlUpVsbooZu+y4fP3y+Hx5PB4HMgMAAB0ZTTMAcIhM09Q/P63UX9/bKPNbYz3Tk3T/uUUalpvuSG4AAAAAEtfiDUHd8PJKNYSsq311S/Xrz1OLNCIvw6HMAAAAACSimoawrptdpuVVjTFj5wzvqVtOGaAkH7M5AwAAdFQ+ny8ux/V6vft8jMTiZL3LtjTq6ueLYyYS83s9+n9nDNbk4b1sy8UteH67C/V2D2rtLtS7DU0zAHAIQpG2GdXmroidUW1YThfdP6VIPdOTHcgMAAAAQCJ7fUWN7nhjjSKGtXW/b7eA/vL9w9Q3K8WhzAAAAAAkopLNjbpudlnMzWkeSdPH99NFx+QwmzMAAEAHl5WVZct5MjMzbTkPOga76v1O6RZN+9cyNYatE4llpibpkYuP0dhB2bbk4XY8v92FersHtXYXt9abphkAOEjVDWFdv5cZ1c4Ymq3fnDpIKUnu7MgEAAAAEB+maerxjyv08AebYsaOyEvXjClF6paW5EBmAAAAABLV22Xb9NvXV6slYljiXZK9+v1ZBTphsD03XwIAAABwp6c/Xq/fvbJc0W9NJDYgO01PXDpag3qmO5QZAADoLGiaAYCDsLyyQde/XKbqhlZL3CNp2ol9dcmYXGZUAwAAANCuIlFD98xfp9lfV8eMTSjM0p1nFtC4DwAA0IH4fL64Hdvr9e7zMRKHk7U2TVOPf1Suv763IWYsPzOgB78/VIN7ptmWjxvw3HYX6u0u1Ns9qDUAtJ+oYeru14v19/fXxoyN6p+lR38ySt27JDuQGQAA6GxomgGA7+iN4hrdOW+NQhHr7AVpSV7dNblAJzGjGgAAAIB21hiO6uZXVuqjdcGYsR8dk6Pp4/rJ56VxHwAAoCPJyrLvs+LMzEzbzgVn2VXrltaobnrhK738RUXM2JgB3TXrx0crOz1gSy5uxnPbXai3u1Bv96DW6Ehqa2vjclyv12v5XQ8GgzIMYx97oDOzq97N4ahufXWl3lm5LWbs9KE99LszC+QJN6o23Nju58YuPL/dhXq7B7V2l45Qbzs/K98bmmYA4AAZpqlZ72/SPz6JvUCUnxnQjKlFGtyDGdUAAAAAtK/qhrCmv1iqsi1NlrhH0rUT+uuHx+Q4kxgAAACAhLSlvkW/fOozfbGxLmbswlF9dNeUEUr2M2s+AABAZxONRm05j2EYtp0LzotHvWsawvr1S2Uq3hzbEPOLsfn61ffy5fGY/J45gOe3u1Bv96DW7uLWetM0AwAHoDEc1W2vrdJ7q+tixkb17ap7zilQt9Qk+xMDAMAORkTehs3yNlTIV18uf0OVFK6WgpukaFg65ymnMwSAhLWquknTXyzV5vqwJR7we3TXWQWaUNjdocwAAAAAJKJl5UFd9tQSVQZbLHGPR/rNmUP18xMGyuNhlUsAAAAA8bG36yJ+r0e3nTpQk4f3dCgzAADQmdE0g0Pi8/niclyv17vPx0gsHb3em+padM0LxVpd0xwzduHIHF0/cYCSfB0r546so9cb7Ydauwv17uTCDfJuL5e3vkLe+vIdfyrk2xHzNFbJY+5lWU6PV14ZUpxeFwKAmy3eENT1s1eqMWyd5aVbql9/nlqkEXkZDmUGAACAA1FbWxu3Y3u9XmVmZu58HAwGZRh7ee+OTs3OWi8o3arbXlupllbr8bsk+3T3OYU6cXCW6urq4nJutOG57S7U212ot3t0hFpnZWXZej4AaC8fra3TzXNWqjFs/XczI+DTfecWaVS/rg5lBgAAOjuaZnBI7HqjvfsHCkh8HaneH63eqiv+9bVqm1otcb/Xo9+dM0w/HtvfocwSR0eqN+KLWrsL9e5ADENq2Ny2Kkxww46vm6S6jbtiLcGDP75pKNPTKHXr1345AwD02vJq3TlvrSKGaYn37RbQX75/mPpmpTiUGQAAAA5UNBrd/0btxDAMW88H58Sj1qZp6olPKjTr/U0xY/mZAc2YWqTBPdL4HXMAz213od7uQr3dg1oDwIF54cvNunf+OkWtl0WUnxnQg+cN0YDsVGcSAwAACYGmGQDYi2c+Xq/fvbI85ia1bmlJmnXRMTpucLZDmQEAsJvWZilYvqshZmczzMYdf8olo3X/xzkUwU00zQBAOzFNU49/XKGHP4i9We2IvHTNmFKkbmlJDmQGAAAAIBG1tBq66801eqN4a8zYyD4ZuvecQmXxHgQAAABAnBimqZmLNurpJZUxY0fkpetPU4p4TwIAAA4ZTTMA8C2tUUN3zFmhpz9eHzNW1Dtdf//JaPXLTnMgMwCA65im1LR1R/PLt1aH+eZxU419+SSlSZl9pMy+bV+79W37vvtg+3IAgAQWiRq6Z/46zf66OmZsQmGW7jyzQClJXgcyAwAAAJCIahrDun52mZZVNsaMnT28p249ZYCSfLwHAQAAABAfLa1R3f76ai1cWRszdsqQ7vrdGYMV8POeBAAAHDqaZnBIamtjX7C2B6/Xq8zMzJ2Pg8GgDMOIy7ngvI5U77rmVt04u1SLN2yPGTupIEu/n1yodG9ItbUhB7JLDB2p3ogvau0u1PsgRcPyNmyWt36TvPUV8m4vb/taX77jT4U8kRbb0jHSesjIyJeRkbfra9f8Hd/ny0zpJnk8e653nF4X7k1WVpat5wOAeGsMR3XzKyv10bpgzNiPjsnR9HH95PN6HMgMAAAAQCIq2dyo62aXaXN92BL3SJo+rp8uGpUjj4f3IAAAAInE5/PF5bher3efj5FY2qveNQ1hXfNiiZZXNsSM/eK4Prr8xL7y8p7EcTy/3YV6uwe1dhfq3YamGRySaDRqy3kMw7DtXHCeU/VeXdOka18qU3kwtiHmp8fm6fIT+sjr8fC72M54frsHtXYX6t3GE6rf2fziqy+Xt2HH1/oKeesr5W3cLI9MW3IxvckyMnIUzciXkd7WFBPNyJORkdf2NT1X8qfs+yB7aYSi3gBwaKobwpr+YqnKtjRZ4h5J153cXz84OseZxAAAAAAkpLfLtum3r69WS8T6WU+XZK9+f1aBThjMZCUAAACJyK5J6XaffA+J72DqXVpVr5/963OV1zVb4n6vR384b4QuHNW3vdJDO+P57S7U2z2otbu4td40zQCApPdW1+q211apMWy9QBTwe3T7aYN0+tAeDmUGAOiwjKi8TVt2a4qplLe+XL5vVoppqJA3HDsrTtzSCWRaGmGM9DxFu7Y1yEQz8mSm9ZA87pwpAAA6slXVTZr+YmnM7M4Bv0d3nVWgCYXdHcoMAAAAQKIxTVNPfFKhWe9vihnLzwxoxtQiDe6R5kBmAAAAANzivZXVuuKZpaoPRSzxjBS/HvnxMTq+gHu0AABA+6NpBoCrmaapf35aqb++tzFmnv+e6Um6/9wiDctNdyQ3AIDDWpt2NMC0NcH4Gip2NMfsiDVWyWNE9n+cdmB6fDLSe+9ogMlva4r5ZoWYjHwZ6bkyk/n/CvD5fHE7NsvVuotd9f50fVDXvViihrB1ta5uqX49+P2hOiI/Iy7nxS48t92FersL9XYX6g0A+9fSauiuN9fojeKtMWMj+2To3nMKlZWW5EBmAAAAANzi2U836LbZyxQ1rHdp9e2eqn9cOloFvbguAgAA4oOmGQCuFYq0XSCauyL2AtGwnC66f0qReqYnO5AZACDuTFOe5q27VoWpr5Bvx+owO5tiWmptS8dI6rJbI0zb6jA7v8/Ik9Gll+TlpTuwP1lZWbady63L1bpVPOr94tJNuumFFWqNWi8MDchO05M/HaMBPbq0+zmxfzy33YV6uwv1dhfqDQBWNY1hXT+7TMsqG2PGzh7eU7eeMkBJPhoOAQAAEl1tbXyuf3q9Xst78WAwKMMw4nIuOO9g6m2YpmYuWq8nP6mIGRuRl64HzjtM3ZMicfsdxcHj+e0u1Ns9qLW7dIR623k/z95w5x0AV6puaLtAtLwq9gLRGUOz9ZtTBykliQtEANBpRUPy1le2rQ6zvWK3Zpjytq8NFfJEw/alk9YrdnWY3RpkzEBXyeOxLR8AgHNM09RDb6/Sn94qixk7ul83/f2S0ereheZ9AAAAAO2jZHOjrptdps311s/CPJKmj+uni0blyMPnUgAAAK4QjUb3v1E7MAzDtnPBefurd0urod++vkpvr4xtiJlU1F2/O2OwUpK8/M50Ejy/3YV6uwe1dhe31pumGQCus7yyQde/XKbqhlZL3CNp2ol9dcmYXC4QAUBHZpryhIK7Vof5phmmoXJXrKnavnR8gR2NMHky0r9ZHSZXRkZ+Wzw9R/IFbMsHANBxtUYN3fbSMv3fko0xY2cMz9Gf/+sopST5HMgMAAAAQCJ6u2ybfvv6arVErDNHpiV59fvJBTpxsPMzPAIAAABIXFsbW3Xd7NI9rnr502PzdPkJfeTlHi0AAGAD25pmmpqaJElpaWl7HJ85c6aee+451dTUaODAgbr88st19tln25UeAJd4o7hGd85bo1DEtMTTkry6a3KBTuICEQA4z4jI27DZsjrMzmaYHY0x3tbYD9Xilk5KdxkZuTuaYXatDvPNqjFmajarxAAdRDyXbO8Iy9XCPvGod2MoqhtfLtWHa+tixi4alatrTx6g5obtaj6ks+C74rntLtTbXai3uzhd76wsPlME0LGYpqknPqnQrPc3xYzldQ1oxtQiFfTc8zVbAAAAAGgPa2qadM2LZarYHrLEfV6PbjllgKaM6OVQZgAAwI1saZqZM2eOpkyZovT0dG3atEkZGRmW8Z/97Gf65z//KantQ9yysjLNmzdPd911l2655RY7UgSQ4AzT1Kz3N+kfn1TEjOVntl0gGtyDC0QAYAdPuCFmdRhvffmuBpnGzfKY9tzcZHr9MtJzd6wQs9vqMN80yKTnSkn8/wB0FnYuH+vW5Wrd6lDrXd0Q1vQXS1W2pckS90i67uT++sHROTINQ/xGOY/ntrtQb3eh3u5CvQG4WUurobveXKM3irfGjI3sk6F7zylUVlqSA5kBAAAAcItP1gd10ysr1RCyfj6THvDpj+cU6tj+mXvZEwAAID5saZqZN2+eTNPUOeecE9Mw8/777+vJJ5+Ux+NRWlqaioqKVFJSoubmZv32t7/V2WefreHDh9uRJoAE1RiO6rbXVum91XUxY6P6dtU95xSoWyoXiACgXRiG1LhFvsrl8gU3ta0OU18hb0Plru9DQfvSSc6QsaMJJpqRt6M5Jm9nzEjrKXl9tuUDAHCfVdVNmv5iqTbXhy3xgN+ju84q0ITC7g5lBgAAACDR1DSGdf3sMi2rjF2l+ezhPXXrKQOU5PM6kBkAAAAAt5j99Rbd/dY6RQ3TEs/rGtAD5xVpEJMaAwAAB9jSNPPxxx/L4/FowoQJMWOPPvqoJCkvL08fffSR+vTpo40bN+qEE07Qpk2b9Mgjj2jmzJl2pAkgAW2qa9G1L5VpzdbmmLELjuql6yb0l58LRABw4CIt8tZXytdgXR3G11ApNVZJ28ulaFhdbUjFlEdGl947GmDyFN25OsyulWLMQMb+DwQAQJws3hDU9bNXqjFsnUmtW6pff55apBF5/D8FAAAAoH2UbG7UdbPLYhr2PZKmj+uni0blyOPxOJMcAAAAgIRnmKb+9t5GPflpZczYsJwumjF1iLK7MKkxAABwhi1NM1u2bJEkDRkyJGbsjTfekMfj0VVXXaU+ffpIkvr27aurrrpKN954oxYtWmRHigAS0JIN23XTnJUKNkcscZ/XoxtO7q/zj+rtUGYA0EGZpjwttbuaYRoq5Nve9nVnrHmrfen4U9oaYdK/aYrZbcWYjHwZXXpLPj5UAwB0TK8tr9ad89Yq8q2Z1PplpejB84aob1aKQ5kBAAAASDRvl23Tb19frZaIYYmnJXn1+8kFOnFwlkOZAQAAAHCDllZDv5u7WvPLtsWMnVyYpTvOHKyUJJ8DmQEAALSxpWmmurpakpSRYZ1Bdfny5aqpqZHH49G5555rGRs1apQkaf369XakiIPk88XnxazX693nYySWeNT7P59X6d75sTeoZab4df/UIRrVL/OQz4GDw/PbPah1BxRtlbehSt768h1/KuTdvtv39RXyRGJX5ooXI7WHjK75O1aKyd+5YozRtU/bKjEpWdJeZr/0SOIjNefw/AaAvTNNU49/XKGHP9gUM3ZEXrpmTClStzSaPgEAAAAcOtM09cQnFZr1fuz7j7yuAc2YWqSCnmkOZAYAAADALbY1hnXNCyX6urIhZuwno3N15Ul95WXVSwAA4DBbmma+aazYts3aSfz+++9Lknr27BmzCk1WVtuMRy0tLTZkiIP1TZ3iLTOTBgc3OZR6t0YN3TFnhZ7+OLbhrqh3uv7+k9Hql80Foo6E57d7UGsbtASl4CapbqMU/ObPN483SfWVksz9HqZd+JKlrvlSZh+pW7+2r5l9d/uaL29Sqmi1SAw8vwGgTSRq6O756/Ty19UxY20zqRUoJYn//QAAANwiXhOPSUxo4SZ7q3UoYuiOuav1+oqamH1G9umq+6cOUXca9jsdntvuQr3dhXq7B7UG4CarttTrkqe/VnkwZIn7PNLNpwzU1CN6OZQZAACAlS1NM/n5+Vq1apW++OILjR8/fmf8tddek8fj0YknnhizTzAYlCT16NHDjhQBJIDaxrCu+NdSfbRma8zYpKG99Of/OkoZKVwgAtBJGVGpvqqt+WVPDTHBjVJou335pHSTuvX9ViPMbg0yXXpJXAQAALhIQyiiW+as0kfrgjFjPzomR9eM78dMagAAAC5j18RjEhNauElmZqa21Lfov//9mb7YWBczfsExffT7qSOU7OezuUTAc9tdqLe7UG/3oNboSOLV2E+zmLt8U98PV9XoV898pvqWiGU8Pdmn+6YM0diB3RzIDu2N57e7UG/3oNbuQr3b2NI0c+KJJ2rlypV66KGH9OMf/1g9evTQ4sWL9cYbb0iSTjvttJh9iouLJUk5OTl2pAigkyvbXK9f/HOJNmxrihm7YvxgXX/qEHm93KAGoAMLN0rBcim44VvNMJvaYtsrJCOy/+O0B49P6pr3rdVhdl8xpo8UyLAnFwAAOoHqhrCmv1Cqsmrr+xGPpOtO7q8fHM1nGwAAAADax7LyoH751BJVBFsscY9HuvWMofrFiQPloWEfAAAAe2BXYz/NYonvuSUbdeuLXytimJZ4frdUPXHpaA3J4X6CRMXz212ot3tQa3dxa71taZq54oor9OSTT2rt2rUaNGiQioqKtGLFCkUiEXXv3l3/9V//FbPP22+/LY/Ho8MPP9yOFHGQamtr43Jcr9dreVIGg0EZhhGXc8F5h1rvd1dt061zVqoxHLXEA36v/t8Zg3XG4T0VDNa1V7o4RDy/3YNa78Y05Wmqkbe+Ysef8t3+VMi7vVzelvj8n7rHdJLSZGTk7/iTJ6Nr2/fRHY/N9N6Sdx8vE5siUpM1X+rtLh2h3nbO1gsA+7KquknTXyzV5vqwJR7we3TXWQWaUNjdocwAAAAAJJo3llXq1//3pZpbrddDuiT79JcfjtTEob0dygwAAACAWzz27hr9/vXimPiRfTL12CWj1CsjxYGsAAAA9s2Wppmjjz5a9913n2644QY1NDRo6dKlkqSkpCQ99thjysiwdhYHg0G99tprkqTx48fbkSIOUjQa3f9G7cAwDNvOBecdaL1N09Q/P63UX9/bKPNbYz3Tk3T/uUUalpvO704Hx/PbPRK61tGQvA1V8n3TBFNf2fZ9Q4V829u+eqLh/R+nvdJJ69XWDJORp2hGnoz0tsaYaHqejIx8mYGubVNP7o0p6RBrldD1RgzqDcCtFm8I6vrZsQ383VL9+vPUIo3IYyY1AAAAN4vXxGNSx5jQAvbwer3q2rWr/rpwle5/syxmPC8zoAe/f5gKeibH9XcO9uC57S7U212ot3t0hFoz8RiAeFlWHtQ9b5TExE8b1lsP/NdIpSb7HMgKAABg/2xpmpGkX//615o0aZKef/55VVVVKTc3Vz/84Q81ZMiQmG3feecdjR49WpI0efJku1IE0ImEIobuenON5q7YGjM2LKeL7p9SpJ7pyQ5kBiDhmKY8oe3y1pfL17BjVZiGCvl2rhpTIW9TtTwx7XtxSseXLCM9T9Gu+W1fM/JlZOTuaJDJl5GeI/kCtuQCAICbvba8WnfOW6uIYX0N0C8rRQ+eN0R9s5hJDQAAwO3snGCCCS0SV2vU0K//7wvN/qIiZuyo/Azdd26hstKSqH+C4rntLtTbXai3e1BrdCTxarLuCM1iiL+IYeqG/3yl6Leui1xybL6uHtdPLY3b1dLoUHKIG57f7kK93YNau0tHqHdHaOy3rWlGkkaMGKERI0bsd7tzzz1X5557rg0ZAeiMqhvCun52mZZXxb7TOmNotn5z6iClJHkdyAxAp2RE5G3cIm99xW4rxexokPmmKabVvk92jJSsXSvEZOxaHeabmJmave9VYgAAQFyZpqnHP67Qwx9sihk7Ii9dM6YUqVtakgOZAQAAAEhEDyxcr9lfVMbEzx7eU7dMGqBkP9dDAAAAcGDsauCiWSwx/WtJpYq/da/WtAmD9YsxvRWNRkXF3YHnt7tQb/eg1u7i1nrb2jQDAIdqeWWDrn+5TNUNrZa4R9K0E/vqkjG58nAzOYDdhRvbmmG+tTrMNzFvw2Z5THteBJpev4wuOW3NMJbVYfJkdM1XND1XSkqzJRcAAPDdRaKG7p6/Ti9/XR0zdnJhlu44s4AGfgAAAADtpriqUf+71Now45E0fVw/XTQqh+shAAAAAGxRXteih9+3TiZW0CtdV08sVFP9doeyAgAAOHA0zQDoNN4ortGd89YoFLEu85mW5NVdkwt00mDnl+8CYDPTkKepZkczTPnOr96Gyl3fh4K2pWMkp7etCpOep2jXHV8z8mR88yetl+T12ZYPAABoPw2hiG6Zs0ofrYt9bXHRMTmaPr6fvNywBgAAAKCdRA1Td7+1VsZul0QCfq/uPbdI3xuY6VxiAAAAAFzFNE3dM3+dWiKGJX7PeSMU8PvU5FBeAAAA30W7Ns28++677Xm4nU466aS4HBdA52CYpma9v0n/+KQiZiw/M6AZU4s0uAcrMwAJKRJqWxWmYbfVYb5pkGmokLe+Sh4jbEsqpjwyuvTe2QDT1gyTr2h621cjI09mIMOWXAAAgL221Id11X+KVVZtvfTjkXTdyf31g6NznEkMAAAAQMJ68cstWrG50RK7emKhTirormjUnpWzAQAAAOCN4q0xE4r9eGw/jRrQ3aGMAAAAvrt2bZoZP358uy8D7vF4FIlE2vWYADqPxnBUt722Su+trosZG9W3q+45p0DdUpPsTwzAoTNNeVpqdzXDNFTIV1/ZtjrMN7Hmrfal409RdMcqMbuaYvLaYhl5MrrkSD7+vQEAwG1Kq+p1ydNfqare2qgb8Ht011kFmlDIRSEAAAAA7aumMay/vr/REhvcs4suO3GQGuvtW1kbAAAAgLvVNbXqTwvXW2I905N14+mHOZQRAADAwWnXphmpbTk+AGgPm+padO1LZVqztTlm7IKjeum6Cf3l93kdyAzAAQs1SJVfSsGNSqkqkye4qW2lmIYK+eor5InEPr/jxUjN3rk6jJGep2jXvLavO2JmSpbUzs2/AACgc/tgVY3+++nPVB+yTubRLdWvP08t0og8VpkDAAAA0P4efGeDGkLW1WTunDJcyX6vGveyDwAAAAC0tz+/s0F1zdZrJLecMlBdU5hwFAAAdC7t2jSzcOHCvY6Fw2HddtttWrx4sXr27KkLL7xQY8aMUe/evSVJmzdv1uLFi/Xcc89py5YtGj16tH7/+98rKYkXWIAbLdmwXTfNWangt954+bwe3XByf51/VG+HMgOwX5EWJa97RymrXpPWvS1FWiRJqXE8pelNkpGRq+iOVWKMjPydzTBtsVzJnxLHDAAAQKJ54bNNuumFrxQxrJOD9MtK0YPnDVHfLF5bAAAAAGh/izcENbfYugL31JH5On5wD4cyAgAAAOBGH68L6rUVNZbYhMIsTSjKdigjAACAg9euTTPjxo3bY9w0TZ155plasmSJfv7zn+uBBx5Qly5dYra7+OKLdc899+iaa67R3//+d82YMUOvv/56e6YIoBP4z+dV+uP8tYp+6+a0zBS//nhOoUb16+pQZgD2KtqqpI3vK7DyVSWvmS9va0O7Ht4IZMrIyFM0I19Geu6u73d8NdN6SB5WngIAAO3j8Y826aF3N8TEj8hL14wpReqWxgQfAAAAANpfOGLonvnrLLGMgE+3njnUmYQAAAAAuFJLa1R3v7XWEksP+HTjxAHOJAQAAHCI2rVpZm8ef/xxzZs3T6eccooee+yxfW6blpamRx99VOvXr9e8efP06KOP6pe//KUdaQJwWGvU0B1zVujpj9fHjA3KTtWMqUXq043ZnIEOw4gqqeJTJa98VYFVb8gbqjuow5ger4wuvS2rw7Q1w+TJ2LFyjJmc3r65AwAA7MXbZdv22DBzcmGW7jizQClJNOoCAAAAiI+nl1Rq/bYWS+zKcf3VMyPgUEYAAAAA3OjRD8tVHgxZYled1Fc905MdyggAAODQ2NI08+STT8rj8eiKK6444H2mTZumt956S//85z9pmgFcoLYxrCv+tVQfrdkaM3bi4G6688zBSg/Y8k8WgH0xTfk3f9G2oszK1+Vr2rL/fbx+KbtArWm9FdnRBGNpkOnSq20bAAAAhzWGo7r/7XUx8R+PztXVJ/WV1+OxPykAAAAArrCprkVPfFxuiR2e00XfP7K3QxkBAAAAcKOSzY3615JKS+yo/AxNPaKXQxkBAAAcOlvuUC0pKZEk9evX74D36du3r2VfAIlrTU2Tfv3SF9qwrSlm7KfH5unyE/pwcxrgJNOUb2uJAmWvKrDyVfnqN+1/F3kU6TNWSSN/IA09R0rrrobaWkWjURsSBgAAODiPfLBJWxpaLbFbzzxMF4zozusYAAAAAHFjmqbuW7BeoYi5M+b1SLeeMlA+L9dHAAAAANgjYpj6/ZtrFd311kRJPo9+c+pA7t0CAACdmi1NMy0tbcuIb9y4USNHjjygfTZu3ChJCoVC+9kSQGfWGI5q2nMrVFUftsQDfo9uP22QTh/aw6HMAHhr1yqw8lUFVs6Rv3b1Ae3T2nukQkWTFSo4U96uucrKyopzlgAAAO2jbEuj/m9plSV2YmEPXXbiINXV1TmTFAAAAABXWLiyVh+srbPELjiqtw7r3cWZhAAAAJCQfD5fXI7r9Xr3+Ridx78/q1Dx5kZL7Odj+6igV/rOx9TbXai3u1Bv96DW7kK929jSNFNQUKCvv/5aDz/8sM4555wD2ufhhx+WJA0ePDieqQFw2GMfboppmOmZnqz7zy3UsNz0vewFIF689RU7GmVelb96+QHtE+kxVKHCsxUqPFNG175xzhAAAKD9Gaapu99aZ5k5Ldnv1R3nDpeHmdMAAAAAxFFjOKr7315niWV3SdLlJ/RxJiEAAAAkLLsmvczMzLTlPGhfG7c1adb7Gy2xgl7p+vUZwxTw773hinq7C/V2F+rtHtTaXdxab1uaZi688EJ99dVXmjdvnq644grNmDFDKSkpe9w2FArpuuuu0xtvvCGPx6Mf/OAHdqSIg8QMBDgUq6ob9exn1pmch+V11QPnDVGPLkkOZYV44/nd8Xgaq5W86nUll74if+VnB7RPtNsghYecrXDR2TK6F7QdR9Lu/ytQa3eh3u5CvQEkmtlfVevrygZL7IrxgzWwB7M6AwAAAIivRz/YpC0NrZbYtRP6Kz1gy2VcAAAAAJBpmvrN7GVqbo1a4vecN2KfDTMAAACdhS2ftl577bV65plnVFJSokceeUSzZ8/WhRdeqNGjR6tXr17yeDzavHmzFi9erP/85z+qqmq7iX7IkCG69tpr7UgRB4kZCHCwTNPUfc+VWGdy9nn10I+O5sY0l+H57ZDmWql4jvT189K69yTT2P8+mX2l4edJw78vX84RSvV4lPodTkmt3YV6uwv1BtCZbWts1UPvbbDE+mal6L/HsfItAAAAgPhaWd2k/11qnVxsTP+uOnVId4cyAgAAAOBGL39RoXfLqi2xH4/tp1EDeG8CAAASgy1NMykpKVq4cKHOOussLV26VFVVVZo5c+YetzXNtjvoR44cqVdffVWBQMCOFAHY7OUvKvTp2m2W2K/GDaJhBoinUINUOlda9ry0aoFktO5/ny69pGFTpeHfl/qMllhNAgAAJJgHF23Q9hbrzGm3njJIKUnMnAYAAAAgfgzT1N1vrf3W5GIe3TxpoDwej3OJAQAAIGHV1tbG5bher9cyyV4wGJRhHMDEnegQapta9btXllliPdOT9cuxOXv8naHe7kK93YV6uwe1dpeOUG+7FunYF9vW9e7du7c++eQTPfzww5o1a5ZWrFixx+2GDh2qyy+/XJdffrl8Pm5QARLR9pZW/f71Ykssv1uqrhhf4FBGQAJrbZFWvdW2okzZPCnSvP99UrpJh5/T1ijT/wTJZ9vLBQAAAFt9tnG7XltRY4mdeli2xg7s5kxCAAAAAFzjla+r9VVFgyV2yZg89ctKcSgjAAAAJLpoNLr/jdqBYRi2nQuH7k8L1qquOWKJ3TSxv9L8ngOqI/V2F+rtLtTbPai1u7i13rbeBevz+TRt2jRNmzZNVVVV+vrrr7VtW9tKE1lZWRoxYoRyc3PtTAmHiBkIcDDuX7BW1fUhS+x35wxTanJboxz1Tmw8v20QbZV/4wdKLntFyavflCfcsN9dzKQ0hQedqtais9Xa/0TJl9w2sL3+oNOg1u5Cvd2lI9S7I8xAAKBza40auuettZZYl2Sfrh3fz6GMAAAAALhFXVOrZr670RLr2y2gS4/NcygjAAAAAG708bpgzORiEwqzNL6wu0MZAQAAxIdjU8fn5OQoJyfHqdOjnTADAb6rldVN+t/PKi2xEwdnadLQXjsfU293od7txIjKX7lEgbI5Cqx+Q96W/Tc1mr5khftPUKhossL9J0hJqbsG41ATau0u1NtdqDeAzuiZJZVau63FErvihD7qkZ7sUEYAAAAA3OLBdzcq2PKtmZwnDVDA73UoIwAAAABu09Ia1d3fmlwsPeDTjRMHOJMQAABAHDnWNAPAfUzT1B/nr1PU3BVL9nl0w8SB8ng8ziUGdFamKf+WrxQom6PkVa/L17h5/7t4fGrtd4JChZMVHniKzECGDYkCAAB0LOV1Lfr7RxWW2NDeXXT+Ub0dyggAAACAW3yxqV5zllVbYqcM6a6xA7o5kxAAAAAAV3rkw3KVB0OW2FUn9VVPJhcDAAAJiKYZALZ5fUWNviivt8QuGZOnvlkpDmUEdEKmKd/WUgVWvqrAylfl275x/7vIo9b8MQoXTlZo8OkyU1lGFwAAuJdpmrrv7fUKRYydMY+kW04ZIJ+XZn4AAAAA8ROJGrp7vnUm5y7JXl07ob9DGQEAAABwo5LNjfr3kkpLbGSfDE09opdDGQEAAMSXrU0zkUhEr732mt577z2tWbNG9fX1ikaj+9zH4/FowYIFNmUIIF7qWyJ6cNEGSyw/M6BLxuQ5lBHQuXjr1u5olHlN/m0rD2if1t5Hta0oU3CmjHRmTQcAAJCkd1bV6v01dZbY+Uf11uE56c4kBAAAAMA1/v1ZlVbXNFti//09ZnIGAAAAYJ+IYequN9coau6KJfk8+s0pA+X1MLkYAABITLY1zbz//vu6+OKLtWHDrpvmTdPc6/Yej0emacrDCzEgITz8wSZta4pYYtef3F8pSV6HMgI6Pm99hQIrX1PyyleVVL3sgPaJZB+mUOFkhQrPkpHZL84ZAgAAdC5N4ajuf3u9JZbdJUnTTuzjUEYAAAAA3KJqe0iPflhuiRX1StMFI5nwCAAAAIB9/vezKpVsbrLEfnZsngZkpzqUEQAAQPzZ0jRTUlKi008/Xc3NzTJNU8nJySosLFT37t3l9XLDPJDoSrc06j9fbLbEThzcTScOznIoI6Dj8jTVKLBqrgIrX1VS5ZID2iea2V+horMVKpysaPfCOGcIAADQeT364SZtrg9bYr8e30/pAVsX4gUAAADgQve/vV4tEWPnY4+kW08ZKL+XCQQBAAAA2KO8rkUPf7DJEhuUnapLj81zKCMAAAB72HJXyB/+8Ac1NTXJ5/Ppf/7nf3T11VcrPT3djlMDcJhhmvrj/HUydltYKuD36PoJ/Z1LCuhgPC1BJa95s61RZtOH8pjGfveJpucqVHiWQoVnK9pzmMTKbAAAAPu0srpJz35WZYmN6d9Vpx2W7VBGAAAAANzivdW1emdVrSU29cheGp7L9VIAAAAA9jBNU3fPXxfTzP+bUwcqycfE5wAAILHZ0jTz9ttvy+PxaPr06br11lvtOCWADuK15TX6qqLBEvvpsfnK75biUEZABxFuVPK6BQqsfE3J6xfJY7TudxcjNVuhgjMVKpqsSM7RkocPLQAAAA6EYZq6+621iu7WzJ/k8+imiQPkofkYAAAAceLz+eJ2bK/Xu8/H6DiaW6O6d8F6Sywrza/p4wcc0O8ItXYX6u0u1NtdqLd7UGsAHdXc4q36eF3QEjv/qF46Mj/DoYwAAADsY0vTTE1NjSRp6tSpdpwOQAexvSWivyzaYIn16RbQxaNzHcoIcFgkpOQNixRY+aqS174tT6R5v7sYga4KDzpNoaKz1Zp/rOS15b9uAACAhPLK19UxzfyXjslT/+6pDmUEAAAAN8jKyrLtXJmZmbadC9/No2+UqHJ7yBK77axh6p/b86COR63dhXq7C/V2F+rtHtQaQEdQ19SqGQutzfw905M07cS+DmUEAABgL1vuvO3Zs6cqKiqUmsrNKICbzHp/k2qbI5bYDScPUMDPTCpwkWirkjZ91NYos2aevOGG/e5i+lMVGjhJ4aKzFe53guQL2JAoAABAYqptatVf3o1t5r/02DyHMgIAAADgFis31+uxd9dYYscO7K7zjs53KCMAAAAAbvTndzao7lv3cN00cYDSA0zcCgAA3MGWVz0nnHCCnnvuOS1btkxHH320HacE4LCSzY164cvNltj4gix9b1A3ZxIC7GQa8lcsUWDlqwqsmitvy7b97+JNVnjAOIUKz1Z4wAQpKc2GRAEAiI9t27bpo48+0ueff67y8nLV1dUpPT1dQ4YM0bnnnqvCwkKnU4SL/GXRBm1viVpiN0+imR8AAABAfJmmqdtmL1PEMHfGknwe/X7qcHk8HgczAwAAAOAmH68L6rUVNZbYhMIsjS/s7lBGAAAA9rOlaebaa6/VCy+8oAcffFA/+tGP5PfToQwkMsM0dc/8tdrtOpACfq+undDfuaSAeDNN+bd83baizMrX5Gus2v8uHp9a+x7f1igz6FSZgQwbEgUAIP7mzp2rl19+Wb1799aRRx6prl27qrKyUosXL9bixYs1ffp0HX/88U6nCRdYunG75iy3Xgg6ZUh3jR3QzZmEAAAA4Cq1tbVxO7bX61VmZubOx8FgUIZhxO18+O7mLNuiT9ZaJ1S6eHSespMi3+l3g1q7C/V2F+rtLtTbPTpCrbOysmw9H4COq6U1qrvfWmuJpQd8unHiAGcSAgAAcIgt3SujR4/WAw88oKuvvlrnnXeennjiCfXo0cOOUwNwwCvLqrWsstES+9nYPOVlBhzKCIgf39bSthVlVr4qX3DDfrc35VEkb7RCRWcrNPg0manZNmQJAIC9CgoK9Lvf/U6HH364JV5cXKw77rhDjz32mEaPHq2kpCSHMoQbtEYN3TN/nSXWJZlmfgAAANgnGo3uf6N2YhiGrefDvgWbI/rz2+sssbyuAf3s2NxDrhO1dhfq7S7U212ot3tQawBOeuTDcpUHQ5bYVSf1Vc/0ZIcyAgAAcIYtTTN33HGHJGnMmDF69dVX1b9/f51yyik67LDDlJaWtt/9f/vb38Y7RQDtJNgc0cx3N1pi/bJSdPGoXIcyAtqft26dAqteU6BsjvzbVh7QPq29j1SocLLCBWfISOf5AABIbMcee+we40OHDtXw4cP15ZdfasOGDRo8eLDNmcFN/rWkSmu2Nltil5/AhSAAAAAA8ffX9zeqtjliid0wsb9SknwOZQQAAADAbUo2N+rfSyotsZF9MjT1iF4OZQQAAOAcW5pmfve738nj8UiSPB6PmpubNWfOHM2ZM+eA9qdpBug8/vb+RgW/fSHo5P5K9nsdyghoH96GSgVWvqbkla8qacvXB7RPJHuIQoWTFSo8S0YmM5oDAA5MMBjUqlWrtGrVKq1evVqrV69WfX29JGncuHGaNm3aAR+rurpac+fO1dKlS7V161b5/X7l5OTouOOO02mnnaZAwP6VAH0+n+UrEA8VwZAe+6jcEjusd5rOP6q3QxkBAAAAcItllQ166cstltj4giydODjLoYwAAACANvG6NuP1evf5GPaLGKZ+/+ZaRc1dsSSfR7efPlhJ/kO7ZZR6uwv1dhfq7R7U2l2odxtbmmYkyTTNfT4G0PmtqGrQi9+6EHRyYZaOG9jNmYSAQ+Rp3qrAqrkKrHxVSRWLD2ifaGb/HY0ykxXNLopzhgCARHTZZZe1y3GWLFmimTNnqrl510oboVBoZyPOggULdMsttygnJ6ddzncgampq9PXXXysrK0v9+vWz7bxwn/veXqdQxNj52CPplkkD5fd6nEsKAAAAQMKLGKb+8NZa7X4VNMXv1fUnM6kSAAAAnJeVZU8jd2Zmpi3nwd499u4aFW9utMSunFCoowvy2/1c1NtdqLe7UG/3oNbu4tZ629I0YxjG/jcC0KkZpql75q+LuRB07QQuBKFz8YS2K3n1m22NMps+lMeM7nefaHqOQgVnKVR0tqI9h0sebsYEALSPHj16KD8/X19++eV32m/t2rV64IEHFA6HlZKSoilTpmj48OEKh8P64IMPtGDBAlVWVuruu+/WPffco9TU1Dj9BLtEIhHNnDlTra2tuuiii1w7cwXi751V2/Te6jpL7PyjemlYbrozCQEAAABwjf98vlllW5ossV8en6+crvav9AoAAADAnTZua9KMt8osscJe6bp8/GCHMgIAAHCebSvNAEhss7+q1ooq6wwFvziOC0HoJFqblLx2gQIrX1Xy+nflMcL73cVI7a5QwZkKFZ6tSO7RkocbfwEA7eP888/X4MGDNXjwYHXr1k1btmzRlVde+Z2O8eSTTyocDsvn8+m2225TUdGu1c+GDx+u3NxcPfPMM6qsrNScOXN04YUXxhzjqaeeUmtr6wGf88wzz1Rubu4exwzD0N/+9jcVFxdr4sSJOumkk77TzwMcqKZwVPctWG+JZacl6YoT+jqUEQAAAAC3qG4I6+EPNlpig3uk6kfH2LfCKwAAAAB3M01Tt770tZpbd00Q6/FI93x/hJL93NcCAADci6YZAIesrqlVf33PeiGof/cUXTSKC0HowKIhJa9/t61RZu0CeSLN+93FSM5QePBpChWerdY+YyUv/40CANrfnhpYvotVq1apuLhYkjRhwgRLw8w3Jk+erIULF6q8vFxz587VeeedJ7/f+v/aW2+9pVAodMDnHTt27B6bZgzD0KxZs/T+++/rxBNP1GWXXfYdfyLgwD32Ubk211sboH89oZ8yUnjdBgAAACC+Zixcr8awYYndMmmg/D5uTAMAAEDHUFtbG5fjer1eZWZm7nwcDAZlGMY+9kC8vLa8Wu+trLHELjgqR4O6etqt/tTbXai3u1Bv96DW7tIR6p2VlWXr+faEu0YAHLK/vr9RwZaIJXbjxAFK4kIQOhojoqRNH7U1yqyeJ2+4fr+7mP5UhQdOVKjobIX7nSj5WD0JANCxffrppzu/nzBhwh638Xq9GjdunP7973+rsbFRy5cv15FHHmnZ5umnnz7kXL5ZYebdd9/V9773PU2bNk1eL68RER+rqpv07yWVltiYfl112mHZDmUEAAAAwC0+Xlent0q3WWJnD++po/pkOJQRAAAAECsaje5/o3ZgGIZt58IudU2tun/BWkusV3qSrjghP671oN7uQr3dhXq7B7V2F7fW2/ammW3btukf//iH5s+fr2XLlmnbtrYPkLt3767hw4dr0qRJ+ulPf6ru3bvbnRoOgs/ni8txv30jHTfWdVxfV9Rr9lfVltiph2Xr+EEH/hym3u5ie71NQ/6KJUoqm6Pkla/L27x1/7v4ktXaf5zCQ85R68CJUlKaJCk+/+IlLp7b7kK93YV6d2ylpaWSpEAgoEGDBu11u8MPP9yyz7ebZg7V7g0zxx9/vK666ip+VxA3hmnq7vlrFTV3xZJ8Ht04aYA8Ho9ziQEAAABIeKGIoT/OX2eJZab4Nf2kvs4kBAAAAMCVZryzQXXN35r0eNIApQeYVx0AAMDWV0SPPPKIrr/+ejU1NUmSTHPX3Szl5eWqqKjQm2++qd/97nf605/+pF/+8pd2poeDYNdySbsvC4WOI2qYuu+Z5drtvjSlJfv0P1OPVFZm6kEfl3q7S1zqbZpSxefSshek5S9J28v3v4/HJw0aJw0/X57DzlJyajclt39mrsZz212ot7tQ745l06ZNkqScnJx9Nrnn5eXF7NNeDMPQrFmz9O6772rs2LE0zCDuXllWrS/LGyyxS0bnaUD3g39fAgAAAAAH4slPKrSxLmSJXXVSX3VLS3IoIwAAAABu8/G6Or2+osYSO7kwS+MLmLgcAABAsrFp5p577tFvfvObnY0ymZmZGjlypHJyciRJVVVV+vzzzxUMBtXY2KjLL79cdXV1uvHGG+1KEcB39OynG/R1edASmz6xULmH0DADHJItxW2NMstekLatObB9+h0vjfi+NPRcKb1nfPMDACDOwuGw6uvrJUnZ2dn73DY9PV2BQEChUEhbt+5/Jbbv4vnnn9eiRYuUkpKivLw8vfDCCzHbjBkzRgMGDDig4x1ofvFaCVNihaWOrLapVTMXbbTE+nQL6OfH9zno3wnq7R7U2l2ot7tQb3eh3gCcsn5bs578tMISOyIvXeeM4LNmAAAAAPZoDkd191vrLLH0gE83ThzgSD4AAAAdkS1NM8uWLdPtt98u0zSVm5ur++67TxdccIGSkqwzLEUiEf3nP//RDTfcoIqKCt12220666yzNGzYMDvSBPAdbG0I6b55pZZYQa90/fR7Ax3KCK61bY207MW2RpktKw5sn7yR0vDzpWFTpcz8+OYHAICNWlpadn6fkpKy3+1TUlIUCoUs+7WH6urqnfm8+OKLe9ymV69eB9w0c/nllx/Qds8999wBbdceWGGp47h7wZcKtkQssbumHqHcXj3a7RzU2z2otbtQb3eh3u5CvQHYwTRN/XHBOrVGzZ0xn0e65ZSB8no8DmYGAAAAwE0e/bBc5cHY1S97pCc7lBEAAEDHY0vTzEMPPaRoNKqePXvqo48+Ur9+/facjN+vH/7whzrhhBM0evRoVVdX66GHHtKsWbPsSBMHoba2Ni7H9Xq9lgubwWBQhmHE5Vw4OHe8vkrB5lZL7IaT+6uxPqjG73gs6u0u7VFvT0OVksteVXLZHPk3f3lA+0SzixQuOkfhoskyug1oCxqS4vTvGHhuuw31dpeOUO+srCxbz9dZhMPhnd/7/ft/u/fNNrvv1x6mTZumadOmtesxgT1ZvG6bnluyyRI7a0Suxg/p5VBGAAAAANzizdJt+nT9dkvsh8fkqLBnmkMZAQAAAHCbks2N+tdnlZbYyD4ZmnoE10kAAAB2Z0vTzNtvvy2Px6Nbbrllrw0zu+vbt69uuukmXXfddVqwYIENGeJgRaNRW85jGIZt58L+fVVRr5e/3mKJnXpYto7pk94udaLe7nKg9fY0b1Vg1RsKrHxV/orF8sjc7z7Rrv0UKpqsUOFkRbOH7DbA75cTeG67C/V2F+rdcSQn75oxKhKJ7GNL6za779cRMZEC9qQ1aug3L31tiXVJ9un2yYc7lBEAAAAAt2gIRTRj4XpLrHdGsn55fB+HMgIAAADgNhHD1J3z1sjY7faZJJ9Hv2H1SwAAgBi2NM2Ul5dLko4//vgD3ud73/ueJKmioiIuOQE4OFHD1D3z11liaUleXTNu/w1xwHflCdUrec08BVa+qqSNH8pj7v+G7GiXHIULz1KocLIivUZIfBAAAHCRlJSUnd+3tLTsd/tvttl9v44oOzv7gLaL10qYUsdYYQlWT35SrrLNDZbYFSf2VcBoVm1t8yEdm3q7B7V2F+rtLtTbXZyuNythAu4z6/1N2trYaoldN6G/0pJ9DmUEAAAAwG2e/axKpVuaLLGfHZunAdmpDmUEAADQcdnSNOPztX1AfCAzHX/jm5mqvV5vXHICcHBe+HKzyr71huuX3+ujXhkde3ZydCKtzUpet0CBla8qed0ieYzwfncxUrorVHBGW6NM3ijJw/8dAAB3Sk5OVkZGhurr67V169Z9btvQ0KBQKCTpwJtSOjo7VzxihSVnVQZDeuT9jZZYUa80ff/IXnGpC/V2D2rtLtTbXai3u1BvAPFUsrlR//lisyX2vYHdNKGQBjoAAAAA9thU16KHP9hkiQ3KTtWlx+Y5lBEAAEDHZkvTTL9+/VRcXKwFCxYc8GozCxYs2LkvgI5hW2Or/vZ+7BuuH4zs7VBGSBjRkJI3vKfkslcVWLdAntam/e5iJKcrPOg0hQonq7Xv8ZLXlv/SAADo8Pr06aPi4mJVVVUpGo3unMTg23Zf1bNPnz52pQe0i/sXrldLZNfs8R5Jt54yUH4vqwwCAAAAiJ+oYeoPb62VYe6KBfwe3TCxvzyseg4AAADABqZp6p756xT61nWS35w6UEk+JpkFAADYE1vuMD7llFO0YsUK3X///ZoyZYpGjBixz+2XLVum++67Tx6PR6eeeqodKQI4ADPf3aCGkHWGxpsmDZCfN1w4GNGItO5dpX32rJJWvyFvaPt+dzH9KQoPnKhQ4WSF+42T/AEbEgUAoHMZMmSIiouLFQqFtGbNGhUWFu5xuxUrVlj2ATqLRatqtWhVrSV23pG9NDw33aGMAAAAALjFS19t0YqqRkvsZ2Pz1adbikMZAQAAAHCbucVb9fG6oCV2/lG9dGR+hkMZAQAAdHy2NM1cc801evjhh9XQ0KATTjhBt99+u376058qOzvbst3WrVv1j3/8Q7///e9VX1+vlJQUXXPNNXakCGA/viiv15zlNZbYGUOzdUzfrg5lhM7KW1Mqffi8tGK21Fit/bW9mN4khfuPU6jwLIUHTJSSu9iRJgAAndaYMWM0e/ZsSdLChQv32DRjGIYWLVokSerSpYuGDRtmZ4pxs7dVddqD1+vd52PYozkc1X1vr7PEuqcl6erxA9q1/tTbPai1u1Bvd6He7kK9Adhha2OrHnpvoyXWv3uKLh6V61BGAAAAANymrqlVMxaut8R6pSdp2ol9HcoIAACgc7ClaaZ///565JFH9NOf/lQNDQ266aabdPPNN2vgwIHq1auXPB6PNm/erLVr18o0TZmmKY/Ho0ceeUT9+vWzI0UA+xAxTP1x/jpLrEuyV9PH8fzEgfNtLVXa4ocUWPX6frc1PV619jm+bUWZQafKTMm0IUMAABJDQUGBhg4dquLiYi1cuFDjx49XUVGRZZtXX31V5eXlkqQzzjhDfr8tbw3jLisry7ZzZWby+sQJD88tVtX2sCV2+9mHq39uz7iel3q7B7V2F+rtLtTbXag3gHh4YNF6NYSiltjNkwYo2U+jHgAAAAB7zHhng+qaI5bYjZMGKD2QGNf6AAAA4sW2V0s/+clPlJ2drV/96leqqKiQaZpavXq11qxZI0kyTXPntnl5eXr00Ud15pln2pUegH14/ovNWlndZIn96nt91CM92aGM0Jn4tq1U2qd/UfKqufLI3Oe2rbmjFCqcrFDBGTLTetiUIQAAHUtJSYmqqqp2Pt6+ffvO76uqqvTOO+9Yth8/fnzMMS699FLdfvvtCofDuuuuuzR16lQNGzZM4XBYH374oebPny9Jys3N1dlnnx2XnwNob6VV9Xr8vbWW2HGDsjXlqHyHMgIAAADgFks2BDV3xVZL7Iyh2RrdjyY9AAAAAPb4eF2dXl9RY4mdXJil8QXdHcoIAACg87C1xfiss87SunXr9NJLL2n+/PlatmyZtm3bJknq3r27hg8frkmTJmnKlClKSkqyMzUAe1HTGNas9zdZYgU9UnXhyByHMkJn4du2SmmLZyp55Wv7bJaJ9BqhUMFZChWeJSMjz8YMAQDomBYsWKBFixbtcay0tFSlpaWW2J6aZgYOHKhrrrlGM2fOVHNzs5599tmYbXJzc3XLLbcoNTW1XfIG4skwTN02+2tFjF2vK5N8Ht05Zbg8Ho+DmQEAAABIdK1RQ/fMX2eJpQd8umZ8f2cSAgAAAOA6zeGo7n5rnSWWHvDpxokDHMkHAACgs7F9XT6/368LLrhAF1xwgd2nBnAQ/rJooxrDUUvspkkD5PdyYxr2zFe7WqmLH1KgbM7em2UCmdKxv5SO/KHqvd0VjUb3vB0AADhoo0aN0v3336/XX39dS5cu1bZt2+T3+5WTk6OxY8fq9NNPVyAQcDrNdlVbWxu3Y3u9XmVm7ppBOBgMyjCMuJ0PVi9/tVmL11nre8mYfGUntcal7tTbPai1u1Bvd6He7uJ0vbOysmw7FwD7Pb24Uuu2tVhiV57YV9ldmAAQAAAAgD0e/bBc5cGQJXb1Sf3UIz3ZoYwAAAA6F9ubZgB0Hks3bo9Z1vOsw3toZJ+uDmWEjsxbu1Zpi2cqsHKOPOaeb0owktMVGvkLpY7/tZTarS0Yx5tbAQDojKZNm6Zp06a1y7F69uypSy65RJdcckm7HK+js7MR1zAMGn9tUtfcqj+/s94Sy88M6NIxubbVgHq7B7V2F+rtLtTbXag3gPayqa5Fj39cbokdntNFU4/o5VBGAAAAANymZHOj/vVZpSU2sk+GphzR06GMAAAAOh+aZgDsUSRq6I8L1lliXZJ9unpcP2cSQoflrVurtMUPKVD2yj6bZVqO/Kmaj/ypvF26K/WbhhkAAABgP2a+u1HB5ogldsPEAUpJ8jqUEQAAAAA3ME1T9y1Yr1Bk14rqXo906ykD5fN6HMwMAAAAgFtEDFN3zlsjY9fbEiX5PPrNKQPl9fC+BAAA4EDZcofJ119/rUGDBqmwsFDl5eX73b68vFwFBQUaPHiwysrKbMgQwLc998Vmra5ptsQuP6GPsrskOZQROhpv3Tqlz79BWf86TSmls/fYMGMkpatp1DTV/mSRmo69RmZKpgOZAgAAoLP6orxeL39dbYmdXJilEwZ1cyYhAAAAAK6xcGWtPlhbZ4ldcFRvHda7izMJAQAAAHCdZz+rUumWJkvs52PzNSA71aGMAAAAOidbmmaeeeYZrVu3TgUFBcrPz9/v9vn5+SoqKtK6dev0zDPP2JAhgN1VN4T1yAebLLGinmk6/6jeDmWEjsQb3KD0+Tcq61+nKqXkRXnMaMw2RlIXNR1zuWovWaSmsdfKTOlmf6IAAADo1CJRQ3e/tdYSS0vy6rqT+zuUEQAAAAC3aApH9aeF6y2x7C5JuvyEPg5lBAAAAMBtNtW16OFv3b81KDtVl4zJdSgjAACAzsuWpplFixbJ4/HonHPOOeB9zj33XJmmqQULFsQxMwB78uCiDWoMW1cNuXHSAPm9LOvpZt7tG5W+4GZlPTNJKSUv7LFZxkxKa2uW+ckiNR13Pc0yAAAAOGjPLo1d/fJX3+uj3hkBhzICAAAA4BaPfrhJm+vDlti1E/orPeB3KCMAAAAAbmKapu5+a61CkV33b3kk/ebUgUry2XLLJwAAQEKx5ZPdsrIySdIRRxxxwPsMHz5cklRaWhqXnADs2ZIN2/VG8VZL7OxhPXRUfoZDGcFp3u2blLbkrwqUvCiPEdnjNmZSmppHXKzmkb+Qmdrd5gwBAADa+Hy+uB3b6/Xu8zHaV+X2kB798FurX/ZK049G58tnQzM/9XYPau0u1NtdqLe7UG8A7WlldZOe/azKEhvTv6tOHcJn3wAAAADs8fqKGn2yfrsldv5RvXQk928BAAAcFFuaZhoaGiRJ6enpB7zPN9tu3759P1sCaC+RqKF7F6yzxDICPl11Uj9nEoKjvNvLdzTLvLD3Zhl/qppH/FjNR18mMzXb5gwBAACssrKybDtXZmambedyo5vmLFFz626zp3mke84/Sj2z7avx7qi3e1Brd6He7kK93YV6AzhYxo7ZnKPmrliSz6ObJg6QxxP/Bn4AAAAAqG1q1Yx3NlhivdKTNO3Evg5lBAAA0PnZ0jSTlZWlmpoaVVVV6cgjjzygfaqq2mZwysigOxqwy/8u3aw1W5stsStO6KvuXZIcyghO8NZXKHXJ35RS/Lw8RusetzH9KW3NMiMvk5nWw+YMAQAAkMjmr9isN1dstsR+MLqfju7nTMMMAAAAAPd4ZVm1vqposMQuHZOn/t1THcoIAAAAgNvMeGe9gs3WyW1vnDRA6QFbbvUEAABISLa8kiosLFRNTY3eeOMNnXbaaQe0z9y5cyVJgwcPjmdqAHbYUh/Wox9ussSG9ErTeUf2cigj2M3bUKnUJbOUsuK5vTfL+AJqGfFjNR39S5plAAAA0O6awhH9v1eWW2LZXZJ10+lDHMoIAAAAgFvUNbVq5qKNllifbgFdemyeQxkBAAAA7cvn88XluF6vd5+PceA+XFOruSu2WmITi7pr4pCeDmUUi3q7C/V2F+rtHtTaXah3G1uaZk477TR9+OGHevTRR/XLX/5SQ4cO3ef2y5cv12OPPSaPx6PTTz/djhQB13tg0QY1tRqW2M2TBsjn9TiUEezibahS6mcPK2X5/8ljhPe4jekLqGX4j9R09K9kduk4b8QBAAB2V1tbG7dje71eZWZm7nwcDAZlGMY+9sDB+Mui9Sqvs65+OX18P5mhRtWGGm3Lg3q7B7V2F+rtLtTbXZyud1YWK+IBieAv725UsMU6m/NNEwco4HfnRWQAAAAkHrvev+7+Hh0Hrikc0d3zP7fEMlL8uvv8kcrqmuJQVvtHvd2FersL9XYPau0ubq23LU0zl19+ue699141NTXp5JNP1mOPPabJkyfvcdtXXnlFv/rVr9Tc3Ky0tDRNmzbNjhQBV/t0fVBvllhnKTh3RE+NyMtwKCPYwduwWamfzdpPs0yyWob9UE3H/LfMLqw6BAAAOrZoNGrbuQzDsPV8brC6pklPfVphiR3dJ0NnHNbd8b9r6u0e1NpdqLe7UG93od4Avqsvyuv1yrJqS2xSUXcdN7CbMwkBAAAAcJ0/v1WmTbXWicVuOWOoenXghhkAAIDOwpammR49eujhhx/WxRdfrC1btujcc8/VoEGDdMIJJyg3N1eSVFlZqffee09r166VaZryeDyaNWuWevfubUeKgGu1Rg3du2CdJdY1xacrT+zrTEKIO0/jFqV99rBSlj8rT3RfzTI/UPPR/y0jnX+HAQAAEF+maeqP89cpapg7Y36vR7ecMlAeD6tfAgAAAIifSNTQ3W+ttcTSkry6dkJ/hzICAAAA4DZfbwrq8fet70vGDOiuH4zm/i0AAID2YEvTjCRddNFFMgxDl19+uZqamrR69WqtWbPGso1ptt0c06VLF82aNUs//vGP7UoPcK1/f1alddtaLLErTuirrLQkhzJCvHgaq5W29BGlLPu3PNHQHrcxvclqGfZfaj7mv2Wk59icIQAAANzqteU1Wrqp3hK7eHSuBmanOpQRAAAAALd4dulmra6xzuZ8+Ql91Ssj2aGMAAAAgPiora2Ny3G9Xq8yMzN3Pg4GgzIMIy7nSkQRw9QN//lKu80rpiSfRzdP6qdgsM6xvPaGersL9XYX6u0e1NpdOkK9s7KybD3fntjWNCNJF198sU455RT95S9/0WuvvaZly5btbJTxer0aMWKEzj77bF155ZWsMAPYoGp7SH//qNwSO7x3F009opdDGSEePE01SvvsEaUs+9c+mmWS1HL4hW3NMhl5NmcIAAAAN6trbtUDizZYYnldA/r5WF6XAgAA4NBt27ZNH330kT7//HOVl5errq5O6enpGjJkiM4991wVFhY6nSIcVLU9pEc/3GSJFfVK0wUjuU4JAACAxBONRm05j2EYtp0rETyzuFIlmxstsZ+PzVe/boFO8fdIvd2FersL9XYPau0ubq23rU0zkpSTk6M//OEP+sMf/qBIJKJt27ZJkrp37y6/3/Z0AFd74J0Nam7d1S3okXTTpAHyeT3OJYV242mqUerSR5W67F/yRFr2uE1bs8wFaj7mcpplAAAA4Ii/vrdRdc0RS+zGif2VkuRzKCMAAAAkkrlz5+rll19W7969deSRR6pr166qrKzU4sWLtXjxYk2fPl3HH3+802nCIX9auD7mOsmtpwyUn+skAAAAAGywqa5FD39gbeQflJ2qS8bkOpQRAABAYnK0S8Xv96tXL1a0AJzw8bqg5pdts8SmHNFLw3LTHcoI7cXTvFWpSx9T6tfPyBNp3uM2ptevlqHnq/mYK2R0zbc5QwAAgPjw+eLXZOH1evf5GAfni03b9dJX1ZbYyUXdNa6oh0MZtaHe7kGt3YV6uwv1dhfqjX0pKCjQ7373Ox1++OGWeHFxse644w499thjGj16tJKSkhzKEE55b3WtFq6stcSmHtlLw7lOAgAAAMAGpmnq7rfWKhSxNvLfdtpAJfn4bAMAAKA9sbQL4ELhiKF7F6yzxDJT/Jp2Yh9nEkK78DRvU+rnjyn1q6f32SwTOuw8NY2aJqMr9QYAAIklKyvLtnNlZmbadq5EFYka+uOCry2xtGSf7jrvKGV1S3Uoqz2j3u5Brd2FersL9XYX6o3dHXvssXuMDx06VMOHD9eXX36pDRs2aPDgwTZnBie1tEZ134L1llhWql9XntjXoYwAAAAAuM3rK2r0yfrtltj5R/XWEXkZDmUEAACQuGxvmlm5cqWeeuopffTRR6qqqlJzc7PmzZungoKCndssW7ZMGzZsUJcuXTRu3Di7UwQS3r8+q9SG2hZL7MqT+qpbKjPpdUae5lqlfv53pX79lDytTXvcxvT4FBr6fTWNukJGVy76AQAAwHlPfrhOJVX1ltivJxUpr4M1zAAAALhZMBjUqlWrtGrVKq1evVqrV69WfX3ba7hx48Zp2rRpB3ys6upqzZ07V0uXLtXWrVvl9/uVk5Oj4447TqeddpoCgUC8foy9+ma1yniuWomO6fGPK1SxPWSJTR/fT11TmG8QAAAAQPzVNrVqxjsbLLFe6UlMeAwAABAntn3yaxiGbrzxRj344IMyDEOmaUqSPB6PwuGwZdsNGzZo8uTJ8vv9Wrt2rfLz8+1KE0h4VdtD+vtHFZbYsJwuOndET4cywsHytNQp9fO/K+Wrp+RtbdzjNqbHp9BhU9tWlsnsZ3OGAAAAwJ5V1DVrxltllthhORm69HsDnEkIAAAAe3TZZZe1y3GWLFmimTNnqrl51wrZoVBoZyPOggULdMsttygnJ6ddzncgampq9PXXXysrK0v9+vHZqZus3dqspxdXWmJH98nQWYf3cCgjAAAAAG4z4531CjZHLLGbJg1UeoBGfgAAgHiw7VXWr371Kz3xxBMyTVP5+fk67rjj9Pzzz+9x2zPPPFMDBw7UunXr9Pzzz2v69Ol2pQkkvD8tXK9QxNj52CPppkkD5PV4nEsK34mnpU6pXzyulC+fkre1YY/bmB6vQkOmtDXLdBtgb4IAAAAOqa2tjduxvV6vMjMzdz4OBoMyDGMfe2BfbnupRE3hqCV208T+atgedCgjK+rtHtTaXai3u1Bvd3G63llZWbady0k9evRQfn6+vvzyy++039q1a/XAAw8oHA4rJSVFU6ZM0fDhwxUOh/XBBx9owYIFqqys1N1336177rlHqanxX3kwEolo5syZam1t1UUXXSSv1xv3c6JjME1T98xfq4hh7oz5vB7dPGmAPFwnAQAAAGCDj9bWae6KrZbYyYVZGlfgjs8XAAAAnGBL08yCBQv0+OOPy+Px6NZbb9X//M//yOfz7fMixAUXXKB7771Xb7/9Nk0zQDv5cG2dFq603kh43pG9dHhOukMZ4bvwtASV+uUTSvnySXnD+2iWKTpHTaOvlNFtoM0ZAgAAOCsaje5/o3ZiGIat50sk76+u1dtl2yyxqUf01IjcLh3275R6uwe1dhfq7S7U212od/s5//zzNXjwYA0ePFjdunXTli1bdOWVV36nYzz55JMKh8Py+Xy67bbbVFRUtHNs+PDhys3N1TPPPKPKykrNmTNHF154YcwxnnrqKbW2th7wOc8880zl5ubuccwwDP3tb39TcXGxJk6cqJNOOuk7/Tzo3F5fUaPPNtZbYhePytGgHmkOZQQAAADATZrDUd391jpLLD3g040TBziSDwAAgFvY0jTz6KOPSmq7SHHXXXcd0D5jxoyRJC1fvjxueeHQ+Xy+uBz32w1VzPJ26MIRQ/e9vd4S65bq11Xj+setjgeKeu+bJxRU4PMnFPj8CXnD9XvcxvR4FR5yrlrGXCkja7A8kpyt6t5Rb/eg1u5Cvd2FegM4WC2tUd27IPZ9yZUn9nMoIwAAAOzLnhpYvotVq1apuLhYkjRhwgRLw8w3Jk+erIULF6q8vFxz587VeeedJ7/fevnqrbfeUigUOuDzjh07do9NM4ZhaNasWXr//fd14okn6rLLLvuOPxE6s+0tET3wzgZLLLdrsn5xXL5DGQEAAABwm0c+3KSK7db3t1ef1E890pMdyggAAMAdbGma+eijj+TxePTzn//8gPfp06ePJKmqqipeaaEdZGXZsyxkZmamLedJZA+9vVIba1sssVvPPFwD8no5lNHeUe8dWoLSxw9LH/+17fs98kgjzpfnpBsV6FmkgK0Jtg/q7R7U2l2ot7tQbwAH6vGPK2IuBk0f10+ZqbZ8PAEAAACbffrppzu/nzBhwh638Xq9GjdunP7973+rsbFRy5cv15FHHmnZ5umnnz7kXL5ZYebdd9/V9773PU2bNo1JIFzmr+9tVG1zxBK7YeIApSR11CmoAAAAACSS4qpG/fsz672QI/tkaMoRPR3KCAAAwD1suStly5YtkqQBAwYc8D5JSUmSpEgksp8tAezPxm1NemjhKktsZL9uOv+YPg5lhH1q2S598rD00UP7bpYZfp407iap5xBb0wMAAAAOxtqtzXp6caUldnSfDE0e1sOhjAAAQMKJhKXoga9GgvgrLS2VJAUCAQ0aNGiv2x1++OGWfb7dNHOodm+YOf7443XVVVfRMOMyyyob9OKXWyyxcQVZOmmwPZPDAQAAAHC3iGHqrjfXyDB3xZJ8Hv3mlIHyejzOJQYAAOAStjTNdOnSRXV1daqurj7gfTZt2iRJ6t69e7zSAlzjjldXqKXV2PnY65HuPHe4vF7edHUoofq2ZpkPH5Ja6vaykUcaNlUad6PUa6id2QEAAAAHzTRN3f3WWkV2uxrk83p006QB8nAxCAAAHARPU438NcXy15TIv61U2lYm1ZRKJ1wrjbzC6fSwwzfXenJycuTz7X01j7y8vJh92othGJo1a5beffddjR07loYZF4oYbe9Hdrs3TSl+r244ub9jOQEAAABwl38vqVTpliZL7Odj8zUgO9WhjAAAANzFlqaZQYMGaenSpVqxYoVOOeWUA9pn7ty5kqRhw4bFMzUcotra2rgc1+v1KjMzc+fjYDAowzD2sQf25r3V2/TWis2W2AUjc5SfZsStft+V6+sdblDKl/9UYOlj8u61WUYKF56l5jFXy+ixY2WZDlK/78r19XYRau0u1NtdOkK9s7KYCRboTF5bUaOlm+otsYtH5WhwjzSHMgIAAJ1GtFW+2jXyby2Wr6ZY/ppS+bcWy9tUs+ftNy+zNz/sVTgcVn1922vA7OzsfW6bnp6uQCCgUCikrVu3tmsezz//vBYtWqSUlBTl5eXphRdeiNlmzJgxGjBgwAEf80Bz3Fej0KH6duMPjUB793+fx96c9t8n9FV+Vud4P0Kt3YV6uwv1dhfq7R7UGsC3bapr0SMflltig7JTdcmYXIcyAgAAcB9bmmZOPfVUffbZZ/rrX/96QDN4rVixQk8++aQ8Ho/OPPNMO1LEQYpGo7acxzAM286VSEIRQ398a60llpXq16+Oz+/Qf5+uqXe4UalfP6PUzx+Tt2XvDTChwaerafTVin7TLJNgfzeuqTeotctQb3eh3gD2Jdgc0YPvbLDEcrsm6xfH5TuUEQAA6Kg8zVvlrymRr6akbRWZrSXybVslj9F64Aepommmo2hpadn5fUpKyn63T0lJUSgUsuzXHqqrq3fm8+KLL+5xm169en2nppnLL7/8gLZ77rnnDviYh2r3yS2wy+btLZr1/kZLbEjvDE075XAl+TrnDazU2l2ot7tQb3eh3u5BrQF3M01Tf3hrrUKRXRMQeiTddtrATvueBAAAoDOypWnm6quv1l/+8hetXr1a//3f/62//e1v8vv3fOq33npLP/3pT9XS0qLs7GxddtlldqQIJKSnPq1QeTBkiV09rp+6ptjy1MfetDYp9eunlbr07/K2bNvrZqFBp6lpzFWK9hhqY3IAAABA+/rr+xtV2xyxxG6cOEApSfGbdRsAAHRwRqRt9ZiaEvm2tjXI+GpK5GvacujHDm6QQvWSv3OsIJHIwuHwzu/3dk1od99ss/t+7WHatGmaNm1aux4Tncedr65QQ8j6fuSuqcO5OQ0AAACALV5bUaNP12+3xM4/qreOyMtwKCMAAAB3suXO+d69e+vhhx/WT37yEz3++OOaN2+ezjrrrJ3jDz74oEzT1AcffKCSkhKZpimv16snn3xS6enpdqQIJJxNdS168tMKS+yIvHSdNayHQxmhrVnmX0r9/FF5m/fVLHNK28oyPQ+3MTkAAIDOz+eLXxPGt1dM3d8KqmjzVXm9XvzSevPrhMLuGl/Usd+XUG/3oNbuQr3dhXp3HJ6WOvmqV8j3TWNMTbF8W8vkiR56Y4TpT1E0e4iMnocrud8xUu/hUu/D5Q1JMoz97o/4Sk5O3vl9JBLZx5bWbXbfr6OaNWuW0yngALy3slqvflVpiV1wTB+NHtDdoYwAAAAAuEltU6v+/M4GS6xXepKmndjHoYwAAADcy7blJi666CIlJSXpV7/6lTZu3KhHHnlEHo9HkvT3v/9dUttyhJKUnp6uf/7zn5bGGgDfzZ8WrlcoYu587PVIN08aIO+O5x1s1NqslGX/VtrSR+Rt3rrXzUIDJ6lpzNWK9hxmY3IAAACJIysry7ZzZWZm2nauzioSNXTPU8sssdQkn+76/lHK6pbqUFYHh3q7B7V2F+rtLtTbBkZU2rpa2vy1VLVM2rxM2rxc2l7ePsfP7LujKWaYlDNc6j1Cnu4D5ffGNk5nprTPKXFoUlJ2FaKlpWW/23+zze77dVTZ2dkHtF1tbW3ccvB6vZZ/24LBoAyaxXYKRQzd+uJXllhmil+XH58b17rEA7V2F+rtLtTbXai3e3SEWtv5WTmAvZuxcL2CzdZJJG6aNFDpAdtu2QQAAMAOtr4Cu/DCCzVx4kT97W9/05w5c/TFF19YZhcbNmyYzjnnHE2fPl29evWyMzUgoby7ulbvra6zxC4c2VtFvbo4k5BbRVp2Ncs01ex1s/CAk9U45mpFe42wMTkAAAAgvp78cJ2KK7dbYr8+pVD5naxhBgAA7EFzbVtDzM7mmGXSlmIpsv/GiP3yp0i9hrY1yOSMaGuS6T1MSuWmr84mOTlZGRkZqq+v19ate59MSJIaGhoUCoUkHXhDSmcQjUZtO5dhGLaer6N7/MNN2lhr/TfpqpP6qmvA2+n/nqi1u1Bvd6He7kK93YNaA+700do6zS22vheeWNRd4wr4fAMAAMAJtrctZ2dn6/bbb9ftt98uwzC0bds2RaNRde/eXUlJSXanAyScllZDf3p7vSWWnZakXx3P0p62ibQoZfmzSvvsEXmbqve6Wbj/BDWNuVqR3kfYmBwAAAAQf5XBZv35rTJLbEjvDP30ewMdyggAABwUIyptWxu7ekxwY/scv2t+zOoxyh4s7WH1GHROffr0UXFxsaqqqhSNRuXz7bm2FRUVln2AQ7GhtkVPflphiR2Rl65zRvR0KCMAAAAAbtIcjurut9ZZYukBn244ub8zCQEAAMD+ppndeb1e9ejRw8kUgITzz08rVB4MWWJXj+urjBSW9oy7SEgpy/9XqZ89LF/Tlr1uFu4/Tk1jpivS+0gbkwMAAEh8tbW1cTu21+tVZmbmzsfBYFCGYcTtfJ3d7bNL1Ri2zp5486T+atgedCij74Z6uwe1dhfq7S7U+yCEtstfUyJfTYl8NcXyVa+Qb2uZPJHmQz606UtWNLtI0R5DFe1x2I6vQ2XuafWY4PbY2H44Xe+sLGaJ3ZshQ4aouLhYoVBIa9asUWFh4R63W7FihWUf4GCZpqk/zl+r1qi5M+bzSLecMlBej8fBzAAAAAC4xcMfbFLFduu9W9PH9VOP9GSHMgIAAAB30QMJZGNti/75rdnTjsrP0JmH05wWV5GQUlb8X1uzTOPmvW4W7ndiW7NMzkgbkwMAAHCPaDS6/43aiWEYtp6vM/lgTZ3ml261xM4d0VMjcrt02r8z6u0e1NpdqLe7UO/dmIa8wQ3y15TIv7VYvpqStmaZ+k3tcvhoWi9FexymSI+hivQ4TNHswxTNGiR593A5Ik41od4dx5gxYzR79mxJ0sKFC/fYNGMYhhYtWiRJ6tKli4YNG2ZninG1t5V12oPX693nY7eaV1yjT9Zbm+9+OCpXh+VkOJTRoaPW7kK93YV6uwv1dg9qDbhbcVWjnl1aZYkd3SdD57LyJQAAgKNsaZppbW3VypUrJUmDBw9WIBCwjLe0tOg3v/mNnnvuOdXU1GjgwIG6/PLLddVVV9mRHpAQTNPUfW+vU/hbs6fdNGmAPMyeFh/RkFJW/EepS2bJ11i1183CfU9U05irFck92sbkAAAAAPu1tBq6d8E6Sywz1a+rTurrTEIAALicJ9wg39bSHSvIFLc1ymwrlae16ZCPbXqTFe1eoEj2EEV2rCAT6XGYzNTsdsgciaKgoEBDhw5VcXGxFi5cqPHjx6uoqMiyzauvvqry8nJJ0hlnnCG/P3Hme7NzFaLdV1tyq/qWVs1Y+JklltM1RTdPPkLpgcT5vaLW7kK93YV6uwv1dg9qDbhHxDB115trZOy6dUtJPo9uPZWVLwEAAJxmyyfEL730kn74wx+qe/fu2rQpdra6qVOn6s0335Rptr1iLCkp0TXXXKPS0lI99NBDdqQIdHqLVtfqw7VBS+zCo3NU2DPNoYwSWDSslOLnlbrkb/I1VO51s3Df7+1olhllY3IAAACAc574pFzlwZAlNv2kfuqWmuRQRgAAuIRpyLt9k/xbS3asHNPWIOPbvqFdDm+k9VAke8fKMT0OUyR7aNvqMT7+j090JSUlqqraNWHQ9u27VvCoqqrSO++8Y9l+/PjxMce49NJLdfvttyscDuuuu+7S1KlTNWzYMIXDYX344YeaP3++JCk3N1dnn312XH4OuMOf3izTlnrr+5H/d/bhCdUwAwAAAKDj+veSSpVusU5U8vOx+RrQPdWhjAAAAPANWz4lnjdvnkzT1JQpU2JWmXnttdc0b948eTwe9enTR6NHj9ann36q8vJyzZo1Sz/60Y90/PHH25Em0Gm1tEb1p7fXW2LZXZL0q+PzHcooQUXDChS/oLTP/iZffcVeNwv3OU5NY6YrkjfaxuQAAAAAZ63b2qynPrU2lR+Vn6HJw3s4lBEAAAmqtUn+raXy1xS3NchsLZGvplTe1oZDPrTp9SuaVdDWHJN9mCI92hplzDT+P3erBQsWaNGiRXscKy0tVWlpqSW2p6aZgQMH6pprrtHMmTPV3NysZ599Nmab3Nxc3XLLLUpN5UYiHJxl5UE99dE6S2z8kJ46fXiOMwkBAAAAcJVNdS165MNyS2xQdqouGZPrUEYAAADYnS1NM0uXLpXH49G4ceNixp544glJUlFRkT799FNlZGQoGAzq+OOPV0lJif7+97/TNAPsxxOfVKhye9gS+/X4fsye1l6irQqUvKC0JX+Tr758r5uF88e2Ncvkj7ExOQAAAMB5pmnq7vlrFTHMnTGf16ObJw2Q1+NxMDMAADox05S3vnxHU0zbyjH+mmJ5gxvkkbn//ffDSO3e1hSTvWP1mB5DFc0aLPmS2yF5wGrUqFG6//779frrr2vp0qXatm2b/H6/cnJyNHbsWJ1++ukxk64lgtra2rgd2+v1KjMzc+fjYDAowzDidr6OLGqYuvn5r7Xb2xEF/F5dN76v6urqHMurvVBrd6He7kK93YV6u0dHqHVWVpat5wPczjRN/eGttQpFdj3XPZJuO22gknxe5xIDAADATrbcUb9lyxZJUkFBgSVuGIYWLFggj8ejq666ShkZGZKkzMxMXXnllZo2bZo++ugjO1IEOq3125r19GLrbM5H98nQaYdlO5RRAom2KlD6ktIW/1W++k173aw1b4yaxkxXa5+xNiYHAAAAdBxzi7fqs431lthFx+SooGeaQxkBANDJtDbLv61sV3PM1hL5akrkDdfvf9/9MD0+RbMGtTXF9DhMkexvVo/pKdHciv2YNm2apk2b1i7H6tmzpy655BJdcskl7XK8ziAajdp2LsMwbD1fR/L8F5u1rNK62tbPxuYpNyMpIf9O3FxrN6Le7kK93YV6uwe1BhLfaytq9On67ZbY+Uf11hF5GQ5lBAAAgG+zpWmmpqZGkpSammqJf/HFF9q+fbs8Ho/OOussy9jw4cMlSRs3brQjRaBTMk1T9729Xq3R3WZz9kg3TRogDxe8D54RUaBkttKW/FW+7Rv2ullr3ui2Zpn8sdxgAAAAANfa3hLRA++st8RyMpJ12XH5DmUEAEAHZpryNlTKV1Mi/9a2BhlfTYl8wXXymIc+87AR6KZIj8MU7dHWGBPpMVTR7gWSL/FW8AAASdra2Kq/vme9lti/e4ouHpXrUEYAAAAA3KS2qVV/fsd6b1Gv9CRNO7GPQxkBAABgT2xpmgkEAopEIjubZ77x7rvvSpL69Omj/v37W8a+WXWG2RaAvVu4slYfrwtaYj88JkeDezCb80ExIgqUvqy0JQ/JF9xHs0zuMTtWljmeZhkAAAC43l/f26htTRFL7IaJA5Sa7HMoIwAAOohIi/xby+TbWir/jhVkfFtL5A0F97/vfpger6LdBu1YOeawnY0yRpfefF4FwFUeXLRB9SHrtcSbJw1Qst/rUEYAAAAA3GTGwvUKNluvkdw0aaDSA7bclgkAAIADZMurs/79+2vFihX65JNPNHHixJ3xOXPmyOPx6KSTTorZZ9u2bZKknj172pEi0Ok0h6P600LrbM4905N02fHMVPCdGREFyl5R2uKH5Auu3+tmrTkj/z97dx4eV33eDf97zplNo5FG0miXLS+ytdoWtjGY3SYNCRQSIMSk2ZzkKX2f1Nnapu1Lmzzt09ImafM2NLSlJUmTQBKCQwiEAGnAMYuBALaxbGu1ZcuWtY2W0Wid5SzvHyNLOtqXmTPL+X6uS9fo/HSWW3NLts7M7/7dGLvqSwivvY6TD4iIiIiIAJzuGsFTdV7d2I1lWbhpU3acIiIiIooDTYM42gNpojDG0j/RPWbwXJS6x2RC8UzrHOOpgOwpByyOKARPRLEkSbErJBdFccFtMzh60Y/nG/QL9t1WnYvdG3LiFFFsMNfmwnybC/NtLsy3eTDXRObx5vlBvNDYrxt7T3kO3yMhIiIiSkCGFM3s3bsX9fX1eOihh3DXXXehqqoKv/zlL/Hyyy8DAG677bZZx5w+fRoAUFTE9ulEc/nvtzrRMxzSjX1pzzqkczXnpVMV2M88C+fbD0Hyt827W7hgO8au/iLCa69nsQwRERFRAuOENGPJqoavvdgGbdqYwyriL9+7Maa5MALzbR7Mtbkw3+YSs3zLQUgDZyD1NULqbYwUx/Q1Qgz4Vn1qDQLU7A1QcqsmP+S8KmiuolmvSSX3/7TRx99vSlTZ2cZNlHK73YZdKxGEZBXfOHRSN5bhsOD/3nUFsjPscYrKGGbLtdkx3+bCfJsL820ezDVR6vr3I+26bZddwp/fvC5O0RARERHRQgwpmvn85z+PRx55BF6vF1u2bEF2djZ8Ph80TcOaNWvwoQ99aNYxv/nNbyAIArZt22ZEiERJpW1gHI+906Ub21WaiVsqUmv1tJhRFdjPPIe0dx6CZfDcvLuFC2oxdtUXES69kcUyREREREmAE9KM9d9HzqPZO6ob+9LvlaNmfeotfsF8mwdzbS7Mt7ksO9+aBoz0AN2ngZ6Jj+7TQF8LoCmrD8juBgpqgMItQEHkQ8ivgmRzsiAmCvj7TZT6vvPaOZz1jujG/uJ9FchL8YIZIiIiIiJKDINjYTT1jOnGvnhTKXJdtjhFREREREQLMaRoZvPmzXjsscfwmc98BqOjoxgYGAAAZGVl4fHHH4fNpv9jsbu7Gy+++CIA4OabbzYiRKKkoWka/ulQG2R1aj1nSRTwF+9ZD4GFHQtTFdjOPgfnO/8Gi6913t3C+VsjxTLr9rBYhoiIiIhoDt3+AP7lxRbdWHmBC//r+g1xioiIiGgV5BDQ1zy7QGasLwonF4CcjRMFMlsjBTKFWwD3Wr7uRES0Qu0DY/j2oTO6sW1r3Pjo1VzRmYiIiIiIjHGyS1/Eb7eIuKMmN07REBEREdFiDCmaAYAPf/jDuOmmm/Dcc8+hu7sbRUVF+MAHPoCcnNmdMU6ePImPfvSjAIDbbrvNqBCJksKhlgG8fWFIN/axnYXY4EmLU0RJQFNhO/s8nG8/BIvv7Ly7hfO2RIpl1u/lpAUiIiIiogX8/a8aMBKUdWP/cNdWWCUxThEREREt0Yh3qihmsntMM6DKix+7GFtGpDhmsoPMViC/CrC7Vn9uIkpKPp8vZucWRVHXVcnv90NV1ZhdL1Fomoa/+nkTgvLU9yoKwF++Zx2G/IPxCyyGzJprs2K+zYX5Nhfm2zwSIddGdmUnMquTHcO67ZrCdFj4HgkRERFRwjKsaAYA8vPz8elPf3rR/W655RbccsstBkRElFzGQgr+5fAF3Vi+y4o/vKYkThElOE2FrfXXcL79bVgGzsy7m5xXg7GrvojQ+ptZLENERESUxDghzRivn/PhuVNdurEPbs3HJrcQ0xwYifk2D+baXJhvcxE1Be5wz2RxTLjjBKTeBohR6R4DKO5SKLlVEx+VUPKqoWauAYQZkyPGwsBYavz/mMji/fvNCWk0H0VRDLuWqqqGXi9eDp8ZwGut+n9X77miABV5aab4/gHz5JoimG9zYb7Nhfk2D+aaKDXVdeo7zdSWZMQpEiIiIiJaCkOLZohodb77Zge8I2Hd2J/uXQenTYpTRAlKU2Fr/Z+JYpmWeXeTc6sxdtUXENrweyyWISIiIkoBnJAWe4Gwiq/95pxuzO2w4PM3rEnp58Os+TYj5tpcmO/UIYwPwNLXCKmvCZa+Rlj6myH5zgJKaHIf6wrPrVmdkHMqIOdWQsmtijx6yqHZ5pgIoWoA+DOVCPj7TZSaxkIKvvlb/cJinnQr/vj6NXGKiIiIiIho+QYGBvDmm2/i3XffRUdHBwYHB+FyuVBRUYEPfvCD2Lx5c7xDpEWEFRUN3TOKZorZaZiIiIgokbFohihJnO8fx4+PdevGrlqXifeU58QpogSkqbCdezFSLNPfNO9usqcyUiyz8RYWyxARERERLcMP3upEhz+oG/v8TWuR5VzpVGQiIqJlUGVIvnOQ+ptgmSiQkfqaII15o3J6JWPNRHFMJWRPpEBGdZfO7h5DRERx8eSJHvQMh3Rjf7KnFC473+4kIiIiouTxwgsv4JlnnkFBQQFqa2uRmZmJrq4uvPPOO3jnnXfwxS9+Eddee228w6QFNHvHEJQ13djWYnaaISIiIkpkfBWZKAlomoZ/OtQGRZ264bKIAv7iPeshsOgD0DTYzk8Uy/Q1zrub7KnA2FVfRGjjeznZgYiIiIhomdoGxvHDdzp1Y7UlLnxgS16cIiIiolQmBAanusf0TxTIDJyBoIQWP3gRmsUB2VMBxVMJObcKcm4VFE8FNDsnNxARJbK3Lw7ptq8qzcT7Kj1xioaIiIiIaGU2bdqEv/3bv0V1dbVuvLGxEX/3d3+H73znO9i1axesVi5WlajqOoZ12xtyHHCncRomERERUSLjX2tESeDF5gG8M+PNoE/sKsL6nLQ4RZQgNA228y9NFMs0zLubnLM5UixT9j4WyxARERERrYCmafjGS20IK1OF/JIA3P97GyCykJ+IiFZDVSD52yD1NU51j+lvgjTSvfixS+FeCxRswbi7DGFPBWRPVaR7jChF5/xERGQITdPQ1DOqG7u7Np8LixERERFR0rn66qvnHK+qqsKWLVtQV1eHixcvoqyszODIaKlOdo7otreVcCEWIiIiokTHohmiBDcaUvCtly/oxgoybPjM1cVxiigBaBpsbb+F8+1/haW3ft7d5JzNGNv1eYQ23cpiGSIiIiKiVfifpv5Zhfwf3VmETXnOOEVERETJSAgOTRXH9DdFPu9vgaAEV31uTbJD9pRDya2C7KmEll+NjE27gbRsAEDA54OiKKu+DhERxYd3JITBcVk3VlmQHqdoiIiIiChe/H4/zp49i7Nnz6K1tRWtra0YHo50/bjppptw4MCBJZ+rt7cXL7zwAo4fP47+/n5YLBYUFhbimmuuwfve9z7Y7fZYfRvzkiRJ90iJR9O0WZ1maotZNENERESU6Fg0Q5TgvvPGJfSOhHVjf7Z3HdJsJrxB1jRYL7wM59v/Cqv31Ly7ydmbMHbV5xEqu5WrhhIRERERrdJwQMa/HJ5dyH/ftSVxioiIiBKeqkD0X4SlvzHSOaavGZb+RkjDnVE5vZJeCCW3EnJuFeTcSii5VVDc6wBx6uVuSZImC2aIiOIllhPdRFFccDvVtPQGdNsuu4TSHKcpOs2YLddmx3ybC/NtLsy3eTDXsXXfffdF5TxHjx7FQw89hPHx8cmxYDA4WYhz6NAh3H///SgsLIzK9Zair68Pp06dQnZ2NkpLSw27Li1P11AIfaP6eVzbSlxxioaIiIiIlopFM0QJ7GzvGB4/1q0bu2a9G3s3m+wNf02D9eIrcL79bVh76ubdTc7aGCmW2fT7LJYhIiIiIoqS/zjSjoEx/YrOf37zOjjNWMhPRESzCMFhSP3NsPRNFMj0N0W6x8jjix+8CE2yQcnZDNkTKZBRcisjXWRYDENESSI727h/r9xut2HXioc2f69ue2tJFnJycuIUTXyleq5Jj/k2F+bbXJhv82CuYyc3NxclJSWoq5t/Hslczp8/jwcffBChUAgOhwN33nkntmzZglAohNdffx2HDh1CV1cXvva1r+HrX/860tLSYvQdTJFlGQ899BDC4TA+9rGPsdgqgc3sMuNOs2BdtiNO0RARERHRUrFohihBaZqGfzrUBkWbGrNKAv78PetNsXIagIlimVcnimVOzLubnLUB47s+j+Dm21ksQ0REREQURae7RvDkCa9u7IayLNy0iZOViYhMR1Mj3WP6mmDpb4LU1whLXxOk4UtROb3izJ/sHqN4KiMdZLI36rrHEBGRedV3+nXbW0oy4xQJEREREcXTPffcg7KyMpSVlSErKwterxef+9znlnWOH/zgBwiFQpAkCV/5yldQXl4++bUtW7agqKgIP/rRj9DV1YVnn30W+/btm3WORx99FOFweNb4fG677TYUFRXN+TVVVfEf//EfaGxsxHve8x7ceOONy/p+yFgnO/VFM9uKXeaZx0VERESUxPiOI1GC+p+mfhy/pL/R+sSuIpSaYXUCTYP14mtwvvWvsPa8O+9uinsdxnZ9HsHyOziBgoiIiIgoyhRVw9dfOo9pdfywW0T8+c0mKuQnIjIpITQy0T1mojimvwlSfwvE8Oiqz62J1onuMRVT3WNyK6GleaIQORERparTHUO67S0lXLGdiIiIyIzmKmBZjrNnz6KxsREAsHfvXl3BzGW33347Dh8+jI6ODrzwwgu4++67YbHo56S8+OKLCAaDS77u7t275yyaUVUVDz/8MI4cOYIbbrgB99133zK/IzJaXceIbru2OCNOkRARERHRcnCWOVECGgnK+NbLF3VjhRk2fObq4jhFZBBNA869jIyX/h6WrmPz7qa4SyeKZT7AYhkiIiIiohh599IQmnrGdGP3XVOCYrc9ThEREVHUaRrEofaJzjFNsFzuHjN0cfFjl0B15kL2VEW6xuRWQvZURbrHSNaonJ+IKNH5fL6YnVsURbjdU4Ujfr8fqqrG7Hrx1D8aQvdQQDe21hXb5zeRmCnXxHybDfNtLsy3eSRCrrOz2Sl8Pm+//fbk53v37p1zH1EUcdNNN+EnP/kJRkdHUV9fj9raWt0+jz322Kpjudxh5tVXX8V1112HAwcOQBTFVZ+XYmckKONsn/59k9oSV5yiISIiIqLl4GxzogT0yBsd6B/Vt3H98s3r4LBKcYooxjQNOPcK8PLXgItvzvsPk5JZirFdBxCsuJPFMkREREREMXayU79aWmm2Ax+7sjBO0RAR0aqFx2Dpb4alr3Gii0wjpL5miOGRxY9dhCZaoGSXRTrHeCoh50YKZTRnbhQCJyJKXoqiGHYtVVUNvZ6RGrqGddtpVhElmbaU/X4Xk8q5ptmYb3Nhvs2F+TYP5jqxNDc3AwDsdjs2btw4737V1dW6Y2YWzazW9IKZa6+9Fp///OdZMJME6rtHoWpT2xZRQFUBi2aIiIiIkoHhs87r6urw2muv4dy5cxgeHl70xlAQBHzve98zKDqi+DvbO4Ynjnfrxq7bkIWbNqXoSiCqAufhvwLqn5h3FyVzLcaunCiW4UqkRERERESGaOoZ1W3vXu+GVeKbdkRECU/TIA53wtLfCGmic4ylrwmi/wIEaIsfvwg1LWdacUykQEbJLgMkWxSCJyIimm3mvcnmPCckUYhTNERERESUzC5dugQAKCwshCTNv3BtcXHxrGOiRVVVPPzww3j11Vexe/duFswkkboOfUF/ZYETDitzR0RERJQMDCuaaW5uxmc+8xn87ne/W/IxmqaxaIZMRdM0fP2lNijT5i/YJAF//p51EIQUfANIU+E6/NewN/5szi8rGWsmOsvcxWIZIiIiIiKDNXvHdNuV+elxioSIiOYVHodloAVSXxMsfY2w9DdB6muCGBpe/NhFaIIEJXtjpCgmtxLyRAcZzZkHpOLrVERElLBmFs1UFvDehIiIiIiWLxQKYXg48pqJx+NZcF+XywW73Y5gMIj+/v6oxvHkk0/ilVdegcPhQHFxMX7+85/P2ueqq67C+vXrl3zOpca4UKHQasws+knVIqBTnfp7k9qSzJg9p4nMLPmmCObbXJhv82CuzYX5jjCkaKajowM33ngj+vr6oGmRagCXy4Xs7GzTPvFEc3m+oQ8nZqxKsP+qYqzJcsQpohjSNKS/8rdwzFEwo2SUYOzKP0aw8m6uUkpERERESxbLNybM9iLCUEBGhz+oG6suzjDNmz9my7eZMdfmktT51jQII12w9Ea6x1z+EAfbIGjqqk+vOrKg5FZFPvImHnM2ARb9a1JJ9Iwld75p2ZhvotTGgn4iIiIiioZAIDD5ucOx+Dwch8OBYDCoOy4aent7J+N56qmn5twnPz9/WUUzn/3sZ5e038GDB5d8ztVwu92GXMdIiqrhVNeIbuz6iiJkZ2fHKaLEkYr5pvkx3+bCfJsHc20uZs23IUUz//AP/4De3l4IgoA//MM/xJe//GWUl5cbcWmipKFpGv7zdX1L1+JMO/ZfVTzPEUlM05B+5B+QdvrH+nHJBrzvHzG08QNQYI7JeEREREQUPUa+MZHqLyI0tvbptm2SiJ2bimGVzDkBNdXzTVOYa3NJ2HyHx4HeJqD7NNBzeuoxMLj6cwsi4NkMFG4BCmqAgq1A4RaIGUUQBQGp3Oc3YfNNMcF8E6WOuQr6KwuccYqGiIiIiJJZKBSa/NxiWXzK3OV9ph8XDQcOHMCBAweiek6KvZaeYYwEZd3YznUsmCEiIiJKFoYUzfz617+GIAj45Cc/iUceecSISxIlnQsDAXQN6W+0/+zmdXBYU2xSmqbB+eY3kVb3ff24aAE+/EOg8jbA5wMUJT7xERERERER6juGdNsVhRmmLZghIooZTQOGu6aKYi4XyPSfAaLQPQYO92RRDAomimTyqwBr2urPTUREZJAW76hu2yoJ2Ojh/2VEREREtHw2m23yc1mWF9hTv8/04xLVww8/HO8QUt7RCz7d9tqcNORnLt6xiIiIiIgSgyFFM52dnQCAT37yk0Zcjigpnegc1m3npltxY1lWfIKJobR3/g3O4/+pG9MEEcKHvhcpmCEiIiIiorir7/TrtreUZMYpEiKiFCEH9d1jLhfIjA9E4eQC4NkUKYop3DJVKJNZAghCFM5PREQrJUmx66guiuKC26miuXdct705zwm7LZV7o81mllxTBPNtLsy3uTDf5sFcJy6HY6rAIRAILLr/5X2mH5eoPB7Pkvbz+XyL77QCoijqur76/X6oahQWhUkgvzvTo9veWpges+cz0Zkh3zSF+TYX5ts8mGtzSYR8Z2fHv0OfIUUz2dnZ8Hq9yMrKMuJyREmprmNEt11bkgEhxSY2pB37L6S//aBuTIOAsVv+Bek1d8YlJiIiIiJKHbF8cyIRXkQwUl27/rnckGU11Zs/Zsu3mTHX5mJIvjUNwlgvpL5GSL2NkPoaYelrhDjQCkFbfVddzZYBObcKSl4VlNxKKLlVUDwVs7vHqAAGB1d9vWTG329ziXe+E+HNHkpMRv5sTP8dSCXnfG267dpSj+l/51I11zQ35ttcmG9zYb7Ng7lOHDabDRkZGRgeHkZ/f/+C+46MjCAYDAJYekFKMlCU1b8+tRSqqhp2LaOcuDSk295a5Eq573GlUjHfND/m21yYb/Ngrs3FrPk2pGjmyiuvxPPPP4+WlhZs377diEsSJZ2TMzrN1Ja44hRJbDjqvo/0N/9p1vjIzV+DXHkn0uMQExERERGlFiNv6lP5RYTxkIK2fv1qzuV5aSn7/S5FKueb9Jhrc1l1vpUQJF8rLH2NkPqaYOlvihTIRKF7jAYBqrsUcm4V5IniGNlTCTVjnu4x/LldFH+/zYX5JkodpzvYBZOIiIiIomfNmjVobGxEd3c3FEWZtztkZ2en7hgyt77REDr8Qd1Yqs3rIiIiIkp1hhTNfOELX8Bzzz2HRx55BPfee68RlyRKKoNjYVwY0Ld+rS3OiFM00ec4/RO4Xntg1vjITX+HYPWHMfdLEEREREREFA8tvWPQpm1LArAp1xm3eIiIEoEw1gdLX6QoRupvgqWvCZKvFYIaXvW5VWs6FE9FpINMbmWkUCanHLBxiREiIjK30aCMc32jurEtxVypnYiIiJKEpgEjXsCRObtDLMVNRUUFGhsbEQwGce7cOWzevHnO/RoaGnTHkLmd7BjRbafbRJTxfRMiIiKipGJI0cx73/te/OVf/iW+8Y1v4LOf/Sy+/e1vw2q1GnFpoqRQ16m/uXJYRFTkp8bNlb3hSbhe/uqs8ZHr/xqBrR+LQ0RERERERLSQZq9+Utp6TxocVjFO0RARGUwJQ/Kdg6W/CVJfY6RQpr8R4lhfdE6fWRrpHOOphDxRIKNmrgEE/jtLRJSKfD5fzM4tiiLc7qkCEr/fD1VVY3a9eDhxaQjatIp+SQAKHEpMn9dEZIZc0xTm21yYb3NhvlOXEPRD9LVBGjwP0XcOkv8CbEMXgP5WIDSMkbt/jPDa6wyNKTs729DrJZOrrroKTz/9NADg8OHDcxbNqKqKV155BQCQnp6OmpoaI0OMqfk666yWKIoLbie7k136eV1bizNgsxoy7TIhpXq+SY/5Nhfm2zyYa3NhviMM+evt0UcfRVVVFa699lo88sgjePbZZ3HPPfegsrISTufihQGf/OQnDYiSKH7qOoZ12zVF6bBIyf+Pkr35l3D99v+dNT56zZ8jcMVn4hAREREREREtpqlnTLddmc9OB0SUmoTxAVh7TkPqa4LlcveYgbMQ1NCqz61ZnZBzKiIFMrlVE4Uy5dBsqdNZmIiIFqcoimHXUlXV0OsZob5L/97JBk8aLIKWct/ncqVirml+zLe5MN/mwnwnGTkAafACJH+kOGbqow3ieP+Chwq+c1CKdxsUKC1m06ZNqKqqQmNjIw4fPow9e/agvLxct8+vfvUrdHR0AABuvfVWWCypUxxhVEHV9CLBVFDf06Dbvrosn8Vp06RavmlhzLe5MN/mwVybi1nzbchf9Z/61KcgCMLkdldXFx566KElHSsIAotmKOXVderf+KktSf4JFLazv4brpS9DgKYbH9v1BYzv/N9xioqIiIiIiBbTNKPTTGUBi2aIKAUoIVi6TwLvHgM6jwM99cga7orOqTPWTBTHVEL2RApkVHcpu8cQERGtUrN3RkE/702IiIgollQZ4tClyWIYafD8VJHMcOeKTyv5zkcxSGpqakJ3d/fk9tDQ0OTn3d3dePnll3X779mzZ9Y5PvWpT+GrX/0qQqEQHnjgAdx1112oqalBKBTCG2+8gZdeegkAUFRUhDvuuCMm3wclj0BYwekOv27syvUsmCEiIiJKNoaVwmuatvhORCYUklU0dusnpdUWJ3fRjO38IWT85osQNP3KOGM7/jfGrvpCnKIiIiIiIqLFhGQVrX3jurGK/MU7xBIRJRxNgzR4DtaLr8HW/josHW9BDI8uftxCp7Q4IHsqoHgqIU92j6mEZk/u13GIiIgSVXMPC/qJiIgoyjQV4mjPtMKYSFGMOHge0lA7BFWO+iVF/8Won9PMDh06hFdeeWXOrzU3N6O5uVk3NlfRzIYNG/ClL30JDz30EMbHx/H444/P2qeoqAj3338/0tLSohI3Ja9THX6Elal5j4IAXLE2K34BEREREdGKGFI0c/48V02IpVAohMcffxznzp1Dd3c3RkZG4HQ6UVhYiJtvvhk33HBDSrUKTTWNPaMITb+5ArCt2BW/gFbJeuFVZLzwuVkvJo3Xfhpj13w5cvdIREREREQJqbVvHIqqX/SinEUzRJQkhPF+WNvfgK39CKztRyCNdC9+0DyUjOKJ4piJAhlPVaR7jChFMWIiIiKaT1BW0dqvL+ivzGfRDBERES2BpkEI+Ka6xVwukPFHimQEeXzxcyz3koIINXMNFPd6qDkb4SjeAnjKgJwyjKrpANcZTjhXXnklvvnNb+L555/H8ePHMTAwAIvFgsLCQuzevRvvf//7Ybfb4x1m1Pl8vpicVxRFuN3uyW2/3w9VVWNyLaMdadJ3mtqU64Q8PgJf9P8pSRqpnG+ajfk2F+bbPJhrc0mEfGdnx79TnyGVFOvWrTPiMqYVCATwm9/8Bps2bcL27duRmZmJ0dFRnDhxAg8//DDeeOMN3H///RBFMd6h0hzqOoZ12xtz05DhSM4iJ+ulN5H5/P+GoIZ04+NbPobR6/+aBTNERERERAmu2atfybk02wGXPTnvT4jIBOQgrF1HYW1/Hbb2I7D01i/7FJpkh+wph5JbBdlTATm3KtI9xuFe/GAiIiKKmda+MV1BvwBgMwv6iYiIaLrQ6EQhzPnZnWOC/phcUkkvgJK1HkrWBqhZGyY/VzLXApINACBJEhzTJ4T5fICixCQeMzpw4AAOHDgQlXPl5eVh//792L9/f1TOlwwUg34WVVU17Fqx9m67/t+T2mJXynxv0ZJK+abFMd/mwnybB3NtLmbNN2e+pACXy4Uf/vCHs7rJKIqCBx54AHV1dThx4gR27NgRpwhpIXWdI7rt2pKMOEWyOpbOo8j81X0QlKBuPFB1D0Zv+lsWzBARERERJYGmHn3RTAUnpRFRItE0SP3Nk51krJ3vQJADyztH4VZg4x6geDv8aaUIZ6wFRL5ESkRElGiaesZ026U5DqTb2PGNiIjIdJQgJH97pDjGN1UcI/rbII32xOSSqt0NJWsjlKx1kYKYyx/udYCNne+IzETTNJycMa9rW5LO6yIiIiIyO74jnAJEUZyzi4wkSdi1axfq6+vR3d0dh8hoMZqm4eSMTjO1xa44RbNylp46ZD77v2a1MQ6UfwAje/8RENjliIiIiIgoGTR5ZxbN8E1gIoovYdQLW/vrsLYfga39dYhjvcs6XkkvRHjtdQiVXg913Q3IKtk8+TWVK70SERElrJn3JpW8NyEiIkpdqgJxpGtax5iprjHi8CUImhr1S2qWtKkuMZcf3ZFHLS178RMQkSlc9AUwOC7rxpJxXhcRERERsWgGfr8fZ8+exdmzZ9Ha2orW1lYMD0eKGG666aZltfTs7e3FCy+8gOPHj6O/vx8WiwWFhYW45ppr8L73vQ92uz1W38acVFVFXV0dAGDt2rWGXpuW5qIvAN/Mm6skW5FA6q1H5i8/BTGsX1khWPZ+jPzePwMiV34jIiIiIkoGsqrhTK9+NefKAk5MIyKDhcdh7Xw7Uihz8TVYBlqWdbhmdSJcfDVCpdchvPYGKNllk91vJYmvURARESULdsEkIiJKMZoGYawvUhDjb5tRHHMBghqK/iVFC5TM0snCGHWySGYD1PSCydcLiMwkVq+PzVzsea7Fn5PR6W79eya56VaszXFCMPm/H6mab5ob820uzLd5MNfmwnxHRLVo5uabbwYACIKAQ4cOzRpfiZnnirb77rsvKuc5evQoHnroIYyPT3XaCAaDk4U4hw4dwv3334/CwsKoXG8usizjqaeeAgAMDw/j9OnT6OjowJ49e7B169aYXZdWrq5DX2jiSbeixG1scdVqSP3NcD+zH2JwSDceXP8eDN/yLUA0fV0eEREREVHSuDAwjqCs6cYqOTGNiGJNUyH11k92k7F2HlvWRBkNAuSCbZFuMmuvh1y4HZBsMQyYiIiIYk1WVJxlQT8REVFSEoJDE4UwU11jxMtdY2YsxBkNGgSoGcWzu8ZkbYCaUcI5C0QzZGcb00nJ7XYbcp1Ya+pr123v2uBBTk5OnKJJXKmSb1oa5ttcmG/zYK7Nxaz5jurd4csvvwwAs6qpX375ZQiCAE3T5jhqbpf3N7IyOzc3FyUlJZPdWZbq/PnzePDBBxEKheBwOHDnnXdiy5YtCIVCeP3113Ho0CF0dXXha1/7Gr7+9a8jLS0tJvHLsownn3xyclsQBNxxxx346Ec/GpPr0erVdQ7rtmuLXUmzGoHka4X76U9ADPh046HSGzB860OcoEJERERElGRmruRcmGFDltMap2iIKJWJw52wth+Brf0IrO1vQgwMLOt4JWMNQqXXI7z2eoTXXAPNkRWbQImIiFYpll3OUnl1wNb+AEKK/j3F6qIM03aNS+Vc02zMt7kw3+aSUvmWA5FCGN95SIPnJj8XB89DHO+PySXVtFwo2RugZm2YeszaADVrHWBxzNpfABCvvxxSKtdEJne0TT8nauc6Y4qOiIiIiCj6olo0c+ONN8454X++8URwzz33oKysDGVlZcjKyoLX68XnPve5ZZ3jBz/4AUKhECRJwle+8hWUl5dPfm3Lli0oKirCj370I3R1deHZZ5/Fvn37Zp3j0UcfRTgcXvI1b7vtNhQVFenGHA4HDh48CFVV4fP5cOzYMTz++ONoaWnB/fffD6eTKwQnmrqOGUUzJRlximR5RP8FZD79iVkveIVKdmPo1ocBKXm65RARERERUUSTlys5E1FsCKERWDvegvXia7C2vw7L4LllHa/aXAivuQbhtTcgtPY6qO51QIK+1khERDSdUas4A6m1OmD7OX1B/5rsNKwvzo9TNIknlXJNi2O+zYX5NpeEz7cSBgYvAv2tQP/ZqY+Bc4C/ffHjV8KeCXjKAM8mIGfi0VMGeMogOtxI1tKThM81Ec3JPxbGGa++Q9YOFs0QERERJa2YdJpZ6ngimKuAZTnOnj2LxsZGAMDevXt1BTOX3X777Th8+DA6Ojrwwgsv4O6774bFon/qX3zxRQSDwSVfd/fu3bOKZi4TRREejwe33HILMjIy8K1vfQtPPfUUPv7xjy/jO6NYGxwPo20goBtLhqIZcagD7qc/Dmm0RzceLtqJod9/BLDGppMSERERERHFVvOMTjMV+Vx4gYhWSJVh8Z6KdJO5eASWnhMQVHnJh2uCBLnwCoTWXo/w2usgF9QCYlRfxiQiIqIEdrrDr9veUsyJpkRERDGhqsBw17SimFZgYKJIxtcGLONefskke6QQJmfjRFHMpqnimPQ8LpJBFGM+n2/xnVZAFEVdgZjf74eqqjG5llFea9U/VzZJwBqnGrPnMJmkYr5pfsy3uTDf5sFcm0si5NvIBabmw3ebV+ntt9+e/Hzv3r1z7iOKIm666Sb85Cc/wejoKOrr61FbW6vb57HHHotJfJev09DQEJPz08qd7NSvRmC3iKhM8Elp4kh3pGBmuFM3Hi6oxdAd3wNsXImaiIiIiCgZqZqGZnaaIaJVEP0XYWs/AuvFI7B2vAkxOLSs4xX3eoRKb0B47XUIl+yGZk/8hUWIiIgoNuo7ZxTNlGTGKRIiIqIUoGnA2MBEl5hWfYFMfysgj0f/moIIZK3TF8Rc7iCTuQYQk7VnDFHyUxTFkOuoqmrYtWLlxCX9fUl1oQsitKT/vmIhFfJNS8d8mwvzbR7MtbmYNd8smlml5uZmAIDdbsfGjRvn3a+6ulp3zMyimVgZGBgAAEiSZMj1aOnqOoZ12zWF6bBIifvikDDai8ynPw5p6KJuXM6txtAd34dm42QWIiIiIqJk1TEYxGhI/6IIi2aIaCFCcAjWS2/CevE12Npfn/V6wWJUexbCa6+d6CZzPdTMkhhFSkREFD+xXIE4EVYHjAVV02Z1mlmXKZl6NedUzTXNjfk2F+bbXGKe79AopMHzEAfPQ/JNPA6eh+g7DzHoX/z4FVBdhVCyNkDNWg8leyPUrA1QsjdAzVwLSLbZB2gA/LGJJZEkwu92IqziTJTsZs7rqi1xxSkSIiIiIooGFs2s0qVLlwAAhYWFCxamFBcXzzommjHk5eXBbrfrxoPBIB599FEAwPbt26N6TVq9ug59p5naksQtOhHGB+B+5hOwDJ7Xjcs5m+H/4A+hOdzzHElERERERMmgqWdUt+1xWpGbbo1TNESUkJQwLD0nJrvJWLwnIWhLn/ChiVaEi3YgPFEkI+fVACIXeSEiotRm5Gp9qbI6YNvAOMbD+r8xyvPSUuJ7i5ZUyTUtDfNtLsy3uawo30oQkr8d0kRBjDTYBmmwLVIgM+aNTZyObCju9VCy1kPJ3gAla0Nk270OsC2w6A5/lifxd5so+ciKivou/fsm24oTd14XERERES2ORTOrEAqFMDwcqSr3eDwL7utyuWC32xEMBtHf3x/VON544w0899xzqKysRF5eHtLS0jAwMIATJ05geHgYVVVVuP3225d1zqXGGKsONuKMdrwzt5NdSFbR0K0vmtm+1p2QHYGEgB+uX+6HZeCMblzJ3oiRu38CMT1v1ddI9XyTHvNtHsy1uTDf5sJ8U6KK5d/Tqf5z39w7rtuuKEiHxWLelwxSPd80hblegKZB9LVGCmQuHoH10psQwqOLHzeN4imPFMmU3gC55CrdZJp4vALCfJsL820uzDdR6phZ0J/nssLDgn4iIjITVYE40jlREHN+2scFiMOXlrWAxVJplrRIMUzWRHFM1lRxjJbGjiVEZD5nescRkPX/3tYWs9MMERERUTIz7wyYKAgEApOfOxyORfd3OBwIBoO646Jh586d8Pl8aGlpQUtLCwKBAJxOJ0pLS3Hddddh7969y5489tnPfnZJ+x08eHAlIS/b9Na1qeDYBR9CiqYbu6l6LdzOBHvjJzAE/OzTQG+Dfjx7A6RPP4eszOK5j1ulVMs3LYz5Ng/m2lyYb3NhvilRZGcb9wZuqv3ctw606La3r/cY+nwmulTLN83P9Lke7QfOHY58tL4MDC2zW3J6HrBxD1B2M7BxD6TMYkgAFn/VLD5Mn2+TYb7NhfkmSl7NPWO67Yr8BVawJyIiSlaaBmHUC0t/61RRjL9tolDmAgQ1FP1LilYo7tKprjFZG6BOFMqo6QWAIET9mkREyaquc1i3XZrtQFaizekiIiIiomVh0cwqhEJTL1QsZQXey/tMPy4aysrKUFZWFtVzUmwduzCg2y4vcCVewUxwBPjxh4HO4/pxdymw/1kgRgUzRERERERkLE3TUN85pBvbUsyJpkSmIAeBi78DWn8bKZTpOglAW/SwSRYHUHoNULY3UiiTXwOwuwMRERGtQpNX32mmkkUzRESUxITg0ERRTBss/jZgrAPoPwv0n0NWaHjR45dLgwA1o3iqU8y0zjFqRgkgcooQkdktd9HlpUq1DrAnO0d021eUZMTsuUtGqZZvWhjzbS7Mt3kw1+bCfEfwjngVbDbb5OeyLC+6/+V9ph+XqB5++OF4h5DSjrb5dNs71+XEKZJ5hMaAxz8CtP9OP55RDOx/BshaG5+4iIiIiIgo6rr8AQyM6hd32FLCohmilKRpgLcBaD0cKZS58AYgjy/vHIVbgY17I4UypdcA1rTYxEpERESmo2kamnpmFM0UOOMUDRER0RLJAUiDF6Y6xkx2jTkPcXxg8eNXQHXmRopi3OunFcdsgOJeB1jsMbkmEaUGozrMJ3sH2FNd+vuSa8sLDXvuklGy55uWh/k2F+bbPJhrczFrvlk0swoOh2Py80AgsOj+l/eZflyi8ng8S9rP5/MtvtMKiKKo+6X0+/1QVTUm1zKapml4p61fN1aVZ4vZc7lscgCuZ++D9eJrumHVmYvhux6DKmQDUY41lfNNszHf5sFcmwvzbS6JkG++ME1zieXf1Inwcx8rvzujf/M+wy4hHQH4fME4RRR/qZxv0jNDroVRL6wXj8By8QisF1+DONa7rOPV9AKES29AuPQGyGuvhZaeN/XFkQCAxV8TSxRmyDdNYb7NJd755v0JUXR0DYUwHFR0Y5UF7DRDREQJQAlDHL4EabBtsnPMZIHMSFdMLqnaXNM6xkQKY9SJIhnNnhGTaxIREdA5OI4uv/41z53reN9PRERElOxYNLMKNpsNGRkZGB4eRn9//4L7joyMIBiMTDhaakFKMlAUZfGdokBVVcOuFWsXfQH4xvSdibYVpSfG96eEkPnCgdkFM44c+D/4GJTM9YABcaZSvmlxzLd5MNfmwnybC/NNicLIn8NU+rlv7BrWbVfkp3NS8QyplG9aWErkOjwOa+fbsLW/Dmv7EVj6m5d1uGZJQ7jkaoRKr0d47fVQsjcBgjC1Q7I/P9OkRL5pyZhvc2G+iZLTzC4z7jQLCjJscYqGiIhMR1MhjnRPdIlpg+Sb6hwjDl+CoMqLn2O5l5Rs07rFTOsYk7UeWppHfz9ORESGOHpBv0CbO82KsjxXnKIhIiIiomhh0cwqrVmzBo2Njeju7oaiKJAkac79Ojs7dceQedV16CekeZxWlLgToEWyKiPjf74EW9tv9cP2TPg/+EMonvI4BUZERERERLHU5NVPTKsscMYpEiJaEU2F1NswUSTzGqydxyCooaUfDgFy/laE116HUOkNkAu3AxInpxIREZHxZt2b5DshcLIwERFFk6ZBCPimusQMtk11jfG3QZCj301VEySomWugZm+EtaAS8JQBnk0YtORBduYDghj1axIRzcfn8y2+0wrEuwNsNL3Rou8gtrUoHX7/YHyCSVCplG9aHPNtLsy3eTDX5pII+c7Ojn/nPhbNrFJFRQUaGxsRDAZx7tw5bN68ec79GhoadMeQec0smtlW4or/mz6qAteLX4b93P/oh60uDH3gh1DyquMUGBERERERxVpzz8yimfQ4RUJESyUOd8La/jps7UdgbX8DYmBgWccrGSUIr70+0k2m5BpoafF/kZKIiIhoZqcZ3psQEdFKCaERiINtE11jzk8Vxgy2QQz6Y3JNJb1wWqeYyIeatR5K5hpAskGSJN0kIc3nS6lurkSUHIzqyprMHWDrLs2Y11XsStrvxSjJnG9aPubbXJhv82CuzcWs+Y5b0cylS5fQ3d2NsbEx7Nq1C2lpafEKZVWuuuoqPP300wCAw4cPz1k0o6oqXnnlFQBAeno6ampqjAyREszMopnakow4RTJBU+H67f1wnHlWP2x1YugD34NcsC1OgRERERERUaz1j4bhHQnrxirzOTGNKNEIoRFYO96Ctf0IrO2vw+JrXdbxqs2FcMluhEtvQGjtdVDd64F4L+BBRERENI2mabOLZnhvQkREC1GCkPzt07rGnIc0eAHi4HlIY96YXFJ1ZE8rjJlWIONeB1jZvZmIKNmNhRS0zOiAua04zvO6iIiIiCgqDC2aGR4exj/90z/hBz/4ATo7OyfHT506herqqU4WP/3pT/HUU0/B7XbjO9/5jpEhLtumTZtQVVWFxsZGHD58GHv27EF5eblun1/96lfo6OgAANx6662wWFKnwY8kSTE5ryiKC24nK/94GOcH9C2dd6x1x+x5XJSmwfnbr8Le9HP9sGTHyAe+B23N1TAislTNN82N+TYP5tpcmG9zYb6JUkfzjDd/HBYRa7MdcYqGiCapCizeU7C2vwZb++uwdL8LQZWXfLgmSJALaie7ycgFtYCYOq9HERERUerpGw1jYEz/9w47zRAREVQF4kgnJN/5aV1jJjrGDHdA0NSoX1KzOicLYaZ3jVGy1kNzZEX9ekRElDgaukegaFPbkgDUFPK+hIiIiCgVGPZu+ZkzZ3Dbbbfh3Llz0LSpvy6FOVa13L17Nz7+8Y9D0zTs378f119/fcziampqQnd39+T20NDQ5Ofd3d14+eWXdfvv2bNn1jk+9alP4atf/SpCoRAeeOAB3HXXXaipqUEoFMIbb7yBl156CQBQVFSEO+64IybfR7xMbx8cS26325DrxNrx7h7dtt0iYnfFGtgscZhoqmnAr+8HTv9EPy7ZIPzB48jY9B7jY5qQKvmmpWG+zYO5Nhfm21yYb6LkNbNopjzfCUlk9wmieBD9F2FrPwLrxSOwdrwJMTi0+EHTKO71CJVej/Da6xAuuQaanSsgEhERUfKY2WUm3SaiJMsep2iIiMhQmgZhrBfSYJu+a4z/AqTBCxDUUPQvKVqhuEunOsa410OdKI5R0/PZnZWIyKROdIzotivy05Fmi9NCyEREREQUVYYUzQQCAfz+7/8+WltbkZ6ejgMHDuDGG2/E7bffPuf+69evx969e/Hb3/4Wv/zlL2NaNHPo0CG88sorc36tubkZzc3NurG5imY2bNiAL33pS3jooYcwPj6Oxx9/fNY+RUVFuP/++5GWlhaVuCk5Hb3g023Xrs2KX8HMS38DvPWwfly0APseA+JYMENERERERMZp6hnTbXMlZyLjCMEhWC+9CWv7EdguHoE0dHFZx6t2N8Jrr0No7XUIr70eauaaGEVKREREKxXLLvOp1gW2uXdct11R4ILVwk55QOrlmhbGfJuL2fItBP0QfZGCmMnHwfOQfOchhEcXP8EyaRCgZpZMFcNkX37cCDWjeM6OrAKAWP3vbbZ8mxlzTZS8TnYO67a3lbjiFAkRERERRZshrzY//PDDOHv2LNLT0/Haa6/hiiuuWPSYW2+9FYcOHcKbb74Z+wCj4Morr8Q3v/lNPP/88zh+/DgGBgZgsVhQWFiI3bt34/3vfz/sdq6IZXbH2vRFM1euM6ZTzywvfx14/V/1Y4IE3PPfQMX74xMTEREREREZbuZqzpX5LJohihklDEtPHWztr8F68XVYvHUQNHXJh2uiFXLhDoRKr0N47Q2Q82oAkascEhERJbLsbOPeA0j2LrCtA6267StKPYY+f8kk2XNNy8N8m0tK5Ds0BgycAwZagf6zQP+0x7G+2FzTVQDklAGeMsCzaeKjDEL2BkhWByQA1thceVVSIt+0JMw1UXJQNQ2nOvWdZmqL2c2biIiIKFUYUjTz1FNPQRAEfPGLX1xSwQwA1NbWAgDOnDkTw8iAAwcO4MCBA1E5V15eHvbv34/9+/dH5XzJwOfzLb7TCoiiqHvhwO/3Q1WXPpEkEYUVFXWXBnVjlbnWmD2H83G88+9Ie+OfdWMaBIy+718QLroRMDgeIDXzTfNjvs2DuTYX5ttcEiHfnDhDtHrDARkd/qBurKLAGadoiFKQpkEaPA9r+xFYLx6BteMtiOGRxY+bRs7ZPNFN5nqEi68CbCxsIyIiotTU0Dmk295SkhmnSIiIaFFKGBi8OFEMc3ZacUwrMHQpNte0u2cVxcBTFimWcfD/DCKipYpVN8xU6LDU1juG4aCiG9u+1h3TDqLJKhXyTUvHfJsL820ezLW5MN8RhhTNNDY2AgBuueWWJR/j8XgAAIODg7EIiaJEUZTFd4oCVVUNu1as1HcOIyjrJ5PWFKQb+n05Tvz3rIIZABh5z9cR3HQ7kCDPcSrkm5aO+TYP5tpcmG9zYb6JklOzd0y3bZUEbPSkxSkaotQgjA/AeukN2Npfh/Xia5BGupZ1vJrmQWjtdQivvQ7htddDdRXGKFIiIiKixDEwGkLH4LhubEsJV2QnIoorVQWGO/UFMZcLZAYvAKoc/WtaHBMdYzZOK46Z+HB6AEGI/jWJiEzGqEXpkrHD0pkzw7rtkqw0VK7j67NLkYz5ppVjvs2F+TYP5tpEgsOmzbchRTMjI5FVNF0u15KPCQYjq91arYnYKJdo+eo69KvJbvSkwZ1myK8gAMBx6kdwHfmHWePDex5AsOoew+IgIiIiIqLE0OQd1W1vynXCKplzRRGiFVOCsHYdg/Xi67C2H4Gltx4CtCUfrkk2hIuvmuwmo+RWAgJ/D4mIiFJFLDvNJ0IX2Gh56/ygbtthEZFtCcf0+UsmqZRrWhzzbS5xz7emQRgfgDjYBmnwHETfeUiD5yEOnoc02AZBDkT/koIENXMt1OwNULI2QMneADUr8rmWUTT3PXEIQGgw6rEYLe75JsMkQq6NKowgSiVH2/T3HzvW8feIiIiIklhoFPA2Ad6GyEdPPeCNNEHBn5+Jb2xxYsiMfY/Hg+7ubrS1tWHHjh1LOqa+vh4AUFjIim1KDXWd+hUJakuWXkS2WvaGn8H1yt/MGh+54asIbvkDw+IgIiIiIqLE0dyjL5qpLHDGKRKiJKJpkAZaYL14BLb2I7B2vgNBHl/8uGnk3KqJbjI3IFx8ZWQlXSIiIkpJRnZlTeYusPVd+vdPNuc5IWgqkvTbiblkzjUtH/NtLrHKtxAamSiMiRTDSP7Ln5+HGByK+vUAQHEVRopisjZAca+f/FzNXANI8yycqmoAzPPzzt9v82CuiZLD8Yv6opmdpVnxCYSIiIhoOZRwpCustwHoaYgUxnjrAV/b/MeM9gHpuYaFmCgMKZrZsWMHnn/+ebz66qu4++67l3TMo48+CkEQcM0118Q4OqLY0zQNdR0zimaKMwy5tr35Gbh+e/+s8dFr/xKB2k8ZEgMRERERESWephlFMxX56XGKhCixCaO9sF16HdaLR2Btfx3SmHdZxyvpBQivvQ7htdcjtPY6aE7zvQBJREREtJBmLwv6iYhWTQlC8l+MFMVMFMRIg22RYpll3sculerIgZK1bqo4JmsDlKz1UNzrACv/LSciSkSx6uaYCB2WVmNgNITzffr7kvIcC7tfziPZ803Lw3ybC/NtHsx1EtI0iMOXIPW1QOpvgtjfAqmvGZKvFYIaXtapRs6/g3DJ7hgFOrdE6IZpSNHMPffcg+eeew6PPPII/vRP/xSlpaUL7v/ggw/i1VdfhSAI+IM/YBcMSn6XBoMYGJN1Y7UlsS+asZ19Hq6XvgwBmm589OovYXzHH8X8+kRERERElJjGQwou+AK6scoCFs0QAQDC47B2vgNr+xHY2l+Hpb9pWYdrljSES65GaO31CK+9DkrOZkAQYhQsERERUfJjQT8R0RKpCsSRTki+81OFMf62SHHMcAcELfoTnDSrc6oYRtc1Zj00R1bUr0dERLFlVNejZOuw9O4lv247zSpio8eRVN9DPCVbvml1mG9zYb7Ng7lOLML4ACz9zZD6WyKPAy2Q+s9ADI9E5fxibyOUwl1ROVcyMaRo5hOf+AS+9a1v4eTJk9izZw/+/d//He9///snvy4IAjRNw9GjR/Hggw/ipz/9KQRBwA033IBbb73ViBBphSRJisl5RVFccDvZnOzSv+GT47RinccJIYaTZqznXkT6b/5k1ouj47sOIHT1FyEl0ISdVMs3LYz5Ng/m2lyYb3NhvomS35m+MajTauslAdiUyxVAyaRUFeg5BbT+Fq7mF2HpfAeCElry4RoEyPlbEF57feSjaDsg2WMYMBEREVHqGAnKaB8M6sZY0E9EpqZpEMZ6dd1iJh/9FyGoS79fXfIlRSsU97qJwpj1us4xmjOPC0EQEVHKq+vQT0DdUuSCReT/f0RERBRj4TFYBs7oimMs/c0Qx/qicnpNEKG410PNrYRtTS2QXw3kVyMoZGFGLwZTMKRoRhRF/PKXv8T111+PtrY23H777XA6pwoG9uzZg+HhYQSDkRfFNU1DWVkZDh48aER4tApGtUua3gYsGTX1teu2d23IQU5OTuwueOYl4PkDgKrvboNrPoe0Wx5AWoK/sJns+ablYb7Ng7k2F+bbXJhvouQzcyXn9Z40OKwsgCOTCI/D2lMHS/cx2LqOAz3vAoHISoLWJZ5CyShBeO11CJXegHDJNdDS4t9OmoiIiCgZNXvHdNsWUcBGT1qcoiEiMpCmQfRfBNpfAvpagP6zyOhtgeg7DzE8uvjxy70cBKiZayY6xUwvjFkPNaMYEA2ZOkJERJSQTnYO67a3FbviFAkRERGlJCUcWRBjoigmUiTTAnGoHUKUqlcUVyGUnHLIngoononH7E2AxQ5JkmCbPt/f5wNM2FnIsFc+SktLceLECXz+85/HwYMHMTo69UJPb2/v5OeCIGDfvn14+OGHDSvIIIq1o20+3faV62JYMHPuZeCJjwEzV8Xd9YfALQ9wJSAiIiIiIkJTj35iWkU+V3Km1CWO9MDSfQzWruOwdB2Dpa8BwsxFJhahWl0Ir9mN8NrrESq9Hqp7Pe+viYiIiKJgZkF/WW4abBYW9BNRCpKDsPSejtybdh+Htfv4rJVjozF5Q3XmTRbD6IpjMksBC7uiEhERzRSSVTR26+9Laksy4hQNERERJTVNgzjcCam/GZaBlshjfwsk37modY5V7ZlQPBWRopjLRTI5m6E5uODxYgxdLiQnJwc//vGP8Y//+I947rnncPToUXi9XiiKAo/Hg+3bt+OOO+5AeXm5kWERxdTgWAhnvPo2njvXx6gg7MIbwON/AMgB/fj2TwC3/jMn9BAREREREQCgyat/A6iywBmnSIiiTFUgDbRMFshYu45BGr607NNoggS5YBvCa29AqPQ6yPm1gLTUPjREREREtFQzO81UFrCgn4hSgzDaC2v3xL1p93FYvPXRmyBjy4CSvXGia8yGyeIYNWsdNBsn+RIRES1Hk3cUIUW/wvvWInaaISIiooUJ4wPTusY0QxpogdR/BmJ4ZPGDl0CT7FByNumLYzzlUNMLOBd8heLSY3fdunX44z/+43hcmqLM5/MtvtMKiKIIt3uq6s3v90NV1ZhcK9Zeax3QbdstItY41ag/d1LXcWT84hMQwvo3mIKVd2Hs+r8F/P6oXi+aUinftDjm2zyYa3Nhvs0lEfLNrpREKxeSVZzrG9eNVbLTDCWr0CisPSdg6ToOa9cxWHrehRha4QuRORsRKLkWobXXIVxyDTQ7JxoRERERxdrMTjO8NyGipDS5gMOxyP1p93FIQ+2rOqVmcUBxr5vqFDOtc4zmyOEEGSIioig52aF/PXmjJw0ZjrhMqSQiIqJEFB6DZeCMrjjG0t88q3vsSmmCGFkUw1OuK5BR3aWAKEXlGhTBv/BoVRRFMeQ6qqoadq1oe7d9SLddXZgOEVpUvx/Jexqup/dDCOvfXApuug3DN38d0AAk0fOXzPmm5WO+zYO5Nhfm21yYb6Lkcq5/HLKqXzWtPJ+dZig5iMOdkx1krN3HIfU1QtCWX7ipCRKU3ErIxbvg2HwjsHY34C7BuM/H/9OIiIiIDBIIK2gbmFHQzy6YRJQEhOAQLN0nIh1kuo/D0n0C4oz3aZfMmQuU7AA8mzCaVgQ5M1Ioo7oKAUGMbuBEREQ0S13nsG67toSLKREREZmSEobkb4PU3wxLf0vkcaAFor8dArTFj1/KJVyFuq4xsqcCSnYZYHFE5fy0MBbNEMVYXceMm6vi6LbwlPqa4X5mP8SQ/jrBDb+H4ff+CyDy15yIiIiIiKbMXMm5NNsBl533DZSAVBlSX9NEgUxktV5ppGtlp7K5IBduR7hoJ+SinQjn1wK2dEiSBAe7lxERERHFxZneMUyv5xcFYHMei2aIKMFoGkR/G6xdkQIZa9dxSANnVjRhRoMAxVOBcNEOyIU7oJbsgnt97WTXmBAXciAiIjKUpmmzOs1Ee14XERERJRhNgzjcOVkUM1kk4zsHQQ1F5RKqPROKpwJyTnnk0VMBJWczNIc7KuenlTF8VoyqqmhoaMC5c+cwPDy8pBd9PvnJTxoQGVH0hRUV9d0zbq6iuCKBNHAW7mc+DjE4qBsPld6I4fd/G5CsUbsWERERERGlhplFMxXsMkMJQggOw9L97mSBjLXnBITw2IrOpWSunSqQKdwJJWcT21cTERERJZimHv3feutz0uCw8m82IoozOQCL95SuSEYMDKzoVKrVBbnwCsiFOyKFMgVXQLNPvVcsSdJkwQwREZERJCk2f2+LorjgdqJq9wXQPxbWjW0vdcfseUoVyZpvWhnm21yYb/MwS66F8QFI/c2Q+pojj/3NkPpbIIRGFj94CTTJDsWzGYqnHIqnMvKYWwktvWDW/X48n2Gz5HsxhhXNjI2N4YEHHsB3v/td9Pf3L/k4QRBYNENJq9k7hqCsX2VoW3F0imbEwTZkPv0JiOP6F2lDa67B0G0PA5I9KtchIiIiIqLU0uzVT0yryE+PUyRkapoGcfhSZBJS1zFYu45B6m9e2Uq9ogVyXg3kwp0IF+1AuGgntPT8GARNRERERNHU5J1R0F/Agn4iMp440jNZHGPpPg5Lbz0ENbz4gXNQ3KUIF+6YWMBhB5SczVzAgYiIEkq2QV233e7kWEX98PlLum1Pug3bNhRBYFHrsiRLvik6mG9zYb7NI+lzHRoFepuAngbA2wh46yOPIz3ROb8gAjllQH4VUFATecyvgZCzARZRMr6DySolfb5XyJA8jYyMYO/evTh+/Dg0bfmTH4iS1YmOYd32hhwH3Gmr/7UThy7B/fTHIY15dePh4l0Y+v1HAItj1dcgIiIiIqLUI6saWnr1RTOVBSyaIQMoYVj6GicLZCxdx2bd0y6VandPrtIbLtoJOX8bYE2LcsBEREREFGszu2BWsqCfiGJNlSH1NcHafTzS4bT7OKThjhWdSpNskPO3ThTJ7EC4cAc0Z26UAyYiIqJYOnbBp9veuS6bBTNERESJTAkD/a1TRTE9DYC3AfC1AStYnHFOGcVAQfVkYQzyq4C8Cr4fnQIMKZp54IEHcOzYMQDA7t278Ud/9Eeora1FVlaWaVv8kDnUzSiaqS1ZfZcZcaQrUjAz0qUbDxdsx9Dt3wWsXImNiIiIiIjmdmFgHEFZ1Y1V5vMegqJPCPgnVuo9Flmt11sHQQ6s6FyKe/1UgUzRTijZZZHVfIiIiIgoaYUVFa1947oxFvQTUbQJgUFYut+dKpLpqYMgjy9+4BxUZx7ChZfvTXdAzqsGJHuUIyYiIiIjzVU0Q0RERAlA0wB/+0RhTH2kMMbbCPS1AEooOtdwuKeKYgqqgfyJQpk0/j2QqgwpmnnyySchCAJuu+02PPPMMyyUIVPQNA0nO0Z0Y6stmhFGvXD/4uOQhtp143JeDYY+8N/QbK5VnZ+IiIiIiFLbzJWcCzJsyHJa4xQNpQxNg+i/MFEgcwyW7uOwDJxZ2alEG+T8mskCGa7US0RERJSaWvvGIav61R8rWNBPRKuhaZAGz090kDkGS9dxWHxnV3YqQYTiqUS4aMdkp1M1Yw3AleeJiCjJ+Xy+xXdaAVEU4Xa7J7f9fj9UVV3giPgbDspo7tYvhlyeY4nZc5RKkjHftHLMt7kw3+aRSLkWxgcg9TdD6muOPPY3Q+pvgRAaWfzgJdAkG5SczVByK6B4Jj5yK6GlF8y+zw8ACKTe3wKJkO/s7PgXIxlSNNPREWlp/IUvfIEFMylGkqSYnHfmz0ky/ty0+wLoHwvrxravda/4ORPG+pHxzCch+dt047KnEiN3/QhiElc3pkK+aemYb/Ngrs2F+TYX5psoeTV7x3TbXMmZVkQJwuKtnyyQsXYdgzjev6JTqY6cyCSky51k8rYCFq7US0RERJTqmrz6gv61WXa47Ia8bUlEqSI8Dov3JKxdxyc7yYjBwRWdSrVlQC7cPlkkIxfUcrFCIiJKSYqiGHIdVVUNu9ZK1bX7Mb2M3yoJKM9LS/i4E1Ey5Juih/k2F+bbPAzJdXgMloGzkPqbYelvgTQQeRTHeqNyek0QobjXRYpicsoheyqgeMqhuNcB4hzztk1cEGbW321DXn3Oz8/HpUuXkJvLlUFTjVGVX9Mr3JLFb89d0m170m2o3VgEYSUrEI0NAD/9FDBzpd7cclg+9StkufJWHmgCSsZ808ox3+bBXJsL820uzDdR8pjZaaaSKznTEgjjA7B2vwvL5U4y3pMQVtj2Ws4um+ggsxNy0Q4oWRu4Ui8RERGRCTXPvDdhQT8RLUIc7pxYuOF4pMNpXyMEVV7RueSsDZMdZOTCHVByNgECFwYiIiIyk5Od+tXrqwrSYbfw7wEiIqJVU8KQ/G2Q+ltgmegcYxlogehvhwBt8eOXcon0QiiezROFMRWQc8oj9/YWR1TOT6nJkKKZq666CpcuXUJzczO2b99uxCWJ4u7oBX2Lrp3rsldWMBPwAz+6G+g5pR/P2Qh88pdAihXMEBERERGtVKw6YQKp0WFJ1TS0zOg0U12UEdPnLVmlQr5XTNMgDp6DpfMYLJ1HYek6Csl3bmWnkuyQC2ohF++EUrQTctFOaDO6pMb7p8/UuTYh5ttcmG9zYb4pUfEeZX5NM+5NqgpdvDeZR7LnmpaH+Z6ghCH1NsDSdWzi4zjEka4VneryvalStANy8U7IhTugOT26feL1rw/zbS7Mt3kw10TJoa5jWLddW5wRp0iIiIiSlKZBHO6ENHC5OGbi0XcOgrqyBRhnUm0ZkaKYia4xsqcCSs5maI6sqJyfzMWQopk/+ZM/wVNPPYV/+7d/w7333ruywgGiJHPswoBu+8r1K+jKExwGfnQP0PmufjyrFNj/LJBZtIoIiYiIiIhSi1GdMIHk7LDU1jeKkZC+xe7V5SXIdnO1lcUkY76XLByI3HO2/w64+BbQ/hYwPrD4cXNJzwdKrwbWXg2s3Q2hqBZWiw3W6EYcUymda5qF+TYX5ttcmG9KFLxHmZusqDjTqy+a2bWp0NDnK5klU65p9UyT77EBoP3tyD1p+9tAxzFAHl/ZuTKKJu5LIx9C4dakuTc1Tb4JAPNtJsw1UeKRVQ2nu/SdZraVuOIUDRERUeITxgdg6W+B1N88rUjmDMTwyOIHL4Em2aDkbI50jLlcHOMph5peCLDmgKLEkKKZa6+9Ft/4xjfwF3/xF/jIRz6C//qv/0JWVpYRl6YY8/l8i++0AqIo6l448Pv9UFU1JteKhaGAjJYe/X8G5TnW5T1f4XG4nvkUrB1v64ZVVxGG7/wxVDUdiNHzb7RkzzctD/NtHsy1uTDf5pII+eZEGqLlO93p123numwoyLTHKRqKm5HeiQKZ30UmI3WeANTwys6VVzVRJLM78pi9gS9aEhEREdGizvWNIhDWv45QU8zJpESmoapAX8tUgUz7W0D/mZWdS5CAwq0TBTJXRR7da3hvSkRERAtq7RvD2Ix7km3sNENERASEx2AZODvVNWaiQEYc643K6TVBhOJeByWnXNdBRnGXAqIhJQ1kYob9hH35y19GWVkZ7rvvPqxduxbvfe97UV5eDqfTueix/+f//B8DIqSVUBRl8Z2iQFVVw64VDe+26yej2SQB5bmOpX8PchCZz/0RrB1v6YZVZx4GP/gYVFcxkETPx3IlW75pdZhv82CuzYX5Nhfmmyg51HcO6bZrit3sBJvqVBXoa54okHk7UiwzcG5l57KkAWuujExAKt0d+TyNBYxEREREtHynO/TvoRS7HchJt8UpGiKKueBIpHPM5QKZS28DAf/ix83FkaUvkCnZAdjSoxouERERpb66jmHd9posOzzpydCXjoiIKEpUGfA2Ad4GwNuA9I46SH1NEP3tEKBF5RJKeiEUz+ZIYUzORPeYnE2AxRGV8xMtl2FFM16vF7/4xS8mV6F+5plnlnwsi2Yo2cy8uaoudMFmEZd2sBJC5gsHYGs/ohtWHTnw3/kY1OwN0QqTiIiIiCilxKoTJpAYHZZW60Rbv257k8cW0+csmSVtvsPjsPScgKXzOCxdRyF1HYcYXNlEJDW9AHLxlZCLdkIuvhJKbhUgTXvTMAAgkPw/P0mba1oR5ttcmG9ziXe+2QmT5sN7lLkdO+fVbZfnO3lvsoBkzjUtX9LnW9MgDndA6joGS9dxWDqPQuprhKCt7HtQsssi96VFOyEX74SavREQpr3nOhqKfCSppM83LQvzbR6JkGveoxAt7GTniG6bXWaIiChlaRrEkS5I/c2RzjGXO8gMngOUqfvp1Sxno9oydF1jIsUxm6E5slYdPlE0GVI009/fjxtvvBFnzpyBpkWnAo0okc0smqktcS3tQCWMjP/5ImwXDuuGVbsb/jsfhZKzOVohEhERERGlHCM7HiVbhyVN09DYo38TaHNuWlJ9D/GUqPkWR3pg6T4Oa9cxWLqOwdLXAEGVl30eDQKU3EqEi3ZCLtyJcNEOqBklwMxORAn4HERbouaaYoP5Nhfm21yYb0oUvEeZW2O3/t6kIo/3JsuRTLmm1Uv4fCshWHobJu5Nj8PSfRzSaM+KTqVZHAgX1EIu3BG5Py24AtrMDqeqBiCBn49VSvh8U1Qx3+bBXBMlnhXP6yIiIkpgwrgvUhAz0DJRJNMCaaAFYmhk8YOXQJNsUHI2Q87ZPFEkUw7FUwE1vXD2+8pECciQopl//Md/REtLCwDgnnvuwR//8R+jtrYWWVlZEPiLQilGVlTUd4/qxmpLlrYiQfqRf4D93G90Y6rNhaEP/CCyqi8REREREdEK9AyHMDiuL6aoLEiPUzS0IqoCaeDMZIGMtesYpOFLKzuVNR1y4RVTE5EKr4Bm40p6RERERBR7qqah2TumG+O9CVHyEMb6YO1+d6pIxnsSgrKyTi9KRnHkvrRwB8JFO6B4KvUdTomIiIhiwDscQteQ/u+XWnaaISKiZBIeh2XgzFTXmIHIozjWG5XTa4IIxb0OSk65rjhGcZcCoiFlB0QxYchP7y9/+UsIgoCPf/zj+OEPf2jEJYnipsk7hqCsb627rXjxFQnEkS44Tv9YN6ZZnRi64/uQC7ZFNUYiIiIiIjKXmZPSXHYJJW57nKKhJQmNwtpzApauiU4yPe+ueBWgyYlIRTsRLtoJxVPBFzSJiIiIKC46BoMYDelXWmfRDFGC0lRI/Wdg7T4WuTftPg7Jf2FlpxItkHOrIRdFimTkoh1QXUVRDpiIiIhocSc79V1m0m0SNuamxSkaIiKiBagypMG2SNeYye4xzRD97RCgRecaGUVAfjUC7o0IZ2+OFMjkbAYsjuicnyiBGDJDoqOjAwDwmc98xojLEcXVzBae63McyEpbfFUke8OTELSpYhtNssN/+3chF+2IeoxERERERGQuTT36bpiV+ens/JpgxOHOyQ4y1u7jkPqaIGjK4gfOoAkSlNzKyQIZuWgnJyIRERERUcKYeW/icVqRm87OEkSJQAgNw9JzcqJA5hgs3StfvEF1ZE8Wx4QLd0DO3wpYORmViIiI4q+uU//3zbZiF0S+X0JERPGkaRBHuiaKYlqmimQGWiGoK+vuOpNqy9B1jdHyKpGx8SrAmQMAGPf5oCjLf2+aKJkYUjSTm5uLjo4OZGSwlSGlvplFM7UlS/i5VxU4Gg/qhgKVd0EuuTqaoRERERERkUk1eWcUzRQ44xQJAYisCtTXBGv3RBeZrmOQRrpWdiqbC3Lh9skCmXB+LWDjSt1ERERElJhm3ptUFDhZ0E8UD5oGcagd1u7jU11k+pt1C/wth5yzeaLD6Q6EC3dCzVoP8HebiIiIEtDJlczrIiIiihJh3AdLfzOkyc4xLZAGWla8aMVMmmSDkr1pojimHLKnAoqnAmp6oe4+XZIkwJkdlWsSJQtDimZuuOEG/PSnP8Xp06exYwe7ZlDq0jRt1ooEtcWL31xZ249AGu7UjQWr741qbEREREREZF7NM1ZzrshnUYWRhNAwLN0nJgtkLD11EMOjix84ByVz7VSBTOGOSHtsUYpyxEREREREsTGrC2YB702IDCEHYek9DWvXcVi6I0Uy4ljfik6lWZ0IF9ROFMnshFxwBTSHO8oBExERUSxIUmxeSxZFccHtRDEeVtDsHdONXbEmM2bPS6pKlnxTdDDf5sJ8R1F4HNLAGUh9TZAmusdI/c0QR71ROb0GAWrWeiieCiiecii5lVA85ZFFLER9aYAAYOb/dMy1uTDfEYYUzfzZn/0Zfv7zn+Ob3/wm9u3bB4fDYcRliQzX4Q+ifzSsG6stcS16nKP+p7ptOa8m0qaciIiIiIholQZGw/CO6O9TODEthjQN4nDHZIGMtetYZLVeaMs/lWiJ3B8W7oys1lu0E1p6fgyCJiIiIiKKPU3T0DRjghoL+oliQxjtnegicyzy6K2HoIZWdC4lYw3CRTsmO8konopZE3CIiIgoOWRnG7OivNudmAW1Lef6IatTr9WLAnB99Vq47PzbZjUSNd8UG8y3uTDfS6DIwEAr0FMPeBsBb0PkY+A8sIL3h+eUUQTkVwP5VUBBDZBfBSG3ApLNOasYZqWYa3Mxa74N+Ytvx44d+O53v4s//MM/xC233ILvfve7KC8vN+LSFGNmX4FgplNd+hXSsp0WbMhNh7BA+3Fh1Atb2291Y8EtH4FkMc8NWbLmm1aG+TYP5tpcmG9zYb6JkkuzV3+f4rCIKM3mYhZRo4Rh6WucLJCxdB+HNNqzolOp9szJlXrDRTsh528DrGlRDpiIiIiIKD56hkPwj8u6scp8Z5yiIUohqgJpoGWqi0zXcUhDF1d0Kk20Qs7bArloB8KFOyAXbofqKohywERERETxcfSCT7ddVZTJghkiIloaTQP8l6aKYnoaIkUyfc2AsrJFKmaxuycKY6onimQmCmWcOdE5P5HJGfJX32c+8xkAQHV1NY4cOYLq6mps27YN5eXlcDoXfjFcEAR873vfMyJMWgGzr0AwU2PfJd32les9yMlZ5D+s098H1GlvElmdSL96P9JN3MY8WfJN0cF8mwdzbS7Mt7kw30SJrWlG0Ux5vhOSOH9hPy1MCPgnJiFFCmSsPSchyOMrOpfiXj/ZQUYu2gkluwwQWIhIRERERKmpqUd/b5Jhl1DstscpGqLkJQSHYel+N9JBpvs4LN0nIIZHFz9wDmpaTuSedKKLjJy3FbDw95KIiIhS0/EZRTM71xkz742IiJLM2MC0wpjLH41AcCg655fsQF45kF+j6x6DzBJggQX6iWh1DCma+cEPfjDZaUMQBKiqirq6OtTV1S14nKZpLJqhpHKsTX9zdeViN1eqChz/oX6s5m7AxAUzREREREQUXU09Y7rtivz0OEWShDQNGDgHW9NvIXYejRTKDJxZ2alEG+T8mskCmXDhDmjO3CgHTERERESUuGbem1QWpE++f0hE89A0iIPn9V1kBs5AgLb8U0GA4imPdJCZ6CSjutdxQg4REZGJ+Hy+xXdaAVEUdYvs+f1+qKoak2utlKZpONo2oBurzLXF7DlJZcmQb4oe5ttcTJfv8DikgTOQ+pog9bdA6m+G1N8McdQbldNrEKBmrYfiKYfiqYCSWwnFUw41az0gzpi+rwIYHIzKdZfCdLk2uUTIt1FNOhZiSNFMaWkpX/SmlOcfD6PFO6wbu3L9Ir/kba8Cvjb92M790Q2MiIiIiIhMrXlGp5nKgoU7vhIgdbwD/OZR4OJbwKgXKykzUh3ZEwUyE51kuFovEREREZncrHsTFvQTzaZpwKWjQNsRoP1tuC/+DuJ4/4pOpVpdkAuvmOoiU3AFNHtGlAMmIiKiZKIoiiHXUVXVsGstVVv/OPwBWTe2tTA94eJMRomYb4od5ttcUibfqgxpsA1SfzMsA5HiGEt/C0T/xRUtSjEXJb0ASk45ZE85FE85ZE8FlOxNgDVt9s4agAR7XlMm17QkZs23IUUzbW1tRlyG4sDMKxDMdKTVB23a/582ScAap7bgc5T+u+/ANm1b8ZRjKH0TYLJVDJIx37RyzLd5MNfmwnybSyLkOxFWICBKBsMBGZcGg7qxygJOTFuIveEgMn57/7KPk7PLJjrIRApllKwNXK2XiIiIiGiaphlFMxUs6CeaJIz1wdH0FBwNPwMGz02Oi8s4h+IunegiE+luquRsBkQp+sESERERJaG6Tv1CyPkuKwozbfPsTURESUnTII50TRbFSAMtsPQ3QxpohaCGonIJ1ZYxVRSTc/lxM7Q0zmEhSnSGFM1Q6jLzCgQzvXvJr9uuKkyHJGjzxi2M98N69je6sfHqfVA4wTgp8k3Rw3ybB3NtLsy3uTDfRImr2Tum27ZKAjZ65ljNhgAA9vonkHH4rxbdT5PskAu2TRbIhAt38IVQIiIiIqIF9I2G0DsS1o2xoJ9MT1VgbX8NjvqDsLUdgqDKix8zQRNtkPO3RDrITBTJaM7cGAZLRERElNzqOkZ029uKMyBw4SsioqQljPumimL6LxfHtEAMjSx+8BJoog1KzqapzjE55VA8FVBdRVw4kShJsWiGKErqOvQrEtQWL9ze3NH0C131qibZEKy4KyaxERERERGROc1cybksNw1WaTnr1JqHvf6nyDj813N+TU3LnZqIVLQTcl4NIHEFOiIiIiKipWru0Rf0O60iSrMdcYqGKL7EoUtwND4Je+PPII10L+kY1ZmrW7hBzq8BJHuMIyUiIiJKHSdndJrZVuKKUyRERLQs4XFYBs5MFMi0QJookpHGvFE5vQYBqnvdRHFMxeSj4l4HiJxiT5RK+BtNFAWyouJ0l34yWm3JAkUzmgZ7/RO6oWDZrdAcWTGIjoiIiIiIzKq5R3+fUpnPlZznYj/9ODJe/srsL1zzOWDX/4IfWewKSkRERES0CjML+svz0yFyVU4yEyUI2/lDcNQfhLX9CARoC++fUwaU7cVozhYEC66AmrGGK9kSERERrdDgeBhtAwHd2GKLIRMRkcFUGdJg26zuMaL/4uL30EukOPMjBTGecsiecsieCijZmwBrWlTOT0SJjUUzRFHQ0juGoKyfQFVbPP+KBJauo7AMntONBWrujUlsRERERERkXs1e/WrOlQUsmpnJcfoncL381dlfuPEvgL1/FZmU5PMZHxgRERERUQppmlHQX5HvjFMkRMaSBs7A0fAz2Jt+ATEwsOC+msWB0Obfh333fUDpbkAQEPL5oCqKQdESERERpaZTnSO6bbtF5D0JEVG8aBrEkS5I/c2RzjGXi2QGWiGooahcQrW5Il1jcqZ1j8kph5aWHZXzE1FyimrRjCRJAABBECDL8qzxlZh5LqJEVNehv7lal+NAltM67/6O+p/qtuWsDZCLr4pJbEREREREZE7jIQVtA+O6MRbN6M1XMDN+1ReQdrlghoiIiIiIVq25hwX9ZCKhUdjPvgBHw09h7X530d3DeVsQrLkXwc13QHRmwZ7NSTxERERE0XRyRtFMTWE6LJIYp2iIiMxDCAxOFcf0N08Ux7RADI0sfvASaKINSs6mSFGMp3yySEZ1FfF9XiKaJapFM5o2dwus+caJUkVdx7Bue6EWnkLAD/vZF3Rjwep7+Z80ERERERFF1Zm+MajTbsdFAdiUy9bSlzlO/RiuV/7PrPGxXV9A8Jo/RRrv0YiIiIiIosI/LqNzKKgbY9EMpRxNg8V7Eo76J2A78xzE8MITgFRbBoIVdyJQ/WEoeTUGBUlERERkTrPmdZXMP6+LiIhWIDwOy8CZia4xLZAmimSkMW9UTq9BgOouheypiBTHeCqgeCqguNcBYlSnwRNRCovqvxZ/8zd/s6xxolSgaRrqOmfeXLnm3d/e/DQEZerNIU20IlB1d8ziIyIiIiIic2rqGdVtr89Jg8O68k6wqcRx6kdwvTL7tYqxXV/A2NVfBJ8lIiIiIqLoafbq701skoANOY44RUMUXUJgEPbmp+FoOAhLf/Oi+4eLr0agZh+CZe8HLPw9ICIiIoo1WVFR360vaK4tnn9eFxERLUCVIQ22TRTHNEPqjzyK/osQEJ3mCoozP1IQ4ymPdJDJKYecsxmwcnFIIlodFs0QrVLXUAi9I2Hd2LwrEmgaHA1P6IZCG98LLc0Tq/CIiIiIiMikmr1jum2u5BzhOPkYXK/+7azx0au+iPGrvmB4PEREREREqW7mvcmmPCcskhinaIiiQFNh7fgd7PUHYT/3PxCU0IK7q85cBCo/hEDVh6FmbzAoSCIiIiICgCbvGIKyfiL3FhbNEBEtTNOAoQ5Yzr8NW1/jZHGMNNAKQV34HnipVJsrUhAzvXtMTjm0tOyonJ+IaCb2pSJapZktPLPSLFiXPffKUJaeE7NWmQrUfCRmsRERERERkXnN7DRTWeCMUySJY/6CmS9h/KrPGx4PEREREZEZzL43YUE/JSdxpAf2pp/D0fAzSEMXF9xXE0SES29CoGYfQuv2ApLVoCiJiIiIaLqTnfp5XetzHMhK499mRESTNBXS4HlYek7C2nsaGGgCvI1A0I95lo5f3ulFG5ScssmiGNlTDsVTAdVVBAhCFK5ARLQ0hhTNvPrqqwCAXbt2IS1taS2yAoEA3n77bQDAjTfeGLPYiFZrZtHMtmIXhHn+M3fU67vMKJlrEV5zTcxiIyIiIiIicwrJKlr7xnVjlfnmnpjmOPkoXK/+31njLJghIiIiIoqtJu+MohmT35tQklFl2C68DHv9QdguvAxBUxbcXclYg0D1hxGs+lBkAhARERERxVVdx4huu7YkGlPAiYiSlKZBHO6ExXsy8tFzEpbe0xBDI4sfu9ipIUB1l04WxVwuklGy1gMi+zsQUfwZ8i/Rnj17IIoiTp48ierq6iUd09HRMXmcLMsxjpBo5eo6l3ZzJYSGYT/zK91YoHofIIgxi42IiIiIiMzpXP84ZFXTjZXnm7fTzLwFM1d/CeO7WDBDRERERBQroyEFFwcCujF2waRkIA62wdH4JOyNP4c05l1wX020IVT2XgSq740slsf3/oiIiIgSgqZpszrNbCt2xSkaIiLjCeP9kcIY7ylYeyKFMuJ4/6rPqzjzoVwujskph+Iph5yzCbDyNR8iSlyGle9pmrb4TlE8jowhSVJMziuK4oLbiWI4KONs75hubMda95zPi+3scxDkqZWeNUFCeMu9MXsOk0my5Juig/k2D+baXJhvc2G+iRLfzJWc12bZ4bKbcwUfR90P4Xrt72aNj179Jxjf9bk4REREREREZB5nvGOY/k6fJAooy+UECkpQchD21v+BveEJ2Dp+t/juOZsRqL4XwYoPQkvLMSBAIiIiIlqO7qEQekfCujF2miGiVCWEhmHxnp7oIHMKFu9JSMMdqzqnZsuAnLM50jXGUz7ZPUZLy45S1ERExknYGTOqqgKIXVEGRUd2tjH/+bndbkOus1wnW3p1b/bYJBHXVK6BwzrHz23jQd2mUHErstZUxDbAJJWo+abYYL7Ng7k2F+bbXJhvosTT3KMvmqksSI9TJPHlqPsBXK/9/azx0d1/ivErD8QhIiIiIiIic5lZ0L/Rkwa7hYtvUGKR+prgaHgC9uZnIAb9C+6rWZ0Ibr4dgep7IRfUAoJgUJREREREtFx1M7rMuNMsWJftiFM0RERRJAdh6WuY6CIT6SQj+c5BwMqbFCjpBVAKtsG2/mqgcBuQX41BNR3KxFxuIqJkl7BFMxcuXADACXiU2I61Dei2t65xz10w03kC6KrTj+3YH7vAiIiIiIjI1Jp69B0xK/LNVzTjqPs+XK89MGt8dPefYfzKP45DRERERERkNrFcGC5ZusA2e/X3JlUF6Vwwb5mSJddJJzgMW8uzsNc/AUtP3aK7y4XbEaz5CELlvw/YXACAWPwkM9/mwnybC/NtHsw1UeKo6xjRbW8rdkFg0TMRJRtVhjRwdqKDzElYvSch9TdDUOWVn9Luhpy/DXLB1shj/jaorgJIkgTb9IX0fb4ofANERIkhJkUzFy9enHO8q6sLLpdrwWODwSBaW1vx1a9+FYIgoKamJhYhEkXF0Qv6PwquXDdP553jP9RvZ64BNr0nRlEREREREZGZKaqGll79xLTKAmecookPx4nvw3VkroKZL2P8ys/GISIiIiIiMqPs7HneM4iBRF2E7kxfQLe9Y0Oeoc9LKkrUXCcFTQPa3waOPwrUPwWExxbePy0bqP0DYPsnYCmohgWA0UtSMN/mwnybC/NtHsw1JZJYFbAnarHYyU590cwVazJZxB8FiZpvig3m22CaBnGwDVLPSVh66mDpOQmptx6CPL7yU1rSIOdvgVKwDXLBNigFtVDd63SdUwVEFoZgvs2DuTYX5jsiJkUzGzZsmDWmaRpuueWWZZ/rk5/8ZDRCohjxxaiSVBRF3QsHfr8faoK1eZNVDe9e1H//Fbm22c9JaBRZJw9i+joF41UfQsA/FPsgk0Qy5Juih/k2D+baXJhvc0mEfHOCDdH8LgyMIyjrfyfN1GnGceK/4TryD7PGR6/5c4zv/N9xiIiIiIiIyJwCYQVnvPpJaltKOGmU4mC0D6j7aaRYpq958f037gF2fBKovB2w2GMeHhEREZFRjHp/LRGKxUaCMs70jurGrq8o5nuMMZAI+SbjMN9RNtQJdBwHOo4BnceBzneBgH/l5xOtQEENULIDKN4BlOyAkFsBq2SBdQWnY77Ng7k2F7PmOyZFM5qmLWt8Lg6HA1/4whfwmc98JlphUQwoimLIdVRVNexaS9XUPYrxsH4i2tZC56w47c3PQghNvSmkCSLGK++BmmDfTyJJxHxT7DDf5sFcmwvzbS7MN1FiafLqV8otyLAh27mSl0GTj+Pd78H1+j/OGh+95i8wvvP/iUNERERERETm1dw9DEWdem9QEICqosw4RkSmoqrAucORQpmm5wA1vPD+GUXA9o8DV3wMyJm9QCQRERERJZcTFwcx7XYEFlFA7dqsuMVDRISxgUhhTMe7E4/HgZHuVZxQAHLLpxXI7IwUzFgdUQuZiCiVxKRo5vvf/75u+9Of/jQEQcDf//3fo6SkZN7jBEGAw+FAUVERtm/fDpfLFYvwiKKirnNYt12a7ZhzIpqj/gnddrj0RqgZxTGNjYiIiIiIzKupR79yWmWBObrMpL37XaS//rVZ46PX/gXGd7BghoiIiIiMN6szfRQlQhfYxbx9Vj/xY312GkJjwwiNzXMAzSkZcp1IhKEO2Bt+BlvDzyANdyy4ryZICG98D4I1H4G87kZAnHjrPIa/u4thvs2F+TYX5ts8EiHX7KRBBBy7oP+brqbEDYdVilM0RGQ6wRGgq26qOKbzOOBrW905s0onu8egeAdQVAs4uDgJEdFSxaRoZv/+/brtT3/60wCAO++8E9XV1bG4JJHh6jr0RTO1JRmz9pH6mmHteVc3Fqi5N6ZxERERERGRuc0smqnId8YpEuOkHf8O0t/4+qzx0Wv/EuM7/igOERERERERwdCurInYBbaha0S3XVHgTLgYk1Ei5jrulBBs538LR8MTsF58DQK0hXd3r0Og+l4EKu+Glp4XGdQAJODzynybC/NtLsy3eTDXlEhiVdifCMViM73V6tVtbylIi+nCBmaSiPmm2GG+l0AJQeprgtRTB0vPSVh66iAOnIWgrfx5Up25kAtqoRRsg1ywDUr+NmhOj36ncQUYj+6/a8y3eTDX5pII+U6Ewv6YFM3MdPjwYQDAhg1sZU2pQdO0OYpmZndGcjT8VLetOPMRWrc3prEREREREZF5qZqGZq9+2eZU7zSTdvwRpL/xjVnjLJghIiIiIoqv5pldMPNT+96EjCf5WmFvOAhH01MQxwcW3FeT7AhuuhWB6n2Qi68CBMGgKImIiIgSh1EFXPEuFlPU2fO6thals4AtRuKdbzKW6fOtKpB8rbB4T8LiPRUpkulrgqCGVn5Kmwty/lbI+dsiHwXboLqKZt+3xuF5N32+TYS5Nhez5tuQopmbbrrJiMsQGaZ7KATvSFg3dkXxjE4zcgD25qd1Q8GqDwGSNcbRERERERGRWXX6gxgN6V/cSOWJaWnH/wvpb/zTrPHRa/9fjO+4Lw4RERERERERAMiKijN9+oL+ioLU74JJBgiPw372eTgaDsLadXTR3eXcKgSq70Ww/APQHO5F9yciIiKi5He+f3zWeyW1JRnz7E1ENA9NgzjUHimQ6TkJq/cUpN56iOHRxY+d75SSHXJe9WRxjJy/DUrWekAQoxc3ERHNyZCiGaJUU9epX43AnWbBuhyHbsze+muIwSHdWKB6X8xjIyIiIiIi82qasZJzjtOCPFdqFu7PWzBz3f0Y3/6HcYiIiIiIiIguO9c/jrCi6cYqUrign2JM0yD1noaj4SDsLb+EGBpZcHfV5kKw/AMIVO+DkreFXWWIiIiITObEjC4zxZl25LlscYqGiJKFMNoLq/fkZJGMxXsKYsC34vNpggTFUwE5fyvClwtkcjZz0XUiojhh0QzRCsxs4bmt2AVhxgvujvondNuhtddBdZfGPDYiIiIiIjKvmUUzlfnps+5VUkHasf9C+puzC2ZGrvsrBLb/rzhERERERERE0zX16LvMlLjtyHTwbUlaHiHgh73ll3A0HISlr2HR/cNFVyJQvQ/BTbcB1jQDIiQiIiKiRHSyU19kXVviilMkRJSohOAQLN5TE8UxkQ9ppHtV55SzNkx0kNkaecyt5r0pEVEC4avTRCtQ1zHj5qpY38JT8rXC2vm2bixQ85GYx0VERERERObW5NVPTKsoSL2VnNOO/SfS3/znWeMj1/81Ald8Jg4RERERERHRTE1efUF/Rb4zTpFQ0tE0WDrfjnSVOfsCBCW44O5qWg4ClR9CsPrDULLLDAqSiIiIiBLZ7MWQM+bZk4hMITwOS1/DZAcZa89JSP62VZ1ScRVNFMhsg5y/FXL+Vmj2zOjES0REMcGiGaJlGgnKONunn4h2RYn+5so+o8uMmpaD0Ibfi3lsRERERERkXpqmobkntSempR19GOm/++ascRbMEBERERElllldMFOwoJ+iSxjthaPpKTgaDi46eUmDgPC6GxGovheh9XsByWZMkERERESU8PpGQ+jw6wuvt7HTDJF5KGFIAy2R4hjvSVi8pyD1t0DQlBWfUnVkRwpjCmoRniiU0Zy5UQyaiIiMwKIZomU63TUCVZvatkoCqgqnvdmjBOFo+oXumEDl3XzBnoiIiIiIYso7EoJvXNaNpdLEtLSj/4H03/1/s8ZHrv8KAld8Og4RERERERHRXBRVw5le/eJjqXRvQlGkyrBefA2OhidgO//bRScxKRnFCFTtQ7DqQ1Azig0KkoiIiIiSyanOEd220ypiU25qLTBGRBM0FdLgeVh6Tk50kTkFS1/Doh1LF6Ja06HkbUG4YOtkJxk1Yw0gCFEMnIiI4oFFM0TLVNehv7mqKkiH3SJObtvOvQgxMKDbJ1h9ryGxERERERGReTX16CeluewSStz2OEUTXWlH/x3pv/uXWeMjN3wFgVoWzBARERERJZJ2XwDjYVU3VpHPohmaIg61w9HwM9gbfw5ptHvBfTXRitDG9yJQvQ/hNdcComRQlERERESUjOo6hnXbW4pdkEROdidKepoGcaRrqkBmoouMGBpZ/Nj5TinaIOdVRYpj8rdCLtgGJWsj7zuJiFIUi2aIlmnmzVVtcYZu21H/hG47XHw1lOyNMY+LiIiIiCgRhEIhPP744zh37hy6u7sxMjICp9OJwsJC3HzzzbjhhhtgsfBWNBaaekZ12xX5TggpsOpR2jv/hvS3vjVrfOSGryJQ+ynjAyIiIiIiogU1efX3JvkuKzzp1jhFQwlDCcJ27kU4Gg7C1v76orvL2ZsQqN6HYOWd0NI8BgRIRERERKng5IxOMzPndRFRchDG+ycKZE7BOlEoI473r/h8miBCyd4EuWAb5IJahPO3QvFUAJItilETEVEi40wlomWQVQ2numbcXJW4Jj8X/Rdgu/SG7uuBGnaZISIiIiLzCAQC+M1vfoNNmzZh+/btyMzMxOjoKE6cOIGHH34Yb7zxBu6//36Iorj4yWhZmmdMTKtMgZWc0955COlvPThrfOSG/4NA7X7jAyIiIiIiokXNKugvSP57E1o5qb850lWm6RcQg4ML7qtZ0hDc/PsIVO+DXLgDSIGFIIiIiIjIOEFZReOM+5Hp87qIKDEJoRFYvKdh8dbB0nMKFu9JSMMdqzqn4i6FnL8N4fxtkUKZvBrA6lfvC8AAAQAASURBVIxSxERElIxYNEO0DGd7xzAeVnVj26atSOBo+Jnua6rdjWDZ+w2JjYiIiIgoEbhcLvzwhz+c1U1GURQ88MADqKurw4kTJ7Bjx444RZi6mr1juu3KJJ+Ylvb2Q0h/+8FZ4yM3/g0C2z5pfEBERERERLQkTT0z7k1SoKCflik0CvvZ5+CoPwhrz7uL7h7O34ZA9T6Eym+HZuNK4ERERES0Mo09owgr2uS2AGBLEYtmiBKKHISlrxEW78nJTjKSrxUCtMWPnYeSXgA5f2ukOCZ/G+T8rdAcWdGLmYiIUgKLZoiW4UTHsG67NNuBnHRrZEMJw9GoL5oJVtwJWOwGRUdEREREFH+iKM7ZRUaSJOzatQv19fXo7u6OQ2SpbWA0jJ7hkG4smYtm0t7+NtLf/tdZ4yyYISIiIiJKbJqmock7s9MMV3I1BU2DpecEHA0HYTvzHMTw6IK7q/ZMBCvuRKB6H5TcKoOCJCIiIqJUVjdjXtemPCdcdk6PJIobVYY0cHayQMbqPQmpvwWCGl75Ke3uSIHMtCIZ1VUYxaCJiChV8a9CWhVJkmJy3pmT7OaadBcPJztHdNtXlGRMPgfW8y9CHOvTfT209aMxe45SSaLmm2KD+TYP5tpcmG9zYb5jx+/34+zZszh79ixaW1vR2tqK4eHIC/w33XQTDhw4sORz9fb24oUXXsDx48fR398Pi8WCwsJCXHPNNXjf+94Hu93Y4m5VVVFXVwcAWLt2raHXNoPmGZPSHBYRpdmOOEWzOs63/hXOd749a3zkxr9FYNsn4hAREREREREtVYc/iJGgohtjp5nUJowPwN78DBwNT8AycGbR/UMluxGsvhfBslsAS3LetxIRERFRYpo5r2tbMbvMEBlG0yD6L8DiPQlrzylYvHWw9DZAkMdXfkpLGuS8Gsj52xAu2BopkHGvAwQhioETEZFZsGiGViU7O9uQ67jdbkOus5hTXfqJaNeWF049B80/1++85iq4N+82KLLUkij5JmMw3+bBXJsL820uzHf03HfffVE5z9GjR/HQQw9hfHzqRchgMDhZiHPo0CHcf//9KCyM3ao7sizjqaeeAgAMDw/j9OnT6OjowJ49e7B169aYXdesmr1juu3yfCckMfleMJ63YOam/4vA1o/HISIiIiIiIlqOph79+yhZaRYUZNjiFA3FjKbCeulNOBqegK31RQhqaMHdVWceAlX3IFB1D9Ss9cbESERERESmomkaTs7oNFNbkhGnaIhSnzjSPdlBxuI9BYv3FMSgf8Xn00QrZE/FZPcYOX8blJwyQOQUZyIiig7+j0K0RB2D4+jyB3RjV66fKJgZbAfOvqQ/YOd+gyIjIiIiolSUm5uLkpKSye4sS3X+/Hk8+OCDCIVCcDgcuPPOO7FlyxaEQiG8/vrrOHToELq6uvC1r30NX//615GWlhaT+GVZxpNPPjm5LQgC7rjjDnz0ox+NyfXMbubEtIokXMl5/oKZv0Ng68fiEBERERERES3XzIL+yoJ0CFwBNmWII12wN/4cjoafQRq+tOC+miAhtG4PgjX7EFq3hxOdiIiIiCim2geD8I3LujF2miGKkrEBoPNdoOM40i/8DlL3SUhj3hWfToMAJbsMcv7WqSKZ3CrAYo9i0ERERHp8dZJoiY62Dei23WlWbMyduLl69zEA2tQX7ZlAzV3GBUdEREREKeGee+5BWVkZysrKkJWVBa/Xi8997nPLOscPfvADhEIhSJKEr3zlKygvL5/82pYtW1BUVIQf/ehH6OrqwrPPPot9+/bNOsejjz6KcDi85GvedtttKCoq0o05HA4cPHgQqqrC5/Ph2LFjePzxx9HS0oL7778fTqdzWd8XLazJqy+aqSxIoudX0+B8+1/hfOehWV8a2fP3CGxhoRURERERUbJonlHQX5mfRPcmNDclDNuFw3DUH4T14isQNHXh3TNLEajeh2Dl3VBdBQYFSURERERmN7PLjCfdihI3J+ATrZgchO3cb5DW+CTQ/jouz41cSS9ZJWPNRHHM1okuMjXQbOwERURExmLRDK2Kz+eLyXlFUYTb7Z7c9vv9UNWFX4SPtTdaunXb24pd8PsHAVWB+9ijEKd9LVD+AYyPhoDRhdvRU0Qi5ptih/k2D+baXJhvc0mEfGdnZxt6PaPMVcCyHGfPnkVjYyMAYO/evbqCmctuv/12HD58GB0dHXjhhRdw9913w2LR3xq++OKLCAaDS77u7t27ZxXNXCaKIjweD2655RZkZGTgW9/6Fp566il8/OMfX8Z3RgsZDsi4NKjPV9J0mtE0ON9+EM53/m3Wl1gwQ0RERESUXDRNQ+PMopmCJLk3oVnEwfNwNPwMjqafQxzrW3BfTbIhWPZ+BKs/jHDJbkAQF9yfiIiIiCja6jr1RTPbil3sekm0AlJfMxwNT8De/AzE4OCyj1fTPJALahHO3wa5YCvk/K3Q0jzRD5SIiGiZWDRDq6IoiiHXUVXVsGvN591LQ7rtbcXpUBQF1rbDEEe6dF8br94X93iTWSLkm4zDfJsHc20uzLe5MN+J4+233578fO/evXPuI4oibrrpJvzkJz/B6Ogo6uvrUVtbq9vnsccei0l8l6/T0NAQk/ObVbN3TLdtEQWU5abFKZpl0DQ43/oWnEf/fdaXhvc8gOCWP4hDUEREREREtFK9I2H4xmXdGItmkowcgL3115GuMp1vLb67pwKB6nsRrPggNEdW7OMjIiIiIppHXceIbru2hF0siJZKCA3D1vIrOBp/BmtP3ZKPU22uad1jtkEu2AbVVQSwYI2IiBIQi2aIlmA0pOBsr34iWm1x5ObKUf9T3Xg4bwuUvBrDYiMiIiIiuqy5uRkAYLfbsXHjxnn3q66u1h0zs2gmVgYGBgAAkiQZcj2zaPbqV3LelJcGq5Tgq/pqGpxv/QucR/9j1pdYMENERERElJyaZtybuOwSStz2OEVDyyH1NsDRcBD25qchhoYX3Fe1piNYfgeC1fdCzt/KyVBEREREFHdDARnn+sd1Y7XFrjhFQ5QkNA2W7mNw1B+E/ezzEOTxhfe3OIDCbQjkViOcFymUUbLWs9MoERElDRbNEC3Bqc4RqNrUtkUUUF3ogjjSA1vbYd2+gZqPGBwdEREREVHEpUuXAACFhYULFqYUFxfPOiaaMeTl5cFu10+MCgaDePTRRwEA27dvX9Y5+/v7l7RfLItxRFFccDueWnr1L2JXFbgSuzBJ0+B485tIm6NgZvQ9X4O85Q8Q7+gTOd8UXcy1uTDf5sJ8mwvzTZQYmnr0RTPleU4ILKhIWEJwGPYzz8Je/wSsvacX3T9cuCPSVWbTrYCNHYSIiIiIKHGc6tR3mbFJAiry+Tcr0VyEsT44mn4Be+PPYPG1Lrp/eM21sF71GaDqdsCahnGfD4qiGBApERFRdLFohmgJ6jr0q2pVFjjhsIqw1z0JQZv6I1CzOhEqv8Po8IiIiIiIEAqFMDwc+bvV4/EsuK/L5YLdbkcwGFxyQcpSvfHGG3juuedQWVmJvLw8pKWlYWBgACdOnMDw8DCqqqpw++23L+ucn/3sZ5e038GDB1cS8oq43W7DrrWYmUUzOzbmIzs7O07RLELTgEN/B7zz77O/dse3kb5zPxLxbaxEyjfFFnNtLsy3uTDf5sJ8E8XHzKKZyoJE/Ove5DQNlq5jcDQ8MbGScGDB3VVHNoKVdyNQ/WEoOZsNCpKIiIiIaHlOdurndVUXumCzcEENokmqAmv7a3DUH4St7RAEVV5wdyW9AMGqDyFQdQ+EnI2J+74jERHRMrBohmgJ6mbcXNUWZwCaCke9flJecPPt0Gxs70lERERExgsEpia6OByORfd3OBwIBoO646Jh586d8Pl8aGlpQUtLCwKBAJxOJ0pLS3Hddddh7969id0FJcmMhxS09upXUKspzoxTNIvQNODQ/wWOfGv21+74NrBzv/ExERERERFR1DR7x3TbLJpJHJMrCTcchGXw3IL7ahAQXns9AjX7ENrwHkCyL7g/EREREVG81XXo3yfZVsy5W0QAIA61w9H4JOyNT0Ia6V5wX02QENpwMwJV+xBedyMgRqYW811dIiJKFSyaIVqErGo4PaONZ21JBqztr0MavqQbD1Tfa2RoRERERESTQqHQ5OcWy+K3epf3mX5cNJSVlaGsrCyq53z44Yejer5U0tg9BFWb2hYFoKowAYtmNA146W+B1x+c8QUB+MC3gR2fjENQREREREQULQOjYfQM6+8vK/OdcYqGAEysJHwEjoaDsJ1/afGVhF2FCFZ9GIGqe6BmrjEoSCIiIiKi1ZFVDae7Zs/rIjItJQjbuRcj94Ltry++u3s9AjX7EKi4G1p6ngEBEhERxQeLZogWcbZ3DGNhVTdWW5IBx6tP6MZkTyXkglojQyMiIiIimmSz2SY/l+WFJ8JM32f6cYnK4/EsaT+fzxezGERRhNvtntz2+/1QVXWBI4zxzpku3fYGTxoCo0MIjMYpoLloGtJe/zocx/5LPwwBY7/3DYQ23AHEMHcrkaj5puhjrs2F+TYX5ttc4p3v7Oxsw65FlKiavfqbELtFxLqctDhFY27iUAccjT+bWEm4a8F9NdGC0Pr3IFCzD+G1NwAi1xAmIiIiouRyxjuGgKx/DYCdZsiMpL5mOBoPwt70NMTg4IL7ahYHgmW3IlC9D3LxLkAQjAmSiIgojlg0Q7SIuo5h3faaLDtyBT9s51/SjQdq7uUfkEREREQUNw6HY/LzQCCw6P6X95l+XLJTFMWwa6mqauj15tPQrV89rSI/PSHimqRpcL75T3Acf0Q/DAEjN38dwcoPAYkU7zwSJd8Ue8y1uTDf5sJ8mwvzTWS8Zu+Ybrsi3wlJ5HsmhlFCsJ1/CY76g7C2H4EAbcHd5awNCFbvQ6DybmjOXIOCJCIiIqJ4k6TYFEmLorjgdiyd6tYX8K/LcSA3I3Xe+0pE8cw3zRAchu3Mr2A//VNYeuoW3V3O34pgzb0IVXwAsGcCABb7V4H5Nhfm2zyYa3NhviNYNEO0iLrOGS08izPgaHoKghqeHNMkO4LlHzQ6NCIiIiKiSTabDRkZGRgeHkZ/f/+C+46MjCAYDAJYehcXSkxNPfo3gyrynXGKZA6aBucb34Dz3e/ohyFg5D1fR7DqnjgFRkRERERE0Tb73iQ9TpGYizRwBo6Gn8He9AuIgYEF951cSbjmI5CLdnIhOCIiIiITMqpT6vRusLHW4D2v2961IZcdYQ1mZL4JgKYB7W8Bxx8D6p8CwmML7+9wA9vuBbZ/ApaibbAAWM0dO/NtLsy3eTDX5mLWfLNohmgRMzvN1Ba74Dj1hG4suOk2aA5z/iNCRERERIljzZo1aGxsRHd3NxRFmXfFsM7OTt0xlJzCiorWvnHdWGVBgkxM0zQ43/g6nO9+Vz8MASPv+QaCVR+KU2BERERERBQLTV590UxlQQIV9Kea8BjsTc/C0fAErN3HF989bwuC1fsQLL8D2sRKwkREREREqeL4BZ9ue+c6FsxQihrpBU7+FDj+KNDXsvj+628AduwHqm4HrGmxj4+IiCjBsWiGaAHdQ0H0DId0Y9dbmyD523RjgZqPGBgVEREREdHcKioq0NjYiGAwiHPnzmHz5s1z7tfQ0KA7hpJTa984ZFXTjSVEpxlNg/P1r8F54nv6YRbMEBERERGlpOGAjEuDQd0YO81EmaYBnceB448i69STEEIjC+6u2jIQrLgTgeoPQ8mrMShIIiIiIiJjdQ6Oo9Mf0I1dyaIZSiWqArT+NlIo0/w8oMoL7+8qBLZ/DNj+cSBnozExEhERJQkWzRAtoK5T/6ZDhl3CxktP68bk7E2RNvZERERERHF21VVX4emnnwYAHD58eM6iGVVV8corrwAA0tPTUVOTOpNn5uusEw2iKC64HQ8tvfouM2uzHXA77XGKZoKmIe21f4BjjoKZsVu+CbnqQ4hdlqInEfNNscFcmwvzbS7Mt7kw30Tx1ewd021bRAFluVzFNio0DZbzvwXe+Vegqw4AICywe7j4agRq9iG48X1cSZiIiIiIZvH5fIvvtAKiKMLtdk9u+/1+qKoak2tN92pjn247wy4hxxqO2fdJEfHKt5mIQ+2w1f8M9oafQRzpWnBfTZAQ3nAzQjUfQXj9TYA4MSU4Sr8HzLe5MN/mwVybSyLkOzs7/oXNLJohWkBdx7Bu+9pCDfbWX+vGAtX7AGGhtyiIiIiIiIyxadMmVFVVobGxEYcPH8aePXtQXl6u2+dXv/oVOjo6AAC33norLJbUuS008iZ7+gsK8XJ+sEO3vW1NdnxfaNA04H/+Gnj3uzO+IEC46z+RXvsRJOta04mQbzIGc20uzLe5MN/mwnwTGavJO6rb3pSXBqvE4rXVsnQeRfqb/wxr19EF91OduQhUfgiBqg9Dzd5gUHRERERElIwURTHkOqqqGnKtE5f8uu1txRnQVBXGfJd0mVH5TnlKELZzL8LR8DNY21+HAG3h3d3rEKi+F4HKu6Cl50cGNQAxzgXzbS7Mt3kw1+Zi1nynzuwoohiYWTSzz3YEghqa3NZEG4KVdxkdFhERERGlqKamJnR3d09uDw0NTX7e3d2Nl19+Wbf/nj17Zp3jU5/6FL761a8iFArhgQcewF133YWamhqEQiG88cYbeOmllwAARUVFuOOOO2LyfZAx6jv1bwbVlGTGKRJMFMz8FfC7/9CPCyJw538CtffGJy4iIiIiIoq55h590UxlfrKWyycGqa8J6W9+E7YLh+fdRxNEhEtvQqBmH0Lr9gKS1cAIiYiIiIgSQ13HiG57W4krTpEQrZzU1wxH40HYm5+BGFi4O4xmcSBY9n4Equ+FXLyLC30TEREtA4tmiOYxGlJwpnds2oiGqwef1+0TKrsFWlqOsYERERERUco6dOgQXnnllTm/1tzcjObmZt3YXEUzGzZswJe+9CU89NBDGB8fx+OPPz5rn6KiItx///1IS0uLStxkPEXV0NA1pBvbUhynFdU1Dfj1/cBbD+vHWTBDRERERGQKTTOLZgpYNLMSov8inG89CHvLL+dfUTirFONVH8Z4xV1QXUXGBkhERERElEDGQwpaZnS9rC3OiFM0RMsjhEZgO/MrOBoOwtpTt+j+4bwtCFbvQ7D8Dmj2OC6iR0RElMRYNEM0j9NdI1CnvSexSzoL1/A53T6BGk7+IiIiIqLEc+WVV+Kb3/wmnn/+eRw/fhwDAwOwWCwoLCzE7t278f73vx92uz3eYUadz7fw6kurIYoi3O6pohS/3w9VVWN2vcW09o0hENZfvyRdi+lzMCdNQ9qrfwfHie/rhwURY7f8C0KltwBGxxQFiZZvih3m2lyYb3Nhvs0l3vnOzs427FpEiWY8pKBtIKAbY9HM8gijvXAe/Tc46n8KQZXn3imrFNj718DWDyPgH4KqKMYGSURERESUYOq7R6BMm9clCUBNIe9FKIFpGizdx+FoOAj72echhMcW3F21ZyJY/kEEqj8MJa/GoCCJiIhSF4tmiOZR1zGs2/5/nK8A4altxV2KcMlug6MiIiIiolR24MABHDhwICrnysvLw/79+7F///6onC8ZKAZOGlJV1dDrzdTQpb9fKciwwW0XjY1J05D+2t/DcfKH+mFBxMjv/X8Ibr4DSJGJXPHONxmHuTYX5ttcmG9zYb6JjHOmb0zXE0USgE25zrjFk0yE4BDSjj+CtLofQJDH59xHTctB4KovwHnDHwOW1Fv8goiIiIhopeo6R3Tb5fnpSLNJcYqGaH7CWB8czU/D3nAQFl/rovuHSnZHusqUvQ+wOAyIkIiIyBxYNEM0j+lFM5kYxY3y67qvB6o/Agii0WERERERERGhqWdUt12Rb/CkNE1D+mt/h7STj+qHLxfMVHzA2HiIiIiIiCguZt6brPekwWHleycLkgP4/9m77zipqvv/4++Z2SlbYFlhgWUpCkgXFBuWBDQ2sCv2Go1GoynffI2JKb98i9+viV+TWKImMfZEFEuwG3uvtKUvAiKyy4LAsmyZfu/vD7LDnu1l2u59PR8PH+45c+bez8xnd9kz937OyV32iHIX/UnucE2rQyxvgYLTv6PQtG/LnVuoPApmAAAAAMOyCrNoZlppQYYiAVphxeX96n0FVs2X74s35LKi7Q6P5w1WeOLZCk2cK2vAvumJEQAAh6FoBmhF3LK1YsveydVpng/ls8OJtu3OUWji2ZkIDQAAAABUvs28MW3CkPz0nbydgpna43+nyDgKZgAAAJA9IpGI5s2bpw0bNqiqqkp1dXXKy8vT0KFDdeyxx+ob3/iGcnK4XNZda7Y2GO0Jg9M4N+lt4lH5Vz+lvM/ukqd+a6tDbI9PwQMuUfDga2Tn7pPmAAEAAIDewbJtLausNfqmDuuXoWiAvdy7Nyuw+in5Vz8lT92WdsfaLo8i+x6j8KRzFRk1U3Lz2QQAAKnEv7RAK9Ztb1B9xPpXy9aFnjeNxyP7fkt23qD0BwYAAADA8SzbbnljWrqKZmxb+e/+p3KXP2p2u9yqPf73iow7NT1xAAAAAJ0UCoX06quvauzYsTrooIPUv39/1dfXa+nSpbr33nv14Ycf6qabbpLbze4o3bGmWUH/+CFp3gWzN7At+da9rPyPfy9PzcbWh7jcCk+cq4ZDvy+r37D0xgcAAAD0Mht3BFUbjht97DSDjImH5dvwugKr5sv71QdyyW5/eOEohSadq9CEs2TnD05TkAAAgKIZ9IjH40nJcZtfnEr3xarlW/Ze5Jnq2qBJ7i+NxyNTL0zZa3eiTOcb6UW+nYNcOwv5dhbyjWyVyr/Rs+n7vrI6pPqIeTFockm/1M9RbFu5b/9agRYFMx7Vn3S74uNOVV+ZJWVTvpFa5NpZyLezkG9nId9oT0FBgR5++OEWu8nE43HdfPPNKisr09KlSzV9+vQMRdh7RWKW1m8PGn3sNNOEbcu76T3lf3ybcr5e2eaw8JjZapjxb4oXjUljcAAAAEDvVVZZZ7SH9PNpSD9/hqKBU3l2lCuw6kn5yxfIHapud6zt8Ss8drZCk85VbNhhksuVpigBAEAjimbQI0VFRWk5T2FhYVrO02jVto2Jr89vtsuMCkeq39TTJC68pky6843MIt/OQa6dhXw7C/lGtkjX/ETK7Pf9h1+Z27kPzPdp3IghcqXyA3bbll66QVr2iNnv8sh19l9VMOWs1J07C/B7zjnItbOQb2ch385CvtGU2+1utZDK4/Ho0EMP1cqVK1VVVZWByHq/9duDilvmCrrjBrPTjCTlVC1R3kf/J1/FJ22OiYw4Sg0zblBsyNQ0RgYAAAD0fssqao32tNJ+GYoETuOK1Mn3+Yt7dpXZurTD8bHiyQpNOlfhcafJ9vdPfYAAAKBNFM0ArVj05Z7q73wFdZrnI/PB6ZdQMAMAAAAgY1ZW1hjtyaWFqS2Ysaw9BTML7zf7XR5p7v3S5DNTd24AAABkVE1NjdatW6d169Zp/fr1Wr9+vWpr99ycNHPmTF133XWdPtbXX3+tl19+WYsXL9aOHTuUk5OjoUOH6ogjjtCJJ54ovz+9qwJblqWysjJJ0ogRI9J67r5izbZ6oz2yKKACv7MvPXp2rFXeJ7+Xf8NrbY6JDj5ADUf8RNERR6UxMgAAAKDvaL7TzNRhBRmKBI5g28qpWrxnV5l1L8oVbWh3uOXrp/D4MxSadI7ixZPTFCQAAOiIsz+5BlqxpSaoil1BSdKpno9U4ArtfdDllg68KEORAQAAAIC0onK30Z4yLIUrU1mW9NK/SwsfMPspmAEAAHCEq666KinHWbhwoe666y4Fg8FEXzgcThTivPHGG7rppps0dOjQpJyvNbFYTM8884wkqba2VitWrFBFRYVmzZqlAw44IGXn7cvWbDWLZsY7eJcZ9+4K5X16h/zl/5DLtlodEysao4YZ/67I6BOkVC58AAAAAPRh1Q1RbaoOGX3ThrHTDJLPFdyhwJp/yL/qSeVUr+twfKT0cIUnnavwmJOknEAaIgQAAF1B0Qx6pLq6OiXHdbvdKiwsTLRrampkWa1fZEi2d1ZvT3x9vudN47HIvseq3sqTUvS6nSqT+Ub6kW/nINfOQr6dJRvyXVRUlNbzoXdI1fxEyo7ve0mybVvLN5uvc99CT8pee+7bv1ag7GEzBpdH9bPvUnTYrD47N8qWfCP1yLWzkG9nId/Okul8O2V+MmjQIJWWliZ2Z+msL774QrfffrsikYgCgYDOOOMMTZkyRZFIRB988IHeeOMNbdmyRbfccot+85vfKDc3NyXxx2IxPfXUU4m2y+XSqaeeqgsvvDAl53OC5kUzE4bkZyiSzHE1bFfeonsVWP6YXFak1THxgqFqOOxHCk84U3JzaRYAAADoiWXNdpkJ5Li1v4ML+JFkVlzer95XYNWT8n3xulxWtP3hecUKTZyr0MS5sgbsm54YAQBAt/DJLHokHo+n5TyWZaXtXEu+qpEkTXR9qQPdG4zHQpPOTVscTpbOfCPzyLdzkGtnId/OQr6RLdL5fZip7/uttWFVN8SMvnHFuSmJxbv541YLZmpPvEOR0SdKDvq55/ecc5BrZyHfzkK+nYV8J8/cuXM1ZswYjRkzRgMGDNC2bdt0/fXXd+kYDz30kCKRiDwej375y19q3LhxicemTJmikpIS/e1vf9OWLVv0/PPP69xzz21xjEceeUTRaPs3qjQ1Z84clZSUGH2BQEDz58+XZVmqrq7WokWLNG/ePK1du1Y33XST8vK4yaorYpatddsbjD4nFc24IrXKXfKAAkvvlzta3+oYK1CkhoOvVeiAi6Ucf5ojBAAAAPqmsopaoz2lpEA5bnZyRM+4d29WYPVT8q9+Sp66Le2OtV0eRfY9RuFJ5ygyahaLIwAA0EvwLzbQTFnlnslV811m4vlDFBk1MxMhAQAAAIAkqXybeVNagd+j0sLU3HwVWPqA0bbdOao94Q5Fxp6UkvMBAAAg+7RWwNIV69at0+rVqyVJxxxzjFEw0+iUU07RW2+9pYqKCr388ss666yzlJNjXr567bXXFA6HO33eGTNmtCiaaeR2uzVw4ECdcMIJ6tevn/7whz/omWee0cUXX9yFV4aNO4IKx2yjb7wTVneOhRVY8XflLbxH7lDrO2/a3jwFD7xSwYOulO3rl+YAAQAAgL6t+U4z00oLMhQJer14WL4Nryuwar68X30gl+z2hxeOVGjSeQpNOEt2/uA0BQkAAJKFohmgiYZIXJ9va1BAYZ3p+cB4LDxxLpXhAAAAADJqzVZzBePxg/PkciV/BTX3ro3ybTQXEqg/4kYKZgAAANAln376aeLrY445ptUxbrdbM2fO1GOPPab6+nqtXLlS06ZNM8Y8+uijKYmv8TyrVq1KyfH7sjXbzLlJSX+fBuR6MxRNGlgx+dcsUN6nt7e56rDt9io05UI1HPI92XmD0hwgAAAA0PdFYpZWVZlFM1OHUaiOrvHsKFdg1ZPyly9oczGERrbHr/DY2QpPPEfR0sOlFFyTAwAA6UEFANDEii11itvSGe5P1N+1dwVnWy6FJvVsRT0AAAAA6KnmRTMTBuen5Dy5yx4xVtSyfP0Umnx+Ss4FAACAvqu8vFyS5Pf7NXr06DbHTZo0yXhO86KZVNm5c6ckyePxpOV8fUn5VnMXzPEpmptknG3Lt+FV5X38e+VUr2t9iFwKTzhTDYf9UFb/4WkOEAAAAHCO8m31isTN3UCmDmOnGXTMFamT7/MX9+wqs3Vph+NjxZMVmnSuwuNOk+3vn/oAAQBAylE0AzRRVlErSTo/x1xROTryaC50AAAAAMi48m3Nbkwbkvwb01yRWvlXP230hSadK/n66E1wAAAASJnNmzdLkoYOHdpuYcqwYcNaPCeZMRQXF8vv9xv94XBYjzzyiCTpoIMOSuo5naD5TjMTUjA3yTTv5g+V99Ft8m4ta3NMeL/j1DDjx4oPHJ/GyAAAAABnKqs0d5kZPTBX/QLc/og22LZyqpYosGq+/OtelCva0O5wy9dP4fGnKzTxHMUHT0lTkAAAIF34qxFooqyyTvu7NutQ91qjPzSJFZUBAAAAZFZ1Q1RbayNG34TBeUk/j3/VU3JH9154sl1uhaZemvTzAAAAoG+LRCKqrd2zUNXAgQPbHVtQUCC/369wOKwdO3YkNY4PP/xQL774oiZMmKDi4mLl5uZq586dWrp0qWprazVx4kSdcsopXTpmZ2NM5Q42bre73XYqWbat8mZFM5NKCvrMjj2ercuV++Gt8m56r80x0dLDFTzqRsVLDt7znBTGk8lcI/3It7OQb2ch385BroHUaVwMudG0UnaZQUuu4A751yxQYNX8NncMbSo67HCFJp+r8OgTJW9uGiIEAACZQNEM8C9xy9byylr92POW0W/lDlRkv2MzFBUAAACAzuqrN6Q1+ny7eTEokOPW6OICedyu5J3Eiit3+SNGV3T0CXIVjUrpTWDZJhvyjfQg185Cvp2FfDsL+c5OoVAo8XUgEOhwfCAQUDgcNp6XDAcffLCqq6u1du1arV27VqFQSHl5eRo5cqSOOuooHXPMMV2eS1x77bWdGjd//vzuhNwthYWFaTvXhq/r1BCxjL4Z40pV1L/jPGe17Z9Lb94srVrQ9pihU6Xjfi3vmG/J60riXKwL0plrZB75dhby7Szk2znINZActm1rWbOdZqYN65ehaJB1rLi8X32gwKr58n3xulxWtP3hecUKTThboUlzZQ3YL01BAgCATKJoBviX9dsbFIuEdJbfXDksNHGu5PFlKCoAAAAAnVVUVJS2c2XiQufGMnM160nD+mvQwH2Se5I1L0o1m4wu3zd+IF8a39tsxIVt5yDXzkK+nYV8Owv5zg6RyN5dEnNyOr4c1Tim6fOSYcyYMRozZkxSj+l0Kyp3G+3ifn4N7s0FMzUV0ju/kZb8XbLjrY/ZZ7R07C+lSWdKFOYBAAAAaVdRE9aOerMQYmopRTNO595docDqp+Rf/aQ8dVvaHWu7PIqMmqXw5HMVGTlT8njTFCUAAMgGFM0A/1JWUacT3QtV5DJXJQhNOjdDEQEAAADAXisrzBvTJg9Lwc2gH99rtodOlUYdmfzzAAAAoM/z+fYuRhWLxToc3zim6fOy1b333tvxoD5sZWWN0Z4yrH+GIumhhp3S+7+XPvmLFA+3PqZfiTTzp9JBF3NDFQAAAJBBzXeZKcrN0YgB/gxFg4yKh+X74g0FVs6X96v35ZLd/vDCkQpNPFfhCWfJKhiSpiABAEC2oWgG+Jeyylpd5nnT6IuUzpA1YN/MBAQAAAAATaxofmNaaZJvTKtaIW00d97UjGsllyu55wEAAIAjBAJ7dx4JhUIdjm8c0/R52WrgwIGdGlddXZ2yGNxut7GrUk1NjSzLStn5mlq60dwFc8w+/pS+1qSL1Cuw9AEFFv1Frkhtq0Msf3+FDvmewtMuk7y50u66VselQyZzjfQj385Cvp2FfDtHNuQ6nbuyA+lSVmH+7T61tJ9cXL9wFM+OtQqselL+8n/IHWp/Dmp7/AqPna3wxHMULT1McrFjKAAATkfRDPAvOzav1RGeVUZfaPL5GYoGAAAAQFf11RvSJKk2HNOXOxqMvpH9XEl9zXnv3qGma7JZuYNUU3qs1JtufkuSTOcb6UOunYV8Owv5dpZM55sb0lrn8/nUr18/1dbWaseOHe2OraurUzi8Z6ePzhak9AbxeDxt57IsKy3ns21ba7bWG33jB+em9bV2WzyiwMrHlffZH+UOtv49aecEFJz2bQUPukp24F+/V7LstaUr18gO5NtZyLezkG/nINdAcjTfaWbasIIMRYJ0ckXq5Pv8RQVWPSnv1iUdjo8NmqTQpHMVHnfa3jkdAACAKJoBJEnbaiP6VvBV4yci6hugyJgTMhcUAAAAgC7pizekNVq9xVxBLcft0r5F/qTF4ArukK98gdEXmnKh4q6crLtBLBO4sO0c5NpZyLezkG9nId/ZY/jw4Vq9erWqqqoUj8fl8XhaHVdZWWk8B9mrandENaGY0Td+cH6GoukkKy7/588r75Pb5dn9VatDbHeOQpPPV8Mh18nOH5zmAAEAAAC0py4c07qvzYXFppb2y1A0SDnbVk7VEgVWPyn/5y/IFW1od7jl66fw+NMVmniO4oOnpClIAADQ21A0A0ha/tVOne15x+iLTjxT8vjbeAYAAAAApE/zlZzHFufK60neVvKBFfPkikcSbdvtU3DKhUk7PgAAAJxp/PjxWr16tcLhsDZs2KD999+/1XGrVq0ynoPstWabOTfpH/CopL8vQ9F0wLbl3fiW8j++TTk7ytscFhp3mhoO/5GswlFpDA4AAABAZ63YUie7SdvrcWnikCwv3keXuYI75F+zQIHVTypn5+cdjo8OO1yhSecoPOYkyZubhggBAEBvRtEMICm69p8qdu02+sKTz89QNAAAAABgan5jWlJXco5HlLv8b0ZXeP+TZecXJ+8cAAAAcKTDDjtMCxYskCS99dZbrRbNWJald97Zs6hVfn6+Jk+enM4QU6qtnXWSwe12t9tOlfJtQaM9YUiBcnKy73JjTsWnyv3gt8rZsqjNMZF9j1XoyBsUL54kl6TUZatnMpVrZAb5dhby7Szk2znINZB8ZRV1RnvikHz5c/jZ6hOsuLxffaDA6ifl2/CaXFa0/eF5xQpNOFuhSXNlDdgvTUECAIC+IPs+xQYyYGLVc0b7q4Kpyt1nbIaiAQAAAABT+VZz6/kJSSya8a97We6Gr42+4LTLk3Z8AAAAONfYsWM1ceJErV69Wm+99ZZmzZqlcePGGWNeeOEFVVRUSJJmz56dlQUY3VVUVJS2cxUWFqblPOubrfZ70KiBaX2dHdqyTHrzv6XPX217zIgZ0nG/lm/UkcrSPXLala5cIzuQb2ch385Cvp2DXAM9V1ZZa7SnDivIUCRIFvfuCgVWPyX/mqfkqa1sd6ztcisy6hiFJ52jyKhZksebniABAECf0neuPADdFNm+UQdFyyTX3r7q/eeKTRsBAAAAZINQNK6NO5uv5pyXnIPbtgJlDxpd0WGHKj54SnKODwAAgF5tzZo1qqqqSrR37967Y3tVVZXefvttY/ysWbNaHOPyyy/Xr371K0UiEd18880688wzNXnyZEUiEX344Yd6/fXXJUklJSU69dRTU/I6kDwrKncb7cmlWXIT6I710lv/K614qu0xgydL3/p/0rgTJZer7XEAAAAAskbcsrWi0txpZlppvwxFgx6Jh+X74g0FVs2Xd9P7csluf3jhSIUmnqvwhLNkFQxJU5AAAKCvomgGjhdc9Jjcrr1/hO+287TPQadnMCIAAAAA2OvzrxtkNblu4HZJ+xcnp2gmp2qxvNuWG33Bad9OyrEBAADQ+73xxht65513Wn2svLxc5eXlRl9rRTP77beffvSjH+muu+5SMBjUvHnzWowpKSnRTTfdpNxclrPKZtt2h/R1bdjomzKsf4ai+ZfaKumdW6XFD0tWrPUxA0ZJx/5SmnK25PakNz4AAAAAPbJue4MaopbRN3UYRTO9iWfHWgVWPSl/+QK5QzvbHWt7fAqPma3wpHMULT1ccrnTFCUAAOjrKJqBs1kxDd74rNH1jn+WjshjG08AAAAA2WHN1gajve8+uQp4k3OjV27ZQ0Y73q9Ukf2OS8qxAQAAgEaHHHKIbrvtNr300ktavHixdu7cqZycHA0dOlQzZszQSSedJL/fn+kwk666ujplx3a73Sos3LvLS01NjSzLaucZPffxevP15PncKvREUvo62+IK18i/8M8KLH1Arlio1TFW3iCFDvuBwlPOlzw+qWZ3q+OyXSZyjcwh385Cvp2FfDtHNuS6qKgorecDUmlZhbnLzPABfg3M92YoGnRapF7+dS8qsHK+vFuXdDg8NmiiQpPOU3jcabIDWbKjKQAA6FMomoGj+b58W/2i242+DcPP1BEZigcAAABA93k8qVsx2O12t9tOpbVfm0UzE4cWJOW1umor5Vv/T6MvfODl8nh9PT52b5fJfCO9yLWzkG9nId/OQr5T57rrrtN1112XlGMVFxfrsssu02WXXZaU4/UG8Xg8beeyLCvl51u1pdZojx+cL9uylL5XKSkaVO6yR5S7+E9yh1svgrF8BQpOv1rBqZdLvvw9nWnMRaqlI9fIHuTbWci3s5Bv5yDXQM8sqzTnIewyk8VsWzlblyqwar78n78gV7Sh3eGWr0DhcacrNOkcxYunSC5XmgIFAABORNEMHM2/8nGjvdQaoyFjpmUoGgAAAAA9kc7V85quFJhqn+8wV00+aN9ByXmtC2+X7CYXa735yjvyauXlDuj5sfuYdOYbmUWunYV8Owv5dhbyDaRG+bZ6oz1hcH5az+8K7lDhMxcqp3pdq4/bHr+CUy9RcPo1snNZXR0AAADoC8qa7TQzdVhBhiJBW1zBnQqselqBVfOVs/PzDsdHhx2m0KRzFR5zkuTNTUOEAAAAFM3Awdx1W+T78h2jb178WF1eyooEAAAAALJDJGapvMpcRW1KaRJuAo3US4seMvsOvECiYAYAAABAG9ZsNYtmxg/OS+v589+7udWCGdvlUXjiXDUc9n1ZBSVpjQkAAABA6nxdF1Hl7rDRdyD3dWUHy5I2vCUtfkSFa16Uy4q2PzxvkEITzlZo4jmyivZLU5AAAAB7UTQDx/Kvekou20q06+yAFubN1E8KfBmMCgAAAAD2Wru1VtG4bfRNGta/5wde9oQU2mX2HX5Nz48LAAAAoE/aFYxqy+6I0TdhSPp2mnHv3iz/5y+26A+PnaP6w3/MTVcAAADoNSKRiObNm6cNGzaoqqpKdXV1ysvL09ChQ3XsscfqG9/4hnJyuKVPksoqzEXF8n0e7TeQnUkyworJs6Nc3i2L5d26RKr8TKqtlCS52niK7XIrOmqWQpPOVWTULMnjTVu4AAAAzfEXNpzJiiuwer7R9Vz8SI0bXpyhgAAAAAD0VHV1dcqO7Xa7VVi4d4eXmpoaWZbVzjOS47N1W432iAEBxYN1qg724KC2rf4f3i1Pk67oqFmq8wySUvge9iaZyjfSj1w7C/l2FvLtLJnOd1FRUdrOhd7F4/F0PKib3G53u+1k+3y7ebOaP8etMYML5HG3dXtUcuUue1AuO55o29481Z79uOJDpsolKXXvdOalO9fILPLtLOTbWci3c5BrdCQUCunVV1/V2LFjddBBB6l///6qr6/X0qVLde+99+rDDz/UTTfdxPeOpGWVdUZ76rD0zUGczhXerZyqJfJWLVbOlsXK2Vomd7S+4ydKivcfqdCkcxSecJasgqEpjhQAAKBzKJqBI3m/el+ef1W7N5oXP1Yns4UnAAAA0GvF4/GOByWJZVlpOd+qLeYFofGD83p8Xu+m9+TZuc7oa5h2eVrfv94mXflG5pFrZyHfzkK+nYV8I1uks6CqaeFYKny5bKfRnlDSX8UD90npORMadkorzYXQXAdfrv4TZqbn/Fkm1blGdiHfzkK+nYV8Owe5RnMFBQV6+OGHW+wmE4/HdfPNN6usrExLly7V9OnTMxRh9mi+08zUYQUZiqSPs225azbKu2WxcqoWy7tlsTw7P5dLducP4fEpPOYkhSedq2jp4ZKLoi8AAJBdKJqBIwVWPm60V1qjtNzeTz+naAYAAABAFinfZq7aNWFIfo+PmVv2oNGOFY1VdMTRPT4uAAAAgL5rRUWN0Z4yrH/6Tv7ZX6Vow962yyPN+F76zg8AAAAkkdvtbnUXGY/Ho0MPPVQrV65UVVVVBiLLLqGopTXbGoy+adzXlRyxkHK2rZC3apFytiyWt2qx3MGdHT+vNUMOUMPEuQqOPUV2YEBSwwQAAEgmimbgOK76r+Xb+KbRNy9+rPJ9ORo9MDdDUQEAAACAKW7ZKm92QWjCkLweHdNTvUG+L98x+kLTLpNcrh4dFwAAAEDftrJyt9GeUpqmFdOjQemTP5l9B8yVBoxIz/kBAACQVWpqarRu3TqtW7dO69ev1/r161Vbu2c3kpkzZ+q6667r9LG+/vprvfzyy1q8eLF27NihnJwcDR06VEcccYROPPFE+f3+VL2MVlmWpbKyMknSiBH8vbt6a53i1t6dTtwuaXIJO810h6t+m7z/Ko7J2bJIOV+vlMuKdutY8cKRipUcIv/Yb0gjj5CKJyi8a5dsdvwFAABZjqIZOE5gzdNyWbFEu8H269n4UZo6okAeNzeKAQAAAMgOX+4MKhyzjL7xg3u200xg2cNG2/IXKjT+zB4dEwAAAEDrqqurU3Zst9utwsK9hSs1NTWyLKudZ3RfXTimL7abu2CO7OdK6etr5Fv2qPIbdhh9u6dcrngazp0t0plrZB75dhby7Szk2zmyIddFRUVpPV86XXXVVUk5zsKFC3XXXXcpGAwm+sLhcKIQ54033tBNN92koUOHJuV8rYnFYnrmmWckSbW1tVqxYoUqKio0a9YsHXDAASk7b29RVlFntMcW5ynf58lQNL2IFZNnx1p5tyxSTtViebcslqd2c7cOZbt9ig05QNGh0xUrma7o0Omy8wbJ4/HI34d/zwAAgL6Johk4i20psPIJo+vF+OGqVR5beAIAAADIKs13mRnSz6eiPG+3j+cK1Siw+mmjLzT5fMnLjpsAAABAKsTTuNKuZVkpO9+aqlqj7XG7tF+RP/Wvz4orsPg+oysy8huK7DNOcvAqxqnMNbIP+XYW8u0s5Ns5yHXqDBo0SKWlpYndWTrriy++0O23365IJKJAIKAzzjhDU6ZMUSQS0QcffKA33nhDW7Zs0S233KLf/OY3ys1NzWfosVhMTz31VKLtcrl06qmn6sILL0zJ+XqbskpzHjJtGPd1tcYV3q2cqiX/2kVmsXK2lskdre/4ia2w8gYpOvTgRIFMbPBkyZPeHZcAAABShaIZOIp380fy7N5k9M2LHytJmlbKFp4AAAAAsseareZFjfGD83p0vMCq+XLF9q6aZ7s8Ch1wcY+OCQAAAKDvW7PVLOgfMzBXvhx3ys/r2/CqPDXmNZ3g9KtTfl4AAABkr7lz52rMmDEaM2aMBgwYoG3btun666/v0jEeeughRSIReTwe/fKXv9S4ceMSj02ZMkUlJSX629/+pi1btuj555/Xueee2+IYjzzyiKLRaKfPOWfOHJWUlBh9gUBA8+fPl2VZqq6u1qJFizRv3jytXbtWN910k/LyenZNoDezbVvLKs2dZrivS5Jty12zUd4ti/fuIrPzc7lkd/1QLrfiA8cbu8hY/UdILlcKAgcAAMg8imbgKIFV5i4z5dZwLbb3l8clTRnK5AoAAABA9lizzSyamTAkv/sHs2IKLH/U6IqMOVFWv2HdPyYAAAAAR2hR0N+TuUln2bZyF//F6IoWT1G09IjUnxsAAABZq7UClq5Yt26dVq9eLUk65phjjIKZRqeccoreeustVVRU6OWXX9ZZZ52lnBzzFrvXXntN4XC40+edMWNGi6KZRm63WwMHDtQJJ5ygfv366Q9/+IOeeeYZXXyxcxe9+rI6pJpgzOhz5E4zsbByti2Xt2qRcrYslrdqsdzBnd06lOUrUGzIQYqWTFes5GDFhkyV7XPgewoAAByLohk4hiu4Q771rxl9j8ePkeTSuMH5yvV5MhMYAAAAADRj27bKt5mrOY8f3P0b03wbXpentsLoC067vNvHAwAAAOAcLQr6e7gLZmd4Kz6Rd9syoy84/WpWPQYAAECPfPrpp4mvjznmmFbHuN1uzZw5U4899pjq6+u1cuVKTZs2zRjz6KOPtvrcnmo8z6pVq1Jy/N6irKLWaBcXeDW0vy9D0aSPq36bvP8qjsnZslg5X6+Qy+r8jkZNxQtH/msXmYMVHXqw4vuMldzcGwcAAJyLohn0iMeTmj+m3W53u+3u8K99Vi4rkmiHba+eiX9DknTg8P4pey3oWCryjexFvp2DXDsL+XYW8g2kXkVNWHXhuNE3YUj3b0zLXfaQ0Y4OnqrY0OndPh4AAAAAZwhF4/piR9Do69EumJ2Uu8TcZSbef6QiY05M+XkBAADQt5WXl0uS/H6/Ro8e3ea4SZMmGc9pXjSTKjt37tlFxOn3MC2rrDPa04b1k6uvFdBbcXl2lCcKZLxVi+XZ/VW3DmW7fYoNOeBfRTLTFR06XXbeoCQHDAAA0LtRNIMeKSoqSst5CgsLe3YA25ZWzTe6XrIOU40KJElHjR+atteCjvU43+hVyLdzkGtnId/OQr6B5Fuz1VzJuSg3R4MLureKmmfbCnkrPzP6QtMuZ4VmAAAAIMVSeaNbuha02LC1QZa9t+2SNHFov5S+Ns/Xq+X78h2jLzz9Knm8/pSdM5uxeImzkG9nId/OQr6dg1xnt82bN0uShg4d2u7ftMOGDWvxnGTGUFxcLL/f/Ps2HA7rkUcekSQddNBBST1nb7Os2U4zU0sLMhRJ8rjCtcqpWrKnSKZqsXKqlsodre/4ia2w8gYpOvTgRIFMbPBkyePM+RIAAEBnUTQDZ9j0kbTjc6Pr8dixia8PGbVPuiMCAAAAkGR94Ya0Rmu/Nldynji0QDk53ZvC5y1/2Ghb+YMVG3+K41eqaw8Xtp2DXDsL+XYW8u0s5BvZKp2LdaVqQYsvy3cb7TGDCzRsSIpXLH7LnMMob6DyjvyO8nzd332zL2HxEmch385Cvp2FfDsHuc4ekUhEtbV7ijEGDhzY7tiCggL5/X6Fw2Ht2LEjqXF8+OGHevHFFzVhwgQVFxcrNzdXO3fu1NKlS1VbW6uJEyfqlFNO6dIxOxtjqq4LJHNeXhOM6oudIaPvoOGFveuahm3LXfOlcrYsUk7lIuVsWST3jrVyye74uc0P5XIrPnC8YiUHKz7sYMVKDpHVf7ixMFq63xk+h3EW8u0s5Ns5yLWzkO89KJqBMyx6yGiut0r0iT1BklQ6IFdDCwMZCAoAAABAMvWFG9IardtpFv1PGzWwe6+vdqtU/rzR5T7sahUNGtKT8ByHC9vOQa6dhXw7C/l2FvINJM/KihqjPWVY/9SesGaztOIps++wqyUKZgAAANBDodDeQoxAoOP7hAKBgMLhsPG8ZDj44INVXV2ttWvXau3atQqFQsrLy9PIkSN11FFH6Zhjjulygci1117bqXHz58/vTshd1pN5+ZKtW412wOvWjAnD5fVk8c2d0ZC0Zan01SfSpk/2/L9he/eO5e8vDT9EGnG4NOJwuUoPVk6gf1bf5MnnMM5Cvp2FfDsHuXYWp+Y7m/+eQi9QXV2dkuO63W7jh7KmpkaWZXXrWK5QjQpXLpCrSd8T8VnSv3qmDstP2etA5yQz38h+5Ns5yLWzkG9nyYZ8p7M4Akg327ZbuTGtmx9aLHxAsqJ72x6/dMi3exAdAAAAACdZWWnuNDOlNMUXVD++V7Jie9s5udKhV6X2nAAAAHCESCSS+LozO7s3jmn6vGQYM2aMxowZk9Rj9iULN5r3cE0dPiB7C2Z2bpBeulHa8LZ5LaYrivbbUyAzck+RjIonSO5etKsOAABAL0HRDHokHo+n5TyWZXX7XIFVT8sVDyfaUeXo6fg3E+2pJQVpex3onJ7kG70P+XYOcu0s5NtZyDeQXFt3h7Wj3rwIN6W0G6s5x8LSwvvNvqnnSPmDehAdAAAAgM5K5YJd6VjQIhq3tKbKLJoZ1d+dstflCtWocOGDxiJoocnnKhhxSxHnLn6WDYuXIH3It7OQb2ch386RDblm4bHW+Xy+xNexWKydkeaYps/LVvfee2+mQ0iaRV+af/sfMipLv59tW3r6KqliYeef4/FJw6ZLIw77104yh0kFg1MXIwAAABIomkHfZtsKrHrC6Ppn/GDt0N4PKKaVFqQ7KgAAAAAp0NtvSGv08bqdRrvA71E/V1jV1V1bzc636inl139t9O2eeJHi7LTZoWy4sI30INfOQr6dhXw7S6bzzQ1paEs6F5hIxYIWn2+rVzRuG31jBwZS9rpyyx6VK1qfaNsutxqmfVsWC3UYWLzEWci3s5BvZyHfzkGus0cgEEh8HQqFOhzfOKbp87LVwIEDOzUuVddRkjUvj8YtlX21y+gbP9Cb0us/3eXZslj9OyiYsfIGKVZyiGLDDlasZLrixVOkHP/eAVFJWfjaOpLpz2GQXuTbWci3c5BrZ8mGfGfDdRSKZtCn5Wxdqpwd5Ubf4/FjE1/n+zwaMygv3WEBAAAASIHefkNao1Vbao32uOK8rn9gYdvyL3nA6IqUzlBkn3ESF2i7jAvbzkGunYV8Owv5dhbyDSTHmq31Rru00K9+gRRdWoyFlbvsIaMrMnaOrP4jUnM+AAAAOI7P51O/fv1UW1urHTt2tDu2rq5O4XBYUucLUnqDdM2VuzsvX72lTqGYeT1k8tC8rJzj55Y9arRtl1vxgeMVHTpdsZLpipYcLKvfcMnlMp+Yha+lp/gcxlnIt7OQb+cg187i1HxTNIM+LbDS3GVmp7dEH4QmJ9oHDCuQx+1q/jQAAAAAyJjmN6ZNGJLf5WPkVH6mnO2rjL7Qgd/uUVwAAAAAnGXN1gaj3Z25SWf5y/8hd8N2o6/hoKtSdj4AAAA40/Dhw7V69WpVVVUpHo/L4/G0Oq6ystJ4DtJjWWWd0d53n4AG5HozFE3bXMFq+de9aPQ1zLhBwYO/m6GIAAAA0BGKZtBnuSK18n/+gtH3vOdbsuVOtKcNK0h3WAAAAADQrvJtPb8xLbfsQaMd7z9SkVHH9CguAAAAAM5Svq15QX9eak5kW8pd8lejKzLiKMUHT0nN+QAAAOBY48eP1+rVqxUOh7Vhwwbtv//+rY5btWqV8Zy+oq0ioZ5yu93ttjuredHMtNL+KYu5J/xr/yFXPJJo2x6folPOy8pYUyFZ+UbvQL6dhXw7B7l2FvK9B0Uz6LP8a5+XKxZMtG2XR/fuPtIYM620X7rDAgAAAIA2VTdEtbU2YvRNGNy1G9Pcu7+S74vXjb7gtEsltzMu1gAAAADoubhltyzoH5yanWZ8X7yunF1fGH1BdpkBAABAChx22GFasGCBJOmtt95qtWjGsiy98847kqT8/HxNnjw5nSGmVFFRUVrOU1hY2OXn2LatZVvMopmjxg1NW8ydZlnSynlGl2vS6RpQOjZDAWVed/KN3ot8Owv5dg5y7SxOzbczS4XgCIGVjxvtbUO+oSprQKLtcUlTSthpBgAAAED2aL6Ssz/HrVH75HbpGLnLHpXLthJty1ug8MS5SYkPAAAAgDN8uTOocMwy+sanomjGtpW76C9GV2zQREVHHJ38cwEAAMDxxo4dq4kTJ0raUzSzdu3aFmNeeOEFVVRUSJJmz56tnBzWpE6Hil1Bbd0dNvqmj8qyghlJ+uIdaecGs++QKzITCwAAADqNv+rRJ3m2rVDO1yuNvvcKZhvt/QfnKc/HSssAAAAAsseareZKzuOK8+Rxuzp/gEi9/KvmG13hSXNl+9hlEwAAAEDnrWm2y8yQfj7tk+9N+nlytiySd+sSoy940NWSqwvzIAAAADjGmjVrVFVVlWjv3r078XVVVZXefvttY/ysWbNaHOPyyy/Xr371K0UiEd18880688wzNXnyZEUiEX344Yd6/fU9O7mXlJTo1FNPTcnrQEuLvqw22gPyvBpTnJrdLntk4f1mu3iiNPKIzMQCAACATqNoBn1SYNUTRjteMFQL6iZJqk30TRvGTWMAAAAAskvznWYmDMnr0vMDa56RO7J33mPLpeDUS5MSGwAAAICu8XhSt3CX2+1ut91Ta782i2YmDMlPyevJW3Kf0Y73K1Vs/Ckpfe96m1TnGtmFfDsL+XYW8u0c5Dq13njjDb3zzjutPlZeXq7y8nKjr7Wimf32208/+tGPdNdddykYDGrevHktxpSUlOimm25Sbm7XdoLPdtXV1R0P6ga3263CwsJEu6amRpZltfOMlj5cW2W0p5YUaNeuXckIL2lcdVUqXPOSmpb4N0y+QOEsizPVkpFv9B7k21nIt3OQa2fJhnwXFWV+B0GKZtD3ROrlL3/O6ApNPEdln5oXeKaVUjQDAAAAILus2WoWzYwf0oVV1GxLuWUPGV2R/b4lq3BUEiIDAAAA0FXpvBDY9KJnMqzbscZoH7TvoOS/nm1rpC9eN7o8R/1ARYMGJ/c8fUyyc43sRr6dhXw7C/l2DnKdnQ455BDddttteumll7R48WLt3LlTOTk5Gjp0qGbMmKGTTjpJfr8/02EmXTweT8t5LMvq8rmWbt5ttKcOK0hbvJ2Vu3yeXPbemGxvnoLjTpOdZXGmW3fyjd6LfDsL+XYOcu0sTs03RTPoc/zrXpI7Wpdo23Jp7dBTVRveboybVlqQ7tAAAAAAoE114Zi+2hU2+iYM7nzRjPfLd+Sp2Wj0haZdlozQAAAAADiIZdlaWWHesDZ5WApu9vzwLrOdWyRNvyT55wEAAECfcd111+m6665LyrGKi4t12WWX6bLL+Bw90xoicX3ebLfLqcOy7L4uK6bAyieMrtC402T7WLQZAACgN2APUPQ5zSco0VEz9dkuc4IytJ9PQ/r1vRUhAAAAAPRe5dvMC0I5bpfGDMrt9POb7zITGzhe0dIjkhEaAAAAAAf5qrpBteGY0TeltH9yT7J7i7TMvJ6jQ78j+bqw2yYAAACAPmHFljpZ9t62x+3SpKHZNTfwbXxTnvoqoy805cIMRQMAAICuYqcZ9Cme7eXybl1i9IUmn6eyNbVG37RSqvwBAAAAZJfybfVGe8ygXHk9nVvrwrNjrXxfvW/0BaddLrlcyQoPAAAAQBdVV1en7Nhut1uFhXt3f6mpqZFlWUk59idrtxvtorwc+eNBVVeHknJ8Scp9/w8KWNFE2/b4VDP+PNkpfM96q1TmGtmHfDsL+XYW8u0c2ZDroqKitJ4P6KlllXVGe8LgPAW8ngxF07rA8seMdnTIgYoXT85QNAAAAOgqimbQpwRWPW60rbxiRUYdo7I3Vxr900qzbAtPAAAAAI63Zqu508yEIZ1fRS2w7GGjbQX2UXjcaUmJCwAAAED3xOPxtJ3LsqyknW/VFnMhsgmD85N6o6crXCvf8r8bfaGJcxXzF0lpfM96q2TmGtmPfDsL+XYW8u0c5BrZxONJTSGK2+1ut92R5kUzBw7vn7JYu8O9a6N8X71n9EWmXpxVMaZTT/ON3oV8Owv5dg5y7Szkew+KZtB3xELyly8wukIT52pHSNq8K2z0s9MMAAAAgGyzZqu508yEwZ0rmnEFqxVoPheacr6UE0hWaAAAAAAcZM227hf0d0Zg5Ty5I3tvirPlUvDAK5N6DgAAAAAtpWsXoqa7LXXEsmwtb1Y0c9T4kuzaMemz35ntwADlH3ax8r25mYkny3Ql3+j9yLezkG/nINfO4tR8UzSDPsO//hW5w7uNvtCkc1VWYa6Ilu9za+ygvHSGBgAAACANUrmiV6pX3ghG49q4M2j0TSzp16nX5F89X65YKNG23TmKTLvMsSucJQMrrTgHuXYW8u0s5NtZyDeQPLZttyjoHz84iddU4mEFyh4yuiJjTpI1YN/knQMAAABAr/H5tjrVhmNG38GjsqhgJhqSlpg7ZeqgiyUKZgAAAHoVimbQZwRWPmG0IyOOklU4UmWLvzT6p5QUyON2pTM0AAAAAGmQzlXHkr3yxsZN1bLsvW23Szps3DDl+TqYtsej0grzYo1r8pkaMGJCUuNzOqeutOJE5NpZyLezkG9nId9A922tjWhX0LxhLZk7zfjLn5enfqvRF5x+ddKODwAAAKB3WfjlTqM9vChXQ/oHMhRNK1Y9KwXNGHXwtzMTCwAAALqNohn0CZ7q9fJWfmr0hSadJ0kqqzR3mplW2i9tcQEAAABAZ6yoNHfNHFNc0HHBjCStfk7aXWH2HX5tEiMDAAAA4CTl2xqMdoHfo9JCf3IOblvKXXKf0RUpPVyxIVOTc3wAAAAA7aqurk7Jcd1ut7GARU1NjSzL6tRzP/rcLKo/oCQ/ZXF2R7+P/2zcYBkdcZTqPAOlLIox3XqSb/Q+5NtZyLdzkGtnyYZ8p3MR3LZQNIM+wb/2BaNtBfZRZPRxCkUtrdlqXuChaAYAAABAtllZUWO0p5R2cnX0j/9ktocfJg0/OElRAQAAAHCaNVvrjfb4wXlyuVxJObZ349vKqV5n9AUPuiopxwYAAADQsXg8npbzWJbV6XMt3WwuKnZASX7a4uyIZ/sa5WxZZPQFJ1+YNfFli67kG70f+XYW8u0c5NpZnJpvimbQJ3g3f2i0w+NPkzx+rarcrZhlJ/rdLmlKSUG6wwMAAACQBqlceSzVK2+UbdpptPcb4O3w9Xiqlqr/ZnPHzboDLlHUwaubJUs2rLSC9CDXzkK+nYV8O0um850NK6QBybJmm1k0M2FwftKOnbfkL0Y7ts84RUfNStrxAQAAAPQuO+qj2rwrbPRl02LIgRV/N9rxvMGK7PetDEUDAACAnqBoBr1ftEE5W8uMrsiIoyVJZZW1Rv/+xXnK93nSFhoAAACA9EnnShjJXHkjGrf0+dfmDpnjinM7PH7ukgeMdrxgqEL7Hi85cEWQVHPqSitORK6dhXw7C/l2FvINdF95s51mJgxJTtFMzpbF8lZ+ZvQFp18lJWkXGwAAAAC9z7Jm93Xled0aMygvQ9GYXJE6+cufNfrCk8+TPN4MRQQAAICeoGgGvZ53yyK5rGiibbs8ig07VJJUVlFnjM2m1QgAAAAAQJI27AgaO2RK0vjB7V8UctdVyb/uJaMvdMAlXKwBAAAAsojHk7pFvNxud7vt7thRH9G2uqjRN6mkX1JeR97Svxptq6BEsQmnp/Q96itSkWtkL/LtLOTbWci3c5BroPOWNbuva8qwAuW4s6Ow3l/+rNzRvYsK2C63QpPOzWBEAAAA6AmKZtDreTd/bLRjg6fK9hXIsu0WKxJQNAMAAAAg26xptpLz8AF+9Qu0P10PrPi7XFYs0bZzAgpNOi8l8QEAAADonqKiorSdq7CwsMfHKNu2zWjnej06cMwweXp609r2z6X1rxpd7iOvV9GgIT07rkMlI9foPci3s5BvZyHfzkGugbaVNb+va1iW3Ndl2wqs+LvRFdn3WFn9hmUoIAAAAPQURTPo9bwVZtFMdPgMSdLGHUHtDsWNx6YNK0hbXAAAAADQGWu2NhjtCYPz239CLKTAinlGV2j8GbJz03dDHgAAAIC+Z2XlbqM9aVj/nhfMSNKHd0lqsrumv1A6+LKeHxcAAABAl6Rqp8fu7LAUjlla3WxRsYNGFGbFbpSeykXK2VFu9EWmXZIVsWUDdtRyFvLtLOTbOci1s5DvPSiaQa/mitQqZ9tyoy9auqdopqzS3MJzSD+fhvb3py02AAAAAOiM8m3mRaHxQ/LaHe9f+5zcoWqjLzTt8mSHBQAAAMBhVlTUGO0pw/r3/KC1W6Uys+hfh14p+bNkBWkAAADAQdK1G2Zndlha9OVOReN7i+tdLunoScPVP+BNZWid89Z8s120n/pNPU1y6A2mHWFHLWch385Cvp2DXDuLU/NN0Qx6tZzKhXLZe3eTsd1eRUsOliSVVTTbwrOUCzAAAAAAskvcsrV2Wxd2mrFt5S590OiKjDha8X32T0V4AAAAAHqgurq640Hd5Ha7jYubNTU1siyrR8dc9pUZ734Dcnr8GgIf3qHceCTRtj0+1Uw4X3YK35u+JhW5RvYi385Cvp2FfDtHNuQ6XYURQE8s3GjOCcYP6ZcdBTP1O6SV/zD7Dvk2BTMAAAC9HEUz6NW8mz8y2rGhB0reXEmtFM0MK0hXWAAAAADQKZuqQwrFzAum49spmvFWfKScnWuNviC7zAAAAABZKR6PdzwoSSzL6tH5dodiqqgJG33jinN7dExXpE7+ZY8afeHxZygWGCil8b3pa3qaa/Qu5NtZyLezkG/nINdA6xZ9aRbNHDwqS4q9lv5NalL4L49POvCizMUDAACApKBoBr2ar+Jjox0tnSFJ2lEf1Ve7zIs77DQDAAAAINus2VpvtIf082mf/LZXUgssfchoxwbsp+iomakIDQAAAICDrN1mzk28HpdGD8zt0TH9q+bLHd6daNtyKXjQVT06JgAAAIDuS9VumF3dYcm2bX22cYfRN2GQL6W7dXaKban/p/fL06QrPHaOGiIeKcJumY2yYUctpA/5dhby7Rzk2lmyId/ZsBsmRTPotVyhGnm+XmX0NRbNLKs0d5nJ87o1tjgvbbEBAAAAQGc0L5oZN7jteYt710b5Nr5p9IWmXia53CmJDQAAAIBzrNnaYLTHDspTjqcHc414VLlL7ze6IqOPU7xodPePCQAAAKBH0rXrUUc7LH1VHVJ1Q8zoO6AkP+O7Mnk3vSdPzZdGX3DKBRmPK9uxo5azkG9nId/OQa6dxan55s4a9Freyk/kkp1o2x6/okMPkiSVVZhFM1OGFSjH7UprfAAAAADQkfJt5o1pEwbntzk2d9kjxhzI8vVTaMJZKYsNAAAAgHOsabbTzIQhPVuIzP/5C/LUVRl9wYOu7tExAQAAAPQNy7fUGe2BeV6VFvozFM1egRV/N9qxgeMVG3pwhqIBAABAMlE0g17Lu/ljox0tmS7l7JlAlVWYk6tpw/qlLS4AAAAA6Azbtlu5Ma31ohlXpFb+1U8bfaFJ50q+totsAAAAAKCzmu+COb6dgv4O2bZyl9xndEVLDlGsZHr3jwkAAACgz9hWGzHa4wbnyeXK7GLI7rot8n3xhtEXmnKRlOG4AAAAkBwUzaDX8lY0K5opnSFJCkUtrW52cWdaKUUzAAAAALJLRU1YdWFzy9u2VnP2r3pK7ujexQFsl1uhqZemND4AAAAAztAQievLnSGjr62C/s7wbnpXOTvKjb7g9Ku6fTwAAAAAfUtD1Lw2UuD3ZCiSvQIrn5DLthJt25un8PjTMhgRAAAAkomiGfRKruCOFhdcosP3FM2s3lqnmGUn+t0u6YBhBWmNDwAAAAA60nwl5wG5ORpc4Gs50Iord9kjRldkv+Nl9R+eyvAAAAAAOMTarxtkN2l7XNLYQa0X9HdG7uK/GO1Y0RhF9j2228cDAAAA0Lc0RMyimXxfhotm4lH5Vz5hdIXGnS7bxyLNAAAAfQVFM+iVvBWfGG3bm6fY4KmSpLKKOuOxscV5mZ9cAQAAAEAz5dsajPaEIflyuVwtxvk2vinP7k1GX3Da5akMDQAAAICDNC/o329grgLe7l1CzNm6TL6Kj42+4EFXSS4uSQIAAADYoz5iGe3cDN/X5dv4pjwN24y+0AEXZSgaAAAApEJOpgMAusO72bzgEi05WPLsWZG5rKLWeGzaMKr+AQAAAGSf8mY3pk0Y3PpKzoGyh4x2rHiyYsMOTVVYAAAAABymxdxkSH63j5W75D6jHc8brPD407p9PAAAAADJ4/GkpjjF7Xa3224uFDWLZgr8OSmLrTNyVzxmtGMl06UhU8QSza3rar7Ru5FvZyHfzkGunYV870HRDHolb7NVyqKlR0iSLNvWskpzp5lppQVpiwsAAAAAOsO2ba3uxI1pnu1rWq7SPPUyqZUdaQAAAACgO1rbBbM73Ls2yrf+FaMvdODlksff3dAAAAAAJFFRUVFazlNYWNju4xHbvFFzUGFB2mJrYcd66av3ja6cGd/NXDy9UEf5Rt9Cvp2FfDsHuXYWp+bbmaVC6NXcdVuVU73e6IsOnyFJ+nJnSDWhmPHYgaXsNAMAAAAgu3xdF1V10Jy7jB/c8sa03Ga7zFi5AxUed0oqQwMAAADgIOGYpfU7gkbf+DZ2wexI7tIH5LL3rhhteQsUmnxhj+IDAAAA0PfUh83rI3n+DK77vfABs51bJE06IyOhAAAAIHUomkGv4634xGhbvgLFiidLksoqao3HhvTzaWh/VjADAAAAkF3WbDN3mcn3eVQ6wJy7uII75F/7rNEXmnIRqzQDAAAASJr12xsUt2yjb1wrBf0dcTVsV2D1U0ZfaMoFsv0sbAYAAADAVB+JG+0CvyczgUSD0tK/m30HXiR5A5mJBwAAACmTwTJtoHu8FR8Z7diwwyT3nm/l5kUzU4cVpC0uAAAAAJnl8aTuoorb7W633VVrvzZXcp4wJF/eHHOKHlj1hFzxSKJte3yKTLs4pa8TeyQ738he5NpZyLezkG9nId/IVr1hjtJ8bjJqn4D65/q6fJzAir/LFQ8n2rbbq8j0K5m/JAG/45yFfDsL+XYW8u0c5BrZrLq6OiXHdbvdKiwsTLRrampkWVab42uDYaNtR8Mpi609vtVPKz9onrdm/7NlZSCW3qSr+UbvRr6dhXw7B7l2lmzId1FRUVrP1xqKZtDreCs+NtqR0hmJr8sq64zHppWyghkAAADgFOmcZDf9QKE71u9cb7QPHDXQjD8WkZabq5u5ppytAcPH9+i86J6e5hu9B7l2FvLtLOTbWcg3skVvmKNs2LXZaE8dsU/X447US8sfNbpcU8/VgBETuxUT2sfvOGch385Cvp2FfDsHuUY2icfjHQ9KAsuy2j1Xfdh8LOBJX2xN+cr+ZrQjI45WtP9IKQOx9GYd5Rt9C/l2FvLtHOTaWZyab5YzQK/irq2Up2aT0RcdfoQkaWd9VJuqQ8ZjB1I0AwAAACALrayoMdpTSvubA1YtkOqqzL7Dr0ltUAAAAAAcp8XcZFj/Nka2Y8nfpGarM+vI7/cgKgAAAAB9WUPUXNk8z5f+HSo9X6+Sd+sSoy805cK0xwEAAID0oGgGvYp380dG2/IPUHzQBEnSsspa47Fcr1tji/PSFhsAAAAAdMbO+ogqa8yC/8nDmqw2aNvSx/eYTxp5pDTswNQHBwAAAMAxonFLq6vMaytTSru4Eno8Jn34R7Nv3EnSYHaZAQAAANBSzLIVjplFM/kZKJoJrPi70Y7nD1Fkv2+lPQ4AAACkR06mAwC6wlvxsdGOlh4mufbUfpVV1BmPHVBSoBy3K22xAQAAAMis6urqjgd1k9vtVmHh3pvHampqZFlWO89o2ydf7DLagRy3inKiifg9lYvUv9Jc3azugEsVTeHrgymZ+UZ2I9fOQr6dhXw7S6bzXVRUlLZzoXfJ9jnK2m31ijS7Wa00z+pS3N7yZ1VQs8noq516hWLMX5Im07/jkF7k21nIt7OQb+fIhlwzR0E2C0biLfpyveld99sVqVVg7XNGX3jSeZKbWykBAAD6Kv7SQ+9h260UzcxIfF3WbKeZaaX90hIWAAAAgOwQj7e80JIqlmV1+3wrt5hzl/2L8+SyLTUeLm/J/cbj8X6lCo06Vkrj64OpJ/lG70KunYV8Owv5dhbyjWyR7XOUVc3mJsP6+1Xgc3f+OLatfgv/bHRFhxyk8JDpzF9SiN9xzkK+nYV8Owv5dg5yDZgaoi1/HtK904y//Fm5og2Jtu3yKDT5vLTGAAAAgPRKb5k20AOuSK1s/wCjLzr8CElSOGZp9dZ647FppQXpCg0AAAAAOq18mzl3mTAkL/G1u7ZSvvX/NB4PTb1Ucqf3ghEAAACAvq/53GR8k7lJZ3i/+kA521cZfcHpV0kuV49jAwAAANA3NURa7ryUm86iGdtWYPnfja7Ift+SVTA0fTEAAAAg7dhppg9asGCBHnvsMUnSzTffrHHjxmU4ouSw/f216/zn5QpWy1v5qXKqFiu+z/6SpNVV9YrG7cRYt0uaUkLRDAAAAIDss6ZZwf/4wfmJrwPL/yaXvXeVNdubp9Ckc9MWGwAAAADnWLO1wWg3nZt0Ru6S+4x2vHBfRfY7rsdxAQAAAOi76iPmTjP+HJdy3OkrvM/Zskg5O9cafaEpF6Xt/AAAAMgMimb6mE2bNunJJ5+U3+9XOBzOdDgpYecWKTLmREXGnJjoW76lzhgzdlCeCvx8ewMAAADILnXhmL7aZc7VJgz5141p0QYFVj5uPBaacLZsf/90hQcAAADAISzbbmUXzM4XzXi+XinfV+8bfQ0HfYddMgEAAAC0Kxg1i2byvOmdQwRWmLvMxAtHKjriyLTGAAAAgPSjqqAPicViuvvuu7Xvvvtq6NCheu+99zIdUtpsq40Y7XGD8zIUCQAAAAC0be02cyXnHLdLowfmSpIC5QvkDtcYj4emXpq22AAAAAA4x6bqkIJRy+ibMKTz11ZyF5u7zFi5AxWecFZSYgMAAACQGh5PagpU3G53u+2mgjGznefzpCyu5lwNO+Rf/4rRFz7gYnlyvGk5f1/RlXyj9yPfzkK+nYNcOwv53oOimT7kmWee0ebNm/Xb3/5Wzz77bKbDSau6Zlt39gvwrQ0AAAAg+6xptpLzmEG58uW4JdtWoOxh47HIqFmKF41OZ3gAAAAAHGLNVnNuMijfq0H5vk491737K/nXvWT0BaddLuX4kxUeAAAAgBQoKipKy3kKCwvbfMzlNeci/XJ9aYtLKx+W4k0WZvb4lXfkVcrLS9P5+6j28o2+h3w7C/l2DnLtLE7Nt6MrC2pqarRu3TqtW7dO69ev1/r161VbWytJmjlzpq677rpOH+vrr7/Wyy+/rMWLF2vHjh3KycnR0KFDdcQRR+jEE0+U35/aCwUbNmzQP/7xD5177rkaPnx4Ss+VjerC5jIEBb70bt0JAAAAAJ2xZqu508z4wfmSJO9X7yunep3xWHDa5ekKCwAAAIDDlDebm0wYkt/p5+YufUAue+9iZrY3T6EpFyUtNgAAAAB9V33YXBi5wJ+m2xctS1r0oNk3+Uwpb5/0nB8AAAAZ5eiimauuuiopx1m4cKHuuusuBYPBRF84HE4U4rzxxhu66aabNHTo0KScr7loNKq7775b++67r04//fSUnCPbtZxQUTQDAAAAIPuUN9tpZsKQPElSbpl5oSZWNFbREUenLS4AAAAAztJ8F8wJgztXNOMK7lRg1XyjLzTpfNkBZ65OCAAAAKBr6pstjJyXrqKZ9W9K1RvNvkOvTM+5AQAAkHGOLpppatCgQSotLVVZWVmXnvfFF1/o9ttvVyQSUSAQ0BlnnKEpU6YoEonogw8+0BtvvKEtW7bolltu0W9+8xvl5uYmPfYnnnhCW7Zs0W9+8xu53e6kH783qIuYRTP5FM0AAAAAyDKhaFxf7AgafROG5MtTvUG+L98xx067THK50hkeAAAAAIewbVtrtrZe0N+RwPK/yxUL7T2Wy6Pggd9OanwAAAAAUqO6ujolx3W73Sos3FtIX1NTI8uyWh27vabOaPtcVsriair/o3vla9KODZqg2vyxUhrO3dd0Jd/o/ci3s5Bv5yDXzpIN+S4qKkrr+Vrj6KKZuXPnasyYMRozZowGDBigbdu26frrr+/SMR566CFFIhF5PB798pe/1Lhx4xKPTZkyRSUlJfrb3/6mLVu26Pnnn9e5557b4hiPPPKIotFop885Z84clZSUSJLWrl2r559/Xuecc45GjhzZpdj7krrmO834KJoBAAAAkF3WbQ/Ksve23S5p/0F5Cnz0sDHO8hcqNP7MNEcHAAAAwCkqa8KqbXZdZcKQTuw0Ewspd9kjRld43Kmy+g1LZngAAAAAUiQej3c8KAksy2rzXHXNdprJ9bpTHpe7tlLeL940+kJTLlKcm4OTor18o+8h385Cvp2DXDuLU/Pt6KKZ1gpYumLdunVavXq1JOmYY44xCmYanXLKKXrrrbdUUVGhl19+WWeddZZycsy3/bXXXlM4HO70eWfMmKGSkhLF43HdfffdGjVqlM4444wevZberr7ZTjMF6dq6EwAAAAA6qflKzvvuk6s8q06B1U8b/aHJ50ve5O9SCgAAAACSVL6twWgXBnI0pJ+vjdF7BVY/LXdop9EXPOiqpMYGAAAAoG8LNrvHK8/rTvk5A6uekMveWyBjefMVHndays8LAACA7EFlQQ98+umnia+POeaYVse43W7NnDlTjz32mOrr67Vy5UpNmzbNGPPoo4926/yhUEhbtmyRJF144YWtjvnlL38pSbrhhht02GGHdes8vUGLnWb87DQDAAAAILs0L5oZPzhPgVXz5YoFE322y6PQARenOzQAAAAADrJmW7O5yZA8uVyu9p9kxZW75K9GV2TkNxUfNCHZ4QEAAADow5ovjJznS/E9XvGo/CvnG13h8WfI9hWk9rwAAADIKhTN9EB5ebkkye/3a/To0W2OmzRpkvGc5kUz3eX1enXssce2+tjq1au1ZcsWHXLIIerfv78GDx6clHNmo1jcUjhmbpdZkOoJFQAAAAB0UfPVnCcM9iuw3FxEITLmRFn9hqUzLAAAAAAO07ygf8Lg/A6f49vwT3l2bzL6gtOvTmpcAAAAAPq+hoh5j1d+iu/x8n3xujwN24y+0JTWF6cGAABA30XRTA9s3rxZkjR06FB5PG3/AT9s2N4bnhqfkww+n0/XXHNNq4/dfffd2rJli8444wyNGzeuy8fesWNHp8a197p7wu12t9tuqrbZZEqS+uf5UhYbkq8r+UbvR76dg1w7C/l2FvINdF00bmnddrNo5pvxz+SprTD6gtMuT2NUAAAAAJzGtu2WRTNDOiiasW3lLvqz0RUdfICipTOSHR4AAACAPi4YNXeayfWm9jpjYMXfjXZ06HR2zAQAAHAgima6KRKJqLa2VpI0cODAdscWFBTI7/crHA53uhgl06699tpOjZs/f37Hg5KgsLCwzcdqrYYWfcOHDFSej2/v3qq9fKPvId/OQa6dhXw7C/kGOrZhR1DRuG30Tdz8hNGODp6q2NDp6QwLAAAAgMNsr49qZ0PM6OuoaMZb8bG8X68w+oLTr5ZcrqTHBwAAAKBvq4+YRTOp3GnGU71Bvs0fGX2hAy5K2fkAAACQvVgSuptCoVDi60Ag0OH4xjFNn4fk2B2KGm2P26VcL7vMAAAAAMgezVdyPqZfhQJVC42+0LTLuekMAAAAQEo1n5vk+9waPsDf7nNyl9xntOP9Ryoy+sSkxwYAAACg72toVjSTl8KimcCKeUbbChQpPGZ2ys4HAACA7MVWHN0UiUQSX+fkdPw2No5p+rxUuu6663Tdddd1+/n33ntvEqNJrbqwuSJav0COXNxoBgAAACCLlG8zd8j8ju+fUpP6/3jeYIXHcqEGAAAAQGo1L5oZPzhf7nauqXi2r5Hvy3eMvuBBV0puFi8DAAAA0HUNUcto5/lStOZ3LCT/mqeNrtDEuVJO+4sGAAAAoG+iaKabfD5f4utYLNbOSHNM0+dls4EDB3ZqXHV1dUrO73a7VVhYmGjX1NTIsqxWx27Zvsto53ndKYsLqdGVfKP3I9/OQa6dhXw7Szbku6ioKK3nA3qq6Y1pxdqlGQ1vG4+HDrhI8vSO+SIAAACAzvF4UldY4na72223pfzroNGeOLSg3Tjzlt5vtK3cfRSdfG5KXxtM3c01eify7Szk21nIt3OQa6B96dppxv/5C3KHa4y+0JQLUnIuAAAAZD+KZropEAgkvg6FQh2ObxzT9Hl9QTwe73hQEliW1ea5dgfN3XsKfJ60xYXUaC/f6HvIt3OQa2ch385CvoH2xS1ba5vsNHNRzuvy2HsXX7A9Pi7UAAAAAH1QOhd8aLq4RXs+b1Y0c/DowW3Huesrae1zRpf78GtUNHhYt2JEcnQ21+gbyLezkG9nId/OQa6BvSzbVrD5TjPe1BTNBFY8ZrQjI74hq3BUSs4FAACA7MdyBt3k8/nUr18/SdKOHTvaHVtXV6dwOCyp8zu4oPPqm61AUOBndTMAAAAA2WNTdUih2J6LQD5FdZHndePx8LjTZecyVwQAAACQWjvrI6rYZRbNTB7Wzk2cH98rWXsL/uXNkw67KkXRAQAAAOjrmhfMSKnZacazbYW8W8uMvtABFyb9PAAAAOg92GmmB4YPH67Vq1erqqpK8Xi8za3oKysrjecguerCZtFMfoq27QQAAACA7ijfVp/4+lT3Ryp27TYeD067PM0RAQAAAHCilZU1Rtuf49aY4vzWBwerpUUPmX0HXSLl7ZOa4AAAAACkXFv3tvWU2+1ut90oFIu36OuX6016XHmrHjfaVkGJ4mOOl8fNPWXJ0Nl8o28g385Cvp2DXDsL+d6DopkeGD9+vFavXq1wOKwNGzZo//33b3XcqlWrjOcguZoXzbDTDAAAAIBssmZrY9GMrW/nvGI8FimdofigCekPCgAAAEDKVVdXp+zYbrdbhYV7d4mpqamRZbVctbmpz9ZVGe1xxXmq3V3T6tjAp3crN7p3AQDb5dbuSRfLSuFrQuu6k2v0XuTbWci3s5Bv58iGXBcVFaX1fOg90vW90fRnoKmdsboWfaWDB8mXk8QbN0M1UvmzRpf7kG+raGBx8s4BQ1v5Rt9Evp2FfDsHuXYWp+abopkeOOyww7RgwQJJ0ltvvdVq0YxlWXrnnXckSfn5+Zo8eXI6Q3SE+ghFMwAAAACy15qtDZKkw1xrNMW90XgsdOC3MxARAAAAgHSIx1uuopwqlmV1eL7VVeYNauMH57X+nFhY/rIHja7I2DmKFgyT0via0LrO5Bp9B/l2FvLtLOTbOcg1sFdDs4WRvR5XcgtmJKnsCSnasLft8kjTL0nuOQAAANDrUDTTA2PHjtXEiRO1evVqvfXWW5o1a5bGjRtnjHnhhRdUUVEhSZo9e7ZycvrWW57pbTslqT5irshREEj+tp1ILbb+chby7Rzk2lnIt7OQb6DzbNtW+bY9qzM332Um3n+kIqOOyURYAAAAABxo7y6Ye0wYkt/qOH/5P+Ru2G70NRx0VcriAgAAAOAMdeGY0c73J/k+OtuWFt5v9k2YI/UfltzzAAAAoNfpWxUcXbRmzRpVVe3din737t2Jr6uqqvT2228b42fNmtXiGJdffrl+9atfKRKJ6Oabb9aZZ56pyZMnKxKJ6MMPP9Trr78uSSopKdGpp56akteRSZnetlOSwpbLaBcPKGCr2V7OqVt/ORX5dg5y7Szk21nIN9C2ypqwasNxDXd9rRPcC43HgtMuldwU/AMAAABIvbpwTF/tCht9rRbNWHHlLvmr0RUZcZTig6ekMjwAAAAAaVBdXZ2S47rdbuN6YU1NjSzLajFu685dRjs3x53UmHIqPlW/r9cYfbUTzlMsRa/bqTqbb/QN5NtZyLdzkGtnyYZ8Z8N9/Y4umnnjjTf0zjvvtPpYeXm5ysvLjb7Wimb2228//ehHP9Jdd92lYDCoefPmtRhTUlKim266Sbm5uUmJG6bmqxD0C3gzFAkAAAAAmNZsa5AkXep5VR6Xnei3vAUKT5ybqbAAAAAAOEz5v+YmjXLcLo0e2PK6le+L15Wz6wujL3jQ1SmNDQAAAEB6xOPxtJzHsqxWz1UXihrtXK87qTHllj1qtOOF+yo87HApTa/bqdrKN/om8u0s5Ns5yLWzODXfji6aSZZDDjlEt912m1566SUtXrxYO3fuVE5OjoYOHaoZM2bopJNOkt/vz3SYfVZtqFnRTLK37gQAAACAblqztV55Cul8z1tGf3jSXNm+fhmKCgAAAIDTrNlab7THDMqVL8dtDrJt5S7+i9EVGzRJ0RFHpTo8AAAAAA7QEDFXNM/3eZJ2bFfDdvnXv2L0BadcKLncbTwDAAAATuLo6oLrrrtO1113XVKOVVxcrMsuu0yXXXZZUo7XW2R6205J2tUQNtquWChlcSE1smHrL6QP+XYOcu0s5NtZsiHf2bBtJ7KPx5O8iyvNud3udtttKd/WoLM976q/a++qzrZcihz47ZTGi57pbr7R+5BrZyHfzkK+nYV8Ax1rvtPM+MH5LcbkbFko79alRl/D9KsklyuVoQEAAABwiIaIuaJ5ni958/fA6qfksvbuZGN7fApPOCtpxwcAAEDv5uiiGfRcprftlKT6cLMJldflyG2j+hKnbv3lVOTbOci1s5BvZyHfyBbpLKZqWjjWFtu29fm2Ot3sMVc2c42frcL9DkxRZEiFzuQbfQO5dhby7Szk21nIN9BS851mJgzJazEmr9kuM/F+pYqMnZPSuAAAAAA4R0O0edFMkhYXs+IKrJhndIXHniw7l0X4AAAAsAfLraFXs21b9c1WIUjm1p0AAAAA0F3basOaHPxMo91V5gOHX5OZgAAAAAA4Uiga18adQaNvwhBzpxnPzs/l2/im0Rc88ArJzfp7AAAAAJKjxU4z3uTc4+X96j15ajcbfaEDLkrKsQEAANA3UDSDXq0hasmyzb4CPxdwAAAAAGTeiooaXdFslxl78CRpv29mKCIAAAAATrRld6TFtZT9B5k7zeQu+avRtvwDFJp0bqpDAwAAAOAg9RHLaCdrp5nA8seMdmzQJMWGHJiUYwMAAKBvoLoAvVp9ON6ij51mAAAAAGeqrq5O2bHdbrcKCwsT7ZqaGlmW1c4zpC9WfKzveJYbfQ0HXKbIrl2pCBFJ1J18o3ci185Cvp2FfDtLpvNdVFSUtnMB3VETjBntfJ9buU2upbjrquQvf9YYE5p6seQ1C2sAAAAAoCeC0WY7zfh6vt63u7ZSvi/fMs8z5ULJ5erxsQEAANB3UDSDXq0uHGvRl++naAYAAABwoni8ZVF9qliW1eH5xmycZ7TrPIUK7X+KlMY4kRydyTf6BnLtLOTbWci3s5BvwLQrGDXaA3K9RjtQ9pBc1t4xtsev4AGXpCU2AAAAAM5RH2leNNPze7wCK+fJZe9dOMPyFig87rQeHxcAAAB9C0Uz6BGPJzUFKm63u912o4ZmNTO5Xrf8Xr6te5vO5ht9A/l2DnLtLOTbWcg30DFXsFpH1L9h9G0YfqaG5QQyFBEAAAAAp9oVMi+mFAb2XkdxhWsVWGEW/IcmzpWdNygtsQEAAABwjoZmRTP5PS2aiUcUWDXf6ApPOEPy5ffsuAAAAOhzqC5AjxQVFaXlPIWFha32u742L/T0C3jTFhNSp618o28i385Brp2FfDsL+QZaspc+poAiiXbU9ih2ICs1AwAAAEi/mmCzopncvZcHAysfkztal2jbcil44BVpiw0AAACAcwQjltHO9fZsYT7fF6/L3bDd6AtNubBHxwQAAEDfxJLQ6NVqQ1Gj3S9AHRgAAACADLNtBdY8ZXS9Ys/QsNJRGQoIAAAAgJPtalY0M6CxaCYeVqDsYeOxyJiTZA3YN02RAQAAAHCS+mhyd5oJLP+70Y6WHKL4wPE9OiYAAAD6Jopm0KvVhlruNAMAAAAAmeTZUa6C+k1G3zuFpynH7cpQRAAAAACcrK2dZvzlz8tTv9V4LDj96rTFBQAAAMBZGiJm0UxeD4pmPNXr5av42OgLTbmo28cDAABA38a2HOiR6urqlBzX7XarsLAw0a6pqZFlWS3GbavebbQDHjtlMSF1Optv9A3k2znItbOQb2fJhnwXFRWl9XxAV/jXv2K0N9uDpJLpGYoGAAAAgNPtCkaNdmEgR7It5S65z+iPlB6u2JCp6QwNAAAAgIM0RMzriXne7hfNBFY8ZrStwD4Kjz2x28cDAABA30bRDHokHo93PCgJLMtq9Vy1zVZHy/d50hYTUqetfKNvIt/OQa6dhXw7C/kGTL5mRTOvxA/V+KEFGYoGAAAAgNPVhMxrKQNyvfJtfEs51euMfnaZAQAAAJAqtm0rGG2+04y7eweLBuVf84zRFZo0V/L4uxseAAAA+jiKZtCr1UXMCz0F/s6tQBCNRtXQ0KBIJCLbtmXbdirCQye5XC5t37490Y5Go+SkDyPfzkGunYV8O0t38+12u5WTk6NAICC/3y+3u5sfhANZzLNznXJ2fm70vRQ/XFcWtn2hxrIshcNhhUIhxWIxdurKAvy75hzk2lnIt7OQb2fpTr5dLpdcLpd8Pp/y8vLk9XpTHSaQMTXNFiArzM1R7uK/GH2xfcYpOnKmJOYo2YZ/05yFfDsL+XYW8u0c3c01cxT0daGoJavZj0Ker3s7zfg/f1Hu8O5E25ZLockX9CQ8AAAA9HEUzaBXqw+bKxDkdzCZsm1bNTU1CgaDqQwL3dD0QyIuwPV95Ns5yLWzkG9n6U6+LctSLBZTKBSSy+XSgAEDFAgEUhUikBHNd5mpsou0xB6rffJav8AZCoW0a9cuLpBnIf5dcw5y7Szk21nIt7N0N9+xWEwNDQ3Kzc1VYWGhXC5XKsIDMmpXs6KZfYMr5d2y0OgLTr9acrmYo2Qp/k1zFvLtLOTbWci3c/Qk18xR0Fc1RFv+LOR5u1c0E1jxd6MdHfkNWYUju3UsAAAAOANFM+jV6iJm0UxHO83U1dW1KJhhhfPsQB6chXw7B7l2FvLtLN3Jd9Md/mzbVnV1tYqKiiicQZ/ib1Y080r8UNlyqyi35fQ7FAqpurra6GtcTRCZx79rzkGunYV8Owv5dpbu5LvpzWvBYFAej0f9+vVLZlhAxlm2rd0hs2hm/MZHjXa8YKjC+5/CHCWL8W+as5BvZyHfzkK+naO7uWaOglTzeLpXpNKR5t/zrf0MhOKRFn39cr1djsmzdbm825YZfZFpl6TstaGlzuQbfQf5dhby7Rzk2lnI9x4UzaBXqwt3vmgmFouprq4u0e7Xr5/y8vIc+8OfbXJy9v46isVi7YxEX0C+nYNcOwv5dpbu5Nu2bUUiEdXX1yscDkuSdu3apcGDB/M3GfoE966Nytm+2uh7OX64JGlAs6IZy7K0a9euRNvv9ys/P18+n48b0rIE/645B7l2FvLtLOTbWbqTb8uy1NDQoNraWkl7Fl3Kzc01jgX0dnXhuKwmm8aMdlVqn4q3jDHBaVfIcnm0a9eORB9zlOzCv2nOQr6dhXw7C/l2ju7mmjkKUq2oqCgt5yksLGzRV9FgXgv0uF0aWjyw6/ONd+eb7f6lKjjwLMnDz0mmtJZv9F3k21nIt3OQa2dxar65Mw29Wn2zopl8X9tFM403ZkpSfn6+CgoKuDkTAAAgjVwul/x+v4qKiuT3+yXtKaRp+nca0Jv51//TaH9t99dn9ngVBnKU4zHnHuFwOLHzUtOfC25GAwAASB+3262CggLl5+cn+pifoK/ZFTRv0vyO50W5tLeKxvL1U3jyecxRAAAAsgBzFPRlDRHzHq88n6fr843gLmn5U2bfwZdTMAMAAIAOUTGAXq0u0nynmbYnQU0/SMjNzU1ZTAAAAGify+UyLviEQqEMRgMkj2/9K0b71fihsuTWgLyW85Sm3/f5+fnciAYAAJBBTT8v5oY09DU1wWji62Lt0lzPe8bjoQMulu0rYI4CAACQRZijoC+qD5sF/e3d49WmZU9IseDetjtHmn5pDyMDAACAE1BmjR7xeNre2aUnmu8A09aOMHXNdprpn+ttMybLsiTtuUmTrWuzS/OLby6XK7GiHfoe8u0c5NpZyLezJCPfPp8v8bx4PJ6yvyuBdHHvrpB32zKj72XrMEnSPnneFuNjsT0Xh1wul3w+X+oDBAAAQJtycnKM+QnQl9Q02Wnm8pxX5HPtbdtun4JTL5PEHAUAACCbMEdBqlRXV6fkuG63W4WFhYl2TU1N4j6tRlt31hjtQI6ra/HYtvp/8hc1vaIYGX2C6mN+KUWvC63rTL7Rd5BvZyHfzkGunSUb8l1UVJTW87WGygH0SLq+iZv+sDZV32ynmZJBRSoqGtDq2O3btysej8vlcsnrbXnTGrIHN806C/l2DnLtLOTbWbqbb7fbLdu25fF4smJyBPSEb8M/jXa1XaCPrYmSpAG5LafeTYv6WcEZAAAgsxr/JrNtmwuD6HN2/atoJl9BXeJ53XgsPOFM2fnFkpijAAAAZBPmKEiVdBVhWZbV4lx14ajRzvW6uxRPTsUn8uxcZ/QFp1xAYVkWaC3f6LvIt7OQb+cg187i1Hy3vn0H0AtEYpbCMfPDgX6BjuvAuNgDAACQHfi7DH2Jf93LRvu1+MGK/WuditZ2mgEAAACAdNgV2lM0c77nTfV3NST6bbkUPOg7mQoLAAAAgMM0NFsYOd/XtUX5clf83WjHBuynaOkRPY4LAAAAzsBOM+i16sKxFn2dKZoBAAAAgGRy11XJW7XY6HvJOizxdVEuRTMAAACAE6VyJ163291uu9HuUFxuWboi5xWjPzrmeGnQ/mqMkIUtslfz3DSuOo++iXw7C/l2FvLtHMnOtcvlSunflUC6NETMhZHzulA042rYLt/6V42+0JQLJeYxAAAA6CQqDNAj1dXVKTmu2+1WYWFhol1TU9Niy9nN1aEWz4sF61QdC7Z6zGg0mjhGLNay4AaZ0/xDnng8zgeEfRj5dg5y7Szk21mSlW/LsmRZlqLRaJf/riwqKury+YBU8W0wL9TUu/L0oTUl0S7KY+oNAAAAOFE6565Nr6k0FbQ2a4yrUqWuHUa/b9ZP5GsS3/bt22Xbttxut3JymMNkM26adRby7Szk21nIt3N0N9eNRdFer5drIugTmu80k+dtvfC/NYFVT8plRRNt2+NXeMJZSYsNAAAAfR+feqNH4vF4x4OSwLKsFufaHYwYbY/bJa/LbjMmbtzNXs1zQ676NvLtHOTaWci3syQ737bd9t9wQG/gW2+u2PyB+1BFtHd3maI8dpoBAAAAkBm7GiIa46o0OwuGSiMOa/0JAAAAAJACLYpmOrvTjBVXYOU8oyu8/ymyAwOSFBkAAACcoPMl20CWqQubk6kCv6fFNrcAAAAAkEquhu3yVn5m9L0UP9Ro78NOMwAAAAAyZGd9RKObF80M2j8zwQAAAABwrPpo94pmvJvelae2wugLHXBR0uICAACAM3DnDnqtukjMaBd0dgUCONr111+vJ554QiNGjNDixYszHQ56kenTp+urr77Seeedpz/+8Y/GY5s2bdLBBx8sSbrzzjt1wQUXZCLEHuPnY6+O3ov2vh86q69832RCcXGxJOknP/mJbrzxRuOxefPm6Qc/+IEkadGiRRo5cmTa4wPgLL4Nr8llW4m2lZOnl+umGGMG5LLTDFrH31/oLuYnzsL8JLsxPwHQnurq6pQd2+12q7CwMNGuqamRZVktxu2oDWmM2yyaCfUbpWCz2KLRaOL5sZh5/QWZ5XK55PHsvQYWj8dTtsszf4NlXjrznUzMUbqnt+abOUr3pCvfzFEyL1m5tixLlmUpGo12+e/KoqKiLp8PSLVgxJyv5Hk7t9Z37vK/G+1Y8WTFBk9NWlwAAABwBnaaQa/VfKeZfD9FM9nkgw8+UHFxceK/73znOx0+53vf+56KiooSH+Shbbfeeqvx/j744IMdPmf69OkqLi7W6aefnoYI4VRNvy+Li4tVVFSU+K/5Y8XFxZo1a1amQwYAoEf8618x2nUjZiosn9G3Tx5FM5nWk/kJF5g7xvwE2aq1OUh7cxTmJwCAZIvH4yn7r3mBjGVZrY7bFYxqjGuLMTY2YN8W43rDTdp9SVfmKI25aZyjDBo0KF1h9lq9eY7S/GeRn82+pfkcZNCgQcYcZdCgQcxR+jB+vp0j2bm2bbvLfysC2agh0vWdZty7N8v75dtGX3DKhZLLlczQAAAA4AAUzaDXqm9WNMNOM9ntueee06pVqzIdRp91++23KxwOZzoMAOizNm3alLhQOW/evEyHAyBLuILV8m7+yOjbUvItc4ykwlw2ec02zE9Si/kJAKQW8xMAnWXbtnYFoxrdrGgmPmBMhiJCW5ijpBZzFABILeYoADqjvlnRTH4n7vMKrHxcLu0tPLN8BQqPOy3psQEAAKDv484d9Fp1zSdT7DST1Wzb1q233qqHHnooo3H88Y9/7PY24NmssrJSDz/8sK6++upMh+JII0eO1Ndff53pMLLKgQceqDvvvLPF1uPNBQKBdIaVNIsXL850CGjDBRdcoAsuuCDTYQBwCN8Xb8hl7/33zc4J6IvCGZI2JfoKc3PkcbPiWbZhfpJazE8yi/lJS43zE0ntzlGYnyDZmJ8AyLSGqKUia5f6uxqM/njR6AxFhLYwR0kt5iiZxRylJeYoyBTmKAAyKRg1d8vM7ahoJh5RYNV8oys8/kzJm5fs0AAAAOAAFM2g16prvtMMRTNZa+DAgdqxY4defPFFLVu2TFOnTs10SH1K4/t7xx136JJLLlFubm6mQwKUl5eniRMnKidn758asVgsgxEBAJB8kVEzVffN/5Bv/SvyVn6qyMhvanvEa4zZJ8/bxrORKcxPUov5CbJR4/xEEnMUAICj1ARjLXaZsTx+Wf2GZSgitIY5SmoxR0E2Yo4CAHCiFjvNeN3tjvdteFXu4A6jLzTlwqTHBQAAAGdo/69PIIs1n0wVdGLbTmTGVVddJb/fL0n67W9/m+Fo+p7rr79ekrRt2zY9+OCDGY4GAADAOez8YoWmXqLdZ/5dO7/9keqP/KmqG8ybGwbkslZFtmF+klrMTwAAALLHrmBUo92VRp81YD/JxeXBbMIcJbWYowAAAGSHhmb3eeV1cJ9X7vLHjHZ02KGKDxyX9LgAAADgDHwqjl6r5U4z3IyWrYYNG6ZLLrlEkvTqq692e0tuy7L03nvv6de//rXmzJmj8ePHq6SkRGPGjNGsWbP061//Wps3b273GNdff72Ki4s1ffp0o/+2225TcXGxiouLtX79+g5jOeecc1RcXKzJkye32Cq90UsvvaQrrrhCBx54oIYPH64xY8bouOOO0//93/9p165dnX7dHTn11FM1efJkSdJdd92l+vr6Hh1v1apV+vGPf6zDDjtMI0eO1L777qujjz5av/zlL7Vp06Y2n7dp06bEezhv3jxJ0gsvvKDzzz9fU6ZM0dChQ3X66acnxhYVFamoqMgYe84552jixIkaNWqUZs2apfvuu0/RaDRxDtu29fTTT+v000/XxIkTNXLkSB177LF66KGHZNt2m7HV19frH//4h370ox9p1qxZGj16tEpKSjRhwgSddtppuvvuu1VXV9ft96y1195o3rx5icc689+tt97a6jni8bgef/xxXXjhhZoyZYpKS0s1btw4nXzyybr33nsVDAY7jHPt2rW6/vrrNW3aNA0fPlzTpk3Td7/7XS1ZsqTbrz0VTj/9dBUXFye+X9py6623Jt639tTV1emee+7RmWeeqUmTJmnYsGHab7/9dMwxx+hnP/uZPvnkky7HOH36dBUXFycuuLYmHo/rgQce0Iknnqj99ttPo0eP1rHHHqu7775b4XC4S+frye+ThQsX6n//9391+umnG6//qKOO0k9+8hOVl5e3+/zmvzdramr0m9/8RkcffbRGjRqlMWPG6NRTT9VTTz3VpdfUnsaf87Fjx2rUqFH6xje+od/+9reqqanp8LlNf+ba+p1VVlamH/7whzr88MM1atSoxM/Dt771Ld1444165ZVXjN8pxcXFOvjggxPtH/zgBx3+7G7cuFH33HOPLrroIk2fPl0jRozQiBEjdNBBB+k73/mO3njjjS69Dsuy9Mgjj2jOnDmJ92XmzJn6/e9/r4aGhg7fF8uy9Mwzz+jyyy/XgQcemIjn8MMP1zXXXKPnnnvO+H3b3Pvvv6/rrrtOhxxyiEaOHKn99ttPRx55pH71q19py5YtbT4PcBI7b5CsAfuqOmj+LLHTTPZhfsL8hPkJ85OuYH7SEvMT5ifZOD/55je/yfwEaEVNMKYxLrNoJl40OkPRoC3MUZijMEdhjtIVzFFaYo7CHCUb5yhcQwFMtm2rIWoZfe0VzXh2fi5vpflvUJBdZgAAANADVBmgRzye1Ozu4na7221LLXea6RfIaTcel8uVnODQLT/84Q/197//XcFgULfccouefPLJxGOdzc1tt92m//u//2vRv3v3bq1cuVIrV67UQw89pHvuuUcnn3xyl+I766yzEiu4PfPMM/rJT37S5tht27bpvffekySdeeaZLb7vdu3apSuuuCIxplE4HFZZWZnKysr04IMP6pFHHtEhhxzSpThb43K5dOONN+qyyy7T9u3bdd999+lHP/pRt451++2365ZbbpFlmR9WlJeXq7y8XA899JB+97vf6bzzzmv3OLZt67rrrtP8+fNbjbe1+Juv8LZy5Ur9/Oc/1wcffKD7779fsVhM1157rZ5//nlj3PLly/WTn/xEy5Yt0+9///tW47nwwgv14YcftujfsWOHPvroI3300Ud68MEHNW/ePO2///7tvrZM2Lx5sy6++GKtXLnS6I9EIvr000/16aefJuIfM2ZMq8dYsGCBrr/+euNCQ2VlpZ555hk999xzrf5s9VRruW7vwlwqvPPOO/rud7+rHTvMbZuj0ahWrFihFStW6P7779fXX3+d1PPW1dXpggsu0Mcff2z0L1++XMuXL9czzzyjP/zhDx0ep6e/T+bNm6cf/OAHLfqj0ajWrl2rtWvX6tFHH9X//u//6oorrugwnnXr1um8885rcSHl448/1scff6xFixYlvpe6k+9YLKbvfve7eu6554z+NWvWaM2aNXrqqad6fGHpT3/6k37961+3+D1XWVmpyspKLVu2TA8++KC++OILFRQUdOscX375pQ499NBWH9u8ebM2b96sZ599Vuecc47uvPNO5eS0/yd5MBjUOeeco3fffdfoX7VqlVatWqV//vOfeuaZZ5Sfn9/q8zdt2qTLLrtMK1asaPHYhg0btGHDBj399NNasGCBjjrqKOPxUCikH/zgB/rHP/7R4rmrV6/W6tWr9eCDD+rPf/6zTjzxxHZfR3tcLlfK/q4E0q26wbx4WpTHtDsbtTc/6SzmJ63rbfOT1jA/aV9vnZ9kA+Yn6Z2ffPbZZ/rd737X4XHawvykdb1hfnLffffp+OOPb/d1AE6xKxjTaJd5o2Z8wH4ZigbtYY7CHKU9zFHaxxyl+5ijMEdpjjmKKVuuoQB9QSRuK26Z147bK5oJrDALba3cfRQZw88RAAAAuo+7d9AjRUVFaTlPYWFhi75w3LwZu7iof7vxbN++XbZty+12d/jBCnqu6UUQj8ej4cOH64orrtDdd9+tt99+W5999pmOOOKINp/fWo4sy9LQoUN18skn69BDD9W+++6rQCCgiooKffLJJ3rggQdUV1ena665Rm+//bbGjx/f4hhNC7CanmPcuHE65JBDtHDhQj3zzDO66aab2ozt+eefT6yMdt555xnHCYfDmjt3rsrKyuTxeDR37lwdf/zxGjVqlKLRqD788EPdc889+vrrr3XBBRfonXfe0ciRI9s8V1uav47TTjtNBx54oJYuXap77rlHV199tfr379/qc10uV6vv71//+lf9z//8jyRp0KBBiRWE4vG43nnnncQKbN///vdVXFysE044wXh+02P+5S9/0cqVK3XEEUfoiiuu0NixY1VTU6NNmza1uED28MMPa+HChTr++ON16aWXasSIEaqoqNAf/vAHLVy4UC+++KKeeOIJrVy5Us8//7zmzp2ruXPnaujQoVq/fr1++9vfJj60Pu2003Tccce1eG3xeFyTJk3S7NmzddBBB2no0KGybVtfffWVXnjhBS1YsEBffvmlLrvsMr377rsKBALtvvfN37+mbY/HY7RPO+00Y3Wl1vy///f/EismjRo1ynj+zp07dcopp6iiokJ+v1+XXnqpjjrqKI0cOVL19fV688039ec//1lffPGFzj//fL399tstfmcuXrxY1157rWKxmPx+v6699lodf/zx8vv9WrRokX7/+9/rxhtvNH5mevp7srUb4Dt7Q3xjsU1b36uN2vp5bvTee+/p/PPPVywWk8fj0Xnnnac5c+Zo+PDhCoVCKi8v1+uvv65XXnmlxfM7OnbTca09ft111yUu9hx88MG69tprNWbMGG3btk3z5s3TggULjAvLzb9vpOT8PrFtWwMGDNCcOXN05JFHavTo0crPz9eWLVu0bNky/fnPf9aOHTv0s5/9TBMmTNA3v/nNNt/nYDCoiy++WNXV1brhhhs0a9Ys5efna9myZfrtb3+ryspK/fWvf9VJJ52kb33rW90qgPjVr36VuNiz//776wc/+IEmT56s3bt3a8GCBXrkkUd09dVXt/v+Nz1vTk6O8fiKFSsSF3tGjRqlq666SgcccICKiopUW1urdevW6b333tPLL79sPPeDDz5QVVWVzj77bEnSL37xC82ZM8c4b3FxcWK8y+WSz+fTscceq2OOOUbjx49XUVGRqqurtW7dOv31r3/VmjVr9OSTT2q//fZr9d+cpq/jxz/+sRYuXKgLLrhAZ5xxhoYMGaLNmzfrjjvu0GeffabFixfr9ttv169//esWx9m2bZtOOeWUxEpm3/zmN3XBBRdo//33l8vl0pdffql3331Xzz77bIvvQ9u2deWVV+rVV1+VJJ100kk644wztO+++8rtdmvx4sX64x//qM2bN+uKK67QK6+8ooMOOqjN/Lam8fvL6/Wm7e9KINWqG2JGu4idZrLS0KFDdfnll+vee+/V22+/rY8//lgzZszo0jFisZiGDBmiOXPm6NBDD9WoUaPk9/tVWVmpzz77TA888IDq6+t1zTXX6I033tC4ceM6fezRo0fr4IMP1qJFi/T000+3e0PaggULEvOTuXPnGo+Fw2GdffbZWrZsmTwej84++2wdd9xxGjlypKLRqD766CP96U9/Svw98eabb2rEiBFdeh9aM2fOHE2bNk1lZWW65557dOWVV6pfv35dOsYDDzxgzE++//3v67DDDlM8Hte7776rP/7xj2poaND3v/997bPPPu3eHN04P5kxY4a+/e1va8yYMYn5SXMPP/ywFi1apOOOO04XX3yxhg8frsrKSt1xxx1atGiRXnzxRT322GNatWqVnn/+eZ199tk666yzNGTIEG3YsEH/93//p88//1yPPvqoTj75ZH3rW99qcY5YLKZJkybpxBNP1IEHHmjMT1566SU9++yz+vLLL3XppZfqrbfeand+0lVz5szRgQce2O6Y//iP/9Cbb74pSRo+fLjxWPP5ycUXX6wjjzwyMT956623dN999yXmJ2+88UaLuemSJUuM+cl3v/tdHXfccYn5ye23364bb7yxSz8zvcH7779vzE/OOecczZ49W6WlpQqHwyovL9cbb7yR+Nsrmb73ve8l5ifTp0/XNddco9GjR2vbtm16/PHH9dxzz+mGG25o9xjJ+H0Si8U0YMAAnXTSSTriiCM0evRo5eXlqaqqSsuXL9d9992XmJ/sv//++sY3vtFmPMFgUBdddJF27typH//4x/rmN7+pgoICLVu2TLfddpsqKyv1wAMPaM6cOa3+HHbGr3/968T8ZOzYsbr++usT85PnnntOjz76qK666qpuHVvac6Nr0/nJlVdeqSlTpmjAgAGqq6vTunXr9MEHH+jll182nvfuu++qqqpK5557riTppptu0uzZs40xgwYNSnwdj8fl8/l0zDHHaObMmRo/frwGDBigXbt2af369XrggQcS85NRo0bppz/9abtx/9u//ZsWLVqk8847T6effroGDx6siooK/fGPf0zMT37/+9/rV7/6VYvnbtu2TSeffLKqqqokSd/4xjd03nnnGfOT999/v8VNgNKe+ckVV1yh1157TZJ04okn6vTTT9eoUaMS85N7771Xmzdv1uWXX64XX3yxw993gBPUhGL6ZoudZlq/YRyZxRyFOQpzlLYxR0kN5ijMUZpjjpLcOUpZWZlxDYU5CpyuIdJy98E8X8sFlCVJ0Qb51zxjdIUmnit5/KkIDQAAAA5B5QB6rdqQeTNa/0DPv50t29auYKzjgX3EgNwcudO4A88Pf/hDPfTQQ6qvr9ctt9zS6odL7bn00kv105/+VF6veePhtGnTNGfOHF199dU64YQTVFlZqd///vf685//3KXjn3POOVq4cKHWrVunJUuWtHnjb+MKPWPHjm0x5tZbb1VZWZkKCwu1YMGCFh98HXHEETrnnHN04oknqqqqSv/93/+t++67r0txtuWmm27Seeedp+rqav3pT3/SjTfe2Onnbt++PXGzdUlJiV599VXjwsOMGTM0e/ZszZkzR/X19fq3f/s3LV26tEUuGq1cuVLnn3++7rnnng53Elq4cKGuvfZa/e///m+ib9q0aZo1a5ZmzJihr776Sv/5n/+p6upq3XLLLbrmmmuMcUcddZQOPfRQ1dbW6oEHHmi1aObuu+9udfWwQw45RGeeeaYuueQSnX322fr888/15JNP6pJLLmn/DeuCwsLCVgv/Gt13332JgplzzjlHF110kfH4T3/6U1VUVGjEiBF6/vnnNWrUKOPxo48+WmeccYbmzJmjjRs36s4772zxoe8NN9ygWCwmr9erp59+2lgF6eCDD9Ypp5yi448/vtUVlLqroaFBq1at6nBcaWlpu+9Pd4VCIX33u99VLBZTXl6ennjiCR199NHGmMMPP1yXXnqpNm/enNRz//Of/9RLL70kSTr++OP12GOPGYUIJ5xwgiZOnKhbbrml3eMk4/fJcccdp7lz5yovL8/onzp1qk488URdffXVOvnkk7Vy5UrdcsstrRbNNNq+fbsikYj++c9/auLEiYn+Aw88UEcffbSOOuoohUIh3X///d264LNy5Ur95S9/kbTnZ/uFF14wVimbOXOmDj/8cF177bVdPnaj5557TpZlKT8/X6+++qoGDx5sPH7kkUfq0ksvVU1NjfGeTZo0yYhl2LBhmjRpUpvnGTJkiMrKyjR06NAWj82cOVNXXHGFrr/+ej322GO6++679b3vfa/dn4NPP/1Uf/rTn4wVKqdNm6bjjjtOxxxzjFavXq1HHnlEv/jFL1oUEf37v/97omDmP/7jP/TDH/7QeHz69Ok688wz9d///d+Kxcy/gR555BG9+uqr8nq9euyxx1r8fj300EN13nnnafbs2VqzZo1uuukmvfLKK22+DsApdjbfaSa3Z0Uzlm2rxkFzlMI0zlG+//3v6+GHH1ZDQ4N++9vftroiZHsuvvhi/eQnP2l1fjJ79mx95zvf0UknnaQtW7bo9ttv1z333NOl45999tlatGiR1q9fr6VLl7Z5Uf2ZZ/ZcPBwzZkyLMbfddpuWLVumwsJCPf3005o2bZrx+IwZMzR37lzNnj1bW7du1f/8z//oT3/6U5fibMtPf/pTXXjhhaqurtaf//znDm92aWr79u36z//8T0l7bh585ZVXVFpamnj88MMP14knnqhTTz1VDQ0N+vd//3ctWrSo3fnJueeeqz/+8Y8dzk8WLVqk7373u7r55psTfdOmTdPMmTN19NFH66uvvtLNN9+s6upq3Xzzzfrud79rjDvyyCM1Y8YM1dXV6aGHHmr176I777yz1fnJwQcfrDPOOEMXXXSRzj33XK1bt05PPfWULr744vbfsC7oaH5y//33J25Gmzt3ri688ELj8Z///OeJ+ck//vGPFvOTo446SqeddppOPfVUbdy4UXfddZd+8YtfGGNuvPHGxPxk/vz5OvLIIxOPTZ8+XaeccopOOumkFqtE90RDQ4NWr14tySxObryZs9GwYcNSNj9pvAkvLy9Pjz32WIvVaQ877DBdcsklqqioSOq5X3311cQNTccdd5weffRR42/G448/Xrfddlti5fi2JOP3yXHHHaezzz671fnJCSecoKuuukqnnXaaVq5cqd/+9rft3pDWOD95+eWXNWHChER/4+cEM2fO7NH8ZNWqVfrrX/+aiO/ZZ5815gTf/OY3deihh+r666/v8rEbPf/887IsS3l5eXrppZdazE+OOOIIXXLJJdq9e7fxnk2cONFYIbmkpMSYozU3ZMgQLVq0qNX5yTe/+U1dfvnl+sEPfqDHH39c99xzj6699to2F2KRpM8++0z33HOPzjnnnETftGnT9K1vfUvHH3+8Vq9erb/97W+66aabWsxPbrzxxsTNaP/v//0/ff/73zceP+igg3TGGWfoP/7jP1rMT/72t7/ptddek9fr1aOPPtoir4cccoguvPDCxPzkF7/4hV588cU2XwfgFHX1DRruMncH6MlOM06bn0jMUZpijsIchTkKc5RkYI7CHMUpc5QZM2YY11CYo8DpWi2a8ba+CKP/8xfkjtQm2rZcCk05P2WxAQAAwBkomkGvVRsyb0brl4SimV3BmI6989MeH6e3ePMHh2mfNK58XVxcrO985zu644479N577+m9995r98PF5jrakaW0tFTf//73ddNNN+nll1+WbdsdXmxo6swzz9TPf/5zxeNxPfnkk60WzXzxxRdauHChJBkfvEl7thJv/LDy5z//eZsXjEaOHKkbbrhBN9xwg5599lndfvvtbW4H3RUnnHCCDj30UH322We6++67dfXVV2vAgAGdeu7f//53NTQ0SJJuvvnmFit1SXs+gP3Rj36k//mf/1FlZaVefPFFnXHGGa0er7CwULfeemun3v/S0tLExaam8vLydMEFF+jWW2/Vzp07deihhxoFM42GDBmik08+WY8//rg++uijVs/R2sWepmbNmqXZs2frxRdf1IsvvpjUopn2vPPOO/r5z38uac/FpzvvvNN4fNOmTYkLo7feemuLiz2Npk6dqiuvvFJ33nmn5s2bZxTNLF68WEuWLJEkXX755S0uekh7LrrcfPPNndpavrOWLFnS6rmau/vuu1tc5EqGxx9/PFEo8Ktf/apFwUxTrX2/98T9998vSfL7/brjjjta3Ynmhhtu0IIFCxIXxZpL1u+TYcOGtRtrYWGhfv7zn+uiiy7Sxx9/rJ07d2qfffZpc/wvfvGLVi90jB49WnPmzNEzzzyTWB2uqx588EFZliVJuv32242LPY3OP/98Pf3003r99de7dY5t27ZJ2vM7ofnFnqZ6ehEyPz+/3d/rLpdLN998s5544gnV19frnXfe0Wmnndbm+FNPPdUomGnk9/t11VVX6cc//rF27typNWvWaMqUKYnHP//888QFmJNPPrlFwUxTzd9v27Z1xx13SFJiZcXWDBgwQP/1X/+lc889V5988onWr1/f4e9coK9rXoRflNezeUpNMKbj71nco2P0Jq99b3raducpLi7WlVdeqbvuukvvv/++3n///Xb/Zmiuo/nJsGHDdN111+mXv/ylXnnllS7PT8444wz96le/Ujwe11NPPdXq3wNffPGFFi1aJKnlCs51dXV64IEHJEk/+9nPWtw80mjEiBH693//d91444167rnn9Lvf/S4p85Pjjz8+sZvnvffeq+985zudnp/MmzcvMT/5r//6L+NmtEZTp07VD3/4Q91yyy3asmWLXnrpJZ1++umtHq+wsFC//e1vOz0/aW33try8PJ133nm67bbbtHPnTh1yyCHGzWiNGlf2nj9/fpt/F3X0b+XMmTN10kkn6aWXXtLLL7+c1BvS2vPuu+/ql7/8paQ9N4b94Q9/MB7ftGmTFixYIEn6zW9+0+H85K677tLjjz9u3JC2ZMkSLV26VNKehTGa3ozWqKSkRP/5n//Zo9Vxm1u6dGm7BeKN7rzzTl1wwQVJO2+j+fPnJ27C+fnPf97uXKm17/eeePDBByXt+dvxD3/4Q6vzkx//+Md67rnn2p2fJOP3SUlJSbux9u/fXz/96U916aWX6pNPPulwftK4Y2Zzo0eP1uzZs/WPf/yj2/OThx56KDE/+f3vf9/q/OS8887TP/7xj8RCGF3V2flJezeHdUZn5if/9V//pSeffFINDQ165513dOqpp7Y5/uSTT27xmZi053vsyiuv1A033KCdO3eqvLxckydPTjy+bt26xAITc+bMaXEzWlOtzU8aPzO56qqr2rzJsOn85NNPP2V+AkjK2f2lPC7b6IsXdb9oxmnzE4k5SlPMUZijMEdhjpIMzFGYozBHYY4CZ2qIWkbbJSnX2/pOM4Hlfzfa0VHflNW/57sPAgAAwNna2OcQ6Jzq6uqU/FdTU2Ocp6ampsWY3c2KZuxIqN1jRqNRWZYly7IUi8Va/S8ec9YKafE23odk/Nd0JaR4PJ7o/973vpf4UOnmm29uMbZRZ85RXV2t9evXa8WKFVq+fLmWL18uv3/Pdqy1tbVav359i+c0fpjY2jmKioo0c+ZMSXtWQotEIi3GzJ8/P/H8M844w3js3Xff1e7duyXt+XCuvdgPP/xwSVI0GtWiRYu6/P629Toad5fZvXu37rzzTuOxRrZttzje22+/LWnPhZrZs2e3ed6mxQ1vvfVWi8cbnXjiicrNze3we0OSTjnlFLlcrlbHNr05/7TTTmszrsYdH3bt2qUdO3Z0+P5VVVWpvLw88X2zfPnyxIfcK1asaPU5jdr6HdLa93t7/5WXl+vyyy9XLBZTSUmJHnroIeXk5BhjXn75ZcXjceXl5emYY47p1PfUli1btHHjxkR/4wps0p4Py9t6/kknnWQUCnT1e7L5+9BZrb1ftm23+b3amZ+DWCyW2O0iLy9PF154YdJ+xjr6fgiHw/rggw8k7SnGKi4ubvP4TYsgmr8Pqfp9UlNTow0bNhi/N5temC0rK2vzvXC5XC1+7zX9b+rUqZKU+He8sz8Ljf81/h6aNGmSpkyZ0ua4phcIW/t5bPo7pvljxcXFkqTy8nJ9+umn3f7+7uprCwaD2rRpk1atWpV43zdv3pz4vbNs2bJ2X8dZZ53V5rEPOOCAxLgNGza0+Dlo/Hm6+uqruxTzypUr9cUXX7T5Pdg0vqYXkj/++OMu/6xZlqVoNNrlvxeBbNVip5k0Fqmj666//vrE/KSjXeA6Ultbqy+//FJr1qzR6tWrtXr16sSqm42PdUVxcXFifrJgwQLj75NGjSs4S3v+vWjqww8/TPw90d6NBdKelUKlPX9PlJWVdSnO9vz0pz+VtGd+0pVVrN99911Je+Ynp5xySpvjmt6o1fic1px44omt3kzSmpNPPrnN1aCb3ljR1s1vkhJFrLt27Wrx+UZrtm/frvXr1ye+b1avXq2BAwdKUlJXMm7P+vXrdeWVVyoW2zM/efjhhxUIBIwxr732WmJ+0tGquDNmzJAkVVVVGTs7vvPOO4mv27vx6+STT07JasqZ8uqrr0raMz9J1yIN0p6/Wz/88ENJe+Ynra3iK0lut7vVIu1Gqfp9Ul9fr02bNhm/N5veMNfe97/L5dLZZ5/d5uONN8219jljZzT+Tpk0aVKbN+BJ6tEiEEOGDJEkrV27VosXp+8G9Gg0qsrKSq1duzbxvldVVSXmJx393ml+A3RTTd+r5v/uvfbaa4n5SWs39LanvLxcGzdulNTx92DT+UnjwjeAk+XXbjTau3MGyfb1y0ww6BTmKHswR9mLOQpzlFRgjtI65ijMUTqLOQrQdfXNdprJ87lbLSDO2bpM3q9XGH2hKRelNDYAAAA4AzvNoEdaK3ZIBcuyjHNZtq36cLMJldfVbjyNH3ggs/bZZx9997vf1e9+9zt9+umnevPNN3Xsscd2+vlfffWV7r77br366qv66quv2h27c+dO7bvvvl2Kb+7cuXrzzTe1detWvffee4kLQI2efvppSXt2BRk9erTxWNMPWpuu9N+RxlV7kmHWrFmaMWOGPv74Y91333265ppr2l3xqFHjSk1Tp05t8+KLJA0ePFgjR47Upk2b2lzdSVKiiKU1zX8Wm7+PTTW9ANHeqjtNVzSqq6tr9cLFJ598ovvuu0/vvvtuuzdb79y5s83HkqWmpkYXX3yxdu3apdzcXD366KOtXhhoXN2soaGhzQsHrdm2bVti95TGPPl8vna/L71erw444AC9//77XXglbTvyyCP17LPPGhcTmhYdpNry5csl7fkwvOkW8am2cePGxIqDre1W1VR7jyfz98mOHTt077336oUXXtCGDRva/fdwx44dbT42cODAdn+fNF2Vsba2tkurP4bDYW3YsEGS2txVp9H06dM7fdzmzjrrLN1xxx0Kh8M6+eSTdeyxx+r444/X4YcfrgkTJnRpZc2ORKNRPfLII3ryySe1fPlyRSKRNsd29Htn//33b/Oxpu97XV2d8Vjjz4HX69UhhxzSiaj3avz9I0mzZ8/u9PO6+2+abdtp+7sSSKVo3FJds3lKOnd2RNcxP2nJafOT5tqbdzA/WSqpd89PJGVkjsL8ZK9MzU+6coMj8xPmJ0BfMiC0yWjX5I1UboZiQecwR2mJOQpzFOYoycccZS/mKHsxR+k85ihA1wWbFc3kej2tjguseMxox/sNU2TUrFSFBQAAAAdhpxn0Sg2RuJp/XFXga31Chexz7bXXJj4IvPXWWzv9vNdff11HH3207r///g4v9khSMBjscmyzZ89OfDj81FNPGY+VlZXp888/l6RWVwr6+uuvu3w+qXtxtudnP/uZpD0f/P3xj3/s1HN2/X/27ju+ifr/A/grSdt00QEtUGaVJXsjArJEgbKVIcgoZQiULSooCCJfQRBllQ0ie8jee6Oyd0EpCAIt0EEpXUmb/P7oL2euGU3bpE1zr+fj0cejyX3u7pN758Y7n/t87uVLAICfn1+WZXWP49bNY0x2fuh1czPdTCuX/3eaMvejvX45Yzddz5w5E+3bt8fOnTuzfDqBteORWXp6OgYOHIh79+5BJpNh3rx5JkeEio6OztE69D+D7vP6+PhAoTB/nNQ9hcMR6H5A142KlVf0v19Z7U/mHm1vrePJtWvX0KhRI8ydOxcRERFZdiBNSUkxOc3cvgqI90Njo0ya8/LlS6FuWW233HxPK1SogCVLlsDHxwdpaWk4dOgQPv/8czRt2hSVK1fGsGHD8Pvvv+d4+TpxcXFo27Ytxo8fj0uXLplt7AGyPu5YepzMfPzTNeD5+PjAxcUlq2qLWOP4QyRFcUmGNzb4unGsCnvH/ESM+QnzE+Yn1sf8JAPzEzHmJ5ZjfkKUc36p4uvURM+y+VQTyg7mKGLMUZijMEexPuYoGZijiDFHsRxzFKLsM3zSjOF5V5YSD+Xfu0XvpVT9GJDzfjAiIiIiyj3evUMFUuZkCgA8lLlPkrzdnHB4WM5HXylovPPpBj5vb28MHToUM2bMwKVLl3Do0CEEBQWZnScmJgZDhgxBUlISPDw8EBoaihYtWiAwMBBeXl7CD1mnT5/Ghx9+mOO6eXp6ok2bNti2bRv27t2LWbNmCY9737ZtGwBAoVCgc+fOBvPq/8B59OhRs6ON6StRokSO62tM48aN8e677+L06dNYsWIFhgwZYvaHZX3WGiEoq4aFvHTq1CnMmjULABAYGIhhw4bh7bffRqlSpeDu7i6M4DVjxgzMnj3b5vWZOHEiTpw4AQD47LPPjH6XdHQ/3hYpUgTbt2+3eB1lypQxeM+aoz+RZXKzza1xPFGpVBg4cCBiY2Ph7OyMgQMHok2bNihXrhx8fHygVCoBZIzsVr9+fQD28VQ2W39XO3TogGbNmmHHjh04duwY/vzzT0RHRyMmJgZbtmzBli1b0KNHD8ybN0/UmJIdX3/9tTDSXVBQEHr16oUqVarAz88Prq6uwmesVasWnjx5YhfbPTP9xqN169ahdOnSBmX0j/W68pbcOEDkyGKT1KLXchnglctrbuYoebBOI/nJBx98YHYe5ieWY34ixvwkA/OTvMf8JGeYn9gHS/ITwDBHYX5CBASkiTtOqLxNP/XbElLLTwD7yVHYhmI9zFHEmKNkYI6S95ij5AxzFPvANhSi7EtSiTsMehjpNKO8uw2ytP86KGrlTkip3N3mdSMiIiIiaWCnGSqQXqca6TRjhSfNyGUy+Lpb9qMa5c6nn36KpUuXIjY2Fj/88EOWDT67d+9GfHw8AODXX39Fs2bNjJbLagQsS3z00UfYtm0bEhIScOjQIXTs2BEajUb4wb1Zs2ZGR+nx9fUV/vfz87N6Q052jB8/HqdPn0ZSUhLmzZuHadOmmS3v4+ODZ8+eWTQyk+6x0fqPs7Zna9asAZBR3/3795v8MdIa352srF69GsuXLweQ8aPzF198Yba87jHur1+/RsWKFXPUkKaLU1xcHNLT080uI6cjc1mb7kf2rEbaSkpKMjmtcOHCePr0KZ49e2bVumVFf7/IanuaewS7NY4np0+fxj///AMA+OGHH9CnTx+j5cyNeJhX9EdWzGq7WeN76uXlhb59+6Jv374AgL/++gv79+/H8uXLERUVhU2bNqF69er49NNPs73shIQE7NixAwDQtWtXLFq0yGRZW2/7IkWKCOtRqVTZGilNd/wBMrZX5cqVDcroGswBIC3N8OkaRFL0MlncacbXzRnyXDZkM0fJG5nzk6w6zTA/yR7mJ/9hfuIDgPlJXmF+kjPMT2zD1vkJwByFyIBWizKap4BeSqLxzV2nGeYneYdtKLbFHOU/zFF8ADBHySvMUXKGOYptsA2FKG8lqcX3ebk5Z+p4p9XC9eYG0VuqNz+A1sNxnvRGRERERPkrZ0M/EOWzzJ1m3J3lUMg5AlBB4unpidDQUADA9evXsWfPHrPl79y5AyDjR1BTjT0AcPXq1VzXrWXLlsKPZLqR0c6dO4fIyEgAGT/gGVO9enXh/z///DPX9ciNBg0aoGXLlgAyGsiioqLMltf9kHf9+nWzP9q9ePEC//77r2gee3f37l0AGaPHmRu9Rzeika2cPXsW48ePB5DxXVmwYEGWo0HpvlOpqak5/m7r4qRSqXDz5k2T5dLS0sxOz0uenp4AIDTymhIREWFyWo0aNQBkxNVcw5C1BQYGCo+Bv3Llitmy5mJqjeOJ7rsPAF26dMlRPfKKq6sr3nwz46aNrOqT1XbNiYoVK2LUqFE4cOAA3N3dAQA7d+4UlbF09Lb79+9Drc64ad7cKIh///03EhMTc1ZhC+n2A7VajQsXLmRrXv3v4Pnz561aLyJHFpskvo7ycec4FQVF5vxk7969ZsszP8ke5if/YX7C/IT5CfOTrDA/McT8hChnVK9ewEsmPu8o/MrnU20ou9iGYlvMUf7DHIU5CnMU5ihZYY5iiDkKUfYlqcT3eWUeGNn5yR9wihOfu1Kq9bJ5vYiIiIhIOthphgqkxMzJlNJ+HmNOlhswYIAw2tj06dPNPlpZ98ji1NRUkyMnJSUlYcuWLbmul5OTEzp27AgAOHLkCOLj47F161YAgLu7O9q2bWt0vmbNmgk/FC5btizfHxWta1xISUnBzz//bLZs06ZNAWT8wG6u8W3dunXC59LNY+90DVjmfvS/fv06Ll26ZLM6PHjwACEhIVCr1fD398eaNWuE74o5rVu3Fn5kXrJkSY7Wrd9AumnTJpPl9u7daxejZQFAmTJlAGQ06Lx+/dpomZiYGJw8edLkMnSjwyclJWH16tXWr6QJTk5OaNSoEQDgxIkTJhtbNRqN2XhY43ii33hrqmFBo9EIIwnmN9139fbt27h+/brJcuvXr7dZHUqWLIly5coBAGJjY0XTlEql8L9KpTK5DP3tbu64s2rVqhzW0nLvv/++cAxZunRptuatUaOGMDrfmjVrkJKSksUcRAQAcUniJ80U5gjMBYp+fjJz5kzmJ1bG/CQD8xPmJ8xPmJ9YivnJf5ifEOVM6vO/RK9TtM5w9yuTT7WhnGAbim0xR8nAHIU5CnMU5iiWYo7yH+YoRNmXudOMe6ZOM643xcevNN9yUJdsaPN6EREREZF0sNMMFUiZnzTj6cJOMwWRh4cHRowYASDjB77Dhw+bLKsbPScpKclg5Bogo0FozJgxWY4GZindSGipqanYunWr0AjSpk0bYQSnzLy9vTFgwAAAwIULFzBx4kSzj0Z//vy5TX9orV27Nlq3bg0AWLt2rdkf83v27Cn8uDx58mRhRDh9N2/exJw5cwAAAQEBCAoKsnqdbUH33fnzzz9x//59g+nR0dHCiH228OrVK/Tu3RuxsbFQKpVYvXo1SpYsadG85cuXFxoft2/fbvYR5QDw8OFDYWQ/nTp16ggjJa1atQp//PGHwXxRUVGYMmWKRXXKC7oGE5VKhWXLlhlMV6vVGDNmDJKTk00uo1u3bggICACQ0aB89uxZk2WfPn2ayxqL9e/fH0DG8WPcuHFCg7W+OXPm4Pbt2yaXYY3jie67DwAbN240Ot+0adPMNq7kpb59+wqNE5999pnRRqrffvsNR44cyfE69u3bZ3b0vSdPnuDevXsA/mt41ClcuDBcXFwAAP/884/JZbzxxhvC59i4caPRxrqDBw9ixYoV2a1+tpUrV044Vu/btw8LFiwwWTYxMVF0npDL5Rg9ejSAjM8bGhqK1NRUk/MnJCRg+fLlVqk3UUGWudOMjxufNFOQMD9hfpIXmJ8wP2F+wvxEh/mJ7fKTV69eMT8hApAeLR6l+R9tcRRyY8f+goQ5CnOUvMAchTkKcxTmKDrMUdiGQmRLSWrxcdrd5b9bFmWJL+By/5Boekq1noCFT7EiIiIiIrIE7+ChAsmg04ySX+WCKjg4GGFhYXj27BliYmJMluvUqRP+97//ITU1FSNHjsSNGzfQvHlzeHl54c6dO1i+fDmuXbuGBg0aWOURyA0aNEDZsmXx8OFDfP/998IPhB999JHZ+b788kucO3cOly5dwtKlS3H27Fn06dMH1apVg7u7O+Lj43Hnzh2cOnUKR48eReXKldGnT59c19dcfQ4dOgSVSmV2VB8/Pz9MnjwZX375JZ4+fYr33nsPI0eORIMGDZCWloZTp05hwYIFSExMhEwmw+zZs+HsXDAaWLt3746DBw8iKSkJnTp1wsiRI1GzZk0AGT+kL1q0CM+fP0f9+vWz/ehtS0yYMAF//ZUxquPgwYPh4eGB8PBwk+X9/PyE0QMBYNasWbh27Rr++ecffPPNN9i/fz+6d++Ot956Cy4uLoiLi8OtW7dw7NgxnD59GkFBQfjwww9Fy5w5cybat28PtVqNbt264dNPP0WrVq2gVCpx6dIlzJkzB7GxsahatSpu3bpllc+dlJSE8PBwKBT/dWo01vABAJUqVYJc/t+PYu+//z5Kly6Nf//9FzNmzEBsbCzatWsHV1dX3LlzB8uWLcONGzdQr149XLx40egyXV1dsXDhQnTr1g1JSUno2rUrunXrhqCgIAQEBEClUuHvv//GkSNHcPDgQTx58sQqnxvIGN2udevWOHjwIA4ePIh27drh008/xZtvvono6Ghs3LgRO3bsQK1atXD16lWTy8nt8aRFixbw9/fHixcvMH36dPz7778ICgpCkSJFcP/+faxduxanTp2y2nEzt6pVq4aQkBCsWLECV69exfvvv48RI0agSpUqePXqFXbt2oXVq1dnud3MWbJkCYYOHYpWrVrh3XffRYUKFeDl5YX4+HhcvXoVy5cvFxoSg4ODRfM6OTmhVq1aOH/+PNavX4/q1aujWrVqcHLKuAbx9fWFr68vChcujFatWuHw4cM4duwYunXrhuDgYJQuXRovXrzAnj17sHHjRpQtWxavXr1CdHR0bjZblmbOnIlLly4hKioK3377LY4dO4aPP/4YFSpUgEwmw6NHj3DmzBns2LEDv/zyCxo3bizMGxwcjJMnT2Lv3r3YtWsXrl+/jn79+qF27drw8vJCUlIS/v77b5w5cwb79++Hq6srBg4caNPPQwXXjh07hFEOp02bhooVK+ZzjWwjLjlN9JpPmil4mJ8wP7E15if5m58AyDJHYX5iHPMT5ifWYMv8JCEhAffv38eZM2dw4MABKJVK5ickefI48c3vj+Ql4cebzgoc5ijMUWyNOQpzFOYozFF0mKOwDYWkQf+8Y0365ypjr5MzdZrxUDoJdXG98xtkmv/aV7ROrkir0s1mdaXcyyre5FgYb2lhvKWDsZYWxjsDexpQgZSY6bGdHkomSgWVm5sbRo8ejQkTJpgtV6JECcycORNjxoxBSkoK5s+fj/nz54vKdO7cGX369MmyUcZSH374IX7++WehsadIkSJo2bKl2XmUSiV+++03DB8+HHv37sWtW7cwfvx4k+ULFSpklbqaUr16dbRr104Y5c2ckJAQxMfHY8aMGXjx4gUmTZpkUEapVGL27Nl4//33bVFdm+jYsSN69uyJDRs2ICoqCl999ZVoukKhwHfffYf4+HibNPg8fvxY+N/Y9zazzz//HF988YXw2tfXF3v27MHAgQPxxx9/4Pfff8fvv/9ucn5j36m6desiLCwMI0aMQEpKCubOnYu5c+cK052cnDBz5kz8+eefVmvwuXr1Kpo2bWpR2Xv37sHb21t47eLigoULF6JHjx5ISkrC4sWLsXjxYmG6QqHAtGnT8PLlS5MNPgDQpEkTrFu3Dp9++ilevnyJDRs2YMOGDTn/UNmwePFi9OjRA+fPn8elS5cwePBg0fTq1avjxx9/RKtWrUwuI7fHEw8PDyxYsAD9+vVDSkoKfv31V/z666+iMo0bN8aMGTPw7rvv5uBTWt93332HqKgo7N27F3///TdGjhwpml62bFksW7YM9evXz/E6kpKSsGvXLuzatcvodLlcji+++MLoSJCjRo0SRj389NNPRdP0991Zs2ahffv2ePz4MU6ePImTJ0+KypYqVQqrV69Gz549c/w5LFW0aFHs3r0bffv2RXh4OE6fPo3Tp09bNK9MJsOyZcvw9ddfY9WqVfjnn3/w7bffmiyv31hNpO/Ro0fYsmULlEql2dH2HEFspifN+LLTTIHD/IT5ia0xP2F+wvyE+Yk+5ie2y0/8/PysVW2iAksZ/0D0OtKpVD7VhHKDOQpzFFtjjsIchTkKcxR9zFHYhkKOz9fXN0/Wo3/uAgC1VnxfVxEvz4y6aNKB25tE02TVusInINDWVSQryhxvcmyMt7Qw3tLBWEuLVOMtza5CVOC9ThWP4Ozpwk4zBVmfPn0setR6r169sHv3bgQFBcHPzw/Ozs4oVqwYWrZsiWXLlmHZsmVWHWmia9euotcdO3YURsMxx9PTE6tWrcLu3bvRu3dvlC9fHp6ennBycoKvry9q166NkJAQbNiwAb/99pvV6mvKl19+aXHP0DFjxuDYsWPo06cPAgMD4ebmBnd3d1SsWBGDBw/GuXPn0KNHDxvX2PrmzZuHhQsXomHDhvD09IRSqUTp0qXRvXt37Nu3z+CHW3tTrFgx7N69G+vWrUPXrl0RGBgId3d3ODs7w8/PD/Xr18ewYcOwc+dOzJs3z+gyPvzwQxw7dgzdu3dH8eLF4eLigoCAAHTq1Al79uyx6Wh9OdGwYUMcPXpUqK9uf2/fvj127dpl0IBiSsuWLXHx4kV8/fXXqF+/PgoXLgyFQoFChQqhRo0a+PTTT3Ho0KGsF5RNnp6e2LlzJ6ZPn47atWvDw8MDnp6eqFatGiZOnIh9+/ZZ9INkbo8nLVu2xOHDh9GtWzdhO/r5+aFRo0b46aefsG3bNri7u1v98+eUs7MzVq1aJeyvXl5ewjFo9OjROHLkCAIDA3O8/CVLluCnn37CRx99hGrVqqFo0aJwcnKCh4cH3nrrLfTv3x/Hjh3DZ599ZnT+Dz74ANu2bUPbtm2F7WlMyZIlcfToUQwfPhzlypWDUqmEl5cXqlatis8//xzHjx9HpUqVcvw5siswMBDHjx/H/Pnz8f7776NYsWJwdnaGm5sbypUrh+7du2PNmjVo2LChwbzOzs6YOXMmTpw4gYEDB6JKlSrw8vKCQqGAl5cXqlevjj59+mDlypU4e/Zsnn0mKjjS0tIQFhaGwMBANGjQIL+rY3Mvk8R5iq87x6koiJif2BbzE+YnAPMT5ifMTwDmJ7bMT3799VfmJ0QAPBP/Eb2OUZbOn4pQrjFHsS3mKMxRAOYozFGYowDMUdiGQmRbiSpx+4kwOPLfh4D4f8WF64fkUa2IiIiISEpkWq1Wm9+VoILLVo/DVSgUoh/C4uLiRI+jnnX0H2y68kx43bm6Pya2ftPsMp89ewaNRgO5XI5ixYpZv9KUK/oNKWlpaWZKkiNgvKWDsZYWxltarBHv3FyfceTogmHz5s3YuXMnfvjhB+zcuRMnT57EtGnTULFiRZusz1b5CZB1jgIAnZZdxZP4/56mM7NjBbSsWNjo8pif2D+e16SDsZYWxltaGG9pyW28mZ+QLeRbjpKeisKLqkEOjTB9sv8cjOjRweTymKPYN57TpIXxlhbGW1oYb+lgGwqR2IcLz+Lyo5fC6/91qYZP3i4LrOuW0XFGJ6AW8OlJg/mJiIiIiHKLw95SrlhzRCp9mUd0yvw6Sa0RvfZ0dcqyLjKZzDqVI6vLHBuZTAb253NcjLd0MNbSwnhLi7XjLZPJbHZdWdDEx8fj3r17uHfvHiIiIhAREYGEhAQAQLNmzRAaGmrxsl68eIH9+/fj8uXLiImJgZOTE4oXL4533nkHrVu3hlKptNXHAADcv38f27dvR/fu3VGqVCmbrstexCWpRa8LuxsfTZGIiIiIiMiWFC8fijrMAEBSocD8qQwREREREdmNuLg4myxXLpfD29tbeB0fHw+N5r+c5FWSSlRelpaK+H+uw+vvw9BvdUys0hMqG9WRrCereJNjYbylhfGWDsZaWuwh3pY8UdbW2GmGciWvvsT6OysApGrEnWj8vQtlWZfo6GhotVrI5XKLHg9P+Yc3zUoL4y0djLW0MN7SktN46zpGOzs720VyZA8GDRpkleVcvHgR8+fPR3JysvBeamqq0BHn6NGjmDBhAooXL26V9WWmVqsRFhaGwMBAdOrUySbrsDcpao1B534fd+YdRERERESU9xQvH4heP9P6wNXd20RpIiIiIiKSCuHplDam0WhE60pSiderVMjgfH0dZPhvUD6NSyEklw8C8qiOZD2Z402OjfGWFsZbOhhraZFqvOVZFyGyPwkp4sfXFnLlzWhERERE5Fj8/PxQs2bNbM/34MEDzJkzB8nJyXB1dcXHH3+MadOm4ZtvvsF7770HAIiMjMT06dNFnWqsadOmTYiMjMTQoUMNnhrpqF4mqw3e45NmiIiIiIgoPyji7oteR2hKwNuN7ShERERERJQ/EtXimzI9FWlwDd8sei/1rS6As3teVouIiIiIJIS/kFOB9DpV3GnGk51miIiIiMgBdO3aFeXKlUO5cuXg4+OD58+fY/jw4dlaxqpVq6BSqaBQKDBx4kRUrFhRmFatWjUEBARg7dq1iIyMxO7du9G9e3eDZaxevRpqtWEnEFOCgoIQEBAAAPjrr7+we/dudOvWDWXKlMlW3QuyuCRxjqKQy1BIyaduERERERFR3lPERYhe39cGwIedZoiIiIiIKJ9kftJM6ZgzkCfHit5LqdYrL6tERERERBLDX8gpV+Li4myyXLlcDm9vb+F1fHw8NBqN8PplUqq4fFpqlnVRq9XCMtLS0syWpbwlk8mgUPx3Q2F6ejq0Wq2ZOaggY7ylg7GWFsZbWqwVb41GA41GA7Vane3rSl9f32yvryAw1oElO+7du4fw8HAAQIsWLUQdZnTat2+P48eP48mTJ9i/fz8+/PBDODmJU8PDhw8jNTXVYF5TGjZsiICAAKSnpyMsLAxly5ZF586dc/VZCprYJHEnI183J8hksnyqDRERERERSZni5QPR6whtCVRhpxkiIiIiIsoH6nQN1OnidsSiUSfFZUo0QHrhCnlZLSIiIiKSGP5CTrmSnp6edSEr0Gg0onW9ThF3enF3lmVZF964a78yx4axcmyMt3Qw1tLCeEuLteOt1Wrz7LrS0Z0/f174v0WLFkbLyOVyNGvWDOvXr0diYiJu3bqFmjVrisqsWbMmR+tPSUlBZGQkAKBXL+Mjgk2cOBEAMG7cODRo0CBH67FHccniTjOF3Z3zqSZERERERCRpWq2RJ82UQCN2miEiIiIionyQpNKIXsuggU/kGdF7qeWD8rJKRERERCRB/IWcCqTETI/t9HBRmChJRERERCQdd+/eBQAolUq8+eabJstVqVJFNE/mTjM55ezsjJYtWxqdFh4ejsjISNSrVw9eXl4oWrSoVdZpL+KSxB37fdyZbhMRERERUd6TJcdArkoQvRehDYC3K3MUIiIiIiLKe0mZ7vGqIbsPp9Q40Xuqss3yskpEREREJEH8hZwKHFWaBqpMj+30VLLTDBERERHR48ePAQDFixeHQmH6GrlEiRIG81iDi4sLhgwZYnRaWFgYIiMj0blzZ1SsWNFq67QXcUl80gwREREREeU/Rdx90esUrTOeav3g7cYchYiIiIiI8l6SWtxppoXiquh1mm85aLzL5GGNiIiIiEiK2GmGCpzXqekG73mw0wwRERERSZxKpUJCQsZowkWKFDFb1tPTE0qlEqmpqYiJicmL6uWKpXU011Eot+RyudnXL5PFT5op7O5itj4ymcx6lSOryxwfmUwGrVZrojQVZIy1tDDe0sJ4S4s14y2TyWx6XUlka4q4CNHrB9ri0EAOb1d+r4mIiIiIKO9lftJMS8U10Wt12eZ5WBsiIiIikip2mqECJ1Fl2GnG04VfZSIiIiKStpSUFOF/V1fXLMu7uroiNTVVNJ+9Gjp0qEXlNm/ebOOa/Mfb21v0+nWa+EbNkn5e8PX1NTl/dHQ0tFot5HI5nJyYz9g73jgrHYy1tDDe0sJ4S0tO4q3rFO3s7Gz2Oo7I3jm9fCB6fV8bAE+lAk4KuYk5iIiIiIiIbCdRpRH+90M8asjEHf1VZZvldZWIiIiISIJ4Zw4VOJmfNOMkl0HpxFGaiYiIiEjaVCqV8L8lnTB0ZfTns6XQ0FCEhobmybryQ8zrVNHrwh4u+VQTIiIiIiKSMkXcfdHrCG0J+LixOZCIiIiIiPJHsvq/+7yaycVPmdE4e0Bdon5eV4mIiIiIJIi/klOBk6hKE732UCogk7HTDBERERFJm4vLf5000tLSzJQUl9Gfz14tWrQov6uQpejX4s5HRdhphoiIiIiI8oHipXjU5vuaEvB2ZXMgERERERHlj0TVf51mWiiuiqapSzcGFGxPISIiIiLb46/kVOBkftKMp4sin2pCRERERGQ/XF1dhf9TUlKyLK8roz+fvSpSpIhF5eLi4mxWB7lcDm9vb+F1fHw8NBqN8DomUfykGWdNqtn6qNVqYX5LOjlR3pLJZFAo/ss109PTodVq87FGZCuMtbQw3tLCeEuLNeKt0Wig0WigVquzfV3p6+ubrfJENpOeCvmrx6K37msD4M0nzRARERERUT5J+v9OMwqko6n8umiaqmzzfKgREREREUkRfyWnAseg04ySnWaIiIiIiFxcXFCoUCEkJCQgJibGbNnXr18jNTWjk4elHVIKgvT09KwLWYlGoxHWl6xKR4paI5ru46owWx/etGvfMseH8XJcjLW0MN7SwnhLizXjrdVq8/S6kvLHjh07sH79egDAtGnTULFixXyukXUo4h9BphXnJve1AWjq5pxPNSIiIiIiIqlLUmXkKHVkf8NLliSapi7bLD+qREREREQSJM/vChBl12uVuMHSg0+aISIiIiICAJQqVQoAEBUVZfZGv6dPnxrMQzkXl2z4pBhfd45RQURERERkjx49eoQtW7ZAqVTmd1WsThF3X/T6mdYHr+HOJ80QEREREVG+SVJntFe1UFwVvZ/mVxkaz+L5UCMiIiIikiJ2mqECh0+aISIiIiIyrlKlSgCA1NRU3L9/32S527dvG8xDORebpBa9dlbI2LmfiIiIiMgOpaWlISwsDIGBgWjQoEF+V8fqMneaua8pAQDwdmWnGSIiIiIiyh9J/z84cgv5VdH7qrLN874yRERERCRZ7DRDBU6iQacZNvYQEREREQEQ3fR1/Phxo2U0Gg1OnjwJAPDw8EDVqlXzpG55QaFQ2OxPLhenz3K5XJj2KlOO4uvmDCcnJ7PLk8lkeblpKJsyx4fxclyMtbQw3tLCeEuLNeMtk8myfa1IBce2bdvw+PFjDB061OAa3xGkF6mIlEqdcVdREa+0bojQBgAAfPikGSIiIiIiyidJKg0CEIPK8kei91WBzfOnQkREREQkSfyVnAqc1yrxDWkcwZmIiIiIKEP58uVRuXJlhIeH4/jx42jevDkqVqwoKrNnzx48efIEANC2bVs4OTlOWujr65tn6/L29hb+T8Fr0TR/L9cs6xIdHQ2tVgu5XO5QMXBUvBlWOhhraWG8pYXxlpacxFvXgcLZ2TlPryvtXXx8PO7du4d79+4hIiICERERSEhIAAA0a9YMoaGhFi/rxYsX2L9/Py5fvoyYmBg4OTmhePHieOedd9C6dWsolUpbfQwAwP3797F9+3Z0794dpUqVsum68ovqjfegeuM9DHp0DY8Sk6FExlMx2WmGiIiIiIjyS5IqHc0VV0XvaZTeSCtWK1/qQ0RERETSxF/JqcB5nZomeu2pZIM3ERERETmGO3fuICoqSnj96tUr4f+oqCicOHFCVL558+YGywgODsakSZOgUqkwbdo0dOnSBVWrVoVKpcK5c+dw5MgRAEBAQAA6dOhgk88hNbGJKtHrIp62vdmPiIiIiCivDBo0yCrLuXjxIubPn4/k5GThvdTUVKEjztGjRzFhwgQUL17cKuvLTK1WIywsDIGBgejUqZNN1mFP4pPTAMiQChcAgDc7zRARERERUT5JUqWjhfyq6D11mXcBOfMUIiIiIso7jvfsecpTCoXCJn+6Uf105HK5MC1RpRFN83JztmiZMpksLzcNZUPm2DBWOTN8+HD4+/ujTp06RqfXqVMH/v7+GD58eB7XTCw38d6wYQP8/f3h7++PR48eZT2DA8tqW2T1fbBUbr433Lftly32JcY75zp16gR/f/8CddOOteMtk8myfb3oqI4ePYqFCxcKf2vXrhWm3b17VzRt4cKFRpfxxhtvYPTo0XBzc0NKSgo2bNiAiRMnYurUqaIOMxMmTICbm1uefC5HF/M6VfS6iIdLPtWEyH4MGzYMvr6+qFGjhtHpNWrUgK+vL4YNG5bHNbOe9evXw9fXF76+vpLPT7LaFll9HyzlCN8bMsR9yb60b98evr6+aN++fX5XheyQn58fatasme35Hjx4gDlz5iA5ORmurq74+OOPMW3aNHzzzTd47733AACRkZGYPn26qFONNW3atAmRkZEYOnSoQfuDo0nXaPEqRTz4mI+bcz7Vhsh+FJQ2lNxgG8p/CkIbCtkv7kv2pSC2oRCRmEqVisbym+L3yjbPn8oQERERkWSxyzbliq+vb56sx9vbW/g/VSO+KdPfp5BF9YiOjoZWq4VcLoeTE7/6tnbmzBnRyOVdunTBypUrzc4zbNgwbNiwAQAQFxdn0/o5Iv3GXnPfcXvbB7Jz47N+WScnpxx9jvbt2+Ps2bPZmueff/4RHYfsQVbbwtLvg6Ws8b1x5JvcCxpr7EvZWQeZp+twIpPJ7Or4nB05jbfuWOXs7Jxn15VSUa9ePfz444/Yt28fLl++jNjYWDg5OaF48eJo2LAh2rRpA6XS8Z6GYstrSLlcLroeiI+Ph0aT0aE/Mu61qKyHkybLuqjVamH+tLQ0s2Up986ePYvOnTsLrzt16oTly5ebLC+TyTBixAghP9Hlk2Q53fcbMP8d12g0+boP6Dpu6qSnp1sc6/T0dOH/tLS0HH2OTp064dy5c9ma5969e3aXn2S1LSz9Plgqp9+b3MSbbMca+5IxjHfO6LaRVqstUNco1oi3RqOBRqOBWq3O9nWlI+czXbt2Rbly5VCuXDn4+Pjg+fPn2b4xeNWqVVCpVFAoFJg4cSIqVqwoTKtWrRoCAgKwdu1aREZGYvfu3ejevbvBMlavXg21Wm3xOoOCghAQEAAA+Ouvv7B7925069YNZcqUyVbdC6KElDRk/vZ7uxbM3xscWXZzFEDchvLixQtbVo8kzFFyFCIiIrIf5ZJvwEP23+BjWsigKts0H2tERERERFLEX8mpwElIETeMFWJjT4GwY8cOfPbZZ6hatWp+V4WIiPJAjRo18O+//6Jnz54mn4ZBBYN+R9jdu3ejSZMm+VwjxxYaGorQ0FCrLMvf3x/9+vVDv379rLK8gkD/pltb02g0wvpiX6tE03xcnbKsC2/azV+7du3C7du3UaVKFaPTM8eH8XJcjLW0MN7Soh9fXX7So0cPLFiwIB9rRbmlf5P5jh070LhxYwDW3b+1Wm2eXlfaO2MdWLLj3r17CA8PBwC0aNFC1GFGp3379jh+/DiePHmC/fv348MPPzQYVOLw4cNITU01mNeUhg0bIiAgAOnp6QgLC0PZsmVFHRQc2csUww5v3m5sR7F3WeUoRETkWJijOA5TOQoR/ae26oLodax3VWjdiuRTbYiIiIhIqvgrORU4CZkafLxcnfOpJpQdWq0WM2bMwJo1a/K7KpJ1/fr1/K6C3bH0iTOFChWycU2sb+HCheyoQERElEdik8Ud+33dmWrbO61Wi5kzZ2LVqlX5XRXJunz5cn5Xwe6cOnXKonIFMT9ZsGABbwIiIpKo8+fPC/+3aNHCaBm5XI5mzZph/fr1SExMxK1bt1CzZk1RmZz+rpySkoLIyEgAQK9evYyWmThxIgBg3LhxaNCgQY7WY0/ik8VtKG7Ociid5CZKk71gjpL/mKMYYo5CRERE1vB2uvg6K7p4E7DLDBERERHlNd7JQ7kSFxdnk+XK5XLRY7zj4+Oh0WgAAAmZbkjTqpMtqodarRaWkZZmONIaWZf+aIxFihRBTEwM9uzZg8uXL6NGjRqisjKZDAqFQvQeY5R9uu83YN/bL3O809PTLR79U/97lZaWlqPPqb8uYyNbGqPRaETb1x5YY1tkh0ajyfY6chNrsi1bfH+MHcuBnH13pEa3X2i1WrvcVvrfl/T0dKSlpVlt/9YdX9VqdbavK319fbO9PiJbiUsS77u+7uzYb890+cnevXtx/fp1g/yEKL9Urlw5v6tARERkdXfv3gUAKJVKvPnmmybL6T9d4+7duwadZnLK2dkZLVu2NDotPDwckZGRqFevHry8vFC0aFGrrDO/vczUacbblU2B9o45Ctkr5ihERESUW/L4h3gDT0XvvS7ZlJ1miIiIiCjP8ZdyyhX9myhtSaPRID09HRqtFokq8TrdnWQW1YM3auefQYMG4eeff0Zqaip++OEHrFu3TjSdsZGWzPFm/B0XYy0tjK+0WHv/1mq1eXZdSWRtWq0WcUnijv2F2WnGrmWVnxARERGR9Tx+/BgAULx4caODbeiUKFHCYB5rcHFxwZAhQ4xOCwsLQ2RkJDp37mzx4DoFQeYnzfjwSZh2jzkKERERETkqpwcnRK9faL2R7l81fypDRERERJLG57FTgZKkSkfmWzI9laYb2sg+lChRAn369AEAHDp0KNePuI+Ojsb333+PFi1aoFy5cihVqhTq1KmDYcOG4Y8//jA7b506deDv74/hw4cDAK5du4bhw4ejbt26KFmyJPz9/c2WHTJkCGrWrInSpUujfv36mDRpEmJiYkTrOH/+PEJCQlCrVi2UKlUK9evXx9SpU/H69WuT9dJoNDh9+jQmT56MoKAgVKpUCQEBAShXrhyaN2+OyZMn57qxOPPn0Xn06BH8/f0t/uvUqZPJdZw5cwahoaGoV68eypQpgzfeeANNmzbFlClTEBUVlWUdX758ialTp+Kdd95B6dKlUblyZXz00UfYuXNnrj67tc2cOVPYHuacPXtWKHf27FmT5TQaDbZt24bg4GDUqlULpUuXRunSpfH2229jyJAh2LVrF9Rqtcn5jRk+fDj8/f1Rp04ds+WOHDmCjz/+GG+99RbKlCmDt99+G5MmTUJkZGS21nft2jWMGzcODRs2RNmyZVG2bFk0bNgQY8eOxb1798zO+88//2DhwoX45JNPUKdOHeHz165dGwMHDsTRo0fNzr9hwwZhOz969AgajQarV69GUFAQypcvj7Jly6JZs2b46aefkJSUlK3PlZlKpcLBgwfx5Zdf4v3330f58uUREBCAihUronXr1pg5c6bBMcGY06dPY/Dgwahbty5Kly6NMmXKoHbt2mjTpg0mT56M06dP56qe1tqXHj16hIkTJ6JJkyYIDAxEmTJl0KBBA3z22We4ffu20Xnat28PX19f/PvvvwCATZs2Zes4YkzmfUmj0WDNmjUICgpChQoVULZsWTRv3hxz5sxBSkqKyeVk3i+ioqIwdepU4fMZ21dzc87RuXjxIkJCQlClShWUKlUKdevWtWjfAAy/36boH8s3bNhgdpmHDx/G0KFDUa9ePZQtW1aoU3BwMDZs2CDsJ7pldu7cWZi3c+fOwnp8fX3h6+uL9evXW7QdiBxVkloDVbo4S/Fx401p9oz5CfMT5ifSzU8+//xz5idGMD9hfuII+YkuR2F+Yl9UKhUSEhIAZDxJwxxPT08olUoAsOjYld9iYmIs+lMoFDb7k8vFTXxyuRwKhQIJqeJBKXzcnC1ankwmy8tNSHqyylGyGxvmKDljLzlK5njrv2aO4vg5irH9nTmK4+QoMpmMOYoRjpqj6Leh5PY6SyaTZftakcheOP1zXPT6RHpNuCs58BgRERER5T3eyUMFyutUwxHIPVyY8BcEo0aNwrp165CcnIzp06djy5YtOVrO8ePHMWDAAKGxVefff//Fv//+iy1btiAkJATTp083aDTMbNWqVZgwYQLS0tLMlgOAzZs3Y8yYMVCpVMJ7//zzDxYvXozDhw9j586dKFasGMLCwvDtt9+KRtz/559/MH/+fJw8eRI7d+6Ep6enwfJ//PFHzJo1y+D9V69e4datW7h16xZWrVqFhQsXol27dlnWN6+lpKRg5MiR2L59u8G08PBwhIeH45dffsHSpUvRunVro8v466+/8NFHH4luXktJScGpU6dw6tQpHD16FO+8847NPkN+efToEfr164ebN28aTLt//z7u37+PrVu3YseOHWjcuLFV1z1p0iQsXrzYYJ2LFy/Gb7/9luWPxkBGY9XkyZOxZMkSgydNREREICIiAmvWrMGsWbPQu3dvg/kfPnyI+vXrG13248eP8fjxY+zcuRPdunXDvHnz4ORk/tIlOTkZ3bp1w6lTp0Tv3759G7dv38bBgwexbds2eHh4ZPnZjBk7diw2bdpk8H5cXBzi4uJw+fJlrFixAqtXr8bbb79tdBkTJ07EkiVLDN7Xfd5Lly5h48aNuHv3bo7qaK19adOmTfjss8+Qmpoqev/Bgwd48OAB1q1bh/Hjx2P06NE5qmdOqVQq9OzZE8eOHRO9rztW/vbbb9i6dSuKFStmdjkXL15E7969zTbQWeOcs3jxYkyePBkajUZ479GjR1izZg22bt2K5cuXZ/WRrSY2NhaDBg0y2D90dXr06BH27t0LAOjZs2ee1YvImmzZGGjshjQAiE8xvCnDv5BrlnXhDWn5K6v8xNhNSsaeqsX8pODnJ23atBFN18Wa+Ynj5idr167FrFmzEBwcbLBvMz/5jyPkJ3lxrmV+knO2zk9MnbstnZc3mVmH/k2Zrq6uWZZ3dXVFamqq2Zs57cXQoUMtKrd582Yb1+Q/3t7eAIBk7TPR+/7eHvD19c1y/ujoaGi1Wsjl8izPcZR7+scZhUKBzz77TMhRfvjhB2zdutXs/KZidOzYMQQHB5s9XwwcOBA//PCD2RxFLpdj9erV+PLLLw1ylMzrlsvl+O233zBq1CijOcqRI0ewZ88eFCtWDPPnz8fkyZON5iinTp3Cnj17jOYoM2bMwA8//GDwfuYcZcmSJWjfvr3Jz2TqM2Qupz89u/uDTCYzmCclJQWhoaHYtm2bQXldjrJq1SosW7YMbdu2FU3XfVfu3r2LLl26iDpr6F9XHT9+HI0aNRLVOyf7sv41VE6PBZZu68z7gbGyjx49Qu/evXHjxg2Dafo5yu7du9GkSROjyza2LSyp49dff42FCxcarFOXo+gf400dOzUaDSZNmoRFixZZlKNkvgaxNEfp3r07wsLCjNZBf5kqlQrdu3fHyZMnRWV0OcqhQ4ewc+fOHOcoI0eONJq7Zc5R1q1bh4YNGxpdxldffYVFixYZvJ85R4mIiMhRHa21L23cuBGjR482m6N89dVXGDt2bLbraOw4Yo5+jNPT09GrVy+DzlS6Y6UupzeWo+jvF1euXEHPnj0NchT9fdUa55yFCxdi0qRJRnOUbdu2YeXKlcJxydh2yWpf159m7DPoi42NRUhIiMH+oauTLkdRKBTo1atXjmOUHbrt5uzsbNH1HJHdSUuFa+R50VvHNbVQl/d5EREREVE+4K/eVKAY6zTjzmSqQChevDiCg4OxaNEinDhxAn/88YfJH0NNuXHjBnr37g2VSgVnZ2cMGDAAbdq0gbu7O27cuIF58+bh4cOHWLlyJTw8PPDNN9+YXNbVq1fx22+/oWTJkhg2bBhq1aqFtLQ0oyPe3Lp1C9u3b8cbb7yBYcOGoUqVKnj9+jXWr1+PLVu2ICIiAlOmTEG7du0wZcoU1KtXDwMHDkT58uURExODZcuW4ciRI7h+/Tp++ukno/VKS0tDsWLFEBQUhPr166Ns2bJQKpV4+vQpLly4gJUrVyIxMRFDhgzB0aNHUbFixWxtO3MCAgKM3qCgb+fOnZg9ezYAoFSpUqJpWq0WISEhOHz4MACgdevW6NSpE8qWLQu5XI7Lly9j0aJFePz4MUJCQrB3717Uq1dPtIyEhAR0795duImmc+fO6NGjB/z9/REREYFFixZhw4YNuHPnjrU+tl14/vw52rVrJ3zud999Fz169ECFChUgk8nw8OFDnDlzBrt27bL6uhcvXizckFa8eHGMGjUKderUQUpKCo4cOYIlS5ZgwIABSE5ONruc8ePH45dffgEAvPPOO/j4449RtmxZuLu74+bNm1i6dCnu3LmDMWPGwM/Pz+CmxPT0dLi4uKBFixZo1qwZKlWqBB8fH7x8+RIRERFYuXIl7ty5gy1btqBs2bL48ssvzdZnzJgxuHTpEnr06IFOnTqhaNGiePLkCRYsWIALFy7g8uXL+OmnnzBp0qQcbbf09HQEBgYiKCgItWvXRqlSpeDk5IR///0Xp06dwvr16xEbG4vg4GCcOnXKYCS9Q4cOCTekVa1aFcHBwahQoQK8vLzw6tUr3LlzB6dOncrxiPfW2pcOHTqEESNGQKvVwsPDA8OGDUPTpk3h5OSECxcuYO7cuYiJicH//vc/eHt7o3///sK8YWFhSExMFG6Ma9u2LSZMmCBavru7e44+HwBMnz4dV65cQfPmzdG/f3+ULFkST548wS+//IITJ07g7t276N27Nw4cOGCyESIxMRH9+/dHSkoKxowZg2bNmsHd3R23b98WGoqscc7Zu3ev8F3z8vLCiBEjhJtLT58+jQULFmDo0KFZjrZrDUlJSejSpYswul3NmjXRt29fvPXWW1AqlXjy5Al+//137NixQ5hHd364cuUKRo0aBQCYO3cuateuDeC/Rp6SJUvavP5ElsrLhkPdDWkPEuJE7yud5ChRtEiWN+ryhrS8lflGnFKlSiEkJARhYWE4ceIELly4YPambWPnlMznikGDBqFt27Zwd3fH9evXMWfOHOFc4enpiW+//dbk8q9duybkJ8OHD0ft2rWRlpaG33//3eD7cfv2bWzfvh1vvvkmhg8fLuQna9euxebNmxEREYFvv/0WHTp0wJQpU1C/fn0MGjQIFSpUQExMDJYsWYLDhw8LdZwyZYpBfTQaDYoXL4527dqhfv36CAwMhKurK548eYI///wTK1euxOvXrzFkyBCcOHEClSpVMlhGTm9IK126tNkRhgFgx44dQqeeMmXKiObXarUYMGAADh06BABo06YNOnfujMDAQCE/WbBggZCfHDhwQDi3ARmxfvXqleiaqkuXLujZsyf8/f1x7949LFy4EBs2bBB1InCEG9KeP3+O9u3bCzcONW3aFD179hTlJ6dOncLOnTsN5s/tDWmLFi0S8pOAgACMHj0adevWRUpKCg4dOoTFixeL8hNTx85x48ZhxYoVAIBGjRqhV69eCAwMhJubG27evIlFixYJ+UnRokURFBQkml8mk8HFxQUtW7ZEixYtUKlSJfj6+iIuLg737t3D8uXLhfzkjTfeMLjOzbwtxo4di4sXL6Jnz57o3LkzihUrhsePH2Pu3LlCfjJnzhxMnjzZYDmW0Gg0CAwMRPv27VGnTh1RfnLixAmsW7dOyE/OnTtnkJ8cOHBAlJ+EhISgUqVK8PLyQnx8PMLDw3Hy5Elcvnw5R99Pa+1LBw8eFPITT09PhIaGolmzZnBycsL58+fx888/C/mJr68vBgwYIMyry0+6du2KyMhIBAUF4euvvxYt38PDI8c3O82YMQOXL19Gy5YtERISIuQnK1aswPHjx3H37l306dMHhw8fNjiX6PaLxMREhISEIDU1FZ999hlatGgBNzc33L59GyVKlICTk5NVzjl79uwR5SejRo0Sbiw9deoU5s2bh6FDh8LPzw+AbW9Iy5yf1KpVC/369UPlypWF/OTcuXPYvn27ML/u/HDlyhXhCQALFiwQHcOB//KTnNyUxhvSrE//5nlL9jNdGf35bCk0NBShoaF5sq689DJJvP0Ku3MU54KgePHiQo5y7Ngx/P7779nupH3jxg307Nkzy/PF8uXL4e7ubjZHuXLlCjZv3mw0R8ns5s2b2Lp1q8kc5d69e5g0aRI6dOiAb775xmSOcu3aNfz4449Gc5S0tDSLcpRBgwaZzFFyKiAgIFs5SunSpUXTtFot+vXrZ1GOEhwcbJCjABnXVR999JFwrW7sumrdunUIDw+31se2C8+fP0ebNm0sylGsbdGiRUKHGVM5SnBwcJZtKF988UWuchRdG0pWOcrmzZsRGBhoNEfRN2rUKLM5yqVLl/Djjz/mOEdJS0uzKEfp06ePyRxF12EmqxwlJ6y1Lx08eBDDhg3LMkf57rvv4O3tnaMcJaf+97//mc1R7ty5g549exrNUXQSExPRr18/ozmKfhtKbs85e/bsET67qRxl8ODBQo5iS0lJSejQoYNFOYqO7vxgaY5CJElOSlxvvxcbf9uIlvIreFsejjOa6vjG2fwAU0REREREtsA7c6hAea0Sd5rxcJFDIbfiqJFaDWQpcVmXcxBaV19AlnfJ6IgRI/Drr78iKSkJP/zwg9FRf8357LPPoFKpoFAosG7dOrRo0UKYVrt2bXTs2BHt27fH3bt3ERYWhu7du+Ott94yuqy7d++iSpUq2LVrl3DDIwCjI6/evHkT9evXx2+//Sa60btJkyZISUnB7t27sX37dhw9ehTt27fH8uXLRT8yNmvWDO3bt8fFixeFUYUyNxL37t0bn3/+OZydxQ2YNWvWRNu2bTFw4EChYWDOnDkGI1vlhrOzMypXrmxy+tWrV4X1VaxYETNmzBBNX7t2LQ4fPgxnZ2esWbMG7733nmh6vXr10L17d3To0AF37tzB119/jYMHD4rKzJ49G0+ePAGQMXKX/siwNWvWRIcOHdCrVy+cOHEiF5/UkCUNSD4+PggICLDqenW++OIL4eahb775BiNGjBBNr127Njp37owpU6ZYNOK4pV68eIHp06cDyGjA279/v2hEqUaNGqFFixbo3r272fWeOHFC6DDz888/GzxJpnbt2ujZsyd69OiBU6dO4auvvkKrVq1E3/9ixYrh0qVLKF68uMHymzZtiuDgYIwcORIbN27EwoULMXToUHh5eZms04ULF7Bw4UJ069ZNeK9mzZp477338P777yM8PBxr167FhAkTcnTT1xdffIHAwECDG6Fr1aqFDh06oH///ggKCkJ0dDSWL19u0ECla7wrXbq00VETGzdujAEDBiAuLmfnImvsS2q1Gp999pnQYWb37t2oXr26ML1evXpo37492rZti2fPnmHKlCno2LGj0PGjbNmyACAcz7y8vMweY7LrypUr6Nu3r9CRT/fZgoKCMHr0aKxbtw5Xr17Fr7/+ipCQEKPLiI2NhYeHB/bs2YNq1aoJ7+s3ZOT2nKNSqTB+/HhhG+zfv1/U4bF+/fpo27Yt2rVrh/v37+d+w2Rh+vTpQmNPSEgIZsyYIfoe67bhpEmT8PLlSwD/nR9iY2OFcmXLlhXiqb8PWfMYRVTQxLwW35Dm56m07sj2Wg1kyRLKUdzyLkcZNWoUVq1ahcTEREyfPj3bHZVHjx4tnCs2btyIli1bCtPq1KmDzp07o23btrhz5w4WLFiAjz/+2OQ58c6dO6hSpQr27dsnyk+MDTRw48YNNGjQANu3bxflJ++++y5SU1Oxc+dObNu2DUeOHEHHjh2xcuVKUX7SvHlztG3bFhcuXMCaNWswceJEg+uivn374ssvvzSanwQFBWHw4MH44IMP8PTpU/z0009Gn1KRU87OzqhSpYrJ6VeuXMGCBQsAAJUqVTIYbXr16tU4dOgQnJ2dsX79erRq1Uo0vX79+ujRo4cQmwkTJuDAgQOiMrNmzRKuqSZNmiQaFbZWrVro1KkTPv74Y4MnS+SW7lxtjo+PD0qUKGHV9ep89tlnwo1DU6ZMETrN6tSpUwddunTBd999Z/X8ZNq0aQAyrpMPHz4syk8aN26M9957Dx999JHZ9R4/fly4GW3evHno06ePQf27d+8u5Cfjx4/HBx98YJCfXLt2zWh+0qxZM4SEhGD48OFYv349wsLCMGzYMNE+m9n58+exePFi9OjRQ3ivZs2aaNWqFVq0aIHw8HCsXr0aX3/9dY7ykwkTJhjNT3TXq7qO39HR0Vi6dKnBjVi6DtOlS5fGgQMHDPKTJk2aYNCgQTnOT6yxL6nVaowZM0a4GW3fvn2i/KR+/fro0KEDWrdujaioKHzzzTfo3LmzQX6i277e3t5mjzHZdfnyZfTr1w9z5swRfbZ27dph5MiRWLNmDa5cuYJffvkFAwcONLqM2NhYo5+tTp06wv+5PeeoVCp88cUXADLyk0OHDoluJm7QoAGCgoLQpk2bHI/YnR3/+9//hGPewIEDMXPmTNH3WLcNJ0+eLMpPqlSpYpCfWDOeZH0uLi7C/5acO3Rl9OezV8ZGwLcXsYniHMXH3YrbU2L5CcAchTkKc5SsMEdhjqKPOQpzFF055ihEpBPv5I+N6S2xMb0lFEiHQuEEJwU7zRARERFR3mOnGSpQElMzd5qx7lNmZClxKLKigVWXac9iBpyH1s32o9vr+Pv7Y8CAAZg/fz7OnDmDM2fOiB6Vbs7ly5dx5coVAECfPn1ENy/r+Pj4YPbs2Wjfvj00Gg1WrlyJmTNnmlzmjBkzzP5wrCOTyTBnzhyjT0YICQnB7t27kZ6ejtTUVPz0008Go/IoFAr06dMHFy9eRGxsLO7evYuqVauKypQpU8ZsHUqUKIHQ0FBMnDgRBw4cgFarte7NmCZERUWhT58+SE5Ohq+vL9auXYtChQoJ07VaLebNmwcAGDRokEGHGR0fHx9MnjwZPXv2xPnz5xEREYFy5coByPhRdN26dQAyRo3K3OgBZPzoOHfuXNSrVw9qtdpqn69p06ZZlunRo4fQ4GVN9+7dw759+wAAQUFBBh1m9GVuFMitTZs2ISkpCQDw7bffGn0E+7vvvos+ffoInWKM0cW+ffv2Bh1mdFxdXTFz5kw0bNgQ//77L86cOYPmzZsL0z08PMyOmCWTyTB16lRs2bIFSUlJOHnyJDp06GCyfLt27UQdZnSUSiUGDBiAcePGmdwPLfHGG2+YnV6lShX07t0bS5Yswf79+w06zTx//hwAUKNGDbNxzcmIttbal/bu3St05ho7dqyoQUSndOnSmDJlCoYOHYqkpCRs2LBBGEXL1vz9/fHdd98ZnTZt2jQcPHgQ0dHR+OWXX0x2mgEyOnLqd5jRZ41zzv79+4Xt+Nlnnxl9QljlypUxZswYTJ061fQHtoL4+HisXr0aQEYD6Pfff2/yHOLi4oKiRYvatD5EjiY2MVX0urCHdW/wkyXHwXtpnawLOoj4wZehdc+bHMXf3x8DBw7E3Llzcfr0aZw+fRrvvvuuRfNeunRJGNW0b9++ohsDdHx8fPDzzz+jbdu20Gg0WLFiBX788UeTy5w1a5bF+cm8efOM5icDBgzAzp07hfxkzpw5RvOTfv364cKFC4iNjcWdO3cMzolZ5SclS5bEiBEjMGHCBOzfvz/P8pPIyEh88sknQn6yYcMGUYdqrVaLuXPnAgA+/fRTg5vRdHx8fDB16lR0794df/75p0F+snbtWgAZ11RjxowxmN/Z2Rnz5s1D7dq1rZqf6J5IZ07Pnj2tOoiCzt9//429e/cCyLimNnYtqWPt/GTDhg1CfjJt2jSj+UnTpk3Rt29frFy50uRydDcEdezY0eBmNJ3M+cnp06dF13qW5CfTpk3Dpk2bkJiYiJMnT6Jjx44my3fo0EF0M5qOUqnEoEGDMHbsWJP7oSWyyk+qVq2KPn36YNGiRdi7d6/BDWm6/KRmzZo2yU+ssS/t2bNHuFHys88+M5qflClTBt9++y0+/fRTJCUlYd26dRg5cmS265wTRYsWxffff2902vfff4/9+/cjOjoaK1asMHlDGgCMHDnS6GcDrHPO2bdvn7AdP//8c6Oj71epUgWfffaZ0dH9rSk+Ph6rVq0CkHHjWeYO/fqYnxR8rq6uwv8pKSlZlteV0Z/PXln61Nic3tRrCblcLrp+jI+Ph0ajwYtX4qceKGVpFtVDrVZDo9EAMN3JSZYcI6k2FMB27Sjp6emi/9PS0uDr64uQkBDMnz8fp0+fxokTJ9CkSRPIZDKD6/rMMbp8+bJwvujTpw+aNm1qUMbT0xM//vij8HvWsmXLsmxD8fDwyLIzgkwmw88//wwXFxeDssHBwaIc5ccff4RWqzUo17t3byFHuXXrlsFvt7pOGabqUqxYMQwbNgwTJ07E/v37oVarDc4vuu+3ueXoylnaASMqKgq9evUScpQ1a9bA3d1dmF+r1QrXqYMGDULz5s2NLtvT01NoQ8mcoyQnJ4uuq0aMGGGwDF0M9H/3TUtLy1FHEq1WK/xvSY5irA3F0m1tbD/QuXfvnpCjBAUFITQ01OSydOcN/en6yza2LczVcd26daI2lCJFihiUadSokagNxdj35ueffwaQ0YbSs2dPo/V3dnYW5SgnT55Es2bNhOlKpRJKpdLsdpwyZYqQoxw7dsygDUV/W7Rr185oZx+FQiFqQzG2H1qidOnSovVlVqlSJXzyySdYsmQJ9u7diy+//FI0/dmzZwAy2lBcXV1Nfu5ChQpl+/udOUfJ6b60c+dO4dp6zJgxqFy5ssFySpQogcmTJwttKGvWrMHw4cONHs+zc8wxRX+b+/v7Y+rUqUaXOXXqVFGOEhwcbFAXneHDhxv9bIB1zjm7d+8W5XrlypUzWEbFihVFbSjGzh9Z7ev60/Tn0X+tn6PUrFkT06ZNM/k9lsvlKFy4sMnjjW7ZmWOdnp4uOr5aSqPRQKPRQK1WZ/u6kk/PJHuRpNbbR6BAISvf50VEREREZCl23aYCJfOTZjyV7PdV0AwfPly4EUP3pAtLnDx5Uvj/k08+MVnu7bffFm5MPnXqlMlyJUuWxDvvvGPRuqtUqWL0ZmcAoh+MmzVrZvLHJ/1yDx8+zHKdCQkJePjwIe7cuYPw8HCEh4cLN8XpptlacnIy+vbti6ioKDg5OWHlypUGN+TcvXsX//zzDwCY7cgAQLS9L1y4IPx/7do1YUSeHj16mLxRokSJEqLOFgXd4cOHhR9HP/300zxdt25/8vHxQdu2bU2W69Wrl8lpCQkJOHv2LACYvUkMyGgE0d1IcPHiRbNl1Wo1nj59ir/++kv47kdFRaFw4cIAgFu3bpmdv2vXrian1axZU/jfWvvQy5cv8eDBA9G+qrtZ4e7duwY3fulu9vn999/x4MEDq9RBx1r7ku7YKZPJzH4HOnbsKNykqn+MtrVOnToZvUkYyGiE0X0f79y5IzSwGfPRRx+ZnGaNc47+djR2o6ROz549bX6T8enTp4VG3kGDBhk0yhE5kri4OJv9xcfHi9YVHx+PuLg4/PtC/L6XUmbR8nQ3pOkaxk3+pUvrSU5p6Wa2RS7+jDVep6WlYdiwYUJ+Mm3aNKPlM8+TlpYmGnG0V69eJtdbr1494Vxx4sQJg+k6JUuWRIMGDcx+Bp0qVaoINxJk/tN/6lmzZs2Em0jMlbt//36W2y8uLg4RERG4efMmbty4gRs3bkCpVALIuC6MiIgwmCfzDUimPk+W+8D//yUkJOCTTz5BZGSkkJ+ULl1aVObWrVvCNVa7du3MLq9Bg/9u9tTPTy5fviy6psoce91fsWLFRNdUOf1uZveGCWPbK6ttndV+kJaWJgzOAACDBw/O1T5mbLq5Oh4/fhxARn7ywQcfmFxHz549TW6HuLg4nDlzBkDGDWnm6qmfn/z5559mP1dycjIePXqE27dvC9/9x48fC/nJ9evXzW6LDz/80OSy9TtIWLIfWvIXHR2Nv//+W7Sv6ga+uHv3LpKTk0Xl/f39AQDnzp3D33//bZU66P4uXbpklX1J9/2QyWT4+OOPTa6vffv2Qn5y/Phxg1iY24dy833v2LGjcINw5j9XV1dRfvLkyROT+0WXLl1Mrs8a5xz97ditWzeTy9DPJXU3pJn67FltJ53MsT9+/LiQnwwcONDoeizd/vrLzurcbclf5hvSsvNHxrm4uAjHoZiYGLNlX79+jdTUjA7plnZIKQjS09Nt9qd/HAEyjnHp6emITxb/HuWllFu0vJzcyEnWZ6wNxZLYsA3FcdtQrl69yjYUB25D0Wq1ohxFP/bGsA0l5+yhDSUvzrVsQ8k+W7ShZI51bmOv1Wqzfa1IZC8SM93nZe3BkYmIiIiILMUeB1SgvE7NNEKJkslUQVO4cGF8+umnmD17Ns6fP49jx44ZHSEzszt37gDIaGjNavTVOnXq4K+//sL9+/ehUqng4mI42nd2HousG83LGP2R/Cwt9/r1a6Nl/v33X4SFheHQoUP4999/zdYpNjYWgYGBZsvk1qhRo4QnLXz//fdGnwp09epV4X9zDQeZ6f8IGx4eLvxfq1Yts/PVqVMHhw8ftng9WXnx4oXVlpVdN27cAJAxili9evXydN26bV69enXh8e/GVKtWDS4uLlCpVAbTrl+/LjTMDx48GIMHD7Zo3bqRjPWp1WqsXr0aW7ZswY0bN4yuT0f/EefGVKhQweQ0Hx8f4X9T+6Elbt++jcWLF+Po0aNGP4+ORqPBy5cvhRvRgIyGmM2bNyM2NhZNmzZFmzZt0KJFCzRs2BBvvvlmjusEWG9f0h1vy5YtCz8/P5PLcHFxQfXq1XH27FlhnrxQu3Zts9Pr1KkjjEAeHh5udKRyDw8Ps8dQa5xzdPEoW7as2Zt9/Pz8UKZMGZs25OuONwDQsGFDm62HyB7kZWOg7oa0mETxecvXzcmievCGNPtgKj/JqmGb+YmYI+Unt2/fFv5nfpI3mJ8wP7FVfpIX51rmJ9lnq/zEmjel6W5II+soVaqUcENvenq6yZsQnz59KpqHcu5lpk4zPm5sCixI2IbCHAVgGwrAHEUfcxTHyVHyAnOU7GMbCpFtJavEnf3dnDm+NxERERHlD16JUoGSmMoRCBzB0KFDhQYQ/ccwm6MbsdHHx8fsD9TAf6MQabVaYcSgzPR/+M2Km5ubyWlyuTzb5Yw1uh85cgRNmjTBihUrsmzsATJGMLOl2bNnY/v27QCA/v37o3///kbLRUdH52j5+vXXH41T/4dxY7KaXpDoRtf08fEx2ihpS7r9wtyP+QDg5ORkcl/Jaex1IzXpxMXFoW3bthg/fjwuXbpktrEHyPq7n5v90BJr167Fe++9hw0bNpht7NFJSUkRvW7atClmzJgBNzc3pKSkYMeOHRg1ahTefvtt1KhRA+PGjcPNmzdzVDdr7Uu65WT1/QD+O96aOtbaQlb10v9spkb71W+EN8Ya55zsbEdbH9v0G0qNNYARUe68TBLfkObr5pxPNaGcYn7C/IT5CfMTHeYnzE+yi/lJ9jE/kZ5KlSoBAFJTU3H//n2T5fQ7rurmoezTarWITxGfV7xdmaMUNMxRmKMwR2GOosMchTlKdjFHyT7mKES2lflJM+68z4uIiIiI8gmHl6IC5XWmZMraT5rRuvoiZsB5qy7TnmldffNlvd7e3hg6dChmzJiBS5cu4dChQwgKCrJoXms9fln/h9/8FhMTgyFDhiApKQkeHh4IDQ1FixYtEBgYCC8vL6Ex4PTp0/jwww9tXp/du3fjhx9+AJDx4/T3339vsqz+j+br1q1D6dKlLVpH8eLFjb5v68drk1hutrduhDQgo4Gwfv36Rsvpjx6anp5u0ID09ddf49q1awCAoKAg9OrVC1WqVIGfnx9cXV2FOtaqVQtPnjzJ11H5//77b3z++edIS0uDv78/QkND0aRJE5QpUwaenp5wds64AWHdunUYPXo0AOMj2w4YMAAdO3bE1q1bcfLkSZw/fx6vXr1CZGQkfv31V6xevRqjR4/GV199leO6WmNfstf90Rr1MjWqrS3WZa/bkYisJzZzpxl366bZzFFsz1h+8sEHH1g0L/MT5idkPXmRnwDia8FChQqJpjE/YX6SXcxPiLLWoEED7NixAwBw/PhxoyPcazQanDx5EkDGyOZVq1bNyyralKX7eE5kvoaUy+VITgfSNeLjfWFPF4vqYckxQmr5CWA/OQrbUKSTo8hkMtFN2/ox5bk8b+VFjiKTyUT7m5eXl2g6cxTHylHyYh9mjmIfMn8umUyWq/1TJpPZ9LqSyJaSVBwcmYiIiIjsAzvNUIHy2tZPmpHJoXUz/fhfsp5PP/0US5cuRWxsLH744YcsG3x8fTMapuLi4pCWlmZ21BrdyEUymSxbo6Hll927dyM+Ph4A8Ouvv6JZs2ZGy5ka7cearl+/juHDh0Or1eKNN97A8uXLzW7rwoULC/97eXmhcuXKFq1Hf5n6MXr+/DnKlStncr4XL15YtHxb02/A0Gg0JhsQExMTTS5D96jxly9fih5Hnhe8vb3x/PnzLLdnWlqaydGvdPskkDEymanY68c6LS1NNC0hIUG4aaJr165YtGiRybrk5ShcpmzYsAFpaWlQKBTYuXOn0Zs8AMvq6u/vjyFDhmDIkCHQaDS4ceMG9u3bhxUrViA+Ph4///wzateujbZt21pcP2vtS7rYWrK/6Y63eXmszape+tP1v6fZYY1zju5/S7ajuTKZjzemZB6BUJ/+sfrZs2coW7ZslnUiIsvFJYvPb77uVh7FmTlKnsicn2TVaYb5CfMTgPmJteRlfgKYzlGYnzA/yQnmJ8YxPyF95cuXR+XKlREeHo7jx4+jefPmqFixoqjMnj178OTJEwBA27ZtsxyxvCDJ6b6fE97e3niZZni+Dwzwh4cy620aHR0NrVYLuVxuPgbOHIHdGvRvfFUoFAbbfNiwYUKOMnPmTIM2lMzldcdX3XW6uRjqnoAhk8ng5+dntGyW34MclDVXTv/9zNtj7969Qo6ydu1aNG/e3OgyXr16ZXIZuvUbW1926qmfo7z55ptYtWoVXF1dTS5L/wkKvr6+qF69usmypugfR2JiYsw+jUv3dBYg4zPm5Hiqf6N3To/H+vPJ5XKTOYr+U0Yyx0y37V6+fAmNRpPtHEV/HzO2Lcx9H3x8fPDs2TNER0eb3Qb6OUrm741+7D08PHIU+1evXgk5Srdu3bB06VKTZXX7iLHvb1bbQn+a/jzZjf+mTZuEHGXPnj0G53sd/X3VVH0CAgIwfPhwDB8+XMhR9uzZg2XLlgk5Sr169SzuUAiIr0Nzsy/p5yhZbSPdtbWvr6/Jstk53pqiH+OYmBizy9N/qkrmc4Clx0lrnHNysh1lMplBWV1nLF39TS0rNTVV+N/U8QbI2H7ZzVGyOqdnLpMdupg4Ozvn6XUl5b0dO3Zg/fr1AIBp06aZPIYWRMlq8e8Hbs720zmbiIiIiKSFV6JUoCSm2vZJM5R3PD09ERoaCiCjkWHPnj1my7/11lsAAJVKleVjt69cuQIAePPNN/P8ke05cefOHQAZPw6auiENAK5evWrTejx79gx9+/ZFUlISvLy8sG7duix/fNP/kf/8+ZyNMKh/M1NWn1EX2/zm6ekp/G/uBqT79++bnFajRg0AgFqtxoULF6xWN0tUqVIFAHDz5k2Djiz6bt26BZVKZXRatWrVhMaznMb+/v37UKszRufv3LmzyXJ///232Rv88srdu3cBAFWrVjV5QxqQ/X1VLpejZs2amDBhArZu3Sq8v3Pnzmwtx1r7ku54+/DhQ6Exwxi1Wo0bN26I5tFnq9HBsjoO6E83Vi9LWOOco4vHw4cPRY1QmUVHR+PRo0cmp+sfb3QNn8ZERESYnKY73gDA77//brIcEeVMnMGTZqzcaYbyROb8ZO/evWbLMz9hfgIwP7EW5ic5w/xEjPmJeH3MT8ia7ty5gxMnTgh/f/zxhzAtKipKNO3EiRNGlxEcHAwXFxekp6dj2rRp2L59O/766y/cvHkTS5cuxdq1awFk3CDboUOHvPhYDitzfuKikMOdIzkXSIUKFcKIESMAANeuXcuyDUV3rFepVMI50ZTLly8DAMqVK1fgchRTHWYA21+fP3v2DL169RJylA0bNmSZo+if9/78888crVd3vQxk/Rl1sc1vluYo5q4ZatasCSB/c5QbN26YzVFu3rxpMkepXr26cA2a09jr5yhdunQxWe6vv/7C69evc7QOa9Ltq9WqVTN7s3d291VdjvL111+L8pLt27dnaznW2pd0y7EkR7l+/ToAGB3YIb9yFP3PZulgI5lZ45yjvx2tlaPk9ngDAOfOnTNZzhRHfVoO5Z1Hjx5hy5YtUCqV+V0Vm0jkk2aIiIiIyE6w0wwVKK9VmTvNOM6Ic1I0YMAA+Pv7AwCmT59u9pHE+jdr6UbYMObChQvCjSNNmza1Uk1tKz0943udmppqcpTOpKQkbNmyxWZ1SElJQb9+/fDkyRMoFAosXbrU7E03OjVq1ECJEiUAAGvWrBGNCmapmjVrCiOebt682eT3IDIy0mTDe14rU6aM8L+5m3/M/WD//vvvCz+imhsdzBZ0+0ZcXBwOHjxosty6detMTvPz80O9evUAAFu3bjXbMGCKfmOTuVFoV61ale1l24KuvubqGhUVZXabZkV/f9AfySy78+ZmX9J9P7RaLTZs2GCy3O7du4UR4YzdUKv7YddUo2FO7dq1C8nJyUanJSYmYteuXQCASpUqoXjx4jlahzXOOfrbcfPmzSaXsXHjRrPnP0uPN9u2bTM5rUmTJnB3dwcALF++XDjvWEp/tEz90diI7JFCobDZX+ZRUXUjpcYliW+e8PN0sWh5bEy1P/r5ycyZM0XH58zxYn7iOPlJ5tjWqlWL+YkD5yeZ463/mvmJoYKen+jHV3dNy/zEcfMTc/t3dslksmxfKzqyo0ePYuHChcKfroMLkNGBT3/awoULjS7jjTfewOjRo+Hm5oaUlBRs2LABEydOxNSpU3HkyBEAGR1mJkyYADc3tzz5XI4qLkl8nPP1cGbuUYANGjTI4jYU/c4k+vtpZufPnxdubDfXSd6e6K57sspRzJ3jcislJQW9e/cWcpQVK1ZYNAJ8zZo1hRzl119/zVEbin6OsmnTJpPfg6dPn+L48ePZXr4t6D+lwdwN/OauGT744APh+GXuKZC2oNs34uLicODAAZPlzO1r+jnKb7/9ZtM2lF9++SXby7YFS3MUc9s0K/p5hrmOFsZYa1/SfT+0Wq3ZPHXnzp1m21B017XW/s19586dZnMU3dOL3nrrrRznKNY45+hvx40bN5pcxvr1682e/yw93ugPCpHZu+++Cw8PDwAZv4lkN0fR7+jANhTKrrS0NISFhSEwMBANGjTI7+rYRFKm+7zYqZ+IiIiI8gs7zVCB8jrAMvO1AABUoklEQVRVfEMaRyAo2Dw8PISR0m7fvo3Dhw+bLFunTh3UqlULQMbNT6dOnTIo8+rVK4wbNw5Axk2M/fv3t36lbeDNN98EkPEjsrGRW9PT0zFmzBhERUXZrA5jxozBpUuXAABTpkzBe++9Z9F8crkco0ePBgD8888/CA0NNftjYEJCApYvXy56T6lUomfPngAyRuVasGCBwXxpaWkYM2aM1W9uyan69esLj9ZevHix0R9rFyxYYHYkqnLlygmPjd+3b5/Rz62TmJhodnSk7OrRo4dwA8I333yD58+fG5Q5e/Ys1qxZY3Y5Y8aMAZAR15CQELOjzKampmLFihWiRsE33nhDaPQydWPOwYMHsWLFiqw/VB7Q7av37983Onp1UlIShgwZYrIxAsi4UdHc9KtXrwqxzu7j3621LwUFBQkNJT///DNu375tUObJkyeYPHkyAMDd3V1Yr75ixYoByDg2WNPz58+FdWf2zTff4MWLFwAyRrHNKWucc4KCgoRtMHv2bNy7d89gGXfv3sXPP/9sti6VK1cWRqxcsWKF0WPsjh07hJvxjPH29ka/fv0AZIxM+vXXX5tsZFKr1cI21NF9DsD68SSyNl9fX5v9eXt7i9bl7e0NhVshpGnE+1NggJ9Fy3N2dhY63jg5OfHPxn/6N7MqFAqjZby9vTFq1CgAhvlJ5nkaNGiA2rVrA8g4V5w9e9ZgeYmJiaJzxcCBAw3K6FjyPbC0bHbLZf5s5cuXB5BxbbN7926D+WQyGcaOHSvKT4xtU/2OZtmt59ixY4X8ZOrUqWjdurVFcXZxccHYsWMBZJyzRowYgfT0dJPlk5KSDK413d3d8cknnwDIuKZauHCh0bqPHTtWdE2V0++m/k2sOV3GO++8I9Rr6dKlRuOxcOFCUX6SuUylSpXQvn17ABn5ibHPrftLTU3F69evTe5jxuYx93345JNPRPlJbGysQZk///xTlJ8Y+97o9reEhAQMGDAAiYmJBmV09UxNTcWyZcugVquFaRUqVBDisWnTJqPb8fDhw6LvjLF6ZLUtLNkPLfnT7av379/HpUuXDKarVCoMHTpUlH9kLrNr1y7RNsj8d+PGDSE/CQwMzFb9PDw8rLIvdezYEQEBAQAy8pO7d+8alImKisKUKVOEfbhPnz4GsdBd0z58+DDH+5qxGD9//hxTpkwxWm7y5MnCtXVISEi29gv9P2ucczp27CjkebNnz8aDBw8MlnHv3j1RfiKTyQzKVK9eXZSfGDvG7t69W5SfZP5+FylSRMifrl27hkmTJpncB7RaLeLi4kTv6W48BjJG4zUWl5zuV7prM2dn52xfK1LW6tWrhx9//BHt2rVDQEAAlEolPDw8UK5cOXzyySeYOXNmjm/ctGdxcXE2+8v8W1x8fDweP48TveelVFi8PLVaDY1GA41Gg7S0NP7Z+E//htz09HSjZZRKpck2lMxla9asKfyetXr1ahw7dsygTGxsrPCbrlwuR79+/QzK6FjyPbC0bHbLZd4eb7zxBoCMHGXr1q0G86WmpmLEiBGIjIw0u031O9xkt54jRozAxYsXAWS0oTRv3tyiOGs0GlEbyqefforExEST5ePi4rBkyRLRfuzk5CT8/nrjxg3MmTPHYL6UlBSMHDlSdF2V0++m/u+GOV1GnTp1hOu9sLAwqNVqgzJz5swR8j5jMQsMDBTaUPbu3Wv0c+v+4uPjER0dbXIfMxUbU9O7desm5Chff/01nj59alDm5MmT+PXXX81+b/TbUPr27YuYmBiDMvoDVyxbtkz0/ShTpoyQo6xfv97odty7dy+WLVtmth5ZbQtL9kNL/nT7akREBM6dO2cw/dWrVxg4cKAoR8lcZsuWLUhISDC5josXLwo5SunSpbNVP4VCYZV9qXXr1qJr6+vXrxuUefjwISZNmgQgI0fp0aOHQSx0OcqDBw9yvK8Zi/GzZ8/w9ddfGy331VdfCTmKsXNAVsdJ3Z81zjmtW7cWtsGsWbNw584dg2XcunULs2fPFuqk1WoNylSoUEG4Hs+8D+n+fvvtN6GzkLHvt4eHB/r27Qsgo53uyy+/NLq/paWlITk5GZGRkaL3/Pz8hGVHREQYxCSn+5QuJhqNBmq1OtvXilQwbNu2DY8fP8bQoUMNBu5yFElqcadndpohIiIiovzCx3RQgZL5sZ2eSiZTBV1wcDDCwsLw7NmzLEct/emnn9CmTRuoVCr07NkTAwcOxAcffAAPDw/cuHED8+bNE27mDQ0NzfEjpfNap06d8L///Q+pqakYOXIkbty4gebNm8PLywt37tzB8uXLce3aNTRo0MDojfq5tW7dOvz2228AMkbSadasGcLDw02Wd3d3F93MHxwcjJMnT2Lv3r3YtWsXrl+/jn79+qF27drw8vJCQkIC7t27h7Nnz+LAgQNwdXXFkCFDRMscN24cdu7ciadPn2Lq1Km4efMmunfvDj8/P9y/fx+LFi3ClStXUKtWLbMjmWaXuc+pr3Tp0qLHe/v7+6Njx47Ytm0bjh8/jt69eyMkJAT+/v548uQJNm/ejD179qB+/fq4cOGCyeXOnDkTly5dQlRUFL799lscO3YMH3/8sXCz1qNHj3DmzBns2LEDv/zyCxo3bpzrzwwARYsWxfjx4zF58mQ8evQIrVq1wqhRo1CnTh2kpKTgyJEjWLJkCQICApCcnGxyBLT3338fgwcPxtKlS/H777+jUaNGCA4Oxttvvw1fX18kJSXh0aNH+P3337F79268fPkSPXr0EOYvXLgwWrVqhcOHD+PYsWPo1q0bgoODUbp0abx48QJ79uzBxo0bUbZsWbx69SpHI7FZU/fu3bF8+XJoNBr06tULoaGhePvtt+Hq6opr165h8eLFuH//vtl99bvvvsPnn3+ONm3a4J133kG5cuXg7u6OuLg4/Pnnn0KnMoVCgd69e2e7jtbYl1xcXDB79mz07t0bCQkJaNeuHYYPH453330XCoUCFy5cwLx584SGlSlTpqBIkSIGy6lfvz7OnDmDK1euYO7cuXjvvfeE0YTd3NyEG9+yq1atWvjll1/w8OFDBAcHo0SJEnj69Cl++eUXYfS36tWr56rTDJD7c46LiwumT5+OkJAQvHz5Em3atMGIESPQuHFjaLVanD17FvPnzweQ0YHswYMHRuvh5OSEvn37Yu7cuQgPD0eXLl0wYsQIlCxZEi9evMCuXbuwcePGLI8348ePx8mTJ3H79m2sWLECFy9eRL9+/VC5cmU4OzsjMjISf/zxB7Zt24YJEyaIOkKVKlVK2M4LFy5EiRIlUL58ebi4uADIOCZyJGCSqthEw06IRTyURkpSQRESEoIFCxYgKioqy/xk7ty5aNWqFVQqFbp3747BgwejTZs2cHd3x/Xr1zFnzhzhXDF8+HBUqVIlDz5B7nXu3BnfffcdUlNTMXz4cNy4cQMtWrQQ8pOlS5fi6tWrePvtt/Hnn39aff1r164VnmLTtGlTNG/e3GgnXh0PDw9RfhISEoITJ05gz5492LFjB65du4bg4GDUrVsXXl5eePXqFf7++2+cOXMGBw4cgFKpxODBg0XL/Pzzz7F9+3Y8ffoUU6ZMwY0bN/Dxxx/D398f9+7dEzqg1K5d2+woptll7nPqK126NAoVKiS89vf3R6dOnbB161YcPXpUuHYpWrQoHj9+jE2bNmHXrl1Z5pQ//vgjLl68iMjISEyePFlYVsWKFYX85PTp09i2bRtWr16NJk2a5PozAxn5yVdffYVJkybh0aNHaNGiBUaPHo26desiJSUFhw8fxqJFi7LMTz744AMMGTIEixcvxrlz5/D222+jf//+aNiwIQoXLozExEQ8ePBAlJ/oX/MULlwY77//Pg4dOoSjR4/iww8/REhIiJCf7N69G+vXr0dgYKBwU15+6tGjB5YuXQqNRoMePXpgxIgRaNiwIVxdXXH16lUsWrQIERERZvfVKVOmYOzYsQgKCkKjRo1Qrlw5eHh4IDY2Fn/88Yfw1CGFQiHcQJQd1tiXXFxc8PPPP6Nnz55ISEhA27ZtMWLECDRt2hQKhQLnz5/HnDlzhPxk6tSpRvOTBg0a4PTp07h8+TJ+/vlntGrVShhJ2NXVVdQRIztq166NlStX4uHDhwgJCUHJkiXx5MkTrFy5EkePHgWQ8RSskJCQHC1fJ7fnHBcXF/zwww/o168fXr58iffffx+jRo1CkyZNoNVqcebMGcydOxdAxoAR9+/fN1oPJycnBAcH4+eff0Z4eDg6duyIUaNGoVSpUnj+/Dl27tyJ9evXZ3m8+eqrr3D8+HHcvn0by5Ytw4ULFxAcHIwqVarAxcUFT548we+//45t27bh66+/Rq9evYR5S5cuLeQnCxYsQIkSJVChQgWh04y/v7/oGEm5FxoaitDQUKssy9/fH/369RMGdpCC7I5UnhsajcbgSTPerk4W18HcKO6Uf9iGIs02lE8//VSYX6vVsg3FgdtQHjx4gPPnzws5Srdu3YSnVrANxfHaUPTPtbochW0obEOxhFarzdPrSnsWHx+Pe/fu4d69e4iIiEBERAQSEhIAZDzBKDu5y4sXL7B//35cvnwZMTExcHJyQvHixfHOO++gdevWoqcI2cL9+/exfft2dO/eHaVKlbLpuvKT4ZNmHLNzEBERERHZP3aaoQJlzoeVkJCSjtepaXidmo43/XiDZkHn5uaG0aNHY8KECVmWrV69OtauXYsBAwYgISEBCxcuxMKFCw3KhYSEYOLEibaork2UKFECM2fOxJgxY5CSkoL58+cLPwLqdO7cGX369MFHH31k9fU/efJE+P/06dNo2rSp2fKNGjUSPRFHJpNh2bJl+Prrr7Fq1Sr8888/+Pbbb03O7+/vb/Cel5cXNm3ahI8++gjPnz/Htm3bsG3bNlGZjz/+GI0aNcLIkSMt/WhZyuqz6vz666/CiGY63333Ha5evYr79+/j0KFDOHTokGh6ly5d0Lt3b7MxK1q0KHbv3o2+ffsiPDwcp0+fxunTp7P/QXJg2LBhePz4MZYtW4bIyEiMHz9eNL1IkSJYsWIFBgwYYHY506ZNg6+vL2bPno3nz59j5syZJsu6u7sbjPw6a9YstG/fHo8fP8bJkydx8uRJ0fRSpUph9erVRp9kktdq166NL7/8Ej/88APi4+Px/fffG5QZNmwY3nrrLbONs/Hx8di0aRM2bdpkdLpSqcSsWbOEUbqyw1r70gcffIB58+Zh3LhxeP36NWbMmIEZM2aIyigUCowfP97kU7369++PVatWIS4uDtOmTcO0adOEaZmPI9nx1VdfYeHChTh27BiOHTtmML1ChQpYv369MJJhTlnjnNOhQwdMmTIF3377LeLj40XbAMjYJ5YtW4awsDCTDT5AxujbZ8+excWLF3HhwgWDGxYbN26MGTNm4N133zW5DHd3d2zbtg39+/fH77//jmvXrgkj8Vti9OjR+OKLL/Dw4UP06dNHNC0sLAzdu3e3eFlEjqRsYXdcnNgKsYkqRL9ORVyiGm4cJa1Ac3Nzw5gxY/Dll19mWbZ69erYsGEDgoODkZCQgAULFhh90tvAgQNNPiXNHpUsWRKzZ8/GyJEjkZKSgrlz5wo3Uut06dIF/fr1Q+fOna2+/sePHwv/nzp1Ksubnho3bow9e/YIr2UyGVauXInx48fjl19+wYMHD8xuf/3RQHW8vb3x22+/oUuXLnj27Bm2bt2KrVu3isr06tULjRs3ttpNxLrPYom1a9eiXbt2ove+//57XL16FRERETh48CAOHjwomv7hhx+ib9++ZmNWtGhR7Nu3D7169UJ4eDhOnTpl9Il7tjB8+HA8fvwYS5YswdOnT/HFF1+IphcpUgSrVq3K8qae77//Hr6+vpg1axaePXtmcA2rz8PDwyA/mT17Ntq2bYvHjx/jxIkTOHHihGh6qVKlsHbtWru49qlTpw4mTJiA6dOnG73WBDK2a+XKlc12cIuPj8eGDRuwYcMGo9OVSiV++ukn4Ukn2WGtfal169YICwvDmDFjkJCQgO+//94gH1MoFPjqq69M5rAhISFYuXIl4uLiMHXqVEydOlWYlvk4kh0TJ05EWFgYjh49KnSS0VexYkVs3LjRKvlJbs85HTt2xNSpUzF58mTEx8eLtgGQkTOsXLkS8+fPN9lpBsi40fDMmTO4cOECzp8/LzxRSKdJkyaYOXMmGjVqZHIZ7u7u2LVrF/r27Ytz587h6tWrwij8lhg7dizGjRuHhw8fGqw/LCxM1MmGSGo+qlkMLcoXRnxKGl4mp8HVmTekFXRsQ2EbCsA2FKm0oRjLUdiGYshR2lD0cxS2obANhSw3aNAgqyzn4sWLmD9/vujpV6mpqUJHnKNHj2LChAk2exqmWq1GWFgYAgMD0alTJ5usw15Mav0m4pPVSFJrkKRKRwlvDjxGRERERPmDnWaoQPHzcIGfR37XgqytT58+WLBggajhwZQWLVrg/PnzWLJkCY4cOYKHDx9CpVLB398fDRs2RL9+/dCwYcM8qLV19erVC+XLl0dYWBjOnz+P+Ph4FC5cGFWrVkXPnj3RuXNnnD17Nr+raZKzszNmzpyJ4OBgrFmzBufOncPjx4+RmJgIDw8PlClTBjVr1sR7772HDz74wOgy3nrrLZw5cwbz58/H3r178eTJE3h6eqJy5cro06cPPvzwQ5M38eSHokWL4uDBg5g3b55QX3d3d7z11lvo27cvunbtalHMAgMDcfz4cWzZskUYZS42NhZOTk4oUaIE6tatiw4dOtjke/3999+jRYsWWLZsGa5evYrk5GQEBASgVatWGD58uEUj7cpkMowbNw7dunXDr7/+itOnT+Phw4d49eoV3NzcUKpUKVSvXh0tW7ZEmzZtDEZSKlmyJI4ePYr58+dj//79ePz4MZRKJUqXLo2goCAMHjwYPj4+Vv/sOTVu3DjUrFlTGGE9KSkJfn5+qF27NoKDg9G8eXOz39Pt27fj4MGD+P3333H//n08f/4cL1++hJubGwIDA9G0aVMEBwcjMDAwx3W01r6kaxhasmQJTpw4gcePH0Or1aJYsWJ49913MXDgQLMj5gcEBODgwYOYO3cuzp07h8jISKSkpOT4c+m4uLhg48aNWL16NTZv3oy///4barVa+FF56NChVnvqiTXOOaGhoahfvz4WLlyI8+fP49WrVyhatCjeffddhIaGomLFiggLCzO7DF1jzeLFi7Fjxw48ePAATk5OKF++PHr06IHg4GCLzqFFihTBrl27sHfvXmzduhWXLl1CTEwMZDIZihcvjho1aiAoKAjt27c3mLd///7w9/fHr7/+ilu3biEuLg5paWlZrpMor8XFxdls2XK5HN7e3sLr+Ph4aDQaKAD4uwD+hRVAYYXFdVCr1dBoNADA/SkP6I/EmJ6ebnabf/LJJ5g3b57o2Jqenm505O2mTZtadK7QaDRCvI3RaDQWfw8sLWuunP77xrZHjx498MYbb1icnxhbhv7nNVffzPU0t52M0Wq1BsuXyWTCExWyyk9at24tmlcX6woVKuD06dMWX1OlpaXlaF/OyYjuxrZ34cKFceDAAYvzE1P7QalSpSzKT+rXr2/wPdIxti0s+T5MmzYNzZo1syg/Mff9Hjt2LD766COj+UnJkiVRo0YNtGzZEu3atYOLi4toOcWLF89WfmKsHlltC2PbIavjkiljx45F9erVLc5PMtcnO/lJTs9V1tqXunXrhrfffjvL/ER/XplMJtx0WKJECRw6dAhz5swxyE+MHUfM0Y+xQqHA+vXrs8xPjC3f0uOkjjXOOUOHDkXdunXN5ifz5s0zu11cXFywdetWi/MTU99vb29v7Ny506L8JPP8/fr1Q5EiRczmJ6bO3ebotp1arc72daWvr2+2yhPZitJJjgBvJQJ4I5pDYRsK21AAtqE4ahtK5hyFbSjSaUMpUaIE21DANhTKHT8/P5QsWRLXrl3L1nwPHjzAnDlzoFKp4Orqis6dO6NatWpQqVQ4e/Ysjh49isjISEyfPh0zZsyw2j6jb9OmTYiMjMSMGTMglzt2R/ciHs4o4uGc39UgIiIiIoJMy+etUy7Y6jHPCoVC1NAYFxeX68fNPnv2DBqNBnK5HMWKFcttFcnK9Eez4Q9Ijo/xlg7GWlpsFe+zZ88Ko6Lv2LHD4lHYybasEe/cXJ8ZezIAka3yE8D6OQrzE/vH6xjpYKylhfGWFlvEm/mJ/cptvJmfkC0wRyFr4TWMtDDe0sJ4SwtzFOlgG4ptbN68GeXKlUO5cuXg4+OD58+fY/jw4QCAZs2aWfRU6MmTJyM8PBwKhQLffvstKlasKJq+a9curF27FgDQtWtXo08KWr16NdRqtcX1DgoKQkBAAADgr7/+wqRJk9CtWzd07dpVKBMWFoaTJ09i2rRpBnWypoJ0nxfZL8ZbWhhvaWG8pYOxlhZ7iLc95Ch80gwRERERERERERERERGRlemeeGULmUekzu0I1TKZLFfzk+1kjo1MJsvREwupYGC8pYXxlhbGWzqsHWv9J6lKnbEOLNlx7949hIeHA8h4WpKxzint27fH8ePH8eTJE+zfvx8ffvihqBMUABw+fBipqakWr7dhw4YICAhAeno6wsLCULZsWaGzGxERERER5Q12miEiIiIiIiIiIiIiIiKyMv3R+2zN29s7V/NHR0dDq9VCLpcb3BRI9oU3zUoL4y0tjLe0WCve+stRKBQ8j9uhnMZa1yna2dk5T68rHdn58+eF/1u0aGG0jFwuR7NmzbB+/XokJibi1q1bqFmzpqjMmjVrcrT+lJQUREZGAgB69epltMzEiRMBAOPGjUODBg1ytB4iIiIiIjLEbJmIiIiIiIiIiIiIiIiIiIiIiIgc1t27dwEASqUSb775pslyVapUEc2TudNMTjk7O6Nly5ZGp4WHhyMyMhL16tWDl5cXihYtapV1EhERERFRBnaaoVyx1Wg3uhEzTL3OicyPwCX7wUdRSwvjLR2MtbQw3tJi7XjLZDKOokhEREREREREREREREQ28/jxYwBA8eLFzbZLlShRwmAea3BxccGQIUOMTgsLC0NkZCQ6d+6MihUrWm2dRERERESUgZ1mKFfy6hGw3t7euV5GdHQ0tFot5HI5H0ls53jTrLQw3tLBWEuLNeOtvyyFQsHzuB3Kabx1HaOdnZ3z7LqSiIiIiIiIKK/ExcXZbNlyuVzUdhIfHw+NRpPj5anVamH+tLS0XNePrCfzYCPp6ekcrMaBMd7SwnhLi63inZ6eLvqf5/H8Z61YazQaaDQaqNXqbF9Xss3FkEqlQkJCAgCgSJEiZst6enpCqVQiNTUVMTExeVG9XLO0ngVpcGSyX4y3tDDe0sJ4SwdjLS2MdwbecUhEREREdq1JkyY2vcmEiIiIiIjIUo0bN8aLFy/yuxpEVEDo38RqaxqNJlfr403a9itzbBgrx8Z4SwvjLS22ijdzFPtj7Vhrtdo8va50VCkpKcL/rq6uWZZ3dXVFamqqaD57NnToUIvKbd682cY1yWCNwZGp4GC8pYXxlhbGWzoYa2mRarzZaYaIiIiIiIiIiIiIiIiIiIiIiIgckkqlEv53csr6djldGf35bCk0NBShoaF5si4iIiIiIilipxnKFVuN+i6Xy0U92eLj46HRaHK1TLVaLSyDjyS2L3z0uLQw3tLBWEsL4y0t1oq3RqOBRqOBWq3O9nWlr69vttdHjk//e2lt1n5crUwmy9X8ZFuZ4yOTyXhec1CMtbQw3tLCeEuLNeOdOd8hIiIiIiKigs/FxUX435J7hnRl9OezZ4sWLcrvKhARERER2TV2mqFcyatHwGo0mlyvi43i9ouPHpcWxls6GGtpYbylxdrx1mq1eXZdSY4tLztT5fZxtdHR0dBqtZDL5RaNakf5izfOSgdjLS2Mt7Qw3tKSk3jrOkU7Ozuzkz4REREREZGDcXV1Ff5PSUnJsryujP589qxIkSIWlStIgyOT/WK8pYXxlhbGWzoYa2mxh3jbQ7sL78whIiIiIiIiIiIiIiIiIiIiIiIih+Ti4oJChQohISEBMTExZsu+fv0aqampACzvjFJQFKTBkangYLylhfGWFsZbOhhraZFqvNlphoiIiIiIiCif8MlcRERERPaB12VkC7Z8ypXu6UimXmeXTCbL1fxkO5ljI5PJeMxyYIy3tDDe0sJ4S4e1Yy2Tyfj0VCspVaoUwsPDERUVhfT0dJPb9enTp6J5iIiIiIio4GOnGZIMuVwOjUYDrVYLrVbLBiAiIiKifKS7JgNyf2MPkU5cXJzNlm3tx9Wmp6dDo9FAJpNBrVYzP7EzmRui09PTeRODg2KspYXxlhbGW1pyG2+tViv8dpyenp7t60pfX99slSfpyMvvhn6+khNxcXFITk6GVquFQqFgjmLHeNOstDDe0sJ4SwvjLR05ibV++4lSqWTOYSWVKlVCeHg4UlNTcf/+fVSoUMFoudu3b4vmISIiIiKigo+dZkgyFAoF0tLSoNVqkZaWBmdn5/yuEhEREZFkqVQqodHHyYlpCVlHXj4+NrePq1UoFFCr1dBqtVCpVFAqlVasHeVW5ptseZO142KspYXxlhbGW1pyG2/d78ZAxk1peXldSWQvXFxckJKSAq1Wi9TUVLi6uuZ3lYiIiIgkS/fbsVwuh4uLS35Xx2E0aNAAO3bsAAAcP37caKcZjUaDkydPAgA8PDxQtWrVvKyizdmqw561n4RJ9o3xlhbGW1oYb+lgrKWF8c7Au9NIMpRKJVJTUwEAycnJ7DRDRERElE+0Wi0SExOF17wRh6TI1dUVKSkpAIDExES4uLhwJGciIiKifJKcnCz8z87MJFVeXl5ISEgAALx+/RpKpZI5ChEREVE+SUpKApDxVE0PD498ro3jKF++PCpXrozw8HAcP34czZs3R8WKFUVl9uzZgydPngAA2rZt63ADv+XVU4ty+yRMKlgYb2lhvKWF8ZYOxlpapBpvx7qyJzJDv7EzMTERcrkc7u7uku0xR0RERJTXdE/USExMFDozy2Qy3pRGkqS7AU03inNcXBw8PDzYeYaIiIgoD2k0GiQlJYk69TM/IWuKi4uz2bLlcrmocTM+Ph4ajSbHy9M9TVOr1SI5ORkvXrxgjmInZDKZaERwXZzIMTHe0sJ4SwvjLR25ibUuR9F1Zk5LS0N6enq2ryvzqmNEXrtz5w6ioqKE169evRL+j4qKwokTJ0TlmzdvbrCM4OBgTJo0CSqVCtOmTUOXLl1QtWpVqFQqnDt3DkeOHAEABAQEoEOHDjb5HERERERElPfYaYYkw8nJCZ6ennj9+jUAICEhAQkJCew0Yyf045Cbhj0qGBhv6WCspYXxlpacxFur1Ro0DPn4+PB6jCRJLpfDx8dHaOxMTU1FamoqZDIZb0izEzyvSQdjLS2Mt7Qw3tKSk3hnLufp6elwowhT/kpPT8+zdek6veQGcxT7xXOatDDe0sJ4SwvjLR05jbWxHEUmk+XpdaU9O3r0KE6ePGl02t27d3H37l3Re8Y6zbzxxhsYPXo05s+fj+TkZGzYsMGgTEBAACZMmAA3Nzer1JuIiIiIiPIfW39IUjw9PZGeno7k5GThPf4YZX8YE2lhvKWDsZYWxltachJvmUwGHx8fuLq62qBGRAWDq6srfH198fLlS6FDmbHOZZT/eF6TDsZaWhhvaWG8pSUn8XZzc4Onp6cNakNUcDBHKRh4TpMWxltaGG9pYbylI6exZo5iO/Xq1cOPP/6Iffv24fLly4iNjYWTkxOKFy+Ohg0bok2bNg77FFJbPQ3T2k/CJPvGeEsL4y0tjLd0MNbSYg/xtoenYcq0/KWbciE6Otomy1UoFKIdJC4uzqojZ6jVaiQlJUGlUrHBxw7IZDI4OzsLr9VqNWPiwBhv6WCspYXxlpacxlsul8PJyQmurq5QKpW5esKMn59fjuclx2Wr/ASwbY6i0WiQmpqKlJQUpKWl8ccoO8DzmnQw1tLCeEsL4y0tOYm37ukZLi4ucHd3F82fXcxPyBTmKGQNPKdJC+MtLYy3tDDe0pHTWDNHobxQUO/zIvvCeEsL4y0tjLd0MNbSYg/xtocchU+aIUlydnYW9Zqj/GUPB2TKO4y3dDDW0sJ4SwvjTWRdcrkcbm5ucHNzy++q0P/jcU46GGtpYbylhfGWFsabyLqYo9gXHuOkhfGWFsZbWhhv6WCsiYiIiIiI7E/Oh3YmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIislPsNENEREREREREREREREREREREREREREREREQOxym/K0BERERERERkDQqFwmbLlsvlZl+TY2G8pYOxlhbGW1oYb2lhvImIiIiIiIiyZqt2FObl0sJ4SwvjLS2Mt3Qw1tLCeGdgpxkiIiIiIiJyCL6+vnm2Lm9v7zxbF+U/xls6GGtpYbylhfGWFsab7AU79pM1MNbSwnhLC+MtLYy3dDDWZM/yqh2Febm0MN7SwnhLC+MtHYy1tEg13uw0Q0RERERERERERERERGRl7NhPtsBYSwvjLS2Mt7Qw3tLBWBMREREREeU/DmdAREREREREREREREREREREREREREREREREDodPmiEiIiIiIiKHEBcXZ7Nly+Vy0YiA8fHx0Gg0Nlsf5S/GWzoYa2lhvKWF8ZaW/I53Xj5NhIiIiIiIiCinbNWOkt95OeUtxltaGG9pYbylg7GWFnuItz20o7DTDBERERERETmE9PT0PFuXRqPJ0/VR/mK8pYOxlhbGW1oYb2lhvMlesGM/WQNjLS2Mt7Qw3tLCeEuHPcTaHm5II/uUV7ky83JpYbylhfGWFsZbOhhraZFqvNlphoiIiIiIiIiIiIiIiMjK2LGfbIGxlhbGW1oYb2lhvKWDsSYiIiIiIsp/8vyuABEREREREREREREREREREREREREREREREZG18UkzlCt+fn42WW5MTAy6d+8OAFi0aBGKFClik/WQfWC8pYXxlg7GWloYb2lhvMle2So/Afi9lxrGWzoYa2lhvKWF8ZYWxpvsFXMUsgbGWloYb2lhvKWF8ZYOxprsGe/zImtgvKWF8ZYWxls6GGtpYbwz8EkzRERERERERERERERERERERERERERERERE5HDYaYaIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgcDjvNEBERERERERERERERERERERERERERERERkcNhpxkiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJyOOw0Q0RERERERERERERERERERERERERERERERA6HnWaIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI4bDTDBERERERERERERERERERERERERERERERETkcdpohIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIih8NOM0RERERERERERERERERERERERERERERERORwZFqtVpvflSAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKyJj5phoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiBwOO80QERERERERERERERERERERERERERERERGRw2GnGSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInI47DRDREREREREREREREREREREREREREREREREDoedZoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMjhsNMMERERERERERERERERERERERERERERERERORx2miEiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKHw04zRERERERERERERERERERERERERERERERE5HDYaYaIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgcDjvNEBERERERERERERERERERERERERERERERkcNxyu8KEGX24sUL7N+/H5cvX0ZMTAycnJxQvHhxvPPOO2jdujWUSmV+V7FAio+Px71793Dv3j1EREQgIiICCQkJAIBmzZohNDQ0W8u7cuUKjhw5goiICLx69QpeXl4oV64cWrVqhdq1a1u0jPT0dBw9ehRnzpzBkydPkJKSgsKFC6N69epo27YtSpcubdFyXr16hf379+PChQt48eIFAMDf3x/169dHUFAQChUqZNFyHj16hAMHDuDGjRuIjY2Fq6srSpYsiSZNmuC9996DQqGwaDn5LSIiAleuXMGdO3fw+PFjvHr1CgqFAoULF0alSpXQsmVLvPXWWxYvj7G2X0lJSbhy5YqwT8fGxuLVq1dQqVTw8PBAqVKlULt2bbRs2dKibXP37l0cPHgQd+7cQXx8PNzd3REYGIhmzZqhSZMmFtfrzJkzOHHiBB4+fIikpCR4e3vjrbfeQps2bVCxYkWLlpGamooDBw7gjz/+QFRUFNLS0lCkSBHUqVMHbdu2hb+/v0XLkco5Ze3atdi1a5fwevLkyahatarZebhv27/u3btbVK5KlSqYMmWK2TKMN1HuSOV8kpeYn2TNkY5zzFGy5ijxZo6SNamcU5ijZHCUfVuHOYp5jhZvsm9SOZ/kJeYoWXOk4xxzlKw5SryZo2RNKucU5igZHGXfBpifZMWRYk32TyrnkrzGHCVrjnKsY36SNUeJNfOTrEnlnML8JIOj7Ns6zFHMs4d4y7RardbmayGy0MWLFzF//nwkJycbnR4QEIAJEyagePHieVyzgs/cATk7yZRGo8HSpUtx7Ngxk2VatmyJwYMHQy43/TCrV69eYfr06YiIiDA63dnZGSEhIXjvvffM1ufvv//GrFmz8PLlS6PTfX198fnnn6N8+fJml3PkyBGsXLkSaWlpRqeXL18e48ePh5eXl9nl5LfJkycjPDw8y3JNmzbFkCFD4ORkuu8kY23fsQaA69evY9q0aVmWK1SoEEaMGIFatWqZLLN582Zs3boVpi4L6tSpg7Fjx8LFxcXkMlQqFWbPno0rV64YnS6TydC1a1d069bNbH2joqIwffp0REZGGp3u5uaGkSNHom7dumaXI5Vzyj///IMJEyYgPT1deM9cMsV92/73bR1rJFOMd8GJN9kvqZxP8hrzE+kc55ijSCvezFGYowDMUXQcad/WYY5imiPGm+yXVM4neY05inSOc8xRpBVv5ijMUQDmKDqOtG8DzE/McbRYk32TyrkkPzBHkcaxjvmJdGINMD9hfpKB+UkGR9q3dZijmGYv8WanGbIbDx48wKRJk6BSqeDq6orOnTujWrVqUKlUOHv2LI4ePQog4+Q3Y8YMuLm55XONCxb9A7Kfnx9KliyJa9euAcheMrV+/Xrs2LEDAPDGG2+gY8eOKFasGJ49e4Zdu3bhwYMHAIDOnTujV69eRpeh0WgwZcoU3LlzBwDQoEEDtGrVCp6envj777+xbds2xMfHQyaTYfz48SZ7RkZHR2P8+PFCD/t27doJF1eXLl3C3r17kZ6eDm9vb8yYMQNFihQxupzLly/jhx9+gFarhbe3Nz788ENUqFABr1+/xpEjR3D+/HkAwFtvvYUpU6aYPdnktxEjRuDZs2fw9fXFO++8g7feegt+fn7QaDT466+/sGfPHsTGxgIAGjdujFGjRplcFmNt37EGMpKpRYsWoWrVqnjzzTfh5+cHHx8faLVaxMTE4I8//sD58+eh0Wjg5OSE77//HoGBgQbLOXz4MJYtWwYAKFasGLp06YIyZcogLi4O+/btw61btwBk/Z2ZM2cOzp07BwCoWrUqgoKC4Ovri0ePHmH79u149uwZAGDw4MFo1aqV0WUkJydj/PjxQiL13nvvoXHjxnBxccHNmzexY8cOpKSkQKlU4rvvvjP6eQDpnFM0Gg2+/vprREREwNvbG/Hx8QDMJ1Pct+1/39bRnbs/+OADfPDBBybLubq6omjRokanMd4FJ95kn6RyPskPzE+kc5xjjiKteDNHYY7CHCWDo+3bOsxRpBVvsk9SOZ/kB+Yo0jnOMUeRVryZozBHYY6SwdH2bYD5iZRiTfZLKueS/MIcRRrHOuYn0ok1wPyE+QnzEx1H27d1mKPYf7xNdz0lymOrVq2CSqWCQqHAxIkTRY92q1atGgICArB27VpERkZi9+7dFvfKowxdu3ZFuXLlUK5cOfj4+OD58+cYPnx4tpbx9OlT7N69GwBQrlw5fPvtt0Jv5PLly6NevXqYMmUKIiIisHv3brRs2dJoz94TJ04IB+QPPvgAAwcOFKaVL18etWvXxpdffonk5GT88ssvqFGjhtFHb23cuBGvXr0CAIwcORLvvPOOMK1y5cp48803MWfOHMTHx2Pjxo1GE8a0tDT88ssv0Gq1cHNzw3fffSeqc61atbB8+XIcOnQId+7cwalTp9C8efNsbbe8VLJkSfTs2RMNGzY0OHlUrFgRTZs2xaRJkxAZGYmzZ8/i/fffR5UqVQyWw1jbf6yBjGPjokWLTE5v1KgRzp8/jx9//BFpaWn47bffMG7cOFGZ169fY926dQAyfmj53//+J+qxW7duXcyaNQuXLl3C2bNn0apVK6MX6Tdv3hQSqbp16+Lzzz8XvoO678z48eMRHR2NdevWoWHDhvD09DRYzq5du4REqnfv3ujYsaMwrWLFiqhatSqmTJmC1NRUrFq1ymSva6mcU/bv34+IiAiULFkS9evXFy6aTeG+XTD27cy8vLxQpkyZbM/HeBfMeJN9kcr5JD8wP5HOcY45irTizRyFOQpzFMfctzNjjvIfKcSb7ItUzif5gTmKdI5zzFGkFW/mKMxRmKM45r6tj/nJfxw91mR/pHIuyS/MUaRxrGN+Ip1YA8xPmJ8wPwEcc9/OjDnKf+wt3gWj+xU5vHv37gmPGmzRooXopKfTvn17lCxZEkDGycPUY5rIuO7du6Nu3brw8fHJ8TL27dsnPBauf//+Bo/vUyqV6N+/PwAgPT0de/bsMboc3YHd09MTffr0MZhevHhxdOnSBUDG4/t0PQn1vXz5EqdPnwYA1KxZU3RA1mnUqBFq1qwJADh16pTRR4SdP39e6BXdpUsXoyeRPn36wMPDA0DGhZ49Gz9+PBo1amSyt6WXlxf69u0rvP7jjz+MlmOs7T/WACzqVdugQQOUKFECAIw+0vXo0aNISkoCAHzyyScGj7iTy+UYOHCgsC5T20UXa4VCISqv4+XlhU8++QQAkJiYaPQRgmlpadi/fz+AjB8G2rdvb1CmUqVKaNGiBQDg9u3buHfvnkEZqZxToqOjsWnTJgDAoEGDzD6GV4f7dsHYt62F8ZZWvMn6pHI+yS/MT6RznGOOIq14M0dhjsIcxTH3bWthvKUVb7I+qZxP8gtzFOkc55ijSCvezFGYozBHccx92xoYa+nEmmxDKueS/MQcRRrHOuYn0ok1wPyE+QnzE8Ax921rYbxtH292miG7oL/T6U6SmcnlcjRr1gxAxolY9xg5yhtarRYXLlwAkHGRY+ziBMjoIay7cLt48SK0Wq1o+tOnT/HkyRMAwDvvvAOlUml0Ofq9BY0dlPWXbeo7o78crVaLixcvGkzXfabM69SnVCqFg/7jx4/x9OlTk+srCPR7j+tOSPoYa8eJtY7ukZRqtdpgmm67uLm54e233zY6f5EiRVC9enUAGSMNJCcni6YnJyfjxo0bAIDq1aubfNTe22+/LdTFWKxv3bolJHbNmjUzmSxm9Z2Ryjll+fLlSElJQbNmzYyOJJIZ923H27fNYbylFW+yDamcTwoqHucc6zjHHEVa8QaYoxjjCOcU5igZpLxvm8N4SyveZBtSOZ8UVDzOOdZxjjmKtOINMEcxxhHOKcxRMkh53zaFsZZOrMl2pHIuKch4rHOcYx3zE+nEWof5iSFHOKcwP8kg5X3bHMY7b+LNTjNkF+7evQsg48v/5ptvmiynf7LQzUN54/nz54iLiwOQ8Wgtc3Rxio2NxYsXL0TTdI/90i9njI+PDwICAgAYj7Wly9Gfpj9P5vdKlChhdnQGR/ru6fe0Nnaxylg7TqyBjAuhf/75BwCEHvc6aWlpQg/+ihUrmu3BrtsuarUaERERomkRERHC98pcjJycnIQLOv15dCyNdbly5YQLOmMxksI55dy5c7h8+bLJHuHGcN8uuPHOCcZbWvEm25DC+aQg43HOsb53zFGkFW/mKI55TmGOYrgcqe3bWWG8pRVvsg0pnE8KMh7nHOt7xxxFWvFmjuKY5xTmKIbLkdq+bQ5jLZ1Yk+1I4VxS0PFY5zjfPeYn0ok1wPzEUc8pzE8MlyO1fTsrjHfexJudZsguPH78GEDGY58UCoXJcroecvrzUN7Q396ZL8gyMxen7CxHNz0mJgYpKSlGl+Pu7m72YOrr6yv0eNb1oNRJSUlBTEyMQZ3N1cXYcgqa27dvC/8biwFjXfBjnZqaisjISOzZsweTJ08WHtsXFBQkKvf06VNoNBoAlscIMNwu+rHOavvqpqenpyMqKsrkcszVR6FQCI/qMxYjRz+nJCYmYtWqVQCMP2rVFO7bBXff/uOPPzBmzBj07t0bffv2xciRI7FgwQLcvHnT5DyMd8GNN9kPRz+fFHQ8zjnWcY45iuPHmzmKY59TmKP8Ryr7NnOUDFKJN9kPRz+fFHQ8zjnWcY45iuPHmzmKY59TmKP8Rwr7NvOTDFKINdkXRz+XOAIe6xznWMf8xPFjzfzEsc8pzE/+I5V9mzlKBnuMt+muhkR5RKVSISEhAQBMPupNx9PTE0qlEqmpqcLORHlDf3tnFSc/Pz+j8wEZvRt1ChcubHY5uvVotVrExsaKDpy65WZVF119/v33X4O6ZOcz6U+Pjo7Ocp32SqPRYMeOHcLrRo0aGZRhrAtmrE+cOIGFCxeanN65c2c0adJE9F5OYgQYxjo327dUqVIG9VEqlfDw8MhyOQ8fPsSrV6+gVqvh7OwMQBrnlLVr1+Lly5eoVKkSWrZsafF83LcL5r4NGCY4UVFRiIqKwqlTp1C/fn2EhobC3d1dVIbxLrjxJvsghfNJQcfjnOMc55ijOG68maMwR8kK9+2CuW8DzFGM1c2R4032QQrnk4KOxznHOc4xR3HceDNHYY6SFe7bBXPfZn5iWDdHjTXZDymcSxwBj3WOcaxjfuK4sWZ+wvwkK9y3C+a+DTBHMVY3e4k3O81QvtPvoebq6ppleVdXV6Smphr0bCPbyk6cdI/TyzwfACQnJ1tlObrXlnxndMvJTV30pxfk797evXuFxzQ2aNDA6CMNGWvHiLVOYGAgBg8ejPLlyxtMs1aMrLV9dcvJTqx1y9ElU45+TgkPD8exY8egUCgwaNAgyGQyi+flvl3w9m2lUom6deuievXqKFmyJFxdXfHq1Svcvn0bhw8fRkJCAi5cuICZM2di4sSJokfvMt4FL95kXxz9fOIIeJxznOMccxRpxRtgjpKVgnZOYY4irX2bOYq04k32xdHPJ46AxznHOc4xR5FWvAHmKFkpaOcU5ijS2beZn0gn1mR/HP1c4ih4rHOMYx3zE+nEWof5iXkF7ZzC/ERa+zZzFPuPNzvNUL5TqVTC//oHAVN0ZfTnI9vLTpx0FzWZ5wMAtVptleXoXlvyndHvmZzTuuhP15+vILl9+zbWr18PAPD29sagQYOMlmOsC2as69evjx9//BFAxud/9uwZfv/9d5w/fx5z585FcHAw6tatK5rHWjHK6fY1tZzsxDrzchz5nJKWloalS5dCq9WiXbt2KFOmTLbm575d8PbtxYsXGx2No0aNGmjTpg2mT5+OBw8e4Pbt2zh06JDo0byMd8GLN9kXRz6fOAoe5xzjOMccxbK6FNR4M0cx/N/RzinMUaS3bzNHkVa8yb448vnEUfA45xjHOeYoltWloMabOYrh/452TmGOIq19m/mJdGJN9seRzyWOhMe6gn+sY35iWV0KaqyZnxj+72jnFOYn0tu3maPYf7zlNlsykYVcXFyE/9PS0rIsryujPx/ZXnbipH/Qyhwn/QNtbpaje23Jd0a3nNzURX+6/nwFxb///otZs2YhPT0dzs7OGDNmDLy9vY2WZawLZqw9PDxQpkwZlClTBuXLl0fjxo0xbtw4DB8+HM+fP8fMmTNx4sQJ0TzWilFOt6+p5WQn1pmX48jnlG3btuHJkyfw8/ND165dsz0/9+2Ct2+be3ytj48Pxo4dC4VCAQA4cOCAaDrjXfDiTfbFkc8njoLHuYJ/nGOO4vjxZo5i+L+jnVOYo0hv32aOIq14k31x5POJo+BxruAf55ijOH68maMY/u9o5xTmKNLat5mfSCfWZH8c+VziSHisK9jHOuYnjh9r5ieG/zvaOYX5ifT2beYo9h9vdpqhfJfdxypl57FPZD3ZiVNqaqrR+QDAzc3NKsvRvbbkO6NbTm7qkt1HAdqT58+fY9q0aUhMTIRcLsfo0aNRpUoVk+UZ64Iba2OaNm2Khg0b4v/au/MYK6vzD+DfgYGiKCDI4lJFoYobCWqxVlzRFAUrVWKsf7i1UWkbbdLaUBNjE22oUZvan7a21iVptZZqsaK2xA2riCvWiqgoWrEg4IYjMkCA+f1BuJ19rlaHe9/7+SQk13nfe+6Z+8w5Z74mz9ympqbceOONWb16denaZ1Wjz+r93TLOJ6l163GKeqYsXbo0d911V5LknHPO+VTztbaLtbaTZOjQoRk9enSSZPny5Xn//fdL19S7ePWmexX1PCkS+1x173MySm3VuzUZpXPVcqbIKNZ2e2SUjhWx3nSvop4nRWKfq+59TkaprXq3JqN0rlrOFBnF2m5NPulY0WpN9yvqWVI09rrq3evkk9qpdXvkk85Vy5kin1jb7ZFROtZd9dY0w1bXu3fvbL/99kmS9957r9N7V69eXVpggwYN+tznxn81f7+7qtO7777b7vOSZODAgaXHzTf99mx5nbq6uhbPaz5uV3NpPp/O5tLVOM2v77jjjl2+ZqV4//33c9lll+WDDz5IXV1dpk6dmi9/+cudPketq7PWndlS83Xr1uWf//xn6eufpkZJ2/f3k/zMdPb+bpnPunXr8vHHH5c1Tr9+/Vp0Fxf1TLn33nuzYcOGDB06NOvWrcvcuXPb/HvrrbdK9y9YsKD09S2/VFrbxVvbSbLrrruWHjevh3oXs950n6KeJ0Vin6vefU5GaTuXIte7IzJK+6rpTJFRrO2OyCidzyUpVr3pPkU9T4rEPle9+5yM0nYuRa53R2SU9lXTmSKjWNvtkU86n0tSnFrTvYp6lhSNva469zr5pO1cilrrzsgn7aumM0U+sbY7IqN0Ppfk8613/ec2MnwCu+66a1566aUsX748GzduLH0EVWvLli1r8Ry6T/P3e+nSpZ3e21mdWo8zfPjwDsfZ8jqDBg1q0z2466675vXXX8+aNWuyatWqDBgwoN0xPvjggzQ2NiZJdtlllxbXttlmmwwaNCjvvfdeizl3Npf2xqlUDQ0Nufzyy7NixYokydlnn50jjzyyy+epdfXVuiv9+vUrPX7nnXdKj3feeef06NEjmzZt6rLWnb0vzWvd1fu75XrPnj0zbNiwNuM8+eSTpdfba6+92h1j48aNWb58ebtz2TJO0c6ULR9juGLFilxzzTVd3n/nnXeWHl977bXp06ePtV3AtZ1sDi7tUe9i1pvuVcTzpEjsc9W5z8ko/1UL9e6MjFL9Z4qMYm13REbpfC7tjQPlKuJ5UiT2uerc52SU/6qFendGRqn+M0VGsbbbI590Ppf2xoFyFfEsKRp7XfXtdfLJfxW91l2RT6r/TJFPrO2OyCidz6W9cT5LPmmGirD33nsn2dx1+vrrr3d438KFC9s8h+4xZMiQ7LDDDkmSl156qdN7t1wfOHBgBg8e3OLaqFGjSo+b17O1VatW5e23307Sfq3LHaf5tebPaf21ZcuWZdWqVWWNUw0/e2vWrMlPf/rT/Oc//0mSnH766ZkwYUJZz1Xr6qp1OTr6KL/6+vqMHDkySbJo0aJs2LChwzG2vC+9evXKiBEjWlwbMWJE6uvrW9zXng0bNmTRokVtnrNFubVevHhx6S8HtFcjZ0r7rO1i1nvLPp+07NBX72LWm+7lPKls9rnq+7mTUWqr3l2RUTr/njoap2is7WLWW0bpepwi1Zvu5TypbPa56vu5k1Fqq95dkVE6/546GqdorO3i1Vs+6XqcotSa7ucsqXz2uur62ZNPaqfW5ZBPOv+eOhqnaKztYtZbRul6nM+z3ppmqAhjx44tPX744YfbvWfTpk155JFHkiR9+/bNfvvt1y1zY7O6urrSR/8tXbq09AtRa4sWLSp1/R188MFtOiN33nnnUifgvHnzSr8QtTZnzpzS4+Y/H1s0H7ujn5nm49TV1eXggw9uc735R1g2f83m1q1bl3nz5iXZ3EG58847d/h6lWDdunWZPn163njjjSTJySefnMmTJ5f9fLWunlqXa8v3lCS77bZbi2tb3pfGxsZS939r7733Xl544YUkyf77759tttmmxfVtttkmBxxwQJLkhRde6PDj9J588slSZ3F7td5vv/2y7bbbJkkeeeSRNDU1tTtOVz8zRTxTvvvd72bGjBmd/psyZUrp/ksvvbT09SFDhiSxtou4tleuXJl//etfSZKhQ4e2CFPqXbx60/2KeJ4UiX2uuvY5GaW26l0OGaWtajtTZBRruz0yypw215Pi1pvuV8TzpEjsc9W1z8kotVXvcsgobVXbmSKjWNutySdz2lxPillrto4iniVFY6+rnr1OPqmdWpdLPmmr2s4U+cTabo+MMqfN9aR7661phoowcuTI7LPPPkk2L7D2Fvw999xTWuzHH398m85VPn8nnHBCevTYvG3cfPPNWb9+fYvr69evz80335xk80fyTZw4sd1xTjzxxCTJ6tWr84c//KHN9eXLl2fmzJlJkmHDhrW7KQ8YMCCHH354kuT555/PE0880eaeefPm5fnnn0+SHHHEEe1+RNjYsWMzdOjQJMnMmTNLHwXY3O9///t8/PHHSZKvf/3r7X5PlWLDhg256qqr8sorryTZXLPTTjvtE4+j1pVf62TzLxKta9PaPffck+eeey7J5o7kLXvtFuPHjy8FmNtuuy0fffRRi+ubNm3K7373u2zatClJx+/Lllpv3LgxN954Y+n+LRoaGnLrrbcm2RxejjnmmDZj1NfX5/jjj0+y+Ze/WbNmtbln0aJFpV/E9t1339JfUGjOmdIxa7s61naSPPPMM9m4cWOH11etWpWrr7669JdDvva1r7W5R72rp95UJudJ5bPPVcc+J6PUVr1lFBnlk7K2q2NtJzJKrdWbyuQ8qXz2uerY52SU2qq3jCKjfFLWdnWsbfmkdmpN5XKWVAd7XeXvdfJJ7dQ6kU/kk0/O2q6OtZ3IKNVS77qmjtr7oJu98cYbueSSS7J+/fr06dMn3/jGN7Lffvtl/fr1efzxx/PAAw8kSXbaaaf87Gc/a9MBS+defvnlFhtOQ0NDaUPce++9M378+Bb3H3XUUe2Oc9ttt+Wuu+5Kkuyxxx456aSTMnTo0KxYsSJ//etfS13vkydPzumnn97uGJs2bcqll15a+oX/kEMOyfjx47Pddtvltddey5133pkPP/wwdXV1mTZtWsaMGdPuOO+++26mTZuWhoaG9OzZM5MmTcpBBx2UJHn22Wdzzz33ZOPGjenXr1+uuOKKDBo0qN1x5s+fnyuuuCJNTU3p379/TjnllIwcOTKrV6/Ogw8+WOrKHjVqVH7yk5+UDqZKdNVVV+Wpp55KsrlT/Kyzzur0/vr6+g47M9W6smudbO5Kb2xszCGHHJJRo0Zl6NCh6dOnT9auXZslS5bk0UcfLb339fX1mTZtWkaPHt1mnPvvvz833HBDks1dzCeffHJ22223fPDBB7n33nvz4osvJkkOO+ywXHjhhR3O5xe/+EUef/zxJJv/msDEiROzww47ZMmSJfnLX/6SFStWJEnOPffcHHvsse2O0djYmGnTppU+/u/YY4/NV7/61fTu3TsvvvhiZs6cmbVr16Z37965/PLLM3z48HbHqcUzZcaMGbnjjjuSbP4LBB39VQVru/LXdrJ5fW/YsCGHHHJI9tprrwwZMiS9e/dOQ0NDFi5cmPvvv7/0Pz9GjRqVSy65JL169WozjnpXR72pXLV4nnQX+aR29jkZpbbqLaPIKM3JKMVZ24mMUmv1pnLV4nnSXWSU2tnnZJTaqreMIqM0J6MUa23LJ7VRaypbLZ4l3UlGqY29Tj6pnVon8ol80pJ8Upy1ncgo1VJvTTNUlGeeeSb/93//V/pYt9Z22mmn/PjHP86wYcO6eWbV77rrrit9RF05ZsyY0e7XN23alN/85jedfuTWMccck3PPPbfTzauhoSHTp0/P4sWL273eq1evnHPOOW1CXmuvvvpqrrzyyqxatard6wMGDMhFF12UL33pS52O88ADD+Smm24qdXK2NnLkyEybNi39+vXrdJyt7dRTT/1E9w8ePDjXXXddu9fUurJrnWz+Zeudd97p8r5BgwZl6tSp7QapLWbMmJE777yzw4/KHDNmTH7wgx+kd+/eHY6xfv36XH311aW/eNBaXV1dTjnllC5/TpcvX57p06eXAlVr22yzTS644ILSL2EdqbUzpdwwZW1X/tpOyl/fhxxySM4///z07du33evqXR31prLV2nnSXeST2tnnZJTaqreMIqM0J6MUZ20nMkqt1ZvKVmvnSXeRUWpnn5NRaqveMoqM0pyMUntrWz6p/lpT+WrtLOlOMkpt7HXySe3UOpFP5JOW5JPirO1ERqmWemuaoeK88847ue+++zJ//vy8//77qa+vz7Bhw/KVr3wlEyZMyBe+8IWtPcWq9FmFqS3mz5+fBx54IIsXL85HH32U7bffPiNGjMhxxx3XYedhaxs3bsyDDz6Yxx57LEuXLs3atWszcODA7L///jnhhBPyxS9+saxxGhoact999+Xpp58uHTxDhgzJwQcfnIkTJ2b77bcva5wlS5bkb3/7WxYsWJD3338/ffr0yS677JJx48Zl/Pjx6dmzZ1njbE2fZZjaQq0r17JlyzJ//vy8/PLLWbFiRVatWpXVq1end+/e6devX4YPH56DDjoohx56aFl75yuvvJLZs2fnpZdeyocffpi+fftm9913z1FHHZVx48aVPa/HHnssc+bMyZtvvpmPP/44/fv3zz777JMJEyZkr732KmuMtWvXZvbs2XniiSeyfPnybNiwIYMGDcqYMWNywgknZPDgwWWNU0tnSrlhagtru7ItXLgwCxcuzKJFi7JixYp89NFHaWxsTJ8+fTJo0KDstddeOeqoo8peU+oN/5taOk+6i3zStaLsczJKbdVbRulaLZ0pMkpx1nYio5SjSPWm8tXSedJdZJSuFWWfk1Fqq94yStdq6UyRUYqztuWTrhWl1lSHWjpLupOM0rUi7HXySe3UOpFPylFLZ4p8Upy1ncgo5aiEemuaAQAAAAAAAAAAAAAAoHA6/mweAAAAAAAAAAAAAAAAqFKaZgAAAAAAAAAAAAAAACgcTTMAAAAAAAAAAAAAAAAUjqYZAAAAAAAAAAAAAAAACkfTDAAAAAAAAAAAAAAAAIWjaQYAAAAAAAAAAAAAAIDC0TQDAAAAAAAAAAAAAABA4WiaAQAAAAAAAAAAAAAAoHA0zQAAAAAAAAAAAAAAAFA4mmYAAAAAAAAAAAAAAAAoHE0zAAAAAAAAAAAAAAAAFI6mGQAAAAAAAAAAAAAAAApH0wwAAAAAAAAAAAAAAACFo2kGAAAAAAAAAAAAAACAwtE0AwAAAAAAAAAAAAAAQOFomgEAAAAAAAAAAAAAAKBwNM0AwGdo+PDhqaury1lnnbW1pwIAACCjAAAAFUVGAQAAKoV8AlA7NM0AAAAAAAAAAAAAAABQOJpmAAAAAAAAAAAAAAAAKJy6pqampq09CQAAAAAAAAAAAAAAAPgs+aQZAAAAAAAAAAAAAAAACkfTDAAAAAAAAAAAAAAAAIWjaQYAOrBs2bJMmzYtBx54YPr3759evXpl6NChOeCAA/LNb34zt9xySxoaGlo8Z/jw4amrq8tZZ53V4uv//ve/U1dXV/a/o446qsN5PfzwwznzzDOz5557Ztttt02/fv1ywAEH5KKLLsqyZcs+h3cCAACoBDIKAABQSWQUAACgUsgnAHSmfmtPAAAq0aOPPppJkya1CUsrV67MypUrs2DBgtx+++3ZcccdM2nSpG6Z09q1a3P22Wfn9ttvb3NtwYIFWbBgQX7961/nj3/8Y0488cRumRMAANA9ZBQAAKCSyCgAAEClkE8A6IqmGQBoZd26dTnttNPS0NCQ7bffPlOnTs3RRx+dIUOGZP369XnjjTfy+OOPZ+bMmWWPucsuu+SFF17o9J4ZM2bksssuS5LsvvvuLa41NTVlypQpuffee5MkJ554Yk499dTsueee6dGjR5566qlcffXVWbJkSaZMmZK5c+fm4IMP/oTfOQAAUIlkFAAAoJLIKAAAQKWQTwAoR11TU1PT1p4EAFSShx56KOPHj0+SzJo1q8O/MLBhw4asWbMm/fr1K31t+PDhefPNN3PmmWfmlltuKfs1n3nmmRxxxBFpbGzMPvvskyeeeKLFuDfccEPOPffc9OrVK3fffXcmTJjQZowPPvgghx9+eF588cUcdthheeyxx8p+fQAAoHLJKAAAQCWRUQAAgEohnwBQjh5bewIAUGmWL19eenzEEUd0eF99fX2LwPNpLVu2LCeddFIaGxszcODAzJo1q8W4TU1NueKKK5IkF1xwQbtBKkl22GGHXHnllUmSuXPn5tVXX/2f5wYAAGx9MgoAAFBJZBQAAKBSyCcAlEPTDAC0stNOO5Ue33zzzZ/razU2Nmby5MlZtmxZ6uvrc8cdd2TEiBEt7lm4cGEWL16cJJkyZUqn4zUPf/PmzfvsJwwAAHQ7GQUAAKgkMgoAAFAp5BMAyqFpBgBaGTduXPbcc88kyfe///2MHTs206dPz9y5c7N+/frP9LXOOeecPP3000mSX/7ylzn66KPb3PPMM8+UHh966KGpq6vr8N92221Xurf5X1IAAACql4wCAABUEhkFAACoFPIJAOXQNAMArfTq1SuzZs3KPvvskyR5+umnc/HFF2fcuHEZMGBAJkyYkNtuuy0bN278n17nsssuy+23354k+c53vpOpU6e2e9/KlSs/1fhr1qz51HMDAAAqh4wCAABUEhkFAACoFPIJAOWo39oTAIBKtO++++aFF17IrFmzMmvWrPzjH//Ia6+9lsbGxsyePTuzZ8/Oz3/+89x3330ZMmTIJx7/zjvvzKWXXpokGT9+fK655poO720e2mbNmpXhw4eX9RqfZl4AAEBlklEAAIBKIqMAAACVQj4BoCuaZgCgAz179szkyZMzefLkJMnbb7+dv//977nuuuvy7LPP5tlnn815552XmTNnfqJxn3vuuZxxxhlpamrKyJEjM2PGjNTXd3wkDxo0qPR4wIAB2X///T/V9wMAAFQ3GQUAAKgkMgoAAFAp5BMAOtNja08AAKrFTjvtlLPPPjvz5s3LgQcemCS555570tjYWPYYy5cvz0knnZQ1a9akf//+mTVrVgYOHNjpc8aMGVN6PHfu3E83eQAAoHBkFAAAoJLIKAAAQKWQTwBoTtMMAHxCvXr1ypFHHpkk2bBhQ1atWlXW89auXZvJkyfnrbfeSs+ePXP77bdn1KhRXT7vwAMPzK677pok+e1vf5u1a9d+6rkDAADFI6MAAACVREYBAAAqhXwCQKJpBgDaePTRR/Paa691eH39+vV55JFHkiTbbbddBg8eXNa43/72t/Pkk08mSa688spMmDChrOf16NEjF198cZLk9ddfzxlnnJF169Z1eH9DQ0OuvfbassYGAAAqn4wCAABUEhkFAACoFPIJAOWo39oTAIBK8+CDD+ayyy7L4YcfnokTJ2b06NEZPHhwGhsbs2jRolx//fWZP39+kuRb3/pW6uu7Pk5vuumm3HrrrUmSY445Jscdd1wWLFjQ4f19+/bNHnvsUfrv888/P/fff39mzpyZP//5z5k/f37OO++8jB07Nv37909DQ0NefvnlzJkzJ3fffXf69OmT733ve//jOwEAAFQCGQUAAKgkMgoAAFAp5BMAyqFpBgDasWnTpjzyyCOlvzTQnpNOOinTp08va7wlS5aUHj/00EM54IADOr3/yCOPzJw5c0r/XVdXlz/96U+58MILc/3112fx4sX50Y9+1OHzhwwZUta8AACA6iCjAAAAlURGAQAAKoV8AkBXNM0AQCs//OEPM3r06DzwwAN57rnnsmzZsqxcuTJJMmzYsIwdOzZnnHFGJk6c2K3z6tWrV371q19l6tSpueGGGzJnzpwsWbIkq1evznbbbZc99tgjBx10UI4//vhMmjSpW+cGAAB8fmQUAACgksgoAABApZBPAChHXVNTU9PWngQAAAAAAAAAAAAAAAB8lnps7QkAAAAAAAAAAAAAAADAZ03TDAAAAAAAAAAAAAAAAIWjaQYAAAAAAAAAAAAAAIDC0TQDAAAAAAAAAAAAAABA4WiaAQAAAAAAAAAAAAAAoHA0zQAAAAAAAAAAAAAAAFA4mmYAAAAAAAAAAAAAAAAoHE0zAAAAAAAAAAAAAAAAFI6mGQAAAAAAAAAAAAAAAApH0wwAAAAAAAAAAAAAAACFo2kGAAAAAAAAAAAAAACAwtE0AwAAAAAAAAAAAAAAQOFomgEAAAAAAAAAAAAAAKBwNM0AAAAAAAAAAAAAAABQOJpmAAAAAAAAAAAAAAAAKBxNMwAAAAAAAAAAAAAAABSOphkAAAAAAAAAAAAAAAAKR9MMAAAAAAAAAAAAAAAAhaNpBgAAAAAAAAAAAAAAgMLRNAMAAAAAAAAAAAAAAEDhaJoBAAAAAAAAAAAAAACgcDTNAAAAAAAAAAAAAAAAUDiaZgAAAAAAAAAAAAAAACgcTTMAAAAAAAAAAAAAAAAUjqYZAAAAAAAAAAAAAAAACuf/AUMUr+bxg/efAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADM0AAAOrCAYAAAD+45B0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzsnQeYHVX5h0+272Y3PYHQIYTee+9dkCpFkCZNQEEBEcU/NhQEBQFFRHpRFAQpglJC6B3pLSS00NLb9vJ/3rOem9nJzNy5de+983vzzJO7u3OnnHPmzPc753zfN6Svr6/PCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCFFBVA32BQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgiRb+Q0I4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIISoOOc0IIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIikNOM0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEKLikNOMEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEqDjkNCOEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEqDjnNCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiIpDTjNCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCi4pDTjBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhKg45DQjhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghKg45zQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQoiKQ04zQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQouKQ04wQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSoOOQ0I4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIISoOOc0IIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIikNOM0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEKLikNOMEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEqDjkNCOEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEqDjnNCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiIpDTjNCCCEqmpVWWskMGTLEbh988MFgX05FoDIVQgghhBAiO2RL5x+VqRBCCCGEEMVBtnf+UZkKIYQQQgiRHbKl84/KVAhR6chpRgghhBBly8KFC82VV15pdtxxR7PccsuZ+vp6+/9OO+1k/vjHP9q/l8v5+/r6zDvvvGNuvvlmc9ppp5mtttrKNDU1pQQp4lQIIYQQQghRulSKPnn00UdTOiTutssuuxT03oQQQgghhBCVqWc6OzvN888/b8997LHHmnXXXdfU1NSktMbRRx9dkPMKIYQQQgghSpfB0idvvfWWueyyy8zBBx9s1lprLTN8+HBTW1trxowZYzbZZBO7nuvll18uyLmFEIWnpgjnEEIIIUSJssMOO5jJkyfbz5MmTbI/lwtPP/20Ofzww820adMG/H769Ol2434uuugic+utt5rNN9+8pM//wgsvmJ133tnMnz8/79cphBBCCCFEuSB9Ur7nF0IIIYQQIulIz2TOFVdcYc444wzrOCOEEEIIIYTIH9InmfHggw+a7373u+aNN94I/PusWbPs9uKLL1qnmq997WvWeWfUqFF5Ob8QojjIaUYIIYQQZccrr7xidtttt1TkALz6iSZAVIGPP/7YPPLII6a7u9tMnTrV7vfkk0+addZZp2TPz3HkMCOEEEIIIUR5Umn6xMsyyyxj9t9//7T7rbHGGjnfhxBCCCGEECJZembmzJlymBFCCCGEEEIMuj7BGcbrMEPWy/XWW8+sttpqZuTIkWbGjBnmiSeesP/D3//+d/Pmm29ax6TRo0fnfH4hRHGQ04wQQgghyoquri5z4IEHpgTS+uuvb+666y6z0korpfb54IMPzH777WfFFM4o7I+4qampKenzI7RI57npppva7Z133jE/+MEPcr5mIYQQQgghRGGoZH0CEydOtNGfhRBCCCGEEJXHYOsZx/LLL5+aF9lss83MlVdeaW6//fa8HV8IIYQQQghR+pSCPtlggw3M8ccfbw455JAlnGFw+L/kkkvMj370I9PT02PPe/LJJ5vbbrstL+cWQhSeqsG+ACGEEEKITLj66qvN+++/n3IyeeCBBwYIJODn+++/3/4d3n33XXPttdeW7PkReu+9956ZPXu2+c9//mPOP/98K/KWWmqpvFyzEEIIIYQQojBUoj4RQgghhBBCJIPB1hPHHHOM+fzzz81HH31k7rjjDhtEjCjSQ4cOzcvxhRBCCCGEEOXDYOoTMsrgoPPyyy9bR5ig7DF1dXXm7LPPNhdddFHqd3/729/M22+/nfP5hRDFQU4zQgghhCgrfv/736c+n3nmmWbppZcO3G/8+PHmjDPOCPxeqZ0fMbfqqqvm5fqEEEIIIYQQxaMS9YkQQgghhBAiGQy2nlhxxRUVPEwIIYQQQggx6PrkgAMOMPvuu2+sfb/zne+YZZZZJvXzv/71r5zPL4QoDnKaEUKIHOjt7TU33HCD2XXXXa2h1tDQYD2aMaLwPnbssMMOZsiQIXZ79NFHA4/F99w+pBJMx9FHH53a//rrr0+7f19fn7nzzjvNUUcdZb2jhw8fbq+XlOdktOA+uru7I4/Bdblzej25n3jiCXPccceZNdZYwx6Xv59++unW+9rtj1NAe3u7icOCBQtMc3Nz6ruvvvqqKWaqx5tuuskcfPDBZpVVVjEtLS02otXKK69sDjvsMFuGlGUU1LG7dure8cgjj5hDDz3UHpeyxyt9u+22M1dccYU9b1za2tpsusett97ajBkzxjQ2NpoJEybY63v44YdjtSn3+8mTJ6d+t+OOO6Z+793itK9PPvnE/PjHP7YZU0aMGGHLjPbw7W9/23z44YcmX0yZMsW8+eabA56DKLx/px1NnTq1rM8vhBBCCBGF9Ek/0icDkT6RPinU+YUQQggh8on0TD/SMwORnqlcPSOEEEIIUcpIn/QjfTIQ6RPpE6iurjabb7556uc4z7UQokToE0IIkRWfffZZ3+abb461HLrtv//+ffPnz+/bfvvtU7+bNGlS4PFWXHHF1D7Tpk1Le/6jjjoqtf91110Xue8rr7zSt8EGG0ReK9vqq6/e98Ybb4Qeh+ty+3K9HR0dfSeeeGLgsU477TT7nY033jj1u5tvvrkvDldffXXqO5tuumlfLmRSrtTNhAkT0pbTFlts0ffJJ59EHsftS91TTscff3zkMTfaaKO+GTNmpL2fV199Ne01UiednZ2R957uHr2bv335j3vnnXf2DR8+PPT7jY2Nfffee29fPrjqqqtSx11ttdVifWfixImp79C2yun8lL33mRNCCCGECEP6RPok6jjSJ9InmZzf32aEEEIIIQqN9Iz0TNRxpGcqU8/EfSb5LIQQQghRTKRPpE+ijiN9kjx9EsQBBxyQOvfJJ59c1HMLIbKnZrCddoQQohyZO3eu2Wmnncxbb72V+h2e51tuuaWpr683b7zxhnnuueesF3pV1eAm9XrsscfMPvvsY+bPn29/rq2tNZtuuqmZOHGi/Yy3M5EB8Pp/5513zFZbbWWefvpps+aaa6Y99ne/+11z1VVX2c/rrruu9SrnmO+++27qvk844QRz4okn2s/XXHONOfzww9Mel/0cRCwoBn//+9/ttTkPf7z1t9hiC+udz71wT5QL0ReeeeYZW9fPP/98rLTxlAGRGzgOnuZ43BOVguNQ5vDSSy+ZI488MjJlI171O++8s5kxY0bqd5T7BhtsYI/93//+17zyyiu2ToiIEMUpp5xi/6eNfvrpp/YzESaWXXbZJfaNagsPPfSQOemkk0xPT49ZYYUVbLkMGzbMTJs2zUZYoLyIhECkhtdff90+J7ngfeY22mijWN9hv/fee2+J75fj+YUQQgghgpA+6Uf6RPpE+iT/56e87rnnHluXs2fPtlHkaGe0nQ033NDU1Gh4WQghhBC5IT3Tj/SM9EzS9IwQQgghRCkifdKP9In0ifRJNK+99lrqM1mdhBBlQg4ON0IIkViOPfbYlLdwXV1d3zXXXLPEPs8++2zKA5t9BiOyANEPxo0bl9rvyCOP7Pv000+X2O/zzz+3URDcfuuuu25fd3d3ZGSB6upq+//yyy/f99hjjy2xb3t7u/1/wYIFfc3NzXbfIUOG9L3//vuR90VkA3eOoUOH2sgMuRCnXF9//XXr/e6u8cwzz+ybM2fOEvtx7dtss03qeHvuuWfayAL19fWpCAlvvfXWgP16e3v7Lr300gFe+JMnTw48Jvtut912qf1Gjx7d98ADDyyx38MPP2zrnPvwtruwe48T9SKqTLk/6ummm26y1+gv12WXXTa17zHHHNOXK5S5O97ZZ58d6ztnnXVW6jt77bVXWZ1fmWaEEEIIEQfpE+kT6RPpk3ye39tmorZlllmm76KLLrKR7YQQQgghskV6RnpGeiaZeiYKZZoRQgghxGAhfSJ9In0ifZKOJ598ckDdPv/880U7txAiNwbX3VUIIcoQPMyvu+661M9/+tOfzLHHHrvEfptttpn5z3/+Y5qamkxnZ6cZDH70ox+ZL7/80n7+zne+Y73bx48fv8R+eMfjWU+0BOcNffvtt0ceG09y7g3P8m233XaJvxNhAZqbm81hhx1mP5MF8tprr40dVQBv9HQe8vmAssH7HX7zm9+Yiy66yIwYMWKJ/VZZZRXzwAMPmLXWWsv+fP/995tnn3028tgdHR02isMjjzxiIwp4GTJkiDnttNPMQQcdlPrdX/7yl8Dj/Pvf/7ZRIoAoAv/85z/N7rvvvsR+1OF9991n9ylGu+MctJUjjjjC3o+XtddeOxV5AmhjRBrIhVmzZqU+x4nqAEsvvXTqM5GRy/n8QgghhBB+pE/6kT6RPgHpk+Kenyh1Z511ltluu+3MF198kdOxhBBCCJFMpGf6kZ6RnkminhFCCCGEKDWkT/qRPpE+AemTYMgkdPrpp6d+JsPQJptsUpRzCyFyR04zQgiRIRjxGPtOCB111FGh+6622moDDKViQsrGm2++OWUkXnjhhZH7V1dXm/PPPz/18y233JL2HKeeeqq9x3Qcf/zxqc/XX3+9FVhBkArzpptuKmoqTtJXImBgww03TFtfQ4cONT/+8Y8zKqcLLrjAisUwvCKbNK7pxOOhhx5qtt5669DjYYyT2rMY7L333maPPfYI/ftee+2VEikLFy7MOR0mx3CQMjUO3v283y/H8wshhBBC+JE+WYz0ifSJ9En+zj927Fhz8sknmzvvvNNMnTrVtLa2mvb2dvuZCdhNN900te8zzzxj9tlnn9TkoxBCCCFEXKRnFiM9Iz2TND0jhBBCCFFqSJ8sRvpE+kT6JJif//zn5vnnn7efcWC6+OKLi3JeIUR+kNOMEEJkyKRJk1Kfv/GNb6TdP0pEFRI8/p1n+QEHHGAaGhrSfgfvZ0QAPPHEE2n3x1iPA4tpNthgA/t5+vTp1ks+iLvvvtuKO8B7f6uttjKF5l//+lfqMxEQ/N7xQbgIDHHKiXJn8VAUiDPHBx98ELjP5MmTU5/x4k9HnH3ywde+9rXIv1Oe66+/ftr7iwuLtBx1dXWxvuOiXECui7gG+/xCCCGEEH6kTxYjfSJ9In2Sn/Mz8fbJJ5+Y3//+92a//fYzK6+8sp184rt8ZlKOKHveCUQmiYjUJ4QQQgiRCdIzi5GekZ5Jmp4RQgghhCg1pE8WI30ifSJ9siT33HOP+elPf5r6+eyzzzbbbLNNwc8rhMgfNXk8lhBCVDxEFMAT3bHlllum/Q6e96NGjSp6mvKnn3469fnVV1+1UQAyYc6cOWbRokUp0eSntrbWrLvuurGPd8IJJ9gotc5LHo/zKO/5b37zm6bY5YQA/vDDD9N+x0WWgI8//jhy39VXX92WVRSjR49OfZ4/f/4Sf0dYOvHoxGwcYYpA8V5rIYjTBtLdXyZ4xX7cdKOkRM00GkGpnl8IIYQQwov0yWKkT/qRPpE+ycf5oyLjOajPn/3sZ+b99983t956q/3db3/7W/ODH/zA1NRoyFkIIYQQ6ZGeWYz0TD/SM8nSM0IIIYQQpYT0yWKkT/qRPpE+8ULgMJyvXLnvsssudo5ECFFeaAZTCCEyYN68eQMMsxVWWCHW99iv2CLp008/HeD9HidSQJBQChNJI0eOzGghzOGHH27OOussK7zwvMboHzt2bOrvRLF1EQfwGC9WOklvOd1///1ZlVEUw4cPT3sMr4jq7u5e4u9egdTU1GRFdzpaWlrsuefOnWsKSab3R8rVXPAu3oobJcC7X5zFX6V8fiGEEEIIL9Ini5E+6Uf6RPqkmOcHJoWc0wzt75lnnlFkNSGEEELEQnpmMdIz/UjPJEvPCCGEEEKUEtIni5E+6Uf6RPrE8eabb5o999zTtnHnuHTnnXcqgJgQZUjVYF+AEEKUEwsXLhzwMwZrHMKERqEFXa4EGezZemgPGzbMHHLIISlD+cYbbxzw9+uvv9709vbaz/vuu68ZM2aMKYdy6unpifx7nPSembS7uG2uWBMW+bi/TPBGKfjiiy9ifefzzz9PfY4jMEv5/EIIIYQQXqRPFiN90o/0ifRJMc8PEyZMMCuttFLq57feeivnYwohhBAiGUjPLEZ6ph/pmWTpGSGEEEKIUkL6ZDHSJ/1In0ifwLRp08yuu+5qZs2aZX9ee+21zQMPPKAgAkKUKXKaEUKIDPAbPK2trbG+5zyN84kTFHGE2W9/+1ubHjDTzbvwJR8cf/zxgak3Odd1112X+vm4444zxcJbTv/4xz+yKqditru4ba5Q7W6wIb2pI07qVPjoo49Sn9dYY42yPr8QQgghhBfpk9yQPskO6ZPS0QeDfX7H+PHjU59nzpyZl2MKIYQQovKRnskN6ZnskJ4pPT0hhBBCCFEKSJ/khvRJdkiflLY+mT59utl5551TWYsIIvbggw8qgIAQZYycZoQQIsPUg6SKDDK+ovj4449zTsmYqUf8UkstFehZPZhsscUWZr311ktFn3366aft50mTJpmpU6fazyuuuKLZZZddinZNpVhOfrxRFhBJ6VKAumgEhU7FORisueaaqc8vv/xyrO+89NJLgd8vx/MLIYQQQniRPskN6ZPskD4pHX0w2OcPmqAbjMiKQgghhChPpGdyQ3omO6RnSk9PCCGEEEKUAtInuSF9kh3SJ6WrT8h2g8MMmWZgueWWMw899NCAIGJCiPJDTjNCCJFh6sH1118/9fMzzzyT9jvvvfdeKkVfunSVjjj7v/baa5F/33zzzVOfn3zySVMqBEUX8EYZOOaYY0xVVfFeT6VaTl4wvL1C6dlnn037nRdeeCFW1INip9PMlR133DH1+Z133jGfffZZ5P54+/MMOnbaaaeyPr8QQgghhBfpk9yRPskc6ZPS0QeDfX43kce5Hcsss0zOxxRCCCFEMpCeyR3pmcyRniktPSGEEEIIUSpIn+SO9EnmSJ+Upj7hOd11111Tcx/jxo2zDjP5ztAkhCg+cpoRQogcjLSbb7457f433nhjrON6Dav//ve/aQ1g58kcxu67725qamrs56eeesq88sorphQ44ogjTGNjo/182223mU8++cSmwQTE0bHHHlvU69l7771Tn7kOPMVLke233z71+ZZbbkm7f5y2CQ0NDanPXV1dptSZOHGiWWuttVI/33DDDZH7e/++7rrrmlVWWaWszy+EEEII4Uf6JDekT7JD+qQ09MFgnx9uvfVW09HRkZqE22677XI+phBCCCGSg/RMbkjPZIf0TOnoCSGEEEKIUkL6JDekT7JD+qS09Mn8+fPtM+ac10aOHGkefPBBs/rqq+fl+EKIwUVOM0IIkSHf/OY3B0QWiDJGp0yZYi655JKMPdyjDD9SdZ522mlpj7fssstaQQJ4mB955JHWsItDb2+vmTFjhikEI0aMMAcffHAqZeRBBx1k2tvb7c+77babWX755U0x2WyzzcwOO+xgP7e1tZlvfOMbprOzM9Z32S9Oasx84BWPLEqKimpB+sl04sExevTo1Ofp06ebcuDkk09Ofb744otDhS3pVfm745RTTqmI8wshhBBCeJE+yQ3pk+yQPikdfZDv85M5hmcuDkRx+8EPfpD6mWeGiGtCCCGEEHGRnskN6ZnskJ4pHT0jhBBCCFFKSJ/khvRJdkiflI4+YX7kK1/5innxxRftzy0tLeaBBx4w6623Xl6OL4QYfOQ0I4QQGbLaaquZo48+OvXzcccdF2iQ4v1Pqr5FixaZurq6tMc95JBDUmkon376abvwpKenZ8A+eOHjCU+kgPr6+rTHPP/888348ePt51dffdUKgv/85z+h+3N8RB3e0Xj9FyMlpze1JGU5GFx++eWmubnZfsY7nMi4USkv3333XfPzn//cRoMoVgrPPffc02yzzTYpEbvPPvvY1I9+Hn30UbPXXnvZthOn3a2zzjqpz7fffnusFJ6DzQknnGAmTJiQSolJ2Xz44YcD9uFnymH27Nmp59Y7wBFUbkRFdhs/F/P8QgghhBDZIn2SO9InmSN9Urn65LnnnjNrr722ufLKK82XX34ZuA/1yYTxlltuac8J1O+FF14Yep1CCCGEEEFIz+SO9EzmSM+Ujp4RQgghhCglpE9yR/okc6RPSkOfdHR0mP3228888cQT9meyJt1777322RJCVA79edqEEEJkxG9/+1srZN555x1rNCGafvazn9kFI4iXN954wy40weA84IADrCE3efLkyGOuuOKK5qSTTjJ/+MMf7M8sNvnLX/5iDXZSJr7//vvWIMebfZdddjFLL7102pSLyyyzjPnnP/9pjcWZM2fa6yWFIFEHMOrGjh1rUzDyt9dffz1tis98sfXWW9tFOJSTg2i0X/3qV81ggFCgrBGqeI0jkLbYYgtriG+00UZm1KhRNvoBC4YQm4PhgY/hfu2116YWJVFniPD111/fbLDBBnYfUq66VK5nnnmm+fvf/54SD06A+6F9/vCHP7Rt9b777rPe8VtttZX1lncceuihZpNNNjGlQm1trbnjjjusaCQ6xcsvv2zTdO688862bSP2H3nkkVR60WHDhtn9XXraUj0/gwQMrnhxIg8+/fTTVF17+fOf/1xS9SOEEEKI4iN9khvSJ5kjfVLZ+uTtt9+2Ed1OPfVUs+qqq9rng3ZHvRHBjf6GOndUV1ebG2+80da/EEIIIUSmSM/khvRM5kjPlI6egaB5j48++ij1+e677w7cx9WPEEIIIUQ+kT7JDemTzJE+KQ198uMf/9g6VjnWXHNN87e//c1ucbL6/PSnP835GoQQRaBPCCFEVkyfPr1vk002wQ07dPvqV7/aN3/+/L7tt98+9btJkyaFHrOtra1vr732ijzm3nvv3Tdnzpy+o446KvW76667LvJaP/jgg76dd9458rjebamllup74IEHljjOtGnTUvusuOKKOZXfpZdeOuCcZ555Zl8h4DrdObj+KP773//2bbzxxrHLaaWVVup7+eWXlzgOdez2oe7j4D1uumtceeWVI6/rhBNO6Ovs7OxbZpllUr+jzYRxzjnnRB7P374yKVPIpK1mwlNPPZW2LFZZZZW+p59+Ou2xvHWW7jktxPnB209kssW5ViGEEEJUPtIn0ifSJ9In+Ti//9zpttVXX73vySefzKishBBCCCH8SM9Iz0jPJFfPZKI/4tatEEIIIUQuSJ9In0ifJE+feO8l0y3XZ0YIUTyUaUYIIbIEr/1nnnnGRlO95ZZbrMf5vHnzzFJLLWW9vY866ihz4IEHWo/wuBBBgNR+eLmT4vOll16yx8TrnmMSweCggw7K6JguagGpG4mGgLf5Y489Zj7++GMzZ84c622NxzOe2XiP77bbbmaHHXbIa5SoMI/2008/fdBTcXqhjMn0QcrSu+66y0ZyILvH3LlzbcQIIjGQqnTzzTe3ERrw8s+0LvJxjUSB+OMf/2jrktSgREMg7SrRIkh1ioc9UL8uqgDe9WH88pe/tF761113nXnxxRfNF198YY9Z6lD+PHc8g3j2UxZEXaA9k37z4IMPNkceeWQq1WqlnV8IIYQQwov0SW5In2R/jdInpaEP8nX+bbfd1rY7ns+nnnrKRijkOGxEVhw+fLhZfvnlbbsjOuAee+xR9HYnhBBCiMpDeiY3pGeyv0bpmdLQM0IIIYQQpYT0SW5In2R/jdIn/UifCCEKxRA8Zwp2dCGEEBZEh0vHOWnSJPtz0kEEIvoAA/3xxx8f7EuqKN577z0rFGCNNdYwb7311mBfkhBCCCGEKBGkT5ZE+qSwSJ8IIYQQQoh8IT2zJNIzhUV6RgghhBBChCF9siTSJ4VF+kQIIbKnKofvCiGEEFlzzTXXpD7jDS/yy2233Zb6vOmmmw7qtQghhBBCCFHqSJ8UFukTIYQQQgghCof0TGGRnhFCCCGEECI+0ieFRfpECCGyR04zQgghis7LL7+ciiQwatQomzZR5I9p06aZiy++OPXz17/+9UG9HiGEEEIIIUoZ6ZPCIn0ihBBCCCFE4ZCeKSzSM0IIIYQQQsRH+qSwSJ8IIURuyGlGCCFEUWlvbzff/va3Uz+fdNJJpqGhYVCvqZzYbbfdzAMPPGC6u7sD/37ffffZ9Kbz5s2zP2+wwQb2O0IIIYQQQoglkT7JDekTIYQQQgghBg/pmdyQnhFCCCGEECJ/SJ/khvSJEEIUnprBvgAhhBCVzxVXXGGmTJli5s6dax5++GHzySef2N+PGTPGnHHGGYN9eWXFgw8+aLeRI0eajTbayCy//PKmrq7OzJw50zz33HOpsoWWlhZz4403mqoq+cgKIYQQQgjhkD7JH9InQgghhBBCFBfpmfwhPSOEEEIIIURuSJ/kD+kTIYQoPHKaEUIIUXBuv/12M3ny5AG/q66uNtdcc41NxykyZ86cOVZwhjFx4kTz97//3ay77rpFvS4hhBBCCCFKHemT/CN9IoQQQgghRHGQnsk/0jNCCCGEEEJkh/RJ/pE+EUKIwiGnGSGEEEUFj/itttrKnHPOOWbrrbce7MspO15//XVz1113maeeesp8+OGHNqLA7NmzbUrTsWPHms0228zsvffe5tBDD7VCVAghhBBCCBGO9EluSJ8IIYQQQggxeEjP5Ib0jBBCCCGEEPlD+iQ3pE+EEKLwDOnr6+srwnmEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEKBpVxTuVEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEMVBTjNCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCi4pDTjBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhKg45DQjhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghKg45zQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQoiKQ04zQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQouKQ04wQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSoOOQ0I4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIISqOmsG+AFHezJw5syDHra6uNiNHjkz9PGfOHNPT01OQc4nBR/WdLFTfyUF1nSxU38miFOp7zJgxRT2fSLY+KZV2L4qH6js5qK6Theo7Wai+k8Vg17f0iQhDGkXkA9V1slB9JwvVd7JQfSeHUqhraRQRhtZ5iXyg+k4Wqu9kofpODqrrZFEK9T2mBDSKMs0IIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIikNOM0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEKLikNOMEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEqDjkNCOEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEqDjnNCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiIqjZrAvQAghhBBCCCGEyAfV1dUFO3ZVVVXkz6KyUH0nB9V1slB9JwvVd7JQfQshhBBCCCGEEEIIIYQQQogw5DQjhBBCCCGEEKIiGDlyZNHONXz48KKdSww+qu/koLpOFqrvZKH6ThaqbyGEEEIIIYQQQgghhBBCCOFQuDUhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghRcchpRgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQlQcNYN9AUIIIYQQQgghRD6YM2dOwY5dVVVlhg8fnvp53rx5pre3t2DnE4OL6js5qK6Theo7Wai+k8Vg1/fIkSOLdi4hhBBCCCGEEEIIIYQQQgiRGXKaEUIIIYQQQghREfT09BTtXCzCLOb5xOCi+k4OqutkofpOFqrvZKH6FkIIIYQQQgghhBBCCCGEEI6q1CchhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghKoQhfX19fYN9EaI4tLe3m7lz55rW1ta8Rdnr7Ow0hWDIkCGmtrY29XNXV5dRU61cVN/JQvWdHFTXyUL1nSyyre+qqipTU1NjGhoaTH19vf05W8aMGZP1d0XpRP9euHChmT9/vtUV+dAohdInoH4uWai+k4PqOlmovpOF6jtZZFPffIetrq7ONDU1Dfh+pkifVAbSKKJUUV0nC9V3slB9JwvVd3LItq6lUUQx1nnRHgsBbZc5QEd3d7f6uApG9Z0sVN/JQvWdHFTXySLb+q763zqvxsZGu9Yrl3VeI0eONIONnGYSAFX82WefmXnz5tnP+axyJpEKhffhKuR5RGmg+k4Wqu/koLpOFqrvZJFrfSPIRowYYUVVNmjCp7xZsGCBmT59ekqf5EujFLrvUT+XLFTfyUF1nSxU38lC9Z0scq1vJn2GDx9utUqmSJ+UP9IootRRXScL1XeyUH0nC9V3cshHXUujJJdCrvMSQgghhBAiE5xzP9uyyy5rWlpaTLmy2G1IVCyzZs2yQgoh7oQUAj0bYV1McvFIE+WH6jtZqL6Tg+o6Wai+k0U29e0d2Of/OXPm2EgC2TrOiPJejIY+8U4WSqOIUkP1nRxU18lC9Z0sVN/JIpv69tqjbW1tprq6uqwnfER2SKOIckB1nSxU38lC9Z0sVN/JIdu6lkYR5bzOSwghhBBCVA59fX1L2KOMo5ez44ycZiqczs5OM2PGjFTDJQrF0KFD8zYYQ4qmQuFPBSUqG9V3slB9JwfVdbJQfSeLbOobexT7dNGiRaajo8P+jrTy48aN02RhQkCXeBej4TDV3Nxs6uvr8zLZU+i+R/1cslB9JwfVdbJQfScL1XeyyKa+sUlbW1ut0wQsXLjQRnP2HktUNtIoolxQXScL1XeyUH0nC9V3csi2rqVRRKHXeQkhhBBCCBEX7FHWd6FL2tvb7e8YT19ttdXK0j6VqqpwaKiu4TLRU67eXUIIIYQQovxhwRELj+rq6myWGYSVE1hM+ohk6BMXjYLFaKNHj1ZkNCGEEEIIMWgwqcO4OfYpzv2APtGCtOQgjSKEEEIIIUoJaRRR6HVehXLYQ0eRGcnR09OTikouKg/Vd7JQfScL1XdyUF0ni1zqu6amxjpyo1HQJnz3s88+M01NTRldw8iRI81gU35uPiIjENGuYWfaQIUQQgghhCiUGCMqlsNFIxCVz/z581P6hMkeLUYTQgghhBClgNeJ32XFFMlAGkUIIYQQQpQi0ijJpVzXefkXXWrRbWWj+k4Wqu9kofpODqrrZJFrfQ/xrfMiOybOM5lspYCcZhKQtpPGTYOtra0d7MsRQgghhBDCQrYZtxipUFGtROnqEyDrkBBCCCGEEKUAkdKcPimVyRtRHKRRhBBCCCFEKSKNkly0zksIIYQQQpQidRWwzkv5Oysc0iEBDVUR0oQQQgghRKng7FMG/p3NKiofN7lXVVVVdvrEf72u/YrKRPWdHFTXyUL1nSxU38ki1/r26hO26urqAlylKEXKWaMIIYQQQojKRXMoyUXrvIQQQgghRCkypAI0ipxmEoKElBBCCCGEEKLS9QnR94qFFlImC9V3clBdJwvVd7JQfSeLbOobpwkgku/IkSMLcFWilNEcihBCCCGEEKKUkEYRQgghhBAiv/TPAgkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghRQchpRgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQlQcNYN9AUIIIYQQQgghRD7o7u4u2LGHDBliqqurUz/39PSYvr6+gp1PDC6q7+Sguk4Wqu9kofpOFvmo797eXrt1dXWZOXPmZPTdkSNHZrS/EEIIIYQQQgghhBBCCCGEKB5ymhFCCCGEEEIIIdLgX3SpRbeVjeo7Oaiuk4XqO1movpNFPuub7+J0I4QQQgghhBBCCCGEEEIIISqDqsG+ACFE4Tn11FPN2LFjzUYbbTTYlyLKDNoMbYc25Oejjz6yf2P7y1/+YirxHpNGMeqb77rjcEwRjyeffDJVbnz2o35eCCFEOaH3lsgW6ZNkIX1SukifCCGEqDT07hLZIo2SLKRRShdpFCGEEJWG3l0iW6RRkoU0SukijSJEaSKnGSEK9LJjO+6449J+x70A2UQ0v/71rweU73XXXRfbONx3332Lco0iefif+zjbj370o8G+bCGEEEIkAOmTwiJ9IkoR6RMhhBBClDLSKIVFGkWUItIoQgghhChlpFEKizSKKEWkUYQQIrnIaUaIAnL33XebN998c7Avo2K59NJLTUdHx2BfhhBCVCyKGCGEEJWF9ElhkT4RQojCIn0ihBCVhzRKYZFGEUKIwiKNIoQQlYc0SmGRRhFCiMIijSJENDVp/i6EyIG+vj7rNX/99dcP6nVcccUVdqs0Pv30U3PDDTeYE044YbAvJZGssMIKZsaMGYN9GSXFMcccY7d0jBo1ypQbqu/SplL7eSGEEPlF+qSwSJ8MLrJXl0T6RAwWldrPCyGEyD/SKIVFGmVwkc26JNIoYrCo1H5eCCFE/pFGKSzSKIOLbNYlkUYRg0Wl9vNClDpymhGiQIwePdrMmjXL3HfffebVV18166233mBfUkWW7+9+9zvzjW98wzQ2Ng72JQlhxowZY9Zcc83BvgwhhBBCiCWQPiks0ieiFJE+EUIIIUQpI41SWKRRRCkijSKEEEKIUkYapbBIo4hSRBpFCCGSRdVgX4AQlcrxxx9v6uvr7ecLL7xwsC+n4jj11FPt/19++aW57rrrBvtyhBBCCCGEKGmkTwqL9IkQQgghhBCZIY1SWKRRhBBCCCGEyAxplMIijSKEEEKIwUZOM0IUiGWWWcZ6xsN//vMf89JLL2V1nN7eXvP444+b8847z+y1115m9dVXN+PHjzcTJkwwO+ywg/39J598klZ4jB071my00UYDfn/xxRfb37O9//77aa/la1/7mt137bXXNj09PYH7/Otf/zLHHnus2WCDDcxyyy1nr3OXXXYxF110kZk7d67JF/vss4+9Drj88svNokWLcjrem2++ab73ve+ZzTbbzKYnXGmllcw222xjzj33XPPRRx+Ffo+/uTL8y1/+Yn937733mkMPPdSss846Zumllzb77rtv5L6UK17rK664oq3Tq6++2nR1dQ1I/3rHHXfY47Af17fTTjvZdLD8LQzK5M477zSnn366Pe4qq6xi284aa6xhvvrVr5rf//73ZuHChVmXWdD9+Pn888/Nz372M3u97vxrrbWW2Wqrrcw3v/lNc+utt5oFCxaEnmP+/Pnm0ksvtW2f6+a5ot4PP/xwc/fdd0fev+Ohhx6y9cH3KbvNN9/c/PjHPzafffaZKSVcWZLqNwraAfu5dhVVP5T9zjvvbFZbbTVb9vQfe++9tz3HBx98kPf6Bp5zzrvlllua5Zdf3kycONHst99+5q677srofO3t7ebPf/6zOeCAA2yboe5p/wceeKC5+eabTXd3d+h3Ozs7zb///W9z9tlnm1133dWsuuqq9v4ph913393ePxFMoqC/5F7dwM2UKVPMd7/7Xfv7ZZdd1l7TUUcdZV544QWTD9ra2swll1xin1X6Aq6Vdn/TTTfZ90A6wvp5L0TEOfLII21EHO6Bfm6TTTaxbeJXv/rVgPfUk08+aY/3ne98J/W7jTfeONUG3MZ+Xp5//nnzi1/8wh7T1dvKK69stt56a3PWWWeZd955J6P7mDdvnrngggtsf0y58E6h/7/99ttNHOjj/vCHP5j9999/wPXsuOOO5gc/+IF59tlnQ7/Le+6vf/2r+frXv277c8qMevnKV75irrzySltnwpi2rp5YfbEQYvCRPpE+kT6RPsmEStUntFnpk+ToE8rD6RPam/RJMujqSd9GhRClgTSKNIo0ijRKJkijDEQaRRoFpFFKH/phaRQhygdpFGkUaRRplEyQRhmINEp5ahSt80omvb3JXedVM9gXIEQlc9ppp5lbbrnFdri8qP7+979nfAwED0IkyMh844037IZRzcuCDj4TMFJcdIR//OMf9kUXBp7+iDrgpVRdXb2EAYWIcvs4Ojo6zCuvvGI3IgXceOON9uWdK0OGDDHf//73rTEzc+ZMK0AQDdmAsU79+A0WXvpslO9vfvMbc8ghh0QeB8P+lFNOMX/7299inZfr90dPoD5/+MMfWgPlmmuusQbjt771LXPPPfcM2O+1116z9UVK2N/+9reBx8cAeOqpp5b4PUbk008/bTfOj2GMY0O+4fiIHr9YmjFjht3eeust2+54Rnbbbbclvv/YY4/ZSB6zZ89eoi0yQMGGUKfum5ubA68B0fTHP/5xwO+mTp1qf4cxFiUKyhmE8vnnnz9AlANlifHIRhv75z//mdfzvvvuu1bsIKK9omjy5Ml2O+yww6zISsfrr79ujf6PP/54wO951mkXbPQliKpx48Yt8X0GRm677bYlfj9nzhy7IRp4vjgG4jodiJCTTz7ZtLa2pn5HG2bwCNGGYU2/mC1ffPGF7Y8pPwfnQpiw8fzTD2QLouCEE06wAxB+0cmgy4cffmjbxMMPP2wHH7KF58krvhy0Q+6NDXH4y1/+0r4v0oGApd/1D2g988wzdqNsoiL80OZOPPHEJYQz10MbY6MdUJd+GKQ84ogjbJ/sL7PnnnvObq7/ROAlkc6eXvPp/FYzt7XTrDiqyQytky++EOWA9In0SRTSJ9InSdMn2L5x9ID0ifQJSJ+UNr19fWZRR4+Z295hFrR3mYnjWkytJIrwQX/99ttv23cvzzJ2Df0pk6di8JBGkUaJQhpFGqVQSKNIo3iRRpFGKQTdvX1mzoIOM6e10/T09pmJY5sG+5KEEDGRRpFGiUIaRRqlUEijSKN4kUaRRsk3vO/aunrNwoVdZkF7t6mvqTLLjejPrpc05DQjRAHB+/zoo4+2L9pHH33Udv5bbLFFRsfAmF5qqaWsJ+qmm25qPTBJB/rpp5/aF8m1115rX4YnnXSSfRHiHRkXPMLxKH3xxReth3uUmMJ72EUdOOigg5YQTBhQGPaILD5j5OLtzUsLoxrjlRcWi+YfeeQR65mcK5TJ+uuvb4UaYhKP9paWloyOQflhdMKYMWPMt7/9bRuFgHvFYLviiiusUcPvR40aZb2Zw/jTn/5kX7zU8THHHGNfsHjPBkUwuOGGG2y5U068sInWQJ3+7ne/s7/HeMM7n8gIGFKUKcYWbQExgMB+7733rGGCiMbLPKjt4HGLxzURIWiPvAAxUDECMaQxojBaJ02aZBoaGky+oE1gvCGkEDqUBx7IlDFtAkMFY4T7DALDjqgB7Is38nHHHWc9gLl/DE/aI4MTGH54LCN4/dDmnJDi3hncwKsZ457vXXXVVbbNVJoXMcIfj20YPny4LXu8t0eOHGkHYXhOiXzBgEQ+oa4PPvjglJAi6gCGMGWPUcwziuHJ4oQoaN9EV+BaeZ4xup3XP2LwgQcesCLo5Zdftm2X56O2tnbAMXh+8a6nj9hwww3t81VTU2PbPs81zxbHon/mZ9pYGIh+nhXaHoKGZ4nniGfmsssus+3pjDPOMNtuu61t35nCc8qggxNSRCCgzrhfnhMMds6VSwQXjuGEFOKRPofyaWpqsuKSfoZ+mTJ3cJ+Uzf33328Hm4CBIurTC/28915GjBhhy50oI7yvOAdtggEgBj4QNnj+M4BDmYXBc0m5UE+I4+222872JbRfBhnpL+m/6d+IcOLniSeesH0I18R7iUgve+65py1X+icGynhnMijjh3MSQWH69On2fUt5cT/cK+9b6oN7mTZtmj0Hxxk2bJhJCt29vWbmwi4zp7Xb9Jn+yAOfz283q4xpMvntVYQQhUD6RPpE+kT6JOn6hPrDjuMZZWKPNh2F9Enl6BPeMbyvpE8qi47uXjO3rcvMa+u2i9Ics1s7zVLNA59FIZh4x/6jP+c9FDS5KoqPNIo0ijSKNEqxkUaRRvEjjSKNki9o+wutM3+3Wdjek5pDAX7fXD9wsboQojSRRpFGkUaRRik20ijSKH60zksaJR/gvL+wo9ss6OixQcd6PJm+unp6TW9fvalK4EIvOc0IG4lvblt4+rMoeiLSpuVKdU1fQc4zvLHGVOXZiIgCIxzDGYMcT0nSKGYCnTgix28sICJ4MWBk7rHHHjYFIZ70GCyZgJGO8U7azv/+97/2BRoEnuKAQPDvw4uNFxyGG6KMa/OCuECAcb0YwogXv1d4tpCWD097DAKM4zPPPDP2d/Fm/ulPf2o/YyBgpHkjC2J08KImRRz1h8FEWfnrwoGQwphEgKUzVDkOnrGkt3NQbttvv701fDH6+Bv3xf/s692PFzvlSko6hESQmMLQC/KMRUBj6GKocL04NOCNT1vLFwglZ1RTL/4IA65N4Insj1CAgMLbm/8xkjAEMci8cDwylmBkIcgYrMAIdSDcnQGIcMcgxBh2UH6k7eP+o9I/ZgptCuM7HaSRDGtHucBz6NJ+Uvc8t6Qp9EL7onwxFPMt4twxf/SjH6UigiBi6DMQSJQ3dRUF4hijft1117WCefTo0QP+Tr1R/zz3PEekVXQpkr3RPRAL/ueQ6+B5Rqxg8FNfpAY955xzIsuUZ46+2ztYQyQV0j8isGjDPEMMamUK7wcGhABxSDk6OC+DJQwEIACzxUWa4NlnIII68UK/w33Q3ziGDh1q06TyXnDQprziyQ+DQwho97y6Z4s0odQZEUVIGUxfyfswSkxRN3j78+ySctdbJgzMcM0IWfoHv5ji99wP5+daKDu+44VBM9pN0HNAFBh+T99BvSMKvXAs7oO2RPpbUkfT5pOQmnN2a5eZtahrgJByC9XmtHaZUU1alCYGX6MUUp9UikaRPpE+CUL6RPokKfrEtTn0CQPjTCpEIX1S3vqEd4p34oPnS/qkMrTJ/I5uM7e127R29S/88ENGzLFDaxM54SPCwX4ZP368nVSn/8mkLyvVORSQRpFGSYc0ijSKNMpipFH6kUYZiDSKNEqhnPm98Hc5zYh8UqoapVD6BKRRFiONIo0ijSKNkg+kUaRRtM6rMrWJc5Rp68SRP9yWbO3sNs31yXMhSd4diyVASO102XMmKTx48kZmZBEXdTIJh5cznS0ekWwYM3GJenEBhhKpIs8991wrBvCMzcSzGKOa1IZ47GIMBIkpvCwxWoKiD2DM4wUKeJX6hZSDlxJiBCMHT1gMBl7WuUJEAIyaF154wUZ6QFziARsHsl64NHw/+9nPBggpB0YAhgyGOYIVz32MwiAQkxgIccqfc5133nlL/J4XP8YIAhUvWO7NK6QcLioFHsFEtggiXSo5jBGEOPeEwZJPMUVqTQeiJwyMOn/UCIwXojYQEYH0k34h5cAQIm0jKRgxqL1iisiRrm4RzF4h5cCQ4xj+1Km5wLHiHI/nKd2znQ2UF+lnaYNExPALKS9B7T1bMHqJLgBrr722fWb8IB6JsEGb9qcTdRCthMgqwKCEX0g5GDzAkEUk8Bz7xRQiJwoic9DeEfq0/SgxBVx3UHQTBqNoXwwc8BxmI6Zce+Fd8fOf/zxwHwag8JRHYOTyPBLFxi+kvBClIhdYeBJ1fCaCGABDNBJlhD6OyC5h8E7xCilv9BwG5+grOI4f+kU3mIMw8gupqOeAvgfBCUTy8Asp77vBvdvpfypVTAF2xbz2bjNjYZeNNBBEddUQZZkReUcapXBIn8TTJ/5r5mfuJR3SJ+WnT7zlgy2DzeKta+mTytInrr7RJ0xAErFM+qRy9UlUXy59Un60d/WaOW1dZn5b9xKO/EvQ1z851FhbldW5aCtEsxOVBc9KtiRNn4A0SulplGyRRik/jeJFcyiVr1Ec0ijJ0ChRSKOUX9TmBe3d1k4Mc+b3gj7J1AYRIgpplMIijdKPNMpApFH6kUbJL9Io/UijDETrvKRR4oIN0dr1P0eZ9h7TGbKuK4hFnb2mud4kjuxmjYQQGYFHLenGwHlFZwuerqRafPvtt62nM5szNt3fMoEXOEY18ALBEAuLPgCkjvTy1FNPpVK9YdxE4YxqDCnncZsPeDkD15FJBAZS0jkRRIq2MLwiw30nCKIVuHpOB17FYR7oGKOOMOEGpLEE0vmRHjQdGGJEmnDths0Zq3gE5xOveMnUc5pBAdde0qVBdG0KMe1l8uTJ9n+ENUZXGHixVwo8u6QPBIzHXBYCZArPs0sryWBA2IAC4s4rev38+9//TkVoQPDEqXs85NNFkeDaGBTy9ps890D6xjBxB1yH95n0wn0SKQHwRM8UDH7O7571sIED+hU83nN9Hilf0mYWC1JcIk685e4VW1H9DmWLWA3DDdwRNcHf/7lUnJSnX2in48EHH7SDi3w3KLKLF5eGm3okxWqlgbBCVE2d1WY+ndcR6DBDPY1prjerL9VSVIdkISqR6poa20fme/Mu9uSz+z2RgtxAIYNH3u9UVS0eJohzDgawidxCSnnSULM5mxh9wt/834k6B4Nzzl5g4JR9/fu4gS8gopT3bwy0OX2y//77R167m+TCFnj99ddDy85ffunug8E84DqIvOb9m7cP9R/v8ccft3/DTmHSK+y6ST3u4Dv+vzuYOMEejioDB1qusbExcB+vXYkeDDuW2w/bCzsgXdthP/SrazdsLp06dkLU9Qa1C+/f/fXlnWRg4iWTuna2BTY2keui7olIZ06fBNUt9UFZh33fa7uE3WO6LZtF3tmUtduc7e9v03zP6ROetY022ijje8m2vnmenT457LDDrPYOKh8G1olwFlYOru5JOU/7jrpWN4DvInhF7cukNFEHvf2mm9hAH2CHhd0r+gRbOOi43Kd7Dnm2Mi1vxgycPqH/ZDIkaD/aMX1UWPm7+g8rV54joHyx5bNt35nuT7/kf1/V1y+eDUC3hN0H7RutG3YeJg2dPvH3f2gMYEEB0fAyuV+eIadPGHOK0wbRJywGyLT+S3UbUlVt5rX3mGmz2szUWa02w2WUw8zQuhqz/Mgms+b4YaalsS7j81HnbDxPPJeZbJUMzyoLA3iHEk2UyUVsMDYm9jOBqKE33nijtUd57/FcMMnN4puOjo6C3YMofTSH0o/mUBajOZRwNIdSuXMoaBTNoSxGcyiaQynJBWmdPXbO5L0ZrebT+R2RDjNkxBjZVGdWGdNsJoxpksOMEGWGNEo/0iiLkUYJRxolO6RRwpFGkUaJSxI1Cg78ZLmcPrfdvDuj1Xw4u83MWtQVy2GmsbbaLDWswaw6rsUs1VJnkogyzQhRBPCwxIscr3vSGZK2zp9mLAoWUzAByQuCz1Hg0Um6ukwgqgDXREpNFvM4ceUgFadL+YbnpxevKHLGfaYe6rmCccZLDQ/gq6++2noBR3m1Olx6RYzOqBSK48aNs97iGAVRKRnTGX9xowM4Iy/dft703Sy68X7PwaJBygQR6E3JF9Ru8gkpT2mHGJhEx6ANETEBA5jFJF6Dyo9rU5MmTUotmsu0Pbl6wtCNOhdttq6uznrQ5wNS7BJlYzBgIMUZlc7IKxbe5yIs9a+DxXJu0ZAft8CMVLJx6x4hRNv27//mm2/aRaoIzKj+BhGK2Ao7H8IuCrcwBuGQS7m5RVZR5eaivWQKApfoDghK0lUymOP6zagoFdmAWON9dc8999jBm6iI/FHCjoGeqH7cG2nG3/+99tprKcEVJlDDcG2QBeBuMV8caGPLLbecqRTaunrMlws6zaLOnsgU6OOHN5m6mv6FhN3d8aMVCCEGH/pYbOaLLrrI2ou8L9MNInnBLiZaEIPg6fQJ/X2m+uRrX/uavSYGrLBj/YOxRE4DonX59Yk35XRQJJti6BMW4WP38v4lKhQp0zPRJ7zD8qFPwgaEC6VPvPsx0RekT9BslMmjjz5aVH2C3eP0CQtzSQ+PTYSTC3YWmiCMl19+2f5Pm4y7KNrfnrBNwTlehIF+yac+YeKRqE6DrU+iotIVAlfecexsxjncYLwf15/gZBG37sP0CRMJRE186KGH7NhLtvpktdVWizy/u05s5EKX25///GeTDTgyMTE/depU+/wxMU8/TzvJZ6S8YuoTb/vw93+vvvpqXvRJuslmfx9EJNByhXpCi8xZ1GnmtXWZ3jRZZWqqqszIobV2MVpDrbLDFILjjz8+L8dhMQSR/Nra2lK/w1GG55ONdy3v6Uz0uKgcNIeyJJpD0RxKGJpDyQ7NoWgOpVTmUIiOrTmU8oKgYixKI7NH3IVoIxprzKjmBlNd1b8ANd3CUCFE6SGNsiTSKNIoYUijZIc0ijRKGFrnFZ+kaBQyVxL4eGFHj3Xkj541GejIP7Su2jTXV5uW+hrTUL/43ZlUjaJMM0IUiW9961upzv7Xv/517O+xoIKorNdcc01aIQXeSce44KHtXjhuAZrXsGWBCAR5gxIdMBuyuc4o3EIgXqos4IuD85iOs/AAQeX9ThBBYiYMojiH4Y3IGmUIePfDY9YP7YzICkTojhJShagPxCkpNd2CHhaakXqQ68E4RcCzUC3ourNJTei//rh1i9CKm+a11PEK4qA0pYXE277SiaCov2ebltJf/7Q9Fv6S0jPOwE17e3tWzyq4aAtBbTkd3v4kXVuNKy6DOPzww20EV9o7kVooFwb4EBuk8vy///u/rCIo+OF9gVi75JJLrCCOElK5lntU/+eehWyeg3y1wXKls7vXRiIginOYwwxiauXRjWbZ4Q0phxkhRHlyyimnpOxXss3EhUFRBsgZsI+jT6L6+zAY+HN2MDaj/31DdgDnXFOq+sSldGbxNCnAM7Gp4ugT956L0ieZ2LlxdUfc/YIi29HOXOrtwdAn2ECrr766/fmll16yKdO5HiaBCq1P4tYt9lqlZCvwDpwnXZ/cdNNNdjLjlltuiXSYCft+NnZyNvokX+WWDqI8fu9730vpE8qFBflMdjKJxIRsPvQJEyWDoU/8/V8u+qRU3mnFXIj25YJ28+4XC8zUGQvNnNbOSIeZloZas+KoJrPG+BYzfnijHGaKBO8yFxUwE5jgvfTSS237bGhoMIceeqj5xS9+YccknPM2WZKI3luubVjkjuZQcr/OKDSHojkUL5pDSbZG0RzK4M2hELxDcyjlAVpkfnu3+WhOu5kyo9V8ubAz0mGmpmqIGT201qwyutHOoYxsqk05zAghyhdplNyvMwppFGkUL9Io0ijSKIvROq/4VKpGccHFvljQYabMbDXvz2w1X/wv+HE6hxm0ycjGWrP8iAaz2tgms/zIBqtPaqqlT2z5FKUGRUlDlItHvrNZVt/tKaC3WbXHazif5yEy+mCAoY2gYqHQiy++aKMJ7LbbbmkXmeBNjyfk0KFD7cI2ohazqAfvcxcNl6gB/nSamUBKuD322MOm57zvvvtsxGkmL70pO6urq81+++23xHe9iwHw9I3y5PeSb69X0hRuu+22tiwQnpSbE0DpyFcqZMqoVCDiAPUItBeiWxMVAA9ZBJrzyqc9EhmjELAgjesgVSCb84DG6KCtsJFmlbSeXkPRGUYYw+edd15O16A018UnlzJ3dU9UdKIwx2X8+PGpzwz+EAkCb2jaFf0mA1JEEaGvc30UC7MQGJDO6C8GhW6rLNw98sgj7YAZ/STvId4tiCjKmijRv/zlL83RRx+d1fGJ4nHcccdZIUMZn3DCCfYdRxQVBizq6+vtfpwPAVcq5R7WBomAwILeuNC+ypnu3j4za1Gnmd3aHVov9TVVNjUnTjPqW0Upa5RC6hPafpXH3uvt6clbX9ZcW5hIHt4BJz57z4G+cPqEqN//+te/bN/tte/914Q+YWFzJvqEY/iPE3UOQIs4fUJUmwsvvDClT/72t7+lbG+yE/i/7/05U33i/S717bXvewLq238f3u9jezt9wnuWgUyvPuFYUXWerj24a/EfJ6o8os7hbx9x21HYfv7yQBdQj5nok6hrp+yj7jXoOpnUmTx5clp9wsCzd6A7W30Sdv1x6zboHuPgrYdsj+El3THC2mI+ryPT+vY+m/7v+p/tqOfYfc5Un6BD3HfRJziIZKJPgvrNqLLw/91//XGJKrdM+4V010EmCZxn/PqEZ5KIZmSkCtInUf2MX58cc8wxA/QJCwlWXnllOz4XpE+yeV9lcl3p+v0g3P7Z6JNyiRBGD7Koo9vMaes2C9u700721FZXWTtxRGOtqf3fBA82WW/Md3c6qHM2F+0wEyrF6TEIFkWg753GZ+L61FNPzegY119/vX02qSOc47yZs3CaY2yHyXEcZ7D/Dj744CWOceONN9q6iQvRUL1jRpU4h1Jp8yiaQxmI5lAKi+ZQ+tE4X/HRHEp2VOIcigvkoTmU0qK9q8dmlJnX3m16eqPrgFbZXI8+qTFD66ttFGchikWpapRC6ROQRhmINIo0SiGQRkkm0ijZUYkaReu8Bhf0B5lkbEaZzp60esRLQ02VaWmosRll+Ky+NBw5zQgr3kc1xTOA/XR3F+7h8qbaK+R5igkLpZj452XDgqF0YooJQpeG74YbblginaYj00ncIIgugHAiEjJC76tf/aoVSu5lwrmDPGC9E8IsLMq3SMo0CgFGAgbCZZddZqMVRsELniivcaIoOC/mcvFWJ5Ktu977778/1Ls5H20nncBkgpoNPv/8c5si9rrrrrNRX9nOPPNM2769bYr9mARfc801sx68oM7S1S0Gd1RUiWKCsYJxGRSV2wvtOwhvisM40Yvzife5oNyj0s1G1Yk3BWa2dc8iR+qVtkf0jYkTJwbuVwr17o1akq6tZhvtxcvyyy9vvvvd79qN54vIIJQRi06IBkDKWSI7k8o4U+h7XRSDiy++2Aq3oEVaxSh3noVPP/00q+fAPUdEs2EBTykNkhUqUtqc1i4zc2GX6QkRt7VVQ8zYljozvKFGokqUhUYptG6oNI0ifRKOf9Avm0FA6ZPy1CdnnHGG9EkF6xP/syx9khx9An6NIn0yuFkuWYg2t63LOvFHMcQMMS0N1f0L0SKc+PPx7vZ+N5tIg5VKkANLJhCl8K233rKfWSjkdZhxELV00qRJZvr06dZWYOGQ1/Z2GQ87Ojpin3eLLbbIm9NMqc6hgDRKcjRKPpBGKU+NojmUytYofqRRFiONUhikUZaExWg4ycxr6zZtXel1QF1NvzM/8yY49gsxGJSqRqk0fQLSKIVFGmUx0ijSKMVEGiU7Kl2jaJ3X4MyVLMBJpqPHtHb2mr60ocUW9z/Ml+Ak01JfLV2SASopIYoI3q94w8Krr75qvf2jePvtt1MGRpiQAgzSXNlpp52sx6U36sBTTz1lo/u5iIJBrLvuuqnPzz77rBlMSBfHfQDGOQZ5FM5Yoy6iInBixLiUqdkaeMXmnXfeSUVmiEoHSJq9YrL00kubr3/961awkzIQ+OxNeefaFO0ar+ZsWGuttez/r7/+emTdvvHGG1mfoxD9QzpjE7FFFIcgVlxxxZRxTrSHYuJ9LtL1RxjwYbi6//DDD7MWhK7tE8UgTEjFuc5i4NppunKJ8/dMIUoAfSbpdP/4xz+m2heDeF7iOkm4cof9999/UMvdiUH6t7DBh3RtkEU4pdBGCgV1Pa+ty7w/s82m7wxymGGwfVxznZkwpslGcZbDjBCVifRJYZE+WYz0ifRJMZE+yQ7pk8IgfTLQaZ9FaB/ObjNTZraamYs6Ix1mXLbLiWMbzXIjGmwEZ+mS8uS5555LfcZpJoiqqqqUfckkO+/EoMUjZB2Mu9H3ivJDGqWwSKMsRhpFGqWYSKNkhzRKYZBGMan6JOvl9Lnt5r0Zrebz+R2RDjPMmTBXstKoRjNhdKMZM7ROC9OESAjSKIVFGmUx0ijSKMVEGiU7pFEKQ5I0CnXW2tljvljQYd6f2WrnSli3taizJ63DTE1VvyZZfkSDWX1sk1lhZIN1opYuyQyVlhBF5pvf/GbKk//Xv/51ZNRDF9GQTj3MK5kXxd///ve8RHwg6gA89NBDNvLBHXfcYX8mzSMpooNA5PF3uPrqqwc9DRtRCABv2ksuuSRy3+22287+z73ee++9ofuR3s/dl/tOqeMERJQhgYgkdd9ggCGH0HPX6iJtAClkYf78+dabPBtcPRFhgZShUXVbKri0f1EC1z2bYYsLdt1119RACPVbLBDGLgoBixLC+gEGZx599NHQ47i65/tEaylU22egJapdFHNwwUVXvfvuuwcMKnhhsQh/LxTefo0IOV5cuk2IGnjwDlqElT3vMRcdpZC46D5cB9EVMmH33XdPCcirrrrKVCKk8Zw2q81Mn9dhunp6A6M4I6pWHdNoxjTXmaoqLUoTotKRPiks0if9SJ9In5SiPiFqlfTJYqRPCoP0iTHtXT12ARoL0abPa7eTP3EWoq0yutGMHlpnajThU/a4CVie4VVWWSXWpLN30lYkD2mUwiKN0o80ijSKNIo0SlykUSpLoxDJecbCTjNlZpv5cE67zTCDg38YTXXVZpnh9Wbi2Cb7Pz/LmV+I5CGNUlikUfqRRpFGkUaRRomLNEp5aRQyW85v67bzI+/OaDUfzG4zsxZ1mY7u6CxV0FBTZR32Vx7VmNIkLQ01WsuVA5pxEqLIDB061Hz729+2n998803z8MMPh+7rJhF5IZBaLUhskX4tnad9XFyUAcQbQsoJDAwc5x3tB49nBCI8//zz5txzz41MO0hKv0K+TDfccEP7MoSbb7450pv7sMMOSwnB8847LxVtwQse7Jdeeqn9PH78+FT6yVLHtR2iQkydOnWJv8+cOTMVDaMQ4AEfdF6vUfbkk0+mnglvlIRDDjnELLvssql6QRhE8cwzz6SO5T1GY2Oj/fx///d/qbSrXvhOMQy7uGy11Vb2fwRuUDQPPPJ/+MMfRh7j5JNPtqIKMXLCCSdY8RJG1N8yBYOb58k9M1dccUWgsU1/FWWQE22UtJHw+9//3tx1112R56UP9Ysi1/Zpf95Ipg7605NOOilUuBSbo48+2v5PG6W9B/HjH/84p7SdDLhFReKYNGnSEqLesdRSS6U+h0W/AO+il1tvvTVwH1IpF0Pkf+1rX7P9NfzqV79aon+Ieg5WXXXV1MAiaauvvPLKyHMRLcNF7SmHhWofzW4zH81pN+0hwmtYQ42ZMKbRLD2sXgvThEgQ0ifSJ8VA+kT6pBT1yWmnnSZ94kP6JP8kVZ8wCTSntcs67E+d1WZmt3bZ34XRWFttxg/TQrRK5ZNPPklNKldXV4fut8wyyyzxHZFMpFGkUYqBNIo0ijSKNIpDGqXyNUpvL1kvu1JZL3GaCQoq5o3gzMK0CWOarEM/jv3VWpQmRKKRRpFGKQbSKNIo0ijSKA5plPLXKDjr4xiDBnn3y1bzybx2M6+tO3KeBJgXaa6vtuu2mC9ZZUyTGddSZxo1Z5I3avJ3KCFEJi9PDAWMo1mzZoXut++++9qUaoib73znO+a1114zO+ywgxk2bJhN6fnnP//ZeiuTei3IaMgUjkPqP14Ov/zlL1OezgceeGDk984++2xr8GIE4jXMi+sb3/iGWWeddaxY4Thc72OPPWbFIyn++Huh4HpIBYnRFmW4YcBjvLA/L9Sdd97ZljPlgOHB9WIU4v3LS+c3v/mN9ZwvBw4++GBrZGI40o64L5cmE9GLgYDxtummm9qf883jjz9uy2uLLbawXvFEiiQtLJEh3n//fesV7DztDz/8cBsBw2uY07b3228/W/YHHHCATQNIFAzaJ2KdZ4fv/+tf/7IGNQaTi2gA48aNs9EoqN+PPvrI7LLLLtaQx1DnGvDkx7sYgwujGnGZDzjOW2+9lXa/hoYGs/LKKw/43ZFHHmmuu+462/aOOOIIc8YZZ9jyow3zfFNn/A2jNUyoknLw+9//vrngggtsOeNZfuyxx5ptttnGpv8lqgP9CCmDWaSQTqxkwplnnmkHfXiWfvazn1lRRTtkQcSUKVPMH/7wB/PSSy+ZDTbYIDIdIikkGRAhesTxxx9vbr/9dtsWuG+uGVHBPfCMv/DCC1ZAugEU4Jy0H9oJKWIZNNh8881tmdNmOD7ll69+M1eOOeYYG2mDe6L+6X95R7BQhLK89tprbdSGdOUWBWXEs7D33nvbZ36llVayzxllOXnyZHP99denBjb8KZpJgUnZ8dzQrugDl19++ZQhzjPEwAVCmOg6HJP3Fs8dzyzPPeXN4BZ9ajHKneulvSGq6AO5Jz4zGMb18ky99957th+gn5w+ffqA71900UW2rXzwwQd2MOb++++37WqNNdYwdXV1tm2S8veRRx6xfR3HpZ8qVZj4+XJhpxVfYbAgbanmfpElhEgm0ifSJ4VG+kT6pFT0Cc8Zdp70SfL0Cecjcp70SeFgYretq9fMbes289NEa4bqIUPM8MYaM6KxxjTUSotUKrTxBQsW2M+8e6NgMQ/9AbZmlE2aLdh92IBAv+B+R4Rdzk2/kwlRE9fFwj9Rys+DHSE4X0ijDNQo+a5raZTS1ijYKzfccENKo2CPS6NUrkbBbmUhkzRKMNIo+SdJGqXd6pOu/sVpad6bQ8wQ09JQbR1khtZXm1yXo+X73c33oxzQhRCFRxpF8yhJ1iiaR0mWRtE8SnI1itZ55T4/sqCj2yzs6ImVRcbrtN9cX2Na6qvN0LpqZZEpMHKaEWIQ4MVz+umnm3POOSdyP16mpPYkygAvsssvv9xuXjAyECbpBE9ceCGQ7tIJKV6EO+20U+R3eClj8Jx66qnWSOMl49JnBtHS0mIKCQblV77ylchUnA4MTe4VIwEjAE/foPtDGLiUiOUAHrR4hGOkEaHC77mOUfrzn//c3nshxBRgzCKyoyIIYIQQtcLPJptsYg394447zho6tC+2TNoUBiRRKUknS3QJf5ukbV9zzTWpCBr5AGOYLR1rr732EukrMdQweGmDRM7wt0XEEBNltNWo6A6IMKIQ0HdQvzzPQSlsXcSDfMEgz2233Wb7IoQ6Xtl+z+xDDz3UnhdxHwYiE+MVkYEwxdiNSrHpr3uikDBAcuGFF9r7Z2AoqG1Q3qUgphhIwGOfAQOcizDQ2bwwiMY1Y9BnC/1bVPuk/hgMc9E/HCwaQdTy7iF6AKLEC88pAxkIMQafjjrqKPu+QqA5keZgP9rvtttuawoNAwik5T3xxBPt80RfGDcNMM8a7w/6HyKcEFGFbbDeadlCdIKZizrN7Nbu0ImY+poqM665zkYpUEQCIZKN9In0SaGRPpE+KUV9wuQLE1jSJ4uRPikMla5Punt6zbz2bussE2ciiEkfHGVa6ms0+ZMAeAa9k5/pYB8WFnm/ly9Y7MOkspd33nnH2mr0f3GuzwsT4nGYMGGCKRblsJDSe4189i6y8fdn3/ve9+x71It/f6JpYhvzPg/TKLzXeCegVcLOi70Sdg4/TNxzTq9G2W233SK/x9+IdsnCj3vuuSetRuFdGHW8sLr230fYMbBR9tlnH3P33XenfsfYUND+RLrF+Q07JkqjEMmZxRV+vMeMqvNM9o3bjrz7+csDrYmdwzs6TKNwz7y7nUaJunbK3v/3qPth/7gaBbvcf2zsWNoSdmocjcLCfP8xeG5Y0MPCszCNgg3lougG3WMcvPUQV6OwWJOFLP7f/fSnPzU/+tGPQjUKi3qoNzRKWJumX+H32IJRGgV7Mex+M61vGDVqlK0j+iQWDIZpFM7rIogHPccTJ060i81YoBdHoxBJ3nsMFlwx/sMixTCNwngKC2OdRonqT9K1i0z61yD4DtqOhaMskgrSKIwTUWZuLCqbfj6ORkGzs+jT/2zRT1522WWBGoXnFD1APbBoksWUYRqF/dDOTh/n8r6K6v+crvvrX/9qdUY6jeL/LgvrHnjgAdv/OH0SpVH8bbAY+mRua5eZ3dpp2rt60u6PA/+opjozoqnW1FQvLt9SsdNcnbPYkX5OCDF4aB5F8yiFRvMomkfRPIrmUbxoHqX051FYl7WosyflKJMui4yXhpqqlKNMQ22V1mwVETnNCDFIIIB48fg9H/1gfJBGjIgFvPgxDhhYxRjDWEZMRaUkyxQmfLyGF0Z5nIEsXri8OHnxYFDxP0Y8L1VeNHi8YuQgSPBULTQYU3inR6UQdSBWmdTCsGYQnsFqXkTLLbecNWJ4GftT2ZUDDNBitODtjzd4V1eX9czfcsstrYDAGx+DuxBg+BF1AI9jPKtpC87Ln2vYeOONbWpNPMfDojIiqEhfyaAtxjTHmT17thUKCCEmBhAETO7xjASBIU17Q1DhvU20ATyQiUiA+GfAopQgneRqq61mveRffvlle71kaiE6Bul+aZNxoE3z7GI4UweISo7F4D3HJ4Im5Z9vEChPPPGENbwZWKF/o2+gLTCBQ38Vx6BlMQGpJIlowIQCdUe0FlIVY+hS30QVQIy7yBr+aAj8HnHAd/FCJxICfRATfDzXcQ3rYkAdI6CYMEGc4PmOpzttHAGFQIky5tNBv/bggw/a54ljI6x4l1A3nINnhHLh2QwCYY/I/dvf/mYXkxDJgrrww8Ab98EEOefkmWcyhDbHu4VoI7TFYsH1EKWC54BJRKJycN9ExuF+6AvDBiJJV0rb43ssaOA4DBLQj3JPfJ/JRfqwfA9M5ArRnOe0dpmZi7pCBRlRCsY219mFahJeQgiH9ElhkT6RPgHpk9LSJ/QvN910U9rjSJ+Urz7hPNS/9En+wTGfySAcZRa095g+Ez0ZhAYhYjMapK6mcAvRROnhjQ4bx4Zz+0RFlc0WFtO6RcheWIDL+byLUEVpwDsHGzKdRqFP531Mn8/7hf4V+wyNwt9YxIBNkC9YbMDiKwcaKE77RodgC/Mexabkf+xS7CL+Rn+OTYwWSLfALR+w+IgFBXE0Cgt4eM8Q+RV7juvmmcEe5N39rW99qyw1ChoYjcIiJjQKfQE2CO9TFpigE1gcUgiw/92iK7QFC8LCNEoYvP+JDM5iHRawcxzsVKdRVl99dXsv2OLYWUFwf7Q3bFUiCNMe0SVoZWx+/+KbwQZtx31hq3LvTqNwvSziInpuHGjTPLvoburAq1E4PjY6QcDyDY4oPPuMoaNROK9fo1Cf6aDPw8bFNsROpO6cRmGMhr+zsI2oxEEahUjWRD3GYYrvOo1Cu2OhG891nOsoFuhmHF8Zi2IRn9Mo2PY8J1xz1MLOdPBdbG3Gjjg2trbTKJyDZ4TFuWEa5Sc/+YnVjfTtOOmGaRS0dNAcCm2Odwtjc8XUKFwPGpXngHEOFvw5jUJUcPoPf9Rqr0ZhnIvv3XHHHXbhrlej8H0iUu+xxx4DIsgXUp8saO82c1o7bdbLdBldqq0+qTMjh9aZRi1QE0JkgOZRCovmUTSPAppH0TyK5lG0zquU51E6u3utgwyOMq2dvWnnRhy8o4bWVpnmhn5HmdoCOuyLaIb0VUqudhGId8IHAyLfhBlB+cBrwBfyPKI0UH0nC9V3clBdJwvV9+CBSc9k0JcLu0xXT/BAYtWQIWb00Fozuqk2LxGd81HfDGAy8ImtiojNBAZJRPlRzvoE1M8lC9V3clBdJwvVd7JQfecXtAaOMmxhusOB4iBSGo4yxcpumWt9S5/Eg8lGFikAE/ZBjigOJmSJ8AdMRhKVNwoWqTMRyqJnr1NCKWqUuG2smJHVhRBCCCGSREd3j5mzqNMGEkunT8z/9MmooXVmWGOtnS8pB3CqRKO4RZgiGZTzPIrGYZKF6jtZqL6Theo7Oaiu06/FauvqTWWT6ehOrzu8wcTQIMyPDK2rts77g02N1nkp00wlgEcunol4q+LtSXoqvAqJSoK3tyZlhBBCCCEql0Ud3eaLhZ2mvStYnA0xQ8zIphozZmitqVG0AiGEEEIIIUSmUZs7+rPKoD3SReCqq66yjjLDG2sULU2YhoaG1Gci1abD7eP9XqkSd96lkJPNOKNVV1enfiZipOLkVSaq62Sh+k4Wqu9kofrOnd4+YwOIzW3rMq2dS0bL9lP7P30ywqNPent6TPylboNb1yxGYyNC9pw5czL6LlHdhRBCCCGEEJnR09tnFnX2pBxl+DkuDTVVKUcZZbUsTeRNUQHcf//9NrUZXlukKRs2bJiNOEEaXFINkt6ssbFxsC9TCCGEEELkkfauHvPlwk4r0sIY1lBjxjbXmfoaLVYTQgghhBBCxIeIaSxEm9fWbbrTTAox8TOsvtouRGuqK05WGVEeEBG7paXFLFiwwMyaNSty34ULF5qOjg77efTo0UW6wvLGv/BSi24rF9V1slB9JwvVd7JQfecW3RlHfhxmetOUG1lkWgZZn+S7rvk+jjdCCCGEEEKI/NPZ3WvXXuEo09rZa/rShg/rB60xtLbKNDfUmOa6alOntVklj5xmKgCcYn7yk5+YtdZaa8Dv33rrLfP666/byaZyiMwmhBBCCCHS09XTa2Ys7LIL2MJoqq0241rq7ISQEEIIIYQQQsSht7fPzO8gajMTQ+kXZOGcP7Kx1gxrrDE1VXKUEcEst9xydq7i888/twv9vBG3vXz66acDviOEEEIIIZINcyHzbFaZbruILR2NtdU24+XwhhpTLX0ihBBCCCGESOOY7xxlCCIWF+ZCyCRDRpmhddXSHmWGnGYqgM033zzw92uuuab58MMPUylbhRBCCCFE+ULKz1mLuszs1q7QSGpELViquc4KNEV3FkIIIYQQQsShravHLkQjq0ycqM0sQiNqc0NtlXSHSMvqq69unWbIIjN16lQzceLEwP3efPPNAd8RQgghhBDJXLzGwjX0ycKO7rTxnVmgtlifKIiYEEIIIYQQInzN1aLOHqsz0BzdvfGzQRJArKW+xq7FatS8SFmTeKeZefPmmSlTptjt/ffft9uCBQvs37bffntzyimnxD7WjBkzzP33329eeuklM2vWLFNTU2OWXnpps+WWW5rdd9/d1NfXm2LjHk49pEIIIYQQ5QmL1ua2dpsZizqtiAuLZDC2uc5ODMnuE0IIIYQQQqQDbWGjNrd2mfYYUdTIZjmiqcYMq68xVYqcJjJgs802M3fddZf9PGnSpECnGYJ+TZ482X4eOnSoWXvttYt+neWIX//zMwtNReWhuk4Wqu9kofpOFqrvcIjsPLetyzryp1u8RikS1Zn5kOaGGvtzpdc13w/L2CiEEEIIIYQIhoyVOMjgKLOoqze2TT7EDDFD66qs7sBRhgDGojJIvNPM8ccfn5fjvPDCC+byyy83bW1tqd8ROc054jz88MPmnHPOsU40xWLmzJnWAaipqUmLJ4UQQgghygzE2oL2HvPlwk7T2dMbGuV59NBaM6qpVik/hRBCCCGEEGk1RmtX/2I0tEa6rDJoDBaijWistZHUhMiGVVdd1ay55po22wxOMzvssINZbbXVBuxz7733munTp9vPe+65pw1IVikU8160kDI5qK6Theo7Wai+k0XS6xtH/rmtnWZOa5dp7exOu399TbUZObTWjGyqM7XVVYmo66qq/vusra01I0eOzPNVCSGEEEIIUXlzIG1d/Y4yCzq6rXN+XJgPaamvto4yQ+uqtQarQqmcmYc8MGbMGLPsssuaV155JaPvTZs2zVx66aWms7PTNDQ0mP3228+ss8469ucnn3zSOsx89tln5le/+pW54IILTGNjoyk03d3d1omHiGxEZpPTjBBCCCFE+UBK0C8XdJq2rp7Av2PZjWiqNWOG1pbd5JAQ5YoiQSYL1XdyUF0nC9V3slB9L4ZIzURsZjFamEO+Fxe1uaVEozYXur4VxXkgb7/9tvn8889TP8+fPz/1md8/+uijA/bHKcbP0UcfbX784x/bOZNf/OIXZv/997dzF/z81FNPmYceesjuN378eLPPPvsU9H6EEEIIIcTggY2+qKPHzGntNPPautI68hM4bHhjrRk1tM401VVr3YsQQgghhBBiCWd81li5jDLpMld6IViYc5RprK2S3kgAiXeaOeigg8yECRPsNmLECPPll1+aU089NaNjXH/99XZyh4m0c889d0CUNJxnmOi5+eabrePMPffcYw4++OAljnHjjTearq6u2Ofca6+97HGD6O3tNX/4wx9s5Lbtt9/e1NfXZ3Q/QgghhBBicGjv6jEzFnbZiAdhsHBtXHOdIj0LEYCiOItCofpODqrrZKH6ThZJq+/+zJXdZnZrp1nQ1m36TPREEc74LEQjanNdBWiNbOpbUZyDISjY5MmTA//2zjvv2C2d08zKK69sTj/9dBvoq62tzfzlL39ZYh/mO84555yiBB0TQgghhBDFpbO71zrKsPE5HUPraszIoXXWYUYRnkWl8thjj9kgBVOnTjUfffSRDY588skn22DPQgghhBAinK6eXrMAJ5n2brOoqzd2AK0hZohpqsNRpsY011dXxFyIyIzEO80EObBkwpQpU6xzCuy4444DHGYce++9t5k0aZKZPn26uf/++80BBxywxGKuBx980HR0dMQ+7xZbbBHoNIPDzJVXXmmeeOIJs+2225rll1/eOvQIIYQQQojSFnQ4yxBZLUzKNdVWm3Et/dHUhBBCCCGEECIIFqDNXtS/GA2dkW6CaFhjjXWWIZKaoqiJQrLJJpuYiy++2PzrX/8yL730kpk9e7adJ1l66aXtfMcee+xRkQHAWPhWKPxZkXp6ehKbUavSUV0nC9V3slB9J4uk1Te3RoCwua3dZmFnepuopmqIGdFYa7NeusVrfb09JoaPTcXWNet/2AjAO2fOnIy+q0AApc9tt91mZsyYYVpaWmx98VkIIYQQQiwJtnR71/8cZTq6TXsGIgEnfBxkcJQZWlctp/yEk3inmVx57rnnUp9xmgmLUEfGl1tvvdUsWrTIvPHGG2b99dcfsM9NN92U87W4DDNEI9h6663NKaecYt5///2cjyuEEEIIIQqXJnTWoi4zu7XL9IZMmNRVV1lnGVKCahGbEEIIIYQQwg9aYn5bl3WWYcIoHfU11f/LKlNraqoVSU1EwzwDWz4YO3asOeqoo+wmcse/8LKSF90mHdV1slB9JwvVd7JISn23dfWYeW3dZl57t50DSefI39xQbUY09Ed6rpQ5kHzXNd/H8UZUFieeeKINloxOuuuuu+yaMiGEEEII0U9vb59Z1NmTcpTpTqMtvNTXVKUcZRprqypGZ4jckdNMjrzzzjv2fyKgrbLKKqH7rbXWWgO+43eayafDzFZbbWW+/e1vW2cdIYQQQghRejDBMaet28xc2Bkq7IiqNqa5zoxsVMRnIeKiKM4iX6i+k4PqOlmovpNFEuq7o7vXzG3rMnPb0i9GqxoyxAxrqLFRm1PZK/t6TXc5hm0uUH0rirMQQgghhBDZ0d3ba+a39Vh9EifqM4vY0CbDG2rkyC8Sy3rrrTfYlyCEEEIIUVJ09SzOJrOoszf2GD/O+E11OMrU2IDELnOlEH7kNJMjn3zyif1/6aWXHjAp52eZZZZZ4jv5gom8K6+80jrMbLHFFnKYEUIIIYQoURB0CLwvF3Sazp7e0MVso4fWmlFNtUoLKkQJkZRIkKIf1XdyUF0nC9V3sqjU+sY5Zn57t3WUIYJzOhprq+1iNBxmKllf5LO+FcVZCCGEEEKIeHYzkZ/RJsx7pLPBmfsY3lhjs8o0KNqzyIF58+aZKVOm2O3999+324IFC+zftt9++4wyZc6YMcPcf//95qWXXjKzZs0yNTU1dv3XlltuaXbffXcbQFkIIYQQQhQGNER712JHmTgO+A7mO2w2mboaM7S+uqLnP0T+kNNMDnR2dqaE1+jRoyP3bW5utmKqo6PDCq18cvvtt5vJkyebhoYG65xzxx13pP6GmGtsbDRNTU0lE6E5Dv4BEn6ulIltsSSq72Sh+k4OqutkofpOT2tnj/liQWfowjZKcERTrRnbXGezzCSpvv1RoYUQQgghhBCLwdZu6yKrTLd1mOlNY3tXu8VojSxGk50thBBCCCGEyB+dNuNlt5nX3m0jQadjaF2/I39LfY2pKvG5D1EeHH/88Xk5zgsvvGAuv/xy09bWlvoda7qcI87DDz9szjnnHLvuSgghhBBC5Ife3n7ne+co090bf60RGSuto0x9jWmUI77IAjnN5EB7e3vqMw4r6WAfBJb3e/mAyAfuev7xj38M+NtBBx1kxo0bF+v6vHz44Yex9pswYYIpBlpEmSxU38lC9Z0cVNfJQvW9mPauHvP5/HYzv60rdJ9hDbVm6eENZbugLdv6dtkRa2trzciRI/N8VUIIIYQQQpQ33T29diEaC9I6YkRY02I0IZKFApgkB9V1slB9JwvVd7Io5/pmHdsCq0267AK3dNRWV1ltwsbnpKHAY8VjzJgxZtlllzWvvPJKRt+bNm2aufTSS22wZNZT7bfffmadddaxPz/55JPWYeazzz4zv/rVr8wFF1xggxULIYQQQojswNm+30mmx+qJuLbxEDPENNUtdpSpq0methD5RU4zOYBYcpCiMx1uH+/38gGpRcPSi7733nv2fG5BohBCCCGEKJ7o+2J+u5mzqMv0mWDB11RXY51lmutllgshhBBCCCH6s8owaYSjDJNI6SaPyFI5orHWLkbThJEQpUecuaN8oYWUyUF1nSxU38lC9Z0sSr2+0SKtnT1mTmunmdfaZXrSaBMcO4Y31pqRTbV2zkNRnxejwGP5heDBBPhlGzFihPnyyy/NqaeemtExrr/+eruWiro599xzzWqrrZb6G84z48ePNzfffLN1nLnnnnvMwQcfvMQxbrzxRtPVFR4wz89ee+1ljyuEEEIIUemgJdq7nKNMt2mPERTMUV01xDTXVVtNgbMMPwuRL7Q6Lwfq6upSn7u7u9Pu7/bxfq9UWXHFFQf7EoQQQgghypKe3j4zc2GHmbGgw/SGTCKxmG3pYQ12AkkTR0IIIYQQQgic7nGUYeNzFCgIJoxwlGHSSJpCCCGEEEIIkVdt0tppZi/qMh3d6bPKNNZWm1FD68yIpjotaBNFIciBJROmTJli3nrrLft5xx13HOAw49h7773NpEmTzPTp0839999vDjjggCUc4h988EHT0dER+7xbbLGFnGaEEEIIUbH09vYHBHOOMt2kq4xJfU1/NhnmPZpqqzTnIQqGnGZygBSdjvb29rT7u3283yv36GdxnIXykV62pyd+Si5Rfqi+k4XqOzmorpOF6tvYXDJzW7vMjIWdoeKPCaOxzXU20tqQ/5VTkuu7t7fXbkTimjNnTkbfVVQ1IYQQQghR7mBDL+zoMXPaus2iju6Q/JSLqauuso4ywxtrTG21ssoIIYQQQggh8qdN5rd3mzmLOs2CdrRJjIyXTcx11JnGutLOmCOEn+eeey71GaeZsCw/22+/vbn11lvNokWLzBtvvGHWX3/9AfvcdNNNBb9WIYQQQohSd7hnjgNHGbJUhgUW9sN6qSabTabatNTX2MDDQhQDOc3kABljWlpazIIFC8ysWbMi9124cGEqwsDo0aOLdIXli3/RZdIW3SYN1XeyUH0nB9V1skhyfbuFbl8s7DSdISlFq4YMMaOaas3oobUVEWkt3/XN98vVgUgIIYQQQohM6egmq0yXmdeWPtoaDuvD6qutswyTSIqwJkR5UajAY6AAJslBdZ0sVN/JQvWdLEqxvvu1SbeZ19aVXpsYY4b+L+MlC9v6pUlfQe2dckWBx0qbd955x/5fX19vVlllldD91lprrQHf8TvNCCGEEEIkDWza9m7nKNNt2ruC10gFwVqpZusoU2OdZSph7ZQoP+Q0kyPLLbecTdv5+eefW6HrFb5ePv300wHfEUIIIYQQ5Q+REr5c0Glau4IdPpB4wxtrzdjmWkWCFkIIIYQQIsH09vaZ+R3ddkEaOiId9TVVZmRjrRnWWG1qqqQlhBBLkuQAJklDdZ0sVN/JQvWdLEqlvnvQJu392qQtZG7DizJeZo4Cj5U2n3zyif1/6aWXDl3jBcsss8wS3xFCCCGESOLcxqLOnpSjTDpne7+WaGnod5Rpqq1SUDAx6EjR5sjqq69u/yeLzNSpU0P3e/PNN5f4jhAid0499VQzduxYs9FGGwX+nd/zd/ar1HtMEsWo748++sgeg+0vf/lLDlebPFy5/frXv17ib6Sudn+njEWy2XfffW1b4P9cePLJJ1Ptis/Fjr728dx288HstlCHGUTfyqMbzTLD6zWRJIQQCUH6JFlIn5S3PiHiqvSJKIY+YRHaZ/M7zHszWs2n8zoiHWbIUImjzMqjGs0qoxvNqKG1cpgRQgiRE9IoyUIapbSRRhGDqVGeeOIJu9Bt+rx2q03QKFEOM2gTHGVWHNVoJoxpNGOa6zTPISqCzs5Os2DBAvt59OjRkfs2NzfbbDQwa9asvF/Lww8/bH7/+9/b7emnn0797sMPP7TXmGkWJ/aPsxUK/yJYLYqtbHKpb2mU8qPU61saJb8axdWvNErlE/Vsd/f0mTmtXebjOe3m3Rmt5oD99zPrrbqcOeWoQ9Jnp6yrNku11JtVxzSZVcc22c/8juMP5jqvpJNvW23I/7JrZrKVAso0kyObbbaZueuuu+znSZMmmYkTJy6xD+lSJ0+ebD8PHTrUrL322kW/TlEc6Mj322+/1M8MZP35z3+O/A5G32233WY/z5gxo+DXKJIJhkYm0E89+uijBbseIYQoNxgkuOiii1I/b7jZlubSa24N3LexttqMa641Q+trzLPPPmv23nvvAX+P+77nfG5woqWlxTphNzQ0xL5mMh3efPPN5rHHHjNTpkwx8+bNMzU1NXZgY8UVVzTrrruu2WKLLcwOO+xghg0bFmnfYKu8+OKL9phtbW2msbHRjB8/3kyYMMFsvPHGZptttrEDWlVa0CdESSF9IkoV6RMhRKVD5ObZrV1mbluXae/qTbt/U221XZDW0lBjqquGZKxPsMfvvPPOtN+rZH1ChOBVV13V6pPtt9/erL/++tInQpQg0iiiVJFGEUJUOjjwj5rdFkubkFFmWExt4pBG0RxKudDe3p76HKe9sA9BlL3fyxdvv/12ai2Z45133rFtj7aYSXsGnG3iQLssBqWyMDIdOBXus88+qZ/3339/c+2110Z+5+STT04tzJ8zZ07Br7EcyKS+vX0hbT1qv6i/lzJx7zEK3keZsM4665jHH3/cJLG+vd/j2sq13Qwm6cqfv6lcKxsyG3b0GLOgvdvMb+uKlZHSgW5oaai1GoL/o3SEt/8o9PN6wQUXmAsvvDD187bbbmvuvvvutN975plnzJ577jngd3Hf95yP8zqN8u6772Zk002fPt3cdNNN1kZ87733Uhpl1KhRVqOst956Zsstt7QaZfjw4ZH2zV//+lfzwgsvWI3S2tpqmpqa7DyK0yjMo/B/phrF7V9bW5vxu6oUUE+WI0zErbnmmuatt96yTjM0xtVWW23APvfee69tzMDDpBdIcqCTZXBmrbXWGuxLEUKIioRoBhhwcNlll5nDDjtssC9J5HGS+qyzzjLf//73TakIRC+vvPCs+fLzz8y4pccPSCs6trnODGvoj5AAf//737M+59/+9rfUZyJK3X///XagNg6IqHPPPdcKHy9EkPrss8/shtC7+uqr7WIV/vezcOFCc8opp5h//etfgX9DoLE98MAD9ncIrp133jmLOxVCFAvpEyGEKCzSJ8nWJ17NMH1uuxkzvyPyuEwcjWiosc4y9bW5LSR56qmn7MTHMsssE7lfJesTFrmxoU/OP/986RMhygRpFCGEKCzSKMnUKL19fWZhR4/5wqNJunoHznF4qakaYh1lRjTWmvqa/Dh1SKNoDqWUM8044qzdcvt4v5cvaD9sfmg3nE9OVoMDgbPPOOMMBcQWQogCahQCHgHZ1r7+9a8P9iUlFqsbcJJp77LOMl096QOAOeprqm0QsGENBBSutk4dcPbZZ5sf/OAHphTB2Z11/Msuu2zkfi54TzZg83s1yn333WcOPPDAWN+94YYbzA9/+MNAjYK2YiM74VVXXRXq5IsOOemkk+x5/XA9CxYsSGkU5lHQY7vssotJEon33sBz//PPP0/9PH/+/NRnfu+PEoRTjJ+jjz7a/PjHP7ai5Re/+IVtkBjP/MxgwEMPPWT3I5KE1ztdVD5MlhPd5Prrrx/sS0ksL7300mBfQkmxwQYb2EHxdGQataRUUH2XLoicgw8+eLAvQ5QI//znP005vcvntnXbKNGOuvp609nRYR6675/m6988yS52GzO01oxsqjVVnvSV2ILuXulXM4lCxWTMBx98kMpUuGjRIivM4kz4/OMf/zDf+973UudlInTHHXe0k1PcDzbuf//7X/Of//zHvPbaa6HHOfbYY61TOKy88srmG9/4htlwww1ttAJEGhGriALHRJQivQpRHkifDD6yVwcifSIGU5+wMdAsRK76pLun18xt77aRmx1RU0vNddVmRFOtaa6vHqAfssVpjdtvv9185zvfCd2v0vXJ1KlTbdQ06RMhygtplMFHNutApFHEYCGNIvKhUdq7eux8xrz2bpv9sq07XJkMMUOsJsGJn/9dILB8II2iOZRSpq6uLvU5Tp/r9vF+r1Qh+rjIHfoBIsTjXCcGh1dffXWwL6Gk4N1yxRVXpN2PLGfliOq79DWKqCxwjFnQ3mXmt3WbhR3d1nEmDpddd5tpqq9OZZNpyDEQWLFxegMnkdNPPz1So+BA6/1OXHBocRqlubnZOrDgRBPHaQbt5K6L8/Ls4XDvNApO/WiUf//735H9Jr4MDz/8sP28yiqrmCOPPNJmvBwxYoTVTFOnTk28Rkm80wwNxJ/u0pv2ki2d0wwCmAZ7+eWX21SrLgWjFxxmzjnnnLI1UIqNf1CGn/0R3kud0aNHm1mzZlmvPToqUmOJyq3vcoE0a2THGkxU38lBdZ0sKrG+F3R0my8XdJqO7l7jDcK29Q67mEn/vs/859477YTP6KHB6UWZUJk7d64VNEy4IDoyjZBGxLgTTzzROmbjzP3ll1+acePGhX6vp6fHOnM7EUbGw6BISHvssYeN7kAqUCK6Bl27m+zh2hkYrq+vH1C/W2+9tRVqv/3tb80999yTNhpDFByvXNK0C1GuSJ+IUqQU9IkQQmQDWmdhZ/+CtIXtPabP9EVGbq6trrKL0YY31Ji6PEVuduy+++52oRmTPVEL0ipZn8Dmm29uF6mhT7B3ctEnQojiII0iShFpFCFEudHd22cXvM1t6zLtEU4yDjLJOG1SU12YLBbSKP1451DIrieNUhp4HV/jLIJ0+5SDw2yczDlQKAdN/1wfz1s5zBVznX6NQt+As3GYRuntXdzfJtXhNZf6TkL55fMeWWu62mqrle3zXYz69h6Xa6vUdlVIqCdXboXuz1Vfxae9q9eufyIbZVvX4vdeOqqHDLFZZFrq+x3tF6+L6gutN29bSvfeLXT9e/sfp1FwtD/11FNDv0MWySCNEuc6nd+AV6OgGcgQk06j/OhHP4rUKOuuu67ZbbfdbKZRp1H814RGcQ4zYeu8tthiiwHrvJZeeumM64ByZevq6jJz5szJ6LsjR440g03inWbyxSabbGIuvvhi+9BgOM+ePdsKEhoVDQ1R7RfJlUBc0ZUr5bKI0nuddHy/+c1vTEdHh42U5k295cWbUrVY5VnqZFLfSSi/fN4jL79SK6dSq2/vcbm2UiuvcoB6Ciq3QvTlqq/SJR/1HdaWgs6Rz/pv7eg2n81rN4s6g4XB7l89wDrNTJvyrpn58RSzTMiAKZEAADvQ6zid7joZgGcCBQ444AAb5eyXv/ylFUp33nlnYKp2x4svvmgnhVwEAZfWNoy11lrLbn4QUw5SchKpLQzKfr/99jPZ4Pr12trakhBHQlQyxx9/vLnkkkusPrnwwgvNLbfcMtiXJIQQQpQdnd29qcjNRGSLgsjNLQ39kZuH1uU3crMXsroy2UNG9ahF5yxYAyZWMgns5NUn2P2cz+mTO+64w3zrW9+KpU+OOuqowMVoXlgAELQI4IEHHkh9/tnPfhY5zo4++epXv6rJVpEIyj2AiTRKcupaZIbqO1movpNFvut7fnu3eW9Ga6xjtNRXm5VHN5rGIkSElkYZWNdOo+RS1wo8lj/IGNPS0mIWLFhgnSOiIDo4tqpzphDR+Nt4Ob7PpFGSVd8iPqrvZKH6Ln96e/vMos4eG/gLR5l0cxle6qqrrIMM+qGpgPMaxUYaZeCzXF1dbfbee2+TCxzP6wRVLhQmdEQZwaJDolDE3aLAQ4xG+7vf/c56aV133XXmV7/6ldl3330r0mFGREOkENoDkBaLzi0XZs6cab0Pt9tuO5tWFYcsOm+cc0jtFQX7sRD15JNPtj+TqovPLKRdaqmlBixS9e/7yiuvWGFIZ0zGJNJ14dnoH0AgbReLc9dZZx17baSHPO+88+xgQxh4HD722GM2mgvenBMmTLDPEfe37bbb2t9//PHHOZWb/36CXlhXXXWVfQmsuuqq9vxkj9p0003NQQcdZH7/+9+bjz76KPT4dPx4iR5yyCE2+hjlSWozFkjzXbJPpYOMVlwfZUzZ8f9xxx1nHfBKCcqIskz3wiRVLfulW/xM2yCFKIOEq6++uvWoXWGFFWwbxyuWtNr5rm9XZ3/+85/NLrvsYs/Htv3229tsYW7QKy5EQfS2e9ounroMoOB1HMXzzz9vn2nK03v/OFqSEhwjLQrukXt1Rty8efOssbXlllva/odr2WuvvdK+uzIBw5DrXWmllcxyyy1nz8V7jnOn49Zbb021i7Bnir7p29/+tnVE5R7c80CWtzPPPNM6pnoNOI7ldQjgne7O4TbaoxfSINLuDj30UFt29GtseGSTRv2hhx7K6D7ox66//nprLFMuXDeRo3CkJfV6Ovg+jhWkQ6QdueuhDOh7MdjxzA7j8ccft4b1BhtsYFMy0oa22mor23+SmjFbqFvukTJJVw7012Ft3O3jL9ew/sQ9ww6eJX+dRj3fgFMJthd9OmVJf/5///d/sbzbO7p7zIezFpkpMxaGOszAjpttmHr2iEIQBA7UDz74oP2MGMoEIhW454rvUreunMOccB2ffPJJ6jPvo2zJ13GEEKUDfQnR151jXK62JvoE2wPbBzse2wCtQD+dzo5jP+xuF8UFzcHnjTfe2L5L+VvUvieddJK1AZZffnnbz/Pe8+uT5557zr7HeEdybezH4BATnVHvZd6t6BjsKK8+wR7h997+MRv89xOkT/70pz/Zd9kaa6xh32UTJ060NiKa48orr0yrT3hXECEG24LyZNDsK1/5iv1uHH1CdBqujzKm7Pgf3fnyyy+bUoIyoiz5PwqCWLCft11F6ZP999/fOpTyzKANaeNEFkXz5ru+XZ1de+21VhNzPt67O+20k9WTmeoT7GVvu6cNo3suuuiitPrkhRdesM805em9f2zbs846a4lMzH64R+6VewZsGWzxbbbZxj5DXMs+++yTcirOBwwyO7vPjSNgP2aiT7jmsGeK/ua0006z2Ss4vnseSIeOZmXw2atPOBb9mINouq7tuY326Ncnf/jDH8zhhx9uy45+jY0xFcYFXESoMBiPcMd2+uTGG2+0fZgrF/QuEaPi6pN//OMfVufSjtz1UAb0vQz4R+mTJ554wuoy9AzahDaExv/JT35iPv/8c5Mt1C33iEZKVw5BWcKdPnH7+Ms1rD9xz7CDZ2nZ8UuZtVdZ1my11opm+3VXNr/60ZmB5xvZWGMmjm00Lzz6gDnysIPtmBFlSX/+05/+NOPoW1HwvkDTeid0gvSJ02WZ6hPaunuuvva1r9l3E892lB5yTJ8+PfWZ9pAt3vdvLscRYjAgcEahNv/CSRdQpJQ37zXTL7o5FDQK796g7/gDKYVt2DvYH9hSXo3Cu4n3QNR3XZ/P+5ufX3/9dfvZq1HC9n3jjTfs+JzTKJtttpnVDvSd3nMwR8T73atRfv7zn1sbPey6uPennnrKvku9cyjYjNipvFMYA4y6t3Tl578f/4YT4jXXXGMn/L0ahfFDxliZXyFiZtj5WVzB+wl7h/eV0yiMC/JdbIt07eb999+31+fVKNgmLHLIpI1Ebf7AY9lslBFlyf9R+zF27OySqOfEq1EYJ8dGd3rhhz/8obXh813frs4Y82aei/OxYQOjKdEv3vJK1+8wP+pt97ThXXfd1QYdRJ9HfRcNyjNNeXrvHzsEe3zKlCmR33f2OPfMz4sWLbL2OLal0yjMT2H/Zlvn/o2xaa4XW5z5As6FDcm5veXmgkV569tplDFjxoQ+U/RN3/3ud61N6dUo6D50K32pt07iaBTao/cc2F1//OMfzRFHHLGERjnhhBNsJo+oMmBOyh2b++Beb7755iU0yqWXXmo6OzvTlinfv+uuu1Ja110PZUDfyzwduizs+8yhu3knNAptCI1C/zljxoys69ppFMokXTnQX/vrG3g3Ud/s4y/XsP5kQ59GueryS8x266xktYnbvBrF6yAzblijaWmst9GEDzzwQNunU5b054yZ0efk0v69/Q9jUm4OBe0etP/8+fNTGoX3SSZ9OXMvTqPwXe7DzaFQ9lHf9c6d0Q9ke7+0bwfvxULZaZQLmws8lskmwqH/BMYqohb6eevZfUdUNppHyWwexatR+F/zKJpH0TyK5lE0jzJ48yi0I+7x8KOONe/OaDUfz203c1q7Ug4z9991e0ozfPOgvVLfwyVmaF2NGT+8wcz98E2z5VormnUnLGeeeWLyAIeZTOZR/HUa9XwDmo+Awk6jaB4lOzSPEg+FYxeigDBwiQMVBjVGE4ZINjzyyCP2Ret3QMGhhI3BH4wAjBrvgFIQGJFnn312rGiLiAQMGwYtHdOmTbOGCAKRVGA4ieBsgPDxGjkYLJdddpmZPHmy3Y/UYX4wcrhmPwySMfDLxvU6p5Z8g6GBIe93TsAIZmPAHcOK/Zi88kPZI6K4Ti+UF0KAjevnxYeRFQQD6Azqeo14Bl9oKyyWxyCrRBj8pc36RTlG42uvvWa3q6++Oq/GDyDuMWr8jmZMrrFR7rTbdNA+mNDF6csL9YjjBxsTiUQeYWAhSFgEZYrg/hFRbBjoiCPKKR3vvfeedfLyixTuk42Bd4zSbKG/YHESRqoXnh02+iD/3zKFfoWBGm9qRPc8sCG0KFOeu6D+JA4ffvihFU1hhiMbzyRtBHHtncQKArGE0U4/54UUiGwYxDzHYRk6qC8mnmjvfpgIZkMMM4HhDGnvQBBtCCHm56233rIbzrs8R3vuuafJFEQ9dcukfBBPPvlk6jMLA3hW/QPwbh/KEUFTaGg7DET5HcXoy3lPMXnGAAjvLT/dPb3mywUdZtbCTtNngqNk1KTSjBrTUFdtB9xcv8HgoX8ChLrhfUDkKQZZqMe4OMcYBvfcgAntkrbGO4cyD4ssQIQs72BdtjAB4z2OE49CiPIG2x77BH2C42vYgFA6SCP8zW9+M1SfcFwGnDlHOn3CQpxzzjknlj6hj0djefUJuoPFHEyW896ln+c9zkCaX5/wPqAvZb8ge4KFIkE2E/qEvpeN68VuYfIk36A7sOn8g+pOn2AboA3Zj/vzgy2DbcF1eqG8mPxiwz5gcJiB9yCw6Ri49OsT3msM8uZiU5arPnHaFFuUBTX51idklPNPkDpNRLkT2TAdtA+eOSYrvVCP2NFs1D0ag0F4P7QJJib8cP/YAWyMbTCuEeZU7be/sJX8+oT7ZEOfBI0FxIX+ArvPRWzy6xNs6FwnlehXGOcI0yfYgZQpYyS56JMgvejVJ/RXDK6jU9PpE/p29vXrVKdPWLBIm4rSJ+hc/xgHTJ061W7YvvQT6AW/PqENoaei9AmT2UxsZgqLuKL0iff33Gs6fcLkVRwyiaBXNWSIaa5brAmIwvadb5+6xLuWvpyJZfQJGiFIn2QDesH1G0yu+fUJ9eb0CRPKmegTp7EY23KamvcVbY13DmUelL0ySFdki1/nSJ8IUTloDkVzKJpDCUZzKJpD8aM5lOTOoRAlel57l5mzqNPOZaSjqmqIGdfSYEYOrTXzRzTmZQ4lGzSHIkoZAlrSD/BeYryDthQEfZX3OyIZaB5F8yiaRwlG8yiaR/GjeZTBnUeh/+7o7jULOvqzyay5waa2b3zhuWdMb8Dcxn9fWOzU9v67b5u+9gVmuaXGmuFNdaamuv89dNOzz2Q8j5ILtB0cSTWPonmUYiKnGZETcQzyfKSXxWO4HFK9eaNQ8JnoMEzU4ImOUY6nqH/Qy2s4BJUnHTXGHx0yHSSiiuhOTU1N9m+88DEQyJxBSjCi6YdBFAQ6aLzkeeHg7co5Mbb85+bYvMTxOmRfOm0MUQaqeVFhvJ177rlW5HBODEaMYzp+DGQGGfG8xKhkYifourgnXmocg+hrRF1qaGiwBgbGH5MlRF9ioJmJl6C0YunKz7uf/+94ebvJHgwiroPMFrS9L774wg7aE+0/6Lt4ljKIiqcnmaQQVWR3wAOYa0YAUwYYQxyb6x82bNiAYxBhgAhEHJtjYKwyKMhnos4RZemMM84YcN+5PnM8R9kewz2D6Y6Rrk54DigT/kZZY5DQpmmXiBEMOMqLSUX/93Opb6C83WQPg6h4eBOBgBR3DLAiFk4//fQBz7H/OFwjXtMY91w/0Zhc1hrEEMdHGCAEuTeefbyg/ccYMWKEvW8W/3ANPNMIdzfZxXOE1z1CPCiThysLDHqiKNEmyVCD9zlig+tjwAIhQv9A9DYMumwgu5Sb0OEZZwCAwWYGPigzhN8xxxyzRPmHpQrnb95yxTh0kz148NPPEdGDMqLfob9h8oDn0ftdDEvKzHl3M1Dkn9ygH3b7U+4YiES5IEoAg5ucww2e0Oe4CSzqk8nxqH4eMcOzipClTZAtiD4Bw50+jL/R/3FvfmhziBwXJYA65jgMylJu9Os8K5Svvx3yDJKZxmUx4Ticn7JjQI2+nvcO4pB3ECKC/j4TaJcMaNAXIsz8g8Vcm/d6GFigD/XWt9uHaGL07f57cP97f8/7hXcD7RhoV962BdSZ+463PsjcRLkTDYI2QQQLnkPqlbKiP6aNIDAdvX3GzG7tNDMXdgWKRqitrjLjmuvMyKbFIoXzE+GNdxtlxPuOSBleXKQA9qNO4/ZfXDP9BtC/uH25L97zPPO8i4MG+cArslwWpLBsQFEgnlzqTjI93XDDDfZ5yretRrmw0X9mOsmvSGlCZA62rtMnDG6jAzJ1bMRWwfZNp0/ofxlQjNIn2NsMyAbpEz/YCwwihukT3uUMbvE+4v8wfYKNxKKqoOvi3OgT+lwGYLHReIfxfueanD7BhgzTJ7nAe8pN9ETpkyCwBVkkl06fMDCN7RimT1iMFqVPsE/zfd+DjV+f8BmbMkif5BtvRMEwfcJ7OAquEZshjj5hbCFIn3DvcfQJkeKwC6NsC2wVon1F6RMXES5bfcIkjJvoCdMnYRlJ4kB/4yZ60ukTL3H1idd+iqNP6OO4jiB94oXJ8Ch9gk6g/wvTJ/Q5cfSJH2xAJgHj6BP2y0afMLnEZBHXyYJHvz7xLlTjemj39OVevPokaoKup7fPLGjvNnPbus0FV95gn6NjDtjD/m3fQ44w+x1yxID9x4weZZYeVm+GN9SYWc2LJyRY8BClT+iPqQuvPskFFiPy/qOMeMf79YmbdEKfeCdg0sE18w5xEzwOIh7SJnnm0T5h+sQ7KcOEM/1MNvqEemPCEuiL/PpECFG+YO/yfmDBFnYKfTj2SCb451CwA3gHY89gg2DHujkUfhfWZzmb2M2hYGMwyY2t5HcgABZIMIeC7cS+TqOQUYFjYDPQ19Nnoj/QGFwb7zFsKxxdeCcwh4KdRD/uh3NTRryn+b6bQ+Ed7xxOOCfHpf/P92JO+no3h8L7jHtxGgW7AY3CAusg/HMojGfyTncahfqmDNwcCtc/fPjwAcfAjvDOoaBXGOd2GgXbhjmUSlvEylirV6Ngl2FTYE+wyAaNgr51Y3f5BB3o2jvRfylz5iiwMVgkxjwBdmc6jYLNQdvm+rEhqDfsQ2wrbDcWUbo5FBZl0i6CNAr3jbblOWOMgQwRPNe0HTeHgkZ148lBYK/QRzD2iL4iAjrH4jgsQnNzKNgpfhsqLjzrbg6FZ5y5A6dR+D12UJyFc2HQ33jnUHjmsbMYH2UhLv0N7cavUdAtPKvoRDfX47eTvRGBnUZBq6FTeLY4B2XHOSgnN4dCf4TmSbfomGjclD9tgjEXdMHvfve71BwK/R/6yw9tjjpxWUGoY47j1ShoMBbI+UETsJDN6XiOw/m5ZqdR0EluDoVnKcxZKAycdNwcCouR/GMl/jkU2r1/4bDbh0jcYRqFRXBvfTbf9Pxv7P3iq24M1CiUSXN9tRneWGvGjx1tlh7esMSxzj//fLsQmOtw2VkoZ+qVsqI/JosV95UPePbdHAqagrGKoEVlaJlMNYqbQ6GvdPCO4hnnmWdMJciZE1wGHDeHwrsqqg8Jg3pz/TBrDnj/S6OUD6xNcf027TPIaYY+1zn98d4Ic8QSi/FGo3c/l8M6Lz+aR4k3j5JunZfmUSp7HiVqnVe+0TxK8edR/P15EJpHGZx5FF6rizp7zIKObuso47LIwAabbmHuuu1mM3vmDPPh1PfNiqsMdPx75YVnBlzPh2++bNZZmXVeVUvMtaSbR/ESd51XEJpHKe48Sr5ttSEh60JLHTnNCGP6es2QtuwiEQ3pKYzTjD12tad59nTbVGD5oK9hpDFDor308wkpn+mAiKbD4GuQt2gUDPjzYqGDIZoBRoCDATxSh2PUY4AyscQLhHRiQbAPooiXs3fyIcgzlAFYJmEQXxh53kFABuXxpOReMHo5PwNq3k4QQ4XfMxjKdTPI5vfmRYAwiMRLxvs3jDQMIsSZGxBFWDCIni+4B/eSwMAOeilhoPDiClrEy/1gNGEkUw4YMV6Y/KFuePm5aAwMRntBKGFUc/8MDCLGHBj6lB/3749wkAu0QxbAp4MUkv4JqnyVuxOQtCsMAv8AA8KalLfe1HP5AHHmjHHEDwLA2+6YtEF8pPPUZx+ECuXDpCiDol64Hwwg2jCinEFoxJUXzo8I8z5bznhhgTvChPZD3XM9UYYQKX3pI7g377PPddEOeRYpdxYYZSOm8HTm+XbX548ogtFLXxGUSjGuYUV/gpCiPJhkRZR4QXDSJhBv3jJbc801B3j3k9qQ34XB4A3ih0ETP9wHg19MZiGs6W9oq/5BEC8Y7uznHZR3aUZpTzxrDJIj8vz9H8+/E1IMNvGu8EL/jhGOse53sOCYiAP6Dtqx34hncMtNYiMO6XsQVJng7Y8Qst7BYkQag14Yv9wnzxb7eCfbEK4u9a4/ekIU/mgtGO9RdeqvD8qaQQUvlA/lgeChrfHMEBVgXlu3+XJhp+nGcyaA6qohZszQWussQ9RoP7RTJlh5DyKcvPXA5BLvP0AkZwL9iqtzr5jiueO9xCA++9BugsQH7yP6EeqFZx/RR3vi+pjo5jP3nw4GabAreG8wkcZ7ib6LtsFxeFd7n8dcB735vtcJSohsNUoh9Ylfo+TzXMXUKNIn8fQJuL/zfqdvlT6RPskn0ifF1ydxkT6pTH2CTZtOn3R295r3ZrSmHOqXX2mVAX8fOWq0WWXi6qZ6yBAzrLHGjGisMY211Tnrk3wsrJI+WXtAFDUhSmkOpbuQcyhMTFZ5Alr05i/4WKE0ij/wGH0MmQCwDXjGicjq1yjpApG4TC9BGgV7ATvWaRQWQfCuDNMovKuCNArvs6DAY0EaBVuByXD6eSJXsugsSKOgZZxG4R3KZLb/HU2WFjQYfZz3uyxEoX91i+/QKL/5zW8CNUq2gajot529GqRRmNDn3YuGQqP4j419EaVRsFO5f6dR0Fh+jcK9h2kU7BxsXO7fG+E118BjLJYLymoRR6PkI/AY5e4chZxGoU15n23efbQNyjefgcd4XzsnqCCNgv3OAiWvRgkKPEb2FxxmwjQKzw02gdMoZKDwaxSeY+xPv0bh+cSOoO07jUK/4W0b/rJwGoV78z77PEe0Q6dReEb5nI1GcQt4gjQK9id9iFejeMs/aJGJP/AYNleURkG30ibQKPQX7rss1mQRq1eDBC3gdPtjl4VpFO4D5zenUehPWSTq1yjefh67za9RsNuwW51GYUEQYx3+/g872jnMBGkUypr+g4V6/vKi7dKewzQKNiga2GkU+t9MNYp37IqFfyyajNIo7IP97Orbq1Fov+76ma9g7qK1s78cySzjHGaCNMrYMWPMVhuvZ534mdNwBAUe43x+jeLqw2kU3n9ow2w0ir//GTVqVEqj0Gb47NUoaCZwC3Dj9l/0i+7v9CXuM0HHnEZBExH8M0ijsLjXq1FYrJiNRmFBLeNr2C/Mh9EmvRqFPoZrcijwWGnB4mHGbOiHWOBI+/T3j2QCdOOBvLPSRa4vJ40SfwlobuS7xPoaC6NRvH0Fn6lrFlXzjsI2JEimfwG0NzNMUNtgAb/TKPSB3nFQry3Ee4jxDvqUsHFEN4+CDeC1P4PGuLCLsQuwv712FG2c68FOcfMo2FIsSvbeP30h10UfjbbiHey/P8YseZ/4FxNj8/FuxT6gn2XRP46yODv7SVd+3v28f/fOo2BbBTlIsqAdXUGf6T82v3caBb3m1yjYgtQN44poFOrGv3DeZSXl/rF1vfVA2fNe4f3vnUfJtf9AX8bJPMA7zq9R3AJp/k9X1mHXS7mjCb0axZ/lj/cfi+Sxg/zfz7a+gfp2upRyxQHMuw/tlWeUhff+59gLf3fzKNgKfmcE7odxUxf4Fo2BE4wX/sY+fo0CtBmceWh/1D3X5B2b8JeF0yjYI95nHxuCdki7otxdkNRM4RrcPArPpj+7LX0SWog5B++1RdUPf/P+HfsZG4U5Ee7Dr1GYR6JNzJs3z7S0tKTunbEEbzvFSSIqGwbtGn0ZpFG4D+Zu6Q9oGzid8Nn/HHj7Ofo39Kd3nJxyp36pMzePwrPvLw+efzePwlwJ41Fe6N8ZQyfgL8+L9/vMzbt5FK7V71BOfaDp3LsBW9Y5aOMYs6C9y8xv7zYL27tDAwJvsMlijfLfF54xK60ywTTV1ZiWxhozf+YX5rPpn9i+gDbFs4WzGO8Ch1ej8Ez47z+sP/EHMqEtRNWpvz7om/2Ob9QHZYkDG/01TlLZaBR//8NYDvXMWB3jed6MPt55FOqC/eP2X/QrTpfgdOn2dY52vHsZIwzKwOnWynEt1IubR3FzIIwn8DmORkGz++dRqG/6aI6DRqn22T3Z4MqF9lyOmqPErHoxGCCkhv+pP21tEpj1zedMX2P6TiRfEKGHwVsGTfAmZfMbj2HgRYqXOrAgI8igonNlMoTJBYwRRA3GVxgMVsdZbMQLjkmKIGMPj1ZeSLws8cbGw9bfifIz18zLBM9ohJw/+oY/cpQfXlRMmDlDgIGkON7MceBlyuASpItc5+/cGeh0kUcoT7+QcjA45uoeIeyd8KFeiXDgXlhBA/ossGEiKpcIuX44Z5xoOUS2QJjnGya2nAGJgcmzEDbwieGbT5h4BSI8kJozyJhhoJgBj7CFe3jD84wBg+j+yR4HIpsJPSYGOR7PqH/xVBRMMmBs0zYYaOUZYnA5DK4laKKXQXoMaowv58CQKYgwN1DNsx7kSY6YcIMr2YAHtzMC/ULKS9QCsThQB2EpNIH+BQOVwXQMSKIHMbATBoLXO9njoI3x7GPUB/V/RFRwk4+IZ/9kjxd/edMP8nwCfUNY5DveDUwW8RxjCBNhISx9cNi7i8FhBl9YcMbgl4OfnfBBQLlFaf6+hucFMo0Omi08j0FRDqlXxD4TPvQ3jz/9rFlvyx1thLYg2H9UU40ZM7RuwCRTEEwk0e4ZqOF+XX256APetJtxcdHVENT+9wvtjfcPk8lBUQ/8fbizIfjffQbaAoOj7BPWj9EHMxDEJD0Dwm6xh0s/Sjt3C6g5DgMdQuQTaZTCIX0ifSJ9shjpk36kTwYifVKZ+oQI3P4+tru318xr6zFtXb2pBWphE05QWz3ELDu83rTUM1kyJC/6hPcSkyb5IOn6hHvjGeE45ThRI0qbpOkTkEYpLY3iX2TrfpZGkUbJJ9Iog6NR4iyil0apHI3i6tuvUVy2S6JF9/Evol145y0I+jWqKd7yd2mU8p5DUeCxgbCY1L0vAadBB7+n/r14nbYcPLe8a1m0zOLW/fff3/ZF/EyUdRZTundSVF83WCRRo8w74SXT11Q8jcJCbJw+yObGFjfiOw6o6BTAVgkKHMR7CHsLOwQ7gixfBEcK46KLLoqtUejjgjQK716cZpxGQcsEaRSytbGImXc0zxoLbDOZR6F/5N2NYw39fz41Co4wuWgUF6ABPZhOo1COZFr0Os149Sd9SJDjEhqNPiWXLIN+OGecQKUslGahd75BqzlnZqdRwsABIp+4DHi8V3kew5zUeP9HaRTnQEIAurAs6LRtjsXGs8Iz4rWNqdsoeEY5PsF/yIyTTqOgf4Oc5dAo2MAssA/KKBVX2zmNwn0EaRQW9uP45d53mRJXo+QaEC+ORuGZw5kLmwyN4nUE8cM7PSiwFG0M/YDmDer/3nvvvZSjPTrH7zCTTqPQfsFlpwqCdwN6CxsaffrsK2+a0eNXMK2d8YKDjBw9xqy0yqrmg6lTzLuvPG/WPO1bpuZ/WWQeue/plEYhQAXOGd7smH6Nkklw5FzgeWRsIKhecdbDaQaNgmbzZ03NFuqfdo/m9GoU2hAQtA07PtN+0jlP+t8vbjwAGzUoA6fDBSN1NgT/u89OOzHuSR8TplHog+k3acvcGxqF/sxlaPVrlJEJnUcpXroNIRIMXqyug/V6N6fDpXsFOryoaDYu8gWRaqLESdzFy0QqCEsX6R24xMM5rAP17kcKunQwmMF+GB4Ys2xOzPFSjnOMuHDNLgIlg2uZRB/D8xchybWlS9XuohTz4sOjPqhuoyZWMLQKEVF5sHCpODFoGSAoFtSXSyHIoFiQB7rzhI2Kusox3KBbusEx96wh2vF6jwLDHZHubftesRcVzRtDkYhYYThDiQEEPPgzxfUp9AlhRhfkIr6JbgZMLngNvkJD3RDhhPO6cudZdcI1XRR1b5RdP96y8vdd9CFuwgNBlAlMHhHVJJM2CM4bPhPcRLR7dhzuZ/7uhBLR9LwRrtwEEANrmaarzhaeg7ABN299vPr2+6EOM8Mba8yE0Y1mqZb6tA4zwEAm73cmCL2R6IhIAEETglHQBl0ky6DvMqjqoie4SaUgiDDA9TBJy8CeHyYAEUqIMYQmfVAQRBygvhFU/qgFDKYSeYLBHCa1nIAUQpQH0ieZ6RNnJ0ifSJ/kC+kT6ZMgpE+Ko094Ry3q6DafzG03781oM18s6IhckFbj0QUjGmvN8MbatA4zmegTV375IOn6hElkp0/cJJUQonyQRtEcijRKP9IowUijSKNUskYZM2Fd8/HcdrOgo9s6zITRXFdtlhveYCaOXXIhdBykURajOZTyB2csMlm5jYjw3n7A+7ewbOErr7yyOf30021GICJ6szgeR2QWq3odZlj4780aJJID2dWcwxvZu+PiddrCST7KDnbR+b22b5BGCXIgD9MX/oj/Du/ib+y9MI3i3S/TeRTed2zumcm3RsEGyVajsEDcaRQylkThyhtHkY8//jiwbqP0J4uRK0mjuOw+g6FRnM3EQvEwx3o0SpRm5BhOo5AJKE7dYwe7IA7pNIq37Xs1ijcjqh9ssihb2Tn2ZKtRXJ+CRglzEoIjjjjC5KpReO/iLFgsqBsyRnFeV+48q06jRJV7OvvTW1b+vgut7jSKN0NPHNCx06ZNs5/DHHoI5kU2mZXWWuysMfnJp2M5zNTVVJkxzfVm5THNZoft+x08n3/2mZTDDLhnCac3p1HQc4O9zovnIEyjRNVHLjCOxPsdjUIWJr9zPo4rmUAbJJNV2HcZF3MaJUoToCcIiIOjW9DYAsElcNrnHY5ODtMoBEBgroR90mmUvyZ0HkWZZoQoAryY6YiIlITnI16QQdEEgl6agNHv9973gxcgg5akCiP6hRMKXjCG4hIVTcdr3Mfdz2Uc8IPAwFMS48IrNoLAk3ellVYy+QDPSTxneeER8cWlycQA5nOUgHGGMS/PsImDMC9r51XvPNzT1S1pzEhZ5/fuzRbuz3mPDgZuIJOXe1B0i0LBAC/1BekiFkX93Ttxk+6ZDPKw9zJr1iybGhIDjOc2apEO+4aBgRMVnQBPdO9zmIk4x1ji2iBKSEGmXtZeSCuIVz3nwzilf2Sggslsor/lK/KIE1CkUmawnPZIfxnV50SBd3nccg96Dni+SX+YCV5hzmRDLm0wTn9BlDy+S9QEd79uwgchRZ+GlzwCxZu60/VZ9F/FykCCV30Qnd29ZtGQxYPZrYuWfB8Nras241rqTGNtZqknGfBj4o2BdNoUE8aID/oc2m2mEz5OINE2ggZsGGTh90zW+COz+eEYDMSyMZFJ/dCHMWDB5qLwcN38nf+DUm8SMYX0w0TnoO3yXY7Dfbr+gYEaFrcwcFWI6DVCiPwjfSJ9AtIn0idepE8WI31SOfrERR5zfdaaa69jvuyoMZ2t7ZHnooab62vMiMYa01xfnVd9At5FCWETG9kgfbJYnzBxyfMkfSJE+SCNIo0C0ijSKF6kURYjjVI5GmWPPfcysxd1mP880r+QcdU11jb1TcE2NFC3Y5vrrDap9Sx6ywZplIFoDkUAfQzZPYg0jlMi/RrtCPuFxaIsOsQmEqVBd0+36cvASSIu3ixOfHaOGGRwI5sUGoWI/9jjTqO4DA72unzXxOJZZ8eSRSLKsQO7ioXfOOthi4VplLjOIWSoCNvXm6kh7n70X0H7oUtwSMOZIp1G8dr4jqjy8+/n/Tv9sNMo2Ow8t3E1inM8ppzd4uU4sBjfOWs4h2HqCRss7Np5x3k1SibOPblqFP+5nA3N/+nKOuwYbjG4V6PwrMTJmJju2P79vH93z4WztaO+611g7n2Owet0HpR9Mqru/efMRKPQ9v3fd2WBRqGPCbsnbwZJssBGZVrxg2ag7DItN2/504b9dg9/8x6LZ5GMWZyP92UmGsV7HH995apRZs6cucTxvP18VP/nXdvk7/+c1sWGpO/O5Ln2OhXhdB2X2TNnBP6ekmVtU3NDtWmprzH1NYt1wlZbbmmuv+46m3mRcRWnUVx/ROAA+jSnUfi9CzbgXefFs55LfxL192zqA8e3bPpSf//DRh3i3IhGwWkExx2vRiHYgDtXnP7r1ltvtf9zXMoyaD+nUbA5eabDNArnxymTLUqj8B6kjwrTKDi1oU9wBi/EPEpvb6/duB6v41UcSiG7jTLNCFEk6GScgU6qxzi4ToWBw6AUg15cqjteTHSu6QYg0xEVLQMv7Uz3C0oXTIQOPFh5KaQTUkDKsHxywQUXmN13391+5vxXXHGFfQkQHQ5Djp+9qXy9BlY2eK/fW7dBLy9/6tdKwQ2gO4/zYuF9QacTwFFpI2fMCDZIM227GCIIWyY5ECvpxCTRbcJIF9km3XMYBX2Ju7Z05ZZLO8VIv+qqq+zzgPHIgNNZZ51ltttuOzuQRBQnDMF8tAMmSX7wgx9YgzBKSMXpc7Lt/9wEHvcbNPAVRT76n7h4I9a4iAJElXNCwf3d/e/24X5dmthipewE/yRyd2+v+Xx+h3l/ZptZ2LlYyHhFTUNNlVlhZINZcVRjxg4zDhcpgLTcTpQ4sbn88svHPg7lRvpbF2kgbCLXnY8BorvvvjvWsRncJ638T37yE7vIgQE90sW6dsq1k943CvZl0IRU0vRdDA6TOtQbYeK8884LXeAhhCg9pE+kT6RPgvVJPhcbhSF9Mnj6JE79Sp9Ulj6ZvbDdPP10vz5ZZ6PNTGdPcNZJ4DjjmuvMxLFDzfIjG0xLQ03WfULUItdcnoN0JFmf8B7Plz5xE8OZbEKI3JFGkUaRRtEcShI1ShykUSpDo/xn0mPm3S8XmQ9nLjT/ffF5+7sNN918ieNWYYv+L7tlY22VdZrJ1WEGpFHC0RxK+XHKKafYxYJxt3T981FHHWXr7aabbjLXXXedzXzI4kY5zAhplHCN8uc//1kaJcEaJa7DTC5IowyeRolTv9Io8cm2/+nwtCE0wrCGGrPM8HqbeXKl0Y1mzNC6AQ4z2WgU5yhTKuu8vEijlL5G6evrs2WQyVYKKNOMMH2NI828E17K2pO/UNRU1xTkPH0Ng+OthpBCUGHA8xLHWIjrPZqvRTvel8lggzFx0kkn2ZcBHtHf/va3rdcxaXB5IToDgw6eCEqFAI9UUvXiVY5XPsYCafrooIlExEZ0hBtuuMFsuummqe+5DhzP7zvvvDP2+VZYYYUlfleMBVkif2XuXWxP2me8hONAlCEHBvxxxx1nhSXf5zNe90QcxLh2g28YrK7dFUNwpqPQbRVv6+23397cddddNpIkhhrCgb4C49RFoLrsssuy7stIL+i8/4k4zOAJkVkQig0NDal7JNoC6TxLodz9eA3IW265Jbaxnkm0FAeDHkQeI8Uj/ePRRx+dipBGWmd3TMQUHvhOcOGlTqpl97di09vbZ2a3dplZi7pMT0gdMsE0trnWDM9hEZwDwUhabNoMEQRclJdMI6SRIpdIAUDKzTgDaQz0ZxOVDM99UszTxnmmAGGW6TXzrNx+++124INoBAzAcB9EOxRiMDVKOVLdONKYIfm31b2D9nz2TtBgyzK5SCRE9AkTHdgk3vesf0LH/Y3/0032+I8TtH/Y78OOF2ffqP28v/eXh1efEN2F6I9OnxDRyemTxx57LBXJ0n+MoPvO5Drpn4loQ31gEzFQyXvVr0/QMERNczibhTqNO9AGRBFy15BJ3XrfnXHrL+pY2R7DXUe6Y8StE0cmC5+zre+oZzPqevz7eu1V3sFxyxLbxe3r1ydET2QCAjvQr09cROmgdhK3LLz3k0kf4D9uunLz2s3p2nXQdTAQTR+A5kefMLnj1yeHHXaYnYQNu/d014g95vQJ9hORo9Zee21rB3r1CRG6sTWD2nrc8oy6rrjPUhDeNogmCBr3CIJ7zPRctFsm4ojgjC6h3bpJHPSJi2K/7bbb2muZ/PgT5t0ZreaNV18xCxf265P1N1lyQZq97/8tQGuqqzZLj4iepMn2ec32mFHfC6p7dLXTJ0Rhdvrk0EMPHXCedM9sNvqE5+LII4/M+F44NhM/1MWll15qf8ckEM9YJmy88cZL6BPepUSNi4srF/rDUoh4JkqHUp1DqbR5FM2hDERzKP1oDqX4aA4lOzSHUhqU0hzK8JGjzMyFnWbCupsgmMyzTz9lTujrM1PeftMsCtAoBPYiowyL4fyL38oZzaFoDkUkS6MUSp+ANMrgI43SjzRK8ZFGyQ5plMGnt6/PtHX0ZweBX13xZ7P0MgOzb4WBvTuqqdY011fbuQscZyp1nVexkUa5PdEaRU4zwi7O6msandVXC5H6MnVs70KQAp6nmJx44onmT3/6kzWiLrzwwrRiyk3O4jWLV27UJLpLG40xkEmkgcGCyW/SfAFiBW9LhzdNWaYpvLKBlOguLTqekxgEGAb33Xef9Tg/5phjzPPPP5/yNnZeoexLtIJsokm6OuL+EGdRx8jW6z3fOAPWKyiCcOkxg6Ds8GAmDWAx8T4T6cozKgW7d8EEhqRXJMWFAQKEEtAPkPY7iLBIIsXEm742Xbnlo52yIJUFNm6RzbvvvmvTpxOlBCOTBT+kgaQvzRSMe4QakFqRlKlhFLrsGYhx50FcZxKFwOuVTnkRoaGQIIYQU05EOcHkFUkuygCppunTXCQC+gyvd3qhsRF42rrMjIVdpisievTQumozYXSjqfpfpLZc4b1Lm8IrnwVeRAxBnLsF1XFJF+kqCOrlk08+WSKldVzof5yYmjZtWlbHYECU9KQXXXRRTscRIp8aRcSHyY0//vGPVp8w6cMAbxybiv0rTZ8wGOb0CREFd9hhh8D9iqFPWPTL5mwY3q3oEzQUNheRD5kQcvrE2ajoEwY8s9Enzu6jbitNnyxatKhi9YnXNsTGZIA3U3AEc/rk4osvDl3wXoy2n099ElVumZyPCQU2eOedd2zq9KuvvtpGnuK5XG+99WxfmilEO3STswxoM1YUhuubCq1PqONc9AnlxWRVIUGHOKcZrz4huiWTT/PauswKa/Y7d7379lu2T/vvC8+k+oz1Nlo8Ud5QW21GNdWZEU21FbUgjfcuUcsuueQS85vf/CZrfYITZ6ZQH0T4zCQSmxfeb85pJl/6hEkfISp5DqUS51E0h7IYzaFoDqWYaA4lOzSHUhjKeQ7lif9plPU23txMmdFqWLK37sb9gU/ef/dtM3/e3AEaZaNNNjOjh9aaETjK1FZm9kLNoWgORSRLo1SaPgFplMVIo0ijFBNplOyQRhl8jdLd02sWdvaYBR09ZlFHj+mtb079rbllmFll4uqh322qrbZOMmzMW2Tj+FRO67wGC2mUoYnWKJUzIyhEGUDEYqI5w6uvvmqN9SjWWGMN+z8vWzzjo3j55Zft/6usskrGaeAGg7fffjtlnOJ1HAZRAIpdR6TyvP76683xxx9vf4fhjze0A2MOOjo6sr4+N0ibrm4RlunqvphlE2fBDmkow2BBEVBuUaIr36y00kopMeyelTCi6tTVPXjbRCaw0MobvTib6ygWGIT0KXGuJ125ZgODFaQWxBvbpWR03t2OuAKBhTJdXf3e+/vtt1/ofizAilpYmQ/cc8D1MFCTCd42+Nxzz5lC44QSgwzexWnedJwsiCLCCk4r/N0JLiJiI5CLxWfzO8yn8zoCHWa87cRGYMiTw4w/laZLscuic6LcxIXBOQYOAG9+Bl6jNha/AWWejQhzuGjcuUYZyddxhBDFh76KSGBAlJ577703tg1LxJkocOoAoiyVmz4Jc5gplM2Tro7I+nHjjTemBpQZZHbZFby2Bfok2+tzC93j6JN0dV9sfZJuIDxKn5CSejD0CZH3nD5xz0oYUXXq6j4XfeLafjp9Uuy2H6ZP6FNyLbdswSntu9/9ro0oyYAyZBKVMEyfRJU7E0zZpkWPi3sOstEn+WiDmYBzjBunoWyc9lhrw83MW5/NNx/PbjUtY5Y2Sy+7nLWVX3nhOfPfF/qva9XV1zLDhg03o4bWmVXHNpuJ45rNmJb6VJaZSoLofV59wnskE23GZCQOYsCYHROcURsOOkCZMwmaD12RC9InQpQ3mkNZjOZQNIeiORTNoaRDcyilNYfy1MtvmMmP92uUtTfazDrMAJGkB2qU/utaa+11zIYTxpulWuor1mHGoTkUaRQhyhlplMVIo0ijSKNIo6QjiRoFm7O9q8dmmfxgVpt5d0arXbu0oL3bBvuauObaqX1ff/nFAd8lewyZJpcZXm9WG9tkVhrdaMY019mgX9najeW0zmswkUZZOi/HKUcqb1ZQVAT+B7GSHsxvfvObqVRcv/71ryPTwnlFBqnAwuBl7Aw0OuFywKW+RJD4y8DVN8Y2qfoGC29ZEjXCgdhy13jVVVdldWxv3UYtKEBwl4InujftKGIpbNEOKRZJ2RaGi7pB3RJ5oljPN9E7nMf0o48+mkqN54foClH1Qb05o57owtmkdfRG2Agz2rkOIpyXAq6t4l3OIFAYQX1UvuqWiNlucZz3WQSX5tQNTsQp9yghz0BKodl1111TZRMVUTpMiLnIF7QRZ7wXCm+kgTvuuMOKUq7dn47T/Uyk8qeffnoJwZWNkHfviCg6uxc7yHT2BD+PwxtrzKpj+gdTCgXCf5NNNrHtkc2Jq7iQMtO1SyKZM9AStRGlY+21+4W1/z2ZSb/kHSRZccUVMzqO9/mOOk5cOB7ReDLZhAjr7wu1OfvVwc+FPF++rznseom25fTJr371qwHf8e+77bbbpv7GeyjsvLwL3OQJ3/H/3WvzpLuHuPtmup+/PNygK+8ebIqg+iYzhNdWDCpTb7SuXK4zaHOLxV30J/d7r23xhz/8Iau24q3bW265JXQ/Bra9+iTbtul932R7DJfJAH3CNQXtw8QY9n/Y9VJ2fn2SybOdbX177adJkybZiEJB36ctEh0vrM3RJpw+IWsU7TjTcvTa0LTxsH1c+WTb9t0W1cfE2ZxOR5/gOBO2n1dPecvf/2xncx0MJLtJJzSw92/eyJFtbW2hx/DauejrsP2uueaayH4jk/IMqz8iQmbbh2CTOn1CG4m6l3xs3ghnN97yF/v8c+0T1tnI9PQutl832KR/v5eee8q8+mL/BNa2225jVhs31CzdUmfqqgeWg7N9w/okp0+i6tRfH+n6kqh6jbNFPXPoZ68+IZtRJt/HGczpE7K/EF0tajviiCNS+oT3pPdYmfRLL7zwwgBdkelxXPl79QnvikzLlY3zEWEvk00IkT80h7LkHEpYVGDNoSRjDqUYaA5lcOZQ8oXmUAZnDgUNsuaGmw6YQ/nkw2n22jfYZPMB+zqN8vZ/nzVvvNyvUbbfblszpMBzKKVCEudQ4h5HCFEeSKP0I40ijSKNIo0Sl0rXKDjDLOzoNp/P7zBTZraZqbPazJcLO01r15JzUKutuY4Zu9R4+/me2/9iers7zaimWrPCyAaz2rgms9yIBjOisTZvAb5KfZ1XqSCN8t/Q41Q6cpoRORsohdj8CyH5uVDnKtR1h10zafDwqHXGycMPPxxanptttpnZcMMN7d8wrPDq9O+DMXbmmWemUqQdd9xxS+zj4O/p7iHuvpnu5y+PVVdd1f6elwcvEX9987L+3ve+N8DoDSpTl0oyrD2GXSeLkvAgj7p2ryggErD7PZEhnAczCwkQVFHHmT59uk0X6K9bF80V4w1B7P/ezJkzzU9+8pO8PHMOyjXbY7iFdBisLNzx/50XL3XGIpKw6z3ssMNSg9W/+MUvbJsOe1ZY4Jav+mZjIMMZZ2eddVZgWZC+jucyrM2RbpFnDKiz//u//4t8BjD8ERne302cODF1fDyHg753/vnnDxAu2bT9oH4pm3pnIa0z/OlrKD//Pv/4xz/MQw89tET5hy1q93//3//+t+3Lwq6BfoDUkS6ahPdv48aNS0Vd+fDDD0OPQbm7+0AwB5Xpgw8+OGBRWlDdZlKeYfVHhOq9997b/o3ovSxMCzsG5c3ghfuZe+U5A9K/kh2Awamw79PHXnvttVnVPRvpIJ2QZQABuH4WCgb1D3/9619TUUpYxBl2XFcXYX3SUkstZf/+0UcfBf6911SZT+d3mk/nh4ut5voas+q4FrPi6GbTWF+X0bswaEv3zNF+aKtsRHLO5PtOEDFYw4BdnOtx7yGeDcSM+z0Lb4mgQ18W9X2iR//oRz9KXdNXvvKVAX///ve/b1ORsl/Q992zwPncYl4iru+0004ZlytbbW2tjUqUySZEsfEPMmQzqFqK8Oy6bDN+feKHVPcbbLBBSp8wiOaHRfdefYItUQ64BfC8O3EM8dcvA7NkmAgblM8V3usuik8Y9Ln+iQ5AW331q19N6ZOo9OTOZsJ+89eti5KEPvFmsnFw7359Mpi4wVz0ibNTvLDgmTrz6hM/LCQfP378AH0S9mx/+umnJp+4ZwN7j2cmyJmDlOBefeKH8QWnc9An5557buhkpYsq5Z+0cW3f2XJBUDZREyvFhEFlZ0ueccYZgRNUt99++wB9kmnfjY0eFXkPje/0ifdZhFGjRqX0Cc91GIwxuPug3IOuC53k1SeFAnt/r732St37FVdcEbov5e2d8KWfP/3001P3S9TNqAkRbEsyk2QDZTRs1Fizwkor259vuK6/bFaaMNGMGDV6wL5ugdqD99xpFi6Ybz/vtP22JtuEk06fRNVpqUGEM8a+2JyDYFxclDP0CU5Vcdhnn33s/zwbL764OFoezyL9VLo+BKeTH/7wh6mfiermhXEcMtpEOafQRrz6hOuPinoaBceiX85kE2IwqNTgY9IowRrFX9f0PdIoydAoYc+2NEplaJQ4fbc0SmlplEWdPWb63HYbQbqvcaRZbsWV7O//cev1S2gUIkePbKw1u+7QHwjl7n/cnqpL+oxs393SKKWvUVzd5kujKPCYKAcqVZ+ANEo/0ijSKNIo0ihJ1ih7ejTKTy64xHw0p93Mbu0yXT0D21Nba6tZ4Ckb28+fdKr9/OknH5lLzjvLjKzvX9OEXsjnPAp4A79513mNGTMmsH/wrvPyO9ZkgjRKeqRRqk0psHhFpxCiaBx77LF2gA9jGY/tKFiwussuu1gDFo/GE044wXZ4dFh0lBh/7mVz6qmnmrXWWsuUAyz2/fnPf24NW677tddeMzvuuKNN8UZUarxyWQS8+eabZ50eMQpedryIcIBhoTDOSc7Ix3BDJLG5VI14lnohZRppCil7DGoMokMPPdQeD+9TnCVIt4lYRgSzQP6ggw4acIyLL77YLqxGhBxwwAHmW9/6ln0B832ia/ISo32Q+i5fqTsRr1FiwQv34l3kTfQAInR+/PHH5pe//KW9R+4LT2HqDOch2uSmm24ami6dfYmAzP1yLbSDQw45xA5+42VOeyA1IIvPMUxwnMkXlDXPDikg2fhMmWPYEqkb5xbqnLYQlYIS44PUhNQR9/LEE09YwUE7YbCEwfm33nrLOl1h1PBM8ncHC8qJQsI5cY7BKYByxCEH7+4bb7zRfrdQbT9TuC8chTCkKReuH8c/7ovBHBzCiCaRrtyiYECCvo02hvMFxjp9AWXJMekPnEj3Dxix6J5zU1ZERWeQgmtmAT64xfWILp6v//znP/a5pA3SF9OmqYt77rnHtgGcchADOK0VEp5/2tBnn31mzjvvPHtNOJXhyY5RSbt4/PHH7UAMbcIbWZ7rJpLGvffea8v/lVdesV7rG2+8sS036oXniLZJW6dPoXyzhUgCRB7huOC9Fof7nduHviOXCAQ4FjIQRT9w3XXX2eeB/qO7t9d0mnrT1zgsdMEjaUqXHt5gWuoXO+eUMvSpbnCP972LcpIO3mH0IU7EuvcUAzy0CzbeHzxXDOAhUBl4oL0zgMdzy2dg4Jb254U+nsE+oiXx7FCfpJzmWWLhOP0V9cN53KASTjhJSdUqRKXBe+T3v/+9tb3S6ZPf/va31o5Cn9B3YCfQ12AHYdPjhOz0CQsTXLr6UodI+fSr2KPf+c537L0wwOX0CbYu71zeUc8991zez48GwTbGDsI2pm/26hP6WzcJRf/Oe9/LRRddZK+Pssexmz4a/YhNT//P4Ngbb7xhHnnkEWtjcA7sIS/0+dil6BMmQU488UT7bsKWYOAO7cn7gSg4HCsfoAmwneNA2Xj1Ce8np08uuOACe21oO6dPsF+pR96R3uwFXtgXB2bu1+kTPlM+lD/tHLsKu56Bd+oiX+Aoy8Zx2bh2ypyBbGxR3u/UO23BG+3Hz9lnn231CXWE3Yxd8Y1vfMO2E+wKbFvKA12Kzckzyd8d6HCnT8g2RXly/06f3Hzzzfa7hWr7mcJ9YQ8zCUK50A6YsHb6hKAc2M/pyi0Knne0Iu0ffYIDPn0BZckxmaxw+oT+069PODdlhb5Am3DNzqneq084PtqX55J2x7GcPsHWpw0Q3Yn7KrQ+4fmnDTFO9dOf/tReE2McLvgA+gR9QZvEPvfa+lw3GpYIipQ/4wJkJ0GnUW5M8DABQNtEn/DcuWAUceju6TXz2rvNnLZum2ly3Y03Mx99MM0sXLDA/t0fwXloXbXZc6ftzQU/ZnIpP/qEcQ70Cc8qdjTPg4uG19LSkoo0WgkwXkafAuj/TPQJfbELVOHeU+g22gUb7w+eWdoG+gTdTttGzzMR7fQJQWZof16wTyh7tDTPzpZbbmn7M54nJsunTZtm2xfvSqdPzjnnHFs/Qgw23sAqhaZUJh6jCAo8FgTvCuw0/xxK0P5oEDeHgkZJN4fC+zkMF2wlDnH3jdovKPCOA3vdq1GwwdPNoQSVqT+QS9zrpOyxj+POoXAd3rE45je8GoV+Ot0cij+qJ/Mwbg4FeynOHEquzxx23rvvvpvVHArX6tUojG+nm0PxX29zc7PdL9s5lGzrG6hnN4eC3cO1p5tDCWpzjBESpZY6op1iW6SbQ/GO+1PHXo2CfZJuDiWXth8UKCsTsP/dHArPJGMk6eZQ0vUf/uugHKmLOHMoLLTxftc7h0IdYmsFzaEQoMzNoaAHeB7TzaEE3Ufc8ozq/9z4E9lFmUNBo7CoJ+4cCvVBv4Kuwg5lbCDdHMpJJ50UWc9okTmtnWbOok7T6VsUt/4mm5tPPvxggEYZWl9jRjXVmeGNtaaqaojZZacdA+dQwt7d/sBjYXMoPKvY0m4Oxa9R4r53s30X+r+Xy7MU9szSpzqNwvs+7hwE/afTKAQuo4xcmTqNkskcChk2vdfFWJvTKHHnUFhTkGlAMFcuLvCYEOWkUcpBn4A0ykCkUaRRpFGkUYJIokZh6+juNfPbu8yCtm5z/Jnnmeeef8HM/PILc+Vvf2WefXKy2WPfA80KK0+wfc3n0z8xLz/3tHnkgXvNLy650my33bampaHWDGuoMeue9i3z5otP51WjRIE+om1613n579s5Sng1CnUZVj7SKNIolaJR5DQjxCDQ2NhoPbVZ3JIOjAI8+3hRstAAZ5ugiDoYOyy8LhcwnBETCClSY+McxOaF1GQstHDR9AsBIoAtDAZfeZH7F17T4WOkYCRjWPMidC/DIIIm6Vm8hbMAiwkpA8QTm4OXGi8xjMR8Oc1gmMZdKIJQxOPewUsYIYTwwwudAQE2ryGDOOAFHOY0AxhYLP6hzWIs4+jAVgwwyrl+yhQx5KIJOHC4oA522GGH0GNgmDIIT71hgFM3ZGSIW/cILuodw4V6Z1G6P1UkxiqLlnLx4M4nDHwwAMH9Isa5dy8s5CKbicuMlQ2Ia7fQP8zgYsELotgP/SmDTQxikGHDC/3sD37wgwEDGAhYnE7YvJBVhUWBmaZczAbEHc52X//61634ZtAlKMpMEPRHlDf3xYI1FgdF9f/+aAGZQp+ByHcEOc0QGcINtgCLobz9R6aw8BExwACLy6zj2OOrB5pzzr94ie/UVA0xy41sMiObasvCWcbBgjLnAOSi28SBQQcGvXiHMRCEMyP99IgRI2w/Qz9N/5Tu/cFAJgs//eLQDTAymMsCSLYwELo8nwyKCCHKV58QhZNnOY4+4X2JHYU+8duEDgYtGWQpF8iGiP2FXYGNdvnll9vNC7oEZ4MDDzywYNfxzjvv2C0MFrBjOwbpEwZasbEZNEOjuFTacfUJA7M4T/EeDtJovCsoI2zpfDnNMFi/3XbbxdqXRfd+fULbY3IGWxKHdjavPiGyF5ojzGnG2TZefYL+dtF1Cg3Xy/XjYIHDgt/RmefNLRCP0idEBGNylfc1dePs37j6hDEGtDf1zmAqm98eZBDXZRccbAjAgT7hfplEYFzBr0+YDGKiL1tcVlx/ZlyvPkEHuujHXph8Qu+hT3CE8kd5cvoRZzcm1tAnTKh5s906fYId7nduLpQ+Qe8xUYg+YfEZWxzojyhvJh7pnxhLYFFbGHEcTLCPid48t63bLGjvMX1mscP8hptsYe6747bUzxtsuoWprRpiF6ONaKwxdTVVxoxaOVCfMCmQDSeffLItHxfR0AvPcFTk63KD6GjZ6BPGz9AovMNwXKH/pZ+m3FkQwjNF/5Tu/cF4jMvoHKZP0NJs6fRJLpOKQojBR3MomkMBzaFoDkVzKIvRHErx51B6+/rM/LYuM3tRp1nYEa4l/Bplr113NBPGNg/aHAp1HTRWV65oDkUIUSpIo0ijgDSKNIo0SjI0Cg7z73yxwDrPO0aNGWsuv/5v5offOcFMm/KOeenZp+wWxIpjhpoVRw8d8Lskr/OSRulHGqU0kNOMyIlsJ5vjpm5yEDEwLKJ8KeFNA8jnqPI5/PDDbXQBb6TasP1ZRMQiGgxZPJrxyqRzY6HBFltsYQUH/+MBGJVCkL/FrbO4+0bt5/19UHmwsIBUeizM4v7w+sULm5cw3vyIKG9qzaBjeO836nr918niGYw2IhOxOIl6wBOTFzcvIq6BxStcB8Zz0LG5Vl72eDTzIsM4J00jEQUwIrg3zkP0YIzioGNwj3h00hYY7MUY5Lh43/JSYuGad7FboZ65IDiX/3zcD20QwcH1EiEBb1R+z/Vy3YiAqOvl+SZqNwvkiA6MhzEL4Kh/FlJQbkQMZTFivurbO5BBvSNeWAiCMOB68DqnLljQRB2me445DsYsCxIxhPgfsYE4QjxxPIQFXrsYKv5j4K1NlAXqnYVIlCNtBvFORiL6Bwz+qOuIWxbefimoTjOZYMDLGaOabEUcB/HBIjHEFc+N99r4u78vD7sOFgtSHjzvLLChDngWePYw0GkP9HM8l0HXT3tC4CKWGTCgPHkOvdfiUlASFYQFsC7FojsH98EixaD7yKY80/V/QPnRB1GuLiIz941Ry8Jdnn+i9fJ8+b9P2V544YW2XBjwYTCH+8GAxpBG3BCNgbLBAz2XvoP3i/e8eLoHHQ/R5VLRIrii3t3u9/wfdCz6RSbEeD888+yzZuaMmaazsyPyOpcZ3mCG1VcFpuTN9l3o/14uz1LYM0sfArRF6iuT4zK4gJii3dCm+ZmBOjeJyDNFtByiBTDQRdnQR9Hm6aMYtHQDbP7zssiNRWZE7KCP45i0sYULF9poAfRZiDnqmvc54ivbcmXjmQ1LERpGOUYsEKKUwRmESZs4mTSwb+Lok3KDhRirrrpqbH2STyivTPRJEESbYfA7rj4JgkhhnCtKn5RCNkRvuWHfxdUnYXj1CZNmZNkL0if5hghtLC6Pq0+ijsMx4uoTP2STyESfDDbYItxvXH2SKfRtcfVJENjfYfrEP8mciT4pNLSTOPokqH+nTnjWWAgQR5+EwQQUWWVwlunyRW/2RnF28Lzstct2ZsWxTUtMgtPPOVs7aEIoE1jo4PQJ7wfXP1ci1D/QFukzMoH3FM8M7YZnCH2CfnTZrjLRJ36YPMJ5KUqfMOHEBD76hP6gmGNoQojCwPvWP4cSBvYMGQlYxEIfxEIhp1F4d7Moiv/LDewwNAr2Ana4V6PwN/pOopAWAsoLx3zsFbSF0yjYmIzJEPmSvh8dFaVReIcyB3DHHXfYRVhejUKWRWx2IgeHvQOwRzkX0bidzc/iEd4xvBsYCysljUK5YVOxsIfrJdKt01RcL9ftoopGETWHQrlh61A2+YZ3M/XOfAC2lFej0N7QWXE0CsfBVmd+izFj/kejEGmYv6GziJqKbcjzG3T/vPepdzQK5eje9yyYYwyj1DQK90uZEYQAR2FsEewcbCIWD+Vi27MYhnbA8+40Cs8Ci1ywe2gP9HM8K0EwDoD2ZC4GjUJ5BmkUjoUzP+WORmHxFM839jz3wXhxsTUK9Y9eZswEjcJ9o1HQUzz/aJSg/p064TkkqAt1Q9l5NQqLBInMS5AKysfBnEVbV4/NKDO3rcv09EavT+D52HabrQf8vMN2wQEn0CUuSEc+NArjP7wn6QMrWaNQ/0BbjNKTQdA+3BwK5cV7C01LAA4WXKJR6GvRKOzjNAptHo3CWFBYXdGXM/7Ae5I+Do3CM+M0Cs8KfZabQ+H5EkKUP9Io0iggjSKNIo1SWRqFbPcL2rvNJ3NaU79b2N6f+d7PMsuvYK65/T7z4L13mUf/8y/z3luvm3lz55jqmhqznEejbB0wD5utRskGb//F8xLWn0mjZIc0SnkzpK8cPBFE1vAwYXTjuek8yfJJIScfvZ5wmuSsfFTfyUL1nRxU18kin/VN5LYvF3Sa9gAhCkPMEDOyqcaMGVpraqoXp8QU5VXfpGfGaQZblUHKTMg1uoYYHMpZn4Dea8lC9Z0cVNfJQvVdWhC9eWFHj5nb2mUWdkY7wENddZUZ0VRjRjTUxNIBqu9kkWt9S58kk3LWKOUafExkjuo6Wai+k4XquzTo7u0z89pw4O8yHSFzEl4aatAltWZ4Q42prhrowB+F6js55KuunUbhWJnaqgo8Vr6Uq0ZRH5csVN/JQvWdLJJQ39j8Czq6zcL2Hus0H/fuqoYMMUPrq01LfbVprq8xNRlogVIkCXUtFiON0o8yzQghhBBCiJKhvavHOstELZgb1lBjxjXXmboaOcsIIYQQQghRjnR09diMMnPbu9NGb2YiqqWh2oxsrDWNtVVLZJURQoik4p/U1KR25aK6Thaq72Sh+h48+pwDf3v/Yrm+NEvlqocMMcMaa8yIxhrrNJONLlF9J4d81zXfZ1GbEKWM+rhkofpOFqrvZFGJ9U3wrtbOHmv/s3WGZLoPora6yjT/z1Gmqa7azldUCpVY1yIcaZR+5DQjhBBCCCEGna6eXvPlwk4bzS0MBOhSzXWmsW6x57sQQgghhBCiPOjt7TPz24ne3G1au9IPpDfUVpkRjZlHbxZCCCGEEEKIqKjS8/6fvfsAk6ss+z/+m7K7s72XZDc9m15oCSEBQhFC76CvqMBfeRGpKigoICIKCCqCgu0VFERFQHroIfQSAum9bXazm+19Z2an/K9zQkI2M6k7bed8P9c1V3bmOXvOk9w72XPmPPd99/Sa1yVGh5m9yUx1mNclRiJ/Mi2QAwAAAJKZLxDYkSRjPIzEmX2VnuLYkSiTdoAJ8wASE0kzAAAAiBujqnRjl1fN3b7dZrEbF6FGZxnjopSLUQAAAGDgMM7x3b0Bc0Fam9u31xtTO1dvNm5MAQAAAEAk7kN07EcCv1FN2rgmMRL46XgPAAAADIx7EV5/UB2ebZ0ke3qNbpL7xkiON5LljTVJxsO4HgCQnEiaAQAAQMwZi+VaunvV2NVr3rAKx2m3qTgr1bw5RbIMAAAAMHAYFZvbe4xFab1y+wJ73d7oKmmc9+ekOWWnqwwAAACACCya6/k8gb99HxL4jYVyRiVp47rEuD7hngQAAACQ+Of83V6/Oj7vJuP17/1exHZGYsz2JJnMFAf3JQCLIGkGAAAAMb1oNW5Q1Xf2qnc3F6zGzanCzBQVZqRwYQoAAAAMsBtU5qI0j3+3nSR3TpLPNbvKpJjdJQEAAACgv4z7Dm1mAr9vnxbNGR0ucz/vKuPgfgQAAACQ0HyBgLo8XyTK7C05ftdz/+2JMi6nnUR5wIJImgEAAEBMdHl82trZK3evP+y4TTblZzhVlJkiJ+1OAQAAgKRblGbcgspMcyo/3WnemOKmFAAAAID+MhbKGQvmjGsS4z7E3pbNmQn8LqeZLONKccRolgCQ3Hb9jMd4vreCKhi4iLe1EG9rScR4e3wB83y/w+NTj9e/1/P9nQv2ZqY6lO0yEmWc5nUAEjvWGDjxttlscjgG3vU0STMAAACIKiNJpr7Ta17E7k6Oy6nirFQqTAMAAAADQHCnRWmd+7AoLcVhV57ZVcZpfg0AAAAAkbj3YFyTtLl98gf2fFViLA8yFsrlfp7AbyygAwArcjpjs1RwIC6ixIEj3tZCvK0lHvE27j8Y3WTa3b3qcPeaSTP7yrj/kO1yKseVoiyXk/P+/cB721ocBxhvu33bPb6UlBTl5+droCFpBgAAAFGrON3Q2avWnt7dbpOR4lBJdqoyUrn4AgAAABKd1xcwF6UZ5/i+vS1Ks9mUneYwE2WMam50lQEAAADQX0ZyjJEkY3S77NlNV/udpX6ewG8ky5DADwAAACQmXyCgTrdP7W6fmSizt6T4naWnOJSTnmImyrhS7NyLALBbJM0gIdH6y1qIt7UQb+sg1taNt3HxanSWae7qVWA3MTc6yhjJMtlpnI4ORLTtBAAAsA7jnL7DbSTK+NTl3fuiNONc31yU5nLKyaI0AAAAAP1kfPbc7d3WVabD49/tfYftjGrSRnd747oknUVzAAAAQMJ2jjQSZIxEmW6PX8G99rT/4nzf6CJpdpRJTyE5HsA+Y5Ui+oW2nYgG4m0txNs6iHXyM25UNXd5Vd/u3m3VaafdrtKcNBVkpnKjKolYtW0nAABAst+wMhalGVWc91bVbfuitPx0J5XcACBGKFhjHcTaWoi3tRDvvXez39bp0md+vTdGR3sjUcaoMG1PwEsS4m0dFB5DIvP5fFHZ764/p36/n//jkhjxthbibS3RjLexlx6vXx0eo5uMX959OMffea1RtsthdrfPSHV+cb4fDMjn2/f94Au8t60lUvEOBALmo7e3Vy0tLfv1vYmwLoykGYvgPzMAABDN84y2nl7Vtbvl3c3FqLGIrjg7TUVZaXIk4t0qxAXnqNZF7AEASExGcoxR1c1YlNbTu/euMukp2xelOTnPBzCgResaJVaFxwwspLQOYm0txNtaiPe24lztPb1q6faaHS/3xqgqnZ+RovyMVKWlDKx/P+JtHQcaa2Nhm1F8jMJj1jTQ7qPsOt+BNn/sH+JtLcTbWiIdb+OeQ6fHp06P33z492N/RoGu7DSnstIccjkp1hVpvLetJRrx9vv3fh8x0ZA0Y5GLbyOzy/gh5xcHAACIJOPitq6tR93e8CfCNtlUkJmikhwXLVERtvoAFdKse31iPLZ3GwIAAPFjfGbY02tUcO5Vu9tvLlLbEyM5JtflNJNlXANsURqwp/eBcX5q4BzVWrhGAQAgca5JWrq8au3x7rXTpW17p8uMVGW7nKyBQFJfo3APxXpY5wUAGOg8vsCORBljLdG+Ls03ivEa3SONbjJGogxrjIDEEvj8M3TDQD1HJWkmyblcLrnd7m0fNPX0KCMjI6L7p20nIoF4Wwvxtg5infwXufUdXrNt6u4YN61KslKV6rTTEjXJROL93dnZaX7P9g/8B2LbTuw/43pk+/VJV1eXsrOz4z0lAAAsy+cPqO3zrjLG+f3eZKYaXWVSlO1ymDevgGRinKNuZ1RxhnVwjQIAQHyvSVq7e9Xc7ZV7HzpdGkn7BRmpystIkZMFdEhyxvoeg3H/JD09Pd7TQRKt8wIAINKM31ndvdsSZTrcfnn9+742yGm37egmY9yDsNPRHkhY3d3dO75OTU3VQETSTJLLyclRW1ub+fX2hYjGBXWiZ3nR+staiLe1EG/rINbJqdcfUENnr9p6endbDSIj1UiWSTErQCA5Hej729jOSLo2PuQ3FiPtfANgILbtxP7Ly8szr0uM6xHjOsWIu3HDx1iYmOjXKAAAJANzUbjXbybKGDevgnup8ZZidJVJTzG7ypjJ8EASvieMxUjbP0M3sCDNWqJ9jRKtwmMGCtZYB7G2FuJtLVaNt1Fx2uh0uS/XJA6jq0y60ekyRekpn1+TDNAiXVaNtxX1J9Y7X6MYX2+/d0LhMesYqOu8AADWYnSHNM7rzY4yXv9eu0XuzOW0mx0jjUQZ42t+xwGJK7ibdV4DNbGbpJkkl5mZaV48GT+wxsV0c3Oz+brdHplfNttbLUWDMcdYHAeJgXhbC/G2DmKdXLz+oJk0Y1zqhssXN6pNpzntcvps6mgJqiMOc0Riv7+3d5bZmXGuSiVn6zASpHJzc80bPsbPjdFxyHgY1ybbH/0R7d81/F6zFuJtHcTaWqwab+MMrNcflM8f1LYz+vDn9Abjt7HDbjMTZhxBm4LdUssXxaMGFKvG26oOJN67bmdURxuoFdJwYLhGwUBBrK2FeFuLVeJtfCzcGzCuSQLa/rfc01mX02aT02Ez/1SP1G48NPBZJd448FiHu0ZxOp0UHrMQ1nlhoCDe1kK8rWV38TbO6X2BoJkg4zfWfuy0CH1PC9G333MwHkZnGZtfCnRJ7cYjin8P7B3vbWuxs86LpJlkZ1wwDR06VFVVVeYF1fYf4HA/yAciVv9R8h+ytRBvayHe1kGsB3obVb8Cuzl3MJJlstMcynCl7Pge4m0tBxrvrKws8wFrGTRokHmjr6GhwXweyWuUWP7fw/9z1kK8rYNYW0uyx9usTusLqMcbkMe/97+rcbMqPcVhVm92mJ+bG+f1yVP1ONnjjf7H2zhHNaoxU9nQerhGwUBDrK2FeFtLssXb+D3a0xswH959uCYxusoY1yNGF/tkvCZJ9ngj8rHmGsWaWOeFgYh4WwvxthZ3r0/u3oA8voCZMLOvthfdNTrJpDmNwjTGq0EFA3vrNYl44b1tLQGLrvOyBen3aglGmI3WSB0dHTuqEUSC1+tVtC4Cd85E6+3tpTVxEiPe1kK8rYNYD3xNXb3a1OI2L4DDsduk8tw0Dc5zmQvsiLd1HOj726ha4HA4lJaWZj6M6mgHqqio6IC/F4nBuJYwKjgb1ynG15H4ECZa1ycGfq9ZC/G2DmJtLVaJt7EgbWuHVw2dXrO7zJ4Y5/SFmSkqzU5Vjiu56itZJd7o/zWK8X1GZTRjQdqBLkbj+iQ5cI2CREWsrYV4W0uyxrvD41d9h1eNnV7t5ZLEXDy3/ZokN8muSawSb0Q21lyjYDvWeSGREW9rId7WYkS2zRNUU6dHTV1es3v9vspMtSs/I0UFGSnKSnNEdZ7oP97b1sI6r21ImkG/NDY2RmW/xpvMqJixXUtLC+1mkxjxthbibR3EeuD6rLpDv51fpSW1nbtdWHfm5BJdNrNcRVmp5mvE21oSId6JcDEF61yfJMrPPWKHeFsHsbaWZI53j9ev11Y36+kl9VpUE/48fmdjSjJ09uQSnTS+UNlJujAtmeONxIs31yfYHa5REAnE2lqIt7UkU7wbu7x6YVmjnl3aoE3N7r1uP6E0U2dMLtaJ4wqTLoHfCvFG4seaaxTsDuu8EAnE21qItzX4A0E9t7RBv39ns1q6ffv0PakOmw4bmqOjR+XryJF5KstJi/o8ETm8t60lEeJdlADXKNb49AEAAAB7tbGpR/e/vVnz17bsdpujR+XpyqOGaGRRRkznBgAAAKAvoxbSiq1denpJg15e0agu7547ImSmOnTy+EKdNaVE40ozYzZPAAAAAMnJ5w/onfWtemZpg95b37rXrjK56U6dMqFIZ0wqVmUx9xgAIF4LJqPBqEK+p+dILsTbWoh38vusul2/fG2Deb9hb4wukUeOzNfs0fk6fHieMlLpKDNQ8d62FuK9DUkzAAAAFmdUgPvTezV6ZnH9bm9qTSzL1DWzh+qQITmxnh4AAACAnbS7fZq7vFHPLGnQ6obuvW5/cEW2zpxcrC+NKZArhRtYAAAAAPpnXWO3WYX6xeWNat5LFWqjc/0Rw/PMrjJGUa4UhzUX5gBAoti5wng05ebmxuQ4SAzE21qId/Koa3Przrkr9PRnW/a43fhBOTp+XImOH1+iqRV5shsn+Ug6vLetJdei8SZpBgAAwKK6vX498nGtHl1Qq57e8FWpK/LSzM4yx48pkM3GhS8AAAAQD4FgUAs3t5uJMq+vbpZ3LyWcCzKcOm1isbkwbXhBeszmCQAAACA5dXp8emVls55dWq+ltXuvQD0kL828Hjl1QrFKslNjMkcAAAAAe+fu9ev/3tmg389ba64bCmfmqEKdPKlMx40vVXke9xgAJAeSZgAAACzG5w/o6SUN+vN7NWrq7g27TV66U5ceUa5zppZQ+Q0AAACIk8ZOr55b1mAmy1S3evapgvNZU4p11Mg8OTmPBwAAANDv5P0OPbt0W/K+xxe++NZ2LqddJ4wtMJNlDirPphAXAAAAkECCwaBeXb5Vt7+wQlXN4bvYjy7J0i2nTdDRY4pjPj8AiDaSZgAAACx0ATx/bYvuf3uzNjW7w26T5rTrwsPK9I1pg5SVxqkiAAAAEGu+QFDvbWjV04vr9e76Vu2lqYwG5aTqzMklOm1ikcpy0mI1TQAAAABJqq7do+eXNeq5pQ2qadtz8r5hyuAsM1HmhLGFykx1xGSOAIAD09LSEpX92u125ebm7nje1tamQGDPyZYYuIi3tRDv5LC+sVt3v75BH2xsCzuelebQt2cN0VcOG6yigvwdrxPv5MV721oSId75+V/83xIvrIQEAACwgMVbOvTb+VVaVNO526rUp08q1mUzK1SSnRrz+QEAAABWV93qNjvKGAvTGrvCd4Tczmm36djKfDNZZvqwHNmp4AwAAACgH4wuMkbRLaOrzIcb27SX3H0VZqaYifunTyzW8ML0GM0SANBffr8/JscxFmHG6liIP+JtLcR7YOlw+/Sn92v0+Kdb5Q+EnuUbdxaM7vWXzxqigswUOXa51UC8rYNYW0vAovEmaQb94nA4opbVtqfnSC7E21qIt3UQ68SwqblH983fpDdWN+92m6NG5evq2UM1ujjzgI9DvK2FeAMAAERuYdq8Nc1msszHVe173X5kYbrOnFysUycUKS8jJSZzBAAAAJC8Vm7tMhNlXlrRqHb3nhfMOOw2HT0qT2dMKtYRI/LMZH4AAAAAicdIkDHO8x94e7Naeny77Rh5/XHDNb7swNcKAcBAQtIMBkS7pJ3bQiH5EW9rId7WQaxjq6HDo/teX6PHPqoKWy3CMKUiVzecPE4zRxVF/PjE21qIN5I9qd9Aspi1EG/rINbWkkjxXl3fpacX1+uFZQ1qd4e/YbVdeopdc8YX6awppeZNLBtdZQZcvBF9xBsAAGDftfb06qUVTeYiutX13fuUvH/G5GKdMr7IrD4NAAAAIHF9VtOhe97YqJVbw5/rF2el6JrZQzVnXCH3GwBYCkkzAAAASaTb69Nf3t6gP85fpy5v+KpwQwrSdf2ccTpt8iDZqQQHIInEKqnfQLKYtRBv6yDW1hLreHe4e/Xcolr9++MqLapu2+v2Bw3J01emDdFpUwcrK42PcfuL97e1EG8AAIC+jOJaH21qMxNl3lzbol5/+GJb22WmOjRnfKHZVWZiWSaL6QAAAIAEV9/h1X1vVZkJ8uGkOGz62mGDdMnhg5WRGr1ilACQqLjbCgAAkAR8/oD+80m1fv3qarPLTDh5GSm66rhKfW3GUKU5uQAGAAAAoi0YDGphVYv+9dFmPb+4Vj294RPbdz5nP/vgcn152hCNK8uJ2TwBANFBN0xEArG2FuJtLbGI9+YWt55dUq/nltZra4d3r9tPG5qjM6eU6rgxBUpP4T5CJPH+tg5iDQAAYsnjC+gfC2r10Idb1NMbCLvNMaPzde0xQ1WR54r5/AAgUZA0g35paWmJyn6NDw12rgbY1tamQCD8L3QMfMTbWoi3dRDr2C3Ce2tdi3775iZtaOoJu02a066vmtUiypXtcqq7o13hm7AeOOJtLYkQ71h2FAEAANhfTZ0e/ffTGv3r481aW9+51+1njS7Ul6cN1YkTSuViYRoAJA26YSIaiLW1EG9riVS8jY70c5fU6T+fbNYH65v3uv3gXJfOO7RC5x06REMLMyIyB+wd72/rINYAACBa64Xmr23Rb96sUk1b+OK6Iwpc+v5xwzVjOOcjAEDSDPrF799zdcxIMRZhxupYiD/ibS3E2zqIdeQtre3UffOrtLC6I+y4TdJpE4t02awKleWkma/xuxvRQLyR7En9iZIshtgh3tZBrK0l2vEOBIP6cGOb/rtoq+ataZYvENzj9sVZqTpzconOnFKyo7pbT2e7wqfCY3/x/raWeMebpH4AAJAIC+Y+3dyq/yzYrOcW1arT49vj9qlOu+ZMLNP5h1Zo1ugiOezGHQUAAAAAA8H6xm79at4mfbipPex4VppDl82s0PkHlcjpoOsdABhImgEAABhgNre49fu3N+u11buvEDdzeK6umj1UlcVUhQNgHbFM3iJZzFqIt3UQa2uJVLzr2j16bmmDnl3aoNp27x63ddikI0fl66zJxTpiRJ6cny9M4+cu+nh/WwvxBgAAVtHQYXS5rNbjC6r3qcvlpPIcXXDYEJ0xdbDyMlJjMkcAAAAAkdHh9ulP79Xo8U/r5A9Tt8u443DWlGJ958ghys9IiccUASBhkTQDAAAwQLR09+ov79foiUX18u+mavXYkgxdPXuoDh9Ga1UAAAAgWnr9Ab29rlVPL6nX+xvatOeeMtKQvDSzq4zRCbIoi4VpAGAVdMNEJBBrayHe1nKg8TauR95d36pnltTr7bXNYRfL7SzX5dQpE4vNa5KxpZnma0FPl1o8Xf3/S2Cf8f62jkSINd0wAQBILsYaIaNwl1Fgt7UnfFfJqeVZuv644Rr3+Tk/AKAvkmYAAAASnLvXr8c+qdPfPtqiLm/4D9UH5aSalSLmjC+U3batWjUAAACAyNrY1KNnljTo+WUNatnNjant0pw2HTemQGdNLtEhFdmycZ4OAJZDN0xEA7G2FuJtLXuL94amHnOh3IvLGtXU3bvHfRlXH0cMz9UZk4t19Kh8pTrt5uv8PCUO3t/WQayRSBwOR9SSxfb0HMmFeFsL8Y6/z6rbdddrG7Rya/ik95KsVF177DCdNL6o3/chiLd1EGtrId7bkDQDAACQwJUijMV4f3i3Wg2d4W+A5bgc+n8zynX+QaVK+/ymFwAAAIDI6fH69frqZj29pEGf1XTsdfsxxRk6a0qxeYMqx8XHrwAAAAAOXKfHp9dWNZvJMou3dO51+/LcNDNR5tQJRSrLSYvJHAEAA0esuhDt3G0JyY94Wwvxjp3ath7dOXelnvlsS9hxIzH+f48aqcuPGaXMtOjciyDe1kGsrSXXovHmri0AAECCCQaDendDm+6bX6X1TT1ht0l12PTlQ8p0yeGDWYgHAAAAROGcfOXWbj29pF4vrWhSl3fPFWEzUx06aXyh2VVmXGkGXWUAAAAA9Ot6ZGF1h55b2mAmzLh94TvQb2cU1PrSmAIzWebgimy60QMAAAADmLvXr7+8vV6/n7dOPb3h702cOKFUN506QUMLM2I+PwAYqFhhCQAAkECW13XqvvmbtWBze9hx41bXyROKdPmsCg3KpUocAAAAEEntbp9eWtFodpVZXd+91+0PKs/WWZOLdfyYAqWnOmIyRwAAAADJaWu7R88s2Womy1S3eva6/eRBWWaizAljC5QVpcrSAAAAAGKXPP/K8q26/YXl2twcvsBuZUmWfnL6RB1ZWRTz+QHAQMcnJwAAAAmgutWtB96p1isrm3a7zeHDcnTV0UM1rjQzpnMDAAAArFDF2egq88bqZnl8wT1un5/u1GmTinXmpGINL0yP2TwBAAAAJB+Pz6/Xltfr8QWb9faaBgX2fDmiwowUnTKxSGdMKtYIrkcAAPuppaUlKvu12+3Kzc3d8bytrU2BwJ47pWHgIt7WQrxjY11jt+5+bYM+3NQWdjwrzaHLjxyi8w8uU4rDzv/n6DdibS2JEO/8/HzFG0kzAAAAcdTa06v/+2CL/vPpVvl2czdsTHGGrp49RDOG58V8fgAAAECyauj06tnFW/XMknpt3ksVZ6Pj4xEjcnXW5BIdNSrPvCkFAAAAAAfKHwjqsU+26KEPP1ZLd+8et3XYpCNH5ZuJMrNG5MrJ9QgA4AD5/f6YHMdYhBmrYyH+iLe1EO/I6nD79Kf3avT4p3XyB8PfmzhrSom+c2SF8jNSjDJgMf33J97WQaytJWDReJM0AwAAEAfu3oD+tbBOD3+0RZ2e8CehpdmpuvzICp08vkgOu3EpDAAAAKA/fP6A5q9u0L8+3qw3VmwNexNqZ2XZqTpzcrFOn1Ssspy0WE0TAAAAQBJb39itn760Xsvquva43YgCl86YXKKTJxSqKDM1ZvMDAAAAEP0k+meWNOiBdzartccXdpup5Vm6/rjhGleaGfP5AUAyImkGAAAgxhe+c5c36sF3q7W1w7vbtqqXHD5YXz64TK4UKsYBAAAAkfDG6ib9et6nqmnt2eN2TrtNx4zO11lTijVtaC4J7AAAAAAilsT/949r9ef3a9S7mwz+zFS7ThxXaHaVmTQoSzYb1yMAAABAMvmsukN3v7FRq+q7w46XZKXo6tlDNWdcIdcDABBBJM0AAADEQDAY1Acb23TfW5u1piH8hW+Kw6YLDirVJTMGKy/daKsKAAAAoL/aeny6542Nmruiaa9VnM+cUqJTJxQpP4PzcQAAAACRs7q+y+wus7uFcYePKNCpEwp07Kg8pac6Yj4/AAAAANG1tcOj++Zv1ssrw9+rSHXY9LVpg3TJ9MFcEwBAFJA0AwAAEGUrt3bpvreq9NGm9t1uc9L4Ql0+q0Llea6Yzg0AAABIZm+va9Htr2xQU1dv2HGX064TxhXqrMnFmjKYKs4AAAAAIqvXH9BfP9iiv364xexEv6uRRZm667wpmja8QC0tLfL7/XGZJwAAAIDo8PgCenRBrR76YIvcvkDYbY6tzNc1s4eqgjVDABA1JM0AAABESW2bRw+8s3mPFa0PG5JjXviOL8uM6dwAAACAZNbh9unX8zbpuWWNYcenVOTqzIlFOn5MnrLS+IgUAAAAQOQtq+3UbS+v17rGnpAxu036xvTBuuG0KXKlUEUaAAAASDbBYFBvrm3RvW9WqabNE3abkYXp+v5xw3T4sNyYzw8ArIY7wgAAABHW1uPTQx/W6N+fblWvP7RynGFUUbquPnqoZo7IpZo1AAAAEEHvb2g1u8ts7fCGjOW4nPrpmRN11kHlam1tpYozAAAAgKhUkv7Te9V65ONahWkuYy6Mu+WkkZpakUvCDAAAAJCE1jV261dvbNJHVe1hx7PTHLpsVoXOm1oip8Me8/kBgBWRNIN+cTii8yGe3W7f43MkF+JtLcTbOqwYa+NG2L8/qdVf3q9Whyf84ruSrFRdcfRQnTqxWA6jlFySsGK8rYx4AwCARNTl9eveNzfpv4sbwo4fOTJPv/rKoSrNccV8bgAAAACsYVFNh9ldZlOzO2TMYZMuPnywvjmjXKlOPlMFAAAAkk2722cm0P/n060KV2PXWCV01pQSfefICuVnpMRjigBgWSTNoF/y8/NjcpzcXNrPWQnxthbibR3JHOtAIKhnFtXonpdXq6a1J+w22WlOXX7sKF0yc4TSU5O/clwyxxuhiDcAAIi3j6vadNtL61XbHtpdJjPVoe8fO0xnTS1VAQkzAAAAAKLA3evX79+p1r8+qVO4/vNjSjJ0y5yRGleaGYfZAQAAAIgmfyCop5fU64F3qtXW4wu7zUHl2bruuGFcEwBAnJA0AwAA0A/vrGnUL15coeW14Vuqpjhs+tqMYbrquEoVZKbGfH4AAABAMuv2+nX/W5v1n8+2hh0/fFiObp4zUmU5abLZkqfTIwAAAIDEsaCqXbe/sl7VrZ6QMafdpm8dUa6Lpw+S00F3GQAAACDZfFrdrrvf2KTV9d1hx0uyUnTNMcN04tgC7lMAQByRNAMAAHAAlm9p150vrdRbqxt2u81pUwbp+jljNayQKhEAAABANG5E3Tp3vWraQhempafYde0xQ3XOlBJuQgEAAACIii6vX797q0r/+aw+7PiEskyzu8zo4oyYzw0AAABAdNW1e3TfW5v1ysqmsOOpDpu+Pm2QLp4+WOmpjpjPDwDQF0kz6JeWlpao7Ndutys3N3fH87a2NgUCgagcC/FHvK2FeFtHssa6tt2jB96u0gtLGxTczTaHDsnRtccM06TB2ZK8amnxKtkla7yRuPHOz8+P6fEAAEDicPf69ft3qvWvT+rCnpMfOiTbXJhWnueKw+wAAAAAWMEHG1t1+8sbVNfhDbs47rJZFbrwsEFmpxkAAAAAycPdG9CjC2r18Idb5PaFXydxbGW+rp09lPsUAJBASJpBv/j9/pgcx1iEGatjIf6It7UQb+sY6LHucPv00Idb9K+FdfL6w6fLjCxM11VHD9GRI/PMatYD+e9r9Xhj/xBvAAAQK4u3dJjdZapa3CFjLqfdPB8//+BS2ekuAwAAACBK9wp+82aVnl0avgv9lMFZuuWkkRpekB7zuQEAAACInmAwqHlrWnTvm1Xa0u7Z7bqh644bpunDvihCCgBIDCTNAAAA7IHXF9B/Ptuqv36wRW1uX9htijJT9O1ZFTptUjFV4wAAAIAo8PgC+uO71Wb1tkCYHPap5Vm69aRRGpJP1TYAQOJwOBxR7QK7p+dIHsTaWoh3YntrbbNuf3m9GjpDu8u4Uowk/mH68iFlcuzjfQLibS3E2zqINax4jcLPvbUQb2sh3tusbejS3a9v1Eeb2sKOZ6c5dPlRQ3X+wWUDet0Q8bYOYm0txHsbkmYAAADCCASDemVlkx54u3q3FSIyU+36xvTB+uohZUpPjd4iCAAAAMDKltV26ta567ShObS7TKrDpu8cNUT/sx8L0wAAiJX8/PyYHSs3lwqmVkGsrYV4J4aWLq9ue365/vtpTdjxGSMLdNe5UzSsMLNfxyHe1kK8rYNYw4rXKPzcWwvxtharxbutu1e/eW21Hvlgk/xhKnoZTe//Z/pQff+EMSrMSlOysVq8rYxYW0uuReNN0gwAAMAuPq5q033zN2vF1q6w48ZivHOnluhbM8pVkJkS8/kBAAAAVun6+JcPavS3D7fIH6a7zMSyTP305FEaXpgej+kBAAAAsICXltbqpqeXqbEztLhWZqpDN54yXl+dPlR2kvgBAACApGEkyPzr4yrd8/IqtXT3ht1m2vB8/eT0iZpUbs3F5wAw0JA0AwAA8Lm1Dd26760qvbchfDtVw/FjCnTFUUM0NN8V07kBAAAAVrJya5fZXWZtY0/IWIrDpstmVuhr0wbJycI0AAAAAFFgJMn85JllemFJbdjxoyqLdOe5U1SeRxI/AAAAkEw+2tCsW59dpuW17WHHB+W6zOT506cMks1oNQMAGBBImgEAAJa3tcOjP7xbo+eXNihMAWvTQeXZumb2EE0enB3j2QEAAADW4fMH9NcPt+j/PthiVnLb1bjSDN160iiNLs6Iy/wAANgfLS0tUdu33W5Xbu4XlUzb2toUCASidjzED7G2FuIdf8FgUC+taNQvX9ug1h5fyHhWmkPXHTdcZ0wukS3oVkuL+4CPRbythXhbRyLEOj8/P6bHw8ARrWuURPi5R+wQb2uxUrzr2j36zbyNemVlU9jxVIdNFx1erksOL1d6qkOtra1KNlaKt9URa2tJhHjnJ8A1CkkzAADAsjo9Pv3to1o99kmtPL7w6TLDCly66ughmj0qnwoRAAAAQJQ7P/5k7jqtqu8OGXPYbbr0iHJdPH2QnA57XOYHAMD+8vv9MTuWcZMzlsdD/BBrayHesdXY6dUdr23U/LXhFxQfNTJPN54wQiXZqVFZXEK8rYV4WwexRiKJ1c8iP/fWQrytJRnj7e4N6NEFtXrowy3y+MKf5x9bma9rZw9VeZ7LfJ5s/wZWijfCI9bWErBovEmaAQAAltPrD+jJRfX68/s1agtTKc5QmJGiy2ZV6IzJxXLaSZYBAAAAosUXCOqRj7foj+/WmF/vqrI4Q7eePFJjSzLjMj8AAAAAyd9d5vlljfr1vE3q8IQuGsl1OXXdccN00vhCimsBAAAASXQdMG9Ni+59s0pb2j1htxlZmG5eC0wf9kWHBgDAwETSDAAAsNQF72urmvW7tzerpi38BW96il3fmDZIFx42SBmpjpjPEQAAALCSDU09unXuOi2r6woZc9ikSw4v1zePGKwUussAAAAAiIK6do9+8coGvbexLez48WMK9IPjh6swMyXmcwMAAAAQvc73v5q3SR9XtYcdz05zmIV2zzuolEK7AJAkSJoBAACW8Mnmdv12fpWWh1mMt31B3tlTSvStmeUqykyN+fwAAAAAK/EHgnrskzo9+M5mef3BsNXbjO4yE8qy4jI/AAAAAMlfZOupxfW6b36VuryBkPGCDKeZLPOlsYVxmR8AAACAyGvr8emP71Xryc+2KsytCdk/Xzt0+awK5WWQOA8AyYSkGQAAkNTWN3br/rc36+11rbvd5tjKfF1x1BANL0iP6dwAAAAAK6pqcZvdZRZv6Qx7Q+rr0wbpf2dWKM1JdxkAAAAAkVfd6tbPX9mw26rSJ48v1PePHcYiOQAAACCJCnn9d3G9Hny32kycCeeQimx9/7hhGluSGfP5AQCij6QZAACQlBo6vfrju9V6dmmDAmGqQximDM7S1bOH6qDy7FhPDwAAALCcQDCofy/cqt+9vVkeX2gl52EFLt160khNHsz5OQAAAIDoXJM8/ulW/e6tzXKHuSYpykzRjSeM0OzR+XGZHwAAAIDIW7i5Xfe8sUmrG7rDjpdmp+qa2UN1wtgC2Wy2mM8PABAbJM0AAICk0unx6ZGPa/XogrqwC/EMQ/NduvKoIWaHGS54AQAAgNhUcr7tpfVaWN0RMmackX/10DJdfuQQuVLoLgMAAAAg8jY19+hnL2/QZzWh1ySG0ycV63vHDFW2iyUUAAAAQDKoa/fot/Or9Oqq5rDjaU6bvjFtsC6aPkiuFEfM5wcAiC0+8QEAAEnB5w/oqcX1+vN7NWrZTSvVggynLj2iQmdPKZbTwWI8AAAAIBaVnJ9aVG/emOrpDU1qr8hL009OGqmDK3LiMj8AAAAAyc0fCOqxT+r0h3eNjpfBsFWlbzpxhI4YkReX+QEAAACILHdvQI98vEUPf1S722K7x1Xm69pjhmlwblrM5wcAiA+SZgAAwIAWDAb1xpoW/f7tzapqcYfdxuW06+vTBulr0wYpM5XqEAAAAEAs1LZ59LOX1+ujqvaw4xccXKqrjhqidM7RAQAAAETBusZus+PlsrqusOPnTi3RVUcPUVYayyYAAACAZFk/dO+bm1Tb7g27zaiidF133DBNG5ob8/kBAOKLT38AAMCA9Vl1h1mxekltZ9hxu006c3KJLptZrqKs1JjPDwAAALDqjalnljToN29uUpc3tIrb4Jw03XLSCB3GTSkAAAAAUepM/7ePa/WX92vU6w/tLlOem6ab5oxgoRwAAACQJNY2dOueNzZpwebwRbxyXA5dNrNC5x5UKqexmAgAYDkkzQAAgAFnY1OP7n97s+avbdntNkePytOVRw3RyKKMmM4NAAAAsLKtHR79/OUNem9jW9jxc6aW6JrZQ+kACQAAACAqVtV3md1lVtV3h4wZS+O+ckiZvnNkBR0vAQAAgCTQ1uPTH9+r1hOfbVUgGL7Y7jlTSvTtWRXKy0iJxxQBAAmCpBkAADBgNHZ59ef3avT04nqFKQ5nmliWaS7CO2RITqynBwAAAFi6u8wLyxvNSm6dHn/IeGl2qm6eM0IzhufFZX4AAAAAkluvP6D/e3+LHvpoi/xhVssNzXfplpNG6qDy7LjMDwAAAEDkGOf8/11crwffrTYTZ8I5pCJb1x03TGNKMmM+PwBA4iFpBgAAJLxur1+PfFyrRxfUqqc3EHabirw0s7PM8WMKZLPRShUAAACIZXL7z1/ZoLfXtYYdP2NSsb537FBlpfFRJAAAAIDIW1bbqdteXq91jT1hK0t/7bBB+t+ZFXKl2OMyPwAAAACRs3Bzu1nAa3VDaHfJ7UW8rp09VF8ay/ohAMAXuFONfnE4otO22m637/E5kgvxthbibR2RiLVRGc7oKvPHdzerqas37DZ56U5dNmuIzj2oVCkOfp7ihfe2tRBvAACwvbvMyyubdPfrm9TmDq3kVpSZoptOHKEjR+XHZX4AAAAAkpvHF9Cf3qs2i26FaS6jkYXpZneZSYOy4jE9AAAAABFU1+7Rb+dX6dVVzWHH05w2fWPaYF00fZBcKdFZ1woAGLhImkG/5OfHZtFDbm5uTI6DxEC8rYV4W8f+xNpYfPfK8q2666WVWt/QFXYboyLct44cqctmj1S2KyWCM0Uk8N62FuINAID1NHf16s7XNuiNNS1hx0+eUKjrjxuuHBcfPwIAAACIvEU1HWZ3mU3N7pAxh026+PDB+uaMcqU6KfgDAAAADGTu3oAe+XiLHv6o1kycD+f4MQW6ZvZQDc5Ni/n8AAADA3etAQBAQvlkU4vueHGFFmwKv/jObpPOP3SIvnvCGJXlumI+PwAAAMDqXlvVpDtf26jWntDuMgUZTv3ohBE6prIgLnMDAAAAkNzcvX79/p1q/euTOoVpLqMxJRm6Zc5IjSvNjMPsAAAAAESKUXD39dXNZneZ2nZv2G1GFaXr+uOG6bChFPoEAOwZSTMAACAhrG/o1C9fWqWXltXtdpvjxpXohyeN09iy7JjODQAAAIDU2tOrX76+Sa+sbAo7fsLYAv3w+OHKy6ATJAAAAIDIW1DVrttfWa/qVk/ImNNu07eOKNfF0wfJ6aC7DAAAADCQrW3o1j1vbNKCze1hx3NcDn17VoXOmVpqXgsAALA3JM2gX1pawncB6C+73a7c3C+yf9va2hQIhG+th4GPeFsL8baOfY11U5dXf3q3Wk9+Vid/uLJwkiaUZeraY4Zr2jBjf76o/f7BgeO9bS2JEO/8/PyYHg8AAKubv7ZFv3hlg5q6e0PGctOduvFLw/WlsYVxmRsAAACA5Nbl9ev++VV6YlH9bu8hGN1lRhdnxHxuAAAMJA6HI2r3Dvf0HMmFeFtLrOPd1tOrB9/ZrP98WqdAmDVERn7MuQeV6jtHDVVeOgW8Io33t3UQa2sh3tuQNIN+8fv9MTmOsQgzVsdC/BFvayHe1o11j9evf3xSp79/tEXdveEX25fnpuk7Rw0xK1bbbTZ+VgYQ3tvWQrwBAEhe7W6fWc3txeWNYcePrczXDV8aocJMbk4BAAAAiLwPNrbq9pc3qK7DGzKW6rDpslkVuvCwQVSXBgAggYrS7Vx8D8mPeFtLtOLtDwT12EdV+tUrq9QapniX4fARBfrJ6RM1YXBOVOaAULy/rYNYW0uuReNN0gwAAIgpXyCo55Y26I/vVquxK/yFbq7LqW8eMVjnTS1VqtOamc0AAABAvL27vlW3v7JeDZ2h5+05Lod+cPxwzRlXKJuNxWkAAAAAIqvD7dNv3qzSs0sbwo5PGZylW04aqeEF6TGfGwAAAIDI+WB9k259dplW1nWEHR+c69KPTh2vUycP4n4EAOCAkTQDAABiIhgM6q11Lbp/fpU2NLvDbpPmtOl/DinTRdMHK9vFaQoADFTNzc16//339emnn6qmpkatra3KysrS2LFjdeaZZ6qysjLeUwQA7EGnZ9vitGeWhF+cdtTIPP34xBEqykqN+dwAAAAAJL+317XoF69uCJvA73LadeXRQ3T+QaVy0F0GAAAAGLBqWnv0ixdX6IXFtWHH05x2fXv2KPORnuqI+fwAAMmF1agAACDqPq1q0c+eW6aFm9vDjhu3tU6bWKTLZlWoLCct5vMDsJ/8vVLtIqlmoZESJ406O94zQoKZO3eunnnmGZWWlmrq1KnKyclRbW2tPv74Y/NxzTXXaObMmfGeJgAgjA83tem2l9Zra4c3ZCwrzaHrjh2mUycWUc0NAAAAQMS19vTqV/M2ae7yprDjhw7J1s1zRqoizxXzuQEAkAxaWlqisl+73a7c3Nwdz9va2hQIBKJyLMQf8baWaMTb3evX3z7cooc/rJHbF35fXxpbqO8eO8zsMuPuape7q1+HxD7i/W0dxNpaEiHe+fn5ijeSZgAAQNRsaurSL19apReWhK8KYZg5PFdXzR6qyuKMmM4NwD4KBuRoWS9n/WI5ty6Ws36JnI3LJf/nC2nzhpE0gxCjR4/WrbfeqgkTJvR5fcWKFbrtttv05z//WdOmTVNKSkrc5ggA6Kvb69dv51fpyUX1YcePGJ6rm+aMUGk2Se4AAAAAIu+N1c2667WNauoO7S6TkWLX1bOH6pypJbKTwA8AwAHz+/0xOY6xCDNWx0L8EW9r6U+8g8GgXl/drHvfrFJdmMJdhtFF6bruuGE6bOi2xd38bMUX72/rINbWErBovEmaAQAAUfH04q2689UN8uymKsTYkgzzJtfhw77IYgYQZ8Gg7B3VnyfHLFbK1iVyNCyVvXcPZVtaN8nW0yyl8l7GFw4//PCwr48fP16TJk3SokWLVFVVpVGjRsV8bgCAUAuq2s3uMlvaPWEXpxnV3M6aXEx3GQAAAAAR19zVq1++vlGvrW4OOz7DSOA/cQRd6gEAAIABbG1Dt+5+Y6M+2dwRdjzH5dC3Z1XonKmlctq5FwEAiDySZgAAQES5ewO66/WNem5pQ9jxQTmp+s6RQzRnfCEV4YA4s3XVK2VHBxnjsVR29/63ZXdsXSzfkKOiMkcrMtqgrl271nysW7fOfHR0bPvwcPbs2briiiv2eV8NDQ2aO3euFi5cqKamJjmdTpWVlemII47QnDlzlJYW+8UGDoejz58AgPjp8fr1u7c369+fbg07Pm1ojm6ZM1KDclmcBgAAACCyjCrTL69s0t1vbFJbjy9kPCvNoe8dM0ynTyoigR8AAAAYoIxz/T+8W60nF21VIBg6buTHnDu1RJfNqlBeeko8pggAsAiSZgAAQMRsbnHrh8+u0eqG7pCxHJdT/2/GYJ1/UKnSnPa4zA+wMpu7Vc76JduSY8wkmaVydNX1b6cFI6XBhyiYlhOpaULSpZdeGpH9LFiwQPfff796enp2vObxeHYk4rz++uu68cYbzSSaWGlsbNSSJUuUn5+voUOHxuy4AIBQn9V06Kdz12lza2h3GZfTrmtmD9W5B5WQ6A4AAAAg4ho6vbrj1Q16a11r2PGjRubpxhNGqCQ7NeZzAwAAANB/vkBQ/11UbybMtLlDk+QNh1Rk6/rjh6uyOCPm8wMAWA9JMwAAICLmrWnWrXPXq8vrDxn72oyhuvTwMmWmsOAOiAlvl5wNy7Z1kTGTZJbI0V7Vr136s8rkK5liPgJlU5U99igpPX/bWEuL5A9976P/ioqKVF5erkWLFu3X923YsEH33nuvvF6vXC6XzjrrLE2aNMl8/u6775oJM7W1tbrjjjt05513Kj09XdHm8/nMJJ7e3l5deOGFsttJoASAeHWG/MO7m/WPBXUKU9RNB1dk6ycnjVRFnisOswMAAACQ7N1lnl/WqF/P26QOT+jnibkup647bphOGl9IdxkAAABggFpQ1a5fzdukNWEK7hrKslN17TFDdfyYAs77AQAxQ9IMAADoF58/oN+/Xa1HFtSGjGWmOnTnuVN0+tTBamlpkZ9F9UDk+T1yNq78vHuM8VgiR/Na2cIug903AVeBfKWTP0+SmazekikKZhbvGHc4HDsSZhB55513nkaNGmU+8vLyVF9fryuvvHK/9vHwww+bCTJGrG666SaNGTNmx5iRPDNo0CA9+uijZuLMc889pwsuuCBkH3//+9/NBJd9dcopp5j7DScQCOiBBx7QihUrdPzxx+voo4/er78PACAyltZ26ta567Sx2R0ylua06Yqjhugrh5TRXQYAAABAxNW1e/SLVzbovY1tYceNBXM/OH64CjNTYj43AAAAAP1X2+bRb+dX6bXVzWHHjfsQ35g2WBdNHyRXiiPm8wMAWBtJMwAA4IA1dHp143Nr9VlNR8jYqKJ0/fEb0zW6JCsucwOSUsBnJsRs641NPFwAAQAASURBVB6z2Owk42haLVug98B3mZIlX8kk+Uq3JciYnWSyyyUWy8ZNuASW/bF27VozOcVw7LHH9kmY2e60007TvHnzVFNTo7lz5+qcc86R09n38vDVV1+Vx+PZ5+POmDEjbNKMkTDz4IMP6p133tFRRx2lSy+99ID+XgCAA+f1BfSn96r1949rFQiTVztlcJbZXWZYQfQ7jwEAYCVm0Yko2bV7J908kxextpZkjLfRXebJRVt177xNYTvVF2Sk6IYTRuiEcUWymmSMN3aPeFsHsQYAWI2712/ef/jbR1vk8YUv7vmlMQW6ZvZQDcpNi/n8AAAwkDQDAAAOyIKqNv3o+bVq7vaFjJ08vlA3nzRag0mYAQ5cMCB76yYzMWZ7koyzcblsPveB79KRJl/xhB0dZIxEGX/eCMnGDZtk8tFHH+342kiaCce4STd79mw99thj6urq0rJlyzR16tQ+2zzyyCP9nsv2DjNvvfWWZs2apSuuuIIbhAAQYyvquvSTueu0vqknZCzVYdO3Z1XowsMGyWEnYRYAgEjLz49dl9bc3NyYHQvxRaytZaDHu6qpWzc8tVjvrWsKO37WQYN1y+kTVZCZGvO5JaKBHm/sH+JtHcQaAJCsjAT511c36943q1TX4Q27zeiidF133HAdNjQn5vMDAGBnJM0AAID9EggGzeoQD75THVKlOsVh0/ePHaZzp5bI6aSVKrDPgkHZO2u3JcZsT5KpXyq7t+PAd2l3yl84Vr1m95htHWT8BZWSIyWiU0fiWbVqlflnWlqaRo4cudvtJkyY0Od7dk2aiWTCzMyZM3XVVVeRMAMAMdTrD+ivH2zRXz+okT9MYbcJZZm69aSRGlmUEY/pAQAAAEhigUBQf39/o+56aZV6ekO7y5Rkp+nnZ0/WCRNK4zI/AAAAAP2zpqFb97yxUZ9sDr+mIdflNIt2nW2sH6JoFwAgAZA0AwAA9lm726efvLhOb69vDRkblJOqO0+v1MRBdJcB9sbW3Shn/RKl7EiSWSJ7T/hqi/siKJv8+aM+T47Z1kHGVzRecroiOm8MDNXV1eafZWVlcjh2n8A4ePDgkO+JZMLMgw8+aCbMzJgxg4QZAIix1fVduvWl9Vpd3x0yZtyc+t+Z5frG9MHcqAIAAAAQcesbOvXDJxfr440tYcfPP7RCN502QbnpFPcBAAAABprWnl498NYmPbmoPqTQrsG47WAU2r1sVoXyOOcHACQQkmYAAMA+WVHXpR8+u0Zb2j0hY7NG5Om2U0YpN51TC2BXNk+7mRRjPj5PknF01vZrn/6cIV8kyJRMka9kooKp2RGbMwYur9erjo5t1XwKCwv3uG1WVpbZjcbj8aip6cCTtsJ54oknNH/+fLlcLjM558knnwzZZvr06Ro+fPg+7W9f57enJKH+2jXphySg5Ea8rSPZYm10l3n4wxr96d1q+cLcrRpbkqnbTh2tMSWZsqJkizf2jHhbC/FGomppCb9gPBKMn/Pc3Nwdz9va2swCBkg+xNpaBnK8/YGgHv3Y6FK/WR5f6JzLslN180mjNHNkvgLuTrW44zLNhDKQ4439R7ytIxFinZ+fH9PjAQCSn88f0D8/qtI9L69Sm9sXdptDh2TruuOGq7KYDvcAgMTDylYAALBHwWBQTy2u1z1vbFKvPxhSIcKoDnHJ4YNlt1GlGlBvj5yNy+TcaiTJLDY7yTjaNvZrl/6Mkm2dY0omfZ4gM1nB9IKITRnJxe3+YrWBkbCyN8Y2RtLMzt8XCQ0NDTvm89RTT4XdpqSkZJ+TZi6//PJ92u7xxx9XrOx80xPJj3hbx0CO9eqtHfr+44u0pKYtZMzoKHPFsaN15XGjleJgIXkyxBv7j3hbC/FGovD7/TE7lrEQM5bHQ/wQa2sZKPFe19it215ar2V1XWHHjUrTVx09RFlpzgHx94mXgRJvRAbxtg5iDQAY6N5f16SfPrdMK+u2FW8MlyB/7TFDdfyYAtlYOwQASFAkzQAAgN3q8fp1x2sb9eLyxpCx/HSnfn7aaE0fxkIUWJTfK0fTKqXs3EGmeY1swQOvFhZIy/08MWbS54kyUxTIKovotJH8nWa2czr3frm3fZudvy8SrrjiCvMBAIhNNec/vbVev3l1tbz+0POQsaXZ+tUFUzWpnPN2AAAAAJGvNv23j2v1l/drQopuGcpz03TTnBGaNpTrEQAAAGAgdre//ZUNenpxfdjxNKdNF00frG9MGyRXiiPm8wMAYH+QNAMAAMLa2NyjHz67Rusae0LGppZn6Y7TKlWSnRqXuQExF/DL0bLOTIxxbk+SaVwpW+DAEw2CKRnyFU9Sb8lks3uMkSQTyBkqUXkF/ZCa+sX/yz5f+LbYO9u+zc7fl4gefPDBeE8BABLSuoZOXfefRfq0qjVkzOgKefkxo3T18ZVKc3KzCgAAAEBkrarvMrvLrKrvDhkzPuH8yiFl+s6RFUpP5XoEAAAAGGg63D5d/8waLdjcHnb8S2MKdM3soRqUmxbzuQEAcCBImgEAACFeW9Wkn728Xl3e0ErVFx5apquOHiKnwx6XuQFRFwzK3l5lJsaYXWSMRJmGZbL1dh/4Lu2p8hWP/6KLTMkU+fNHSXZuGCOyXC7Xjq/dbvdet9++zc7fl4gKCwv3abuWlpaozcFutys394uqqG1tbQoEDryzFBIb8baOgRpro7vMPz+p1e/eqpLHFzrfEQXpuu3U0Zo0OFvdHe068LOY5DJQ440DQ7ytJd7xzs/Pj9mxAABIhGrT//f+Fj300Rbz2mRXQ/NduuWkkTqoPDsu8wMAAADQP3XtHl395CqtbwotsltZnKHvHztMhw3NicvcAAA4UCTNAACAPje77pu/Wf9cWBcylplq1y0njdLxYwriMjcgWuydddsSY4zuMWaSzBLZPW0HvL+gzSF/QaXZOcboIGN0kvEXjpUcid3JA8nB6BiTnZ2tjo4ONTU17XHbzs5OeTye/UpKSXR+vz9mxzIWYcbyeIgv4m0dAyHWm1vc+ulL6/VZTUfYas5fO2yQvn1khdKc9oT/u8TbQIg3Iod4WwvxBgAgOpbVduq2l9eH7VBvdLs0rkf+d2aFXCkU3QIAAAAGopVbu3TtU6vU2NXb5/WMVIduPHmcThqTI1uQ4kQAgIGHpBkAAGDa2uHRjc+t1eItnSFjo4vS9cszx5gV4oCBzNbT/HlijJEksy1BxtFd3699+vJGfN5BZrJ8pZPlK5oopaRHbM7A/qqoqNCKFStUV1dnLhR0OMJ3NNqyZUuf7wEAJLZAMKj/fLpV97+1We4w3WWMc/WfnDRSU6nmDAAAACDC3L0B/fn9aj3yca3CNJfRyMJ0s7vMpEFZ8ZgeAAAAgAh4d32rbnhujXp6+96DKM5O00MXT9Ok8ly1tLSIWjUAgIGIpBkAAKAPNrbpphfWqrXHFzJ22sQi3fCl4XKlhF90DSQqm7dTzvql2xJkjESZrYvl6Kju1z792YO/SJD5/BFMo+0wEsvYsWPNpBmji8z69etVWVkZdrvly5f3+R4AQOLa0ubRbS+t14LN7WHHv3JIqa48agjn7AAAAAAiblFNh9ldZlOzO2TMYZMuPnywvjmjXKlOussAAAAAA9V/F9frzlc3yL9LkvyIwnQ98q0ZqsjPiNfUAACICJJmAACweLXqv36wRX98t1q7FodLddj0g+OH68zJxbLZbHGaIbCPfB45G5ebiTHbk2QcLetlC/nJ3neB9MIdCTK9pdv+DGYURXTaQDRMnz5dTz/9tPn1vHnzwibNBAIBzZ8/3/w6MzNTEydOjPk8AQB7FwwG9d/FDbr3zU3q3qWym6E8N82s5nzoEJJ4AQAAAERWj9evB96p1r8W1oX9lHVMSYZumTNS40oz4zA7AAAAAJG6D2Gc9z/04ZaQsUOHZOvX54wnYQYAkBRImgEAwKJae3p1ywvr9N7GtrCL7+46o5KbXUhM/l45mteYyTEpZpLMEjmaV8sWCO2UtK8Cqdk7dY+ZIl/pFAWyBkkkjGEAGj16tMaPH292mzGSZo455hiNGTOmzzbPP/+8ampqzK9PPvlkOZ3JcWnocESvw4Ldbt/jcyQX4m0diRzrunaPfjp3rdkVMpzzDy7VtccMV0Yq3WWSId6IPOJtLcQbAIDIWlDVrp+9vF41bZ6QMafdpm8dUa6Lpw+S08HvXAAAAGCg8voC5nn/3BVNIWMnjS80k+TT05LjPjIAAPxGAwDAgpbWduqGZ9eorsMbMnb0qDzdevIo5bg4TUACCAbkaN3wRQeZrUvMjjI2v+fAd+l0yVc88YsuMiVTFMgbJtm4wYvEsHLlStXV1e143t7evuNr4/U333yzz/ZGUsyuLr74Yt18883yer26/fbbdfbZZ5vdZIzn7733nl577TVzu0GDBun0009XssjPz4/ZsXJzc2N2LMQf8baORIi1UdXtP59U62fPLVeHJzQpuDwvXXedO0VHVtIBLxnijdgh3tZCvAEAODBdXr/un1+lJxbVhx2fUJZpLpwbXUylaQAAAGAg63D7dN0zq/XJ5o6QsUsOH6zvHFkhG0VGAQBJhNWwAABYiLkA77Ot+vW8KvkCwT5jdpt0xVFD9I1pg7jwRXwEg7J31HyeHPN5kkz9Mtl7Ow98l/YU+QrHbusgU2okyUyRv2C0ZOc0GInr9ddf1/z588OOrVq1ynzsLWlmxIgRuvbaa3X//ferp6dH//znP0O2MRJmbrzxRqWnp0dw9gCA/tja7taNTy3RGyvDL1D7yrQh+vGp45XtSon53AAAAAAktw82tur2lzeELbaV6rDp27Mq9NXDBpmdZgAAAAAMXLVtHl3z1Cqtb+rp87rDJv3wSyN0ztSSuM0NAIBoYbUg+sXhcERlv3a7fY/PkVyIt7UQ7/jp9vr1s5fW66UVjSFjhZkpuvOMMTpsaOQqsRJrazmQeNu66s3kGIeRILN1kRz1S2TvaT7gOQRlU6CwcltijJEgUzpF/qJxktPVZ7vonL1YC+/vgeGwww7TPffcoxdffFELFy5Uc3OznE6nysrKNGPGDJ100klKS0uL9zQBAJ8ntz/9WY1+8swytbtDu8uU5qTpznOn6Nix3KgCAAAAEPkK0795s0rPLm0IOz61PEs3zxmp4QUUXgEAAAAGupVbu8yEmaau3j6vp6fYdefplZo1Mi9ucwMAIJpImkG/5Ofnx+Q4ubmRW8SNxEe8rYV4x8ba+g59+x+LtbY+tGPH9BEF+t3/HKySnL6JBZFGrK0lJN49LdKWT6WahV/82bGlfwfJHyGVHyINPlgafIhsg6bKkZZFUkwc8P6OrCuuuMJ8REJxcbEuuugi82EFLS0tUdu3kRy28896W1ubAoFA1I6H+CLe1pEIsW7q8urnL6/XvDXhk4dPm1Ss648foRyXM6r/z1lBIsQbsUO8rSXe8Y7V5+QAAETa2+ta9ItXN6ihs++COYPLadeVRw/R+QeVykF3GQAAAGDAe3d9q254bo16egMhhXZ/e85YjSvNjNvcAACINpJmAABIcs98VqMbn1pidprZ1WWzR+r6E8fK6aBLBCLI0ynVLf48QWbhtj9bNvRvn9mDP0+QOchMkDETZTIKIjVjAEnC7w/9XRctxiLMWB4P8UW8rSPWsX51ZZPufH2j2npCu8sUZqToRyeO0OzR2xZi8zMYeby3rYV4WwvxBgBgz1p7evWreZs0d3lT2PFDh2Sb3WUq8qJbbAsAAABAbDy1qF53vbZB/mDf10cWppsJM4Ny0+I1NQAAYoKkGQAAkpTH59fPX1ihv7+/KWQs2+XUr86fqhMnlsVlbkgiPo+0dWnfDjKNq6RgPyr6phf06SBjfp3NzyoAAEgerd29uvO1jXptdfjuMnPGFer644cpLz0l5nMDAAAAkNxeX91sLpZr7g5N3s9Isevq2UN1ztQS2W10lwEAAAAGumAwqAfeqdZDH24Jmyx/z5ljzDVEAAAkO37boV9aWlqisl+73a7c3Nwdz9va2szqgEhOxNtaiHdsbGlz64fPrNbS2s6QsbElmbr7rLEakp8Wtf/HDcQ6CQV8sjevlXPrYjm3LpJj62I5GlfKFug94F0GU7PkK5kkf8kU+UqnyF86VYGcCmnnG7LGvdso/qxiYL6/8/O3Vd0HAGCgmbemWXe8Gn6BWl66UzeeMELHj6GjHgAAAIDIau7q1V2vbzSTZsKZMTxXN504QmU5VJgGAAAAkoHXF9BtL6/XSytCO0yePL7Q7C6Z6rTHZW4AAMQaSTPoF7/fH5PjGIswY3UsxB/xthbiHXnvbWjVzS+sU5s7dBHeWZOLdd1xw+VKscf8351YDzDBgOxtm5SydYmc9Yu3PRqWy+brOfBdOlLlK5poJskYCTK+kiny54+UbLt8CENy1YDD+xsAgL1r6/Hpnjc2am6Ym1OG4yrzdcOXRqggk+4yAAAAACJbWfrllU26+41N5nXJrrLSHPreMcN0+qQi2eguAwAAACSFdrdP1z29WgurO0LG/t+Mwbp8VgXn/wAASyFpBgCAJOEPBPWX92vMR3CXsTSnzVyAd/qk4jjNDgktGJS9s1bO+iXbusiYSTJLZPd2HPgubQ75C8fKVzJZvSWTt3WRKRgjOVgECgAArOftdS26/ZUNauoK7dCX63LqB18arhPHFnCDCgAAAEBENXR6zU6Xb61rDTt+1Mg8s9tlSXZqzOcGAABiz+FwRGW/drt9j8+RXIh34tvS5taV/1mhDU19i6I6bNKPThylcw4q3ed9EW9rId7WQaythXhvQ9IMAABJoKW7Vze9sFYfbmoPGRuSl6a7zqjUmJLMuMwNicfW0/R5cswSpRh/NiyRvbvxgPcXlE2B/JFyDJkmDT5YKj9Era4h8ttIkAGQHDd7DHyIYC3E2zqiHesOt0/3vL5Bzy5tCDs+e3S+bpozSkVZLFCLBd7b1kK8rYV4AwAQ2l3m+WWN+vW8Terw+MMm719//DDNGVdI8j4AABaSn58fk+Pk5ubG5DhIDMQ7sSypbtP/+8cyNXR4+ryemerQ7y48RMeOLenX/om3tRBv6yDW1pJr0XiTNAMAwAC3eEuHbnh2jeo7Q6tWH1uZr5+cNFJZafzKtyqbp8NMinFuXfJ5B5nFcnRs6dc+/dkVZgcZX+lk+UqmyFcySfb0vL4fsra0SP7Qm7EAkAw3e6z8IYJVEW/riGSs569u0A1PLlZtmztkLNvl1E/PmKizDy5ngVoc8d62FuJtLcQbAGBlde0e/eKVDXpvY1vY8ePHFOgHxw9XYSZFjwAAAIBkMm9lva54bKG6vX3XahRnp+mhi6dpUjmfmQEArIsVtAAADOBKcf9auFX3zq+SPxAMaal61eyhuvDQMhbhWUlvj5yNy7clx2xPkmnd0K9dBjKK1WsmxmxPkpmsYHphxKYMAACQbDo9Pv38heX650ebw44fM7ZYd54zRWW5rpjPDQAAAEDyCgSD+u/iet03v0pd3kDIeEGG00yW+dJYPt8FAAAAks1jH1bp5meWhqwfqizJ0kOXTFNFfkbc5gYAQCIgaQYAgAG6EO/2lzfotdXNIWNFmSm68/RKHVSRHZe5IUb8XjmaVivF7B5jdJJZLEfzGtmCB97dJZCW83nnmG3JMb7SKQpklkkkXgEAAOyT99Y26vonFqumtSdkzOj+ePNp43XBYUNIbAcAAAAQUdWtbvOewYLN7WHHTx5fqO8fO0x5GXSXAQDAylpaWqKyX7vd3qfra1tbmwKB0CReJAfinXjJ879/q0p//aAmZGza0Bz96uxxypRHLS2eA9o/8bYW4m0dxNpaEiHe+fn5ijeSZgAAGGDWNnTrB8+uUVWLO+wF7+2njlZhJje+kkrAL0frejMxxkyQMRJlGlfI5vce8C6DznT5SibJVzxZvWYHmSkK5A4jQQbAgBatmz2J8iECYod4W0ekYt3t9eu++Zv074V1YccPH5arn5wyWoNy0tTa2tqvOePA8d62FuJtLfGOdyLc7AEAWHeB3OOfbtXv3tosty8QtsjWjSeM0OzR/K4CAACS33/gBRj3h3FNHqtjIf6Id/x4fQH99KX1enllU8jYyRMKdcuckUpx2CIaH+JtLcTbOoi1tQQsGm+SZgAAGEBeWNagX7y6UZ4wN78uOXywvj2rQg47SQ8DWjAoe/vmbYkxWxcrpX6JHA3LZO/tOvBd2lPlKxr3eQeZKfKVTpY/f7Rkd0R06gAQb7G8qLfqhwhWRbyt40Bi/Wl1u26du141baFV2tJT7Lpm9lCdO7XE7C7Dz1Fi4b1tLcTbWog3AMAKNjX36LaX12tRTWfY8dMnFet7xwxVtoslAQAAAECyaXf7dN3Tq7WwuiNk7P/NGKzLZ1XQ9R4AgJ3wCRkAAAOAkSTzq3mb9NSi+pCxHJdDt508SkeOolLcQGTv3LotQcZMkjG6yCyR3XPg1ceDNrv8BZVfJMgYfxaNlRxpEZ03AACA1bl7/fr9O9X61yd1CoYZP6QiW7ecNFIVea44zA4AAABAsvIHgvrHglr98b1qeXyhVyOl2am66cQROmJEXlzmBwAAACC6trR5dM2TK7Wh2d3ndYdNZqfJs6aUxG1uAAAkKpJmAABIcDWtbt3w3Fqt2BraaWR8aabuOqNSg3NJiBgIbD0tZlLMtiSZJWYnGUd3aCLU/vDnDldv6ZQvkmSKJ0gpGRGbMwAAAEIt3tJhdpepaul7Q8qQ5rTrqqOH6IKDS2WnihsAAACACFrX2K3bXlqvZXXhO5MbXS6N65GsNJYBAAAAAMloRV2Xrn1qlZq6e/u8npFi151nVGomyfMAAITFp2UAACSwt9e16Cdz16nd7Q978+t7xw4zF+Uh8di8nXI0LFPK1s+7yNQvkaN9c7/26c8a9EX3GCNRpniSgq7ciM0ZAAAAe+8A+cd3q/XogloFwrSXmTI4S7eePEpD8+kuAwAAACByfP6A/vZxrf7yfo16/aEXI+W5abppzghNG8rnxQAAAECyemddi1l01+0L9Hm9KDNF954zVuNKM+M2NwAAEh1JMwAAJCBfIGguxnvowy0hYy6nXT86cYROmVAUl7khDJ9HzsYV25JjzCSZJXK0rJNNYVZS7qNAesGOBJle48/SKQpmEHMAAIB4WVbbqVvnrtOG5tDuMqkOm75z5BD9z6FlctjpLgMAAAAgclbVd+mnL63X6vrukDHj6uMrh5TpO0dWKD3VEZf5AQAAAIi+Jxdt1V2vbQwp6DWyMF33nTtWZTlp8ZoaAAADAkkzAAAkmKauXv34+bVasLk9ZGxYgUt3nV6p0cUZcZkbjGwWnxzNaz5PjlmsFCNBpmmVbAHfge8yNWtb9xjzYSTKTFEge7BkY8ElAABAvHl9Af3lgxr97cMtClPQWRPLMvXTk0dpeGF6PKYHAAAAIEl5fH498HaV/vpBjfxhWl0aHS5vOWmkDirPjsv8AAAAAERfIBjUA29v1sMf1YaMHTYkR3efWalsF8uAAQDYG35bAgCQQD6tbteNz61VY1dvyNgJYwt005yRyqRaXOwEA3K0btypg8xiORuWy+b3HPgunS75iiZsS5Ap3ZYg488bLtnsEZ06AAAA+m/l1i6zu8zaxp6QsRSHTZfNrNDXpg2Sk+4yAAAAACJo0eZWXf/EIq3e2hkyZlx+fO2wQfrfmRVypfC5MgAAAJDMRb1ufWm9XlnZFDJ2yoQi3TxnhFIcXBMAALAvSJoBACABBINB/WNBne5/qyqkerXDbtN3jxmqLx9cKhudR6InGJS9Y8u2xJjtSTINS2X3dh74Lu1O+QvHqnd7B5nSKfIXVEp2TsEAIBocjuglltrt9j0+R3Ih3taxu1j3+gP66/s1+sv71fKFqeg8vjRTt506WqOLM2M2V/Qf721rId7WQrwBAMnC4wvojrkr9Oe31ivMpYhGFqab3WUmDcqKx/QAAAAAxEi726frnl6thdUdIWPfnDFY355VwRoiAAD2Ays2AQCIs06PTz99ab3mrWkJGSvNTtUdp4/WlMHZcZlbMrN1N5qJMSnbk2Tql8je03zA+wvKJn/B6G0dZLYnyRSNl5xpEZ03AGD38vPzY3as3NzcmB0L8Ue8rRXrlXXt+v7jS7VsS3vIuNFR5qrjKvWdY0dRvS0J8N62FuJtLcQbADAQtfb06rqn1+izmtBFcQ6bdPHhg/XNGeVKdXItAgAAACSzLW0eXfPkSm1ododcF9x44gidNbkkbnMDAGCgImkGAIA4Wl3fpR88u0bVrZ6QscOH5ej2U0crPyMlLnNLJjZ3m9k1xuwe83mSjKOzrl/79OcMla90snzFk9VrdJApnqhgKtX9AAAABiqfP6A/vrVe9762Wr27tn+UNK4sW7+6YKomDmYhNgAAAIDIqml16+qnVmnTLoviDGNKMnTLnJEaV0qnSwAAACDZLa/r1HefWq2m7t4+r2ek2HXXGZU6YkRe3OYGAMBARtIMAABx8uySBt31+gZ5fH0X5BnNU791RLn5cNhppbrfervlbFi+LTnm804yjrZN/dqlP7O0bweZkskKpseumwEAAACia219h77/n8VatLk1ZMw4J//OMaPMDjNUdAYAAAAQaSvqunTtU6tCFsWlOGy6dGaFvnFYmZx0ugQAAACS3tvrWnTjc2vl9gX6vF6UmaLfnjtWY0tIpAcA4ECRNAMAQIy5ewO6+42NemZJQ8hYrsupn506SjOpDLFv/F45G1fKWb9kR5KMo2WtbMG+HyDsj0Ba3rYOMjsSZKYokFUa0WkDAKKjpaUlavu22+3Kzf2iu0RbW5sCgQP/fYPERrytw2az6Yklzfrly6vk3eUmlGFkYbpuO3W0Jg7KVldHm7riMktECu9tayHe1hLveOfnU1gDAHBg3tvQqh8+u0Y9vX1/b5XluPR/Fx+mwekB+f3+uM0PAAAAQGw88dlW/fL1jQoEQ+9T3HfuWJXlpMVragAAJAWSZgAAiKHqVrd+8Owara7vDhmbWJZptlLlQnc3An4zIca59fMEGePRuEq2gPfAd5mSKX/xJPWWTJKv9PMEmZwhxurJiE4dABAbsVxEYizCZNGKdRDv5BQMBnXPvCr9e2FdyJjR8PHr0wbpf2dWKM1pJ/5Jive2tRBvayHeAICB4Jkl9frFKxvk32VR3NjSbD38/6ZpUG56VAuEAAAAAIi/QDCo37+9WX/7qDZkbNrQHP3yjEplu1jmCwBAf/HbFACAGHlzTbNufWm9Oj2hizYuOLhU3z1mqFIc9rjMLeEEg7K3bTITY1K2J8k0LJPN13Pgu3Skylc04fMOMpPNJBl/3kjJ7ojo1AEAADAwEmZ+/Wb4hJmh+S7devJITRmcHZe5AQAAAEj+65E/v1+jP71XEzJ22NAc/d8lM5SbnhKXuQEAAACIHa8vYK4jemVlU8jYqROKdNOcEawjAgAgQkiaAQAgynyBbVUhHvk4tCpEeopdN80ZqTnjCmXpBJnOWjnrjeSY7V1klsjuaT/wXdoc8heO2ZEg01syxXwuR2pEpw4AAICBuUDtvrc265+f9E2YMZoNfvXQQbp8VoVcKdyEAgAAABB5Pn9Ad7y2Uc8saQgZM+4T3HZqJQkzAAAAgAW09fh0/TOrtbC6I2TsWzPKddmsctmMGxcAACAiSJoBACCKGju9uvH5tfo0zEXuiAKXfnnmGI0oTJeV2HqatiXHbF2iFDNBZrHs3Y392qcvb6TZOcZXMkm+kilmRxmlWOvfFQAAAPuWMPPAO9UhCe12m3Tf/xysWUPS5feHdoYEAAADV3Nzs95//319+umnqqmpUWtrq7KysjR27FideeaZqqysjPcUAVhEt9evG55bo/c2tIWMfWPaIF159BClOEngBwAAAJJdTatb1zy1Shub3X1ed9ikH504QmdOLonb3AAASFYkzQAAECULqtr14+fXqqm7N2TspPGF+tEJI5SR6lBS6+2Rqj+WahYqc+OHcmxdJEdHTb926c8u/7yDzBT5SifLVzxZwbTsiE0ZAAAAyetP79XooQ+39HnNKNT2my8fpNOmDFZLS0vc5gYAAKJj7ty5euaZZ1RaWqqpU6cqJydHtbW1+vjjj83HNddco5kzZ8Z7mgCSXFNXr659apVWbO3q87pRN/q644bpy4eUxW1uAAAAAGJneV2neW3Q3O3r83pGil13nVGpI0bkxW1uAAAkM5JmAACIsEAwqL9/VKsH3tmsQLDvmNNu0/ePHabzDipJ6jaq9o4tSl/6qLTs35K71Xwt9QD2E8goMpNjes0kmW2PYEZRxOcLAACA5Pd/H9Toz+/3TeA2zsjvPm+qzjyoPG7zAgAA0TV69GjdeuutmjBhQp/XV6xYodtuu01//vOfNW3aNKWkpMRtjgCS28bmHl3z5CrVtHn6vJ7mtOn2U0fr2MqCuM0NAAAAQOy8va5FNz63Vm5foM/rxVkpuvecsRpbkhm3uQEAkOxImgEAIILa3T79ZO46vb1uW6LIzsqyU3XnGZWaNChLSSkYlLP2E6Uvelip61+RLejfr28PpOVsS4wpnixf6RTz60DWoG2lvwEAAIB++PtHW/TgO9Uhr9980iidd2hFXOYEAABi4/DDDw/7+vjx4zVp0iQtWrRIVVVVGjVqVMznBiD5Larp0PeeXq22nr5VpHNdTv367DGaWk4XdQAAAMAKnvhsq375+saQ4rujitL123PGqiwnLV5TAwDAEkiaAQAgQlZu7dIPn10TUi3OMHNErm47ZZTy0pOwYqXfo7Q1L8q16GGlNCzdp28JOtPlK574efeYKeotnaxA7jDJZo/6dAEAAGAt/1hQq/ve2hzy+g1fGq6zp5bGZU4AAAwUbW1tWrt2rflYt26d+ejo6DDHZs+erSuuuGKf99XQ0KC5c+dq4cKFampqktPpVFlZmY444gjNmTNHaWmxXxzicDj6/AkAkTRvTbNuemGtPL6+q+LKc9P023PHanhBetzmBgAAACA2AsGgfvfWZv3949qQselDc/TLMyuVlcYyXgAAoo3ftgAA9FMwGNTTSxp09+sb5fX3vfll9Ei5bFaF/t+MwbInWccUW3ejXEsfU/rSf8je3bjnjQcdJE/RRHmNLjIlU+QvGCXZOQ0BAABAdP17YZ1+82ZVyOvXHzdM5x1EwgwAAHtz6aWXRmQ/CxYs0P3336+enp4dr3k8nh2JOK+//rpuvPFGM4kmVhobG7VkyRLl5+dr6NChMTsuAGt4/NM63f36Ju1SRFrjSzP1m3PGqCgzNU4zAwAAABArHl9At85dp1dXNYeMnTqhSDfNGaEUB8VlAQCIBVarAgDQD+5ev+54daNeWB6aNJKX7tTPTxutw4flKpk46pcqfdHDSlvzgmwB7263C6ZkyHbw16Tpl0lFo9Xd0iK/3x/TuQIArCWa1aHtdvsenyO5EO/k8MRndbr7jU0hr3//uOH66rTB5tfE2lqIt7UQb2sh3rFRVFSk8vJyLVq0aL++b8OGDbr33nvl9Xrlcrl01llnadKkSebzd99910yYqa2t1R133KE777xT6enR77zg8/nMJJ7e3l5deOGF/MwAiEkVaaMj/Z2nVyojle5WAAAAQLJr6/HpumdW69PqbR17d3bpEeX635nlsiVZ8V0AABIZSTMAABygTc09+uGza7S28YsKmdtNGZylO04frdLsNCWFgE+p619T+uKHlbLl4z1u6s+uUM/Ui9Q76cvKLxsWsykCAGBUiI6V3NzkSorFnhHvgeffH1fp5y+vD3n9hpPH6duzR+32+4i1tRBvayHe1kK8I+e8887TqFGjzEdeXp7q6+t15ZVX7tc+Hn74YTNBxkhyv+mmmzRmzJgdY0byzKBBg/Too4+aiTPPPfecLrjggpB9/P3vfzcTXPbVKaecYu43nEAgoAceeEArVqzQ8ccfr6OPPnq//j4AsDteX0C3vbxeL61oChk7c3KxbvzScDmpIg0AAAAkvZpWt65+apU2Nbv7vO6w2/SjE4brzMklcZsbAABWRdIMAAAH4LVVTfrZy+vV5Q2EjP3PoWW65ughSXHzy+Zuk2v5v+Va8ogcHVv2uK23/HC5p14s7/DjJbsjqtX+AQAAgN158pNq3fDUkpDXv3/CmD0mzAAAgFDhElj2x9q1a83kFMOxxx7bJ2Fmu9NOO03z5s1TTU2N5s6dq3POOUdOZ9/bV6+++qo8Hs8+H3fGjBlhk2aMhJkHH3xQ77zzjo466ihdeumlB/T3AoBddbh9uv6ZNVqwuT1kzKggbVSSpoo0AAAAkPyW1Xbqu/9dpeZuX5/XM1Ls+uWZlZoxPC9ucwMAwMpImgEAYD/4/AHd99ZmPfZJXchYZqpdN88ZqS+NLdRA52heK9fiv8m18r+y+UI76WwXdKTKM+ZMs7OMv2h8TOcIAAAA7OqZz2p0/ROLFAz2ff3q4yt11fGV8ZoWAACW9dFHH+342kiaCcdut2v27Nl67LHH1NXVpWXLlmnq1Kl9tnnkkUf6PZftHWbeeustzZo1S1dccYV5bADor7p2j655apXW7dKV3mGTfnTiCKpIAwAAABbx1roW/ei5tXL7+hbgLc5K0b3njNXYksy4zQ0AAKsjaQYAgH1U3+HVDc+t0eItnSFjo4rS9cszKjWsIF0DVjCglKq3lL7oYaVWvb3HTf0ZJXJP+ZrcE7+iYPrATxICACSHlpaWqO3bWEyXm5u743lbW5u56A7JiXgPTK+ubNQNz65WYJeEmf83o1wXH1oU9v8IYm0txNtaiLe1xDve+fn5MTvWQLNq1Srzz7S0NI0cOXK3202YMKHP9+yaNBPJhJmZM2fqqquuImEGQESsbejW1U+uVH1nb5/X01PsuuuMSs0cQRVpAAAAwAr+8+lW3f3GxpB7FKOL0s2EmbKctHhNDQAAkDQDAMC++WhTm378/Fq19PRtn2o4dUKRbjxhuFwpDg1I3i65Vj4l1+K/y9m6fo+b9pZOlXvKxfKMPklypMZsigAA7Au/3x+zYxmL7mJ5PMQX8U5889Y068Zn14TcjPr6YYN0+azyfV44TaythXhbC/G2FuKdOKqrq80/y8rK5HDs/rOzwYMHh3xPJH8eHnzwQTNhZsaMGSTMAIiYj6vadN3Ta9Tl7fs7pzBjWxXp8WVUkQYAAACSXSAY1P1vbdYjH9eGjE0fmqNfnlmprDSW6QIAEG/8NgYAYC8Xt3/9YIv++G61dll/p1SHTdcfP1xnTS6WzWbTQGNv36z0xY8obfnjsns7drtd0O6Ud9RJ6pl6sXxlB8d0jgAAAMDevLWuRTc+t1b+XU7Y/+eQMl09e8iAPFcHACAZeL1edXRs+8ypsHDPnYqzsrLMbjQej0dNTU0RnccTTzyh+fPny+Vymck5Tz75ZMg206dP1/Dhw/d5n/s6xz0lCvXXrok/JAIlL2KdmOYub9AtL6yVb5fM/eEF6frd+eNVnuc6oP0Sb2sh3tZCvK2DWAOAdXh8Ad06d51eXdUcMnbaxCL9+MQRSnHwewAAgERA0gwAALvR2tOrW15cp/c2tIWMDc5J011nVA68SnHBoJxbPlL6ooeVuuE12YK7r7gdcOXLPfErck++UIGsQTGdJgAAALAv3l3fqh8+uyZkodr5B5Xoe8cOJWEGAIA4crvdO742Elb2xtjGSJrZ+fsioaGhYcd8nnrqqbDblJSU7FfSzOWXX75P2z3++OOKldzc3JgdC/FFrOMrGAzqj2+t151z14SMHTosX3/5xmHKz4xcl3bibS3E21qIt3UQawBITm09Pn3/6dX6rCa0SO2lR5Trf2eWc48CAIAEQtIMAABhLKvtNBff1XV4Q8aOGpmnn54ySjmuAfRr1OdR2urnlL74YTkbV+x504IxZlcZz9gzJeeBVcMDAAAAou2DjW26/pnV6t2lxczZU4rNjpDcjAIAIP6dZrZzOvf+Odr2bXb+vki44oorzAcA9Jc/ENRPn1umv7+/KWRszsRS/fYrB8uVEr0OUwAAAAASQ3WrW9c8tUqbmvsW/nDYbfrxCSN0xuTiuM0NAACEN4BW+wIAEJsqcU8uqtev5m0KWXxnt0nfOXKIvjF9kOwDZAGevXOrXEv/Ideyf8reE9oOdrugbPKOOF7uqRept/wIaYD8/QAAAGBNC6ra9P2nV8m7yzn76ZOKdeMJIwbM+ToAAMksNfWLTgs+n2+v22/fZufvS1QPPvhgvKcAIMbcvX5d/c9P9cryrSFjF88crptPm2AukAMAAACQ/EV4v/vfVWru7vtZR2aqXXedUakZw/PiNjcAALB7JM2gXxyO6FRLstvte3yO5EK8rSWR493t9evnL6/Xi8sbQ8YKMlJ05xljNG3YwGif7ahbpLTPHlLqmudlC+x+UUIwNUueCefLM/ViBfKGbfteC8QakUe8rYV4AwDiaeHmdl371Gp5fH0TZk6ZUKSbTiRhBgCAROFyfdHB2O3uW3k1nO3b7Px9iaqwsHCftmtpaYnaHIxr8dzcLz6rbGtrUyAQiNrxED/EOv5aunt17ZMrtXhLR8jYd48Zpq9PH6T2ttaIHIt4WwvxthbibR2JEOv8/PyYHg8ArGL+2hb96Pm18vj6/r9ekpWie88ZqzElmXGbGwAA2DOSZjAgLrR3/kAByY94W0uixHttfYcu/8diranvDBmbPrxA93/1YJXmJPgNe3+vtOJZ6YM/SNUf7Xnb/BHS4d+W7aCvyuXKkctCsUZsEG9rId4AgFhZVNOha55aJfcuN6ROHFeon5w0ksrOAAAkEKNjTHZ2tjo6OtTU1LTHbTs7O+XxePYrIWUg8Pv9MTuWsRAzlsdD/BDr2KpudevqJ1epqqVv8l+Kw6ZbTx6lOeMKo7oQmnhbC/G2FuJtHcQaAJLD45/W6Z43NinQt56XRhel67fnjlVpdlq8pgYAAPYBSTMAAMt7btEW/fDJxWanmV1ddvRIXT9nrJyOBO6i0N0sffKw9PFfpPaaPW878hjp8MulyhONMkexmiEAAADQb0trO3X1kyvV09t3QdrxYwp02ymjSJgBACABVVRUaMWKFaqrqzMXCu6ue/2WLVv6fA8AJILldZ269qlVau7u2809K82he84co8OG5sRtbgAAAABiIxAM6v75m/XIgtqQsenDcvTLMyqVlcYyXAAAEh2/rQEAluX1BfSLF1fo4fc2hoxlpzl1zwVTNWdimRLW1uXSh3+QFj8u+Xp2v53TJU35stlZRqUTYjlDAAAAIGKL1a58YqW6vH0TZmaPztfPTx0lJwkzAAAkpLFjx5pJM0YXmfXr16uysjLsdsuXL+/zPQAQb++sb9UNz64J6XJZmp2q354zVqOLM+I2NwAAAACx4fEFdOvcdXp1VXPI2GkTi/TjE0coJZGL8AIAgB1ImkG/tLS0RGW/drtdubm5O563tbVFtbU54ot4W0uixLu23aMfPr1KS2o7Q8bGlGTo7rPGamh+WtT+nztgwYBSNryhtM8eUsrmd/e4aSBrkNxTvi7vpP9RMD1/24sx/PskSqwRG8TbWhIh3vn5n/+/BgBIeqvqu8yEmU5P386QR47M0x2njU7srpAAAFjc9OnT9fTTT5tfz5s3L2zSjHE9OX/+fPPrzMxMTZw4MebzBICdPb24Xne8ukH+YN/XRxel675zx6kkOzVeUwMAAAAQI609vbru6TX6rKYjZOx/Z5br0iPKZbNR0AsAgIGCpBn0i9/fd8FKtBg3zWJ1LMQf8baWeMT7/Q2tuunFdWrr8YWMnTGpWD84frhcKfaE+jm0eTuUtuJJpS/+mxxtVXvctrfsEPVMvVjekSdKjpRtLybA34X3trUQb2sh3gCAaFnb0K3v/Gel2t19f88cMTxXd51RqVQnCTMAACSy0aNHa/z48Wa3GSNp5phjjtGYMWP6bPP888+rpqbG/Prkk0+W05k8t64cDkdUC1rs6TmSB7GOnWAwqD+8s1l/eq86ZGz6sFzdc/ZYs0t9NBFvayHe1kK8rYNYA8DAV93q1tVPrlJVi7vP6w67TTedOEKnTyqO29wAAMCBSZ47DwAA7IU/ENRf3q8xH7sUiFOa02Ymy5w5uUSJxN62SemL/6605U/I3hvaFWe7oD1FntGnyD31YvlKp8R0jgAAJAoWpCFSiHdiWNfYrcv/syIk2f3wYbn69Tnj5Erp/3ueWFsL8bYW4m0txDt6Vq5cqbq6uh3P29vbd3xtvP7mm2/22d5IitnVxRdfrJtvvller1e33367zj77bLObjPH8vffe02uvvWZuN2jQIJ1++ulKJrHskrpzR1gkN2IdHb3+gH701BL955PQhJmzDhqsX543NS5J+8TbWoi3tRBv6yDW2FVzc7Pef/99ffrpp2YBgdbWVmVlZWns2LE688wzw3boBBA7S2s79d2nVqlll3sTmal23XXGGM0Yzv/rAAAMRCTNAAAsobW71+wu88HGtpCxirw0s0r12JJMJYRgUCk178v12cNK3fiGbCEpPl8IpBfIPemr6pl0oYKZiZXwAwBArLEgDdFCvGNvXUOnvv3vFWrp7ntTasbIAj108XSlp0YnSY5YWwvxthbibS3EO3Jef/11zZ8/P+zYqlWrzMfekmZGjBiha6+9Vvfff796enr0z3/+M2QbI2HmxhtvVHp6egRnDwD7ptPj03f+sVBvrW4IGbv8mFG6/sSxstttcZkbAABIPnPnztUzzzyj0tJSTZ06VTk5OaqtrdXHH39sPq655hrNnDkz3tMELGn+2hb96Pm18vgCfV4vyUrRb88dp8rijLjNDQAA9A9JMwCApLdkS4dueG6ttnZ4Q8aOGZ2vW08eqay0BPiV6HMrbdUzSl/0sJzNq/e8adF49Uy9WJ7K0yVnWsymCAAAAETbxsYuffXPH6ix09Pn9WnD8/V/F02LWsIMAACInsMOO0z33HOPXnzxRS1cuNCsrOx0OlVWVqYZM2bopJNOUloan3EBiL36drcuefhjLdvyRSctg5Ej89MzJurrRwyP29wAAEByGj16tG699VZNmDChz+srVqzQbbfdpj//+c+aNm2aUlJS4jZHwIoe/7RO97yxSYFd6toaiTL3njNGpdl8bgEAwECWACuEAQCIjmAwqH9/ulX3vlkl3y5XtQ6bdOXRQ/W1w8pks8W3Qpy9s1auJf+Qa9m/ZHe37Ha7oM0u74gvmckyvsHTpTjPGwAAAIi0qqZu/c+fP9DW9r4JM4cMzdNDl0xXZiIkuwMAYCFXXHGF+YiE4uJiXXTRRebDKlpadv9ZX3/Z7fY+XZXa2toUCPSthIvkQKyjZ0NTt654fIVqd7n+cDnt+sUZY3RsZW5U38fhEG9rId7WQrytIxFiHcuu7Nh/hx9+eNjXx48fr0mTJmnRokWqqqrSqFGjYj43wIoCwaDum1+lRxfUhYwdPixHd51RmRiFeAEAQL/w2xwAkJS6vH7d/vJ6vbqqOWSsKDNFd5w+WgdX5CienHWfKn3RQ0pd+5JsQf9utwukZss94QK5p3xDgZyKmM4RAICBhAVpiBTiHR9b2tz61mPLQhasTRyUZVZx6+3uUEt3ZI9JrK2FeFsL8baWeMebBWnYHb9/95/5RZrxMx/L4yF+iHVkfFbdoe89vUrt7r7/lrnpTt179hhNHpydEP/OxNtaiLe1EG/rINaRZVzvrV271nysW7fOfHR0dJhjs2fP3q+k/4aGBs2dO9fshtnU1LSjG+YRRxyhOXPmxKUbpsPh6PMngOjy+AL6yYvr9Nrq0LVFp08s0o9PHCGnwx6XuQEAgMgiaQYAkHTWNXbrB8+u0aZmd8jYoUOy9fPTRqsoMzUuc5Pfq7S1L8m1+GGlbF20x019eSPknnqx3GPPllIzYzZFAAAGKhakIVqId/Rt7fDof/8VWuF5XGmG7j93rDKctpjEgFhbC/G2FuJtLcQbALAnr69u1s0vrJXX37dDfXlumu47d6yGFaTHbW4AAGDPLr300ojsZ8GCBbr//vvV09Oz4zWPx7MjEef111/XjTfeaCbRxEpjY6OWLFliFmYYOnRozI4LWFVrT6++//RqLarpDBm7bGa5vnVEuWw2W1zmBgAAIo+kGQBAUpm7vFE/f2WD3L7QaqKXHD5Yl82qkNMe+4taW0+TXEv/KdeSf8jRXb/Hbb1Dj1LP1IvVO/RoyUbFCgAAACS3hk6vvv3vFapp65swM6Y4Q787b5xyXHx8BQAAACAy/rWwTr96Y5P6pstIE0oz9ZtzxqowMyVOMwMAAPurqKhI5eXlWrRoz8Uqd7Vhwwbde++98nq9crlcOuusszRp0iTz+bvvvmsmzNTW1uqOO+7QnXfeqfT06CfU+nw+M4mnt7dXF154odlRFUD0VLe6dfWTq1TV0rcYr8Nu080njtBpk4rjNjcAABAdrDoAACQFry+gX83bpCcXhSakZKc59NNTRunoUfkxn5ejcYXSFz2stNXPyub37na7oDNd7nHnyD3lG/IXjI7pHAEAAIB4aezy6tuPr9Dm1r4JMyML0/X788cpL50FawAAAAD6LxAM6r75VXp0QV3I2JEj83THaaOVnuqIy9wAAMC+O++88zRq1CjzkZeXp/r6el155ZX7tY+HH37YTJBxOBy66aabNGbMmB1jRvLMoEGD9Oijj5qJM88995wuuOCCkH38/e9/NxNc9tUpp5xi7nd33VIfeOABrVixQscff7yOPvro/fr7ANg/S2s79d2nVqmlx9fn9cxUu3555hgdPiw3bnMDAADRQ9IMAGDA29Lm0Q3PrtHyrV0hY+NKM3TX6ZUqz3PFbkIBv1I3vi7XooeVWvPhHjf1Zw+We/LX5Z7wZQVdXHgDAADAOpq7evWdx1dqU3PfSm7DC1x68ILxys8gYQYAAAxsxiK8aNm18jSVqJMXsY5M0a2bX1irV1Y2hYydM7VUN544Mi4d6sMh3tZCvK2FeFsHsY6ucAks+2Pt2rVmcorh2GOP7ZMws91pp52mefPmqaamRnPnztU555wjp7PvErtXX31VHk/fQkB7MmPGjLBJM0bCzIMPPqh33nlHRx11lC699NID+nsB2Ddvrm3Wj59fJ48v0Of1kqwU/fbccaoszojb3AAAQHSRNAMAGNDeWdeiW+auU7vbHzJ2ztQSff/YYUpzxuaDSJunQ2nLH1f6kkfkaN+8x217B09Tz5SL5R35JcnOr2MAAABYS2t3r77znxVa39TT5/Wh+S794YLxKswkYQYAAAx8+fmx63ydm0tBHqsg1vunrbtXVz++QB9uaA4Z+/4JY3TlcaNlsyVGwkw4xNtaiLe1EG/rINaJ5aOPPtrxtZE0E46R6DR79mw99thj6urq0rJlyzR16tQ+2zzyyCP9nsv2DjNvvfWWZs2apSuuuIIkKyCK/r2wTve8sUnBXV43EmXuPWeMSrPT4jQzAAAQC6zSBQAMSP5AUH98r1p//WBLyJiRJPOjE4br1InFMZmLvWWD0hf/Ta6VT8rW273b7YL2VHkqT1XP1IvlL5kUk7kBAAAAiaatx6fvPLFSaxv7JsyU56bpwQvGqSgrNW5zAwAAAJA8alp7dMlDH2n11s4+rxtdZe44Z7LOP2xI3OYGAADiY9WqVeafaWlpGjly5G63mzBhQp/v2TVpJpIJMzNnztRVV11FwgwQJYFgUPfNr9KjC+pCxg4flqO7zqhUVhrLaAEASHb8tgcADDjNXb368Qtr9XFVe8iYUZn6l2dUanS0W6YGg0rZ/I7SFz2s1E1v7nHTQEaReiZdKPekryqYURTdeQEAAAAJrMPt01VPrNTq+r7J5oNz0vTHL4+nkhsAAACAiFi+pV2XPPyRtrZ7+ryemerQA187VLPHxKboFgAASCzV1dXmn2VlZXI4HLvdbvDgwSHfE8mEmQcffNBMmJkxY0ZEEmaampr2abs9/Z37Y9f5kwCU3AZSvD2+gG56fq1eWxX6Hjlzcol+PGekUhyJO/9EMJDijf4j3tZBrK2FeG9D0gwAYED5rLpDNz6/Rg2dvSFjx48p0M1zRkS3AkRvt1yrnpZr0d/kbFm7502LJ8k99WJ5Kk+RHCz+AwAAgLV1eny66smVWr61q8/rpdmp+sOXx6ssh3NmAACQXFpaWqK2b+PGZm5u7o7nbW1t5uI7JB9ivf8+3Niq7/93lbq8/j6vF2Wm6P7zx2tcsTOq78/+IN7WQrythXhbRyLEOj8/P6bHGyi8Xq86OjrMrwsLC/e4bVZWltmNxuPx7HNCyr564oknNH/+fLlcLjM558knnwzZZvr06Ro+fPg+7/Pyyy/fp+0ef/xxxcLO7wEkv0SNd0uXV1f+a4EWbAo99//eCWN01XGjZbPZ4jK3gSxR443oIN7WQaytJdei8SZpBgAwIASDQf3jkzrdP79K/mDfMYfdpmtnD9VXDimN2gWtvWOLXIv/Ltfyx2X3tO1+njaHvKPmqGfqRfKVHSpxgQ0AAACo2+vXNU+t0tLavgkzJVkpZoeZwbkkzAAAgOTj9/ddsB9NxkLMWB4P8UOs9+zF5Y366Uvr5Q/0vZEwvMCl+84dZ157DKR/P+JtLcTbWoi3dRDrxOF2u3d8bSSs7I2xjZE0s/P3RUJDQ8OO+Tz11FNhtykpKdmvpBkAfW1q6tLFD32sDY1970k47Tbdee4UnXdoRdzmBgAA4oOkGQDAgKhIbdzkmrcmtPqDscjujtMrNbU8O/IHDgblrP1E6YseVur6l2UL7r4CUCAtV+6JX5Z78tcVyP6iVTMAAABgdT1ev659apUW1XSGVHl+8ILxqsjb+w1qAAAAANhb4a2HP9qi379dHTJ2UHm2fnXWGOWmc2scAACrd5rZzunc+3nB9m12/r5IuOKKK8xHJD344IMR3R8wkH1a1aJv/W2Bmrr6vnez05x68GuH6sjKorjNDQAAxA+fDAIAEtqahm794JnV2tzqCRmbPixHt58yWgWZKZE9qN+jtDUvmMkyzoZle9zUlz9a7qkXyT32LCklI7LzAAAAAAY4d69f33t6tRZWd/R5vSDDaSbMDCtIj9vcAAAAACQHo6vM3a9v1BOL6kPGjqvM189OHa00pz0ucwMAAIkjNTV1x9c+n2+v22/fZufvS1SFhYX7tF1LS2ih0kiw2+3Kzc3d8bytrc3ssoTklMjxnre6ST96bo3cvr7zKc1O1f3nj1dlkSNq74NklcjxRuQRb+sg1taSCPHOz89XvJE0AwBIWM8vbdAdr22UZ5eLWcO3ZpTr0pnlcthtETueratB6Usfk2vZY7J3N+5xW++wY9Uz9WL1Dpkl2SI3BwAAACBZGOfx1z2zRh9Xtfd5PS/dqQfOH68RhSTMAAAAAOh/ov6Pnl+rt9a1hoz9zyFl+u6xQ2XnM3wAACDJ5fqi47Xb7d7r9tu32fn7Bjq/3x+T4xiLMGN1LMRfosT7Xwvr9Ks3Nim4y+uVxRn67TljVZKdmhDzHOgSJd6IDeJtHcTaWgIWjTdJMwCAhFxcZ1SFe3pJQ8hYrsup204ZpVkj8yJ2PEf9UrOrjNFdxhbYfWvlYEqG3OPOVc+UixTIHxGx4wMAAADJxusL6AfPrNEHG9tCzucfOH+cRhfTpREAAABA/7R09+q7/12lpbVdIWPfPWaoLjxsUFzmBQAAEpPRMSY7O1sdHR1qamra47adnZ3yeDz71cUFQHwEgkH99s0q/eOTupCxGcNzdefpo5WVxjJZAACsjrMBAEBCqW5164fPrtGq+u6QsQllmbrr9EoNyk3r/4ECPqWuf9VMlkmpXbDHTf05Q9Qz5RvyjD9fwbTs/h8bAAAASGK9/oBueG6N3t3Qt9JzdppDvz9/nMaUZMZtbgAAAACS517CVU+s1ObWbYtZt0tx2HTbyaN0wjgWtwIAgFAVFRVasWKF6urqzOraDocj7HZbtmzp8z0AEpO7N6BbXlyrN9a0hIydMalYPzphuJwOe1zmBgAAEgtJMwCAhDF/bYt+MnedOj2hrd/OP6jUrAyX6uzfxazN3SrX8n/LteRROTq++KArHG/54XJPvUTe4cdJ9vAflgEAgMSxu5tbkWC32/f4HMmFePcvYebHL6zTW+v6JsxkpTr04JcnaOKgxEpCJ9bWQrythXhbC/FGouIaBZFArEMt3dKhq59coZZuX0ii/m/OHadDh+RqoCLe1kK8rYV4WwexTmxjx441k2aMLjLr169XZWVl2O2WL1/e53sAJJ7W7l597+nVWrylM2Ts27Mq9M0Zg2Wz2eIyNwAAkHhImgEAxJ0vENSD72zW3z6qDRlzOe26ac4InTS+qF/HcDSvlWvx3+Ra+V/ZfD273S7oSJVnzJnqmXqR/EXj+3VMAAAQW/n5+TE7Vm7uwF2Ag/1HvPeNzx/QNf/+TG+sbu7zemaqQ3/75uE6dFjs3qMHilhbC/G2FuJtLcQbiYJrFESD1WP9+oqtuvJfy9XT27f41uBclx7+f9M1pjSxEvX7y+rxthribS3E2zqIdWKZPn26nn76afPrefPmhU2aCQQCmj9/vvl1ZmamJk6cqGQRrcR+ksWsJRHivbnFrSv/s1xVLe4+rzvtNt1y8iidPqkk5nNKVokQb8QO8bYOYm0txHsbkmYAAHHV2OnVD59ZpYXVHSFjwwtc+uUZlRpZlHFgOw8GlLJpvtIX/U2pm9/e46b+zFK5J18o98SvKJheeGDHAwAAACzKHwjquv8s0guL+ybCZ6Q6zIVrAyFhBgAAAEBie+zDKt309BIFgn1fHz8oRw9fMk2lOa54TQ0AAAwQo0eP1vjx481uM0bSzDHHHKMxY8b02eb5559XTU2N+fXJJ58spzN5ltfFKrGfZDFriXW8F1a16Fv/WKrmLm+f17PTnPrD1w/VrNH9K8qLPeP9bS3E2zqItbXkWjTeyXNWDwAYcD5Y36Qr/7FIjV29IWMnjivUTSeOMBfZ7Tdvl1wrnzI7yzhbN+xx097SqeqZerG8o06SHKn7fywAAADA4gKBoH745GI9/dmWPq+7Uuz6v4umadrwgrjNDQAAAMDAFwwG9etXV+v+N9aGjB05ukgPfu0QZbtS4jI3AAAQWytXrlRdXd2O5+3t7Tu+Nl5/8803+2xvJMXs6uKLL9bNN98sr9er22+/XWeffbbZTcZ4/t577+m1114ztxs0aJBOP/30qP59AOyfl5bW6Zp/fSqPL9Dn9UG5Lj10yTSNK8uJ29wAAEBiI2kGABCXG1x/fGu97n55lVmRetdWqd89ZqguOLhUNpttv/Zrb9+s9MWPKG3547J7O3Z/fLvTTJIxkmV8ZQcf8N8DAAAklpaWlqjt22hPu3O1jba2NgUCfT+QR/Ig3vsuEAzq9pfW6b+L6/u8nua06zfnjNO4AntU35v9RaythXhbC/G2lnjHO1aVejHwcI2CSLB6rHv9Af3spXV6bmlDyNipE4v1k5NHydfTqZYeJQWrx9tqiLe1EG/rSIRYJ/M1yuuvv6758+eHHVu1apX52FvSzIgRI3Tttdfq/vvvV09Pj/75z3+GbGMkzNx4441KT0+P4OwB9MdD727Qbc8vVzBM58mHLp6mslw6TwIAgN0jaQYAEFMdbp+u//snem3F1pCx0uxU3XVGpSYNytr3HQaDSqn5UK7FDyt1w+uyBXf/gWPAlS/3xK/IPflrCmSVHehfAQAAJCi/3x+zYxk3OWN5PMQX8d59Mvxdr20MSZhJcdh0z5mVmjYke8D9uxFrayHe1kK8rYV4I1FwjYJosFKsOz0+/fDZNfpw0xcV5Le75PDB+s6RFbIpmNT/HlaKN4i31RBv6yDWiemwww7TPffcoxdffFELFy5Uc3OznE6nysrKNGPGDJ100klKS0tTsolWYn8iJIshdmIdb6N416/f2Kh/LKgNGZs5Ik93nTlGaYEetSRLJn2C4f1tLcTbOoi1tSRCvPMTILGfpBkAQExvcP2/x5ZrfVPoherM4bm67dRRyktP2bed+TxKW/2c0hc/LGfjij1vWjDG7CrjGXum5KSyBAAAABCJhJl73tikJxbVh3SOvPuMSh0xIi9ucwMAAAAw8DV0enXNU6u0ur67z+t2m/SD44frvINK4zY3AAAQP1dccYX5iITi4mJddNFF5sMqYpXARbKYtUQz3u7egG55ca3eWBOa8HXm5GLd+KXhcjps/LzFEO9vayHe1kGsrSVg0XiTNAMAiJnfvbU5JGHGJul/Z5brm0eUy24znu2ZvXOrXEv/Ideyf8re07zb7YKyyTvieLmnXqTe8iOkfdg3AAAAgH1LmLn3zSr9+9O+3SMddpvuPGO0jhwV/yoxAAAAAAauDU09uuqJlarr8PZ5Pc1p1x2nj9bRXHMAAAAASa+1u1ffe3q1Fm/pDBn79qwKfXPGYNlYCwQAAPYRSTMAgJj4rLojpAp1QWaqfn7qaE0bmr3X73duXSTXooeVtvZF2QK+3W4XSMmSZ8J56pnyDQVyh0Vk7gAAAAC+SJj53dub9Y9P6vq87rBJvzhttI4ZXRC3uQEAAAAY+D6tbtf3/rtaHZ6+1S7z0p2695yxmjQoK25zAwAAABAbm1vcuvrJldrc6gkp3nXznBE6bWJx3OYGAAAGJpJmAABR5/UFdPsr6/u8lp7i0FOXz1Suw7v7Vm/+XqWuf1npnz2slK2f7vEY/txhZqKMZ/y5CqbuPQkHAAAAwP7747s1+ttHtX1es9uk204drePHkDADAAAA4MC9tqpJt7y4Tl5/sM/rFXlpuv/ccRqS74rb3AAAAADExuItHWYifWtP34K6makO3X1mpaYPy43b3AAAwMBF0gwAIOoe+nCLNja7+7z2/RPHaHhRplpavCHb23pa5Fr2L7mWPCpHV98K1rvyDpmlnikXq3f4MZLNHvG5AwAAANjmL+/X6C8f1PR5zSbp1pNHac64wrjNCwAAAMDA99gntfrNvCr1TZeRJpZlmh1m8jNS4jQzAACA5OFwOKKyX7vdvsfnSC7RjPcbq5v0o+fWyOML9Hm9LDtV958/XqOLMyN2LOwb3t/WQrytg1hbC/HehqQZAEBUrWvsNpNmdja5PFcXzxwesq2jaZXSFz2stFXPyObv22J1Z0FHmjxjz1LP1IvkLxwblXkDAAAA+MLDH27RH96tDnn95jkjdcqEorjMCQAAAMDAFwgGde+bVXrsk9ACWkeNytMvTh2t9NToLO4EAACwmvz8/JgcJzeXTiBWEql4//WdDfrZC6sU3CWTfsKgHD10yTSV5tB5MhHw/rYW4m0dxNpaci0ab5JmAABRvdn181c2yBf44orWYZPuPHeynI7Ps1WDAaVueF2uRQ8rtfq9Pe7Pn1Um9+Svyz3hywqmx+bDHAAAAMDqHv24Vr97e3PI6z8+cYTOmFwclzkBAABYuYqzgeqA1pHMsTaqR9/8/Fq9uqopZOzcg0p1wwkj5bQb/S2tI5njjVDE21qIt3UQawDYP/5AUD9/YYX++u6GkLGjxxTrgQsPUVYay1wBAED/cDYBAIiaJz7bqsVbOvu89vXp5Zo4OFdyt0uf/UM57z8oR9umPe6nt+wQ9Uy9WN6RJ0qOlCjPGgAAAMB2//ykTvfOrwp5/YfHD9fZU0riMicAAICBIlZVnK1cHdCKkiXWrd1eXf3vT/TRxuaQsevnjNV3jhklm81aCTPJHG/sG+JtLcTbOog1AOyeu9eva//1mV5aFtp58ivThuhnZ01SyvaivAAAAP1A0gwAICq2dnj0+12qUVfkpenyKXZp7g+lT/8heTu0u1qLQXuKPKNPkXvqxfKVTonJnAEAAAB84T+fbtWv5oUmuF933DCdf3BpXOYEAAAAYOCrbunWxQ99rLX1fYtuGV1lfnneFJ1zSEXc5gYAAJDMWlpaorJfo6PSzglibW1tCgQCUTkW4i9S8W7u7tV3n1ypxVs6QsauOGqovnlEuTrb2/o9X/QP729rId7WQaytJRHinR/DAlO7Q9IMACDigsGg7nxto7q8O/9iDeoPYz5Ryb/ulXq7d/u9gfQCuSd9VT2TLlQwk8rVAAAAQDz8d3G97np9Y8jr184eqq8cUhaXOQEAAAAY+JZtadMlD32s+g5Pn9ez0px68GuH6KjK4rjNDQAAINn5/f6YHMdYhBmrYyH+DiTem1vcuvrJldrc6glJpL95zgidOrGYxdsJive3tRBv6yDW1hKwaLxJmgEARNzrq5v19rrWHc/L1aD/y/+bxi1euNvv8RVNUM/Ui+SpPF1ypsVopgAAAAB29dzSBv3ilQ0hr19xVIW+Nm1QXOYEAAAwEEWrinOiVAdEbCRTrD/Y0KrvP71S3X0KbklFWSn63XkTNLbIGdX3zUCQTPHG3hFvayHe1pEIsU6EKs4AsDtGZ5nv/ne12np8fV7PSnPo7jMrNW3oF/+HAgAARApJMwCAiGp3+3T365s+fxbUlx1v6uaUR5XV0xO6sc0u78gT1D3lYvkGT5NstlhPFwAAAMBOXlzeqNteWq/gLq9fNrNclxxeHqdZAQAADEyxrNZn1eqAVjRQY/38sgb97OUN8gf6Xm2MLEzXfeeOVVlO2oD8e0XbQI03DgzxthbibR3EGgC+8MbqZt384lp5fH2vC0qzU/Xbc8ZqdHFG3OYGAACSG0kz/5+9+wCToj7/AP6dmd293nvl6B0EAZFeBBVRsf4TS4waNYotxhISNeVvi5pYMEGNJkaT+I9Rk6hIUUC6FBHl6HDH9d7rtpn/M7PH3Q13wh237Xa+n+fZZ3d/szPzwnsLN7u/9/eCiIjc6aWN+ahqtiMZVfit+U+YLX3b/Qsn3AjMeghNiOSHhEREREREfmDNoSr8atXxLgUzt05NxW3T0n0UFRERUQ+11gOl3wLhyYAU5+toiIiojaIo+POOYqzYUthl28T0CDy/ZBgig/mVNRERERFRoPvHVyV4YUN+l+8ghiWGagUzCeEWH0VGRERERsBPIImIyG1259fjv/vKcbW0CY+b3kGk0NzlNXJ4CsQlfwCGzHcN1NR4P1AiIiIiItL5/HAVHl95DKcs+oybpqTgx9NZMENERH7G3gxT5QGYyvfBVJ4Nc/k+oCZH63qMGQ8A597r6wiJiAiAQ1bw7LoT+PCb8i7bFgyPxa8uHowgk+iT2IiIiIiIyDvUbpMvfpGPd/eUdtk2LSsKT182FGEWySexERERkXF4rWimudk1cTo0tPsWesuXL8d7772HyspKDBw4EHfeeScuvfRSb4VHRER91GqX8drar/Cm+Q+YL33d/WtGXoOW2Y8hJnmA1+MjIiIiIqLufXGsGr9YeRzOUwpmrj83GXfPzIAgCL4KjYiICHC0wlR5sK1AxnWTao5DUOTuX1/8NXCut4MkIqJTtdic+Pknx7A5p7bLNvVa4745mRB5rUFEREREFPBziR779Bg2HO26oO6SsQn42QVZMEkspCciIqIAKZr5+OOPsWTJEoSHh6OwsBARERG67bfccgv++te/trfoPnLkCNasWYMnnngCy5Yt80aIRETUF4qCnav+grdaXkSU1LW7jDMsCY1zn4Q9ay4kiatDEBERERH5iy3Ha/Czj45pK7119j8TknD/nEwWzBARkXc5rTBVHoapIrujQKbqCATF2fNjqEUzyimVoERE5FXVTXb85N+Hsb+0STeuXl38ZG4mrjs3xWexERERERmZp+ZriKJ42ucUWHqa7+pmO+7/4CD2FTd22Xb3rEzcMjWN30H0A3x/GwvzbRzMtbEw314smlELYNRimMsuu6xLwcyWLVvw1ltvab8AqV1ohg0bhkOHDqGlpQWPP/641m1mzJgx3giTiIjOgtBcCaxZhiuL1ru+8TpF6/Ar0DTzMSjBUb4Ij4iIiIiIvsP23Fo89NFROE4pmLlqfCIenDeAX1YREZFnOe2Qqo/qOsiYqg5DkO1nf0zRBMQMgGCtA8z67yKIiMg7Cmpacc8Hh1BYa9WNWyQBv1k0GBcMj/NZbERERERGFxMT45XzREVxfoiRdJfv3Mom3PKPvcir0i+8a5YEPHv1OFwxId2LEZI78f1tLMy3cTDXxhJl0Hx7pWjmyy+/1CZazJ07t8u2119/XbtPTU3F9u3bkZ6ejoKCAsyYMUPrSvPaa69h+fLl3giTiIh6Q1FgObYS4Rt/BbG1axtVW3AcWuc/BdvAC3wSHhERERERfbedeXV48L9HYHfqC2aWjE3AIxdksWCGiIjcS3ZAqj4OU4VaHNPWRabyAASn7awPqQgSnLFD4UgcC2fyOIQNmQ4kjgbMwVBqagBnL7rTEBGRW2SXNOL+Dw+jtsWhG48MlvC7JcMwIT3SZ7EREREREZF3fJVXjR/9dTdqmvULo0QEm/Dajedi2uB4n8VGRERExuWVopny8nLtfvjw4V22rV69WpuIcc8992gFM6qMjAzt+cMPP4yNGzd6I0QiIuoFoaUK4V/8EkHHV3W7PTvmAqRc+QyUEO+sUkJERERERD23O78eP/n3EVgd+oKZxaPj8fOFAyGyYIaIiPpCdkKqzdV3kFELZBytZ31IBQKcsUPgSBijFclot/iRgDlE2y5JEsK8tFouERF1b+OxGvz8k2OwOmTdeEqkBS9fNQID41z/ZhMRERERUeBata8E9/9zb5frgtSoYLx1yxQMS2JnYCIiIgrgopmKigrtPiJC/0vP/v37UVlZqRXNXH755bptkyZN0u7z8vK8ESIREfWQ5dhqhG98DGJLdZdtlUokXgz6Me78n9ugmESfxEdERERERN9tb2EDfvLvw12+sLp4ZBweu3AQC2aIiKh3FBliXZ5WGGNu6yAjVeyHaG/q02Ed0YM6imNOFshYwtwWNhERudf7e8vw7LoTkPV1+RieGIqXrhyO+HCLr0IjIiIiok5q1M6sHiCKIqKiotqf19XVQZb1n0FT4PiufP99VzF+t/4ETrkswIikMLx01UgkWBwe+xkkz+H721iYb+Ngro3FH/Id4wcLn3mlaEZd5U1VXa2fYL1lyxbtPiEhoUsXmpN/Oa2tZ7/6HBERuY/QUoPwTb9C0NFPut3+ifM8PG6/Gb+94jwEsWCGiIiIfODktaenPkQ43XMKLIGa72+KGnDvh4fQYtd/ALZwRBx+s3gYTKLxCmYCNdfUPebbWJhvD1AUiPWFkMq/hansW0hl+yCV74Noa+jTYZ1RA+BMUotjxrnuE0YDQZG615zptzzmm4jINxRFwR+3FOIvO4q7bJuaFYXfXjYUYRbPXasTERERUe84nU6vnEedhOmtc5Hv2R1OPL8uB/+3p6zLtmlZUXi67bqAPxOBge9vY2G+jYO5NhbZoPn2StFMWloajh07hr1792LOnDnt4ytXrtS6zMycObPLPmoVkyo+Pt4bIRIR0WlYcj5D+BePQmyu7LKtWgnHY/ZbsFKeiivHJ2JCun5SAxEREVEgrkzReRUOCnyBkO9vCmpxz78OotmmL5i5aHQyll83AWaJk4sDJdfUc8y3sTDfvaQoQF0hUPx1x61kL9DSx9VAozKB1HOA1AmuW8p4SKGxWlGMO3sQMN/kL1jYT4Gca7tTxq9X52Dl/oou2y4bk4BHLxrM64wAyjd5BvNtLMy3cTDXRGQkLTYnHv7vYaw/ol9MXbVkbAJ+tmCgIRfsIiIiIoMWzahFMUePHsUrr7yCG264QSuE2bVrF1avXq1tv/DCC7vsc/DgQe0+OTnZGyESEVE3hNZahG3+XwQf/k+321c7J+NR+y2oRBTiw8y4d1aG12MkIiIiIqLTyy6qw41v7kCD1aEbv2BkIl7+PgtmiIgIQH2JvkBGvXWzeEqvRKa1FcecA6S03YdxkSwyFhb2U6DmuqHVjnv+tgdbjnX9v+LeeUPwkwXDtIUTKTDyTd7DfBsL820czDURBaqqRitu/etu7C2o7bLtrhnpuPm8VF4XEBERkbGKZu666y689dZbyM3NxaBBgzBs2DAcOHAADocDsbGx+J//+Z8u+6xfv177pWnUqFHeCJGIiE5hzl2P8A2/gNRc3mVbkxiBZa0/wEfyNLW0Rht75IIshAd55b8VIiIiIiLqoQPF9bjhzR2ob9UXzMwdnoA/XD8RFhMLZoiIDKexHCjeqy+QaSzt2zHDEoG0iZ06yJwDRCS5K2IiIvIjpXWt+OFfduJQaYNuXBIFPLFkDL4/JdNnsRERERERkXfkVDTi5rd2Ia+qWTeudpX55UWDcPEoLpxCRERE/sUrs5snTpyI5557Dg899BAaGxuxZ88ebdxsNuNPf/oTIiIidK+vq6vDypUrtcdz5szxRohERNRGsNYjbPMTCD70QbfbS5Nm4dK8/0EFOlZJnDs0BnOHxnoxSiIiIqKuampqPHZsURR1KwKq162yLHvsfORbgZLvYxVNuO3d/aht0RfMnJ8VjacXD0ZzQz30X2cZT6DkmnqG+TYW5ttFaKmGVL4PprJ9kMq/1e7FxpI+HVMOiYUzcSwcSePa75WwJKDzyqHqfz0e/N3M3/LtzW4iRES+dKSsAT/8804U17XqxkPMEv5w/QTMG8GCSSIiIiKiQLe/pAH3vH8INc123Xh4kITnLx+KSZnssEVERET+x2stAX7yk5/gggsuwPvvv4/S0lKkpKTg+9//PoYPH97ltV988QUmT56sPV68eLG3QiQiMjxz3iaEb1gGqZvVRWVLBGqmPYqrtg1GBWzt42EWCQ/Pz/JypERERERdOZ1Or51LnYTpzfORb/XHfOdWteCOfx7oUjAzOTMSz10+FCZB6Xd/Jm/oj7mms8d8G4sR8i201sFUkQ1TuXrbp92khsI+HVMOioIjcQwcCWPhUAtkEsdCjkjVF8hoL/SvgiQj5Jv6Bxb2UyDlend+HR748BAarPp/X2NCTVh+9UiMTrJ49GfeKPwl3+QdzLexMN/G4Q+5ZmE/EXlKq92JBz483KVgJjnCgpeuGo7B8aE+i42IiIjIL4pmVGPHjtVuZ3L55ZdrNyIi8g7B1oCwLU8j+MA/u91uGzAbjXOfwou7bSiq169Geu/sDCSEW7wUKRERERERnUledQt+/N5BVDfrC2Ympkfg90uGIdgs+iw2IiJy32c5UsUBmNuKY7QCmbq8Ph1TtoTDkTCmvThGK5CJzOhaIENEPcbCfgqUXK89VIVfrjoOu1PRjWfGBOPlq4YjPTqYP38ewve2sTDfxsJ8GwdzTUSB5P/2lKG8sWOhXdWIpDC8eMUwxHPuEBEREfkxrxbNEBGR/zEXbEX4+p9Baijusk02h6Np5qOwjrwah8qb8fevsnXbJ6RH4IpxiV6MloiIiIiITqewthV3vncQVU36Vd7Gp4XjxSuHI8Qi+Sw2IiI6S/ZmmCoOwFSxr72LjFSTAwH6icu9oZhD4UgY3d5Bxq4WyEQPAAQWVhIRUQdFUfD3r0rx4hf5XbaNTQnH768YhphQs09iIyIiIqLekyTJYx2WTvecAkNdix1v7dTPLTp3QAxeuXoEgk1cdCVQ8f1tLMy3cTDXxsJ8u7BohojIqGxNCNv2W4Rk/737zRkz0DjvacgRqXDICv53TQ7kTnMxzJKAXywYCJGrjRIRERER+YXiOit+/M+DKG/UF8yMSQnDS1cORygLZoiI/J+jFabKg+3dY1wFMschKPJZH1KRguBIGKXrIOOMHgSI/H+BiIi+m1NWtGKZd/eUdtk2e0gMnrxkMILN/L+EiIiIqD+JiYnxynmioqK8ch7yrle/PIhGq75z1q8vG42UBObbSPj+Nhbm2ziYa2OJMmi+3Vo0s2nTJnjCrFmzPHJcIiKjMhd+ifB1j0BqKOyyTTaHoWn6MlhHfw9oK4j5x+4SHC5v1r3u1qlpyIoL8VrMRERERET03UrrXQUzpQ023fiopDAsv2oEwoO4bgoRkd9xWmGqPAxTRXZHgUzVEQiKfvJBbyiiBY6Eka7imIQxrgKZ2CGAyP8HiIio51rtMh7/9BjWH63psu3q8Yl4aH4WJJELahERERERGUVJXQve2npCN7Z4XArGpBlz0i0RERH1P279pmzOnDkQ3NxxQD2ew+Fw6zGJiAzL3oyw7c8h5Nu3u91sS5uKxvm/hRyZ3j5WWNuK17bpi2sGxYXgpikpHg+XiIiIiIjOrLzBhh+/dxDF9Vbd+LDEUCy/egQigjlRmojI55x2SNVH2opj2opkqg5DkPXdwXpDEU1wxg2HvXMHmdihgGRxa+hERGQsdS0OPPCfw/imqLHLtrtnZmjfDbj7+2AiIiIiIvJvL31+FFZHRydkkyjgwYXDfRoTERERUW+4fdaEoijuPiQREbmBqXgXItY9DKkuv8s2xRSCpuk/Q+uY6wBB7BhXFDy1NhdWR8e/7epXYY9eOBBmqeN1RERERETkG5WNroKZwlp9wcyQ+BD88ZoRiAphwQwRkdfJDkjVx12FMRWuDjKmyoMQnPpuYL2hCJJWEHOyOEa7xQ0HTEFuDZ2IiIytuM6Kez84hBPVrbpxdULc4xcNwqJR8T6LjYiIiIj6rqamaydBdxBFEVFRHR1H6urqIMsdBRbUv+VWNeO93QW6se9NyUBWfJj2mPkObHx/GwvzbRzMtbH4Q75jYmLga26dObFhw4bv3Gaz2fDoo49i165dSEhIwLXXXospU6YgKSlJ215WVqZte++991BeXo7JkyfjySefhNlsdmeIAUn9u3333XeRk5OD0tJSNDY2IjQ0FMnJyZg3bx5mzpwJk4mTZIgMy96CsC9/j+Bv/gIBXQsb7alT0DD/GchRA7psW7m/Ejvz63Vj10xIwrjUCI+GTEREREREZ1bVZNcKZvJrWrt0hvzjNSMRHcLPVIiIPE52QqrNbesgc7JA5gAEh/7f5t5QIMAZOwSOhDEdBTLxIwFziFtDJyIi6uxQWRPu+/Cwdp3RWZhFwnOXD8WUAR1frBMRERFR/+R0Or1yHnUSprfORZ73ysY8yJ2mGwWbRdw7b2j7c+bbWJhvY2G+jYO5NhbZoPl2ayXF7Nmzux1XOxUsWrQIu3fvxq233ooXX3wRYWGuSuPObrzxRjzzzDO4//778cYbb+D3v/89Pv30U3eGGJBaW1uxdu1aDBkyBBMmTEBkZCSampqwd+9erFixAtu2bcOyZcu0SjEiMhZTyR6Er3sYptrcLtsUUzCazn8IreN+oOsuc1J1kx0vfKHvSpMUYcHSmRkejZmIiIiIiM6sttmOu/51sMsK0ANig/HHa0cgNowFM0REbqfIEOvytMIYc3m2di9V7Idob+rTYR3Rg/QdZNQCGUvXz8+JiIg8ZXtuLR756Cia7foVJhPDzXjpqhEYmhDqs9iIiIiIiMh3sksasf6ovkPR9ZNSkBgZ7LOYiIiIiM6GV9qPvPnmm1izZg0WLFiAP/3pT6d9rdoh5fXXX0deXp62j/r49ttv90aY/VZ4eDj++te/dukmo1aBPfHEE/jmm2+0ApqJEyf6LEYi8jKHFaE7XkDI3jchKF3bqNmTJ6Jh/rOQYwZ+5yF+tyEPda0O3djPLsjSVpUjIiIiIiLfqWtx4K5/HcLxyhbdeEZ0EF69diTiwyw+i42IKGAoCsT6An0HmYpsiLbGPh3WGZXpKoxJaCuQSRgNJYgdfYmIyHc+zq7AE2ty4DylUb3awfLlq4YjOTLIV6EREREREZEPqQulv7KpQDcWFWzCTeel+SwmIiIiIr8umnnrrbcgCALuuuuuHu+zdOlSfPbZZ1oxCItmTk/tINNdFxlJkjB58mTs378fpaWlPomNiLzPVPYNwj9/GKaaY122KZIFzVN/ipbxNwPidxe/bMmpxZpDVbqxBcNjMXNwjEdiJiIiIiKinqlvdWDp+wdxpKJZN54WFYQV145EQjgLZoiIzqpAprFEXyBTvg+ita5Ph3VGpOk7yKgFMsHRbgubiIiorxPg3vyyGK9uLeyy7dyMCDx/+TBEBHvlq2QiIiIiIvJDO/LqsLugXjf2w/NSERHE6wQiIiLqf7zyG8yhQ4e0+8zMzB7vk5GRodvXU+rq6nDs2DHtdvz4ce3W0NCgbZs9e7ZWvNNTFRUVWLVqFfbs2YOqqiqt80tycjLOP/98XHjhhQgK8u5KTLIsa11mOv99ElEAc1oRunM5Qva81n13maTxaLzgOThjBp/2MM02J575LFc3Fhks4cF5WW4PmYiIiIiIeq7R6sDd7x/CoTJ9wUxKpEXrMMMVoImIekZsLIOp4pQCmZbqPh3TGZ7cqThmDByJY6CExLktZiIiIndyyAp++3ku/v1tRZdtC0fE4VcXDYLF1HXBPiIiIiIiMgZZ7TKzWd9lJinCgmsnJPksJiIiIiK/L5ppbW3V7gsKCjBhwoQe7aO+VmW1Wj0a22233eaW4+zevRvLly9HS0tL+5ga+8lCnHXr1mHZsmVaEY2nOBwOfPjhh9pjtfAnOzsbRUVFmDNnDsaOHeux8xKR70nl+xChdpepPtJlmyJa0Hze/WiZcCsgnvmf/RVbClHaYNON3Tc7E3FhZrfGTEREREREPddkc+LeDw7jQGlTly+p1A4zKVEsmCEi6lZjOVD8NYKPb4NU9q2rQKa56wTh3pBD4+FIHAd7pyIZJSzBbSETERF5krpw1rKPj2Frbm2XbTdOTsE9szIgCoJPYiMiIiIiIv/w+eHqLgt43T4tDUEsriciIqJ+yitFM0OGDMG+ffvw6quv4rLLLuvRPuprVYMHn74jgjvFx8cjLS2tvTtLT+Xm5uLFF1+EzWZDcHAwlixZgjFjxmjPt27dqhXMlJSU4Omnn8YzzzyDkJAQjxXNvP/+++3PBUHApZdeiuuuu84j5yMiP+C0IXT3HxCyewUExdllsz1hjKu7TNywHh0uu6QR/7enVDc2OTMSl43hxA8iIiIiIl9psTlx3weH8W1xo248IdysdZhJjw72WWxERP5EaKmGqTxb6yJjrsgGKvYD9UXatrP9RFYOjtW6xrR3kUkcCzksSf3w1a2xExEReUNVkx0/+fAwDpTpi/HV/9V+Om8AvjfRc4v/ERERERFR/+BwylixRd9lJis2GJeM5twhIiIi6r+8UjRz7bXX4ttvv8WaNWtw11134fe//71WXNIdtTvLT3/6U6xevVor+vje977n0diuvvpqrTBHvUVHR6O8vBx33313r47x1ltvaQUykiTh0UcfxbBhHZPT1eKZlJQU/O1vf9MKZz7++GPt7+NUb7/9Nux2e4/PuWjRIu24nal/p++99x5kWUZNTQ2++uorvPvuuzhy5IjW5SY0NLRXfy4i8m9S5UFEfP4QTJUHu2xTRDOap9yDlgm3A1LPOsTYnTKeWJMDpdNYkEnAzxcM1P49JiIiIiIi72u1O3H/vw9jb1GDbjwu1Kx1mMmIYcEMERmT0FoHU0W2q0imfJ92kxoK+3RMOSjKVSCT0KlAJiKVBTJEdNbU7408RRTF0z6nwOGuXOdVt+Dufx1AYa1VN66uFP3k4qGYPzyuT3GSe/C9bSzMt7Ew38bBXBNRf/effRUoOOW6YenMDJhEfkZGRERE/ZdXimYeeOABrWjk0KFDeO211/Cf//xHKxyZPHkyEhMTtcnYZWVl2LVrF/71r3+htNTV5WD48OHavp7UXQFLbxw7dgwHD7omrM+dO1dXMHPS4sWLsWHDBhQVFWHVqlW48sorYTLp/+o/++wzrWCop6ZOndqlaKbzBXdcXBwWLlyIiIgIvPDCC/jwww9xww039PrPR0R+yGlHyJ5XEbrrFQiyo8tmR/woNKjdZeJH9Oqwb+8qwbHKFt3YbeencxIeEREREZGPtNplPPCfI/iqQF8wExNiwoprRyAr1jOdbImI/I1ga4CpfL+rOEYrlNkHqS6vT8eULeFwJJzSQSYygwUyRORWMTExXjtXVFSU185FvnU2uf4qrwY/+ns2apr1C/hFh5rxxg8mYVJWrBsjJHfie9tYmG9jYb6Ng7kmov7W+f5P212dm08akxKGOUO8d31LRERE1G+LZtQOKGrRyCWXXII9e/ZoRTHLly/v9rWK4upxMGHCBHzyyScICgqCP9u5c2f7Y7Vo5ruKWGbPno1//OMfaGpqwv79+zF+/Hjda9555x2PxHfyPAcOHPDI8YnIu6Sqw67uMhX7u2xTRBOaJy1Fy7l39ri7TOcV5t485aJ3WEIobpiU3OeYiYiIiIio96wOGQ//9wh25tXrxqO0gpmRGBTPbrJEFKDszTBVHGjvHqPdanP6dkxzGOwJo9uLZOxqgUz0AEDgar9ERBT41u4vxT3vfq1dY3SWHhOCt26egiGJ4T6LjYiIiIgCoxsmOywFjn/uLUFVk77Y/r45WboFwplvY2G+jYX5Ng7m2liYby8WzaiSkpKwY8cOvPrqq1ixYsV3FnGMHDkSd955p3bzZNt6dzl8+LB2rxb3DBo06DtfN2rUKN0+pxbNeEp1dbV23x/+LonoNGQHQvb8CaE7X4Ig6y9OVY644a7uMgmje39oRcGTa3Nhc7qKFlVqR9VHLxwIk2TM/xyJiIiIiHzJ7pTxyEdHse1EnW48MljCH68ZgSEJLJghogDhaIWp8qCuQEaqOQ5B0U/q7Q1FCoIjYRScSeMRPHAqkDoBiB+Kxrp6OJ1Ot4ZPRETk797ZfgK//Gg/5I6P/zVj0iLx5x9ORmIEO80TERERGYm3umGyw1L/VNNkw193FOvGZg9LwILxWafdj/k2FubbWJhv42CujSXKoPn2WtHMycKNpUuXaje128y+ffvaizrUX8rHjh2LlJQU9CeFhYXafXJy8mkLU1JTU7vs484YEhISunTlsVqtePvtt9s79xBR/yRVH0P45w/BXP5tl22KIKHl3B+jefLdgGQ5q+P/d18F9hQ26Ma+NzEZo5K5uhwRERERkbc5nDKWfXwMW3JqdePhQRL+cPVIDE8M81lsRER94rTCVHkYporsjgKZqiMQlLMvZFFECxwJI7XuMSe7yDhjhwCiSfusNthLE0GIiL5LTU2Nx46trgbY+cvNuro6yPLZFx2S/zqbXKuLZS3fmI+3dug7zKumDYzGs5cPh9nRgpqaFo/ETGeP721jYb6Nhfk2Dn/ItbcKI4gosKzYeBwNVodu7KELh/ssHiIiIqJ+WzTTmVpkot76M5vNhoYG10TzuLi40742PDxcK2pRC1mqqqrcGse2bduwcuVKjBgxQiueCQkJ0YqR9u7dq8Wndu9ZvHhxr47Z0xjZtpPcgfn+DrITQV+/gZDtv4PgtHXZ7IwdiqYFz8OZPB5n+06saLThpY35urHUqCDcPWsA39/UZ8y1sTDfxsJ8ExF5hkNW8IuVx/HFMf3kyjCLiFeuHoGRySyYIaJ+wmmHVH2kvTjGfLJAppvuuT2liCY444bDrhbItN3Uz0bOdhERIiJv8GaHK3UiJjtqGcOZcq12rvzN6hysOtj1u75LxyTgFwuyYJK8+/NJZ4/vbWNhvo2F+TYO5pqI+oPi2ha8te2Ebuyy8akYk2bMleiJiIgo8PisaCYQtLa2tj8ODj5z+3L1NWrRTOf93OHcc8/VVis7cuSIdlOPHxoaiszMTEyfPh1z587t9eT3O++8s0eve++99+ANRm0FZVTMN4DKo8B/7gIKd3bdJojAtHshzVmGSPOZ/+05nZ+v/AqNVv0HdE9fNR6pSfHwFubbOJhrY2G+jYX5JiLqO6es4JefHse6I66OvCeFmEW8fNUIjElhJ0gi8lOyA1L1cVeBTIWrSMZUebDbBUB6Su2sqxbEnCyO0W5xwwGTvtM2ERER6TVaHXjov0exK7++y7bbzk/D7dPSIAiCT2IjIiIiosDthukPHZaob55ddQw2R0fOTKKAH52X3O3PDPNtLMy3sTDfxsFcG4s/5DvGD7phsmimj51mTjKZzvxXefI1nfdzh8GDB2s3IgoAshPY8Sqw7jeAo5sCu7ihwJIVQMbkPp9q7f5SrMou1Y1dMSENs4cl9PnYRERERETUu4KZX6/OwZpD+pWgg00iXrpyOManRfgsNiIiHdkJqTYHpvLs9i4ypsoDELr7DKOHFAhwxg6BI2FMR4FM/EjAHOLW0ImIiAJdWYMV931wGMcqW3TjkgAsWzgQS8Ym+iw2IiIiIvIP3up6xA5L/UtuVQs+2leuG7tiXAJSI809yiPzbSzMt7Ew38bBXBuLbNB8e7VoxuFwYOXKldi8eTNycnLQ0NBwxr90dbWjdevWwR9ZLBbdn+1MTr6m837+asWKFb4Ogch4qo4D/10K5G/vZqMAnL8UmPeoWyaN1Lfa8dh/s3VjMaFmPHrJyD4fm4iIiIiIek5WFDyxNhefHqjUjQeZBLxw5TBMzIj0WWxEZHCKDLE2D+aTxTFqF5mK/RDszX06rCN6kL6DjFogYwlzW9hERERGdKyiGfd9eBhlDbYunSufuXQopg+K9llsRERERETk3/64pQCyol/Q69bz03wZEhEREVH/LZrZsmULbrzxRuTn57ePKUqn37a6KZZRt/tzi/Dg4OD2x62tZ15N8eRrOu/nr+Li4nr0OrbtJHcwfL4VGUHfvI2Qrc90uzKrMyoLTQufhzN1EtCobj/71VtPemrtcZTVW3VjD8wdANHejJqavk1+ORPD59tAmGtjYb6NxR/y7Q9tO4mI3FEw8/RnJ/BxdoVu3CIJ+N2S4Zic2fFvLRGRRykKxPqCju4xWpFMNkRbY58O64zKdBXGJLQVyCSMhhLE7llERETutDu/Dg/+9ygarfqFCmNDTXjxyuEYlRzus9iIiIiIiMi/ZZc0YsNR/fy/6yclIz7M/xcFJyIiIvK7oplDhw7hoosuQktLi1YIo3ZaGTp0KGJjY7UJd/2V+ueIiIjQOuZUVVWd9rWNjY2wWq29KkjpD9i2kzzBSPkW6/IRse5nMBfv6HZ7y/gfomnqg67uMm76O9lb1IB/fV2mG5uaFYWLRsT65O/dSPk2OubaWJhvY2G+iYh6T/185Ll1J/Dvb8t142ZJwHOXD9N+Ryci8liBTGOJvkCmfB9Ea12fDuuMSNN3kFELZIK5qj0REZEnrT5YiV+vzoHdqV+oMDMmGC9fNRzp0f6/kB8REREREfnue4rlmzoWQFdFhZhw4+QUn8VERERE1K+LZp566ik0NzdDkiT8+te/xr333ovw8MBY1Sg9PR0HDx5EaWmpNlFQ/TN2p7i4WLcPERmcIiM4+12EbXsGgr1rZxdnZCYa5j8DR9p5bj2tzSHjiTU5ujG1reqyC7L8urMXEREREVGgfRH1+w35+NdefcGMSRTw28uGYvogTjInIjcWyDSV6brHaAUyLdV9OqwzPLlTccwYOBLHQAkJnIWCiIiI+sM1xTu7SvDypoIu28alhuP3S4YhOtTsk9iIiIiIiKh/+PJEHb4qaNCN3XxeKsKDvDKllIiIiMirvPIbzvr167XJ2Pfddx9+/vOfI5AMHz5cK5pRu8jk5ORoHXS6c+DAAd0+RGRcYn0Rwtf/DJbCbd1ubxl7I5rOfwiwhLn93H/ZUYwT1a26sR/PSEcaV5sjIiIiIvLa5DZ1Ytu7e0p145IAPH3pEMwaHOOz2Iio/xOaK9sLZMwnO8g0V/TpmHJoPByJ42DvVCSjhCW4LWYiIiLqHaes4Pn1efjnKR3lVXOHxuB/Fw1BsFn0SWxERERERNQ/yGqXmc36IvykCAuuOSfJZzERERER9fuimcrKSu3+iiuuQKCZMmUK/vOf/2iPN2zY0G3RjCzL2Lhxo/Y4LCwMo0eP9nqcROQHFAVBB95D2JanINobu2x2RqShcf4zsKdP88jpcyqbtaKZzkYmheF7E5M9cj4iIiIiIupaMPPHLYXaitCdiQLwxCVDMHdorM9iI6L+R2iphqk8G6aKti4y5fsgNeoL8npLDo7Vusa0d5FJHAs5LAlgd1oiIiK/0Gp34uH/Hsb6I127xl07IQk/nTsAknqBQUREREREdBprD1XhSHmzbuyOaekIMrEAn4iIiAKTV4pmEhISUFxcjJCQEASaIUOGYOTIkVq3GbVoZs6cORg2bJjuNZ988gmKioq0xxdffDFMJrYwJDIasbEE4euXwZK/udvtLaO/h+bpy6BYwj22QsQTa3PhkBXdStaPXjgQJn6BRkRERETkFa9vK+pSyK7+Ov6bRYOxYEScz+IiIv8ntNbBVJHtKpI5WSDTUNinY8pBUe2dY9oLZCJSWSBDRETkp2qabPjR27vxVV5Nl233zsrAjZNTIPD/cSIiIiIiOgO7U8aKLfrPFgfFheCS0fE+i4mIiIjI07xSvTFjxgy89957yM7OxsSJE+FPDh06hNLSjhUY6+vr2x+r41988YXu9WpRzKl++MMf4rHHHoPNZsMTTzyhddRRu8moz7dt24bPP/9ce11KSgouvfRSj/55iMgPu8sc+gBhm5+AaGvostkZnozGec/AnjnTo2F8sLcc3xbru9vcMDkFwxPDPHpeIiIiIiJyefPLIvxpu2tBjZPU6WyPXzQIF43kF1FE1EGwNcBUvt9VHNPWRUaqy+/TMWVLuK44RiuQicxggQwREVE/UVDdjJv+vBM5lU26cXVRrF9dzGsKIiIiIiLquf98W4GiOqtu7K4Z6exaSURERAHNK0UzDzzwAD744AO89NJLuO666/yq08q6deuwcePGbrcdPnxYu52paGbgwIG4//77sXz5crS0tODdd9/t8hq1YGbZsmUB121HkiSPHFcUxdM+p8ASqPkWGssQum4ZLCfWd7vdOupaNM96FAiKhGfeSS5l9Va8srlAN5YRHYwfz8j02HvYiPmmrphrY2G+jYX5Jn/lyd9t+HNvLO7O91s7irqs2qZ6/OLBuHxcUp+OTX3D97ax+GW+bU2QKg7AVP4tpDK1QOZbSDU5fTqkYg7VCmScSWpxzDjtXo7OAoSOP6/69bf3PxHwLr/MN3kM801EgexEVQtu+7+vUNmon9QWZpHwuyVDMSkzymexERER0RnIMqDIvo6CiKhds82JN05Z4GtcajhmD4nxWUxERERE3uCV6pXJkyfjxRdfxL333osrr7wSf/7znxEfH1grHk2aNAnPP/88Pv30U+zZswfV1dVacVBycjKmTp2Kiy66CEFBQQg0MTHe+YU5Koof+BtJv8+3ogDfvgeseghoreu6PSIFuPRlBA1bCE//q6AoCh766Cs02Zy68d9ePR4pif7x73C/zzf1GHNtLMy3sTDfZLTrExV/7o2lL/l+Y3MOXvoir8v4k1eMwfXnDehjZORufG8bi9fzbW8BSvcBxXuB4q9dt8rDfZs8YwoBkscCqRPab0L8UJhFCWZ3xh4A+P42FuabiAKFrCh4fOXRLgUzieFmvHzVCAxJCPVZbERERKQn2BohVR2CpeoI0HAcKM0Gyg9AuuZ9OGOH+zo8IiLNu3tKUdVs143dPTMDAjtSExERUYDzStHMb37zG+1+ypQp+OSTTzBgwAAsWLAAI0aMQGjomT/Mffzxxz0W29KlS7WbOyQkJOCmm27SbkRkUA1lwCc/AQ6v7H77+O8DFz0NhHhnQueq7FJ8frBMN3bNuemYNsQ/CmaIiIiIiALZX7edwBMrD3YZ//Vlo1kwQxToHFagLLujOEYtlCk/CCj6RS16RbJ0KZBB/HBA8p+u3kRERORen2RXYl9Jo25sSHwoXrpqGJIiAm+xPiIion5BUSA2FMJUeRBS5SHt3lR5CFJ9frcvlyoPAiyaISI/UNtix9s7S3Rj0wZGYWJGpM9iIiIiIvIWr3yj+qtf/aq9Glm9b2lpwccff6zdesKTRTNERG7rLpP9AfDpg0BLTdft4UnA4heBEYu8FlJdsx2P/3e/biw+3IJfXDLSazEQERERERnV33fk4Zcf6X8fVz16yUjcNC3LJzERkYc47drKsR0FMl8DZQcAWb9iY6+IJiBptL5AJmEkYLK4M3IiIiLyYw2tDryyWT/5NisuFH++YQxCTVwFmoiIyCvsLTBVH9EKX9TCGK1QpuoQRJu+qPV0pIqDwLAlHg2TiKgn/vJlMZpsHYv6CG1dZoiIiIiMwGvLECrqhPLTPKf+qaamm+IANxBFEVFRUe3P6+rqIMuyR85Fvtff8y00VyJ0w2OwHFvV7Xbr8MvRMvtXUNTuMh56z3TnN6uOobLRqht7cF4WFGsTaqxN8JX+nm/qOebaWJhvY/GHfMfEeKdrG/Uvnro+8Zefe/Kevub739+U4Terj3cZv2/OAFw1JsajP6vUO3xvG4tb8i07IFYfg6nsW0jl+1z3lQchOG1nHZciSHDGDYUzcRwcSWO1e6faQcYUrH9hg3ot77vr+f6G729j8XW+eX1CRJ7w+rYiVDc7dGO/vGw0IoJMcDr70L2OiIiIuu8e01TWURxT5eoiI9XmQlD6dm2hdZoh8hOSJHnsuvx0z8n3Suqt+NfeMt3YxaPiMTKl911mmG9jYb6Nhfk2DubaWJhvLxbN8MvIwOWtD+XVnyF+AWAc/SnfaqFM+BePQ2yt7rJNDolF45wnYBt8oWvAi3+m3fn1+Pe35bqxGYOiMX9otN/93fanfFPfMNfGwnwbC/NN/sKbP4f8uTeW3uT7k+wK/O/qnC7jd85Ix42Tkvlz4+f43jaWM+ZbdkKqzYFJLY45eVMLZBytZ31OBQKcsUPgSBgDR+JY1y1+JGAO6fpi/iy6Fd/fxsJ8E1F/d6yiGe99Xaobu2BkIuYOT2QRPhERUV85rZCqj2vX+GqBjFTluhdb+/5/rLowhhw7GFLqeCBpDJA8Bk3BmW4Jm6g/LfrQeWEL8g9Pff4NbM6ORc7NkoCfXTIWMTGhfT42820szLexMN/GwVwbS5RB8+21TjNERIFEaKlB+KZfIujoym63W4csQqPWXSbO67G12mU89VmubizULOJnF2RBENTmqkRERERE5AmrD1bi16tzcGpv3dvOT8OtU9N8FBUR9YgiQ6zNg/lkcUyFetsPwd7cp8M6ogd1FMecLJCxhLktbCIiIgo8iqLg+fV56DSfDRaTiMcWj/JlWERERP2S0Fzp6hxTeRBSVdt9zXEIsr6b29mQg6LgiB8BZ/xIOOJGuh7HDoUUFKorTFDUglcW9RORDx0ta8AHewp1Y9dNyURmXN8LZoiIiIj6CxbNEBH1kiXnM4R/8SjE5sou2+TgGDTO/jVsQy+Br7z5ZRHya/Sr3t41MwPJkUE+i4mIiIiIKNB9frgKj396vEvBzM3npeL2aSyYIfIrigLUnID56BYElX7TViSTDdHW2KfDOqMyXYUxCW0FMgmjoQRFuC1sIiLqfyRJ8tixRVE87XPqv9YerMTugnrd2B2zBmFAnKvwlrkObHxvGwvzbSzMt4fJDog1OZAq1K4xByCpxTEVByE2V/T50GrXWDl6IJwJI7UCGa1IJmEklPAU4JRFK9Xf/phrIvI3z605DLnTlxehFgl3zxvqy5CIiIiIvI5FM0REPSS01iJs8/8i+PB/ut1uHbQQjXP+F0poPHzlaEUz3t5VohsbkxKGa85J8llMRERERESBbsPRavzik2O6L51UN05OwV0z0tnxkcjXFAVS1REEFW0DSnYAhbuA1lqE9+GQzoh0OBLHdHSQUQtkgqPdGDQREQWCziuMe1pUVJTXzkWe02xz4MWNe3RjqVHBuGvOkPbnzLWxMN/GwnwbC/PdBy01QGk2UJbddr8PKD8EOK19P7YlAkgaDSSPAZLGAMljISSOhGQJ0wpizgZzTf6kRu185AFqcVjnn/W6ujrIsuyRc1HvfFPUgLUHynRj109KgcnRjJqas+uyzXwbC/NtLMy3cTDXxuIP+Y7x4mflflM0U11djb/85S/4/PPPkZ2drT1XxcbGYsyYMbjgggtw8803a8+JiPyFOXc9wjf8AlJzebdtl5tm/QrWYZd2WUnGm5yygv9dk6PdnySJAh5dOEi7JyIiIiIi99t0vAbLPj4G5ykFM9+fmIx7Z2WwYIbIR4SmclgKtsJcsEW778vKss7w5E7FMer9GCgh/OySiIiI3O8PG46hpE7fSf7RxaMQYvFc1yIiIiK/pU7iqs5xFcV0LpKpL3TP8aMHaEUxruKYtiIZdYydYSiAOZ1Or5xHnYTprXPRd1MUBS9/cUI3FhViwvXnJrk1P8y3sTDfxsJ8GwdzbSyyQfPt1aKZ1157DQ8++CCam5vbfzE7qaioCMXFxVi7di1+9atf4Xe/+x1uv/12b4ZHRNSFYK1H2OYnEHzog263W7Pmo3HuE1DCEuFr731dhgOlTbqxH05JwZCEUJ/FREREREQUyLbm1OKRj47CcUqLGbXT4wNzM1kwQ+RN9haYi3e6CmXyN8NUfeSsDiOHxsOROA729iKZMVDCEtweLhEREdGpTlQ24U+bcnVj0wbH4eIxyT6LiYiIyGusDUDZgY4CmVK1e8wBwH52XRB0TCFA0qj2zjHavfo8mB1giCiwbcutw57CBt3YLeelIjzI6+usExEREfmc134DeuaZZ/CLX/yivVBGbfMzYcIEJCe7PugtLS3F119/rbX8aWpqwp133ona2lo8/PDD3gqRiEjHnLcR4et/DqmptMs22RKBplmPwzr8Cp92lzmppM6KP24p0I0NiA3GLVPTfBYTEREREVEg+/JELR767xHYT2kxc8W4RDw0fwALZog8TZEhVexv7yZjLv4Kgmzr1SHkkFitKKa9i0ziWMhhSX5xnU9ERIGhpqbGY8cWRVH7ru0k9fs1dYVA6r8e+/dB2JwdOTSJAh6Yk4H6+nrm2kD43jYW5ttYmO82igKxoRBSxUFIlQc77uvy3HJ4OTwFjviRcCaMhLPtXo7KAsRTura1yEBLTcDmOiYmxqvnIyL/IysK/rBZP48oOcKCq89J8llMRERERAFfNJOdnY3HHntMK5hJSUnBc889h2uuuQZms1n3OofDgX/961946KGHtK4zjz76KC655BKMHj3aG2ESEWkEWwPCtjyF4APvdbvdNmA2Guc+BTncP1Z3U/9tffrzXLTY9R+0PbpwIIJMbB1NRERERORuu/Lr8NP/HIHtlIKZy8YkYNmCLIiccE/kEWJDsVYgY1GLZAq2QWzt3eQWZ0QapKHzgUFzgPTJqJPD4TTiBCUiIvIap9PptXOpEzG9eT5yr83Ha7RbZ9dOSEJWTFCXSbbMtbEw38bCfBuLIfLtaIWp6ohWFGNSb1WHIFUegmjTdz04G4pogTN2CBzxI1xFMup93EgoId0Ui6gf4fnw79oQuSYiv7P2UBWOVOi7df14ejrnEREREZFheaVo5pVXXtEuABMSErB9+3ZkZmZ2H4zJhO9///uYMWMGJk+ejIqKCm3fFStWeCNMOguSdMpqHG5ceeN0zymw+FO+TflbEPbZwxAbi7tsUywRaJ71GGyjrtFWjfbMT3/vrTpQobVU7eyq8UmYNMA/V4/xp3yTZzHXxsJ8GwvzTURGtqegHj/58AisDn3BzKJR8fjFwoEsmCFy86IW5qIdMOerRTJbYKrN7dX+siUc9rSpsGfMgC1zBoTYwYiJje14gQdX/yciIiLqKatDxu826FfXjws14/Zp7CRPRET9qHtMU1lbccwhmKrU7jGHINXmQlD6vliFHBKnFcaoBTJq9xi1OMYZMwiQ9Av1EhGRi90pY8WWQt3YoLgQXDwq3mcxERERERmiaGb9+vXaBPNly5Z9Z8FMZxkZGXjkkUfw05/+FOvWrfNGiOTnLV07t66lwOeTfFsbgM8eB3b/ufvtg+ZCuGw5wqIzEAb/UdNkw+/W79aNJUYE4fEl4xEV0j8+JOT72ziYa2Nhvo2F+SYio/imqAH3fXgYrQ79l/0XjojDLy8aBElkwQxRn8gOmMq+hblgq9ZNxlS2F4Ls6PHuiiDBkTS+rUhmOhyJ43UTaCQWtREREZEf+vvuEhTWWnVj98zKQHiQV77GJSIi6h2nDVL1MVfnGLUwpsp139tusN91Xa8Ww3TuHKM+VsIS3BI6EZFRfPhNOYrq9NcYS2dm8DsMIiIiMjSvfNpaVFSk3U+bNq3H+0yfPl27Ly7u2u2BiMitcjcB/10K1OZ33WYJBxY+AZz7Q8APJ9c8sfIgqppsurHfXD663xTMEBERERH1F9kljbj3g0NosesLZuYPi8WvFw3ml01EZ7sSbV0eLAVbtU4y5sLtEG0NvTqEMypL6yKjFsqoXWWUoAiPhUtERETkbqX1Vvz5S/13oeNSw7FoNFeAJiIi3xOaK12dYyoPQqpqu6853qsFLr6LHBSl6xyjPY4dCpiC3BI7EZFRNducePNL11zNztcYswZH+ywmIiIiIsMUzUiSpN07HD2/cHY6ndq9KIoei4uIDM7WBHz+a2Dna91vHzgLuOwVIGYA/NHmoxX4YI++neqFo5Nw0ZgUn8VERERERBSI9pc04u73D6HJpi+YmTMkBk9eMhgmFswQ9ZjQWqsVx6hFMpb8LZAa9Ne1ZyIHRcOeMQ22jOlaoYwcme6xWImIiIg87aWN+bpOluqVxcPzsyD64SJeREQUwGQHpJqcTp1j2rrHNFf0+dAKBDijs1zFMW3dY9QuMnJ4il8uWklE1N/946tSVDc7unSyFPhvLhERERmcV4pmMjMzcfDgQaxbt67H3WbU157cl/xXTU3fW+x2Ry2WioqKan9eV1cHWdZPTqLA4Yt8m4p2IvSzhyDV5XXZpphC0DLj57COu16NTv1Bh79psTvxs/e/0Y2FWyQ8MDvDY+9Ld+H72ziYa2Nhvo3FH/IdExPj1fMRkXFlF9XhrvcOoNHqWtzjpJmDovH0pUNgkrjYB9FpOW0wlX4Ni9pJJn8LTOX7IEDp8e6KaIY9ZaKrk0zGDDgSRgOia4EeIiIiov5sd34dPjtcrRu7YnwiRiSF+SwmIiIKfEJrXXvXGK1IRr2vPgLBaevzsWVzOJzxw+HQusec7CIzDDCHuiV2IiI6vZpmO97Zpe9kOWNQNCakR/osJiIiIiJDFc0sWLAABw4cwPPPP48lS5Zg7Nixp319dnY2nnvuOa3CeeHChd4Ikc7SyY5AnqZOwvTWucj3PJpvewvCvvw9gr/5S7eTdOypU9Aw/xnIUQMAWd3unz93Kzblo6jOqhu7e1YG4kKlfvde4fvbOJhrY2G+jYX5JqJAdai0Hje+uQP1rfpV2aZlReG3lw2FmQUzRF0pCqSaY+2dZMzFOyHYm3t1CEfsUK1AxpY5Q7tO5+QaIiIiCjQOp4xn1+kX9YoMlnDXDHbRIyIiN1FkiHV5WmGMWiAjqfdVByE16CdTny1nZIbWOcYZ19ZBJn6kqxuswM/LiIh85S87itFk03eyXDozw6cxERERERmqaOb+++/Hq6++isbGRsyYMQOPPfYYbr75ZsTFxeleV1VVhb/85S948skn0dDQgODgYG1fIiJ3MJXsQfi6h2Gqze2yTTEFo+n8h9A67gd+/0HeobIm/P2rEt3YOWkRuHJ8os9iIiIiIiIKNEfLGnD9n3ZoK7N1NmVAJJ69fBgsJv++biDyJqG5EpaCbVqhjLlgK6Sm0l7tL4fGw5Y+HfYM100OT/ZYrERERET+4F97y5FT1aIbu2tGBqJDzD6LiYiI+i/B1gip6nBH5xi1QKb6cK8XseiO+j26I3YYnFphzCitOMYZNxxKUIRbYiciIvcoqbPiX3vLdGMXjYrD0AQuSERERETktaKZAQMG4LXXXtMKZdTCmUceeQQ/+9nPMHDgQCQmJmodZcrKypCbmwtFUbSbOqbuk5mZyUwRUd84rAjd8QJC9r4JQelYUeEke/JENFzwLOTogfB3DlnB/67JcTXBaWOWBDy6cCBEQV0jgoiIiIiI+upEVQtu+78DqGqy6cbPzYjA75cMQ7CZBTNkcI5WmIt3u7rJFGzRVqztDUUK0jrIqAUytsyZ2mQb8JqWiIiIDKKqyY5XtxbqxoYlhuKKcVwYi4iIzkBRIDYUdXSOUQtk1O4xdfluObwzLLmtOMbVPcapFshEZQGi5JbjExGR57y2rRB2Z8dkIpMo4MfT2MmSiIiIyKtFM6of/OAHWmeZO+64A8XFxVphzPHjx5GTk6NtV5+flJqaitdffx2LFi3yVnhEFKBMZd8g/POHYKo53mWbIlnQNPVBtI7/Yb/5oO8fu0twuFy/ItCtU9OQFRfis5iIiIiIiAJJo9WBH/9zPyobbV26O75wxXAEm/vHtQORWymyNhlHLZDRuskU74bgtPbqEI6E0bBpnWRmwJ4yCTAFeSxcIiIiIn/2yuYCNNmcurGH52dBEllETEREnThaYao60tY5Ri2OUbvIHIJoa+jzoRXRAmfsEK0wRusco97HjYQSEuOW0ImIyLuOVTRj5f5K3dhV4xORFh3ss5iIiIiIDFs0o7rkkktw4sQJ/Pvf/8bnn3+O7OxsVFdXa9tiY2MxZswYXHDBBViyZAnMZrYfJ6I+cFoRunM5Qva81n13maRz0HjBs3DGDEZ/UVjbite2FenGBsWF4KYpKT6LiYiIiIgo0Hz4TTnKGvQFM+NSI/DSVcMRamHBDBmH2FjqKpAp2KoVy4gtrs/wesoZnqwVyGiFMunToITGeyxWIiIiov5iX3EDPs6u0I1dPCpOK9InIiIDd49pKmsrjjnk6hxTeQhSbW6333P3lhwSp+scoxbHOGMGARLn5BARBYo/bilAx3LlQKhZ1BbgJSIiIiIfFc1oJzSZcM0112g3IiJPkMr3IULtLlN9tNtVc5qn3o+Wc24FRK//E3jW1G5cT32WC6uj44NRdc25Ry8cCLMk+jQ2IiIiIqJAsv6ovjBgXHoUXrl6OEJNXPWZApytCebina5uMvlbYKo51qvdZXMYHGnnuYpkMmfCGT0IEPi+ISIiIjrJKSt4dl2ebkydzHbfrEyfxURERF7msAGVh4HSbITk7YZYcUArlBFbe7dQRXcUQdKKYTp3jlEfK2EJbgmdiIj80zdFDdh0vFY3dv2kFMSGsTiSiIiIqLP+M2OciOhMnDaE7v4DQnavgKA4u2y2J45F4/xn4Ywbhv5GbaO6M69eN3bNhCRtxWsiIiIiInKPsgYrskuadGMPLhyOiCATnM6u1xhE/ZrshKkiW+smY8nfClPpHgiyvce7K4IIR+I42DOmw5YxA47kcwDJ4tGQiYiIiPqzj7IrcLBMf71x27R0xIfzdygiokAktFS5OsdUqp1jDsJUdQioPg60XXsH9+HYclCUrnOM9jh2KGAKclv8RETUPxbgfWVzgW4sOsSE6ycl+ywmIiIiIn/FohkiCghSxQFXdxn1w8ZTKKIZzVPuRcvE2/tVd5mTqpvseOGLfN1YUoQFS2dm+CwmIiIiIqJAtOFoje55ZLAJUwfFoamhzmcxEbmTWF+gdZGxFGyFuXAbRGvvfradkZmuTjIZM2BPPx9KcJTHYiUiIiIKJHUtji6T2QbEBuN7E5N8FhMREbmJ7IBUm+sqjGkvkjkEqbm8z4dWIMAZneUqjmnrHqN2kZHDU9jdlYiIsDWnFl8XNujGbp2ahvCg/jc3ioiIiMjTvPIb0r59+3D55ZdDkiR88cUXSEtLO+3ri4qKMHv2bK0aetWqVRg2rP91hSAiL3HaEbLnVYTuegWC7Oiy2ZEwGg1qd5n4EeivfrchD3Wt+j/bIxdkIcwi+SwmIiIiIqJAtOFote75BSOTYDGJ0K8FTdR/CNZ6mAu3w1ywFZaCzZDq9AsynIkcFAl72vmwZ87QimXkqAEei5WIiIgokL26tVArnOnsoXkDYJZEn8VERERnd53tKo5xFchoj6uPQnBa+3xs2Rymfaft0LrHnOwiMwwwh7oldiIiCixyN11mUiItuGp8os9iIiIiIoLRi2b+9re/4cSJE7jwwgvPWDCjUl+jFsqsWbNG2/c3v/mNN8Kks6AWQnmCKIqnfU6B5WzzLVYeRthnP4WpPLvLNkU0oXXy3WidvBSQzOiv5SVbjtdgzaEq3djCEXGYOywe/RXf38bBXBsL820szDcRBaKaZnuXFdkuGpPss3iIzorTDlPZN7AUbIG5YIv2WFDkHu+uXks7kie0dZOZCUfimH7ZsZWIiIjInxwpb8IH35TpxuYOjcHUrGifxURERGegyBDr8nSdY0xVByE1FLvn+NGZsMUO14pjtCIZtXtMZAYg8LN2IvIszvMKHKv3V+BYZYtu7M6ZmQgJMnv83My3sTDfxsJ8GwdzbSzMt4tXvvXeuHEjBEHAZZdd1uN91M40q1evxrp161g048diYmK8cp6oqCivnIf8wxnz7XQA214CNjwNyPau2xNHQ7hiBUJSxiME/VeT1YFnPv9aNxYZbMITV52DmIhgBAq+v42DuTYW5ttYmG8iCgQbj9VAVjqeh5glzBqW4MuQiM5MUSDV5moFMmo3GXPhlxDtjb06hCNmMOwZ02FTi2TSpkCxhHssXCIiIiKjURQFz63P011rBJkE/GQOO/gREfkLwdYIqepwR+cYtUCm+jAEe3Ofj62YguGIHaZ1kJETRyN04BQgaTQQHIWmmho4nU63/BmIiHqK87wCg9XhxKtb9fOJhidF4PrpwyCJgtfjYb6Nhfk2FubbOJhrY4kyaL69UjRz5MgR7X7cuHE93mfMmDHa/eHDhz0WFxH1Q+WHgP/cCRTv6bpNkICZDwCzHgZMFvR3z689jKJa/aoQj14yCokBVDBDREREROQv1h+t1j2fOyIBweb+2rOSApnQUg1z4TZY1CKZ/M2QGkt6tb8cHAt7xjTYMmZoxTJyRKrHYiUiIiIyOrWT/KkdLW+akorUqCCfxUREZFiKArGhGKbKA67OMWqBjNo9pi7fLYd3hiVrxTEnO8c440fCGZUFiFJ7d4dQL01WJyKiwPbujnwU1ujnEz180XCfFMwQERER9RdeKZppbHStcBke3vOVKk++tr6+3mNxEVE/IjuB7a8A658EnNau2xNGAEtWAGkTEQi+zq/BW9tO6MbOHxSHayal+ywmIiIiIqJA1Wh1YGee/vOHC0cn+yweIh2nFeaSr2DO3wpLwWZIFQcgoNNS5WegSBbYUybBnjEDtswZ2qQdCMZsuU1ERETkTU02J17aqJ+InRoZhB9MZtEyEZHHOVphqjoCqaqtOEbtIlN1CKK17/NPFNECZ+wQrTBGLZDRCmXiRkIJYUEMERF55/uM5euP6cYmDYjBvBGJPouJiIiIqD8weau1Y2VlJUpLSzF+/Pge7aO+VhUREeHh6KgvampqPHJcURR17Z/q6uogy7JHzkW+d6Z8izXHEbb2QZhK9a1FVYogovXcO9B63n2AKVj9oUR/Z3fKePhf36qLHbWzSAIemZ+J2tpa9Hd8fxsHc20szLex+EO+vdU+noiMYUtOLRxyxy/gZkngF0zkO4oCqeoIzAVbtCIZc/EuCI7WXh3CETcCtozpsGfO1ApmYA7xWLhERERE1L03txehotGuG3tgbiaCzSxgJiJya/eYpnJIVa7CGLVARu0iI9XmQFD6/pm1HBKn6xyjFsc4YwYBktkt4RMReRvnefV/r20pQFWTTTd214w0r84nYr6Nhfk2FubbOJhrY/GHfMf4wTwvrxTNDB06VCuaWb16NS688MIe7bNq1SrtfvDgwR6OjvrC6XR65Tzqm9Nb5yLfa8+37ETwt39F2PbnIXTTXcYRPQiNFzwHR/I5roEA+Rl568siHK1o1o3dPi0d6VGWgHwf8P1tHMy1sTDfxsJ8E1F/t+5Ite751KxoRARz8gN5j9BUDkvB1rZCma0Qmyt6tb8zNBF2rUhmBmzp06GEJXgsViIiIiI6sxPVLfjHV64FAk86PysKs4f4/sthIqJ+y2mDVHO8o3NM273Yqv9c52wogqQVw3TuHKM+5vU1EQUazvPq32qa7Xh7Z5FubOagaIxLCfPp3zfzbSzMt7Ew38bBXBuE0wE0lkKWffu7Q0AXzaiFMtu2bcPrr7+O22+/HSNHjjzt6/fv348//elPEAQBF110kTdCJCI/I9aeQMS6R2Au2d1lmwIBLRNuRfN5P3F1lwkgedUteGO7/gJ3WEIobpiU7LOYiIiIiIgCWavdiW25dbqxecNifRYPGYS9Bebina5CmfzNMFUf6dXuiikE9rQpsGXMgD1jBpyxQwFB8Fi4RERERNRziqLgd+vzdN0sTaKAn84boH33SUREZya0VHXqHNNWJFNzHIKs7+B1NuSgSDi1opgRbV1kRrquq01BbomdiIjIU/78ZTGa7R2rwqtXF0tnZvg0JiIiIvLHjqxlkGpztXnY6r2pLg+ozwNqTrg6p965H0bklaKZO++8E88++yyam5sxb948rSBm8eLF3b72o48+wh133IGWlhaEhoZi6dKl3giRiPyFLCNo71sI2foMBEdrl83OqCw0XPBbOFImIdDIioIn1+bC5uz4Ik0UgF8sHAiTJPo0NiIiIiKiQLX9RB2sjo4vmSQBmD2ERTPkZooMqWJ/ezcZc/FXEGRbz3eHAEfiGK1ARusokzIRkDiZh4iIiMgfbTxeo11ndHbducnIig3xWUxERH5LdmgTeE4WxriKZA5Bai7v86HVa2k5akBbYcwIONsKZOTwFC48QURE/U5xnRXvf1OmG1s0Kh5DEkJ9FhMRERH5jtBS47qernMVxkhtBTJSXR4Ee/N37yjbITSVASHG66zqlaKZ+Ph4vPrqq7jxxhtRXl6Oyy+/HIMGDcKMGTOQkpKivaakpASbN29Gbm6utgKTutLSihUrkJSU5I0QicgfVOcC/70boXlbuv1Qs3X8D9E09aeAOTC/WPpoXwX2FDboxr43MRmjU8J9FhMRERERUaBbf7Ra93xiRiRiQs0+i4cCh9hQrBXIWNQimYJtEFtrerW/MyJNK5DRusmkT4MSEuOxWImIiIjIPVrtMn6/Pl83Fh9mxq3np/ksJiIifyFY69uKY9o6x6j31UchOK19PrZsDoMzbrira8zJDjJxwwEzJxITEVFgeG1rIeydFuE1SwLumJ7u05iIiIjIw2xNbUUxJwtj1Fueq4uMtfasDyvV5MDBohnPuf766yHLstZ1Ru04c/z4ceTk5OheoxbLqMLCwrSCmRtuuMFb4RGRLykysOsNYO3jgL2py2ZnZCYa5v8WjrQpCFSVjTa8uFH/RVpKpAU/5gUuEREREZHH2J0yNh/Xf5g0dygLE+jsCLYGmIt2wJyvFslsgak2t1f7y5Zw2NOmat1kbJkzIEdlceVbIiIion7mnV3FKK7XT/6+f04mwiySz2IiIvI6RYZYl9/WOeaA1jnGVHUQUkOxWw7vjEjXdY5RH8uRGYAguuX4RERE/uZYRTM+PVCpG7t6fBJSo9iNnIiIqN9z2iDVF7gKYmpchTHiyUIZtSOMB4h1+UDqeTAarxXNqNROMwsWLMDLL7+MlStXIjs7u71QRhRFjB07FpdeeinuvvtudpghMgpFRtjqnwJHPup2c8vYG9F0/kOAJQyB7Ln1eWi0OnVjyxYMRCi/SCMiIiIi8phd+fVdfg+fMyTWZ/FQPyM7YCr7FuaCrVo3GVPZXgiyo8e7K4IER9L4tiKZ6XAkjgckdjkiIiIi6q+K66x4a6d+QviE9AhcOCLOZzEREXmcrQmmqsMwVbV1jqk8CKnqCMRuFkrsLUUK0rrFtHeOUbvIxI2AEhThltCJiIj6iz9sKUBHjxkg1CzilqmpPoyIiIiIekV2Qmws6dQtRr25CmPEhkIIauMBN1NMIXBGZ8EZPRByzCCEpI0G4oZoN5tVAJz6eRJG4NWiGVVycjKeeuop7eZwOFBdXa2Nx8bGwmTyejhE5GOh25+DpZuCGWdEGhrnPwN7+jQEui+OVWPdEde/hSddPDIO0wZG+ywmIiIiIiIj2HBU/3v4uNRwJEZYfBYP+TlFgViXB0vBVq2TjLlwO0RbQ68O4YzK0rrIqIUyalcZTvQhIiIiChwvfJEHq6NjKpsoAA/NGwCB3QOJKFCuiRuKXR1jtOIYtYvMQW11WkE3jffsOMOSOxXHuLrIqNfQELnAIBERGdvewgZsPl6rG7thcgpiQrkAExERkV9RFAjNlR1FMVq3mJPFMXkQZJv7Tyma4IzM1Apj1AIZua1IRiuUCUsC2j6XlCQJITExHTtaa2BEPq1SUYtkEhMTfRkCEflQ0P5/InTP613GrWOuQ+O0R6BYwhHoGq0OPPv5Cd1YVIgJD8wd4LOYiIiIiIiMwCkr+OKo/sOguUPZZYb0hNZarThGLZJRi2XU1ti9IQdFw54xDbaM6VqhjByZ7rFYiYiIyP+oX0Z6iiiKp31O3vVlbi02nHJ9cc2EZIxMiezzsZlrY2G+jcVv8+1o1brFSBWuAhmp8gCkykMQrfV9PrQimuGMG+oqilFvCaO0YhklpOtnMoFWLuO3+Sa3Y66JyF0URcHyzfm6sZgQE66flOKzmIiIiIxOsNaf0i3G9ViszYNob3T7+RQIkCNS2wtjnJ0LYyLSAJENS3qKf1NE5BPmwm0I3/i4flD9x/vad9CcdD4Ug7T++sPmApQ32nVjD8zJ5IoQREREREQetreoATUtDt3Y3KGdVlchY3LaYCraDYvaSaZgK0zl+3rVDlud/GNPmejqJJMxA46E0VwVl4iIyMBiOq/e52FRUVFeOxfp2Rwynt/wjW5M/Yx/2eKxiA51fydL5tpYmG9j8Xq+FQVoKAXKsoHSfW332UDVUaAX18LfKTQeSB4DJI8FksZqj4X4YTBJZk5U4fvbUJhrIjpbW3Jq8U2RfvLtreenIczCz5yJiIg8yt4CqS5PVxRzsnuM2FLtkVPKofGuYpioLH2BTNQAwBTskXMajdc/izh69CjefvttbN++HaWlpWhpacGaNWswZMiQ9tdkZ2cjPz8fYWFhmD17trdDJCIPk2qOI2LVUgiyfoIaFr8AjFgE1NQYZpLev/aW68bOGxCJRaPifRYTEREREZFRbDiq/zBrWGIo0qNdHzaZctcDn38C2NQvowSE2e3tq7icbGGs0R6fvHV63s1rlNO9pv356V+jnPY1p4x/R3xKD15zpuO0x6E9Pd1xTnlNW7xKD15zur+Ljjx0c+72l333a5ROrxHV1d/DwoHGMuD4BkSf2AzB3ozecMQO1QpkbJkzYE+dAphDe7U/EREREfVvf912AscrmnRjD180wiMFM0REZ81hAyoPu4piOhfJNFf1/diCBMQPBZLUApkx7QUyCE865bMNIiIi6imnrOCVzfrO56mRQbhyXKLPYiIiIgooTjvE+kKtEEZXGKMWyjSWeOSUsiW8vUvMycIYua1IRgmK8Mg5yQdFM7Is4+GHH8ZLL72kPVbbB6oEQYDNZtO9Vi2YWbx4MUwmE3Jzc5GWluatMInIw4SWakR+/KOu7bun3wdM/AGMtPLck2tydGPBJhE/XzBQ+3eRiIiIiIg8R/1MYsNRfbH+vKGx2r05bxPCP75VK804iVPdjEPo4So/tvTpsGe4bnJ4shciIyIiIiJ/VF7fihc/P6IbG5sWhWsnZfgsJiIiNFXqO8eo9xWHAdm1KEifBEd1FMWcLJJJGAmYueotERGRO606WInjlS26sR/PSIfFJPosJiIion5HkSE2lnYUw3S6F+sLIChO959SCtK6w5xaHKPelJA4Li5hhKKZO+64A3/+85+1iSlqEcz555+P999/v9vXLlq0CAMHDsSJEye019x3333eCpN6SVJXZPUAURRP+5z6KYcVEZ/eCak+XzdsH3IxzPN/Zah8v729GLnVrbqxO2dmIDMuDIGO72/jYK6Nhfk2FuabiPq7/aVNKGvQL+Axd2gMBFsDwjf8XOsLQ9T5g021g4xaIGPLnAln3HB+mElEREQ9UuPBrurqtXhUVFT787q6Om3ROvKuX39yFE02/ZfrD87NRH1drdvOwVwbC/NtLH3Ot+yAqE72qTgAU8UBSJUHtZvYVN7n2NQur7I6qSd+JJwJI7V7R/xIKBGpXa+JG9UJvfpJvdQV39/G4Q+5jomJ8er5iMj9C/G+trVQNzYkPgQXjojzWUxERER+S1EgtFa7CmJq2gpj2rvHnIDgtLr/lIIEOTL9lKIY12NtwUWB86gMWzSzbt06vPnmm1r3hJ///Of49a9/rRVbnG5y3TXXXINnn30W69evZ9GMH/PWhXbnDxSon1K7S314O1CyWz+eOgHma/+sfnJkmHwfLWvAm18Wdll5bukFo2CSjPefZaDnmzow18bCfBsL801E/c2Go9W655kxwRgUF4LQLx7zWKtl6l8cCaNh0zrJzIA9ZRJgCvJ1SERERNQPOZ3uX6nwu6gTMb15PgL2FjVg5f4K3dilo+MxOjnUo7lgro2F+TaW0+VbsNZDqjwEU+VBmKoOacUxpqojbpn8I5vDtAUi1KIYZ/wI7d4ROwywdLPYH4s83Ibvb+Ngromotz74phwl9fqFv+6emQFJ5GJORERkXOoCmNrCEVoxTF7bvesm2ho8ck5neHJHYUxUp8KYyHRAMnvknNTPi2Zef/319g4yTzzxRI/2mTJlina/f/9+j8ZGRF6y8Vlg33v6scg04Pv/B1hCYRSyrOBnH+6D3dmxcrV6UfvMVWMNWTBDRERERORtagfc9Uf0RTPzh8XCUrQdIfvf1b84fTIwYjGaW5qhqJNC1MUA2rvQKB3P23+9VyB852s6da85w2sE3WvaXtfdcTrv2+k1rhjatp96Pt1xviMmdTUenCHuzvGd8hptX10MpzzXHp7uz6b+GU73mpNj3/0aXbeg0/z51QVeJHURB9EMpIxHY/JkWFOnQgmN1/8sEBERERF14pQVPLvuhG4szCLh7lmZPouJiAKEIkOsy4dJLZCpOtheKCM1FLnl8M6IdDjiR7R3jlEfy5EZXAWXiIjITzRaHXjzS/3/+xPSIzB9ULTPYiIiIvIahxVSXV6nbjEni2RyITZXeuSUcnBsW6eYjqIYV5HMAMAc4pFzUgAXzWzfvl2bhHDrrbf2eJ/09HTtvrS01IOREZFXfPsv4Iun9GOWcOC6fwIRyTCSv+/Iw1d5NbqxH80ciNGpXKGfiIiIiMgbjle2oKBWvwrr/IFBCF//c/0LzWHAVW8CMQNgranhapABSu2E3LmLrr2mBgpzTURERERn8O9vy3GkvFk3dsf0NMSFcYVJIuoFpw0o3A2UfAOUZSOiaC/EysMQ7U19PrQiBcERN7yjc4zaRSZuBJSgCLeETkRERJ7x992lqG1xdOkyo869JCIiCgiyA2JDUVsxTOfCmBPauG5xRHed0hwGudvCmCwowZy7axReKZopLy/X7rOysnq8j9ns+lDZ4dD/Ekj+paZGP/nfXURRRFRUxz9EdXV1Wsta6n+k4q8Q8d+7XCslt1EEEY0XvQxHULr6Q2SYfJfVW/HMqkO6sYzoYNx0boLH3kv+yCj5JubaaJhvY/GHfHee4ExE1Bvrj+q7zCRHWDAx51VI9QX6Fy74tVYwQ0RERERE1Fltix0rthTqxgbFheDac5J8FhMR9ROOVphL98JUvBNm9Vb6tTbW18kbzrDkTsUxri4y6sQfiJLbQiciIiLPq26y4++7S3RjswZHY3wai16JiKifURSITWWuQpi2TjFacYzaPaYuH4Jsd/8pRQucUZmnFMa4HiuhCQALUA3PK0UzYWFhqK2tRUVFRY/3KSx0fdgcGxvrwcior7y10q46CZOr+vY/auvw8E9ug6CuktRJ04xHYc2crf4AGSbfiqLgqbXH0WTT/7mWLciCRfTee8kfBWK+qXvMtbEw38bCfBNRf7LhqL5g/YdpRQj59m3dmD11CsyTet4tl4iIiIiIjOOPWwpR16pf9O/h+QNgkkSfxURE/kmwNcJUssdVIFO8E6ayb/s0MUgRzXDGDoEjzlUgc7JQRgnhnAoiIqJA8OaXRWi2dyxUqE7tXTozw6cxERERnY7QUuMqhOlcGNNWHCPY9V2a3UFdsF+OSOsojIlqu48ZCDk8lYtHkO+LZgYNGoQ9e/bgwIEDWLBgQY/2WbVqlXY/evRoD0dHRJ4gWOsR+cltEFv0qzi3jL0RreNvgtGsO1KNTcdrdWOXjknAlAFs7UZERERE5C0FNa04WtHx4VwQbLix8ve6Fs+KFITmC36LKJET3oiIiIiISO9QWRP+/U25bmzB8FhMyuRn/UQECK11MJfsgqlILZLZBVPFfgjK2S02JIfEujrHxLk6x2hFMjGDAMni9riJiIjI94pqW/HBKdcal4yOx+D4UJ/FREREpLE1QarL61oYU5sL0aqfE+suztBEyO2dYjp1jonKAKQgj5yTAp9XimYWLlyIr776Cn/4wx9wzz33QDzDxBO1uOatt96CIAhYtGiRN0IkIndy2hGx+m6Yao7phm2Zs9A081EYTX2rA8+tz9ONxYaacP/sTJ/FREREROQpNpsN7777LnJyclBaWorGxkaEhoYiOTkZ8+bNw8yZM2EyeeVSlKiL9Uf1Rf0/D/4QYY3639Wbpz4AOWaglyMjIiIiIiJ/JysKnl13olPJPRBsEnEfP+snMiyhuVIrjjEX7dDuparDuoU5eix+OJA8Fs1Rg2GPHe7qHhOaAAjq+vJERERkBK9uK4RD7vg9wiwJuGNauk9jIiIiA3HaINW0dYypyYXY3j3mBKSmMo+cUg6KhDN6UJfCGDlqABRLuEfOScbmlZlK9957L15++WUcP34cP/7xj/HHP/7xOydJffbZZ7j55pvR2tqKuLg43Hbbbd4IkYjcRVEQvvGXsBRs1Q07Yoeh4aKXAdF4EySXb8pHVZO+1fpP52UhKsR4fxdEREQU+NRrubVr12LIkCGYMGECIiMj0dTUhL1792LFihXYtm0bli1bdsbFFIg8YUOnopnxwjHciE902+1J56Bl/M1g02YiIiIiIjrVpwcq8W1xo27slqmpSI7k6pZERiE2lsBctBOm4p2u+9qcXh9DEUQ4EkbDkToFzoypCB95ARAaq22z1tTA6Ty7zjRERETUfx2taMbqA1W6sWvOSUJKFK81iIjIjWSndl2rFsOY6/OBlmKg6ph2i67Nh6DIbj+lYgpu6xBzSseY6CwowTFcLIK8yisztpOSkvDqq6/iBz/4Ad58802sWbMGl1xySfv2l156CYqiYOvWrTh06JD2WJ1ApXabCQ9ntRhRfxKy900EH/inbkwOjUf94jegWCJgNF8V1OPf31boxmYMisbC4a4Pv4mIiIgCjXoN99e//rXLQgnqF/5PPPEEvvnmG62AZuLEiT6LkYyprMGK7JIm7bEFdjxrfh0iOj74U0QLGuc/A4gsmSEiIiIiIr1GqwPLNxboxtKjg3DDpBSfxUREHqbOWajPh7loF8zFbZ1k6gt6fxjRDEfSONhTp8CeOhmOlInt35lKkgSExnggeCIiIupP/rC5QNerLswi4pbzUn0YERER9VuKonVF1brEtHeLaesYU5cHwWnrdre+lK4oognOyEzI7UUxHQUyclgSIHBBVfIPXmtzcP3118NsNuOOO+5AQUEBXnvtNQhtFWJvvPGGdq8Wy3SeZNW5sIaI/J8lZy1Ctz6jG1OkINRf8jrkyDQYjdUh48m1ubqxULOIn12Q1f7vHxEREVGgURdA6K6LjDoJYPLkydi/fz9KS0t9EhsZ24ajNe2P7zb9G8PFQt325in3wBk71AeRERERERGRv/vTtiJUNes7yj84dwAsJn7pTxQwFAVSzTGtOMZUtNNVJNPU+8+w1O9G7ckTYE87D47UyVpXW5hDPBIyERER9X9fF9ZjS06tbuzGyamIDjX7LCYiIvJ/grW+oximrTBG1B6fgGjXd0p2BwUC5IgUXacYV/eYgZAj0wHRa+UIRGfNqz+l1157LebPn48//vGP+Pjjj7XVhR0OR/v20aNH47LLLsN9992HxMREb4ZGRH0kle9DxNoHIOjWPgAaFvwOjqTxMKI3thchv6ZVN3bXzAwkR7J9KhEREXWvrq4Ox44d027Hjx/Xbg0NDdq22bNnY+nSpT0+VkVFBVatWoU9e/agqqpK6/ySnJyM888/HxdeeCGCgrz7O4ksy1qXGVVGRoZXz02k2nC0WrsfLZzAXdJHum2OhNFomXCbjyIjIiIiIiJ/llPZjP/7uqxLR/kZg9kdgqhfk52Qqg67usho3WR2QWyt7v1hzGFwpJzr6iSTNgWOxLGAZPFIyERERBRY1AXGl2/Sd7KLDTXhunOTfRYTERH5EUcrpNq8Tt1iOrrHiC29v37tCTkkrlNhTKeuMVEDAFOwR85J5C1eL+2Ki4vDY489pt3USVPV1dVwOp2IjY3VOtEQUf8jNpYg8pPbIThadONN5z8E25CLYURHK5rx9q4S3diYlDBcc06Sz2IiIiIi/3fbbe6ZtL97924sX74cLS0dv59Zrdb2Qpx169Zh2bJlWhGNp6gLJHz44YfaY7XwJzs7G0VFRZgzZw7Gjh3rsfMSdaem2Y6vCxtgggPPml+DSZB17aIb5v8WkPiZBBERERERdZ3E9vz6PDjljgXDzJKAn84d4NO4iOgsOO0wVeyHuXgnzEU7YSrZDdHmWqymN+SgKNjVDjKpU7ROMo6EUVxRl4iIiM7KpuO1+LZY3w3g1qlpCLVIPouJiIi8zGmH2FCo6xjT/rhRP//UXWRLOOToQTAlDQdiBwNxQ1BvSYQ9IhNKUIRHzknkD3z66Y0oioiPj/dlCETUV7YmrWBGai7XDbeOvBotE++AEalfnj2xJkf3JZokCnh04SDtnoiIiKgn1GultLS09u4sPZWbm4sXX3wRNpsNwcHBWLJkCcaMGaM937p1q1YwU1JSgqeffhrPPPMMQkJCPFY08/7777c/FwQBl156Ka677jqPnI/odDYer4H66/ld0scYLebptrWceyec8SN9FhsREREREfmv9UdrsDO/Xjd2w6QUZMRwZU0iv+ewwlT2jatIpngXzKV7INibe30YOTTe1UVGK5Q5D864oYAgeiRkIiIiMg51TtEfNuu7zKRFBeHK8Yk+i4mIiDxEkSE2lnYqiOkokFELZgTZ4f5TShY4o9q6xJzSOUYJiYNkMiEmpqOLsrOmBorT6fY4iPwJlzwhorMnOxGx9icwVR7QDdvSzkPjnP9VZ0bCiN77ugz7S5t0Yz+ckoIhCaE+i4mIiIj6h6uvvhqDBw/WbtHR0SgvL8fdd9/dq2O89dZbWoGMJEl49NFHMWzYsPZtavFMSkoK/va3v2mFMx9//DGuvfbaLsd4++23Ybfbe3zORYsWacftTC3Yee+997QOozU1Nfjqq6/w7rvv4siRI1qXm9BQ/m5E3rP+SDWGCoW41+TqfnSSI3YYmifd5bO4iIiIiIjIf7XanXhhg77oPinCglvOS/VZTER0GvZmmEu/hrloh1YkYyrbC8Fp6/VhnOEpsKedpxXJOFKnaJOKjPqdJxEREXnOqgOVyKlq0Y39eHo6zBKLc4mI+iVFgdBa7SqGqTkBqa5T55i6PAiOVvefUpAgR6Z3LYyJyoIckcIFH4h8UTSjTrY6evSo9lid/BUUFKTb3trail/84hfahKrKykoMHDgQd955J+655x5vhEdEZyls6zMIOrFON6b+h9tw8R8ByQIjKqmz4o9b9CtBDIgNxi1T03wWExEREfUf3RWw9MaxY8dw8OBB7fHcuXN1BTMnLV68GBs2bEBRURFWrVqFK6+8EiaT/tLws88+g9Vq7fF5p06d2qVopnOH0bi4OCxcuBARERF44YUX8OGHH+KGG27o9Z+P6Gw0Wh34Kq8G/zS/CovQsTqOIohonP9bw167EBERERHR6b21owSlDfoJ9/fPzkSIRfJZTETUQbA2wFSy29VJpmgXTBX7zmp1XmfUAFcnmTS1m8wUyBFpLJIhIiIij7I6ZLy6tVA3NiwhFBeOjPNZTERE1DOCrQFie7eYzoUxJyBa9d2K3cUZntzWNcZVFCOfLJKJTOd33UT+VjTz73//G9///vcRGxuLwkL9L3yqK664AmvXroWiKNrzQ4cO4f7778fhw4fxyiuveCNEIuql4H1/R8g3f9aNyUHRqLv0DSjB0TAi9d+wpz/PRYtd1o3/YsFABJlYtUtERESet3PnzvbHatHMdxWxzJ49G//4xz/Q1NSE/fv3Y/z48brXvPPOOx6J7+R5DhzQdyok8qQtObW4SViJc8Qc3XjLhNvgSBrns7iIiIiIiMh/Fda24u1dxbqxSRmRuGB4rM9iIjI6oaVa6yCjFckU74JUcQACXPMLesMRO9RVJNPWSUYOT/JIvERERP5IkjxTAK5+93S656T34Z6yLgX698weAPMpi9z5K+bbWJhvY2G+2zhaIdbla8UwYk2u/r65wiOnlINjIMecLIoZBGdMFmStSCYLMId2u09f/ldnro2F+Xbxym9aa9as0SaTL1mypEuXmZUrV2rbBUFAeno6Jk+erE30Ulc9XrFiBa677jpMmzbNG2ESUQ+Z8zYhbNOvdWOKaEb9ohXaf9RGteZQFbbl1unGrhiXiIkZkT6LiYiIiIxFXXhApV53DRo06DtfN2rUKN0+pxbNeEp1dbVHv5Qh6s6B/d/il6b3dWOO6EFonnKfz2IiIiIiIiL/9vsNebA5OybjSwLw4LwB2veZROQdYmMZTG0FMmqhjKn6aK+PoUCAM2GUViDjKpSZBCWEK7gTEZFxxcTEeOU8UVFRXjlPf9TQasefvyzSjU0ZGIvF5w7st9cbzLexMN/GEtD5djqAunygKgeoOua6VR933dcWaFeUbmcOA+IGA3FDOt0PAWIHQQyNhVrG4KvyyYDONXURZdB8e+X9tWfPHu2XOnU141P9+c+uThXDhg3TimUiIiJQV1enFcqoHWfeeOMNFs0Q+RGp6jAi1twDQXHqxhvnPQVH2hQYVW2LHb9bn6cbiw8z495ZGT6LiYiIiIznZGfP5OTk0xampKamdtnHnTEkJCR0WTDBarXi7bff1h5PmDDBreck+i6tNjuuKnkeQYJdN2Gmcf4zgEn/M0pERERERKTamlOLTcdrdWPXTkjGkITuV/UkIjdQFIgNRTAX7WgvkpHq8np/GNEER8JY2NNcRTKOlHOhBHFxOyIiIvIff9qUg5rmju8sVD+7eES/LZghIvJrigI0lHYUxWiFMW1FMtW5gKz/99gtRLNWBOMqiDl533ZTO53y33uiwC6aKS8v1+6HDBmiG5dlGevWrdN+6bvnnnu0gpmTFUx33303li5diu3bt3sjRCLqAaG5EpGf3AbR1qgbb560FNYRV8LIXvwiHzUtDt3Yw/OzEBHcP1qnEhERUf9ns9nQ0NCgPY6LO/2KmeHh4VpRi1rIUlVV5dY4tm3bpnUUHTFihFY8ExISonWY2bt3rxbfyJEjsXjx4l4ds6cxerKDDdvV9k+Vm1fgXMHVgemk+jE3QUmfctp21cy3cTDXxsJ8GwvzbSzMNxG5i80h43cb9BP1Y0NNuH1ams9iIgpIigKpNtfVSaZI7SazE1JjSe8PI1ngSDoH9jS1i8wU2JMnAGYWuBEREZF/qmiw4o0tubqxhaOSMDHTOx2AiIgCVnM1UHW8a8cYtYuMvckDJxSA6MxTOsYMBmIHu8ZFz81bIKKz55XZ3JWVldq9OlmqM3XSVH19vVY0c8kll+i2jRkzRrsvKFDbXJG/8tSkNH7J6YccrYj49A5IDfoWobZhi2Gd9lNIgmjYfH95ohaf7Hf9O3fS3KGxWDAywWcx+bP+nm/qOebaWJhvY2G+/VNra2v74+Dg4DO+Xn2NWjTTeT93OPfcc1FTU4MjR45oN/X4oaGhyMzMxPTp0zF37txeX0fceeedPXrde++9B28xarvafqU6F6GHXtENlUkpSLrsKcAS1qtDMd/GwVwbC/NtLMy3sTDfRHS2/vFVKfJr9NfJd8/M5AJZRH2lyJCqjsJc3NFJRmyu7P1hzKGwJ0+EPXUy7GnnwZE4jp1kiYiIekH9/sYT1O8KO1+L19XVaYtpk97zn+Wg2eZsfy4KwO3np3gsL57CfBsL820sfp1ve7O2+IJYkwup9gTE2hxINbkQ1bFWfcdgd5HDEuGMzoIcPQjOmIGQowfCGT0QclQGYPqOORl19egP/DrXFJD5jonxfZGwVz7hVVcwdjgc7cUzJ23atEm7T09Px4ABA3TbTnadcTo7flEk/+OtH2J+yelj6j+OHzwAlO7Vj6dPhuWaN2Ax6wvijJTvFpsTT3+m/3uJCDLh6asnICbqzJNVqX/lm/qGuTYW5ttYmG//6TRzksl05ku9k6/pvJ87DB48WLsR+ZSiQP7vPQhS9JPd9k78X1zYy4IZIiIiIiIyhvIGG978Ur9w2JiUMCweE++zmIj6LdkBU8UBmNoKZNRCGdFa1/vDWCLgUAtktNsUOBJGA5LZIyETEREZgbfm4amTMDnnT6+wthUf7C3TjV0yOgFZMUH9/u+K+TYW5ttYvJ5vpw1SfYFWHOMqjFHv1VsepKZSj5xSDorUCmFctyw4o7JchTHRWVAs4aeJNbDeB3xvG4ts0Hx7pWhGLYg5cOAAduzYgfnz57ePf/zxx1qXmVmzZnXZp7q6WrtPSGCnBiKf++IpYP+H+rGoTOB7/wDcXDDT37z4+RHkVzfrxh65eASSWTBDREREXmaxWNofq4sWnMnJ13Tez1+tWLHC1yFQf/PVXyDmbdYNveO4AAtmXOqzkIiIiIiIyL+9tDEfLfaOFRYFAA/Pz4IoqI+I6LScNpjKv4W5yFUkYyrZA9He2OvDyMGxbV1k1CKZ8+CMGw6IvetYTEREROSPXttaCIestD+3SALumJbm05iIiHxCdkJsLNGKYlwFMW23uhMQ6wshKO7vfqGYgtuLYbTCGO3mKpRRgmMAfvZDZAheKZqZO3cu9u/fj+XLl+OKK67AyJEj8dFHH+GLL77Qti9atKjLPtnZ2dp9SkqKN0Ikou+y911g03P6saBI4Pr3gPBEGFl2UR3e2JKrG5ucFYPrpmT6LCYiIiIyruDgjqLd1lZ9d43unHxN5/38VVxcXI9e58n29f7QrpZ6RqgvQtTax7QJbicVKvH4JOE2LJZbUFPTcsZjMN/GwVwbC/NtLMy3sfg6397qyE5EnvNVQT3WHKrSjS0Zl4BRyadZUZTIyOwtMJfthbloJ0xqJ5nSryE4rb0+jDMsydVBJm2KVizjjBnCyUpEREQUcI6UN2H1Qf31xjXnJCE5MshnMREReZSiQGiu1AphdIUxaqFMXR4Ep839pxRNcEZmQFaLYdQCmZiTBTIDIYclAYLo9nMSUf/ilaKZe+65B6+//jrKy8sxZswY7QskdTKToihIT0/HVVdd1WWftWvXal1oxo0b540Q6Sx5alKar7/kJBdT0Q6Ef3SPbrKZIkhovHg5HOZk9QfAsPlWV3948L1v4ey0CoRZEvCz+QNQV1fr09j8XX/MN50d5tpYmG9j8Yd8c1JaV2rHmIiICDQ0NKCqSv/B+6kaGxthtVp7VZDSH3izfaxR29X6PUVB5LplEGz61WyX2X+EqcPSzjpnzLdxMNfGwnwbC/NtLMw3EfX28/7n1p3QjUUESbhrRobPYiLyN4KtQeseYy7eBXPRDpjK90GQ7b0+jjqBSeskk3qe1k1GjsxkkQwREREFvFc2F6BjdhEQZpFw89RUH0ZEROQegrVe1zFGbH984qy6j/aEMyLV1SVG1zlmIOSINEAye+ScRBQYvFI0M3ToULzzzju45ZZb0NTUhOrqam08Ojoa7777rja5q7PS0lJ89tln2uN58+Z5I0Q6S9764pFfcnqfWJuLsI/v6PKBd9OsX8KaPkNNvqHz/bddJThU1qQbu+W8VAyICfL72P1Nf8g3uQdzbSzMt7Ew3/5DXZTg4MGD2jWVmhNJkrp9XXFxsW4fokARdOgDWPI36cb+6ZiDzfI4/HQoi+2IiIiIiKir9/eW4VilviPlnTPSERPKiRZkXEJrratApniX1knGVLEfgtL7RXMcMYO1IhlHqquTjBzByaFERERkvK6W23LrdGM3Tk5BdAivN4ion3C0QqrN6+gW06l7jNjimgvubnJIXHsxTPtNK5IZAJiCPXJOIgp8XimaUV1zzTWYPXs2Vq5cqU3gSklJwWWXXYbY2Ngur/32229x3XXXaY8XLVrkrRCJqNMH4VEf/wiiVd8xpWX8LWgdez2MrrC2Fa9uLdSNDYoLwQ/P4wf9RERE5FvDhw/XimbULjI5OTnaAgbdOXDggG4fokAgNpYhbMuTurFSJQZPOq7HsIRQpEfzA1QiIiIiItKrbrLjtVM+7x+aEIorxyf5LCYiXxCaKmAuUbvI7IRZLZKpOtzrYygQ4IwbDnuaWiDjKpJRQuM9Ei8RERFRf6AoCl7ZVKAbiws14/pzk30WExHRd5KdkCr2AYcOAlXHtFtUxVGIjcWeOZ05vKNLTHtxjPo8C0pQpEfOSUTG5rWiGVViYiJuvvnmM75u4cKF2o2IfMBpQ+Snd2kVwZ1Zs+ajafrPYHTqBe1Tn+XC6uhYTUttGv/ohQNhlkSfxkZEREQ0ZcoU/Oc//9Eeb9iwoduiGbUz0MaNG7XHYWFhGD16tNfjJHI7RUHYxschWut1wz+334p6hOG6YV0X7CAiIiIiIvrDlgI0WPXdcx+ePwAmUf3knyhwiQ3FWnGMWiRjUrvJ1Ob0+hiKIMGRMNrVSSbtPNhTzoUSHO2ReImIiIj6o43HarCvpFE39qPz0xBikXwWExHRqYsSmgs2w5K/GeaCrRBba/Tb+3h8RbLAGTWgU8eYju4xSkgcIPDzFyIK0KIZIvJzioLwDY/CXLxDN+yIH4WGhS8AIi/aVh6oxM48/US8q89JwrjUCJ/FRERERHTSkCFDMHLkSK3bjFo0M2fOHAwbNkz3mk8++QRFRUXa44svvhgmU+BcFkqS535fFUXxtM/Jt8yHP0JQ7ue6sX87p2O9PFF7fMHw+F79fDDfxsFcGwvzbSzMt7Ew30R0NrJLGvHRvgrd2EUj4zAhnauZUoBRFIh1eTAXq51kdmj3UkNh7w8jmuFIGtfWRWYKHCkToVjCPRIyERERUX/nlBX8YbO+y0xaVBCWjEvwWUxERHBaYS7eDXP+Jq1Q5my6jJ5KEUTIkekdhTFRHYUxcngy55wSkd8InNlRRNRnIXteQ/ChD3RjzrAk1C9+HbCEweiqm+x4YUO+biwpwoKlM9N9FhMREREFlkOHDqG0tLT9eX19R7GuOv7FF1/oXq8WxZzqhz/8IR577DHYbDY88cQTuOKKK7RuMurzbdu24fPPXYUFKSkpuPTSSxFIYmJivHauqKgor52LzqCxAtj4K91QhRKJX9t/oD0eFB+Gc4emQujDSkXMt3Ew18bCfBsL820szDcRnYmsKHh23QkoncZCzCLunZXpw6iI3ERRIFUfdRXJFLs6yUhNZb0/jCkY9uQJrgIZtVAm+RzAFOyRkImIiIgCzcr9lcitbtWN3TkjHWaJC30QkZevD2tz24tk1IUUBEfLWR3KGZbc1ikmC3J755iBcEamA5LF7aETEbkbi2aISGM5tgph25/TjSmmENRf8jrk8BSfxeVPfv9FHupaHbqxRy7IQngQ/yklIiIi91i3bh02btzY7bbDhw9rtzMVzQwcOBD3338/li9fjpaWFrz77rtdXqMWzCxbtgwhISFujJ7IR1Y9BLRU64Yes9+CWri6QV40JrlPBTNERERERBR4Ps6uwIHSJt3Yj85PQ2IEJ3lQPyQ7IVUdgrlop1Yko64aLLZW9/4w5nA4Us9t6yQzGY7EsZz4RERERHQWrA4Zr23Td/YblhiKhSPifBYTERmHYG2AuXAbzPmbtUKZXncajRsKpE8C4gajMTgF9ohMOKMGcNF1Iur3ONObiGAq+wYRn/1UN6ZAQMPCF+BMHOOzuPzJ1pxarD5YpRu7YFgsZg323mrmRERERD01adIkPP/88/j000+xZ88eVFdXw2QyITk5GVOnTsVFF12EoKAgX4dJ1HcHPgL2/1s3tNI5BavlKe3P1aIZIiIiIiKikxpaHXhlU4FuLDMmGNedy2sH6iecdpgqsl0FMkU7YSrZDdHW2OvDyEHRsKdOgj3tPK1Ixhk/EhA5fYCIiIior/61twxlDTbd2N0zMyBygS8i8gRFhqk8u72bjKn0awiKs8e7y5Zw2NOnw5Y5E/LAOYgaMLZ9m72mBk5nz49FROTP+KkXkcGJ9UWIXHk7BKdVN948/WewDVrgs7j8SbPNiac/y9WNRQRJeHD+AJ/FRERERIFp6dKl2s0dEhIScNNNN2k3o6ipqfHYsUVRRFRUVPvzuro6yLLssfPRmQktNYj85CcQO421SJH4ZevN7c+TIyxID5V7/bPBfBsHc20szLexMN/G4ut8x8RwYR2i/kRd8bmmRd9V/qF5A2CWOl9dEPkRhxWmsr1tXWR2wVyyB4KjpdeHkUPj27rITIE9bQqcsUMBgT/3RERERO7UaHXgL18W68bOzYjA+Vkdn1sQEfWV0FSuFcho3WQKtvaq26i6mLraWdSeORO2AbPgSDqnfQEFSZI8GDURkW+xaIbIwARbAyI/+RHE5krdeMvo76HlnFt9Fpe/WbG1EKWnrABx35xMxIexJT0RERGRP/HmKjfqJEyuquNb4Rt/3eVa5kXzrahExxdPc4fGumXCLPNtHMy1sTDfxsJ8GwvzTUTf5VhFM/71dZlubPaQGJw/MNpnMRF1YW0ECncCedsQfmwjTKV7Icj676l6whmR2lEkkzoFcnQWwNXNiYiIiDzqnV0lqGvVF+nfMysTAn8PI6K+cFphLvnKVSSjdpOpPNi73UMTXUUymTNhz5gOJSTWY6ESEfkrFs0QGZXsQMTqe2GqPqIbtmVMR9OsX/FD8zbZJY34v69KdWOTMiJx+ZgEn8VERERERGR05hMbEHz4P7qxurQ5eO34JN3YvGFc9Z2IiIiIiFwURcGz607AqXSMWSQBD8zJ9GVYRBrB2gBL7ucIOr4ayN8EOF1FMuZeHMMZlaV1kGkvkolM81i8RERERNRVZZMNf9+tn2M0d2gMxqSE+ywmIuqnFAVi3QmtQMaStwnm4h0Q7M093120wJ46qa1QZhacccM5H5SIDI9FM0RGpCgI2/y/sKgfunfiiBmChoteAaTefAQfuBxOGU+syUGn78+0L9B+vnAgV4AgIiIiIvLhRKLwDY/qxmRLBP4v4V7geGv7WGyoCeNSI3wQIRERERER+aPPDldjT2GDbuymKalIiw72WUxkbEJrnatQ5tgqmAu2QJDtvdrfETsU9rTzYE+dDEfKZMjhSR6LlYiIiIjO7M3tRWh1yO3PRQG4a0aGT2Miov5DsDXCXLgd5vxNWrGMVF/Qq/0d0QPbi2TUa0WYQz0WKxFRf8SiGSIDCv72rwjZ9zfdmBwSi/pL34ASFOmzuPzNO7tLcKyyRTd227Q0ZMbwCzQiIiIiIl8J2/oUpCb9Sm1NM36Bj7+WdGOzh8RCUr+RIiIiIiIiw2u2OfHiF3m6sZRIC26akuKzmMiYhNZaWHI+Q9BxtVBmW48LZRRBhDN+pKuLjNpNJmUSlJBYj8dLRERERD1TWNuKD7+t0I0tHp2AgXEhPouJiPycIkOq2O/qJpO/GabSPRBkR493l83hsGdMay+UkSPTPRouEVF/x6IZIoMxn9iAsC1P6sYUyYL6Ra9CjuTqBiflVbfgT9uKdGNDE0Jx4yR+gUZERERE5Cvm/C0IPvCebsyWMRP56Zci+9NvdOPzh8V4OToiIiIiIvJXf9lRjPJGfXHCT+YMQLBZX3xP5AlCS3VHoUzh9p5NghJNQOoEtCadC2vKJDjUIpkgdlMlIiIi8lcrthTCKSvtzy2SgNunpfk0JiLyP0JzpVYgY1YLZQo2Q2yp7vG+CgQ4Ese0F8k4ks4BJLNH4yUiCiQsmiEyEKnyICLW3AdB6WgFqmqY/1s4Us71WVz+RlYUPLk2FzZnx8WsukD1owsHwiSJPo2NiIiIiL6bJHluspMoiqd9Tl5ga0T4hp/rhhRzGFoueBqbjtbrxiOCJEzJioF0lr+/M9/GwVwbC/NtLMy3sTDfRHQ6+TWteGdXiW7svAGRmDuUhfbkOUJLFSzH1yLo+GpXoYziPOM+imiBfcAsWM65Bhh2ERASjZaaGjidZ96XiIiIiHznUFkT1hyq0o39z4RkJEcG+SwmIvITThvMJXtcRTL5m2CqPNCr3eXQBNgyZsCeOQu2zOlQQuI8FioRUaDzetHMN998g82bNyMnJwcNDQ1n/JBPEAS8+eabXouPKFAJTeWI/ORHEO1NuvGmKffDNuwyn8Xljz7aV4E9hQ26se9NTMbolHCfxUREREREZxYT470JT1FRUV47F7VZ+STQoO8GKSz8DaIGjMXGNdt14wtGJSMx3n0fGjPfxsFcGwvzbSzMt7Ew30R0kqIoeH79CTg6rfgsiQIempelfQdJ5O4Vg4Ny1sJy7FOYi3Z0WcSuO4pk0VYItg1ZBFvWPIih0bB48fMNIiIiIuq7P24u0D0Ps0i46bwUn8VDRL4l1uXBkrdJK5QxF33ZZb7m6SiiGfaUc7UFFdRrRWfcCHUStUfjJSIyCq8VzRw+fBi33HILvvzyy159kM2iGSI3sDcj8pPbIDWW6oZbhy9By+S7fRaWP6pssuGljfm6sZRIC348Pd1nMRERERERGd6JrcCuP+nHsmYC596CqkYrdubqW5dfOCbZu/ERERERkd+y2Wx49913tcXcSktL0djYiNDQUCQnJ2PevHmYOXMmTCavrzFHXrI5pxbbcut0Y9dNTEZWXIjPYqLAIjRVIChnjatQpnhXDwtlgmAbMBvWIRfDnjUPioWLthERERH1V7vz67HthP6a46YpKYgOMfssJiLyLsHWqBXHnOwmI9Xp5x6eiTMqC7bMmVqRjD3tPMAS5rFYiYiMzCvfAhQVFWHWrFmorKzUCmFU4eHh2irAoih6IwQi41JkRHz2U5grsnXD9pRJaJz3FCuRT/H8ujw0WPUdsJYtGIhQi+SzmIiIiIiIDM3WDPx3qX7MFAJc9jIgivj8YBk6LRqNELOE2cMSvB4mEREREfmn1tZWrF27FkOGDMGECRMQGRmJpqYm7N27FytWrMC2bduwbNkyfl8VgKwOGb9bn6cbiwsz49bzU30WEwUGsbEMluOrEXR8NUxqoQw6XZR+B8UUDNuAubAOuUi75yQoIiIiov5PnQe5fFN+l2uO70/kwl5EAU2RIVUehEXtJJO/CeaSPRBke493l81hsKefD7vadTRzJuSoTI+GS0REXiyaefLJJ1FRUaF1jfnRj36EBx98EMOGDfPGqYkML3T7c1or+M6ckZmoX7QCkIJ8Fpc/2nisBp8f0a9QffHIOEwbGO2zmIiIiIio52pqajx2bHUCXVRUVPvzuro6yPKZV4+lvgvZ9ASCa3J1Y83THoRViFGTjo++LtBtmz4oGi2N9WjpwzmZb+Ngro2F+TYW5ttYfJ1vdYEw8l/qIm5//etfu3STcTqdeOKJJ/DNN99oBTQTJ070WYzkGe/sKkFRnVU3dt/sTIQHsbMQ9Z7YWOIqlDm2GqaSr3pYKBMCW5ZaKHMxbAPmAOZQr8RKRERERN7xxbEa7C9t0o3ddn4aQrgwL1HAEZorYSnY0tZNZjPElqpe7e9IGK11klFvjuQJgMRuVERE3uaVT4VXr16tFcz84Ac/wOuvv+6NUxIRgKD9/0ToHv17Tg6KRP2lb0AJifVZXP6o0erAbz/XT8SLCjHhgbkDfBYTEREREfWOOunNW9RJmN48n1GZSr9G0Ndv6sbsyRPRPOZGNeHa7/E7TtTpts8ZEu323DDfxsFcGwvzbSzMt7Ew33RqUVV3XWQkScLkyZOxf/9+lJaW+iQ28pzSeiv+sqNYNzY+LVxbKIuop8SG4rZCmU9hLv26R/so5lDYsubBOmSRNhkK5hCPx0lEREREvnHqNUdGdBCWjE3wWTxE5EZOO0yle7QCGUv+Jpgq9vdqdzkkTusio3WTyZgOJTTeY6ESEZEfFc0UF7t+QVSLZiiwqF8qecKpX2B194UWnZ4pfyvCNz6uG1NEE5oueRWIHwZ/WtPAH/L9xy15KG/Ut0l8cF4W4iOCvR5LoPOHfJN3MNfGwnwbC/NNRF7hsCJ83SO61XsVyYLG+c8AouuKZktOLRxyx3azJGDGIHaKJCIiInIXtWvPsWPHtNvx48e1W0NDg7Zt9uzZWLp0aY+PVVFRgVWrVmHPnj2oqqrSOr8kJyfj/PPPx4UXXoigoCCvF1epXWZUGRkZXj03ed6LX+TD6ujoOCUKwMPzs7RF/ohOR6wvRNDx1bAcWwVz2d4e7SObw2EbOA82taOMWihj4ndLRERERIGu1S7j4CldZu6Yng6TxO9NiforsS5fK5Ix52+CufBLiPbGHu+riGbYUya6imQyZ8IZPxIQ+O8BEZHhimZiYmJQXl6O6GhOXAk0am69ISoqyivnCRgVR4BVdwGyQzcsLH4BEeMugb/zdr6/yqvGv/bqVxKcOTQeN8wYxi/QvIDvb+Ngro2F+TYW5puIPCF013KYao7rxpqn3A9nzOD25+uPVOu2nzcgCuFBXvmog4iIiMgQbrvtNrccZ/fu3Vi+fDlaWlrax6xWa3shzrp167Bs2TKtiMZTHA4HPvzwQ+2xWviTnZ2NoqIizJkzB2PHjvXYecn7dubV4fNTrhWuHJeI4YlhPouJ/JtYX4CgY6tchTLl3/ZoH9miFspc4CqUyZgJmLxb+EdEREREvnWiuqXTkl8uswZ7Zx4dEbmJrQnmoh1aJxn1JtXl9Wp3Z1SmtnCCXe0okzYViiXcY6ESEVHfeWUmyaRJk/Dpp5/iyJEjmDBhgjdOSWRcTVXAP64BWuv049PvByay29OprA4nHvlgH5ROV7LBZhFPLhnLghkiIiIiIh+RyvchZM/rujF74li0TLi1/Xmr3YltufrrnrlD+YUUERERkafEx8cjLS2tvTtLT+Xm5uLFF1+EzWZDcHAwlixZgjFjxmjPt27dqhXMlJSU4Omnn8YzzzyDkJAQjxXNvP/+++3P1c9/L730Ulx33XUeOR/5hsMp4/n1+kkuUcEm/HhGus9iIv8k1uV1FMpUZPdoH9kSAdugBbAOvhj2zOmAxEIZIiIiIqM6Xtmse54aGYRQi+SzeIioBxQFUtUhWPI2ubrJlHwFQbb3fHdzKGxp58M+wNVNRo4a4NFwiYioHxbN3HvvvVi5ciVef/11/M///I83TklkTA4r8H/XATUn9OMjLwXm/9JXUfm1FV8cx7FyfSvFny4Yjsy4UJ/FRERERERkaE4bItY9AkFx6lqaN877LSB2fIyx/UQdWh1y+3NJAGZzFTciIiIit7r66qsxePBg7RYdHY3y8nLcfffdvTrGW2+9pRXISJKERx99FMOGDWvfphbPpKSk4G9/+5tWOPPxxx/j2muv7XKMt99+G3Z7zycxLFq0SDtuZ2rBznvvvQdZllFTU4OvvvoK7777rrbgm9rlJjSUnwkHgn9+XYacqo6ORqq7ZqYjOsTss5jIf4i1uVqhjHozVR7o0T5yUFRbocxFsGeohTIWj8dJRERERP7v1OuOwfGeWQCCiPpGaKmCJX+rViRjKdgCsbmiV/s7EkZr3UW1bjIpE3lNSETUj3mlaGbBggV45JFH8Nvf/hZ33nknXn75ZZjN/HA6EKhfLHmCKIqIiopqf15XV6d9kUWnoSgIXfMTBBV8qRt2JI5Dw9xn1b9E+Ctf5Vtd9eGV9cd0YyOTw7BkdLTHfraJ728jYa6Nhfk2Fn/Id0wMJ8YTBaqQr16Fqeqwbqx50lI444frxtYfrdY9n5gRiehQftZARERE5E7dFbD0xrFjx3Dw4EHt8dy5c3UFMyctXrwYGzZsQFFREVatWoUrr7wSJpP+66vPPvsMVqu1x+edOnVql6KZzte0cXFxWLhwISIiIvDCCy/gww8/xA033NDrPx/5l8omG17fVqQbG5EUiiVjE30WE/meVJMDy7FPXYUyVYd6tI8cFA3b4IWujjLpUzkpioiIiIi6OF7Johkiv+S0w1S2Fxa1k0z+ZpjKsyFA6fHuckhse5GM2k1GCY33aLhERBRgRTPqCmAjR47EtGnTtG4z6kph6upkI0aM6NHKXT/4wQ+8ESadBaezY+VfT1InYXrrXP1VyM7lCDr8H92YMzwZdZe8BkW0qMlCf+GNfMuKgt+sOgaHrOhWpv7FgoEQFPX8Hj09dcL3t3Ew18bCfBsL801E7iJVHkLo7j/oxhxxI9By7h26MbtTxubjtbqxuUNZTEdERETkb3bu3Nn+WC2a+a4iltmzZ+Mf//gHmpqasH//fowfP173mnfeeccj8Z08z4EDPes4Qf7tlU0FaLLpP594aF4WJFHwWUzkG1L1UViOrUbQsU9hqj7So33k4FhXR5khi2BPOw+QuCgDEREREX23nFOKZgbFs3spka+I9YVtRTKbYC7cDtHW2ON9FdEER/JE2DJnaUUyzoRRgCB6NF4iIgrgopkf/vCHEISOD6RLSkqwfPnyHu2r7seiGaLTCzr8EcJ2vqgbk81hqF/8BpQwrqDWnQ+/Kce3xfpfkK+flIIRSWE+i4mIiIiI+kaSJI8dW53Id7rn5AayAxHrfwZBdrQPKYKE5oXPQ7LoV2j7Mq8ejVb9ZLj5w+Pd9jPAfBsHc20szLexMN/Gwnz7r8OHXR0Eg4KCMGjQoO983ahRo3T7nFo04ynV1dUev5Yg7/i2uAGf7K/UjV0yKh7j0yJ8FhN5kaJAqj6idZOxHF8NU/XRHq8gbB10IWxDLnYVyohe+eqciIiIiPq5ZpsTxfX6bqjsNEPkRfZmmIt2dHSTqc3t1e7OyAytSEbtJqN2F1Us/OyAiMgIvPbJn6L0vMUZEfWcqWQ3wtc9ohtTBBENF74EZ/xIn8Xlz8obbFi+KV83lhYVhNunpfksJiIiIiLqu5gY73UaiYqK8tq5DGPz74HyfbohYcb9iBw+s8tLt+YV6J5PzIzG8Mxkj4XGfBsHc20szLexMN/Gwnz7j8LCQu0+OTn5tIUpqampXfZxZwwJCQla4U5nVqsVb7/9tvZ4woQJbj0neZdTVvDsuhO6sTCLiHtmZ/gsJvJSoUzVYa2bjFYoU3O8R7vJofGwDr4ItsEXwZ46BRBZNEdEREREvZNTpe8yoza3zIpl0QyRp6//ThbJmIt3Q5BtPd/dHAp72lStk4x6k6Oy1NX8PRoyEREZtGgmN7d3lZxE1DNiXT4iV97Z5ZfAphmPwp4112dx+TO1gO+3606gySbrxn+xcCCCzfxihIiIiIjIJyoOA188ox+LHw7MerjbCXFr95fpxi4a47mCGSIiIiI6OzabDQ0NDdrjuLi40742PDxcK2pRC1mqqqrcGse2bduwcuVKjBgxQiueCQkJ0TrM7N27V4tv5MiRWLx4ca+O2dMY2Q3TO/6zrxSHypp1Y3dMz0RSZGBMWmOuT5koVXkA5qOfwnJ0FaTanB7tJoclurrJDLkYjtTJ7YUy/vitEPNtLMy3sTDfxsFcEwW+45X664/06GAEmfheJ3InoaUG5oItsKhFMvmbITWX92p/R/xIrUBG6yaTci4g6RdTISIi4/FK0cyAAQO8cRoiQxGs9Yj85DaIrdW68ZaxN6J1/E0+i8vfrT9ag43HanRjl46Ox5QBXH2SiIiIiMgnZCfw36WA09oxJojAkj8C5uAuL991ohpVTfqFAy4czaIZIiIiIn/T2tra/jg4uOvvdadSX6MWzXTezx3OPfdc1NTU4MiRI9pNPX5oaCgyMzMxffp0zJ07t9fFLXfeeWePXvfee+/BW4zaYam22YY/bNZ3ohySGI47LxgJsxSYk9YMl2tFAUr2Agf+67pV96xQBhEpwKjLgVFLIGach2BRxJn/JfI/hsu3wTHfxsJ8GwdzTRR4cir1nWYGxwdGwT6RT8kOmEr3tneTMZXvgwCl57sHx8KWOUMrkrFlzIQSluDRcImIqP/xStEMEbmZ046I1XfD9P/s/Ql4XOWZ5/3/alFVabcsyZZ3W5t3HLMYsxpMwg42BBxCIKST0NM06e7MdN55h5kk/X/fZjq9ZKbTk+ZNd5buNGsIq4FAWIxZwhIWB/BuLV7wLsmyrKX2Ov+ryljSI8u2bKvqVNX5fq5Ll+q5darO7botW0fnuZ+ns9kIR6YtUe9F37UtrWzXHYrp71dtM2IVhV79xSVTbcsJAAAAoyc5ES5dkqsBDr652dXVpUTC3L0Qp8a/5ucq2vm+EQst/IaCxXXJoh51/MoPtxvjxnFFKnNH1Nk58m3YT4R6Owe1dhbq7SzU21nsrndFRUXGzpVrO80c4fWe+HbUkWMGP2801NXVpT6Qn/7XS1vU2Rc1Yv/P9XPztmHGUY0yu9cMNMp0mvd2jqlsUn+jjCYnd5Th7wEAAABGX0vHkKaZyiLbcgFymfvQLhXseOPwbjI735Y7cnjH4pGwXB7FJpx5eDeZKRcpNm7e4UX5AAA4BppmgFxjWSp5/a/k+/QtIxwb26juK/5JcvNtfSz/540d6ug1b55957LpGlNYYFtOAAAAGD3xeDxj50pOwszk+fKV++A2Fb7zQyMWL5+mnnP+IlnQo463LEuvbukwYksbxqa9FtTbOai1s1BvZ6HezkK9s4PP5+t/HIvFTnj8kWMGPy9b/eQnP7E7BUhav7tLD/3ebKq/en6NLqivsi0nnGajzK4PpfVPSRuekbp2jOx55VMGGmUmnUWjDAAAANKutb3PGNey0wwwMtGgCnb//nCTTHI3mc6Wk3p6vHTy4SaZ5Mfk82X5S9OWKgAg/zC7HsgxhR/9QoENjxqxRFGVDl37c1k+fhA8lg8/PaSnPmkzYhfMGKPLZ461LScAAADA0ayESl+9R65YyAh3X/Z3UsHwN5g27O3Vvm5z5fFLG1jZHQAAIBsFAoH+x6GQ+TPfcI4cM/h52aqysnJEx7EbZvokG+q/++Q6JayBWMDr1rcunJTW990OeV1rKyHP3j/I1/S8fE0vyN2ze0RPi5dNVrThGkXqr1J8/ALJ5Tr8ha4u5bq8rjeOQr2dhXo7RzbUmt0wgfTpDsW0v8dcsLeOphlgeJYlz4EtnzXJvKGC3e/LFR/5DsOWt1DRSeemGmUiU5coMWb6wPUfAAB2Ns0sXbo09dnlcmnVqlVHxU/F0NcCnMzX+pKK3vpbI2Z5/Dp0zU+VSG45j2GFYwn9z5e2GrHCArfu+cL01L8xAAAAADIvsO5hFex+z4gF59+u2MRzjvmcV5sOGOOpFQHVVnIzCgAAIBsld4wpLS1Vd3e3OjrM3QKH6unpUTgcPqmGlFzAbpjp88KGdv1hZ7cR+9q5EzWu2Jv370PO19pKyLt3jfzNL8jX8lt5evaO6GnxsqkK11+lSN2Vio2bPzBRKs8nnOd8vXFSqLezUG/noNZAfmnpCBpjj9uVulcB4DBX6KAKPv3dZ40yv5Ond2TXfEfEKmcqMvXiw7vJTDxb8vjTlisAwFlGtWnmtddeS30eOgk9GU/Gkqs+jdSR45nQDhzm2b9WpS/9F7lkfh91f+F/KZZcRQvH9It3d2lHp7mS4d0XTVFNGT9UAwAAAHZwH9qp4rf/7qgt1XvP+7+O+Zzk7whe3WI2zSxtqOD3BgAAAFls8uTJ2rhxo/bu3ZuaKOjxeIY9bvfu3cZzgOPpjcT1T6/vMGKTyv26/ZwJtuWEE0jE5d3zofwtyUaZF+Xp3Teip8XLpylcf3WqWSZeNYcVhQEAAGC7lvY+YzytIqACj9u2fADbJWLy7vv4syaZN+Xd/4lc1sgXN0gEKhSdckFqN5nolIuUKBmf1nQBAM41qk0zF1988bCTVY4VBzAy7p49Knvuj+WKmasVJCeUJbeex7E1t/XpP97bY8TmTSjWzZ/jB2wAAADAFpalktX/Q66oeWOpZ+nfSL7iYz6tpT2oTw8eXn38iKWNY9OWJgAAAE7fzJkzU00zyV1kWltb1dDQMOxxGzZsMJ4DHM/P39ml9t6oEfvLpdPk9zJRLask4irY/X5qNxl/y2/l7msb0dNiY2ak7n0lm2XilbNolAEAAHknEonokUceSV0jJRcYSO68WVRUpJqaGi1dulQXXXSRvN5RndKHUdTabs7dqqsqtC0XwC7u7t2pBplUo8zOt+QOHxrxcy2XR7Gazx1ukpl6sWLV8yT38IusAACQ9TvNjDQOYAQivamGGU/ffiMcmn2Tgmf+J9vSygXxhKW/frE19Xnwtqjfvbw29RkAAABA5vk3Pibfp78zYqE5X0qtInU8rzaZu8yML/Vp9vhjN9kAAADAfosWLdLTTz+derx69ephm2YSiYRef/311OPi4mLNnTtX+eJYO+uMBrfbfdxxvtra0adHPtxrxC6oHaNLGirzdgG/nKp1coXhXe/J1/QbFTS/KHewfURPi1fUKdJwjSINVytRObO/UcaJ06Zyqt44bdTbWai3c1BrnEgoFNJLL72k+vp6LVy4UGVlZert7dVHH32kn/zkJ3r77bd1zz338HcnSyUX+BqsrqrItlyAjIkGpW1vSS2rVLblJXkONJ/U0+OlExWZenGqSSY6+TxZ/rK0pQoAwLHQlg5ks0RcpS/9Z3nbB1bZS4pMOlc9l/w1q2udwGMf7dP6vb1G7I5FE1RfzQUrAAAAYAd3z14V/+5/GrF4cY16L7jnhM9d3dRpjJc2jM3bSXEAAAD5IjkJbPbs2andZpJNM5dccokaGxuNY5577jnt2rUr9fiqq67KqxWVKyoqMnau8vJy5TvLsvSPT25RbNBCWQUel/76hgUaO7ZETpF1tY7HpG1vShueljY+J/WNrFFG1bOluculOcvkGTdbyfW5WaM7B+qNtKLezkK9nYNaY6iSkhL9x3/8x1HXPvF4XPfee68+/vjjVAPNmWeeaVuOOLaW9j5jXFvJT7HIU/GoCj79nQo3PyVtXSXFQiNe3MDyBhSddG7/bjLxMbXMcwQA2C5/7jwAeaj4rb+Vf9uqo7al777q/5M8PtvyygV7usK6781PjdjUioC+sXiSbTkBAAAAjmZZKln9XbkjPUa459J7ZflLj/vUTztDamozb0QtbczcBEQAAACn2rRpk/buHdjV49ChQ/2Pk/HXXnvNOD7ZFDPU1772NX3ve99TJBJJTQC74YYbUrvJJMfJFZRfeeWV1HETJkzQddddl9Y/D3Lb6s379WaT2ZDxzYtqVVvtnIaZrBGPSlvfGGiUCZo7gx7TuLn9jTKqnpnuLAEAALJScgeZ4XaRSe5Uec4552j9+vXGdRiyx4HeqDqDMSNWV0XTDPKIZcnTvkGBTU/Jv+UZuYMdI35qbGxjf5NMdOI5ktef1lQBADhZNM0AWSqw9iEVfvxvRizhH6ND1/5cVmCMbXnlympzf/vKNgWjCSP+3ctnyO9l+1oAAADADv4tK+XbvtqIhWbeoOj0S0/43NVN5gSssUVenTHx+I02AAAAOH2rVq3S66+/PuzXNm/enPo4UdPMjBkz9O1vf1s//vGPFQwG9cgjjxx1TLJh5p577lFhIZONcGzPfLTbGNeUBfStS+tty8dxYhFp6+uHG2U2/UYKmruBHtP4+dLcZdKc5VJVQ7qzBAAAea6rq0vNzc2pj5aWltRHd3d36mtLlizR3XffPeLXamtr0wsvvKA1a9aoo6MjtfNLTU2NzjvvPF1xxRXy+zM74TuRSKR2mUmaMmVKRs+NkWntMBf38nlcmjwmYFs+wGhx9+xLNcn4Nz8lb4f5u55jSfjLFZ1ygSJTlyg69UIlSmrSnicAAKeDphkgCxVsf0PFb/w/RsxyF+jQ1T9RYsx02/LKFS9tPqC3th40YjecUa0zp5TZlhMAAADSL7kKW7oMXfVtuFXgcGyu3v0qfuP/NWKJoiqFLvmrEdVtdZM5GevShkr5CtL3Kw3q7RzU2lmot7NQb2eh3tnv7LPP1g9/+EM9//zzqQlpBw4c6J+QtnjxYl155ZUZn5CWCZ2dI2wqOAXJv+fl5eXG5MHkJLt8tm6n+Xv/286uUaSvWxFz3lresbXW8Yi8O34nX9NvVND6stzhgd2mjic2bp6i9VcpUn+1EhUzBr6Qxu+JfOHE720no97OQr2dIxtqXVGRv7t033nnnaPyOh988EF/Y/8R4XC4vxEnuYBAsrE/ec2SLrFYTE8++WTqcbLxZ926ddq1a1dqMYL58+en7bw4dS3tA39fkqZXFsrjdtmWD3BaokH5tr6swKYnVfDpW3JZJ/i/yuWWJp+j4KTzFZ58oWLj5kvu9N2bBQBgtNE0A2QZT8dmlb74Z3JZcSPes/RvFJu0yLa8csXBYFQ/XLXNiFUWF+jPL55qW04AAADIvxuBg2964gQsS3rpz6RwlxF2X/cjjZkwaPLUMezpCmrtnh4jdv1Z06g30oJaOwv1dhbq7SzUe/QkV2k+mZWaj6e6ulp33HFH6sMp4nHz9/zplJyImcnzZVo0ntDWA+YEtVnji/L6z2xbrWNh+T79nXzNz8u3dZXckcMrt59IdNx8RequUrj+SiXKpw18wYE1Gk35/r0NE/V2FurtHNQ6faqqqjRp0qT+3VlGauvWrfrRj36kSCSiQCCg5cuXa968eanxW2+9lWqY2bNnj37wgx/ob//2b9O2I2ayaebxxx/vH7tcLl133XW69dZb03I+nL6WDvOapK6S3VKRY6yEvLvfV2DTU/I1vyB31Lz/NpxYzUJ5z7pNmnujVDRWoc5O/l8DAOQkmmaALOLqa1fZc3fKHTF/IO07+26FZ91oW1655J9e26HOYMyI/dfLpqs0wD93AAAAgC02PC1tfNaMJX+xPvu6ET39pfX7jHFZwKvzaitHM0MAAAAAWW7bgZDiCcuI1VcxQW1UG2V2vJGaNJVqlBnBxKmk6PgFA40yZVPSniYAAMBNN92kurq61MeYMWO0f/9+fetb3zqp1/jlL3+ZapBJ7oL+3e9+V42Njf1fSzbPTJgwQQ8++GCqcebZZ5/VihUrjnqN+++/X9FodMTnvPrqq1OvO1iyYefXv/51qrEquUvlhx9+qEceeURbtmxJ7XJTVFR0Un8upF/rkJ1m6qqoEXKD++BWBTY/Lf+mp+Xp3nnC4+OlExWeuVzhmTdIVQ15vYMZAMA5mEUOZJHSV74jT/cuIxZuuEZ9537btpxyye+3d+nZ9e1G7JL6Ci1t4Ad3AAAAwBa9HdJvvmPGiiqlq/9hxC/xwro9xvjzs8fL53WPVoYAAAAAckBzW58xnlDmU4mf25ynJRaSb/vrhxtltr0qd7R3RE+Ljl+ocP1VitQlG2UmpT1NAACAwYZrYDkZzc3N2rhxY+rxpZdeajTMHHHttddq9erV2rVrl1544QXdeOON8nrNnz1ffvllhcPhEZ938eLFRzXNHOF2u1VZWanLL79cpaWl+sd//Ec9+eSTuu222076z4f0sSxLLe3mdUktjfzIYq5Ql/zNv5F/05Mq2PuHEx6fKChOXeclF/aOTlokuQ7fi/NkIFcAADKB3yYDWcLTtl6+HW8edeOh+7K/7/8hFMcWisb1Ny9tNWLFPk9ql5nkFrYAAADIf8mV2NIledOqvLy8f9zV1ZVa/Q3HV/zCt+XrMxvbey7+K0UjHily4nod6Ivqva0HjNiF00vSWusk6u0c1NpZqLezUG9nsbverLYJpF/TkKaZelZ0PjXRoHzbX5O/Jdkos1quaN/InlZzpsL1VytSd4USpRPTniYAAEC6vPfee/2Pk00zx7rGXLJkiR5++GH19vZq/fr1WrBggXHMAw88kJb8jpxnw4YNaXl9nLr23qi6w3EjVldJ0wyyTDya2kXUv+mp1C6irkTkuIdbcik65UKFZ92gcO0XpAKutQEA+YumGSBLFK59yBgniqp06Jp/kbwB23LKJT99e5d2dZmrePzZxVM0rtRnW04AAADIrHjcvFmRTslJmJk8Xy7ytb4s35ZnjFjyF+6huquTxRrRa6ze0q6ENTAOeN1aNLUs4+899XYOau0s1NtZqLezUG8g/zQPWdG5vpqJPCMW7Us1yPiTO8psf02uWPCET0lOnIpNPFvhuisP7yhTUpORVAEAANJt8+bNqc9+v1+1tbXHPG7OnDnGc4Y2zaTLgQOHF5HyeNjbIdsM3WUmeb9iQrnftnyAfpaVWqw7sPkp+bc8I3fQXIxuOLGxDYcbZRqXcb0HAHAMmmaALOAKd6d+aB0sOO8rsoqqbMspl2za16uHPthjxBZMKtGNC8bZlhMAAADg9C3fi1/7vhFL+MvUs+T/lU5iJ8jVW8wdZS6oHaNAATtxAgAAIDekc6JbcvXr443zTXOb2ejROK7EMRMJT6nWkV4VbF0lX9PzKkg1yoRG1igzaZGiDdekdpSxSsan4skrOGe809nBad/bTke9nYV6Owe1zm47d+5Mfa6pqTnuz5MTJ0486jmjmUN1dXWqcWewcDis+++/P/V44cKFo3pOnL6WdvOapLaqUO6TuN8BjDZ3zz75t6xM7SrjPbDlhMcnAmMVbrxOoVk3Kl4996Tu1wEAkA9omgGygH/Tk8bKXpbLo/CcFbbmlCtiCUv3vtSq+KDVpws8Ln338louTgEAAACbFL/1N/L07TdivRd+V1bxyBvbe8Ix/X57lxG7tKFi1HIEAAAA0q2iInM/v5aXlytfHeyLaH9PxIidXV+jiopSOdExax06JG15UdrwtNT8ijSCRhm53NK0C6S5y+WadZ0KSserQBL7+GSPfP7extGot7NQb+eg1tkjEomou7s79biysvK4x5aUlKSaWpKNLB0dHaOax9tvv63f/OY3mjVrVqp5prCwMLXDzEcffZTKb/bs2br22mtP6jVHmmO6Gs+d0CzW2mH+fF1fVeSYRn4n1jtrRYPytbwo38Yn5P30LbmsxHEPtzw+RWd8XpHZNyo6bYnkSV7xndzCCNTbWai3c1BrZ6HeNjfNJLvm9+7dq76+Pp1zzjmpCwDAkSxLgXUPG6FI7RfY+nCEHvlwrzbtM7dA/fq5EzWjkn9TAAAAADsUbH9dgY2PG7HItCUKz7rxpF7nd60HU03y/a/rcenC2jGjlicAAACA3LBp7+GJjUf4PG5Nryq2LZ+sEuqSNr8gbVgpNa+S4uGRNcpMvyjVKKNZ10olI1/cAAAAIJeFQgNND4FA4ITHJ49JNs0Mft5oOOuss9TZ2aktW7akPpKvX1RUpKlTp+qCCy7QpZdeetLNGHfdddeIjvv1r3+tTMjHZrHtB81G/vlTqzK6UEI2y8d6Z5VEQtr+lvTxrw4vkhDpOfFzJi+SFtwi19wb5CsaK98opkO9nYV6Owe1dpZyh9Y7o00zyW74v//7v9cvf/lL7d69uz++du1azZkzp3/8q1/9Sk8++WSqKD/72c8ymSKQcQW7fi9vZ7MRC8271bZ8csnOgyH9y1vmNri1lYX62rkD2+QCAAAAyBxXpFslq/+HEUsUlKjnkntPepv3V7ccMMbnTitXiZ8NcwEAAACn2TykaaZ+XIkKPM5cDTEleFDa/PzhRpmWV6W4OXlvWC6PNOPigUaZ4qpMZAoAAJB1O80c4fWe+HfNR44Z/LzRUFdXl/pA7rAsS037zOuShvEltuUDh2hvlj75lfTxo1LXjhMfXz5VWvAlacGXpUr+jQEAYKiMzTZpamrS1VdfrdbW1tQPkke4hpk0s3jxYt12222p4+644w5deOGFmUoTyLjAuoeMcWxMraKTz7ctn1yR/PfhBy9vVTg2sM1k8l+T/3H5DGffLAMAAABsVPT238vTs8eI9V7w35QoPbnG9lA0rre3dhmxSxtYsQ0AAAC5Jbl6dLq43W5jRcCuri4lkqvP5qGPt7cb4xlj/Wl9b7NNqta+hLTpN9L6p2W1viZXInrC51lur2JTLlCk/mpF6y6XVfjZNVVyzmfEOe9frnHS9zaot9NQb+fIhlqz+8XwfL6BvRZisdgJjz9yzODnZauf/OQndqeQ13YdDKo3EjdiM2tKbcsHeazvgLT+ycO7yux8/8TH+0qlucsON8pMPT/5n1AmsgQAICdlpGkmuY3kNddco5aWFhUXF+vuu+/WxRdfrGuvvXbY46dPn57aavLVV1/VM888Q9NMFjvZ7UBP5pcIxxvnC1fvfvlaXzJikTO+Is8IVrTIJ6dS72fX7dfvtx8yYivOrNGZU8eMen4YXU75/ga1dhrq7SzUG8BwCna+rcJ1DxuxyOTzFJ57y0m/1jvbuhQa1CDvcUlL6rjRCwAAgNwSj5uTqtIpOREzk+fLpKb9vca4vqowb/+sQ7n62lX40S+ktQ9K0b7DseMcb7kLFJ1ygcJ1VylS+3lZgUH3TBzynuWbfP7extGot7NQb+eg1tkjEAgYc9lO5Mgxg5+XrSorK0d0XLqaz7OhWSyd1rQcMMYlPo/88aA6O0/89ygf5Xu9My4eVcH21+Tb+KQKtq6S6wS7iVout2JTL1R41hdTCySooPDwF7rMxehGC/V2FurtHNTaWbKh3hVZ0NjvzVQ3e3Nzc6ph5s0339TnPve5Ez7nqquu0qpVq/TOO+9kIkVk+V/iwd+seeWTn0uJQatXeAtVdN43VHRktS+HOlG923vC+t+rtxuxmrKAvnv9GSoNFKQ5O4y2vP3+xlGotbNQb2eh3gCSk7dKXv3vRsjyFqpn6Q+SW8ye9Mu92mTegDpzSpnGFPGzPgAAAOA0CctSc/vhZpHBTTOOaJZZ81MVrntIrtjxJ+JZbp+iyQlT9VcpMv0yWQF+TwMAADCc5I4xpaWl6u7uVkdHx3GP7enpUTgcPqmGlFyQqQaufGsWG9rIX1tVyMTiPK53RliWPG3rFNj0lPxbnpU7ZN4XG05sbIPCs25UuHGZEiXjB76Q4feeejsL9XYOau0sCYfWOyNNM08++aRcLpf+4i/+YkQNM0kLFixIfW5qakpzdoBN4jHpw1+asflflBzeMDMSf/3cBh3si5qx5fNomAEAAABsUvzu/5Ln0KdGrPe8/0uJsikn/VrReEJvthw0Ypc2cJ0EAAAAONHurrCCUXMyWkN1kfKVq7dNRX/4mQInaJaxPD5Fpl6syJFGGX9pRvMEAADIVZMnT9bGjRu1d+/e1ERBj8cz7HG7d+82ngNna2kPGuM6BzTyIz3cPXvl37xS/s1PyXvgxPNiE4VjU00yoVk3KF4155QWqgMAABlsmklebCRdfvnlI37OkS79gwfNiTJA3mh6UTq004yd8027sskZqzfv18qPBn45kXTN/An6wpxBHfQAAAAAMsa75wMFPv4PIxadcLZCZ9x+Sq/3/o5D6gmbq5pcUj/2tHIEAAAAkJua28xdZsoLvaosLnBms4zLI828Sj3TvqDwtCWyfDTKAAAAnKyZM2em5rEld5FpbW1VQ0PDsMdt2LDBeA6crbXDvC6pq8rfRn6kQbRP/taX5N/0lAo+fUsuWSfcTTRS+3mFZt6g6NSLJE/+XQMDAJC3TTPJLSuTSkpKRvycI1tcFhTwn3426+zsTMvrut1ulZcPbB/f1dWVd9talrzzLxr8tzs2foG6C6cn31Q5zUjr3ReJ678/8YkRK/V79O2LJ6Xt7yJGnxO+v3EYtXYW6u0s2VDvigpVHiV6AADZp0lEQVR2nQCyQiykklX/zfgFv+Xxq3vp30ou9ym95Oomcwv6+RNKNK7Ud9qpAgAAAMg9zUNWdG6oKpIrj1bWTTXLrPnp4WaZ+OF7o0NZLo9cC74sXfyX0thaRTs7ZcXNhQYAAAAwMosWLdLTTz+derx69ephm2aS97xef/311OPi4mLNnTtX+eJYO+uMxr3D441zWTxhaWuH2dheX12ctvcyF+RzvUeNlZB357vybXxSvuYX5Ir2nvApsQlnKTz7i4o2XCMrcPhefDb8LaPezkK9nYNaOwv1zmDTTHLXmOS2ltu2bdOZZ545ouesX78+9bmmpibN2eF0JLcqzYTkBWmmzpUJ7oPbVLD9DSMWnHtrXv0Z01Hvf35ju/YcMm8a/cUlU1VR6OG9y2H59v2NY6PWzkK9nYV6I1uk8wYFv0QYXuE7/0feg1uNWPC8v5Srqv6UfpGfvPn0WrPZEP/5mZUZv/lEvZ2DWjsL9XYW6u0s1BvZimuUNDTNjMuPyWmu3v0KfPAv8q89frNMZPYXFTn3WyqdtiDvaw1nfW/jMOrtLNTbOah1dquvr9fs2bNTu80km2YuueQSNTY2Gsc899xz2rVrV+rxVVddJa83I9Pr8mpRusGL7+W6be29CsfMxQPPqp+oilK/bTllm3yq92lrb5I+fkT65NdS16cnPn7MVCm5SMIZX5K3si4zk3lPE/V2FurtHNTaWcodWu+M/D+bbJR5/vnn9cYbb+jGG28c0XPuv//+1EpR5513XtrzAzItsP4RY5zwlyvccI1t+eSC9Xt69OiavUbsrCmlWjav2racAAAAkF0yuQORU3+JYNj5obTmZ2Zs0lkqWvodFblPbRLb71s71NkXM2LLz5mhiopi2Yl6Owe1dhbq7SzU21moN7IF1yinr/WAuaLz56ZX5fbus917pd/9SPrw31M7dw7L5ZE+d6tcF/2l/GNnyO+QWmN41NtZqLezUG/noNaja9OmTamFm484dOhQ/+Nk/LXXXjOOTzbFDPW1r31N3/ve9xSJRHTvvffqhhtuSO0mkxy//fbbeuWVV1LHTZgwQdddd11a/zzIfpv3dRvjiqICVZX4bMsHWajvgLTuCenjX0m7Pjjx8b5Sae7yw80yU89LdldmIksAABwvI00zN910k37zm9/opz/9qf7Lf/kvmjp16nGP/9GPfpRqsEk2zXz5y1/ORIpA5sRCCmx43AiFZ31RKii0LaVsF4sndO9LW5WwBmI+j0v/4/La1L8TAAAAADIsFpZW3p3aXr6fxyctu086xYaZpBfWmY3ysyeUaVqlvQ0zAAAAAOwRisZTqzoPNrOmTHnbLOP2Hp40ddFfSmNnZDpDAACAnLBq1Sq9/vrrw35t8+bNqY8TNc3MmDFD3/72t/XjH/9YwWBQjzxiLnx7pGHmnnvuUWEhc3mcrmlI00zj+FLmKkGKRaTmlw/vKrP5t1IievzjXW6pbunha76ZV0u+okxlCgAAMtk0c/vtt+sf//Ef9cknn6QuRu677z5deeWV/V9P/iBpWZY++OCDVMPMr371q1TsoosuSm1zCeQTf/PzcocPGrHgvFttyycXPPDBHjW19RmxO8+fpKkVAdtyAgAAABztjR9KbRvN2JL/Ko2bfcovmfy9wIvrzaaZq+bVnPLrAQAAAMhtTft6jMW0kvPSGseXKKcc2iO99SPpg3+X4uFjN8t87tbDzTIV0zOdIQAAgCOdffbZ+uEPf6jnn39ea9as0YEDB+T1elVTU6PFixen5rX5/UP3/Mt9nZ2daXldt9tt7KrU1dWlRGLQols5bO2nB4zxtDG+tL2PuSKf631cliXP/rXybXxCvs3PyB068d+DWOUsReZ8UZGZy2QVjzsc7A0f/sgRjq23Q1Fv56DWzpIN9a7Igt3DvZl6s5955hldeOGF2rZtm6699loVFRX1d10nG2m6u7sVDof7J8rU1dXp17/+dSbSAzIqsPYhYxyZcoESFawYdiw7OkP62du7jFhDdZFuP3uCbTkBAAAgO6XzJkU2/BIhW3ja1qv0d/9bg9dRi1XPVfecO5JFOOXXXb+nW3u6zBWXz59SZMvNJ+rtHNTaWai3s1BvZ7G73tlwswfZiWuU0/Nhyz5jPHlMQOHeboXNzWeykqtnrwIf/Iv86x6WKx4Z9hjL7VVkzs0KnfOnSpRNORwc5u+ME2qNAdTbWai3s1Bv58iGWufzNcrdd9+d+hgN1dXVuuOOO1IfThGPxzNynuTf+UydK91a2swLkNrKQN782UZLPtV7OO6ePfJvXin/pqfk7Ww+4fGJwkqFG5cpNOsGxatmH14BIilP3qN8rzdM1Ns5qLWzJBxa74w0zSRNnTpVH330kf7sz/4s1QzT2zvwA2VbW1v/42QjzYoVK/STn/wkry/i4Eye/etUsO8jIxaa9xXb8sl2yQa6//lSqyLxgaXk3C7pf1w+Q16P29bcAAAAkH0yeVHv1F8iKB5V6Uv/l1yJmDHRq3vp3you92n9wv/lTe3GOLmz5LQKX1a8z46ttwNRa2eh3s5CvZ2FeiNbcI1yerbsNyen1VcVZv2f0d2zV4Uf/osCGx49brNMaPZNCp51lxJlkw8HT+LPlY+1xrFRb2eh3s5CvZ2DWgO5KxZPaNsBc7Gv2spC2/JBBkV65W99Sf7NT6ng07fl0qBtUIdheXyKzPi8QrNuVHTqRYd3FAUAAFklo/87jx07Vg899JD+5m/+Rr/5zW/0wQcfaP/+/amLw8rKSi1cuFDXXXedGhsbM5kWkDGF68xdZuLFNYrMuMy2fLLdynVt+vDTbiP2pTNrNG9CiW05AQAAAE5W+Iefytu+wYgFz/oTxavnnHbD/KtbDhixpQ0V/TvUAgAAAHCe5rY+Y1xfVaSsb5ZZ/6hciWM1yxQoNPuLZrMMAAAAgKz16cGwYgmzWaK2iqaZvGUlVLDrXfk3Pil/64tyRc1r0uFEJ5yd2lEmUn+1LH9ZRtIEAACnxpaW1mnTpulP//RP7Tg1YBtX+JD8W541YqG5t9BZfgztvRH902s7jNiEMp/uuoAbSQAAAIAdPB1bVPTePxux2NgG9Z19+tf3Le3B1M2nwZY2jj3t1wUAAACQu5rbzQlKDdXZ1zTj7tmjwg//dQTNMkd2lpmU8RwBAAAAnJqWIdckVcUFGlNYYFs+SA9PZ4v8m56Sf/PT8vTsOeHx8bIpCs+8QaFZy5Uon5aRHAEAwOljtj6QIf5NT8oVC/aPLZdH4TkrbM0pm/1w1XZ1h80tiu/5wgwV+Ty25QQAAAA4ViKmklX/tzEJzHK51XPZ30se/2m//Oomc5eZ8aU+zR5ffNqvCwAAACA3dfRGdaAvZsTqs6hpxt29W4Vrks0yvz5+s8ycmw83y5ROzHiOAAAAwFAeT3rm3Ljd7uOOc9XWAyFjXFdVlLb3MJfkQ71dwU75tjwr38Yn5N338QmPt3ylijRco/DsLyo+8WzJ5ZIr+T2l/JcP9cbIUW/noNbOQr0Po2kGyATLUmDdI0YoUnu5EiXjbUspm73WdECvbDEnzV05u1LnzxhjW04AAACAkxV+9O8q2P+JEQsu/KZi488Yldd/tanTGC9tGCuXK3m7AQAAAIATDd1lJuB1a1L56Tfsj0qzzIf/osCGx07QLLNCwbP+hGYZAAAAZJWKioqMnKe8vFz5YEdXqzGeO3lsxt7DXJIz9Y5FpKaXpI8fkba8KCWixz/e5ZHqL5MW3CLXzKvlLyiU/Vel9suZemNUUG/noNbOUu7Qeme8aSaRSGjDhg1qbW1Vd3e34nFzJ4nhfPWrX81IbkC6FOz6vbydzUYsNP9W2/LJZt2hqH7wknnRWV7o1V9eynaWAAAAgB3cnVtV9Pt/NGKxMTPUt+gvRuX1P+0MqanNnBC3tJGbTgAAAICTDb1GqK0qlMftyoJmmeTOMsNPrLLcvs92lqFZBgAAAMgHW/Z1G+PG8SW25YJTZFnS7jXSR49I656QguYizsMaPz/VKKP5N0ulLIgNAEC+yFjTTF9fn+699179/Oc/V0dHx4ifl1xZlqYZ5LrAuoeMcWxMraKTzrMtn2z2Dy9u1v4ec3W2/3zJVFUUFdiWEwAAAOBYVkKlr/7fcsXDAyG51HPZ30rewKicYnWTeYNibJFXZ0wsHZXXBgAAAJCbWoY0zTRUF9nYLPOTz3aWOU6zzNwVCp75n2iWAQAAAPJEOBbXtg7zuqSxhnsXOaNrp/TJo9LHv5Lat5z4+OJx0hkrDjfL1MzPRIYAACAfm2Z6enp06aWXas2aNbKS3buAg7h698vX+tLRu8y47FsRLVt9uP2AHnh3uxE7d1qZrplTZVtOAAAAgJMFPnlABXs+NGKhBXcoNuHsUTvHq0OaZpbUj7V1BWkAAAAA9mtqNyen1VdltmnGfWjX4WaZjY+foFnmSwqe9Z+UKJmQ0fwAAACAU9HZ2ZmW13W73SovL+8fd3V1KZFIKJdt2d+reMKc51jti6XtPcwlWVvvSK98Lb+Vb+OT8n76tlw6/jxVy+NXtO5yhWffqNjUiyT3Z1NpqXFu1BtpQb2dg1o7SzbUu6KiQo5omknuMPPhh4cn2SxevFh//Md/rAULFmjMmDGpQgD5LLDhUbkSsf6x5Q0oPOuLtuaUrSs0/Lcn1qZ2xTzC73Xrni/MSO04BQAAACDzCwAUv/MPRixeNkW9i/9y1M6xrzusdXt6jdjSBvt/WQIAAACMBo/Hk7bXHnp/LZ/ut8USlrZ2hIxY4/iStL6fR7gP7VTg/fvk23CcZhmPT+G5tyh09l2ySicoeQcjnZnlc61xNOrtLNTbWai3c1BrZLN4PJ6R8yQnYWbqXOnStL/HGNeU+lTodeX8nyvv6p2Iq2DXu/JvelL+lhfligVP+JToxHMUmnmDIvVXy/J/tntQcr4atXXM9zdGjno7B7V2loRD652RppnHH388Nen96quv1sqVK7kghHMkYgqs/5URCjdeL8tfZltK2epfXms96oLzTy6YrMljArblBAAAADhZ4bqHj7q50LP0B1LB6K3w/FqTuVpXqd+js6dyvQQAAID8kMnV8wavFJjrmvf3KBwzVzo8u36CKkr86TvpwR3Sm/9L+sND0jGaZeTxSWd9Ta4Lvq1A+STZdfcin2qNE6PezkK9nYV6Owe1BnJTS7t5f6S2qtC2XHA0z4Fm+Tc9Jf+Wp+Xp2XvC4+PlUxWaeaPCM5cpUT41IzkCAAAHNs3s2rUr9fnP//zPaZiBo/i2vXrUD+bBeV+xLZ9s1drep/tWNxuxWeOL9OWzamzLCQAAAHC0eESB9Y8YodCsGxWdfN6onmb1kKaZi+oqVODh9wYAAACAk23e222Mq0v9qkxXw0zn9sPNMh8lm2Viwx/j8aeaZXTht6WyienJAwAAAEBWaWnvM8Z1VaO3oBhOjSt4QP6m51LNMgX7Pznh8QlfqcIN1yg86wbFas6SXMl9QgEAgFNlpGlm3Lhx2rlzp6qqqjJxOiBrBNY+bIyj4xcoPm6ebflkI8uydO+LrYrEB1aN87ik715eK6+bixUAAADADr6W38rd127Egp/7xqieo7MvqjU7DxmxpQ2ZW4kbAAAAQHbatNe8TphVUzr6J+nc9lmzzMPHb5Y5+4+kC5LNMhNGPwcAAAAAWau1w9xppq6SnWZsEQ/Lt+01+Tc9Kd/21+Q61vXbZyyXR9GpFys06wZFZlwmee3aIxQAADiyaWbRokWpppnNmzdr4cKFmTglYDv3wa3yffqmEQvNu9W2fLLVuj09+sOQiXK3nTNRs8YX25YTAAAA4HSFax80xtGJixSvmjWq53i9pVMJa2Ac8Lq1eHr5qJ4DAAAAsFNnp7mz4mhyu90qLx/4+bmrq0uJxMDiVLls7acHjPH0Mb5Rey/dXZ8q8P4/y7fxiWNOtrI8PoXn36rQWXfJKhkvxVPFlF3yudY4GvV2FurtLNTbObKh1hUVLE4EnI5QNK5dB8NGjJ1mMsiy5N3/SapRxr/lObnDB0/4lFjVnFSjTLjxellFLOwOAABsapr5z//5P+vJJ5/UP//zP+tLX/qSXGx1BwcIrHvEGCf85Qo3XGtbPtnq6bVtxnjSmEL9pwun2JYPAAAA4HSetvUq2POhEQuecfuon2f1FnPS2QW1YxQo8Iz6eQAAAAC7xOPJbovMSE7EzOT50qlpf68xrqsKnPafzd21Q0Uf/iQ16erYzTJ+heZ9WcGFf6xEslkmKQvf03yqNU6MejsL9XYW6u0c1BrIPVs7Qhq05peSMx1nVLJjSbq5u3fLv/lp+Tc9Je/B1hMenyiqVmjmMoVn3jDqC78BAID8k5GmmfPPP19/93d/p//6X/+rbrnlFv3rv/6rxowZk4lTA/aIhRTY+LgRCs++iS0fh+iLxPXypg4jduu5U1VY4OGXRgAAADhpHo8nrasDHm+cT4rWPWSME8XjFa+/clTf3+5wTO/t6DJil82sTGsNT4aT6u101NpZqLezUG9nod5A/uiNxLWry1zRuf40VnRONct88P8dbpax4sdplrlVfWf+sazicad8LgAAACDbpet38Pl2Xd56IGSMJ48JqDjgsy2fbDOq9Y70yNf829RuoN6d78pltCsNf/0WrbtC4dk3Kjb1Qsl9ePprdtxdyk/59v2N46PezkGtnYV6Z7BpJuk73/mO6urqdOedd2rKlCn6whe+oMbGRhUVnfgX3d///vczkiMwWvxNv5E7bE4AC877sm35ZKuXN3eoLzqwDbHbJX3xzMlSImhrXgAAAMhNFRUVGTtXeXm58lLfAWnzSiPkPucbqqga3Yljb3y0S9H4wI0Pn8et686aodJAgbJR3tYbR6HWzkK9nYV6Owv1BnJXS3ufMfa4kis6F57067i7tn/WLPPUCZplvqK+M++kWQYAAACOkKn7KLl+Xb6rZ68xnjmhPKP3oHLNSdc7EZe2viF9/Ii08Vkpal4HDmvaBdKCW+Sas0y+QLloYbJPrn9/4+RQb+eg1s5S7tB6Z6xpZv/+/XrqqafU1dWV2np05UpzEs7x0DSDXBMYsjJzZMqFSoyZYVs+2Wrl2jZjfOnMcaopD6izk6YZAAAAwBYfPZTaObOfu0A662ujfprfrjNvOF3YUJW1DTMAAAAAMqe5zbw/MLUiIL935Csfug9uO9wss/npYzfLeAMKzT2ys0z1aecMAAAAIL9s2ddtjGfWlNiWS17Zv+lwo8wnv5a6d5/4+LG10oIvS2eskCqmZyJDAACQxzLSNNPR0aGLL75YTU1Nsqzjb6EH5DrP/rUq2PexEQvN/4pt+WSr1vY+fbK7x4itOGeKbfkAAAAAjpdc2ev9n5uxOcuk0vGjeppgJK7XNpsN9FfOrRnVcwAAAADITU1t5grD9dVFo9ssk9xZZmFyZxmaZQAAAAAMb8tes2mmcXypbbnkvN52ad0T0kcPS3s+OvHxgXJp7o2Hm2WmLJJcrkxkCQAAHCAjTTN/8zd/oy1btqQe33TTTfrTP/1TLViwQGPGjJGLH2yQZwrXPWyM4yU1ikxfals+ubLLTFWJX0tnjbMtHwAAAOS+zs7OtL222+02tqg9sotqPvFufVWlnduM2KHZX1Z8lN/XV7d0KBgdmMTmdklnT/SntX4nywn1xmHU2lmot7NQb2exu94VFRUZOxeQ71raT65p5nCzzH3yb1553GaZ4LyvKJjcWaaoalTzBQAAAHJJun4Pb/d1+WjqCce0uytkxGoKray6h2G3E9Y7FlbBttXybXxcBdtekysRO+7rWS6PotMvUWT2FxWdsVTyBg5/4eDBtP0Z4Mzvb5wY9XYOau0s2VDviiy4j5KRpplnnnkm1Rxz22236T/+4z8ycUrAFq7wIfm3PGPEQnNvkdwZ+VbLGdF4Qr/Z0G7EvnjWJBV43LblBAAAgNwXjw8/QSodkr9AyOT5MqH4o18a41jVHEXGLUi+saN6nlc2m9cCZ04uU5nfndXvZz7WG8Oj1s5CvZ2FejsL9QZyk2VZR+0003CMphn3wa0qev8++bckm2USx26WmX+bgsmdZWiWAQAAADJ2rZzL1+VN+3uMscclTSn35eyfJ2P1jsXk3feR/Juekr/pObnDXSd8Xqx6rkKzblC44Trzmo33Oqvl8vc3Th71dg5q7SwJh9Y7IzP5d+3alfr89a9/PROnA2zj3/SkXLGB1QYst1ehOV+yNads9EbLQR0MmqsIfOnsKbblAwAAADhdcnVm3443jFjwjNtHfdv7ZAP9my3mymBLG+1fUQQAAACA/fb3RNQdNm/W1lcVHb2zzPv/fIJmmUIF53+FZhkAAAAAJ621PWiMp1QE5POyCPAxHdyhwHv/oYKNT8h7cOsJD48XjVN45jKFZ96geNXMjKQIAACQsaaZqqqqVONMaWkp7zryl2UpsO5hIxSpvVxW8TjbUspWKz/Zb4wXTi5TbXWJbfkAAAAATle49iFjnPCXp1b2Gm0f7DikniGT4C6pHzvq5wEAAACQe5razMlpxT63JpT5+sfefR+r/KlbjcXLjm6WSe4s802aZQAAAACckpYhTTO1lYW25ZI1LEuuSI9cwQ65gx3yhjul+CFp4zPStjd1oncouQtouPZyhWfdqOjk8yW3J0OJAwAAZLhp5qKLLtKvfvUrrVu3TmeeeWYmTglkXMGud+XtbDFioXm32pZPttp7KKx3tplbcC4/g8YiAAAAwDbRPvk3PmaEQnNulgpG/0bQq00HjPH8CSUaVzowCQ4AAADIJx5P+iYCud3u445zUWuHOTmtvrpYXu/Arczid344bMNMslkmvOCrCp15eGeZ3H8n8r/WODbq7SzU21mot3NQayC3tXT0GeO6Ibtf5o1YSO6+w00wR5phUo8/i7mDBwa+1ndArkTkpE8RnXiuQrNuVKT+Clk+FlsHAAAOaJr5y7/8Sz3xxBP64Q9/qBUrVigQCGTitEBGBYaszByrqFN00mLb8slWz65rkzVoXOzz6AszK23MCAAAAHA2/+aVcke6+8eWXArN+8qonyeesPRaU6cRW9rILjMAAADIXxUVFRk7V3l5uXLd9q5txnje5IqB93D3R9LOt80nFBRLi+6U6/w/U6C4Sk65+5gPtcbIUW9nod7OQr2dg1oDub3TTF1Vjuw0E4/KFeo83PCSanw5MEwzzKBGmGhvetIon67QrBsUnrlcibLJaTkHAABA1jbNJHeX+fnPf65vfvObuvzyy1OPGxsbM3FqICPcPfvk2/ry0bvMuFy25ZSNEpalZ9e1G7ErZleq0Me2mwAAAIAtLEuFax8wQtFplyhRPnXUT/Xxrm51BmNG7NKGzE0iBAAAAJDdNu8daOZPmlUzaCXit/+PeXDxOOlP35GKqzKUHQAAAIB8dzAYVUdvNDt2mrEScoW6huwEcyDVEGM0w3wWc4cP2jcfzF+mcMO1Cs+6UbHxn2O+HAAAcG7TzNe//vXU5zlz5uh3v/td6vMZZ5yRapwpKjr+D5Yul0u/+MUvMpEmcMr8G34tV2Jg8pflLUxdCMD0/o5D2n0obMSWz6+2LR8AAADA6bx7PpC3Y7MRC55xe1rO9WrTAWPcWF2kyWOcshY0AAAAgOOJxBJq3t9jxGZNKDv8oHO7tP5p8wnn/icaZgAAAACMqtYhu8x43S5NGeMfnRe3LLmivYcbXlK7vhxpfvls95fPYkeaY5LNMC4rrmxjFRQpUVgpT+l4qWKaNGeZuqrPVdyVkWmoAAAApywjP6388pe/TDW/JCU/JxIJffzxx6mP47GSPyzSNINsl4gpsP5XRijceJ0s/2c3c9Dv6U/2G+OG6iLNHl9sWz4AAACA0xV+cr8xjpdPU3TqRaN+nuT1/eqmTiPGLjMAAADId52d5s/Ao8ntdqu8vLx/3NXVlbr/lqua2noVS1hGbLw/nnoPC1//3woMmiyWnKTV1XCTrDS+v9kk32qN46PezkK9nYV6O0c21Lqigt+9Yngejydtf++PN84VWzvNhYBnVBbK7ys4/pNiIXk6muQKtg/aBeaAXH2Dxp99dsXN188GlrtAVlFlqhHm8OcqWYVjlSiqlFVYqURRcnzka5VSQeFR/865u7ok/k/LW/ny/Y2Rod7OQa2dhXpnsGlm6tSp/U0zQL7xbV0lT+9eIxac9xXb8snmLUxfazZvYC2bX82/DQAAAIBN3D175Wt9yYgF598muUb/FyQb9vZqX3fEiC1tHDvq5wEAAACySTyeuVWBkxMxM3m+0bZ5r7nLTE2pT0UFLiV62uVf96jxtdCcFYoVlCTfYDlRrtcaJ4d6Owv1dhbq7RzUGtkkUw1VgxsqcsnOQ7uM8ayJY47/njW9LD3+DSncpezhkooqpeLqw7tzpj6qB42PPK5OHecKlKfmbrkdWG+cGurtLNTbOai1s5Q7tN4ZaZrZtm1bJk4D2CKw7mFjHB3/OcXHzbMtn2z1woYOReMDq8T5PC5dNbvK1pwAAAAAJ0vumOlKxPrHlrdQ4VlfTMu5VjcdMMZTKwKqrSxMy7kAAAAA5J7m9j5jXF9dlPocWPeQXLFgf9xyeRRc8PWM5wcAAAAg/23Z122MZ44vOfbB8ai08luZaZjxlw9qeDlGI0zRkc9jJXd6dhQCAADIZRlpmgHylfvgVvk+/Z0RC8271bZ8spVlWXp67X4jdknDWJUX8k8QAAAAYIt4JNU0M1ho5jJZgfK0XA+82mTuOrm0oYJdJwEAAAD0a24baIxJakg2zcTCKvzkfiMerr9aibJJGc4OAAAAQL5L3ssY2jTTML702E9ofkXq2XtqJ/MGpOJxUnHlMXaBqRpogkk+9vpP7TwAAADox4x14DQUrnvEGCf8YxRuuMa2fLLV+r29amk3b3gtn19tWz4AAACA0/laXpS7r82IhebfnpZzJa8FdnSGjNjSxrFpORcAAACA/Nhppq6qUP5NT8od7DDiwTPvzHBmAAAAQP7o7DQXuBotbrdb5eUDi3J1dXUpkUgol3T0RtTZFzViNYWJY75nxe/9u3yDxlZBkeLlU2UVVilRVCmrsFJWUaUShVWyisYqkRpXpT6roEgaycJiybewO3mtZF4v2S0f6o2Ro97OQr2dg1o7SzbUu6KiQnajaQY4VbGQ/BsfN0Kh2V88vBoADCvXmpPxJpX7dfbUMtvyAQAAAJyucO0Dxjg68RzFq2al5Vyrmw4Y4/GlPs0eX5yWcwEAAADIPYdCMe3rjhixhqqACl/8hRGLTLlA8eq5Gc4OAAAAyB/xeDwj50lOwszUuUbLln09xtjvdammpGDYP4err10FW1cZsZ4L/rvC8748spPl2aTkXKw3Th31dhbq7RzU2lkSDq232+4EgFzlb3pO7nCXEQvNu9W2fLJVMBLXS5vajdh186rlHsmKCQAAAABGnadtgwr2fGjEgmnaZSbp1SZzFbalDWPl4noAAAAAwGea28xVk71ulxq73pL34FYjHlzILjMAAAAA0qO1I2iMZ1QWyuMe/l6Gf8szciVi/WPLG1Ck4dq05wgAAIAs2WnG4/GkPicnv8RisaPip2LoayG7nE5tT7QV1PHG2aBw3cPGODr1Irkq65SedyR3vdrcod7IwAoJyevJZWeMN/7u5EK9MXqot3NQa2eh3s5CvYH82mUmXjROkdrL03KuTztDahoyAe7SBvu33QUAAACQPZrbzWuG2spClXz0D0YsVjVb0SkXZjgzAAAAAE7RctR1SdHwB1qWAhseM0Lh2itk+UvTmR4AAACyqWnGsqyTiiP3VVRkZrJTeXm5ssquNdK+j41Qwfl3Zez9yCXPbdhojC9urNbsaTW5VW+kFfV2DmrtLNTbWag3kDtcoYOpFdCO2jHTU5CW861uOmCMxxZ5tWASN44AAAAADGhqM1d0/kJpqwp2rzFiwYXfTK60l+HMAAAAADhFS7t5XVJXVTjscd79a+U9sMWIhefclNbcAAAAkGVNM3/1V391UnEgZ33wC3NcNklquMKubLJW8/4evb+t04jdcs4U2/IBAAAAnC6w8XG5YqH+seX2KjT3S2k73+om83pgSf1YeZLbTwIAAADAMVZ0viH4lDGOl0xQuP6aDGcFAAAAwCmSC4If1TRTOXzTjH/TE8Y4XjpZ0UmL05ofAAAATh9NM8DJCnZKa80LIJ31R5JnVL+d8sJjH3xqjCuLfVo6a7xt+QAAAACOZiUUWPuQEYrUXSmreFxaTrevO6y1e3qM2NIGducEAAAAMCBhWWpuG2iameHao7rO3xnHBBf8Udp2xwQAAACA/T0R9UbiRqyuqujoA2Nh+bc8Y4RCs78oudzpThEAAACniVn+OC2dneaqwaPF7XarvLy8f9zV1aVEIqFs4P/Dv6koFjRWZu6qu15Wmt6LXBWNJ45qmrlmbpV6u7vUm0P1xuij3s5BrZ2FejtLNtS7ooKJ98DJKtj+ujyHdhix4Bm3p+18rw3ZZabU79HZU8vSdj4AAAAAuWdPV1h90YHfKdzp+Y1csvrHCV+pwmncHRMAAAAAhu4yU1TgVk2Z76jjfK0vyR0+ZMTCs25Me34AAADIkaaZN954I/X5nHPOUWHh8FsXDhUKhfTee++lHl988cVpzQ+nLh43u+zTJTkJM1PnOi7Lku+TB41QpPZyxQKVyTfDtrSy0etNB3SgL2rErp9bNaI6Zk29kRHU2zmotbNQb2eh3kBuKFz7gDGOVc1RrOastJ1v9ZCmmYvqKlTgYbU1AAAAAAOa2gd2malSl77ofdP4emjerbJ8JTZkBgAAAMApWoc0zdRWFcrlch11XGDj48Y4Mvk8Jcompz0/AAAA5EjTzCWXXJJajfqTTz7RnDlzRvScXbt29T8vFoulPUdgJAp2vSPvwVYjFpr3FdvyyWYr17YZ4zMmlmh65cia5gAAAACMLvfBbfJtf92IBeffJg1z02c0HOyLas1Oc7W1pQ3sEAUAAADA1Nw2MDntDu+L8mtgMS7L7VPojDtsygwAAACAU7QMauZPqq0sOuoYd/duFXz6lhELz7457bkBAAAgh5pmkizLyujzgHQIrH3IGMcq6hWddK5t+WSr/d0Rvb31oBFbPn+cbfkAAADAGTweT9peO7mgw/HG2a5w/cPGOOEvU2z2DWl7z95obVdi0OV8oMCt8+vGprVGoynX642Ro9bOQr2dhXo7C/VGtuIa5cRaPlvRuUgh3e552fhaZNZyuconKjeuItInX2qNkaHezkK9nYV6Owe1BnJPS4e500xd1dGLAvs3PSmXBm58JHwlCtdenpH8AAAAkENNMycrkUikPufKhBrkP3fPPvlazRs2oXm3pm1l5lz27Po2Y4JcUYFbn5851s6UAAAA4AAVFZnbyaS8vFw5I9IrbXzcCLnP/Koqxk1M2ynf3NpkjJfOGqeJ46qUq3Kq3jgt1NpZqLezUG9nod7IFlyjnFjrgVDq8wrPaxrj6jW+5r/0O/Jn8D3MFblaa5wa6u0s1NtZqLdzUGtkk3TNw8vlZrGEZal1SNNMw7gS872yEgpsesI4Jtp4vTyBEjlRLtcbJ496Owv1dg5q7SzUO8ubZrZv3576zMUjsoV/w6NyWfH+seUtVHjWjbbmlK0Xk8+sbTNiV8yuVJGPBjgAAADAFmsfk0JdgwIu6ZxvpO10h0JRvdXcYcSumFuTtvMBAAAAyE2haFxb23vlUVzf8LxgfrHxSql6pl2pAQAAAHkpU439uTTf79MDfQpFDy/ufcRZ9RNUURYYCGz7ndS1wzjGv/gbNPnnYL1x+qi3s1Bv56DWzlLu0HqnpWlmxw7zh8Qj9uzZo5KS43dYh8NhtbS06Hvf+55cLpfmzp2bjhSBkxOPKrD+V0Yo3Hi9LH+pbSllqw8/PaRdXWEjtmz+ONvyAQAAABzNsqT3fmbGGr4gja1N2ylXb9qvSHzgBpPP407tNAMAAAAAgzXv70ntWn+d+/ea4jYX49L5f25XWgAAAAAcZPPebmNcXligcaV+86A/PGiOq2ZKk87KQHYAAADI6qaZGTNmHBWzLEuXX375Sb/WV7/61VHKCjh1vm2vytO7z4gF53/Ftnyy2cohu8zUVhZqbk2xbfkAAADAOTo7O9P22sntaQevttHV1aVEwlx5LBt5d72n0n3rjFj3nC8rlsb36pk15kIai6aVKRbsUWdQOSNX642TR62dhXo7C/V2FrvrnamVepF7uEY5vg9b9ifvIOqPvc8Z8dj4Beoum518A23LLZvkQ60xctTbWai3s1Bv58iGWnONAozclv1m00zj+JLUQt/9wt3ShpXmkxbeJg0+BgAAAM5smkk2yJxMfDiBQEB//ud/rq9//eujmBlwagLrHjLG0fELFa9mF6ShDoVienXLASO2/Ixq82ISAAAASJN4PJ6xcyVvcmbyfKeq6OP/MMbx8qkKT74w+Wal5XyhaFxvtR40Ypc2VOTEe5UP9cbpo9bOQr2dhXo7C/VGtuAa5fi27OvRee4Nmu/eZsT7Ft6pOJOI86rWOHXU21mot7NQb+eg1nBCY382NIudqnU7OozxtDE+433yrXtUxdG+/rHl8qhr2hWyHNzkn8v1xsmj3s5CvZ2DWjtLNtS7Igsa+9PSNPPv//7vxviP/uiPUpPm//qv/1qTJk065vOSxySbZSZMmKCFCxeqpKQkHekBJ8XduVW+T98yYqH5t9qWTzZ7YUO7IvGB5jiv26WrZ1fZmhMAAADgVO6effK1vGjEgvNvl1zutJ3z3W1dCsUGfrnidklL6uz/5QcAAACA7NPU3qc/9Tx3VKN/pPZy23ICAAAA8lmmGrhyqVmsuX2gISZpxtiAkbtv/aPG1yPTL1UsUJm2xclyUS7VG6ePejsL9XYOau0sCYfWOy1NM3fcccdRTTNJy5cv15w5c9JxSiBtCtc9bIwT/jEK119jWz7ZKrmT1Mq1bUetKD2mqMC2nAAAAAAnC6z/lVyJWP/Y8gYUnvXFtJ5zVZO58+SZk8u4JgAAAAAwLNf+TbrE87ERC37uG5LbY1tOAAAAAJwjnrC0rSNoxOqqivofezpbVbB3jfH18Oz03mcBAABADjXNDLV69erU5xkzZmTidMDoiQbl3/S4EQrNuUny+m1LKVtt2tenLW3m6gvL5lfblg8AAADgaPGIAusfMULhxmWyAgNb7o62aDyhN1sOGrGljewyAwAAAOBoB3qjWhFbKQ3qj4n6KxRKc6M/AAAAAByx82BIkbhlxOqqCvsf+zeac8YShWMVmXZpxvIDAABAjjXNLFmyJBOnAUadv+k3cocPGbHQvFttyyebrVy73xjXlPq0aFr6JuQBAAAAODZf60ty95k7QQbPuD2t5/xgxyH1hM0tfC+pH5vWcwIAAADITTs/bdX17reNWDh5zVIwMEENAAAAANKppd3cZWZskVcVRQWHB4mY/JueMr4ennmD5Pns6wAAAMgpbrsTALJZYN2Dxjgy9SIlyqfZlk+2CkXjemFjhxG7fn613C6XbTkBAAAATlb4yQPGODrxHMWrZqf1nK82HTDG8yeUaFypL63nBAAAAJCbytffrwLXQNN9SL7DTTMAAAAAkCGtHWbTTG1lUf/jgh1vytNnLiAcms3OmAAAALmKphngGLz7PlHB/rVGLDT/NtvyyWarthxQb2Tg5layVeb6edW25gQAAAA4ladtgwr2fGDEgmm+loknLL3W1GnELm2oSOs5AQAAAOQmV7hbc/Y+Y8TeK79CViE7VQIAAADInJb2PmNcVzWw82Vg4+PG16LjzlC8cmbGcgMAAMDoomkGOIbAuoeNcbxkgiLTLrUtn2y2cm2bMV48vVw1ZX7b8gEAAACcrHCtuctMvGicIrWXp/WcH+/qVmcwZsSWNjLhDQAAAMDRAusfVqE1MDktbrm0tZZFywAAAABkVkv7kJ1mPmuacQUPyLd1lfG18OybMpobAAAARhdNM8AwXKEu+ZueNWKheV+W3B7bcspWOzpDWrOz24gtm88uMwAAAIBt1zJbnjn6WsbjS+t5Vw/ZZaaxukiTxwTSek4AAAAAOSgeUeDj/zBCv02co+rJDbalBAAAAMB5ovGEtneGjFhdVVHqs3/LSrkS0f645fEp3HBtxnMEAADA6KFpBhiGf9OTcsUGLowst1eh2StszSlbPbN2vzEeU+jVxXUVtuUDAAAAOJl/4+NHX8vMvSWt57QsS682HTBilzZwTQAAAADgaMkmf0/vPiP209i1aqg+PDkNAAAAADK1SHA8YRmxusrC5E0PBTY8bsTDtVfICpRnOEMAAACMJppmgKGSFz/rHjJCkborZBWze8pQsYSlZ9e3G7Gr51TJ5+WfFgAAACDjrIQK1z44zLXMuLSedsPeXu3rjhixpY1j03pOAAAAADnIslT4h58bod8nZmln4WxVFBXYlhYAAAAA52lpDxrjcSUFKg145WlbL2/HJuNr4dk3ZTg7AAAAjDZmtgNDFOx8W96DW41YcN5XbMsnm73VelAdvQPbkSYtm09zEQAAAGCHgu2vy3NohxELzv9q2s+7esguM1MrAqpNrsYGAAAAAIMUbH9N3gNNRuxfY9eqvprrBwAAAACZ1dLeZ4xrqw7vfhnYaO4yEy+dqOjk8zKaGwAAAEYfTTPAEIG15i4zsbENik1cZFs+2ezptfuN8fwJJar77CISAAAAQGYN3WUmVjVbsQlnpfWclmXp1aZOI7a0oUIulyut5wUAAACQewr/8DNj3JSYpNWJz6me+woAAAAAMqy1w9xppi65GFgsLP+WZ4x4eNaNktuT4ewAAAAw2ryj/opADnP37JVv6ytGLDTvVokJX0dp74no7daDRoxdZgAAAAB7uA9uS+00M1hw/u1pv5ZpaQ9qR2fIiF3aMDat5wQAAACQe7z7PpFv1++N2E/j18iSWw3VNM0AAAAAmeDxpKf5w+12H3ecjZL3NwarH1eswPZX5Q53GfHo3BVpe99yVS7WG6eOejsL9XYOau0s1PswmmaAQQLrH5XLivePrYIihWfeYGtO2eq59e2KWwPjwgK3vjCr0s6UAAAAAMcqXPewXBr4AT3hL1O48fq0n3d10wFjPL7Upzk1xWk/LwAAAIDc3mVmnzVGK+MXpB7X0zQDAAAAZERFRUVGzlNeXq5sForGtfOguSDYwtoalbz+tHng9ItUPn1BZpPLQdleb4wu6u0s1Ns5qLWzlDu03s5sFQKGE4/Kv+FRIxRqvF6Wv9S2lLKVZVlauXa/EfvCzEoV+1hZAQAAAMi4aJ/8Gx8zQuHZN0sFhWk/9eqmTmO8tGGsXOzUCQAAAGAQd9cO+Vp+a8T+PXalIiqQ2yXNqEz/tQsAAAAAHNG8v0eJQQsFJzUGuqTmVWbwc1/JaF4AAABIH5pmgM/4tq6Sp3efEQvN4+JnOGt2duvTg2Ejtmx+tW35AAAAAE7m3/KM3OFD/WNLLgXn3Zr28yZXYdvS1mfELm3IzCp1AAAAAHJH4Uf/JpeV6B/3WAE9HL8s9XhqRUB+L7crAQAAAGRO0/5uYzy5olBFqcXJBnXS+EqlOddnPjkAAACkhTc9LwvknsC6h4xxtGah4tVzbMsnmz09ZJeZGWMDOmNiiW35AAAAAI5lWSpc+6ARik5bosSY6Wk/9atbDhjjsUVeLZjETp0AAAAABriCBxQYsjPmI/GlOqTi1OOG6iKbMgMAAACcp7PT3D1+tLjdbpWXl/ePu7q6lEgMNM5nm4+3tRvjGRV+xT98QJ5BsXDDNerrjUjJD+R0vXF6qLezUG/noNbOkg31rqiwfwFWmmYASZ7OVvl2vm3E2GVmeN2h2FGT45bNHyeXy2VbTgAAAIBTefd8KG/7RiMWPOP2jJx7dZN5c21J/Vh53FwXAAAAAEd4PIOnXI3+jc7jjbNFYP3DcsVC/eOYPPq32FX944ZxxWl9n/JBrtQao4N6Owv1dhbq7RzUGtksHo9n5DzJSZiZOtepaGnrNcaXFDbJs3ubEQvOujGr/wzZJNvrjdFFvZ2FejsHtXaWhEPrTdMMkNpl5mFjnAhUKFx/tW35ZLMXN3UoHBvYjtTrdunqOVW25gQAAAA4VeHa+41xvHyqolMvTvt593dHtHZPjxFb2mD/yiAAAABANsnk6nmDVwrMGtGg9MkDRui3Ol97VNk/XjhjfFasMphLsrLWSBvq7SzU21mot3NQayD7tLQHjfHFvS8b49iYWsVqzsxwVgAAAEgnljMAokH5Nz1hhEKzb5K8fttSymZPr91vjC+uG6OxxQW25QMAAAA4lat3v3wtLxqx4LzbJFf6L/VXN5m7T5b4PTp7alnazwsAAAAgh3z0sNTXboTuC5sLls2qKc1wUgAAAACcrC8S1+5D4f5xkUKqbVtlHBNOzhtzuWzIDgAAAOlC0wwcz9/0nNzhQ/1jSy6F5n3Z1pyy1aZ9vdq0r8+ILZs/zrZ8AAAAACcLrP+VXIlY/9jyBg7fyMmA1U2dxvjiugoVePgVAwAAAIDPJOLSO/9shA7UXKiN1rT+cYnfq0ljCm1IDgAAAIBTtXaYu8xc63lXnvhAzHJ5FJp1gw2ZAQAAIJ28aX11IAcE1j1kjKNTL1KifOCmDQasXNtmjMeX+rR4OlsJAwAAABkXj6hw3cNGKNy4TFYg/T+fH+yLas3OgYUHkpY2VKT9vAAAAECu6ew0m81Hk9vtVnn5wM//XV1dSiQSyhYFzb9VyYFWI7a64iZp28C4trJQXV0HM59cjsn2WmN0UW9nod7OQr2dIxtqXVHB72uBY2ltN5tmvuL/nTToWzQ69WJZxSwgDAAAkG9omoGjefd9ooL9a41YaP5ttuWTzULRhH67sd2IXTe3Wh4325ECAAAAmeZrfUnuPrOpPXjG7Rk592stnUpYA+OA100zPQAAADCMeDyesXMlJ2Jm8nzHZVkq+eBfjFCseq5eCc5K7jfTH6uvLsyenHNIVtUaaUe9nYV6Owv1dg5qDWSXlva+/sfTXXu0ILHB+Hpo9k02ZAUAAIB0c6f9DEAO7TITL52oyLRLbMsnm61uOqDu8MAvcpKtMtfPr7Y1JwAAAMCpCj95wBhHJ5yteNXsjJx79RZztewLascoUODJyLkBAAAAZD/vng9UsO8jI9a38Jtq7ggZsfqqwgxnBgAAAMDpWjsGdpq5yfOG8bVEYKwiM5bakBUAAADSjaYZOJYrdFD+Lc8asdDcL0tuJnsNZ+VacxXrc6aVaWK537Z8AAAAAKfytG9UwZ4PbNllpicc03s7uozYpQ0VGTk3AAAAgNxQuOZnxjheOkl9M67U1kGT05IaqosynBkAAAAApzuy04xbCX3R86bxtfDM6yWPz6bMAAAAkE40zcCx/JuelCse7h9b7gKF5qywNadstfNgSB98esiILZ8/zrZ8AAAAACcbustMvGicIrWXZ+Tcv2s9qGjc6h8XeFy6sHZMRs4NAAAAIPt5DjTLv22VEQt+7o+07WBMscTAtURSXRVNMwAAAAAypzsU0/6eaOrxRe61muA6YHw9NPsmmzIDAABAutE0A2eyEipc+5ARitRdIauoyraUcmmXmfKAV5fUs5o0AAAAkGmuUJf8W1YasfDcWzK28tmrW8wbSIumlqvE783IuQEAAABkv8KPfmGME/5yhWavUPNnqzkfMb7Up7IA1xIAAAAAMqdl0O6XN3teN74Wq56reNVsG7ICAABAJtA0A0cq2PmOPF3bjFhw3ldsyyebJVd+e2692TRz1ZxK+bz88wEAAABkmn/j43LFQv1jy+1VKNk0kwGhaFxvb+0yYksbaaYHAAAAcJird7/8m542YqF5t0q+YjW3mU0z9ewyAwAAACDDWtsPN82Uq0dfcH9gfC00+2absgIAAEAmMOsdjhRY+6Axjo1tUGziObblk83e2XpQbZ9tTXrEsvnjbMsHAAAAcPSOmesePGrHzETJ+Iyc/t1tXQrFEv1jt0taUkfTDAAAAIDDCj+5X65EpH9suX0KnnFH6nFT28CKzkkN1YUZzw8AAACAs7V8tgPmMs9b8rtixrVLuPE6GzMDAABAurHvORzH3bNHvq2rjFgoucuMy2VbTtls5Vpzl5k5NcVqqGYFOAAAAGQfj8eTttd2u93HHWeCd9sb8nTtMGLhBV9L6597sNXNB43xWVPKVFkaUD7KhnojM6i1s1BvZ6HezkK9Afu5Ij0KrHvIiIVnLZdVXJ163PzZ5LQj6rnPAAAAACDDWjsON/Ov8LxuxCO1n5cVGGNTVgAAAMgEmmbgOIH1j8plxfvHVkFR6sYNjtbeG9GbrebEuOXsMgMAAIAsVVGRuV1PysvLlXHPP2KOx89T2dwvZGQBgEgsoTdaOo3YdQunZPQ9t5Mt9YYtqLWzUG9nod7OQr2BzPNveEzu8CEjFlz4zdTnQ6GY9nUP7ECTVF9F0wwAAACAzO80M9u1XfPc24x4aPbNtuUEAACAzGC5NThLPCr/+keNUKhxmSxfqW0pZbPfrG9XPGH1jwNety6fNdbWnAAAAABHOtAqNb1sxhbdmbEdM99p7VB3KGbELp9Tk5FzAwAAAMhy8agKP/43IxSe8XnFK+r6J6YN5nW7NH1sfu5aCQAAACA7dfZFdaAvppuH7DITL6lRdMoFtuUFAACAzKBpBo7i2/qKPH37jVho/ldsyyebWZallWvbjNjnZ45ViZ8NqgAAAICMe/8XyZ/SB8aBcml+5lY+++26vcZ44dQxqilnkhsAAAAAyd/8gjzdu41Y8Mw7+x83tZlNMzMqC+X1cIsSAAAAQOa0tAdVoJiWe35nxMOzbpTcHtvyAgAAQGYw+x2OElj3kDGO1pypeNVs2/LJZh/t6taOzpARWz5/nG35AAAAACfS2dmZttd2u90qLy/vH3d1dSmRSCgjokGVr7nfWPUiNPtmBXsjUvIjzZK7T764bo8RW1Jbntb322621hsZRa2dhXo7C/V2FrvrXVFRkbFzAVnHslT4h58ZoWjNQsUmnN0/bm4PGl+vryrMWHoAAAAAkNTa0afL3Gs01tVjxEOzvmhbTgAAAMgcmmbgGJ7OFvl2vmPE2GXm2IbuMjNtbEALJpXYlg8AAABwIvF4PGPnSk7CzNT5/Bufkjt8yIj1zf2yEhk6/5pPD+lAX9SIXVI/JqPvt90yWW/Yi1o7C/V2FurtLNQbyJyCT9+St32DEQsuHNhlJql5yE4z9dVFGckNAAAAAAbvNLPC85oRi048R4kx023LCQAAAJlD0wwcI7DuYWOcCIxVuO4q2/LJZj3hmF7ZfMCILZtXLZfLZVtOAAAAgGNXbV77gBGKTFuS0Zs4q5vMHWUaq4s0eUwgY+cHAAAAkL2G7jITL5+uyIzP948ty1JL+5CmmSqaZgAAAAA7eDyetO0Ae7xxNujcv0tL3B8bscjcFWl7T/JZLtQbo4d6Owv1dg5q7SzU+zCaZuAM0T75Nz5hhEJzbpK8fttSymYvbupQKJboH3vcLl0zt9rWnAAAAAAn8u79UN72jUYsOP/2jJ0/OcHt1Sazof7ShoqMnR8AAABA9vK0bZDv098ZseDCb0jugUlnew5F1BsZuN+Q1MBOMwAAAIAtKioy8/v98vJyZZPkvY4zOl+Sx2X1x2LeIhWffauK/SW25pYPsq3eSC/q7SzU2zmotbOUO7TezmwVguP4m56TO9LdP7bkUmjul23NKZutXNtmjC+qHaPK4gLb8gEAAACcqvATc5eZeNlURactydj5N+zt1b7uiBG7tGFsxs4PAAAAIHsV/uHnxjhROFahWTcasaY2c5eZsoBH1SXcbwAAAACQOW2HQrou8aoRCzUuk2iYAQAAcAyaZpD/LEuFax80QtFpFytRPtW2lLJZ8gZWcmLcYMvns8sMAAAAkGmu3v3ytfzWiIXmf0VyZe5SfvWQXWamVgRUV1WYsfMDAAAAyE7u7t2pBcsGC57xVckbMGLN7WbTTH1VkVwuV0ZyBAAAAICk3evfUJ17jxErWvRV2/IBAABA5nltOCeQUd79n8jbtt6IBefdZls+2W7l2v3GOLni2+IZY2zLBwAAAHCqwPpfyZWI9Y8tb0Ch2Tdl7PyWZenVpk4jtrShggluAAAAAFT40b/LZcX7x5a3UKFh7r00D9lppr66KCP5AQAAADhaZ6f5O//R4na7VV5e3j/u6upSIpFQtij46AFjvMs9UUVls5JviG055bJsrzdGF/V2FurtHNTaWbKh3hUVFbIbTTPIe4G1DxnjeOkkRactsS2fbBaOJfT8hnYjdt28anndTIoDAAAAMioeVWDdI0Yo3Hi9rEDmGtpbO4La0RkyYpc2jM3Y+QEAAABkJ1f4kPwbHjViyQZ/q7DixE0zVTTNAAAAAHaJxwca39MpOQkzU+c6oWif6tpeMUIfjrlC5zMxOD/rjbSj3s5CvZ2DWjtLwqH1dtudAJBOrtBB+ZueM2KhuV+W3B7bcspmrzV36lDI/Ifw+nnVtuUDAAAAOJWv9SV5+sxdIIPzb89oDm+1HjTG40t9mlNTnNEcAAAAAGSfwLqH5Y729o8tl1vBhd8YdqGuoY34DdWFGckRAAAAAJL8Lb9VwAr2j+OWS3unXW9rTgAAAMg8mmaQ1/wbn5ArHu4fW+4ChebcbGtO2WzlWnNS3jlTyzR5TMC2fAAAAACnKlz7gDGOTjhL8eo5Gc3h3e1dxvjC2jFyudiFEgAAAHC0eFiFH//SCEXqr1KibMpRh27tCCpumbFadpoBAAAAkEH+DY8Z4zcSZ6hm4lTb8gEAAIA9aJpB/rISKlz3kBEK110pq6jKtpSy2a6DIb23/ZARWzafXWYAAACATPO0b1LB7vdt3WUmFI3ro53dRmzx9PKM5gAAAAAg+/g3PyN3X5sR61t457DHNrf1GeNJ5X4V+zxpzQ8AAAAAjnB3bZdv93tG7LH4EtVWsgMmAACA09A0g7xV8Onb8nRtN2Kh+V+xLZ9s9+y6dmNc6vfokvqxtuUDAAAAOFVgyC4ziaJqRequyGgOa3Z2KzJoSWiP6/BOlAAAAAAcvljZH35mhCKTFis+bv6whze3m00z9dXsMgMAAAAgcwIbnzDGnVaJ3vYu0vhSn205AQAAwB40zSBvBdY9aIxjYxsVm3C2bflks3jC0rPrzZXhrppTpUAB/0QAAAAAmeQKdSmweaURC839suTJ7A2cd7d1GeN5E0tU4vdmNAcAAAAA2cW3bbW8nS1GLHjm8LvMJDUN2WmmoYqmGQAAAAAZkojLv+lJI/R0/AJNrSqTy+WyLS0AAADYgxnxyEvunj3ybV119C4zXPQcc0Lcvu6IEVs2v9q2fAAAAACn8m96Qq5YsH9sub0Kzb0l43kMbZpZPK084zkAAAAAyC5Dd5lJLlYWnbrkmMc3tw9c2yTVVxemLTcAAAAAGKxg59vy9OwxYo/Hl6iuiusSAAAAJ6JpBnkpsP5XclmJ/nGioFjhmctszSmbrVy73xjPHl+smeOKbcsHAAAAcCQrocK1DxihSO3lSpSMz2ga+7rDau0wJ7edN2NMRnMAAAAAkF28ez9Swe73jVhw4TePuVhZZ19UHb1RI1ZfzU4zAAAAADIjsPFxY7w+MU3rremqreS6BAAAwIlomkH+iUcVWP+oEUo2zFi+UttSymYHeqN6veWgEWOXGQAAACDzCna8KU/XDiMWPOOrGc/j99sOGeNSvyfVWA8AAADAuYbuMhMvrlG48bpjHt/c3meM/V6XpowJpC0/AAAAADjCFeqSr/UlI/ZY/PAumew0AwAA4Ew0zSDv+La+LHdfmxELzfuKbflku+c3tCuesIwbV1fMqrQ1JwAAAMCJCj8xd5mJVc5SbMLZGc/jnW1mU/2iaeXyuIdfPRoAAABA/nMf3CZfy4tGLLTgDsnjO+ZzmtrMppnkas5cVwAAAADIBH/Ts3LFI/3jiOXRyvj5qce1NM0AAAA4ktfuBDD6nn76aT388MOpx/fee68aGxvlJIG1Dxnj6ISzFK+aZVs+2cyyLD29dr8Ru6yxUqUB/mkAAAAAMsndtV0F218zYsH5t0muzE4qSzbUv7fd3GnmvOnlGc0BAAAAyBcejydtr+12u487Hk2FH/+7XBpYfMvylShyxleO++draQ8Z44bqorS+H/ksk7WG/ai3s1BvZ6HezkGtAfv5Nz5ujF9OnKVOlam80KvKogLb8gIAAIB9mBmfZ3bs2KHHHntMfr9f4XBYTuM50CzfrneNGLvMHNsnu3u07YB542rZ/Grb8gEAAACcKtn8P3gSWsJXqvDMZRnPY/P+XnWFYkZsMU0zAAAAwCmpqKjI2LnKy9P0c3tvuzRkwpnr7K+rombacZ+2tdO8R3XGtKqMvh/5LG21Rlai3s5CvZ2FejsHtQYyy9O+WQX71xqxx+JLUp/rKgvlyvBiZQAAAMgOLGeQR2KxmO677z5Nnz5dixYtkhMF1h3eYeeIRGCswvVX2pZPtlu5ts0YTxnj15mTS23LBwAAAHCkaFCBIZPQwrNvlgqKMp7KO9u6jPH0sQHVlPkzngcAAACALPHez6TYoMW33AXS4rtOuIPlln3dRmxWTVm6MgQAAACAfkPvt+y1KvRm4ozU47qqQpuyAgAAgN1omskjTz75pHbu3Km77rrLmdu7Rvvk3/SkEQrNuVnyMMFrOL2RuF7e3GHEls0fx4oKAAAAQIb5m56VO2w2qwTn27Nj5u+HNM2wywwAAADgYJE+6b2fmrH5N0tlE4/7tO0dvQpFE0Zs1gQW7AIAAACQZvGI/FueNkJPxi9SXJ7U49rKzC9WBgAAgOzglYN1dXWpubk59dHS0pL66O4+vPLVkiVLdPfdd4/4tdra2vTCCy9ozZo16ujokNfrVU1Njc477zxdccUV8vvT27jR2tqqp556SitWrNDkyZPlRP4tz8odGVi5zJJLoXlftjWnbPbypg4FB9208rika+dW2ZoTAAAA4DiWpcJPHjBCkakXKzFmesZT6QnH9PHuHiO2eBpNMwAAAMCp6uzsTNtrJxdPKy8vN+55JRJmo8rp8n98v4qCB4xY17w7lDjBn+vDFnPBrrFFBfJE+9TZ2Teq+TlFJmqN7EG9nYV6Owv1do5sqHVFRUVGzwdkC9+21XIPuYZ5LL6k/zE7zQAAADiXo5tm7rzzzlF5nQ8++EA//vGPFQwG+2PhcLi/EWfVqlW65557Uk006RCNRnXfffdp+vTpWrZsmRw70WzdQ0YoOm2JEmVTbEsp2z29dr8xvqB2jKpKfLblAwAAADiRd++H8rZvMGLBM75qSy4fftqteMLqH3vdLp01pcyWXAAAAIB8EI/HM3au5ETMUT1fIi7/mp8boci0JYpW1Cf/YMd96pZ9ZjN+fXVhRt+LfDfqtUZWo97OQr2dhXo7B7UGMse/8Qlj/H6iUVutCf3jWppmAAAAHMttdwLZoqqqSgsWLDjp523dulU/+tGPUg0zgUBAt9xyi+699159//vf12WXXZY6Zs+ePfrBD35gNNWMpkcffTR1jrvuuiu1YoUTefd9JG/beiMWnH+bbflku+a2Pq3b02vEls0fZ1s+AAAAgFMN3WUmXjZV0akX25LLu9u6jPHnJpWq0OexJRcAAAAA9vK1vijPoR1GLLhwZIvRNbebO8rUVxWNam4AAAAAMJSrt02+7a8dc5eZyuICjSkssCEzAAAAZANH7zRz0003qa6uLvUxZswY7d+/X9/61rdO6jV++ctfKhKJyOPx6Lvf/a4aGxv7vzZv3jxNmDBBDz74YKqp5dlnn9WKFSuOeo37778/tVvMSF199dWp103asmVL6nVvvvlmTZ06VU5V9N7/Mcbx0km2TTTLBSvXtRnjquKC1E4zAAAAADLH1btfvpbfGrHQ/K9IbnsaVd7ddtAYL55ebkseAAAAAGxmWSpc8zMjFK2ep+ikxSN6elOb2TTTUE3TDAAAAID0Cmx+Si5rYFeniDug38QHrmHqKtllBgAAwMkc3TQzXAPLyWhubtbGjRtTjy+99FKjYeaIa6+9VqtXr9auXbv0wgsv6MYbb5TXa77tL7/8ssLh8IjPu3jx4lTTTHL71vvuu0/Tpk3T8uXL5VQFO9+Vb8cbWTPRLNtFYgk9v6HdiF07t0pet8u2nAAAAAAnCqx/VK5ErH9sefwKzb7Jllx2Hgzp04PmdSlNMwAAAIAzeXe/p4L9nxix4Jl3Sq4T30foi8S1a8i1BTvNAAAAAEgry5J/4xNG6P3CC9XbN9AoU8d1CQAAgKM5umnmdL333nv9j5NNM8Nxu91asmSJHn74YfX29mr9+vVasGCBccwDDzxwSucPhUKpHWySbr311mGPSe5+k/Sd73xHixYtUt6xLBW98w9GKFFUpeD8221LKdu90dKpruDAxLyk6+ePsy0fAAAAwJHiUQXWPWyEwjOXyQrYswPku9u6jHFFoVeN47iBBAAAADhR0ZBdZuKlkxWpu3JEz23tCMoaNE6u1zWDFZ0BAAAApJF330fydjYbsV/Hlhjj2iquSwAAAJyMppnTsHnz5tRnv9+v2traYx43Z84c4zlDm2ZOVUFBgZYuXTrs15I74CQbas4++2yVlZVp3Lj8bIrwtb6kgn0fGbG+c/5MKmBy17E8vbbNGJ85uVRTKwK25QMAAAA4UfJaxtO334gF599mWz6/39511C4z7hGsIg0AAAAgv3gONMm3fbURC37u65J7ZLcUm9v6jPGUioACBe5RzREAAAAABvNvfNwYx8qm6rk2cy5fHU0zAAAAjkbTzGnYuXNn6nNNTY08Hs8xj5s4ceJRzxkNPp9Pf/InfzLs1+67775U08zy5cvV2NiovJSIqejd/2WE4uVTFZrzJdtSynZ7usL6/ZAVpJfNr7YtHwAAAMCpCtc+aIyjE85SvHquLbnEEpbe237IiJ07vdyWXAAAAADYq/APPzfGCf8YhebcPOLnNw1pmmmoYpEzAAAAAGkUDcq/5TkjtHvq9YrvNxcGq2UHTAAAAEejaeYURSIRdXd3px5XVlYe99iSkpLUbjThcFgdHR3KBSPN83jNQqfD7XYfd5zk2/i4vJ0tRix43nfk8bFryrE8t6Fd1qBxid+jL8yuTlsdR7PeyB/U2zmotbNQb2eh3sDp8bRvUsHu94xYcP7ttuWzbk+PeiNxI7Z4Gk0zAAAAgNO4e/bJv3mlEQudcZtUMPLGl+Z2s2mmvpqmGQAAAADp4299Ue5oT//YkksflF8uaSA2vtSnEj/TJAEAAJyMnwZPUSgU6n8cCJy4SSN5TLJpZvDzstldd901ouN+/etfKxPKy4dM2IoGpff+yYzVnKGSRbcnZ21mJKdcE09Yem79H4zY8oWTNHFclbLNUfVGXqPezkGtnYV6Owv1Bk5OYO0DxjhRVKVI3RW25TN0N8qG6iJVlfhsywcAAACAPQKf/IdciWj/2PL4T6rB37IsNbcFjVh9Nas5AwAAAEgf/8bHjXF0yoVa21NmNM3UscsMAACA49E0cxo7zRzh9Z74bTxyzODnpdPdd9+d+shb7/1U6t5txj7//6Nh5jjeam7XroPmzapbzplqWz4AAACAE7nChxQYunLz3C9LHvuaVN4d0jTDLjMAAACA87gi3Qqse8iIhWbdKKto5AtvtfdG1RWKGbH6KnaaAQAAAJAe7kOfyrfzHSMWmv1FtW4w50fVcV0CAADgeDTNnCKfb2BCUyxm3gAYzpFjBj8vm/3kJz9R1goelN7832Zs+kVS3VK7MsoJj77/qTGeM6FM8yYxGQ4AAADIJP/GJ+SKDdyssdzew00zNjkUimn93oHV1pLOnc51AgAAAOA0gfWPyh0ZuDaw5FJw4TdO6jWa2vqMcVGBWxPL/aOWIwAAAAAMFtj4pDFO+MsUqb1cLW9sNOK1Vew0AwAA4HQ0zZyiQCDQ/zgUCp3w+CPHDH5eNqusrBzRcZ2dnWk5v9vtVnn5wEStrq4uJRKJ1OPAW3+vwtBB4/hD5/6l4gfNGAZ09kX14vq9Ruy6uZVpq99o1hv5h3o7B7V2FurtLNlQ74qKioyeDxgVVkKFax8wQsmbN4mS8bal9N72LiWsgbHf69LCyaW25QMAAADABvGoAh//uxGK1H5BiTEzTuplmoc0zSRXc3a7XKOSIgAAAAAYrIT8m54wQuHG6xWyvNp1MGzE62iaAQAAcDyaZk5RcseY0tJSdXd3q6Oj47jH9vT0KBwOn1QzSq6Ix+MZOU9yEmbyXO6efQp89G/G18J1VypSPT+ZTEZyyUXPrt2n2KCZcD6PS1fMGpux+p1qveEM1Ns5qLWzUG9nod7AyBTseFOeru1GLDj/dtnp3W1dxvjMyWXye9225QMAAAAg8/xNz8nTYy68FVx450m/TlO72TRTX1102rkBAAAAGD0ejydtC+4db5wO3h3vytO9y4hF535J2w9GNGitsJT66pK0/dmdyI56wz7U21mot3NQa2eh3ofRNHMaJk+erI0bN2rv3r2pSYLH+uF69+7dxnNw6grf/7FcsYGdfSyXR32L/9LWnLKdZVlaubbNiC1tHKuyAN/+AAAAQCYVfmLuMhOrnKnYxHNsvVYY2jSzePrALlIAAAAAHMCyVPiHnxmh6ISzFJtw5km/VEtb0BjXs5ozAAAAkFUqKioycp7y8gzca3h1pTkeN1dlMy/S3jVmI83UsUWaOL4q/fk4WEbqjaxBvZ2FejsHtXaWcofW25mtQqNk5syZqc/JXWRaW1uPedyGDRuOeg5OnrtzqwIbfm3EwrNvUryi1raccsH6vb1q7TBvVC2fX21bPgAAAIATubt2qGD7a0fvMuNy2ZbT9s6Q9nZHjBhNMwAAAIDzdsT0dmw+7V1mYvHEUfciGthpBgAAAEA6BA9KG58xYwu/krrnsmVftxFuHF+S2dwAAACQlWiaOQ2LFi3qf7x69ephj0kkEnr99ddTj4uLizV37tyM5Zd3CgoVnrlMlg5PKrM8fvUt+nO7s8p6T3+y3xhPKvfrzClltuUDAAAAOFFg3UNyyeofJ3ylqesbOw3dZWZcSYFqK1kJGgAAAHCSobvMxMbUKjLjslNqyo8lBq55kuppmgEAAACQDuuflGKhgbHbK53xpdTDo5tmSjOdHQAAALKQ1+4Ecll9fb1mz56tjRs3pppmLrnkEjU2NhrHPPfcc9q16/C2j1dddZW8Xt7yU5UoqVHP5/9BwYXfVNG7/1vxirpUDMfWF4nrpU0dRmzZ/Gq5bVzNGgAAAHCcaFCBDY8dtWumCoqyqmnm3Olj5OJaAQAAAHAMz/518u1824gl78HIdfJr7jW19Rnj8aU+lQW4JwYAAABkk87OzrS8rtvtVnn5wE72XV1dqYWm06X0/V8akx6Tjf+9EY8U6dTGPea9j0kl7rT9uZ0q0/WGvai3s1Bv56DWzpIN9a6oqJDdHP3b6k2bNmnv3r3940OHDvU/TsZfe+014/hkU8xQX/va1/S9731PkUhE9957r2644YbUbjLJ8dtvv61XXnklddyECRN03XXXpfXP4xTxypnqvuZfJYt/oE/k5c0d6osOvE9ul3Tt3GpbcwIAAACcxt/0rNxh8yZNcP5XZKdILKEPdgxcAyctnj7wSxIAAAAA+a/wDz83xomiKoVnLj+l12ppDxrjuip2sQQAAACyTTwez8h5kpMw03Uuz4Emefd9bMSCs25Kna8nHNPeQxHjazPG+jP253aqdNYb2Yd6Owv1dg5q7SwJh9bb0U0zq1at0uuvvz7s1zZv3pz6OFHTzIwZM/Ttb39bP/7xjxUMBvXII48cdUyyYeaee+5RYWH+3SDweDxp62o73vizs6fl3PnkmXXtxviC2gpNGJN9fw9HVm/kC+rtHNTaWai3s1Bv4CRYlgo/ecAIRaZerMSYGbLTJ7u7FYoNNNgn95c5d2qZrTkBAAAAyBz3oV3yNz9vxIJn3CF5/af0ekN3mmmotndnTQAAAAD5yb/xcWOcKKpWdNrFqcdbO8xm/uTiwtPGZt88KQAAAGSeo5tmRsvZZ5+tH/7wh3r++ee1Zs0aHThwQF6vVzU1NVq8eLGuvPJK+f2ndpMh22Vqu6TB20JhZJr3d+vjXd1G7Lbza7Nii6sTod7OQr2dg1o7C/V2FuoNHJt37xp52zcYseAZX5Xd3t1m7nwze3yxxhQV2JYPAAAAgMwq/Pjf5LIGVhO0CooUmnfqO2I2D2maqa+iaQYAAADAKItHFdj0lBEKJXfLdB+eAtkypGlmSkVAfi+L/wEAAMDhTTN333136mM0VFdX64477kh9ANng0fc/NcZVJX4tnTXOtnwAAAAAJwoM2WUmXjZF0amHVzyz0ztDmmbOnU7zGwAAAOAUrtBBBdY/asRCc1bICpzadUF3KKa93REjxk4zAAAAAEabb8frcgc7jFh49k39j1vazaaZukp2mQEAAMBhtFIDeSgSS+jJNbuM2BfPmqQCD9/yAAAAQKa4etvkb/mtEUut3Oz2yE4HeqPavN9cBfo8mmYAAAAAxwise0iu2MBkMsvlUXDB10/59YZOTPO4XZo2NnBaOQIAAADAUP4Njxnj6PiFio+t7x+3tpv3PurYARMAAACfcfROMzh9nZ2daXldt9ut8vKBSVtdXV1KJBJpOVc+emVzhzp6zVXdrmwoT1u9Thf1dhbq7RzU2lmot7NkQ70rKioyej7gVAQ2/EquRLR/bHn8Cs25WXZ7b4e5y0xRgVvzJ5bYlg8AAACADIqFVfjJ/UYoXH+1EmWTTvklm9rMiWkzxgZYxAsAAADAqHL1tcu3/TUjFpozsMvMsDvNVLHTDAAAAA6jaQanJR6PZ+Q8yUmYmTpXPnjq473G+HOTSjVljC9n3kPq7SzU2zmotbNQb2eh3sAw4lEF1j1ihMIzl8kKjJHd3tlqNs2cNbWMCW0AAACAQ/g3PyV3X7sRC55552m9ZvOQ1Zzrq1nNGQAAAMDo8m9eKVci1j+2vAFFGq7pH3cFY2rvHVjILKm2kqYZAAAAHMasGCDP7D0UPmoS3PL51bblAwAAADz99NNasWJF6mPLli1yAt/Wl+Xp3WfEgvNvk90sy9K7283rhfOmD+wcBQAAACCPWQkV/uEXRigy+XzFq+ee1ssO3WmmvoqmGQAAAACjyLIU2PiYEQrXXSnLV9o/bu0wr0u8bpemVgQyliIAAACyG00zQJ55bn27rEHjYp9blzWOtTEjAAAAONmOHTv02GOPye/3y0kC639ljKM1Z572RLTR0NIeVMeQldYWT7d/9xsAAAAA6efbukreg61GLHjmH592Y34LO80AAAAASCPv/rXyHmgyYuHZNx11/2OwaWMD8nqYGgkAAIDD+MkQyCMJy9Iza9uM2BWzq1To89iWEwAAAJwrFovpvvvu0/Tp07Vo0SI5hSt8SAW7fm/EQvNvVzZ4Z5u5y8ykcr+mjHFWQxMAAADgVIV/+JkxjlXNVnTKhaf1mnsORdQbSRix+qrC03pNAAAAABjMP2SXmXjpZEUnnXvcppk6dsAEAADAIDTNAHnk/R2HtPtQ2Igtm1dtWz4AAABwtieffFI7d+7UXXfdJbfbOZefBTvekCsR6x9bHp/CtZ9XNnh320FjfO70crlcLtvyAQAAAJAZ3j1rVLDnQyMWXPhN6TSvB5qH7DJT6vdofKnvtF4TAAAAAPrFQvJvedYIhZK7zLjM+06tHea1SW0lzfwAAAAY4B30GECOWzlkl5nkam5zaoptywcAAAAnp6urS83NzamPlpaW1Ed3d3fqa0uWLNHdd9894tdqa2vTCy+8oDVr1qijo0Ner1c1NTU677zzdMUVV8jvT+/uIq2trXrqqae0YsUKTZ48WU7i2/qqMY5OPk8qsH9Fs1A0rj/sPPz36YjF08ptywcAAACAfbvMxEsmKFx/zWm/blObOTGtvrqIxnwAAAAAo8bX+pLckYF7G5ZcCs+68ajjhu40ww6YAAAAGIymGSBPHAxGtbrpgBFbfsY4bk4BAADkkDvvvHNUXueDDz7Qj3/8YwWDAzcIwuFwfyPOqlWrdM8996SaaNIhGo3qvvvu0/Tp07Vs2TI5SiIm3/bXjFBk+lJlg2TDTCRu9Y89LumcqWW25gQAAAAg/Qp2vit/60tGLLjgjyRPwWm/dvPQppkq+xcMAAAAAJA/AhsfN8bRKecrUTbJiB3ojepgMGbEark2AQAAwCDmPoUActZvN3YoOmgCXIHHpStnV9qaEwAAAE5dVVWVFixYcNLP27p1q370ox+lGmYCgYBuueUW3Xvvvfr+97+vyy67LHXMnj179IMf/MBoqhlNjz76aOocd911l9xuZ112evf+Qe5wV1Y2zby7zcxr7oQSlQZYSwMAAADIa9GgSlb/dyOU8JUqPPdLo/LyRzXNVLOaMwAAAIDR4T60SwWfvm3EwrNuOuq4lg7zusTvdWlSuT/t+QEAACB3MDsGp8Xj8aTldYdOrHPaRLuTZVmWVq5tM2JLGytVWRJQLqDezkK9nYNaOwv1dhbqnT433XST6urqUh9jxozR/v379a1vfeukXuOXv/ylIpFI6mf17373u2psbOz/2rx58zRhwgQ9+OCDqaaWZ599VitWrDjqNe6///7UbjEjdfXVV6deN2nLli2p17355ps1depUOY1v6ypjHKuarUTpRGWDd4Y0zSyeXm5bLgAAAAAyo+i9f5Kna7sR6zv327J8Jaf92uFYQjs6Q0asoZrVnAEAAACMDv+mJ+WSZS4AUHf5Uce1tJuLxE0fWyiP25WRHAEAAJAbaJrBaamoqMjIecrLmcx1PB9/elBNQ1Zzu/38uozVZ7RRb2eh3s5BrZ2FejsL9R49wzWwnIzm5mZt3Lgx9fjSSy81GmaOuPbaa7V69Wrt2rVLL7zwgm688UZ5veal4csvv6xwODzi8y5evDjVNBOPx3Xfffdp2rRpWr58uZzIt221MY5Mv1TZYH93RK0d5k2j82iaAQAAAPKad98nKvzoF0YsWrNQofm3j8rrb+0IKj4wfy2lroqmGQAAAACjwEoosOkJIxRuvE7yBk7YNMN1CQAAAIaiaQbIA49+8KkxnlxRqPPrKm3LBwAAAPZ47733+h8nm2aGk9wZaMmSJXr44YfV29ur9evXa8GCBcYxDzzwwCmdPxQKpXawSbr11luHPSa5+03Sd77zHS1atEj5xN21Xd7OZiMWmX6ZssG7Q3aZKfV7NLvm9FeWBgAAAJCl4lGVvHqPXFaiP2S5fepZ+gPJ7RmVUzS3m4t5TSr3q9g3Oq8NAAAAwNkKdr0nzyFzPlR49k3DHtvaYV6b1FYWpjU3AAAA5B6aZoAc1xeJ6ZmPdhuxFWdPkZttRgEAABxn8+bNqc9+v1+1tbXHPG7OnDnGc4Y2zZyqgoICLV26dNivJXfASTbUnH322SorK9O4ceOUb3zbXjXGicJKxcafoWzw7nazaWbRtHJ5uWYAAAAA8lbhH34qb8cmI9Z3zt2Kj20YtXO0tA1dzZmJaQAAAABGh3/jY8Y4NrZBsXFH33OxLOuonWbquTYBAADAEDTN4LR0dnam5XWTq1+Xl5f3j7u6upRIDKyGhgHPrN2vnnCsf5yc9vaF+tK01SYdqLezUG/noNbOQr2dJRvqXVFRkdHz5YqdO3emPtfU1MjjOfbqvhMnTjzqOaPB5/PpT/7kT4b92n333Zdqmlm+fLkaGxuVj3xbzaaZyPRLJZdbdktYln4/pGlm8fSB72EAAAAA+cVzoFlF7/2zEYtVzlLwzD8e1fM0DdlppqG6aFRfHwAAAIAzuSLd8rf89uhdZlxHLwbW1hNVTzhuxGqruDYBAACAiaYZnJZ43LzoSJfkJMxMnSvXPPXxPmN83oxyVRd7c/r9ot7OQr2dg1o7C/V2FuqdHSKRiLq7u1OPKysrj3tsSUlJajeacDisjo4OZbuR5ni8RqHRaBY73ljhbhXsfs8IxWo/n9acRmrTnh51BQca7ZPOr63Iityy1QnrjbxBrZ2FejsL9XYW6g0Mkoir5NX/Jlci0h+yXG71LP2B5PGN6qma28ymmXompgEAAAAYBb6m38gVC/WPLZdHoZnLhz22ZUgzf1GBWzVlo3vtAwAAgNxH0wyQw7YdCOqjXYcnRh6xbP442/IBAACAfUKhgZsHgUDghMcnj0k2zQx+Xra66667RnTcr3/9a2XK4N2WUta/JiUGNaZ4fCo54zrJXyK7ffyR2XRUW12sudMn2JZPLjqq3shb1NpZqLezUG9nod5wssDaB1Ww9w9GLPi5byg2/oxRPc/Bvqjae6NGjJ1mAAAAAIyGwMbHjXFk+qWyiqqGPbalPWiMZ1QWyj3MjjQAAABwNpZbA3LYM2vbjHFFoVcX142xLR8AAADYu9PMEV7viddHOHLM4Oel0913351qamlsbFRe2vxbczz9oqxomEl6Y4t53XBxQ7VtuQAAAADZ4Omnn9aKFStSH1u2bFG+cB/aqeJ3f2jE4uXT1LfoL0b9XM1DVnP2eVyaXHHiBRwAAAAA4Hg8B5qPWgggPPumYx7f0mE2zdSxAyYAAACGwU4zQI6KxRN6br05+e2auVUq8NALBwAA4EQ+38BW87HYoB1PjuHIMYOfl61+8pOfKKsl4lLTS2as8Uplg55wTB9u7zRiFzUMvxobAAAA4AQ7duzQY489Jr/fn9p9M29YlkpWf1euqNnM0nPp30gFhaN+uqY2c2JabVWhvG5WcwYAAABwevybnjDGicJKRaZdcszjW4Y09CevTQAAAIChaJoBctTvWg/qQJ85GXLZ/HG25QMAAAB7BQIDK/qGQqETHn/kmMHPy1aVlZUjOq6z02wOGU1ut1vl5eX9466uLiUSidRjz+4PVBY8YBzfVbNYiTTmM1KvNx9QLGH1j5OT2GaN9aT1vcoHx6s38gu1dhbq7SzU21nsrndFRUXGzoXTk1w84L777tP06dNVU1OjN998U3nDiis2bp4Kdr4tlxVPhYJzb1F08uK0nG7oTjP1rOYMAAAA4HQlYgpsesoIhWYulzwFwx9uWdo6ZKeZeppmAAAAMAyaZoAc9fRac5eZMyaWaEYlF34AAABOldwxprS0VN3d3ero6DjusT09Pf0rKo+0ISUXxOOHJ4ZlQnIS5pHz+VteMb4WG9uoaPHEZEKy21stZnPMgkkl8nsy+17lg8H1Rn6j1s5CvZ2FejsL9caxPPnkk9q5c6f+7u/+TitXrlRecXvVd953FK6/SqWv3iNXX7v6zv9vaTtdU9uQpplqmmYAAAAAnJ6C7W/I3WfOhwrPvumYx+/pCisYNRfNqK3k2gQAAABHo2kGyEH7uyN6e+tBI7ZsfrVt+QAAACA7TJ48WRs3btTevXtTkwQ9Hs+wx+3evdt4Dk6Pb9sqYxyZcZmyxe+3dxnj86aPsS0XAAAA5J7krj3Nzc2pj5aWltRHslE/acmSJbr77rtH/FptbW164YUXtGbNmlSjv9frTe32ct555+mKK66Q3+9P459Eam1t1VNPPaUVK1bk9XVQvHquDt70hNyHdsryl6bnHAlLre1DV3NmYhoAAACA0xPY+Lgxjo5foHhl4zGPbx2yy0yp36PqkuF3pQEAAICz0TQD5KDn1rcpYQ2Miwrc+sLM/FkhHAAAAKdm5syZqaaZ5C4yyQlhDQ0Nwx63YcMG4zk4de5Dn8p7oMmIRaYvVTbYdTCkHZ0hI7Z4erlt+QAAACD33HnnnaPyOh988IF+/OMfKxgcmNCUvG450oizatUq3XPPPakmmnSIRqO67777NH36dC1btkx5z1OgRMWMtL38rq6wQjFzNecGdpoBAAAAcBpcwY6jFik73i4zSS1DmvlrqwrlcrnSkh8AAABym9vuBACcnIRlaeVacyvSy2dVqsg3/CriAAAAcI5Fixb1P169evWwxyQSCb3++uupx8XFxZo7d27G8stHvq2vGuNEYKxi4xcoG7w7ZJeZikKvGscxkQ0AAACnpqqqSgsWnPzPulu3btWPfvSjVMNMIBDQLbfconvvvVff//73ddllh3dp3LNnj37wgx8YTTWj6dFHH02d46677pLbza2x09Xc1nfUtUZlMas5AwAAADh1/s3PyJWI9Y8tj1/hhmuP+5yWDvPapI4dMAEAAHAM7DSD0+LxpKdRY+hNK25iDVizvSu1ittgNyyoSVstMoF6Owv1dg5q7SzU21mod/aqr6/X7NmzU7vNJJtmLrnkEjU2mtvWP/fcc9q1a1fq8VVXXSWvN38uC9P5M/Gx/t77t5vNSdEZl8pT4FM2+P32Q8Z48YwxKsijeqcT/845B7V2FurtLNTbWah3+tx0002qq6tLfYwZM0b79+/Xt771rZN6jV/+8peKRCKpn9e/+93vGtco8+bN04QJE/Tggw+mmlqeffZZrVix4qjXuP/++1O7xYzU1VdfnXrdpC1btqRe9+abb9bUqVNPKncMr2lI0wy7zAAAAAA4LZalwMbHjFC47gpZ/rKT22mmsjAt6QEAACD3MVsGp6WioiIj5ykvL8/IeXLBb17cZowbx5fo4rlT8mp7UertLNTbOai1s1BvZ6Heo2fTpk3au3dv//jQoYGmh2T8tddeM45PNsUM9bWvfU3f+973UpPSkqs333DDDandZJLjt99+W6+88krquOQEsuuuu075JFPXJ/1/78Pd0s53jbh/3vXyZzCPY4nFE3p/h9k0c9ncSRl9j/IJ/845B7V2FurtLNTbWaj36BmugeVkNDc3p5r6ky699NKjmvqTrr322lTTf7K5/4UXXtCNN954VHP/yy+/rHDYXEzqeBYvXpy65onH47rvvvs0bdo0LV++/LT+LBjQ3D5kNWeaZgAAAACcBk/bOnk7Nhux8OybjvuceMLStg6zaaa+iqYZAAAADI+mGSCHdPVF9cK6gUmUSSvOzq+GGQAAACdbtWqVXn/99WG/tnnz5tTHiZpmZsyYoW9/+9v68Y9/rGAwqEceeeSoY5KTx+655x4VFnLz4LS0vColBq127S6Q6pYqG3y886C6QzEjdlFDlW35AAAAwJnee++9/sfJppnhJHcGWrJkiR5++GH19vZq/fr1WrBggXHMAw88cErnD4VCqR1skm699dZhj0nufpP0ne98R4sWLTql8zhN89CdZqpomgEAAABw6gIbnzDG8dKJik4+77jP2XkwpEjcMmK1lVybAAAAYHg0zQA5ZOXHuxSJJfrHBR6Xbjxzsq05AQAAIPucffbZ+uEPf6jnn39ea9as0YEDB1IrNdfU1KRWXL7yyivl9/vtTjP3jZsrXfQdacuL0r610vQLpECZssEbW9qN8ayaUo0vC9iWDwAAAJzpSON/8vqjtrb2mMfNmTPHeM7QpplTVVBQoKVLh29sT+6Ak2yoSV4/lZWVady4caNyznwXjMS186C56099NQsyAAAAADhFsbD8W1YaofCsL0ou93Gf1jpkl5mKQq/GFhekJUUAAADkPppmcFo6OzvT8rrJleXKy8v7x11dXUokBppFnOqhd7YZ40vqx8oV6VVnpFe5jHo7C/V2DmrtLNTbWbKh3hUVFcpHd999d+pjNFRXV+uOO+5IfThFuq5Pjvn33lMpnfmt1Iere7dc4UNKpDGHk/HqxsOraR9xzpTStL4/+SYb/p1DZlBrZ6HezkK9ncXueufr9clo2LlzZ+pzsoHf4/Ec87iJEyce9ZzR4PP59Cd/8ifDfu2+++5LNc0sX75cjY2No3bOfNfSEdTgtZzdruRqzjTNAAAAADg1vq0vyx0+ZMRCs794wue1tJtNM7VVXJcAAADg2GiawWmJx+MZOU/yBmemzpWtNu3r1eb9ZnPMsvlVefm+UG9nod7OQa2dhXo7C/VGtsjk38Oj/t4XjT/8kQXfC4dCMa3f02PEzp1WxvfpaeDfOeeg1s5CvZ2FejsL9c4OkUhE3d3dqceVlZXHPbakpCS1G004HFZHR4ey3UhzPF6j0Gg0ix1vnC6tHSFjPKUioOKALyPndiq7ag17UG9nod7OQr2dg1oDJyew8XFjHJm0WImyKSd8Xkt7nzGuqyoa9dwAAACQP2iaAXLE05/sN8Y1pT4tmjaweiIAAAAAJL2/45ASg5Z+9ntd+tykUjtTAgAAgAOFQgPNFYFA4ITHJ49JNs0Mfl62uuuuu0Z03K9//WtlyuDdltJpx6HdxnjupDHstpRhmao1sgP1dhbq7SzU2zmoNXBs7u7dKtjxOyMWnn3TiJ571E4z7IAJAACA46BpBsgBoWhCv91krlx33bxquV0u23ICAAAAkJ3e3XbQGC+cXKZAAasZAgAAIPM7zRzh9Z74dtSRYwY/L53uvvvu1AdOzua9h3cPOmLm+DLbcgEAAACQ2/ybn5JLA6uAJQpKFK678oTPi8YT2t5pLrhQz04zAAAAOA6aZoAc8GrTAfWE4/3jZKvM9fOqbc0JAAAAQPaxLEvvbusyYouns5IhAAAAMs/n8/U/jsViJzz+yDGDn5etfvKTn8ip1xub9h4yYrMmsKslAAAAgFNgWQpsfNwIRRqukQpOvGPMjs6Q4omBZpuk2ip2mgEAAMCx0TQD5ICnP9lvjM+dXq4J5X7b8gEAAACQnZI3ivYcMlfmXjyNphkAAABkXiAQ6H8cCpkrAA/nyDGDn5etKisrR3RcZ2dn2nJwu90qLx/4Wb+rq0uJRELp1NYTUWdf1IhNKLTS+ueEPbWGfai3s1BvZ6HezpENta6oqMjo+YBT4d39vjxdO4xYaM7NI3pua3vQGFeXFKgswDTI/397dwIl11UeiP/2on1ptXZ51S7vxsbYssE2GBLMbjaTMJmwTCB4zBCSgZmQhENyIAMMMCcZ4pCBLPwnxGAHMGExEDYb8G5kGy+yrN22ZG2tVmvvVi//c8vTrX6t7la31FWv6t3f75w+qvuq6tWt+uotn+p99wYAAIbkbBFq4KK3Vc/uyyy77nyzzAAAwEANDQ1l/aFzuHa1uO/pbO4wZ+r4sHze1FBXF+erpGjx5uSJdVrEOy3inRbxrk5xxphp06aFffv2hZaWlmEfu3///tDe3j6qgpRa0NV1dAb5cosXYpb79dZsy+Ybk8bVh/nTGiv6PqlMrKke4p0W8U6LeKdDrDmeb33rW+Hmm28u3f7EJz4Rli9fHlIwcJaZzuYloXPeC0b03PUDimYWzzLLDAAAw1M0A1Xu249mZ5lpmtQYrlpiVBAAAMhz9Lz+IwVWk189uy7TvnrF3DBz5szc+lMU1Rpvxp5Yp0W80yLeaRHv6nHaaaeF1atXh23btpUuFByq0H3r1q2Z51Cd1g24MG3J7EmhXoE+AACcsKeffjr867/+a5gwYULfQAIpqOvYHyasuz2zrP3sN4cwwvxifcvBTHvJ7Mlj2j8AAIrHcGtQxTq7e8J3Ht+VWfbqc2aH8Y02XQAAIKujszvcsyE7gveVy2bn1h8AAFixYkXp33jx14YNG4Z83BNPPHHMc6g+a3dmL0xbNseFaQAAcKI6OzvDTTfdFBYuXBguvfTSkJLxG38c6jqPFuX31DWEwyveOOLnHzPTzGwzzQAAMDxX3kMVu2vDntBy4Ehm2RvOm5NbfwAAgOr1q82t4WBHV187Dsh25TL5AwAA+el/4dfPfvazQR/T3d0d7rzzztLtKVOmhHPPPbdi/WN01u0ymjMAAIyVb37zm+HZZ58NN9xwQ6ivT+sSvnHP3pNpHznjytAzZe6Intve2R2e3XM4s2yp3AQAgONoPN4DgPz826M7Mu3zFkwJS43cBgAAg2ptbS3buuMPVk1NTX3ttra20sV91eRHjz6TaZ81b0qo6zgQWjsO5NanWlUL8WZsiHVaxDst4p2WvOPd3NxcsdeqNUuXLg1nn312WL16dalo5qUvfWlYvnx55jHf/e53w5YtW0q3X/WqV4XGxuL8dNXQ0FC2dQ+8qK7cF9kd6eoOG1uyozmvmDe1rO+RfGJNvsQ7LeKdFvFOh1iXT8z11q1bV/pbv3596W/fvn2l+66++upw4403jnhdO3fuDN///vfDqlWrQktLSykPmT9/frj88svDK1/5yjBhwoQyvpNQmonztttuC9dff3047bTTQmrGbbkv0+4448oRP3fT7kOhuye7bNEsM80AADC84vzyAAWza39HaaaZ/q47f2SjKgAAQIq6uo7OslJu8SLMSr7eSNy9MVs0tPLMpqrrY62qxnhTHmKdFvFOi3inRbzHzpNPPhm2bdvW1967d2/f7bj8jjvuyDw+FsUM9M53vjN89KMfDR0dHeETn/hEeOMb31iaTSa277777vDjH/+49LgFCxaE173udaFIKllQ1b9wrBzWbt8XjnRlr0x70bJTwozJ48v6ulQ+1lQX8U6LeKdFvNMh1mPnPe95z5is58EHHwyf//znw6FDR4vC29vb+wpxfvKTn4SPfOQjpSKacjhy5Ei46aabwsKFC8Mb3vCGkJr6fVtDw97sIGBHTr1sxM/fsCtbzL9g+vgwZbxifgAAhqdohpNSrhHEjLwRwvdWt4T+vz9NGlcfrj1nbiFHbRPvtIh3OsQ6LeKdFvGG6tN68Eh4cvvBzLKVC/0YCwDAyYkXi915552D3rdmzZrS3/GKZhYtWhQ++MEP9l2U9tWvfvWYx8SCmXhR2qRJRgeuVqu3PT+Cd6/50ycqmAEAIDezZ88Op556anjkkUdG9byNGzeGv/qrvyoV8U+cODFcd9114bzzziu177rrrlIO9Nxzz4VPfvKT4VOf+lRZcpRbbrml9Bpx/Sn+xjZu6/2ZdveEptA1a8WIn79+V/a3kCWzJ49Z3wAAKC5FM9TEKGmpjbzR09MTvvPYw5llr73glHDa/NkhBanFO3XinQ6xTot4p0W8IX/3bW7LtGPR/QWnTM2tPwAA0N8ll1wSPvvZz4bbb789rFq1KuzevTs0NjaWRm5euXJluPbaa8OECRPy7ibDWLPt6CxD0Yr503LrCwAAaXrLW94SlixZUvqbMWNG2LFjR3j/+98/qnV8+ctfLhXIxAFr/+zP/iwsX768775YPBML+r/yla+Uilq+853vhOuvv/6Ydfzf//t/S7PFjNSrX/3q0nqjp556qrTet771reGMM84IKRq35b5M+8gpLwqhbuTFQ+tbsjPNLJ5l8AUAAI5P0QxUofs27g6bWrIjI/zWpafn1h8AAKC63bspWzRzyenTw7iG9EaoAwBgbN14442lv7EwZ86c8I53vKP0l4rW1tayrTuOSN1/EIu2trbQ3d1dttd79OndmfbCGePK+v7IL9bkS7zTIt5pEe90VEOsKzUAbqUNVsAyGuvWrQurV68u3X7Zy16WKZjp9drXvjb87Gc/C1u2bAnf//73w5ve9KZSwX9/P/rRj0J7e/uIXzcOFBCLZrq6usJNN90UzjzzzNIMN6k6pmjm1MtG9fwNu7JFM0tmK5oBAOD4FM1AFbr1gWcy7SVzpoSLzyjmf2oAAAAnP1PlwKKZlQvNAAUAAHmLF8VVSrwQs5yvt3bngWMuTKvk+6Nysaa6iHdaxDst4p0Osa4e999/f9/tWDQzVNHT1VdfHW6++eZw4MCB8Pjjj4cLL7ww85h//ud/PqHXP3z4cGkGm+jtb3/7oI+Js99EH/rQh8Kll14aiqZ+//bQ0LY5s+zIKSN/n4c6usKWtmzB0pLZk8esfwAAFJeiGU5KuUYRq4aRN/Ky73BnuP3R55PkXq8/b3bYs2dPKKqU450i8U6HWKdFvNNSDfEu6ihpcCLW7zoUdh04klmmaAYAABgr+9s7w3N7OzLLlhrNGQCAGrNmzZrSvxMmTAiLFy8e8nHnnHNO5jkDi2ZO1Lhx48I111wz6H1xBpxYUHPJJZeE6dOnh7lz54YiatyanWWme/y00DX77BE/f0NLdpaZujgL5ky5CQAAx6dohpNSqdEwUhp54/bHd4TDnUcvOm2orwuvOmtWMu8/tXgj3ikR67SId1rEG/I1cJaZU6ZPCGc0T8ytPwAAQLGs25W9MC3+buHCNAAAas2zzz5b+nf+/PmhoaFhyMedcsopxzxnLIwfPz68733vG/S+m266qVQ0c91114Xly5eHohq35ehsP1HnKS8KoX7oWByvaOa0GRPCxHH1Y9Y/AACKS9EMVJl/e3Rnpn31khlh5pRxufUHAABqxXA/co3FDEvDtfN03+a9mfbli2aExkbpflHjzdgS67SId1rEOy3iDeW1bufBTPvM5olhfKPtDACA2tHR0RH27dtXuj1r1qxhHzt16tTSbDTt7e2hpaUl1IKR9rNcv6OMNC8fP2Cmmc7TVo6qTxtaDmfaS+dMKetvQwzO/8OkRbzTIt7pEOu0iPfzXEUDVWTNjgNh9fYDmWVvOL+YU64CAMBYa25urthrNTU1hWpw+EhXWPVstmjmFeedWtHPIgXVEm/KT6zTIt5pEe+0iDfVoiiF/esHjOa8fK4L0yrJj9ppEe+0iHdaxDsdYl2dDh8+WmwxceLxZ2qPj4lFM/2fV81uuOGGET3u1ltvDbnl5fu2h9C6IbNo8tmvCJNH8XvG021rM+1zT5vp95Aq4P9h0iLeaRHvdIh1WpoSjbeiGajiWWbmTRsfVi5Mc+cEAAAc3/0bd4f2zu6+dn1dCFcsnZ1rnwAAgGIV9m/c3ZFpn3/GLBem5SjVH7VTJd5pEe+0iHc6xLp6ZprpNZKZ2nsf0/955XTjjTeW/gpt813Z9vhpIcy/cFSreGr787MF9Vo+f9pY9AwAgAQomoEqcaijK3z/iV2ZZa87d05oiFe9AQAADOLnT2UL719w+ozQNGlcbv0BAACKpaenJ6zZlr0w7ewFLkwDAKC2jB8/vu92Z2fncR/f+5j+z6tmX/jCF0LNFc2csTKEhpFfurj38JHwXFt25p/l86aOVe8AACg4RTNQJb6/uiXsa+/KLHvdeUaIBgCAkWptbS3buuvr6zMjAra1tYXu7qMzvOTljie3Z9ovOn1qWT+HVFRrvBl7Yp0W8U6LeKcl73ibcYMi27LnUNjXnr2ocMX86bn1BwAATsTEiRP7bh8+nC28GEzvY/o/r5rNmjVrRI8r1+8HI8nLp6+/MzT0ax+cd3FoH0V/Hn52b6bdWF8XZjYe8ZtIgv8PQ2WJd1rEOx1inZZqiHdzFfyOomgGqmSktlse2pZZ9uJFM8KpM2oj+QYAgGrQ1ZUtQi+n+B8IlXy9wezc3xHW7TqYWXbZmdNz71cRVUO8qQyxTot4p0W80yLeVIsiFPb/at3uTHvqhIYwqftQaG09/oWGFOdHbSpHvNMi3mkR73RUQ6yr4YK0ahNnjJk2bVrYt29faGlpGfax+/fvD+3t7aMqRqkVlcqVB+bldYdaQsPutZnHdCx40aj6s27ngUz79BkTQn3okf9XAf8PkxbxTot4p0Os09KdaLwVzUAV+NUz+8L6XYcyy9528bzc+gMAAFS/eze1HXPx2jnzp+bWHwAAoHiF/Wu278+0l86e7ALfnKX6o3aqxDst4p0W8U6HWFeP0047LaxevTps27atFJOGhv7znhy1devWzHM4eeO2PJBp94ybHDrnnDeqdawfMIjYktmTx6RvAACkoT7vDgAh3DpglpkzmieGlQuPjjwCAABwvKKZS8+YHhrr63LrDwAAUDzrBgz4tWzOpNz6AgAAJ2PFihWlf+MsMhs2bBjycU888cQxz+HkjNt6X6Z9ZP4LQ2gYN6p1bBiQmyyeLTcBAGDkFM1AzrbtbQ93rmvNLHvrC+aF+joXuwEAAIPr7ukJ923OFs2sXDgjt/4AAADFtG6n0ZwBACiGSy+9tO/2z372syFnBrrzzjtLt6dMmRLOPffcivWvyMZtGVA0c+rRWIzU+gFFM3ITAABGo3FUjwbG3Dce2RG6eo62J42rD687b3aeXQIAAKrcmu0Hw55DnZllZqsEAADGUkdnd9i8e+BMMy5MAwCgNi1dujScffbZYfXq1aWimZe+9KVh+fLlmcd897vfDVu2bCndftWrXhUaG4t1aV1DQ0NZ1ltfXz9ku+5Qa2hsWZO5v+v0K0bVl9aDR0LLwSOZZcvmTinb++HE403xiHdaxDsdYp0W8X5esc7soca0d3aH2369I7PstefODlMn2DQBAICh3bt5T6Z9RvPEcErThNz6AwAAFM/G3Ycyg35FS2ZPyqs7AAAk7sknnwzbtm3ra+/du7fvdlx+xx13ZB4fi2IGeuc73xk++tGPho6OjvCJT3wivPGNbyzNJhPbd999d/jxj39cetyCBQvC6173ulA0zc3NFXmdpqZ+g3xtuyt7Z+OkMH3FVSE0jh/x+ta0tmTa4xvqwwWLFoTGhjQv+Kw2mXhTeOKdFvFOh1inpSnReLsyH3L070+2HDM69PUXzc+tPwAAQG24Z2Nbpm2WGQAAYKyt23kw0z5l+gSDfgEAkJuf/OQn4c477xz0vjVr1pT+jlc0s2jRovDBD34wfP7znw+HDh0KX/3qV495TCyY+chHPhImTVIwPiY2DyiaOf3SURXMRE9t35dpL54zRcEMAACj4n+2ISc9PT3hloeOjoARXXrm9LBolqQbAAAY2oGOrvDrrfszyy5XNAMAAFWnoaGhbOuur68ftj0W1rcczrSXzp1c1vdEfrGmeoh3WsQ7LeKdDrGufpdcckn47Gc/G26//fawatWqsHv37tDY2Bjmz58fVq5cGa699towYYKZ3cfMpl9k2wtfMupVDCyaWTF/2sn2CgCAxCiagZzEi9ye3J4dpe1tZpkBAACOY9Uze0Nnd09fu7G+Lrzw9Om59gkAADhWc3NzxV6rqWnsC+k37VmbaV9w+qyKvicqF2uql3inRbzTIt7pEOuxc+ONN5b+xsKcOXPCO97xjtJfSlpbW8uy3lgc1v+73tbWFrq7u0Pd4bbQtO2xUNfvsftmXRg6R9mPx5/dk2mfPr2xbO+FE483xSTeaRHvdIh1Wqoh3s1V8P/KimY4KeUaUSyFkTdufXhHpn1K04Rw9bJZoaG+f6qYhhTizVHinQ6xTot4p0W8qVa1PorzSN27eW+mfeGp08K0SeNz608RVVO8KS+xTot4p0W80yLeUB5PPpfNPYzmDAAAta2rq6sirxMvwoyvNf7Z+0JdODoIWE/DhNA+57zYkRGvq6enJ2zYlR2UeNHMiRV7L4w83qRBvNMi3ukQ67R0JxpvRTPUROVX0Ube2L73cPjJmpbMsne+eFGYPWtmbn2qJkWLN8MT73SIdVrEOy3iTbWo9VGcR+qBp/dl2tecs6AqRuUoMvu5dIh1WsQ7LeKdFvGGk7f7QEfYsa89s+zsBYpmAACAkWvccl+mfWT+C0JomDCqdbQcOBLaDndmli2ZPWlM+gcAQDoUzUAObr7v6dDZfXQkhYnj6sP1l5yea58AAIDq98zug2HDrgOZZVctm5NbfwAAgKG1traWbd1xRqX+BWJtbW2lEQLHyoOb2zLt8Q11oanhSFnfE/nEmuoi3mkR77SIdzqqIdYGWaJajNt6f6bdecplo17H+pZDmfaExvpwStPoCm8AAEDRDFRYR2d3uPn+pzPLrnvBqWHG5PG59QkAAKgNv1i7K9OeOWV8OPeU6bn1BwAAGFpXV1fFXiteiDmWr/fUjv2Z9qJZk0JdT3yNMXsJqiTWVDfxTot4p0W80yHWJKu7K/SMnxp66seHuu6O0qIjp55A0cyug5n24lmTQn1d3Zh1EwCANCia4aSUa0Sxahh5o1y+/8TOsHNfe2bZG8+bmfTobEWON8cS73SIdVrEOy3VEG+jpFG0UZxH6iePb8m0Lz1jemhr21PxfhRdtcSb8hPrtIh3WsQ7LXnHW35CEa3bmb0wbensybn1BQAAGBsNDQ1ly8uPaY8bHw68+ashdB4OjdseDo3P3hu6T33hqPuwseVwpr10zuSyvQ9OIt4UlninRbzTIdZpEe/nKZrhpFRqNIwijbzx1Qefy7QvPm1aWDJrYmHe31goUrw5PvFOh1inRbzTIt5Ui1oexXkkOrt7wn2b2zLLLjtzuu2vAuzn0iHWaRHvtIh3WsQbTt7aAUUzy+YomgEAgFpXqUEf+g9sUTJnQQjnvypMOoF1bdrz/Cw1vc47fZbBK6rMMfGm0MQ7LeKdDrFOS1Oi8U6zVAhy8sS2/eHR5/Znll1/0bzc+gMAANRWPrG/PXvx58qFaf5nBgAAUD7dPT1h/a5DmWVL55zI5W0AAAAnrqenJ6zdnr3Oavn8abn1BwCA2qVoBirollXbM+1508aHly6bmVt/AACA2nHvpuwsM0tmTwpzpo7PrT8AAEAxbdnTHg53dmeWLTXTDAAAUGFb2w6H/e2dmWXL5ymaAQBg9BpP4DnACdh94Ej49zUtmWVvvnBuaKyvy61PAABA7RbNrDzTLDMAAMDYW7frYKY9Y1JjmDV5XG79AQAAxkZra2tZ1ltfXx+amo7+ZtHW1ha6u7OF+Cdi1fpsf6eMbwiTug+F1tbDJ71uqi/eVCfxTot4p0Os01IN8W5ubg55UzQDFXLbozvCka6evvb4hrrwxgvm5tonAACgNuw73Bkee25/ZtnlixTNAAAAY2/tzmzRzLI5k0NdnQHAAACg1nV1dVXkdeJFmGPxWmt3ZH8XWTxrkgt6q9BYxZvaIN5pEe90iHVauhONt6IZqIDOru7wjYe3Z5b95lmzQrOR2QAAgBG4/+m9oftoDX6pCP8Fp07Ps0sAAMBxNDQ0lHV0wOHaJ2P9rkOZ9rI5U8r6Xsgv1lQf8U6LeKdFvNMh1jB2NrRkc5Mlsyfl1hcAAGqbohmogDvWtYYd+49kll1/0bzc+gMAANSWeze1ZdoXnTYtTBznx1YAAKhmzc3NFXutpqaxm4lyw+72TPsFC+dU9L1QuVhT/cQ7LeKdFvFOh1jD2BX0L1Y0AwDACXKFDVTArQ9lZ5k5f8HUcM78qbn1BwAAqB09PT3h3k17MssuXzgjt/4AAADFdaijK2xqOZBZtmL+tNz6AwAApKm7p2eQmWYm59YfAABqm6IZKLO1Ow+GVc/uyyx728VmmQEAAEbm6dbD4bm9HZllKxcanRAAABh7T23fF3p6jrbr6kJYPk/RDAAAUFlb29pDe2d3ZtmSWWaaAQDgxDSe4POAEbpl1bZMe9aUceHly2fm1h8AAKC23LupLdOePWVcWDLbD0MAAFDtWltby7bu+vr60NR0tJi+ra0tdHdnLyg7Eas2bM+0T58xMRw+sDcczk4+QwWVK9ZUJ/FOi3inRbzTUQ2xbm5urujrUTsaGhrK9r0frn0iNu5uz7SbJjaGudMnhrpY2U+uyhFvqpd4p0W80yHWaRHv5ymagTJqO9QZvr+6JbPsTRfMDeMa0tzhAAAAo3fv5rZjZpnxoxAAAFS/rq6uir1WvBBzLF7vqe3Z6pilsydV9H1QuVhTG8Q7LeKdFvFOh1hTTSpVUNW/cOxEbT2Qvd5qxfzpYeZMgxRXo7GIN7VDvNMi3ukQ67Q0JRpvRTNQRv/26I7MVKEN9XXhzRfOzbVPAABQVOUaIS3PkTeOdHWHXz2zN7PsisXNZX2vGGklJWKdFvFOi3inRbxh7KzbdTDTXjpncm59AQAA0vXU9n2Z9vL5U3PrCwAAtU/RDJRJV3dP+PrDOzLLXrF8Zpg9dXxufQIAgCKr1AhplRx5494NLeFgx9FC/OiVF54ZmqdOqMjrk/ZIKykS67SId1rEOy3iDSemp6cnrN2ZLZpZpmgGAADIwZpt2aKZFfOm5dYXAABqn6IZKJNfbGgNW/e2Z5a97eJ5ufUHAACoPT9/amemfd6p08MsBTMAAEAZtBw8EvYc6swsWzpb0QwAABRFa2trWdYbZ3ztP4BFW1tb6O7ODgg2Gp3dPWH9zv2ZZfMnl6//5Btvqpt4p0W80yHWaamGeDdXcBDcoSiagTK5ddX2TPuseZPD+QtMFQoAAIzcL9buyrSvXDYnt74AAADFtm7ALDMTG+vDqTMU7QMAQFF0dXVV5HXiRZgn81qbWw6FI109mWWLmidUrP9UNt7UFvFOi3inQ6zT0p1ovBXNQBlsbDkU7n96b2bZ2y6aH+rq6nLrEwAAFF05RxjLY+SN3QePhMe2tGWWXbxgopHUEhlphcoQ67SId1rEOy15x7saRkiDsbBu56FMe8nsSaHe7xoAAECFrW/J5iazJo8LMyaPy60/AADUPkUzUAa3PrQt054xqTH85lmzcusPAACkoJIjYVRi5I17NuwO/cdRmzSuPpw3f3KSI37kLdWRVlIk1mkR77SId1rEG07M2gEzzSydMzm3vgAAAOlav+vgMQX9AABwMupP6tnAMfa3d4bvPr4rs+yNF8wNExptbgAAwMjdtyk7y8wlp08P4xrkFQAAQHmsG3Bh2jJFMwAAQA427MrONLNY0QwAACfJ1TYwxr7z2K5w6Eh3X7uhLoQ3Xzg31z4BAAC1paenJ9y7OVs0c9nCptz6AwAAFFtnd0/Y2JK9MG2pC9MAAICqmGlGQT8AACen8SSfT+IaGhrKst76+vph29Wqu6cn3Prw9syyly6bGU5tlrwVMd6cGPFOh1inRbzTIt5Qfut3HQo79x/JLFupaAYAACiTZ1oPh46unsyypS5MAwAAKqyjszs8vac9s2zxLAX9AACcHEUznJTm5uaKvE5TU21cHPazNTtKPyz1956XLq/Y51QUtRJvxoZ4p0Os0yLeaRFvGHsDZ5lZMH18OLN5Ym79AQAAqmfgsXIMaLG+Jfvbxuyp48KsaXKQamDwkrSId1rEOy3inQ6xhpPzdOvh0NWdLehfYhZMAABOkqIZGEP/392bMu2z5k8Lly2amVt/AACA2nTvprZjZpmpq6vLrT8AAMDoVXJArZMd0OLZfTsy7XNOmWFAsCpl8JK0iHdaxDst4p0OsYbRWd9yKNOeN218mDrBJY4AAJwcZ5QwRjbuOhDuWLMzs+wdVyx0YRsAADAqh490h4ee3ZtZdtmZflgFAADK58lte48ZFAwAACiWcs2GOZYzLG0cMAvmktmTyzqLJ6NnRq20iHdaxDsdYp0W8X6eohlOSmtra1nWGzfI/qNttLW1he7u7lDNvvSzjZn2tAkN4eozJ5ftMyqSWow3J0680yHWaRHvtFRDvI12S5E9vGVfaO/s6WvX14VwqaIZAACgjJ7cti/TVjQDAADFU6nf105mhqWn29Zn2uee1ux3wSpnRq20iHdaxDsdYp2WpkTjrWiGk9LV1VWR14kXYVbqtU7EwY6u8G+P7sgse8P5c8L4hsp9RkVS7fFmbIl3OsQ6LeKdFvGGsXXvpj2Z9rnzp4bpE6XvAABQa8o5qNZYDmixv70zPNt6KLPslMnl7T+1NXgJlSPeaRHvtIh3Oqoh1goMqGVPbc8W9C+fp6AfAICT56obGAO3P7ErHOg4eqFoXQjhLS+Yl2ufAACA2nTvprZMe+XCNEf5AACAWlfJASZOZkCLp7bvz7Qb6kI4Y8Z4A2RUKYOXpEW80yLeaRHvdIg1jNzhI11h8+6DmWWKZgAAGAuKZuAk9fT0hFsf2p5Z9pIlM8JpMybm1icAAKA27drfEdbtyo7wrGgGAAAop7U7sxelnTlzUhjfWJ9bfwAAgPIo12ySYzXD0upt+0NPT3bZnPGdZsGsMtUwoxaVI95pEe90iHVaqiHezVUwG6aiGThJDzy9N2xoyV7U9raL5ufWHwAAoDizzEyd0BDOXTA1t/4AAADFt35Xtmhm6ZzJufUFAAAon0rNenSiMyyt3ZGdBfPUpglhfENlZ/Fk9MyolRbxTot4p0Os09KdaLwNEwUn6ZYBs8wsnDkxXHbm9Nz6AwAA1K57N2eLZl50xvTQWF+XW38AAIDiW7szOzDY0tmTcusLAACQrvW7srnJYrkJAABjRNEMnIStbe3hF+uzU4Bef9G8UFfnojYAAGB0unt6jplpZuXCo1PkAgAAjLWenp6wbsBMM8vMNAMAAORgQ0u2aGbJLEUzAACMjcYxWg8k6V8f3h66e462p4yvD685d06eXQIAgGQ1NDSUbd319fXDtsfCU9v2hz2HOjPLXrx4ZlnfF/nFm+og1mkR77SId1rEG07c9n0dYX97V2bZ0tmKZgAAgMpbP6Cgf4ncBACAMaJoBk7Q4SNd4d8e3ZFZ9tpz54Qp413QBgAAeWhubq7YazU1jf0MMA8/0pJpL5o9JZy3aMGYvw7VEW+qk1inRbzTIt5pEW8YuXU7sxelxd845k8fn1t/AACANB3o6ArP7e3ILFs820wzAACMDcOtwQn6wZMtYe/h7Ohr1180L7f+AAAAte3nT+3MtK9cNju3vgAAAGlYO2Ak56VzJoW6urrc+gMAAKRpY8uhTLu+LoSFMxXNAAAwNhTNwAno6ekJt67anll2+cKmcKZkDQAAOAEH2jvDrza3ZpZdtWxObv0BAADSsG5n9sK0ZbMn59YXAAAgXesGFPSfNmNimNDo0kYAAMZG4xitB5Ly8JZ94amd2WTtbWaZAQCAXLW2ZotOxlJ9fX1oamrqa7e1tYXu7u4xW//P1+0OR7p6+tqN9XXhrJkNZX1P5BdvqodYp0W80yLeack73s3NzRV7LRhrawf81rF0jqIZAACg8jbsyhb0L5lt4GIAAMaOohk4AbcMmGXmtBkTwhWLZ+TWHwAAIISurq6KvVa8CHMsX+/uDdnimAtOmRomNlb2PVG5eFO9xDot4p0W8U6LeMPIdHR2h82thzPLFM0AAAB5WD9gppkls+QmAACMHUUzMErb97WHn63dnVn21hfMC/V1dbn1CQAAqG33bm7LtFcuPDpSOgAAQDls2n0odHUfnfEyWmo0ZwAAKKyGhoayzQA7XHskNrRkC/qXzZ1Stv6Sf7ypHeKdFvFOh1inRbyfp2gGRukbj+wIXf1+Q5rYWB9ef96cPLsEAADUsOfa2sPm3dkfgxTNAAAA5bZu16FMe8H08WHqBD8dAgBAUTU3N1fkdZqaRvcbR9vBI2Hn/o7MsouWzA/NzdPGuGdUQ7ypbeKdFvFOh1inpSnRePufbxiF9s7ucNsjOzLLXnPu7DBtok0JAAAYm1lmmiY1hhVzp+TWHwAAYGyUc1TksRgdcP2Aopllc4zkXI2MBJkW8U6LeKdFvNMh1jB6T+3Yl2mPa6gLC2f5nQQAgLHjSn8YhR+taQmthzozy976gnm59QcAAKh9927KFs1cdmZTaKivy60/AABAbY3ifKKjA27aszbTPv+MmRXtMycm1ZEgUyXeaRHvtIh3OsQajm/NtmzRzKLZU8L4RgVnAACMHUUzMEI9PT3h1lXbM8suOX16WDpncm59AgAAaltnd0+4f8BMMyvP9CMqAABQfk9u25tpr5g/Pbe+AAAA5dfa2lqW9cYZlfoXiLW1tYXu7u4RP//Rp3dl2gubJ5Str+Qfb2qLeKdFvNMh1mmphng3V8FgTYpmYIQe33YgPLH9QGbZ2y42ywwAAHDiVm/bH/a1d2WWrVyoaAYAACiv1gMdYfve9syys+dPy60/AABA+XV1ZX+PKJd4EeZoXmvdzuz1WItnTapYX6l8vKlt4p0W8U6HWKelO9F4K5qBEbpl1bZMe/608eHKJflXvgEAALXrnk1tx/wQNHfa+Nz6AwAAjJ1yjox8sqMDPvh0NhcZ11AXmho6jOZchaphJEgqR7zTIt5pEe90VEOsq2EUZxiNDbsOZdpLZk/KrS8AABSTohkYgV0HOsKP1uzOLHvLC+aFxvq63PoEAADUvnsHFM2YZQYAAIqjkqP1jXZ0wDXb92fai2ZNCvWhJ8kRBmtNqiNBpkq80yLeaRHvdIg1DG/3gSOh9VDnMQOMAQDAWKof07VBQd32yI7Q2d3T157QWBeuu2BOrn0CAABq277DneHx57IXql2uaAYAAKiAdTsPZtpLZ0/OrS8AAEC6NrRkc5PxDXXhtBkTc+sPAADFpGgGjuNIV3f4xiM7MsteedbsMGPSuNz6BAAA1L4Hnt4bunqyPwRddNq0PLsEAAAkYt2u7IVpy+YomgEAACpv3a5DmfbCWZNCQ31dbv0BAKCYFM3Acfx0bWvYdeBIZtnbLp6XW38AAIBiuHdzW6YdC2YmjmvIrT8AAEAaunt6wvoBF6YtnT0pt/4AAADp2tCSzU2WyE0AACgDRTNwHLes2pZpv+DUaWHF3Cm59QcAAKh9PT094d6N2aKZlQtn5NYfAAAgHVvb2sOhI92ZZWaaAQAA8rB+wCyYS2bJTQAAGHuKZmAYT24/EH69dX9m2fUXmWUGAAA4Oc/saQ9b97Znlq1c2JRbfwAAgHSs3Zm9KK1pUmOYNWVcbv0BAADSHWBsw4BZMM00AwBAOSiagVHMMjNn6rhwzbLm3PoDAAAUw72b9mTa8QK1pX4IAgAAKmDdgKKZZbMnh7q6utz6AwAApGnn/iNhX3tXZtniWX4rAQBg7DWWYZ0kpKGhoSzrra+vH7ZdCa0Hj4QfPtmSWfaWF8wPE8Ybba2I8aZyxDsdYp0W8U6LeMPJu2dTW6a98swmF6kBAAC5zDSzdI6L0gAAgMrb0JLNTSaNqw8Lmibk1h8AAIpL0Qwnpbm5MrOuNDU1hUr76iPrQkdXT197fEN9ePfVK0LzNMlZEeNNfsQ7HWKdFvFOi3jD6Bzp6g6/enpvZtnKhbYjAACgMtbtOpRpL50zObe+AAAA6RqYm8RZZuoNMAYAQBkYEhoG0dnVHb5yz+bMstdcsCDMUTADAACcpEe37g8Hj3Rnll12pqIZAACg/A4f6QrP7jmcWbZ0tqIZAACg8jYMLJqRmwAAUCaKZmAQP169PWxty/5o9I4rFubWHwAAoDju2dSWaa+YOznMnDIut/4AAADp2NByKHT3HG3HMZyXzJqUZ5cAAIBErd91MNNeMltuAgBAeTSWab0korW1tSzrra+vD01NR0dabmtrC93d2ZGYy+nvf74u0z5vwdRw5tSesr3f1OUdbypLvNMh1mkR77RUQ7ybm5sr+nowlu4bUDRz+UKzzAAAAJWxbmd2JOfTZkwIk8Y35NYfAACgchoaGsr22+Fw7cF09/SEjbuz+cmyOVPK1kfyjTe1S7zTIt7pEOu0iPfzFM1wUrq6uiryOvEizEq91rqdB8ODT+/NLLv+onkVe30qG2/yJ97pEOu0iHdaxBtGbs/BI2H19gOZZSsVzQAAABWydsBIzkvnTM6tLwAAQCjkoHT9B98byjO7D4aDHdlB+V649JTQ3DSxjD0jr3hTHOKdFvFOh1inpSnReCuagQFueWh7pj1zcmN4xfKZufUHAAAYmXKOPjZWI2888Exr6OnXnjiuPlx0+ozQ0JDmSB7Vykgr6RDrtIh3WsQ7LeINI7d+54CimdmKZgAAgMpbu2Nfpj1tYmOYN31Cbv0BAKDYFM1AP3sPd4bvP7Ers+yNF8wN4xv9yAoAANWuUiOknczIG6u2Pp1pX7Fkdpg3Z9YY9YpySXWklRSJdVrEOy3inRbxhqGtHVg0Y6YZAAAgB2u27c+0V8ybFurq6nLrDwAAxaZoBvr59qM7w+HOo1N/NtTXhTdfOC/XPgEAAMXQ09MTfr52Z2bZlctm59YfAAAgLS0HjoTWQ52ZZcsUzQAAQDJaW1vLst4442v/ASza2tpCd/fR668G89gzLZn2mTPGl61/5B9vapd4p0W80yHWaamGeDdXcBDcoSiagf+nq7sn/OvD2zPLrlnWHOZOG59bnwAAgOJYu2N/2L63PbPsymVzcusPAACQ9iwzExrrw6lNE3LrDwAAUFldXV0VeZ14EebxXmvdzgOZ9qJZEyvWPyofb4pDvNMi3ukQ67R0JxpvRTPw/9y9cU/Y0pa9gO1tF83PrT8AAMDolHMEsrEYeeOHj2zNtOdPHx9mNnYYOa0KVcNIK1SGWKdFvNMi3mnJO97VMEIajMS6XdmimSWzJ4WG+rrc+gMAAKQ7sPGm3YeOyU8AAKBcFM3A/3PLQ9lZZpbPnRwuPHVqbv0BAABGp5IjYZzIyBt3b8gWx6w8s8nFuzUi1ZFWUiTWaRHvtIh3WsSbatHQ0FDWYrHh2oNZvyt7UdqyOVPK2kfyizW1S7zTIt5pEe90iDUcXxzUuL2zJ7NsyazJufUHAIDiUzQDIZRGL7h3U1tm2dsumhfq6oywBgAAnLz2zu6w6tm9mWUrFx4dDR0AACieSs5C1H+2paFsbG3PtC88c7aZkmrQSGJNcYh3WsQ7LeKdDrGGY20YMAvmjEmNYeaUcbn1BwCA4jOcAYQQbh0wy0zTpMbwyrNm59YfAACgWB56dl9m1LT6uhBedIYfSwEAgMro7OoOT23fn1l21vxpufUHAABI1/qW7CyYi2dNyq0vAACkQdEMydvf3hm++9jOzLLrzp8TJo6zeQAAAGPjvgEzW54zf0qpWB8AAKASNrUcDB2d3ZllKxTNAAAAOdg4oGhmyWxFMwAAlJcrdEjedx/fFQ4e6c6M+PyWC+fl2icAAKBY7t2cLZq5fOGM3PoCAABURmtra9nWXV9fH5qajs5e2dbWFrq7s0Ux/f1q3a5Me/aUcaH+yMHQ2nqwbH0kn1hT28Q7LeKdFvFORzXEurm5uaKvBydbNLPITDMAAJSZohmS1t3TE259aHtm2VVLmsOCpgm59QkAACiWXfs7wtqd2QvRLlt49EdTAACgmLq6uir2WvFCzOFe76kd+zPtpXMmV7R/VC7WFIt4p0W80yLe6RBryOrq7gmbdiuaAQCgsuor/HpQVe7b1Baebj2cWfa2i80yAwAAlG+WmSnjG8J586fk1h8AACA9Awv5l852URoAAFB5z+1tD+2dPZllimYAACg3RTMkbeAsM4tnTQqXnD49t/4AAADFLNbv79Izp4fGBuk4AABQOet3HTpmphkAAIBK29iSzU2mT2wIsyaPy60/AACkwVU6JOvZPYfDLzfsySy7/qJ5oa6uLrc+AQAAxdLd0xPuHVA0c9mZTbn1BwAASM+Bjq6wpa09s2zpbEUzAABA/kUzcZYZ12oBAFBuimZI1r8+tD30n+xz6oSG8OpzZufYIwAAoGie2nEwtB7qzCy7fKGiGQAAoHKe2nEg026oe/7CNAAAgNyLZmbKTQAAKD9FMyTpUEdX+PZjOzPLXn/enDB5fENufQIAAIpn4Cwzp8+YEE6dMTG3/gAAAOlZvT1bNLN49uQwodFPhAAAQOVtGGSmGQAAKDf/I06Sbl+9K+xr7+prx0k+3/qCebn2CQAAKH7RzEqzzAAAABX25PaDmfZZ86bk1hcAACBdPT09YdPubNHMYkUzAABUgKIZkkzAblm1PbPsikUzwunNRnsGAADGdobLh7fsyyxbuXBGbv0BAADS9OSAmWbOmjs5t74AAADp2rG/Ixzo6M4sM9MMAACVoGiG5Pzqmb3HTPX5tovNMgMAAIx97tHZ3dPXbqivCy88fVqufQIAANIr5h84kvPZ8800AwAAVN7GAddrTR5XH+ZNG59bfwAASIeiGZJzy0PZWWbOaJ4YVi5syq0/AABAMd27uS3TvuCUqWHqhMbc+gMAAKRnzc6DoV8tf6ivC2H5HDPNAAAAlbex5XCmvXDWpFBXV5dbfwAASIeiGZLyXFt7uHNda2bZ9RfNC/USMAAAYIzduylbNKNYHwAAqLQntx/ItBfNmhQmjmvIrT8AAEC6NgyYaWbRzEm59QUAgLQY4pakfOOR7ZkR1eI0n689d3aeXQIAAApo2972sGl3dsS0lWcqmgEAAPItmjlr7pTc+gIAAOSroaE8BfT19fXDtntt2p0tmlkyZ3LZ+kT5jDTeFIN4p0W80yHWaRHv5ymaIRmHj3SH2x7dmVn2mnPnhKkTbAYAAEB5Z5lpmtQYzprn4jQAAKCyVg8omjl7vrwEAABS1dzcXJHXaWo6dhCxnp6esHHAYGMXnDm3Yn2isvGmuMQ7LeKdDrFOS1Oi8U6zVIgk/fuTLaHtUGdm2dsumpdbfwAAgOK6Z0DRzKVnTA8N9XW59QcAAEjP4SNdYWNLdiRnxfwAAEAeWg50hD0Hj2SWLZs3Nbf+AACQFkUzJCGOVnDLQ9syyy47c3pYOGtSbn0CAACKqbOrO9y3OVs0s3JhmiN1AAAA+Vm782Do7jnajmX8y+dMzrNLAABAotZu359pj2+sD6c1y08AAKiMxgq9DuTqka37w5odBzPLrr9ofm79AQAAiuvhLfvD/vauzLIrFs3IrT8AAECaVm8/kGkvnDkxTB7fkFt/AACAfLW2tpZlvfX19aGp6ejgYW1tbaG7uzvzmF9v2n5MfrK3bU9Z+kN5jSTeFId4p0W80yHWaamGeDc3N4e8KZohCbesys4yc8r0CeEli120BgAAjL27NmR/5Fkxd3KYM3V8bv0BAADStHp7djCxs+ZPya0vAABA/rq6sgN+lUu8CHPga63flc1PFs2cVLH+UPl4U1zinRbxTodYp6U70XjX590BKLed+zvCT9dmR0p460XzQkN9XW59AgAAiuuXG7L5x5WL8x8xAwAASM+aATPNnD1P0QwAAJCPjS2HMu1Fsybl1hcAANKjaIbC+8bDO0JXd09fe0JjfXj9eXNy7RMAAFBMz+45HDbuPpxZ9pIlZrkEAAAqq72zO6wfcFHaWXMVzQAAAPnYoGgGAIAcKZqh0Do6u8M3f709s+zV58wKTZMac+sTAABQXL/csCfTbp7UGM6Z78I0AACgstbuPJgZUKwuhLDCTDMAAEAO9h7uDC0HjmSWLVY0AwBABSmaodB+8tTusPtgZ2bZ2y6an1t/AACAYrtrQNHMFYtmhPq6eHkaAABA5Ty5/UCmfcbMiWHK+Ibc+gMAAKRr44BZZhrq68LpMybk1h8AANKjaIZCu+WhbZn2xadNC0vnTM6tPwAAQHEd7OgKDz6zN7PsyiUzcusPAACQroFFM2ebZQYAAKiSopkzZkwIjQ0uWwQAoHKcfVJYjz+3Pzz2XPZHobddbJYZAACgPO5/ui0c6erJjJS2cmFTrn0CAADStHpA0cxZcxXNAAAA1VE0s2jWpNz6AgBAmhTNUFi3PLQ90543bXy4emlzbv0BAACK7a4NezLtF5w6NUyd0JhbfwAAgDR1dHaH9buyF6WdZaYZAACgSopmFs+anFtfAABIk6IZavYHn+HsPnAk/GhNS2bZmy+cGxrr68rcMwAAIEU9PT3HFM1cuVjRPgAAUHnrdh0Mnd1HZ8GMzprnojQAACAfGwYUzSycNTG3vgAAkCZD3lJzHn52X/jT760Ln3jNknDRadMHfcw3f70jHOk6+oPQ+Ia68MYL5lawlwAAQKU1NDSUbd319fXDttdsPxB27D+SWXbVspll7RMht3hTHGKdFvFOi3inRbwh68ntBzPt02dMMAsmAACQi4MdXWHbvo7MssWzJuXWHwAA0uR/yKkpX394e/jMTzeHru6e8N+/vTb88388L8ybNiHzmM6u7vCNR7Znlv3mWbNC8+RxFe4tAABQSc3NlZvZpampKdN+YNWuTPuMmZPDRUtOCXV1ZrssgoHxprjEOi3inRbxTot4k7rV2w9k2mfNm5JbXwAAgLRt2p2dZaa+LoQzmhXNAABQWYpmOCnlGjV5sJEBf/pUS/jUjzf1Ldt9sDN8+N/Whn94+3lh4rij/fjJU61h54ARnn/7klOM8FzFjASZFvFOh1inRbzTIt5wrJ+u2ZFpX3PWXAUzAACQuLxmw3xyR7Zo5twF0/xGUsP8P0xaxDst4p0W8U6HWEPWhpZs0cwpTRPCxHG2CwAAKkvRDDUxknMcGfC6F00P3358d7jzqZ19y5/YdiB85o5nw+feemHfBWlf//XqzHMvPmNGePHZp1ekn4wNI0GmRbzTIdZpEe+0iDepa9nfHh5+Zs8xRTMAAEDa8pgNs6OzO6zfmb0o7dKl8yvaF8rL/8OkRbzTIt5pEe90iDWp2zSgaGbRLLPMAABQeYpmqBkN9XXhf//WReENN/0ybGo52Lf8m6u2hHNPaQr/6SWLwuNb28IDm1ozz3vHFQtz6C0AAFBpra3ZXGAsxdEA+/+42dbWFrq7u0u3b39sR+jpOfrYSePqw4rm+rL2h/IaLt4Ui1inRbzTIt5pyTveihGoJk9t3xc6urLf//gbCgAAQDXMNLNY0QwAADlQNENNaZo8Lnzxdy8Jb7zprnCgo6tv+f+4fXU4a/608O2Ht2YeP2fahPCq8xbk0FMAAKDSurqO5gjlFi/C7H29n6/bnbnv0jObQkNdT0X7Q+XiTbGJdVrEOy3inRbxJmWPbWnLtM+YObn02woAAEAeNg6caWamohkAACpP0QwnpVwjJw83MuCc8SF8/DVLwx/dtqbv/q7unvCfv/KrcLgzO3ramy+YGw7sawsHytJLijISJJUl3ukQ67SId1qqId5GcqZadHZ1h3s2ZS9Ku3LxjNz6AwAApD0b5oMbdmQet2LOJLNg1rhq+H8YKke80yLeaRHvdFRDrP2GQrVo7+wOW9raM8sWmWkGAIAcKJrhpFRqtL6BIwNetWRGeM/lp4Yv3bOlb1nb4c7Mcxrq68J15882omANMhJkWsQ7HWKdFvFOi3iTske27g/727Pf/xcrmgEAAHKaDXP1tv2Z5SvmTpazF4z/h0mLeKdFvNMi3ukQa1L2dOvh0N2TXbZQ0QwAADmoz+NFYSy854pTw9VLhx4d4xXLZ4bZU8dXtE8AAEBafrlhzzEXpM2RhwAAADnNhLl258HMsrPmTcmtPwAAQNo2tBzKtOdPGx+mjG/IrT8AAKRL0Qw1q76uLvzFqxaHRTMnDnr/2y6eV/E+AQAAafnl+tZM+yVmmQEAAHK8IK2jKzuM81nzJufWHwAAIG0bd2WLZhaZZQYAgJwomqGmTZ3QGD573fIwdUJ2FIKz500J5y+Ymlu/AACA4tuy53DYuPtwZtmVS4aeDRMAAKCcVm8/kGmfMn1CmDFpXG79AQAA0rZxt6IZAACqg6IZat6ZMyeFv3zN0tBYX9e37IaXnBbq6o62AQAAxtqDz+zNtJsnNYZz5k/JrT8AAEDantx+MNNeYZYZAAAgRxtbskUzixXNAACQk8a8XhjG0osXzwj/93fODfdsagsvOHVauPDUaXl3CQAAKLjXnzcnXHjKtPDLDXvCLza0htNmTAz1ivcBAICcvOuyU8KLzpgentxxIDy57UC45PTpeXcJAABI2J/+5qKwftehUvFMnHVm+VyF/QAA5EPRDIWxfO6U0h8AAEAlxNktF86aVPr7nRctCD09PXl3CQAASNjcaePDNdNmhmuWz8y7KwAAAKVBjw18DABANajPuwMAAABQlCIaAAAAAAAAAACgeiiaAQAAAAAAAAAAAAAAoHAUzQAAAAAAAAAAAAAAAFA4imYAAAAAAAAAAAAAAAAonMa8OwAAAAAAAAAAAACUT0NDQ1nWW19fP2ybYhHvtIh3WsQ7HWKdFvF+nqIZAAAAAAAAAAAAKLDm5uaKvE5TU1NFXofqIN5pEe+0iHc6xDotTYnGO81SIQAAAAAAAAAAAAAAAApN0QwAAAAAAAAAAAAAAACF05h3BwAAAAAAAAAAAIDyaW1tLct66+vrQ1NTU1+7ra0tdHd3l+W1yJ94p0W80yLe6RDrtFRDvJubm0PeFM0AAAAAAAAAAABAgXV1dVXkdeJFmJV6LfIn3mkR77SIdzrEOi3dica7Pu8OAAAAAAAAAAAAAAAAwFhTNAMAAAAAAAAAAAAAAEDhKJoBAAAAAAAAAAAAAACgcBTNAAAAAAAAAAAAAAAAUDiKZgAAAAAAAAAAAAAAACgcRTMAAAAAAAAAAAAAAAAUjqIZAAAAAAAAAAAAAAAACkfRDAAAAAAAAAAAAAAAAIWjaAYAAAAAAAAAAAAAAIDCUTQDAAAAAAAAAAAAAABA4SiaAQAAAAAAAAAAAAAAoHAUzQAAAAAAAAAAAAAAAFA4imYAAAAAAAAAAAAAAAAoHEUzAAAAAAAAAAAAAAAAFI6iGQAAAAAAAAAAAAAAAApH0QwAAAAAAAAAAAAAAACFo2gGAAAAAAAAAAAAAACAwlE0AwAAAAAAAAAAAAAAQOEomgEAAAAAAAAAAAAAAKBwFM0AAAAAAAAAAAAAAABQOIpmAAAAAAAAAAAAAAAAKJzGvDtAbZs9e3ZZ1tvS0hKuv/760u0vfOELYdasWWV5HaqDeKdFvNMh1mkR77SIN6nlJ5HvfVrEOx1inRbxTot4p0W8qVZyFMaCWKdFvNMi3mkR73SINdXMdV6MBfFOi3inRbzTIdZpEe/nmWkGAAAAAAAAAAAAAACAwlE0AwAAAAAAAAAAAAAAQOEomgEAAAAAAAAAAAAAAKBwFM0AAAAAAAAAAAAAAABQOIpmAAAAAAAAAAAAAAAAKBxFMwAAAAAAAAAAAAAAABSOohkAAAAAAAAAAAAAAAAKR9EMAAAAAAAAAAAAAAAAhaNoBgAAAAAAAAAAAAAAgMKp6+np6cm7EwAAAAAAAAAAAAAAADCWzDQDAAAAAAAAAAAAAABA4SiaAQAAAAAAAAAAAAAAoHAUzQAAAAAAAAAAAAAAAFA4imYAAAAAAAAAAAAAAAAoHEUzAAAAAAAAAAAAAAAAFI6iGQAAAAAAAAAAAAAAAApH0QwAAAAAAAAAAAAAAACFo2gGAAAAAAAAAAAAAACAwlE0AwAAAAAAAAAAAAAAQOEomgEAAAAAAAAAAAAAAKBwGvPuAAy0c+fO8P3vfz+sWrUqtLS0hMbGxjB//vxw+eWXh1e+8pVhwoQJeXexJrW1tYV169aV/tavX1/627dvX+m+q6++Otx4442jWt9DDz0UfvzjH5fWs3fv3jB9+vSwZMmS8IpXvCJcdNFFI1pHV1dX+MlPfhJ++ctfhi1btoTDhw+HmTNnhvPPPz+86lWvCqeffvqI1hNfP35nHnjggdL3J5ozZ0540YteFF796leHadOmjWg9Tz/9dPjBD34QHn300bB79+4wceLEcOqpp4aXvOQl4eUvf3loaGgItSDGJMbnySefDM8++2zp84l9j5/tihUrwjXXXBPOOuusEa9PrKvXwYMHS/Hp3abje4mfUUdHR5gyZUo47bTTSjGKMR/JZ7NmzZrwwx/+sPTdifuMyZMnh4ULF5b2EfGzGakY5zvuuCNs3ry51MempqbSd+7aa68Ny5cvH9E62tvbSzG69957w7Zt20JnZ2eYNWtWuPjii0vfmRj3kUjlmPKVr3wlfPvb3+5rf+xjHwvnnnvusM+xbVe/66+/fkSPO+ecc8Kf//mfD/sY8YaTk8rxpJLkJ2nt5+Qo6cRbjnJ8qRxT5CjF2rZ7yVHSijfVLZXjSSXJUdLaz8lR0om3HOX4UjmmyFGKtW1H8pN0Yk31S+VYUmlylHT2dfKTdGItPzm+VI4p8pNibdu95CjVH++6np6enrK/CozQgw8+GD7/+c+HQ4cODXr/ggULwkc+8pHSgZCx2yGPJpnq7u4OX/ziF8NPf/rTIR8TT9ze+973hvr6+mF3pJ/85CdLO/XBjBs3Lrz73e8u7QyHs3bt2vCZz3wm7NmzZ9D7m5ubw4c//OGwdOnSYdcTDzD/+I//WDphG0x8/h//8R+XDj7VLJ5ArV69+riPu+qqq8L73ve+0onlUMS6umMd/frXvw6f+MQnjvu4eGLyX/7LfwkveMELhnzMrbfeGr7xjW+EoU4LYhLzR3/0R2H8+PFDriMmcZ/73OdKJ22DqaurC295y1vCW9/61mH7G5On+J157rnnBr1/0qRJ4QMf+EB44QtfOOx6UjmmbNq0qfQ+4onuSJIp23b1b9tjmUyJd+3Em+qVyvGk0uQn6ezn5ChpxVuOIkeJ5CjF27Z7yVHSijfVK5XjSaXJUdLZz8lR0oq3HEWOEslRirdtR/KTdGJNdUvlWJIHOUoa+zr5STqxjuQn8pNIflK8bbuXHKX6461ohqqxcePG8NGPfrR0MI4VZNddd10477zzSu277rqrVPHWe/D71Kc+VTqYcmI75NmzZ5cq9B555JFRJ1M333xz+Na3vlW6vWjRovD6178+zJs3L2zfvr1U/RrjGMX4vf3tbx9yxx53+rHKObr00ktLFZBTp04t7WS/+c1vlqqf44lX3BEOVRm5a9eu0v29Ffavec1r+k6ufvWrX4Xvfe97pZOLWP0cvzOxenkwsTL505/+dOkkMj72TW96U1i2bFnYv39/aWd9//33lx4XK6hjv4c72OQtnjDHWMSDUaywjn2O8Y6f+VNPPRW++93vlqo0oxe/+MXhD/7gD4Zcl1hXd6x7k6kvfOELpZPmxYsXl2I9Y8aM0vuL1faxej++pxiHmDj/j//xP0ojCgz0ox/9KHzpS18q3Y4xfuMb3xjOOOOM0NraGm6//fbw+OOPj+g781d/9Vfh7rvvLt2OfYqVxPG7GKuEb7vtttJ3J4onbfF7MJiY+MRY9yZS8cQsvm5M4h577LHSdzJWPceRAz7+8Y8P+n5SOqbE2P7pn/5p6QQ3fqfj9nS8ZMq2Xf3b9sBj92/+5m+W/oYSv+Nz584d9D7xrp14U51SOZ7kQX6Szn5OjpJWvOUochQ5SjG37V5ylLTiTXVK5XiSBzlKOvs5OUpa8ZajyFHkKMXctiP5STqxpnqlcizJixwljX2d/CSdWEfyE/mJ/KSY23YvOcqsqo/30KWnUGFf/vKXSwe5uHH92Z/9WWZqt3gAjAe8OC1ZPMB+5zvfGXFVHs+LVb9xeq74F0+2duzYEd7//vePah1bt24tffZRXM9f/MVf9FUjx0q/Sy65pLTTigf1+LhY0ThYZW+czq93hxwPDr/3e7/Xd19cT9wJ//f//t9LJ1X/9E//FC644IJBp9762te+VtohR7EaOSYPvc4+++zSyWU8uYs7+PjYwRLGWLkYXyPukOPJVDw569/nWLH993//9+Hf//3fS33++c9/Hl760peGahWT5N/+7d8OK1euPObgEbepOPJAPMGM21E8ofyN3/iNUuXqQGJd/bHu3TfGZGooV1xxRemk4rOf/Wzp/X/9618PH/rQhzKPiScf//Iv/1K6HZOxv/zLv8xU7MYTnVgtHE904ncmnkANdpIeE53eRCo+J1YQ934He78z8SQqnkzF14vf0XgiNlA8uetNpH7nd36ndOLX/zscXzt+9+K0nvG4MVTVdSrHlDj1YdwO47YfpzzsPWkeim27NrbtgeI2Gf+DY7TEuzbjTXVJ5XiSB/lJOvs5OUpa8ZajyFHkKMXctgeSo6QVb6pLKseTPMhR0tnPyVHSirccRY4iRynmtt2f/CSdWFN9UjmW5EWOksa+Tn6STqwj+Yn8RH5SzG17IDlK9ca7NsqvKLx169b1TTX4spe9LHPQ6/Xa1762dLDoPXgMNU0Tg4snCvEEJyZSJypWIvdOC/eud73rmOn7YkVwXB7Fx8Vq98H07tjjidR//I//8Zj7404xVkD3Tt/XW0nYX5zu6xe/+EXp9oUXXpjZIfc/kYz3RXFnOtgUYXHdvVXR8TUHO4jEPk6ZMqXvRK+axZPV+L6HqraMB+Tf/d3f7WvHCvXBiHX1xzoaSVVtrBQ+5ZRTSrcHm9I1VuIfPHiwdPs//If/cMwUd/E14olT72sN9bn0xjqeQPV/fK+43rj+6MCBA4NOIRj363H/HsX9fdzvD7RixYrScSJ64oknSsePVI8pMTG95ZZbSrff8573DDsNby/bdm1s22NFvNOKN2MvleNJXuQn6ezn5ChpxVuOIkeRoxRz2x4r4p1WvBl7qRxP8iJHSWc/J0dJK95yFDmKHKWY2/ZYEOt0Yk15pHIsyZMcJY19nfwknVhH8hP5ifykmNv2WBHvUPZ4K5qhKvTf6HoPkgPFA3OcXrL3QNw7jRyVESv9HnjggdLteAIy2MlJFJf3nrg9+OCDpecNrIbcsmVL6XbckcYd+WD6VwsOtlPuv+6hvjP91xMfG58zUO97Gvia/cU+9u70n3322dJ7qGX9q8d7D0j9iXVxYt2rd0rKI0eODPm5xMdcdtllgz4/Tp13/vnn9400EKuM+4vtRx99tHQ7Pm6oqfbi+nv7Mlis4369N7GL+/uhksXjfWdSOabEKus4hWl8H4ONJDKQbbt42/ZwxDuteFMeqRxPapX9XLH2c3KUtOIdyVGKeUyRozwv5W17OOKdVrwpj1SOJ7XKfq5Y+zk5SlrxjuQoxTymyFGel/K2PRSxTifWlE8qx5JaZl9XnH2d/CSdWPeSnxTzmCI/eV7K2/ZwxPvyisRb0QxVYc2aNX1f/jhl01D6Hyx6n0NlxGk+W1tb+6bWGk5vnHbv3h127tyZua932q/+jxtMHCkhTqs3VKxHup7+9/V/zsBl8UAy3OgMRfru9a+0HuxkVayLE+sonkRs2rSpdLu34r7/d6G3gj+eUA1Xwd77ucSELE7x119s936vhotRXH/vCV3/54w21nH6wd4TusFilMIxJU6RumrVqiErwgdj267deJ8I8U4r3pRHCseTWmY/V6zvnRwlrXjLUYp5TJGjHLue1Lbt4xHvtOJNeaRwPKll9nPF+t7JUdKKtxylmMcUOcqx60lt2x6OWKcTa8onhWNJrbOvK853T36STqwj+Ukxjynyk2PXk9q2fTzifU5F4q1ohqoQq8OiOPVSnPJtKL0Vcv2fQ2X0/7wHnpCNJk6jWU/v/S0tLaUq28HWM3ny5GF3ps3NzX0Vz70VlL3iOuO6B/Z5uL4Mtp5aE6c6HC4GYl37sW5vbw/PPfdcaQq+j33sY33T9r361a8+JtHq7u4eVYwG+1z6x/p4n2/v/bFPcXq/odYzXH/icaJ3qr7BYlT0Y0ocMeHLX/7ykFOtDsW2Xbvbdpxi+Q//8A/D7/zO75SmXv7ABz4Q/uZv/qY0IshQxLt24031KPrxpNbZzxVrPydHKX685SjFPqbIUdLbtuUoacWb6lH040mts58r1n5OjlL8eMtRin1MkaOktW3LT9KJNdWl6MeSIrCvK86+Tn5S/FjLT4p9TJGfpLdty1GqN95DlxpChXR0dIR9+/aVbg811VuvWGkZK0rjiULvxkRl9P+8jxen2bNnD/q83urGXjNnzhx2Pb2vE6fuis/rv+PsXe/x+tLbn2eeeeaYvozmPfW/f9euXaFWxRPnb33rW33tK6644pjHiHVtxvqOO+4If/u3fzvk/dddd114yUtectIxisby8z3ttNOO6U/cz0+ZMuW469m8eXPYu3dvaVSEcePGJXNM+cpXvhL27NkTVqxYEa655poRP8+2XZvb9mAJTvyPiPj385//PLzoRS8KN954YylJ6U+8azfeVIcUjie1zn6uOPs5OUpx4y1HkaMcj227NrftSI6SVrypDikcT2qd/Vxx9nNylOLGW44iRzke23Ztbtvyk3RiTfVI4VhSBPZ1xdjXyU+KG2v5ifzkeGzbtbltR3KU6o23ohly179CbeLEicd9fHxMPPANrGyjeuLUO53ewOdFhw4dGpP19LZH8p3pXc/J9KX//bX83fve977XN03jpZdeOuiUhmJdjFj3WrhwYXjve98bli5desx9YxWjsfp8e9czmlj3rqc3mSr6MWX16tXhpz/9aWlkhfe85z2hrq5uxM+1bdfeth3f9wtf+MJw/vnnlyrq43uI/4EQR5L50Y9+VPqPgwceeCD8z//5P8Of/dmfZabeFe/aizfVpejHkyKwnyvOfk6Okla8IzlKsY4pcpS0tm05SlrxproU/XhSBPZzxdnPyVHSinckRynWMUWOks62LT9JJ9ZUn6IfS4rCvq4Y+zr5STqx7iU/KdYxRX6S1rYtRzlc9fFWNEPuYrVor/47gaH0Pqb/86iuOPWe1Ax8XhQrhcdiPb3tkXxn+lcmn2hf+t/f/3m1JB58b7755tLtpqam0onYYMS6NmMdq5A/+9nP9r3/7du3h3vuuSfcf//94a//+q/DO9/5ztJJWTlidKKf71DrGU2sB66nyMeUzs7O8MUvfrFU3f2a17wmnHHGGaN6vm279rbtv/u7vxt0NI4LLrggXHvtteGTn/xk2LhxY2n//u///u+ZqXnFu/biTXUp8vGkKOznirGfk6MUO95ylOIfU+Qo6W3bcpS04k11KfLxpCjs54qxn5OjFDvecpTiH1PkKGlt2/KTdGJN9SnysaRI7Otqf18nPyl2rOUnxT+myE/S27blKB1VH+/6sq0ZRmj8+PGZA8Xx9D6m//Oorjj132kNjFP/He3JrKe3PZLvTO96TqYv/e/v/7xaEac/+8xnPhO6urpK/f/DP/zDUkI1GLGuzVjHE654ch3/4mgDL37xi8OHPvSh8P73vz/s2LGjVKEcp/YsR4xO9PMdaj2jifXA9RT5mPLNb34zbNmypTSl4Vve8pZRP9+2XXvb9nDT186YMSP80R/9UWk0iugHP/hB5n7xrr14U12KfDwpCvu52t/PyVGKH285SvGPKXKU9LZtOUpa8aa6FPl4UhT2c7W/n5OjFD/ecpTiH1PkKGlt2/KTdGJN9SnysaRI7Otqe18nPyl+rOUnxT+myE/S27blKOOrPt6KZsjdaKdVGs20T+QTpzgF3mDPiyZNmjQm6+ltj+Q707uek+nLaKcCrCbxRPoTn/hEOHDgQKivrw8f/OAHwznnnDPk48W6dmM9mKuuuiqsXLmyVLX+D//wD2H//v1jHqOx+nx71zOaWA9cT1GPKTGJ+ta3vlW6/e53v/uE+mvbLta2Hc2bN680GkG0bdu2sHv37r77xLt48aayino8KRL7udrez8lR0or3QHKUYhxT5Ci27cHIUdKKN5VV1ONJkdjP1fZ+To6SVrwHkqMU45giR7FtDyQ/SSfWVF5RjyVFY19Xu/s6+Uk6sR6M/KQYxxT5iW17MHKU/OOtaIbcxeqyadOmlW63tLQM+9h4EtC7gc2aNasi/SMc83kfL067du0a9HnRzJkz+2733+kPpvd16urqMs/rv97j9aV/f4bry/HW0//+WP1bK+Jn/PGPfzy0traWPscbbrihNL3jcMS6NmM9nN6Yx/3nww8/fFIxGuzzHc13ZrjPt7c/sZ8x+R/JeqZPn56pLi7qMeV73/teqaI6njzHPt91113H/MWRRno99thjfct7Typt28XbtqPTTjtt0HiIdzHjTeUU9XhSJPZztbufk6OkFe+hyFFq/5giR7FtD0WOMnxfihZvKqeox5MisZ+r3f2cHCWteA9FjlL7xxQ5im17MPKT4ftSpFhTWUU9lhSNfV1t7uvkJ+nEejjyk9o/pshPbNtDkaPkG+/Gsq0ZRrkjWL16dal6Lk4r2DsF1UBbt27NPIfK6f95x0rY4QwXp4HrWbhw4ZDr6X2duDMdWD0Y17Nhw4Zw8ODBsGfPntL0ZYOJScShQ4dKt0899dRjKhnjuuMOt3+fh+vLYOupVnv37i2NPLB9+/ZS+13vele4+uqrj/s8sa69WB9PTDh67dy5s+/2KaecUhqVoru7+7ixHu5z6R/r432+vffH/fz8+fOPWc99993X93rLly8fdB3xOBGPF4P1pajHlN5pDOP2/Nd//dfHffw3vvGNvtt/8zd/U9qubNvF27Z7E5fBiHcx401lFfF4UiT2c7W5n5OjpBXv4chRav+YIkexbQ9FjjJ8XwZbD4xUEY8nRWI/V5v7OTlKWvEejhyl9o8pchTb9mDkJ8P3ZbD1wEgV8VhSNPZ1tbevk5+kE+vjkZ/U/jFFfmLbHoocJd94m2mGqrBixYrSv7GqMm5oQ3niiSeOeQ6VMXfu3NDc3Fy6HU9ShtN7f6wUnDNnTua+s846a9B4DhR3tM8999yQsR7pevrf1/85A5fFnXJ8zaJ89+LB6i//8i/Ds88+W2q//e1vD9dee+2InivWtRXrkRhqKr/GxsawdOnS0u2nnnqqVOF+vM8lVvsvWbIkc19sx3X1f9xg4vrj6wx8zmhjvX79+r6RAwaLkWPK4GzbxYx3735+YIW+eBcz3lSW40l1s5+rve+dHCWteB+PHGX49zTUeorGtl3MeMtR0oo3leV4Ut3s52rveydHSSvexyNHGf49DbWeorFtFy/e8pN0Yk3lOZZUP/u62vruyU/SifVIyE+Gf09DradobNvFjLccJd94K5qhKlx66aV9t3/2s58N+phYIXvnnXeWbk+ZMiWce+65Fesfz1c49k79F6v6ek+IBorLe6v+LrnkkmMqI2PFc28l4D333NN3QjTQHXfcMej3o1f/dQ/1nem/nvjY+JyB+k9h2f81+4t9jH3traCM76Gaxf5+8pOfDBs3biy13/SmN4XrrrtuxM8X69qJ9Uj1vqfojDPOGPRziRW/vdX/A8Vq30cffbR0+7zzzitVAfcX2+eff37pdnzcUNPpxfX3VhYPFuu4X588eXLpdtzf9/T0nNB3pojHlBtvvDHceuutw/695S1v6Xv8xz72sb7l8aQ6sm0Xb9vesWNH+PWvf126Had07Z9MiXfx4k3lFfF4UiT2c7W1n5OjpBXvkZCj1P4xRY5i2x6MHCWteFN5RTyeFIn9XG3t5+QoacV7JOQotX9MkaPYtgeSn6QTa/JRxGNJ0djX1c6+Tn6STqxHSn5S+8cU+YltezBylDtyj7eiGapCrIA9++yz+zawwTb47373u30b+6te9apjKlcpv1e/+tWlKf6if/qnfwodHR2Z+2M7Lo/iNHmvec1rBl3P6173utK/+/fvD1/5yleOuT9OtXfbbbeVbsdp/QbbKcfpvq688srS7UceeSTce++9xzwm7kjjfdFVV1016BRhcd3xABTF1+ydCrC/f/7nfw4HDhwo3X79618fqlms8P7sZz8b1qxZ0xez3/qt3xr1esS6+mPdeyIxMDaD7Tsfeuih0u14Ut27r+318pe/vC+Bufnmm8O+ffuOSTr+/u//vvTvcJ9Lb6zjNJn/8A//0Pf4/tPI/su//Etf8nLNNdccs464X4/79yju77/zne8c85h4fOg9ETvnnHP6RlDozzFlaLbt2ti2owcffLC0PQ0lVt9/7nOf6xs55JWvfOUxjxHv2ok31cnxpPrZz9XGfk6Okla85ShylNGybdfGth3JUdKKN9XJ8aT62c/Vxn5OjpJWvOUocpTRsm3XxrYtP0kn1lQvx5LaYF9X/fs6+Uk6sY7kJ/KT0bJt18a2HclRrqqJeNf1DFXeBxUWq6U/+tGPljbsOK3cG9/4xlJFaGzffffd4cc//nHpcQsWLAif+tSnjqmAZXhPPvlkZocTT2x6d4hxOqt4QtXfS1/60kHXE0+2vvWtb5VuL1q0KLzhDW8o7dS2b98e/u3f/q2v6j1WvMepIgcTT7JidWzvCf9ll11Wev2pU6eGdevWhW984xuhra2tVH34x3/8x+Giiy4adD27du0q3R/fSzwIvPa1rw0vfOELS/f96le/Kp0sxQPR9OnTw6c//ekwa9asQdezatWq0v1xd9jU1BTe/OY3l07G4kHjJz/5SV9Vdpwq7M///M/7DkzVKCZS999/f1+l+Dvf+c5hHx9PIIeqzBTr6o51b1V6rOiPn2vsc4xP3H8ePnw4PP300+EXv/hF32cfYx0/wwsuuOCY9fzoRz8KX/rSl0q34zriqBVxpILW1tbwve99Lzz++OOl+1784heHP/iDPxiyP3/1V39V2l9Hcf8dT8zitIGxL9/85jdL353ove99b3jFK14x6Dri+4n97J3+Lz7uiiuuCOPHjy/1I548xfcX25/4xCfCwoULB11PiseUONrA17/+9dLtuN0NNaqCbbv6t+3e7TsmSvGzXb58eek/Q+L3Pn5WcUrKuN32/udHfF/x+x6n1R1IvGsj3lSvFI8nlSI/SWc/J0dJK95yFDlKf3KU4mzbkRwlrXhTvVI8nlSKHCWd/ZwcJa14y1HkKP3JUYq1bctP0og11S3FY0klyVHS2NfJT9KJdSQ/kZ/0Jz8pzrYdyVE+XRPxVjRD1VXbff7zn++b1m2geND7yEc+UqpuY3RuuummvinqRnpQHmqH+n/+z/8ZdsqtWFkcT5aG23nFHWmcWnL9+vWD3h8PCO9+97uPSfIGWrt2bfjMZz5TqsQcTKxe/PCHPxyWLVs27HriidU//uM/9lVyDhR30vEAEHfw1ez6668f1ePnzJlT+m4MRqyrO9a9J1s7d+487uPiCckNN9wwaCLVf5uPJ0RDnRbEk6P/+l//a+lkbigxUYkV0b0jHgwUT7TiSc/xvqfxP37id6Y3oRooJj4f+MAH+k7ChpLaMWWkyZRtu/q37dFs3zGxed/73lca2WMw4l0b8aa6pXY8qRT5STr7OTlKWvGWo8hR+pOjFGfbjuQoacWb6pba8aRS5Cjp7OfkKGnFW44iR+lPjpLeti0/qf1YU/1SO5ZUkhwljX2d/CSdWEfyE/lJf/KT4mzbkRxlWU3EW9EMVSfuOG6//fZSddnu3btLVbPxQLdy5cpw7bXXhgkTJuTdxaSTqV4xPnFHFneqsQJy2rRpYcmSJeE3fuM3hqw8HChWGcZKwV/+8pel6fNiVfHMmTNLlfNxqrHTTz99ROuJO/j4nXnggQf6DjyxUvOSSy4pVUDHvo1ErJL+/ve/Hx577LHSdy9WLZ966qnhJS95SengEKslq91YJlO9xLp6bd26tRSfOMJIrCaOJyexAjcmPPEEIlbnx4Tj8ssvH9G+M1YX//CHPwyrV68uVRPHk7MzzzyzNCJJ/GxGKsY5Tim6efPm0tR5sUI4TqMZ9+Gxknok4nck9iVO7ReTq3jCFJPC+J2L35n43R2JlI4pI02metm2q1scZSD+xWln4/YdYxT/YyC+p7gtxG0pbpsj3abEG05OSseTSpGfpLOfk6OkFW85yvGldEyRoxRn247kKGnFm+qX0vGkUuQo6ezn5ChpxVuOcnwpHVPkKMXZtuUn6cSa2pDSsaSS5Chp7OvkJ+nEOpKfHF9KxxT5SXG27UiOUhvxVjQDAAAAAAAAAAAAAABA4Qw9Nw8AAAAAAAAAAAAAAADUKEUzAAAAAAAAAAAAAAAAFI6iGQAAAAAAAAAAAAAAAApH0QwAAAAAAAAAAAAAAACFo2gGAAAAAAAAAAAAAACAwlE0AwAAAAAAAAAAAAAAQOEomgEAAAAAAAAAAAAAAKBwFM0AAAAAAAAAAAAAAABQOIpmAAAAAAAAAAAAAAAAKBxFMwAAAAAAAAAAAAAAABSOohkAAAAAAAAAAAAAAAAKR9EMAAAAAAAAAAAAAAAAhaNoBgAAAAAAAAAAAAAAgMJRNAMAAAAAAAAAAAAAAEDhKJoBAAAAAAAAAAAAAACgcBTNAAAAAAAAAAAAAAAAUDiKZgBgDC1cuDDU1dWFd77znXl3BQAAQI4CAABUFTkKAABQLeQnAOlQNAMAAAAAAAAAAAAAAEDhKJoBAAAAAAAAAAAAAACgcOp6enp68u4EAAAAAAAAAAAAAAAAjCUzzQAAAAAAAAAAAAAAAFA4imYAAAAAAAAAAAAAAAAoHEUzADCErVu3hj/+4z8OF198cWhqagrjxo0L8+bNC+eff3747d/+7fDlL3857N27N/OchQsXhrq6uvDOd74zs3zTpk2l5SP9e+lLXzpkv372s5+Fd7zjHWHx4sVh8uTJYfr06aU+ffjDHy71GQAAKCY5CgAAUE3kKAAAQLWQnwAwnMZh7wWARP3iF78Ir33ta49Jlnbs2FH6e+yxx8LXvva1MHv27NLjKuHw4cPhXe96V+l1B4r9iX9f+MIXwle/+tXwute9riJ9AgAAKkOOAgAAVBM5CgAAUC3kJwAcj6IZABigvb09/NZv/VYpkZo2bVq44YYbwste9rIwd+7c0NHRETZu3BjuvvvucNttt414naeeemp49NFHh33MrbfeGj7+8Y+Xbp955pmZ+3p6esJb3vKW8L3vfa/UjsnS9ddfXxqFoL6+Ptx///3hc5/7XHj66adLj7vrrrvCJZdcckLvHwAAqC5yFAAAoJrIUQAAgGohPwFgJOp64t4ZAOjz05/+NLz85S8v3f7Od74z5AgDnZ2d4eDBg6VpM/tP27l58+bStJpxWs+RevDBB8NVV10VDh06FM4+++xw7733Ztb7pS99Kbz3ve8tTR367W9/O1x77bXHrKO1tTVceeWV4fHHHw8vfvGLwy9/+ctRvnMAAKAayVEAAIBqIkcBAACqhfwEgJGoH9GjACAh27Zt67sdE5yhNDY2ZhKeE7V169bwhje8oZRIzZw5s5TA9V9vrG/99Kc/Xbr9gQ98YNBEKmpubg6f+cxnSrfjCARr16496b4BAAD5k6MAAADVRI4CAABUC/kJACOhaAYABliwYEHf7X/6p38q62vFBOq6664rJVQxOfv6178elixZknnME088EdavX1+6HafkHE7/5O+ee+4pU68BAIBKkqMAAADVRI4CAABUC/kJACOhaAYABnjJS14SFi9eXLr9wQ9+MFx66aXhk5/8ZKmqv6OjY0xf693vfnd44IEHSrf/9//+3+FlL3vZoFN69rr88stDXV3dkH9Tp04ddCQFAACgdslRAACAaiJHAQAAqoX8BICRUDQDAAOMGzeuNHXm2WefXWrHZOdP/uRPSknWjBkzStNm3nzzzaGrq+ukXufjH/94+NrXvla6/Z//838ON9xww6CP27Fjxwmt/+DBgyfVPwAAoDrIUQAAgGoiRwEAAKqF/ASAkWgc0aMAIDHnnHNOePTRR0tJVfz7+c9/HtatW1eaZvOHP/xh6e9//a//FW6//fYwd+7cUa//G9/4RvjYxz5Wuv3yl788/PVf//WQj+2ftMW+LFy4cESvcSL9AgAAqpMcBQAAqCZyFAAAoFrITwA4HkUzADCEhoaGcN1115X+oueeey784Ac/CDfddFP41a9+Vfr7/d///XDbbbeNar0PPfRQ+N3f/d3Q09MTli5dGm699dbQ2Dj0IXnWrFl9t+MICOedd95JvCsAAKBWyVEAAIBqIkcBAACqhfwEgOHUD3svANBnwYIF4V3vele45557wsUXX1xa9t3vfrc0KsFIbdu2LbzhDW8oTanZ1NRUGlFg5syZwz7noosu6rt91113ncQ7AAAAikSOAgAAVBM5CgAAUC3kJwD0p2gGAEZp3Lhx4eqrry7d7uzsDHv27BnR8w4fPlwazeCZZ54pjW7wta99LZx11lnHfV5M3E477bTS7S9+8Yul9QAAAPSSowAAANVEjgIAAFQL+QkAkaIZABjgF7/4RVi3bt2Q93d0dIQ777yzdHvq1Klhzpw5I1rv7/3e74X77ruvdPszn/lMuPbaa0f0vPr6+vAnf/InpdsbNmwoTfnZ3t4+5OP37t0b/uZv/mZE6wYAAKqfHAUAAKgmchQAAKBayE8AGInGET0KABLyk5/8JHz84x8PV155ZXjNa14TLrjgglLCFKfnfOqpp8Lf/d3fhVWrVpUe+5/+038KjY3HP5z+4z/+Y/iXf/mX0u1rrrkm/MZv/EZ47LHHhnz8lClTwqJFi/ra73vf+8KPfvSjcNttt4V//dd/Lb3+7//+74dLL720NP1nTKCefPLJcMcdd4Rvf/vbYeLEieH973//mHweAABAvuQoAABANZGjAAAA1UJ+AsBIKJoBgEF0d3eXRhnoHWlgMG94wxvCJz/5yRGt7+mnn+67/dOf/jScf/75wz4+TgsaE6NedXV14ZZbbgl/8Ad/UErm1q9fH/7bf/tvQz5/7ty5I+oXAABQG+QoAABANZGjAAAA1UJ+AsDxKJoBgAE+9KEPlUYd+PGPfxweeuihsHXr1rBjx47SffPnzy9V/cepM+PoBJU0bty48Ld/+7fhhhtuCF/60pdKyVZM0vbv31+aPjSOWPDCF74wvOpVrwqvfe1rK9o3AACgfOQoAABANZGjAAAA1UJ+AsBI1PX09PSM6JEAAAAAAAAAAAAAAABQI+rz7gAAAAAAAAAAAAAAAACMNUUzAAAAAAAAAAAAAAAAFI6iGQAAAAAAAAAAAAAAAApH0QwAAAAAAAAAAAAAAACFo2gGAAAAAAAAAAAAAACAwlE0AwAAAAAAAAAAAAAAQOEomgEAAAAAAAAAAAAAAKBwFM0AAAAAAAAAAAAAAABQOIpmAAAAAAAAAAAAAAAAKBxFMwAAAAAAAAAAAAAAABSOohkAAAAAAAAAAAAAAAAKR9EMAAAAAAAAAAAAAAAAhaNoBgAAAAAAAAAAAAAAgMJRNAMAAAAAAAAAAAAAAEDhKJoBAAAAAAAAAAAAAACgcBTNAAAAAAAAAAAAAAAAUDiKZgAAAAAAAAAAAAAAACgcRTMAAAAAAAAAAAAAAAAUjqIZAAAAAAAAAAAAAAAACkfRDAAAAAAAAAAAAAAAAIWjaAYAAAAAAAAAAAAAAIDCUTQDAAAAAAAAAAAAAABA4SiaAQAAAAAAAAAAAAAAoHAUzQAAAAAAAAAAAAAAAFA4imYAAAAAAAAAAAAAAAAIRfP/A+bnBeBZSHsLAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -359,20 +342,14 @@ "plt.show()" ] }, - { - "cell_type": "markdown", - "id": "df47932f-d736-4e23-b3ee-d79a94c6b46e", - "metadata": {}, - "source": [ - "# Series Search" - ] - }, { "cell_type": "markdown", "id": "a716ea8f-9b1d-428c-8b41-0ab17af814d1", "metadata": {}, "source": [ - "## Dot products" + "## Updating the dot products used in MASS when computing matrix profiles\n", + "\n", + "This is part of the STOMP algorithm, which update the dot products of the sliding query instead of recomputing it everytime. When you compute $MASS(X,q_i)$, and $q_i$ is taken from a series $Y$ such as $q_i = Y[i:i+L]$, you can compute the dot product of $q_0$, and then only update it for subsequent $q_1, ...$" ] }, { @@ -382,8 +359,10 @@ "metadata": {}, "outputs": [], "source": [ - "from aeon.similarity_search._commons import get_ith_products\n", - "from aeon.similarity_search.matrix_profiles.stomp import _update_dot_products_one_series\n", + "from aeon.similarity_search.series._commons import (\n", + " _update_dot_products,\n", + " get_ith_products,\n", + ")\n", "\n", "\n", "def compute_all_products(X, T, L):\n", @@ -409,7 +388,7 @@ " \"\"\"\n", " prods = get_ith_products(X, T, L, 0)\n", " for i in range(T.shape[1] - L + 1):\n", - " prods = _update_dot_products_one_series(X, T, prods, L, i)\n", + " prods = _update_dot_products(X, T, prods, L, i)\n", " return prods\n", "\n", "\n", @@ -428,11 +407,12 @@ " mask = np.ones((1, search_space_size), dtype=bool)\n", " # Used for numba compilation before timings\n", " compute_all_products(X, T, query_length)\n", - " _times = %timeit -r 3 -n 7 -q -o compute_all_products(X, T, query_length)\n", - " times.loc[(size, _query_length), \"compute_all_products\"] = _times.average\n", - " # Used for numba compilation before timings\n", " update_products(X, T, query_length)\n", - " _times = %timeit -r 3 -n 7 -q -o update_products(X, T, query_length)\n", + "\n", + " _times = %timeit -r 2 -n 2 -q -o compute_all_products(X, T, query_length)\n", + " times.loc[(size, _query_length), \"compute_all_products\"] = _times.average\n", + "\n", + " _times = %timeit -r 2 -n 2 -q -o update_products(X, T, query_length)\n", " times.loc[(size, _query_length), \"update_products\"] = _times.average" ] }, @@ -444,7 +424,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADMIAAAOcCAYAAAAWl/zsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3iUZd728XMmPQQmk9ATOgQQKaKgIAICoqIolgULoChrwb66lvV1n+PZXZ+1rqui6O5KWaRYKOqyKlICSgfpCiH0BBJIMmmkz9zvH0OGhGSSSZ1M8v0cBwczc7drZq5kcp9z/67LZBiGIQAAAAAAAAAAAAAAAAAAAAAAAKCBM3u7AQAAAAAAAAAAAAAAAAAAAAAAAIAnKIQBAAAAAAAAAAAAAAAAAAAAAACAT6AQBgAAAAAAAAAAAAAAAAAAAAAAAD6BQhgAAAAAAAAAAAAAAAAAAAAAAAD4BAphAAAAAAAAAAAAAAAAAAAAAAAA4BMohAEAAAAAAAAAAAAAAAAAAAAAAIBPoBAGAAAAAAAAAAAAAAAAAAAAAAAAPoFCGAAAAAAAAAAAAAAAAAAAAAAAAPgECmEAAAAAAAAAAAAAAAAAAAAAAADgEyiEAQAAAAAAAAAAAAAAAAAAAAAAgE+gEAYAAAAAAAAAAAAAAAAAAAAAAAA+gUIYAAAAAAAAAAAAAAAAAAAAAAAA+AQKYQAAAAAAAAAAAAAAAAAAAAAAAOATKIQBAAAAAAAAAAAAAAAAAAAAAACAT6AQBgAAAAAAAAAAAAAAAAAAAAAAAD6BQhgAAAAAAAAAAAAAAAAAAAAAAAD4BAphAAAAAAAAAAAAAAAAAAAAAAAA4BMohAEAAAAAAAAAAAAAAAAAAAAAAIBPoBAGAAAAAAAAAAAAAAAAAAAAAAAAPoFCGAAA4HM6d+4sk8kkk8mkY8eOebs5jQKvKQAAAAAAvoFz+NrHawoAAAAAQOPD+X7t4zUFADQkFMIAAACgQcnOztasWbN07bXXKjo6WkFBQYqOjtaoUaP00UcfKTs722eObxiGDh48qE8//VRPPfWUhg4dqtDQUFcw1Llz57p7IgAAAAAAwOc0llwkNjbWlX94+m/MmDF1+twAAAAAAEDj4a0MpaCgQNu2bdOsWbP0wAMPqG/fvvL393flG/fff3+dHBcAUJa/txsAAACA2jVy5EitW7dOkrR27VqNHDnSuw2qgk2bNunee+/V0aNHSz2emJioxMRErV27Vm+++aYWLlyoK6+8skEff/v27Ro9erQyMzNrvZ0AAAAAAKB85CK+e3wAAAAAAFB/yFCqbubMmXr22WdVUFBQa/sEAFQfhTAAAABoEHbv3q2xY8e6RuUICAjQqFGjFB0drZMnT2rNmjUqKirSkSNHNHbsWG3YsEGXXnppgz1+dnY2RTAAAAAAAMAjjS0XKal9+/a67bbbKl2vV69eNXoOAAAAAACg8fNmhpKSkkIRDAA0IBTCAAAAwOsKCwt1xx13uIKK/v37a/ny5ercubNrnWPHjmnChAnavXu3MjMzdccdd2j//v3y96/5n7R1eXyr1aorrrhCgwYN0qBBg3Tw4EG9+OKLNW4zAAAAAABoHBpzLiJJPXr00MyZM2vcTgAAAAAA0LR5O0Mp1qFDB9c1IIMHD9asWbP05Zdf1tr+AQCeMXu7AQAAAMA///lPHT58WJKzcOS7774rFVRIUufOnfXtt9/KarVKkuLi4jR79uwGe/z+/fvr0KFDSktL08qVK/Xqq69qwoQJatOmTa20GQAAAAAANA6NMRcBAAAAAACobd7OMKZNm6akpCSdOHFCS5Ys0YsvvqhRo0apWbNmtbJ/AEDVUAgDAAAAr/vggw9ct5977jm1bdu23PXatWunZ599ttztGtrxrVarunfvXivtAwAAAAAAjVdjzEUAAAAAAABqm7czjE6dOjH4KQA0IBTCAABwEYfDoXnz5um6665T27ZtFRwcrM6dO+vWW2/V8uXLXeuNHDlSJpNJJpNJsbGx5e6rc+fOrnWOHTtW6bHvv/9+1/pz586tdH3DMLRs2TLdd999iomJkcViUXBwsDp06KAJEyZo3rx5KioqqnAfx44dcx2z5CgJP/30k6ZPn65evXrJYrHIZDLp6aef1s6dO13rW61W5eXlVdpOScrKylJYWJhr2z179ni0XW0oLCzU/PnzNXHiRHXt2lXNmzdXs2bN1KVLF919991atmyZDMOocB+xsbGuto8cOdL1+Jo1a3TXXXepa9euCg4OVmRkpIYPH66ZM2eqsLDQ4zbm5ubqnXfe0dVXX62WLVsqJCRE3bp10913363Vq1e71quoTxU/vm7dOtdj1157revxkv886V8JCQl65ZVX1L9/f4WHh6tZs2bq1auXnnjiCR0/ftzj51aZ+Ph4/fLLL677999/f4Xrl1y+Z88eHTlyxKePDwAAAAANCbmIE7lIaeQi5CJ1dXwAAAAA8FVkKE5kKKWRoTTeDAUA0AAZAADA5fTp08aVV15pSHL777bbbjMyMzONESNGuB5bu3Ztufvr1KmTa52jR49Wevz77rvPtf6cOXMqXHf37t3GgAEDKmyrJKNnz57G/v373e7n6NGjrnU7depk5OfnGw8//HC5+3rqqacMwzCMyy+/3PXYp59+WunzMgzD+Oc//+naZtCgQR5t405VXte1a9ca3bp1q/R1uuqqq4yEhIQK91O87ogRI4z8/Hzjt7/9bYX7HDhwoHH27NlKn8+ePXsqbePDDz9sFBQUVPjcK3uOJf9d3L8u3u+yZcsMi8XidvuQkBDjP//5T6XPzRMff/yxa78xMTEebdOjRw/XNv/85z996vhz5swp9TMHAAAAAA0FuQi5SEX7IRchF6nK8S/uMwAAAADQmJChkKFUtB8ylMaZoVSk5M/kfffdV2fHAQCU5i8AACBJSk9P16hRo/Trr7+6HuvSpYuGDBmioKAg7d+/X1u3btWyZctkNnt3UrX169dr/PjxyszMlCQFBARo0KBB6tGjhwICAnTs2DH99NNPysvL08GDBzV06FBt2rRJvXv3rnTfzzzzjD7++GNJUt++fdW/f38FBAQoLi7O9bwfeughPfzww5KkTz75RPfee2+l+/3kk09ct6dPn17l51wdX3zxhe69917X6BkhISG66qqr1LlzZ5nNZsXFxWnTpk0qKirS5s2bNWTIEG3bts2jaUwfeughzZs3T2azWVdeeaV69eolh8OhzZs36+DBg5Kkn3/+WVOnTtV///tft/uJj4/X6NGjdfbsWddjffv21YABA2Q2m7Vr1y7t3r1bH3/8sZo3b15hmx577DFJ0rJly3Tq1ClJ0oQJExQVFVVm3Yr6wqpVq/TII4/IbrerY8eOGjJkiFq0aKGjR48qNjZWRUVFys3N1cSJE7Vv3z516dKlwnZVpuTP3MCBAz3aZuDAgTp06FCZ7X3x+AAAAADQEJCLOJGLkIuQi9T+8XNzc/XNN99o9+7dSktLU7NmzdSmTRtdeeWVuuyyy+Tvz9eVAAAAAHwHGYoTGQoZSlPLUAAADZC3K3EAAGgoHnjgAVd1fmBgoPHJJ5+UWWfLli2u0Q0CAwO9MmrH6dOnjdatW7vWmzp1qnHq1Kky6yUlJRm33Xaba72+ffsaRUVFZdYrOWqHn5+fIcno0KGDsX79+jLr5uXlGYZhGFlZWUZYWJghyTCZTMbhw4crfF779+93HaNZs2ZGZmZmpa9FRTx5Xfft22eEhIS42vjcc88ZNputzHqHDx82hg0b5trfjTfeWO7+So7aERQU5Bp95Ndffy21nsPhMP7+97+XGuFi3bp15e7T4XAYw4cPd60XGRlpfPfdd2XWW716tdG6dWvDZDKV6nfunrsnI8pcrORrGhQUZDRr1syYP3++4XA4Sq23b98+IyoqyrXutGnTPNp/RW688UbX/l544QWPtvn973/v2mbcuHE+dXxmhAEAAADQEJGLkIuQi5CL1ObxS/aZiv61b9/eePPNN42CgoIaPQ8AAAAAqC9kKGQoZChNM0OpCDPCAIB3eLfkGACABiIuLk5z5sxx3f/HP/6hBx54oMx6gwcP1sqVKxUaGqqCgoL6bKLLyy+/rDNnzkiSnnzySc2bN0/t2rUrs16bNm30xRdfaNSoUZKkvXv36ssvv6xw33a7XaGhoVq1apWuueaaMsuDgoIkSWFhYbr77rslSYZhaPbs2RXut+SIHRMnTqx09Ina8OSTTyo3N1eS9Pbbb+vNN99UeHh4mfW6du2q7777Tpdccokk6dtvv9WWLVsq3Hd+fr569OihNWvWqFevXqWWmUwmPfXUU7rzzjtdjy1atKjc/Xz//fdav369JMlsNuurr77S9ddfX2a9UaNGacWKFTKbzfXS7woKCvTll19q8uTJMplMpZb16dPHNaqL5BwZpaioqEbHS01Ndd32ZMQUSWrbtq3rdlpamk8fHwAAAAC8jVzEiVyEXEQiF6nv4586dUq///3vNXz4cCUnJ9doXwAAAABQ18hQnMhQyFCkppehAAAaHgphAACQ82TaMAxJzkDivvvuc7tuTEyMnn766XpqWWlnz57Vp59+Ksl5svb6669XuL6fn59effVV1/0FCxZUeozHH39cMTExla7329/+1nV77ty5stvt5a5XWFio+fPnu+7Xx9S1u3fv1po1ayRJl112WaXvV7NmzfTKK6+47nvyOr322msKCwtzu7xk2LV169Zy1ykZ4tx11126+uqr3e7viiuu0NSpUyttV224+eabdcMNN7hdPm7cOFdYkJ2dXePpY7Ozs123Q0JCPNqm5Holt/fF4wMAAACAt5GLXEAuQi5CLlJ7x2/VqpVmzJihZcuW6ciRI8rJyVFeXp6OHDmiefPmadCgQa51N2/erPHjx7suPgIAAACAhogM5QIyFDKUppahAAAaHgphAACQtHbtWtftKVOmVLp+RWFGXVq1apVr1Ibbb79dwcHBlW5z5ZVXqlmzZpKkn376qdL177rrLo/aMmjQIA0YMECSlJiYqO+//77c9b7++mudPXtWknTJJZdo6NChHu2/Jv773/+6bt99991lRp4oT/HoJlLlr1NwcLDGjx9f4TqXXXaZ6/axY8fKXWfdunWu25MnT660jZ6sUxt+85vfVLjcZDKpf//+rvvunp+n8vLyXLcDAwM92qZ4BBlJNb5AwtvHBwAAAABvIxe5gFyEXIRcpHaOf8UVVyghIUEffPCBJkyYoC5duigkJERBQUHq0qWLpk6dqi1btpS6gGjbtm16++23q/lMAAAAAKDukaFcQIZChtLUMhQAQMPj7+0GAADgbYZhaPfu3a77Q4YMqXSbmJgYRURE1Pu0mZs2bXLd3rNnjx5//PEqbW+z2XTu3DlXeHGxgIAA9e3b1+P9PfTQQ5oxY4Yk5wgU48aNK7NOyZEpHnzwwSq1t7pKvk5r167V8ePHK92meNQWSTp58mSF6/bs2VMBAQEVrhMZGem6nZmZWWZ5YmKiK8SRnKFSZQYNGiSTyVSqrXXBkz5Q2fOripKhm6fT8+bn57tuezrSR0M9PgAAAAB4E7nIBeQiTuQi5CK1cfyKRrstZjKZ9Kc//UmHDx/WwoULJUl/+9vf9OKLL8rfn68wAQAAADQsZCgXkKE4kaE0rQwFANDwkCIDAJq8jIyMUidIHTt29Gi7jh071ntYcerUKdftn376yaNROC5ms9nchhVWq7VKXzLfe++9+v3vf69z587pm2++0dmzZ9WqVSvX8oSEBNdoHoGBgfU2/WrJ1+nbb7+t8vY2m63C5RaLpdJ9lAwzioqKyiwvGVSEhoYqIiKi0n02b95cFotF6enpla5bE1V9foWFhTU6XskLIzwdgaPkep5cWNGQjw8AAAAA3kQucgG5iBO5CLlIfR5fkv70pz+5CmFsNps2b96sYcOG1Xi/AAAAAFCbyFAuIENxIkNpWhkKAKDhMXu7AQAAeFt2dnap+6GhoR5t5+6Evy5lZGTUeB/lnTgXq+roBy1atNCkSZMkOU9Y//3vf5daPnfuXDkcDknSrbfeqpYtW1axtdVT09fJbrdXuNyT6XArU7LfedrnpPo5Ma+N51cVJUcASU5O9mibpKQk121Pgp6GfHwAAAAA8CZykQvIRZzIRchF6vP4ktStWzd17tzZdf/XX3+t8T4BAAAAoLaRoVxAhuJEhtK0MhQAQMNDIQwAoMm7+OQvJyfHo+3OnTtX620pPrF3p2RA8re//U2GYVT5X8kvlWvDb3/7W9ftklPVGoahOXPmuO5Pnz69Vo9bkZKv09KlS6v1OtW1kv3O0z4n1U2/87aePXu6bnsy1bAknThxwnW7V69ePn18AAAAAPAmcpGaIRepHnKRC7ydS3j7+MXatWvnup2SklIr+wQAAACA2kSGUjNkKNVDhnJBQ8kwAAANB4UwAIAmz2KxKDAw0HW/5ElQRU6ePFnpOpVNYXqxykabaNOmjet2yVELvOmqq65Sv379JDlHa9y0aZMkae3atTpy5IgkqVOnThozZky9takhvk4XKzmCSU5OTqVT5krOkT7qeupab+jdu7fr9s6dOz3a5ueffy53e188PgAAAAB4E7lIzZCLVA+5yAXeziW8ffxiJS/Q8cZoyQAAAABQGTKUmiFDqR4ylAsaSoYBAGg4KIQBADR5JpNJ/fv3d93fvHlzpdscOnRIqampla7XokUL121P1t+7d2+Fy6+88krX7Q0bNlS6v/pS3sgdJUfwmDZtmszm+vuzo6G+TiVFR0eXCiy2bNlS6Tbbt2/3aESR+p5+tqauvfZa1+2DBw/q9OnTFa5/6tQpHTp0yHV/1KhRPn18AAAAAPAmcpGaIxepOnKRC7ydS3j7+JLzQp6DBw+67rdv377G+wQAAACA2kaGUnNkKFVHhnJBQ8gwAAANC4UwAACo9MnSp59+Wun6//73vz3ab8mpYnft2lXhutu3b9fRo0crXOf666+Xv7+/JGnjxo3avXu3R+2oa5MnT1ZISIgk6bPPPlNCQoKWLl0qSTKbzXrggQfqtT0333yz6/bSpUuVnJxcr8f31IgRI1y3FyxYUOn6nvRNSQoODnbdLiwsrHrD6lmPHj10ySWXuO7PmzevwvVLLu/bt6+6du3q08cHAAAAAG8jF6kZcpHqIRdx8nYu4e3jS9LChQuVn58vyXkRzvDhw2u8TwAAAACoC2QoNUOGUj1kKE4NIcMAADQsFMIAACDpwQcfdN3evHlzhSeF8fHxeueddzzab8nRIyo6ASsqKtJTTz1V6f6ioqI0efJkSZJhGJo6daoyMzM9aovD4dDZs2c9WreqwsPDNXHiREnOKVbvvPNO5eXlSZLGjh2rDh061Mlx3Rk8eLBGjhwpScrNzdWUKVNUUFDg0bYFBQUeTSVbG0qGOAsXLqxwxJiff/650pP4YpGRka7biYmJ1W9gPZoxY4br9ltvveU2YEpKStJbb73luv/YY481iuMDAAAAgDeRi9QMuUj1kItc4O1coraPn5OTI4fD4dGxDx06pBdffNF1f+zYsWrdurVH2wIAAABAfSNDqRkylOohQ7nA2xkKAKBhoRAGAABJMTExuv/++133p0+fXu6J4fbt23Xdddfp3LlzCgwMrHS/kyZNck3bumnTJr344ouy2+2l1klISNDNN9+sjRs3KigoqNJ9vvrqq2rXrp0kac+ePRo8eLBWrlzpdv2EhAS988476tmzpz777LNK919dJaewLTkV6/Tp0+vsmBV5//33FRYWJkn64YcfNHz48AqniI2Li9Of//xnde7cud6mvL3xxhs1bNgwSc4wafz48Vq1alWZ9WJjYzVu3DjZ7XaP+t2ll17quv3ll196NOWttz300EPq1q2bJOdUzzfeeKOOHz9eap3jx49r3LhxSktLk+T8uS0ZNF4sNjZWJpPJ9S82NrZejw8AAAAAvoJcpObIRaqOXOSCxpaLbN26VX369NGsWbN05syZctex2+369NNPNWTIEKWmpkqSAgMD9frrr7ttJwAAAAB4GxlKzZGhVB0ZygXezlAAAA2Lv7cbAABAQ/G3v/1NmzZt0sGDB5Wfn6/7779ff/rTnzRkyBAFBQVp//792rp1qwzD0O23367U1FStW7euwn126tRJjzzyiD788ENJ0uuvv65FixZp+PDhCg4O1uHDh7VhwwYVFBRozJgxatu2baVTlLZv315fffWVxo0bp5SUFB08eFDXX3+9oqKiNHjwYLVq1UqFhYVKSUnRvn37Kp0St7ZcffXV6tOnj/bv3+96rHXr1rrlllvq5fgXu/TSS7Vo0SJNmjRJOTk52rJli6666ip169ZNAwcOVEREhPLy8nTmzBnt2bPHK6NbmEwmzZ492/WFf0pKiq677jr1799fAwYMkCTt3r3bNfXxc889py+++MJ1El8chF3s9ttv1x/+8AcZhqEVK1aoX79+Gjp0qJo3b+5a56677tIVV1xRp8+vKgICArRkyRINGzZM2dnZ2rlzp3r06KHRo0crKipKCQkJWrNmjWs63hYtWmjJkiWu6Zwb6vGnT5+u7du3l3qsOGyRpFOnTrne65L+9a9/Naj3BwAAAEDjRy5SM+QiVUcuckFjzEUOHDigGTNm6PHHH1f37t3Vp08fRUREyGw2KykpSZs2bVJKSoprfT8/P/373/9W//79a+U5AQAAAEBdIUOpGTKUqiNDucDbGYqkcq/xOHHihOv2119/Xe46xe8PAKAWGQAAwCUxMdG44oorDElu/91yyy1GZmamMWLECNdja9eudbvP3NxcY9y4cRXu8+abbzZsNptx3333uR6bM2dOhW09duyYMXr06Ar3W/JfmzZtjO+++67Mfo4ePepap1OnTjV6/f7+97+XOuZzzz1Xo/2506lTJ9cxjh49WuG6u3btMi6//HKPX6fOnTsbO3fuLLOftWvXutYZMWKER+0sud/K2tilS5cK2/XQQw8ZBQUFRvv27V2P2Ww2t/t86aWXKtzfxf2rKq+pYRhV6qtVsXHjxkpfi65duxqbNm2qdF8l37PKfk7r4viGYZT6PVGVf560FQAAAABqG7lIpxq9fuQipZGLVF1jyUUuPnZl/3r27Gls2LDB05cJAAAAALyODKVTjV4/MpTSyFCqzpsZSlUyD0/fWwBA9TAjDAAAJbRv316bN2/Wv//9by1YsEB79uxRRkaG2rRpo/79++u+++7THXfcIZPJ5PE+g4OD9Z///EeLFi3SvHnz9PPPPysjI0OtW7dW//79df/99+vOO++s0j4l54ggq1at0qZNm/TFF19o/fr1OnnypGw2m/z9/RUZGakePXroiiuu0NixYzVy5MhaHeGgPLfffruefvpp131vTV1bUv/+/bV9+3atXLlSy5cv14YNG3Tq1Cmlp6crKChIrVq1Us+ePXXllVfq+uuv15AhQ6r8XtRGG/ft26ePPvpIX3zxheLi4pSTk6N27dpp8ODB+u1vf6vRo0dLkmw2myTniB0tWrRwu8//+7//07BhwzRnzhzt2LFDycnJysnJqZfnUxNDhgzRnj179O9//1uff/654uLilJqaqsjISMXExGjixImaOnWqa2rixnZ8AAAAAPAmcpGaIRepfhvJRZy8nUvU1vGvueYabd++XZs2bdLGjRt18OBBpaamKjU1Vfn5+bJYLOrQoYOuvPJK3XLLLbrhhhvqvd8BAAAAQE2QodQMGUr120iG4uTtDAUA0DCYDMMwvN0IAAB80ciRI13T165du1YjR470boMagHnz5un++++XJA0bNkw//vijdxvUyBw6dEgxMTGSpF69eunXX3/1cosAAAAAAE0VuUhZ5CJ1i1wEAAAAAOCLyFDKIkOpW2QoAICmwuztBgAAgMbjk08+cd3+7W9/68WWNE6fffaZ6/agQYO82BIAAAAAAHAxcpG6RS4CAAAAAEDjQIZSt8hQAABNBYUwAACgVuzcudM1SkdERIQmTpzo5RY1LkePHtVbb73lun/PPfd4sTUAAAAAAKAkcpG6RS4CAAAAAEDjQIZSt8hQAABNCYUwAACgxvLy8vTEE0+47j/yyCMKDg72Yot8y9ixY/Xdd9+pqKio3OUrVqzQsGHDlJGRIUkaMGCAxo4dW59NBAAAAAAAbpCL1Ay5CAAAAAAATQMZSs2QoQAAUJq/txsAAAB808yZMxUfH6/09HStXr1aCQkJkqSWLVvq2Wef9XLrfMsPP/ygH374QVarVQMHDlSHDh0UGBiolJQUbd261fXaSlLz5s3173//W2Yz9cwAAAAAAHgLuUjtIRcBAAAAAKDxIkOpPWQoAACURiEMAAColi+//FLr1q0r9Zifn58++eQTRUREeKlVvs1ms2n16tVul/fo0UNffPGF+vbtW4+tAgAAAAAAFyMXqX3kIgAAAAAAND5kKLWPDAUAACcKYQAAQI1ZrVYNHTpUL730kq6++mpvN8fn7Nu3T8uXL9fGjRt1/PhxpaSkKC0tTcHBwWrVqpUGDx6sm2++WXfddZf8/Py83VwAAAAAAFACuUjNkIsAAAAAANA0kKHUDBkKAAClmQzDMLzdCAAAAAAAAAAAAAAAAAAAAAAAAKAyZm83AAAAAAAAAAAAAAAAAAAAAAAAAPAEhTAAAAAAAAAAAAAAAAAAAAAAAADwCRTCAAAAAAAAAAAAAAAAAAAAAAAAwCdQCAMAAAAAAAAAAAAAAAAAAAAAAACfQCEMAAAAAAAAAAAAAAAAAAAAAAAAfAKFMAAAAAAAAAAAAAAAAAAAAAAAAPAJFMIAAAAAAAAAAAAAAAAAAAAAAADAJ1AIAwAAAAAAAAAAAAAAAAAAAAAAAJ/g7+0GwHelpKR4uwmAR/z8/GS1Wl33bTab7Ha7F1sEVI5+C19F34Uvot/CV/lS323ZsqW3mwDUOnIR+Apf+rwAitFv4avou/BF9Fv4Kl/qu+QiaKzIRuALfOnzAihGv4Wvou/CF9Fv4at8qe/WZS7CjDAAAAAAAAAAAAAAAAAAAAAAAADwCcwIg2rz8/PzdhMAj5jN5grvAw0R/Ra+ir4LX0S/ha+i7wLeRS4CX8HnBXwR/Ra+ir4LX0S/ha+i7wIAAAAAADRtFMKg2kpOqQT4EovF4u0mAFVGv4Wvou/CF9Fv4avou0D9IheBr+LzAr6IfgtfRd+FL6LfwlfRdwEAAAAAAJoWhkUBAAAAAAAAAAAAAAAAAAAAAACAT6AQBgAAAAAAAAAAAAAAAAAAAAAAAD7B39sNgO+y2WzebgLgEbPZXGo69IyMDDkcDi+2CKgc/Ra+ir4LX0S/ha/ypb5rtVq93QSg1pGLwFf40ucFUIx+C19F34Uvot/CV/lS3yUXAQAAAAAAqH0UwqDa7Ha7t5sAVIvD4aD/wufQb+Gr6LvwRfRb+Cr6LlC/+HmDr+LzAr6IfgtfRd+FL6LfwlfRdwEAAAAAAJoWs7cbAAAAAAAAAAAAAAAAAAAAAAAAAHiCQhgAAAAAAAAAAAAAAAAAAAAAAAD4BAphAAAAAAAAAAAAAAAAAAAAAAAA4BMohAEAAAAAAAAAAAAAAAAAAAAAAIBP8Pd2AwAAAAAAAABf4+fn5+0mAB4xm80V3gcaIvotfBV9F76IfgtfRd8FAAAAAABo2iiEgdc4HA7l5+crLy9PRUVFcjgc3m4SGimTyaSUlBTX/cLCQhmG4cUWAZWj35ZmNpvl7++v4OBgBQUF8YUWAAAAvM5qtdZoe4fDoezsbGVmZqqgoEB2u72WWgaUdebMGW83Aagy+m1pfn5+Cg0NVXh4uIKDg73dHHjIYrF4uwlAldFv4avou4Bv4XoR1Be+d4cvot+WZjKZZDKZFBgYqNDQUAUEBHi7SQAAoIGgEAZekZeXp/T09Cb9RzrqV8m+RogGX0G/vcDhcKioqEh5eXkymUxc9AEAAACflpWVpcTERBmG4foHAEBl8vLyZLPZZLFY1K5dO5lMJm83CQAAAKgyrhdBfeN7d/gi+m1ZRUVFysnJUUhIiCwWC7kIAACgEAb1r/jLupKKK7eBusLsEfBF9NsLSl4caBiGbDabrFYrxTAAAADwOcVFMA6Ho9QXmGazmWwEAFAuwzDkcDhkGIZMJpMyMjIUGBioli1bertpAAAAQJVwvQi8ge/d4Yvot6WVzNJzc3Pl5+en5s2be7FFAACgIaAQBvXK4XAoPT3ddT8oKEjNmjVTYGAgwQbqlL//hV93RUVFXmwJ4Dn67QWGYaigoEDnzp1Tfn6+JCk9PV2tW7cmAAIAAIBXXHzRhiccDodOnz7tKvImF0F9MJlM8vPzc9232+2MuosGj35blsPhUE5OjrKyskp9npTMj+B9ZrNZFovFdT8jI4ORe9Hg0W/hq3yp71qtVm83AagTJf9m9wTXi8AbOL+EL6LfllUyF5Gk7OxshYWFkYs0MBdfv8P1PPAF9Fv4KvquE38JoF7l5+eXutjDarUSaAAAKmUymRQUFKTAwEDZbDbX50l+fr5CQkK83TwAAAA0QXa7vcrb5Obmkoug3l38JXlT/9IcvoF+W5bZbFZYWJgcDofOnTsnScrJyVGzZs283DJUxOFwVOtvBsCb6LfwVfRdoP5VtcgrMzNTfn5+stvtCg4OVmRkJLkI6l1VC7iAhoB+6xQYGCjJWQTj5+cnPz8/Co4buJKF64CvoN/CVzXVvts0y3/gNXl5ea7bzZo1I9QAAFSJyWQqdYFHyc8VAAAAoKEjFwEA1FTJAUGKZ80FAAAAfEFmZqaryD0sLIxcBABQZaGhoZKcg6YUDxQCAACaLgphUK+KiookOS9kLq7SBgCgKkpOj178uQIAAAD4AnIRAEBN+fv7u3IRRr0HAACALykoKCg1Uy4AAFUVEBAgk8kkwzBUUFDg7eYAAAAv8/d2A9C0OBwOSc4LPhjdAwBQHcWfIYZhuD5XAAAAAF9ALgIAqClyEQAAADQUNputSuvn5eXJ4XDIbDZT1I16YzKZ5Ofn57pvt9tdBVlAQ0W/rZzD4VB+fn6VP4tQt8xmsywWi+t+RkYG+RUaPPotfJUv9V2r1Vpn+6YQBgAAAAAAAAAAAAAAAIDHqlrMwkXc8IaL+x39EL6AfusZwzAorGzgHA4H7xF8Dv0Wvqqp9l2ztxsAAAAAAAAAAAAAAAAAAAAAAAAAeIJCGAAAAAAAAAAAAAAAAAAAAAAAAPgEf283AAAAAAAAAPA1fn5+Vd7GZDLVQUuAil3c70wmkwzD8FJrAM/Qbz1jMpmq9XmEumM2myu8DzRE9Fv4KvouAAAAAABA00YhDAAAAAAAAFBFVqu1ytukpKTIMAyZzWb5+xPLwTu4aB6+iH5bWvGFvgEBAdX6PEL9sVgs3m4CUGX0W/gq+i4AAAAAAEDTwrAoAIBqO3HihFq1aqVWrVpp0aJFZZYvWrTItfzEiRNeaKHv4TUDAAAAAMA3nDhxQlarVVarVQsXLiyzfOHCha7lnON7htcMAAAAAADfwPUitY/XDAAAoGoohAEAAAAAAAAAAAAAAAAAAAAAAIBP8Pd2AwCgMRo4cKBOnjypSZMmaebMmd5uDlCr6N8AAACAZLPZqrxNYWGhHA6HJKmoqKi2mwSUy2Qyyc/Pz3XfbrfLMIw6PWZTOW8s+XNst9vL/Fzb7fZS6/JzX7mSr9nFj9d1v/VUQ+jfDodDDodDhYWF1fo8Qt0xm82yWCyu+xkZGa7PfqChot/CV/lS37Vard5uAgCgHjWE80agrtC/AQBAQ0IhDAAAAAAAAFBF7i7WrkhDuYgbTcvF/Y5+CF9Evy2fYRjV+jxC/XE4HLxH8Dn0W/gq+i4AAAAAAEDTYvZ2AwAAAAAAAAAAAAAAAAAAAAAAAABPUAgDAAAAAAAAAAAAAAAAAAAAAAAAn0AhDNCEbNmyRU8//bSuuuoqdenSRe3bt1e/fv10zz336JNPPlFGRka5233//feaNm2a+vXrp6ioKMXExOjGG2/Uu+++q+zsbLfHW7RokVq1aqVWrVrpxIkTKigo0KxZszRmzBh17dpVPXr00K233qqVK1eW2i47O1vvv/++rr32WnXp0kXdunXTnXfeqfXr17s91oYNG1zH2rBhgxwOh+bPn69x48apR48eioqK0rBhw/S3v/1NeXl5bvdz6623qlWrVrr11lsrfC3feOMN1/HK2/7kyZOSpM8++8y1XvE/d/tOTk7Wq6++qjFjxrja3L9/fz344INat25dhe2prqSkJM2ePVvTpk3T4MGD1alTJ0VFRalv376aMmWKli1bJofDUSfHromBAweqVatWevzxxyVJO3fu1EMPPaT+/fsrOjpa/fv31xNPPKFDhw653Ud5fWbBggWaMGGCLrnkErVu3dq1/2IOh0NffPGF7rrrLl1yySVq3769evXqpQkTJmj27NkqKCiotO3p6en605/+pCFDhqhDhw7q3bu37rjjDn311VcePffiNr/xxhsVrudpXz5x4oT+9Kc/afTo0YqJiVG7du3Us2dP3XzzzXrjjTd07NixMvusSv+22+1atGiRfvOb37hes65du2rw4MG6/fbb9c477+jgwYMePXcAAFBaSnaBFm09oQfmblPaucr/DgGApo5chFzkYuQi5CLkIgAA+K6svCIt2ZGg6fO26fBZ93+XAwCcyEXIRS5GLkIuQi4CAIBvyit06HBKjlb9kqxPfjqqr3YlertJXuPv7QYAqHu5ubl6+umntXTp0jLLTp8+rdOnT+uHH35Qamqqnn/+edeyvLw8PfLII1qxYkWpbQoKCrR9+3Zt375d//rXv7Rw4UL17du3wjZkZWXpoYce0o4dO0o9vnHjRm3cuFF//vOf9cgjjyghIUF33323Dhw4UGq9devWaf369frwww915513VnisgoIC3X333VqzZk2px/fv36/9+/fr888/15IlS9SmTZsK91OfvvzySz377LPKyckp9fipU6f09ddf6+uvv9a9996rt956S/7+tfOr2263q3///uUGF0lJSfruu+/03XffaeHChZozZ47CwsJq5bi1bcGCBXruuedUVFTkeuzUqVNavHixli1bpg8++KDSk/u8vDxNnDixwgDJZrNp8uTJ2rp1a6nHU1NTtWHDBm3YsEGffPKJFi9erA4dOpS7j7i4ON1xxx1KSkoqdez169dr/fr1Wr16tYYMGeLJ064VH3zwgV599VUVFhaWejwtLU1btmzRli1btGHDBo9Dl4tlZ2fr7rvv1ubNm0s9XlhYqKysLB09elQ//vij9uzZozlz5lT7eQAA0JQcT8tVbLxN6+Jt2nsqW8b5x1f/mqwx3Rrm32sA4G3kIk7kIqWRi1xALkIuAgCAr8jILVJsfJpWx6Vp6/FMFTmcyciADuG697KWXm4dADRM5CJO5CKlkYtcQC5CLgIAQENjGIbSc4uUkJ6nxIx8JaTnl7idp7PZpT+/B3eJ0PBOvbzUWu+iEAZo5BwOh6ZOnarY2FhJUteuXTVt2jQNGDBAISEhSk5O1rZt28o9cXn88cddoUafPn00Y8YMxcTEyGazadmyZVq8eLGSkpJ0xx13aN26dWrXrp3bdjz77LPavXu3pk2bpptuuknh4eHau3evXn/9dSUlJel//ud/NGLECD3xxBM6fvy4nnzySY0aNUrNmjXTli1b9MYbbygzM1O///3vNWLEiDIja5T017/+VTt37tTIkSM1bdo0RUVFKSkpSZ988onWrl2rgwcPavLkyfruu+/k5+dXsxf4Iu+9955ycnI0ceJEJSUl6cYbb9RLL71Uap3Q0NBS95cvX64ZM2bIMAx17txZDz74oGJiYhQZGamTJ09qwYIFWrVqlRYsWKDmzZvrz3/+c6201TCcXw5cc801Gj16tHr37q3IyEhlZ2fr+PHj+vTTT7Vt2zbFxsbqhRde0AcffFArx61N+/bt09KlS9WyZUs99dRTGjhwoPLy8rRq1Sr94x//UH5+vh599FF16tRJAwYMcLufP//5z9q/f79uuOEG3XXXXYqOjtbZs2eVlZUlyRkC3Xvvvdq2bZskaejQoXrwwQfVqVMnJSUlaeHChfrvf/+ruLg43X777Vq7dm2ZICgrK8vVLyRpwoQJmjRpklq1aqXDhw9r1qxZWrRoUZlQr668/fbbeu211yRJFotF06ZN07Bhw2S1WpWZmak9e/boP//5j0wmk2ubqvbvN9980xVqjB07VnfeeaeioqIUFBSklJQU7d27VytXrix1DAAAUJrDMPRL0jmti7cp9lCajqaVP1rdyl8ohAGA8pCLkIu4Qy5yAbkIuQgAAA2ZLadQsfE2rY5L07YTmbI7jDLrrNibRCEMAJSDXIRcxB1ykQvIRchFAADwhiK7Q0lZBReKXNLzlZDh/D8xI0/nCjyfme9Eak7lKzVSFMKgwXEYhjJyiypfsRGxhPjLXEd/2P/rX/9yhRo33XSTPv74YwUFBZVaZ+zYsXrppZeUnJzsemzlypWusGP48OFatGiRAgMDXcuvvfZaDRo0SL/73e9ks9n0yiuv6F//+pfbdvz888+aO3euxo0b53qsf//+uuyyyzRq1Cg5HA7dfvvtysrK0ldffaXLL7/ctd6AAQPUtWtX3XPPPcrOztaSJUv0yCOPuD3Wzp07NXXqVL399tuuxy6//HLddNNNevLJJzV//nzt2rVL8+bN0wMPPFDJK1g1nTp1kiQFBARIklq0aKHevXu7XT81NVXPPvusDMPQPffco7fffrvUCB79+/fXzTffrFdffVV///vf9Y9//EP33XefunfvXuO2+vn5adOmTeratWuZZVdffbXuuecevf7663rrrbf0xRdf6He/+526detW4+PWpv3796tDhw769ttvS43YMnToUI0aNUq/+c1vVFhYqOeff77MlMoX7+d3v/tdmZP0YnPnznWFGhMnTtTMmTNdJ+P9+/fX9ddf73qPjh07pr/97W/64x//WGofb7/9thITnVPQvfzyy3r66addy/r376/x48frnnvucf281qU9e/a4psrt1q2bli5dqvbt25daZ9iwYZoxY4arzVLV+3fx75Dx48dr9uzZZZaPHj1aTz/9tGw2W82eEAAAjUyh3aEdJzMVe8imdYdtZUbzKM+Ph84qt7CzAs310EAAdYpcpHaRiziRi5RFLlJ6P+Qi5CIAADQkqecKtfaQc+aXHSczVU7tSym/ns7U8bRcRVsCK14RgE9oatkIuQi5CLlI9ZCLVA+5CAAA9edcgV0J6XlKSM9XYnqeEjIuFL0kZebLXkne4amkzDzlFznk3wTrSymEQYOTkVuk6z782dvNqFc/zBgoa2hAre/X4XC4RmVo3769Zs6cWSbUKGY2m0uN0FF8EhIQEKD33nuvVKhRbMqUKfrqq6+0bt06rVixQklJSWrbtm25+7/11ltLhRrF+vTpoyuvvFKbNm1SSkqKnnjiiVKhRrHrrrtOHTp00MmTJ7V58+YKg41WrVq5HQXj//7v//Ttt98qJSVFc+bMqfVgo6rmzp2rzMxMtWvXTm+88YbbaWxfeOEFffbZZzp9+rQ+++wzvfzyyzU+tslkKjfUKOm5557TnDlzlJqaqu+//14zZsyo8XFr2//+7/+WO23xsGHDNGXKFM2ZM0c7d+7Url273I7y0a1bt1LTPF+s+OehZcuWev3118sdkeKFF17QihUrdOjQIc2fP18vvPCC6+etoKBACxYskOTs80899VSZ7QMCAvTuu+/qiiuuKDP1bG374IMP5HA4ZDKZ9I9//KNMqFFSVFRUtY9z5swZSdJVV11V4XpWq7XaxwAAoLHIzi/SxqMZio23acORdJ0rsHu0XViQv0b2bKWxfdqe/7K0lpISAF5DLlJ7yEXKIhe5gFzkAnIRchEAABqCs9kFWhPnLH7ZmZDlUcIR6G/W8B6tNK5vW7VsRhEM0Fg0tWyEXIRchFyk+shFqo5cBACA2uMwDKVkFyoxI+/CzC7ni10S0vOVXscF/i3DgtQxIkSdIpspt9Cu5k1w5NSm94yBJmTv3r06deqUJGcIcfHUm+4UFRVp06ZNkqSRI0dWeGIzefJk1zYbN250u95tt93mdlmfPn08Wu+SSy6RJB07dsztOpIzRLl4OtliYWFhuuWWWyRJBw4cKDWqiTd89913kpyjrLgLnSTJ399fV1xxhSRp+/btddIWh8OhpKQkxcfH69dff9Wvv/6quLg4V+C1f//+OjluTYSHh+vGG290u/yee+5x3V63bp3b9SZMmOB22uOkpCTFxcVJkm655Ra3P0f+/v66++67JUnp6enas2ePa9nu3buVnp4uSZo0aZLbqV3bt2+vkSNHum1nbXA4HFq9erUk50gu/fr1q7NjFQdOy5cvV05O051+DwAAd1KyC7Rkd7Ke/PKAxnzws/7wn3itPJBaaRFMy2YBuqN/a838TW/teGWMZt4zULf0b68gf07xAaAkcpGyyEXcIxchF6lt5CIAAFQuKTNfC3ec1oOL9mvcRzv15prj+rmSIpggf5Ou7WHV/43voR3/b4z+dd8Vun1gtJoFlf/3DAA0VeQiZZGLuEcuQi5S28hFAACNRX6RQ8dSc/XTYZsW/5ykt9cc1zNLD+o3s3frmne3adzHO/Xbxb/qf787ok82n9J3v6Zq3+lztVIE42c2qUN4kIZ0tug3A1rr6REd9datPbTovr7a8MyV2v7/xmjpjKv1zqQBCg+p/eJ6X8CMMKg2dycBFXH3xzzqxt69e123K6uwL+n48eOuk5DyRtsoqeTyX3/91e16FU2RarFYqrTeuXPnKmzTZZddVur+xf3u8ssvd43Y8Ouvv5Y7OkR9sNvt2rdvnyRp3rx5mjdvnkfbFY+aUBsMw9CXX36pBQsW6Oeff1Zubq7bdVNTU2vtuLWlb9++bkdFkaRLL71UgYGBKigoqLB/Fodm5Sm5XWU/DwMHDnTdPnDggAYNGlRmH+5GGSm5jx9++KHM4yaTSYZR8xHejx8/royMDElV+71QHZMmTdLbb7+tbdu26YorrtD48eM1fPhwXXnllWrZsmWtHMNkMlXr8wh1x2w2V3gfaIjot6hPR1NzFHsoTWsPpWnvqWyPt+sSEaKRMRG6tkeE+rQLk9lkktlsVpD/hc9B+i5Qv8hFGj5yESdyEffIRZzIReoGuUjTxPklfBH9FvXtVEaeVh1M1aqDqR5nI8EBZl3T1aoxPSM1rJtVoYF+MpvNah584SIP+i4AlEYuUr6BAweSi5xHLuLkC7lIbWlsuQgAALXBMAxl5BUpIT2/1GwuiedndzmTVeDRrLXVFRbkp+jwIEVZghUdHqTo8GBFWZz/t24eKH9z+d8v892AE4UwqLbqTE2YkpIiwzBkNpvdnoz4+dflr4yGyc/fv8KTs+oqHlFAco4c4OkxMjMzXbdbt25d4XYlp8jMyMgotW7JX7TNmzd3u5+Sj7do0cLtsYr3Z7fby+yr5LHatGlTYZtLBhmZmZml1i2+OMRkMlW4j5JhemXruVuenp6uoqKqV33m5ubWSn/Jy8vTlClTtGrVKo/Wz8/PL3Pci9/vit4X/zro561atapwn/7+/rJarUpOTlZ6errb/hkZGel2PyV/HirrW+5+HoqDBElq27atx/2zpIv/cKmob0nu+3LJtrRr165G70llbXjhhReUnJysBQsW6OzZs5o9e7YrVOzVq5duueUWPfjgg2rdunW1ji05pwhmqtyGrWR4DfgK+i1qk8NhaFdCulbuT9bKX5J05GzFX9KVdFnHcI29pK2uu6SNureufLQ++i5Qv8hFag+5CLlIVZCLXEAuQi5CLtLw8Tc6fBH9FnXheOo5/Xdvkr7dd1p7EjIq30BSs0A/je7dRuP6ttWImNYKCaz4Ag/6LgCUlpaW5rpdlWIPm83mul3Zxeolz2dK5jAXCwkJcbusZMbgbiYX6cJ5nt1eyYzqlbS5VatWrtsln2t9s9ls1c5FakNeXp7uv/9+1+wgnqzf0FT2Xvv7+ys8PFxnzpyp8L0ODw93u6xkv67seCV/zkoer+Ttkv2vPJUtr6nq/l6ojmeffVanT5/WokWLys1Fbr75Zk2bNq1auQgAAFVV5DB0JqvgQpFLhvP/hPPFLtn5Ff+NWRMmSa2bB7qKW6LOF7tEW4IUFR4kS7A/gynWAIUwaHDCQ/y15snB3m5GvQoPabg/ir74C9ZX2lwyoJk6daoefvhhj7YLDAysleO//fbbros9rr76ak2fPl39+/dX69atFRIS4gqcxo0bp02bNtXKqJu1rbbea0+rY2vjeL7SP2tDQECA3n//fT322GNasmSJ1q9fr127dqmgoEAHDhzQgQMH9OGHH+rjjz/WuHHjvN1cAABqTX6RXZsOp2rlL8n64Zdknc3K92i7QD+zhnaP1NhL2mpM79Zq3SK4jlsKoCEiF2lYfPEczlfaTC5Sc+QiDRu5CACgqTtyNlvf7kvSf/ee1v5TmZVvIKl5kL/GXNJGN17aVsNjWik4gNFNgabIEuKvH2YMrHzFRsJCLlKrfKXNJXORyZMn66GHHvJou9rKRd555x1XEczQoUP1wAMPqF+/fmVykfHjx2vz5s3kIrV0PF/pn7UhICBA7777rmbMmKGlS5fqxx9/1O7du0vlIrNmzdKsWbN04403eru5AIBGIKfA7prRJbFEkUtCep5OZRbI7qi7v2eC/E2KspwvcnH97yx4aWcJUpA/s9jWlYZ7NoUmy2wyKSI0oPIVUanIyEjX7eTkZMXExHi0XclRBM+ePVvhusnJyeVu502VTQVb8jld3Obik3mHw1HhPiqbbtcTJY9tGEaF063WNsMwNH/+fEnSkCFD9PXXX7udMt6bo6BUprL+WVRU5Gp/dftnye0q61sll5fcruQIImfOnFH37t3d7qOy52QymWQYRqV9tHi66otd/HuhPvTq1Usvv/yyXn75ZeXl5Wnz5s368ssvtXjxYmVnZ2v69On6+eef1bZt23ppDwAAdSEzr1BrD5zRyl+Ste7gWWXnezaSW/Mgf13bq7XG9mmjETGt1DyYcyGgqSMXqT3kIuUjFyEXqQpykZojFwEANCXxZ7K0Yo9z5pcDSVkebdMi2F9j+7TVuL5tdXX3lgryp/gFaOrMJpOsZCM1FhER4bqdnJysHj16eLRdVXKRkueBFc2qUZ8qa3Nt5CLuzjmr4uJcpHfv3jXep6cMw9Cnn34qSbrqqqu0bNkyt7lIRTP9eJsnuUhx+6ubi5Ts19XNCS/ORbp16+Z2H3Wdi1z8e6E+9OzZUy+99JJeeukl5eXlacuWLVqyZIk+//xznTt3Tg8//LC2bt1KLgIAqJRhGEo9V6iEksUuGReKXtJyqj7bXlVYQ/xLzOZSPLOL835kswCZm1DBa0NCIQyqrTpfAhcWFrr+GK/OFJ+omj59+rhu//TTTxoyZIhH20VHRys0NFQ5OTnatm1bhe/Vtm3bXLd79uxZat2SI1gUFRW53U/JE7SKjlXReiWPtWPHDt15552u+yaTqdQIDjt27HDd7tGjR6l9NWvWTJLzZL6itsTHx1fY5uJRHBwOh9v9mM1m9erVSwcOHNDmzZvr9WciLS3NdVI7fvx4ORyOck+Us7OzXc/VMIwybbz4/a7ofamoD1TX3r17lZeXJ3//8j/OikeTkCrun+W1vVjJC6W2bdtWqm9drOTPQ0xMjGufPXv2dD2+Y8cODR7sfnTnkv2zJLvdLsMwFBYWpqysLKWlpblts2EYOnLkiOt2yfWioqJksViUkZGhDRs2VOs98aR/u+Pv769hw4Zp2LBh6tWrl1555RXl5ubq22+/1ZQpUzzeT3GfLSwsbNAXJTVFZrNZFovFdT8jI6PSIA7wNvotqutMVr5i422KjUvTthMZKvJwBJFWYYEa2cOqa3tE6oqOLRTg5/yCqSg3W7Zcz4/vS323oVwcDtQmcpGGj1zEiVykLHIRchFyEdQVX/obHShGv0VNGIah+JQcrTqQqlUHU3Uk1bNgwxLsr2tjIjSmZ6QGd7K4spGcrEx5emmxL/VdchEA3tCvXz/X7U2bNmnYsGEebdepUydXLuLuHK3Yzz//7Lpdn4UcFdm5c6cmTpxY4fJivXr1KrUsLCxMkvMzpSKHDx+ucLkns34EBga6cpGtW7dWun5tstlsriKmW265xW0RTMlcpCHat2+fioqK3OYi+/fvd+UiF7/XnirZr3fs2FGtvlVyH7t27aowoyy5j/IU5yIVFSgZhqGjR4+Wu6xTp06uXGTTpk0VHsudmsxqExwcrBEjRmjEiBG65JJLXLnIDz/8UKVcBADQeBXaHTqVka+E9HwlZuQpocTMLonp+corqrvzfj+T1LaFs7glKjzYNaNLVHiQoixBCgui5KIh4l1BtZX8stRTDXGqzMbs0ksvVVRUlBITE/Xpp5/q0UcfdZ24V8Tf319DhgzR6tWrtW7dOp06dUrt27cvd93iUSL8/f01dOjQWm1/dX399df64x//qJCQEEml+925c+f01VdfSXJ+CX/xiAIdO3aU5AwusrOzy329UlNTtW7dugrbEBQUJEmuk2p3rr/+eh04cECHDh3SmjVrNGrUqEqeXe0o+SV9RaOVfPrppw364iybzabvv/9eN910U7nLFyxY4Lo9YsSIah2jbdu2iomJUVxcnL7++mu98sor5fYLu92uxYsXS3KO6FEyWOzfv7/Cw8OVnp6uzz//XI888ki54cDp06cVGxtbbjuK+3HHjh21f/9+7d69222bV61a5TacM5vNuu666/Tll19q48aN2rNnT6m2esLT/l2Za665xnU7NTW1WvswDKNan0eoPw6Hg/cIPod+C3cMw9DR1FzFxtu0Lt6m/Umej4bfNTJEI7pbNbK7Vb3bNisxGkjtfZbRd4H6RS7S8JGLkIu4Qy7iOXKRsshFUBX8jQ5fRL9FZQzD0MEzOVodl6bVcWk6YcvzaDtriLP4ZXRMhC6Pbi5/v+KLbmvn84y+CwClkYuElFl27tw5ff3115LIRYqRi1SsoeQixchFAACNQWZeUTkzujgLXpKzClSX36Y2CzQrKjxYUeeLXKLDgxRlcf7ftnlgiawCvoJ3DGjEzGazHnvsMUnSqVOn9Pjjj7s9EXE4HEpKSnLdf+CBByQ5T1yeeuopFRYWltlmwYIFrpOwm266qcFMU3nmzBn9z//8T7nLXn75ZddUovfff3+Z5cXhTEFBgf75z3+WWV5YWKhnnnlGubkVj2jVpk0bSdKxY8cqXO+hhx5yjbb65JNP6sCBAxWuv3LlSu3fv7/CdTzRsmVL1yhZy5YtU35+fpl1du7cqddee63Gx6prf/zjH0tNuVxsw4YNmj9/viRnsHDZZZdV+xjFPw8pKSn6wx/+UO46b775pg4ePChJmjJliuvkX3IGAXfffbck56gkM2fOLLN9UVGRnnnmmUrDguI+umPHDm3ZsqXM8uTkZLdtLDZjxgyZzWYZhqGHHnpIp06dcrtuecs86d/FoVNFF/qVDHE6depUYZsBAPAWh2Fod2KW3l13QnfM3qOJc/fqw58SKi2CMUnq1z5MTw7voCUP9NPn0/rpsWs6qE+7MKbEBYB6Qi5SFrmIE7lI1ZCLlEYuAgBoigzD0C9J2Xp//Qnd9sluTZ6/T3O2nKq0CCayWYB+M6C1PprYS98+OlB/uK6Lruxk4cISAKgH5CJlkYs4kYtUDblIaeQiAIDK2B2GkjLztf1EhpbvOaMPfjypl745pCnz92nUzO0aNXOHpn66Xy/9J14f/Jig5XvPavvJTCXVUhFMq7AAXRbdXOP7tNQjV0frLzd109x7++iHGQMV+8QVWji1r968NUZPjeioO/q30VWdLYoODyar8FHMCAM0cg8++KBWrlyp2NhYrVixQsOHD9e0adM0YMAAhYSE6MyZM9qxY4eWLl2qO+64Q88//7wkaezYsbrlllv09ddfKzY2VjfccIMeffRR9ejRQ+np6Vq2bJkWLlwoyTmd95///GdvPs1SBgwYoDlz5uj48eO6//771b59eyUnJ2v27NlavXq1JKlv377lBhvXXXedOnTooJMnT+q1115TWlqabrrpJgUHB+vAgQP65z//qb179+qKK67Q9u3b3bZh0KBB+umnn7Rz5069++67Gj16tEJDQyVJISEhateunSSpdevWmjlzph544AElJyfruuuu01133aXRo0erXbt2Kioq0qlTp7Rz50598803OnbsmBYsWKA+ffrU6DUym8264447NHv2bO3fv18333yzHn30UXXt2lWZmZlatWqV5syZo2bNmqlt27aVTu3rLX369FFcXJzGjBmjp556SgMHDlR+fr5WrVqljz/+2DUN7uuvv16j49x///1asmSJtm3bpkWLFikhIUHTpk1Tx44dlZycrIULF2rFihWSpM6dO+t3v/tdmX0899xz+uqrr3Tq1Cn96U9/0r59+zRx4kS1bNlSR44c0axZs7Rz504NGDBAu3btctuWqVOnas6cOSoqKtLkyZP17LPP6qqrrlJBQYG2bt2qWbNmqaioSF27dtWRI0fK3Uffvn31/PPP67XXXtPhw4c1fPhwPfDAAxo2bJisVqsyMzO1d+9erVixQn5+flq+fHmp7T3p31lZWZo8ebI6duyom266SQMHDlSHDh3k7++v5ORkff/9964Rgtq1a6frrruuGu8MAAB1I7/IoW0nMrUuPk3r49OVmlP2S77yBPiZdGUni0Z0t+qabuFq2SywjlsKAKgMuQi5SHnIRaqGXGR5qe3JRQAATYVhGNp3Ots188vpTM9G/W4dFqBR52d+6de+ufzMDAgCAN5CLkIuUh5ykaohF1leantyEQCAJOUV2pWQnq/EDOdMLs7bzv9PZ+ar0F5387oE+pnU3nJhJpfo8GBFhQcp2hKk9pZgBQdQ0NKUUAgDNHJms1nz5s3T448/rm+++UaHDx/W//t//8+jbT/44APZ7XatWLFCe/bs0aOPPlpmnbZt22rhwoWuE/WG4A9/+IM+/PBDrVmzRmvWrCmzvEePHlq4cKH8/cv+CgwMDNSHH36oSZMmKScnRx999JE++ugj13I/Pz/95S9/UXp6eoXBxrRp0zR37lzZbDb95S9/0V/+8hfXsqFDh+qrr75y3b/55ps1f/58PfHEE7LZbJo7d67mzp1b7n7NZrPrBLKmXn75ZW3dulX79u3Trl279PDDD5dabrVaNXv2bL3++usNNti49NJL9eCDD+r555/Xiy++WGZ5YGCgZs6cqcsvv7xGx/Hz89OCBQs0efJkbd26VT/++KN+/PHHMuvFxMRo8eLF5U6F26JFC3322We64447dObMGS1dulRLly4ttc5dd92loUOH6sknn3Tbll69eul//ud/9Morryg9PV2vvPJKqeVWq1Xz5s3Ta6+95jbYkKRnn31WZrNZb7zxhjIyMvTOO+/onXfeKbNeeVNYV6V/nzhxQrNmzXLbjjZt2mj+/PkeTcMNAEBdyswr0oYj6YqNt2nT0XTlFDo82i4syE/XdA3XiO5WDekSrmaBfnXcUgBAVZCLkIu4Qy7iOXKR0shFAACNmcMwtOeUs/hlTVyakrM8K35p0zxQo2MiNKZnhC5lNlwAaDDIRchF3CEX8Ry5SGnkIgDQNBiGobScIldxS0J6nhLT85WQ4fw/5Zxng4lWlyXEX1EWZ5FLdHiQ63aUJUitmweSO8CFQhigCQgNDdXs2bP1008/adGiRdqyZYvOnDkju92uVq1a6dJLL9XYsWN1++23l9ouODhYc+fO1ffff69FixZpx44dSktLU2hoqLp166Ybb7xRDz74YIM7IQkMDNTixYv173//W59//rkOHTqkwsJCde7cWbfddpsefvhhhYSEuN3+qquu0urVq/XOO+9o/fr1Sk1NVUREhAYNGqRHH31UgwcP1htvvFFhG9q1a6fvv/9e7777rjZu3KjTp08rL8/99PDXX3+9duzYofnz52vVqlU6cOCA0tPT5e/vr9atW6tnz5665pprNH78eEVFRVX7tSmpRYsWWrFihWbNmqWvv/5aR44ckZ+fn6KionTdddfpoYceUvv27WvlWHVpypQp6t27tz766CNt2bJFaWlpioyM1DXXXKMnn3xSPXv2rJXjWK1WffPNN/ryyy+1ZMkS7d27V+np6WrevLl69+6t8ePHa8qUKQoMdD/ye69evfTTTz/p/fff14oVK5SYmKiwsDD17t1bU6ZM0e23365FixZV2pZHHnlEMTEx+uijj7Rz507l5uaqbdu2Gj16tJ544glFR0d79JyeeeYZ3XLLLZozZ47Wr1+vhIQE5ebmKjw8XDExMRoxYoQmTZpUZjtP+neHDh20cuVKrVq1Slu3blVCQoLOnj2rc+fOyWKxKCYmRtdff72mTp2q5s2be9ReAABqW3JWvtbF2xQbb9OOk1myOzwblaR1WIBGdI/QyB5WXR7dnClyAaCBIxchFykPuUjVkItcQC4CAGhs7A5DuxKzXMUvnl7M0r5FkEb3dM780qdtM5m4CAUAGiRyEXKR8pCLVA25yAXkIgDQeBTZHTqdWeAscik1s0u+EtPzPB48tDrMJqlt8yBnkUt46dldosODFBZEeQM8YzIMo+7mH0KjlpKSUuVtkpOT5XA4ZDab1aZNmzpoFZqqDRs2aMKECZKk5cuX6+qrry61vORoHkVFRfXZNNSBgQMH6uTJk5o0aZJmzpzp7ebUGfqte3yeNFx+fn6yWq2u+zabTXa73YstAipHv206DMPQ4ZRcrTts07pDNv2SfM7jbbu1DNHI7laN7B6hXm1CG8TFHb7Ud1u2bOntJgC1jlwEDQm5SNNCLgI+TxouX/obHShGv22aihyGdiZkavXBNK09ZFNqjmfFLx3CgzQ6JkKjYyK9no/4Ut8lF0FjVdVshL9jUVfIRZoWchHwedJw+dLf6ECxxt5vs/OLXDO6lCxySUjPV1JWvjwcK7RaQgLMF83qcqHYpW2LQAUw4GiN+FLfrctchJIpAAAAAECjZXcY2nsqW7HxaYqNtykhPd+j7UyS+kc118juVo3oblUHa3DdNhQAAAAAAKAOFdkd2n4yU6vjnMUv6bmeXVDZKSJYY2KcM7/0aNUwBgcBAAAAAACSwzB0NrvAVezinNnlfLFLRr4yPDz3r67IZgHO4hZLsKLCSxe9RIT6kyGgzlEIAwAAAABoVPIKHdp2IkOx8Tatj7fJ5mG4E+hn0pWdLRrR3arhXa2KaBZQxy0FAAAAAACoO4V2h7Yedxa/rIu3KSPPs4yka2SIxvR0Fr90jQzhwhUA5fLz86vS+vwugTdc3O9MJpMMow6HPgdqAf3WMyaTqcqfRahbZrO5wvtAQ+QL/Tav0F5iJpc8nUzPU2J6vhJseUrMyFOBve4+I/zNJkWdL2zpYA1WdHiwosKD1eH8YyGB/B72Fl/ou/WBQhgAAAAAgM/LyC3ST0dsio23afOxDOUWOjzarkWwn4Z1tWpkd6uu6mxRKEENAAAAAADwYflFDm05nqHVB9O07rBN2fl2j7aLaRWqUednfukSGVLHrQTQGFit1iqtn5KSIsMwZDab5e/P5UqoPSUvhPfz86uwf3HRfOPRlH6X0G9LK77QNyAgoMqfRahfFovF200Aqswb/dYwDNlyCnU89ZxOpOXoRGqOjp///0RajpIy8+r0+C2C/dUpspk6RoaqY0SoOkWEum63s4TIz0xBuy9oqr9zm8ZfgwDQCB0+fFgFBQVV3q5ly5Zq1apVHbTIM2fPnlVKSkqVtwsMDFS3bt3qoEUAAMBXJWXmKzbepnXxNv18MlOeDnTSpnmgRna3amQPqy6Lai5/v6Y5MgYAAL6MXAQAAOCCvEKHNh9L1+q4NK0/bNO5As8GCOnVJlRjYiI1KiZCHa3BddxKAABQW+Lj46uVi7Rq1crrucjZs2ervF1gYKC6d+9eBy0CAKB+FNkdOpWep+NpJYpdzhe6nEjLUXa+ZzO4VofJJLW3hKhjhLO4pWNkqDq5il6ayRIaUGfHBuoahTAA4KN+85vf6OTJk1Xe7ve//72ef/75OmiRZ+bMmaM333yzytt16NBBP//8cx20CAAA+ArDMHQ4JVex8TbFxqfpQHKOx9v2aBWqkd2tGtHdqp6tQ8tMKw8AAHwLuQgAAGjqcgvs2nDUWfzy05F0j2fH7dO2mUbHRGhUTISiwyl+AQDAF91+++3VykVeeOEFvfjii3XQIs988sknev3116u8XYcOHbRnz546aBEAALUnO7/o/Cwu50oVuRxPzVFieq7sDg9H9qyG4ADz+UKXZq4il46RztldoqwhCvJndjE0ThTCAGgUrr766mqNGgHfxIUfAAA0HXaHod2JWa6ZXxIz8j3azmySBkQ114jzxS9c2AEAaMzIRZoWchEAAJqunAK7fjriLH7ZcCRdeUWeFb/0ax/mLH7pEaF2lqA6biWApsJms1Vp/cLCQjkczt9bRUV1N+I1mp6rrrqqVC5Ssn+ZTCb5+V248NNut8sw6u4i1IbO4XB49eev+HdAdRS3u2Qu0lh/l9BvK+ZwOORwOFRYWFjlzyLULbPZLIvF4rqfkZFRo597oD5Upd8ahqGz2YVKSM8r958tp24/lyJCAxQdHqzo8CDn/9bg8/eD1bJZgJvBQAuVk1Uoz4cYha/wpd+5Vqu1zvZtMvgrCdWUkpJS5W2Sk5PlcDhkNpvVpk2bOmgVUD5//wt1f431RBiND/3WPT5PGi4/P79Sf7zabDbZ7XYvtgioHP224ckrdGjL8QzFxtv042Gb0nM9+xwM8jfpyk4WjeweoWu6hcvayKfw9aW+27JlS283Aah15CLwJZxfwhfRb93j86Th8qW/0YFi9NuGLzu/SD8edha/bDqWrvyiyr/eN0kaEN1co2MidG0Pq9o0b3zFL77Ud8lF0FhVNRvh71h4C+eX8EX0W/f4PGm4fOlvdKDYxf02+WyqTqblKCEjXwnpeUpMz1dChvP/xIx85Xs4IEW12mI2qX2LQEWFByva4ix2iTpf9BJlCVJoILO64AJf+p1bl7kIM8IAAAAAALwuPbdQPx1O17rDNm06muHxiKaWYH9d0y1cI7tbdWUni0IIfwDUk5Ij8nmq/JGYgLp1cb8zmUyMIIkGj37rmYtHiIX3mc3mCu8DDRH9tmHKyitSbHyaVh1I1aZj6Sq0V/45aDZJl3dooTE9I3VtTKRahQXWQ0u9h74LAAAAAKgqwzCUmWd3zuKSka/TmQU6k3NCx1NzdDItR6cz8lSXSXSzQD/XjC5R54tdosODFGUJUpsWQfI3810iUBUUwgAAAAAAvOJURr7WxdsUG5+mXQlZ8uCaDklSuxaBGtk9QiO6WzUgujlhEACvqM4UzikpKTIMQ2azudSIfkB94qJ5+CL6bWnFF/oGBARU6/MI9cdisXi7CUCV0W+9x3auQD/8kqz/7jutDfEpHhW/+JlNGtI1Ujf2bauxl7RVq0Y484un6LsAAAAAAEmyOwwlZxUoMSNPCemlZ3ZJSM9Xdn7dzprRpnmgoixBzpldzhe5FBe8WIL9GTgPqEV84w4AAAAAqBeGYejQ2RzFxtsUG29T3Jkcj7eNaR2qEd2sGtnDqphWoYRDAAAAAADA56Vm52vlL8n6797T2ng4VXZH5cUv/maThnZvqZv6ttV1l7RVRLPGPfMLAAAAAAAXyy2wKzHDWeSSkJ5fqujldGaBijw4v66uQD9TieKWYEWFByn6/P12liAF+TNjKVBfKIQBAAAAANSZIoehXQlZWhdv07p4m05l5nu0ndkkXRbd3DXzS3tL0x3RFAAAAAAANB5nsvL0/f5kfbv3tDYfSZUn1+YE+Jl0TY9WuvHStrrukjYKD6X4BQAAAADQeBmGodScQmeRy/lil4QM58wuien5Ss0prNPjh4f4n5/NxTmTS3R4sKv4pWVYgMwM3Ak0CBTCAAAAAABqVV6hXZuPZSg23qYfD6crI6/Io+2C/M0a0tmikd2tGtY1XOGhAXXcUgCoPpvNVuVtCgsL5XA4JElFRZ79bgRqymQyyc/Pz3XfbrfLMOpuJDSgNtBvK+ZwOORwOFRYWFitzyPUHbPZLIvF4rqfkZHh+uwHGir6bf04k1Wg1XGpWnUwVTtPZsqTT7VAP5OGdrVqTM9IDe9mVfNg51f7Rv452fLP1W2DfYAv9V2r1ertJgAAAABAg1Nod+hURr5rZpfE9HwllLidV1R353h+JqltC2dhS7e2FnWMCFWniFBZA+xq29xfYUFcXg/4An5SAQAAAAA1lp5TqB+PpCs23qbNxzKU72EoZQnx1/BuVo3sbtWVnVooOMCv8o0AoAGw2+1V3oaLuOENF/c7+iF8Af3WM4ZhVOvzCPXH4XDwHsHn0G9rT1JmvtYcStPquDTtTsz2aJsgf5OGdgnX6JgIXdPNqmaBpQtD4R59FwAAAAAanqy8IudsLul5roKXhPR8JWbkKTmrwKNZUqsrNMDsnMklPEjRlvP/hztneGnbPFD+fmb5+fmVGrzAZrNxbgn4EAphAAAAAADVkpCep3XxNq2Lt2lXYpbHIVWUJUgjujuLX/pFNZe/mWmDAQAAAACA7zuVka/VcWlaHZeqfac9m7Ul2N+sa7o5i1+GdglXaCCDhAAAAAAAfIPdYehsdoGz2CXj/Kwurtld8pSZV7dFJa3CAhRlcRa3RIcHK8oS5LodHuIvk4lrEYDGjEIYAAAAAIBHDMPQwTM5WhdvU2y8TYfO5ni8bc/WoRrZ3aqRPSLUvWUIgRMAAAAAAGgUEtLztOpgmtbEpemXZM+KX0IDzLqmm/V88YuFGXIBAAAAAA1WXqH9/GwupWd2SczI16mMfBXa625alwA/k9pbnDO6RIcHuWZ1ibIEKcoSxPk00MRRCAMAAAAAcKvI7tDOxCzFHnLO/JKUVeDRdn4maWCHFhrR3aoR3axqZwmq45YCAAAAAADUj+NpuVodl6ZVcWmKO+PZQCHNAv00oruz+OWqzhYF+ZvruJUAAAAAAFTOMAzZcopKzeiSkJ7vKnhJOVdYp8e3BPsrKjzo/Gwu5wtezhe+tG4eKDODbAJwg0IYAAAAAEApuQV2bTqWodh4m346YvN4uuJgf7OGdLFoZHerhnW1yhLCKScAAAAAAGgcjqTkaHVcmlbHpSk+JdejbZoH+Wlkd6tG94zU4I4tFEjxCwAAAADAC4rsDiVlFVwocknPV0JG8e085RQ66uzYZpPUpnlgmSKX4pldmgdzXQGA6uG3BwAAAABAtpxCrT9sU2y8TVuPZyi/yLPpi60h/hre3aoR3a0a3NGi4AAu6AAAAAAAAL7PMAzFp+Rq9cE0rY5L1dG0PI+2s4T469rzM79c0bGFAvzISgAAAAAAdS87v0gJ52d0cc7m4ixySczIV1JmvuyeXQJQLcH+5lLFLdHhwYo6f79di0DOjQHUCQphAAAAAKCJSkjPU+whZ/HLnlNZcngYfEVZgnRtD6tGdo9Q3/Zh8jMzFTEAAAAAAPB9hmHo4JkLM7+csHlW/GIN8de1MREaHROhyzu0kD9ZCQAAAACgljkMQ2ezC5yzuZyf0SXxfOFLQka+MnKL6vT4kc0CXEUuzpldim8HKyLUXyYT58IA6heFMAAAAADQRBiGoQPJOYqNT1NsvE2HU3I93rZ3m2Ya0d2qkd2t6tYyhBALAAAAAAA0CoZh6Nfkc1p10Fn8kpiR79F2kc0CNKqHs/jlsujmDBQCAAAAAKix/CKHTmWUnNUlzzWzy6nMfOUX1d20Lv5mk9pbghRtCVJUeJCizhe8RFucs7yEBPrV2bEBoDoohAHQYJw4cUKXX365JOm9997T3Xff7eUWoS4sWrRITz75pCRpx44d6tixo5dbBABA41Zkd2hHQpbWxdu0Lt6m5KwCj7bzM5t0eYfmGtndquHdrGrbIqiOWwoAAMhGmgayEQAAvM9hGNp/Ots188vpTM/yktZhARoVE6ExMZHMkgsAQC0jF2kayEUANHWGYSgjt0gJFxW5FBe9nMkurNPjNw/yU3R48PnZXJwzukSdL3Zp3TyQ81wAPoVCGAAAAABoZHIK7Np4NF3r4m366Ui6svLtHm0XEmDW0C7hGtndqqu7hqtFMKeMAAAAAACgcXAYhvYkOotf1hxK83iwkLbNAzU6JkKje0bo0nZhMjNLLgAAAACgAkUOQ8mZ+a5il8T080UvGflKTM/XuQLPvr+vDpOk1s0DLxS5WJz/R4cHKcoSLEsI1wAAaDz4jQagSXnttdf0+uuvS5LOnj3r5dagoRo4cKBOnjypSZMmaebMmd5uDgAAHkk9V6gfD9sUG2/T1uMZKrB7NiVyRKi/hnezamR3qwZ1sijI31zHLQUAAN70xhtv6M0335RENgL3yEYAAI2F3WFoV2KWs/glLk0p5zwbWTfKEnR+5pcIXdK2mUwUvwAA0CiQi8AT5CIAPJFTYHcWuWTkK+F8oUvxrC6nMwtkd3j2fX11BPmbFWUJcs7kEh6saEuQos4Xu7RvEaRAvvMH0ERQCAMAAAAAPuqELU+xh9IUG2/T3lPZ8jRK6xAepJE9IjSyu1WXtgtjemMAAAAAANBoFDkM/XwyU6vj0rT2UJrScoo82q5DeJDG9IzU6JgI9WwdSvELAAAAADRhhmEo5VyhazaX4iKXhPR8JWbkeXyuWV0Rof6KslyYycU1w0t4kFo2C+CcFQBEIQwAAAAA+AyHYejXpHOKjbdpXbxNR1JzPd72krbNNLK7c+aXLpEhBGMAAAAAAKDRKLI7tN1V/GJTeq5nFyR1igjWmJgIjekZqe4tyUsAAAAAoCkpKHLoVKZzRpfE9DwlnC92SUzPV2JGvvKLHHV2bD+zSe1aBDqLWyznZ3YJDzo/00uwmgX61dmxAaCxoBAGAAAAABqwQrtDO05maV18mtbF23Qmu9Cj7fzMJg3q2EIju1s1vJtVrZsH1nFLAQAAAAAA6k+h3aEtx53FL+vi05SZZ/dou24tQzQ6JkKjYyLUlcFCAAAAAKBRy8gtUmKGcyaXi2d2OZNVIKMOj90s0Kyo8GBFWy7M5hJ9/n6bFkHyN3M+CgA1QSEM0Ig9/vjj+uyzz9ShQwf9/PPPbtdbtGiRnnzySUnSjh071LFjR9eygQMH6uTJk5o0aZJmzpypnTt3atasWdqyZYtSU1MVGRmp4cOH68knn1SPHj0qbI/dbte8efP02WefKS4uTiaTSZ07d9Ydd9yh6dOne/Sctm/frpUrV2rLli06dOiQ0tPTFRQUpPbt22vo0KGaPn26evbsWWa7hQsX6rHHHiv1WKtWrcqsd/HzL273F198oa+//lp79uyRzWZTs2bN1KNHD9188826//77FRIS4lH7PVUbr/uGDRs0YcIESdLy5cs1ZMgQLVq0SF988YXi4uKUkpKiiRMnaubMma5tHA6HlixZoiVLlmjPnj1KT09XixYt1KtXL91yyy2aPHmyAgMrvog2PT1d7733nr799lslJCQoLCxMl1xyiaZOnapbb7210ude/L78/ve/1/PPP+92vVtvvVUbN27U0KFD9dVXX7ld78SJE5o7d67WrVunkydPKisrSy1atFCPHj00fPhwTZw4UZ07dy61z2KfffaZPvvss1L7u/h4drtdn3/+uZYuXar9+/crPT1dwcHBatmypaKjo3XNNddo3Lhx5fZLAADcyc4v0qajGYqNt+mnI+k6V+DZhRyhAWZd3TVcI7pbdXWXcDUP5pQPANC0kY1cQDZCNkI2AgBoDPKLHNpyPEOrDqZp/WGbsvM9y0xiWoVqdM8Ije4Roc6Rtft3CwAADRW5yAXkIuQi5CJA42V3GDqTVaCE88UuieeLXIoLXrI8PG+srtZhAeeLXIpndrlQ7GIJ8WfwBQCoQ1wVBcBjCxYs0HPPPaeiogvTyZ86dUqLFy/WsmXL9MEHH7g9ac3Oztbdd9+tzZs3l3p879692rt3r5YuXap33nmnwuOXDF9KKiwsVFxcnOLi4jR//nz93//9nx544IFqPMOyEhISNHnyZO3fv7/U4wUFBdq6dau2bt2qOXPmaNGiRerWrVutHPNiNXndi+Xl5WnixIlat26d23VsNpsmT56srVu3lno8NTVVGzZs0IYNG/TJJ59o8eLF6tChQ7n7iIuL0x133KGkpKRSx16/fr3Wr1+v1atXa8iQIZ487VrxwQcf6NVXX1VhYemR89PS0rRlyxZt2bJFGzZsqDAUqYi7fl1YWKisrCwdPXpUP/74o/bs2aM5c+ZU+3kAAJqGlHMFWh+frtj4NG07kalCu2djz0SGBmh4d6tGdrdqUMcWCvQ313FLAQBoushGLiAbIRuRyEYAAPUjr9ChTcfStTouTT8etulcgcOj7Xq3aabRMREaFROhjtbgOm4lAACNH7nIBeQi5CISuQhQn3IL7M7ClhLFLonp+UrIyNepjHwVOepuXpdAP5OiLEHOmV3OF7lEnZ/hpb0lSEF8Pw8AXkMhDACP7Nu3T0uXLlXLli311FNPaeDAgcrLy9OqVav0j3/8Q/n5+Xr00UfVqVMnDRgwoMz2M2bMcJ34DRw4UI888oi6du2qM2fOaPHixfr666/13HPPVdiGoqIihYeH64YbbtCQIUPUtWtXhYaGKikpSXv37tU///lPpaam6sUXX1SPHj10zTXXuLa96aabNGDAAH3yySeaPXu2JGn9+vVljtGuXTvX7bS0NN18881KTExUUFCQJk+erKFDh6pjx446d+6c1q5dq3/+8586evSo7rrrLq1evVotWrSozsvrVk1f92J//vOftX//ft1www266667FB0drbNnzyorK0uSc4SKe++9V9u2bZPkHMHiwQcfVKdOnZSUlKSFCxfqv//9r+Li4nT77bdr7dq1CgsLK3WMrKwsTZw40RVoTJgwQZMmTVKrVq10+PBhzZo1S4sWLdKBAwdq9TVy5+2339Zrr70mSbJYLJo2bZqGDRsmq9WqzMxM7dmzR//5z39KVd2/9957ysnJcT2PG2+8US+99FKp/YaGhrpuv/nmm65+PXbsWN15552KiopSUFCQUlJStHfvXq1cuZLKfgCAW8fSchV7yKb1h23aeyrb42mXO1qDdW0PZ/FLn3ZhMvNZAwBAnWss2ci//vUv1xfvZCNkI2QjAICGKrfArg1HncUvPx1JV26hZ8Uvfdo205iekRrVw6qocIpfAACoLeQi5CLkIk7kIkDdMAxDaTlFSkjPU0J63vnZXPJdt1PPFVa+kxqwhPgr+nxxS1R4kKItzqKXqPAgtQoL5Pt4AGigKIRBw2M4ZMqzebsV9coItkqmhl0ZvH//fnXo0EHffvut2rRp43p86NChGjVqlH7zm9+osLBQzz//vFauXFlq25UrV+rbb7+VJI0ZM0bz58+Xv/+FXz/XXXed3nrrLb3++usVtmHMmDG64447Sp1USlK/fv00duxY/fa3v9Utt9yi/fv36/XXXy8ValgsFlksllJT2/bu3bvC4/3hD39QYmKiOnTooGXLlqlTp06lll999dW65ZZbNH78eB07dkzvv/++Xn755Qr3WVU1ed0v3s/vfve7MifoxebOnesKNIqnvi0+Ee/fv7+uv/56vfrqq/r73/+uY8eO6W9/+5v++Mc/ltrH22+/rcTEREnSyy+/rKefftq1rH///ho/frzuuecexcbGVuelqJI9e/bojTfekCR169ZNS5cuVfv27UutM2zYMM2YMcPVZkmu9zggIECS1KJFiwr7SfGoIOPHj3cVWJU0evRoPf3007LZmtbvNACAew7D0C9J5xR7KE2x8TYdS8vzeNtL2zXTyO4RGtndqs6RIXXYSgCAJ/z8/Kq8jUdfeJKLNFi+mo0U97vibKRly5au7chGLiAbcWoo2cjFvy9NJpMMo+5GdfRVJpOpWp9HqDtms7nC+0BD1JD67bl8u348bNOqgynacCRdeUWeFb/0j2ruLH6JiVB7C8UvTUVD6rsAalkTy0bIRer3mhFyEXKRYg05FwEaq0K7Q6czC5zFLSWKXIr/93QAhOrwM0ltWzgLW6IsF8/sEqSwIC6lBgBfxG9vNDimPJsiPxns7WbUq9QHt8oIifR2Myr1v//7v6VOrIsNGzZMU6ZM0Zw5c7Rz507t2rWr1EgTxaNpBAUF6Z133ikVaBT73e9+p6+//lq//vqr2+OXHHmjPC1atNALL7ygqVOnasuWLUpLS1NERISHz660EydOaPny5ZKk1157rUygUaxfv3568MEH9f7772vx4sW1HmpI1X/dS+rWrZuef/55t8coPiFv2bKlXn/99XIvznrhhRe0YsUKHTp0SPPnz9cLL7ygoKAgSc5pfxcsWCBJ6tOnj5566qky2wcEBOjdd9/VFVdcUWba2dr2wQcfyOFwyGQy6R//+EeZQKOkqKioah/nzJkzkqSrrrqqwvWsVmu1jwEA8H2Fdoe2n8hUbLxN6+JtSvFwtBp/s0mDO7bQ8O5WjehuVauwwDpuKQCgKqrzd35KSooMw5DZbC733FiSTDmpsjSxXCTjoZ9lhNZNLlLyYjh3r7lUurDJ39/f7bp/+ctfyj2PHDlypKZOnarZs2dr586d2rt3ry677DLX8rlz50pyZiPvvfeegoPLXqD5/PPPl8pG/Pz8yrSjQ4cObp+DJEVEROgPf/iD7r33Xm3ZskWZmZllshFPX5OS2cgbb7yhbt26lbvewIEDNX36dL333nv67LPP9D//8z8VtrE6qvu6l3xfu3fvrj/84Q9uiwaK86uWLVvqrbfecl3wUNLLL7/sGv10/vz5evnll91mI88++2yZfMXf318zZ87UZZdd5spGKupvFf2ukC4Ui5hMpjLrffjhh65sZPbs2erYsaPb/bjLvTxpQ3E2cvXVV1e4XsnBaaqDYo/Sin+OAwICyJ0aOIvF4u0mAFVW3/02M69Qa349o//uPa11cWeV70Hxi8kkDeocoXGXttUNl7ZTW4pfIH7nAo1JU7tmxFeuF5G4ZqQ8XDPCNSMS14wAJWXkFupkWo6Op+boQGKKEmy5rpldkrMK5KjDsW5CAsyKDj9f5GI5P7PL+YKXts0D5e/X8AtPAQBVw292AB4JDw/XjTfe6Hb5Pffc47q9bt0612273a6NGzdKcl6c0LZt23K3N5vNmjRpUpXadO7cOZ04cUIHDhzQr7/+ql9//bVUYLJ///4q7a+kH374QXa7XaGhoRo9enSF6xaf0CYlJSkhIaHaxyxPdV/3i02YMMHtBQNJSUmKi4uTJN1yyy1lpq8t5u/vr7vvvluSlJ6erj179riW7d69W+np6ZKkSZMmuR3luH379ho5cqTbdtYGh8Oh1atXS3JehNGvX786O1Zx2LR8+XLl5OTU2XEAAL4nO79I3x9I1UvfHNKYD37WE0sOasnuM5UWwTQLNGtsr0j9383dteqxgXrvzl66c0AbimAAAGgAwsPDNW7cOLfLJ0+e7LpdcmRLu92uDRs2SJKuvfZatxdtmM1m13m3p4qzkV9//VW//PKLfvnll1LZyL59+6q0v5K+//57VzZy3XXXVbju0KFDJUmnT5/WyZMnq33M8lT3db/Ybbfd5jYbOX36tA4ePCjJmaE0b9683PX8/f1dWUx6erp2797tWrZr1y5XNnL33Xe7zUaioqJ07bXXum1nbXA4HFq1apUk50Ux9ZGNLF26lGwEAOCxjJxCfbkjQQ/O3aYr/rxKT3+2Syt/Sa6wCMZskoZ0jdSfb+2jLS+N1ucPD9H9V3ehCAYAgHrCNSPucc0I14xwzQiaEodhKCkzX9tPZOqrvWf0wY8n9dI3hzT1030a+e5W9f/flbr5/Z/02MKf9f66E1q256y2ncjU6czaKYJp2SxAA6Ka66ZLWurhoVH687humn3PJVr56ECtf/IKLbqvr968NUZPjeyoOwe00VWdwxUdHkwRDAA0UswIA8Ajffv2rXBUx0svvVSBgYEqKCgoNULHsWPHXCd7JUfkLE9lyyUpNTVVs2bN0n/+8x8dOXJEhuH+L+TU1NRK9+fOrl27JEk5OTlug5jynDlzRtHR0dU+7sWq+7pf7JJLLnG7rOR2l19+eYXtGThwoOv2gQMHNGjQoDL7cDfCSMl9/PDDDxWuUxPHjx9XRkaGpMpH3aipSZMm6e2339a2bdt0xRVXaPz48Ro+fLiuvPLKUlMqAwCahrPZBVp3ftaXbScyVeRhkteyWYBGdLdqZHerLu/QQoH+hHAAADRE/fr1q/AcvW/fvq5z9F9++cX1+NGjR13ZSMnz6vJUtlxy5h0ffPCBvvnmGx0+fLhespGqnOOeOXOm0plrqqK6r/vF+vTp43ZZVbKRK664otR2gwc7RykueezKMq7LL79cK1eurHCdmiiZjQwZMqTOjiM5i37efPNNbd26VQMGDNCtt96qESNG6KqrriIbAQCUYjtXoB9+SdaKvae1IT7Fo9zEz2zSkK6RGte3ncb2aaOWYUH10FIAAFAerhnxDNeMcM0I14ygMcgrdCgxI0+JGc6ZXBLS85WYnq+EjDydyshXob3upnUJ8DOpvSVIUZYg1+wuUZbi/4MUHMDM0QCACyiEAeCRyk7Q/P39FR4erjNnzshms7keL3m7sn20bt26wuW7d+/WxIkTlZaW5kGLpby8PI/WK09KSkq1tsvNza32MctT3df9YuHh4W6XFY/K4cnxSk636+59btWqVYX7qGx5TZXsH+VND1ybnn32WZ0+fVqLFi3S2bNnNXv2bNeUwb169dLNN9+sadOmVdq3AQC+61hqrmLjbYqNT9O+0+c83q5LRLBG9ojQiO5WXdK2mcxuRsYCADRcFZ2DuVNYWCiHwznKdVFRUbnrmOzlP96YFdmLZLh5PWqq+PWW3L/mknN00pLrlbduZGRkhfuQ5DpHT0tLc61bMmOIiIiocB+RkZGl2nTxulXNRs6dOye73V5qxE9PX5MzZ854dIyLZWdnV/o6VUV1X3ep9PvavHlzt/speWFMVd6j1NRU17rV3Ye7/iY536uK9lN8sY9hGKXWK/netWrVqkbvR2VteOaZZ5SYmOjKRv71r3/pX//6l6SaZSMmk6lUv7Xb7RVe3NTUOBwOORwOFRYWVuvzCHXHbDbLYrG47mdkZJT6vQs0RHXZb9POFWjtoTStOpiqbccz5Mm1Uv5mkwZ3smhMz0iN7BEha2iAc0Fhjmw2RtnGBb70O9dqtXq7CQBQY1wz4hmuGeGaEa4ZgS8wDEPpuUUXilxKFrxk5OlsdmGdHr9FsJ+iLcGKCncWu0SFByn6fLFLq7BA+Zn57hwA4BkKYdDgGMFWpT641dvNqFdGcMMPP91NW1pf+ygoKND06dOVlpamgIAATZ8+XTfccIO6deum8PBwBQU5RwE7duyYa8SJmnw5XnyhRGRkpJYtW+bxdh07dqz2MctTG6+7JLdT3NbF8Wqrzb4gICBA7777rmbMmKGlS5fqxx9/1O7du1VQUKADBw7owIEDmjVrlmbNmlXhdMUAAN/hMAztO52t2EM2xcbbdMLm2ZcoJkl924dpRHerRnS3qnNESN02FABQ50peYO8pT85TyUUaLm+fM1c3G6luPkI2Un1kIzXPRi7utxTBlM8wjGp9HqH+OBwO3iP4nJr225RzBYo9ZNOqg2n6OSFTnkyYG+Bn0lWdLBodE6Hh3a1qEXzhK2x+huApfucCjUdTy0bIRTzDNSM1Qy5SN7hmBA1Zkd2hpKwCJaQ7i1yKZ3RJPF/scq6g7orIzSapnSVE7VsEuGZ2cf0fHlTqnA8AgJrgEwUNj8ksIySy8vVQKbPZLEmVjn5UPA1tRc6ePVvh8qKiItcoESVHNSo5qkRl+6hopNEff/xRx44dkyS9/vrrmjJlSrnrlRypoiYiIiIkOUcxjYmJ8TgUqG3Vfd2roirvUXJysuu2u/f5zJkz6tatm9t9VHYMk8kkwzCq3W+L37uL21uXevbsqZdeekkvvfSS8vLytGXLFi1ZskSff/65zp07p4cfflhbt26t0pTJAICGo6DIoW0nMhUbb9P6eJtSczwbASfAz6RBHVtoZPcIDe8WrpZhgXXcUgBAo0AuUqvIRqqPbKR8ZCPlIxsBgKbtTFaB1hxK05q4NO1MyJInl5wG+pk0pEu4s/ilW7jCgvjaGgBwHtlIrSEXqT5ykfKRi5SPXATekp1fdH42l/PFLhkXil6SMvM9mpWzuoL9za4ZXaItQYoKD1LHiFD16dRGUeEhCvQ3y2azUawOAKhTJIpAIxYWFibJORV4RQ4fPlzpvvbt26eioiL5+5f/a2P//v0qKCiQ5Jzes1jnzp0VEhKi3Nxc7dy5s8Jj7Nq1y+2ygwcPum7fdttt1dqH5PnIE3379tWSJUuUn5+vXbt26fLLL/dou9pW3de9Knr37u26vWPHDk2cONHtuiXfw5LHK7mPXbt2aciQIR7tozxhYWHKysqqMKAyDENHjx4td1mnTp1ksViUkZGhTZs2VXgsd2oyQklwcLBGjBihESNG6JJLLtErr7yi3Nxc/fDDD27DOABAw5OVV6QNR9O1Lt6mDUfSlVPo2Yg4YUF+GtY1XCO7WzWkS7iaBXrnixEAAOBENlIW2UhZZCNlkY0AACqTlJmv1XFpWh2Xpj2nsj3aJsjfrKu7WDS6Z6SGdSU3AQCgrpGLlEUuUha5SFnkImgoHIahlOzCUkUuCedndElIz1d6blGdHj8yNEBR4c4il2hLsKLDgxQV7vw/MjSgzM+Kn5+frNZmddomAABKMnu7AQDqTvGUq9nZ2YqPjy93nYKCAv3nP/+pdF82m03ff/+92+ULFixw3R4xYoTrtr+/v4YOHSpJio2NVVJSUrnbOxwOffbZZ273X1R04Q/3c+fOud3H/Pnz3e5Dkms6XEnKz893u97111/v+mP9448/rnCfdam6r3tVtG3bVjExMZKkr7/+WtnZ5X9hZbfbtXjxYknO0Tz69evnWta/f3/XCB+ff/652ymGT58+rdjY2ArbU9xvd+/e7XadVatWuQ3rzGazrrvuOknSxo0btWfPngqPV57iflIcGFXXNddc47qdmppao30BAOre6Yxczd90TI9+tl9jPvxZ/2/FYf1wMK3SIpjWYQH6zYDWmnlnL/0wY6D+clN3jekZycUcAAA0AGQjZZGNlEU2UhbZCACgPInpeZq/7bTuX7BPN/9jl96JPVFpEUywv1nX9YzQa+O764cZA/XGrTG6vhe5CQAA9YFcpCxykbLIRcoiF0F9yi9y6Fhqrn46bNPin5P09prjembpQf1m9m5d8+42jft4px767Ff973dH9MnmU/r+QKr2nT5XK0Uw/maTOlqDNaSzRb8Z0FpPj+iot27tocX39dX6J6/Q9zMGavY9ffTncd318NXRuqlPKw2Iaq6WzQJrVDAGAEBtoRCmkYiPj9df//pX3X///ZoyZYpefvllbdy40dvNgpcVhwmS9OGHH5a7ziuvvKLTp097tL8//vGP5U5Fu2HDBleY0L9/f1122WWllk+bNk2SM0R47rnnyp3y8O9//7t++eUXt8fu2rWr63bxifXF/vKXv1R6AltymtHiaXPL0717d91yyy2SpGXLlmnWrFkV7vf48eNaunRphetUV3Vf96p44IEHJEkpKSn6wx/+UO46b775pmuUlSlTppQKiIKCgnT33XdLco5IMnPmzDLbFxUV6Zlnnqk0KCjutzt27NCWLVvKLE9OTnbbxmIzZsyQ2WyWYRh66KGHdOrUKbfrlresTZs2kiruI8WBk7sAR1KpAKdTp04VthkAUP8Mw9CRlBx9silBt878SUP+ukavfLVfm49lyO6oeJ7orpEhmnZle827t4/+8/BlemFMF13V2aIAP06xAABoSMhGyio+55XIRkoiGymNbAQAUOykLU9zt5zSlPn7dOu/duvddSe073T5F58WaxZo1g29I/XmrT206rGB+uv4HhrTM1KhFL8AAFCvyEXKIhcpH7lIaeQiqE2GYSg9t1D7Tmfru19T9MnmRP3vd0f00OJfdNPHOzXs79t055w9enpZnN5ac1yLfk7Sj0fSdTQtT/lFFX9n7YmwID/1ahOqMTERum9wO708totmTeylr387QBueHqSlD/bX+3f20gtjumjyoHYa2SNC3VuFcv4GAPAJ5c+bCJ+yb98+vfrqqwoMDNTQoUMVEhKiLVu26O9//7tSU1M1fvx4bzcRXtKvXz8NGjRI27Zt0/z581VQUKC77rpLzZs315EjRzR//nz9+OOPrnUq0qdPH8XFxWnMmDF66qmnNHDgQOXn52vVqlX6+OOPXVOxvv7662W2vf7663X99dfr+++/1/fff6+bbrpJDz/8sLp27aqUlBQtXrxYy5cv14ABA9xOU3vttdeqVatWOnv2rP7617/q5MmTGjdunCIjI3XkyBF9+umnWr9+vQYPHqytW7e6fR6DBw923f5//+//6ZlnnlGbNm1cVeodO3Z0TSn75ptvavfu3Tp27Jj++Mc/6ttvv9XEiRPVq1cvBQYGymazaf/+/VqzZo1+/PFHjRs3Trfffntlb0uV1OR1r4r7779fS5Ys0bZt27Ro0SIlJCRo2rRp6tixo5KTk7Vw4UKtWLFCknPq4t/97ndl9vHcc8/pq6++0qlTp/SnP/1J+/bt08SJE9WyZUsdOXJEs2bN0s6dOyt8nyVp6tSpmjNnjoqKijR58mQ9++yzuuqqq1RQUKCtW7dq1qxZKioqUteuXXXkyJFy99G3b189//zzeu2113T48GENHz5cDzzwgIYNGyar1arMzEzt3btXK1askJ+fn5YvX15q+0GDBumnn37Szp079e6772r06NEKDQ2VJIWEhKhdu3bKysrS5MmT1bFjR910000aOHCgOnToIH9/fyUnJ+v777/Xp59+Kklq166da8QRAIB32R2G9p7O1rpDNsXGp+lkuvvRvkoySeoXFaaR3SM0ortVHa3BddtQAABQK8hGyho0aJDrNtnIBWQjy0ttTzYCAE3bsbRcrY5L0+q4NMWdyfFom2aBfhrR3arRMRG6qrNFQf4MFgIAgLeRi5RFLlI+cpHlpbYnF0FVFTkMJWfmKzEjXwnp+UpIzzt/O08J6fk6V1C2ALC2mCS1bh6oKEuQosODFR0epKjwYEWfv98i2I/ZWwAAjZbJqKgsGQ2e3W7X008/rbS0NL366qvq3LmzJCknJ0cvvfSSzp49q3fffVetWrWq9WOnpKRUeZvk5GQ5HA6ZzeZSoyyg7hw6dEi33nqrzp49W+7yxx57TD179tSTTz4pyTmiQvE0o5I0cOBAnTx5UpMmTdKVV16p559/vtSUs8UCAwM1c+ZM3XbbbeUeJzs7W5MmTXIbOPTt21fvvPOOxowZI0l67733XKNFFFuzZo3uu+8+5eXllbuPq6++Wq+99ppratGS+ygOKiTnCfxXX31V7j4ufv7JycmaPn26Nm/eXO76Jd1999167733Kl3PE7Xxum/YsEETJkyQJC1fvlxXX311hce02WyaPHlyhaFQTEyMFi9erA4dOpS7/MCBA7rjjjvKHY1Eku666y4NHTrUbX8r9tFHH+mVV14pdx9Wq1Xz5s3Ta6+9po0bN2ro0KFu38933nlHb7zxRrmvXbHytj99+rRGjBghm83mdv0TJ07o8ssvd7vfYm3atNGCBQvUv3//Ste9WMl+W9FzaIr4PGm4/Pz8ZLVaXfdtNlu5ozoB9Sm/yKFtxzMUG2/T+sM2peV49js10M+kwZ0sGtndqmu6WRXZLKCOWwpUjS/9zm3ZsqW3mwDUOnIR30E2cneZ88vp06eTjZSDbOSChpCNkIu4x+dJw+VLf6MDxYr77aHkLK3Ye1r/2ZWo+BTPil9aBPtpRPcIjY6J0OCOLRRI8QvqkS/9ziUXQWNV1WyEv2O9g1yEXEQiFyEXaVy89XmSU2B3Fbckni92ScjIV2J6nk5lFsjuqLvLcIP8TYqyBCsqPEjRxf+fL3ZpZwlqMAMR+NLf6EAx+i18lS/13brMRZgRxsft27dPycnJGjlypKsIRpJCQ0N122236cMPP9S6det05513eq+R8KoePXpo9erVeuedd7Rq1SolJyerRYsW6tevn6ZPn67rrrtOixYt8mhfU6ZMUe/evfXRRx9py5YtSktLU2RkpK655ho9+eST6tmzp9ttw8LC9NVXX2nu3Ln6/PPPFRcXJ5PJpM6dO2vChAl6+OGH3Z4IFxs1apR++OEHvffee/rxxx+Vmpoqi8WimJgY3Xnnnbr33nuVkJBQ6fOYNWuWBgwYoG+++Ubx8fHKzs6Ww+Eod902bdrom2++0cqVK7Vs2TJt375dZ86cUWFhoSwWi7p06aJBgwbp+uuvLzWtcG2qyeteFVarVd98842+/PJLLVmyRHv37lV6erqaN2+u3r17a/z48ZoyZYoCAwPd7qNXr1766aef9P7772vFihVKTExUWFiYevfurSlTpuj222/3qL898sgjiomJ0UcffaSdO3cqNzdXbdu21ejRo/XEE08oOjrao+f0zDPP6JZbbtGcOXO0fv16JSQkKDc3V+Hh4YqJidGIESM0adKkMtu1a9dO33//vd59911t3LhRp0+fLhOmdejQQStXrtSqVau0detWJSQk6OzZszp37pyrX15//fWaOnWqmjdv7lF7AQC1JzOvSD8dSde6eJs2Hk1XbmH5n/UXaxHsr2u6WTW8W7iGdLYw5TMAAI0A2UhZZCPlIxu5gGwEABo/wzAUn5KrNYdsWhu/R/Fnsj3azhLir2vPz/wyqGML+fs1jAuuAABA+chFyiIXKR+5yAXkIk2TYRhKPVfonNEl40KxS3Hxi6eDLVaXNcRf0eEXil2cM7s4C14imwXIzKwuAACUwYwwNZCRkaH4+HjFx8fr8OHDOnz4sLKysiRJI0aM0GOPPebxvs6ePatvv/1WP//8s1JTU+Xv76+2bdtqyJAhuv766xUUFFTudgsXLtTy5cv11FNPlancT09P10MPPaRLL71Uf/zjH6v/RN1g5NOmoeQoEzNnzvR2c6rN10ZKaCyvO2rG1/ptfeLzpOHypWpzND5JmflaF2/TunibdiRkeTzqTpvmgbrh0nYa26etBneJUHZmBv0WPsGXfucy8ikaI3KRpqMxnKP74vllY3jdUTO+2G/rC58nDZcv/Y2OpskwDB08k6PVcWlaHZemE7byR1O/WESov67t4Zz5ZWCHFvI3cwEWvM+XfueSi6CxYkaYpqExnJ/74vllY3jdUTO+2G/rS00/T4ochrafyNTxtFxXkUtCer4SM/KVX+TZ4IrV4WeS2rYIUvT54pYoy/lZXcKD1N4SpLAg3x/T3pf+RgeK0W/hq3yp7zIjTAP129/+tlb2s337dr3//vvKzc11PZafn+8qrlm9erVeeukltW3btsy2SUlJkpyV6BcLDw9XcHCwTp8+XSvtBAAAABoSwzB0OCVXseeLX35NPufxtt1ahmhkd6tGdo9Qn/bNFRERUYctBQAAAAAA8A7DMPRL0jlX8UtiRr5H20U2C9CoHhEa0zNCA6Kay4/iFwAAAAA+7uCZc3r+q0MenxdVVbNAs6LCgxVtCXL+Hx6kqPOzu7RtEcSgAgAA1DIKYWpJy5YtFRUVpd27d1dpu6NHj+rvf/+7CgoKFBwcrAkTJujSSy9VQUGBNmzYoNWrV+v06dP661//qtdee00hISGlts/JyZEkhYaGlrv/kJAQ1zoAAACAr7M7DO05laXYQzatO2xTQrpnIaVJ0oDo5hrR3aqR3a2KDg++sIxppAEAAAAAQCPiMAztO52t1QedxS9JWQUebde2RbBG9bBqVA+r+kWFyUxmAgAAAKCR2H4iU88uj9O5gpqNlt86LKBMsUv0+fuWEH++ewYAoB5RCFMDd955p7p166Zu3brp/7N37/FRlnf+/99zzDmTSQhJSDjliBw8iwgqQTwrKpZtf92ubbe73W6rbbWtdnW1tlVbW7Xa6va47drdfuuutYqHigcQUEFFRVE55MQxIQkhmUzOmdP9+yMSGQdhAkzuuZPX8/Hoo5nrc1/jB/w4mbnn+lxXTk6O9u3bp+uuu25Ez/Hwww8rEAjI4XDo1ltvVWVl5XBs9uzZKioq0p/+9Cc1Nzfr6aef1qc//enj/ccAAAAAktpAMKINu/1aU+fTKw0++frjO/7b7bDpzGkeVZd7dU6pV7kZrgRnCgAAAAAAYI6IYei9ph6tqu3QS3Udao27+cWty08s1qUnFunkkhz5/Z0Kh49tYRgAAAAAJJOXajt069/qFQgbR7zW7bBpkmeouaX4w/8fOtklRZM8qUp12UchYwAAEA8aYY7BsTal1NfXa+vWrZKkRYsWRTXBHHD55Zdr9erVampq0ooVK3T11VfL6fzoX9uBk2A+6dSX/v5+ZWRkHFOeAEamra1N+/fvH/E8t9utsrKyBGQEAID1+PtDemW7T2vrfXpth18DoUhc87JTHTqn1KuF5V7Nm+ZRutuR4EwBAADwcdwbAQBgdIQjht5p7Naq2g6truvQ/t5gXPOKPSlaXJmrxZW5mlOcrdzc3ARnCgAAMH5wXwRILo9v2qe7V+5Q5GM9MFO8qZpRkDHc5HKg4SU/083pmAAAWASNMCbasGHD8M+LFi065DV2u10LFy7Un//8Z/X29mrz5s066aSThuOFhYWSpObmZpWWlkbN7ezs1MDAgMrLyxOQPYBP8l//9V+65557Rjxv8uTJ2rhxYwIyAgDAGpr9g1rb4NOaOp/eaexSHBvySJIKs9yqrvCqutyrk4uz5HSwCw8AAICZuDcCAEDihCKGNu7pGm5+6eiL7+TcyTkpOr8qT4src1U1MV22Dxd22VjgBQAAcFxxXwRIDoZh6Pev79Wv1zXGxBZVeHXnZeVKcfK9MgAAVkYjjIlqamokSSkpKTFNLAebOXNm1JyDG2Fmzpyp5cuXa9OmTVqwYEHUvHfffTdmPjBSfMg2B3/vAIDxwDAM1e/v15q6Dq2p96lm36FPOTyUivx0VZcPnfxy8OINAACA443P6Obg7x0AgI+EwhG9ufvD5pd6n/z98TW/TMtN1fmVeVpclavyCWncPwGAMaq+vl5/+ctfVFNTo3A4rClTpuiyyy7T/PnzzU4NYwCfz83B3ztwbMIRQ/e+tEt/ebc1Jrb0xIn6t/OnyWHn8xEAAFZHI4yJGhuHuo0LCwvlcDg+8bpJkybFzDlgzpw5Kigo0Lp163TppZdq2rRpkqS+vj498cQTcjqdOvfcc49/8gA+0U033aSbbrrJ7DQAAEhKoYihTU3dWlPv09o6n/Z2DcY1z26TTi7OUnWFVwvLvCrOSU1wpgAAADha3BsBAODYBcMRvbFrqPllbX2HugbCcc0rm5Cm8ytztbgyV6UT0hOcJQDAbB988IHuuusuud1uzZ8/X2lpaXrjjTf0wAMPqL29XUuWLDE7RWDc4b4IYK5AKKLbVzToxZqOmNg/zyvWVxYUs0kAAABjBI0wJgkEAuru7pYk5eXlHfbazMxMpaSkaHBwUO3t7VExh8Ohr3zlK7rrrrt0++23R93YaGtr0zXXXKOJEyeOKLeP/zM+yeGadz4JbyJhho/Xnc1mk2EYJmUDxIe6jY/NZjuq30dIHLvdftjHGJ/6g2G9vtOvNbXternBp844dy1Ncdp11vQcLarI1TllXnnTXQnJj7qFVVG7AAAAADC2DIYien2nX6tqO/Ryg089g/E1v1ROTNfiylwtrsjVtLy0BGcJAEgW4XBYv/nNb2S32/WDH/xgeOPUZcuW6eabb9YjjzyiefPmKT8/39xEAQAYJb2BsG5cXqsNu7uixm2SvnPeVH3m1EJzEgMAAAlBI4xJBgYGhn9OTT3ybtapqakaHByMmnfA7Nmzdccdd+jRRx/V+vXrh4+6/dznPndUR91+9atfjeu6Rx99dMTPvX//fhmGIbvdLqeT8oM5WDQPK6Juox1Y6OtyueT1ek3OBofj8XjMTgEm8fUGtGrbPr2wuUUv17VpIBiJa5433aXzZhTowlkFOqdigtLdo/+ekbqFVVG7AAAAAGA9A8GIXtvZqZU1HXqlwae+OO+hnFCQMdT8UpmryV5OzgWA8eiDDz5Qa2urqqurh5tgJCk9PV1Lly7VL3/5S61du1bLli0zL0kAAEZJR29Q33h8m7a19kWNO+02/fDSMl044/CblQMAAOuhE8EkgUBg+Od4GkIOXHPwvIOVl5frlltuOT7JAQAAAEdhT0efXtjSqhc2t+jNnR2KxHmQVYk3TRfOLNSFswp0+lSvnA5OtQAAAAAAAGNXfyCsdTs6taq2Q69u71R/nM0vs4sytLgyT+dVeFWcQ/MLAJjJ7/ervr5e9fX1amhoUENDg7q7uyVJCxcu1LXXXhv3c7W1tWnFihXauHGj2tvb5XQ6VVhYqLPOOksXXXSRUlJSDjlv8+bNkqSTTjopJnbyySdLkrZs2TLCPxkAANbT1Dmg6x7bpj2dg1Hj6S677rmqUmdOZTM5AADGIhphTOJ2u4d/DoVCR7z+wDUHz0uUX/3qVwn/ZwAAAMD6DMPQluYuvbC5VS9sadXW5q4jT/rQzKJsXTirQBfOLNQJRVmy2WwJzBQAAAAAAMBcvYGwXt3eqVU17Vq3w6/BUHzNLycVZ2pxZa7Oq8hVYfahF0IDAEbfl7/85ePyPG+99ZYefPBB9ff3D48NDg4ON9esWrVKN998swoLC2PmtrS0SJKKiopiYjk5OUpNTVVzc/NxyRMAgGRVu69XX/9rjdp7g1Hj3jSnfv6pKs0szDQpMwAAkGg0wpgkNfWjXZoGBgaOeP2Baw6elyh5efEdA+jz+Ub83MFgUJHI0I39eBqAgOPBZrPJ4XAMPw6HwzKMOLeoB0xC3R5eJBJRJBJRMBg8qt9HSBy73S6P56PdVPx+//DvfowNoYihd/Z0aU1dh1bXdai5a/DIkyQ5bNKpk7NVXZGn6gqvJnkOvK8Nq7OzM2H5xoO6hVVZqXa9Xq/ZKQBJgcZPAACA8aVnMKSXG4ZOfnltR6cC4SPf47VJOqUkS+d92PwyMSvxm+QBAI7NhAkTVFxcrE2bNo1o3o4dO/TAAw8oEAgoNTVVV111lWbPnq1AIKB169Zp1apVam5u1o9//GPdfffdSktLi5rf19cnSUpPTz/k86elpQ1fkwy4LwIAON427unSDU/UqjcQjhqflJ2ih/5uhqZ4OUkTAICxjEYYk7jdbmVlZam7u1vt7e2Hvbanp0eDg0MLDONtUhkN4XD4yBd9zIEbGwcWMNvt9uOdFhDj480DNBPACqjbT3bgd4g09HvlaH4fYfREIhH+HY0B/YGwXt/l15o6n17d3in/QHwNzSlOu+ZP92hhuVdnl+YoJ801HEvmuqBuYVXULpD8uC8CADhWhmEM3xfh9wiQnLoGQnq53qeVtR16Y5dfwTiaX+w26dSSbJ1flavqCq8mZND8AgDJbtmyZSorK1NZWZlycnK0b98+XXfddSN6jocffliBQEAOh0O33nqrKisrh2OzZ89WUVGR/vSnP6m5uVlPP/20Pv3pTx/vP8ao4r4IAOBYHXxfZH9vSNc9uS1mw4HyCWl6cNkM5WfyuQoAgLGORhgTlZSUaOvWrWppaVE4HI7a+f9ge/fujZpjZW63e/gkmL6+PmVmcvQgAGBkDt65yu3mxgWQKL6+oF5p6NSa+qFFG4Oh+BryctKcOqfMq+pyr86cmq1U16Hf4wIAMB5xXwQAcKwOPmHe5XId5koAo6mzL6g1DT69VNOhN3Z3KRw58n0Uh006fUq2Flfmqbrcq9wM/psGACs51qaU+vp6bd26VZK0aNGiqCaYAy6//HKtXr1aTU1NWrFiha6++mo5nR8t8zlwEswnnfrS39+vjIyMY8rzeOK+CADgWB24L+LvD+mZbf6YJphTSrL0s6sqlZXKslgAAMYDfuObqKqqSlu3btXg4KC2b9+uioqKQ163ZcuWqDlWlp6ePnwTpru7W5FIRGlpaXI6nRyDCwD4RIZhKBQKqb+/X729vcPjn3TUO4Cj09g5oDX1Pr1c79O7Td2KY82GJKnYk6Lqcq+qK7w6cVKWHHbe1wEAcCjcFwEAHC3DMDQwMCC/3z88lpaWZmJGADp6g1pT79PK2na9vbtLcRz8IofdpjOnZmtxZa4WlnujTs8FAIwvGzZsGP550aJFh7zGbrdr4cKF+vOf/6ze3l5t3rxZJ5100nC8sLBQktTc3KzS0tKouZ2dnRoYGFB5eXkCsj863BcBABytg++L9AcjavIPalNLIOqa6nKv7rysXKkuThwDAGC8oBHGRHPnztXy5cslSatXrz5kI0wkEtHatWslSRkZGZo1a9ZopnjcuVwupaWlqb+/X5LU29ur3t5e2Ww2bmwgoQ4+VvnAEZlAsqNuP2IYhgwj+pvktLQ0dj4FjpFhGKrZ16c1dT6tqe9Q/f7+uOfOKEhXdXmuqsu9KpuQxns5AADiwH0RmIXPl7Ai6jbax/8O3G43J+UCJtjfE9DqOp9W1XZoY2NXXJuIuBw2zZvq0eLKXJ1b7lU2OxMDACTV1NRIklJSUmKaWA42c+bMqDkHN8LMnDlTy5cv16ZNm7RgwYKoee+++27MfLNxXwRm4fMlrIi6jXbg76AvENZu34B2dgZV7wsOx6+ck6+bL5guJxs2AgAwrnCn1UTl5eU64YQTtHXrVq1evVrV1dUxx90+88wzampqkiRdcsklUcfcms3hcBzVvNzcXHV3d6urq2t47FALnIFE4QMirIi6jZadna2srCxuiiehg2/IHeoxzBcMR/ROY7dW17VrTW2HWroDR54kyWGTTpvi0aKKXC2syFVRdkqCMx091C2sitoFrMnj8cjhcKinp2d4jPsiGE18voQVUbfR3G63vF4v90WAUbKvO6CX6jq0qrZD7zZ2K553bW6HTfOn52hxZa7OKctRZkryfL8HAEgOjY2NkoZOdTnc2otJkybFzDlgzpw5Kigo0Lp163TppZdq2rRpkqS+vj498cQTcjqdOvfcc49/8seA+yIwG58vYUXU7dDvitbugDr6QtrZGdTv3/1oY4IvzZukry4o4T4JAADjEHddj8G2bdvU0tIy/Pjgxo6WlhatWbMm6vrq6uqY5/jiF7+o2267TYFAQHfeeaeWLl2qWbNmKRAIaP369Vq5cqUkqaioSEuWLEnIn+Noeb3eo56bm5urQCCgnp4e9fb2KhAI8KYdAPCJ7Ha73G63MjIylJmZyY6nFuLxeMxOAZJ6B0N6ubZNL2xp1aqtreoaCMU1L83lUHVVvi6cVaBFVROVkz4+/tujbmFV1C5gDTabTVlZWUpLS9Pg4KAGBwcVDoe5L4KEsdlsUadpBoNBFhgh6VG3sex2+/AO2m63m8UdQIK1dA1qVe1Q88t7e3uOPEFSitOuBdM9WlyVp7NLc5ThProN5QAAY18gEFB3d7ckKS8v77DXZmZmKiUlRYODg2pvb4+KORwOfeUrX9Fdd92l22+/XfPnz1daWpreeOMNtbW16ZprrtHEiRNHnN/H/zmf5Gg3T83JyVFmZqYGBgY0MDDAfREklM1mi9p0OBQKjfvPl0h+1G20cMTQ+809eqe5X++1BlTvCw43wdx0/nR99rQicxPEMDbxgxVRt7AqancIjTDHYNWqVVq7du0hYzU1NcNH2R5wqEaY6dOn6/rrr9eDDz6o/v5+PfLIIzHXFBUV6eabb1ZaWtpxyTtZuN1u5ebmKjc31+xUAAAAxpz9PYNatbVVL2xu1Sv1+xUIxfclUl6GW+efUKALZxVoQfkEpbpYtAEAwKEc7WKPg+enpIydE9aQvOx2e1SzpN/vZ4ERkh51C6viy0dra+oc0Mqadq2sadcHzfE1v6S57DqnzKvzq/J0dqlXaRZsfqFuYVXULqxsYGBg+OfU1NQjXp+amqrBwcGoeQfMnj1bd9xxhx599FGtX79e4XBYU6ZM0ec+9znNnz//qPL76le/Gtd1jz766FE9PwAA8WrvGdQ/Pvym3mv0R427HDbd9+mTdcVJkz5hJpIBm/jBiqhbWNV4rV0aYZLA6aefrnvvvVfPPvusNm7cqI6ODjmdThUWFmrevHm6+OKLWRgBAACAI9q5v1cvbGnRi1ta9dYun+LdGGhqXroumlWoC2cW6JQpXjns7CwMAMCRHMtJuYCZxuuNcFgbdQuronaT3879vXr2g2ateL9F7zf5jzxBUmaKU4tPmKhLZhepuip/zG0iQt3CqqhdWEkgEBj++eAd/z/JgWsOnnew8vJy3XLLLccnOQAAksSejj59/g8btGN/b9R4utuh31xzms6pyDcpMwAAkCxohDkG1157ra699trj8lz5+fn6whe+oC984QvH5flGg8/nMzsFIC7sIAkrom5hVdTu6DIMQ1taerWmrkOr69rVsL8/7rkzCzO0qCJPiypyVTohTTbbUPNLl78zQdkmL+oWVmWl2qVhAAAAAECyaGjr0bPvNevZD1q0tbkrrjlZqU5dMLNAl84u0tkVnKALADg2brd7+OdQKHTE6w9cc/C8RPrVr341Kv8cAAA+ydbmLn3hDxu0r3swajw3w63/+uIZOmlyjjmJAQCApEIjDI5aOBw2OwXgqEQiEeoXlkPdwqqo3eMvFI7o7cZuranz6eUGn1q7D70D3Mc57DadNjlL1eVenVvmVWH2RycOJuvCebNQt7AqahcAAAAAYhmGobp9PXr2/aGTX2pau+Oa50lz6cKZBbp0TpEWlE+Q22lPcKYAgPEiNTV1+OeBgYEjXn/gmoPnJVJeXl5c17F5KqzAShtKAQeM97rduKdL3/zrVvUMRn/nVZSdol9+eqamZBr8DkpS4712YU3ULazKSrWbyI1TaYQBAAAAklxvIKzXdnRqTb1Pr27vjLnp90nSXXbNn56j6gqvFkzPUVYqb/8BADhe+KINVmGlG+HAAdQtrIraTR6GYai2rU8rt7VrVU27dnTEd4puTppT51Xm6fyqPJ0+JVsux1DzS2+3X72JTNhE1C2sykq1y0m5+Di3262srCx1d3ervb39sNf29PRocHBoN/x4G1RGC5vywIrYUApWNJ7qdk19h/79mXoNhoyo8bIJaXpo2QzlZ7rHzd/FWDCeahdjB3ULqxqvtctKOAAAACAJ7e8N6JWGTq2p82nDbr+CYePIkyTlpju1sNyrheW5OmNKtlLYrRQAgIQYjzcSMTaM1xvhsDbqFlZF7Y4uwzBUs69Pq2o7tKq2Q7t9R95hXxq6l7KoIleLK3N16uRsOe22A884Lv/9UbewKmoXVlNSUqKtW7eqpaVF4XBYDofjkNft3bs3ag4AAGPV8vf36Ucv7FDkY1+Ln1ycpZ8trVQ2mz4CAICP4d0BAAAAkCR2dfRrTb1Pa+t9en9vj+JrfZGmeFO1sNyr6nKvZhdlyjG8YAMAAAAAAGDsMgxDm1t6taq2Qy/VdqjJPxjXvAkZLp1XOdT8cnJxFvdSAACjrqqqSlu3btXg4KC2b9+uioqKQ163ZcuWqDkAAIw1hmHo4Q179R+vNMbEzi3L0Y8ur1Cqi80fAQBALBphAAAAAJNEDENbWnq1tt6nNXUd2tER306lkjSrMEPVFV5Vl+dqWm6qbDYWbAAAAAAAgLEvYhj6oLlHq2qGTn5p6Q7ENa8gy63zKnK1uCpXJ07KlJ17KQAAE82dO1fLly+XJK1evfqQjTCRSERr166VJGVkZGjWrFmjmSIAAAkXMQzdv3q3HtnYEhO7Yna+brlw+kGndgIAAESjEQZH7ZOO5gWSjd1uP+xjIBlRt7AqavfIguGI3trdpdV17VpT51NbT3yLNZx2m86Y4lF1Za6qy72amJWS4EzHD+oWVkXtAgAAABgvwhFD7+3tHj75ZV9PMK55RdluLf7w5JdZRTS/AACSR3l5uU444QRt3bpVq1evVnV1tSorK6OueeaZZ9TU1CRJuuSSS+R0JtcSH9aMwAq4jw4rGi91GwxH9L1nG/Tc1v0xsS/NK9Z1505hM0iLGS+1i7GFuoVVUbtDkutTMizF6/WanQJwVDwej9kpACNG3cKqqN0h3QNBralp0wtbWrVm2z51D4bimpeZ4lR1Vb4unFWo6qp8Zae6EpwpJOoW1kXtAgAAABhLwhFD7zR+2PxS16H23viaX4o9KVpcmavzq3J1QkEGC6cAAAmxbds2tbR8tHt9V1fX8M8tLS1as2ZN1PXV1dUxz/HFL35Rt912mwKBgO68804tXbpUs2bNUiAQ0Pr167Vy5UpJUlFRkZYsWZKQP8exYM0IrIj76LCisVi3vYMhfeNPb+uVutgmmO9dPlNfOnu6CVnheBuLtYuxj7qFVY3X2qURBgAAAEiAfV0DenFrq17Y3Kr1DfsVDBtxzcvPStEFMwt04cwCnVWWpxQnO6oBAAAAAIDxIRQx9PaeLq2q7dCaug519MW3mcgUb+rwyS9VE9NpfgEAJNyqVau0du3aQ8ZqampUU1MTNXaoRpjp06fr+uuv14MPPqj+/n498sgjMdcUFRXp5ptvVlpa2nHJGwAAs7X3DOpLD7+pTY3+qHGn3ab7Pn2Srjy52KTMAACA1dAIAwAAABwn9ft69OKWVr2wpUXv7O6Me15pfoYunFmoC2cV6OSSHNntLNYAAAAAAADjQygc0Zu7h5pfVtf75O+Pr/llem6qzq/K0+LKXJVNSKP5BQBgSaeffrruvfdePfvss9q4caM6OjrkdDpVWFioefPm6eKLL1ZKSorZaQIAcFw0+vr0+d9v0Pb9vVHj6W6HfvUPp2lhZb5JmQEAACuyGYYR39bUwMf4fD6zUwDiYrfbo4798vv9ikQiJmYEHBl1C6sab7UbMQx9sLdHq+uGdind2dEf99w5kzK1qCJX1RW5mp6XnsAscSTjrW4xdlipdr1er9kpAMfd/v37zU4BiIvD4Yh6Hfb5fAqHwyZmBBwZdQuronbjFwhFtGGXX6tqO7S2waeugfj+nsonpA2f/FI6gfspxwN1C6uyUu1OmDDB7BSAhGDNCKzASvfRgQPGat3Wt/Xqa49uVVtPIGo8J82pB5edoNmTskzKDMfLWK1djG3ULazKSrWbyPUinAiDo5asNxKBI4lEItQvLIe6hVWNxdoNhCJ6a0+X1tT7tLbep/beYFzznHab5k7J1sIKrxaWeTUh0z0cG2t/R1Y3FusW4wO1CwAAACCZDYYien2nXytr2/Vyfad6A/F9fqmcmK7zK3N1XmWupuWmJThLAAAQL+5Fwoq4jw4rGgt1+25jt254okbdg9F/jsIstx5aNkPT8tIs/2dErLFQuxh/qFtY1XitXRphAAAAgCPoGQzp1e2dWlvv0/odneoNxNdBn+F26OzSHC0s92r+dI8yU3j7DQAAAAAAxo+BYFjrdwyd/PJKg099wfjuqcwsyNB5H578MtmbmuAsAQAAAACJ8nKDTzc/XafBkBE1XpqXpoeWzdDELPcnzAQAADg8VuIBAAAAh7CvO6CXG3xaU+/TW7u7FIoYR54kKT/TpYVlXlVXeHXa5Gy5HPYEZwoAAAAAAJA8+gNhrdvRqVW1HXp1e6f642x+mVOUqcUfnvwyyZOS4CwBAAAAAIn21PttuuuF7Qp/7Kv2Eydl6v6lVfKksXwVAAAcPd5JAAAAAJIMw9DOjgGtqe/QmjqfNrf0xj23NC9NC8u9Wlju1czCDNlttgRmCgAAAAAAkFx6A2G90uDTqtoOrd/h12AovuaXk4o/bH6pyFVhNs0vAAAAADAWGIahP25o1kOv7ImJnVOaox8vKVeqy2FCZgAAYCyhEQYAAADjVsQw9P7eHq2p92ltvU+7fQNxzbNJmjMpU9UfNr9MzU1LbKIAAAAAAABJpmcwpJcbOrWypl2v7/Qr8PEtfg/BJumUkiwtrszVoopcTcxyJz5RAAAAAMCoiRiGHlizW39+uyUmtmTWBP37RaVy2tlYEgAAHDsaYQAAADCuDIYienN3l9bWd+jl+k619wXjmudy2DR3ikfVFV6dU5ajCRks1AAAAAAAAOOLvz+klz88+eX1nX6FIkdufrHbpNMmZ2txZa6qK7zcUwEAYIxwONjJH8nPbrcf9jGQjKxct8FwRN9f0aBnt+yPiX3xzGJ9Y+EU2Ww0wYxVVq5djF/ULayK2h1CIwwAAADGvO6BkNbt6NSaOp/W7+hUXzAS17zMFIfOLs1RdblXZ03PUYabL3UAAAAAAMD40tkX1JoGn1bVdGjD7i6F42h+cdik06dk6/yqPFWXe+VNd41CpgAAYDR5vV6zUwBGzOPxmJ0CMGJWqdu+QEjf/NNGvVwb2wRz62Un6J/PKTUhK5jJKrULHIy6hVWN19qlEQZHjd09YBV0PsKKqFtYVTLVbmvXoNbUd2h1bYfe3tMV1w6lkjQx061FlbmqrsjVaZOz5XLw399Yl0x1C4wEtQsAAAAgUTp6g1pd36FVtR16e3eXwnHcVnHabZo7dejkl4XlXuWk0fwCAAAAAONBR29A//jwm9q0pzNq3Gm36Z6/O1FLTykxJzEAADCm0QiDo8buHrCq8dr5CGujbmFVo1m7hmGobl+PXtjcohe2tOq9Rn/ccysLMnXhzEJdOKtAc4o9HMc8zvGaC6uidgEAAAAci/09Aa2u82llbbveaexWPHuKuBw2zZvm0eLKXJ1b5lV2Kl89AgAAAMB40tTZr2t+/4a2t/VGjae5HPrlP5yqRVUTTcoMAACMddyNBgAAgGWFI4Y27vbphc0tenFLq3a298U1z2aTTp/q1YUzC3XBzAJNm5CR4EwBAAAAAACST2v3oFbX+bSqtkPvNnYrnvN03Q6b5k/P0eLKXJ1TlqPMFL5uBABgPPL5fGanAByR3W6P2kTK7/crEomYmBFwZFaq24a2Pn3t0S3a1xOIGvekOvXg352gORNd/L4YR6xUu8AB1C2sykq1m8iDN7gzDQAAAEsZCIa1rn6/XtjcqpVbW9XeGzjyJElup13nlE/QhbMKdN6MAuVnpSQ4UwAAAAAAgOTT0jWolbUdeqm2Q+/t7YlrTorTrrNLh5pfFpTmKMPtSHCWAAAg2YXDYbNTAEYsEolQu7CcZK3bTU3duuGJGnUNROdWkOXWQ8tmaHpeWlLmjdGTrLULHA51C6sar7VLIwyOGt3asAordT4CB1C3sKpE1W7XQEivNPi0urZd63d0qj8Y33NmpTh0bnmuqityNX96jtIPLNII9cnni+/0GIx9vObCqqxUu4nc4QMAAADAkTV2Duil2g6tqu3Q5pbeuOakuQ5qfpmeozSaXwAAAAAAkl5t8Om7T9drMBT9vVRpXpoeXFalAjalBAAAo4BGGBy18dg5hrFhvHY+wtqoW1jVsdRuS9eg1tT7tLbep417uhQ24ptXkOVWdblX1RVenVKcJafDPhzjvyPEg9dcWBW1CwAAAOBgu30DWlXbrlW1HdrWGt+GIBluu84t82pxZa7mTctRqst+5EkAAAAAgHHjmQ/adMfz22O+vz9xUqbuX1olTxpLUgEAwOjgXQcAAACSgmEYatjfrzX1Pq2pj3+BhiSVT0hTdXmuqiu8qpqYLpvNlsBMAQAAAAAAktPO9n6trO3QS7Udqm2L795KZopDC8u8Or8qV3OnepTipPkFAAAAABDrvzfs1S9e3hMzfnZpju5eUq5UFyeJAgCA0UMjDAAAAEwTjhja1NQ9fPJLk38wrnl2m3RycZYWlnu1sNyrkpzUBGcKAAAAAACQfA5sLLKqtkOraju0vb0/rnmeVKcWlg+d/DJ3arZcDppfAAAAAACHFjEM/WLtbv3prZaY2OWzJujWC6fLyedKAAAwymiEAQAAwKgaCEb0xi6/1tT79EqDT539objmpThtOnOqR9XluTqnLEfedFeCMwUAAAAAAEg+hmGorq1vuPllZ8dAXPNy0pxaVDHU/HL65GwWKQEAAAAAjigUjuiHz+/Qs1v2x8SuOaNI3zh3smw2mwmZAQCA8Y5GGAAAACRcZ39Qr27v1Np6n17b4ddAKBLXvOxUh84p9aq6wqt5Uz1Kc3OUMgAAAAAAGH8Mw9C21j6tqm3XqtoO7emM71TdvHTXUPNLVa5OKcmW087iJAAAcHw4HHxng+Rnt9sP+xhIRslUt/2BsG58sk7rtnfGxG6onqrPn1k8+kkhaSVT7QLxom5hVdTuEBphAAAAkBB7Ovr01Nt7tbq2Q+80dilsxDevKNut6vJcLSz36uSSLBZoAAAAAACAcckwDG1u6dWq2g69VNuhJn98zS8TMlw6rzJX51fm6qTiLDm4twIAABLA6/WanQIwYh6Px+wUgBEzq259vQFd+8ibemd3Z9S4w27TTz91oj51WokpecE6eM2FFVG3sKrxWrs0wgAAAOC4MAxDNft69frbbXphc6u2NHfFPbcyP10Ly4dOfqnMT+foZAAAAAAAMC5FDEPv7+0Zbn5p6Q7ENa8gy63zKnO1uDJXJ07KlJ17KwAAAACAo7S3s1+f/8MG1e/riRpPddn1q8+dpkUzJpqUGQAAwEdohAEAAMBRC0UMvdvYrbUNPq2t82lvV3w7k9pt0snFWaqu8GphmVfFOakJzhQAAAAAACA5hSOG3tvbPdz8sq8nGNe8omy3Flfm6vyqPM0szKD5BQAAAABwzOpau/X5P2xQs38gatyT5tIfvniGTpvKiWAAACA50AiDo+ZwOMxOAYiL3W4/7GMgGVG3SGb9wbBe39Gp1XUderneJ/9AKK55qU67zpqeo+qKXJ1T5pU33ZXgTIH48JoLq6J2AQAAAOsa2lyka6j5pc6n9t74ml+KPSk6v2ro5JcTCjI4VRcAAJjG5/OZnQJwRHa7XR6PZ/ix3+9XJBIxMSPgyMys201N3frmY1tj1gAUZLn1H5+eqdJsXv/xyXjNhRVRt7AqK9Wu15u4JloaYXDUElmYQCId/OIPWAV1C7N19Aa0amurXtjSqlfq2jQQjO+NszfdpcUnFOjCmQU6pyJfaW4aaZH8eM2FVVG7AAAAQHILRQy9vWeo+WV1bYd8/fFtLjLFm/rhyS+5qsxPp/kFAAAkhXA4bHYKwIhFIhFqF5YzWnX76vZOffepOg2GotcCTM9N1YPLZqgwO4X/fjAivObCiqhbWNV4rV0aYQAAAHBIezr69PzmFr2wpVVv7exQxIhvXok3TRfOLNSFswp0+lSvnA5OKAAAAAAAAONTKBzRht1DzS9r6n3yx9n8UpqXpsWVQye/lE1Io/kFAAAAAJAwf9vcph8+t13hj60JmFOUqfuvrlROmsucxAAAAA6DRhgAAABIkgzD0Oa9XXphS6te2NyibS3dcc+dNSl7uPllRmEWizMAAAAAAMC4NRgKa139fi1/a5fW1HeoayC+nfjKJ6Tp/Ko8nVfhVemE9ARnCQAAAACA9Kc3m/XA2t0x4/One/STJRVKcztMyAoAAODIaITBUfP5fGanAMTFbrfL4/EMP/b7/YpEIoeZAZiPusVoCUUMvbOnS6vrOrS6rl0tXYG45jls0qmTs1VdkafqCq8meVIlSXa7EdUEQ+3CCnjNhVVZqXa9Xq/ZKQAAAAAJNRiK6I3tfr2yY5dWbmlV92B8J79UTUzX4spcnVeZq2m5aQnOEgAAAACAIYZh6Bcv79H/vNkcE7t05gR976LpcjrsJmQGAAAQHxphcNTC4fh2MAOSTSQSoX5hOdQtjqf+QFiv7fRrTb1Pr273xb0raarTrrOme1Rd7tXZpV550j56K/lJ9UntwoqoW1gVtQsAAACMroFgWOt3+LWytkOvNvjUF4yvMX1mQYYWV+VqcWWuSnJSE5wlAAAAAADRQuGI7nxhh57ZvD8m9g+nF+obC6fIftAGmAAAAMmIRhgAAIBxwNcX1MsNPq2p92nDLr8GQ0Zc83LSnDq3zKvqCq/mTvEo1cWOLwAAAAAAYPzqC4S1bnunVtV26NXtnRoIxdf8Mqcoc/jkl0melARnCQAAAADAoQ0Ew/q3p+v16vbOmNg3zp2sz8+dNPpJAQAAHAUaYQAAAMaoxs4Bran3aW29T5uauhWJr/dFxZ4UVZcPNb+cOClLDjs7vQAAAAAAgPGrZzCkVz9sflm/w6/BOJpfbDbp5OIsnVeRq0UVXhVm0/wCAAAAADCXvz+kG56o0Xt7e6LGHTbptotKdfnsfJMyAwAAGDkaYQAAAMYIwzC0rbVPa+o7tKbep4b9/XHPPaEgQwvLvaou96psQppsHHMMAAAAAADGse6BkF5u8GlVbYde3+lXIHzkHUZskuZOz9Wlc4p08exCucP9CofDiU8WAAAAAIAjaO0e1Ncfq9H29uh1BClOu+5eUq5zyrwmZQYAAHB0aIQBAACwsFA4oo2N3cMnv7R2B+Ka57BJp03O1sJyrxaWsyspAAAAAACAvz+ktfVDzS9v7PIrFMfxunabdPrkbJ1XmavFVRNUMblgOObzxb9JCQAAAAAAibKjvV/XPbYtZj1BdqpD9y+t0knFWSZlBgAAcPRohAEAALCYvkBY63d0am29T69u71T3YHw7i6a57Jo/PUcLy706uzRH2am8FQQAAGNDfX29/vKXv6impkbhcFhTpkzRZZddpvnz55udGgAASHKdfUGt+bD5ZcPuLoXjaH5x2KQzpnq0uDJX1eVeedNdQ+MOR6LTBQAASBq894EV2O32wz4GktHxrtv393br63/ZKv9AKGp8YqZbv/z0TJXlpx/T8wMH8JoLK6JuYVXU7hBWPwIAAFhAe29QrzT4tKbepw27/AqEj7woQ5Jy0506t8yr6nKvzpjqUYpzfL7pBQAAY9cHH3ygu+66S263W/Pnz1daWpreeOMNPfDAA2pvb9eSJUvMThEAACSZ9t6g1tR3aFVNh97e06V4brM47Tad+WHzy7nlOcpJcyU+UQAAgCTm9XrNTgEYMY/HY3YKwIgdS92urtmnr/3vFvUHozfXLM3P0P/805kqzkk71vSAT8RrLqyIuoVVjdfapREGAAAgSe32DWhtvU9r6jv0XlOP4mt9kSbnpKi6PFcLK7yaU5Qph92W0DwBAADMEg6H9Zvf/EZ2u10/+MEPNG3aNEnSsmXLdPPNN+uRRx7RvHnzlJ+fb26iAADAdPt7AnqprkOrajv0TmO34jj4RS6HTfOmDTW/LCzzKovTdQEAAAAAFrH8nSZ95y+bFPrYB+CTJ+foD188Q7kZbpMyAwAAOD64Yw8AAJAkIoahrS29WlPv09p6n7a398c9d2ZhhqrLh05+mZ6XJpuN5hcAADD2ffDBB2ptbVV1dfVwE4wkpaena+nSpfrlL3+ptWvXatmyZeYlCQAATNPaPaiXan1aVduhTU3dcW0ykuK0af70HC2uzNXZpTnKTOGrNAAAAACAtfznK9t159+2xoyfW5mvX//DqUp381kXAABYH+9oAAAATBQMR/T2nm6tre/Q2nqf9vUE45rnsNt0+uQsVZfn6tzyHBVkpSQ4UwAAgGh+v1/19fWqr69XQ0ODGhoa1N3dLUlauHChrr322rifq62tTStWrNDGjRvV3t4up9OpwsJCnXXWWbrooouUknLo9zqbN2+WJJ100kkxsZNPPlmStGXLlhH+yQAAgJU1+we1qq5DL9V26L29PXHNSXHadXbpUPPLgtIcZbgdCc4SAADA+nw+n9kpAEdkt9vl8XiGH/v9fkUiERMzAo7sWOrWMAz9Yu0uPfzG3pjYpTMn6PuXlmmwt1uDvcctXWAYr7mwIuoWVmWl2vV6vQl7bhphAAAARlnPYEiv7fBrTb1P63Z0qmcwHNe8dJdd86fnqLrCqwXTc5SVyls5AABgni9/+cvH5XneeustPfjgg+rv/+g0vMHBweHmmlWrVunmm29WYWFhzNyWlhZJUlFRUUwsJydHqampam5uPi55AgCA5NXYOaBVtR1aVduhLS3xreZJc9l1TplXiytzNX+aR2k0vwAAAIxIOBzf91tAMolEItQuLCfeug1FDN31wg49/UFbTOzvTyvU9dVTZJfBfwMYNbzmwoqoW1jVeK1dVk/iqDkcfCkEa7Db7Yd9DCQj6nbs2d8T0Nr6Dq2u69CGXX4Fw0Zc8/IyXKouz1V1Ra7mTvXI7UzuWqB2YUXULayK2kUymTBhgoqLi7Vp06YRzduxY4ceeOABBQIBpaam6qqrrtLs2bMVCAS0bt06rVq1Ss3Nzfrxj3+su+++W2lpaVHz+/r6JEnp6emHfP60tLThawAAwNiy2zegVbXtWlXboW2t8f2+z3Dbde6HzS/zpuUo1cV7aAAAAACA9Q0Ew7r56Xq9sr0zJnbdOZP1hblFstlso58YAABAAtEIg6OWyKOKgEQ6+DgwwCqoW2va3tajF7a06oXNLXpnT6eM+HpfVDohQxfMKtCFMwt1yuQc2e3WvSFF7cKKqFtYFbWL0bZs2TKVlZWprKxMOTk52rdvn6677roRPcfDDz+sQCAgh8OhW2+9VZWVlcOx2bNnq6ioSH/605/U3Nysp59+Wp/+9KeP9x8DAABYyM72fq388OSXurb4ml+yUhxaWD7U/HKmBTYZAQAAAABgJLoGQrrhiRptauqJGnfYpH+/sFRXzMk3KTMAAIDEohEGAADgOIlEDG1q7NQLW1r14pZW1e/rOfKkD508OUcXftj8Uj4xM4FZAgAAHB/H2pRSX1+vrVu3SpIWLVoU1QRzwOWXX67Vq1erqalJK1as0NVXXy2n86PbWQdOgvmkU1/6+/uVkZFxTHkCAADzGIahhv39WvVh88v29v645nlSncPNL3OnZsvloPkFAAAAADD27OsO6LrHtsV8Xk5x2vTjJRU6t4yNrgEAwNhFIwwAAMAxCIQiem17u17Y3KIXt7RqX/dgXPNcDpvOKpugC2cW6IKZBSrITk1wpgAAAMllw4YNwz8vWrTokNfY7XYtXLhQf/7zn9Xb26vNmzfrpJNOGo4XFhZKkpqbm1VaWho1t7OzUwMDAyovL09A9gAAIFEMw1BtW99w88uujoG45uWkObWoIleLK3N1+uQsOWl+AQAAAACMYTvb+3XdY9vU0h2IGs9Kcej+pVU6uSTLpMwAAABGB40wOGo+n8/sFIC42O12eTye4cd+v1+RSMTEjIAjo26TW/dgSOsaOrWmvkPrGnzqCYTjmpfhdmhBaY4WVeRpQVmOslI+fCsW7pfPF9+OpsmO2oUVUbewKivVrtfLjmOIVVNTI0lKSUmJaWI52MyZM6PmHNwIM3PmTC1fvlybNm3SggULoua9++67MfMBAEByMgxD21r7tKq2XatqO7SnM76NRvLSXVpU4dX5Vbk6uSRbTrstwZkCAAAAAGC+D5p79M3Ha+TvD0WN52e69OCnZqg8P92kzAAAAEYPjTA4auFwfIt+gWQTiUSoX1gOdWu+tp6A1tb7tLbepzd3dykUMeKaNyHDpYXlXlWXe3Xa5Gy5nR/tRjoe/p1Su7Ai6hZWRe3CahobGyUNnericDg+8bpJkybFzDlgzpw5Kigo0Lp163TppZdq2rRpkqS+vj498cQTcjqdOvfcc0eUV3t7e1zXHS5nIJnY7fbDPgaSEXU7PhiGoQ+ae7Sypl0ra9q11x9f80t+pluLq3J1flWeTi7OliOJml+oXVgRdQuronYBAMB49dqOTt30VJ36g9Gbo03NTdVDn5qhIk+KSZkBAACMLhphAAAAPsHO9n6tqfdpTX2HPmjujXvetNxUVZd7VV2Rq5mFGbLbkmdBBgAAQDIIBALq7u6WJOXl5R322szMTKWkpGhwcDCmScXhcOgrX/mK7rrrLt1+++2aP3++0tLS9MYbb6itrU3XXHONJk6cOKLcvvrVr8Z13aOPPjqi5wWSxcGniQFWQd2OHZGIoXf2+PTs+y1a8X6z9voH4ppX5EnVJbOLdNmJhTplslf2JGp+ORxqF1ZE3cKqqF0AADAePLd1v25fsV3hj23cObMwQ7+4uko56S6TMgMAABh9NMIAAAB8KPLhTqRr6nxaU+/Tbl98izEk6cRJmVpY7tXCcq+m5aYlMEsAAADrGxj46H1WamrqEa9PTU3V4OBg1LwDZs+erTvuuEOPPvqo1q9fr3A4rClTpuhzn/uc5s+ff1zzBgAAIxeOGHprZ4dWfNCiFR80q7UrvpNfSrxpunROkS6ZXaiTSnIs0/wCAAAAAEAiPPJ2i+5bvStmfN40j356RYXS3ZxiDgAAxhcaYQAAwLgWCEX05u4uran36eUGn9p7g3HNczlsOmNKtqrLc3VuWY4mZLoTnCkAAMDYEQgEhn92Oo98e+rANQfPO1h5ebluueWW45Lbr371q+PyPAAAjGehcEQbdnZoxfstem5zi9q642t+mZqXPnTyy5wizS7Olo1TdgEAAAAA45xhGHro5d16eENzTOyiGXn6/iWlcjnsJmQGAABgLhphAADAuNMzGNKr2zu1tt6ndds71ReMxDUvw+3Q2aU5qi736qzpHmWm8FYKAADgaLjdHzURh0KhI15/4JqD5yVKXl5eXNf5fL4EZwIcH3a7XR6PZ/ix3+9XJBLfZyDALNStNQXDEb29u0sra9r1Ul27fH1H/h0vSVNzU3VB1QSdX5WnyonpHza/RNTZ2ZnQfBOB2oUVUbewKivVrtfrNTsFICEcDk4eQPKz2+2HfQwko4PrNBSO6IfPbdfy91pjrvv704r07cXTZGcTCSQJXnNhRdQtrIraHcLqTQAAMK683ODTD1Zsl38gvsUY+ZkuVZd7tbA8V6dNzmInFQAAgOMgNTV1+OeBgYEjXn/gmoPnmS0cDpudAnBUIpEI9QvLoW6TVzA8dNLuqtoOran3yd8f3/2W0rw0La7M1eLKXJVNSBs++SVZFzAfLWoXVkTdwqqoXWD00eQFKzq4iRJIdgPBsK778ztauTW2CebGi6r0teoyTlJFUuM1F1ZE3cKqxmvt0ggDAADGBcMw9P/ebtHP1+yWcYRrS/PStLDcq+pyr04ozGAHFQAAgOPM7XYrKytL3d3dam9vP+y1PT09GhwclBT/aS0AACBxAqGI3tjl16raDq2t96l7ML5FxxX56VpcmavzKrwqnZCe4CwBAAAAALAuf19Q//zfb+rNndEnk9tt0o+vnqPPnDHFpMwAAACSB40wAABgzAuFI/rJql164r19h4zbJM2ZlPnhyS9eTc1NG90EAQAAxqGSkhJt3bpVLS0tCofDcjgch7xu7969UXMAAMDoGwhG9PquTq2q7dDL9Z3qDcTX/FI1MV3nV+XqvIpc7rcAAAAAABCH1q4Bff73G1TT2h01nuK068HPnqILZxWalBkAAEByoREGAACMad0DIX336Tpt2NUVEztjSrYumpGnc8q8ystwmZAdAADA+FVVVaWtW7dqcHBQ27dvV0VFxSGv27JlS9QcAAAwOgaCYa3bMXTyy6sNPvUFI3HNm1mYocWVuVpcmauSnNQEZwkAAACz+Hy+I18EmMxut8vj8Qw/9vv9ikTi+2wDmGFXR7++9ugW7fUPRo1npjj080+doFMnpfD6i6TFay6siLqFVVmpdr1eb8Kem0YYAAAwZjV2Duj6x2u0s2MgJva1s0v0j2dOks1mMyEzAAAAzJ07V8uXL5ckrV69+pCNMJFIRGvXrpUkZWRkaNasWaOZ4mF90gk2QLKx2+2HfQwkI+rWPH2BsF5t8GllTbte2e7TQJzNLydOytL5VXlaXJWrSZ7x2/xC7cKKqFtYFbULmC8cju+UQCCZRCIRahdJa3Nzj775eI06+0NR4xMyXXroUzNUnp9O/cJSeM2FFVG3sKrxWrs0wgAAgDHp3cZuffvJWvk/dpMoxWnTDy4p0/lVeSZlBgAAAEkqLy/XCSecoK1bt2r16tWqrq5WZWVl1DXPPPOMmpqaJEmXXHKJnM7kuZWVyJ1rgEQ6eHcowCqo28TqHgjqpW379Oz7zVpT06bB0JGbX2w26fSpXl0yu0gXzy7UpJy0UcjUeqhdWBF1C6uidgEAgJW9vtOvG5+sVf/HNqSYPiFDDy2rUkGmy6TMAAAAklfyrB4AAAA4Tp7dsl93PL9dwbARNZ6X7tJ9Sys1uyjTpMwAAADGjm3btqmlpWX4cVdX1/DPLS0tWrNmTdT11dXVMc/xxS9+UbfddpsCgYDuvPNOLV26VLNmzVIgEND69eu1cuVKSVJRUZGWLFmSkD8HAADjkb8/qFVbW/Xs+816uXa/AuEjN7/YbdLc6bm6dE6RLppVqILs8XvyCwAAAAAAx8tzW/fr+yu2KxSJXt9wYolH//XFM2QP9o3LHd4BAACOhEYYAAAwZkQMQ79Z16jfv743JlY+IU0PXF2lwuwUEzIDAAAYe1atWqW1a9ceMlZTU6OampqosUM1wkyfPl3XX3+9HnzwQfX39+uRRx6JuaaoqEg333yz0tLYaR4AgGPl6w3oh89s0TPv7Y3ZQORQ7DbprLI8XTJ7qPklP4v7KgAAAAAAHC//u7FF9760K2b87PIJ+vU1pykzxSmfr8+EzAAAAJIfjTAAAGBMGAhG9IPnGvRiTUdM7OzSHN11ebky3A4TMgMAAMDhnH766br33nv17LPPauPGjero6JDT6VRhYaHmzZuniy++WCkpybfo1ufzmZ0CEBe73S6PxzP82O/3KxI58skPgJmo28TY2tKj7yyv0V7/4GGvc9ptmjvVo8VVeaquyFVuumsoEOpj8c0RULuwIuoWVmWl2vV6vWanAAAAkoxhGPrVukb94RCbfF50wgQ9+Lkz5HbaTcgMAADAOmiEAQAAltfeG9S3l9fog+bemNhnTy3U9dVT5LDbTMgMAABg7Lr22mt17bXXHpfnys/P1xe+8AV94QtfOC7PNxrC4bDZKQBHJRKJUL+wHOr22D31fpvuXrlDgU84BcZpt+nMqR4trszVwnKvPGkffX3E3/3Ro3ZhRdQtrIraBQAAVhGKGLr7xR1a/n5bTOwzpxTopgtKaYIBAACIA40wOGoOB7vqwxrsdvthHwPJiLqNX11br77x2Fa1dAWixh026aYLSvXpUwpNymx8onZhRdQtrIraBQAAwJEEQhHdu3qXHt+0Lybmcth01rSh5pdzy7zKSuUrIwAAAAAAEmkgGNGtf6vXmvrYE8e/enaJvnTmJNltbPIJAAAQD77VwFHjCGdY1cHHpANWQd0e2uqaffr6nzerZzAUNZ6V4tRDnztVCyvzTcoMB1C7sCLqFlZF7QIAAOBgLV2D+u5TddrcEnuC7knFmbp7SYXyM90mZAYAAAAAwPjTPRDSt5bX6p3G7qhxu026+YLpWnriRJMyAwAAsCYaYQAAgCU9vG6HfvjMFkWM6PESb5r+8MUzVFmQZU5iAAAAAAAAJntzt1+3PF0vX38oJvb/nVqgby6cIpeDEwUBAAAAABgN+3sC+vpfa1TX1hc17nbY9KPLy1VdkWtSZgAAANZFIwwAALCUUDiiHz6zRf/92q6Y2KlTcvTbz5+uCZkpJmQGAACA8cThcJidAhAXu91+2MdAMqJuj55hGPrvDXv1i7W7YjYPSXXaddvFZbp0FifoJgq1CyuibmFV1C4AALCK3b4BXfeXbdrbNRg1nuF26GdLK3Xa5GyTMgMAALA2GmFw1Hw+n9kpAHGx2+3yeDzDj/1+vyKRiIkZAUdG3R5az2BI332yVut3dMbELj5hgr5/abkcwT75fH2xkzEqqF1YEXULq7JS7Xq9XrNTAI476hpWdfDvDsAqqNv49AyGdONfNmnFBy0xsal56fr1P5ymE4pYXDOaqF1YEXULq6J2AQBAMtra0qtv/HVbzImteRkuPfipKlVOzDApMwAAAOujEQZHLRwOm50CcFQikQj1C8uhbqW9/kFd/3iNtrf3x8T+ZX6xvnxWsWw2Y9z/PSUbahdWRN3CqqhdAACA8at+X4++8j9vqaGtNya2eMZE/ewzJ8uT5jIhMwAAAAAAxqc3dvl14/Ja9QWjNzGbnJOih5bNUHFOqkmZAQAAjA00wgAAgKT3/t5ufXt5rTr6ondJcTts+t7Fpbr4hAkmZQYAAAAAAGCuFe836zt/2aTeQHRTtM0m3XB+pa5bVC673WZSdgAAAAAAjD8vbmvXbc82KBQxosZPKMjQz6+uUm4Gm1UAAAAcKxphAABAUnt+W7t+sKJBgXD0DSJvmlP3XlWpk4qzTMoMAAAA45nP5zM7BSAudrtdHo9n+LHf71ckEjnMDMB81G18QhFD//HyLj38xt6YWHaqU3ddXqGzy7zy+ztHP7lxitqFFVG3sCor1a7X6zU7BQAAMIr+b2OL7n1pl4yPjc+dkq17rqpUhtthSl4AAABjDY0wAAAgKRmGof98rUm/Wd8UEyvNS9P9Sys5KhgAAACmCYfDR74ISEKRSIT6heVQt7F8fUHd8ky93tzdFROrnJiun15RoZKcVP7eTEbtwoqoW1gVtQuMPoeDhdxIfna7/bCPgePJMAz98pU9+s/XGmNiF87I0x2XVcjtPHINUrewKmoXVkTdwqqo3SE0wgAAgKQzGIrozue3a8XW9pjYvGke3b2kXJkpvI0BAAAAAADjzwfNPfruU3Vq7Q7ExC6fNUH/dv50pbrG55deAAAAGD2cdgQrOvg0MeB4CkcM3br8Az2yIbYJ5vNnTdXtS2bJYbcd1XNTt7AqahdWRN3CqsZr7bKCFAAAJBVfX1DfebJWm5p6YmJ/d/JEffu8aXIe5Q0iAAAAAAAAqzIMQ0+816Z7XtqpYNiIijntNn3nvKn61EkTZbNx3wQAAAAAgNEyEAzrm//7jp7f3BoT+9YFlfr6eeV8VgcAAEgAGmEAAEDS2L6/Tzc8Uasm/2DUuN0mfWvRVH3mlAJuEAEAAAAAgHFnIBjRT1ft1FMftMXE8jNd+skVFTpxUpYJmQEAAAAAMH51DQT15T++pTd2dESN223SnVfN0d+fOcWkzAAAAMY+GmEAAEBSeH2nX//2dJ16BsNR4+kuu360pEJnl+aYkxgAAAAAAICJ9voHddNTtdrW2hcTO7UkSz9eUqG8DJcJmQEAAGA88/l8ZqcAHJHdbpfH4xl+7Pf7FYlETMwIY0lbT0DX/WWLavdFf153O2z60ZJKLa7MOqrXSuoWVkXtwoqoW1iVlWrX6/Um7LlphAEAAKZ77N1W3bNqp8JG9HhhllsPXF2l8vx0cxIDAAAAPoHD4TA7BSAudrv9sI+BZETdfuS1HZ26+ala+QdCMbFrzpikb1RPldPO6bnJgtqFFVG3sCpqFzBfOBw+8kVAkolEItQujos9vgFd99g2NfkHo8Yz3A7dd1WlTp+SfdxqjbqFVVG7sCLqFlY1XmuXRhgAAGCacMTQA2t365G3W2JiswozdN/SSk3IcJuQGQAAAHB4idy5Bkikg3eHAqxiPNZtJGLol2vqdd+LtTI+tnFIutuhny47UZefOMmc5BC38Vi7sD7qFlZF7QIAgNGyrbVXX39sm3z90ZtW5KW79ItlVaqamGFSZgAAAOMLjTAAAMAUvYGwbn2mXq9s74yJXVCVq9svLlOqix3cAAAAAADA+NI1ENS3H92kF7e0xsRKJ2ToN9ecpoqCLBMyAwAAAABgfHtzt1/fWV6r3kAkarwkJ0UPLZuhkpxUkzIDAAAYf2iEAQAAo66la1A3PFGrura+mNg/zZukrywokd1mMyEzAAAAAAAA89S0dOtf//S2duzvjYldNKtA9/7dScpKdZmQGQAAAAAA49vKmnbd9myDguHoo1urJqbrF5+aobwMPq8DAACMJhphAADAqNrc3KNvLa9Ve28watzlsOnWC6frsln5JmUGAAAAxM/n85mdAhAXu90uj8cz/Njv9ysSiRxmBmC+8Vq3z23Zrx88V6+BYPSf1W6Trjt3ir54ZrFC/T3y9ZuUII5ovNYurI26hVVZqXa9Xq/ZKQAAgGP0l3da9dNVO2V8bPyMKdm658oKZaawDBMAAGC08Q4MAACMmpU17bp9xXYNhqK/jPKkOXXvlRU6pSTbpMwAAACAkQmHw2anAByVSCRC/cJyxnrdhsIR/fzlPXrk7ZaYmCfNqR9dXq4zp3qSdnEvPtlYr12MTdQtrIraBQAAiWAYhn67vkm/e60pJra4Mld3XFomt9NuQmYAAACgEQYAACScYRh6eMNe/ccrjTGxabmpeuDqKpXkpJqQGQAAAAAAgHn29wZ089P1eqexOyY2syBDP72yQoXZKSZkBgAAAADA+BaOGPrpqp3666Z9MbFlJ03UjYunyWG3mZAZAAAAJBphAABAggXDEd31wg49s3l/TGzulGzdfUWFslN5SwIAAAAAAMaXTU3d+u5TddrfG4yJXTUnXzcunqYUdpUFAAAAAGDUDYYiuu1v9XqpzhcT+5f5xfryWcWy2WiCAQAAMBOrTgEAQMJ09gd105N12niIXU2XnjhR3108VU4HCzoAAAAAAMD4YRiGHn2nVT9bs1vhiBEVcztsumnxNF114kSTsgMAAAAAYHzrGQzp28tr9fae6HUONknfPX+alp1cYE5iAAAAiEIjDAAASIidHf264fEa7ekcjBq3Sfpm9RR97rRCdkgBAAAAAADjykAwrLte3KEVW9pjYoVZbv30ygrNLMw0ITMAAAAAALC/N6Bv/LVGtfv6osZdDpvuuLRM51flmZQZAAAAPo5GGAAAcNy9tduvG5+sU/dgOGo8zWXXnZeVa2G516TMAAAAAAAAzNHYOaAbn6xTXVtfTGzu1Gz96LJy5aS7TMgMAAAAAAA0dg7o2r9sU5M/erPPDLdd911VqdOneEzKDAAAAIdCIwwAADiulr+/Tz9+cafCESNqfGKmSz9bWqUZBRkmZQYAAAAAAGCOVxt8uu3ZhphNQyTpH8+cpH9dUCKHnZNzAQAAAAAww7bWXn3zrzVq7wtGjeelu/TzT7HOAQAAIBnRCIOj5nA4zE4BiIvdbj/sYyAZWbFuI4ahX6zZpT9u2BsTO6EwQw9cfYImZrlNyAyjyYq1C1C3sCpqFwAAIPlFDEO/W9+k373WFBPLcNv1/UvKtKgi14TMAAAAAACAJL21269vL69VbyASNV7sSdF//N0MleSkmpQZAAAADodGGBw1r9drdgrAUfF4OKoU1pPsddsXCOn6/31XL2xpjYldNKtA93/mZKW7edsxHiV77QKHQt3CqqhdYHSxQQisgsZJWNFYqVt/f1C3PlOnV7d3xsRK89J039IZmpaXNvqJIWHGSu1ifKFuYVXULgAAOB5W1Xbo1r/VKxg2osYrJ6brF5+q0oQMNvsEAABIVqxIBQAAx6TFP6B//u839UFTV0zsXxeW6aaLqmS320zIDAAAAEgcNgiBVdE4CSuyYt1u3uvXv/7pA+3p6I+JXTanSD9ddqIyUviKZqyzYu0C1C2sitoFAAAj9di7rfrJyp0yPjZ+2uQs3XdVpTL53A4AAJDUeLcGAACO2gdNfv3TH99Ua9dg1LjTbtOPls7Rp8+YbFJmAAAAAAAA5nh8Y6Nufvx9DYYiUeMOu003XzJD/3T2dNlsbBoCAAAAAIAZDMPQ715r0m/XN8XEFlV4dedl5UpxctocAABAsqMRBkfN5/OZnQIQF7vdHrULlN/vVyQSOcwMwHxWqNvVdR265elaDQSj88pOdeq+pVU6fUomvyvGISvULvBx1C2sykq1y8kZAABgPAiEIrrjmS36n9d3xcQmZLr14GdP1VlleSZkBgAAAAAAJCkcMXTvSzv1l3f3xcSuPmmivrt4mhx2Nq8AAACwAhphcNTC4bDZKQBHJRKJUL+wnGSqW8Mw9Ke3WvSLtbtjjgienJOiB66u0tTctKTJF+ZKptoF4kXdwqqoXWB00fQNq7BS4yRwgBXrdl/3oG5cXqv39nbHxOZMytQ9V1apINvO748xzoq1C1C3sCor1S4bhAAAkBwCoYhue7ZBq2o7YmJfPqtY/zK/mBNcAQAALIRGGAAAELdQOKK7V+7U8vfbYmKnlmTpp1dWKCfNZUJmAAAAwOii8QxWReMkrCjZ6/btPV26+ek6dfSFYmJ/d/JEfWvRVLkc9qT+MyAxkr12gUOhbmFV1C4AADicnsGQbnyyTm/u7ooat0m6afE0/d0pBeYkBgAAgKNGIwwAAIhL10BI330q9saQJC2ZNUG3XDhdLofdhMwAAAAAAABGn2EY+vPbQ6fmhj92bG6K06abL5iuy2flm5McAAAAkGAOh8PsFIAjstvth32M8aG9N6Cv/2Wbtrb2Ro27HDbddXmFLpgxwaTMDo26hVVRu7Ai6hZWRe0OoREGAAAc0R7fgK5/oka7OgZiYtedM1lfmFvEEcEAAAAAAGDc6AuEdcfz2/ViTUdMrNiTop9eWaGqiRkmZAYAAACMDq/Xa3YKwIh5PB6zU8Ao293ep3965F3tau+LGs9wO/S7z5+u+eXJ1QRzKNQtrIrahRVRt7Cq8Vq7NMIAAIDD2rinSzc+WSf/QChqPMVp1w8vLdPiylyTMgMAAAAAABh9uzr6deOTddre3h8Tmz/dozsuLZcnja9fAAAAAAAw0+a9fn3xv95UW/dg1HhehlsP/+NczSkZnwtGAQAAxgq+iQEAAJ/omc1tuvP5HQpFjKjxvAyX7l9aqZmFmSZlBgAAAAAAMPrW1HXo9hUN6g1EYmJfPqtYX55fLDun5gIAAAAAYKrXGtr1L//9lroHozf8nJybpv/+0pmaPoFTXAEAAKyORhgAABAjYhj61auN+q839sbEKvPT9bOllSrMTjEhMwAAAAAAgNEXjhj69bpD3yvJSnHoh5eW6ZwyrwmZAQAAAObw+XxmpwAckd1ul8fz0akffr9fkUjsxgYYW1bVtOuWp2sVCEdv+Fk5MV0P/d1M5TgC8vkCJmV3ZNQtrIrahRVRt7AqK9Wu15u4705ohAEAAFEGgmHdvmK7VtV2xMTOKc3RXZeXK93tMCEzAAAAAACA0dfZF9S//61eb+zqiolV5KfrnisrVJKTakJmAAAAgHnC4bDZKQAjFolEqN0x7vFN+3T3yh2KRPfA6NSSLP1saaUyUxyWqwHqFlZF7cKKqFtY1XitXRphAADAsP29AX3riVptaemNif39aYX65sIpcthtJmQGAAAAAAAw+ra29OrGJ2vV0h27U+wlJ+Tp3y+crlQXG4YAAAAAAGAmwzD0+9f36tfrGmNiiyq8uvOycqU47SZkBgAAgEShEQYAAEiS6tr6dP3jNWr92MIOh0266fxp+tRJBSZlBgAAAAAAMPqWv79PP125U4Fw9DayDrtN36qeok+fUiCbjQ1DAAAAAAAwU8QwdM+qXfrLu60xsaUn5uvfzp/Ohp8AAABjEI0wAABArzb4dMsz9eoLRqLGM1McuntJheZN85iUGQAAAJCcHA52/4c12O32wz4GkpHZdRsIRfSTlTv0+KbYBTQTMl2658oqnVySPao5wRrMrl3gaFC3sCpqFwAASEOf4W9f0aAXazpiYv88r1hfWVDMJhYAAABjFI0wAACMY4Zh6H83tur+NbsUid7cVMWeFD1wdZWm56WZkxwAAACQxLxer9kpAEfF42GjA1jPaNZtU2e/vvZ/b2tToz8mNndarh763CmamJU6avnA2njNhRVRt7AqahcAgPGnNxDWjctrtWF3V9S4TdJ3zpuqz5xaaE5iAAAAGBU0wgAAME6FIobuXbVTj23aFxM7qThT915ZKW+6y4TMAAAAAAAARt+6+v36+iPvqKM3EBP70oLpuvnSGXI52G0eAAAAAACzdfQG9c3Ha7S1tTdq3Gm36YeXlunCGXkmZQYAAIDRQiMMAADjUM9gSP/2dL1e3xm7u+klM/N024WlcjtZ2AEAAAAAAMY+wzD067Xbdc/z22JOzE1zOXT3p+boypOLzUkOAAAAAABEaeoc0HWPbdOezsGo8XSXXfdcVakzp3JSHAAAwHhAIwwAAONMU+eAbniiVtvb+2Ni/7qgRP80b5JsNpsJmQEAAADW4fP5zE4BiIvdbpfH89GX/36/X5FIxMSMgCMbzbrtGQzp9mfr9VJtR0xssjdV9y2tUkV+Oq/7iAuvubAi6hZWZaXa9Xq9ZqcAAMCYUdfWp+se26b23mDUuDfNqZ9/qkozCzNNygwAAACjjUYYAADGkU1N3frO8lr5+kNR426HTd+/hOOBAQAAgHiFw2GzUwCOSiQSoX5hOYmq2+37+3TjU3Xa1TEQEzunLEc/vKRMWalO/pvBUeM1F1ZE3cKqqF0AAMa+jXu69K3lteoZjP6dPyk7RQ8uq9LU3DSTMgMAAIAZaIQBAGCcWLFlv374/HYFw0bUeG66U/ddVak5k7JMygwAAAAAAGB0raxp1w+e267+YPTO8TZJ/3p2if7xzEmyc2IuAAAAAABJYU1dh255pl6Bj613KJ+QpgeXzVB+ptukzAAAAGAWGmEAABjjDMPQb9c36XevNcXEyiak6YGlVSrypJiQGQAAAAAAwOgKRQz9x8t79D9vNcfEPKlO3XlZmc6anjP6iQEAAAAAgENa/t4+/ejFHYpE98DolJIs/eyqSmWlsgQSAABgPOJdIAAAY9hgKKIfPLddL2xrj4nNn+7Rjy4vV2YKbwcAAAAAAMDY19Eb1M3P1OntPd0xsaqJ6brnykpNYrMQAAAAAACSgmEY+sMbe/WrVxtjYtXlXt15WblSXXYTMgMAAEAyYOUrAABjVHtvUN9ZXqv3m3tiYp85pUA3LJoqp91mQmYAAAAAAACj6/293fruU3Xa1xOMiS2Zna/vLp7G4hkAAAAAAJJExDB030u79H/vtMbErpyTr5svmM56BwAAgHGORhgAAMag+rY+3fBEjZq7AlHjdpv0nfOm6tOnFJqUGQAAAAAAwOgxDEN/3bRP9760S6GIERVz2m26cfFUXX3iRNlsLJ4BAAAAACAZBMMR3b5iu17Y1h4T+9K8SfrqghI+xwMAAIBGGAAAxpr1Ozp189N16g1EosYz3Hb9eEmF5k/PMScxAAAAAACAUTQQjOjulTv0zOb9MbGCLLd+ckWFZhdlmpAZAAAAAAA4lN5AWDc9Was3dnXFxL5z3lT9f6ey6ScAAACG0AgDAMAY8ug7Lbr3pV362AanKsp26/6lVSrPTzcnMQAAAAAAgFHU1Dmgm56qU82+vpjY6ZOz9aPLy5Wb4TIhMwAAAAAAcCi+vqC++dcabWntjRp32m36/iWluviECSZlBgAAgGREIwwAAGNAKGLo/tW79H/vtMbE5hRl6t6rKpXH4g4AAAAAADAOvLajU//+t3p1DYRjYp8/o0hfO2eynHabCZkBAAAAAIBD2esf1HWPbdNu30DUeJrLrnuurNC8aTnmJAYAAICkRSMMAAAW1zMY0i3P1Gv9Dn9M7MIZefreRaVKddlNyAwAAAAAAGD0RAxDf3h9r36zrlEfOyxX6S67br+kTIsrc03JDQAAAAAAHFp9W5+ue2yb9vcGo8Zz0pz6+dVVmlWUaVJmAAAASGY0wgAAYGHN/kFd/0SNGvb3x8S+fFax/mV+sWw2djgFAAAAAABjW/dASN9b0aBXGjpjYtNyU3XPlZWanpc2+okBAAAAAIBP9E5jl254olY9g9GnuhZlu/XgshmalstneQAAABwajTAAAFjUB809+vYTtWrvi94VxeWw6XsXleqSmRNMygwAAAAAAGD01Lf16cYna7WnczAmdl6FV7dfUqYMt8OEzAAAAAAAwCdZW+/TLc/UaTAUfa5r2YQ0PbRshvIz3SZlBgAAACugEQYAAAt6cVu7vv9cQ8wNoZw0p+69qlInF2eZlBkAAAAwPjgcLKiGNdjt9sM+BpLRSOp2xZY2/XBFgwZCkeg5NukbC6fq83MncVouRg2vubAi6hZWRe0CAGBtT76/T3e9sEOR6CUPOrk4Sz9bWqnsVJY1AgAA4PB4xwgAgIUYhqHfv75Xv17XGBObnpuq+6+uUklOqgmZAQAAAOOL1+s1OwXgqHg8HrNTAEbsUHUbDEd019+26uH1O2NiuRluPfTZUzS/nNNyYS5ec2FF1C2sitoFAMAaDMPQwxv26j9eiV3zcG5Zjn50eYVSXTS4AgAA4MhohAEAwCICoYjufGGHnt2yPyZ25tRs3b2kQlnsigIAAAAAAMa4fV0DuvbPG/XmTl9M7KTJOfrV507VpJw0EzIDAAAAAACfJGIYun/1bj2ysSUmdsXsfN1y4XQ57ZzqCgAAgPiwWhYAAAvw9QX1rce36d2m7pjYp06aqBvPmyqng11RAAAAAADA2Pbmzg597f9tVFv3YEzs78+cotuXzFSK02FCZgAAAAAA4JMEwxH94Lntem5re0zsH8+cpK+dXSKbjSYYAAAAxI9GGBw1h4MvE2ENdrv9sI+BZHRwndbv69EX/+d9NXYORF1jk/Tt86bp708v4oYQkgavubAi6hZWRe0C5vL5Yk8hAJKR3W6Xx+MZfuz3+xWJREzMCDiyQ9VtOBzWI2+36P7VOxWKGFHXux023XJhqa48sUB93V3qG+2EgQ/xmgsrom5hVVaqXa/Xa3YKAACYqi8Q1k1P1en1nf6Y2LcXTdVnTys0ISsAAABYHY0wOGrcsINVHXxTHEh2r9bt11f/39vqHghFjae7HXrws6do8QkFJmUGxIfXXFgRdQuronaB0RUOh81OATgqkUiE+oXl9A4E9cPn6g+5a2xRtls/vaJSJxRmUNtIOrzmwoqoW1gVtQsAQHLq7Avqm4/XaHNLb9S4w27TDy4p1cUnTDApMwAAAFgdjTAAACSpP7+xW7c9+YHCH9vltMiTqt9/4QzNnJRtUmYAAAAAAACjY+f+Xn35T++rri32nJczp2brrsvLlZPmMiEzAAAAAABwOM3+QV33123a1TEQNZ7msuunV1TorOk55iQGAACAMYFGGAAAkkw4YujHz27Vf766IyZ2YolH//n50zUxO9WEzAAAAAAAAEbPyi2tuuHRd2NOypWkL82bpK/ML5HDbjMhMwAAAAAAcDj1bX36+l+3qa0nGDXuSXPq51dXaXZRpkmZAQAAYKygEQZHzefzmZ0CEBe73S6PxzP82O/3KxKJmJgR8Mn6AmHd8nSt1tbHvsYurszVHZdXyBXul8/Xb0J2wJHxmgsrom5hVVaqXa/Xa3YKAADAQsIRQ/e9UKMHX6qPiWW4HfrBpaWqLs81ITMAAAAAAHAk7zZ164bHa9Q9GI4aL8xy66FlMzQtL82kzAAAADCW0AiDoxYOh498EZCEIpEI9Yuk1No9qBueqFXtvr6Y2JfmFetfFxTLbuP1F9bCay6siLqFVVG7AABgLPD3h3Tbsw1av6MzJlaal6Z7rqzQ1FwWzAAAAAAAkIxebvDp5qfrNBgyosZL89L04LIqFWSlmJQZAAAAxhoaYQAASAJbW3p1wxM12t8bfSywy2HTj5bO0fllmSxsBQAAAAAAY9q21l7d9GSd9nYNxsQunJGn2y6crjS3w4TMAAAAAHycw8F7cyQ/u91+2Mc4vp58r1V3PNegcHQPjE4qztLPPzVDnjSXOYlZDHULq6J2YUXULayK2h1CIwwAACZ7qbZDtz3boMFQJGo8J92lX//DaZpXmiefz2dSdgAAAAAAAIn3zAdt+vHKHTE7xjrsNt1QPVWfOWWibDabSdkBAAAA+Div12t2CsCIeTwes1MYkwzD0K/XbtdPnmuIiS2eMVEP/f2pbGxxDKhbWBW1CyuibmFV47V2aYQBAMAkhmHojxua9dAre2JiU3NT9fCX5mn6hAwTMgMAAAAAABgdgVBE963epb9u2hcTm5CZov/4+1NU6bVzUi4AAAAAAEkoEjF017Nb9ftXd8TElp1WoruvniOnY3zuUA4AAIDEohEGAAATBMMR/fjFnXrqg7aY2OmTs3Xv0ipNowkGAAAAAACMYa3dg/ruU3X6oLk3JnbaVK9++blTVZCdykm5AAAAAAAkoWA4opsee09PvNMUE/vKwlL928UzON0VAAAACUMjDAAAo8zfH9JNT9Xq7T3dMbEr5+Tr386fplS3y4TMAAAAAAAARsdbu7t0yzN16ugLxcQ+c2qh7rj6FLmd7BgLAAAAJCsa1mEFdrtdHo9n+LHf71ckEjExo7GjPxDWd5bXaP2OzpjYtxZN0zVzC9XZGRvDkVG3sCpqF1ZE3cKqrFS7Xq83Yc9NIwwAAKNot29A1z9eo92+gahxm6SvnztZ15xRxI4oAAAAAABgzDIMQ396q0UPvbxbYSM6luK0698vnK4lcwpoggEAAACSXDgcNjsFYMQikQi1exx09gd1/eM1MSe8Ouw23X5xqS6dOYG/5+OIuoVVUbuwIuoWVjVea5dGGAAARslbu7t001O16hqIfsOR6rTrzsvKVF2Ra1JmAAAAAAAAidcbCOuO57ZrZW1HTKzYk6J7rqxQ5cQMEzIDAAAAAADxaOka1HWPbdPOjujNP1Oddv3kigotKM0xJzEAAACMOzTCAAAwCp56v00/enGHQpHorU7zM126f2mVZhSwyAMAAAAAAIxdOzv6dePyWu342EIZSTq7NEc/vLRM2al8ZQEAAAAAQLJq2N+nrz+2Tft6glHjnlSnfv6pKs0uyjQpMwAAAIxHfKsEAEACRQxD//HKHv1xQ3NMrGpiuu5fWqWJWW4TMgMAAAAAABgdL9V26AfPNag3EIkat0n6l/nF+qezimW32cxJDgAAAAAAHNGmpm7d8ESNugbCUeMFWW49tGyGpuelmZQZAAAAxisaYQAASJD+QFjfW9Gg1XW+mNjCcq/uuLRM6W6HCZkBAAAAAAAkXihi6FevHnqDkKwUh+64rFxnl+aMfmIAAAAAACBurzb49N2n6zUYit7gojQvTb/4VJUKs1NMygwAAADjGY0wAAAkQFtPQN96olZbW3tjYtecXqTrzp0sh52dTgEAAAAAwNjk6wvq35+p14bdXTGxyvx0/fTKCpXkpJqQGQAAAAAAiNczH7Tpjue3K2xEj584KVP3L62SJ43lhwAAADAH70QBADjOtrX26ltP1GhfTzBq3GG36ebzp+mqEyealBkAAAAAAEDibW7u0U1P1am1OxATu3TmBN1ywTSlujglFwAAAACAZPbfG/bqFy/viRlfMD1HP7minM/2AAAAMBWNMAAAHEdr63269W/16g9GHwmcleLQT66o0NypHpMyAwAAAAAASLwn3tunn67aqeDHtop12m369qKpWnbyRNlsnJILAAAAAECyihiGfrF2t/70VktM7LKZE3TbRdPldNhNyAwAAAD4CI0wAAAcB4Zh6P+91aKfr92tj50IrJKcFD2wtErT8tJMyQ0AAIw9tkC3XM1vSfvekravka7+rZQ6xey0gHHF4WC3Q1iD3W4/7GPgeBkMRXT3i9u1/L19MbH8TLfuuapKJxVnxfVc1C2sitqFFVG3sCpqFwCAxAiFI/rh8zv07Jb9MbFrzijSN86dzAYXAAAASAo0wgAAcIxC4Yh+smqXnjjEQo9TSrJ0zxUVykl3mZAZAAAYM8IBOVs3yb1nnVx71snZukk2I/xRfPsaaebnTUsPGI+8Xq/ZKQBHxePhpFIcf42+Pn31fzfq/SZ/TGzu9Fw99PenaGJW6lE/P3ULq6J2YUXULayK2gUA4Nj1B8L6t6frtW5HZ0zsmwun6JozikY/KQAAAOAT0AgDAMAx6BoI6d+eqtOG3V0xsctnTdAtF0yX28kuZAAAYIQMQ472Wrka1w01v+zdIFuw75OvpxEGAACY5JW6Nn3jkXfk6wvGxP757On67iUz5HJwbwQAAAAAgGTW2R/UDY/X6v3mnqhxh0267eJSXT4r36TMAAAAgEOjEQYAgKPU2Dmg6x+v0c6OgZjYteeU6ItzJ3EkMAAAiJu9e69ce9YPNb80rpe9b3/8k3etl0IDko1T6AAAwOiIRAz9am2D7nuhRhEjOpbudugnnzpRS06aZE5yAAAAAAAgbi1dg/r6Y9u042NrH1Kcdv3kigqdXZpjTmIAAADAYdAIAwDAUXinsUvfebJO/v5Q1HiK06YfXFKm86vyTMoMAABYhW3AL1fT63I1rpdrzzo5O3eMaL7hcMs2+UyptFoqXSTZXZJxxGkAjhOfz2d2CkBc7Ha7PB7P8GO/369IJGJiRhgLugdD+t7f6rWmriMmNsWbqp8tnaGy/LSjfq2kbmFV1C6siLqFVVmpdr1er9kpAADwiXa09+u6x7aptTsQNZ6d6tADV1fpxElZJmUGAAAAHB6NMAAAjNDfNrfpzhd2KBiOXmmal+HSz66q1KyiTJMyAwAASS00KFfLRrn2rJOrcb2c+96XzRjZAo1Q/iwFSuYrOHmBIiVnyjvxoF3WfT4pHD7OSQP4JGH+e4NFRSIR6hfHpGF/n258sk67fbEn5FaXe/X9S0qVmeI8rnVG3cKqqF1YEXULq6J2AQAYuff2duuGx2vlH4jeALQgy60HP1Wl0gnpJmUGAAAAHBmNMAAAxCliGPr1ukb94fW9MbGK/HTdv7RShdkpJmQGAACSkhGRY/9Wufesk2vPerma35QtFLtg9HDCWSUKTl6gwOQFCpacJSMtdzjmcDiOd8YAAACH9cK2dt3x/Hb1B6Obee026atnl+gLcyfJbrOZlB0AAAAAAIjXq9s79d2n6jQYiv6MPz03VQ8um8HaBwAAACQ9GmEAAIjDQDCiHzzXoBdrOmJiZ5fm6K7Ly5XhZjEqAADjnb1rj1x71g01vzS+JvuAb0TzIyk5Ck6e/9GpL54pCcoUAAAgfqFwRL94eY/+/HZLTMyT5tRdl5Vr3jSPCZkBAAAAAICR+tvmNv3wue0KG9Hjc4oydf/VlcpJc5mTGAAAADACNMIAAHAE+3sD+vYTtdrc0hsT++xphbp+4RQ57Ox2CgDAeGTr75Cr6fUPm1/Wy9G1e0TzDUeKgpPO+LD5ZYHC+TMlmz1B2QIAAIxce29QNz9dp42N3TGxEwoy9NMrKlTkYZdYAAAAAACs4E9vNuuBtbHfZcyf7tFPllQojQ1AAQAAYBE0wgAAcBj1bX26/vEatXQHosYdNunGxdO07OQCkzIDAACmCA3ItfctuRqHTn1xtG2RTcaR533IkE2hiXMUnLxAwcnzFSw8TXKycBQAACSn9/Z267tP1amtJxgTu3JOvm5aPE0pTpp4AQAAAABIdoZh6Bcv79H/vNkcE7tkZp5uv6hUTgef8QEAAGAdNMIAAPAJXt3eqVuerlNfMBI1nuF26CdXlGvetBxzEgMAAKMnEpazbbNce9bJ1bhOrua3ZQsHjjzvIGHPNAUmLxhqfimeJyPVk6BkAQAAjg/DMPTYu/t03+pdCkWim35dDptuWjxNS0+caFJ2AAAAAABgJELhiO58YYee2bw/JvYPpxfqGwunyG6zmZAZAAAAcPRohAEA4BD+d2OLfrZ6lz621kPFnhTdv7RSpRPSzUkMAAAklmHI7t8p9571Q80vTa/JPtg1oqeIpOUqUPJh40vJfEWyixOULAAAwPE3EAzrRy/u1LNbYhfHFGS59dMrKjSrKNOEzAAAAAAAwEgNBMP6t6fr9er2zpjYN86drM/PnTT6SQEAAADHwag1wvT19UmS0tMPvXD4wQcf1KOPPqr9+/dr+vTp+upXv6olS5aMVnoAAEiSQhFD9720S395tzUmduKkTN13VaW86S4TMgMAAIli69svV+P6oeaXxnVydO8d0XzDmaZg8dzh5pdwXqVksycoWwAAgMRp7BzQTU/WqbatLyY2d0q27rq8nPsiAAAAAABYhL8/pBueqNF7e3uixh026baLSnX57HyTMgMAAACO3ag0wjz99NO66qqrlJmZqcbGRmVlZUXFv/SlL+mPf/yjJMkwDNXW1ur555/XnXfeqZtvvnk0UgQAQD2DId3ydL3W7/THxC4+IU+3XVSqFCeLWgEAsLxAr1zNbw6f+uJs3zai6YbNoVDBiQpOXqBAyQKFCk+WHO7E5AoAADBKXt3eqdv+Vq/uwXBM7Itzi/SvZ0+W024zITMAAAAAADBSrd2D+vpjNdre3h81nuK06+4l5TqnzGtSZgAAAMDxMSqNMM8//7wMw9AVV1wR0wTz6quv6uGHH5bNZlN6eroqKyu1bds29ff363vf+56WLFmi2bNnj0aaAIBxbK9/UNc/HnsTSJK+Mr9Y/3xWsWw2FnsAAGBJkZCcre/J1bhO7j3r5Wx5R7ZIcERPEfKWKzh5voKTFyg46UwZKVlHngQAAGABEcPQf77WpN+tb5LxsViG267vX1KmRRW5puQGAAAAAABGbkd7v657bJtauwNR49mpDt2/tEonFfMdBwAAAKxvVBphXn/9ddlsNi1atCgm9tvf/laSNGnSJL322msqKSnRnj17dPbZZ6uxsVG/+c1v9OCDD45GmgCAceq9vd36zvJadfSFosbdDptuv6RMF83IMykzAABwVAxDDl+DXHvWydW4Xq7G12UP9ozoKcLpEz9qfCmZr0hmYYKSBQAAME/XQEjfe7ZBr27vjIlNz03VPVdWalpe2ugnBgAAAAAAjsoHzT365l9r5B+IXv8wMdOlB5fNUNmEdJMyAwAAAI6vUWmE2bdvnySpqqoqJvbcc8/JZrPp61//ukpKSiRJkydP1te//nXddNNNWrt27WikCAAYp57f1q4frGhQIBy956k3zan7llbqxEnshAIAgBXYe1qHml4+bH5x9LaOaH7Elalg8ZnDzS9hb7nEaXAAAGAMq93XqxufrFOTfzAmdn5lrm67uFQZbocJmQEAAAAAgKOxfkenbnqyTgOhSNT41NxU/ceyGSrMTjEpMwAAABx3kYjU+r6UkiXZvGZnY4pRaYRpa2uTJGVlRS8m3rx5s/bv3y+bzaYrr7wyKnb66adLknbt2jUaKQIAxhnDMPSfrzXpN+ubYmKleWl64OoqTfJwEwgAgGRlC3TL1fTGh40vr8nZUTei+YbdqVDhKQqULFBw8nyFJp4oOVwJyhYAACC5PLtlv+56YYcGP7YwxmGTvn7uFH3u9ELZaAoGAAAAAMAyVmzZr+8/t13hSPQmoLMKM/Tzq6uUk853IAAAAJZmGHL4GuRqfE3uptelvW9I/T7prOukud8xOztTjEojjMMxtGtcR0dH1Pirr74qScrPz485LcbrHepMGhgYGIUMAQDjyWAoojuf364VW9tjYmdN8+jHS8qVmTIqvyIBAEC8wgE5WzfJvWedXHtelbP1PdmM8IieIpRXpWDJAgUmz1dw0lzJnZGgZAEAAJJTMBzR/Wt269F3Yk/P86Y59eMl5Tp9iseEzAAAAAAAwNH6f2816/41u2PGz5rm0U+vqFAaJ74CAABYkr1rj1yNrw01vzS+JntfW+xFO9bSCJNIxcXFqq+v17vvvqvq6urh8b/97W+y2Ww655xzYub4/X5J0oQJE0YjRQDAOOHrC+rby2v13t6emNjfnVygb583VU47O54CAGA6w5CjvVauxnVDzS97N8gW7BvRU4QzixScvGCo+aXkLBkZ+QlKFgAAIPm19QT03afqDnlPZHZRhn5yRYUKsjgdFwAAAAAAqzAMQw+9skd/3NAcE7vkhDx97+JSuRx2EzIDAADA0bD3tMrV9Ppw84uju/HIk1rel63fJ7mzE59gkhmVRphzzjlHdXV1euihh/QP//APmjBhgt58800999xzkqSLLrooZs7WrVslSYWFhaORIgBgHNi+v083PFGrJv9g1LjdJn1r0VT9f6fyOwcAADPZu/fKtWf9cPOLvT/29LbDiaRkK1h8loKTh059iXimSTYaXAEAADbu6dLNT9ervS8YE1t20kR9a9FUuZ0sjAEAAAAAwCpCEUN3vbBDT38Quyv4359WqOurp8jOdyQAAABJzdbfIVfTG8ONL87O7SN/ktxS2bubpDwaYRLia1/7mh5++GHt2LFDpaWlqqys1JYtWxQKhZSbm6vPfOYzMXNeeukl2Ww2zZw5czRSBACMca/v9Ou7T9WpNxCOGk932fWjJRU6uzTHnMQAABjHbAP+D3eyWC/XnnVydu4Y0XzD7law6NShU18mn61Q/izJ7khQtgAAANZjGIYe2diin6/ZrbARHUtx2nTz+dN1+WxOzQMAAAAAwEoGgmHd/Ey9XmnojIldd85kfWFukWw0wQAAACQdW6BbzqY35W58Ta6m1+Tcv3XEzxHOLFRo8nylVF0gTTtHypmssM8nhcNHnjzGjEojzKmnnqp77rlHN954o3p6erRx40ZJksvl0u9+9ztlZWVFXe/3+/W3v/1NklRdXT0aKQIAxrDH3m3VPat2xiz4KMxy64Grq1Sen25OYgAAjDehQbla3h469WXPOjnbPpDNiIzsKfJnKVAyf6j5peh0yZWWoGQBAACsrT8Q1h0v7NAL22JP2ZuUnaKfXlmhGQUZJmQGAAAAAACOVtdASDc8UaNNTT1R4w6b9O8XluqKOWx4AQAAkDSC/XI1v/3hJrGvybnvfdmMkTWsRNJyFSw5S8HieQqUnKWIZ5ocTqdSvN4EJW0do9III0k33HCDzj//fD322GNqaWlRUVGRPvvZz6qqqirm2jVr1uiMM86QJF1++eWjlSIAYIwJRww9sHa3Hnm7JSY2qzBD9y2t1IQMtwmZAQAwThgROdq2yN24bqj5Ze+bsoUHR/QU4ezJCpbMV2DyAgVLzpKRlpugZAEAAMaO3b4B3fhkrRr298fE5k/z6I7LyuVJG7WvBwAAAAAAwHGwrzug6x7bpu3t0Z/3U5w2/XhJhc4tYzEkAACAqcIBOVs3ydX4mtyNr8nZ8q5skcCIniLizlKw+Myh5peSsxTOrZQ47e+QRvWbrjlz5mjOnDlHvO7KK6/UlVdeOQoZAQDGqt5AWLc+U69XtnfGxC6oytXtF5cp1WUf/cQAABjj7F175Nr9qtyN6+VqfE32Ad+I5kdSvQqWnPVh48t8RTxTEpQpAADA2LS23qfvPdug3kDsjmL/PK9YX55fLIedL0wAAAAAALCSnR39uu4v29TSHb2QMivFofuXVunkkiyTMgMAABjHIiE527bI1fja0P+a35ItFLtJ2eEYzjQFJ53+4akvZymUP0uyOxKU8NjClm8AgDGnpWtQNzxRq7q2vpjYP82bpK8sKJGdDlkAAI4LW3/H0BGue9bJvWe9HF27RzTfcKQoOGmugpOHTn0JTzhBstGsCgAAMFLhiKHfrG/UH17fGxPLTHHoh5eWsTMsAAAAAAAW9EFzj775eI38/aGo8fxMlx781AyV56eblBkAAMA4Y0TkaK8danppel2upjdkD3SP7CnsbgWLTvmo8aXgRMnhTlDCYxuNMACAMeWD5h59e3mt2nuDUeMuh023Xjhdl83KNykzAADGiGC/XM1vDTW+NK6Xo22LbDLinm7IptDEOQpOXjD0v8JTJWdKAhMGAAAY+zr7g7r1bw16fac/JlY+IU33XFmpyd5UEzIDAAAAAADH4vWdnbrxyTr1ByNR41O8qfqPZTNU5OE7FgAAgIQxDNk7d8rd9OGJL42vyz7QMbKnsDkUmniigiXzhppfik6TnHxnczwc10aYl19++Xg+3bBzzz03Ic8LABhbVta06/YVDRoMRS/G9aQ5de+VFTqlJNukzAAAsLBIWM62D+Tas27of80bZYsERvQUYc80BQ40vhTPk5HqSVCyAAAA48/Wll7d9FStmrti36NdfEKe/v2C6UpzO0zIDAAAAAAAHIvntu7X7Su2KxyJXgMxszBDP7+6St50l0mZAQAAjF327r1yNa4fbnxx9LaM+DlCE2YqWHKWAiVnKTTpdBnurARkiuPaCFNdXS2bzXY8n1I2m02hUOjIFwIAxi3DMPRfb+zVL19tjIlNy03VA1dXqSSHDloAAOJyYDeLxg8bX5pel32wa0RPEUnLG2p8KZmvYMl8RbKLE5QsAADA+Pbk+/v0k5U7FQhHL4hx2G26oXqKPnNKwXG/Zw8AAAAAABLvkbdbdN/qXTHj86Z59NMrKpTOphcAAADHha1vv1yNr8nd+JpcTa/J4d894ucIecuGTnspPkvB4rky0nITkCk+7rg2wkhDi5EBABgtgVBEP3pxh57ZvD8mNndKtu6+okLZqcf91x0AAGOKrW+/3HvWy/Vh84ujp3lE8w1XuoKT5n7Y/LJA4bxKiQWXAAAACRMIRXTPS7v0xHv7YmJ5GS79ZEmFTi5hdzEAAAAAAKzGMAz98tVG/dcbe2NiF83I0/cvKZXLYTchMwAAgLHBNtApV9MbQye+NL0uZ0fdiJ8jnD35oMaXMxXJLEhApjiS47oyePXq1Z8YCwQCuvXWW/Xmm28qPz9fn/70pzV37lwVFAz9i29tbdWbb76pRx99VPv27dMZZ5yhu+66Sy4XRzgeycsvv6xt27Zp+/bt2r17t0KhkL72ta+purra7NQAIKE6+4K68ak6vdPYHRNbeuJEfXfxVDm5AQQAQKxAr1x7Nww3vzjba0Y03bA5FCo4ScHJCxSYvEChgpMkhztByQIAAOBgLV2D+u5Tddrc0hsTO7k4S3cvKdeETN6bAQAAAABgNaGIoR+/uENPvt8WE/v/Ti3QtxZNlZ2NyAAAAEbEFuiRs/mt4VNfHG1bZNPIDv4Ip08canwpOUvBknmKZE9OULYYiePaCLNw4cJDjhuGoUsvvVRvvfWW/umf/kkPPPCAMjIyYq675pprdPfdd+v666/Xf/7nf+pnP/uZnn322eOZ4pj0f//3f2pra1NWVpa8Xq/a2mI/DAHAWLOzo1/XP16jxs7BqHGbpG9WT9HnTiuUjRtAAAAMCQfl3PeeXHvWy924Ts6Wd2SLhEb0FCFvuYKTFwz9r3iuDDc7jAMAAIy2N3f7dfPT9ersj30v99lTC/XNhZPZFAQAAAAAAAsaCEZ0yzN1ermhMyZ27Tkl+uLcSayBAAAAiEdoUK6WjUMnvjS+Jue+90a8RiaSkqNgybzh5pdwTqnEe7Gkc1wbYT7J73//ez3//PO64IIL9Lvf/e6w16anp+u3v/2tdu3apeeff16//e1v9S//8i+jkaZlfeUrX1FRUZHy8/O1fPly/fnPfzY7JQBIqDd3+3XTk3XqHgxHjae57LrzsnItLPealBkAAEnCMOTw1cu1Z51ce9bL1fSG7MGeET1FOH2igpPnDzW+lMxXJLMwQckCgDU5HA6zUwDiYrfbD/sY1mAYhv64Ya8eXLtLkY9tUpbqtOt7l5Tpkpn55iSXANQtrIrahRVRt7AqahcAMJZ0DYT0rSdq9W5Td9S43SbdcuF0XTVnokmZAQAAWMCBzWE/bHxxtWyULRwY0VNEXJkKFc9V4EDjS16VZONeQ7IblUaYhx9+WDabTV/72tfinnPttdfqxRdf1B//+EcaYY7gxBNPNDsFABg1y9/bpx+v3Knwx1Z9TMx06WdLqzSjIPbEMQAAxgN7T4tcjeuHm18cfftGND/iyvxwN4uh5pewt4zdLADgMLxeGvBhTR6Px+wUMELdA0Hd+Jf39NzmlpjY1Lx0/fofTtMJRdkmZDZ6qFtYFbULK6JuYVXULgDAqtp6ArrusW1q2N8fNZ7itOmuy8tVXZ5rUmYAAABJKhL+/9m78/CoyrN/4N+zTXayrzMJJJCwCrIlkKCA+4pi1f7at2q1i7W4VatWq7ZaYeMZbgABAABJREFU96Xa4luXt7VWrb5vq3UXNwSUJCQsKmsCIYFkJgkJ2deZc+ac3x8DgWGAZCCzJd/PdeWSOc85T271ZpYzz/3ckPbvgMlaCsVWCqV+PQS116spDCkMasYcqGZX4YuWMg0Q/VJWQcPIL//HKioqAABZWVlDviYzM9PtWl/o6OhAVVUVqqqqsHv3buzevRtdXa7K+oULF2LZsmVDnqu5uRkrVqzApk2b0NLSAlmWkZaWhvnz5+Pcc89FWFiYr/41iIhGBadu4Lmv6vDahgaPscmpUfjj0jwkR5sCEBkREVFgCPYuKPVlA4UvcluVV9cbogItbSYcmYVQLUXQUk4BJMVH0RIRERHRiahq6sL1r23E7uYej7EzJ6Xgj98/FbERfA9HRERERDSaffXVV6ioqEB1dTVqa2uhaRp++ctfYtGiRYEOjYgGsbe1Dze+VYGGTvcdy6PDJDyzNA8zLSN74wsiIiKiITEMSK27oNjWuTq+2Mog2ju8m0JUoKWdCtU8Dw7LfGhppwIS1/aHOr8UwvT39wMA6urqMHPmzCFdU1dXBwCw2+0+i+tnP/vZsMyzYcMGLF++HH19hyrz7Xb7QHHNypUrcffddyMtLW1Yfh8R0WjT53Di3o93Y01Vm8fY4tx4PHj+eESYpABERkRE5EdOB+TGb2GyFkOpK4a8bzMEw+nVFFriJKiZRa7il/S5gImd1IiIiIiC1cdbGnDHv79Dj8P9PZ8gALedlYdliydAFNnBj4iIiIhotPu///s/NDc3IyYmBvHx8Whubg50SEQ0BNsaunHLfyrR3qe5HU+KUrD88knITY4MUGREREREAWYYEDtroVhLD3R9WQexd793UwgitORpUC2uji9q+mxA4furkcYvhTATJkzAli1b8MILL2DJkiVDuuaFF14AAIwfP96XoQ1ISkqC2WzGd99959V1NTU1ePbZZ+FwOBAeHo5LL70U06ZNg8PhQHFxMVauXImGhgY8+uijeOyxxxAREeGjfwMiopGpqcuBX71Ticomz9Z11+SnY9lpmRAFLvogIqIRyDAgtVRCqSt2Fb/YyiFofYNfdxhndDrUzAUHur4UwohM8lGwRESjT1ubZ6E+UTASRRGxsbEDjzs6OqDregAjosFouoHn1uzFP8rrPcbGhMt45OJcFOXEo6Oj3f/B+QnzlkIVc5dCEfOWQlUo5W58fHygQ6AR7vrrr0d6ejqSk5Px7rvv4o033gh0SEQ0iHV7OnDHezvRp7q/dmXFh+O5yychI5a7kxMREdHoInY3QLEe7PhSCqnL8zuSwWiJEw8VvmTkwwhjd72Rzi+FMFdeeSU2b96MTz/9FL/85S/xxz/+EeHh4Uc912634/bbb8cnn3wCQRDw//7f//NZXJdffjnGjx+P8ePHIy4uDk1NTbjxxhu9muOVV16Bw+GAJEm49957kZeXNzA2bdo0pKen4/XXX0dDQwM++OADXHnllR5zvPrqq1BVdci/84ILLkB6erpXcRIRhaKKfT341TuVaO52f46URAH3nD0Ol5ySEqDIiIiIfEPsqodSV3yg+KUEYl+LV9frYWOgmucPdH3RY8e5tgwnIqJh53R615WLKFjous78DWKtPSru+bAKG+o6PcYmpkTiiSW5MMeFj7r/h8xbClXMXQpFzFsKVcxdGs2mT58e6BCIyAufVrTgdx/vhqYbbsenpEbhT9+biPhIJUCREREREfmP0NcCxVbmKnyxlkJur/F6DmfsODgOFr6YC7g57Cjkl0KY2267Da+//joqKirw4osv4t1338WVV16JuXPnIiUlBYIgYN++fVi/fj3+/e9/o7GxEQAwceJE3HbbbT6L62hFKd6oqqrCjh07AACLFy92K4I56KKLLsKqVatgs9mwYsUKXHbZZZBl9//sn3/+Oex2+5B/77x581gIQ0Qj3updrbj3o93o19x3QBkTLuGJJXmYk8VqXSIiCn1CfwcU2zpX4UtdMaSOPV5db4gmqBmzoVqKoGYWQUueCoiSb4IlIiIiIp/a2tCNu97fhX1dDo+xi6cm4a6zshGuiAGIjIiIiIhoZOro6EBVVRWqqqqwe/du7N69G11dXQCAhQsXYtmyZUOeq7m5GStWrMCmTZvQ0tICWZaRlpaG+fPn49xzz0VYGLs7EBHwv5sa8fSXe2EccTx/7Bg8eUkeokz8joeIiIhGJsHeCaW+/FDhS0ul13M4o9OhWgoPdH2ZBz2aa+lHO78UwoSHh2PVqlW48MILsWnTJjQ2NmL58uVHPdcwXG/1Z86ciQ8//DCobwaUl5cP/Hnx4sVHPUcURSxcuBBvvPEGenp6sG3bNsyYMcPtnNdee82ncRIRhRLDMPDa+gYs/6rO4+ZPVnw4nlmah7EJEQGJjYiI6KRpdiiNG6HUlUCpK4bcvBWCoQ9+3QEGBDiTp8CRWeQqfkmfDSh8XSQiIiIKZYZh4D+bm/DUl3uhOt3vhsiigF+fMRbfm+HaUIqIiIiIiIbPz372s2GZZ8OGDVi+fDn6+voGjtnt9oHimpUrV+Luu+9GWlrasPw+Igo9hmHg+WIrXl5X7zF29sQEPHjBeCgSN78gIiKiEUTthdKw8VDhi5frYwBAj0iEapk/0PVFH5MF8LsSOoxfCmEAIDU1FWVlZXjhhRfw/PPPY/v27Uc9b/Lkybjhhhtwww03QJKCu8q9stJVjRYWFoacnJxjnjdlyhS3a44shCEiIhfVqeOxL/bgvS3NHmOzLDF48pI8xEb47aWLiIjo5Bk6pObtMFmLXcUv9eshOIfeDRIAnGOy4MgshJpZBNU8D0ZEgo+CJSIiIiJ/61d1PL5yDz7Y6nkvJCVaweNLcnFKRkwAIiMiIiIiGl2SkpJgNpvx3XffeXVdTU0Nnn32WTgcDoSHh+PSSy/FtGnT4HA4UFxcjJUrV6KhoQGPPvooHnvsMUREcGMjotFG0w089nkN3j3KOojvz0zF7WeMhcgFnURERBTqnHbIjd/BZC2FYiuF3PgtBF31ago9bAxUcwFUs6vwxZmQy8IXOi6/riaWJAnLli3DsmXL0NjYiC1btqC1tRUAEB8fj1NOOQXp6aHTpshqtQIA0tLSjlu0k5GR4XENERG56+zXcOd7u7ChrtNj7OJpybjn7HHcAYWIiEKC2FELpa4YJmsJFGspxP42r67Xw+NdO1pkFkG1FEKPzfJRpEREREQUSPUddtz5/k5U7Ov1GJudGYNHL8pFQpQSgMiIiIiIiEaHyy+/HOPHj8f48eMRFxeHpqYm3HjjjV7N8corr8DhcECSJNx7773Iy8sbGJs2bRrS09Px+uuvo6GhAR988AGuvPJKjzleffVVqOrQF4hdcMEFIbW2hmg061d13PtRFVZXeX5XdMMCC64ryGAHWCIiIgpNuga5aaur44ttHZSGDRC0fq+mMJRIqBlzoZrnw2GZB2fSFEAM7iYaFFwCtq1+WlpaSLd9dTgc6OrqAgAkJiYe99zo6GiEhYXBbrejpaVl2GNZuXIlKioqAAC1tbUDx7Zt2wYAmDRpEs4888whzzfUGIO9Yw/RQaIoHvcxBV5tWx9ufmsH9rZ6vhG6eWEWflxgHnU3f5i3FKqYuxSKTjZvhb5WyHUlUOqKIdeuhdRZ59X1hhQGzZwPNWsBtMwiOJOnAIIrBgEA33XTsfA5l4iIKHSV1rTj3o92o6Nf8xi7ak46lp2eCVkcXfdCiIiIiIj87WhFKd6oqqrCjh07AACLFy92K4I56KKLLsKqVatgs9mwYsUKXHbZZZBl96U6n3/+Oez2oXcSnzdvHgthiEJAV7+G29/diU3WLrfjogDcfXY2lk5PCVBkRERERCfA0CG1VEKxlsJkLYVsK4eodns3hWSCmjYLqsXV8UVLmQ5I3BCMTlzACmFCXX//ocXa4eHhg54fHh4Ou93udt1wqaiowJo1a9yOVVZWorKycuCxN4UwN9xww5DO+9e//jXkOYmCSWxsbKBDoMOUVbfg+te3or3XfZejcEXEs98/FedN401cgHlLoYu5S6Fo0Lx19AK1pUD1atdP42bvfoEgAhkzgZxFQM4iCJZ8KEo4+NGeThafc4mIiIKfbhj4e1k9XlhrhXHEWKQi4v7zcnDWxONvvERERERERMGhvLx84M+LFy8+6jmiKGLhwoV444030NPTg23btmHGjBlu57z22ms+jZOI/G9/twM3vV2JXc3uXWBNkoCHL5qAxbkJAYqMiIiIaIgMA1J7javjy4GuL2K/Z5e7404hSNBSpw8UvqhpswB58DX3REPFQpgT5HA4Bv585G4dR3PwnMOvGy7Lli3DsmXLhn1eIiJfe2ujFXf/ZzNUp/vSj5SYMPz1mjmYbokLTGBERESH051A/bdA9SpX4UtdGeD08n194oSBwheMWwBExA9/nEREREQU1Lr6NfxuxW58tbvdY2xsQjieuiQP2YkR/g+MiIiIiIhOyMHNScPCwpCTk3PM86ZMmeJ2zZGFMEQ0stS29ePGf1egvtO901OUScIfl+ZhduaYAEVGREREdHxip9Wt8EXq2efV9QYEOJOnwHGw40v6HBimaB9FS+TnQhhN0/DRRx/h66+/RnV1Nbq6uuB0Oo97jSAIWLlypZ8iHDqTyTTwZ03TBj3/4DmHXxesnn/++UCHQEQjnK4beOqzSvxl9W6PsSnpY/C3H89BeiwXfhARUYAYBtCy+1Dhy56vgf4O7+aISj5U+JK9EIjL9EGgRERERBQqqpp7ccd7O1HXbvcYW5wbj9+dl4PoMO5bRUREREQUSqxWKwAgLS0NkiQd87yMjAyPa4hoZNrR2IOb365AW5/7WrLEKAXLvzcReSlRAYqMiIiIyJPQ0wSTdR0Um6v4Reqs83oOLSEXqnmeq+OLuQBGeNzwB0p0DH77Zm3t2rW46qqrUFtbO3DMMIxjni8IAgzDgCAI/gjPa+Hhh1oz9ff3D3r+wXMOvy5YJSYmDum8tjbvWlwRBYooioiNjR143NHRAV3XAxjR6NanOnH/R1X4orLFY+z0CfF49OI8hOv9aGsb/Ll1JGPeUqhi7lIoEkURsZIdqF4DVK+GvvtLiF31Xs1hKJHQzAVQM4ugZi2AnjgROPhZxgDA987kA6H0nBsfzy5IREQ0en2yYz8e+rQG/Zr767QoAL9ckIlr8tOD9j44EREREREdncPhQFdXF4DB11hER0cjLCwMdrsdLS2e35GerJUrV6KiogIABtbkrFy5Etu2bQMATJo0CWeeeeaQ5xtqjMcr/iEKFqIoHvfxcFq3px23v1OBXof75//M+HA8f+UUmOOCf80YBQd/5i3RcGLuUigabXkr9LVBtpVBriuBYi2B1Frl9RzO2CxolkKomfOhWebDiEoZGBvZ//WCy2jL3WPxSyFMRUUFzjvvPPT19cEwDJhMJuTm5iIhISFk/8ObTCbExMSgq6tr0JsA3d3dsNtdO/0NtcgkFAzWzYcoWOm6zvwNkP3dDtz27k5sb+zxGPuv2Wm4eWEWJJHPL0fDvKVQxdyloOXogVJfDtOBD/doqRgYGsonFEOQoKXOgJpZBEdmEbTUGYB0WPfHIC1GoJGNz7lERETBRXPq+NOaOry5qdFjLC5CxiMXTUD+2NijXElERERERMHu8A1Th7Ihanh4OOx2+5A2WvVWRUUF1qxZ43assrISlZWVA4+9KYS54YYbhnTev/71ryHPSRQsDt9cajh9uLkev3prB1Sn+6bQ08xj8Mq1+UiKDvPJ76XRwVd5S+RrzF0KRSMub/s7gdpSoOYroGYN0LgVrt1cvRCTDmQvBLJPA8adBil+LCQAfHcTXEZc7g6RXwphHnnkEfT29kKSJDzwwAO4+eabER0d7Y9f7VMWiwU7duxAY2MjnE7nMXe7qK+vd7uGiGg02tnUg1+9sxP7uhxuxyUBuOusbFw2I+UYVxIREQ0Dpwq5aTOUuhKYrMWQG7+BoGuDX3cYLSEXqqXQ1fXFnA/DFOOjYImIiIgo1O3vceDuD6rwjbXLY2xKWhSeWJKLtDH8moiIiIiIKFQ5HIe+85TlwZfeHDzn8OuGy7Jly7Bs2bJhn5eIhubV0j343fvbYByxprRoQiJe+NFsxIQrgQmMiIiIRh+1D6grO1D48hVg2wQYXm6mGZkIjDsNyD7dVQCTOB5gV3sKUn4phPnyyy8hCAJuueUW3HPPPf74lX4xceJE7NixA3a7HdXV1cjNzT3qedu3b3e7hohotPl6dxt++2EVelX33fGjwyQ8viQXBdz9lIiIhpthQGqrglJXDKWuBIqtDKLa7dUUzqjUQ4UvlkLo0ak+CpaIiIiIRpJvbV34zfu7sL9H9RhbOj0Zvz5jHMLk0OyUTkRERERELibToQ7hmjb4pksHzzn8umD1/PPPBzoEopBgGAae+Xwn/vxllcfYhdPT8ccrZyBMPvqmykRERETDQnMA9ZsOFb7UlQFOL4vvw8YAY4sOFL6cDqRMAUR+h0GhwS+FMPv37wcALF261B+/zm/y8/Px7rvvAgBWrVp11EIYXdcHWtBGRUVh6tSp/gyRiCigDMPAm5sa8ezqWuhH7H5ijg3Ds5dNRHZiRGCCIyKiEUfsboRiLRkofpF6m7ybwBQDZJ+G3rR82M3z4YznrhZERERENHSGYeD/vtmHZ1bXwnnEjRCTJODOs8bh0lPYEZeIiIiIaCQIDw8f+HN/f/+g5x885/DrglViYuKQzmtra/NxJEQnTxRFxMYe2pizo6MDuq4f54qhceoGHv2sGm9/t89j7Puz0nDHmePQ29WJ3pP+TTQa+SpviXyNuUuhKOTyVndCat4Gua4EirUUcv16CKp37zgMORxaxlyolvnQMgvhTJkGiIeVE3R0DHPQ5AuhlLvx8fE+m9svhTDJycmor69HRMTIWuw8YcIETJ48GTt27MCqVauwaNEi5OXluZ3z4YcfwmazAQDOP//8IbXEDRWSxF0LKDSIR1SnHvmYfEN16nhi5R689a3njZ+Zlhg8vXQS4iPZAvhYmLcUqpi75Ff2Tii2Msi1xVDq1kJq9dxx63gMUYGWPhPOrNMQPuU8IGMWIMlQOzoAXQff7VKw43MuERFR8OhXnXj4sxqs2NHiMZYWY8ITl+RiSlp0ACIjIiIiIiJfMJlMiImJQVdXF1paPD8HHK67uxt2ux3A0ItMQoHT6Qx0CERe03X9pHPXrum496MqrNrlWQz2iyILfjIvAzB08K8IDZfhyFuiQGDuUigKurw1DEitO6FYS10/tjKIji7vphAVaGkz4bDMdxW/pE4HpLDDTgD4xiX0BV3u+olfqjIWLFiAf/3rX9i6dStmzZrlj185JBUVFWhsbBx43NnZOfDnxsZGrF692u38RYsWeczx4x//GPfddx8cDgceeughLF26FFOnToXD4UBJSQm++OILAEB6ejouvvhin/x7BIovK7SIfOnwKkjyjY4+Fbe/sQlf79rvMbZ0phmPfe8UtgD2EvOWQhVzl4aV5gCs64Hq1a4f20bA8PJDXOo0IGcRkLMIQtZ8KGHROLIsk3lLoYq5S0REFBh1bf248/1d2NXsuetawdgxePjCCYjjZiBEREREvqE5vL9HSDRMLBYLduzYgcbGRjidzmNuJlpfX+92DRGFrm67htve2YlNVvcFqKIA3HXWOHxvRmqAIiMiIqIRwTAgduyFYi2FyVYKxboOYt/xC+89phBEaCmnQDW7Cl/U9NmAMrIaWRAd5JdCmNtuuw1vv/02/vSnP+GHP/xh0HRFWblyJdasWXPUscrKSlRWVrodO1ohTHZ2Nm699VYsX74cfX19ePPNNz3OSU9Px9133z3iOuIQER1NbUsvrvvHelQ1dXuM3X52Hm48YwIEQQhAZEREFHJ0HWjafqjwZW8x4GVLV4yxAOMXATmLgezTgegUHwRKRERERKPV17vbcN/Hu9Ft91x8eW1BBn5RZIEk8j4IERER0bDR7JD3fYewhvXAvo1AXTlw/uNAzpJAR0aj0MSJE7Fjxw7Y7XZUV1cjNzf3qOdt377d7RoiCk37ux24+e1K7DxiIwxFEvDwhRNwRl5CgCIjIiKiUCZ21R/o9rIOirUUUneD13NoSZMPFL7Mg5qRDyMsxgeREgUfv1SkzJ07F88++yxuvvlmXHbZZXj55ZeRlJTkj1/tF3PmzMFTTz2Fjz/+GJs2bUJraytkWUZaWhrmzZuH8847D2FhYYNPREQU4jbsacXPX9uI1h6H2/EwWcTTV87ARdMzAhQZERGFjPa6Q4UvNWuAnmbvrg+PdRW85CxyFb8k5AAswCQiIiKiYaYbBv6nxIb/KbV5jEWZJDxwfg4W5XIBDBEREdFJU/ug7PsGiq0ciq0c8r5vIDjdv4fC3mIWwlBA5Ofn49133wUArFq16qiFMLquD2zQGhUVhalTp/ozRCIaJnVt/bjxrQrYOuxux6NMEp6+NA9zssYEKDIiIiIKNULv/oGiF5O1FFLHXq/n0OJyXN1eLPOhmvNhRCT6IFKi4OeXQpgHH3wQgOsmwIcffoixY8fi7LPPxqRJkxAZGTno9ffff79P4lq2bBmWLVs2LHMlJyfjmmuuwTXXXDMs84WCtra2QIdANCSiKCI2NnbgcUdHB3RdD2BEI9PH25rx+xVVUJ2G2/GESAXPfm8STsmI4POGF5i3FKqYu+Qtob8DsrUUcu1aKHXFkNprvLrekEzQ0udAyyqCmrkAzpRpgCgdOqG9fdA5mLcUqkIpd+Pj4wMdAhER0bDp6NNw38dVKKnp8BjLSYzAk5fkYmwCu4MTERERnRBHD5TGTVBsZVDqyyHv2wxBV49/zZ5iwDCOfw6RD0yYMAGTJ0/Gjh07sGrVKixatAh5eXlu53z44Yew2VwF9Oeffz5k2S/LdPxCkqTBTyIKMFEUj/t4KHY0duPGf+9Aa6/761FilIL/vmIKJqZGnVSMREcajrwlCgTmLoUif+StYO+AbC2DbC2BUlcKqaXS6zmcMWZomYXQMguhWubDiE4bGOPftNGJz7kugmH4/o6QKIoQDtuF2TAMt8eDcTqdvgiLTtL+/fsDHQLRkEiS5Lbwrq2tjc8rw8gwDLx0jB1QxydF4NmlE5Eey65Y3mLeUqhi7tKgNDuUxo1Q6kqg1BVDbt4KwRj6wn0DApzJU+DILIJqKYKaPhtQTm6RIfOWQlUo5e5I6gpLdBDvi1CoCKXXi1BQ2dSDO9/b5bEDLACcPTEB952bg0gTF4OdLOYthSrmLoUi5i0FmuDogly/AUr9gY4vzVsh6JrX87RfVwotMsUHEZ483hcJXhUVFWhsbBx43NnZiddffx0AMHHiRJx55plu5y9atMhjjpqaGtx3331wOBwIDw/H0qVLMXXqVDgcDpSUlOCLL74AAKSnp+Oxxx5DRASL5olCSUnVfvz8tY3otru/No1NjMRr1xUgK3HwDaCJiIholLF3A7XrgJo1wJ6vgYbvAC/WxQAAolOBcacB2ae7fuLHAV6suycaLfy21cSR9TZ+qL8hIiIf61d1PPDJbnxe2eoxVpgdi0cumoDosJGzqxEREZ0AQ4fUvB0ma7Gr+KV+PQSn56LB43GOyYIjsxBqZhFU8zwYEQk+CpaIiIiI6Ng+3NaMRz+vgV1zv7ctCcDNC7Pww9lpXm0ARURERDQaCf0dUBrWu4pebGWQ92/3aqMc4OBmOZMh5ywExhUBWYUwHCLAIi7y0sqVK7FmzZqjjlVWVqKy0n2n5qMVwmRnZ+PWW2/F8uXL0dfXhzfffNPjnPT0dNx9990sgiEKMR9vacCt//stHE7316mpGWPwyrX5SI7hhqBEREQEQO0HrOuBmq9cP7YNgLcbPITHAdmnAdkLXYUvSXksfCEaAr+sTtZ1LyvZiIgo6LX0qPj1uzuxpaHbY+z7M1Pxq8VjIYt8M0ZENBqJHbVQ6ophspZAsZZC7G/z6no9PB6qZf6Bri+F0GOzfBQpEREREdHgVKeOP67ai39/2+QxlhAp49GLczE7c0wAIiMiIiIKfkJfK5T69VBsZVDqyyHtr4AA7zbNNAQRWvJUqBn50MwFUNPnQIxKcOtmBId39yCJhtOcOXPw1FNP4eOPP8amTZvQ2toKWZaRlpaGefPm4bzzzkNYGBfME4WS19btxf3vbcWR+zwXjk/Ei1fNRky4EpjAiIiIKPCcGlD/javjS81XQF0ZoPV7N4cpGhhbeKjjS+opgCj6Jl6iEYzb9BMRkdeqmnvxq3cq0dDpcDsuCsCvzxiLK2emBSgyIiIKBKGvFYq1FKa6YijWEkiddV5db0hhUDPyoWYWwpFZBGfSZEDgB3wiIiIiCrymLgfuen/XUTcCmZ4RjccuzkVKjCkAkREREREFJ6GnGUp9uevHVga5dZfXcxiiDC3lFKgZBVDNc6Glz4ZhivFBtDTaLVu2DMuWLRuWuZKTk3HNNdfgmmuuGZb5QkFbGwvQKPiJoojY2NiBxx0dHcfd0NkwDLxYXIcXi60eY2dNTMTDF+VC6+tGW59PwiUC4H3eEgUL5i6FoiHlraFDat4O2VoKua4USn05BIfndwbHY0gmaOlzoGUWQs2cD2fKdEA6rLC2o+Nk/jVoFAql51y3jUyGGQthiIjIKyU17bj7g13ocbi/aEaZRDx6cS4Ks+MCExgREfmP2gelYcNA1xe5eZtXlxuC6Poi21IINbMIatosQOZueEREREQUXDbWdeLuD3ahtVfzGLvi1FTctjgLisQCbiIiIhrdxO4GKLb1kOvLoNjKIbdXez2HIZqgpc1wbZZjLoCaNhNQIn0QLRENJ6fTGegQiLym6/oxc9epG3hi5R68/Z1nR9jLZ6TgjjPHQRIM5j753fHyliiYMXcpFOm6DqemQWrbDcVa6vqxlUG0t3s1jyHK0FJnQLXMh2qe7/qce+S6GP79oGE0Wp9zWQhDJ0ySpECHQDQk4hEt4458TEP3vxsb8OTKGuhHtP9NHxOGP18+CROSowIT2AjEvKVQxdwdoXQnpKYtUGqLIdethdywEYLTMfh1h3HG5UDNKoKWWQTNMh9G+KFdCQL9rpJ5S6GKuUtEROQbhmHgnxsbsXxNLZxH3AMJkwXcc3Y2LpyaHJjgiIiIiAJM7LRCsZUd6PhSDqmz1us5DCkMatpMqOYCaBn5UNNOBeTw4Q+WiIhoiOyajvs+qsKXuzw7Hf280IyfzTdDEIQAREZERER+0bYHqPkKkZVfQKkrgdjb7NXlBgRoyVNdhS+W+VDT5wAmrqUk8jW/F8K0trbi73//O7744gts3boVra2tAICEhARMmzYNZ511Fq699lokJCT4OzTyki9bFRH50uHtwGhoNKeOP3y4Hf8o3esxNjMrDi9dNQfJMdzJ35eYtxSqmLshyjCAlt1A9SqgejWw52ug38s2rFHJQM4i10/2QkhxmQEveBkq5i2FKuYuERHRyet1OPGHT6vxeWWrx5g5NgxPXJKLiSn88oqIiIhGCcOA2LH3QNGLq/hF6qr3fho5Amr6bKjmfKgZBdBSTwEkfq9ERETBoduu4fZ3d2JjXZfbcQHAXWeNw+WnpgYmMCIiIvIZsXsfFNs6mGzrgPp1QLtrkwdvPqlqCXlQLfNchS8ZBW4bwhKRf/i1EObFF1/Er3/9a/T29gJw7ax3kM1mQ319PT777DP8/ve/x9NPP42f//zn/gyPiIiOoqtfxU1vfoPVlZ5VzhfPyMCTl09HuBIqS5uJiOiYupuA6jWuwpfq1UCn1bvrlShgXNGh4peUKQB3xiIiIiKiELKntQ93vrcL1S19HmNF2XH4w4XjMSacTdaJiIhoBDMMSO3VUGxlkG3lUOrXQ+pp9HoaXYmGljEbakYBVHM+tORpgKT4IGAiIqKT09Kj4ua3K1DZ1Ot2XJEE/OGC8ThrYmKAIiMiIqLhJPS1ujZ4sJZCsZZCbq/2eg5n7Fg4DnZ8Mc+DEZnkg0iJyBt++9busccew29/+9uB4pfY2FjMnDkTaWlpAIDGxkZ888036OjoQE9PD2644Qa0t7fjzjvv9FeIRER0BGtbL37yygZU7uvyGLv5zFz86qxctv8lIgpV9m5gb8mhwpembd5dL0iAZc6hwhfzHEA2DX+cRERERER+sGpXK36/Yjd6HLrbcQHAzwrN+Ol8M0TeAyEiIqKRxtAhte6CYit3dX2pL4fYu9/rafSwMVDT50Iz50PNyIeWPAUQWUBMRETBzdrejxvfqoC13e52PMok4ulL8zAni7u6ExERhSrB0QXZth4maykUWynk/Tu8nsMZleYqejnwo8dk+CBSIjoZfrn7tHXrVtx3330wDAPp6el48sknccUVV0BR3Hd90TQN//73v3HHHXegvr4e9957Ly688EJMnTrVH2GSl9ra2gIdAtGQiKKI2NhDNyg6Ojqg6/pxriAA2Gzrwq/+U4HWXtXtuCIJ+P35E3DB1GS0t7cHJrhRgHlLoYq5G8ScKqR9m6HUrYVcWwy5cRMEXfNuioRcqFlF0DIXQDUXAGExhwa7egD0DG/MfsK8pVAVSrkbHx8f6BCIiIiOyqkbeH5tHV4pb/AYiwmT8IcLJ2BBTpz/AyMiIiLyBUOHtL8CSn3ZgeKXDRD7W72eRg+Ph5oxF6o5H2pGAZyJEwFR8kHARBTMJIl/7yn4iaJ41McV+7px4793oKXHfT1EQqSC/75yMialRvstRqIjHStviYIdc5cCSu2DXL8BsrUUirUE0r4tEAynd3NEJsFhmQfVMh+apRB63DjgwAZZAgC++6VgwudcF78Uwjz33HNwOp1ITk5GaWkpsrKyjh6MLOMHP/gBFixYgLlz56K5uRnPPfccnn/+eX+ESV5yOr18kSAKErquM38H8VlFC36/YjccTsPteFyEjKcuzcOp5hj+N/Qz5i2FKuZuABkGpLYqKHXFUOpKoNjKIKrdXk3hjEqFaimEmlkE1VIIPTr1iBNG5v9b5i2FKuYuERGRd9p7VdzzURXK93Z6jOUmR+LJS3JhiQsPQGREREREw0TXIDdvh1JfDtlWDqVhPUS753ufQaeJSIRqLoCakQ/VnA9nQi4gjM4FFkR0CDe/oVAUGxuLkt378fM3t6Pb7r5hXFZCJF69Lh/jkqICFB3R0R2+KRpRKGHukk9pDsC2Aaj5yvVjXQ84Hd7NERYLjFsAZJ/u+kmZDJMgwOSbiIl8arQ+5/qlEObLL7+EIAi4++67j1kEc7jMzEzcdddduP3227Fy5Uo/REhERABgGAb+tq4eLxRbPcayE8LxzGUTuQCEiCiIid2NUKwlA8UvUm+TV9frSjRUy7yB4hdn/PiB3S2IiIiIiEaSbQ3duOv9XWjs8vxi7Pwpifjt2dkIV7i/GxEREYUYpwq5eeuBbi9lkOs3er05DnBgg5yMfGjmfKjmAjjjcnifkIiIRoQVWxpwy/9+C4fTvbv6lPQxeOW6uUiJ4XoIIiKioOTUgMbvDhW+1K4D1F7v5lAigaz5hwpf0mewuylRiPNLIYzNZgMAFBYWDvmaoqIiAEB9fb1PYiIiIncOTccfPqvGiu0tHmMFY8fgsYtzERPul5cNIiIaIsHeBaW+bKDwRW6r8up6Q1Sgpc2EI7MQqqUIWup0QORzPRERERGNbO9ubsLjK/dAPaITriQKuG1RFq6cmQqBCz2JiIgoFDjtkPdtcd0jtJVDadwEwduFQACcMRkHur24ur7osWNZ+EJERCPOP8v24t53t8Jwvx2AeTkJeOnqORgTrgQmMCIiIvKk60DTdlfRy56vgT3FgL3DuzkkE2DJP1T4Yp4NyOz3QjSS+GWVmyS5KuY0TRvkzEOcTicAQBTZUpmIyNfaelX8+r2d+M7muSvY92ak4I4zxkKW+HxMRBRwTgfkxm9hshZDqSuGvG8zBMPp1RRa4iSomUWu4pf0uYCJ7d2JiIiIaHSwazqeXLkH725p9hhLilLw+JJczDDHBCAyIiIioiHS7FAav4FcXw7FVgal8RsITrvX0zjHZEE15w8Uv+hjLD4IlohGura2tkCHQDQoURQxZswY/HllFZ75YqfH+Bl5CXjk4jw4+7rR1heAAImOQhRFxMbGDjzu6OiAruvHuYIoODB36aQYBsT2Gsh1JVCspZCtpRD7Wr2bQpDgTJ0ONbMQmmU+tPTZgBJx6ISuHgA9btcwbylUhVLuxsfH+2xuvxTCZGVlYceOHVi5cuWQu8KsXLly4FoiIvKdmpY+3PqfStg63L8oEQD8anEWfjArjbugEhEFiqFDatkJpa7YVfxiK4egeXcX3hmdDjVzwYGuL4UwIpN8FCwRERERUfBq7LTjzvd2Yfu+Ho+xmZYYPHrxBCRFcSc4IiIiCjJqL5TGb1xFL/XlkBu/g6A7vJ5Gi8uGdrDjizkfenS6D4IlotHm4Aa3RMHMqRu4/71teG3dXo+xy2ak4K4zx0ESDOYzBTVd15mjFJKYuzQYsaseitVV+KJY10HqafR6Di1pClTLfDgs86FlzIFhOmKzKy9zkHlLoWq05q5fCmHOPvtsbN++HU899RQuvfRSnHLKKcc9f+vWrXjyySchCALOOeccf4RIRDQqle3twF3v70K33f0FMEIR8chFE3DaeN9VYhIR0dGJnTbXB/26YpisJRD7Wry6Xg8bA9U8f6Drix47DmBBIxERERGNYmV7O3DPh1Xo6PPsWP7D2Wm4+fRMdsIlIiKioCA4uiE3bIRiK4dSXwa5aQsE3fM9zGC0hNwD3V5cXV+MqBQfREtERBTcHJqO362owueVnt+1/Wy+GT8vNHNTUCIiIj8Sepqh2Ephsq6DYiuF1FHr9Rxa/HiolvmudTHmfBgRCT6IlIhChV8KYW699Va88MIL6O7uxoIFC3Dffffh2muvRWJiott5LS0t+Pvf/46HH34YXV1dCA8Px6233uqPEImIRp23v9uHJ77YA6fhfjw1xoRnluYhLyUqMIEREY0yQn8HFNs6V+FL3VpIHZ47Uh2PIZqgZsyGaimCmlkELXkqIEo+ipaIiIiIKHQYhoF/lDfgL2vroB9x/yNcFnHfeTk4d1Li0S8mIiIi8gPB3gm5fgOU+jIotnLIzdsgGN7t3mlAgDNx4oGilwKo5rkwIvgeh4iIRrduu4Y73tuF9bWdbscFAHeeOQ5XzEwNTGBERESjiNDf7upwai2FYlsHuXWX13M4x2QeVvhSAD2ar+FEdIhfCmHGjh2LF198Eddeey26u7tx11134Te/+Q2ys7ORkpICQRCwb98+1NTUwDAMGIYBQRDw4osvIisryx8h0gmQJC6wpNAgiuJxH482Tt3AM6v24J8bGjzGpqZH45nLJiE52hSAyOhwzFsKVczdIdD6ITdsgly7FkpdMaR9myHAGPy6AwwIcKZMhZZZBDVzAbSMOYASMTDOd2jeY95SqGLuEhERHVu3XcMDn1Rj1a42j7Gs+HA8sSQXE5IjAxAZERERjWZCXxuUhvUHOr6UQ2re7tW9QQAwBBHOpMkHil7yoWbMhREe55uAiYiIQlBLj4pb/lOBin29bscVScBDF+bizLz4AEVGREQ0srm6nG6AYi2FyVp6Qp95nZEprsIXy3yolnnQx2T6KFoiGgn8UggDAFdffTUSExNx/fXXo76+HoZhYPfu3aiurgbg2p3voIyMDLz00ku44IIL/BUenYD4eH4wpNAUGxsb6BACpseu4Zb//QZf7GjyGLvglDQ8fcWpiDBxCXUwGs15S6GNuQtA14HGzUD1atdPbSmg9Xs3R/w4IGcRkLMIwrjTIUclQgYQPuzBEsC8pdDF3KXR6quvvkJFRQWqq6tRW1sLTdPwy1/+EosWLQp0aEQUINX7e/Hr93ahts3zfffCCfF44PwcRIf57dY4ERERjWJC734o9etdO+DWl0NuqfR6DkOQoKVMg5qRD9VcAC19DoywGB9ES0REFPqs7f246a0K1LXb3Y5HmSS8dPUcTEmU4HR6132NiIiIjkGzQ2nc5Or4Yi2F3LQZgq55NYUeFgfVMm+g+MUZlwMIgo8CJqKRxq/f9l144YXYs2cP3nnnHXzxxRfYunUrWltbAQAJCQmYNm0azjrrLFx66aVQFMWfoRERjXj17X34yT82YEdDp8fYssXjcfvZEyGKfBNJRDQsWmsOFb7UrAH6PHehPq6IBCBnoav4JXshkJDtgyCJiIhGhv/7v/9Dc3MzYmJiEB8fj+bm5kCHREQB9EVlCx74pBp9qu52XABwwwILflyQAZFfohEREZGPCD1NA0Uviq0ccluV13MYogIt5RSo5gKoGfnQ0mfBMEX7IFoiIqKRZWdTD256uxItParb8cQoE165Nh+nWGLR1ubld3ZERER0iFOF3LR5oPBFadwEwenwagpdiYZmzofjYOFL4kRAEH0UMBGNdH7f9k6WZVxxxRW44oor/P2riYhGrc3Wdvz0HxvQ1OW+64kiCXj0sum4fLYlQJEREY0QPftdBS8Hi1/aa727Xg4HxhYOdH1B6imAyA/6REREQ3H99dcjPT0dycnJePfdd/HGG28EOiQiCgBNN/DcV7V4fUOjx1hsuIyHLxqPeePi/B8YERERjWhiV/2BopcyKLZySB17vJ7DkEzQUk+Fas53dX1JmwUoEcMfLBHRMJMkKdAhEA3YUNuBX71dgW6He7cXc1wYXv/pfGQnRQEARH7/RiHgyDxl3lKoYO6OQLoT0v4dkOtKoNSVQK4vh6D2ejWFIYVBy5gLLXM+1MxCOFNOAcRDS9cD/Y6SeUuhirnr4vdCGBo5uEsChQpRFBEbGzvwuKOjA7quH+eKkWVlZQvu/XAX+jX3f+fYcBlPXzYRszOj+Pc5CI32vKXQNWpyV+2DXF8OpbYYct1ayM3bvbrcEEQ4U06BmrUAWmYRtPRZrmKYgzo6hjlgOp5Rk7c04oRS7sbHxwc6BBrBpk+fHugQiCjAWnpU3P3BLmyydnmMTU6NwuNLcpERGxaAyIiIiGhEMQyIXdaBohelvhxSZ53308jhUNNmQs0ogGrOh5Z6KiDzvQoRhR7e86Ng8cnWRtz87x1wHLEmYnL6GPzj2rlIGXPoO7jD76kThQrmLYUq5m4IMgyguQKo+dq1GeyetUB/u3dziDJgmQtknw5knw7BMheKHAYFQChs+cC8pVA1WnOXhTB0wpxO5+AnEQUhXddHRf4ahoF/lDfgua89v4TJig/Hny6biMz48FHx32IkGC15SyPPiMld3Qm5eSuUurVQ6oqhNHwDQfeuvasWlw01swiqpRCqeR6M8CM+gIyE/04jxIjJWxp1mLvkrY6ODlRVVaGqqgq7d+/G7t270dXlWkS+cOFCLFu2bMhzNTc3Y8WKFdi0aRNaWlogyzLS0tIwf/58nHvuuQgL46IuIvKNLfVduOv9XWjqVj3GlkxLxl1njUOYPDp3wSIiIqKTZBgQO/YMFL0otjJI3Q1eT6MrUdDSZx0ofJkLLWU6IJl8EDAREdHo82Z5LX77zhbohvvx/OwE/PWaORgTrgQmMCIiolBgGEBbDVDz1YGfr4GeJu/mEEQg/VQg+zRX8UvWfMAU5ZNwiYiO5JdCmC1btuCSSy6BJElYvXo1zGbzcc+32WxYuHAhDMPAihUrkJeX548wiYhGDNWp45HP9+CDrc0eY3OzxuDxJbkYE85aSCKiYzIMiO17YLIWuwpfrKUQHZ67Sx+PHpEIR2YRVEsR1MxC6DEZPgqWiIjoxPzsZz8blnk2bNiA5cuXo6+vb+CY3W4fKK5ZuXIl7r77bqSlpQ3L7yMiAlwbgLz9XROe+nIvtCNWuyiSgDvPHIdLT0mGIAgBipCIiIhCjmFAats9UPQi28oh9Xq5AAiAboqGlj4XqjkfqrkAWvJU1464RERENGwMw8BzX1bh6c93eoydOzUVf/p/MxGuSAGIjIiIKMh12IA9Xx8qfunwvtMpUqYOdHzB2EIgIm7YwyQiGgq/3HF7/fXXsWfPHpx77rmDFsEAgNlsRl5eHj799FO8/vrrePDBB/0QJRHRyNDep+LO93Zhk9VzwfalpyTjN2eNgyxxJ1QioiMJPc0wWUsOFL6UeL27o6FEQs3IHyh+cSbmAVx0R0REISIpKQlmsxnfffedV9fV1NTg2WefhcPhQHh4OC699FJMmzYNDocDxcXFWLlyJRoaGvDoo4/iscceQ0REKDQ9J6Jg16/qeOyLGny4bb/HWGqMCY8vycW09OgAREZEREQhxdAhteyCUl820PVF7Gvxeho9LBZqxlyo5gKoGflwJk0GRC68JaKRr62tLdAh0CilGwae+KIG/7ep0WPsshmpuOecHPR1d6IPgCiKiI2NHRjv6OiArut+jJbIe8xbClXM3eAk9LZAtq2DUlcCua4UUnu113M447KhWeZDzSyEZpkHIzLp0GC/AfSH7vtC5i2FqlDK3fj4eJ/N7ZdCmDVr1kAQBCxZsmTI11xyySX45JNPsHLlShbCEBEN0d7WPvzqnZ2obet3Oy4AuHlhFn40J407oRIRHSA4uiHXr4epztX1RW713DHqeAxBgpY6A2pmERyZRdBSZwCSyUfREhERDb/LL78c48ePx/jx4xEXF4empibceOONXs3xyiuvwOFwQJIk3HvvvW5dfadNm4b09HS8/vrraGhowAcffIArr7zSY45XX30VqqoO+XdecMEFSE9P9ypOIho5bO39uOP9XdjZ1OsxNjdrDB65aALiI5UAREZERERBT3dCaqlwFb3Y1kGp3wDR3u79NOEJrm4vGa6OL64NcbgBGRGNPk6nM9Ah0Cjk0HT8bsVufF7Z6jH203lmXF9kBgwdx0pPXdeZuxRymLcUqpi7gSHYO12dTq2lUKylkFsqvZ7DGZ0O1VII1TIPqnke9JiMI04Yuf9fmbcUqkZr7vqlEGbnTteiwunTpw/5mmnTpgEAKiu9fxImIhqNNtR24s73d6Kz3/3FLFwW8dCF47EoNyFAkRERBQmnCrnpOyh1JTDVFUPe9y0EXfNqCi0h1/VhP7MIqjkfhinGR8ESERH53tGKUrxRVVWFHTt2AAAWL17sVgRz0EUXXYRVq1bBZrNhxYoVuOyyyyDL7rejPv/8c9jt9iH/3nnz5rEQhmiUKq5ux30fV3nc+wCAq+em45enZUIWuQEIERERHaBrkJu3QbG5Or7IDRsgOrq8nyYy+UDhSwFUcz6c8RPYCZqIiCgAehxO3PHeTpTv7XQ7LgD49Rlj8f1ZaYEJjIiIKJDUXigNGw8VvjRvhWB41xVCj0iEapkPh2U+VMt86GOy+LmXiEKCXwphuru7AQDR0dFDvubguZ2dnYOcSURE721pwiOf74FTN9yOJ0creGbpRExKjQpQZEREAWQYkFp3QbEWw1RXAtlWBlHt8WoKZ1TqocIXSyH06FQfBUtERBR6ysvLB/68ePHio54jiiIWLlyIN954Az09Pdi2bRtmzJjhds5rr73m0ziJKPTphoG/ldrwUokNxhFjkYqI350/HmfmcQMQIiKiUc/pgNy0xdXxpb4McsMmr+8HAoAzOm2g6EXNKIAeN44LgIiIiAKstUfFLf+pxI597q/tsijgwQvG45xJiQGKjIiIyM+cdsiN38FkLYViK4Xc+C0EXfVqCj1sDFRzAVSzq/DFmZDLz71EFJL8UggTHx+P/fv3o7Gx0WOxw7E0NjYCAGJiuMs2EdGx6IaB576qw6vrGzzGJqZE4pmlE5ESYwpAZEREgSF2N0KpK4ZidXV9EXubvbpeV6JdrV0PFL8448fzwz4REdExHOziGxYWhpycnGOeN2XKFLdrhnpviIgIALr6Ndz/8W58Xd3uMTYuIRxPXZKHcYkR/g+MiIiIAu/A4h+l3tXxRWn8BoLW5/00MRa3ji/6mEzeEyQiIgoitvZ+3PR2JWrb+t2ORyoinrw0DwVjYwMUGRERkR/oGuSmra6OL7ZSKA0bIWj9g193GEOJhJoxF6p5PhyWeXAmTQFEyUcBExH5j18KYXJzc7F//3588sknOPfcc4d0zYoVKwAA48eP92VoREQhq8/hxP0rdmPVrjaPsUUT4vGHC8YjwsQ3rEQ0sgn2Lii2dQPFL3Lbbq+uN0QFWtpMODILoVqKoKVOB0S/vEUmIiIKeVarFQCQlpYGSTr2Z4+MjAyPa4iIhmJXcy/ueG8nrO12j7EzcuPxu/PHI4r3PoiIiEYPrR9K4yZX0YutHPK+byA4HV5P44wd69r5NiMfqrkAekzG4BcRERFRQOxq7sWNb1Wgpcd9p/v4CBl/+t5ETEmLDlBkREREPmLokFoqoVhLYbKWQraVQ1S7vZtCMkFNmwXV4ur4oqVMByTFRwETEQWOX1b5nXvuuSgpKcFLL72En//855g8efJxz9+2bRv+53/+B4Ig4LzzzvNHiEREIaW524Hb3tnp0fYXAK6am46bTs+EyN3KiGgkctohN34LU10xlLoSyE2bIRhOr6bQEidBzSxyFb+kzwVMUT4KloiIaORyOBzo6uoCACQmJh733OjoaISFhcFut6OlpWXYY1m5ciUqKioAALW1tQPHtm3bBgCYNGkSzjzzzCHPN9QYj1f8QxRMRFE87uNg9fG2Zvzhk93o13S346IA3LJwLK7Kz4DAex8jVqjmLRFzl0JRUOetowdyw0bItjIo1jJI+76DoKuDX3cEZ/x4aOYCqJYCaOYCGNFpA2MCAL6zD01BnbtERDQsNtV14rZ3d6Lb7v5dYMaYMCy/fCLGJrBDLBERjQCGAam9xtXxxVoKxbYOYr/nxtjHnUKQoKVOHyh8UdNmAXK4jwImIgoefimEueGGG/DEE0+gt7cXZ5xxBv7nf/4HF1100VHPff/993H99dejr68PkZGRWLZsmT9CpBPABR8UKkbajfCKfd245a0KNHW773ImiwLuPicHl81IDVBkNJxGWt7S6DHsuWvokPZXQK4rhlK7FrKtHILW59UUenQG1KwFULOKoFkKYUQlD4zx3QwBfM6l0MXcpUDq7z/Ucj08fPAb6eHh4bDb7W7XDZeKigqsWbPG7VhlZSUqKysHHntTCHPDDTcM6bx//etfQ56TKJjExsYGOoTjcmg6Hvl4B14p2eMxlhhlwvIfzkTh+CT/B0YBFex5S3QszF0KRQHN2/5OoHYdsHctsKcYaPgW0DXv50mZAowtAsYVAWOLIEWnQAIQNtzxUlDhcy4R0ciyelcr7vmwCg6n4XZ8QlIEll8+CcnRpgBFRkREdPLETqtb4YvUs8+r6w0IcCZPgcM8z9XxJWMuDBO7pBHR6OOXQpikpCS88MILuOqqq9DU1IRLLrkEOTk5WLBgAdLT0wEADQ0N+Prrr1FTUwPDMCAIAp5//nmkpnJBd7CKj48PdAhEJySUb4R/vn0fbn5zG/pU9x1PxoTLeOFHs1E4gQtBRqpQzlsa3U4od9trgerVB37WAL37vbs+PBbIPh3IWQTkLIaYkIMwQeAX3TRkfM6lUMXcJX9yOA4V5svy4LeXDp5z+HXDZdmyZdxIhWiEaOrsxy//uQkb9nrudjcjMw7P/9csZMRxt1ciIqIRo68N2FsK7C0G9qwFGjcDhj74dW4EIG0aMHaBq/AlqxCIOn7XSiIiIgpu725uwiOf10B3r4HBTEsM/nhpHmLC/bLcjYiIaNgIPU0wWddBsbmKX6TOOq/n0BJyoR4ofFHNBTDC44Y/UCKiEOO3Twb/9V//BV3XccMNN6C3txe7d+9GdXW12zmG4foEExUVheeffx4/+tGP/BUeEVFQMwwDf/26Bo+s2AHjiJs9YxMj8fKP52J8Mqu6iShE9bYCe74+VPzSWj3YFe4kE5A170DhyyIg/VRAZK8XIiIiXzKZDu24qGmD79B88JzDrwtWzz//fKBDIBqVymtaseyNTWjusnuM/bAgC7+7eArCZL7PJyIiCmk9La6il73Fro4v+7YCMAa9zI0gAukzDnR8WeC6LxjBzfuIiAJBkvgZjYaXYRh4eZ0Nz31V6zG2KDcBj16ci3DFu7xjZ3UKRcxbClXM3UOEvjbItjLIdSVQrCWQWqu8nsMZmwXNUgg1cz40y3wYUSkDY6P3v+zwY95SqGLuuvi1RP6qq67C2WefjT//+c/46KOPsHXr1oHiF1EUccopp+Diiy/GjTfeyE4wREQHqE4d97+3FW+We1aC52cn4MUfzUZ8VPAvJiMiGqD2A3XrDhW+1H8L777wFoD06YcKXzLnAaZIHwRKRERExxIeHj7w5/7+/kHPP3jO4dcFq8TEoe0e3dbm2bGCKBiJoujWNayjowO67u1O675jGAbe3NiAZ1bthXbEVq8mScA95+Tgkump6O3qRG+AYiT/C/a8JToW5i6FIl/mrdDT7Fr4YyuDYiuD1LLT6zkMUYYz5RRo5gKolgJo6XOAsJhDJ/QD6Od789EolJ5z4+NZrEUjE3ObhpOuG3jww+14pcSzCOb7czLx8NJpkKWTX9zHzuoUipi3FKpGVe72dwK1pUDNV0DNGqDxBDZ+iEkHsk93/Yw7DVL8WEgAwnwRLx3TqMpbGlFGa+76vVdkWloaHnnkETzyyCPQNA2tra0AgISEBMgyW1eGEi74oFARSjfCj9TZr+GOdytRvrfDY+ziacm499zxgKMHbY6eAERHvhTKeUuj21FzV1MhNW+HXLcWSm0x5Pr1EJyeuzwfjzM2C1pmEdSsBa6dLiISDg322F0/RCeIz7kUqkIpd/ml+MhjMpkQExODrq4utLS0HPfc7u5u2O2u1+qhFpmEAqfTGegQiE6IrutBk799Dice/rwGn+zwfB5JH2PCk5fkYVJqVNDES4ETTHlL5A3mLoWik8lbsbsRiq0ccn2Z65/tXnZ+BmCIJmip06Ga86FmFEBNnwUoR2yCw79XdBR8ziUiCl0OTcft//4OH3xX7zG2bPF4/PqciRAEIQCRERERHYPaB9SVHSh8+QqwbQIMLz+PRCYC4047UPyyEEgcD/D1jojIKwGtPJFlGSkpKYOfSEGJNxIpVIXKjXBrez9u+U8l9rZ67q687DQLfpyfAUEwQuLfhU5eqOQtEQDAMIC2GqB6NSIqPodcVwLR3u7VFHp4PFTLfDgyi6BaCqHHZrmfwL8P5EN8zqVQxdwlf7NYLNixYwcaGxvhdDohSdJRz6uvr3e7hogIAGrb+nHHezuxe3+fx9j8cbH4w4XjERehBCAyIiIiGiqx0wblQNGLUl8GqcNzB/fBGFIY1LRToWUUuIpf0mYCcvB3kiQiIqLh0W3XcMPrG/H1rv0eY7+7eAquLcoOQFRERERH0BxA/aZDhS91ZYDT4d0cYWOAsUWHur6kTAHEk+92RkQ0mrEFCxFREPrG2olfv7cLHX2a2/EwWcAD54/HWRNHzi7KRDQyCH0tUKylCLOWArYSoN31pbdpiNcbUhjUjHyomYVwZBbBmTQZEPiBn4iIKJhNnDgRO3bsgN1uR3V1NXJzc4963vbt292uISL6ancb7v94N7rtngWcP5mXgZ8XWiCJ3PmOiIgoqBgGxM5aV9GLrQxKfTmkLpv308gRUNNnue4FmgugpU4HpDAfBExERL7W1tYW6BAoxLX2qrjp39uxvbHH7bgsCnjwwgk4f0rcSedZKHVWJzqIeUuhakTlru6E1LwNcl0JFGsp5Pr1ENRer6Yw5HBoGXOhWuZDyyyEM2UaIB62ZLujY5iDphMxovKWRpVQyt34+Hifze33Qphdu3bh1VdfRWlpKRobG9HX14dPP/0UEyZMGDhn69atqK2tRVRUFBYuXOjvEImIAurDbc146NMaaLrhdjwxSsEfL83D1PToAEVGRHQYtQ9K/Xoo1mKY6kog798++DWHMQQRWsopUC2FUDOLoKbNAmR+4U1ERBRK8vPz8e677wIAVq1addRCGF3XsWbNGgBAVFQUpk6d6s8QfepYHXCIgo14xI5yRz72J6du4IW1dfhrqdVjLNok4Q8X5WJRbkIAIqNgE0x5S+QN5i6FomPmrWFAbK+GbC2DbCuDYiuD2N3o9fyGKRpa+hyolgJo5nw4U6YD0qGub3xXTSeKz7lEgcfu1HQy6jvsuPGtCtS29bsdj1BEPHlJLuaNi/NJjrGzOoUi5i2FqpDKXcOA1LoTirXU9WMrg+jo8m4KUYGWNhMOy3xX8cuRGz8YAELlv8coFlJ5S3SY0Zq7fiuE0XUdd955J/70pz9B13UYhmuBtyAIcDjcW4TV1tbioosugizLqKmpgdls9leYREQBoxsGXii24uV19R5jucmReGZpHtLGcJE4EQWIrkFu2grFWgylrhhKwzcQdO/avGpx2a6iF0shVPM8GOGxg19EREREQWvChAmYPHkyduzYgVWrVmHRokXIy8tzO+fDDz+EzebaJfr888+HLI+c5sS+3LmGyJcO3x3Kn9p6HLjt/77FVzubPcYmpsbghatmIzspKgCRUSgIVN4SnSzmLoUUwwCaKxC7Zy2wtxjYWwJ07/N+nvBYIKsQGFcEjC2CkDYdiiRDGfxKopPC51wiotBR1dyLm96uQHO36nY8LkLGny6byM1BiYjI9wwDYsdeKNZSmGylUKzrIPa1eDfFwQ1gza7CFzV9NqBE+ChgIiI6Gr+tPrj++uvx8ssvwzAMmM1mzJ8/H2+99dZRz73ggguQnZ2NPXv24K233sItt9zirzCJiAKiX9Xx+xW78cXOVo+xBTlxePiiCYgycV80IvIjw4DUXuMqerEWuz70e7nbBaKSYbcUwmEuhJpZCD0mwzexEhER0QmpqKhAY+OhHZ07OzsH/tzY2IjVq1e7nb9o0SKPOX784x/jvvvug8PhwEMPPYSlS5di6tSpcDgcKCkpwRdffAEASE9Px8UXX+yTfw8iCn5bbR34xesbYW3r8xhbMiMDj33vFESaRk6hHBERUUjQdaBpG7CnGNi71lX40uvdoh8AQEQCMLYQGLcAGFsEpE4FRH6fQUREREf3rbULv3qnEl12992q08eYsPzySRiXwAXERETkG2JX/YFuL+ugWEshdTd4PYeWOMlV9GKZDzUjH0ZYjA8iJSKiofLLt4srV67E3/72NwiCgHvuuQcPPPAAJEk6bnviK664Ak888QS+/PJLFsIQ0Yi2v8eB29/ZiW2NPR5jP5idhlsXZkEShQBERkSjjdDTDJO1ZKD4RepuHPyiwxhKJDRzAZSJZwM5i4CUKehtbx+VbReJiIhCwcqVK7FmzZqjjlVWVqKystLt2NEKYbKzs3Hrrbdi+fLl6Ovrw5tvvulxTnp6Ou6++25ERPBLbKLR6N8b6nDvu1th13S347Io4J4LJuPaonEQBN73ICIi8jndCTRuPlD4cqDjS3+79/NEJbsKXg4WviRPAo7znS8RERHRQWuq2nDPh7tg1wy34+OTIrD8e5OQEmMKUGRERDQSCb37B4peTNZSSB17vZ5Di8s5VPhizocRkeiDSImI6ET5pRDmpZdeAuDq9PLQQw8N6Zr8/HwAwLZt23wWFxFRoO1q7sWv/lOJxi6H23FJAO44cxwuPzU1QJER0WggOLoh16+Hqa4YSl0x5NadXl1vCBK01BlQM4vgyCyCljoDkikC8fHxPoqYiIiIgtGcOXPw1FNP4eOPP8amTZvQ2toKWZaRlpaGefPm4bzzzkNYWFigwxx2bW1tgQ6BaEhEUURsbOzA446ODui6fpwrhodD0/HEyhq8/e0+j7GkKAWPXzIRszLHoL293eexUOgJVN4SnSzmLgUVpwqpeStkaxkUWxnk+g0QvO34DECPSoVmLoBqKYBmLoAePx44vIi1o2MYgyYaulB6zuU9cyIi4L0tTXj4sxro7jUwONUcgz8uzcOYcHaKJSKikyPYO6HYylxdX6ylXq+BAQBnTAZUS+GBwpd50KPTfBApERENF798iigtLYUgCPjJT34y5GssFgsAoLHRu53IiYhCxdrqdtzzwS70qu435aNMEh5fMgHzxsUFJjAiGrmcKuSm76DUlcBUVwx537cQdM2rKbSEXNeH/swi124XJrZ5JSIiClXLli3DsmXLhmWu5ORkXHPNNbjmmmuGZb5QwK53FKp0Xfd5/u7rsuOu93dha4Nn99sZ5mg8fnEukqJN/HtEQ+aPvCXyBeYu+ZXTAblpMxRbueuncSMEtdf7aWLMUDPmQjUXQM3Ihx471r3wJUgLDYj4nEtEFJwMw8A/yhvw3Nd1HmOnj4/DIxflIlxhdzkiIjoBjh4oDRtchS+2dZCbt0EwvPvMqkcmwWGeP9D1RR+T6f4ZmIiIgppfCmGampoAAOPGjRvyNYqiAAA0zbvFmUREwc4wDPzfN/vwx1V7PXY7MceG4ZmlechJigxMcEQ0shgGpNZdUKzFMNWVQLaVQVQ9F6IdjzMq9VDhi6UQejQ7VRERERER0bFtqO3A3R9Uoa3P877u92em4tZFWVAkLnAhIiI6aZod8r5vXUUv9WVQGr+BoPV7PY0zNgtS9unAuCJgbBE6MYbFBERERDQsdMPAM6tr8eZGz02Ql0xLxj3nZEMWudiYiIiGSLNDafwGiu1Ax5d933m9+aseFgvVPO9A4cs8OOMnsPCFiCiE+aUQJioqCu3t7Whubh7yNVarFQCQkJDgq7CIiPxO0w08/eUe/PvbJo+x6RnRePrSPMRHKgGIjIhGCrG7AUpdCRSrq+uL2Dv0918AoCvRUC3zBopfnPHj+aGfiIiIiIgGZRgGXt/QiOVf1Xps/BEmi/jtOdm4YEpSYIIjIiIaCdQ+KI2boNS7Or7I+76F4HR4PY0Wlw0tI9/V8cWcDyHWgvj4+EMntLUNY9BEREQ0WqlOHQ98Uo1PdrR4jP04Px3LTsuEwO8giYjoeHQNctMWV8cXaymUho0QnHbvplCioGXMhWqZD4dlPpyJkwBR8lHARETkb34phMnJycGmTZuwfft2nH322UO6ZsWKFQCAqVOn+jI0IiK/6bZruPuDKpTu6fAYO29yIu47NwdhMndEJSLvCPYuKLZ1UOqKoVhLILft9up6Q1Sgpc2EI7MQqqUIWup0QPTLW0QiIiIiIhohehxOPPhJNVbubPUYs8SF4clL8pCbzO63RERE3hAc3ZAbNh7o+FIOuWkLBF31eh4tIRdqRj5Ucz7UjHwYUSlu41z+Q0RERMOt1+HEXe/vOuraiNsWZ+GHs9MDEBUREQU9Q4e0fwdMBwpf5PoNENVu76aQTFDTZ7s6vpjnQ0s5BZC4KTUR0Ujll1WO55xzDjZu3Ij//u//xk033QRRPP5C7+3bt+OVV16BIAi44IIL/BEinQBJ4q1xCg1HPucM9hzkC7b2ftz81g5Ut/R5jP1iQSZ+XmjhbifkJhjyloKUZofc+A3kumIotWsh7fsOgqF7N0XSJGiZC6BmFUHLyAdMUQNjJ/vqztylUMS8pVDF3CUKLN4XoVDh69eLmpZe3P5OJWqOcs/j9PHx+MNFuRgTzmJ78g7f51CoYu7SyRDsHZBtGyDbyiDbyiA1bYVgOL2eR0uaBM08D5q5AJo5H0Zk4sDY0TKSeUuhirlLRBSc2ntV3PKfSmxr7HE7LokCHjg/B+dNZrdYIiI6wDAgte0+1PHFVgbR3u7dFKIMLXXGQOGLmjYTkMN8Ey8REQUdwTAMw9e/ZN++fZgwYQJ6e3vxk5/8BH/5y18gyzJEUYQgCNiyZQumTJkCAPj8889x7bXXor6+HomJiaipqUF0dLSvQyQi8pmNe9vw81c3oKXH4XbcJIt46ooZWDIjI0CREVFI0HWgaRtQvdr1s7cEUHu9m2OMBRi/CMhZDGSfDkSnDHoJERERERHRYD7Z2oBf/3szuu2a23FBAG49Mw83nTEBosiNP4iIiI6qt9V1r29vMbBnLbBvK+DlhjcQRCDtFGDsAmBcEZA1H4hM8E28RERER2hrawt0CBRk6jv6sexfO7Cn1X2zjHBFxFOXTkRRTrzfYxJFEbGxsQOPOzo6oOtevuci8jPmLYWqoeSu2FEHua4EsrUESl0JxN5mr36HAQHOlGnQMguhWuZDy5jrtvkrkbf4nEuhKpRyNz7ed58D/FIIAwD//Oc/cfXVVwMALBYLLrzwQrzwwgsQBAE//elPYRgGiouLUVFRAcMwIIoi3nvvPVx44YX+CI+IyCfe+9aGO97aDIfm/gKTGGXCS1fPweyx/r/RQ0QhoL32UOFL9Rqgd79314fHugpecha5il8Sclwr0YiIiIiIiIaB5tTx5GeVeHFNtcdYbISCZ//fqVg8kQX4REREbrqbXUUve4uBPcWuzW+8JUhAxqnA2CJg3AIga57rXiARERFRgFU2duGal8vR2Nnvdjw+UsHLP56LmVlcG0FENCp1NgB7vgZq1gA1X7nWw3grebJrDUz26a5NICL4mkJERC5+K4QBgH/961+4/vrr0dHRAeEoizEPhhIdHY1//OMfWLp0qb9CIyIaVoZh4E8rd+HZL3Z5jOWlRuNv18xFZkJkACIjoqDU2+r64H+w+KXVczHZcUkm15feOYtcP+mnAqI07GESERERERG1dNtx05vfoGR3i8fYlPQxeOFHs5GVyHseRERE6Gp0dXo5WPiyv9L7OUQFMM86UPhSBGQWAGExwx8rERER0UnYsKcV172yHp397h1jzXER+Md1+ZiQEh2gyIiIyO96Wg4Uvnzl+mnxXDs3qIScA0Uvp7n+Gc1Nl4iI6Oj8WggDAC0tLfjLX/6CDz74AN9++y007dCHoKlTp2LJkiW45ZZbkJLCF69gxza3FCr83QLMrul4YEUVVmz37OBQmB2Hxy7JQ0yY7LPfTyNDKLWuoxOg9UOu3wi5bi2U2mJITVsgYOhvyVytXqdCyyyCmrkAWsYcQInwYcBDx9ylUMS8pVAVSrnry1a3RIHC+yIUKobz9WJrfRd+/W4l9nU5PMYumpaMe87JQYTConw6eaH0PofocMzd0U3oqodiK4NsLYNsK4PUXuP1HIZkgpZ2KjTzPGjmAmjps3x+3495S6EqlHKX90WIaCRbuWMffvnPTbBr7s/BeanR+Md1+UiPDY7vMImIyEf6O4G9JYcKX/Zt8X6OmAwgZ+Gh4pe4zOGPk4iIRiS/r8ROTEzEfffdh/vuuw+6rqO1tRVOpxMJCQlQFMXf4dBJcDqdgQ6B6ITouu6z/G3tUfHr93Zic323x9iVM1Nx2+KxkEWBf3/Ia77MW/ID3Qlp/3aY6kqgWIuh1G+A4LR7NYVzTBYcmYVQM4ugmufBiEg44oTgzA/mLoUi5i2FKuYukX/x7xuFqhN5vTAMA+9sbsaTX+6B6nQv4pdFAb8+Yyy+NyMFgsC/G+QbfJ9DoYq5O4IZBsQuKxRbGRRbOZT6ckiddd5PI4dDTZsJNaMAqjkfWuqpgBzmfpKfc4h5S6GKuUvkf9wkhN7f0oQHV1ThiFsFmGGOwZ++Nwnhej/a2voDE9wBoVQ4SXQQ85aCmtoHuX4DZGspFGsJpH1bIBjevQ/XIxKhWeZBzSyEZimEHjcOEATXoAGA7zHIj/icS6EqlHLXlxuEBLQlgSiKSEpKCmQIRETDpnp/L279z07Ud7ovbhcF4LbFY/H/ZqUFKDIi8jvDgNhZC1NdMZS6EijWUoj2dq+m0MPjoVrmw5FZBNVSCD02yzexEhERERERHYdd0/H4F3vw/tZmj7HkaAWPL8nF9IyYAERGRETkR4YBsWPPQNGLYiuD1N3g/TRKJNS02VDN+a7Cl5TpgGTyQcBERES+x+Kz0cswDLy6vgHLv/IsBD4tJw6PXjwB4YoYlDnCwkkKRcxbCiinA/K+76BYS2GylkJu/BaC7tkx/Hh0UwxUcwFUyzyo5kI4E3MBQTzshOBcuE2jE59zKVSN1twNaCEMEdFIsW5PO+56vwo9DvcXkiiTiIcvysWCnLjABEZEfiP0tbg++B8ofpG6rF5db0hhUDPyoWYWwpFZBGfSZPcP/kRERERERH5W32HHXe/vwo59PR5jsywxePTiXCRGscs3ERGNQIYBqW33QNGLbCuH1Nvk9TS6KRpa+hxX4UtGAbTkqYDE104iIiIKXbph4E+ra/HPjY0eYxdPTcJvz8mGLPE7TiKikKVrkJu3Q7GWun4aNkDQ+rybQ4kEsuajN20uHAc/C4uSb+IlIqJRzS+FMKqqYteuXQCA8ePHIyzMvaV3f38/fvvb3+Jf//oX9u/fj+zsbNxwww246aab/BEeEdFJeevbfXhy5R6Pdr9pMSY8e9lETEiODExgRORbah+U+vVQrMUw1ZVA3r/dq8sNQYSWcgpUSyHUzCKoabMAOWzwC4mIiIiIiPxg3Z52/PbD3ejo1zzGfjQnDTeengVZFAIQGRERkQ8YOqSWXVDqywa6voh9LV5Po4fFQs2Y69rwxpwPZ9IULvYhIiKiEUNz6njg02qs2O75Punquem46fRMCALvFRARhRRDh9Sy01X0YlsHxVYG0dHl3RSiCVraTGhZhYiYfC5gng3IJtjb2kZldwIiIvIfvxTCvPPOO/jBD36AhIQEWK2eu6MvXboUn332GQzDtYq8oqICt956KyorK/Hcc8/5I0QiIq85dQPPrq7Fm5s8dzqZlh6Fpy7NQ1KUKQCREZFP6Brkpq1QrMVQ6oqhNHzjdbtXLS7bVfRiKYRqngcjPNZHwRIREREREZ0Y3TDwSlk9nl9rxRF7fiBCEXH/uTk4e1JiQGIjIiIaNroTUkvFgaKXMij1GyD2t3k/TXiCq/DFnA/VXABn4kR2eSYiIqIRqc/hxF3v70LJng6PsVsXZeFHc9IDEBUREXnNMCC274HJdqDji3UdxP5W76YQJGgp06Fa5kG1zHdt/KpEQJIkRMTH+yhwIiIiT34phPn0009hGAYuvfRSj24wH330ET799FMIggCLxYK5c+eivLwcNpsNzz//PH74wx+isLDQH2ESEQ1Zj8OJ335YhbXV7R5jZ09MwO/OG49whV92EYU0w4DUXuMqerEWuz78e7nrhR6RCEdmEVRLEdTMQugxGT4KloiIiIiI6OR12zX8bkU11lR5LgTOig/HU5fkIieJnW+JiCgE6Rrk5u1QbGVQ6ssh16/3+l4fAOiRya6il4wCqBlz4UzIBbjrOREREY1w7X0qbv1PJbY29Lgdl0QBvzsvBxdMSQpQZERENBRiVz0Ua8lA4YvU47np82C0pClQLfPhsMyHljEHhinGB5ESERF5xy+FMJs2bYIgCFi4cKHH2MsvvwwAyMvLQ3l5OWJiYtDR0YHCwkJUVFTgr3/9KwthiCioNHba8at3dmJXc6/H2E/mZeD6IgtEfvFFFJKEnmaYrCUDxS9St3cf/g0lEmpG/kDxizMxj1+EExEREY1QkiQFOgSiIRFF8biPD6pq7sHt71Sitq3fY+yMvAQ8cMEERIf55XYy0ZDzlijYMHeDiFOF1LQZsrUMiq0McsNGCI5ur6fRo9OhmgugWQqgmQugx2W73e8bCe8ImbcUqpi7RET+0dhpx41vVWBPq/v9gnBZxONLclGUExeYwIiI6JiEnmYotlKYrOug2EohddR6PYcWP97V7cU8H6o5H0ZEgg8iJSIiOjl++eayqakJADBhwgS347quY+XKlRAEATfddBNiYlxVorGxsbjxxhuxbNkylJaW+iNEIqIh2drQjdvf2YmWXtXtuCIJuPecbFw4NTlAkRHRiRAc3ZDr18NUVwylrhhy606vrjcECVrqDKiZRXBkFkFLnQFIJh9FS0RERETBJD4+PtAhEJ2Q2NhYj2MffFePO9/aij7V6XZcFIA7zp2EXyzMgcAifwqgo+UtUShg7vqRZgdsG4E9xcDetUBdOaB6bmY1qLgsYOwCYFwRMLYIYvw4hAkCwoY/4qDFvKVQxdwlIhp+1ft7cdPbldjX5XA7Hhsu49nL8nBKBrsBEBEFA6G/3dUB1VoKxbYOcusur+dwjsmEap53oPhlHvToVB9ESkRENLz8Ugizf/9+AEBERITb8W+//RadnZ0QBAEXXnih29i0adMAAHV1df4IkYhoUF9UtuB3K3bDrhlux2MjZDx9SR5OtfAmD1FIcKoI3/oGwqo+hrzvWwi65tXlWkIuVEsh1Mwi164XbPdKREREREQhSnXqeGxFBf62tsZjLD5SwfIfzMKC3KQAREZERDQItQ+wrj9Q+FLs+rPm2dVsUAk5wNgiYNwC1z/jMoc/ViIiIqIQtLm+C7f+pxKd/e6bZqTGmPDc5ZOQnRhxjCuJiMjXBEc35IYNUKylMFlLITVvhwBj8AsP44xMcRW9WOZDtcyDPoafh4mIKPT4pRAmLCwMmqYNFMQc9NVXXwEALBYLxo4d6zZ2sDuM0+n+gYqIyN8Mw8DLZfV4fq3VY2xcQjievWwiLHHhAYiMiLwldtYh5tNboez7dsjXOKNSDxW+WAq56wUREREREY0ITV39uPGNb1Be0+oxNt0Si+d/NBvmOC5qISKiIOHoAerKDhW+2DYCTsfg1x0pKe+wwpdCYEzG8MdKREREFOLW7m7DXR9Uwa7pbsezE8Kx/PJJSBszmvrlEREFAc0OpXGTq+OLtRRy02avN33Vw+KgWuYNFL8443IAdgEnIqIQ55dCmLFjx2L79u0oKyvDmWeeOXD8gw8+gCAIOP300z2uaW11fQGbnJzsjxCJiI7Koel4+LMafLR9v8dYftYYPL4kFzHhfnkqJaKTZKr6GNFf3g3R0X3c83Ql+sCHf1fxizN+PD/8ExEREZGHtra2QIdANCSiKCI2NnbgcUdHBzbVtuPO93aiudtzAfHS6Sm46+wchBn9aGs7gZ31iYbB0fJW1/XjXEEUHJi7w8jedWB32zLItjJITVu8XuQDAM7EiVDNBdAsBdAy8mFEHfa9oxMA39MxbylkhVLuxsfHBzoEIqIh+3BbM/7wSTWcRzQWmJ4RjWeWTkRsBNdHEBH5nFOF3LR5oPBFadwEwcvNIHQlGlrGXDgOFr4kTQIE0UcBExERBYZfPp0sXrwY27Ztw/Lly7F06VJMnjwZ77//PlavXg0AuOCCCzyu2bp1KwAgPT3dHyESEXlo71Vxx/u78I21y2Ns6fQU3HXmWMgSPyAQBT2tH1FfP4SIbW8eddgQFWhpM+HILIRqKYKWOh0QeQOXiIiIiI6PXYwpFBmGgTc32PDUyj3QdPcVLYok4K4zx+HS6SkADOY4BRVd15mTFJKYu0Mn2Duh1K+HbCuDUl8OuXkbBMO7Be0GBDiTJkM150PNyIeaMRdGRIL7Sfz/MSjmLYUq5i4R0cl7tbwef/6qzuN4UXYcHl8yAeGKFICoiIhGAd0Jaf8OmKylUGylUOrXQ1B7vZrCkMKgZsyBanYVvmgp07j2hYiIRjy/vNLddNNNeOmll9DU1IRp06YhPj4ebW1tMAwDFosF3/ve9zyu+eyzzyAIAqZPn+6PEImI3Oxp6cOt71TC2m53Oy4AuGVRFv5rdhoEdoggCnpS6y7EfHIz5NadHmPO2LHoWfBbOMzzAFNUAKIjIiIiIiLynz6HE/e8swXvfGPzGEuLMeHxJbmYmh4dgMiIiGg0EvpaodSvh1JfDsVWDmn/DggwBr/wMIYgQkueCjUjH5q5AGr6HBjhsYNfSERERERudMPA8jV1eG1Dg8fYhVOScN+52dwklIhoOBkGpNZdUGzrXB1fbGUQ7R3eTSHK0FJPhWqZD4dlPrS0UwEpzDfxEhERBSm/FMLk5ubitddew3XXXYeenh60trYCAOLi4vDmm2/CZDK5nd/Y2IjPP/8cAHDGGWf4I0QiogHleztw1/u70GV33zUqQhHx0IUTsHAC25cTBT3DQNiOfyP6qwcgaP0ew/15l6Bn0YMwTFzkRUREREREI9/elh784vVN2NHQ6TGWP3YMHrlwAuIilQBERkREo4XQu3+g6EWxlR1145rBGKIMLfkUV8cXcz609NkwTDE+iJaIiIho9NCcOv7waQ0+2r7fY+yquem4+fRMbhJKRHSyDANiZy0Ua+mBri/rIPZ6Pu8edwpBhJY8DaplnqvrS8YcQIn0UcBEREShwW+9z6644gosXLgQH330ERobG5Geno4lS5YgISHB49zNmzfjhz/8IQDgggsu8FeI5CVJYstTCg2iKB738eH+8+0+PPp5NTTdfee5lGgT/nz5ZExMZdcI8g9v8paOYO9C1Jf3wLTzA48hQ45A7+IH4Zh8OUTesPUJ5i6FIuYthSrmLhERDcXXu9tw74e70NmveYxdW5CBXxRZIIn8fERERMNL7G6EYiuHXF8Opb4ccttur+cwRBO01OmuwpeMAqjps7jIh4iIiGgY9Tmc+M0HVSiuafcYu2VhFq6am+7/oIiIRgixuwGK9WDHl1JIXfVez6ElToRqme/6yciHETbGB5ESERGFLr8VwgBASkoKrr322kHPO+ecc3DOOef4ISI6GfHx7IpBoSk2NtbjmFM38NiKHfifr2s8xk4xx+Kv18xB6phwf4RHdFRHy1s6Ctsm4K1rgbY9nmOp0yBc/ndEJeeBJW3+w9ylUMS8pVDF3CUiosPphoH/KbHhr6U2GEeMRZlE/P788Vic67lJERER0YkQO21Q6stcHV/qyyB11Ho9hyGFQU07FVpGgav4JW0mIPO+PBERUbDi5qmhrb1Pxc1vVWBLfbfbcUkAfnfBBFw8LSVAkQ0vbihFoYh5G5qE3hbItnVQ6kog15VCaq/2eg5nXDY0y3yomYXQLPNgRCYNjIVCFjB3KRQxbylUMXdd/FoIQ0QUjHrsGm7532/xxY59HmPnTU3DH78/A5EmPl0SBTVdB9b9Bfji94Cueo7P/SlwzkOAEuH30IiIiIiIiPyts1/DfR/tPuqOrjmJEXjiklyMS+DnIyIiOkGGAbGz1lX0YiuDUl8Oqcvm/TRyBNT0WVAz8qGaC6ClTgekMB8ETERERL7AzVNDV317H372v5tR1eReBBOuiHj+v2Zj8aSRUQRzNNxQikIR8zZI9bUDe0uAmq9cP03bvJ9jjAXIPv3Az2mQYi2QAIyUT8bMXQpFzFsKVaM1d7mym4hGtYaOPvzklQ3Y3tDpMfaLheNx57kTIYpCACIjoiHr2Q+8ewOw6zPPsfBYYMlzwJQl/o+LiIiIiIgoACqbenDne7tg67B7jF14SjruOSsLYdy0l4iIvGEYkNprIB8oelFs5ZB6Gr2eRleioKXPhmougJqRDy1lGiCZfBAwERERER1LVVMXrvpbORo6+t2Ox0YoePnHczF7LAuciIiOytED1K47VPjS8C1g6N7NEZV8qPBl3GlAQg4gcF0aERHRiWIhDJ2wtra2QIdANCSiKLpVO3Z0dEDXdWxv7Matb1egudvhdr4sCrj33BxcMj0VHR3tfo6WyOVYeUvuZGspoj65FWKPZ0cnLX0Wes77M/QxFoCvWX7D3KVQxLylUBVKucvdIWkkkiRWElDw+XBrEx76tBp2zf31QBIF3H3+JPxkQTY6OzuD9vWC6CBRFI/7mChYjZjcNQyIrbugWMsg29ZBtpVD7G32ehrdFAPNnA/NXADNXABnylRAPPTVJN9NBYcRk7c06jB3iYi8t6m2Dde9sh7tvarb8fTYcLx6XT5yU2MCFBkRURDS7IB1w6HCF+t6QFcHv+5w4bGugpeDxS/Jk1j4QkRENIxYCEMnzOl0BjoEohOi6zq+qGjGfR/tRv8RC0PGhEt4Ykke5mSNYY5TUNF1nTl5OF1D5PrnELH+OQgw3IYMCOib/Qv05t8CSArA/24BxdylUMS8pVDF3CXyLxZ4UTBxaDoe+mg7Xi3d6zGWFG3C8h/MwvzxiQBGb2t0Cm3MWwpVIZO7ug40bQP2FAN71wJ7S4DeFu/niYgHxha5fsYVQUydBpMogT1fQkvI5C3REZi7RP7HzVNDy9rdbbjj3UqPNRLZCRH4y/enIMmkjcj/p6G0oRTRQczbANE1SE1boNSVQK4rhdywAYLWP/h1hzGUSGgZc6FmFkKzFMKZPAUQD9sGor19eGMOMsxdCkXMWwpVoZS7vvxenYUwRDSqGIaBV8ps+PPqvUcsnQey4sPxzNI8jE2ICEhsRDQ0YncDYj67DUp9uceYHpmErrOehpq1IACRERERERER+V9jRz9++c+N2FTb7jE2MysOf/mvWUiP5b0OIiI6jO4EGjcfKHwpdhW+9Ld7P09UMjC2EBi7ABhXBCRPBtiRgYiIaNTgpjyh4+Pt+/HAJ9Vw6u6rJKalR+HZyyYiLkIeNf8/uaEUhSLmrY8YOqSWSijWUpispa5uqGq3d1NIJqhps6Ba5kO1zIOWMh2QDtsOwsCo3ryVuUuhiHlLoWq05i4LYYho1HBoOu59dwv+tcHqMTbLEoMnL8lDbASfFomCmalmJaK/uBOivd1jzJF5GrrOfgpGZJL/AyMiIiIiIgqAddUtuPGNb7C/2+4xdtW8sbjvoikwyVyQTEQ06jlVoOE7YM9aV+FL7TrA3un9PDHpBzq+FALjFgBJeYAgDH+8RERERDRsXt/QgGdX13ocL8yOxeMX5yLCJB3lKiKikUvZswrhO96GYlsHsd+7TliGIEFLnX6g8GU+1LRZgBzuo0iJiIhoMFzxTUSjQnuvAze8vgml1S0eYxdPS8Y9Z4+DInFhCFHQctoRVfIEIr57xWPIECT0zrsdfbN+Bgj8e0xERERE/tHW5t0XZETDyTAM/HNDA55dtQfOI1rehskifntuDi6eloKerg70hVBrdKKDROYthaigyV2nA9K+zVCsZZBt6yA3bISg9no/TYwZmrnA9WMpgB471r3wpb19+GKmgAmavCXyUijlbnx8fKBDIKJRyDAM/PmrOry2vsFj7PwpifjduTmQuUaCiEYRob8dUWt+j/BdHwz5GgMCnMlT4DDPg2qZDy1jLgxTtA+jJCIiIm+wEIaIRry9rX247Z3vUL2/x2PsxtMycU1+OgTuWkcUtMT2Goz59BbIzds8xpwxZnSd8yy09FkBiIyIiIiIRrPR2FqagkOvw4k/fFqNzytbPcbMsWF44pJcTEyJOmaOjtbW6BTamLcUqvyWu5od8r5vodjKodSXQWn8BoLW7/U0zjGZUDPyoZrzoZrnQR9jcT8hSBeY0/Dicy6FKuYuEdEhmlPHQ5/V4MNt+z3GfjQnDTcvzILINRJENIooe1cj+st7IPXsG/RcLSEX6oHCF9VcACM8zvcBEhER0QlhIQwRjWgb6zpx53u70NGvuR0Pk0X84YLxOCMvIUCREdFQhFW+h6jV90FUPQvZ7OPPQ/cZj8IIGxOAyIiIiIiIiPxvb2sf7nhvF6pb+jzGCrNj8YcLJiA2grd8iYhGPLUPSuMmKPXlUGzlkPd9C8Hp8HoaLS4bWkY+VHMB1Iy50GMyfBAsEREREflTv+rEbz6owtrqdo+xm0/PxNX5fM9HRKOH4OhGZPGjiNj2v8c8xzkmC6plHhyW+VDN82BEpfgxQiIiIjoZ/FaUiEasD7Y24+HPaqDphtvxpGgFf7w0D1PS2KqSKGipvYhe83uEV7ztMWRIJvScdh/6p/4A4E5FREREREQ0SqyuasXvPq5Gj8Nzl+ufzTfjZ4Vm7uZKRDRSOXqgNGw8UPhSBrlpCwRd9XoaLSH3UMeXjHwu7iEiIiIaYTr6NPzqnUpsru92Oy4JwL3n5uDiackBioyIyP9kWzliVt4JqbPOY0wPG4Pegl/BMe4Mz26oREREFDJYCENEI45uGPjL13V4pbzBY2xK+hj88dJcJEXx6Y8oWEn7dyDmk5sht1d7jGnx49F17p/hTJoUgMiIiIiIiIj8z6kbeKHYir+X1XuMRYdJ+MMF43Ha+PgAREZERL4i2LsgN2yAYiuDUl8OuWkrBMOzEHIwWuKkA0UvBVAz5sCITPJBtEREREQUDPZ12XHTW5UeXWTDZBGPXTyB9w6IaPTQ7Iha9zTCv30ZAgyPYUfWaeg+41Ho0ekBCI6IiIiGk99Xgn/33Xf4+uuvUV1dja6uLjidx79xLwgC/va3v/kpOiIKdf2qE/d/vBtf7mrzGDtrcgr+9P9mwtE7+HMPEQWAYSB86z8RtfZhCE6Hx3D/5CvQffr9gBIZgOCIiIiIiIj8r71XxW8/qkLZ3k6PsdzkSDyxJBeZ8eEBiIyIiIaT0N8OpX49FFs5lPoySPt3QDB0r+YwBBHOpMmuohdzPtSMuTDC43wTMBEREREFlT0tfVj2VgX2dbl/xxoTJuHZyyZihjkmQJEREfmXvG8zor+4A3JblceYoUSip+hu9E/9AcDO2kRERCOC3wphKisrcd1112HdunVDvsYwDBbCENGQ7e924LZ3dmL7vh6PsZ8uyMbdF0yGJApw9AYgOCI6LqG/A9Ff3o2w6k89xnQlGj2L/gD7xCUBiIyIiIiIiCgwdjT24M73d6Kh03OjgPMnJ+K352QjXJECEBkREZ0soa8Fim09lPoyKLZySC2VR92l9ngMQYKWMg1qRj5UcwG09DkwwrjAkYiIiGi02drQjVv+U4mOPs3teEq0guWXT8L4JG4ySESjgFNF5Ia/IGLDfx+1o6qaPgddZz0BPXZsAIIjIiIiX/FLIYzNZsPpp5+O/fv3wzBcN/Kjo6MRHx8PURT9EQIRjXA7m3rwq3d2euxwIgnA3efk4KeLJwcoMiIajNywETGf3Qqpq95jTE2ehq5z/wQ9bpz/AyMiIiIiIgqQ97Y04fEv9sDhdF8ULYkCfrUoC9+fmQqBuxYSEYUMoad5oOhFqS+H3LrL6zkMUYGWcgpUcwHUjHxo6bNgmKJ9EC0RERERhYqSmnbc+d4u9Gvu3QTHJoTjvy+fhLQxYQGKjIjIf6TWXYj+/NdQmrd6jBmiCb3zbkPfqdcBIjcVIiIiGmn8Ugjz8MMPo7m5GYIg4Kc//Sl+/etfIy8vzx+/mohGga92t+G3H1ahT3W/uRMdJuHxJbkozEkIUGREdFyGjoiNLyKy7Jmj7sjRN+M69BTeAUimAARHRERERETkfw5Nx5Nf7sU7m5s8xpKiFDy2JBenmrnbPxFR0OuwAXuLEbnzS0jWdZDba7yewpBM0FJPhWrOd3V9SZsFKBE+CJaIiIiIQtGK7fvx+0+q4dTdN9GYmhaFP102EXGRSoAiIyLyE92JiO/+jsh1T0NwenbV1pKnouusp+BM5DpVIiKikcovhTCffPIJBEHA1VdfjZdeeskfv5KIRgHDMPDGxkY8u7oWxhFj5tgwPHvZRGQn8otBomAk9DQj5ovbYaor9hjTw+PRdeYTULPPCEBkREREREREgdHYaced7+/C9sYej7GZlhg8etEEJEVzowAiomAkdlqh2MpgalgPNKwH2vYAALzZf9uQw6GmzYSaUQDVnA8t9VRA5g7eREREROTpjY0N+OOqWo/j88fF4okluYgwsesBEY1sYkctYlbeCaV+vceYIUjom/NL9M5ZBkgsCiQiIhrJ/FIIU19fDwC4+uqr/fHriGgU0Jw6nvhyL/7znecOqaeaY/DUJbnc4YQoSCm1XyPm89sh9rV4jKkZBeg654/Qo9MCEBkRERER0dBJEhcU0PAp29OO37y/E+19msfYD2en49bFY6FI4gnNLYricR8TBSPmLQU1w4DYsReytQyyzfUjddm8n0aJhJY+G5p5HlRLAZyp0906I/OdBvkLn3MpVDF3iWg0MgwDz31dh3+UN3iMnTc5Eb87L+eE7x8QEYUEw0D4tjcRVfwoBLXXY1iLH4/us56Cljo9AMERERGRv/mlECY+Ph5NTU2Ii4vzx68johGuq1/Dbz7YhbK9nR5j509JxH3n5MAk8+YOUdBxqogsexaRm17wGDIEEb1zb0LfnGWAyK/5iYiIiCj4xcfHBzoEGgEMw8ALa6rx5KcV0I9odxuhSHjse6fgklPNw/o7Y2Njh3U+In9g3lJAGQawfxewdy2wpxjYWwx0eS48HFTYGCBrHjC2CBi3AEL6DCiSAgUA+5pTMOFzLoUq5i4RjXSabuCRz2rw/tZmj7EfzE7DrxZlQRSEAERGROQfYncjor+8G6barzzGDAjon3EteubfDsjhAYiOiIiIAsEvhTBz5szBxx9/jJ07d2LmzJn++JVENEJZ2/vxq/9Uoqa132PsF0UW/GReBgTe3CEKOmKnFTGf3gpl3zceY86oVHSd8ww0c0EAIiMiIiIiIgqMrn4Vd/x7Mz7Z1ugxNi4xEi9cNRuT0sYEIDIiolFO14HmHcDeEmDPWtc/ezw7kw8qPA4YW3ig8KUISJvODWCIiIiI6IT0q07c/WEVvt7d7jF242mZuCY/neskiGjkMgyE7fwAUV/9HqK9w2PYGWNB11lPcM0JERHRKOSXQpibb74ZH330EV566SV8//vf98evJKIR6FtbF3797k6092lux8NkAb8/bzzOnpQYoMiI6HhMVZ8g+svfQHR0eYw5xi5G11lPwIhICEBkREREREREgVHV1IWfv7YR1c09HmNnTU7B01eeitgIJQCRERGNQroT2LftQNFLsavwpa/V+3kiEw8UvixwFb6kTAVEdi4nIiIiopPT2a/hV+9U4jtbt9txSQB+e04OlpySHKDIiIh8T+hrRfTq+xG2e8VRx/unfB89C+6BYYr2c2REREQUDPxSCHP22WfjrrvuwuOPP44bbrgBf/7zn6Eo/CKXiIZuxfb9ePDTaqhOw+14YqSCp5fmYVo6P9AQBR2tH1FrH0bE1jc8hgxRQU/hXeif8WOAuxMRERERUQhqa2sLdAgUoj6v2I/fr6hCr0N3Oy4A+OVpWbhuvhl6fzfaPJvhnhBRFBEbGzvwuKOjA7quH+cKosBj3pJP6Rqkpm2QbWWun/r1EO2d3k8TmQTNXADNPA+qpQB6Qi5ESWLuUsjhcy6FqlDK3fj4+ECHQEQhqqnLgZversDu/X1ux8NkAY9enIvTx/P5hYhGLlPNSkSvugdi736PMWdkCrrPeATquMUBiIyIiIiChV8KYV599VVMnjwZhYWFeOmll/DBBx/g8ssvx6RJkxAZGTno9VdffbUfoiSiYGQYBl4stuGv62weYxOSIvDM0olIjw0LQGREdDxSaxViPr0Zckulx5gzNgtd5/wJWur0AERGRERERDQ8nE5noEOgEKPpBv77qzq8tqHBYyw2XMZDF47H/Ow4GLoOX2aXruvMXwo5zFs6KU4VctMWKPXlUGxlkBs2QVS7B7/uyGmi0qCa86Fm5EMzF8AZl+2+wYuue2z4wtylUMS8pVDF3CWikWZPax9u/HcFGrscbsdjwiQ8s3QiTrXEBCgyIiLfEhxdiPr6IYTveOuo4/bci9B9+u9hRLAYkIiIaLTzSyHMj3/8YwiH3fxvaGjA8uXLh3StIAgshCEapfpVHQ98shufV7Z6jBVlx+Hhi8YjOswvT2NENFSGgbAdbyH6qwcgaH0ew/25F6Nn8R9gmHhjloiIiIiIRo/WHhV3f7gLG+u6PMYmpkTiyUvykMGNPoiIhofTDnnfZii2MlfxS8Omo96nGnSaGDPUjHyo5gKo5nzoY7LY2ZiIiIiI/GJbQzdu+U8l2vs0t+PJ0QqWf28SJiQPvukwEVEoUqwliF55F6Sueo8xPSwO3YsehCP3wgBERkRERMHIbyvIDcPw168iohGgpUfF7e9WYmtDj8fY/5uVilsXjYUs8ktHomAiOLoQtfp+hO9832PMkMPRffrvYZ98ORcMEBERERHRqLKlvgt3vb8LTd2qx9jF05Jx15njEK6IAYiMiGiE0PqhNH4DxVYOub4MSuO3EJx2r6dxxmZBzSg40PWlAPoYsw+CJSIiIiI6vnV72nHHe7vQp+pux7Piw/Hfl09COjfSIKKRSO1DVOkTiNj86lGHHWMXo+uMR2BEpfg5MCIiIgpmfimEqamp8cevIT+TJCnQIdAItau5Bze/tQONne4tfiUBuPOsbFw5K92r+URRPO5jomAUankr7duMqBU3QerY6zGmJU5CzwXPQU+YAL5yjHyhlrtEAPOWQhdzl4gouBmGgbe/a8JTX+6FprtvEiSLAu44cywum57i1kmbiIiGQO2F0rAJSn2Zq/hl32YIumPw646gxY8/0PElH1pGPvToNB8ES0RERDRycc3I8FuxvRn3f1TlcR9hano0/nz5ZCREKgGKLHTxPjqFotGWt1LjN4j69HZI7dUeY4YShd6Fv4NjyhUQeR816I223KWRgXlLoYq56+KXQpixY8f649eQn8XHxwc6BBqBVlU24aY3tqHb7t7iNyZMxnP/NQsL85JP+nfExsae9BxE/ha0eWsYwLrngc/vB3TP3Y0x5yeQz30YsUqE/2OjoBC0uUt0HMxbClXMXSKi4NGv6njsixp8uG2/x1hqjAmPL8nFtPToAERGRBR6BEcX5IaNUGzlrsKX5i0QdG3wC4+gJeRBNR/s+JIPIzLJB9ESERERjR5cMzK8Xl5bgwc/3OVx/LTcJLzwo9mICvPLEq8Rj/fRKRSN2LzVHMCax4C1zwCG7jk+7jQIl/w3ouLHIsr/0dEwGLG5SyMa85ZC1WjNXX5KIqKg8UpxDR78cDuO2NwElvgIvPzjuchLjQlMYER0dD0twHu/BHZ+4jkWFgtcshyYcon/4yIiIiIiIgogW3s/7nx/Fyqbej3G5mSOwSMXTUBCFHdwJSI6FsHeCaV+PWRbGZT6csjN2yAcbUHMcRgQ4EyaPFD0ombMhRGR4KOIiYiIiIhOzlOfVuK5VVUex5fMyMBTV8yASR6duzsT0QjWuBV45xfAvi2eY3I4cNbvgfzrgVG6uz0RERENDQthiCjgNKeOBz/cjldL93qMzcqKw0tXz0FSdFgAIiOiY9qzFnj7p0BXg+eYZS7wvb8B8ewIR0REREREo0tpTTvu/Wg3Ovo9OxVcNTcdy07LhCwKAYiMiCh4CX1tUOrLXT+2ckj7d0CAMfiFhzEEEVryVKgZ+dDMBVDT58AIH5074BERERFRaPl0W+NRi2B+XDgO9180BSLvIxDRSKI7geI/AaseAXTVczxjFrD0RSA5z/+xERERUchhIQydsLa2tkCHQCNAt13DXe/tRElNu8fYeZOT8PsLJkBSe9HW5rmL6lCJoujW9qujowO67t0OgkT+FrR5qzsRXr4c4eV/PupOnH1zbkD/vNsAKABfJ0aloM1douNg3lKoCqXcjY+PD3QIREQ+pRsGXl5XjxeLrR5LtyMVEfefl4OzJiYGJDYiomAj9O4fKHpRbGWQW3d6PYchytCST3F1fDHnQ0ufDcPEjuJERERE/sQ1IyfPMAz8+YtKj+M3np6F6+alo6Oj3f9BjTChdB+d6KCRmrdiWw2iPr8dcsMmjzFDlNFfcAv659wAiDLXm4SokZq7NLIxbylUhVLu+nK9yLAWwpxxxhkAAEEQsHLlSo/jJ+LIuSh4OJ3OQIdAIa6+w45b/1OJ6pY+j7GfzTfj54VmCIIx7Lmm6zrzl0JOMOSt2N2ImM9ug1Jf5jGmRySi6+ynoWad5jrAv2N0QDDkLpG3mLcUqpi7RESB0dWv4f4Vu/H17naPsbEJ4XjqkjxkJ0b4PzAioiAhdu+DXF/mKnypL4fcttvrOQxRgZY6w1X4klEANW0mYIryQbRERERENFS8F3nyvrV1YVtDt9ux2xZn4Yez04N2EVuo4310CkUhn7eGjvAt/0RUyeMQNM81YlpCHrrOfgrO5KmAAa43GUFCPndpVGLeUqgarbk7rIUwq1evBuAqXjnyuCAIMIyht7I/eP6RcxHRyLClvgu3v7sTrb2a23FFEvC783Jw3uSkAEVGREej1HyJmJV3Quz33HXDkVmErrOehhGVHIDIiIiIiIiIAqequRd3vLcTde12j7EzcuNx/3k5iA5jU24iGl3ErnootrIDXV/KIHXs9XoOQwqDmnYqtIwCV/FL2kxADvdBtEREREREgfPGhga3x+ljTLhyZlqAoiEiGn5iVz2iv/wNTHXFHmOGIKJv5s/QW3ALIIUFIDoiIiIKdcP6Lezpp59+1MKVYx0notHp04oWPLBiNxxO9+K4+AgZT12ahxnmmABFRkQenHZElTyJiO/+7jFkCBJ6592Gvlk/BwQxAMEREREREREFzic79uOhT2vQr7nv0CoKwLLTMnH13HTeEyWikc8wIHbWHej24ur6InVZvZ9GjoCaPgtqRj5UcwG01OlcBENEREREI5qtvR+rq9w3Ifz+rDTIIu8lENEIYBgIq/gPor5+EKKj22PYGZuFrrOehJY+JwDBERER0Ujhk44wQz1ORKOLYRj4a6kNL5bYPMZyEiPwzNI8mOO4qx9RsBDb9yDm01v+P3v3Hd5Wfbd//D5Hki1bchxn7z1ICASySEJ2AmGW+dBFS2lLSxtW2QlQVggQVoBS2tI+pYu2PJRdaCA7hBkCCYSQvfdwHEu2tc75/cGvAXFEyLB1dKT367p6Nfp+JPl2+EiOjr9DgZ0fO2qpsjaqPnmakq37u5AMAAAAANyTTFmaNneD/rFou6PWuMSvu8/spoEdyl1IBgBZYNsy967bv+glsOUd+SLbDvlprEBIydb9lWh7ghJtBinZoo/kK2qAwAAAAEBu+ucH22V9Ye/Q0oCps49p7l4gAKgnRs0uhefcrOI1r2es1x5zoaJDrpeKQllOBgAA8k29LoQBgK8SS1qaPH2NXl2221Eb3Klc95zZTeFi3pKAXFG8/EWF5twsMxF11GJdTlZkzD2yg0zsAgAAAFBYdkXiuvGlVfpwc7WjdnSrkO79Rne1asQJBgDyiG3LV7kq7cQXs2bnIT+NVVSmZJuBn5/40ry3ZHI9GAAAAIUpEkvqhY92pI2ddWwL5kwA8Lyi1dMVnn2zzLo9jloq1EqRsfco0WG4C8kAAEA+4hMUgAZXWZPQtS+s0OLNzqMuz+/bQteO7cTxvkCuSNQoPO8OBZf9n6Nk+4oUHXaT6vp8VzJ4zQIAAKCw+Xw+tyMgyz7ctE/XPb9cu6IJR+2841rq+rGdVeQ3XUh2YKZpHvA2kIvoWxfZlny7lsu/+Z3//793ZdY6Nzf6OlawsZJtBynZ9gQl256gVLNekvn5z858/SlK78KL6Ft4Fb0LwMte/HinonFr/23TkL51fEsXEwHAkTFi+xSad7uCy5/PWK/rebaiI26VXdwou8EAAEBeYyEMgAa1ZleNfvHcCm2uiqWNm4b0i1Ed9a1+LWUwoR7ICb5dn6ps+hXyV6521JKNu6j6lEc+m7QAAAAAQBUVFW5HQJbYtq0n31ynu/69TEnLTqsV+U1NPruPLhjQ3qV0h668nNM94T30bQOyUtK2j6T1C6R1C6QNb0q1lYf+PKXNpE4nSh2HSZ1OlNm8l4pMU0X1n9hT6F14EX0Lr6J3AXhFyrL1j/e3p42N7Fahto2DLiUCgCMT2DBf4Zk3yhfd5qhZJU0UGTVZ8a7jXUgGAADyHQthADSYt9dV6caXVioSS6WNlwZMTTmjm4Z1ZdIQkBNsW8Glf1do/p0yUnFHua7X+YqMuFUKlLoQDgAAAADcUxNPauKzH+mFD7c4am0bl+g3F/bXMe2YcAfAY/askZa99P8XvrwtxaoO/TnCrf7/wpcTpU7DpGY9OEEYAAAAOAhzVlVqy770jUS/27+1S2kA4AjEowq9ea9KPv5bxnKsy0mKjJosu7RZloMBAIBCwUIYAA3imQ+3676Z65RK3yhVLcuKNO3cnurenAn1QC4wYvsUnjVRxav/46hZgZCio+5UrOdZLiQDAAAAAHet2xXVpX99X59uq3bUhndvpke+dbwqQoV+1gEAT0nUSXPvlRY8LNmpr7//FzVql77wpUkXFr4AAAAAh+Gp97em3e7dMqS+bcMupQGAw+PfslBlM6+Tr2qDo2YVlSk64lbFep7NtQMAANCgWAgDoF6lLFvT5m7Q3993HnfZu1VID57dQ83CTBIBcoF/2wcqm36lfNWbHbVk86O1b/zDshp3diEZAAAAkPsqKyvdjoAGNG/VHt30svOUW0n68ZB2unRYeykeVWU86kK6Q2OapsrLPz+1pqqqSpZluZgI+Hr0bf3zb35HpTMmyrd3zUHdP9WovZJtT1Cy3QlKth0sq1G79Mkre/c2TFCPo3fhRfQtvMpLvVtRUeF2BAA5YunWiBZvjqSNfWdAKxlMFAfgFcmYSt95SCUf/F6GbEc53v5ERcbcI6usjQvhAABAoWEhDIB6E42ndPPLqzR/zV5HbWyPJrr91C4KBnzZDwYgnW2pZNETKn37ARkZdv+s7XuxokOvk3zFLoQDAAAAvCGVOsSd9OEJKcvWE29u1u/fdm4YECry6fbTumhUtyaSbcmrLWBZFv0Lz6FvD58Rq1bpW1NV8vFTB7xfqryTEm0HKdH2BCXaDHJOWMnRicW5jt6FF9G38Cp6F4AXPPWlDUVbhAMa16OJS2kA4ND4di5V2evXyL9npaNm+0sUPfFG1fX5jmSYLqQDAACFiIUwAOrFtn0xXf3cCq3YWeOoXXxCG/1sWDuZ7GICuM6o2aWy169V0cb5jppV3FiRcVMV7zzWhWQAAAAA4K6q2qRu+fcqvbmuylHr0rRE953VXR2blLiQDAAOT9HaGQrNuVW+qPP0btsMKHbUOYq3G6pE2xNkh1q4kBAAAAAoHNurY5qxYk/a2AXHt5Lfx4RxADnOSqrk/cdV+t6vZFhJRznRqp+qx02V1bizC+EAAEAhYyEMgCO2dGtEVz+/QrujibRxv2no5pM764w+zV1KBuCLAhsXqOz1q2XW7HLUEm0Gqvrkh2SFW7uQDAAAAADc9en2qG54caU2V8UctZOPaqpbTu6skiJOuQXgDUbNLoXn3a7iVa9krCdaHqfImClKNe2Z5WQAAABA4Xr6g+1KWfb+20G/qXOOZUE6gNzm27NK4RnXKbBjiaNmm0WqOeEq1R7/Y8nk2ikAAMg+FsIAOCIzV+zRL19ZrVjSShsvD/p131nd1a99I5eSAdgvlVDpuw+r5P3fyJCdVrJlqHbg5aoZOEEy+WcBAAAAgMLz8sc7dfeMtYol0z8v+QzpylEd9O1+rWRwyi0AL7BtFS9/TqH5d8mM7XWW/SWKDr5Gdcd+nwkqAAAAQBbVxlN6bsmOtLEz+zRTeQm/nwWQo2xLwcV/Uuit+2SknJsHJZv1UvW4B5RqxiYbAADAPXyiAnBYbNvWk+9u0WPzNzlqHSqCevjcnmpfEXQhGYAvMvdtVtlrVyqw7QNHLRVqqchJDyrRbrALyQAAAADAXYmUpQdmrdczi3c4ak1LA7r7zG5s8AHAM8x9mxSefbOKNs7PWI+3H6bI6MmyGrXPcjIAAAAALy/dpX11qbSxb/Vr5VIaADgwc98mlc24XoEt7zhqtmGqtv+lqhl4ueQrciEdAADA51xbCLNp0yZt27ZNNTU1GjhwoEpKStyKAuAQJVKWpry2Vi8t3eWoDezQSPd+o7saBVlnB7itaPV0hWfdKDO2z1GLdxyl6nFTZZc0dSEZAAAAALhre3VMN764Sh9tjThqx7YJ695vdFfzML/IBeABVkrBJX9W6O0HZCRrneXickWH3aTYUedKnG4FAAAAZJ1l2/r7om1pY8O7NFbHJsyTApBjbFvFnzyt0Bt3yUxEHeVk4y6KjLtPyVbHZT8bAABABlmdqV5dXa2pU6fqySef1JYtW/aPf/TRR+rdu/f+2//4xz/07LPPqry8XE888UQ2IwL4GntrE7r+hZVatKnaUTv7mOa6cVwn+X2mC8kA7JeMKbRgiko++qujZJsBRYdcp7rjLpYMXqsAAAAACs/CDfs06eWV2lOTdNQuOL6lfjGqgwJc2wDgAb7dyxWeNUmB7R9mrMe6n67I8F/KLm2W3WAAAAAA9ntjzV5tqKxLG/vOAE6DAZBbjOgOlc2apKL1szPWa/v+QNHB10oBFvEBAIDckbWFMCtXrtRpp52mNWvWyLbt/eNGhh3IBg8erAsvvFC2beuiiy7SsGHDshUTwAGs31Orq55dro17Y2njhqQrRnbQhQNaZXxNA8geX+Vqlf3nCvl3f+qopRp1UPX4h5VseawLyQAAAADAXbZt628Lt+nReRuUstNrxX5TN53cWaf1ZrI4AA9IxVS68HGVvP8bGVbCWQ61UnTU7Yp3HudCOAAAAABf9NTC9NNgujcv1YD2jVxKAwBORStfVnjOrTJjex21VFkbRcZOVaLdkOwHAwAA+BpZWQhTV1en008/XatXr1YoFNKECRM0YsQInXHGGRnv36lTJ40ePVqzZs3Siy++yEIYIAcs3FCl619cqX11qbTxoN/U5NO7alT3Ji4lAyDpsyNqP/2XwnNvk5GsdZRj3c9QZPRk2UVlLoQDAAAAAHdF4ynd+Z81mrFij6PWtrxY953VXT1ahFxIBgCHxr91kcKzJspfuSpjvbbPd1Qz5HrZxVwDAgAAANy2fEdUCzfuSxv7Tn82GAWQG4zaSoXn3arilf/OWK/r9T+KDr+JeSYAACBnZWUhzOOPP65Vq1YpFApp/vz5Ou644772Maeeeqpmzpypt956q+EDAjigFz7aoSmvr1PKSt8utXk4oIfO6amjWjJRBHCTEY8oNOeXCq54wVGz/UFFRtymWK/zJS6oAgAAAChA6/bU6rrnV2jtnjpH7cTOjXXn6V3VKJi1g7MB4PDEowq9fb+CS/4iQ7ajnGzcWZHRU5RsO8iFcAAAAAAy+fv76afBNC0NaPxRTV1KAwCfC6ybrbJZE2XW7HTUrNJmioyeonjnsS4kAwAAOHhZ+Q3vs88+K8MwdOWVVx7UIhhJ6tu3ryRp5cqVDZgMwIFYtq1fzduoP7+31VHr2aJUD53TUy3KilxIBuC/fDs+VqPpV8hXtd5RSzbpoepTHlGqSXcXkgEAAACA+2av3KPbXl2taNxKGzckXTK0rX48pK1MNg0AkOMC6+cqPOdm+aq3OGq24VNtv5+oZuDlkr/YhXQAAAAAMtkVjWv6p7vTxs4/roWK/KZLiQBAMuLVCr0xRcFPns5Yj3U7TZGRt8suaZLlZAAAAIcuKwthli1bJkk6+eSTD/oxTZt+tgPC3r17GyISgK9RG0/pl6+u1uyVlY7aqG4VuvO0riop8rmQDIAkybYVXPKkQgvulWElHOXaPt9RdNhNkj/oQjgAAAAAcFfSsvWbNzbqyXedm3uUFft05+ndNKxL4+wHA4BDYNTuUeiNuxRc/nzGerL50aoec49SzXtnNxgAAACAr/XMBzuUSH1+mmORz9B5fVu6mAhAoQtselvhmTfIV73JUbOKyxUZeZvi3c+U2DgIAAB4RFYWwkQiEUlSOBw+6MfEYjFJUiAQaJBMAL7azkhcv3huuT7dXuOofW9ga10+oj27pQIuMmorFZ55g4rXzXTUrKIyRcZMUbzbaS4kAwAAAAD3VdYkdNPLq/Tuhn2OWo/mpZp6Vne1a8ymAQBymG2raOVLCs+7U2bdHmfZV6yaE65S7XE/lMys/JoHAAAAwCGoS1h6ZvH2tLHTejdTkxBzoAC4IFmn0Fv3q2TxHzOW4x1HKjL6bllhFusBAABvycpvSJo2bapt27Zp3bp16tev30E9ZunSpZKkVq1aNWQ0AF/y6faorn5uuXZE0k+Y8JmGJo7rpLOPbeFSMgCS5N/8rspe+4V80W2OWqLlcaoeP01Wo/YuJAMAAAAA9y3dGtH1L67U9uq4o3Za72aadFInBQOccAsgd5nVWxSe80sVrZ+dsR5vO1iR0XfJatwpu8EAAAAAHLT/LNulvbXJtLFv92f+E4Ds829fovCMa+WvXO2oWYGQosMmKdb7m5wCAwAAPCkrC2H69eunV155RfPmzdO55557UI/585//LMMwNGTIkAZOB+C/5qzao5tfXq26pJU2Xlbs09Szumtgh3KXkgGQlVLJu4+q9L1HZNiWo1zT76eqOeEXko9dhAAAAAAUpueW7NDUmeuUSNlp437T0DWjO+r841rI4Be6AHKVbSn48VMqffM+mYmIo2wVlSl64kTFel/A5BQAAAAgh9m2rafeT9/UcHCncnVtVupSIgAFKRVX6cLHVLLwcRl2ylFOtBmk6nFT2WgVAAB4WlYWwpx//vn697//rd/97ne6+uqr1aFDhwPef9q0aZo3b54Mw9C3v/3tbEQECppt2/rrwm16ZO4G2V+qtW9crIfO7alOTUpcyQZA0r6tCj/3AwU2ve0oWSVNVD3uASU6jnAhGAAAAAC4L5a0NHXmOr3w0U5HrXk4oHu/0V3HtilzIRkAHBxf5WqFZ01UYOv7GeuxLicrOuI2WeGWWU4GAAAA4FC9va5Ka3bXpo19h9NgAGSRb/dylc24Tv6dSx0121ek6OBrVXfcxZJhupAOAACg/mRlIcz3vvc9PfTQQ1qyZIlGjRqlxx57TKeccsr+umEYsm1bCxcu1LRp0/SPf/xDhmFo+PDhOvXUU7MREShYyZSle2as0/MZJov0a1emqWd1V+MSTpgAXLNiuvT8zxSo2e0oxdsNVfVJD8gOtXAhGAAAAAC4b2tVTDe8uFKfbI86av3alWnKmd3ULFTkQjIAOAiphEo++J1K3/2VDCvuKFulzRUZcZvi3U7J8GAAAAAAuejLp8F0bhLUkE7lLqUBUFCslEo+/L1K356W8TpDonkfRU66X6km3V0IBwAAUP+yshDGNE29+OKLGjZsmNatW6czzjhDpaWlMgxDkjRq1ChVV1crFotJ+ux0iq5du+rpp5/ORjygYO2rS+qGF1fqvQ37HLUzj26mSSd3VsDH6n/AFam4NP0m6a1fOUq24VPNCVeptt9PJdPnQjgAAAAAPh//Fnfb22v3auJLK7S3NumoXTiwta4Y2ZHrGvrs2uyBbgO5qBD61rd9iUpnXC//rk8z1mO9L1Dt8JtkB8vFTxzvKITeRf6hb+FV9C6AXLRmV43eWleVNvbt/q33z48CgIZiVq1X2YzrMp42a5t+1QyYoNr+P5N8bIYMAADyR1YWwkhShw4d9OGHH+ryyy/X008/rWj0810ad+78/CQKwzB0wQUX6PHHH1dFRUW24gEFZ2Nlna56brnW76lz1C4b3l4XDeJiDOAWs2q9yqZfJe1Y4qilwq1VPX6akq0HZD8YAAAAgP24buUe27b16zmr9cBry2XZ6bXSIp/uPe9Yndm3jTvhPKC8nF1o4T151bfxqDR7ivT2ryXbctYrOklnPqziLqNUnPVwqG951bsoGPQtvIreBZAL/r4o/TSY8hK/TuvdzKU0AAqCbSv48VMKLbhbRrLWUU426a7qcfcp1eIYF8IBAAA0rKwthJGkJk2a6G9/+5umTJmif//731q4cKF27NihVCqlpk2b6vjjj9eZZ56pHj16ZDMWUHAWbdyn615Yqaq69B1Ti/2m7jitq8b2aOJSMgBFK15SePbNMhMRRy3W5SRFxtwjO9g4+8EAAAAAIAdU1yV0zdOL9don2x21zs1C+u33+qtHyzIXkgHAQVgzR3rxCmnvemfNMKXBP5dG3yQVlWY9GgAAAHCoOC03XWVNQq98sjtt7H+Oa6VQkNMX3MQJYvCig+1bo3qrQjOuV2DDfEfNlqFYv0tUO+RqyR/ktFlkBe+58CL6Fl5F734mqwth/qtjx476+c9/7saXRj3iooY3vfTxDt3x6molv7RlarNQQNPOO0pHt86/ySK84cMTEjUqnXu7ipf+01nzFat2xM2qO+ZCmZzUhBzHey68iL6FV9G7AArNiu3VuvQv72vNrqijdnLvlrr/gr5qxOQSALmotlKafrP04V8z11v2kb7xiNS2f3ZzAQAAAEeA03LT/XXRSsWSn5/6GPAZ+snonqpoFHQxFb6ME8TgRY6+tW1pydPSK9dJsSrnAyo6yTj7cQU7DhXvQHAT77nwIvoWXlWovWvYtm1//d0AeJ1l2Xrg9eV6bPZqR61X60b6w0UD1KZxiQvJAGj7Uun/LpZ2LXfWmnaXzv9fqfWx2c8FAAAA4CtVVla6HaGgvLZsl257dZVqE1bauGlIPx/eQRcPbsvGAV/BNM20i99VVVWyLOsAjwDclzd9a9sKrHpVpXN+KbNml7PsK1LdoCtV1/8nko+FfPkgb3oXBYW+hVd5qXdZLADkv1gypWH3ztbO6tj+sXP7tdWDFxznXigA+Sm6S3r5KmnZS5nr/S+WTp4sFYezGgsAAMANrpwIAyC7auMpXfN/H+qVj7Y5amOPaqGHv328wsW8HQBZZ9vS+3+U/jNRStY568d9Vzp1KhcoAAAAgByUSqXcjlAQkpatR+du0N/ed17TKC/x667Tu2lwp3LZliX+ixwcy7LoX3iOF/vWjGxXaN6tKl7zesZ6ovUARcZMUaqi62cDHvv+cHC82LsAfQuvoncBuOnlxVvTFsFI0o+GdXYpDYC89em/pZeulKI7nbWy1tI3fiV1H5f9XAAAAC7J+sx3y7L0ySefaM2aNaqurj6oi1Hf//73s5AMyE87qut0yZ8WavEm51GYPxrWWZNO6yWfyY6pQNbV7v3sAsUnzztrgZB0xkNS329mOxUAAAAA5Izd0YQmvrRSizZVO2q9WoY09Rvd1bq82IVkAHAAtq3iT/6p0IJ7ZMad719WIKSaoderrs93JMN0ISAAAABQPzgt9zO2bet3c1eljQ3o0EhtSiz+jnKAl04QA/7L0bfbNyg451YVL3s24/1jPc9W7ajbZQfLJd534CLec+FF9C28yku925An5WZtIUxNTY0mT56s3//+99q9e/dBP84wDBbC5Cg+sOe+FTuiuvKZZdpWHU8b9xnSDSd10f8c30r7qva6Ey6LvPSGj8Lg2/aBQq9eLt++TY5asvnRip76qNS0m8q/ME7fwit4z4UX0bfwKi/1bkNe2ACQn5ZsqdYNL67UzkjCUTvrmOa6fmwnFfuZQA4gt5h71yk8e5KKNr+TsR7vOFqRUXfIKmuT5WQAAABA/eMUps8s3FCl5TuiaWPf7teKv58cxQli8JzVs1X23M9kRrY6SlawQpFRdyre7dTPBuht5Bjec+FF9C28qlB7NysLYSKRiEaPHq1FixbJtu1sfElkQSG+YLzkjdWVmvTyKtUk0ifChYt9uufM7hrcqbxg/xsW6hs+coBtqeSDJ1T69oMyrKSjXHvsRYqeeIPkK5bvS5NY6Vt4Fb0LL6Jv4VX0LoB8YNu2nvlwhx6YvV5JK/06YsBn6PqxnXTOsS1cSgcAX8FKquTDP6j0nYdlpGLOckkTRYb/UvHuZ0gGp3MDAAAA+eRv729Lu92+cbGGd23sThgA+SMelV6/VXrvCWXaDijWeZwio++SXdos69EAAAByRVYWwkyePFnvv/++JGnw4MH6yU9+or59+6px48YyTXZuBOqTbdv6x6LtemjOen1pvojalhfroXN6qEuzUnfCAQXMqNmlshnXqmjDfEfNKm6syLh7Fe88zoVkAAAAAJAb6hIp3f36Ov37k12OWsuyIt37je7q0zrsQjIA+Gq+nZ+obNaN8u9cmrFe1/NsRYfdJLukSZaTAQAAAGhoGyrr9MbqvWlj3+rXSiYL4AEcAd/W96UZ10l71jhqVlFY0eG3KHbUeWy2AQAACl5WFsI888wzMgxDp512ml544QUWvwANJGnZun/mOj2zeIej1rdtWPef1UMVpQEXkgGFLbBxgcpev0ZmzU5HLdF6gKpPfkhWWRsXkgEAAABAbti0t07Xv7BSK3bWOGqDOjTSXWd045oGgNySrFPpu4+q5IMnZNjOU/lSZW0UGTVZiY4jXQgHAAAAIBv+/v42fXF/0rJin87s09y1PAA8LhVT6TuPqOSD30m25SjH2w1RZOxU5pcAAAD8f1lZCLN582ZJ0hVXXMEiGKCBRGJJ3fjSKr29rspRO7VXU908vouK/bz+gKyykip9Z5pK3v+NDKUf0WTLUO3ACaoZeLlkZuXHMQAAAADkpHW7a/Wjv3+iqrqko3bRoNb62bD28pvsbgggd/g3v6uyWRPlq1rnqNkyVHfs9xUdfI1UFMp+OAAAAABZsa8uqZc+Tt8I8exjW6i0yOdSIgBe5tu1TGWvXyv/7k8dNdsfVHTI9ao79nuSwdwvAACA/8rKzNsWLVpo06ZNatasWTa+HFBwNu+t0y+eW6E1u2sdtUtPbKcfDW4jg+Mwgawyq7eobPqVCmxb5KilSlsocvKDSrQb4kIyAAAAAMgdtm3rrtfXOhbBhIpM3XpKV43p0cSlZADgZMSqVfrmvSpZ+veM9WST7oqMnqJk635ZTgYAAAAg255bskN1yc9PbPAZ0jePb+liIgCeZCVVsuh3Kn33ERlWwllvO0D7xk5VolHH7GcDAADIcVlZCDNo0CBt2rRJy5cv1/HHH5+NLwkUjMWbq3Xt8ytUWZs+YaTIZ+jWU7tq/FFNXUoGFK6i1dMVnnWjzNg+Ry3ecaSqx06VXcriUAAAAACYuWKPPthUnTbWuUlQ953VQ52alriUCgCcitbOUGjOL+WLbnfUbDOg2v4/U82ASyVfsQvpAAAAAGRTMmXp6Q/SPxuM7dlUrRrxeQDAwfNVrlF4xnUKbP/QWTQD0uiJ0tArZe2rllKprOcDAADIdVlZCPOLX/xCzz77rH71q1/pm9/8JidTAPXkP8t26Y7/rFE8ZaeNNyn164Gze+iYNmUuJQMKVDKm0IK7VfLRXxwl2/SrZsh1qj3uhxxVCwAAAACSYklLj8zdmDbWulGRnrywj0JFPpdSAUA6o2aXwvNuV/GqVzLWEy2PU2TMFKWa9sxyMgAAAABumbmyUtur42lj3+nfyqU0ADzHthRc8meF3rpPRrLOUU42O0r+838vtTrGhXAAAADekZWFMEOHDtW9996r66+/Xt/61rf029/+Vo0bN87Glwbykm3b+t2bm/XEW5sdtS5NSzTt3J5qU85OI0A2+SrXqGz6FfLvWuaopRp1UPX4aUq27OtCMgAAAADITU+9v1Vb9sXSxq4c2YFFMAByg22r+NNnFXrjLpmxKmfZX6LokGtUd8z3JZP3LQAAAKBQ2LatpxZuTRs7tk1YfVqHXUoEwEvMfZsVnnWDija95ajZhqnafj9VbPBVqmjO4joAAICvk5WFMJJ07bXXqmvXrrrkkkvUvn17nXTSSerRo4dKS0u/9rG//OUvs5AQ8IZY0tId/1mj6Z/udtSGdirXlDO7KVyctZc2AEnFy/6l8LzbZCRqHLVY99MVGXWX7GJOaAIAAACA/9oViet/396SNnZ8uzKN7dHEpUQA8Dlz30aFZ9+soo1vZKzH2w9XZPRkWY3aZTkZAAAAALct2RLR0m3RtDFOgwHwtWxbxcv+pdD8O2UmIo5yqryTqsfdp2TrfvL52HADAADgYGRttvyOHTv03HPPqaqqSpZl6YUXXjjox7IQBvjMnmhC176wQku2OD8QXXB8S109uqP8puFCMqAwGfGIQnNvVXD5846a7Q8qMvyXivW+QDJ4XQIAAADAFz32xibVJqz9tw1J14zuKIPPTwDcZKUUXPInhd5+UEay1lkubqzo8JsU63kO13sAAACAAvW3L50G07pRkUZ1Z2MPAF/NiO5UePZNKl43M2O99pjvKTr0einw9RuKAwAA4HNZWQize/dujRgxQitXrpRt29n4kkDeWb2rRr94doW27IuljZuGdPXojvpWP3YYAbLJt3OpGv3nCvmq1jlqySbdVT3+EaWa9sh+MAAAAADIccu2RfXyxzvTxs7s01xHtQy5lAgAJN/u5QrPmqTA9g8z1mPdT1dk+C9llzbLbjAAAAAAOWPz3jrNWVWZNvbNfq3YsBTAVypa9arCc26RWVfpqKXCrRUZe68S7U90IRkAAID3ZWUhzJQpU7RixQpJ0vnnn6+f//zn6tu3rxo3bswuj8BBeGvtXt340ipF46m08VCRqbvO6K5hXRq7EwwoRLb92c6gC+6VYcUd5dqjv6XosJulQIkL4QAAAAAgt9m2rftnr9MXt8opDZj6+fB2rmUCUOBSMZUufFwl7/9GhpVwlkOtFB11h+Kdx7oQDgAAAEAu+ecH22V94aJGacDU2cc0dy8QgJxl1O1VaN7tCq54MWO97qjzFB1+i+zisiwnAwAAyB9ZWQjz4osvyjAMXXjhhfrTn/6UjS8J5I3/+2C77p+1TqkvHabUqqxI087tqW7NORYTyBajtlLhWTeqeO0MR80qCisyeori3U93IRkAAAAAeMOM5Xu0eHMkbeyHg9uqWajIpUQACpl/6/sKz5okf+WqjPXaPt9RzZDrmZQCAAAAQJFYUi98tCNt7KxjWihcnJWpVwA8JLB+jsKzJskX3e6oWSVNFRl9l+JdTnIhGQAAQH7JyqexzZs3S5J++MMfZuPLAXkhZdl6aM56/WOR80NRn9Yh3X92DyaJAFnk3/Keyl67Sr7INkct0bKvqsc/LKtRexeSAQAAAIA31CUsPTx3Q9pY2/Jifbt/K5cSAShURjyi0rfuV/Cjv8qQ7agnG3dWZPQUJdsOciEdAAAAgFz04sc7FY1b+28bkr7Zr6V7gQDknnhUoQVTVLL0HxnLsa6nKDLqDtklTbMcDAAAID9lZSFMs2bNtHnzZpWVsWsacDCi8ZQmvbRKC9buddRO6tlEt57SVcGAmf1gQCGyUip5/3GVvvuwDNtylGuOv0Q1g6+WfCxMAwAAAIAD+dv7W7WtOp42dsXIDir2c40DQPYE1s9ReM4t8lVvcdRsw6fafj9RzcDLJX+xC+kAAAAA5KKUZeufX9rEdFT3CrVrHHQpEYBc49/ynspmXCffvo2OmlXcSNERtynW4xuSYbiQDgAAID9lZSHM8OHD9Y9//EMff/yx+vXrl40vCXjWtn0xXfXscq3aVeuo/WhwG/30xHYy+VAEZIUZ2a7w61eraPPbjppV0kTV4+5XouNIF5IBAAAAgLfsjMT15Dvpk877tSvTmO4VLiUCUGiM2j0KzZ+s4IoXMtaTzY9W9Zh7lGreO8vJAAAAAOS6uasqtbkqljb23f6tXUoDIKckYyp9+wGVfPi/GU+djXcYrsiYu2WFec8AAACob1lZCHPNNdfoX//6l+6//35dcMEFCgbZEQHI5OOtEV3z3ArtrkmkjQd8hm4+ubNOP7q5S8mAwhNYP0dlr18ns26PoxZvN0SRcQ/ICnPUNQAAAAAcjMfmb1Rt4vNTNg1JV4/uKIPNPgA0NNtW8YqXFJp/Z8brPLY/qJpBV6n2uIslMyu/MgEAAADgMU+9vy3tdu+WIfVtG3YpDYBc4d++ROEZ18lfucpRswOlip44UXVHf5tTYAAAABpIVn6r069fP/3+97/Xj3/8Y5188sn6/e9/rx49emTjSwOeMWP5bt366mrFkum7A5SX+PXAWT10XLsyl5IBBSYVV+lb96v0wz84SrZhquaEq1Tb71LJ9LkQDgAAAAC8Z+nWiF5euitt7KxjmuuoliGXEgEoFGb1FoXn3KKi9XMy1uNtBysyZoqs8o7ZDQYAAADAM5ZujejDzdVpY98Z0IrNPYBClkqodOGvVbLwMRl2ylFOtB6g6nFTud4AAADQwLKyEOaHP/yhJKl3795644031Lt3bx177LHq0aOHSktLD/hYwzD0hz84JyMD+eS1T3dr0svO3QE6NQlq2rk91a4xpygB2WBWbVDZ9CsV2LHEUUuFW6n65IeVbDPAhWQAAAAA4E22beuB2evTxkJFpn42rL1LiQAUBNtS8KO/qfSt+2Qmoo6yVVSm6LBJivX6H3ZlBQAAAHBAXz4NpkU4oHE9mriUBoDbfHtWKvz6tQrs/NhRs80i1Qy+WrXH/ZDNVQEAALIgKwthnnzyyf07IRiGIcuytHjxYi1evPiAj7Ntm4UwyHu7owndM2OtY3xQh0a69xvdVRbMyssUKHhFK19WePZNMuMRRy3WeZwiY++VHWyc/WAAAAAA4GGvLd+jJVvSP2f9cHBbNQ0FXEoEIN/5KlcrPGuiAlvfz1iPdRmvyMjbZIdaZDkZAAAAAK/ZXh3TjBV70sYuOL6V/D7TpUQAXGOlVLL4jyp9+wEZqbijnGx+tKrH3a9U0x4uhAMAAChMWZlh36FDB44EBb7CfTPXaV9d+jGZ5xzbQjeM7cjFEyAbErUKz79TwU/+6SjZZpGiwyaq7pjvsTsoAAAAAByiukRKj8zdkDbWtrxY3+7XyqVEAPJaKq6SRb9T6XuPybCcE1Ks0uaKjLxd8a7jXQgHAAAAwIue/mC7Upa9/3bQb+qcY1lUDxQas2qDymZer8CW9xw12/CpdsDPVTNgguRj8x8AAIBsyspCmHXr1mXjywCeM2flHsfuISf1bKJJJ3Vi8RiQBb7dy1U2/Ur596x01JKNO6t6/CNKNe/tQjIAAAAA8L6/Ltym7dXpk9GvGtVBRX42/gBQv/zblyg860b5dy/PWK/rfYGiQ2+UHSzPcjIAAAAAXlUbT+m5JTvSxs44upnKS7Iy1QpALrBtFS/9h8ILpshI1DjKyYquioy7X8mWx7oQDgAAAHw6A1xSXZfUPTPWpY2Vl/h13RgWwQANzrZV/Mk/FZ53h4xUzFGu63mOIiNvl4pCLoQDAAAAAO/bUR3Xk+9sSRsb0L6RRnWrcCkRgLyUqFHo7YcUXPKkDNtylFONOigy5i4l2g11IRwAAAAAL3t56S7tq0uljX2rP6fcAoXCjGxXePZEFa2f66jZMlTX92JFh1wj+YMupAMAAIDEQhjANQ/P3aBd0UTa2DWjO6pJiGMygYZkxKoVnj1JxatecdTsQKkiI29X7KhzXUgGAAAAAPnjV/M3qi75+aR005CuHt2BzT8A1JvAxgUKz75Jvn0bHTXbMFV73A9VM+gqKVCS/XAAAAAAPM2ybf190ba0seFdGqtTEz5fAHnPtlW84iWF5t0mM1blKKfK2ql63FQl256Q/WwAAABIw0IYwAXvbajS8x/tTBsb2rlcp/Zq6lIioDD4ty9W2fQrM06QSDbrrX3jH5FV0dmFZAAAAAC8xufzuR0hZ320pVqvfLIrbeycY1uqV+tGLiUqbKZpHvA2kIsO1LdGXZVK5k9W8Sf/l/GxyWZHqWbcVKVaHiveqZFtvOfCi+hbeBW9C6AhLVizVxsq69LGvjOA02CAfGfU7lF4zi9VvPrVjPW63t9UdNgk2UXhLCcDAABAJiyEAbKsLpHS5Olr08ZKA6YmndSZXVGBhmJbKvngDyp9+34ZVtJRrj32+4oOvVHyF7sQDgAAAIAXVVRUuB0hJ9m2rYf+/knaWFmxXxPPPEYVYT5z5YLy8nK3IwCHrLy8XLJt6ZMXpFeuk6I7nHfyFUsjr5f/xCvVyMep28gNvOfCi+hbeBW9C6A+PfV++mkw3ZuXakB7NvgA8lnR2pkKz54ks2aXo5YqbaHImClKdBrtQjIAAAB8lXpdCPPfnTANw1AymXSMH44vPxfgdb9ZsEmbq2JpY5eNaK9WjZgMAjQEo2aXymZcp6IN8xw1q7hckbH3Kt7lJBeSAQAAAED+eXHxFn2wYW/a2OVju6kZi2AAHIl9W6V/XyMt/3fmeoch0jcelZp1z24uAAAAAHlnxY6o3tuwL23sO/1bsbEpkKeMeLVC8ycruOyZjPVY9zMUGXGb7BI2RgIAAMg19boQxrbtQxoHCs3SrRHHziF924Z1/nEtXUoE5LfApjcVfu0a+Wqcu4QmWvdX9cnTZJW1cSEZAAAAAOSfmnhS97z6adpYp6al+sHQzi4lAuB5liUt+pP0+i+l2D5nvahMOuk2qf8PJdPMejwAAAAA+efvX5rT0bQ0oPFHNXUpDYCGFNj0lsIzr5eveoujZhU3VmTUHYp3P92FZAAAADgY9boQ5tZbbz2kcaCQJFKW7py+RtYX1oUFfIZuObmLTHYOAeqXlVTpu4+oZOGvZSh9MaYtQ7UDfq6aQVdIZr3+GAQAAABQQCorK92OkHN++8ZGba2qSxu7YmQHRaurFHUpEyTTNFVeXr7/dlVVlSzLcjER8PVM01R5cpf00pXSuvkZ7xPvPFY1oyfLLmstVVVlOSGQGe+58CL6Fl7lpd6tqGAHecArdkXj+s+nu9PGzj+uhYr8LLwH8kqiVqG37lPJkj9lLMc7jlb1mCmyQy2yHAwAAACHgoUwQJb86d2tWrWrNm3skiFt1alpiUuJgPxkVm9R2WtXKbD1fUfNKm2u6pMeUKL9iS4kAwAAAJBPUqmU2xFyyrZ9Mf3xnc1pY4M6NNLwzo34u8oxlmXx3wS5zUqqePH/Su88LCXrnOWSJooM/6Xi3c+QDEOin5HDeM+FF9G38Cp6F0B9eOaDHUqkPt9oschn6Ly+LV1MBKC++bd9qPCMa+Xfu9ZRswIhRYffoliv8z+75gAAAICcxlb4QBas2VWjP7ydPhmkR/NSfX9ga5cSAfmpaM1rCs+8UWbMuQtovMMIVY+7T3ZpMxeSAQAAAEB+e2z+RsWSn+++bBrS1aM7yuAXxgAOgW/nUpXNmij/zqUZ63U9z1F02E2yS9hVHQAAAED9qktYembx9rSxU3s3U5NQwKVEAOpVKq7Sdx9RyaLfyrCdp8jF256gyNipshq1cyEcAAAADkdWFsLMmzdPkjRw4ECVlBzc6Rd1dXV69913JUkjRoxosGxAQ0tZtia/tjZt1xDTkG4Z30V+H8fnAvUiGVPozXtUsuTPjpJt+lUz+FrVHv8jyeA1BwAAAAD17aMt1Xp12e60sXOObaFuzUtdSgTAc5J1n01G+eD3MmznTu6psraKjJqsREd+VwAAAACgYfxn2S7trU2mjX27XyuX0gCoT75dn6psxrXy71rmqNm+YkWHXqe6Yy9iTgkAAIDHZGUhzKhRo2SappYsWaLevXsf1GM2b968/3HJZPLrHwDkqP/7cLuWbImkjV04oLV6tQq5lAjIL2blWjWafoX8uz5x1FKN2qt6/MNKtuzrQjIAAAAAyH+WbeuB2evTxsLFPl16IjsnAjg4/s3vqGzWJPmq1mWoGtIJl2pfv8uU8gWzHQ0AAABAgbBtW0+9vy1tbHCncjb5ALzOSqnkgydU+s40GVbCUU60OFaRk+5XqqKrC+EAAABwpLKyEEb67ENjNh8H5IItVTE9Nn9j2lj7xsX6yVAmgwD1ofjT5xSe+0sZiRpHLdbtNEVGT5FdXOZCMgAAAAAoDP9Ztlsfb42mjf14SFtVlAZcSgTAK4xYtUrfvEclS/+R+Q7Nj5K+8ajUfpBUWSmlnCfFAAAAAEB9eGd9ldbsrk0b+05/ToMBvMzcu1ZlM65TYNsHjppt+lUz8HLV9r9UMrM2fRIAAAD1LGf/JWdZliTJ5/O5nAQ4PLZta8rra1WbsNLGbzq5i4IBjtIEjkg8qvDcWxVc/pyjZPuKFRnxS8V6f1MyDBfCAQAAAEBhqI2n9Kt5G9LGOlQE9c3jW7qUCIBXFK15XaG5t8oX3e6o2WZAdQMnqOSkSZK/2IV0AAAAAArNUwvTT4Pp3CSoIZ3KXUoD4IjYloIf/U2hN++Vkax1lJNNeqj6pPuVan60C+EAAABQn3J2Icz69eslSeXlfLCEN/37k116e11V2ti5fVtoQIdGLiUC8oNv5ycqm36F/HvXOmrJJt1VPf5hpZr2dCEZAAAAABSWP7+3VTsiibSxq0Z1UMDHBiAAMjNqdik873YVr3olYz3R8nhFxkyRWvRSCYtgAAAAAGTB2t21evNLczu+3b+1DDZdBDzHrN6i8KwbVbRxgaNmG6Zqj79ENSdcKfm45gAAAJAPGmQhzIYNGzKOb926VeFw+ICPjcViWr16tW655RYZhqGjj2b1NbxndzShB2evTxtrHg7oihHtXUoE5AHbVvCjvyj0xt0yrLijXNf7m4oMv0UKlLgQDgAAAAAKy7Z9Mf35vS1pYyd0bKThXRq7EwhAbrNtFX/6L4XemCIzVuUsB0oVHXyN6o75nmT6xDnxAAAAALLlqffTT4MpL/HrtN7NXEoD4LDYtoqXP6fQvDtkxqsd5VR5B1WPu0/J1gNcCAcAAICG0iALYTp37uwYs21bJ5988iE/1/e///36iARk1f2z1mlfXSptbOJJnRUuztlDmICcZtTtVXjWjSpe87qjZhWFFRl9l+Ldz3AhGQAAAAAUpkfnbVQsae+/bRrSL0Z1ZLdUAA7mvo0Kz75ZRRvfyFiPdxiuyKjJshq1y3IyAAAAAIVub01Cr3yyM23svL4tFAxw2i3gFUbNLoXn3JxxPokk1R5zoaJDrpeKQllOBgAAgIbWILPybds+pPFMgsGgrrjiCv3whz+sr1hAVsxZuUevL9+TNnZSzyYa0bXCpUSAt/m3LlTZ9Kvki2x11BItjlX1+IdllXdwIRkAAAAAFKbFm6s1/dPdaWPn9W2hbs1LXUoEICdZKQWX/Emhtx+Ukax1losbKzr8ZsV6ni2xiA4AAACAC55ZvCNtow+/aeiC41q6mAjAoShaPV3h2TfLrNvjqKVCrRQZe48SHYa7kAwAAADZ0CALYf74xz+m3b744otlGIbuvPNOtW3b9isfZxiGgsGgWrdureOPP17hcLgh4gENprouqXtmrEsbKw/6dd2YTq7kATzNSqlk0W9U+s7DMuyUo1xz/I9VM/gayVfkQjgAAAAAKEyWbeuB2evTxsqKffrpUE5yAPA5367lCs+eqMD2xRnrse5nKDL8FtmlzbKcDAAAAAA+E09a+r8Pt6eNnXxUUzUL8/tnINcZsX0KzbtdweXPZ6zX9Txb0RG3yi5ulN1gAAAAyKoGWQhz0UUXpd2++OKLJUlnn322evfu3RBfEsgJj8zboF3RRNrYNWM6qkko4FIiwJuM6A6VvX61ija95ahZwSaqHjdViU6jXUgGAAAAAIXtlU926ZNt0bSxS4a2VeNSrn0AkJSKqfS9x1Sy6LcyrKSzHGqlyKg7leg8xoVwAAAAAPC515bv1u4vze/4Tv9WLqUBcLACG+YrPPNG+aLbHDWrpIkioyYr3nW8C8kAAACQbQ2yEObLZs+eLUnq3LlzNr4c4IqFG6r03JKdaWNDO5fr1F5NXUoEeFNg/VyVzbhWZq3z6Np428GKnPSgrDDHUQMAAABAttXEU3ps/sa0sQ4VQf3PcXxGAyD5t76v8KxJ8leuyliv7fNd1Qy9TnZRWZaTAQAAAPlrz549euutt/TBBx9o8+bN2rt3r8LhsHr27KmzzjpL3bt3dztiTrJtW0+9nz6Jvl+7Mh3VMuRSIgBfK1Gj0IJ7VPLx3zKWY11OUmTUZE6fBQAAKCBZWQgzcuTIbHwZwDV1iZQmv7Y2baw0YGriuM4yDMOlVIDHpOIqfftBlX7whKNkG6ZqBl2p2v4/k0yfC+EAAAAAAH96d4t2RtJ3Sr16VAcFfKZLiQDkAiMeUelb9yv40V9lyHbUk407KzLmbiXbDHQhHQAAAJDfXn31Vb3wwgtq2bKl+vbtq0aNGmnr1q1677339N577+nKK6/U0KFD3Y6Zc97fWK0VO2rSxr47oLVLaQB8Hf/WhSqbcZ18VRscNauoTNERtyrW82yJOVoAAAAFJSsLYYB899sFm7VpbyxtbMLw9mpdXuxSIsBbzKoNKnvtKgW2L3bUUuFWqj55GpMlAAAAAMBFW6ti+uvCrWljQzqV68Qujd0JBCAnBNbNVnjOLfJFtjpqtulX7fGXqGbg5ZKf66QAAABAQ+jWrZtuu+029e7dO2182bJluuOOO/TEE09o4MCBCgQCLiXMTU+9n/4Zpn3jYg3v2tidMAC+WjKm0nenqWTRExk334i3P1GRMffIKmvjQjgAAAC4jYUweYCjbt21dGtEf/vSRZK+bcP6n+NbupQI8JaiVa8oPGuizHjEUYt1HqfImHtkl1S4kAwAAAAA8F+PzNugWPLzXzb7DOkXozpwEi5QoIza3QrNn6zgihcz1hPN+ygy9h6lmvXKcjIAAACgsJxwwgkZx3v16qU+ffpo8eLF2rBhg7p27ZrlZLlrY2Wd5q/emzb2rX6tZHKNA8gpvp1LVfb6NfLvWemo2f4SRU+8UXV9viMZnFYNAABQqFgIkwc46tY9iZSlO6evkfWFTQcCPkO3nNyFiyTA10nUKvTGZJUs/YejZJtFn120OPb7HF0LAAAAAC77cFO1Xl++J23svONaqkuzUpcSAXCNbat4xYsKzZ8ss26Ps+wPqmbQVao97mLJ5NcPAAAAyG1VVVVatWqVVq1apdWrV2v16tWqrq6WJI0cOVITJkw46OfauXOnXn31VS1atEi7d++W3+9Xq1atNGTIEI0fP17Fxdk/JdHn86X9Pz7z90Xb0s6VKCv26cw+zV3LA+BLrKRK3n9cpe/9SoaVdJQTrfqpetxUWY07uxAOAAAAuYTfROUBjrp1z5/e3apVu2rTxn48pK06NS1xKRHgDb7dK1Q2/YqMO3ekyjtp3/iHlWrRx4VkAAAAAIAvsmxbD8xenzbWKOjTT4a2dSkRALeY1VsUnnOLitbPyViPtxuiyOi7ZJV3zG4wAAAA4DBdcskl9fI8Cxcu1KOPPqra2s/nDsRisf2La2bOnKmJEyeqVatW9fL1DsauXbv00UcfqaKiQh06dMja1811++qSeunjnWljZx/bQqVFLBYCcoGvcrXCr1+rwI4ljpptFqnmhKtUe/yPJZPXLAAAAFgIkxc46tYda3fX6g9vb04b6968VBcNbO1SIsADbFvFnzyt8Pw7ZCTrHOW6nmcrOvJ22UVhF8IBAAAAAL7s30t3adn2aNrYT4a2U+MSNlwBCoZtKfjRX1X61v0yE1FH2SoqU3TYJMV6/Q8n+wIAAMCzmjVrprZt22rx4sWH9Li1a9dq2rRpisfjCgaDOvvss9WnTx/F43EtWLBAM2fO1NatW3X33XfrnnvuUUlJw2+qmUwm9eijjyqRSOi73/2uTNNs8K/pFc8t2aHahLX/ts+Qvnl8SxcTAZD02bWHxX9S6K37ZKRijnKyWS9Vj3tAqWY9XQgHAACAXFXwC2E46haHI2XZunP6GiVSnx+YaxrSLeM7y+/jIhKQiRGrVnjOTSpe+W9HzfaXKDLydsV6nedCMgAAAABAJjXxlH41f2PaWKcmQZ3ft4VLiQBkm2/PKoVnTVRg26KM9VjXUxQZcavsEO8LAAAA8J7zzz9fXbt2VdeuXdW4cWPt2LFDl1122SE9x5NPPql4PC6fz6ebb75ZPXr02F/r06ePWrdurb/+9a/aunWrXnrpJV1wwQWO5/jzn/+sRCJx0F/ztNNOU+vWmTfotCxLv/71r7Vs2TKNHTtWI0aMOKTvJ58lU5ae/mB72tiYHk3UqlH25/IA+Jy5b5PKZlyvwJZ3HDXbMFXb/1LVDLxc8hW5kA4AAAC5rOAXwnDULQ7H/324XUu2RNLGvjugtXq34hQLIBP/9iUqm36lfPs2OGrJZr1UPf4RpSq6uJAMAAAAAPBV/vjOFu2Opk/E+cWojmwCAhSCVFwli36r0vd+LcOKO8pWaXNFRt6ueNfxLoQDAAAA6kemRSmHYtWqVVq2bJkkafTo0WmLYP7rjDPO0OzZs7V582a9+uqrOvfcc+X3p0/Vef311xWLOU9A+CqDBw/OuBDGsiw9/vjjeuONNzR8+PB6mw+TL2aurNT26vTPN98dkHlBEYAssG0VL/s/heZPzngCbbJxF0XG3adkq+Oynw0AAACeUPALYb6Io25xMLZWxfTYl3ZDbde4WD8d2talREAOsy2VfPi/Kn3rPhlW0lGuPeZ7ip44UfKzyw4AAAAA5JLNe+v0t4Vb08aGdi7XiV0auxMIQNb4ty9WeOaN8u9ZkbFe1/sCRU+cKLu4UZaTAQAAALnl3Xff3f/n0aNHZ7yPaZoaOXKknnrqKUWjUS1dulR9+/ZNu89f/vKXI87y35Ng5s2bpxNPPFETJkxgnsgX2Latp750nePYNmH1ac1mp4AbjOgOlc2apKL1szPWa/v+QNHB10qBhp9jBwAAAO8q+IUwHHWLQ2Hbtqa8vla1CStt/OaTOysY8LmUCshNRu1ulc24XkXr5zhqVnEjRcbcw66hAAAAAJCjHp23UfGUvf+2z/jsNBgAeSxRo9DbDym45EkZtuUopxp1UGTMXUq0G+pCOAAAACD3LF++XJJUXFysLl26fOX9evfunfaYLy+EOVJfXAQzdOhQXX755SyC+ZIlWyJaui39xInv9G/lUhqgsBWtfFnhObfKjO111FJlbRQZO1WJdkOyHwwAAACeU/ALYTjqFofilU926a11VWlj5xzbQgM6lLuUCMhNgU1vKfza1fLV7HDUEq36qfrkabIacYoSAAAAAOSiRRv3acaKPWlj/3N8S3Vuyg6MQL4KbFyg8Oyb5Nu30VGzDVO1x/1INYOuZCdWAAAA4As2bdokSWrVqpV8vq/eOLNNmzaOx9SX/84RmTdvngYPHswimK/w1Pvb0m63blSkUd2buJQGKExGbaXC825V8cp/Z6zX9fofRYffJLuoLMvJAAAA4FUFvxDmSHHUbeHYHU3owdkb0saahwO6cmR7lxIBOchKqvS9R1Xy3mMyZKeVbBmq7X+pak64SjL58QMAAAAAuShl2Xpg9vq0sfKgX5cMaedSIgANyajbq9AbUxT89F8Z68lmvVQ95m6lWhyT5WQAAABAbovH46qurpYkNW3a9ID3DYfDKi4uViwW0+7du+s1xzPPPKO5c+cqGAyqTZs2+te/nP+2HzRokDp16nTQz3mwGQ+0+CeXbKmq0+yV6Rt+fLt/GxUH+J11IfjyvCnmUbnDv3a2QjOul1mz01GzSpupZuw9SnQZJ/7rfIa+hVfRu/Ai+hZeRe9+hk91R4ijbgvH/bPWqaoumTZ247jOChfzMgIkyazeorLXr1Zgy3uOmlXaXNUnPaBE+xNdSAYAAAAAOFgvL92p5Ttq0sZ+MrStyku4/gHkFdtW0epXFZ57m8xa5yQ321ekmoFXqPb4H0u+gAsBAQAAgNxWV1e3/8/BYPBr7x8MBhWLxdIeVx927ty5P8+zzz6b8T4tWrQ4pIUwP/vZzw7qfk8//fRBP6ebHlvwiawv7OEYKvLpByN7qFGQzzqFqLy83O0IhSVWLU2fJC36c+Z677Nlnv6gwqEDLygsdPQtvIrehRfRt/CqQu1dfoN9hDjqtjDMWbVHry9P3yHkpJ5NNLJbhUuJgNxStHaGwjNukBnb66jFOwxX9bj7ZZc2y34wAAAAAMBBi8ZT+vX89OtWnZsEdV7fFi4lAtAQzMg2hebequK1MzLWE20GKjJ6ilIVX73xEwAAAFDo4vH4/j/7/V8/9ea/9/ni4+rDhAkTNGHChHp9znxSXZfQP9/bmDZ2wcD2LIIBsmHtfOmFn0t7NzhrwcbS6Q9Ifc6TDCPr0QAAAJAfWAhzBPL1qNt8O+b2SFXHkrp3xvq0sfKgXzec1KVg/g68jiPAGlAyppIFdyv44ZOOkm36VTv0OsX6XSLT4O/8UNG38Cp6F15E38Kr6F0A9e2Pb2/W7ppE2tjVozvK7+P9BcgLtqXipf9U6M17ZMYjjrIVCKvmxBtUd/S3JK7lAAAAAAdUVFS0/8/JZPJr7//f+3zxcbnq8ccfdztCvXl64SZVxz7/72MY0sVDO7uYCCgAiVpp5h3S27/OXO92kvSNR6VGrbObCwAAAHmHhTBHIF+Pus23Y26P1NRnP9LOSPquLLd+42h1a9fSpUQ4UoV6BFi9271a+tcPpG1LnLXGHWSc978qbT9QpVkPlp/oW3gVvQsvom/hVfQugCOxeW+d/vb+trSxEzs31pDOjd0JBKBemZVrVTb7JgW2vJOxHus0VtFRt8sKMwkFAAAAOBhfnCNyMHNA/nufg5lb4rav2wj2vyorKxs4yZFJWbb+d/7qtLHR3ZuozIypsjLmUipkm2maadfOq6qqZFmWi4nym2/bYoVeu1q+ytWOmh0IqWbEzYof/S0pZUg5/h7iJvoWXkXvwovoW3iVl3q3oqKiwZ6bhTBHgKNu89+bq3fp7++mH9E5okdznXN8W5cSATli8T+lf18tZdg9VL3Pks58RCppnPVYAAAAAIDD8/DcDUqk7P23faahX4zu4GIiAPUilVDJh39Q6bsPy0g5r0tbJU0UGXGr4t1O/2xrZAAAAAAHpaioSGVlZaqurtbu3bsPeN9IJKJY7LOFFwe7yMQLUqmU2xEOaNaKPdpclb7g5dv9WuZ8bjQsy7LogYaQiqt04WMqWfi4DNv595toM0jV46bKatReytEJmrmMvoVX0bvwIvoWXlWovctCmCOQr0fd5tMxt0eiNp7SxGc/ShsrLfJpyjl9ZPBLYRSqWER65Tpp8VPOmj8onXK31P9iJk4AAAAAgIe8v3GfZq1M34HxguNbqlOTEpcSAagPvh0fq2z2JPl3Ls1Yr+t5jqLDbpJd0nA7cQEAAAD5rF27dlq2bJm2bdumVColn8+X8X5btmxJewyy46kvnXzbq2VIx7UtcykNkL98u5erbMZ1Ga8/2L4iRQdfq7rjLpYM04V0AAAAyGcshDkC+XrUbb4cc3ukps1ep/W7a9LGLhvRQSFxTK7XeOkIsFzm2/mJQq9eJl/lGkct1aSbIqf+Slazo6S9e7MfLg/Rt/AqehdeRN/Cq7zUuw151C2AI5OybD0we33aWHmJX5cM4TRcwLOSdSp992GVfPCHjLuwpsraKjJqshIdR7gQDgAAAMgfPXv21LJlyxSLxbRmzRp179494/0++eSTtMeg4X2yLaIPN1enjX13QCs2PQXqk5X67BTatx+SYTlPoU0076PISfcr1STzeyMAAABwpFgIcwQK/ajbfD5C6ZNtEf3lvS1pY8e2Ceu8Y5vn9fddKAr1CLDDZtsKfvRXhRZMkZFyXryo632BIsNvkQKlEn+vDYa+hVfRu/Ai+hZeRe8COBwvfbxTK3akbwRy6dB2ahTksiHgRYFNbys8e5J8VesdNVuG6vpepOgJV0tFIRfSAQAAAPll0KBBev755yVJs2fPzrgQxrIszZ07V5IUCoV09NFHZzNiwfryaTAtwgGN69HEpTRA/jGr1qtsxvUKbF3oqNmmXzUDLlNt/0slX8CFdAAAACgU/Eb7CHHUbf5JpizdOX2tLPvzsYDP0C3ju8hnsjsICotRV6XwrBtVvOY1R80KhBUZfafiPb7hQjIAAAAAwJGKxJL69Rsb08a6NC3ROX1buJQIwOEyYvsUWnCPgp/8M2M92aS7ImPuVrLV8VlOBgAAAOSvbt26qVevXlq2bJlmz56tUaNGqUePHmn3efnll7V582ZJ0qmnniq/P3+m6XzV/Bi37aiOacbyPWlj3+zfWsVFTMgvRKZpHvA2DpFtq+ijv6p0/hQZyVpHOdWku6InP6hUy2OUm+8Q3kDfwqvoXXgRfQuvonc/kz+fsF3CUbf550/vbdXKnek7of5ocFt1blriUiLAHf6t76vstavkq97iqCVaHKPq8Q/LKu/oQjIAAAAAQH3437e3aE9NMm3s6tEd5WcjEMBTita8ptCcW+Wr2eGo2WZANQMmqLb/TyVfkQvpAAAAgNz16aefatu2z08O2bdv3/4/b9u2TXPmzEm7/6hRoxzP8YMf/EC33HKL4vG4Jk+erHPOOUdHH3204vG43nzzTc2YMUOS1Lp1a5155pkN8n24paKiwu0IGf3unU+V/MLOpyUBn340sqcal/KZCFJ5ebnbEbyrarP04mXS6lkZioY09DL5Rt+sRoFg1qPlO/oWXkXvwovoW3hVofYuC2GOEEfd5pe1u2v1+7c2p411b16qiwa1dikR4ALbUsn7v1XpOw/JsFOOcu1xP1J0yLVMngAAAAAAD9u0t05/X7QtbWx4l8Ya3KkwL5ICXmREdyo873YVr341Yz3R8nhFxkxRqmmPjHUAAACg0M2cOXP/XI4vW758uZYvX542lmkhTOfOnXXVVVfp0UcfVW1trf7+97877tO6dWtNnDhRJSVsvpkNo3u20Ipt1Zr56WebBZzXvy2LYIAjYdvSkqelV6+T6qqc9YpO0tmPSx2HZj0aAAAAChsLYY5QIR91m6vH3B4uy7Y1+bW1SqQ+3xnENKRbT+2mIEfkehpHgB08I7pDoelXK7DxDUfNClYoevIDSnYewxG2WUDfwqvoXXgRfQuvoncBHImH525IuwbiNw1dNaqDi4kAHDTbVvGyfym0YIrMmHMCih0oVXTwNao75nuSyVUcAAAAoKENGDBA999/v1555RUtWrRIe/bskd/vV6tWrTR48GCdcsopKi4udjtmwRjUuYkGdW6i1Tsj+uOCtbr4xM5uRwK8K7pLevkqadlLmev9L5ZOniwVh7MaCwAAAJAkw7Zt++vvlr8yHXX717/+VZLUs2dPjR07Nu3+mXb4WLt27f6jboPB4AGPur3nnnvY5SNH/enNdbr1xaVpYz8Z0UWTTuvlUiIgy1bNkJ67VIrudNY6DZfO/Z3UqE32cwEAAABADtq1a5fbEQ7bwg1VuvTpT9PGvtu/lX4xuqNLidCQfD6fKioq9t+urKxUKuU8ARbeYFZtUHjOzSrauCBjPd5hhCKjJstq1DbLyeoXfQuvonfhRfQtvMpLvdusWTO3IwANorKy0u0IwNcyTVPl5Z+fgFxVVSXLslxM5B2B1a+pdOYkmbXO66BWqKWi4+5VstOo7AcrAPQtvIrehRfRt/AqL/XuF6/f1Lf8OJrkCHDULSRpU2WNpv4nfQJIx6al+sW4Hl/xCCCPpBLSrDulBQ87a4YpjZooDb+GHUQBAAAA5KQ9e/borbfe0gcffKDNmzdr7969CofD6tmzp8466yx1797d7Yg5JWXZemD2hrSxxiV+/XiItyfNA3nPSim4+EmF3nlIRrLWWQ5WKDr8ZsV6nCUZhgsBAQAAABSaXF18BhyIZVn07tcwYtUKzb9DwU+fzViv63GWoiNulR0sl/i7zAr6Fl5F78KL6Ft4VaH2bsEvhKkvHHXrXbZt66bnPlY0nv4GcPe5x6ikiIn/yHOV66RnfiRtXuislbWRzvu91OnErMcCAAAAgIP16quv6oUXXlDLli3Vt29fNWrUSFu3btV7772n9957T1deeaWGDh3qdsyc8cJHO7VyZ03a2KUntlNZkMuEQK7y7fpU4VkTFdixJGO9rvuZig6/WXYpO40DAAAAAIDDF9i4QOGZN8gX2eqoWcEKRUbdqXi3U11IBgAAADgV/G+4J0yYoAkTJtTLczVv3lwXXXSRLrroonp5vlyXL8fcvvzxDs1dsTNt7Ny+LdWriS9vvsdC56UjwLIpsPIVlc64QWa82lGLdx6nmpPuk11SIfE6cAV9C6+id+FF9C28yku925BH3QLdunXTbbfdpt69e6eNL1u2THfccYeeeOIJDRw4UIFAwKWEuSMSS+rxNzamjXVtVqKzj23hUiIAB5SKqfS9x1Sy6LcyrKSzHG6lyMg7leg8xoVwAAAAAAAgbyRqFHpzqko++kvGcqzzOEVG38UmHAAAAMgpBb8QBocvH45Q2hNN6P6Z69LGmoUCunx4u7z4/pBZoR4Btl+yTqE37lLJx085SrYZUPTEG1R37A8kw+AY2xxS8H0Lz6J34UX0LbyK3kWhOuGEEzKO9+rVS3369NHixYu1YcMGde3aNcvJcs8f3tqiytr0yfTXjO4ov2m4lAjAV/FvXajwrEnyV67OWK895kLVDLlWdlFZlpMBAAAAAIB84t+6SGUzrpWvar2jZhWFFR1+i2JHnffZHBIAAAAgh7AQBgXtvlnrVFWXPgHkxpM6qSzISwP5ybdnpcr+c4X8e1Y4aqnyjto3/mGlWhzjQjIAAAAAbqiqqtKqVau0atUqrV69WqtXr1Z19WenRo4cOfKQTtHduXOnXn31VS1atEi7d++W3+9Xq1atNGTIEI0fP17FxcUN9W18JZ/Pl/b/hWxjZZ3+vmhb2tiIro01qGP5VzwCgBuMeLVK37pfJR/9NWM92biLImPuVrLNgCwnAwAAAAAAeSUVU+k7j6jkg9/JsJ2nzcfbDVFk7FRZZW1cCAcAAAB8PWb7o2DNXVWp15fvSRs7qWcTjerWxKVEQAOybRUve0bhebfJSNY5ynU9zlJ01B2yi8LZzwYAAADANZdcckm9PM/ChQv16KOPqra2dv9YLBbbv7hm5syZmjhxolq1alUvX+9g7Nq1Sx999JEqKirUoUOHrH3dXDVt7gYlLXv/bb9p6KpRHV1MBODLAutmKzznZvki2xw12/Srtt9PVDPgMsmf/YWFAAAAAPBlbDwCLzBN84C3C5Vv5ycqfe1q+Xd96qjZ/qBqT7xRsb7fl2GY4pWeffQtvIrehRfRt/AqevczLIRBQYrEkrpnxtq0sUZBn64d08mdQEADMuLVCs2+RcGVLzlqtr9EkZG3cYwtAAAAADVr1kxt27bV4sWLD+lxa9eu1bRp0xSPxxUMBnX22WerT58+isfjWrBggWbOnKmtW7fq7rvv1j333KOSkpIG+g4+l0wm9eijjyqRSOi73/1uwV74+69311dp7qrKtLFv9WupDhVBlxIB+CKjdrdC8ycruOLFjPVEi2MUGXO3Us16ZTkZAAAAAHy1iooKtyMAh6y8vMBPR04lpQXTpDn3SFbCWW87QMY5v1Vps24qzXo4fJWC71t4Fr0LL6Jv4VWF2rsshEFBenjuRu2MpH+gu3p0RzUNBVxKBDQM//YlKnvtSvmqNjhqyaZHqfqUR5Sq6OpCMgAAAAC54Pzzz1fXrl3VtWtXNW7cWDt27NBll112SM/x5JNPKh6Py+fz6eabb1aPHj321/r06aPWrVvrr3/9q7Zu3aqXXnpJF1xwgeM5/vznPyuRyPCL169w2mmnqXXr1hlrlmXp17/+tZYtW6axY8dqxIgRh/T95JukZevB2evTxipK/PrxkLYuJQKwn22reMULCs2fLLOu0ln2B1Vzwi9U2/cHksmlfAAAAAAAcAR2rZKev1Ta9J6zZgak0ROloVdKPq5BAAAAwBv4lysKzsIN+/Tckh1pY4M7lev03s1cSgQ0ANtWcPEfFXpzqowMu3jUHnOhoidOlPzs/gsAAAAUskyLUg7FqlWrtGzZMknS6NGj0xbB/NcZZ5yh2bNna/PmzXr11Vd17rnnyu9PvyT1+uuvKxaLHfTXHTx4cMaFMJZl6fHHH9cbb7yh4cOH65JLLjnE7yj/PL9kh1btqk0b+9mw9goXc1kQcJO5b7PCc29R0fq5GevxdkMUGX2XrPKOWU4GAAAAAADyimVJ7z0hvX6rlKx11lv2kc75jdTqmOxnAwAAAI4Av/HGYfP5fG5HOGR1iZTuen1t2lhJwNQtp3R1TMJB/jBN84C3841Ru0elr12ronWzHDWruJFqxk1Votsp8t4ruLAUWt8if9C78CL6Fl5F7yIXvPvuu/v/PHr06Iz3MU1TI0eO1FNPPaVoNKqlS5eqb9++aff5y1/+csRZ/nsSzLx583TiiSdqwoQJBf+6qK5L6jcLNqWNdW9eqrOOae5SIgCyLQWX/EWht++XkahxlK3iRoqeOEmxXudLhuFCQAAAAAA4OJWVzpMtgVxjmqbKy8v3366qqpJlWS4myi5z3yaVvn69ApvedNRsw1Rd/0tVd8KVkr9Y4jWdMwq9b+Fd9C68iL6FV3mpdysqKhrsuZn5j8PWkI3ZUO5+dZk2VtaljV1/ylE6upNzF1nkry+++eedtfOlZy+Rqrc6a+0GyTzv9wpXsJOoF+V13yKv0bvwIvoWXkXvwg3Lly+XJBUXF6tLly5feb/evXunPebLC2GO1BcXwQwdOlSXX355wS+CkaTfv7VZe2uTaWPXjO4gn8nkesANvj0rFZ41UYFtH2Ssx7qeqsiIW2WHWKwGAAAAIPelUim3IwCHzLKswuhd21bxsn8pNP9OmYmIo5wq76Tqcfcp2brf/x8ogL8TDyuYvkXeoXfhRfQtvKpQe5eFMCgYSzbt1RPz1qSN9evQWN8f0smdQEB9SiWleVOluVMl2V8qGtKwX0ijJ0m+gBvpAAAAAOSpTZs+O22kVatWBzw5tk2bNo7H1BfLsvT4449r3rx5Gjx48BEvgtm9e/dB3S/XT8pdv6dW//xge9rY6O5NdELnJi4lgls4QSwHpOIKLnxcwfcek5GKO8pWqIVqRt2hRLdTxH+dz9C38Cp6F15E38Kr6F0AADIzojsVnnOzitfOyFivPeZ7ig69XgqUZjkZAAAAUL9YCIOCkEhZuv6ZJbK+sD6gyGfq3vOOZRdUeF/V5s9OgVm/wFkLtZDO/a3UdUz2cwEAAADIa/F4XNXV1ZKkpk2bHvC+4XBYxcXFisViB73Q5GA988wzmjt3roLBoNq0aaN//etfjvsMGjRInTp1Oqjn+9nPfnZQ93v66acPJWbWXffiKiW/cCEk4DN029nHqqIi5GIq5AJOEMuyTQulFy+XdnySud7v+zJPulPhksZZjeU19C28it6FF9G38Cp6FwAAqWjVqwrPuUVmXaWjlgq3VmTsvUq0P9GFZAAAAED9YyEMDltlpfNDU676w1ub9Om26rSxHw1pq2ZFSU99Hzg8pmmmXfyuqqqSZVkuJqo/gTUzVPr6tTLr9jpqiQ7DFT35Qdmh5hJ97jn53LfIb/QuvIi+hVd5qXcrKircjoAGUFdXt//PwWDwa+8fDAYVi8XSHlcfdu7cuT/Ps88+m/E+LVq0OOiFMPlg/sqdmrFsR9rYD0/srI5NWQQDZE08Ks2aLL39uJyn90qq6Cx94xGp84isRwMAAAAAAPnFqNur0LzbFVzxYsZ63VHnKTr8FtnFZVlOBgAAADQcFsLgsKVSKbcjHJR1u2v12wUb08a6NSvR9we28sz3gPplWZb3/9unYgq9eZ9KFv/RUbINn2oGX6PafpdIhil5/XuFpDzpWxQkehdeRN/Cq+hdZFs8Ht//Z7//6y8x/fc+X3xcfZgwYYImTJhQb8/3+OOP19tzucG2bU39z/K0sWbhIl02pptLiYACtGqm9PJV0t4Nzprhk4ZeJo2aKAVKsh4NAAAAAADkl8D6uQrPmihfdLujZpU0VWT0XYp3OcmFZAAAAEDDYiEM8ppl27rztTVKpD7fddE0pFvGd1HAZ7qYDDh85t61ajT9Svl3LnXUUmVtVX3yNCVb93MhGQAAAIBCUlRUtP/PyWTya+//3/t88XG5qGnTpgd1v1w+Yfau07tq2px1mrVijyTpZ8PaK1kbUWWty8HgCi+dIOZ1Rt1elcy7U8XL/pWxnmzeWzXjpirVoo8UqZNUvydk5RP6Fl5F78KL6Ft4lZd6l5NyAQANIh5VaMHdKln694zlWNdTFBl1h+ySg7veCQAAAHgNC2GQ1575cLsWb46kjX2nfysd3TrsUiLgyBQvf1GhOTfLTEQdtVjXUxQZc7fs4kYuJAMAAABQaILB4P4/19V9/WTu/97ni4/zslw+galNo4CmfqO7Fm6o0gsf7dQZvZvmdF5kFyeINQDbVtGqVxSed7vM2t3Osq9INYOuVO1xP5J8AU7vPQz0LbyK3oUX0bfwKnoXyD6fz+d2BOBrmaZ5wNte5d/8rkpfu0a+fRsdNau4kWpH3aF4z7NkGoYL6XCk8rVvkf/oXXgRfQuvonc/w0IY5K1t+2L61bz0D3xty4t16YntXEoEHIFEjcLzbldw2TOOku0rUnT4Lao7+tsSFzEAAAAAZElRUZHKyspUXV2t3budE7+/KBKJKBaLSTr4E1dw5AZ0KNeADuVff0cAh82MbFNo7q0qXjsjYz3RZpCqR0+RVdE5y8kAAAAAoGFx2hG86IuniXlSok6adaf01mOSbGe961iZ33hUofK2CmU9HBqK5/sWBYvehRfRt/CqQu1dFsIgL9m2rSmvr1VNIv3465vHd1YwwK4k8Bbfrk9VNv0K+StXO2rJiq6qHv+IUs2OciEZAAAAgELXrl07LVu2TNu2bVMqlfrKnUC3bNmS9hgA8DzbUnDpP1T65r0y4xFH2SoKq2boDao7+luSUZi7cAEAAAAAgHq05QPpuUulnZ86a4GQdPKd0oAfsoEqAAAACgYLYZCXXl22W2+urUobO/uY5hrILqjwEttW8OOnFHpjsoxU3FGu6/U/ioz4pRQodSEcAAAAAEg9e/bUsmXLFIvFtGbNGnXv3j3j/T755JO0xwCAl5mVa1U2e5ICW97NWI91HqfoyNtlhVtlORkAAAAAAMg7qYQ0/wFp3n2SlXTWOwyRzv611KRL9rMBAAAALmIhDA7bV+3y6ra6RErT5mxIG2sWDujqMZ1zNjMalmmaB7ydi4y6KpXOvFFFq1511OxASNExU5Q46izR0fnLi30LSPQuvIm+hVfRu8gFgwYN0vPPPy9Jmj17dsaFMJZlae7cuZKkUCiko48+OpsRGwzXGOAV/LyoR6mEihc9oZJ3pmXctMQqaaaaUbcp0f10GYbBdZsjQN/Cq+hdeBF9C6+idwH3VVZWuh0B+Fqmaaq8/PNNc6uqqmRZlouJDo25e6VCr10t/46PHDXbV6TaIdcqdvyPJMMn8ZrMG17vWxQuehdeRN/Cq7zUuxUVFQ323CyEwWFryMY8Uv978SDd8MwSLd9eLUm665xj1aF1c5dTIVd88c0/J218V3rmR1LVBmetdV8Z5/9R4aZds58Lrsr5vgW+Ar0LL6Jv4VX0LtzQrVs39erVS8uWLdPs2bM1atQo9ejRI+0+L7/8sjZv3ixJOvXUU+X358flqFy+LgIcCD8vDtOWD6UXL5O2OSeeSJL6fkfm+LsULm2S1ViFgr6FV9G78CL6Fl5F7wLZl0ql3I4AHDLLsrzRu1ZKJYv/qNK3H8i4GUey+dGqHne/Uk17SLYkL3xPOGye6VvgS+hdeBF9C68q1N7Nj5kHwJcc176xXrp8mH4zd7XW7Ixo/NGt3I4EfD3LkhZMk2ZNluwMP5AGT5DG3Sr5i7MeDQAAAEB++vTTT7Vt27b9t/ft27f/z9u2bdOcOXPS7j9q1CjHc/zgBz/QLbfcong8rsmTJ+ucc87R0UcfrXg8rjfffFMzZsyQJLVu3Vpnnnlmg3wfANBg4jXSnLultx7LfL2mcQfpjGlSt7FZjwYAAAAAAPKPWbVBZTNvUGDLu46abfhUO+DnqhkwQfIFXEgHAAAA5A7Dtm3b7RBAQ7JtW4ZhuB0DOLDq7dJzP5HWzHHWSppIZz8u9Twl67EAAAAA5LfHHntMc+fOPej7P/300xnHFy5cqEcffVS1tbUZ661bt9bEiRPVqhUbVQDwkLXzpBevkCrXZiga0uCfSaNvkorDWY8GAAAAAG7btWuX2xGAr+Xz+dJOdq6srMzdnbJtW8VL/6HwgikyEjWOcrKiqyLj7ley5bEuhEM2eapvgS+gd+FF9C28yku926xZswZ7bk6EwWGrrKx0OwJwUEzTTDsOvaqqSpZluZgonX/9PIWmXy2z1nmhMNH2BEVPeVh2uJXEa66g5HrfAl+F3oUX0bfwKi/17hcvwCA/DRgwQPfff79eeeUVLVq0SHv27JHf71erVq00ePBgnXLKKSouzq/TLbkuAq/w0s+LXGHEqlQy/24VL/1HxnqqaU9Fx92jVKvjpZqEVMP7QX2jb+FV9C68iL6FV3mpd7kuAgD4OmZku8KzJ6povXPTIluG6vperOiQayR/0IV0AAAAQG5iIQwOW66uHAO+jmVZudG/qYRK35mm0kW/cZRsw1TNwMtVO2CCZPqkXMgLV+VM3wKHiN6FF9G38Cp6F4djwoQJmjBhQr08V/PmzXXRRRfpoosuqpfny3W83uBV/Lw4sKLV0xWae5t8NTscNdsMqGbABNX2/6nkK+J6TRbRt/AqehdeRN/Cq+hdAIAn2baKVr6k8NzbZMaqHOVUWTtVj5uqZNsTXAgHAAAA5DYWwgCAC8x9m1Q2/SoFtn/gqKVCLVV98kNcyAAAAAAAAMgSI7pT4Xm3qXj1fzLWE62OV2TM3Uo16Z7dYAAAAAAAIC8ZtXsUnnurile9krFe1/ubig6bJLsonOVkAAAAgDewEAYAsqxo1X8Unj1RZmyfoxbvOFrV46bKLmniQjIAAAAAAIACY9sqXvaMQgumZLxWYwdKFR18reqOufCzU3sBAAAAAACOUNHamQrPniSzZpejliptociYKUp0Gu1CMgAAAMA7WAgDANmSrFPojSkq+fhvjpJtBhQdeoPq+v5AMozsZwMAAAAAACgwZtUGhWffpKJNb2asxzuOVGTUZFllbbKcDAAAAAAA5CMjXq3Q/MkKLnsmYz3W/QxFRtwmu6Qiy8kAAAAA72EhDABkgW/PKpVNv1L+3Z86aqnyDqo++WElWx7rQjIAAAAAwOHw+TgZAt5gmuYBbxckK6niD/+okrcekJGsc5aDFaod+UvFe54twzDEqz376Ft4Fb0LL6Jv4VX0LuA+ro3AC3Lp54V/45sqff06+ao3O2pWsLFqRk9WoscZ4icacqlvgUNB78KL6Ft4Fb37GRbCAEBDsm0VL/uXwvNuk5GsdZTrup+p6Og7ZReVZT8bAAAAAOCwVVSwKyO8qby83O0I7tr2sfTiZdKWDzLX+5wv89R7FQo1Uyi7yXAABd+38Cx6F15E38Kr6F0g+7g2Ai9y5edFvEaaebv0zm8y17uPl/mNRxQua5XdXPAM/p0Dr6J34UX0LbyqUHuXhTAA0ECMeEShObcouOJFR832BxUZcZtivc6XDMOFdAAAAAAAAAUkUSfNu09aME2yks56o3bSGQ9KPcZnPRoAAAAAAMhTmxZKz/1U2r3KWSsKS6fcIx1/IfNGAAAAgMPAQhgAaAC+HR+p0fQr5ata76glm/ZU9fhHlGrSzYVkAAAAAAAABWb9W9KLl0u7V2auD7xEGnerVMyJvQAAAAAAoB4k49Lce6U3HpRsy1nvNFw66zGpomP2swEAAAB5goUwAFCfbFvBxU8q9Oa9MqyEo1zb57uKDpsk+YMuhAMAAAAA1JfKykq3IwAHxTTNtOPQq6qqZFkZJmDko1i1St6cquCSv2Qspyq6KjruXqXaDJBqklINr+tcUdB9C0+jd+FF9C28yku9W1FR4XYEoEFwbQRe4MbPC3PXpwq9drX8Oz9x1GxfsWpPvEGx434gyZR4HSEDL/07B/giehdeRN/Cq7zUuw15XYSFMDhsPp/P7QjAQTFN84C364tRu0elr1+norUzHTWrqEw146Yq0f1U8crBwchW3wL1jd6FF9G38Cp6F3BXKpVyOwJwWCzLKoj+DaybrfCcm+WLbHPUbNOv2n4/Vc2ACZK/WCqAvw+vK5S+Rf6hd+FF9C28it4Fso/XHLyoQX9eWCmVfPCESt+ZlnHj1ETLvoqMu0+piq6SZUviNYSDw79z4FX0LryIvoVXFWrvshAGh42da+BVX1wFWW/WvSH96xKpeouz1m6gzPP+oDBH2uIINEjfAllA78KL6Ft4Fb0LAIBk1O5WaN6dCq58KWM90eJYRcbcrVSzo7KcDAAAAAAA5Ctz71qVzbhOgW0fOGq26VfNwMtV2/9SyWSqHgAAAFBf+Nc1ABwJKyXNu0+ae69kZzhWbNgvpNE3Sb5A9rMBAAAAAAAUCttW8fLnFXrjLpl1lc6yP6joCVerru8PJJPzegEAAAAAQD2wLQU/+ptCb94rI1nrKCeb9FD1Sfcr1fxoF8IBAAAA+Y2FMABwuPZt+ewUmPVvOGuh5tI5v5W6jc1+LgAAAAAAgAJi7tus8JybVbRhXsZ6vN1QRUbfJau8Q5aTAQAAAACAfGVWb1F41o0q2rjAUbMNU7XHX6KaE66UfMUupAMAAADyHwthcNgqK507KwK5yDRNlZeX779dVVUly8pwessh8K+dpdBr12TcYTTRfpii4x+UHWoh8TrBYWqIvgWygd6FF9G38Cov9W5FRYXbEQAA+chKKfjRXxR6+wEZiRpnubiRoifepFiv8yTDcCEgAAAAAADIO7at4uXPKTTvDpnxakc5Vd5B1ePuU7L1ABfCAQAAAIWDhTA4bKlUyu0IwGGxLOvw+zcVV+jN+1Sy+H8dJdvwqWbw1art9xPJMCVeI6hHR9S3gIvoXXgRfQuvoneB7PL5fG5HAA6KaZoHvO1V5u6VCs24Xv5tH2Ssx7udpppRt8kOtRCvVu/J175F/qN34UX0LbyK3gUAuMGo2aXwnJtVvOb1jPXaYy5UdMj1UlEoy8kAAACAwsNCGAA4SObedSqbfqUCOz921FJlbVR98jQlW/d3IRkAAAAAINs46Qhe9cXTxDwpGZfeeFCad79kJZz1cCvp9AdU1OsMFWU/HRqI5/sWBYvehRfRt/AqehcA0NCKVk9XeM7NMmv3OGqpUCtFxt6jRIfhLiQDAAAAChMLYQDgIBSteFHh2bfITEQctViXkxUZc4/sIBfYAQAAAAAAGsymhdILl0k7l2Wu97tIOukOqaRxVmMBAAAAAID8ZcT2KTTvdgWXP5+xXtfzbEVH3Cq7uFF2gwEAAAAFjoUwAHAgiRqF592h4LL/c5RsX5Giw25SXZ/vSobhQjgAAAAAAIACEItIsyZL7/xGku2sN+kinfmI1JldVwEAAAAAQP0JbJiv8Mwb5Ytuc9SskiaKjJqseNfxLiQDAAAAwEIYAPgKvl3LVTb9CvkrVzlqycZdVH3KI0o16+VCMgAAAACA2yorK92OABwU0zRVXv75KbZVVVWyLMvFRIfGv36eSmdOlK96s6NmGz7F+v1YtYN/IfmDEq/LvOH1vkXhonfhRfQtvMpLvVtRUeF2BADAoUrUKLTgHpV8/LeM5ViXkxQZNVl2abMsBwMAAADwXyyEAYAvs20Fl/5dofmTZaRijnLdUecpMvI2KVCa/WwAAAAAgJyQSqXcjgAcFsuyPNG/Rm2lQm/cpeDy5zLWk816q3rM3Uq16PPZgAe+Jxw+r/Qt8GX0LryIvoVX0bsAgPri37pQZTOuk69qg6NmFZUpOuJWxXqeLRlG9sMBAAAA2I+FMADwBUZsn8KzJql49auOmhUIKTrqjs8uaAAAAAAAAKD+2baKVv1b4Xl3yKzd7Sz7ilUz6ErVHvdDyRdwISAAAAAAQJJ8Pp/bEYCvZZrmAW+nScZU8vaDKn7/dzJkO8qJ9sMUPWmq7LI2ovvRkA6pb4EcQu/Ci+hbeBW9+xkWwgDA/+ff9oHKpl8pX/VmRy3Z/GjtG/+wrMadXUgGAAAAAACQ/8zIVoXm3KridTMz1hNtTlD1mLu4PgMAAAAAOaCiosLtCMAhKy8vz1zYulh67lJpxyfOWqBUOukOBQb8SI0LdIIh3PWVfQvkOHoXXkTfwqsKtXdZCAMAtqWSRU+o9J0HZVhJR7m278WKDr1O8hW7EA4AAAAAACDP2ZaCS/+h0gX3ykxEHGWrKKzo0BsVO/qbksGEEwAAAAAAUE9SSemNh6S590gZ5ouo/QnS2Y9LTbtmPxsAAACAA2IhDICCZtTsUtnr16po43xHzSpurMi4qYp3HutCMgAAAAAAgPxnVq5V2exJCmx5N2M91nmcoiNvlxVuleVkAAAAAAAgr+1cIT33U2nLImfNVySNniQNvUIyfdnPBgAAAOBrsRAGQMEKbFygstevllmzy1FLtBmo6pMfkhVu7UIyAAAAAACAPJdKqOSD36v0vUdkpOKOslXSVJGRtyne9VTJMFwICAAAAAA4kMrKSrcjAF/LNE2Vl5fvv11VVSUrlVTxh39UyYKpMlIxx2OSzXopOv4hWc2Okqr2ZTMuIOkr+tayXEwEHBx6F15E38KrvNS7FRUVDfbcLITBYfP52PEA3mCaZvptO6Xg2w8ouPBxGbLTarYM1Z1wheoGXS7D9Isuh1scfful20CuonfhRfQtvIreBQB4lW/HRyqbNVH+Xcsy1uuOOk/RYZNkBxtnNxgAAAAA4KClUim3IwCHbu96hV67VkWb33GUbMNUbf9LVTPw8s9OhKHHkSMsy+I9F55E78KL6Ft4VaH2LgthcNgacoUW0GD2blD5cz+WNjovaqistYxzn1BJ5+EqyX4y4IC+uHoX8BJ6F15E38Kr6F0gu9ggBF6RUwsnE7UqeWeaihc9IcN27kqVatRONWPuVrLjcLG8s7DlVN8Ch4DehRfRt/AqehcAcEhsW/rgL2r0n4ky4hFHOdm4iyLj7lOy1XHZzwYAAADgsLAQBkDh+ORF6cXLpLoqZ637ydLZj0uhZtnPBQAAAADwHDYIgVe5tnBy7TzpxSukyrXOmmFKJ/xMvjE3qawolP1syHks+IVX0bvwIvoWXkXvAgC+UvW2z65JrJwuI0O5tu8PFB18rRRgy1QAAADAS1gIAyD/Jeqk126S3vu9s2YGpHG3SYN/LrFTFAAAAAAAQP2q3Su9fou06M+Z6y16S9/4ldSuf1ZjAQAAAACA/BdY8bI05xapttJRS5W1UWTsVCXaDXEhGQAAAIAjxUIYHLbKSueHRCDXmHtWKfzq5fLtWuaopco7KHrKo0q16itVZTglBnCRaZppu5dVVVXJsiwXEwEHh96FF9G38Cov9S4nZwBAgfrkRemVa6XIdmfNVySNuE468SrJX5T1aAAAAAAAIH8ZtZUKz7tNxStfzliv6/U/ig6/SXZRWXaDAQAAAKg3LITBYUulUm5HAL6abav4038pPPc2GclaRznW/QxFRk/+7KIGvQwPsCyL9114Er0LL6Jv4VX0LpBdbBACr3Bj4aQR3aHSObeqaNWrGevJ1v0VHXuPrKbdpeqopGiD5oH3eGnBL/BF9C68iL6FV3mpd9kgBACyK7ButspmTZRZs9NRs0qbKTJ6iuKdx7qQDAAAAEB9YiEMgLxjxCMKzb1VweXPO4v+EkVH3qbao86TDCPr2QAAAAAA+YGFZ/CqBl04adsqXvZ/Ci24W2Zsn/NrB0KqGXKt6o65UDJMNifBQWPBL7yK3oUX0bfwKnoXAGDEIwq9cZeCnzyd+Q69z9a+Yb9Usqg8cx0AAACAp7AQBkBe8e34WI2mXyFf1XpnsUVv6fw/Kh5oyUQLAAAAAACAemRWrVd49k0q2vRWxnq840hFRk2WVdYmy8kAAAAAAEC+829+R2UzrpevepOzGGwsnf6A1Oc82Xv3Ml8EAAAAyBMshAGQH2xbwSV/UmjBvTKsuLM+4IfS+ClSoESqrMx+PgAAAAAAgHxkJVXy4R9V+u40Gck6ZzlYoejwWxTr8Q1O5wUAAAAAAPUrWafQWw8ouPiPMmQ7yomOoxQ47zdSo9YuhAMAAADQkFgIA8DzjNpKhWfeoOJ1Mx01q6hMNePuUXjQhS4kAwAAAAAAyF++XcsUnjVRgR0fZazX9ThL0eE3yS5pmuVkAAAAAAAg3/m3L1F4xrXyV6521KxASNFhk5Q85juqaNTEhXQAAAAAGhoLYQB4mn/zuyp77RfyRbc5aomWx6l6/DQZFZ2yHwwAAAAAACBfJWMqfe9RlXzwhAwr6Sinwq0VGXWnEp1GuxAOAAAAAADktVRCpQt/pZKFj8uwU45yos0gVY+bKqtRe/k4nRYAAADIWyyEAeBNVkolC3+t0vcekWFbjnJNv5+q5oRfSL6AfC7EAwAAAAAAyEf+Le8pPGuS/HvXOGq2DNUdc6FqhlwruyjsQjoAAAAAAJDPfLuXq2zGdfLvXOqo2b4iRQdfq7rjLpYM04V0AAAAALKJhTAAPMeMbFf49V+oaPM7jppV0kTV4x5QouMIF5IBAAAAAADkJyNerdI371PJx3/LWE9WdFVkzBQlWw/IcjIAAAAAAJD3rJRKPvyDSt9+SIYVd5QTzfsoctL9SjXp7kI4AAAAAG5gIQwATwmsm62yGdfLrNvjqMXbDVX1SQ/IDrVwIRkAAAAAAEB+CqydpfDcW+SLbHPUbNOv2v6XqmbAzyVfsQvpAAAAAABAPjOr1qtsxvUKbF3oqNmmXzUDLlNt/0slX8CFdAAAAADcwkIYAN6Qiqv0rftV+uEfHCXb8KnmhKtU2++nkulzIRwAAAAAAED+MWp2KTz/ThWvfDljPdHiWEXG3KNUs55ZTgYAAAAAcJvPx+/m0cBsW0Uf/U2lb0yRkahxlFNNuit68oNKtTxGX9WNpmke8DaQi+hbeBW9Cy+ib+FV9O5nWAgDIOeZVetVNv1KBXZ85Kilwq1VPX6akq0HuJAMAAAAAAAgD9m2ipc/r9D8yTJje51lf1DRwdeo7tiL2JQEAAAAAApURUWF2xGQz/ZtkV64TFo9M0PRkIZeJt/om9UoEDykpy0vL6+ffEAW0bfwKnoXXkTfwqsKtXdZCAMgpxWtfFnhWTfJTEQctViXkxQZc4/sYOPsBwMAAAAAFDR2PYVXHOqOUOa+TSqdNUmB9fMy1hPth6lm7BRZ5R2+crdV4Eixkxm8it6FF9G38Cp6FwDylG1LS56WXr1Oqqty1is6SWc/LnUcmvVoAAAAAHILC2EA5KZErcLz71Dwk6cdJdssUnTYJNUdc6FkGC6EAwAAAAAUOnY9hVd95Y5QVkp69wlp5h1SIuqsBxtL46cocNx3VM71GGRZoe5kBu+jd+FF9C28it4FgDwQ3SW9fJW07KXM9f4XSydPlorDWY0FAAAAIDexEAZAzvHtXq6y6VfKv2elo5Zs3FnV4x9RqnlvF5IBAAAAAADkoR3LpBcvlza9l7ne+2zp1KlSWcusxgIAAAAA5K7Kykq3IyCPBFa/ptKZk2TW7nLUrFBLRcfdq2SnUVJNQqo5+N4zTTNtsWRVVZUsy6qPyECDoW/hVfQuvIi+hVd5qXcbcoNJFsIAyB22reKl/1B4/p0yUjFHue6ocxUZcZtUFMp+NgAAAAAAgHyTjEtvPCjNu1+yEs56WWvp9Aeko07PfjYAAAAAQE5LpVJuR0AeMGLVCs2/Q8FPn81Yr+txlqIjbpUdLJfqoecsy6J34Tn0LbyK3oUX0bfwqkLtXRbC4LD5fD63IyCPGLEqlc6cpKKV/3bU7ECpakZPVrzXuTqcrjNN84C3gVxE38Kr6F14EX0Lr6J3AXex6ym84qt2hPJtXaTQzBvl270i4+Nifb6t2mE3yi4ul+h3ZJmXdjIDvojehRfRt/AqL/VuQ+58CgBeFti4QOGZN8gX2eqoWcEKRUbdqXi3U11IBgAAAMALWAiDw8YFO9SbTQulZy6W9m5w1lodK+P8PyrUrJvq6xyYL14UB7yCvoVX0bvwIvoWXkXvAtlViDvqID9YddUKLpiq4JI/y5DtqKfKO6p6zN1Ktj3h/w/Q63Bfoe5kBu+jd+FF9C28it4FAA9J1Cr05r0q+egvGcuxzuMUGX2X7NJmWQ4GAAAAwEtYCAPAPZYlvfWoNPMOyUo66ydcKp10h+Qvzn42AAAAAACAfLNqhhq9cIV81ZsdJdvwqfb4H6tm0BWSP+hCOAAAAAAAkO/8WxepbMZ18lWtc9SsorCiw29R7KjzJMPIfjgAAAAAnsJCGADuiOyUnvuptHqms1ZSIZ31a+mo07KfCwAAAAAAIN/U7JH+M1Fa8g/5MpSTzY9W9egpSrXok/VoAAAAAACgAKRiKn3nEZV88DsZtuUox9sNUWTsVFllbVwIBwAAAMCLWAiDw1ZZWel2BHiUf8MChaZfJbNmp6OWaDNQ0VMell3WRqqnHjNNU+Xl5ftvV1VVybKcF1aAXELfwqvoXXgRfQuv8lLvVlRUuB0BAAqTbSuw/EVp3h1SzS5n2VesmkFXqvb4H0kml4oBAAAAAED98+1aprLXr5V/96eOmu0PKjr0BtUdc6FkmC6kAwAAAOBV/HYThy2VSrkdAV5jJVX67sMqWfi4DNlpJVuGagdOUM3Ayz+beNGA/WVZFv0Lz6Fv4VX0LryIvoVX0bsAgC8yI1sVnvNLFa2blbGeaHOCqsfcJatx5ywnAwAAAAAABcFKqmTR71T67iMyrISjnGh5vKrH3SergmsTAAAAAA4dC2EAZIVZvUVlr12lwNb3HbVUaQtFTn5QiXZDXEgGAAAAAACQR2xLwY//rtI3p8pMRJzlojJFht6g2NHfZKdVAAAAAADQIMzKtSqbcZ0C2z9w1Gwz8NkJtf0u4YRaAAAAAIeNTxMAGlzRmtcUnnmjzFiVoxbvOFLVY6fKLm3mQjIAAAAAAID84atco/DsSQpseS/zHXqerqphtyhZ0jy7wQAAAAAAQGGwLQWX/EWht6bKSNY5ysmmR6n6pPuVatbLhXAAAAAA8gkLYQA0nGRMoQV3q+SjvzhKtulXzZDrVHvcD9l9FAAAAAAA4EikEir54AmVvveojFTcWQ81l067X+p9luy9e6VUKusRAQAAAABAfjOrtyg883oVbXrLUbMNU7X9fqqaQZdLvmIX0gEAAADINyyEAdAgfJVrVDb9Svl3feKopRq1V/X4h5Vs2deFZAAAAAAAAPnDv32JwrMnyb9rWcZ6rNf5Kj7zPqm0SZaTAQAAAACAgmDbKv70XwrNv1NmPOIop8o7qXrcfUq27udCOAAAAAD5ioUwAOpd8afPKjz3VhmJGkct1u00RUZPkV1c5kIyAAAAAACAPJGoVem701Ty4f/KsC1HOdWovSKj75LVaYSKSytcCAgAAAAAAPKdEd2p8JybVbx2RsZ67THfU3To9VKgNMvJAAAA/l97dx4mV1nmjf+u6r3TSaezQEJAloQ1LAZCBNmSIIpsosOLy7jhDAqDo76jjqIyqKDA4IaOg9tPUREQFZGwuAAhQAATCPsWEvYsLEmn03unu+r3B2/aFN1JOqHTp0/V53NdXlPnec45dXfynaRyU895gGJnIQwweLpao27ef0X1k9f2mcqXV0fLEf8VnfucGpHJDH1tAAAAAEWi4sW7om7ul6Os6fk+c/lMNjoOOC1a3/KZiIraKBv68gAAAIASULnkpqi77ZzIdjT2meupmxgtR18U63Y6LIHKAACAUmAhDDAoyl55NEb9+VNR1vRsn7nuMbtH8zu+Hz1j9xj6wgAAAACKRKajKUbcdWFUP3Z1v/PdY/eMltkXRPf2BwxxZQAAAECpyHQ0xYjbvxrVi6/rd75jr3+K1iPOiXzVyKEtDAAAKCkWwgBvTD4f1Q/9KkbMvzAyua4+0+1T3xeth38loqImgeIAAABg2ygrs88GQ6tiyZ+jdu45kW17pc9cvqwyOmb8e3Qc9ImIssqCXWCy2WzBua8/huFIbkkr2SWN5Ja0kl2AZFQ8Ny/qbj07ylpf6jOXqxkbLbO+EV27HZNAZQAAQKmxEAbYapn2xqi79YtR9czNfeZylXXRMuub0bX78QlUBgAAANtWQ0ND0iVQKppXRtz4uYjH5/Q/v9MhkTnp+1Ezfs8YyGNI6uvrB7U8GApyS1rJLmkkt6SV7AJsY12tMWL+BVHz6JX9TndOPjZaZn498jVjh7gwAACgVFkIA2yV8uULY+RfPxNlLSv7zK3b/oBofsclkRu1UwKVAQAAABSBfD5i0a8i/npORGdT3/nKuoi3fTVi+r9EePo1AAAAsI2UL18YI2/+fJStfaHPXK5qVLQe+dXo3OOkiEwmgeoAAIBSZSEMsGVyPVFz36VRu+CSyORzfabbpp0ebYf8R0RZZQLFAQAAABSBVUsj5nw64tk7+p/f/e0Rx38nYrSHkDoybS0AAF+HSURBVAAAAADbSHdn1P79O1Fz//8Xmcj3me560xHRMvuCyNVNTKA4AACg1FkIAwxYtuWlqPvbf0Tlsnv6zOVqxkTz274V63Y+KoHKAAAAYGg1NjYmXQLFKNcdVff/PGru+U5kujv6TteMibYjz411e54Ukc9EDCCH2Ww26uvre4+bmpoil+v7cBMYTuSWtJJd0khuSas0ZbehoSHpEgC2WNnLD8fImz8f5auf6jOXr6iN1sPOjo6p77cLDAAAkBgLYYABqXjuthh58+cj2766z1zXjodGy9u+Hbm67ROoDAAAAIZeT09P0iVQZMpeeSzqbj07Kl55pN/5jj3eFa1HfCXyNWMi3sAX/HK5nPySOnJLWskuaSS3pJXswtArKytLugS2hZ51Ub3wh1G98H8ik+vuM71uh4Oj7ZhvRW70zpGGBGSz2U0ew3Akt6SV7JJGcktaye5rLIQBNq2nK2rv+XbU3v+zPlP5TDba3vKZaD/wjIhsGlocAAAAAMNMd2fULvxB1Cz6SWTyfb+411M3MVpmnR/rdp459LUBAADARtjtqAi9/ETEtWdELL+/71xZZcTsc6Li0LOiPsXfD9lwNzFIC7klrWSXNJJb0qpUs2shDLBR2abnY+RfPxMVLz3YZ66nbkI0v/2S6N5hegKVAQAAAKRf+fKFUXfr2VG+5pk+c/nIRMd+H4y2Qz8X+cq6BKoDAAAASkIuF3HP/0bc8vWIns6+8xMPiHj3jyO223voawMAANgIC2GAflU+dUPUzf1SZLta+sx17vq2aDn6oshXjx76wgAAAABSLtPVHLV3/XfUPHJFv/PdDVOiZfY3o3viQUNcGQAAAFBSVj8T8aezIp6b33cuUxZx5Ocijvx8RFnF0NcGAACwCRbCAIXWtUfdHedF9WO/7TOVz1ZG62FfjI79PxyRySRQHAAAAEC6VT5zS4y47b+irHVln7l8tjzaDzoj2qb/W0RZVQLVAQAAwMA0NjYmXQJvRD4flY9cGbV3nB+ZdW19pnsaJkfr278TPRMOiFjb9wGqaZHNZqO+vr73uKmpKXK5XIIVwebJLWklu6SR3JJWacpuQ0PDNru3hTBAr7JVi2PkXz4V5auf6jPXPXrXaH7HJdEzfmoClQEAAACkW6bt1ai74+tR9dQN/c6v2/6AaJl1QfSM23OIKwMAAIAt19PTk3QJbKVsy0tRN/fsqHxuXp+5fGSi44DTovXQz0aUV0cU2e9zLpeTXVJHbkkr2SWN5Ja0KtXsWggDROTzUfXYb6PujvMi093RZ7pjz3dHy1Ffi6gckUBxAAAAACmWz0fVk3+MEXd8I7Kda/pOl9dE6yGffW0H3mzZ0NcHAAAAlIZ8PiqfmhN1874a2c6mPtM9I3eM5rf9d3RPeksCxQEAAGwZC2HYamVl/sN8UehcGyNu/VJULr6+z1S+ojbaZp0XXXv/U6T5dzubzW7yGIYjuSWtZJc0klvSSnYBhr/s2hej7ravROXzd/Q737XT4dEy6/zIjdppiCsDAAAASkmmfXXUzTs3qpbc2O98xz7vjdbDvxT5yrohrgwAAGDrWAjDVmtoaEi6BN6oF++L+P1pEWue6zs3Yb/InHJZjBg3JYptH5j6+vqkS4AtJrekleySRnJLWskuwDCS64nqh38VI+75TmTWtfWdrqqP1sO/HJ17vScik0mgQAAAAKBUVDxza4yce3Zk217tM9dTu120zP5mrNtlVgKVAQAAbD0LYaAU5XIRd/9PxC1fi8h1952f8YmIY74eUVE99LUBAAAApFjZqsVRd+vZUfHSA/3Od045LlqOPDfyteOGtjAAAACgpGS6mmPEHd+I6sd/1+985+4nRMuRX418jQfhAgAA6WMhDJSallcirj0jYsnNfeeqR0ec/L8Rex0/5GUBAAAApFpPZ9Te+6Ooue/SyOTW9Z0esX20HvW16NrtmASKAwAAAEpJxYt3R90t/xllzcv7zOWqRkfLzK9H1+6+GwIAAKSXhTBstcbGxqRLYAuVv3BXjPjLZyLb+nKfue6J06Pl2EsiP2pSRJH93maz2aivr+89bmpqilwul2BFsHlyS1rJLmkkt6RVmrLb0OCJgkBxK1+xKOrmfinKVz/V73z71PdH21u/EPmqkUNcGQAAAFBS1rXHiLsvjpqHftnvdNfOs6J59jcjP2K7IS4MAABgcFkIw1br6elJugQGKtcdtQu+HzX3/m9kIl8wlY9MtE//t2ib8amIbHlECfy+5nI5+SV15Ja0kl3SSG5JK9kFSEBXa4y459tR/dCv+vRcIiJ66neJ5tnfjO5Jb0mgOAAAAKCUlK98IOpu/nyUr3m6z1yuYkS0HnFOdO59SkQmk0B1AAAAg8tCGChy2eblMfKv/zcqVtzbZy5XOz6aj/l2rNvpsAQqAwAAAEiviuduj7rbvhJlzcv6zOUzZdE+7fRom/HvEeXVCVQHAAAAlIyerqhd+IOoue9Hkcn33TW8a9JbouXo/47cqB0TKA4AAGDbsBAGiljl03+Lulu+ENnOpj5zXW86Iprf9q3I145LoDIAAACAdMq0r44Rd34jqp+8tt/57vFTo3n2BdEzfurQFgYAAACUnLJXn4yRN38uyl99rM9cvqwqWt/6+ejY/yMRmWwC1QEAAGw7FsJAMerpjBHzL4yah37VZyqfLY+2Qz4b7dP+VaMDAAAAYKDy+ah8ak7U3XFeZNtX950uq4q2t3w62t/8LxFZbVcAAABgG8r1RM39P4vav38vMrmuPtPrtj8gWt52cfQ0TE6gOAAAgG3Pf5GFIpNtfCZG/fXTUf7Ko33mekbuGM3vuCS6J7x56AsDAAAASKls8/Kom3duVD57a7/zXZPeEi2zvhG50bsOcWUAAABAqcmueTZG3vz5qFi5qM9cPlsebQf/e7QfdIYHdQAAAEXNv3igiFQ98ceom/dfkVnX1meuc8px0TLrG5GvGpVAZQAAAAAplM9F9SNXRO1dF0d2XUuf6VzlyGg97IvRuc+pdt4FAAAAtq18Lqof/k2MuOuiyHS395nuHrNHNB/zregZPzWB4gAAAIaWhTBQDLpao+72r0b1E9f0mcqXVUXLkf8Vnfu8NyKTGfraAAAAoAiVlZUlXQLbWHb1kqi95eyoWL6w3/muyW+PtpnnRb5u+xjOachms5s8huFIbkkr2SWN5Ja0kl2g1GSbl0fdrV+Myhfm95nLZ7LRPu30aHvLpyPKqhKoDgAAYOhZCAMpV/bKYzHyL5+K8jXP9JnrHrN7NL/jkugZu2cClQEAAEDxamhoSLoEtpWedRHzvxcx778jerr6zo/YLuK4i6Nyn3dFZQofOlJfX590CbDF5Ja0kl3SSG5JK9kFilY+H1VP/jFG3P71yHY195nuqX9TNL/t4uieOD2B4gAAAJJjIQykVT4f1Q9fHiPmfzMy/Xwpo2Of90bLEedEVNQkUBwAAABACi1bFHHdv0e89Ej/89M+GHHMeRG1Y4a2LgAAAKDkZNpejbrbvhJVT/+t3/n2/T4YrYf+Z0TliCGuDAAAIHkWwkAKZTrWRN2tX+y32ZGrrIuWWd+Irt1PSKAyAAAAgBTqaouY+42Ie/43Ip/rO9+wS8SJl0TsNnOoKwMAAABKUOXSv0TdbV+JbPvqPnM9IyZEy9EXxro3HZFAZQAAAMODhTCQMuUr7o2Rf/lMlLWs6DO3brv9o/kdl0Su/k0JVAYAAAClo7GxMekSGCTlz8+P2lvPjrKm5/vM5TPZ6Hzzx6L90P+IqKiNSOHvezabjfr6+t7jpqamyOX6WewDw4jcklaySxrJLWmVpuw2NDQkXQKQIpnOtTHi9q9F9ZPX9jvfsefJ0XrkuZGvGjW0hQEAAAwzFsJAWuR6ombRj6L275dEJt/TZ7pt2r9G2yGfjSirTKA4AAAAKC09PX3/bU66ZDqaYsT8C6L68d/1O989ds9omX1hdG+//2sDRfJ7nsvl5JfUkVvSSnZJI7klrWQXKAYVz98Zdbd+IcpaVvaZy9WMiZaZ50fX5HckUBkAAMDwYyEMpECm9eUY+bfPRuWLd/WZy1WPiea3/Xes22VWApUBAAAApE/lkj9H3e1fjWzbK33m8tnKaJvxyWifdroHjgAAAADb3rq2GDH/wqh55Df9Tnfudky0zDw/8rXjhrgwAACA4ctCGBjmKp6bFyNv/lxk21f3meuadEi0HPOdyNVtn0BlAAAAAOmSbXkpRtz+1ah6+q/9zq+beFC0zL4gehomD21hAAAAQEnKdDZH/TXvjfJVT/aZy1WOjNYjz43OPU+OyGSGvjgAAIBhzEIYGK561kXt378TtYt+0mcqn8lG24xPRftB/xaRLUugOAAAAIAUyeej6rGrY8T8CyLb1dxnOlcxItre+p/Rse8HIjLZBAoEAAAASlHtwh/0uwima6fDo2X2BZEbuUMCVQEAAAx/FsLAMJRd+0KM/MtnouKlB/rM9dRNiOa3fy+6dzh46AsDAAAASJnsmmejbu6Xo3LZPf3Od+08M1pmnueLJQAAAMCQyrQ3RvWjVxaM5ctrovWwL0bHvv9sFxgAAIBNsBAGhpnKJTdG3a1nR7arpc9c565vi5bZF0a+piGBygAAAABSJNcdNQ/8PGr//r3I9HT2na4eEy1HnhNdu5/oiyUAAADAkKt++NeRWdfWe5zPlMWaU/4QPeP2TLAqAACAdLAQBoaL7o4Yccf5UfO6p31EROSzldF62BeiY/+P+GIGAAAAwGaUvfJYjLz1i1H+yqP9znfseXK0Hv7lyNeMGeLKAAAAACKiqzVqHvxlwVDn7idYBAMAADBAFsLAMJBpezXq//ThKF/1ZJ+5nvpdYu07Lome7fZNoDIAAACAFOnujNqFP4iaRT+JTL6nz3TPyB2iZeZ5sW7nmUNfGwAAAMD/U/3YbyPbuaZgrP2gTyRTDAAAQApZCAPDQN3cL/e7CKZjz5Oj9aivRb6yLoGqAAAAANKjfNmCqJv7pShf80yfuXxkomP/D0XbIZ/VZwEAAACS1dMZNff/fwVDnbscHT1j7QYDAAAwUBbCQMLKXn4kqp65uWAsX14TLUd9LTr3/qeEqgIAAABIh0xnc9TedVHUPHplv/PdDVOiZfYF0T3xwCGuDAAAAKCvqieujbLWlQVj7QedkVA1AAAA6WQhDCSsduEPCo5zVaOj6ZTfRU/DbglVBAAAAJAOlc/cHCNuO7fPl0ciIvLZimg/6Ixom35mRFlVAtUBAAAAvE6uJ2oX/aRgaN0Ob/EADwAAgC1kIQwkqOzlh/vsBtN+4OkWwQAAAABsQqbt1ai7/WtRteTGfufXbX9AtMy+IHrG7jnElQEAAABsXOXSP0dZ07MFY212gwEAANhiFsJAgmoXvG43mOqGaN/vQwlVAwAAADDM5fNR9cQ1MeLOb0a2c03f6fKaaD3ks9Gx/4cjsmVDXx8AAACUiLIy/+7eYvl81C76UcFQ9/ipkdt1ZpRlMsnUVOSy2ewmj2E4klvSSnZJI7klrWT3NRbCQELKX3ooqp69pWCsfdrpEZUjEqoIAAAAYPjKrn0x6uZ+JSpfuKPf+a6dDo+WWedHbtROQ1wZAAAAlJ6GhoakS0ifp26OeOWxgqHymZ+PhjFjEiqo9NTX1yddAmwxuSWtZJc0klvSqlSzayEMJKR24et3gxkT7ft9MKFqAAAAAIapXE9UP/SrGHHPtyPT3d53uqo+Wg//cnTu9Z4IT08FAAAAhqs7v1N4PHZKxN4nJVMLAABAylkIAwkof+mhqHz21oKx9gP/1W4wAAAAABsoW/Vk1N36pah46YF+5zt3Pz5ajvivyNeOG9rCAAAAALbE83+PeG5+4dhhn4nIliVSDgAAQNpZCAMJqF3w/YLjXPWYaN/XbjAAAAAAERHR0xm1914aNff9KDK5dX2nR0yI1plfi65d35ZAcQAAAEBjY2PSJaTKiLkXReUGx7m6idH0prdH+HXcprLZbNTX1/ceNzU1RS6XS7Ai2Dy5Ja1klzSSW9IqTdltaGjYZve2EAaGWPlLD0Xlc3MLxuwGAwAAAPCa8hWLou7Ws6O8cUm/8+37fiDaDv3PyFeNHOLKAAAAgPV6enqSLiE1yl59MiqfuaVgrO3N/xI9URbh13FI5XI52SV15Ja0kl3SSG5Jq1LNroUwMMT63Q1mvw8lVA0AAADAMNHVGiPu+VZUP/TryES+z3RP/S7RPPub0T3pLQkUBwAAALB1ahb9qOA4V90QHVPfm1A1AAAAxcFCGLZaWVlZ0iWkTtnKB/rsBtMx/RNRVu0JpttSNpvd5DEMR3JLWskuaSS3pJXsAsWk4vk7om7ul6KseXmfuXymLNoP/Hi0HfzJiPLqBKoDAAAA2DrZpuej6qnrC8ba9/9IREVtQhUBAAAUBwth2GoNDQ1Jl5A+N/5v4XHtuKg98t+jtnJEMvWUqPr6+qRLgC0mt6SV7JJGcktayS6QVhXPzo1RN3w8Mvlcn7nu8VOjefaF0TN+nwQqAwAAAHhjahb9pKDnkasYER37fyjBigAAAIqDhTAwVF68L+KpvxaOHfbpCItgAAAAgFK1rj3q5v1Xn0Uw+bKqaHvLZ6L9zR+LyGphAgAAAOmTaX05qh//Q8FYx9T3Rb56dDIFAQAAFBH/FRmGym0XFB7Xjos4+F+SqQUAAABgGKi5/6dR1ry8YKxr0iHRMusbkRu9SzJFAQAAAAyCmgd+HplcV+9xPlsZHW/2PREAAIDBYCEMW62xsTHpElKjbOX9MWrJ3wrG2g78eHS2dkW0dm3kKgZLNpuN+vr63uOmpqbI5XKbuAKSJ7ekleySRnJLWqUpuw0NDUmXAAxD2bXLova+HxWMdU16S6w9+fKITCahqgAAAADeuExHU1Q/ckXBWOde745c3fYJVQQAAFBcLIRhq/X09CRdQmqMuOd7Bce5mrHRNvX9EX4NE5HL5eSX1JFb0kp2SSO5Ja1kF0ibEfMviExPZ+9xPpON1iPOtQgGAAAASL3qh38d2XWtvcf5TDbaDvx4ghUBAAAUl2zSBUCxK195f1Q+N69grP3Aj0dU1CZUEQAAAECyKl68O6qW3lQw1rHvP0fPuD0TqggAAABgkKxrj5oHf1kw1DXlnZEbvUsy9QAAABQhO8LANla74PsFx7masdG+7z8nVA0AAAAwGMrKypIuIb1y3VF3x3mFQ9Wjo/Otn/Xrug1ks9lNHsNwJLekleySRnJLWskuMJxVP/bbyHasLhhrO/CMhKoBAAAoThbCwDZUvvL+qHz+9oKxtgM/EVFRk1BFAAAAwGBoaGhIuoT0+vtPIlY9WTCUPfq/YvTEXRMqqLTU19cnXQJsMbklrWSXNJJb0kp2gWGjpytq7v9ZwVDXzjOjZ/w+CRUEAABQnDwWBbah2gWXFBznasdFx74fSKgaAAAAgIS1roqYe37h2Pb7RRz00UTKAQAAABhMVYuvi7KWFQVjbQedmVA1AAAAxctCGNhGylcsisrn7ygYsxsMAAAAUNJuPS+io6lw7Lj/jsiWJVMPAAAAwGDJ56Jm0U8KhtZNnB7dO0xPqCAAAIDiVZ50AVCsahd+v+A4VzsuOqa+P6FqAAAAgMHU2NiYdAmpU/byIzHyvssis8FY1x4nReuovSP8em4z2Ww26uvre4+bmpoil8slWBFsntySVrJLGsktaZWm7DY0NCRdAjBEKp/+W5Q3Li0YazvojISqAQAAKG4WwsA2YDcYAAAAKG49PT1Jl5Au+XzU3XZuZCL/j6Hymmh5639Gzq/lkMrlcvJL6sgtaSW7pJHcklayCyQun4+a+y4tGOoet3es23lmMvUAAAAUuWzSBUAxql3w+t1gxkfHvh9IqBoAAACAZFU+NScqVtxXMNY2/czI1U1MqCIAAACAwVPxwvyoePnhgrG2Az8Rkcls5AoAAADeCAthYJCVr7gvKl/oZzeY8uqEKgIAAABIUFdrjJh/UcFQz6idov3N/5pQQQAAAACD6/W7wfTUvym6prwzoWoAAACKn4UwMMj63w3m/QlVAwAAAJCs2vsujbLWlQVjrYd/OaK8KqGKAAAAAAZP+coHonLZPQVjbdM+HpEtT6giAACA4mchDAyi8hX3RuULdxaMtR1kNxgAAACgNGWbnoua+/+/grGunY6Irl3fllBFAAAAAIOrz24wtdtF597vSagaAACA0mAhDAyifneDmWo3GAAAAKA0jbjzm5HJdfUe57Pl0XrEVyIymQSrAgAAABgcZasWR9UzNxeMdbz5YxFldsIFAADYliyEgUFSvvzeqHxhfsGY3WAAAACAUlXx3O19vwiy34ejZ8yUhCoCAAAAGFw1i35ccJyrqo+OfT0wFQAAYFuzEAYGSe3Cwt1gemq3sxsMAAAAUJp6umLEHecVDOVqxkbbjE8lVBAAAADA4MqufTGqFs8pGOvY/8ORr6xLqCIAAIDSYSEMDIL+doNptxsMAAAAUKKqH/p1lK95umCs9dDPR75qZEIVAQAAAAyumvt/Fpl8T+9xvrwm2vf/SIIVAQAAlA4LYWAQ1C64pODYbjAAAABAqcq0vhK1Cwp3zl233X7Rufc/JVQRAAAAwODKtL0a1Y9dXTDWMfV9ka9pSKgiAACA0mIhDLxB5csXRuWLdxWMtR90RkR5VUIVAQAAACRnxD3fiuy6loKx1iPPjchoRQIAAADFoebByyLT09l7nM9WRPu0f0mwIgAAgNLivz7DG9RnN5gR20fH1PclVA0AAABAcspfejCqH/99wVjHXu+J7gnTEqoIAAAAYHBlOpuj+uFfF4x17nly5OomJlQRAABA6bEQBt6A8mULovLFuwvG7AYDAAAAlKR8Lkbc/rWCoVzFiGg99PMJFQQAAAAw+KofvjyyXf/YDTcfmWg/8OMJVgQAAFB6LISBN6B24fcLjntGbB8d+7w3oWoAAAAAklP1xB+j4qUHC8baD/5k5Edsl1BFAAAAAIOsuyNqHvxFwVDX5GOjp2G3hAoCAAAoTRbCwFayGwwAAADAazJdzTHi7v8uGOsevWu0H/DRZAoCAAAA2AaqH/tdZNtXFYy1HXRGQtUAAACULgthYCvVLrik4LhnxAS7wQAAAAAlqWbh/0S27dWCsdYjvhJRVplQRQAAAACDrGdd1Nz/04Khrp2OiJ7t9k2oIAAAgNJlIQxshfJlf4/KZfcUjNkNBgAAAChFZY1Lo+bBywrGunaZHet2nplIPQAAAADbQtVT10dZ87KCsXa7wQAAACTCQhjYCv3vBnNqQtUAAAAAJCSfjxF3nBeZXPc/hrKV0XL4lxMsCgAAAGCQ5XNRs+jHBUPrtp8W6ya9JaGCAAAASpuFMLCFKl68JyqX/b1grH36mXaDAQAAAEpO5bO3RuXzdxSMtb/5tMiN3iWZggAAAAC2gcpnbony1U8VjLVPPyMik0moIgAAgNJmIQxsoZqF3y84fm03mP+TUDUAAAAACenpjBF3nl84VLtdtE//t4QKAgAAANgG8vmoue9HBUPdY/aIrl1mJ1QQAAAAFsLAFtjobjBldoMBAAAASkvNA7+IsqbnC8baDvtC5CvrEqoIAAAAYPBVLLsnKl56oGCs/aAzIjK+dgUAAJAU/yKDLVC74HW7wdTZDQYAAAAoPdmWlVF77w8LxtZNmBade7wroYoAAAAAto3X7wbTM2qn6Nz9+ISqAQAAIMJCGBiwihfviYrlr9sN5qB/sxsMAAAAUHJq7/rvyKxr6z3ORyZajjw3IpNJsCoAAACAwVX+0kNR+cKdBWPt006PyJYnVBEAAAARFsLAwOTzUbvgkoKhnrqJ0bHPKQkVBAAAAJCM8hX3RvXiPxWMde5zavRst19CFQEAAABsG6/fDSZXOy469vZdEQAAgKRZCAMDULHsnqhYvqBgrH263WAAAACAEpPribrbv144VDkyWg/9bEIFAQAAAGwbZY1Lo/LpvxaMtR/wsYhy3xUBAABImoUwsDkb2w1m739KqCAAAACAZFQ9/rsof+XRgrG2t3w68jVjE6oIAAAAYNuoue/HkYl873GucmR07PeBBCsCAABgPQthYDMqlt0dFcsXFozZDQYAAAAoNZmOphhx97cLxrrH7B4d+34woYoAAAAAto1s8/KoWvyngrGO/T4Y+cqRCVUEAADAhiyEgU3J56N2wfcLhl7bDeaUhAoCAAAASEbtgksi27G6YKz1iHMiyioSqggAAABg26i5/2eRyXX3HufLqqL9gI8mVxAAAAAFypMuAIazihfv2shuMJUJVQQAAAAw9MpWPRnVD19eMNa52zti3U6HJVQRAAAAlLaurq648sor4+mnn46VK1dGS0tL1NbWxoQJE2L27NlxxBFHRHm5rwVtjUz7qqh+7LcFYx37nBr52nEJVQQAAMDr2REGNqa/3WBG7mA3GAAAAKC05PMx4o7zIpPv+cdQWWW0Hn52gkUBAABAaevo6Ii//vWvERExbdq0OP7442PGjBmxevXquPTSS+Oiiy6KXC6XcJXpVPPgLyPT3dF7nM+WR/u00xOsCAAAgNfz6AfYiIoX74qKFfcWjLUdZDcYAAAAoLRULv1LVL54d8FY+4Efj9yonRKqCAAAAKirq4tf/vKXfXZ96enpifPPPz8efPDBeOCBB+LAAw9MqMJ0ynQ1R/XDvy4Y69zjpMiNmpRQRQAAAPTHjjDQn3w+ahdcUjDUM3JSdO79TwkVBAAAAJCA7o4YMf+bBUM9dROj7cAzEioIAAAAiIjIZrN9FsFERJSVlcXBBx8cERErV64c6rJSr/qRKyPbubb3OB+ZaD/wEwlWBAAAQH/sCAP9eG03mPsKxtqm2w0GAAAAKC01i34aZc3LCsZaDzs7oqImoYoAAADgjWtqaoolS5bEkiVLYunSpbF06dJobm6OiIijjjoqzjrrrAHf65VXXombbropFi1aFKtWrYry8vKYMGFCHHroofGOd7wjqqqqttWP0a9cLhcPPvhgRETstJPdXLdId2fUPPDzgqGu3Y6JnjFTEioIAACAjbEQBl5vY7vB7PWehAoCAAAAGHrZtcui9r5LC8bW7fCW6JpyXEIVAQAAwOA4/fTTB+U+9957b/zgBz+I9vb23rHOzs7exTW33HJLnH322TFhwoRBeb/+dHd3xzXXXBMREc3NzfHII4/EsmXLYubMmbHffvtts/ctRtVP/CGyba8UjLUfdGZC1QAAALApFsLA61S8MN9uMAAAAEDJG3HXhZHp6ew9zmey0XLkf0VkMglWBQAAAINr3LhxMWnSpN5dVAbqmWeeie9973vR1dUV1dXVcfLJJ8e+++4bXV1dMX/+/LjllltixYoVccEFF8SFF14YNTXbZnfV7u7u+P3vf997nMlk4sQTT4wPfOAD2+T9ilauO2oW/bRgqGvHt0b39vsnVBAAAACbYiEMbKjf3WB2tBsMAAAAUFIqXrw7qpbcWDDWse8HomfcXglVBAAAAIPnlFNOicmTJ8fkyZNj9OjR8fLLL8cnP/nJLbrHZZddFl1dXVFWVhZf+cpXYo899uid23fffWPixIlx+eWXx4oVK2LOnDlx6qmn9rnHr371q1i3bt2A3/O4446LiRMnFoxVV1fH1VdfHblcLhobG+O+++6LK6+8MhYvXhxnn3121NbWbtHPVaqqnroxytY+XzDWftAZCVUDAADA5lgIAxuoeGF+VKxcVDBmNxgAAACgpOS6Y8TtXy8cqhodbTM+k0w9AAAAMMj6W5SyJZYsWRKPP/54RETMmjWrYBHMeieccELMnTs3li1bFjfddFO85z3vifLywq/p/O1vf4vOzs4+127MIYcc0mchzHrZbDbGjh0bb3/722PkyJHx3e9+N6655pr44Ac/uAU/WYnK56Nm0Y8KhtZtt3+s2/GtCRUEAADA5lgIA+vl81G74HsFQ3aDAQAAAEpN9SNXRPnqxQVjbYf8R+RrGhKqCAAAAIaXBQsW9L6eNWtWv+dks9k46qij4oorrojW1tZ49NFH44ADDig459e//vU2qW/9+zz22GPb5P7FpuLZuVG+6smCsfaDzojIZBKqCAAAgM2xECblurq64sorr4ynn346Vq5cGS0tLVFbWxsTJkyI2bNnxxFHHNHniSL0r+KFO6Ni5f0FY20HnxVRVpFQRQAAAMCm6IsMvkz76qj9+/cKxrrH7R0dU9+XTEEAAAAwDD355GuLJqqqqmK33Xbb6Hn77LNPwTWvXwizraxevToiIsrKyobk/VItn4/a+y4tGOpumBJdux2TUEEAAAAMRDbpAnhjOjo64q9//WtEREybNi2OP/74mDFjRqxevTouvfTSuOiiiyKXyyVcZQrk81G74JKCoZ5RO0Xnnu9OqCAAAABgc/RFBl/t378b2c6mgrGWI/4rIuuLMwAAALDeiy++GBEREyZM2ORikx122KHPNYNZQ2dnZ5/xzs7O+NWvfhURr/VL2LTy5QujYuWigrH2Az8ekfGVKgAAgOHMIzFTrq6uLn75y1/2ebppT09PnH/++fHggw/GAw88EAceeGBCFaZDxfN39N0NZrrdYAAAAGA40xcZXGWvPBrVj1xZMNa5+wnRPWlGQhUBAADA8NPV1RXNzc0RETF27NhNnltXVxdVVVXR2dkZq1atGtQ67rrrrrjhhhtir732ivHjx0dNTU2sXr06HnjggWhubo699947TjjhhC2+70DrLJbdZkYs+lHBcc/ISdG997uL5ucrddlsdpPHMBzJLWklu6SR3JJWsvsaC2FSLpvN9hvesrKyOPjgg+PRRx+NlStXJlBZiuTzUbvg+wVDr+0Gc3Iy9QAAAAADoi8yiPL5qLv965GJ/D+Gyquj9a1fSLAoAAAAGH46Ojp6X1dXV2/2/Orq6ujs7Cy4bjAcdNBB0djYGIsXL47FixdHR0dH1NbWxpve9KY47LDDYtasWVu1mOPMM88c0HlXX331Ft972FnxYMRz8wqGyg7/TDSM2y6hgtjW6uvrky4BtpjcklaySxrJLWlVqtkt6YUwTU1NsWTJkliyZEksXbo0li5d2vvUjqOOOirOOuusAd/rlVdeiZtuuikWLVoUq1ativLy8pgwYUIceuih8Y53vCOqqqq21Y/Rr1wuFw8++GBEROy0005D+t5pU/H8HVHxkt1gAAAAKC36Imyo8qk5UbHi3oKxtoPOjNzIHRKqCAAAAIanrq6u3tev36W2P+vP2fC6wTB58uSYPHnyoN6z5Nz53cLj2nER0z6YTC0AAABskZJeCHP66acPyn3uvffe+MEPfhDt7e29Y52dnb1fIrnlllvi7LPPjgkTJgzK+/Wnu7s7rrnmmoiIaG5ujkceeSSWLVsWM2fOjP3222+bvW/q5fNRu+CSgqGeUW+yGwwAAABFT1+EXuvaYsT8iwqGekbtFO3TBicjAAAAUEwqKyt7X3d3d2/2/PXnbHjdcHbppZcmXcLQWLU04rE/FY4dcmZEZW0y9QAAALBFSnohzIbGjRsXkyZN6n1a6EA988wz8b3vfS+6urqiuro6Tj755Nh3332jq6sr5s+fH7fcckusWLEiLrjggrjwwgujpqZmm9Tf3d0dv//973uPM5lMnHjiifGBD3xgm7xfsah4/vaoeOmBgjG7wQAAAFBq9EVKW+19l0ZZ68qCsdbDvxRRPrQ7+QAAAEAaVFdX977u6OjY7Pnrz9nwuuFs7NixAzqvsbFxG1eybdXe+t9Rlc/1Hucr66Jpj1Min/Kfi0LZbDbq6+t7j5uamiKXy23iCkie3JJWsksayS1plabsNjQ0bLN7l/RCmFNOOaV3q9jRo0fHyy+/HJ/85Ce36B6XXXZZdHV1RVlZWXzlK1+JPfbYo3du3333jYkTJ8bll18eK1asiDlz5sSpp57a5x6/+tWvYt26dQN+z+OOOy4mTpxYMFZdXR1XX3115HK5aGxsjPvuuy+uvPLKWLx4cZx99tlRW+uJFX1sdDeYdyVUEAAAAAwdfREiIrJNz0XNop8VjHXtdHh07XpMQhUBAADA8FZZWRkjR46M5ubmWLVq1SbPbWlpic7OzogY+AKTtOjp6Um6hK2WbVkZlY//oWCsfd9/ju7yuogU/1xsXi6XS3V2KU1yS1rJLmkkt6RVqWa3pBfC9Pfliy2xZMmSePzxxyMiYtasWQVf9ljvhBNOiLlz58ayZcvipptuive85z1RXl74y/63v/2tt/ExEIccckifL3ysl81mY+zYsfH2t789Ro4cGd/97nfjmmuuiQ9+8INb8JOVhorn50XFS4VPum072G4wAAAAlAZ9ESIiRtz5zcjkunqP89nyaD3inIhMJsGqAAAAYHjbcccd4/HHH4+VK1dGT09PlJWV9Xve8uXLC65heKi5//+LTO4fD2bJl1VG+wGnJVgRAAAAW6qkF8K8UQsWLOh9PWvWrH7PyWazcdRRR8UVV1wRra2t8eijj8YBBxxQcM6vf/3rbVLf+vd57LHHtsn9Uy2fj9oF3y8Y6ql/U3TueXIy9QAAAEDK6IukX8Vzt0fVMzcXjHXs96HoGTMloYoAAAAgHfbcc894/PHHo7OzM55++unYfffd+z1vw77EnnvuOVTlsQmZ9saofuyqgrGOvf9P5EeMT6giAAAAtkY26QLS7Mknn4yIiKqqqthtt902et4+++zT55qhsHr16oiIjT55pJRVPHdb391gpp8VkbU2DAAAAAZCXyTlerpixB3nFQzlasZE24xPJVQQAAAApMeMGTN6X8+dO7ffc3K5XMybNy8iIkaMGBFTp04dktrYtJqHfhWZdW29x/lMWbQfeHqCFQEAALA1fOv/DXjxxRcjImLChAmb/FLFDjvs0Oeawaxh/PjxUVVVVTDe2dkZv/rVryIiYtq0aVt0z1WrVg3ovNR+kSSfjxELf1Aw1FO/c3Tv809Rlk3pz8QmZbPZTR7DcCS3pJXskkZyS1rJLkkr1r5Iqah+6NdRvubpgrHWQz8f+apRCVUEAAAA6TFlypTYe++94/HHH4+5c+fGzJkzY4899ig45/rrr49ly5ZFRMQ73/nOKC8vrq/opPI7I12tUf3QLwuH9jgxMg27RAp/GgZAH500klvSSnZJI7klrWT3NcX1r+wh1NXVFc3NzRERMXbs2E2eW1dXF1VVVdHZ2TngRSYDddddd8UNN9wQe+21V4wfPz5qampi9erV8cADD0Rzc3PsvffeccIJJ2zRPc8888wBnXf11VdvTcnJW/zXiNftBlM264vRMNY2t6Wivr4+6RJgi8ktaSW7pJHcklayy1Aq5r5I0T8gJCIyra/0eUhI93b7R/e+742yTGk2SYuZRjhpJLekleySRnJLWskub9QTTzwRK1eu7D1eu3Zt7+uVK1fGbbfdVnD+zJkz+9zjox/9aJxzzjnR1dUV559/frz73e+OqVOnRldXV9x1111x8803R0TExIkT48QTT9wmP0eSGhoaki5hy931m4jOpoKhqtlfiKo0/ixsFX100khuSSvZJY3klrQq1exaCLOVOjo6el9XV1dv9vzq6uro7OwsuG4wHHTQQdHY2BiLFy+OxYsXR0dHR9TW1sab3vSmOOyww2LWrFmp/mLGoMvnI277ZuHYmN0i9js1mXoAAAAghYq5L1L0DwiJiLj9KxFdzQVD5Sd+OxrGbHpRE8WhVBvhpJvcklaySxrJLWklu2ypW265JebNm9fv3JNPPhlPPvlkwVh/C2F23XXX+MxnPhM/+MEPor29Pa688so+50ycODHOPvvsqKmpGZS6eQO6OyPu/p/CsT3eGbH9PsnUAwAAwBtiIcxW6urq6n09kO1r15+z4XWDYfLkyTF58uRBveell146qPcbVp76a8Ty+wvHjvzPiDL/rwAAAAADVcx9kaL34n0R919eOHbA+yN2mpFMPQAAAJBi06dPj29961tx4403xqJFi2L16tVRXl4eEyZMiEMOOSSOPfbYqKqqSrpMIiIevCqieUXh2BH/kUwtAAAAvGG+/b+VKisre193d3dv9vz152x43XA1duzAnv7Z2Ni4jSsZZPl8jLz5/ILQ94zeNdbu9LaItP0sbJFsNlvwFKimpqbI5XIJVgSbJ7ekleySRnJLWqUpuw0NDUmXwCAr5r5IUT8gJJeLuOk/C8cq6yLe9tVEygEAAICknHXWWXHWWWcNyr3Gjx8fH/nIR+IjH/nIoNwvLVL1nZFcT4y647ux4b7B63Y8JFrqdvd9kSKXpj46rCe3pJXskkZyS1qlKbvb8vsiFsJsperq6t7XHR0dmz1//TkbXpd2PT09SZewRSqeuTXKX36oYKxt+lnRk89EpOxn4Y3J5XKpyy/ILWklu6SR3JJWsstQKua+SNE+ICQiKh/7fYxYdm/BWNvBn4zO7ipf+ihiaWqEw3pyS1rJLmkkt6RVmrLrASEUqzT1IiufuiHK1jxTMNZ24Bmp+hkYHPropJHcklaySxrJLWlVqtm1EGYrVVZWxsiRI6O5uTlWrVq1yXNbWlqis7MzIgb+ZQoGWT4ftQsuKRjqqd8lOvc4MaGCAAAAIL30RdL1ZY+IiExXc9TMv7BgrKd+l2jb/8MeEFJiSrURTrrJLWklu6SR3JJWsgtsVD4ftff9qGCoe/zUWLfT4QkVBAAAwGDIJl1Amu24444REbFy5cpNNtWWL1/e5xqGVsWzc6PilUcKxtoO/mRE1lowAAAA2Br6IulSs/CHkW17tWCs5YivRJRVJVQRAAAAwLZX8fztUf7qYwVjbQedGZHJJFQRAAAAg8FCmDdgzz33jIiIzs7OePrppzd63mOP/eMf1OuvYQj1sxtM9+hd7QYDAAAAb4C+SHqUNT4dNQ9eVjDWtfOsWLfLrGQKAgAAABgitfddWnDcPXrX6Nrt7QlVAwAAwGCxHcYbMGPGjLj22msjImLu3Lmx++679zknl8vFvHnzIiJixIgRMXXq1KEskYiofPbWPrvBtNsNBgAAAN6QUu+LlJWVJV3CwOTzUXfn+ZHJrfvHULYi2o/6r/T8DLwh2Wx2k8cwHMktaSW7pJHcklayCwxE+Yp7o2L5woKx9gM/EZHVEwEAAEg7KwHegClTpsTee+8djz/+eMydOzdmzpwZe+yxR8E5119/fSxbtiwiIt75zndGeXnx/JKn4ssS+XzULvx+wVDP6N2ie693RZnGRsnQCCeN5Ja0kl3SSG5JK9klaaXeF2loaEi6hIF58s8Rz80rGMoc+m9Rv9uBCRVE0urr65MuAbaY3JJWsksayS1pJbsw9NLwnZHa+35ccJyrmxjd+7wnFbUzOPTRSSO5Ja1klzSSW9JKdl+Tyefz+aSLSMoTTzwRK1eu7D1eu3ZtXH755RERseeee8bRRx9dcP7MmTP73OOZZ56Jc845J7q6uqK6ujre/e53x9SpU6OrqyvuuuuuuPnmmyMiYuLEiXHhhRdGTU3NtvuB6OuJGyOuen/h2Ht+GrH/qcnUAwAAAMOEvkgJ6O6M+OFbIhqf+cdY3fYR/35fRNXI5OoCAAAA2NZWPhLxo8MKx95xQcSh/5ZMPQAAAAyqkl4I88Mf/jDmzZu3+RP/n6uvvrrf8XvvvTd+8IMfRHt7e7/zEydOjLPPPjsmTJiwVXWylfL5iB8fGbHyoX+MjZ0ScdYC29wCAABQ8vRFSsAd34m45WuFY+/+ccQB70umHgAAAICh8vt/iXjk9/84rhkT8X8fiagckVxNAAAADJrypAsoBtOnT49vfetbceONN8aiRYti9erVUV5eHhMmTIhDDjkkjj322Kiqqkq6zNLz5E2Fi2AiIo76gkUwAAAAMIhKtS/S2NiYdAmblGl5KepvvzgyG4x1Tzwwmnc6JmKY187gymazUV9f33vc1NQUuVwuwYpg8+SWtJJd0khuSas0ZbehoSHpEqD0rH464tFrCsfecoZFMAAAAEWkpHeE4Y0Z1l/4yOdj5JUnRPkrj/YO9TTsFms/+DcLYUpQmhrhsJ7cklaySxrJLWmVpuz6wgfF6NVXX026hE2q+9tno/rJa3uP85GJpv9zTXRvv39yRZGIsrKygj+HGxsbo6enJ8GKYPPklrSSXdJIbkmrNGV33LhxSZcA28Rw/s5I7S1fiqpHrug9zleMiKaPzY989ejkiiIRaeqjw3pyS1rJLmkkt6RVmrK7Lb8vYkcYttpwbSRGRFQ+/beCRTAREW3T/z168hExjOtmaORyuWGdX+iP3JJWsksayS1pJbvAeuUr7i1YBBMR0bnP/7EIBgAAABg0w7UXmWl9OSof+33BWPu+74/uipG+L4I+Oqkkt6SV7JJGcktalWp2s0kXAIMun4/aBd8vGOpumBydux+fUEEAAAAAQySfjxF3fKNgKFc5MloP+WxCBQEAAAAMnZoHfh6ZXFfvcT5bGR0HfCzBigAAANgWLIShCOWj7cDTo7thcu9I28GfjMiWJVgTAAAAwBDIZKJl1vmxbuL03qG2GZ+OfO24BIsCAAAAGBrrdj4yuia9pfe4Y+/3RK5u+wQrAgAAYFsoT7oAGHSZbHTtcVJ0TTk+qp66ISqX3BBdU+wGAwAAAAyesrJh/MCNCftHy//5XVQsvi6qHvt9rHvzR4Z3vWxT2Wx2k8cwHMktaSW7pJHcklayC2zMuh3fGut2fGuUr7w/au77UbRPOz3pkgAAANgGLISheGXLonPPk6Jzz5OSrgQAAAAoMg0NDUmXsHmHfDTikI9GCiplCNXX1yddAmwxuSWtZJc0klvSSnaB1+ueMC2aj/9x0mUAAACwjVgIw1bzJFHSwhOhSCO5Ja1klzSSW9JKdgEAAAAAAAAAKEUWwrDVUvHkU+iHJ0KRRnJLWskuaSS3pJXsAgAAAABDxcNTSQMPlCKN5Ja0kl3SSG5JK9l9TSafz+eTLgIAAAAA0qSxsTHpEmBAstlswWLJpqamyOVyCVYEmye3pJXskkZyS1qlKbseMAkAAAAw+OwIAwAAAABbqKenJ+kSYKvkcjn5JXXklrSSXdJIbkkr2QUAAAAoLRbCsNU8+ZS0SNMToWA9uSWtZJc0klvSKk3Z9eRTAAAAAAAAAAAGi4UwbDVP1CGtPBGKNJJb0kp2SSO5Ja1kFwAAAAAYKh6eShqk6YFSsJ7cklaySxrJLWmVpuxuywenWggDAAAAAAAAAAAMmIfykEYeKEUayS1pJbukkdySVqWa3WzSBQAAAAAAAAAAAAAAAMBAWAgDAAAAAAAAAAAAAABAKpQnXQAAAAAApE1ZWVnSJcCAZLPZTR7DcCS3pJXskkZyS1rJLgAAAEBpsxAGAAAAALZQQ0ND0iXAVqmvr0+6BNhicktayS5pJLeklewCAAAAlBaPRQEAAAAAAAAAAAAAACAV7AjDVisrK0u6BBgQW6OTRnJLWskuaSS3pJXsAgAAAAAAAABQiiyEYas1NDQkXQJsFVujk0ZyS1rJLmkkt6SV7MLQamxsTLoEGJBsNlvwd0RTU1PkcrkEK4LNk1vSSnZJI7klrdKUXf9dHQAAAGDwWQgDAAAAAFuop6cn6RJgq+RyOfkldeSWtJJd0khuSSvZhaFXVlaWdAmwWXZWJ43klrSSXdJIbkkr2X2NhTAAAAAAAAAAAMCA2e2INLKzOmkkt6SV7JJGcktalWp2LYRhqzU2NiZdAgxImrZGh/XklrSSXdJIbkmrNGXXfxQHAAAAAAAAAGCwWAjDVrO1NGlla3TSSG5JK9kljeSWtJJdAAAAAAAAAABKgYUwAAAAAAAAAADAgDU2NiZdAmxWmnZWh/XklrSSXdJIbkmrNGW3oaFhm93bQhgAAAAAAAAAAGDA7E5NGtlZnTSSW9JKdkkjuSWtSjW72aQLAAAAAAAAAAAAAAAAgIGwIwwAAAAAbKGysrKkS4AByWazmzyG4UhuSSvZJY3klrSSXQAAAIDSZiEMAAAAAGyhhoaGpEuArVJfX590CbDF5Ja0kl3SSG5JK9kFAAAAKC0eiwIAAAAAAAAAAAAAAEAqWAgDAAAAAAAAAAAAAABAKpQnXQDpVVZWlnQJMCDZbHaTxzAcyS1pJbukkdySVrILyWpsbEy6BBiQbDYb9fX1vcdNTU2Ry+USrAg2T25JK9kljeSWtEpTdhsaGpIuAQAAAKDoWAjDVtOwI602bIpDWsgtaSW7pJHcklayC0Orp6cn6RJgq+RyOfkldeSWtJJd0khuSSvZBQAAACgtHhcLAAAAAAAAAAAAAABAKlgIAwAAAAAAAAAAAAAAQCqUJ10A6dXY2Jh0CTAg2Ww26uvre4+bmpoil8slWBFsntySVrJLGsktaZWm7DY0NCRdAgAAAAAAAAAARcJCGLaaLzKRFqtWrYpTTz01IiIuvfTSGDt2bMIVwebJLWklu6SR3JJWsgvJGjduXNIlwID4+4I0klvSSnZJI7klrWQXkqc3Qhr4+4I0klvSSnZJI7klrWT3NdmkCwAAAAAAAAAAAAAAAICBsBAGAAAAAAAAAAAAAACAVLAQBgAAAAAAAAAAAAAAgFSwEAYAAAAAAAAAAAAAAIBUsBAGAAAAAAAAAAAAAACAVLAQBgAAAAAAAAAAAAAAgFSwEAYAAAAAAAAAAAAAAIBUsBAGAAAAAAAAAAAAAACAVLAQBgAAAAAAAAAAAAAAgFTI5PP5fNJFAAAAAAAAAAAAAAAAwObYEQYAAAAAAAAAAAAAAIBUsBAGAAAAAAAAAAAAAACAVLAQBgAAAAAAAAAAAAAAgFSwEAYAAAAAAAAAAAAAAIBUsBAGAAAAAAAAAAAAAACAVLAQBgAAAAAAAAAAAAAAgFSwEAYAAAAAAAAAAAAAAIBUsBAGAAAAAAAAAAAAAACAVLAQBgAAAAAAAAAAAAAAgFSwEAYAAAAAAAAAAAAAAIBUKE+6AKA0LF26NO6///544okn4sUXX4y1a9dGWVlZjBkzJvbcc8+YPXt27LXXXgO+3/333x8333xzLF26NNauXRujRo2KyZMnx9ve9raYNm3agO7R09MTt9xyS9x5552xbNmy6OjoiDFjxsR+++0X73znO2OnnXYa0H3Wrl0bN910UyxcuDBeeeWViIgYP358HHzwwXHcccfFyJEjB/xzkR6XX355XHfddb3H5557bkydOnWT18gtSXn11Vfj1ltvjUWLFsUrr7wSHR0dMWrUqBg/fnxMnTo1Dj300HjTm9600etll6HW3d0d8+bNi3vuuSeee+65aGlpKfjccPTRR8eee+652fvILm9UU1NTLFmyJJYsWRJLly6NpUuXRnNzc0REHHXUUXHWWWdt0f2KMZPPP/98/PnPf46HH344Vq9eHdXV1TFp0qQ4/PDD4+ijj46ysrIB3Qeg2OmLUGz0RUgTfRHSRl+E4UJfZPP0RQAGRl+EYqMvQproi5A2+iIMJ3ojm5d0bySTz+fz2/QdgJJ37rnnxuOPP77Z84488sg444wzorx842v0crlc/OQnP4lbb711o+fMnj07Pv7xj0c2u/FNr9auXRsXXHBBLF26tN/5ioqK+NjHPhZHH330Jmt+6qmn4uKLL441a9b0O9/Q0BCf//znY8qUKZu8D+ny7LPPxtlnnx09PT29Y5tqbMgtSbrpppviiiuuiM7Ozo2ec9xxx8VHP/rRPuOySxJeeeWVuPDCC+OFF17Y5HnHHntsnHbaaZHJZPrMyS6D5dRTT93o3JY0NYo1kzfffHP8/Oc/j+7u7n7np0yZEl/84hdj1KhRm7wPQLHTF/E5p9joi5Am+iKkjb4Iw4m+iL4IwGDQF/E5p9joi5Am+iKkjb4Iw43eyPDvjdgRBtjmVq9eHRGv/eF46KGHxl577RXjxo2LXC4Xixcvjuuvvz5Wr14dt99+e/T09MSnP/3pjd7rqquu6v3LYNddd42TTjoptt9++3jppZfiuuuui2eeeSZuvfXWGDVqVHzgAx/o9x65XC6+9a1v9f5lMGPGjHjb294WdXV18dRTT8U111wTTU1N8ZOf/CTGjBmz0ZWWr776alx00UW9Tys5/vjj46CDDoqIiPvuuy9uuOGGaGxsjIsuuiguvPDCGDt27Fb/GjJ85HK5+PGPfxw9PT1RX18fTU1Nm71GbknKH/7wh/jtb38bERETJ06Mo48+OqZMmRK1tbXR3NwczzzzTCxcuLDffxhGyC5Dr7u7u6CpsfPOO8fxxx8fO+ywQ3R0dMQTTzwRc+bMic7Ozvjzn/8cY8aMiZNPPrnPfWSXbWHcuHExadKkePDBB7f42mLM5KJFi+KnP/1p5PP5qK+vj/e85z2x++67R0tLS9x8882xYMGCWLJkSXzrW9+Kr371q5ts1gAUO30Rn3OKib4IaaIvQtroi8jucKYvUkhfBGDg9EV8zikm+iKkib4IaaMvIrvDnd5IoeHSG7EQBtjmJk2aFO9///vjkEMO6fOH2R577BFHHnlknHPOObFixYqYP39+HHPMMbHPPvv0uc/y5ctjzpw5ERExefLk+NrXvhaVlZUR8drKwenTp8dXv/rVWLp0acyZMydmz54dEyZM6HOf2267LZ544omIiHj7298e//qv/9o7N2XKlJg2bVp84QtfiPb29vjFL34R+++/f7/bc1111VWxdu3aiIj41Kc+FYceemjv3N577x277bZbfO9734umpqa46qqrtngbNIanm266KZYuXRqTJk2Kgw8+OK699tpNni+3JOXhhx/ubWps7AlK++23X5x00kn9rsqWXZJw77339jY19thjj/j6179e8Nlh//33j+nTp8eXv/zl6OnpiT/96U9x4oknFmRGdhlMp5xySkyePDkmT54co0ePjpdffjk++clPbtE9ijGT3d3d8Ytf/CLy+XzU1NTEeeedV1Dzm9/85vjZz34Wf/3rX+OJJ56I22+/PWbOnLlFv24AxURfxOecYqIvQlroi8huGumLyO5woy+iLwIwGPRFfM4pJvoipIW+iOymkb6I7A5HeiPDvzfi0SPANvfFL34x3vrWt250Rd+oUaPiwx/+cO/xPffc0+95N954Y+/WoqeddlrvXwbrVVVVxWmnnRYRET09PXH99df3e5/1f6nU1dXFhz70oT7zEyZMiHe/+90REbFy5cpYsGBBn3PWrFkTd9xxR0REHHDAAQV/Gaz31re+NQ444ICIiLj99ts3uo0Y6fHqq6/2/kPx9NNP3+S2zOvJLUnI5XLxs5/9LCJee0LCmWeeucm89jcnuyThySef7H198skn9/vZYbfddut9EkFra2ssW7asYF52GUynnnpqHHTQQTF69OitvkcxZnLBggXx0ksvRUTEu9/97n6bMB/60IdixIgRERFx3XXX9fszAZQKfRGfc4qFvghpoS8iu2mlLyK7w42+iL4IwGDQF/E5p1joi5AW+iKym1b6IrI7HOmNDP/eiIUwwLAwderU3tfr/4DcUD6fj4ULF0bEa08M2WOPPfq9zx577BE77LBDRLy2SjifzxfML1++vPcD0KGHHhpVVVX93mfD1Yf9/YWw4b1nzZq1sR+r9z75fD7uvffejZ5HOvzsZz+Ljo6OOOqoo/p9Cs3ryS1Jeeihh2LFihUREfGud72r39XdmyK7JGXDp81sv/32Gz1vw7kNr5FdhptizeT6n+n177mhqqqq3qbJiy++GMuXL9/o+wGgL0I66IuQFvoisptW+iKyW2yKNZP6IgCDT1+ENNAXIS30RWQ3rfRFZLcYFWsuh1NvxEIYYFjY8ENJf6t5X3755WhsbIyI17bf2pT1/+BcvXp1vPLKKwVz67cG2/C8/owePTomTpwYEYWrjbf0PhvObXgN6XPXXXfFokWLNrqitj9yS1LuvvvuiIjIZDK9T0KIiGhpaYkVK1ZES0vLJq+XXZKy/h91Ef3/h47Xz2UymYKnCsguw02xZnL92A477LDJJ59seJ/+6gHgH/RFGO70RUgTfRHZTSt9EdktNsWaSX0RgMGnL8Jwpy9CmuiLyG5a6YvIbjEq1lwOp96IhTDAsPDYY4/1vp40aVKf+RdffHGT8xva8EPRhtdt6X3Wz69atSo6Ojr6vU9tbe0m/yBvaGiImpqaiIg+W/GRHq2trXHZZZdFRMQ///M/x6hRowZ0ndySlKeeeioiIsaPHx81NTVx5513xmc/+9n42Mc+Fp/+9Kd7/+91110X69at63O97JKUww47rPf38E9/+lPkcrk+5zzzzDOxaNGi3vNra2t752SX4aYYM9nR0RGrVq3qU/OmaunvPgAU0hdhONMXIW30RWQ3rfRFZLfYFGMm9UUAtg19EYYzfRHSRl9EdtNKX0R2i1Ex5nK49UYshAESl8vl4tprr+09futb39rnnPV/cEZEjB07dpP3GzduXL/XRby2WnK9MWPGbPI+698nn88XXLfhfTdXy4b1vL4W0uPyyy+PNWvWxJ577hmzZ88e8HVySxJyuVzvB8eRI0fGL37xi/j+978fL7zwQsF5K1asiMsvvzy+/vWvR2tra8Gc7JKUUaNGxb//+79HVVVVPPnkk3H22WfHvHnzYvHixfHQQw/F7373u/jqV78a3d3dseuuu8aHP/zhgutll+GmGDO5JT/ThvOvvvrqZt8ToFTpizDc6YuQJvoisptm+iKyW2yKMZP6IgCDT1+E4U5fhDTRF5HdNNMXkd1iVIy5HG69kfJtcleALXDDDTfEkiVLIiJixowZsdtuu/U5Z8OVidXV1Zu8X1VVVb/XRUS0t7cPyn3WH2/uHhve5/X3IB0ef/zxuPXWW6OsrCxOP/30yGQyA75WbklCW1tb5PP5iIh4/vnnY+nSpdHQ0BAf/OAHY9q0aVFZWRlLliyJ3/zmN/HUU0/Fk08+GZdeeml87nOf672H7JKk6dOnx4UXXhhz5syJuXPnxg9/+MOC+fr6+njve98bRx99dEFuImSX4acYM7kltWw4L9sAG6cvwnCmLyK3aaMvIrtppy8iu8WkGDOpLwIw+PRFGM70ReQ2bfRFZDft9EVkt9gUYy6HW2/EjjBAoh577LG44oorIuK1Dyqnn356v+d1dXX1vi4v3/QavoqKin6vi4iCLR3fyH3WH2/uHhve5/X3YPjr7u6On/zkJ5HP5+P444+PN73pTVt0vdyShM7Ozt7X69ati6qqqjj33HPjiCOOiLq6uqisrIx99tknzj333Nh5550jImLBggW92+NGyC7J6u7ujnnz5sW9997b26TbUFNTU9xxxx3x8MMP95mTXYabYszkltSy4Xx/W6sDoC/C8KYvIrdppC8iu2mnLyK7xaQYM6kvAjC49EUYzvRF5DaN9EVkN+30RWS32BRjLodbb8RCGCAxL7zwQlx88cXR09MTFRUV8X//7/+N+vr6fs+trKzsfd3d3b3J+274B+aG10UU/iH/Ru6z/nhz99jwPq+/B8PfNddcE8uWLYtx48bFKaecssXXyy1J2DAvERGzZ8+OHXbYoc95lZWV8f73v7/3+K677iqYW092GUodHR1x3nnnxbXXXhstLS1x0kknxXe/+9244oor4rLLLouvfOUrsddee8XSpUvj4osvjuuvv77getlluCnGTG5JLRvOv/7vJwD0RRj+9EXkNo30RWQ3zfRFZLfYFGMm9UUABo++CMOdvojcppG+iOymmb6I7BajYszlcOuNWAgDJOLll1+O888/P1pbWyObzcZnPvOZ2GeffTZ6/pZskbXh6vbXb71VU1MzKPdZfzyQ7brW32cg24kxfCxbtiyuvfbaiIj42Mc+tlW/f3JLEjbMS0TEAQccsNFz99133ygrK4uIiKVLl/aOyy5J+d3vfhePP/54REScccYZ8cEPfjAmTZoU5eXlUVtbG/vvv3+ce+65MXXq1Mjn8/HrX/86nn322d7rZZfhphgzuSW1bMk2vwClRl+E4U5fRG7TSl9EdtNMX0R2i00xZlJfBGBw6Isw3OmLyG1a6YvIbprpi8huMSrGXA633oiFMMCQW716dZx33nnR2NgYmUwmzjzzzDj44IM3ec3YsWN7X69atWqT57766qv9XhcRMWbMmII6NmX9+2QymYLrNrzv5mrZsJ7X18LwdsMNN0R3d3dsv/320dnZGfPnz+/zvxdeeKH3/EceeaR3fP1f4HJLEioqKmLUqFG9x5v6PaysrIyRI0dGRMTatWv7vUZ2GSr5fD7mzp0bERETJ06MmTNn9nteWVlZvPe97+295rbbbuudk12Gm2LM5Ib33Nx9NpwfN27cZt8ToFToi5AG+iJym1b6IrKbVvoisluMijGT+iIAb5y+CGmgLyK3aaUvIrtppS8iu8WqGHM53Hoj5dvkrgAbsXbt2jj//PPjpZdeioiI0047LY466qjNXrfjjjv2vl62bNkmz12+fHm/1/V3n1122WWj91n/PmPHju2zGnHHHXeMp59+Otra2mLNmjUxevTofu/R2NgY7e3tERExadKkTdbN8LJ+a7eXXnopLrnkks2e/4c//KH39f/8z/9EdXW13JKYnXbaKR599NGIiMjlcps8d/38+id9RPgzl2Q0NTVFS0tLRETsuuuumzx3t9126329sQzKLsNBMWaypqYmxo4dG6tWrSqoeVO19HcfgFKlL0Ja6IvIbZrpi8huGumLyG4xKsZM6osAvDH6IqSFvojcppm+iOymkb6I7BarYszlcOuN2BEGGDJtbW3xjW98I1588cWIiPjABz4Qxx577ICu3W677aKhoSEioncLvI1ZPz9mzJgYP358wdxee+3V+/qxxx7b6D3WrFkTK1asiIiIPffcs8/8QO+z4dyG11Aa5Jak7L333r2v1zeS+9PW1hbNzc0RUbhaW3ZJQjb7j3+a9PT0bPLcDec3vE52GW6KNZPrx5YvXx5r1qwZ0H36qweg1OiL+JxTauSWpOiLyG4a6Yv0vYb0K9ZM6osAbB19EZ9zSo3ckhR9EdlNI32RvtdQHIo1l8OpN2IhDDAkOjs744ILLohnnnkmIiLe8573xMknnzzg6zOZTO92uMuWLYvFixf3e97ixYt7VxFOnz49MplMwfwOO+zQu7Lw7rvvjs7Ozn7vs+G2eTNmzOgzv+G912/Lt6n7ZDKZmD59+kbPY/g566yz4uqrr97k/0455ZTe888999ze8e222y4i5JbkvOUtb+l9vWDBgo2et2DBgsjn8xFR+KFVdklCXV1d1NTURMRr2dpUc2PDfyit/zM3QnYZfoo1k+t/pte/54Y6Ozvj7rvvjojXniqyww47bPT9AEqBvojPOWmjLyK3aaYvIrtppC8iu8WoWDOpLwKw5fRFfM5JG30RuU0zfRHZTSN9EdktVsWay+HUG7EQBtjmuru741vf+lY8+eSTERFx3HHHxfve974tvs9xxx3Xu4r3F7/4RXR1dRXMd3V1xS9+8YuIeG3LxuOPP77f+5x44okREdHS0hKXX355n/mVK1fGH//4x4iImDBhQr9/IYwePTqOOOKIiIh48MEH45577ulzzt133x0PPvhgREQceeSRG91GjOImtyRh5513jmnTpkVExPz58+Phhx/uc86aNWvit7/9bURElJeXx6xZswrmZZehls1m48ADD4yI17bYvOaaa/o9r6WlJX7zm9/0Hh900EEF87LLcFOMmZwxY0Zsv/32ERHxxz/+MVauXNnnnF//+tfR2toaEREnnXRSvz8TQKnQF/E5p5TJLUnQF5HdNNIXkd1iVYyZ1BcB2DL6Ij7nlDK5JQn6IrKbRvoislvMijGXw6k3Ur7N7gzw/3zve9/r/YNx3333jdmzZ8fzzz+/0fPLy8v7Xf23ww47xEknnRTXXnttLF26NM4555x417veFdtvv3289NJL8ac//an3CSInnnhiTJw4sd/7z5w5M+bOnRtPPvlk/OUvf4k1a9bE0UcfHXV1dbFkyZL4wx/+EO3t7ZHJZOK0006LsrKyfu/zvve9Lx544IFYu3ZtXHLJJbF06dLeD1f33XdfXH/99RERMWrUqK1q5FAc5JakfOQjH4nFixdHa2trXHjhhXH88cfHtGnTorKyMpYsWRLXXnttrFq1KiIi3vve9xZsdRshuyTjlFNOiXvvvTc6Ozvjd7/7XTz99NNx1FFHxfbbbx/r1q2LxYsXx4033hivvvpqRETst99+ccABBxTcQ3YZTE888UTBP9jXrl3b+3rlypV9nmwxc+bMPvcoxkyWl5fHaaedFhdddFG0t7fHOeecE//0T/8UU6ZMiZaWlrjlllvi73//e0S89gSpI488st/7AJQKfRGfc0qZ3JIUfRHSSF9EdocbfRF9EYDBoC/ic04pk1uSoi9CGumLyO5wpDcy/Hsjmfz6/c0AtpFTTz11i84fP358/PCHP+x3LpfLxY9//ONNbss1e/bs+PjHP967irI/a9eujQsuuCCWLl3a73xFRUV87GMfi6OPPnqTtT711FNx8cUXx5o1a/qdHz16dHz+85+P3XfffZP3IZ2uvvrq+P3vfx8Rr211O3Xq1H7Pk1uS8sQTT8S3v/3taGpq6nc+k8nEu9/97o1+aJVdkvDQQw/FJZdcEs3NzZs8b999943/+I//iLq6uj5zsstg+eEPfxjz5s0b8PlXX311v+PFmsmbb745fv7zn0d3d3e/81OmTIkvfvGLMWrUqE3eB6DY6Yv4nFOs9EUY7vRFSCN9EYYTfRF9EYDBoC/ic06x0hdhuNMXIY30RRhu9EaGf2/EQhhgmxvMxsZ6ixYtiptvvjmWLl0azc3NMXLkyJg8eXIcc8wxvds7bk5PT0/ccsstceedd8ayZcuio6MjxowZE/vuu28cd9xxsdNOOw3oPmvXro0bb7wxFi5cGK+88kpERGy33XYxffr0OP7442PkyJEDug/pM9DGxnpySxKam5vjpptuioULF8bLL78c3d3d0dDQEPvss0+8853vjF133XWz95Bdhlpzc3Pceuut8cADD8QLL7wQra2tUVZWFqNHj47JkyfH4YcfHtOnT49MJrPJ+8gub9RgNTXWK8ZMPv/883HTTTfFI488EqtXr47q6uqYNGlSHH744XH00Udv9CkjAKVEX8TnnGKlL0Ia6IuQRvoiDBf6IpunLwKwefoiPucUK30R0kBfhDTSF2E40RvZvKR7IxbCAAAAAAAAAAAAAAAAkAob3z8HAAAAAAAAAAAAAAAAhhELYQAAAAAAAAAAAAAAAEgFC2EAAAAAAAAAAAAAAABIBQthAAAAAAAAAAAAAAAASAULYQAAAAAAAAAAAAAAAEgFC2EAAAAAAAAAAAAAAABIBQthAAAAAAAAAAAAAAAASAULYQAAAAAAAAAAAAAAAEgFC2EAAAAAAAAAAAAAAABIBQthAAAAAAAAAAAAAAAASAULYQAAAAAAAAAAAAAAAEgFC2EAAAAAAAAAAAAAAABIBQthAAAAAAAAAAAAAAAASAULYQAAAAAAAAAAAAAAAEgFC2EAAAAAAAAAAAAAAABIBQthAAAAAAAAAAAAAAAASAULYQAABmCXXXaJTCYTH/3oR5MuBQAAAGBI6YsAAAAApUpfBACGJwthAAAAAAAAAAAAAAAASAULYQAAAAAAAAAAAAAAAEiFTD6fzyddBAAAAAAAAAAAAAAAAGyOHWEAAAAAAAAAAAAAAABIBQthAAAAAAAAAAAAAAAASAULYQCAkrN8+fL44he/GAceeGDU19dHRUVFbL/99rHffvvF+9///rjsssti7dq1Bdfssssukclk4qMf/WjB+LPPPhuZTGbA/5s5c+ZG65o7d2585CMfid122y1qa2tj1KhRsd9++8XnP//5WL58+Tb4lQAAAABKjb4IAAAAUKr0RQCgeJQnXQAAwFC644474oQTTujTuHj55Zfj5ZdfjkceeSSuuuqqGDduXJxwwglDUlNHR0ecdtppcdVVV/WZe+SRR+KRRx6JSy+9NK688so48cQTh6QmAAAAoPjoiwAAAAClSl8EAIqLhTAAQMno7OyM973vfbF27doYOXJknHnmmTFr1qzYbrvtoqurK5555pm466674o9//OOA7zlp0qR4+OGHN3nO1VdfHeedd15EROy8884Fc/l8Pk455ZS44YYbIiLixBNPjFNPPTV22223yGazsWDBgvj2t78dzz//fJxyyikxf/78mD59+hb+5AAAAECp0xcBAAAASpW+CAAUn0w+n88nXQQAwFC49dZb4+ijj46IiDlz5mz0CR7d3d3R1tYWo0aN6h3bZZdd4rnnnouPfOQjcdlllw34Pe+999448sgjo729Pfbee++45557Cu7705/+ND7+8Y9HRUVFXHfddXHsscf2uUdjY2McccQR8eijj8Zhhx0Wd95554DfHwAAACBCXwQAAAAoXfoiAFB8skkXAAAwVFauXNn7+sgjj9zoeeXl5QXNh621fPnyeNe73hXt7e0xZsyYmDNnTsF98/l8XHTRRRER8alPfarfpkZERENDQ1x88cURETF//vx46qmn3nBtAAAAQGnRFwEAAABKlb4IABQfC2EAgJIxceLE3te/+MUvtul7tbe3x8knnxzLly+P8vLy+P3vfx+TJ08uOOexxx6LpUuXRkTEKaecssn7bdiIufvuuwe/YAAAAKCo6YsAAAAApUpfBACKj4UwAEDJOPzww2O33XaLiIjPfOYzMWPGjLjgggti/vz50dXVNajv9bGPfSwWLlwYERHf//73Y9asWX3Ouffee3tfH3rooZHJZDb6v7q6ut5zN3xSCQAAAMBA6IsAAAAApUpfBACKj4UwAEDJqKioiDlz5sTee+8dERELFy6ML33pS3H44YfH6NGj49hjj40rrrgienp63tD7nHfeeXHVVVdFRMS//du/xZlnntnveS+//PJW3b+trW2rawMAAABKk74IAAAAUKr0RQCg+JQnXQAAwFDaZ5994uGHH445c+bEnDlz4vbbb48lS5ZEe3t7/OUvf4m//OUv8Z3vfCduvPHG2G677bb4/n/4wx/i3HPPjYiIo48+Oi655JKNnrthA2XOnDmxyy67DOg9tqYuAAAAAH0RAAAAoFTpiwBAcbEQBgAoOWVlZXHyySfHySefHBERK1asiD//+c/xwx/+MO67776477774hOf+ET88Y9/3KL73n///fHhD3848vl8TJkyJa6++uooL9/4x62xY8f2vh49enTsu+++W/XzAAAAAAyUvggAAABQqvRFAKB4ZJMuAAAgaRMnTozTTjst7r777jjwwAMjIuL666+P9vb2Ad9j5cqV8a53vSva2tqivr4+5syZE2PGjNnkNdOmTet9PX/+/K0rHgAAAOAN0BcBAAAASpW+CACkl4UwAAD/T0VFRRx11FEREdHd3R1r1qwZ0HUdHR1x8sknxwsvvBBlZWVx1VVXxV577bXZ6w488MDYcccdIyLiJz/5SXR0dGx17QAAAABvhL4IAAAAUKr0RQAgfSyEAQBKxh133BFLlizZ6HxXV1fMmzcvIiLq6upi/PjxA7rvv/7rv8bf//73iIi4+OKL49hjjx3QddlsNr70pS9FRMTTTz8dH/7wh6Ozs3Oj569duzb+53/+Z0D3BgAAANiQvggAAABQqvRFAKD4lCddAADAULnlllvivPPOiyOOOCKOP/742H///WP8+PHR3t4eixcvjh/96EexaNGiiIj4l3/5lygv3/xHpZ///Ofxm9/8JiIiZs+eHcccc0w88sgjGz1/xIgRseuuu/Yen3HGGfG3v/0t/vjHP8bvfve7WLRoUXziE5+IGTNmRH19faxduzaeeOKJuO222+K6666L6urq+OQnP/kGfyUAAACAUqMvAgAAAJQqfREAKD4WwgAAJSWXy8W8efN6n+TRn3e9611xwQUXDOh+zz//fO/rW2+9Nfbbb79Nnn/UUUfFbbfd1nucyWTit7/9bXz605+OH/3oR7F06dL4z//8z41ev9122w2oLgAAAIDX0xcBAAAASpW+CAAUFwthAICS8bnPfS7233//uPnmm+P++++P5cuXx8svvxwRERMmTIgZM2bEhz/84Tj++OOHtK6Kior43//93zjzzDPjpz/9adx2223x/PPPR0tLS9TV1cWuu+4aBx10ULzzne+ME044YUhrAwAAAIqDvggAAABQqvRFAKD4ZPL5fD7pIgAAAAAAAAAAAAAAAGBzskkXAAAAAAAAAAAAAAAAAANhIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKnw/wO7MnMN5PU/9QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADMIAAAOrCAYAAAAP6Mv5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Qd4W+X1+PHjPWJHlp29lzMJCYFABmSxw95QyiyrQIEWaEtb2n9L+RVKWzaUthTKStl7JsRJaBJmIJCQYWc727a8Em/7/5zXuYpsS7I8ZOlK38/z6LHGvVdXV68tv0f3nBPT0NDQIAAAAAAAAAAAAAAAAAAAAAAAAECYiw31DgAAAAAAAAAAAAAAAAAAAAAAAACBIBEGAAAAAAAAAAAAAAAAAAAAAAAAtkAiDAAAAAAAAAAAAAAAAAAAAAAAAGyBRBgAAAAAAAAAAAAAAAAAAAAAAADYAokwAAAAAAAAAAAAAAAAAAAAAAAAsAUSYQAAAAAAAAAAAAAAAAAAAAAAAGALJMIAAAAAAAAAAAAAAAAAAAAAAADAFkiEAQAAAAAAAAAAAAAAAAAAAAAAgC2QCAMAAAAAAAAAAAAAAAAAAAAAAABbIBEGAAAAAAAAAAAAAAAAAAAAAAAAtkAiDAAAAAAAAAAAAAAAAAAAAAAAAGyBRBgAAAAAAAAAAAAAAAAAAAAAAADYAokwAAAAAAAAAAAAAAAAAAAAAAAAsAUSYQAAAAAAAAAAAAAAAAAAAAAAAGALJMIAAAAAAAAAAAAAAAAAAAAAAADAFkiEAQAAAAAAAAAAAAAAAAAAAAAAgC2QCAMAAAAAAAAAAAAAAAAAAAAAAABbIBEGAAAAAAAAAAAAAAAAAAAAAAAAtkAiDAAAAAAAAAAAAAAAAAAAAAAAAGyBRBgAAGA7Q4YMkZiYGHPZvHlzqHcnInBMAQAAAACwB+bwnY9jCgAAAABA5GG+3/k4pgCAcEIiDAAAAMJKeXm5PP744zJ79mwZMGCAJCUlmZ9z5syRv//97+Zxuzx/Q0ODrFu3Tp577jm5+eabZdq0aZKamuoODGmQCAAAAAAAINLiIosWLXLHPwK9HHfccUF9bQAAAAAAIHKEKoZSXV0tX3zxhXnuK6+8UsaPHy/x8fHu+Mbll18elOcFALQU7+U+AAAA2NisWbNk8eLF5npOTo65bRfLly+Xiy++WDZt2tTk/u3bt5uLvp777rtPXnjhBTnqqKPC+vm//PJLOfbYY6W0tLTT9xMAAAAAAHhHXMS+zw8AAAAAALoOMZS2e+SRR+TWW281yTAAgNAjEQYAAABhYeXKlXLCCSe4q3IkJCSYSh1asWPbtm2ycOFCqa2tlY0bN5rlli5dKoccckjYPr9uhyQYAAAAAAAQjXERT/369ZOzzjqr1eVGjx7d4dcBAAAAAAAiWyhjKAUFBSTBAEAYIREGAAAAIVdTUyPnnHOOO1AxYcIEeeONN2TIkCHuZTZv3ixnnnmmCWpogokuv3r1atNiNpyf3+l0yhFHHCGTJ082l3Xr1skvf/nLDu8zAAAAAACIDJEcF1HZ2dmmYioAAAAAAICdYyiWgQMHus8BOfLII+Xxxx+XV155pdO2DwAITGyAywEAAABB889//lM2bNjgThz54IMPmgQqlN5+//33zeNq/fr18u9//ztsn18DLrm5uVJUVCQfffSR3H333SbY0rt3707ZZwAAAAAAEBkiMS4CAAAAAADQ2UIdw7jiiitk165dsnXrVnn11VdNEVTtRtOtW7dO2T4AoG1IhAEAAEDIPfroo+7rt912m/Tp08frcn379pVbb73V63rh9vwaVBkxYkSn7B8AAAAAAIhckRgXAQAAAAAA6GyhjmEMHjyY4qcAEEZIhAEAoJn6+nr5z3/+I8cff7yZMCUnJ5tqAWeccYZpp2mZNWuWxMTEmMuiRYu8bkvXs5bR1putufzyy93LP/30060u39DQIK+//rpcdtllMnLkSHE4HGZ/tQWndp7Q11FbW+t3G7pf1nN6Vkn43//+J1dddZWMHj3abFcfv+WWW+Trr792L68n+ldWVkogysrKJC0tzb3ut99+K13ZGvXZZ5+V888/X4YNGybp6emmGsPQoUPloosuMsdQj6U/+h5b+67vvWXhwoVy4YUXmu3qsc/KypIZM2bII488Yp43UBUVFXL//ffL9OnTpUePHpKSkiLDhw83+/fxxx8HNKas+xcvXuy+b/bs2e77PS+BjK/8/Hy58847TWeTjIwMc8x0PPzkJz+RLVu2SGfJy8uT77//vsnvgT+ej+s42rhxo62fHwAAAADCCXGRRsRFmiIuQlwkWM8PAAAAAHZFDKURMZSmiKFEbgwFABCGGgAAgNvOnTsbjjrqKJ21+rycddZZDaWlpQ0zZ85035eTk+N1e4MHD3Yvs2nTplaf/7LLLnMv/9RTT/ldduXKlQ0TJ070u696GTVqVMPq1at9bkf3y1pW97eqqqrh2muv9bqtm2++2axz+OGHu+977rnnGgLxz3/+073O5MmTGzqiLcdV35vhw4e3epymTJnSkJ+f73c71rL63utxuvrqq/1uc9KkSQ179+5t9fV8++23re6jvifV1dV+X3trr9Hz0nx8Nd/u66+/3uBwOHyun5KS0vDOO+80dIYnnnjCvd2RI0cGtE52drZ7HR1bdnp+Pfaev3MAAAAAEC6IixAX8bcd4iLERdry/M3HDAAAAABEEmIoxFD8bYcYSmTGUAL9ndTrAICuER/qRBwAAMJFcXGxzJkzR9asWeO+T6s6TJ06VZKSkmT16tXy+eefmwoPsbGhbaq2ZMkSOe2006S0tNTcTkhIkMmTJ0t2dra5rtUctOqGVtRYt26dTJs2TZYvXy5jxoxpdds//elP5YknnjDXx48fbyo26DbXr1/vft3XXHONXHvtteb6k08+KRdffHGr29XlLFoNpCu8/PLLZt+s6hlaCWPKlCmm8oW+Fn1Nely0ssmnn35q3usvvvgioDamegy0Kopu56ijjjLVLLTii25Hj7lasWKFXHrppfLee+/5rVhx7LHHyt69e9336XGfOHGi2fY333wjK1euNO+JVhvx54YbbjA/dYzu2LHDXNfqLf3792+xrL+xsGDBArnuuuukrq5OBg0aZI5L9+7dZdOmTaZ6iR4vrTKiVVBWrVplfk86wvN3btKkSQGto8vl5ua2WN+Ozw8AAAAA4YC4SCPiIsRFiIt0/vPr8Xr77bfNe1lUVGQqw+o407Fz2GGHSXw8X1cCAAAAsA9iKI2IoRBDibYYCgAgDHVRwg0AAGHvyiuvdGfnJyYmNjz55JMtlvnss8/c1Q10mVBU7dDKIr169XIvd+mllzbs2LGjxXK7du0yFUas5caPH99QW1vrt2pHXFyc+Tlw4MCGJUuWtFi2srLS/CwrK2tIS0szy8bExDRs2LDB7+vSqiHWc3Tr1s1UPemIQI7rqlWrTGUJax9vu+22BpfL1WI53fejjz7avb2TTz651aodSUlJ7uoja9asabJcfX19wwMPPNCkwsXixYu9blOXnTFjhnu5rKyshg8++KDFch9//LF5z/V1eI47X689kIoy/o6pvj59n5599lmzj82Pa//+/d3LXnHFFQ0dpcfc2t4vfvGLgNa5/fbb3evMnTvXVs9PRxgAAAAA4Yi4CHER4iLERTrz+T3HjL9Lv379Gu677z5TrRYAAAAA7IAYCjEUYijRGUPxh44wABAaoU05BgAgTGj1hqeeesp9+x//+IdceeWVLZY78sgj5aOPPpLU1FSprq6WUPj1r38te/bsMddvuukmUzmib9++LZbTyhNatUIrkajvvvtOXnnlFb/b1ioN+tq0asMxxxzT4nGtXqLS0tLkoosuMte1a+q///3vgCt2aKWH1qpPdAY9NlpZQv31r3+V++67TzIyMlosN2zYMPnggw9k7Nix5vb7778vn332md9tV1VVmQopCxcuNNU6PMXExMjNN98s5557rvu+efPmed3Ohx9+aCqwKK3Q8eabb8qJJ57YYjl9D999912zTFeMO30OHSs//OEPzevxNG7cOHdVF6VjTKt4dERhYaH7eiAVU1SfPn3c17WSqJ2fHwAAAABCjbhII+IixEUUcZGufX6tPHv77bfLjBkzZPfu3R3aFgAAAAAEGzGURsRQiKFEYwwFABB+SIQBAODAZFon3VZA4rLLLvO57MiRI+WWW26RUNAWp88995x7snbvvff6XT4uLk7uvvtu9+3nn3++1ee48cYbzWtszdVXX+2+/vTTT5tAhzfaOvbZZ5/t0ta12u5VAwnqsMMOa/X96tatm9x5551tOk733HOPCdr44hns0rbHrQVxLrzwQpk+fbrP7R1xxBGmFW5XOPXUU+Wkk07y+fjcuXPdwYLy8vIOt4/VbVi0xXAgPJfzXN+Ozw8AAAAAoUZc5CDiIsRFiIt03vP37NlTrr/+enn99ddl48aNsn//fqmsrDTX9QSsyZMnu5f99NNP5bTTTnOffAQAAAAA4YgYykHEUIihRFsMBQAQfkiEAQBARHJyctzXL7nkklaX9xfMCCatpmFVbTj77LMlOTm51XWOOuooMxlX//vf/1pdXifNgdAvqidOnGiub9++3VSg8Oatt94yQRallTGmTZsmwfbee++5r2t1keaVJ7yxqpsEcpz0uOsX8/5okMSyefNmr8ssXrzYfV0rZLQmkGU6w3nnnef3cT2eEyZMaPX1BUpPgLAkJiYGtI5VQUZ19ASJUD8/AAAAAIQacZGDiIsQFyEu0jnPryfe5Ofny6OPPipnnnmmDB061Jx8ouvqdT0pRyvnep5A9MUXX5jquwAAAAAQroihHEQMhRhKtMVQAADhJz7UOwAAQKhptQ6t8mCZOnVqq+toVYvMzMwub5u5fPly9/Vvv/3WVNhoC5fLJfv27XMHL5pLSEiQ8ePHB7y9a665xlR1tCpQaDUHf5UpfvSjH0lXHycNRG3ZsqXVdayqLWrbtm1+lx01apQ5Vv5kZWW5r5eWlrZ4XAM8VhDHCioFEiDSQIHnvgZDIGOgtdfXFp5Bt0Db82oL4bZW+gjX5wcAAACAUCIuchBxkUbERYiLdMbz+6t2a9H38w9/+INs2LBBXnjhBXPf3/72N/nlL38p8fF8hQkAAAAgvBBDOYgYSiNiKNEVQwEAhB+iyACAqFdSUtJkgjRo0KCA1tPlujpYsWPHjiaVJQKpwuEtYOErWOF0Otv0JfPFF18st99+uwmAvP3222by3bNnT/fjWvXRquah1Ri6qv2q53F6//3323WM/HE4HK1uwzOYUVtb2+Jxz0BFamqqCX61Jj093Tx3cXGxBFNbX5+2KO4IzxMjAq3A4blcICdWhPPzAwAAAEAoERc5iLhII+IixEW68vmVJsNYiTA6/j799FM5+uijO7xdAAAAAOhMxFAOIobSiBhKdMVQAADhJzbUOwAAQKiVl5c3ua0Tx0D4mvAHO7DSUd4mzu2tftC9e3e54IIL3BPWZ555psnjTz/9tNTX15vrZ5xxhvTo0UPscJzq6ur8Ph5IO9y2jLtAx1xXTcw74/W1hWcFkN27dwe0zq5du9zXAwn0hPPzAwAAAEAoERc5iLhII+IixEW68vnV8OHDZciQIe7ba9as6fA2AQAAAKCzEUM5iBhKI2Io0RVDAQCEHxJhAABRr/nkb//+/QGtp5UqOps1sQ8kQPK3v/3NtDFt68XzS+XOcPXVV3ttVavP9dRTT7lvX3XVVdJVPI/Ta6+91q7j1JXjLtAxF6xxF2raDtgSSKthtXXrVvf10aNH2/r5AQAAACCUiIt0DHGR9iEuEj5xiVA/v6Vv377u6wUFBZ2yTQAAAADoTMRQOoYYSvsQQwm/GAYAIHyQCAMAiHraqlNbq3qbBPmzbdu2DrcwbWu1id69e3utWhBKU6ZMkUMPPdRdrXH58uXmek5OjmzcuNFcHzx4sBx33HFdtk/heJya86xgosGK1lrmWpU+gt26NhTGjBnjvv71118HtM6KFSu8rm/H5wcAAACAUCIu0jHERdqHuEj4xCVC/fzeTtAJRbVkAAAAAGgNMZSOIYbSPsRQwi+GAQAIHyTCAACinrbqnDBhgvv2p59+2uo6ubm5UlhYGFB7V0sgy3/33Xd+Hz/qqKPc15cuXSrhwlvlDs8KHldccYXExnbdvx3hepw8DRgwoEnA4rPPPmt1nS+//DKgiiJd3X62o2bPnu2+vm7dOtm5c6ff5Xfs2GF+By1z5syx9fMDAAAAQCgRF+k44iJtR1wkfOISoX5+60QefW5Lv379OrxNAAAAAOhsxFA6jhhK2xFDCa8YBgAgvJAIAwBAs8nSc8891+ryzzzzTEDb9WwV+80337Q6Ed20aZPfZU488USJj48315ctWyYrV66UcPDDH/5QUlJSzPUXX3xR8vPzTdtYpUGKK6+8skv359RTT3Vf1/3YvXu3hKOZM2e6rz///POtLh/I2FTJycnu6zU1NRLusrOzZezYse7b//nPf/wu7/n4+PHjZdiwYbZ+fgAAAAAINeIiHUNcpH2Ii4RHXCLUz69eeOEFqaqqcp+EM2PGjA5vEwAAAACCgRhKxxBDaR9iKOETwwAAhBcSYQAAEJEf/ehHTap2+JsU5uXlyf3339/m6hH+JmDa2vbmm29udXv9+/c3gQGl1RsuvfRSKS0tDWhf6uvrZe/evRIMGRkZcv7557tbrJ577rlSWVlpbp9wwgkycOBA6UpHHnmkzJo1y1yvqKiQSy65RKqrqwNaV5cLpJVsZ/AM4ugX/v4qxmi71tYm8ZasrCz39e3bt4sdXH/99e7rf/nLX3wGmLQdsT5uueGGGyLi+QEAAAAglIiLdAxxkfYhLhI+cYnOfn7t8KK/c4HQyqy//OUv3bf1d6ZXr15t2HsAAAAA6DrEUDqGGEr7EEMJnxgKACC8kAgDAICIjBw5Ui6//HL37auuusrrxFAraxx//PGyb98+SUxMbHW7F1xwgbtt6/Lly82XunV1dU2W0QoXWmVCq3AkJSW1us27775b+vbta65/++23ZmL+0Ucf+Vxet6/BlVGjRpmKGl3RwtazFasey1B4+OGHJS0tzVyfP3++qSTpr0Xs+vXr5a677jKVVrqq5e3JJ58sRx99tDuYdNppp8mCBQtaLLdo0SKZO3euGTuBjLtDDjnEff2VV14JqOVtqF1zzTUyfPhwd6tnPTZbtmxpsoze1uNQVFTk/r31DDR6O25aRdS66O2ufH4AAAAAsAviIh1HXKTtiItEblzk888/l3Hjxsnjjz8ue/bs8bqMvp96wtjUqVPNcyp9f++9916f+wkAAAAAoUYMpeOIobQdMZTwiaEAAMJLY/87AAAgf/vb30xAYd26dVJVVWWCF3/4wx/Ml7EaRFi9erX5ElcnfmeffbaZUC1evNjvNgcPHizXXXedPPbYY+a2fpE7b948M3HWFqMbNmwwE2OtFHHcccdJnz59Wm1R2q9fP3nzzTfNpK2goMDsr7a11YoeGrjo2bOnaVmqj61atarVlridZfr06eYLbj1OFq3eePrpp0so6IRdj7UGjLQKpQYqpkyZYibEkyZNkszMTFNZRL+M16BPKKpb6AT63//+t/sLf33PNBg2YcIEmThxollGWxRbrY9vu+02efnll92TeCsQ1pyOz1/96ldmrL777rty6KGHyrRp0yQ9Pd29zIUXXihHHHGEhIuEhAR59dVXTfBGK798/fXXpq3tsccea8a2Bt0WLlzobsfbvXt3s7zVzjlcn1+DdRrk9GQFW9SOHTvc77Wnf/3rX2H1/gAAAACIfMRFOoa4SNsRF4nsuMjatWtNldYbb7xRRowYYX4/dNzp+6ZVWfXvjb7nlri4OHnmmWfM+w8AAAAA4YwYSscQQ2k7YijhE0NR3s7x2Lp1q/v6W2+95XUZ6/0BAHSiBgAA4LZ9+/aGI444Qksc+LycfvrpDaWlpQ0zZ85035eTk+NzmxUVFQ1z5871u81TTz21weVyNVx22WXu+5566im/+7p58+aGY4891u92PS+9e/du+OCDD1psZ9OmTe5lBg8e3KHj98ADDzR5zttuu60hGHQ/refQ/ffnm2++aTj88MMDPk5Dhgxp+Prrr1tsR99jaxl97wPhud3W9nHo0KF+9+uaa65pqK6ubujXr5/7Ph0zvtxxxx1+t9d8fLXlmKq2jNW2WLZsWavHYtiwYQ3Lly9vdVue71lrv6fBeH7l+XeiLZdA9hUAAAAAOhtxEeIixEWIi3TG8zd/7tYuo0aNali6dGmbjhUAAAAAhBIxFGIoxFCiN4bSlphHoO8tAKB96AgDAECzihiffvqpqT74/PPPm2oOJSUl0rt3b1NJ4bLLLpNzzjnHVFsIlFbneOedd0wFCW2Ju2LFCrNNrWih29TqIOeee26btmlVBNFWp1ppRCs5LFmyRLZt2yYul8tUMsjKyjJVD7QywwknnCCzZs3q1AoHvqpF3HLLLSFvXetJj7F25NAWv2+88YapkqJdOIqLi001Fq1yoq19jzrqKFP9RCtotPW96Ix91Aorf//73817qa10tdKItinWSizaGlirVyh9f62KHVq5wpf/+7//MxUwnnrqKfnqq69k9+7dZpvhTo+//t7p7+BLL71kjoVWNNHxrO1qzz//fLn00kvdrYkj7fkBAAAAIJSIi3QMcZH27yNxkfCIS3TW8x9zzDFm3Onv57Jly0zVYd2OXrRassPhkIEDB5pxpxV/TzrppC4fdwAAAADQEcRQOoYYSvv3kRhKeMRQAADhIUazYUK9EwAA2JFO/q32tTk5OeZ2tNNgjAZflE6UP/nkk1DvUkTJzc01E3Y1evRoWbNmTah3CQAAAAAQpYiLtERcJLiIiwAAAAAA7IgYSkvEUIKLGAoAIFrEhnoHAABA5HjyySfd17XSBDrXiy++6L4+efLkkO4LAAAAAABoirhIcBEXAQAAAAAgMhBDCS5iKACAaEEiDAAA6BRff/21u0pHZmamaTOKzrNp0yb5y1/+4r79gx/8IKT7AwAAAAAADiIuElzERQAAAAAAiAzEUIKLGAoAIJqQCAMAADqssrJSfvKTn7hvX3fddZKcnBzSfbKTE044QT744AOpra31+vi7775r2gGXlJSY2xMnTjTrAAAAAACA0CMu0jHERQAAAAAAiA7EUDqGGAoAAE3FN7sNAAAQkEceeUTy8vKkuLhYPv74Y8nPzzf39+jRQ2699dZQ756tzJ8/31ycTqdMmjRJBg4cKImJiVJQUCCff/65+9iq9PR0eeaZZyQ2lnxmAAAAAABChbhI5yEuAgAAAABA5CKG0nmIoQAA0BSJMAAAoF1eeeUVWbx4cZP74uLi5MknnzTta9F2LpfLBH58yc7OlpdfflnGjx/fpfsFAAAAAACaIi7S+YiLAAAAAAAQeYihdD5iKAAANCIRBgAAdJhWm5g2bZrccccdMn369FDvju2sWrVK3njjDVm2bJls2bLFVOsoKioyLYB79uwpRx55pJx66qly4YUXmoAQAAAAAAAIH8RFOoa4CAAAAAAA0YEYSscQQwEAoKmYhoaGhmb3AQAAAAAAAAAAAAAAAAAAAAAAAGEnNtQ7AAAAAAAAAAAAAAAAAAAAAAAAAASCRBgAAAAAAAAAAAAAAAAAAAAAAADYAokwAAAAAAAAAAAAAAAAAAAAAAAAsAUSYQAAAAAAAAAAAAAAAAAAAAAAAGALJMIAAAAAAAAAAAAAAAAAAAAAAADAFkiEAQAAAAAAAAAAAAAAAAAAAAAAgC2QCAMAAAAAAAAAAAAAAAAAAAAAAABbIBEGAAAAAAAAAAAAAAAAAAAAAAAAthAf6h2AfRUUFIR6F4CAxMXFidPpdN92uVxSV1cX0n0CWsO4hV0xdmFHjFvYlZ3Gbo8ePUK9C0CnIy4Cu7DT5wVgYdzCrhi7sCPGLezKTmOXuAgiFbER2IGdPi8AC+MWdsXYhR0xbmFXdhq7PYIYF6EjDAAAAAAAAAAAAAAAAAAAAAAAAGyBjjAAAAAAAABAO6rsAHYQGxvr9zYQjhi3sCvGLuyIcQu7YuwCAAAAAABENxJhAAAAAAAAgDbybDUN2InD4Qj1LgBtxriFXTF2YUeMW9gVYxcAAAAAACC6kAiDdqPyKeyCilCwI8Yt7IqxCzti3MKuGLsAAAAAAAAAAAAAAACIRiTCoN2ofAq7oiIU7IhxC7ti7MKOGLewK8YuAAAAAAAAAAAAAAAAogGJMAAAAAAAAEAbuVyuUO8CEBDtGOaZLFlSUiL19fUh3SegNYxb2BVjF3bEuIVd2WnsUmASAAAAAACg85EIAwAAAAAAALRRXV1dqHcBaBc9OZDxC7th3MKuGLuwI8Yt7IqxCwAAAAAAEF1IhEG7UfkUdmGnilCAhXELu2Lswo4Yt7ArO41dKp8CAAAAAAAAAAAAAACgs5AIg3ajog7siopQsCPGLeyKsQs7YtzCrhi7AAAAAAAAAAAAAAAAiAaxod4BAAAAAAAAAAAAAAAAAAAAAAAAIBAkwgAAAAAAAAAAAAAAAAAAAAAAAMAW4kO9AwAAAAAAAIDdxMXFhXoXgIDExsb6vQ2EI8Yt7IqxCzti3MKuGLsAAAAAAADRjUQYhEx9fb1UVVVJZWWl1NbWmttAMMTExEhBQYH7dk1NjTQ0NIR0n4DWMG6lxRdY8fHxkpycLElJSXyhBQAAgJBzOp0dWl/jIOXl5VJaWirV1dVSV1fXafsGNLdnz55Q7wLQZozblgmYqampkpGRYeIjsAeHwxHqXQDajHELu2LsAvbC+SLoKnzvDjti3LY8HnpJTEw0sZGEhIRQ7xIAAAgTJMIgJDSYUVxcHNX/pKNreY41gmiwC8atNHn9GgTXzw8NcHDSBwAAAOysrKxMtm/fbv7nty4AALRG4yIul8uc6Nu3b18TIwEAAADs1i23oqJCioqKiIegy/C9O+yIcduSnjOyf/9+kwyjhaqIi4QfujbCjhi3sCvGbiMSYRCyL+u8ZW4DwRKtf+Rhb4zbgzxPDtSf+jmigQ2SYQAAAGDXJBj98tLzC0z9/5/YCADAG42F6GeG/tTPipKSElMFtUePHqHeNQAAAESx9nTL1biIdsfVOAhxEYQC38HDjqJ93FpxEaWfFdphXW8TFwl/dG2EHTFuYVeOKB27JMKgS+k/odoJxpKUlCTdunUzX9oR1EAwxcfHN6kQANgB47ZpYEODGfv27TNt0pV+nvTq1Svqgz4AAAAIjeZFPgKNi+zcudOd5E1cBF1Bx5Znld66ujqq7iLsMW69f4Zo1VM9cdDz88QzfoTQ0ziV5xeOmrRE5V6EO8Yt7MpOY7c9yQJAJNLfUc/iIFrwLi0tzcRHiIsAAPzRzw09X8T6n2/v3r3SvXt3E1sHAADRi29I0KX05GXPkz1oUwgACIR+VujnhgYx9IRD6/NEf6akpIR69wAAABCF9KTstqqoqCAugi7XPHkg2pMJYA+MW+8n++pJgtaJH0oTYzShEuFL36/2/M8AhBLjFnbF2AXCX3l5ubuqvybBZGVlERcBAAQcF0lPTzf/7+nnidKfmZmZod41AAAQQiTCoEtVVla6r+sXdAQ1AABtoZ8b+vlhdYXRzxUSYQAAAGAXxEUAAB2lcRArEUbjIyTCAAAAwC7dcgsLC6W2ttb9fy3Ja+gKdByFHTFufdMCU9otVz9P9HOFGHt4sVPXRsDCuIVd2WnsOoPYKZdEGHQpK6ih/4TSmhAA0B76+aGfIxrosT5XAAAAADsgLgIA6Kj4+Hh3XIQTBwEAABBKbf1/tKamxvwkLoKuRMdR2BHjNrC4iMbbiY2EN7o2wo4Yt7Cr+igdu7Gh3gFEFyvbTP8hJSMbANAenp8h4ZrFDAAAAHhDXAQA0FHERQAAAGBXxEUAAB1FXAQAAHgiEQYAAAAAAAAAAAAAAAAAAAAAAAC2QCIMAAAAAAAAAAAAAAAAAAAAAAAAbIFEGAAAAAAAAAAAAAAAAAAAAAAAANgCiTAAAAAAAAAAAAAAAAAAAAAAAACwhfhQ7wAAAAAAAABgN3FxcW1eJyYmJij7ArRl3OnthoaGkO0PEAjGbWD0uLTn8wjBExsb6/c2EI4Yt7Arxi4AAAAAAEB0IxEGANBuW7dulcMPP9xcf+ihh+Siiy5q8vi8efPkpptuMte/+uorGTRoUEj20048j9nKlSs5ZgAAAECYcjqdbV6noKDAnMitJ2jFxxOWQ2hw0nznxkUmTJhgrj/66KPygx/8oMnjL7zwgtxwww3mOnP8wPg6Zoxb8Xqib0JCQrs+j9B1HA5HqHcBaDPGLeyKsQsAQNfifJHOx/kiAAAAbUNZFAAAAAAAAAAAAAAAAAAAAAAAANgCiTAAEASTJk2Snj17yo033hjqXQE6HeMbAAAAAODPoYcearpUXH/99aHeFaDTMb4BAAAAAP7wfToiGeMbAACEk/hQ7wAAAAAAAABgNy6Xq83r1NTUSH19vbleW1sbhL0CWoqJiZG4uDj37bq6OmloaOiS59bxHslj3fO16XFt/lr1Ps9lI/lYdBbPY9b8/q4at3YY3/rcetHPlfZ8HiF4YmNjxeFwuG+XlJS4P/uBcMW4hV3ZaexqEi0AAAAAAAA6F4kwAAAAAAAAQCedrO1PuJ3EjejQfNwxDmFHjFvfx6U9n0foOnpCNu8R7IZxC7ti7AIAAAAAAESX2FDvAAAAAAAAAAAAAAAAAAAAAAAAABAIEmGAKPLZZ5/JLbfcIlOmTJGhQ4dKv3795NBDD5Uf/OAH8uSTT5qW4d58+OGHcsUVV5hl+/fvLyNHjpSTTz5ZHnzwQSkvL/f5fPPmzZOePXuay9atW6W6uloef/xxOe6442TYsGGSnZ0tZ5xxhnz00UdN1tNtPvzwwzJ79myzn8OHD5dzzz1XlixZ4vO5li5d6n4uva5Vn5599lmZO3eueR7d76OPPlr+9re/SWVlpc/t6P7oNvSnP3/+85/dz+dt/W3btpnbL774ons56+Jr27t375a7777bHB9rnydMmCA/+tGPZPHixRIMu3btkn//+9/m/T3yyCNl8ODB5nnHjx8vl1xyibz++uth2UZ+0qRJ5ljeeOON5vbXX38t11xzjTleAwYMMD9/8pOfSG5ubpvGzPPPPy9nnnmmjB07Vnr16uXevkWXefnll+XCCy80y+jv0OjRo806ehx1jLemuLhY/vCHP8jUqVNl4MCBMmbMGDnnnHPkzTffDOi1W/usY9CfQMey/m7q/hx77LHmd7tv374yatQoOfXUU81zbN68uUPjW6uv6d+C8847z33M9Pdfx9vZZ58t999/v6xbty6g1w4AALwrq6wJ9S4AgC0QFyEu0hxxEeIixEUAAIiMuEhdPd3jAKA1xEWIizRHXIS4CHERAABgd/Gh3gEAwVdRUWECGq+99lqLx3bu3Gku8+fPl8LCQvn5z3/ufkwDANddd528++67TdbRyduXX35pLv/617/khRdeMBNhf8rKyszE86uvvmpy/7Jly8zlrrvuMs+Vn58vF110kaxdu7bJcjqx18DGY489ZoIc/uj+6TYWLlzY5P7Vq1eby0svvSSvvvqq9O7dW8LFK6+8Irfeeqvs37+/yf07duyQt956y1wuvvhi+ctf/iLx8Z3zp1snnBoA8Ba40IDHBx98YC76/j711FOSlpYm4UiDEbfddpvU1tY2OW7//e9/TWDm0UcfbXVyr2P9/PPP9xtAcrlc8sMf/lA+//zzJvfr740GRvSiAUJ9Xg1YeLN+/XoTxNDj6/ncOrb18vHHH5uAR1fRY6PBtJqapifPFhUVmUCoXvR1BRp0aU6DlPq7+Omnnza5X59P/yZs2rRJPvnkE/n222/NGAMAAIEr3Fcjn2zcK0s25cryDQXy/s0zJCsh1HsFAOGJuEgj4iJNERc5iLgIcREAAOymvKpWlm4qkkUbN8ji9Xvl6Ssmy5jMuFDvFgCEJeIijYiLNEVc5CDiIsRFAACwg4aGBimuqJXtJVWSX1wpO0trZM/+rbK1aL+M6pMuP53RX6IRiTBAhNNJ66WXXiqLFi0ytzWzXqs5TJw4UVJSUkxViS+++MLrxEWrG1hBjXHjxsn1119vKgDoBE8njDqB0wmaTtR0QqiVAXzRSfvKlSvNc59yyimSkZEh3333ndx7771mG7/73e9k5syZpirDli1b5KabbpI5c+ZIt27dzORKKw2UlpbK7bffbpZrXlnD05/+9CdT8WHWrFnm+bRihT6HTjpzcnJMNQGdoOqkPS6uc4PiDz30kAlO6CRZn1Mrodxxxx1NlklNTW1y+4033jDHVj+ohgwZYip66HHOysoylRR04r5gwQLzMz093QSBOoM+nzrmmGNMdQetNKHPqZNRfQ+ee+45MzZ07PziF78wk+Bws2rVKhOw69Gjh9x8882m8ocGCvR4/eMf/5Cqqir58Y9/bCqX6Jj3RY+pBr1OOukkU71Dq4Ts3bvXTL6tIJAGlvR4qGnTppn3Sber77MGf9577z0TuNCqFTrOmgeCdFvWuFBaFeSCCy4wY3nDhg2m+o1Wwmge1AuWv/71r3LPPfeY6w6Hw/yuaBUcp9Npftc02PDOO+9ITExMu8f3fffd5w5qnHDCCSYoqb+PSUlJUlBQYP4GaIUfz+cAAAC+7Sypkpy8IsnJdck3+WXiWev0w9W75AcTs0K4dwAQnoiLEBfxhbjIQcRFiIsAAGCX5JdPNhTLgvVFsnxTsVTXHYyMvPfdThkzc0BI9w8AwhFxEeIivhAXOYi4CHERAADCRXVtveworZLtxVWyvaTywM8Dl+JK2V/jvVvf/uo6ESERBggL9Q0NUlJxMFM/GjhS4iU2SP/YawUOK6ihAYUnnnjCTCo86YRDJyca5LDoZMMKdsyYMcNMuBITE92PaxvayZMny89+9jMT6LjzzjvNc/myYsUKefrpp03rWYtWlzjssMNMAEMDMDoh1MmfPu/hhx/uXk4npBqQ0Za8OunW6hxaDcQXDWpoMEcnbhbdnr5+DZhoC9xvvvlG/vOf/8iVV14pnUknuiohobEcd/fu3U3AwBetDqFBHw0y6OvTffas4KHHSFuOahWGBx54wEzWL7vsMhkxYkSH91WDOsuXLzfHtrnp06eb/dHAk1YV0fau+l5r2+FwosEIrabx/vvvN6nYooEHHVfaXlWrSWjlmuYtlZtvR19f80m6RceuFdTQSf0jjzzinozre3TiiSe63yNtDastlX/729822Ya+t9u3bzfXf/3rX5uqOxbdxmmnnWaOufX7GkwatLBa5ep7qsEhbUHrSYMcGnCz9rk949v6G6KvTVsBN6cBNT0O+jcEAAB4t6mwQhbmFsmiXJes2b3P53IkwgCRg7hI5yIu0oi4SEvERZpuh7gIcREAAOyW/OLpg1W75JZjovOEDyASRVtshLgIcRHiIu1DXKR9iIsAABA6+n+fa792dak80NnlYJKL/txTVt2kIGqgthY17SwYTUiEQdjRgMbxj62QaDL/+kniTG2cKHQmDRZYVRl00qKTseZBDUtsbGyTCh3WJEQnMJrV7xnUsFxyySVm4qLVPbQSiGb89+nTx+v2tdWoZ1DDopVDjjrqKDPB1ox/rfDhGdSwHH/88WYCqxUvtGKAv8CGVkzwVQXj//7v/8wkWJ9LW2t2dmCjrXTCrNUU9NjrRNNXG1utsPHiiy+atsT6UyfGHaUTc29BDU/aQlaPkwZgPvzwQzPRDTe///3vvbYt1om5jlHdfw12aTDLV5UPndx7tnluzvp90EoiGuzxVpFC3yP9PcjNzTXBM71t/b5p+2Wt0GKNea1G0pz+rj344INyxBFHtGg929n074L+fdDXocGy5kENT1qRo7327Nljfk6ZMsXvclpVBAAAHAx8rN293yS/5OQWyeaiyoDWW7erTIoraiQ9MTbo+wgguIiLdB7iIi0RFzmIuMhBxEWIiwAAYMfkF08lFTWSV7BfRmQld8k+AgiuaIuNEBchLkJcpP2Ii7QdcREAAIKrqrZedmqSi0eCi2eyS4WPri4dUVJRI6WVtdItIfo6rXGGDBDBtI3kjh07zHWd4DVvvelLbW2tCTQobRfrb2KjLWOtdZYtW+ZzubPOOsvnYzrRC2S5sWPHmp9aQcEfDaI0bydr0WNw+umnm+vaUtSzqkkoaLtdq8qKr6CT0oCHTnjVl19+GZR90YmuBqfy8vJkzZo15qKtW62Al1bBCDfaMlnbrfqiFTMsGoDzRdvO+mp7rMdEj4PSsePr90jfo4suushcLy4uNlU0LNrmWe9T2t7WV2tXDTDo71ww6fv88ccfuyu5HHrooUF7LivgpO2ctUUuAADwrq6+Qb7OL5W/5myR0/7xjVzy3Cp56rMdrSbBpCbGyqmH9pVHfnCYfHXn8ZKR0vlflgKAnREXaYm4iG/ERYiLdDbiIgAAtC355f3vC+TWN9bLCY+tkDvf2yCL81x+k2DiY2Nk9qiect+5h8qXvz5eRvXq1qX7DADhjrhIS8RFfCMuQlyksxEXAQBEcnHTwn018u2OMhPL+Nfy7fL79zfINf/9Xk554ms5+oEv5NynvpVbXlsn9y3cIi98tcvEOPIKKjolCUbjIYOcyTJtaIb8cMog+dXc0fL3H06ShLjoS4JRdIQBIjywYWktw97Tli1b3JMQb9U2PHk+rhNhX/y1SHU4HG1abt++fX73Sdvn+jNp0iR3xQbdZ2/VIbpCXV2drFq1ylzXtrt6aUvVhM76UH7llVdM9QltR1xRUeFzWa3yEW7Gjx/vsyqKOuSQQ0x1Gq2w4W98WkEzbzzXa+33QceWRQNn2g66+TZ8VRnx3Mb8+fMlWPT3u6SkpM1/F9pDgzja4lfbBGtgTlveautsreqj1VIAAIhmNXX18sXWUsnJdcnivCIp2l8b0HqO5HiZMcIpc7KdMnVYpvTpmeV+zMX3CADQBHER74iLHERcpBFxkeAgLgIAQOd3ftGTPY4a7JDjRmXKnFE9ZHDfnu7HXFVB3mEAsBniIt4RFzmIuEgj4iLBQVwEABApXV3yra4u7p9VUlnb+V1dPGWkxEt/R5L0z0g+8DNJBuhPR7L0Sk+UuNgYk8jr9Ois5nK5zP+Y0YZEGCCCFRUVua+3ZfKufxAtrU0+evXq5b5uVTDwJiUlxedj2mbX4qsyh7KqIrT2x7q1fdZWuN5ea1fT59bKKG3lL/jQFpWVlXL55Ze7qz0Esny4ae291qCHVgHRYJC/91qX8cVzXLf2fJ6/Z57P53ndc/x509rjofq70B633nqrac88b9482bt3rwkoWkHF0aNHy6mnnipXXHFFk78jAABEsorqOlm+uURycovkk43FUl4VWBCiZ1qCzBqRKXNGOuWwAd3NSR8qLo4mr0Ao+aoS6I+van8IDuIiTdfzts/ERYiL2CUuouNYT9DpqEiLi+hxac/nEYLH82+6t9tAOGLcoquTX5bkuWT+ukJZttF/xxeLxkGmDHHI8aN7yKzsTOme3HiKA2MXAPwjLuId54s0Ii5ir7hIZ4m0uAgAAB3q6rK/xiS1NElyOXB9T3lNUJ9fYx39TGJLkgzIaExw0WQXva33pyWR3hEojhTC7oQPR0q8zL/+YJZ8NNDXHK7seJJO831u7XaoeAZotGXwNddcE9B6WrGiM9x///3uoMa0adPkyiuvNG1PdZKpgSgr4KRVGT799NNOOdmgs3XWexno37POeL72bqOzTvjoSgkJCfLggw/K9ddfL6+99pp88sknpu2vVlzRCih6efzxx83FX8tifzjhI/zw5SPsiHGLYCqrrJUlG1yycL2e4FEccGWQgRnJcqxWNx2ZJeP6pkmsl/8hGLtAaHlW2AlUQUGB+b9ef199VSvMSo+ThTcdKdFEqxp5+zvXUZ5/F3Xe4K9CpCfPOUZr63nO7XV+4rms53b0fl/b8dxPf8/lb7lAn6v5dpq/PmvO2vy1dGSffT3uOT++9NJL5dprr5VA4yKBvpf+6HzViotMnz5drrrqKpkwYUKLuMjcuXNl+fLl5nrz523+fnfkfWkPf8e3tffUc9/8HdPm77W/5/Pcpue+tWUbvv6faT73b+21B/K6Azl+/rS2vj726KOPyk9+8hN59dVXZcmSJfLNN980iYv8/e9/lyeeeMKMs7Y+txV7ac/nEbqOZ3VrwC4Yt+hsZZU18vGaPfLudztl8fq9Uh1AbCQhLkaOHtFD5o7vKyeM7SOO1IRW12HsApEj2s4Z4XyR6NxnzhfpuGg6X8SOuuJ8EQAA/KmsqZedpY2JLfkeSS75xVWyoyT4XV2c2tWlWZKLXtfEl55pjV1d0HHhO5tC1J7woXomtB7MROs8KwXosR8zZkxA63lWMdD2pv7eqx07drivZ2ZmhsUJH63ts2fLVn2t3vZZx6m/bXhW2WjvCR+e749OdrVta1fR16ftbdXUqVPl7bff9nmigVXhwttJMKE+4UPHtb9tagUVa//9jU9/JzZlZWW1a2zpetay+tyey4waNSqgbXiy9tczISaQMdr8ffOspqFVN4J5wodl3Lhx5mJVitFAmbZY/u9//2taV+vJTtpquU+fPm16bsUJH+GPLx9hR4xbdNSeskqZ//1u+XD1blmWVyC19YF9QTS6T7qcdEgfcxnVO73NX4gwdoHIoAkhmQGc5IXWec7ndu/eLSNHjgxoPc85hs6b/NHtelsvlLTKpT+er6n5Pltzrfp6/8F/nct1lOdz6zx37Nix0lX0+Z599ll3XOStt97yGRcJZXXY1rQ2PjUuYu1/e8en53qtjS3Pxz3X86ysqsuMGDGi3a/Jiou0Nkb3798f0N+FrqBVTn/961+bS/O4SHl5uUnCamtcBACAcNdVyS8AIjc24uRvQId5fket85/s7OxOj4t4zgP9ddXoSq3tc2fERXzNOTsSFwn0fJ7OoM/33HPPmetTpkyR119/vdXzRewaF7H2v71xEc9x3d44YfO4yPDhw0MWF2n+d6Er6Pkxd9xxh7loXOSzzz4zBUNeeukl9/kin3/+OXERAED7urrsq2lMcrE6ulgdXkoqZW+Qu7poHKNv9yQZoAkuBxJeTHeXjGTT1aVbIsW9uwKJMEAE0yqWlmXLlskxxxwT0HpDhgwxLWd1YvTll1/6XVa/pLV05cTcn6+//louvPDCdu1zWlpaQJP5DRs2+H08kJMWtVKHfhGuVQ50oteV9CQIa1J75pln+gxq6JfxeXl5Eq6+++47E7zwlYyxatUqU02iI+PTc72vvvrK79jSx72t53kyj45PragSyPj0RsdoWVmZ3zGq/+Rt3LjR62ODBw82J8mWlJSYvwtdXaUkOTlZZs2aZS56XPQkEE3a+fDDD+Wyyy5r93YBAAi1bUX75cPVu8zlyy0uCbQ42mGDMuSkcX3kxHF9ZEiPbsHeTQCIKsRFvCMuQlykLYiLtERcBAAA70h+AYDwot09LNrp9Oijjw5oPZ03WXERz3meneIi559/vt/HLRqX8BYX0TljV8ZFNAmgq+MiVhLT6aefbtu4iMY9/MVFVq9e7Y6LNH+v2xsXac/Y8tyGdorVoiyBbKMjcZFNmza1GhexOiB3dVxk5syZ5qJxkTvvvNPERebPny+XXHJJu7cLAIjsri47Sg4kuRxIdMnX2wcSXqqC3NUlMzW+RUcX6zpdXcIDiTBABDvkkEOkf//+sn37dnnmmWfkhhtucE/c/dFJon4hvWDBAlm0aJFZX7fjjVU9U9cJNHASbG+++ab8v//3/0y71ua0msAbb7zhnng2ryigkz4rcKGTx/T0dK8dO/S4tDZ5U1VVVX6X0/aeGthYv369aTt77LHHSlfQYEAgVVz1/fVcNtxogOaDDz6QU0891evjVhUTpScYtEffvn1NhYp169aZsfO73/3O6++Rti6eN2+eu6KH5wlXEydONPdpMOLFF180rV+9BQe0w1JOTo7f/dExqgEdDZD4okECX8E5DWKdcMIJ8vLLL8vSpUvl22+/bRIEDUSg47s1M2bMaLUTDgAA4SxvT5l8sGqXfLB6l6zaXhrQOhoImTIs0yS/HD+2j/RxNH6uArCf9nSJqKmpcVfrC+e5VqTQeb9nXESrCwYSF1H6hbTO03X+v3XrVunXr5/X5f7zn/+44yJaQdPzfdV5okXv9/Wee1Zw9Dcu/C3n+Vw6d/3Nb37jjovo/NPqMuoZF9G5rnbK9dzWwIED3XERncN6O17N4yLe9jkpKcn81CqP/l7TiSee6I6LfPTRRzJnzhzpCrpfFo3/+NrHp59+2v2YnkTQfLnm77e/98XfGOjI36F3331XTjnlFK+P67i3aCKYr/Hpbd89OxprNyV9j3TsaOKGr7jICy+8YK5rDEQ7w1rb1BilFRfRLijXXHON17jIzp07fcZFdPv6HgwaNMicyKInhvjaZ8+4iLf37fjjjzcdWTQuoidttTUuEuj4bs306dObVHxty7b074Fe9HMlnLsWRSONvXl2atSx2FqlXiDUGLfoiPKqWlmS55L56wpl2UaXVNe1XhkkXmMjQxxy/OgeMis7U7onN56yUF9VLq6qyBy74dI9EkD0ni+i35v/+Mc/Dvh8ESsusnjxYvMdtq+4iPV9vHWOSTjQrq+//e1vfZ4voo9bcZHm54vonNOKi2gSiK+4iB6XQOaNVhJGa3GR3NxcWbhwYZfFRTznn/662+j7G84xTJ0Pa2EJX3GR559/3n1dEy/aQ8eIFRfRsaOJG77iIhrzUBoD8Yw16LkjVlxEu6Bcd911PuMirZ2LZMVFVq5c6XMZPdfL3/kiVlxEC4S053yRQMd3azyLFnG+CABEL3dXl2YJLtsPXC/YF/yuLtq9xTPJpbHDC11d7IJEGLQbJ3zYgya//OpXvzLBCZ1M/eMf/zCVJZrT90UrPlgT/SuuuMJMjnTicuONN5ovshMSElpMGnUyrnRi2fzkiVCd8KEVPfVL+T//+c8tTvjQ+61Wolplsfl29KSVv//97+Z168+f/vSnLcbwT37yE1ORwN8+9+rVy0yEtcqCv9d01VVXmfdEAy76Xulk018lCj0pRINVejJBR+gk26ryoC1H9QQEa7Jq0RMK7r77bvftcDzhw3pPJ02aZI65Jz2ZwTohSQMLOnlvzwkf1u/DL3/5SykoKJCf//zn8tBDD7VY5p577jFBKqWVKnTMWdvU6xdddJE8/vjjplrrAw88YMaRJ132pptu8hkssE740KCjJsJoVWJ9jUcddVST5XT8/+IXv/D7vmmQU993/Z268sor5bXXXvMZvPQW2AxkfOtnhFau0aQbXxVBNHjqebIVJ3xEBjt9+QhYGLcIlH6urtm9TxauL5SF64pkU9HB/wn9SYyLkSlDM+TYkVkyY4RTMlIO/F9dXyEuV2DbsPvY5YQPRCLPOUVb/o6g6+jfSc+4iMY3Ao2L6FxJ5yw6R7v55pt9xkWsL6c1LtL85IlQ0dehRRysuIjnuPOMi1x++eUt1tWTVvQY6ev+5z//6TUuovd5xkW86d27tzmJY/PmzX6X03jEv/71LxMX0TlxV8VFNIZlxUVef/11EzPzFhfRuX6405N7Jk+e7DUuYhWw0bjIYYcd1u7n0N8HKy6iv0/e4iL33XefKSJixUU8j6det+IiGtN45JFHvMZFdGz5iotY41jHqJ7woVVYtZOQt7iI7qM/WqBEYyH6e69jsK1xkUDGdyBxEc+TW6ziPG2lx6U9n0foOjrOeI9gN4xbBJL88smGYlmwvkiWbyoOOPnlqMEOOX5UpomNWMkvqrPGG2MXAJoiLtIYF/FEXKQRcRH7xUUsxEUAAHZUWVPXpKOLleRi3ddVXV0GmE4uHt1dMhq7usR2oNsZQo9EGLQbJ3zYw49+9CMzGdYJhFaI1A4MelK/dqjQChgaBNAJkk5szjnnHHOSv9LJiLZA1YoGuu5JJ51kTp7Pzs42VQp0MmxVedST2u666y4JF/rannrqKdmyZYsJXuikTCd7//73v90n3o8fP95rYEMrH+gJ+du2bTOT+qKiIhO00Q4YmuSgwQ5NZDjiiCNMIoIvOtH+3//+Z4IDDz74oOn0ou2DlR537TKidDKuk1ydOOs+6vNfeOGFZnldRie7OrHU7bz99ttmIqkBpY4GNjTope+3HhOdJGtHFX1/hw0bJqWlpSYJSo9ht27dTMCqtda+oaLHQRMyjjvuOBOA04QY7VKi+//EE0+42+Dee++9HXoeHSuaOPLFF1+Yri/5+fnm90irbej7pr8L+vulhgwZIj/72c9abOO2224z3Yr0/fzDH/5gAhzaNleDTBs3bjRBD32fdfx66/Zi/f289NJLzXujr+2HP/yh3HrrrSaBSwMiGkjQ7ehj+l7qdr3R8a+/6zrG9b3Vvws6BrWrk/4+6xjQca6vSZN4rGrBbRnfWlFX90+Pkf4O6Xujv1v6fugx08osVoUgXV7Hfntwwkf448tH2BHjFp7q6htk5fYyycl1SU5ukewqC6zCVWpCrEwfliFzsjNl2rCMJpVCgjW+GLsA0BJxEeIi3hAXsV9cxEJcBACAyEh+AQB0DeIixEW8IS7SNsRFiIsAAPyrP9DVZbtHVxfP7i76WDAluru6NE1yGeBo7OqSSleXiEa0CYhwOoHVrhha3UMnxjqJ+c1vfhPQuo8++qg5kU4nN9oOUye+zemkVyd11kQ9HGh1g8cee8x0q7E61njS4Izus06wmtPqJ7ruBRdcYFrAalcYvVh0kvfHP/7RBHf8BTZ00vv000+bKge6vF48KzToBNeiQQWtRKEVH3R5XU8vvt5PawLZUVrtRCfCOsHWifS1117b5HGd4GrgQ4MC4RrY0HbOGrzTSbpW4PD2fmrg6PDDD+/Q8+j7rgElnajrMfvkk0/MpTltiavtbr21wu3evbu8+OKLJqCkAUUNJurFkwa1dHxotRdftAKMVrDRlrs6DvVn8/dNf+c1aOErsKE0IKLjSSvhaKWX+++/31ya89bCui3je+vWrSbY4otWC9HxH0gbbgAAukpNXb18sbXUJL4synWJqyKwrmWOlHiZOdwpc7KdMnmwQ5LiY4O+rwAA/4iLEBfxhbhI4IiLNEVcBAAQLUh+AQD7Iy5CXMQX4iKBIy7SFHERAIhOFdUeXV08O7oUV8qOUu3qEtwmCVmpCQeTXA4kvFgdXnqkJdDVJYoReQKigE6EdYKqGflanUDbY+rESoMWPXv2NJNDrehx9tlnN1lPq1ro5EUz8XU9rQSiFS90e8OHD5eTTz7ZTCrDbUKik1mdXD7zzDPy0ksvmZac2qJWKy+cddZZZgKvVQh80WoJWglEJ3lLliyRwsJCyczMNFUNNLhz5JFHem2j60kDPXrctPrBsmXLZOfOnVJZWelz+RNPPNEcX53gaXUKrSaik1YNvmgVkFGjRskxxxwjp512mml12xl0oq1BK510aiUXnQTrBF63r9UWtAWqr/an4UTbyo4ZM8YEoHRs6xjNysoyx0sDBHrsOoMGDDQ4qO2ItdqHVsDQ9yg9Pd08v743ui/eWkl7BiX09/Dhhx82x3779u3m90fX13X1d1B/11qjrYk1iKKvWatsaOtlDTJqpQ0NkA0YMCCg16StdbWSj1YM0bGulUt0WxkZGWb7M2fONEG+9oxvreah1YV0PGswSLetbaa1rbO2Wdbt67jXiiV6DAEACIfAzfLNJSb55ZONxVJeFVhnlV5pCTIrO9Mkv0wc0N2c8AEACC/ERYiLeENcpG2IixxEXAQAEA3JL/PXFcqnm0tIfgGACEBchLiIN8RF2oa4yEHERQAgcru6FJTXNElycXd1Ka6Swv3B7+rS2Mkl2d3RxSS8mMSXJEmhqwt8iGloaAhuGhYiVkFBQZvX0faG9fX1Jqtcs7qBzrJ06VI588wzzXVtyzl9+vQmj3tW89A2oLA3bZuq7Yh10q0VPCIV49Y3Pk/ClwZINRBo0UowGkgHwhnjNnqVVurJHS7JyXWZJJiq2vqA1huYkSSzNfllZKaM7dMtZNVF7DR2e/ToEepdADodcRGEE+Ii0YW4CPg8CV92+h8dsDBuYdfkFzuNXeIiiFRtjY3wfyyChbhIdCEuAj5Pwped/kcHonHcWl1d8pt0dGns8LKjpCqgeEBHZHVLcCe5DLCSXOjqEhVjt0cQ4yKUYwEAAAAARI2CfdWyOK8x+eWLraVSVx9YMCe7Z6rMznbKnOxMGd4jRWIIwgAAAAAAAJuya/ILgPA78aotiKkiFJqPO71NzWiEO8ZtYPS4tPWzCMGlyUn+bgPhKJLGrXZ12VtW7U50yS/Wn5WSfyDZpXBfcLu6JMXHSj9HkgzISD5waezwokkvej9dXTpXJI3djiA6BQAAAACIaFq9JCe3yCS/rNxeJoF+VXBovzTT+UUTYDRQAwAAAAAAYFckvwDobJ7VhwPtIKMncusJWp6dDoCO8jwRXq/7G1+cNB85oulvCeNWvJ7om5CQ0ObPInQth8MR6l0AIm7c7quqlW2u/bK1cL9sLWp6yS+qkOq6+qA+f6/0JBmUmWouAw/8HJTV+LNnWpLExpL8HiqOMB+7wRId/w0CAAAAAKLKpsIKWWiSX4pk7e79Aa0TFyNy+MDuJvll5gin9EpPDPp+AgAAAAAABAvJLwAAAAAA2Ed9fYPsKq10J7ds80h00esF5dVB7+rSPNFl8IFElwHOVLq6IOwQtQIAm9qwYYNUV7f9H5sePXpIz549JVT27t1rqv20VWJiogwfPjwo+wQAAOxPKwmu2b3PdH3RBJgtRZUBrZcYFyNThjhM8ssxwzMkIyUh6PsKAAA6jrgIAABA5ya/aHzkuJEkvwAAYAd5eXntiotoTCTUcRG9tCcuMmLEiKDsEwAAoZi3Wwku1s8thY3X813B7+rSu3tS044uHpee6UkSE0NXF9gHESwAsKnzzjtPtm3b1ub1br/9dvn5z38uofLUU0/Jfffd1+b1Bg4cKCtWrAjKPgEAAHuqq2+QldvLTPKLdn7ZVRbYlz6pCbFy9HCnzMl2ytShGdKNqiUAANgOcREAAIDOS37RzrjpJL8AaCOXy9Wm5WtqaqS+vvGkvtra2iDtFaJRXV1dk+ue40tP5IyLi2vyuBbWsruzzz7blnGRf/7zn50WF9G/J5H6tyRSx21n0fdeL/q50tbPIgRXbGysOBwO9+2SkhL3Zz8QTeNWz2PYU14t24srJb+4UrYXVx34WSn5JZXi2h/cz6/k+Fjpn5Ek/TOSZYAjufHngdv9HEmSkuDj/Ii6CikurgjqviE6/+Y6nc6gbZtoFoCIMH369HZVjYA9ceIHAADRq7q2Xr7YWiqL8opkUa5LXBWBBYkcKfEy80Dyy+TBDtPSFwCASEFcJLoQFwEAAFbyy5INxbKA5BcAYZB8EAhO4kYo4iLNxx3j0P6iIS7CuA2MHpe2fhaha+kJ2bxHiNRxu6+6ziS2bC+pMoku20sOJLyUVMnO0iqpCWCO3hE90xKkv+NAgoujMcml8WeSZKUm+O3qwu9lZKqP0r+5MQ38p4R2KigoaPM6u3fvNr9smonWu3fvoOwX4E18/MFAfqRWhEDkYdz6xudJ+NLKNJ5Z3FqBJRr/yYa9MG7DX0V1nSzbXGK6vmh1Uw0qBaJXWoLMys40yS8TB3Q3J3tEEjuN3R49eoR6F4BOR1wEdsL8EnbEuPWNz5PwZaf/0QEL49ZeSH6x59glLoJI1dbYCP/HIlSYX8KOGLe+8XkSvuz0PzrQ2rjVri57y6sl3yS3NCa5NCa9NCa/FAdYsLPDXV08klwGHLjet3uSJCdQ+DPa2elvbo8gxkUiI8oFAAAAAIgopZW18skGl+TkumT55mKpqg2shsPAjCSZrckvIzNlbJ9uEuun0gkAAAAAAEC4I/kFAAAAAIDgzLd3lVVK8fZK2Vq031w27i6V/OJK2VFSJbX1we0zoYU93Z1cDiS5NHZ4SZbM1Hi/XV0ANCLiBQAAAAAICwX7qmVxXmPyyxdbS02VlUCM7Jkqs7OdJgFmeI8UAkIAuqzKTlvx9wmh0Hzc6W2ahCPcMW4Do8elPZ9HCB6tRuvvNhCOGLfhezKOxkjmry2Q5ZuKA05+mTo0Q44blWViJJGe/MLYBQAAAAD4o+cb7Cmrlu0llZJvurk0dnXRRBf9WdIFXV1MYkvzZBdHkvR1JElSPPNYoKMiO/oFAAAAAAhrWkklJ7fIJL+s3F4mgZ7eeGi/NHNShybADMhIDvJeAkBLnq2mA1VQUGBO5NYTtOLjCcshNDhpHnbEuBWvJ/omJCS06/MIXcfhcIR6F4A2Y9yGTllljSxYs1ve/XaXLMndK9W19a2ukxAXI8dk95S54/vK8WN7iyMlQaIVYxcAAAAAorOQRP6BBJftBxJcrOs7S6uD2tVFyzn1Sk9skuTS+JOuLkBX4Rt3AAAAAECX0RPANxVWyMJc7fxSJOv27A9ovbgYkcMHdZc52Zkyc4RTeqYlBn1fAQAAAAAAgonkFwAAAAAAfKv16OrSvKOL3i6pDG5Xl5SE2CadXKwkF/3ZtztdXYBQIxEGAAAAABD05Jc1u/eZri8Lc4tkS1FlQOslxsXIlCEOk/xy9PAMyeDEDgAAAAAAYHMkvwAAAAAA0LKrizvBxaO7i3Z1qQtyV5e+jmQZmJkqgzJTpWdqjPTrbnV5SRYnXV2AsEYiDAAAAACg02kw6pvtZabriybA7C6rDmi91IRYOXq4U+ZkO2Xa0AxJTYwL+r4CQHu4XK42r1NTUyP19Y0nudXWBrdCFWDRL2ji4g5+ntbV1ZkkVSCcMW79088SvejnSns+jxA8sbGx4nA43LdLSkrcn/1AuGLcdt1JPYvzXDJ/bYEs31Qs1XWtf67Fx8bI1KEZctyoLJmdnSnpyY1f7ddXlosrsBojEc1OY9fpdIZ6FwAAAAAgpF1ddpdWtUhysTq8BLuri56DoB1dGpNbGru6DDhwe4AzVXr3zHIvq/FWjUcDsAcSYQAAAAAAnUIrmH6xtdQkv+jJHa6KwAJWjpR4mXkg+WXyYAftgwHYQnuC4JzEjVBoPu4Yh7ADxm1g9LjwpWx40xOyeY9gN4zbzk1+WbKhWBasK5Tlm0ukJsDkF+2Oe9zITJk5wulOflG8L/4xdgEAAAAgdMoqa01Si9XVRTu8bC+pNMkuu0qrJIApcbtpv5be6YkmwUW7uDT+PJjskpHiu6tLXBznJgB2RiIMAAAAAKDdKqrrZNnmEpP88smGYtlXHdgJB73SEkw1U71MHJBuTvQAAAAAAACws85OfgEAAAAAIBzU1tXLrrJqj04ujUkujV1eKqW0si7oXV1MYsuBJBcr4UXv65OeKIkU2wSiElE0AAAAAECblFbWyicbXJKT65Llm4ulqjaw8i0DM5JkzsjG5JexfbpJrI+qKwAAAAAAAHZB8gsAAAAAIFLOA7CSXBo7unR9V5cmyS4HOroMcCSJw09XFwDRi4gaAAAAAKBVBfuqZVGuJr8UyZfbyqSuPrAo18ieqTI722mSX4b3SCE4BQAAAAAAbI/kFwAAAACA3VhdXfK9dHTR62VVwe3q0i0x1iO5pWnCS9/uiZIQR1cXAG1DdA0AAAAA4NX24krJyWtMfvl2e7kEWuDl0H5pMic7U2ZlO03FFgAAAAAAALsj+QUAAAAAEM4aGhqktLLOa5KLXg92V5fYmMauLv0PJLkMMIkujYkvetuRTFcXAJ2LSBsAAAAAwB0Y21RYIQsPdH5Zt2d/QOvFxYgcPqi7SX7Rkzp6piUGfV8BAAAAAADCOvllVKbMHE7yCwAAAAAgOF1d8osrG5NdrJ8lVVIe9K4ucQcSXJIOdnc5kPDSh64uALoYUTcAAAAAiPLkl+937TOJL5oAs9VVGdB6iXGNJ3Vo8ssxw53iSGF6CQAAAAAA7I/kFwAAAABAKL+/L6ms9drRRX/uKquS+iB3demT3tjBxerkYnV1GZCRLN2T4+jqAiBsEIEDEDa2bt0qhx9+uLn+0EMPyUUXXRTqXUIQzJs3T2666SZz/auvvpJBgwaFepcAAIg6dfUN8s32MpP8kpPrkt1l1QGt1y0xVqYPc8qcbKdMG5ohqYlxQd9XAACiCbGR6EBsBACA8E1+mb+uUD4l+QUAgJAgLhIdiIsAgEiNdnUprTZJLvkHklwOdnepkn3Vwe3qkpZkdXVJbpLsovf1SU+UeLq6ALAJonEAAAAAEAWqa+vli62lJvllcZ5LXBW1Aa2XkRIvM0c4ZXZ2phw5qLskxhP0AgAAAAAA9kfyCwAAAAAgaF1dKmol33R00eSWg0kumvyihSqD2dUlTru6dG/Z0cW6TlcXAJGCyByAqHLPPffIvffea67v3bs31LuDMDVp0iTZtm2bXHDBBfLII4+EencAAGi3/dV1smxTsen68r+NxQFXjumVlmASX/QycUC6OckDAABEhj//+c9y3333mevERuALsREAQKQi+QUAgOhGXASBIC4CINCuLju1q4tHkkt+Sei6ugzISD6Q6EJXFwDRgygdAAAAAESQ0ko9ocNlkl8+3VwsVbWBlZIZ5EyW2dmNnV/G9ukmsVSAAQAAAAAAEYDkFwAAAABAR7q65Dfr6KI/95R3UVeXJskuB65nJEl35qkAQCIMAAAAANhdQXm1LMrT5Jci+XJbmdQFGHEb2StV5pjOL04ZlpVC+2MAAAAAABARSH4BAAAAALSmula7ulQ1TXLxuL6vuj6oz989Oc6d5OJOeMlIkgGOJOndPcnMUwEAvhG9AwAAAAAb0hbLOQeSX77dXi6BFps5tF+aSX6Zle007ZEBAAAAAAAiAckvAAAAAIDmXV2KK2pNcotnVxfr+p6y6oC/Z+9IVxfTySXjQMKL6eySLP0cdHUBgI7irygQwW688UZ58cUXZeDAgbJixQqfy82bN09uuukmc/2rr76SQYMGuR+bNGmSbNu2TS644AJ55JFH5Ouvv5bHH39cPvvsMyksLJSsrCyZMWOGWT87O9vv/tTV1cl//vMfs0/r1683FceHDBki55xzjlx11VUBvaYvv/xSPvroI/P8ubm5UlxcLElJSdKvXz+ZNm2a2c6oUaNarPfCCy/IDTfc0OS+nj17tliu+eu39vvll1+Wt956S7799ltxuVzSrVs383pPPfVUufzyyyUlJUU6U2cc96VLl8qZZ55prr/xxhsydepU817ra9HjX1BQIOeff77ZvqW+vl5effVVc9HXqse3e/fuMnr0aDn99NPlhz/8oSQmJvrdd13noYcekvfff1/y8/MlLS1Nxo4dK5deeqmcccYZrb526325/fbb5ec//7nP5XRby5YtM+/7m2++6XO5rVu3ytNPPy2LFy82x7SsrMy8Jj1uegz1GOg49NymRceqXjw1fz4dHy+99JK89tprsnr1avP6k5OTpUePHjJgwAA55phjZO7cuV7HJQAAbQ3SbSyskJxclyzMLZL1e/YHHFw7fFB3k/wyc4RTeqb5/ywHACCSEBs5iNgIsRFiIwCASNTe5JepQxxyLMkvAIAIR1zkIOIixEWIiwCR3dVlR6lHRxfz0+ryUin7a4Lb1cWRHO/R0aVpwgtdXQAguIjqAQjY888/L7fddpvU1ta679uxY4f897//lddff10effRRn5PW8vJyueiii+TTTz9tcv93331nLjohvP/++/0+v2fwxVNNTY2ZpOvl2Weflf/7v/+TK6+8UjqDTsp1Iq+TVU/V1dXy+eefm8tTTz1l9m348OESbsfdUllZaSbvOrH3RYM1+lr1NXnSIIoGSPTy5JNPmufVQJk3+h5okGrXrl1NnnvJkiXm8vHHH5vgSlfRY3P33XebMeKpqKjIBIj0oq/LX1DEH1/jWp9PgyebNm2STz75xASIdJwAANCe5Jfvd+0zXV8W5rpkq6syoPWS4rWaaYbMHuGUY4Y7xZHC1A8AgM5AbOQgYiPERhSxEQBAqJJfFue5ZMH6IpJfAADoQsRFDiIuQlxEERcBuu47c9d+7erS2MUl30p06aquLrEx0rd7ojvJZUCzZBfmlwAQOvwFBhCQVatWmcCDViy4+eabTfUJnawuWLBA/vGPf0hVVZX8+Mc/lsGDB8vEiRNbrH/99de7J3667nXXXSfDhg2TPXv2mEmyVs7Qibs/OqnPyMiQk046yUyMdf3U1FQzgdbAyD//+U8zAf/lL39pKjdoVQXLKaecYvZLJ+X//ve/zX06yW6ub9++TSa+Wr1j+/btpoKITvi1soNW/9i3b5/k5OSY59SJ64UXXmgm7Fo1IpyOu+Wuu+4ygRk9drqvWnVi7969ZuJtVai4+OKL5YsvvjC39XX+6Ec/MtvV46vVUd577z0TtDj77LPNa9eqHZ50Wxo4sQIaWllEq5NotY4NGzaY6iQa/Fm7dq10hb/+9a9yzz33mOsOh0OuuOIKOfroo8XpdEppaakJNLzzzjumyoxFq5Ls37/f/TpOPvlkueOOO5psV8ec5b777nOP6xNOOEHOPfdc6d+/vxkvWj1Fx6VWo/F8DgAAWlNb3yDf5JfJorwi0/1ld1l1QOt1S4yVo4c5ZXa2U6YNzZDUxLig7ysAANEkUmIj//rXv9xfvBMbITZCbAQAYBckvwAAEFrERYiLEBdpRFwECI6q2nrZqUkuHgkunskuFcHu6pJyoKuLI0kGWEkupsNLsvRKT6SrCwCEKaJ9CD8N9RJT6ZJo0pDsFImJlXCmE2Kt6KCtS3v37u2+Xye/c+bMkfPOO89UNNC2pDqJ86S3dT113HHHmQoc8fEH//wcf/zx8pe//EXuvfdev/ug62rlCM9JpTr00EPNhPLqq682rVh1X3VbnkENndTqxbO17ZgxY/w+369+9SsT0NDXrVU0dILvafr06eb5TjvtNNm8ebM8/PDD8utf/1rC5bg3387PfvazFhN0i7aBtQIaVutbayI+YcIEOfHEE02VjAceeMC81r/97W/y29/+tkUQQY+X0uNwyy23uB/Tbehx+sEPfiCLFi2SYNOAxZ///GdzXauuaGBIWyF70gCHBtusfVbWe5yQkGB+apDK3zixqoLoa7MSrDwde+yx5jho5RQAAFpr1/z51lLT+UVP6iiuOFjVy5+MlHiZOUKTXzLlyEHdJTE+vP+nBAAEgLhI2IqU2IieOGEhNnIQsZFGxEYAAOGE5BcAiFJRFhshLkJcxB/iIu1DXAQIz64uRVZXl2YdXbqqq0s/7eri0cnFuj4gI0nSkpg7AoAd8dcbYUcDGllPHinRpPBHn0tDSpaEu9///vdNJtaek8NLLrnEVM34+uuv5ZtvvmlSacKqpqEVD7SVrWdAw6ITbq3wsWbNGp/P71l5wxudgP7iF7+QSy+91LQv1eocmZmZ0h5bt26VN954w1zXChHNAxqeARWtgqEBDa1S0tlBjY4cd086sdfAhy/WhFyDPhoQ8laNQo/tu+++K7m5uSYwpbf1PbXa/mo7XjVu3DhTiaQ5DRQ8+OCDcsQRR7RoOxuM9rb19fXmdWgVlOYBDU9ajaO9tDqNmjJlit/ltKIIAADN7a+uk2Wbik3Xl/9tdMm+6sCq2PROTzRdX2aNyJSJA9KpPgMAEYa4SHgjNtISsRFiI4rYCACgs5D8AgCIttgIcZFGxEV8Iy7SdsRFgNB1dcnbUy7bivbLlsJ9krvTJdtcFQeSXqqksjb4XV0GeCS4aEcXc/tAVxdNhgEARBaigAACou1lteWnL1q1wQpeLF682D251vapy5YtM9dnzZolffr08bp+bGysaYn6//7f/wt4n7TVrLa11bakmjWuPAMmWtHCs8JHW8yfP9/su1YS0QoN/uiEVoMa2hY1Pz/ftJAN9XFvTlvOxsXFeX1M91vb1yqtVtK8fa1Fj+1FF10kf/jDH6S4uNhU0Jg8ebJ5bOXKleY+pe+jr7auGlzQcaDHN1g0mKEth60KLBp4ChYNNul7rgEwbYPcvPIMAADNlVTUyicbXSb55dPNxVJVG1hdm0HOZJmT3dj5ZWyfbrRQB4Aw4GuO5Q9/v+3NrrGRGTNmSHsQG2mJ2EjXxUaaHz+9bY1xND0u7fk8QvDo33J/t4FwFA7jtkyTX3KLZP66Qlm+qTjg5JdpQzPkuNFZplgIyS/RJxzGLgBEE7vGRThnpBFxkeDgnBFEG/1bW7i/xmtHF72+pzy4SW46D+xndXNplvCiP+nqAgDRh7/8AAIyfvx4r1U5LIcccogkJiaaKg+eFTq0JaoGHdRhhx3m9zlae1xpEOPxxx+Xd955RzZu3Oj3C3Bdtr20UobSffcViPFV7aEzgxrtPe7NjR071udjnusdfvjhfvdn0qRJ7utr1651BzU8t+ErsOK5jWAGNbZs2SIlJSUBVd3oKA3gaHtfbRGsVUu03a2eYHTUUUc1aakMAIhuBeXVsihPk1+K5MttZVJXH9gJfCN7pcqc7EzT/WVYVgonTwNAmGlPFb+CggIzj9Uv9n3N9WLioi9cFx8XLw1+5r4d4XkynL/5teeJALqct2X1S/Pk5GSf29D5sDVH1zmztQ3P2IjOu/3th84tPffJ27Ia79Cqlm+//bZs2LDBb2xET0BofpJDoMdET2ZoT2xE92/IkCHSWdp73JXna/cXY7FO9lAa6/B3XI488sgm602dOtVcX7dunfv+QN5nKzbia7wpf38rlPX/of70XG7Tpk3u2Mi0adP8bqM1re2DngBz3333uWMjZ5xxhsycOdPEZDozNkKyh3j9PdZqulSVDW8OhyPUuwCE7bgtrayRBd/vlve+2ylL1hdIdV3rlYET4mJkRnZPmTu+rxw3trc4UhK6ZF9hD/zNBYDg4pyRwHDOCOeMcM4I7K6ypl52ljYmtuR7JLnkF1fJjpLgd3XJSIlvkuQywCS5JJufPdPo6gIAaCr6vlkH0C6tTdB04q2VKHRS73K53Pd7Xm9tG7169fL7uFaQOP/880372kBUVlZKe+nJSe1RUVEh4XDcm9NlfLGqcgTyfJ7tdn29zz179vS7jdYe7yjP8eGtPXBnuvXWW2Xnzp0yb9482bt3r2kXbLUMHj16tJx66qlyxRVXtDq2AQCRJ7+4UhblumRhbpF8t6NcAkl90ZDdof3TZPaITJmV7ZQBGb5P+AQAAF0vkDm6npC+e/fuoMVG9CSMc845p0tiIzrPtUtsxNtxb0tspC1xDc/3KFxjI54n+gQ7NnL77beb2Mjzzz9vxsy//vUvc7FiI1pJ9kc/+hGxEQBAu5NfEuNi5ZjsHiS/AAAQYpwzEhjOGQl9XIRzRoAAurrsq2lMcrE6ulgdXkoqZW8XdXUZ4O7kkuzu6KL309UFANAWfGog7DQkO6XwR59LtL3mcNcZFcg7sg2tXnHVVVeZCatWOtTrJ510kgwfPtxM2JOSktzVRKyKE/4qf7RGW9yqrKwsef311wNeb9CgQdKZOqvye6BVM0P9PtuNjsUHH3xQrr/+ennttdfkk08+McE3qwqtXrQajV78tSsGANif/t+xsbBCcg4kv6zf01jdrDVaseaIgekyOztTZo1wSo+0xKDvKwAgvDWkOKXkmhUSba/ZDkI9Z9a5pn5xbsVGrrnmGjPXHDFiRIvYiFVBtSOxkfr6ends5K233gp4vcGDB0tnIjYS3nQsPvzww3LDDTfIq6++KkuWLDEJW56xkccee0yeeOIJmTt3bqh3FwAQAiS/AADaKtrOGbHD+SLhMF/mnJGOIS4SHJwzgnDu6rKj5ECSy4FEl3y9fSDhpSrIXV2yuiXKwMxU6ZMWL/0ciY0dXujqAgAIAhJhEH5iYqUhJSvUexERYmNjm5y44IvVhrYjVUBra2vdVSK0Cqe3qhKtbUMrVPiik0UNWKh7771XLrnkklYrVXREZmam+VleXi4jR44MOCjQ2dp73NuiLe+RVle1+Hqf9X3UYJMvrT2HBkU0INXecWu9d833N5hGjRold9xxh7loVZnPPvvMnPzx0ksvyb59++Taa6+Vzz//vE0tkwEA4U8/r1bv2ic5uUUmAWarK7DKYknxMTJlSIbMznbKMcOc4khhWgYAduSvwqIvNTU17rmOzud8SnRIVDEnQwb3izc97v6OeVlZmfu6LudtWZ3v+tuGPmaNC50nW8ump6c3maf624ZWkPQ84cJz2ZycHL+xEWtZz4qlug29eMY1POfb/vbFmutrbETn+W2Jjfgd323U3uPuedKKdd3Xdrp37+6+vmvXLr/Pt2PHDvd1h8PhXtZzG/o+DhkyxOc2POMV3sabFRvxNRYtGnNQ1rKe++W5Lx15P1r73bFoQtYvfvELc2keG9ExpCcotSU2osfAc8zp+9eRE5gijb4vetHPlfZ8HiG4MXnP38GSkpJW45xAJI7bsqpaWZxbJPPXFcryTcVSU9f63/CEuBiZOiRDjhudJbNGZEp6cmO8pL6yXAIMuSDK2Olvbnu/wwOiFueMdBrOGWk/zhnxjnNGvOOcEYS6q0u+R0cXTXYp2Bfcri46f+vbPckktlgdXbTDiya/jBvSx93VReNWnjFaAAA6G2dcAREsLS3NHfj1Z8OGDa1ua9WqVWYCrW1VvVm9erWpaGC197Tol/4pKSmm/evXX3/t9zm0WqQv69atc18/66yz2rWNtlSeGD9+vJmUVlVVmW0efvjhEgrtPe5tMWbMGPf1r776yrQS9sXzPfR8Ps9t6PGaOnVqQNvwNW71BCR/ASqd0G3atMln5Vn94kPH/fLly6WrK5QkJyfLzJkzzWXs2LFy5513mvE/f/58n8E4AIB91NY3yDf5ZSb5ZVGeS3aXNX4Ot6ZbYqwcPcxpkl+mDc2Q1MTQfGECAOg87fnyhpO4ux6xkZbjjthIS8RGwi820nzc8vfTOz0unEwQ3vTELd4jRMu4LdfklzyXLFhfJJ9uLgk4+WXKYIccOypTZg53upNfFL87aCv+5gJAS8RFWiIu0hJxkfCLiwCqsqauSUcXK8nFui/YXV0yU+PdSS5WRxfruq+uLpo0aCXBAADQFRpT/wFEJKvlqlaoyMvL87qMTojfeeedVrelGdoffvihz8eff/5593WdzFl0Mj5t2jRzfdGiRaaqpq/g9Isvvuhz+56VJ61ql9628eyzz/p9HVY7XKUBC19OPPFE98T2iSeekFBp73FvC604oRVM1FtvvWXGizf65cF///tfdzWPQw891P3YhAkT3BU+tKKFr5MTtAqpjoNAxq22i/VlwYIFPoN1WtXm+OOPN9eXLVsm3377rbSVNU6sgFF7HXPMMe7rhYWFHdoWACB0qmvr5X8bi+WuDzfKSY+vkOteWiMvfr271SSYjJR4OXN8T3nw7FEy//rD5e5TR8hxo7JIggEAoAsRG2mJ2EhLxEZaIjYCAAg0+eXd1Xvlp6+vk+MfWyG/e3+jfLLBfwcYTX45ZliG/L+Th8lHP54k9589Sk4d17NJEgwAAOgcxEVaIi7SEnGRloiLoCvUNzTI3vJqU4TxndV75Yml+XLne3ly5Qur5cTHV8jRD34pFzz9nfzs9fXy15wt8t8Vu+WTjcWysbCiU5JgdG42ODNZpg11yHkTe8tPZw2Sv5yZLf+9bLwsuekI+ej6w+Wpi8fJH08ZIT8+eqCcPr6nHD6wu/TpnuQ1CQYAgFAgEQaIYFYwQT322GNel9HKAzrRDMRvf/tbr61oly5d6g4m6OT2sMMOa/L4FVdc4Q4i3HbbbV6rMT3wwAPy/fff+3zuYcOGua9bE+vm/vjHP7Y6gfVsM2q1zfVmxIgRcvrpp5vrr7/+ujz++ON+t7tlyxZ57bXXJBjae9zb4sorrzQ/CwoK5Fe/+pXXZe677z53lRWtUuEZINLrF110kbsiySOPPOI1MPXTn/601UCBNW610oi2i21OW9f62kfL9ddfb4IbGly55pprZMeOHT6X9fZY7969Wx0jVsDJX0VSzwCOVh0BANjH/uo6WbCuUH79Tp4c/9hXcstr6+TN7/ZKccXBL1q86Z2eKBdO6i1PXDBGPvjxJPnNicNk+rAMSYxn6gUAQCgQGxGfc15FbOQgYiNNERsBAPhC8gsAAPZBXKQl4iLeERdpirgIOktFdZ3k7d1vume+8NVOue/jzeZ75/P+vVKOefALOfnvX8tV//1e/t/7G+Wfy7fL+98Xyrc7yqVwX02nPH9WaoIc2i9NTh6TJVdN6S+/O2mY/OOCMfLutRNl6S2T5dUrJ8hD54yWXxw3RC4+oq/MGpEpI3qmUtgRAGAbRBeBCKbVFyZPnixffPGFmfzqZPLCCy+U9PR02bhxo7nvk08+cS/jz7hx42T9+vVy3HHHyc033yyTJk0yQQqtsqDVL6xWrPfee6/XShl60QmgXk455RS59tprTaBCJ9EapHjjjTdk4sSJPtvUzp49W3r27Cl79+6VP/3pT7Jt2zaZO3euZGVlmdfy3HPPyZIlS+TII4+Uzz//3Ofr0Mctv/nNb8wkWyewViUPrSxhtZTVSbxWmNCJrQYW3n//fdMCVtu7JiYmmkmttplduHChOY66P2effbZ0po4c97a4/PLLTVtfHQfz5s2T/Px8E4zS46FBhBdeeEHeffddd+vin/3sZy22oQGrN9980wQJ/vCHP5jghh6vHj16mPdIA0Pa4tbf+6wuvfRSeeqpp8xr++EPfyi33nqrTJkyxYxffW91O/qYjh/drq82xT//+c/lnnvuMW2cZ8yYYQI3Rx99tDidTiktLZXvvvvOvCZty6njz5P+Tvzvf/8z+/vggw/KscceK6mpqeYxbdvct29f04pX90+PkY5pfW8GDhxo3g89ZjrWdVwqXd6qOAIACF/F+6tlwZo98vbXW+XTzcVSVes7cO1pkDNZ5mQ7ZXZ2pozt061D7dIBAEDnIjbSkr5WC7GRg4iNEBsBAPhPftETtxasL5JPN5f4TXrxTH6ZMtghx47KlJnDnSS9AAAQAsRFWiIu4h1xEeIiaH9Xl4LyGtleUinbi6tke0mV5FvXi6ukcH/nJLT4khgXI/0cSdLfkSz9M/Rnkvk5wJFs7iehBQAQ6WIa/KUlwza0henLL79sMu+1coL1T7ZndYfOppPRttJ/9LUVqWbde1ZZQPDk5ubKGWecYYIB3txwww0yatQouemmm9wVFaw2o0onahpAuOCCC+Soo44yE0XPlrMWneRrRYezzjrL6/No61Tdhq+Ag05C77//fjN5Vw899JC7WoRFgweXXXaZVFZWet3G9OnTzSTWai3quQ0rUGFN4HXy7U3z169j9qqrrpJPP/1UWqPPpc/ZGTrjuGv1jzPPPNNc10m7Hh9/NEijk3R/QSFth6tBKJ28e7N27Vo555xzvFYjURpU079Lvsab5e9//7upPOONBiX+85//mPda29jq9ny9nzqm/vznP3s9dhZv62vFG20brMfE1/Jbt26Vww8/XFqjf+u0HbFWYGkrz3Hr7zVEIz5PwpcGCvX31KK/R96qOgHhoqC8WhZvLJFPNpbK8o2FUlcf2PRoVK9Uk/iiCTBDs1JIfkFI2Olvrn7RBUQa4iL2QWzkohbzS411EBtpidhIeMVGiIv4xudJ+LLT/+hAa+OW5BeEOzv9zSUugkjV1tgI/8eGBnER4iKKuAhxkUjS1Z8n2tWlSYJLSWOSiya/7CipkuoA5kod7epiklwOJLhYyS6a/NIjLUFiw+h7ajv9jw5YGLewKzuN3R5BjIsQfYwAmkF/9913m8mN/rOtmefaGlLbhhYWFsppp50W6l1ECGVnZ8vHH39sJndaEUInA927dzeVP3SyrhUHtJpDILS16ZgxY8yEU8dYUVGRqa6hQQSdpGpwxJe0tDQzEXz66aflpZdeMhUr9IRRrRShE2+t9uFrImyZM2eOzJ8/3wQOtJqGjm+Hw2Em2ueee65cfPHFpipFa7Q6hFaYePvtt00SmQZcdILkjU6YdLmPPvrItLv98ssvzX7W1NSY5x46dKipBKHVS4KVeNaR494W+qGor/WVV14xlT60+kVxcbGpBqPPr39LdF/0b40vWvlEq2I8/PDDpnLG9u3bzXuv6+u6Wv0kkPF23XXXmfdVX7NW2KioqJA+ffqYKhs/+clPZMCAAQG9Jq3eou2KtVqIVn/R8aHbysjIMNvXwIUGjprTahxanUMre2jgRIMczYNpGtjRcaG/VxoI0m1r8HDfvn3ucanjQquV6DEEAISP/OJKWZTrkoW5RfLdjnIJJDSp4cND+6eZ5JfZI5zSPyO5C/YUAAB0BmIjLREb8Y7YyEHERgAgOpVW1sg7q/bIR2sL2pz8cpwmv4xwSloSXz8DABBOiIu0RFzEO+IiBxEXib6uLnvLq1skuVjXu6KrS2NyS9MkF3PdkSQpdHUBAMAnOsLYnGZv3XLLLWaSo8kwOkFU+/fvlzvuuMP8g63/lGt70M5G5dPo4FllQqtI2JXdKiVEynFHdI3brsTnSfiyU7Y5oodOeTYUVEhObpHk5Lpk/d79Aa0XFxsjRwxMN8kvs0Y4pUea78A+EAp2+ptL5VNEIuIi0SMS5uh2nF9GwnFH9I3brsLnSfiy0//ogGV/bYN8uaNK3v12p3ySWyDVdd5PAvVE8gvCgZ3+5hIXQaSiI0x0iIT5uR3nl5Fw3BF947ardPTzJG/vfnnzu72yxVVhkl12dkVXl24J7iQX09XF46c+Fk5dXaLlf3TAwriFXdlp7PagIwz8dYPRf+5mzZrlToJRqamppu3lY489JosXLzaVDwAAAIBoSn5ZvWufO/llq6tplSZfkuJjZerQDJk1IkOOGeYURwpTJgAAAAAAEFnKq2plcZ5LFqwrkk+30PkFAAAAQHR4beUe+dP8TdLZaS9J8drVpVlHF/MzSfp1p6sLAADBQoSyA0pKSkyLTL1s2LDBXMrKysxj2jrxhhtuCHhb2rnl/ffflxUrVpjWnZrVrS0dp06datokJiUleV1v9erV5ueECRNaPKZtPNX333/fzlcIAAAA2EdtfYN8k19mkl8W5blkd1l1QOulJcbJsWN7y0nj+sjMUT2lal9Z2FZJAAAAAAAAaA+SXwAAAABEs2e/2CkPLt7a7vV7aFcXK8nFo7vLgIwkyYygri4AANgJ0coOuPrqqztlO19++aU8/PDDUlFR4b6vqqrKnVzz8ccfyx133GESY5rbtWuX+dm3b98Wj2VkZEhycrLs3LmzU/YTAAAACDfVtfXy+dZSk/yiJ3MUVwTWGjwjJV5mjXDK7OxMmTLUKb17Zrkfq9oXxB0GAAAAAADoIiS/AAAAAIh2DQ0N8sTS7fKvT7cH1tXlQIKL1dHFdHVxJElyAl1dAAAIN0QuO0mPHj2kf//+snLlyjatt2nTJnnggQekurraJK2ceeaZcsghh5jbS5cuNUkwmsjypz/9Se655x5JSUlpsv7+/fvNz9TUVK/b1+WtZQB0De3wVFBQ0Ob1EhMTZfjw4UHZJwAAIsn+6jpZtqlYFua6ZOlGl+yrrg9ovd7piTI7uzH5ZWL/dImLbazKExcXG+Q9BgAAiC7ERgAAsFfyS2JcrByT3UNOObSvHNEvSVLjqWQMAADQXsRFgPBR39Ag9+dslXkrGouNezpzfE85bEC69M9IlgGOJMnqliAxdHUBAMBWSITpgHPPPddMQPSi3Vf27NkjN954Y5u28fTTT5ukl7i4OPnNb34jI0eOdD+mCTHa6eW5554zyTBvv/22nH/++UF4JQA601NPPSX33Xdfm9cbOHCgrFixIij7BACA3ZVU1MonG1yyMLdIPt1cItUBnMShBjmT5diRmSYBZkzvbgQvAQAAugCxEQAA7NP55YQxPeSMycOke3KCud/lckldXV0X7DUAAEBkIi4ChIe6+ga5+6NN8taqvS0eu3nmILlkct+Q7BcAAOg8JMJ0QEeTUvLy8mTNmjXm+uzZs5skwVhOPfVUycnJke3bt8v7778vZ599tsTHH3zbrE4wvrq+VFRUSLdu3Tq0n4huTLJDg+MOAIBIQXm1LMprTH75amupBJj7IqN6pZquL3OynTI0K4XkFwAA0CHM0UOD4w4AQPCSX44blSkzRzglLSneFOuzkmAAAACaY34eGhx3oGNq6urlznc3yIL1RU3u12+N7zh+qJw9oVfI9g0AAHQeEmFC6PPPP3df10QYb2JjY2XmzJnywgsvyL59+2T16tUyYcIE9+N9+vQxP7VjzLBhw5qsW1xcLJWVlTJixIigvQYALf385z83FwAA0Hb5xZWSk+uSnNwi+XZHeUDraMDy0P5pJvll9ginaV8NAACA0CE2AgBAcJRV1sriDS75uK3JL0McctzIg8kvAIDIokVYX375ZVm3bp3p6jVo0CA55ZRTZNq0aaHeNSAqERcBQquypl5+/tZ6WbappMn9cTEiv587XE4a0yNk+wYAADoXkc4Q0iCESkpKapHE4mns2LFN1vFMhNHH3njjDVm5cqVMnz69yXrffPNNi/UBAACAcNLQ0CAbCipM4osmwKzf673TYXNxsTEyeVB3mTXCaS490hKDvq8AAAAAAABdjeQXAIA/q1atkrvvvlsSExNN4ktKSop89tln8sADD0hhYaGcdtppod5FAAC6tHPmz15fLyvyy5rcnxgXI386LdvMjwAAQOQg6hlC+fn57q4u2nbcl379+rVYxzJ+/Hjp3bu3LF26VObOnStDhgwx9+/fv19ef/11iY+PlxkzZgTtNQAAAABtVd/QIN/v2udOftnqqgxovaT4GJk6JENmZzvlmOFO6Z7MdAYAAAAAAEQekl8AAIHQ7i9PPPGExMbGyu9//3v3+SLnnnuu3HHHHTJv3jyZMmWK9OzZM9S7CgBA0BVX1MhNr64z30N7SkmIlb+eOVKOHOwI2b4BAIDgIAIaItXV1VJW1ph5nJWV5XfZtLQ00zWmqqrKVOzwpAk01157ranw8bvf/a5JhY+9e/fKJZdcIr169WrTvjV/Dl/8Je/4EhMT0+Z1gI5qPu70tlafB8IZ4zYwelza83mE4NEvW/zdRvSqrW+Qr7eVysfrC2VRbpHsLqsOaL20xDg5ZoRT5ozMkulDMyQlsfN/5xm3sCvGLgAAAABEDpJfAADt6Qaze/dumTVrljsJRqWmpspZZ50ljz32mCxevNgkxgAAEMkKyqvlhlfWyoaCiib3pyfFyUPnjJLx/dJDtm8AACB4iIaGSGXlwarXycnJrS6vy2gijOd6lkMOOUTuuusueemll2TZsmWm6segQYPk4osvNokxbfXjH/84oOX0+dqqoKDAnMitJ2hptxogFDhpHnbEuBWvJ/omJCSI00nr2nDmcFBVJZpV1dbJ0rwC+WDVLpn//W5x7a8JaL2sbolywrjecsK4PjJteJYkxXft30DGLeyKsQsAAAAA9kLyCwDYV0lJieTl5ZnLhg0bzMUqhjpz5ky54YYbAt6WFjl9//33ZcWKFaZwqZ5L0adPH5k6daqceOKJpnCqN6tXrzY/J0yY0OKxiRMnmp/ff/99O18hAAD2sLOkSq5/eY1sK65qcn9marw8cu5oGdmrW8j2DQAABBeR0RB2hLEEkhBiLeO5nqcRI0bIr371K7ELuhoAADqCzxEgfO2rqpVF6/bKB6t3Sc7aPVJeVRvQev0cyXLiIX3kpHF95IghmRIXSydBAEDkoVMuAAAASH4BgMhw9dVXd8p2vvzyS3n44YelouJgBXstkmol13z88cdyxx13mMSY5nbt2mV+9u3bt8VjGRkZpuDqzp07JVwQFwEAdLbNRRVyw8trZXdZ03Mqe6cnyqPnjZYhmSkh2zcAABB8RElDJDEx0X29trb1kwOtZTzXC5bHH3886B0N6uvrzcWq6A8AQKCszxANltMpBwgPrn3VsmDNbvlw9W5ZkrtXqmvrA1pvWI9ucpImvxzSR8b3d/AlGAAg4lmfdcRFAAAdKQ6inyGKzxHAPkh+AYDI1qNHD+nfv7+sXLmyTett2rRJHnjgAVMQVZNWzjzzTDnkkEPM7aVLl5okGE1k+dOf/iT33HOPpKQ0PZl3//795mdqaqrX7evy1jLhgLgIAKAz4yL7aurl2le+F1dF03MvB2YkyWPnjZG+Du8d1QAAQOQgYhoiGsSwVFZWtrq8tYznesGSlZUV0HIul6tdgQ3rn9HS0lJJS0tr8zaAtmp+snxdXR3dJBD2GLe+lZeXm2OhFz1O7fk8QvDolxYOh8N9u6SkxP3Zj8iyp6xaFuUWysfri+SrrSUSwPkbxuje3WTOyEyZMzJLhmWlHPjiq0GKi4slVBi3sCs7jV2n0xnqXQDCghY4sYqd6IkoxEUAAG3l+X1CQkJCSPcFQODJL8s3l0htPckvABBJzj33XBk+fLi5aPeVPXv2yI033timbTz99NMm6UW/E/zNb34jI0eOdD+mCTHa6eW5554zyTBvv/22nH/++WJnxEUAAJ0VF6moqZM31pS2SIIZ3iPFdILp0S34xcYBAEDoET0NEZ3gp6enS1lZmRQWFrZ6wq+2vm1LkkpX0JOy20oTefT1KH3tepKWViGJj4+nAjiCpnnyAMkEsAPGrbR4/RoY17bw+/bta/K50p7PI3Qd/aznPYoc+cWVkpPrkpzcIvl2R+P/dK3R//Am9E+X2dlOmTXCKf0zDiZ2h+sJ+4xb2BVjFwh/WqHVqsRKXAQA0NbYiJ7socnPluYVwQGEHskvABA9OpqUkpeXJ2vWrDHXZ8+e3SQJxnLqqadKTk6ObN++Xd5//305++yzTQzBYnWC8dX1Rb9X69atm4QL4iIAgM6Ii9TU1cuWokr5cnvT4uNj+3STh88ZLY4U5lQAAEQLPvVDaMCAASawsWvXLnOykmflf087duxoso6daYU6DWRowEXpycx60aAGgQ0Ek2db5XA96RZojnF7kNUBxpN+nlD5FAgu/b3bUFAhC3OLZFGuS9bv9f5lWnNxsTEyeVB3k/yiJ3BQcQcAgEbERRAqzC9hR4zbppofAy22pRcAoUfyCwCgPT7//HP3dU2E8fU/8cyZM+WFF14w8YPVq1fLhAkT3I/36dPH/NSOMcOGDWuyrnZh1xOGR4wYIeGCuAhChfkl7Ihx25R1DDQJZmNhhWx01Uieq8b9+KQB6XL/2aOkW6L38y8BAEBkIqoaQqNGjTKJMNrtZePGjZKdne11ue+//77JOnbncDhM0o/VGcbXCc5AsDBBhB0xbpvSVum0SweCo76hQb7ftU8Wri8ynV+2FTd2JmxNUnyMTB2SYZJfjhnulO7JTDUAAPCGuAhCjfkl7Ihx25QmwDidTk4WBEKI5BcAQEetW7fO/ExKSmqRxOJp7NixTdbxTITRx9544w1ZuXKlTJ8+vcl633zzTYv1wwFxEYQa80vYEeP24Dwsv7hKNhXXyJPflIo1DZs+NEPuPT1bkhMOJg8BAIDoQIQ1hI488kgTlFDaztZbIoz+I7t48WJzXVvWjhs3TuxOv5xLT083lT40CUgv2hGHf9oRzDHn2TWipqaGQBrCHuO2ZbUTDYrrlwF68Wz7DqDj9GSNb/JLZWGuSxblFsme8oPVc/zRijozhmvyS6ZMHeKQFCrsAADQKuIi6GrML2FHjFvvsRGrgrYmwpAEA3Q9kl8AAJ0pPz/f3dVFvwPzpV+/fi3WsYwfP1569+4tS5culblz58qQIUPM/fv375fXX3/dfJ82Y8YMCSfERdDVmF/Cjhi3Le0orZGP1pfIyt3VphOMNR3TudZdpwyXhDiSYAAAiEZEW0NIW9COGTPGdIXRRJhZs2bJyJEjmyzzzjvvyPbt2831k08+OaxO/PUXjAl0fT2ZGeiKL4m1soylpKSEQBrCHuMWkdCi2dtthI+q2nr5fEuxOXljcV6RFFfUBrSeMzVeZmdnyZyRmXLkYEdEBBUZt7Arxi5gbxrj0YsWPgGCSWNw2jnC4nK5zElGQDhj3AIIFyS/AACCobq6WsrKysz1rKwsv8umpaWZ8yo0YaSwsLDF/83XXnut3H333fK73/1Opk2bZhJMPvvsM9m7d69ccskl0qtXrzbvX/PnCcY5I5wvgq7C9+6wI8ZtU898tl3uX9R4/qSnM8b3kjtPGi5xsRQLCRd8dwk7YtzCrhi7jYi8dsDatWtl165d7tulpaXu63r/okWLmiyviS7NXX755XLnnXeaQMcf//hHOeuss0zXF729bNkyWbBggVmub9++ctpppwX19bSV5xeRgJ14ThYBu2Dcwq4Yu+GlvKpWFq3bIx+s2iWL1u01twPRz5EsJx7SR04a10eOGJIZ8cFExi3sirELAAAAAB1H8gsAINgqKyvd15OTk1tdXpfRRBjP9SyHHHKI3HXXXfLSSy+Zc0w0gXzQoEFy8cUXm8SY9vjxj38c0HL6nIDdEEeHHUXruNUuOPfPXy8PLdrS4rErpw+V35wyRmIj/Htru4vWsQt7Y9zCrhxROnaJwnbAxx9/LIsXL/b62Lp168yltUSYoUOHyi233CIPP/ywVFRUyLx581oso0kwd9xxh6ncAQAAALSFa1+1LFizWz5cvUuW5BZIdW1g1YKG9exmEl9OOqSPjO/vMC24AQAAAAAAIhHJLwCArqSFUS3aLbY11jKe63kaMWKE/OpXv+rEPQQAILTq6xvkrne/l6eWbm7x2M3HZsstx2Xz/TUAACARJhwcccQR8pe//EXee+89WbFihRQVFZlARp8+fWTKlCly0kkn0RIWAAAAAdtdWikfrd4lH6zeJZ9uLJK6AE7eUIf07+5OfhnRKz3o+wkAgJ3FxcWFeheAgNAaHXbEuIVdMXbtl/yyKK9I5q8tlOWbigNOfpk6NENOGN1DZoxwSnoEJL8wbmFXjF3YWWJiovt6bW3rndutZTzXC6bHH3+8S54HAABv9LvtO177Vl76Mr/FY7+eO0aunjEsJPsFAADCj/2jsyF0ww03mEtn6Nmzp1x22WXmYhculyvUuwAERAPfnm2/SkpKpL4+sGr4QKgwbmFXjN3Q2eaqlIXrC+Xj9YXy3Y7ygNbRGjkTB6TLnJFZMmdkpvRzJB94pDaq/tdj3MKu7DR2nU5nqHcB6HSMa9hVtLZGh70xbmFXjN3wU1JRIwu+3y3vfrdTPsndKzV1rSe/JMbFyoyRPeSUQ/vKsWN6S/fkBIlkjFvYFWMXdpKcbMXiRSorK1td3lrGc71gysrKCmi5aPoeAfZlpzg6YInmcVtTVy+/fjtX5q8rbPG99q9PHCbnjHfy+RPGonnswr4Yt7ArO41dZxC/VycRBu1WV1cX6l0A2kX/2DN+YTeMW9gVYzd4GhoaZENBhSzMLZKcXJfk7t0f0HpxsTEyeVB3mZ3tlJkjnNKj28EKcrxXjRi3sCvGLgAAAAC0RPILACDcaGeX9PR0KSsrk8LCpif6NldeXi5VVVVtSlDpKsQiYUfE0WFH0TJuK2vq5Odv5cqyTSUtvt/+/cnD5KQxPaLiOESSaBm7iCyMW9hVfZSOXRJhAAAAAJuob2iQ73ftk4XrNfmlSLYVN3751Zqk+FiZNtQhs7Mz5ehhGdI9mWkAAAAAAACIXCS/AADC3YABA2TNmjWya9cuc7JSXFyc1+V27NjRZB0AACJReVWt/Oz19bIiv6zJ/YlxMXLP6dkyYzgd2gEAQEucAQcAAACEsdr6Bvkmv1QW5rpkUW6R7CmvCWi9bolxMmN4hkl+mTrEISmJ3r9EAwAA7eNyuUK9C0DEtUYHLIxb2BVjN7TKKmtlUV6RzF9bKMs3FZuYSmsS4mJk6tAMOWF0D5kxwinpSY1fndZVlIurQqIC4xZ2Zaex63Ry4iZaGjVqlEmE0W4vGzdulOzsbK/Lff/9903WAQAg0hRX1MhNr6yT73fva3J/SkKs/O2skTJ50MH/+QAAADyRCAMAAACEmaraevl8S4lJflmywSUlFbUBredMiZdZ2U6T/DJ5UHdJiIsN+r4CABCtorG1NCJDtLZGh70xbmFXjN3g0+SXxRtcsmBdkXy6uSTg5JcpQxxy/KgsU0Qk7UDyi+L9YtzCvhi7sJsjjzxS3njjDXM9JyfHayKMjuvFixeb6926dZNx48Z1+X4CABBMBeXVcv3La2VjYdNKBOlJcfLQOaNkfL/0kO0bAAAIfyTCAAAAAGFgX3WdLNtYLAtzi2TpxmLZXxNY9cI+6Ykye2SmzB7hlAn90yUuNibo+woAAAAAABApyS8AAITCiBEjZMyYMaYrjCbCzJo1S0aOHNlkmXfeeUe2b99urp988skSHx9en19xcXSihz06iPm7DYSjaBm3O0oq5br/rpFtxZVN7s9MTZDHLhgro3p1C9m+oX2iZewisjBuYVeM3UbhNUsGAAAAoqzN85K8YsnJK5LPNpdIdV3rJ26owZnJMic701xG906VmBiSXwAAAAAAQIQnv+S5ZMF6kl8AAOFh7dq1smvXLvft0tJS93W9f9GiRU2W10SX5i6//HK58847pbq6Wv74xz/KWWedZbq+6O1ly5bJggULzHJ9+/aV0047TcKN0+kM9S4AbeZwOEK9C0CbReK43bC3XK6at0J2ljRNgunrSJbnrjpKhvdMC9m+ofNE4thF5GPcwq4cUTp2ifii3ajuAbsg8xF2xLiFXTF2W7enrEpycotk4foi+WpriQSY+yJjeneTOSOzZM7ITBnWIzXYuxlVGLewK8YuAAAAgEjW3uSXqUMcchzJLwCAIPv4449l8eLFXh9bt26dubSWCDN06FC55ZZb5OGHH5aKigqZN29ei2U0CeaOO+6QlJSUTtx7AABCZ/WOErn0yc+lcF91k/uHZKWaJJgBTr4LBwAAgSH6i3ajugfsKlozH2FvjFvYFWO30eaCffLh6l3ywepd8vXW4oDW0SYvkwdnygnjesuJ4/rIwEwCfl2FcQu7YuwCAAAAsDuSXwAA0eaII46Qv/zlL/Lee+/JihUrpKioSOLj46VPnz4yZcoUOemkkyQpKSnUuwkAQKf4aotLLn/qczP38zSqd7o8e9WR0is9OWT7BgAA7CemoaEhwBrUAAAAAAKh/2Kv210mH6zaZS5rd5UFtF58bIxMG9FDThrXR44f21t6pvPlFgAA4aqgoCDUuwAE3NXZs6CNy+WSurq6kO4T0BrGLeyKsds+JL+EFuMWdmWnsdujR49Q7wIQFPp7B4Q77aTuWUSqpKRE6uvrQ7pPQLSO2882F8tPX1srFTVNX8shfdPkkfPGiCMlIWT7hs4RqWMXkY1xC7uy09h1BrHxBlFhAAAAoBPU1zfIN/nFpvPLh6t2yebC/QGtl5wQKzNH9pSTDukjc0b1FkcqAT4AAAAAABDZSH4BAMD+wjX5DPBHTw5k7MJuImHc6vzvl2/nSk1d07nf4QPT5W9njZJuibG2f42IzLGL6MO4hV3VR+nYJUKMdqO6B+zCTpmPgIVxC7uKtrGrJ2ms2FYqC9cXysL1RbK3vDqg9dKS4mTGcKfMGZkl04ZmSEpinLm/vqpcXFVB3mlItI9bRA47jd1gVvgAAAAAYA8kvwAAAABA9PlgTYH87r0N0iwHRo4eliH3nJZtCkcCAAC0B9FitFs0Zo4hMkRr5iPsjXELu4rEsVtVWy+fbymRhbkuWZLnkpLK2oDWy0yNl5kjMmVOtlOOGNRdEuIOBvQi7RjZXSSOW0QHxi4AAACAcEPyCwAAAABEr1dX7pZ75m+W5jPB40dlyh/mDm/ynTkAAEBbETkGAAAAWrGvuk6WbiyWnNwi83N/TWAdF/qkJ8rskY3JL4f2S5e42Jig7ysAAAAAAEAokfwCAAAAAHjm8x3y0JJtLe4/Y3xP+dXxQ/nuHAAAdBhRZAAAAMCL4ooaWZLXmPzy2ZYSqW7eq9mHIZnJMjtbk18yZXTvVImJIYAHAAAAAAAiG8kvAAAAAADV0NAgf1+aL09+uqPFYxcd3kd+NmsQ36EDAIBOQUQZAAAAOGBPWbUsyiuSnFyXrNhWKgHmvsiY3t1kdrbTJMAMzUoJ9m4CAAAAAACEHMkvAABEt7i4uFDvAtCq2NhYv7eBcGTncVvf0CB//XizzPtqZ4vHrp0+QK6dPpAkmAhm57GL6MW4hV0xdhsRXQYAAEBU2+aqNF1fNPnlu53lAa2jobmJA9JN8susEZnSz5EU9P0EAAAAAAAINZJfAACAxel0hnoXgDZzOByh3gUgYsdtXX2D/PLVb+VlL0kwv547Rq6eMSwk+4XQscvYBTwxbmFXjigdu0SaAQAAEHWtmPMKKmThek1+KTLXAxEfGyOTB3U3XV9mjnBKVreEoO8rAAAAAABAqJH8AgAAAADwp7q2Xn764jfy7ndNk2C0+cvdZ46XHxw1KGT7BgAAIhdRZwAAAEQ8bcG8eme5LMx1meSX/OKqgNZLio+VaUMdMic7U44eliHpyfz7DAAAAAAAIh/JLwAAAACAQFRU18mPn/9KFq3b26LQ5F/PnyBnTOwfsn0DAACRjQg02i0uLi7UuwAEJDY21u9tIBwxbmFX4TR29QSNFdtKZeH6QtP9ZW95dUDrpSXFycwRmTJnZKZMHZohKQn8zxPpwmncAm3B2AUAAADQmUh+AQAAbeFyuUK9C0CrNG7ucDjct0tKSqS+vj6k+wRE0rgtr6qVm19da76X95QYFyN/PnOUzBicyudFFLHT2AUsjFvYlZ3GrtPpDNq2iUYjLAcmEEyef/wBu2Dcwq66euxW1tTJ/3IL5IPVu2TBmt1SvL8moPV6pCXK8WP7yEmH9JGpw7IkMZ6TyaMZf3NhV4xdAAAAAG1F8gsAAGivurq6UO8C0GZ6ciBjF3YTruO2uKJGbnplnXy/e1+T+1MSYuVvZ42UyYMcYbnf6DrhOnYBfxi3sKv6KB27RKYBAABga1plJmftHpP8smjtHtlXHdg/9f0zUuTEcY3JL4cPdkpcbEzQ9xUAAAAAACBckl/mryuSz7aQ/AIAAAAAaJuC8mq5/uW1srGwosn96Ulx8tA5o2R8v/SQ7RsAAIgeRKkBAABgO0X7qk3Hlw9X7ZJP8gqkujaw1o4jeqXJSQeSX8b16y4xMSS/AAAAAACAyNeR5JfjR2XJMSS/AAAAAABEZEdJlVz/8hrJL65qcn9marw8et4Yye6ZGrJ9AwAA0YWINdrN5XKFeheAgMTGxorD4XDfLikpMW3AgHDGuIVdBXPs7i6tkpzcInP5amuJ1LV+voYxpk83OXZklszOzpRhPaygW70UFxd3yn7B/vibC7uy09h1Op2h3gUAAAAg6pD8AgAAAADoTJsLK+SGV9bK7rLqJvf3Tk+Ux84bLYMzU0K2bwAAIPoQvUa71dXVhXoXgHbRkwMZv7Abxi2idexuc1XKwgPJL6t27gtoHe3xMnFAuszOdsrsEZnS15HkfozfIwSCv7mwK8YuAAAAAJJfAAAAAADBsHb3PvnJK2vFVVHb5P6BGUny+PljpE/3g9/LAwAAdAUi2QAAAAgbDQ0NkldQIQvXNya/6PVAxMfGyJGDusvskZkyY7hTsrolBH1fAQAAAAAAwgHJLwAAAACAYFq5vUxufm2dlFc1Lcg2okeKPHLeaOnRLTFk+wYAAKIXUW0AAACEVH1Dg6zaWS45uS6T/JJfXBXQeknxsTJtqEPmZGfK0cMyJD2Zf20BAAAAAEB0IPkFAAAAANAVdM556+vrpbK2vsn94/p0k4fOGS2OFOaWAAAgNPgvBAAAAF2utq5eVuSXmcQXTYAp2FcT0HppSXHmRA1NftETN5IT4oK+rwAAAAAAAOGA5BcAABBO4uL4jgbhLzY21u9tIByF07jV7/N/8eY6qalrOv88YlB3eeDsMdItic8ChOfYBQLFuIVdMXYbEe0GAABAl6iqrTcnaeSsL5IlG4qlpLI2oPUyU+Nl5ohMmZPtNAG1hLjo/McdAAAAAABEn9IDyS8LSH4BAABhxul0hnoXgDZzOByh3gXANuP2ja+3y+1vrJO6ZvPQOaN7yWMXT6JoJVrF31zYEeMWduWI0rFL5BsAAABBU15VK0vyimRRbpEs3Vgs+2uatkv2pW/3RJmdrckvmTK+X5rExcYEfV8BAAAAAADCAckvAAAAAIBQev6zLfKbN1ZJQ7Pp6CmH9pX7z58oifEUrwQAAKFHFBwAAACdqmhftSz4frd8sHqXfJK7t0WbZF+GZibL7JGNyS+jeqVKTAzJLwAAAAAAIDq0J/klUZNfhmbIcSMzSX4BAAAAAHSKJxZvkD+9v7bF/RccMVD+7+zxFLEEAABhg4g4AAAAOmx3WZUsynXJojyXfLWtVAI4V8MY27ubzB7plNkjMmVIVkqwdxMAAAAAACBskPwCAADszOVyhXoXgFbFxsaKw+Fw3y4pKZH6+vqQ7hMQruO2oaFBHvtkm/xreX6Lxy4+oq/cOmeAlJYUB30/YF/8zYUdMW5hV3Yau06nM2jbJjqOdouLiwv1LgAB/8H3dxsIR4xb2MGWogrJyS2ShesK5bud5QGto7VhDhvYXY4dmSmzsjOlnyM56PsJtIa/ubArxi4AAABgPyS/AACASFFXVxfqXQDaTE8OZOzCbrpi3NY3NMjfcrbIf1fsbvHY1VP7yzXT+oftybUIX/zNhR0xbmFX9VE6domUIywztIBg8syCBOyCcYtwoBVg1uwskw9W75KPVu+StbvKAlovIS5Gpg3vIScd0keOG9NbeqYnBX1fgY7gby7sirELAAAAhCeSXwAAAAAA4aquvkH++NEmeXvV3haP3TJrkPzwiL4h2S8AAIDWEDUHAACAT/X1DfL1tmL5cPUu+WDVLtlatD+g9ZITYmXWyF4m+WX26F7iSEkI+r4CAAAAAACEi5L9NfLWd3vkozUFJL8AAAAAAMJSTV29/ObdDfLx+qIm98eIyK9OGCpnHdorZPsGAADQGiLoAAAAaBHs+nxTkUl80QSYPWVVAa2Xnhwvx4/pLSeM6yMzR/aUlMS4oO8rAAAAAABAOHV+WfDlNnnvu53yv7wCqakj+QUAAAAAEJ4qa+rk52/myrLNJU3uj4uNkT/MHS4njs4K2b4BAAAEgmg62s3lcoV6F4CAxMbGisPhcN8uKSmR+vr6kO4T0BrGLUIR5Pp0c4ksXF8oS/JcUlJZG9B6Wd0SZFZ2phw7MkuOGNRdkhLiGbuwHf7mwq7sNHadTmeodwEAAAAIWvLL4jyXLFhXROcXAAAAAIAtlFfVyk9fXy9f55e1mK/ee3q2HDOc73UAAED4I7KOdqurqwv1LgDtoicHMn5hN4xbBCu4tXRTieSsL5Klm4qloiawk6f7dk+U2dmZMic7U8b3SzMVYRo1tDgBm7ELO2Lcwq4YuwAAAEDXIPkFAAAAAGBXxRU1ctMr6+T73fua3J+SECv3nzVSjhh0sAgbAABAOCPKDgAAEEWK99fI4g0uycl1mRM1aupaP1FDDctKkdnZTpMAM6pXqsTEWMkvAAAAAAAAkY/kFwAAAACA3RWUV8v1L6+VjYUVTe5PT4qTh84ZJeP7pYds3wAAANqKiDsAAECE211WJYtyG5NfVuSXSgDnaRhje3eT2SOdMntEpgzJSgn2bgIAAAAAANg/+SU+VmaO7CmnjO8rh/dNlJR4iokAAAAAAEJvR0mVXP/yGskvrmpyf2ZqvDx63hjJ7pkasn0DAABoDxJhAAAAItBWV6UsXF8kOblFsnpX05bGvuhpGYcNSDddX2aNcEpfR1LQ9xMAAAAAACBSOr+cMLqHnH7EUElPTjD3u1wuqaur64K9BgAA6HpxcXGh3gWgVbGxsX5vA9EybjcV7pfr/vu97CmvbnJ/n/RE+fuF42RwJoUx0XH8zYUdMW5hV4zdRiTCAAAARICGhgbJ3bvfdH1ZmFskGwqatjL2JT42Ro4c1F1mj8yUGcOdktWt8UQNAAAAAACAaNGR5JfjRmbKMcMzJC0p3pwMaiXBAAAARDqn0xnqXQDazOFwhHoXgC4ft6u2l8jV876Xwn1Nk2CGZKXK81dPkf4ZJMEgOPibCzti3MKuHFE6dkmEAQAAsKn6hgZZtbNcctY3Jr9sL2nawtiX5PhYmTbUIXNGZsrRwxpP1AAAAAAAAIjG5Jf56wrl8y2l7U5+AQAAAAAgXH21pUguf+oLKausbXL/6D7p8syPjpRe6ckh2zcAAICOIkIPAABgI7V19fJVfpnkrC+SRXkuKdhXE9B66Ulxcsxwp8zJdsqUIQ5JTqBdPQAAiBx5eXny8ssvy7p166Surk4GDRokp5xyikybNi3UuwYAAMIIyS8AAAAAgGjxv9wCufqZL6Wipq7J/RMGZsh/rpgsGamJIds3AACAzkC0HgAAIMxV1tTLZ1tKJCe3SJZscElpZdNAlS9ZqQkyM7sx+eXwgd0lIS426PsKAADQ1VatWiV33323JCYmmsSXlJQU+eyzz+SBBx6QwsJCOe2000K9iwAAIIRIfgEAAAgOl8sV6l0AWhUbGysOh8N9u6SkROrr60O6T0BXjFs9t+AXb66Tmrqmc+DJg7rL/WePkoaqfeKq2tdp+wwo/ubCjhi3sCs7jV2n0xm0bRO5BwAACEPlVbWydFOJ6fyydFOxVNQE9o9qv+5JMjvbKbNHZsr4vmkSFxsT9H0FAAAIFe3+8sQTT5hA3+9//3sZMmSIuf/cc8+VO+64Q+bNmydTpkyRnj17hnpXAQCATZJfjh+VKUcPI/kFAAAgkLgMYDd6ciBjF5E+bt//vkD+3/sbpFkOjJnr3nNatiTH8zccXYO/ubAjxi3sqj5Kxy5RfAAAgDBRvL9GFm9wSU6uy3SAaV6dxZdhWSmNyS/ZmTKqV6rExJD8AgAAoqcbzO7du2XWrFnuJBiVmpoqZ511ljz22GOyePFikxgDAAAiG8kvAAAAAIBo98o3u+XeBZul+YxY5713zR0u8XGxIdozAACAzkdEHwAAIIR2lVbJojxNfimSr/PLJIBzNIyxvbvJ7JFOmT0iU4ZkpQR7NwEAAFrQ9sp5eXnmsmHDBnMpKyszj82cOVNuuOGGgLe1d+9eef/992XFihVSWFgo/5+9OwGPqjz7P/6bLQlZSUIgK3tCUEBFdqngviu4tX1bu7z9t9alLnWrW1ut1t1atXZ/a5fXt+64axURlVVEVJYkQNgSCAnZyJ7Z/tc5QWAYhCQmOXMy3891jZN5njOHG7gdZs4893O73W5lZmZq+vTpOu200xQbG3vQ561Zs8a8P+qoo8Lmjj76aPN+7dq13fwdAgCASEfxCwAAAAAAHf6+fLsee39b2Pic8Rm6+ZQRcjnZUBMAAPQvXN0HAADoY1tqWsyuL0bxy5qKpk49x7gmdXROkk4sSNPs0anKTD74YlAAAIC+8sMf/rBHzrNixQo99thjamlp2TvW1ta2t7hm/vz5uvnmm83CmANVVFSY91lZWWFzAwcOVFxcnHbs2NEjcQIAgMhA8QsAAAAAAPsEg0H9flGZ/mfp9rC5/zo2U9fOHiqHgyIYAADQ/3ClH93mcrmsDgHoFKfTecjHQCQib/vfhaeSyma9W1Ktd0tqtGFXc6ee53Y6NHV4ik4sSDeLX9ISYhTpyF3YEXkLuyJ3EUkGDRqknJwcffrpp1163qZNm/TII4+ovb3dLFqZM2eOxo0bZz5etGiRWQRjFLLcc889uvfeezVgQGgnvObmjvdV8fHxBz2/cfwXxwAAAPui+AUAAAAAgHCBYFAPvbtFT3+yM2zuRzNy9MPpORTBAACAfour/ui21NRUq0MAuiUlJcXqEIAuI2/tJxAI6pNttXpzdYXeXFOhbTX7djg/lAEel2aPydDp4zJ1QuFgJcd5ZGfkLuyIvIVdkbvoaxdeeKFGjRpl3ozuK5WVlbryyiu7dI4nn3zSLHoxNtu47bbbVFBQsHfOKIgxOr3861//MothXnnlFV188cW98DsBAACRWvzy3vpavVNC8QsAAAAAAAcyPiff/VapXlmzK2zumtlD9e1J4Z3UAQAA+hO+AQAAAOghXn9Ay0pr9OaaHfrPmp2qbGjr1POS49w6+YghOu3ITB2fn6EBMXRdAwAAke+rFqVs2LBB69atM38+4YQTQopgvnD22WdrwYIFKi8v1xtvvKHzzz9fbve+y1lfdIL5sq4vLS0tSkhI+EpxAgCAvkPxCwAAAAAAnVubcNtrGzW/pCZk3Oj9csupIzR3wmDLYgMAAOgrfBsAAADwFbR6/fpg/S6z88s763aqvsXbqecNSozVaUcOMTu/TBuZLo/L2euxAgAARJLly5fv/dkohDkYp9OpWbNm6amnnlJTU5PWrFmjo446au98ZmameW90jBk5cmTIc+vq6tTa2qrRo0f32u8BAAB8dRS/AAAAAADQtTUKN760Xos314eMu5wO3XnmKJ1WmG5ZbAAAAH2JbwbQbbW1tVaHAHSKsXAqJSVl7+P6+noFAgFLYwIOh7yNbI1tPn2wsVbvltRoUWmtWryd+7vJTonViQVpOqkgXeOzk8wLUeb5dodeoLIzchd2RN7CruyUu6mpqVaHgAhUXFxs3sfGxoYVsezviCOOCHnO/oUwxty8efP06aef6rjjjgt53qpVq8KeDwAA7F38MmPEQJ1M8QsAAAAAIIrXKlz7Yok+KWsI+8x837n5+toovo8BAADRg28J0G1+v9/qEIBuMRYHkr+wG/LWerXNXi3cWKsFJbVavrVeXv/hF2gYRqYP0An5qTohP01jBsfL4egoflHQ+DtVv0fuwo7IW9gVuQu7KSsr29vVxeVyfelx2dnZYc/5wvjx4zVkyBAtWrRIZ555poYPH26ONzc368UXX5Tb7dbxxx/fa78HAADQeRS/AAAAAADQfXUtXl31XLHW7mwKGY/3OPXw3AJNGrpv8zQAAIBowDcGAAAAX6Jid5ve21CrBetrzB1VOrE+w3REZoJOzE/T7PxUDU8b0NthAgAA2E57e7saGjp2rEtPTz/ksYmJiWbXmLa2NlVXV4fMGQU0l156qe6++2794he/0IwZMzRgwAAtW7ZMVVVVuuSSSzR48OAuxXbgr/FlDlW8A0RaB7FDPQYiEXnbv4pfFpRU6+3iai3bXN/p4pfjRqbqlMJ0cydbOxW/kLuwI/IWdkXuAgCAaLKrsV2XP1uk0uqWkPHkOJcevaBQ47ISLYsNAADAKvb59gAAAKAPbKlp0YL1HcUvaypCd1L5Mk6HdHROkk4sSNPs0anKTI7t9TgBAADsrLW1de/PcXFxhz3eOMYohNn/eV8YN26cfvWrX+mZZ57R4sWLzc5IQ4cO1be+9S2zMKarLrvssk4dZ/x6gB2lpLAzJOyHvLWX+mav3lpbodc/36FFG3Z1qqtujNup2QUZOmtClk4sHKykOI/6A3IXdkTewq7IXaDvsUkI7IDCSdjRgXm6Y3e7Lv33Om2rC70+np7g0RMXH6GCwQl9HCFwcLzmwo7IW9gVuduBQhgAABDVgsGgSqqataCkVu+urwnbQeXLuJ0OTRmWbHZ+OX5UqtIS+scCDQAAgL7qCPMFt/vwl6e+OGb/5+1v9OjRuuWWW3owQgAA0N3ilw/X7+pc55d+WvwCAAAQLVJTU60OAegyCidhNxsqG/Xf/7taFbtDi2CyU+L0r/83VSMz6ASDyMVrLuyIvIVdpURp7lIIAwAAok4gGNTn2xvNri9G95fy+rZOPS/O7dRxIwfqhPxUzRw5UImxvJUCAADojpiYmL0/+3y+wx7/xTH7P6+3/P73v+/1XwMAgP6A4hcAAAAAAHrP6vJ6fed/lqumKXSDqBGDEswimJyBAyyLDQAAIBKwehMAAESVop1Nuu21DdpcE7pjypdJinWZHV9OKEjVtGEDFeeJzjaCAAAAPSkuLm7vz62th39f9sUx+z+vt6Snp3fquNra2l6PBegJRiv0/XeBqq+vVyAQsDQm4HDI28i1u9WnBSXVeru4Wss213eu+MXl0HEjU3VKYbq+Nip178YivpZG1XauMa9tkLuwI/IWdmWn3KVrBgAA6KoVm2v0/Sc/UkNr6EZShZlJ+ucPpiojKday2AAAACIFhTAAACBqLCqt089eWa8W76G/DEuP92h2fqpOyE/TpLwkuV0UvwAAAPQko7NLUlKSGhoaVF1dfchjGxsb1dbW1qUilb7g9/utDgHoFmNxIPkLuyFvrS9+eW99rd4pqdayLbvl72Txy4wRA3XymLSwrrrR9HdJ7sKOyFvYFbkL9D02CYEd2KlwEvjCsi31uvb5IrV4Q9/bjM9K1GMXFcrta1ZtbbNl8QFfhtdc2BF5C7uyU+6m9uIGIRTCAACAqDDv80rd859N8n/JWo3s5FidYBS/FKSZF5BcTkdfhwgAABBVcnNztW7dOlVUVJiLlVwu10GP2759e8hzAACA/YpfAAAA0P9QfAY7onASke699TW6+dUN8h6wsGFSXrIemlughBgnOQzb4DUXdkTewq4CUZq7fAsBAAD6tWAwqD8tLtefl5SHzQ1NjdOpY9J1QkGqCjLi5XBQ/AIAANBXxowZYxbCGN1eSktLlZ+ff9Dj1q5dG/IcAAAQmcUvXxuVqoSYgxe2AgAAAACAQ3t97S7d8cbGsM09jc/b95w9WnEep1WhAQAARCQKYQAAQL/l8wd093826ZU1u8LmzhibrttPG6kYNxeLAAAArDBlyhTNmzfP/HnBggUHLYQxdq5ZuHCh+XNCQoKOPPJIRYov62ADRGJr9EM9BiIRedu3xS8LSqr1dnG1lm2ul6+TxS/HjUzVKYXpOn5UmhJi+TfxC+Qu7Ii8hV2RuwAAoD95btVO3ffOZh34qfzsCVn6+anD5AybAQAAAIUwAACgX2ps8+mml9ebO5ge6PtTs3XZzFw56QADAABgmdGjR2vs2LFmVxijEGb27NkqKCgIOebVV19VeXlHZ78zzjhDbnfkXMpKTU21OgSgW1JSUqwOAegy8rZnNbR69cbqCr3++Q59uH5X54pf3E7NLsjQWROydNLYIUqMjZx/kyMZuQs7Im9hV+QuAACwq78v367H3t8WNv6NyXm6e+547a6vk9/vtyQ2AACASMY3FQAAoN+pamzX1c8Xq6SqOWTc6ZBuPGm4Ljx6iGWxAQAA9BdFRUWqqKjY+3j37n0FyMb4e++9F3K8UehyoO9973u6/fbb1d7errvuuktz5841u74YjxcvXqx33nnHPC4rK0vnnHNOr/5+AACIBu+XVOmap1eppqn9sMdS/AIAAAAAQO8JBoP6/aIy/c/S7WFzP5g5QredNVYONvcEAAD4UnxrAQAA+pWNu5p11fPF2tkQuqAj1u3UPeeM1vGj2LkbAACgJ8yfP18LFy486FxxcbF5O1whzIgRI3TNNdfoscceU0tLi/7v//4v7BijCObmm2/WgAEDejB6AACib3HNXz/cpF+/vk6HagBD8QsAAAAAAL0vEAzqoXe36OlPdobN/fi4PN1EEQwAAMBh8Q0GAADoN1Zs3a3rXypRY1toW+DUAW795vwxGpeVaFlsAAAAOLhJkybpwQcf1Ouvv66VK1eqpqZGbrdbmZmZmjZtmk4//XTFxsYq0tTW1lodAtApTqdTKSkpex/X19crEAhYGhNwOORtz2rzBXTXWxv16uqqg87HuBw6bmSqTilM1/Gj0pQQ6zLHvc0Nqg1ttovDIHdhR+Qt7MpOuZuaygZdAABgH18gqLvfKtUra3aFzV07e6i+MzWXIhgAAIBOoBAG3eZydXwZBtjhQvihHgORiLztujfWVukXr2+Q1x+6renQ1Dg9ftERykuNsyy2aELuwo7IW9gVuQurXXHFFeatJ2RkZOi73/2uebMLvz+0+BqwC2NxIPkLuyFvu6+qsV3XzyvRmoqmsLkpQ5N17vgMfW1UqhJi9l3v58+655C7sCPyFnZF7gIAADto9wV022sb9O760I2WjLKXW08doTkTBlsWGwAAgN1QCINuY+ca2NX+u0MBdkHefrlgMKg/LCzVfW+uD5ubOHSg/vLdyUpLiLEkNpC7sCfyFnZF7gIAAGB/q3c0mkUwu5q8YXM/Pi5XP5iWzQ6zAAAAAAD0kVavXze8tF5LNteHjLucDv3qzFE6tTDdstgAAADsiEIYAABgW/5AUL94ebX+tXRr2NxpRw7Rb79xjOI8dDADAAAAAADR5dU1Vfr1fzap/YDOufEep+48a5Rmj06zLDYAAAAAAKJNY5tP175Yok/KGkLGY1wO3X9uvmaOYkNqAACArqIQBgAA2FJLu18/+b9P9M66nWFz35sxXLeffYS5cwoAAAAAAEC08AWCemzhVv3vxxVhczkpsXpoToFGZ8RbEhsAAAAAANGortmrnzxfrHU7m8I2q3h4boEmDU2xLDYAAAA7oxAG3VZbW2t1CECnOJ1OpaTs+9BYX1+vQCBgaUzA4ZC3h1bT7NU1z63T5zsaw+auPWGYLpmcpd31dZbEFu3IXdgReQu7slPupqaykxn6H5eLzoOwz78Xh3oMRCLytnt2t/r0s5dKtGRz+DWRKcNSdN95BRo4wGNJbNGC3IUdkbewK3IXAADYQVVju654tkil1S0h48lxLj16QaHGZSVaFhsAAIDdUQiDbvP7/VaHAHSLsTiQ/IXdkLf7bK1t1VXPF6msri1k3ONy6I4zRunUwvSIXQQcjchd2BF5C7sid4G+RYEX7Gr/IkrALsjbw9tQ2aAf/u+n2rQrdHfZLzrn3nbWWLldLBDua+Qu7Ii8hV2RuwAAINKU17Xq8meLVF4furYhPd6jxy8qVD4dWwEAAL4SCmEAAIBtfL69Qde+WKK6Fl/IeFKsSw/NKdDEvGTLYgMAAAAAALDC/HU7dfW/V6mxzRe2acjdc8br4sl5lsUGAAAAAEA02lzdosufXafKRm/I+JCkGD1xUaGGpQ2wLDYAAID+gkIYAABgC++tr9Gtr21Qmy8YMp6VHGO2DB6RzoUiAAAAAAAQPYLBoH6/cKMeeKtYwdDLJRqUGKs/XjJRxw5Lsyo8AAAA9HMul8vqEIDDcjqdh3wM9IainY267Om1YRt8Dk2N0x++caSykmMP+XzyFnZF7sKOyFvYFbnbgUIYAAAQ8Z75pEIPzN+iA9Z0qHBIvB6ZO0aDEmMsigwAAADRqra21uoQgE4xLnynpKTsfVxfX69AIGBpTMDhkLeH1+L16843NurNdbvC5sZmJujhuYXKTHbw71UfI3dhR+Qt7MpOuZuammp1CECvILdhR/v/2wH0hhWba/Sjf69VQ2toEUxhZpL++YOpykg6dBHMwZC3sCtyF3ZE3sKuUqI0dymEAQAAESsQDOqx97fpnx/tCJubMTxF95ybr4QYdpsCAABA3/P7/VaHAHSLsTiQ/IXdkLehKna36fqXSlS0szls7vSx6brt1JGK8zj5M4sA5C7siLyFXZG7AADAah+sr9KP/vGxuXnF/o7OG6gnvz9ZA+PZ4BMAAKAnUQgDAAAiUrsvoF++War/FFWHzZ03PkM3nzxcbld0tvQDAAAAAADRaVV5g258qUQ1zaE7yzokXXl8nr4zOUsOh/EIAAAAAAD0lbfWVOgnT32idn9oh7rpI9P15+9OUmIsyzQBAAB6Gu+wAABAxNnd6tP180q0sqwhbO7SGTn6f9NzWNQBAAAAAACiyrzPKnXvO5vlCwRDxo1uuXefNUozR6VaFhsAAACiT21trdUhAIfldDqVkpKy93F9fb3ZRQzoSa+tqdIvXlsvf+jHdR0/KlX3z8mXt7lBteFNXb8UeQu7IndhR+Qt7MpOuZua2nvfXVAIAwAAIsqO+jZd9XyRNtW0hoy7nA7dduoInTMuw7LYAAAAAAAA+prPH9DD723VM5/sDJsbmhqnh+cUaHj6AEtiAwAAQPTy+/1WhwB0mbE4kNxFT3pu1U5z04oDnVqYrjvPGCm3I/iVc468hV2Ru7Aj8hZ2FYjS3KUQBgAARIyinU26+oViVTd5Q8YTYpy679x8TRs+0LLYAAAAAAAA+lpdi1c/e3mDVmzbHTY3fXiKfn32aCXF8VUPAAAAAAB97cll2/X4B9vCxueMz9DNp4wwN/sEAABA7+HbEQAAEBGWbKrTTS+vV7M3tEXfoASPfnvBGI0ZnGBZbAAAAAAAAH1tQ1WzrptXovL6trC5SyZl6crj81hUAwAAAABAHwsGg3riwzL9bdn2sLlvHZupa2YPlcPB53UAAIDeRiEMAACw3MufV+nu/5TKHwwdH5k+QI9eMEaZybFWhQYAAAAclMvlsjoEoFOcTuchHwORiLyV3i2p1m2vrlfLARuGxLgcuv30UTp73GDLYsOXI3dhR+Qt7IrcBQAAVggEg3rw3S165pOdYXOXzsjR/5ueQxEMAABAH6EQBgAAWLpTyp8Wl+vPS8rD5ibmJunBOQVKjuPtCgAAACJPamqq1SEA3ZKSkmJ1CECXRVPeBgJBPfbuBv3mnZKwuSHJsfrjJZN0dN5AS2JD10VT7qL/IG9hV+QuAADobb5AUHe9VapX1+wKm7t29lB9a1KWJXEBAABEK1aWAgAAS/j8Ad399ma9sroqbO60wnT94vSRinGzgxsAAAAAAIgOTW0+Xf/sp3pjdUXYnFH88qdLjtXg5DhLYgMAAAAAIJq1+wK67bUNend9bci40fvl1lNHaM4EOrcCAAD0NQphAABAn2tq9+tnL6/Xks31YXPfnZKlK76WJyftggEAAAAAQJTYVtOsH/5jhYoqGsLmLpiYq7vnjlOcx2VJbAAAAAAARLNWr183vBS+vsHldOhXZ47SqYXplsUGAAAQzSiEAQAAfWpXY7uueqFYJZXNIeNOh3TDicN10TFDLIsNAAAA6Kza2tCd/4BI5XQ6lZKSsvdxfX29AoGApTEBhxNtebtia71umFesuhZf2LWSn54wXP81KUstjbvVYlmE6Kxoy130D+Qt7MpOuZuammp1CAAAoJsa23y69sUSfVIWunFFjMuh+8/N18xR/DsPAABgFQphAABAnynd1ayrni9WRUN7yHis26m7zx6l2aPTLIsNAAAA6Aq/3291CEC3GIsDyV/YTX/N22AwqOdWVerBBVvkDwRD5pJiXbrnnNGaNnxgxC7qRfTmLvo38hZ2Re4CAICeVtfs1U+eL9a6nU0h4/Eepx6eW6BJQ/cV5QIAAKDvUQgDAAD6xMfbduv6eSVqaAv9ImrgALceOX+MxmUlWhYbAAAAAABAX/L6A7p//ha9+Fll2NyItDg9NHeMhqbGWRIbAAAAAADRrqqxXVc8W6TS6tD+rMlxLj16QSHrGwAAACIAhTAAAKDXvVVUrV++sVFef+jupnkDY82LRHks7AAAAAAAAFGipsmrm15Zr0/KGsLmvjZqoH515iglxvL1DQAAAAAAViiva9XlzxapvL4tZDw93qPfXVSo0RnxlsUGAACAffgmBQAA9JpgMKh/frRDj76/LWxufFai2S44Nd5jSWwAAAAAAAB9rWhnk9kxt6KhPWzu+1OzddnMXDkdDktiAwAAAAAg2m2qbtHlz65TVaM3ZDwzKUZPXDyW7q0AAAARhEIYAADQK/yBoB58d4ueXbUzbG7W6FTdfdYoxXlclsQGAAAAAADQ1942Oua+Wao2XyBkPNbt1C9OH6lTC9Mtiw0AAAAAgGhnbF5x5XNFqmvxhYwbxS9PXFSozORYy2IDAABAOAphAABAj2v1+nXraxu1cENt2NxFRw/R9ScOk8vJ7qYAAAAAAKD/CwSD+sOiMv3P0u1hc0OSYvTQnAIVDkmwJDYAAAAAACCtKm/Q1c8Xq6ndHzKenxGvxy8sVHqCx7LYAAAAcHAUwqDbXC528Yc9OJ3OQz4GIpGd87am2atrni/S59sbw+aumT1M35mSLYeDIpj+ys65i+hF3sKuyF0AAIDI19jm0+2vb9QHG+vC5o7OSdJ95+azmAYAAAAAAAst3Vyv6+eVqPWADq7jshL06AWFSo5jiSUAAEAk4l0aui01NdXqEIBuSUlJsToEoN/m7eZdTfrBU6u0ubo5ZDzG5dSDFx+lc4/Ktiw2WMMuuQvsj7yFXZG7AAAAkWVbbauum1ei0uqWsLm5EzJ040nD5XFRzAwAAAAAgFUWrK/RLa9ukNcfDBmflJesh+YWKCGGjaIBAAAiFYUwAACgR3yytVY/+PsK1TS1h4wbu6P86TuTNG1kumWxAQAAAD2NTrmwCzqIwY76Q94u3Vynm14q0e5WX8i4yyHdcPIIXXxMJh1z+6H+kLuIPuQt7IrcBQAAX9Xra3fpjjc26oAaGH1t5EDde26+Yt28vwAAAIhkFMIAAICv7D9rKnTVvz9Rqze0VXDOwAF68vuTlT8kybLYAAAAgN5Ap1zYFR3EYEd2yttgMKj/WbRZd7+2VoEDFtKkxnv0xLeO1fRRbBYSLeyUu8AXyFvYFbkLAAC64rlVO3XvO5vDxk8tTNedZ4yUmw6uAAAAEY9CGHRbbW2t1SEAnWLsALX/xe/6+noFAqGL9YFIY6e8fWblDt33zqawxR1jBifo0QvHalCMj38zooidchf4AnkLu7JT7lIwAAAAokGbz69bX1yt5z4uC5srzEzSn78zSXlp8ZbEBgAAAAAAOjy5bLse/2Bb2Pic8Rm6+ZQRcjnp4AoAAGAHFMKg2/x+v9UhAN1iLA4kf2E3kZi3gWBQv/tgm/6+fEfY3LThKbrv3HwlxLgiLm70rUjMXeBwyFvYFbkLAABgncrdrbr0Xx/rk611YXOnHTlED198tBJi+UoGAAAAAAAru7g+8WGZ/rZse9jct47N1DWzh8rhoAgGAADALvjWBQAAdFm7L6A73izVW0XVYXPnjMvQracMp1UwAAAA+jW6HsIu7NRBDLBr3q7Z0aCfvlCsysb2sLkfH5enHx6Xq/bmBrU3WxIe+pDdchcwkLewKzvlLp1y0V+5XC6rQwA69e/FoR4jehgbfT7wziY9vbIibO7HM/P0oxm5EVMEQ97Crshd2BF5C7sidztQCAMAALqkodWn618q0cfbGsLmfjQjRz+cnhMxF4gAAACA3kIHJtgVHcRgR5Gct6+v3aW73ipVuz8YMj7A49QdZ4zSiQVpChrxWxYhrBTJuQt8GfIWdkXuAn2PIi/Y0f5FlIgePn9ANz3/uZ4/SBHM7WcfoR/MHKFIRt7Crshd2BF5C7tKidLcpRAGAAB0WsXuNl31fLFKq1tCxl0O6ZZTR+i88YMtiw0AAAAAAKCv+ANBPf7BNv3zox1hc9nJsXp4boFGZ8RbEhsAAAAAAOjQ5vPrmn+v0hurQ4tgjL097z1/vL4+eahlsQEAAOCroRAGAAB0SnFlk65+vli7mrwh4/Eep+47N1/TRwy0LDYAAAAAAIC+7JZ762sbtHhTfdjcsXlJuu+cfA2M91gSGwAAAAAA6NDS7tel//pY75dUhYy7nQ795utH65yjsi2LDQAAAF8dhTAAAOCwlm6u040vrVezNxAynp7g0W/PH6PCIQmWxQYAAAAAANBXNte06KcvlmhrbWvY3MXHDNFPZw+V2+W0JDYAAACgL9XW1lodAnBYTqdTKSkpex/X19crEAj9zhv9U0ObT1c/t06flDWEjMe6nXpgToFmDh0Qsa9j5C3sityFHZG3sCs75W5qamqvnZtCGAAAcEivrK7SXf/ZJH8gGDI+Ii1Oj15QqKyUWMtiAwAAAAAA6CuLSut0y6sb1NTuD9tJ9qaTh2vuhMGWxQYAAAD0Nb8/9H0xYAfG4kByt/+ra/bqyueLVLSzOWQ83uPUw3PHaNLQZFvlAXkLuyJ3YUfkLewqEKW5SyEMAAA4qGAwqL8sKdcfF5eHzU3MTdKDcwqUHMdbCQAAAAAA0P+vkfzzox167P1tCt0mREod4NYD5xXo6Nwki6IDAAAAAABfqGps1xXPFqm0uiVkPDnOZW70OS4r0bLYAAAA0LNYvQoAAML4/AHd885mvfR5VdjcKWPSdMcZoxTjdloSGwAAAAAAQF9p9QZ0939K9ca66rC5MYPj9dCcAmUm0y0XAAAAAACrlde16vJni1Re3xYynh7v0e8uKtTojHjLYgMAAEDPoxAGAACEaGr36+aX12vx5vqwuUsmZ+knx+fJ6XBYEhsAAAAAAEBf2dnQphvmrdfanU0H3SjkF6ePVJzHZUlsAAAAAABgn03VLbr82XWqavSGjGcmxeiJi8dqaGqcZbEBAACgd1AIAwAA9trV2K6rXyhWcWVzyLhR9nL9icP09YmZlsUGAAAAAADQVz7b3mAWwVQ3e8OukVz+tVx9b0q2HGwUAgAAAACA5Yp2NunK54pU1+ILGTeKX564qJBOrgAAAP0UhTAAAGDvDilXPV+kHbvbQ8Zj3Q7dddZonZCfZllsAAAAQKRxuegAAHtwOp2HfAxEIqvz9qXPduru/5TK6w+GjCfEuHT3OfmaNZprJIjM3AW6g7yFXZG7AADAsKq8QVc/X6ymdn/IeH5GvB6/sFDpCR7LYgMAAEDvohAGAADok7Ldum5eiXa3hl4cShng1m/mFmhCdpJlsQEAAACRKDU11eoQgG5JSUmxOgQgYvPW5w/o7tfX6W+LNofNDU+P15+/M0n5Q7hGgs7jNRd2RN7CrshdAACiz9LN9bp+XolafYGQ8fFZifrtBWOUHMfSSAAAgP6Md3sAAES5t4uq9fM3Nobtcpo7MFaPXlBotgsGAAAAAADoz+qa23XlU5/oww27wua+lj9Ij39zolLi2UUWAAAAAIBIsGB9jW55dUPYOofJQ5P10JwCxcfQ0RsAAKC/oxAGAIAoFQwG9b8rKvTIwq1hc0dmJug3c8cojTbBAAAAAACgnyvZ2aAf/mOFtlQ3h839YOYI3XxGodwupyWxAQAAAACAUK+tqdKdb5bqgBoYfW3UQN17Tr5i3XyGBwAAiAYUwgAAEIX8gaAeXrBFT3+yM2zu+FED9euzRyvOww4pAAAAwJepra21OgSgU5xOp1JSUvY+rq+vVyAQsDQmIJLy1thB9rZXS9TcHnp+j8uh204bpXPHD1bD7vpe+bXR//CaCzsib2FXdsrd1NRUq0MAAKDfePaTnbpv/uaw8dMK03XHGSPZyAIAACCKUAgDAECUafUGdPvrG7RgffjCvQuPGqwbThoul9NhSWwAAACAXfj9fqtDALrFWBxI/sJueiNvjU65/7Nsu37/YVnYXHqCRw+el6/x2Un8/4KvhNdc2BF5C7sidwEA6P+eXLZdj3+wLWx87oQM/ezkEaxzAAAAiDIUwgAAEEXqmr366bwSfba9MWzuyq/l6btTsuRwcHEIAAAAAAD0Xy3tft3xZqneKakJmzsiM0EPnlegwUkxlsQGAAAAAADCN7N44sMy/W3Z9rC5b0/K1NWzhrLOAQAAIApRCAMAQJQoq2vVVc8Xa2tta8i42+nQL88YqdPHDrIsNgAAAAAAgL6wo75N171UopLK5rC5M48YpFtPHaFYt9OS2AAAAAAAQKhAMKgH5m/Rs6t2hs39+Lhc/WBaNkUwAAAAUYpCGAAAosDqHY269oVi1bb4QsYTY13mLqeThiZbFhsAAAAAAEBfWLltt256eX3Y9RGnQ7rq+KH61qRMFs8AAAAAABAhfIGgfvVmqV5buyts7qcnDNV/HZtlSVwAAACIDBTCAADQz72/sVY3v7JBbb5AyPiQpBg9esEYjRoUb1lsAAAAAAAAfeH5T3fq/vlb5A8EwzYJuefs0Zo+YqBlsQEAAAAAgFDtvoBufW2DFqyvDRk3tq+49bQRmjN+sGWxAQAAIDJQCAMAQD/23CpjkcdmHbDGQwUZ8frtBWOUkRhjVWgAAAAAAAC9zucP6MF3t+i5TyvD5oalxenhOQUaljbAktgAAAAAAEC4Vq9fN7y0Xks214eMu5wO/erMUTq1MN2y2AAAABA5KIQBAKAfCgSDeuKDbXpy+Y6wuanDknXfuflKjOVtAAAAAAAA6L9qm7266eX1WlnWEDZ33IiBuvvsUVwfAQAAAAAggjS2+XTNCyVaVR76WT7W7dB95+Rr5qhUy2IDAABAZOEbHgAA+hmvP6A73yzVG+uqw+bOPnKQbjt1hNwupyWxAQAAAAAA9IWSyiZdN69EO3a3h819d0qWLp+ZZ+4kCwAAAAAAIkNds1dXPl+kop3NIePxHqcenjtGk4YmWxYbAAAAIg+FMAAA9CMNrT6zRfCKbbvD5n44PUc/mpEjh4NFHgAAAAAAoP+aX1KjX7y+Ua2+QNjusbefNlKnjx1kWWwAAAAAACBcVWO7rni2SKXVLSHjyXEuPXpBocZlJVoWGwAAACIThTAAAPQTFbvbdNXzxWEXhlwO6eZTR2jO+MGWxQYAAAAAANDbAsGg/rSoXH9ZWh42NyQpRg+eV6CxmQmWxAYAAAAAAA6urK7VLIIpr28LGU+P9+h3FxVqdEa8ZbEBAAAgclEIAwBAP1BS2aSrXyhWVaM3ZHyAx6l7z8nXcSMHWhYbAAAAAABAb2tq95tdYN7bUBs2NyE7Ufefl69BCTGWxAYAAAAAAA6udFezrniuKGytQ2ZSjJ64eKyGpsZZFhsAAAAiG4UwAADY3LIt9brxpRI1tQfCdkf57QVjVDiEnU4BAAAAAED/3jn2py+WhHXJNZw7LkM/O3m4YtxOS2IDAAAAAAAHV7SzSVc+V6S6Fl/IuFH88sRFhcpMjrUsNgAAAEQ+CmEAALCxV9dU6VdvbZI/EAwZH54Wp0cvKFR2CheGAAAAAABA//XR1nr97OUNqm8NXTTjckjXnjBMXz9miBwOh2XxAQAAAACAcKvKGnT1C8Vmh9f9FWTE67ELC5We4LEsNgAAANgDhTAAANhQMBjUX5du1x8WlYXNHZObpAfPK1DKAP6ZBwAAAHqLy+WyOgSgU5xO5yEfA3bNW+PayL9XVuih+ZvkD90fRClxbt13XoGmDh/Y26ECIXjNhR2Rt7ArchcAAPtaurlO181brzZfIGR8fFaifnvBGCXHsdYBAAAAh8e7RgAAbMYXCOretzdp3udVYXOnjEnTL88YpVg3X/gAAAAAvSk1NdXqEIBuSUlJsToE4CvnbZvPr5/PW6OnV2wLO7ZgSKL+8p3JGpoe34cRAgfHay7siLyFXZG7AADYw4L1Nbrl1Q3yHrCrxeShyXpoToHiY9iACAAAAJ1DIQy6jZ1PYRfsCIX+lLfN7X7d+FKJFpXWhT3nksnZuuaEYXI6HH0WJ3AgXnNhR+Qt7IrcBQAA0aiqoU0//tfH+nhLbdjcKUcM0W++frQSY/nqAwAAAACASPPamird+WZpWGfXr40aqHvPyWfDTwAAAHQJ3wah29j5FHbFjlCwa95WNrTq0n99pNXlu0PmjLqXn599hL5/3AjL4gO+DK+5sCPyFnZF7gIAgP7u87J6/eifK7SjvjVs7qqT8nXNSflyOtkgBAAAAACASPPsJzt13/zNYeOnFabrjjNGyu2iCAYAAABdQyEMAAA2sKGyUd/723KV1baEjBs7ovz2G0fr9HFZlsUGAAAARKPa2vBOBEAkMjqG7V8sWV9fr0AgYGlMQHfy9rXVO3XHGxvV5gvN3ziPU3eeOVqnFA5SfX14B12gL/GaCzsib2FXdspdNpgEAES7J5dt1+MfbAsbnzshQz87eYRcbGoBAACAbqAQBgCACPfR5hr9v7+vUH2LN2Q8Nd6jv3x3ko4dlmZZbAAAAEC08vv9VocAdIuxOJD8hZ34A0E9smCT/ra0PGwuKzlGD84p0JjBCeQ1IhKvubAj8hZ2Re4CABB5gsGgnviwTH9btj1s7tuTMnX1rKFyOCiCAQAAQPdQCINuY+dT2IWddoQCDszb1z7boWufWaX2A3Y7zR0Yq8cvOkLDkh28HiOi8JoLOyJvYVd2yl12PgUAAN2xu9Wra/69Su8WVYbNTcxN0n3n5psbhQAAAAAAgMgSCAb1wPwtenbVzrC5Hx+Xqx9My6YIBgAAAF8JhTDoNnbUgV2xIxTs4i8flOru19cpGAwdPyIzQY/MHaO0BA+5jIjHay7siLyFXZG7AACgPymtatQP/7FCG6uawuYuPGqwrj9xmNwupyWxAQAAAACAL+cLBPWrN0v12tpdYXPXnTBM3zw205K4AAAA0L9QCAMAQITxB4J6eMEmPfXxjrC5r40cqF+fPVoDYlyWxAYAAAAAANDbFpfW6mevrFdDqy9k3OV06IYTh+nCo4dYFhsAAACADi4X31fCHp3VD/UYPa/dF9Atr67XuyU1IeNOh3T76aM0ZwKf6Q+HvIVdkbuwI/IWdkXudqAQBgCACNLqDejnr2/Qu+trw+YuOGqwbjhpuNzGFSIAAAAAAIB+JhgM6n9XVOjR97cqcECH3IED3Lr/3HxNzEu2KjwAAAAA+0lNTbU6BKDLUlJSrA6hX2tu9+mqf36sD9aHFsEYaxwe+cbROntCtmWx2Rl5C7sid2FH5C3sKiVKc5dCGAAAIkRdi1c/fbFEn21vDJv7yayh+s6kTDkcFMEAAAAAAID+p80X0N3/2aTX1+4KmysYHK+HzitQVkqsJbEBAAAAAIBD293q1X//7SOt2BK66Wes26k/fPtYnVA42LLYAAAA0D9RCAMAQAQoq2vVVc8Xa2tta8i4x+XQAxcepVnD4+X3+y2LDwAAAAAAoLdUNbbr+nklWlPRFDZ31vgs3XryUMW4LAkNAAAAAAAcRnVjm777t+VaXb47ZDwhxqW/fm+ypo1Mtyw2AAAA9F8UwgAAYLE1Oxp17YvFqmn2hYwnxbr1x0uO1YzRg1RbG7prCgAAAAAAQH+wekejWQSzq8kbNnfdKQW68sTRqqurY4MQAAAAIMLw/SXswOl0KiUlZe/j+vp6BQIBS2Pqbyob2vTjp9dqU3VLyHhynFu/u2isxqQ6eb3oIvIWdkXuwo7IW9iVnXI3NTW1185NIQwAABb6YGOtbn5lg1p9oW9ChiTF6B8/mKYxmUmWxQYAAAAAANCbXl1dpbvf3iSvPxgyHh/j1CNfP0anHplpWWwAAAAADo1iddiRsTiQ3O05ZXWtuuLZIpXXt4WMp8d79LuLCjU6I54/7x5A3sKuyF3YEXkLuwpEae5SCAMAgEWe/3Sn7ntnswKhaz2UnxGvx42dUSiCAQAAAAAA/ZAvENRjC7fqfz+uCJvLSYnVby8Yq0kFFMEAAAAAABCpSnc164rnilTVGNrhNTMpRk9cPFZDU+Msiw0AAADRgUIYAAD6WDAY1BMflulvy7aHzU0Zmqz7z8tXSnysJbEBAAAAAAD0pt2tPt3y6gYt3Vx/0Osivz5ntNITWSwDAAAAAECkKtrZpCufK1Jdiy9k3Ch+eeKiQmUms94BAAAAvY9CGAAA+pDXH9Cdb5XqjbXVYXNnHTFIt502Qh6X05LYAAAAAAAAetOm6hb99MVibatrC5v75sRMXT17qNxOhyWxAQAAAACAw1tV1qCrXyhWU7s/ZLwgI16PXVio9ASPZbEBAAAgulAIAwBAH2ls8+nGl9Zr+dbdYXM/mJatHx+XK4eDxR4AAAAAAKD/+WBjrW57bYOa2gMh4x6XQzefPELnjs+wLDYAAAAAAHB4SzfX6bp569XmC/1sPz4rUb+9YIyS41iKCAAAgL7Du08AAPrAzoY2Xf18sTbsagkZdzmkn50yQnMnDLYsNgAAAAAAgN4SDAb15PLteuKDMgUPmEuP9+iBOfmakJ1kUXQAAAAAAKAz3i2p0a2vbZDXH/rpfsrQZD04p0DxMS7LYgMAAEB0ohAGAIBetr6qWVc/X6TKRm/IeJzbqXvPzdfMkQMtiw0AAAAAAKC3tHr9uvOtTfpPUXXY3NghCXpwTr6GJMVaEhsAAAAAAOicV9dU6c43SxU4YIeL40cN1D3n5CvW7bQqNAAAAEQxCmEAAOhFy7fU64aX1qup3R8ynhbv1iPnj9ERmYmWxQYAAAAAANBbKna36bp5JSqubA6bO31sum47daTiPCyUAQAAAAAgkj3zSYXun7/loJ/tf3n6SLldfLYHAACANSiEAQCgl7y2pkq/emuTfAdsizIsLU6Pnj9GOQPjLIsNAAAAAACgt6wqa9CNL5eoptkXMu6QdOXxefrO5Cw5HMYjAAAAAAAQqf62rFy/+6AsbHzuhMH62cnD5XLy2R4AAADWoRAGAIAeFgwG9bdl2/XEh+EXhI7KSdRDcwo0cIDHktgAAAAAAAB607zPKnXvO5vDNgZJiHHp7rNHa+bIgZbFBgAAAAAAOrfm4XcfbNOTy3eEzV0yKUtXzcpjgwsAAABYjkIYAAB6kLHI4753NuvFzyrD5k4qSNOdZ45SrJvWwAAAAIDduVwuq0MAOsXpdB7yMdBTvP6AHnp3s55eWRE2Z3TH/c35hRqRHt+pc5G3sCtyF3ZE3sKuyF0AAHpHIBjUA/M369lV4Wsefnxcrn4wLZsiGAAAAEQECmEAAOghze1+3fLqBn1YWhc291/HZuqa2UPl5IIQAAAA0C+kpqZaHQLQLSkpKVaHgH6opqldV//vSi0prQ6bm1WQoUe/eYxSvkJ3XPIWdkXuwo7IW9gVuQsAQM9s/Hnnm6V6fe2usLnrThimbx6baUlcAAAAwMFQCAMAQA+obvLqmheKtW5nU8i4UfZy7QlD9V/HZlkWGwAAAAAAQG8pqtitH/5jhbbVtITNXXr8SN14eqFcTjYGAQAAAAAgkrX7Arr1tQ1asL42ZNz4SH/rqSN03vjBlsUGAAAAHAyFMAAAfEWba1p09fPFKq9vCxmPcTn0q7NG66SCNMtiAwAAAAAA6C1vrq7QT59ZZXbJ3V+M26n7LhivucfkWhYbAAAAAADonJZ2v254eb2Wbq4PGTc2trjrzFE6pTDdstgAAACAL0MhDAAAX8Gq8gZd92KJ6lt9IeMpcW49NLdAR+ckWRYbAAAAgN5TWxu6MyIQqZxOp1JSUvY+rq+vVyAQsDQm2F8gGNSfF5XpD4u2hc1lJMboN+eP0ZFZCd1+rSRvYVfkLuyIvIVd2Sl3U1NTrQ4BAIAv1djm09UvFOvT8saQ8Vi3Q/edW6CZIwdaFhsAAABwKBTCAADQTfNLanT7axvU7g+GjOekxOq3F4zR8LQBlsUGAAAAoHf5/aHdDwC7MBYHkr/4KozuL794Y6MWrA8vchmflagHzsvXoMSYHs0z8hZ2Re7Cjshb2BW5CwBA19U2e/WT54tUtLM5ZDze4zQ3uTg2L9my2AAAAIDDoRAGAIBueOrjHfrNgq0KLYGRjhiSYF4QSk/wWBQZAAAAAABA7yiva9X1L63X+qrQBTKGc44cpJ+dMkKxbqclsQEAAAAAgM6rbGjXFc+u06aa1pDxlDi3ufHnuKxEy2IDAAAAOoNCGAAAuiAQDOo3723V/31cETZntAS+5+zRGhDjsiQ2AAAQhQJ+accqadAYqyMBAAD93Iqt9brplQ2qb/GFjDsd0jWzh+qbEzPlcDgsiw8AAAAAAHROWV2rrni2SOX1bSHjxoafv7uwUKMz4i2LDQAAAOgsCmEAAOikNl9AP399o+aX1ITNzZ0wWDedPFxuY/UHAABAbwkG5apZL0/ZYsWUL5XKl0tt9dI3/y0NnmZ1dAAAoB8KBoN6blWlHnx3s/wHtMZNjnPp12fna9rwFKvCAwAAAAAAXVC6q1mXP1ukXU3ekPGs5Bg9cdFY5aXGWRYbAAAA0BUUwgAA0AnGbqfXzSvRqvKGsLnLZ+bq+1Oz2fUUAAD0CufubfKULZFnm1H8skTO5l3hB5UupBAGAAD0OK8/oPvnb9GLn1WGzY1Ii9PDc8ewQAYAAAAAAJtYV9GkK58vCuv2OjQ1Tk9cVKjM5FjLYgMAAAC6ikIYAAAOo7yuVVe9UKwtNa0h4y6nQz8/bYTOOjLDstgAAED/42je1dHxxSh+KVsi1+5th3/SpvelaTf1RXgAACBK1DR5dePL6w+6KcjXRg3Ur84cpcRYvmIAAAAAAMAOPinbrWteKFFTuz9kvCAjXo9fWKi0BI9lsQEAAADdwbdUAAAcwtqKRl37Qomqm0PbAifEuPTAefmaMizFstgAAED/4GhrkGf7MrPji1EA465Z3/WTBHySr1Vy8EUVAAD46op2NpmdcXc2tIfN/fe0bP34uFw56YwLAAAAAIAtLNlUp+tfWq82XyBkfEJ2oh45f4yS41hCCAAAAPvhXSwAAF/iw9I6/ezl9Wo94GLQ4ESPfntBofIz4i2LDQAA2JivVZ4dH5vdXszCl8rP5QiGvt84HH9ilnx5xym28BRpxPFScrZUWyv5Q3dyAwAA6Kr/FFXrjjdLwxbHxLqd+sXpI3VqYbplsQEAAAAAgK55t6RGt7y6Qb5AMGR8ytBkPTinQPExLstiAwAAAGxRCNPc3Gzex8cffNHwY489pmeeeUa7du3SiBEjdNlll+mcc87pq/AAAAjx4meVuvftTfKHXgvSqEED9OgFYzQkKdaq0AAAgN34vWaxi1H0Yha/VKyUwx++u/qhBOJS5c2dbt7ac6crkDJcLrdbsampvRY2AACILoFgUL//sEx/W7Y9bG5IUowemlOgwiEJlsQGAAAAAAC67tU1VbrzzVIdUAOj40cN1D3n5JubXgAAAAB21SeFMK+88ormzJmjxMRElZWVKSkpKWT+v//7v/X3v//d/DkYDKqkpERvvfWW7rrrLt188819ESIAAHv/HfrDojL9dWn4oo/JQ5P1wHn5SoyloRoAADiEYECu6mKz6CVm22K5t38kp7exS6cIeBLky55iFr1482bInz5GcvCFFAAA6B2NbT7d/vpGfbCxLmzu6Jwk3X9uvtISPJbEBgAAAAAAuu6ZTyp0//wtYeOnj03XL08fKbeL7xwAAABgb32yktcoajEWFp977rlhRTAffvihnnzySTkcDrNbTEFBgYqKitTS0qKf//znZleYcePG9UWYAIAo5/UHdNdbm/Ta2l1hc2ccka6fnzZSHi4GAQCAAwWDctZvUcwXHV/KlsrZWtO1Uzhj5M06Rt7cGWbXF9/gCZKLxaYAAKD3batt1U9fLNammtawubkTBuvGk4ZxPQQAAAAAABv527Jy/e6DsoN+zv/ZycPlcjosiQsAAACwXSHM0qVLzUKXE044IWzuT3/6k3mfnZ2tJUuWKDc3V9u2bdPMmTPN7jF//OMf9dhjj/VFmACAKN/59MaX12v5lt1hc9+fmq3LZ+aa/5YBAAAYnI075dlb+LJYrsYdXXp+0OGUb/B4eXM6Or54s46V3HG9Fi8AAMDBLN1cr1teXa/drf6QcWNBzPUnDNOFRw/meggAAAAAADZhbFT9uw+26cnl4d9ZXDIpS1fNyuNzPgAAAPqNPimEqaysNO/HjBkTNvfmm2+ab7B/8pOfmEUwhry8PPPxjTfeqIULF/ZFiACAKFbZ0K6rXyjW+qrmkHFjE5SfnTxC5x812LLYAABAZHC01slTvmxv8Yu7dmOXz+FLy+/o+GIUvmRPUTA2uVdiBQAA6MzCmKc+rtBvF25VIBg6lzLArfvOydekobxXAQAAAADALgLBoB6Yv1nPrupYp7e/Hx+Xqx9My6YIBgAAAP1KnxTCVFVVmfdJSUkh42vWrNGuXbvMN9nnnXdeyNykSZPM+y1btvRFiACAKLWhqtksgtnZ0B4yHud26p5zRutro1Itiw0AAFjI2yzP9o/MopcYo+NL1Vo5dMAq0cPwJ+fJmztd7bnTzQKYYPygXgsXAACgs9p9Ad3z9ia9smZX2NzoQQP00JwC5QykUx0AAAAAAHbhCwR155ulen1t+Gf9608cpm9MzLQkLgAAAMD2hTAul8u8r6mpCRn/8MMPzfuMjIywbjGpqR0Lj1tbW/siRABAFPpoa72un7deTe3+kPG0eLd+M3eMjsxKtCw2AADQx/ztcu/8VDHbFstTvkTuilVyBLxdOkUgfpDac6Z3dHzJna5Acl6vhQsAANAduxrbdcNL6/X5jsawuRPyU3XHGaMUH9NxPR8AAAAAANhjw4tbX9ugBetrQ8adDum2U0fq3PEZlsUGAAAA2L4QJicnRxs2bNCqVas0e/bsveOvvfaa2Q3ma1/7Wthz6uvrzftBg9gxFwDQ895Yu0t3vFlq7oyyv6GpcXr0gjHKZedTAAD6t4Bfrl1rFVO2RJ6yxfJsXyGHr6Vrp4hJkjdnqln0YnR88aflSw5Hr4UMAADwVazZ0ajrXypRVWN4se+lM3L0g+k5cvJeBgAAAAAA22hp95uf9Zdt2R0y7nY6dNdZo3TymHTLYgMAAAD6RSGMUeiyfv16Pf744/r2t79tFrd89NFHevPNN8350047Lew569atM+8zM2nNCADoOcFgUE8u367ffVAWNjchO1EPzy3QwAEeS2IDAAC9KBiUq65UHqPji1H8Ur5Uzrb6rp3CFStv9iSz6MUofvFlHCk5++RjNQAAwFfy+tpduuutUrX7QzcEGeBx6s4zR+mE/DTLYgMAAAAAAF3X0OrTNS8W69Py0K6vsW6H7j+3QMeNHGhZbAAAAEBf6JMVO5dffrmefPJJbdq0SSNHjlRBQYHWrl0rn8+ntLQ0ff3rXw97zrvvvmt2izniiCP6IkQAQBQwur88MH+znv+0MmzuxPxU3XnmaMV5nJbEBgAAep6zYXtHtxez68sSuZp2dun5QYdLviFH7e344s06RnLF9lq8AAAAPc0fCOrx97fpnyt2hM3lpMTqoTkFGp0Rb0lsAAAAAACge2qbvbryuSIVVzaHjCfEOPXw3DE6Ni/ZstgAAACAflUIM3HiRD3wwAO64YYb1NjYqJUrV5rjHo9Hf/7zn5WUlBRyfH19vV577TXz59mzZ/dFiACAKGgJfMurG/RBaV3Y3DcnZuqa2UPlcjosiQ0AAPQMR0u1PGVLzaKXmLLFctVv6fI5fIPGmkUv7UbHl+zJCsYk9kqsAAAAfbEz7K2vbtDizeFd8CblJevec0ZrYDxdcQEAAAAAsJPKhnZd/uw6ba5pDRlPiXPr0QvG6MgsvtcAAABAdOiTQhjDtddeq5NPPlnPPfecKioqlJWVpW9+85saM2ZM2LHvvfeeJk+ebP589tln91WIAIB+qrrJq2tfLNbaiqawuWtnD9W3JmVZEhcAAPhqHO0Ncm9foZhtRteXxXJXF3X5HP6U4WrPm9HR9SVnmoID0nolVgAAgL60ubpFP51Xoq21oYtiDBcfM0Q/nT1UbhddcQEAAAAAsJOyulZd8WyRyuvbQsbTEzz63YWFdH0FAACINnVbJYfxfU+ColGfFcIYxo8fb94O57zzzjNvAAB8VVtqWnTV88VhF4JiXA7deeYonTwm3bLYAABAF/na5KlYaRa9GF1f3Ds/kyPo79Ip/AlDOopecjuKXwJJ2b0WLgAAgBU+LK0zO8E0tYe+T3I7HfrZycM1Z8Jgy2IDAAAAAADdU7qrWZc/W6RdTd6Q8azkGD1x0VjlpcZZFhsAAAD6QDAoZ0OZPOXLFLN9ubT9I6l+qzT9SmnK9YpGfVoIAwBAX/q0vMHc/bS+xRcynhzn0sNzxujo3CTLYgMAAJ0Q8MldtUaePR1fPDs+lsPf1rVTxA6UN3fa3uIX/8ARksPRayEDAABYJRgM6h8f7dDj729T8IC5tHi37j+3gGshAAAAAADY0LqKJl35fFHY2oehqXF64qJCZSbHWhYbAAAAerHwZfc2s/DFvG1fJlfD9vDjNn9IIQwAAP3JgvU1uu21DWrzhS79yE6O1aMXjNHw9AGWxQYAAL5EMChXTcmeji9L5SlfKmd7Y9dO4R4gb/Zks+ilPXe6/BlH7GkDCwAA0H+1egO66z+lenNdddhc4ZB4PXheAYtiAAAAAACwoU/KduuaF0rCOr8WZMTr8QsLlZbgsSw2AAAA9HDhS/2WPUUvy801M67GisM/r+IzqW235E5QtOnRQpj3339fveH444/vlfP2F8afe1FRkUpLS7V161b5fD5dfvnlmj17ttWhAYAl/r2yQg+9uyVs99OxQxL0m/MLNCghxqLIAADAgZz1W+UpW6IYs/hliZwt4Ys3DyXo9MiXeYxZ9GIUv/iGTJBc/FsPAACix86GNl0/b73W7WwKmzu1MF0/P22E4jwuS2IDAAAAAADdt2RTna5/ab3afIGQ8QnZiXrk/DFKjmMPbAAAAHsXvmze1/GlfLlcTZ0ofDlQXIpcdZvlH3Skok2Pvhs2Ci8cDkdPntI8n1HYgS/39NNPq6qqSklJSUpNTTV/BoBoFAgG9dv3tup/Pw5/MzBjRIruPSdf8TEs/AAAwEqOpirFlC2Rp3yJPNsWy9VQ1qXnB+WQL+NIefNmyJszXd7sSZInvtfiBQAAiGSfljfoxpfWq7rZGzJuXKW//Gu5+t6U7B6/Zg8AAAAAAHrf/JIa3frqBvkCoVuAThmarAfnFLD2AQAAwG6CQbnqNpmdXtzlRseXZXI1V3b5NIG4NPlypyom/wRp+EwpY6z89fWSP7SDYDTo8bLwYPDA/ffR2y699FJlZWUpIyND8+bN01NPPWV1SADQ54wdUH75xka9XVwTNjdnfIZ+dsoIuZ0s/AAAoK852nZ37Fyxp+OLu2Z9l8/hSx0tr9nxZbq8OdMUjEvplVgBAADs5KXPK3XvO5vl9Ydek0+Icequs0bra6NSLYsNAAAAAAB036urq3TnW6U6oAZGs0an6tdnj1as22lVaAAAAOhK4UvtRnm2G0UvS82OL87mrje7CAxIkzd7qrw5HTd/2mi53B7FpPI9UI8WwixYsOBL59rb23Xbbbfpo48+Mgs2Lr74Yk2ZMkVDhgwx53fu3GnOPfPMM6qsrNTkyZN19913y+Px9GSI/dKECROsDgEALFXf4tP1L5Xok7KGsLkfH5erH0xj91MAAPqMt0WeHR/vK3ypWi1HMNClU/iTsuXNndFxy5mmQGLH50YAAADI3An2kfe26N8rd4bN5Q2M1cNzx2hE+gBLYgMAAAAAAF/N0ysr9MC7W8LGTx+brl+ePlJuF0UwAAAAkVv4sqFjs9g9N2dLdZdPExiQvqfoZZq8OVPkTx0tsf619wthZs2a9aVdYs4880ytWLFCP/jBD/TII48oISEh7LhLLrlE9957r6655hr95S9/0cMPP6zXX39dvaW+vl4bNmwwbxs3bjRvDQ0Ne38vV1xxRafPVVVVpTfeeEMrV65UdXW13G63MjMzNX36dJ122mmKjY3ttd8HAESz7fVtuur5Im2uaQ0Zdzkduv20ETr7yAzLYgMAICr4vXJXfmYWvsRsWyJ3xSdyBNq7vntF7nS150yXN2+GAslD+RAPAABwEHUtXt3yygYt37o7bG7a8BRzV9jkuB5vBA8AAAAAAPrA35aV63cflIWNn3/UYP3s5OFy8t0JAABA5AgG5KpZb3Z6MQtfthuFLzVdPk0gPmNvtxez48vAkayZ6aQ++Ubsr3/9q9566y2dcsop+vOf/3zIY+Pj4/WnP/1JW7ZsMZ9j/PyjH/2oV+L64Q9/2CPnMQp8HnvsMbW0tOwda2tr21tcM3/+fN18881mYQwAoOcU7WzS1S8Uq7rJGzKeEOPUfecWmAtAAABAL3yQ31VkdnuJKVss9/aP5PQ2dekUAU+ifDlT1G52fZkuf3qB5GAHMwD24nK5rA4B6BSn03nIx7CPjVXNuuaFdSqrawub+/bkLF09e7jczv7xxQh5C7sid2FH5C3sitwF9nn//fdVVFSk0tJSbd26VT6fT5dffrlmz55tdWgAOsnYZPrxD7bp78t3hM1dMjlLVx2fJweLIQEAAKxfL1NtFL4s3VP48pGcrV0vfPHHD95b9OIzC19GUPgSyYUwTz75pPlm3Pig3VlGN5a3335bf//733utEGZ/gwYNUk5Ojj799NMuPW/Tpk1mh5v29nbFxcVpzpw5GjdunPl40aJFZhHMjh07dM8995jdbgYMGNBrvwcAiCaLSuv0s1fWq8UbCBnPSPTot+ePUcHg8M5jAACgG4JBOes3K6ZsiTzbFpsf6J2ttV07hStG3qxjzaIXb+4M+QaPl5zsVA7A3lJTU60OAeiWlBQ2jbCj/6yp0LVPf66mdn/IeIzbqXvmjtcFx+aqPyNvYVfkLuyIvIVdkbuIZk8//bSqqqqUlJRkXq8wfgZgH4FgUPe/s1nPfVoZNnfZzFz999RsimAAAAAsK3wp3lP4YnR9WS5nW12XT+NPyNxT+DLFvA+kDKfwpYf0ycojY+cJw9ChQzv9nLy8vJDn9oYLL7xQo0aNMm8DBw5UZWWlrrzyyi4X+RhFL8YuoLfddpsKCgr2zhkFMVlZWfrXv/5lFsO88soruvjii8PO8Y9//ENeb2g3g0M588wzzfMCQLSa91ml7nl7k/zB0PGR6QP06AVjlJkca1VoAAD0C87GCnnKFptdX4x7V2NFl54fdDjlGzxhT+HLdLMIRu64XosXAACgX+8I++4GPfR2Sdjc4KRY/fGSY3XMUArzAAAAgGh26aWXmmtIMjIyNG/ePD311FNWhwSgk3yBoO58s1Svr90VNnf9icP0jYmZlsQFAAAQlQJ+uaqL9hS9LO3o+NJW3+XT+BONwpdpe7u+BJKHUvhi50KY1tZW837btm065phjOvUc41hDW1tbr8V1sKKUrtiwYYPWrVtn/nzCCSeEFMF84eyzz9aCBQtUXl6uN954Q+eff77c7tA/dqPzTVd+n9OmTaMQBkDULv740+Jy/XlJedjcpLxkPXBevpLi2F0eAICucrTUdrRt3VP84q4r7fI5fOlj9nZ88WZPUTA2qVdiBQAAiBbN7T7d8Oxneu3zHWFzR+UN1J8uOVZDkik2BgAAAKLdhAkTrA4BQDe0+wK69bUNWrC+NmTc6ZBuO3Wkzh2fYVlsAAAAUVP4smtdx3qZ7cvNm7Ntd5dP40/Kljd76n6FL3kUvvSRPlktPHr0aH3++ef6wx/+oHPPPbdTzzGONRjdWiLV8uXL9/5sFMIcjNPp1KxZs8wdN5qamrRmzRodddRRIcf885//7PVYAcDufP6A7v7PJr2yJnwnlDPGpuv200Yqxu20JDYAAGynvUmeHR+ZRS8xZUvkqlorhw5otXYY/uShZuFLe94McyeLYPygXgsXACJRbW3oF9RApDKuT6akpOx9XF9fr0AgYGlMOLzt9a269oUilVQ2h82ddWSGbj99lGL8LaqtbVF/RN7Crshd2BF5C7uyU+6mptLBL1IZeWNsgGrcNm7caN4aGhrMOWOdxxVXXNHpc1VVVZmbo65cuVLV1dXmBqmZmZmaPn26TjvtNMXGxvbi7wSA3bS0+3X9SyVatiV0oaXb6dBdZ43SyWPSLYsNAACg3wr45K5a21H0Ur5MbqPjS3vHZ8Cu8CflypszZU/hyzQFknN7JVxESCGM0Xnls88+01tvvaXLL79cDz/8sOLiDr5TndEZ5brrrtObb74ph8Ohb3zjG4pUxcXF5r1xwWLkyJFfetwRRxwR8pwDC2EAAIfW2ObTTS+vD7sIZPj+1GxdNjNXTipoAQD4cv42uSs+VcwXHV92rpIj4OvSKQLxGWo3ur2YXV+m80EeQNTz+/1WhwB0i7E4kPyNbCu37daNL69XXYsvbEfYq2YN1beOzZTDEYyqv0fyFnZF7sKOyFvYFbmL7vjhD3/YI+dZsWKFHnvsMbW0tISsffmiuGb+/Pm6+eabzcIYAGho9emaF4v1aXljyHis26H7zy3QcSMHWhYbAABAvyx8KV8qT/lyuXcYhS+h78E6w5+ct7fbi9H5JZCc0yvhIkILYX7605/qX//6l4qKivTHP/5R8+bNM4tjJk+erMGDB5sFLzt37tRHH32kZ599VhUVFebzxowZYz43UpWVlZn3xsUKl8v1pcdlZ2eHPQcA0DmVDe265oVilVQ1hy3+uPGk4brw6CGWxQYAQMQK+OWuWiNP+RJ5ti0xu784fK1dO0VscseH+D3FL/7U0bRuBQAA6GXPrdqpB97dIn8gtFtfUqxLvz57tKaPYDEMAAAA0BsGDRqknJwcffrpp1163qZNm/TII4+ovb3d3BB2zpw5GjdunPl40aJFZhHMjh07dM899+jee+/VgAEDeu33ACDy1TZ7deVzRSo+oANsQoxTD88do2Pzki2LDQAAwPb83o61MtuX7en48rGc3m4UvqQMNTu9eLM7ur4EkvbVASAKC2GMD/sLFizQWWedZbaBNQpdjN0wDiYY7PiC75hjjtGrr74ase1hjYsWX7TETU8/dDvKxMRE8/dh7PhhtMDtacaFE6PIyLB169a9Y2vWrDF/Liws1EknndTp83U2xkMV/wCR1hr9UI8RuTZWNevKZ9eqoqE9ZDzO7dS95xVo1ug09VfkLeyK3IUd9Yu8DQblrN0oz7ZFchu3sqVytu3u2inccfJlT5Y3b4Z8ecfJn3Gk5Nz3np93/5GnX+QuAAAwef0BPfjuFj3/aWXY3PC0OD00p0DD0lgwBwAAAPSkCy+8UKNGjTJvAwcOVGVlpa688sounePJJ580148Y6yduu+02FRQU7J0zCmKysrLMjWONYphXXnnF3DT2QP/4xz/k9Xo7/WueeeaZ5nkB2G8T0MufXafNNaEbl6XEufXoBWN0ZFaiZbEBAADYtvCl8nN5ti83u764d6yU09vU9dOkDJc3xyh6mWbeBxL5vGUXfVIIYxgyZIiWLVumP/zhD/r973+vtWvXHvS4sWPH6rLLLjNvkVxo0draGlLoczjGMUYhzP7P6ylGEczChQtDxoqLi83bF7pSCGP82XfGM88804UogciRkpJidQjohCUbq/Wjp1abbYH3l54Qo79+b7KOzouuHVDJW9gVuQs7sk3e1m2VShdKm97vuDV2dNbsNKdbypkkjZwljThejtzJ8rhj5emteNHrbJO7AAAgbDfYm15er5VlHRsv7W/myIG666xRSozts0v5AAAAQNQ4WFFKV2zYsEHr1q0zfz7hhBNCimC+cPbZZ5sbx5aXl+uNN97Q+eefL7c79P3922+/ba4n6axp06ZRCAPYTFldqy5/pkjbd4f+v56e4NHvLizU6Ix4y2IDAACwDX97R+FLudHxZbk8FR/L4Q3ttNcZvoEjzE4vvuypewpfMnslXPS+Pv32zChsueKKK8yb0RXm888/V01NjTmXmpqq8ePH2+bDurGjxxcOvEhxMF8cs//zesoXf6YA0F+8tKpcNzz7mdr9gZDxEYMS9OT3J2tYeoJlsQEAYJnGKmnz+/uKX2o3dfEEDilzvFn0opGzpaHTpNikXgoWAAAAnVFS2aTr5pVox+7w68bfm5Kly2bmyeV0WBIbAAAAgENbvnz53p+NQpiDMbo4z5o1S0899ZSampq0Zs0aHXXUUSHH/POf/+z1WAFYZ+OuZl3xbJF2NYV2fspKjtETF41VXurhN2AGAACI2sKXnZ/Js90ofFkmz46VcvhaunwaX+ooebONji9G4ctUBRMG90q46HuWbSOXmZlp3uwqJiZm788+X2i3goP54pj9nxepjI49AGCFYDCoPyws1X1vFoXNTRw6UH/57mSlJUT+6ygAAD2idbe0ZVFH0YtR/FK5puvnSB8tjejo+GLe4tN6I1IAAAB0wzvF1frlG6Vq9YVuBBLrduj200bq9LGDLIsNAAAAwOEVFxeb97GxsRo5cuSXHnfEEUeEPOfAQhgA/de6iiZd+XyR6ltC15YNS4vTExcVakhSrGWxAQAARBx/W0fhS/nSPR1fjMKX1i6fxpc6em/Ri1EAE0zI6JVwEcWFMHYXF7evGr+19fD/k31xzP7Pi1Tp6emdOq62trbXYwF6grHLTkpKyt7H9fX1CgRCFxjAev5AUPe9U6pnP9kZNndiQZruPjtfjvYm1bY3KRqQt7Archd2FDF562uVe8dKubctkmfbYrl2fiZH0N+lUxjtWr15M+TLO07e3BkKJu3XcbPNuPEevj+JmNztBKMLLAAA6BAIBvWnReX6y9LysLkhSTF68LwCjc2kGy4AAAAQ6crKysx7YxNYl8v1pcdlZ2eHPQdA//dJ2W5d80KxmtpDr9sXDI7X4xcUKi3BY1lsAAAAEcFnFL6s6ih6MYpfKj6Rw9/W9dOk5cubM03enCkdhS/xbDQWLSiE6Sajs0tSUpIaGhpUXV19yGMbGxvV1tbWpSITO/D7u7YoD4gUxuJA8jeytHr9uuXVDXp/Y13Y3NePGaKfnjBMLmd0v+6Qt7Archd21Gd5G/DJXfm5PGVL5ClbLM+Oj+Xwt3ftFHGpHR/m82aoPWe6AgOHSw7HvgP4/y+q8JoLAEDka2r36+evb9TCDeEFyhOyE/XAeQVKZyEMAAAAEPHa29vN9SKdWQeSmJhodo0x1o0cbn1Jd8yfP19FRUXmz1u3bt07tmZNR5fxwsJCnXTSSZ0+X2djPFTxDxBJG0od6nFvWVRaq+tfLA7rAjshO0mPXzRWSXEs2UPk5S3wVZG7sCPy1oINYis+kbtsacfNLHxp7/pp0gvly50qX840+XKMwpd9n8mi5W+Q3O3Qp++qfT6fXnvtNX3wwQcqLS01LwocbpGOw+EwP6BHotzcXK1bt04VFRXm7+PLPuRv37495DkAgH1qmry69sVirakI7/Ryzayh+takTPPfAgAAbC8YkKt6fUfRi1H8sn2ZnO2NXTuFJ97cvcKbO13tuTPkH1QoOaLzwywAAIDdlNW16qcvlqi0uiVs7rzxGbrppOGKcfPeDgAAALCD1tbWvT/HxcUd9njjGKMQZv/n9RSjCGbhwoUhY8XFxebtC10phLnssss6ddwzzzzThSiByLB/l/Xe8sbnO3TtC0Xy+oMh48eNTtefLpmkhFiKYBB5eQv0BnIXdkTe9jBvi7RtubT5Q2nLIqnsI6kbhS8aMk4aPlMadpx5cyek0wnkAClRmrt9lgcffvihLrnkkr27TxiCwdA3/PszFj0b85G8+HnMmDFmIYxxscIo7MnPzz/ocWvXrg15DgCgw9baVl31fJHK6kLb2XlcDt1xxiidWth/umgBAKJQMCjn7q1m0UvMnuIXZ0tN107hjJEv8xi15003i198g4+SXOwQDgAAYDfLt9Tr5lc2qL7VFzLucsjshHvxMUMi+lo4AAAAgPCOMF9wuw+/9OaLY/Z/Xk+54oorzBsA6z33cZlufO5TBQ5YEnfKEUP02DePUZyHTkoAAKAfa2+Wti3rKHoxil/KP+5G4YtDyhwnDZu5p/hlhhSf1ksBw+76pBDG2H3i9NNPV0tLi1ncEhMTYxaNpKWl2boVz5QpUzRv3jzz5wULFhy0ECYQCOzdeSMhIUFHHnlkn8cJAJHo8+0NuvbFEtW1hC4ASYp16aE5BZqYl2xZbAAAdJejqVIxRrcX87ZYrobyLj0/6HDKlzHOLHrx5s6QN+tYyTOg1+IFAABA7zKuhz/9yU79ZsEWHbARrFLi3Lr33NGaPDQ6d+kCAAAA7MxY9/IFny/0+86D+eKY/Z8XqX7/+99bHQJgS39fvFm/eHlN2Ph5R2frwYuOksdl3zVyAAAAB9Xe1FH4YhS9bF7UUfgS8Haj8GW8NPxrewpfpksDUnspYPQ3fVII8+tf/1rNzc1yuVy64447dNVVVykxMVF2N3r0aI0dO9bsCmMUwsyePVsFBQUhx7z66qsqL+9Y/HbGGWd0aicQAOjv3ltfo1tf26A2X+gKkKzkGD16QaFGpLPgFwBgD47Wenm2L5NnW0fHF3fthi6fw5eWv6fwZbq82VMVjGMhJAAAQH/Q7gvo3nc26+XVVWFzowYNMDcCyR0YZ0lsAAAAAL6auLh97+VbW1sPe/wXx+z/vEiVnp7eqeNqa2t7PRbgqzI2aE5J2fe9S319vbmpcU/765IyPf7+1rDxC44eoltOHabG3fU9/mui/+qrvAV6GrkLOyJvu6i9Se4dK+QuWyZP+VK5dn4mR+DwGwMcuEGsP+NI+XKmypc7Tb7syaHrZIyPTq181uhPuZua2nuFTX1SlfHuu+/K4XDo6quv1i233KJIYXSqqaio2Pt49+7de382xt97772Q441ClwN973vf0+233262r73rrrs0d+5cs+uL8Xjx4sV65513zOOysrJ0zjnnqD8xCpsAOziw85SdO1H1B//+eIfuf2eTDtgEVYVDEvTohWOVkRj5uyD1BfIWdkXuot/nrbdF7u0fybNtkdzblshVtVqOYNc+SPqTcuTLO07evOPky5uuYMLgfb9218NHFOM1FwCAyLWrqV03vrRen21vDJubPTpVd5w5SgkxXF8FAAAA7Mro7JKUlKSGhgZVV1cf8tjGxka1tbV1qcjEDvx+v9UhAF1mLA7sydw1OsE+/sE2/X35jrC5SyZn6arj8xQ0fs0e+xURjXo6b4G+Qu7CjsjbUI72Rrl3fCxPuVH4skzuys/lCPq7XPjiyxgnb84UeXOmyZc1ScHYpNCD+DP/ygJRmrt9Ugiza9cu894oEokk8+fP18KFCw86V1xcbN4OVwgzYsQIXXPNNXrsscfU0tKi//u//ws7xiiCufnmmzVgQP/qcNCbFVpAb9q/ChJ9JxAI6t43i/Sn9zeFzc0qyNDvvjVRibF0zfoy5C3sityF7fPW75XKVkib3pc2LZS2Le96G9eEDGnE8dKIWea9K22EjCWPsT0eOaIdr7kAAESGtRWNuuGl9drZ0B4298PpOfrhjBw5HQ5LYgMAAADQc3Jzc7Vu3Tpzo1VjwdGXbSa6ffv2kOcA6B8CwaDuf2eznvu0Mmzuspm5+u+p2ebG0QAAAHbhaG+Qe/uKjsKX7cvlrlzdjcIXl3yDjcKXqfJmT5Eve5KCMQcUvgA9pE9WHGdkZJgf7PtbIcgXJk2apAcffFCvv/66Vq5cqZqaGrndbmVmZmratGk6/fTTFRvLMjcA0avN59d1z3yqVz8L3wXl65PydNfccfK42MEcABABjDahOz+XShd2FL9sWSx5m7p2jthkafjMfcUvg8dKfNEBAAAQFd5ct0u/eqtUbb7QXrhxbqfZBeakgjTLYgMAAADQs8aMGWMWwhjdXkpLS5Wfn3/Q49auXRvyHAD25wsEdcebG/XG2vCOUNefOEzfmJhpSVwAAABd4WhrkHuHUfiytKPjS9UaOYKBbhS+TNjT8WWqfFnHKhiT2GsxA31eCDNz5kw988wzWr16tSZOnKhIccUVV5i3nir2+e53v2veAAD71Dd79cN/rtDyTTVhc9eeXKCrThrNLigAAOsEg1L1ho5uL0bxy+YPpJbarp3DHSflTZVGGh1fZklZR0suupwBAABEE38gqCc+3Ka/Lw/fBCQrOUYPzSlQweAES2IDAAAA0DumTJmiefPmmT8vWLDgoIUwgUBACxcuNH9OSEjQkUce2edxAuhZ7b6Abnl1g97bEPp9ktMh3X7aSJ0zLsOy2AAAAA7F0bZbnu0fdRS9GLdda7te+OJ0yzd4vLw508yOL96sY6UYvv+ANfpkddZPf/pTPf/88/rtb3+r//qv/zK7pcD+amu7uEAQsIjT6VRKSsrex/X19eYFR/S+7fWtuvLZddpU3RIy7nY6dPvpo3Tu+EGqq6uzLL5IRt7Crshd2IGjYYc82xbJXbZYnm2L5Wys6PJuFv4hE+TNO06+vBnyZU3sKIb5wu6Gng8asPlrbmpqqtUhAADQaxrbfLr11Y1atCn8GsfE3CTdd26+UuM9lsQGAAAAoPeMHj1aY8eONbvCGIUws2fPVkFBQcgxr776qsrLy82fzzjjjH61XsblclkdAtCp6+iHetxVLe1+/XReiZZurg9bA/Hrc/J1SuGgr3R+oDfyFugr5C7sqL/nraO1Tu7y5R1FL2VL5apaK4dCO9ofTtDpkX/IUfLmTpUvZ5p82cdKnvi983wqsEZ/z93O6pNP2JMnT9Yjjzyiq666Sueff77+53/+R4MG8cbf7vx+v9UhAN1iLA4kf3tf0c4mXf1CsaqbvCHjCTFOcwHItOED+XvoAvIWdkXuIhI4WmrM3Sw8ZYsVs22xXPWbu3wOX3qhvLkz1J47Xb6cyQrGJIUeQJ4jAvCaCwBA39tS02IugNlS0xo2d9HRg3XdCcPkdkXnlw8AAABApCsqKlJFxb6Nknbv3r33Z2P8vffeCzneKHQ50Pe+9z3dfvvtam9v11133aW5c+eaXV+Mx4sXL9Y777xjHpeVlaVzzjlH/Qmb38CO9t9cqqvqW7z6yb8/0sdbQotgYt1O/eGSY3XCmME9ECHQs3kLWInchR3ZPm+ba6Qti6XNH0pbPpQqVhulLF07h9Mj5U6Shs80b47cKXLHxPdNwQGiN3e7qU/y8s4779zbFtbY7WLYsGE65ZRTVFhYqPj4fVVhX+bnP/95H0QJAOgpSzbV6aaX16vZG7oj+aAEj357wRiNGUwrPABAL2pvkmf7csWULZGnbInZyrWr/CnDzKIXo/jFmzNVwXgK+QEAABBq8aY63fLqBjW2hRaiupwO3XjSMF1w1BDLYgMAAABwePPnz9fChQsPOldcXGzeDlcIM2LECF1zzTV67LHH1NLSov/7v/8LO8Yogrn55ps1YMCAHoweQF+qbmzTJX9drrU79hXMGRJj3frrdydp6sh0y2IDAABRrKla2rKo42YUv+w0Cl+6yBUj5U7uKHwZdlzHzzGHX9sPRE0hzC9/+Us5HA7zZ+Pe+PD/yiuvmLfOoBAGAOzjpc8r9ev/bJL/gELikekD9OgFY5SZHGtVaACA/srfJnfFKsWULZZn22K5Kz+TI+Dr2jkSM6WRs6QRx6s+7Sh5E7J6K1oAAADYXDAY1L9WVOix97cqcMD1j9QBbt1/Xr6OyU22KjwAAAAAfWzSpEl68MEH9frrr2vlypWqqamR2+1WZmampk2bptNPP12xsXxHCtjVjvoWffsvy7SxqilkfGC8R//47ymakDvQstgAAECUadq1r+jFuFV2fWNYuWKlvCkdRS9G8YvR/cVD0T7syd2XXw4e6jEAwN6M1/U/LS7Xn5eUh81NzE3Sg3MKlBxHgzwAQA8I+OWuWmN2e/EYxS87Vsjha+3aKWKT5c2ZZnZ88Q+bqZSRk4yq/Y652lrJH7qrNwAAAGBo9QZ099ulemNtddhcweB4PXRegbJSWOAGAAAA2MEVV1xh3npCRkaGvvvd75q3aFFrXEsHIpzT6VRKSsrex/X19QoEAp1+/rbaVv346TXaXt8WMj4owaPff/0I5SUE+X8BEZe3gFXIXdhRpOeto3mX3OXL5C5bKk/5MrmqS7p8jqArVr6sifLlTpMvZ6p8mUdL7rh9BzQa6226tuYG1ov03N1famqqekufrEiO1D9YAEDP8PmNRSCb9crqqrC50wrT9YvTRyrG7bQkNgBAPxAMylW7wez2Yha+lC+Ts72ha6dwD5A3e5JZ+NKeO13+QUdITpc553K59hbBAAAAAF+msqFd179UorUVoTvAGk4uSDOvfwyI6XiPCQAAAAD9nZ8NpWBDxhq2zubuxl3NuuLZIu1q8oaMZyXH6ImLxiovNY7/DxBxeQtEEnIXdmR13jqaquTZvkye8uXm2hh37YYunyPojpM3c6K8OVPNm2/IhI4uMPvj/81+JxClr7lszY9uMxcMAjapfDzUY3w1TW1+3fjSei3eVBc2972pOfrJrKFysri4y8hb2BW5i57i3L1N7q2L5TYKX7YtlrM5vNjyUIJOj3yZx8iXN12+vOM6drRwxeyd3/+dLHkLuyJ3AQDoO59vb5fFLXgAAQAASURBVNANL60PW/xiuGxmrv57arYcXP8AAAAAAKBfWFfRpCufL1J9iy9kfFhanJ64qFBDkugGCwAAvjpHU6VZ8GLeti+Xu3Zjl89hbgybtV/hy+AJIetjgP6MQhhEZKsioDft3w4MX83O3a360dMfae2O3SHjTod0x7lH6pLpwy2Lrb8hb2FX5C46rbFS2vS+tGlhx33t5i6ewCFlTZBGzDJvjmHT5YlJkKcboZC3sCtyFwCA3vHq6ird/fYmef3BkPF4j1O/Omu0Zo3mOikAAAAAAP3FJ2W7dc0LxWpqD4SMFwyO1+MXFCotoTvfPgEAAEjOxgqz24vb7PqyTO66Td0sfJm0p/BlinyDx1P4gqhFIQwAoFtKdjbo+3/7SOV1LSHjcR6nHv3GMTr1yEzLYgMA2EBrvbR50b7il8q1XT/HoAJpxPEdxS/DZ0rxab0RKQAAAKKULxDUowu36qmPK8LmcgfG6qE5BRo1KN6S2AAAAAAAQM9bvKnO7Ajb5gstgpmQnajfnj9GSXEstQMAAJ3nbNxhFr54ypea9676rm4KKwU8CfJlHbuv40vGOMlFYS5g6PN35zU1Nfrb3/6md955R6tXrzYfG9LS0jRu3DidfPLJ+v73v28+BgBEpqWl1frRP1Zod2toG+C0hBj99buTdMxQdkIFABzA2yJtWyaV7un4sn2lFAz9EuGwknOlkbP2FL8cLyVn91a0AAAAiHLGNY+bX1mvZVtCu+AapgxL1j1n5ytlAItfAAAAAADoL+aX1OjWVzeYG2MceB3gwfMKFB/jsiw2AABgD86G7WanF/O2fZlc9Vu7fI6AJ1G+7D2FL9lG4cuRFL4AX6JPv6n74x//qOuvv17Nzc3m42Bw3weH8vJybd++Xf/5z3/0y1/+Ug899JB+9KMf9WV46KLa2lqrQwA6xel0KiUlZe/j+vp6BQJdXHiLvd5cu0s/f329vP7Qiz95qXF6/KKxGprE60NPIG9hV+Qu9gr45Nr5qTzblsi9bZHcOz6Ww9/etVMMSJMvd7q8eTPkyztOgZRhksPRMek335D2SKjkLezKTrmbmkqhNADAPkp3Neu6eSXaVtcWNvfNYzN19ayhcjv3vC8FAACANQJ+qWK1tG2plDtZihtqdURA1HG5KAqAPa6jH+rxF17+vFJ3vLFBB9TAaHZ+mu49t0Cx7oM/D7Ayb4FIQ+4iGvPWubtM7rKlcpcvM+9du7d1OYZgTJK82ZPly50qX840+QcfKTn3Le/nXTcOhtfcPi6Euffee3XrrbfuLX4xFuscc8wxyszMNB9XVFTok08+MRfuNDU16bLLLlNdXZ1uvPHGvgoRXeT3G6sPAfsxFgeSv11nvH7/86MdevT98Ddr47MS9fDcAqXGe/iz7SXkLeyK3I0iwYBc1SXylC1WzLbFcm//SE5vY9fbuWZPUXveDHlzp8ufPkZy7PdBrY8W+JO3sCtyFwCAr+79jbW6/bUNamoPfe/pcTl088kjdO74DMtiAwAAiGaO9ga5K1bJs2Ol3BUr5dm5Smrfc/3xa9dJE39idYhA1GHzG9jR/ptLfeHJRZv0y9c3hI3POTpbD1x0lDyu6FxUiMjOW8AOyF30y7yt3SJt/rDjtuVDqa7rHV8UmyINmy4Nn2neHJkTFON0KabbUQOK2tfcPimEWb16tW6//XZzEXVWVpYeeOABXXTRRfJ4Qls1+Xw+Pfvss7rhhhvM7jC33XabzjrrLB155JF9ESYA4Ev4A0E9+O4WPbtqZ9jcrNGpuvusUYrzUHsMAFElGJSzfotiyhbLU7ZEnvKlcrbUdO0Uzhh5s46RN9cofJkh3+DxtHMFAACAJYxr139btl2//7BMB2z+qvQEjx44L18TspMsig4AACAKrz3u3ibPjo87il52rJSruliOsHdqe2xbLk3s6yABAP3hWsAT723UA28Vh819a+pQ/eq8cXLSERYAgOhlNH6o3byn6GVRx3191zu+KM4ofDmuo/DFuM8cLzlZawnYphDm8ccfN3elzcjI0JIlSzR06MHbErvdbn3zm9/UzJkzNXnyZFVVVZnP/f3vf98XYQIADqLV69etr23Uwg21YXMXHT1E1584TC4u/gBAVHA27pSnfIk82xab966G7V16ftDhNItdOgpfpsubdazkjuu1eAEAAIDOXvu4481SvV0cXth9xJAEPTAnX0OSYi2JDQAAICr42+SuXL2v20vFSjmbd3X++eUfS36vcQWzN6MEAPSzIph73yzSHxeWhs1dOmukfnZ6oRwO1kEAABB1hS81pfuKXjYvknaXdf08cQP3Fb0Y90OOpPAFsHMhzLvvvmt+OLj55pu/tAhmf3l5ebrpppt03XXXaf78+X0RIgDgIGqbvbr2xWKt3tEUNnfV8Xm6ZHIWF38AoB9ztNbJU76so+NL2WK5azd2+Ry+tPyOwpe8GfJmT1EwNrlXYgUAAAC6o2J3m66bV6LiyuawuTPGpuvWU0cqzsOCSgAAgJ7kaN4V0u3FKIJxBNq7d7KBw6S8qXK0N0oxXHsE+lJtbfhGikCkcTqdSklJ2fu4vr5ePr9f9/ynVM+t2hl2/JXHD9V/Tx2iurq6Po4UOHTeBgIBS2MCOoPche0Eg3Lv3qqk6lUdRS9G8UsXN4Q1BOJS5cuZIl/uNPlypso/qFBy7Pe9Qv3uno0bsNlrbmpqqr0LYcrLy837GTNmdPo5xx13nHm/fXvXX1QAAF/dttpWXfV8kbbVtYWMe1wO/fKMUTqtMN2y2AAAvcTbLM/2FWbRi1H84q5aI4eCXTqFPznP7PbSbnR8yZ2hYPygXgsXAAAA+CpWlTXohpdKVNviCxk3tvz4CRuAAAAA9IyAX66a9WaXF/eOj817V/3Wbp0q6PTIlzFOvqyJ8mdPUmLhCVJyVsecsSDf7+/h4AEcip//52BD7T6/fv5aid5YWx02d/2Jw/SNiZkRu4AQ0cvISV5zYUfkLiJOMChX3Sa5jQ1h99xczZVdPk0gLk3enCnmZrDenGnyp+eHFr4EjHU25D76ViBKX3P7pBDG5epo6eTzhX6heChf/GUYFUsAgL61ekejrnmhWHUHLARJinXpwTkFOjaPHbUAoF/wt8u981Oz6CXG6PhSsUqOgLdLpwjED1J7zvSOji+50xVIzuu1cAEAAICe8uJnlbrvnc3ymV9I7ZMY69LdZ43WcSMHWhYbAACAnTnaG+Su+HRft5edn8hpdGvphsCANHkzJ5qFL97MY+UbPF5yx+5bg5DcezuKAgD6nzafXzfOK9aC9TUh406HdPtpI3XOuAzLYgMAAL1V+FK6p+hlqTzly+VsrureZ9PsqfLmdNz8aaNDC18A9O9CmKFDh2rdunWaP39+p7vCGMd+8VwAQN95b0ONbn11o9p8obucZCbF6NELxmjkoHjLYgMA9MDui7vWmUUvRvGLZ8cKObzNXTtFTFLHh/s9HV/8acbOFuySDQAAAHvw+QN6aMFWPbtqZ9jc0NQ4PTy3QMPTBlgSGwAAgO0Eg3Lu3ran28vKjm4v1cVyBLu+k35QDvNaozdronyZE837QMpwrj0CAHpEc7tPl/7zY31wQBGM2+nQXWeN0slj0i2LDQAA9GDhS+2Gvd1ePNuNwpddXT5NYED6nqKXaWbnF3+qUfjCZ1MgagthTjnlFK1du1YPPvig5syZo/Hjxx/y+NWrV+uBBx6Qw+HQqaee2hch4it0+gEi3YGdpeg09eWeXrlD97+zqaM7337GDE7QoxeO1eCkGKtCizrkLeyK3I3AL6JrN8qzbYnc2xbJXbZEzrb6rp3CFStf9mSz44sv7zj5Bx8pOfd9jOgP7wjJW9gVuQsAQNfUNXt10yvr9fG2hrC5GcNTdPfZo5UU1yeXzAEAAOzJ3yZ35ZqQwpfu7KZrCHri5R1y9J5uL0bxyzEKxib3eMgAANS3ePXfT36kj7fUhozHuh26/9wCusICAGBXwYBcNevNTi8dhS/L5GwJLXrtlMQh0vCZ0rDjVJ82Qd5kNmUA7KJPvtW75ppr9Ic//EGNjY2aOXOmbr/9dn3/+99XenpoNX11dbX+9re/6e6771ZDQ4Pi4uLM5yIypabSahr2lJKSYnUIEScQCOq+t4r0x4Wbwua+lj9Iv//2sUqMZSGIlchb2BW5a4H6Mql0obTJuL0vNezo2vMdLil3kjRiljTieDnypsjjjpVH0YO8hV2RuwAAfLkNVc366Ysl2r67LWzukslZuvJreXI5+WILAABgf47mXSFFL+7Kz+Xwt3frXP6k3JBuL/70MSEb7gAA0Btqmr36yT+Wau2O3SHjCTFO/WbuGE3MowgTAABbFb5UG4UvS81uL0YBjLO164Uv/vjBezq+TFVg6HSljDh2b+FLoLZW8vt7IXgAvaFPriwNGzZMf/zjH83iF6MY5qabbtLPfvYzjRgxQoMHDzY7v+zcuVObNm1SMBg0b8aY8ZyhQ4f2RYgAELXafH7d8OxnevnT7WFzFx2bq1+fP14eF7uLA0DEatolbf5gX/FLTWnXz5E5fk/hyyxp2HQpNqk3IgUAAAAs8W5JjX7xxka1eANhO7/edupInXHEIMtiAwAAiBgBv1w1G+Sp+HhP4cvHctVv7dapgk6PfBlH7i16Me4Dxg67AAD0oZ0Nbbry2WJtqmkJGU+Jc+uxC8foiMxEy2IDAACdLXwp7uj2YnZ8+UjO1tAOb53hT8jcU/gypaP4JWVfxxeXy0X3F8DG+myLle985ztmB5hLL71U27dvN4tdNm7cqNLSjoV6xuMvZGdn609/+pPOPPPMvgoPAKK2BfCl/1yhpaXhldHXnJyvq0/KNwsTAQARpK1B2rJ4T+HL+9LOz7t+jrRR0siOji8afryUENqpEQAAAOgPAsGg/ry4XH9eUh42NzjRowfnFLDoBQAARC1He6PcOz/dW/TirvhEzvbGbp0rEJcW0u3FN3i85I7r8ZgBAOissrpWXfbMOu3YHdrJbFCiR7+7sFCjBsVbFhsAADhE4cuuoj2FL0bXlxVyttV1+TT+RKPwZdq+ri/JQyl2AfqpPu01fNZZZ2nz5s168cUX9c4772j16tWqqelYfJ2WlqZx48bp5JNP1pw5c+TxePoyNHRDrdECDLABp9OplJSUvY/r6+sVCITuABqNduxu05XPrFVpdejuJy6HdNvpozRnQobq6rr+RhI9g7yFXZG7vcDXan4Z7S5bIs+2RXJVfCpHsGttWAMJQ+TNO06+vBny5s1QMCl736Rx/b89ut/XkbewKzvlbmpqqtUhAACiTHO73+wCs2B9+Hvd8VmJeuC8fA1KjLEkNgAAgD4XDMrZUCaPcZ2xYqV576oukiPYvesIvrT8vUUv3qxjQ3bTBRA9zN2zgQi0sapZP35mrXY1ekPGc1MH6A9fP0I5KbGWxQZ09vufQz0GIhW5i251Jt21Tu6ypXKXG7flcrbt7vJp/Ek58uVOlS9nmny50xRIztv7GdX476HetZK3sCty14JCGPMXdLt10UUXmTfYm9/ftQWYQKQwFgdGe/4WVzbp6ueLtasp9MJPvMep+87N1/QRA6P+zyjSkLewK3K3GwI+uavWyLNtsTzlS8wdLhz+tq6dInagvLnT5M2dLm/uDPkHjgj9Ipq/k0Mib2FX5C6i1fvvv6+ioiKz6/DWrVvl8/l0+eWXa/bs2VaHBsAi5XWtum5eiTbsCt38w3DOuAzdfPJwxbij8wsBAAAQJfxtclet3dPtZaV572qu7Napgp54eYcctafw5Vj5hhytYNy+jTkARC82v0Ek+qysTv/v32tU1xy6FmJURoL+9f+mKitlgGWxAd21/6ZogJ2QuwgT8EsVn0mbP+y4bVkitdV3/TwDh0rDZkrDO26u1GFmsUtPlLqSt7CrlCjN3T4vhAEAWGvp5jrd+NJ6NXtDd/lKT/Dot+ePUeGQBMtiA4CoFAzKVVMij9HxxbiVL5OzvaFrp3APkDd7sln00p43Q/5BYyUHC/sAANHh6aefVlVVlZKSkswFGMbPAKLXiq31uumVDapv8YV1wL1m9jB9Y+IQOditHAAA9DOO5l3yVHyyt9uLu/IzOfxGK2h1ayddb+ZE+fZ0e/Gnj5GcLCsAAES+ZaXV+sHfV6ixLfSawBFZyfrHD6ZoUCKdYAAA6FN+n1Tx6Z7Cl0XSVqPwpesdX5Q6fL/Cl+M6CmEAgEIYAIgur6yu0l3/2SR/IBgyPiItTo9eUKgsWgADQJ9w7t7W0fGlbIliypfI2byrS88POj3yZR6j9j0dX3xDJkiumF6LFwCASHbppZcqKytLGRkZmjdvnp566imrQwJggWAwqGdX7dRD726RP/Syh5LjXLrnnHxNHRadu2EBAIB+JhiQq2b93m4vnh0fy1W/pXuncrrlyzhyX7eXzGMUSMzs8ZABAOht7xVX6tJ/fqw2X+iGoMcOS9X/fG+yUgZ4LIsNAICoKnzZsWpfx5etS6UubgRrSh2xt9uLhhmFL3m9ES2AfqBPCmE+//xznXfeeXK5XHrvvfeUk5NzyOPLy8s1a9Ys88vLN954QwUFBX0RJgD0W8br6V+WlOuPi8vD5ibmJunBOQVKjqM2EgB6i6OpSp7yJYrZ0/XFtXtbl54flMP8QtqbN8MsfDG+lJYnvtfiBQDATiZMmGB1CAAs5vUHdP/8zXrxs/COUCPTB+ihOQXKS42zJDYAAICvytHeKPfOT/d1e6n4pMsdpb8QiEsN6fbiGzxecvM+CUD31NbWWh0CYHq7aJdueWW9fAdsCGpsiPHIhYUhRTD19fUKBEKLZYBI43Q6lZKyb0MX8hZ2Qe5GIb9XrsrP5S5bKk/5Mrm3r5DD29T10wwcIV/OVPlyp8mbM1XBpKx9k8Y/7734vpO8hV3ZKXdTU1N77dx9sur5X//6lzZv3qzTTjvtsEUwBuMYo/jlrbfeMp9755139kWYANAv+fwB3fPOZr30efhikFPGpOmOM0Ypxu20JDYA6K8cbbvND/lG0YunbLHcNeu7fA5f6mh5zY4v0+XNmaZgHLtXAwB6lnExbMOGDeZt48aN5q2hoWMxlbFByRVXXNHpc1VVVZmbmaxcuVLV1dVyu93KzMzU9OnTzetBsbF0nwTQO6qbvLrx5RJ9Wt4YNnf8qIG688xRSoxl8w8AAGATwaCcDeV7Cl72dHupLpIj2L2FDL60fLPLi1H04s08VoGBwyWHo8fDBhCd/H6/1SEAemV1lX71VqkOqIHRrNGp+vXZoxXnDv13z1gcSO7Cbshb2BW52w/52+Wu/Fye8uUda2IqPpbD29zl0/gGjjALXnzZU+XNmRLemdTCvCFvYVeBKM3dPvkGcOHChXI4HDr33HM7/Ryjg8ybb76p+fPnUwgDAN3U1O7XzS+v1+LN9WFzl0zO0k+Oz5OTLzwA4KvztshjfDG9bXFH4UvV6i5/Oe1Pyu7o9mLccqYpkDik18IFAMDwwx/+sEfOs2LFCj322GNqaWnZO9bW1ra3uMa4tnPzzTebhTEA0JOKdjbpunkl2tnQHjb3g2nZuvS4XK57AACAyF9EVLV2b9GLe8dKuZoru3WqoHuAvEOOks8oesmaKN+QY9hcBwDQr/17ZYUefHdL2PgZY9P1i9NHyu1iQ1AAAL564ctnHUUvxm3HSjl8+74P7Cxf6ih5s6eYxS9mx5eEwb0SLoDo0yeFMCUlJeb9hAkTOv2ccePGmffFxcW9FhcA9Ge7Gtt19QvFKq4Mrbo2ln9cf+IwfX0ii9AAoNv83o4P+2VG4csSeXZ8IkcgfPHdoQQGpJndXtpzpsubN0OB5KHsxggAsMygQYPMDr2ffvppl563adMmPfLII2pvb1dcXJzmzJljXtMxHi9atMgsgtmxY4fuuece3XvvvRowYECv/R4ARJf/FFXrjjdL1eYLLUCPdTv1y9NH6pTCdMtiAwAA+DKOlmp5Kj4xC17MwpfKz+Xwt3XrXMbGOr7MiXu6vUyUf1Ch5KQTHgCg/wsGg/rbsu164sOysLkLjhqsm04ezsYYAAB0h79N7p1G4cvSjq4vFUbhS2uXT+NLHb236MUogAkmZPRKuADQJ1fCGhsbzfvExMROP+eLY3fv3t1rcQFAf7WpukVXPV+kHbtDF2XHuh2666zROiE/zbLYAMCWggG5qovNji8xRseX7R/J6W3q0ikCnkT5cqao3ez6Ml3+9ALJwU5UAADrXHjhhRo1apR5GzhwoCorK3XllVd26RxPPvmkWfTicrl02223qaCgYO+cURCTlZWlf/3rX2YxzCuvvKKLL7447Bz/+Mc/5PV6O/1rnnnmmeZ5AUSnQDCo339YZi54OVBmUowemlugMYMTLIkNAAAg7JpizYa93V6MnXNd9Zu7dyqnW75BR8iX1VH44ss8RoFEPhcBAKKzCOax97fpHx/tCJv7zuQs/eT4PDkoggEAoHN8RuHLqo6iF6P4peKTbm3W4EvLlzdnmrw5UzoKX+IH9Uq4AGBJIUxqaqp27dqliooKHXXUUZ16jnGsISkpqZejA4D+5ZOy3frpiyVqaPOHjKcMcOs3cws0IZvXVQA4rGBQzvrNijG6vZi3pXK21nTtFK6Yjt0Yc6fLmztDvsHj2ZERABBRDlaU0hUbNmzQunXrzJ9POOGEkCKYL5x99tlasGCBysvL9cYbb+j888+X2x367+Hbb7+ttrbOX1SfNm0ahTBAlGps8+n21zbqg9K6sLljcpN03zn5SkvwWBIbAACA2pvkqfx0X7eXik/kbG/o1qkCsQP3Fr0Y3V7Ma4seOmwCAKKbsTnGfe9s1vOfVobNXT4zV9+fmk0RDAAAh+JrM4tdPOXL5N6+bE/hS3vXT5M+xix46Sh+mazgADq0A7BGn6zEy8/PNwth3nzzTZ122mmdeo6xOMJg7EqKyGTs9grYgdPpPOTj/uQ/63bpttfWy+sPhoznDYzTYxeN1bA0viSxi2jKW/Qvds5dR2OF2fHFvW2RPNuWyNkYvsP0oQQdTvmHTJA37zj5jFvWRMkdt3eed06Ry855i+hG7sJqy5cv3/uzUQhzMEZezpo1S0899ZSampq0Zs2asE1S/vnPf/Z6rADsb2ttq657sVibalrD5s4/arBuOHGYPC7+LQQAAH24kU7DdrkrOjq9eCpWyrVrnRzBQLdO50sd3VH4knmsee8fOEJiIS8AAHv5/AHd8Wap3lhXHTZ3/YnD9I2JmZbEBQBARPO1mp9XOzq+LDO7v3Sv8KVQ3pypHbdso/AlrVfCBYCILIQxil8WL16sP/3pT/rRj36ksWPHHvJ4Y1HEn//8Z7NK//TTT++LENHNTj+AHaWkpKg/tv/9ywebdPfrJWFzR+UN1F+/O0mDEmMtiQ09oz/mLaJDROduc420+QNp0/tS6UKpen3XzzH4SGnkLGnE8XIMmyF3XErfvMFG9OYtcAjkLvpacXGxeR8bG6uRI0d+6XFHHHFEyHM62y0YAL6wdHOdbn5lQ1j3W5fTYRbAXHj0EMtiAwAAUcLfLveudft1e1kpV9PObp0q6B4g75AJ8n3R7SXzGAXjBvZ4yAAA9BdtvoBueXWDFm6oDRl3OqSfnzZSZ4/LsCw2AAAiirdlT+HLsj2FL5/JEeha4UtQDvkHjZU3x+j4MlXeLKPwhbXCACJTn6zTu+yyy3T//ferublZJ554olnkcvbZZx/02JdfflmXXnqpWlpaFB8fryuuuKIvQgQA2/IHgvrVq2v15OLNYXMnjx2sx745UQNi6EMAAGprlLYulTa911H4UvG5+RG+S1KHSyNmdRS/DD9eSuTCOgAgepWVlZn3mZmZh+wam52dHfYcAOjsxh9PfVyh3y7cqsABb90HDnDrvnPzdWxeslXhAQCAfszRUiNPxSdy7/jYXERkLh7yt3XrXP7ErL1FL16j20t6oeTy9HjMAAD0Ry3tfl33UomWb9kdMu52OnT32aN1UgE70gMAopi3uaNL6fb9C1+8XS98yThC3uyp8ubuKXyJYwNGAPbQJ4UwgwYN0h/+8Addcsklqqys1HnnnWfuFDpz5kxlZWWZx+zYsUMffPCBNm3aZH7BaXSD+f3vf68hQ9jNDwC+TKvXr6v//YneWhO+69i3pw3VHeeOM3dHBYCo5GuXyj7q6PiyaaFUtkLq4gd+JQ7pKHwZcXzHLXVYb0ULAICttLe3q6Ghwfw5PT39kMcmJiaaXWPa2tpUXV3d47HMnz9fRUVF5s9bt27dO2Z0HDYUFhbqpJNO6vT5OhvjoYp/gEjidDoP+TiSd3u9+61SvbK6KmwuPyNej1xQqOyUOEtiQ++za94C5C7siLw1Vv0E5KzZaBa9uLevMLu+uOpKu3cqp1v+jCPly5poFr8Y98GkfZsDGPgk0TPIXcB6XBtBb2to9eknzxfr0/KO65BfiHM79eDcMTpu5OF3p+ffC9gReQu7Inf7QHtTx2fXsqXylC+Vyyx88XXpFEGHs+Nza+40+XKmypczWcHYfYUv0fa3Rt7CrsjdPiyEMXzrW99SIBAwu8MYnWE2btyo0tLQC4hGAYwhISHBLIL59re/3VfhoRtqa0NbjgKRyniBT0nZ92atvr7efD2yu9pmr65+fp0+394YNnfVrKH63tQc7a6vsyQ2fHX9NW/R/1mauwG/XFVr5d626P+zdx/gbZXXH8d/Wt47iUfs7D3IJguSsJKw9/h30tLSxQh7FVpoGWWPUmjponSzRxkJCZBAyCCb7E1ix47jxHvIGvf/SIYkyjXENrauZH0/z6NH1nuk60N4LVv3vuc9chV+LGfRJ7J561t3iPi0pg/7PY6Tp2Cy/Fn9JdthBYX8/dMp8Z6LaBVNczczk3bZnU1DQ8PBrxMSjr4QPfCcQCHM4a9rL4EimPnz54eMbdq0KXj7QmsKYQLnrlri+eefb0WWQOQ4/HdHpCqtatBP/rVcq3abz2ucNjxXD100UsnxYTu1jQgQDfMWaA5zF9EoJuZtoHP0nhXSriXS7iVS4VKpobJtx0rMlHpMkHqMD97buo+RMy4pfBfhEVtzF4gwnPNDRyqrcesnzy3V+uLQIpiUeKf+8r1jNb5P2zrB8PsC0Yh5i2jF3G0H7uqmz647P5Q+WyjtWSm1svBFNruUN0rqfZzUe4psPSfKmZDO59YvwbxFtEqP0bkb1veyQEeY6dOn64knntCbb76ptWvXHix+CSzgOeaYY3TWWWfpyiuvpBNMFPD5fFanALRJYHFgtM/fwooGXf3SJu0qbzC1/73ztL46dUjXiF0Eididt4hNHTp3DUOO8m1yFS4KFr4E2rza3a27YG04E4JtXT0Fk4I3b7dhkv2wHcx4L41JvOciWjF3Ee6OMF9wOo9+eumL5xz+uvZyxRVXBG8AOodA8cuP/75Me6vcpth10wfqyhP7y073WwAA0FKBa9GVhU0FL1/cStZKRhs/P3cddLDoJXjr0j9wobu9swYAIKYVV9brW39aou37akPGM5Nc+ttl4zWiIMOy3AAA6FANVdKuxdJnH0k7P5L2rGr951ebQ+oeKHw5Xup1vNRzopSQ1lEZA4Clwl7Ul5ubq3vvvTd483q9OnDgQHA8KyurRQsnACDWrS2u0bUvb1J5fWh1d0q8Qw+dM1DjevKHK4DOy169R67dHzcVvhQukqOutFWvN+xOeXNGBru9NAYKX3JHSY74DssXAIDOKi4u7uDXgfM7R/PFcw5/XaQKdCkGYI2XVxTqlpc/VaM3tCA9Oc6hRy4ZpZnDci3LDQAARAmfRypZc6jby+6lUvWeth3LmSgVjDtU+FJwrJTUtt3nAQBAy3y2v1bf/OMSFVXUh4xnp8brHz+coIE5qZblBgBAuwt0Jw0UvgQ6vgQKX4pXS4a/9YUv+WOkXk0dX9RzghTP70sAscHSypNA4Ut2draVKQBAVFmwrVy3vrFV7iMWhOSkxumJCwapX9cky3IDgI5gq9//eceXRYor/FiOyl2ter0hm3zdhqoxf6I8PSYHu78oLrnD8gUAIFYkJCQc/LqhIbRTZXO+eM7hr4tUXbp0adHzysvLOzwXoD0EOnEf3g69srIy4rrI+vyGnpj/mZ5bal6kmp8er8cuGKz+3eL5uYsh0TBvgeYwdxGNon3e2urL5SxeLkfx8uC9c+8a2bxH/4zSHH9Knrzdx8qb13TzdR0iOVyHnhBoWOfm75FIEU1zNzMz0+oUgA7BZzS0t2376vST59eprMYTMt49PV6/v2SYusV5Wz3voun3BfAF5i2iFXP36GzuSjmLPpGzaImchYvl2LdOtlYWvgQ2gPXljJAnf6K8BRODn19D1sHUeaU6/k5rKeYtolU0zd3MDjwvQgsWAIgSL67aqwfm7ZTfCB0f2C1Jj18wSN1SIn9nZQA4GltjdfBDf6DoJVD84ty/sdXH8Gb0CXZ8Cd7yJ8hI5CIjAADtLdDZJTU1VdXV1dq/f/9XPrempkZut7tVRSbRwOdrZSt6IEIEToJH0vytavDq5//bqkU7K02xY3um6b6z+isj0RVROSP8Im3eAi3F3EU0iuh5a/jlKN8eLHhxlayQs3iFnBXb23Yom0PebkPlzR0jT96Y4L0/tbv5iZH6b4HomrtAJ8XPHNrT+pIaXfXiJlU2hHaf7p2VoN9dNFg5qe1zboDfF4hGzFtEK+auZGuolKv4E7kKl8i1Z4kc+9bLpiMW/x2FYXfJGyx8mSBP9wnBz7ByHbFZdoz/O7cn5i2ilT9G527YC2G2bNmi5557TosWLVJJSYnq6+s1e/Zs9e/f/+Bz1q5dq127dik5OVnTpk0Ld4oAEFH8hqGnPtytZ5cWm2ITeqXp/rMHKCWeukYAUcrrlqtkeVPXl92L5CxdI5vRuj/Kfcm58hRMaur4UjApuHMjAADoeAUFBdqwYUPw/E7gpJrD4Wj2eXv27Al5DQB8Yef+el336mbtKjfv2n7J6Bxde0JPOR12S3IDAAARwFMn1941cgbOHwaKXkpWyu42F8+2hD8+PaToxZMzwrxwCAAAWGLF7ipd+8om1TaG7mA9MDtJT14wWFnJh3VoAwAggtkaKuTas1SuoiVyFS2Vo2xD2wpfckfJ0318U/FLbqDwJbHDcgaAaOYMZ6XRTTfdpMcffzz4tWE0vbnbbDY1NjaGPDdQBHPmmWfK6XRqx44dys/PD1eaABBRGr1+/Wr2dr2zwbzD8pnDuur2GX1YEAIguvi9cpaulevzji+u4uWy+dytO0RCZrDFa6DwpTF/kvwZvQN/VHZYygAAoHmDBg0KFsIEur1s375dAwYMaPZ569evD3kNAAR8tL0i2AmmtjG0EN5pt+mW6b117jHZluUGAACsYa/eE9rtJbBgqJWb5nzBm9kvpPDFl9lXsnE9BQCASLNwe4Vuen2z3N7QRcIjuqfo8fMHKTWBTUEBAJHLVl9+WOHLEjn2b2pD4UtcU+FLoOglf7w8OaMpfAGAFgrbp4Uf//jH+stf/hIsgAkUtkyaNEkvvvhis889/fTT1adPH+3cuTP4nFmzZoUrTQCIGNUNXt342hYt211lil0+KV8/mpwfLCYEgIhmGHKUbZKr6ONgx5dAq1d7Y03rDuFKatrpomCSGgsmy9d1MBetAQCIAOPHj9err74a/Pr9999vthAmsBnK/Pnzg18HOv8OGzZMncWXdcABIo3dbv/Kx+EWOD/87JIi/Xb+LtPlwKwklx4+b5BGFaRZlB0iRaTNW6ClmLuIRpbNW58nuDOuc8+yYPFLoPDFXlPcpkMZzgR5c0bKmzdWvryx8uaNkZGYGfIc/nrvfHjPBYDoN3fTft3+5jZ5/aFnCCb0StND5wxUYhy/wQEAkcVWv1+uok/kKlocLIBx7t/U6mMYjjh5ckfL233C5x1fRknOhA7JFwA6u7AUwsybN09//vOfgwu2b7vtNt11113BxQJfdTLqoosu0gMPPKD33nuPQhgAMaekyq2rX9qk7fvrQ8YdNunWGX3YFRVAZDuwQ9oxX9o+X+nbF8heX9aG3S5Gq7HHpGDxizd7pOSg5TkAAJGmf//+GjJkSLArTKAQ5oQTTtDAgQNDnvO///1PRUVFwa9PO+20YPffziIzM3RhHRAt0tPTLfve9Y0+3fzSGr2+eo8pNjw/Tc98Z5y6Z7DTHSJr3gJfB3MX0ajD5m3dAWn3Umn3kqb7ouWSN/QaSIuldpd6TpB6BG7jZcsdIZfDJc4gxjbecwEgurz+6T7dPWe7jqiB0Qn9M3Xvmf0V56TAEQBgPVtd2ecdXwK3xXIe2NLqYxiO+GDhiyd/YrDjizcnUPgS3yH5AkCsCcvqg2eeeeZgp5e77767xbuKBqxbt65DcwOASLO5tFazXt6kfTWekPFEl12/OWuAjuubYVluANAcW22p4goXy1X4sVxFi6SqwoOxlpyiNmx2ebsNDxa9eAomy5M3ljavAACEwcaNG1VSUnLwcVXVoW6UgfEPPvgg5PmBQpcjfe9739Mdd9yhxsbG4Dmf8847L9j1JfD4448/1ty5c4PPy8vL01lnndWh/z0AIltxZb1+9NxyfVpUaYqdNbK7HrhgBDu9AgDQWfj90v6t0u7Fhwpfyja37Vg2h5R7zMGiF/WcKKUXtHfGAAAgjP6zokQPvfeZafy0oV30y1P7yWm3WZIXAADBwpeiJQdvzvKtbepa6skd09TtJX+CvDkjJAeFLwAQtYUwixYtCnaD+cEPftDi1xQUNJ3APHxBBgB0dot3Vurm1zerttEfMt4lyaXHzh+kIbnJluUGAF+wuaua2rwWLgre2rLjhTdrwKHCl/wJMuLTOiRXAADw1R1858+f32xs06ZNwdvRCmH69Omja665Rr/97W9VX1+vf//736bnBIpgbr31ViUmUugKxKrlnx3Qj/++QmU17pBxm026ceYg/XRav+D5YwAAEKUa65o6vHxR9FK4VKovb9uxEtIPFb30mCjlj5HiuDYCAEBnYBiG/rJkj57+6NCmel+4cGS2bjqlt+ycHwAAhHnj14OFL3uWylm+rdXHMJyJwQ1fA91egoUv2YHCl7gOyRcAYEEhTGlpafC+d+/eLX6Ny9XUvNrr9XZYXgAQSf63dp9+PWeHfEf0/u2dlaAnLhis7ulUhgOwiKderuLlTR1fCj+Wc9862YzQgr2j8aUWyNMjUPQySY0Fk2Qkd+uwdAEAQHiNGzdODz30kN566y2tWLFCBw4ckNPpVG5uriZOnKhTTz1V8fGd7/NMeXkbF/YBYWa325Wenn7wcWVlpfyBXdrD5JXVe3XvnO3yHnG+IyXOoXvPHqAp/bJUUVERtnwQHayet0BbMXcRK/PWVr1HzuLlTbc9K+QoWy+bv23XdH2ZfeXNG9t06z5O/sy+ku2wPtO1jU03IIrfczMzM61OAQAiogjmiQW79fdPik2xS8fn6copPdgkAwDQ4ew1e+Xcc1jHl4odrT6G4UqSJ3fs5x1fxsubfQyFLwDQmQthkpOTgxcz9+3b1+LXFBY2Vf9nZWV1YGb4OhwOh9UpAC0+Ef5VjyPhhM+fFhXqqQ93m2KjC9L06PmDlJ7YVByI2BHp8xadnM8jx97Vcu1eKOfuj+UsWSmbr5UXmwOFLn2mqi53fLDziz+958EQsxmRhvdcRCvmLr6uK664InhrD926ddOll14avMUKn89ndQpAmwQWB4Zj/gYKXx59/zP9d+VeU6xnZoIePneg+nRJ5GcJETVvgfbG3EWnmLc+j5xlG+QsWSFXyQo5i1fIUWNewNoShiNe3pyR8uSOCe6W680dJSPxiGvBweJZfm7QerznAkDk8huG7p+7Uy+tbtpI+XBXTCnQ9yfkW5IXAKDzs9cUy1W0VK6ixcF7R+XOVh/D70oObt7QVPgyQd5uwyUHa/kAIGYKYfr27RvcEXT9+vWaPn16i17z9ttvB++HDRvWwdmhrdi5BtHq8N2hrOb1+XX7q2v1n0/MRTBnjMjTwxeNVIKLojNE1rxFJxTYJW/vWmnHfGn7fOmzjyVPbeuOEZ8m9T4+WPyiPtOk7CGSzaakjsoZ6EC85yJaMXcBAJGiot6jW9/Yqk92VZlik3qn654z+ystISynpgEAQCvZGirkKloW7BAdLH7Zu0Y2b32bjuVLzmlaLJQ7pqnjS9fB7JILAECMCayJuOud7Xp7w35T7MaTeumSMbmW5AUA6Jzs1Xuaur3saSp+cVTuavUx/K4Uebt/XvjSPVD4MozCFwCIUGG52jhjxgwtX75cv/vd73TVVVcddZfaQMHMs88+G2x5efrpp4cjRQAIu1q3V1f8a4U+2GTulnX5lD669bQhsttp/QugAxiGtH+btOMDaccCaceHUv2B1h3DmSD1mCD1ndZU+JI3SnKwkA0AAACIdVv31en6VzerqNJtin17XK6unNpTTs53AAAQGQxD9gNbpR0bpd1LpN1LlVG2qW2Hsjnk6zr4ULeXvLHyp+QFN8sBAACxye3167b/bdX8reUh44HTAr+Y2VdnDu9mWW4AgM7BXlUk154lTcUvgY4vVW0ofIlLkTfvWHnyx8uTP1HebkMlO+tfACAahOXd+uqrr9YTTzyhbdu26Sc/+YmeeuopOZ3Nf+t3331X3//+99XQ0KAuXbro8ssvD0eKABBWpdUNuuzZT7S2KHRn1MD1oF+cOVTfP66PZbkB6KQqiz4vepnfdF9V1LrX2xxS/timji+B4peC8ZIroaOyBQAAABCFPthyQL94a5vqPP6Q8TiHTbfN6KMzh7HABQAAS3nq5SxdI1fxCrlKVshZvEJ2d0WbDuWPT5M3d/TBbi+e7BFSXHK7pwwAiFwOh8PqFBDB6ht9uu6VzVryWWXIeGBzjPvOHqhTBnUJSx5HbtZ8tM2bgUjAvEW0CsfctVftlrNwsZyFS+QMdHypKmz1MfxxqfLmT5C3YIK8+RPlCxa+HPq7hr9wYgvvuYhWzN0mNsMIbAne8f75z3/qu9/9bvDrgoICnXHGGfr9738f7Prywx/+UIE0Fi5cqI0bNwa/DvwPee2114LPQ2QqLw/dsQGIVIH3k/T09IOPKysr5feHLsgIpx3763TlCxu054idUeOddt1z5gCdHKYTPohskTZvEX1s9eVyFi6Sc/fHcu3+WI6K7a0+hrfrYHl7HCdvweTgzheKTz3qa5i7iEbMW0SraJq7mZmZVqcAtDvOiyBahOP3ReB87h8/LtTTH+02xbqmuPToeYM1vPvRP08A0fh3DnA45i4ija26WM7i5Z/fVsixb51sfm+bjuXL6Ctv3hh5u49r6vaS1U+yxeYFdkSGaHrP5bwIgFhTWe8Jbgy6/LPQ82cJLrt+/+2xOmFQtmW5AQCiSGBpc/lO6bOF0s6Pmm6V5nPQR5WQLvU6Tup9fNN97jEhhS8AgOgVtkKYgOeff14//vGPgyehAgUwR/oilZSUFP3tb3/TeeedF67U0AZlZWVWpwC0eCeaw08wBxYr+Xw+S3JZVVit617dpKqG0O+fnujUI+cO1Mh8FoUg8uYtokRjrVzFnwSLXuIKF8lRtkE2te7PPF96LzUWTJInUPhSMFFGYusL85i7iEbMW0SraJq7Xbt2tToFAEAHqWv06oYXVuutT0tMsZE9MvTMd8YqJ41ukgAAdDifV9r7qbR7qbR7SdN9WxYIBTgTpO5jpJ4TpB4TmrpDJ7OJFwAAOLqyGre+++elWl9cFTKeEu/UX753rMb3ybIsNwBANBS+7DhU9LJzodSGji9KyDhU9BK4zxlG4QsAdFLOcH6ziy++WCeffLKeeuopvfHGG1q1apW83kO7Dg0bNkxnn322Zs2apexsqv8BdC5zN+3XL97apkZf6ML0/PR4PXHBIPXKSrQsNwBRyOeWs2RVsOjFVfixnHtXt3o3R19Stjw9AkUvTcUv/tTuHZYuAAAAgM5n94E6Xf7cMm0sqTbFzh+Tr3vPO0YJLi4wAgDQIeoOSIXLPi96WSIVLZc8dW07Vkru50UvE5sKXwK74zrj2jtjAADQyRVX1utbf1qi7ftqQ8Yzk1z622XjNaIgw7LcAAARWvhyYLu088OmopdA8Uv1ntYfJzFL6jVZ6j1F6n2clB0ofKGDKQDEgrB2hDlSoDXxgQMHgjvWZmVlyeVyWZUK2oCOMIgWkbBT9j+XFeuxD3aZejMMzU3WY+cNUlYy73+IvHmLCOP3yblvnVyfF764ipfJ5m1o3SHi0+TJn9jU8aXHZPky+krNdOn7Opi7iEbMW0SraJq7dIQBgM5n8fb9+tk/V+hAbWPIuN0m3Xb6EP3g+D7NdgUHAABtELicu3/roaKXQLeXfRvbdiybXcoZLvX8vOilx3gpvUe7nycEAHR+gfORwBd2ldfrJ/9Zr+Iqd8h41xSXfn/JMPXrmmRJXna7Xenp6QcfV1ZWBterAZGMeYtOO3cNQ/aKHXIWLparcLGcRUtkr93b6u/jT8ySN39C8OYpmCh/l4FNn3WBNuA9F9EqmuZu5mHrWqK6I0xz/xNYDAOgM/P5jWABzL9XlJhiU/pm6N4z+ysxjp1RATTDMOQo3yrX7o/lKlokV+AEgLuqdYdwJsrTfVyw8KWxYJJ8XYfS7hUAAKCdsNgDsXwi/IWVJXpg7g55/aFbfqTGO/Sbswdqct9MVVRUfK3vgdgWTRdwgMMxd9FuPPVylq6RY89yOYtXyFm8XPaGtv396Y9LlS9vjLzdx8mbN1benJFSXPLBuN1mV/phRTDMW0SLaHrP7cgFH4CVInVTHoTf1n11uuLFjdpf6wkZ754Wr6cuHqyCjPiImS+B3xWRkgvQUsxbRCt/YN7u3xJc7/LFzV63r/XHScySp/sEeQKFL/kT5MvqH1r4EjxPzc8I2gfvuYhW/hidu5YWwgBAZ9bg8euOt7bq/S3mi1MXjMzWjSf3ljOwTSoAfM5eVdTU7aXwY8UVLmr1CQDD7pI3d5Q8+ZPU2GNy00VtR1yH5QsAABDLYvFEIjqHr3Mi3OPz68H3PtPLq0tNsT5ZCXr4vEHqmZnAzwfaXaxewEH0Y+6ipew1JXKWrJDr86IXZ9l62fzeNh3Ll95bnryx8gSKX3LHmBcIBZ/05fOSeYtoxdwFAGusK67R1S9tUmVD6N8uvbMS9NRFQ5SdyrVKAIipbqalG6XPPpJ2fqT0HR/KXlfW6sP4E7t8XvQyUZ788fJlBj7XssYOAGBRIYzH49GWLVuCX/fr10/x8fEh8YaGBv385z/X888/r7KyMvXp00c//elPddVVV4UjPQBodxV1Hl336mat2VNjil05pYcuHZ8nG3+gAzHPVlcmV+GiYNFL4N5RtatVrzdkk6/bUDUWTJanYJI83Y+VXNa0FQcAAADQuZXXeXTT61u0srC62a63vz6jn1Li2XcJAICj8nvlKNsoV0mg6GWFXCXL5aje06ZDGY54eXNGyJM7Rt68MfLkjpaR2KXdUwYAAGjOit1VuvaVTaptDO3INSg7SU9eOFiZSS7LcgMAhIFhyHHg844ve5bKVbRUqj9U+HLElgxfyp/U7WC3l2DHl4y+FL4AAFokLFcmX3nlFX3jG99QVlaWCgsLTfHzzjtPc+bMkRGoCJW0ceNGXXPNNdq0aZOefPLJcKQIAO2msKIhuOPJrvKGkPFA95dfntpXpw3talluAKxlc1c3ffgPdn1ZJOf+Ta0+hjezX1PRS6D4JX+CjISMDskVAAAAAL6wqbRW17+yWSXVjabY9yd010+OK5CDrrcAADTL1lAp596VTd1eAl1f9q6WzVPXpmP5krLlPazbi7fbUDpCAwAASyzcXqGbXt8st7dprdcXRuan6LHzBik1gc0yAKDTMfxy7N8i154lTcUvRUtlbzjQps+2XxS9eIOFL30ofAEAtElYPnXMnj07WORy7rnnmrrBvPnmm8F4oDNCQUGBjj32WC1dulRFRUV6+umn9c1vflOTJ08OR5oA0C5tfwM7nhyoC237mxzn0EPnDtCxPdMtyw2ABbwNchUvDxa9BAtfSj+VzfC16hC+lLymopcegcKXifKn5HZYugAAAABwpLmb9uvOt7erwRu6u2u8065fnNpXMwez6zwAAAcZhuwVO4NdXr4ofHEe2NK2Q9ns8nUd0tTtJXdMsPjFn5rP4iAAABAR5wpuf3ObvP7QIpgJvdL00DkDlRjnsCw3AEB7F75slqto8eddXz6RvaG81YfxJed+XvgyPnjvT+/NZ1sAQPQUwqxYsSJY6DJt2jRT7C9/+UvwfuDAgcECmNTUVFVWVgaLXwKdYf70pz9RCAMgKny4rVy3vrHVtDAkJzVOj58/SP27JVmWG4Aw8XuDxS5fdHwJFMHYfI2tO0RCljwFE4NdXxoLJsuf3osTAAAAAADCzm8Y+sPCQv158R5TLHCu4+FzB2pwTrIluQEAEDG8DU3nA7/o9lK8ok274Qb441LlzR19qNtLzkgZcSntnjIAAMDX8fqn+3T3nO06ogZGJ/TP1L1n9lec025VagCA9ih8Kdv4edFLoOPLJ7K7K1p/nLR8qffxqu02Ru7ux8qf1pN1LwCA6C2EKS0tDd73798/ZNzv92vevHnBIpmrrroqWAQTkJ6eriuvvFJXXHGFFi1aFI4UAeBreWn1Xt0/d6fpZM+AbknBIpjs1DirUgMQjt0vChcprvBjOQNtXz01rTqE35Usb/fxagx0fCmYJF+XQZKNE8QAAAAArFPb6NMv3tqm+VvNu/uNzE/RA2cPVJdklyW5AQBgJXvN3oMFL86S5XLuWyebP7RDfEv50nsHi16CHV/yxsiXNYDzggAAIKL9Z0WJHnrvM9P4aUO76Jen9pPTziJnAIgqfp8cZRvk2rP08+KXpbK7q1p9GF9qd3m6T5CvxyQlD50hZTZ1fGksL5ff5+uQ1AEACFshTFlZWfA+MTExZHzVqlWqqqoKFsKcccYZIbHhw4cH73fv3s3/KQARyzAMPfVRof66xLw76vieaXrgnAFKiQ/LWy2AcDAM2at2ybX742DhS6D9q72+dTs8GvY4efJGy1MQKHyZLG/2MZKDBWQAAADRxuFwWJ0C0CJ2u/0rHx9pd3mDrn15g7aV1Zti543I1i3T+7K7KyJu3gKRgrnbyfi9wZ1wncUr5CheLueeZXJUF7XpUIYjLtjhxRfo9pI3Nlj4YiR1DXmOVX9dMm8RrZi7ABDedRF/WbJHT39UaIpdODJbN53SW3Z2+geAKCl8Wa+4oiXBjV6DhS+N1a0+jC+1QJ78CfLkj5cnf6L8aQUHr5skZ2Z2QOIAADQvLKuz4+Pj5fV6DxbEfGHBggXB+4KCAvXq1Ssk9kV3GB8VoQAilMfn169mb9fb6/ebYmcM7arbZ/aRy8FJd6Az7PLoKloU7PriKvxYjmpz4dtXMWz2YLFLU+HLJHnyxkrOhA7LFwAAAOGRycUcRKlAN+4v89GWMl3xr09VWe8JGXfYbfrlWUP1nYm9gpsaAZE0b4FIxtyNMvUVUuEyafcSafdiqXC55Klt27FScqQeEw7ebHkj5HLGKxq2w2HeIloxdwGg44pgnliwW3//pNgUu3R8nq6c0oNzBQAQqfxeOfetb+r2Eih+Kf5E9saaVh/Gl9bz86KXCcHOL/60/A5JFwCAiCyECRS5rF+/XkuWLNHJJ598cPyNN94IfhiaOnWq6TUHDjTtrt6tW7dwpAgArVLj9uqm17Zo6S5zO8gfTOyunxxXwMkeIErZGiqDnV6aCl8WyVm+tdXH8GYNbCp66TFZnu7jZcSndUiuAAAAANBei1qe/Xin7n5zg3x+IySWmeTS7741RpP7he5aDwBAVDMM6cD2pqKXXYul3UulfRsDgdYfy2aXcoYdVvgyXsroJXGNAAAARLnAOYL75+3Uy6tLTbErphTo+xNYCA0AkVf4sq5pzUug8GXPctk9bSh8SQ8UvkwMrncJFL/4U7t3SLoAAERFIcyJJ56odevW6be//a3OO+88DRkyRK+//ro++OCDYPz00083vWbt2rXB+7y8vHCkCAAttrfarVkvbdLWsvqQcYdNumV6H503Ituy3AC0gadOrj3Lmrq+7P44eFLA1soL3r60HsHCl8ZA8UvBZBlJLBADAAAAEB3cXp/ueHWtnl9WaIoNyknVny4dpx5ZSZbkBgBAu/HUS3tWfd7t5fNbnbnbe4sENr0pOPZQ0UvBOCk+tb0zBgAAsJTX59ed72zXOxvMfzPdeFIvXTIm15K8AACH8Xnk3LdWrqKlweIXZ3Gg8KX1nU196b0/7/gyMXjvT2HNLgAgOoSlEOaqq67SM888o9LSUg0fPlyZmZkqLy8P7jRYUFCgCy64wPSaOXPmBLspjBgxIhwpog0cDofVKQAtYrfbv/Jxa2wurdVVL2xQaU1jyHiCy64HzhmkKf0y23xsoKPmLczs+zcrbstbchZ+LGfxStn8nla93p/UVd6CyfL0OE7eHpPlT+9x6NiKbcxdRCPmLaIVcxewVuDcFhANAr8f0tPTDz6urKyU3+8Pfl1W06jrX9mkNXuqTa87aWCWfn3GACXZ3Covd4c1Z+Cr5i0QyZi7kcNWWxrc+dZZvCy4EMhRuq7V5wAPXxDk7T5G3ryxwZs/a4BkP+waWZ1Xqovevw2Zt4hW0TR3A+sjACCauL1+3frGFi3YVhEybrdJv5jZV2cO72ZZbgAQ03yNcpZ++nnhyxK5SpbL5qlr9WG8GX2CnV4CN2/3CfKn5HRIugAAdIpCmAEDBujvf/+7LrvsMtXW1urAgQPB8YyMDP373/9WXFxcyPNLSkr07rvvBr8+6aSTwpEi2oATdohWh58Ub42FW8v0k3+tU7XbGzLeNSVOf/nesRpRkNFOGQLtN29xBJ9Heu/X0sLHW/e6+HSp9/FS32lSn6mydxusOJtNoX/BoDnMXUQj5i2iFXMXCC+fz2d1CkCbBBYHBubv+pIa3fDqZpXWmBcFXz4pX5dPzg8ucGGuI5LmLRBtmLth4vfKsX+zXCUrgkUvruIVclSbO521hOGIkzf7GHlyA4UvY4L3pu7PgWbSnfj/K/MW0Yq5CwDto67RFzxfsHRXVci4027TPWf218kDsyzLDQBis/BlTVPRS6D4pXi5bN76Vh/Gm9mvqfCle6DrywQZydkdki4AAJ2yECbgoosu0rRp0/Tmm28GC13y8vJ09tlnKyvL/AFpzZo1+uY3vxn8+vTTTw9XigDwpV5eUaibXlwjrz9wheuQvt2S9bfvj1ePrCTLcgPQQuU7pRd/IBUtO/pznQlSz4lSn2lNxS+5IyVH2P5sAgAAAIAO9c6GMv169na5vaHnORKcdt11ej8WtQAAIprNXSVnyargzrfO4hVy7l0tu6e2TccKdH725AY6vYyRJ9DxpdtQyRHf7jkDAABEg+oGr2a9HOgcWxMyHu+066FzBmhSHzYHBYAO5XPLufeLwpdAx5cVsnkbWn0Yb9aAg0UvgXsjmU5eAIDOKawrOrOzs/X973//qM+bMWNG8AYAVjMMQ099sE0Pzt5kio3rlak/fnecMpPpCQFEvLUvS2/MktyhOxcdZHNIBeOaCl/6TJV6jJecXPAGAAAA0Ln4/IYe/2Cnnl2yxxTrnhavh88bqAHd2OwDABBBDEP2ys9Cu70c2CJbsC1LKw9ls8vXZdChbi95Y+VPLZBstg5JHQAAIJocqPXoyhc3avO+upDx5DiHHjt/oEYXpFmWGwB0Wt5A4cvqzwtfFstVslI2n7tthS/5E+XJH99U+HJkZ1MAADoptjZHm5WXl1udAtAidrtd6enpBx9XVlYG26MfTaD7y2/mbNdLq/eaYqcM6qK7zxwgNdaqvLFtO80BHTFvcQRPvZIW/Erxa/9tChmOOLmP+aY8PafJm3+sFJdyKFgdOMEbepIXLcPcRTRi3iJaRdPczczMtDoFAIh5lfUezfrPSn2waZ8pNrZHqu4/a4AyklyW5AYAQMgioH2fylXc1O0lUABjrz/QpkP541LkzRktT16g8GWsvDkjZMSltnvKAADEKofDYXUKaCclVW799L8btPNAfch4RqJTv7t4qIbmHnYdNQrPo3/VYyASMW87MW+DnCUr5SxcImfR4uDnXpuvsfWH6TJY3oIJ8uZPlDc/UPjS5WDMytnC3EU0Yt4iWjF3m1AIgzbz+XxWpwC0SWBx4NHmb12jT7f9b6s+2l5hin1zbK6uOaGn7DaDnwNE1LxFKMf+TUqdPUvOA1tMMV96b1Wd+oR83YYdNsi/b0dg7iIaMW8RrZi7AIAvs31fjX743DJt32fezOOiUdm6/sRecjpi8wQ5AMBattrS4I63XxS+OPetlc3vadOxfOk9P+/2Mlae3LHyZfWX7CzQBQCgo7D5Teews6xWP/z3ShVVhBbBZKfG658/nKABOZ2rkPjwzaWAaMG8jWKeemn3UumzhdLOj6TCZVIbOr4oZ7jU+/imW8/JciZ3iYqFv8xdRCPmLaJVeozO3Wj4fQgAYbW/1qNrXt6kDXtDF4fYJF17Yk99c2yeZbkBaAHDUMK6fyv5w7ubbRnbMOg81U67U8bhHWAAAAAAoJNauL1ct76xRdUN3pBxh92mm0/urfNHZluWGwAgxvh9chzYHNLtxVG1u02HMuxx8mYPP9jtJVAAYyR1bfeUAQAAOrNNJdX69p+XaF916DXVgsxE/euHE9WzS5JluQFAVGqskwqXNhW97FwoFQUKX1rb8cUm5QYKX6ZIvY6Tek2WkrI6KGEAAKIbhTAAcJhAq99ZL21SUWXoiZ44h02/PqO/Th7IBwsgktncVUp57zbFb3vbFDNcSaqZdpfcg8+3JDcAAAAACCfDMPT3T4r15Ie75TdCY5mJTj1wzgCNLkizKj0AQAywuavl3LuqqfClZIWcJatk95i7k7WEP6lrU7eX3DHy5I2VN3uY5Ihv95wBAABixerdFbr0r0tVURfaja9ft2T984cTlZueYFluABA1Gmul3Uuail4CxS9Fy6VWdzm1SXkjpF6fd3zpNUlKpOsaAAAtQSEMAHxuVVG1rn9lsyqP2CE1PcGph88bqFH5navlL9DZOEtWKnX2LDmqi0wxb7dhqprxuPyZfSzJDQAAAADCqcHj1z3vbtfb6/ebYoNzkvXQOQOUm8biYQBAOzIM2at2hXZ72b9ZNhmtP5Rs8nUZFNLtxZ/WQ7IF+rYDAIBIUV5ebnUKaKPluys168WNqm30mc4Z/O7ioYr316u8vF6dgd1uV3p6+sHHlZWV8vv9luYEHA3zNoI11soZ+NxbuFiuoiVy7F0tmz90ndnRGDa7fN2GyVswUd78CfLmHysj/tD/bzUEbtH5O5a5i2jEvEW0iqa5m5nZcQWeFMIAgKR5mw/ojje3qtEXelEuPz1ej18wSL2zEi3LDcBRGH4lrvijkhY/LJsRerI2oH7k91Q7+SZ2iAQAAEC7cjgcVqcANKu02q3rXtmkdcU1ptgZI/J0x4zeinewkBiRfwHnqx4DkSqm5q63QY7StU0LgAK3PStkry9r06GMuBR5c0fLGyx8GSdv7igp/tDGVIHfWvzl1XFiat6iU2HuAtbz+czX5RD5PtpeoZtf3yy3N3RtxMj8FD123iClxts79f/bwOLAzvzfh86JeWsdW2NN8DOvq2hpsPDFue/TNhW+eLsNlyd/vDz5E4Ofe43DPvMGddL/v8xdRCPmLaKVP0bnLoUwAGLev5YX69H3d5n2pRuak6xHzx+kLskuizIDcDS22n1KnXuD4nZ/ZIr54zNUc8r9auxziiW5AQAAoHPryJ1rgLZasatcP/77Wu2rdoeMBzbQv2HGIP3shH6ysZs+otDhu5oB0aRTzd3qvdLuJZ/flkrFqyRfY9uOldlb6jHh4M2WPUQuu0OciY8MnWreIqYwdwHg6OZu2q+fv7lNPn/o6ogJvdL00DkDlRhH+TGA2GZrrP688GVJU+FL6dpmN2T9KobNIW92oPBlgjzdx8vbfZyMuCMKXwAAQLugEAZAzPIbhh79YJf+vbzEFDu+b4buO7M/J3qACOba9aFS371e9vr9pljgZEL1jEfkT8mzJDcAAAAACLcXlu3Wz19Zq0ZfaNvzlHinHrtklE4ZmmNZbgCAKOP3SaXrDxW9BO7Ld7btWI44KW+U1PPzwpeC8VIqv5MAAADC7bVPS3XPnB06ogZGJw7I1D1n9Feck85aAGKPzR0ofFkmV9HiYNcX575A4Uvo+dWWFb6M+LzjywR588YGO58CAICORyEMgJjk9vr1i7e2ad7mA6bYeSOydfMpveW0s0MqEJF8HiUteVRJK/7QbEvZumOvUv24KyQ7hWwAAAAAOj+vz69739qovyzcYYr16pKkP313nAbksOMgAOArNFRJhZ8cKnopXCY1VrftWMndQrq9KG+k5Epo74wBAADQCoHNQR9+/zPT+OlDu+oXp/ZlbQSAmOIo26T4jS81dXwpW9/6whe7U97sY+TJn9jU9SV3jBSX3GH5AgCAL0chDICYU1Hv0TUvbdDqohpT7GfHF+j7E7rLZuNEDxCJ7FW7lTr7Grn2rjLFfMk5qp7xqLz5EyzJDQAAALGlvLzc6hQAVdZ7dMvrm7V4Z6UpNqFXuu4/Z6AyE0Iv5FZWVsrvb93FXSDc7Ha70tPTDz5m3iJaRMXcNYzgOTbnnmVyFi+XI3Ar2ySbjNYfSjb5ugySr/vY4I63gZs/vad0+Pn1mnpJgRsiVVTMWyDK525mZqbVKQCIUYZh6M+L9+j3CwtNsYtGZevGk3vLztoIALHC71Pi8qeUtPSJVhW/GHaXvDmBji8T5Ok+QZ68MZIrqUNTBQAALUMhDICYsvtAnb7/j7XaeSD0wpvDbtMvZvbRGcO6WZYbgK8Wt/Utpbx3q+yN5iK2xt4nqfrk+2UkZlmSGwAAAGKPz+ezOgXEuG1ldbr+1c0qrHCbYt8Ym6tZ03oGd3Q9cjFg4DHzF9GGeYtoFRFz1+eWs3StXMUr5CxZIVfJCtnrytp0KL8rRd7cUfLmjgku/PHmjJIRf0TXsQhdhI4om7dAGzB3AcBcBPPE/N36+7JiU+x74/N0xZQebBAKIGbYa0qU8u51iita0rLCl9xR8nQff6jjiysxLHkCAIAIL4RZvXq1PvzwQ23fvl3V1dVHPRkV+ND15z//OWz5Aei81hRW6LJnl6msJnSBSHKcQw+eM0Djex3aNQpABPE2KPnDu5W47t/NnoCoPe5mNYz4XuhOkwAAAADQiS3YVq7b/7dVdZ7QxcYuh023Te+js4az0QcAxCpbXZlcxcubil4CxS+la2XzN7bpWL60nk0FL58XvviyBkp2R7vnDAAAgPbl8xu6f95Ovby61BS7YkqBvj8h35K8AMAKcTvmKWXezbI3NN/l3bDHNRW+BIpe8sfLkzOawhcAAKJE2AphNm3apMsuu0yLFy9u1e4EFMIAaA/vbyzVz/65QvWe0OK77BSXHr9gsAZ0o2UlEIkc+zcrdfbVch7YYor50nupaubj8mUfY0luAAAAABBugfOlf12yR09/VCjjiFiXZJceOmeAjul+xM78AIDOy++T48CWYJcXZ/Hy4L2jclebDhXc8bbb8KbCl7yx8uSOlpGc3e4pAwAAoGN5fX7d+c52vbNhvyl208m9dPHoXEvyAoCw87qV/PH9SlzzN1PIsDnUMOJSNfY5WZ7cUZIzwZIUAQBAFBTCFBUVaerUqSorKwterA1ISUlRZmam7HZ7OFIAEMNeXrVX9767PbjryeH6dU3UExcMUk5qvGW5AfgShqH49f9Vyoe/ls3bYAo3DDpXtdPukhGXYkl6AAAAABBu9Y0+/Wr2dr276YApNjQ3WQ+dM1DZqXGW5AYACA9bY7WcJasPdXvZu1L2xpo2HcufmCVP3tiD3V683Y6RnJwrBwAAiGZur1+3vrFFC7ZVhIzbbdIvZvbVmXSQBRAjHOXblTp7lpxl600xX2p3Vc94VN68cZbkBgAAoqwQ5p577tG+ffuC3V1++MMf6oYbbtDAgQPD8a0BxLBA4d3TCwv1l8V7TLFje6bpwXMGKCU+bI2xALSQzV2tlPdvU/zWt0wxw5Wkmml3yT34fEtyAwAAAAArlFS5dd2rm7W5tM4UO21oF/18el8luNhwCAA6FcOQvWr3591eVjR1e9m/STbD3/pDySZfl4Hy5Aa6vYwJ3vvTe0k2W4ekDgAAgPCra/Tphlc3a+muqpBxp92me87sr5MHZlmWGwCEddPVDS8pZcGdsnnrTWF3v1NVc+K9MhLSLUkPAAC0r7CsAH/nnXeCRTDf/e539cwzz4TjWwKIcR6fX7+evUNvrS8zxc4Y1k23z+gtl4MFIkCkcZasCu7K4aguNMW8XYeqeubj8mX2tSQ3AAAAALDCysIq3fTaFpXXe027uV41tae+PS43eO4VABDlfG45S9eFFL7Y6/a16VB+V7K8uaOaur0Eil9yR8mIT2v3lAEAABAZqhu8mvXyJq3ZE9otMN5p10PnDNCkPhmW5QYA4eyimvz+HUrY8oYpZjjiVTvldjUM+wabQgAA0ImEpRBmz56mbgyBQhgA6Gg1bm9wgciRO50EXHFiP/3g2Gz5/a3fNQ9ABzL8Slz5RyUtfkQ2f+jiroD6Ed9V7eRbJGe8JekBAAAAgBVeXl2qB+btlNdvhIynxDt075n9NZmFLAAQtWx1ZSFFL87ST2XzNbbpWL60HiHdXgLdX2SnGzoAAEAsOFDr0ZUvbtTmfaFdZJPjHHrs/IEaXUBBNIDOz7l3tVJnXyNH1S5TzJs1oGnT1S6DLMkNAAB0nLCcBc/MzFRpaakyMrgwC6BjlVY3Bnc62XLESZ7ALql3n3uMvjmhp8rLyy3LD0DzF/1T371Bcbs/NMX88RmqOfk3auw73ZLcAAAAAMAKXp9fD7//mV5YVWqK9cpK0MPnDlTvrERLcgMAtIHfJ8eBrXKVLP+88GW5HJXmxTktYdhd8nYbfrDoxZs7Wv6UnHZPGQAAAJGvpMqtn72wUbvKG0LG0xOdevKCwRqSm2xZbgAQEZuuDvuGao//ueTiXCoAAJ1RWAphxo0bp7feekubN2/W6NGjw/EtAcSgrfvqgkUwe6tDd81LcNn1u2+O0clDuBgIRBrXro+UOvd62evKTDFP92NVPf0R+VO7W5IbAAAAAFihos6jm9/YouW7q02xyX3Sg51gUuLZ5R8AIpq7WipcpoQt8+XYs0zOkpWyN9a06VD+xKzDur2MlTf7GLomAwAAQLvLG/TT5zeo5Ij1EV2TXXrqosHq2zXJstwAIBxstfuUOvfGL9l0NU01J96nxv6nWpIbAAAIj7BcMb366qv15ptv6plnntEll1wSjm8JIMZ8sqtSN7y6RbWNvpDxrCSnnrhwiI6nCAaILD6PkpY8psQVf5BNRkjIkE31x16pumOvlOws7gIAAEBkcjgcVqeATmhzaa2ufXmj9lS6TbHvTeiuK6f2kiPQ9rYV7Hb7Vz4GIhHzFlHFMGSvKpSzeLmcJSukvSulveuadqVt7aFkk7/LwGDRizdvrLzdx8mf3kuyHXrv5y8QtDfecxGtmLsAYn2T0Cte3Kj9tZ6Q8fz0eP3uosEqyEiwLDcACAfXrg+V+u71stfvN8U8eWNVPf1R+dPyLckNAACET1hWl06fPl0333yz7r//fv30pz/VE088IZfLFY5vDSAGvLW+TL96Z7u8/tDF9D0zE/TEBYPUqwvtfoFIElgYkDr7GrkCiwKO4EvOUc30R+QpmGhJbgAAAEBLZWZmWp0COpm3Py3Wdc+vVb0ndJOPeKdd918wQueObp8Lt+np6e1yHCCcmLeIKF63VLxG2r3k0K1mb9uO5UqWCsZJPSYEb7aCcXIkZgSLXej5AqvwnotoxdwFECvWFdfo6pc2qbLBGzLeJytBv7toiLJT4yzLDQA6nK9RSYsfUdLKP5pCwU1Xx/1MdeOvZtNVAABiRFh+4z/33HMaMmSIJk+eHOwK88Ybb+jCCy/U4MGDlZR09Fac3/3ud8ORJoAoYxiGnl26R7/7sNAUG9E9RY+cN1AZiRTdAZEkbuvbSnnvVtkbq02xxl4nqvqUB2QkZlmSGwAAAABYwe839Pi8LcHbkXLTEvTMd8dqREGGJbkBACTV7JMKl35e9LJUKloh+cydu1oko+fBopfgLXuo5GBxDgAAAFpm+e4qXfvyJtV5/CHjg7KT9OSFg5WZxPoIAJ2XvfKzpk1XS9d8yaarD8tTMMmS3AAAgDXCcnb9e9/7nmyHtW0vLi7Wb3/72xa9NvA6CmEik8MR2JMMsEag+8v9c7frxVXmnfZOHpilu88coARX0xylNTqiUaebt94GJc3/leLX/ssUMuwu1R9/i9yjLpP9sL8XEJ063dxFTGDeIloxdwEg+tW6vbru+VWavc58fmNMzwz9/jtjlZ2aYEluABCT/H5p38ZDRS+7F0sHtrftWHaXlDfy86KX8U33aXntnTEAAABixEfbK3Tz65vl9hoh4yPzU/T4+YOUEk+BNYDOK37T60r+4A7ZPTWmWGPvk1R98v1sugoAQAxyhrNzAzqXzMxMq1NAjKpr9OqGf63UvI2lptj3j+ut288YKof9yxfT0xod0Siq523pBunFy6TS9eZYZh/ZLvqrkrqP1tF7xCEaRfXcRcxi3iJaMXeB8CovL7c6BUS5wooGXfvSRm0tqzPFzjkmW7fN6CuXt17l5fVf6/sECiUP/x1RWVkpf2ChNxDBmLcIm8YaOUtWy1m8XM7iZXIUr2y2k3FL+BOz5MsbK1ff45qKXrqPVmVd46G56wv+AdG++QPtgPdcRKtomrtcVwfwdc3dtF8/f3ObfP7QtVcTe6frwbMHKDGOjWwBdFKNtUpZcJcSNr5kChn2ONUed7MaRlwa2G3dkvQAAEAMFMLs2LEjHN8GQAzYV+3WD//2iVYXVppit58xRD+c0teSvAA0I1AEu+I56e2bJW8zC7eOuUg64xEpIc2K7AAAAICvxecLrGYF2mbZrkrd/PpWVTZ4Q8YdNunaE3vpktE5stmMDplngcWBzF9EG+Yt2oVhyF5dJFfxCjlLVshVvFyO/RtlM9q2aNqbNUDe3DHy5AVuY+VP7y2H0xmy2Nnvb2DuIurwnotoxdwF0Fm99mmp7pmzQ0fUwOjEAZm654z+inPSKRxA5+TYt16ps2fJWWHu1OrN6KPqmY/L122YJbkBAIAYKoTp1atXOL4NgE5u+74aXfrXpdp9IHRBfeDEzqMXj9IZI/Isyw3AERoqpTdmSeteMcdcSdLpD0mjvsmuHAAAAABiSqBr9vMr9+qR9z+T74gFLGkJDv3mrAEa34sOXwDQLnyNcu5bf7DoxVm8Qo46c5fxljBcSfLkjPy88GWsvDmjZCTwfg0AAGKbw0EXko72r2V79OC8nabxM4Z1052n95fTzrXWlnQQ+6rHQCSK+XlrGIpf/awSP7pPNl+jKewecqHqTrhLiksWv4kiS8zPXUQl5i2iFXM3jIUw6JzKy8utTgExZFVhla59eaMq6kN3Sk1LcOqxCwZrdEHCl87JaGqNDnSGeesoWankt6+Wo2q3KebtOkS1p/1W/qz+UkWFJfmhY0Xz3EXsYt4iWkXT3D18V2wAiFUen1/3z92pVz/dZ4r17ZKoR84bqIKMBEtyA4DOwFa/X66SlcGCl2DhS+mnsvncbTqWLzVfntwx8n7e7cXXZZBk55IaAADA4Tjn17EbaTz53lY93EwRzHcm9tJdZw+TnSKYNjn8nDoQLWJq3tbul177mbT5HXMsLlU681HFj7hI8VbkhlaLqbmLToN5i2iVHqNzl7P2aDNaSyNc3tt8QHe8tVVub+hWqd3T4vXEBYPUu0tiq+YjrdERjaJi3hp+Ja78k5IWPyybP7RoLaD+mO+o9rhbJWd84JeIJSki/KJi7gJHYN4iWjF3ASBy7a/16KbXN2t1UY0pNq1/pn51ej8lx7F/IQC0mOGX48DWg91eXIFuL5U723You1PebsMOdXvJHS1/Sm67pwwAAAC0tAjmvrc36pkF202xn57QTzfNHCSbjSIYAJ3QjgXSyz+SqovNse5jpAv/LGX1tSIzAAAQoSiEARDR/rOiRA+/95lCS2CkwTlJeuz8QeqaHGdRZgAOZ6srU+rcGxS360NTzB+frpqTf6PGvjMsyQ0AAAAArLRxb62uf3Wz9lY3mmI/mNhdPz6uQHYWsADAV2uslat09aFuLyUrZW+sbtOh/AmZn3d7GStP3hh5s4+RnHTkAgAAgPV8fkO3v7pW/166yxS7ceYgXXFif0vyAoAO5fNK838jLXgoUA5ojk++WjrpDsnJGjEAANCBhTAnnXRS8D6w88C8efNM421x5LEAxAa/YejxD3bpn8tLTLHJfdL1m7MGKImdUoGI4Nq9UKnvXi973T5TzJM3TtUzHpU/tbsluQEAAACAlWZv3K9fvbNdbq8/ZDzBadedp/XVKYO6WJYbAEQsw5C9eo+cJU2dXlwlK+Qo2yCbEfpe2lLerAHBLi+Bbi+e3LHyZ/QOXHxq97QBAABiTXl5udUpdCoen1+/eHOr3tlQZordMr2PLhnVhX/zNrDb7UpPTz/4uLKyMthdHYhksTRv7VWFSn7nGjmLl5li/sSuqp35sLy9pknVtZICN0SyWJq76DyYt4hW0TR3MzMzo6MQ5oMPPgjeH9mCMzAeGAu072ypL55PO08g9gQWh/zyrW2au/mAKXbuMd2CJ3mcdt4bAMv5PEpa+rgSl/9etiN25TBkU/2xV6ju2KskOw3oAAAAAMTeDq5Pf7Rbzy4tNsVyU+P08HkDNSg72ZLcACDi+BrlLNtwWLeXFXLU7m3ToQxnojw5Iw91e8kZLSPh0MVAAAAAtB+fz2d1Cp1qjcQtb2zRh9sqQsYDyyJ+cWpfnTmsG//e7SSwOJB/S0Sbzjpv47a+o5T3b5XdXWWKNfY4XtWnPCQjuVvgF44l+eHr66xzF50b8xbRyh+jc7ddV6ZOnTq12cKVLxsHgCNV1nt1/aubtaqo2hT7yXEF+sHE7ryfABHAXlWk1Dmz5CpZaYr5krJVM+MReQomWZIbAAAAAFipxu3V7W9u00fbQxevBIwpSNX9Zw9QZpLLktwAIBLY6g8Ezyk5i5cHu704966Rzedu07F8qd2DXV68eWPkyR0jX9fBbMoCAACAqOL1+XXtK5u09LPQheCBzUHvPbO/ThqYZVluANAhvA1K/vBuJa77tylk2J2qm3i96kf/ULLZLUkPAABEjw7pCNPScQA43J5Kt65+aaN2HmgIGXfYbbpjZp/gLicAInxXjl4nqPqUB2QkdrEkNwAAAACw0q7yBl3/yibtOOLcRsAFI7N1w0m95HJwARdADDH8cpRvC+n24qzY0bZD2Z3ydh16qNtL7mj5U/LaPWUAAAAgnF5cXWoqgol32vXQOQM0qU+GZXkBQEdw7N+s1NlXy3lgiynmS+up6pmPyZsz0pLcAABA9GFbLAARYePeWs16eZP213pCxpPj7Lr/7IGa2DvdstwAHLYrx0f3KnHtP00hw+5S7eSb1DDye+zKAQAAACAmLd5ZoVvf2Kpqt8+0wceNJ/XShaNyLMsNAMKmsVau0jWHur2UrGx2M5WW8MdnNHV6CRS+5I6RN/sYyZXY7ikDAAAAVvEbhv67oiRkLDnOocfPH6RRBamW5QUA7c4wlLDu38FOMM11hW0YcJZqT/y1jDje+wAAQMtRCAPAcgu3V+iWN7ao3uMPGe+W4gqe4BmYnWxZbgCaOA5sbdqVY/8mU8yX3lPVMx6XN2eEJbkBAAAAgJUMw9A/l5foifm75DdCYxmJTt1/9gCN7ZFmVXoA0HEMQ/aa4qail88LXxxlG2UzQgsCW8qb2b+p8CV3bPDel9FHstnaPW0AAAAgUizZWandFaELwu8/uz9FMAA6FVtDpVLev03x294xxQxnomqm3in3kAs4BwAAAFqNQhgAlnp1Tanue3eHfEcsFOnbJVFPXDBIuWnxVqUGIMAwFL/hBaUsuEs2b4Mp3DDwbNWe8Ct25QAAAAAQk9xev+6ds0Nvri8zxQZ0S9LD5w5U93TObQDoJHweOcs2HOr2UrxCjtrQ3atbKrDQxZMzQt4vur3kjpaRkNHuKQMAAACR7IVVe0Me9+uaqAm90i3LBwDam7N4mVLnXCtH9R5TzNt1iKpnPi5fZj9LcgMAANGPQhgAlu2W+oeFRfrT4iJTbFyPND14zgClJvAWBVjJ5q5Wyge3K37L/5rflWPanXIPZlcOAAAAALFpX02jbnxts9YW15piJw/M0p2n9lVinMOS3ACgPdjqyw8WvATvS9c0u1FKS/hS8g4WvXgC3V66DJYcrnbPGQAAAIgWxZVufbS9ImTsolE5snHtFUBn4PcpcfnTSlr6RLOdY+tHXKrayTdLTjYRAgAAbccqcwBh5/H5dc+cHfrfOvNuqacN6aI7ZvZVnNNuSW4Amjj3rlHq7FlyVO0yxbxdBqv61CfYlQMAAAAxzeGgwCGWfbqnWte9slFlNR5T7KfH99DlkwsiZuGK3W7/ysdAJGLeWsDwy16+Xc49y4IdXwI3R/n2th3K7pSv2zB588YEi18C90Zq95DndNbfosxdRCPmLaIVcxdAtHtp9V75jUOPk+PsOm1oVytTAoB2Ya8pUcq71ymuaIkp5k/IVM3J96uxz8mW5AYAADoXCmEAhFWN26ubX9+iJZ9VmWLfn9BdPz2+QPYIWSgCxCTDr8SVf1bS4odk83tN4fpjvq3a426VnAmWpAcAAABEiszMTKtTgEVeWl6oW19Zp0avP2Q8Oc6hRy8ZpRnDchXJ0tPTrU4BaDXmbQdorJWKVki7F0u7lzbdGkJ3o26xxEypxwSpx/jgva37GDnjkrgAxdxFlGLeIloxdwFEE7fXr1c/3RcydsawbsFzCwAQzVw73lPqvJtkbyg3xTzdJ6h6xiPyp0T2+VMAABA9uA4BIGxKqxt1zcubtHlfXci43SbddHJvXTgqx7LcAEi2ujKlzr1RcbsWmGL++DTVnPQbNfabaUluAAAAAGA1r8+v+9/ZqD9+uMMU65mVpD9+d5wG5aZakhsAtFj5Z9I7t0qb35EMX9uO0XXQwaKX4K3rAInNjQAAAIAWm7tpvyrqQzclvIj1EgCimc+t5IX3K3HN30whw2ZX3firVT/2Z5Kdgj8AANB+KIQBEBbbyup09UubtLe6MWQ83mnXvWf217T+7KQLWMm1e6FS371e9rrQnYcCPLljVD3jMfnT8i3JDQAAAACsVlnn0ZX/XqEPt5SZYpP7ddHvvjlGmclxluQGAC1iGNLyv0pz7pAaa1r+OmeiVDDuUOFLwbFSUlZHZgoAAAB0ei+uKg15fGzPNPXpkmhZPgDwdTjKtyt19iw5y9abYr7U7qqe8ai8eeMsyQ0AAHRuFMIA6HDLdlXqhte2qMYdusNgZqJTj54/SMPzUizLDYh5fq+SljymxOW/l01GSMiQTfXjfqq68bMkO38yAAAAAIcrLy+3OgWEyfayOl378kbtKm8wxb4xNk/XndRbaqxVeWOtIpHdbld6evrBx5WVlfL7/ZbmBBwN87Z92aqKlDz3Zrl2f3TU5/pTusvbfYy8eWODN1/XIZLDdegJ7sCN34FfhrmLaMS8RbSKprmbmcmGgAAO2bi3Vp8Whxan0w0GQFQyDMVvfEkpC+6SzVNnCrv7zlTNSffJSDj0NxsAAEB7YlUrgA71zoYy3fn2dnn9oQvse2Ym6IkLBqkgI8Gy3IBYZ68qUuqca+QqWWGK+ZO6qXrGI/IUTLYkNwAAACDS+Xyhmz2gc/poW7l+/uY21TaG/v922m26dXpvnXNMtmT4FU3TIbA4kPmLaMO8/RoLUja8oOQP75HdY+4CY9gc8nYbKm/uGHnyxgTv/andzcfh377NmLuIRsxbRCvmLoBo8fzKvSGPs1NcmtqfgjkA0cXWWK3kD36hhM2vm2KGI161U25Xw7BvSDabJfkBAIDYQCEMgA5hGIb+trRYT3642xQb0T1Fj5w7UBlJh+0kCCCs4rbNVsp7t8jurjLFGntNU/XJD8hI6mpJbgAAAAAQKec1fvfh7iN6Z0pdklx64JwBGpmfalF2AHB09ppipbx3m+J2LWg23jD0EtUed4uM+LSw5wYAAADEqsp6r2ZvLAsZO39kTnDDDQCIFs69a5Q6e5YcVbtMMW/WAFXPfFy+LoMsyQ0AAMQWywphCgsLVVJSorq6Oh177LFKTEy0KhUA7cznN/TgvJ16cXWpKXbigEz9+vT+SnDZLckNiHlet5IX3qvET/9hChl2p+om3aj6UZdJNn5GAQAAAMSmBo9Pv569Q7M37jfFhuQk68FzBig3Ld6S3ACgRV1gNr6s5A9/LXtjtSnsS8lVzYn3ydNrqiXpAQAAALHsjbX75PYe2nIjUABz7ohuluYEAC1m+JW48k9KWvywbH6vKVw/7BuqPf7nkot1oAAAoBMWwlRXV+uBBx7Qs88+qz179hwc//TTTzV06NCDj//zn//o5ZdfVnp6uv74xz+GM0UA7bBY5Lb/bdWCbRWm2CWjc3Tdib3kYDcTwBKOA1uDu3I49280xXxpPYO7cnhzRliSGwAAAABEgpIqt254bbM27q0zxWYO7qI7ZvZlcw8AEctes1cpH9yuuJ3vNRtvGHJRcEGKEU9HKwAAACDc/IahF1fvDRk7aWCWuibHWZYTALSUra5MqXNvUNyuD00xf3yaak68V439T7MkNwAAELvCVgizZcsWnX766dq+fbsM49DuBjabeUH8xIkT9e1vfzv4vEsvvVTHH398uNIE8DUcqPXo2lc2aV1JrSl2zbSe+ta43GZ/5gGEYSfQDS8pZcGdsnnrTWH3gDNVc+LdMuJYBAEAAAAgdq0qqtbNr23R/jpPyHjgTMYVU3ro0vF5nNcAELnnfja/ruQFd8nurjSFfck5qjnxHnl6n2hJegAAAACkxTsrVVjhDhm7eFSOZfkAQEu5dn0YLIKx15WZYp7cMaqe8Zj8afmW5AYAAGJbWAphGhoadMYZZ2jbtm1KTk7WFVdcoalTp+rMM89s9vm9e/fWiSeeqPfee0+vv/46hTBAFNhV3qCrXtyoosrQEzcuh013ndZPMwZ3sSw3IJbZGquV/P4dStjyhilmOBNUM/VOuYdcGKhMtSQ/AAAAAIgEr64p1W/m7pTXf2gDn4DkOIfuOaOfju+XaVluAHC0HVkDXWDit7/bbLxh0HmqnXKHjIT0sOcGAAAA4JAXVoZ2g+nfNVEj81MsywcAjsrXqKQljyppxTOmkCGb6sf9VHXjZ0n2sO3FDgAAECIsf4U8/fTT2rp1a7AI5sMPP9SoUaOO+prTTjtN8+bN06JFi8KRIoCvYc2eal37ymZV1ntDxlPjHXr43IEa0yPNstyAWObcu0apc2bJUbnLFPN2GaTqmU/Il9XfktwAAAAAIBJ4fX49+sEu/feIxSgBPTMT9Mi5A9W7S6IluQHAVzIMxW19Uynz75S9odwU9id1DXaBaexziiXpAQAAADikqKJBH22vCBm7aHQOnWcBRCx75S6lzrlGrr2rTTFfUrZqZjwsT8FkS3IDAAAIayHMyy+/HPzwNmvWrBYVwQSMHDkyeL9ly5YOzg7A1/HBlgP6+Ztb5faG7pialxanJy4YrD4sFgHCz/ArYdVflbzoQdn8HlO4/phvq/a4WyVngiXpAQAAAEAkqKj36NY3tuqTXVWm2KTe6br3zP5KTWA3QwCRx1a/Xykf/FLx295uNt4w4CzVTv2ljES6WQEAAACR4KXVpTKO6EB72pCuFmYEAF8ubvPrSnn/Dtk9NaZYY++TVH3y/TISsyzJDQAA4HBhuZK7YcOG4P2MGTNa/JouXboE7ysqQndEABA5/ruiRA+991nICZuAQdlJevz8QeqaEmdRZkBsL4RInXuj4j6bb4r549NUc9Jv1NhvpiW5AQAAAECk2LqvTte/ullFlW5T7Dvj8nTl1B5y2NmVFUDkidv6jlLm3yF7/QFTzJ+YpZppv1Zj/1MtyQ0AAACAmdvr12tr94WMnTW8q5LiHJblBADN8tQpZcFdStjwoilk2ONUe9xNahjxPYluVgAAIJYKYWpqmqqDU1JSWvwat7vpIrTL5eqwvAC0jd8w9Nv5u/X3ZcWm2OTe6brv7AHBHUwAhJer8GOlzLlejrpSU8yTO1rVMx6XPy3fktwAAAAAIJK6297x1jbVe/wh43EOm34+o4/OGNbNstwA4MvY6suVsuBOxW/5X7Nxd7/TVHPCXTISmzYZAwAAABAZ3t20X5X13pCxC0flWJYPADTHsW+9UmfPkrNiuynmS++tqlOfkK/bMEtyAwAAsLQQJtDdpaSkRDt37tSYMWNa9Jp169YF73Nzczs4OwCt3a3kzre36d1N5h0Hzzmmm249pbecDrsluQExy+9V0tInlLjsKdmO6NFkyKb6sT9R3fhZkoPiUgAAAACxvbHHnxcV6Q8fF5li3VJcevCcgRqe1/KNfAAgXOK2v6uUD26Xva7MFPMnZKpm2l1qHHCGJbkBAAAA+GovrNwb8nh8zzT1zkq0LB8ACGEYSljzNyUvvF82f6Mp3DD4fNVMvVOKS7YkPQAAAMsLYQLFL2+99ZYWLFig888/v0Wvee6552Sz2TRp0qQOzw9AywR2Kbnxtc1aUVhtiv14cr5+OCk/+HMLIHzs1XuUOucauYqXm2L+pG6qnv6wPD2OsyQ3AAAAAIgUdY2+4MYe720pN8WG5yUHi2C6pcRZkhsAfBlbQ4WSP/y1Eja92mzc3Xe6ak64W0ZS17DnBgAAAODo1pfUaF1JbcjYRaPpBgMgMtjqDyhl3i2K3znPFPO7UlR7wq/kHnSOJbkBAAC0RFjaNlx44YUyDEPPPPOMdu3addTnP/bYY8GimYBvfOMbYcgQwNEUV7r1w3+vMxXBOOw2/fLUvrp8cgFFMECYxW2brYz/nNlsEUxjzykq/7//UQQDAAAAIObtqXTrB/9e32wRzJnDuuoPlwylCAZAxHHteE8Z/zqt2SIYf3y6qqc/qurTnqYIBgAAAIiibjA5qXGa0i/TsnwA4AuuwsXB9SbNFcF4so9Rxf+9ThEMAACIeGEphPnOd76jESNGqKGhQSeccILefvvtYGHMFwKL5wOPP/nkE33rW9/S9ddfHxybMmWKTjvttHCkCOArbNxbq+/9a512HGgIGU+Os+vx8wfqrOHdLMsNiElet5Ln36m0t38mu7syJGTYnaqdfIuqzvoLCyEAAAAAxLzlu6v03X+s1ZZ9dSHjdpt07Qk9g5t7xDvDcooUAFrE5q5SytyblP7m5XLUlZrijb1PUvk335F70NmBiyuW5AgAAADg6CrqPZqzaX/I2Pkjs+UMnJQAAKv4vUpa8qjSXv22HLWhxXoBdaMvV+UFz8uf3suS9AAAAFrDqTCw2+16/fXXdfzxx2vnzp0688wzlZSUdLB7RKA4prq6Wm63O/g4UBTTr18/Pf/88+FID8BXWLSjQje/vkV1Hn/IeNdklx6/YJAGZSdblhsQixzl25T6ztVy7t9oivnSeqh65uPy5oy0JDcAAAAAiCQvrtqrB9/7TD7/oQ15AlLjHbrvrP6a2DvDstwAoDmuz+Yr5b3b5KgtMcX8camqnfoLuQedRwEMAAAAEAXeWFsmt/fQOYlAAcy5x2RbmhOA2Gav3qPUOdfIVbzcFPMndlH1KQ/J02uqJbkBAABEbCFMQM+ePbVq1SpdddVVwQKX2trag7F9+/Yd/DpQHHPxxRfr6aefVmYm7UABK732aanunbNDvtD1IurbJVFPXDBIuWnxVqUGxB7DUPz6F5Wy4E7ZvPWmsHvAGao54R4Z8amWpAcAAAAAkcLj8wcLYF5ebe6k0CcrQQ+fN0g9MxMsyQ0AmmNrrFbyR/cqYX3zm4M19pqmmhPvlT8lN+y5AQAAAGg9v2EEN+g43MkDs9Ql2WVZTgBiW9y22Up57xbZ3VWmWGOP44NFMEZyN0tyAwAAiPhCmICsrCz985//1L333qs333xTy5YtU2lpqXw+n7p06aLRo0frrLPO0sCBA8OZFtrI4XBYnQI6SKAr0x8W7tYfFhaaYmN7pOmR8wcrLSGsbx9fuyvVVz0GIlHIPG2oUvKcaxW38VXT8wxnguqm3aXGYRfLzm6giAC85yIaMW8RrZi7AGB2oNajm9/YopWF1abYlH4Z+vXp/ZQSHz3nNAB0fq7dC5Uy72Y5aopNMb8rRbVTbpd7yIV0gQEAAACiyMc7KlVU6Q4Zu2h0jmX5AIhh3gYlf3SPEtf+yxQy7E7VTbxO9aMvl2xcYwIAANHHkqu+vXr10s9+9jMrvjXaER17Ou+uqbe9/KleWG4ugjl7ZHc9eNEIxTujuwgqPT3d6hSAlitaIb14meLKd5hj2UNlu/CvSs4erGQrcgNagPdcRCPmLaIVcxdArNtUWqvrX9mskupGU+z7E7rrp8cXsIEAgIhha6xR0sf3N7sQ5YvdWGtOuk/+1O5hzw0AAADA1/PCytBuMAO7JWlk9xTL8gEQmxz7Nyt19iw5D2w2xXxpPVQ94zF5c0dZkhsAAEB7YPtDAAfVuL366T+W68MtZabYT6b1000zB8luZ8EIEBaGIS1+Snr3l5LfY46Pu0yaea/kSrQiOwAAACDm0Sk3sszZUKZfvrVVDV5/yHiC0647T++vmUO6KlbRQQzRqLPPW+fuj5U09yY5qsybERmuZNVN+bkah39DNptN/LaJLp197qJzYt4iWjF3AetxbqR5hRUN+nhHRcjYJWPy5HSyRMsK/L5ATM5bw1Dc2n8racGvZPM2mMKNA89S7Un3SPFpnHdAu+I9F9GIeYtoxdxtYjOMwEpbALFub1WDvv/XT7S+uCpkPFD3ctfZw/SdSb0tyw2IObVl0qs/k7bMNsfi06VzfisNPceKzAAAAAAgovj9hh55d7OefH+rKdY9PUHPfHechufTMQtAhGislebeKS19pvl47ynSOb+TMnuFOzMAAAAA7eS+tzboDwu2H3ycmuDUkttOVlIchTAAwqC+XHpjlrT+NXPMlSSd9oA0+tsSnbMBAEAnEPZPWX6/X+vXr9f27dtVXV0tn8931Nd897vfDUtuaJ3y8nKrU0A72bavTle+uF4lVY2mXVPvPXugThyQHtX/vwOVjunphxa9VFZWBt+LgEjkLFyk5Heukb02tF12gDdvjGpPfVz+tB6BN2FL8gOOhvdcRCPmLaJVNM3dzMxMq1MA0AlVN3h07X9Xa+4G8+encb0y9fS3x6pbarwluQGAyWcfS6/+VCrf2fxClOm/ksb9IPBHnhXZAQAAAGgHDR6f/rtsd8jYhWMLKIIBEB67lkgv/UCqDH0fCso5RrrwL1K3gVZkBgAA0CHC9kmrrq5Od999t/70pz9p//79LX6dzWajECZCtaSICZFv2a4q3fDaZtW4Q/9/ZiQ69dj5gzQ8L6XT/b8OLA7sbP9N6AT8XiV98lslfvI72XRkszab6sf9VLXHXi05XIE3YIuSBFqP91xEI+YtohVzF0As+Wx/rX74t2XaUlpjin1jfA/ddfZwxTlZTA4gAjTWSe/dLS1+SjKd85HU6zjpnCelrL5WZAcAAACgHb2xeo8q6jwhY9+ZSMdHAB3M75M+ekR6/z7JaOY60fgfN23A4UqwIjsAAIDoLoSpqanRiSeeqBUrVsgwmrnQA8ASszfu151vb5PHF/pz2SMjXk9cMFg9MvkABISDvXqPUudcK1fxMnMwOVs6/xk1ZI2iAAYAAACIINHcOTXaLd5ZoZtf26yqBm/IuMMm3XhKH108Ole11ZWqtSzDyBJNHcSAzjZvHcXLlTznRjkqtptihjNB9cfdLPfISyWbne6/nURnmbuILcxbRKtomrt0ykVnxbkRs79+tC3k8cTe6cp0evi3slA0/b4A2jJvbTV7lTz7GrkKF5li/oRM1U1/UJ6+p0g19ZICN6Dj8J6LaMS8RbSKprmb2YHnRcJSCBPoBLN8+fLg1xMnTtSPfvQjjRw5UhkZGcH/EQDCK1CQ9vdPivXEAnMrzGPyUvTIeQOVmeSyJDcg1sRtf1cp826W3V1pDvY7STrvD1JKNoshAAAAgAhDByZrzmf8Z8VePfrBZ/IfsddOeqJT9581QON6pkXsSd5IQQcxRKOom7det5KWPKrEVX+WzTC/J3lyx6j6lAfkz+ijpje0KPpvQ+eeuwDzFlGMuQuEHz9zodYW12h9Sei2HBeOyubfKcLw+wKdad66dryn1Hk3yd5gXk/i6T5B1TMekT8ll01XYRnecxGNmLeIVv4YnbthKYR58cUXZbPZdPrpp+u1116j+AWwkM9v6KH3PtMLq/aaYtP6Z+qeM/opweWwJDcgpnjdSl54nxI//bspZNidqp90g5JOvjlQumtJegAAAAAQSRq9ft03d6feWLvPFOvfNVEPnztQ+Rl0tgVgPefe1UqZe6Oc5aE7QQcYjjjVTrxBDSO/J9k5BwsAAAB0Ji8esQYjNzVOU/rSEQpAB/C5lfzxA0pc/awpZNjsqht/terH/oxzDwAAoNMLSyFMUVFR8P7qq6+mCAawUIPHp5+/uU3zt5p3ArhoVI5uOKmXHHabJbkBscRRvl2ps6+Ws2yDKeZLLVD1zMdl5I9VEr8zAQAAAEBlNY268bUt+rS4xhQ7cUCm7jqtn5LiuKgLwGI+t5KW/laJK/7QfBeYnFGqOeUB+TL7WZIeAAAAgI5TUefRnI37Q8bOH5nN+gsA7c5evkNpc2bJuW+dKeZLyVP1jMfk7T7OktwAAAA6ZSFMdna2CgsL1bVr13B8OwDNKK/z6NpXNmltcWgr3oCrp/bQd47NC3ZuAtCBDEPxG19WyoI7ZfPUmcLu/qer5sR7ZMSniSVcAAAAACCtK67Rja9tVmmNxxT70eR8/XBSvuyczwBgMUfpp0oNdIE5sMUUM+xxqpt4jepH/UCyh+WSDAAAAIAwe23tPjX6jIOPXQ6bzj0m29KcAMTYepO+M1Rz0n0yEjIsSQ8AAMAKYbnqMn78+GAhzKZNmzR69OhwfEsAh9ld3qCrX9qo3RXukPHAyZc7T+unmYO7WJYbECtsjTVKnv9LJWx61RQzHPGqmfoLuYdeIrGACwAAAACC3l5fprvnbJfbe2ghSUCiyx7sAnPSwCzLcgOAIF+jkpb9TonLnpbN8JnCnuxjVHPyA/J1GWhJegAAAAA6ns9v6KVVpSFjpwzMUlayy7KcAHQy7mqlvHe7Eja/ZgoZjjjVTrlDDcO+wXoTAAAQc8JSCHPttdfq5Zdf1pNPPqlLLrmErhNAGH26p1rXvrJZFfXekPHUeIceOnegxvZIsyw3IJZ2BU2bPUuOys9MMW/WAFXPfIIFEQAAAABw2AKSJz/crb9/UmyKdU+L18PnDdSAbkmW5AYAX3DsW9/UBWb/RlPMsLtUN/5q1Y/5EV1gAAAAgE7u4x0V2lMVuinpRaNzLMsHQCdTtFxpz3//y9ebzHhcvq6DLEkNAADAavZwfJPJkyfr/vvv18cff6z/+7//U0VFRTi+LRDzPth6QD95fqOpCCY3NU5//sZQimCAjmYYSlj1V2W8eFGzJyXqh31DFRe9QhEMAAAAAHyuusGra1/Z1GwRzNgeqXru28MoggFgLZ9HiUt/q4wXzmu2CMbbbZgqLn5V9eN+RhEMAAAAEANeWLU35PGg7CQdk5diWT4AOgm/X1r4hPTnGV+y3uT/mtabUAQDAABiWNiuwtxwww3q16+fLr/8cvXo0UPTp0/XwIEDlZR09AvXv/jFL8KSI9CZPL+yRA+995n8Ruj4wOwkPX7+IHVLibMqNSAm2OoPKHXezYrb+Z4p5o9LVc1J96qx/+mW5AYAAAAAkWjngXpd98pm7SpvMMUuGpWj60/sKacjLPv6AECzHGWblDrvRjn3rTPFDLtTdeOuVP3Yn0gOlyX5AQAAAAivwooGLdpRaTqHYbPZLMsJQPSz1e6T/vcDads8U4z1JgAAABYUwpSWluqVV15RZWWl/H6/XnvttRa/lkIYoOX8hqEnF+zWc83snDqxd7ruP3uAkuMcluQGxApX4WKlvHudHLWhu/8EeHJGqXrmY/Kn9bAkNwAAAACIRAu3V+jnb25VjdsXMu6023TzKb113ohsy3IDAPm9SlzxjJKWPiGb32MKe7sMUvUpD8rXbZgl6QEAAACwxour9urwvUlT4x06dUgXCzMCEO1cuz5S6tzrpboyU8yTO0bVMwLrTfItyQ0AACAmC2H279+vqVOnasuWLTKMI9pTAGg3jV6/7nxnu+Zs3G+KnTW8m34+vTc7pwIdye9V0idPKvGTJ2ULOeXZpG7MT1Q34Rp2BQUAAACAwyzbValrX9lk6mqbmejUg+cM1KiCVKtSAwA5DmxRytwb5Sr91BQzbI5gB5i6Y6+UHHTgBgAAAGJJg8en19fuM63LSHCxMSmANvB5lLTkESWteMYUMmRT/bifqm78LMketn3PAQAAIl5Y/jK69957tXnz5uDXF154oX72s59p5MiRysjIoB0o0E6qGry64dXNWlFYbYr9aHK+Lp+Uz88b0IHs1XuU+u51cu35xBTzJ3ZR9fSH5ek5xZLcAAAAACBSef2GfjN3p6kIZlB2kh4+d6By0+KtSg1ArPP7lLjqT0pa/Jhs/kZT2Js1QDUnPyBvzghL0gMAAABgrdkb96uqIbSz7YWjcizLB0D0slfuUuqca+Tau9ocTMlVzYxH5O4+wYrUAAAAIlpYCmFef/314AL8b3/72/rb3/4Wjm8JxJSSKreufmmTtu+vDxl32KTbZvTROcdkW5YbEAvidsxVytybZXdXmGKNPY5X9SkPyUjuZkluAAAAABDJXl1Tqp0HGkLGpg/K0i9P7csOqgAs4yjfrpS5N8m1d6UpZtjsqh/9I9VNuFpyUKwHAAAAxCLDMPTCqr0hY5N6p6tnZoJlOQGITnGb31DKB7fL3lhjDg6YKZ37lLyNDskXWngHAACAMBXCFBUVBe8vu+yycHw7IKZsKq3VrJc2qazWEzKe5LLr/rMHaFKfDMtyAzo9n1vJC3+jxDXPmUKG3am6idepfvTlks1uSXoAAAAAEMlq3F4983FhyNiQnGTdc2Z/2elqC8AKfp8SVj+r5MUPy+Zzm8LezH5NXWByR1mSHgAAAIDIsK6kVhv31oWM0Q0GQKt46pSy4FdK2PCCKWQ44mSb/itpwk+kwHnSxnJLUgQAAIh0YSmE6dq1a7AYJjU1NRzfDogZi3dW6KbXtqjO4w8Z75Ls0uPnD9LgnGTLcgM6O3v5DqXNmSXnvnWmmC+1QNUzH5M3d7QluQEAAABANHjuk2IdqPOGjM2a1pMiGACWsFfsUOq8m+UqXm6KGbKpfvQPVDfhWsnJDs8AAABArHt+ZWg3mLy0OB3fl01KAbSMY996pc6eJWfFdlPMl95btac/qbRBUyzJDQAAIJqEZYv6KVOa/jBbu3ZtOL4dEBPeWLtPs17ebCqC6ZOVoGe/OYwiGKADxW98WZnPn91sEYy732mq+L83KIIBAAAAgK9QUuXWP5cVh4xN7ZehcT3TLMsJQIwy/MEuMJn/ObPZIpjAApTKC/6ruuNupQgGAAAAgMrrPHp30/6QsQtG5shhZ2MPAEdhGEpY/TdlvHBBs0UwDYPPV8Ulr8mXPdyS9AAAAKJNWDrCXH/99XrppZf00EMP6eKLL1ZCAheLgLYyDEN/XFSkZz4uMsXGFKTqoXMHKi0hLD/aQMyxNdYoef4vlbDpVVPMcMSrZsodcg/7v6bWtAAAAACAL/X0R4Vye42Djx026eqpPS3NCUDssVfuauoCs2dps11gGkZ+T7UTr5dciZbkBwAAACDyvPbpPnl8h85puBw2nXNMN0tzAhD5bPXlSnnvFsXvmGuK+V3Jqj3h13IPOseS3AAAAKJVWDrCjBkzRn/605+0efNmzZgxI3gPoPW8Pr9+PXtHs0Uw0wdl6ckLB1MEA3QQR+laZfz3nGaLYLxZA1Rx8StyD/8GRTAAAAAAcBQb99bqrfVlIWPnj8xR7y4sNAcQxi4wn/5Dmf85o9kiGF9aT1We9y/VTrmdIhgAAAAAB/n8hl5avTdkbPqgLspMclmWE4DI5yxaooz/nNlsEYwn+xhVXPI6RTAAAABtEJYV85dddlnwfujQofroo4+C9yNGjNDAgQOVlJT0la+12Wz685//HI40gYhW2+jTLa9v0aKdlabYd47N01VTe8jOAnygY1rTrnlWyQsfkM3faAo3DL0k2AmGRREAAAAA0LJOt499sEuH9k2VkuPs+tHkfAuzAhBL7FWFwR1Y4woXNRuvP+Y7qp18k+T66msXAAAAAGLPwh0VKq4KvWZ80ahsy/IBEOH8XiV98qQSl/1ONsNvCteN/qHqAp1oHXGWpAcAABDtwlII8+yzzwYLWgIC936/X6tXrw7ejnZhnEIYQCqradSslzdpU2ldyHjgp+qGk3rpkjG5luUGdGa2+gNKmXeL4nfOM8X8cSmqOfFeNQ44w5LcAAAAACAaLdxeoWW7q0LGvj8hn51TAXQ8w1D8uv8oeeF9sntqTWFfaoFqTv6NPAWTLEkPAAAAQOR7YWVoN5jBOUkanpdiWT4AIpe9eo9S51wrV/EyU8yfmKXqUx6Sp9c0S3IDAADoLMJSCNOzZ8+DhTAAWmfH/npd/dJG064i8U6b7j6jv04ckGVZbkBnb02bOuc6OWpLTDFPzkhVz3xc/rQeluQGAAAAANHI6zf0+PxdIWM5qXH6Pzb4ABCGxScp792quN0fNRuvH/5N1U2+WUYcC9gAAAAANG9XeYMW7awMGbtoVA7roQCYxG2bHTwPYXeHvmcENPY4TtWnPCwjuZsluQEAAHQmYSmE2blzZzi+DdDprNhdpetf3axqty9kPD3RqUfPG6gR3VMtyw3otPy+z1vTPtl8a9oxP1LdhOskB7sVAwAAAEBrvLqmVDsONISMXTGlhxJcdstyAhADXWA2vKjkj+6WvbHGFPal5KnmpN/I0/N4S9IDAAAAED1eXBXaDSYtwaGZg7tYlg+ACORtUPJH9ypx7T9NIcPuDK41qR9zuWTjfCgAAEDUFMIAaL05G/frl29vk8dnhIwXZMTriQsGq2dmgmW5AZ2VvaY42AXGtWepKeZP7PJ5a9qpluQGAAAAANGsxu3VMx8XhowNyUnWqUNYMAKgY9hrSpTy/m2K+2x+s/GGoRer9rjbZMSz2RAAAACAr9bg8emNtftCxs4e3k0JLodlOQGILI79m5U6e5acBzabYr60Hqqe8Zi8uaMsyQ0AAKCzohAGiDCGYeify0r02Pxdptiw3GQ9et4gZSXTiQJob3E75ill7k2yuytMMVrTAgAAAMDX89wnxTpQ5w0ZmzWtp+w2m2U5AejEXWA2vaLkBb+SvbHaFPYl56rmpHvk6XWCJekBAAAAiD7vbNyvarcvZOyCkTmW5QMgws5DrPuPUj66WzZvaDfsAPeAM1Rzwj1sxAEAANABKIQBIojPb+iR9z/Tf1eGttQNmNIvQ/ed2Z8dRYD25nMr+eMHlLj6WVPIsDlUNzHQmvZHtKYFAAAAgDbaW+3WP5cVh4xN7ZehcT3TLMsJQOdkqy1Vyvu3K37nvGbjDYMvUO2U22XE8/4DAAAAoOWbmb5wxBqOyb3T1SMzwbKcAEQGm7tKKe//XPFb3zLFDGeiaqb+Uu4hF0psBgQAANAhKIQBIkSDx6873tqq97eUm2IXjszWjSf3lsPOByOgPdnLdyhtziw5960zxXyp+U2tafPGWJIbAAAAAHQWT39UKLfXOPjYYZOuntrT0pwAdMLdVze/oeQFd8rurjSF/UndVH3ivfL0OcmS9AAAAABEr0+La7SptC5k7KLRdIMBYp2zeLlS51wrR3WRKebtMljVMx+XL6u/JbkBAADEinYthHE4mjpV2Gw2eb1e03hbHHksoDOqbvBq1subtGZPjSl25ZQeunR8XvBnAUD7id/4ilLm/0I2T+hJywB3v1NVc9J97A4KAAAAAF/Txr21enNdWcjY+SOz1btLomU5AehcbHVlSvngDsVvn9NsvGHQuaqdcoeMhIyw5wYAAAAg+h3ZDaZ7Wrwm9+HzBRCz/D4lrviDkpY8JpvhM4XrR3xXtZNvkZzxlqQHAAAQS5zt3Q60NeMAmtz77g5TEYzTbtOdp/XVqUO6WpYX0Ck11ipl/i+VsOkVU8hwxKt2yu1qGPYNWtMCAAAAwNcUOCf4+PxdOvzMYHKcXZdPKrAwKwCdSdyWN4PneewN5i7b/sQuqjnxbjX2nWFJbgAAAACi34Faj+ZuPhAydsGobDnsXEsGYpG9Zq9S5l6vuMJFppg/PkM1J/9GjX2nW5IbAABALGrXQphf/vKXrRoHIC3cXqF3N4WeOEmJd+ihcwZqXE+6UQDtybFvndLeuVqOyp2mmDezv6pnPiFf10GW5AYAAAAAnfGcxye7qkLGvjehu7KSXZblBKBzsNXvV8r8OxW/9a1m4+4BZ6pm6i9lJGaFPTcAAAAAncdra0vl8R3a4iPOYdM5w7tZmhMAa7h2vq/UuTfJ3hC6xivA0328qmc8In9KniW5AQAAxCoKYQALNXh8un9u6IL89ASnnvm/IerXNcmyvIBOxzCUsOZvSl54v2z+RlO4YejFqpnyC8mVaEl6AAAAAKKPw+GwOoWI5vUbenzB7pCx3NQ4ffvYfP7twsxut3/lYyDa5q1r6ztKeu/nstfvN73On5iluhPvlmfA6WKmwwq85yIaMW8RrZi7ADqaz2/opVWlIWPTB3VRRhIbfAAxxedW8scPKnH1X00hw2ZX3bFXq37czyQ75zwBAACiuhAGQOv8cVGR9lS5Q8ZmTetJEQzQjmz15UqZd7Pid84zxfyuFNWceLcaB55lSW4AAAAAoldmZqbVKUS0fy75TDv214eM3Xz6EOVld7UsJzRJT0+3OgWgbfO27oD01o3S2hebf9KQs2U/4xGlpLA7MyIH77mIRsxbRCvmLoD29uH2cpVUh26yeNHoHMvyARB+9vIdSpszS85960wxX0qeqmc8Km/3Yy3JDQAAAGEqhFmwYEHw/thjj1ViYst2229oaNDSpUuDX0+dOrVD8wOssHVfnf6xrCRkbExBqs4azoIQoL04i5Yq9d1r5agJ/VkL8GSPUPXMx+VP72lJbgAAAADQWdW4vXr03c0hY8Pz03TOyHzLcgIQ5Ta+Jb0xS6oN3Y05KDFTOv0hafgFks1mRXYAAAAAOqEXVu4NeTw0J1nD81IsywdAeMVvfFkp838pm6fOFHP3naGak+6TkZBhSW4AAAAIYyHMCSecEGxFvGbNGg0dOrRFrykqKjr4Oq/X2+E5AuHkNwzd++6OYCvdLzjtNt06vY9sXKwFvj6/T4nLnlLSJ0/IZvhN4brRl6tu4nWSI86S9AAAAACgM/vD/G0qqwndMfW204fIbuecB4BWqi+X3r5FWvOf5uODzpDOfFRKZVdmAAAAAO3nswP1WvJZVcgY3WCA2GBrrFHy/F8qYdOrppjhiFPt8berYfg32YwDAAAgVgphAgzDCOvrgEj26pp9WrOnJmTs0vF56tOlZR2TAHw5e02JUudcJ9eeJaaYPzFL1ac8JE+vaZbkBgAAAKDzKC8vtzqFiLS3yq0/LtgeMja1f6aGZDn4N7NIYKOh9PT0g48rKyvl95s3jQAibt7uXSK9cbVUXWyK++PTVH/CXWocdK7ktQXelC3JEzgS77mIRsxbRKtomruZmZlWpwCglV5cHdqNMj3BqemDuliWD4DwcO5do9Q5s+So3GWKeTP7q3rmE/J1HWRJbgAAALCwEKa1vjhJ5XA4rE4FaFf7az367YLQD0wFGfH6/oR8y3ICOgvXjveUOu8m2RvMix8aCyarevrDMpKzLckNAAAAQOfi8/msTiEiPbngMzV4Dy0+c9ikq6f04N8rws678v8DkczmrlbSwnul9c83G2/sdaJqTrxH/pScwIQOe35Aa/Cei2jEvEW0Yu4CaC/1jT69sXZfyNjZw7spwWW3LCcAHczwK3HVX5S06CHZ/B5TuGHoJaqZcofkYoNjAACASBKxhTCfffZZ8P7wXVyAzuCxDz5TtTv0JOwtp/ThpAnwdfjcSv74QSWu/qspZNgcqptwrerH/EiyU1wJAAAAAB1l495avbmuLGTs/JHZ6k0HXAAt5Nr1oVLeu0WOmhJTzB+Xotopd8g9+ALJZrMkPwAAAACd3zsb96vmsDUdgU8fF4xis0Wgs7LVlSl17o2K27XAFPPHparmpHvV2P90S3IDAACABYUwu3aZ2wMGFBcXKyUl5Stf63a7tW3bNt1xxx2y2WwaNmxYR6QIWGLxzkq9vWF/yNipQ7poYm8KvoC2slfsUNrsWXLuW2eK+VK7q3rGY/LmjbUkNwAAAACIFYZh6PH5u2QcNpYcZ9flkwoszApAtLA11ihp4X1KXPefZuOeXlNVfeK98qfkhT03AAAAALF1fuOFlXtDxib3yVBBRoJlOQHoOK7dC5X67vWy14V2gQrw5I4Orjfxp3F+EwAAIKYKYfr06dPsh8UZM2a0+ljf/e532ykrwFpur1/3z90RMpYa79C1J/SyLCcg2sVvelXJH/xCdk+tKebuO1M1J90nI4FCMwAAAADoaAt3VOqTXVUhY9+b0F1ZyS7LcgIQPYtOUt67VY7qInMwLlWaeY9q+pwlv99vRXoAAAAAYsjqPTXavK8uZOyi0TmW5QOgg/g8SlryqBJXPCNbyNY+kiGb6sf+RHXjZ0kOzm0CAADEXCFMoOilNePNSUhI0NVXX63LLrusHTMDrPPXxXu0u8IdMnbl1B7qwoIQoPUaa5Wy4E4lbHzZFDIccao9/nY1DP+mZAs0qgYAAAAAdCSv39AT80M7ROekxukbY+jcAOArNNYqedEDSvz0H83H+0yTznlSyugplZeHOzsAAAAAMejFVaHdYPLT4zWpNxsvAp2JvWq3UmdfI9feVaaYLylbNdMfkqfHcZbkBgAAgAgohPnrX/8a8vj73/++bDabfv3rXys/P/9LXxd4TqAAJi8vT6NHj1ZKSkpHpAeE3c799Xp26Z6QsRHdU3TeiGzLcgKilWPfeqXOvlrOitAOSwHezP6qnvm4fF0HW5IbAAAAAMSi1z/dp+3760PGfnZ8gRJcdstyAhDZnEVLlDrvZjmqdptihitJdcffpuSpV7LJCQAAAICw2V/r0dxNB0LGLhiZLYedzyVAZxG3+Q2lfHC77I01plhjrxNUfcoDMhK7WJIbAAAAIqQQ5tJLLzUVwgSce+65Gjp0aEd8SyBiBToh3fvujuDuqF8InCi5bXof2bmQC7ScYSjh078r+aP7ZPM3msINQy9WzZQ7JFeSJekBAAAAQCyqbfTp9wtDF7IPzknSaUO7WpYTgAjmqVPyooeUuOZvzYYb8yeo5uT7ZcvsrWTOnQIAAAAIo1c/LQ1Z1xHvtOnsY7pZmhOAduKpU8qCXylhwwumkGF3qXbyzWoY+T025AAAAIgyHVIIc6T3338/eN+nT59wfDsgovxvXZlWFFaHjH1rbK76d2OxPtBStvpypbx3i+J3zDXF/K4U1Zx4txoHnmVJbgAAAAAQy55bukcH6rwhY9dM68nmHwBMnHuWKXXeTXJUfmaKGc5E1U6+SQ3HfFuy2eWwJEMAAAAAsSpQAPPy6tKQsRmDuigj0WVZTgDah6Nsg1Jnz5KzfJsp5kvvraqZj8uXPdyS3AAAABAFhTDTpk0Lx7cBIk5FnUePzd8VMpaXFqfLJ+VblhMQbZx7PlHqnGvkqCkxxTzZI1Q98zH503tZkhsAAAAAxLK91W79Y1noZ7Up/TI0rme6ZTkBiEDeBiUvfkQJq/4imw7trvwFT944VZ98v/wZvS1JDwAAAAA+3FauvdWNIWMXjc6xLB8A7cAwlPDp35W88D7ZfKE/3wENg85T7bQ7ZcSlWJIeAAAAoqQQBohVj8/fpcr60F1Rbz6ljxLj2NMQOCq/T4nLn1LS0idkM/ymcN3oH6pu4vWSI86S9AAAAAAg1v3+o0K5vYc+rzls0tVTe1qaE4DI4ixZqZS5N8pZscMUMxzxqp10oxpGXhrsAgMAAAAAVnlh1d6Qx0NzkzU0l8XxQLSy1Zcr5b1bFL9jrinmdyWr9oRfyT3oXEtyAwAAQPuhEKYTOHDggBYtWqSVK1eqqKhIFRUVSklJ0aBBg3TOOedowIABVqcYk5bvrtIb68pCxk4emKXj+2ZYlhMQLew1JUp59zrFFS0xxfwJWaqe/qA8vU6wJDcAAAAAgLSptFb/O+K8x3kjstWnS6JlOQGIIF63kpY+psSVf2p2gxNP7mhVn/yg/Jl9LEkPAAAAAL6w80C9ln5WFTJ28Si6wQDRylm0RKlzrpOjNrSTdYCn23BVz3ycrrQAAACdBIUwncDbb7+t1157TTk5ORo5cqTS0tJUXFysTz75JHibNWuWJk+ebHWaMaXR69d974bucpgcZ9cNJ/WyLCcgWrh2vq/UuTfK3lBuijUWTFLNKQ/Ln8KJRwAAAACwimEYevyDXTKOOO/xo8kFFmYFIFI4965p6gJTvtUUMxxxqptwnepHXSbZ6ZoNAAAAfF1snPr1vXhEN5j0RKemD+5iWT4A2sjvVdInv1Pisieb3ZSjbtQPVDfpBskRZ0l6AAAAaH8UwnQC/fv315133qmhQ4eGjG/YsEG/+tWv9Mc//lHHHnusXC6XZTnGmuc+KdbOAw0hYz87voe6pfBhCvhSvkYlf/ygElf/xRQybA7VTZil+jE/YZEEAAAAAFhs4Y5KLd0VulPqpeO7KyuZc09ATPMFusD8VokrnpHN8JnCnuwRqjnlQfmy+luSHgAAANAZsXHq11PX6NMba0M73p4zvJvinXbLcgLQevbqPUp99zq59nxiivkTs1R9yoPy9DrBktwAAADQcSiE6QQmTJjQ7PiQIUM0fPhwrV69Wrt27VK/fv3Cnlss2lXeoL8sLgoZG5qTrAtpnQt8KXvFTqXOniXXvrWmmC8lT9UzH5M3b5wluQEAAAAADvH6DT0xf1fIWE5qnL45Ns+ynABYz1G6Ntjh13lgsylm2ANdYGapfvQPJTuXJAAAAID2xMapX8/bG8pU23iokN8m6YKR2ZbmBKB14rbNVsp7t8rurjTFGnscp+pTHpKRzM81AABAZxTzV50qKyu1devW4G3btm3BW3V1dTA2bdo0XXHFFS0+1r59+4K7baxYsUL79++X0+lUbm6uJk2apJkzZyo+Pl7h5nA4Qu7RsQzD0G/m7lCjzzg4ZrdJt83oI0fgCwAm8ZteV/IHt8vuqTXF3H1nqOak+2QkZFiSGwAAAAAg1Ouf7tP2/fUhYz87vkAJLnZKBWKSr1FJy55S4rKnmu0C4+02LLjrqq/LIEvSAwAAADo7Nk79eus7XlxVGjJ2XN8M5WckWJYTgFbwNij5o3uVuPafppBhd6puwnWqH3O5ZOO8JQAAQGcV84Uwl19+ebscZ9myZfrtb3+r+vpDCwHcbvfB4pp58+bp1ltvDRbGhEtZWZk+/fRTZWZmqmfPnmH7vrHsnQ37tfSzqpCx/xuTq8E5yZblBEQsT51SFtylhA0vmkKGI061x/9cDcO/JdkoIgMAAACASBDYIfUPCwtDxgZlJ+m0oV0tywmAdRxlG5q6wJRtMMUMu0t1x16p+jE/lhzsPA0AAIDIxMapsW11UY227KsLGbtoVI5l+QBoOceBLUqdPUvO/ZtMMV9qgapnPiZv7mhLcgMAAED4xHwhzOG6du2q/Pz84I4YrbFjxw499thjamxsVEJCgs4999zgzhqBxwsXLgwWwRQXF+u+++7Tb37zGyUmJqqjeb3eYGGOx+PRt771LdntVLd3tKoGrx794LOQsZzUOP3kuALLcgIieqHEO1fLWbHdFPNm9FX1qU/I13WIJbkBAAAAAJr396XF2l/nCRm75oSesrOBARBbfB4lrvi9kj55Uja/1xT2dh3S1AWGczsAAACIcGycGtueX7U35HFBRrwm9Um3LB8ALWAYil//X6V8+GvZvA2msHvAGao54R4Z8amWpAcAAIDwivlCmAsvvDDYAjZwy8jIUGlpqa688spWHePZZ58NFr0EdtG4/fbbNXDgwIOxQEFMXl6e/vGPfwSLYd544w1dfPHFpmM899xzwaKVljr99NODx22O3+/XU089pQ0bNujkk0/W1KlTW/Xfg7b57YLdOlAXeuH3xpN6KSmO3VWAgwxDCZ/+Q8kL75XN12gKNwy5SDVTfyG5kixJDwAAAADQvNLqRv19WXHI2JS+GTq2JwtEgFji2L+pqQvMvnWmmGFzqH7cz1Q37meSI86S/AAAAIC2YuPU2FJW26j3Nh8IGbtwZA6bfQARzOauUsr7P1f81rdMMcOZoJqpv5R7yEUSP8cAAAAxI+YLYZorSmmNQIvcQMFJwIknnhhSBPOFM888U++//76KioqCrXDPP//8YBvcw7377rvBHUFaauLEic0WwgSKYJ5++ml99NFHmjJlSrvtYIKvtqqoWq+sKQ0Zm9ovQycMyLIsJyDS2BoqlPLeLYrf/q4p5nelqPaEX8s96GxLcgMAAAAAfLWnP9ott9d/8LHDJl09jR1lgZjh9ypxxR+VtPQJ2fzmzU28WQObusBkD7ckPQAAAKAt2Dg1dr26Zp+8fuPg43inTWcN72ZpTgC+nLN4hVLnXCNHdZEp5u0yWNUzH5cvq78luQEAAMA6MV8I83UtXbr04NeBQpjmBHbXmDZtmv71r3+ptrZW69at08iRI0Oe8/e///1r5/LFCY0FCxbouOOO0xVXXMHOHmHg9fl137s7QsYSXXbddHJvy3ICIo1zz7KmkxI1obsHB3i6DQ+elPBn8DMDAAAAAJFoU2mt/reuLGTsvBHZ6tOl43exBWA9x4GtSpl7o1yla0wxw2ZX/Zgfq278VZIj3pL8AAAAgLZi49TYFCiAeXn13pCxGYO7Kj2RJVRAxPH7lLjiD0pa8phshs8Urj/mO6o97lbJyTkJAACAWMSnuK9p06ZNwfv4+Hj17dv3S583dOjQkNccWQjTnkUwkydP1lVXXUURTJj8Y1mJtpXVh4z9+LgC5abxIQsInpRY/rSSlj4um3Fo5+Av1I36geom3SA54ixJDwAAAADw1QzD0OMf7NKhPVKl5Di7fjS5wMKsAITtvM6qPytpyaOy+ZrpApPZXzWnPChvzghL0gMAAACsxsap0WnB1nKV1oR24Ll4VI5l+QBonr1mr1Lm3qC4wo9NMX98hmpO/o0a+063JDcAAABEBgphvqbCwsLgfW5ubrDV7Zfp3r276TXt5YtdPQInNAI7f3zdIpj9+/e36Hlf9d8bK4oqGvSnRaFtNwdlJ+tbx+bLYbdZlhdCHfnzwAm/8LDV7FXy7GvkKlxkivkTs1Q7/WF5+5wo3kmax7xFtGLuIhoxbxGtmLsAwuHjHZVauqsqZOzS8d2VleyyLCcAHc9Rvl0p826Sq2Rl811gRv9QdeOvYcdVAAAAxDQ2To1OL6wK7QYzPC9ZQ3KTLcsHgJlr5/tKnXuT7A0HTDFP9/Gqnv6w/KmH1uIBAAAgNlEI8zU0Njaquro6+HWXLl2+8rkpKSnBkx+BdrYtLTRpqRdffFHz589XQkJCsODmpZdeMj1n/Pjx6t27d4uO99Of/rRFz3v++ecV6zuiXvvqJ2rwHupyYbNJ9180St26ZFiaG75aenq61Sl0fpvnSK/+RKpr5v2u9xTZz/+jUtPM7brx5Zi3iFbMXUQj5i2iFXMXQHvz+g09Pn9XyFhOapy+OTbXspwAdDC/Twlr/qbkRQ/J5nObwt6MPqo5+QF588ZYkh4AAAAQSTrjxqmdffPU7WV1+uSIDT8uGZMXlf8taBk2lIoyXrcSP35ACSv/3OzGHA3jr1bD+Ktkszs69aarzFtEK+YuohHzFtGKuduEQpivoaGh4eDXgSKUowk8J1AIc/jr2sO+ffsO5vPyyy83+5zs7OwWF8KgZd76tEQfbGr6t//Cdyb20qgeFMEghnkbpXl3SYueNMdsdumE26Qp10n2znxKAgAAAAA6hzfW7tP2/fUhYz89vkAJLj7TAZ2RvWKnUufdLFfxMlPMkE0Noy5T7cTrJOfRz4UDAAAAnV1n3Ti1s2+e+vqCopDHWclxumhif851xBA2lIpgZVully+TilebY2n5sl3wJyX2mqxExR7mLaIVcxfRiHmLaJUeo3OXQpiveWLjC07n0f8pv3jO4a9rD1dccUXw1l4Cu4Xgq1U1eHTXG+tCxrJT43XDzEGW5QRYbv826aUfSHtWmmNp+dIFf5J6TbYiMwAAAABAK9U2+vT7j0J3qR2YnaTTh3a1LCcAHcTwK2HN35W86AHZvOZNnHzpvVQd6ALTfZwl6QEAAACRiI1To0+N26uXVoQWwlw8rgdFMEAkWPVv6c3rJU+tOTb4TOns30pJWVZkBgAAgAhGIczXEBcXd/Brr9d71Od/8ZzDXxeJjrZbyRfKy8sVq37z7naVVrtDxm44qZd89TUqD90oFREg0PLr8GrHysrKYItotB/XpteU/N7PZWusMcUa+05X3fQHZSRkBN44LMkvGjFvEa2Yu4hGzFtEq2iau5mZmVanAKCV/r60WPvrPCFj157QU3abzbKcALQ/e+Uupc67Ra49S5qN14+4VLWTbpBcSWHPDQAAAIhknXXj1M68eeqrK4uCxTBfCJzi+NaEnpbmBMQ8d3VTAcya/5pj/8/enYBHWZ77H//NTDKZyUwIYZEdZQdxBWQV2RTUaqvW9vT09HT9W7XWamtdsLgWFbe6tdLldLWnnnpal6PViiCggoqIuACCCC6ssoQwM5lkMjPv/5qhIOMbMYQkzzwz38915TLvc0/CHfwl6Mt7P4+vTJp2k3TC/9vzDQsAAAB8AoMwh2D/XT2asmvH3tc0ZTcQG6RSKRWjtzZH9dCyLTlrY/tUalL/9kX7e2KbzMOB/LtqIQ21Cj93gwKr/uYqOV6/Yiderbqjv7bnpgS/54eE3MJWZBc2IrewFdkF0FI+iiT0wNLNOWvj+7bXCb2L80htoGBPgXnrQYUWz5KnodZVTrXrpciUW5XsMcpIewAAAEC+K9SNUwt181THcfSHF9blrI3vV6Wwp17V1bmboKKw2LShVLHxbX1Toaculq/mPVct1aG/Yqfep1TnIdKuXSo25Ba2IruwEbmFrWzKblUrbpzKIMwhyNygqKioUCQS0Y4dOw742mg0mj3m9mBuGiD/JNOObn5mvZz91spKvLpyyhHysPsAioxv+ypVPH2JSqrfddWS7fsqMu0epTofaaQ3AAAAAEDzzV60QfXJj2+U+jzSDyawQypQKLy7Nyr87FXyb1jcaD1+9NcUG3OF5A+1eW8AAACALYp949QMmzblWfbhbq3dnrsJwJeOPcyqrwEtgw2l8oCTVnD571T+4h3ypHNPpM6oO/LfFB0/Y8/ptPy7yiK3sBXZhY3ILWyVLtLsMghziHr27KlVq1Zpy5Yt2QD5fL5GX7dp06acj4Gd/mfZFq35KPfmyHljeqhH+8K5WQV8JsdR4K3/VuiFm+RJuY/urhv8RUVPuo6HJQAAAADAQms+iumJt7blrJ11zGHq0zForCcALcRxVLbyrwq9cIu8DVFXOVXRXdHJs9TQa5yR9gAAAACbsHGqXf53+dac617tyzTqCE6+Bdqap3a7KuZeLv8Hz7lqaX+FopNuUmLA54z0BgAAAPswCHOIBg0alB2Eydy0WLdunQYMGNDo61auXJnzMbDPlt31+tWiDTlr/ToF9bURXY31BLQ1T11NdsfQsnVzXLV0aUixiT9V/aAvGOkNAAAAAHBoHMfR3Qs/yDkJt7zUq++OZVMXwHbeyCaF518t/wfPN1qPD/2KasddJcdf0ea9AQAAALZi41Q7bI8m9Ow71TlrXzyui7wej7GegGJU+uEiVTxzmby1uZvwZDR0OV6RaXcr3Y6fkQAAAGg670G8Fo0YOXLkvvfnz5//qccNLVy4MPt+KBTS0KFD26w/tJzbn31f8YZ0ztrVp/RRiY9vIxSHks1L1f6vZzQ6BJPsPFS7/u0xhmAAAAAAwGKL19doyfu7c9a+Maq7OoZKjfUEoCVOgfmb2j94WqNDMKlwV9V8/g+KTbqJIRgAAADgIO3dBHXvxqmfho1TzXrkjY+USn+87UdZiVefP6qz0Z6AopJqUPni29XusW+4hmAceVQ7/ELVnPMgQzAAAAA4aJwIc4j69++vIUOGZHf5yAzCTJw4UQMHDsx5zRNPPKGNGzdm3z/ttNNUUlIYv+2ftptJIZq/ZocWrs3dIeScY7toWO/2xnpC03m93gNe4zOkUwos/aUCL/1MHiflKtcd/x3Fx14hT0mZiuenQusjt7AV2YWNyC1sRXYBtKRk2tE9Cz/IWTssXKr/GM5JuICtvNGte06BeX9Bo/W6IV9S7MSfyCljAAYAAABo7sapjz76aPb9zPMiAwYMcL2GjVPNSqbSeviNj3LWTh3SUe0ChfHcDpDvvLs/VMXTl6p063JXLV3eWZFT7lRDr3FGegMAAID9iv7/7N5+++3sMbV77d798a6XmfUFC3L/kjAz6PJJ3/zmN3XNNdcokUho5syZOvvss7M3LzLXixcv1ty5c7Ov69atm84880wViqqqKhWDaH1Stz+7LGetU9iva79wjNqX+431hearrKw03YI9Ilukh8+T1j/nrgU7SGf/UoGB0xQw0VuRIbewFdmFjcgtbEV2ARyKx9/apnU74jlr3xvfS4FStjwArDwFZs1jCj13g7z1uac8ZaRCXRSddJMajphkpD0AAACgUBTzxqm2bJ767DvV2hZtyFn7yvBuVvSOlsGGUuaUrnlcoXlXy5OIuGqZexKxU+6QU96RDVcbQW5hK7ILG5Fb2Irs7lE4/4fdTPPmzdu3+8YnrV69Ovv2WYMwffr00aWXXqr77rtP8XhcDz74oOs1mSGY6dOnKxgMtmD3aAt3PbNGm2vqctZmfO5IhmBQ+N55RnrkAql2u7t2xHjpnF9L7bqb6AwAAAAA0IJqEyn98oUNOWsDDyvX6Ud2MtYTgObxxLYpvGCGytbv2Zzpk+oGna3Y+GvkBBigBQAAANg4tfA3T334zbdzrof1bq8xg3sZ6wfmsaFUG0jEpKeulF57wF3zlkqn3KDSUReqfZE+rNkc5Ba2IruwEbmFrSqLNLtFPwjTUkaMGKE77rhDTz75pJYtW6adO3dmd/Lo2rWrRo8erVNPPVVlZWWm28RBemtjjX6/aH3O2on9O+kLx/HwPwpYMiE9e6O0+D53zeOVJk6Xxl8medmXAwAAAAAKwQOvbNaO2tzdUX84sbe8Ho+xngAcJMeR/50nFF54vbz1u1zldHlnRSfNVKLPyUbaAwAAAPIRG6cWtjVbI3pp3c6ctf8cc7ixfoCisOUt6W/fkravcdc69JXO/Z3U/XgTnQEAAKAAFf0gzEUXXZR9awmdO3fWN77xjexbMaiurlYhS6UdXfG/byjtfLzm93n040m9tGuX+y+Tkb8yR37tP+1YU1OjdDpttKd85a35QKGnLlbJ1tddtXS4m2Kn3qNkj5FSzce7IaF1kFvYiuzCRuQWtrIpuzbsDgkUq48iCf3plc05ayf2ba8TehfnrkGAjTy12xVeeJ3K3v1no/W6gZ9XbPy1coL8eQwAAAC0BjZOzU9/fun9nOuOIb9OP7qbsX6AguY40iv/JT39EylV764f8xXpc3dIZRUmugMAAECBKvpBGDRfKpVSIfvrsi1auSWWs/bt0T3Us9Jf8F97ocs8HMi/Qzf/mscVnj9D3oaoq1bf52RFJ8/a88AEv3dGkFvYiuzCRuQWtiK7AJpj9qINqk9+PETn9Ug/OKmX0Z4ANJ1/7VMKL7hW3rrcXY4z0sEOik6cqUS/aUZ6AwAAAPIdG6cW7uapsfqU/v7qhpy1LxzdWbWR3ao11hVMsGlDKVt54tUqn3uF/OuecdWc0pBqJ/1UiSHnSLVJqTZ/f27kE3ILW5Fd2IjcwlY2ZbeqFTdOZRAGaMS2aEL3v/BhztrhHQL6+gnsDoIC1FCr8PM/VWDlQ66S4/UrNu4q1R3zdcnjMdIeAAAAAKB1rPkopife2pazdtYxh6lvp3JjPQFoGk98p8LPXa+yd/7RaL2+/+mKTrheTrBjm/cGAAAAoDjk86Y8j7+5VbFEKmfjj3OO6ZzXPaNtsKFUyyrZuEQVz/xQvugWV62h81GKTLtb6fZ92HD1EJFb2IrswkbkFrZKF2l2GYQBGnHHs+8rlsidjJt+ch/5S7zGegJag2/7alU8/QOVVK911ZLt+ygy7R6lOg810hsAAAAAoPU4jqO7F34gZ7+18lKvzh/b02BXAJrCv27OnlN94ztctXSgStEJNygx4HNGegMAAACAfLjn8b/Lt+asje9Xpa7tyoz1BBScdFLlr/xCwaU/l8dx7zweP+47io35seTzG2kPAAAAxYFBGOATXli3S/PW7MxZO3NoJ43o3c5YT0CLcxwF3vqLQi/MlCeVcJXrBp+j6EnXS/6QkfYAAAAAoKl27typF198Ua+99po2btyoXbt2KRwOa9CgQfrCF76gAQMGmG4xL734Xo2WvL87Z+0bo7qrY6jUWE8ADsxTt0uh525UYM1jjdbr+05VdOJP5ZR3avPeAAAAACBfvPphROt2xHPWvnTcYcb6AQqNN7JJFc/8SKWbXnHV0sEOiky5TQ1HTDLSGwAAAIoLgzDAfuKJlG6duz5nrTJYoksm9DbWE9DSPHU1Cj87XWXrnnbVnNJyRSfcqPrBZxvpDQAAAAAO1lNPPaXHHntMXbp00bHHHqt27dpp8+bNeuWVV7Jvl1xyicaOHWu6zbySTDu6e8EHOWuHhUv1H8O7GusJwIGVrn9WFfOvlrd2m6uWLqtUdML1Sgw4U/J4jPQHAAAAAPni6be351z3rgpo5OGVxvoBCu6U2nlXyVtf46oleo5V5JQ75YQYPAMAAEDbYBAGzebz+VRofvvyh9q8O/d0jB9OPFwdKwLGesKh83q9B7wuJr5Nryr0zx/IF9noqiU7D1XstPuUruqrwvvutg+5ha3ILmxEbmErsgvs0b9/f11//fU68sgjc9ZXrVqlG2+8Ub/5zW90wgknqLSUk072euKtba6dUb93Yi8FSvm/QSDfeOp3K/T8TxV4++FG6/VHTFF00kweMgEAAACAf7ny5D4ac0R7/e/yrXrlg90697jD5GXTAODQJOsUWnSLgm/+2VVyPD7Vjv6R4sO+K3n4ewoAAAC0HQZh0GxVVVUqJG9v2a0/v7I5Z21knw76xkmD5OGmSEGprCzC3V7SKemFu6T5N0tOyl0f/T2VnHy9KkvKTHSHJijK3KIgkF3YiNzCVmQXxWrUqFGNrg8ZMkRHHXWUXn/9dX3wwQfq169fm/eWj2oTKc1etCFnbeBh5TrtyE7GegLQuNL3Fyj87E/ki21x1dL+CsVOulb1g87mFBgAAAAARuTr5qmZtk4Z0jn7tm57rTpX+PO2V7Q+NpQ6dN6daxV68vsq2fG2q5Zq11OxU+9VqtswNlxtQeQWtiK7sBG5ha3I7h4MwgCZvzhOO7r64TeVTDv71kp9Ht189tEMwcB+kS3Sw9+V1i9014IdpLPulwadZqIzAAAAAIbV1NRo7dq12bd33303+xaJRLK1CRMm6KKLLmry59q2bZueeuopLVu2TDt27FBJSYm6du2qMWPGaNq0aSora/vB+70POfCww8ceeGWzdsQactYundBbPi/3P4B84amPKLToZgVWPtRoPXH4BEUn3ax0uGub9wYAAAAANm2eOtyCHtG22FDqIDiOtOxP0lNXSsnc06Wzhp4t3xl3q12wvYnuigq5ha3ILmxEbmGryiLNLoMwgKQHX/lAyz7YlbN2wYR+6n9Y2FhPQIt4Z670yPlS7XZ37fBx0jm/kSp7mOgMAAAAQB4477zzWuTzLF26VPfdd5/i8Y//QrS+vn7fcM28efM0ffr07GBMW9m+fbvefPPN7EMZvXv3brNfN599FEnoT584DffEvu018vDivDEK5KPSD15Q+Nmr5Ivmfq9mpP1hxU6cofoh53IKDAAAAAAAaD3xXdITl0orHnHXSoLSabdKw77O/QkAAAAYxSAMmq26ulqFYEcsoVlPrspZ61UV0FeP61gwX2Oxyxz5tf+0Y2bH43Q6rYKWSii4+A4Flv3aVXI8XtWN/IHqRl4spX2Zb2YjLeLAijK3KAhkFzYit7CVTdm1YXdISJ06dVKPHj30+uuvH9THrV+/XnfffbcSiYQCgYDOOussHXXUUdnrRYsWZYdgNm/erFtuuUWzZs1SMBhUa0smk9nBnIaGBv3Hf/xH0R4F/Um/XLRB9cmPf05kDoH5wUm9jPYEYA9PIqryRbMUXPFgo/VErxMVnXyL0hXd27w3AAAAAABQRD5cIv39O9KuD9y1LkdJ5/5O6jzIRGcAAABADgZh0GypVEqF4I556xWpz/1arjr5CJV6C+drRK7Mw4GF/O/WW/OBKuZcqtKt7ofXUqGuiky9S8keIyUn+41spEccvELPLQoX2YWNyC1sRXbRHOeee6769euXfWvfvr0++ugjff/73z+oz/GHP/whO/Ti8/k0Y8YMDRw4cF8tMxDTrVs3/fnPf84Owzz++OP68pe/7Pocf/rTn7JDK011+umnZz/vp30v3H///Vq1apWmTJmik0466aC+nkL1zrZaPf7Wtpy1s445TH07lRvrCcAepRsWKzzvKvkiG121dGlIsXHTVT/0K+yyCgAAACCvsLEobGDThlLGOWkFls5W4MWfyeO4/66h7pivKz7+aqkkwIarrYzcwlZkFzYit7CVTdmtasWNUxmEQVF76b1d+ueqHTlrpw7pqFGHf/zDAbCJ/50nFJ7/E3kTUVet/ogpik65VU6Q3bgBAAAA7NHYUMrBWLt2bXbgJGPSpEk5QzB7nXHGGZo/f742btyop556Suecc45KSnJvST3zzDOqr69v8q87evToRgdhMjf3Zs+erRdeeEHjx4/Xeeed16yvqxDds/CD7H4Ie5WXevXdsT0MdgRAiZhCL96u4JsPNF7uOUbRybOUbtezzVsDAAAAgM/CpjywERtKNc4T+0gVz1wm/4bFrlq6rFLRKbOU6Dt1zwK/f22O3MJWZBc2IrewVbpIs8sgDIpWXUNas+a+l7NWUebTDycebqwnoNka4go/f6MCKx9ylRyvX7FxV6rumG+wcygAAACAFrVkyZJ972cGYT5tN5oJEyboL3/5i2KxmFasWKFjjz025zUPPND4Q+AHY+9JMM8995zGjRuniy66KPtrQ1q8fpdeeq8mZ+3rI7urU8hvrCeg2JVsXKKKeVfKt/sDV80pCSo27irVHfVVycPPMQAAAAAA0HpK31+girmXyxvf6ao1dD9BkVN+pnRFdyO9AQAAAAfCIAyK1u9f3qgNu3J3m734pN7qGCo11hPQHL7tq1Ux5xKV7HzHVUtVHqHdp96rVOehRnoDAAAAUNhWr16d/WdZWZn69u37qa878sgjcz7mk4MwLTkEM3bsWF188cUMwfxLMu3o7gW5D9ofFi7V10Z0NdYTUNQa4gq9dIcCr/9Rnpxzmv5V7j5SkSm3Kl3Z20h7AAAAAACgSKTqFVp8h4Kv/85Vcjxe1Z5wseIjvid5ebwQAAAA+Yn/UkVRWr8jrj8u2Zyzdkz3sM46prOxnoCD5jgKrHhQoednypPKHerKqBt0tmITrpfjDxtpDwAAAEDh27BhQ/afXbt2lc/n+9TXde/e3fUxLTkEM3v27OwQzOjRoxmC+YQn3tqmdTviOWvfO7GXAqWf/u8LQOso2bxUFXOvlK8m95TqDKckoNiYy1V3zNc5BQYAAAAAALQq7671avf0JSrZtsJVS4W7KnLKXUr2GGmkNwAAAKCpGIRB0XEcR7c8sz67I+pePq9HV5/SR16Px2hvQFN56ncr/Ox0lb37T1fNKS1XdMINqh98jpHeAAAAABSHRCKhSCSSfb9jx44HfG04HM6eGlNfX68dO3a0aB9/+9vftHDhQgUCgezAzd///nfXa0aOHKkjjjiiSZ+vqf0daPAnX9QmUvrlotzBo0GHhXTG0V2y90JQHD45GMagmAHJOgVfvFNly/6r0VNgkt1GKHbK7UpX9VH+/2RpG+QWtiK7sBG5ha3ILgAAzVP29iMKLbxO3oaYq1bf52RFJ8+SE6wy0hsAAABwMBiEQdF5/K3tWrZhz4M6e31tRFf171xurCfgYJRsXqaKOZfKF9noqiU7Hand0+7NPjgBAAAAAK2prq5u3/uZIZTPknlNZhBm/49rCdu2bdvXz8MPP9zoaw477LAmD8JceOGFTXrdQw89pHz3h2fWaHusIWft2s8fpU4dOxjrCeZVVlaabqG4bFgqPXKBtOMdd60kIE2+RiWjL1SllxGYAyG3sBXZhY3ILWxFdgEAODBPIpodgAmsftRVc3x+xcZdrbqjvyaxiTAAAAAswSAMms2GnU8/qbq2Qfc+90HOWvfKMp1/Ym8rvx4U2Y5QTlplS3+Z3UHU46Rc5brjvqn4uOnylJSxe2gBKJjcouiQXdiI3MJWZBf5cCLMXiUln32Lae9r9v+4lnDRRRdl35Br6+46/fq5dTlrkwZ11rj+nYz1BBSVhjppwS3S4nuz93RceoyQzpotdR5oojsAAAAAOGQ8YwEbcB99D9/WNxV66mL5at5z1VJV/RQ77T6lOh/JsyZ5gtzCVmQXNiK3sBXZ3YNBGDRbVZV9x2DOfOZ17Yonc9ZuOvsYdT+Mh0CKiZU7QkW2So98V1q3wF3LHEn7hfsVGHy6PnsPZtjKytwCZBeWIrewFdlFW/P7/fveTyZz/1+7MXtfs//H5aPZs2erENw5Z7XiDR9vouD1SNNPH2K0J6BobFwmPXqhtO1td83nlyb9RBp7scQpMAAAAAAsZuMzI0DR3UdPp6WX7pfmXi+lc0+Ozhr2dflOnaV2/pCJ7tBERZdbFAyyCxuRW9iqskizyyAMisaL7+7Q35dtyFn73NHdNGnwYcZ6Appk7VzpkQuk2DZ3rfdY6Yv/JVX2MNEZAAAAgCIWCHw8il9XV/eZr9/7mv0/Lh917NixSa+rrq5WvlrzUUz/uzT3HsjZx3RRZ38yr/tG68jsALX/ze+amhqlMw9BoOUl6xVYcp8CS2c3eppv8rBjFJt6p9IdB0g1u420aAtyC1uRXdiI3MJWNmWXYQEAgBHRbXs26lj7jLtW1k46827pqC+a6AwAAABoEQzCoCjUJ1P6yaNv5qxVlJXo2jOPNNYT8JlSDdKzP5UW3eOuebzSSVdIJ10u+fhRDgAAAKDtZU52qaioUCQS0Y4dOw742mg0qvr6+oMaNMl3qZT7Ifd8cdf89+Tsd11e6tV5Y7vndc9oO5mHA8lCy/NtW6GKuZerZMdqV83xlqp25A8UH/ZdyVuS+QFipEebkVvYiuzCRuQWtiK7AADsZ90C6eHvStGt7lqPEdK5v5WqjjDRGQAAANBieHoazWbTDqK/WvSh1m2L5ax9b3wv+VNxVVfHjfWFtmHTjlB7eWs+VOifF6tky3JXLR3qotipdyvZc4y0O2KkP7Q+G3MLZJBd2IjcwlY2ZZedTwtXz549tWrVKm3ZsiX7wJHP52v0dZs2bcr5GLQex3H0lWFd9VEkoXU79tzz+PrI7uoU8ptuDShMqQYFX52t8qW/kCeddJWTnYcqMuV2pToNMtIeAAAAALQWm54ZQfGy6T56i0g1KPDSXXtOq83ZKkdy5FHdiAtUN/pHkkoz38TG2sSBFV1uUTDILmxEbmErm7Jb1YrPizAIg2azZUedD6rr9LsXN+SsHdklpHOO6WzN14Di2hHK/84/FJ5/tbyJqKuWOGKyIlNulRPswO6hRSbfcwt8GrILG5Fb2IrswoRBgwZlB2Eyp72sW7dOAwYMaPR1K1euzPkYtB6Px6MT+7bX6CMq9X9vbtPDb2zV10Z0Nd0WUJB829/ecwrM9o9/xu3leEtUO+L7ig+/QPKVGukPAAAAAFoT9yJho0K+j+7d/aEqnv6hSre+5qqlyzsrcsqdaug1bs9Cgf4eFKpCzi0KG9mFjcgtbJUu0uwyCIOC3wV11jPrlUh9vMuB1yNdPbWPfJl3gHzSEFf4+Z8qsPKvrpLjLVVs3JWqO+abmaeajLQHAAAAAJ80cuRIPfroo9n358+f3+ggTOam28KFC7Pvh0IhDR06VIXg006/yReZ9r40rJvOPb5rdjgGxb0j1IGu0QzppAJLf6nAy/fIk25wlZOdBqt26p1KdR6q/P5Jkb/ILWxFdmEjcgtbkV0AAJq44erhExSZcpuc8k5GegMAAABaC4MwKGhPrdqhJR/szln7yrCuGtwlZKwnoDG+HatV8fQlKtn5jquWqjxcu6fdo9RhRxvpDQAAAAA+Tf/+/TVkyJDsqTCZQZiJEydq4MCBOa954okntHHjxuz7p512mkpKCuN2VGse4Qy0pv2PSUczfLRKeuQCafNyd83jk8ZfppKTLle7Er+J7goWuYWtyC5sRG5hK7ILACjeDVdvVGDlQ41vuDrmctUd9y3Jw8AoAAAACk9hPHkANKImntRd89/PWetS4dcF43oa6wlwcRwFVjyo0PMz5UnVu8p1g85SbMINcvxhI+0BAAAAKGxvv/22tmzZsu969+6PN5PIrC9YsCDn9ZlBl0/65je/qWuuuUaJREIzZ87U2WefnT31JXO9ePFizZ07N/u6bt266cwzz2zVrwcAWk0qKb14nzT/ZimVcNc7D5HOni11P95EdwAAAAAAoMj4tr+9Z8PV6rWuGhuuAgAAoBgwCIOC9fPnP1B1PJmzdvmUw1Xu9xnrCdifp363wvN/orK1T7pqTmm5ohNuUP3gc4z0BgAAAKA4zJs3TwsXLmy0tnr16uzbZw3C9OnTR5deeqnuu+8+xeNxPfjgg67XZIZgpk+frmAw2ILdA0Ab2bZGevRCaeNSdy2zo+q4S6WJV0klZSa6AwAAAAAAxbbh6pt/VmjRzfI0slkHG64CAACgWDAIg4K0fENEj7yxLWdtQv8qTezfwVhPwP5KtrymiqcvlS+ywVVLdjpSkczOHFV9jfQGAAAAAAdrxIgRuuOOO/Tkk09q2bJl2rlzp0pKStS1a1eNHj1ap556qsrKCusB8erqatMtAE3i9XpVWVm577qmpkbpdNpoT9ZIp1S2/HcKLr690QdLUlX9FJt6p1Jdj5MitZIyb2gJ5Ba2IruwEbmFrWzKblVVlekWAAAFwlO3S+Fnr1LZumc+ZcPVG1U/+GwjvQEAAABtjUEYFJyGVFo3P7M+Zy1Y6tXlkw831hOwj5NWcNlvVP7yz+RJ555YlBE/5uuKjWUHUQAAAABt46KLLsq+tYTOnTvrG9/4RvatGKRSKdMtAM2SeTiQ/H42b/V6Vcy7QqVblrlqjjyKH///VDvqh3vu4fD72erILWxFdmEjcgtbkV0AQKEr2fSKKuZcKl90i6uW7DxUu6fdo3T7PkZ6AwAAAExgEAYFx+vx6NzjDtMvnt+gWGLPzc4LxvVU13YMFsAsT+12VTxzmfwfvuCqpcsqFZ1yqxJ9TzHSGwAAAAAAAPZsYhJ4448KvXiHPMk6VzlVeYQiJ9+mZLfhRtoDAAAAAABFJp1ScOkvVP7KffI47tPP4sd+W7GxP5Z8PBcFAACA4sIgDAqOz+vRl4/vqkkDOujOZ9/Xh7vq9G/DuppuC0Wu9IMXVDH3Mnlrt7tqDd1GKDL1LqUruhvpDQAAAAAAAJK35n1VzLtKpZuWNHoKTN2x31Js9I+k0qCR/gAAAAAAQHHxRjZlN1xt7F5FOtAhu1lHwxGTjPQGAAAAmMYgDJrN5/Mpn3WtDOr2swcrVp9SWWl+94rW5fV6D3jdqlINCr54pwKv/rLxByhGXqy6UT+Qx1siUoq8yS1wCMgubERuYSuyCwBAC54C8+Z/K7T4VnmScVc5VdlbkSm3Kdn9BCPtAQAAAEA+yvdnRgDb76OXvjtH5XOvkLdul6vW0HOsYtPukhPuwrMmBcjm3KK4kV3YiNzCVmR3D4/jOM6/3gcAtKTq96S//z9pwyvuWkU36ZxfS31OMtEZAAAAAOAQVVdXm24BaJLMje/Kysp91zU1NUqn00Z7yife3R+q/JkrVLrhxUbrdcd+U/FxV0il5W3eWzEjt7AV2YWNyC1sZVN2q6qqTLcAALBJQ500Z4b0ym/cNY9PmvwTadylkpcRGAAAABQ3BmEAoDWseET6v0uk+hp3bcBU6azZUqiTic4AAAAAAACQuS3+6u+lOddIiai73r639IX7pT7jTXQHAAAAAACK0bbV0t++LW19y12r7C2d+1up10gTnQEAAAB5p8R0AwBQUBri0j+n73mQ4pO8pdIpN0ijvyd5PCa6AwAAAAAAwK4Ppf+7WFo3v/H6iG9Lp/xUKgu3dWcAAAAAAKBYN+x47QHpqSulhlp3/cizpDPvkYLtTXQHAAAA5CVOhEGzVVdXm24ByKuj0b071ij81Pfl27HGVUtVHq7YaT9XqsvRLf7rojC1VW6BlkZ2YSNyC1vZlN2qqirTLQAA8PFDJf+8WkpE3PV2PaUv3Cf1m2yiOwAAAACwCs+MwAZW3Eev363Qs1fLv+YJV8kpCah2wnVKDP0KG64WEStyCzSC7MJG5Ba2sim7rfm8CCfCoNlSqZTpFoBmyfywb9H8Oo7KVv5V4ed/Kk+yzlWuG/h5xSbeKMdfkfnGablfF0WlxXMLtBGyCxuRW9iK7AJti4c9YAubboS3Jk9ks0LzrlLp+wsbrdcP/Ypqx/9EKqvIfIO3eX/IRW5hK7ILG5Fb2Mqm7LJBCAoV9yJho3y7j16y5TVVPH2pfJENrlqy4yBFpt2jVIcBmcaN9If8kG+5BZqK7MJG5Ba2ShdpdhmEAYBD4KmPKDz/apWtfdJVc0qCik64XvWDv8jOHAAAAABQYIrxRiIKQ9HdCM9sYPL2wwo9/1N5GzkFJhXqqujkm9Vw+IR/LRTR741Fii63KBhkFzYit7AV2QUAWMVJK7js1yp/6WfyOO4/v+JHf02xcdOlkoCR9gAAAAAbMAgDAM1UsmW5Kp6+pPGdOToN2bMzR1U/I70BAAAAAAAUO0/sI1XM/4n87z3baL1u8BcVGz9DTlm7Nu8NAAAAAAAU8f2KuT+W/8NFrlq6rFLRybco0W+akd4AAAAAmzAIAwDN2Znjtd/s2ZkjnXSV40f/57925igz0h4AAAAAAEBRy5wCs+b/FHruBnnra1zlVPlhik66SQ19JhtpDwAAAAAAFKfS9xeoYu7l8sZ3umoN3UYoMvUupSu6G+kNAAAAsA2DMABwEDy121XxTGZnjucb35ljyiwl+k410hsAAAAAAECxy9y7CS+YobJ1zzRarxt0lmLjr5ETaN/mvQEAAAAAgCKVSij04h0KLv+tq+R4vIqP+L5qT7hI8vIoHwAAANBU/NczADRR6QcvqGLuZfLWbnfV2JkDAAAAAADALP87Tyi88Hp566pdtXSwo6KTZrKBCQAAAAAAaFPeXetV8fSlKt32lquWCnVVZOrPlOwxykhvAAAAgM0YhAGAz5JqUPnLdyu47FfyyMkpOfIofsJFqj3hYnbmAAAAAAAAMMAT35EdgClb+2Sj9foBZyh60nVygh3avDcAAAAAAFC8ylY/qtCCa+VtiLlq9X1OVnTyLDnBKiO9AQAAALbjqW0AOADv7g17dubY+pqrlio/TNGpP1NDzzFGegMAAAAAmOPz+Uy3ADSJ1+s94LXtSt95SuXzZ8gb3+GqpYMdVDtpphoGnK7C+qoLX6HnFoWL7MJG5Ba2IrsAgHzmSUQVWni9AqsfcdUcn1+xcdNVd/R/Sh6Pkf4AAACAQsAgDAB8Cv/afyr87FXyJiKuWuLwCYqcfLucYEcjvQEAAAAAzKqqYqdG2KmyslIFoXan9OTl0lt/a7w+5PPyfu5nCoc7t3VnaAUFk1sUHbILG5Fb2IrsAgDyhe+jN9Xu6Uvlq3nPVUtW9VNk2j1KdRpipDcAAACgkDAIAwCflKxT6IWbFHzrL66S4y1VbMzlqjvuW5KHnaUAAAAAAADa3Nv/kB6/VIp95K4Fq6TP3SkNPYddVQEAAAAAQNtxHAVe/71Ci2+TJ93gKtcd+WVFx18jlZYbaQ8AAAAoNAzCAMB+fDvfUcU/f6CSnWtctVS73tmdOZJdjjHSGwAAAAAAQFGLV0tPXSW98T+N1wd9TjrjLqmiS1t3BgAAAAAAipgnvkMVc6+Q//0FrlraH1Z00k1KDDjDSG8AAABAoWIQBs3m8/lMtwA0idfrPeB1luPIv+KvKl94vTzJOlc5MfDzik2+SSqrEMlH3uQWyENkFzYit7AV2QXMqq6uNt0C0CSZPx8qKyv3XdfU1CidTss2JeufVWjeVfI2cgpMuqxS8Yk3KDHoC1LSk/kGNdIjWk6h5BbFh+zCRuQWtrIpu1VVVaZbAFoFz4zABm1xH73kw8UKPX1po/cskl2PU+zU+5Su7MWzJmgy/v4HtiK7sBG5ha3I7h4MwqDZuGEHW+1/UzyrrkZ6/FJpxcPuF2eOpD39dvmP+w/5PZ426xH4zNwCliC7sBG5ha3ILtC2UqmU6RaAZsk8HGhTfj31uxV64SYFVv2t0XriiMmKTpypdLhL5otr8/7QNmzLLbAX2YWNyC1sRXaBtsczI1Cx30dPNUjzb5ZeuCuz+6q7Pu5SlUyeoUpfacv9mihK/P0PbEV2YSNyC1tVFml2GYQBUNw2vCr97VvSrvfdtS5HSef+Tuo8yERnAAAAAAAARa30/ecUnj9dvugWVy3tr1Bs/DWqH3yOxOYlAAAAAACgLVW/L/39O9KGV9y1zGYdZ/9S6jfZRGcAAABA0WAQBkBxyuwQ+uJ90rwbpXTSXT/h/0lTZ0qlQRPdAQAAAAAAFC1PIqLQC7cosPKvjdYTvU9SdPLNSoe7tXlvAAAAAACgyK14RPq/S6T6Gnet/8nSWb+Uwp1NdAYAAAAUFQZh0GzV1dWmWwCaxOv15hz7tXvzuwr+89LsrqKflC5rp9qTb1ND/1OlaJ2kzBtgPrc1NTVKZwa4gDxHdmEjcgtb2ZTdqqoq0y0AACxR+uEihZ+9Sr7IJlctXRpWbPxPVD/kS5wCAwAAAACG8cwIiu4+ekNc5c/dqLK3HnSVHG+p4uOuUP3x35EavJlvkENpG0XOpr//AfZHdmEjcgtb2ZTdqlZ8XoRBGDRbKpUy3QJw8N6dr/Dfz5O3dpur1NB1mCJT71a6XY9MwI20B3yazH+k8HMXNiK7sBG5ha3ILgDAaomYQotvVfCt/2683GucopNnKV3Rvc1bAwAAAAC4cS8SxXQf3bd9tSqe/oFKqte6aqnK3opMvUfJLsdIaSez0kLdAnvw9z+wFdmFjcgtbJUu0uwyCAOgOKQapAW3SM//TF5lbjx8zJFH8REXqnbkJZKXH4sAAAAAAABtqXTDSwrPu1K+yAZXzSktV2zcdNUN/XdOgQEAAAAAAG3LcRR4678VeuEmeVIJV7lu4BcUm3iDHH+FkfYAAACAYsYT3wAKnnf3BunvP5I2LHHV0uWdFZn6MzX0HGukNwAAAAAAgKLVUKvQi7cr+MafGi0neoxWdMospdv1avPWAAAAAABAcfPU7VL42ekqWzen0Y07ohNuUP3gc4z0BgAAAIBBGAAFzr/2nwrPny7V73bVEodPUGTKbXLKOxnpDQAAAAAAoFiVbHpFFfOukK/mA1fNKQkqNvZK1R39H5LHa6Q/AAAAAABQ5Pct5vxQvuhmVy3Zeah2T71H6ao+RnoDAAAAsAeDMAAKU7JOoRduVvCt/3aVHG+Jasdcrvhx3+ZhCgAAAABAs/h8PtMtAE3i9XoPeN3mGuIKvniHyl77nTxy3OXuI1V7yu1Ktz9cfJcVr7zLLdBEZBc2IrewFdkFALSKdErBpfer/JV75XHSrnL82G8pNvZyyVdmpD0AAAAAH2MQBkDB8e1cq4qnf6CSHavdxaojFJl6jxKdjzLRGgAAAACgQFRVVZluAWiWyspKc7/4h0ukRy+Udqx110qC0snXqXTk+arkIUbkU26BQ0B2YSNyC1uRXQDAofJGN6tizo9UummJq5YOdFDk5NvUcMQkI70BAAAAcGMQBkDhcByVrfpfhZ+7QZ5knbs+9BzpzLuViqelVMpEhwAAAAAAAMWnoU6af5P04s+lRnZTVa9R0hfulzr1N9EdAAAAAAAocv51zyg87yp563e5aomeYxQ9+U6lw12M9AYAAACgcQzCACgInvqIwgtmqOydJ1w1pyQgz+m3S8f/p+TxSPFqIz0CAAAAAAAUnQ2vSo9eIG1f4675yqQp10ijvyd5fSa6AwAAAAAAxSxZr9CiWxR88wFXyfH4VDvqUsWHnc99CwAAACAPMQgDwHolW99QxdOXyLf7A1ct2XGQYqf9XJX9RxrpDQAAAABQmKqr2WQBdvB6vaqsrNx3XVNTo3S6kVNZWlqyXoGX71Hg1V/K08gpMMkuxyo29U6lO/SXana3fj+wirHcAoeI7MJG5Ba2sim7VVVVplsAADTCt3Nt9lmTkh1vu2qpih6KTL1LyW7DjfQGAAAA4LMxCAPAXk5aweW/U/mLt8uTTrrK8aP+Q7ETr5avLGSkPQAAAABA4UqlUqZbAJol83Bga+fX99Gbqph7uUp2vuOqOV7/nt1Uj/+O5C3JfDO1ai8oDG2RW6A1kF3YiNzCVmQXANBkjqOyVf+r8HM3ypOMu8r1/U5TdPLNcsraGWkPAAAAQNMwCAPASp7a7aqYd4X87y901dJl7RSddIsS/U810hsAAAAAAEBRSiVUvvQXCi6dLY/jfgixofNRip58u1IdBxppDwAAAAAAFLn63aqYN11l7/zDVXJKAoqOv0b1R/6b5PEYaQ8AAABA0zEIA8A6pRsWKzznMvlqP3LVGroer8jUe5Ru18NIbwAAAAAAAMXIt23lnlNgdrztqjneUtWOvFjx478r+UqN9AcAAAAAAIrchqVq99A35dv9oauU7DBQkVPvVarDACOtAQAAADh4DMIAsEc6qfIl9+zZVVROTsmRR/HhF6h25CU8UAEAAAAAANBWUg0KLvulyl/5uTzppKuc7HSkIplTYDoNNtIeAAAAAAAocum0tPge6dmZ8jVy7yJ+9NcUGzddKgkYaQ8AAABA8zAIA8AK3sgmVcy5VKWbX3XV0uWdFTnlTjX0GmekNwAAAAAAgGLk27F6zykw21a4ao63RPHh31PtiAsln99IfwAAAAAAoLh5Yh9Jj39TWrfAVUuXtVN08iwl+k0z0hsAAACAQ8MgDIC853/3aYWfvUre+t2uWqL3eEVOvkNOeScjvQEAAAAAABSddFLBZb/JntzrSTe4ysmOgxSZcptShx1lpD0AAAAAQOvz+XymWwAOqOS9BQrNuUyK73DVGrqfoNi0u+W06yGSjHzj9XoPeA3kK7ILG5Fb2Irs7sEgDJqNmxpodck6BZ+/SYE3Hmh8V9GxV6h+2P+T13PgH+D8wIeNyC1sRXZhI3ILW5FdAIAJvp3vKDz3CpV+9Iar5nh8ig8/X7UnfF/ylRnpDwAAAADQNqqqqky3ADQumZDm3SC9+HN3LfN8yUmXq/SkK9Tex2NzsENlZaXpFoBmIbuwEbmFrSqLNLv8Fz2ajZsaaFXbVkt/+7a09S13rf3h8pz7e5X3HK7yZnzqYv2BD7uRW9iK7MJG5Ba2IrsAgFaVTim4/Lcqf/kueVIJVznZYYCiU25TsssxRtoDAAAAAADQjnelv39H2vSau1bRXfrib6QjTjTRGQAAAIAWxiAMgPziONLy/5aevFxqqHXXh54jnXm3FOAhPwAAAAAAgLbgq1635xSYre6HSByPV/Hjz1PtyEukEk6BAQAAAAAAhrzxkPTED6VE1F0beJp01v1SeQcTnQEAAABoBQzCAMgfdbv33JR462/uWklQOv026fj/lDweE90BAAAAALCPz+cz3QLQJF6v94DXB5ROqWz57xVcfLs8qXpXOVXVV7FT7lCq2zDxHYG8yS1gENmFjcgtbEV2AfOqq6tNtwDskYipfME1Klv1sKvk+PzyTJ0pjfxu9lmTmpoapdNpI20CTZX575rKyo83CCa3sAXZhY3ILWxlU3arqqpa7XMzCINm46YGWpJv6xsKPXWxfDXvu2qpjoMUPe3nSnccIO3addCf26Yf+MBe5Ba2IruwEbmFrWzKbmve2ABMIdew1f5/dhzQjnelxy6SPnixkaJHGnORfJNnqF1psKVbBJqfWyDPkF3YiNzCVmQXaHupVMp0C4B8H72ldk9fIl/Ne65asn1f1Z7+c7UbOG7fWuYeOtmFbcgtbEV2YSNyC1ulizS7DMKg2YrxGwatwEkrsPz3Cr14uzzpBlc5ftRXFTvxJ1JJIBO6Fvkli/UHPuxGbmErsgsbkVvYiuwCAFpEZqjyld9Iz1wnJePueoe+0lmzpd6jTXQHAAAAAAAgOY4Cr/9BocW3NvqsSd2QLyl60rXyBSqMtAcAAACg9TEIA8AYT3yHKuZeLv/7C121tL9C0cm3KNH/NCO9AQAAAAAAFJ2d66XHvi+9/0Lj9VEXSlOulfzlbd0ZAAAAAADAfs+aXCH/+wtctbQ/rOjEmUoMPNNIbwAAAADaDoMwAIwo3bBY4TmXyVf7kavW0OV4RabdrXS7nkZ6AwAAAADgs1RXV5tuAWgSr9erysrKfdc1NTXZU8RyOGn53/xvlb9wizwNta7PkarsrdqTb1Oy52gpVr/nDTCdWyAPkV3YiNzCVjZlt6qqynQLAFAkz5ocq8jUu5Wu7G2kNwAAAABti0EYAG0rnVT5knsVXHq/PHJySo48ig87X7WjLpV8pcZaBAAAAADgs6RSKdMtAM2SeThw//x6d29U+Nmr5N+wuNHXx4/+T8XGXC75Q5ngt2GnwKfnFrAF2YWNyC1sRXYBoMClGlS+5B4FX/2l61mTjNrssyY/5FkTAAAAoIgwCAOgzXgjm1Qx51KVbn7VVUuXd1Lk5DvV0PtEI70BAAAAAAAUFcdR2cq/KvTCzfI2xFzlVEUPRafMUkPPsUbaAwAAAAAAyPDu3rDnWZMtr7lqPGsCAAAAFC8GYQC0Cf+6OQrPu0re+hpXLdFrvCKn3CGnvJOR3gAAAAAAAIpts5Lws1fL/+HzjdbjQ/9dteOukuMPt3lvAAAAAAAAe/nXPpm9h+FNRFy1RO/xipzMsyYAAABAsWIQBkDrStYrtOgWBd98wFVyvCWqHf0jxY8/T/J4jbQHAAAAAABQNBxH/hUPKfjcjfImoq5yKtxN0cm3qKH3eCPtAQAAAAAAZDXEFXphpoIr/qfxZ03GXK74cd/mWRMAAACgiDEIA6DV+KrfVcXTl6hk+ypXLVXRU5Fp9yjZ9TgjvQEAAAAAABSV3Zukxy9R6J05jZbrjvyyYuOullNW0eatAQAAAAAA7OXbvloVcy5Ryc53XLVUZW9Fpt6jZJdjjPQGAAAAIH8wCAOg5TmOyt7+u8ILr5cnGXeV6/ufruikm+SUtTPSHgAAAAAAQNFwHOn1/5GeukKqq3GVU6Euik6+WQ2HTzTSHgAAAAAAQJbjKPDWXxR64SZ5UvWuct3ALyg28QY5fjbxAAAAAMAgDIAW5klEFVpwrQJrHnPVHF+Zoiddq/oj/03yeIz0BwAAAAAAUCw8sW0KLZwhrZvbaL1u8DmKnThDTqCyzXsDAAAAAADYy1O3S+Fnp6tsnfskW6e0XNGTrlf94HN41gQAAADAPgzCAGgxvo/eVLunL5Gv5n1XLdlhgCLT7lWq40AjvQEAAAAAABQNx5H/nccVXniDvPW7XOV0eefsab2JPlOMtAcAAAAAALBXyaalqphzqXzRza5asvNQ7Z56j9JVfYz0BgAAACB/MQgDoGWOp3399wotvk2edIOrHB/674qd+BOpNGikPQAAAAAAgGLhqd2u8IJrVbbu6Ubr9YPOUnT8NXIC7du8NwAAAAAAgH3SKQWX3q/yV+6Vx0m7yvFjv6XY2MslX5mR9gAAAADkNwZhABwST3yHKuZeKf/78121tL9C0ck3K9H/dCO9AQAAAAAAFBP/2icVXnCdvHU73cVQZ+mMu1Tb9UQ5qZSJ9gAAAAAAALK80c2qmHOZSje97KqlAx0UmXKrGvpMNtIbAAAAADswCAOg2Uo3vKTwMz+SL7bVVWvocpwi0+5Wul0vI70BAAAAAAAUC098p8ILr1PZ2icbf8HQc6TT75BCHaXq6rZuDwAAAAAAYB//+rkKz71S3vpdrlqix2hFT/mZ0uEuRnoDAAAAYA8GYQAcvHRS5a/cp+Arv5BHjqtcO+x81Y76oeQrNdIeAAAAAABAsfC/+7TCC66RN76j0R1Uayf/VOGRXzPSGwAAAAAAwD7JeoUWz1LwjT+5So7Hp9pRlyo+7HzJ6zPSHgAAAAC7MAgD4KB4I5tUMeeHKt281FVLBzsqcsqdaug93khvAAAAAAAAxcITr1bo+RsVWPN/jdbr+05TdOKN8lawgyoAAAAAADDLV/2uKp6+RCXbV7lqqYruiky9W8luw430BgAAAMBODMIAaDL/umcUnpc5nrbGVUv0OlGRk++QE+pspDcAAAAAANqSz8fOlDCndN0zKp93tby121y1dKC9aifeqIaBZ8rr8cjr9ebUP3kN5CNyC1uRXdiI3MJWZBcALOE4Klv1N4Wfu0GeZNxVru93qqKTbpYTqDTSHgAAAAB7MQgDoGnH0y66RcE3H2j8eNrRlyk+7DzJww1mAAAAAEBxqKqqMt0CilG8WvrndOn1BxuvDzpd3jPuVvgAp8BUVvJgCexDbmErsgsbkVvYiuwCQP7x1EcUXjBDZe884ao5vjJFx1+j+qFfkTweI/0BAAAAsBuDMAAOyFe9ThVP/+BTjqft8a/jaYcZ6Q0AAAAAAKBorJkjPf4DKbLZXcvsmnra7dIxX+bhEQAAAAAAYFzJluWqmHOpfLs/dNWSHQYqMu0epToONNIbAAAAgMLAIAyATz+e9u2HFX7uenkaal3l+n6nKTr5Zjll7Yy0BwAAAAAAUBTqaqSnr5Ze+3Pj9QFTpTPvldp1a+vOAAAAAABFzOfzmW4B+chJq+zVXyn44p3ypJOuct3RX1P8pBlSSUBtkSCv13vAayAfkVvYiuzCRuQWtiK7ezAIg2bjpkYBS0RVPv8alb39SKPH09ZOuE6Jo/5dXkt2GOUHPmxEbmErsgsbkVvYiuwCZlVXV5tuAUWg5P3nFJp7pbxR9ykwjr9CtROuVWLIuVLKkwllo58j8+dDZWXlvuuamhql0+lW7Rs4VOQWtiK7sBG5ha1sym5VVZXpFoBWQbbhEtkqPXK+tG5+46fZfv7nChz5eQVkzv5/dgC2ILewFdmFjcgtbFVZpNllEAbNxk2NArVpufS3b0k717lrnQfLc+7vFepypEKyV7H+wIfdyC1sRXZhI3ILW5FdoG2lUinTLaCAeTKblCy6RcEV/9NoPdF7vKKTbla6ort0kA/7ZR4OJL+wDbmFrcgubERuYSuyCwCGrZ0rPXKBFNvmrvUaLX3xv6T2vUx0BgAAAKBAMQgDYA/HkV7+pTTnGind4K4P+4Z06izJX26iOwAAAAAAgKJQ+uEihZ+dLl9ko6uWLg0pduLVqj/y3yRLTuoFAAAAAAAFLJmQnr1RWnxfI0WPdNLl0oQrJR+PqAEAAABoWfxfBgAptkN67HvSmn+6a2XtpDPvkY46x0RnAAAAAAAAxSERU+jF2xR888+Nl3uOUXTyrUq369HmrQEAAAAA8EnV1dWmW4Bh3l3vKfTUD1Ty0RuuWjrcVbFpdynZc4y0OyJTvF5vzmnqNTU12VPEgHxGbmErsgsbkVvYyqbsVlVVtdrnZhAGzcZNjcJQsuElhf55ibyxra5assuxip32c6Ure2X+hctWNv3AB/Yit7AV2YWNyC1sZVN2W/PGBgAUgpKNL6ti3pXy7f7QVXNKyxUbe5Xqjvp3yeM10h8AAAAAAJ+USqVMtwCDylY/ptCCa+VtiLpq9UdMUXTKLDnBDpmgKJ9k7qGTXdiG3MJWZBc2IrewVbpIs8sgDJqtGL9hCko6qfJXfqHg0p/L47gflqsd9l3VjvqR5CvNuxsTh6pYf+DDbuQWtiK7sBG5ha3ILgBYqCGu0Iu3K/jGHxsvdx+lyJRZSlf2bvPWAAAAAAAAXBIxhZ+7XoG3H3aVHK9fsXFXqe6Yr0sej5H2AAAAABQPBmGAIuSNblbFnB+pdNMSVy0d7KjIyXeo4fCTjPQGAAAAAABQDEo2L1XF3Cvkq3nfVXNKAoqNuUJ1x/wnp8AAAAAAAIC84Nu2QhVPX6KSXetdtWT7vopMu0epzkca6Q0AAABA8WEQBigy/vVzFZ57pbz1u1y1RK9xipx8p5xQZyO9AQAAAAAAFLxkncpf+pmCy38njxxXuaHbcEWm3KZ0+yOMtAcAAAAAAJDDcRR4/Q8KLb5NnnTCVa4b8iVFT7pWKi030h4AAACA4sQgDFAsUvUKLbpVwTf+6Co5Hp9qR/1Q8eHns8soAAAAAABAKynZ8prCc69Qya51rprjK1NszI9Vd8w3JK/PSH8AAAAAAAD788R3qGLulfK/P99VS5eGFZ30UyUGft5IbwAAAACKG4MwQBHwVq9XuzmXqGTbClctVdFDkal3KdltuJHeAAAAAAAACl6yXuVL7lHwtd/I46Rd5YYuxyt68m1KVfU10h4AAAAAAMAnlW54UeE5P5Kv9iNXraHLsYpMvVvpyt5GegMAAAAABmGAAlf29sMKL7xOnoZaV62+36mKTrpZTqDSSG8AAAAAAACFrmTrGwrPu0IlO99x1Ryff88pvcd9h1NgAAAAAABAfkgn92zosXS2PHJc5dph383ez5DPb6Q9AAAAAMhgEAYoUJ5EVKGF1ymw+tFGH7KIjb9GdUP/XfJ4jPQHAAAAAABQ0FL1Kn/l5wq++it5nJSr3HDYMXtOgekwwEh7AAAAAAAAn+TdvUEVcy5V6ZbXXLV0eSdFTr5DDb3HG+kNAAAAAPbHIAxQgHwfvaV2T18iX817rlqyqr8i0+5VqtMgI70BAAAAAAAUw72ZiswpMDtWu2qOt1S1Iy9RfNh5kpfbswAAAAAAID/41z6l8LPT5U1EXLVE7/HZIRinvJOR3gAAAADgk/ibVqCQOI4Cb/xBoUW3yZNOuMp1R35Z0fHXSKXlRtoDAAAAAAAoaKmEypfOVvDV++VJJ13lZOehiky5nQ1KAAAAAABA/miIK/TCTAVX/I+r5HhLVDv6x4of/x3J4zXSHgAAAAA0hkEYoEB44jsVnneVyt6b56qlS8OKTpqpxMAzjfQGAAAAAABQ6HzbV6li7hUq2b6y8YdGTvi+4sMukHylRvoDAAAAAAD4JN+O1ap4+hKV7HzHVUu1663ItHuU7HKMkd4AAAAA4EAYhAEKQMnGl1Ux50fyxba4ag2HHZO9MZGu7G2kNwAAAAAAgIKWalBw2a9U/srP5Uk3uMrJTkMUmXKbUp2PNNIeAAAAAACAi+MosOJBhZ6fKU+q3lWuG/h5xSbeKMdfYaQ9AAAAAPgsDMIANkunsg9ZBJf+XB4n7SrXHn+eakf/SPL5jbQHAAAAAABQ6LumhudeodJtb7lqjsen+IjvqXbE97g3AwAAAAAA8oanbpfCz16tsnVPu2pOabmiJ12v+sHnSB6Pkf4AAAAAoCkYhAEs5Y1uzp4CU7ppiauWDnZQ5OQ71HD4BCO9AQAAAAAAFLR0UsHX/kvlL98jTzrhKic7DFTk5NuUOuxoI+0BAAAAAAA0pmTTUlXMuVS+6GZXLdl5qCJT71aqqq+R3gAAAADgYDAIA1jIv35edrdRb/0uVy3Rc6wip9wpJ3SYkd4AAAAAAAAKmW/nWoXnXaHSra+7ao7Hq/iw81U78mLJV2akPwAAAAAAAJd0SsFX71f5knvlcdKucvzYbyo29gruZwAAAACwBoMwgE1S9Qotvk3B1//gKjken2pH/VDxYd+VvD4j7QEAAAAAUCx8Pv7fu+ikUyp77bcKvniHPCn3KTCpDv0VO+UOpboep3xKh9frPeA1kI/ILWxFdmEjcgtbkV0AaDpvdIvCz/xI/o0vu2rpQJUiU25TQ5/JRnoDAAAAgOZiEAawhHfXerV7+hKVbFvhqqUqumePp012G26kNwAAAAAAik1VVZXpFtCWtq+VHr1Q2rDEXfN4pbEXyzfxarUrDSjfVVZWmm4BOGjkFrYiu7ARuYWtyC4ANM6/fq7Cc6+Ut36Xq5boMUrRU36mdLirkd4AAAAA4FAwCANYoGz1owotuFbehpirVt93qqKTZ8kJcHMXAAAAAACgRaXT0su/lObdICXr3PWO/aWzZku9RproDgAAAAAAoHHJeoUWz1LwjT+5So7Hp9pRlyg+7ALJm0/n2gIAAABA0zEIA+SzREzhhdcpsPoRV8nx+RU7cYbqjvqq5PEYaQ8AAAAAAKBg7XhXeuz70geLGyl6pDEXSZNnSKVBA80BAAAAAAA0zle9ThVPX6KS7StdtVRFd0Wm3q1kt+FGegMAAACAlsIgDJCnfNtW7LkxsWu9q5as6qfItHuV6jTYSG8AAAAAABS76upq0y2gtThplb3xgIIvzJInGXeVU5WHK3bKHUr1OEGKZk6JaeSkmDzi9XpVWfnxScI1NTVKZ066AfIYuYWtyC5sRG5hK5uyW1VVZboFAMXCcVS26u8KP3d9o/c06vudquikm+UEPv75CQAAAAC2YhAGyDeOo8Abf1Jo0Sx50glXuW7IlxQ96VqptNxIewAAAAAAQEqlUqZbQCvw7v5Q4XlXyr/x5Ubr8WO+odiYH++5L2NpBjIPB5Jf2IbcwlZkFzYit7AV2QVQ7Dz1EYUWXKPAO4+7ao6vTLHxM1Q39N8lj8dIfwAAAADQ0hiEAfKIJ16t8LNXqWz9XFctXRpWdNJPlRj4eSO9AQAAAAAAFPTGJCseVGjRLfI01LrKqXa9FJ08Sw09RxtpDwAAAAAA4NOUbH1dFU9fIt/uD121ZIcBiky7V6mOA430BgAAAACthUEYIE+UbFyiimd+KF90i6vWcNjRiky7R+nKw430BgAAAAAAUKi8uzcqPH+6/B8uarQeP/prio25QvKH2rw3AAAAAACAT+WkFXztNyp/6WfypJOucvyoryp24k+kkoCR9gAAAACgNTEIA+SB0g9eULvHvy2P4z6uu/a476h2zI8ln99IbwAAAAAAAAXJcVS28iGFXrhZ3oaoq5yq6L7nFJhe44y0BwAAAAAA8Gk8sW2qmHu5/B8+76qly9opOukWJfqfaqQ3AAAAAGgLDMIApqVTCi+8zjUEkw50UOSU29Vw+ERjrQEAAAAAABQib3Szws9Ol/8D98MiGfGhX1HtuKvk+CvavDcAAAAAAIADKX3/OVXM/bG88R2uWkO34YqccpfS7XoY6Q0AAAAA2gqDMIBh/nefkq/mvZy1RM8xip58p9LhLsb6AgAAAAAAKMhTYN7+u0LPz5Q3EXGVU+Gu2R1TGw4/yUh7AAAAAAAAnyqVUPlLd6r8tf9ylRx5FD/hItWecLHk5XEwAAAAAIWP//MBTHLSKl96f85SstOR2v35P0pen7G2AAAAAAAACo03ulXh+T+R//35jdbrhnxJsRN/IqeMU2AAAAAAAEB+8da8r4qnL1XpR2+4aqlQF0VP+Zkaeo420hsAAAAAmMAgDGCQ/71nVbJjdc5a7YjvMQQDAAAAAADQkqfArHlMoedukLd+d+MPi0y6SQ1HTDLSHgAAAAAAwIGUrf4/hRZcI29D1FVLHDFZkSm3ygl2MNIbAAAAAJjCIAxgiuMo+MnTYKr6K9FvmrGWAAAAAAAACokntk3hBTNUtn5uo/W6QWcpNv5aOYHKNu8NAAAAAADggBIxhZ+7QYG3/+4qOV6/YuOuVN0x35A8HiPtAQAAAIBJDMIAhpRuWKzSra/nrMWHXyB5vMZ6AgAAAAAAKAiOI/87Tyi88Hp563e5yunyTopOnKlE31OMtAcAAAAAAHAgvm0rVPH0JSrZtd5VS7bvo8i0e5TqPNRIbwAAAACQDxiEAQwJLv1FznWqXS/VDzzTWD8AAAAAAACFwFO7XeGF16ns3X82Wq8bcKZiJ10nJ1jV5r0BAAAAAFAofD6f6RYKk+OobPnvFVw0S55UwlWuP/JLqp1wveQPiX8Dn83r9R7wGshH5Ba2IruwEbmFrcjuHgzCAAaUbH5V/o0v56zFh31X8vItCQAAAAAA0Fz+tU8pvOBaeet2umrpYAdFJ/xUif6nGukNAAAAAIBCUlXFBhMtLrZDeux70ppGNvfwV0hn3q2yo89VmYneCkRlZaXpFoCDRm5hK7ILG5Fb2KqySLPLU/doNnb3aL7Qq7NzrtOhLmoY+mV+T1sJk4+wEbmFrcgubERuYSuyCwAf88R3Kvzc9Sp75x+N1uv7naboxBvkBDu2eW8AAAAAAACfaf1z0sPflSKb3bXuw6Rzfyt16GuiMwAAAADISwzCoNnY3aOZNi2X3pufs+Q98RJVde5qrKViU6yTj7AbuYWtyC5sRG5hK7ILoFj5181ReP4MeeM7XLV0oErRCTcoMeBzRnoDAAAAAAA4IMeRnrtdmn9z5sJdH/sDafI1UonfRHcAAAAAkLcYhAHa2vN35l6Xd5SGf9NUNwAAAAAAAFby1O1S6LkbFVjzWKP1+r6nKDpxppzyTm3eGwAAAAAAha66utp0CwXB//YjCs2/ybWeDnZSbNrPlDz8JCkSk5R5w8HKnKS+/yZSNTU1SqfTRnsCPgu5ha3ILmxEbmErm7Jb1YoHbzAIA7SlbaulVY/nro3+nuQPmeoIAAAAAADAOqXrn1XF/Kvlrd3mqqXLKhU76XrVDzxT8niM9AcAAAAAQKFLpVKmW7Bfsk6BRbe6lhO9xityyh17Nvfg97lFZR4OJLuwDbmFrcgubERuYat0kWaXQRg0G7t7HLzyebNUtt9Rtml/hWoGfinzm2m0r0Jn0+QjsBe5ha3ILmxEbmErm7Lbmjt8ACgunvrdCj0/U4G3/95oPXHEZEUm3SQndFib9wYAAAAAAHAwgm/8Ub7olpy12OjLFB9+geTxGusLAAAAAGzAIAyarRgnxw6Ft+YD+Vc/lrNWd8x/KlUSYgePNlask4+wG7mFrcgubERuYSuyC6DQlb6/UOFnr5YvlvuAyN7NRmInXav6QWdzCgwAAAAAAMh7nni1gktn56wleo5RfPiF3NsAAAAAgCZgEAZoI8Flv5bH+fihNKckqPix3zLaEwAAAAAAQL7zJCIKvXCzAisfarSeOHyCopNuVjrctc17AwAAAAAAaI7yV2fLm4jkrMXGXskQDAAAAAA0EYMwQBvwRrcosOrvOWt1Q/9dTrCDsZ4AAAAAAADyXemHixSed6V80c2uWro0rNj4Gaofci4PiQAAAAAAAGt4d29Q4I0HctbqBpyp1GFHG+sJAAAAAGzDIAzQBoKv/VaedGLfteP1K378/zPaEwAAAAAAQL7yJKIqX3yrgm/9pdF6oteJik6+RemK7m3eGwAAAAAAwKEof+lnn3iGpFS1Yy4z2hMAAAAA2IZBGKCVeeI7FFiR+9BG3ZAvKh3uYqwnAAAAAACAfFW64UWF510lX2SDq5YuDSk2brrqh36FU2AAAAAAAIB1fNtWKLDmsZy1uqO/pnS7XsZ6AgAAAAAbMQgDtLLg8t/Lk6zbd+14fIoPP99oTwAAAAAAAHmnoVahxbcp+OYDjZYTPUYrOuVWpdv1bPPWAAAAAAAAWkLm3sf+0v6wakd8z1g/AAAAAGArBmGAVuSp363AJx7eqB/4eXbyAAAAAAAA2E/JpldUMfcK+XZ/4Ko5JUHFxl2luqO+Knm8RvoDAAAAAAA4VKUfPC//hy/krMWHXSAn2MFYTwAAAABgKwZhgFaUGYLxJqL7rh15FB9xodGeAAAAAAAA8knph4vU7vFvy5NOumoN3UcqMmWW0pWHG+kNAAAAAACgRThp12kwqVBXxY/9prGWAAAAAMBmDMIAraWhVsHlv89ZSvQ7VamqfsZaAgAAAAAAyCsNtQo/O901BOOUBBQbc7nqjvk6p8AAAAAAAADrla35P5VsX5mzVjvqUqk0aKwnAAAAALAZgzBAKwms+B9566pz1mo5DQYAAAAAAGCf8iX3yhfZmLPW0HWYIiffpnT7Psb6AgAAAAAAaDHJepW/dGfuUocBqh98jrGWAAAAAMB2DMIArSFZr+Br/5WzlDh8olKdhxprCQAAAAAAIJ/4tq9ScPnvctYSPUZp9xcekLw+Y30BAAAAAAC0pOCbD8gX2ZSzFht7Jfc/AAAAAOAQMAgDtILA23+XL7Y1Z612xPeM9QMAAAAAAFqWz8eDCocknVLFghnyOKl9S47Pr/iUm+Ur9RttrdB4vd4DXgP5iNzCVmQXNiK3sBXZBWALT12Ngkvvz1lr6D5KDYdPNNYTAAAAABQCBmGAlpZqUPDVX+UsJXqMVrLbcGMtAQAAAACAllVVVWW6Bbst+Y20ZXnOkmf8ZarsO8JYS8WisrLSdAvAQSO3sBXZhY3ILWxFdgHkq+Crs+Wtr8lZi427UvJ4jPUEAAAAAIWAbVGAFlb2zuPyRTbkrMU5DQYAAAAAAGCP3ZuleTfmrnXsL534Q1MdAQAAAAAAtDhvZJOCb/wxZ62+/+lKdjnWWE8AAAAAUCgYhAFakpNW8NVf5iw1dDlODT3HGmsJAAAAAAAgr/zzKql+d+7aGXdLJWWmOgIAAAAAAGhx5S/fJU8qse/a8ZYoNvoyoz0BAAAAQKEoMd0AUEj87z6tkup33afBcKQtAAAAAAAFpbq62nQLVipZ/6wqVj6as1Y/5FzVtj8q85tqrK9C5vV6VVlZue+6pqZG6XTaaE/AZyG3sBXZhY3ILWxlU3arqqpMtwDAAN/2VSp7+5Gctbqh/650+yOM9QQAAAAAhYRBGKClOI7KX52ds5TsOFiJIyYbawkAAAAAALSOVCplugX7NNSq3fxrcpbSgSpFx14ph9/PNpN5OJD8wjbkFrYiu7ARuYWtyC6AfBNafJs8cvZdp0vDqj3h+0Z7AgAAAIBC4jXdAFAoSt9foJJtK3LWakdcyGkwAAAAAAAAksqX3CtfZGPOWmzcdDnBDsZ6AgAAAAAAaGmlHy6S/4Pnctbiw86TU97JWE8AAAAAUGgYhAFa6jSYpb/IWUq276NEv9OMtQQAAAAAAJAvfNtXKbj8dzlriR6jVD/4HGM9AQAAAAAAtDgnrdDiW3OWUuWHKX7ct421BAAAAACFiEEYoAWUbnxJpVtey1mLD79A8vqM9QQAAAAAAJAX0imF58+Qx0ntW3K8fsUmzuQkXQAAAAAAUFD87zyhkm0rctZqR10ilZYb6wkAAAAAChGDMEALCC69P+c6VdFD9QO/YKwfAAAAAACAfBFY8aBKty7PWasdcaFSVX2N9QQAAAAAANDiUvUKvfSznKVkVT/VDznXWEsAAAAAUKgYhAEOUcmW5fJvWJyzFh/2XclXaqwnAAAAAACAfOCNblX5i7fnrCXb91F8+PnGegIAAAAAAGgNgTf/It/uD3PWasdcLnlLjPUEAAAAAIWKQRighU+DSZd3Vt2QLxnrBwAAAAAAIF+EXpgpbyKasxabOFPylRnrCQAAAAAAoKV56iMqX/qLnLWGbiOU6HOysZ4AAAAAoJAxCAMcAt/2t1X23ryctfhx35FKeJgDAAAAAAAUt9L35qts7ZM5a3WDv6iGnqON9QQAAAAAANAagst+JW9ddc5abOyVksdjrCcAAAAAKGQMwgCHoPzVT5wGU9Ze8aO+aqwfAAAAAACAvNBQq/DC63KW0oEqxcZdZawlAAAAAACA1uCNblZw+e9y1ur7TlOy2zBjPQEAAABAoWMQBmgmX/U6+d/J3dU0ftw3JX/IWE8AAAAAAAD5oHzJvfJFNuasxcZNlxPsYKwnAAAAAACA1lD+8j3ypOr3XTsen2JjLjfaEwAAAAAUOgZhgGYKvvpLeeTsu06XhlV39NeN9gQAAAAAAGCab/sq1y6oiR6jVD/4HGM9AQAAAAAAtAbfjtUqe/vvOWt1Q7+idFUfYz0BAAAAQDFgEAZoBu/ujSpb81jOWt3RX5MTqDTWEwAAAAAAgHHplMLzZ8jjpPYtOV6/YhNnSh6P0dYAAAAAAABaWmjx7fI46X3XTmm5akf+wGhPAAAAAFAMGIQBmiH42q/lSSf3XTslAcWP+5bRngAAAAAAAEwLrHhQpVuX56zVjrhQqaq+xnoCAAAAAABoDSUbX5b//fk5a7XHnyenvJOxngAAAACgWDAIAxwkT+wjBVY+lLNWd+S/cSMDAAAAAAAUNW90q8pfvD1nLdm+j+LDzzfWEwAAAAAAQKtwHIUWzcpZSpd3Uvy47xhrCQAAAACKCYMwwEEKLv+tPKnEvmvHW6r4sPOM9gQAAAAAAGBa6IWZ8iaiOWuxiTMlX5mxngAAAAAAAFqDf+2TKv3ojZy12hN+IPlDxnoCAAAAgGLCIAxwEDzxagXf+kvOWv3gs5UOdzPWEwAAAAAAgGml781X2donc9bqBn9RDT1HG+sJAAAAAACgVaQSCr10h+tU3Lojv2ysJQAAAAAoNgzCAAch+MYf5Gmo3XfteLyqHX6B0Z4AAAAAAACMaqhVeOF1OUvpQJVi464y1hIAAAAAAEBrCaz4H/lqPshZqx1zueQrNdYTAAAAABQbBmGAJvIkIgq88aectfoBZypdebixngAAAAAAAEwrX3KvfJGNOWuxcdPlBDsY6wkAAAAAAKC1nh0pX3JfzlpD1+OV6DvVWE8AAAAAUIwYhAGaKPDmf8tbvztnLc5pMAAAAAAAoIj5tq9ScPnvctYSPUapfvA5xnoCAAAAAABoLcFlv5G3bmfOWmzsVZLHY6wnAAAAAChGDMIATdEQV3D5b3OW6vtOVarjQGMtAQAAAAAAGJVOKTx/hjxOat+S4/UrNnEmD38AAAAAAICC441udW0IUt/nZCW7jzDWEwAAAAAUKwZhgCYIrPyrvPHcHT1qR3zPWD8AAAAAAACmBVY8qNKty3PWakdcqFRVX2M9AQAAAAAAtJbyJffIk4zvu3Y8XtWOudxoTwAAAABQrBiEAT5LKqHga7/JWUr0Hq/UYUcbawkAAAAAAMD0DqjlL96es5Zs30fx4ecb6wkAAAAAAKC1+HauVdmq/81Zqzvyy0p16G+sJwAAAAAoZgzCAJ+h7O1H5ItuyVmrHXGRsX4AAAAAAABMC72jnTo3AABAMklEQVQwU95ENGctNnGm5Csz1hMAAAAAAEBryWwI4nHS+66dkqBqR15itCcAAAAAKGYMwgAHkk6qfNkvc5Yauo9UsvsJxloCAAAAAAAwqfS9+Spb+2TOWt3gL6qh52hjPQEAAAAAALSWkk1LVbZ+bs5a/LhvywkdZqwnAAAAACh2DMIAB1D2zj/kq/kgZ612xPeM9QMAAAAAAGBUQ63CC6/LWUoHqhQbd5WxlgAAAAAAAFqN4yi0aFbOUjrYQfFh5xlrCQAAAADAIAzw6Zy0gq/OzllqOOxoNfQ60VhLAAAAAAAAJpUvuVe+yMactdi46XKCHYz1BAAAAAAA0Fr86+aodOtrOWu1J1wsx19hrCcAAAAAgFRiugEgX/nXPaOSne/krMUzp8F4PMZ6AgAAAAAAMMW3fZWCy3+Xs5boMUr1g88x1hMAAAAAAMUqkUjowQcf1Lp167RlyxZFo1GVl5era9eumjx5ssaPH6+SEh4LOiSpBoUW35a7VNlbdUO/YqwlAAAAAMAenAgDNMZxFFx6f85SssMAJfqcbKwlAAAAAAAAY9IphefPkMdJ7VtyvH7FJs5k0xAAAAAAAAyoq6vTnDlzsu8ff/zx+tznPqeRI0dq586dmj17tm699Val02nTbVotsPIh+Wrey1mLjblc8vmN9QQAAAAA2IOtH4BGlH7wvEq3vZWzFh+eOQ2G2TEAAAAAAFB8AiseVOnW5TlrtSMuVKqqr7GeAAAAAAAoZuFwWH/84x9dp76kUinNnDlTr7/+upYvX65hw4YZ69FmnkRU5UvuyVlr6HKsEv1OM9YTAAAAAOBjDMJYjqNuW0f5q/e7jratH3C6sX4AAAAAAABM8Ua3qvzF23PWku37KD78fGM9AQAAAABQ7Lxeb/btk3w+n0444QStWLEi+xwJmif42m/lje/IWYuNvZKTcQEAAAAgTzAhUSBH3fbv3z971G27du0Ui8Wyu3pkjrpdvHixpk+f3ujNDzSuZOMSlW56JWetdviFkpdvFwAAAAAAUHxCL8yUNxHNWYtNnCn5yoz1BAAAAADAoaipqdHatWuzb++++272LRKJZGsTJkzQRRdd1OTPtW3bNj311FNatmyZduzYkd2sNLN56ZgxYzRt2jSVlbXt/z+n0+nsaTAZvXr1atNfu1B4YtsUXP5fOWuJIyYr2WOUsZ4AAAAAALl4st9yHHXb8sqXfuI0mHA31Q86y1g/AAAAAAAAppS+N19la5/MWasb/EU19BxtrCcAAAAAAA7Veeed1yKfZ+nSpbrvvvsUj8f3rdXX1+8brpk3b15289LMYExrSSaTevjhh7PvZ4Z53nrrLW3cuFETJ07U0Ucf3Wq/biErf+U+eRpq9107Hq9iYy432hMAAAAAIBeDMJbjqNuWVbL1Dfk/fD5nLX78eZLPb6wnAAAAAAAAIxpqFV54Xc5SOlCl2LirjLUEAAAAAEBL69Spk3r06LHvFJWmWr9+ve6++24lEgkFAgGdddZZOuqoo7LXixYtyg7BbN68WbfccotmzZqlYDDYaoMwf/vb3/ZdezwenXnmmfrqV7/aKr9eofNVr1Ngxf/krNUP/qJSHQca6wkAAAAA4FbUgzAcdYtPCr6aexpMOthRdUP/zVg/AAAAAAAAppQvuVe+yMactdi46XKCHYz1BAAAAABASzj33HPVr1+/7Fv79u310Ucf6fvf//5BfY4//OEP2aGXzEalM2bM0MCBHw9KZAZiunXrpj//+c/ZYZjHH39cX/7yl12f409/+pMaGhqa/Guefvrp2c+7v8wQzkMPPZR9TqS6ulqvvvqqHnzwQa1ZsyZ7Gk15eflBfV3FrvzFO+RxUvuunZKAakddYrQnAAAAAIBbUQ/CcNQt9ufbsVpl657JWYsf9x2pJGCsJwAAAAAAABN821cpuPx3OWuJHqNUP/gcYz0BAAAAANBSGhtKORiZDVdXrVqVfX/SpEk5QzB7nXHGGZo/f3722Y3MxqrnnHNOdlPV/T3zzDPZ50uaavTo0a5BmL28Xq86duyoqVOnqqKiQnfddVf2OZKvfe1rB/31FauSzctUtu7pnLX4sd9SOtz47zkAAAAAwJyiHoTZH0fdIvjqL3Ou02XtVHc0v38AAAAAAKDIpFMKz5+Ru/up16/YxJmZm05GWwMAAAAAIB8sWbJk3/uZQZhPG0yZMGGC/vKXvygWi2nFihU69thjc17zwAMPtEp/e3+dlStXtsrnL0iOo9DiWTlL6UCV4sPON9YSAAAAAODTFfUgDEfdYi/vrvdU9s4TOWt1x3xDjr/CWE8AAAAAAAAmBFY8qNKty3PWakdcqFRVX2M9AQAAAACQT1avXp39Z1lZmfr2/fT/Xz7yyCNzPuaTgzCtZefOndl/Zp5lQdP4189V6eZXc9ZqT7hIThnPjQAAAABAPirqQRiOusVe5ct+JY+T3nedLg0pfsw3jPYEAAAAAADQ1rzRrSp/8factWT7PooPZ/dTAAAAAAD22rBhQ/afXbt2PeCwSffu3V0f05I9dO7cOTuMs7/M8yeZDVkzjj/++Bb9NQtWOum6H5Jq10t1R33VWEsAAAAAgAMr6kGYQ8VRt4XBG9mksrcfyVnL3MxwglXGegIAAAAAADAh9MJMeRPRnLXYxJmSL/ehGgAAAAAAilUikVAkEsm+n9mo9EDC4XB2UCUznLJjx44W7WPx4sX6xz/+ocGDB2cHYoLBYPYkmOXLl2f7GzJkSHbz1oPV1D4L6bQZ/8q/qqT63Zy1+Ngfy+cvN9YTWkbmua0DXQP5iNzCVmQXNiK3sBXZ3YNBmEPAUbeFIfjab+RJN+y7dnx+xY/7jtGeAAAAAABA0x48efDBB7Vu3Tpt2bJF0WhU5eXl2d1YJ0+erPHjx7tO5sWnK31vvsrWPpmzVjf4i2roOdpYTwAAAAAA5Ju6urp97wcCgc98feY1mUGY/T+uJQwfPlzV1dVas2ZN9i3z+TP3RXr37q1x48ZlN3RtzvMiF154YZNe99BDD6kgJGLSknty17odp/DIr2eeJjPVFVpJZWWl6RaAg0ZuYSuyCxuRW9iqWLPLkwCHgKNu7eep3a7Air/mrNUd+W9yQp2N9QQAAAAAAJom84DHnDlz1L9//+z9j3bt2mVP5M3sfDp79uzszqjTp08v2h1wDkpDrcILr81ZSgeqFBt3lbGWAAAAAADI14059mrKBhx7X7P/x7WEfv36Zd9wiF68X4puzV075UaGYAAAAAAgzzEI00yFfNRtMR1zG3z99/Kk6vddO94S1Y+4oCC+NnyMI8BgI3ILW5Fd2IjcwlZkF9hzz+WPf/yj66GTVCqlmTNn6vXXX8/eIxk2bJixHm1RvuQe+SKbctZi46bLCXYw1hMAAAAAAPnI7/fvez+ZTH7m6/e+Zv+Py2eZzUWKRnSbtOju3LX+J0t9J5jqCAAAAADQRAzCNFMhH3VbNMfcxqulN/87Z8lzzFfU/vCjjLWEtlGsR4DBbuQWtiK7sBG5ha3ILopRZgCssSGwzL2QE044QStWrNCWLVuM9GYT37aVCi7/fc5aosco1Q8+x1hPAAAAAADkq/2fEWnKMyB7X9OUZ0vywWdtBrtX5lkV2wUX/FSBRHTftSOPIiMvU6oAvjbskbl3uP+985qaGqXTaaM9AZ+F3MJWZBc2IrewlU3ZraqqarXPzSBMM3HUbQF4+ddSYs+pPlker3TiD012BAAAAABAm8ncDFu7dm327d13382+7T39dsKECbroooua/Lm2bdump556SsuWLcueNJu5D9K1a1eNGTNG06ZNy56U25YyN/kyp8Fk9OrVq01/beukUwovmCGPk9q35Hj9ik2cKXk8RlsDAAAAACAfZU52qaioyN5HydwHOZBoNJrdNPVgBkxskTmR12beXe+p7BObp9YPPluJDgMzX5yxvtD69w1tzy6KD7mFrcgubERuYat0kWaXQZhmKuSjbovimNv6iPTyJ77OoWdLnfqb6ggAAAAAgDZ13nnntcjnWbp0qe677z7F4/F9a5kHPPYO18ybN0/Tp0/PDsa0lsx9l4cffjj7fuYhlLfeeksbN27UxIkTdfTRR7far1sIAm/9RaVb9wwN7VU74kKlqvoa6wkAAAAAgHzXs2dPrVq1KnsSbeZho8zptI3ZtGlTzscgf4ReulOe9MfP+zg+v2pHsXkqAAAAANiCQZhmKuSjbovhmNuyV3+l8nhu/zXHnqe0xV8TCuMIMGAvcgtbkV3YiNzCVjZltzWPukXL6NSpk3r06LHvFJWmWr9+ve6+++7sCbiZex5nnXWWjjrqqOz1okWLskMwmzdv1i233KJZs2YpGAy22iDM3/72t33XHo9HZ555pr761a+2yq9XKLzRrSp/8Y6ctWT7PooPP99YTwAAAAAA2GDQoEHZQZjMZiDr1q3TgAEDGn3dypUrcz4G+aFk6+sqW/tkzlr82G8qXdHdWE8AAAAAgIPDIEwzcdStxcfcJusUWPabnKX6PieroWoAx9sWiWI9Agx2I7ewFdmFjcgtbEV2cbDOPfdc9evXL/vWvn17ffTRR/r+979/UJ/jD3/4Q3boJbPr6YwZMzRw4MB9tcxATLdu3fTnP/85Owzz+OOP68tf/rLrc/zpT39SQ0NDk3/N008/Pft595cZwnnooYey3weZjTteffVVPfjgg1qzZk32NJry8vKD+rqKRej5n8rbEM1Zi02cKfnKjPUEAAAAAIANRo4cqUcffTT7/vz58xsdhMncp1i4cGH2/VAopKFDh7Z5n2iE4yi06NacpXRZpeLDLjDWEgAAAADg4DEIcwg46tZOgZX/K2/t9py1+IjvGesHAAAAAAATGhtKORhr167N3hfJmDRpUs4QzF5nnHFG9mGQjRs36qmnntI555yjkpLc21HPPPPMvg1EmmL06NGuQZj9T0rKbEIyderU7AYmd911lx5++GF97WtfO+ivr9CVrn9WZe8+lbNWN/iLaug52lhPAAAAAADYon///hoyZEj23kjm3sfEiRNd90aeeOKJ7D2RjNNOO811T8R2n/aMTL4rXTdPpZtezlmrG/l9eUMdjPWE1pO5X3igayAfkVvYiuzCRuQWtiK7exTW/2W3MY66tVCqQcHXfp2zlOg1TskuxxprCQAAAAAAGy1ZsmTf+5lBmMZkbrhNmDBBf/nLXxSLxbRixQode2zu/4M/8MADrdLf3l9n//sy+JeGWoWfuy5nKR2oUmzcVcZaAgAAAACgLb399tvZTU/32r179773M+sLFizIeX1m0OWTvvnNb+qaa67JnpY7c+ZMnX322dlTXzLXixcv1ty5c7Ovy2zoceaZZ6rQVFVVyTrplPTSHblrlb1VftIPVF4aMNUV2lBlZaXpFoCDRm5hK7ILG5Fb2KqySLPLIMwh4Khb+5Stfky+yMcn9GTEh3MaDAAAAAAAB2v16tXZf5aVlalv376f+rojjzwy52M+OQjTWnbu3Gn17qStqXzJPa77I7Fx0+UE2fkUAAAAAFAc5s2bt+9Zjk/K3L/Ye9/jQIMwffr00aWXXqr77rtP8XhcDz74oOs1mSGY6dOnKxgMtmD3aLblf5G27TnheJ/JMySGYAAAAADAOgzCHIJiP+rWugdJ0imVL/tlzlKy2wile4+Vz+Mx1hZaH0eAwUbkFrYiu7ARuYWtyC5M27BhQ/afXbt2PeA9gu7du7s+piV76Ny5c3YYZ3+Z03v/9Kc/Zd8//vjjW/TXtJ1v20oFl/8+Zy3RY5TqB59jrCcAAAAAAGw1YsQI3XHHHXryySe1bNmy7MYcmedCMvdLRo8erVNPPdV13wKGJGql+TflrnU9Wjr6S6Y6AgAAAAAcgsKZymgGjrotsmNu3/q7tGt9zlLJ5KtU1YHdTotNsR4BBruRW9iK7MJG5Ba2IrtoS5n7HpFIJPt+x44dD/jacDicfeAjM5yyY8eOFu0jc+/lH//4hwYPHpwdiMnsrpp54GT58uXZ/jIbmJxxxhkH9Tmb2qN1G4RkpFOqWDBDHie1b8nx+RWfcrN8BbR5C3IxOAkbkVvYiuzCRuQWtiK7OFQXXXRR9q0lZO5JfOMb38i+FZPq6mrZJPDKLxSMbM5Zi4y+QsmaGmM9ofVl/nzY/955TU2N0um00Z6Az0JuYSuyCxuRW9jKpuxWteK8QVH/DTdH3RaRzDf3c3fmrnU7Vup/sqmOAAAAAACwVl1d3b73A4HAZ74+85rMIMz+H9cShg8fnn3oYs2aNdm3zOcvLy9X7969NW7cOE2aNOmgB1YuvPDCJr3uoYceknWW/Eba+nrOkmf8ZarsO8JYS2h7DE7CRuQWtiK7sBG5ha3ILtD2UqmPN9rId574TpUtnZ2zluh1oup7js18Icb6QtvLPBxoU3aBDHILW5Fd2IjcwlbpIs1uUQ/CtBSOurXAmn9KH63IXRt/meTxmOoIAAAAAACrT4TZK3MP5LPsfc3+H9cS+vXrl31DE+zeLM29IXetY3/pxB+a6ggAAAAAAKBNlC/9hbyJaM5abOwVxvoBAAAAABy6oh6E4ajbIjnm1nFUMX9WTthTHfprd9cTM1+EwcbQVmw6AgzYi9zCVmQXNiK3sJVN2W3No25hht/v3/d+Mpn8zNfvfc3+H5evZs/O3R20YPzzSikRyV07426phM1bAAAAAABA4fLWfKDAm/+ds1Y36CylOg811hMAAAAA4NAV9SAMDo0tRyiVfrhIJVtfz1mrHXaBUmkn81UY6wvmFOsRYLAbuYWtyC5sRG5hK7KLthQIBPa9X1dX95mv3/ua/T8uX3Xs2LGwNgjJ3BtZN0/hlY/lrNUPOVe17Y9ik5AiYNPgJLAXuYWtyC5sRG5hK5uyywYhgFnlL/1MnnTDvmvH61ftKE7IBQAAAADbMQiDghdc+ouc61S7XqofeKaxfgAAAAAAsF3mZJeKigpFIhHt2LHjgK+NRqOqr68/qCETG1gzeNZQq3YLrslZSgeqFB17pRxbvga0KAYnYSNyC1uRXdiI3MJWZBdAY0q2vqHAO4/nrNUd859Kt+tprCcAAAAAQMtgEAYFrWTzq/JvfDlnrXbY+ZKX6AMAAAAAcCh69uypVatWacuWLdmHjXw+X6Ov27RpU87HoG2VL7lHvsjH/w4yYuOmywl2MNYTAAAAAACw36fdC8objqPQi7fnLKXL2ql+1MX53zta9ASxA10D+YjcwlZkFzYit7AV2d2DaQAUtPKl9+dcp0JdVT/kHGP9AAAAAABQKAYNGpQdhMmc9rJu3ToNGDCg0detXLky52PQdnzbViq4/Pc5a4keo1Q/mHsjAAAAAADg0FRVVSmvvTNX2rA4Z8k7/jK179bHWEswr7Ky0nQLwEEjt7AV2YWNyC1sVVmk2WUQBgXLt22F/O8vyFmLH///JF+ZsZ4AAAAAACgUI0eO1KOPPpp9f/78+Y0OwqTTaS1cuDD7figU0tChQ1Uo8n7n0HRKFQtmyOOk9i05Pr/iU26Wr4RbgsWEHaFgI3ILW5Fd2IjcwlZkF8ABpVPSM9fmrrXrIY0631RHAAAAAIAWxt96o9ny/YGP0Kuzc67TwQ5qOOared83Wh43wmEjcgtbkV3YiNzCVmQXpvXv319DhgzJngqTGYSZOHGiBg4cmPOaJ554Qhs3bsy+f9ppp6mkgAYw8n7X0yW/kba+nrPkGX+ZKvuOMNYS8kOx7ggFu5Fb2IrswkbkFrYiuwByvPFX6aMVuWuTZ0ilQVMdAQAAAABamMdxHKelPylg3LbV0i9GZfY6/Xht8jXSST822RUAAAAAAHnj7bff1pYtW/Zd7969W3/+85+z7w8aNEhTpkzJeX1m0OWT1q9fr2uuuUaJREKBQEBnn3129tSXzPXixYs1d+7c7Ou6deumWbNmKRjkYYM2sXuz9PMTpETk47WO/aULF0slnJQLAAAAAAAOXXV1tfJSsk6Vf5wsb3TTx0sdByvy1X9IXjZOLTaZDaT2H5asqanJnmIN5DNyC1uRXdiI3MJWNmW3qhU3mCycbTiB/T3/s9whmLJKaeR5JjsCAAAAACCvzJs3TwsXLmy0tnr16uzbZw3C9OnTR5deeqnuu+8+xeNxPfjgg67XZIZgpk+fzhBMW/rnlblDMBln3M0QDAAAAAAAaDGpVEr5KPja73KGYDJiYy9XKvMISZ72jLaTeTgwX7MLfBpyC1uRXdiI3MJW6SLNLoMwKDyZibaGWO5aZggmwHHYAAAAAAC0tBEjRuiOO+7Qk08+qWXLlmnnzp0qKSlR165dNXr0aJ166qkqKyu8AYy83fXUcVTW8WgFS+bIk4xnl+qHnKva9kdlmjbdHQywaUcoYC9yC1uRXdiI3MJWNmW3NXc+BeDm+PxKl4blbYhmrxM9x6ih9wTTbQEAAAAAWpjHcZz9js0ACuCBj3/xbVulwNJfqPS9Bar55nNygh1MtwRDbLoRDuxFbmErsgsbkVvYyqbs8sAHCtH27duVz7y7Nyr83PUq2fKaqv9jDvdFipjP58v5OZy5p1eMO0LBLuQWtiK7sBG5ha1sym6nTp1MtwAU3b0RT+12lb/ycwVW/FW7zn1IqcOONt0SDLHpzwtgL3ILW5Fd2IjcwlY2ZbdTK94X4UQYNFu+fsPsleowUImp98hTVyPHX8kRt1CxHwEGu5Fb2IrswkbkFrYiuwD2l27XQ7s/92t5o5sZggEAAAAAAEXFKe+k2ITrVXvC97PvAwAAAAAKj9d0A0BrcwIf75AMAAAAAABQNDwepSu6m+4CAAAAAADACIZgAAAAAKBwMQgDAAAAAAAAAAAAAAAAAAAAAAAAK5SYbgAAAAAAAACwjc/nM90C0CRer/eA10A+IrewFdmFjcgtbEV2AQAAAAAAihuDMAAAAAAAAMBBqqqqMt0C0CyVlZWmWwAOGrmFrcgubERuYSuyC7Q9NgmBDRichI3ILWxFdmEjcgtbkd09GIQBAAAAAAAAAAAAAAAA0GRsEgIbMTgJG5Fb2IrswkbkFraqLNLsFuf4DwAAAAAAAAAAAAAAAAAAAAAAAKzDiTBoNo65hS04Agw2IrewFdmFjcgtbEV2AbOqq6tNtwA0SebPh/13gaqpqVE6nTbaE/BZyC1sRXZhI3ILW9mUXU7NAAAAAAAAaHkMwqDZuGEHWxXrEWCwG7mFrcgubERuYSuyC7StVCplugWgWTIPB5Jf2IbcwlZkFzYit7AV2QXaHpuEwAY2DU4Ce5Fb2IrswkbkFrayKbtVrThvwCAMAAAAAAAAAAAAAAAAgCZj+Aw2YnASNiK3sBXZhY3ILWyVLtLsek03AAAAAAAAAAAAAAAAAAAAAAAAADQFJ8Kg2TjmFraw6QgwYC9yC1uRXdiI3MJWNmW3NY+6BQAAAAAAAAAAAAAAQHFhEAbNVoxHKKEwFOsRYLAbuYWtyC5sRG5hK7ILAAAAAAAAAAAAAACAYuA13QAAAAAAAAAAAAAAAAAAAAAAAADQFJwIAwAAAAAAABwkn89nugWgSbxe7wGvgXxEbmErsgsbkVvYiuwCAAAAAAAUNwZhAAAAAAAAgINUVVVlugWgWSorK023ABw0cgtbkV3YiNzCVmQXAAAAAACguLAtCgAAAAAAAAAAAAAAAAAAAAAAAKzAiTAAAAAAAAAAAAAAAAAAmszn85luAfhMXq/3gNdAPiK3sBXZhY3ILWxFdvdgEAYAAAAAAAA4SNXV1aZbAJokc+O7srJy33VNTY3S6bTRnoDPQm5hK7ILG5Fb2Mqm7FZVVZluAWgVZBs22v/PDsAW5Ba2IruwEbmFrSqLNLsMwgAAAAAAAAAHKZVKmW4BaJbMw4HkF7Yht7AV2YWNyC1sRXYBAAAAAACKS3GegwMAAAAAAAAAAAAAAAAAAAAAAADrcCIMms3n85luAWjy0egHugbyEbmFrcgubERuYSuyCwAAAAAAAMCU6upq0y0Anylz37yysnLfdU1NTfYUMSCfkVvYiuzCRuQWtrIpu1VVVa32uRmEQV4GE2hN+//wB2xBbmErsgsbkVvYiuwCAAAAAAAAaCupVMp0C8BByzwcSHZhG3ILW5Fd2IjcwlbpIs0u28UCAAAAAAAAAAAAAAAAAAAAAADACgzCAAAAAAAAAAAAAAAAAAAAAAAAwAolphuAvaqrq023ADSJ1+tVZWXlvuuamprsMWBAPiO3sBXZhY3ILWxlU3arqqpMtwAAAAAAAAAAAAAAAIACwSAMmi2VSpluAWiWzMOB5Be2IbewFdmFjcgtbEV2AQAAAAAAAAAAAAAAUAwYhAEAAAAAAAAOks/nM90C0OQTxA50DeQjcgtbkV3YiNzCVmQXAAAAAACguDEIAwAAAAAAABykqqoq0y0AzVJZWWm6BeCgkVvYiuzCRuQWtiK7AAAAAAAAxYVtUQAAAAAAAAAAAAAAAAAAAAAAAGAFBmEAAAAAAAAAAAAAAAAAAAAAAABghRLTDQAAAAAAAAC2qa6uNt0C0CRer1eVlZX7rmtqapROp432BHwWcgtbkV3YiNzCVjZlt6qqynQLAAAAAAAABYdBGDRbp06dTLcANMmOHTv05S9/Ofv+7Nmz1bFjR9MtAZ+J3MJWZBc2IrewFdkFzOJBJtiCPy9gI3ILW5Fd2IjcwlZkFzCPZ0ZgA/68gI3ILWxFdmEjcgtbkd09vP/6JwAAAAAAAAAAAAAAAAAAAAAAAJDXGIQBAAAAAAAAAAAAAAAAAAAAAACAFRiEAQAAAAAAAAAAAAAAAAAAAAAAgBUYhAEAAAAAAAAAAAAAAAAAAAAAAIAVGIQBAAAAAAAAAAAAAAAAAAAAAACAFRiEAQAAAAAAAAAAAAAAAAAAAAAAgBUYhAEAAAAAAAAAAAD+f3v3ASxVefcP/LkIxkIRFBRRKWpEsURFEisgMYOiosaxJVEhNqJRk2iiJo6+kow6aKKOxqgZccYS7L0lihV7iYIdREERsYBYQBT4z/P8391372Vvk7J7zn4+M3c4e885z57L/bF79sv8nicAAAAAAABZoBEGAAAAAAAAAAAAAACATNAIAwAAAAAAAAAAAAAAQCbULV68eHGlLwIAAAAAAAAAAAAAAACaY0UYAAAAAAAAAAAAAAAAMkEjDAAAAAAAAAAAAAAAAJmgEQYAAAAAAAAAAAAAAIBM0AgDAAAAAAAAAAAAAABAJmiEAQAAAAAAAAAAAAAAIBM0wgAAAAAAAAAAAAAAAJAJGmEAAAAAAAAAAAAAAADIBI0wAAAAAAAAAAAAAAAAZIJGGAAAAAAAAAAAAAAAADJBIwwAAAAAAAAAAAAAAACZ0LbSFwDUhilTpoQXX3wxvP766+G9994Lc+fODSuttFLo0qVL2GSTTcKuu+4a+vbt2+Lx4lgPPPBAGjeO1bFjx7DhhhuGH//4x2Hrrbdu0RgLFy4MDz74YHj88cfD+++/H+bPn5+uZ4sttgi77757WH/99Vs0Tnz+e++9Nzz77LPho48+St/r2rVr2G677cIee+wROnTo0OKfi+y45pprwh133FF8fMYZZ4R+/fo1eY66pVI+/vjjMH78+PDCCy+k33esm1h/8Xce63b77bcPG2ywQaPnq11WtG+//TY88sgj4amnngrvvvtu+OKLL+rdNwwZMiT92Ry1y9L67LPPwuTJk9NXrKP49fnnn6d9AwcODMcee2yrxstjTU6bNi3cd999YeLEieHTTz8Nq6yySujRo0fYaaed0r/V+G8XALkI+SMXIUvkImSNXIRqIRdpnlwEoGXkIuSNXIQskYuQNXIRqolspPqzkbrFixcvXq7PANS8+IHvtddea/a4XXbZJRxzzDGhbdvGe/QWLVoULr/88nSD3pgYkhx11FGhTZs2Tb6In3322ekNpZx27dqFkSNHphfiprz11lthzJgxYc6cOWX3d+7cOZx88slho402anIcsuWdd94Jp556arqpaEmwoW6ppHjDet1114Wvv/660WPizevhhx++xPfVLpUQP1ydc845Yfr06U0eN3To0DBixIhQV1e3xD61y7JywAEHNLqvNaFGXmsyBjRXXnllCiPLieefcsopKbwBqGVyEfc5eSMXIUvkImSNXIRqIheRiwAsC3IR9zl5IxchS+QiZI1chGojG9mo6rMRK8IAy13s8iu8OMYu8jiTx1prrZVe3N98881w1113pWMeffTR9EHxhBNOaHSscePGFd8MevfuHfbee++w9tprhw8//DDNtjB16tS0P75wHnLIIWXHiM973nnnFd8MBgwYkDoq27dvn17gb7nlltTJGd94YqdkY52WsWP+3HPPLc5WMmzYsLDtttumfc8//3y4++67w+zZs9Mx8QZtzTXXXOq/Syov1s9ll12WarVTp06pVpqjbqmUm2++OVx//fVpu3v37ukmN95grrbaaqk7PdZe7Oou98EwUrusaPGDUWmo0bNnz/S7XnfdddMMBnGmsDvvvDMFdXE2gVgz++yzzxLjqF2Wh3j/GmeteOmll1p9bh5rMs4adcUVV4Q4t0a8J9pvv/3CxhtvnGbkiWHHM888k2ZFidd85plnNhnWAOSdXMR9Tp7IRcgSuQhZIxdRu9VMLlKfXASg5eQi7nPyRC5ClshFyBq5iNqtdrKR6sxGNMIAy1188T/44IPDj370oyVezL7//e+nmT1OP/308MEHH4QJEyaE3XbbLWy22WZLjDNjxox0MxPF5cD+53/+J6y88srpcbxR79+/f3rBjC/08bjYIbnOOussMc7DDz+cboyin/zkJ+GII44o7ovjxDeAP/zhD2HevHlh7NixYcsttyy7PFd8c4pvBtHxxx+fQpuCTTfdNPTp0ydccMEF6c0lHtvaZdCo3tkSYo3Fuo7LwN12221NHq9uqZS43GAh1GhsBqW4JGK8sS7Xla12qYTnnnuuGGrEe4Szzjqr3r1DrI9Ye3/84x9TwHz77beHvfbaq17NqF2Wpf333z/VUfxaY401wqxZs8Jxxx3XqjHyWJPxfSM+Rww0Vl111TB69Oh61/yDH/wg/POf/wz//ve/0zXH/8AcNGhQq/7eAPJELuI+J0/kImSFXETtZpFcRO1WG7mIXARgWZCLuM/JE7kIWSEXUbtZJBdRu9VINjKu6rMRU48Ay11c2mqHHXZotKMvdjEeeuihxcdPPfVU2ePuueee4tKicWm7wptBwfe+9730/SgeF2cOKafwphI7IX/xi18ssT++IO+7775pe+bMmakzsaG4JNhjjz2Wtrfaaqt6bwYF8WeO+6L4Qt7YMmJkR+yGLXxQPPLII5tclrlA3VIJsQM83kwWZkgYNWpUk/Vabp/apRLeeOON4nacuaPcvUP8wFWYieDLL78M77//fr39apdlvcxtrLcYaHxXeazJOHacmSSKz1kuhInXuPrqq6ftOIMJQC2Ti7jPyQu5CFkhF1G7WSUXUbvVRi4iFwFYFuQi7nPyQi5CVshF1G5WyUXUbjWSjTxa9dmIRhigKvTr16+4XXiBLBU7B+NyjFGcWSF2/ZYTvx+Xwyt0CcfzGnZXFm6A4ot4fBMpp7T7sNwbQunYgwcPbvTnKowTj43nkG3xg2JcanHgwIFlZ6FpSN1SKS+//HKaNSkaPnx42e7upqhdKqV0tpm4BGhjSveVnqN2qTZ5rcnCz9TwOUvFayyEJu+99176GQBonFyELJCLkBVyEbWbVXIRtZs3ea1JuQjAsicXIQvkImSFXETtZpVcRO3mUV7r8tkqykY0wgBVofSmpFw3b1xSbPbs2cXlt5pS+MD56aefho8++qjevsLSYKXHlRM7OLt3775Et3FrxyndV3oO2fPEE0+EF154odGO2nLULZXy5JNPpj/r6uqKMyFEX3zxRQo84p9NUbtUSuFDXWP/0dFwX6zx0lkF1C7VJq81Wfhe/Dfb1MwnpeOUux4A/o9chGonFyFL5CJqN6vkImo3b/Jak3IRgGVPLkK1k4uQJXIRtZtVchG1m0d5rcvXqygb0QgDVIVXX321uB07HxuKHYFN7W/spqj0vNaOU9j/ySefpFkdyo2z2mqrNflC3rlz57Dqqqum7YZL8ZEdcSnFq666Km3/7Gc/S8szt4S6pVLeeuut9GfXrl3T7/Lxxx8Pv/vd78LIkSPDCSecUPwzLjv4zTffLHG+2qVSdtxxx+Lv8Pbbb0/LNjc0derUFDQXjo91UaB2qTZ5rMk4Zhy74TU3dS3lxgGgPrkI1UwuQtbIRdRuVslF1G7e5LEm5SIAy4dchGomFyFr5CJqN6vkImo3j/JYl/OrLBvRCANUXLxpue2224qPd9hhhyWOKbxwRmuuuWaT46211lplzyt0SxZ06dKlyXEKzxOX9yo9r3Tc5q6l9HoaXgvZcc0114Q5c+aETTbZJOy6664tPk/dUqnX1MKNY4cOHcLYsWPDRRddFKZPn17vuDjTR6zts846K4V3pdQulRKD41//+tdpecw4E8Cpp54aHnnkkfDmm2+mJZxvvPHGcOaZZ6aZwXr37h0OPfTQeuerXapNHmuyNT9T6f6PP/642ecEqFVyEaqdXIQskYuo3SyTi6jdvMljTcpFAJY9uQjVTi5ClshF1G6WyUXUbh7lsS4/qbJspO1yGRWgFe6+++4wefLktD1gwIDQp0+fJY4p7UxcZZVVmhwv3gyVOy+aN2/eMhmn8Li5MUrHaTgG2fDaa6+F8ePHh5VWWikceeSRaVnFllK3VMJXX32VbmSjadOmhSlTpqQu7Z///Odh6623DiuvvHJ6zb322mvTTCDxw+Oll14aTjrppOIYapdK6t+/fzjnnHPCnXfeGR566KFwySWX1NvfqVOncOCBB4YhQ4bUq5tI7VJt8liTrbmW0v1qG6BxchGqmVxE3WaNXETtZp1cRO3mSR5rUi4CsOzJRahmchF1mzVyEbWbdXIRtZs3eazLeVWWjVgRBqj4ErfXXXdd8UYlfnAsZ8GCBcXttm2b7uFr165d2fOi0iUdl2acwuPmxigdp+EYVL/YQX755ZenD4nDhg0LG2ywQavOV7dUwtdff12vduJN6RlnnBF23nnn0L59+xRsbLbZZul7PXv2TMc988wzxeVxI7VLpV9746wezz33XDGkK/XZZ5+Fxx57LEycOHGJfWqXapPHmmzNtZTuL7e0OgByEaqbXETdZpFcRO1mnVxE7eZJHmtSLgKwbMlFqGZyEXWbRXIRtZt1chG1mzd5rMtvqiwb0QgDVExcdnHMmDFh4cKF6UXzN7/5TQo3yok34qU3PE0pfcEsPa/hi/zSjFN43NwYpeM0HIPqd8stt6QlQ+Myb/vvv3+rz1e3VEJpvURxeeZ11113iePi7/bggw8uPn7iiSfq7StQu6xIsft/9OjR4bbbbgtffPFF2HvvvcPf/va39J8gV111VfjTn/4U+vbtm2auifcQd911V73z1S7VJo812ZprKd3f8P0JALkI1U8uom6zSC6idrNMLqJ28yaPNSkXAVh25CJUO7mIus0iuYjazTK5iNrNozzWZbsqy0Y0wgAVMWvWrPDnP/85fPnll6FNmzbhxBNPTB3ny2KJrNLu9oZLb6266qrLZJzC45Ys11UYpyXLiVE9YqARb6yjkSNHfqffn7qlEkrrJdpqq60aPXbzzTdPyzhH8YNigdqlUm688ca0xHh0zDHHpCWae/TokWYIWG211cKWW26ZZqfp169fmv3j6quvDu+8807xfLVLtcljTbbmWlqzzC9ArZGLUO3kIuo2q+QiajfL5CJqN2/yWJNyEYBlQy5CtZOLqNuskouo3SyTi6jdPMpjXa5aZdmIRhhghfv0009T9+7s2bNDXV1dGDVqVNhuu+2aPGfNNdcsbn/yySdNHvvxxx+XPS/q0qVLvetoSuF54jWWnlc6bnPXUno9Da+F6nb33XenjtS11147valPmDBhia84S03BpEmTit8vvIGrWyohdk937Nix+Lip32Hs2O7QoUPanjt3btlz1C4rSgwqHnroobTdvXv3MGjQoLLHxTDuwAMPLJ7z8MMPF/epXapNHmuydMzmxindH2dMA+D/k4uQBXIRdZtVchG1m1VyEbWbR3msSbkIwNKTi5AFchF1m1VyEbWbVXIRtZtXeazLLlWWjbRdLqMCNCLeOMeZPT788MP0eMSIEWHgwIHNnrfeeuvVm3mhKTNmzCh7XrlxevXq1eg4heeJL+QNuxHjOG+//Xb46quvwpw5c8Iaa6xRdowY3sybNy9txw5lsqOwtFus1QsvvLDZ42+++ebi9sUXX5xqRt1SKeuvv3545ZVX0vaiRYuaPLawvzDTR6R2qYTPPvssLW8b9e7du8lj+/Tp02wNql2qQR5rMs7uEceOgUXpNTd1LeXGAahVchGyQi6ibrNMLqJ2s0guonbzKI81KRcBWDpyEbJCLqJus0wuonazSC6idvMqj3W5apVlI1aEAVaY+OL5l7/8Jbz33nvp8SGHHBKGDh3aonO7desWOnfunLYLS+A1prA/dh527dq13r6+ffsWt1999dVGx4gv8h988EHa3mSTTZbY39JxSveVnkNtULdUyqabblrcLgTJjb0uf/7550t0a6tdKqFNm//7aLJw4cImjy3dX3qe2qXa5LUmC9+LoUZ8zpaMU+56AGqNXMR9Tq1Rt1SKXETtZpFcZMlzyL681qRcBOC7kYu4z6k16pZKkYuo3SySiyx5DvmQ17rsW0XZiEYYYIWIS4WeffbZYerUqenxfvvtF/bZZ58Wnx+X6Soshxu7BN98882yx8XvF7oI+/fvn84rte666xY7C5988sl0XeWULps3YMCAJfaXjl1Ylq+pceKx8Ryy49hjjw033HBDk1/7779/8fgzzjij+P14AxOpWyrlhz/8YXH7mWeeafS4uC8uFdrwplXtUgnt27dPswYUaqupcKP0g1LhNTdSu1SbvNZk4Wdq+Jyl4jXGay3MKhJ/BoBaJhdxn5M1chF1m2VyEbWbRXIRtZtHea1JuQhA68lF3OdkjVxE3WaZXETtZpFcRO3mVV7rcrsqykY0wgDL3bfffhvOO++88MYbb6THe+yxRzjooINaPU48r9DFO3bs2LBgwYJ6++Pj+P3Cko3Dhg0rO85ee+2V/ozL6V1zzTVL7J85c2a49dZb0/Y666xT9g0hLgm28847p+2XXnopPPXUU0scE1/E475ol112aXQZMfJN3VIJPXv2DFtvvXXanjBhQpg4ceISx8Ru7Ouvvz5tt23bNgwePLjefrXLihbrbZtttikusXnLLbeUPS7W0rXXXlt8vO2229bbr3apNnmsyTj22muvnbbjc8bnbujqq68OX375Zdree++9y/5MALVCLuI+p5apWypBLqJ2s0guonbzKo81KRcBaB25iPucWqZuqQS5iNrNIrmI2s2zPNblgCrKRtout5EB/tcFF1xQfGHcfPPNw6677hqmTZvW6PHxBrtc91/8XnxBvO2228KUKVPC6aefHoYPH55eUONSjrfffntxBpH4ot+9e/ey4w8aNCh1M8ag5f77708390OGDEmdxZMnTw4333xzmDdvXupmHDFiRHpzKSeGM//973/D3Llzw4UXXpiuqXBz9fzzz4e77rorbXfs2PE7BTnkg7qlUg477LDULR5vKM8555x0kxzDjpVXXjnVTKzJTz75JB174IEH1lvqNlK7VEKcOem5555LswLceOON4e233w4DBw5MdffNN9+kmr7nnnvCxx9/nI7fYostwlZbbVVvDLXLsvT666/X+8Aef48F8fsNZ7aIddNQHmsy3q/H5zj33HPTc8af6ac//WnYaKONUujy4IMPhqeffro4g1QMRwBqmVzEfU4tU7dUilyELJKLqN1qIxeRiwAsC3IR9zm1TN1SKXIRskguonarkWzkoKrPRuoWF9Y3A1hODjjggFYd37Vr13DJJZeU3bdo0aJw2WWXNbksVwxOjjrqqGIXZTnxRTwuvRtfxMtp165dGDlyZHqjaMpbb70VxowZk95UyondkCeffHLYeOONmxyHbIrL2t50003FpW779etX9jh1SyVvxs8///zw2Wefld0fb3z33XffRm9a1S6V8PLLL6cPWp9//nmTx8X/LPntb3+bPtA1pHZZVuI96SOPPNKqe4Ny8lqTDzzwQLjyyivTjH7lxJDjlFNOSQEJQC2Ti7jPySu5CNVOLkIWyUWoJnIRuQjAsiAXcZ+TV3IRqp1chCySi1BtZCMbV302ohEGyFSwUfDCCy+kF9H4gh5vfDp06BA23HDDsNtuuxWXd2zOwoULU+fh448/Ht5///0wf/781OEeb5TicmTrr79+i8aJby6x2/jZZ58NH330Ufpet27dQv/+/VNHfbw2ajvYKFC3VEKstXvvvTf9rmfNmpVuPDt37hw222yzsPvuu4fevXs3O4baZUWLdTZ+/Pg0A8H06dPTTDVxpoL4QSvW3k477ZR+5zGca4rapVpCjTzXZJy5L77PTJo0KXz66adhlVVWCT169Ej/TmO40tgsIwC1RC7iPiev5CJkgVyELJKLUC3kIs2TiwA0Ty7iPiev5CJkgVyELJKLUE1kI9WfjWiEAQAAAAAAAAAAAAAAIBMaXz8HAAAAAAAAAAAAAAAAqohGGAAAAAAAAAAAAAAAADJBIwwAAAAAAAAAAAAAAACZoBEGAAAAAAAAAAAAAACATNAIAwAAAAAAAAAAAAAAQCZohAEAAAAAAAAAAAAAACATNMIAAAAAAAAAAAAAAACQCRphAAAAAAAAAAAAAAAAyASNMAAAAAAAAAAAAAAAAGSCRhgAAAAAAAAAAAAAAAAyQSMMAAAAAAAAAAAAAAAAmaARBgAAAAAAAAAAAAAAgEzQCAMAAAAAAAAAAAAAAEAmaIQBAAAAAAAAAAAAAAAgEzTCAAAAAAAAAAAAAAAAkAkaYQAAAAAAAAAAAAAAAMgEjTAAAC3Qq1evUFdXFw4//PBKXwoAAADACiUXAQAAAGqVXAQAqpNGGAAAAAAAAAAAAAAAADJBIwwAAAAAAAAAAAAAAACZULd48eLFlb4IAAAAAAAAAAAAAAAAaI4VYQAAAAAAAAAAAAAAAMgEjTAAAAAAAAAAAAAAAABkgkYYAKDmzJgxI5xyyilhm222CZ06dQrt2rULa6+9dthiiy3CwQcfHK666qowd+7ceuf06tUr1NXVhcMPP7ze99955530/ZZ+DRo0qNHreuihh8Jhhx0W+vTpE1ZbbbXQsWPHdE0nn3xyumYAAACApSUXAQAAAGqVXAQA8qNtpS8AAGBFeuyxx8Kee+65RHAxa9as9DVp0qQwbty4sNZaa6XjVoT58+eHESNGpOdtKF5P/Lr00kvDv/71r7DXXnutkGsCAAAA8kcuAgAAANQquQgA5ItGGACgZnz99dfhoIMOSqFGhw4dwqhRo8LgwYNDt27dwoIFC8LUqVPDE088EW699dYWj9mjR48wceLEJo+54YYbwujRo9N2z5496+1bvHhx2H///cPdd9+dHsfg4oADDkizfLRp0yY888wz4fzzzw/Tpk1Lx02YMCH079//O/38AAAAQO2SiwAAAAC1Si4CAPlTtzi+mwIA1IDx48eHIUOGpO0777yz0Rk8vv322/DVV1+lpWZLl7p9991301K0cSnclnruuefCLrvsEubNmxc23XTT8NRTT9Ub94orrghHHXVUWm73jjvuCEOHDl1ijNmzZ4edd945vPLKK2HHHXcMjz/+eCt/cgAAAKDWyUUAAACAWiUXAYD8aVPpCwAAWFFmzpxZ3I5hQ2Patm1bL3z4rmbMmBGGDx+eQo0uXbqkMKV03NiPfO6556bt448/vmyoEXXu3DmMGTMmbccZPt56662lvjYAAACgtshFAAAAgFolFwGA/NEIAwDUjO7duxe3x44du1yfK4YZ++yzTwo3YlBy0003hQ033LDeMa+++mqYMmVK2o7L2DalNIh58sknl9NVAwAAAHklFwEAAABqlVwEAPJHIwwAUDN22mmn0KdPn7R94oknhgEDBoSzzz47zZqxYMGCZfpcI0eODM8++2zavuiii8LgwYPLLoNbsP3224e6urpGv9q3b192phIAAACAlpCLAAAAALVKLgIA+aMRBgCoGe3atUvLzW666abpcQweTjvttBR4rLHGGmmp2euuuy4sXLhwqZ5n9OjRYdy4cWn7V7/6VRg1alTZ42bNmvWdxv/qq6+W6voAAACA2iMXAQAAAGqVXAQA8qdtpS8AAGBF2myzzcLEiRNTwBG/Hn300TB58uS0NO3999+fvv7617+Ge+65J3Tr1q3V4998883hjDPOSNtDhgwJF154YaPHlgYo8Vp69erVouf4LtcFAAAAIBcBAAAAapVcBADyRSMMAFBzVlpppbDPPvukr+iDDz4I9913X7jkkkvC888/n76OPvrocOutt7Zq3BdffDEceuihYfHixWGjjTYKN9xwQ2jbtvHbrTXXXLO4HWcY2XzzzZfipwIAAABonlwEAAAAqFVyEQDIjzaVvgAAgErr3r17GDFiRHjyySfDNttsk7531113pVk/WmrmzJlh+PDhaRnaTp06pRk7unTp0uQ5W2+9dXF7woQJS/ETAAAAAHw3chEAAACgVslFACC7NMIAAPyvdu3ahYEDB6btb7/9NsyZM6dF582fPz/NFjJ9+vQ0e8i4ceNC3759mz0vhijrrbde2r788svTOAAAAACVIBcBAAAAapVcBACyRyMMAFAzHnvssTB58uRG9y9YsCA88sgjabt9+/aha9euLRr3iCOOCE8//XTaHjNmTBg6dGiLzmvTpk047bTT0vbbb7+dlsn9+uuvGz1+7ty54eKLL27R2AAAAACl5CIAAABArZKLAED+tK30BQAArCgPPvhgGD16dNh5553DsGHDwpZbbpnCi7ik7Ztvvhn+8Y9/hBdeeCEd+8tf/jK0bdv8rdKVV14Zrr322rS96667ht122y1MmjSp0eNXX3310Lt37+LjY445JvznP/8Jt956a7jxxhvT8x999NFhwIABacncGGa8/vrr4eGHHw533HFHWGWVVcJxxx23TP4+AAAAgNohFwEAAABqlVwEAPJHIwwAUFMWLVqUZvEozORRzvDhw8PZZ5/dovGmTZtW3B4/fnzYYostmjw+LqUbQ4qCurq6cP3114cTTjghBStTpkwJv//97xs9v1u3bi26LgAAAICG5CIAAABArZKLAEC+aIQBAGrGSSedlGb1eOCBB8KLL74YZsyYEWbNmpX2rbPOOmlWjbjcbJz9Y0Vq165d+Pvf/x5GjRoVrrjiihR8xMDkiy++SEvuxhlBtt1227D77ruHPffcc4VeGwAAAJAPchEAAACgVslFACB/6hYvXry40hcBAAAAAAAAAAAAAAAAzWnT7BEAAAAAAAAAAAAAAABQBTTCAAAAAAAAAAAAAAAAkAkaYQAAAAAAAAAAAAAAAMgEjTAAAAAAAAAAAAAAAABkgkYYAAAAAAAAAAAAAAAAMkEjDAAAAAAAAAAAAAAAAJmgEQYAAAAAAAAAAAAAAIBM0AgDAAAAAAAAAAAAAABAJmiEAQAAAAAAAAAAAAAAIBM0wgAAAAAAAAAAAAAAAJAJGmEAAAAAAAAAAAAAAADIBI0wAAAAAAAAAAAAAAAAZIJGGAAAAAAAAAAAAAAAADJBIwwAAAAAAAAAAAAAAACZoBEGAAAAAAAAAAAAAACATNAIAwAAAAAAAAAAAAAAQCZohAEAAAAAAAAAAAAAACATNMIAAAAAAAAAAAAAAACQCRphAAAAAAAAAAAAAAAAyASNMAAAAAAAAAAAAAAAAGSCRhgAAAAAAAAAAAAAAAAyQSMMAAAAAAAAAAAAAAAAmaARBgAAAAAAAAAAAAAAgEzQCAMAAAAAAAAAAAAAAEAmaIQBAAAAAAAAAAAAAAAgZMH/A/oUq4Sd4qmTAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -463,76 +443,10 @@ "plt.show()" ] }, - { - "cell_type": "markdown", - "id": "d11a14ed-65f0-41d5-ad00-1e3877733d2e", - "metadata": {}, - "source": [ - "## Stomp vs naive" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "63d8fe31-86b8-408b-b5c6-6c18987fdc08", - "metadata": {}, - "outputs": [], - "source": [ - "# Sizes are limited to not time-out the CI, you can test with more sizes locally !\n", - "sizes = [500, 1000, 2500, 5000]\n", - "query_lengths = [0.05, 0.1]\n", - "times = pd.DataFrame(\n", - " index=pd.MultiIndex(levels=[[], []], codes=[[], []], names=[\"size\", \"query_length\"])\n", - ")\n", - "\n", - "for size in sizes:\n", - " for _query_length in query_lengths:\n", - " query_length = int(_query_length * size)\n", - " X = rng.random((1, 1, size))\n", - " T = rng.random((1, size))\n", - " search_space_size = size - query_length + 1\n", - " mask = np.ones((1, search_space_size), dtype=bool)\n", - " # Used for numba compilation before timings\n", - " naive_squared_matrix_profile(X, T, query_length, mask)\n", - " _times = %timeit -r 1 -n 3 -q -o naive_squared_matrix_profile(X, T, query_length, mask)\n", - " times.loc[(size, _query_length), \"Naive\"] = _times.average\n", - " # Used for numba compilation before timings\n", - " stomp_squared_matrix_profile(X, T, query_length, mask)\n", - " _times = %timeit -r 1 -n 3 -q -o stomp_squared_matrix_profile(X, T, query_length, mask)\n", - " times.loc[(size, _query_length), \"Stomp\"] = _times.average" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "cc4801ae-bb48-46d1-8e71-21c045c69773", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADL8AAAOcCAYAAAAVIPLEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXTU9dn//9fMZN9mBggkQCAJsigoKLJkqSCuWBdcW+t6u1ettV9vq+2vnp67vVu1rq1W6y5atSoqrvW2goBZANkFJCCZsC9JmJnsy8x8fn+EjAlJyCRkZrI8H+dwzmdm3u/P55rJ5ALmmuv9NhmGYQgAAAAAAAAAAAAAAAAAAAAAAADohczhDgAAAAAAAAAAAAAAAAAAAAAAAADoCM0vAAAAAAAAAAAAAAAAAAAAAAAA6LVofgEAAAAAAAAAAAAAAAAAAAAAAECvRfMLAAAAAAAAAAAAAAAAAAAAAAAAei2aXwAAAAAAAAAAAAAAAAAAAAAAANBr0fwCAAAAAAAAAAAAAAAAAAAAAACAXovmFwAAAAAAAAAAAAAAAAAAAAAAAPRaNL8AAAAAAAAAAAAAAAAAAAAAAACg16L5BQAAAAAAAAAAAAAAAAAAAAAAAL0WzS8AAAAAAAAAAAAAAAAAAAAAAADotWh+AQAAAAAAAAAAAAAAAAAAAAAAQK9F8wsAAAAAAAAAAAAAAAAAAAAAAAB6LZpfAAAAAAAAAAAAAAAAAAAAAAAA0GvR/AIAAAAAAAAAAAAAAAAAAAAAAIBei+YXAAAAAAAAAAAAAAAAAAAAAAAA9Fo0vwAAAAAAAAAAAAAAAAAAAAAAAKDXovkFAAAAAAAAAAAAAAAAAAAAAAAAvRbNLwAAAAAAAAAAAAAAAAAAAAAAAOi1aH4BAAAAAAAAAAAAAAAAAAAAAABAr0XzCwAAAIBeIz09XSaTSSaTSSUlJeEOp1/gNQUAAAAAAAAAAGiLGkrP4zUFAABAMNH8AgAAAAAIiaqqKj377LM6/fTTNXLkSEVHR2vkyJGaM2eO/vGPf6iqqqpPXH/JkiX+wk2gf84888ygPjcAAAAAAAAAAAD8IFx1qYaGBn3zzTd69tlndcMNN+jEE09URESEv2Z0/fXXB+W6AAAAA0FEuAMAAAAAAARm9uzZWrp0qSTpq6++0uzZs8MbUBcUFhbqqquuksPhaHX/nj17tGfPHn311Vd65JFH9Oabb2rGjBn97voAAAAAAAAAAAB9CXWprnv66ad1zz33qKGhocfOCQAAgB/Q/AIAAAAACKr169fr7LPP9q+gFRkZqTlz5mjkyJHatWuXFi9eLI/Ho+LiYp199tnKz8/XpEmT+sT1hw8frosvvrjTcRMmTDim5wAAAAAAAAAAAIDOhbMuVVZWRuMLAABAENH8AgAAAAAImsbGRl166aX+AsPkyZO1cOFCpaen+8eUlJRo3rx5Wr9+vSoqKnTppZdq06ZNiog49v+yBvv6Y8eO1dNPP33McQIAAAAAAAAAAODYhLsu1SwtLU3Tpk3TtGnTNH36dD377LNasGBBj50fAABgoDKHOwAAAAAAQP/1wgsvaPv27ZIku92uzz//vFWBQZLS09P173//W3a7XZK0detWvfzyy/3i+gAAAAAAAAAAAAiNcNeF/uu//kv79+/Xzp079d577+n+++/XnDlzFB8f3yPnBwAAGOhofgEAAAAABM3f//53//F///d/KyUlpd1xqampuueee9qd15evDwAAAAAAAAAAgNAId11o9OjRGjZsWI+cCwAAAG3R/AIAAIABw+fzaf78+TrrrLOUkpKimJgYpaen66KLLtLChQv942bPni2TySSTyaQlS5a0e6709HT/mJKSkk6vff311/vHv/rqq52ONwxDH3zwga677jqNGzdOVqtVMTExSktL07x58zR//nx5PJ6jnqOkpMR/zZYrGuXl5emmm27ShAkTZLVaZTKZdPfdd2vt2rX+8Xa7XXV1dZ3GKUmVlZVKSEjwz92wYUNA83pCY2OjXn/9dV1xxRXKzMxUYmKi4uPjlZGRoSuvvFIffPCBDMM46jmWLFnij3327Nn++xcvXqyf/vSnyszMVExMjAYPHqzTTjtNTz/9tBobGwOOsba2Vk888YRycnI0ZMgQxcbGasyYMbryyiu1aNEi/7ijvaea71+6dKn/vtNPP91/f8s/gby/du/erQceeECTJ0+WzWZTfHy8JkyYoF/84hfasWNHwM+tM99//702b97sv3399dcfdXzLxzds2KDi4uI+fX0AAAAAAAAAwMBFXaoJdanWqEv137oUAAAAgi8i3AEAAAAAobB//37NmzdPK1asaHX/jh07tGPHDn300Ue6+OKLNX/+/DBF+IMNGzbouuuu07p169o8tnv3bu3evVsffvihHnzwQb3//vs64YQTAjpvQ0OD7rrrLj333HPtPn7yySdr6tSpWr16tVwul9577z1dddVVnZ737bffVnV1tSRp2rRpOumkkwKK51gtWbJEN910k3/r8pZKSkpUUlKif/3rX5o5c6YWLFigESNGBHTehoYG3XnnnXrhhRda3V9fX6+vv/5aX3/9tV555RX93//9n4YMGXLUc3377be6+OKL28RYXFys4uJi/etf/9Ktt96qp556KqDYesLChQt1/fXXy+12t7q/qKhIRUVFeumll/Tuu+/qxz/+8TFfa/Hixf7jcePGafjw4UcdP2LECI0dO1bbtm3zz8/MzOyz1wcAAAAAAAAADEzUpahLUZdqMpDqUgAAAAg+ml8AAADQ77lcLs2ZM0ffffed/76MjAxlZWUpOjpamzZt0sqVK/XBBx/IbA7v5ojLli3TBRdcoIqKCklSZGSkpk2bprFjxyoyMlIlJSXKy8tTXV2dioqKlJ2drcLCQh1//PGdnvtXv/qVv8Bw4oknavLkyYqMjNTWrVv9z/uWW27RrbfeKkl66aWXAioyvPTSS/7jm266qcvPuTveffddXXXVVf6VrmJjYzVz5kylp6fLbDZr69atKiwslMfj0fLly5WVlaVvvvkmoG3Gb7nlFs2fP19ms1kzZszQhAkT5PP5tHz5chUVFUmS1qxZo2uvvVafffZZh+f5/vvvdcYZZ6i0tNR/34knnqgpU6bIbDZr3bp1Wr9+vZ577jklJiYeNaY77rhDkvTBBx9o7969kqR58+a1Wzg52nvhyy+/1G233Sav16tRo0YpKytLSUlJcjgcWrJkiTwej2pra3XFFVdo48aNysjIOGpcnWn5O3fKKacENOeUU07xFxlazu+t16+trdXHH3+s9evX69ChQ4qPj9ewYcM0Y8YMnXzyyYqI4L/dAAAAAAAAADCQUJdqQl2KutRAq0sBAAAgBAwAAACgn7vhhhsMSYYkIyoqynjppZfajFmxYoUxevRo/5jm8V999VW752weK8lwOBydxnDdddf5x7/yyivtjtm3b58xdOhQ/7hrr73W2Lt3b5tx+/fvNy6++GL/uBNPPNHweDxtxjkcDv8Yi8ViSDLS0tKMZcuWtRlbV1dnGIZhVFZWGgkJCYYkw2QyGdu3bz/q89q0aZP/GvHx8UZFRUWnr8XRBPK6bty40YiNjfXH+N///d+G0+lsM2779u1Gbm6u/3xz585t93xfffWVf0x0dLQhyZg2bZrx3XfftRrn8/mMJ5980j9WkrF06dJ2z+nz+YzTTjvNP27w4MHG559/3mbcokWLjKFDhxomk6nV+66j5z5r1qxO35tHavmaRkdHG/Hx8cbrr79u+Hy+VuM2btxojBgxwj/2v/7rvwI6/9HMnTvXf7777rsvoDn33nuvf855553XK6/f8j1ztD/Dhw83HnnkEaOhoeGYngcAAAAAAAAAoO+gLkVdirrUwKxLHU3L38nrrrsuaNcBAADo78K7fAAAAAAQZFu3btUrr7ziv/3888/rhhtuaDNu+vTp+uKLLxQXF6eGhoZQhuj3//1//58OHjwoSbrrrrs0f/58paamthk3bNgwvfvuu5ozZ46kpi3MFyxYcNRze71excXF6csvv9SPfvSjNo9HR0dLkhISEnTllVdKkgzD0Msvv3zU87ZcXeuKK67odKWonnDXXXeptrZWkvTYY4/pkUcekc1mazMuMzNTn3/+uU444QRJ0r///W+tWLHiqOeur6/X2LFjtXjxYk2YMKHVYyaTSb/85S912WWX+e9766232j3P//3f/2nZsmWSJLPZrA8//FDnnHNOm3Fz5szRp59+KrPZHJL3XUNDgxYsWKCrr75aJpOp1WMTJ070r8AmNa1i5vF4jul65eXl/uNAVjeTpJSUFP/xoUOH+vT19+7dq3vvvVennXaaDhw4cEznAgAAAAAAAAD0ftSlmlCXoi4lDby6FAAAAIKP5hcAAAD0ay+99JIMw5DUVEi47rrrOhw7btw43X333SGKrLXS0lL985//lNT0IevDDz981PEWi0V/+tOf/LffeOONTq9x5513aty4cZ2Ou/nmm/3Hr776qrxeb7vjGhsb9frrr/tvh2Jr+fXr12vx4sWSpJNPPrnTn1d8fLweeOAB/+1AXqeHHnpICQkJHT7eski1cuXKdse0LL789Kc/VU5OTofnO/XUU3Xttdd2GldPOP/883Xuued2+Ph5553n/5C/qqrqmLd3r6qq8h/HxsYGNKfluJbze9v1k5OTdfvtt+uDDz5QcXGxampqVFdXp+LiYs2fP1/Tpk3zj12+fLkuuOACf3EMAAAAAAAAANA/UZf6AXUp6lIDrS4FAACA4KP5BQAAAP3aV1995T++5pprOh1/tCJEMH355Zf+FZYuueQSxcTEdDpnxowZio+PlyTl5eV1Ov6nP/1pQLFMmzZNU6ZMkSTt2bNH//d//9fuuI8++kilpaWSpBNOOEHZ2dkBnf9YfPbZZ/7jK6+8ss0qUe1pXolM6vx1iomJ0QUXXHDUMSeffLL/uKSkpN0xS5cu9R9fffXVncYYyJiecPnllx/1cZPJpMmTJ/tvd/T8AlVXV+c/joqKCmhO82pvko65WSRY1z/11FO1e/du/f3vf9e8efOUkZGh2NhYRUdHKyMjQ9dee61WrFjRqsD1zTff6LHHHuvmMwEAAAAAAAAA9AXUpX5AXYq61ECrSwEAACD4IsIdAAAAABAshmFo/fr1/ttZWVmdzhk3bpwGDRoU8m2tCwsL/ccbNmzQnXfe2aX5TqdT1dXV/qLDkSIjI3XiiScGfL5bbrlFt99+u6Sm1aLOO++8NmNariJ14403dine7mr5On311VfasWNHp3OaV1iTpF27dh117Pjx4xUZGXnUMYMHD/YfV1RUtHl8z549/uKL1FQM6sy0adNkMplaxRoMgbwHOnt+XdGyWNZcROtMfX29/zjQVblCff2jrcDWzGQy6Q9/+IO2b9+uN998U5L0+OOP6/7771dEBP8VBwAAAAAAAID+hrrUD6hLNaEuNbDqUgAAAAg+vnEDAACAfsvtdrf6YHPUqFEBzRs1alTIiwx79+71H+fl5QW0YtaRnE5nh0UGu93epS/cX3XVVbr33ntVXV2tjz/+WKWlpUpOTvY/vnv3bv/KW1FRUSHbHr3l6/Tvf/+7y/OdTudRH7darZ2eo2URwuPxtHm8ZYEhLi5OgwYN6vSciYmJslqtcrlcnY49Fl19fo2Njcd0vZZNIoGultVyXCBNJr35+pL0hz/8wd/84nQ6tXz5cuXm5h7zeQEAAAAAAAAAvQt1qR9Ql2pCXWpg1aUAAAAQfOZwBwAAAAAES1VVVavbcXFxAc3r6IP6YHK73cd8jvY+8G7W1ZWKkpKS9JOf/ERS0wfNr732WqvHX331Vfl8PknSRRddpCFDhnQx2u451tfJ6/Ue9fFAtqvvTMv3XaDvOSk0H6j3xPPripardR04cCCgOfv37/cfB1Kg6c3Xl6QxY8YoPT3df/u777475nMCAAAAAAAAAHof6lI/oC7VhLrUwKpLAQAAIPhofgEAAEC/deSHtjU1NQHNq66u7vFYmj+Q70jLwsbjjz8uwzC6/KflF+x7ws033+w/brmVvGEYeuWVV/y3b7rpph697tG0fJ3ef//9br1OwdbyfRfoe04Kzvsu3MaPH+8/3rFjR0Bzdu7c6T+eMGFCn75+s9TUVP9xWVlZj5wTAAAAAAAAANC7UJc6NtSluoe61A96S10IAAAAwUPzCwAAAPotq9WqqKgo/+2WH14eza5duzod09kW40fqbGWoYcOG+Y9brjAUTjNnztRJJ50kqWm3isLCQknSV199peLiYknS6NGjdeaZZ4Yspt74Oh2p5WpjNTU1nW5pLzWtyhXsreXD4fjjj/cfr127NqA5a9asaXd+X7x+s5YFpHCs4AcAAAAAAAAACD7qUseGulT3UJf6QW+pCwEAACB4aH4BAABAv2UymTR58mT/7eXLl3c6Z9u2bSovL+90XFJSkv84kPHffvvtUR+fMWOG/zg/P7/T84VKe6tstVxt67/+679kNofuvxW99XVqaeTIka0KDStWrOh0zqpVqwJa/SvU28Mfq9NPP91/XFRUpH379h11/N69e7Vt2zb/7Tlz5vTp60tNhaaioiL/7eHDhx/zOQEAAAAAAAAAvQ91qWNHXarrqEv9oDfUhQAAABBcNL8AAACgX2v5Iec///nPTse/9tprAZ235Vbu69atO+rYVatWyeFwHHXMOeeco4iICElSQUGB1q9fH1AcwXb11VcrNjZWkvT2229r9+7dev/99yVJZrNZN9xwQ0jjOf/88/3H77//vg4cOBDS6wdq1qxZ/uM33nij0/GBvDclKSYmxn/c2NjY9cBCbOzYsTrhhBP8t+fPn3/U8S0fP/HEE5WZmdmnry9Jb775purr6yU1FYlOO+20Yz4nAAAAAAAAAKB3oi51bKhLdQ91qSa9oS4EAACA4KL5BQAAAP3ajTfe6D9evnz5UT/M/f777/XEE08EdN6WKz0d7YNTj8ejX/7yl52eb8SIEbr66qslSYZh6Nprr1VFRUVAsfh8PpWWlgY0tqtsNpuuuOIKSU1boF922WWqq6uTJJ199tlKS0sLynU7Mn36dM2ePVuSVFtbq2uuuUYNDQ0BzW1oaAhoq/ee0LL48uabbx51dbc1a9Z0+uF7s8GDB/uP9+zZ0/0AQ+j222/3Hz/66KMdFob279+vRx991H/7jjvu6JXXr6mpkc/nC+ja27Zt0/333++/ffbZZ2vo0KEBzQUAAAAAAAAA9D3UpY4NdanuoS71g3DXpQAAABBcNL8AAACgXxs3bpyuv/56/+2bbrqp3Q90V61apbPOOkvV1dWKiorq9Lw/+clP/NuqFxYW6v7775fX6201Zvfu3Tr//PNVUFCg6OjoTs/5pz/9SampqZKkDRs2aPr06friiy86HL9792498cQTGj9+vN5+++1Oz99dLbeYb7lV+k033RS0ax7NU089pYSEBEnSf/7zH5122mlH3cJ969at+uMf/6j09PSQbUk/d+5c5ebmSmoqAl1wwQX68ssv24xbsmSJzjvvPHm93oDed5MmTfIfL1iwIKAt6cPtlltu0ZgxYyRJ5eXlmjt3rnbs2NFqzI4dO3Teeefp0KFDkpp+b1sWCI+0ZMkSmUwm/58lS5aE7PorV67UxIkT9eyzz+rgwYPtjvF6vfrnP/+prKwslZeXS5KioqL08MMPdxgnAAAAAAAAAKDvoy517KhLdR11qR+Euy4FAACA4IoIdwAAAABAsD3++OMqLCxUUVGR6uvrdf311+sPf/iDsrKyFB0drU2bNmnlypUyDEOXXHKJysvLtXTp0qOec/To0brtttv0zDPPSJIefvhhvfXWWzrttNMUExOj7du3Kz8/Xw0NDTrzzDOVkpLS6Rbiw4cP14cffqjzzjtPZWVlKioq0jnnnKMRI0Zo+vTpSk5OVmNjo8rKyrRx48ZOt6zvKTk5OZo4caI2bdrkv2/o0KG68MILQ3L9I02aNElvvfWWfvKTn6impkYrVqzQzJkzNWbMGJ1yyikaNGiQ6urqdPDgQW3YsCEsK1GZTCa9/PLL/uaHsrIynXXWWZo8ebKmTJkiSVq/fr3WrVsnSfrv//5vvfvuu/4P35sLWEe65JJL9Nvf/laGYejTTz/VSSedpOzsbCUmJvrH/PSnP9Wpp54a1OfXFZGRkXrvvfeUm5urqqoqrV27VmPHjtUZZ5yhESNGaPfu3Vq8eLEaGxslSUlJSXrvvfcUEdEz/10NxvW3bNmi22+/XXfeeaeOO+44TZw4UYMGDZLZbNb+/ftVWFiosrIy/3iLxaLXXntNkydP7pHnBAAAAAAAAADovahLHRvqUl1HXeoH4a5LSfK/5i3t3LnTf/zRRx+1O6b55wMAAICO0fwCAACAfs9ut2vx4sW66KKLtGrVKklScXGxiouLW4278MIL9eqrr+qCCy4I6LyPPfaYSkpK9Nlnn0lq+tDyyELC+eefr9dff1133313QOecNm2aVq1apRtvvFGLFi2S1LSN+AcffNDhnGHDhmns2LEBnb+7br755lbP4dprr1VkZGRQr3k0zSuX3XjjjVq9erUkafv27dq+fXuHc9LT0zVy5MhQhaixY8dq0aJFuvjii/0FofXr12v9+vWtxt1yyy3685//rDfffNN/X1JSUrvnHDdunO6//349+OCDkqSNGzdq48aNrcZMmjSpVxUZJGny5Mn64osvdNVVV8nhcKixsVGff/55m3GZmZl64403Wq0k1puv7/P5tHXrVm3durXDMePHj9fLL7+s7OzsbscPAAAAAAAAAOg7qEsdO+pSXUdd6gfhrksd+Zofyel0yul09ug1AQAABgqaXwAAADAgDB8+XMuXL9drr72mN954Qxs2bJDb7dawYcM0efJkXXfddbr00ktlMpkCPmdMTIw++eQTvfXWW5o/f77WrFkjt9utoUOHavLkybr++ut12WWXdemcUtPqXV9++aUKCwv17rvvatmyZdq1a5ecTqciIiI0ePBgjR07VqeeeqrOPvtszZ49u0dXI2rPJZdc0qrIEK6t5VuaPHmyVq1apS+++EILFy5Ufn6+9u7dK5fLpejoaCUnJ2v8+PGaMWOGzjnnHGVlZXX5Z9ETMW7cuFH/+Mc/9O6772rr1q2qqalRamqqpk+frptvvllnnHGGJPk/5DabzR0WGSTpz3/+s3Jzc/XKK69o9erVOnDggGpqakLyfI5FVlaWNmzYoNdee03vvPOOtm7dqvLycg0ePFjjxo3TFVdcoWuvvVYJCQm9+vo/+tGPtGrVKhUWFqqgoEBFRUUqLy9XeXm56uvrZbValZaWphkzZujCCy/UueeeG/L3HQAAAAAAAAAgvKhLHRvqUt2PkbpUk3DXpQAAABAcJsMwjHAHAQAAAPQms2fP9m8v/9VXX2n27NnhDagXmD9/vq6//npJUm5urr7++uvwBtTPbNu2TePGjZMkTZgwQd99912YIwIAAAAAAAAAAKFAXaot6lLBRV0KAAAAfZU53AEAAAAA6P1eeukl//HNN98cxkj6p7ffftt/PG3atDBGAgAAAAAAAAAAEF7UpYKLuhQAAAD6KppfAAAAABzV2rVr/StqDRo0SFdccUWYI+pfHA6HHn30Uf/tn/3sZ2GMBgAAAAAAAAAAIHyoSwUXdSkAAAD0ZTS/AAAAAOhQXV2dfvGLX/hv33bbbYqJiQljRH3L2Wefrc8//1wej6fdxz/99FPl5ubK7XZLkqZMmaKzzz47lCECAAAAAAAAAAD0CtSljg11KQAAAPR3EeEOAAAAAEDv8vTTT+v777+Xy+XSokWLtHv3bknSkCFDdM8994Q5ur7lP//5j/7zn//IbrfrlFNOUVpamqKiolRWVqaVK1f6X1tJSkxM1GuvvSazmTUKAAAAAAAAAADAwEBdqudQlwIAAEB/R/MLAAAAgFYWLFigpUuXtrrPYrHopZde0qBBg8IUVd/mdDq1aNGiDh8fO3as3n33XZ144okhjAoAAAAAAAAAACC8qEv1POpSAAAA6K9ofgEAAADQIbvdruzsbP3mN79RTk5OuMPpczZu3KiFCxeqoKBAO3bsUFlZmQ4dOqSYmBglJydr+vTpOv/88/XTn/5UFosl3OECAAAAAAAAAACEDXWpY0NdCgAAAP2dyTAMI9xBAAAAAAAAAAAAAAAAAAAAAAAAAO0xhzsAAAAAAAAAAAAAAAAAAAAAAAAAoCM0vwAAAAAAAAAAAAAAAAAAAAAAAKDXovkFAAAAAAAAAAAAAAAAAAAAAAAAvRbNLwAAAAAAAAAAAAAAAAAAAAAAAOi1aH4BAAAAAAAAAAAAAAAAAAAAAABAr0XzCwAAAAAAAAAAAAAAAAAAAAAAAHotml8AAAAAAAAAAAAAAAAAAAAAAADQa9H8AgAAAAAAAAAAAAAAAAAAAAAAgF4rItwBAAAAAAAAAAAAABh4ysrKwh0C0GdYLBbZ7Xb/bafTKa/XG8aIAPRn5BwAoUTOARAq5BsAoUTOaTJkyJAePR87vwAAAAAAAAAAAAAAAAAAAAAAAKDXovkFAAAAAAAAAAAAAAAAAAAAAAAAvVZEuANA3+V0OsMdAtBnmM1mWa1W/2232y2fzxfGiAD0Z+QcAKFEzgEQKuQbAKFEzmlit9vDHQIAAAAAAAAAAAAgieYXHAOv1xvuEIA+y+fz8TsEIGTIOQBCiZwDIFTINwBCiZwDAAAAAAAAAAAAhJc53AEAAAAAAAAAAAAAAAAAAAAAAAAAHaH5BQAAAAAAAAAAAAAAAAAAAAAAAL0WzS8AAAAAAAAAAAAAAAAAAAAAAADotWh+AQAAAAAAAAAAAAAAAAAAAAAAQK9F8wsAAAAAAAAAAAAAAAAAAAAAAAB6LZpfAAAAAAAAAAAAAAAAAAAAAAAA0GvR/AIAAAAAAAAAAAAAAAAAAAAAAIBei+YXAAAAAAAAAAAAAAAAAAAAAAAA9FoR4Q4AA1djY6NqamrU0NAgwzBkGEa4QwJ6hMlkkslkUlRUlOLi4hQZGRnukAAAAAAAAAAA6HeoNaG/MpvNioiIUExMjKKjo2U2s6YlAAAAAAAAQPMLus1isXRrnmEYcjqdqqmp6eGIgN7F4/GopqZGcXFxGjx4cKvHKFIACKYjcww5B0AwkXMAhAr5BkAokXMADDTLli3Tli1bVFxcrJ07d8rj8ej222/X7Nmzwx1auwzDkNvtVm1tbbhDAYLC5/PJ4/Gorq5OJpNJNptN8fHx4Q4LAAAAAAAACCuaX9Btdru9W/PKysrU0NAgs9nsX4HLbDbLZDL1ZHhA2BiGIZ/PJ6lpF5iGhgZ5PJ5WY6xWazhCAzBAkXMAhBI5B0CokG8AhBI5B0B/9/bbb6u0tFSJiYmy2+0qLS0Nd0hHVVVV1abxhUZF9CctdzJqXljQbDZ3uz4LAAAAAAAA9Ac0vyCkGhoaVFpaKp/PJ8MwZLVaFR8fT0EC/Y7P51N1dbXcbrd8Pp9KS0uVlJSkqKiocIcGAAAAAAAAAEArt956q1JTU5WcnKyFCxfqzTffDHdIHfJ4PKqqqvLfTkxMVFxcHLUm9CuGYaihoUHV1dWqr6+XJB06dEgpKSm81wEAAAAAADBg8ckYQqq5GGEYhhISEpSYmMgHtOiXzGazEhMTlZCQ4F+Zq2UxDgAAAAAAAACA3uKkk05ScnJyuMMISHMjgCTFx8crISGBWhP6HZPJpOjoaNntdkVHR0tqqq9SawIAAAAAAMBAxs4v6Dan09nlOeXl5fJ4PJKk6Oho/zHQX0VHR6uyslIej0fV1dUaNGiQJPl3hAGAYDCbzbJarf7b5BwAwUTOARAq5BsAoUTOaWK328MdAtDvud1uff/99/r++++1fft2bd++XZWVlZKkWbNm6Y477gj4XKWlpfr3v/+tNWvWqLy8XBEREUpJSVFWVpbOOecc/xfo+7qWzS+xsbFhjAQIPpPJpPj4eP/7vqKiQklJSWGOCgAAAAAAAAgPml/QbV6vt8tzmptdTCaTIiJ4+6H/i4iIkMlk8m9P38zn83XrdwgAuoOcAyCUyDkAQoV8AyCUyDkAguXmm2/ukfOsWrVKTz31lGpra/331dfX+xtqFi1apN/85jdKSUnpkeuFU3M+ptaEgSIqKqrdWhMAAAAAAAAw0PCJMEKqeXVEk8kkk8kU5miA4Gt+rxuGMSBXBwUAAAAAAAAABGbIkCEaMWKE1q9f36V5DodDTz75pBoaGhQTE6N58+Zp0qRJamhoUH5+vhYtWqR9+/bpwQcf1EMPPdTnd0uh1oSBpmWtiWZcAAAAAAAADGQ0vwAAAAAAAAAAAABhcNlll2nMmDEaM2aMbDabDh48qDvvvLNL53j11VfV0NAgi8Wi3/3udxo3bpz/sUmTJik1NVX//Oc/tW/fPn388ce64oorevppAAAAAAAAAAAQdOZwBwAAAAAAAAAAAAAMRFdccYWmTp0qm83Wrfnff/+9vvvuO0nS6aef3qrxpdn555+vESNGSJL+/e9/y+PxdDteAAAAAAAAAADCheYXAAAAAAAAAAAAoA9auXKl//j0009vd4zZbNasWbMkSdXV1dq0aVNIYgMAAAAAAAAAoCfR/AIAAAAAAAAAAAD0QUVFRZKk6OhoZWZmdjjuhBNOaDMHAAAAAAAAAIC+hOYXAAAAAAAAAAAAoA/avXu3JCklJUUWi6XDccOHD28zBwAAAAAAAACAviQi3AEAGHjuvPNOvf3220pLS9OaNWvCHQ4AAAAAAAAAAH1OQ0ODKisrJUmDBw8+6tiEhARFR0ervr5e5eXlbR5ftGiRtmzZIknauXOn/75NmzZJkiZMmKAzzjgj4Njau0Z7jtaw0xGTydTlOehfqDM1MZtZ5xJA8ByZY8g5AIKJnAMgVMg3AEKJnBMcNL8A/Vx+fr7mzZvnv33RRRfpxRdfPOqc5qKBJJWWlgYzPAAAAAAAAAAA0A11dXX+45iYmE7Hx8TEqL6+vtW8Zlu2bNHSpUtb3VdUVKSioiL/7a40v/z85z8PaNw777wT8DmblZWVyTAMmc1mRURQ6gy2vLw8XXDBBf7bF198sV5++eWjzrn99tv11ltvSZKcTmePx9TyiwID5T3Q3pcjrFZrGCIBMFCRcwCEEjkHQKiQbwCEEjmnZwyMTwMB+H300UfavHmzTjjhhHCHAgAAAAAAAAAAuqmhocF/HEgDQPOYlvOa3XHHHbrjjjt6Ljj0WwsXLtQ999yjiRMnhjsUAAAAAAAAAAMMzS/AAGMYhv7yl7/o1VdfDVsMTz/9tJ5++umwXR8AAAAAAAAAgL4uKirKf+zxeDod3zym5bxgefbZZ4N+DYSHYRh66KGH9Prrr4cthmeeeUbPPPNM2K4PAAAAAAAAIDxofgEGkMGDB6u8vFyffvqpNmzYoJNOOincIQEAAAAAAAAAgG6IiYnxH9fV1XU6vnlMy3nBMnjw4IDGOZ3OLp+7sbFRPp9PUmBNPzg2Xq/Xf9xcZ/rkk0+0Zs2aDutMzT8fiZ9RT/H5fK1eV0lyu91t7gOAnmI2m2W1Wv23yTkAgomcAyBUyDcAQomc08Rut/fo+Wh+AQaQm2++WU888YTq6+v18MMP64033gh3SAAAAAAAAAAAoBuioqKUmJioyspKlZeXH3VsVVWV6uvrJQXemBIKLRsrAmUYRhAiQSCoM/UuPp+vW79DANAd5BwAoUTOARAq5BsAoUTO6Rk0v6DbLBZLl+eYTKYgRIJADR8+XNdcc41efPFFffHFF1qzZo1OOeWULp3D5/MpPz9fX375pb755htt375dFRUViouLU1pammbNmqWbb75ZI0eO7PAcd955p95++22lpaVpzZo1/vsfffRRPfzww5Kk5cuXa8yYMUeN5fLLL9eSJUs0dOhQbdiwod335GeffaYFCxZozZo1KisrU3R0tDIyMnTOOefo5ptvls1m69Lz7ylmszks1wUwMByZY8g5AIKJnAMgVMg3AELJJ5NWOg5p8ZaDSoyJ0NWnJIc7JABo18iRI/Xdd99p//798nq9HdZu9u7d22oO0B3UmXpPnQkAAAAAAAC9W4PHp7xtZVq69aBG2uN04fHWziehUzS/oNu6sw1RWVmZDMOQ2WxWRARvv1Bo+UG9xWLRPffcozfeeEO1tbV6+OGH9d5777WZ0/ILREf+nB566CF/4aCliooKbdq0SZs2bdKrr76q5557Tueff367MXV0/iuuuMJ/7oULF+q+++7r8HkdPHhQX3/9tSTp0ksvVXR0dKvHXS6XrrvuOi1btqzV/fX19Vq/fr3Wr1+vV155RW+88YamTZvW4XV6QntfyGq5lRkABBs5B0AokXMAhAr5BkBPK6+q15KiUn1VdFDLtpaqos4jSUq1xuj22WNY2AdArzR+/Hh99913qq+vV3FxscaOHdvuuM2bN7eaA3TXL3/5S3+d6cEHH9S7777bpfmPPvqoHnnkkTb3H1lneuaZZ/TjH/+4S+e+5JJL/HWm999/X/fee2+HY1vWmS6++OI2jS8ul0s33HCDf0yzI+tMr732mk499dQuxQkAAAAAAID+aberTgUOlwocbq3aVaG6Rp8kaeLwJJpfegjdB8AAk5KSohtuuEF///vftXjxYhUWFiorKyvg+R6PRykpKfrxj3+sadOmKT09XTExMdqzZ49WrFihl19+WVVVVbr55pu1ZMmSLhXRMjMzdeqpp2rVqlVasGDBUZtfPvjgA//2X5dffnmrx+rr6zVv3jytX79eFotFl112mc466yyNHj1ajY2NKigo0DPPPKPS0lJdccUVWrp0qUaNGhVwnAAAAAAAAOj7fD5Dm/ZWaPGWg/qq6KDW73bJMNqO2+eu05b9lTo+NSn0QQJAJ6ZPn66FCxdKkr766qt2m198Pp+WLl0qSYqPj9fEiRNDGSL6mZSUFF1//fV69tlntWTJEi1fvlwzZ84MeL7H49GwYcN03nnnadq0aRo9erSio6O1d+9effPNN3r55ZdVXV2t2267TYsWLdK4ceMCPndmZqamTp2q1atX67333jtq88vChQv9dabLLrus1WP19fW69NJL/bvBXHrppTrzzDM1atQoNTY2qrCwUP/4xz9UWlqqK6+8UosXL1ZaWlrAcQIAAAAAAKB/qGv0atWuShU4XCp0uLTLVd/uuE17K1RW1SB7bPs7dyNwNL+g1/EZhly1nnCHEVK22AiZQ7hy5C9/+Uu9+uqrqq6u1oMPPqiPPvoo4LnXXnut7rvvPkVGRra6f/LkyTrvvPN0yy236Oyzz9bevXv1+OOP67nnnutSbJdffrlWrVql77//XmvXrtXJJ5/c7rgFCxZIko477rg2Y/7yl79o/fr1slqtWrhwoaZMmdLq8aysLF1++eU655xztH//fv3xj3/UCy+80KU4AQAAAAAA0PdU1jUqb1uZFm85qCVbS1Va2X4R4kiLtxyk+QVAr3Tcccfp+OOP13fffaevvvpKs2fPbtMs8Mknn2jPnj2SpLlz57bZ8b0/8hmG3AOs1mQNYa3pF7/4hebPn6+amho9/PDD+uCDDwKee/XVV+vee+9tt840d+5c3XTTTTr33HO1b98+Pfnkk3rmmWe6FNull16q1atXa/v27Vq3bl2bGlGz999/X5I0ZsyYNmMeffRRbdiwQVarVe+9954mT57c6vGZM2fqsssu09y5c3XgwAH96U9/0j/+8Y8uxQkAAAAAAIC+xzAMOcprVVDiVqHDpbW7K9XgbWdltXYUOFz68QmDgxxh/9f/P91G0Didzi7PaWxslM/XtIWTx9N+0cFZ06iznllzTLH1Nf+5/RTZ4yI7H9gNzatWNR97PB7Z7XbdcMMNeuqpp/T1119ryZIlys3N9Y9r/hlJbX9Ow4cPb/f+ZsOGDdPtt9+u3/3ud/r3v/+txsZGmY4othzt/BdccIF++9vfyuv16u2339aJJ57Y5hoOh0OrVq2S1FTEaHmOqqoqvfjii5Kk+++/X5MmTWo31uHDh+v//b//p1//+tf68MMP9eijjyo+Pr7d53SsfD5fq+csSW63u819ANBTzGazrNYftkkk5wAIJnIOgFAh3wDoDsMwVHKoVl9vdypvu1Nrd1fK4wusCCFJx6cmac6EZE0bEdutz0P7OrvdHu4QgH5vy5Yt2r9/v/92RUWF/3j//v1asmRJq/GzZ89uc47rr79eDzzwgBoaGvS///u/uvjiizVx4kQ1NDSooKBAX375pSQpNTVVF1xwQVCeR3dZLF1f6fDImkN73LUeak1BlJycrBtvvFFPPfWU8vLylJeX16rOdDSjRo066uPDhw/XHXfcod/97nf6/PPPZRhGQD/zZvPmzdMDDzwgr9erBQsWtNv84nA4tHr1akltd32pqqrSyy+/LKmpznRk40uztLQ03XPPPfr1r3+tjz76SI899ljQ6kwdMZvNIb0egIHlyBxDzgEQTOQcAKFCvgHQHVX1Hq3c4VZBsUv5Dqf2VzQEPNdkkk4aadOsccmaPDKxW5+HojWaX9BtLZsqAmUYgReWEVx33nmnXnnlFVVVVenBBx/Up59+2q3zVFZW6tChQ6qtrfX/fOPi4vyP7dixQ+np6QGfLzk5WbNmzdLixYu1cOFC/eEPf2jzj8zm1bgk6ZJLLmn1WEFBgb842FkRLysrS1JTU9b69euVnZ0dcJzHyufzdet3CAC6g5wDIJTIOQBChXwDoCN1jT6t3lWhfIdL+cUu7XEHtruLJMVGmjV9tFWnjRmkH5+SrhRrjKSmhYDIOQCCYdGiRVq6dGm7jxUVFamoqKjVfe01v2RkZOjuu+/WU089pdraWr311lttxqSmpuo3v/mNYmNjeyTuntKdJruysjIZhiGz2dzhLjaWiIFXj7JERARlV5+WBXmLxeK/xt13361XX31VlZWVeuihh/T555/7x7Ws63QWU0VFhZxOp2pqavx1poSEBElNdaY9e/a0qTMd7fypqamaPXu2Fi1apA8//FB//vOf29SZFi5c6D++4oorWp1jxYoV/jrTxRdffNT4mxt+GhsbtXHjRuXk5Bz1uR6L9r6Q1XJxAAAINnIOgFAi5wAIFfINgPYYhqHN+yq0pKhUS7eWas0OZ5cWVhuSEKXTxiVr1rhk/WhssgbFRwUx2oGH5hdggBo0aJBuvfVWPfbYY1q5cqUWL16sOXPmBDR3165d+vvf/64vvvhCu3btOurYQ4cOdan5RWpaZWvx4sU6cOCAvv76a82aNavV4++9954kaerUqcrMzGz12Pr16/3HkyZNCviaBw8e7FKMAAAAAAAA6D32V9Qrr9ilvGKXvtlZoXpP4DtDjbLHKCfDppxMm04ZmaioCLMsFovshxtfAKAvOPXUU/Xoo4/qs88+05o1a3To0CFFREQoJSVFM2fO1Lnnnqvo6Ohwh4l+ZNCgQbrtttv0yCOPaMWKFVq0aJHOOOOMgObu3LlTTz/9tD7//PNO60zl5eVdrjNdfvnlWrRokfbv369ly5a1aRpbsGCBpKbfmyPrTOvWrfMfT5gwIeBrUmcCAAAAAADou5zVDfr6+zItLSrVsm2lKq0MfGE1i9mkqaPsmjW+qeHlhNQkmc2B72SMrqH5BRjAfv7zn+vFF1+U2+3WX/7yl4CaX7788kvdeOONqqmpCegatbW1XY5r7ty5iouLU01NjRYsWNCq+WX9+vXatm2bJOnSSy9tM7e0tLTL1+tunAAAAAAAAAgPj9enDXur/A0vxeWBf7YTaTHplJGJys20KyfTplF2mlwAhM8dd9yhO+64o0fOlZycrOuuu07XXXddj5wP6Mwdd9yh559/Xm63Ww899FBAzS//+c9/dP311wdcZ6qrq+tyXD/+8Y/9daZ33323VfPL+vXrtXXrVklNTTJHos4EAAAAAADQ/3l9hjbsdmnp1qbdXdbvcqkLm7so1RqjWYd3d8k+boissZHBCxat0PyCXscaG6H/3H5KuMMIKWtseH4VrVarfv7zn+uhhx7S6tWr9cUXX+jss8/ucHx5ebluu+021dTUKD4+XnfccYdOP/10paenKykpSVFRTVtzff3117rkkku6HVdCQoLOPfdcvf/++/r000/1yCOPKCam6UsI77//viTJYrFo3rx5beb6fD+s6rlo0SJFRgb2F8rw4cO7HS8AAAAAAACC71B1owpKXMovdqmwxK2qem/Ac4cmRCons2l3l+mjrIqLsgQxUgBAoJxOZ5fnNDY2+msBHo+n3TEJkRpwtaaEyI5fj2Ph9XpbHbe8Rnx8vL/OtGrVKn322Wc6++yzW9VqWo4vLy/XzTff3KU6k8fjafO8Ojp/s5iYGH+d6eOPP9bDDz/srzO98847kprqTBdccEGb+S1vd7XOFIzXv5nP52v1vCXJ7Xa3uQ8AeorZbJbVavXfJucACCZyDoBQId8AA1tZVYMKD9eZljtcctcF/llOpMWkk0cmNdWaMuzKHBIrk6lpdxdfXZWc7azfQs5pYrfbe/R8NL+g1zGbTLLH0QEXKrfeequef/55HTp0SA8//PBRm18+/vhjud1uSdL8+fNb7cjSUneKVUe69NJL9f7776uyslJffPGFLrzwQvl8Pn3wwQeSpFmzZik5ObnNvJZJcsiQITS1AAAAAAAA9FE+w9CWA9XKP7y7y+b91Qp00S2zSTpxeIJyMmzKzbRpbHKcvwgBAOg9WjZWBMowOv/bgFpT6FBnCh+fz9et3yEA6A5yDoBQIucACBXyDdC/ebw+bdhbpcIStwocLhUdDGwn4mYjrNHKzrApO8OqqWlJrRZW604TCzmnZ9D8AgxwCQkJuuOOO/THP/5RGzZs0Kefftrh2C1btkhq+uC/o4KEJK1bt+6Y45ozZ44GDx6s8vJyvf/++7rwwgtVUFCgffv2SZIuu+yyduedeOKJ/uMVK1bo4osvPuZYAAAAAAAAEBpV9R4tL3Erv9ilAodb5TWNAc+1xkQoO8OqnEybZqZbZWOLeQAAgo46EwAAAAAAAHqL/RX1/maXlTsqVN0QeLNJdIRZp6YlKSvDquwMm0bZY4IYKbqL5hcAuvHGG/WPf/xDpaWl+stf/qJJkya1O66547C+vl4+n09ms7nNmJqaGr377rvHHFNERIQuvPBCvfLKK/ryyy/ldrv13nvvSZLi4uI0d+7cdufNmjVLcXFxqqmp0QsvvKB58+axqicAAAAAAEAvZRiGSg7VKa/Ypbxip9btqZLXF+j+LtK4oXHKzbQpJ8OmSakJspj5HAgAgFCjzgQAAAAAAIBwaPD4tHZPpQodTYuqFZfXdml+xqAYZR3e3eXkkUmKjmj7eRV6F35CABQfH69f/OIXkqTNmzdr0aJF7Y7LzMyU1FR4+PDDD9s87vV69atf/Ur79+/vkbiaV92qr6/Xe++9p08++USSdO655yohIaHdOVarVTfeeKMk6ZtvvtHvfve7o24vdvDgQb3++us9Ei8AAAAAAAA6V9foU36xSw9/WaKLXlivy1/ZoL8u3anVuyo7bXyJjTRr9nF2/e7sDH1268l689oTdXtumiaPSKTxBQCAMKHORJ0JAAAAAAAgVHY56/T2mv26+/0izXl6te54d4v+uWp/QI0v8VFmnT7Wrt+elaGPb56id2+YrP93+mjNTLfR+NJHsPMLAEnS9ddfr7///e86cOCAysvL2x1z0UUX6U9/+pPq6+t111136dtvv9Xs2bOVlJSkLVu26MUXX9T69es1ffp0rVy58phjmj59ukaPHq0dO3boz3/+s9xutyTp0ksvPeq8++67TwUFBVq9erWef/555efn65prrtGkSZMUFxcnt9utLVu2aNmyZVq0aJGOP/54XXPNNcccLwAAAAAAANq3z12vvGKX8h0ufbOzQvWejr9EeqRR9hjlZNqUm2nTySMSFUXxAQCAXoc6E3UmAAAAAACAYKht8Gr1rgoVlLhV6HBpl6u+S/PHDY1TdrpVWRk2nTQ8QZEW6kx9Gc0vACRJsbGxuvvuu/Wb3/ymwzHDhw/XX/7yF/3qV79SXV2dnnrqKT311FOtxsybN0/XXHNNp4WDQF1yySV64okn/AWJwYMHa86cOUedEx0drQULFujOO+/Up59+qk2bNun+++/vcHxiYmKPxAoAAAAAAIAmHq9P6/dWNTW8FLu6tM18pMWkqWlJysloanhJs8cEMVIAANATqDMBAAAAAACgJxiGIUd5rQpK3CpwuLR2d6UavUbA85NiLJox2qrsDJuy0q0akhAVxGgRajS/APC75ppr9PTTT2vPnj0djvnZz36m4447Tn//+9+1cuVKud1uDRo0SBMnTtSVV16pefPmKT8/v8diuuyyy/TEE0/4b1944YWKiOg8dSUkJOjVV1/V8uXL9fbbb2v58uXav3+/6urqlJiYqPT0dJ188sk666yzdPrpp/dYvAAAAAAAAANVeXWjCh0u5RW7tHyHW1X13oDnDk2IVE6mXTmZVk0fZVVclCWIkQIAeguLpev53mQyBSES9ATqTKFlNrNKKYDgOTLHkHMABBM5B0CokG+A3quq3qMVh5tdCoqd2l/ZEPBck6SJqQnKybQpO8OuiakJspjD/xkiOSc4TIZhBN4KBbRQVlbW5TkHDhyQz+eT2WzWsGHDghAV0Ps0v+9jYmI0duxYSZLT6ZTXG/gXQACgKywWi+x2u/82OQdAMJFzAIQK+QbofXyGoe/2Vyv/cMPL5v3VAc81m6SThicqJ9Oq3Ey7jhsS26u+zEzOaTJkyJBwhwAAbWzbtk0NDQ0ym81KTU0NdzhASOzbt08+n09RUVH+WhMAAAAAAEBf5fMZ2ryvQku3lmrp1lKt2eGUxxd4S8OQhCidNi5Zs8Yl60djkzUont1dBgp2fgEAAAAAAAAABKSq3qPlJW7lF7tU4HCrvKYx4LnW2AhlZ1iVk2FTVrpN1lg+ngYAAAAAAAAAABgInNUN+vr7Mi0tamp4KauqD3iuxWzS1FF2zRrf1PByQmqSzL1gdxeEHtVFAAAAAAAAAEC7DMOQo7xWecVNu7us31slbxdW3ho/NE65mTblZNo0MaV3bDMPAAAAAAAAAACA4PL6DG3Y7dKSw80u63e7ZAReYlKqNUazDze7ZB83REkxkcELFn0GzS8AAAAAAAAAAL+6Rp9W7apQfrFT+cVu7a0IfOWtuEizZqRblZNpU06GTckJbDMPAOiY0+ns8pzGxkb5fD5Jksfj6emQgF7J5/P53/fN3G53m/sAoKeYzWZZrVb/bXIOgGAi5wAIFfINEHxlVQ0qcLhU4HBpucMld13gn99FWkw6ZWSSsjNtysmwK3NIrEympkXVvLVVctYGK+rgIOc0sdvtPXo+ml8AAAAAAAAAYIDb665X/uHdXVbtcqveE/jSW6MHxSgnw6bcTJumjEhUVIQ5iJECAPoTr9fb5TlGV5aHBPoxn8/Xrd8hAOgOcg6AUCLnAAgV8g1w7DxenzbsrVJhiVsFDpeKDtZ0af4Ia7SyM2zKzrBqalqS4qIs/sf6W6MIOadn0PyCbrNYLJ0POkJzBx4w0JnNfAkEQPAcmWPIOQCCiZwDIFTIN0DPavT6tH5Ppb7e7lTedqeKywNfLivSYtK0UVblZNqVO8amUfbYIEYaHuQcAAAAAAAAAACAtvZX1KvA4VZhiUsrd7hV3RB4k0p0hFmnpiUpO8Oq7Ayb0uwxQYwU/RHNL+i27mxDVFZWJsMwZDabFRHB2w8DQ3tfjmi5lRkABBs5B0AokXMAhAr5Bui60sp6LSk6qK+KDurrrWWqrA98q/lUa4xOnzBUp48fqpzjBisuamB9tkfOAQAAAAAAAAAAA1G9x6e1uytV6HCpsMTdpQXVJClzcKyy0q3KyrDp5JGJio5gwTF038CqUAIAAAAAAADAAOHzGdqwx62vtjQ1vGzY7Q54rtkkTR1t9ze8TEhJZFdnAAAAAAAAAACAAWCXs04Fh5tdVu2sUJ0n8N1d4qPMmj7aqqx0m7LSrUq1RgcxUgw0NL8AAAAAAAAAQD/hrm3U19tK9dWWUi3delBlVQ0Bzx0UH6VZ45J1+oShmjU2Wda4yCBGCgAAAAAAAAAAgN6gtsGr1bsqVFDiVoHDpd2u+i7NHzc0TtnpVmVn2HTS8ARFWNjdBcFB8wu6zel0dnlOY2OjfL6m7j+Px9PTIQG9ks/n87/vm7nd7jb3AUBPMZvNslqt/tvkHADBRM4BECrkG6B9hmGouKxWXxc7lbfdqXW7K+Q1Ap9//LB45Y6xKzfTrompCbKYm3Z38dVXydm1uka/Qs5pYrfbwx0CAAAAAAAAAADoYYZhqLi8VoUOtwpKXFq7u1KNXSgwWWMiNCPdqux0q2amWzUkISqI0QI/oPkF3eb1ers8xzC6UHkH+jGfz9et3yEA6A5yDoBQIucACBXyDQayukavVu2sUF6xS/kOl/ZVBL67S/NW87mZNmVn2JTcshhh+MSvVfvIOQAAAAAAAAAAoC+rqvdo5Y4KFZa4VOBw60Bl4PUlk6SJqfHKSrcpO8OqE1J+WFANCCWaXwAAAAAAAACgl9vjqlO+w6W8YpdW76pQvSfwRWZGD4pRboZNuWNsmjIiUZFsNQ8AAAAAAAAAANCv+QxDWw/WqLDEpUKHW+v3VsnrC7y+NCguQlnpNmVlNO3uYouNDGK0QGBofgEAAAAAAACAXsbj9Wndnsqm3V2KXXIcqgt4bpTFpKlpScrJtCk306aRtpggRgoAQPdZLJYuzzGZWFESkCSzmYZmAMFzZI4h5wAIJnIOgFAh32AgcNU2qtDhUoHDpUKHS+XVjQHPtZikk0Y01ZdyMm0aNzReZj6L6zZyTnDQ/AIAAAAAAAAAvUBZdYMKit3KK3ZqxY4KVTd4A547LDFKuYeLEdPSkhQb1fUvEwMAEGp2u73Lc8rKymQYhsxmsyIiKHViYGjvyxFWqzUMkQAYqMg5AEKJnAMgVMg36A+8PkPrd7u0tKhUS7eWav1ul4zAN3dRqjVGs8cna9a4ZGUfN0RJMezuEizknJ7BJ8IAAAAAAAAAEAY+w9Dm/dXKL3Ypr9il7w5UBzy3afWtROVkNO3uMmZILCvhAwAAAAAAAAAA9HMHK+u0bGuZlm4t1dfbSuWqCXx3lyiLWdMzBmnWuGTNHp+s44YmUF9Cn0LzCwAAAAAAAACESGWdR4UlbuUXN20576z1BDzXFhuh7MPNLjPTrUqK4eNdAAAAAAAAAACA/qzR69OaHU4t2VqqpUWl2ryvokvzRw2K0+zxTc0uMzMHKy6K+hL6Lt69AAAAAAAAABAkhmFoe1mt8g43u6zfUylvF7abP35YfNPuLmNsOn5YvCxmVt8CAPQfTqezy3MaGxvl8/kkSR5P4E2kQF/m8/n87/tmbre7zX0A0FPMZrOsVqv/NjkHQDCRcwCECvkGfcm+inoVFDtV4HBpRYlb1Q3egOfGRJg1bbRV2Rk2ZWfaNMoe63+svrpS9dXBiBhHIuc0sdvtPXo+ml8AAAAAAAAAoAfVNXr1zc4K5RW7lF/s0v7KhoDnxkeZNWO0VbmZdmVnWDUkISqIkQIAEF5eb+BF+2aG0YUuUqAf8/l83fodAoDuIOcACCVyDoBQId+gN6n3+LR2d6UKHS4VlrhVXF7bpfmZg2OVlW5VVoZNJ49MVHSE2f8Y7/PegZzTM2h+AQAAAAAAAIBjtMdV5292WbWrQg1d2N4lfVCMcjNtys20afKIREVazJ1PAgAAAAAAAAAAQJ+1y1mnfIdLhQ63Vu2qUL0n8F1B4qPMmn54d5esdKtSkqKDGCnQe9D8AgAAAAAAAABd1Oj1ad2eSuUXu5RX7FLJobqA50ZZTDo1LUk5mTblZNo00hYTxEgBAAAAAAAAAAAQbrUNXq3aVaECh1uFJS7tdtV3af64oXHKOdzsctLwBEWwmBoGIJpfAAAAAAAAACAAZVUNync0Nbus3OFWdUPgK3ANS4zy7+4ybVSSYiItQYwUAAAAAAAAAAAA4WQYhorLa1XocKugxKW1uyvV6DUCnm+NidCMdKuy062amW7VkISoIEYL9A00vwADRHV1td599119/vnn2rRpk5xOpwzDUGJiotLS0nT88cdr2rRpmjNnjkaMGBHucAEAAAAAAMLO6zP03YFq5W13Kc/h1JYDNQHPtZikySMSm3Z3ybBpzJBYmUymIEYLAAAQXNSaAAAAAAAAjq6q3qOVOypU4HCpsMStA5UNAc81SZqYGq+sdJtyMm06fli8LGZqS0BLNL8AA8A333yjW265Rbt3727zWHl5ucrLy7Vu3Tq99dZbSk5O1ubNm1uNueiii1RQUKDs7Gx9+OGHoQobAAAAAAAg5CrqPFpe4lZesUsFDpdctZ6A59pjI5Sd0bS7y4x0q5Ji+PgVAAD0D9SaAAAAAAAA2vIZhrYerPE3u2zYU6kubO6iwXGRysqwKivDphmjk2SLjQxesEA/QPUV6Oe2b9+uK664QlVVVZKkc889VxdccIHGjBmjyMhIHTp0SJs2bdKSJUuUn58f5mgBAAAAAABCyzAMbS+rVV6xS/kOV5eLEicMi2/a3SXTphNS4mVmdxcAANDPUGsCAAAAAAD4gaumUct3uFXocGt5iVvlNY0Bz7WYpMkjEpsaXtJtGjc0jtoS0AU0vwD93J/+9Cd/MeJvf/ubrrzyyjZjZs+erTvuuENlZWWstgUAAAAAAPq92gavvtlV0dTwUuzq0pbz8VEWzUy3KifDpuxMq4bERwUxUgAAgPCj1gQAAAAAAAYyr8/Q5v1VKnC4VVji0qZ91erCOmoalhil7MPNLtNHJykhmq/vA93Fbw/Qj3m9Xn355ZeSpClTprRbjGhpyJAhuvHGG0MRGgAAAAAAQEjtdtX5m11W76pQQxe2d8kYFKPcTLtyMq2aMiJRERZzECMFAADoPag1AQAAAACAgaisqkGFJW4VOFxascOtijpvwHMjLSadPDJR2Rk2ZadblTE4ViZ2dwF6BM0vQD9WVlam2tpaSVJGRkaX59955516++23/bcLCgqUnJzcakxaWprWrFnTZu7mzZv14osvKi8vT/v375fZbNbIkSM1e/Zs3XLLLRo1alS719y5c6emTp0q6YfVwz755BPNnz9fGzduVE1NjTIyMnTVVVfp+uuvV2RkpCTJMAy9//77eu2117R161ZVV1fruOOO07XXXqvrrruuw384ND+fe++9V7/+9a+1dOlSvfDCC1q7dq3cbrdSUlJ0xhln6O6771ZqamqXX0MAAAAAABAejV6f1u6uVH6xS3kOl3Ycqgt4bnSESVPTkpSbaVNOhk0jbDFBjBQAgIHLYrF0eQ5fFAgtak29t9ZkNtOQDSB4jswx5BwAwUTOARAq5BscTaPXp/V7KlXgcKmg2KWig9Vdmp9mj1F2hk05mTadmmZVbFTXP/dC/0LOCQ6aX4B+LCoqyn+8devWkF33ySef1IMPPiifz9fq/qKiIhUVFenVV1/VY489pp/85CednuvXv/61XnnllVb3bdq0Sb/97W+Vn5+vl156SR6PRz//+c/18ccftxr37bff6t5779WGDRv0+OOPd3qtRx55RH/5y19a3bdjxw69/PLLWrBggf75z38qKyur0/MAAAAAAIDwKKtqUJ6jaXeXlTvcqm7wdT7psJTEKOVm2pSbadOpo5IUE0lRAgCAYLPb7V2eU1ZWJsMwZDabFRFBqTPY4uLi/Mfbtm3r8mseaFH/yPM+/vjj+tOf/nTUWtOTTz6pn/70p0c9l8Vi0X333aeXX3651ZjmWlNhYaFeeeUVeTwe3Xrrrfrwww9bjWuuNW3cuFFPPvnkUZ+D2WzWY489poceeqjV/S1rTW+99Zays7OPep6Ozn0kq9Xa5fMAQHeRcwCEEjkHQKiQb7DbWaNlW8u0pOigCraXq6reE/Dc2EiLssYM1qxxyZo1LlnpQ+KDGCn6A3JOzzAZhmGEOwj0TWVlZV2ec+DAAfl8PpnNZg0bNiwIUeFIp5xyinbt2iVJeuCBB3TnnXcGXGjYt2+fXC6X7rrrLq1bt05TpkzR3/72t1ZjoqKiNGbMGP/tl19+Wffdd5+kpq3tf/GLX2j69Onyer1atmyZnn76adXU1MhkMumNN97QWWed1ep8LVfjmjp1qlavXq0zzzxTV199tUaOHKm9e/fqr3/9q1avXi2pqfjRvPLXpZdeqksuuUTDhg1TcXGxHnnkEW3btk2S9K9//UtnnHFGm+fYvBrXlClTtG7dOh133HG68847NXHiRFVUVOijjz7S66+/Lp/Pp8TERH399dcaMWJEQK9fs+b3fUxMjMaOHStJcjqd8noD3wYPALrCYrG0+uIAOQdAMJFzAIQK+Qbt8foMbd5fpbxil/KKXSo6WBPwXItJmjwiUTmHG14y2XIeLZBzmgwZMiTcIQBAG9u2bVNDQ4PMZjM7tofISSed5K81/f73v9ddd90VcK1p7969crlcuvPOO7V27VqdfPLJevrpp1uNiYqK0nHHHee//eKLL+ree++V1PR30S9/+UvNmDFDXq9XS5cu1VNPPaXq6mqZTCb961//0tlnn93qfDt37tTkyZMlSaeeeqpWrVqls846S9dee63S0tK0Z88ePfHEE1q1apUk6a9//as2bdqk559/Xpdddpkuu+wypaSkaPv27Xr44Yf9C8y9++67OvPMM9s8x+Z/M5x88slau3atxo4dq7vuustfa1q4cKFee+01f62poKBAI0eODOj1a7Zv3z75fD5FRUX5a00AAAAAAKBr6hq9+qbkkJYUlWrp1lJ9f7CqS/PHDk3Q7PHJmjVuqE5Nt7OQGhAGNL+g24LW/GL4ZKpzHmN0fYsRY5dMwdnO6plnntHvf/97/+1Ro0bpnHPO0bRp03TKKado9OjRnZ7joosuUkFBgbKzs9useNVSWVmZpk6dqpqaGqWkpOjzzz9v0yiyYcMGXXDBBaqpqVFqaqpWr17t305eat38Ikm33nqr/vd//7fVOWpqapSbm6tdu3Zp0KBBcjqd+uMf/6hbb7211bgDBw5o5syZqqqq0rnnnqvXX3+9TczNzS9SU/Hmww8/VEJCQqsx77zzju644w5J0oUXXqiXXnqpw9egPTS/AAg1vqQFIJTIOQBChXyDZu5aj5bvcCuv2KlCh1uu2sBX4RoUF6HsjKZmlxmjrUqMYbV4tI+c04TmFwC9UUDNL4ZPptoBVmuKDV6t6emnn9YDDzzgvz1q1CjNnTtX06dP19SpUwOqNZ1//vnKz89XTk6OPvnkkw7HlZWVafLkyf460hdffNGmUWTDhg0677zzVF1dreHDh2vdunVtak3NzS+S9POf/1x//vOfW52jpqZGM2fObFVr+vOf/6zbbrut1bgDBw5o2rRpqqys1Ny5c/Xmm2+2ibnlvxkmT56sTz75pE2t6V//+pd+/vOfS5LmzZunV155pcPXoD00vwAAAAAA0D2OsmotLTqopVtLVVhcrrpGX+eTDkuMjlDOcUM0a3yyThuXrBG22CBGCiAQVHfR65jqnBr80vRwhxFS5TeulBE7OCjnvu2221RUVOT/MH7nzp164YUX9MILL0hqav7IycnRZZddprPPPvuYVjh96623VFPTtMLqH/7wh3Z3SDnppJP0y1/+Ug8++KD27dunzz77TBdddFG75xsxYkSrxp1mcXFx+slPfqJHH31Uhw4d0qmnntqm8UWShg0bpvPOO0/vvPOOli9f3mn8jz/+eJtihCRdccUVev/997Vo0SJ99tlnOnDgADsXAQAAAAAQIoZh6PuyWuUf3t1lw95K+bqwnM8JKfHKOdzwcnxKvMzs7gIAQK/hdHa9QaWxsVE+X9OXFDye9ptgTbXl1Jp60C233KLvvvuuVa3pueee03PPPScpsFpT83qMhmF0+HOTpNdff91fa/qf//kfpaSktBl/wgkn6K677tKDDz6ovXv36qOPPmpVa2o5fsSIEXrggQfanCMqKqpNremmm25qM27w4MGaO3eu3nnnHRUWFh41dkl67LHHFBMT02bcZZddpgULFmjRokX65JNPtGfPni7Vmnw+n/9938ztdre5DwB6itlsltVq9d8m5wAIJnIOgFAh3wwMtQ1efbPTrQKHSwXFLu1y1XVp/oRh8crOsCk706aThicq0nJ4sRGjTk5n186FgY2c06TlwjE9geYXoJ8zm83661//qosvvljPPvusli1b1uoD99LSUi1cuFALFy7UlClT9PzzzysjI6Nb11q2bJkkyWq16vzzz+9w3NVXX60HH3zQP6ej5pcf//jHrVbqamnixIn+447mS9KkSZP0zjvvyOVyye12t/qLpKUTTjih1SpgR/rZz36mRYsWyePxqKCgQBdffHGHYwEAAAAAwLGpbfBq5c4K5Ttcyi926UBlQ8Bz46Msykq3KifTpuwMmwbHt//ZAgAACL/u7KrV3ESB0KHW1DtrTT6fb0DuTAcgPMg5AEKJnAMgVMg3/YNhGCour1WBw61Ch0tr91Sq0Rv450fWmAjNTLcqK8OqmelWDYmPanl23iPoMeScnkHzCzBAzJ49W7Nnz1ZlZaVWrFihdevWad26dSosLFRFRYUkad26dbrgggv05ZdfKiUlpcvX+O677yQ17e7SUSFBkoYOHapRo0Zp586d/jntGTNmTIePtSwsHG1cUlKS/7iqqqrDgsSUKVM6PIcknXLKKf7jzZs30/wCAAAAAEAP2+2qU97h3V1W76roUmEic3CscjJtysmwacqIBEU0r8IFAACAHkOtiVoTAAAAAAC9QVW9Ryt2VKjQ4VJhibtLi6iZJE1KTVBWhlXZGTYdPyxeFnPbXWwB9E40v6DbLBZLl+e0t805QisxMVFnnnmmzjzzTElSfX293nvvPf3+97+Xy+XSgQMH9NBDD+nJJ5/s8rldLpckaciQIZ2OHTp0qHbu3Omf057Y2NgOHzObf/gSS1xcXEDjjtYx2VnMycnJ/uOjxRyolnEBQE87MseQcwAEEzkHQKiQb/qfRq9Pa3ZV6OvtTuUVO7XjUOBbxUdHmDVtVJJ+NMau3DF2DbfGBDFSDETkHAAAOkatqX2hrjUBAAAAADBQ+AxDWw/WqOBws8uGPZXqwhpqGhwXqawMq7IybJoxOkm22I4X3ADQu9H8gm6z2+1dnlNWVibDMGQ2mxUR0cHbLyFZ7lvWHGN0fYsl1i6ZwlNAj4iI0LXXXqsRI0bosssukyR9+umn+tvf/ub/ML+5aclkMnX8c2vhqD/fwzo6Z8tji8XS4XlaNl8FOi4iIuKo444Wc8tiRqCvQ7P2vhzR0apgABAM5BwAoUTOARAq5Ju+6UBFnb7aclBfFR1U3rYyVTcEvrX3CFus5kwYqjkThmpm5mDFRnV9YRagu8g5ANC3GDF2ld+4MtxhhJQR0/W6XU+Jjo7Wz372M6WkpOgnP/mJpKZa0+OPP97tBtK+uKBeX4wZAAAAAIDeylXTqOU73CpwuLW8xKVDNZ6A51rMJk0e/sPuLmOT42Tm/+1Av0DzC3ofk1lG3OBwRzHgnHHGGRoxYoT27Nkjl8ulQ4cOBbSqVkt2u1379+9XaWlpp2MPHDggSbLZbN0Jt8d1FvPBgwf9x91p/AIAAAAAYCDy+gyt2+XyN7xs2lsR8NwIs0mnptt1+vimhpfjhibwhUIAABAYk1lGLLWmUJszZ84x15psNpsOHDgQUK2puXbTV2pNLR/vLTEDAAAAANBbeH2GNu2vUqHDrQKHS5v3V6sLm7toWGKUsjNsys6watqoJCVE8xV5oD/iNxuAX2pqqvbs2SOp9epUgX6x5Pjjj9f+/fu1fv16eTyeDndHKS0t1a5du/xzeoM1a46+29DatWv9x70lZgAAAAAAeiNXTYOWbi3VV1sOaunWUjlrGgOeOyQhSrPHD9Xp44fqR+OGKCmGbecBAAD6kpSUlGOuNR04cEAbNmzoc7WmdevWHfVxak0AAAAAALRWVtWgwpKmZpcVO9yqqPMGPDfSYtIpIxOVlWFTdrpVGYNjWUQNGABofkG3OZ3OLs9pbGyUz+eTJHk8gW9BhuCrqanRli1bJEmJiYlKSkry/4yioqIkSfX19Uf9uf3oRz/SV199JbfbrYULF2revHntjps/f74Mw/DPaXnOlsder7fD63m93i6P83g8HY7bvHmz1qxZo5NOOqndx19//XVJksVi0cyZM7v0/vX5fP73fTO3293mPgDoKWazWVar1X+bnAMgmMg5AEKFfNN7GYahraU1ytvuVN52pzbsrZSvC0txTUxN0I8y7codY9fxKfH+bee9tVVy1gYpaKAT5Jwm7IAMAOiKmpoaFRUVSWqqNQ0aNMj/WHR0tCSpoaHhqOc47bTTtGTJErndbn3yyScd1preeOMNf63ptNNO64Hoj93mzZu1YcOGDmtNb775pqSmWlN2dnYoQwMAAAAAoFfweH1av7dKhQ6XChxubS2t6dL8NFu0v9llalqSYqMsQYoUQG9F8wu6rWVTQaCaP4RGaFRVVenSSy/VPffcozPPPFNms7ndcT6fT7/5zW9UVVUlSTr33HNbdcAOGzZMkrRjxw4ZhtFhd+yVV16pRx99VDU1Nfr973+vGTNmKDU1tdWYjRs36sknn5TUtNPMeeedd6xPs8fcc889WrhwoeLj41vd/9577+nLL7+UJM2dO1cpKSnHfC2fz9et3yEA6A5yDoBQIucACBXyTXjVNHi1cqdb+cVNq3EdqDz6lxhbSoi2aOZoq3IzbcrKsGlw/A+7uxg+n/ipojci5wAABipqTV0TyloTAAAAAAB9wT53vQpKXCp0uPXNTreqGwJfaComwqxpo5KUlWFVVrpNafaYIEYKoC+g+QXo59asWaOrrrpKqampmjt3rqZNm6aRI0cqISFBbrdb3377rd566y1t3rxZkpSUlKT777+/1TmmTZumt956S6WlpXrggQd0+eWXKzExUZIUGRmptLQ0SdKQIUP0+9//Xvfdd5/27t2rM844Q3fddZemT58uj8ejZcuW6emnn1Z1dbVMJpMee+wxRUZGqjeYMmWK1q1bp7POOku/+MUvdMIJJ6iiokIff/yx5s+fL0lKSEjQ//zP/4Q5UgAAAAAAwmOXs055xS7lO1xavatCjd7AFznJHByr3EybcjJtmjw8QRGW9r80CQAAgN6HWlNgqDUBAAAAACDVe3xau7tCBQ63Ch0uOQ7VdWl+5uBYZWdYlZVh05QRiYqOoKYE4Ac0vwD9WEREhIYOHaqDBw9q3759evnll/Xyyy93OD4zM1PPP/+8Ro0a1er+iy++WH/7299UUlKi5557Ts8995z/sbS0NK1Zs8Z/+4YbbpDb7dZDDz3kL2AcKTo6Wo899pjOOuusHniWPeOss87SWWedpUceeUR33XVXm8cTExP1+uuvt3ltAAAAAADorxo8Pq3dU9nU8FLs0k5n4MWJ6MMrceVm2pSdYdNwa3QQIwUAAECwUGsKHLUmAAAAAMBAZBiGdrnqVeBwqcDh0updlar3BL67S3yURdNHJyk7w6asdKtSkqgpAegYzS9APxYTE6Nvv/1Wq1at0rJly7Rq1Spt375dBw8eVH19veLi4pSSkqKJEydq7ty5Ov/88xUVFdXmPAkJCfr000/117/+VUuWLNHu3btVU1PT4XV/9atf6eyzz9ZLL72kr7/+WgcOHJDJZNLIkSM1e/Zs3Xrrrb3yg/1f//rXOvXUU/Xiiy9q3bp1crvdSklJ0RlnnKG7775bw4cPD3eIAAAAAAAE1cHKBhU4XMordmnlDrdqGgMvTgxPilZOpk25mTZNTUtSTCQrcQEAAPR11Jq6hloTAAAAAGAgqGnwatWuChU6XCpwuLXHXd+l+eOHxik7w6bsDKtOTE1QhIWaEoDAmAzDMMIdBPqmsrKyLs85cOCAfD6fzGazhg0bFoSogK5JTk6WJN1777369a9/HZRrNL/vY2JiNHbsWEmS0+mU1+sNyvUAwGKxyG63+2+TcwAEEzkHQKiQb4LD6zO0cV9V0+4uDpe2Huz4C4hHsphNmjIiQbmZduVm2pQ+KEYmkymI0QKhQ85pMmTIkHCHAKCfo9aE/oBaE4D+iP8TAQglcg6AUCHfdJ9hGNpeVqvCErcKHS6t3VOpRm/gXz+3xkRoZrpVWRlWzUy3akh824UzgP6GnNOkp2tN7PwCAAAAAAAADCCu2kYtL3Err9ilQodb7jpPwHMHx0UqO9OmnMPFiYRoPl4EAAAAAAAAAADobyrrPFq5s2l3l8IStw5UNgQ81yRpUmqCsjKsys6w6fhh8bKYWUANwLGjOg0AAAAAAAD0Y4ZhaFtpjfKKXcordmnjvir5AlyMyyTphJR45WbalJtp1/hhcTKzuwsAAOghFouly3PYaQ5oYjabwx0CgH7syBxDzgEQTOQcAKFCvjk6n2Go6EC18otdKnA4tWFPpbqwuYsGx0cqO8OmnEy7ZqRbZYuNDF6wQB9AzgkOml8AAAAAAACAfqamwauVO9zKd7iUX+zSwarGgOcmRFuUlW5VTqZN2ek2DYqnOAEAAILDbrd3eU5ZWZkMw5DZbFZEBKVO9B7BfE+29+UIq9UalGsBQHvIOQBCiZwDIFTIN9Kh6gZ9va1US4tKtWxbqcqqAt/dJcJs0tTRds0an6xZ45J1fEqSzOzuAnSInNMz+EQYAAAAAAAA6Ad2OuuUV+xUfrFLa3ZXqrELy3GNGRKrnAybcjNtOmlEoiIoTgAAAAAAAAAAAPQrXp+hdbtcWrq1VEu3lmrDbpeMLuzuMtwao1njh2rWuGRlHzdYSTEsoAYgtGh+AQAAAAAAAPqgBo9Pa3ZXKr/YpXyHSzuddQHPjY4wa/qoJOVk2pSTYVOqNTqIkQIAAAAAAAAAACAcDlbUaenWUi3ZWqq8bWVy1zYGPDfKYtaMzEGaNS5Zs8cna0xygkwmFlADED40vwAY0EpLS8MdAgAAAAAAATtQWa8Ch1t5xS6t3OFWbaMv4LkjrNHKyWza3eWUkUmKiTQHMVIAAIDOOZ3OLs9pbGyUz9f0byCPx9PTIQFd1rLWFKz3pM/n87/vm7nd7jb3AUBPMZvNslqt/tvkHADBRM4BECoDJd80en1av6dp8bQCh1NbD9Z0af4oe4yyM23KzrDr1LQkxUZZDj/ikcvl6vF4gf5qoOScztjt9h49H80vAAAAAAAAQC/l9Rn6dl9V0+4uxS5tLQ28QGExm3TyiETlHm54GT0ohtW4AABAr+L1ers8xzCMIEQC9D0+n69bv0MA0B3kHAChRM4BECr9Kd/sc9eroMSlQodb3+x0q7oh8C/Yx0SYNW1UkrIyrMrOsGmkLabV4/3lNQLCrT/lnHCi+QUAAAAAAADoRVy1jSo8vLvL8hK33HWBrx49OD5SORk25WTaNGN0khKi+fgPAAAAAAAAAACgP6n3+LR2d4UKHG4VOFwqOVTXpfmZg2OVnWFVVoZNJ49IVFSEOUiRAkDPovoNAAAAAAAAhJFhGNpaWqO8w7u7bNxXJV+AC5qbJE1MjVdupl05GTaNHxYnM7u7AAAAAAAAAAAA9BuGYWins06FJU3NLqt3VareE/juLvFRFs0YnaTsDJtmpluVkhQdxGgBIHhofgEAAAAAAABCrLrBq292NO3uku9wqbSqMeC5idEWzUy3KjfTpuwMm+xxkUGMFAAAAAAAAAAAAKFW0+DVql0VKnS4VOBwa4+7vkvzJwyLU1a6TdkZVp2YmqAIC7u7AOj7aH4BAAAAAAAAQmDHoVrlO1zKK3Zpza5KeQLd3kXScUNilZNpU26mTScOT1SEmd1dAAAAAAAAAAAA+gvDMLS9rNa/u8va3V2rJVljIzRztFVZGVZlpds0OJ7F0wD0PzS/IKTMZrN8Pp98Pp8Mw5DJxBc10L8ZhiGfr2l7QYvFEuZoAAAAAACh1ODxac3uiqbdXYpd2uUKfEWumAizpo1OUk5GU8ML288DAAA0odaEgab5/S5RawIAAACA/qayzqMVO9wqLHGr0OHSwarGgOeaTdLElARlZ1iVlWHT8cPiZWHxNAD9HM0vCKnIyEh5PB5JUl1dnWJjY8McERBcdXV1/mPe7wAAAADQ/x2orFd+sVt5xU59s7NCtY2+gOeOsEYrN9OmnEybpqYlKTqC7ecBAACORK0JA01NTY3/OC4uLoyRAAAAAACOlc8wVHSgRgUlLhU63Pp2b6W8gW/uosHxkcpOb2p2mT46SbZYdncBMLDQ/IKQiomJUW1trSTJ7Xb772NVLvQ3hmGorq7O/z6XpMTExDBGBAAAAAAIBo/P0Ma9Vcp3uJRX7NK20prOJx1mMZt0yshE5WQ27e4y2s5nJAAAAJ2h1oSBwDAMeTwe1dbWqrq62n+/3W4PY1QAAAAAgO5w1jRqxQ63ChxuLS9x6VCNJ+C5FrNJk4cnKDvDpqwMq8Ylx/EZCIABjeYXhFR0dLSioqLU0NAgwzDkcrkkNW1RD/QnzdvPN4uOjlZ8fHyYogEAAAAA9CRXTaMKStzKL3apsMSlijpvwHOHxEcqJ9OmnMMrciVE8/EcAABAV1BrwkBgGIYMo/XSv3FxcYqOjg5TRAAAAACAQHl8hjbtq1Khw62CEpe+21+tLmzuopTEKGVl2JSTYdWpo6glAUBLZESElMlkkt1ul9PpVENDg//+IxsFgP4kKipKgwcPpuMaAAAAAPoowzBUdLBGecUu5Re7tHFfVcBFCpOkSakJ/t1dxg2Nk5n/HwIAAHQbtSYMRAkJCbJareEOAwAAAADQgdKqBhU63CoscWnFDneXFk6Lsph0SlqSstKtys6wKX0QO9wCQEdofkHImc1mDRo0SA0NDaqtrVVjYyMFCfQ7ZrNZkZGRio2NVVRUFCvOAQAAAEAfU93g1codbn/DS1l1Y8BzE6MtyspoanbJSrfKHhcZxEgBAAAGHmpN6O/MZrMsFouio6MVHR2tiIgIvvgEAAAAAL1Io9en9XuqVFjiUqHDra2lNV2aP8oeo6x0q7IybJo6MlGxUZYgRQoA/QvNLwgLk8nk/7AWAAAAAAAg3AzD0A5nnfIPN7us2V0pjy/wTejHJscpJ8Oq3Ey7Jg1PUISZL6YBAAAEE7UmAAAAAAAQSnvd9SoscanA4dY3O9yqaQx8IY6YCLOmjUpSdoZNWRlWjbTFBDFSAOi/aH4BAAAAAADAgFTv8WnNrgrlO1zKK3Zpt6s+4LkxEWZNH52knEybcjJsSkniS5cAAAAAAAAAAAD9RV2jT2t3V6igxK1Ch0slh+q6ND9zcKxyDje7TBmRqKgIc5AiBYCBg+YXAAAAAAAADBj7K+r9zS7f7KhQnSfwVblG2qKVe7jZ5ZS0JEVTpAAAAAAAAAAAAOgXDMPQTmedCkvcKnC4tHpXpeq7UEeKj7Joxuim3V1mpltZOA0AgoDmFwAAAAAAAPRbHp+hjXurlFfsVF6xS9+X1QY8N8Js0ikjE5t2d8m0abQ9RiaTKYjRAgAAAAAAAAAAIFRqGrxatatChQ6XChxu7XHXd2n+hGFxykpvWjhtUmq8IiwsnAYAwUTzCwAAAAAAAPoVZ02jChwu5TvcWl7iUkWdN+C5Q+IjlZNpU26mTdNHWxUfZQlipAAAAAAAAAAAAAgVwzBUdKBSS4tKtWjzPq3ZVSGPzwh4vjU2QlnpVmWlWzUz3abB8ZFBjBYAcCSaXwAAAAAAANCnGYahooM1yit2Kb/YpY37qhRomcIk6cThCU27u2TYNH5oHLu7AAAAhIjFQqMxECiz2XzU2wDQk8g5AEKJnAMg2CrrPFpe4lJhiVuFDrf2V9QFPNdskialJir7cB3p+JQEWczUkQB0jn/jBAfNLwAAAAAAAOhzquo9Kix2Kq/YpQKHS2XVjQHPTYqxKCu9aXeXrHSrbHGsygUAABAOdrs93CEAfZbVag13CAAGEHIOgFAi5wA4Vj6foU17K7Sk6KCWbi3V2l0uebuwu0tyYrRmjUvWrHHJyj1uiOzxUUGMFsBAwb9xegbNLwAAAAAAAOj1DMPQ9wertKTooBZvOaiVjkNd2oZ+bHKccjNtysm0aVJqgiJYlQsAAAAAAAAAAKBfKK+q19fbyrR0a6mWbS1VeXVDwHMjzCZNHW3X7PFDNWtcso5PTZTJRB0JAHojml8AAAAAAADQK9V7fFq9q0L5xS7lO1za7aoPeG5MhFnTRycpN9OunEyrhiVGBzFSAAAAAAAAAAAAhIrH69P63S4tLSrV0q2l2rDHLSPwNdM0wharWeObdnfJHjNYiTGRwQsWANBjaH4BAAAAAABAr7G/ol55h5tdvtlRoTqPL+C5abZof7PLKSOTFBVhDmKkAAAAOFZOpzPcIQB9htlsltVq9d92u93y+QL//xIAdAU5B0AokXMABOpgZYMKHU4VOFxaXuJWRZ0n4LlRFpOmjrLqjBNSNXt8ssYkJ6iiokI+n0+e2io5a4MYOIABiX/jNLHb7T16PppfAAAAAAAAEDYen6Fv91Y2NbwUu/R9WeDVhQizSaekJSo306acDJtGD4oNYqQAAADoaV6vN9whAH2Wz+fjdwhAyJBzAIQSOQdAs0avT+v3VKrA4VZhiVvbSmu6NH+UPUZZ6VZlZ9g0NS1R8TFRrb6ETb4BEErknJ5B8wsAAAAAAABCylnTqHxHU7PL8hK3KusD/5BvWFK0Th8/VNNHxjUVKqIsQYwUAAAAAAAAAAAAobLXXa8Ch0uFJW59s8OtmsbAd0mIiTBr2ugkZafblJVh1UhbTBAjBQCEA80v6DaLhS+XAIEym81HvQ0APYmcAyCUyDkAAuEzDG05UK2vtzuVv92pjfuqZAQ412ySThyeqB+NGaS5U9J0QmqSTCbTgN0WGkBo8G8cAAAAAAAAAAi+ukaf1u6uUEGJW4UOl0oO1XVp/pghsf5mlykjEhUVwWe5ANCf0fyCbmu5/RuArrFareEOAcAAQs4BEErkHADNKusalbetTIu3HNSSraUqrawPeK4tLlKzxiXr9PFDNWtcsuzxUW3GkG8AhBI5BwAAAAAAAACOnWEY2umsU4Gjqdll9e4K1XsCXTJNio+yaMboJGVn2pSVbtWwxOggRgsA6G1ofgEAAAAAAMAxMwxD20ur9dWWg1q85aC+KTkkjy/wYsXxqUmaMyFZcyYM1ZQ0uyxmUxCjBQAAAAAAAAAAQCjUNHj1zc4KFTpcKixxa4878AXTJGnCsDhlZ9iUnW7TpNR4RVjY3QUABiqaXwAAAAAAANAtdY1eFRaXa8mWg1pcdFC7DtUGPDcuyqKc44ZozoShOn38UKVYY4IYKQAAAAAAAAAAAELBMAxtL6tVweFml7W7K7u0YJo1NkJZ6VZlpVs1M92mwfGRQYwWANCX0PyCbnM6neEOAegzzGazrFar/7bb7ZbP5wtjRAD6M3IOgFAi5wADz76Ken293an87U6t3OFWnSfw3/lR9hjlZtr1ozF2nZKWpKiIwytz+WrldB69cYZ8AyCUyDlN7HZ7uEMAAAAAAAAA0AdU1nm0YodbhSVuFTpcOljVGPBcs0malJqgrHSrsjNsmjAsXhazKYjRAgD6Kppf0G1erzfcIQB9ls/n43cIQMiQcwCEEjkH6H88Xp827K1SXrFL+Q6XtpcFvrtLpMWkU0YmKjfTrpxMm0bZW+7uYhxTviDfAAglcg4AAAAAAAAA/MBnGNpyoFoFDrcKS1zauLdK3sA3d9GQ+EhlZdiUnW7V9NFWWWP5OjMAoHP8bQEAAAAAAIBWDlU3qqDEpfzipu3oq+oD/8L30IRI5WTalJNp0/RRVsVFWYIYKQAAAAAAAAAAAELBWdOo5SVuFZS4tNzhlrPWE/Bci9mkKSMSlJVuU3aGVWOT42QysbsLAKBraH4BAAAAAAAY4JpX58ovdimv2KXN+6sV6OJcZpN04vAE5WTYlJtpo1gBAAAAAAAAAADQD3h8hjbtq1KBw6VCh1vfHQi8fiRJKYlRys5s2t3l1FFJSojmK8sAgGPD3yQAAAAAAAADUFW9R8tL3MovdqnA4VZ5TWPAc60xEcrOsCon06aZ6VbZYiODGCkAAAAAAAAAAABCobSqwd/ssmKHW5X13oDnRllMOiUtSdkZVmWn2zR6UAwLpgEAehTNLwAAAAAAAAOAYRgqOVSnvGKX8oqdWrenSl5f4OtzjRsap9xMm3IybJqUmiCLmWIFAAAAAAAAAABAX9bo9Wn9nkoVONwqLHFrW2lNl+aPsscoO8OqrHSbpqYlKibSEqRIAQCg+QUAAAAAAKDfqmv0afWuCuUVu5Rf7NLeivqA58ZGmjVjtFW5mTZlZ9g0NDEqiJECAAAAAAAAAAAgFPa661XgcKnA4dKqnRWqafQFPDc20qxTRyUpO92mrAyrRtpighgpAACt0fwCAAAAAADQj+xz1yvf4VJesUvf7KxQvSfwgsUoe4xyMm3KzbTp5BGJioowBzFSAAAAAAAAAAAABFtdo09rdleo0OFWQYlLOw7VdWn+mCGxyk63KTvTqsnDqR8BAMKH5hcAAAAAAIA+zOP1af3eKv/uLsXltQHPjbSYNDUtSTkZTQ0vaXZW5wIAAAAAAAAAAOjLDMPQDmedCh1uFTpcWr27QvUeI+D5CdEWzRhtVVaGVVnpVg1LjA5itAAABI7mFwAAAAAAgD6mvLpRhYd3d1m+w62qem/Ac4clRin7cLPLtFFJiouyBDFSAAAAAAAAAAAABFt1g1erdlao0OFSYYlbe9z1XZp//LB4ZWVYlZ1u06ThCYowm4IUKQAA3UfzCwAAAAAAQC/nMwx9t79a+YcbXjbvrw54rtkknTQ8UTmZVuVm2nXckFiZTBQsAAAAAAAAAAAA+irDMLS9rFb5DpcKHW6t21Mpjy/w3V2ssRHKSrcqO8OmmaOtGhQfGcRoAQDoGTS/AAAAAAAA9EJV9R4tL3Erv9ilAodb5TWNAc+1xkYoO8OqnAybstJtssbyERAAAAAAAAAAAEBfVlHn0codbhU43Coscam0KvDakdkkTUpNUHaGTVnpVk0YFi8Lu7sAAPoYvvkAAAAAAADQCxiGIUd5rfKKm3Z3Wb+3St4urNA1fmiccjNtysm0aWJKAgULAAAAAAAAAACAPsxnGNpyoFoFDrcKHC5t3FelLpSONCQ+UlkZNmWnWzV9tJXF0gAAfR5/kwEAAAAAAIRJXaNPq3ZVKL/Yqfxit/ZW1Ac8Ny7SrBnpVuVk2pSTYVNyQlQQIwUAAAAAAAAAAECwOWsatbykqdlleYlbzlpPwHMtZpOmjEhQVnrTYmnHDYmVycRiaQCA/oPmFwAAAAAAgBDa665X/uHdXVbtcqveE/gSXaMHxSgnw6bcTJumjEhUVIQ5iJECAAAAAAAAAAAgmDw+Qxv3VanQ4VKhw63vDlSrC5u7KDUpStkZNmVlWDVtlFXxUZagxQoAQLjR/AIAAAAAABBEHq9P6/ZUKd/hUn6xS8XltQHPjbSYdGpakn93lzR7TBAjBQAAAAAAAAAAQLAdrGxQYUlTs8uKHW5V1nsDnhtlMWlqWpKyMqzKTrdp9KAYdncBAAwYNL8AAAAAAAD0sPLqRhU4mnZ3WV7iVnVD4EWLYYlR/maX6aOSFMsKXQAAAOinLBb+rQsEymw2H/U2APQkcg6AUCLnYCBo9Pq0bnel8oudKnC4tK20pkvzRw+KUXaGXdkZNk0dlaTYSP4/3R3kGwChRM4JDppfAAAAAAAAjpHPMLR5f7Xyi5t2d9l8oDrguWaTdNLwROVm2pSbadOYIbGs0AUAAIABwW63hzsEoM+yWq3hDgHAAELOARBK5Bz0F7sO1WjJ1lItLSpV4fayLi2UFhdlUfaYIZo1PlmzxiZr1OC4IEY6cJFvAIQSOadn0PwCAAAAAADQDZV1Hi0vcSvf4VKBw6VDNZ6A59piI5SVYVVupl1Z6VYlxfARDQD0SjWHJPduKSYt3JEAAAAAAAAA6MXqGr1aXlyupVtLtXRrqYpLA18oTZImpCRq1rhkzRqXrKnpdkVHsLsLAABH4psVAAAAAAAAATAMQ8Xltco7vLvL+j2V8hqBz58wLE65GXblZFp1QkqCLGZ2dwGA3sRUU6aI0o2KOLhRkWWbpbLvJPdOKXG4dENBuMMDAAAAAAAA0IsYhqHismotLSrVkq2lWlFcrnqPL+D5iTER+tHYIZo1LlmnjUtWqjU2iNECANA/0PwCAAAAAADQgbpGr1btrGhqeHG4tK+iIeC58VFmTR9tVW6mTdkZNiUnRAUxUgBAwAxD5qp9iijd5P9jKd0kS/WB9sdX7pWpulSKGRTaOAFgAHA6neEOAegzzGazrFar/7bb7ZbPF/gX6wCgK8g5AEKJnIO+pLreq5U73SoodqrA4dJed32X5h+fEq+cDLtyMm2aNDxREc0Lpfnq5HTWBSFitES+ARBK5Jwmdru9R89H8wsAAAAAAEALe1x1yne4lFfs0updFar3BL69y+hBMcrNsCl3jE1TRiQq0mIOYqQAgE4ZhswVO5uaXA7+0OxirjvUpdNYSjfJk/ajIAUJAAOX1+sNdwhAn+Xz+fgdAhAy5BwAoUTOQW9iGIa+L6tVgcOlQodb/z97fx7e1nnf+d+fs5AEVwAkQZFaCWonKcl2bEei5NhOmzib0zhN03SazHSmV9snSdN2Ol3GWSdN3KS755euaTuTtpl2xl2SmWZzEm+NRHmLY1kkJdkSQa2kCC4Ad4Jnef4ARYkhJYECCG7v13XhoqBz7ptf2eItAOd87u/LF4fleJlfNwoV2zpQH9SBaEj7twRVWVpwzeSe+Ku+tFhvAOQTa05uEH4BAAAAAABrmuN6evnisI50JnW4c1Cxgcx31iq0DL1uU4UONoR0qCGkjaHAIlYKALghz5WV7JLd2y4r3iY73iY73iEzNZzdvFaRzJHrdIUBAAAAAAAAsKoMTTh6/mxSrbGkjnYlFB+ZynisaUjNdWVqiYZ0oD6o3bWlMg1jEasFAGBtIfwCAAAAAADWnL7RlFo7kzoSS+jZrqRGU5nvsLKuvFCHGkI62BDSXZsqVFxoLWKlAIB5uVOyBs9MB1ymO7r0nZAxNZbVtH5BiZzqRrnrmhWof71Ut0+q3qHU0IjYhhEAAAAAAABYfTzf18nLo2qNJdUaS6ite0QLaO6i6tICHYiGdDAa1N1bgqoIcFsuAACLhX9lAQAAAADAquf5vjp6RnWkM6HDnQmduDya8VjLkPZuKNfBaLq7y9bqYhns0gUA+eNMyu4/JetKyCXeLrv/pAw3ldW0XmG5nEiTnEiT3EiznJomucF6ybRkWZYC4XBu6gcAAAAAAACwrAyMTunZs0kdjSV0tCupxLiT8VjbNHTbhnIdiAbVEg1pG9eNAADIG8IvAAAAAABgVRqecHS0K6kjnQm1xhIaXMCFi1CxrZbpsMv+enbpAoC8mRqT3Xfyasgl3i5r4FUZXuZr+Hy8QKWcmiY5keaZwItXsUniojQAAAAAAACw6jmer7buER2NJdQaSy5okzRJqqsoVEs0pAPRoO7aHFRpobVIlQIAgBvhzg0AAAAAALAq+L6vM33jOjwddjl2cVjuAtrS715Xmu7usjWk3etKZZncEA0Ai8mYHJbV1zE76DJ4RobvZTWvW7pO7nTAxYk0yalplldaS9AFAAAAAAAAWEN6h1M62pUOuzx3NqmRSTfjsYWWoddtqpjp7rIlHKC7CwAAywDhFwAAAAAAsGJNTLl64dyQDncmdKQzoZ7hVMZjSwtNvX5LUIcawmqJBlVdVriIlQLA2maMD8ru65Adb5Pd25YOuiTPZj2vW75xOuAyHXSpbpJfGslBxQAAAAAAAABWkpTj6dilYbXGkjoaS+h03/iCxm8OB3RwurvLHRvLFSiguwsAAMsN4RcAAAAAALCiXExMzIRdXjw/pNQC2rvUVwZ0qCGkQw0h7dtQrgLLXMRKAWBtMkbj6ZDLtR1dhi9mPa8brJ8OuTTPdHXxA6HsCwYAAAAAAACwIl1MTOhoV1KtsYReODek8anMu0oXF5i6a3OFWqIh7a8PamMosIiVAgCAXCD8AgAAAAAAlrUp19PLF4d1pDOhw50JdQ1MZDy20DJ056YKHWwI6WBDiAsXAJBLvi9zpPtq0KW3XVa8XdZYb3bTGqbc8NbpgEs66OJGdssvLM9R4QAAAAAAAABWookpTy9dGFJrLKHWWFLnBjO/ZiRJ26qLdSAaUks0qH3ry1Vos0kaAAArCeEXAAAAAACw7PSNpHQklu7u8tzZpEZTme/Uta68cKa7y12bK2hLDwC54Psyh87NhFyudHQxJwaym9YskFu1Y6aTixNpklO1SyoozlHhAAAAAAAAAFYq3/d1dnBCrbGEjsaSeunCkCYdP+PxZUWW9m8J6kA0qAP1IdWUFy5itQAAYLERfgEAAAAAAEvO9XyduDyqw2cSOhwb1MnLYxmPtQxp34bydHeXaEhbq4tlGMYiVgsAq5znykrEZgIuVrxNdrxDZmo4q2l9q1BO9e5rgi7Ncqu2S1ZRjgoHAAAAAAAAsNKNply9cC6po7H049LQ5ILGN64rTYddoiE115XJNrlmBADAakH4BQAAAAAALImhCUfPdiV1uDOh1lhCiXEn47HhYlst0XR3l/31QZUH+IgDAG6JOyVr8IzseJvs3rZ04KXvhAxnPKtp/YISOdWNs4Mu4QbJKshR4QAAAAAAAABWA9/3dbpvXK2x9PWiYxdH5HiZd3cJFds6UJ8Ou+zfElRlKZ9BAgCwWnFnCAAAAAAAyAvf93Wmb1yHOxM6EkvolYvDcjO/dqHGdaXp7i4NITXWlsqkuwsALIwzKbv/lKzpji52vF12/0kZbiqrab2iimtCLk1yI81yg1sk08pR4QAAAAAAAABWk6EJR891JdXaldTRWEJ9o1MZjzUNqbmuTC3RkFqiQe1axzUjAADWCsIvAAAAAABg0YynXL1wfigdeOlM6PJw5jdYlxZa2l8f1MFoSC0NQVWXFi5ipQCwykyNye47cTXkEm+XNfCaDC/zLlvz8QKVcmrSnVyuhF28ik0SF5cBAAAAAAAAXIfn+zrRM6qjXUm1xhJq6x7RApq7KFJWoAP16bDL3VuCqghw6ysAAGsRrwAAAAAAAEBOXUhMzIRdvn9+SKkFtHeJVgZ0qCGsgw1B3bahXLZlLmKlALA6GJPDsvo6rgZdettkJTpl+F5W87qltdOdXJqmAy9N8kprCboAAAAAAAAAuKmB0Sk9ezbd2eVoV1KJ8cw35rFNQ7dtKNeBaFAt0ZC2VRfL4HNJAADWPMIvAAAAAAAgK1Oup5cvDuvwmYQOxxI6OzCR8dgi29DrNlXoUENIB6MhbQgFFrFSAFj5jPHBa7q5tKU7uiTPZj2vW74x3cnlmq4ufkl1DioGAAAAAAAAsBY4nq+2SyNq7UroaCypE5dHFzS+rqJQLdGQDkSDumtzUKWF1iJVCgAAVirCLwAAAAAAYMH6RlI6EkvocGdCz59NajSVeXeB2vJCHWoI6VBDSHdurlCggIsXADAfYzQ+HXBpmwm8WMOXsp7XCUXT3VyuefiBUPYFAwAAAAAAAFhTLg9P6mhXUkdjST13NqmRSTfjsUW2oddtrNCB6cDLlnCA7i4AAOCGCL8AAAAAAICbcj1fHT0jOtyZ0JFYQicvj2U81jKkfRvK091dGkJqqKI1PQDM4vsyR7qvhlx622XF22WN9WY3rWHKDW9Nd3KZ7ujiVu+SX1ieo8IBAAAAAAAArCUpx9OxS8NqjSXVGkvoTN/4gsZvqQyopT4ddrljY4UCBeYiVQoAAFYjwi8AAAAAAGBeyXFHz55N6nDnoI7GkkqMOxmPrSyx1RJNd3d5/ZagygN8BAEAktJBl+TZmU4uVx7mxGB205oFcqt2zOrm4lTtkgqKc1Q4AAAAAAAAgLXoYmJCR7uSOhJL6MVzQxqf8jIeW1xg6q7NFWqJhnSgPqgNocAiVgoAAFY77jwBAAAAAACSJN/3dbpvXEc6EzrcmdArl4bl+ZmPb6wt1cHpwMvu2lKZdHcBsNZ5rqxEbCbgYsXbZMc7ZKaGs5rWt4rkVO+eFXRxq7ZLVlGOCgcAAAAAAACwVk1Mufr++WEd7UqoNZbUucGJBY3fVl2slmhILdGg9m0oV4FFdxcAAJAbhF8AAAAAAFjDxlOunj83pCOxhI50JnR5OJXx2NJCSwfqgzrYEFJLNKSq0oJFrBQAljl3Stbgadm97bLjbenAS98JGc54VtP6BSVyqhvl1DRfDbqEt0omH+0CAAAAAAAAyJ7v+zo7MKHWroSOxpJ66cKQJp3Md0crL7L0+i1BHYgGdaA+pJrywkWsFgAArGVcIQUAAAAAYI25kJjQ4enuLt8/P6QpN/MLGA1VxTrYENLBaEi3bSiTzW5dANYiZ1J2/ynZ8TZZ011d7P5TMtzMA4Tz8YoqZndziTTLDdVLBmstAAAAAAAAgNwZTbl64VxSrbGkjsYS6h5a2GebjetK02GXaEjNdWWyTWORKgUAALiK8AsAAAAAAKvclOvpBxeGZwIvC2lPX2QbunNTUIcaQjrYENL6YNEiVgoAy9DUmOy+E+mAy/TDGnhNhudkNa1XXCkncqWbS7OcmiZ55Rslg4vEAAAAAAAAAHLL9329Fh9Lh126Enr54ohcL/PN0cLFtvZHg2qpD+n1W4KqLC1YxGoBAADmR/gFAAAAAIBVKD6S0pFYQkc6E3quK6mxKS/jsXUVhdNhl7Du3FSuQIG1iJUCwPJhTA6nwy3XBl0Gz8hQ5heB5+OW1k53cmmSU5MOu3il6wi6AAAAAAAAAFg0yXFHz59NqrUr3d2lb3Qq47GmIe1ZX6YD9SG1RIPata5UJp9nAgCAJUb4BQAAAACAVcD1fLX3jOhwZzrwcqp3LOOxlmnotg1lOhgN6VBDSNGqYhlcwACwyhnjA7LjHdMhlzbZ8TZZyXNZz+tWbJru5nL14ZdU56BiAAAAAAAAALg+z/d1omdUR7uSao0l1NY9ogU0d1GkrGAm7HL3lqAqAtxeCgAAlhdenQAAAAAAsEIlxx0d7UqHXVq7kkqOOxmPrSyxdTAa0sGGkPbXB1VWxEcEAFYvY7T3mpDLdEeX4UtZz+uEouluLpHmdEeX6kb5gVD2BQMAAAAAAABABvpHp/RsV0JHu5J6tiupxAKuFdmmods2lKslGlRLNKSt1WyOBgAAljfubAEAAAAAYIXwfV+vxcd0JJbQ4c6Ejl9a2I5djbWlOtSQ7u5Ce3oAq5Lvyxzplt17fCbkYsfbZY7Fs5vWMOWGt6U7udSkwy5u9S75heU5KhwAAAAAAAAAbs7xfLVdGlFrV0JHY0mduDy6oPHrK4rUEg3qQDSkOzdXqLTQWqRKAQAAco/wCwAAAAAAy9hYytXz55I60pluUX95OJXx2LIiS/u3BHWoIaQD0ZCqSgsWsVIAyDPfk5k8NyvkYsfbZU4MZjetWSC3akc66BJpTn+t2ikVFOeocAAAAAAAAADI3OXhSR3tSupoLKnnziY1MulmPLbINvS6jRU6EA3pQDSoLeEA3V0AAMCKRfgFAAAAAIBl5vzghA53JnQkltD3zw9pys28vUtDVbEONYR0sCGkfevLZFvmIlYKAHniubISnemAS2865GL1tctMjWQ1rW8VyanePd3RJR10cSu3S1ZhjgoHAAAAAAAAgIVJOZ5evjiso7GkWrsSOtM3vqDxWyoDaqkPqSUa1O0bKxQo4FoRAABYHQi/AAAAAACwxFKOpx9cHE4HXjoTOjc4kfHYItvUXZsrdKghpJZoSOuDRYtYKQDkgTsla/D0dMilLf3oOynDWdgF3h/mFZTKjTROd3RJP9zwVsnkI1IAAAAAAAAAS+tCYmIm7PLiuSGNT3kZjy0pMHXXlqAO1KcfG0KBRawUAABg6XBld5U4ffq0/vEf/1GnTp2S67ravHmz3v72t6ulpWWpSwMAAAAAzKN3OKXWWEKHOxN6/mxSYwu4iLG+okgHG0I61BDS6zaxYxeAFcyZlN1/Sna8TVY83dHF7jslw0tlNa1XFJwVcnEizfJCWySD9RIAAAAAAADA0puYcvX988M62pVQayy5oI3RJGl7pEQH6oNqiQa1b0O5Ciw++wQAAKsf4ZdVoK2tTY888ogKCwvV0tKi4uJiPffcc3r00UfV39+vBx98cKlLBAAAAIA1z/V8tXWP6Mh04OXV3rGMx1qmods3lM8EXuorAzIMYxGrBYBFkBqV3X9iuqNL+mENvCbDd7Oa1iuulBNpngm5ODVN8so3SqyTAAAAAAAAAJYJ3/d1dmBCR2IJHe1K6qXzQ0q5fsbjy4ssvX5LUAeiQR2oD6mmvHARqwUAAFieCL+scK7r6i/+4i9kmqY+/elPq76+XpL0nve8Rw8//LD+4R/+Qfv371ckElnaQgEAAABgDUqMT+nZrqQOdyZ0NJZUcsLJeGxVSYFaGkI6GA1qf31QZUW8hQewchiTQ7LjHVe7ucTbZQ2ekaHML+bOxy2rnQm6uNNdXbzSdQRdAAAAAAAAACw7I5OOXjw3pNaupI7GEuoeWljH68Z1pWqJhnQgGlRTXZlsk89BAQDA2sadMytcW1ubLl++rPvuu28m+CJJJSUleuihh/Snf/qneuaZZ/Se97xn6YoEAAAAgDXC9329Fh/T4c50d5e27hF5Gd7nbUhqrC3VoYaQDjWEtXNdiUxu5gawAhjjAzMBl/SjTVbyXNbzuhWbpru5XH34JdU5qBgAAAAAAAAAcu/KdaLWWFJHuxJ6+eKI3EwvFEkKF9vaHw2qpT6k128JqrK0YBGrBQAAWHkIv2QhmUzq9OnTOn36tM6cOaMzZ85oeHhYknTvvffqwx/+cMZzxeNxffOb39RLL72k/v5+2bat2tpaHThwQA888ICKiormHdfe3i5J2rdv35xjt912mySpo6NjgX8yAAAAAECmxlKunj+b1JFYQkc6E+odmcp4bFmRpQP1QR1sCKmlPsRFDADLnjHamw649LbJjrelO7qMdGc1py9Dbih6tZtLTZOc6ib5gWCOqgYAAMuVZVlLXQKwYpimecPnAJBLrDkA8mmlrznJ8Sk915XUkc5BtXYl1LeA60SmIe1dX66WhpAONoS1a10pG6MBi2ilrzcAVhbWnMVB+CULP/dzP5eTeV588UV94Qtf0Pj4+MzvTU5OzgRqnnjiCT388MOqra2dM7anp0eSVFdXN+dYKBRSIBBQd3d2NyAAAAAAAGY7Nzihw52DOtKZ0EsXhjXlZr5r19bqYh2MhnSoIaS9G8ppUQ9gefJ9mcOXZgIuVx7mWDy7aQ1LbuW2a7q5NMut3iW/sCxHhQMAgJUkHA4vdQnAihUMEhYHkD+sOQDyabmvOZ7n65WLST1zKq5nXu3Vy+cTWkBzF62rKNK9OyK6b2eNDm6tVrCEjdGApbLc1xsAqwtrTm4QfsmR6upqbdiwQceOHVvQuFgspkcffVSpVEqBQEDvete71NzcrFQqpSNHjuiJJ55Qd3e3Pve5z+nzn/+8iouLZ40fGxuTJJWUlMw7f3Fx8cw5AAAAAIBbk3I8vXRhWEc6EzoSS+jc4ETGY4tsU3dvrtDBhpAORkOqC87f2RMAlozvyUyenRVysXvbZU4mspvWLJBbtWMm5OJEmuRU75LsQG7qBgAAAAAAAIA8iA9P6nuvxfXMq3F977U+DYymMh5bYBm6q75S9+6I6N6dEe1cVy6D7i4AAAC3hPBLFt7znvdo69at2rp1q0KhkHp7e/WLv/iLC5rjS1/6klKplCzL0sc//nHt2LFj5lhzc7Pq6ur05S9/Wd3d3frXf/1Xvfe97831HwMAAAAAMI/e4ZSOxBI63JnQ82eTGp/yMh67IVikgw3p7i53bKxQoID2tQCWCc+VleicCbjY8XZZfe0yUyNZTevbATlVu+XUNM10dXErt0tWYY4KBwAAAAAAAID8cFxPPzif0NOnevXMq3G1XRxa0PiN4WLdtzOie3fU6MDWKpUVcZsmAABALvCqKgvZBlFOnz6tEydOSJLuv//+WcGXK97xjnfoqaee0sWLF/XNb35T7373u2XbV/+3Xen4cr3uLuPj4yotLc2qTgAAAABYC1zP1/HukXR3l86EXo1n3kXTMg3dsbFcB6PpwMuWygC7dgFYem5K1sDpazq6tMnuOynDGc9qWq+gVG6k8Wo3l0iT3HCDZPJRIwAAWJjBwcGlLgFYMUzTVDAYnHmeTCbleZlv1AEAC8GaAyCflsuac3loUkdiCbV2Duq5s0mNTLoZjy2yTb1uU4UONoR1sCGkzeGr14mmxoY1mPklJwCLaLmsNwDWBtactHA4nNP5uCK9hJ5//vmZX99///3znmOapu699179/d//vUZHR9Xe3q59+/bNHK+trZUkdXd3q6GhYdbYRCKhiYkJbdu2bRGqBwAAAICVLzE+paOxpI7EEjoaSyo54WQ8tqq0QAejIR1sCOn1WyrYtQvA0nImZfefSgdcettkxdtl978qw0tlNa1XFJwJuKQfzfJCWySDjlYAACB7rpv5zWQAZvM8j58hAHnDmgMgn/K15qQcTy9fHNbRWFKtXQmd6VvYpkFbKgNqiYbUUh/U7RsrFCi4+pnpWryxFViJeI0DIJ9Yc3KDO3OW0KlTpyRJRUVFc4Ir12psbJw15trwS2Njo7761a/q2LFjOnjw4KxxL7/88pzxAAAAALCW+b6vV+NjOjzd3aWte0Sen9lYQ1JTXakONYR1MBrSznUlMunuAmAppEZl95+Q3ds+09XFGnhNhp/dh6VecZWcmuaZkIsTaZJXvkFirQMAAAAAAACwClxITMyEXV48N6TxqcxDKiUFpu7aEtSB+vRjQyiwiJUCAABgPoRfltCFCxckpbu3WJZ13fPWr18/Z8wVe/bs0bp163TkyBG97W1vU319vSRpbGxMX/nKV2Tbtt7whjfkvngAAAAAWCFGU65eOJtMB15iCcVHpjIeW15kaX99UIcaQmqJhhQuKVjESgFgLmNy6GrA5crXwU4ZyjC5dx1uWe1MwMWd7urila4j6AIAAAAAAABg1ZiYcvXi+WEdjSV0tCupc4MTCxq/PVKiA/VBtURD2rehTAUWHbEBAACWEuGXJZJKpTQ8PCxJqqqquuG5ZWVlKioq0uTkpPr7+2cdsyxLv/ALv6BHHnlEn/rUp9TS0qLi4mI999xzisfj+sAHPqCampoF1fbD3+N6bhTYATCbaZo3fA4AucSaAyCfluuac3ZgXIfPDOp7Zwb1/fNDcjJt76L0hYyDDWHdszWsvRvKZZvcCA4sB8t1vcklY6xfVrxdVm9bOuTSe1xW8lzW87rBzXIjzXJrmuTUNMuNNMkvqZ79vSXxSQ9w1VpYcwAAAAAAAFYb3/fVNTCh1umwy0vnh5RyM79GdGVTtAP1IR2IBhUpK1zEagEAALBQhF+WyMTE1RR5IHDzFoiBQECTk5Ozxl3R3Nysz3zmM3rsscfU2toq13W1efNm/fRP/7RaWloWXNsHP/jBjM577LHHFjw3gLRgMLjUJQBYQ1hzAOTTUq05k46r5zoH9OTJXj19qldd/WMZjy0usHRwW5Xu21mj+3fVaEOoeBErBZArK/o1ju9Lwz1S97HZj6ELNx97Q4ZUvV2q23f1UbtHVnGYYAuQpRW95gAAAAAAAKxiI5OOXjw3pNaupI7GEuoeSmU81pC0u7ZULdNhl6a6MjZFAwAAWMYIvyyRVOrqi2zbvvn/hivnXDvuWtu2bdNHP/rR3BQHAAAAACtAd3JcT52M68mTvWo906exlJvx2M2VJXrjrhrdtzOi/Q1VChRwWziAReL7UvJ8Otxy6eWrQZfR3uzmNSwpsuuHgi7NUlF5TsoGAAAAAAAAgOXI9329Fh9Tayyp1lhCxy6NyPUy7+4SLra1PxpUS31I++uDCpcULGK1AAAAyCXCL0uksPBqS0THcW56/pVzrh23WP7sz/5s0b8HAAAAACyU43p6+XxCT57s1ZMne3WyZzjjsQWWobvqK/XGXenuLg3VpTIMdu4CkGOeJw3GpO6XZ3d0GR/Mbl6rUKppvCbocpu0rlEqoFMVAAAAAAAAgNUvOe7oubPpzi6tXUn1j05lPNY0pD3ry9QSDamlPqSd60pkco0IAABgRSL8skQCgcDMrycmJm56/pVzrh23WKqqqjI6b3Awyxs3gDXENE0Fg8GZ58lkUp7nLWFFAFYz1hwA+bTYa87g2JRaYwkdPjOo1lhCQxM33zzgiuqyAh1qCOtQQ1ivrw+qrOjKW+ApJRKJnNUIID+W3Wscz5E52Cm7t01Wb5useJvseIeM1EhW0/p2QG71bjk1zXJr9sitaZJbuT0dgLnWyISkm3+mBODWLLs1Z4mEw+GlLgEAAAAAAKxBrufrxOXRdNglllR7z4gW0NxFNWUFOhAN6UB9UHdvCaoiwG2SAAAAqwGv6pZIYWGhysvLNTw8rP7+/hueOzIyosnJSUmZB1PywXXdpS4BWLE8z+NnCEDesOYAyKds1xzf93Wqd0yHOxM60plQW/eIMr2WYUhqrivTwYaQDjWEtKNm9s5drIXA6pLX1zhuStbAadnx9ulHm+y+EzKc7MInXkGZ3EijnEjTzMMNN0jmPB/ZsYYBS4r3VQAAAAAAAIsrPjyp770W17ePX9TRroSS45lviGabhm7fWK4D9UG1REPaWl0sg+4uAAAAqw7hlyW0ceNGnThxQj09PXJdV5ZlzXvepUuXZo0BAAAAgNVkNOXq+bPJmcBL3wJa1ZcXWToQTYddDtQHFS4pWMRKAawJzoTs/lPpkEtvm6x4u+z+V2V4qaym9YqCcmqaZwVdvOAWyTBzVDgAAAAAAAAArByO5+v4pWE9e3ZIz51rU9vFoQWNX19RpJZoUC0NId25qUIlhfPfewcAAIDVg/DLEtq5c6dOnDihyclJdXZ2avv27fOe19HRMWsMAAAAAKxkvu/r7OCEjkyHXV66MCxnAb3qt0dKdDAa1KGGsJrXl8k22bkLwC1KjcruO5Hu5DLd1cUaOC3Dz667g1dcdU3QJf3VK98gsdMgAAAAAAAAgDWsZ2hSz3Yl1RpL6PlzQxqZzPyz2CLb0Os2Vaglmt4QbXM4QHcXAACANYbwyxK6++679dWvflWS9NRTT80bfvE8T88884wkqbS0VE1NTfksEQAAAAByYtLx9NL5IR2JJXS4M6ELicmMxwZsU3dvqdDBhpAORkOqrShaxEoBrFbG5NDVgMuVr4OdMpR5+G4+blndrJCLG2mSV1pD0AUAAAAAAADAmpdyPL18cVitsYRaY0l19o8vaHx9ZUAHoiG11Ad1+8YKBQropA0AALCWEX5ZQtu2bdPu3bt14sQJPfXUU7rvvvu0Y8eOWed87Wtf08WLFyVJb33rW2Xb/C8DAAAAsDL0DE3OhF1eODukCcfLeOzGUJEOTYdd7thUoSKbixkAMmeM98vubZ8Ju9jxdllD57Ke163YPB10aZru7NIov7gqBxUDAAAAAAAAwOpwITGh1lhCR2NJvXBuYdeHSgst3bUlqAP1FTpQH9L6IBuiAQAA4CqSFFk4efKkenp6Zp4PDQ3N/Lqnp0dPP/30rPPvu+++OXP8zM/8jD7xiU8olUrps5/9rB566CE1NTUplUqptbVV3/3udyVJdXV1evDBBxflz3GrLMta6hKAFcM0zRs+B4BcYs0BkE/XrjGOm969699OD+jwmUG9Fh/LeB7bNHTHpgrdszWsQw1hbamkVT2A2eZ9jeP7MkZ7Zfe2yYq3yeo9Lru3XeZId1bfy5chL9wgp6ZZbk2z3OmOLn4gOLuGrL4LgOWM91UAAAAAAACZmZhy9eL5YR2NJdQaS+h8YnJB43fUlOiNu+t0746IXrclrNHhpFzXXaRqAQAAsJIZvu/7S13ESvUnf/IneuaZZzI+/7HHHpv391988UV94Qtf0Pj4/G0d6+rq9PDDD6u2tvaW6gQAAACAxdI/MqlnXo3rqVNx/durcSXHpzIeW1NepPt31uj+XTU6tL1aZUXszwDgBnxfSpyTuo/Nfoz2ZjevYUk1u6W6fVcf65qlorLc1A0AAIDr6uvrW+oSgBXDsiyFw+GZ54ODg9wUCmDRsOYAuBHf99U1kO7u0hpL6AcXhpVyM78FsbzI0v76oA7Uh3QgGlRtsJg1B0Be8BoHQD6x5qRVV1fndD7uLFoG7rzzTv3+7/++vvGNb+ill17SwMCAbNtWbW2t9u/fr7e85S0qKqKFIwAAAICl5/u+2i8N6cmTvXrqVK9ePp9QplsqGIZ0+6aQ3rirRvftrFHT+gq6uwCYn+dJgzHp0g9mB10mEtnNaxVKNY3XBF1uk9Y1SgXFuagaAAAAAAAAAFalkUlHL5wbUmssqaOxhHqGUxmPNSTtri1VS31ILQ1BNdaWyTa5PgQAAICFo/MLAAAAAOCGhiemdOR0n5482aunT8XVO5x5u/pgcYHu3RHRG3fV6A07IqosLVzESgGsSK4j9b/2Qx1dXpFSw9nNaxdLtXtmd3SJ7JJs1iEAAIDlgs4vQObYLRRAPrHmAPB9X6/Gx3Q0llRrLKFjl0bkepnfZhgutnUgGlJLNKjXbwkqXFJw3XNZcwDkC+sNgHxizUmj8wuWjcHBwaUuAVgxTNNUMBiceZ5MJuV53hJWBGA1Y80BkK10u/pxHT6T0OHOQb10fkjOAi5obI+U6J6tYd2zNazm9eVXd+9KjWowNbpIVQNYEdyUrP5XZfW2y4q3ye5tk9V3QoYzkdW0fmGZnEij3Jo9cmua5USa5YWjkvlDH30Nj0piHQJwc7yvSrv2ogwAAAAAAFjdkuOOnjubDrsc7Uqqf3Qq47GWIe1ZX64D0aBa6kPaua5EpkF3FwAAAOQW4RfcsrWYPgNyxfM8foYA5A1rDoBMTDqevn9+SEc6EzrcmdDFZObdXYoLLB3cVq037qrRHbWFqi695q2m74klCFijnAnZ/adkx9tl9x6XHW+X1f+qDC/zC6bzKg5Ldfs0Ed6pVHWjnEiTvOAWyTBnn+dLLEAAcoX3VQAAAAAAYLVxPV8nLo+mwy6xpNp7RrSAvdBUU1agA9GQDtSnu7uUB7gVEQAAAIuLV5wAAAAAsEb1DE3qcGdCR2IJvXB2SBNO5ruZbwoV6VBDWPdsq9SP7N2sItuStHbbtAJrnZEakdV3Una8LR12ibfLGjgtw89uPfBKquVEmtMBl3V7VLb9oBTcJBmGxllvAAAAAAAAAGBB+kendLQrHXZ59mxSyXEn47G2aeiOjeUzgZet1cUy6O4CAACAPCL8AgAAAABrhOP5On5pOB146UzodN94xmNt09Adm8p1qCGkg9GQtlQWS5Isy5oJvgBYG4yJpOy+dtm97bKuBF0SMRlawJaA83DL6uREmtJhl5p04MUvrZk5blmWFApnWz4AAAAAAAAArBmO6+l494haY0m1xhI61Tu2oPEbgkVqiQZ1IBrSnZsqVFLINSEAAAAsHcIvAAAAALCKDY5NqTWW0OHOhJ7tSmp4MvMuCZGyAh2MhnSoIaS7tgRVygUNYM0xxvtl97bPdHOx422yhs5nPa8b3DzT0SX9aJRfXJWDigEAAAAAAABgbesZmtTRrnTY5fmzQxpNZX5tqMg29LpNFWqJhtQSDWlTqIjuLgAAAFg2CL8AAAAAwCri+b5OXR7TkVhChzsH1d49mnEvBtOQmuvKdLAhHXjZESnhggawVvi+zNHL6S4u1wZdRnqym1aG3PDWmZCLeyXoUlSRo8IBAAAAAAAAYG1LOZ5+cHFYR2MJtcaS6uwfX9D4+sqADkRDOhgN6rYNFQoUmItUKQAAAJAdwi8AAAAAsMKNTDp67uyQDncm1BpLqH90KuOxwYCtA9GgDkZDOhANKlRcsIiVAlgWfF/m8MV0wKX3+ExXF3O8P7tpDUtu5far3VxqmuRU7ZYKS3NUOAAAAAAAAABAki4kJtQaS+hoLKkXzg1pwvEyHltSYOruLUEdiAZ1oD6k9cGiRawUAAAAyB3CL7hllmUtdQnAimGa5g2fA0AuseYAq5/v++oaGNf3zgzq8JlB/eDCsBwv0/4u0o6aEt2zNaxDDWHtWV8uy7z17i6sOcAy53syE12yetvSXV1622T1tsmcTGY3rVUot2qX3JomOTXNciPNcqt3SnZg1nm5/OSA9QZAPrHmAAAAAACA5WRiytWL54enAy8JnU9MLmj8jkjJTNhl34YyFVh81gEAAICVh/ALblk4HF7qEoAVKxgMLnUJANYQ1hxgdZiYcnW0s19Pn+zVk6d6dX4g85b1JYWWDm6r1ht31ej+nTWqDQZuPugWseYAS8h1pL5Xpe5jVx89r0ipkezmtYul2j1S3b70Y/1tMqp3yrYLZUtaqj0BWW8A5BNrDgAAAAAAyCff9xXrH1drV1JHYwn94MKwUm7mG6GVF1naXx9USzSk/fVBRcoKF7FaAAAAID8IvwAAAADAMnUxMa4nT/bq6ZO9OnKmTxNTmbesj1aX6r6dEb1xV43ujlaqyKZzI7CqOCkpfuKHgi5tkpN5MG5eRRVS7d6rQZe6fVL1dslkDQEAAAAAAACAxTQy6eiFc0NqjaUDLz3DqYzHGpIaa0vVEg3pQDSoxtoy2aaxeMUCAAAAS4DwCwAAAAAsE47r6ftnB/XkqV49fTKuU5eHMx5baJl6fUOl7t9Zo/t31ShaXbqIlQLIq6lx6XK71P3y1aDL5Q7Jm8pu3uKwVHfb7KBLOCqZZi6qBgAAAAAAAADcgO/7ejU+pqOxpFpjCR27NCLXy7y7S2WJrf31IbVEg3r9lqDCJQWLWC0AAACw9Ai/4JYNDg4udQnAimGapoLB4MzzZDIpz8t853YAWAjWHGBlGRib0pHOQR0+M6jWWEIjk27GY2vKCnVoa1iHtob1+i1BlRRe6cyQ0uBg5ruBZYM1B8ix1Iis+AnZvcdlxdtk97bLHDgtw898bZiPV1Itt2aPnJpmuZEmuTXN8so3SMYP7fyXTGb1fRYT6w2AfGLNSQuHw0tdAgAAAAAAq0pifErPnR3S0VhCR7uS6h/NfJMjy5D2rC/XgWhQB6Mh7agpkfnDn/ECAABgeXAmpIvfl7pfST/f+q4lLWe1IPyCW+a62d14A6xlnufxMwQgb1hzgOXF832dvDyqI50JHe5MqKNnVJnu4WUa0p71ZToYDelQQ0jbIyUyrrmosRx+1llzgMwZE0nZfe2ye9tlxdtlx9tlJWIyMl4V5ueWr5cTaZp+NMuJNMkvrZl74gq/iZv1BkA+seYAAAAAAIBb4Xq+TlweVWssoaOxpNp7RrSA5i6qKStQSzSkA9GQ7t5cofIAt/sBAAAsN8bkkOx4h6y+Dtnx9vSvB89IVza5DNcTfskRXg0DAAAAwCIbmXT0bFdSRzoTao0l1T+W+S5ewYCtlmhQBxtC2l8fVKiYlvXASmSM9U1/yHX1YQ2dz3peN7h5OuDSPB12aZRfXJmDigEAAAAAAAAAt6JvNKVnu5JqjSX1XFdSyQkn47G2aeiOjeU6EA3pQH1QW6uLZ22EBgAAgCXk+zJHe2eFXOy+jptf+x/skiaHJLs0L2WuZoRfAAAAACDHfN9X18CEDncmdLhzUC9fHJG7gG28dtSU6FBDSAejITXXlckyuagBrBi+L3P0cjrcEm+X3duW/vVoT3bTypAb3jrT0cW9EnQpqshR4QAAAAAAAACAW+G4no53j6g1llRrLKFTvWMLGr8hWKSWaFAHoiHdualCJYXWIlUKAACAjPmezMRZ2X3TIZfpoIs53n9L09nxDrl1d+W4yLWH8AsAAAAA5MDElKfvnx/S4c6EjnQmdGloMuOxxQWmXr8lqEMNIbVEQ6opL1zESgHkjO/LHL4gu7dddrxtpqPLrX7YNTOtacut3D4TdHEiTXKqdkmF7AIDAAAAAAAAAMtBz9Ckjnalwy7Pnx3SaMrNeGyRberOTRU6EA2qJRrSplAR3V0AAACWkpuSNfDadMilPd3Npe+kzKnR7Oeu3CrV7ZVvF2c/Fwi/AAAAAMCt6k5O6kgsocOdCb1wbkiTjpfx2M3hgA42hHSoIaTbN5Sr0DYXsVIAWbuyq0v8+EzIxY63y5wcym5as1BO9c5rurk0y6naKdlFOSocAAAAAAAAAJCtlOPpBxeHdTSWUGssqc7+8QWNj1YGdCAaUks0qNs2VChQwHUhAACApWCkRmT1nZwJudjxDlkDr8nwprKa1zcL5FbtkFPdKCfSKG/dHlVs2y8VlUuS3MFByc08MI35EX4BAAAAgAw5rqdjl0Zmurss5MJGgWXodZsqdDCaDrxsCgcWsVIAWfEcWYNnZoVcrHhH1ru6+HaxnOrd091cmuXUNMkNb5OsghwVDgAAAAAAAADIlQuJCR3pTOhoV1IvnhvSxAI2QSspMHX3lmC6u0t9SHVBNjwCAADIN2Osb/qaf8d00KVdVvJs1vN6BaVyq3fLiTTKqW6SE2mUW7lNsgpnzrEsayb4gtwh/AIAAAAANzAwOqXW6e4uz55NamQy810Y1pUXqmU67HLX5gqVFFqLWCmAW+JOyup/bVbQxe47IcOdzGpar7BMbnVTOuhS05zu7BKKSibrAAAAAAAAAAAsR+MpV98/P6TWrqSOxhI6n1jY58Q7IiVqiQZ1IBrS3vVlKrDo7gIAAJAXvi9z6Px0yCUddrHiHbLGerOe2iuumhVycSKN8oJbJIPXekuB8AsAAAAAXMPzfZ3oGdWR6cDLiZ5R+RmONQ1p7/pyHWwI6lBDWNuqi2UYxqLWC2ABnAnZV9oXx9vSu7r0v5p1+2IvEJ7u5nL14QU382EXAAAAAAAAACxjvu8r1j8+E3b5wYVhpdxMrwpJFQFLr98SVEs0pP31QUXKCm8+CAAAANlxp2QNnpnu5JJ+WH0dMlPD2U9dsXkm4OJUN8qJNMkvrclB0cgVwi+4ZZbFbrVApkzTvOFzAMgl1hxg4YYnHT0bS+jwmUEdiSXUP5r5jfChYlsHG8I62BBSSzSkYHHBIla6/LDmYNlKjaQ/5OptkxVvk93bLnPgtAw/8+5N8/FKa+REmuXWNMutaZITaZZfvl66JuhmSOIdc+6x3gDIJ9YcAAAAAABWp5FJR8+fHdLRroRaY0ldHk5lPNaQ1FhbqpZoSAeiQTXVlsky2QQNAABg0UyNpTe47OtIb24Z75A98KoMN/PXcPPxDUtu5baZgIsTaZRb3Si/qDxHhWOxEH7BLQuHw0tdArBiBYPBpS4BwBrCmgPM5fu+TveO6MmTvXryZK++f3ZQjpf5Tl5N6yv0xl01um9njW7bFOLCxjVYc7Akxgaknlek7mNXH/1npIz7Nl1HcJNUt2/WwyyvFXv3LQ+sNwDyiTUHAAAAAICVyfd9neod09GuhI7Gkjp2aUTuAq4JVZbY2l8fUks0qP1bggqVrK1N0AAAAPLFGB+cHXLp65CViMnwvazm9e1iOdW70iGX6t1yqxvlVO2U7KIcVY58IvwCAAAAYE2YmHJ19Ey/njzZq6dO9erC4HjGY0sLLR3aXj0TeFlXEVjESgHc0Eh8OuDy8tWgS+Js9vNWNswOutTuk0qrsp8XAAAAAAAAAJBXifEpPXd2SEdjCR3tSqp/dCrjsZYh7d1QrgP1QbVEQ9pRUyLTYBM0AACAnPF9mcOXZPe1y46fkHUl8DLSnfXUXiAsJ9I43dGlUW6kSW6wXjKt7OvGskD4BQAAAMCqdX5gTE+fSnd3aT3Tr0kn890gGiKlun9njd64q0Z31odVZPNGGMgr35eGLs3u5tJ9TBq+lN28hilV7/ihoMseKcCO/gAAAAAAAACwErmerxOXR9UaS6g1llB79+iC+oKvKy/UgfqgDkRDuntzhcoD3FIHAACQE54rK9EpO94hK94+3dnlhMzJRNZTu+Xrp0MuTXKnAy9eWZ1EcHlV45U6btng4OBSlwCsGKZpKhi8ejNdMpmU52XXig0Aroc1B2vZlOvp2MVhHT4zqO+dGVRnf+bdXQosQ3dtDupgQ1iHtoa0OVw8c2xseEhji1HwKsCag5zwfZlDF2T1tsnqPS473iart13meH9205q23Mrtcmua5dY0y4k0y43slgpKZp847knjvMdd7lhvAOQTa05aOBxe6hIAAAAAAJhX32hKz8aSau1K6rmupJITTsZjCyxDt28oV0s0pAPRoBqqimVwkyQAAEB2nEnZ/aeuCbl0yO4/KcOZyGpa3zDlhrfKqW6cDrnsllPdKL+YaxhrEeEX3DLXdZe6BGDF8jyPnyEAecOag9Wuf3RKrbGEDncm9GxXUqOpzP++rysv1MGGkA5O7+RVXHi1uws/N7eGNQc35XuyEl2y4m2y4+0zD3NyKLtprUI5VbvkRJqmd3ZpklO1U7KL5p7M39FVgfUGQD6x5gAAAAAAsLQc19Mrl0Z0tCup1lhCp3oXtm3ZhmCRWqIhtUSDet2mCpVcc00IAAAAC2NMJGX3dciKd8wEXazBMzL87K6l+FaRnKqdciKN6Wv+1Y3p6/4FxTcfjDWB8AsAAACAFcXzfZ3oGdXhzoSOdCbUcXk047GmIe1dX65DDSEdaghpazU7eQGLynNkDZyRfU3Qxeo7IXMq85/b+fh2cXo3l0iTnEiznJpmueGtklWQo8IBAAAAAAAAAEutZ2hyJuzy/NmkRlOZd2Utsk3dualCB6JBtURD2hQq4poQAADAQvm+zNHL0yGX9nQ3l3iHrOELWU/tFVXIqd4tt7pJTqQxHXgJb5VM4g24Pv52AAAAAFj2hiccPduV1JFYQq2xhAbGMm9dHyq2dSAa1KGGsA7UB1UR4G0QsCjcSVn9r83q5mL3nZDhTmY1rVdYNt3JpflqV5dQVDLZlQ8AAAAAAAAAVpNJx9MPLgzraCyho11JdfaPL2h8tDKgA9PdXW7fWKEi21ykSgEAAFYh35OZODsr5GL3tcscH8h6are0Vu50wMWpbpQTaZJXvkEinIwF4q4vAAAAAMuO7/vq7B+f6e5y7OKwXD/z8bvWlehQNKyDDUE11pbJMnmzDOTU1Ljs/pOzgi5W/6syvKmspvUC4XQnl0iTnJp00MWr2CQZXKAEAAAAAAAAgNXo/OCEWqfDLi+eG9KEk3l3l9JCU3dvCepAfUgH6oOqCxYtYqUAAACryJXNLfumQy7xdtn9J2VMjWU1rS9Dbqg+HXS50tGlerf8kuocFY61jvALAAAAgGVhYsrVi+eG0oGXWELdQ6mMx165uHGoIaSWaEiRssJFrBRYW4zUiKy+E7J722TH29JBl8EzMvzML0DOxy2pkXtNyMWJNMsrq2NnFwAAAAAAAABYxcZTrr5/fkitXUm1xhK6kFhY9/AdNSVqqQ/qQDSkvevLVGCxeRIAAMCNGKlhWX1XNrfskN3XIWvgdNabW/pmgdyqHdOdXKYfVbulwtIcVQ7MRfgFAAAAwJK5mJjQkVhChzsT+v75IU06mbd32VIZ0KFoSIe2hnTbhnIubgA5YEwkZndzibfLTsSyntct3zAdcLn68EtrclAxAAAAAAAAAGA5831fsf5xtcaSau1K6AcXhjXlZn49qCJg6fVbgmqJpru7VLMBGgAAwHUZY32zQi52vF1W8mzW83oFZXIju68JujTJDW+VLF6bIb8IvwAAAADIG8f19PLFYR3pTOpw56BiAxMZjy20DL1uU4UONoR0qCGkjaHAIlYKrH7pD73SnVzs3umwy/CFrOd1g1vSAZeaZjmRZjnVjfKLwzmoGAAAAAAAAACwEoxMOnr+7JCOdiXUGkvq8nAq47GGpMbaUrVEQ2qJBtVYWybLpGM4AADALL4vc+hcOuQSb5fdd0JWvEPWWG/WU3sl1dMhl6Z00KW6UV5ws2SwKS2WHuEXAAAAAIuqbzSl1s6kjsQSerYrqdGUm/HYdeWFOtQQ0sGGkO7aVKHiQmsRKwVWKd+XOdpzTcilTVa8Xdbo5eymNUy54a2zurm41Y3yi8pzVDgAAACAfDp9+rT+8R//UadOnZLrutq8ebPe/va3q6WlZalLAwAAwAow5Xr6yiu9+u6pAR27NCLXy7y7S2WJrQP1IR2IBrV/S1ChkoJFrBQAAGCFcadkDZ6ZDrl0yI53yOrrkJkayX7q4Oar3VymAy9+aU0OigYWB+EXAAAAADnl+b46ekZ1pDOhI50JdVwezXisZUh7N5TrYDTd3WVrdbEMg928gIz5vsyh89NtjNtnOruY4wPZTWvacit3zAq6ONW7pIKSHBUOAAAAYCm1tbXpkUceUWFhoVpaWlRcXKznnntOjz76qPr7+/Xggw8udYkAAABYxtq6R/SZxzt1pm88o/OvXA86UB9USzSkHTUlMrkeBAAAIE2Nye47OR1yaZcV75A98KoMN/NOevPxTVtueFs65BJplFPdJLd6N5tbYsUh/AIAAAAga8MTjp7tSupwZ0KtsYQGx52Mx4aKbbVMh1321wdVEeBtCpAR35OV6JLd2yZrOuRi93XInBzKblqrUE7VrqvdXCJNcqp2SnZRjgoHAAAAsJy4rqu/+Iu/kGma+vSnP636+npJ0nve8x49/PDD+od/+Aft379fkUhkaQsFAADAsjOWcvWnh8/r/7x0WTfr87KuvHAm7HL3lgqVFXE9CAAArG3G+IDseIfsvvbpbi4nZA12yrjpK6sb8+1iOdXT1/ynu7q4lTu45o9VgXcRuGWWZS11CcCKYZrmDZ8DQC6x5iAffN/Xmb4xfe/MoA53JnTswpDcBbz33l1bqkMNYd2zNazG2jJZJrt5rVSsOXniOTIHTs8EXaze9IdfxlTmnZXm4xeUyK1ulFPTLLemSW6kWW7lNskqmHUe7/6wHLDeAMgn1hwAa0lbW5suX76s++67byb4IkklJSV66KGH9Kd/+qd65pln9J73vGfpigQAAMCyc7gzoc9/J6ae4fl3IS+wDN2+sVwt9SEdiAbVUFUsg+4uAABgLfJ9mcOXroZcpgMv1khP1lN7gcrpTi670yGXSJPcYL1kcpUfqxPhF9yycDi81CUAK1YwGFzqEgCsIaw5yJXxlKvWM3168mSvnj4V18VEZq3rJamsyNY926t1/64a3bcjopqKwCJWiqXEmpMDzqTU2yF1H7v6uNwuORPZzVtUIdXtm37cJtXtk1G1VbZp8eEAViTWGwD5xJoDYLEkk0mdPn1ap0+f1pkzZ3TmzBkNDw9Lku699159+MMfzniueDyub37zm3rppZfU398v27ZVW1urAwcO6IEHHlBR0fw7O7a3t0uS9u3bN+fYbbfdJknq6OhY4J8MAAAAq9XA6JT+4Kmzevxk/7zHd0RK9AsHN+quzRUqKeSmSwAAsMZ4jqxEbDrk0i67r0N2vEPmZDLrqd3yDdNBlya5kXRHF6+0ViJgjDWE+1sAAAAAXNf5gTE9ebJXT57s1dHOfqUcL+OxWyOleuOuGt2/q0Z3bqlUoc1u2cAcqbF0sKX75atBl94TkjeV3bzFldL6264Ju+yTQvUSu9YDAAAAy8rP/dzP5WSeF198UV/4whc0Pn51o4rJycmZQM0TTzyhhx9+WLW1tXPG9vSkd5isq6ubcywUCikQCKi7uzsndQIAAGDl8n1fX+/o0x89dU7JCWfO8SLb0M8d2Kj331kr2+KzaAAAsAY4E7L7T8mOt093c+mQ3X9KRpYbW/qGKTe8VU5140zIxalulB8I5aZuYAUj/AIAAABgRsrx9GLXgJ46lQ68nImPZjy20DZ1oKEqHXjZWaPNVSWLWCmwAk0MST3HZ3d06Tsl+ZmHyuZVXjc75FK3T6rYwO4uAAAAwApTXV2tDRs26NixYwsaF4vF9OijjyqVSikQCOhd73qXmpublUqldOTIET3xxBPq7u7W5z73OX3+859XcXHxrPFjY2OSpJKS+d/HFxcXz5wDAACAtelCYkKf+05Mz50dmvf46zaV62NvbtDmcCDPlQEAAOSHMZGU3ddxNeQSb5c12CnDd7Oa17eK5FTvuhp0qW6UU7VTKii++WBgDSL8gls2ODi41CUAK4ZpmgoGgzPPk8mkPC/LmxwB4DpYc3ArBsam9MfPnNW3T/ZrNJX5G/PaikLdszWsQw1h3bUlqOKCK+3rJzU4OLk4xWJZYc2ZnzE+KCveLqu3TXa8TVZvu6xELOt53fINcmua5dY0y6lplhtpkl9aM/skT1IikfX3ApYb1hsA+cSakxYOh5e6BGDVe8973qOtW7dq69atCoVC6u3t1S/+4i8uaI4vfelLSqVSsixLH//4x7Vjx46ZY83Nzaqrq9OXv/xldXd361//9V/13ve+N9d/DAAAAKxSjufrf3+/R3925IImnbnvi8uLLP3yfZv1Y80RGWzIBAAAVgPflznaIyt+QnZfu+x4h+x4h6zhC1lP7RVVTIdcmma6ubjhBsnkdn4gU/y04Ja5bnZpRWAt8zyPnyEAecOag5v57ql+/c53uzQ4PrdF/Q+zDGnfhnIdbAjpYDSkrdXFsy5m8HcNa3HNMcb6ZMfbZMfbZfe2p3d4ycEHX26wXk5Nk5xIk5xIc7qNcfE8N6Cusf/ewBVrcb0BsHRYcwAslmyDKKdPn9aJEyckSffff/+s4MsV73jHO/TUU0/p4sWL+uY3v6l3v/vdsu2rlwivdHy5XneX8fFxlZaWZlUnAAAAVp5TvaP67OMxnbg8Ou/xH91RqV/7kS2qLi3Mc2UAAAA54nuyEl2y4u3T3VzSXV3M8YGsp3ZLa9OdXK50c4k0ySvfIBEYBrJC+AUAAABYowbHpvS7T3TpO6du/KY9XGyrJRrSoYaQ9tcHVR7gbQTWKN+XOdKdDrlMP6x4u6zRy9lNa5hyw1uvhlwiTXIju+UXlueocAAAAACr1fPPPz/z6/vvv3/ec0zT1L333qu///u/1+joqNrb27Vv376Z47W1tZKk7u5uNTQ0zBqbSCQ0MTGhbdu2LUL1AAAAWI4mpjz95dEL+vIL3XL9ucdrygr0mz8a1b3b6BYKAABWEHdSVv9rV0Mu8XbZ/SdlTM2/IUymfBlyQ9Frgi5NciK75RdX5ahwANfirjUAAABgDXri1QF9/jux63Z7aVxXmu7u0hBSY22pTHaewFrj+zKHzl8NuvSmO7uYE9nt8OKbttzKHdNBl+lH9S6poCRHhQMAAABYS06dOiVJKioqmhNcuVZjY+OsMdeGXxobG/XVr35Vx44d08GDB2eNe/nll+eMBwAAwOr1wrmkHvl2TBcSk/Me/4nbavThezaprIhbzgAAwPJlpIZlxU/I7muXHT8hu69D1sBrMrz575HJlG8Wyq3aPn2dfzrsUrVLKqRrMpAvvBMBAAAA1pDE2JR+5wbdXu7dFtavv3GLaiuK8lwZsIQ8V1ayS3Zvu6x420zgxUwNZzWtbxXKqd49K+jiVu2QLH6+AAAAAOTGhQsXJKW7t1iWdd3z1q9fP2fMFXv27NG6det05MgRve1tb1N9fb0kaWxsTF/5yldk27be8IY35L54AAAALBvJcUf//Zlz+n9t8XmPRysD+tgDDbptAx3LAQDA8mKMxqdDLtMdXfraZSXPZT2vV1AmN7L7asgl0iQ3vFWyCnNQNYBbRfgFAAAAWCNu1O0lGLD16z+yRQ/sqpJBlxesZp4ja+C07GtCLnbfiexbGReUXBN0aZYTaZYbbpCsghwVDgAAAACzpVIpDQ+nQ/tVVVU3PLesrExFRUWanJxUf3//rGOWZekXfuEX9Mgjj+hTn/qUWlpaVFxcrOeee07xeFwf+MAHVFNTs6Dafvh7XM+NAjsAZjNN84bPASCXWHPWDt/39Z2T/fqd78Y0MDY157htGvrZAxv0n/ZvVKHN3wMsDtYcAPnCerPC+Z7M5HlZ8XZZ8fbpzS3bZY7NH95dCK8kIjfSJKemSW4k/fCCmyRj9t8RPsnCQrDmLA7CLwAAAMAqlxib0u8+eVbfPjn/jSf3bgvr4TfVq7qU3SmwyriTsvpfvRpyibfL7jspw53MalqvsPxqJ5dIc/oDsGC9ZPJRFwAAAID8mZiYmPl1IBC46fmBQECTk5Ozxl3R3Nysz3zmM3rsscfU2toq13W1efNm/fRP/7RaWloWXNsHP/jBjM577LHHFjw3gLRgMLjUJQBYQ1hzVqfu5Lg+8dU2ffdE77zH79gc0ud/fK92rKPbC/KLNQdAvrDeLGPulBQ/KXW/IvW8IvUcTz8mh7KfOxyV6vZKtXulun1S7V6Z5etkSmJrSywm1pzcIPwCAAAArGJPvjqgz383poGxud1eKgKWfv2N9XrLbrq9YBWYGpfdd2JW0MUaeFWGN/fv/kJ4gUo5NVe6uaQDL17FJomfGQAAAABLLJVKzfzatm9+ye/KOdeOu9a2bdv00Y9+NDfFAQAAYNnyPF9ffu6sfvdbpzQyOfcz9NJCS7/51l16/+u3yDT5LBwAACyy1KjU05YOuXQfS3/tPSG583+GlTHTliK7pkMu02GX2mYpQAABWMkIvwAAAACrEN1esJoZqWFZ8ROy421Xgy6DZ2T4XlbzuqXr0q2Mr3l4ZXUEXQAAAAAsS4WFV9/TO87Ng/9Xzrl23GL5sz/7s0X/HgAAAFi41y4P67/+y3F9/+zgvMd/ZFeNPvOuZq0PFee5MgAAsCaM9ks9x652dOl+Reo/LcnPbt6C0nSw5dqgS81uyS7KSdkAlg/CLwAAAMAq89RrA/rcd+j2gtXBGB+U3ddxNejS2y4r2ZX1vG75xnTApWY66FLdJL80kn3BAAAAAJAngUBg5tcTExM3Pf/KOdeOWyxVVVUZnTc4OP9NlwDmMk1TweDV3WmTyaQ8L7uNQADgelhzVp+U4+l/PntRf3X0ghxv7s2llSUF+s0fjepNu6pk+BMaHLz560sgV1hzAOQL600e+b7M4QuyettlxTtkxTtkx9tljnRnPbVXXCk30iQ30ign0iS3pklesF4yrdknDo9JGsv6+wG3ijUnLRwO53Q+wi8AAADAKpEYn9LvPXFWj1+n28sbtob00TdFVV1GtxcsT8ZofFY3FzveLmv4YtbzusH66ZBL80xHFz8Qyr5gAAAAAFhChYWFKi8v1/DwsPr75/8s4IqRkRFNTk5KyjyYkg+u6y51CcCK5XkeP0MA8oY1Z2U7dnFYn328U7GB+QMt72yO6Jfv3axgsb0mb8bD8sOaAyBfWG9yxHNkDXZOb2rZISveLrvvhMzJZNZTpze13C2n+krYpVFeaa30w5u9+pL4f4lljjUnNwi/AAAAAKvAzbq9/Nob6/VWur1gufB9mSPds0MuvW2yxnqzm9Yw5Ya3Tgdc0kEXN7JbfmF5jgoHAAAAgOVl48aNOnHihHp6euS6rizLmve8S5cuzRoDAACA1W9k0tGffO+C/unly5rb60XaGCrSR98U1d1bgvMcBQAAmIczIbv/VPoaf7wjHXjpOynDncxq2lnX+qsb00GX6kb5AV6nAJiN8AsAAACwgiXGp/T7T57Vt07Mv8PrPVtD+hjdXrCUfF/m0Ll0yKX3atjFnBjIblqzQG7VjplOLk6kSU7VLqmgOEeFAwAAAMDyt3PnTp04cUKTk5Pq7OzU9u3b5z2vo6Nj1hgAAACsbs+cHtTvfDem3pGpOccsQ/rpO+v08y0bFCiYPzwNAABgTCRl97VPd3NJB12swU4ZfnadK3yrSE71rqshl0iTnKqdkh3IUeUAVjPCLwAAAMAK9fRrA/rcd7rUPzb3wkV5kaVfe+MWva2xmm4vyB/PlTlwWnbPcdnxNlnxNtnxDpmp4aym9a1COdW7ZwVd3KodklWUo8IBAAAAYGW6++679dWvflWS9NRTT80bfvE8T88884wkqbS0VE1NTfksEQAAAHnUN5rS7z9xVt99df4NqHatK9HH39ygXetK81wZAABYtnxf5mjPNSGX6cDL8MWsp/aKgnKmu7hc6ebihhskk9vXAdwaVg/cMsti9wcgU6Zp3vA5AOQSa87qlxif0u9+N6ZvdvTNe/wN28L6+ANbFaHbCxaTOyVr4LTsvg4p8arUfUzqOa7g1GhW0/oFJelwS02T3EiznJpmeeGtklUw6zzejQBrD69xAOQTaw6AlWLbtm3avXu3Tpw4oaeeekr33XefduzYMeucr33ta7p4MX2zwlvf+lbZNpcHAQAAVhvf9/X/2uJ69OlzGp6cuxt7kW3qgwc36n2vq5VtsmkaAABrlu/JSnTJirfL7uuQHU8/zIn5g7ML4ZbVyqlumu7m0iinukle+XqJDVsB5BCfbuOWhcPhpS4BWLGCweBSlwBgDWHNWV2+3d6jj36lTX0jk3OOVQRs/bd3Numh2zfQ7QW5NTUh9XakAy5XHpfbJXfu38MFCQSlun3Tj9ukun0yKhtUYFoquOlgAGsdr3EA5BNrDoDFcvLkSfX09Mw8Hxoamvl1T0+Pnn766Vnn33fffXPm+Jmf+Rl94hOfUCqV0mc/+1k99NBDampqUiqVUmtrq7773e9Kkurq6vTggw8uyp/jVrHRGpA5wrkA8ok1Z2U5NziuRx7v1PNnk/Mef/2WoD7+lq3aGArkuTIgM6w5APJlza03zqSs/ldlxdvTYZd4u6y+kzKmxrKa1pchLxyVG2lKb2wZSQde/JKqWecZYlNLrG1rbs3JE8P3fX+piwAAAABwY4mxlP7b/2vXV1++NO/xH9lVo99+9x6tq+DCBbKUGk0HW7qPSd0vp7/2npA8J7t5S6pmAi4zj3A9u7wAAAAAWNP+5E/+RM8880zG5z/22GPz/v6LL76oL3zhCxofH5/3eF1dnR5++GHV1tbeUp0AAABYfqZcT3/1vZge/e6rmnS8OcdDJQX6+Nsb9eN3sGkaAACr3sSQ1HNc6nlF6n4l/TV+Mvvr/FahVNMo1e2Vaqcf65qkorLc1A0AC0TnFwAAAGCZu1m3l0892KR3c+ECt2Iimf4A7NqOLn2vSv7ci2QLUr5+dsilbp9UQTtjAAAAAFgsd955p37/939f3/jGN/TSSy9pYGBAtm2rtrZW+/fv11ve8hYVFRUtdZkAAADIkeMXkvrNf35FHd1D8x5/5771+uSDjaou4zUgAACrzvDl6ZDLsathl8FY9vMWVUi1e9IBlythl8hOySrIfm4AyBE6v+CWDQ4OLnUJwIphmqaCweDM82QyKc/L8qZSALgO1pzVIzk+pd97oktfb4/Pe/yerWF9/IGtqikvzHNlWImM8cF0O+Pe47J722T1tstKdmU9r1exSeaG26ZDLrdrqLRebnHVTccBwELxGgdAPrHmpIXD4aUuAQAAAABwjbGUoz/6zqv668MxefPc8bU+GNAjD+3R/btq8l8cAADILc9Lh1qu7ebS/Yo02pv93GXrZodc6vZKoXrJNLOfGwAWEZ1fcMtc113qEoAVy/M8foYA5A1rzsr0zOlB/fZ3YuofnZpzrKzI0q/dv0Vvb6qWYRj8/8UcxmhcdrxNdrx95mENX8x6XicUlRtpknPNwyytmnVTpDs4yN9JAHnBaxwA+cSaAwCLg43WgMwRzgWQT6w5y9OzsYQ++/gZXUxOzjlmSHrf6+r04Xs2q7TI4nUWVhTWHAD5sqzXG3dK1sBr6Q0t4+2yejtk93XISI1kP3WwXm5Nk9xIo5xI+qtfOk9QNpnM+nsBuGpZrzl5lOuN1gi/AAAAAMtIctzR7z/VpW929M97/FBDSB99U5RuL0jzfZkj3VeDLr3TH4SNZbfTi2+YcsNb5USa5dQ0yYk0y63eJb+wPEeFAwAAAADARmtANgjnAsgn1pyllRif0h89dU5f7+ib93hDVbE+8UBUe9anP8Pn/xVWOtYcAPmyZOtNalR2/wnZ8ROy+zrSm1n2vybDS2U1rW/aciu3y6lulHMl6HK96/yss0De8RonNwi/AAAAAMvEv50Z1CPfzqzbC9Yg35c5dG4m5HIl8GJOZLd7m28WyK3aMaubi1O1SyoozlHhAAAAAAAAAABgoXzf1+Mn+/UHT57V4Lgz53iBZehn92/Qf7i7TgWWuQQVAgCAmzHG+2XHO9KPvnZZ8Q5ZiS4Z8rOa1y8okVO1a/oaf6Oc6ka5VdslqyhHlQPA8kT4BQAAAFhiQxOOfv/Js/rGdXbsOhgN6WNvptvLmuK5shKxdNAl3i4r3iY73iEzNZzVtL5VJKd696ygCx+AAQAAAAAAAACwvHQnJ/W578bUGkvOe/z2jeX62Juiqq9iIysAAJYF35c5fDF9jb8vHXax4h2yRnuyntorrpRTPR1yiTTKqW6SF9oiGYRfAaw9hF8AAACAJfRvZwb129+Oqe863V7+y/1b9A66vaxu7pSswTOye9tmurnYfSdkOONZTesXlEy3M26SU9OcDrqEt0ombwMBAAAAAAAAAFiOXM/XYz+4rD89fF7jU96c46WFln7p3k16aG+NTK4dAQCwNDwnfY0/3iG774Ss6Wv85uT8odWFcMs3zgq5uJFGeaXrJP7dBwBJhF8AAACAJTE04egPnjyrr1+n20tLNKiPv7mBbi+rjTMpu/9U+sOvK4/+kzLcVFbTekUVs7u5RJrlhurZ6QUAAAAAAAAAgBXidHxMn3m8U+09o/Mev29bWL/xI/VcOwIAIJ+mxmX3n5Ld1zF9nb9Ddv8pGe5kVtP6hiU3vHU65NIod/qrHwjmqHAAWJ0IvwAAAAB59r0zg3rkBt1efvW+LXqwmW4vK97UmOy+E1dDLvF2WQOvyfCcrKb1iivlRJqngy7Ncmqa5JVvZKcXAAAAAAAAAABWoEnH018/e1F/83y3XM+fc7yqtEC/+SP1euOOyiWoDgCAtcOYSMju65Ad75AV70gHXgbPyPDndmNbCN8OyKnadU3QpUlO1Q7JDuSocgBYOwi/AAAAAHmSSbeXj705qnXlRXmuDNkyJodl9XVcDbr0tslKdGb9IZhbWjvdyaVJTk067EJLYwAAAADAamFZ1lKXAKwYpmne8DkA5BJrTv58/3xSn/nWGZ0dmJj3+Lv3rdOv3LdF5QFu8cLqxZoDIF9m1hffl4YuqjB2VGZvu6x4u6zedlnDF7P+Hl5RUG6kSW7N9HX+SJO8cFQyZ/9bziciwOrHa5zFwTsjAAAAIA8OnxnUI9+JKT4yt9tLaaGl/3I/3V5WCmN8IN3KON4uO96W7uiSPJv1vG7FpuluLlcffkl1DioGAAAAAGB5CofDS10CsGIFg8GlLgHAGsKak3tDE1P6/DdP6u+fOzfv8Wh1qT737j3a31CV58qApceaAyCnPFfqPyP1vCJ1H0t/7TkujfWrNNu5KzZKdXul2j1S7V6pbq/M4CaZhqGCXNQOYFXhNU5uEH4BAAAAFtHQhKM/fOqsvtZ+nW4v9UF97AG6vSxXxmjvrJCLHW+XNXwp63mdUHR6l5fmdEeX6kb5gVD2BQMAAAAAAAAAgGXtW209+uT/bVPv8OScY7Zp6BfubdBH3rhdgQL2hAcAYEGcSam3Q+p+ZTrs8op0uU2aGstyYkOq3j4TcFHt9KOUkCoA5BvhFwAAAGCR3Kzby6/ev1nvbI7Q7WU58H2ZI91XQy696cCLORbPblrDlBvelu7kUpMOu7jVu+QXlueocAAAAAAAAAAAsBJcHprQp/5vu77V3jPv8X0bg/r8j+/V7rqKPFcGAMAKNJFMd3Dpnu7k0vOKFD8peU5281qFUk3j1ZBL3T5pXZNUmHWfGABADhB+AQAAAHJseLrby79ep9vLgfqgPvbmqGor6PayJHxPZvLcTCeXKw9zYjC7ac0CuVU70kGXSHP6a9VOqaA4R4UDAAAAALC6DA5m914cWEtM01QwGJx5nkwm5XneElYEYDVjzcktz/f1lWOX9ejTZzUy6c45Higw9Yv3bNb7Xlcny3R5jYQ1hzUHwM0Yo72yetPX9a0rj+S5rOf1iyrkVO+WG2mSG2lMf63cJlkFs08cTaUfALAAvMZJC4fDOZ0vb+GXsbF027CSkpJ5j3/hC1/QY489pr6+PkWjUX3wgx/Ugw8+mK/yAAAAgJw43JnQI9/uvG63l/98/2b9GN1e8sdzZSVi091c0l1drL52mamRrKb1rSI51bungy5Ncmqa5VZuT+8CAwAAAAAAMuK6c2/+BJAZz/P4GQKQN6w5t65rYFy//e2YXrowPO/xlvqg/uubolofLJJ8T/xnBlhzgDXtykaWfR2y4x3p6/x9HTLH5t94dCHckhp5NU0q2PS6ma4uCQXlzncjOmsQgEXAa5zcyEv45V//9V/1rne9S2VlZbpw4YLKy8tnHf9P/+k/6W/+5m8kSb7v69VXX9Xjjz+uz372s3r44YfzUSIAAACQFbq9LAPulKzB07J722XH26Y/CDshwxnPalqvoFRupPFq0CXSJDe8VTJppAkAAAAAAAAAAOaacj397Qvd+uujF5Vy/TnHQ8W2fu2NW/TArio2TAMArE1uStbA6XTIpS99bd+Kn5A5ld1GlpLkBrekr+1XN8qZvtbvl1TLsqzZHQjotgYAK05e7tZ6/PHH5fu+3vnOd84Jvhw+fFhf+tKXZBiGSkpKtGPHDp08eVLj4+P65Cc/qQcffFDNzc35KBMAAAC4JUemu7300u0lf5xJ2f2nZMfbZMXT7Y3t/lMy3OxaDXtFwVkhFyfSLC+0RTLMHBUOAAAAAAAAAABWs7buEX328U6d7pt/c663NVbrV+/brFBJQZ4rAwBgiaRGZfefmO7m0iG7r0NW/2syvOyu7/tmgdzK7emAy3TQxa3eJb+w/OaDAQArUl7CL88++6wMw9D9998/59gXv/hFSdL69et19OhRbdy4UefPn9ehQ4d04cIF/cVf/IW+8IUv5KNMAAAAYEGGJxz94dPn9K9t8XmP768P6uN0e8ne1JjsvhPpgMv0wxp4TYbnZDWtV1wpJ9I8E3JxaprklW+UCCkBAAAAAAAAAIAFGku5+rPDF/S/X+rR3F4v0vqKIj38pnodiIbyXRoAAHljjPdfE3JplxXvkJXokjHvv46Z8wpK5Vbvmg65NKWDLpXbJIv7MQBgLclL+KW3t1eStHPnzjnHvvWtb8kwDH3kIx/Rxo0bJUmbNm3SRz7yEf3Gb/yGnnnmmXyUiFtgWdZSlwCsGKZp3vA5AOQSa05+HD4zqM9864x6R+buRFJaaOlX31ivh/bW0O1loSaH0uGW3nZZvW2y420yB85k/0FYWZ2cmia5kWa5Nc1yaprll66bFXQxJPEKd+FYcwDkC+sNgHxizQEAAAAALMSRzoQ+952YeobnXjcyDemn7qjV/+/gRhUXciUCALBK+L7M4QvTQZd22fEOWX0nZI32ZD21V1wppzodcEl3dWmSF9oiGXxOCwBrXV7CL/F4eifs8vLZrcTa29vV19cnwzD0Yz/2Y7OO3XnnnZKks2fP5qNE3IJwOLzUJQArVjAYXOoSAKwhrDm5lRyf0iNf79BjL16Y9/g926v1+R/fqw2h4jxXtgKN9ks9x6RLL0vdx9KPwVj284a2SHX7ph+3SXX7ZJZFVJj9zMgAaw6AfGG9AZBPrDkAAAAAgPkMjk3pD546q2+d6J/3+I5IiT725qia6sryXBkAADnkObIGz8x0dLH62mX3nZA5OZT11G7FpuluLumOLm71bnk/tJElAABX5CX8cqVDyMDAwKzfP3z4sCQpEonM6QpzJVgxMTGRhwoBAACAm3v6VK/+6z8fV8/Q3NeoZUW2Pvb23XrfXZvo9jKf4Z6rAZcrj+T5LCc1pKpt1wRd9kl1e6ViQtoAAAAAAAAAAGDx+L6vb3T06Q+fPqfkuDPneKFl6OdbNur9d9bKttilHgCwgkyNy+4/JbuvQ9Z0Rxe7/5QMdzKraX3Dkhveek3IJR148YsqclQ4AGAtyEv4ZcOGDTp9+rRefvll3XfffTO///Wvf12GYeiee+6ZMyaZTEqSqqur81EiAAAAcF1DE1P67Nfo9pIR30+HWn446DJyObt5DVOK7Jrp5KK6fVJts1RUftOhAAAAAAAAAAAAuXIxMaHf/k5Mz52df7f7120q18fe3KDN4UCeKwMAYGGMiYTs6YCL1Tfd1SXRKcP3sprXtwNyqnalgy7VjXIjTXKqdkg2/zYCALKTl/DLPffco9dee01//Md/rPe///2qrq7WCy+8oG9961uSpAceeGDOmBMnTkiSamtr81EibsHg4OBSlwCsGKZpKhgMzjxPJpPyvOzeJADA9bDm5FZr56B+61tndHk4NedYaaGlX72/Xg/tq5HhT2hwcI11LfQ9mclzsnrbZPe2yYq3y+ptkzmR3etE3yyQW71TbqRZTk2T3JpmuVW7pIIfCheNOdIYr0mXGmsOgHxhvQGQT6w5aVc6tAPAYrEsa6lLAFYM0zRv+BwAcok1Z36O5+sfXuzWnx4+p4mpue8Ry4ss/ef76/WuvTUyDGMJKgRWJtYcIA98X8ZIt+x4u6ze9vS1/XiHrOGLWU/tBUJyI03pgEukSW5Nk7xQVDJnv+dfDp8AsN4AyCfWnMWRl/DLhz70IX3pS19SLBZTQ0ODduzYoY6ODjmOo8rKSv3kT/7knDFPPvmkDMNQY2NjPkrELXBdd6lLAFYsz/P4GQKQN6w5t2Zk0tEfPX1O//d4fN7jd2+p0CcfaFBtRdHauAnOc2UlOtO7vvS2pz8U62uXmRrJatr0ji+75dSkPwhzIk1yK7dLVuHck/l7vCKw5gDIF9YbAPnEmgMAi4OQHXDrrg3qAsBiY82R2i8l9V//+biOX0zOe/zte+r0qXc2qqacHe2BbLHmAFnyXKn/tNRzXOo+JvW8InW/Io0PZD93xUapbq9Uu3fmqxncKNMwVJD97HnHegMgn1hzciMv4Zc77rhDv/d7v6df//Vf18jIiF566SVJUkFBgf7yL/9S5eXls85PJpP6+te/Lkm677778lEiAAAAMONoLKHPfjs2b7eXkgJTv3LfFj20N7J6d+1yp2QNnpbd2zbd4rhNdt9JGc54VtN6BaVyI41yIs1Xgy7hBsnMy9sSAAAAAAAAAACABZmYcvXfn3hNX/y3TrmeP+f4uooifebHmvXmptolqA4AsOZNTUi9HVcDLj2vSJfbpamx7OY1TKlqu1S755qwyz6ppDI3dQMAcIvydpfZf/7P/1k/+qM/qn/6p39ST0+P6urq9FM/9VPauXPnnHOffvpp3XXXXZKkd7zjHfkqEQAAAGvcyKSjR58+p6/eoNvLJ97coLpgUZ4rW3zm0EUF2v9BBecPy+47JcObG/xZCK8oOBNwST+a5YW2pD8kAwAAAAAAAAAAWOZaz/Tpo/9yXF39899A/P79m/Ubb9mlisBK3OseALDiTCSnu7m8cjXs0ndK8pzs5rWKpHWN13Rz2Zd+Xliam7oBAMghw/f9udsSABno6+tb6hKAFcOyLIXD4Znng4ODcl13CSsCsJqx5tyaZ7sS+szj1+/28sv3bda799asrm4vvq+CC60KvPK3Kux6Uobv3dI0XnGVnJrmmZCLE2mSV75BWk3/rXBdrDkA8oX1BkA+seakVVdXL3UJAFa5wcHBpS4BWDFM01QwGJx5nkwm5Xm39nkeANzMWl9zhiYc/dFTXfrqK73zHo9WFusTb92q2zdW5LkyYHVa62sOMIfvyxjtlRVvlx3vkBVvTz+S57Ke2isslxtplBtpkluT3sjSC2+VrLUR5GS9AZBPrDlp115vy4W8dX4BAAAAlqObdnvZXKFPPLC6ur0YqWEVnfyKAse/LHvwzILGumW1MwEXd7qri1e6jqALAAAAAABYsLUYLARyxfM8foYA5M1aWXN839cTrw7o9544q/6xqTnHbdPQf3z9ev3H169XoW2uif8mwFJYK2sOIEnyPZnJs7LjHelHXzrwYo73Zz21W7pObnWjnMhuOdVNciKN8io2zX9tf43+zLHeAMgn1pzcIPwCAACANWutdXuxBl5T4PiXVXTyKzKnRm96vluxebqby5VHo/wSdn4GAAAAAAAAAACry+XhSf3Od7v0b2cS8x7fU1emjz8Q1dbqkvwWBgBYPdyUrIHTs0IuVt9JmVMj2U8drJcTaUxf169u5No+AGDVymn45d/+7d9yOd2MN7zhDYsyLwAAANamkUlH//2Zc/rKK9fv9vLxBxq0fjV0e/EcFcaeUOD436nwwtEbn1pQpsldDym19c1yqpvkB4I3PB8AAAAAAAAAAGAl83xf//xyr/74e+c0mvLmHC8pMPXhezbpPbetk2Wujs3SAACLz0iNyOo7KTveLrvvhOy+Dln9r8rw5nYWWwjfLJBbuT0ddKlOh13c6l3yC8tyVDkAAMtbTsMv9913X853xTYMQ47j5HROAAAArF036/byS/du1o/vW/ndXoyxPgU6HlOg7e9ljXTf8FwnvE0Tez+gyZ3v4kMxAAAAAAAAAACwJnT2jemz347plUvz77h/T0NIv/mj9aqtWAWbpQEAFo0x1jfdzaUjHXaJd8hMnpUhP6t5vYJSudW7p4MuTXIiu+VWbpeswhxVDgDAypPT8Isk+X52/2ADAAAAi+Fm3V7u2lyhT6z0bi++L/vyMQWO/52KXvuGDG9uwGfmVMNUKvomTex9v6Y2HJBWeNgHAAAAAAAAAAAgEynH05eev6T/+dwlTblz73OqLLH1a2+s15t2Vq74zdIAADnk+zKHL6SDLtMhF6uvQ9bo5ayn9oqrrgm5NMqJNMoLbpEMMweFAwCweuQ0/PLUU09d91gqldLHP/5xvfDCC4pEInrve9+ru+++W+vWrZMkXb58WS+88IIee+wx9fb26q677tIjjzyigoKCXJYIAACANejZrqQ++3ineubp9lJcYOqX792sd++rkblSL2A4kyp67WsKHP87FfQev+GpXnGlJhp/UhPN/05e+fo8FQgAAAAAAAAAALD0jl0c1iPfjqmzf3ze4w82R/Qr925WsDjn+wkDAFYSz5E1cEZ239WQi913QubkUNZTuxWb5FQ3TodcmuRWN8orrWHDSgAAMpDTd2r33nvvvL/v+77e9ra36cUXX9TP/uzP6tFHH1Vpaemc8z7wgQ/o85//vH7lV35Ff/VXf6U//MM/1De+8Y1clggAAIA1JN3t5by+8krvvMdXercXc+iiAm3/S4GOx2RODN7w3Kl1t2li7wc0ue2tkrUy/7wAAAAAAAAAAAC3YmTS0Z9874L+6eXLmtvrRdoQLNJH3xzV67cE814bAGCJTY3L7j8509HF6uuQ3X9Khjt3c82F8A1LbuW26aBLuqOLW71bflFFjgoHAGDtycs2BX/913+txx9/XG9605v0l3/5lzc8t6SkRF/84hd19uxZPf744/riF7+on//5n89HmQAAAFhFnjub1Ge+tQq7vfi+Ci60KvDK36qw60kZvnf9U61CTW5/hyb2fEDOur15LBIAAAAAAAAAAGB5+N6ZQX3+u126PM81I8uQfvrOOv18ywYFCqwlqA4AkE/GREJ2/JpuLvEOWYnOG153z4RvB+RU7Z7u5tIot7pRTtVOyWZjSgAAcikv4ZcvfelLMgxDH/rQhzIe8+EPf1jf+c539Dd/8zeEXwAAAJCx0ZSrR58+d91uL3duqtAnHohqQyiQ58qyY6SGVXTiXxQ4/mXZic4bnuuWr9dE8/s10fgT8osr81QhAAAAAAAAAADA8tE/OqXff7JL3zk1MO/xnTUl+sQDDdq1rjTPlQEAFp3vyxzpnh106euQNXwp66m9otA1IZfpji6hqGQSogQAYLHlJfxy8uRJSdLmzZszHrNp06ZZYwEAAICbuVm3l196w2b9+G0rq9uLNfCaAse/rKKTX5E5NXrDc1ObDmpizweUqn8jH6wBAAAAAIBlz7L4/ALIlGmaN3wOALm00tcc3/f1/4736g+fOquhCWfO8YBt6oOHNunf3bVetrlyrhkBq9VKX3OwDHiuzERMVm+77Hi7rHi7rHiHzInBrKd2yzfIjTTKjTTJrWmSE2mSX1Yn/dA9B7y7XRlYbwDkE2vO4shL+GViYkKSdP78ed1+++0ZjTl//rwkaXJyctHqAgAAwOowmnL13585p385Nn+3l9dtKtcnH2hYOd1ePEeFsScUeOVvVXjx2RufWlCmyd3v1sSe98sNb81TgQAAAAAAANkLh8NLXQKwYgWDwaUuAcAaspLWnK6+UX30K8fVeqZ/3uMHt1Xptx/aoy1VdHsBlquVtOZgCUxNSL0dUs8rUvcr6a+X26WpsezmNUypartUt1eq3Tvz1SqpJNiyirHeAMgn1pzcyEv4Zdu2bTp+/Lj+/M//XO985zszGvPnf/7nkqStW7mBDwAAANf3/NmkPvN4p7qH5u/28pE3bNJ7blu3Irq9GGN9CnT8HwXa/l7WSM8Nz3Uqt2tiz/s1ufNd8gvL8lQhAAAAAAAAAADA8uO4nv7qcEx/9J1XNel4c44Hiwv08bfv1ntet1HGCrhmBACQNJ6Qeo7PDrrET0m+m928VpG0rkmq3TMdctmXfl5YkpOyAQDA4slL+OW9732vXnnlFT3++OP60Ic+pD/8wz9UIDD/rtuTk5P6L//lv+hb3/qWDMPQ+973vnyUCAAAgBVmNOXq/3vmnP75Bt1ePvFAgzYu924vvi/78jEFjv+dil77hgxvbohn5lTDUir6o5rY+wFNbdg/p5UyAAAAAAAAAADAWtN2Manf/OdX1H5paN7jD+5br0++o1GR8qI8VwYAyIjvS8M914RcjqW/Js5mP3dRcE43F1XvkKy83DoLAAByzPB931/sbzIxMaE77rhDJ0+elGEYWrdund773vfqrrvuUk1NjQzD0OXLl/XCCy/oH//xH9XT0yPf97Vr1y794Ac/UFERbz6Xo76+vqUuAVgxLMtSOByeeT44OCjXzXIXAgC4jrWw5rxwLqnf+tb83V4CtqlfuncFdHtxJlT02tcUeOXvVBBvu+GpXnGlJprep4mmn5JXvj5PBQKZWQtrDoDlgfUGQD6x5qRVV1cvdQkAVrnBwcGlLgFYMUzTVDAYnHmeTCbleXM7GwBALqyUNWd8ytWfHz6vL79wSd48dz/Vlhfqow806J6tlfkvDkDGVsqagxzxPZmJs7Li7bLi7bLj7bJ6O2SOZ38vole6Tk6kSW5Nk9xI+uFVbGRTScxgvQGQT6w5addeb8uFvMRXA4GAnnrqKb397W/XSy+9pJ6eHn3hC1+Y99wrWZzbb79dX/va1wi+AAAAYMbNur3csbFcn3zL8u72Yg5dUKDt7xXoeEzmxI1v8Jhad5sm9n5Ak9vemm69DAAAAAAAsIqsxWAhkCue5/EzBCBvluOa82xXUp/7TkwXk5NzjhmS3nv7On3onk0qLbSWXe0Abmw5rjm4RW5K1sBrsuMdsuPtsvs6ZPWdlDk1mtW0vgy5oXq5kUY51dOPSKP8knk2clmDNxkjc6w3APKJNSc38ta7bd26dXruuef053/+5/qzP/szdXR0zHve7t279cEPflAf/OAHZVlWvsoDAADAMvfCuaQ+862YLg3NvYgRsE195A2b9BO3L9NuL76vgvNHFDj+dyrselKGf/0P2HyrUJPbH9TEnvfLWbc3j0UCAAAAAAAAAAAsb4nxKT369Dl9rX3+DgENVcX6xANR7VlfnufKAGBtM1IjsvpOzoRc7HiHrIHXZHhTWc3rmwVyq3bMBFycSKPcql3yC8tyVDkAAFhJ8hZ+kSTLsvThD39YH/7wh9XT06Pjx49rYGBAUrqlzZ49e1RXV5fPkgAAALDMjU13e/mnFdjtxUgNq+jEvyhw/MuyE503PNctX6+J5vdrovEn5BdX5qlCAAAAAAAAAACA5c/3fT1+sl9/8ORZDY47c44XWIZ+dv8G/Ye761RgmUtQIQCsHcZYX7qbS990R5d4h8zkWRnys5rXKyiVW707HXKpbkoHXSq3SVZhjioHAAArXV7DL9eqra1VbW3tUn17AAAArAAvnkvqt1Zgtxer/1UFjn9ZRae+etOWzalNhzSx9wNKbblfMul8CAAAAAAAAAAAcK2eoUl97jtdOhJLzHv8tg3l+vibo6qvKs5vYQCw2vm+zKHz00GXdMjFinfIGpt/48qF8Eqqp7u5NMmZDrx4wS2SQYARAABc35KFXwAAAIDrGUu5+sK/ndM/vryCur14jgo7v6vA8b9T4cVnb3xqQZkmd79bE3veLze8NU8FAgAAAAAAAAAArByu5+sfX76sP/neeY1PeXOOlxaa+sgbNuvd+2qW3UZpALDiuFOyBjtnQi52vENWX4fM1HD2U1dsTndziTTOBF780pocFA0AANYawi+4ZZbFzuRApkzTvOFzAMillb7mvHA2qU9/87QuJufp9lJg6pfu3aKfvKN22VzEMMb6VNT2v1V0/H/JHOm+4blu5XZN7Pv3Su16SCoskyTxigor3UpfcwCsHKw3APKJNQcAAAAAltbp+Jg+++1OtXWPznv83m1h/eaP1KumvDDPlQHAKjA1JrvvpOy+E7Lj7bL6OmT3n5LhprKa1jcsuZXbrnZ0iTTKrW6UX1Seo8IBAMBal9fwi+M4+vrXv67vfe976uzs1PDwsFzXveEYwzD0xBNP5KlCLEQ4HF7qEoAVKxgMLnUJANaQlbLmjE46+vw3T+rvnj077/G7o5X6vffs1Zaq0jxXNg/fly68KD3/Ranjq9KNPgQ0LGnX26W7f15W/SGVGoaWwZ8AWDQrZc0BsPKx3gDIJ9YcAAAAAMiPScfT/3z2kv7n85fkev6c41WlBfqNH6nXG7eHZSyTjdIAYDkzxgdl93WkQy7xDtl9HbISMRn+3I5aC+HbxXKqd6VDLtW75VY3yqnaKdlFOaocAABgrryFXw4fPqwPfOADOnfu3Mzv+f7cN6lXGIYh3/d5owoAALAGHD3Tr9/452M6PzA+51igwNRvvmWX/sOBepnmEr82nBqX2v4lHXrpfvnG55ZUS6/7GenO/ygFN+ajOgAAAAAAAAAAgBXrBxeG9Nlvx3R2YGLe4w/tjegjb9isikBe9/oFgJXB92WOdMuOt8uOd6S7ucTbZY10Zz21FwjLiTROd3RplBtpkhusl0wr+7oBAAAWIC/vBk+ePKm3vOUtGh8fl+/7Kiws1Pbt21VZWSnTNPNRAgAAAJah0UlHv/Otk/rbo9fp9lJfqd99z17VVy9xr5TBs9KLfy299HfS+MCNz914l3T3z0uNP8auNgAAAAAAAAAAADcxMuno//u38/qXY73zHt8cDuijb4rqzs0Vea4MAJYpz5WV6Lwm5JJ+mJOJrKd2y9dPh1ya5E4HXryyOolNzAEAwDKQl/DLb//2b2tsbEyWZenTn/60fumXfkllZWX5+NZYRIODg0tdArBimKapYDA48zyZTMrzsmsfCgDXs1LWnBfPJfXfvnFaF5OTc44FbFMfuXeL3ve6WplGSoODqfwX6Huyzx1R0St/o4LOJ2To+l0LfatQqR3v1OS+fy933d70bw6PSRrLT63AElopaw6AlY/1BkA+seakhcPhpS4BAAAAwCr31GsD+t0nuhQfmZpzzDIN/fu76vSz+zcoUMDmugDWKGdSdv8pWfF22VeCLv0nZTjzd8nKlG+YcsNb5VQ3TodcdsupbpRfzOdBAABg+cpL+OXJJ5+UYRj65V/+ZX30ox/Nx7dEHriuu9QlACuW53n8DAHIm+W25oynXH3he+f12A8uz3v89o3l+uQDDdoUDsj3POW7cmNyWEUn/1mB4/9LdqLzhue65Rs0seenNbH7J+QXV07/5vL5bw0sheW25gBYvVhvAOQTaw4AAAAA5FZ8JKXffaJLT702/8arjbWl+vibo9pRU5rnygBg6RiTQ9d0c2lP/3rwjAw/u8+lfKtITtVOOZFGuZGmdGeXqp1SQXGOKgcAAMiPvIRf+vr6JEkPPfRQPr4dAAAAlqnvnx/Sb32rc95uL0W2qV+8Z5N+8o51MpegZbLV/6oCx7+swKmvyJi6cceW1KZ7NLH3/UptuV8yrTxVCAAAAAAAAAAAsLJ5vq//ezyu//7MOY1Mzr2ZO2Cb+tA9G/WTt9fKMvN/vQgA8sL3ZY5elhXvuNrNpa9D1tD5rKf2iirkVO+WW90kJ9KYDryEt0pmXm4VBQAAWFR5eUUTiUR06dIlFReTFAYAAFiLbtbt5bYN5frkWxq0ORzIb2Geo8LO7ypw/G9VePG5G59aWKbJXT+uiT3vlxtuyFOBAAAAAAAAAAAAq0PXwLh++9sxvXRheN7jB+qDevhNUa0PFuW5MgBYRL4nM3FWdl+6k0s66NIuc3wg66nd0lq50wEXp7pRTqRJXvkGaQk2mwQAAMiHvIRfDh06pMcee0xtbW2644478vEtAQAAsEzcrNvLh+/ZqPfdUZvXbi/GWJ8C7f9bgfZ/kDXSc8Nzncrtmtj77zWx48ekwtI8VQgAAAAAALD6WRYddYFMmaZ5w+cAkEu5XnOmXE9/+/wlffHIeaVcf87xULGtX/uRqN7WWC2DG7aBNWdVvc5xU7L6X5UV75AVb5fd2y6r74SMqdGspvVlyAtF5dakAy5upElupFF+SfWs8wxJvMsCrm9VrTcAlj3WnMVh+L4/911ljr3wwgs6ePCg9uzZo+eee062TQu91aCvr2+pSwBWDMuyFA6HZ54PDg7Kdee2cAaAXFgua854ytUff++8/s91ur3s21CmT71la/66vfi+7MsvK/DK36no9DdkeFPXP9WwlGp4kyb2fEBTG17PzjjADSyXNQfA6sd6AyCfWHPSqqurb34SAAAAANzAy+cT+q///IpO9szf7eWh2zfo42/fraoyur0AWGEmh6We41L3K1LP9KP3pHSD69AZsQqlmt1S7R6pdp9Ut1da1ywVleWmbgAAgBUsLymUu+66S48++qh+6Zd+Se9+97v1P/7H/+CiGQAAwCr20vkh/dbjnbqQuH63l5+8vVaWmYdQiTOhole/psDxv1NBvO2Gp3rFVZpoep8mmn9KXlnd4tcGAAAAAAAAAACwCo1OOvqDb7+q/9ka03zb8m4IFeu3371H9+6I5L84AFiokd7pkMuxq2GXgc7s5y0sT4dc6vZKtXvTX6t3SnZh9nMDAACsQnkJv/zWb/2WJOnuu+/W1772NW3ZskVvetObtGvXLpWUlNx0/Cc/+cnFLhEAAAA5MJ5y9SeHz+t/v7T03V7MoQsKtP0vBdofkzmZuOG5U+tu18TeD2hy21ski53FAAAAAAAAAAAAbtXTp3r1sa+06WJifM4x05D+48GofvVNO1RalJfblgAgc74vDXalwy1XQi7dr0gjPdnPXVozO+RSu1cKRyXTzH5uAACANcLw/fn2V8gt0zRlGFd39fZ9f9bzm3FddzHKQpb6+vqWugRgxbAsS+FweOb54OAgaxuARbNUa84PLgzp09+6XrcXQx86tEnvu2ORu734ngrOH1Hg+JdVGHtChq7/Ute3CjW5450a3/N+uTV7Fq8mYJXjdQ6AfGG9AZBPrDlpdHAHsNgGBweXugRgxTBNU8FgcOZ5MpmU53lLWBGA1exW15yBsSn9wRMxfaNj/vtJtkdK9Km3blVTXXnOagWw8i3Z6xx3StbAaVnx9pmHHT8hIzWc/dTBLXIjTXIjjXIiTXJrmuSX1uSgaADZ4H0VgHxizUm79npbLuRtC4UfztjkIXMDAACAPLjS7eX/vHR53qjJ3vVl+tRbGrSlsnjRajAmh1V08p8VOP5l2YnYDc91yzdqYs+/08Tun5BfXLloNQEAAAAAAODG1mKwEMgVz/P4GQKQNzdbc3zf1zc6+vSHT59TctyZc7zQMvRzLRv0gTvrZFsm6xeAG1qU1zlTY7L7Tsru65Adb5cV75A98KoMN5XVtL5pyw1vkxNpTD+qm+RW75ZfNE/Ij7UPWHZ4XwUgn1hzciMv4Ze1mFICAABYC27W7eWDhzbppxax24vVf0qB419W4NRXZUyN3fDc1KZ7NLH3A0ptuU8yrUWpBwAAAAAAAAAAYC25mJjQ577bpWe7kvMev2NjuT725uiibpIGANcyxgdnh1z6OmQlYjL87O5h9O1iOdW75ESa5FSnwy5u5Q7JLspR5QAAAPj/s3fn8VGVZ//Hv2f2SQIhGyQsgQSIkAXcdwU3wH3DlUCrrfWx1ra/bj5WrbZ16fp0sa11a1XAXatYRUBEcKuoKGRhT9gTSEgI2WYmM+f8/oiiNJMhQHKyfd6vV19l5r7mzJclt8nMXPd1ILZNfgEAAEDfEWiJ6K/vbNMzKyrbnfbys2nZGtUVb2REWuQpf1O+otnybP8wZqnpSVBw/HQ15xfKTMrq/CwAAAAAAAAAAAD9UNi09MyKSv393W0KhNt+oDzB69T3J2XqooI0OYyuOSQNQD9nWXLU75CrukSuqtLPG11K5GyoPOxLm77kr0xzyVUkLVeRxFEcsggAANDNaH4BAADAQflsW71+/sZGbbV52ovRVC1fyTPyFT8tZ2PsFyzDyWMVmDBLgZyLJU98p+YAAAAAAAAAAADoz9btatQ9C8pVurMx6vpZOcn68ZkjlZrgsTkZgD7LjMi5p+zzJpeSzye7rJYjuOewLx0ZMOzzJpc8RT5veDHj0yUa9wAAAHocml8AAADQIYGWiP767jY984mN014sS67KT+UrmiPvhtdlmC3tlxpOhbKnKFBQqJZhJ/BiJAAAAAAAAAAAQCcKtJh69INtmv1RhSJR3ixKS3Dr1rNGafLYZPvDAeg7wgG5dq3+SpNLqVy718gIBw7rspbhUCRp9L5JLl9MdbF8gzonNwAAALqc7c0vNTU1+uc//6k333xTxcXFqqmpkSQlJycrPz9fZ599tq677jolJ/ODMAAAQE/x2bZ6/WJBmbbUtn1B0esydNMpI3TNMZ047SUckHfdv+UvelKuqpKYpaY/RYG8qxXIv0ZmQkbnPD8AAAAAAAAAAAD2+XhLne5dWK6te4JR16dPHKzvnD5CCV7O4QXQcUagTq6aNdLqcqlylVSxSoOq18mwIod1XcvpVTh13FcaXfIUTs6R3J14kCMAAABsZ+tPnA899JB+9KMfqampSZJkWV8eA7F9+3bt2LFDCxcu1N13363f//73+ta3vmVnPAAAAPwXu6e9OPZuk694rnwlzx1wRHVL+lEKFMxScMxUyentlOcHAAAAAAAAAADAl+qaWvSL+Rv0r1W7oq6PSvbpjinZOnL4AJuTAehVLEuOxp1yVpXKVV3SOs2lqlTO+m1tSg/2uEXTO/DzJpe8fdNcIknZkoNmPAAAgL7Gtu/wfvWrX+n222/f1/CSmJioo446Sunp6ZKkyspKffrpp6qrq1NjY6Nuuukm7dmzRz/5yU/siggAAICv+Gx7vX7xRvRpLx6noZtOHaFrO2Pai2XKvfU9+VbNlmfTWzKittl8Xur0KphzoZoLChUZXHB4zwsAAAAAAAAAAICoLMvS/OJK/eyVElU3tJ324nIY+vrxQ3XdiUPldTm6ISGAHssy5dizeb8mF1d1iRzNNYd96UhCuiKpufuaXMJpeTIHDJOMw3zPGgAAAL2CLc0vxcXFuvPOO2VZljIyMvTb3/5WV1xxhdxu93514XBYzz//vH784x9rx44duuOOO3T++ecrLy/PjpgAAABQ67SXv727TU+3M+2lICNBd03L1qiUw5v2YgTr5V3zgnxFc+XaUx6zNjJguAIFMxQYf4Usf9JhPS8AAAAAAAAAAADat3NvUD+e94neXL0z6npBRoJun5KlMWlxNicD0ONEgnLuXi9X9edNLlUlcu1eI6Ol6bAua8lQZFCWImlfNLrkKZw2XpY/pZOCAwAAoDeypfnlL3/5iyKRiNLS0vTBBx8oMzMzehiXS9dcc41OPfVUHXfccaqqqtJf/vIXPfjgg3bEBAAA6PfsmPbi3L1WvqI58q19+YAveoYyT1OgYKZCIydLDuchPycAAAAAAAAAAABiMy1LL63cpQeWbVVjKNJmPc7t0M2njdD0I4cc1ntFAHonI1QvZ/Wa1gaXqlK5qkvlrNkgw2w5rOtaTo+MweOl9AlSxkTtjc9SKGms5InvpOQAAADoK2xpfnnrrbdkGIZuu+22dhtfvmrEiBG69dZb9cMf/lCLFy+2ISEAAED/Fmgx9eC7W/VUV017ibTIU/6m/Ktmy73jw5ilpidBwfHT1ZxfKDMp69CeDwAAAAAAAAAAAB1WvrtZ9yws08rtDVHXT80epP89e5TSB3ptTgagOxiNVV9Oc6lunejirNt82Nc1PQmKpOYqnDq+daJLWp6UmqOk1CH7aiK1tVKkbQMeAAAAYEvzy/bt2yVJJ598cocfc8opp0iSduzY0SWZAAAA0Grl9nr9PMa0l/85ZbhmHJtxSCd4GU3V8pU8I1/x03I2VsasDSfnKDBhpgI5F3OKDwAAAAAAAAAAgA1aIqYe/3CH/vHhDrVE2h6RlhLv0Y/PGqWzxg6SYTDtBehzLEuOvVtam1yqSvY1vDiaqg770mZcWmuDS2prk0s4LVfmwBGS4divzul0HvZzAQAAoH+wpfnli29Qw+Fwhx8T+bx72+FwHKASAAAAh+JA017yM+J117TRyjrYaS+WJVflp/IVzZZ3w/yYY64tw6lQ9hQ1T5ip8NDjJd40AQAAAAAAAAAAsMWqHfW6Z0G5ynY3R12ffsxw3X7eeCnUuO9zPAB6sUiLnLUb92tycVaXyhGKPvHpoC6dmKlwat7n01xyFU7NkxWf1gmhAQAAgC/Z0vySmZmp1atXa/HixR2e/rJ48eJ9jwUAAEDnOtC0lxtPGa7Cg532Eg7Iu+7f8hc9KVdVScxS05+iQP41CuRdLTMh42DjAwAAAAAAAAAA4BA1hiL66ztb9fynO6MekDZ8kFe/uvxInTo2VZJUG2q0NyCAw9fSJFf16taJLtWlclaVylWzTkYkdFiXtRwuRZLG7NfkEkkdL8s7oJOCAwAAAO2zpfnlnHPOUWlpqX73u9/pkksuUUFBQcz64uJi/fa3v5VhGJoyZYodEQEAAPqFQIupv7+3VXM/jj7tJS89Xnefe3DTXhx7t8pXNFe+0uflCO6JWduSfpQCBbMUHDNVcnoPLjwAAAAAAAAAAAAOyzsba/WrNzdpZ33bD8A7DGnGsRm66bRMDR2c2g3pABwKo7nm8yaXktZpLlWlcu4plxH1HeGOs9xxCqeMUzjt84kuqbmKpIzlfV4AAAB0G1uaX77//e/r73//uxoaGnTqqafqzjvv1HXXXaeUlJT96nbv3q1//vOfuvfee1VfXy+fz6fvf//7dkQEAADo81btaJ32srmm/WkvM47NkKsj014sU+4t78pfNFvuTUtivnBqOb0K5lyk5oJCRQbnH85vAQAAAAAAAAAAAIdgd2OLfvfWJi1aWxN1/YjBcbpzarbGDYmX0+m0OR2ADrEsOep37Nfk4qoukbOh8rAvbfqSvzLNJVeRtDxFEkdKDvYDAAAA9By2NL+MHDlSDz30kK677jo1NDTo1ltv1f/+7/8qKytLgwcPlmEY2rlzp8rLy2VZlizLkmEYeuihh5SZmWlHRAAAgD4r0BLR35Zt0dxPKmRG6VHJS4/XXdOylZ0ad8BrGcG98q55Uf5Vc+Ss2xSzNjJguAIFMxQYf4Usf9IhpgcAAAAAAEBfxQdrgY5zOBwxbwNAeyzL0ryiXfq/JZu1NxBus+51OXTTqSM047ih+w5IY88BegAzLEdtmVxVJXLuKmmd5lJVIkew7rAvHRk4XJG0zxtc0vIUTsuTlZAuGfsfkmjXd+vsOQDswn4DwE7sOV3DluYXSZo1a5ZSUlJ04403aseOHbIsSxs3blRZWZmk1h+2vzB06FA9/PDDOu+88+yKBwAA0Cet2FKrHzyzSptqmtusuZ2Gbjx5uAqPO/C0F2f1WvmKZsu39mUZ4bbX+qpQ5mlqLpillpGTOAkIAAAAAAAA7UpK4sAU4FAlJiZ2dwQAvcDm3Y366b+K9N6G3VHXTxmTovsuLdDIlPiY12HPAbpYS7O0s1SqXClVrJIqV7XePsD7sgdkOKTUI6SMCVL6hM//v0BOf5JtjS2Hgj0HgF3YbwDYiT2nc9jW/CJJ559/vjZt2qR//etfevPNN1VcXKyamtZxqsnJycrPz9fZZ5+tSy65RG63285oAAAAfUqgJaL/W7ROj75TFnXaS256vO4+0LSXSIs85W/Kv2q23Ds+jPl8pidBwfHT1ZxfKDMp6zDTAwAAAAAAAAAA4FCFI6Yefbdcf1i0TsGw2WY90e/WHeeP1/RjhsswYh+QBqCTNddKlUVfNrlUrJKq10lW5PCu6/JJQ/K+0uQyURqSK7n9nZMbAAAA6AFsbX6RJJfLpSuuuEJXXHGF3U8NAADQL6zaXq9fLFipjVWNbdY6Mu3FaKySr/QZ+YqflrNxZ8znCifnKDBhpgI5F0ue2KeCAQAAAAAAAAAAoGsVb6/TrS+uUsmOvVHXL5w4VD+7IFdpA7w2JwP6GcuS9u74ssHli/+v23L41/YN+nKayxfNLiljJaftHwUEAAAAbMV3vAAAAH1EMGzq7+9t09yPK9qd9nLXtGyNjjbtxbLkqvxUvqLZ8m6YL8Nsafd5LMOp0Oipai4oVHjo8RInggEAAAAAAOAQ1NbWdncEoNdwOBxKTEzcd7uurk6m2XaaA4D+q7klor+/u1VzP9qhSJT3iYYM8OinU7J1+phkKdyk2tqmdq/FngMcJMuUY0+5nLtK5KoqkbOqVM6qEjmaaw770mZChsJpeYqk5SoyOE+RtDyZA4a1fY92b/1hP1d3Yc8BYBf2GwB2Ys9plZSU1KnXo/kFAACgDyiuaNDd8zdqU02gzVrMaS/hgLzrXpW/aLZcVSUxn8OMS1Ug72oF8q6RmZDemfEBAAAAAADQD0Uike6OAPRapmnyNQRgnw831+m+heXaXhdss2ZIuuKoIbr5tBGK9zgPae9gzwG+IhKUc/d6uapL5aoqlauqRK7da2S0tN9Q1hGWDEUGZSmSlqtwWq7CqXkKp+XK8ie3Le7jH5pkzwFgF/YbAHZiz+kctjS/FBUV6eKLL5bT6dTbb7+tYcOGxazfvn27Jk2aJMuyNH/+fOXk5NgREwAAoNcJhk099N42zWln2suE4Yn62ZQsjUref3S9o26LfMVz5St9QY7gnpjP0ZJ+tJonzFRo9DTJ6enE9AAAAAAAAAAAADhUe5pb9Ke3t+jVkuqo69kpft0xNUsThg6wORnQNxihejmrVstVXfJ5o0upnLUbZJjhw7qu5fAonJLzeaNLnsKp4xVOGSd54jspOQAAANA32dL8MmfOHG3atElTp049YOOLJA0bNkw5OTlasGCB5syZo1/84hc2pAQAAOhdiisa9PP5G1UeZdqLx+nQ984eqxtPz1b93rrWrnHLlHvLu/IXzZZ70xIZitIt8znL6VUw5yI1FxQqMji/K38bAAAAAAAAAAAAOAiWZWnh2hr9bvEm1Ta3/RC+22no+hOG6usnDJXb6eiGhEDvYzRW7dfk4qoukbNuy2Ff1/QkKJL6xTSX1maXSNJoyenuhNQAAABA/2JL88vSpUtlGIYuuuiiDj/m4osv1htvvKHFixfT/AIAAPAVB5r2kpserz9cfYyOSG89xcsI1slX/Lz8RbPlrNscf6ByFQAA9ORJREFU89qRgSMUyJ+hwPjpsvxJXREfAAAAAAAAAAAAh6hyb1C/enOT3i3bE3V94rAE3TElW1kpfnuDAb2FZcqxd+vnTS4lclW3Nrs4mqoO+9JmXNp+TS7htFyZA0dIBk1oAAAAQGewpfll3bp1kqQJEyZ0+DH5+a0njK9du7ZLMgEAAPRGsaa9uByGvnXyMF130gilpQyQdpZIyx9R4spnZISbY143lHmamgtmqWXkJMnh7Kr4AAAAAAAAAAAAOAQR09Lzn+3U397ZqqYWs816vMehW07P1GUTB8thGN2QEOiBIi1y1m5obXKpKpWrulTO6tVyhBoO/9KJI1sbXL4y1cWKT+uE0AAAAADaY0vzS0ND6w8MCQkJHX7MF7V79+7tkkw4fE4nH4wFOsrhcMS8DQAHEgyb+vu7W/Xk8u1Rp72MT4/XL84bozHJHnnK5kvz5kqb35Mktff2hukZoFDuFQpOKJSZlC1J4r/uAA4W3+cAsAv7DQA7secAAAAA6Ek2VDXpnoVlKq5ojLo+aUySfnLWSA0Z4LU5GdCDhBrl2r1mX5OLq6pEzt3rZZihw7qs5XApkjz2yyaXtDxFUsfJ8gzopOAAAAAAOsqW5pekpCRVV1ersrJSEydO7NBjKisrJUkDBvCDQk+VlJTU3RGAXisxMbG7IwDoRT7bukc/fr5Y63e1PYHI7TT0/bNzdOPR8XJ9Nlt69R9SfUXsCw7Ok47/phwFV8rnTZCvi3ID6J/4PgeAXdhvANiJPQcAAABAdwiFTf3jPzv0+PIdCkc5HS0l3q2fnDVKZ45NksG0F/QjRnPN500urRNdnFWlcu4pl6EopwgeBMsdp3DKuNaJLp9Pc4mkjJWcNJYBAAAAPYEtzS9jx45VdXW13njjDU2dOrVDj5k/f74kafTo0V0ZDQAAoMcKhiP645vr9dDSjVGnvRQMHai/nB7WyA33S396RTJb2r+Y4ZTGXygd/y1p5MkSb4AAAAAAAAAAAAD0WJ9tq9c9C8u0qSYQdf2SgjR9d1KmBvps+egP0D0sS4767XJVlXw+zeXzRpfGysO+tOlPVjj18yaXtFyFU/NkDhopGUx/BQAAAHoqW34Cnjp1qt5//309/PDD+ta3vqXx48fHrC8pKdEjjzwiwzA0bdo0OyICAAD0KCu37tGPnl8ZddrLAGdIf8zdoDPr58l4eVXsC8UPlo69Tjrm69LAoV0TFgAAAAAAAAAAAJ2iIRjWA8u26sWVu6KuZyb59NNzsnRs5kCbkwFdzAzLWVv2lSaXErmqV8sRrDvsS0cGDN+vySWSliszfggHBgIAAAC9jGFZ1uHNe+yA6upqZWVlqampSYMHD9YjjzyiCy64IGrtvHnzdOONN2rnzp2Ki4vTxo0bNWTIkK6OiENQW1vb3RGAXsPhcCgxMXHf7bq6Opmm2Y2JAPRUobCpv7+3VU98uL3NtJcRxk59b8BSXaK35ArtjX2hESe0TnkZf5HqGpvZcwB0Gb7PAWAX9hsAdmLPaZWUlNTdEQD0cdXV1d0dAeg1nE7nfv9trq2tVSQS6cZEALrC2xtq9Os3N6mqoaXNmtOQZh0/VN84cZh87q6dTMGegy4XDshVvUau6tZJLq7qUrmq18iIBA/rspbhVCRp9OdNLrmKfP7/li/xwA9Gt2HPAWAX9hsAdmLPaZWamtqp17Nl8ktqaqr+/ve/a+bMmdq1a5cuvvhiZWdn69RTT1VGRoYkqaKiQu+8847Ky8tlWZYMw9CDDz5I40sP1h+/AIHOYpomX0MA2iipaNDP3yhT2e7mffcZMnW6o0hfcy3UGY7PZITa71u2nF4Fj7hYoYmzNPCI0/bdb5qN7DkAbMP3OQDswn4DwE7sOQAAAAC6UnVDSL9ZvElvrY9+CGnukHjdMTVLOYPjbU4GHD4jUCdXdcnn01xaG12ctRtlWId3yITl8imcMu4rjS55CqfkSC5fJyUHAAAA0NPY0vwiSTNmzJBpmrrpppvU1NSkjRs3qqysbL+aL4bQxMfH68EHH1RhYaFd8QAAALpNKGzqkQ+268nlOxT5vLdloBo13blMM50LleXYGfPxkYEjFMifoUDuFbJ8g+R0Om1IDQAAAAAAAAAAgMNhWZZeKarSH5duUUOwbcO9z+XQTacO19VHp8vpMLohIXBwjMAeuSs++bzJ5fOGl/rth31d05u4f5NLWq4ig7Ikh20ffQMAAADQA9j6E8DMmTN1zjnn6M9//rNee+01FRcX72t4cTgcKigo0IUXXqjvfOc7THwBAAD9Qmllg+6e/+W0l3HGFs1yLtQlzvcUZ8Qe6x3KPF3NE2apJfN0yUHDCwAAAAAAAAAAQG+xuaZZ9y4s14pt9VHXTxyVqNvOHqVhg5higR7OsuSq/FS+ojnybpgvwwwd1uUiCRkKp+UpkpqrcNp4hVPzZA4YKhk0gAEAAAD9ne3t7+np6brvvvt03333KRwOq6amRpKUnJwsl4tufAAA0D98ddqLYYV1nuNjfc21UCc41sR8nOkZoOD46WoumCFzUJZNaQEAAAAAAAAAANAZwhFTT35UoUc/2K5QxGqznuh36YdnjNS541Nk8GF/9GQtzfKumyd/8Vy5qkoO+uGWDEWSsj+f5pKrcFqewqnjZfmTuyAsAAAAgL6gW7tNXC6XBg8e3J0RAAAAbFda2aCfv1GmvdUVutn5lq51LVa6URvzMeGUI9RcMFPBIy6W3HE2JQUAAAAAAAAAAEBnKalo0D0Ly7W+qinq+rm5KfrB5JFKinPbnAzoOEdtufzFc+Vd86Icwb0deozl8CickvOVJpdchVPH8b4nAAAAgIPCqBUAAACbhMKmHnl/m0o+flvfdS7Sud4P5TEi7dZbhlOh0VPVXDBT4aHHMcobAAAAAAAAAACgF2oKRfTge9v07IpKmW2HvShjoEe3nZOlk7MG2Z4N6BAzIs+mt+QrmiPP1ndjllpOj8JDjlI4Lbf1f6m5iiSNlpw0dQEAAAA4PLY3v6xfv15PPvmkPvjgA1VWVqq5uVkLFizQmDFj9tUUFxdry5Ytio+P16RJk+yOCAAA0OnWbqvWB/Of1PTmf+suz+aYtWZcqgJ51yiQd7XMhHSbEgIAAAAAAAAAAKCzvV++R/cvKlfF3lCbNYchXX10uv7nlOGK8zi7IR0Qm9FULV/pc/KVPC1n/Y6YtZGBIxTIv1aB8VfI8ifZlBAAAABAf2Jb84tpmvrJT36iP/3pTzJNU5bVepSFYRgKhfb/AX/Lli264IIL5HK5VF5ermHDhtkVEwAAoFNFajapbNFDytv1mk4xGiVH+7UtGceouWCmQqOnSk6PfSEBAAAAAAAAAADQqWqbWvR/SzZr/urdUdfHpPp1x9Rs5Wck2JwMOADLkqtyhXxFc+TdMF+G2dJ+qQy1jJys5oIZahk5STJivBkKAAAAAIfJtuaXG2+8Uf/4xz9kWZaGDRumk046SS+88ELU2vPOO09ZWVnatGmTXnjhBX3ve9+zKyYAAMDhs0y5t7yj8EePK63yHQ2RJRntlDq9Ch5xsZoLChVJy7M3JwAAAAAAAAAAADqVZVmav3q3fr9ks+qaw23WPU5D3zxpmGYdlyGXk0YB9CAtTfKumyd/0Vy5qktjlpreQQrkXqFA/rUyEzNtCggAAACgv7Ol+WXx4sV67LHHZBiGfvrTn+rnP/+5nE6nHI72f4i/4oor9Jvf/EZvvfUWzS8AAKBXMIJ75V39gnxFc+Sq2xyzNhA/XJEjZyowfros3yB7AgIAAAAAAAAAAKDL7KgL6v5F5fpgU13U9aOHD9DtU7I0MtlvczKgfY7acvmL58i7+kU5QvUxa1sGT1CgoFDBsedLLp9NCQEAAACglS3NLw8//LCk1oku99xzT4cec/zxx0uSSkpKuiwXAABAZ3BWr5GvaLZ8a1+REW6OWbth4AlKOfUbioyaLDmc9gQEAAAAAAAAAABAl4mYlp5ZUakH392mQNhss57gdep7kzJ1cUGaHIbRDQmB/2KG5dn0lnxFc+XZ+m7MUsvpVXDsBQoUFCo8ZIJNAQEAAACgLVuaXz744AMZhqFvfOMbHX7M8OHDJUmVlZVdFQsAAODQRVrkKVsof9EcuXcsj1m614rTIs/ZGnX2DRo5OlcRmyICAAAAAAAAAACga63b1ah7FpartLIx6vqZY5P0k7NGKTXBY3MyoC2jqVq+0mflK35azoaKmLWRgZkK5F+rwPjpsvxJNiUEAAAAgPbZ0vyya9cuSdKoUaM6/Bi32y1JCofDXREJAADgkBiNu+QreVa+kqflbNwZs3a1OUJzzKkadMx0FZ48Wm6nw6aUAAAAAAAAQM/ndDIZGegoh8MR8zYA+wVaInrk/W16cvkOhU2rzXpagke3nZOlM3JSuiHd4WHP6WMsS86KT+Rb+aTcG+bLMFvaL5WhllFnKDhxpsIjJ0mGQ/zto6ux5wCwC/sNADux53QNW5pf4uPjtWfPHlVVVXX4Mdu2bZMkJScnd1UsAACAjrEsuSo/kX/VbHk2viHDbL85t8VyaoF5nJ4IT1FdylG667zROmJwvI1hAQAAAAAAgN4hKYkTxIFDlZiY2N0RgH7tg4279dN/Fau8Ovq0lxknZOrWc8dpoM9tc7KuwZ7TS4UapVXPSR89Ju0sil3rT5aOninj2OvlSRol5hShO7HnALAL+w0AO7HndA5bml+ys7O1YsUKlZaW6pxzzunQY+bPny9JysvL68poAAAA7WtplnfdPPmL5shVXRqzdJc1SE9FztRT4bO025Gs608cqutPHMq0FwAAAAAAAAAAgD6irqlF989frWc+2hp1PTstXr+6bIKOz+KgV3Sj6vWtDS+fPSUF62LXDjtGOu4GKe9Sye2zJx8AAAAAHCJbml+mTJmiTz75RH/96191yy23HHBsT2lpqR5//HEZhqHzzjvPjogAAAD7OOo2y1c0V77VL8hxgBeEPzJz9GR4it4wj1eLXBqbFqc/nJvNtBcAAAAAAAAAAIA+wrIszS+u1F3zSlRVH2yz7nIY+vbk0fr2GWPkczu7ISH6vUhYWjdf+uhRqezt2LUun5Q/XTruG9Kwo22JBwAAAACdwZbml+9+97v685//rI0bN+p//ud/9Le//U0uV/SnXrRoka677joFAgGlpKTohhtusCMiAADo7yxT7i3L5F81R+7Nb8uQ1W5ps+XRy5FTNDtyjkqtUZIkp8PQDScw7QUAAAAAAADoqNra2u6OAPQaDodDiYmJ+27X1dXJNM1uTAT0H7vqg7p/UbneXl8Tdb0gI0F3njtaY9Pi1dywV8025+sK7Dm9h9FYJW/JM/IWPSVHQ0XM2kjiSAUnFCo0frosf1LrnXw/hh6APQeAXdhvANiJPadVUlJSp17PluaXIUOG6O9//7tmzZqlxx57TAsWLND555+/b/1Pf/qTLMvSe++9pzVr1siyLDkcDj3++ONKSEiwIyIAAOinjECdvGtelL9ojpx1m2PWbrYGa3b4HD0fmaQ6ffk9yti0ON01LVvjhjDtBQAAAAAAAOioSCTS3RGAXss0Tb6GgC5mWpZeWrlLDyzbqsZQ2683v9uhm08boSuOHCKnw+jTX5PsOT2MZclV8Yl8RXPk3fiGDLOl/VIZahl1hpoLCtWSeZpkfH6IH3+f6MHYcwDYhf0GgJ3YczqHLc0vkjRjxgy53W7deOON2rp1qx566CEZhiFJevTRRyW1jomVpISEBD3xxBP7NcgAAAB0Jmf1GvmKZsu39hUZ4dhncC13Hq2/NZ+lpeZEWfpyqovTYeh6pr0AAAAAAAAAAAD0KeW7m3XvwnJ9tr0+6vopWYN02zmjlD7Qa3My9GuhRvnWvSJf0Vy5dq+JWWr6khTIvVKB/GtlDhxuU0AAAAAA6Fq2Nb9I0pVXXqmzzjpLf/vb3/Tqq6/qs88+Uzgc3reel5eniy66SN/73vc0ePBgO6MBAID+INIiT9lC+Ytmy73jo5ilpmegPkqcqtu2n6wyc0ib9TGpft197mimvQAAAAAAAAAAAPQRLRFTTyyv0GP/2a6WiNVmPcnv0g/PHKmp41L2HfgKdDVn7cbWKS9rXpIj1BCztmXIkQoUFCo45jzJRXMWAAAAgL7F1uYXSUpJSdGdd96pO++8U6ZpqqamRpFIRMnJyXK73XbHAQAA/YDRuEu+kmfkK35azqZdMWvDKeO0adSV+sHaXK3aarZZdxrSdScM0zdOYtoLAAAAAAAAAABAX7FqR73uWVCust3NUdcvyEvV9ydnapCfz7bABmZYnvLF8hXNkWfb+zFLLadXwZyL1FwwQ5HBBTYFBAAAAAD72d788lUOh0OpqandGQEAAPRVliVXxSfyF82WZ+MbMsxw+6UOl0Kjp6ohd4Ye2jJUj31QoYjZtvGFaS8AAAAAAAAAAAB9S2Moor+9s1XPfbpTbWe9SMMSvbrtnCydOCrR9mzof4zGKvlKn5Wv5Gk5Gypj1kYSM9WcX6jg+Mtl+QbZExAAAAAAulG3Nr8AAAB0upZmedfNk79otlzVq2OWmnFpCuRdo0De1VrTlKC73yjTul072tQ5DenrJwzVN08axrQXAAAAAAAAAACAPuLdjbW6/81N2lkfarPmMKQZx2boxpOHyed2dkM69BuWJVfFx/IXzZFn4wIZZkv7pTIUGnWmAgWFask8VTJ47xIAAABA/2FL80tLS4vWr18vSRo9erS8Xu9+64FAQLfffruee+45VVdXKysrSzfddJNuueUWO+IBAIA+wFG3Wb6iufKtfl6O4N6YtS0Zx6q5oFCh0VMVlkv/+HCHHvtPiSJm2/O8Rqf6dfe00RqfzrQXAAAAAAAAAACAvmB3Y4t+v2SzFq7ZHXU9Z3Cc7pySzftD6FqhRvnWvSJf0Ry5dq+NWWr6khXIvVKB/GtkDhxuU0AAAAAA6FlsaX7517/+pWuuuUbJycnatm1bm/VLL71UCxculGW1fuB0zZo1+v73v6+1a9fqL3/5ix0RAQBAb2SZcm9ZJv+q2XJvXioj6jD6z0tdPgVzLlJzwUxF0nIlSet2NeruN9Zq3a6mNvVfTHv5xonD5HFxYhIAAAAAAAAAAEBvZ1mW/l1SrT+8vVl7A5E2616XoW+dPFwzjkmXy8n7Q+gazpoN8hXPlXfNS3KEGmLWtgw5SoEJhQqOPldyeWPWAgAAAEBfZ0vzy4IFC2RZli655JI2U19ee+01LViwQIZhaPjw4TruuOO0fPlybd++XQ8++KCuvfZanXzyyXbEBAAAvYQRqJN3zYvyF82Ws25LzNrIwEw1FxQqOH66LF+iJCkcMfXPD3fo0f/sYNoLAAAAAAAAAABAP7BtT0D3LSzX8i17o64flzlQPz0nSyOSfDYnQ79ghuUpe1O+4jnybPsgZum+Q/3yZygyON+mgAAAAADQ89nS/LJixQoZhqFJkya1WfvHP/4hScrJydHy5cs1YMAA1dXV6eSTT9aaNWv06KOP0vwCAAAkSc7q1fKvmi3vuldkhAMxa0MjJ6m5YKZaRk6SjC9P5lpf1aS752/U2namvXzthKH6JtNeAAAAAAAAAAAA+oSwaempjyv00PvbFQybbdYH+pz6/qSRujA/VYZhdENC9GVG4y75Sp+Vr/gZORsrY9ZGEke2Huo37vJ9h/oBAAAAAL5kS/PLrl27JEljxozZ737TNLV48WIZhqFbbrlFAwYMkCQlJibqO9/5jm6++WZ98EHs0w4AAEAfF2mRp2yB/Ktmy13xccxS0ztQwfFXqDn/WpmDRu23Fo6Yenx5hR79YLvCUaa9ZKf4dfe52cpNT+jM9AAAAAAAAAAAAOgma3Y26pcLyqIeiiZJ5xyRrB+dOUop8W6bk6FPsyy5dnwkf/EceTYukGGG2y81HAqNOlOB/BlqyTx1v0P9AAAAAAD7s6X5pbq6WpLk9/v3u/+zzz7T3r17ZRiGzj///P3W8vNbx3Zu3brVjogAAKCHMRp3yVfyjHzFT8vZtCtmbThlnJonzFQw5yLJHddmfX1Vk37+xkat2Rl92sus44fqhpOY9gIAAAAAAAAAANAXBFoieuj97Xrq4wpF2p6JpiEDPLr17FE6fXSS/eHQZxmhBnnXzZOvaI5cu9fGrDX9yQrkXqVA3jUyBw6zKSEAAAAA9G62NL94vV6Fw+F9TTBfWLZsmSRp+PDhGjly5H5rX0yBiUQidkQEAAA9gWXJVfGJ/EVPHvgUJIdLodFT1VwwS+GMY6QoY+iZ9gIAAAAAAAAAANC/LN9cp3sXlmt7XbDNmiHpiqOG6NunDleC15aPzKAfcNasl69orrxr/iVHS0PM2pb0oxQomKngmGmS02tTQgAAAADoG2z5SX7kyJEqLS3Vhx9+qLPOOmvf/a+++qoMw9Dpp5/e5jE1NTWSpLS0NDsiAgCA7tTSLO+6efIXzZarenXMUjMuTc351yqYe5XMhCHt1m2oatLdTHsBAAAAAAAAAADoF+qaw/rj25v1akl11PXsFL/umJqlCUMH2JwMfVKkRZ7yN+UrmiPP9v/ELLVcPgVzLlJzQaEiaXk2BQQAAACAvseW5pczzjhDJSUleuCBB3TppZdq/Pjxmjdvnt5++21J0nnnndfmMcXFxZKkjIwMOyICAIBu4KjbLH/RXHlXPy9HcG/M2paMY9U8YaZC2VMkp6fdOqa9AAAAAAAAAAAA9B+WZWnh2hr9/q1NqmkKt1l3OQx948Sh+trxQzkUDYfNaNwlX8mz8pU8LWfjzpi1kcRRai4oVHDcZbJ8iTYlBAAAAIC+y5bml1tuuUUPP/ywdu3apfz8fCUlJam2tlaWZWn48OG6/PLL2zxm4cKFMgxDEyZMsCMiAACwi2XKvWWZ/Ktmy715qQy1bVDZV+ryKZhzsZonzFQkdfwBLx1r2ovDkL7GtBcAAAAAAAAAAIA+o3JvUL96c5PeLdsTdX3C0ATdMSVL2alx9gZD32JZcu34SP6i2fKULZRhtm2y2ldqOBQadaYCBYVqGXGKZPC+JAAAAAB0FluaX8aOHavZs2fr+uuvV2Njo2pqaiRJgwYN0tNPPy2PZ//T2ysrK7Vo0SJJ0plnnmlHRAAA0MWMQJ28q1+Qv3iOnHVbYtZGBma2noI0fnqHTkEKm5aeWL5Dj7zf/rSXu6ZlKy+DaS8AAAAAAAAAAAC9XcS09MJnO/XXd7aqqcVssx7vceiW0zN12cTBchhGNyREX2CEGuRd+4p8RXPkqlkXs9b0JyuQe5UCedfIHDjMpoQAAAAA0L/Y0vwiSVdccYUmTZqk1157TZWVlcrIyNBFF12k5OTkNrWrVq3StddeK0k677zz7IoIAAC6gLN6tfyrnpR33TwZ4UC7dZYMtYycpOYJM9WSeXqHT0HaUNWkn79RptU7G9usOQxp1nEZuuHk4fIy7QUAAAAAAAAAAKDX21jdpHsWlKuooiHq+umjB+nWs0dpyACvzcnQVzhr1stXNFfeNf+SoyX6v7MvtKQfrUBBoYJjpklO/s0BAAAAQFeyrflFkgYPHqzrrrvugHVTpkzRlClTbEgEAAC6RCQkT9lC+VfNlrvi45ilpnegguOvUHP+tTIHjerwUxxo2ktWsk93nTta+Ux7AQAAAAAAAAAA6PVCYVP//HCH/vnhjqjvDaXEufXjs0bqrJxkGUx7wcGKtMhT/qZ8RbPl2f5hzFLL5Vcw5yI1FxQqkpZrU0AAAAAAgK3NLwAAoG9zNOyUr+QZ+UqelqOpKmZtOHW8mgtmKphzkeT2H9TzMO0FAAAAAAAAAACg//hsW73uWVimTTWBqOsXF6Tpe5MyNdDHx2BwcBwNO+UtfVa+kmfkbNwZszaSOErNBYUKjr9clnegTQkBAAAAAF/gp34AAHB4LEuuik/kL3pSno0LZJjh9ksdLoVGT1NzwUyFM46RDvLUrbBp6cnlO/TIB9vVEmHaCwAAAAAAAAAAQF/WEAzrL8u26oWVu6Kujxjk1e1TsnRsZqLNydCrWZZcO5bLXzRHnrKFsd/fNBwKZZ2lQH6hWkacLBkcvgcAAAAA3YXmFwAAcGhamuRdN0/+VbPl2r0mZmkkbrAC+dcokHe1rPjBh/R0G6ub9PP5ZSptZ9rLzOMy9C2mvQAAAAAAAAAAAPQJb2+o0W/e3KRdDS1t1pyfvzf0zZOGy+fmvSF0jBFqkHfty/IVzZGrZn3MWtOfrEDuVQrkXytzwFCbEgIAAAAAYqH5BQAAHBTHnk3yFz8l7+rn5QjujVnbMvQ4NRfMVCh7iuR0H9LzhU1Lsz/aoYffjz7tZVSyT3cz7QUAAAAAAAAAAKBPqG4I6bdvbdbidTVR13OHxOv2qVk6YnC8zcnQWzl3r5OveK68a/4lR0vbg/a+qiXjGAXyCxUcM1Vyem1KCAAAAADoCJpfAADAgVmm3JuXyl80W+7Ny2SobRPKvlKXT8Gci9U8YaYiqeMP62kPNO2l8NgM3XgK014AAAAAAAAAAAB6O8uy9EpRlf64dIsagpE26z6XQ/9z6nBdfXS6XA6jGxKiV4m0yFO+SP5Vc+Te8WHMUsvlV+CIixXIn6FIWq5NAQEAAAAAB4vmFwAA0C4jsEe+1S/IVzRXzr1bYtZGEjPVXDBTwXGXy/IlHtbzMu0FAAAAAAAAAACg/9hSG9C9C8v0ydb6qOsnjkrUbWeP0rBBPpuTobdxNFTKV/KsvCXPyNm0K2ZteFCWAgUzWt/f9A60KSEAAAAA4FDR/AIAANpwVpXKXzRb3nXzZIQD7dZZMtQycpKaJ8xUS+bpknH4E1jKqpt09xtlKq1k2gsAAAAAAAAAAEBfFo6Ymv1xhR55f7tCUQ5ES/S79IPJmTovN1WGwbQXtMOy5N7+oXxFc+QpWyjDajs5aF+p4VAo6ywFCmaqZfjJEv+uAAAAAKDXoPkFAAC0ioTk2bhA/qLZcld8ErPU9A5UYPwVChTMkJk4slOePmxamvNRhR56f1u7017umpatgqEDOuX5AAAAAAAAAAAA0H1KKhp0z8Jyra9qirp+7vgU/eCMkUqKc9ucDL2FEaqXd83L8hXPlatmfcxa05+iQN5VCuRdI3PAUJsSAgAAAAA6E80vAAD0c46GnfKVPCNfydNyNFXFrA2njldzwUwFcy6S3P5Oy3CgaS8zjs3QjScPl8/NtBcAAAAAAAAAAIDerDkU0YPvbdMzKypltj0PTekDPLrtnCydkj3I9mzoHZy718pXNFfetS/L0dL2/cWvask4Vs0FMxQaPU1yemxKCAAAAADoCjS/AADQH1mWXBUfy7/qydbR32a4/VKHS6HR09Q8YabC6cd06ujvA017GZns091MewEAAAAAAAAAAOgTPijfo/sXbdKOvcE2a4akq49J102nDFecx2l/OPRskRZ5yhbKXzRH7h3LY5ZaLr8CR1ysQEGhIqnjbQoIAAAAAOhqNL8AANCftDTJu26e/Ktmy7V7TczSSNxgBfKvVSDvKlnxgzs9Sll1k37+RplK2pv2ckyGbjyFaS8AAAAAAAAAAAC93Z6mFv3f21v0eml11PUxqX7dMTVb+RkJNidDT+doqJSv5Bn5Sp6Ro6kqZm14ULYCBTMUHHe5LC+H6wEAAABAX2N788vKlSv1zjvvqKysTPX19YpEIjHrDcPQY489ZlM6AAD6JseeTfIXzZV39fNyhOpj1rYMPU7NBTMVyp4iOd2dnuWLaS8Pv79NoSjTXjKTfLr73GxNYNoLAAAAAAAAAABAr2ZZlt5YvVu/X7JZe5rDbdY9TkPfPGmYZh2XIZeTA9HwOcuSe/t/5CuaI0/ZIhlW+58tsgyHQllnK1BQqJbhJ0uGYWNQAAAAAICdbGt+Wbt2ra6//nr95z//6fBjLMui+QUAgENlmXJvXip/0Wx5Ni+NXbpv9PdMRVLHdVmk8t3Nunv+xqjTXgxJhccy7QUAAAAAAAAAAKAv2FEX1P2LyvXBprqo60cPH6CfTsnSqGS/zcnQUxmhennX/Eu+orly1W6IWWvGpSqQe5UCeVfLHDDUpoQAAAAAgO5kS/PL9u3bdfrpp6u6ulqW1XrCe0JCgpKSkuRw8OFWAAA6kxHYI9/qF+Qrmivn3i0xayOJmWoumNk6+tuX2GWZIqalOR9X6KH3mPYCAAAAAAAAAADQl0VMS8+sqNSD725TIGy2WU/wOvW9SZm6uCBNDqZ0QJJz91r5iubIt/ZlGS1NMWtbMo5Vc0GhQqOnSk6PTQkBAAAAAD2BLc0v9957r6qqqmQYhr75zW/qRz/6kXJycux46n5h2bJlWrNmjcrKyrRlyxaFw2F9+9vf1uTJk7s7GgDARs6qUvmLZsu7bp6McKDdOkuGWkZOVvOEmWrJPE0yurYRddPuZt39xkYVV0Sf9jLj2HT9zykjmPYCAAAAAAAAAADQy62vatIvF5SptLLt+0KSdMbYJP3krFFKS6Bpod+LhOQpWyh/0Ry5d3wUs9RyxymQc7ECBYWKpI6zKSAAAAAAoKexpfnljTfekGEYmjVrlh5++GE7nrJfefbZZ1VVVaUBAwYoKSlJVVVV3R0JAGCXSEiejQvkL5otd8UnMUtNb6ICuVcokD9DZmJm10czLc39uEJ/jzHt5a5p2Zo4jGkvAAAAAAAAQH/kdDq7OwLQazgcjpi3ge4WDJt65P2teuLDHQqbbd8XSk1w67ZzsnVmTko3pMPB6so9x6ivkLf4aXmLn5ajKfbnWyJJoxWcMFPB8ZdJ3oGSJL57APoevs8BYBf2GwB2Ys/pGrY0v+zYsUOSNGvWLDuert+58cYblZGRobS0NL388st66qmnujsSAKCLORp2ylfytHwlzxzwReFwaq6aJ8xUcOyFkttvS74DTXu59ph03XQq014AAAAAAACA/iwpKam7IwC9VmJiYndHAPb5T9lu3fZSkcqro097ufaETN06bZwS/W6bk6GzHPaeY1lS+TLpo0ekNa9LVqT9WsMpjTtPOu4GObNOV5xhKO7wnh1AL8P3OQDswn4DwE7sOZ3DluaXpKQk7dq1S4MGDbLj6fqdCRMmdHcEAIAdLEuuio/lX/WkPGULZZjh9ksdLgVHn6vAhEKF04+RDMOWiB2Z9vKzadk6kmkvAAAAAAAAAAAAvVpdc4t+NX+1nl6+Nep6dlq87r+0QCdkM+2l3wrUSSufkT56VKpeF7s2frB0zNdb/5c4zI50AAAAAIBexpbml2OPPVavv/661q1bp6OOOsqOp+yQuro6bdiwQRs2bNDGjRu1ceNG1dfXS5ImTZqkm2++ucPXqqqq0vz587VixQrt3r1bLpdL6enpOumkkzR16lR5vd6u+m0AAPq6liZ5174if9FsuXavjVkaiRusQP61CuRdJSt+sE0BW23a3ayfv1GmooqGNmtfTnsZLp+bYeQAAAAAAAAAAAC92RvFFbrzlRJV1QfbrLkchm6aPFo3nzGG94X6q50l0vJHpFXPSS3RJwLtk3mydPw3pXEXSi6PPfkAAAAAAL2SLc0v3/3ud/Xaa6/p4Ycf1lVXXWXHU3bIDTfc0CnX+fjjj/XAAw+oubl5333BYHBfQ83ixYt12223KT09vVOeDwDQPzj2bJK/aK68q5+XI1Qfs7Zl6PFqLihUKHuK5LR3ZHzEtPTUJ5V68N2tTHsBAAAAAAAA0GG1tbXdHQHoNRwOhxITE/fdrqurk2ma3ZgI/dWu+qB+tahcS9bXRF0vyEjQneeO1ti0eDU37FVz1Cr0dIe050RCcm94Q95Vs+Xe8VHMUssdp9C4SxWYMFNm6rjWO+sbJR2gUQZAn8T3OQDswn4DwE7sOa2SkpI69Xq2NL+cc845uvXWW/XrX/9aN910k/785z/L7bb3g7kHkpqaqmHDhmnlypUH9bjy8nL98Y9/VCgUks/n0yWXXKL8/HyFQiG99957Wrx4sSoqKnT//ffrV7/6lfx+fxf9DgAAfYIZkXvLMvlXPSnPlmUxSy2XX4EjLlagYKYiX7wobLNNNc36xRtlWrUj+rSXa45J17eZ9gIAAAAAAAAgikgk0t0RgF7LNE2+hmAr07L00spdemDZVjWG2v7b87sduvm0EbriyCFyOgz+ffYxsfYcR0OFfMVPy1f6rBxN1TGvE04ao0DBDAXHXSrL8/nBefxbAfBf+D4HgF3YbwDYiT2nc9jS/PLkk09q/PjxOvnkk/Xwww/r1Vdf1fTp0zVu3DjFxcUd8PGzZs3qklzTp0/X6NGjNXr0aA0aNEi7du3Sd77znYO6xuOPP65QKCSn06k77rhDOTk5+9by8/OVkZGhOXPmqKKiQq+++qquvPLKNtd48skn1dLS0uHnPO+885SRkXFQOQEAPZsR2CNf6fPyFT8l594tMWsjiSPVXDBTwfGXy/IOtCnhf2UwLT39SaUefG+rguG2015GDPLqrmmjdeRwpr0AAAAAAAAAAAD0Zpt2N+ueheX6bHt91PWTsxJ129lZykj02pwM3cay5N72vnxFc+QpXyzDav8DXJbhVCj7HAUKCtUy7ETJMGwMCgAAAADoS2xpfvn6178u4ys/vFZUVOiBBx7o0GMNw+iy5pdojSgHY8OGDVq9erUk6Ywzztiv8eULF1xwgZYsWaLt27dr/vz5uuyyy+Ry7f/HvmjRIgWDwQ4/74knnkjzCwD0Ec6qEvmL5si79hUZkfb/W2DJUMuoM9RcUKiWzNMkw2Fjyv0daNrL1cek62amvQAAAAAAAAAAAPRqLRFTTyyv0GP/2a6WSNvD0JL8Lv3wzJGaOi5lv8+EoO8ygvXyrnlRvqK5cu0pi1lrxqUpkHe1AnlXy0xItykhAAAAAKAvs6X5RZIsq+0LIb3d8uXL9/36jDPOiFrjcDg0adIkPfXUU2psbFRJSYkmTpy4X83s2bO7NCcAoIeJhOTZ+Ib8RXPkrvgkZqnpTVQg9woF8mfITMy0KWB0THsBAAAAAAAAAADoH4p21OuXC8pVtrs56voFean6/uRMDfK7bU6G7uCsWi3fyifkW/uKjHD0fxNfaBl6vJoLChXKniI5+fcBAAAAAOg8tjS/lJeX2/E0tlu7dq0kyev1Kjs7u9263Nzc/R7z380vAID+wdGwU76Sp+UreVqOpuqYteHUXDVPmKng2Aslt9+mhO3bXNOsnzPtBQAAAAAAAAAAoE9rDEX0t3e26rlPdyraEafDEr267ZwsnTgq0fZssFk4JK2eJy1/RAO3/idmqemOV/CISxQomKFIyhE2BQQAAAAA9De2NL+MHDnSjqex3bZt2yRJ6enpcjrb/7Dv0KFD2zwGANBPWJZcOz6Sv2i2PGULZZjh9ksdLgVHn6vAhJkKpx8t9YDx8BHT0tMrKvXgu+1Pe/nZtGwdNXxgN6QDAAAAAAAAAABAZ3l3Y63uf3OTdtaH2qw5DGnGMRn61snD5PdwGFpf5qjfIV/ps1Lps1JjVczacNIYBQoKFRx3iSzPAJsSAgAAAAD6K1uaX/qiUCik+vp6SVJKSkrM2oSEBHm9XgWDQe3evbvTsyxevFhr1qyRJG3ZsmXffSUlJZKkcePG6ayzzurw9TqaMVbDD4D9ORyOmLfRB7U0ybPmZXlXPinX7jUxS834IQoWXKtg/jWy4gdLknrCDru5pll3vb5BK7fXt1kzJF1zTIa+MylTfqa99DjsOQDsxJ4DwC7sNwDsxJ4DAACA/qSmsUW/W7JZC9dE/6xAzuA43TklW+PT421OBttYltzb3pevaI485W/KsMz2Sw2nQtlTFCgoVMuwE3rEgX4AAAAAgP6B5pdDFAgE9v3a5/MdsN7n8ykYDO73uM6yZs0aLV26dL/71q5dq7Vr1+67fTDNLzfddFOH6p577rkOXxPA/hITGQPeZ+3eKH30qPTpXClYF7t25CnS8TfIMe4C+Z1u+e1JeEAR09I/3yvXbxesVTDc9oXtkSlx+u30iTo+K7kb0uFQsOcAsBN7DgC7sN8AsBN7DgAAAPoiy7L0Wkm1/vD2FtUFwm3WvS5DN5w0XIXHpsvlpCG8LzKCe+Vd86J8RU/JtacsZm0kbrCCeVcrkHeVzIR0mxICAAAAAPAlml8OUSj05Zhfl+vAf4xf1Hz1cZ3l5ptv1s0339zp1wUAdJAZkdYvkj56RNrwZuxad5w04Srp+BukIXn25DsIZVUN+skLq/Tx5tqo618/eZR+Mu0IxXn4FgIAAAAAAAAAAKC32rYnoPsWlWv55r1R148dMVC3T8nSiKQDHwaK3sdZvVr+VbPlXTdPRrg5dvHIU9WQd40CI8+SnG57AgIAAAAAEEWnfnL1zDPPlCQZhqHFixe3uf9Q/Pe1egqPx7Pv1+Fw2xNQ/tsXNV99XE/14IMPdncEAOgdmmqkT+e0TnrZszl2bfJo6bhvSkdeK/kH2RLvYBxo2ktmcpx+O32CTshO6YZ0AAAAAAAAAAAA6Axh09LTn1Tq7+9ti/qe0ACvU9+fnKmL8tNkGEY3JESXiQTl3bBAvuI5cld8ErPUcsfLOPIa6dhvSENy1VJbK0UiNgUFAAAAACC6Tm1+efvttyWpzQsgb7/9tgzDkGVZHb7WF/U99cUUn+/L000CgcAB67+o+erjeqqUlI59sLm2NvpUAABtORwOJSYm7rtdV1cn02z7YjJ6B+euYnlXzZZnzcsyIsF26ywZask6U8GJsxTOPE0yHFLAkgI9a//cXNOsu1/foM+210ddv+aYDN1yeqb8Hgd7fy/BngPATuw5AOzCfgPATuw5rZKSkro7AgAAADrRmp2NumdhmdbsbIq6fs4RyfrhmSOVGt/zD/VExznqd8hX/JR8pc/J0bw7Zm04eawCBYVqGX+ZktIzbUoIAAAAAEDHdGrzy+mnnx61WaW9+3szj8ejAQMGqL6+Xrt3x35xoKGhQcFg64ejO9pY0htEONUDOGSmafI11NtEQvJsfEP+VbPlrlwRs9T0JiqQe4UC+TNkJn7+orBpSepZf+emZemZFZX66zvRT/YalujVXdOydfSIgZLY93sz9hwAdmLPAWAX9hsAdmLPAQAAQG8WaIno4fe3a+7HFYpEObN0yACPbj17lE4fTfNzn2GZcm99X76i2fJsekuG1X4zv+VwKZQ9Rc0FhQoPPV4yDDmdThvDAgAAAADQMV0y+aWj9/d2w4cP1+rVq1VZWalIJNLuD/87duzY7zEAgN7D0VApX8kz8pU8LUdTdczacGqumifMUnDsBZLbb1PCQ7O1NqCfv1HW7rSXq44aou+cNkJ+Dy9sAwAAAAAAAAAA9FbLN9fpvkXl2rYn2GbNkDT9yCG6+bThSvB26sdH0E2M4F55V78oX/FcufaUx6yNxA1WIP8aBXOvkpkwxKaEAAAAAAAcOl69OAxHHHGEVq9erWAwqLKyMo0dOzZqXWlp6X6PAQD0cJYl146P5C+aLc/GBTKs9k92tRxuBUdPU2DCTIXTj5Z6+KQz07L07Iqd+ss7W9ud9vKzadk65vNpLwAAAAAAAAAAAOh96prD+uPSLXq1uCrqelayT3dMzdbEYQNsToau4Kwqlb9ojrzr5skIN8esDQ07QYGCmQplnS053TYlBAAAAADg8NH8chiOP/54vfzyy5KkJUuWRG1+MU1TS5culSTFx8crLy/PzogAgIMRapRv3SvyrZotV826mKWR+CEK5F+jQO7VsuLTbAp4eA407eXKo4boFqa9AAAAAAAAAAAA9FqWZWnR2hr97q1NqmkKt1l3OQxdf+JQff34ofK4HN2QEJ0mEpR3wxvyFc2Ru3JFzFLTHa/guMsUyL9WkZQcmwICAAAAANC5aH45DGPGjNH48eO1evVqLVmyRJMnT1ZOzv4vEvz73//W9u3bJUnnnnuuXC7+yAGgp3HsKZe/aK68q1+QIxS9MeQLLUNPUPOEQoWyzuk1JyF1ZNrLnVOzdWwm014AAAAAAAAAAAB6q8q9Qf36zU16p2xP1PUJQxN0x5QsZafG2RsMncpRv0O+4qfkK31WjuaamLXh5LEKFBQqeMQlsjwJNiUEAAAAAKBr9OtOjDVr1qiysnLf7b179+77dWVlpd5+++396idPntzmGl//+td15513KhQK6Z577tGll16qvLw8hUIhvf/++3rzzTclSRkZGbrwwgu75PfRXZxOJgMAHeVwOGLeRjcwI3JvelveVU/IvXlZzFLL5Vdo3KUKTJwlM3WcJKm37IBbapt19+sb9em2vVHXrzo6Xd+dNFJxTHvpU9hzANiJPQeAXdhvANiJPQcAAAC9iWlZeuGznfrLsq1qaml7EFq8x6HvnJapy48cLIdhdENCHDbLlHvre/IVzZFn01syrLZ/z/tKHS6FsqeouaBQ4aHHS/ydAwAAAAD6CMOyLKu7Q3SXv/71r1q6dGmH65977rmo93/88cd64IEH1NzcHHU9IyNDt912m9LT0w8pJwCgEzXVSJ/OkT56VNqzOXZt8mjp+BukiddI/kG2xOsspmnpiQ826ddvrFEgypscI5L9+s3lE3XS6JRuSAcAAAAAAAAAUnV1dXdHAHoNp9OppKSkfbdra2sViUS6MRF6io3VTbp3YblW7WiIun7a6EH637NHacgAr83J0BmMQJ28a16Uv2iunHWbYtZG4ocokHeNgrlXykwYcljPy54DwE7sOQDswn4DwE7sOa1SU1M79Xr9evJLZzn22GP1u9/9Tq+//rpWrFihmpoauVwupaen68QTT9S0adPk9fJCEgB0q4qV0vKHpaIXpHAgRqEh5UxtbXrJPlPqhSe7bt7dqB+/sErLy6OPOZ910kjdOm2c4r18GwAAAAAAAAAAANAbhcKm/vnhDv3zwx0Km23PPE2Jc+vHZ43UWTnJMpj80es4q0rkL5oj77p5MmK+tymFhp2oQMFMhbLOkpxumxICAAAAAGC/fj35BQDQx4VD0up5rU0vWz+MXesbJB09SzruG1LSKDvSdTrTtPTkB5v06zfWqrmlbYfwiGS/fn35BJ08unM7aQEAAAAAAADgUDD5Beg4TgvFV322vV73LihTeU30poiLC9L0vUmZGujjILReJRKUd8N8+YrmyF35acxS052g4LhLFSiYoUjy2E6Pwp4DwE7sOQDswn4DwE7sOa2Y/IIeo7a2trsjAL2Gw+FQYmLivtt1dXUyTbMbE/VtRkOlvEVPyVv8lBxNsd88DaflKTjxawrlXCi5/a139sL9bWttQHfP36AVW/dGXb/q6HR9d9JIxXmc7N/9AHsOADux5wCwC/sNADux57T66psyAAAA6H4NwbD+smyrXli5K+r68EFe3T4lS8dlJkZdR8/k2LtdvpKn5St9Vo7mmpi14eSxChTMVPCIi2V5EmxKCAAAAABAz0DzCw5Zf+w+AzqLaZp8DXU2y5Jrx3L5V82Wp2yhDKv9P1/L4VZwzLkKFMxUOP0o6YtR773w78S0LD336U79ZdlWBcJtP4QzdKBXP5uWpWM/f5ODf3f9E3sOADux5wCwC/sNADux5wAAAKC7Ld1Qq1+/Wa5dDS1t1pyGNPO4DH3zpOHyuR3dkA4HzTLl3vKufMVz5dn0lgyr/WZ7y+FSaPRUNecXKjz0uC/f2wQAAAAAoJ+h+QUA0LuFGuVb94p8q2bLVbMuZmkkPl2B/KsVyL1aVnyaTQG7zrY9Af3ijTKt2FYfdf2KIwfrltMzFedx2pwMAAAAAAAAAAAAnaG6MaTfLt6sxeuiTwQZPyRed0zN0hGD421OhkNhBOrkXf2C/MVz5azbHLP2y/c2r5IVP9imhAAAAAAA9Fw0vwAAeiVHbbn8xXPkXf2CHKGGmLUtQ09Q84SZCmWdLTndNiXsOqZl6flPd+qBGNNe7pzGSHsAAAAAAAAAAIDeyrIsvVJcpT+9vUX1wbZTCL0uh246ZbiuPiZdLgeTQHo6565i+YvnyrtunoxwIGZtaPhJCuQXKpR1Vp94bxMAAAAAgM7Sbc0v27ZtU2VlpZqamnTcccfJ7/d3VxQAQG9hRuTevFT+oifl2fJOzFLL5Vdg3KUKFBQqknKETQG73oGmvUyfOFjfncS0FwAAAAAAAAAAgN5qS21A9y0s18db90ZdP2HkQN12TpaGD/LZnAwHJRyUd+N8+VbNkXvnpzFLTU+CguMuUyB/hiLJY2wKCAAAAABA72Jr80t9fb1+85vf6PHHH9eOHTv23V9UVKTc3Nx9t5955hm99NJLSkxM1COPPGJnRABAD2Q018q3+nn5iubKWb8tZm0kcZSaJxQqOO5yWd6BNiXseqZl6YXPWqe9NLe0nfaSMdCjn03LZtoLAAAAAAAAAABALxWOmJrzcaUe+WCbgmGrzXqiz6X/d0amzs9NlWEw7aWncuzdJl/x0/KVPidHoCZmbTg5R4EJMxXIuVjyxNuUEAAAAACA3sm25pf169frvPPOU1lZmSzryxdpor0gc+KJJ6qwsFCWZelrX/uaTj31VLtiAgB6EOeuYvmL5rSO/44E262zZCg06kwFJsxUy4hTJMNhY8qut21PQL9cUKZPtrY/7eWWSZmKZ9oLAAAAAAAAAABAr1Ra2aB7FpRrXVVT1PVp41P0g8kjlRzvtjkZOsQy5d7yjnxFc+XZ9JYMtW1e2lfqcCk0eqqaC2YqnHGsRCMTAAAAAAAdYkvzSyAQ0Pnnn6+NGzcqPj5eN998s04//XRdcMEFUetHjRqlM844Q2+99ZbmzZtH80sP5XTyIWugoxwOR8zb+IpISO718+Vb9YRcFStilpq+QQrlXaVgQaHMxBGSpL60M5mWpec/rdSf3t7czrQXr+46d7ROGDXI/nDo0dhzANiJPQeAXdhvANiJPQcAAAB2aQ5F9Pf3tunpFZUyo/RLpA/w6LZzsnRK9iDbs+HAjMAeeVe/KH/xXDnrNsesjcSnK5B/tQK5V8uKT7MpIQAAAAAAfYctzS8PPvigNmzYoPj4eL3zzjs68sgjD/iYc889V4sXL9YHH3zQ9QFxSJKSkro7AtBrJSYmdneEnqduu/TJP6VPnpAad8WuzZgoHf8tOfIvl8/tl8+ehLbaWtOkH7+wUv8piz4KfcYJmbrtvPFK8No2xA29GHsOADux5wCwC/sNADux5wAAAKArfFC+R/cv2qQde4Nt1gxJVx+drptOHa44T186/q1vcO4qkr9orrzr5smItP37+6rQ8JMVKChUKOssycF7ewAAAAAAHCpbfqp+6aWXZBiGvve973Wo8UWSJk6cKElav359FyYDAHQry5I2vyctf1ha/W/JirRf63BLeZdKx39LGt53x3+bpqW5H27W/fPXqCnU9s9j2CC/fjN9gk4Zk9oN6QAAAAAAAAAAAHC49jS16P/e3qLXS6ujro9O9evOqdnKz0iwORliCgfl3fC6fEVz5N75WcxS05Og4LjLFSiYoUjSaHvyAQAAAADQx9nS/LJ69WpJ0pQpUzr8mJSUFEnSnj17uiISAKA7BRukVc9Kyx+RqlbHrh0wVDr2eumYr0kJg+3J10221jTpJy+s0gdlu6OuX3tCpn7KtBcAAAAAAAAAAIBeybIsvbF6t36/ZLP2NIfbrLudhr550jDNOi5DbqejGxIiGsfebfIVPyVf6fNyBGpi1oZTjlCgoFCBnIslT7xNCQEAAAAA6B9s+fRsQ0ODJCkhoeOnkgSDrWNh3W53l2TC4autre3uCECv4XA4lJiYuO92XV2dTNPsxkTdw1FbJu+q2fKWviAjVB+ztmX4iQpO+Jpass+WnG6pRVIf3XdMy9ILn+3UH5dsUnNL238X6QM9uuvcMTpx1CC1NNWrtqkbQqJXYc8BYCf2HAB2Yb8BYCf2nFZJSUndHQEAAKDPqKgL6v5F5Xp/U13U9aOHD9BPp2RpVLLf5mSIyjLl3vKO/EVz5N60RIas9ksdboVGT1VzwUyFM46RDMPGoAAAAAAA9B+2NL+kpKSosrJSmzZt0tFHH92hx5SUlEiS0tPTuzIaDkMkEunuCECvZZpm//kaMiPybH5bvlWz5dn6TsxSyx2nwBGXKFBQqEjKEV8u9OE/qx11Qf3ijTJ9vHVv1PXLJg7W9yZlKt7j7D//ZtDp+tWeA6DbsecAsAv7DQA7secAAADgUEVMS899ulN/e3dr1EPQ4j1OfW9Spi6ZkCYHTRPdzgjskW/1C/IVz5WzbkvM2khCugJ51yiQe5Ws+DSbEgIAAAAA0H/Z0vxy9NFH6/XXX9eyZct02WWXdegxTz75pAzD0EknndTF6QAAXcForpVv9fPyFc2Vs35bzNpI4ig1T5ip4LjLZXkH2JSwe5mWpZdW7tKflm6JPu1lgEd3TsvWCSMTozwaAAAAAAAAAAAAPd36qibds6BMJZWNUdfPGJukn5w1SmkJHpuT4b+5dq6Sr3iuvOtelREJxqwNDT9ZgYJChbLOkhy2fOwGAAAAAADIpuaX6dOn67XXXtPDDz+sH/zgB8rMzIxZ/8c//lHLli2TYRi65ppr7IgIAOgkzl3F8hfNPuALw5YMhUadqcCEmWoZcYpkOGxM2b121AX1ywVl+mhL9Gkvl04YrO9NGqEELy+WAwAAAAAAAAAA9DbBsKnH/rNdTyyvUMS02qynxrv1k7NG6cyc5G5Ih33CQXk3vCZf0Ry5d66MWWp6EhQcd7kCBTMUSRptU0AAAAAAAPBVtnyqdubMmfrDH/6gVatWafLkyfrrX/+qadOm7Vs3DEOWZenjjz/WH//4Rz3zzDMyDEOnnXaazj33XDsiAgAORyQo74Y35CuaLXflpzFLTe8gBfKuVCD/WpkDR9gUsGewLEsvrtylPy/doqYo016GDPDozqnZOnEU014AAAAAAAAAAAB6o0+27tW9C8u1pTYQdf3SCYP13dNHaICPQ9C6i2PvVvmKn5Kv9Hk5ArUxa8Mp49RcUKjgERdL7jibEgIAAAAAgGhseTXF4XBo3rx5OvXUU7Vp0yZdcMEFiouLk2EYkqTJkyervr5ewWDrhADLsjR69Gg999xzdsQDABwiR0OFfMVPy1fyjBzNu2PWhtPy1DxhloJjL5BcPpsS9hwVn097Wd7utJc0fW9SJtNeAAAAAAAAAAAAeqH6QFh/XrZF/1pVFXU9M8mnO6Zk6egRA21OBkmSZcq9ZZn8q+bIvfltGWo7kWdfqcOt4JhzFSiYoXD6MdLnn20BAAAAAADdy7ZP2GZmZuqzzz7TLbfcoueee06NjY371qqqvnzxxzAMXXnllXrwwQeVlJRkVzwAQEdZltzbP5SvaLY8ZYtkWJH2Sx1uBcecp8CEmQoPObJfvjBsWZZeWrVLf3o71rSXLJ04apD94QAAAAAAAAAAAHDY3lpXo98s3qTqxpY2a06Hoa8fn6HrTxwmr8vRDen6N6O5Vr7VL8hX/JSce7fErI0kpCuQf60CuVfJiku1KSEAAAAAAOgoW4+XT05O1ty5c3Xffffptdde08cff6xdu3YpEokoJSVFRx11lC688ELl5OTYGQsA0BGhRvnWvSLfqiflqlkfszQSn65AAS8MM+0FAAAAAAAAAACg76pqCOk3izdpyfraqOt56fG6c2q2xqTF2ZwMrp2r5CuaI+/6f8uIBGPWhkacokBBoUKjzpQcvG8HAAAAAEBP1S0/tY8cOVLf/va3u+OpAQAHyVlb1vrC8JoX5Qg1xKwNDTtBgYJZCmWf3a9fGGbaCwAAAAAAAAAAQN9lWpb+tWqX/rx0qxpDkTbrfrdDN582QlccOUROh9ENCfupcEDe9a/JVzRH7l2rYpaangEKjr9cgfwZiiRl2xQQAAAAAAAcjv77yWQcNqfT2d0RgF7D4XDEvN3jmBG5Ny2Rd+UTcm95J2ap5Y5TcNxlCk6YKTP1CElSf94ddtQF9Iv5G/Xh5rqo65dOGKz/d+YoDWDaC7pQr9tzAPRq7DkA7MJ+A8BO7DkAAABoz6bdzbp3Ubk+3VYfdf3krETddnaWMhK9Nifrvxx1W+Qrfkq+0uflCO6JWRtOHa/mgkIFcy6S3EzkAQAAAACgN+GTtzhkSUlJ3R0B6LUSExO7O0J0TTXSiieljx+T9myJXZsyRjruBhlHXiOfL1E+exL2WJZl6enlW3Xf66vVEAy3Wc9I9OlXl0/QpJy0bkiH/q7H7jkA+iT2HAB2Yb8BYCf2HAAAALRETD2xvEKP/We7WiJWm/VBfpd+dOZITR2XIsNg2kuXMyNyb1kmf9EcuTcvlaG2fydfsBxuBcecq0BBocLpR0v8/QAAAAAA0CvZ3vximqZKS0tVVlam+vp6RSJtRwD/t1mzZtmQDAD6sR2fSssflYpfkMKBGIWGdMS50vE3SFmTJU49lSRt39Os/31xld5ZXx11/apjR+j2C8ZroM9tczIAAAAAAAAAAAAcruKKBv1yQZk2VjdHXT8/N1X/b3KmBsXxXlBXM5pr5Vv9vHzFT8m5d2vM2khChgL51yqQe6WsuFSbEgIAAAAAgK5iW/NLU1OT7rnnHj366KPavXt3hx9nGAbNLwDQFcJBqfQVafnD0raPYtf6k6SjvyYde72UNNKefL2AZVl65qOtuve19qe93H9ZgSYfMbgb0gEAAAAAAAAAAOBwNIYievDdrXp2xc6oc0WGDvTqp1NG6cRRg+yO1u+4dq6Sr2i2vOv/LSMSilkbGnGqAgWFCo06Q3LYfiYsAAAAAADoIrb8lN/Q0KAzzjhDK1askGW1P2oWvUttbW13RwB6DYfDocTExH236+rqZJpmt2Qx6ivkLZorb/EzcjRHn1TyhfDgfAUnfk2hnAsll6/1Tr72JUkVe4P6xfwN+s+muqjrl0wYrB+cOUoDvC72S9iuJ+05APo+9hwAdmG/AWAn9pxWSUlJ3R0BAACg27xbtke/WlSuyvq2jRYOQ7r2mHTdePJw+T3ObkjXT4QD8q7/t3xFc+TeVRSz1PQMUHD8dDXnz5CZlGVTQAAAAAAAYCdbml/uueceffLJJ5KkE088Ud/61rc0ceJEDRo0SA6Hw44I6AKRSKS7IwC9lmma9n4NWZbc2z+Ur2i2PGWLZFjtP7flcCs49nwFCgoVHnKkZBitC3zNS2qd9vJyUZX++PZmNYbafuhlyACPbp+SpZOzBklir0TPYPueA6BfY88BYBf2GwB2Ys8BAADoP2oaW/T7JZu1YM3uqOs5aXG6Y2qWctMTbE7WfzjqtshXPFe+0hfkCO6JWRtOzVVzQaGCORdK7jh7AgIAAAAAgG5hS/PLCy+8IMMwdN555+mVV16h4QUA7BJqlG/ty/IVzZarZn3M0kh8ugIF1yqQe5WsuFSbAvYulXuDumdhebvTXi7KT9MPzshUgpfx6QAAAAAAAAAAAL2JZVl6raRaf3h7i+oC4TbrXpehG04arsJj0+Vy8pmHTmdG5N6yTP6i2XJvXiZDVrullsOj4JhzWw/zSz/qy8P8AAAAAABAn2bLp3O3b98uSfrud79L4wsA2MBZWyZf0Rx517woR6ghZm1o2IkKFMxUKPtsyUHTRjSWZemVoir9oZ1pL4MT3Lp9SrZOyR5kfzgAAAAAAAAAAAAclm17ArpvUbmWb94bdf3YEQN1+5QsjUjy2Zys7zOaa+Rb/bx8xU/LuXdrzNrIgKEK5F2rQO4VHOYHAAAAAEA/ZMunnAcPHqxt27YpNZUXHwCgy5gReTYvkW/VbHm2vhuz1HLHKXDEpQoUFCqSkmNTwN6pcm9Q9y4s1wftTHu5MD9NP5icqQE+GocAAAAAAAAAAAB6k7Bp6elPKvX397YpGG57ANoAr1Pfn5ypi/LTZDBdpFO5dq6Ub9VseTe8JiMSilkbGnGaAhMKFRp5huRw2pQQAAAAAAD0NLZ8Uvf444/Xtm3btHbtWh111FF2PCUA9BtGc618q5+Tr2iunPXbY9aGB2UpUDBTwXGXyfIOsClh72RZll4prtIflmxRYyjSZn1wgls/nZKtU5n2AgAAAAAAAKCXW7ZsmdasWaOysjJt2bJF4XBY3/72tzV58uTujgYAXWbNzkbds7BMa3Y2RV0/OydZPzprpFLjPTYn68PCAXnX/Vu+4jly7yqKWWp6Byo4brqa86+VmZRlU0AAAAAAANCT2dL88v/+3//TSy+9pL/85S+66qqrOBEFADqBc1eR/Ktmy7v+1ZinIVmGQ6FRZypQMFMtI06WDIeNKXsnpr0AAAAAAAAA6E+effZZVVVVacCAAUpKSlJVVVV3RwKALhNoMfXIB9s056MKRay264MT3Lr17CxNGpNkf7g+ylG3Wb6iufKtfkGOYPT3374QTstTc0GhgmMvlNx+mxICAAAAAIDewJZP7Z588sn69a9/rZ/85Ce6+uqr9dBDD2nQoEF2PDUA9C2RoLwb5su3ao7cOz+NWWr6khTIvVKB/GtlDhxuU8De7UDTXtIS3LqdaS8AAAAAAAAA+pgbb7xRGRkZSktL08svv6ynnnqquyMBQJf4aEud7l1Yrm17glHXrzhysG4+bYQSvByAdtjMiNybl8pfNFueLctilloOj4Jjz1OgoFDhIUdKHKgKAAAAAACisO0Vmx/96EcaPXq0brjhBo0YMULnnHOOcnJyFBcXd8DH/uxnP7MhIQD0XI76HfKVPC1fyTNyNNfErG1Jy1dgwkwFx14guXw2Jez9dtYHde+Ccr3f3rSXvFT94IyRTHsBAAAAAAAA0OdMmDChuyMAQJeqaw7rT0u3aF5x9MlWWck+3T41W0cOG2Bzsr7HaK6Rr/R5+YqfkrN+W8zayIBhCuRfq8D46bLiUm1KCAAAAAAAeivbPsG7a9cu/etf/1JdXZ1M09Qrr7zS4cfS/AKgX7Isubf/R76iOfKULZJhtZ1Esq9032lIMxUeMpHTkA6CZVmaV1yl/4s17eWcLJ06mtH2AAAAAAAAAPZXV1enDRs2aMOGDdq4caM2btyo+vp6SdKkSZN08803d/haVVVVmj9/vlasWKHdu3fL5XIpPT1dJ510kqZOnSqv19tVvw0A6LMsy9Kba2v027c2qaYp3Gbd5TB03QlDdd0JQ+VxObohYR9hWXLtXClf0Wx5N7wuIxKKWR7KPE2BgpkKjZwsOZz2ZAQAAAAAAL2eLc0vu3fv1umnn67169fLsiw7nhIAeq9Qo3xrX5avaLZcNetjlkYS0ltPQ8q9itOQDsGBpr1c8Pm0l4FMewEAAAAAAAAQxQ033NAp1/n444/1wAMPqLm5ed99wWBwX0PN4sWLddtttyk9Pb1Tng8A+oPKvUH9evEmvbNxT9T1CUMTdPuULI1OjbM3WF/S0izv+n/LXzRbrqqSmKWmd6CC469Qc/41Mgdl2RQQAAAAAAD0JbZ8mve+++7TunXrJEnTp0/Xt7/9bU2cOFGDBg2SwXSCXsvp5AQWoKMcDkfM25LkqN0o78rZ8q5+UUaoPub1WoafpODEr6kl+2zJ4RLnUB0cy7I0r2iXfvfWJjUEo0178ejOadk6bXRyN6QDDl9H9hwA6CzsOQDswn4DwE7sOQAORWpqqoYNG6aVK1ce1OPKy8v1xz/+UaFQSD6fT5dccony8/MVCoX03nvvafHixaqoqND999+vX/3qV/L7/V30OwCAvsG0LL3w2U79ZdlWNbWYbdbj3A7dcnqmLj9ysBx8XuGQOPZskr/4KXlXvyBHMPohc18Ip+WpuWCmgmMvkNz8NwwAAAAAABw6W5pf5s2bJ8MwVFhYqCeeeMKOp4QNkpKSujsC0GslJia2/sKMSOsWSMsflsqWxH6QO1468hrpuG/KPXi83F0fs0+qqGvWbS8V6e21VVHXLz96uH52Qa4S4/gTRt+xb88BABuw5wCwC/sNADux5wBoz/Tp0zV69GiNHj1agwYN0q5du/Sd73znoK7x+OOPKxQKyel06o477lBOTs6+tfz8fGVkZGjOnDmqqKjQq6++qiuvvLLNNZ588km1tLR0+DnPO+88ZWRkHFROAOgNyqqbdM/Ccq3a0RB1/bTsQbr17FFKH+i1OVkfYEbk2fy2fEWz5dnyTsxSy+FRcOx5ChQUKjzkSIkmIwAAAAAA0AlsaX7Zvn27JOn666+34+kAoOdr3C19+qT00T+kui2xa1PGSsffIE28WvLxQYtDZVmWnv9km37571LVB8Jt1gcP8Or+ywp01vgh3ZAOAAAAAAAAQG8UrRHlYGzYsEGrV6+WJJ1xxhn7Nb584YILLtCSJUu0fft2zZ8/X5dddplcrv3f4lu0aJGCwWCHn/fEE0+k+QVAnxIKm/rnhzv0zw93KGxabdaT41z68ZmjdPYRyTJoxDgoRvNu+Uqfl6/4KTnrt8esjQwYpkD+DAVyp8vyp9iUEAAAAAAA9Be2NL+kpqZq+/btGjBggB1PBwA91/YV0kePSkUvSJEYb0QaDinn3Naml+zJnIZ0mCrrArrtpVVa0s60l8uOHqa7Lshj2gsAAAAAAAAAWy1fvnzfr88444yoNQ6HQ5MmTdJTTz2lxsZGlZSUaOLEifvVzJ49u0tzAkBPtnJ7ve5ZUKbymkDU9Yvy0/S9SZlK9Nvy8Yi+wbLk2vmZfEVz5F3/ugwzFLM8lHm6mgtmqmXkJMnhtCkkAAAAAADob2x5dee0007TM888o+LiYh199NF2PCVsUFtb290RgF7D2bRLA9/8kVS+LGad6UtSKO8qBSfMkDlwROude/Z0fcA+yrIsvVpcpd8uLldDMNJmPTXBrTumjtakMckygw2q7fjBiECP5nA4lJj45aSouro6mabZjYkA9GXsOQDswn4DwE7sOa2SkpK6OwLQ561du1aS5PV6lZ2d3W5dbm7ufo/57+YXAOiPGoJh/fWdrXrhs11qO+tFGj7Iq9unZOm4zMQoq4iqpVne9a/KXzRHrqqSmKWmN1GB8dMVyL9W5qBR9uQDAAAAAAD9mi3NLz/84Q/14osv6ne/+52uvPJK+Xw+O54WXSwSaftBcgBtOWs2KP7V66UYY8Bb0vIVmDBLwbEXSC5v6518jR2WXfUh3buwXO+V74m6fl5uqn505kgN9LnYz9DnmabJv3MAtmHPAWAX9hsAdmLPAdBVtm3bJklKT0+X09n+SflDhw5t8xgA6M+WbqjVr98s166GljZrTkMqPC5DN5w0XD63oxvS9T6OPeXyFz0l75oX5AjujVkbTstTc8HM1vc13X6bEgIAAAAAANjU/HL00Ufr0Ucf1Te/+U1NmTJFjz76qHJycux4agDoVq6KTzTw3zfIEaxrs2Y5PAqOPU+BgpkKD5koGUY3JOx7LMvSayXV+t2SzVGnvaTEu3X7lCydPpqTSwEAAAAAAAB0n1AopPr6eklSSkpKzNqEhAR5vV4Fg0Ht3r2707MsXrxYa9askSRt2bJl330lJa2n/o8bN05nnXVWh6/X0YyxGn4A7M/hcMS83V9UN4T0mzfLtWht9H1m/JB4/ezc0Ro3JMHmZL2QGZF701vyrpot9+ZlMUstp0ehnAsUnDBTkSFHSoYhdvC+jT0HgJ3YcwDYhf0GgJ3Yc7qGLc0v119/vaTWkezvvvuucnNzNWHCBOXk5CguLi7mYw3D0GOPPWZHTADoVJ6yRRqw4HsyIsH9FxLS1VwwU03jp8uKS+2ecH3UrvqQ7ltUrnfL9kRdPy83VT88Y6QS/bb85w8AAAAAAAAA2hUIBPb92ufzHbDe5/MpGAzu97jOsmbNGi1dunS/+9auXau1a9fuu30wzS833XRTh+qee+65Dl8TwP4SExO7O4KtLMvS8x9v0z2vlWpvINxm3ed26IfnHKHrThkll5MPk8TUWC2teEL6+J9S3dbYtYMypWO/IeOomfLGp8hrT0L0QP1tzwHQvdhzANiF/QaAndhzOoctn/59/PHHZXw+0cAwDJmmqZUrV2rlypUxH2dZFs0vAHolX/FTil96lwzL3H9h2LHStc8pEHLIirSdSoJD88W0l98v2az6dqa9/PScLE0aw7QXAAAAAAAAAD1DKBTa92uX68Bv2X1R89XHdZabb75ZN998c6dfFwA6w6bqRt32UpE+KIs+7eW0sam695ICZabEPnizX7MsadtH0vJHpNKXpUis/5YY0pizpeO+KY09R3Iw4wUAAAAAAPQMtjS/ZGZm7mt+AYA+zbIUt/xPivvogbZrY6dKV/xT8sRLoVr7s/VRVQ0h3buw/Wkv5+am6EdnjGLaCwAAAAAAAIAexePx7Pt1ONx2isF/+6Lmq4/rqR588MHujgCgD2iJmHrknTL96c31CobNNuuD4ty68/xcXXb0MD6P0J5Qk1T0vPTRo1Llqti1/iTpqELp2Oul5Gx78gEAAAAAABwEWz4JvGnTJjueBgC6lxlWwtt3ylf6XJulYO6V8l7+oOSkAaOzWJal10qr9fu3mPYCAAAAAAAAoPfx+Xz7fh0IBA5Y/0XNVx/XU6WkpHSorraWg6KAjnI4HEpMTNx3u66uTqbZtiGkryipaNAv3tigdbuaoq5PG5+qH581SsnxHu3Zs8fecL2Ao7ZM3lVz5Fn9ghzBvTFrw4MLFJwwU6EjLpJcn/83hv253+tvew6A7sWeA8Au7DcA7MSe0yopqXM/w8unsAGgM7Q0a+CC78qz6a02S03HfUfBk34oL40vnaaqIaT7FpbrnfamvYxP0Y/OZNoLAAAAAAAAgJ7L4/FowIABqq+v1+7du2PWNjQ0KBgMSup4Y0lvEIm0PdgIQMeYptknv4aaQxE99P42PfVJpUyr7fqQAR7ddk6WTs0eJIl9ZD9mRJ5Nb8lXNEeere/GLLWcHgXHXqBAQaHCQyZ+ucCfJ9rRV/ccAD0Tew4Au7DfALATe07n4FPBAHCYjOYaDfz3t+Te+el+91uGQ42Tfq5A/rVyMmq9U1iWpddLq/W79qa9xLl125RRmjwmuRvSAQAAAAAAAMDBGT58uFavXq3KykpFIhE5nc6odTt27NjvMQDQF/1n0x7dv2iTttcF26wZkq46eohuOnWE4j3R98r+ymiqlq/0eflKnpKzfkfM2siA4QoUXKvA+Ctk+Xk/DQAAAAAA9C40vwDAYXDs3aaB874u157y/e63nF7VT/2jQtlTuilZ38O0FwAAAAAAAAB9zRFHHKHVq1crGAyqrKxMY8eOjVpXWlq632MAoC/Z09yiPyzZotdKq6Ouj071686p2crPSLA5WQ9mWXJVrpCvaK68G+bLMEPtl8pQy8hJai4oVEvm6ZKD5iEAAAAAANA78QlhADhEzqpSJb56vRxNVfvdb3oTtfeChxXOOLabkvUtHZr2cs4oTR7L6VQAAAAAAAAAepfjjz9eL7/8siRpyZIlUZtfTNPU0qVLJUnx8fHKy8uzMyIAdBnLsrRgzW797q3N2tMcbrPudhr6xonD9LXjM+R2OrohYQ/U0iTvunnyF82Vq7o0ZqnpHaRA7hUK5F8jM3GkTQEBAAAAAAC6Tqc2v3wxit0wDIXD4Tb3H4r/vhYA9ATure9pwOvflqOlYb/7IwkZ2nvRPxVJjn46Hw5OdUNI9y4q1zsb90RdnzY+RT86c6QG+d32BgMAAAAAAACATjBmzBiNHz9eq1ev1pIlSzR58mTl5OTsV/Pvf/9b27dvlySde+65crk42w5A71dRF9T9b5br/fK6qOtHDR+g28/J0qgUv83JeiZHbbn8xXPkXf2iHKH6mLUtgwsUKChUcOwFkstnU0IAAAAAAICu16mvjluWdVD3A0Bv5Fn3qga8+WMZZst+94dTjtDeC/8hMyG9m5L1HZZlaf7q3frdW5u0N8C0FwAAAAAAAAA905o1a1RZWbnv9t69e/f9urKyUm+//fZ+9ZMnT25zja9//eu68847FQqFdM899+jSSy9VXl6eQqGQ3n//fb355puSpIyMDF144YVd8vvoLodzgB7Q3zgcjpi3e4uIaenZFRX6y7Itam4x26wneJz63hkjddnEIXIYRjck7EHMsNzli+VdNUfuLe/ELLWcHoVyLlRwwixF0idKkthhcTj6yp4DoHdgzwFgF/YbAHZiz+kandr8ctdddx3U/QDQ2/g+fUwJ793X5v6WoSdo7/l/l+Ud2A2p+pbqhpDuW1SuZe1Me5k6LkU/PotpLwAAAAAAAAC63+LFi7V06dKoa2vXrtXatWv3uy9a80tWVpa+//3v64EHHlBzc7OefvrpNjUZGRm67bbb5Pf3rQkISUlJ3R0B6LUSExO7O8JBW1O5V7e+WKSVW/dEXZ+aN0Q/vyhf6Yn9fFpJwy5pxRPSx49Le7fFrh00UjruGzKOmilvXLK8tgREf9Qb9xwAvRd7DgC7sN8AsBN7Tueg+QWHjNO40K9Ypvzv3Cffp4+2WQqNPV+NU34vR4yx4XRwHphlWXq9tFq/ebNcewPhNuvJcW7dPjVbZ+akdEM6oHdhzwFgJ/YcAHZhvwFgJ/YcAHY79thj9bvf/U6vv/66VqxYoZqaGrlcLqWnp+vEE0/UtGnT5PXykWYAvVOgJaK/vLVBf1+6UWHTarM+eIBXv7g4T9PyM7ohXQ9hWdLWD6WPHpVKXpbMlhjFhjR2inTcN6UxZ0t8rwoAAAAAAPoJw7Kstq8uAQC+FA5JL98kFb/Qdu34G6Vpv+JF5cO0a29AP/1Xsd5cvTPq+kUTh+rnF+UpKd5jczIAAAAAAAAAAAAcqg/Lduu2l4pUVt0Ydf2a4zP1v+eOU6LfbXOyHiLUKK16TvroMWlnUexaf5J01Ezp2Oul5Cx78gEAAAAAAPQgtjS/LFu2TJJ03HHHdXgceyAQ0PLlyyVJp59+epdlA4CYAnulZwul8qVt186+Wzrl+5Jh2J2qz7AsS698tkN3zStRXXPbE6xSEzy655L8/n3SFwAAAAAAAAD0UbW1td0dAeg1HA6HEhMT992uq6uTaZrdmCi2+kBYf3p7s15cGf3gs5HJPt0xdbSOzUyMut7XOWo3yrtqjjylL8gRqo9ZGx4yUcEJMxXKuUBy+WxKiP6ut+05AHo39hwAdmG/AWAn9pxWSUlJnXo9V6derR2TJ0+Ww+HQqlWrlJub26HHbN++fd/jwuFwFycEgCjqK6W506XK/zplyeGSLv6rNPHq7snVR+yqD+j2fxVrUWn0Nz0u/HzaSzLTXgAAAAAAAACgT4pEIt0dAei1TNPssV9DS9bX6NdvblJ1Y9uDz5wOQ187PkPfOHGYvC5Hj/09dAkzLE/5YvmK58qz9b2YpZbTq+DYCxQoKFR4yIQvF/rTnxd6lJ685wDoe9hzANiF/QaAndhzOoctzS9S6+n+dj4OXY/TuNCXOWrLlPDyLDn3btvvfssdp4bzH1Q4c5J0EF8DdHB+ybIszS+t1q/fLNfeQNvmxuQ4t346JVtnHZEihRpVG2rshpRA78aeA8BO7DkA7MJ+A8BO7DmtOvs0LgAA0LdVNYT0m8WbtGR99PfQctPjdefUbI1Ni7M5WfcymqrlK3lGvpKn5WyojFkbGZipQP61CoyfLsvP92IAAAAAAABfZVvzy8H64o1Ep9PZzUnQHrrP0Fe5Kj/TgH9/U47A/i/Mm/4U7b3g0dbTlQ7z339/7eCsbgzpV4s26e0N0d/0mDIuRT85c6QGxbn75Z8P0FX6654DoHuw5wCwC/sNADux5wAAALTPtCy9vKpKf1q6RY2htt8z+d0O3XTqcF11VLqcDqMbEnYDy5Kr4hP5iubIu/ENGWbbKTj7SmWoZeRkNU8oVEvm6ZLhsDEoAAAAAABA79Fjm182b94sSfudrgcAXc1d/pYGLrhFRjiw3/2RxEzVXfS4zMSR3ZSsd7MsSwvW7NZvF29WXZRpL0l+l247J0tn5iR3QzoAAAAAAAAAAAAcik01zbpvYblWbKuPun7yqET97zlZGprotTlZNwk1yrtunvxFc+TavSZmqelLUiD3CgXyr5U5cIRNAQEAAAAAAHqvLml+2bJlS9T7KyoqlJCQEPOxwWBQGzdu1J133inDMJSXl9cVEQGgDW/pc0pYcocMa/8TqVoGF2jvBY/KikvtpmS924GmvZxzRLJuPWuUBsW5bU4GAAAAAAAAAACAQ9ESMfXkRxV67IPtCkWsNuuD/C796MyRmjouRYbR96e9OGs3ylc0V941L8oRaohZ2zLkSAUKZig45nzJ1U+aggAAAAAAADpBlzS/ZGVltbnPsixNmTLloK81a9aszogEAO2zLPk//oviP/xjm6VQ5mnaO+2vkife/ly9XEemvfzvOVk6i2kvAAAAAAAAAAAAvUZxRYN+uaBMG6ubo66fl5uqH0zO7PsHn5lhecoXy1c0R55t78cstZxeBXMuVHNBoSKDC2wKCAAAAAAA0Ld0SfOLZbU92SXW/dH4fD5997vf1fXXX99ZsQCgLTOi+KV3yV/ydJulwBGXquHM+yVnH39hvgvsbmzRr94s15L17U97+clZo5TU19/0AAAAAAAAAAC0y+l0dncEoNdwOBwxb9uhKRTRX5dt0dOfVCjaO/9DE726Y+ponZQ1yO5otjIad8lb8qy8RU/J0VARszaSOFLBCYUK5V4hyzdIksTOh96gJ+w5APoP9hwAdmG/AWAn9pyu0SXNL//85z/3u33dddfJMAz98pe/1LBhw9p9nGEY8vl8ysjI0FFHHaWEhISuiAcArcIBDVj4fXnLFrVZajrmJjWd+EOpH4xh70wdmfZy69mjdPYRKd2QDgAAAAAAAADQkyQlJXV3BKDXSkxMtPX5lqzdpTv+Vazte9pOe3EY0vWnZOkHU3IU5+mSjyB0P8uStnwgffSoVDpPMltiFBtSzlTpuBvkHH2m4hwOxdkWFOgadu85APo39hwAdmG/AWAn9pzO0SWvPH3ta1/b7/Z1110nSbrkkkuUm5vbFU8JAAfFCOzRwNe+JXfFJ/vdb8lQ4+k/U2DCrG5K1nsx7QUAAAAAAAAAAKBv2d0Q1C/+XapXPtsRdX18xkD9+vICTRg+yN5gdgk2SEXPScsflXaVxK71J0tHz5KOvV5KGmlPPgAAAAAAgH7ElmNXlixZIknKysqy4+kAICZH/Q4NnHedXLUb9rvfcnpUf87/KTTm3G5K1jtZlqWFa2v0m8WbVNfcdtrLIL9L/8u0FwAAAAAAAAAAgF7Dsiy9tGK77nmtVLVNbaeceFwOff/ssbrhtGy5nY5uSNjFqta1TnlZ+bQU3Bu7dtix0vE3SLmXSG6fLfEAAAAAAAD6I1uaXyZNmmTH0wDAATmr12rgq9fJ2bhzv/tNzwDtPf9hhYcd303JeqcDTXs5OydZt57NtBcAAAAAAAAAQFu1tdFfWwbQlsPhUGJi4v9n777D5KzL/fHfM7M1ye5mk0AqIY0euvQuLUCw16Pn/Gwcjwc59oKAICJiOZaDir33roQOUkRAEBCpgRQIaZCy2ZatM/P7g6+Bxw0hCbvPs+X1ui4vM/fnMzPvbHZvvfaZ+/lsetzc3BylUmlA3mvFhs646JrFccfjzZtdf8n0+jj35Nmx87jaaGvZ/J4hqdQblUuuj+r7fhiVy2/b4tZyoTq6d3t5dO3z71GcuPczxbaOiOgY+JyQgjR7DoCeA6RFvwHSpOc8o7GxsV9fL5XhF4DBoHL5HVF35Tsj392WqBdHT4qWl303iuN3yyjZ0FMul+O6hevjM057AQAAAABgOxWLxawjwJBVKpX6/Weot1SOn9+zOr5+6/Lo7O37YYy66kK859jp8fK5O0Qulxs2P8O59qej5qFfRM0DP49C++ot7i02TI+OuW+Orj1eHeWasf+vODy+DrAlA9FzAJ6PngOkRb8B0qTn9A/DL8CIULXoyqi79gORK3Un6r3jdomW078bpbopGSUbetb/v9Ne/vQ8p70cv+u4+MjxM2LcaKe9AAAAAAAADAULn26Pi65ZGg8/1b7Z9RN2HRcfPH7nmDC6KuVkA6RcjoqVd0XtAz+OqsXXRK7U92Zvm7ZGLrpnvDQ6935z9Ew/MiKXTzEoAAAAAP9k+AUY9mru+0GM/vMnIxflRL1n8kui5bRvPHtXJl7QdY+si0u2cNrLR46fESfu7rQXAAAAAACAoaCzpxTfun15/PiuVVEs913fcUxlfPiEGXHsnHHphxsAue62qH70j1Fz/4+jYt3CLe4t1YyLzj1fF51z3xil+mkpJQQAAADg+Rh+AYavcjlG3f65GHXPN/osdc06KVpP+mJERU0GwYae9e098ZkbHo8bHl2/2fWX7tIYHz1hptNeAAAAAAAAhoi7ljXHxdcujSc3dG12/bX77RhnHrVTjKke+h8rKKxfFDX3/ziqH/ld5Hvatri3Z+L+0bnPm6Nr9ikRFdUpJQQAAADghQz931IBbE6xJ8b86aNRs/D3fZY69n5ztB/18Yh8If1cQ9B1j6yLz9zweGzYzGkvDbUV8VGnvQAAAAAAAAwZLZ298aWblsUfH1iz2fUZ42ri3JNmxX7T6lJO1s+KPVG19Iaouf9HUbXiji1uLVfURNeuL4uOuW+K4o5zUwoIAAAAwLYw/AIMO7nutqi76t1R9eSf+6y1H/r+6DjwvyNyuQySDS1OewEAAAAAABg+yuVy3PDo+vjcDU/Euo09fdYr8rl46yFT4q2HTImqinwGCftHrv3pqHnwF1Hz4M+i0P7UFvcWG3aOjr3fHF27vzrKNQ0pJQQAAABgexh+AYaV3Ma1UX/526NyzQOJejlXiLbjLo6uPV+TUbKh5fqF6+KS65//tJePHD8jTtxtXOQMEQEAAAAAAAx6T7V2xSXXPx5/Xrxhs+v7TBkT55w0M2ZPGJVusP5SLkfFyrui9v4fRdWSayNX6nuNa9PWXD66Z7w0Ovd+c/TsdEREbugO+gAAAACMJIZf2G6FQiHrCJCQ3/B4jPn9f0SheVmiXq6ojbZTvxq9M18aWX3X5vP5LT4eLNZv7IlLrl0S1y1ct9n1l+46Lj520qwYP7oq5WTAthgqPQcYHvQcIC36DZAmPQcAGC5K5XL85u9Px1f+vCzau0t91kdV5uPdR+8Ur9lvYuSH4E3Pct1tUb3wD1Fz/4+jYv2jW9xbqh0XnXu+Pjr3emOU6qemlBAAAACA/mL4he3W2NiYdQR41oq7I371uoiNa5P1UeMj92+/irppB2aT63k0NAy+Y9Ov+MeqOO8PD8T69u4+a42jKuMTL58bp+8z2WkvMAQNxp4DDF96DpAW/QZIk54DMDDcaA223vYM5y5euzE+efXiuG9F62bXj57dGGefNCsm1Vf3S8Y05dc9FtX/+FFUP/LbyHW3bXFv7+QDomuf/4juOadEVFRHLiKzG+bBUOGGAECa9BwgLfoNkCY9Z2DkyuVyOesQAC/KY9dH/PI/Inrak/WxO0e8+bcRE+Zkk2uIWNfWFR//44NxxT9WbXb95L0mxkWv2Dt2qBt6Fz4AAAAAAABGmq7eYlx20+L46o2LoqfY9+MAE8ZUxfmn7xXzh9pNz4o9EY9cEXHXtyMe//OW91bURuzz2oiD3hExed908gEAAAAwoJz8Agxtf/9pxB/Piij1JuuT9ol4068j6iZmk2uIuPL+VXHe7x+IdZs57WXsqMq40GkvAAAAAAAAQ8bdT6yPj/7m/njs6c2fhvLaA6fFOaftEWNHVaWc7EVoXR1x9/ef+U/r5m/mtsm42c8MvOz3xojaxjTSAQAAAJASJ7+w3ZqamrKOwEhWLkfN374Wtbd9rs9Sz/Sjou20yyKqxmQQbPPy+Xw0NDRsetzc3BylUimzPOs39sRnrlsS1z6ybrPrL911XHzspFkxfvQQuvABbDLYeg4wvOk5QFr0GyBNes4zGht9YBQAhorWzp743DUL40d3PBGb+wTA9HGj4tOv2juOmDMh/XDbo1yOeOIvEXd+K+KRBX1vhPdcuXzErqdEHPyOiJnHRuTzaaUEAAAAIEVOfmG7FYvFrCMwUpWKMfrPn4za+3/UZ6lz15dH2/GXRBSqIgbx92ipVMrsZ+iGR9fHJdctjaaOvhcJGmoq4kPH7xwn7z4+crmcn3MYJrLsOcDIo+cAadFvgDTpOQADw43WYOttaTj35kXr4+JrlsTTbd19nlfIRfz7wVPiP4/YKWorC4P/5667Laof/l1U3/+jKKx7dItbS7Xjo2vuG6J77hujVD/tmWJzcwohYfhzQwAgTXoOkBb9BkiTnvOM/r7RmuEXYGjp7Yq6694f1Yuv7rO0cf8zYuPhH37m7k70sWFjT3zmhsfjuoXrN7t+7JzG+OiJM2KC014AAAAAAEiBwULYfqVSKZ5u6YzP/+n5r/3sPnFUnHvSrNh94uiIGNw/c4V1j0bNAz+J6kd+F/me9i3u7Zl0QHTu/ebomjMvolD9THEQ/91gOHBDACBNeg6QFv0GSJOe0z8MvwBDRq6rJeqveGdUrryzz1rbkedG535vzSDV0LAtp70AAAAAAAAweJXL5fj9P56KL974eLR09v3QRHVFPv7riGnxxgMnRUV+EF/7KfZE1dLrovYfP47KlX/d4tZyRW107fqy6Nj7zVHcYc+UAgIAAAAwmBh+AYaEfNuqqP/j26JiffJ483K+KlpP/Fx07zI/o2SD24aNPfHZPz0R1z6ybrPrx8xpjLOd9gIAAAAAADAkPL62PT72u/vjtsWbv/Zz8M718bETZ8a0sTUpJ9t6+banoubBn0f1gz+Pwsant7i3d+zM6Nz7TdG1+6ujXF2fUkIAAAAABiPDL8CgV1j3aNRf/tYotK1O1EtVY6L11K9Hz7TDMko2uP3p0fVxyfVLY/3Gvqe91NcU4sPHz3DaCwAAAAAAwBBQLpfjm7csjv+99tHo6i31Wa+vKcT7j905TttrwuC89lMuR+WKv0bN/T+OqiXXRq7c98SaTVtz+eieeXx07v3vz1wHzOVTDAoAAADAYGX4BRjUKlb+LeqvOCPyXS2JenHUjtHysu9GccIeGSUbvJz2AgAAAAAAMLx84y9Pxjf+snyzayfvPj4+cNzOMW50ZcqpXliuuzWqH/l91Dzwk6hY/9gW95Zqx0fnXq+Pzr3eGKW6KSklBAAAAGCoMPwCDFpVi6+JumvfG7lid6LeO3ZWtLzs+1Gqn5pRssHrxsfWx6eve/7TXj700hkxbw+nvQAAAAAAAAwVD61ui2/f1nfwZWJdVZx9wow4cnZjBqm2rLBuYdTc/5OoXvj7yPe0b3Fvz+QDo3Pum6NrzskRheqUEgIAAAAw1Bh+AQalmvt/HKNvviByUU7UeybtHy2nfSvKtYPvl/hZ2tDRE5+74Ym45nlOezl69tj42IkzY8IYp70AAAAAAAAMFd29pbjgqiVRfM4ls1wu4vUHTIp3HTEtRlcVsgv3r4o9UbXk2qi9/8dRufLOLW4tV9RG524vj865b4riDnumFBAAAACAoczwCzC4lMsx6q9fiFF/+1qfpa4Zx0fryV+OqKzNINjg9UKnvXzwpTPiFKe9AAAAAAAADDnfvG15LFnXkai99/hd4z8OnBDFYjGjVEn5ttVR8+DPo+bBn0d+45ot7u0dOzM6935TdO3+6ihX16eUEAAAAIDhwPALMHgUe2LMTedFzcO/6rPUuefro+3YCyPy2tY/bejoic//6Ym4+uHNn/Zy1OyxcY7TXgAAAAAAAIakB1a1xQ/vWpWo7TWlPv77uNnR1tKcUar/p1yOyhV3RM39P46qJddFrvz8gzjlXD66Z54QnXu/OXqmHf7M0TUAAAAAsI18ihwYHHo2Rv3VZ0XVEzf1WWo/+D3RcdBZfhH+HDc9tj4+fd3jsW5jT581p70AAAAAADAUFAqFrCPAoNXVW4pPXL0kSuVna5WFXHz+tftGZSEf+Xw+o2CtUf3Ib6P6Hz+KwvpFW9xaGjUhuua+MbrmvjHKdVMiIsJPPQwN/9pjMus5wIig5wBp0W+ANOk5A8PwC5C5XMe6qF9wRlQ+dV+iXs7lo+3YT0bXXm/IKNng47QXAAAAAACGi8bGxqwjwKD16asejqXrOhK1/3npLrHH5PqIiGhoaEg30FMPRdz1rYj7fhHR077lvdMPizjoHZHf42VRW1EVtekkBAZQ6j0HGNH0HCAt+g2QJj2nfxh+ATKVb14WDX98axSaH0/UyxU10Xry/0X3zOOzCTYI3bRofXz62s2f9lJXXYgPvnTnOHXPCU57AQAAAAAAGMLuWdYU37plSaI2d2p9/Nexs9MN0tsd8cjlEXd+O2LZbVveWzkqYp/XRRz0johJe6eTDwAAAIARxfALkJnC0w9Ew4K3R37j2kS9VD02WuZ/K3onH5BRssGluaM3Pv+nx+Oq5zvtZdbY+NhJM2MHp70AAAAAAAAMaZ09xfjQr+6LUvnZWmUhF//72v2ispBPJ0Tzioi7vx9xzw8i2p7a8t7xuzwz8LLfGyNq3MEUAAAAgIFj+AXIROWyW6Puqv+O/L8ci16smxotL/teFBtTvnPVIPVCp7184KU7x2lOewEAAAAAYAhqamrKOgIMOl+88fFYvCZ5/eydR+wUk2pLiVpzc3OUSsnai1IuR8Xy26P6vh9G5ZLrIlcuPv/WXCF6Zp0YXfv8e/TudHhELhfRUYro8DMNw0U+n4+GhmcH2vq95wA8h54DpEW/AdKk5zyjsbGxX1/P8AuQuuqFf4gxN3w4cqXeRL13/O7Rcvp3ozRmYkbJBo/mjt74/I2Px1UPbf60lyNnjY1znPYCAAAAAMAQViw+/4frYST6x8rW+NGdKxO1PSeOjje/ZFKfD0eUSqV++RnKdbVG9SO/jZoHfhIVTYu3uLc0akJ07vWG6NzrDVEaM/mfQV50BmDw66+eA7A19BwgLfoNkCY9p38YfgHSUy5H7b3fjtG3XdJnqXvqodF66tejXF2XQbDB5eZFTXHxdUtjXbvTXgAAAAAAAEaCzp5SXHDVkig/p1ZZyMX5p8yKinz/XxMqrF0YNff/KGoe/UPkejZucW/P5JdEx95vju7ZJ0cU3JgNAAAAgGwYfgHSUS7F6Fsvjtr7vtdnqWuX06L1hM9FFKozCDZ4bM1pLx87cWbsWOeiAgAAAAAAwHBy2a1PxrKmzkTtnYdPi9kTRvXfmxS7o2rxNVH7wE+icuVdW9xarhwVnbu+PDr3fnMUJ+zefxkAAAAAYDsZfgEGXrEr6q7/UFQ/dkWfpY593xbtR54dkctnEGzwuGVxU3zq2s2f9jKmuhAfPG7nOG0vp70AAAAAAAAMN39f0Ro/vXt1orbXpNHx5oMm98vr59tWRc0DP4uah34R+Y1rt7i3t3F2dM59U3Tt/qooV9f1y/sDAAAAQH8w/AIMqFxXa9Rd+V9RteKOPmvtR5wdHfu/I4NUg0dLZ298/k9PxJUPbf5CwxEzx8Y5JzntBQAAAAAAYDjq7CnGhVcvifJzalWFXJw/b1ZU5F/ETdHK5ahcflvU3P/jqFp6Q+TKxeffmitE98wTonOfN0fP1MMi3IwNAAAAgEHI8AswYPJtT0X95W+LinWPJOrlfGW0Hf+Z6Nrt5RklGxxuWdwUF1+7NNY+z2kvHzhu55jvtBcAAAAAAIBh66u3Lo9lTZ2J2juPmBazJozartfLdbVG9SO/iZr7fxIVG5ZscW9p1ITo3OsN0bnXG6I0pn9OmQEAAACAgWL4BRgQhabFUf/Ht0ShdWWiXqocHa2nfC16ph+ZUbLsNW/sifOueCwWPLBms+tOewEAAAAAABj+7l3eEj+/e3WiNnfy6HjzS7Z9EKWw9pGouf9HUbPwD5Hr7dji3p4pB0fH3m+K7lknRRRcjwIAAABgaDD8AvS7ilX3RP2CMyLftSFRL42aEM3zvxPFHedmE2wQuOHhp+Ls394fT7d29Vlz2gsAAAAAAMDI0NFdjE9cvSTKz6lVFXJxwbzZUchv5XWiYndULb46au//cVSuunuLW8uVo6Jzt1dE59w3R3HCbtsfHAAAAAAyYviF7VYoFLKOwCBUueS6GH3VWZHrTR7PXhw7M9pe8YOIhukxEr9zeksRH/rVffGru5dvdv2IWWPjvJNnx8T66pSTAcNRPp/f4mOA/qTnAGnRb4A06TkAwED76q1PxvINyZulvevInWLG+NoXfnLz8qi5/etR/cDPIr9x7Ra39jbOic693xRdu78yylV1LyYyAAAAAGTK8AvbrbGxMesIDDZ3fz9iwfsiyqVkfeqBUfi3X0bD6AmZxBoMzv7tPzY7+FJXXRHnnb5nvPbAaU57AQZMQ0ND1hGAEUTPAdKi3wBp0nMAgP5095Mt8fN7nkrU9pkyJv7twElbfuITt0Xc/tWIhVdG7b9ej3uOcq4Q3bNOjM693xw9Uw+NcA0KAAAAgGHA8Avw4pXLETddEnHzJX3Xdjkp4rXfj6ganXqsweLy+1bGz+58sk/9mF13iEtevXdMbtiKO3gBAAAAAAAw5HV0F+PCq5ckatUVufj4vFlRyD/PkEq5HDW3/2/EnZdu8bVLo3aIzr3eEJ17vSFKY15gkAYAAAAAhhjDL8CLU+yNuOL9Eff8oO/a/m+OmP/liMLIbTXL1m2Mj/32/kSttrIQn3jZXvHalzjtBQAAAAAAYCS59M9PxormrkTtXUfuFDPGPc/N0ordMeZPZ0fNwt8/72v2TDk4OvZ+c3TPOimiUNmPaQEAAABg8Bi5n0jnRWtqaso6Alnr6YjRV50VVUuv77PUcfBZ0Xno+yNaWjMINjj0FEvx3z95IFq7ehP1i14xN06YUxcbNmzIJhgw7OXz+WhoaNj0uLm5OUqlUoaJgOFMzwHSot8AadJzntHY2Jh1BAAYVv62rCV+ee9Tidq+U8fEGw/Y/Cktua7WqLvqv6Nq+W191sqVo6Nzt1dE595viuL43QYkLwAAAAAMJoZf2G7FYjHrCGQo19EU9VecEZWr703Uy5GL9mM+EZ17vyliBH4g4LkuvXlZPLCqLVF71f5T49UHToumpiY/Q0BqSqWSngOkRs8B0qLfAGnScwAGRqFQyDoCpGZjdzEuvGZJolZTkY9PnLpLVFX2vWyfa10VY/7w1qhY98i/LOQjXnpetOz2uihVjo6ICD9JQH/L5/NbfAzQn/QcIC36DZAmPWdgGH4Btlm+ZXnU//GtUbEh+Qv6cqEqWk/6UnTPPjmjZIPHbUs3xI/uWpWozZwwOi58xdyMEgEAAAAAwODihClGki/8/oFY2dyVqH1o3u6x3+wpfTevfiDiV6+NaF2ZrFeOinjt9yN2PTka+j4LYMA892RMgIGm5wBp0W+ANOk5/cPwC7BNCmsfjvo/vi0KG59O1EvV9dFy2reid8pLMko2eKxt647zr1ycqFUWcnHpG/ePMdXaLgAAAAAAwEhy26K18aM7nkjUDp4xLt56+Iy+mxffGPGLf4/obk3WR+8Q8W+/jJh6wMAFBQAAAIBBzKewga1Wufy2qLvyXZHvbkvUi2MmR8vLvhfFcbtklGzwKJbKcd6Vi6OpozdRf++xM2LuVFObAAAAAAAAI0lbV2986Nf/SNRqKvPx2dfsE/l8Lrn57z+N+ONZEaXkdaYYv0vEm38d0ThjYMMCAAAAwCBm+AXYKlWPXh51138ocqWeRL133K7R8rLvRmnM5IySDS4/uHNl3LWsJVE7avbYeOOBkzJKBAAAAAAAg1NTU1PWEWDAfeqaxbFiQ0eidtbRO0dDoTuamrqfKZTLUXPnpVF7xxf6PL9nykHRfvq3IpdvjOfeZq25uTlKpdIAJgdGsnw+Hw0Nz3YdPQcYSHoOkBb9BkiTnvOMxsbGfn09wy/AC6r5+/dizK0X9an3TDk4Wk77RpSr6zNINfj8fUVrfOMvyxO1HcdUxvnzZkUul3ueZwEAAAAAwMhULBazjgAD6q9PNMev//5UonbAtLp47X47PPv9X+yJMTd/PGoe+mWf53fNOTVaT/h8REV1FP7lwxGlUsnPEJAaPQdIk54DpEW/AdKk5/QPwy/A8yuXYtRtn4lR9367z1LX7HnReuIXIiqqMwg2+DR39Ma5CxZFsfxsLZ+LuOi0OTG2tjK7YAAAAAAAAKSuras3Pnn1kkStpiIfH583K/L/76Zpue62qLv6rKhadkuf52/c7+2x8YiPRuTyqeQFAAAAgMHO8AuwecXuGHPDR6Pm0T/0WerY+9+j/ajzIvKFDIINPuVyOS66dkmsbu1O1M84bGocsJNTcQAAAAAAAEaaL9/8ZJ9rR2cdvVNMG1sTERG59qejYcE7omLNg4k95chF+1HnRee+/19qWQEAAABgKDD8AvSR626Luqv+O6qe/EuftfbDPhQdB7wz4v/dkYqI39z3dNz4WFOidsC0unjboVMzSgQAAAAAAEBW7nh8Q/zuH08nagfuVBev3X9iREQU1j8W9Ze/LQqtKxN7yoXqaD3pi9E9++TUsgIAAADAUGH4BUjIta+JhgVv73uXqXxFtL3009G1+6sySjY4PbZmY3zhxicStYbairjotDlRyBsQAgAAAAAAGEnaunrjk9csTdRqK/Px8ZNnRT6Xi4oVf436K/8r8l0tiT2lmnHRMv+b0Ttp/zTjAgAAAMCQYfgF2CTftDQaLn9rFFqeTNTLlaOiZd5XomfnYzJKNjh1dBfj7Msfi+5iOVH/xLxZsWNdVUapAAAAAAAAyMqXbloWT7V2J2r/c/T0mDq2JqoevTzqrv9w5ErJ9WLD9Gg+/XtRGjsjxaQAAAAAMLQYfgEiIqJi9d+jfsEZke9cn6iXasdFy/zvRO/EfTJKNnh97k9PxOPrOxO1Nx44KY6c3ZhRIgAAAAAAALJy+9IN8fv71yRqB02vj1fvu0PU3vONGH3bZ/s8p2fiftEy/5tRrh2fVkwAAAAAGJIMvwBR+fiNUX/1WZHr7UjUi/XTo/ll7jK1OVc/vDb++EDy4sXuE0fFWUftlFEiAAAAAAAAstLW1RsXXbs0URtVmY/zTtw56m65IGof+Emf53TNPCFaT/pSRGVtOiEBAAAAYAgz/AIjXPVDv44xN34scuViot6zw9xoOf07UR41IaNkg9eTTZ3x6ev6Xry4eP4uUVWRzygVAAAAAAAAWfnCjcviqdbuRO39R+4Yu932vqheen2f/R17/3u0H3VeRL6QVkQAAAAAGNIMv8BIVS5H7d++GqP/+sU+S93Tj4qWeV+NqBqdQbDBradYio8tWBTt3aVE/ewTZ8b0xpqMUgEAAAAAAJCVvyzZEH98YE2idsJOpfj/Fr8vKp++r8/+9iPOjo793h6Ry6UVEQAAAACGPMMvMBKVijH6lk9s9nj1zt1eGW0v/XREoTKDYIPfV255Mh5+qj1RO32vCXHKnk7IAQAAAAAAGGlaO3vjomuXJGp7Vq2Or3Z8MSrbnkzUy/mqaD3xc9G9y/w0IwIAAADAsGD4BUaa3s6ou/Z9Ub3k2j5LGw/4r9h42AfdZep53Lq4KX5y9+pEbedxNfGh42dkEwgAAAAAAIBMfeHGJ2JNW8+mxwfkHo2fVn0xqtuaE/tK1Q3Rcto3onfKQWlHBAAAAIBhwfALjCC5zg1Rf8V/RuWquxP1cuSi/eiPR+c+/5FRssHv6dbuuODq5F27qgq5uHj+nBhVVcgoFQAAAAAAAFm5dXFTXP7g2k2PT87fGZdWfS2qersT+4p1U6Pl9O9GcdyctCMCAAAAwLBh+AVGiHzryqi//G1Rsf6xRL2cr4rWk74Q3XNOySjZ4FcsleO8KxfFho7eRP29x06P3XYcnVEqAAAAAAAAstLS2RsXXbt00+O3Fq6K8yp+HPkoJ/b17rBXNM//TpRH75B2RAAAAAAYVgy/wAhQWLcw6v/4tii0r07US1V10Xrq16Nn2qEZJRsavvfXlXH3k62J2rFzGuO1+03MKBEAAAAAAABZ+t8/PRFr23siF6U4t+In8faKq/rs6d752Gg5+f8iqtxMDQAAAABeLMMvMMxVrPhr1F/xzsh3J4c3iqMnRsvp34vihN0ySjY03Lu8Jb552/JEbWJdVZx38qzI5XIZpQIAAAAAACArtyxuiiseWhvV0R1frPxanFq4s8+ezj1fH23HXhiRd0keAAAAAPqD37TBMFa16Kqou/b9kSt1J+q9jXOi5WXfi1LdlIySDQ0bOnri3CsWR+k5p9MXchGfmj8nGmq1TwAAAAAAeDEKhULWEWCbNXf0xMXXLo2x0RrfrvrfeEn+0T57Og77UHQe9N9R6McbqeXz+S0+BuhPeg6QJj0HSIt+A6RJzxkYPr0Nw1TNP34Yo2+5MHJRTtR7Jh8YLad9M8o1Y7MJNkSUy+W48Ool8VRrcnDoP4+YFvtNrcsoFQAAAAAADB+NjY1ZR4BtduG1f4/ajcvj+1Wfjdn5VcnFfEXEy78atfu+IWoHOEdDQ8MAvwPAs/QcIE16DpAW/QZIk57TPwy/wHBTLseoO/43Rt19WZ+lrlknRutJX4qoqEk/1xDzi3ufilsWb0jUDppeH2852Gk5AAAAAAAAI9G1D66OxX+/JX5b9bnYIdeSXKyuj3j9jyJmHZtJNgAAAAAY7gy/wHBS7IkxN34sah75bZ+ljrn/Fu1HXxCRL6Sfa4h55Kn2+PLNyxK1xtqKuPDU2VHI99/x9AAAAAAAAAwNTe3dcdVvvhc/r/pijMp1JRfrp0a86VcRE/fKJhwAAAAAjACGX2C46G6P+qvfHVXLbumz1H7I+6LjJWdG5AxuvJCN3cX42IJF0VMsJ+oXnDI7dhhTlVEqAAAAAAAYfpqamrKOAFvt6p/8b3y++JUo5JLXkHon7B5tL/telKsmRwzg93Q+n4+GhoZNj5ubm6NUKg3Y+wEjm54DpEnPAdKi3wBp0nOe0djY2K+vZ/gFhoHcxrVRv+AdUfn0/Yl6OVeItuMuiq49X5dRsqHnszc8HsuaOhO1f3/J5Dhi1thsAgEAAAAAwDBVLBazjgAvrFyKNVdeFG9c+4OIf7nPXPe0I6L11K9GuaouIuXv51Kp5GcISI2eA6RJzwHSot8AadJz+ofhFxji8s1PRMMf3xKF5mWJermiJlrmfSV6ZhyXUbKh54oH18SCB9cmantOGh3/fdS0jBIBAAAAAACQmWJXVF/z4dhj6YI+SxtmvyJ6T/p0RKEqg2AAAAAAMPIYfoEhrOKpf0T9grdHvmN9ol6qaYyW+d+O3kn7ZRNsCHpifUdccv3jidroqkJcPH9OVBby2YQCAAAAAAAgE7mulqi78r+iasVf+6z9fcbbY9q8syNyuc08EwAAAAAYCIZfYIiqfOKWqL/6zMj1bEzUi3XTovll349S48yMkg093b2l+NiCRdHRU0rUzzlpZkwbW5NRKgAAAAAAALKQb10Z9Ze/LSrWP5ao95bz8f3Gs+Llp51l8AUAAAAAUuY4AxiCqh/5XdRfcUafwZfeHfaKDa/5tcGXbXTpLU/GwqeTX8tX7L1DnLT7+IwSAQAAAAAAkIXCmoei4Vev7jP40lauibNyH4kjX/FfkTP4AgAAAACpc/ILDCXlctTe880Yfftn+yx1Tzs8Wk/9WpSr6jIINnTdvKgpfnbP6kRt5ria+OBLd84oEQAAAAAAAFmofOKWqLv63ZHvaU/Uny6Pjbd2fzjecMrxMWFMVUbpAAAAAGBkM/wCQ0WpGKNvvShq//HDPkudu74s2o7/TETBL9u3xVOtXXHh1UsStapCLj59+i5RU1nIKBUAAAAAAABpq37oVzHmxnMiVy4m6o+VpsZbuj8cc+bsGvP2GJ9ROgAAAADA8AsMBb1dUXfdB6J68VV9ljbu9/bYeMRHI3L5DIINXb2lcpx7xeJo7uxN1N9/3M4xZ4dRGaUCAAAAAAAgVeVyjLrzyzHqrkv7LN1R2iP+s/t9kasZG2efOCNyuVwGAQEAAACACMMvvAiFgpMx0pDrao7Rl/9nVK74a5+1jUedG10HvCP8S2y7b92+LO5d3pqoHb/ruHjdAZMH5MJFPp/f4mOA/qTnAGnSc4C06DdAmvQcABghij0x5sZzouaR3/RZ+mPxsPhgz39Fd1TGRcfvHBNGV2UQEAAAAAD4J8MvbLfGxsasIwx/LSsjfvvGiKcfStbzlRGv/HqM2vs14YySbXf74nXxrduWJ2pTx9bGF97wkmgYVZlKhoaGhlTeByBCzwHSpecAadFvgDTpOQAw/OS6W6PuqndH1ZO39lm7rPf0+Gzv66Mc+Thul8Y4effxGSQEAAAAAJ7L8AsMVk8/EvHjV0e0JIc0oqou4g0/iZh1TDa5hrj17d3x3l/cG6Xys7VCPhf/98b9Uxt8AQAAAAAAIDv5ttVRf/nbo2LdI4l6MXJxfs9b4sfFEyMioqG2Ij56wszI5XJZxAQAAAAAnsPwCwxGy+6I+OnrIzo3JOtjJka86dcRk/fJJNZQVy6X44O/ui+eaulK1D9w0q5x4M5OMgIAAAAAABjuCmsXRv2Ct0WhbXWi3pWrjjO73h3Xlw7cVPvI8TNi/Gg3TwMAAACAwcDwC9utqakp6wjDUuXia2L0Vf8TuWJyQKPYOCvaXvGDKNXsFOFrv11+ctfK+NMjTydqh+zcEK/fZ9yAfz/n8/loaGjY9Li5uTlKpdKAvicwcuk5QJr0HCAt+g2QJj3nGY2NbhgDwPBSufy2qLvyXZHvbkvUOysb4/Vt74v7ynM21V66S2OcuNu4tCMCAAAAAM/D8AvbrVgsZh1h2Kl54Kcx+ubzI1dOXkjvmbh/tMz/ZpRrx0X4um+Xh1e3x5dueiJRGzeqIj5x6qwol0qR9le1VCr5GQJSo+cAadJzgLToN0Ca9BwAGPqqF/4+xtzw0ciVehL17vqd49UtH4gHyxM21cbWVsRHT5gZuVwu7ZgAAAAAwPMw/AKDQbkco/76xRj1t6/2Weqe8dJoOfn/IiprMwg2PLR19cbZCx6L3lI5Ub/w1NkxYXRVRqkAAAAAAAAYcOVy1N59WYy+43/7LPVMOiDel/twPPh08sZ0Hz1hRowbXZlWQgAAAABgKxh+gayVemPMjedGzcO/6rPUuefrou3YT0bk/ahur3K5HJdc/3gs39CVqP9/B0+OQ2eMzSYUAAAAAAAAA6/UG6NvPj9qH/x5n6Wu2fPiN9POjiuuWZGon7DruDhht/FpJQQAAAAAtpJP1EOWejZG/dX/E1VP3NhnaeNB/xMbD/6fCMepvygLHlwbVz+8LlGbO3l0vOuIaRklAgAAAAAAYMB1t0f9Nf8TVU/c1GepY9+3xhP7fiAu+eGDiXpjbUV85IQZ6eQDAAAAALaJ4RfISK5jfdQvOCMqn/p7ol7O5aPtmAuja+4bswk2jDy+riM+c/3jidqY6kJ86rQ5UVHIZxMKAAAAAACAAZVrXxP1C94RlWseSNTLkYv2I8+Jjn3fEp/6/aPR0llMrH/0xJnROKoyzagAAAAAwFYy/AIZyLc8GfV/fGtUbFiaqJcL1dE67/+ie+YJGSUbPrp6S3H2gkXR2VtK1M89aWZMHVuTUSoAAAAAAAAGUqFpcdT/8W1RaF2eqJcLVdF64heje868uPLBNfHnxRsS6yfuNi6O33VcikkBAAAAgG1h+AVSVljzYDRc/vbIb1yTqJeqx0bL/G9G7+QDM0o2vHz55mXx2JqNidqr9t0xTthtfEaJAAAAAAAAGEgVK++K+iveGfmu5kT9metw34jeyS+JNW3d8fk/PZFYHzeqIj5y/IwUkwIAAAAA28rwC6So8sm/RN2V/x35nrZEvVg3JVpO/14Ux83JKNnwctNj6+OX9z6VqM2eUBvvP3bnjBIBAAAAAAAwkKoeuyLqrv9g5IrdiXqxfqdoOf27UWycFeVyOS6+dmm0dhUTe84+cWaMHVWZZlwAAAAAYBsZfoGUVC/8Y4y54cORK/Uk6r3jd4+W078bpTETM0o2vKxu6YoLr1mSqFVX5OPi+XOipjKfUSoAAAAAAAAGRLkctX//Toz+y6f7LPXsuE+0zP9WlEdNiIiIKx5cG39esiGx5+Tdx8dxu4xLIykAAAAA8CIYfoEU1N777c3+wr176iHReuo3olxdl0Gq4ae3VI5zrlgULZ3Ju3V96KU7x+wJozJKBQAAAAAAbE6hUMg6AkNdqRi1f74oau77fp+l7pknRPsp/xf5ymeuET3d2hWfv/GJxJ7xoyvjoyfNGhLfi/l8fouPAfqTngOkSc8B0qLfAGnScwaG4RcYSOVSjP7LJVH79+/0Weqac2q0nvj5iEJ1BsGGp2/dtjzuW9GWqJ2427h4+d47ZJQIAAAAAAB4Po2NjVlHYCjr3hjx2zMiHlnQd+0lb4+qUz4bVYVnLoeXy+V43+/virau5A3UPv2qfWLmlB3TSNvvGhoaso4AjCB6DpAmPQdIi34DpEnP6R+GX2CgFLtizPUfiZrHLu+z1LHvW6L9yHMicqb4+stdy5rju3esTNSmNlTHOSfNjFwul1EqAAAAAAAA+l372oifvSFi+V191064IOKI90Y85/rQr+5eHjctXJPY9or9psRJe00a2JwAAAAAQL8x/AIDINfdGnVXviuqlt/eZ6398I9Ex/5nJH7hzouzvr0nzr1icZSfUyvkc/Gp+XNiTLU2BwAAAAAAMGysWxzxk9dErF+SrBeqIl5xWcTer0mUVzV3xCcvfyhR26GuOi542V4DnRQAAAAA6Ec+FQ79LNf+dDRc/raoWPtwol7OV0Tb8Z+Jrt1ekU2wYapULscFVy+Ode09ifqZR06LuZPHZJQKAAAAAAB4IU1NTVlHYIgprLonxlz+jsh3rE/US9X10T7/m9E77dCI53xflcvl+MCvHo7Wrt7E/nNOmhnlrvZo6mpPJXd/yOfz0dDQsOlxc3NzlEqlDBMBw5meA6RJzwHSot8AadJzntHY2Nivr2f4BfpRoWlJ1P/xLVFoXZGolypHR+spX42e6UdllGz4+unfVsdtS5sTtcNmNMSbD5qcUSIAAAAAAGBrFIvFrCMwhFQtuTbqrn1f5Ho7E/XimMnRcvp3ozh+14h/+Z76/f1Px21LNyRqp+05IY6c2TDkv/9KpdKQ/zsAQ4eeA6RJzwHSot8AadJz+ofhF+gnFavvjfoFZ0S+M3mXslLt+Gg+/btR3HFuRsmGrwdXtcWlf34yURs/ujI+ccrsyOdyGaUCAAAAAACgP9X844cx+pYLIxflRL13wp7RMv/bURozsc9zVrd0xRdvXJao7TCmMj7w0p0HNCsAAAAAMDAMv0A/qFz6p6i/5qy+d5pq2DmaX/b9KDVMzyjZ8NXW1RsfW7AoiqVnL3LkIuLCU2fHuNGV2QUDAAAAAACgf5RLMeq2z8Soe7/dZ6l7+lHROu8rUa4a0/dp5XJ88pol0d6dvJvmOSfOjPoal8gBAAAAYCjymz14kaof/EWMuencyJVLiXrPjvtEy+nfjnLt+IySDV/lcjk+de3SWNHclai/5ZApccjODRmlAgAAAAAAoN/0dkXd9R+M6kVX9lnq3OO10XbsJyMKm78h2u/vXxN/faIlUTt9rwlx5OzGAYkKAAAAAAw8wy+wvcrlqL3rKzH6zi/1Were+ZhomfeViMpR6ecaAf7wwJq4buH6RG2fKWPinYdPzSgRAAAAAAAA/SXXuSHqr/yvqFx5V5+19oPfGx0HvTsil9vsc1c1d8WXbnoiUdtxTGW8/7idByQrAAAAAJAOwy+wPUq9Mfrm86P2wZ/3Werc/dXRdtynnvdOU7w4S9ZujM/dkLxgUVddiE+dNicqCvmMUgEAAAAAANAf8i3Lo/7yt0VF0+JEvZyviLbjLo6uPV79vM8tl8vxyWuXRHt3KVE/56RZUVfj0jgAAAAADGV+wwfbqqcj6q59b1Qvvb7P0saX/HdsPOT9z3unKV6czp5SnL1gUXT1Ji9YnHfyrJjcUJ1RKgAAAAAAAPpD4en7o2HBOyK/cW2iXqocE62nfDV6ph+5xef/9h9Px51PtCRqL5u7Qxwxa2x/RwUAAAAAUmb4BbZBrnND1C84IypX35OolyMX7cdcEJ17vzmjZCPDF296Ihav7UjUXrvfjvHSXcdllAgAAAAAAID+UPn4jVF/9VmR601eCyqOnhgtp38nihP22OLzVzZ3xZdvWpaoTayrivcfN73fswIAAAAA6TP8Attg1O2f7zv4UqiK1pO+FN2zT84o1chw/cJ18Zv7nk7UdtlhVLz32J0zSgQAAAAAAEB/qH7gZzHm5vMjVy4m6r3jdo2W078TpbopW3x+qVyOT16zJDb2lBL1c0+aGWOqXRIHAAAAgOHAb/pgG2w84iNR+dR9UbH2oYiIKFXXR8tp34zeKQdlnGx4W9ncFRdduzRRq6nIx8Xz50R1RT6jVAAAAAAAALwo5XKMuuN/Y9Tdl/VZ6p52WLSe8rUoV9e/4Mv89r6n465lLYnaK/beIQ6bOba/kgIAAAAAGfOpcdgG5aq6aD79O1GsmxbFMZOi+VW/MPgywHqLpTj3ikXR1pW809eHj58RM8fXZpQKAAAAAACAF6XYHWOu/+BmB186d3tFtJz+3a0afFmxoTO+fPOyRG1iXVW899jp/RYVAAAAAMiek19gG5VH7xjNL/t+REX1Cx6xzov3jdtWxD9WtiVq8/YYH6fPnZBRIgAAAAAAAF6MXFdr1F31rqhafnuftY0Hvis2HvqBiFzuBV+nVC7HhdcsiY6eUqJ+3skzY0y1S+EAAAAAMJz4jR9sh1LjzKwjjAh3PN4c3//rykRt2tjq+OgJMyK3FRc8AAAAAAAAGFzyrSuj/vK3R8X6RxP1cq4Qbcd8IrrmvnGrX+vXf38q7n6yNVF75T47xqEzxvZHVAAAAABgEDH8AgxK69p74vwrF0f5ObWKfC4unj/HnboAAAAAAACGoMLah6P+8ndEoX11ol6uqI2WeZdGz4zjtvq1lm/ojP+7+clEbVJdVbznmJ36JSsAAAAAMLj4BDkw6JTK5Tj/qsWxbmNPon7W0TvFnpPGZJQKAAAAAACA7VW57Naou+rMyPe0JeqlUROi5bRvRe/Efbb6tUrlclx49ZLo7C0l6ufNm+UmagAAAAAwTPnNHzDo/OiuVXHH482J2pGzxsa/HTgpo0QAAAAAAABsr+qHfx1jbjwncqXeRL137Kxoedl3o1S/bae1/PLep+Ke5a2J2qv33TEO2bnhRWcFAAAAAAYnwy/AoHL/ytb42q3LE7UdxlTG+fNmRS6XyygVAAAAAAAA26xcjtq7vhKj7/xSn6WeyS+JltO+EeWasdv0kk82dcZXbnkyUZtcXxX/c8z0FxEUAAAAABjsDL8Ag0ZrZ2+cs2BxFEvlTbVcRHzy1NnROKoyu2AAAAAAAABsm2JPjLn541Hz0C/7LHXNOTVaT/h8REX1Nr1kqVyOC69ZEp29pUT94/NmxeiqwouKCwAAAAAMboZfgEGhXC7Hp65dGitbuhL1tx86NV4y3RH1AAAAAAAAQ0Wuuy3qrn53VC37c5+1jfu/IzYe/pGIXH6bX/cX9zwV9y5vTdReu9+OcZBrSQAAAAAw7Bl+AQaF3/1jTVz/6PpEbb+pdfGOw6dmlAgAAAAAAIBtlW97KuoXvCMq1j6UqJcjF+1Hfzw69/mP7XrdZU2d8ZU/P5moTW2ojrOOnr7dWQEAAACAocPwC5C5RWs2xv/e+HiiVl9TiItOmx0V+Vw2oQAAAAAAANgmhXWPRv2Ct0ehdWWiXi5UR+tJX4zu2Sdv1+sWS+X4xNWLo6u3lKifd/KsGFVV2O68AAAAAMDQYfgFyFRnTzE+tmBRdPWWE/WPz5sVk+qrM0oFAAAAAADAtqhcfkfUXflfke9uTdRLNeOiZf43o3fS/tv92j+/Z3Xct6ItUXvd/hPjJdPrt/s1AQAAAIChxfALkKn/vfGJWLKuI1F7/f4T49g54zJKBAAAAAAAwLaoevSPUXf9RyJX6k7Uiw3To/n070Vp7Iztfu3H13fE1259MlGb2lAdZx2103a/JgAAAAAw9Bh+ATJz7SPr4nf/WJOo7brjqPifY6ZnlAgAAAAAAICtVi5H7T3fjNG3f7bPUs/E/aJl/jejXDt+u1++WCrHhVcvia7ecqJ+/rxZUVtV2O7XBQAAAACGHsMvQCaWb+iMT127NFGrrczHxfPnRHVFPqNUAAAAAAAAbJVSb4y+5cKofeAnfZa6Zp4QrSd9KaKy9kW9xc/uXh3/WNmWqL3hgIlxwE71L+p1AQAAAIChx/ALkLqeYinOWbAo2ruLifpHTpgRM8a9uIsgAAAAAAAADLCejVF3zXuj+vEb+ix17P3v0X7UeRH5F3cyy+PrOuJrtz6ZqE0bWx1nHrnTi3pdAAAAAGBoMvwCpO5rty6PB1e3J2qn7jkh5u+1Q0aJAAAAAAAA2Bq5jWujfsEZUfn0P/qstR9xdnTs9/aIXO5FvUexVI5PXL0kuovlZ983Is6fNytqq17cUA0AAAAAMDQZfgFSddvSDfGju1YlatMba+IjJ8zIJhAAAAAAAABbJd+0NBouf2sUWpInspTzVdF64ueje5fT+uV9fvK3VXH/qrZE7Q0HTor9p9X3y+sDAAAAAEOP4RcgNWvbuuP8KxcnapWFXFw8f06MdpcuAAAAAACAQati1d+ifsE7I9+1IVEvVTdEy2nfiN4pB/XL+yxd1xFf/8vyRG16Y02ceeS0fnl9AAAAAGBoMvwCpKJULsfHr1wcTR29ifp7jpkeu08cnVEqAAAAAAAAXkjVoquj7rr3Ra7YnagX66ZFy+nfieK4Of3yPr2lclxw1eLoLpY31XIR8fF5s6Km0o3UAAAAAGAkM/wCpOIHd66MO5e1JGpHzR4br99/YkaJAAAAAAAAeCE1f/9ejL71U5GLcqLes8PcaJn/7SiP3qHf3uvHd62KB1e3J2r/duCk2G9qXb+9BwAAAAAwNBl+AQbcfSta4+u3Jo+n33FMZZw/b1bkcrmMUgEAAAAAAPC8yqUYfevFUXvf9/osde98bLSc/H8RVaP77e0Wr90Y37gteT1pemNNvOvInfrtPQAAAACAocvwCzCgWjp745wFi+I5p9NHPhdx0WlzYmxtZXbBAAAAAAAA2Lzezqi77gNRvfjqPkude74+2o69MCLff5eae0vl+MRVS6LnOReU8rmIC06ZFTWV+X57HwAAAABg6DL8AgyYcrkcn7xmSaxu7U7UzzhsahywU31GqQAAAAAAAHg+uY71UX/FO6Ny9T191toP/UB0HPiuiFyuX9/zR3etjIeeak/U3nTg5NhnSl2/vg8AAAAAMHQZfgEGzG/uezpufKwpUTtgWl287dCpGSUCAAAAAAAGi0KhkHUE/kV+wxMx5g9vicKGpYl6OV8ZG0/8bHTv/sro73+1RWva4xt/WZGozRxXG/999HTfI8+Rz+e3+BigP+k5QJr0HCAt+g2QJj1nYBh+AQbEY2s2xhdufCJRa6itiItOmxOFfP/eDQwAAAAAABh6Ghsbs47Acy2/O+JXr4vYuDZZr66P3Ot/HKNnHROj+/kte4qluPDHD0Zvqbypls9FfOEN+8fkHX1/bElDQ0PWEYARRM8B0qTnAGnRb4A06Tn9w/DLELd+/fq4/fbb4957740VK1bEhg0bYsyYMbHbbrvFy1/+8thll12yjsgI1NFdjLMvfyy6i+VE/YJ5s2LHuqqMUgEAAAAAALBZj1wZ8eu3RfR2JOv1UyPe9KuIiXsNyNt+4+bFcf+K5kTtjKNnxf7TDb4AAAAAAEmGX4a4q666Kv7whz/ExIkTY9999436+vpYtWpV3HXXXXHXXXfFe97znjj88MOzjskI87k/PRGPr+9M1N544KQ4arYLFQAAAAAAAIPKnd+KuOrDEeVSsj5x7jODL/VTBuRtH17VEl++4bFEbc6OY+J9J+w6IO8HAAAAAAxthl+GuDlz5sQFF1wQe+65Z6L+8MMPx4UXXhjf+ta34qCDDorKysqMEjLSXP3w2vjjA2sStd0njoqzjtopo0QAAAAAAMBg1NTUlHWEka1citq/fDZq7v56n6We6UdF26lfiyjWRgzAv1NPsRTv+/n90VMsb6rlcxHnnzwzOtpaomMLzx2p8vl8NDQ0bHrc3NwcpVJpC88A2H56DpAmPQdIi34DpEnPeUZjY/8enGD4ZYg75JBDNlvfY489Yu7cuXHffffFsmXLYvbs2SknYyR6sqkzPn3d0kRtVGU+Lp6/S1RV5DNKBQAAAAAADEbFYjHrCCNXsSvGXP+RqHns8j5Lnbu/KtqOuziiUBkxQP9G3719RTzyVHui9h8HTY49Jo7yfbGVSqWSrxWQGj0HSJOeA6RFvwHSpOf0jxE9/NLc3ByLFi2KRYsWxeLFi2Px4sXR2toaERHHHHNMnHnmmVv9WmvWrImrrroq7rnnnli3bl1UVFTEpEmT4rDDDouTTz45qqurB+qv8bwKhULiv2Eg9RRL8bEFi6K9OzmVePaJM2N6Y01GqQAAAAAAAHiuXGdz1F/5rqhc+dc+axsPOis2HvyeiFxuwN7/0afb41u3r0jUZo2vjf88fNqAvScAAAAAMPSN6OGXM844o19e529/+1tceuml0dHx7AHcXV1dmwZqbrjhhjj77LNj0qRJ/fJ+W2Pt2rVx//33R2NjY0yfPj2192Xk+sotT8bD/3KHrtP3mhCn7Dkho0QAAAAAAAA8V75lRdQveHtUrH8sUS/nCtF23EXRtefrBvT9e4uluODqJVEslTfVCrmIC06ZFVUV+QF9bwAAAABgaBvRwy/PNWHChJg6dWrcd9992/S8pUuXxpe+9KXo7u6OmpqaeMUrXhFz586N7u7u+Mtf/hI33HBDrFq1Kj796U/HJZdcErW1tQP0N3hWb29vXHrppdHT0xNvetObIp/3i2IG1q2Lm+Ind69O1HYeVxMfOn5GNoEAAAAAAABIKKx5MBouf3vkN65J1EuVo6N13qXRs/MxA57hu39dGY8+vTFR+4+Dp8Sek8YM+HsDAAAAAEPbiB5+ec1rXhOzZ8+O2bNnx9ixY+Ppp5+Od7/73dv0Gt///veju7s7CoVCnHvuubHrrrtuWps7d25Mnjw5fvzjH8eqVavi8ssvj9e9ru/dkn74wx9GT0/PVr/nqaeeGpMnT97sWqlUiq997Wvx8MMPx/HHHx9HH330Nv19YFs93dodF1y9JFGrKuTi4vlzYlRVIaNUAAAAAAAA/FPlEzdH3dVnRb6nPVEvjdohmk//ThR32GvAMyx8uj2+c8fKRG32hNo447CpA/7eAAAAAMDQN6KHXzY3iLItFi1aFA8//HBERBx33HGJwZd/mj9/ftx4442xYsWKuOqqq+JVr3pVVFQkv+zXXXdddHV1bfX7HnrooZsdfimVSnHZZZfFrbfeGkcddVScccYZ2/g3gm1TLJXjvCsXxYaO3kT9vcdOj912HJ1RKgAAAAAAAP6p+qFfxpgbz41cuZio9zbOiZbTvxul+oEfPukpluKCq5ZEsVTeVCvkIi6YNzuqKvID/v4AAAAAwNA3oodfXqw777xz05+PO+64ze7J5/NxzDHHxE9/+tNob2+PBx98MPbdd9/Enh/96EcvOss/T3y55ZZb4ogjjogzzzwz8nm/KGZgfe+vK+PuJ1sTtWPnNMZr95uYUSIAAAAAAAAiIqJcjlF3filG3fWVPks9Uw6JllMvi3JNQypRvnvHynhszcZE7S2HTIk9JrmZGgAAAACwdUxHvAgLFy6MiIjq6uqYNWvW8+7bc889+zynPz138OXwww+Ps846y+ALA+7e5S3xzduWJ2oT66rivJNnRS6XyygVAAAAAAAAUeyOMTd8eLODL527nB7NL/9eaoMvjzzVHt+9Y0WitssOo+Idhw38iTMAAAAAwPDh5JcXYfnyZz74P2nSpCgUCs+7b8qUKX2e019KpVJcdtllccstt8Shhx5q8IVUNHf0xrlXLI7nnEwfhVzEp+bPiYZabQUAAAAAACArue7WqLvqzKh68i991jYe8M7YeNgHI3LpXE/s7i3FBVctjuJzrynlc3H+vFlRWXBNEwAAAADYej6lvp26u7ujtbU1IiLGjx+/xb1jxoyJ6urq6OrqinXr1vVrjl//+tdx8803R01NTUyZMiV+85vf9Nlz8MEHx4wZM7b6Nbc245YGfhi+yuVyfPLapfFUa3ei/l9HTo8Dp4/NJtQQ8K9DaYbUgIGk5wBp0nOAtOg3QJr0HACGqnzb6qi//O1Rse6RRL2cy0f70RdE595vSjXPt+9YEYvWdiRqbztkSuw+cXSqOQAAAACAoc/wy3bq7Ozc9OeampoX3F9TUxNdXV2J5/WHNWvWbMrz29/+drN7dtxxx20afnnXu961Vft++ctfbvVrMnz84LbH46bH1idqh88eH+8/ZW4U8rmMUg09DQ0NWUcARhA9B0iTngOkRb8B0qTnADAUFNYujPoFb4tC2+pEvVxRG60nfzm6Zx6fap6HVrfFD/66MlHbdYdR8bZDp6SaAwAAAAAYHgy/bKfu7mdPvaioeOEv4z/3PPd5/eHMM8+MM888s19fE57Pgyub41NXPJyojR9dFV98/X4GXwAAAAAAADJS+eRfou6q/458d1uiXqodFy3zvxO9E/dJNU93bykuuGpJFMvP1gr5XJx/yqyoLDhRDQAAAADYdoZftlNVVdWmP/f29r7g/n/uee7zBqvLLrss6wgMQu1dvXHWT++N7mIpUf/86/aNifUvfPoRAAAAAAAA/a/6kd/FmD+dHblST6LeO3ZmtJz+3Sg1TE8907duXxFL1nUkam8/dErstuPo1LMAAAAAAMOD4ZftVFPz7If9Ozs7X3D/P/c893mD1fjx47dqX1NT0wAnYTD5+BWPxZK17Ynafxw8JfbbsdL3wlbI5/PR0NCw6XFzc3OUSqUtPANg++k5QJr0HCAt+g2QJj3nGY2NjVlHAGBLyuWovftrMfqOL/RZ6pl0QLSc9s0o16bfyx9c1RY/uHNlorbrjqPibYdMST0LAAAAADB8GH7ZTlVVVVFXVxetra2xbt26Le5ta2uLrq6uiNj6wZKhoFgsZh2BlFzx4Jq4/IE1idqek0bHu46Y6vtgO5VKJV87IDV6DpAmPQdIi34DpEnPAWDQKfXGmJs+HjUP/aLPUtfsedF64v9GVKR/U76u3lJ84uolUSo/W6vI5+ITp8yOikI+9TwAAAAAwPDhN4wvwrRp0yIiYvXq1Vu88Lly5bN3Nvrnc2CoeGJ9R1xy/eOJ2uiqQlw8f05UukgBAAAAAACQru72qL/inZsdfOnY963RevL/ZTL4EhHxzduWx5J1HYnaOw6bGrvsMCqTPAAAAADA8OGT6y/CbrvtFhERXV1dsWTJkufd99BDD/V5DgwF3b2l+NiCRdHRU0rUzzlpZkwbm81FEwAAAAAAgJEq174mxv7ujVH1xE2Jejly0XbkudF+1LkR+UIm2R5Y1RY/umtVorb7xFHxloMnZ5IHAAAAABheDL+8CAcffPCmP994442b3VMqleLmm2+OiIjRo0fHXnvtlUo26A+X3vJkLHx6Y6L28r13iJN2H59RIgAAAAAAgJGpsH5RjP31q6NizYOJerlQHa3zvhKd+701o2QRXb2luOCqxVEqP1uryOfignmzo6LgkjQAAAAA8OL5TeOLMGfOnNhjjz0i4pnhl0cffbTPngULFsSKFSsiIuKUU06JioqKVDPC9rp5UVP87J7VidrMcTXxweN2zigRAAAAAADAyFSx8q5o+M3rotC6IlEvVY+N5lf8KLrnzMso2TO+/pfl8fj6zkTtPw+fGnN2GJVRIgAAAABguBnRkxiPPPJIrF797If7W1paNv159erVcdNNNyX2H3vssX1e4y1veUucd9550d3dHRdddFG88pWvjL322iu6u7vjtttui+uvvz4iIiZPnhynn376gPw9slIoZHNkOgPvqZauuPDqJYlaVSEXn3nFbjGmtiqjVENbPp/f4mOA/qTnAGnSc4C06DdAmvQcAAaTqscWRN11H4pcqTtRL9ZPj+bTvxulxpkZJXvG/Stb4yd/W5Wo7TlxdPzHwVMySgQAAAAADEcjevjlhhtuiJtvvnmzawsXLoyFCxcmapsbfpk5c2a8973vjUsvvTQ6OjriZz/7WZ89kydPjrPPPjtqa2v7Jfdg0djYmHUEBkBvsRTv/MVfo7mzN1H/+Ol7xcG7Tsso1fDT0NCQdQRgBNFzgDTpOUBa9BsgTXoOAJkol6P23m/H6Nsu6bPUs+M+0TL/W1EeNSGDYM/q7CnFBVcviVL52VplIRfnnzIrKvK57IIBAAAAAMPOiB5+6S8veclL4vOf/3xceeWVcc8998T69eujoqIiJk2aFIceemjMmzcvqqurs44JW+XSPy2KOx9fn6idMndSvOmQ6RklAgAAAAAAGGFKxRj9509G7f0/6rPUNeP4aD35SxGVo9LP9S++/pcn44n1nYnaOw+fFrMnZJ8NAAAAABhecuVyufzC24CR4PbF6+JN374jcXeuqWNr48r/OSoaRlVmFwwAAAAAABh21q5dm3WEwamnI+qufW9UL72+z1LH3DdF+9HnR+QLGQRLum9Fa7zjZw/Fcy827zVpdHzn3/Zy6ssAKBQK0djYuOlxU1NTFIvFDBMBw5meA6RJzwHSot8AadJznjFhQv+eXO3kF7ZbU1NT1hHoR00be+J/fnZfYvClkIv41Pw5Uepqi6au7LINB/l8PhoaGjY9bm5ujlKplGEiYDjTc4A06TlAWvQbIE16zjOee1EGgHTkOtZF/YL/jMqn/t5nrf3wD0fH/v8Zkct+sKSzpxifuHpJYvClspCL8+fNMvgCAAAAAAwIwy9st5E4fTZclcvl+PgVj8Watu5E/V1H7hRzJ43ybz0ASqWSryuQGj0HSJOeA6RFvwHSpOcAkIb8hqXRcPnbotC8LFEv56ui9YTPRPeuL8soWV9fu3V5LGvqTNT+64hpMWvCqIwSAQAAAADDneEXIH52z+q4dcmGRO3gnevjPw6enE0gAAAAAACAEaRi9b1Rv+A/I9+5PlEvVddHy6lfj96ph2SUrK+/L2+Nn929OlGbO3l0vPklrisBAAAAAAPH8AuMcA+vbo//u/nJRG3cqIq48NTZkc85lh4AAAAAAGAgVS2+JuqufV/kil2JerFuSrTM/04Ux++aUbK+OnuK8YmrF0f5ObWqQi4umDc7CnnXlQAAAACAgWP4BUaw9u5ifGzBY9FbKifqF546OyaMrsooFQAAAAAAwMhQc98PYvSfPxm5SF6r6Z2wZ7TM/3aUxkzMKNnmffXPy+PJDckhnXcduVPMGF+bUSIAAAAAYKQw/AIjVLlcjkuuW9rnAsX/d/DkOHTG2GxCAQAAAAAAjATlUoz6yyUx6u/f6bPUPf2oaJ33lShXjckg2PO7d3lL/Pye1YnaPlPGxL8dOCmjRAAAAADASGL4BUaoKx5cG1c9vC5Rmzt5dLzriGkZJQIAAAAAABgBerui7voPRvWiK/ssde75umg75sKIQmUGwZ5fR3cxPnH1ksT5NNUVufj4vFlRyOcyywUAAAAAjByGX9huhUIh6whsp8fXdcQlNzyeqI2pLsQlL9stqqsG18WU4SKfz2/xMUB/0nOANOk5QFr0GyBNeg4AAyXXuSHqr3hnVK76W5+19kPeGx0veXdEbvANk3zlz0/G8g1didq7jtwpZoyrzSgRAAAAADDSGH5huzU2NmYdge3Q2VOMj/3wgejsKSXqn3n1vjF35uSMUo08DQ0NWUcARhA9B0iTngOkRb8B0qTnANBfxtzwkT6DL+V8RbQdd3F07fHqjFJt2d1PtsQv7n0qUdt36ph44wGTMkoEAAAAAIxEblcHI8ynr3w4Hl7Vkqj92yHT47R9DL4AAAAAAAAMpPajzo3SqAmbHpcqx0TL/O8M2sGXjd3FuPDqJYladUU+Pn7yrCjkB98JNQAAAADA8GX4BUaQax5cHT+4/YlEbbeJdfHx+XtmlAgAAAAAAGDkKNXvFC2nfSvKFbVRHD0xml/98+iZfmTWsZ7Xpbc8GSuauxK1M4+aFjuPq80oEQAAAAAwUlVkHYChq6mpKesIbINVLV3xoV/dl6jVVOTjU6fNjo62lujIKNdIkc/no6GhYdPj5ubmKJVKGSYChjM9B0iTngOkRb8B0qTnPKOxsTHrCADDUu/EfaLltG9EcezMKNVNyTrO8/rbsub41d+fStT2m1oXbzhgUkaJAAAAAICRzPAL261YLGYdga3UWyrH2X9cGC2dvYn6B1+6c8wYV+3fMgOlUsnXHUiNngOkSc8B0qLfAGnScwDobz07HZF1hC3a2F2MC69emqhVV+Tj/HmzIp/LZZQKAAAAABjJ8lkHAAbet25bHvetaEvUTtxtXLx87x0ySgQAAAAAAMBg9X83L4uVLV2J2llH7xQ7NdZklAgAAAAAGOkMv8Awd9ey5vjuHSsTtSn11XHOSTMj585cAAAAAAAAPMedTzTHr+97OlE7YFpdvG7/iRklAgAAAAAw/ALD2vr2njj3isVRfk6tkM/FxafPiTHVFZnlAgAAAAAAYPBp7y7GJ69ZkqjVVOTj4/NmRd5N1QAAAACADBl+gWGqVC7HBVcvjnXtPYn6mUdOi7mTx2SUCgAAAAAAgMHqyzcvi1Ut3YnaWUfvFNPG1mSUCAAAAADgGYZfYJj66d9Wx21LmxO1w2Y0xJsPmpxRIgAAAAAAAAarOx5vjt/e93SiduBOdfHa/SdmlAgAAAAA4FmGX2AYenBVW1z65ycTtfGjK+MTp8x2JD0AAAAAAAAJbV298clrliRqtZX5OO/kWa4tAQAAAACDguEXGGbaunrjYwsWRbFU3lTLRcSFp86OcaMrswsGAAAAAADAoPTlm5fFU63didr/HD09po2tySgRAAAAAEBSRdYBGLoKhULWEfgX5XI5Lr7u8VjR3JWov+2wqXH4rHEZpSIiIp/Pb/ExQH/Sc4A06TlAWvQbIE16DgAjyR2Pb4jf/WNNovaSnerj1fvtmFEiAAAAAIC+DL+w3RobG7OOwL/4xV3L4tpH1iVqB+7cGB+dv09UFlygH0waGhqyjgCMIHoOkCY9B0iLfgOkSc8BYLhq6+qNT16zNFEbVZmPj8+bFflcLqNUAAAAAAB9+TQ8DBOLnm6N8//4YKJWX1MRX37DfgZfAAAAAAAA6OOLNy2Lp1q7E7X/OWZ6TGmozigRAAAAAMDm+UQ8DAOdPcV490/vjc6eUqL+2dfsE9MaR2WUCgAAAAAAgMHqtqUb4g/3r0nUDp5eH6/ed8eMEgEAAAAAPL+KrAMwdDU1NWUdgf/n4msXxyOrWxO11+0/KQ6ZWuPfaZDI5/PR0NCw6XFzc3OUSqUtPANg++k5QJr0HCAt+g2QJj3nGY2NjVlHAGCAtHb2xkXXLEnURlXm47yTZ0Uul8soFQAAAADA8zP8wnYrFotZRyAibnh0ffzq3qcStV12GBXvOWYn/0aDWKlU8u8DpEbPAdKk5wBp0W+ANOk5AAw3X7hpWTzd1pOovffYnWNyQ3VGiQAAAAAAtszwCwxhK5u74pP/cleumop8XDx/TlRX5DNKBQAAAAAADBXr16+P22+/Pe69995YsWJFbNiwIcaMGRO77bZbvPzlL49ddtkl64j0s1uXbIjLH1iTqB2yc328cp8dMkoEAAAAAPDCDL/AENVbLMW5VyyKtq7kHSc/fPyMmDm+NqNUAAAAAADAUHLVVVfFH/7wh5g4cWLsu+++UV9fH6tWrYq77ror7rrrrnjPe94Thx9+eNYx6Sctnb3xqWuTN1YbXZWP806eFblcLqNUAAAAAAAvzPALDFHfuG1F/GNlW6I2b4/xcfrcCRklAgAAAAAAhpo5c+bEBRdcEHvuuWei/vDDD8eFF14Y3/rWt+Kggw6KysrKjBLSn75w4xOxpq0nUXvfsTvHpPrqjBIBAAAAAGydfNYBgG13x+PN8f2/rkzUpo2tjo+eMMNduQAAAAAAgK12yCGH9Bl8iYjYY489Yu7cudHe3h7Lli3LIBn97c+Lm2LBg2sTtcNmNMTL994ho0QAAAAAAFvPyS8wxKxr74nzr1wc5efUKvK5uHj+nBhT7UcaAAAAAADS0tzcHIsWLYpFixbF4sWLY/HixdHa2hoREcccc0yceeaZW/1aa9asiauuuiruueeeWLduXVRUVMSkSZPisMMOi5NPPjmqq9M/maNQKCT+m6GrpbM3PnXt0kRtdFUhzj15phurAQAAAABDgk/KwxBSKpfj/KsWx7qNyePozzp6p9hz0piMUgEAAAAAwMh0xhln9Mvr/O1vf4tLL700Ojo6NtW6uro2DdTccMMNcfbZZ8ekSZP65f22xtq1a+P++++PxsbGmD59emrvy8D4/J+eiLXtyetL7z9uekysS3+oCgAAAABgexh+gSHkR3etijseb07Ujpw1Nv7twPQudgEAAAAAAH1NmDAhpk6dGvfdd982PW/p0qXxpS99Kbq7u6OmpiZe8YpXxNy5c6O7uzv+8pe/xA033BCrVq2KT3/603HJJZdEbW3tAP0NntXb2xuXXnpp9PT0xJve9KbI5/MD/p4MnJsXNcWVD61N1A6f2RAvm7tDRokAAAAAALad4RcYIu5f2Rpfu3V5ojZhdGWcP2+W4+gBAAAAACADr3nNa2L27Nkxe/bsGDt2bDz99NPx7ne/e5te4/vf/350d3dHoVCIc889N3bddddNa3Pnzo3JkyfHj3/841i1alVcfvnl8brXva7Pa/zwhz+Mnp6ePvXnc+qpp8bkyZM3u1YqleJrX/taPPzww3H88cfH0UcfvU1/HwaX5o7euPi6pYnamOpCnHuS60sAAAAAwNBi+AWGgNbO3jhnweIolsqbarmIuOi02dE4qjK7YAAAAAAAMIJtbhBlWyxatCgefvjhiIg47rjjEoMv/zR//vy48cYbY8WKFXHVVVfFq171qqioSF7iu+6666Krq2ur3/fQQw/d7PBLqVSKyy67LG699dY46qij4owzztjGvxGDzef/9Hisa08ORn3guJ1jx7qqjBIBAAAAAGwfwy9st0KhkHWEEaFcLsfF1z0eK1uSF63ecfi0OGTmuIxSsa3y+fwWHwP0Jz0HSJOeA6RFvwHSpOcAabnzzjs3/fm4447b7J58Ph/HHHNM/PSnP4329vZ48MEHY999903s+dGPfvSis/zzxJdbbrkljjjiiDjzzDP1vyHupsfWx1UPr0vUjpw1NubvNSGjRAAAAAAA28/wC9utsbEx6wgjwk//uiyuW5i8MHHQjMb4yGl7R0XBRaehqqGhIesIwAii5wBp0nOAtOg3QJr0HGCgLFy4MCIiqqurY9asWc+7b88990w851+HX16s5w6+HH744XHWWWcZfBniNnT0xKevezxRq6suxDknzYxcLpdNKAAAAACAF8FvrWEQW7i6NT5x+YOJWkNtZXz5DfsbfAEAAAAAgCFu+fLlERExadKkKBQKz7tvypQpfZ7TX0qlUlx22WVxyy23xKGHHmrwZZj43A1PxLqNPYnaB166c+wwpiqjRAAAAAAAL46TX2CQ6uguxrt/ek909ZYS9c+9Zp+YMrY2o1QAAAAAAEB/6O7ujtbW1oiIGD9+/Bb3jhkzJqqrq6OrqyvWrVu3xb3b6te//nXcfPPNUVNTE1OmTInf/OY3ffYcfPDBMWPGjK1+za3NuKWBH7bfDQvXxTWPJP8Njp7TGC/be6JTX4awfx1KM6QGDCQ9B0iTngOkRb8B0qTnDAzDL2y3pqamrCMMa5+8enE89nRbovaGAyfFQVOqfe2HoHw+Hw0NDZseNzc3R6lU2sIzALafngOkSc8B0qLfAGnSc57R2NiYdQQY1jo7Ozf9uaam5gX319TURFdXV+J5/WHNmjWb8vz2t7/d7J4dd9xxm4Zf3vWud23Vvl/+8pdb/ZpsnfXt3XHJ9X9L1BpqK+PzrzsgxtW/8PcZQ8dz/78KwEDTc4A06TlAWvQbIE16Tv8w/MJ2KxaLWUcYtq59ZF389r6nErVddxwVZx21k6/7MFEqlfxbAqnRc4A06TlAWvQbIE16DjAQuru7N/25ouKFL9n9c89zn9cfzjzzzDjzzDP79TXJzsf/8ECsbUt+j1zwsj1jR4MvAAAAAMAQZ/gFBpkVGzrjU9cuTdRqK/Nx8fw5UV3hyCsAAAAAABgOqqqqNv25t7f3Bff/c89znzdYXXbZZVlHGJGuvH9VLPjHqkTtxD0nxiv2m5pRIgAAAACA/mP4BQaR3mIpPrZgUbR3J+8i+ZETZsSMcbUZpQIAAAAAAPpbTc2zJ3F0dna+4P5/7nnu8war8ePHb9W+pqamAU4ycqzf2BPn/O4fiVpDTUV8+LidYsOGDdmEol/l8/loaGjY9Li5uTlKpVKGiYDhTM8B0qTnAGnRb4A06TnPaGxs7NfXM/wCg8jXbl0eD65uT9RO3XNCzN9rh4wSAQAAAAAAA6Gqqirq6uqitbU11q1bt8W9bW1t0dXVFRFbP1gyFBSLxRfexFb59DWLo2lj8gShDx2/czTWFnydh6lSqeTfFkiNngOkSc8B0qLfAGnSc/pHPusAwDNuX7ohfnhX8ij66Y018ZETZmQTCAAAAAAAGFDTpk2LiIjVq1dv8cLnypUr+zwH/um6R9bF9Y+uT9SO26UxTt59+AxKAQAAAAAYfoFBYG1bd3z8ysWJWmUhFxfPnxOjqwoZpQIAAAAAAAbSbrvtFhERXV1dsWTJkufd99BDD/V5DkRErG/vic/c8Hii1lBbER89YWbkcrlsQgEAAAAADADDL5CxUrkcH79ycTR1JI+if88x02P3iaMzSgUAAAAAAAy0gw8+eNOfb7zxxs3uKZVKcfPNN0dExOjRo2OvvfZKJRuDX7lcjkuuXxob/uUa00eOnxHjR1dmlAoAAAAAYGAYfoGM/eDOlXHnspZE7ajZY+P1+0/MKBEAAAAAAJCGOXPmxB577BERzwy/PProo332LFiwIFasWBEREaecckpUVFSkmpHB69qF6+NPjzUlai/dpTFO3G1cRokAAAAAAAaO345Dhu5b0Rpfv3V5orbjmMo4f94sR9EDAAAAAMAg98gjj8Tq1as3PW5pefZmV6tXr46bbropsf/YY4/t8xpvectb4rzzzovu7u646KKL4pWvfGXstdde0d3dHbfddltcf/31ERExefLkOP300wfk75GVQqGQdYQha117d3zuhscTtbG1FXHOybMNSA1T+Xx+i48B+pOeA6RJzwHSot8AadJzBobffEJGWjp745wFi6JYfraWz0VcdNqcGFvrKHoAAAAAABjsbrjhhrj55ps3u7Zw4cJYuHBhora54ZeZM2fGe9/73rj00kujo6Mjfvazn/XZM3ny5Dj77LOjtra2X3IPFo2NjVlHGJLK5XJ8dMHdsaGjN1H/1Cv3idnTJmaUirQ1NDRkHQEYQfQcIE16DpAW/QZIk57TPwy/QAbK5XJ88polsbq1O1E/47CpccBO9RmlAgAAAAAAsvCSl7wkPv/5z8eVV14Z99xzT6xfvz4qKipi0qRJceihh8a8efOiuro665gMEn+8b2Vc8+BTidppe0+O0/aZnFEiAAAAAICBlyuXy+UX3gZ9rV27NusIQ9av//5UXHL944naAdPq4rLX7RGFfC6bUAyoQqGQuINdU1NTFIvFDBMBw5meA6RJzwHSot8AadJznjFhwoSsIwDwL55u7YyTvnhLbNjYs6k2fnRVXPu+o2P8GANSAAAAAMDw5eQXSNljazbGF258IlFrqK2Ii06bY/AFAAAAAAAYMZqamrKOMKSUy+X48O8WJgZfIiI+euLMyPdsjKamjRklIw35fD4aGho2PW5ubo5SqZRhImA403OANOk5QFr0GyBNes4znnuzuf5g+IXtVigUso4w5HR0F+Njly+K7mLywKULT50Tk8fWZpSKNOTz+S0+BuhPeg6QJj0HSIt+A6RJzwFIx0g8VevFuPKhtXHTY+sTtRN3GxfHzRnrazkClUol/+5AavQcIE16DpAW/QZIk57TPwy/sN36exJrJPj0r++Lpes7ErW3HTEzXn7Q7IwSkZXnTnMCDDQ9B0iTngOkRb8B0qTnAJC1tW3d8fk/PZ6ojRtVER85fkYmeQAAAAAA0uZ2dZCSP/x9Rfzyb8sTtblT6+Mjp+yWUSIAAAAAAAAGu3K5HJ+6bmm0dCbvDHn2iTNj7KjKjFIBAAAAAKTL8Auk4PG17XHO7x5I1EZXFeLSNx4Q1RWFjFIBAAAAAAAw2F3x0Nr48+INidrJu4+P43YZl00gAAAAAIAMVGQdgKGrqakp6whDQk+xFO/68f3R1tWbqH/spFkxttAdTU3dGSUjTfl8PhoaGjY9bm5ujlKplGEiYDjTc4A06TlAWvQbIE16zjMaGxuzjgAw4q1p647//dMTidr4UZXxoeN3zigRAAAAAEA2DL+w3YrF4gtvIr584xPx8Or2RO30vSbEybuP8zUcwUqlkn9/IDV6DpAmPQdIi34DpEnPASAL5XI5PnXt0mjtSv5v0NknzYixtZUZpQIAAAAAyIbhFxhAty7ZED+5e3WitvO4mvjQ8TOyCQQAAAAAADBIFAqFrCMMan+8/+m4dcmGRO3UPSfE8bvtkE0gMpXP57f4GKA/6TlAmvQcIC36DZAmPWdgGH6BAbKmrTsuuGpxolZVyMXF8+fEqCoXcwAAAAAAgJGtsbEx6wiD1urmzvj8nx5P1Haoq46LX7N/jB1VlU0oBpWGhoasIwAjiJ4DpEnPAdKi3wBp0nP6hxEiGADFUjnOu2JxbOjoTdTfe+z02G3H0RmlAgAAAAAAYLArl8vx0d/+I1o7k9eZLn7l3gZfAAAAAIARy/ALDIDv/XVl/O3JlkTt2DmN8dr9JmaUCAAAAAAAgKHgV39bHjctXJOovWr/qXHinq4zAQAAAAAjV0XWAWC4uXd5S3zztuWJ2sS6qjjv5FmRy+UySgUAAAAAADC4NDU1ZR1h0Fnd0hUXXv5gojZhTGW85+ipvl4jXD6fj4aGhk2Pm5ubo1QqZZgIGM70HCBNeg6QFv0GSJOe84zGxsZ+fT3DL9CPmjt649wrFkep/GytkIv41Pw50VDrxw0AAAAAAOCfisVi1hEGlXK5HBdetSjaupNfl3NPnBmjK3O+XiSUSiXfE0Bq9BwgTXoOkBb9BkiTntM/8lkHgOGiXC7HhdcsiadauxP1/zxiWuw3tS6jVAAAAAAAAAwFf7h/Tdz+eHOiNn+vCXHk7P69OyIAAAAAwFBk+AX6yS/vfSpuXpQ8bv6g6fXxloOnZJQIAAAAAACAoWB1S1d88aYnErUdxlTGB47bOaNEAAAAAACDi+EX6AcLn26PL928LFFrrK2IC0+dHYV8LqNUAAAAAAAADHblcjk+ec2SaO8uJernnjQr6moqMkoFAAAAADC4GH6BF2ljdzHOvnxR9BTLifoFp8yOHcZUZZQKAAAAAACAoeB3/1gTf32iJVE7fe4OccSssdkEAgAAAAAYhAy/wIv02Rsej2VNnYnav79ksgsSAAAAAAAAbNGq5q740k1PJGoT66ri/cdOzygRAAAAAMDgZPgFXoQrHlwTCx5cm6jtOWl0/PdR0zJKBAAAAAAAwFBQLpfjk9csiY09pUT93JNmRl1NRUapAAAAAAAGJ8MvsJ2eWN8Rl1z/eKI2uqoQF8+fE5UFP1oAAAAAAAA8v9/c93TcuawlUXv53jvEYTPHZhMIAAAAAGAQc8sg2A7dvaX42IJF0fEvd+L62EkzY9rYmoxSAQAAAAAADB2FQiHrCJlZsaEzvnzzskRtUl1VfOD4mSP668Lzy+fzW3wM0J/0HCBNeg6QFv0GSJOeMzAMv8B2uPSWJ2Ph0xsTtZfvvUOcvPv4jBIBAAAAAAAMLY2NjVlHyESpVI7//tVf+9xk7bOv3S+mT9oho1QMNQ0NDVlHAEYQPQdIk54DpEW/AdKk5/QPwy9st5F616mbHlsfP7tndaI2c3xtfOSEWSP2a8ILM8EJpEnPAdKk5wBp0W+ANOk5AAykn/z1ibh9ybpE7Y0H7xRH72rwBQAAAADg+eTK5XI56xAwVKxq7ohTvvzn2LCxZ1OtqiIff3z3EbH7pPoMkwEAAAAAADDYLVu3MeZ9+ZbY2F3cVJs6tjaufu9RUVdTmWEyAAAAAIDBzckvsA2+ftPixOBLRMTH5+9p8AUAAAAAAGAbNTU1ZR0hdRddvjAx+BIRce7JM6O3oy2aOjIKxZCQz+ejoaFh0+Pm5uYolUoZJgKGMz0HSJOeA6RFvwHSpOc8o7GxsV9fz/ALbINzTtszaioL8Y1blkRExClzJ8WbDpmecSoAAAAAAIChp1gsvvCmYeajJ8yIqkIuFjy4NiIiXrXvjnHQTnUj8mvBi1MqlXzfAKnRc4A06TlAWvQbIE16Tv8w/MJ2G4l344qI+K/DJsXeE6vjslufjI8ePz02bNiQdSSGABOcQJr0HCBNeg6QFv0GSJOe84z+vhsXABH1NRVxwSmz4/hdx8X3/roy3nOMm6wBAAAAAGwNwy9st5E8fXbozvVxyPQ9I5fLjeivA9vPBCeQJj0HSJOeA6RFvwHSpOcA0N+Omt0YR84aG7lcLusoAAAAAABDQj7rADBUuRgBAAAAAADA9nKtCQAAAABg6xl+AQAAAAAAAAAAAAAAYNAy/AIAAAAAAAAAAAAAAMCgZfgFAAAAAAAAAAAAAACAQcvwCwAAAAAAAAAAAAAAAIOW4RcAAAAAAAAAAAAAAAAGrYqsAwAAAAAAAAAjT6FQyDoCDBn5fH6LjwH6k54DpEnPAdKi3wBp0nMGhuEXAAAAAAAAIHWNjY1ZR4Ahq6GhIesIwAii5wBp0nOAtOg3QJr0nP5hhAgAAAAAAAAAAAAAAIBBy/ALAAAAAAAAAAAAAAAAg1ZF1gEAAAAAAACAkaepqSnrCDBk5PP5aGho2PS4ubk5SqVShomA4UzPAdKk5wBp0W+ANOk5z2hsbOzX1zP8AgAAAAAAAKSuWCxmHQGGrFKp5GcISI2eA6RJzwHSot8AadJz+kc+6wAAAAAAAAAAAAAAAADwfAy/AAAAAAAAAAAAAAAAMGgZfgEAAAAAAAAAAAAAAGDQMvwCAAAAAAAAAAAAAADAoGX4BQAAAAAAAAAAAAAAgEHL8AsAAAAAAAAAAAAAAACDluEXAAAAAAAAAAAAAAAABi3DLwAAAAAAAAAAAAAAAAxahl8AAAAAAAAAAAAAAAAYtAy/AAAAAAAAAAAAAAAAMGhVZB2AoatQKGQdAYaMfD6/xccA/UnPAdKk5wBp0W+ANOk5AAAAAAAAMLgYfmG7NTY2Zh0BhqyGhoasIwAjiJ4DpEnPAdKi3wBp0nMAAAAAAAAgW4ZfAAAAAAAAgNQVCoWsI8CQ4WQ6IE16DpAmPQdIi34DpEnPGRi5crlczjoEAAAAAAAAAAAAAAAAbI6TX9huTU1NWUeAISOfz0dDQ8Omx83NzVEqlTJMBAxneg6QJj0HSIt+A6RJz3lGY2Nj1hEAAAAAAAAgIgy/8CIUi8WsI8CQVSqV/AwBqdFzgDTpOUBa9BsgTXoOAAAAAAAAZMvwCwAAAAAAAJC6pqamrCPAkOFkOiBNeg6QJj0HSIt+A6RJz3lGY2Njv76e4RcAAAAAAAAgdU7Vgu3nZDogTXoOkCY9B0iLfgOkSc/pH4Zf2G4TJkzIOgIMGevWrYvXve51ERFx2WWXxfjx4zNOBAxneg6QJj0HSIt+A6RJzwFIh2tNsPX8/xMgTXoOkCY9B0iLfgOkSc8ZGPmsAwAAAAAAAAAAAAAAAMDzMfwCAAAAAAAAAAAAAADAoGX4BQAAAAAAAAAAAAAAgEHL8AsAAAAAAAAAAAAAAACDluEXAAAAAAAAAAAAAAAABi3DLwAAAAAAAAAAAAAAAAxahl8AAAAAAAAAAAAAAAAYtAy/AAAAAAAAAAAAAAAAMGgZfgEAAAAAAAAAAAAAAGDQypXL5XLWIQAAAAAAAAAAAAAAAGBznPwCAAAAAAAAAAAAAADAoGX4BQAAAAAAAAAAAAAAgEHL8AsAAAAAAAAAAAAAAACDluEXAAAAAAAAAAAAAAAABi3DLwAAAAAAAAAAAAAAAAxahl8AAAAAAAAAAAAAAAAYtAy/AAAAAAAAAAAAAAAAMGgZfgEAAAAAAAAAAAAAAGDQMvwCAAAAAAAAAAAAAADAoGX4BQAAAAAAAAAAAAAAgEGrIusAAGlqbm6ORYsWxaJFi2Lx4sWxePHiaG1tjYiIY445Js4888xter177703rr/++li8eHG0tLREfX19zJ49O0444YTYf//9t+o1isVi3HDDDXHrrbfGihUrorOzM8aNGxd77713nPL/t3fnQVaW6d2Afw0NgiD75jIMAkFUcIIo7oKgEwQXZkIsZ5w4atTRaJwlmhgrU5rCCVE0pSm30ZlopdQwuEZc46i4oLiPI6KiPSoKNIiArdKADf39QfX5uu2FbmyaI7muqq56z3me9z5PU3Xu85y+ud/36KPzrW99q1lxKioq8tBDD+XFF1/Mxx9/nCTp27dv9t9//0yaNCk77bRTi3434OsrKyvLq6++mrfeeisfffRRKioq0r59+/Tq1St77LFHxo8fn+HDhzc7npwDNGTNmjV59dVXC3ublStXpqKiIuvXr0+XLl2y2267ZdSoURk/fnyz3ptvv/12Hnnkkbz11lv59NNPs+OOO2bQoEEZO3ZsDj300Gav65lnnsmcOXPywQcfZM2aNenevXuGDx+eiRMnZtiwYc2KsW7dujz88MOZN29eysvLU1VVld69e2fffffN0Ucfnb59+zZ7PcDWd+utt+a+++4rPL744ouz9957N3mO/Q2wOSeccEKz5u2111655JJLmpwj5wAArUGtCWhLak1AW1BrAoqFWhOwNag1bV9Kqqurq7f1IgDaSlMfYi0pSGzcuDE33nhjHn/88UbnjB8/PmeeeWbatWv8JlsVFRWZPn16ysrKGhzv0KFDTjvttEyYMKHJ9bzzzjuZMWNGVq9e3eB4z549c8EFF2To0KFNxgFaz8UXX5w333xzs/MOP/zwnHXWWSktbbwnWc4BmvLHP/4xl1566Wbn7bTTTvm7v/u7/Pmf/3mjc2bNmpW77rorjX1N3HffffOLX/wiHTt2bDTG+vXrc+WVV+bVV19tcLykpCRTp07NX/3VXzW53vLy8kyfPj1Lly5tcLxz584577zzMnr06CbjAG3j/fffzz/90z9lw4YNheeaKkjY3wDN1RoFCTkHAGhNak32KNBW1JrkHGgrak1qTVAM1JqArUWtafvizi/A/1l9+vTJrrvumtdee63F586cObPwIbb77rvnuOOOS//+/bNs2bLcd999ee+99/L444+nW7du+eEPf9hgjI0bN+aKK64ofIiNGTMmRx55ZLp27Zp33nknd999dz799NPceOON6dWrV6NdoStWrMhll11WuMrP5MmTC1/MX3755TzwwANZtWpVLrvssvzbv/1bevfu3eLfF2i5lStXJtm0kTzooIMyfPjw9OnTJxs3bszChQtz//33Z+XKlXnqqaeyYcOG/PSnP200lpwDbE7v3r2z9957Z/DgwenTp0969OiR6urqfPLJJ5k3b15eeOGFfPbZZ7n88svzr//6rxk0aFC9GI8++mjuvPPOJEn//v3zve99LwMHDsyqVavy4IMP5o033sgrr7yS66+/vsmcdd111xWKEXvvvXcmTZqUnj17ZtGiRbnnnnuybNmy3HHHHenZs2eOPPLIBmNUVlbWKUZMmDAhhxxySDp27Jj58+fn3nvvTWVlZa666qpMmzatwd8HaDsbN27Mr3/962zYsCHdu3fPp59+utlz7G+Alvrud7+b7373u42Od+rUqdExOQcA2FrUmoCtSa1JzoG2pNZU//cB2o5aE9AW1Jq2D5pfgP9Tpk6dmiFDhmTIkCHp0aNHli9fnnPPPbdFMZYsWZLZs2cnSYYMGZJ/+Zd/KVyRYujQodlvv/1yySWXpKysLLNnz8748eMzYMCAenHmzJmTt956K8mmD9XTTz+9MDZ06NCMGjUq//iP/5jKysrcfPPN2WeffdK+fft6cWbOnJmKiookyXnnnZeDDjqoMLbnnntm8ODBueqqq/Lpp59m5syZzb7iGPD17LrrrvnBD36QAw88sF4397Bhw3L44Yfnl7/8ZZYuXZq5c+fmqKOOyl577VUvjpwDbM6IESNy/fXXNzp+8MEH54UXXsgVV1yRqqqq3HnnnTn//PPrzPn8889z2223Jdn0nzZ+9atfpVu3boXx0aNHZ8aMGXn55Zczd+7cHHnkkQ1eYWf+/Pl59tlnC+dccMEFhRxYk7MuvPDCrFixIrfddlsOPPDAdO3atV6c++67r1CM+NGPfpTjjjuuMDZs2LDsvffeueSSS7Ju3brccsstm73tLLB1PfTQQykrK8uuu+6a/fffP/fee2+T8+1vgC3RrVu3DBw4sMXnyTkAQGtTa7JHgbai1iTnQFtRa1Jrgm1NrQloC2pN24fG76sDsB064YQTMnr06PTo0WOLYzz44IOF2yueeuqp9W7FusMOO+TUU09NkmzYsCH3339/g3FqPgy7du2av/7rv643PmDAgHzve99LsulWrC+88EK9OatXr87TTz+dJPnOd75T50OsxsEHH5zvfOc7SZKnnnqq0ducAa3rwgsvzMEHH9zobQy7deuWk08+ufB43rx5Dc6Tc4DNaep2qTXGjBmTXXbZJUny5ptv1ht/7LHHsmbNmiTJSSedVKcYUfMap59+euG17rvvvgZfpybXtG/fvs78Gt26dctJJ52UJPniiy8avB1sVVVVHnrooSSbirvHHHNMvTl77LFHjjjiiCTJggUL8u677zbymwNb24oVK/K73/0uSXLGGWektHTz11mxvwHakpwDALQ2tSZ7FGgrak1yDrQVtSa1JtiW1JqAYifnFBfNLwAtUF1dnRdffDHJpi/Iw4YNa3DesGHDCl/6X3rppVRXV9cZX7JkSRYvXpwkOeigg7LDDjs0GGfcuHGF44Y+yGrHrvlS3lSc6urqvPTSS43OA9pW7SvZLFu2rN64nAO0ps6dOydJvvzyy3pjNbmmc+fOOeCAAxo8v3fv3hk5cmSSTVfdqqysrDNeWVmZ119/PUkycuTIRm+besABBxTW0lCueeONNwrFkbFjxzZacNlczgLaxm9+85usXbs2Y8eObfDKol9lfwO0JTkHAChG9ihAa1JrAtqSWhOwNag1AcVMzik+ml8AWmD58uVZtWpVkk23B2tKzWZ85cqV+fjjj+uM1dy6rPa8hvTo0SM777xzkuTtt9+uN97cOLXHap8DbFtVVVWF44b+4CbnAK1lyZIlef/995Ns+jJeW1VVVeFqVsOGDWvySjo17+8vv/wyZWVldcbKysoKea2pHFFaWlr4Y0Dtc2o0N9cMGTKk8MeAhnIWsPU9++yzeeWVVxq9Mk1D7G+AtiTnAADFyB4FaE1qTUBbUWsCtga1JqDYyTnFR/MLQAt89NFHheOvfpn/qpouzq+e19I4NeOffPJJ1q5d22CcHXfcMT169Gg0Rs+ePQtXvajpHgW2vQULFhSOG8oFcg7wdaxbty5Lly7N/fffn4svvrhwC9ZJkybVmbdkyZJs3LgxSfNzRFL//V0719TOSQ2pGd+wYUPKy8sbjdPUetq3b58BAwY0uBZg6/viiy9yyy23JElOOumkdOvWrVnn2d8AW2revHn5+c9/nh/96Ec5+eSTc9555+Waa67J/PnzGz1HzgEAipE9CtCa1JqArUmtCdia1JqAtqbWtH1ovM0agHo++eSTwnFjt1et0adPnwbPSzZ1dtbo1atXk3FqXqe6ujorV66s8wFZE3dza6lZz4cfflhvLcC2sXHjxtx7772FxwcffHC9OXIO0FJz5szJdddd1+j4lClTcuihh9Z5bktyRFI/17QkZ9UeX7FiRXbbbbd669lhhx3SpUuXzcb54IMPUlFRkS+//DIdOnRocj7Qem699dasXr06e+yxR8aPH9/s8+xvgC311SJBeXl5ysvL89RTT2X//ffPOeeckx133LHOHDkHAChG9ihAa1FrArYGtSa1Jmgrak1AW1Nr2j5ofgFogdpdlJ06dWpybs2tUb96XpJUVla2Spyax5uLUTvOV2MA28YDDzxQuPXzmDFjMnjw4Hpz5BygtQwaNChnnnlmhg4dWm+stXJES+LUHm8sTktyTU0cBQloG2+++WYef/zxtG/fPmeccUZKSkqafa79DdBSO+ywQ0aPHp2RI0dm1113TadOnVJRUZEFCxbk0UcfzWeffZYXX3wxl19+ef75n/85paX//0/ecg4AUIzsUYDWotYEtCW1JqA1qTXZ30BbUmvavnKO5heAFli/fn3huPYHXENqfyGufV6SfPnll60Sp+bx5mLUjvPVGEDbW7BgQW6//fYkSffu3XPGGWc0OE/OAVpq//33zxVXXJFk0/tv2bJlee655/LCCy/k6quvzimnnJLRo0fXOae1ckRL4tQebyxOS3JNQ3GAraOqqio33nhjqqurM3ny5AwcOLBF59vfAC11ww03NHiFzn322ScTJ07M9OnT895772XBggX53//930yaNKkwR84BAIqRPQrQGtSagK1FrQnY2tSa5Btoa2pN21fOabetFwDwTdKxY8fCcVVVVZNza39Y1T4vqfvh9HXi1DzeXIzacb4aA2hbH374YWbMmJENGzakQ4cO+fnPf57u3bs3OFfOAVqqS5cuGThwYAYOHJihQ4fmkEMOyfnnn59zzz03y5cvz+WXX545c+bUOae1ckRL4tQebyxOS3JNQ3GArePuu+/O4sWL06dPn0ydOrXF59vfAC3VUDGiRo8ePfKLX/wi7du3T5I8/PDDdcblHACgGNmjAF+XWhOwNak1AVubWpN8A21NrWn7yjmaXwBaoKnbpn7VunXrGjwvSTp37twqcWoeN+e2ZDVxmnO7M2DrWL58eS699NJ88cUXadeuXX72s59lr732anS+nAO0lsMPPzwHHnhgqqur89vf/jaff/55Yay1ckRL4jR1W9iaOC3JNQ3FAVrf4sWLc++99yZJTjvttC1639nfAK2tf//+2WeffZIk5eXlWblyZWFMzgEAipE9CvB1qDUB24paE9Aa1Jrsb6AYqTV9s2h+AWiB3r17F44/+eSTJueuWLGiwfOSpFevXoXj2h+UDal5nZKSkjrn1Y67ubXUXs9X1wK0jZUrV2batGlZtWpVSkpKcvbZZ2f//fdv8hw5B2hNNTln3bp1+cMf/lB4fktyRFL//d2SnFV7vE+fPnXGatazbt26fPHFF82K061btzpXyQC2jgceeCBVVVXp379/1q1bl7lz59b7+fDDDwvz58+fX3i+5o9v9jfA1rDbbrsVjmvnBDkHAChG9ijAllJrArY1tSbg61Jrsr+BYqXW9M1Ruq0XAPBNUvsDbvHixU3OXbJkSYPnNRRn0KBBjcapeZ3evXvX68Dcbbfd8qc//Slr1qzJ6tWr06NHjwZjrFq1KpWVlUmSXXfdtcl1A62voqIil156aZYtW5YkOfXUUzN27NjNnifnAK2pW7duheOPP/64cLzLLrukXbt22bhx42ZzTe3xr76/a+ea2jmpITXj7du3z4ABA+rFef755wuvN2zYsAZjbNiwIeXl5Q2uBdg6am6LvGzZslx99dWbnX/XXXcVjq+55pp06tTJ/gbYKkpKShp8Xs4BAIqRPQqwJdSagGKg1gR8XWpN9jdQrNSavjnc+QWgBfr165eePXsmSd58880m59aM9+rVK3379q0zNnz48MLxggULGo2xevXqLF26NEmyxx571BtvbpzaY7XPAba+NWvW5Fe/+lU++uijJMkPf/jDTJw4sVnnyjlAa2rstqylpaUZOnRokmThwoWpqqpqNEbN+7tDhw4ZMmRInbEhQ4aktLS0zryGVFVVZeHChfXOqdHcXFNWVla4RWtDOQsoTvY3wNZQ830rqXvlLDkHAChG9ihAS6k1yTlQLNSagGJgfwNsDWpN3xyaXwBaoKSkpHAb18WLFxe+TH/VwoULC92X++23X72u0F122aXQTfncc88Vvkx/1Zw5cwrHY8aMqTdeO/YTTzzR6Lpr4pSUlGS//fZrdB7QutatW5fp06fnvffeS5J8//vfz5QpU5p9vpwDtKbnnnuucDxw4MA6YzW5prKysnAlrK/65JNP8vrrrydJRowYkc6dO9cZ79y5c0aOHJkkef311xu9xerzzz9fuLpEQ7lm7733zo477pgkefLJJ1NdXd1gnM3lLKD1nXPOOZk1a1aTP1OnTi3Mv/jiiwvP9+vXL4n9DdD6li9fnj/+8Y9Jkv79+9cpSMg5AEAxskcBWkKtSc6BYqLWBHxdak32N1CM1Jq+WTS/ALTQpEmT0q7dpvR58803Z/369XXG169fn5tvvjnJpturTp48ucE4xx57bJLk888/z6233lpvvLy8PPfcc0+SZMCAAQ1+kPXo0SOHHXZYkuS1117LvHnz6s157rnn8tprryVJDj/88EZvcwa0rqqqqlxxxRV5++23k2zKHSeeeGKL48g5wObMmTOnXm74qvvvvz+vvvpqkk1Xpdhzzz3rjE+YMKFQBLj99tvz2Wef1RnfuHFjfvOb32Tjxo1JkuOOO67B16nJNRs2bMhvf/vbwvwaFRUVue2225IkXbp0yfjx4+vFKC0tzdFHH51k0x8OZs+eXW/OwoULC1/i99prr8LVxIBvBvsboLleeumlbNiwodHx1atX58orryxcTfQv/uIv6s2RcwCAYmSPAjSHWpOcA21FrUmtCb5p7G+A5lJr2v5yTunmpwBsP956662Ul5cXHldUVBSOy8vL63RNJsm4cePqxdhll11y3HHH5d57701ZWVl++ctf5vjjj0///v2zbNmy/M///E/hyjvHHntsdt555wbXMm7cuDzxxBN5++2388gjj2T16tWZMGFCunbtmnfffTd33XVXKisrU1JSklNPPTXt27dvMM6JJ56YP/zhD6moqMjVV1+dsrKyjB49Okny8ssv5/7770+SdOvWbYv+GApsmauuuqqwiRwxYkTGjx+fRYsWNTq/tLQ0u+yyS73n5Rxgc+64447813/9Vw444IAMHz48/fv3T6dOnbJ27dosWrQoTz/9dKE4WlpamjPPPLPwpbxG165dc9JJJ+Wmm27Kxx9/nIsuuijf//73M3DgwKxatSoPPPBA3njjjSTJIYcckr333rvBtYwYMSIHH3xwnn322bz00kuZNm1aJk+enJ49e2bRokW5++67s2LFiiTJSSedlK5duzYY57jjjsuzzz6bpUuX5tZbb015eXkOPvjgdOzYMW+88UbuueeebNiwIR07dswpp5zSSv+SQFuxvwGa6+abb85NN92UAw44IMOGDUu/fv3SsWPHVFRUZMGCBXn00UcL/5Fi+PDhDRYk5BwAoLWpNdmjQFtRa5JzoK2oNZ3SSv+SQFuxvwGaS61p+8s5JdWN3dcPYDt07bXX5sknn2z2/FmzZjX4/MaNG/PrX/+6yduGjR8/vsEv/LVVVFRk+vTpKSsra3C8Q4cOOe200zJhwoQm1/nOO+9kxowZWb16dYPjPXr0yAUXXJA/+7M/azIO0HpOOOGEFs3v27dvrr322gbH5BygKeecc04+/vjjzc7r3bt3zj777Oyzzz6Nzpk1a1buuuuuRm//PmrUqPz93/99Onbs2GiM9evX58orryxc/eurSkpK8pd/+ZebzZPl5eWZPn16li5d2uB4586dc9555xW+wAPFYdasWbnzzjuTbLoVfWMFTPsboDmau8854IADctZZZ6VLly4Njss5AEBrUmuyR4G2otYk50BbUWtSa4JiotYEtCa1pu0v52h+Af5Paa2CRI1XXnklv//971NWVpbPPvssO+20U4YMGZKjjjoqo0aNatZrbNiwIY899lieeeaZLF68OGvXrk2vXr0yYsSITJo0Kd/61reaFaeioiIPPvhgXnzxxcKHdb9+/bLffvtl8uTJ2WmnnZoVB2gdrVmQqCHnAA1ZsmRJXnnllbz11ltZtmxZVq9enc8//zwdO3ZMt27dMmjQoIwePToHHXRQdthhh83Gq7nCxJtvvplPP/00Xbp0ybe//e2MGzcuhx56aLPX9cwzz2TOnDn54IMP8sUXX6R79+7Zc889M3HixAwbNqxZMdauXZtHHnkk8+bNS3l5eaqqqtK7d++MGjUqkyZNSt++fZu9HqBtNLcgUcP+BmjKggULsmDBgixcuDDLli3LZ599lsrKynTq1Cm9e/fOsGHDMm7cuGbvLeQcAKA1qDUBbUWtSc6BtqLWBBQTtSagNak1bX80vwAAAAAAAAAAAAAAAFC0Gr+vDgAAAAAAAAAAAAAAAGxjml8AAAAAAAAAAAAAAAAoWppfAAAAAAAAAAAAAAAAKFqaXwAAAAAAAAAAAAAAAChaml8AAAAAAAAAAAAAAAAoWppfAAAAAAAAAAAAAAAAKFqaXwAAAAAAAAAAAAAAAChaml8AAAAAAAAAAAAAAAAoWppfAAAAAAAAAAAAAAAAKFqaXwAAAAAAAAAAAAAAAChaml8AAAAAAAAAAAAAAAAoWppfAAAAAAAAAAAAAAAAKFqaXwAAAAAAAAAAAAAAAChaml8AAAAAAAAAAAAAAAAoWppfAAAAAAAAAAAAAAAAKFqaXwAAAAAAAAAAAAAAAChaml8AAID/0wYNGpSSkpKccsop23opAAAAAAAAfMOoNQEAQNvQ/AIAAAAAAAAAAAAAAEDR0vwCAAAAAAAAAAAAAABA0Sqprq6u3taLAAAAAAAAAAAAAAAAgIa48wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAsN1YsmRJLrzwwuy7777p3r17OnTokP79+2fkyJH5wQ9+kFtuuSUVFRV1zhk0aFBKSkpyyimn1Hn+/fffT0lJSbN/xo0b1+i6nnjiifz4xz/O4MGDs+OOO6Zbt24ZOXJkLrjggixZsmQr/EsAAAAAAADQUmpNAABQvEq39QIAAABaw9NPP51jjjmmXsFh+fLlWb58eebPn5+ZM2emT58+OeaYY9pkTWvXrs2pp56amTNn1hubP39+5s+fn+uvvz7//d//nWOPPbZN1gQAAAAAAEB9ak0AAFDcNL8AAADfeOvWrcuJJ56YioqK7LTTTjn77LNzxBFHpF+/flm/fn3ee++9PPvss7nnnnuaHXPXXXfN66+/3uScWbNmZdq0aUmSb3/723XGqqurM3Xq1DzwwANJkmOPPTYnnHBCBg8enHbt2uWFF17IlVdemUWLFmXq1KmZO3du9ttvvxb+5gAAAAAAAHxdak0AAFD8Sqqrq6u39SIAAAC+jscffzwTJkxIksyePbvRq21VVVVlzZo16datW+G5QYMG5YMPPsiPf/zj3HLLLc1+zZdeeimHH354Kisrs+eee2bevHl14t50000588wz06FDh9x3332ZOHFivRirVq3KYYcdljfeeCOHHHJInnnmmWa/PgAAAAAAAK1DrQkAAIpfu229AAAAgK+rvLy8cHz44Yc3Oq+0tLRO0WBLLVmyJMcff3wqKyvTq1evzJ49u07c6urqXHbZZUmS8847r8FiRJL07NkzM2bMSJLMnTs377zzztdeGwAAAAAAAC2j1gQAAMVP8wsAAPCNt/POOxeOb7755q36WpWVlZkyZUqWLFmS0tLS3HnnnRkyZEidOQsWLEhZWVmSZOrUqU3Gq11Aee6551p/wQAAAAAAADRJrQkAAIqf5hcAAOAb79BDD83gwYOTJD/72c8yZsyYTJ8+PXPnzs369etb9bVOO+20vPjii0mS//iP/8gRRxxRb85LL71UOD7ooINSUlLS6E/Xrl0Lc2tfVQwAAAAAAIC2odYEAADFT/MLAADwjdehQ4fMnj07e+65Z5LkxRdfzEUXXZRDDz00PXr0yMSJE3P77bdnw4YNX+t1pk2blpkzZyZJ/vZv/zZnn312g/OWL1++RfHXrFmzxWsDAAAAAABgy6g1AQBA8Svd1gsAAABoDXvttVdef/31zJ49O7Nnz85TTz2Vd999N5WVlXnkkUfyyCOP5N///d/z4IMPpl+/fi2Of9ddd+Xiiy9OkkyYMCFXX311o3NrFz5mz56dQYMGNes1tmRdAAAAAAAAfH1qTQAAUNw0vwAAANuN9u3bZ8qUKZkyZUqSZOnSpXn44Ydz7bXX5uWXX87LL7+cn/zkJ7nnnntaFPfVV1/NySefnOrq6gwdOjSzZs1KaWnjX6d69+5dOO7Ro0dGjBixRb8PAAAAAAAAbUetCQAAile7bb0AAACArWXnnXfOqaeemueeey777rtvkuT+++9PZWVls2OUl5fn+OOPz5o1a9K9e/fMnj07vXr1avKcUaNGFY7nzp27ZYsHAAAAAABgm1JrAgCA4qH5BQAA2O516NAhY8eOTZJUVVVl9erVzTpv7dq1mTJlSj788MO0b98+M2fOzPDhwzd73r777pvddtstSXLjjTdm7dq1W7x2AAAAAAAAti21JgAA2PY0vwAAAN94Tz/9dN59991Gx9evX58nn3wySdK1a9f07du3WXFPP/30PP/880mSGTNmZOLEic06r127drnooouSJH/6059y8sknZ926dY3Or6ioyDXXXNOs2AAAAAAAALQutSYAACh+pdt6AQAAAF/XY489lmnTpuWwww7L5MmTs88++6Rv376prKzMwoULc8MNN+SVV15JkvzN3/xNSks3/1XoP//zP3PbbbclScaPH5+jjjoq8+fPb3R+ly5dsvvuuxcen3XWWXn00Udzzz335I477sgrr7ySn/zkJxkzZky6d++eioqKvPXWW5kzZ07uu+++dOrUKeeee+7X/JcAAAAAAACgpdSaAACg+Gl+AQAAtgsbN27Mk08+WbjqVkOOP/74TJ8+vVnxFi1aVDh+/PHHM3LkyCbnjx07NnPmzCk8Likpye9+97v89Kc/zQ033JCysrL8wz/8Q6Pn9+vXr1nrAgAAAAAAoPWpNQEAQHHT/AIAAHzjnX/++dlnn33y+9//Pq+++mqWLFmS5cuXJ0kGDBiQMWPG5OSTT87kyZPbdF0dOnTIddddl7PPPjs33XRT5syZk0WLFuXzzz9P165ds/vuu2f06NE5+uijc8wxx7Tp2gAAAAAAANhErQkAAIpfSXV1dfW2XgQAAAAAAAAAAAAAAAA0pN22XgAAAAAAAAAAAAAAAAA0RvMLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABF6/8BecvNJP6QqbEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(ncols=len(query_lengths), figsize=(20, 5), dpi=200)\n", - "for j, (i, grp) in enumerate(times.groupby(\"query_length\")):\n", - " grp.droplevel(1).plot(label=i, ax=ax[j])\n", - " ax[j].set_title(f\"query length {i}\")\n", - " ax[j].set_yscale(\"log\")\n", - "ax[0].set_ylabel(\"time in seconds\")\n", - "plt.show()" - ] - }, { "cell_type": "code", "execution_count": null, - "id": "391737ea-a185-4ac9-906d-90724a279017", + "id": "61dac86c-a1f3-4899-bcd5-33c8468e4c07", "metadata": {}, "outputs": [], "source": [] @@ -540,8 +454,8 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (Spyder)", - "language": "python3", + "display_name": "Python 3 (ipykernel)", + "language": "python", "name": "python3" }, "language_info": { @@ -554,7 +468,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/examples/similarity_search/distance_profiles.ipynb b/examples/similarity_search/distance_profiles.ipynb index ec56fcc6bf..d2bf3fd87f 100644 --- a/examples/similarity_search/distance_profiles.ipynb +++ b/examples/similarity_search/distance_profiles.ipynb @@ -37,11 +37,11 @@ "We can then find the \"best match\" between $Q$ and $X$ by looking at the distance profile minimum value and extract the subsequence $W_{\\text{argmin} P(X,Q)}$ as the best match.\n", "\n", "### Trivial matches\n", - "One should be careful of what is called \"trivial matches\" in this situation. If $Q$ is extracted from $X$, it is extremely likely that it will match with itself, as $dist(Q,Q)=0$. To avoid this, it is common to set the parts of the distance profile that are neighbors to $Q$ to $\\infty$. This is the role of the `q_index` parameter in the similarity search `predict` methods. The `exclusion_factor` parameter is used to define the neighbors of $Q$ that will also get $\\infty$ value.\n", + "One should be careful of what is called \"trivial matches\" in this situation. If $Q$ is extracted from $X$, it is extremely likely that it will match with itself, as $dist(Q,Q)=0$. To avoid this, it is common to set the parts of the distance profile that are neighbors to $Q$ to $\\infty$. This is the role of the `q_index` parameter in the similarity search `predict` methods. The `exclusion_factor` parameter is used to define the neighbors of $Q$ that will also get $\\infty$ value.\n", "\n", - "For example, if $Q$ was extracted at index $i$ in $X$ (i.e. $Q = \\{x_i, \\ldots, x_{i+(l-1)}\\}$), then all points in the interval `[i - l//exclusion_factor, i + l//exclusion_factor]` will the set to $\\infty$ in the distance profile to avoid a trivial match.\n", + "For example, if $Q$ was extracted at index $i$ in $X$ (i.e. $Q = \\{x_i, \\ldots, x_{i+(l-1)}\\}$), then all points in the interval `[i - floor(l*exclusion_factor), i + floor(l*exclusion_factor)]` will the set to $\\infty$ in the distance profile to avoid a trivial match.\n", "\n", - "The same reasoning can also be applied for the best matches of $Q$. It is highly likely that the two best matches will be neighbours, as if $W_i$ and $W_{i+/-1}$ share $l-1$ values. The `apply_exclusion_to_result` boolean parameter in `predict` allows you to apply the exclusion zone defined by `[i - l//exclusion_factor, i + l//exclusion_factor]` to the output of the algorithm.\n" + "The same reasoning can also be applied for the best matches of $Q$. It is highly likely that the two best matches will be neighbours, as if $W_i$ and $W_{i+/-1}$ share $l-1$ values. The `apply_exclusion_to_result` boolean parameter in `predict` allows you to apply the exclusion zone defined by `[i - floor(l*exclusion_factor), i + floor(l*exclusion_factor)]` to the output of the algorithm.\n" ] }, { diff --git a/examples/similarity_search/similarity_search.ipynb b/examples/similarity_search/similarity_search.ipynb index cdbaa86948..6bb339f13f 100644 --- a/examples/similarity_search/similarity_search.ipynb +++ b/examples/similarity_search/similarity_search.ipynb @@ -7,12 +7,27 @@ "source": [ "# Time Series Similarity Search with aeon\n", "\n", - "The goal of Time Series Similarity Search is to asses the similarities between a time\n", - " series, denoted as a query `q` of length `l`, and a collection of time series,\n", - " denoted as `X`, with lengths greater than or equal to `l`. In this\n", - " context, the notion of similiarity between `q` and the other series in `X` is quantified by similarity functions. Those functions are most of the time defined as distance function, such as the Euclidean distance. Knowing the similarity between `q` and other admissible candidates, we can then perform many other tasks for \"free\", such as anomaly or motif detection.\n", + "\"time\n", "\n", - "\"time" + "The objectives of the similarity search module in aeon is to provide estimators with a `fit`/`predict` interface to solve the following use cases :\n", + "\n", + "- Nearest neighbors search on time series subesequences or whole series\n", + "- Motifs search on time series subsequences\n", + "\n", + "Similarly to the `transformer` module, the `similarity_search` module split estimators between `series` estimators and `collection` estimators, such as :\n", + "\n", + "- `series` estimators take as input a single time series of shape `(n_channels, n_timepoints)` during fit and predict.\n", + "- `collection` estimators take as input a time series collection of shape `(n_cases, n_channels, n_timepoints)` during fit, and a single series of shape `(n_channels, n_timepoints)` during predict.\n", + "\n", + "Note that the above is a general guideline, and that some estimators can also take `None` as input during predict, or series of length different to `n_timepoints`. We'll explore the different estimators in the next sections.\n", + "\n", + "### Other similarity search notebooks\n", + "\n", + "This notebook gives an overview of similarity search module and the available estimators. The following notebooks are also avaiable to go more in depth with specific subject of similarity search in aeon:\n", + "\n", + "- [The theory and math behind the similarity search estimators in aeon](distance_profiles.ipynb)\n", + "- [Analysis of the performance of the estimators provided by similarity search module](code_speed.ipynb)\n", + "\n" ] }, { @@ -22,25 +37,34 @@ "metadata": {}, "outputs": [], "source": [ - "def plot_best_matches(top_k_search, best_matches):\n", + "# Define some plotting functions we'll use later !\n", + "def plot_best_matches(\n", + " X_fit, X_predict, idx_predict, idx_matches, length, normalize=False\n", + "):\n", " \"\"\"Plot the top best matches of a query in a dataset.\"\"\"\n", - " fig, ax = plt.subplots(figsize=(20, 5), ncols=3)\n", - " for i_k, (id_sample, id_timestamp) in enumerate(best_matches):\n", + " fig, ax = plt.subplots(figsize=(20, 5), ncols=len(idx_matches))\n", + " if len(idx_matches) == 1:\n", + " ax = [ax]\n", + " for i_k, id_timestamp in enumerate(idx_matches):\n", " # plot the sample of the best match\n", - " ax[i_k].plot(top_k_search.X_[id_sample, 0], linewidth=2)\n", + " ax[i_k].plot(X_fit[0], linewidth=2)\n", " # plot the location of the best match on it\n", + " match = X_fit[0, id_timestamp : id_timestamp + length]\n", " ax[i_k].plot(\n", - " range(id_timestamp, id_timestamp + q.shape[1]),\n", - " top_k_search.X_[id_sample, 0, id_timestamp : id_timestamp + q.shape[1]],\n", + " range(id_timestamp, id_timestamp + length),\n", + " match,\n", " linewidth=7,\n", " alpha=0.5,\n", " color=\"green\",\n", " label=\"best match location\",\n", " )\n", " # plot the query on the location of the best match\n", + " Q = X_predict[0, idx_predict : idx_predict + length]\n", + " if normalize:\n", + " Q = Q * np.std(match) + np.mean(match)\n", " ax[i_k].plot(\n", - " range(id_timestamp, id_timestamp + q.shape[1]),\n", - " q[0],\n", + " range(id_timestamp, id_timestamp + length),\n", + " Q,\n", " linewidth=5,\n", " alpha=0.5,\n", " color=\"red\",\n", @@ -66,73 +90,30 @@ " plt.show()" ] }, - { - "cell_type": "markdown", - "id": "7e06b213-6038-4901-b98e-2433625115c4", - "metadata": {}, - "source": [ - "## Similarity search Notebooks\n", - "\n", - "This notebook gives an overview of similarity search module and the available estimators. The following notebooks are avaiable to go more in depth with specific subject of similarity search in aeon:\n", - "\n", - "- [Deep dive in the distance profiles](distance_profiles.ipynb)\n", - "- [Analysis of the speedups provided by similarity search module](code_speed.ipynb)" - ] - }, - { - "cell_type": "markdown", - "id": "ca967c08-9a05-411a-a09a-ad8a13c0adb9", - "metadata": {}, - "source": [ - "## Expected inputs and format\n", - "For both `QuerySearch` and `SeriesSearch`, the `fit` method expects a time series dataset of shape `(n_cases, n_channels, n_timepoints)`. This can be 3D numpy array or a list of 2D numpy arrays if `n_timepoints` varies between cases (i.e. unequal length dataset).\n", - "\n", - "The `predict` method expects a 2D numpy array of shape `(n_channels, query_length)` for `QuerySearch`. In `SeriesSearch`, the predict methods also expects a 2D numpy array, but of shape `(n_channels, n_timepoints)` (`n_timepoints` doesn't have to be the same as in fit) and a `query_length` parameter." - ] - }, { "cell_type": "markdown", "id": "d1fd75ae-84c2-40be-95f6-bd7de409317d", "metadata": {}, "source": [ - "## Available estimators\n", - "\n", - "All estimators of the similarity search module in aeon inherit from the `BaseSimilaritySearch` class, which requires the following arguments:\n", - "- `distance` : a string indicating which distance function to use as similarity function. By default this is `\"euclidean\"`, which means that the Euclidean distance is used.\n", - "- `normalise` : a boolean indicating whether this similarity function should be z-normalised. This means that the scale of the two series being compared will be ignored, and that, loosely speaking, we will only focus on their shape during the comparison. By default, this parameter is set `False`.\n", + "### A word on base clases\n", "\n", - "Another parameter, which has no effect on the output of the estimators, is a boolean named `store_distance_profile`, set to `False` by default. If set to `True`, the estimators will expose an attribute named `_distance_profile` after the `predict` function is called. This attribute will contain the computed distance profile for query given as input to the `predict` function.\n", + "All estimators of the similarity search module in aeon inherit from the `BaseSimilaritySearch` class, which define the some abstract methods that estimator must implement, such as `fit` and `predict` and some private function used to validate the format of the time series you will provide. Then, the two submodules `series` and `collection` also define a base class (`BaseSeriesSimilaritySearch` and `BaseCollectionSeriesSearch`) that their respective estimator will inherit from. If you ever want to extend the module or create your own estimators, these are the classes you'll want to use to define the base structure of your estimator.\n", "\n", - "To illustrate how to work with similarity search estimators in aeon, we will now present some example use cases." - ] - }, - { - "cell_type": "markdown", - "id": "01fa67c2-0126-4152-98a9-fa0df84c4629", - "metadata": {}, - "source": [ - "### Query search" - ] - }, - { - "cell_type": "markdown", - "id": "8e99b251-d156-4989-b5a0-3a2c79cb75d4", - "metadata": {}, - "source": [ - "We will use the GunPoint dataset for this example, which can be loaded using the `load_classification` function." + "### Load a dataset\n", + "In the following, we'll use an easy dataset (`ArrowHead`) to help build intuition. Don't hesitate to swap it with other datasets to explore ! We load it using the `load_classification` function." ] }, { "cell_type": "code", "execution_count": 2, - "id": "f8a6bb7e-b219-41f1-b508-b849c45672eb", + "id": "20d3b591-f275-4548-a7d2-75b16380b055", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAFTCAYAAAC9L1y2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAACncElEQVR4nOzdd3ydZf3/8dc52Xvv0TSjSbpHSlvoYpRRoCAbAUGQCoKKA+GnqIioKLgQFPmKDJWNUgRaCsimg3TQmTTd2Xvv5Ny/P+4mEJq2J2ckJ8n7+XjkcSfnXNd1PicdufK5r+tzWQzDMBARERERERERkXHNOtIBiIiIiIiIiIjIyFOSSERERERERERElCQSEREREREREREliUREREREREREBCWJREREREREREQEJYlERERERERERAQliURERDzeE088wcKFC0c6DIfdfffdXH311S4d0zAMvvrVrxIREcFJJ53k0rH7jPbvu72Cg4PZv3+/W8Y+ePAgFouFnp4et4wvIiIirqUkkYiIjGtpaWkEBAQQHBzc/3HrrbeOdFhyAh9++CFvvvkmJSUlbNy40enxhiOZUVRUxBVXXEFMTAyhoaFkZWXxzW9+k5KSEpeMb7FYCAoKIjg4mKSkJL773e/S29t7wn4tLS2kp6fb/Rp79+51NtRBvfvuuyQnJ7tl7JF4HRERkdFISSIRERn3/vvf/9LS0tL/8dBDD410SHIChw4dIi0tjaCgoCH3HYlVLXv37mXevHkkJiayZcsWmpqa+Oijj8jIyODDDz902et8+umntLS08Pbbb/P000/zf//3fy4bW0RERMY+JYlERESO4eabb+biiy/u//qOO+7g9NNPxzAM6uvrOe+884iJiSEiIoLzzjtvwIqQpUuXctddd3HyyScTHBzM+eefT21tLVdddRWhoaHMnTuXgwcP9re3WCw8+OCDpKenEx0dze23347NZhs0roKCApYtW0ZkZCTZ2dk8//zzx3wPTzzxBOnp6YSEhDBx4kT+9a9/AbBv3z5OO+00oqKiiI6O5qqrrqKhoaG/X1paGvfffz/Tp08nKCiIG264gcrKSs455xxCQkI444wzqK+vBz5bhfPoo4+SmJhIQkICDzzwwDFjWr9+PSeffDLh4eHMmDGDd99994Txft5jjz3G1772NdatW0dwcDA//elPAfi///s/MjMziYyMZMWKFZSVlQ34/j788MNkZWWRlZV11JiLFy8GIDw8nODgYNatW9f/3Pe//30iIiKYOHEiq1ev7n+8sbGRG264gYSEBJKSkrjrrruOuXLn7rvv5pRTTuF3v/td/yqW2NhYbrvtNq644or+9/7F7W2fX7lz3XXXccstt3DuuecSEhLCvHnz2Ldv36Cvl5OTw6JFi9ixY4dd3xt7XqPvezRjxgyCg4N57rnnjnrd3t5evv/97xMdHU16ejqvvfbagOcff/xxcnNzCQkJIT09nb/+9a8AtLa2cs4551BWVta/oq+srIyNGzeyYMECwsPDSUhI4NZbb6Wrqwswtxx+5zvfITY2ltDQUKZNm9b/fjs7O/n+979PamoqcXFx3HTTTbS3tx/zdUREROQIQ0REZBybMGGC8eabbw76XGtrq5GVlWU8/vjjxvvvv29ERUUZxcXFhmEYRk1NjfHiiy8ara2tRlNTk3HJJZcYF1xwQX/fJUuWGBkZGcbevXuNhoYGIzc318jKyjLefPNNo7u727jmmmuM6667rr89YCxdutSora01Dh06ZGRlZRn/93//ZxiGYTz++OPGKaecYhiGYbS0tBjJycnG3//+d6O7u9vYvHmzERUVZezcufOo+FtaWoyQkBCjoKDAMAzDKCsrM3bs2GEYhmEUFRUZa9euNTo6Ooyqqipj0aJFxre//e0B35d58+YZFRUVRklJiRETE2PMmjXL2Lx5s9He3m6ceuqpxt13320YhmEcOHDAAIwrrrjCaGlpMbZt22ZER0f3f19/+tOfGldddZVhGIZRUlJiREZGGq+99prR29trrF271oiMjDSqqqqOG+8Xff57YhiG8fbbbxtRUVHGpk2bjI6ODuPWW281Fi1aNOD7e8YZZxi1tbVGW1vbUeP1vYfu7u4Br+Ht7W08+uijRk9Pj/HnP//ZSEhIMGw2m2EYhnHhhRcaK1euNFpaWozKykpj7ty5xiOPPDJovHFxccbjjz8+6HPHek99cRcVFRmGYRjXXnutERkZaWzYsMHo7u42vvzlLxuXX375oG137txpxMXFGX/729/s+t448hqD+ctf/mJkZ2cbhw8fNmpra42lS5cO+L6++uqrxt69ew2bzWa8++67RkBAgLFp0ybDMAzjnXfeMZKSkgaMl5+fb6xbt87o7u42Dhw4YOTk5Bi///3vDcMwjDVr1hizZ8826uvrDZvNZuzatcsoKyszDMMwbrvtNuP88883amtrjaamJuO8884z7rzzzmO+joiIiJiUJBIRkXFtwoQJRlBQkBEWFtb/8eijj/Y/v379eiMiIsJITU01nn766WOOs2XLFiM8PLz/6yVLlhj33ntv/9ff/e53jbPPPrv/61deecWYMWNG/9eAsXr16v6vH374YeO0004zDGNg8uDZZ581Fi5cOOC1V65c2Z+w+byWlhYjLCzMePHFFwdNjHzef/7zH2PmzJn9X0+YMMH45z//2f/1RRddZNx00039Xz/44IP9SbG+BMvu3bv7n7/99tuN66+/3jCMgUmi++67z7j66qsHvPaZZ55pPPHEE0OK94sJleuvv964/fbb+79ubm42vL29jQMHDhiGYX5/33777WOOd6wkUUZGRv/Xra2tBmCUl5cbFRUVhq+v74A4n376aWPp0qWDju/l5TXgz/dPf/qTERYWZgQFBRlf+9rXBn1PfXF/PoFzww039D/32muvGdnZ2QPahoSEGOHh4UZ6errxox/9yOjt7bXrezOU1zhekujUU081/vKXv/R//cYbbxz1ff28Cy64wPjDH/5gGIZ9yZvf//73xoUXXmgYhpkYzMrKMtatW2f09vb2t7HZbEZgYKCxd+/e/sc+/vhjIy0tze7XERERGa+03UxERMa9l19+mYaGhv6PG2+8sf+5efPmkZ6ejmEYXHbZZf2Pt7W18fWvf50JEyYQGhrK4sWLaWhoGLDdKC4urv/zgICAo75uaWkZEEdKSkr/5xMmTBh0G8yhQ4fYsGED4eHh/R//+te/qKioOKptUFAQzz33HI888ggJCQmce+65FBQUAFBZWckVV1xBUlISoaGhXH311dTU1Azo7674X3jhhQHxf/jhh5SXlx833hMpKytjwoQJ/V8HBwcTFRVFaWnpoPHZKz4+vv/zwMBAwCz0fOjQIbq7u0lISOh/H1//+tepqqoadJyoqCjKy8v7v7711ltpaGjgtttuo7u72+F4vvhnsHnzZurr69m3bx/33nsvVqvVru/NUF7jeMrKyo76e/B5q1evZv78+URGRhIeHs7rr79+1N+7z9uzZw/nnXce8fHxhIaG8sMf/rC//Wmnncatt97KLbfcQmxsLCtXrqSpqYnq6mra2tqYM2dO/5/N2WefTXV1td3vQ0REZLxSkkhEROQ4Hn74YTo7O0lMTOQ3v/lN/+O//e1vKSwsZMOGDTQ1NfH+++8DZp0URxUXF/d/fvjwYRITE49qk5KSwpIlSwYktVpaWvjLX/4y6JhnnXUWb775JuXl5eTk5PQnwH74wx9isVjYvn07TU1N/POf/3Qq9qHEf8011wyIv7W1lTvvvPO48Z5IYmIihw4d6v+6tbWV2tpakpKS+h+zWCzH7H+85waTkpKCn58fNTU1/e+jqamJnTt3Dtr+9NNP59///vdxxwwKCqKtra3/68ESf46w53vjKgkJCUf9PejT2dnJxRdfzPe//30qKytpaGhg+fLl/X/vBvszuPnmm8nJyaGoqIimpiZ++ctfDvh7+q1vfYtNmzaxa9cu9uzZw/333090dDQBAQHs3Lmz/8+msbGxP9k11D9rERGR8URJIhERkWPYs2cPd911F//85z/5xz/+wW9+8xu2bt0KQHNzMwEBAYSHh1NXV8fPfvYzp1/v/vvvp76+nuLiYv74xz9y+eWXH9XmvPPOY8+ePfzjH/+gu7ub7u5uPvnkE3bv3n1U28rKSlatWkVrayt+fn4EBwdjtVr74w8ODiYsLIzS0lLuv/9+p+P/+c9/TltbGzt37uTxxx8fNP6rr76a//73v7zxxhv09vbS0dHBu+++S0lJyXHjPZErr7ySxx9/nK1bt9LZ2ckPf/hD5s2bR1paml39Y2JisFqt7N+/3672CQkJnHnmmXzve9+jqakJm83Gvn37eO+99wZtf/fdd/PBBx/w3e9+t38FT01NzYA/txkzZrBz5062bt1KR0cHd999t12xnIiz35vPi4uLO+736LLLLuPBBx+kpKSE+vp67rvvvv7nurq66OzsJCYmBm9vb1avXs3atWsHjF1bW0tjY2P/Y83NzYSGhhIcHExBQcGAZOgnn3zChg0b6O7uJigoCH9/f6xWK1arlRtvvJHvfOc7/Su7SktLeeONN475OiIiImJSkkhERMa9888/v/+ko+DgYL70pS/R09PD1VdfzR133MGMGTPIysril7/8Jddccw2dnZ3cdttttLe3Ex0dzfz58zn77LOdjuOCCy5gzpw5zJw5k3PPPZcbbrjhqDYhISGsXbuWZ599lsTEROLj47njjjvo7Ow8qq3NZuN3v/sdiYmJREZG8t577/X/kv3Tn/6UzZs3ExYWxrnnnstFF13kdPxLliwhMzOT008/ne9///uceeaZR7VJSUlh1apV/PKXvyQmJoaUlBTuv/9+bDbbceM9kTPOOIOf//znXHzxxSQkJLBv3z6effZZu2MPDAzkRz/6Eaeccgrh4eGsX7/+hH2eeuopurq6mDx5MhEREVxyySUDtpR93qRJk9iwYQMlJSXMmDGDkJAQTjnlFBITE/n5z3/e3+YnP/kJZ5xxBllZWUeddOYoZ783n3f33Xdz7bXXEh4ePuipejfeeCNnnXUWM2bMYPbs2QP+XoWEhPDggw9y2WWXERERwdNPP82KFSv6n8/JyeHKK68kPT2d8PBwysrKeOCBB3j66acJCQnhxhtvHJB4bGpq4sYbbyQiIoIJEyYQFRXF7bffDsCvf/1rMjMzmT9/PqGhoZxxxhkUFhYe83VERETEZDGcXVsuIiIiTrNYLBQVFZGZmTnSoQzZwYMHmThxIt3d3Xh7e490OCIiIiLiIK0kEhERERERERERJYlERERERERERETbzUREREREREREBK0kEhERERERERERlCQSERERERERERGUJBIREREREREREZQkEhERERERERERlCQSERERERERERGUJBIREREREREREZQkEhE3eOKJJ1i4cOFIhyEiIiIyrmgOJiLOUpJIREa9hx56iLy8PPz8/LjuuutGOhwRERGRMa+zs5MbbriBCRMmEBISwsyZM1m9evVIhyUiTvIe6QBERJyVmJjIXXfdxRtvvEF7e/tIhyMiIiIy5vX09JCSksJ7771Hamoqr7/+Opdddhnbt28nLS1tpMMTEQdpJZGIOKy4uJiLLrqImJgYoqKiuPXWWwdt9+1vf5uUlBRCQ0OZM2cOH3zwQf9zGzduJC8vj9DQUOLi4vjud78LQEdHB1dffTVRUVGEh4czd+5cKisrBx3/oosu4sILLyQqKsr1b1JERETEw3jCHCwoKIi7776btLQ0rFYr5513HhMnTmTTpk3uedMiMiyUJBIRh/T29nLeeecxYcIEDh48SGlpKVdcccWgbefOncvWrVupq6vjy1/+MpdeeikdHR2AOXn59re/TVNTE/v27eOyyy4D4Mknn6SxsZHi4mJqa2t55JFHCAgIGLb3JyIiIuKJPHUOVllZyZ49e5gyZYrr3qyIDDsliUTEIRs3bqSsrIz777+foKAg/P39j1kose9ulLe3N9/73vfo7OyksLAQAB8fH/bu3UtNTQ3BwcHMnz+///Ha2lr27t2Ll5cXc+bMITQ0dNjen4iIiIgn8sQ5WHd3N1dddRXXXnstOTk5rn3DIjKslCQSEYcUFxczYcIEvL1PXNrsgQceIDc3l7CwMMLDw2lsbKSmpgaAxx57jD179pCTk8PcuXN59dVXAbjmmms466yzuOKKK0hMTOQHP/gB3d3dbn1PIiIiIp7O0+ZgNpuNa665Bl9fXx566CHXvEkRGTFKEomIQ1JSUjh8+DA9PT3HbffBBx/wm9/8hueff576+noaGhoICwvDMAwAsrKyeOaZZ6iqquKOO+7gkksuobW1FR8fH37605+ya9cuPv74Y1599VWeeuqp4XhrIiIiIh7Lk+ZghmFwww03UFlZyUsvvYSPj4/L36+IDC8liUTEISeddBIJCQnceeedtLa20tHRwUcffXRUu+bmZry9vYmJiaGnp4d77rmHpqam/uf/+c9/Ul1djdVqJTw8HACr1co777zD9u3b6e3tJTQ0FB8fH6zWwf/L6unpoaOjg97eXnp7e+no6DjhxElERERkNPKkOdjNN9/M7t27+e9//6vakSJjhJJEIuIQLy8v/vvf/7J3715SU1NJTk7mueeeO6rdWWedxdlnn82kSZOYMGEC/v7+pKSk9D+/Zs0apkyZQnBwMN/+9rd59tlnCQgIoKKigksuuYTQ0FByc3NZsmQJ11xzzaCx3HvvvQQEBHDffffxz3/+k4CAAO699163vXcRERGRkeIpc7BDhw7x17/+la1btxIfH09wcDDBwcH861//cuv7FxH3shh96w1FRERERERERGTc0koiERERERERERFRkkhERERERERERJQkEhERERERERERlCQSERERERERERGUJBIREREREREREcB7pAM4lujoaNLS0kY6DBEREXGjgwcPUlNTM9JhyOdoDiYiIjK2HW/+5bFJorS0NPLz80c6DBEREXGjvLy8kQ5BvkBzMBERkbHtePMvbTcTERERGYWKi4s59dRTmTx5MlOmTOGPf/zjUW0Mw+Bb3/oWmZmZTJ8+nc2bN49ApCIiIjJaeOxKIhERERE5Nm9vb377298ye/ZsmpubmTNnDsuWLWPy5Mn9bVavXk1RURFFRUVs2LCBm2++mQ0bNoxg1CIiIuLJtJJIREREZBRKSEhg9uzZAISEhJCbm0tpaemANqtWreIrX/kKFouF+fPn09DQQHl5+UiEKyIiIqOAVhKJiIicQHd3NyUlJXR0dIx0KKOWv78/ycnJ+Pj4jHQoY9LBgwfZsmUL8+bNG/B4aWkpKSkp/V8nJydTWlpKQkLCcIcoIiIyZJqDOceR+ZeSRCIiIidQUlJCSEgIaWlpWCyWkQ5n1DEMg9raWkpKSpg4ceJIhzPmtLS0cPHFF/OHP/yB0NBQh8Z49NFHefTRRwGorq52ZXgiIiIO0xzMcY7Ov7TdTERE5AQ6OjqIiorS5MRBFouFqKgo3QV0g+7ubi6++GKuuuoqLrrooqOeT0pKori4uP/rkpISkpKSjmq3cuVK8vPzyc/PJyYmxq0xi4iI2EtzMMc5Ov9SkkhERMQOmpw4R98/1zMMgxtuuIHc3Fy++93vDtpmxYoVPPXUUxiGwfr16wkLC9NWMxERGVU0h3CcI987JYlERERkgKVLl5Kfn293+9tvv52cnBymT5/Ol770JRoaGtwXnPT76KOP+Mc//sH//vc/Zs6cycyZM3n99dd55JFHeOSRRwBYvnw56enpZGZmcuONN/LnP/95hKMWERGRYxnqHKyuro5ly5aRlZXFsmXLqK+vdzoG1SQSERERpyxbtoxf/epXeHt7c8cdd/CrX/2KX//61yMd1pi3cOFCDMM4bhuLxcLDDz88TBGJiIjIcLrvvvs4/fTTufPOO7nvvvu47777nJ6DaSWRiAzOMKCzGeoPQsUOKN4I+9+FwtWw4yXY8k/Y/iIcWme2aa6EqgI4vN5s21Y3wm9AZOxobW3l3HPPZcaMGUydOpXnnnsOgHvuuYe5c+cydepUVq5c2Z8wWLp0Kd/5znfIy8sjNzeXTz75hIsuuoisrCzuuusuwDwNKycnh6uuuorc3FwuueQS2trajnrttWvXsmDBAmbPns2ll15KS0vLUW3OPPNMvL3N+07z58+npKTEXd8KEREZLp0tUPwJbHseyrZCb8/g7Wy95pyxpQrqDkDlLmitGdZQRdzF0+dgq1at4tprrwXg2muv5eWXX3b6PWslkch4ZLNBYzHUFEFHA3Q0mtf6Q1C330z6tFRBb6dzrxMYDWHJYLGYSScAjCOfG/1fHv1Y3+cWs39sLsROhsRZEJNtjicyjqxZs4bExERee+01ABobGwG49dZb+clPfgLANddcw6uvvsr5558PgK+vL/n5+fzxj3/kggsuYNOmTURGRpKRkcF3vvMdAAoLC3nsscc45ZRTuP766/nzn//M97///f7Xramp4d577+Wtt94iKCiIX//61/zud7/rf83B/P3vf+fyyy93y/dBRESGoKcTWqvNOZ2tFwIjISgautvNG3rFG6C6ELpaoasFej5X3La7AxoPDxzPJwiSZoNhM5NAbbVH9/u8qExImQ8B4WbyqP4A+IfD6T+GCSe7612LuJSnz8EqKyv7aw3Gx8dTWVnp9HtWkkhkvOhohK1Pm6uAqnabP9S/KDAaItPNH9zBceZEIjAK/ELMiYFPgPnhGwTe/uYko6nU/OjtMn/wB4SbE5GaIqjZA01l5tgWC2AZ+PlRj33uisWchDQcggPvf5awCoiE1AUQnQn+YeAXClavIxOcNvDyhvAJEDERojLMeERc6Gf/3cmusiaXjjk5MZSfnj/lmM9PmzaN733ve9xxxx2cd955LFq0CIB33nmH3/zmN7S1tVFXV8eUKVP6JygrVqzo7ztlypT+CUR6ejrFxcWEh4eTkpLCKaecAsDVV1/Ngw8+OGCCsn79enbt2tXfpquriwULFhwzzl/84hd4e3tz1VVXOfHdEBERhxgGlG6G3atg96tQt+/47b38zJtv/mEQmmjO7frmYVYfiP4KxE2BiDSo2mWuFi/bAt5H+gVFH5kjBpofvoFH5ov+5o3H4g1Q+Dp0t5nzssiJ5oqkx8+ByRfAsnvMsUXspDnYsedgYG4xd0WRbyWJRMa6hsPw0R9h6zPQ3Wquxpl5lbk6JybnsySQf6iZ/Bmq2JzBH590lnNxf15vjznRKfnE3N52eB3sfdNMTJ1IZDokzoaUeZB9DoSnuC4ukWEyadIkNm/ezOuvv85dd93F6aefzg9+8AO+8Y1vkJ+fT0pKCnffffeAI079/PwAsFqt/Z/3fd3TY24Z+OJE4otfG4bBsmXLeOaZZ04Y4xNPPMGrr77K22+/rVNIRESGi63XTN7sfgV2/9e8cWf1homLYcYVEBwLQbHmY2210FYDFi9IngsJ082Ejz3iJsO0S4YeX99K8r6fC11t8PGf4KM/wJ61cNYvIO96rRIXj+Xpc7C4uDjKy8tJSEigvLyc2NhYp94vKEkkMnZ1tZk/gD/6o7kiZ+olMG+lmSQabby8zTtWMdkw6+rPHu/uMFdIGTYzweUbZC55rj9kbpmr3m3eUTu8Dna8CKtvNxNGUy+Gk260f2Ik8jnHu9vkLmVlZURGRnL11VcTHh7O3/72t/7JSHR0NC0tLbz44otccsnQJvCHDx9m3bp1LFiwgKeffpqFCxcOeH7+/Pnccsst7N27l8zMTFpbWyktLWXSpEkD2q1Zs4bf/OY3vPfeewQGBjr3ZkVE5MRaqmHTE5D/GDSXm6uCMk+H034M2WdDQMRIR2j6YvLHNxCW3mHO5165FV77LhS9CRc8ZK5MEjkOzcGOnoOtWLGCJ598kjvvvJMnn3ySCy64wLk3jJJEImPTgffhPzeZd5OmXmwu5w1LHumoXM/H3/z4PN8g825X3GTIWf7Z47X7YNcq807b2h/B9hfg0sfNlUYiHm779u3cfvvtWK1WfHx8+Mtf/kJ4eDg33ngjU6dOJT4+nrlz5w553OzsbB5++GGuv/56Jk+ezM033zzg+ZiYGJ544gmuvPJKOjvNLZ/33nvvUROUW2+9lc7OTpYtWwaYE5u+I9hFRMSFmsrhnXth2wvmVvyM0+GsX0LWmeAXPNLR2S8sCa56CTY8Am/9FB5ZCCvfg5C4kY5MZABPn4PdeeedXHbZZTz22GNMmDCB559/3vE3e4TFONHZqSMkLy+P/Pz8kQ5DZPQ5+CH88xJzW9X5f1RhwMHsfhVWfcMs4L3iQZh60UhHJB5u9+7d5ObmjnQYLnXw4EHOO+88duzYMWyvOdj3UT/vPY/+TEQ8UG83bPgrvPsr8/PZ18BJX4eYSSfu6+lKN8Pfz4bMM+CKf2nrmQygOZjzhjr/0koikbGkeCM8fTmEp8JXX9ey3WPJPc/ch//i9fDiV80C3LNUaFdEREQ8RE+nWWOoZo+5hb7kE/ME2qwz4Zxfj9hK6IM1rTS2d2MzDAzMuim2I4fUhvh7ExviR0SgL1brEBI9SbPhtLvgzR/DtufMWkoiMmKUJBIZK8o/NVcQBcfCta8MKUHU2dPLpoP1FFW1sL+6hUN1bXR092Kzgc0wCAvwITbUj5gQf0L8vPGyWvD2suDnbSXIz5sgP2+C/bwJ8j1y9fMiyM8bP28rFosFm82gtauH9u5eACxY8LZaCPH3xtvL6q7vyPGFp8JXV8M/L4ZXv2MW8k6aPTKxiIyAtLS0YV1FJCIidirJh1W3mrUVsZglAyLT4cx7IXv5sK+0MQyDdftrefidvXy0t/aE7b2tFiZEBTIjOZwZKeHEh/nT1WOjs8dGQ1sXJfXtlNS30d1rMDs1grkTI5g2ayXBBa/C67djmbjYPG1NZIzy9DmYkkQiY8XrPzCLAX7lFQiJP2Hzzp5e3imoYvWOCv63u4rmTrPSfpCvF2nRQQT5eWO1ghdWyhs7+LSkkdrWToayQdXbasHHy9qfHBpMqL83UcF+pEcHMSk+hKzYYAJ9vfqfD/T1JjTAh7AAH5IjAvBxZVLJywcueRweXQrPXW3uhQ+Ocd34IiIiIvbq7YY3fwrr/2wmSa54xixG7caDNgzDYOOBOp5af4j3CqvptZkTPasFwgN9CQ/0oafXoLCymZgQP+48J4es2GCsFgsWi3kik9Vi3gBs6uimqqmDyuZOiiqbeb+ohn9vKT3qNYN8vUiJNA85+MPbe/rnlmmWy1jt+//45LdXcLvvj4kI8iMq2JfsuFCmJYcyLSmM9Ojgoa1SEpEhU5JIZCyo2g3F6807TCc44r24ro2nNx7m+U+KqW3tIiLQh3OmxXPm5HimJ4cRE+J3zOOre3rNu0A9vQbdNvPz1s4eWjp7aD3y0dLZS0tHN61dvbR09tDdY+tfaeTfl/wxDLp7DRrbu2lo66KmpYu9VS28X1RNd++xs1CBvl7MTYvklMwo5qZFkpsQir+P1zHb2yUoCi7/B/z9LHjhOvjKy2bySERERGQ4bX4K1j9sHgl/xs/AP9QlwxqGwc6yJt7eXcVbuys5VNtKTIgfcaH+1LZ0UVjZTFiAD+fPSCTE3/z1sOfIPK2+rYu2rh5+fuFULp2TPKR5l2EYlDd2UNfahb+PFV8vL0L8vQkP9Omfaza2d7P5UD2Flc109UxiXck3Oe3Ab/lm/A7e81lEVXMnT288RMdHNgAig3yZNzGSBRlRzE6NIDs+xLU3EEVESSKRMWHTE+DlCzO+fMwmda1d3P9GAc9+UowFOD03jqvmpbIwM9ruLV/eXla3bg/r7rVxuK6Nrh5zImAY0NbVc2SS0s2nxQ18vK+GX75ebcZjtTApLoTs+BASw/1JCAsgNTKQnIQQYoKPnew6SuJMs8j3f74OGx+FBbe46R2KiIiIHMOuVRCVBef+ziVbysob23lpUwkvbirhYG0bFgvMSglnxcxEalu6qGruJMTfm19fPI0VM5II8HXyxtsXWCwWEsMDSAwPOGabsAAfTs2J5dScWPMB24/gr2u5uukxrr7l6+AbSE+vjX3VrXxa3MD6A7Ws31fL6h0VAPh6W5mSGMp1J6dxwcwkl8YvMl4pSSQy2nW3w6fPQO4Kc1XMF/TaDJ7eeJgH3iikpbOHr548ka8tmnjcH9gjxcfLSkbMsY9vvWROMgCVTR1sOdzAtpIGtpU0svFAHRVNHf1LpMG805QSYb5HmwEBPl5MTQpjVmo4M1PCSY4IGJhEmnGF+X384Lcw+yvgF+KeNykiIiLyRW115gm1C29zKEHU2N7NS5tKKKhooqq5k8qmTgoqmjAMmDcxkpuXZnB6bhzRwe7buuYSVi845z544lz4+E+w9A68vaxkx5s3BS+bm4JhGJTUt7O1uIFPixv4cG8N3352K+8WVnPPBVMI8deKcBFnKEkkMtrt/A90NELeVwd9+hev7ebvHx1gfnok91wwlUlxoz/5ERfqz9lT4zl76me1l3ptBtXNneyvaaGwopmC8mbKGtuxWix4WS00tXfz9MZD/P2jAwBEB/sxKzWc2akRnDklzkxOnf4T+L/TYN3DsPTOkXp7IiNu6dKlPPDAA+Tl5dnV/sc//jGrVq3CarUSGxvLE088QWKiio6KiNit8HUweiH3/CF1O1Tbyt8/PMALm0po6+olLtSP2BB/EsP8WTY5jktmJ5MaFeimoN0kbSFMvhA+/L15+mxY8oCnLRYLKZGBpEQGcv6MRHp6bTz8zj7++PYeNh2q52cXTGFJVoxqF8moNNQ52AsvvMDdd9/N7t272bhxo939jkdJIpHRbtMT5tLkCacc9dTbuyv5+0cH+MqCCfxsxRT7t1+NQl5WC/Fh/sSH+XNyxuAnu3X32iisaGZLcQNbDtez9XADb+6q5NdrCpicEMq50xNYEX8G8R8+yGu+ywkIiyUqyJeoYD9SIwPx0mRDZFC33347P//5zwF48MEHueeee3jkkUdGOCoRkVFk938hLBUSZtrdpbalk/P+9CGd3TbOn5HI9QvTmJIY5r4Yh9Oye6BwNbx1N1z8t+M29fay8u0zsjg5M4rbnt3KVx//hJTIAC7PS+HL8yYQGeQ7PDGLjICpU6fy73//m69//esuG1NVvkRGs8pdULwB5lx31NLkisYOvv/Cp0xOCOVH5+aO6QSRvXy8rExNCuOa+RP43WUz+d/3l7L+/53Oj8+bjI+3lfvfKOS6Q2dh7W6j+vVf8fV/bOKSR9Zx6gPvsvDX/+O3aws5VNs60m9DxqHW1lbOPfdcZsyYwdSpU3nuuecAuOeee5g7dy5Tp05l5cqVGEeOiFm6dCnf+c53yMvLIzc3l08++YSLLrqIrKws7rrrLgAOHjxITk4OV111Fbm5uVxyySW0tbUd9dpr165lwYIFzJ49m0svvZSWlpaj2oSGflZctbW1Vf/fiIgMRWcz7PufuYpoCP9//uXdfbR29vDKN0/ht5fNGDsJIoCICXDKt2D7C1D+qV1d5qZF8r/vL+HBK2eREhHIA2v3cPlf19HZc+xTdkVOxNPnYLm5uWRnZ7v0PStJJDKa9RWsnjmwYHWvzeC257bQ0W3jT1+ehZ+3awsRjiXxYf7csHAiq245hU13ncE/7riGjimX8TW/t3njq+k8ef1J/PriaWTHh/DwO3tZcv+7fOe5rbR29ox06DKOrFmzhsTERD799FN27NjB2WefDcCtt97KJ598wo4dO2hvb+fVV1/t7+Pr60t+fj433XQTF1xwAQ8//DA7duzgiSeeoLa2FoDCwkK+8Y1vsHv3bkJDQ/nzn/884HVramq49957eeutt9i8eTN5eXn87ne/GzTGH/3oR6SkpPCvf/2Le+65x03fCRGRMahoLfR2DWmrWUVjB0+tP8SXZiWTE++aU9A8zoJbwOpjJors5OftxYoZiTx943z+9pU8iqpaePidfW4MUsa60TAHczVtNxMZzQ68B+lLITBywMNPrTvI+v11/OaS6cctBC0DRfUVczzzLtj9AtmlL5F9mpnxv3xuKuWN7Ty17hB/fW8f20sbeeTq2WTGjv4aTzJEq++Eiu2uHTN+mlmo8ximTZvG9773Pe644w7OO+88Fi1aBMA777zDb37zG9ra2qirq2PKlCmcf775S8aKFSv6+06ZMoWEhAQA0tPTKS4uJjw8nJSUFE45xdyqevXVV/Pggw/y/e9/v/91169fz65du/rbdHV1sWDBgkFj/MUvfsEvfvELfvWrX/HQQw/xs5/9zMlviojIOLHrFQiKhZST7O7yp/8VYRgGt52R5cbARlhABGScCjtXwbKfD7mg9xmT47hwZiJ/eXcv505LIDtec7ZRT3Mw1773Y9BKIpHRqrsDaoogfvpRTz27sZhZqeFcOid5kI5yQuGpkHoy7H51wMMJYQHccXYO/7xhHg1tXax46CNe21Y+QkHKeDJp0iQ2b97MtGnTuOuuu7jnnnvo6OjgG9/4Bi+++CLbt2/nxhtvpKOjo7+Pn5+Z9LRarf2f933d02OuhPvitrAvfm0YBsuWLWPr1q1s3bqVXbt28dhjjx031quuuoqXXnrJqfcrIjJudLdD0ZuQe555spcdDte28dwnxVw+N4WUyFFWlHqopnwJGg9D6WaHuv/kfPO0sx+8tG3AKbgi9hpNczBX0UoikdGqerd5Ckb81AEPF1Q0UVjZzM8vGNuFqt0u9zxYcyfU7oOojAFPnZwZzWvfWsQ3/rWZW5/ZTF3rFK5ZkDYyccrwO87dJncpKysjMjKSq6++mvDwcP72t7/1T0aio6NpaWnhxRdf5JJLLhnSuIcPH2bdunUsWLCAp59+moULFw54fv78+dxyyy3s3buXzMxMWltbKS0tZdKkSQPaFRUVkZVl3s1etWoVOTk5TrxbEZFxZN870N06pK1mf3h7D15WC988bQyvIuqTvdzccrbz35A8Z8jdI4N8+en5k/n2s1t5/KMDfG1RuhuClGGjOdhRczB30EoikdGqYod5jZs24OGXt5ThZbWwfFrCCAQ1huSca14LXh306bhQf/71tXmcnhPHj1ft5MG3i/oL1om42vbt2znppJOYOXMmP/vZz7jrrrsIDw/nxhtvZOrUqZx11lnMnTt3yONmZ2fz8MMPk5ubS319PTfffPOA52NiYnjiiSe48sormT59OgsWLKCgoOCoce68806mTp3K9OnTWbt2LX/84x8dfq8iIuPK3rfANwTSFtnVvKq5g5e3lHLN/AnEhfq7OTgPEBAOmafDzpfBwXnWihmJLJkUw4NvF9HWpZqSMjSePgf7z3/+Q3JyMuvWrePcc8/lrLPOcvi99rEYHvpbTV5eHvn5+SMdhojnWn0HbH4K/l9J//Jkm81g0W/eYVJcMI9/1f597XIMf10MXn7wtTeP2aSn18YdL23npc0l3HJqBrefpRUUY9Hu3bvJzc0d6TBc6uDBg5x33nns2LFj2F5zsO+jft57Hv2ZiAyjB2dDdBZ8+Tm7mj+fX8wPXtzG699axOTEMVqw+os+fRb+83W44S1IGfov4wCfHKzj0kfWce+FU7l6/gQXByjupDmY84Y6/9JKIpHRqmIHxE4esH990+F6ShvauWBm0ggGNobknAclG6G54phNvL2s3H/JdC6Zk8xf3t3H3qrmYQxQRERERq2Gw1C3zzyExE7/211FQpg/uQnjqAhz9jnmab47/+PwEHkTIpiaFMrjHx3AptpEIselJJHIaGQYULn9qHpEL28pJcDHi2WT40YosDEm5zzzWvj6cZtZrRb+3zk5BPh48du1e4YhMBHnpaWlDesqIhER+YL975nXiUvsat7VY+PDvTUszY4dX3Un/cMg8wzY9TLYbA4NYbFYuP6UieyrbuWDvTWujU9kiDx9DqYkkcho1FQKHY0Q91mSqKvHxmvby1k2OY4gP9Wkd4nYXIhMP+qUs8FEBfvxtUXprN5RwbaSBvfHJiIiIqPbgfcgKNacb9jhk4N1tHT2cHpOrJsD80CTLzTnv6WOb4U9d3oC0cF+PP7RAdfFJTIGuSRJdP311xMbG8vUqVMHff7dd98lLCyMmTNnMnPmTO655x5XvKzI+NVXtDr+s6LVH+6tpqGtmwtmJo5QUGOQxWIWsD7wvpmUO4GvLZpIRKAP979ROAzByXDz0BJ+o4a+fyIin2MYsP9dc6uZnauC3t5dha+3lZMzo9wamkeadBZYrGahbwf5eXtxzfwJvFtYzb7qFhcGJ+6mOYTjHPneuSRJdN1117FmzZrjtlm0aBFbt25l69at/OQnP3HFy4qMX5XbzWvclP6HVm+vICzAh0VZMSMU1BiVcz7YumHP2hM2DfH34ZZTM/mgqIZ1+2qHITgZLv7+/tTW1mqS4iDDMKitrcXffxycxCMiYo+qXdBaDen2bTUDeKewigXpUQT6jsMV4wHhkDjrsy16DvryvFR8vaw88dFBl4Ql7qc5mOMcnX+55H+YxYsXc/DgQVcMJSL2qNgBEWng91nRwh1lTcxKDcfXW7tIXSp5LgTFQNEbMP3SEza/ev4EHvvwAL9dW8iLN588DAHKcEhOTqakpITq6uqRDmXU8vf3Jzk5eaTDEBHxDPvfNa921iPaX93CgZpWvnpKmttC8ngTF8PHf4LOFvALdmiImBA/zp+RyEubS/h/y3PGZ8JtlNEczDmOzL+G7V/FunXrmDFjBomJiTzwwANMmTLlxJ1EZHCVOwbUI+rutbG3qpklk7SKyOWsVsg4HYrWgq13wGlyg/H38eKrp6Txy9cLKK5rIyUycJgCFXfy8fFh4sSJIx2GiIiMFfvfg6hMCE+xq/n/CqoAODV7HNYj6jNxCXz4ezi8DrKWOTzMZXnJvLS5hLU7K7lwlk4E9nSagw2/YVlyMHv2bA4dOsSnn37KN7/5TS688MJB2z366KPk5eWRl5enTKHIsXS1Qu2+AUmifdUtdPca4+s41OGUeTq010H5Vruanz0lAYA3dla4MSgREREZlXq74eCHdq8iAnOrWVZs8Pi++ZQ6H7x8zYLfTpibFklSeAAvbS5xUWAiY8uwJIlCQ0MJDjaXBC5fvpzu7m5qao4+enDlypXk5+eTn59PTIxWRIgMqmo3YED8Z0migvJmAHLiQ0coqDEu4zTAAnv/Z1fz1KhAJieEsmaHkkQiIiLyBSX50N1qFq22Q0tnDxsP1HFa7jheRQTgEwAp85yuS2S1WrhodhIf7a2hsqnDRcGJjB3DkiSqqKjoLzS1ceNGbDYbUVHjsCq/iCtU9BWt/ixJtLuiCV8vK+kxQSMU1BgXFA2JM4d0osbZU+PZdLieKk0+RERE5PMOvA9YIG2hXc23lzTS3WuwIF2/PzFxiTkXbqtzapgvzUrCZsCqraUuCkxk7HBJkujKK69kwYIFFBYWkpyczGOPPcYjjzzCI488AsCLL77I1KlTmTFjBt/61rd49tlnsdh51KOIfEHlDvANgfAJ/Q8VlDeTGRuMj5eKVrtN5hlQshHa6+1qfvbUeAwD3thV6ebAREREZFQp3QQx2RAYaVfzgoomACYnasU4ExcDBhz8wKlh0mOCmZESzr83K0kk8kUuKVz9zDPPHPf5W2+9lVtvvdUVLyUiFTsgbopZUPmI3eVNLMyKHsGgxoHMM+D9+80lzlMuPGHzrNhg0qODeGNHBdfMn3DC9iIiIjIOGAaUbTmyld0+u8ubiAryJSbYz42BjRJJs8E32FyNNfkCp4a6eHYSP1m1k11lTUrAiXyOlh2IjCaGYdYkipvc/1BtSydVzZ3kqh6ReyXlgV+Y3VvOLBYLZ0+NZ93+WhrautwcnIiIiIwKzeXQWgWJs+zuUlDRTE5CiHZiAHj5wISTna5LBHDe9ES8rRb+s0UFrEU+T0kikdGkqQw6GyH2syRRYYVZtDo3QUkit/LyhvQlsO9/ZrLODmdPjafXZvDW7io3ByciIiKjQtlW85o4067mvTaDwopm3Qz8vIlLoLbInBc7ITLIl1NzYlm1tQybzb65nch4oCSRyGhSvdu8xuT0P7T7SJIoJyFkJCIaXzLPgKZSqC6wq/m0pDASw/x1ypmIuMX1119PbGwsU6dOHfT5d999l7CwMGbOnMnMmTO55557hjlCETlK2RawWCF+ml3ND9S00tljI0c3Az+TvsS8Hnjf6aHOnZZAVXMnO8oanR5LZKxQkkhkNKk6kpyIze1/aHd5E9HBfkRrn7r7ZZ5uXoew5ezMKfG8X1RNR3evGwMTkfHouuuuY82aNcdts2jRIrZu3crWrVv5yU9+MkyRicgxlW+F6Gzwte9E2r6i1TnxuhnYL3YK+IfBoY+dHqqvpud7hdVOjyUyVihJJDKaVO2GoBjzSPYjCiqayNUqouERlgzRk4a0D35JdgxdPTbyD9p3KpqIiL0WL15MZKR9pyOJiAcwDHO7mZ1bzcA8wdbLaiEzNthtYY06ViukzIfD650eKjrYj6lJobxfpCSRSB8liURGk+rdA7aa9fTa2FPZortLwyl1ARRvBJvNruZz0yLxtlr4eF+NmwMTETnaunXrmDFjBueccw47d+4c6XBExremsiEXrd5d3kRGTBD+Pl5uDGwUSp0HNYXQVuf0UEsmxbD5cANNHd0uCExk9FOSSGS0sNmgunBA0eqDta109dhUtHo4pS4wi4f31Yc6gWA/b2akhPPxvlo3ByYiMtDs2bM5dOgQn376Kd/85je58MILj9n20UcfJS8vj7y8PKqrdUddxC3Kt5rXhJl2dymoaCZHRauPlrrAvBZvcHqoxVkx9NoMPt6ruZoIKEkkMno0FkNXC8R+tpJoV/mRotWaPAyf1PnmdQhLnE/OiGJbie5QicjwCg0NJTjY3KKyfPlyuru7qakZfFXjypUryc/PJz8/n5iYmOEMU2T8KNs6pKLVje3dlDa063CSwSTOAquPS7aczZ4QQbCft7aciRyhJJHIaNF3olbMZ0WrC8qb8LZayIi1r/ihuEBEGgTHDzFJFI3NgI37nV8SLSJir4qKCgzDPNZ548aN2Gw2oqKiRjgqkXGsbItZNsA30K7mhUdOsNWK8UH4BJiJIhckiXy8rCzIiOK9wur+/zNFxjPvkQ5AROxUtcu8fm4lUUFFMxkxwfh5a5/6sLFYzH3wQ5iUzEoNx8/bysf7ajljcpwbgxOR8eTKK6/k3XffpaamhuTkZH72s5/R3W2uWLzpppt48cUX+ctf/oK3tzcBAQE8++yzWCyWEY5aZJwyDHO7WeYyu7vsLjdPNsvVivHBpc6DDX+F7g7w8XdqqCWTYnhzVyX7a1rJiFGRcBnflCQSGS2qCiAkAQIi+h/aW9XC9OSwEQxqnEpdALtWQWOJeeLZCfj7eJGXFqHi1SLiUs8888xxn7/11lu59dZbhykaETmuplJorR5S0eqCiibCA32IC/VzY2CjWOoC+PhPZvKtrxyAg5ZMMrfZvr+nWkkiGfe03UxktPjCyWYd3b0U17fpB9lIcKguUTQFFc3UtHS6KSgRERHxWGVbzWviTLu77C5vJic+RCsAjyVlnnk9vM75oSIDmRgdxPt7VJdIREkikdHA1jvoyWaGARmxShINu7hp4BM0pBM1Ts4w64Cs36+TM0RERMad8q1g8YK4qXY177UZFFY0qx7R8QRFQ1QWHHb+hDOAxVnRrNtfS0d3r0vGExmtlCQSGQ3qD0JPx4B6RPuqWgHIiFHR6mHn5Q0pc4d052paUhghft58vE9JIhERkXFniEWrD9e10d7dq3pEJ5I6H4rXg83m9FCLJ8XQ0W0j/2C9CwITGb2UJBIZDQY52WxvVQsA6dFaSTQiUhdA5U7oaLSrubeXlXnpkaxTkkhERGR8MQxzu9kQtpoVVphFq7PjQ9wT01iROh/a66G2yOmh5qdH4etl5f0ibTmT8U1JIpHRoO9ks5js/of2VbeQFB5AgK9ONhsRKfPAsEHJJ3Z3WZARzYGaVsob290YmIiIiHiUplJoqxlS0eo9lebNwKw43Qw8rtQF5tUFdYmC/LzJS4tQXSIZ95QkEhkNqgogLAX8P1tyvK+6RfWIRlJynllbYAj74OemmSfTbTqkZcwiIiLjRtkW85ow0+4uhZXNpEQGEOirw6iPKzIdgmLh0McuGW7xpBgKKpqpbOpwyXgio5GSRCKjQXUBxH621cxmM9hf3UqmTjYbOX4hED9tSHeuchNC8fexKkkkIiIynpRtNW8sxdtXtBqgqLKZSbHaanZCFguknQIHPzS39TlpcVYMAO9pNZGMY0oSiXi63h6o2WMWOzyivKmD9u5eMmJVtHpEpcyD0s3mn5EdfLyszEgOZ7OSRCIiIuNH+VbzZp9PgF3Nu3ps7K9uZZLqEdknbZG5pa9uv9ND5SaEEBPipy1nMq4pSSTi6er2Q2/XgJVE+44Urc7QSqKRlXISdLdC1U67u8yZEMHOsibau3S8qoiIyJhnGOZ2syFsNTtY20qPzWCS6hHZJ22ReT34odNDWSwWFmfF8OHeGnptzq9MEhmNlCQS8XTVu83r55NE1UoSeYSUk8xr8Ua7u8yZEEGPzWBbSYN7YhIRERHP0VgCbbVDOtlsT2UzAFnabmaf6CwIjoODH7hkuMWTomlo62Z7qX0n2IqMNUoSiXi6qt2ABaIHnmwW6u9NdLDvyMUlZjHx4PghJYlmpx4pXn1YW85ERETGvPKt5nWIJ5tZLZCpA0rsY7FA2kKX1SValBWDxQLvFWrLmYxPShKJeLqq3RAxAXwD+x/aW2WebGaxWEYwMMFiMVcTFdt/wllEkC8ZMUGqSyQiIjIelG0xi1bHTbG7y56KZiZEBeHv4+XGwMaYtEXQXA61+5weKjLIl2lJYbxfpCSRjE9KEol4uqrdEDt5wEP7qlu11cxTpJwEDYegudLuLnMmRLDpUD2GC+52iYiIiAcr22rO4+wsWg2wp6qZLK0iGpr+ukSu2XK2ZFIMWw7X09je7ZLxREYTJYlEPFlPF9TtG3CyWWN7N9XNnUoSeYqUeea1ZGh1ierbutlf0+qmoERERGTE9RWtTpxhd5fOnl4O1baRrZPNhiYqwywB4LK6RDHYDPh4b41LxhMZTZQkEvFktXvB1jNgJdH+/qLVQSMVlXxewgzw8h1y8WqATdpyJiIiMnY1FkN73ZDqEe2vbqXXZpAVpyTRkFgsMHGRy+oSzUwJJ8TPW1vOZFxSkkjEk1XtMq+xn60k2ldtrj7J0DJkz+DtZx5rO4QkUXp0MGEBPqpLJCIiMpaVbTWvCUMpWm2ebDYpTvO8IUtbCC2VUFPk9FA+XlZOzozi/T01Kg8g446SRCKerLoALFaIyup/aF91C95WC6mRgcfpKMMq5SRzOXlPl13NrVZLf10iERERGaPKtoDVe2hFqyub8bZaSI9WkmjIXFyXaPGkGEob2vtv0IqMF0oSiXiyqt0QmQE+/v0P7atqIS06CB8v/fP1GCknQW8nVGyzu8ucCREUVbXQ0GZfYklERERGmbItEJM7YB53InsqzXmer7fmeUMWmQ4hieaWMxdYnBUDwPt7tOVMxhf97yPiyap2D9hqBrC/ppX0aNUj8ijJJ5nX4g12d5mVEg7AtpJGNwQkIiIiI8pmg9LNkDxnSN32VDZrq5mjXFyXKCUykPToINUlknFHSSIRT9XdAfUHzDtQRxiGQXFdm7aaeZrQBAhLHVJdoqnJYQBsL1WSSEREZMyp3QudjZCUZ3eX9q5eDte1kRWrotUOS1sIrVVQs8clwy2eFMP6/bV0dPe6ZDyR0UBJIhFPVbMHDBvEfpYkqm7upLPHRoqSRJ4nOQ9K8u1uHurvw8ToILaVNLgvJhERERkZpUfmBMn2J4n2VbdgGJAdrySRw/rqEh143yXDLZ4UTUe3jfyDqiMp44eSRCKeqmq3ef1ckuhwXRuAVhJ5osRZ0FQCrTV2d5maFMaO0iY3BiUiIiIjoiQffEMgepLdXXSymQtEpEFossvqEs1Pj8LXy6otZzKuKEkk4qmqd4PVxyxcfURxvZkkSokMGKmo5FgSjxxv23fcrR2mJ4VR2tBOTUune2ISERGRkVGaD0mzwOpld5e9VeYJthOiVHvSYS6uSxTo601eWoSKV8u4oiSRiKeqKoCoTPD27X+ouK4dgOQIrSTyOAnTzWvZFru7TFNdIhERkbGnux0qdw6pHhGY280mRAXqBFtnpS2EthqoLnDJcIsnxVBQ0UxlU4dLxhPxdPofSMRTVe066mSz4ro2YkL88Pex/66UDBP/MDOpV77V7i5TEkMB2KETzkRERMaO8k/B1gPJc4fUbW9VCxkx2mrmtLSF5vXABy4ZblFWNAAf7bW/pIDIaKYkkYgn6mqFhkMQO3nAw8X1OtnMoyXMHNJKohB/H9JjgtimlUQiIiJjR8nQi1Z399o4VNtGZqySRE6LSDNPnT3omiRRTnwoof7efHKwziXjiXg6JYlEPFHf8tiYL64kaiclQvWIPFbiLGgqhZYqu7tMTwpju1YSiYiIjB2l+WaSIjjW7i6HatvosRlKErlK2kKzLpHN5vRQXlYLc9Mi2XBASSIZH5QkEvFEVUeSRJ872ay710Z5YzspWknkuRJnmtchFK+emhRGRVMHVc3a5y4iIjImlORD8pwhddlb1QKg7WauMnERtNeZB8G4wNyJkeyvbqW6WYeNyNjnkiTR9ddfT2xsLFOnTh30ecMw+Na3vkVmZibTp09n8+bNrnhZkbGrejd4+UHExP6HyhrasRmQoqLVnit+OmAZUl2i6cnhAOzQljMREZHRr7kSGosdKloNkKGVRK7h4rpEJ02MBCBfW85kHHBJkui6665jzZo1x3x+9erVFBUVUVRUxKOPPsrNN9/sipcVGbuqdkP0JPDy7n+o72QzrSTyYP6hEJ01pLpEUxJDsVhgm7aciYiIjH6lQ69HBLCvqoX4UH+C/bxP3FhOLDwVwie4rC7R1MQwAny8tOVMxgWXJIkWL15MZGTkMZ9ftWoVX/nKV7BYLMyfP5+GhgbKy8td8dIiY1NVwdEnm9W3AZASqZpEHi1h5pC2mwX5eZMRE6yVRCIiImNBST5YvSFhxpC67atuUT0iV0tbBIc+ckldIl9vK7MnhLNRSSIZB4alJlFpaSkpKSn9XycnJ1NaWnpUu0cffZS8vDzy8vKorq4ejtBEPE9HEzSVDKhHBHC4rg1vq4WEMCWJPFriLGguM5eb22l6UphWEomIiIwFpfkQNwV87J+vGYbBvupWJYlcbeIiaK+Hqp0uGW5uWiS7K5pobO92yXginsqjClevXLmS/Px88vPziYmJGelwREZG/8lmA5NExXVtJIYH4GW1jEBQYre+4tVDqEs0NSmMquZOKptUvFpERGTUsvVC6ZYh1yOqaOqgpbOHjJggNwU2TvXVJTr4oUuGO2liJIYBmw/Vu2Q8EU81LEmipKQkiouL+78uKSkhKSlpOF5aZPSpOnIKwxdWEhXXt5OqekSer6949RDqEk1PDgNgu1YTiYiIjF41e6Cr2YF6RK2Aila7XFiyeQiMi4pXz0qJwMfLorpEMuYNS5JoxYoVPPXUUxiGwfr16wkLCyMhIWE4Xlpk9KkuAJ9As9je55TUtake0WjgF2wWHR9CXaKcBLN49a7yJvfFJSIiIu5V0le0eu6Quu2tagbQdjN3SFvosrpEAb5eTEsKY+OBWhcEJuK5XFI+/8orr+Tdd9+lpqaG5ORkfvazn9Hdbe7VvOmmm1i+fDmvv/46mZmZBAYG8vjjj7viZUXGpqpdZpLB+lkOt7Wzh9rWLpIjtJJoVEicBfvftbt5sJ83aVFB7CzTSiIREZFRq+QT8A+DyIwhddtX3UqIvzcxwX5uCmwcS1sEW/4BlduHXEx8MCdNjOJvH+ynvauXAF8vFwQo4nlckiR65plnjvu8xWLh4YcfdsVLiYx9VQWQcdqAhz472UxJolEhYTpsexZaqiA41q4ukxND2VbS4N64RGRMuf7663n11VeJjY1lx44dRz1vGAbf/va3ef311wkMDOSJJ55g9uzZIxCpyDhRugmS5gy40WePvVXmyWYWi+pOutzn6xK5IEk0b2Ikj7y3jy2H6zk5M9rp8UQ8kUcVrhYZ99rqoKUCYnMGPFxc1w6gmkSjRfw081qxze4ukxNCKa5r14kZImK36667jjVr1hzz+dWrV1NUVERRURGPPvooN9988zBGJzLOdLaYq8GHWLQaYG91C5kx2mrmFmFJEJnusrpEs1MjANhWqtXfMnYpSSTiSY5zshlASoRqEo0K/Umi7XZ3mZIYCsBu1SUSETstXryYyMjIYz6/atUqvvKVr2CxWJg/fz4NDQ2Ul5cPY4Qi40j5VjBsQy5a3djeTXVzp4pWu1PaIjj0sXn6nJPCAn1ICPOnsKLZBYGJeCYliUQ8yTFPNmsj0NeLyCDfEQhKhiwgAsJSh5QkmnwkSbSzTEkiEXGN0tJSUlJS+r9OTk6mtLR0BCMSGcP6ilYnzRlSt33VLQBaSeROaYugs3FIK7yPZ1JcCAVKEskYpiSRiCep2g2+IeaRnZ9TXNdOSkSg9qqPJgnTodz+yUhsiD8xIX4qXi0iI+LRRx8lLy+PvLw8qqurRzockdGnNB8i0iBoaHVq9lYdSRJpJZH7fL4ukQvkxIewr6qFnl7nT0wT8URKEol4kuoCsx7RF5JBxXVtKlo92sRPg9q90NVqd5cpiaHs0koiEXGRpKQkiouL+78uKSkhKSlp0LYrV64kPz+f/Px8YmJihitEkbGjZJND9YiKKpvx87ZqnudOoQkQlemyukTZ8SF09do4WGv/HE9kNFGSSMSTVO2GmIFFqw3DoKS+jWTVIxpd4qcBBlTutLvL5IRQ9la10Nnj/J55EZEVK1bw1FNPYRgG69evJywsjISEhJEOS2TsaSqD5rIh1yMCKKhoJjs+BC+rVou7VfpSOPgBdLc7PdSkuBAAbTmTMUtJIhFP0VINbTVH1SNqbO+mtatXSaLRJn66eR3C/vcpiWH02AyKKlvcFJSIjCVXXnklCxYsoLCwkOTkZB577DEeeeQRHnnkEQCWL19Oeno6mZmZ3Hjjjfz5z38e4YhFxqi+ekTJc4fcdXd5M9lHkg7iRtnnQHcbHHjf6aEyY4PxslrYoySRjFHeIx2AiBxRPXjR6pJ6845HUriSRKNKWDL4hztYvLqRqUlhbgpMRMaKZ5555rjPWywWHn744WGKRmQcK/kEvHw/O93UTtXNndS0dJKTEOqmwKRf2iKz7mfh6zDpLKeG8vfxIi0qUCuJZMzSSiIRT1FVYF5jBiaJyhqOJIm0kmh0sViGXLx6QmQgQb5eqkskIiIympRuMhNE3n5D6tZ3jHpuvFYSuZ23H2SeDoWrweZ8wens+BAKK5UkkrFJSSIRT1G1C/zDICR+wMOlDVpJNGrFTzf/XHt77GputVrITQhlp5JEIiIio0N3B5RuhuSThty1oML8eZ+tJNHwyF4OLZVQtsX5oeJCOVzXRluXfXM8kdFESSIRT1FdALGTjzrZrLS+HX8fK5FBviMUmDgsfjr0dEBtkd1dpiSGsru8CZvNcGNgIiIi4hKHPoSednOVyhAVVDQTG+JHVPDQViCJg7KWgcXL3HLmpOz4YAwD1ZGUMUlJIhFPYBiDnmwG5kqixPAALBadejHq9NUmGGJdotauXg7VtbkpKBEREXGZojfB2x/SFg65a0FFk1YRDafASJhwsouSRGYdqULVJZIxSEkiEU/QXAEdDUcVrQYzSaStZqNUdBZ4+UH5p3Z3mZJoFqzeWdborqhERETEVYreNIsi+wxtrtbTa2NPZQu5Klo9vLLPMUsB1B1wapjUyED8fayqSyRjkpJEIp7gGCebgVm4OllFq0cnLx+ImzyklURZccH4eFnYUaq6RCIiIh6tbj/U7TO3MQ3RwdpWunps5Ggl0fDKPse87lnj1DBeVgtZsSFaSSRjkpJEIp7gGCebdXT3UtPSpZVEo1n8NDNJZNhXY8jP24tJcSHsKNVKIhEREY9W9JZ5zTxjyF37jk/PiddKomEVmW7Otwtec3qo7PiQ/j9HkbFESSIRT1C1CwKjIThmwMN9J5slKkk0esVPh/Y6aCq1u8u0pDC2lzZi2JlYEhERkRFQtBYiMyAqY8hdC8qb8bJayIgNckNgclyTzoTD66Gr1alhcuJDqGnppLal00WBiXgGJYlEPEF1weD1iOrNJJFWEo1i8dPN6xC2nE1NCqOxvZuSI3/+IiIi4mG62+HgBw5tNQOzaHVGTBB+3l4uDkxOaOJisHWbiSInTIoztwqqLpGMNUoSiYw0wzC3mw1yslnZkZVESapJNHrFTQEsUL7N7i7Tkszi1du15UxERMQzHfwIejog07Ek0e7yZm01Gykp88HqbSb5nNBXT2pXmepIytiiJJHISGssga7mY55s5mW1EB/qPwKBiUv4BZvL0CvsTxJlx4fgbbUoSSQiIuKp9r4J3v6QdsqQuzZ1dFPa0E5OgopWjwi/YEiaAwecSxLFhPgxKS6YVz4tc1FgIp5BSSKRkVZ9pGj1MbabxYf64+2lf6qjWl/xajv5+6h4tYiIiEcretPctuQz9NXee44UO87VSqKRk7YIyrZAp+NbxSwWC1fNm8C2kka2lTS4LjaREabfPEVGWtUu8zrIdrOShnYSw7WKaNSLnw4Nh6C9we4u05LC2KHi1SIiIp6npgjq9kHWmQ51330kSZQdr5VEI2biIjB64dA6p4b50uwkAny8+Nf6wy4KTGTkKUkkMtKqCiA4HgIjj3qqtL5dRavHgr7i1ZU77O4yNTmM+rbu/hPuRERExEMUrjavk85yqHtBeROh/t4khOlG4IhJmQdevnDwfaeGCfX34cJZiaz6tJTG9m4XBScyspQkEhlp1bsh9uhVRL02g4qmDhWtHgsSjiSJHCherS1nIiIiHmbPGoibBuGpDnUvqGgmJyEUi8Xi4sDEbj4BkDzX6bpEAFfNm0BHt41/by5xQWAiI09JIpGRZLNBdSHETj7qqcqmDnptBknhgSMQmLhUcCwExw2pLlGOileLiIh4nrY6OLwOss92qLthGBRWNJOrrWYjL22RebDIEMoBDGZqUhgzUsL514bDKhMgY4KSRCIjqeEQdLcNWo+ob5uRahKNEQ4Ur86KC2F7qY5VFRER8RhFb4Jhg+xzHOpeUt9OS2cPOQkqWj3iJi4y/ywPfez0UFfNS2VvVQsbDtS5IDCRkaUkkchIqi40r4MlierNJFGytpuNDfHTza2FPZ12d5maGKri1SIiIp6k8HWzlmTCLIe6F6hotedIngve/nDQ+S1n509PJMjXi9e2lbsgMJGRpSSRyEiq6UsSTTrqqc9WEilJNCbETwNbD1QX2N1lWnIYda1dlDV2uDEwERERsUtPF+x92yxYbXXs16iCcnOFcHackkQjztsPUk5ySV2iAF8vMmKDOVTX5oLAREaWkkQiI6l6DwTFQkDEUU+VNrQTGeRLoK/3CAQmLpcww7wOoXj11CPFq7eXqC6RiIjIiDv0IXQ1Q/Zyh4coqGhmQlQgQX6a33mEiUugcjs0Ob8CKCUikGIliWQMUJJIZCTVFEJM9qBPlda3k6RVRGNHxETwCRpSXaLJCaF4WS3sLFOSSEREZMQVrgHvAEhf4vAQBRVN5GirmefIPd+87n7F6aGSIwMorW/HZlOZABndlCQSGSmGYa4kOlaSqKFdRavHEqsV4qcOuXh1RkwQu8tVvFpERGREGQYUroaMU83j0x3Q0d3LgZpWsuNVtNpjxGRD7BTY+R+nh0qNDKSr10Zls8oEyOimJJHISGmugM5GiD46SWQYBmUN7SSFB45AYOI28dPNJJHNZneXyQmh7CpTkkhERGRE1e6DxsOQtczhIYoqW7AZkKuVRJ5lypfg8DpoKnNqmJQIc95eXNfuiqhERoySRCIj5ThFqyubOmnr6iUtWkmiMSV+mlnLoP6A3V0mJ4ZS1thBfWuXGwMTERGR4yrbYl6T5zo8xO4K86ZPToJWEnmUKRea112rnBomJdKctx9WXSIZ5ZQkEhkp1XvM6yArifonEVqOPLYkzjSv5Z/a3WVyglm8WlvORERERlD5VvO49Jgch4coKG8mwMeL1EjdBPQo0VkQN83pLWeJ4f5YLKh4tYx6ShKJjJSaQvALhZD4o54qKG8GdDzqmBOTC1afISWJchPMvwO7lCQSEREZOWVbzBXBXj4OD1FY2cSk+BC8rBYXBiYuMeVCKN4AjSUOD+Hn7UVCqD/F9UoSyeimJJHISKkuhOhJYDl6olBY0URimD9hgY5PRMQDeftC3GTzbqSdooL9iA/1V10iERGRkWLrNW/wJM5yeAjDMNhd3kyObgB6pilfMq9ObjlLjgykRDWJZJRTkkhkpNQc+2Szgopm7VcfqxJmmBNNw/7jUScnhmolkYiIyEip3QtdLU4liapbOqlr7SInQUkijxSVYR4w4uSWs5SIQNUkklFPSSKRkdDeAC2V5kqiL+jqsbG3qoVsnXwxNiXMhPZ6aCy2u8vkhFD2VrXQ0d3rvrhERERkcH1Fq51IEvWVElC9SQ825UIo+cQ8gdhBKZEBVDZ30NmjOZuMXkoSiYyEmiNFqwdZSbS/poUem0GOkkRjU8JM8zqU4tWJofTYDPZWtbgnJhERETm2si3gEzjozT17FfQfSqL5ncdKW2xeS/IdHiIlIhDDgNJ6bTmT0UtJIpGRUF1oXgeZbPTdacrVdrOxKW4yWLygbKvdXSYf+bugukQiIiIjoGyruRXJ6uXwENtLm4gP9SciyNd1cYlrxU8DqzeUbnJ4iNQo8+S6YiWJZBRzSZJozZo1ZGdnk5mZyX333XfU80888QQxMTHMnDmTmTNn8re//c0VLysyetUUgpcfRKQd9dTuiiZ8vCxMjA4a/rjE/XwCzONzh7CSKDUykCBfL9UlEhERGW69PVCxzamtZr02gw+Lqjk5I8qFgYnL+fhD3FSnkkQpEUeSRKpLJKOYt7MD9Pb2csstt/Dmm2+SnJzM3LlzWbFiBZMnTx7Q7vLLL+ehhx5y9uVExobqPRCVOegdqcKKZjJjQ/Dx0kK/MSthBux90yxePcjpdl9ktVrITQjVSiIREZHhVrMHutucShLtKG2kvq2bJdkxLgxM3CJpDmx/AWw2sA59Lh4b4oevt1VJIhnVnP4tdOPGjWRmZpKeno6vry9XXHEFq1Y5d3SgyJhXXQAxg+9rLyhvJlf71ce2xJnQWj2kwoh9J5zZbPafiiYiIiJOckHR6ncLq7FYYFGWkkQeL2kOdDZBbZFD3a1WC8nhARTXK0kko5fTSaLS0lJSUlL6v05OTqa0tPSodi+99BLTp0/nkksuobh48FN9Hn30UfLy8sjLy6O6utrZ0EQ8U3c7NByG6KOLVte3dlHR1KGTzca6hBnmtXyr3V0mJ4TS0tlDifa4i4iIDJ+yLeAbbK4Ad9B7e6qYnhxOpOoReb6kOebVmS1nkYEU12m+JqPXsOxnOf/88zl48CDbtm1j2bJlXHvttYO2W7lyJfn5+eTn5xMTo0y7jFE1RYAx6Eqigoojx6OqaPXYFjcVsAz5hDOAXeWNbgpKREREjlK2xTyZ1IGtRwANbV1sLW5gyST9bjMqRGeBb4iTSSKtJJLRzekkUVJS0oCVQSUlJSQlJQ1oExUVhZ+fHwBf+9rX2LTJ8X90IqNe3/LVQU42KzxyPKq2m41xfsHmJGQISaJJcSF4WS2qSyQiA+jwEBE36u2Giu3mNnEHfVBUg82ApapHNDpYvSBpFpTkOzxESkQgDW3dNHV0uzAwkeHjdJJo7ty5FBUVceDAAbq6unj22WdZsWLFgDbl5eX9n7/yyivk5uY6+7Iio1fdfvMamX7UUwUVzUQG+RIT4jfMQcmwS5g5pCSRv48XGTFBOuFMRPr1HR6yevVqdu3axTPPPMOuXbuOanf55ZezdetWtm7dyte+9rURiFRklKouhN5O82e2g97bU014oA8zksNdFpa4WdIcqNwB3R0OdU+J1AlnMro5nSTy9vbmoYce4qyzziI3N5fLLruMKVOm8JOf/IRXXnkFgAcffJApU6YwY8YMHnzwQZ544glnX1Zk9Ko7ACEJ4Hv0Efe7K5rJjgvBYseJVzLKJcyAplJosb/+2mSdcCYin6PDQ0TcrLrAvMZNPn67YzAMg/f2VLMoKwYvq+Z2o0bSHLD1mKvIHJDanyRSXSIZnbxdMcjy5ctZvnz5gMfuueee/s9/9atf8atf/coVLyUy+tXuG3QVkc1msKeimStOShmkk4w5/cWrP4WsM+zqkpsQystby6hv7SJCxS9Fxr3BDg/ZsGHDUe1eeukl3n//fSZNmsTvf//7AX1E5DiqC8Fidbho9a7yJqqbO1WPaLT5fPHqlLlD7p4SYSaJSlSXSEapYSlcLSKfU7d/0CTRwdpW2rt7yY1X0epxIWG6eR3KCWdHilfv1pYzEbGTvYeH6IRZkUFUF0DERPB2rAzAe3vMf0uLJ0W7Mipxt9BEc9W/g8WrwwJ9CPH3Zk9lM4ZhuDg4EfdTkkhkOHU2Q2vVoEmircUNAMxICR/emGRk+IeZfw+GUJcoN6HvhDMliUTEtYeH6IRZkUHU7IGYbIe7v7+nmskJocSG+LswKBkWSXOg1PHi1XPTInk+v4RLHlnH/woqlSySUUVJIpHhVHfAvB4jSRTk60VmbPAwByUjJmHGkFYSRQf7ERfqp7pEIgLo8BARt+rthtq9DieJ2rt62XyogYVZWkU0KiXNNlf/t9U51P3PV83m5xdMoaKxg+ufyOcnq3a6OEAR91GSSGQ41e0zr1EZRz21tbiBaclhKmw4niTMgIbDQ5qATE4I1UoiEQF0eIiIW9UdMIsXRzuWJNp0qJ6uXhsnZ0S5ODAZFn21IysdS+74+3hxzYI03r19KYuyovlob40LgxNxL5cUrhYRO9XtN68REwc83NHdy+7yJm5YePQKIxnD+iYgFdsgfaldXSYnhvJBUQ0d3b34+3i5LzYRGRV0eIiIm9QUmlcHVxJ9tK8Gb6uFuWmRLgxKhk1fsfK6fTBxkcPD+HhZyYoNYfOhehcFJuJ+WkkkMpzq9kNwHPgN3FK2q7yJ7l6DmapHNL4kzDSvQ6hLNDkhjB6bwd6qFvfEJCIiImbRaoDoSQ51/3hfLbNSwwny0z35USksBbx8zVOJnRQf5kdrVy/NHd0uCEzE/ZQkEhlOdQcGr0d0uAFASaLxJjASwlKhbKvdXfpOOFNdIhERETeq3gOhyUfd2LNHY3s320saWJChekSjltULItI+2wXghLhQs3B5ZVOn02OJDAcliUSGU91+iBy8HlF8qD/xYTr9YtxJmD6klUQTIgMJ9PVSXSIRERF3qi5weKvZxgN12Aw4RfWIRrfIDJesJPosSdTh9Fgiw0FJIpHh0tUKzeUQOfGop7YWN2gV0XiVMNPc795hX9LHarWQmxCqlUQiIiLuYrNBTZHj9Yj21uDvY2Vmarhr45LhFZUB9QfMvw9OUJJIRhsliUSGS90B8/qF7WZ1rV0crmvTRGK8SpxpXiu2292l74Qzm81wT0wiIiLjWeNh6Gl3OEm0bl8tc9Mi8fPWAROjWmQ69HRAU6lTw8SF+gFQoSSRjBJKEokMl749zVEDt5t9WtwAwIzk8OGNRzxD3wln5Vvt7jI5MZSWzh5K6tvdE5OIiMh4Vr3HvEYPPUlU3dxJYWUzJ6se0ejXN2d3si5RoK83If7eVKkmkYwSShKJDJe+HzARA7ebbSluwGqB6clhIxCUjLjgWAhJGOIJZ0eKV5c3uisqERGR8aum0Lw6sJJo3f5aAE7JVD2iUa+vjmidC044C/WnolEriWR0UJJIZLjU7YOgGPAPHfDw1uIGJsWF6IjU8SxhxpCSRNnxIVgtOuFMRETELaoLzDlbYOSQu368t4ZQf2+mJOrm36gXmgTe/i4rXl3ZrCSRjA5KEokMl7oDR9UjMgyDT1W0WhJmQM0es7i5Hfx9vMiKDWHLka2KIiIi4kLVexzaagaw8WAdJ02MxMtqcXFQMuysVnMHgJPbzeBIkkgriWSUUJJIZLjU7f9s2eoRh2rbaGzvZoaSRONbwkwwbFCxw+4up2RGs/FAHR3dve6LS0REZLwxDKgudGirWXtXLwdrWrWKaCyJynDRSiI/qpo7deiIjApKEokMh+5282SEL6wkOlhrrhzJjA0eiajEUyTNNq8ln9jdZUl2DJ09NtYfqX0gIiIiLtBSCZ2NDiWJiqqasRmQmxDihsBkREROhPoDYHPuplx8mD89NoPa1i4XBSbiPkoSiQyHugPmNXJg0eq+AnYJYf7DHZF4kpB4CE+F4g12d5k3MRI/byvv7al2Y2AiIiLjTPWRotXRk4bctaCiGYDs+NATtJRRIzIDerugscSpYWJDzLl+ZZO2nInnU5JIZDj07WWOGrjdrOLID4q+HxwyjqXMM5NEhn3LkP19vJifHqUkkYiIiCv1JYlicobctaC8mQAfL1IjA10clIyYKNeccBYX6gcoSSSjg5JEIsOhcgdYrBCVOeDhisYOooP98PXWP8VxL2WeucS94bDdXZZMimF/dSvFdW1uDExERGQcqSkEv1Bzle8QFVQ0MSk+REWrx5K+eqJO1iWKD+tbSdTpbEQibqffTEWGw+H1EDsF/AbuUS9v7NBWMzGlnGReh1iXCNBqIhEREVfpK1ptGVqixzAMCiqayYlTPaIxJSQBvAOcPuEsOtgPi+WzXQQinkxJIhF3s/VCST6kzjvqqcqmjv47CzLOxU4Bn6Ah1SVKjw4iKTyA95UkEhERcY3qQogeetHq6pZO6lq7yFHR6rHFajUPnnEySeTjZSU62I8qJYlkFFCSSMTdKndCVzOkzD/qqfLGDuJDlSQSwMsbkucMKUlksVhYkh3Dx/tq6eqxuTE4ERGRcaCtDlqrIMaBotXlZtHqHBWtHnui0p3ebgZmXSKtJJLRQEkiEXfr+6X/CyuJ2rp6aGzv1koi+UzKPKjYAZ0tdndZMimGls4eNh+ud2NgIiIi40DNHvPqSNHqiiYAcuK1kmjMicyA+oPQ2+PUMPGh/qpJJKOCkkQi7la8wdzPHJYy4OGKRvNOgmoSSb+UeWD0Qtlmu7ucnBGFt9WiukQiIiLO6jvZLNqxlURxoX5EBPm6OCgZcVEZYOuGxmKnhokN9dfpZjIqKEkk4m6HN5i//H+hAGLfclNtN5N+yXnmdQhbzkL8fZidGsFHe2vcFJSIiMg4UV1oFikOTx1y14KKZm01G6v6Tjirc/KEs1B/6lq76OzpdUFQIu6jJJGIOzWVQeNhSD26HlHfSiJtN5N+ARFmsczijUPqNictgl1lTXR0a9IhIiLisJpCiM4Eq9eQunX32thb1aKi1WNV1JEkUa1zxavjQv0AqNKWM/FwShKJuNPh9eY15eiTzcqVJJLBpJxkJols9heinpkSTo/NYGdZoxsDExERGeOq9zh0stmBmla6em2qRzRWBceZJ9A6uZIo7sjugapmbTkTz6YkkYg7FW8An0CIn3bUU5VNHYQF+BDo6z0CgYnHSpkHHQ1QW2R3l1kp4QBsOdzglpBERETGvM4Wc/W3A0Wrd5f3Fa3WdrMxyWKBSOdPOOtLElU0aiWReDYliUTc6fB6SJoDXj5HPVXe2KF6RHK0vlVnh9fZ3SU21J+k8AC2FDe4JyYREZGxru/mTMzQi1YXVjTjbbWQERPs4qDEY0Slu6QmEaDi1eLxlCQScZfOFqjYPuhWMzBrEmmrmRwlOguCYuHgh0PqNjM1nK1aSSQiIuKYvpPNHFhJVFDRTEZMML7e+tVqzIrMgIbD0Nvt8BDhgT74elmVJBKPp//JRNylbLN5nPkgRavBXEmUoCSRfJHFAmkL4cAHYBh2d5uVEk5pQztVmniIiIgMXXUhWL3NbUVDVFjRTLbqEY1tURlg6zETRQ6yWCzEhvopSSQeT0kiEXfpO6Eqee5RT3X12Kht7dRKIhncxEXQUgG1e+3uMis1HEBbzkRERBxRXWgmiAYpEXA8vTaDiqYOUiMD3RSYeITIIyec1Tl3wll8qD8VShKJh1OSSMRdKndARBoEhB/1VFVzB4aBahLJ4NIWm9cD79vdZUpiGD5eFrYqSSQiIjJ0NYUQM/STzWpbOum1Gf3Hm8sYFXUkSeRs8eow//4TjkU8lZJEIu5SuQtipwz6VMWRHw5aSSSDisqAkAQ4+IHdXfx9vMhNCGXL4Xo3BiYiIjIG9XRC3QGIHnqSqLLJPKkqVjf+xragGPANcbp4dU5cCIdq22hsd7y2kYi7KUkk4g7dHeZWobjJgz7dt8w0ISxgOKOS0cJigbRFZvHqIdYl2lbSSK/N/j4iIiLjXu0+s46kAyuJ+urLxClJNLZZLOYJZ06uJJqVGgHAp1r5LR5MSSIRd6gpNCcbscdIEvWtJNKEQo5l4iJorYbqAru7zEwNp62rlz2VzW4MTEREZIyp6TvZzIEkUbPmdONGZIbTK4mmp4RhscAWnUgrHkxJIhF3qNxlXuOmDvp0eWMHAT5ehAZ4D2NQMqqkLTKvB+zfcjYrxbw7pbpEIiIiQ1C5EyxWiJ409K5NnVgsEB3s64bAxKNEZZinm/V0OTxEqL8PWbHBbC1WeQDxXEoSibhD1U7w8jvmMaoVjR0khPljsViGOTAZNSLSICwFDtpfvHpCVCARgT6qSyQiIjIUFTsgKgt8hl4GoKqpg+hgP7y99GvVmBeZDoYNGg45NcyslAi2FDdgDKGkgMhw0v9mIu5QudNcsuw1+EqhiqYOFa2W4/t8XSKbzc4uFmamhLPpkJJEIiIidqvYDvHTHOva1KGTzcaLSNeccDYrNZyGtm4O1ra5ICgR13NJkmjNmjVkZ2eTmZnJfffdd9TznZ2dXH755WRmZjJv3jwOHjzoipcV8VyVuyBu8JPNwFxJpL3rckITF0F7vbkyzU4LMqLYV93aX/dKREREjqOtDppKIH7wEgEnUtnUSVyI5nTjQtSRJFHdfqeGmZkaDqCV3+KxnE4S9fb2csstt7B69Wp27drFM888w65duwa0eeyxx4iIiGDv3r185zvf4Y477nD2ZUU8V1sdtFQcM0lksxlUaiWR2MOBukSLsmIA+KCo2h0RiYiIjC2VR27EOLiSqKqpg1jd+BsfAqPAL8zp4tVZsSEE+XqpeLV4LKeTRBs3biQzM5P09HR8fX254oorWLVq1YA2q1at4tprrwXgkksu4e2339YeTBm7+iYbxzjZrKa1kx6bQYKSRHIi4SlmbaKD9ieJcuJDiA7244OiGvfFJSIeQ6u5RZxUsd28xg09SdTVY6O2tUurw8cLiwWi0p3ebuZltTAjJZwtKl4tHsrpJFFpaSkpKSn9XycnJ1NaWnrMNt7e3oSFhVFbW3vUWI8++ih5eXnk5eVRXa274DJK9SWJjrGSqG8bUJwmFGKPtEVw8COw9drV3GKxsDgrmg/31mCzKRkvMpZpNbeIC1TugKBYCIkbctfqlk4A1SQaTyIznF5JBGZdot3lzbR32Te/ExlOHlW4euXKleTn55Ofn09MTMxIhyPimKqdEBAJwYNPNsqPJIkSwoZ+goaMQxMXQ2fjZ3c67bBoUjR1rV3sLGtyY2AiMtK0mlvEBSq2OVGPSDf+xp2oDGgsgZ5Op4aZlRJBr81ge2mjiwITcR2nk0RJSUkUFxf3f11SUkJSUtIx2/T09NDY2EhUVJSzLy3imfqKVh/jePu+lUSqSSR26atLNIQtZwszzST7+6pLJDKmuXI1t8i41NsN1YUQ52CS6MicLlYricaPyAwwbFB/0Klh+opXb9WWM/FATieJ5s6dS1FREQcOHKCrq4tnn32WFStWDGizYsUKnnzySQBefPFFTjvtNCzH+AVaZFSz2aBq9/FPNmvqwMfLQlSQ7zAGJqNWaAJEZQ6peHVMiB+TE0JVvFpE7KYt/zIu1eyB3i6In+5Qd60kGof6Tjhzsi5RdLAfqZGBKl4tHsnpJJG3tzcPPfQQZ511Frm5uVx22WVMmTKFn/zkJ7zyyisA3HDDDdTW1pKZmcnvfve7QQsriowJDQehu/WYRavBXEkUG+KP1apEqdgpbREc+hh6e+zusmhSNJsO1dPaaX8fERldXLmaW1v+ZVzq28rt6Haz5k58vCxEBurG37gRmW5ea/c6PdSs1HAlicQjebtikOXLl7N8+fIBj91zzz39n/v7+/PCCy+44qVEPFvlkYKhx1lJVN7YrpPNZGgmLoJNj0P5p5A8x64ui7Ni+Ot7+9lwoJbTcoZejFNEPN/nV3MnJSXx7LPP8vTTTw9o07eae8GCBVrNLfJFFdvByw+ishzqXtmkG3/jTmAkBEZBbZHTQ01OCGXV1jIa27oJC/RxQXAiruFRhatFRr2qI0mimJxjNqls6lQ9Ihma/rpE79vdZc6ECPx9rLy/p8ZNQYnISNNqbhEnVWyH2Fzwcuy+eVVTp+oRjUfRk6DG+ZVEGTHBAOyraXF6LBFXcslKIhE5onInREwEv+BBnzYMg/LGds7IjR3mwGRUC441E48HPoCF37Gri7+PF/MmRql4tcgYp9XcIg4yDKjcAdnLT9z2GCqbOvp/0ZdxJCoT9qxxepiM2CNJoqoWZqdGOD2eiKtoJZGIK1XuPO5Ws8b2bjq6bSpwKEOXtggOrzdPYrHTwsxo9le39hfWFBERkSOaK6CtFuKnOTxERVMHcVpJNP5EZ0FrNbQ3ODVMSkQAPl4W9lW3uiYuERdRkkjEVbrboW7fcYtWlx85KjUhLGC4opKxYuIisyh66Wa7u8xPN4vTrt+v465FREQG6CtaHedY0eq2rh6aO3qI1Y2/8aevhpWTxau9vaxMiApiX7W2m4lnUZJIxFWqC8GwQdxxTjY7sqJDNYlkyCYsNK8H7K9LNDkxlBA/b9bvr3NTUCIiIqNU+VbzepwV4MdT1dQJQLySRONP9JEkUY3zxaszYoLYrySReBgliURcpa9odeyxJxsVjUoSiYOCoiBhJhSttbuLl9XC3ImRbNBKIhERkYGK3oTE2RAQ7lD3vq3cKiEwDkWkgdUbavY4PVRGTDCHatvo7rU5H5eIiyhJJOIqlTvB2x8i04/ZpLyxA4sFYkO0f10ckL0cSj6Bliq7u8xPj2R/TStVqkskIiJiaq0xf55OOtvhISqbzZVEqkk0Dnn5mImiWlesJAqmx2ZwuK7N+bhEXERJIhFXqdwJMdnHPUa1srGDmGA/fLz0T08ckLMcMKBwtd1d+usSHdCWMxEREcBcRYQBk85yeIi+my+qSTRORU+CGudqEsHAE85EPIV+UxVxlapdx91qBlDe1EGCtpqJo+KmQljqkJJEkxP66hJpy5mIiAhgHl8ekgAJMxweoqKxA38fK6H+x745KGNYVCbU7Qdbr1PDpMcEAeiEM/EoShKJuEJrDbRUHrdoNUBFY7v2rovjLBbIPgf2vwNd9k0mvL2s5KVFKEkkIiIC0NMF+/4HWWeaP1cdVNncSXyoPxYnxpBRLDoLejuh4bBTw4T6+xAb4qcTzsSjKEkk4gqVO81r7PGTROWNWkkkTspZDj0dsO8du7vMT49if3UrVc2qSyQiIuPc4XXQ2eRUPSIwC1drq9k4FnXkhLNa57ecpccEKUkkHkVJIhFX6DvZLG7qMZu0dvbQ3NFDfFjAMAUlY9KEU8AvzKG6RBv2qy6RiIiMc3veAC8/SF/i1DBVTR1aHT6eRR9JEtW4pnj1/upWDMNweiwRV1CSSMQVKndCYBQExx6zScWRAofxYToFQ5zg5QNZy8x6Cnbug5+SGEqw6hKJiIiYPz8nLgbfIIeHMAyDyqZO4nRa7fgVGAX+4S474ayxvZva1i7n4xJxASWJRFyhape51ew4+9IrGo8kiUK1kkiclLMc2mqgeKNdzVWXSEREBPM0qrp9Tp1qBrCtpJH27l6y40NcFJiMOhaLuZrIFSuJdMKZeBgliUScZbNB1W6IO/7JZn1JItUkEqdlngFWHyh8ze4uC9Kj2FfdSnljuxsDExER8WB71phXJ5NEq3dU4G21sGxynAuCklErepKLtpvphDPxLEoSiTir/gB0t504SdS/3UxJInGSf5i5VH7XK2Dn/vXTc82tkG/tqnRnZCIiIp5r3/8gOhvCUx0ewjAM1uwoZ0FGFOGBvi4MTkadqExoqYCOJqeGSQwLwN/HquLV4jGUJBJxVl/R6tjjJ4nKG9sJD/TB38drGIKSMW/Kl6DhEJRvtat5RkwwE6ODWKskkYiIjEc9XXB4vXmTxQkFFc0crG3j7KnxLgpMRq1o15xwZrVaSI8OVpJIPIaSRCLOqtwFWCA257jNKho7iNcpGOIqOeeC1Rt2/seu5haLuSx+/f5amjq63RyciIiIhynbDN2tTieJVu+owGKBMycrSTTuRbkmSQSQHhPEfm03Ew+hJJGIs0o+gciJJzwlo6KpQ/WIxHUCIyF9Kex82e4tZ2dOjqO71+C9wmq3hiYiIuJxDnwAWCBtoVPDrNlRzklpkcToZDOJnGjWiKzc4fRQGTHBFNe30dFt38m1Iu6kJJGIM+oPwb63za0/J1DR2EF8mE42ExeafKG55axsi13NZ6VGEBXkqy1nIiIy/hx4D+KnmjdZHLS3qoU9lS2co61mAuDtB4mzzG2MTsqOD8EwoKhSW85k5ClJJOKMT/4GWCDvhuM26+zppaalS9vNxLX6tpztetmu5l5WC6fnxvJuQRVdPTb3xiYiIuIpujugeCOkObfVbM2OcgDOnprgiqhkLJhwMpRuhq42p4bJTQgFYHe5c0WwRVxBSSIRR3W1wuYnIfd8CEs6btOqpk4AbTcT1+rfcvYfu7ecLZscT3NnDxsO1Lo3NhEREU9R8gn0drqkHtGs1HCdVCufmXAK2LqhNN+pYVIjAwnw8WKXkkTiAZQkEnHUtuehoxHm3XTCphVNHQCaVIjrTb4QGg7bveVsYWY0/j5W3tSWMxERGS8OvA8WK0xY4PAQRZXN7Cxr0lYzGSh1HmCBQx87NYyX1UJ2fIhWEolHUJJIxBGGARsfhfhpkDr/hM3LG5UkEjcZ4ilnAb5eLMqK4a1dlRh2rj4SEREZ1Q5+AAkzwT/M4SH+74P9+PtYuWROiuviktHPP8z8feDQR04PlZsQSkFFs+ZnMuKUJBJxxMEPoGqXuYrIYjlh8/f3VBPk60VqZOAwBCfjSmAkZC6Drf+Czma7upw1JZ6yxg7yD9W7OTgREZER1tUKJflObTWraurg5S1lXDonhcggXxcGJ2PChFOg+BPo6XJqmMkJITS2d/ffXBYZKUoSiThiw18hMAqmXnLCpi2dPby2rZzzZyTi7+M1DMHJuLP4dmirhfV/sav58mnxhPp789S6Q24OTEREZIQdXm/WjJm4yOEhnlx3kG6bjRsWTnRhYDJmTDgZetqhfKtTw6h4tXgKJYlEhqqxFApXw6xrwOfE28de/bSM9u5eLs3T8mRxk+Q5kH0ufPwnaKs7YfNAX28uy0th9fZyqpp0t0pERMawA++b27JTHatH1NrZwz/XH+asyfGkRQe5ODgZEyacbF6d3HKWHR8CKEkkI09JIpGh2vwUGDaYc51dzZ/PLyYzNpjZqeFuDUvGudN+ZG43+/hBu5pfPX8CvYbBvzYcdnNgIiIiI6SjEbb8wzwJ1NexBM/z+cU0tnezckm6a2OTsSMoGqKznS5eHeLvQ0pkALsr7CsfIOIuShKJDEVvj3nsfebpEHniJcd7q5rZfLiBy/KSsdhRu0jEYXFTYOrF5lbI5hOfXJYWHcTSSTE8vfEwXT22YQhQRERkmH34e3M79ml3OdS9p9fGYx8eIG9CBLNTI1wcnIwpE04+srWx16lhcuNDtZJIRpySRCJDsWcNNJdD3vV2NX8+vwRvq4UvzUp2c2AiwKk/hJ5O+PB3djX/yslpVDd3smZnhZsDExERGWYNxWatvumXQ+Ish4b4YG8NJfXtfG2RahHJCUw4BTqboHKHU8PkJoRysKaV9i7nkk0izlCSSGQo8h+D0CTIOuuETbt7bfx7cwmn5cQSE+I3DMHJuBeVAbOuhk8eg+o9J2y+JCuGtKhAnvr4oPtjExERGU7/uxcMw+FVRABv7Kgg2M+bU3NiXRiYjEkTjtS8OuhcXaLchBBsBhRWasuZjBwliUTsVbcf9v0PZl8LXt4nbP6/gipqWrq4fK4KVsswOu3H4BMIq39gTo6Pw2q1cM2CNPIP1fNpccPwxCciIuJu5Z/Ctudg/k0QnurQED29NtbuquS0nFj8vHU6rZxAWDJETIT97zo1TN8JZwXaciYjSEkiEXvlPw4WL5h9jV3Nn/+kmNgQP5ZMinFzYCKfExxjbjvb/w4UvHrC5pflJRMe6MMf3jrxyiMREZFR4a2fQUAELPyuw0N8crCeutYuzp4a78LAZEzLOhMOvAddbQ4PkRIRSJCvl+oSyYhSkkjEHp0t5ukY2edAaOIJm1c2dfBOYRUXz0nG20v/zGSYzf0axE6GNT+E7vbjNg3x9+HrizN4p7CaTYfqhilAERERN6nYAfvehpNvhYBwh4dZs6McP28rS7N1s0/sNOlM6OmAgx84PITVaiEnIZTd5dpuJiNHv72K2GPzk9BeD6d8267m/95cis2AS+eoYLWMAC9vWH4/NB42T3Y5gWtPnkB0sC+/XavVRCIiMsqte9jcdj3nqw4PYbMZvLGzkiWTYgj0PXGJAREAJiwEnyDY84ZTw+QmhLC7ognjBGUDRNxFSSKRE+nphI//BGmLIOWkEzY3DIMX8os5KS2S9JjgYQhQZBBpC2HqJfD+A7Dj38dtGujrzU1LMvh4Xy0f76sZpgBFRERcrLkCtr9gHuIQGOnwMFtLGqho6uCcadpqJkPg4w/pS6Fo7QnrQh5PTnwozR09FNcdfzW4iLsoSSRyIp8+Yx57v8i+fe35h+rZX9PKpXlaRSQj7Pw/mInNl26AT587btOr508gLtSP363doztXIiIyOm18FGw9MO8mp4Z5Y0cFPl4WTsuJc1FgMm5MOhMai6Fqt8NDzE83E5zvF1W7KiqRIVGSSOR4envgwz9AwkxIP9WuLs99UkyQrxfnTk9wa2giJ+QXAle/ZK4q+s/XYdOTx2zq7+PFradmkn+onjd3VQ5jkCIiIi7Q1Qr5f4eccyEqw+FhDMNg9Y4KTs6IJizAx4UByriQdaZ5LXJ8y1lGTDDJEQG8W1jloqBEhkZJIpHj2fUy1B+ARd8Di+WEzVs6e3htWznnz0jUHnbxDL5B8OXnIfN0+O+34MXroWXwO1OXz00lJz6EH728g4a2rmEOVESGoq6ujmXLlpGVlcWyZcuor68ftJ2XlxczZ85k5syZrFixYpijFBlGW58260ee/E2nhtlZ1sThujadaiaOCU2E+GmwZ63DQ1gsFk7LieWjvbV0dPe6MDgR+ziVJNIERca0ni744LcQPQlyzrOry38/LaO9u5fL5qa4OTiRIfAJgCuegVN/BLv/Cw/PNSfTX9hW5utt5YFLZ1Df2sVPX9k5QsGKiD3uu+8+Tj/9dIqKijj99NO57777Bm0XEBDA1q1b2bp1K6+88sowRykyTOoOmHO2pDmQMs+pof7+4QECfLw4e4qSROKgrLOgeIOZtHTQqdmxtHf3svGATp6V4edUkkgTFBnT1v4IqnbB6T8B64n/qbR09vDHt4qYkhjKrJRw98cnMhTevrDkB3DThxCdDS/fDP+5CboHFkWcmhTGradlsmprGWt2lI9QsCJyIqtWreLaa68F4Nprr+Xll18e2YBERkrdAXjyfPPo8fP/aNfK72Mprmtj1adlXHlSKhFBvi4MUsaVSWeB0Qt733Z4iPnpUfh5W3lHW85kBDiVJNIERcasT58zix/OvwVyz7ery2/XFlLZ3MHPL5yKxYkJiohbxWTDV1fD0h/CtufgsTOh/tCAJrecmsmUxFB+9J8d1LZ0jlCgInI8lZWVJCSYte/i4+OprBy8llhHRwd5eXnMnz9f8zQZe/oSRF0t8JVV5jYfJ/zfB/uxWuDGxRNdFKCMS0lzIDDKPOXMQQG+XizIiOLdQhWvluHnVJLI1ROURx99lLy8PPLy8qiu1j8IGSEV2+G/34YJp8Cyn9nVZVtJA09+fJCr501gdmqEmwMUcZLVCkvvgC8/ZyaI/roY3v65OdkGfLys/PayGTR39nD9E5/Q1NE9wgGLjE9nnHEGU6dOPepj1apVA9pZLJZj3pw4dOgQ+fn5PP3009x2223s27dv0Haag8mo09UKT13wWYIoYYZTw1U3d/LcJ8V8aVYSCWEBLgpSxiWrF2SeAUVvgs3xmkKnZsdyoKaVAzWtLgxO5MROWFn3jDPOoKKi4qjHf/GLXwz4+kQTlKSkJPbv389pp53GtGnTyMg4+tSBlStXsnLlSgDy8vLsegMiLlW5E569CgLC4dInwOvEp1r09Nr44X+2ExXsx+1nZ7s9RBGXmXQWrHwH1twJH/4OPngA0hZB9nJy0pfy5ytncdO/NnP945/w5PUnEeSnYuwiw+mtt9465nNxcXGUl5eTkJBAeXk5sbGxg7ZLSkoCID09naVLl7JlyxbNwWRs+PD30HAIrnvN6QQRwOMfHaCr18bXlzh+MppIv0lnmSu2SzdBykkODXFqdiw/ZSfvFlYxMVqr22T4nHAl0VtvvcWOHTuO+rjgggv6JyjAkCcoIh7FZoP1f4FHTzVrtFz+Lwge/O/zwG4Gf3y7iB2lTdx9/hRC/XVUqowyURlw1Qtw2w449S5oroA3/h/8ZQFnrF7MuxnPkFayih/8fbVO2BDxICtWrODJJ58E4Mknn+SCCy44qk19fT2dneaW0ZqaGj766CMmT548rHGKuEX9QfjoQZh2KaQtdHq4po5u/rHuEOdMjScjJtj5+EQyTgeLF+x5w+EhUqMCSY8J4h1tOZNh5tRt4b4Jyp133nncCUpgYCB+fn79E5Qf/OAHzrysiGvVHYDXvgv7/geTzoYVD0FwzAm7lTW084MXt/Hh3hpWzEhk+TSdgiGjWFgSLLnd/Gg4DPvfg/3vkrz/XR7wqYHKR6j/ZTgkZOMfn22eHjPpbAiKHunIB+jqsbF6RzmfFjfS3Wuju9dGbKg/X1s0UUlcGVPuvPNOLrvsMh577DEmTJjA888/D0B+fj6PPPIIf/vb39i9ezdf//rXsVqt2Gw27rzzTiWJZGx440dg9YZl97hkuH+uP0RzZw/fWJrpkvFECAiH1PlQ9Aac/mOHhzk1O5Z/rD9EW1cPgb5a0S3Dw6m/aZqgyKjW1WYuVf7oj+be4XN/C3k3nPBUjIa2Lv69uZTfv7mHXsPgl1+axpUnpahYtYwd4akw+xrzw2aDql0UrHuVXZ+uJ620jKk1r+C7+SmwWCFlPqTOg9AkCE2EgEjw8QfvAPPfla0HervB1g29PebVYoXgOAhJAN/Az17XMBw+laahrYt/bTjMU+sOUtnUSaCvF/4+Xvh4Wahq7uSZjYf50fJcLpiZqH+rMiZERUXx9ttHn5yTl5fH3/72NwBOPvlktm/fPtyhibjXvv9Bwavm6bOhiU4P19Hdy98/PMCirGimJoW5IECRI7LOhLd+Ck1lDv9dPTU7lsc+PMCHRTWcOUU3pGV4OJUk0gRFhlVPJ5RvA28/iJti/gLqCFsvbHse3vkFNBbD1EvMO1FhScfs0tVj453CKv69uYT/FVTR3Wswb2Ik918yg9SowGP2Exn1rFaIn0rOl6YStKSNW5/ZwqfF9VySUMty3y3MrP+YiJI/YbH1ODa+T5B5TGxvl5kkip5k1pZImAFZy8zT2I6js6eXpz4+xJ/+V0RTRw8LM6O57+LpLMmKwWo1k0HbShr48cs7uO25rbywqZiHvzyb8EAdbSwiMuo0V8LrP4CIieYJtC7wQn4xNS1dWkUkrjfpLDNJVLQW5lzn0BAnTYwkxN+bN3dVKkkkw0Zr1sRztdZC8QYoXg+HN0DZFug9chy3bwikzD2yimE+JOeBb9Dxx7PZoPA1+N+9UF0A8dPhS48cdy/7zrJGnvukmP9+WkZ9WzfRwX58ZUEaF81OYnJCqFYkyLiSEhnIC19fwF/e3cdHe2u4rSKepo5lWLDxpUl+fHWaL1MjbFh6OqCnw0zIenmD1cfcFtD3udFrTvSby8x/51Yv8PIFwwZVu+Hgh7D9eVj7I4jJgckXwJyvQmhCfyy9NoNXt5XxwNpCiuvaWZodw+1nZTMl8ei7wNOTw/n3N07h6Y2H+fl/d3HFo+t56oaTiA3xH85vn4iIOGPv2/Cfr0NnC3z5WXPVqpN6em389f39zEoNZ356pAuCFPmcmBwISzXrEjmYJPL1tnJaTixv7a6kp9eGt5dTh5OL2EVJIvE85Z+aR9CXHSlwbvWBxJlw0o1mHZSeTji8zkwgvfsrwDALwyVMh9QFZtIo9shKI4sVmsth539g58vQUgFRWebJZbkXmKskBmGzGTz0zl7+8NYefLysnDklnotmJ7EoM1r/Ocu45utt5dtnZPHtM7IwDIPShnZe3FTCU+sO8e89rZyUFskvvjSXrLgQ516osRQKXoNdq+C938C6h2Hx7XSfdBOrttfw53f2sr+mlZz4EP5xw0ksyjp+HTEvq4Vr5k9gYlQQK/+Rz6WPrOOfN8wjJVIrAUVEhpWtFzqbzaPrO1vMlaSBkRAYfXTix9Zrnjy77TlY9xDEToZrX4XYHJeE8t9tZZTUt/PT86foxp+4nsUCk86ErU9Dd4fDic0zJ8ezamsZmw7VMy89ysVBihzNYhiGMdJBDCYvL4/8/PyRDkOGk81mTgDevscshnvSjWbSJ3EW+AQM3qe9AUo+gcPrzY/SfHMFwxd5+ZlbV6ZeDLkrzBUNx1Db0sltz23lg6IaLpyZyM8umEpYgAreihxPR3cvL+QX89s399Da2cMtp2Zy89IM/Lwd3Bb6eXX7Yc0PYc9qDlsSua1jJe3xeXzztEzOnhLfv63MXpsP13Pd3zcS6OvNf245mYSwY/z/IsNCP+89j/5MxiFb75GkTfPnPpqgo+kLjx15vPMLj/dtGcb47Erf5chjvV3ma3S3HTsOnyAIjIKgKLO2XcV26Go2n5t9LZx938Bads68ZZvB2X98H4A131485J8lInbZsxaevhSufgkyz3BoiJbOHmbf8ybXLJjAj89TbV9xjeP9rNdKIvEM3R3wzBWw/x3IOQ9W/Mm8q3QiAeFm8idrmfl1TxdUbIPavebWFcMwt6FlnAb+oSccbmtxAzf9YxN1bV0qSC0yBP4+XlyzII1zpiXw81d38Ye3inhtWzm/u2wm05KdKwTa4J/ML33/H1Vd0/iF35O8EPBLrGf+HUtuwok7D2J2agTPfX0Blz6yjpv+uZnnvz7fNcksEREwVzw3HDbrHjZXmquYmyuh5chHe73ZprfbLO5v9TZXP1u9jnzu/dnnFq+BX9vVxvuzWm89XeZW/aOuneZNtc4WM+HT1WLfe/MNBr9Q8Av57CMk3rwZZ7EAls+uMPAxL58j/Y/08w0Gv2BzxXh7PbTVmFuQ22qgrdaMbfpl5grx1PnmoQoutHpHBXsqW/jD5TOVIBL3mbjITHjuWetwkijYz5tTMqNYu6uCu87N1e8m4nZKEolneO/XZoLIzhPGjsnb16xPlJw35K4v5Bfzo5d3EBvix79vPlknXIg4IDrYjz9eMYsLZiby//69nS/9+SO+eVoW3zg1Ax8Htmq+vbuSO17aTn1bFysXX0zUghvxev4KeP4rcN4fYM61DsWZmxDKA5fO4KZ/buKnq3Zy38XTHRpHRMY4wzATOT0dnyVWujugtdrczt5cYdZXa66ApvLPkkN8YaG+bwgEx5oJlch08PY3a7FZreZKaluP+WH0mqt6+r629Rz5utd8/WO2+dwYtm4zceTla86LvPw+d/UzkzOBUebnfiHgFzYw6eMXYiaC/L+QDPINdvzQEA+zq6yJO17axuSEUM6b7tgNBxG7+ARA+lJzC/3Z9x2z1MWJnDklnnf+vZ2CimZyE05841vEGUoSycgr/9Q8hn7m1TD3a8P60oZhcKCmlcc/Osg/1h/i5IwoHvrybCKDdPKRiDNOy4lj7W2R/PSVHfz+rT2s3VXBD5fnckpmtF39Wzp7uPfVXTz7STE58SE88dW5nyVur/2vmST677fMbQ4n3+pQjGdPjeeWUzN4+J19TE8O58vzXHuXWkROzGYzqGvroqalE8MAq8WCxWKuQzHvF5lfWy0WrBYzER3kd2T6ahjQ0QCtNUc+qs2P/m3nFjOh0pfY6U/0tH+W8Ok5sqrGYjHrGBq2I6ta6syPnnbzsePx8jML64ckQOo8iPyymQgKT4HgOPPDL9ht30MZmorGDq5/4hOC/bx57Lo81ZoU95t6MexZbdZTnbDAoSFOz43FYoH/396dx0lVnQkf/92l1l6hd7qBpmmWZpVdXGIAUQkGozIDiGbcHZdoktHkTd7EmckQ9TVxIibORGNUzIBtYsxAXHA3GgUCggu0YgONrL3vXV3bvef941ZXg4KB7obGquf7+dzPrbpVffscTlP3qeee5aVtNQmbJApGLGpbQ7QGI7QFo7SHorSHnMddW3soQkfIwj7KjDl+t0G610W6z4WuaUQsm6hlg6bhMXVchobb0HGbBm5TR9ecVazDlo1lKzymgdel4zENPKaOJ/bY7zZI9Zj4PQYuXXeuVbpzbTIALdqBHu5Aj7RjRNqxoxFs28ZWNioUwO5shM4mtEgnmqYw0NA0hQ7omsK2bSLRKJFIBCscQA80YHQ2YnTWo11Wjjvz5CazJUkk+pcVgdU3O3MQnb+sz07bHoqyo7adypo2Z1/bTmVtGzUtIQoH+BiWncIAv5uNuxvZ0+iMjb/6zGH88GujJVgQoo9k+F3cv3gS54/N5z+erWDpIxs4qzSbW2aXMiI3lQF+N7quEbVs6tvD7G8OsHV/Kx/ub+GvlfXUtAW54ZwSvjt35OHDwdwpsKQc/niNswJa5hAYs6BHZfzu3FF8uL+Vf12zlaFZ/mNOYgkhjl/thj8Q2PY8jUGo7dSo64SmkEbANgnjIhTbwsrEwMbULFxYZNJGltZGltZCFq3kGu1k661k2C2YWMf0u5WmowwvyvSiuTxophfN5XN60xixG0PKBjRIzXcWwPAPdHoBmB6n509X7x/T68yZkxZLDPkG9LwHdIJRStEeilLXFqK+PUxrZ4RQ1CYUtZx9xCIYtQlFDjkWtYhaioiliNo2Ect2Hls2UVvFvuSp+HHLVvg9Bpk+F5l+N3npXooG+Bg80M+YgnRy0jxHLV9bMMJVj2+kLRjhD/8sc9KJk2TUPGfI2Yd/6HGSKDfNy+QhA3ipoprbzh3RxwU8iZSCYAudzdV8tKOKyqoqGuprCHW0YAXb8WkhdBQaCh2Fjo2BTQqKDE3hMTXcBhgoNOzu9yobDYWyLSzLQinn5wys2N7GxMLQnPfZ6FhKx4qdwUJHQ5GiBUkhiJcwOjYaxPeapggDkUPK5iOEjyCGdnjSyohtx0oHPLEtpFw0kEaDSqdRpVPS1MpgSRKJpPLOA86khIv+xwmyeqkjFOXHq7fyzOb98WNuQ6ckJ4WJRZkUjPWyv7mTqvoA7+9tZtKQTK47exhfHZUrqxwJcYLMG1/ArNG5rNywhwdf38Hih9cDYOoa6T4XTYEwh94Qyk51M74wgweWTGL6sKPMTWa44OKHnFXQ/nSDkygadNpxl83QNX65eBKLHl7HNSs2suKq6bJyiBAnSMW29xj16RsUE2G0FsVDGMOwjimSjhh+Qp4s2s1MmijkQ2s09bEAup506u10aq1Uaqw0GiIuolEneWSjEcRN1LnXGz+f29QpyU5heGYqpTmplOamMjwnleJsf/zus2WreFIiattomoahaRh6bNM0DEPDiNjoOvHXuuYLUUoRCFt0hKLYCjL9Lryu7soqpYjaClspZ1SbUtixvbK7nncfs5VTFqXAstVhr1u2Ihy1CcaSMLZSmLqGqevYsXIEwlFC0diXHk1D4dxB70rS6Lrm/Izh7A1dx9AhElWEohbBiE1LZ4TmzjDNgYjzOOA8D4Ss+O+27GNbE8dlaHhMA5eh4TJ0XIaOGXts6lr3c925m5/iMXEZzr9xIGxR3x6msradmtYgEav7d47ITeWM4VmMLcwgP91LXrqXA82d/PmDA7y8rYZAxOLRK6cxZlBi9sYQpyBPqpMoqvhfmPf/nBimB84bk8fdL3zMvqYARQNO4e8tVhS7rZr2ur2ED1ag1XyAq/ZDXK17cIWbMFUUHzA5tsW5wNJi86xpOug6mqaDpqMd8vjzm9b9M7HNBtBNtPhcbR6UZmBrBgpQloWyoyhlxxJMzme85crGMv1EDR+20rAURG2IKohaiqjtXFec1BTU6n7Chp+Q4SdspBDS/QQ1H8pwx3obadiGj4gnk7Ark6jhwbI1orHP7agNllIozcDvdZPideM1jcNGJU4ZlH/y2i5GVjcT/afuE/j1WTDqAvjHJ3p9usqaNm5cuZldde1cdeYwZgwbyIi8NAYP8EnvICFOEW3BCH+trKe6NUhdW4jmzgjZKW7yMrzkp3spK0inIMN77JMyttXAb2Y7PQCue80Z8tED9e0hFj20juqWIE9cM4MpQ3uftBbHRq73p54T1SYHmjsJhC2Ks/zd1+WuuXaiwdhEy0FncuWuwN5wOTeRjrbK6VEEI1ZseEKE1ti+LRiltdPZ17WH2Fnbzo66dvY0BujLaFjXnAS0k8g5/DWvS8fvNp2ESsT63OunOl2DTL+bTJ+LDL8r3psnxWPgNQ28LoN0n0lOmoecVC/pPhOvKzZs45DhG25D77PYzLIVNa1B9jQG2LKnmXW7GthY1Uhn5PBeZmlek/PH5rNo2mCmFR/D4ihC9KWPn4Pyy2DpH2FEzyaw3l3fwVd//gZ3nD+Km2eV9nEBjyxi2extDLCzroOq+nYONAepbglS0xbEjobJs6oZFN1PibWT0uhOSqwqclQ9Bt3DdDuUh22qmCq7gDYjE3d6Dpm5gxg2ZCgjS0rwpGU7iTR3ao8TaOL4fdG1XpJEon/YNjx2AdRth1s2OpM59sKrH9Vwy6otpHgMli+eJENGhEgm1R/Cb8+H3NFw1QvO0JAeqGkNsuihdTS0h3nsqmlMlS8RJ4Vc7089ydYmwYhFVX0HO2rb2dsUQOPwHjWmoWNoGgqFFbvra1k2lnLmVLJiPXwO22I9eVI9Jqlep+N+V++bQDgaT6h4TB1d1+JzLnXNyRR/rmtOz59YzyVd02LvJ95ryYi9123qeF3OfBq6phG1ldNDSIMUj4nPbeCOJWa6on9nvg0nYWPZzhAv5+62iu/dpvMer8vA7zK+FCuBRSyb6pYg1a1BalqDpHhMzhyejduUm4ain0RD8PMRMHIeXPJQj09z2W/W82lDgDe/NwvjBP1fDEdtXt9eyzOb9/H6x3WELSfhY2BxlncX893vMdPeTEF0X3zIr41GrauQvZ4RtPgGY6UWoKUXQlYJDBxOqs9NfrqX4qyUL8VnSDL4omu9DDcT/WPjb5zJ277x614niFo6I9zx9AcMy07hsaumkZfu7aNCCiG+FPLHw8W/ht9fAWt/ABf+Z49Ok5fuZdV1p7P0kQ1c9sgGli86jXnjZdUbIRKd12VQVpCesJPBJiOXoTN4oF+mEhCnDtMDZQtg258g0nncvSO7XHH6UG5cuZk3ttcypyyvz4rXGbZ4q7KOlytqePmjGpoDEYamRPlRWRNTjB0UBbaRVrcZPdgMURcUnwWDLoXsEZA1Aj13NPmeNE7+wChxIkiSSJx8TZ/CK/8OpefCxMW9Pt3yVyppCoR54urpkiASIlmNWQBnfAve+SUMnt7jz5ZBmT7+eOMZXLtiIzet2syP5o/hmrOG9XFhhRBCCJF0xi+ELb+DT16Esd/o0SnOHZNHbpqH363/tE+SRMGIxf2vVPL4O1UYkQ4u8G7lvzO2Mz6tkpSWHWg7Yt0Oc0ZD2YVQOheGzwavJNUTmSSJxMmlFPz5NmeCsQvv7/VqIJU1baxYt5vF0wZ3L48thEhOc/4N9m+BP3/b6V2UN7ZHpxmY4mbVdadzW/kW/uPZCv7ySR23zi6V4WdCCCGE6LnisyE1z1nlrIdJIpehs2T6EB54rZI9DQGGZPW8t9yH+1pYVv4aJU1v8UzmVkZ3bkG3wxAeAEXTYfIiKJoCgyaDL7PHv0d8+UiSSJw8tg0v/xh2vQ5f+zlkDu7V6ZRS/OTZCvxug9vPG9VHhRRCfGkZJix8FB76Cjy5BK5eC+mDenQqr8vgv5ZO4ZG3dvHQm7tY+Ot1zCzJ4luzS5k5POvYJ9buB8GIRXVLkKr6Dj6qbuWjg20caO50VlGKzTPStSqSUmAaenzOkdw0D/npXnLTPfE5TSxb8ZUROYwvkkS8EEII0WO6AROXwNvL4cB7PVqVFWDJ9CH86vUdrPzbp/xgXtlx/3y4+mM2PP8EKbtf4im9ElyAexhMuB5Gz4fBM5yyiqQlSSJxclgRWH0LfFAO06+Hqdf0+pQvV9TwVmU9d144hqzUnk1UK4RIMGl5sGQVrLgInrgIrnweUnN6dCpD17jhnOFcMXMoqzbs4eE3d3HZIxuYMnQA35pdyjkjc/o2WaQU2FFnroKu1Z4gtrSrs6SrAkIW1IU91HYqqltC7G5wJtzdWdfO3sYATYHIYactGuBjyEA/KYaOEZvsVo9NgKtpELEUYcsmGLbYur+FVz6qIRixDztHuteUJJEQQgjRW2d9B7b8D7zwPbj6xR6NqsjP8DK3LI/fb9zLd84didd1DAmdSBD+9hChjSvwNO/kbGCPfxTBaT/EO+7rkFvW6xEeInFIkkicWEpBUxU8/z3Y8TLM/hGcfXuvP4Tq2kL8ePVWRuSmcsXMoX1UWCFEQiicAkt/D7+7BH53MfzTGvD3fKiY321y7dklXH76UP6waS///cZOrnxsI8VZfs4fl8+8cQVMLMo4voRRpBN2vIq19RnUrjch0oEeDaJjf+GPaYAXGAykqRTSVSapKotcVyGT04biLcxmoN8gw2uS5TfIT3fjMwBlO5ttxRJRAQh3xPYBiHSAOwj+KConimVFQdnotrMn7dtAcU//CYUQQggBzrCtc/8N1twCHzzV4zkUr5g5lLXbqnn07Spu+mrp0d+oFHy0BvXSj9GaP2WLPYY3zOuYOe9yzpl2Wo9+t0h8kiQSR6cUWGHnjvah+/jjCFgh58tO1xeOri0SgOY9UPUmtOx17oJ/fTlMubLXxYpaNrc+uYXmQITHrpyOy5DlTIUQnzH0DFi8Ep5cDCsXwjdXgyetV6f0ugyumFnMomlDWPP+AVa/t5/fvlXFQ3/ZRZrXZExBOmMGpVOY6cNl6Bi65vT8iViEojbujgMUNrxNcdN6Slo34LU7aVGpvG6fRqNKJ4ibCC7CmocgbsLKJMXrYqDPJMNnkurR8RgaXlNjoN7BANVMXrSRks79GE1vQ8sL0HIcFXL5uze331lpRTfRdBNTN0B3gZ4CmgEuWRRACCGE6BOnLYV3H4OX74RRX+vRJNBnDM/i/LF53Lt2O6kek2/OLD78DfU74KPVzmpq1R+y31XM98M/IGPsXJZ9YzwDU9x9UxeRkJIvSdReCztfg2ArBFsg1HLI4zawI7Eu/xaE26CzxXnNCnefw3A7wbTbD6bXSYCgxYYEdA8LcI7psV4z2mf2HP6467VDH3ftle3c+e26A9y1xY/HXuui6bHA3wu6CeF2p27hQKx8hjPOtOuxpjv1joYPTwLZhw9ZOG6+gVB8Jpx5G5TOgYElvTtfzH++/AnrdjXws4UTGDNIZtYXQhxF6Rz4h8fhqStg1SJY+rTzud1LblNn4ZQiFk4poiUQ4dWPa3j30yYqDrZS/re9dEa6P48HUc+Fxjq+bqxjvL4bgINksdY4m8rc2VB8NqUFmUwemELRAB85qR50vQc9LZWCQINzvdKN7s92PbbXDNBj1ybdBNPnPBdCCCHEyaXrMO9n8MhsePNeOG/ZcZ9C0zR+uWQyN6/azJ2rt6EBV5w+FHa8Am/cDfvfBaAt+zQeNG9kReAsfvj1cVx++tBTel5FcWpIviRRww740w3dz00veDPAk+5kcQ13d5InvRByxzrdAo2ubKtyetB09ZaJhrBsRTgSJWpbGICuKwwUOgpdA03Zzs8p1f17lXKO2Z99TXW/1rXXDCeo1w0wPc5eN7uP6WZ3UgpAWc6400jASSBlDHbuoLt8zjmV1Z0IU5aTbNJdYLrB8Dh1jT92Ob/T8MSOxTbTc8hjL7hTDt9c/j6f8MyyFc9+cID/emMnS6YP5h+m9m7iayFEEhg9Hy55GP54LTy1FJaUO59ffSTD7+KSyUVcMrkIcD6n2gOd6J88j+e9x3Dv+SsA9qDJqDFXo408n4KcUXyjrwM0TYOUbGcTQgghxKmtaApM/ia88yvIHArTrzvuU7hNnQcvm8xNK9/l2TVPc/pf/sSI4FaCKUW8W/ovPHCwjA37/BQN8PHUlZOZUJTZ9/UQCSn5kkQFp8G3NncnhY7xy4JSirZQlOqWIB9Xt/Henma21DZRVd9Bc+CLe9y4TR2vqeNxGXhdOoamoesaLl0nw+diQIqLrFQP4wszmFmSxdAs/0nP8IajNh8dbOWD/S10hqOHvxiNbaHuQ16XwcAUNwNT3KQaJobSMCIaLlsnxTZJUTYeU4uvoNMZttjX1MnepgDVLUE6wxZhyyZs2eiahqFpGLpGiscgxWOS6jFRyilXMGqxZU8zf/mkjsaOMOMK0/nXr/dsaWshRBIav9AZFrvmFqdX0UW/gtTcvju/UtD8KezbhLFvIxnb/hfaq50E/az/C+MXovdRT0ohhBBCJIh5P4OOenj+dgg0wjnfO+55W901W3iYZeieN6gLDeRHkat4qmEWkQaT6cUD+dmsIuZPKMDvTr6v/aLnku6vZUezxS9fa8VWrdhKOZ15VNdywE4ySCmwYomN9lCU9lCU+rYQHeHuIQRel874wgwunFBAXpqXvHQvKR6TUNSZeyIYsQhGYvuoRSj2OBS148sPRy1Fc2eYqvoO1u9qZNWGPQAMyvAytjCD0txUSnNSyfC54iPZmjoi8WRLcyAS/33hqB3bO2Uc4HczIMVNdqqHogG++DCG9lCUls4IzYEI1a1BqluC7Gvu5KODrYSjXzxhal/TNJz5hBREbRtbHf29WSluzhmZw1dH5XBuWd6xzeIvhBBdJl/hrBa29v/AA5PgjFvhjFucno/HK9QOBzbDvo2wb5Oz76hzXjN9MOxsmLocRsyVJWSFEEIIcWQuL/zj72DNt+CNu6DtgLPAT+bfGS3RehB2vgoVa6DyRXTfQDhvGTnTruWOiMm8Ay0MyvQxLLsHMY4QJGGSqD1k8f7eZnRNA43YMsDOHmLPddDQ8LkN8mPJn+xUD/kZHvIzfJRkpzAqP61PJ0xWSrGzroN1uxrYsKuB7dVtvLG9loh15MxJXrqHrBQPHpeO29BJ97lwGzoel45SiqaOCHsbA2z+tImGjvARz+FzGRRkeMnP8PJPM4cyacgAJg7OJNPn+uKyAp1hi8aOMA0dITpCVjzxFY7aBMIWgXCUYMRCi/UQ8pg6hZk+Bg/0MyjDh99jYOraYT2mbFsRiFh0hKK0BaPomtMLy23qZKf0cJ4OIYToMv06KJkFr/67E4xt+DUUTYOCCZAz2nlPpNNJJh1pH+6A2gpnU7GkelYplJ4LRVOdc+WOcYbpCiGEEEL8PYYJFz3orMK67lfw7uMw+HQY/TXwZ8cWjtCgcSfUbYfqrVD3kfOzqfnw1R/CzJvii3NkuODMUhl6LnpHU0p9Qf+N/jN16lQ2bdrU38XoVxHLZm9jgPZQlFinJ9K9JoUDfHjMY787HQhHOdDcSW1biHSviwyfiwy/izSPKROXCSGS054NsOlROPg+1G/vTvp8lmY487mZXmeutewRTjKoaCoUTnGCOtErcr0/9UibCCFEP2jcBVufga1/dG5IfVbGEMgZBcVnOTeo8sYe9/A0Ibp80bU+6XoSfZm4DJ2SnNRen8fvNinNTaM0t3fLPwshRMIYMsPZwFn5sakqtuqX95CkkE96BQkhhBDi5BhYAl+53dk66p0VqqMhZyGizKHg6f33QiGOhSSJhBBCJDe337kbJ4QQQghxKpAVS0U/6rtJdYQQQgghhBBCCCHEl5YkiYQQQgghhBBCCCGEJImEEEIIIYQQQgghhCSJhBBCCCGEEEIIIQSSJBJCCCGEEEIIIYQQSJJICCGEEEIIIYQQQiBJIiGEEEIIIYQQQgiBJImEEEIIIYQQQgghBJIkEkIIIYQQQgghhBBIkkgIIYQQQgghhBBCAJpSSvV3IY4kOzub4uLiE3b+uro6cnJyTtj5T0XJWGeQeicbqXdykXp/+e3evZv6+vr+LoY4xImMwRLpb/d4SL2Ti9Q7uUi9k0ui1PuL4q9TNkl0ok2dOpVNmzb1dzFOqmSsM0i9k43UO7lIvYX4cknWv12pd3KReicXqXdySYZ6y3AzIYQQQgghhBBCCCFJIiGEEEIIIYQQQgiRxEmi66+/vr+LcNIlY51B6p1spN7JReotxJdLsv7tSr2Ti9Q7uUi9k0sy1Dtp5yQSQgghhBBCCCGEEN2StieREEIIIYQQQgghhOiWdEmitWvXMmrUKEpLS7nnnnv6uzgnzN69e5k1axZjxoxh7NixLF++HIDGxkbmzp3LiBEjmDt3Lk1NTf1c0r5nWRaTJk3iwgsvBKCqqooZM2ZQWlrKokWLCIfD/VzCE6O5uZmFCxcyevRoysrKWLduXcK39y9+8QvGjh3LuHHjWLJkCcFgMGHb++qrryY3N5dx48bFjx2tfZVS3HrrrZSWljJhwgQ2b97cX8XutSPV+4477mD06NFMmDCBiy++mObm5vhrd999N6WlpYwaNYoXX3yxH0rce0eqc5f77rsPTdPiS5YmUluLxCcxWGJfkyE5Y7BkjL8geWIwib+SJ/4CicG6JFWSyLIsbr75Zl544QUqKip48sknqaio6O9inRCmaXLfffdRUVHB+vXrefDBB6moqOCee+5hzpw5VFZWMmfOnIQM0pYvX05ZWVn8+fe//32+853vsGPHDgYMGMBvf/vbfizdiXPbbbdxwQUX8PHHH/P+++9TVlaW0O29f/9+HnjgATZt2sTWrVuxLIvy8vKEbe8rr7yStWvXHnbsaO37wgsvUFlZSWVlJQ8//DA33nhjfxS5Txyp3nPnzmXr1q188MEHjBw5krvvvhuAiooKysvL2bZtG2vXruWmm27Csqz+KHavHKnO4HzxfOmllxgyZEj8WCK1tUhsEoNJDJZI1+RDJVv8BckVg0n81S3R4y+QGCxOJZF33nlHnXfeefHnd911l7rrrrv6sUQnz4IFC9RLL72kRo4cqQ4cOKCUUurAgQNq5MiR/VyyvrV37141e/Zs9eqrr6r58+cr27ZVVlaWikQiSqnP/w0kiubmZlVcXKxs2z7seCK39759+1RRUZFqaGhQkUhEzZ8/X61duzah27uqqkqNHTs2/vxo7Xv99derVatWHfF9X0afrfehnnnmGXXZZZcppT7/mX7eeeepd95556SUsa8dqc6XXnqpeu+999TQoUNVXV2dUirx2lokLonBJAZLtGuyUskZfymVfDGYxF+fl6jxl1ISgymlVFL1JNq/fz+DBw+OPy8qKmL//v39WKKTY/fu3WzZsoUZM2ZQU1NDQUEBAPn5+dTU1PRz6frWt7/9be6991503fnTbmhoIDMzE9M0gcRt86qqKnJycrjqqquYNGkS1157LR0dHQnd3oWFhdx+++0MGTKEgoICMjIymDJlSlK0d5ejtW8yfdY9+uijzJs3D0jseq9evZrCwkImTpx42PFErrNILMn6tyoxWGJfk5Mx/gKJwST+Sp74C5IzBkuqJFEyam9v59JLL+X+++8nPT39sNc0TUPTtH4qWd979tlnyc3NZcqUKf1dlJMuGo2yefNmbrzxRrZs2UJKSsrnujYnWns3NTWxevVqqqqqOHDgAB0dHUfsHposEq19j8VPf/pTTNNk6dKl/V2UEyoQCHDXXXfxk5/8pL+LIoQ4DhKDJb5kjL9AYrBDJWL7/j3JEn9B8sZgSZUkKiwsZO/evfHn+/bto7CwsB9LdGJFIhEuvfRSli5dyiWXXAJAXl4eBw8eBODgwYPk5ub2ZxH71Ntvv82aNWsoLi5m8eLFvPbaa9x22200NzcTjUaBxG3zoqIiioqKmDFjBgALFy5k8+bNCd3er7zyCsOGDSMnJweXy8Ull1zC22+/nRTt3eVo7ZsMn3WPP/44zz77LCtXrowHZ4la7507d1JVVcXEiRMpLi5m3759TJ48merq6oSts0g8yfa3KjFYcsRgyRh/gcRgEn8lR/wFyRuDJVWSaNq0aVRWVlJVVUU4HKa8vJwFCxb0d7FOCKUU11xzDWVlZXz3u9+NH1+wYAErVqwAYMWKFVx00UX9VcQ+d/fdd7Nv3z52795NeXk5s2fPZuXKlcyaNYunn34aSLw6d8nPz2fw4MFs374dgFdffZUxY8YkdHsPGTKE9evXEwgEUErF65wM7d3laO27YMECnnjiCZRSrF+/noyMjHi36ESwdu1a7r33XtasWYPf748fX7BgAeXl5YRCIaqqqqisrGT69On9WNK+MX78eGpra9m9eze7d++mqKiIzZs3k5+fn/BtLRKHxGASgyVanSE54y+QGEzir+SIvyCJY7D+mw6pfzz33HNqxIgRqqSkRC1btqy/i3PCvPXWWwpQ48ePVxMnTlQTJ05Uzz33nKqvr1ezZ89WpaWlas6cOaqhoaG/i3pCvP7662r+/PlKKaV27typpk2bpoYPH64WLlyogsFgP5fuxNiyZYuaMmWKGj9+vLroootUY2Njwrf3nXfeqUaNGqXGjh2rLr/8chUMBhO2vRcvXqzy8/OVaZqqsLBQPfLII0dtX9u21U033aRKSkrUuHHj1MaNG/u59D13pHoPHz5cFRUVxT/bbrjhhvj7ly1bpkpKStTIkSPV888/348l77kj1flQh06amEhtLRKfxGCJfU3ukmwxWDLGX0olTwwm8VfyxF9KSQzWRVNKqf5OVAkhhBBCCCGEEEKI/pVUw82EEEIIIYQQQgghxJFJkkgIIYQQQgghhBBCSJJICCGEEEIIIYQQQkiSSAghhBBCCCGEEEIgSSIhhBBCCCGEEEIIgSSJhBBCCCGEEEIIIQSSJBJCCCGEEEIIIYQQSJJICCGEEEIIIYQQQgD/H9kY99fY+62xAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABk0AAAHeCAYAAAA2OUyqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4lFXWB/D/THpCCuk9hN5Db6KAgAiKir23VVdX3VXcddddV7e4q5+9r2vFtvbeUYpU6b0TAkkgPSG9Z77n3PvOpEOAJNP+v+cZ3jfvTGZuJpPhnXvuOcdksVgsICIiIiIiIiIiIiIicnNmew+AiIiIiIiIiIiIiIjIETBoQkRERERERERERERExKAJERERERERERERERGRxqAJERERERERERERERERgyZEREREREREREREREQagyZEREREREREREREREQMmhAREREREREREREREWkMmhARERERERERERERETFoQkREREREREREREREpDFoQkREREQObenSpTCZTGrrzv72t7+p56G7vf322xg4cCC8vLwQEhICezh48KD62R9//HG7PL6zs9drp6mpU6eqCxERERGRo2PQhIiIiMiJLViwQE2Gtnf55Zdf7D1EcmK7d+/G9ddfjz59+uCVV17Byy+/3KWP9+2336oJfnurrq7Gc889h8mTJ6Nnz57w9vZGbGwszjvvPLz33nuor6/vliCR9eLh4YHExETMmzcPmzdvRndatWqV+p0cPXoU9lBRUaEe31GCpvZ+PoiIiIio63l2w2MQERERURf7xz/+geTk5FbH+/bta5fxkGuQieqGhgY888wz3fJakqDJCy+8YNfASV5eHmbPno0NGzZg1qxZuP/++xEaGors7Gz89NNPuPLKK7F//3789a9/7fKxXHHFFZgzZ44K0uzatQv/+c9/8N1336lg6IgRIzp8P/Iz/OlPfzrpIMHf//53FTyzR6aRBE3k8YUjZKrY+/kgIiIioq7HoAkRERGRC5BJ3jFjxth7GORicnNz1bYzJ4dlEtzf3x+O6pprrsGmTZvwySef4MILL2x23X333Yf169djz5493TKWUaNG4eqrr7Z9fdppp6lsFwme/Pe//+3w/Xh6eqoLEREREREdH8tzEREREbmBBx98EGazGYsWLWp2/JZbblGlh7Zs2aK+rqmpwQMPPIDRo0cjODgYAQEBOP3007FkyZJ2e0xIZkDv3r3VRPhZZ52FjIwMWCwW/POf/0R8fDz8/Pxw/vnno7CwsNl99OrVC+eeey4WLlyoVs37+vpi8ODB+PTTTzv0M61ZswZnn322Gqc89pQpU7By5coOfa+UXhoyZIj6Pim/JAGn//3vf7brDx06hN/85jcYMGCAGn9YWBguueQS9XO3VR5txYoV+O1vf4uIiAgVYPj1r3+tnksp4XPttdeqx5DLvffeq56btp7Hp556CklJSerx5GfZvn17h36Wd955R/2+5PskI+Lyyy9Xv4Om9u3bh4suugjR0dHqeZbfi9yuuLi43fuV34+8boT8XDLOphkgL774onoOfXx8VOmq22+/vVXJIskMGDp0qMraOOOMM9Tz/ec//7nNx5OV+/JaEk1LU7UkJcKkXJg87tixY7Fu3bo2y4pdfPHF6vmQn1d+v19++eVxn8vVq1fjhx9+UH8XLQMmVnJfV111VavXQMvXRlu9eKzPx86dOzFt2jT1fMTFxeHRRx9FR5x55plqm5aWZjv20Ucf2X7/4eHhKshy+PDh4/Y0ka/vuOMOfP7552pM8nzK7/P7779v9n1/+MMf1L5ksll/Jy1/1vZ+RzKmcePGYfny5a1u05H3Gnkcee0Jye6wPr71dbh161b1upH3H/k9y+v7xhtvREFBQbPHKi0txV133aVe0/JzRkZGYubMmdi4ceMJvaec7PNBRERERM6Fy42IiIiIXIBMfufn5zc7JpN5MtlvLc/z1Vdf4Ve/+hW2bduGwMBANTksfSokuJGSkqJuV1JSgldffVWVBbr55pvVZONrr72myhStXbu2VUmgd999V01+3nnnnSooIpO/l156qZrclcniP/7xj6qUkQQpfv/73+P1119vNZl/2WWX4dZbb8V1112HN954QwUnZOJWJjXbs3jxYpVdIxOu1oCQfK88rkzQykRte+RnlgCHTKr/7ne/Q1VVlZp8lQlTKb0kZCJeyvBIYEECDDIpKqv7ZdJbJrxbZkrIzy8TtjKxK6WTZNJYgidyH9KL4t///rcqPfXYY4+pCWoJpDT11ltvqedaAg8yHimHJT+L/K6ioqLa/Vn+9a9/qTJR8pzfdNNNqrSUPNcSoJBsCRmD/H7k9yd9OqzjlEn1r7/+WgU5ZIK4LU8//bQa12effaZ+9h49emD48OG2yWP5WWfMmIHbbrtNZV7IbeR5k0lmaRpvJRPY8ruS51Im9Nv7eSTQdOTIEfz444+q+XxbJLAlz5PcVl7f8nqT4MaBAwdsj7ljxw6VkSHBCClJJZPxH374IS644AKVPSJ9QdojfyOiaXZHZysqKlIT8zJu+b19/PHH6u9k2LBh6nk6ltTUVLW1/l1LwOaGG25QwaOHH34YOTk56rUjvwPr7/9YJNgnQUoJEMp7wrPPPquCa+np6eoxZIx79+5VfVwkqCdBGWENZLRF3i/k9zNp0iQVqJDfjWTHSAArISHBdruOvNfI48jrSl5j8nuzBrKsr0N5rcj9y3Mgr2v53cvfnmzl79AaKJL3F3meJUgkgVl5TcrPLiXPJJuno+8pJ/N8EBEREZETshARERGR03rjjTckbaHNi4+PT7Pbbtu2zeLt7W256aabLEVFRZa4uDjLmDFjLLW1tbbb1NXVWaqrq5t9n9w2KirKcuONN9qOpaWlqceIiIiwHD161Hb8vvvuU8dTUlKa3e8VV1yhHruqqsp2LCkpSd32k08+sR0rLi62xMTEWEaOHGk7tmTJEnU72YqGhgZLv379LLNmzVL7VhUVFZbk5GTLzJkzj/mcnX/++ZYhQ4Yc8zZyXy2tXr1ajeOtt95q9fy3HMvEiRMtJpPJcuuttzZ7buPj4y1Tpkxp9Tz6+flZMjMzbcfXrFmjjt999922Yw8++KA6ZnXw4EGLh4eH5V//+ler37Onp6ft+KZNm9T3ffTRR5YTZX3MvLw827Hc3Fz1uzzrrLMs9fX1tuPPP/+8uu3rr79uOyY/qxx76aWXOvR4t99+e7OfseXzFBYWZiksLLQd/+KLL9Txr776ynZs+vTplmHDhjV7rcnvZtKkSep1cyzz5s1T99f0NS0qKyvVc2C9yN9Ey9eAjLGplq/bps9H09eQ/L1FR0dbLrroolY/79///nf1eNnZ2ZalS5eqvwvr30xNTY0lMjLSMnToUDU+q6+//lrd5oEHHmj3tSPka/k97t+/33Zsy5Yt6vhzzz1nO/bYY4+1+fO1xTqmESNGNHsfefnll9V9NH3td/S9Rn5++V75GTryd/ree++p2y9btsx2LDg4WL222nMi7ykn8nwQERERkXNieS4iIiIiFyBljWTVddOLNIxuSjIcJDtAVnfLam7JTHnzzTeb9Trw8PBQ5bqENACX7JG6ujpVkqhlKRshWSFNMxXGjx9vW6nf9H7luGQ8tCwbJGWdmq78DwoKUlkYskpeGm+3ZfPmzSpDRbJCZMW4/BxyKS8vx/Tp07Fs2TI19vbI6vvMzMw2yzpZSVkhq9raWvU40ghdvret50EyeJqWP5KfV+al5XjT51aeR1kZ35JkQUhmhJWsapf7kOyU9kiGgPyckq1gfQ7kIivu+/XrZytzZP39SGaR9BM5VdIMXX6XkkUgq/GtJFtAfn/ffPNNs9tLOSTJBOgMkpUkZc6spJyTsD6n8nqVjAF5TiRzwfqcyO9PXvPyumn5GmxKsh+EZNU09dJLL6lsAutl8uTJJ/0zyH03zWSRvzf5fbf1upCMB3k8+Z1KlpNkmvzf//2fyniQ3irSc0ayRKQ0ldU555yDgQMHtvo9tEUyhaSMlpVkcMjvsK2xdIR1TJLZYX0fEVJCq2VG04m+1xzv71QytOR3PWHCBPV10/uQv1vJJJNMpq54TyEiIiIi18LyXEREREQuQCZdO9IIXurxv//++6r8jZSMklI1LUkg5YknnlB9ISRgYCU1/FuS0lNNWSdGm5bhaXpcShM1JYGIlr0W+vfvr7ZSEksmi1uSyU0h5byOVa6s6eR6U1IKSSb+5TmTx5c+LDJZKiWdrCorK1W5IynPI5PsTfuQtNUH5ESeh5bPgZAgR0vyPEhZqfbI8yDjaut7hbVclfze5s+fjyeffFKVU5NAg5RLkon79kpzHYv0exHS76UpmQCX3hLW660kGNR0Av1UtHyerb9j63MqpeDkOZGSZXJpi0zqNw1QNSUlqkRZWVmz50ZKVknQUdxzzz2or68/6Z9Byr21fM3LzyEl4lqS3ioSmJTglEz8W3vIHOv3ICRoIuWnTvT5tI6lrddoR1jH1PI1Ka9FeW2cyntNWyTQIoFgeU+T32tTTf9OpYybvF/I36OU35ozZ44KzlrHdKrvKURERETkWhg0ISIiInIjsoLcOkEo/TLaaiouq8Il80ECLNIwWVaESwDB2k+hKbmuLe0dbxp8OFnWFd/SH6RljxWrlpkCTQ0aNEj14JCeHtI7RfpcSFNzaUotE7BCen9IwESyKSZOnKgm0GWiW/pytLXi/ESeh854DoSMQ8YkGUVtPU7T50AmpuX3+sUXX2DhwoWqp4v8TqXvg0zid6Wm2QCn6nivK+vvRvrnSGZJWyRQ1h4JNojt27c3C6LJZLs1ACYT5037B7XVrF60F1g5kb8NCT5INkhX6cq/0+M50featkhGkfQNku+X9wJ5zctrQHrGNP07ldtJsFD688jrX947JGNHsrWkj8mpvqcQERERkWth0ISIiIjITcjEoExSSvkdCQZIpok0Q7c2VxbSLFlWX8tkYtPJYCkT1BWsmQFNH0saLYtevXq1+T3WckLyc5zshLI0B5dST3KRUlPyHEhT9fvuu0+VOpLnQVadS7ChafkfaZzeFayBrKbkeWjvObA+D/Lcyap8a3bOsUijcbncf//9aqJZggJSduqhhx46obEmJSWprQSemmYPyPOYlpZ2SpP87QUgOso6HslsOJlxnHvuuXjkkUdURk7ToMmxWLMPWr42WmbcdLamvwdpVt6UHLNef6pO5HdifUx5PTcdk2SRyGsjJSXlhN9r2nt8yYZZtGiRCnRKwPNYf0siJiZGlTKTi2SlSAN4+ZuXoMmJvKec6muUiIiIiBwfe5oQERERuQkpzyST5S+//DL++c9/YtKkSbjtttuarZq3rjxvutJcegGsXr26S8YkPQZk9XfTnhJvvfWWWu3dVmkuIeV1ZJLz8ccfV2WUWsrLyzvmY0rPgqakdJSUKZOf2VoiSJ6Hlqvtn3vuuVMqy3Qsn3/+ebNeG1I+TZ53mdBtjwR6ZJwyadxyrPK19eeU51R6RTQlwRMp+VRdXX3CY5VJZXnOnn322WaP+9prr6kSRtJT42RJMEucbHBKshWk98d///tfZGVlnfBrQwIlM2fOVH8jkpXTlpbPtXXCXfpeWMnrRO6jK0k5Pvl5JfDV9PcomUe7du06pd/Dyf5OZEzSg0XGJEE0qwULFrT6/o6+1/j7+7f5+G19v3j66aebfS2/i5Yl9eR5k35K1uftRN5TTvU1SkRERESOj5kmRERERC5AJkqlL0BLEhiR1dwyiSo9HiTTZO7cubaJTAlOyMpra+8MWWkvK7+lObtMusrqcJkAlaBCW5OJp0oyJKRZujRlj4qKwuuvv46cnBxVGqs9MtkvzewloCA9HqTJuPSokKCDND+X1eJfffVVu98vPUwkICMT5PKY8tw8//zz6ue19rSQ5+Htt99WZbnkZ5eJXOmDEhYWhq4gJaOkubgEsWQiVyZ+5bHuvffedr9HJnklS0SyY6T/i5Q5kvHL70wCUdIPQ8pUSWP0O+64Q/XGkOdbAijys8mks/TqOFEyKS6PKcEaKYMk/VEks0FKnI0dO7ZZk/MTJZPXQsqHSXktGaOURDsRL7zwgnouJTAkzenl9S+vKfkdZmZmYsuWLcctGyU/lzyf8hqTIJFkk2RnZ6vXgARHmgaz5DUozcflOZEeG6GhoarHRstAVWeTbBopMSWv/ylTpuCKK65QP+czzzyjMpTuvvvuTnkc6+/kL3/5i/pdyOPKe4g1eNByTPKa/PWvf60yTSSTS16P8vfcsqdJR99rpLybHPvggw/U61eeX+kvI5czzjhD9SuRYKe8B0jpLbmfpkpLS1UJOsmqk0wXKbMlv0d5z7Fmkp3Ie8qJPB9ERERE5KQsREREROS03njjDVlm3e5Frq+rq7OMHTvWEh8fbzl69Giz73/mmWfU7T744AP1dUNDg+Xf//63JSkpyeLj42MZOXKk5euvv7Zcd9116phVWlqa+r7HHnus2f0tWbJEHf/oo4/aHOe6detsx+T+zjnnHMsPP/xgGT58uHq8gQMHtvpe633KtqlNmzZZLrzwQktYWJj6Xrm/Sy+91LJo0aJjPmf//e9/LWeccYbt+/r06WP5wx/+YCkuLrbdpqioyHLDDTdYwsPDLT169LDMmjXLsnv3bvUY8lwc6+cSDz74oDqel5fX7Lh8b0BAQJvP4xNPPGFJSEhQYzr99NMtW7ZsafM+W/rkk08skydPVvcrF3kOb7/9dsuePXvU9QcOHLDceOON6uf09fW1hIaGWqZNm2b56aefjvk8HevnEM8//7x6LC8vL0tUVJTltttuU89bU1OmTLEMGTLE0lHyWr3zzjstERERFpPJZPt523u9CTku42wqNTXVcu2111qio6PV+OLi4iznnnuu5eOPP+7QOCorKy1PP/20ZeLEiZagoCCLp6enui+5j3fffVeNs+XjzZgxQ/3u5Ln485//bPnxxx9bvW7bez46+vfVFvnblb9TeWz53V511VWWzMzM47525Gt5nbTU8jUu/vnPf6rn0Gw2q++T8R3Liy++aElOTlZjGjNmjGXZsmXqZ5eLVUffa8SqVasso0ePtnh7ezf7fcvPOW/ePEtISIglODjYcskll1iOHDnS7DbV1dXq7zslJcUSGBio/kZkX8bYUkffU070+SAiIiIi52KSf+wduCEiIiIi9yOr4WW1uDRkd1eSISI9SaQBtWSFEBERERERkX2xpwkRERERERERERERERGDJkRERERERERERERERBqDJkRERERERERERERERADY04SIiIiIiIiIiIiIiIiZJkRERERERERERERERBqDJkRERERERERERERERAyaEBERERERERERERERaQyaEBERERERERERERERMWhCRERERERERERERESkMWhCRERERERERERERETEoAkREREREREREREREZHGoAkRERERERERERERERGDJkRERERERERERERERBqDJkTUpqVLl8JkMqktERERUXfjuQgRERHZE89FiNwXgyZE5HR27dqFs88+Gz169EBoaCiuueYa5OXl2XtYRERE5AbWrl2L3/zmNxg9ejS8vLzUZAoRERFRd2hoaMCCBQtw3nnnISEhAQEBARg6dCgeeughVFVV2Xt4RC6DQRMiciqZmZk444wzsH//fvz73//G73//e3zzzTeYOXMmampq7D08IiIicnHffvstXn31VRUs6d27t72HQ0RERG6koqICN9xwg1o4euutt+Lpp5/GuHHj8OCDD2L27NmwWCz2HiKRS/C09wCIiE6EBErKy8uxYcMGJCYmqmNygiBBE1ltccstt9h7iEREROTCbrvtNvzxj3+En58f7rjjDuzdu9feQyIiIiI34e3tjZUrV2LSpEm2YzfffDN69eqlAieLFi3CjBkz7DpGIlfATBMiN3X48GH86le/QmxsLHx8fJCcnKwmAY6VrbF8+XJccsklKlgh3yOpoHfffTcqKyub3S47O1utfIiPj1e3i4mJwfnnn4+DBw/abrN+/XrMmjUL4eHhatJBHv/GG2887rg/+eQTnHvuubaAiZATgv79++PDDz886eeDiIiIupeznotERUWp2xMREZFzc8ZzEQmaNA2YWM2bN89WzpyITh0zTYjc0JEjR1R2xtGjR1VmxsCBA9XJwscff6xSPeU/4bZ89NFH6no5iQgLC1M1vZ977jlVMkuus7rooouwY8cO3HnnnWq1Q25uLn788Uekp6fbvj7rrLMQERGBP/3pTwgJCVEnDp9++ukxxy1jlO8dM2ZMq+vk55FyGUREROT4nPVchIiIiFyDq52LSJBGSACGiDqBhYjczrXXXmsxm82WdevWtbquoaFBbZcsWSKFMNXWqqKiotXtH374YYvJZLIcOnRIfV1UVKS+77HHHmv38T/77DN1m7Ye/1jk9vJ9b731Vqvr/vCHP6jrqqqqTug+iYiIqPs567lIS7fffru6HyIiInIurnIuYjVjxgxLUFCQemwiOnUsz0XkZhoaGvD5559j7ty5bWZsSFPT9jQtRSF9RfLz81VaqDQa27Rpk+02siJj6dKlKCoqavN+ZAWF+Prrr1FbW9vhsVvTXSW1tSVfX99mtyEiIiLH5MznIkREROT8XO1cRHq//vTTT3jkkUds90tEp4ZBEyI3k5eXh5KSEgwdOvSEv1fSSK+//nqEhoaiR48eKo10ypQp6rri4mJbQOP//u//8N1336ma32eccQYeffRRW6qokO+RVNW///3vKnVU6nq+8cYbqK6uPubjW09O2rpdVVVVs9sQERGRY3LmcxEiIiJyfq50LvLBBx/g/vvvV71ZpGQYEXUOBk2IqEPq6+sxc+ZMfPPNN/jjH/+oVmVIPc4FCxbYVmpY3XXXXdi7dy8efvhhlQHy17/+FYMGDbKtupBVG1IndPXq1bjjjjtU3VBpdjZ69GiUlZW1OwZpnCaysrJaXSfH5KSlrSwUIiIicn6OcC5CRERE7svRzkXksa+99lqcc845eOmll7ropyZyTwyaELkZWQURFBSE7du3n9D3bdu2Tf2H/8QTT6iTA1kFMWPGDMTGxrZ5+z59+uCee+7BwoUL1WPV1NSo721qwoQJ+Ne//oX169fj3XffVU3S3n///XbHEBcXp8Yvt29Jmq+NGDHihH4mIiIi6n7OfC5CREREzs8VzkXWrFmDefPmqfJiH374ITw9PU/oZyGiY2PQhMjNmM1mXHDBBfjqq6/aDD5IHc62eHh4tLpe9p955plmt6uoqLCVymp6ohAYGGhLM5Wani0fxxrwOF4qqqSvSs3PjIwM27FFixapE5dLLrnkmN9LRERE9ufs5yJERETk3Jz9XGTXrl0qu6RXr15qfoRlyok6H8OQRG5ImoTJSgepoXnLLbeoFFEpb/XRRx9hxYoVbTYOGzhwoPpP/ve//71KG5VVGZ988kmrpmYSvJg+fTouvfRSDB48WK12+Oyzz5CTk4PLL79c3ebNN9/Eiy++qFZFyH2WlpbilVdeUfc5Z86cY479z3/+sxrntGnT8Lvf/U6lrT722GMYNmwYbrjhhk5+poiIiKgrOPO5yKFDh/D222+rfetEy0MPPaS2SUlJuOaaazrteSIiIqKu4aznInK7WbNmqcf8wx/+oEqFNSX3NXHixE57nojcFYMmRG5IylxJKqfU1JT0T2mAJsdmz54Nf3//Nr/Hy8tLrcL47W9/a6vJKf+5S+3NlJQU2+0SEhJwxRVXqOwPmVCQkwM5sZB0UckSEXJSIuW0JOVUThqCg4Mxbtw4NZbk5ORjjl3u/+eff8b8+fPxpz/9Cd7e3mqFhaS4sp8JERGRc3Dmc5G0tDQ17qasX8v9MmhCRETk+Jz1XKSgoMBWeUPmRFq67rrrGDQh6gQmS3s5Z0RERERERERERERERG6EPU2IiIiIiIiIiIiIiIgYNCEiIiIiIiIiIiIiItIYNCEiIiIiIiIiIiIiImLQhIiIiIiIiIiIiIiISGPQhIiIiIiIiIiIiIiICIAnXExDQwOOHDmCwMBAmEwmew+HiIjIIVgsFpSWliI2NhZmM9dMdCWeixAREbXGc5Huw3MRIiKiUzsXcbmgiZwYJCQk2HsYREREDikjIwPx8fH2HoZL47kIERFR+3gu0vV4LkJERHRq5yIuFzSRlRTWHz4oKMjewyEiInIIJSUl6sOz9f9J6jo8FyEiImqN5yLdh+ciREREp3Yu4nJBE2vqqZwY8OSAiIioOZZo6Ho8FyEiImofz0W6Hs9FiIiITu1chIVEiYiIiIiIiIiIiIiIGDQhIiIiIiIiIiIiIiLSGDQhIiIiIiIiIiIiIiJi0ISIiIiIiIiIiIiIiEhj0ISIiIiIiIiIqAssW7YMc+fORWxsrGo8+/nnnx/z9kuXLlW3a3nJzs7utjETERG5OwZNiIiIiIiIiIi6QHl5OVJSUvDCCy+c0Pft2bMHWVlZtktkZGSXjZGIiIia82zxNRERERERERERdYLZs2ery4mSIElISEiHbltdXa0uViUlJSf8eERERNSImSZERERERERERA5kxIgRiImJwcyZM7Fy5cpj3vbhhx9GcHCw7ZKQkNBt4yQiInJFDJoQERERERERETkACZS89NJL+OSTT9RFAiBTp07Fxo0b2/2e++67D8XFxbZLRkZGt46ZiIjI1bA8FxERERERERGRAxgwYIC6WE2aNAmpqal46qmn8Pbbb7f5PT4+PupCREREnYOZJkREREREREREDmrcuHHYv3+/vYdBRETkNhg0ISIiIiIiIiJyUJs3b1Zlu4iIiKh7sDwXEREREREREVEXKCsra5YlkpaWpoIgoaGhSExMVP1IDh8+jLfeektd//TTTyM5ORlDhgxBVVUVXn31VSxevBgLFy60409BRETkXhg0ISKiE3M0HfDwBgKj7T0SIqKuU54PmD0Av572HgkRETmx9evXY9q0abav58+fr7bXXXcdFixYgKysLKSnp9uur6mpwT333KMCKf7+/hg+fDh++umnZvdBzsFiscBkMqn9jMIKRAX5wtvT3Ow4ERE5JpNF3q1dSElJCYKDg1FcXIygoCB7D4eIyHXk7QG++yNwYAngEwzcvAgI72fvUVEHuev/j8uWLcNjjz2GDRs2qEmJzz77DBdccEG7t1+6dGmbkxLyvdHRHQsUuutz7VIy1gFvnQd4+QG3/AyEJNh7RERETo//P3YfPtf298mGTPzj6524b/ZAmE0m/PHTrRgcE4Q3bxyH37y7ESWVtfj0N5Pg7821zEREjvj/I3uaEBHR8TU0AB9epwMmoroY+OAaoLrM3iMjOqby8nKkpKTghRdeOKHv27NnjwqUWC+RkZFdNkZyMIUHgPcuB2orgIoC4NObgfo6e4+KiIiInISsTX5x6X4UV9biT59uw32fbYMsV95xpATTn/gZa9MKsTu7FF9tOWLvoRIRUTsYNCEiouPbtxDI2wV4BwK/+hHoEa2//vJO+VRw/O9f8zLw5lygsqg7RktkM3v2bDz00EOYN2/eCX2fBEkks8R6MZt5yuQWKgqBdy8BKvKBqKH6PS99NbD6OXuPjIiIiJzE9sMlSM0rt31d32DB+ORQmE1QgRSrd9ekY3d2CZ5YuAelVY3HiYjI/jgDQEREx7fiKb0deyOQMA649E3A7Ans+BRY89Kxv7csD1h4P5C2DNj9bbcMl+hUjRgxAjExMZg5cyZWrlx5zNtWV1erNN+mF3JCddXA+1cBBfuBoHjg6k+Asx9uDPw21Nt7hEREROQEPtt0WG3PGR6D+88ZhJsmJ+OtX43D384bgrgQPzxy4TB4e5ixNbMYF764Cs8t3o+3Vh+y97CJiKgJBk2IiOj4tf0zftHN3yf8Rh9LnADM+rfel4DIoVWtvy91CZD+C7DuFaC+Wh/L3taNAyc6cRIoeemll/DJJ5+oS0JCAqZOnYqNGze2+z0PP/ywqotqvcj3kBOWIPz8N0D6KsAnCLjqIyAwGhh+KeAbApQeAdJ+tvcoidxDfS2w4mng1RnA4/2BQ6vtPSIiog6rq2/Al0bZrQtHxuGm03vj/nMHw8fTA9dO7IWVfzoTl49LxNlDda+8ihq9KGN1aoFdx01ERM0xaEJERMcmARPRf5aeRLQadwsw7BKgoQ746HqgNLvxupIs4J2LgNdnASufaTyevbUbB0504gYMGIBf//rXGD16NCZNmoTXX39dbZ96ysi2asN9992nGslZLxkZGd06ZuoES/4FbP9YZ9Bd9jYQNVgf9/QBhl6k9ze/Z9chErmNpY8APz0IZK4DynKAnx/Rx6tKOlYSlIjIjiRgkl9WjZ7+Xjijf0S7t7txcjI8zCb0jeyhvl5/qBA1dQ3dOFIi6ir7ckpRaQREyXkxaEJERMdWkKq34QOaHzeZgLnPAJGD9aTGx79qnMzIWANYjJOEuirAu0djpgknPMjJjBs3Dvv372/3eh8fHwQFBTW7kBNJWw4sf1zvz30W6D21+fUjrtTbXV/pSVsi6jrpa4AVT+r90++Rkw3gwFJg1fPA4/2At84DairsPUoiojZJv5J/f7tL7UuGiZdH+1NuIxJCsObP0/H9705HeA9vVNU2YEvm0W4cLRF1hTUHCjDzqWW44IWVzXoYkfNh0ISIiI6t8IDehvVpfZ13AHDZO4CnH3BohV4VKg5v0Nu4MUDSacBFr+nyXtUlQNHBbhw80anbvHmzKttFLqbyKFCWC3z1O/31mBuBkVe1vl3caCC8P1BXCaz5b7cPk8gtSEDy50eBdy8BLA3A8MuB6Q8A/c/W1y/8i16EIf3RPrwGqKux94iJiJqxWCz4v+93I7+sBr0jAnDz6b2P+z3hPXzg6WHG+N5h6utPNmTid+9vwk1vrscj3+1GWXVdN4yciDrT27/o/kR7ckpx69sbUF3HjBNnxaAJERF1LGgS2s6JvwRThl6o9zcsaB40kUnIG74FBpwNRA7Sx9jXhLpRWVmZCnrIRaSlpan99PR0W2mta6+91nb7p59+Gl988YXKLNm+fTvuuusuLF68GLfffrvdfgbqZJLtJpOzjybrleuFqUBgDDDjb23fXrLqpvxR7y9/AjjK8mtEnWr1i8Azw3WZvOpiIGYEMOdRfd24mxpvFzkE8PIH9v8EfHknM1eJyKECJo98vxv/W6PPL/95/lB4e3Z8um2CETR5f10Gvth8BD/tysFLP6fi9RVpXTZmIup8xRW1WLgzR+37eJqx+kAB3ljJRaPOikET6lo15cDS/wPy9tp7JER0MmqrgOJMvR/aRqaJ1egb9Hb7p0BFIXBkU+MKbavoYXrLvibUjdavX4+RI0eqi5g/f77af+CBB9TXWVlZtgCKqKmpwT333INhw4ZhypQp2LJlC3766SdMnz7dbj8DdSKZZP3iDj05K6vZhckMnPs04Bvc/vdJXxPJmpNsE1nxTkSdI3UJ8MN9QGWRzui6+HXg5iWNf4+9zwQSJwEhScBVHwGXvg2YPICt7+vgJxGRnTU0WPDXL7bjvz/rhWb3nzMIp/UNP6H7mGgETURCqB+un9RL7X+8IVMFZHJLq1SDeSJybF9uOax6Ew2MDlTBU/HGyjT2K3JSnvYeALm4ZY/rusSSSn/DN43HJYgSkgB4+bX5bUv25CKihw+Gxh1jAoOIup4qpWUBvAOBgGOc/MeP0StAc3cAP/4VqK3Q3yMTIFbRKQDeYaYJdaupU6eqD5vtWbDAyI4y3HvvvepCLmrLe8Dmd/Sk6zmPA8MuBeprAP/QY3+fZJvMeQx4aTKw8wsdGI7VgTgiOgX7FurtkAuBi14FzB7NrzebgRu/k1lJvR8cB5zzBPD1XcDSh4Eh84CIJucaRETdFCj521c7sOZAIXr4emLDoSJ1qvCvC4bhyvGJJ3x/fSICMK5XKPLKqvHWjeNU2S4JmKQXVuDPn21TGShXjU/EQxcYi9CIyCHfF95bqzPSLx2TgPNHxuKxhXuQU1KNb7YdwbyR8fYeIp0gZppQ16mtbCzVk74KKC/Q+7Iq7IWxwBMDgO/v06vSm/jP0lTc8MY6XPjiKmw/XGyHgRNR634mvfWkYXtMJtSPvl7vb3pHb+NG6gkOq5jhjaW76tkQjYi6WWk28P2f9P6Z9+vygT49jh8wsYoaAgy7RO9LFi0Rnbr9i/R28PmtAyZNNT2fGHMD0H+2XtSxln2GiKj7yUToW6sPqZ4FEjDxMJvw9GUjTipgIkwmEz749QQsmj8FCaH+8PP2wLnDdT89mYSV9T/fbcs+5kIgIrKvd9Ycws6sEvh5eeCCkXHw8fTAdROT1HXPLd6PJbtzUd/Av2Fn0qVBk2XLlmHu3LmIjY1V/wl8/vnnx7z90qVL1e1aXrKzs7tymNRVtn0MVBoBESmBsfc7fUxKYoiqYuCXF4H/TNKZKAA+Wp+hmqeJmvoG/ObdjSip4uQqkd1Irf9j9TNpYkHVVKysH9J4QJrANxWTAgREAOV5wPo3OnukRETHtvB+fe4h/RIm/fbk7uOMP+hyXnJOc3BlZ4+QyL1I+c/8PfpvqveUE/veCbfp7eb3gMqjXTI8IqK2fL89Wy30FHfP6I/5M/vj7RvH4fwRcad0vzL3ZTY3LlK7eHTzVekF5TXYl1t2So9BRJ1LgiAH88vx3bYsPPytnsv80+yBCA3wVvtXjU9CDx9PHMgrxw0L1uH+z7fbecTkMEGT8vJypKSk4IUXXjih79uzZ4+qMW69REZGdtkYqYvICog1xsqvoPjGJo+f/0bvT7wDuOpjIKwfUJoFfHANKquq8a9vd6mrpYZnXIifSke996OtXFFBZC8FqcfvZ2L4cU8Bbq/9LTIsxnt28unNbyDl+KYaq7x/fkRPXhIRdQcpCyoLN8TcZwCPk6xQG94PGHqx3l8wB3hzLidsiU6ln4m1/5lfzxP73uQzgMjBQG15Y4YrEVE3+HZbltrKCvLfzeiH307vh0kn2MOkI0Yn9cSFo+Jw1uAojO2l3yNXpxrVO4ioW1XW1KOwvEbtp+aV4bfvbcKsp5Zh0F+/x9THl+K2dzeisrYeE3qH4poJOrtE9Azwxke3TsQV4xLU1x9vyLDdD7l50GT27Nl46KGHMG/evBP6PgmSREdH2y7mpunYLVRXV6OkpKTZhRxAURqQsw0wewHzXtLHpNdBfTUwYA4w8x9Av5nArct134Oqo1i0fBmOVtSqxmd/PXcwXrhqFLw8TPh+RzbeWCl9FYjIbuW5jpNpUlpVi/UHi3AUgTi/+h9YP/kVoPe01jccdZ0OllYUAGte7qJBExG1sPwJXcpHzkFiR5zafc36ly4NJH1RJFN2AzPniE5KqlGaq8+ZJ/69UjJ0/K/1PoMmRNSNth/RC7/OHBTVpY8jmSdPXjoCL187BlMH6EVpvxxg0ISou8ki7kv/uxoTH16Eb7Zm4brX1+LLLUdUeT6pkOPjacagmCBcMjoez14+slnGmJDrHr5wOIbGBaG23oKvtx6x289CLtDTZMSIEYiJicHMmTOxcuWxSx88/PDDCA4Otl0SEnT0juwsY53aWGJSsKxmABqCjUhr1DDgwlcaaxbLynOjz8GO9bpE142nJauaoCMSQvCXOYPUsX9/uwsb04vs8qMQuTVbT5NjZ5qs3F+AOqM+ZyGC8L+C/m33QPHwAiYaGWeHVnT+eImI2nof2/ZRY3mtU9UjErjyfWDu040TtsyIJTrx3of7F5980MTWB8UTyNvVmBlLRNSFyqrrkJZfrvaHxAZ12+PK6nVr0ESaTRNR95G+RdsOF6O6rgG3/28jMosqkRjqjzeuH4vl907Dzn+cje9+dzoeuyQFkUG+7d7PhUYj+E82ZGLnkRLbewk5LocKmkig5KWXXsInn3yiLhIAmTp1KjZu3Nju99x3330oLi62XTIyMrp1zNSOTB002eM5ANe+sQ4v+v4KGDIPuPID3XS1qdiRahNdvguBPp64ZExj4Ou6Sb1wzrAYNRl75/82oYhpbETdp7xA1xvvQKbJz3tz1VZWT4hFu3OxO7sEFTV1rW8s/QRE9jZONBJR11v9AmCpB/rOAOJGdd79ynmNlz9QsB/IWNt590vkDnZ+AVQXA8GJQPzYk7sPKenVyygFuuurTh0eEVFbdmWVqI8vMcG+CO/how/KgeVPAv/XC3h2FPDB1cCSh4H8/Z32uMPjQ+Dv7YGiilq1up2Ius9H6/WciGSUCG8PM168ahSmDYxEQqi/WvTdEeeNiFW33ZJZjDnPLsd5z63A0QrOcToyhwqaDBgwAL/+9a8xevRoTJo0Ca+//rraPvXUU+1+j4+PD4KCgppdyAFk6smDj3Nj1faJ9L5IP/NFIFg3Rzt8tBLbDxcjt7TKNoE6zJyGK8YnqiZJTVNSH7loGHqF+avvmf/hZq6sIOouW97T5WykgbusrG6H/E0u3ZOn9qURYk9/LxRX1uLsp5djzjPLUVVb3/wbIgfpsjZSoqs0u6t/CiJyZxWFwKZ39f5pv+vc+/YJ1IETsentzr1vIle34U29HXVNYwb6yRh0rt7u/rpzxkVEdAwyhyGGxAY3HvzpQWDR34HKIqAwVQdxpX/je5d32gIxLw8zxifrbJOnftzLnq9E3UQWgVrLaUmpPJnveOOGsRga1+Q9oIMk0Dp9YOO8Sml1HX7eq+dRyDE5VNCkLePGjcP+/Z0XoaduUFMOZG9Xu98W6awR+T/9nTWH1P5zi/bhtEcW49znVmDSw4vx2gH9ZjPYdAjXTTCaxjcR6OuFF68aDW9PM5bsycNLy5h+T9Tl5I92ozGhMfr6Y970mUX7kFVchQBvD0zqE447z+yHyEAftQLjYEEF/rcmvfk3SFk+aaZszTYhIuoq618H6iqB6GGNK9I704ir9FaazJewPjFRh+TtBdJXASYzMPLqU7uvAec0Zrl34qpuIqK2bD9c0iy7Hkc2ASuf0fsz/g5c8zkw699GJuo+IHN9pz32PWcNUJ+vFu7Mwdu/6LkVIuo8dfUNWLk/H++vTVfByT99shXXvLYW5TX1qhzXGf3C8dvp/XBa3/CTfoz/u2g4nr9yJK4an6i+XrxbV+wgx+TwQZPNmzersl3kBKSW8H+nAF/+VpXBOOoRjiMIQ79IXY7rg3UZ+NuXO/DEj3vV12EB3qrs1kO/VKPU4gdfUy3iatr+z39wbBD+cd4Qtf/4D3uw4VBhN/5gRG4ofTWQv1ef8A+9uNlVNXUNqv6mpKe/sGS/CpqIv58/FL5eHrhxcjLW/mUG/mb8zb64dH/rMl1RQ/U2h0ETIuoiDfXA2lf0/sQ72+6zdKqSJgEJE3Rg5qe/d/79E7lqMFP0mwUE6az0+gYL1hwowMId2SdW4zsoprG81/NjgM9ukxTYrhg1ERF2GE3gh1ozTaxBESkBOvkuoM80YOLtwKC5+vjW9zvtsWVl+59mD1T7D329yzYWIuocLy5NxVWvrsGfPt2m5jjeX5eh+pmIK8cnqko4p6pngDfOHR6LC0bqKjxSsUOCNeSGQZOysjIV9JCLSEtLU/vp6em2fiTXXnut7fZPP/00vvjiC5VZsn37dtx1111YvHgxbr/99q4cJnWWRf8AsjYD2z9WX/5SKz0QTHj68hFICPVT5XoWrDqorrtnZn81qSqpaRaYscPSS9+HfH87LhubgPNSYiHVud5tuXKdiDrXRqPUzNCLUGzxw58/24bl+/Jw5Gglpj2+VF1mP7Mcj/2wR93s2olJuHh080yxS8bEIynMH/llNXhzVYuAqKz6FkZWGhFRp5PVn2XZgE9wYxmtziYfns7+d+PESOaGrnkcIlch5Ws2vqX3x92kNrX1Dbj5rfW47OVfcMvbGzD9iaX4dltWx+/zrIeAuNG6pOiW/+mFH0REnUxKDu/LLVP7ttI8OcZnmejhzW88/DK93f4JUNd5PQtuOK2XmkOpqW/Ane9tQnl1G/0jieiEyeINa4WMcb1CccW4RFWK69GLhuO9myfg5tOP3eP1RI1MCEGIUdb8t+9vwjnPLsdBNoZ3r6DJ+vXrMXLkSHUR8+fPV/sPPPCA+jorK8sWQBE1NTW45557MGzYMEyZMgVbtmzBTz/9hOnTp3flMKkz5O7WDR2bWF/fD2N79VT1Pp+6dAQuHBWHC0bEqjedO87sqxogPXPFSMwaEoWGaKMx9DE+5EhU9/wRsc1qiRJRF6irbqwNPuJKvLb8gDqBuOGNdbj61TWqv5CUywv288KkPmH429zB+Ou5g9usvSulusSbqw6qSRGbaCPThOW5iKir7PtRb/tMBTy9u+QhpKb4/zIjkN3rAn1gzUtd8jhELmPda0Btuco4TQ+ZiHfXHMLv3t+kylNIg9W+kT3UAqm73t+sSmR0SOIE4ObFjaW+OnFlNxGR1dI9uWpiVfoSRAX5NF8AZv1sY9V7KtAjWgeK93zTaWOQOZHHLklRj38gr1yVEGpl0zvA+1cBxbp5NREZdn0NLDgXeGYE8MRA4JkUYP9P6qoV+/ORXVKl5jje+tU4PHzhMFWK69KxCZjYJ6zDzd47ytPDjKn9I9T+t9uyseNICT5Yn9Gpj0EOHjSZOnWq+jDZ8rJgwQJ1vWyXLl1qu/29996rskwqKytRUFCAJUuWYNq0aV05ROosyx9Xq7vSIs7EoSlPYalpHD6tPx1XT0hSV4/pFYonLx2Bpy8fqd50rGlt0vT9v9eMwaTZV+r72fYJUF7Q7sMMM1Z07M8tQ2VNi+bSRNQ5UpcA1SVAYAzq4sbhw/X6hFvK6R3IL1cnEovmT8GWB8/C/26egOtPS1YBkrbMTYlRHyzkBOT77U2avltXYxXs132QiIg62/4fG0tmdJFHvt+tMvHu3W9Mlhxc0WlNX4lcTm2VLbCYMehmzH52Of7y2XY1WSBzES9cOQo/3HUGZg+NVquob3lrPbZkHO34/Q+/XG93fKEfi4iok0iw5EkjQHHZ2Hg9nyFlQHN36htEGVn0VmYPYKTR9+yHvwCVJ/BedhyhAd74u1EG+YedTT5fiT3fAV/coRfAfXKTHiMRAVlbgI+uAw4uB4rSgNIsoOggsPQRdfWHRsBCFnpLyfHuMHuYbkXh5WGyleoix+LwPU3ICUjTRUk7BXBH5gxM+SEK11feBVNAOM4eGt2x+5DmrDKJKjXB17/W7s0ig3wREeijVqDtzNJN2Iiok+34TG8Hn4+f9xWogEdPfy9cNiZBnaQ/d8VIJIT6d+iufDw9bE3O3liZpgLnSo9IICBSl9I4xDIaRNTJyvOBwxu7JGgitY0v/s8qzHzyZ/z35wPq2Nq6PqgzeQGlR4BCfYyIWtjzLVCeh7oesbh4eZRqrNo/qgfOHR6DV68bgxmDo9RKTinte1rfMHX99W+sVYulrD7fdBgXvrgS+3NLW99/0mlAUBxQXQzs/b57fzYicmlfbD6MvTllCPL1xC1n9NEHC9OA2grA0w8IM441dfo9QGhvoOQw8N0fO3U8k/tFwNNsQkZhJTIKK4zxHAA+vUV/vrJW8fjqtzqQ0oklwoicjiyk+OxWoKEO6HcWcP23wA3fAyYPIHMd5j//Pn4wFnheMiah24Z11uAofHTrRCy8e4qq+Cs9Y7OLuejDkTBoQqdu+ROApQF7QyY39iYxepDIhGmHyDvEab/T+2v+C9RWHjfbhI3PiLqoNJdMaogh8/DeWl1C8aJR8fi/i4dj/V9m4AwjjbSjJGgiqyc2ph/F0Ad/wB8/3qpLdVkbJP5wH1eEElHnSl2sJw2ihtoaTZ8oqRPeMqtVzj1kEnf9oSJbXfMzB0aiCj7YaunbmG1CRO0uyljuOw055Q0YFBOET26bhOevHIUzB0bZbiafHyQTPSU+GEUVtbjmNV0a9KedOZj/4WZ1PvHo97qnWjNmMzDskmaPRUTUGV5ephdE3Dq1j8q6V3KMMsORg3RmSUveAcC8/wImsy4b2IlliaVix/B4PS+y+oBRqWP1i7paQMIE4LznG0t1vXc58NPfOu2xiZzOkn/prLCACOCC/wC9TgOSJqKu71nq6oHZX6qqGtJewNavqBtIxtrYXqFIDg/AiIQQWxlAchwMmtCpkdUMWz9Qux/665R46VFy3cQkdUJxQgZfAAQnAhX5wO72634OjQ1S222ZDJoQdTpZmalKc8UiO2i4qjEuLh+nV1yYT6KWp2SI3XR6bxUblVWjUqvzT59sg+XMvwI9ooD8vUaJPyKiTrJ/0SllmRytqMGZTyzF7GeWqcavoqSqFte9vg6lVXXqQ9VbN47D93edjpevGY34nn5YXjdQ3W7Nki+RW8pAMFEz1WXAvoVq9/WjupfhfbMHItDXmHxsY0LwjRvGoXdEALKKqzD1sSW4+e31KttcLNyZ03a2SV+jF2bW5q76SYjIzRSV12B3tn6/uXyszqBXrEGQlv1MmkoYBww8V+9v6dx+S9JnQfySWqAXoG37UF8x9Y+6x9MFL+neKiJ9Vac+NpHTOLgSWPWc3p/7LBAQbrvql5Bz1PYSzxX47NaxePemCfYaJab2lyocLNHlaBg0oVOz+gXAUq8mJRaX6EnVayb0wt/PH4qgdj4EtcvDExhiNFI1PlS1xRr53X6E5bmIOpWUzrKeUKRcjo82HFaTEzI52Dcy8JTu+o9nD8Suf5yt6pVL6Y1PNmbibz8ehmX2o40royTLhYioMxwyJgd6Tzmpb39z1SHklFTjYEEFPt14WB17b0068suq1Wqw164fq7LuBkYHqUaOt07pg18aBqvbJZZuxA2vr0VpVW3n/TxErrAoo64KNUG9sLwsVjV9H5ccesxvkZKg7/xqPBJD/VFbL70xgTnDojFjkJ5YeOS7PVi0KwcVNXWN3xSp6/yrOuXVbQRViIhOoiyn6BMRoN6XbKxN4Fv2M2kpxei3tO3jTu0xMqmPnvxdlVoAiyw6rSoGguKB5Cm6kseIK4BzntQ3ztkJ1Dd5ryRyBxJM/Pw2nX0ugcSBc5pd/Vx6L+RaQtATxRhZuRbenvabIp82MMLWkF5V5SCHwKAJnXrDaKnoM/pGpBu1NGVF2Enrf7be7vux3RMKa9BkX06pbfUnEXXSJGPmOsDDBw3jblUZIa1WVJ0Caah2zvAY/N9Fugn8m6sP4c+7e8MSGAPUlrOkDRF1juJMoDhdl8OIH3tSZbneWJVm+/rV5QfU+cbrK/Wx26b2abUwRMoQ/vXWa9Fg9kKMqRDl2Xvxm3c3oo4feog0o//hjp6SCWLC+N5hHWq0Ghvih0X3TMGS30/F2r9Mx4tXjcbt03QpvJ925eBXb67Huc+tUAFNJSAMkPMKkburC38gInIXUpJTjElqEuitqQAy1+r96OMETfrOBPx6AmXZQNqyThvX6KSeSPAowvTyr1G9/Fl9cMSVzUuF9UwGvHsA9dVAwf5Oe2wipyCLsY8eAnpEA7MebnZVal4Z1hwqwWf1pzeWsrOjoTGB+Jfv27ij/i3s5AJxh8GgCZ288gKgMFXtZvYYrmoA+nl5IDrI9+TvM2E84BsMVBYCmevbvElMsK9a4SGPt8dIkyWiTrDyab0dcSVWZJuRWVSJQF9PzBlmTD50kotHx+Oxi4erBVDvrctATuTpjcFSIqJTlf6L3kYPB3xOPEvuf2vScbSiFklh/qrh64H8cvzqzXUq8yQy0Afnj4htsybx4MRomBN1Wv/ZXluwfF8+Hv2hjb4LRO5m83u2fmkfVo1T2zP6NZbHOB4vD7PK8IoM1J8xRib2xG/P7KsmDOUzwYG8clzz2loUVxjZXdLLSOQYq8CJiE7BhkOFaivvOY0H3wAqi4CQJCB+zLHvwNNb9YpUNv+v08bla6nC+34P419er8M31yhJKNklLXs9RRkZeJ3YU4XIKez8XG+HXwL46jL/Vl9sPqK2h5IubAywlOpm8PZg3vYhrsJ3uNXza+zYzUUfjoJBEzp5siJdhPXD/lKdpiofaE6m50GzEl3W+uOSxt8GmZiwZptsO8y+JkSd4tBqfaJgMsMy6U689LMOiM4bGQc/7+OvBD1Rl4xJwMWj4tX+CtNIfXDfD53+OETkhtJX623ixA7dXHqVSL3yhgaLyih5Zblu9nr71L64ZmKS2l+5XzdZveG0ZNWkul2D5qrNLeHbbI1jv9qiP5QRuaUjm4Cvfqt2a0+7B58c1ufwU/rrMhQna/5ZA1QTebmE9/DBrqwSXL9gLcqq6xonCHN2nPr4icitVdfVY4vRS3V0LyNoUlsJrHxG759+D+DRgbLkI67W220fAYc3dM7gvv8T4uoykW8Jwjf147BhyP1AaO/Wt7Nmwlgb1xO5A8kG22PMKVqDlk38ckCf2w9PGQMkTNBtB7a8171jzN0NvDwV+Oou4Ke/2Q4XpG7s3nFQuxg0oZNnTUdNGI8D+WWnXpqrZYmuXV8BdTXHbAa/4wiDJkSnrKEBWPgXvT/qWnyU5q1q40q98RtPS+6yhz3dmDD5X34fwOwFFB6QM4QuezwicrNMEyProz1SOuueD7dg+N8WYuQ/f8TsZ5bjP0tTkVtarbJaLxgZp8oA/WHWAFwzIQm/ntIbN5zW69iPbQRNQgs34Q+TdJbLXz7bhiNHKzvphyNywv6H9TVA/9lYFP0r1NQ1IDbYF30je3TK3cuCrXduGocQfy9sSj+Km99cj5rwwc37DRARnaTth0vU+5ZktfUON+Y6fv4/oCwHCE4EUlpkdrQnfjQw7FLdW0EmSE+1v8jWj4CNb6lyhytGPIrba+/C1VuH4VBBeevbWrPvmGlC7mT/j7oEeEgiEDuq2VWySGpzxlG1r/qrSb8Ta4kuaaDWHeprgU9v1otLJHNNyvcZTDnbYemucdAxMWhCJy/DGjQZq9LiRe+ITvgA1G8m4BMEFOwDvv9jmzcZZm0Gf5i1/ohO2Y5P9Yon7x7IG3sPHvp6pzo8f2Z/9LJ+OOgCk/qEqe3G7DrUxBuTm3uZbUJEJ6miENi/qHF1+TEyTSSr5N6Pt+KTjZm2Y3tySvHMon1q/5YzeqtmkP7enipw8s8LhuK+2YOO34MhKBaI1+WHbo3ciZSEEJRU1eH3H21Rj0nkVqQ/ofxNitN+i4826KyruSNiVeZ4ZxkYHYQ3bxiHHj6eWH2gAP9cZ9y3vBdw0oGITsFGo5/JqMSe+n1r2ePAiqf0lWfer0tvddSsf+lS5NlbgS2nUKZLJlm/vEPvn34Pzjv/ckzoHYrK2nr88ZOtrc83pFypYNCE3MXub4CljzRmmbQ459iScVQFQyMCfdTiCwy5APAK0H1/rIuvutryJ/V7gfQ7iklRi0gbkqeoqxLr0lR5YLI/Bk3o5MjKCGtaafw4W9CkT2dkmsibxoWvqFUTWP86sPXDVjexlueSnibyZkdEp/C3vORfev+0u/DvnwvVBJ8EJn81ueuyTISU0xgco7PG9gXqSUY2gyeik34ve3kK8I7UJbbo8hSBUe3e/P11Gfh002F4mE146erR+PkPUxHeQ098yGrSy8cmnvxYBp+nNh47PsXTl6aofm+SvfdLmi4DQOQ2Dm/UfQp9gpETPBxL9uSqw5eOSej0h5IA5WvXjYGvlxnvHfBBnckTqCnVZS8+uEZn1RIRnaCdWXqRZkp8MJCxDlj8T33FjL8BKZed2J31iNTlvMTGt09uQHXVwAfXAnVVQL9ZwLQ/q/Loj16kzzd+OVCID9ZnNP+eyEGqBDPK84DSnJN7XCJnIfOH718J5O5Ui0JtpfGaWJNWaMsyUcFQ6YE41CjhtfFN4LPbgP9MBgrTumaMWVuBZY/q/TmPA7f8DPzpEMyT7lSHBpnSsf6gHiPZF4MmdOJ++Q/w9gVAbYXOCIkYaIuC9g7vnFR7DDgbOO13en/nF62uju/ph2A/L9TUN2BvDpvBE520rR/oslj+YdgQezk+23RYLcR46IKh8PTo+v8iJhuNYJdW9G4s+8dVoUR0og4sBY6mA55+QNxo4My/tnvT2voGvLBkv9r/09kDcfbQaCSFBWDBDeNUk9cH5w4+tV5Ogy8AzJ5Axhokp76NWUN08OaXVAZNyM1IrzTR90x8ujkHsvh5TFJP9OmMzPQ2jO8dhhevGoU6eGJvfZw+mLUZ2PUlkL6qSx6TiFybLNIUA6IDgTX/0QeHXwZMvvvk7nD45TqAIZ95jlWWuKpELyazfi6yBn73fAcUpwM9ooGLXgHM+nwlMcwfd83op/Y/ahk08fYHwvrq/cPrT27cRM40vyGGXAjctgqI6N/qJmuNoMl4Kc1lNfIavZW+JpIJJj2A3r8KqNatCDqNtCD4/DagoU6X9R16kc6E8Q6w9WTrbTqCNXvZE9ERMGhCJ1764vs/AQeX66+Tz8DGzGLkl1Wr1ZrJnZFpYtV7qt7m7mqnGbxeob6dzeCJTn5l9rLH9P5pv8Pfvj+kdi8fm6BWbHaHyX110OTjI+G6r4msgDqqx0FEdMIfkEZdA9y8GBgqGSfNSbmKw0crVZaJbCXbzdro3ZrFKk2lzx9hTLaerJAE4Cwjg2/h/Tinp568kNWfRO4YNLH0nYGPN2R0WZZJU2cOjFLlP7+un4Aas2/jROGW97v0cYnI9dQ3WLA/T0+YDupR0biYc+LtJ3+nkgXbZ/rx35e++i2w4BxdYmj/T8Dj/YCFfwU2GRkqI6/Spb6aOGd4jL7bzGKUVtU2v7/e0/R219cnP3YiR1dTDqQZc5VT/gj0bDzPb7p4aoNRdk/1M7FKGA+E6cCj4hMM5O4APr+187JVs7boLJic7WrRKs55qnnpsMAY1Pn0hIfJgtSd65FZVNE5j0snjUETOjGZ6/Q2OEGX0Jr7LJ5YuEcdumhUnKol3GkkjVQUpQG1Ve2W6NrOZvBEJ2fvd/rvyz8cuYOuxrbDxTCbgN+fNaDbhmANzqQV16M+apg+KKnvREQdJSvAdhuTAKrJatv+9tUOnPbIYvz1c90c+pYzko/fo+Rkjf+1rqHcUIeJBZ+pQ9JwUhpPErmFslyd5SGnG4ETkJpXDh9PM2YPi+7yh77jzL54sf58DK15AwVn6sUhFZs/wekPfYNJDy9CGuuEE1EHSFN1KQUuZf/iUt/XK8MTJuj+A6ci5fLGFe3lbWShHs1oDNBICZ8PrwMq8oFVz+oAihhxVatvi+/pj6QwfxXsWdeytM/g8/V2zzd6pTuRK5KASX01EJwIRLQ9p7E1s1j1/wnx90L/yMDGKyR4YQ2ITvkTcPXHgIc3sOurxoWmpyJ1iS4ZKg3qJdts7jNAj4jmtzGZ4Bmr50T64xBeXHqMbDTqFgya0Mk1f08+Axh+KVZlW7ByfwG8PEy488wmUdnO0CMK8A0BLA1A/t5WVw+N1UGTbZkMmhCdlH0/6u2wi7EzT0/kSSO0sB4+3TYEKbMXFaQfr6Cn8QFE0tWJiDpqz7e6ZGjPZCB+jO1wVnElfrVgHa57fS12HinBu2vSbdclhPrhqvGtV591GvngZdRQDijYiuggX1VSdGO6XtlG5BYl80T0cHyxv07tThsQiUBfry5/6Im9w1SpvZo6C65eaEY2IuBvqcDwil9wpLgKn23M7PIxEJHzs5YB7xfRA2Zr4/ZxN5/6HQ88B/ALBYozgBfGAvuMQIjVhgV6DsTkobc1ZXpexCppMhDWp827lkw7sWp/i2BM4gQ9v1JV3Pj+TOSqZUH7zWzV/N1q1f58tZ2QHKb6ATUz+nrgj4eAafcBCeOAc57Ux5f++9SytOprge/u1X/PfWfqsmFSmqstUUPVZrDpkCq1d+Ro5ck/Lp0yBk3oxGSs0dv4sWrzxsqDanvFuEQkhPp37mPJm5w12yRvd6urRyX1VFtZHZ9T0joThYiOQerj7l+k9/vOwK4s/aFgsBGM7E79jBUeqb6DmwdniYg62vBRDL/U9gFJsjrmPLMci3bn4ue9ebj4pVVq5eXUARHY+rezsPieqQjozOzYtsSOVBtTwX5MTdITxSzRRW7jwM9qY+k9FV9vzWpWOqarSRnfxy9JQUSgD3bllOOTuonq+O+jdC3/n/fpCRMiomPZk61Lc03uWaQDHB4+wIA5p37HXn7ANZ8BkUOAigLg05uAyqLGRu/SiFqc95yR2TICuH2NLh8kxt7Y7l1P7KNLH69q2UdNep8MOk/v7/z81H8GIkec37AGTfrPavdm1r+N0/rqAGMz8jnCr0mAUsr+jr9V73/2ayBnh25Z0NAic1wCkSX6XKfNgMmq5/RCcP9w4OLXGuc52yK9GWWO1Wsp+jek4Ycd2e3flrocgyZ0Yv0PDm/U+wnjVG1wawOli0bFd81jWlPq2giaxIX4qWaS0lTyqy1skkR0QuQ/7ZJMffKfdBp2ZpWow4NimqSodpO+kboh7IZ6I1tNanzWsH4nEXVAWR6QurhVaa7/+243iipqMSAqEN4eZlTU6A83v5veD0G+XvDy6IZT4IAwICRR7Z7VU3/gWWmsbiNy+YkLYyVzWtBYpBdWqPI20wdFdtsQJHP2vZvHIybYF8v89eRJr6LViDflYmvmURytYHkaIupYpslk81Z9IGmibqreGWJHALcsBSIG6YDJz4/q48se1z0eA2P0YpAbv9e3C4wGrvkcuHGhbhx9jEw7IZ/tCstbvM8NuUBvZcV8Zze3JrK3A0t0cNPTF+h1eps3kTK5G4ys70lGb9XjOushXWlHMr7+cxrwaDLw5lwd4BRSMu+t84FXzmwdOJGFXY8kAov+rr8+8/5WvYhaGXwB0OdM+Fqq8Yr349h3IK1j46QuwaAJdVzuTqC2HPAOBCIGYm9uKYora+Hv7YEhsbope6eTkwj12K2DJuKCkbpZ62ebDnfN4xO5Kms93F6nqZP/XbagSRf9LXckaFLkD/SI1vWCJXBCRHQ8Oz4FLPVA7CggXDd8LqmqtdXyfvna0fjnBUPU/lmDozAyUWepdhsZlyxU80xTPaOk8eQXm3nOQi6u8ICxMMMbz6fqet3TB0bB37uLs7ta6BsZiJ//MA1v33ulmoAwwYI7gparmM4KBjCJ6Dj2GEGTgeVGv8U+Z3buA3h6A2f/W++vfRn44nbdw0RMfwDw8NIr361lhiRgk2hkm7RDMuz6R+nPVp+2LEWYOAkI7Q1UFwObjXJjRK5AGrX/9LfGElvtBDfXHyxSfYqkbG7v8ICO3bf8HV7ypv7bgUUfO7QS+Op3epHIutf1sdIjwPtXNC7+LM0Bvr5blxCWQMmYXwGjru3A43kCF7+BiqDeiDUVYuChdzo2TuoSDJpQx1n7DMSPVumd1iwTqRns2VUrNiMH6m3erjavPmdYjOqnsuNIiW0lCBF1gLU0V5/pasXFgTy92miIHYIm/Yygyb68cuNkBHqVCBFRh0tzXWY7tHxvPuoaLOgTEYCksABcNjYRy/4wDc9eoctldas4HTQJKdpm6/12/2fbkVHIbDpyYUaWSX7PEfh0WyE8zCbcfIbx/3s38/Y0q4uarAAwt34RvFGLp37ci9H//FFtiYhaqq6rR1p+ObxQh555a7smaGK9Tyn5JYvGNhmTo5N+C4y48qTv8rpJvdT26Z/2NS9jbjYDE36j9395sXWJISJntfMzIGsL4N0DOP337d5sVWq+rfePlPLsMP9Q4NfLgDvWA1d+pPsNbXkPWHg/sPd7fRufIODIJmD18/rrRf/Q2SmygOreNODcJ3WZvI6QEmGSlQJgTu2PyCvSC1yp+zFoQh1n7TMQP05trEGTsb1Cu+4xrZkmhWlAbesGSD0DvFVTSfHlZpboIuqQuhq9OkL0nY492aWqzF1YgLdandTd+kXpkmCZRZWok0wT0V5NUCIiq4JU4PB6/cFl6IW2w4t256jt9EFRtmOJYf7w9ergB5UuyDTB4U2488y+aqFJaXUdXliyv/vHQtTNQZP38pPV9vZpfTEioUmNcHvofzYQFIeAuqO4wGMFUvPKUVBeg2cW7cPrK1j6grrWsmXLMHfuXMTGxqqJus8/P35PiaVLl2LUqFHw8fFB3759sWDBgm4ZK2nbDxerXmiTfQ/ALCvFAyJ1D5KucPEbwNxn9Sp0mfCdYayYP0lXjE1U77ll1XX4x9c7m18pwRhpKl+UBuz59tTGTeQoVr+gt5PuBHroDNeW6uobsHBnzomV5mrKJxAI7wf0Pws4+xHjcZ/XGe8yR3rOE/rYuteA9F+Aze/qr2c/2vFgSRP+w85DvikU4aYSZK1+/8THS52CQRM64drEUs7HYmnsZzIuuQuDJj0iAT8ppWEBstsu13P2UD3JunRvbteNg8iVZG8D6qoAv1BVas/az2RwbNCJrbjoJKEB3ipgI456GCcwJQyCEtFxpOlG00iapM8XpP1agwVL9+SpfeuiCruSmuUwqVJFnhV5+P1Zulfbt9uyVHkAIpcjNb6NJvCLqwdjcEyQChjanZS7MFZY3+P9OWICzLhwlC7z+89vdqo+J0Rdpby8HCkpKXjhBWNi7zjS0tJwzjnnYNq0adi8eTPuuusu3HTTTfjhhx+6fKykfbRel7b6dbBRmqv3VJ2p0RW8fIHR1+nG79P/elITrE2ZzSb8a95Qtf/N1iwcOdpk8al3ADD2V80nmomcWXlBY+/lUde1e7MFqw5if24ZQvy9MONUe6yNuxkYc2Pj1xLwlF4kElwtywbevUTPYaZcASSMPbnH8PDCpgjdhyhs51unNl46aQyaUMfk7ADKcgAvqaM5UTV0zC2tVqWxunTlmEzgStMlsfTfOnjTwun9dCR5++ES5JcZzZiIqAOl9sZif145PlyfYbd+Ji37mhyx9GysCUpEdCyZG/Q2obG+9897c1Xj00BfT4zp1c39S9pblRY91FYKQxaaRAb6oKSqDsv26uAOkUuRRVbVxchBT2y29MFvp/eDV1eV8T1RMlEYGIMoSx5WzTyEJy5JwYxBUerjxY/G6lOirjB79mw89NBDmDdvXodu/9JLLyE5ORlPPPEEBg0ahDvuuAMXX3wxnnrqqS4fKwEVNXX4assRDDIdwvhiIxvDGmhwEkNigzHOqAgigZNmxt4MmL2A9NWN51JEzipNFndbdCZYUEyrq2XBt5TletIox3nf7IEI8dcLNk9pnlIySIbMAxIm6Ix36VEk/VREdYleoCpN5E9BxbBr0GAxIa5sG174cpkK+lD3cpAzWHJ4qYv1ttdkwNMHq1IL1JfD40O6vtzF9AdVI0k1hjZSSKWckKxiEyv2sakjUUdL7WUHDcecZ5ZjU/pReJpNmDOs9UlGd+lnNCzcXmo0ZGN5LiI6nkxj9Wf8GLWR2uN3f7BF7c8bGec4E7XT/qK3q5+HR94unDs8Vn355RYGh8kF7fxCbb6tG4fkiECcNbixTJ7defkBU+5Vu6YVT8JkacDMwXq16Wrjsw2RI1i9ejVmzJjR7NisWbPU8fZUV1ejpKSk2YVOjgQZymvq8C+//8Ekk7FDLgQSJ8DZzB3RzvmGTCwPu6SxvBCRK8xV9pnW6irp3Trn2RW48pU1qKipx5iknrhkdELnPK5qEL8A+NUPOoNLjLlBlw0WZz8MBJxEGbAmBvfvhx2WJLW/95fv8JfPtp3ysOnEOMinSXKeNyLd/GzRLl0Ka2r/tusFdqqwPsDEO/T+jw+2mW1yhjEOrtok6oDM9WrzvyNRqKlvwNhePfH9Xafbtd64tffAJ/uMcjXMNCGiY6kqBvKNBs5xY9Qqstve2YDiylr1XvbnOUZPNEcwYDYw8Fzd5PWH+3CeMYnx3fYsnPbIYjyxcI+9R0jUeT3Tdn+tdr+rH4dbz+ijysQ4lJHXAN6BOoM+Zwcm9dETGpszjqK8us7eoyNSsrOzERXVPOAoX0sgpLKydZ9P8fDDDyM4ONh2SUjopIlBN/Txhkz0Mx3GqIZtgIcPMPPvcEZzhkbDw2zCtsPFamFJMxN/0xjoLjpol/ERnTKZG0xd0myusql1BwuxK6sEPp5mXDomHi9ePaprz0uCYoGLXwdmPwYMv6xTqnEUReiA7UTzTqw9WIickqpOGCh1FIMmdHzSgP3QKr3f50wVrV2xXwcnzjzVWoAddfp8nUJasA8oPNDq6jP66w88y/blo0E6WhNR20qzgeJ0WExmvH5Ql67597xh6Bupm7Hbi/QeuHxsArIb9JgskmnSwHr/RNQOVbvYAoQkqoaPMuG5O7sU/t4eePna0fZp+n4sM4wJl4MrkBLti36RPVBbb8Hho5V4ZfkB1ZySyCX6DFUVI9cSgvWWAZhl9B10KLIyNNEo6XdoFRJC/REX4oe6BgvWHyqy9+iITtp9992H4uJi2yUjQ5ffpRNTWVOPDYeK0Nd0WB+IGa7PNZxQWA8fnGY0vP58k/HzWEUP05PM0sR6yb/tM0CiUyULqEoO6+Cm9DhswdqH+ZxhMXj04hREBvp2/ZiGXACMv0WX8DpF0m/2jFkXqv2pPrtVjKhVuT3qUgya0PFJwKS+GgiKA8L7q/T1qtoGxAb72spidUtNcGtK7P5Fra4ekxSqJkqkp4lMmhDRsUtz5fj0RpnFD1MHRKBflH0DJlYPzB0Mr5AYVbfT1FALVLBUBhG14/B6W28m8bXxAUL6E3TLB6KTyZr1DVHZJqb8PXjnpvF49dox6OHjqc6p9rFGMTm7+lpg8T/V7nf1Y9ErIhDBfl5wSIkT9TZdLwqb2CdMbaXmOZEjiI6ORk5O8z478nVQUBD8/Pza/B4fHx91fdMLnbiN6UUqiJriZ1SwCOsLZ3bRqDi1fW1FGnJLW6xQn/6A3m79AMjS5U2JnIq1fH/SRF2Cs52gydhk3d/HKck5i8kD0fXZiEU+vtrKihzdiUETOr60ZXrbe6qKlv60K8eWZSKRz27Td7reprYOmnh7mjHWaHT2ywFOtBK1K2ON2iyt6KW2N5/eG47C39sTUwfHowDGhzyW6CKi45QZlNJckmH67TYdNDl3uP16Mx2TnC/Jqk6RvQ1RQb6YMTgKQ+P0+93WzKP2HR/RqVr2uJp0q/IMwvN1F2BEvP1Kfh5X0mmNC8MsFkwygia/sK8JOYiJEydi0aLmn3l//PFHdZy61hpjknVUQEHjogcnNnd4LFISQlBWXYf/+65FOdDYkcDQixvLoBM5E0m72PSO3peG7C1U19WrTHRhnSt0Sr5BQOwItTvRY6fqR5tRWGHvUbkNBk3o+A4u19tep6ua4Yt3634m0wd2c2PHPkbQJG25rpncwoTexgceBk2I2tbQAMuuL9XuirpBmNg7zDZR4Cgm9A5FtkWX6GIzeCJq1+ENehs/Rq0KzSquQqCPp63HmUOyBU222w7JRIbYnFFsr1ERnTr5/3rZY2r3jZA7kIeette2Q4obpUt5lOcBBam2TBOp+19aVWvv0ZELKisrw+bNm9VFpKWlqf309HRbaa1rr73Wdvtbb70VBw4cwL333ovdu3fjxRdfxIcffoi7777bbj+Du1ibpucSks3ZLpFpIv0b/n7eELX/ycZMVXqsmel/BUxm4MASII891siJpP8CFOwHvAKAoRe1unr74WJU1zUgLMAbfSKMRu3OqtfpanNB0L62y+1Rl2HQhI6tqgQ4ok/ukHw6Mosq1cSEl4fJ9gGj20QNBQIigdpyIOOXVleP762jx9IciX1NiNqQvhqmo+kotfjhZ9NYPDRvaPdmi3WArALJtui/5fJ8/UGSiKiZ8nw92SmihuC77XpiY+bgKMfrZdJUk0wTqxRjNT4zTcipZW1WdfEtkYPxStEodcihgyaePirgqhxaiZhgPySE+kE+PmxM598idb7169dj5MiR6iLmz5+v9h94QJdHysrKsgVQRHJyMr755huVXZKSkoInnngCr776KmbNmmW3n8EdyMp0WcUtQquMnjChzp1pIkYkhKgm2OLBL7ejvulcSc9eQP+z9f6GN+00QqKTsPEtvR16oS7n34I1a0zmFxxtzuOEDZitNhNrVsEfVfhoQybnPLsJgyZ0bOmrdXOwnslAcLxazSkGxwZ3/8SE2ayblYl9P7a6elhcsOprcrSiFnty2NeEqJWt76vNt/Xjcf2UgegT0QOO2LCw0ldnsWVnHrD3cIjIEVlXQgYnAt4BttR7h84ysS7+EDnbdEkBAMPjg9V2T3Ypqmrr7Tk6olP+m6wI6Y/C8hq1uGpQjGP0SztuXxOjDPHYJL1gY50xyULUmaZOnaoqNrS8LFiwQF0v26VLl7b6nk2bNqG6uhqpqam4/vrr7TR697E1U69M7x1QDY8q470g1HFKGZ+Ke88eiEBfT2w/XIIP1hkBIavRxmtry/+A2hZ9T4gcUVUxsOMzvT+qMUvP5fqZWCWMV+9FnvWVuMBnPdILK9Ricep6DJpQx/qZJOt0MOvExEh7rR4zIqzY8bkqNdSUl4cZY9jXhKhttZVo2K5PLD5rmIwrxyfCUfmF6ZVQpbnMNCGiNuQbQZOI/mqV1a6sEvXlkFgHb3obMQAwe+oPesV6wiIuxA/hPbxV09kdR/TPQeR08nW5iEyz/v97cEwQfDwdOOtL9DdW7O/9Hqgpt02qrOMkBJHbsv79z4ox+gUExgI+jrfI7GSE9/DB3TP6q/1HvtuF9IImPRH6zgCC4oHKIsAo5Uzk0LZ9DNRVAhEDgfixra6WUpurjD5ljlaO/KRIpsyIK9XuTT1Wqe2H61sEP6lLMGhCHexncobaWNNVRyaG2O8DjncgUJwOZK5tsx+CYNCEqIW05TDXlOKwJQz18RNVKQpHFRajm9Q3lLARPJ26ZcuWYe7cuYiNjVWp2Z9//vlxv0dWe44aNQo+Pj7o27evbSUoOYi8vXobMVCttKqoqYePpxnJ4Q5er1hKAsmHuyZ9TeQ1Odwo0bXJyOYlctZA5tbqKMcvzWUlkyxSlqamDNjzna1JrCwQkxI9ROR+dmfpahWjexS6RBP4lq6ZmKTmcUqq6vDrdzagssZ4rzN7ACOv1vvbP7XrGIk6ZNPbjVkmbZTe+mlXDmokaywiAAOjHTzztaNSrpBPDuhdvhkJphx8ty0bFTV19h6Vy2PQhNpXW9lYdztpkvoAsdNYBTkywWjU3N28/IBB5+r9bR+1unqc8YHHGtwhIjSWg5EVVA0DMHt4HBxZcu9+ahtQnYfcEqaI06kpLy9X9cBfeOGFDt1emrOec845mDZtmmrSetddd+Gmm27CDz/80OVjpRPMNAnvj51GlsmA6EB4ejjBaa21RFf2Vtsh6wq499dlsD4xOR8pNZevA5kLc4OcZ1WnTLIMv0zvb3lfNYmVZrFSmkeaxxKR+5FSmaKPR7ZLBk2kMsd/rhqtMlwlS/ff3+5qvNI6x3JgqZ4HInJUWVuBI5sAsxcw/PI2b/L1liy1PXe4XjTnEoLjgWS9mP2KHptRWVuPRbty7T0ql+cEny7Jbgr2A5YGwDcYCIpVAZOa+gaEBnirZol2M+zixhJd9bXNrpJJE5FbWo3iiubXEbmzykw9QbenIRFzhsXAkfWM1pkmsaYC/MQTATpFs2fPxkMPPYR58+Z16PYvvfSSasAqTVcHDRqEO+64AxdffDGeeuqpdr9H6o2XlJQ0u1B3ZJoMsC3mkHJATiF2hN4e3mA7dOnYBFVnfH9uGRbuNCZqiJxFWa4qOWcxmbGsIBhmEzCxdzicwrBL9TZ1MUzleRjTSy8KW5vGrC8idyOr0lPzytR+VG2mPhjWF64mOtgXz1w+Uu2/u+YQdhwpblzUISW6pOSRtUQ7kSPa9E5joC+g9SINmQdcti9P7c8d7tjzHids0Fy1Oc93k9p+s1UHh6jrMGhCx2+0KqUkTKbG0lwJIfaN1iZPBfzDgYp84NDKZlcF+nohNthX7e/LZTN4IqvaI7oUTHXYAHWy7PCrKOTv2VSJFdtT7T0acjOrV6/GjBkzmh2bNWuWOt6ehx9+GMHBwbZLQkJCN4zUTVWXASXGZEZ4f1s/k8GO3s/EKn6c3mauszWDD/L1wvWTdLD4hSWpqjkwkbNlfpX7xaEa3hgWH4Jgfy84hfC+QOxIwFIP7PsR45P15MvXW4/w75DIzaTll6v+YoE+nvArOaAPhrpWponVaX3Dcc7wGEhy69+/3Knf72R+Z8DZ+gZ7vrP3EInaZ50DHGospm7hh53ZqK23YEBUIPpFuUhprhY9nuNKtyEUJViyJxdl1SzR1ZUYNKH2Gan2MikhNhi1tkfYu06xhyfQb6beT13S6uq+xhvjvly9UoTI7dXVIKAsTe16WEvDODLvANT76tWeGWl7eCJA3So7OxtRUbouv5V8LdkjlZVtlyu47777UFxcbLtkZLAxX5efmwREAP6htvJcTpNpEj0M8PTVzVYlo9dww2nJ8PPywLbDxepC5Gx/k4dMuvTn5L5OUJqrqV6T9fbwelwwMg6+XmbsOFKC1eyPSORWdmfr84khUT4w5Rplq6Kd4HPTSfrznEHq/W7twUKsO2hk1/U3giZ7f7At7CByKA0NQIGxqDJyUJs3sWZfnOtqWSbWxaXRw2GCBZcF71AlRRftyrH3qFwagybUgUyTAarG9upU/eFhgiPUKe49TW9TF7e6ql9kD7Xdl8OgCZGSvxcelnqUWPzRMzYZzsDcM1FtIxrysGyvTq8lclTSMD4oKKjZhbo4aBIxEEXlNcgq1n2PBjpL0MTTG4gxSnRlrLUdltKnsvJTWM+3iJypXN6Giki1ndw3Ak4lbrTeZq5Xf4cXj9bZrq8u14tNiMg97M3RVSqmBGUBDXV6cUaw62YOx4X4YUp//X69NdPoB9vrdMDLHyg9AuToKgVEDqXksC4hJ/1MQpJaXS2fDVbuz1f7kk3lkgaeozYX+uvy6+xr4sRBk2XLlmHu3LmIjdXNdz7//PPjfs/SpUsxatQoNQHRt29fLFiwoCuHSB3KNBmAXdklKCyvQYC3h/0zTUTvqY2NVMv1m2KroAnLcxFpOTvUZrclAb0j9N+HozMZH1KkrwknEKk7RUdHIyen+Yod+VoCIX5+duznRc0XdIT3x4ZDemVkYqg/evh4wmkkjNXbzMagiZhoLErhCndyJlVZekX29poolS01KskBPieciLgxjedKNRX41eTeqkrN4t25OGD0NyAi92kCP9rjQGNA1VUaSLdjkLHgZLfxs8PLF4g3zlGk0TaRo7FmaYcm6wo0LXy/I1uV2ZMMdGeZ9zjZEl29S9bCjAZbqWJywqBJeXk5UlJS8MILL3To9mlpaTjnnHMwbdo0bN68GXfddRduuukm/PDDD105TGpLfV3jG1LEAKzYpwMTE3qHwcvDARKUAqOAqGF6/8DSZlf1i2KmCVFTFiNosqchAcnhTnLyYPQ1iTfl40A+/5ap+0ycOBGLFi1qduzHH39Ux8kBWJuTRg/Dm6sPqt0Zg5qXU3OaviYZ65odntA7VG3XpRWirr7BHiMjOiFVNbWoztATawdMifjbeYPh4+kBpyLnGz2idF+TrC1IDg/AaX101tcKY7UqEbk+a+Cgd83u5lloLmxgtA6aNJt0lTKiInubnUZFdAzWOcqwvm1eLT3JxLkpLpplIqTcuqcfPOorkWTKwYH8clTX1dt7VC6rS2e/Z8+ejYceegjz5s3r0O1feuklJCcn44knnsCgQYNwxx134OKLL8ZTTz3V7vdUV1erOuNNL9QJig4C9TU6PTM4wfahwVo6wiH0mdpmX5O+kbqnSXZJFUqqau0xMiKHUpul06v3WBKQFOYPp2DLNMlHWl65vUdDTqysrEwtxJCLdYGG7Kenp9v6kVx77bW229966604cOAA7r33XuzevRsvvvgiPvzwQ9x99912+xnIUJqj+g6IfSGnYfm+fJhN0g9EN1F3GglG0CR3J1DV2L9kUHQQgv28UF5Tz74m5BQ+/e4HBKMU5fDF43dei8vG6tKaTkVWkluzTYz3l9FJuq/a5nSjZA0RubSjFTXILNJ963oWbXOboIm1H5wsNq21LtaIHq63DJqQQwdN+rS6Kr2gwlah4txhsXBZZg+1sF0M98lCfYMFqbmcL+kqDpAy0Gj16tWYMWNGs2OzZs1Sx9vz8MMPIzg42HZJSHDdupPdKt8ofxHWF1X1FqxNK1RfTu7nSEGTM/V230KdGWOQCYeoIB+1v5/N4ImAnJ1qUxDQF75eHk6VaRJnyseR4ipU1LAZPJ2c9evXY+TIkeoi5s+fr/YfeOAB9XVWVpYtgCJk8cY333yjskskW1YWcrz66qvqfITsbO93ehs7Ci9t1JMbs4fGICHUSYLBVoHRQGhvyQMEfnzQdthsNmF8ss42+eWAPu8iclSZRRU4tP57tV8WNQ69opysLFdT8Y19TcSIRP2zbLbW+ScilyUTjvM/3KL2U8Ia4HHU6GcUq88bXVl8Tz9V3rSmvgEHrIvUoofqbfZ23XSbyJHk79PbsH6trnrom51osACn9wtHorMsFD1ZkYPUZmIPXVJ6Tw6TB9wiaJKdnY2oqOYlFuRryR6prNQfjluSFaLFxcW2S0ZGRjeN1n2awK8/WITqugZEBvrY+oU4hKTJgH84UJ4L7P+x2VX9jGyTfUZDNyK3VVcN74ostWtqJ43VIYXoAHi8Wa8WScvn6gk6OVOnToXFYml1sfZMk630U2v5PZs2bVLZrKmpqbj++uvtNHpqZve3anMk+kx8tilT7d90ejKc0uxH5V0Z2PAGsOkd22EpgyrY14Qc3SvLDmAcdCZr5PCZcGrWTBMJmlgsSInXQROZRCyuYNY6kSt7ZtE+1cPIx9OMJycbQYLQPoC/XsTgymSxxsDowOYlusL7Ax7eQE0pcPSQfQdI1MHyXNJOYOHOHHiYTXjg3MFweUbQZLDnkeZ9ici1gyYnQxrGS3PWphfqzEarA2x1Ac8cGAmTIzVD8/QGUi7X+xvfbnaV9T//r7dmqckxIrdVov9+qy1eCIuMg9MwynNFoAieqGPQhMjdVZfZepj9ZVeiWkl2wYhYjEzUZXScTr+ZwLS/6P0lD9sOWzN6fzlQgPJqZtiRY6qqrcdXmzIwzqxr/5t6T4FTkzI8MklYkgnk7kJogLetnOkWZpsQubQvNx9W23+ePxR9yje5TWkuq4ExRtAk2wiaeHjZJmRZooscSm0VcNSoDhDePNPkucU6A+WaCUnoF6Vf0y4tUgeGEut0f8c9DJq4R9AkOjoaOTk6vchKvpZAiJ+fn93G5ZaydO332sih+HabXqV+3ggHrAs4yqhDv/d7oDTbdviaiUnw9jCreudL9+TZb3xEDhI0ybKEIjnCgTLFjkeyyDx8YIYF0abCxpRxInJPB1cA9dUo9onDkqIwRAf54u/nGSUknNWE23S2iUzUluWqQ5LR2yvMHzV1DTx/IYf1484cJFbvRaCpEhbfECDKaBzsrHx6AH2m6/2dX6iNNdtkcwaDJkSuXJrL2svk9H6hwNaP9BUDZsNdDDL6muzKajLpymbw5IiKpHSeBfAJAgIimi3k2JhepPavn+RkfQ5PVsRAtQkqPwQv1DFo4i5Bk4kTJ2LRokXNjklNcTlO3bya08g0WVERj5KqOjU5MT5Zl4xwKNIAKX4cYKkHtn5oO5wUFoDrjcawUtuQqzXJbZXo1VNZljAkRwTAaZjNjX1NUIADeexPROTW0nV/u/VmCZSY8LsZ/RDs7wWnn6i1lhfI2qo2ktE7a0i02v9+R+NiECJH8uH6DEww635ppl6T9f/Zzm7IBXq783O1GZHAoAmRq8sqrkRdg0UttozKX6cXMfgEAwPmwN2CJtsyj6oFGwqbwZND9zPpIyfMtsPy/3RtvQURgT62LFGXJ/Mk3oEwW+rQy5SNrOIqlhPtIl16hltWVobNmzeri0hLS1P71oar0o/k2muNTAEAt956Kw4cOIB7770Xu3fvxosvvogPP/wQd999d1cOk1rKlg/uFiAoDh/trlGH5qbEqPqADmnIPL09tLLZ4TvO7IuwAG+k5pXjspdXI7e0yj7jI7KjLTt3qO0RhKK/s6Wq2prB57E8F5G7S/9FbRZX9FHbkUajZqcXk6K32boJrZg1VAdNluzORXVdvb1GRtSm3JIqrNifj2HmA/pAwni4hP5nA2YvIG83kLvb1gxe6qQ/+eNe/i0SuaD0wgpbQ3Tz1vf0waHzAC9fuIuhscGqd21RRS2+264rjCBqaGP1EZY6J0eR9nPz16dhXVqh2o5LDnWsdgJdSX7OSJ1tMj7A2gye2SZOFzRZv349Ro4cqS5i/vz5av+BBx5QX2dlZdkCKCI5ORnffPONyi5JSUnBE088gVdffRWzZs3qymFSS0d0Lc895j74dpte5Xj+CAfuhRA/tlnzRqsgXy+8dv1YFTjZfrgE93zYOCFB5A5+3puHLTt00CQ2oQ/iQpyszKHRDD7WJJkm5exPROTONYyPbFS7K2v6wNfLjL7OVG6wI0GTrMZzlBHxIWoCo6y6Dqv2syE8ORYJmMh/x6O80pu/hp2dXwjQ50y9v+0jVZ5r+sBI1NQ34NlF+/DMT8YKVyJyGRlG0KRPiAnY9aU+mHIl3Im3p1n1gRCvrUjTn7fiRgGefkBpFpCjP0sS2VV9LbDjs+aLpg1rDxpBk16hcCtG76HxPXTQZNvhYjsPyDV1adBk6tSp6k235WXBggXqetkuXbq01fds2rQJ1dXVSE1NxfXXX9+VQ6RjBE2+zNMrHW+f1gdD44LhsKTmpqwMq8gHjh5qdpWk1r9y3Ri1vyn9KCddya28suwAYqBPIiaMMNKsnYnRDD7OnI/S6jrkl+nMNyJyM7LSsb4GVT5hOGiJxuCYIHh6uEA5IBEzvFl5LmE2m3DWkCi1v3i37nVC5ChWpRYgCGWIachu/hp2BSmX6+2q5+CRvxuvXjcGf5mjJyUW7eLfIpGrZppM8E0HaiuAwFggYRzczZXjE1XwZGtmse4N4eUHJJ+hr9z3g72HRwSkLgEqCnQvk+QptsN19Q3YeEj3MxnrbkETo5/c6IbtaruF5US7hIt84qTOVJO+QW23WZLx7BUj8YdZOu3LYUn6rLVZmWSbtCCTK5K9Jis2C8s56UruobSqFmvSChBt0quUTUapK6dijLmPlz4RYl8TIvfuZ3LQT/czGebICzlOlLVuuDS3rGz8sDO5r25wuSo1314jI2pFFh+t2p+PIWZjkVJIEuDXEy5DVq/2OwuorwY+vRmm+lrMGxVnK3vBeuFEriWjUDeBH2Qy3tNiRzTrleAuwnr44PyUWLX/7hoji7C/Ue1l70I7jozIsO0jvR1yIeDhaTu8K6sU5TX1CPT1xIBoJytFfqoGnQuYzIgt2YwkUza2ZjJo0hUYNKHmqorhXaxrFEf0n4DzjP88HV68zibBYR3wacrXy0M1shcHC/RqEiJXJzW4pSFavIcOOCDYgUvsHSfTJN6sAz8H2NeEyD2lr1GbNfX91XZYvIv0MxH+oUBwYquGqxN7h6l5G+nLllPCnmzkGA4VVOBIcRWGexx0rdJcVvJHd97zOhAkf4+pixHewwe9wwPU1esP6exdInKtTJPE2tQ2eyW4k4tH68VqP+7M0Q3hJYAsMtcCFXzvIzuX6d39jd4fdkmzq77edkRtxyT1dNwezF0lKNZWVvQij2VqrvNoBReJdzYGTaiZ3Zt1M/XDlnDcea4TNXaMM4ImmevavDopzF9t0ws56UruYdHuXPigBj0tRm3LIGcMmuiT94h6KYlhYTN4InfUUG/LNPmuWNfcdqlMk2YlujbbDgX7e6nmrGJ1KvuakOOU5hKTA464ZtBEBEYBfabr/fw9zUp+WOumE5Fr9TQJK9urD0S7b9BkTK9QRAT6oLSqDiv35+vekpFDAEsDsP8new+P3JksjK4tBwIiGxdLG3+/b6zQiziuHK8/I7idEboH02VeK2BCA7Zksq9JZ2PQhJrZtk03Ii0L7I1exqoqp2B985Sa4HWto6tJoQG2FXJErq6hwYIlu3MRZTKyTKSRnzOWzzCCJl6WavREKctzEbnrB6Wqo6j3Cca6miTVBL5PhBOdn3RE0mmNpQea9F6b1CdMbdXkBZEDWGmUixtiSnPdoIkI66u3+br5+5he+hxq/UHjvIqInJ6U7i4or4En6uBbpP/WbSW/3ZCs0p89VPe0/XZblj444Gy93fWlHUdGbi99ld4mTWxWPu+R73ajpr4Bp/UNw4xBkXBLA84BfIIRZcnHGNNe9jXpAgyakE11XT1yDuvSXCHRveBUQnvrSWGpQZy7s9XVSeE604RBE3KHgMmTP+5VHwL6+BxtLM3ljPV5PX2AHroZcqypAAfymGlC5Hb2/ag2R0InoB4eKvvCZZrAN20+7eEDZG0BDm+0HZ7UN9y2ul96SRDZU0VNHZbuzkUIStGz8pB7BE0KdMmecck600TqhVfV1ttzZETUyVkmI/zyYJI5BO8eQIiTzYF0sjnDYtR24c4c1NY36D5P1r4mVVzBTnaS/oveJk6yHVqbVohvtmVBKnLdf85gmJxxrqOz+jsnTlC7/cyHGTTpAi72qZNOxZLdeQit0yvIImKT4VTkTTK8f2Mz1XYzTTjpSq7tz59tw/NL9qv9qwZ6OG9prhbZJvGmfFV3WJ3AE5H7MEpC/GIeaSsf4XKkr4l1YmL9a7bDY3v1hJeHCYePVmJnVon9xkcE4Pvt2airqcRb/k/DBIs+7+7hois7w61BE30+lRjqj8hAH9UrjtkmRK4VNJkYkNXYz8Ts3tNjUopQ+jgVV9biqy1H9HMSPkAvTN31tb2HR+5apjdjbWOmibFI9B9f71D7l49LxKCYILi1nro0WYIpl+W5uoB7/69AzXy55TCiTbpWr9kZm0b3NFaGFBnNKdvoacJME3JllTX1+GhDptp/7OLhmBFX5wJBE90MPtGzAHUNFtsHHCJyA+X5wJFNaveDowNsgQSXNPZXerv9E6BSrxLz9/bEWUN0qYznFunJWyJ7+XhDJh70fBPDG3apUhC4+A24rNA+elueq1ZXywrWaQN0gOjrrUY/FyJyatZ5geFeGXD3fiZNS3TdOFnPqTz+wx5USUN4a+Pt7R/bd3DknnK2A9UlgE+QDuIB+GRjJrYfLkGgjyfmzzQWTruzkES1iTflIb+sGoXlbAbfmRg0IVvK/aJduYgxgiZOOclqDZoUprUbNJGSRaVVtd09MqJusTOrGPUNFtXE7+LR8cBR40OAMwZBW2SaDPLTqyZYoovIjexfBMCCusihWF/gow6NTnLRoEn8WCAkCairatYQ/q7p/VQy7fc7srHjCFePkX1kFlWoMnEzPTboAxe+7NoTjL5BQI/oZtkm54+MtdX6l5LGROTcNhtlbAbAKDfoxv1MmrrxtGTEBvviSHEVXl+ZBgy9UF9x4GegLM/ewyN3c2i13iaMA8y6isYry3VLgTvO7Ksyo9yefH4A0NuzQG3ZB7ZzMWhCyop9+aiua0Cs2Ro00R8MXCXTJNDXC2EB3mqf2SbkqrYa6ZjD44J1XU+pjy8iB8HZV04ke+lyGGn5DJoQuVvjx4ye49W2f1QPhPjr/8tdjrxnW9+rjUla0S8qEHOH63Oy5xcz24Ts4/NNhxGOYkSYpEycCUg+Ay7P1gxe/92NTw5DVJAPSqrqsHQPJw6JnJn0CVt/SM97RFfpCVhEDrHvoByEr5cH/nC2zu59cUkqCnzidUDJUg+k/Wzv4ZG7STeCJom6NNfenFLszSlT5WulNBc1L88lUhk06VQMmpAiWSa+qEYwypw4aJLcbtBEJBrZJtIXgcilgybxIUBdjU5nFbGj4OyZJtHQ/ZYO5PMkgMhtFOqJjG01sa7bz+QYk7RWv57SW20X785lE2qyi6+3ZmGAOV1/EdYH8Nbn1C6tRV8TKVtzXop+L/pyM0t0ETkzyaLIKalGqLkc3pV6ohGRA+09LIdxfkochsYFoay6Ds8s2gckTW7ekJuou2Rv09u40WrzzVbdg+iMfhEI9vOy58gcLtMkqKEYfqhCKitzdCoGTUg1Ulq0O8fWzwReAYBvMJw206Q4E6hvXYKrV5huBs90NXJVWzJ1mvnwhGAdMKmvAfxCG/82nDho0rM2R21ZnovIjRTqRRArC3WDx3HuEjQp2Nfs8OCYINWEWjKCNxxiE2rqXvtzy7A7uxRDzEbJz8jBcAtt/D2el6LLnS7dk6s+PxGRc1p/UM97nBVhzH8EJwI+gfYdlAMxm0348xyd/frumnRkhYxovuqfqDvUlNsWUFnL50mJTDFnWIw9R+ZY/EJ0rznV1yRfnbdR52HQhLA58yjyy2rQ27u4MctEykQ4mx5RgKevTh0tNj7YNTE0Tr+RrDvICQdyPdKrxxpQkPJcOGzUHY8b5Zx/zy0awftWF8AHNdiUfpTN4IncQV217f/yRTk91Crv8b1dPGgS3q9VeS4h5RYn9wtX+8v2sSwQdS/rBMXpwcZqbKMRq8sLa/33OCgmEN4eZpTX1OPw0Ur7jY2ITslGYwHC5GCdyc4sk9Ym9QnH9IGRql/mu1lGFZKcHUClXqRH1OVyd6vehgiIxEvri3HDG2uxL7dM/T88Y3CUvUfnWHo2NoNnea7OxaAJ2VLMp8TUOm9pLmE221LT2irRNalPmNquO1iI2vqG7h4dUZfZmnlU1RsXcSF+CJOGaEc2OX9pLuHXU2e/ATgnsR419Q148se99h4VEXW1o1IKyIJK+CIfQbh6fCJigv3gFpO08rNL0KgJKUNg7UFH1J2spTCGembqA1FukmliDWLm77P9PXp6mNE7IsBWV52InNOGdB00GeqpPz8hgkGTtlhX86/N8wJCpVSoBchYa+9hkbswSo1Xhw/CI9/txhKjn9jUASzN1UpIY18TWWDKcr6dh0ETN7cl4yje/uWQ2p8cWaMPBunUc6cU2n5fkwFRgejp74WKmno1yUzkCvbnluL8F1bir1/sUF+nSGku0TTTxJlJlozRDP7OUboB9GebDmP7YSMzjohcU2Ga2hxsiFTN3++e2R8ur0ck4B0IWBpsP7/VaX11psmOIyXIL2seUCHqKvLBe09OKXzMDQgpS9UHo9ykWbJMEEoWe10VkLHGdrh/lC7hI41oicj5lFfXYVeWDnrG1Bx0r7KDJ2hQjC6PuiurBBajETdLdFG3kcwmAHn+ulxmdJAv/jVvKP41T5fqoiaMcux9vAog1UMPFbAyR2dh0MSNSfTx9x9tUSmX0tiwj0+T8lzOytq7oY2gidTmnNBbZ5usTi3o7pERdYktGcWwNCmrfebAKKC6FMjb4xqZJkKtbAKSzTk4d7he8fTxBmPFKxG5pPz0XWp70BKF3581QAVOXJ4EicPb7msSEehjm7xYuZ/ZJtQ9tmbqzwZnRpbBVF+tMz9DnLhP2on+PfaepvdTl9gO94/qobb7mGlC5JSknLHMf4T38IFPoZG9zvJcbeob2QNeHiaUVtWhKFw34mbQhLo7aHLA3Mu2OPSq8UnqnJhaMBaZ9vfWfZpYoqvzMGjixp7+aZ+qCSgnDH8/bwhQcsR1giYtVmhaTTRKdK0+wKAJOTCJgkjjsw44WKBvd9GoePz8h6m4aFQcsH+RTp+WrLFAF6j3ac0gK0zD9EGRancbM02IXJZMZvyyYb3arwvuhSvH6Q8CbiGsSUmgFib31ecwv/AchrqJ9f/a04Ny9IHIQbocrrvoYw2aLLYd6mdkmkgGDhE5H+tnp5SeNUCFLEKQBQsD7D0sh+TtaUafCB0o3u1hZPzm7rTvoMh95kOM8lxbauNtQTw6Tnkusy5hxmbwnceNznqpqY3pRXh5mU6z//e8oegZ4A2UGDU9g/WbkksGTYxMk/UHi1jnjxzXxzcCjw8ADh1/JU9avj7xHxDdA0lhATDV1wKL/q6vTLkCLsEWNDmAYXEhanfHkWLUsTcRkUtam1YIvzLdBH7y+HEqU9RthFkzTYxSSE2MSw6zPT9E3cFaCnMMjEmyaDcridF7qt5mbQEqCm3lfq0TEhLgJSLnctD47DQmIKdx/sDb376DcmCDjSzXzaVGCeiqYjaDp64nC7qrjgImD6wu0ee//SL1/7/Uhp46aBJRJ33oLGquhDoHgyZu6oEvtqtadxeOjMNZQ6L1QVfINIkerrcSlS42gkBNSHRa0vmq6xpUQ3gih9PQAOz9AagpBT68ts3XcVurpXqF6cakWPuyCi6oOtyT74JLMMpzoSgNvcMDEODtgaraBqTmdSwbh4icy7bDR9HLlK32e8a5QS+TptopzyXG9uqptvLex74m1NUsFovKNPFEHXrn/qgPDjoXbiUwGoiUHi4W4MBSdSgh1B8+nmb1WUJ6vhCRczlo1Pof7HG4MYOO2mUtDbottxYIiNAHj+qeuERdXZoL4f2xO0/3XmamyTGE9gE8fOBTV6Y+Q0k7Ai7s6BwMmrih0qpabD9covbvm2OcJEgPhHKdyoXgBDit4DggcZL+cLP9k1ZXm0wmTB+oy/v8tNNYXULkSIrTgVojGFCeC3x+2zEnNA7m6xP/5PAAnca66ll95Zn3Az4ushqjZ2N5LjMsGBKrVzqxRBeRa9qRWYR4U17zv393oSZoAWRvAyRzsAnp6zIwWr+vr2O2CXWxzKJKFFfW4gzPHfCsKgT8w4FkI/PCnbQo0eVhNtkmbliii8j5HDIWnCXVp+sDEexn0tFm8NYSQChi0IS62OENalMdPhiF5Tpo0jvCWCRKrXl6A7Ej1O4knwMoqaqzZQvTqWHQxA3tzdH17aKCfBqbKBXs11tZPeCny984rWEX6+22j9q8esYg3ePhp125atKZyKHk6ubH6GFkgKUt00HNNuSX1aCsuk71KpWVjyjOAMpyALMXMPwyuAwJ5Jo9AWlCW3oEw+KNoEkmU8OJXFHu4TT4mOrQIO9lzlwy9GSE9wd8Q4DaCiB7a6urx/YKVds1DJpQF7N+2L4qYJ0+MOQCwMMTbsfaDF4yTYzPDdYSXXuzGTQhctZMk4jKA/pA5GD7DsjBDYrR73eHCitQF2QsrmWmCXW1jF/U5kigriQT39MP/t5ueA5yIuLHqs1ZgTogvGK/9GyiU8WgiRvaY5zgD4jWqwaa1c62NiB1ZoMv0BOsMtmQt6fV1af1DYevlxmHj1ZiVxY/7JCDsTbXSz7DyPqyAEc2H7M0V2ywH3y9PIDDG/UVUYMBTyMg6gpkksa6sqkwDcPimGlC5KrKJRBcpPuSNQQnAmYPuBVpsp0wXu+nr2l19bhkHTRhXxPqavJ/rA9qcFqtnrjAUGNRkrtJmgR4eOuFKcYis5QEvcDsww0ZqK5jj0QiZyGLzXR5Swv8j+7VByOZaXIsYT181GJbiRkfhq7YwUwT6lL1dUDmerW700sHNVmaqwMSxqnNcOj3tpUMmnQKBk3c0J5sXZrLWuJByTdqZ4f1gdMLCAP6TNf7u75sdbWftwcm99X1OH/axRJd5KCZJlJfN26U3j+sTxraawKvSnOJI5v0Ntb4PlfSpBn8UCNosjOrhM3giVyMlH/obdI91jwj3KyfiVXiBL1NX91u0GRXdglKqpqX7yLq7KDJVPNm+DZUAEHxjcE8dyMNoq1/k6lL1OaSMfGIDPRBRmEl3v3FKPFDRE5TmmuAfzlM1cWAyewai0a72CyjB+6KAuMzJzNNqCvl7gBqygCfIKyv0K+9fgyaHF+8Dpr0LNuHAFRi/cEiVNZwYcepYtDEDVnr7/Y3UsublecKMxqQOrtE44NdvvFztTBzsNHXhEETctigyWAgbozeN1ZatHTQCJr0CvdvETQZCZdjbQZfeEA1g+/h46mawT/5416W2SNysZJAfYygCcLddCIjcaLepv9iKwdkFRXki15h/urwhoNF9hkfuTz5kC3ZTOd5rNIHhl6os6Dcla1Elw6aSImQu2fqoO6zi/epfpFEHfHCCy+gV69e8PX1xfjx47F27dp2b7tgwQLVj7PpRb6PTt4hozTXpKDcxubJXnxOj+fK8Ylqu/CwUcmAmSbUlayZ1vFjsTFTz132i3SRXq1dKShGVSoxWRowLTATNfUN2HCInxVOlRuf/bonmVy0ludqlmniakGTnr30tuhgm1efOTBK9YHYmlmM7OKq7h0bUXuk6W++NVV8EBA/plkjtPbKc/UKM5rAW8t4uXLQpCgNZrMJ843JiheXpuIfXxslzYjI6e04UsKgibyHSzmg8lwVKG4v24R9TairrErNh1ddGWZ4GOcVQy+CW7M2g09brs/VJNtkdDwSQ/1xtKIWq1ML7Ds+cgoffPAB5s+fjwcffBAbN25ESkoKZs2ahdxcYwK/DUFBQcjKyrJdDh3iZPWpsH52SvHO0gdYmqtDBkYHYWRiCA426GodOJrealEHUWf3M8kLHYEtGUfhaTZh6kDjtUcd6msyK1hnwW5KZ9DkVDFo4mbySqtRVFELs6lJXUD5D88aNHGVCYqQXsdMHY0I9MEIox7xot3MNiEHIZNj9TWAdw/dzyRmBGDyAEqzgOLDrW6ell/RWJ5LvlfSzD18dMDF1fQ0ynMV6AnEGycn4+ELh6ng5xsrD+L77caHHyJy+pJAvc3G37O7lsyQVa/W4PfBFe02g1+bxola6hqLdudipnmD6mmiFlTFpMCtRacAfqFATakt+9fTw4wxST3VvnVBGtGxPPnkk7j55ptxww03YPDgwXjppZfg7++P119/vd3vkeyS6Oho2yUqKqpbx+xqDhmfnfqaMvWBCBf8zNRFrhiXiCOWcDTABNRVAmXtB/uITprMTRqZJt8e1T1NZw6OQmQgM8I6xCgnOrJBLyrdnHHUzgNyfgyauGlpLlmZrhpHi7IcXTNQanpaMzScXU+jabRMNte2nUkyY5A+6fxpJ4Mm5GBN4CMG6jIYUkdbmrq3kW1SVVuP1Nwyta8CoNbSXNHDAA8vuBxrbwPJxDFWecrJ+6/P0H2Y/vTpNmaNEbnAwo6D2fmINxmNC8PdtKeJsPZmW/YYUN18QnZ8cpgtwMRaxdQVWelLdudirsfqxgbwskLBnck5We+pzUp0iYExOmt/N4MmdBw1NTXYsGEDZsyYYTtmNpvV16tXt+5fZVVWVoakpCQkJCTg/PPPx44dO9q9bXV1NUpKSppdqO1Mk9gaoxqFKy406yJzh8eq8nBZFr1wg31NqEtIadqSTFg8fPDiPr3I+fJxujwcdUCv09UmtngTvFGrgiYsZX5qGDRxM9aVUAPaKs0Vkgh4GnUqnZ1/mF6tL4oz2ryJRKzFytQClFfXdefoiNqWv68xaGJl7Wuy5N9A3h7bYZkskzqV4T28VXkIW9DE2jzeFTNNfIKB+urGvi+AKtM1NC5Ilcd4YUnbPYyIyDks3ZOLZFO2/sKvJxCggwNuaeLtQEiSPof58cFmVyWE+iE6yBe19RZsymDaPXWuXVmlqCzOw+nmbfrAsIvtPSTHKtGVurhZyRqxO5uT03Rs+fn5qK+vb5UpIl9nZxv/77UwYMAAlYXyxRdf4J133kFDQwMmTZqEzEwjS6KFhx9+GMHBwbaLBFqoucyiSgkNI7gsVR9g0KTD/Lw9MG9kHDItRpkk9jWhrrDqWbVJjT0XOVWeiAvxw+l9w+09Kuch72kBkTDXV2Gs534UlNcY73t0shg0cTN7jUyTfk2bwFsnal2pDIasiJPJhmP0NekX2UNNNtfUNWD5vrzuHR9RWyTrSwTFNh6bcBsQEAHk7QJengrs+gqoKkHJmnfxpNeLeMrvDZga6l27Cbz1bzpmuN7PMmqsA/D2NOO+2foDz2ebDjMASuTEluzJbdLPxI2zTIRPD+C85/T++teanctIuRZrXxNp1k3Umb7YfBhzPNbCy1QPRA93ndK9ndUMXjJ/K4826w+Zll+uMoCJOtPEiRNx7bXXYsSIEZgyZQo+/fRTRERE4L///W+bt7/vvvtQXFxsu2RktL1w0F3V1Tcgu6QKSaYceNSWAWZP3QieTqghfIYlUu2X53CxGnWyvL3Anm/V7l+zp6jtDaf1Uv1M6QTmTHrr5+68QD3Pu4kluk4JgyZuZp9RzkcCBi7bBL5lia52giYy6TC5n45ab84o7s6REbWt3AjeSZDEKmIAcOtKIHkKUFsBfHAN8Hg/TN91Py70WIHTS78BUhcBWVtcO2giYkforfVnNUzqE4be4QEoq67D55tb934hIsdXW9+A5Xvz0dvk5v1MmpIPPYkTGxtQNzHWCJp8ty2bk7XUaYora/HumnSc57FKH2CWSaOQBP2+ZGkA0pbZeiSGBnijwQLsy9GfsYjaEh4eDg8PD+TkNC8LLV9Lr5KO8PLywsiRI7F/f9uT1T4+PqpxfNMLNZKASX2DBbM8jYVm8v+rp7e9h+VUJLuuOFhXRCje8ZO9h0OuZs1/1CY9YipWl4arrOqrJxhzetRxMm8kgXfzdrXdnM6gyalg0MSNSC27/U17IFgZDQ0RNQQuxdqf5Rj1NmWiVaQX6vqmRHZVbtTxD2iRghoYBVz9KTDuFpVSjroqpCEOuxuMtPv1b+i+RF7+rr06O8YImhxpzDSxBkBl5ZN455d01u0kckLrDhaitLoOg72NMiVc3a4lTdLb9OY172cNiUKwn5fqVffAF9v5vked4t01hxBQnYtx5t36wJAL7T0kxyzRZfQ1kfMPa7bJLpboomPw9vbG6NGjsWjRItsxKbclX0tGSUdIea9t27YhJiamC0fqug4bJWpme23UBwaeY98BOangkReobfTRjUB5gb2HQ66ivg7Y+YXafaTgDLX97fR+jX2YqeOMTJP4il3ogQpsZinfU8KgiZs1WC2tqoNktyUbwQLUlDc2mO41GS7FVp6r/aBJrzD9PBwqqOiuURGdWKaJlYcnMOcx4LqvkHHJd5hW9Shet8zV1+39Tm9jUgCzh+sHTXK26xOrJi4eHQ8fTzN2ZZXgi81GeR8ichrSeFoM8zFW4TJooiUaQZNDxsp/Q2SgL56/cqQ6p/twfSYW7my+epnoRB0+WonXV6SpBvBmWaAhq7Alu4Jal+hKXdK6r0kWm8HTsc2fPx+vvPIK3nzzTezatQu33XYbysvLccMNN6jrpRSXlNiy+sc//oGFCxfiwIED2LhxI66++mocOnQIN910kx1/Cud+j+uJEqQ0GL0RB8yx95Cc0ohhw7GjIQlmNKB21zf2Hg65ClkcVFGAGq9g/FDRT2WZXDIm3t6jck7Sq7pnMsyWeow078f2IyUqo59ODoMmbsSaZZIQ6t8Ysc1YCzTUAkHxjZkZblKeSySF+duCJlylSY4SNHlvRwXu+XCLKjfVSvIZWF0pkxgmlEaPb35drIs2gbcK7Q14B6pMG+QZq2ANIf7euH2aLjH418+3I6OQgVAiZ7J4dy6mmjchrmofYDLrIDABCeP081GUBpQYpcsMp/eLwLUT9bnb4l066ER0sp8RLv7PKuSXVeMqH6MU3PBL7T0sx9PrNHX+pf4eS3VW3MAYnWnCZvB0PJdddhkef/xxPPDAA6pPyebNm/H999/bmsOnp6cjK6vxfb6oqAg333wzBg0ahDlz5qCkpASrVq3C4MGD7fhTOHemyZnmzWqyH1HDGucK6IT0ieiBFZ4T1H7pps/tPRxyFdK3FcBqrwmohwcuHRMPLw9OV5+06KFqM8QrW/Vwts4F04njq9CN7M8zSnNFNCnNdXBFY5aJNA1ys/JcEkCSH1smpwvLa7pvbEQt1NTUAJU6dfKxFYX4ZGMmXll2oM3bbjiob5fUe2DzYKcr9zMR5iYTqS36mojfTO2D0Uk9VYkfKVdDRM4hvaACWXkFeMjrDX1gwm+AYK4uU3yDgCj9wQfpzbNNxOS+upzj+kNsCE8n78+fbUNWcRXmhGUjuSEd8PRlaa62+AY3ljNO/0VtBsfoTJOtmcUob2uxC1ETd9xxh8oWqa6uxpo1azB+fOMCqKVLl2LBggW2r5966inbbbOzs/HNN9+oniZ08pkmMzyMChsDmWVysqQs4dHEWWo/6MhyoJpZdm5v3WvA+1cBn94C7D+JXjeyeHn312r3zaPD1PaSMcx0PSVGb8hRAbr8+7bD7OF8shg0cSO2fiZR7QRNXDEtTVQVA5VtNz+SjJuYIF+1f5AlushO5EP2RU/o1RX1FhPKPfSqxddWpKGojWCedXJsTFLP5n+7rh40adYMvnlfE+HpYcZjFw9X+0v35qkPR0Tk+BbvzsE1Hj8i3pQPBCcCUxvLk1CTviaHmvc1EaPk/wGpFpRX3ub/F0THI4uGpKeQ+L/e2/TBgecCfiH2HZijSjAmuTPW2IImvcL81QKsL7ewPCiRo5LPBUNNRgWKZN0zgU5O8pCxSG2IgaelRvfWJPe1fxHwzXwd9Nj6AfDhdUBx5ondx5GNQMlh1Jj9sbJhqFoQJIub6RQYZY77eejsxR0Mmpw0Bk3cMWhizTSpqXDdfibCOwAIiNT7hW2v2BeJthJdbAZP9iF9OGpLdGmVCs8QfHfXVAyKCVIfwF9e3vy1K5NiMjkmJKsCvU7XV/gE6fJVrs6aadKiGbxV74gemNA7VC1Y+WzjCZ6wEZFdLN6Th2HmNP3FuJsBnyaLO6gxaJK6WK/GayI0wBu9I3R/to3pbPRIJ27pnlz1skqJ9kXgvs/0wZFX2XtYjitxQrNME7PZhKsn6DI/b68+xHK/RA4qt7AEsbI4o8kqbDo5k/qG4z/156n9hhVPM9vEXVUUAl/crvcHnaf7j9aUAd/8vtX56jEd+Flt1nmkoBreuGh0XBcN2I0Y73HRtRlqy0wTBw+avPDCC+jVqxd8fX1VCuratWvbva2kpErKX9OLfB91YtAk0piMkICJ6mcS53r9TKwiBuhti/4HTbEZPNlbemEFwkz6P7LAsBg18X/PzP7q6wUrDyKvtNp2W+ukWJ+IAPQM8NZNDHtPBSbfrctXuTprM/jsba2awVtdNEqX9flk42FOXpANz0UcU0VNHX45UIBeJt0fgA3g29DnTMDTDyhM1avxWhidqLNNNhxi0IRO3KLdetHGTZG7dHa29DlMnmLvYTl+pkn2Vr0ADcDFo+Ph42nGzqwSbExvO7udiOxHPg+Yiw/Bw2RBg1cPoIexsJJOSnxPf2wOmYW0hiiYKwuAtS/be0hkD6ueA0qz9AT9vP/qi9kL2PsdsPf7jt9P5jq1WVyhF4BO7hvRVSN2H+G616tfVS4CUKnOT+obOC9yMrp8hu2DDz7A/Pnz8eCDD2Ljxo1ISUnBrFmzkJvbfsPKoKAg1QTNepFannRqSqpqkWtMvPaxBk3y9+qt1Mp2tX4mVpFGo7zcne3eJMkWNGGmCdmHBOzCYDQQDdD16acPikRKQggqa+vxn6WpttuuNybFVJaJtd79tV8Ap8+HWwjrC3j3AOoqgYJ9bd5k9rAY+Hl5IC2/nJMXpPBcxHFtPHQUNXX1SDbn6APukDF3onwCgYHn6P0tH7S6ekyvns3+fyDqKGkOumxPntqfUr5QH0y5HDB72Hdgjl7+NzAGaKizZeyH+Hvj3OGxav/rrSzRReRo8stqEN9wWH8R1sd15z660QWjE/FM3UX6i1XP24LI5EaObNLbSXcC3v5A5EBgwq362IY3O3YfssDRKHe5saE/+kf1QESgT1eN2H349QQCdPBpkHcuqmobkGr0uCYHC5o8+eSTuPnmm3HDDTdg8ODBeOmll+Dv74/XX3+93e+RFZ3R0dG2S1RUVFcP022yTKKCfBDk69W8ZJWcOLiqyEF6m7ur3ZskWctzFfI/erKPjMIKhJusQZMI2/vg78/S2SbvrDmE7OKqZk3gxySFwi1JNk308GOW6Orh44mzhuj/N37aZUzEklvjuYjj2plVrILGsgoKMLlu5uupkolssf0ToL622VXWILr0pRjz0E94fYVR6ozoONYfLERpdR0G+pciUBr6ihFX2ntYjk0mW219TXSJLjE+WZ+X7cvhpASRI/YzsWa0mo0V2HRqLhodj28sE5HREAFUFgJb/mfvIVF3yzcWMEYMbDw24mq9lYbwlR1YzCNzkhUFqDN5YYelFyb10QtIqfNKdJ3eU/et25bJEl0OFzSpqanBhg0bMGPGjMYHNJvV16tXt25maVVWVoakpCQkJCTg/PPPx44dO9q9bXV1NUpKSppdqLW92brOZP8o3WC6WdDElVd12jJNOhA0YXkucoDyXPBvPFGQJmjjkkPVStCL/rMK7/xyCFsydebEaGNlsVuy9jVpoxm81aQ+YWq7kSuv3R7PRRzbziMljaW5ghMAT64ua1PvabpPW0W+brrZ9KrwHkgOD1CL9fLLqvEagybUQatSC9T2jrANMFkagMRJrr2YqrPEjdbbnMZMdmsmv3WhGhE5jsNFlUi2nmuE8j2uM8QE++G0/tF4tX6OPrD6BaCh3t7Dou5SXQaUZLYurSvZJpFDdBuAXV8d/34ydLnk3aY+qIEXJhqf4akTGAHiEX66l9OOI/x86nBBk/z8fNTX17danSlfZ2cb/2m1MGDAALXy84svvsA777yDhoYGTJo0CZmZbTf0ffjhhxEcHGy7yOQGtbbbCJoMaBo0KUh1g6CJEfUuOazrNB+jPFdheQ2KK5uv3iTqDpLlFIrSZpkm1pXuD10wFHEhfmqF1P2fb0d1XQPCpPFvuH7duqXYEcfMNBEjjRr/WzOLUVff0F0jIwfEcxHHJifwvUzW0lzJ9h6O4/LwBIZdrPe3vNfsKmlE/fWdk/HZbybBbNIraq3ZiUTHovvgWHBGhVGai1kmHWMNLFkXoDXpGZldUoXSKn6eIHK0BWq2oImU+qVOcdmYBHxUPwXF6KHfD3d/Y+8hUXexlsmWuQv/FhUwhhll27Z9fPz7MUpzrazpoxI5JyQzaNLZmSZJ0KUJM4q4SPxkOFzX4IkTJ+Laa6/FiBEjMGXKFHz66aeIiIjAf//73zZvf99996G4uNh2ycjI6PYxO4M91kyTaCNoIqsAioyViK68osw3WDe6F7m72y3lEx3k2+x5IuoulTX1qtF7Y3mu5impkh324/wzcPu0PpjQOxRzhkXj0YuHq4CK27I1g9/a7oqmvhE9EOjrqXrCWIPGRB3Fc5HuUVVbr+rr9jJnu/75SGcYfpne7vkOqGzerynAx1MFiwdGB6mvN6Yzy46Orba+AZszjmKUaR+Cyg8CXv7AkAvsPSznYF1wVpim67FLopyfl60Oe2oe+yQSOZLd2SU81+gCMwdHITIsFG/XTW9sDE7uVZorXJcTb2aoETQ5uBwo11kObbFYLMjc9rPa39jQD0NigxDsb7QSoFNn/G7CqtLVNqtYSiGTQwVNwsPD4eHhgZyc5jXl5WupD94RXl5eGDlyJPbv39/m9T4+PqpZa9MLtX4z2pOjJw0HWoMmxZlAfQ3g4a3LYbgyW1+T9pvBD48PVtstGWwaTd3LGvGP9Gje06Qpf29P/GHWQLx/y0S8eNVoTB/k5r0VJAXYKwCorQDy9rR5E1l5PSIhRO1v4uShW+O5iOOShQoNFqC/V67rZ752VmlCqRtdXw3s/KLNm1j7m+gMAqL27c4qVQsLrvQxepkMPh/waZKRTu3rKVlxJqC6WNVib7pgQ7BEF5FjSTuShxiTruvPc43O4+lhxl0z+uPNulmogSeQuRZI15kD5OKsn8Gbluaykv6EUqJLyn4eXNHuXWRm5yK2Wi/kro4egz/PMebtqHNE6KBJQGkavFCHrKPMQne4oIm3tzdGjx6NRYsaay9LiQv5WlZxdoSU1Ni2bRtiYmK6cKSuLb+sRpWekoXp/SIDm6eTyxua2QMurQPN4FPU5KoFtbu/0ys4iw513/jIraUbvXQiza3Lc1E75D0rYWzjCpZ2jDJKdG1KZzDUnfFcxHFZa+v288zTB1hn/NjkRM7aEH7rB23eZFSSDhYz04SOZ/2hQviiGueYjN5OI66y95Cch5dvYyZ7GyW69uUyw5XIUVTX1aPBKEte7xvaupQQnZK5KbEIiYzHp3WT9YFVz9p7SNQd8vfqbfiAtq/vdZreHlrZ7l2kbloCs8mCHI9oLPjtXDaB74oFHr4hMNdXY6ApHQXlNSrLnxysPNf8+fPxyiuv4M0338SuXbtw2223oby8HDfccIO6XspfSFkLq3/84x9YuHAhDhw4gI0bN+Lqq6/GoUOHcNNNN3X1UF2WteRUr7AA+HkbAZJCN+hn0qoZfPuZJrIi/SzzevzmyJ+B9y4HnhkOfHQ9UHKk+8ZJbtvPRPS0FLdZnova0Xuq3h5Y2u5NRiZy8pA0nos4pp1Z8r5nQWzDEfc5JzlVwy7VK9zlQ2gb5yijE/Vk0PbDxfxgRMck2UizzOvgZ6kAQpKAJGOCgzomrHfzHpESAI7SQZNUZpoQOYzU3HIkWLLUvjmcizM6m4fZhEvGxOOV+nP0Aelrkt92Zja5YtCkjfJcwnpOcbD9oEnlgV/UtrBnSuePj/Riq7jRanecl17gkcWeh44XNLnsssvw+OOP44EHHlC1wTdv3ozvv//e1pA1PT0dWVn6PzFRVFSEm2++GYMGDcKcOXNQUlKCVatWYfBgY+KbTqqGp+hvnMgrBQfcZ1Vn1BC9zd5mqzvc0rD4YFzj8aPabwiIAkxmYMdnwGtnAbWs/UddJ6OwQq309LUYrzMGTTomeYrepi0H6uvavMnIBJ1pcrCgAmn5rC/uzngu4ph2HilBKErhWy9/nyad/UrHFhwHxI7U+2nLWl2dEOqH8B4+qK23qMAJUXuleyVoconHz40N4M0O1+rSSfqaNMk0YXkuIoezK6sEcz10Rp3JWoGCOtXw+BCkWuKwwjxGLYbBLy/Ye0jUleSzt3XBgFECqt2gSe4OoMIojdfiPCSkYJPa90nuWOY/nYR4+ZsExnvrc5UjRzm3eaK65ez4jjvuUCs0q6ursWbNGowfP9523dKlS7FgwQLb10899ZTtttnZ2fjmm29UHXE69UyTAUZz0GaZJtZVUq4sYhDg4QNUHW32waapoPJ0nO6xHQ0WE9ZMew+45WeVyobiDCCn/QwVolOVXliBMBj9TKTHkA97IXS4tr/8jdaUAkc2tnkTaSQ3pb8ud3bfp1vRIM0TyG3xXMSx1DdYsCurFEPMB/WBkARd8oaOL/mMdoMmJpMJY4y+JqtTG3stEDX15I97YS7OwCSzcY6bcoW9h+TEQZPUVuW55NyOmV5EjqFk/yrM8ViLBpn6mvAbew/HJUkDb1nU/lzlbH1g8/+AMqP0Krmeo4eAhlrA0w8Iim/7Nj0iGkt3HVrVeFzK4H98I3LXfIAhDTpbJW6YsRiSOl+cDpoMg87+YtDkxHFJkRvYnd2kCXzmBuCNOcCBn90n08TTG4geqveP6Gh2KxvfVJtlDcPxS1EgEDNcX0R+242miTrD4aJKhJqa9DORM07qWF8T68Sh9f2sDf88fyj8vDzwy4FCvL8uo/vGR0THdLCgXDWhnu25QR/oc6a9h+ScQZM2MminDNDB4kW7c7t7ZOQE3l1zCM8t3o8LPZarWuLodTrQM8new3I+1s9QTRZkRQT6INDXE7JGgxmuRA7AYsHEA7rHxsH48xt7nVKnCvT1Qu/wAKyxDERJ6DCgrgpY96q9h0VdRSq4WLNMjpWl2rKviZSVfXMusP0TRHx/G4JMFagy+cAnzph3o85nlOeKqctEEMpYnuskMGji4pbuycW2w8VqHnZ4fDCw+nn9plVXqSPD0W7yBhU7qv2gSUMDsPk9tfu/+jOxJdNoGh0xUG/zdnfbMMn95JVVI8zEfian1Ndkvy6t15bEMH/cPbOf2v/f2kPdNTIi6kBpLhMaMMvTyBQbeK69h+Q8EicAZi+dDVtkZOo0MX1gpNpuzjiK3FJ+OKJGZdV1ePT7Pepv76ZAowH8yKvtPSznzjSRksdG8FIyvQbH6IzhbZksj0dkd0UHMbB6G2osHqic/Ed7j8blS3RJqdWVEZfrA1s/sPeQqKtYqzxY59ja02ty42vhyGbgzfN0loqaiG5Q29ygYYCHZ9eO150FhOmG8FKJ1Zz6/+ydB3hc1Zn+3ztNvffeXCTLvWJjwFQbUxNCaAmBsBBIWRLYFHazpJAs/5CQJQnZEJIQIIQeejHYphiwcS+yLcnqvfc2RTPzf845985ItsqMNKM75fs9j55zZjQaH9uamXPP973vS0qTGUBFkwBmyDSK/3r1OJ/fuiEPmXHhQJPc0XnpQ8DdR8SLKBjIkN/Qmyaw8ekoBYbaYdOF4UPbChyo7YHFanOGWnXIIVcE4WFGrTb0DJuRKPU7lSaE6yzYDEhaoGHvxK9tmY3zxL9rcy8dHhKEr3CiuR/LpGok2LoAQ5RTPUFMjyHC4VGM6o+EV7RpQDSBAEiODhWNMgA+JLUJMYZnPq9D34gFN8WeRIyxSViCFl2h9rL8k3hxCAFT3zi/9pWyPd6h+h61VkYQhExfzQE+ltpzkJcvmqgI77AkQ+w73hmRHT56aoChWdqENuwH6vd6YHWER1Guu5UztslYeBmQugQY7gIe3wR0VXA7r8HrX8OwPYQ/JCzvrDlYcJCTuYYPy6UqNJPSxG2oaBLAPLWnFk29I8iMC8N/bF4ADHU6KrtYdj0QlYqgQQlNbTkK2E7zGK4VckEp+yxERYTzLjzWnUlKE8LbdA+ZeXMiFU1mSEwmsORLYv7pbyd9WHpsqOPfmzzGCcI3ONnSj0u04jAD8y8GdOLiiXARpcj01neBh/KABzOBP64BTCKA+sLCFD7uKKWiCSEYMVvx10+YlZQd94S+Ke5c82+iCEe4j555uWecca2wIot1WwOH62XlOkEQqtFdJRpGm0LmIdxA3ezeRGnW2Nc66mw+bZL3eTOBOYQ8sVnYOc22+EJ4Dtagw1QjY6yfJoVlFV77lJzZagciU4CvvYFXe/LwI8vtOKWdj6Rzvj4nyw5qWOGK5a5pmkhpMgOoaBIEAfBfOStHbBKUijD7EAsVH2pBA/s76yMAyxDQcVpGSe0nfJByN2JDgVDefFLRCSTJwVXM+sJCby6Ed6y5GBl62fc6PEiUX55k4/fEWPrWpKqwmDA9QvXi466VuisIwmfsuS7SyOrXwsvUXo7/wezMpNO28V2Vjoy2C4uERdenFZ1ULCY4bx5tRuegGVdGVyK+twTQhVIo8mzJWifGivcdd63IFkqTU+0DGDBa1FoZQRDsmLblGB9HEorVXkrAsyg9GhoJaOs3YThZViA07p/Zk42agFfvAuxWwGpyZmIQ6sPUIuYBQB/uDHqfioQC4IbngKXXATe/wW+/dLARb9g24NPzXxLfJ7yLnFuXKXWgpXcE9gnyEInJoaJJANMiW9FkxIaJOxRrrukqwoEaGp2+XMyfvxF44ztCccLeMJQP4dxzcM58kSnxaUWH6PoPYxc+dnEQQRAehh1eMNJ0Y4LgCfdggY5M+step/v+POFDmMd4Wox4H6TwM4JQn/Z+I+yD7VigaRJ3UAi8+6QtBb57HLj7GPDjDuDyR8T9ux8FRs0oTo9GWkwoRixW7KmiDk0CeLukhY/3RsoH/Cu+CkTSvmNWFMlZTGVvOXJNWBh8VnwYv3m0gXJNCEJN4vpL+RieLZ8DEF6DNekWyZlOFfoFsyuafPwrYaF+WpMr4QMoZ4ppy1zPImHZJl98HEguRFlrP4419kGnkXDV8nSvLpWQic3mQ6bUiSGzFf3GUbVX5FdQ0SSAae4bGWdNE9RFk7GHMsxf89DTQN1uIadnHou6MG7htXG+uHg82tiHftOos3p+ujqFIDxA54BQmiRrqWgyK9beLsaSlwDLxEURdnjIaO0n1RhBqM2Jln6s0cifq8nFQHi82kvyT2IyRPeYzgAsvxGISgMGmoGSF3mxWFGb7ChtU3ulhMr0DVvwWWUn7zLM7t4t7lxPKpNZM+9iQKMXzVWdTrXriiyhNjlMuSYEoRr2gTbEWbths0vIKBSe/oR3UVw7PhrKFXcwpxM5b81l2M98KjeCLPmyGGuoaOJ7eSYzO1P8vw+r+HjxohQkRJI175wQI4omyVIvQmAmiy43oaJJgGK12dHWLw4P05nShLU7OYom0wQ2BSob7wFu/1Bc4DCqPwRqPxXz7HX80IGpcvITI/i/3+7KLqdFFxVNCC/QKdtzxdvlTkQqmsyMvPOAmCzA2Ce6PScgVS6akNKEIHzDmmudRu4gzNmg9nICA5YJs/5bYr7nj3zfd2GRyDX5oKydpPhBzvbSNoza7Phm9G5ITJmZvwmIz1d7Wf5PaDSQf56Yj9l/rMiWc01YRiJBEKrQWSnyNGqRioXZQZTlqiIbCoRrx+vNMcK+ydQ/rqDski3Xa98UtlyLrwG2/D9xP1OdDHZ4adWEWzQfGp8Z7Aan2gbw5rFmPv/2BfM8vTJiMlhzGosqYP9tUhdqO2VreMIlqGgSwIexFqsdWo2E5KhQkcsx0g1oDUDKYgQlGo0oGBV/Qdyu+tB5gcMkgzKbForOzNePNI0pmoyRhxKEh4sm0TalaCI2msQMXtvLbxLzw89MqTRRbAsJglCPqo5BrNXIwclUNPEczG6JKWfbT3JLjPX5CQg3aHmx+ERzv9qrI1Tk3ZIWaGHFlfYPxB0rv6b2kgIrX4hR9rbjruVyGHxJE9lzEYTaRZPGkPkI0WnVXk5QsCYvnp8/VXebYEpe5r5F19HnxbkLayS89NdARILz7KpObnYl1GO42xkCn7XW7R//3c4K3su9pTgVxelBlrGsJpI0xqKrA+VtsssJ4RJUNAlQFMlVSlQI/+ByqEzYhw7rRgxmCs4XY/NhoPoj9i7ilH4C+PKaTD5uP9mG3ki5C69dPtwhCI9nmtgRMSrbN5DSZOYwaxoGe01PEAhPmSYE4Tu0t7ehSKoXN6ho4jnCYoHFXxTzA39HqF6LjfNEMX5nabu6ayNUg4WRf1LRiWu1HyPS3AGEJzoP+onZoyhNWo87bGjyEyP52DFgwhCz+yUIQrUQeGNCkdpLCRoiQ3RYmikOw2tCi9wvmhx7QYxMOcsKJmObW8miS30qdwgVUPIixyG8q/SNWHgDB+Pui+Z7aYHEpMj/XxlSJ8pbqWjiDlQ0CVCUg8E0Rwj87LwHA4rodDmrRLaqmH+J8ASXKUyN5rJ6ZmPwerPwJEZ3FWAh7z/C80qTKIxAa7eIO0hpMnPYa1gJhN/x0zO+TZkmBOE7xHcfhkaywxSTB0SRZYZHWXWrGE+8Aoz04KJFwqLrlcONGLW66StOBATMnm2xrQw/1z/pzDJhOTiE57zCJS1gNQGDreKucD3iwvV8Xtc1rPICCSI4CRuoFWPmErWXEpS5JnuMeeIOpXl3OnrqgLrPzmhoRc7ZYmzY6/G1Em5S/q4YF17q9o9+Xt0FG3MHTYxAUVq059dGTA0pTWYMFU0CXGmiHBQGfQj86TAvZ4U1/3bGt29YK95U/nZkGPawOMBuo1wTwuOwDsQESbZuMEQCernIScyMi34iDi7K33bmFZ2uNCF7LoJQPZB6gfkkn2tIZeJ5MlcDycXAqBF48gpckdyO+AgDP7h9W+7wI4KLD45U4M+G/4UBo0Jhcvb31F5SYKHVAbFZYs7skGVyEoR/eF0XeYcThBrEWdr4mJK1QO2lBGWuyb/a08QdzDLU5MIhbcmLYsw7B4jJcN6fuca95yG8w6hZKE0YC9wvmuyp6uLjhnmygoiYW+R9CiuasEwTo8Wq9or8BiqaBLjShIfAWy1Ay1HxDSqaCBZcIsa4XGDehWd8+/KlaYgO1aG+ZwRNBsWiSxzyKFS0DeCPH1Y6cikIYib2XAmQfeZJZTJ7WAbRqlvE/MP/GfctpYDcNWSmTQJBqEhN1xAWSg18rs90P0SScMG3eOtDQFg80FaCsGeuxLfWiI6+Rz+ohI21+RFBA7OGKqp+AklSH0wx+cAXHxc5YIRnYdcTjO4ax115iaJoUktKE4KYc7p7exELccCemUuB03PJqpw4GLQaHB8IhyUyQzSfMlv0qWBBF0dla66l14//XnQaEJPl2vMQ3qN+N2DqF3biMzhT/Kyyk49ny0U1Qh2lSa5WKH4q2wfVXpHfQLvmAKWlb4zSpL0UGB0BQqKBBNo0cAouBL70d+CmfwGaM4Phwg06/PTKYj7f2S2/sbedcHy/sn0A1/55D379Xjm2PLILH5aTVzjhHlabHd1DJiRKStGE8kw8wka5g7ZuNzDY4bg7NlyPEJ34yGvvp0InQagF625SiiZIKlR7OYEJ8//+1j6hODEP4ibDx4gK1aGifRAfn3K+LxKBz+eHS3CL9A6fGy79BWAQB/mEl4om45Qm4XwkpQlBzD2NtRV8HEIYwqPi1V5OUMHy1FbmxPJ5c2Sxa7kmzYeArgpAFwYUXTGxitaV5yG8R8V2MS7Y7HbzRXu/ke9BWV/Petm+jVCnaJKlEYofyjVxHSqaBChNvWOUJoo1V/oK6i5TYO/YLCw1cfIi0hdWZOCKZekotQkpm63tpKNg8tW/7UPvsAV6rcTVAnc8fYAfBBGEq/QMm3mVP4GKJp6XnqYuFdkmFe877pYkSbwfsn25XFQmCGLuaWzrQLZGPrhPpnBWrxGZBGz4Dp+GHnkKVy4RnzF7a7pVXhgxZ9isSNh1H0IlCxqilkNauFXtFQVV0SRXtueqoesDgphzOpqq+NijTxHX/YQqFl0HRgvEHY0Hpv4BRWVSuBUInSDvQrHomu55CO9R/7kY885z+0d3y9ZcxenRiA2nTDVViBUZznG2LhhgoVwTN6AT9AClRc40SWc+/pRnMiPYIesvrlqM1lBhzzXceAzP76vHFX/4jNufFSRF4JMfXMDDzixWOx7efkrtJRN+hGLrlmGQL6bJnstzKOF0p+SwOpnUaDkMXrYvJAhi7jG1lPJx2JBA73vepvgLwqarvxGb9cKm9USznKNFBDZ2O3pf/BaWD++Bya4DNv+SDg5VU5qQPRdBzDVD7eK1aAyXczUIVcLg3+zOcBY7mAXXRDAr+eP/mtia64yiyf7Jn4fwHpYRp91/1toZW3MpxTRCBcITuJJLAzvSpC5SmrgBFU0CEPOoDR3ygWxabKjT+5GKJm4TE67HNZsv4vNIcyf+3yu7MWKx4ux5CXjhG+uRGhOK/7pMdMq+ebQZx5voMIJwjc4BMx/T9bKfJClNPF80qfwAsDgLJIrSpLGHDjAIQi30XWV8HI6lYFavow8FVn6VT1c1/oMr8Ng+xU4HDoFPxfuILXsOVruEp9J/jKzFG9VeUdAqTVr7jRgxU5YaQcwl1h5hAyrFZKq9lKBkaWYswg1a7BnOhF2jZ1UsoLt64gdXfQAMd4pr4YILJn4McxHgz9MB9NZ5de3EBDQfAWwWIDLFoVhwFbbnVJQmSjGNUAHWOBMn/u9ypTacIqWJy1DRJABp6zfyArxBp0FCiE1kmjDSl6u9NL/k8jUL0K5N5fO14S34z62FePrr65AYGcLvK06PwZXL0vn8z7sm2QwQxCRKkxSN/IEVTp0XHiNtORCVBliGgNpPHXfnJYquz5pOKpoQhBqwC6eYwUo+15I119yw7k7eWRbRfhBXaPehZ9iCZlLbBTy9ZR/z8V/Wc3H2FV9XezmBT1yeGNnBoHnIkaUWHarj8/pu2ncQxFyiG2zmY2iiewe8hGdg51BrcuNhggG1EUtlB4D3Jn6wojJZ/CVAK94zJ2wCSZOfhyy65p7GfU7Fj5uqVaa2bOod4bb2a/MoX0hVkhfxoUiq4w0dplFq6HAFKpoEaNFEsaKROsoBuxUIjQWiZXkk4bZNV3yeKDj98ZJI3HFuAbSa8R8WN60TwUr7ySuccLNokqihTBOPwzZz8y8W89pdjrvzEiP5WN0pq3sIgphTuofMyLXW83lk9hK1lxMcRKcDG7/Lpz8OeQ4hMJMqNgjoqRKHSiPJy3hzD+FlwmLFtRajp85x/ZCXKNQmtRQGTxBzRr/RgjhLG5/HpQmbbWLuUc5H/tEtDmpR/s6ZD2KdvtUfOfNMpoJyTdSjQS6aZK1z+0cVlcmKrDiEGyYpihFzQ6q49lqsa+AvvaYeynl1BSqaBCAdA+IwNjkqBGg77nyBkJfxjNHFCiWJfkQOrz2NJZkxvJDCKrYtFDJNuPE6TbAKj09EJqu7oEBDsSNsOea4Szm8oFBWglCHQ/W9WKBp5HN92mK1lxM8bPh33jiTYmvHF7Wf4AQVTQIau82G2D6hMp+39Gy1lxPkuSZy0YT2HQQxZ1S2DyJdEge14UmkNFGLS4pTccuGXOywreS3rbW70dzaMv5BnRXAYBugDQEyp8nKGJtrQswd7HS9Ye/M80yq5DyTeWTN5StFkyVa0cDWQEUTl6CiSQCi5JkksaJJa8m4FwgxQyLkA+3B9gm/zarmC1Oi+PxIfe9crozw46IJ6/iNMzWJOxLJ39+jMO9bBgutk/37laJJ77AFPUMiU4YgiLnj42MVSJNkRWbSQrWXEzwYwoE1/8anl2r24XizrHAkApKSsjLEoZ/nmaxaS0UTNYsm85OFwrWECpUEMWdUtg04iibktKEu/7m1CDnzilFuy4QWVjzx5OMYtdqcD1AcAdhhPLPgmorM1WJsPQaMivMuYg5gn2ksS4ZlyjALbDew2ezYIytNzp5HVuSqI58JZ9ma+DkU5by6BhVNAriDnWdutMpKkxTq6JwVkbJ1EvvAmITl2UKWf7iBiibE9LQPmJAntUIDGxAaA0SJ3BzCg56dGh0w0g30ic72MIMW6TFiQ04WXQQxt7CL5LZyIe83RaSL9z1i7lh0FR/Wa06ivlG8JxKBScmBT/jYHpqL0HDR0EPMAYnzxXjsBcBq4dM1sn/73ppunulEEIT36epoQahkgQ2SsKgkVM02efrraxG59Ap+e/nQbrxyWG4YZNTIRZO886Z/MhZAzjJAreZxTgLEHFlzsXzk6QpbYxgwWvC7nRXcmjfcoMWyTNnCklCPyBRuCc/OnxZKDWjoJqWJK1DRJICzEpIiDUCbojShook3lSaM5Vnig4CUJqcFuz17HTDSo/ZKfI72ASMWSPLBVVIh2ed5GrapSypydiTJ5CUJtUl1B1llEMRcsq+2GwvNJ/lcn3uW2ssJPhIKYEtaBL1kxbLhz3Gwjj6XA7U42V97kM8lJTSXmBtWf13kmrQcAT7+lePagB0asoY2sgYliLnB2ClyhUYMCYAuRO3lBD0s3yljw3V8frHmAP6xfR/MI4PAQBtQ+6l4UN45rjwRWXSpgWLNNZ192mnc+vf9vGjCuGp5Bv8sJFSGvYbkZvoiTT0aSGniEvSbG8BKkxx9D2DsE93W7FCWmDkR0ytNVspKk2NNveNlp8HMx78GTm0TxRPijNfpfNnbn16fXiJtjEWXTL4cBk+HFwQxt7x/og2rNaf4XJNNRRM10BQLtcmV2t346065qYYIKFjgap6lms+T5suHS8TcwDrar3hEzD95mFuahOq1jqaqfTWyNSFBEN6lr8GpaiV8g/QVsGWsQYg0ii8PPQvzH9YBDy8AhrsAfQSQLnJPpkWx6KKiydzRqITAu140aes34kBdDzQS8PC1y/Dzq4q9tz5iRhZdi6RaNHZT0cQVqGgSwEWTbPmiiWclUJfF7FBCuqcomrDD2KhQHYwWG8paB+Zubb6KxQh0igMyNB9WezU+hXnUhp5hC+ZLsjw5WVZEEJ4lbdkZRRMl14SUJgQxt3xc1oqVGtFxhqx1ai8nOCm6kg/naY/hj3VXou0d0Q1PBA5vHanHEo3Y/2vT5c9AYu4o/gKQsQqw24Amofg5a4xFF0EQ3kc/0MxHe3Sm2kshxqBZ/00+flW3A5HDY2xCF14K6AyuPYlDaXLAG0skTsc0ALSdcLtoclzO8ZqXHIlrVmVCr6VjZ58rmmjq0EhB8C5Bv70BXDRJGxQ2GBQC70GliXkQME9ckdVoJEc3GV0YMZ+4csBuFfPmI2qvxict9BY4lCYUiOzdosmZ9lykNCGIuaN32Ax9TwWipWHYWUch5aypAyvQr7kd/do4aCQ7wg/+CbCOqr0qYrZ0VgAPZsP2h9W45cRtyJC6YNWGAqlkz6UKKXJHbXsZH9bmJfBxb3UX5ZoQhJdhr7EwYwuf6+Oy1F4OMZaiK2GW1T/9iMDoHZ8A39oPXP1/rj9HBlOkSEBfPTDQ6r21EgJW/GdNADFZbuUDlchFk8XplF/oq+cji6VaDA4NYshE1wHTQUWTANwodA6aEYNBJJc+Le7M36T2svyfkChAJwdfDU2ea3LufFFc+bBs8scEDUpXAqO9dNJiU7CGwIfAjBypTdyhZG8QnoUfzEoA6ziTN9YFij1X1xCsNjq8IIi54Fhjn8OaS8pcBWh1ai8peL2ML/sNqr66D732CERZe2CskkNYCf/lxGuAqQ+argoskmowgHBIX/o7EEahq6qgWK52iKLJypxY6DQSmvuM1NVJEF6GhU6n2Dv5PDw5R+3lEGPR6qDb8gtUIhPfMH8Xx0azgCQ3HVHYmUzyIjEntYn3adjvtsqEcbypn4/FGVQ08TmYC1FUOsIkM9ZpSmlf4gJUNAkw+kdGYbba8O+6V6Ex9YoPlSVfVntZgXHQ4Mg1ERuxibigSNh47a3pwmCwV21bjzvnTHHSNuZ2kNPeb0Se1AotbEBoDBCVqvaSApOQSKfapHIHHzLiwqDXStwiraWPNgkEMRewjrNVctGErLnUZ3lOEj7Vrefz1t3Pq70cYrbU7+HDR9r1eGr0Yvxj2TPQFG1Ve1XBi6Ie7ijnQ7hBh+L0aD4/2tir5soIH+CPf/wjcnNzERoainXr1mHfPjkvYBJeeuklFBYW8scvWbIE77zzzpyt1R9p7jVytR1DF5et9nKI09AsuQa/nf809tiK8cmpyc9UXMo1aaKiia+GwJ9oFkqTJVQ08c1zzfkX8en5miNooFyTaaGiSYDRMWjEWqkUN+veF3ds/iV1dHoKpWgyOLmKJD8xAjkJ4bBY7fi0YoYbgUBBKZJImulzTZgS5chzTCqFYKBj0IQF0pgQePbhRXgH5pPLKH+XD1qNhPTYMD5vos4KgpgTjjb0YplUJW5Q0UR1JEnC8AKRb5JQv40suvwZmxXWBnHo+uvhK/DX6G/iixecrfaqghtFadJdBYya+XRJpjg4KmkUB0lEcPLCCy/gnnvuwU9+8hMcOnQIy5Ytw+bNm9HePvG15e7du3HDDTfgtttuw+HDh3H11Vfzr+PHqRFtMpp6R5AmF00QQ5kmvsg5sjPHJxWTZ8VOCeWazA0224xC4JkNeUufkR9vLJIbBggfY/4lfNjEiiY9VDSZDiqaBBgj1XvxhOHX0MMKLLoaKLhA7SUFYBh8+5QHEecvFI8LaosuVvxQiibym/KURZN/3Q68didQtRPBQHu/CXmS8NtF4ny1lxPYLNgixqoPAIuRTzOUokkvFU0IYi4oaehBliR/JtJ7nk+w9Jwr0GWPQpStD0Ol29VeDjFT2k9Cax7AgD0MIRlL8No3z0ZqjGwnS6hDdAZgiAJso6Jwwl5vGbEOq0IiePntb3+L22+/HbfeeisWLVqExx57DOHh4XjiiScmfPzvfvc7bNmyBd///vdRVFSEBx54ACtXrsSjjz4652v3F9p6+pEMWdFFQfA+ycZ5iXw83NCLAaNl5kWTpkPU9OFNuioAYx+gC3MrI1kJgc9LjEBkCDVv+yR558Eq6ZCnaUNvo7ASJSaHiiYBRs5nP0CkZESJYTnwhT+rvZwAVZpM3RVxoWzR9WF5u/8HPrIQy72PAzsfAEZ6XP+5wTZguEuoTJZdP3XRhD1vW4mY136KYFGapEjyvydt6L0Ls+eKSgcsw0DtJ/yuzDhRNCEPT4KYGztC20ArQqRR2CUtvef5CAvT4rArRGTede98RO3lEDOk6dhHfDxin4dfXbsCCZFueMMT3oG11zosusrGKU3YYZKN8tSCErPZjIMHD+Kii4QtCkOj0fDbe/YIi73TYfePfTyDKVMme7zJZEJ/f/+4r2BjoKMeGsmOUckARIjDecK3yIoP5w1sLFtSyb5wO5MhJBqwDAEdpd5YIjHWmitjJaDVu100oRB4HyY0Gr2JwubOUC0szInJoaJJIDHUiegB0dH0TNZPAT11mnkUR6bJ1AqSNbnxjrDvnuEZdE/4Cp/9Hvi/dcC73wc++Q3w3A2OTv1pUVQmCfOcViydpybuBhkrrZUtJjhdVQ5LpUBUmjiLJmlqLyfwDy8WymoT+fcpIzacj2TPRRDe52hjH7JllYkUm0WWoT4CU8YaNn4LVruErJ7P0VVJNhf+SMMRodAdTF6N+SlRai+HON2iizUfMdF1ciRCdBoMmEZR2zWk7toIVejs7ITVakVKSsq4+9nt1tbWCX+G3e/O4x988EHExMQ4vrKyshBsWLrq+TgUlkr2xz7MUsWysGkGOU8aDZCxSswb5aBywntFkxmGwFOeiW8TUSgcidKHSynndRqoaBJIMIkic6GxpSE8VraSIrxgzzW10iRUr0Wi3OnX7K/2P7t+A2z/bzHPOxcIiRFBo2/e7drPl29zdvlHpgjFid0GDHdO/oHMaDoIWC3coxvPfBF47nqgfsz3A4SOAaOzaBJFRROvM3+zGGs+doTBMxp7ycOTILwNC4NUiiaIzVF7OcQYLt14FnaHnsvnNa8/qPZyCDep7RhE1tAxPl9xttwcQPgGpylNdFqNIwy+RO7CJQhPc99996Gvr8/x1dDQgGBDGmjioyUyQ+2lEFOwWD5QL5mJ0mRsGDzlmniPhv0zCoFXPuOKMyjPxJcJzVjMx/lSEz4J9izmaaCiSSDRdMAh0U+KInm+WvZcjIzYUP8tmlR9CHzwgJhf8N/A194Ernta3D72/PR/f2a3deSfYr7iq4BG6/y3G2idumgyagRajgGVO4GeWnFfzS4EGh0DY5QmVDTxPsrGuqsSMPY77LlIaUIQ3qe+exjZGrloEper9nKIMWg0EtK2/oDPl/d/gIaWNrWXRLjB4Z0vIEPqwogUhtTic9ReDjGW5CIxdpQ77lqaSbkmwUxiYiK0Wi3a2sa/z7LbqampE/4Mu9+dx4eEhCA6OnrcV7BhGGrmo4ZC4P1DadI4A6UJI2Wx08mC8DzD3UBnudtKk54hsyMztJjsufxCETtPasJnp2j/PxVUNAkkWJc+u4iyzXMoHYi5DYJXSIsRh7ItfS7aWfkKLOzr9W+L+erbgHP/Q8zzNzkP9/uE7HlSDv1D5EckFwuVCoOpTRiDp/3bMbuuRvF7i7g8ZxHl4N+dj2n4HIEEy7npGRxCAuTOGiqaeB/maRyTLeYtRx1B8M29RvIWJwgv09g94gyBp6KJzzFv2Ua0a1Ohk2zY/+l7ai+HcBGb1YaC8sf5vLHgBsAQofaSiLHE54uRNQDJ+YaKVcmxmR4SEn6NwWDAqlWrsHOnsNRj2Gw2fnv9+vUT/gy7f+zjGdu3b5/08cGOxWpDjFkc/oUmyvt+widR8i5qu4bRNzIDO/N4+dygu8bDKyPGKXjiC9zKBjrRLM43chLCERPmeg4KoQKxObBpDAiVLKipLKMzkSmgokmgwDbkctHkqK2AlCZeVZpMXzRJdxzK+lkn+ycPA/2N4mDr4p+P/57SsdPXOPnPsyLIPnERj7PucnrJOoomchXbZgNe+xbwj6tFiBuz/1rxFfG94y8Dp2R7L0Uayh4fIPQOWxBr7eUhhXaNHghPUHtJwUH6cjE2H0ZaTCi0Gglmqw0dgya1V0YQAU1DzzAVTXwcY5roIuwv30UXTX7Cyb3bsNReBpNdj6ytcoML4TtEy9ZAoyPAcBefLpLtuU61DfIGGiL4uOeee/CXv/wFTz31FEpLS3HXXXdhaGgIt956K//+zTffzC22FO6++25s27YNDz/8MMrKyvDTn/4UBw4cwLe/LTe4EeNo6B5GOoTNTFgi2YH6MnERBmTFi/OSEzOxLFSaLZn1t2nAw6sjFAcbd/NMFGsuCoH3A1jGZOJ8Pk0w1uJUO72OVC2a/PGPf0Rubi5CQ0Oxbt067Ns3Jux5Al566SUUFhbyxy9ZsgTvvPPOXCzTv+mu5rZIJuhRZs9GMhVNPE+ErDQx9gKj5ikfmq7Yc/mb0kSxwjr/v4CQyIkvAPuEV+yElL0F9DWIQsCSa533O4omrc6g+CPPALWfiNtZa4BsuWuKFf9Y/knWWYA+AjD1OTyhA4HqziGkSt18LkWlijA7wvukrxBjyxHuLZ4aLV6jjWTRRRBewzRqRWu/0ZlpEkeHGL5I6pLz+bjQdAL7a8XnE+HbWPY9ycfDCVsRGk/e/T6HPtS59+0VCu28RKEGYl3VPcMz6Kwm/J7rrrsOv/nNb3D//fdj+fLlOHLkCC+KKGHv9fX1aGlpcTx+w4YNePbZZ/H4449j2bJlePnll/Haa69h8WLZmogYR03nENKUa6zYLLWXQ0yDQ303k6JJaLSz8VCx9CY8R2eFGJMXufVjx5vlogmFwPsFGjl/bb7UiOqOIbWX47N4/bTuhRde4F0VP/nJT3Do0CH+gb9582a0t0/crb97927ccMMNuO2223D48GFcffXV/Ov48ePeXqp/I6tMjttyYYEOWfHhaq8o8AiLA7RyMYqpMQJNacIC2NtOiHnGqjO/74rS5PM/Oa292AWjQtRp9lyKxzMrRLHiyIbvAFnrgCVfFofb8y4CtjwIZK46M/ckAEKRkynPRFWlydgweMV3lSAIz8Ms8ELsLMOpd3xnIOFTGPLP5uMKTQVe2let9nIIF4jrL+WjftFlai+FmIwY+dCWNROxMz691mEPWt0xqObKCBVhKpG6ujqYTCbs3buXN5QqfPTRR3jySVEQVbj22mtRXl7OH8/OQ7Zu3arCqv0DduiXLnWOf/0RPsuSjNhx6gS3UdTLZNHlnYbssVaTLnJcUZpQCLxf5ZqwMHiWQUmoVDT57W9/i9tvv53LThctWoTHHnsM4eHheOKJJyZ8/O9+9zts2bIF3//+91FUVIQHHngAK1euxKOPPurtpfo38kHgMVs+4sL1iA4lD0GPwxQBCQVi3lU15UOZ/Q+jxZ8OZJmaw2oGQqInPtg67eJvwsIdyx9hllNrbhv/vdPtuZRgsYVbgNveE5kpTCJ4zV+AOz4CvvIvIGOlKKgEWNGEbSZSHUWTiYMcCS+QtnycKi9TPrho7KENAkF40yojU+oQN9hnC2s+IHyPxAUYDYnjvsbVxz5DZTsd6PoyxpFhZFpFA0vGwtVqL4eYDKXTvde5b85PinCojgmC8CzNbS2IluRr7+h0tZdDuBwGP9OiiXxe0UNFE4/C7COVQpQbRROmoqzrEtfVZM/lJyhKE00Tv2YjVCiamM1mHDx4EBdddJHzD9Ro+O09e/ZM+DPs/rGPZzBlymSPZ10X/f39476CktYSPpyw55LKxJsoRRNFsjgJSicZsyUZtfpJHkfLUTGmLp3YMkpRmvRPYs+1/29iXHzNmcWASNnabKBtvNIkUbxRTwpTnzBK3xTPHwDZJseb+pGiFE1oQz93hMc7O5JYGLyiNCF7LoLwcp6JXDSJzXHmXBG+hSRBl7uBT1dLZfjf7afUXhExBfWnjkAn2dCHSKRkkHrLZ4nNHmfPNdaii2wwCMLzGFvF9flISBJgEK81wndRDtZZh3vv8NTW5xNCYfDeYaRH2KO7kUXIrPHueuag4xyMZdYQ/qM0mceUJl20L1GlaNLZ2Qmr1erw6VRgt1tb5WyD02D3u/P4Bx98EDExMY6vrKys4KwGy0WTUlsOFU28SYIIS0JX5ZQPS4wMgV4rgeWptg/4SdB0yzExpi2b+PsxGVPbc9V/LsalY7JMFCJTT1OanBpX3Z6UvHOAzLWAeRB4+x5g9+/h7/7+Fe0DzqIJKU3UyTWp24NMuWhCmSYE4T0aukcoz8RfyBG5Yqs1p/B2SQu2n5Q/rwmfo7NKqMubQ/IhUS6a7zKBQjtfLprUdJKaiyA8jb5XOEFY4+QmR8KniQnXIych3NFU6DakNPGuNVdUOmCY/lzRbrfjtqf2Y3dVF0J0GvxgyzTnO4TvEJ8Pm6RDpGSEscvZ4EGMx+932vfddx/6+vocXw0Nk1gHBTKs89/YCyu0qLBnIJuKJt4jUSmaTK000WgkpMoWXX6Ta6IoTSYtmmQ5Cx+jpxWCzEPOD1imVDkdRWnCMk2so057s+mKJroQ4NZ3gXO/L24f/LsoEvopFW2DsFjtyNDK/v6UaTK3zL9EjKVvIjteObigrgqC8KbSJFdqdatbjVC3qLwmVDRG3PnMQfzr4NT5bYQ6jLaIRqmhONEhSPi60sR5bZqXFMlHUpoQhGcZMFqQYBKvNUPqArWXQ7iIEhh+rEm+NnYHyjTxDg5rLteUrMxZhX2maTUS3v/eubhqudxoS/g+OgOscvExcqAaVtbxTcxt0SQxMRFarRZtbeO71djt1NSJO6zZ/e48PiQkBNHR0eO+gg45vLtFnwUz9FQ0mQulSefUShNGWowcBt9nhM9jszrUSpMWTcITAJ0c7t7ffGYeCuxARJKzQDJRpollCGgrAWwWQB8ORMuWX1PBsk423gPoI4CeWqBxP/wVJRwtSydLXqloMrcsvBTQ6ID2EyjUtzoOdY0Wq9orI+aAP/7xj8jNzUVoaCgPXt23b9+Uj3/ppZdQWFjIH79kyRK88847c7bWQIEpufKllvFNB4RvkrqED3GWNnxlWTS/cPqv10ro/dEHiewVFqeGtMVqL4VwSWlSf4bShPm+0+EEQXgOdmhbIO83DMlUNPEXlspFE+Ua2S2UQ33mgmG1eHhlQYwjBN61oomSSTM/ORI5CWSL52/okkUDTp69kRfAiDkumhgMBqxatQo7d+503Gez2fjt9euFDcDpsPvHPp6xffv2SR9POPNMyuzC+iIrjoomXs80GWgGTIMu5Zr4hdKEKT9YQUMXNvnBFvOij57Eoksu3CGleOKfDYkEDKK7DjWfiJH9Oa7aSjBpaNHlYn7sRfgrx5vFpiLB3iXuoKLJ3MJCqPPO49PY2ncRF67nwqWqDrLJCHReeOEF3HPPPfjJT36CQ4cOYdmyZTwvrb1dto46jd27d+OGG27AbbfdhsOHD+Pqq6/mX8ePH5/ztfszjd3DzqKJ0nRA+CahMSJ3BsAD66xIiDDAaLGhrHVA7ZURY7BYbcg0iwON5Hmr1F4O4UoQvLEPMArrmfTYMBh0GpitNspUIwgPwpTjebTf8DuWKEqTmYTBM/tv1tBpt47LjiI8VTRxLQReKXgp/5eEfyHJRZN5UiPquygMXhV7LnZI8Ze//AVPPfUUSktLcdddd2FoaAi33nor//7NN9/MLbYU7r77bmzbtg0PP/wwysrK8NOf/hQHDhzAt7/9bW8v1X9pE4c4h0yia5+UJl4Ok2aKC0a3bDE1CemxQpXR4g9FE0cI/BJAo538cUoY/KRFkym6HhUFSs0u10LgT2fJl8V44hW/7SY50dyPcBgRapVtGaKpaDLnLLqKD9LJ1zE/OYrPK9upaBLo/Pa3v8Xtt9/O9x6LFi3CY489hvDwcDzxxBMTPv53v/sdtmzZgu9///soKirCAw88gJUrV+LRRx+d87X7K0OmUQwODSJD6hR3kNLE90kT9ppSa4nDMqNkJt2fhNeorq1FstQLGySkzJtEGUz4BiFRQGjsuFwTZl+SJ3fiVlOuCUF4jOr2AeQpdqAJ89ReDuEixfJegymTe4bcDINnzZeKRRflmngO5d/SxaLJMaVokklFE38Og5+vaUJDNxVNVCmaXHfddfjNb36D+++/H8uXL8eRI0d4UUQJe6+vr0dLi9wVAGDDhg149tln8fjjj/NO0JdffhmvvfYaFi8mCfqktIqiSYk1i2/G0+TDesLbFl1T55qwbjJGgz90krUcmdqa6wyrATeVJmMtumplpUmSm9Lp/E1ARDIw3AXs/gP8jVGrDaUt/c4DxJBocUFNzC2FlwGSBmg9hhXxRkfWDBG4mM1mHDx4EBdddJHjPo1Gw2/v2bNnwp9h9499PIMpUyZ7vMlkQn9//7ivYKe+exg5Uhs0kl283zH7RsK3SZX3AK0lWCpf/JY0zsBnnPAarZWH+NimTYNEewj/UZuMzTWRLboo14QgPEdXax3CJRMPNUacUE0Svk9MmB65chi8cvjuFvEFLlunE55XmrAQeEVpojTbEH6GnDE8X2pCfRftS1QLgmcqkbq6On6osHfvXu4lrvDRRx/hySefHPf4a6+9FuXl5fzxzApj69atc7FM/8Q87FA8lNmyubpBr52T/9bgRele6Zr6wzk/UdhR+YX1z3Qh8KcrTfrHFE2Yv5GsdkLyoumLJqPG6R87WbbJRT8R8w9/CTQfhj9R3TnErU6W6+V/u+QitZcUnEQkAnLg2fJQkZ9V0U72M4FMZ2cnrFaro1lDgd1ubZW7Ek+D3e/O4x988EHExMQ4vrKy5IOyIIZ99jmtueYJi0fCL5QmaDk2RmlCBUBfYqTpJB/7Il3rACVUJiZ7nNKEkZ8U4bATIgjCM9g6RDPjSGQWoNWrvRzCDVZmx/Hx2b117v+wcj3dLj4biVliGgCGOsRcvl6eCpaB0Tlo5o3bi9KCMFs6EEiYBxs0iJWG0Nt5WmM0waHTdX+nsxyw22A0xKMDsZRnMhckulY0KUgWF0VM5ubTQaqs6NF6zL2iSduYjclACzDSI7r3ZXnfhIztMmY2XvPGd3G7xPKbhL2SbRR44zti7X6C0oWxIap1elUOMTcdFZomPlaQPRcxS5jNaF9fn+OrocF5QBasVLUPIV9qFjfImss/SJWLJp2nsCTFwKen2gZ8ew8TZGi6xd7TTp79/oFiHdO4/0ylCdlzEYRHsNnsCO2Xu+PJmsvv+MZ5BfzQ/b0Tbfj4lHxg73bRpNQrawtalUl4IhAa7VYIfKh+Cot3wnfRh2EkQjT7adjZMnEGVDTxd1iAN7u+DRUyVMozmQMUqWLP1N0QSZEhiA7VwWYHan1Z6tZbJ0IqtYapix6MggsASQs07gPay8Zbc7ELeH3o1CGzCl96AtCFuL9W1ql8+SOANoTbh/AvP8ozYRRr5cNUKpqoh3yAm2YR3RR1XcMwj9pUXhThLRITE6HVatHWJpRFCux2amrqhD/D7nfn8SEhIYiOjh73FexwpYlG8RenA16/ICpVXCjbrUgz1iAx0gCrzc6tJQnfIHqolo/h6aRW9QsWf1GMx18B+kSjRn6SUKLXkD0XQXgE1u2eaRNNGqGpbmZmEqqzMDUKX1svCsw/e+MEt7R2GcW5ghVN/KiZ0mdR7OddLD4ebhAWrmTN5d9Y5eu08L6pM5uDFSqa+DvdIqipSSMOcrKoaOJ9otKdCospkCQJBcmyRVf7kO9bc7FNh050lk5KTAaw8FIxP/A31/NMGMtvBLI3AF/+h6PTf0aExwMLt4j5sRfgb0qTTHO1U21DqEOi+P0L769EVIiOHwr6dGGTmBUGgwGrVq3Czp07HffZbDZ+e/369RP+DLt/7OMZ27dvn/TxxJlUtg86lSYJsuc04duwxoSMlWJau4vC4H0MFpKbaRMH70l5tIfwCzJXi72vzQLs/RO/K19WmjT3GTFsHlV5gQTh/zCrO2W/oU2iJg1/5LsXz0d8hIHbWe8oHd+0NCXscF+jB8wDZ2auEu6jOKm4oBDvGjThmT2iific+YneXhnhRULTRfEx3VLP95rEeKho4u/IeSZVo8l8JKXJHBCd5iya2KbuhCiQu8nY4ZHf55korLlNjEeeA0yDrhdN2KHZ198FFl2JWbP0OjGWvAzYrH4hGz/Z3I8YDCLcKG8EKdNEPRIX8EHqrMC8lEiHBQ0RuNxzzz34y1/+gqeeegqlpaW46667MDQ0hFtvvZV//+abb+YWWwp33303tm3bhocffhhlZWX46U9/igMHDvCMNsK197zqzgFnpgnZc/kPSmPEyTewRC6aHJPtFwh1qWhqR6bUyefhqdMogwnf4ey7xXjgSe4XHxdhQFy4yFyo7RxWd20EEQBUdwwiT1KUrWTP5Y9Eh+pxw1phEfTUbjeyTVjDp7LHpFyT2dN5yuV9+2+3n8KAaRTF6dG4fKncVEz4JYbURY4weLIOPRMqmgSI7+DxkQQ+ktJkDuCB5pLI1RgWF6+TMS/ZD8Lg3S2a5G0C4gtER0fpm2OKJnPY9TjvYiAsDhhsBWp2wdep7x7mm4rFOrkDJjZ7vF0ZMbcoG8GBFqxMER+De6q61F0T4VWuu+46/OY3v8H999+P5cuX48iRI7woooS919fXo6XFqR7csGEDnn32WTz++ONYtmwZXn75Zbz22mtYvJi6u12hqXcE4ZY+HirIYZ8ZhH9QeLnIKGs+hPUJ4kB3f2232qsimAVNjdhvDWqigAix7yf8gPmXCJU62ze3iAxByjUhCM9R29aDLKld3CA7UL/lxnU50EjAnuou95rZKAzeC/ZcU7+O6ruG8dy+ej6///JFPJOG8GNkF5h5mkZUkXXoGVDRJECKJkeHhSSOlCZzgFYPRAplD/pl6xF/VZow78/mI2Ketty1n9FogKIrxLzqA0AJjJrLjA7WVVIkK1Yqd8CXsdvteLtEHMaeGyOrTMiaS13CYuXiJ3BpmnhtMik4644nAhemEqmrq4PJZMLevXuxbt06x/c++ugjPPnkk+Mef+2116K8vJw//vjx49i6dasKq/ZPWKPAUo3sixuXBxhob+I3sP0NsxMCsHLoE36AwXKfWvuMaq8s6BlsEkG3fRF5ai+FcAe2b1YsCvsp14QgPM1QWyW0kh0WXYTzGp3wOzJiw3DxInF99g/Z9sklKAzec+dCcl7ydEqTz6u7eG7vmtw4rMunJg6/R1boJUn9aGqRVXuEAyqa+DPGfmCog0/r7MmIDNE55N6El4kaY9HlgtKEdZL55IEs+2BkahkWrO5O0SN3oxhPvi4UNyExQEwm5hRFGaN8uPtoweQ7zx3Gr98ThaUNEfKHEIXA+4xF17KQNkQYtGjrN5FvP0F4CNaldJamTNzIPVvt5RDusugqPoRWvI1F6dF8vreG1HhqI3WJDlBrHNnP+B0xwnYGfQ2nKU2oaEIQs0Uj5zCYYvJENhfht9y0LoePrOHQ5UB4Rxg8KU1mBWsGtgwBGh0QlzvlQ481iQD4ldlxc7Q4wquERmPYkMSnIy3y9RvhgIomAaAyMYcksKQEZMaF8fBxYg6ITndJaZIVFwaDVgOjxcbtSnyOus+cQZX6UNd/LmudsO+wmpxFgLn+3YvPH/c68EWYwuitYy3QaST8xyULsBhyuBoVTXymaKLvqcR5C8UmYftJN4IHCYKY8r1vnUbu+MuRi+yE/1B4mRgb9uKcbLE32FdDFl1qYrRYETVYw+dh6cJGgfAjlMaiXlE0KUiioglBeOq9MXpYqBJ0SWJvT/gvGwoSeBNw95DZ9X2HojTpOOUXWac+i9yYwRXizFllCkrkrLslmWQ3HiiY48TZmqZb/j0gHFDRJABC4HvCRPcSWXP5ntJEp9UgNzHcd3NNlKJJjrDicJnQ6PEZKClyh4caRZOeGp/dIJXLfqyLM2Lw7ZUhkNpPiGJT7rlqL42QvTvZBvuSRal8SkUTgvAMTa3tWCLJBW1SmvgfMRnyPseOTbFC0byXiiaqwj6fsu2iUSchmxov/LZo0iey7fISZSV6xyBXJRMEMTOYfWQexPV4SAoVTfwddnaiXJe9c3zqcxYHMdmApBXNnIN0LTfrPJNprLnMozaUtogzjiUZVDQJFPTJ4mwkeqgOFldVXkECFU38GbnDvlUrVA9UNJlDouWiSf/0H+Y+nWtSt1uMOTM41Br7M2ooJ9gFqEYPWM0Oj2hf41Sb+D9fmBIFlL0j7sxeTwGuvlQ0aT+J8xcmc6EUK3J1DsrqKYIgZgSzogxrOwCdZIM5KguIzVZ7ScRMkLO3FmsbHHsYen9Uj7f2l2O+JPY6GuXzi/AfYrPGFU1yEsL5vmPAOIrOQbO6ayMIP6amcxB5GnE9Lk1z2Ev4B5cuEUWT9060weqKvblWB0RnjFPzEbMJgZ/aAvRU2wDMVhuiQ3V0/hhAhKWJvWUumtHQPaz2cnwKKpr4M91Cpl9jE4FZ2Qn0pjVnRCn2XNMf1iu5Jszj3aforRfeysy3MmvtLIsmKgSba7ROv00fteg61Sq6MOanRAJlb423PSHUJWWJGHtqEKMZQWq0sKChTQJBzI667mEstR7nc10eWXP5LaniPTKi56Qo/APYU0W5JmrQ2mdEbu0LCJPMMMcvmPZAg/DxTBO7HaF6rSPX5EiD8IYnCMJ92PV1viQ3MdJ7Y0CwoSCRH8h3DJhwoLbbTTUfFU1mbc81TfFRyQBdmhlL0QABhEa2Lmfvp9W+dm6pMlQ08WfkAOyTJuHHnxVHRZM5V5pMY881VmlS5WtKk1rZmit9BWAQF25ukbMe0IUC+nCnl+hck1Dg20UT2Z6rOM7qVPUs3KruoggBU/soxc/2kzwTitHY44PZQwThRxxr7MVaOQRek3eO2sshZkqq3AzRehybCsU+832yMFSF1w/W4Ovad/nccM53AQ1dvvkdShe0eRAwiiLJWflCdUzFSIKYOS2trUiU+sUNKpoEBAadBucXJvP5nuouN9V8VDSZMZ1y9mrC1EWTY5RnEpgkivfPPKkV1e3i/5gQ0K7bn5EPig8PxvExi+RxKihN3Cia+FqmyUzzTBTC4oCvvQnc/DoQIrpQ5xwfDoNnwYS1XaJKv2hoL2C3AsnFQHye2ksjzjgULEGmXHSmoglBzI6Shh4USfXiRsYqtZdDzJTUpWJsP4nNRaJo8mFZO0yjvpkhFsjoT7yEFKkXQyHJwJJr1V4OMRMM4UB4wjiLrvVK0cTVQ0GCIM7A0l7OR2NoMhAirrkJ/2d5Vuy4A3qX1XxkzzUzzMPOgpOsOJgMRR25lPJMAovYHIxKeoRIFvS1CkcjQkBFE3/FNAAMtfNpmVlczCqd0sQcKk1MfYB5avlafpJQcXQNmdEzZPbBosksQnqZrddMrL08XjTxvTd2ViRjNqwxYXpE94qua+SSVY0v2s+g7fgYpQnZcxHEbGitP4VIyQgry5xS1ICE/8E+X3VhgGUYy8O7kRwVgkHTKHZTV/ycs7DnIz52L7oZ0BnUXg4xa4uuxnFKk9KWfnT70vUBQfgRul7ROGeNJ5VJILHMUTTphd3uQq4JKU1mRzdzsLGLptgpslc/LG/nn1l6rYRVOaJxmwgQNFoMRYgcSruSb0NwqGjir8id9ZbQBAwgHGkxodwfl5gjQqIBfYRLapOIEB3SY0J9S23C1sx/hyQg+yz4LYpqwweVJoo1F/OCl7pkuSsFFPoWKWOVJmTPRRCeCIFH2wk+t7DsBa1e7SURs8kNS1kkpu3HcUmxyM97/0SrygsLLgZGzCi0nuLz2OIL1V4OMRscnvuiaJIUFYIFLPMOwF5SmxCE27BiY6pFvJ4MKVN3xxP+xaK0aOg0EjoHzWjuM07/A6Q08VAI/ORnFRarDb946ySf37IhF8lyHigROIzGiWa38H7fa0hWEyqa+CvyIXGXQXjkLiVPwbmFhV45ck2ap314gRwGX+kruSaKyoR12of68e/OWHsumw2+xKm2QWcIvIvBaoRaSpOTyIwJ4VNSmhDEzKnuHEKetZbPDelyUZLw//fI1hJsLk7l0+0n213r+iQ8Ql1VKRKkAVigQ1TOSrWXQ8wGx6GebF84xqKLFFwE4T41nYPIk0Pg9clUNAkkWDPwwlRh/31MtoOakthsp9KE9iju40KD5wv7G1DVMYSECAO+cyGdaQQiyvtozEiDaIQjOFQ08fOiSY1NdP6tzCZ53JwTlea/uSZKKLm/20XFZAMaHTBqdKl4NZeUtwqlSWFyKNBT61KwGqFC0U0fDoyOIFfT6lCa0IEgQcyMkqZeLNSILj9NSrHayyE8pcZrL8XavHi569OE1n4Xuj4Jj9BfuYeP9YYCQE9dnX6Nwz5GdMYz1heIosmBuh61VkUQfgs7wC2QiyYUAh94LM0UFl1HGl0omkSLRmKYBwGjC48nJlGaTP46euWQ+Oy6a1MBokNJSR6IRKQIF5dUdKB9wKT2cnwGKpr4K12iaHJkWGy2V5Kn4NwTmyNG5UB8Cub5nNJk9+xC4H0FrQ5IKhLziu3wFVhl/lC9uABeEdUH2EaFnVt0utpLI063n0kW9jMpQxVcQGYatXEpOEEQ7nO8qR+FkmyNQEUT/0fpOOyqRIhO62gAYX7WxNygaT7Ix86YpWovhfCwPRdjXrLopG7sHqaGDYJwk+r2AeRKsmUkFU0CjmWyk8qxBhfC4A3hQHiimJNFl/s4XDEmVmy19I3gUH0vv1a+YhmdZwQq2rhcPmZKnWgg9w0HVDTxc6VJqTGRd/4tyfBjiyV/JSF/vJzRJaXJ1KHxc8JQF9BRKubZfl40YSy7ToyHnoKvUNY6gN5hC8INWhTqlM18gbB1I3yLZFF00/VUIVX2ZiWLLoKYGZXNHQ6rDCRT0cTvUQ6hemoA6ygK08QBb2mLUFIS3ieht4SP9gyy5vJ7FPuYMc1WSp7agGkU/SOjaq2MIPyS3tYahElm2CSds5mRCDilSUlTH8yjLthwUxj8zGAFe0VpMok913vHxXnGquw4pFCWSeAiv4YypA40dNN5iAIVTfy8aFJrT0FxejSFwKt5mNBdNe1Dea4FwCu2PUMqdrFbR4G37nYeaEUIpZJfs+wGQKMHmg8DLcfgC+yRAz1X58ZD1yOH1FMHlG8Sn+c4FKQweIKYOaxL2txSCq1kx2hILBAlMjAIPyYqHdCFCbVkbx2K0qL53aQ0mSNGzcg2i8acqHnr1V4N4akcvqF2wCheQ+z6LTFSZKpRVydBuIetU7w/GiOzhfsAEVAsSInk74+DplE8ubvG9dyoMWo+wgUGWoWtmaQF4uTr4tN4Vy6abFlMe/uARlbERksjaO9oV3s1PgMVTfwR0yAw2OoomqygPBN1iC8QY9f0RRP2gc8++Fkh/9PKTsw5NbuAv1wA/HEtUPomoDUAl/4/BAQRiUDR5WJ+6Gn4Ap/LRRMe8Ekh8L6NsjnsrkZmXDifUtGEINynrd+EdJO4qJVSF5OyLhDQaJwF/65KKprMMf21hxACC7rtkciZJ+fLEP5LaIzTPkZufmNQwwZBuM+o1YaIAXnPQddYAYlOq8EPtyzk80d2VHCLKJfUfL31c7C6AEI5q4jLAXSGM77d1m/EvtpuPr90iZzpSwQmhggM68XZ8kibc58S7FDRxB9hNgnsYkqKRj8iKc9E7Y4xFjY2LD5IpuK8BUl83HWqA3OKzQa88wOg6aBQxUga4EtPAHnneuTpqzsGccvf92HHyTaoxvKbxHjqPaiN1WbHXqVowgI+5S4oCoH3caVJ91ilCXV7EoS7sIP05RrxfqdNo/yFgIFZSypFk1Rhz1XTOQSjxaruuoKA/mNv87FEW4xICl0NrNfTGJU67T0Iwn1OtvQj297M5yGpE+cwEP7PNSszsSonDsNmK37xtmwvPp3SpLduTtYWeCHwE59VPPx+OW/8XZMbh4xY8XlFBC6mCJFZM9pDxUcFKpr4uTUXgykYCBVggWPMusJFtcm5StGkomNuwx4r3hcZJoYo4Ibnge8cAoqu8MhTD5lGccc/DuKj8g7830fTZ7t4jdSlTg/TUbPqB4f9xlFEhuiwOD16jNKE7Ll8Wmky1I7cKPG6pG5PgpjZAcYaTbm4kU1WQgGDojTprEBSVAgSIgyw2YFTbZRr4m3Ca0QjSEX8eWovhfC4Sn2s0oRUrgQxE1V/vpyhpiGlScCi0Uj4+VXF0EjA28da8GlFpwv7FRXPJPyRxgNiTC4841vHGnvx0kFhd/ajS0UOKBHY2GOEYsswSNlAClQ08Ufk4PEqazIf02Ko4utLHWOTsSY3HqF6DbcwKZ/Lw4bPHhHj6luBhZc6O+s9wI9fO47K9kFHMCxTWahCZDKgj2Bv86pLchX7NdaNoTP3AUOysogyTXyTsFggLJ5PczQdDhkyQRDuUd/YgEKNvMHO2aD2cghPoRxGdVVCkiSy6JoremoRP1COUbsGg9kXqb0awlMk5E+hNKGiCUG4yufV3ciTiyZ0jRXYFKfH4Ob1uXx+/xvHJw+FV/Yr7P2V5bgSrjmSsAZbxrwz9xr/804pV5l8YUUGV/wQgU9IonitRRpbuQ0iQUUT/6TxIB9KbdkIN2gRHUrBZ75gWzEdLOzxLJZxMZcWXc1HgPo9IsPkrG969KmPNvTi1cNN0GokGLQajFis3LJDFZh3flzuOPs6tXj/hMgbuqAwGWgtEXeyin2IsDUhfBC5kJhmExdfVDQhCPcxNO3j41B0gciaIgIDR6aJOOQtSotyNEoQXqTsHT7stxUiOzND7dUQXsxDJHsugnAPdpB3tKYVmZKsOiClScDzvYsXIDHSgOqOITy0rWxyey5dKGA1k0WXqzQfAoY7gZDoM1Ti7DOJFSfZMcv3N4tsGSLwCUsSZ2rp6EBLH52JMKho4m+wUm/DXj49YFuItJhQ3vlH+H4YPOPc+cKi65OppKWepHKHGOddDER7Nrjrz7vE3/mq5elYnCE6T08098EXsinUor3fiEP1vXx+8aJUoOmQ+EbGCtXWRLhu0RVvFPLjnmEL+fUThBuw10vO4BE+l3LPVns5hDeaQwaaAdMg7/hULBsI72Eve4uP79tWYUEKNV0EdqaJsOdq6hmZW/tegvBjO9B4czM0kh12dtgbIa6vicAlJkyPX1y9hM//+mkN3jwq8mzGodE4czmUnA5iapQ82IILAO347LRtx1sdbinplGUSNGjicviYKXWgrouaOfi/icr/J4S7sMP54U5YNQYct+eRNZcf2XMxFKXJwboeWOZC7lazS4z5mzz7tJ1DeFf+IP3GuQWOQ5QTzSradfiA0uT9k218XJYVi9SYUKD5sPhG+krV1kS4XnALHaxHiE58LHYMmFReFEH4D7VdQ1ijEZ1/YfPOUXs5hCcJiwPCZeVQdxWWZDo/7+dkHxOMMFuRxv18+rF9OeYlU3ZhwBAv23MNdwEjveOUJgOmUfSPkKUMQbiWZyIOzSWmhqQG0qBgy+JU3HmeOHv5z1dKJm5wU1RHnafmeHV+yqltYlyw+YxvvVMiHBguW+LZxlvCx2GKLdbzK3WiplPY8Ac7VDTxNxo+50Nb5CKYoRcHs4RvBDq60B1WmBrFOyWGzVYcb/KyKsNidKiSkO/ZENG/f1bD/7rMgmphahQpTU4rmmwuTnFKXhnppDTxB6WJ1FODlGjxntpKFl0E4TItbR1YLIn3XonyTAKPJNmWoekg8hIiEBWig2nURmHw3qK3DpLVDKNdDykun9u7EgECs2qNTBnXcMX+fxMjQ/i8gSy6CGJaDtT2IF8SzXuUZxJcMJuohAgDLzIzxdEZJC4QIxVNpmegDWg9xnbuwpVkDM29I9w9g9UjWbGKCCJiRdEkXhpEQ9scRQr4OFQ08TfqRdGkMrSYj8yei4C6B/WSFjAPAP1N0z5co5G4xJGxt6bbu2tr3AeMGoHIVOcGwkN8LGey3LQum4+K0uR4U7961gLywbdaSpPeYTP2VAnbtc3FqcBQlzOUPn25Kmsi3Oz87GZFE3FwQbkmBOE6gy3l0Ep29GtjgZhMtZdDeJp5F4qx7B2+j1HUJscaVWyUCGTknLwaexrmpYqmFCJAG65kKAyeINxTtypKE8ozCS5YluqK7Fg+PyxbYk+sNCF7rmnpLHc6p0SOt7hTHEVW58Q5GgqJICE0BmadsIUdanPuU4IZKpr4G7Jy4AgK+Uj2XCqjCwGSxP8FWlilfnrOypeLJtVdc2PNlXeuR2XLLLeD+Ruyp1yTJ/4u81MiodNI6BuxoKl3RGV7rlqXVD+e5pVDTbBY7ViUFo2CpEinNRfrgAoVB0yEj6KolPoakB4lOnpbKfiMIFzG1FHLx4HQdLWXQniDwsvFWPMxYOzH0kxxYEG5Jl5CPuypsqdhIeWZBK61r3JgRWHwBOEyrDmvoXsEeZrW8a8nImhYkR3Hx8P1PWd+k5QmrtNTJ8ZYkWExljeOiGZgsuYKTswx8u9ENxVNGFQ08SeGux0fAJ+ZxAaBlCY+QNpSMXJ5o+u5JkxabLV58XC/+mNn0cSD7KsVCpnC1GhEh4rAsBCdFvPlC3uv245NRmy2UP0wdc2AvJGeww38c/uEquQGWX1DeSZ+BLPK0IYAdhsKQoV3ZztlmhCE6/SJ9z9zRIbaKyG8ATuEYA0AVjNQuQPLZKXJ0QZSmngFea9fbU/DglQqmgQcGavGuQcwsuNFGDyFrhLE1HQNmTFisTqVJmTPFXSsyJpCaaL8Pox0C9cHYnJ65aKJHPytUNUxiKONfVzVc/kyaoYKRnRJovgYPVQL8yjlF1LRxJ9QZIYxWagYNPApZZr4AKlL3VKaFKVFIypUJ7w4vRWcPmpyHtrnbvToU++XbcXW5oouDwXHIYpadh1avdMWZo4tug7V96CifRBhei2uWp5+WtGE8kx8HiabihIe4zkG8ZokpQlBuI5hUA5klX1wiQB8jyy8TMzL3sZS+cCivG1g4iBWYlbYFaWJLZ2UJoFIztlibNwPjJr5NDcxwmE7RBDE5DR0DyMWA9xvf5zdHRE0sD0I25YwdwvmgDEOQzgQIzcwktrERaWJ/O8l8/phoTI5d36iI2+LCC5CUkTRJBetqO+mZg4qmvgTfQ18sMVkoXtIbLLTyZ7L75QmrGq/Lk+oTXZVeClcqe0EYLMAYfFO2yoPsa9WSGEVay4Fp7/oBFLZAA6DH7Xa8IcPhP/45UvTHOobdJSJMUXkDxE+TpSQH6dpRNcSZZoQhOtEGVv4GJLo2c8bwgctuiq2Iz06BImRBq6WPeGt5o8gZrRDFE1aDVnIZ3afRGDBPPfDE4UyWm6wyU2gokmg093djZtuugnR0dGIjY3FbbfdhsFB+eB/EjZt2gRJksZ93XnnnQhm2AFeviT2HIhKB0LoPTLYiAzRYUGyaCg43DBVrgkVTaZEyV4dY8/F3DNela25rl5B6vFgRZJfQ3maFtR00r6EiiZ++MY2HCY62VlXe3SYTuVFEUhd4ixqMQs1Fzi/UIRt7Sxt886axqocPJhnwjJLylrFAclaOdBeYXlWnCMY1qu2Y1OhdBu1HJmTP85ms+MHLx/DR+UdMGg1uOVs+cDQOuqUvJLXrn8QlcqHZElsvsmeiyBcY9g8ikRbO59Hp+WrvRzCW7D9hEYHmPogDbSgOF2oS5U9AeEhRnqhHxENNXFZRbzRhggw2L48Z72Y133Gh9xEYc/V1DNCVhgBCiuYnDhxAtu3b8dbb72FXbt24Y477pj2526//Xa0tLQ4vh566CEEM409I8iTZBvmRLLmClaUZk3m9nAGlGsyY3uu90608cygcIMWFy8SLgxEECLb3LECdU3n1MX9YICKJn6oNOk1pDryTFjHCaEyLOQ7TlY4tBx16UcuKEx2dEd0DXrhcLb5kFesoT6v7uIZ6zkJ4UiOHm8NNy85knd+DJutONU2AFVYuFWMx14ELN5XCjy/vwGvHG7ihxqP3rjCcYjE/f1to4AuVHRBEX6jNIm1djnsuVi3DUEQU9PcO4IMqZPPI5Lkz0Ii8GAWmIpytasChXLWRnmrSp/3gUqXUK622WOxJJ/s7gLeoqtuNx+SIkP4IRXrOWqgMPiAo7S0FNu2bcNf//pXrFu3Dhs3bsQf/vAHPP/882hulrM5JiE8PBypqamOL6ZUCXZ7rnwN5ZkEO2tlx4tnP69H3ekKPYfSRLa2J86EnZMMyIqtWLG3GzFb8cBbJ/n81rNzEW6g5uygRW76TZT60dI6t1nBvggVTfyJvkY+tGsS+Uh5Jv5r0ZUWE4ZFadG8APHxKS9YdDUf8XjRhB0g/99HVXx+cdGZnQescLBUzjWZMJhtCv76STWu/uNneHZvPUpb+vFZZSdMozPwSS84X/iYGnuB0jfgTZia5vFd4t/jB5sX4pJiUczkdFWLMT4f0NDbrN+EwbPBLA5/Wcgkyx0iCGJqmjq6nN7ilGkS2CQ4DyIWUtHEK9jlzliWZ7LmNEUvEUDkbHCGwdusvAkuR7boOuMAkPB79uzZwy25Vq9e7bjvoosugkajwd69e6f82X/+859ITEzE4sWLcd9992F4ePKimslkQn9//7ivQIMVFR1KEyqaBC1XLEvH6pw4fq32zX8eGp+vRkoTl5uxYYgEwsVe408fV/GcmPSYUHzrfHptBTUhURgJEc445jZ6HXn1NI+8Oz1Mr3hza7RR0cTfw+DHqk12lglbE49hHgbaS8U8Y6XHnnZnaTuONvRyW7hvnDex5dRMck2Y0uah98pxpKEX//lqCS793Se46a978Yu35L+DTN+wZfon02iBlTeL+cEn4U22n2xDbdcwYsL0+MpZTlkrp7vKWTQh/EppohtqRXSo6KxpozB4gpiW/hZRJB7WRAjlJRG4jOneXCAHlLMweFLleY7+RrH3qUW6oxGFCEBSFgOGKMA8AHSU87vyZIuumk5SmgQara2tSE4W130KOp0O8fHx/HuTceONN+KZZ57Bhx9+yAsm//jHP/CVr3xl0sc/+OCDiImJcXxlZWUFZKZJliRfO9N1VtCi12rwhxtXIC5cz7PVXpXDy8cVTZj91Bw4T/h9CLwk8X3cs3vFffdtLSKVCYFR2fZe3ys3AwcxXi2akHenB2EXpHJFuMIksiMy48TmmvABkgrHH5a7wAVFYvO861QHLFYP+he3HQfsVtE5Lx8Ezxb2QfrwdlFlZrkdSVEhEz5uhZxrwgog7lhcMf/mzLgw/sWKEIzn9tWjsWcY24634gv/9xmW/fx93Pr3fVyWPSUrbgIkrfCJ7nL9/8Pdfw9FZfKVs7IREXLaxkL5c2kz73eZJhhsQ4psPdfWT7kmBDEdIx21fOwP8cznDeEHRZOuCm7JyRSmvcMWyoDyIANy0cQYk49QvVbt5RDegjX5KK8n+dqBlCb+x49+9KMzmj1P/yorK5vx87Nzk82bN2PJkiX8XOXpp5/Gq6++iqqqia9vWGGlr6/P8dXQIHeTBwijVhuae43IlC1B+YEvEbQw5447zhUHu6/L4eWcyGQgJAaw24BuOvCdMs9EDoFnjaCdg2ae0UpZJgRDnyT2KAmm+pk5wAQQXiuakHenhxnpAcxCpVMyJLr7suOpaOIzKAFavfUu/8iyzFgkRBgwYBzFgVrXlRlqhMB/UtHJbbMiDFp849zJCwHLZaVJRfsg2vuNLm1+//m5+ND+3kUL8OkPL8DRn1yCjfMSMWqz4/rHP8edzxx02H19WN6BzY/sQklj3+RPGp0O5J0j5qe2wRuwkLRD9b0w6DT42gbZ430sSvGMQuD9B6XAONDiUPG19I2ouyaC8ANs8ueeKYLymwIeh+VFBT/Qz00Q+1Cy6PIcuh6RaRKZUaT2Ughvo+wR5UYb5fVU00lFE3/h3nvv5WceU33l5+fz84z29vHOAqOjo9yVg33PVdiZCqOyUrxPnE5ISAg/Nxn7FUi09BkRZhtCnMMSlIomwc4Vy8T1296abp5HyWHnHw5lLFkLuRICf6C2m49M4UoNGwQjJEXs+fOkFl6sDma8VjQh707v5JkgIgnVPUKVQEUTH0LZtA13AaapLegUWIfmeQuFV+AHZW2eW8vxf4kx0/namy1/+7SGj19ek4XYcMOkj0uMDMGyLFE4ef/k9H+nHaVtaO4zIj7CgMuWOruU775IbHQae8ShNSvUvHzneqzMjuVB83f84wA6pupsXbDFa0UT5pn6i7dPOtaVHDWBTZ7S1SLLGgk/IEruqhnpQU60ZtzvH0EQk6MfEPsTe0zg2YAQk2SaMOWzeRiFqeJAjoomHsJmRbxJvJ4y5sm2r0TgoqiR5T1jrkNpQvZc/kJSUhIKCwun/DIYDFi/fj16e3tx8OBBx89+8MEHsNlsjkKIKxw5IjIr09KCU9nJ8kwcKpOweO67TwQ3zHmFZZswU5a3jo1pzKYweBftuZSiiWjgXZUrXEMIQpIbpfKlVu7+Esx4rWhC3p0eRrbmskdn8oAmBhVNfAjm4x4aO75y7wIXFoqD2g88lWtStwdo2AtoDcCKr3rkKSvbB3hYPWvauHVD3rSPv3Sx6Jh678Tkr3OFVw4JKe21qzPHdTWw8NMvrsjgPqWPfWUl99ZcnRuPJ7++FvmJEbzT6Fv/PMRtvSZk/iVirNsNGKdQpcyAx3dV88P0tJhQ3LVpgqKI1eLciJDSxH9gr1+dKIAtiBAbg2mt4AiCQPhICx9DEidQ3RGBRUSCOKhidFc5ck3KqGjiEXqaK2GABSa7HsVFxWovh/A2SmONUjRJFEUTdjgx6f6W8EuKioqwZcsWbkG+b98+fPbZZ/j2t7+N66+/HunpQqXZ1NTEiyzs+wxmwfXAAw/wQkttbS3eeOMN3HzzzTj33HOxdGlwFlXZvjxT6hA3SGVCyFy5XLyG3jw6UdGElCZT23OJ19GBOqE0WZMj7/EIImEeH3KlVjQEuW2o20UT8u5UNwR+JDwdVpud2wIlT5IrQahs0aUcmLvAOQsSodNIqOoY8oyH8af/K8blNzozGmbBqbYBfO+Fo3x+yaIUZMvWAVOxuVj8uXuqutA7bJ70cX0jFnxULja+Vy/POOP7D395GQ7++GJsWezspooO1ePxm1cjKkSHfbXd+PlbJyZ+clasYB2xtlGg6gN4Crbmv+wSF7c/urRw4pA0ZlXDMmV0YUDk7P8PiDmCVQXl10xB2KAjbJIgiKnfE5Osougfl0YZTkHBmIOIhalRjr0CMXuqSkUXebM2HbGRYWovh5hjey52XRem18JmF4UTIrBgThqsKHLhhRdi69at3Lr88ccfd3zfYrGgvLzc4bDBFCo7duzAJZdcwn+OWYFdc801ePPNNxGsNHSPUNGEOIOtS9K4g8fRxj6nvaHDTpSKJhOiWMrH5aB7yMzPohirckhpQsjE5cAKLcIlE/raXD/fDETcLpqQd6e6SpMeg/i3Y4HZGo1n8ioIDyHLG91RmrAiAFNVMHaWzlJtwjrVKt5jp7/Ahn+fvctXUx8u/8OnKGnq40WKuy+UNx/TkJcYgcLUKJ5JMtXfiSlRzFYb5idH8sefDivATvQ7zsJnH7l+OT/jfubzerwxtqtkLAs2i7HccxZdf/+sBgOmUSxMicIVSyfx7x8bAq/xmpiP8AZykStTJzJ06qhoQhBTwor9OZJQFYYmk7IuqCy6OiuxKE3sucta+3kBjZgd3XXH+TgUNb2qlwgge66BZm53x/a97PqOobgKEIEDc9t49tlnMTAwwBs9n3jiCURGRjq+n5ubC7vdjk2bNvHbzD3j448/RldXF4xGIyoqKvDQQw8F7lmHy/ZcVDQhzrQHP3te4ni1yZgMNmZ9SYyBWckzS3lGbA4O1vU4zljiIia3YSeCDK0eA+GZfDraEdw2d26f6JF3p7pFk1ZJZGCQNVdghMEzLixKduR7zIqmQ2LMWusRW6g/76rm9gBrc+Px/j3nYlG665t0RW2yc4qsFmVTc+WydH6h6A4XFqXgm7I11hNy3soZFF4mxhOvOAsZs6DfaHH8Wd+5cN7kRcv63WJMFJJGwo+QlSZJEJtHlpszYqaNNkFMRmNrO5IkOUuOMpyCg+RCMZ7ahuz4MCxIiYTFasf7LlhyElNjk73X9SkL1V4KMReExzutfXvE/jJDKZpQphpBTGLPJWeaxJElKOGEnScwXj/SxIuPfE+qDwcsQ6Q2OR2lwTcsDgiNxuF6cd3LsmEIYizmaNHEo++V83qDFK+1QZN3p3fsuepGhSqBiiY+rDRxw56LcckicVC7t6YbPUOT21lNS7sIJ0fK7H2wW/uMeLdE+NT/5MpFSItxzyZiXb74PT3aMHGeCPt77q4SHQ5XyJscd/dI+cQAAJPCSURBVLllQx6X4h5p6EXFRNYg2euBggsBqxl494fgCXGz4I0jzeg3jvIujK1jLMPGYR4CDvxdzJdcO6s/j1CBKPH/Gm7qRHSosF4jiy6CmJz+RmHHOqAVF15EELD0OkAfATQfAsredqgu3zwm9gzEzBg2jyJ2WOwfk3IpzyTo1CZyc4+iNGHZeQRBjKe+ewRZkuxiQEoTYgybi1O4fT2zmTrZ0g9odUD6CvHNxgNqL89HQ+Czx+XSFWfEqLkqwgfRJAnFVvRQLYIZr3rHkHen55Um5UbRkURFEx9E6Xhxw56LwXJCitKieVYNU5uwgsWMbC7aS8WYVITZ8s+9ddxei6lMitPd/wBdIn/oMnuBrkHTGd/fW9PF/76sQ1UJvnSXpKgQXFAoVDovHWw88wFMvXLpQ4BGD1RuByq2YzZ8VC426V9YkTG5yuTIs4CxF4jLAxZundWfR6iAkgM00OrI76GiCUFMjlmWaw9E0OFF0BCZDJx1l5h/8AAuX5LCp59Vdk74eU+4xrHGPuRJQoEbl01Fk6AhYXwYfEas2HuQPRdBjIcpvzsHTWTPRUxIVKgeF8rnAg7r7szVYmyiosk4FFcUueG3jBWZWNP7BHbpRHATniaUz2mjjTBagtd9w6tFE/Lu9BCWEWBIbBBKBsW/RRYVTXwPZfPGqvduqhpYdwTjTx9X4dyHPsQX/+8z2FgS5EyUJsmzK5qwYsZz+8SH6S1n585445KfJIohx5rOVJt8Xt3Nx3V5CbNa67WrhM/iK4caYbHaznwAs8ha/XUxL33D5edlHwr/790yXP3Hz7Dp1x9y2epnlUIZs2mhsMg7A5sN+Pz/xPysbwIardt/H8I3lCZsM6kUpqloQhCTo+8VljLWWAqBDyo2fEfYCnWUIW/gAG+UYHuHd2SFKuE+1Y0tSJFEnpaUKOfGEIGPYmvYfbrShPYeBDEW9pqIxhBiJPm1QUUT4jQuXSKu4z45JVu4ZchFE1KajEdp8I3LQe+wGc19Rn5zARVNiNMISxNKk3ypJaj3JZRS7A/0NYnREImTPeK/jJQmPoiyeTMPACPCG9JVtiwWHe7VHUM8HJ1JSw/K/pIuwWyhemo9UjQ52dyPzkEzD3+/eJEo5syEZZlCFVXSOFHRRBQgzsqfXdHk/MJkHv7G1svssyak4HwxNggbQFdgypXHPq7i1l+1XcO4/emDGLFYkRwV4gi+PYPeWtEpqA0BVtw0k78OoTZpy8TYdAi5sSF8Wt81pO6aCMKHiZLthAzJdMgbVITFAvMuEvPmI449jNIQQbhPb70IgR/UJwChZJERrPZclGlCEJOHwGcoeSbhiYBhZk4FROBylmwPXtraj75hC5C5xtlYysLPidPsuXIc1lysYB8dqld3XYTPISWKoglT+DV2isaeYISKJv5An+j6t0ZnondklM9JaeKD6MOAyJQZWXQtTIlCvmxTFaoXL8u33fEH7xC+8ohIBiISMRt2V3U6ckn02pm/RSgWXccax7/Bso6GcjmDZG2e2NzMFLa+2zaKgKo/fFCB0YnUJplrxdhZDgy7dqDzxpEmh5LFoNVwOTjjvAVJk4fWywGuYB2itJH3T9jGgIXijY5gmU4UIUlp4v90d3fjpptu4qrV2NhY3HbbbRgcnPriiSlg2Wt97Nedd945Z2v2B/qNFqRbRbE6OpOCq4OO1MVibC3BonTRTHBqonwxwiXiWj7j40BCkGc4Bhtp8v93435gpBeZsaJo0tpvnFhBTRBBSgPlmRDTkBwVyp0umOHHvtpuIDoNiM4A7Dag5Yjay/NBpUmuw5qrMDXInX2IiYlMgVEKg1ayo69JPusKQqho4kch8MNhQnIYF65HZIgIKSZ8NAx+/18Bq+u5JOxA7vc3rMDPryrG764XoWVvl7Rwuwu38kxmqTJhKAHt6wtmV3xZlqUUTcYrTfbVdPPNTEFSBM8lmS03r89BfISBK0Jem0htEpEAJMx3WW3CfKT31/bwSJR7L1mIG9c5N+abFgqv1AnpPCVGstXwXzQaIHs9ny4wia5fKpr4P6xgcuLECWzfvh1vvfUWdu3ahTvuuGPan7v99tvR0tLi+GJ2oYST+q5h5EqtfB6WIjqRiCAidYkYW0uwIEVYOtR0DsE8Sge97sKsihcPiaIJ5aEFGUmFIovQagZK3+TqaRZmzLb/LOOQIAg49uPZStFEyREliNNQrL8VVwtHrgkrTBPCQn5MELyiNClKI2suYgIkCT1h4nxzoEk+bwxCqGjiRyHwfSHC/iBd7kIifJBVt4jx8DPAc9e7lW2yOCMGN6/PxfkLkxETpkfHgIkXGNwrmiya8QX7h+XtaOgexn7WmcEsywtmZ521KC0GWo2E9gHTuAs/R57JLK25FCJCdPjGucLe4NEPKiYuNGWvE2PD59M+35tyeNza3HikxoTiW+fPQ1Sojn9tnJ/oQtGEDg/9muyz+JDSe5iPDT0j7ucLET5DaWkptm3bhr/+9a9Yt24dNm7ciD/84Q94/vnn0dw8iaWfTHh4OFJTUx1fQZ+vdhqNzc2IlwbHW8wQwUOq3CHfVYn0MCtv5hm12XnhhHCP9uZaLEEVbHYJCSuuVHs5xFzCOnSWfEnMS16ERiMhQ77OaySLLoJwwK5Rma8+hxrUiGksuvbWyEWT9JVibDmm4qp8CGYhz6zkGbHZKJWLJqQ0ISYlYR4fhprLEaxQ0cQf6GvkQ4dGdLmnxYSqvCBiUliWxfXPiVyLyh3OcHY3YB1mSjD83z6t4QUN10PgCzETmKrl1r/vxyX/uwvDZitXbjDLsNkQZtBifnIknx+S81kGTaN4u6TZI3kmY/nKWTm80MTUJttPis7ncWTJRZP6vdM+l5KNctXyDD4yNcw7/34O3v7OOfzPmBSHPRcVTfya7A18CGvdj3CDhndNM29cwj/Zs2cPt+RavVruNANw0UUXQaPRYO/eqd8P/vnPfyIxMRGLFy/Gfffdh+HhyVVHJpMJ/f39474Cne4GYQvZp0sAQsR7PRFERCbLlqR2SO2lmJ8ifgfIost9eo68yccy3QIYYkWDFBFEKEWTmk+A/hYKgyeICWBNTHmyuhXxBWovh/BRlPMFltHaN2IBEgpmZJ0esCj/DpEpsGpDcUopmpDShJiEuCzhZBMzXIe2/uBUwFLRxI/suZrtosuddb8TPkzhVqDgAjEve2dGT/H1jXnQayXsKG3Da3K+xpR0yJVfJvF3E1aU+eOHIoCShZ0z1ucn8G632bJxnvid3X6yjY8Pv1+Otn4TsuPDccksQuYnUpswmy7GYx9Xn1loyhLqATQfAkbNkz7P8aY+nGzp5//2l8rBtvzH48ORnTBNjpCiNJGr8YQfh8HrQiENd+GqTNEx/WmFHDxJ+B2tra1ITh5vq6fT6RAfH8+/Nxk33ngjnnnmGXz44Ye8YPKPf/wDX/nKVyZ9/IMPPoiYmBjHV1ZWFgKdgSZRNBmJIpsMBLtFV1uJo9GCiibuE1b9Hh8r4s5ReymEGjCrId7cY+cWXYrShNnFEgQhrlUbu4eRp5GVJnStRUxCSnQo8hIjuMXhHpbTqlinK5ZUwc6YEPhdFR387Ifl6eYmUB4rMTGhaaIpO1/Tgj2yjX+wQUUTPwqCr7YIuWFaDNlz+TwLLxVj+cyKJkwiefeFQnp8/+sn0NI3xYWTeRjob5qxXHlXRSdKW/oRbtBiaabIIblo0RTZHW6wRS48sOLPwboePLVbhGv/4urFCNVr4UmYtRlT6Rxp6MUbssWWA/bvEhoDjBqdxY0J+Ode8VrbsjgNcREG1/9wFjA/LH+I0Ebev9EZgAyhStgaKwrWn1ZS0cTX+NGPfnRGUPvpX2Vl4lB/JrDMk82bN2PJkiU8E+Xpp5/Gq6++iqoqUWA+HVZY6evrc3w1NIjfnUA+wAjvPsHnumQKgQ9aUpxh8POpaDIzbDakdh/k08HsC9VeDaEWeeeKsf3kGKUJFU0IgtE5aIbVNIhUSTgXIIEsQYnJuVhuzHyduUfEyUWT4U7AJFvKBjOy0sQYmYHvv3SUz69bncUt1QliQhKEWitPasFuVogMQqho4uvYrEC/OAA+ZRQH2mTP5S9FE0koG/rlrhg3ufO8AizLjMGAcRQ//FfJ5DZdPaIQwYsCYXFu/Rksq4HlgDBuWJuNl+5cj9e/dTaulq2pZsvK7Dhub8X+Dv/21H7e9XHFsnScuyAJnob9OexDn3H380fwtSf2oUI5vGGe0YqUu6dmwp8fMFrwuqzquWlM+LtLKNZc0ZlkUxMIpBTzodggFFIsW8goq7AI3+Dee+/leSVTfeXn5/MskvZ2OThUZnR0FN3d3fx7rsLyUBiVlZUTfj8kJIRnnoz9CmRYB/RSqyiaRBeep/ZyCJ8IgxeffRVtdCjhFt1VCLGPYMRuQELeMrVXQ6iFskftqkQG2XMRxDgq2wed1lzhiW5f7xLBxRdWiHOMnaXt6LWFAaGx4hu9ojkyqJH/DT5qC+fFyMLUKNy31X2nEiL49idJUj+OVQbna4iKJr7OQCtgGwU0OpQOCnsgsufyE6/vTNlD/9S7M3oKnVaDh7+8HCE6DXad6sD/vFPKR4vVNv6B3VXONzRWHHCDR3ZWYH9tD1do3LYxDyE6LZZlxfIubU/ALL4UG66eYQsPU//vy733wfxflxXxUHhmr/XxqQ5s+d0neHyX8u+TJ8bu8UUTVoz6sKwdP/pXCc9zKUiKwLo8oepyGUcIPAUTBgSyWijOWI+U6BCYRm04UCt3txE+QVJSEgoLC6f8MhgMWL9+PXp7e3HwoOjkZnzwwQew2WyOQogrHDlyhI9paWle+fv4GydrGrFYEu+lhnyyFApaHPZcJ7EwWVg71HYNUZHZDSxN4r2lzJ6NwjT5YIcIPhTf/e5qLJBVW8ca+87c8xNEEFLZwYomZM1FuEZRWjT/MltteOtYi1NtQrkmDnuuTzrFnu2hLy31uPsHEWCERsPGMwyBkL5qNHQHX0MHFU18nT5h8WGPzkBzv4XPyZ7LT1i4VYwf/QromtjSZTrmJUfi+5uF9clfPqnBzU/swyM7TrOX6q4WY7x7UuUPytrw+51CIfHgF5YgXfZQ9jSKRRfjh1sKkRzlvaIf+9Bn3RLbv3ceL9ZYbXb8v3fLUNLYB8Tljf/3kvnrJzW49cn9eLtEbMa/elaO+0UjR9GEQuAD6fBC6qzEOfOFKuqTig6VF0XMhKKiImzZsgW333479u3bh88++wzf/va3cf311yM9PZ0/pqmpiRdZ2PcZzILrgQce4IWW2tpavPHGG7j55ptx7rnnYunSpSr/jXyD3vJPoJXs6DJkADGeUSYSfgjbd2h0gGUISfYuxITpuaKUdQUTrtFdJQq6lZo85EyXnUYELspBcH8TihJ0iI8w8EYeZjlLEMFOVfsgchWlCRVNCBe4ZqXYm758sBF2yjVxIheOaqyJSIw0YEmGcLIhiKnQJIjGYKb4Y/m/wQYVTfwkBN4anck3z4zUaFKa+AWrvw4kFwODrcBTVwDl7zJZg9tP8/Wz8/Djy4qwoSCB335uXwNMo9ZZF03+skt0CbMA9WtWZcJbnJWfwL1Fr16ejhvXuml7NUNyEyPw+M2rceWydH6A85+vlsCmFE3G2HPtre7C/9smcg++uCIDf7hhBb5ylryxcofWEjGS0iQwUP4fu6txVp7o/KWDC//ln//8Jy+KXHjhhdi6dSs2btyIxx9/3PF9i8WC8vJyDA+LzhmmUNmxYwcuueQS/nPMCuyaa67Bm2++qeLfwrcIa9rDx97ktWovhVATrV6EWLMic1clitJEh/yJ5j6VF+Y/jDYJT/Hh+EUeU/kSfkh4vMNCRtNT49jzf1oRnP7hBHGGPZcjBF5WZRHEFFy5PJ07T7Drt1prorgz2JUm7BxKtudqtCdhbV487TsI93JNNC0oawm+7EIqmvg68pv7UKiwBIkL1yPMQBI6vyAsFrj5dSBxoQhqf+564OVbZ2Rx9W/n5OPpr6/lBbPuITPePyGyFjiKisWNokm/0YL9td2Ooow30Ws1+MvNq/HI9Sv432Uu+fHlRdwSrKSpD9uaw8bZc5lHbfjuC0e4GoV5nz785WU8b4XZok0Ky6dhOUNjYV0rNR+LeR55+wcELJtGGwLYLFgYKoolFMjqv8THx+PZZ5/FwMAAD2l/4oknEBnpzB7Kzc3lNn2bNm3it7OysvDxxx+jq6sLRqMRFRUVeOihhwI+p8SdLKycgcN8HjJPDi8mghe5+4xlMazIFj7zh+upyOwSdjuie0v5NCRrhdqrIXzGoqsKG+eJQ77PKqloQhCsaJLvUJpQ0YSYHuZs8Y1zxe/Ky9Xy2VmwK00G24BRI2zQoNmewBtbCcKdhtICqQXlbaQ0IXwN+UC8K0QoAVLJmsu/iEwCbnsP2Pg9QNIAJ16dcQgZO8z/8hoRdP7cvjHPoWR0uLGJZJ1rozY78hMjuCojkDdMP9hSyOe/3m92Wt6NmvHu8Ra09BmRHBWCX35h8fSdFnW7gd8WAi99bbxiaP9fAbsNyN8EJJE9V0Cg0TheT9m2Jj42943wQhtBBDvN7Z1YBKFwTFl6odrLIdQmUbZK6azA8ixS5rnFYBuirD2w2iVkLlyl9moItVFsh7oqcbZcNDnc0IsBo7BnJohghP3+t/aPIF9qFneQPRfhIt++YB6y48NxYlg0dAS90kQ+g2q1x2MUOqzLo6IJ4SIJ4n2XZUuVtZLShPA1uir50KwTRZM0CoH3P8LigIt+CqSvFLdrP5vxU123Jotnve+u6kJ91zBgGQH6G91WmnxQ1s7H8wuTEejctDabH+TUmKJgkkJEgaOvAU/uruXfZ3Zc4Qbd9E9U8rIYS98EDj0FnHwd+Pwx4NDT4v51d3rzr0GotDmIHqpFuEHL62RNvaQ2IYi2mhLoJBt6pBjo42dgZ0gEqNKkAivkokl52wAGTaPqrssPGKgVeSZV9nQsyROKciKIiZebn7qqkRUfzjNumBr682qhDCeIYKSqYwhxGECMNDwjO2oieGFZpw9cvRgNdpFPOdpVOyOr9IBBVtrU25O4e838ZKfqniCmJMGZaVLXOQCj5TTnlQCHiia+TpcI6q62i4upVCqa+C+5Z4ux7tMZP0VGbBhW54huiX3MXkuRmYZEA+EJLlurfFQuiiYXBEHRhFmC/c8XlkCr0aDGKv6+//33N7l9iEGrwQ2u5qxU7XTO37wbePFmYNsPAWMvwALm5l/ipb8BoWbRROqu4l1KjPpu+YKNIIKYoaaTfOwImZuMKsJPMqA6K5EcHcr3KexM4lgjqU2mo/3Ufj7WGwoQE6ZXezmE2iiKcblhbm1uPB+ZxSxBBHWeiWLNFZMF6Ml1g3Cd8xYk4Zw1onFVNzqI/h5xBhKU9NaOyzOZa9t0wo+Jy4Fd0iJcMiHZ3oOKtkEEE1Q08WWGuoCRHj4tN4sKeToVTfyXnI1irJ150YSh2F8cZfYX3WPyTFwM8jra2IvOQTMiQ3RYI1+QBTqL0qPxxxtXoj8sc1wY/GVL05AUFeKaTV5PLaDRA+my73hEElB0JVBwIXD5bwENZQ0Fqk0G6/hkUNGEIABbpzjQG47ybh4W4WdKE2Z9aRlx7FEo12R6dLUf8XEgYbnaSyF8LNOEodjnNtLegwj2PBMKgSdmwQ8vX4EuSTSdfrLvAIKVxpoyPjLlzdc25Kq9HMKf0OohxYqYgEypA2WtwZVr4oInDaG2yoR1VdTL1nGUaeLHZJ8lck3Y4XtfExCTMaOnWaYUTVgXZ3K121Lld0rExvO8hUkw6IKnbrplcSrQtArYswdfyrOgJzwN/7F5oWs/XPWB8//w+meBxv1AztmAnoqYwdA9nb1AFE0a6OCCIBDaL4rOduWwnAhuIhKB0BjA2McbDFZkx+LtkhbKNZmGzvYWZPYfASQgfuWVai+H8CV7rqEOYKSXVK4Ewdw2OgaxTFKKJpRnQrhPmEGLvugcoK8HleUlwJbLEGz0Gy1oqikHax+dt6AYGwpEbhZBuExMFj/HTJc6gy7XJHhOTP0RWZ7NuiqqO4b4ND2WDmn9ltBoIG2ZmJe9BZjF/6m7LMsURZPSln5YGw+JO5MWumzN9dYxsfG8Ymk6go540Rm9LLwbj964ktuIuESlbM1VcIH4f5x3IRVMAh3lwqy/EXkxQsVV1zWz1yxBBBLxI8IWMjzNxaIzEdgwlevYXJNssUfZW93FL9KJidn11jPQSnbUaPNw7trVai+H8AXY/jJcPsjqrXMUTRp6qGhCBC8NPSPIVey5qGhCzJDIjEI+Wjsq0DloQrCx7XgrUm1tfL554zq1l0P4a9EEQIbUhXIqmhA+Q6dQmgxG5fEAYq1GwlL5wJzwU5g6gfHuD4CHCoC2E24/RWZcGOIjDBi1WmGr/ljcmXeuSz97sL4HLX1Gbs21aaGwfAsqkgqdFmnDLgZrjpqA2k/EnBVLiOAgPB4IE1LuBfoOPtZ3UxA8EdyYLKPItDXzeWJusdrLIXyFxAVi7KzkjR35SRHoN47isY9kC1FiHK19RoTXvs/nuqKtkFy0VyWCgLgcMfbUOaxB2/pNQRe6ShAMu93O7enyqWhCzJJIudGHFeDeOyH/PgURbx1pQLrUxeeGBLLXJWZAjLC5Z0qTqg7KNCF8TGlSaRUh8IszYvhhN+HHrPgqkFwM6MKA0RHg8z+5/RTs4npZZgwKpQbojV2APgLIcK1L8c2j4rDrkuIUhOqDMIMjewOQsgQwDwC7f+/az9R9BpgHgcgU8bNE8CB3T2fZmhz2XOwCjiCCleaGKh4COGrXID5DPigniJRFYix9AzqNhB9tEQ0Kf/u0Bs29VGw+ncPVrThHOsrnWeu/pPZyCF8iVi6a9NYjLlzvuO5rJLUJEYT0jVgwaDI7lSZu2FETxDjkglu+1IK/f1aLF/c3wDQaHMVopqypqa6AXrLCzvJZo1LVXhLh10WTLrT2G4OqmYOKJn5QNDkwIMK6z8oLjtDugCa5EPjmbuCrr4rbx//FfYtnkmtytua4uJF7NqAzTPszFqvNkWdyxbIgtOZiaDTA+f8p5nv/DAwKBcGUnHpPjPMvET9PBN0GO9HUwMdB0yh6hsluhgheuupO8rFNmwrJhc8dIkhYdiNgiARajwFlb+PiRSlYmxsP06gNT+8Rdm6Ek/6qvYiQTOjXxQPpK9ReDuFLxGaLsbeeN0kpahPKNSGCkYbuEaSiB2GSGdDonEVFgpjhNV2e1ILK9gH84F/H8O1nDwdFMxw7/8mFaJyVWOFRE4SNs4THiiZZmk6wlw1zQgoW6ATQV7FZgW4R8r29PYqPZ+UnqLwowmOwQPGkIsAyDBx7cUZFk41y0aQ/Xbb8moaPyjvQOWhGYqQBG+cFcfjXwkuB9JXi3/7os1M/ln0ilL8r5gu2zMnyCB8iQYSy6nurkRotMmzo4IIIZkZayvnYHUYHF8QYIhKAdXeK+Yf/A8lux1UrRHPGqbbg8j12BUtbGR/7YopEJgxBnFE0EcXG7Pgwx+ExQQQbTGGVp5FD4OPyAC05bhCzyTWVECMN496z46HXSth+sg1vyC4cgQrLs31+XwMKJPnvmShn0BHEDPcnGdzmzY76ruA5E6Giia/CNstWM+zaUOzriYBGAlbnCn99IgBgF8lrbhPzA0+4/ePrsyOxTisuuv/jYBwe/aACrx1u4h+MY+kbtuAHLx/F8/vq8eIB0S3/hRUZ0Gs1wf1vX3SFmLcIe4xJ6SgXr0VtCJC/aU6WR/gQysays8IRyEpFEyKYkbqFAtYUQxYZxGms/xYQEg20nwAaPkduQgS/u7ZrSO2V+RwhveJ1pEkSHusEcUamSW89H2jvQQQzDT0sz0QumlCeCTEb9GFArAiy/s5SCd+5QFzj/eSNE+geMiNQeelgA0629KNQ1zo+g44g3CU6gw/hGEE0hoNqXxLEJ6c+Tqe4oOqPyIYdGhSnxyAqVK/2qghPsvTLQmrcUepQFblKaMXbCIMJnYjF+50J+M37p/DdF47gv1477iicWG123P3CYbx4oBE/eqUEO0rb+P3XrhYbhqAmdakYW0umftypbWLMOwcIifT+ugjfQrlA66pAVpzS7Rk8GwSCOJ3IAfFZpU2iwwviNMLjgZwNYt5+ErmJEY73TLYfIQTMAzrRKFQEUVlFai+H8DUU+6GeOq52JnsuIphhCqs8Rwi8UH8TxOyv6ypx16YCLEiJRO+wBW8fC0y1Sb/Rgl+/JxTi58b3iDupaELMFEM4EJ7gyDWpI6UJ4St5Ji1aUdFbkR2r8oIIjxMaA2StE/OqD13/Oeso8NGDfCqtuwM3rsvB1cvTuRrpuX31+OmbJ7g/5/9uP8Utudj9itMUs/VakCLs3oKaVDnQvbMCMA9Nn2dC1lzBCQ+clABjHxZEiyyTYJKiEsQ4zMMoNIlCc1juGrVXQ/i4Oi8tOhQGnQYWq53C4MdQ2T7o6JyOSqeiCXEaMXJjk2UIGO52FE2oYYMIVqXJIknOxaLDXsKDRRPmuvHFlSKj4b0TorE00Pj9jgpuzZ6fFIE0i1AvIoleR4QnwuA7g6qZg4omvkpXBR9qkT5Onk0EGAXni7HqA9cebxkB9v0Z6K4CwuKRcMG/43++sASPXL8CD395GXeeYqGrdz5zEI9+KApv7P5bNuTy+e3nMD9PAlEpQEQy92NEe+nEjxnu5hYjnAWb53R5hA9JueUDjEK9OOQKpg0CQYzFWL4doTCj0Z6I1AVr1V4O4YskKEWTU9BoJMfelSy6nJxq6kSW1MHnEtlzEaejDwUiU8W8t87xGmJFk2AILCaIsXR092Kl5pS4keNahidBuFI0YWwuFu+1n1d3cUvzQGvQeHJ3LZ///JJMSINt4/dpBDETYsS5SAYvmgTP3p6KJr4K64AHUGpJ4WNmHBVNApKCC8RYs0soSKaiYgfwq1zgvf8Utzd+Fwhxqka+sCITP9xSOK5j4lvnF/D7f3plMY7/bDMuXyqKcMQYtUnrsYm/X7kDsNuA5GJnMCcRfMh2ADmgogkR3Iwce52PH2vWITYiRO3lEL6I0gksW8w6c03ofVOhq/4kNJIdI9ooICJJ7eUQPh4GnxEbxhuihszWgPbdJ4jTYUXClN7DCJFGMRqZRvZcxOxRfofkokleYgS36Bq12bGzLDDUJk29I/jLrmrc++IR/ve6sDAZG+N6xTej0oDQaLWXSARE0aSLn4kESzMHFU18la4qPhwZTuRjVrzw0ycCjLTlXDECUz/QdGDqxx5/GRg1isevugVYe8cZD/nGufn44gph6Xbtqkz8xyXOLsbIEJ3n1+/PpE2Ta6LkmZDKJLiRu5KSzA18bOkbgXnUpvKiCGKOsVoQUbuDT0tjzlV7NYSvF0366rmdW26CrDTpDJ5utOkwtZbxcSgqD/w0nCCmCIMP1WuREhXKb1LTBhFMdAyasNYurtGk/PPp/ZKYPYrKgp2zjZrHqU3eOyFn5/gxFW0DuPIPn+KX75TiaGMf9FoJP758EVf/jrNQJYhZ2nNlSJ0wWmz8fToYoKKJL2IaBAZEINVhuWhCSpMARaMF8jeJecX7Uz+26ZAYr/4TcMXvhHXQaUiSxO24Prj3PDz0paX8NjGd0mSCoonVIpQmDMozCW7kDWZ4fzVC9RqwPGPy5yeCjrrPYLD0odMeDWMaWXMRkxCRIBo7GF2VyJHD4OvInsuBvkd0uNLhBTG90kR40Dssunpo70EEVwj8Bs1xPtcWyNfKBDHb91aWKWuzAB1l44omO0vbcbypD/7IK4ca8YOXj+KGv3yOriEz5idH4t825uGJW9ZwNY2zaEJ5JoRniia5uu6gynqlookvIksGR0MT0I9IRIfqEBOmV3tVhLcovEyM+/8GjMjyydMxDTg/8NJXTPl0rFCSnxRJBZPpSJWVJm0nAJt1/PfqP+fh3whPADJXq7I8wkeQN5hSR7nj4IK6PYmgo+kgHz61LUZeMkn7CVfC4E8hj+y5xsE805Nl1WJkxiK1l0P4KrGy0qRHBGBTGDwRjLS0NmGxJDIZkEcKV8IDsLORtGVi3nKUD4szYrB1SSq3svqPl47CNHramYCPc6C2G/e8eBQvHmjkoe+FqVF48RvrucLknPlJ42z/qWhCzJo4kZOcLbUG1ZkIFU18uGgyGJkzbrNMBCjFXwCSigBjL7D79xM/poXlbtiB6AwRYk7Mnvh8QB8OWIYddngOSt8U4/zNQg1EBC/JRWLsrkZ+rC6oNggE4aBHHFzU2NIcORUEMWXRhClNZHsu1olmZTK9IOdU+wAKJKEkD00VGXQEcQZJ8u9Gw15uc+do2KDiIxFEGKv28Pyn9pBcIDpN7eUQgdY0KRdNGD+/ajHiwvUoax1A8f3v4bo/70HHgJdth1iWLStmnHwDOPYif693F5Yn8attQjFz7oIkPHztMrx81wbERRjGP7C9VIxUNCE8tMePsfUhFgNB0xRFRRMfLpq0G4Q8O4usuQIbdih/4f1ivuf/gH4ROD2O5kMuqUwIN//dU4rPDIO32YDSN8S8+Gp11kb4DpEpQFgcYLdheXg7v4u6PYlgLZrU25OF1J8gpg2DP4X02DAYtBqYrTaeBxXslLf0Yr7UJG4kOTPnCGIcmWuE2oTlHZ583ZFrSQ0bRDBh7RAOC0NxVGAmPJwne1rRJDEyhNubM3cXpjjZW9ON+14p8VzINctP+fwx4F+3A3+7BPj9SuB/0oFHVwMvfhV4hd1/8ZlNnNPwUXkH9tf2IESnwa+uWYJrVmWemWFrHuKNf5yUxZ75+xDBiyHCEQY/T2pCTZBkFlLRxBeRJXT1kgj0zoyjEPiAZ+GlQNY6YHQE2PmzM7/ffFiMVDTxfq5J435goAUIiXbmzRDBLeVmSjAARVpx2EUHF0SwYe12Fk1yE6mRg3CtaKLVSMiW1SZVHSpcWLF8ss//BHz8EHD4GWBU3cDKrrpShElmWDQhQu1KEBOh0QArvyrmh54ek2lCew8ieDD0C3s6Q1KB2kshAgnFnqvt+Dh77gsKU3Dk/kvwr7s28AD1HaVtePlgo/vPz55z16+BvX8GhrvFbVYU2fZDoORFoSDsrgKsJkAXJoo44YliPU9sEdnGrvwxNqfK5JYNuUiLmeS8sJ09xg5EJAORsl0XQXhgnz9P04zqDtd+X/0dKpr4GqzLvekAn5aPChsmsucKkoPZLQ+K+dHngIb9ExdNMlbO/dqCrWhy8nVnIUsXos66CJ+06Mqxigs4KpoQQYXVAk2/uHA0RmYh3HBaFxtBjCV5kdMOYqgLC1Oj+M3Slv65X8uBJ4BtPwI+/CXw+reA566fkQWGp7DJe42BmIVk/UlMzfKbAEkD1O9GHoSlW3PvCCxWm9orIwivM2C0IMEsfu/jMslSiPAgCQWAPkK25xbuLgoajYRVOXH43sXid+5X28rdtxY9/grwwS+Ad38A/Hoe8HAhcPI1QKMHNt0HXPsUcOu7wL8fAf6zGfjGx8Cdn4ru/aF24NQ2l/6YN481czuxqFAd7to0RWGRFWMYirsGQXjIQnSerDTxmCLLh6Giia9Ru0vYYIREY4dJHNQpsmwiwMlYBSz/ipg/uVVINyt3AiM9TlmlIiklPOtrqhRNWNFSKZosukq9dRE+WTRJHK5x+IoHwwaBIDh9DZDsNhjtekQnZqq9GsLXicsRnZy2UaD0dSxKi1anaMLeo/f/VcwLLhCHJFUfiAOMB7OFHeqcLseO6N7S8Q0bBDEZ0enAvIv4NL5xB7dfYWd3rHBCEIHOqbZBZEvCEjc8ZZ7ayyECCdawoHwGj7HoGsvt5+QjJkyPzkETDtb1uPf8isV3aAxgt4pCCCuAf+lvwKYfCevvnA1AfJ5QFTJYZs+y68X8+L+m/SO6Bk14+H1hX3fneQWIDT8tw2QsbSfESEUTwlMkiaLifE0zhs1WtPWrq+KeC6ho4muwrjjG0i+jslccymVSpknwcNFPgMhUwGoW0s1PfgtUfSi+lzAfCI9Xe4WB1xHLNjJsQzPQJrJjWEe1IVIcshDEmKJJeJ/YoA6YRtE3YlF5UQQx93kmuUmRaq+G8AeWXCvGkpdRlKaS0qT2E24Rxj/PWWfnV18RtpumPvH10YOAce7W1D5gQr5VFN6jcshqlXCxmYqJ0bsqHK4DpHQlgoGKlh5kSJ3iRlye2sshAo20M8Pgx6LXanBhUTKfbzve6vrzMiVr5Q4xv/kN4J5SoSq5a/f0zZiLrxEj+/mR3gkfwpSGtz99AKt+sYN/FrAsllvPzp36eR1FE8ozITxEosjkW6gVOczVnYFv0eW1oskvf/lLbNiwAeHh4YiNjXW5C+v+++9HWloawsLCcNFFF6GiQuR7BAXs0LbsbTEt/ioGjKN8TpkmQURkMvDdEuD2D8Tt+t3Awb+LeeFlqi4tIDGEi2KUojZh8lnGgs2Anl53hIycaaLprUNulLDGqOuigwsi+Iom+RQCT7hC8RfZUS9Q9xmKIwccmSZGi9M/3OsoKpOl1wGh0UD2WcD3jgN3fCT8mFnINss5mSPKWwewSCMsHvUZsqc6QUxFgtxh31XtzDXpJqWJv0JnI67T2lAFvWTFqGQAotLUXg4RqLkmkxRNGJuLU/n43olW/PLtk/jaE/u4bdyUVO0Utl8x2eLPYIpBpiqRm++mhD2GXW+yxln5PPB0XtjfgO0n2/h8fnIkfnf98qktc5niluy5CE+TJIomqfZ2hMGIajUyCwOlaGI2m3HttdfirrvucvlnHnroIfz+97/HY489hr179yIiIgKbN2+G0WhEUMAObJmdQeZa1OlFV0VipIH8w4MNnUF0lzErLrsNqNkl7i+6Uu2VBXiuyVGy5iImJiJBBOgBOCtadL5RtycRbEWTBnsy8qhoQrhCTAaQczafJte9g9hwPfcFr2yfo2603gag9C0xX3Ob835ml5G+Ajjrm+L23j8BVtGg5G3qG+qQIvXCxopJSu4LQUxFfL4Yu6scRRPae/gvdDbiOkOtojA0HJHptDAiCI8XTY6JwsIEnDs/CWF6LZp6R/CXT2rw8akOPPmZ2A9PSumbYiy6QuTVuouiNtn35zP2JsPmUfxup3hd/PSKRdh+z3k4e17i1M830AIYewFJ6zjoJohZEx4PhIvfvQKJhcFT0WTG/OxnP8P3vvc9LFmyxOVOikceeQQ//vGPcdVVV2Hp0qV4+umn0dzcjNdek7u/A52OMjHmnYvGHrEpziBrruCFfeAqRKWLC33Ce0WTQ/8AeusBfTgw72K1V0X4GnKX0ApDEx/p4IIIFuxj7bmoaEK4SuFWPkj1n6MoVeSanJwriy524MC8xHPPmbi7knmHh8WLz/yK9+dkSf21h/nYF5oFhJDNHeFiYDFjsA350ULl2kB7D7+FzkZcg2cGdgsrQ8RNYz1EEDMNstYahFWnvMc9nTCDFpsWJo2772+f1WDINEWjBcuiZRRdPrN1rfyqaO5gCphPHuZ3sVyVbz17CFc9+hk6Bky8gH7juhzXnk+x5mLqWl3IzNZEEBMhF+HmSc2oIXuuuaOmpgatra1cdqoQExODdevWYc+ePZP+nMlkQn9//7gvv6WrUowJBQ75dRZZcwUvY9UO7MOXOm28A8suYR0YPfIGff4lwraLIMaSvpwPi+zifZoOLohgYbRTvDc2INnR7UwQ08LUsozWYyjydhj8Z78DXv+WUOYyL/CDT4n7N3xn4scz+80lXxLzyu2YC7RtJXy0JJHKhHARdngWIQ7tFug7+FjbFfgdncTMz0YC4VykvG0ACRbhlR+eSiHwhBfQ6p0NFVNYdH1z0zycPS8BT9yymiute4ct+OdeYbN5BiwjbVjO4UmVM1PcJSoV2CqKJfj4V7zo8b/bT+HtYy2okJW6P9xSCIPOxTMh5e+WQvsOwsMkijD4eZomVHcG/r7EZ05h2aaAkZKSMu5+dlv53kQ8+OCDfAOhfGVlZcFv6aoSY8I8h9JECf4jgpDE+U75qCLXJLwTBve1N4Hs9YBGD6y9Xe0VEb5Ixmo+ZA2f5CMpTYhgQeoVXXij0dmuX6gRRKocOtrXgGUJVu8VTZoPA9vvF/kkT10BPJQv8krYBd1UqtGCC52doZPYc3iKvhELFo0c5PPI/LO8+mcRAUa8UJvkQhwi13YOiU58IuCZydlIIJyL7CxtR7Ykcht0CbJFHUF4GqWwMUXRZElmDP75b2fhgsIU3LVJvBc/vqtm4nw2plxlhCfMTk3KGjrmb+Zq2f6DL+HFAw387geuKsY7/34OLlvqRsZP4wExMtt3gvCS0qShexjmUaGGDVTcuvr90Y9+BEmSpvwqK5MtpuaI++67D319fY6vhgbxxuJ3mIeB/iZH0aShRyhNKAQ+yLnheeDr74kAU8J75J4NfH0b8N8dQO5GtVdD+CLyhjNmoJKHnlHRhAgKhruhM4uDbn2CyFojCJe75GVrlaU6cZhwsrnf8we+n/6vGBPmA4YoYcvF2HjP1Apd9lnPGiV664DuaniTsuo6rNeIgnv4UsqnI9y36Eo0N0IjAUNmK9oHTGqvivDRs5FAOBf5oKwdOXLRBHG07yDUC4MfyxdWZCAjNozbZT2/Ty6QjIXtJRix2bNbF8tCKbyMT9tKdsJitXO1y1fX52JRulDtugTbazXuF/PMtbNbE0FMojRZoGmGzR74Kli3Esbvvfde3HLLLVM+Jj9/Zh0BqampfGxra0NamrOCym4vXy5L/CcgJCSEf/k9ygVbaCwP12nsETL+LMo0CW6i08UXMTfMJLSNCJ5g46g0SAMtWCzV4mBvKCxWG/Ra6rwnApjWY3yosyUjI3mawEmCmKiTs6cW2eZKGHQL0G8cRW3XMLe58Agdp4CTb4j5df8QF3HMn9w04DwQmQzWCcoaUmo/Aao+cOZHeIHBkjehk2xoMuQjw4t/DhGAyL8vup5qZMWvRV3XMA9dTYkOVXtlhA+ejfj7uUj3kBmH6ruRbWgXd8RT0YTwsoUoK5qwAsM0ZwDseo+pTX782nH8eVc1bliXjRCd1vmAHqVo4mLeyBQ83ZKJmwFkD5ciBGZ87yJxQO0WbC/E7MJYdgtz1SAILyhNsqVW6DCK8tYBLEiJQqDi1mlPUlISCgsLp/wyGAwzWkheXh7fHOzcudMZmtjfj71792L9+vUIeBx5JvN4F54j04TsuQiCIHxKbbJKV827Kpp7xfs0QQQszUf4cNyei/wkCoEn3ES+UGd5HovlDsmjDb2ee37m+Q07sHArkFwEaLTikJllULnSBFFwvhiPPi8UK8qhh4dJrBdh863pzmwCgnDHngvdVciXi401QeAf7i/Q2Yhn+ai8Hcn2HkRJIyJvkoLgCW/Bcj7Y7xgrLAwI+8PpuHZ1JlKiQ9DSZ8TGX32Iu58/jEElGF5RmsTNrmjS1DuCX+wxod0eixDJgkfPA1bnxrv/RIo1F2teoRB4wtNEZwCGSOhg5cpAVjQJZLzWIltfX48jR47w0Wq18jn7GhwUIUYMtpF49dVX+ZzJV7/73e/iF7/4Bd544w2UlJTg5ptvRnp6Oq6++mpvLdN36HbmmXQNmTFisfLrvfRY6iQiCILwpaLJ+hARjE0WXUTAI9sWHLflIzeBiiaEm6TKao/WEizLiuXTI54qmtR+Bhx/mV1BAOf9cGbPUXCBGJsOADt+CrzzH/A4pkEUDovDC/2Sqzz//ERgoyiTuiqRlyh88qs7nNfShP9AZyPT82lFJxZqZEuxhHl02Et4D32YaLZQ9hMuwJQl/3HJQm6V2DFgwutHmnHvi0dgY510SqbJNEoT1hz99J5a3Pr3fbjmT7tx8W8/xtpf7kDhf7+LS3/3CX78agnMVjuqwkTTycURcmO1uzTuE2Pmmpn9PEFMhSSJ/GWea9KEsgAvmrhlz+UO999/P5566inH7RUrVvDxww8/xKZNm/i8vLyc+20q/OAHP8DQ0BDuuOMO9Pb2YuPGjdi2bRtCQ4OgcOAIgS9Ao5xnkhIVOl72RxAEQahHpgiDL7aLDSwVTYhAx95ylB1Jc6XJjZ6yVCKCB8USovMUVq0Lwd+ZqKPRA0UT6yjwzvfFfNUtQlky06LO0uuAthNA23Gg+mPAPAQYPPe73luxB7Ewo9GeiPzidR57XiJIiJetnUZ6UBQjskxIaeKf0NnI9JxqH8BZUqO4oRxoE4S3WLBZfPaffA1Yeq1LP3Lt6ixcUpyKfTXd+NY/D+G9E2149MNK/LuL9lwPv3+KP34iSlv6USqLXtKWXQjs3QXU7caMcOSZiGtXgvA4iQuB5sM8DP7NtsAumnhNafLkk0/ySurpX8qmgMFuj/UBZR0VP//5z9Ha2gqj0YgdO3ZgwYIZePj5tT1XARrkgzgKgScIgvAh0lcAGh0SrW3Il5qpaEIENsZ+SLIKtlpXgPRY2pMQbhKZAkQkAXYbVoaKk4ATzf0wj9pm97y7fwe0nwDC4oAL75/587Cg+C8+Dtz5KRCTDVhNQM0ueJKa45+L0bAQkaF6jz43EQSwAl5SIZ8utYi8Syqa+Cd0NjI17O/O8noWSrLSJHmR2ksiAp1FsmKrcgdXhbpKTJgeFy9KwS++sJjffvTDCthYhsg09lyPflDhKJh86/wCPPaVVXj29nV46zsbseOe83DZUpFddFFRMnJXXix+qH6vaBRxB8sIV/hysigEnvASSeKzaJ6miZ+JDClWdQGI15QmxMwzTRrKxUEc5ZkQBEH4ECFRQP4mvrneqtmLsvYZdjcThB+FwLMO+cXz86FlfgQE4a58n/lpV+1E2sgpxIRloW/EgrLWfizNFHZdbtN6HPjwQTHf/D9AeLxn1rngEmD/X4FT7wELL4WnGKg7xMeQzGmC6QliMgouBDrKkNXDCnCX8cMJi9XGg4kJIlBo7Tdi2GzFQgMpTYg5InUJEJcH9NQAFe8Bi69x68evXZWJlw40oLK2DhqLKGavebQc6UntmJ8cybMA48MNiA7Tc/ui3++s4I/5r61FuP1cWUU4hkdvWMFD37Piw8A9wAxRgHkA6Kpw7/XArHVto6JxJSbLrb8TQbilNAFQqG0BLMCptgGsyI5DIEK7LV9gpAcY7hLzeKc9VxYpTQiCIHyL4i/w4TLt59hd1QXTqFXtFRGEV/NMTthysWlhstqrIfzcoktqPTb7XBPWbfnanYDNAiy8DFh2g+fWOf8SMVa8LwonzLJrljDlePKQOCSZtzQwg5uJOWCeyN4Jq/8YYXoNRm12hysBQQQKVe1DkGDDAo1SNCGlCeFlWMNEsaw2Ofn6DH5cwndZkUPq4Ldb7XHoMEo42tCLlw824qFt5fjRKyX45j8POQom9168YMKCifJ885IjhT0/U8KmFDubRWZkzbVG/B0JwhskiaJJvtTE37tZ0SRQoaKJL9BeJsboDCAkcow9FylNCIIgfIrCy2DX6FGkaUCapR6fV3ervSKC8AqmetEhf5wXTZLUXg7hrzClCaPlGFbniA60D8vaZ/ZcB/8uLCdCY4ErHvHsYUDuOYAuFOhvAp79MvDEpYB5dgfTbx+u4QGZjPj8VR5aKBF0ZG8AtCGQ+htxTlwPv4ssuohAo6pjkB8+h8LMf98Rn6f2kohgsug69T63pXWXDQUJOC9FNDy3Scl46utr8aebVuKeixfgiyszcGFhMt/7LEqLxo8vK8K3L5jnnhJmjPLbZRqUEHjKMyG8SFweoNEjxG5CjtQW0GHwVDTxBZgvM0OuJtd2iY1wdgIVTQiCIHyKsDhIBaLr8wrtHuwsbVN7RQTheZjXes3HfNoZuxRpMaR8JWZImmxL1X4Sly8WxbddFZ1oHzC69zxDncAHD4j5hf8NRHpY/WQIB4qudN429c063+T44b3QSTaY9LFAdPrs10gEJ+x3M2cDn24OFdeMB+pE8YQgAoXqjkFnngnrYNZo1V4SESx7lIT5wOgIUPqm2z/O1CG3FYsj1YIFxThvQRIuXZKGf79wPn775eX42y1r8PJdG/DO3efg387J5493mVSRmeLIJ3GVxgNizKQ8E8KLaHVAjlBRb9HsRzkVTQiv0nZSjMmLMGweddhzMS9EgiAIwsco3MqHtVIZdpa28/BKgggoWo4g1NiBIXsI4hY5Q2oJYkadaMyXe9SIfKkFy7NiYbXZ8caRZtefw2YF3vh3wNgnOi9X3eqdtV75e+DbB4DVt4nbp7bN+KkGTaOI6BH7eyltCVlkELNDbtY4RyMOz1473MRfRwQRKFR1DGGBRNZcxBzDPpuXXSfmR5+b0VPEDosQ+MhUN1QkbilNSngzk0v0NQEDzYCkBdIpe5PwMsVf5MPl2s+paEJ4GcU3OaUY1R1D/D0xPsKAhMgQtVdGEARBnE6K6PyZp2lBU+9IQMtRiSCFZToA+MS2FGsK0tReDeHPMF9upVuy5RiuWZnBp68eFrZV08I2xe/+ECh/G9AagMsf8V4Hsj4MSJwPLNzqfB3MsChe0tiHIqmOzw0ZFAJPzJLcjXxI6juGmFAdWvqM2F3VqfaqCMKj9lzOPJNCtZdDBBNLvizG2k+BPvl30B3q94oxY6Vn18WKh5IGGO4EBtvcyzNhDjaGCM+uhyBOp+hK2DU6LNbUInq4Dp2DJgQiVDRRG3Yx1l4q5smLUNk+yKcsBIogCILwQRJEJ1Gy1IMoDOMg2WQQAYZd7rDfaVuBgiTajxCzZIwv9+VL06HXSjjR3I/KdhcKzmVvAfv/wtpBgS8+Pjce3eyAWh8hujXd9RKXOdrYi2JN7fhcF4KYTbOG1gBppAdfKxJ3/evgDA73CMIHGTKN8kJgviQrEBNFwDBBzAlxOUDO2Wz3C3z6v+41SzDr0C4R8o6sdZ5v5GDWYe5YdI0NgScIbxORAClfOBJcrtkTsGoTKpqoDatmM99kjQ5IXIAK+QKSrLkIgiB8lLBYIDKFT9kFHlMIEr7LL3/5S2zYsAHh4eGIjY116WeY5dr999+PtLQ0hIWF4aKLLkJFhXxRFOgMtEJqPsynn2ElMuIoz4TwVBj8UcRFGLChIJHf/LCsY/zj2EFF9UdAr+xrbx0FdvxMzDd+Fyj+wtysVx8KFJwv5sdfmdFTVNTWY7lUJW5QGCsxW3QGh8r1i6ntfHz3eCtGzFaVF0YQs6emk+2j7cjXtI5rTiKIOWPdnWLc/1fgvf9yvXBSv0eMSUVAeLzn1zXWossVmFqGQUUTYo4tui7SHgpY9w0qmqhNu5xnwqrIOgMq2khpQhAE4fMkLuBDgdSMyg7xvk34JmazGddeey3uuusul3/moYcewu9//3s89thj2Lt3LyIiIrB582YYjW6GV/sj7NCadcrb8hGRkA6thrIYiFmSvsLZATnUyYNSGR+dEoe/DvY+Bjx9FfDUFYDVAhx5RnRwhicAG++Z2zUrBZrPfgcce8ntH49v2A69ZMVQXCGQUOD59RHBh2z9kmMs4zbOplEbtzQiCH+H/R4noxcRMIoshrhctZdEBBuLrgS2/kbMP/8j8Pa9gM02/c/Vfy5GORDba0WT5kPTP7anlmcSckuveRd6Zz0EcTpZa/kwX2rCqZZeBCJUNPGhPBOGYs81PzlKzVURBEEQrhRNNM2okt+3Cd/kZz/7Gb73ve9hyRL5wsMFlckjjzyCH//4x7jqqquwdOlSPP3002hubsZrr7024c+YTCb09/eP+/Jb2o7z4ZBtPvKTyA+Z8ABsj5u2nIfBY//fcN5CUTTZX9PDbVk45duA9/5TzHtqhEXGB78Qt8/9ARAaPbdrXnwNsObfhF3Hq98Aaj5x+Ufb+43YaBKP1y0RHXgEMWvSRdFEajqEebJtIhVNiECgtnMY+ZoWp1USU1YRxFyz9nbgyj8IO9ADfwPe+A5gm0bNV7dbjNleKprknyfGU+8Dw91TP/bEq06L0chk76yHIE4nLg82SY9wyYSulhoEIlQ08RWlScoimEatqO0SNi/zU0hpQhAE4etFk3lSMw+DJ4uMwKGmpgatra3ckkshJiYG69atw549sgz/NB588EH+GOUrKysLfktHOR8q7RnIS6S9COEBJAnY8B0x3/8X5MdqkRUfBrPVhsPHTwDP3wQ8dx1gt/GLL86HvwSGOoDkYmD1reqs+dJfA0uuBexW4JU7pj+wkDlZVYuzNaL4GLL0Gi8vlAgalJDhlqMoSAzlU7IHJQIBdv6RL8lFEyXDgSDUYOXNwBf+LNQaTO3KmiaYVehEmAb5+7FXiyZMqZu2DLCagCPPulY0ke2SCGJO0OpgiRV7d03nKdhsbmQC+QlUNFGbMSHwzM+T/Y5FheqQHBWi9soIgiCIyUgUF3XzteIij7o9AwdWMGGkpIjcGgV2W/ne6dx3333o6+tzfDU0yJkM/khHGR9O2TJJaUJ4jkVXAdGZvBAiPbwQ/8SPcaHmIIrev1GEvbPOzhVfAb7xsSMzCoYo4MtPAzqV9sQaDXD5I0B8gQiFf+0uwDw87Y8ZS16HTrKhKXQ+kEje/IQHmzX0EYBlCKvCRR4Q7T2IQICdgeQ5iib0nkmozLLrgC/9XWQOl7wEvHwLMGqeOD+ENVWwvU2sF5ulVsmNIwefnDxrpatKFHCYvV3Rld5bC0FMgD6lkI+Z1kY09Ey/T/Y3qGiiJkzu1ykHyyYtdOSZsBB4iXW4EQRBEL5J0kI+ZKMVOozSwcUc86Mf/Yh/Tk71VVYmDv/ngpCQEERHR4/78kvMQ0BvPZ9W2DNQQEUTwlNo9cC5/yHmxj5kD5/A3wwPI8HUCMTmAN/cA1z1RyA0Btj8P0BUGvDFP6tfdAiJBK75K6DRA6e2AX+9EGiTVeKTkNb4Lh+7crbO0SKJoECjBdKX82kxKvlYRUoTItCUJmq/5xMEo/hq4LpnAK0BKH0TePGrZ1p1sYIKo/Ay765lyZcAQ6TIeFPswMbCMuBYBoti5xWR4N31EMRpaJIUB44mlAdgGDwVTdSkt05I7bQh/ILxeHMfv3tBCuWZEARB+DRR6bzjUwcrsqV2OriYY+69916UlpZO+ZWfnz+j505NTeVjW1vbuPvZbeV7AUvnKT502KPRiyjkkz0X4UmYzda9p4A7P4O5+Mv8rjZ7LHqvfRlILhp/QHBvmfcPItyxRfrqK0BEsrDV/fM5wI6fTRgSa+xtQ7FJ2HXErxF/R4LwdChwurmWjzWdgwFphUEED73DZvQOW0hpQvgeCy8FbngO0IWKpglWPBlrzVX+jpgv9fJnfUiUUz1S8d747zHlyZvfBao/FErEi37q3bUQxBTNpCzr9XizH+d6ToJO7QUENR2nnDYvGi0O1vbwm6ty4tRdF0EQBDG9bQvrhms5yrsqKAx+bklKSuJf3iAvL48XR3bu3Inly0VXLwt237t3L+666y4ENEqeiS0TseF6xEVQGCvhYaJS+Jfh2r/g32o24EB3GH47EIML4OPknQvc+Qnw1j1A+dvAp78VAfeswDOGpj0voUCyoRT5KCwoVm25RICSJCwwogYqYdCeD6PFhua+EWTGhau9MoKYEbVdw9BjFNmadnEHFU0IX2LeRcD6bwGfPAwc/Luw43r/v8V7sWVY5LBlrPL+OgrOB44+C1R/NP7+Xb8W2Sssg+XaJ0X+CUGolvXahEfrxZl2IEFKEzXpLHf8khktVhxrFEqTNbnx6q6LIAiCcHmDUCC1kD2XD1NfX48jR47w0Wq18jn7Ghx0/p8VFhbi1VdFgCKz9vrud7+LX/ziF3jjjTdQUlKCm2++Genp6bj66qsRDDlrzJorP5GsuQjvEpO7kiuajtT3wi+ISgVueBY4+7vi9oEnzniIvux1Pp5KvIisdgmvFU1Y2GpuoiiUkNKV8GdqO4eQJbVDB5volGfWjAThS6z8mshdYwWL178D9DcBVTudKpO5+KzPO0+MLceA4W4xL3kZ+PCXYr71N8CCS7y/DoKYIus1QRpADbveDjAFLBVNfEFpkrQQJU19MFttSIwMQU4CdQsRBEH4PIlOKWp151DAbRAChfvvvx8rVqzAT37yE14oYXP2deDAAcdjysvLeYC7wg9+8AN85zvfwR133IE1a9bwn9u2bRtCQ0MRDEoTkWdC1lyEd1meHcvHww3eL5owC6Mf/esYfvDy0dm/V6+9Q3R11n3meM1wumuQ2SfeV2yLArzASqhqgYG+BixKEJfxpHQl/D0EvkBqFjcSCubmAJog3CEuB5h3oZhbhoCkIiA0VuSMLLt+7lS6yYuYHxdQs0vkq2z/ifjehn8H1tw2N+sgiIkwRMAek8WnqeZ6nGoLrFwTKpr4gHc461beXysqxmty46gzjSAIwo+6KuZpmmEetaGui7o9fZEnn3wSdrv9jK9NmzY5HsNu33LLLY7b7HP45z//OVpbW2E0GrFjxw4sWCCURQFNRxkfKu0ZlK9GeJ0VWaJowpQm3s5leONoM57f34AXDzTimc/rZvdkMRnAgi1ifvBJMVpHYXvlDmhgw2fWYiwuXjr7RRPE6YTHi2wdZucc0cFHUroS/h4Cv1BqEDf4oTBB+CCrvy5Glm9y/T+B7x0Hvn0AiJ9ZfuKs1CZM8VK5E+hvBMLigPP/a+7WQBCTIMkOHPM1TThQF1gWXVQ0UQsW2qTYcyUtxAE5z2Q1WXMRBEH4l3+nhoVX2gOuq4IIMox9QI8IF660ZWB+CilNCO9SmBqFUL0GA6ZRrx78MgvcX7/nVISw+etHmvD2sZZpizVNvSMob53gvX3VrWI88Hegfi+w/X5oGveh3x6G/2f4FuYl0+uH8BLJwqKrSCu68ytJaUL4eaZJoUYumqRQ0YTwURZuBS79NXDji0IRxcLZo+fYSi5fbvaq3AHs/ZOYL7sR0Ae4Cp7wD1LE+3eRVI9DVDQhPMJguzigkDSwxRXgwBilCUEQBOEHcBsBDSLtQ0hCL8pb6eCC8GNOvsGLf0xl0oFYzCelCeFldFoNlmZ436Lrzx9X8+JHWkwolmXFYtA0irufP4JvPXsILx9snLDI8tTuWlzwm49w9v/7AJsf2YUdJ9vODIdlX6MjsD+xGfj8j/zu/7bciusu3kiqccLruSY5tno+soYNppYkCH+D/d7WdAyOUZoUq70kgpgY9pm+7g4gX1Z7qEHu2UBIDLdnRNUH4r5VLG+FIHyAtOV8WKypwUEqmhAeQVGZxOWiuteCfuMowvRaFKVFq70ygiAIwhV0Ifw9XLHoIqUJ4dcce4EPr4yejcgQHdJjqHON8D4rckTRZH+NHGzqIdr7jTjW2IsX9tfjf3cIO9wfbFmI33xpKVe4ZMWH8fue2eu06mrpG8GD75Ri468+wE/eOMGzqhR++U4pt2Fkz2ux2gCNBrj2KbRHL4YEOwbtobjXfCfacq/EjWuzPfp3IYiJck3ih2ugkYCeYQs6Bk1qr4og3KaxZwQm4zDypBa5U5mKJgQxKUzd8tVXgBh5j5FztjPniiDUJm2ZQ2nS1D2A9gEjAgWd2gsIWlpLxJi4EEcbRPjs4oxo6LVUxyIIgvAri67uah5iuZeKJoS/0t8M1H7Kp2/YzubWQtQpT8wFZ+UlcCXIXg8WTRq6h3H5Hz5F34jFcd+tZ+fi6uUZ/Pd623fPRfeQGWf9z04ca+zD8aY+XvT+yesnuFUYgxUN79pUgIsXpeLyP3zCw4ovePgjfsiXGGnA5UvTkR4bikc77saVmt34DCtgjs7Cs9cshYadZBOEl5Um2s5y5CZE8OLeqdZBJEdRoZvwL4409GKe1AydZBPZDFGpai+JIHybzNXAnbuAkpeBwsvVXg1BOIkvAAyRCDMPIl9q4RZdWxbPsYWdl6CiiVqUvSPGvHNR0iSKJktkiwKCIAjCj8LgT23jRZPnO4dgGrUiRKdVe1UE4R7s4gt2NEUvR2N7EtZTHgMxR6zOjYNWI6G+e5hbaGXECgWIu5xs7sd9r5agMCUKZa39vGDC8lKMFhuu/f/t3Qd4VGX2P/DvTHrvCekkJBBK6EWKUqXYwI4dZeVnXZdFXHVXsbO66rqWtez6t62rq67oCjakI72GXgPpCQmEkITUuf/nvDeJCYaQhJncmcn38zzz3Jk7k+TlMpl7cs/7njMoBo9d2qtJIjDYxx2T+nTBN9tzcNM/1zckWKR8171jumFsSnjDRKbfX9wDjy7YoRImorC0Cu+v0fv/AD7AkJlYNi31vI8FUauE9dS3xUfRN8GMw4XAvvxTGJUcavTIiNpke2YxepgyfinNxckaROcmCcahdxo9CqKmZAV2l75Axhqkmg6rEl1MmlD7lRWqN5PS8zJs36rX8ewXG2DsuIiIqF3N4Lu75qGmQlOzkVO6sMwiOZgDP6rNKk+9VnN39jOhDuLn6YY+0QHq4tn6w0W4amBMuxImN/5zHYrLq9X3EQFeblj021GIDPBSSZnmSBktSZpIwsTd1YzfjkvCXaO7qV4rjV03OEY1qrdoGu4YmaAaw/+0J1+tjukV5Y95l7OkDHUgnxAgJBkoOoBJrlvwFZKxP48rXcnxbM8qxoSGJvD8HCUicvgSXRlr0Md8BAudqK8JkyZG2PctoFnUm6raLwa7c3ap3anRTJoQETmUUL2WbHdzjtrKxTQmTcjhFOxRm1Vlep3k5AiuNKGOc0FisEp2rGtH0iTrRDlueXe9Spj0iwmAv5cbtmYU46/X90NMkPc5f+6dFybgVEUN7h2bhNjg5l8vSZTHLuvV8FheN6FXRJvGSWRVqdcCy5/D4JOS8E5WK02IHElNrUVV27i/fqVJxC+fsURE5ICi9Gbwvc1H8OfsElRU18LTzfErcDBpYoQ93+jbnperGsqVNRb4ebiqurRERORg5bmkWoblGLxRwWbw5HhKjwHlhdBgwqriYLUrmStNqANdkKj3NVl3uGlfkxNlVSirqjlr8qOssga/+WATisqq0CvSHx/9Zhj8Pd2gaVqrevLIa/54KS/UkQPqqydNQo+tRRhuwv58F1gsGvvpkMM4UFCqyiemeGT9Up6LiIgcvhl8H/MRVFfVqJ6Bg7vqf1s6MnYd72iVpcDh5fr9nldgR1ZdP5OYAAa6RESOxjsY8NbriCeYcrEnl0kTcjDH9FUmVf5xKKn1UGWNpAk2UUcZHP9LX5N3Vh5CrUVT/aGm/f1njH1xOVYdOParr5FSiDf+Yx325p1Sjdn/edtglTARrUmYEDm04EQgZihMmgXT3NahvKpW9QQichSyujAcJxBuOgGYzFxpQkTk6EKSAVcv+KACXU35qq+JM2DSpKPlbAFqqwD/GCCsB7Y3SpoQEZHj9jWRZvBpWSfVLGciRyvNVeCRoLYD4gJ50Zk6lPQ1uW5wrLr/3Ld78X8fbcYXm7NwtKgc1bUa7v7XFuzK0ePl+jKIl726SsXQ/p6uePuWQYhqZwN5IofV9zq1ucJjs9pKApHIkfqZ9DMf0h+E9wLcWXGDiMihubgC4Snqbg9TJjYxaULtkrlB38YOUZv6hpX9YgKNHBUREbVXWF0zeJccFJZWIq+kwugREbU5abLXoveSGBAbZPCAqDN67so+eP7qVHi4mlWT9Sf/t1vtD/J2Q2llDa58Yw2eXbRbleR6euFulFXVqgTf97+7CIPiHX/pP1GbJYxWmx61B+GKGtUfgshRbMs8if7mg/qD6IFGD4eIiKwhXC+1mGLOUOW5nAGTJh0ta5O+jRmq/gjcm1eiHsoffkRE5LgrTfp5FqitrDYhcrSkydrScLVlPEJGkNVN1w+Jw9PT+qjHVbUWVXbruwcuwkXdw9Tjf6xKx8S/rsTqg4VwdzHjb9cP4AoT6rxCkgCPALhrlWpG5+ajTXsCEdmr01W1qgdgP1PdSpPoQUYPiYiIrCFCL7UocUnuyQoUlVbC0TFp0pGkZEtW3UqTmCFIyyyGRQOiA70QGcA/+oiIHDlpkmTOVdv6XlVEDhGX1CVN1pToSZN+sUyakHGkTNf1daW67h2bhC4Bnvjg9iF47/YhCPX1aOjbcNuIeMSFNN8gnqhTMJuBGP1i8wDzQWzNKEZNrcXoURGdk5RbtFhq0d8lXd/BpAkRkXMI15MmfVyz1XZXjr5IwJExadKRjh8GyosAF3cgsm9DY5yB8SyFQUTksEKT1Sa8KhNmWFSdZiKHUJIDVJ6ExeSCw1okuoX5qEbwREb689Wp+On3ozFjRNeGVShje4Tjf/eNxAWJwegd5Y/7xuqfu0SdWvRgtRniekg1g2dfE3IE2zKLkWjKhS/KVdNghPU0ekhERGQNEXp5rmgtF16ocIqkiavRA+iUpbki+wOuHticoSdNBrEUBhGR4wqIA1w94VJTgRjTMezI9lDN4NlMm+zeMX2VyQnPOFSddsOAOE7iIOPJZ2dSuO+v9ksprk9nDTdkTER2KUbvkTnELR2ohJqQ1yc6wOhREbVoe9bJX0pzRfXXmwcTEZHj8w0HfMJgLjuGZFM2duYkwNFxpUlHqi/NFTsUFouGLXUrTdjAkojIwUtkhOiznlNcclBcXo2sE3oJGSK7lrdTbfZaotWW/UyIiBxIjL7SJKomE/4obahiQGTPtmcWo5+Z/UyIiJy5RFcPcyZ2O8FKEyZNOlLudn0bPRCHjpWipKIGXm4uSIn0M3pkRERkhRJdF/gXqS2bwZNDyEtTm59Lo+FiNmFiry5Gj4iIiFrLOxgITlR3B5gPMWlCdu9EWRUyjpejt/moviOyn9FDIiIiG5ToSjFlIr2wDKcqquHImDTpyGarhQf0+6E9sKWuNFffmAC4ufC/gYjIGZrB9/PMU9s09jUhR5CrJ012aV1Vz4gwPw+jR0RERG0RN0JtJrpsRnbxaezPZ18Tsl/S988EC3qbM/QdXfoaPSQiIrLBSpN+bllquyfXseMSm12tf/bZZzFixAh4e3sjMLB15R5mzJih6hg3vk2ePBlOQRrAV8hFNBMQ0k3V8hSsH05E5ATqZsolV+o9IrjShOxeVRm0ooPq7i5LV1w7OMboERERUVulXq02U93Www01+HxTptEjIjqr7ZknEW/KVw2CpR8gQpKMHhIREVlThJ406W7S45FdOY59XcRmSZOqqipce+21uPvuu9v0dZIkyc3Nbbh98skncAr1q0wCYgE3L+you6AmK02IiMjBxUtzYhP8y9IRhmLszD6pelcR2a38XTBBQ4EWCM0nDONSwo0eERERtVXCaMAvEr6WUxhr3ooFW7NRXWsxelREZ11p0st09JfZyGwCT0TkXMJ66tdFLMUIxUnszHbsviY2S5o8+eSTmD17NlJTU9v0dR4eHujSpUvDLSjISVZi1M3mRGgSKmtqsTdPf+OkRjNpQkTk8LyCgC591N1R7ntxqrIG6UVlRo+K6Jx91nZZ4jGpTxeWCiUickRmFyD1GnV3uscaFJZWYdneAqNHRfQrmqap8rW96vuZdGnbdSIiInIA7t4N/dZ6mDO40sTali9fjvDwcPTo0UOtUikq0pvqnk1lZSVKSkqa3OxSUd1Kk5Ak7Ms7hepaDUHebogJ8jJ6ZEREZA3xo9Rmks8hta1fUUhkz03gpZ/JyG6hRo+GiIjaq+/1anMRtsATlfhqW7bRIyL6Fem5I0m9PkyaEBF1ihJdKaZMHCwoRUV1LRyVXSVNpDTXhx9+iCVLluD555/HihUrMGXKFNTWnv0Az58/HwEBAQ232NhY2KXCupUmIckNte5TYwJV3xYiInICXfWkySBtl9qyrwnZs5rsuqSJpSsuSAw2ejhERNRecvHZOwSuWjW6mXKx5aj00SR7wn6vej8TkepS13eHTeCJiJxTeG+16eeejRqLhv35pzpH0uThhx/+1Yn7zNvevXvbPZjp06fjiiuuUCW9pk2bhoULF2Ljxo1q9cnZPPLIIzh58mTDLTMz075XmoQm/dLPhKW5iIicR/wItQmrOIIQnMSObF60IDtVVQbTsd3qbkVIb4T4ehg9IiIiOh9hKWrT3ZyFvJIKFJRUGD0iaoT9XvV+JhIfh2hSScTUMBOZiIicTISeNOnjmqW2u3LstCJUK7Sp89acOXPUjIeWJCbqtcusQb5XaGgoDh48iPHjx5+1B4rc7FptDXA8/ZeVJtlH1N1UNoEnInIe3sH6rIqCXRhq3otl2UFqKaqnm4vRIyNqavfXcLFU4aglHAnJei8eIiJyYKHdgaM/Y4jvMSw4qa92ndDL0+hRUaN+r+L9999vV79XZ7A9sxh9zPp1EAQnAB5+Rg+JiIhsmDSJrcmAGRbszD7ZOZImYWFh6tZRsrKyVE+TyMhIOLTio4ClGnD1QqlnBPbn71C72QSeiMjJxF2gkiYXeaXju7JhWLH/GCb1do4/dsmJbPlQbf5TOwYjktjPhIjIWVaapLrnqW1atiRNIgweFFmr32tQUBDGjRuHZ555BiEhIWft9Sq3evbU6/VEWRW2ZRbjd2Z9lStiLzB6SEREZCtBXdX1b7ea04g35WNXjuOWgrZZT5OMjAxs27ZNbaUnidyXW2lpacNrUlJSsGDBAnVf9s+dOxfr1q3DkSNHVF+TqVOnIikpCZMmTYJDK6rvZ9INC7blotaiITHUB5EBnP1DRORUYoepzYWeh9X2ux25Bg+I6AzH9gMZa1GjmfFfy2gMSXDcIJaIiOqE9VCbOIteqjotiyVCHV1b+73ac6/X/2zKRGWNBeM89uk7Ei4yekhERGQrZhcgXJ/MkWLKwN68EtTUWuCIbJY0efzxxzFgwADMmzdPJUTkvtw2bdrU8Jp9+/apPiTCxcUFaWlpqqdJ9+7dMXPmTAwaNAirVq2y//Jb55KzTW20sBR8uEZfknrL8Hg2gScicjaxQ9Um6vQ+eKAKP+0pQGVN83/cEhli60dqs8wyAIHhcQjwcjN6REREZKWkiX95JtxRrXpoappm9Kicmr31e7XXXq8yYfSjtUfhh3Ik19ZNJk240OhhERGRLUXoJaAHuGWiotqCAwW/LKBw2vJcbSH1Os9Vs7NxIOfl5YUffvgBTunIKrU57NNPvVG83V1w9aAYo0dFRES2WIrqEw5zWQEu9M3GT6UJWH2gEON7skQG2Ym9i9Tmv7UXYmB8oNGjISIia/CLBDz8YaosQTeXfOwpi0F28WnEBHkbPTKnZW/9Xu211+tPe/LVe/EKr4MwaxYgKAEI4LUQIiKnFjVATda7wPMoUAlszShGz0h/OBqbJU2oTnUFkLlB3f0gWw8OrhoYDX9PzuwkInI6soJQVpvsXYjrInJV0uTHXflMmpB9OJ4OHD+EGrhgtaUPHo8NMnpERERkrfhDmsFnb8JFgUXYUxSjekgwaWI77PfaOl9szlLbmyMyAGm5w9JcRESdI2kCILn2gCyZwNaME7hxWBwcjc3Kc1GdrI1AbSVqvMPx4UF3teu24V2NHhUREdm4RNcAk163ee3hIoMHRFTn0BK12ap1Rym8udKEiMgJm8EP9y9U25X7jxk8IOrs/V7Lq2oa3oep1Wn6TiZNiIicX0RvwMUdXjUliDEdw9ZMx+y1xqRJB5XmSnPtK1OAMKl3BJIj/IweFRER2bgZfMjxbTCbNGQcL0dO8WmjR0UEHNSTJstqUuHv6YrEUF+jR0RERFbua9LbLUdtl+07BouFfU3sQWft97pyf6FqAN83qBJeRTv1nV3Zz4SIyOm5euiJEwD9TIdxsKAUJ09Xw9GwPJetHVmtNv89rq8uuWdMksEDIiIim4rsD7h4wFx+DJMiSvFdnh/WpxfhygGs30wGqqkC0lequyss/dA/Lghms8noURERkbXUXZwILdmtemgeO1WJXTklSI0JMHpknV5n7ff64y6pxwX8JuIQcERi5H6AH0vWEhF1mhJdOVsxyicDi05dgO2Zxbioe8eVtbQGrjSxdT8TKc8F4OfanhjRLQT9YlkKg4jIqbl5AjFD1N3LA9PVdv3h4wYPijq9zPVAVSlOuQRhtxaPAYxHiIicS/QgtTEVH8XkBH1u5NK9BQYPijqr6lqLagIvRmGrvjPZcUqLERHReYoaqDaD3SRrrjeDdzRMmthS3g6gtgrHEYAjWhdcPyTW6BEREVFH6DpSbQZadqnt+nQmTchgR39Wm3Vab2gwY3BXNoEnInIqXoF6M3gA08L0Gf5L9zFpQsbYdOQESipqEOHjgqBcvWQ5kicaPSwiIurgZvDxlQdgggVbMk7A0TBpYkvZm9Vma20ivNxccXEvLkUlIuoU4vWkSfjxjTCZNKQXliG/pMLoUVFndnSN2qyoTIar2YRB8UyaEBE5nejBajPI5ZDapmUV40RZlcGDos5o3eEitb0xOh+myhLAKxiI1mcdExFRJxCWArj7wr22DL1NR7Dl6AnUOlivNSZNbClni9pst3TDxN4R8HZnCxkiok5BynO5uMNcmocJEWVq15pDhUaPijqr2uqGcqEbLT1UfXvGJERETihGL9HlU7gNSeG+kDYZG45wtSt1POnnJ8a77dB3JE0AzC7GDoqIiDqOiyuQOEbdneyehlOVNdiXdwqOhEkTG9LqVpqkaYmY2j/K6OEQEVFHcfduqC1+ZZBew3PlfiZNyCC5aUB1Ocpd/LBfi8GwhBCjR0RERDZcaSIVD4Z11XtXbWCJUOpgFdW12FJXuz6xal+T0rVERNSJdJ+sNlM8tqvtRgebyMGkia2cLoap6KC6e8i9O0YlhRk9IiIiMqBE1xBtp9quOnAMFgdbjkpOImOt2mzVeqh+JsMSg40eERER2UJEb8DVE6g4iXFhp5rM+CfqKNszi1FVY0Gojzu8inbrO7ukGj0sIiLqaMl6L6tuVfsQhmKHW/3K2gy2krNVbTIsYejTPRHursxP0dnV1taiurra6GFQG7m5ucHFhcvM6SxkKeqqFxF6bC183G9AYWkV9uSVoHdUgNEjo06aNFlVmQSzCRjMfibUDMYijomxCDXh4qY3Xs1YiyG18vdoInbnlKCkohr+nm5Gj446ifV1q5sujgdMhwsBkxkI72X0sMgBWCwWVFWxD5OjYSxCZ+UXAUQNVO0rxrhsw8ojEdA0DSaTCY6ASRMb9zNJ07phdHeuMqHmyYdFXl4eiov15cvkeAIDA9GlSxeH+dCnDhQ7FHDzgansGK6JKcEHh/1UiS4mTahDHT8MHFml7m6wpKBPdAD8eOGMGmEs4vgYi1ATfa5WSRP/7e8iMfhFHD5eiU1HjmNcSoTRI6NOon5104TAfH1HSDLg5mXsoMjuSbIkPT1dJU7I8TAWoRZLdOVswcUuW/F5yRhkHj+NuBBvOAImTWzhdDFqt38GybNutyTidiZN6CzqL1KEh4fD29ubJxgHu8hUXl6OgoIC9TgyMtLoIZG9cfUAuo4CDvyAy3z24AMMxcr9x3D3mG5Gj6xTefbZZ7Fo0SJs27YN7u7urbowPGPGDHzwwQdN9k2aNAnff/89HMqx/cAHl6kyLemIVj3WnhkaZ/SoyM4wFnFcjEWoWf1vApY9C5xIx4zY3Xj8eDcs2VPApAl1WD+TzUdPqPt93TL1nV36GDsocojzWW5urlqtEBsbC7OZlVocBWMROqdu44Dlz+ECl30wwYIV+wtwy/CucARMmlhbVTnw8TVwKdyLQs0fO4MvRlQgZ1VQ82Uw6i9ShISwKa8j8vLSf7clQJD/Ry5JpV/pNlYlTfpUbAYwFOvSi7AntwQ9I/2NHlmnmrV27bXXYvjw4Xj33Xdb/XWTJ0/Ge++91/DYw8MDDmf5c0BpPgp9knFd0WxEh/jj6kExRo+K7AhjEcfHWIR+xd0bGPIbYOVfcHnZl3gcc/Hx+gy4mk2Yd3lvmKVOI5GNSJPfimoLuvh7IrTsgL4zgkkTallNTY268B4VFaUmcJBjYSxCLYrsB7h6wb+mBImmXLy1wgfXD4lziDYW9j9CR7PjcyBrI8pc/HFz1aPo3SPF6BGRnaqvG86gwLHV//+xDjyddVaFBJI5GzCtdzA0DXju2z1Gj6pTefLJJzF79mykpratAakkSWSJef0tKMgB+4BkbVKbh8tvwjEE4oHxyXBzYehHv2As4hwYi9CvDJ0FmFwQdHwrnrhIn6jxwdqj+G5nntEjIye3Yt8xtb0wORSmvB36zi59jR0UOcQkDiGrwskxMRahs3J1B2IGq7vjvQ8iu/g0/rslC46Afzlb25HVavO5eQr2anEYmRxq9IjIzrEMhmPj/x+1KLQ74B8N1FbikT4n4OZiwqoDhVi+T1++TPZr+fLlaqZUjx49cPfdd6OoSK/P3ZzKykqUlJQ0uRmu9BhwMhMaTFh3OgZB3m6Y2j/a6FGRneK5zLHx/49+xTcciNQvVM+IycPMUQnq/k976npMENnIygN60mRskh9QdFDfyfJc1Eo8nzku/t9Ri+KGq811Ydlq+/rSg6i1aLB3TJpYW8ZatVlclgj5zBgU74AzU4mIyDrkRCB9TaQyQfE23FpXu/OdlYcNHhidqzTXhx9+iCVLluD555/HihUrMGXKlIZZcGeaP38+AgICGm5Si9lwudvU5rhXPErhjZFJoXBhSRYios4jboS+zViDCT31fibSW83iABcpyDHlnjyN/fmlkHDjQt9cQLMA3qGAL/vpEBF1anEXqE3i6TT4ebqq1SZpWefuNWo0Jk2sqThTzeq0mFyw1ZKMHhF+8Pd0M3pURERkBwGCJNXvGJWg8ihrDhUhvbDM6JE5rIcffljNZmrptnfv3nZ//+nTp+OKK65QJb2mTZuGhQsXYuPGjWr1SXMeeeQRnDx5suGWmVnX+NRIOVvVZodFn118UfcwgwdEREQdKl6f1YmjazG4axB8PVxRVFaFnTknjR4ZOalV+wvVtm9MIPzSv9N3yuQhzkAnIurcYocCJjPMJzNwabw+eUMqcNg7Jk2sKWOd2uR6dUc5PDGka7DRIyLqVGbMmKEucBLZldi6pEnWZkT7uWJM3cXrTzdmGDsuBzZnzhzs2bOnxVtiYqLVfp58r9DQUBw8WFdmopn+J/7+/k1uhsveojYry2IaaosTke0xFiF7K4WBY3vgVlmMkUkh6uHyup4TRNa2Yr/+3rooOQTY+aW+M/UaYwdF1AkxFiG74+EHdNF7jF4ecEhtVzNp0slkrFGbTZYeaiszeojIsWiahscffxyRkZHw8vLChAkTcODAAaOHRY4sLAXwDACqy4C8HZg+NE7t/mJTFqpqLEaPziGFhYUhJSWlxZs1G0lmZWWpnibyueAw6laabK9NRHK4LyIDvIweERG10pdffomJEyciJCRErZzbtk0vt0fUJj6hQGiPhtWuY3qEq7vsq0a2ILXpVx/UL4BdEpgBlGQDHv5A0sVGD42I2kiauf/hD39Qq+59fHwQFRWFW2+9FTk5OUYPjRxZ0gS1GXhKr96wJeMESitrYM+YNLGmo3o/k+9P6aUwBnOlCZHDeeGFF/Dqq6/irbfewvr161WQMGnSJFRUVBg9NHJUZjMQO0y/n7ke41LCEe7noUpksCGr7WVkZKgLjrKVniRyX26lpaUNr5Eky4IFC9R92T937lysW7cOR44cUX1Npk6diqSkJPVZ4BBKcoHSPFhgxm4tHhcmszQXkSMpKyvDqFGjVE8lIuuU6FqD0XUrXbdlFqOotNLYcZHT2Z5VjJOnq+Hv6YruBd/rO1MuA9w8jR4aEbVReXk5tmzZgscee0xtZTLHvn37VPlionZLvU5tvI4uRd/gGtRYNKw7VAR7xqSJtZw+oZY+iw213REV4InoQM7qpLavciivqjHkJj+7tb744gs160BWYsgsSFmNIX/gC6n7f/HFF6tSNtIQefTo0epE25jMmnz77bdx2WWXwdvbGz179sTatWtV6ZsxY8aoRMWIESNw6JC+bE888cQT6N+/v/o6abIsX3fdddep/gFnY7FYVIPmhIQENdZ+/fqpsbd0/F955RX86U9/UhdJ+/btq5pBy4yKr776qtXHh6ilviZuLmZcN1hvFP7JBpbosjVZOTZgwADMmzdPJUTkvtw2bdrU8Br5I6D+s8TFxQVpaWnqj4Lu3btj5syZGDRoEFatWqXKcDmE/frFiiPmWJyGJ0Z000uyELUGYxFjYxFxyy23qM8u+TcRnZf4kfr2yGpEBXqhd5Q/pA/8kr1cbULWtbK+NFdSEMy7v9Z3pl5t7KDIYTEWMTYWkfEuXrxYfd8ePXrgggsuwOuvv47NmzeriWhE7RKeAnTpC1hq8Jvg7WrXqgP2XTLU1egBOI3MjWqTZY5CEQJwQ93yZ6K2OF1di16P/2DIz9791CR4u5/7IyE3Nxc33HCDWpFx5ZVX4tSpU+piYn1wIY9vu+02vPbaa2rfSy+9hEsuuUSVuPLz82v4Pk8//TRefvlldZOlnzfeeKPqGyANlePi4nDHHXfgvvvuw3ff1TURBFTw8Nlnn+Gbb75BSUmJuph5zz334OOPP252rBIY/Otf/1KrRpKTk7Fy5UrcfPPNqrSPBC1nSk9PR15eXpOLFBIwDBs2TAUv0hya6Lz6mhz5GaipwvVDYvHG8oOq+VlGUTniQryNHqHTev/999WtJY3/OJI/JH74wZjPYauoKgOW/1nd/bhylNqyXCi1BWMRY2MRIqvqeqG+zd0OlB/HxF5dsCunBD/uym+YwEFkzX4m1wQdBqRMl3cIkMDPOGofxiL2F4tIUkaSPIGBga16PVGz+l4H5KXhwtNLAQzC8v3H1O+HvLfsEZMm1pK5Xm3WVSchxMcdD07sbvSIiGxCgoOamhpcddVViI+PV/tkdkW9cePGNXn9O++8o06sK1asUDMo6t1+++1q5oKQ4GD48OFq+Wd9+ZsHHnhAvaYxKZElKz+io6PVYwlALr30UhWAdOnSpclrKysr8dxzz+Gnn35S31tI8LF69Wo1K6O54EASJiIiIqLJfnlc/xxRu8QMAXwjgNJ8YOd/Edv/BlUySWblSUP4hyanGD1CchZrXlOlucp9YvBR0UT0iPBDoLf1+rsQ2QNnjkWIrMo/Uu9rUrhPrTaZ2HsM/vrTfjWzU2ZUt+bCING5nCyvxvbMYnV/aJlcCAPQaxrg4mbswIhsqDPFIvLzZGySJPL392/zsSJq0Oca4MfHEFS0FTEuJ3C0CDhcWIZuYb6wR4ySrKT88BrIPOFNlu54ZlofhPg6SAkPsitebi5qZoNRP7s1ZCnn+PHjVUAgJ3JpVHrNNdcgKEifyZyfn6/KWy1fvhwFBQWqh4DUxDxzGaeUvqpXn6RoHGTIPjk5y8yJ+hOzzLSoDwyEnPRlqamU1jkzOJDZF/JzZUlsY1VVVao0D1GHcnUHht0FLHkSWPMq0G86bhgSq5Imn23KwuyLu6uyXUTnpboCWPO6uvtdxP+hqsiNq0yozRiLMBYhJ5M4Wk+apK9ASs/LERvshczjp7FyfyEm92n6niVqD+nRJ2Xfeod7wPtQ3Wz4PizNRe3HWMR+YhFpCi9JHVkN8Oabb7bq2BC1OJkjeiCQvRm3hh/Cc7mDsWxvAZMmTq22Gi45em1C964XYEpqpNEjIgclS9LsfcaX1PuX+pZr1qzBjz/+qGY1/PGPf1RN06VGpixBLSoqwt/+9jc140J6AMhJXE7Kjbm5/TLzqH4pXnP75OTfHvVNnhctWtQkoBBn60tQH2BIgBMZ+cvvsTyWuqFE52XwHcCql4CC3cCBxZjQawJCfT1QWFqJJXsKeOGCzl/6SqDqFOAXhQ9PymfWKQxNCDZ6VORgGIsYG4sQWZ2USNrwDnB4hXpPS4mud1en44ddeYw9yCoWpuWo7V3Rh4E9JYB/NBCnz2gnag/GIvYRi9QnTI4ePYqlS5dylQlZR9IElTSZ4L4Tz2Ewlu4twG8uTIQ94rRWK9i6cTU8tAqc1HwwY6ox2XCijiQn7pEjR+LJJ5/E1q1b4e7ujgULFqjnfv75Z/z2t79V9Tp79+6tTsSFhYVW+bkyK0Oastdbt24dzGazak52pl69eqmfLV+TlJTU5CYN05ojwY0kTpYsWdKwT2Z0SOBTv5SVqN28AoFBM/T7ix+Hm1aDawfHqIdsCE9WsW+R2lQnTcLOXP0PpMFdmTQh5+SssQiR1XUdBZjMQNEBoCQHU+oSJYt356Oiutbo0ZGDKy6vUj36xOjatfrO3lcCZl5qIufnzLFIfcJEerBIaS9pdE9ktaQJgPjiDXBBLTakH8epimrYI/tO3TqA01W1WLV0EWRRW0FAXySHM/NKzk0SCJJUkOWn4eHh6vGxY8fQs2dP9bw0Fvvoo48wePBglXCYO3euaqxsDZ6enmrGxosvvqi+twQhciI/cwmqkOZqDz74IGbPnq1mZYwaNUo1L5PgRWZIyPdpLuj53e9+h2eeeUb9OySJIvVEo6KiMG3aNKv8G6iTu3AOsP1T4NgeYM3fMH3IPXhz+SGsPHAMmcfLERvMhvDUTjL7bJ9eEmOb9wjUWjREB3qpG5GzceZYRBw/frzJBREptyHkZzT3c4jOOWkjaoCa1Ylt/8bAUXPUuSG7+DSW75OVrqySQO3346581Fg09Irwhn/WCn1nj0uMHhaRzTlzLCIJEyk1tmXLFixcuFCVFqvv8RocHKySQ0TtFjUQ8AyAS0UxJgflYNGJWDWR46qB+oRSe8L0/3l6efE+JJzeoe7H9htj9HCIbE5OrCtXrlQzJrp3767qdErDsSlTpqjn3333XZw4cQIDBw7ELbfcok7gEkRYg8yGkEZr8rMlOJH6n3//+9/P+vqnn35aJT3mz5+vgpfJkyerZamSDDmbhx56CPfffz9mzZqFIUOGqOWs33//vQpMiM6bdzAweb5+f8VfEO9yHCOTQqBpwKtLDqhasUTtImVCS/Ohufvika2Batdl/XghjJyTs8ci//vf/1SdcWnqKqZPn64ev/XWW1b5N1AnNPT/9O3qV2AuP4bL+urnh/9t/2WmMlFbSdy6YGu2un9HYjFQXgR4BACxQ40eGpHNOXMskp2drWKRrKwsVaZcSpfX36QcGdF5cXEFEsequ7eFHVTbvy05gKqa9pWgsyWT5mRXaCTLGhAQoDKntq63tzP7JK54fTVWud+PaFMRcOv/9EZ7RK0gzbzS09PViYoX5M/tiSeewFdffYVt27bBnvD/kdpMTrvvTgSyNgCTn8fPodfg5nfXq91PXN4LM0bqwevxsioE+7g75PmxszPkWP/0JLD6ZRwIuxgXZ96OcD8PLJkzGn6ev9REJjoTz2Ftw1iEHHo14j/HATlbVanQnQOfwmWvrYaHqxn/vXsEekX6w2zW6+bbEmORjtMRx/rLLVn4/Wfb4Wo2YfPI9QjY+Ipemuva923y88h58TzWeoxFyCls+Qj4332o7dIfwwofU31en5raG7cO72pX50euNDkP0kAvQivSEyYmFyB6kNFDIiIieyfN/Hpept8/tAQjk0Lx8OQU9fCphbvx3Y5cLErLxajnl2LJnnxjx0qOQTJuu79Wd9/M099Lj17SkwkTIiLSSX+JSc/p97f+C72DLEgM80FljUUlT2Z+sJGrXalNtmcWY97Xu9T9301IRkDWMv2J5InGDoyIiOxfd+kHboJL3jY8MspP7ZLKG5U19tVrjUmTdjp2qhIL03IwyLxf39GlD+Dha/SwiIjIEXQbr2+PrAaqKzDrokRMHxILiwbc/8lW3PvvLSivqsWXdSUPiFqUtwM4fgiVcMcP1f0xpkcYpvaPMnpURERkT+JHAOG9AEsNTAcX4y/X9MX4lHC4uZiwbN8xrD1cZPQIyQGUVtbglnfXY+obP+NUZQ0GxQfhroE+QO52/QVJFxs9RCIisne+4UDMEHV3mtd2RPh7oLC0Civ3FzZ5WU2tBX/5YS+KSisNGSaTJu30yYYMVNdqmBxwVN8RO8zoIRE5/TJUe1uCStRuEb0B3y5AdTmQsRYmkwnPXpmqaoxLM00xc1QCXp0+wOiRkiPY/ZXaLK3tB1//QLx0bT/1niIi62IsQg6vvkH3vm8xKD4Y784YguuHxKpdH6/PMHZs5BCe+3YPVh0oVCW5rugXhTdvGgjXg9/rT0rlDd8wo4dI5NQYi5DTSNFjEpf93+HSVH3C3zeNeq1ZLBoe+iINbyw7hFv/3wbU1l0n6UhMmrRD5vFyfLj2iLo/0uOwvpNJEyIiai25oJ1Ut9rk0BK1cTGb8Nfr++MPk1Pw95sG4rHLeql9RC3SNFh2LlB3F9VegGenpSLE18PoURERkT0nTQ78BNToszZvHBqvtj/szFPVFIjOZuX+Y/h3XXLtw5lD8eoNAxDu7wns+UZ/Qc/LjR0gERE5jh6X6tv0VZjWS6/ctHh3PhZszcJdH23G9H+sU5U35JrIA+OTDbk2wqRJK1XVWLAh/Tj+uzkL099Zp5YN9QlzReDJPfoLmDQhIqK2qE+aHFzasMvNxYy7x3TDJamRxo2LHMuR1TCfOIzTmjv2BwzHuJRwo0dERET2KmqAvtK16pReIhRAryh/DIwLVCtdP9uUafQIyU6VVFTj4f+mqfszRnTFiG6h+hOnTwDpK/X7KUyaEBFRK4V1B0KSAEs1Uhdejhn+m3G6uhaz/7Md3+/KU9fgZa6pTCyd2LsLjMCkyTlI3TTJcA18ejGue3st5ny+HdnFp5EQ6oMPJ7vCpNUCflFAQIzRQyUiIkeSOFY1P0PBLqDkl2WoRK0mFyq+ulvdXVA7EtOG9YCZq5OIiKilhvA9Juv3v5wFfP8IUH0a04fEqV3f7sg1dnxkt7zcXDB9aBySwn3x0OQevzyx/0fVJwdhPYHQJCOHSEREjmbiM4BHAEwnjmBe1cuIgt7T5Nbh8aryxpd3j1ClII1is6TJkSNHMHPmTCQkJMDLywvdunXDvHnzUFVV1eLXVVRU4N5770VISAh8fX1x9dVXIz8/H0YJ8HJTTfGk4VmorztGJoXgpmFx+HTWBQgu2qq/KG6YXmqFiIiotbyDgeiB+v1Dv6w2IWoVTQO+eQA4mYl0SwRe0G7BtYP0uvRERERnNWgG4BUElBcC6/4OLHkaE3pFQHLuu3JKkHWi3OgRkh2S1dC/HZ+Mb397IbzdXX95Ys//9C1LcxERUVv1mALM2QPEDIUJGubG7MLrNw7AU1P7qB6vA+KCYKRGZzvr2rt3LywWC95++20kJSVh586duPPOO1FWVoYXX3zxrF83e/ZsLFq0CJ9//jkCAgJw33334aqrrsLPP/8MI7i6mDH/qlREB3ohNTqg6QzOzPX6lqW5iIioPZImANmbgYNLgAE3Gz0aciS7FgC7v0YNXHF/9f24sG8iwvzYy4SIiFpRomvOfmDHZ8DX9wLr30Rw6tUY3DVYlcKQeuK3j0wwepRkp9xdG827rSgBDv6k32fShIiI2sPdB+h/I5C1AVe6rgH6vgB7YbOVJpMnT8Z7772HiRMnIjExEVdccQUefPBBfPnll2f9mpMnT+Ldd9/Fyy+/jHHjxmHQoEHqe6xZswbr1q2DUaS2fL/YwKYJE4sFyNyg348datjYiIjIgXWrbwa/FLDUGj0achRlRcC3c9Xdv9dOxU4tEbMuTDR6VERE5Chc3fXJGqnXApoF+N8DmJQSrJ6SpAlRq+xdBNRUAKHdgS6pRo+GiIgcVa+pgNkVyNsBFOyFvejQniaSFAkO1oOx5mzevBnV1dWYMGFCw76UlBTExcVh7dq1zX5NZWUlSkpKmtw6RNEBoKIYcPUCuvTtmJ9JRC2aMWMGpk2bZvQwiFovepCq4anOJzl1JR+JWiLJta/uUmVVCrwS8Vr1VAxPDEFqTIDRIyMixiLkaCbN10t15e/AVZVfq13r04+juLzlktpEiqxWEpJ8Y7lyIrvBWIQcsnR5Ul0uYOcX6HRJk4MHD+K1117D//3f/531NXl5eXB3d0dgYGCT/REREeq55syfP1+V8aq/xcZ2UD3vjHW/XPByceuYn0lENvfEE0+oZK2Pjw+CgoJUEnf9+rpSfETW5uIKdBuj31/1MlDFOuLUguoK4PuHgQM/QnP1xP2nZ6Earph1EVeZEDmru+66CyaTCa+88orRQyFn5BsGTHxW3Q3a8BJuDdkLH0spV5vQuZUWAIeX6/f7XG30aIjIBokXiT8a36SiEJHN9L5K3+77Hg6bNHn44Yd/9Ytz5k36mTSWnZ2tfrmuvfZa1dfEmh555BG1gqX+lpmZiQ7B0lxETql79+54/fXXsWPHDqxevRpdu3ZVZQaPHTtm9NDIWQ26HTC5APsWAe9NBqrKjB4R2RupGf7ZbcBfugEb3lG7tg/+M9ZXxCEywBOju4cZPUIisoEFCxaoEsVRUVFGD4WcmdQRTxityiw9VfYU1nrch8MbvjV6VGTvdn6pl3aTSaQh3YweDRHZgFzHzc3Nbbh98sknRg+JnFlSXeny/B3AqXzHTJrMmTMHe/bsafEmPUzq5eTkYOzYsRgxYgTeeUf/Q/9sunTpgqqqKhQXFzfZn5+fr55rjoeHB/z9/ZvcbErTgPRVwOFl+mM2gSdrv7/kgqkRN/nZrfTFF18gNTUVXl5eCAkJUasxysr0C70bN27ExRdfjNDQULX6a/To0diyZUuTr5fk6ttvv43LLrsM3t7e6NmzpyrBJyvSxowZo1Z5yGfGoUOHmqwA6d+/v/o6WVEmX3fdddepZOnZWCwWtRotISFBjbVfv35q7C258cYb1b9HPsd69+6teixJ2b+0tLRWHx+iNuk2Frj1a8ArGMjdDqT9x+gRkb3x8AOyNwNVpYB/NHD53/DP4/3UU5f1jWzac43ofDEWMTwWqZ90dv/99+Pjjz+GmxtXtZMNSVmlK98G+lyDat8o+JgqMSv/KZRk7tL7eBKdST6rt/5Lv596ndGjIWfEWMQuYhG53irXYutvUomDyGZ8Qn9pf1G/ktFgrm39grCwMHVrDQn2JWFS39DdbG45RyOvkz8KlixZgquv1pd47tu3DxkZGRg+fDjswg+PAuv+rt93cedKE7Ku6nLgOYNmEz6aA7j7nPNlMsPghhtuwAsvvIArr7wSp06dwqpVq6DVBRfy+LbbblPl+GTfSy+9hEsuuQQHDhyAn59fw/d5+umnVUJCbn/4wx9UskISFbJ6TPoY3XHHHbjvvvvw3XffNXyNBA+fffYZvvnmG5XImDlzJu655x51QaE5Ehj861//wltvvYXk5GSsXLkSN998s/oMk6DlXCSJK8leCXIksCCymYQLgQt/D/z4J2Drx8DgO4weEdnbBa1LXtTLqEQNRHl1LZZ89ZN66rK+nIFOVsZYxPBYRC5u3HLLLZg7d66awEFkc/6RwDXvwq36NPb9+UL0qD0AvDtCf27ALcDU140eIdmT3G36TGAXD6AvkyZkA4xFDI9FxPLlyxEeHq6SJePGjcMzzzyjkkNENtNtHJCXpi9U6DFF/ztYJhA6StKktSRhIpnR+Ph4vPjii01K29SvGpHXjB8/Hh9++CGGDh2qLkzKL/vvf/971TBeVo3IDCtJmFxwwQUwnJTkqk+YDLhZv6glzWqIOhEJDmpqanDVVVep328hsyvqycm0MUk6SJ+iFStWqBkU9W6//XY1I0JIcCC/54899hgmTZqk9j3wwAPqNY1VVFSoz4vo6Gj1WAKQSy+9VAUgZ65Gq6ysxHPPPYeffvqpIekqwYeU3JJZGS0FBwsXLsT06dNRXl6OyMhILF68WM0QIbKpvtcDPz0BZG8CCvYA4T2NHhHZkeuWB6Co9BQqa5bBw9WM09W1iAv2Rl82gKdOyNljkeeffx6urq747W9/e17HiajN3LywdsirsKyZhZ7murLX7N9JZ9ryob7teRmvh1Cn5eyxiJTmkn+brE6RlS6PPvoopkyZolbCuLi4nNexI2oxafLzK8Deb4E93+gJzDt+AIIT4FRJE7nIKNlPucXExDR5rj7zWl1drVaSyIXJen/961/VihRZaSK/3PJB8fe/1yUqjLL5faCmEtj0nv64/03A1DeMHRM5JzdvfWaDUT+7FWTFhSQ7JSCQ30/p93HNNdc0LNWUcnp/+tOf1KyEgoIC1NbWqt9xWTHWWN++dcvuAERERPwqyJB9EgzIzIn6snsy06I+MBBy0pfZmPI5cmZwIJ898nNlSeyZq0cGDBjQ4r9RVsht27YNhYWF+Mc//qGCGGkGL7MsiGzGNxxInqT3Nln+Z2DgrUBoMhAYZ/TIyA4cPlaKwtKqJvum9o9Sy/qJrIqxiKGxyObNm/G3v/1NlfDg7zcZYeyQfhi74s9w16owrVcAnrioHzyNHpQDO3LkiJpJvnTpUuTl5akeRTLD+49//CPc3d3P+nXy2SOl0T/99NMm10XqP6s6nJRqy9oAHFkNpH2u75NYlcgWGIsYfl1EJpHWk/HIOLt166b+PfLvJrKJuAsAVy+gsq7cnJSn/vd1wMwfAa8g50mazJgxQ91aIg2W6xMo9Tw9PfHGG2+om91YNAew1Oj35T/p4qeMHhE5K/njuBVLQY0kswokKbpmzRr8+OOPalaDBP2SVJBZCLIEtaioSP3BLzMupA6mnMTlpNxY4/rc9RcFmtsnJ//2KC0tVdtFixY1CSiEjKklUjs0KSlJ3WSVmyxhfffdd9USWSKbGnCTnjTZ/ZV+G/Ib4NKXjB4V2YHXbhiotu6uZuSdrMCJ8ipcPbDppBQiq2AsYmgsIqU95OKKXBCpJxda5OLpK6+8oi7AEtlSfIgPXrquPx76Ig2f7q5AdvUhfHhHCJN47bR37171GSIzuuVvi507d+LOO+9UfQ+kIsfZzJ49W312fP7556oih5TnkVnfP//8MwzzyXTg9An9fnA3oOtFxo2FnBtjEbu4LtKYrE6R6huShGHShGzG1QNInqCvMulzDZCxFijcD3x2K3DLV4DZxTmSJk6l5+V6MyhXT/2CljSnIerE5MQ9cuRIdXv88cdVELBgwQJVWk8CeZkFJfU6RWZmplqxYQ0yKyMnJ0fN0BLr1q1TK9N69Ojxq9f26tVLBQHyNa3pX9ISCVBkhheRzXWfAlw0F8jeApzK1f8gJZIZZN1YP5ioM8Qi0stEGsk2JjNYZf+Z5TmIbOXKATGI8PPE3R9vwY1D45gwOQ9S4kZujS88ymzwN99886xJE2noLBO2/v3vfzeU+JEesdIkWj5zmitdLn+rNP57RWalW5X0p025DKg4CcSPBHpdoe8j6sScNRZpTlZWlkoCSflyIpu64nVg+P16D/H8ncD7lwK9r+rwhIlg0qQ1rn3f6BEQ2Q2ZObFkyRK1/FTKVclj6VkkQbyQVRkfffQRBg8erIJ1aWLq5eVllZ8tK9Fkxob8gSHfW2p9S+msM5egCmmu9uCDD6pZWpL0GDVqlPoDRIIXWdYq3+dMMuPr2WefxRVXXKGCAQlqZNWb9F+69tprrfJvIGqR/PE57k9Gj4KIyK45cywiDVbPbLIqM07l+zd3MYTIVkYkhWLlQ2MR4MWeJtYmnwPSw/VspEyflDJvnEBNSUlRK9Ckn0BzSRNp9Pzkk0/Cpqa+btvvT+RAnDkWkdUp8nkibRPke0pPk4ceekitlqvvtUJkM16BQNww/X6XVOCBNH2fAZg0IaI2kRPrypUrVYkIOUHLbAppOCZNwYTMipo1axYGDhyI2NhY1XRMTtLWICdpWZYuszWOHz+uGqi11PNI6geHhYWpPyIOHz6sGq/JuKSJ2dmW2MoS+g8++EAlTOSixZAhQ1SpjN69e1vl30BERETnx5ljESJ7woSJ9UlpGynj01JpLul9Iv1O5POiMeltIM81R8oIy+z2evLZKJ9/RGQbzn5dJC0tTV0XKS4uVitaJDkk36ctJb2IrMKghIkwaWc2FXFw8mElNT8lc1rfJInIHkkzr/T0dFXvUmYKUMueeOIJfPXVV6pBuz3h/yM5Cp4fOw6PNTkKnsPahrEI0flxpvPjww8/jOeff77F1+zZs0etEKknq9elPM6YMWPwz3/+86xfJ2W5pBzfmeWBhw4dirFjx57z5zrbsSbnx/NY6zEWITo/bTk/cqUJEREREREREVErzZkzBzNmzGjxNdK/pJ70H5CEx4gRI/DOO++0+HVSDkeaRcsM78arTfLz85stv0NERETWx6QJEREREREREVErSakbubWGrDCRhMmgQYNUQ3dp2NwSeZ30MpJ+CdJTQEjzeGnkPHz4cKuMn4iIiFrW8tmaiMiOlqHa2xJUIiIi6jwYixBRW0nCRMpxSRN36WMijaKlL0nj3iTyGinjtWHDBvVYyobMnDlT9ShZtmyZagwv5bokYdJcE3gi6jwYixB1HK40ISIiIiIiIiKyssWLF6vm73KLiYlp8lx9e9nq6mq1kqS8vLzhub/+9a9qRYqsNJHeJpMmTWqx0TMRERFZF5MmRAazWCxGD4HOA///iIjI0fFc5tj4/0dkv6Tvybl6n3Tt2rUhgVJPGim/8cYb6kbUWZz5e0COg7EIOSMmTYgM4u7urmYPSVNAqYcrj00mk9HDojYEdNKgUZbYy/+j/P8RERE5EsYijo2xCBEROQPp4SPxh5zPJB5hLOI4GIuQM2PShMggckJJSEhAbm6uulhBjsnb21vVKD5XQ0ciIiJ7w1jEOTAWISIiR+bi4qLK12VlZeHIkSNGD4fagbEIOSMmTYgMJFl4ObHU1NSgtrbW6OFQO4I7V1dXzoQhIiKHxVjEsTEWISIiZ+Dr64vk5GTV44ccC2MRclZMmhAZTE4sshxVbkREREQdjbEIERER2cPFd7kREdkDrpsiIiIiIiIiIiIiIiJi0oSIiIiIiIiIiIiIiEjHpAkREREREREREREREZEz9jTRNE1tS0pKjB4KERGR3ag/L9afJ8l2GIsQERH9GmORjsNYhIiI6PxiEadLmpw6dUptY2NjjR4KERGRXZ4nAwICjB6GU2MsQkREdHaMRWyPsQgREdH5xSImzcmmeVgsFuTk5MDPzw8mk8lqWSgJNjIzM+Hv72+V79lZ8VhaD4+l9fBYWg+Ppf0eSzndS2AQFRUFs5nVOW2JsYh947G0Hh5L6+GxtB4eS+thLOK4GIvYNx5L6+GxtB4eS+vhsXSOWMTpVprIPzgmJsYm31v+c/hmtw4eS+vhsbQeHkvr4bG0z2PJWZ0dg7GIY+CxtB4eS+vhsbQeHkvrYSzieBiLOAYeS+vhsbQeHkvr4bF07FiE0zuIiIiIiIiIiIiIiIiYNCEiIiIiIiIiIiIiItIxadIKHh4emDdvntrS+eGxtB4eS+vhsbQeHkvr4bGkxvh+sB4eS+vhsbQeHkvr4bG0Hh5LaozvB+vhsbQeHkvr4bG0Hh5L5ziWTtcInoiIiIiIiIiIiIiIqD240oSIiIiIiIiIiIiIiIhJEyIiIiIiIiIiIiIiIh2TJkREREREREREREREREyaEBERERERERERERER6Zg0ISIiIiIiIiIiIiIiYtKkdd544w107doVnp6eGDZsGDZs2GD0kOzaE088AZPJ1OSWkpLS8HxFRQXuvfdehISEwNfXF1dffTXy8/MNHbO9WLlyJS6//HJERUWp4/bVV181eV7TNDz++OOIjIyEl5cXJkyYgAMHDjR5zfHjx3HTTTfB398fgYGBmDlzJkpLS9HZnOtYzpgx41fv08mTJzd5DY8lMH/+fAwZMgR+fn4IDw/HtGnTsG/fviavac3vdEZGBi699FJ4e3ur7zN37lzU1NSgM2nNsRwzZsyv3pd33XVXk9fwWHZOjEXahrFI+zEWsR7GItbDeMQ6GIvQ+WAs0jaMRdqPsYj1MBaxHsYinS8eYdLkHP7zn//g97//PebNm4ctW7agX79+mDRpEgoKCoweml3r3bs3cnNzG26rV69ueG727Nn45ptv8Pnnn2PFihXIycnBVVddZeh47UVZWZl6j0lA2pwXXngBr776Kt566y2sX78ePj4+6v0oH8z15GS2a9cuLF68GAsXLlQnyVmzZqGzOdexFBIMNH6ffvLJJ02e57GE+h2Vk/66devUcaiursbEiRPV8W3t73Rtba06kVVVVWHNmjX44IMP8P7776tAtzNpzbEUd955Z5P3pfze1+Ox7JwYi7QPY5H2YSxiPYxFrIfxiHUwFqH2YizSPoxF2oexiPUwFrEexiKdMB7RqEVDhw7V7r333obHtbW1WlRUlDZ//nxDx2XP5s2bp/Xr16/Z54qLizU3Nzft888/b9i3Z88eTd6Ka9eu7cBR2j85JgsWLGh4bLFYtC5dumh/+ctfmhxPDw8P7ZNPPlGPd+/erb5u48aNDa/57rvvNJPJpGVnZ2ud1ZnHUtx2223a1KlTz/o1PJbNKygoUMdlxYoVrf6d/vbbbzWz2azl5eU1vObNN9/U/P39tcrKSq2zOvNYitGjR2sPPPDAWb+Gx7JzYizSdoxFrIOxiPUwFrEuxiPWwViEWouxSNsxFrEOxiLWw1jEuhiLOH88wpUmLZBs1ebNm9VSv3pms1k9Xrt2raFjs3eyNFKW/yUmJqqstCyZEnI8JYPY+JjKEtW4uDge03NIT09HXl5ek2MXEBCglkbXHzvZynLJwYMHN7xGXi/vW5mBQU0tX75cLeHr0aMH7r77bhQVFTU8x2PZvJMnT6ptcHBwq3+nZZuamoqIiIiG18hMoJKSEjVjpbM681jW+/jjjxEaGoo+ffrgkUceQXl5ecNzPJadD2OR9mMsYn2MRayPsUj7MB6xDsYi1BqMRdqPsYj1MRaxPsYi7cNYxPnjEVerfBcnVVhYqJb7NP4PEPJ47969ho3L3snJSpZEyQeuLJ968sknceGFF2Lnzp3q5Obu7q4+dM88pvIcnV398Wnu/Vj/nGzlZNeYq6ur+uDh8f31ElRZJpmQkIBDhw7h0UcfxZQpU9QHr4uLC49lMywWC373u99h5MiR6qQlWvM7Ldvm3rf1z3VGzR1LceONNyI+Pl79cZWWloY//OEPqrbnl19+qZ7nsex8GIu0D2MR22AsYl2MRdqH8Yh1MBah1mIs0j6MRWyDsYh1MRZpH8YinSMeYdKErE4+YOv17dtXBQvyRv/ss89Uky4iezB9+vSG+5Kdlvdqt27d1CyL8ePHGzo2eyU1JyXIb1yLl6x7LBvXhpX3pTQ3lPejBLDy/iSi1mEsQo6AsUj7MB6xDsYiRLbFWIQcAWOR9mEs0jniEZbnaoEsAZLMan5+fpP98rhLly6GjcvRSJa1e/fuOHjwoDpusry3uLi4yWt4TM+t/vi09H6U7ZnN+GpqanD8+HEe33OQJdPyOy/vU8Fj2dR9992nmr4tW7YMMTExDftb8zst2+bet/XPdTZnO5bNkT+uROP3JY9l58JYxDoYi1gHYxHbYixyboxHrIOxCLUFYxHrYCxiHYxFbIuxyLkxFuk88QiTJi2QZVWDBg3CkiVLmiwbksfDhw83dGyOpLS0VGUCJSsox9PNza3JMZXlVVLbk8e0ZbJcUn7xGx87qdUndSTrj51s5QNaainWW7p0qXrf1n/AUPOysrJU7U55nwoeS530i5MT2YIFC9S/X96HjbXmd1q2O3bsaBJsLV68GP7+/ujVqxc6i3Mdy+Zs27ZNbRu/L3ksOxfGItbBWMQ6GIvYFmORs2M8Yh2MRag9GItYB2MR62AsYluMRc6OsUgnjEes0k7eiX366aeah4eH9v7772u7d+/WZs2apQUGBmp5eXlGD81uzZkzR1u+fLmWnp6u/fzzz9qECRO00NBQraCgQD1/1113aXFxcdrSpUu1TZs2acOHD1c30rRTp05pW7duVTf59Xz55ZfV/aNHj6rn//znP6v339dff62lpaVpU6dO1RISErTTp083fI/JkydrAwYM0NavX6+tXr1aS05O1m644Qats2npWMpzDz74oLZ27Vr1Pv3pp5+0gQMHqmNVUVHR8D14LDXt7rvv1gICAtTvdG5ubsOtvLy84TXn+p2uqanR+vTpo02cOFHbtm2b9v3332thYWHaI488onUm5zqWBw8e1J566il1DOV9Kb/niYmJ2kUXXdTwPXgsOyfGIm3HWKT9GItYD2MR62E8Yh2MRai9GIu0HWOR9mMsYj2MRayHsUjni0eYNGmF1157Tb3p3d3dtaFDh2rr1q0zekh27frrr9ciIyPV8YqOjlaP5Q1fT05k99xzjxYUFKR5e3trV155pfrlIE1btmyZOpGdebvtttvU8xaLRXvssce0iIgIFbSOHz9e27dvX5PvUVRUpE5gvr6+mr+/v3b77berk2Fn09KxlA9i+WCVD1Q3NzctPj5eu/POO38V9PNYas0eQ7m99957bfqdPnLkiDZlyhTNy8tL/bEgf0RUV1drncm5jmVGRoYKAoKDg9Xvd1JSkjZ37lzt5MmTTb4Pj2XnxFikbRiLtB9jEethLGI9jEesg7EInQ/GIm3DWKT9GItYD2MR62Es0vniEVPdYImIiIiIiIiIiIiIiDo19jQhIiIiIiIiIiIiIiJi0oSIiIiIiIiIiIiIiEjHpAkRERERERERERERERGTJkRERERERERERERERDomTYiIiIiIiIiIiIiIiJg0ISIiIiIiIiIiIiIi0jFpQkRERERERERERERExKQJERERERERERERERGRjkkTIiIiIiIiIiIiIiIiJk2IiIiIiIiIiIiIiIh0TJoQEREREREREREREREI+P9tDxA7JkhdQQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -146,7 +127,7 @@ "from aeon.datasets import load_classification\n", "\n", "# Load GunPoint dataset\n", - "X, y = load_classification(\"GunPoint\")\n", + "X, y = load_classification(\"ArrowHead\")\n", "\n", "classes = np.unique(y)\n", "\n", @@ -162,12 +143,43 @@ }, { "cell_type": "markdown", - "id": "5392f7f4-1825-4b15-9248-27eeecb1af3c", + "id": "01fa67c2-0126-4152-98a9-fa0df84c4629", "metadata": {}, "source": [ - "The GunPoint dataset is composed of two classes which are discriminated by the \"bumps\" located before and after the central peak. These bumps correspond to an actor drawing a fake gun from a holster before pointing it (hence the name \"GunPoint\" !). In the second class, the actor simply points his fingers without making the motion of taking the gun out of the holster.\n", + "## 1. Series estimators\n", "\n", - "Suppose that we define our input query for the similarity search task as one of these bumps:" + "First, we'll explore estimators of the `series` module, where you must provide single series of shape `(n_channels, n_timepoints)` during fit." + ] + }, + { + "cell_type": "markdown", + "id": "78f17f93-28b3-49c0-be5f-1d430a273b0c", + "metadata": {}, + "source": [ + "### 1.1 Subsequence nearest neighbors with MASS\n", + "\n", + "To perform nearest neighbors search on subsequences on a series, we can use the `MassSNN` estimator.\n", + "\n", + "It takes as parameter during initialisation :\n", + "- `length` : an integer giving the length of the subsequences to extract from the series. It is also the expected length of the series given in `predict`\n", + "- `normalize`: a boolean indicating wheter the subsequences should be independently z-normalized (`(X-mean(X))/std(X)`) before the distance computations. This results in a scale-independent matching.\n", + " \n", + "To parameterize the search, additional parameters are available when calling the `predict` method:\n", + "\n", + "- `k` (int) : the number of nearest neighbors to return.\n", + "- `dist_threshold` (float) : the maximum allowed distance for a candidate subsequence to be considered as a neighbor.\n", + "- `allow_trivial_matches` (bool) : wheter a neighbors of a match to a query can be also considered as matches (True), or if an exclusion zone is applied around each match to avoid trivial matches with their direct neighbors (False).\n", + "- `inverse_distance` (bool) : if True, the matching will be made on the inverse of the distance, and thus, the farther neighbors will be returned instead of the closest ones.\n", + "- `exclusion_factor` (float): A factor of the `length` used to define the exclusion zone when `allow_trivial_matches` is set to False. For a given timestamp, the exclusion zone starts from `id_timestamp - floor(length*exclusion_factor)` and end at `id_timestamp + floor(length*exclusion_factor)`.\n", + "- `X_index` (int): If series given during predict is a subsequence of series given during fit, specify its starting timestamp. If specified, neighboring subsequences of X won't be able to match as neighbors." + ] + }, + { + "cell_type": "markdown", + "id": "33105406-fc83-4143-9345-af589a06a00a", + "metadata": {}, + "source": [ + "First, we'll select a series from the dataset to use during fit. This is the series we want our neighbors to come from." ] }, { @@ -178,83 +190,108 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnTElEQVR4nO3de1hU17038O+eGQEVBRUGxgFEHEQYRYyDaHNiRURMc4ImUSRJDaka8jT29DTJieF588a074lHenJp89SmPSS20pNEStJGbKNUSeolRsVR1Cga0YAwCONwvwgMM7PfP7hE5KYOsIeZ7+d5fJzLYq9fdut3NmvtWUsQRVEEERE5PZnUBRAR0chg4BMRuQgGPhGRi2DgExG5CAY+EZGLUEhdQH98fHwQHBwsdRlERKNKSUkJqqqq+nzPYQM/ODgYer1e6jKIiEYVnU7X73sc0iEichEMfCIiF8HAJyJyEQx8IiIXwcAnInIRDHwiIhfBwCcichEMfCIiB/LX0wZ8rC8blmMz8ImIHITNJuJXeZex+0z5sByfgU9E5CCOF1ejrKYFSbrAYTk+A5+IyEFknyzDBA8FErT+w3J8Bj4RkQOob2nHvvOVWBWlhscY+bD0wcAnInIAfzt7HW0W27AN5wAMfCIih5CtL8Ms/wmYrZ44bH0MSeDn5uYiLCwMGo0G6enpvd4vLS1FbGws5s2bh8jISOzdu3couiUicgoXKxpwzlCPtdGBEARh2PqxO/CtVis2bdqEffv2obCwELt27UJhYWGPNq+//jqSkpJQUFCArKwsPPfcc/Z2S0TkND7WG+Aml2FVlHpY+7E78PPz86HRaBASEgI3NzckJycjJyenRxtBENDQ0AAAqK+vx9SpU+3tlojIKZgtNnxaYEB8hB8mjXcb1r7s3vGqvLwcgYHfTTIEBATgxIkTPdr8/Oc/x/Lly/Gb3/wGzc3NyMvL6/NYGRkZyMjIAACYTCZ7SyMicnh5F42ovdmONbqAYe9rRCZtd+3ahaeffhoGgwF79+7FunXrYLPZerVLTU2FXq+HXq+Hr6/vSJRGRCSpbH0ZVF4eeCB0+DPP7sBXq9UoK/tu3QeDwQC1uuc41I4dO5CUlAQAWLRoEVpbW/vdZJeIyFVU1Lfg8GUTVs8PgFw2fJO1XewO/OjoaBQVFaG4uBhmsxlZWVlITEzs0SYoKAiff/45AODixYtobW3lFTwRuby/nDLAJgJr5g/fvfe3sjvwFQoFtm/fjoSEBISHhyMpKQlarRZbtmzBnj17AABvvfUW3nvvPcydOxePP/44du7cOay3HhEROTqbTUS23oBFIVMQNGXciPQpiKIojkhPd0mn00Gv10tdBhHRsDj+bTWSM47jV2vn4pF5QzdhO1B28pu2REQSyNaXYYK7Aiu0qhHrk4FPRDTCGlrbsffrCjwcNRVj3YZnobS+MPCJiEbY389WoLXdhrXDuFBaXxj4REQjLFtfhjC/CYgM8BrRfhn4REQj6LKxEWfK6rBGFzDidysy8ImIRlD2yTKMkQt4ZN7wLpTWFwY+EdEI6VgorRzLwv0wxdN9xPtn4BMRjZAvLt1AdbN5WHe1GggDn4hohHxyqgx+E93xQKiPJP0z8ImIRkB1UxsOfmPCqnlqKOTSRC8Dn4hoBPzt7HVYbCIeHcJlFO4WA5+IaAT8taAc2qkTEeY/QbIaGPhERMPsyo0mnDPUS3Ir5q0Y+EREw+zTAgNkApAYJe1+3gx8IqJhZLOJ2F1wHYtn+kI5wUPSWoYk8HNzcxEWFgaNRoP09PQ+22RnZyMiIgJarRZPPPHEUHRLROTwThTXoLyuRfLhHABQ2HsAq9WKTZs24cCBAwgICEB0dDQSExMRERHR3aaoqAjbtm3D0aNHMWnSJNy4ccPebomIRoVPCwzwdFdgeYS/1KXYf4Wfn58PjUaDkJAQuLm5ITk5GTk5OT3avPfee9i0aRMmTZoEAFAqlfZ2S0Tk8Frbrdj7dSVWzPYf0XXv+2N34JeXlyMw8LuvCQcEBKC8vLxHm8uXL+Py5cu4//77sXDhQuTm5trbLRGRw9tfaERTmwWP3if9cA4wBEM6d8JisaCoqAgHDx6EwWDA4sWL8fXXX8Pb27tHu4yMDGRkZAAATCbTSJRGRDRsPj1twFQvDyycPkXqUgAMwRW+Wq1GWVlZ93ODwQC1uuenWUBAABITEzFmzBhMnz4dM2fORFFRUa9jpaamQq/XQ6/Xw9fX197SiIgkY2psw+GiKqycp4ZMNrLr3vfH7sCPjo5GUVERiouLYTabkZWVhcTExB5tVq1ahYMHDwIAqqqqcPnyZYSEhNjbNRGRw9pz9jqsNhGPOsDdOV3sDnyFQoHt27cjISEB4eHhSEpKglarxZYtW7Bnzx4AQEJCAqZMmYKIiAjExsbijTfewJQpjvErDhHRcPi0wIA5ai+E+km3lMLtBFEURamL6ItOp4Ner5e6DCKiu1ZkbET8rw5jy79GYP2/TB/RvgfKTn7TlohoiP21oBxymSD5Ugq3Y+ATEQ2hjqUUyvH9mb7wkWAbw4Ew8ImIhtDxb6tRUd/qEEsp3I6BT0Q0hP5aUI4J7grER/hJXUovDHwioiHSYrZi39cVeHCOPzzGSL+Uwu0Y+EREQ2R/YSWazVY8ep902xgOhIFPRDRE/nq6HGrvsVgQPFnqUvrEwCciGgI3GltxpMiEVfOmOsxSCrdj4BMRDYE9Z67DJgKPzHPM4RyAgU9ENCT+fq4Cs9UToVF6Sl1Kvxj4RER2qqhvwZmyOjw4WyV1KQNi4BMR2ekf5ysBACtmS7+N4UAY+EREdsq9UImZfp6Y4eu4wzkAA5+IyC7VTW3IL67BCq1jX90DDHwiIrscKDTCJgIJDj6cAzDwiYjsknuhEkGTxyFCNVHqUgY1JIGfm5uLsLAwaDQapKen99vuL3/5CwRB4MYmROQU6lvacfRKFVbM9ocgOOaXrW5ld+BbrVZs2rQJ+/btQ2FhIXbt2oXCwsJe7RobG/HOO+8gJibG3i6JiBzCPy/dQLtVRMIoGL8HhiDw8/PzodFoEBISAjc3NyQnJyMnJ6dXu1dffRUvv/wyPDw87O2SiMgh5J6vhN9Ed8wL9Ja6lDtid+CXl5cjMDCw+3lAQADKy8t7tDl9+jTKysrw0EMPDXisjIwM6HQ66HQ6mEwme0sjIho2N80WHLx8Awlaf4ddO+d2wz5pa7PZ8MILL+Ctt94atG1qair0ej30ej18fX2HuzQiont2+LIJre22UXE7Zhe7A1+tVqOsrKz7ucFggFr93dZejY2NOH/+PJYsWYLg4GAcP34ciYmJnLglolEt93wlJo0bgwXTHXMp5L7YHfjR0dEoKipCcXExzGYzsrKykJiY2P2+l5cXqqqqUFJSgpKSEixcuBB79uyBTqezt2siIkm0Waz4/OINxEf4QSEfPXe3212pQqHA9u3bkZCQgPDwcCQlJUGr1WLLli3Ys2fPUNRIRORQvrpajcY2i8OvnXM7QRRFUeoi+qLT6TjsQ0QOKe0v5/D3cxU49eoyuCsca+/agbJz9PwuQkTkACxWG/YXGrF0ltLhwn4wDHwiortwsqQWNc3mUTecAzDwiYjuyj8uVMJdIcP3Z46+W8cZ+EREd8hmE5F7vhLfn+mL8e4Kqcu5awx8IqI7dNZQh8qG1lE5nAMw8ImI7ljuhUooZALiZvlJXco9YeATEd0BUewYzvmexgde48ZIXc49YeATEd2BS5WNuFZ9c1StnXM7Bj4R0R3IPV8JQQDiI0bncA7AwCciuiO55ysRPW0yfCe4S13KPWPgExEN4ltTE74xNo7au3O6MPCJiAax73wlACCBgU9E5Lxumi3449FifG/GFKi9x0pdjl0Y+EREA/jj0RJUNZnx4vIwqUuxGwOfiKgf9S3t+J9DVxE3S4n50yZJXY7dhiTwc3NzERYWBo1Gg/T09F7vv/3224iIiEBkZCTi4uJw7dq1oeiWiGhYvXf4WzS0Wpzi6h4YgsC3Wq3YtGkT9u3bh8LCQuzatQuFhYU92sybNw96vR7nzp3D6tWrsXnzZnu7JSIaVqbGNvzhaDEenjsVEVMnSl3OkLA78PPz86HRaBASEgI3NzckJycjJyenR5vY2FiMGzcOALBw4UIYDAZ7uyUiGlbvHryCNosNzy8LlbqUIWN34JeXlyMwMLD7eUBAAMrLy/ttv2PHDjz44IN9vpeRkQGdTgedTgeTyWRvaURE96S8rgUfHi/F6vsCEOLrKXU5Q2ZEF3T+4IMPoNfrcejQoT7fT01NRWpqKoCOfRmJiKTwm8+LAAA/daKre2AIAl+tVqOsrKz7ucFggFqt7tUuLy8PW7duxaFDh+DuPnq/mkxEzq24qhkfnzJg3cJpo/6++9vZPaQTHR2NoqIiFBcXw2w2IysrC4mJiT3aFBQU4Nlnn8WePXugVCrt7ZKIaNj86sBluMll2BSrkbqUIWd34CsUCmzfvh0JCQkIDw9HUlIStFottmzZgj179gAAXnrpJTQ1NWHNmjWIiorq9YFAROQILlY04G/nruNH9weP6kXS+iOIoihKXURfdDod9Hq91GUQkQvZmKnHieJqfLl56ajd5GSg7OQ3bYmIABSU1iLvohHPLg4ZtWE/GAY+ERGAN/d/gynj3fCj+6dLXcqwYeATkcv76koVjl6pxnOxGox3H9G71UcUA5+IXJooinhj/zdQeXngyZggqcsZVgx8InJpX1y6gYLSOvw0LhQeY+RSlzOsGPhE5NL+cLQYau+xWD0/QOpShh0Dn4hcVklVM45eqcbjCwIxRu78cej8/4VERP3YdbIUcpmANbrAwRs7AQY+Ebkks8WGT/QGxM1Swm+ih9TljAgGPhG5pAOFRlQ3m/GEk9+ZcysGPhG5pF35pVB7j8UDob5SlzJiGPhE5HJKqprx5ZUqJEcHQi4TpC5nxDDwicjlZJ0sg1wmICnaNSZruzDwicilmC02fHKqzKUma7sw8InIpeRdNKKqyYzHXWiytgsDn4hcykcnOiZrF7vQZG2XIQn83NxchIWFQaPRID09vdf7bW1tWLt2LTQaDWJiYlBSUjIU3RIR3ZVr1R2TtWtdbLK2i92Bb7VasWnTJuzbtw+FhYXYtWsXCgsLe7TZsWMHJk2ahCtXruD555/Hyy+/bG+3RER3rXuy1kW+WXs7uwM/Pz8fGo0GISEhcHNzQ3JyMnJycnq0ycnJQUpKCgBg9erV+Pzzz+GgOysSkZMyW2z4WF+GpbOU8PdyrcnaLnYHfnl5OQIDv/u0DAgIQHl5eb9tFAoFvLy8UF1d3etYGRkZ0Ol00Ol0MJlM9pZGRNSta7L2iQWuN1nbxaEmbVNTU6HX66HX6+Hr63oTKkQ0fLq+Wbt4putmi92Br1arUVZW1v3cYDBArVb328ZisaC+vh5Tpkyxt2siojtSWn0TR4pcd7K2i92BHx0djaKiIhQXF8NsNiMrKwuJiYk92iQmJiIzMxMA8Mknn2Dp0qUQBNc96UQ0srJOlkImwGUna7vYvVuvQqHA9u3bkZCQAKvVivXr10Or1WLLli3Q6XRITEzEhg0bsG7dOmg0GkyePBlZWVlDUTsR0aDarTZk6w1YOsvPZSdruwiig94uo9PpoNfrpS6DiEa5fV9X4McfnsYfntZh6Sw/qcsZdgNlp0NN2hIRDbWP8ksx1csD35+plLoUyTHwichpldV0TdYGufRkbRcGPhE5rV35nZO10QFSl+IQGPhE5JRunaxVeY2VuhyHwMAnIqd0oNCIqqY2POmCyyD3h4FPRE7pwxPXXP6btbdj4BOR0ympasbRK9Uut2ftYBj4ROR0duWXQi4TsNbF9qwdDAOfiJxKm8WKj08ZEB/uB6WL7Vk7GAY+ETmV3POVqGk24wlO1vbCwCcip/LRiVIETR6Hf9H4SF2Kw2HgE5HTuHKjCSeKa/D4giDIOFnbCwOfiJzGRydKMUYuYI2O36ztCwOfiJxCa7sVfzltwHKtP3w83aUuxyEx8InIKez9ugL1Le140oX3rB2MXYFfU1OD+Ph4hIaGIj4+HrW1tb3anDlzBosWLYJWq0VkZCT+/Oc/29MlEVGfPjpRihCf8Vg0g9un9seuwE9PT0dcXByKiooQFxeH9PT0Xm3GjRuHP/3pT7hw4QJyc3Pxs5/9DHV1dfZ0S0TUwzeVjdBfq8XjC4K4feoA7Ar8nJwcpKSkAABSUlKwe/fuXm1mzpyJ0NBQAMDUqVOhVCphMpns6ZaIqIePTlyDm1yGx+ZzsnYgdu1pazQaoVKpAAD+/v4wGo0Dts/Pz4fZbMaMGTP6fD8jIwMZGRkAwA8FIrojLWYr/lpQjgfn+GPyeDepy3Fogwb+smXLUFlZ2ev1rVu39nguCMKAv0pVVFRg3bp1yMzMhEzW9y8WqampSE1NBdCxLyMR0WD+du46GlsteDJmmtSlOLxBAz8vL6/f9/z8/FBRUQGVSoWKigoolX3vGdnQ0ICHHnoIW7duxcKFC++9WiKi23x4ohQapSeigydJXYrDs2sMPzExEZmZmQCAzMxMrFy5slcbs9mMRx55BE899RRWr15tT3dERD1cuF6Ps2V1eIKTtXfErsBPS0vDgQMHEBoairy8PKSlpQEA9Ho9Nm7cCADIzs7G4cOHsXPnTkRFRSEqKgpnzpyxu3Aioo9OlMJdIcNj93Gy9k4IoiiKUhfRF51OB71eL3UZROSgmtosiNmahxWzVXgraa7U5TiMgbKT37QlolFp+xdX0Gy2chnku8DAJ6JR57f/vILfH7qKJF0A7gvylrqcUYOBT0SjyvtHvsUb//gGq6KmYtujkZysvQsMfCIaNTK/KsHrn13EQ3NUeHPNXG5QfpcY+EQ0Knx0ohSv7bmA+Ag//Do5Cgo54+tu8YwRkcP75JQBr+z+GrFhvtj+xDyMYdjfE541InJoOWfKsfmTs7h/hg9+98P5cFfIpS5p1GLgE5HD2vd1BV7IPovo4Ml47ykdPMYw7O3BwCcih3Sg0Ih/21WAqEBv/OHpaIx1Y9jbi4FPRA7n8GUTNn14GtqpE/HHH0VjvLtdK7lTJwY+ETmUU9dq8ez/nkKI73j8aX0MJnqMkbokp8HAJyKH8U1lI9bvPAnlRHf8acMCeI1j2A8lBj4ROYTS6ptYt+MEPMbI8MGGGCgneEhdktPhwBgRSe5GYyvW/eEEzFYbsp9dhMDJ46QuySnxCp+IJFXf0o6nduTD1NiGPz4djZl+E6QuyWkx8IlIMi1mKzbsPImrpib8z7r5mBfEbQqHk12BX1NTg/j4eISGhiI+Ph61tbX9tm1oaEBAQAB+8pOf2NMlETkJs8WGH394CqdLa/FO8jw8EOordUlOz67AT09PR1xcHIqKihAXF4f09PR+27766qtYvHixPd0RkZOw2UT8x8dncfAbE7Y+Mgc/mKOSuiSXYFfg5+TkICUlBQCQkpKC3bt399nu1KlTMBqNWL58uT3dEZETEEURr+25gD1nr+PlFbPw+ALuWDVS7Ap8o9EIlarjk9nf3x9Go7FXG5vNhhdffBFvvvnmoMfLyMiATqeDTqeDyWSypzQickA2m4hf/K0Q/3v8Gp5dHIIfL5khdUkuZdDbMpctW4bKysper2/durXHc0EQ+tx55t1338UPfvADBAQMvqt8amoqUlNTAXRsxEtEzqPdasPmT87h04JybPiX6Uh7cJbUJbmcQQM/Ly+v3/f8/PxQUVEBlUqFiooKKJXKXm2OHTuGI0eO4N1330VTUxPMZjM8PT0HHO8nIufS2m7FTz46jbyLN/BSQhieWzKDWxNKwK4vXiUmJiIzMxNpaWnIzMzEypUre7X58MMPux/v3LkTer2eYU/kQhpa27ExU4+TJTX4z1WzsW7hNKlLcll2jeGnpaXhwIEDCA0NRV5eHtLS0gAAer0eGzduHJICiWj0qmpqw+MZx3H6Wsetlwx7aQmiKIpSF9EXnU4HvV4vdRlEdI8MtTfx1I58XK9vwe9+OB+xYb2HfGnoDZSdXEuHiIbclRuNWLcjH01tFnywIQa64MlSl0Rg4BPREDtbVoen/5gPuUyGP6cuQsTUiVKXRJ0Y+EQ0JCxWG3bllyJ93yVMGu+GDzbEINhnvNRl0S0Y+ERkF1EU8c9vbuC/9l7ClRtNWBQyBb9aGwV/L65n72gY+ER0zy5WNGDrZxfx5ZUqTPcZj/ee0mFZuJL32DsoBj4R3bUbja14e/9l/FlfBq+xY/DawxF4MmYa3BRccd2RMfCJ6I61mK14/8i3+N2hq2i32rDh/un4t6Wh3Ht2lGDgE9GAbDYRBWV12F9YiZyC66hsaMUKrT/SHpzFSdlRhoFPRL20Waz46mo19l8w4kChEVVNbVDIBCyaMQXvJEchJmSK1CXSPWDgExGAjjVv/nnpBvYXGnHw0g00m60Y7ybHkjAllmv9sCRMCa+xHLoZzRj4RC6qzWLF6Wt1OHa1CkevVuNsWR0sNhE+nm5IjJqK5RH+WDRjCjzGyKUulYYIA5/IRVhtIr4ur8dXV6vw1ZVqnCypQZvFBpkAzAnwRuriEMSFKxEVOAlyGW+rdEYMfKJbtLZbIRMEp7i9sM1ixfnyeuhLanGypBYniqvR2GoBAIT5TcATMUH43gwfxIRMxkQPDtW4AgY+OT1RFFHTbEZFfStuNLaiqtEMU1MbTI23/Ol83tTWEYg+nm7wm+jR/cd/ogf8JrrDz6vjsf9ED3iPG+NQXzCqbTbj1LVanLxWg1MltThXXg+zxQYACJ4yDv8aqcKiGT5YFDIFvhPcJa6WpMDAJ6dQWn0TFysbUFnfior6VlTWt+B6fSsq61tR2dDaHXy3muihgM8Ed/h6ukM7dSJ8J7jDx9Md7VYbjA2tMDa0obK+FWfL6lDdbO718+4KGVReHvD38oDKa2zn3x0fBiqvsVBOdMeU8W5QyIf2t4U2ixVlNTdx1dSM4qpmXLnRhILSWlw1NQMAxsgFaKd6IWXRNMyfNhnzp01iwBMAOwO/pqYGa9euRUlJCYKDg5GdnY1Jkyb1aldaWoqNGzeirKwMgiBg7969CA4OtqdrcnGiKOLC9Qbsv1CJf1ww4htjY/d7bnIZ/DuDeF6Qd0cQT/SAf2cIKzuD/W4mI9ssVpga22BsaEVlfRsqGzo+VCo6P1Tyi2tgbGiFxdZzewlBAKaMd4OPpzt8J7hDOcEDvhPcu/+4dw4dCejcF7rzZ7p+VhSB63Ut+LaqGd92Bryh9iZu7cbH0w2RAd549L4A6KZNwtxAb060Up/s2gBl8+bNmDx5MtLS0pCeno7a2lr88pe/7NVuyZIleOWVVxAfH4+mpibIZDKMGzduwGNzAxS6ncVqw8mSWuwvrMT+C0aU17VAJgC64MlI0PpjQfBkqLw9MHmcG2QSTDrabCKqm82orG/F9foWmBrbcOP2YaOGVpia2tBuvbt/duPc5JjuMx7TfcYjxGc8Qnw9Md1nPIJ9xvNWSeph2DZAycnJwcGDBwEAKSkpWLJkSa/ALywshMViQXx8PADA09PTni7JBZ26Votd+aX4/KIRtTfb4aaQYXGoD/49LhRx4UpM8XSM4QqZTOi+cp8T4NVvO1EUUd/SDlNjG8xWG7ouuUQRECHe8riDyssDygnuDjVfQKOTXYFvNBqhUqkAAP7+/jAajb3aXL58Gd7e3nj00UdRXFyMZcuWIT09HXJ57185MzIykJGRAQAwmUz2lEZOoMVsxX//4xJ2flUCT3cF4mYpkaD1x+KZvhjvPnqnnwRBgPc4N3iPc5O6FHIxg/6rWbZsGSorK3u9vnXr1h7PBUHo8wrEYrHgyJEjKCgoQFBQENauXYudO3diw4YNvdqmpqYiNTUVQMevJeS69CU1+I+Pz6Kk+iaeWjQNL6+YNapDnsgRDPovKC8vr9/3/Pz8UFFRAZVKhYqKCiiVvTcpDggIQFRUFEJCQgAAq1atwvHjx/sMfKLWdive/Mc32HG0GGrvsfjomRh8b4aP1GUROQW77hdLTExEZmYmACAzMxMrV67s1SY6Ohp1dXXdQzRffPEFIiIi7OmWnNSpa7X4wTtH8P6XxXhiQRByf7aYYU80hOwK/LS0NBw4cAChoaHIy8tDWloaAECv12Pjxo0AALlcjjfffBNxcXGYM2cORFHEM888Y3/l5DRa263Ytvci1vz+K7RZbPhgQwy2PjIHnhzCIRpSdt2WOZx4W6ZrOFNWhxezz+CqqRmPLwjC//nBLEzg1/yJ7tmw3ZZJdK/MFht+80UR3j14FcoJ7vjT+gVYPNNX6rKInBoDn0bcN5WNeCH7DC5cb8Bj9wXgtcQILt5FNAIY+DRirDYR7x35Fm/vv4yJYxXIWDcfy7X+UpdF5DIY+DQirlU348Xss9Bfq8UKrT+2PjLbYb4hS+QqGPg0rERRxIcnSvFfey9CLhPwq7VzsSpKzWUCiCTAwKdhU1p9E/835zwOXzbhgVAf/PfqSKi8xkpdFpHLYuDTkGq32vD5RSM+yi/DkSITPBRy/Oeq2fhhTBCv6okkxsCnIVFWcxNZJ0uRrTfA1NgGlZcH/j0uFMnRQfD38pC6PCICA5/s0HE1fwMf5ZfiSJEJAoCls5R4fEEQloQpuRE2kYNh4NOAujb1qKhvwfW6Vlyva+l43LnL061X80m6QEz15hg9kaNi4A8hURRhtYlot4pot9nQbrF1PO7c5MImirCJHVtciKIIm4ger9tsgMVmg00UYbV13LdutYmwiiJsnY9FdLQXRbHzZzs2zeg4VsdxzBYbzBYb2jr7N1tsMFut3a+320RYrR3HvbWPW1+7abagor4VFXWtMFt77gfrrpBhqvdY3BfkjTXzA7EkzHfI920loqHndIFf02xG3FsHIQgCZAK6/5YJAmSdk4YyWcfzrgEH4ZbHENDjdVtn2NrEjgAWxa5QRPdji1WE2WrrDnZHJJcJcJPL4KaQYYxcgFwmQCGTQSYD5ELHc7ms4xwp5AI8FHJEBnhjhdYDU73HQuXV8fdU77GYNG4MJ2CJRiGnC3w3hQwPz53aeRWMHle+NhG3vN57KzlRFLsfo/PKueuDQi4TIAgd4SgTBMhkAuSdHxxj5DKMkcvgJheg6Hw8Ri50hqusI0wFATIZIKDjODLhu787hroFKLpCV9bxuCt8u/qXd/7M7T/fvQF253M3haw73Lv+5ng6ETld4Hu6K/D/Vs6WugwiIofDgVciIhdhV+DX1NQgPj4eoaGhiI+PR21tbZ/tNm/eDK1Wi/DwcPz0pz+Fgy7BT0Tk1OwK/PT0dMTFxaGoqAhxcXFIT0/v1earr77C0aNHce7cOZw/fx4nT57EoUOH7OmWiIjugV2Bn5OTg5SUFABASkoKdu/e3auNIAhobW2F2WxGW1sb2tvb4efnZ0+3RER0D+wKfKPRCJVKBQDw9/eH0Wjs1WbRokWIjY2FSqWCSqVCQkICwsPD7emWiIjuwaB36SxbtgyVlZW9Xt+6dWuP5x23Bfa+9e/KlSu4ePEiDAYDACA+Ph5HjhzBAw880KttRkYGMjIyAAAmk+nO/guIiOiODBr4eXl5/b7n5+eHiooKqFQqVFRUQKlU9mrz6aefYuHChfD09AQAPPjggzh27FifgZ+amorU1FQAHRvxEhHR0LFrSCcxMRGZmZkAgMzMTKxcubJXm6CgIBw6dAgWiwXt7e04dOgQh3SIiCQgiHbcI1ldXY2kpCSUlpZi2rRpyM7OxuTJk6HX6/H73/8e77//PqxWK5577jkcPnwYgiBgxYoVePvttwc9to+PD4KDg++1NJhMJvj6+t7zz4+00VYvwJpHymirebTVCzhXzSUlJaiqqurzZ+wKfEem0+mg1+ulLuOOjbZ6AdY8UkZbzaOtXsB1auY3bYmIXAQDn4jIRTht4Hfd7TNajLZ6AdY8UkZbzaOtXsB1anbaMXwiIurJaa/wiYioJwY+EZGLcLrAz83NRVhYGDQaTZ+rdzqi4OBgzJkzB1FRUQ77DeP169dDqVRi9uzvNpe50+WxpdJXzT//+c+hVqsRFRWFqKgo7N27V8IKeyorK0NsbCwiIiKg1WrxzjvvAHDs89xfzY58nltbW7FgwQLMnTsXWq0Wr732GgCguLgYMTEx0Gg0WLt2Lcxms8SVduiv3qeffhrTp0/vPsdnzpwZ/GCiE7FYLGJISIh49epVsa2tTYyMjBQvXLggdVmDmjZtmmgymaQuY0CHDh0ST506JWq12u7XXnrpJXHbtm2iKIritm3bxM2bN0tVXp/6qvm1114T33jjDQmr6t/169fFU6dOiaIoig0NDWJoaKh44cIFhz7P/dXsyOfZZrOJjY2NoiiKotlsFhcsWCAeO3ZMXLNmjbhr1y5RFEXx2WefFd99910py+zWX70pKSnixx9/fFfHcqor/Pz8fGg0GoSEhMDNzQ3JycnIycmRuiynsHjxYkyePLnHa3eyPLaU+qrZkalUKtx3330AgAkTJiA8PBzl5eUOfZ77q9mRCYLQvbZXe3s72tvbIQgCvvjiC6xevRqAY53n/uq9F04V+OXl5QgMDOx+HhAQ4PD/5wM6/gddvnw55s+f371a6GhwJ8tjO6Lt27cjMjIS69evd6jhkVuVlJSgoKAAMTExo+Y831oz4Njn2Wq1IioqCkqlEvHx8ZgxYwa8vb2hUHSsJ+lo2XF7vV3n+JVXXkFkZCSef/55tLW1DXocpwr80erLL7/E6dOnsW/fPvz2t7/F4cOHpS7prvW3PLaj+fGPf4yrV6/izJkzUKlUePHFF6UuqZempiY89thj+PWvf42JEyf2eM9Rz/PtNTv6eZbL5Thz5gwMBgPy8/Nx6dIlqUsa0O31nj9/Htu2bcOlS5dw8uRJ1NTU4Je//OWgx3GqwFer1SgrK+t+bjAYoFarJazoznTVqFQq8cgjjyA/P1/iiu5M1/LYAPpdHtvR+Pn5QS6XQyaT4ZlnnnG4c93e3o7HHnsMTz75JB599FEAjn+e+6vZkc9zF29vb8TGxuLYsWOoq6uDxWIB4LjZ0VVvbm4uVCoVBEGAu7s7fvSjH93ROXaqwI+OjkZRURGKi4thNpuRlZWFxMREqcsaUHNzMxobG7sf79+/v8ddJY7sTpbHdjRdwQl07NXgSOdaFEVs2LAB4eHheOGFF7pfd+Tz3F/NjnyeTSYT6urqAAAtLS04cOAAwsPDERsbi08++QSAY53nvuqdNWtW9zkWRRG7d+++s3M85FPKEvvss8/E0NBQMSQkRHz99delLmdQV69eFSMjI8XIyEgxIiLCYWtOTk4W/f39RYVCIarVavH9998Xq6qqxKVLl4oajUaMi4sTq6urpS6zh75q/uEPfyjOnj1bnDNnjvjwww+L169fl7rMbkeOHBEBiHPmzBHnzp0rzp07V/zss88c+jz3V7Mjn+ezZ8+KUVFR4pw5c0StViv+4he/EEWx499idHS0OGPGDHH16tVia2urxJV26K/e2NhYcfbs2aJWqxWffPLJ7jt5BsKlFYiIXIRTDekQEVH/GPhERC6CgU9E5CIY+ERELoKBT0TkIhj4REQugoFPROQi/j/99XdQ6wfDdwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkmNJREFUeJztnQV0HNfZht9dMctiyWLLlowyY0yxY4iTOMwNNNA40KRJA27/hls3aahhamKnYXLSkGOImRkl2WJmZtr/fPfOiCz28n7POXPu7Ozs7tVod+adDzU6nU4HhmEYhmEYC0Fr6gkwDMMwDMMMBBYvDMMwDMNYFCxeGIZhGIaxKFi8MAzDMAxjUbB4YRiGYRjGomDxwjAMwzCMRcHihWEYhmEYi4LFC8MwDMMwFoU9rIzW1lbk5ubCw8MDGo3G1NNhGIZhGKYfUM3cqqoqhISEQKvV2pZ4IeESFhZm6mkwDMMwDDMIsrKyEBoaalvihSwu6h/v6elp6ukwDMMwDNMPKisrhfFBvY7blHhRXUUkXFi8MAzDMIxl0Z+QDw7YZRiGYRjGomDxwjAMwzCMRcHihWEYhmEYi4LFC8MwDMMwFgWLF4ZhGIZhLAoWLwzDMAzDWBQsXhiGYRiGsShYvDAMwzAMY1GweGEYhmEYxqJg8cIwDMMwjEXB4oVhGIZhGIuCxQvDMAzDMBYFixeGYRjG/GlpApJ+AbY+D9SWmno2jImxuq7SDMMwjJWRfxz45CqgKk8+PrMeuOl/gKOrqWfGmAi2vDAMwzDmi04H/PRnKVzc/AEnLyB7P/DN7UBrS//fpywdqCsz5EwZI8LihWEYhjFfTv8KZO0B7J2BP2wDbvgSsHMCkn4Cfn5Yipu+yDkEvDYZ+PQaY8yYMQIsXhiGYRjzpLUV2PS0XJ/2B8AzBAifDlzxHgANcOA/wI6X+n6f354FWpuArL1AXbnBp80YHhYvDMMwjHlCFpfCk4CTJzDrgfbto5YDS/4p10ncHP387NduXgW8PgXY8hyQsql9e+4hI0ycMTQsXhiGYRjzpOCkHMNnAK4+nZ+bfhcw8z65/v09QMpv7c9RLMyet4Di08CWfygbNXLIPmiMmTMGhsULwzAMY56Q+CD8Y7t/fuHTwJgrgNZm4Lu7gebGdtHTUAFoHQCNHeDgBsy4Rz6Xc8BIk2cMCYsXhmEYxjwpSuxdvGi1wPI3AY9gmY104mu5PWOXHKPnAn88DKzYCYy6VG7LPtC/IF/GrGHxwpgeMvFSNgCfUBiG6UiRanmJ63kfB2cZzEvsel2eRzJ2yscRM4EhEYBPFBA0VlpiaouB8gwjTJ4xJCxeGNOz8QngvfnSR80wDENQVlB1vlz3G977vpNuBRzdZXAvBeeqlpeIWZ1FDgkY1frCWDQGFS/btm3DxRdfjJCQEGg0Gnz33Xe97r9lyxaxX9clP1/5AjPWR1UBsI/SHgEc/LDd+lKaCrwxHXhzJrD9RaC6yKTTZBjGRPEu5BJy9up9XxdvYOJNcn3tXdK6QnVhQiZ03i90shyz9hlixoy1iJeamhrEx8fjjTfeGNDrkpKSkJeX17YEBAQYbI6Midn1KtBc336yyj8GVGQDa5YDRQnyTopSIV+bCOx5W9Z9YBjG+ilK6j3epSuzHwKGRAE1yo3O0MmAvVPnfaLmyPHwf4HyTH3OlrGm3kZLly4Vy0AhseLt7W2QOTFmRE0xcOADue4dLk8mu9+Upb8rMgGfaGDGvcChNUDeUWDdo4DWDph6h6lnzjCMoSlWxItfP8WLmx/wu7XAB4uB6gIg8ryz94ldBoTPBDJ3yeq8130OaJQUasaiMMuYl/HjxyM4OBgXXHABdu5UAq8Y6+PEN0BTLRA0Dli8Sm479jlQmgJ4hcvGa1NuA+7YLEUMcXqdSafMMIyZWl4ICsy99Rdg3kpZB6a77KSLXpaBu3QuoQaPjEViVuKFBMvbb7+Nb775RixhYWGYN28eDh3quSJiQ0MDKisrOy2MhZC2TY6jLwWGX9Du1yYf983fA95h8jFZW8ZdLdez9rPriGFsgcGIF8J3GDDvMcBlSPfPB8QBk2+V60k/n+MkGVNhVuIlNjYWf/jDHzBp0iTMnDkTH3zwgRhffvnlHl+zatUqeHl5tS0keBgLgASIms4YOVv6phc8Litp3vS9dBl1JGC0LDRFhafU2g8Mw1gnFKCvxqT01200EOicQ+RwtV1LxazES3dMnToVycnJPT6/cuVKVFRUtC1ZWVlGnR8zSCgQl9rTkyBRMwKm3A78fl33d1p29kDoJLlOzdUYhrFe9lMGog4YOglw99f/+9P7EgWngKY6/b8/Y3DMXrwcOXJEuJN6wsnJCZ6enp0WxgJI3yFH6hBr59C/14RNlyOnOTKM9UJiYv/7cl2NddM31J3aPRDQtQB5xwzzGYzlZhtVV1d3spqkpaUJMeLj44Pw8HBhNcnJycFHH30knn/llVcQFRWF0aNHo76+Hu+//z5+++03rF/PQVVWU0n3698D1YWyFwkRpZhv+0PYNDmy5YVhrJejnwG1JTJof+QlhvkMyjAi6wvFvJDrKFw5tzAWg0HFy4EDBzB//vy2xw8++KAYb775ZqxevVrUcMnMbM+1b2xsxEMPPSQEjaurK8aNG4eNGzd2eg/Ggjn2BXCqS6HCSKXuQn9QC0xRNhL5xA1hTmYYxnRQkUqq50RMXyHdxYZi6MR28cJYHBqdzroaylC2EQXuUvwLu5DMiMZa4LVJQFUudK6+0NSWoNHODXYrM7B6TzZW70rDnxfF4qJxIXh7awqqG5rFYzttlxoMVHWXitdRM7YJN5jqr2EYxhBQ2f73FwD2LsCfk/qurHsupPwG/PcyWdju/iOG+xzGINdvg1peGKaN3W8I4UKm4O+mfYaMn19EQmMEkv+9EylFNWKXP31xBJ/szcS+tFLxOC7IA8vHD+38PuOukhV3t/1Lpk/3N16GYRjz5/DHchx1iWGFC6EmCpSlAbWlgKuPYT+Psa2AXcZK+hftkOnuuoVP4O29pXil+Ur82jqlTbjEh3qhVYc24UK8uukMCirrsernBBzJKpcbp/4BcPOXJ5wjn5jm72EYxjCBuie+levjjWBVpTowvjHtcTaMRcHihTE8W1YBTTUiQG674xwkFVTB1dEOn94xDQtHBuDFq+Lx7d2zcPXkUAR4OOH16yfAy8VBCJsFL27FO9tS8X/fHZfv5eQOnCdjp7D1eaC5waR/GsMweiLhR1nHiVqFqHVYDM00pQrvxic568jCYLcRY1gKE2RvIrK6LHoW721ME+tXTw7DzGF+YlF5/sp4UAgWdRJPK6rBixtOi9gX4kROJXLK6zDU2wWY/Htg5ytAZY70W8cOvH8WwzDmFqj7plyPv16W8TcGVFuKziEUuPvNbcCKXeyKthDY8sIYFjoh6VqBuIvwVWEYtp8pFkG4v58V1e3uJFyIW2ZF4rwYP1wSHyJcSsSGk/lyJwdnYPRlcv1kl+wlhmEsj4QfgNxDsmglCYpBUFhZjwe/PIJtp5Wu0v2BzjfL35AuJOpqn759UJ/NGB8WL4xhSd0qhqzoq/G370+I9QcvGIFwX9deX+bh7ICPb5+GV6+bgIvjQ8S29acKxAnqu8M5OOQ+T+5Id0zsOmIYy6WlGfjtWbk+455Bl0D4169J+PZQDm5dvR/fHMzu/wspUHfUcrnON0MWA4sXxnBQb5LyDOg0drh+nQYNza2YM8IfK+YOG9DbXDAqUIx700qx+JVteOCLI7jip2bk63yAhkpp9mUYxjI58jFQnCStHzMHV1E3t7wO3x3JEestrTo89NVRrDuR1/83GHWpHBN/lGKKMXtYvDAGozVVdo0+0hKFrFo7jAz2xMtXx0PbtXZLH0T4uom0aTopldU2IcLXFX4eLvi5Zarc4eRaERtjZSWLGMb6oWrbGx6X63MeHnR69Pvb09DUosPUKB/cOD1cbHvmxwTUN7X07w0oQNjFR1b2zVBalzBmDYsXRq9QUO3ta/bjird2Yet6mfa4u3WUyCRae/dM+Lo7Dep9r5gYKsalY4Kw7v45eOnqePzYInsdtRz/Bvc98682txTDMBbCuseA+gogOF6WQRgEVE7hs32yUvs982Pw1wtHIdDTSZyLPtqd3r83oUq+Iy+S66e+H9Q8GOPC4oXRG8mF1bjyrV3YmFCIgxmlGF53VGwfPXOZyCRydrAb9Hvfdl4Utj08H2/eMBEujnYimLchaBL+1zIDdrpmvGH3MlIObe7/nRbDMKaF3L0nvgE0WuDiVwfVCoB+73d+dAB1TS0YF+qFOcP9xPnhoUWyM/1rm5Lx/LpEJOVX9f1matxL4k8y+4kxa1i8MHqBXDq3fLgPeRX1WOaTjbVTEhGqKYZOa4+5Cy8+5/cnVxMF+arZSDSumB+Dh5pWYEtLPFw1DbhP9xl2p5To4a9hGMagUFzJur/I9al3AiHj+3xJY3Mr0otrsP1MET7dmylEyQ3v78XR7Ap4uzrgtesmtJ0fyFJLYqaqoRlvbknB8jd2CEtMr0ScB9g5AdUFQPEZvfyZjOHgOi+MXkjIq0R2WR3GOeXj9dpHoTku71w01LnV0c0gn7l0TDCOzx2BEvwV2Hs1xmrTsOpkLubHBRjk8xiG0ROHVsseZRSkO++xbnehrMKG5hZcNSkMPx3Pw2PfHENN49mWVXutRlhkKTZOhcoxfHrHdPx8LA//2ZEmCmOu3pmGvy4b1fOcqARD2FSZLk2L/wj9/K2MQWDxwugFtaz/tT6noSnTAe5BQPA4YNb9BvtMOkGtXDoSaIlB635HeLTW4eSp42i5LP7sho4Mw5gHTfXA5n/I9Xl/kQKmC8ezK0RWIfHd4VzsTy9Fc6sOzg5ahA1xRegQF4T5yPG8GH+MCjm7iZ+7kz2unhIGfw8nkT792b4s3LdgODydHXoP3FXFy5Tb9PhHM/qGxQujV/EyQ5sgN8y426DCpRNUETNwFJB3BMF1yTiSVYZJEdxkjWHMktTNMqvHIwSYfGu3u1BneZXdqdIVfOn4ELx09fgBZyvOi/XH8AB3nCmsxtVv70ZhVQMeWDgcN82IPHvnyPPkmL5Dxr0obijG/OCYF+acoRTlfeml0KIVYVWHOp8EjISWrDwUHKxNx0sbTgv/OMMwZtrDiKDsnm5K8acV1+BnpUbLM5eOQbiPKy6fMBT/umrgZRYIioO5Y060WE/Mr0JpTSNe+y0ZzS3dnCNCJwP2zkBNEVCUNODPYowHW16YcyalqFqcECbaZ8K+sQpw8gSC4o07iSApXsbZZeDF5BJRpOrf1wz8Lo1hGAMH6lJVbCLuItEt/kxBFUpqGlFS3YCS6kYcz6kQRo8FcQH43fQIsZwrl00YKoJ9tRoNPt2XiaKqBuxILsa82C7xcfZOMu4lbZt0HQXEnfNnM4aBxQtzzlDlW+JynzSgkqL2Zw4q7VEf4mW6ay4cmjX44WgufN0c8cTFo9oyEBiGMTGZu4G6UhHnsrslDte9u7PHXe+eH6O3j3Ww0+KRJVKIUEHL1bvSRSsBEi+trbrONzmRc6R4ydgFTL1Db3Ng9AuLF+ac2ZsqxctMuwSTuIwEgaPJQAynugK8ekkoVqzNEicoCtajwlUMw5gBVH6fGLEUr22RHeZjAz0wOsQTfh5O4oaDClmOCHTHuFBvg0zh8olDxbnh15P5WPLKNtla4J5ZiPZ3lztQ/BxRmmqQz2f0A4sX5pwgk+8vJ/Jgj2ZEVB9pj9g3Nk7ugO8woCQZS30LhcXlqR9OiWZtS8YEYZh6YmIYxnQk/SKGVP/52LW3RKQ5f3DrFAz1djHaFMYO9UJMgLsoqkkxMARV6G1Lo/YKk2NFltHmxAwcDthlzqkw3SPfHBM9RVZE5sGuqRpw9QOCxppmQorrCFn7cOusKMwe7icerjuRb5r5MAzTTlmGaNTaqrHHE8flb3P5+KFGFS4EuZGps32QpzPmx8oO1v87mivOZwJvRbxQRlRjrVHnxvQfFi/MoKHAt8OZ5fBwssddQUpkfuxSQDv4NgDnRMwCOe56HShLF0XsCDIPMwxjWlrTtovxcEsUtmfIarcr5sksIGNz4dhg7PnLArzzu8nwcnFAQWUD9igp2XD2Bhw95HpFtknmx/QNixdm0Hx7SP6w718QA7fU9XJj3DLTTSj+eiBiFtBUA3x/Ly4Y6S/KNBzLrhB+bYZhTEfOkQ1iPKQZjYvjqWZLPGICFJFgIhzttULIqBV9BXTSUK0vFbLhI2N+sHhhBkVZTSOOZpWL9eVBxUBlNuDgCkTPM92ktFpg+etyHunb4Z+zEZPCZfXO9Wx9YRiToWtthWOWzCzyG7NQ9CG6XOkUb2oojVp1L7c1dlXjXso57sVcYfHCDIrtycUgFzFlCvhnb2x32zgY1399Fj7R7WW9T32PxaODxOrPJ/JFMT2GYYzProOHEKgrQpPODvMvuAjmxOSIISL+hZo4qmUf4KUIKw7aNVtYvDCDYktSYVvpbTWDALEmdBl1JE7pYn16PZaM9AGVcKD2BW9v5dRHhjEFiXtkYbp8j9Hw9j67l5EpoRov8+Nk4O7mRHlea3MbseXFbGHxwgwYKuq07XSRWL8grAUoOC5qrGD4IpgFoVMAtwCgoQJhFQfxlwtHis3PrUvEVwf4ZMQwxqSmoRlBRbvEutsIE7qVe2G+Umn3t8RCaaHldGmzh8ULM2BO5laiuLoRbo52GF9/oL0niJsvzAKKfYm7UK4n/oTbZ0fjD3NlVsNf1h4XHWoZhjEOe48nYqFmv1gfMukymCOzYvzgaKdFZmktUopqAO9w+QRnG5ktLF6YAbMrpViMM4b5wT5FZhAg5gKYFXGKX536qLS24rElcbhwbJCsSfPxQc4+YhgjUbdvDZw0zchxHQnN0IkwR9yc7DEt2qfdJa5aXipzZT8mxuxg8cIMGGqmRkwNdwdSt8qNw81MvETNkbUaqvKAjJ2iMNULV8VjZLCnsBq9uumMqWfIMFZPS3MzJhSuFeu18bfAnFFdRxtOFQDugYCdI6BrAapyTT01phtYvDADRk2RnuWYDFAXaTd/IHg8zArqDjvmcrl+aI0YXB3t8Vcl/mX9qYL2ipoMwxiE1D3fIQRFqIAbIuf+DubMBaMCRXA/ZRxtSy4BPGUKNQftmicsXpgBUVhZj9yKevEjH161p91lRHEm5sYk5U7v1P+AWhnnQqZhqqhZWtPIsS8MY2Aqjq8T41HvC+Dg7AZzJszHFbfMjBLrf/v+BFo4aNesMcMrDmMJLqPhAR5wzFcbMc6CWRIyQfZZamkAjn4uNjnYabFwZKBY555HDGM4KGvHqYgyEQGPmJmwBB5cNAKBnk7IKKlFUp2X3MiWF7OExQszII5mS/EyPtQLKDghNwaOgVlCZb5V68uhj9o2U5dpteouF65jGMOQmFuGYS1pYj12ogk6zQ8Cdyd7PLI4TqzvLVNaF5Slm3ZSTLeweGEGZXmZ7t8A1JUBGjvAX/7YzZKxVwFaB6AoASg6LTZRt2lXRzvh/jqYUWbqGTKMVbJv/x64ahpQr3GBa5AZnyO6sFCJfTlS7S03sHixPfGybds2XHzxxQgJCRHZHt99912fr9myZQsmTpwIJycnxMTEYPXq1YacIjPA4nTHsirE+kRnpYmZ33DAwRlmi7OXzDwikn6SmxzssERpG/DIN8dQ3cCpkAyjbwqTZExc1ZBR5hkT1wMUEzc+zBuZOuleRpm0HjHmhUG/UTU1NYiPj8cbb7zRr/3T0tKwbNkyzJ8/H0eOHMEDDzyA22+/Hb/++qshp8n0k8T8KtH/w9lBi9CGFPN2GXWkrWCdLFFO/HXZSNHPJLWoBo99c4zdRwyjR07kVMCvKlGse0ZPgaVx3nB/ZOoC2mu9NNWbekqMMcXL0qVL8eyzz+Kyy/pXVfHtt99GVFQUXnzxRYwcORL33nsvrrzySrz88suGnCbTTz7YKe9A5o7wh13hSbkxyALEy4ilcszeD1TL3iW+7k5444YJsNdq8OOxPOxJ5cwjhtFXO4AHvjiCsVp5vnAKnwRLY85wP5TAEzUgq7IOKM809ZSYLpiVLW/37t1YuHBhp22LFy8W2xnTkl1Wi+8OS1fRinkxQMFJy7G8eA1V6tDogNMydZOYFOGDa6bIdMg1u9ivzTDnAtVNOpBeins/PYS0wgqM1mbIJ8ytBlQ/iA/zhoeTAzJbpfXly43bUd/UYuppMeYqXvLz8xEYqPgZFehxZWUl6uq6L+fe0NAgnu+4MPrnna2paG7V4bwYP4wPcgJKzliOeCHilI7Xp77vtPmWmZFiXH8qXwg0hmEGx50fHcCVb+/G5qQijLDLgwsaAEd3wDcGlgaVVJgxzBcZStzLiRNH8cletr6YE2YlXgbDqlWr4OXl1baEhSmFhRi9QQGtXyrdmO+ZHwMUJgC6VsDVF/CQga9mz5gr5Ji8CShR4nWoXk2ghxBkVGz3v3uUO0WGYQZcvHJTonTJXhIfglcWuMonAiwrWLcjf1wwHJoh8uYmQlOI/+5OF0kLjHlgVt+qoKAgFBQUdNpGjz09PeHi4tLta1auXImKioq2JSuLCwrpm+2ni9DQ3IooPzdMp+Zl+bLwFAJHy1oqloDvMGD4Yuk62vt2t9aXT/dksvWFYQbBZmpmqLhbXr1uAmIdS+QTysXfEhkz1AuLZ08X69H2RUgvqcXW00WmnhZjjuJlxowZ2LRpU6dtGzZsENt7glKqSdx0XBj9siFBCsoFcQEi5V0EvhIh5tkhtkdm3C3Hw58AdbJeDTE/LkCkRlIm1f2fH0FzS6vp5sgwFsimhMK2c4RADXAdEgGLRhFfo51lQP+a3RwbZxPipbq6WqQ806KmQtN6ZmZmm9Xkpptuatv/rrvuQmpqKh555BEkJibizTffxJdffok//elPhpwm00cQ3pYkebexQCmrj6y9cgyXdyUWQ9RcacZuqgGOfNK22U6rwWvXTYCHk70oWvfKRu44zTD9hQJZdyQXi/Xz28SL4oL1DodFM0T2OvJrzoVGI8+FyYVVpp4VY2jxcuDAAUyYMEEsxIMPPijWH3/8cfE4Ly+vTcgQlCb9008/CWsL1YehlOn3339fZBwxpuFwZploYujpbI/JkUNkg8NiWakWoVNhUZDVaKIilpM3ntWU7R+XjxXrb2xJxi7lZMwwTO9QF+baxhbRE2h0iGdny4u3hVteqDmjRgttcz2uGO4gNr21JdXUs2IA2BvyzefNm9dr8a/uqufSaw4fPmzIaTGDcBnNiw0QEfjI2ief8B0OuPnC4ohUeqxk7gVamgA7eUIiLo4Pwc7kYny+P0vUqfjl/tmiHgzDMD2z8ZQ8R5wfFyjdynTObxMvFm55sXcEvELF33PnWC2+Pg18fyRHNHAc6t19HCZjgzEvjPmxtc1lpJiDs2TJb4RPg0VCbiNnb+k6yjt21tNPXDwaMQHuKKxqwG1rDqCqvskk02QYS6CusUVczIlFoxW3MhWCbK4XFgtx4bd0lLiXEQ7FmDnMV5SMeG8bW19MDYsXptcU6aQC6d+dEe3bbrEgwiws3kWF0jYjZsr1jJ1nPe3iaIe3bpiIIa4OognlLR/uFxVDGYY5GxIulfXNCPdxxZzh/p3jXTyHdrJsWixqxlRZOu6mAp0APt+fiYo6vrExJSxemB45llUuLMBkHg3wdAaaG4HcQ/LJMAu1vBC9iBe19st/b5sm4nwogPfx75VqwgzDtEEhAWt2S6Fy4/RwEfhuVfEuXYJ2qUHjrBhfxAZ6oL6pFV8fzDb1zGwaFi9MjxzOkunElEYsoH5GZA52GSK7SVsqEbPkmLEbaG3pscbDezdNBp2PvzmU3WYaZxhGQsI+Ia8STvZaXD25Q3HQsnTriHfpxvJCMT2/myFFGRetMy0sXpgeIbcJMSFcES+lSmt4v1jLKU7XHUHjZNnyhgqg8FSPu02L9sV950uR9te1J0TWFcMwEtXqsnx8CLxdHdufUN1Gll7jRcUnqtP577IJQ0VZBSpat52zEk0GixemR5Pwka6WF2vJILCzB0KnyPXsA73uet/5MYj2dxPxP3tSlaqhDGPjUDuAX47nifWbZnSpomst54mulpeaQqCxBm5O9rhikgxE/nI/V3Q3FSxemG7JKa9DUVUD7LUa4UKxupOSf5wcS5J73c3eTotZw/zazOQMwwCf7csSWTeTIoa0nx9UytQCdVZieSE3OWUodnCJLRsXLMZ96aW9lgNhDAeLF6ZbVKvLyGBPODvYdREvVtD80k/pdFvcdzVdOkETLF4YBmhqacWn+6RAuUmJ/2iDYsgqsq3nJqebuBdiTIiXuLGjG7zcinrTzs1GYfHCnAUFof1yPL+zy4ioyLKekxIV2SNK+i9eTuZWiFLoDGPLrN6ZjoLKBvi5O2HpGGmBaIPiQlqp+KMT4BkCq6FL3AuVVKAbO7UKOWN8WLwwZ/UyeuzbY/jpeJ6IyV06Nkg+0alqphWYg9VsKTJxUwp4L4QOcYG/hxOaWnQ4kVNhnPkxjBlC3//nf00U63+6YDgc7btcQjJ3yXHoJECrWGyt0PLSMZHhcGZ7k1fGeLB4YTrxw9FcfHkgW6QIv3R1PGYq8R6oLQGaauW6NVTN9AiWGUe6lk4npO6g9MhJ4ew6Ymwbchf98fPDQsQvGhWI66d2Y4HNVCpwR8yAVdFW66X9XKFapdnyYhpYvDCdUH+IN8+MxGUTQs9Of6SLvr0V9Pshs5LvsH67jiZGyBMVixfGVtmfXorUohpRffq5K8bJPkZdyVAsL+HWJl5Uy0taB8uLvKE5kVuJxuZWU83MZmHxwnTiTGG1GEeHdMkgsKZMIxXfgQftHsgo4xMVY5P8llAoxgUjAzHErUNdF5WqfOXirgHCLKzjfH9jXug8qBS2jPR1hbergzgfULE+xriweGG6FS/UnLAT5VYUrDuIoN2xQ71F3AsVqvtsnyLkGMaG+C1RES9xSpPWrmTulmPgGMC5y82PpUN9mrQOQEtjWzYVWZ4mKK6jQ+w6MjosXpg2ymsbRepf9+JFuWB7WUGadNeg3eLea70QFJh4/wK5/6ubznC3acamSCuuQWpxDRzsNDhvuBIH11O8S7iFNm3tDQo+7sbNrFpk96aWmmpmNguLF6aNZMXqEuLlDHcne9txG/VRqE7lmilhiPZzQ0lNI97blmrYuTGMGVpdpkb5wMO5m07Rra1A6hbrDNY962anXbzMUBIadqeWcJ8jI8PihTnbZRTocfaT1ixeaouB2r7vnBzstPjz4ti2vi5c84WxCjY9DXx8JVDTc/uLjacKxDg/tgeX0cEPgKJEwMENiJoLq8RvhByLkto2xYd6iRu9iromnOK4F6PC4oVp40yBFC/Du7qMrK3Gi4qTe3sWQcpv/XrJ4tFBGOrtIk5WPx6TvV0YxmJpqgd2vAIkbwA+uRJokOeAjlAPI7IsUHLRBaMCz36Pihxgw5NyfeETgFsPbiVLhxrSdrG8UPuQaVE+Yn1XCjdpNCYsXpg2zhRWdS9eKIugqQbQaK2jxktHxl0rx4Or+7W7nVaD66dJ69PHe5T0cYaxVApPylpHRO4hYO0fOj2dX1GPx749LtZXzB2GCF+3s99jyz+AxirZ7HTK7bBa2txG7ZYXYsYwXzHuTObGrcaExQtzVszL8MAu4qUoQY4+0YCDM6yKCTdKUZa+vV+Bu8TVk8NE4CL1f+KKu4xFk3dUjj5KMGrij0B1kVilGI6HvjoirIxjh3rhgYWK26QrKUqsy/y/WFdV3Z7cRjVFndzMs2KkpWlfWimXUTAiLF4YAWXP5CkNxmL8u8S8FMpy4AgYCauDmkzGXCDXD/XP+kIp0+Q+Il7ZeIa7yjKWL15GXgwEjOqU8vzBzjRhTXBxsMMr144/uxUAQWnDldmAxg4ImwarhtzMlDLdJcg/NtADvm6OqGtqwdFsbhVgLFi8MILTBVVtF2Yv1y7ZBIWn5OhvheKFmHSLHI9+LuN7+sE982OE9WVjQgG+OZRj2PkxjKHIOybH4HggYpZcz9iFxPxKPL9Oukf+76KRGObfxRrbNT06aCzg2I1LyQaCdrVaDSZHypTpo1ksXowFixdGsOOM9NdOVJqNdYKyCKzV8kIMO19WBSVzMC39gDrKqmb0p/53EtllSt8nhrEUWpqAgpMdxMtMuZ6xE69tSkZjSysWjgzovoeRStZe663t0pt4KT7dafMYpSI5u5GNB4sXRrD1tKzjMK9rKiRZIqzZbURQHA+5jwZQ84X4w5xoIfaqGprx8FfHuM4DY1mQ9aClAXDylI0HFfGiyz+OnSdlHaOHFsV238Ooa1VdmxEvw7sXL0OleDmZy+nSxoLFCyMq61LwKTF3hP/ZPm3KJKDS2GpQnzUywIJ1aprkS1ePFzEBlEq6elfv3akZxizjXYLGke8D8AgSv3ENdJiAREyJHCIsjD3SUNVuuQmzEfHiH3uW24gYPVQep5SiatQ2NptiZjYHixcG288Ug4wGIwLdEeLt0r3LiC7u9t00Y7Nh8UJE+rnhr8ukReq5dYkorJRBzwxj9uR3iHdROsqnusn1adoE3Di9j5pO2fsBXassXOkZDJuA+jYR1ICyQ8ZRgIczAjycxHk0IU/GDzKGhcULg62ni7q3unQM1rVWl9FZ4iVlwC+9YVo4RgV7oqG5FbtSuNYDYyGov+2gMSisqsfV7+zGqykyi+52+1+wrPg/QLPsddYtmXtty+pCuPq0nyuyD/TgOuK4F2PA4sXGoTRfVbycFe9CWHu8i4rqEhuEeKGYgJlKoaoDGdygjbEQqPgk4TkUhzPL0dSiw3bH2djnMhv2aIH9jheB/1wA5BwCDn8MfP174KVRwJc3yVi4LLURo5WnSHdFTQlXg5UVxoRI1xEH7RoHFi82Tk55negkTWm/arpfJwpkdU34x8GqUTvGlqbKJnMDRO0uezCDUyUZC6FK9iuiWBf1grtgzFBMffRH4Ko1gIuPjIt5bz7w/T3AiW+Ayhzg1PcyYDVrv3x9uJU2YuwJqiRMZO/rtHlUW8YRB+0aAxYvNk5SvvTPUh0HJ/su1TFrioH8E51/sNYK+e0pKJmyL6jo1iDFS1J+pSj4xzBmTVMd0KBYCNwDcSxbro8NVUoljL4UuGsHEK6kTweOBeY+CgSPl4+pHxK1DHHyst76T31ZXrIPAi3twbljlKBdqpnV0MxNWw0NixcbJ1ERL7FB3XSSFs0KdfLEZe0BeVTWnNofDCJolwjwdEaYj4sI2DuaxWZjxsypVqwudk7QOXm2WV6oDUAbXkOBW38GHk4FVuyQ5f/HXCGfO/a5HMOmyEwlW4Ks0JReTuJNjRsCRMNWP3cnNLfqRKsAxrDY2LeO6cnyMiKwG/FyZoMchy+ETXAOQbvEpHBpfeG4F8ZyXEaByK1sQElNI+y1GsR1vYmhGi9uMp5LMFxppUFZRrYWrKtCYi108llxLxT7tmi07Lr983ElnogxGCxebBxVvJx10qK4j5RNcj3GVsTL4IN2O8e9lOlzVgyjf6qVi6t7EI4rLiO6gXF2sOvb6uDZobO8rQXrqoRObU8X78CFY6SFev3JfDS3cJNGQ8LixYahDqhUVKlbt1HeYaC2RJpHrb3h2lni5cygXj5RES+UuVHXyD5vxjIsL8dzys92GfUEWWJiFsh1rT0wdBJsEnKXdZNxND3aB0NcHYQla186W2AtXry88cYbiIyMhLOzM6ZNm4Z9+zpHaXdk9erVwvzWcaHXMfonrbhG+Gc9nOyFv7YTyYrVJXouYNelUaO1omZUFbT7sQdCXJAnQoe4oLqhGZ/uy9Tv3BjGEDEvZHlRsmPGhPZDvBBxF8mRbmpsoRljdwwlt5EGKEsHqmVrFbXqttpx/ufjeSacoPVjcPHyxRdf4MEHH8QTTzyBQ4cOIT4+HosXL0ZhYfs/vCuenp7Iy8trWzIyMgw9TZuEOscSI4I8zu5fohZgipwDm0FUz9QAVblAdf8aNHbETqsR3aaJt7emoL6JrS+MebuNGpz9cFhxc47rj+WFGLEIuO4L4LK3YbO4eLff7GR1vhlfOla6jn49WSDqaDEWKl5eeukl3HHHHbj11lsxatQovP3223B1dcUHH3zQ42voQhoUFNS2BAbKICjGiMG6aluAwFGwGZzc24N285W+LwPkiomhwopFtXM+Y+sLY+Zuo50F9qKx6DB/t7YKsf0idoksL2DLhE3t0XVE/c7oHJBUwK0CLFK8NDY24uDBg1i4sD3gU6vVise7dyvdSLuhuroaERERCAsLw/Lly3HypNL8izFOsG5jLVCeaRvF6bqi9Hlpa1o3QBzttbh7voydYesLY+6Wl7VnZJ2S+84fLiyHzCDES5egXaqXNTXKR6zvOFNsipnZBAYVL8XFxWhpaTnLckKP8/O7TyWLjY0VVpnvv/8eH3/8MVpbWzFz5kxkZ3dfOKyhoQGVlZWdFqZ/nC7swfIiAlZ1ssKmmx9siuBxcsxTmtYNgqsmhSHEyxkFlQ34Yn+W/ubGMPpCidNIrfdAlJ8bLhpn5XWcDIGayEDtE5obOz01e7g8b+5IZvFiM9lGM2bMwE033YTx48dj7ty5+Pbbb+Hv74933nmn2/1XrVoFLy+vtoWsNUzfUAXI7LI6sT4soEvQndru3dasLnqwvKjWlxVK7MtbW1K42iZjXrS2QFcjY7oKdV4iTosCTZkBQi5mlyGyKne+0kZFYVaMFC97U0tFViejfwz6jfXz84OdnR0KCpTIdgV6TLEs/cHBwQETJkxAcnL3VU9XrlyJioqKtiUri+90+0NGSa3orUaZRv7uTj2Il1jYHEHj2lve1w2+T9HVk0MR7OWM/Mp6fHlg4O0GGMZQ6KoLodG1okWnQVR4BC6fMNTUU7JMKMlBrfeiNqlUiA30gJ+7I+qaWnAok+s+WZx4cXR0xKRJk7Bp06YOtc9axWOysPQHcjsdP34cwcHdmzWdnJxEdlLHhemb1KIaMUb5u52daaQG69qieKGW915KIGKXu6luaWkCChOA2lLZabeD3/uO2bLdwDcHWbww5sO2w7JfWQm88I8rJ0DLsS6DJ3KWHJM3dtpMx1S1vuxk15FBMLitkNKk33vvPaxZswYJCQlYsWIFampqRPYRQS4isp6oPP3001i/fj1SU1NFavWNN94oUqVvv/12Q0/VpkgtlsXpov26qdNAHWNtVbx0jHvJ70fcy08PAW9OB56PAl4ZCxz4UAoaABfFB4ubsyNZ5cirkC46hjElLa06rNujuETdAxET4G7qKVk2I5bIMX0H0NA5s4jFi4WLl2uuuQYvvPACHn/8cRHHcuTIEaxbt64tiDczM1PUclEpKysTqdUjR47EhRdeKAJwd+3aJdKsGf2Rplpe/LqcvCjwTC2Pb4sxL4TaOVetddMTFdnAkU86PM4CfnwA+OQqYYUJ8HDGZKXq7roT3OuEMT30PWyplN9FnyCODzxn/EYAQ6KAlkYgZXOnp2ZEy55Q1LG7trG9+zSjH4wSpXXvvfcK6wllBu3du1dU2VXZsmWLqKqr8vLLL7ftSxlJP/30k4h5YfRfXZeI9u9ieSlNAXQtgKMH4GGjGQhqv5bMPZ1cQWex5y2gtRmInA38JRdY8hygsQNSNwOVOWKXJUqvk19YvDAmhgqmvb45GQGQsVz2nv2LO2R6gUyrsUvl+ul1nZ6iatsU90ZVzKllCKNfOMTcRklVxAulSQqaG4Dv7gG+urXdZdQ1FsZWoH4t1LeFKu2SNaU7KJj3oCK6Z/5Rlkmffle7qy1fxhUsGSMvEPvTS0XRKoYxFTuTS5CQV4mh9hVtrQEYPbqOTv8qMrlUKJZwmlLvZW9qialmZ7WweLFBymsbUVrT2Fm80A/vyMdAUYJ8HG6Dre5VSIioWUdkfemOo58BjdWA/0hg+AVdWgxQSp0M9qVqu+NCvYQB54ejuQafOsP0xE/H5fdvrLcioj1YvOiFiJmAkxdQW3zW+WKa4jrak8ZNGvUNixcbtroEeTrDzclebszY2d507eYfgIVPwqYJV7LhMnuoBK2aiCf+rrOFKmjMWZlKV02WsQXvb0/lmg+MyQJ115+UJSvCHZRCnu7cdkUvUOPaURfL9a3/7ORqVivtUtA+V9vWLyxebDhYt1O8C0XLE2OuAKLm2E4n6Z5QLU+ZnfuWCBprgIxdcj2mg9WFCBrbyW1EXDUpFH7uTsitqMf3R2QsDMMYk4MZZSipaYSXiwM8mhUXBlte9MecRwA7RyBtG5DyW9tmyuak3z7dtBzN4rgXfcLixYaDddtcRlSjpEDpHxV5nglnZobipfAUUNelyBQJPcouoHowfsM7PxeoiJfSVClyADg7UM2XKLH+1tYUcRfMMMZEzXZbEOcPjdKUEe4Bpp2UNTEkAphyh1zf+CQVNGuPe4n2aYt7Y/QHixcbRO10Gu3v3sE1opNpf3xCk9Bx8KEGizrghVjg3fntdRzUglQxC84Oanb3V8zxOqDgVNvmG6ZHwNPZXhQH/JS7TTNGgu7496SW4JcTshzFRSNcZTl7ggN29cvsh2SWJtWHSmkvzDomRHbrPlMoa2sx+oHFiw2mSx5WylWPD5M/KqQr8S4RSrVIRhJ/rRzpZJ97CEha10W8tHdL70SXoF3C3ckef7pghFh//pdE5FfUG3LmDCN+61e/sxvXvrsHeRX1cHO0w6wgJe7C2QtwcDb1FK0LN19g4k3tZRQUovxcxZheUmuqmVklLF5sjKzSOhRXN8LBToPRyh0B0rfLkV1GnZn7CPBoOjD9bvk46WdZwI9cQpRKHT23+9d1E7RL3DQjEuPDvFHV0Iwn/6e46RjGQJwuqBaBovRbp67Rb/9uEpzqZENGtroYiKnkOtJIy0uRrFQe4Svd8xkl0o3M6AcWLzaG2iSMhAvFYqC+ov0iy5aXs6GusaMvb7e47H2nXeg5eXT/msCzg3YJO60G/7xirPA0rTuZj4JKtr4whmP9SRnnMme4P16/fiJmD/cHqpV4Fw/ONDIIPlFA7IVyfe/bYojwlZaX8tomUaaC0Q8sXmxUvEwMl2XrkbVfxmcMiQQ8bbSibn+K1rn5Aw2VwD5FvEy/p+/eSAUnOhWtIuKCPDE6RDYPpVgEhjEU609JobJ4dAcrS5VS6ZnTpA0HFaskDn8MFCfD1dEegZ5OYhO7jvQHixcbTJkkJkZ4d27lHmbDRen6Qqttr6JJBIzuXJiuK74xgKM70FTb3uSym54nLF4YQ5FTXofjORWghtELRnYIwlctLyxeDAe1Cxm2QMbK/fQnUfclUnEdpSuZnsy5w+LFhqDmYIn5MmNmktIwsK0ipNrPh+ke1RRMnPdA760TtHbtFXpzj5z19HRFvOxOYfHCGIYNistocoQPfN3lXb+gzW3EMS8Gg84Ny14E7J1l3Zejn7eLF4570RssXmyIo1kVosYINQsL9nIBWpqAnIOdK8oy3RM9D/AdLl1IagxMb4QonalzD5/11JQoH3FHTCbkvIo6A0yWsXX+p7SiWDS6i4WlzW3E4sXgsS8U8E/seBmRStwLW170B4sXG+KAUiSpLd6FAnXJtUFpk35KQ0GmexxdgXv3A7dtBOyUlgq9EayIl7yzLS+ezg4YM1RmerHriNE3VAztUGY5HO20uCQ+pPOTHLBrPKbcLqvuFidhjEO22MQxL/qDxYsNsVu5UE5XKj4iSyl9HzZNxnUwfZuD+3ucVMsLCcQuQbud4l5SuOomo1/e3pIixismDUWAZ5daLhzzYjzoplBpHzKyRNaGYreR/uArlo1ATcEOKMG6M4b5dY53IfHC6BcK2nVw6zFod/owKV62nykSxcQYRh8k5VdhU2Kh0Nl3zI7u/GRTnSyNQLB4MQ5jpIvZJ/1HkdXJ6dL6g8WLDaVIU6nwAA8nDFMbMmbtkyOLF/1DQbvBPQftkuXFxcFONGs8kaN0+WWYc4BE8HPrEsX6ktFB7e0/ulpdKJCUrAKM4YldCji4QluWhrnusikru470A4sXG0HNbJk5zFc0CxOBe1W5gEYLhEww9fSsk7a4l6NnPUUFAufH+Yv1dSdl3xmGORd+Pp6P3xILRUXdhxbJVhSdaGvIGNh7thyjPxzdgBGLxepyp0NiPKP0lmPODRYvNsKuNvGiuIxy5A8J/nGAU5c7NEY/qB2ny7tvxKgWD1M7/jLMYKmsb8KTP8iWEyvmxSAmoJvqz3SzQnCatHEZdr4YJmql+/hodrmJJ2QdsHixAaobmnE0S/5gZiixFm0p0iETTTgzK0e9SFR3L07mxwWIu+SUohokF/LdGDN4vj2YjaKqBkT5ueHuedQNvRsKEzqLasY4hE6VQ20C7NAi+k0x5w6LFxvgUEYZmlt1CB3igjAfWW9AdEkmhrJ4Mbh4UWtrdJMyPStGWsJ+PamY9BlmEPysWO9unB4he5Z1R94xOaoFFBnj4DcCcPKEfUsdYjVZSMyrQl3j2RmIzMBg8WIDUJlwYoJa34WyW1S3EYsXw+ER3C5eWlu73YUCKwl2HfUTCn5e9xegkVNOVcjiQrVdiMVdi9J1RG3AGqQ0DmWMA5VXoOKWAGa7pIsbyRO5StYXM2hYvNgAx7PlD2WcUhgNpalAfTlg5yT79DCGwY16ymgAXQtQW9ztLgtHBYpquyQwqR8N0wfr/w/Y8wZw4ENTz8Rs2HCqQNyPjAv1QugQxbLaldpSoFIWSkPgGKPOj6GMTuk6muuaJsYjmew6OldYvNiQ5WVsqFfnkvV0B2bvaMKZWTlUiZe6URNV3WcU+bk7YXKkLBr4K1tfeoesV2raeeZuU8/GbPjlhPxuLRnTSyBuvuIyGhIFOMuu5owRCZ0ihpEtMmj3cJasucUMHhYvVk5xdYO4o6fMyNEhykkrY5ccFVMmY4y4l55jWtpcR0ozPaYHSs4AjVXt1aG5uB8qapvayiCo36NuYZeRaVHOtUPqMuCNKra86AEWLzZidaEsBA9nB6AwETj0UacUPsYYcS8913JRm+dR7ykSm0wPdGxyWVMk3Z82zoaEAhFDERvocXZRuu7Ei1o4kTEurj6y6ja1PLI7LYpTFlbWm3pWFg2LF1uKdyGz+w9/BFqbgOGL24onMabLOCIoTmHsUC+06oA3Nidzu4CeUIPMVdQK0TbMuv64jDpZXli8mIzo+WK4wkWK8NMF1SaekGXD4sVW4l2GegK//kWa2x3dgWUvcpVNM7G8EHfOkX1oPtyZjpc2nEZDM6dS9mh58QyVY5bSm6snUrcCe962WvcS1W/adkYGgi8d24t4oZ5GRUlynd1GJu9zNKdlLxzRhJQiFi/nAosXm7C86LA8/Vlg71ty49LnAe8wU0/NNvAI7NPyQlwcH4K/XTRKrL/2WzImP7MRq35JYCuMSktTe9Dp1DvkmKl0Re8OsjJ+/Xtg3aNA2jZYI9QKgPqVkUuY3EY9Qu41ynhz9m4X04zxCZsOeITAVVeDudqjSC5k8XIusHixYkprGpFfWY/ztCfgl/ItoLEDLn0bmHCDqadmO6gXix6q7HbktvOi8Mzy0Qj0dEJVQzPe2ZqKrw8q6a2WTmUesPNV4Ktbge/vHXidFqoO21wPOHkB8dfJbUUJQF0PWRuFJ9vT09O2wtpoamnF94dz2lxGol9ZT1Qo3yHvcLa2mrrey+jLxOpFdntYvJwjLF6smLRi+eO4wEUxGY+7BhivnPgZs4l56cjvZkRi92ML8OAFsrHesz8liCJkFg3FprwzG9jwN+Dkt8Dh/wKfXgM0DqC7bls7i/HSmuWlWA5Vd0hXOlpbyH2kUl0I/PxIz6+zAH44mosZqzZhU2KheLy0r3iXiiw5qseMMR1jrhDDQu1BZBfKLDFmcLB4sWLSiuXFYbqdcqKOnGXaCdm05aUAaO1fHItWqxH9aSi1vaKuCX//6RQsljMbgdUXyewgKog491HA0QNI3w6svbN/70GuswMfyPXI8+TopcS9VCrNBnsTL9QKo16paLrhcWDfO8DGJ2GpUExUcXWjqBH0f8tGYlyod+8vUC0v6jFjTMfQiWj1CIGbpgGhtSdFQ01mcLB4sWIySmrghEYMa1LES8RMU0/J9qAidRotoGuVF/B+Ym+nxd8vk8GVPx3PE/U8LI6ydOCb3wMtDUDshcBt64H5fwGu/0I+n/Aj0NwPq9LpdTLexcENmHyb3OYZ0rN4aWkG0nfKdXsXeewzdgMVOcDxr+T29B1yPwuD0mvTimuE92fTg3Nx+2wZ6N0rLF7MB40G2ogZYnWS5jRS2HU0aFi8WDF0kpugTYa9rllaAKi6JmNctHZKm4D+u45Uxod5i0DMphYdfrW0AnYkSr68WVo8hk4GrloDOLm3i2gHKmOvA8oVl0ZvVpetz8n1qbcDbr49Z3HRvnShzt4ni9lRgOrYK9stMRSw3qoIloZKIP8oLI29abKH0ahgT3i5OvTvRSxezC9wF8Bk7WmOezF38fLGG28gMjISzs7OmDZtGvbt670+w1dffYW4uDix/9ixY/Hzzz8bY5pWR3pJDaZoEtsvGBysZxFxLx25aJy8SP94vPdUa7Mj4Qcg7wjgMgS4anXnNhT0PRwSKdfL03t/nzMbZIo0iZ2Zf2zf7jlUjpUyaFVw6jvg5dHA6mXtLqZhsrYGjn0B7FdcT+5BZ8fCWAh702ScxNQo2VJiYOKFY17MgvBpYpioPYPkwkpTz8ZiMbh4+eKLL/Dggw/iiSeewKFDhxAfH4/FixejsFAGm3Vl165duO6663Dbbbfh8OHDuPTSS8Vy4sQJQ0/VqqAU2/TiWkzVdhAvjGlQrQQdL7T95KJ46R7ZmVwssscshkylBkv89d2n5avihVxLvVpd/inXp9wGuPm1P+epHtO8zkJHvE7p4B2zAIiaC2gdZOZRU42MuznvAfm8BaZQ71MsL9OiFAtUX5BrTHWtseXFPAgYjSY7F3hqalGfc9LUs7FYDC5eXnrpJdxxxx249dZbMWrUKLz99ttwdXXFBx8od0Fd+Pe//40lS5bg4YcfxsiRI/HMM89g4sSJeP311w09VauCAvrqG+oxSXtGbghn8WIyfJS4hJLkAb+UanhQ4G5Lqw7rLKlxI7luiNDJ3T/vHdG3eEneJLOMKG6lo9Wlk+Ul9+wqsnMeAZa/CUy4SQqem/8HXPgCcNk7wO++BaLntQus/sTcmAkkXtWqrP22vFCKPtV4IQHnrtQcYkyLnT1q/CeIVa/iLlWjGfMQL42NjTh48CAWLlzY/oFarXi8e3f3XWFpe8f9CbLU9LQ/07PLKFaTDVdNg6yN4R9n6inZLgEj5Vg4uKyhZYrraGNCz80dzQqq4ZKvWErDpna/T5vlJaN/Vhd3JW5IRQ3YpZgXKkhHFoYixco4/npZy4i6eqtWRypsF3+tdOHRb4ECqZvrgJNrYWlWlxGB7vBxcxyYy4iOF9UZYcwCx0gZ9xJRexy55XWmno5FYtBvc3FxMVpaWhAY2Fnx0+P8/O7vImn7QPZvaGhAZWVlp4UB0otrME6bIh8MncAnLlMSMKq90NogmDPcX4z700rR3KK4RMyZ3CPybp/cZaqFZKBuI6oKm70fsHM82+pCCCuCRvbpIpcQdZxuaZStL1SrTk9QzE3sUrm+9g/AJ1cDTebfJI/jXawH1xhZtmKqJgk/H+sh3Z/pFYu/oq1atQpeXl5tS1gY/0hVy8s4jdJ1N2Siqadj2/jHttd6qRl4YaqRwZ7wcLYXVXdP5VVakMtoSs9B4kM6uI26a4GgNmEMjm9vsdARuw5uEIolKlBiBwJH90+oL/o7MPUP0p1y5lfg2OewuniXTgXqON7FrAibhmatE8K0RUg6bHmxV1YvXvz8/GBnZ4eCgs7mbnocFNR9VUjaPpD9V65ciYqKirYlK6uP1EsbgYJ147WKeBnK4sWkUIowlWZXS9oPEDutBtOUu+29qfICZtZkH2gXLz2hWkcoZbm7Ev9qE8YQGRvQLR2DdtV4FxIv/cHZE7jweWDhE/KxWgTPTKFihapwHZzlhcWLWeHkgebhF4rVMUU/IYddR+YlXhwdHTFp0iRs2rSpbVtra6t4PGOGLNTTFdrecX9iw4YNPe7v5OQET0/PTgsD5BaVYIRGEXJsebF419H0aHm3vSfVzEuKkxWF2gH0Fu9COLq2W07KMwYpXoZ2Y3kZM7D5UjYUuabyjrZbe8yQgxml4tBG+roi0NO5/y9k8WK2OE+5UYyX2O3Gr0d7iP1iTOc2ojTp9957D2vWrEFCQgJWrFiBmpoakX1E3HTTTcJ6onL//fdj3bp1ePHFF5GYmIgnn3wSBw4cwL333mvoqVoNFBfhVHwS9ppWNLsGtgc3MmYQtHtu4oVcB5R5ZLaQEKkplO4Ycvn0Rk8ZR9RGgcREX+KlY6G6ghODEy9U9G7Ucrl+8EOYK6rFbUAuI4JjXsyX6PmodfLHEE01yo78ZOrZWBwGFy/XXHMNXnjhBTz++OMYP348jhw5IsSJGpSbmZmJvLz2Wg0zZ87Ep59+infffVfUhPn666/x3XffYcyYAZ6UbJjU4hqM0sm0XLvQiVyczgosL53iXnIrzd9lFDQWcHDpfd+egnYppZxqslBhOj/ZoLJbVFFOmU1qpd1A5TgPhEnyRgrHvgIKTpl1Zd0BuYzIVFOeKde9egicZkyH1g41sbJRY3zZelPPxuIwSsAuWU0yMjJEZtDevXtFlV2VLVu2YPXq1Z32v+qqq5CUlCT2p+J0F14ofYNM/6CLm5pppBk6ydTTYbqmS3cXoDqAuBezdh31x2XUV7q06jIiyw21V+jLbZS2tf39nDwGPmdKpabaL5Q6/fn1QK15xRXVNDTjeI5sLDktegDipSxNxhSRW8xnmOEmyAwaj/iLxThSdwYl1ZZTc8gcsPhsI+ZsKLBvrCatPU2aMT2+w2WDxvryQbUJsJi4F0pv7itYt2vGUVdrVH/iXToG7DYrac4Tb8agIMvkFR/IoGq64P9wP8yFwqp6/OPnBOEqHOrtgtAh1BOqn6jHkaxgHdszMGaD81DZfHWopgRpWQOvwG3LsHixQk7nFCNSkz+4GADGMDg4tzfGpJok1hj30lQnuz/3V7xQ7yESdFl72rOFBiReOrhCRl4CzFLK/g8Gin255uP2vkylivg3IWU1jVj26g58sle6fq6aPMCg2/4eR8Z0OHuh2E6GUJSlK/8vpl+weLHCnkY1eadhp9GhxdGTS4KbE2q6dF+dlC017oWK01HXZuqirf6tvUFuntGXyfUdr8iRKuXmHevfRZcCfqntBfUvuuztcy/ESG6qYefLbteH1sDUbDtThKKqBgR5OuODWybj/gXDB/YGOSxeLIFSD/l/bczlPkcDgcWLlVFQ2YCAehkAqfEfwcG65oTaoFAtHDaIuJepkWYc96K6jCjepb/fO9VacvJbae0oTpKxJ44efcdpUPn/3/8iexc5ukEvTP69HA/9F2g2bSPMPUqGEXUWPz8uEJqB/JapZQJ19SZYvJg1zX4yyNyldHDB/LYKixcr41ReBWI00neq5X5G5oXXuYkXs4976VhZt78EjwNiLpCdoA/8p0uwrglOTyOWyhRsajmQ+APMoR3ANOV/PiAoY6uxWsnYUio8M2aJc+g4MfrXDrxxqy3D4sXKSMirQoxWCfwiywtjfuJlkG6jTnEv6WYW9yKK0w0gWLcj1ESROLOhQ5zGeJgEsuZMkMXDkPCj6QJ1K+uRWlQjDFiqtW1AtAXrjmtvUMmYJQExsohodGsGKmo546i/sHixMigWIkajNPpiy4uZuo2UwmGDYFSIJzyc7FFV34ztZ4pgNlBH5+p8wN554O0oKE2ZAnfpPU7/anpXR6iS5l2UZPK6LiODPOHl6jDwN8hVqgWzy8jscQ+ORQMc4KZpQGYKu476C4sXKyMxtwzRGqVgV28Fvhjjo5ZoJ/FCMQmDjHu5dILMsnn0m2PmUxsi5bf2mil9FafrissQQK1HpLrUTHnRVS2W5Hqhar8mdRkNwupCpO+UI4sX88fOHrkOsmxAJWcc9RsWL1ZEdUMzWkrT4aRpgo7ugPuT8cEYD5HaqwFaGoCawVtNVl4Yh2H+biI4++Gvj4kMM5OTrPQjG7ZgcK/v+DonL8AnGibDKxywd5H/p67Vf40A/T93p5R0chMOiMJEoOC4bNEw/AL9T5DRO+WeUjA353YoGcD0CosXKyIpvxLDlGBdDRVF6606KWN87Bza+/Gcg+vI1dEer18/EY72WvyWWIgtp4tMX98lQ7nTjxmkeOn4Oop3MWWWHAUK+8WYzHX08Z4MpBTVwMle21ZVeUAc/0qOMQsB10FabhjjEiiDdt1LlR5dTJ+weLHaeBd2GZl33IvSc2aQUM2XW2bK8vov/JqEVlMG72bsklVuPUIGH2dFnc+dvczH1aFm6FDqthFJLqzCsz/JuIdHl8TB23WAlXHJCqeKl3FXGWCGjCHwjJEtcyIbEqEbpEvZ1mDxYmVtAdQ0aU6PNPd06cFbXlTumjsM7k72OJlbiV9ODK7lgF7jXajA22AtJpQRM+ZK6VYbsRgmx1/5/RSdNurHPv1jAhqaWzF7uF+bOB1wY0zq7O3gJtO+GYsgbOQ0NOns4IsK5GUOrgK3rcHixdosL1rV8sLixayDds8hXVrFx80Rt50nWw68svG06WJfVPESQ9Vpz4El/wT+dFIG/ZoaNdjdiJaX+qaWtvo9T1w8ClrtIISgWpsmbhngOIA+SIxJcXRxQ7q9FKuFSbtNPR2LgMWLldDc0orE/A6WFxYvVllltyu3zY6Cq6MdzhRWi55HRqcyV3bKJotJ9Pxzey9qHujVoV+RuVhejCQKD2WWobG5FQEeThjm7z64N8lXYiYiZ+l1bozhKfYcLcamzAOmnopFwOLFSkgrroF3cwk8NHXQaez6Lq3OmC6TRY/ixdPZAcvHh4h1tYGfSawuVNvFmoJD6fdDv6PGKqBKKT1gpHYAM4b5DqwVQEfUDt0BsuQ8Yzm0BMv6SJ4lR009FYuAxYs1xbsolXU1PlHyLpaxareRyvVTZY2IX07kodjYdV/a4l0GmWVkrtDvh35HRsw4Ul1Gg0qPJurKgCouUGmpeMVMF2No/WmT1ReyJFi8WGOmEQfrmr/bqL4cqCvXy1uODfVCfKgXmlp0+PrguQcC9xs6waZsluuiG7OVof6Ocg4aJd7lSGb5uYkXqu+iBoU7e+pxdowxiIybgBqdE9xQj4os7jDdFyxerMjyMlyjXLg4Tdp8cfJQitWRk1t/mSzXTJHuqF9PGjHriLoW15UCTp5A6GRYHbFL5HjgQ6ClyaAfdSijDI0trQjydEak7yADbUXsEVtdLBUPV2ck20l3f37iHlNPx+xh8WIFUJZJ50wjPnmZNW3BoMqdsh6YM8JPjMeyK0SlZYNDtSj2vC3Xo+bIAnzWxtirAVc/oDIbOPW9QT9q/akCMU6P9tFDvMtIPc6MMSbl7rI4Yl0e9zjqCxYvVkBhVQNKaho71Hhhy4tZo4pLPcZShA5xRYSvq+g0vd+QWUdJvwC7Xge+ugk4/qXMMpp0K6wSB2dg6h1yfffrBss6OpBeio92yzYEF42TwdeDgoN1LZ4WqoxOIVelyaaeitnD4sVKXEZeqIafplJuYPFiGZYX9WKjJ2YOk7ESu1KKYRDStgGfXQus/yuQ8AOgtQeu/A8wfCGslim3A3ZOQO5hIP+Y3t++qr4Jf/ryCKhA8uUThmLhqMDBvREJK9VtxJYXi8UpSN7YeNcav6eWpcHixWqCdRWri2co4DTIGhGMxVpeOgZ67lKa+ukVujhufKq9fP+4a4DfrQXGXAGrxs0PCJ/WuYaKHvlodwaySusQOsQFTy2XdT4GBTX6pPgjsoRxjSeLxS9yjBgDm3MNHmdl6bB4sZZgXSVNmoN1LQDVMkaxFPWKtUwPUH0Q9ftQVtMIvZL0M5BzAHBwBa77Arj8XRnrYkv/rxL9lm2nflSf7ZO1eR5YOAIezucQN6RaXagbt4OLnmbIGJuwyBjU6RzhgGZU5LLrqDdYvFgBCbmVmKhRTqyBUrkzZgwVc3NX3APF+rsgBng4Y3iAuzCS7NSn64jecPM/5Pr0FYDHIF0blooSh6DP/xWx7UwRssvq4Olsj4vGKd3GB0vOITkG8e/fknF1ckSWVmYjFqbp301pTbB4sXBqGpqRVlKNmXZKXYCouaaeEjMg15H+Mo6I+XEBYlz1cyIqavVkdqaLdsEJwM4RmHkfbA4/w4gXtSLyFZNC4exgd25vlqmk1obJQmeM5VLiIotO1uTq99xgbbB4sXDIRRCOAoRqigGtAxAxw9RTYkwoXu49PwbhPq7IKa/Dw18f1U+zxtPr5Bh5HuAyBDaH6jYqTQVa9JOGnlJUjd8SC8X6DdOUlhHnkraetVeuh7N4sXQavIbpvQ6UNcLixcLZklSImVrF6hI6BXB0M/WUmAHVetFv0C71Onrj+olwtNOK2iGrd+kha+HMejmOUIq22RpUVNDeBWhtAsozzvntGppb8MfPDou09nmx/ogJ8Di3N6TO11SxmeKRgsae8/wY02IXIM8NblWppp6KWcPixcJZf7IAs1TxEs0uI4tBTWfNP673t6Z2AX+5UFp2/vFzAo5ln0MbAmphkLlbrg9fBJtEqwX8YvR2N/zi+tM4mVuJIa4O+Ofl4859fqrLiKocW2OxQBvDM1RmnQU2ZBqto7klwuLFwjtJJxdWtlteON7FcgiOBzRa2UivQskU0yM3z4zE4tGBot/RPZ8eQmFl/eAbL7Y2S9eJ2qjQFtFT0G5ueR3e3y7vqJ+7YhyCvJzPfW4c72JVhAwbjVadBp6oRn2FrLzMnA2LFwtmw6l8xGqy4aOpAhzcgKGTTD0lpr+Qey9QqetBKch6hkrMP39FvIh/oToi1723B0VVDefgMloMm0aNezlHy8vn+7NEQTpqA7BodJB+5paliBeOd7EK/IZ4o0DjI9Zz07hNQE+weLFwl1GsRmYsIGQ8YO9o6ikxA4FilIjs/QZ5ey9XB3xy+zQEezkjpagG932mpNMOhLTtcoyx4iq6A8k4Khl87Y2mllZ8rtR1uXG6zCg5Z6oKgLJ0acVTv0+MRUM3HhUOshxBQTbHvfQEixcLpbK+CQczyxChkRkLNm3St3jxon/Li0qYjys+vl1WiN2TWjow60tFtiykp7HjC6Me0qU3nioQfcj83J2waJSerC6Uwk74xgDOnvp5T8bkNLvLuj9VBdwmoCdYvFgoyYXVIpYr1kkpBT+ExYvFoQoC6ptjwFLgw/zdMSpYXth2JhcPPJYieBxnsZE4IBFXWzzoIOv/7pGZStdMCYWjvZ5Ovaobi1sCWBX2Q8LE2FyWZeqpmC0sXiyUlMJqMQ6zVywvQyJNOyFm4PgMA5y9geb69jtoAzF7hJ8Yt58ZhHjhQFAp3kYtl+u73xhU/zHqOWWn1eD6aXpyGXWsE6TWDWKsAs8AeT53rMnVT60mK8Sg4qW0tBQ33HADPD094e3tjdtuuw3V1fKi2xPz5s0TPr+Oy1133WXIaVokFMNAhLTmyw3sNrLMFFxKbzWw64iYHeMvxh3JRf0/GbYFgiqNCW0dtbrw8a+AytwBvfT9HTJ2YemYIAz11mPvIbVOkB9bXqwJv6HRcmwtRkHlIALtbQCDihcSLidPnsSGDRvw448/Ytu2bbjzzjv7fN0dd9yBvLy8tuX555835DQtEqrQ6YwGeDaz28iiGTq5c28aAzE5cgic7LXiREguxz5pqAIKlBR8trxIhk4EImbJ1PG97/T7ZQWV9fjhqBQ7t8+WFyW9QCK0zfLC4sWacPSVVZdDNCU4lVdh6unYlnhJSEjAunXr8P7772PatGk477zz8Nprr+Hzzz9Hbm7vdy2urq4ICgpqW8hyw5wtXsLVYF1nL9nsj7E8AuIM0rG4K9Q7Z2qU/I5s64/riDKgdK2AdzjgeY5NA62JGffK8dBH/W4V8ObmZFFvZ3LEEIwP89bfXGqKgboyyk9pDyhmrAPPUDH4oQJJOaWmno1tiZfdu3cLV9HkycqdJYCFCxdCq9Vi716lD0cPfPLJJ/Dz88OYMWOwcuVK1NbWGmqaFgmlXGaW1CJCoxQwYquLZce9ECUpBv+oOcOl6+i9banILuvjN5W2TY7h3CurE1Rl2NUPqCsF0pVj1AubEgqwZrcM1L1vgZ4Fhmp1GRIBOOjRFcWYHjc/NGscodXokMfp0sYVL/n5+QgIkB1uVezt7eHj4yOe64nrr78eH3/8MTZv3iyEy3//+1/ceOONPe7f0NCAysrKTou1k1FSi+ZWHWLsi+QGjnexXHwUNwJdDMVdtOG4ekoYYgLckV9Zjxvf34vi6h586bWlwP4P5HrsUoPOyeKwswdGXSLXT67tdVeqavznr46K9VtmRmLuCCke9QYH61ovGg2a3GQ6fWU+p0vrRbw89thjZwXUdl0SEwffKZdiYhYvXoyxY8eKmJmPPvoIa9euRUpK93emq1atgpeXV9sSFiZTzKzdZUSMdlEudmx5sVyc3AF3peZHiWHvsLxcHPDxbdMQOsQF6SW1eGVjD9Vid74CNFQAgWOBkUqGDdPOqEvlmPBDrynun+3LQlltk0hTX6n0mtIrapq0Wv2XsSrsvKXrSFOZjfqmFlNPx/LFy0MPPSTiWXpboqOjRaxKYaESk6HQ3NwsMpDouf5C8TJEcnL3lS3JOlNRUdG2ZGVl2Yx44TRpK8FXcR2VGt51RL10nr9SNgP85mAOKmq7XHyr8oG978r1BX+TGVFMZyho181fWsrStva42+Yk+fu8eWYEnOzt9D8PtrxYNQ4+8kY8CKXC2s50xh4DxN/fXyx9MWPGDJSXl+PgwYOYNEn23Pntt9/Q2traJkj6w5EjR8QYHNx90KCTk5NYbImUQpkmHcRp0tbjOsrYaZS4F2JGtC/igjyQmF+FLw5k4s45ingiTv0PaK6TWVC22kW6P66jkZcAB/4D7HsfGLZAmPk7UlLdgKNKN+95sZ3d53qhtQUoOCXXWbxYJRovKV5CNMXihjU2yMPUUzIrDHZbNXLkSCxZskSkPe/btw87d+7Evffei2uvvRYhISFin5ycHMTFxYnnCXINPfPMM0LwpKen43//+x9uuukmzJkzB+PG6aF1vJVAX2QtWuFVnyc3sNvI8qu3GsnyQpBr99ZZ0lq3ZlcGWqhToEqejNFAzNkXZKYDU24DtPbA6V9k3ZcuUDFAymQeGeyJQE89dI7uyvGvZbVfKnIYMFL/78+YHq+hYgjWlPSvvIGNYVCbMGUNkThZsGABLrzwQpEu/e6777ZnzTQ1ISkpqS2byNHRERs3bsSiRYvE68hFdcUVV+CHH34w5DQtCiowRtV1Kf9fq2sC7BwBTykGGQt3GxnJ8kIsHz8UQ1wdkFNehw2nlKy1juIliG8WeoU6gs99VK7//OezitapLqP5sXoO0iUoRXvrP+X6rD8Cjq76/wzGbNKlQzSlbaECzDm4jQYCZRZ9+umnPT4fGRnZqdonBdtu3dqzD5mByBSpamjGeDsl3sU7AtAawJ/OGD9dmiwv9HswgsWD6r5cNzUcb25JwYc707BkTBDQ3AAUJcgdguMNPgeL57wHgaSfZW+qAx8A5/+f2EyWrK2nZSbg/DgDuIyOfwmUpgKuvsDUvot+MpZteRFuo8IqU8/G7OBoPAvjTIFU4BPclUwjjnexfNT/YX0FUKtUTDYCv5sRIXrt7E0rxcncCqDwlKwe6+IDeMm7PqaP2JfJt3Wui0PaIqcC5bVN8HS2xwR9FqVTObhajjP/CDhxHITV4hONVjsneGtq0Fp0Bq0d3bsMixdL43SBVOCjXJSqixzvYvlQgTHFRGxM11Gwl4votUOs2ZXe7jKiLtIc79I/oubIMeegbKlA2iJD3lhMifSBvZ2eT7GtrUC+0sRzxBL9vjdjfueFMJncMrn1qLC6M+2weLEw1MCtaNVtxGnS1oGvUqzu1Hcyk8RIqIG73x3JRUPWYbmRXUb9h6rb0m+QLFYZu8WmQ5lSvEyMGKL/zyvPAJpqZKybGujNWC3aYfPEeJ72BAftdoHFi4VaXgKalUwjdhtZByOUSrZ73gQ+Wg401RnlYyeGD8HwAHc0NreiJkNpDsnBuoOzvig1Xw4rlpcJ4QZwGZFrT23ESG4rxrqJni+G6dpTSC2QqfeMhMWLBUHBzTLmRQePumy5kd1G1sH0FcDFrwIObkD6duDEt0ZLm75gVCDs0AL3cqXoWfB4o3y21RA1V45pW5FfUY/cinpoNUB8qAHEi9rpO2C0/t+bMT+C41Fn5wlPTR0aMg+YejZmBYsXC6KgskFkGvlpq2HXWNVutmYsH4oxmXQzcN4D8vGJr4320SReojV5cNQ1Qufo3t5viRmY5SX/OI6fkS0e4oI84eZkbzjxQqnajPWjtUNJwHSx6pW709SzMStYvFigy2iqd4Xc4BHC3WStjTFXyDF1K1CtNN40MGQhmOQqa71UeQzjlgADxT2grcptSeIOMU6MMIDVpaPbKHCUYd6fMTtc4xaIMaLqIEprGk09HbOBz1IWxBklYGuSuyJeON7FOgvWkdtG1yKDd42AVqvBAj8Zp5Gsk7UlmAESIMVEfX5iWyyR3mmqB0qUHm/sNrIZfEbMEGOcJhMbTyktYRgWL5bEGcXyEutULDdwvIt1MvbK9hLwRmKck7S87Cj3FcG7zABROju7VqQaTrxQI0ZdK+AyBPDof3NbxsLxG4FWaDFEU43dR5UikgyLF0siIa9SjBEaTpO2akZfTkEwQNYe4Ne/ytoeBsa/Pl2MR+sD8MPRzqXumb7JcZB1eqI0OVg8OhARvq4GdBmN4To8toSDC5q9ZGxjWfpRVDc0m3pGZgGLFwuhqaUVCfnS8uLfrFxc2G1kvWXBF/9Dru9+Hfj4ciB9h2wdYAhaW6BV3BHkNnpve2qnth1M3/zrgBSYsXb5eOWaCSKLS+9k7unkomJsB4dg+T+P0mVii9I3y9Zh8WJBwbpkzvdwtodTpbxLZreRFTPjbuCyd2Tn4tTNwOplsgaMIaDCZy0N0Nk5odQhGIn5Vdh2RnFNMn2SVVqLX/PdxbqnrhIuTedQj6OqQAZrdxWPVfnA0c/letyyc5kuY4FoFME6XJONLUnGCeQ3d1i8WAgncmSQ7vQgDTTVShdgf+lnZ6yU+GuBu/cCY6+Wj6n5nyEoOi0Gjd9wXDVFuiJX/ZyA+ibjVfq1ZDYlFKAOzijSKk0Yi+XxHBRf3QJ8dIm0uHWEHrc0AKFT21OzGdtByWaL1WbjsFLB2dZh8WIhULM3Yo63ckfsHc5N2WwBvxhg2QvSAkOunTLF6qZPipOUzxqBu+ZFw9fNUVhfnvyfUlOE6ZUNCfJmosF72LmJl8pcIHOXXN/4JLD/fWDtCuCLG4H9inCd8zDHu9giASPbLC8pRdWoqG2CrcPixUI4niODdeOdlHgX9nvbDs5e8o6bSN5kMMsLlZwP8HDGv6+lmA3g8/1Z+Hxfpv4/z4qoqGvC3lTZJNUjVPlNlpwZ3Jsl/tS+Tr2SfnoIOPopkPCD7GdEbRuGX6CPaTOWhu9wcQNDlXaDUYrDWWx9YfFiKcG6aqZRS0YnJc7YCDELDCdeOlheiPOG++HBhXL9/747ge1n2MfeExQ82dyqQ0yAO7zCFPFSfI7iZc4jUqg4eQKTbwMufAFY+CRw9UdsdbFV7B0BH2nZGyFcR+WwdbizlwVA3UQpWNfdyR6elcqJkS0vtidefnsGSNsGNDfKk5k+oA7WRUntzf4U7j0/BslF1fj+SC5WfHwIv9w/G2E+Bkj/tWDKahrx701n2loswE8zeLdRXZnsaaXGOs1bKde52jGjQjesxUkYocnC4SwWL/zLsKB4l9HBHtAUJnQK4GJshKB4wNUPoJ5W/7tPxkPoo/5LzkGgoRJw8mqzvBCU6vv8leNEZ2SqK7F6lwFibSwYCma+46MDSC2qQYiXM26dFdl+/CguicTIQDizQbqK/EfKKsskWli4MB1RrO0jNNk4klmG1lbbLmfAvw4LIDFP6WkU0ATUlwMabacLDWMD0IVsxGK5fuxzGQ+hj+aNSb+0W3bsHDo95WRvhz+eP1ysf30wm7OPOvDBzjQcyCgTpQtW/36qiBWCe6C0iFIV3C3PDewNT30vR06DZvoQL7F2Oaisb0ZqcQ1sGRYvFgBFlxMTnPLkBvJ9OjibdlKM8bngGWDxKiD2Qvl456vnXrhOFS+xS7t9es4Ifwz1dhGBqT8eU75/Ng7FoP13t4w9e/yiURgRqGT9UTzK4r/L9X3vAoWyz1GfNFRJywsx+lKDzJmxAsgqp8S8aNCKIzbuOmLxYiExL8QwnZL5wcG6tombryxet/wNwMEVKDgOpPw2+Pcj90ZRAqCxA2IWdruLnVaD66eFi/X3t6eKANW6Rtu2wKw/WYC8inr4uTvikvEhnZ8cdj4Qu0w21tz4RP8FJNVw8Y2Rpf8Zpjt8ogE7RzjrGjBUU9zW685WYfFi5tCFIqe8TqwH1qfJjRysa9u4+gATb5brO/89+PdJWifH8BnyPXvg6slhcLDTiNovt3y4H0v/vQ2lNY2wVVbvkr/D66eGC9faWSz4mxxJWDY39P2GJ9e297TibCKmJ+zs28IFYjVZouq6LcPixUJcRkNcHeBcpmSFsOWFmXGPtJikbQVKFVE7EMjddOIbuR67pNdd/T2c8Np1E7FsbDB83ByRXlKLuz85KNwntgalje9PL4O9VoMbp8tmeWdBwfQuPkBLI5B/ovc3rK8AkjfK9dGX6X/CjHWhJGqM0OTgjGKRt1VYvFiIeBnu79ruQ2fxwniHAREz5XrSzwN/PQWIZu8D7J2VLta9s2RMEN64YSI+v3O6SNnfk1qKF9YrYtpGKKluwINfHhXr5EoL8Owh7oysJ0MntWdz9Ubiz1Lk+MXy75rpf8aRNgvZZXWoseEO0yxezJwURV1P8q6WVTbtqFhRtKmnxZgDcRedXZm1PzTVAesV18asB2QX635CwamUQk18uicTtY22cfKkLtsPf30MRVUNGB7gjpVL+xAaoZPlmHOgfy6jMewyYvovXkbZ5XSKh7RFWLyYOVQojBjvnC83kM+zS0orY6PEKVlHmbuBmpK+96fOxJ9cBbw0EqjIBDyHArPuH/DHLhkdhAhfV1Q1NOPn48r30spZsysdvyUWwtFei1evmwAXx25iXTrSH8sL1YJRA65HcZYR03/xEoUcaNFq064jFi9mTkqhzOWPQZbcwKZlRoWacwaNlXVFTivBt71x5BPgzHp50XR0By7+N+A48Kq5Wq1GBPES1t77KLe8DpuTCvGPX6TL9i9L4zAy2LPvF6rihZpp9lSwjixmrU0yAD+Ai04y/cA7ErB3gSOaEKEpsOmMIxYvZkxzSyvSlEJEQfWpciOLF6Y71xE17+uLzL3tvXMeTjmnJn9XTgoVadRUqC250PpOoBRLsOLjg5j5z99w64f7RXuO8+MCcPPMyP69AWVvDYmS6zmH+s4yYpj+FqtU2niM0GSx5YUxT7LK6tDY0gpnBy1cy5V+KZwmzXRk5CVyJMtLdi8uCmolkLWnvSDdORY5DPR0xvzYALH+7E8JaLGCUuUU17LuRB7++UsiLn9zF345kS8EWrCXMxaODMS/rhwn2ib0m7a4l27+L7WlQOoWuc6F6ZiBEDhaDKO0mTadLs3ixYxRv5gxvi7QqM3e2PLCdCRwFDDuWrr0Aj89KBst9tQ5mtJyqbgduZr0wAMLh8PJXostSUX4+08JIhuHBICl8sneTNz18SG8vTUFSQVVogjdl3+Ygd0rF+D9myfD191pYG/YW9wLpalTLyP6X/jJFgwM0y+o4ziAUZp0m844YvFixhxVyj/P96+S6ZR04fGS1U4Zpo1FzwBOnkDeEeDAB93vk7mn/YKqp4DvMUO98MJV8W29fiY9uxGLXt4m4kQsDSoEuepn2fR02bhgrFwahx/vm41JEUMG/6ZDFctL9oGz2zgc+VSO8dcP/v0Z2yRY/ubG2clmqbbqOmLxYsaovSumuRe0FyjiTrNMV9wDgPP/T65vfAooV4K7uxMvVE1Xj1wcH4InLh4lCtmpJ9Lb1xywqLtBshY99s0x1DS2YHLEELx27QT8Ye4wBHmdY/8wsqpoHYDaYqC8Q2Az1WvKPQRo7YGxV53z/BkbI4haSGgQiFL4ogIJeZWwRfhKaKZQDMGx7AqxPrrhSLuLgGG6Y8rtQOhUoLEK+OH+s91HarxL+DS9f/Sts6Kw/68Lsf2R+cLVciqvEo98fQyWwlcHsrH9TLFwgVENG8qm0gsUVyQuNF3qvRxVrC7DFwHu/vr5LMZ2cPJoq/U1WpuOU7ksXhgzq6xb3dCMEMcaeJ/+Wm4cd42pp8WYK1o74NI3ATsnIGUT8LQv8PoUWdulMk82YYQGCJ1isCmE+bji3Zsmg679Px3Pa6sObc7kV9TjmZ9OifUHLxiBaH93/X5AW9yLknFEovLYl3I9/jr9fhZjc66j0ZoMcbNgixhMvPz973/HzJkz4erqCm9v736bbx9//HEEBwfDxcUFCxcuxJkzZ2CLHMmULqM/eW6FprkOCB4PRM429bQYc4YCPy96SZb8pwBeCvI+9FF7GnXIBMDZy6BTmBg+RKQUm3sNGLpbveOjA7jote2oqm9GfJg3bp9tgMrVHeNeiNTNQFUe4DIEGLFY/5/H2AbB49osL+Q2arWCbD+zES+NjY246qqrsGLFin6/5vnnn8err76Kt99+G3v37oWbmxsWL16M+vp62BqHs8rhjAYsq1cuPFQJlcuHM30x4UZgZQ5w0Svy8dHPgGOfy/VxVxtlCtdNlUHl3xzKwa7kYjzy9VGzKmNeWd+E36/ejw2nClBc3QhfN0e8cOU4kRatd1TLS95RoKWpPVCXYl3sB5i9xDBdMo7GaNNR29iCjNJa2Br2hnrjp556SoyrV6/ut9XllVdewf/93/9h+fLlYttHH32EwMBAfPfdd7j2WkoHta1g3dna43BtrpAZRmo9D4bpCzslEPTXvwClSnFD6kA95gqjfPzcEf4I8nRGfmU9rn9fFsaj+K0f7zsP9nam91Q/++MpMbdIX1c8d8U4kTXl5mSgU6FvDODkBTRUyKBptQ8Vu4wYPbiNIjX5cEetsCRG+bnBljD9mUQhLS0N+fn5wlWk4uXlhWnTpmH37t2wJSjWhWq8xGqUrBHqHkwXJIbpL07u7dV3iWHny6wkI0AC5erJoW2PyaKRmF+F/+7JgKmgGjTXvbsHM1ZtwpcHsoUR819XxWNatK/hhAtB2YFDJ8j171YAzfUya5BceAwzWNz8AC/ZomOcNhWn8mRyhy1hNuKFhAtBlpaO0GP1ue5oaGhAZWVlp8XSWXciX2QbTXBRUqS57wkzGOI7WCuNHOx92+xoXDM5DM9dMRZPL5cVQV9afxqFlaZxAT/94ynsTi1BXoX8/Pvmx2BKpI/xMsEoWLpCuRkZfz27gJlzJ3y6GKZqE20y42hA4uWxxx4T5bF7WxITZQMzY7Fq1SphoVGXsDCpRi2Zbw9lizHeKU9u8OequswgiJ4nzcuUVql2oDYSXi4OeO7KcbhmSjiunRKO+FAv0YV6ldLg0JhsO12E74/kiiyod343CbseOx8PLpL9YYzCyIuB+w5KEUPrE2823mcz1ku4rNk0VZOIkzYoXgZkL33ooYdwyy239LpPdPTgIvaDgoLEWFBQILKNVOjx+PHje3zdypUr8eCDD7Y9JsuLJQsYqvRJd4h2aIFvvWJmVxpxMcyA06fvoP45OrluIsht9PTyMbj0zZ1YezgH10wJw/RoX4N/7m+JBVi9KwOHM2RX55tmRGLxaHmeMTq+w4BlL5rmsxnrJGKWGCZqz6Csqkak/Z9zYUVrFS/+/v5iMQRRUVFCwGzatKlNrJAQoayj3jKWnJycxGItfHc4R1QSvyS8HppCpSWAd4Spp8VYKmZSkZlSkSkL6dO9mXjoy6NYODIAF4wKwnnD/QzyeZTddNd/D4nGpsSIQHf8eTHfBDBWhH8s4OoL59oSjNWk4khWGZZ4td/4WzsGi1TLzMxEaWmpGFtaWnDkiKwSGxMTA3d3WQgqLi5OuH0uu+wy4XJ64IEH8Oyzz2L48OFCzPztb39DSEgILr3Udrqufn8kR4xXhtUAhVS7Y4TZXIAY5lx4ZHEs1p/MF9bFNbsz8NGeDJHtc/XkgVtKdyYX47fEQlTXN6O6sVmM1JKguVUnWhb8ejJfCJdZMb54aFEsRod4wsnedNYnhtE7Go10HSX+KOJeqLzGkjEsXs4ZKja3Zs2atscTJsjo+s2bN2PevHliPSkpCRUV7VHSjzzyCGpqanDnnXeivLwc5513HtatWwdnZ9swhVXVN+F0gayHMcFZCVLmLtKMleDt6oif/zgb608VYHdKiajC++g3x2Cv1eDyie3ZSX2VVHhzSwr+9WtSnz3BXBzs8M/Lx4nKvwxjlUTMbBMv7yiFTW0Fjc6Se9h3A7maKHCXRJGnpycsib2pJbjm3T0I8XLGruGfACe+ARY+CZz3J1NPjWH0Cp12nvzfSWGBcXO0w4YH54raMGSV8XV3hKvj2fdV9U0tooHid0dyxeNL4kMQG+QhXk/pzu5O9iisasCrm86gpKYRf7toFG47L8oEfx3DGIncw8C781Cpc8F5re/h0JPLzKKWkjGu31w8xIxQI8ZHhXjJzrMEZxoxVgi5iZ+4eLT4zh/IKBMWmPLaJhzPkZZYavAYOsRVdKv2cLIX4uRodrkodkcBwE9dMho3Tu8+FuzyiUORUVIris8xjFUTNA46jxB4VuXivJZ9OF0wF6NCLOumfbCweDFD8TIm2BXYq/R04hovjJVC3Zv/ftlYLHt1u+jqLLZpAGrTQmX7aemKp7M93rpxEmbF9Bzo6+HswMKFsQ20dtCMvw7Y/iKuttuKw1m3s3hhjM/JXHnXOdWjFGihTCM32RqAYawUcvusmDcMr/2WjInh3nj9+onCypJVWovsslrh/qFAXArIJf/2lZNCEeFrW2XQGaZXxt8gxMts7TGsSjkNTLON7FQWL2YC+fPPKM3rRupS2juHcqYRY+U8eMEILB8fgkhftzZ/vddQL7aeMEx/8B2GMv8pGFK0H8EZ3wG4ALYAXxnNBOplRC0Bhrg6wLv8pNwY3HNxPoaxpviXmAAPiw40ZBhTYj/xRjFOrdshuqbbAny2MLd4l6Fe0OQdlRtDWLwwDMMwveMRO0eMIzQ5OJZRAluAxYuZxbuMDnYD8o/JjWx5YRiGYfrCOxINGmc4aZqQflq5flg5LF7MBLUr6FT3EqCpVgbr+g039bQYhmEYc0erRYWHvF5UZ8pq9tYOixczoLVV11ZZdxRSOwTrcjlzhmEYpm+0QWPEaF+cKIpAWjssXswAqipa3dAMRzst/KsT5EZ2GTEMwzD9xCsqXowRzWnIKq2DtcPixQxIyJMuo5gAd9hxsC7DMAwzQByCx4oxTpOFw1llsHZYvJgBSflVYhwZ6AYUnJAbg6WKZhiGYZg+CRglhjBtEU6kZsHaYfFiBiQq4mWydyXQWA3YOQG+HKzLMAzD9BNXH9S7BIrV/DOHYe2weDEDEvKl22icQ3Z7PyM7Ln7MMAzD9B97xXXkWXkaGSU1sGZYvJhBW4D0Yvkli2xKkxsD5ReQYRiGYfqLffBoMcZpMrHtdBGsGRYvJuZMQbXoouvj5gjXciXTKFB+ARmGYRim3wTKdOlYbRa2snhhjOEyigvygKZA6Wmk5OszDMMwTL8JbLe87EopRkNzC6wVFi8m5nCmTGkbH2AHlKV3Us8MwzAM0298h0OntYenpg5DGgtwIN16U6ZZvJgQqoK4OVGa9i7wK5UbPUJE1DjDMAzDDAh7R2j8Ym3CdcTixYQk5FUhv7IeLg52GGOn5OVzvAvDMAwzWAJHtbmOtiQVwlph8WJCNitfrFkxvnAo5ngXhmEY5hwJlDfAI7VZomdebrl1tgpg8WJCNidK8TI/1h9I3iQ3hkww7aQYhmEYyyVQ3gDHO+aI0VpTplm8mIjy2kYcUoJ1F3lmAOUZgKM7EHOBqafGMAzDWHibgNCWHDiiyWrjXli8mIidySWivsuIQHf4p6yVG0deAji6mnpqDMMwjKXiGQI4e0OLFsRocrDjTDGaWlphbbB4MRH70krEODvKEzipiJdxV5t2UgzDMIxlo9G0xb1Mcs5FVUMzjmaVw9pg8WIi9in59xc6HwfqywGPYCBqjqmnxTAMw1g6gVK8zPaUcZX70pVSHFYEixcTUFHXhESlsu6o6j1y4+jLAK2daSfGMAzDWI14GaWU4NifxuKF0QMHM0qh0wFRfm5wydkpN0bPN/W0GIZhGGsgQIqXwLpkMR7IKEMLBVlaESxeTMBeRQUvCmmSLQE0dkD4dFNPi2EYhrEGAkaKwaGuCKGONaiqb0ZSfhWsCRYvJkA14S1wPSM3hIwHnD1NOymGYRjGOnByB4ZEitVlgfJ6s9/K4l5YvBiZusYWHM+pEOujGo7KjZHnmXZSDMMwjFUWq5vloQTtWlncC4sXI3MwowxNLToEeTrDLW+33Bg529TTYhiGYawwaDdOm9mWcUTNgK0FFi9GZndqsRiXhTdBQ1V1Od6FYRiGMVClXb+aZDjaaVFU1YCMklpYCyxejMyuFFmc7gKPDLkhOB5w8jDtpBiGYRirdBtpixIxfqi71dV7MZh4+fvf/46ZM2fC1dUV3t7e/XrNLbfcAo1G02lZsmQJrIXqhmYcy1biXexl0ywEjTXtpBiGYRjrwycKsHcBmutwQXCN1dV7MZh4aWxsxFVXXYUVK1YM6HUkVvLy8tqWzz77DNYCRXtTrn24jys8K5M7mfYYhmEYRm9o7YChE8XqHIcEq8s4sjfUGz/11FNiXL169YBe5+TkhKCgIFgjuxWX0YxoXyDnVKd8fIZhGIbRKzELgIydiC7fA41mBNJLalFYWY8AT2dYOmYX87JlyxYEBAQgNjZWWG1KSuQF3xqg7p7E7EgXWZyOYMsLwzAMYwhiForBIWM7xga6WFXci1mJF3IZffTRR9i0aROee+45bN26FUuXLkVLS0uPr2loaEBlZWWnxVyFy6m8ShH1PcuLvjw6wNUPcPc39dQYhmEYayRwLOAWADTV4HL/bKuKexmQeHnsscfOCqjtuiQmJg56Mtdeey0uueQSjB07Fpdeeil+/PFH7N+/X1hjemLVqlXw8vJqW8LCwmBuUG7987/K43LD9HAMqVbjXdhlxDAMwxgIrVa6jsjirznaqT2NTYmXhx56CAkJCb0u0dHRepscvZefnx+Sk5WLfTesXLkSFRUVbUtWluyiaU6sO5EvsoxcHe1wz/wYoFCNd2GXEcMwDGN411FE2W5oNEBifhUKq+phUwG7/v7+YjEW2dnZIuYlODi41wBfWsyZt7amiPH286Lg5+4EFMrIb7a8MAzDMAYlej4ADeyLTuK8oBZsz7PDzuRiXDYhFJaMwWJeMjMzceTIETFSzAqt01JdXd22T1xcHNauXSvWafvDDz+MPXv2ID09XcS9LF++HDExMVi8eDEslZO5FcLq4mCnwS2zouTGNvHClheGYRjGgLj5AkGyYN1VvjJRZLuSPGLJGCxV+vHHH8eaNWvaHk+YMEGMmzdvxrx588R6UlKScPUQdnZ2OHbsmHhNeXk5QkJCsGjRIjzzzDNmb1npjS/2SzfWotFB8HFzBGpLgapc+WRAnGknxzAMw1g/kXOA/OOYipMAhokEEorFpDhVS8Vg4oXqu/RV46VjkygXFxf8+uuvsCbqm1qw9rCspHvtFCWQOG2rHP1GAM5eJpwdwzAMYxNEzQb2vIGAkn1wdrgUhVUNOF1Qjdggy21NY1ap0tbGLyfyUFXfjKHeLpg1zE9uPLNRjjEXmHRuDMMwjI0QMRPQaKEtS8WSMFl6ZPuZIlgyLF4MyM/H88V4xaRQaLUaMjUByYp4Gc7ihWEYhjECzl5A8Hixeqm3TCDZeprFC9MNdY0tbcp2yWil3UH+caA6H3Bwk0qYYRiGYYzlOgIwsfWEGPemlqKmoRmWCosXA0GpaPVNrcJlNDJY8Ssmb5Bj1BzA3nKDkBmGYRgLI2qOGDxydiDCxwWNLa3YkWy5WUcsXgzExoQCMS4cGdAe0X1GES/DZdEghmEYhjEKEbMAe2doqnJxdUSN2LQ5sRCWCosXA9DaqsPGBPmlWDgqUG5srAGy98v1YbJcM8MwDMMYBQcXKWAALHWhlGngt8TCTlm/lgSLFwNwJLscxdUNcHeyx7QoX7kx5yDQ2gx4DgWGRJp6igzDMIyNtgqILNst2tVQyvTJXPNsZtwXLF4MwE/H8sQ4Py4AjvbKIc7YLcfw6RANJhiGYRjGBOJFm7kLC4e5i/W3tsjsI0vDYEXqbNll9OMxWUH34nEdejJlquJlholmxlga1FajqanJ1NNgLAhHR0doqZMww3SH33DAKxyoyMSfY4vxU5IjfjqehysTC8XNtiXB4kXP7E8vRUFlAzyc7TE3Vmli2dLcHu/CKdJMH5APOj8/X7TJYJiBQMIlKipKiBiGOQuy+scsAA5+iPDSnfj9rFvx3vY0/O37E9g4bC6cHexgKbB40TP/O5rbVtvFyV75IhQcBxqrZaEgf+4kzfSOKlwCAgLg6upq0f1HGOPR2tqK3Nxc5OXlITw8nL83TPcMXyTEC5J+wQMr/oEfjuYhu6wO608V4JL4EFgKLF70SFNLK345IavqXtzxS6DGu4RNp1sjE82OsRRXkSpcfH2VYG+G6Sf+/v5CwDQ3N8PBwcHU02HMkeh5gL0LUJEFt7IEXDFpKN7YnIIfj+ZalHjhK6ke2ZVSgtKaRvi6OWLmMOXCU1MMHP64PViXYXpBjXEhiwvDDBTVXUQimGG6xdEVGHa+XE/6GcvGSsGy5XQRquotJ8aOxYse+d8R6TK6cGww7O20QFU+8MESoPAk4OIDjL3S1FNkLAQ2+TODgb83TL+Iu1COiT+JCvDRfm5obG7FJqU+mSXA4kVP1De1YP3JLi6jHa8AJWcAz1Dg978C3uGmnSTDMAzDjFgiukwj/xg0FVm4SMmMVTNlLQEWL3qCOnRWNTQj2MsZkyOGyI0pm+S45B+A/wiTzo9hLJHVq1fD29vboJ/x7rvvIiwsTGTqvPLKK3jyyScxfrzswMswVombn4zBJE7/imXj5A33ttPFqKi1DNcRixc9ZxmRgtVqNUBFDlB8WqpbpSEWwzAD45prrsHp06cN9v6VlZW499578eijjyInJwd33nkn/vznP2PTJuXGA8Att9yCSy+91GBzYBiTEKO0qUndgtggD8QFeYhmjVT3xRJg8aIHymoasfFUQWeXUeoWOYZMAFwUSwzDMAMKXnZxcRGZV4YiMzNTfM6yZcsQHBwsAqXd3d0504uxjawjIn070NqCyyYMFQ/XHs6GJcDiRQ98eSALDc2tGBXsibFDveTG1M1yjJ5v0rkxjLH4+uuvMXbsWCE46OK/cOFC1NTI7rXE+++/j5EjR8LZ2RlxcXF48803255LT08XwaZffPEF5s6dK/b55JNPunUbff/995g4caLYJzo6Gk899ZRIDVYL/JHbh+qcODk5ISQkBH/84x+7nS+9N82XoPehz6d5dHQb0fqaNWvEZ9LztGzZotyYMIwlEzwecPIC6iuAvCNYPn6oqGG3P70MWaW1MHe4zss50tKqw3/3ZIj1m2dGyGj/1tZ2y4uqbhlmkNAFua7JNKmvLg52/cpgocJo1113HZ5//nlcdtllqKqqwvbt29s61pIQefzxx/H6669jwoQJOHz4MO644w64ubnh5ptvbnufxx57DC+++KLYh8TJr7/+2ulz6D1vuukmvPrqq5g9ezZSUlKEq4d44okn8M033+Dll1/G559/jtGjR4uCf0ePHu3RJUWxLiSy9u3bJ9apTkpHyIWUkJAg3Esffvih2Obj4zOII8kwZoadPRB5HpD0E5C6FUGzJ2HWMD/sSC7G2sM5+OOC4TBnWLycI5sTC0V1Qi8XB1wSL81uKDwF1BQBDq5A2FRTT5GxcEi4jHq880XcWJx6ejFcHe37JV7I+nH55ZcjIiJCbFOtGqqwIFFCzxNUwv7UqVN45513OomXBx54oG2f7iArCwkc9TVkMXnmmWfwyCOPiM8gN1BQUJAQJFSkjSwwU6d2/xtULUQEiRZ6XVfIhUT7NTQ0dPs8w1g00XMV8bIFmP2gcB2ReKEb8ptnRMLL1XwLHbLb6ByobmjGC+uTxPq1U8Lg4qi0A0jeKMeIWYC9kwlnyDDGIT4+HgsWLBCC5aqrrsJ7772HsrIy8Ry5jshCcttttwkxoC7PPvus2N6RyZMn9/o5ZEV5+umnO70PWXBIPNXW1orPrqurE6KGtq9du7bNpcQwTBdUz0DWXqCpHsvGBSPa3w1FVQ146oeTMGfY8nIOrQDu+/QQEvOr4OfuiFtnRbU/eWZ9ew8JhtGD64YsIKb67P5gZ2eHDRs2YNeuXVi/fj1ee+01/PWvf8XevXvbqgWToJk2bdpZr+sIuZF6o7q6WlhfurPOkJuJXD9JSUnYuHGjmM/dd9+Nf/3rX9i6dSuXy2eYrviNADxCgKpc4ORaOI+/Di9cFY8r39qFbw/nCDGzYGQgzBEWLwOktrEZr2w8g28P5aC4ugHODlq8f/MUBHk5yx3qyoHMPXJ9BIsX5tyhmJP+uG7MYZ6zZs0SC8W3kPuILB8PPvigCJxNTU3FDTfccE6fQYG6JE5iYmJ63IfcPBdffLFY7rnnHhEcfPz4cfHawZbc53L7jFWi0QDT/gBsfALYsgoYcwUmhg/B7bOj8e62VLy04TTOjws4K+5tV0oxovzcEOzlYrKpm/8Z0YxobdXhgc+PiO6bhLerA164Mh7jwzpkQ6T8BuhaAL9YYEik6SbLMEaELCxUG2XRokUitZkeFxUViewigqwllPXj5eWFJUuWiBiSAwcOCNcSiZv+QqLooosuErEsV155pSgsR66kEydOCDcUZRCR0CALD1l8Pv74YyFm1DicwRAZGSkCh0k0UYwM/Q1sxWGshql3AnveBMozgMMfAVNux4q5w7BmVzpO5lbiYEYZJke2B6l/ti8Tf/vuBEYEeuCru2bAzck0MoLFywCg+BYSLo52Wrx0TTwWjQqCo32XsKEzG+Q4/AKTzJFhTIGnpye2bdsmKtRSZg6JBQrQXbp0qXj+9ttvF2KCXDgPP/ywcA9RfAwF6A6ExYsX48cffxRxL88995wQEWRZofcnKK36n//8pxBEJGLoM3744YdzqttCsTOUHk3xOOS22rx5M+bN4yxCxooaNc55GPj5z8DW54HRl2OImw8uHT8UXxzIwn92pOFIVjl2JhejqUUnAnqJmAB32FFBVhOh0am5jFYCnTjpzqiiokKcUPUFFaG7/aMDYv2lq+Nx+cTQs3eiFOkXR8hMo5t/4Mq6zICpr69HWlqayMahGA6GGQj8/WEGRXMj8NYMoCQZGHkxcPV/cSqvChe+ur3b3R+8YATuOz9G741AB3L9ZstLP5kV4yeCl8J9XLsXLkTBCSlcHN3b+0YwDMMwjDlj7whc/h7wnwuAhB+Aw//FqIk3YVqUD/amlcLT2R53z4+Bq6MdRod4YlKE6WsdsXjpJ5QG/fp1E9CrnSpztxzDpskvA8MwDMNYAkMnAuf/H7DxSWDzKmD8jfj3tRPww9FcLB8fggBP87LkcZ2XAUAmMtF0sScydskxYobR5sQwDMMwemHaCuk5oNTp3MMii/aOOdFmJ1wIFi/6gkwyaop0OIsXhmEYxsJwcAZiFsr1xB9hzrB40RdlaUB1PqB1AIZOMvVsGIZhGGbgUMAuweLFRsjY3e43dDBd4R6GYRiGGTRU5oNuwotPA0WnYa6weNEXarBuOGcZMQzDMBaKs5ds2Egk/gBzhcWL3sXLTFPPhGEYhmEGT9xFckz40fbES3p6uugiS8WSqDz3sGHDRMv6xsbGPossUT8SqohJHWOvuOIKFBTIcvxmS1W+LO4DDRDeufEcwzAMw1gUccvk9Sz3EFCRA5sSL4mJiWhtbcU777yDkydP4uWXX8bbb7+Nv/zlL72+7k9/+pMo5/3VV1+JTrC5ubnddpA1K9J3yDFoLOAyxNSzYRirgXoVUcl/a+GWW27BpZde2vaY2gwMtEUCwxgc9wBZr4xI/AnmiMGK1FHzNVpUoqOjRWOzt956Cy+88EK3r6GSwP/5z3/w6aef4vzzzxfbPvzwQ9Hcbc+ePZg+3UzjSdKVEsrcDoBh9Mo111yDCy+8ENbKt99+2+8mj9Rfaf78+aKZpTUJOsZMGXkRkLVHxr1MuxM2HfNC4sTHp+eywgcPHkRTUxMWLlzYbr2KixMdZHfvVmJKukDdaakfQsfF6KQp4iVytvE/m2GsFDoXkMuZulSbE325vgcCnQ89PDz09n4Mo1/XEd2c7wRqS2Gz4iU5ORmvvfYa/vCHP/S4T35+PhwdHc+6qwgMDBTPdceqVatEIyd1CQsLg1GpzAVKUwCNlivrMjbN119/Lbo4k+CgmDW6CampqWl7/v333xdWVGoYSDclb775ZqcYOapg/cUXX2Du3Llin08++aRbt9H333+PiRMnin3IovvUU0+hublZPEd9Zp988klxw+Pk5ISQkBD88Y9/7HHOtO/48eOFe5vOHdT5+uqrrxY3Wl1dPX//+9/F+8XGxortWVlZYl+aH4mQ5cuXi79DhbpaU3drep6OxyOPPCLm15GubiO6GXv00UfFXGj+MTExwhpN70tWF2LIkCHiWNG8GMZg+EQDAaMBXQvw04NAfftvwiLFy2OPPSZ+OL0tFO/SkZycHOFCuuqqq0R7eX2ycuVKcaJRFzqhmCTeJTheppgxjL6hC15jjWmWfjadz8vLw3XXXYff//73SEhIEC4OilVTL9YkRB5//HEhAOj5f/zjH/jb3/6GNWvWnHV+uf/++8U+ixcvPutztm/fjptuuknsc+rUKSE6SODQ+xLffPONiK+j7WfOnMF3330nBFVfN1ZffvmliLVbt24dDh8+jLvvvrvTPps2bRJu7w0bNuDHH38UViGaH1lNaE47d+4UCQZ0nlMtMy+++KKY2wcffIAdO3agtLQUa9eu7XUu9Ld99tlnePXVV8UxoL+D3pfEDP1tBM2Djve///3vfv1vGGbQzH5Q3pifXAu8PRuoKYHFxrw89NBDfSp+uhtSoYBbumOYOXMm3n333V5fFxQUJH745eXlne62KNuInusOujuhxei0NAPHvgD2vCUfs8uIMRRNtcA/Qkzz2X/JBRzd+tyNLqZk/SDBEhERIbZ1FA2UaUgXczX4nrIQVfFx8803t+1HVojeAvTJykICR30NnWueeeYZYdWgz8jMzBTnCrL6UCwJWWCmTp3aZ4bjRx99hKFDh4rHZCFetmyZmK963nFzcxOWI7IMEx9//LFISKBtdMOmxufReYuE26JFi/DKK6+Imyv176GEhV9//bXHeZw+fVqIKBJIquu847lUdbmTG41jXhijMPZKwCsM+Pr3QHkGcOA/wNxHYJHixd/fXyz9gSwuJFwmTZokfthabe+GHtqPTjh0l0Mp0updBp2QZswwM5fMD38EjnzS/jjWeoMKGaYv4uPjsWDBAiFYyCJBF+8rr7xSuDjIdZSSkiJKJ3S0vJLYIVdvRyZPntzr5xw9elRYOVRLi+qeIQFSW1srrLskGuiiT1YQCva9+OKLYW/f86mOBI4qXAg615AwoXOPKl7o71KFizoPsth0jVehedDfSlZgEnTTprWXTqA50N/X1XWkcuTIEdjZ2Qm3GcOYDeHTgAueAr65Ddj/PjDrAcC+/bdgddlGJFzIn0t3YZRdVFRU1PacekKgfeiER3c9dHdEJzI6wZGfmO4yPD09cd9994mTiVllGp36XgoXMqfN/jMw5gogIM7Us2KsFQdXaQEx1Wf3A7roksVg165dWL9+vbBe/PWvf8XevXtFHAnx3nvvdbqYq6/rCFk4eqO6ulpYX7qzzlAMDLlXSHRs3LhRzIfcP//6179E2YX+ZvV0R9d50TzoZovcYV3p781dVyhWiGHMkpGXAO5Bsn8fXf/GXWW94oVOHHRnQktoaGin59Q7D/Ib04mG7phUyF9NFhqyvFDwGt3FdQzsMxkV2cBPfwZaGoHsA3IbKdDz/2rqmTHWDrkl+uG6MTXkPpk1a5ZYKL6FblwoxoNuRijQNTU1FTfccMM5fQYF6tI5gwJZexMBZG2hhQpeUnDw8ePHxWu7gyy75N6mORJUloHOQWpgbk/zoOBicuHQTVZ3BAcHC/E2Z86cNksTZVT2NA+y7pDFh4RWx4xLFdXyQ5YmhjEqZGmZcjuw+Vlg01NAxg5gSCRw3p9MNyVDvTHFxfQVGxMZGXmWCZXunt544w2xmBVN9cDpX9ofU4DuvJWmnBHDmA10kSZ3L7mL6IJOj8naStlFBFlLKOuHrKvkzqEbkwMHDoiaJSRu+guJoosuuki4esgtRSKDXDgnTpzAs88+KwJk6eJOFh6y+FBsCokZNQ6nO+icQzE0ZCGmUgs0T8oi6inOjiARRhYdyjB6+umnxQ1aRkaGqNtC8Tf0mIKK//nPf2L48OFCQL300ksinq+38yHNg4KeKWCXXHH0noWFhWI+9DeQQKSAYXKH0d9FwbwMYxQm3QLseAmoyAIOrgZ8h1uneLHKioMXvwrYOQL2TkD0PLPw+zGMOUDWh23btol4ExIAdKGlgNelS5eK52+//XYhJuiC//DDDws3DFkaBlpdliyxdPEmwfDcc88JVxAJA3p/ggJZSTCQICIRQ59BWUSUqtwTZMUhNxQJAsoIInHUl7WX/hb6eymtmV5bVVUl4mbIDa5aYii5geJeSJCQyCJRctlll3VKw+4KFfGkKuTk7iopKREiTa1KTu+vBizfeuutIjOJxBrDGAV3f+D2TUDWXqC60OTWYI2up+gxC4VOnHR3RyeInsy5DGOuUMBnWlqayMYhiwBjWKjOC6VTU7CsNcDfH8ZWrt/cVZphGIZhGIuCxQvDMAzDMBYFixeGYWzabWQtLiOGsSVYvDAMwzAMY1GweGEYhmEYxqJg8cIwZggVK2OYgWJlyaMM0yNc54VhzAiqoko1QajiK5WZp8dq4z+G6Uu4UGFA+r6cSysEhrEEWLwwjBlBwoVqdFBxMxIwDDMQSLhQdd+uPaMYxtpg8cIwZgZZW6iyKvXC4T42zEAgiwsLF8YWYPHCMGaIavpn8z/DMMzZcMAuwzAMwzAWBYsXhmEYhmEsChYvDMMwDMNYFPbWWueAulMyDMMwDGMZqNft/tQrsjrxUlVVJcawsDBTT4VhGIZhmEFcx728vHrdR6OzspKMVJmU6mN4eHjovbgXqUISRVlZWfD09NTrezPt8HE2DnycjQMfZ+PBx9qyjzPJERIuISEhouaVTVle6A+mIk2GhP5Z/MMwPHycjQMfZ+PAx9l48LG23OPcl8VFhQN2GYZhGIaxKFi8MAzDMAxjUbB4GQBOTk544oknxMgYDj7OxoGPs3Hg42w8+FjbznG2uoBdhmEYhmGsG7a8MAzDMAxjUbB4YRiGYRjGomDxwjAMwzCMRcHihWEYhmEYi4LFSz954403EBkZCWdnZ0ybNg379u0z9ZQsmieffFJUQO64xMXFtT1fX1+Pe+65B76+vnB3d8cVV1yBgoICk87ZUti2bRsuvvhiUaWSjut3333X6XmK0X/88ccRHBwMFxcXLFy4EGfOnOm0T2lpKW644QZRgMrb2xu33XYbqqurjfyXWPZxvuWWW876ji9ZsqTTPnyce2fVqlWYMmWKqJgeEBCASy+9FElJSZ326c+5IjMzE8uWLYOrq6t4n4cffhjNzc1G/mss/1jPmzfvrO/0XXfdZZJjzeKlH3zxxRd48MEHRWrYoUOHEB8fj8WLF6OwsNDUU7NoRo8ejby8vLZlx44dbc/96U9/wg8//ICvvvoKW7duFS0fLr/8cpPO11KoqakR31ES3N3x/PPP49VXX8Xbb7+NvXv3ws3NTXyf6SKgQhfUkydPYsOGDfjxxx/FhfrOO+804l9h+ceZILHS8Tv+2WefdXqej3Pv0G+fhMmePXvEMWpqasKiRYvEse/vuaKlpUVcTBsbG7Fr1y6sWbMGq1evFgKeGdixJu64445O32k6n5jkWFOqNNM7U6dO1d1zzz1tj1taWnQhISG6VatWmXRelswTTzyhi4+P7/a58vJynYODg+6rr75q25aQkEAp/brdu3cbcZaWDx2ztWvXtj1ubW3VBQUF6f71r391Ot5OTk66zz77TDw+deqUeN3+/fvb9vnll190Go1Gl5OTY+S/wDKPM3HzzTfrli9f3uNr+DgPnMLCQnHMtm7d2u9zxc8//6zTarW6/Pz8tn3eeustnaenp66hocEEf4VlHmti7ty5uvvvv1/XE8Y81mx56QNSkAcPHhSm9Y79k+jx7t27TTo3S4dcFWRyj46OFnegZG4k6HiT6u94zMmlFB4ezsf8HElLS0N+fn6nY0u9RMgVqh5bGsmFMXny5LZ9aH/63pOlhuk/W7ZsEabz2NhYrFixAiUlJW3P8XEeOBUVFWL08fHp97mCxrFjxyIwMLBtH7I0UnNBsnox/TvWKp988gn8/PwwZswYrFy5ErW1tW3PGfNYW11jRn1TXFwsTGEd/xkEPU5MTDTZvCwduliSOZFO6mR6fOqppzB79mycOHFCXFwdHR3Fib3rMafnmMGjHr/uvs/qczTSBbcj9vb24iTGx7//kMuI3BdRUVFISUnBX/7yFyxdulSc4O3s7Pg4D5DW1lY88MADmDVrlrhwEv05V9DY3fddfY7p37Emrr/+ekRERIibzmPHjuHRRx8VcTHffvut0Y81ixfGJNBJXGXcuHFCzNCP4ssvvxRBpAxj6Vx77bVt63Q3St/zYcOGCWvMggULTDo3S4TiMejmpmNsHGPcY90xHou+0xT0T99lEuf03TYm7DbqAzKP0V1S1+h1ehwUFGSyeVkbdOc0YsQIJCcni+NK7rry8vJO+/AxP3fU49fb95nGrsHolC1AmTF8/AcPuUfpfELfcYKPc/+59957RUDz5s2bERoa2ra9P+cKGrv7vqvPMf071t1BN51Ex++0sY41i5c+IJPkpEmTsGnTpk4mNXo8Y8YMk87NmqD0UFLvpOTpeDs4OHQ65mSapJgYPubnBrkw6CTS8diSP5piLNRjSyNdDCieQOW3334T33v1ZMUMnOzsbBHzQt9xgo9z31AsNF1M165dK44NfX870p9zBY3Hjx/vJBQpm4bS00eNGmXEv8ayj3V3HDlyRIwdv9NGO9Z6Df+1Uj7//HORjbF69WqRIXDnnXfqvL29O0VUMwPjoYce0m3ZskWXlpam27lzp27hwoU6Pz8/EeFO3HXXXbrw8HDdb7/9pjtw4IBuxowZYmH6pqqqSnf48GGx0E/8pZdeEusZGRni+X/+85/i+/v999/rjh07JjJioqKidHV1dW3vsWTJEt2ECRN0e/fu1e3YsUM3fPhw3XXXXWfCv8qyjjM99+c//1lkvNB3fOPGjbqJEyeK41hfX9/2Hnyce2fFihU6Ly8vca7Iy8trW2pra9v26etc0dzcrBszZoxu0aJFuiNHjujWrVun8/f3161cudJEf5VlHuvk5GTd008/LY4xfafp/BEdHa2bM2eOSY41i5d+8tprr4kfiKOjo0id3rNnj6mnZNFcc801uuDgYHE8hw4dKh7Tj0OFLqR33323bsiQITpXV1fdZZddJn5ITN9s3rxZXEy7LpS6q6ZL/+1vf9MFBgYKUb5gwQJdUlJSp/coKSkRF1F3d3eR5njrrbeKCzLTv+NMJ3w6gdOJm1J5IyIidHfcccdZNzx8nHunu+NLy4cffjigc0V6erpu6dKlOhcXF3GTRDdPTU1NJviLLPdYZ2ZmCqHi4+MjzhsxMTG6hx9+WFdRUWGSY61RJs0wDMMwDGMRcMwLwzAMwzAWBYsXhmEYhmEsChYvDMMwDMNYFCxeGIZhGIaxKFi8MAzDMAxjUbB4YRiGYRjGomDxwjAMwzCMRcHihWEYhmEYi4LFC8MwDMMwFgWLF4ZhGIZhLAoWLwzDMAzDWBQsXhiGYRiGgSXx/+zhVxcaJasOAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 251)\n" + ] } ], "source": [ - "# We will use the fourth sample an testing data\n", - "X_test = X[3]\n", - "mask = np.ones(X.shape[0], dtype=bool)\n", - "mask[3] = False\n", - "# Use this mask to exluce the sample from which we will extract the query\n", - "X_train = X[mask]\n", - "\n", - "q = X_test[:, 20:55]\n", - "plt.plot(q[0])\n", - "plt.show()" + "from aeon.similarity_search.series import MassSNN\n", + "\n", + "series_fit = X[2]\n", + "series_predict = X[3]\n", + "\n", + "length = 50\n", + "snn = MassSNN(length=length, normalize=False).fit(series_fit)\n", + "\n", + "plt.plot(series_fit[0], label=\"series fit\")\n", + "plt.plot(series_predict[0], label=\"series predict\")\n", + "plt.legend()\n", + "plt.show()\n", + "print(series_fit.shape)" ] }, { "cell_type": "markdown", - "id": "fcf10a34-930a-4fce-86f8-4dfa207cad11", + "id": "320ef728-ca92-4fd5-9686-2b9739fcab83", "metadata": {}, "source": [ - "Then, we can use the `QuerySearch` class to search for the top `k` matches of this query in a collection of series. The training data for `QuerySearch` can be seen as the database in which want to search for the query on." + "Then we'll take a subsequence of size `length` in another series of the same class to use in `predict` :" ] }, { "cell_type": "code", "execution_count": 4, - "id": "80eaab8f-204f-439f-84c8-ad3462f1575e", + "id": "98560db4-4289-4072-8662-2cde2ad5c44a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "match 0 : [195 26] with distance 0.1973741999473598 to q\n", - "match 1 : [92 23] with distance 0.20753669049486048 to q\n", - "match 2 : [154 22] with distance 0.21538593730366784 to q\n" + "match 0 : 177 with distance 2.550008590853018\n", + "match 1 : 176 with distance 2.6262080735121316\n", + "match 2 : 31 with distance 2.7331649479116393\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABk0AAAHDCAYAAACJcV3vAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4XGeVN/Cj6TPqvVvVvdtxS3EqqaRBCqGEDXWBsHR2YXdpuyzL7kcnu6ETYGkhIQQC6T2x496brN57Gc2Mpn/Pee/cMpJGkm1N//+eR2RGxb421ujc97SMYDAYJAAAAAAAAAAAAAAAgDSni/cFAAAAAAAAAAAAAAAAJAIkTQAAAAAAAAAAAAAAAJA0AQAAAAAAAAAAAAAAkCBpAgAAAAAAAAAAAAAAgKQJAAAAAAAAAAAAAACABEkTAAAAAAAAAAAAAAAAJE0AAAAAAAAAAAAAAAAkSJoAAAAAAAAAAAAAAAAgaQIAAAAAAAAAAAAAACBB0gQggXzpS1+ijIwMGhoaivelJL0XX3xR/F3+4Q9/iPelAAAAJA3EIosHsQgAAMC5QyyyeBCLAJw/JE0AgP7jP/6DHnvsMUo0//M//0M///nP4/b7u91u+sd//EeqqKggq9VK27Zto2eeeSZu1wMAAJCqEIvMNDk5SV/84hfp+uuvp4KCAnHoEc+4CAAAIJUhFplp7969dP/999Pq1aspMzOTlixZQnfddRedOXMmLtcDEEtImgAAgoMI/u7v/o6++c1v0jve8Q76zne+Q3q9nm688UZ69dVX43ZNAAAAqQixyExcYfuVr3yFTp48SevXr4/LNQAAAKQLxCIzff3rX6dHHnmErr76anEm8oEPfIBefvll2rRpEx07diwu1wQQK4aY/U4AAElkz5499Nvf/pb++7//mz796U+L99177720Zs0a+uxnP0uvv/56vC8RAAAAUlh5eTn19vZSWVkZ7du3j7Zs2RLvSwIAAIA08slPfpJ+/etfk8lkUt53991309q1a+k///M/6Ve/+lVcrw8gmtBpApCAuLKQWx5zcnKosLCQPvaxj9HU1NSMz+MfUJs3bxajo3hsw9ve9jbq7OwM+5ympiZ661vfKm64LRYLVVVVic8bHx8XH+dRDw6Hgx566CHxmN+4w2K+mZi///3v6ctf/jJVVlZSdnY23XHHHeLX5JFWH//4x6mkpISysrLovvvuE+/T+tnPfkZXXXWV+Byz2UyrVq2i//3f/w37nNraWjp+/Di99NJLynVdccUVysfHxsboE5/4hPg8/jX4z8VJjelzTwOBAH31q18VH+c/P1dInD17dt7/D3jmJ3eWcCWFjL/+ve99L+3atWvG3zMAAEAqQSwS/1iEf03+OwMAAEhHiEXiH4tcfPHFYQkTtnTpUjGuizthAVIZOk0AEhAHBvxD72tf+xrt3r2bvvvd79Lo6Cj94he/UD6Hf+D967/+q/jc973vfTQ4OEjf+973aOfOnXTw4EHKy8sjj8dD1113nfjh/NGPflQECN3d3fSXv/xF/HDNzc2lX/7yl+Lrt27dqiQIGhoa5r1GvjYOSv7pn/5J/LDl39toNJJOpxPXysvb+Nq5jbSuro6+8IUvKF/LgQD/kL3lllvIYDDQn//8Z/rwhz8sfpB/5CMfEZ/z7W9/W1wzBxj//M//LN5XWlqqzPi+7LLLxA/p97znPaI1lIOCxx9/nLq6uqioqEj5vbj6ga+Ju0U4ePmv//ovMW7rjTfemPPPx3+Hy5YtEwGaFv89sUOHDlF1dfWC/v8EAABINohF4h+LAAAApDPEIokZiwSDQerv7xfXDpDSggCQML74xS8G+dvylltuCXv/hz/8YfH+w4cPi+dtbW1BvV4f/OpXvxr2eUePHg0aDAbl/QcPHhRf9/DDD8/5+2ZmZgbf/e53L+gaX3jhBfFrrlmzJujxeJT333PPPcGMjIzgDTfcEPb5O3bsCNbU1IS9z+l0zvh1r7vuumB9fX3Y+1avXh28/PLLZ3zuF77wBXENjz766IyPBQKBsOtcuXJl0O12Kx//zne+I97Pf1dz4d/7qquumvH+48ePi69/8MEH5/x6AACAZIRYJHFiEa29e/eKr/nZz3624K8BAABIRohFEjMWkf3yl78UX/uTn/zknL8WIJlgPBdAApKrCmRcWcD++te/iv8++uijovqAqym4kkB+44oJbpV84YUXxOdxxQR76qmnyOl0Luo1cssnV1DItm3bJioOuMJBi9/PrbE+n095H1diyLjKga/98ssvp5aWFqU9di68iIwXot5+++0zPsbtqlrcBqttJ+VKDMa/11xcLpdob52OW1nljwMAAKQqxCLxj0UAAADSGWKRxItFTp06Jf5/2bFjB7373e8+p68FSDZImgAkIP4Br8VtodxK2dbWpszj5B/E/HnFxcVhb9yaOTAwID6P2z95cdePf/xj0ZrJLakPPPDAgn4Az2fJkiVhz+VAZPrIKn4/BzLa3/O1116ja665hjIzM0W7LF/35z//efGxhVxbc3OzWMh+PteZn58v/sutsnPhAGb6zFEmz1DVBjgAAACpBrFI/GMRAACAdIZYJLFikb6+PrrpppvEn0XeAQuQyrDTBCAJTK8S4B+2/L6//e1vs/6g4nmXsm984xtigdmf/vQnevrpp+kf/uEflJmgvATsfEX6ARnp/RzMyD/YeenYihUr6Jvf/KYIJrjigatFvvWtb4k/22Ka73oiKS8vF3NOp+vt7RX/raioWKQrBAAASHyIRWIfiwAAAIAKsUj8YhFO4txwww1iB8wrr7yC8xBIC0iaACQgrpjgaggZLxTjH5q8BE2usOAfbvw5vKx8PmvXrhVv//Iv/0Kvv/46XXLJJfTggw/Sv//7v88afEQTLzfjDg5eTqatdpBbZ7UiXRf/+Y8dOxbV69ywYYO4pomJibBl8PKiNP44AABAqkIsEv9YBAAAIJ0hFkmMWISnbdx888105swZevbZZ2nVqlVR/z0BEgHGcwEkIG4V1fre974n/suZffaWt7xFVAp8+ctfnlEZwM+Hh4fFYz7w187MZBwkcEurdvQUt4NyxUAsyBUO2uvmqoWf/exnMz430nW99a1vpcOHD9Mf//jHqFVt3nHHHeT3++mHP/yh8j7+O+Pr5Hmk09ttAQAAUglikfjHIgAAAOkMsUj8YxE+E7n77rtp165d9PDDD4tdJgDpAp0mAAmotbWVbrnlFrr++uvFD6df/epX9Pa3v10s+ZIrCrga4nOf+5yY53nbbbdRdna2+Dr+gfmBD3yAPv3pT9Pzzz9P999/P915552i8oIDhV/+8pfiBzT/gJVt3rxZVAxwWyi3WXKlBicGouHaa68VbadcqfDBD36QJicn6Uc/+hGVlJQoo6+01/W///u/4s/a2NgoPueqq66iz3zmM2KGJv+5eMEaf97IyIio0uBKEfnv6ULwn59/ff475lmo/Ps/9NBD4u/7Jz/5yQX/+gAAAIkMsUj8YxH2/e9/XxyU9PT0KJWpXV1dykJceXY6AABAqkEsEv9Y5FOf+pT49fg6+dfm/w+03vnOd17w7wGQsIIAkDC++MUvcjlA8MSJE8E77rgjmJ2dHczPzw/ef//9QZfLNePzH3nkkeCll14azMzMFG8rVqwIfuQjHwmePn1afLylpSX4nve8J9jQ0BC0WCzBgoKC4JVXXhl89tlnw36dU6dOBXfu3Bm0Wq3i93/3u98d8RpfeOEF8TkPP/xw2Pt/9rOfiffv3bt31j/T4OCg8r7HH388uG7dOnFNtbW1wa9//evBn/70p+LzWltblc/r6+sL3nTTTeLvgT92+eWXKx8bHh4Wfy+VlZVBk8kUrKqqEtc9NDQ053Xyr8/v5+udD/+df/rTnw6WlZUFzWZzcMuWLcEnn3xy3q8DAABIVohFEisWqampEZ8725v2OgEAAFIFYpHEiUX494oUh+BIGVJdBv9PvBM3AAAAAAAAAAAAAAAA8YadJgAAAAAAAAAAAAAAAEiaAAAAAAAAAAAAAAAASJA0AQAAAAAAAAAAAAAAQNIEAAAAAAAAAAAAAABAgqQJAAAAAAAAAAAAAAAAkiYAAAAAAAAAAAAAAAASA6WYQCBAPT09lJ2dTRkZGfG+HAAAgIQQDAbJbrdTRUUF6XSomYgmxCIAAAAzIRaJHcQiAAAAFxaLpFzShAOD6urqeF8GAABAQurs7KSqqqp4X0ZKQywCAAAQGWKR6EMsAgAAcGGxSMolTbiSQv7D5+TkxPtyAAAAEsLExIS4eZZ/TkL0IBYBAACYCbFI7CAWAQAAuLBYJOWSJnLrKQcGCA4AAADCYURD9CEWAQAAiAyxSPQhFgEAALiwWASDRAEAAAAAAAAAAAAAAJA0AQAAAAAAAAAAAAAAkCBpAgAAAAAAAAAAAAAAgKQJAAAAAAAAAAAAAACABEkTAAAAAAAAAAAAAAAAJE0AAAAAAAAAAAAAAAAkSJoAAAAAAAAAAAAAAAAgaQIAAAAAAAAAAAAAACBB0gQAAAAAAAAAAAAAAABJEwAAAAAAAAAAAAAAAAmSJgAAAAAAAAAAAAAAAERkiPcFAABAEpiYINq7l2hqiqi4mGjzZiK9Pt5XBQAAAKnO7yc6doyovZ3IaiW66CKi/Px4XxUAwLlxOKT7qclJooICoi1biIzGeF8VAABEgKQJAADMraeH6Kc/JfL51PcdPEj03vdKBxly4J+REc+rBAAAgFQTCBD94hdSwkT2xhtEb3sbUUMD0cgIUXY2kckUz6sEAJjb8DDRD39I5Har79u3j+j97ycyGKQCNU4G6zAMBgAgUSBpAgAAcx9WPPJIeMKE9fYS/fu/S4E9f47ZTLR+PdGOHaj+BAAAgMWxa1d4woRxTPKrXxFZLFIHLBdt1NQQbd9OtHw5ijgAILEEg0SPPRaeMGGc9P3616XufS5E466TtWul+ynu7AcAgLhC0gQAACI7e1aqjIqEEyaMbwL27CHav5/oyiuJLrkEhxYAAABw/jjG4NgiEk6YyAeSbW3SW10d0e23E+XkxOwyAQDm7drv7Iz8cU6YMK+X6MABqaOf76X4ngrjkAEA4ga9fwAAEBknQc4FB/3PPkv0m9/M7E4BAAAAWKjmZqLx8XP7mtZWogcfJOrqitZVAQBE936KE8Gvvkr00EMzu1MAACA1kiYvv/wy3XzzzVRRUUEZGRn0GLckzuHFF18Unzf9ra+vL5qXCQAAs+HZuk1N5/e1Z84QPfXUYl8RwDlDLAIAkCYHjTKnk+j//k/tRAGIM8QiaYyTHseOnd/XdnQQPf74Yl8RAAAkQtLE4XDQ+vXr6YEHHjinrzt9+jT19vYqbyUlJVG7RgAAiODwYXX81vk4dEhqMweII8QiAABJaHJSKsA4Xy4X0YkTi3lFAOcNsUgaO36cyOM5/6/n1zF+PQQAgNTaaXLDDTeIt3PFwUBeXl5UrgkAABboQg4rGCdMBgaIKisX64oAzhliEQCAJN2pdiGFG4xHdG3atFhXBHDeEIuksQu9n+JRXbwTZdmyxboiAABI5p0mGzZsoPLycnrTm95Er7322pyf63a7aWJiIuwNAAAuEO8m6e298F+nv38xrgYg5hCLAADEUXf3hf8aGGUESQ6xSApYjNcy3E8BAMRFQiVNOCB48MEH6ZFHHhFv1dXVdMUVV9CBAwcifs3XvvY1ys3NVd74awAA4AINDi7OInccWECSQSwCAJAAuLL6QnG364V2qwDEAWKRFGG3S28XCvdTAABxkREMcr9fDH6jjAz64x//SLfddts5fd3ll19OS5YsoV/+8pcRKyr4TcYVFRwgjI+PU05OzgVfNwBAWtq7l+iJJxb2uWaztORwNjU1RPfdt6iXBueHfz7yTXQ6/3xELAIAkCTdrv/2bwv7XKtV2l8SyUc+QlRcvGiXBhcGsQhikbTC+0h+//uFfa7FQjQ1NfvHioqI7r9/US8NACBdTZxDLJJQnSaz2bp1K53lmbYRmM1m8YfUvgEAwHniPPqLLy48YVJRQfS+981dGRWb3DxA1CAWAQCIkfZ2ov/4j4V9rl5PdMcdRA0NkT8HY20gRSAWSTK7d4uEiVyjzP91eBzk9kmJrbDa5cJCor//e86ozf5rDQ9f2DJ5AABIvEXwi+HQoUOiPRUAAGLglVekpMl8srKIVqwguvZaIqMxcnUUV7yNjRHl50flcgFiAbEIAEAMjIwQ/eY3UqfJXEwmqWjjmmuIqqqIWlqImpsjF2+sWROVywWIJcQiycO7Zzd1/PoBGnGNkMPriPh5GZmZFGxooNq33k21eXlEBQVSgmQ6TrDwuEF+vQMAgNRImkxOToZVQ7S2toof9gUFBaK19HOf+xx1d3fTL37xC/Hxb3/721RXV0erV6+mqakp+vGPf0zPP/88Pf3009G8TAAAYDxz96WX5v+8T3+aKDMzvBqqtFSqDo1U5YmkCcQJYhEAgCTx7LORx9PIrrySaOfO8BikrCzy56PTBBIAYpH0MTbeT8cf+ip5HXPvMtl76xZy5Nmk17Izv6MrPFfQFXw/NVvSRH4tQ9IEACB1kib79u2jKzmwDfnkJz8p/vvud7+bfv7zn1Nvby91dHQoH/d4PPSpT31KBAw2m43WrVtHzz77bNivAQAAUfLGG/NXd+bmSl0m0/GBRaSkCVd5clcKQBwgFgEASJIuk5Mn5/+8ysqZI2z4oDESLFCGBIBYJD3wyK03Hv9fMs+TMPEbdOTMDSVMQl5se5EMHjNt8bnJbDDP/CK8lgEApO4i+FjBcrn4O9Y9Trtbhumtm6qoddhB33/+LL1pVSnddVE1PXawm2wmPd2wFq3FAAmFx2h961vzV3iuXEl0990z33/wINGf/jT71yxZQvSe9yzOdcJ5w8/H2MHfdfyd7rPTK02DdOuGShqwT9G3njlDOxqK6L6La+nPR3rE59yyvkIs5AWABMC71Pbunf/zPvMZqdtVKxCQ9qD4fLN/DZbBJwz8fIwd/F3HXsdIK538l78ns1PaW+Ly+GnU6aHCLJN4meoYcVKWWU+Zy8voDxctJbcvQKvKc5RYpLBzmNY/f5xWFK2gksySmcvg+bUMcQsAQMx+Pib8ThNILuMuL93zo91kn/LR/73RQUN2N9ndPnr+1AA9fqiHdrVI7aY/+7stdOWKaYEAAMTPgQPzJ0zkCs/ZzDUagyvnuKV8rkpQAIBFMuX10zt+/AYNTbrpZ6+1kcvrpxGHh549OUDPneyn15vV0RecVAGAOHM4pOKL+fDM/+kJE6bTEZWUEPVICdEZOBlz440Xfp0AAHNoefXPSsKEa5NP9U2IxEjv+BRxqsPjD9Cok6h1zEN/OdIrPs8fCNK6qjzxeLIgiwLBAJ0YPEG6DB0V2YrUX3xoiOe6EdXXx+cPBwCQhnTxvgBILX872isSJqx1yCESJjI5YcJ+9nqbCCQcmo8DQJxw6dPu3fN/Hh9KrF07+8dKS8lrMdH41DhN+WZJviykehQAYBE8d3JAJExY95hLJExk2oQJJ1Q4FplELAIQX/v2Re4S0dq4MfLHGhrEf3wBn4hFXF6X+P4WDh2SOmoBAKLE5/fS1CsvhBWTcsKEef0BkTCRvWCzKo8PdoyJ1yqPL0DuTDM5eGwXn6WMtqqvYTLcTwEAxBQ6TWBR/fFg94z3mQw6EQRovXxmkDZ85RlxUPHdt22km9ZhXBdA3PAM8fHxuT+HW8G5SpN3mkwzNjVGj59+nILGU1TTJ81jthqstLxoOeVZpMopOnyY6JpriCyWqPwRAADONRY51DlGa7/0NDk9PvrPt6yju7ZUx/AqAUDgZMmePfN/Xl0d0fbtET9sX72UWh/5HxpxqolRi8FCywqXUQEVSHHI1q2LddUAAGFaD71IlsFR5fnQpFqwob2derGmlAay1KQJj+/6/gtnyR8M0s7GYqpaXkGNe86Sw+sgu8dOOWbN6JhTp6R7tlnuxwAAYPGh0wQWTdeok95oHRGPzQYd7agvpMuWFtFTH99Jayp5VidRpkkfVn3B7ag/e601jlcNALRr19wff9ObiD78YaKLLprxIa7mfHDfg9Qy2kI9yysoGBqz6/K56HDfYeq1S63n5PUSnTkTjasHAFBwV8mLpwfEY10G0aWNRbS9voD+9rHLaEttvnh/tlmtGeLijUCQ6CevIhYBiIujR6XxXJE0NhK9/e1E73wnkdk8+3Qvj4MebP4dNRWEv587X4/0H6GuiS6iY8cW+cIBACTcEdL79KPKcz7j0Ha55lqNdGJVNY2/7wrq2VinFHNoP5+C3HUySr0NpeQ3SGcmB3oPUI+9hzz+0K/FnScnTsTuDwYAkObQaQKL5k+H1DnCH72qke6/aqny/I8fvoQmXF5xMLH9a89JgUHIvvZRUeVpM+GfI0DM9fYSdXVF/vhttxFt2BDxw3858xdlHJc7y0JD1UVU3DEkngcpSKeHT5NJb6JCWyFRczPRunWL/2cAAAj5y5Ee8oVijPdfVk+fu3Gl8rHfvH87jbm8orBj61efE7tOZKf77TQ86abCrNkPZQEgSuYaN1NVJSVL5vHk2SdFVXb3ykoq7FI7TWRnR86S8bSZSt3viJh4AQA4X0ebXqXA6ZPKc06YBEKjtUqyzRS8fh3Vr10int9aFRQL4s1GHf34lVaxh03Go82H/UHqbyilitPS2cqZ4TPiNWx54XIqzSqV7qd27Ij5nxEAIB2h0wQWBQcGP3qlJeJiVaNeJw4iirPNdPcs4y/2tamtrAAQQxx4R5KVRbRmTcQP90/2U9NIk/K8d9xFv/BmUP9E+E6T44PHxWxx8XtNn80LALBI7FNeeuCFs8rz2zeFxyIGvY6KssyUbTHSvRfXzPj63S1StywAxIjLFXl5O1vAweCoa5SODhwVj0cq8mlYr6eTvRPUM6bZacJTbfpP0NDxfYtz3QAAIbx7ZPfLv1aeBwJB6uZt7yH5+TbqXaaOItdlZFCm2UAGnY42LZE6YLW6Rl3U21gW9j5eDn9y6CQNOAaI2tsXtgMKAOKG9zu/+6d76DvPNonXBEheKO2HRfGffztJY06veHzrhgqqLpAWmM3mSzevplvWV1DbkIP+6dGjyo4T7j7JshiovigTlZ4AsTLXYcWWLUSGyD8mDvYdVB7zwcTTx/tpknS0fdgpciNluRYl0OfkyjqjlWhgQCyNBwBYbN9+ton6J6Rlz1etKKEVZZo54NN85trldNXyEuq3u+kffiO9lr16dlDEIRaDjuqLs0ShBwDEKQbhmf0r1U6xSA73H1afZGTQ8z6iapdXjAHmY4rKPKvS/br/1d/TtRsvpgyeGQwAcJ5GXCP0Rtcb9Eb3G+L50kF1N2TPuIumQjvUsi0GcqyuIp/ZOOuvw2NDK/Ot5Pb66fHD0uthx4iTcsqyqcYfpJxgMGyM14nBE9Q+1k5Vx9+g8vWXRPlPCQDn6wt/OkavNA3RS2cGRWf7P92wIt6XBOcJSRO4YH861E2/39elzAn/55vmvsHhH/zb6wupvjhTed+PX20Vb0yvy6DvvG0DvXldRZSvHADmPLBoaIj4IX/AL+aEy3rHp8QiQ9LrqTvHRvphB1mMOsqzmZSbi0nPJGW1tCBpAgCL7tkT/fTz19vEYx6/9eVbVs/5+dx1sq2+kBxuHxl0GWKk12/2dIo3xmeqX7t9Lb1tqzROAwBiHIPU1xPp5h6KwAUbB3vVAg4esXfQbCa5p71zxCmSoHIxlr+5iTrGO6gmb2anGQDAQjSPNNPDJx5WxhOz7GG7+C8na7vHXOIxp2brijKpuVJdtvTmZW+mk4MnqXlU6vTnBC4ndrl4lCdzeP0BOtNvF29+p59WDo5TTYGNykPJX8ajCJ979ke0qSKfVhWviuGfHAAWgl8DOGEie/ClZqottOGeIklhPBdckN/s6aCP/+6Q8vzT1y2nkmypunw+/HkNmsSJjIOG7z13NqylHgCigBevjo3N/jE+qCgLbw2X8ffmvp595PSqrecneiaUx235WeK/7aLjRLO/qGcfjex6HiO6AGDRizc++Kv9yr403qs2V8erFo/IWFeVO+P9/DL1vefPoqUeIF5Jk4r5i6d4LNe4W63wPt4zQW15Ugwiax9RYxHbuJMefu674tATAOBcdU100W+O/SYsYZLhD1DWyCSNOjx0qm9Cuc3hjnve2WovyhbPN5VvoosqLqJ3rX8XXVV3Vdivy0WjFZrECJNfy/gAVt6PIitu7qEnm/5GvgDGdAEkmkf2z9wX+99PnQ7bXwTJA50mcM64xax/fIr6Jqbom8+cUd7/9m1L6F3bz61y6+KGImoedCjPuRqD5//xQtafvtZG+9tH6M7N1XTlipJF/TMAwDyHFaWlFNTradg5JMZrcZcIt4T3TfZR90S3GHMhE1VRA1KFFVdJjXNFVVu/aEXliiu524QdOfIM1b+0hpZccWt0/2wAkNJebx4SVeT8GvO1v51SDil4ROjfXx65S242OxoK6UCHmkBeWpJFTQOT4qDiBy+30LHucXrzunK6Ya06kxwAFkF397xJE054jE6NktfvJZfPJWKRXnuviEe8AWk0MOOkKR9YOk0GGsi2Up3bSw6Pjzy+gNi9KHebLNvdRL/Ke4juXPc2VGkDwIKNTY3Rb47+JixRwbuTAl0jNDDqovZhh3J3lG8zieINt81MHpuZbEYbXVN/jfJ1O2t2UnVONT10+CHlfdX5VvFryCaqCoiaukUnLP8+vDye76l4dKjZ6aG8/cfpSN0RkYwBgMTAxVZ/CCVNuGt9Q3UeHewYo2GHhx472I1ukySEpAmck5++2kpf+cuJGe//4M56MafvXGcE37N1Cf1uXydlmQ30o3svoqZ+u7Ln5N9Cv89rZ4dp/79cI0ZpAMAi8fuJ/vznWT/EBxSnjOP02Kv/SW6/tB9gLke7xsWhBFtelk21eVZyvXGGrD6/GNulTZqwzt/+kCo2XEaGPLVdHQBgoX6/r5M++wd1PKC2eOPfb11DOt25xSJ3bK6mn73WJio9//cdm0Ui5iO/PiA+9vUnT4n/Pneqny5fXiyqRgFgEZw8STShdqmG0espWFJC+7r30vOtz4tkyby/XO8EOT1SFae7ppiWDI3RyT7p1+dYpCDTJO5TcgYnqPpEFz1heYIa8hvIbMDuIgCY359P/1mMxpLxucUTR3voXYdaqG1C7b4vzDJRQ3GWWPgud5m8qf5NInGiVZdfRxXZFdRj71Huofa2j4pD1+tXl5FBn0Eju89QgcstlsMzTgDn2YyiSK3uQCt1rT+ApAlAAnnyeJ/YS8QubSyiT127nG574DXxnNcR3HVR9Tnfp0B84RQaFuyp4330b0/MTJh86k3LzithwlZV5NCBf30TvfqPV9Lmmny6aV05GfXhvw4fXhztVlvvAeACeb1Ev/xlxMOKU0On6GXv2QUlTLgV/fUWdWbn2spcqi/LpvaqQuX791DnGA1Nqr+Wd8pBTU//dlH+KACQXl5tGqLPh4ortD6ws56+etu5J0zkLtf9//Imev2frqJLlxbRNatKKMcSnhyZ8gZoX9voBV07AITs30/0u99F/nhpKf2t7Rl6oumJBSVM7FNeerlpUHlu2lxDOVYD2Ux68XzS7ROxyMCENFKn8mQ3Od2TtKtr12L8aQAgxQ07h5U9JKx33EVPHeultxzvoEpNwqQk20yNoYQJsxdmi5FcG8o2zPrrbizbqDzOthjp/ZfW0XsvraOGkizRqdKq2YfCuJNlwiV12GUEg+Td/RpGmgMkCN6r9q+PHVOev3N7jeg02VKbL56fHZikS7/+PP3sNWmXMyQHlMvBgvj8AXFIIf9MvmV9hVi0ekljEd22sfKCfm3uMtEGCzevq6BHD4a36+9qGaaNS6QXGwC4QIcOEbVJC5Nnuynod/STvahqxsd49EXXqFNUOfEbL34fnPSQzy+9MHBQUJoj7TTyXLqMprqGyeLzi/mdzYOTlGc1Kh1jZ/Y+Se2b6kXllV4nHWoAAMyFDwY+98cjYlQF40pMPhjdtCSf7t5SfV7FGzKrOFyVXovMBj3dvrGSHtrVPiMW2bms+AL/FABpbmqK6Kmn5vyUgRwD7eneM+vHeLY/V12LOITjEaeHhuxupeN1ZXkO5TaU0ED3MJVPekT8wdy+ALUMOUT3q9npFvtNXmx7kSbcE3RD4w1k1Buj8IcFgFTQNhZ+3/T8yQFqGBinZcMTSudHpkkv7oO0sUjDmsvosqU3RYxPNpZvpFc7XlV2M/F9kiF0W8SJF9dF9WTvHKJstzqKcGLKq4wbtHX20aBzkEoyMcocIJa4I2xP24joOON1AxxrnOy1izFc7E2rSunaVaXi8Qd3NtDetn3icc/4FH35zyfo8mXFVF8cvoMNEhOSJrAgfJMhvwBc3FBI33nbhgs6nJjLP1y9lA50jNKYy0tjTilA2NU8TB++ojEqvx9A2jk6s0pb1jHeQQG9jhx5mSJJ8tKZAQoEiLbUFdCfD/eEdYxocUKEk6iyxqUlNH7lKsp/8YTYbcIJVz7gKAklVWwTTnqtc5eYD/y2NW+Lwh8SAFIN71LrHJGqztdX5dID79gkRmpFw99f0SCSJNwt1z/hVmIRALhAZ84QeaR7ikj2ZfSEJUleaRoSBRjb6wvpyWO9YtzWbDLNBnEQIX6b7Uvp0pZ+8fXcYeIIje7iOIYXLnPSxJGfSQd6D9CIa4Tevf7dUbu3AYDk1jvZqzx2+/w0OOmmSwfHyGrU07LSbKWzRKs2r5Zqtt895+uKQWeg+zbeR7899luxp2m6VY1F9Pqmerp5b5OSGB53qTtVLJMuahs6i6QJQAwKt/7f06dF0cYn37SM/vmPx+jVs+q0Da18m5H+4/a1yvf+1StL6Bt3rqdfvdEu9puwPx7sFqO7IPEhaQILwjsLZDy6Ipo3FbVFmfTiZ64UL0zbv/acOKzgkRgcKJgMmCgHcEE4A9KrBv78fcZVljyjlxMYXOk0UZZHQb2OjnSM0pHQ9z7PBeckynQ8+qIoy0yXLS0WVVYyvnnIvXQpNZzsoGOhX4NvMOSkidHtI+OUV4wCaxltofr8+hj84QEgVWKRixuLopYwYeW5Vnr6E5eLx9d88yXRUs+jQnnMj7ZDFgAufPk7xyJ2j50mPZPi7ZiFu12l+f+neu10sEMajXem3z5rLMIHl1x5fUljIVmMUpm232Sg3uUVVHG6h3KsRjrcKR1UDNrdVJ5rEUkTbRU5xyMri1dG7Y8NAMmr167eOw2ECinK7S7R7TpbwoTva5Y0bibKzJz3186z5NF7N76XWsdaqXW0VSRy5RHJvEft8hvW0JrxcTrTPCRiEE4gy+ciGUGis2f30Naaixf1zwsA4Z4+0U8PvCCN6HvyWJ/oXp0u12qk5aXZ9Ik3LaPibHVfGp+dvnVzFV22tEicb3IY8+iBbvrENcuw3yQJ4K4PFuRYz3jYzoJY4BeXHfWF9NihHlGpfqRrjC6qxeJogAsyNCTtNOGDA8cgnRk+Q96A2vLNulZJo7mO96g7T+RDCh7LxwkSXqjKb/LhxKwyMihQnkfW/knxPWyf8tEbrcNiDN+K0myyTbho3Gqi3V27kTQBgHkd07wmxSoWYRyLcNKEXwf3to7QlStQ0Qlw3nrULhLGXR6csPD4pe6TkcoCcuaqC5OPa+5B5FiER9jsXFokijbybabQeL2Z7AVZSlKFk5184MjxyButI9RNBspaXSXG8TGORZA0AYDp/AG/GF0s48RrpsdLOW4vZWaHJ0WyTdninibfmk+0ffuCfw8eD7iscJl4e1PDm+inB39KXRNdysd5N0pOj1S4IY/o4tc/NtLVRN0T3VSZc2Ej0wEgsof3dSqP5YSJSa+jz924glaV54g9RIWZpjmLy7l4lM9RXjozSN1jLqr//F9F5/xP/m6L8v0MiQdl+7Agx7vVg4rVFTE8qGiQlkmzZ08OxOz3BUj1Ck9uAT8+eHxGwoTHWQwtKRKjLGYbxXXt6jJaU5krRlvMljDh9vCr665WnrtyM8MqLXhMFy8wHHJI88TF7zl8hvb37MciQwCY0/Fu9fB0TdxiEfXgBADOo9u1Tx1Bw8UbR/qPKAkTHg16YqeauBhzesTBwnRXryihdVV5IhaZLWGSb8kXe0q0yRdtLMIyhux0QpOIbR9vp9c6sFQZAMINOYfIF1BHYg3Yp6jM7lJGAmoTJpsrNksJk6uuItq06bx+P12Gju5Zcw+tKVmjvI9fy3It6t4l3uck4/uph088TC7vzNdKALhw/D3/wunBGe//lzevpPsuqaNt9YUi6bGQaTzccaJ1uGuc/m93x6JeLywuJE1gQUuO5CqvyjyrqC6PlUuXFpPcsfbjV1qU9nwAOE89PeT1e+nsyNkZH2pdXUUna0rEAcXeNvV7bX1Vnmg15YVmDREWlhl1Rlpful7MBL+s5jKqyK4Q73fmWEUQMb11nfcVaUdj/PnMn8VbIDiz1RUAQNv1mm0xUHWBNaadJlxNxn69p4NeizDDGADmMTiodLty9fb0WGTvrReR22gQxRU9Yy7a0zoSlihdUZZDVy4vEcveZ6PP0IuDRt4RsK1qG5XWrlY+xhWgBs0YjEKnm1pDS+Jlz7Q8Q4+cfERcGwDA9H0mbIBH/E26uKE+LGkrkiVs/XqinTtFx/35yjRl0h2r7qDqnGrx3JVroyyLOgqMd83yrkjG91M8YvmJpieQ9AVYJF5/QJyJ7G8fpe8/f1bpdL1tQwW9dVMV/fONK+ld22vO+dfl5fAl04o4nj+FgqxEhvFcMK/WYYeyPHF1xew3KdHCSZq/v7yB/ufFZvIFgvTR3xykJ/7hMjEvEADOQ0+P6DLRVkzxwQQvVf2NNYvOjocnLQz6DLq4sVAZX6HFgfyq4lWiu4Rbwi0GaV8J21C2gXrsPaIyimfurqrIES3lbUMOJWmSp0maMJ7huyR3ifhaAIDpVV7yQnY+PI3lwub8TJOYT/z1J0+JbrmP/+4Q/fUfLptRuQ4AC99nMuAYUOb2s4NWC/3o1VZyhMbPzBjZ21AYVtUt4xiE4wYRi2RXktWoJlRX12yhQdPvyODxiZFeHIvwqNDWIQeZ/QEaG7CLpc7aGOfYwDGqyqmi7VULH60DAOmxz4R3iYw4PaLTxGbUhxWFZZlChWU1536QGgkXov366K/F/RTvcasptInXL9Y8OEmZ5lwx7lh+7VpasJTWl61ftN8fIN38YX8XffPp09Q7MSVi/uk+fs0ysYP5fPGkjt98YDvtah6mLz1+XJxxcrcJ3+eUZKtnKZA40GkC8zqmGYcRyxniMj6o2LQkTzzuGnXR5x49gioKgPPh95O7u4OaR6UlZowPCzpGnKKaoi9rZuX2yrKcGQkTg85Ab1vzNnrvpvfSjuod1FDQEJYwYZvKN1GBVZ1LzrPEy3IsyrzOQDBIA82DdLhrjHx+NVHzcvvL+P4GgDnHhK6tin0s8sGd9WKBozzP/JO/PyQ6cQHg3PeZcMfr6eHTyrs5BnnB4Zs1YcKWlWTNSJhwV8lbVr6FPrzlw3Rx9cXUWNAYljBha8vWkaGkTHnOS5VLcyzijeU5pmh38wgd6hwTh6GyVzteRecrAAhNI03KYzG6OBCksknXjNckHs8lVEjd9ouBkyCcEJbvp7hCXZ76wZXvTf2TZBlzSPOPeYRoy7NhhXEAsHBOj08kMnrGZ0+YXLm8+IISJjKe3PHO7TWiOFz2nWeb6GevtYqxpJBYkDSBeR3t0swQj0PSxKjX0Xfv2Ug5Fikw+evRPjEeAwDOTdfZA7Sr7ZWw9/HhH7ObjWTMz6SlJVm0oTpPHA6+eV0FXb68OOzzeezWfRvuoxVFK+b8vTixctuK2yiQn0dBTUF4vk3tEpvoGaOXTvSJhazahbBcfQoAoHVEE4vEuuuV6XQZ9M27NijdJa80DdEPX2mJ+XUAJLWeHrK77fRa52th7+aDyO7MUCLDaqTGYikWubSxiG5aWy7Gg2oV2YroXevfRetK1827G2Dd6qvIpA8fLSzHIgVONx3sHKUXTw+Ejd2b9EyGLWEGgPTUNtYm7k1k/RNTlO3xUZbHF5Y04SSuKCAzGIhKShbt9+cuuxuX3khei4l8JoN4Xl+USWaDdIzHXfx9/XYyTUljD+0eO50cPLlovz9AOuFzRv6ekifeXLe6lN69o4Y+e/1y+t49G+n7bz+/PUWRXLVSfa34vzc66Mt/PiHeILEgaQJzsk956ZED0k0Dd5/Go7qTVeXb6L/vVFtNv/XMGVR4ApwDXg74wsu/CHsfd3TISZPebCvdvqmSblpXQVcsL6HNNQXUWJJFBp36Y4IXvH9g8wfEKK6F4FFbH774Y+QOHYSwXJuR5ByKLhgUM8WbBiYjVnQBAEx5/fTbvWqxBB+mxgMnTL599wZlTPn3nmsS3XoAsAAeD/l6e8QImdlikb5sqUvk5vUV9Ob1UixyUW0BLS3NFqO1ZNxVcv/W+6k2r3ZBv21B9TLaUrEl7H05VqMYq1PsVMeDcSyi7XRtGkYsApDO+PWAOzdkfPbABRyVE06li16Wbc6WxoaWl3OVxaJeB7/WXVV/tdgTyfj1kO/R5Pup3nEXGYbUblztRAEAWLjf7+tUHnPR9g/edRF9+dY19OErGkVsMtuI0AuxoSpP7FvTevp4X1jnK8QfkiYwp5+82kqjTqly4db1FcponXi4bnUZXbVCysYOTXrodL89btcCkGy4qtPS1ac8d3n8YrmZO/RDOViRTzmWyLuCtlZupUuWXHLOvy/fRKxcsVN5zkkY3g8gWzk0LtpQRzWtqDioAAAtrr7ivUvs6hUlVFN44a3x5+uSxiK6Zb00eoP3vR3uVDtgAGAOnZ3UPdoetseEE6L8vd2XoSOHyUhluRYqnONeg3eXcAHHOSksJKPeKBbEyzhhUphlouVD46QLBJSxHLzgWYYCDoD01j7eHtZxdrJvQtyvLBmbpGyLgWyaJfC55txFH82ldemSSymnsl55nm0xUkmO9FrJuV7DMXVfVOtoK0YdA5yDrlEnPfR6G+0JTb/gpKS8HiDaXey3bwwvRuV7i31tancbxB+SJhDRqMNDP36lVTw26DLEbpF4k+eJs9ebh+N6LQDJwh/w08GeA5TXN6YcDBzpGhM7gmTZK8pnfB2Pv9hYtpHete5dojWcx1ycj7La1WFfy3M8l5VmU3muhTb1jJDVqy6IZ50TnTTlkw5IASC98Y6DB144qzz/1LXLKd4uW6qOLXy9WR3pAwCRBVtbqXeyNyxhwnvNeK9aZ66UCF1dMbOjvdBaSOtL19M9a+6hW5ffSnpd+J61eRVL36/5lnwxOlRWW5hJm/Kt9A6d2i2mjUX6Jvtowq1WbwNAetF2xfH+kN0t0kFmzZiDqgtsUmdJSGlW6aIvgdfi32vruhvD3pdrVYvQ8k71kGVSuncad4/T6NRoVK4DINUMTEzRDd9+hb74+HHlfXddVBX2/R1Nn7l+Of3o3ovoH69XR5+/cBqjyhMJkiYQ0TMn+pWZfndvqY5rZafs4gY1abILBxUAC3Jm+AzRwAAZ3VLXWB8vN9N83GA2Ut5ydV54XV4dffHyL4rxF7euuFUser8Q5pVrqCqnSnmu12WIJYY86sbi89P2zkFqG5Za3RkvX20eQWs5ABC9fGaQRhxSJxp3eKyKwz6T6XY0FCqPUcABsDBDx/eFFUTwbgC5GLojN1NUTi8vzVYLLrLKRCzy0W0fpdtX3k7Li5af3yFGYSFRfr5ItvDY0OmxyLV9I2TwS90mrcNq0oSdHVETtgCQXjrG1bGg3aMuMbY8y+2lBgqEdeeXZpaSzSgtaqfahY0NPB+21eup2KYWbcj7Xtmkw021B6ViV7nbBADm9/D+LrKHzjwZT9a5Y3N1zH5/s0Ev9rbds7WadKEQ54XTgzH7/WF+SJpARPva1bawWzcsbIdBtC0rzVLm/r3RMkK+0E0OAER2oFftMuFKqeHQASSPp1hZlkO1m6pJZzSEtYAvanVFfT3VrNgeFugzq1FPJr2O1vWNUveIg7ya72ccVAAA29euVkveuiE6Yy/OFS+HrC2UDkgOdYyJcYcAMAePhwaaDilPA8GgWP7OONxYfWkj3bujhkyh5cZsZ83OxYlF+Ne4RBovygUcnIzRyvb5aYtTSub0TUyFfT8jFgFI312QAw612rtnXOrOrx53hI0QzKAMdb9SaSmRLZQ8iYayMspcuU55yrtNMk3S/ZvT46eCs/2k90iHv8cH1ap5AJgd7yn63d5OJVR48J2b6YVPXy4KKmItz2aiTUvyxeOzA5PUOaIWlEJ8IWkCEe1rkw4qjPoMWhenBfDT8c3T9lCFJ2eEj/egbR5gLna3Xdz054eSJlyxzYkTxvO8eTG7vaJA+fxlhcsuuLNkhowM0l93Pa0qXkXVOdVh3895NiNZfX4qmnCGjQvTVncBQPrSzvXdXCPdTCQCudvE4w/Qfk1iBwBmcrc00bDmAHLM6SWvX4pFjAVZVFLLe0fU29Ka3BpaWbRy8S5g40bRccKjQpcXLqf6fHU3ANvsC+1VC5IYFyZrH2vHbgCANMSjgrV6xlzKaC7eZyIrsBaQ1WiNepeJLP/muyioySXnWNVrsTvclDsg7VlrGW0RIwYBILLdrcPKz/xLG4vo+jVlous1Xq4M7W9mLzeh2yRRIGkCsxqedFNLaK7vmspcshjPcX5wFF2sGYvx1HEEAwBz4UWmwWCAcvulpMmAXR2NUZItVUqNlkuLzrhS6vYVt0fnQurrKaOuThxUGHVqMJJrNSo3IfINCRt2DdOkZzI61wIASYErvuXiCF7KyFVYiWKHZlwoYhGAufUe3SVGb8q0sYihsVQq8QzhTpA7V9+5uB2vej3RFVeIh/zrcgGHxWBRPrzSpV5PtyYWcXgdNOLCQlaAdNM53hlWjd47Lr1GNDpcZNZ0xOVaNIWldXVRv67c2uXkbFSTMzmh+yg24vRQfq90v8cePv4wefyhhDAAzPD7UJcJu+ui2I3kWsj4372hpfQQf0iawKy0VZMXJVBlJ9u5tFi5t/rhyy10oAMVngCRtI21UeaYk4xunxhnZ5+S2rY5EZplNpDfoCN7YbYYnXXv+nvVaqloWLZM6i6xSEkaJldz1IxNhiVNGLpNANLboc4x8oU64xItFrmkgSvjpWDkV2+006tN2LMGEMlE09GwA8hxl7RjjUd0GpaqlZWZxkx6/6b3U5Ypa/EvYulSJTnDsQgvhpeV+nyU65YOF6fHIu3j7Yt/LQCQ0LT3IDxKkEcIZ3q8tCTgD0vo5ppDSRN+X5SWwE9nW71Becy7VXjcMhue9JD3TF9YAdrzrc/H5JoAkg1P3nju1IBSxHntanW/a7ysqeBidemIfm9o6g/EH5ImMG/SZHONOronEVQX2OjDV0jjg/gw5aO/PkgTU9LNFwCoeKQEj5aQW7UnQgkTxmOxOOifKM6loF5Hd6y6Q4ytiKpQ27q2Kovnl3PFVtWEkwbGnOQLqJWoSJoApLf97Yk5movxTPNPXbtcPObpPR//3SFlRwMAaPh85OpoUZ7yeF154hWPCJ0oV7+371p9l1jYHhUWC1F5ufJUG4sYdDpa75GSJkMON0151b0miEUA0os/4Kdue7fyvCfUZVI54QwbzcX3TdnmbOlJSQmRNYqFZxqV66QdTUyvy6Ca0I41NtTUT65xdcTgG11v4DUMYBYneyeUYlKeZMML2eONz0U2VOcpXa/TizggPpA0gXkXrybaQQX7xDXLlKpTfkH52l9PxvuSABLOuHtcvOX2y0kTb1hlkvic0lzKMedQSaZa6Rk1ZWXi0EKpytJ0m5j8ASqZcFL/hHroyAkfAEhf2ljkotrEKuBgH7isnnYuKxaPOWHyxcexeBVgOld7M7mm7MpzuyYWMeZl0lSWNCaLx2VV50Z5PIZm58D0WGSdJ3RdQaLe0NJnhgNHgPTCu0B8AbXQTD64rBrnpIk6DivblK0WnC1ZErPrW1p3EekKi8LGLcuLq7mT79SuVmUXU5CC9MSZJ7CbCWCaNzTjr7bVJc49xlbN/c5ezV5HiB8kTWAGbj892iUdstYW2qg4tPcgkRj0Ovr22zZQpknKCP9mTye9fAbLkgCmj+ZicqeJ3aXeAMiVUuMluWKXyaLODo9EpxMHFjx2Q5+hVnPkhK5l+l4Tvmlx+1C5DZCO+Ab/YIc0m7sw0yTikUSj02XQN+5cT/k26RDliSO99NejvfG+LICEMnByX9jzCU0sEqgpVEZmLcldEv2OV83OAU7SmPTqnqTlDpfUNiYKstQdJ7zTxO5Wkz4AkNqmL1DvC3Wa1Ey6yBY6e5ixzySGSRO+Z1t20fVhz+uLMsW4Q2ZsG6QToX1wrN/Rr9wTAoBkT+uw8nhrnbpLJN60RWJImiQGJE1ghrYhB3n80oic1ZXhVViJpCrfRp+7caXy/D/QbQIQhjs1zA43WSanxNgrh0c6qOCA36jXUVCM58qhmtzYzOAVaqUEjfZGQ67aahi2U/eomjTh6qjD/Ydjd20AkDC460zee8CxSEwSu+eBC0u+dMtq5flXnziJik4AjbEzR5THgWCQJt2hfSYGHXmr1MMBLuCIOj7Y5AKO0EGjttukNBCgYod0ONqjiUXYwb6D0b82AEgIAw5pzwHz+AKiU9/gD1Cd26PsD2HcqR+PpAkrW7Mt7P6NC0rrijPF48YRO73SNCh2NsjODJ+J6fUBJDLuyNoT6jThfSYrykJj9hLAppp80oVeZva2Yq9JIkDSBGY43a9WUy0vTZwXkNm8fesSWlMpBSyn+uxKJQgASJ0mOXKXiWafiZykmCzIIr9RH5uDimlVntqDCl54xguVK+1OGusfJ2coucNeaX8lrEUeANIxFonCUuhFdMv6CtpeX6CMDD07MBnvSwJIDMEguVqblKcOt4/kczweE8ojQmUxKeAwm4kqKpSn03esbbZLuwD6JqaUpC3b1bkLna8AaZg0GXZI3/cVdidlhRY0y7hzXsjNld5iqa5O3L9pEzf5NpN4y5vyUM6Yg/on1HOR1rHW2F4fQAJrGpikUaf0M35LbYHoHE8UWWYDra7IVe6FzmjuhyA+kDSBGc70aQ4qEijrOht+gbtqRany/PXmobheD0CiGJ8ap9GpUXUJvObmXx6HxYcVHPAXWGM4x5MXJeblhR1UcLVnYaY0BrC+f5z2a/YY2D12OtB7IHbXBwAJGItoqjkTEL+GXbNSG4uoLf8A6czV00FT9pFZR3PZsszkyJcOHXlMVnm2uqQ9qpYvVx7mWaSFq7JL3G6lI0Y7FsPlc9Ge7j2xuT4ASJykyaRH/LdqwklWzWguHjNs1pvj0mUiZGVRRlUVLS9UX8+YPC50+dAEdY06w0aOOb3qc4B09oZmNFci7TOR3bpBLe747nNq4QnEB5ImkNSdJuziBnUG4WtncVABwFpGW8R/s0Yd4r8Ts3Sa8D4TruyM6dgb/r1WrhSdJtpZ4hV5VvGh5cPjdLgrvNsESROA9JNssciOsFgEBRwArPfsobDn45ol8IHqAgrqYrjPRLZSHe2bacwkq8GqfigjQKWhhfC8E0BbcMKxCEbvAaQ2h8dBDq9078SGJqVEKo/us5mkojOWacpU75/ikTRhK1eK69Amf3Os0j3esqEJ6hgJHzPYOopuEwD2uubMcFuoUzyRvH3bEirKks5Jnjjai26TOEPSBGY40z+pjMypLki8xavTbVySJ66V7Woewg0NgKYN2zrhJJ8/IEZiiOdGvRhBwexF2bEdzSVbuVLcaFTnVCvv4msqzbbQkjEHmVweOtIldcjI1VF8EwMA6UO+QeAzicaSxB7PxVaW5SgVnrtbhsNmiQOkq/6OE2EzxO2hpAkvLPaXqwd9MY1FioqIiovFQ45FOGGj3Qtwk84vXW8wSAc7x5SPcfcuvwFAenSZsGGH1GlS4HSHLYHnhKtCM/IvpkIJYO3EAItRT2aDjoqdU+TuHRX3gNML6gDSGcfnu1qGlekb8iisRMIJ2g/ubBCP+Wjzx6/gezeekDSBMFNeP7UNS4eTS0uySZ9A8/0iMRv0YhYh6xmforZhtJ5CeuPEIQfGeo+PzE5PWJcJLztjAb2OpjLNVJ9fH/sLrK4WbeUV2RVk1EnXw8pzLcSvOLVjk2Et5axroiv21wkAccGHq3LSpKbAFjYSI5HHhcrdJvyae7xHTfwCpKux7mblsd3tEzf/ciziylMPHevypH1nMaPpNinNKiWLwaI83+7zkQhGOPaYFot0jnfG7hoBIP5JEx7PFQyKDjSjXj064w4PRaHaaRpT/PuWlFC+JT/s3XK3Sc2wXZyNyA73HyaPX0oCAaQr7iKVd5Zx3J6o553v2L5EJEDZ7hZ1XCjEHpImEIaXl8o3NMuSYBzGbGMxXj4zGNdrAYi3QecgTXomyWqX2rK1y0zlpIkr20o5ltzY7jOZNqJLr9NTVU6V8m5zqAuGu036Jtzi4FSGpAlA+ugcddKUN5CEsUiR8hixCKQ73q3mG+xXn2t3q1mN5MyRxmJxwiJm+0xkq1YpD3ksmLbztWh0kkpDY0yHJj3k1VRqIxYBSJ+kCY8K5rdsj49yNAmTsE6TzEwii5p0jbmVK8V+SoPOMONej++n2kPFsMwX8NFLbS/F5TIBEsVrmh3IlzSqcXsidpusq5K6YDpGnMqoQIg9JE0gzOmwxauJPw5DtnOp1GbPHnjhrNL+D5COdnftFv+1TcxMmmRbpaCaDyu4yySm+0y0GqSW03xreHVUttlAS8Ydop18yKEGB690vILRewBpGYskT9LkMs3N149eaaVh3OBAGtvT9YYYESrT7gcRnSY5NmU0V8z2mchKS6XDzhBtLKLzB2htUOrQ5bijf0Kt1N7bs5cCQTWJAgCpvwS+wBU+mius0yReXSayxkZxLxe21ySU9K0ed9CRzjGa0JyL7OraRcNO7ICF9KXdO3ixptgpEW1aosYmBzvUcaEQW1GNUF9++WW6+eabqaKiQryYP/bYY/N+zYsvvkibNm0is9lMjY2N9POf/zyalwhzLF5NpurO1RU5dPWKEvF4wO6mbzx9Jt6XBBBzbp+bHj35qLI43TruJI8vIMbusSyzgQw66WXflWuL/TgMrZoa0XHC1VHaw5Isi0HcnGS5vdSraSlnvz32W7SVwzlDLJLcSZNkikVqizLptg0VSrL6q389Ge9LAog5r99Lf2v6G+1tepEMofiDCyEmNbvVMjJN5DVLRRxxGRPKBSO16h4VXgavrdRePaUmPKfHIj8/9HOa8oW/D2A+iEUSH3fpd9u7ledy4UO+0x02JpRHCyvjheOdNOF9KkZj2OQAsScyx0JWn5/yJ5z04mm185WTvnJxHUC64TORvW3SqKuyHAs1FGvG7CXo7mbZgQ7sVEvJpInD4aD169fTAw88sKDPb21tpZtuuomuvPJKOnToEH384x+n973vffTUU09F8zIhhKupnjmhttGvKs+hZMHB55dvXS1uxNhDu9qobQiLoyG9Din+7+j/0ZH+I8r7uNNEO49bbtfWdprEjdUqKj05YcKJExkndhh3m/RNO6g4PXyanm99PuaXCskNsUjyeVoTi3BRRDL555tWicWS7NED3XSsG7tNIH34A35R4PBG9xuicEPWPSZ1voZ1mYQ6XeNWwKFJmvB9RI5Zfa1Z6piKmDTpGO+gJ88+GaOLhFSBWCTxHe47HNZJ1jwonSUUuDyUaTKEdZkonfrxTpro9URLllBpZmlY4re6wCp2sPD9VMtg+K7I44PHxWs1QLr5yautyvhfHs0Vt4kbC7QxrNMESZOUTJrccMMN9O///u90++23L+jzH3zwQaqrq6NvfOMbtHLlSrr//vvpjjvuoG9961vRvEwI2dM6Qq2hRMPFDYVUkhPH+ZznoSrfRh+6Qhr5w1N8/nSoJ96XBBAzr3W+Jm7ktdx946LziukyMqgkx6x8zFZWTdnmOFdwhw4stAcVmWaDOEfhObwneyeoc0TqlpHt6d4j5qQDLBRikeTCC9SPhhINaytzqb44eUaFsuJsM33iTcuU548dVKtWAVId/4xuHm0OGxHqcPuUIgj++c4V0LxXTf75X2QrinvSRL4WWfm4g2yhu2Q+cOR54m6fP+xwddCBvUWwcIhFEr94VO7UZ+NOr9ivxqr8Pso062d9rYh70oTV1oo9kTzqUMaTBZYU2MT9FDvZq3bwOr1OahlticulAsQL7/f57nNN4jHvfr/vkvAYIBFxvFSZZ1WWwb90ZpDGnJi6kdY7TXbt2kXXXHNN2Puuu+468f5I3G43TUxMhL3B+fnd3k7l8d1b1IWIyeSOzepS6ccPd2MHAqQF/ne+v2e/8pwPKJ443E2tp/vCKo7MBjXgX7H8Eoq70IFFrllaciYndzJNBqoZnxTZz0cOdNFfj/YqH+cKsGMDx+JxtZAmEIvE1+81schdSRqL3L6xkox6qXrtL0d6KRBALALpYV/PPuWxfniSzg7Y6VjPOMnfAXzzz2Nu5CXwm8o3xa/Ss6gobK+J9iBUHwjSBk0l9qMHuuhPB3uU+4ogBcM6ewEWG2KR2OLCs2HXcFgBh2yVSRf2OlVsK064pAmrzK6kbJNaEFeQaaJau5N0gYB4LfYF1CI03EtBuuBdx5/9w2G67tsvkztUiHnfJXW0plI9f0iWEV3v/ukeetsPd5Mf9xXpmzTp6+ujUl7Mp8HP+Qe+y6W2dWt97Wtfo9zcXOWtujo5b7DjjReE/fVYr9I2f93qMkpGFXlW2lpboLTUnuhFsAipb9A5SHaPWkH0RuswdXePkzk0S5y7N3hup8xoy6aN9QmQNAntNQmr2OJl8BYD5bs8VDYpve63DTvCqioQ6EM0IRaJ76zhx0Jdohajjm5ZL+0HSTZ5NhPtXCodqvRNTNGe0PxkgFTGXaDaQ8e+1iEamvSI7m9mMepFnC7vVePRnNurtsfrcmfsNZkei2y1q+NsWM+4iwZD3btyLILiLIgWxCKxdWrolPI4EAwqZwj6YJDqNCdm/LqldOrza0i+Oj4n3ntNOLGzJHeJ8m69LoMqTDqqHXOIw+L2YfU17eTQSbELEyDV/XJ3O/1+X5cylouLN7Qd4Ylua526r4id6rOLsx5I06TJ+fjc5z5H4+Pjyltnp1qhCAv3wqkB5YWEl5jyjU2yujm0hJX9+bBaoQ6QqtrH2sOed464xDJ1rokqz7XQyrLssAqpxqXbyGgwUdzxXpOyMjIbzGIJq4yDmcJME60aUKu8zvSrSaHeyV4acg7F/HIBIkEssjh2NQ+LBersxjXlYXuYks0tYbEIxoVC6msfD49F/ANq4RIXbvB+Iu4mZdxpcn3j9WQxxHkUcJ26T4X3AWirtLc7nLR62njA05pYZHRqlHrs+N6GxIFY5Py1jbUpj3mc4KTbJx6vsxnJzLN8QsqzytUvys0VyYq4470mXIjGjS+2QtJnqOc4hVlmWj0wJh6f6VNfvzx+D73U/lIcLhYg9vcWsnu2LqE/fGiHskM1GfAEoLsuUqfpMJxxpnHSpKysjPr71eWfjJ/n5OSQlQ/XZmE2m8XHtW9wfvtMZNesCq9qSTY3rikTlRXs9/s6lQMYgHQ4qODRXKNODxU63aLDpKYwkwx69aW+JLOESmtWUcJYvVr8pyJbPWDk611amk3vztJTRqiK83TfZNiXHR84HuMLhXSBWCR+3kihWOSalaWiW4bxjrUBe/gyaYBUo92r5nX7yBCapW816qm2KFMsJZZV1a2n1cXSz/+4WrmSSKdelzYWsfj8dE++iT64s0FJ9pzpnwzrLkHnK0QLYpHYmfJNUd+kOtK4a1Tt5FlrUhMmugwdlWaVJtZormn3U3yNxZnq+DAuPlk5OklGv5/ODk6GnYvs7tqN3UyQ0nz+AO1vH1WKN/7j9jVUnjv762ei4vHq/3XHejrxletEPMX+dqyXvH513B6kUdJkx44d9Nxzz4W975lnnhHvh9gcVBh0GbS5JgHaTC8AV1TcuFaqAhlxeOhbz5yJ9yUBRA3fvGs7TXrGpEC/xDElxlxpcUXn8sLliRXkr12rHFRMH42R6/XRRX6p0mvY4abhSbWNnGeJYywGRANikfjRtptPb0dPNpy0fssmqTKMK1a//rfT8b4kgKjSxiKOrlGxF4RNj0U8mRa6bd1d8dtlosU7TRoalKd8IJpvUe+DSpv7xQ4WXqgsz0bvDS21l5MmvGsNYLEhFoltwpf3FMm6Q/dSbKlmt1GeJU90pCkS6X6KE8AGg1IgJ+OEb6XNQEuH7WIPwstn1CQJv3b97ezfcD8FKet4zwQ5PdL38Ja6gsSIO86TzWRQCsrGnF569SymbqRE0mRycpIOHTok3lhra6t43NHRobSQ3nvvvcrn//3f/z21tLTQZz/7WTp16hT9z//8D/3+97+nT3ziE9G8zLQ3NOmmswNSFTcvROJvyGT3TzesUDKxv9jVRiex2wRSFI+H0O4zkQP90kkX5UwbbbO1civpdXoxEithcGt7TY24rvWl66nAGn5QutPjDpvhKeO56Z0TGDsA80MskhycHh8d7ZJG8jUUZ1JRlpmS3afetIxyQgfGjxzoov3t2G0CqcnhcYj9ajJ3p/pvfXoscvWOd8R/LJfWunXKQ67SXlu6lkozpYOJgu5hyvAHaFmpOrbrtCYW4fjr7MjZGF8wJCPEIsmR8A0EgkoBWqbJQKUONUmaa562ODqR7qcsFqJl0p4GTvya9WoMVZlvpTXjUudf8+AktQ1Jj1nLaIvYbwKQivZqdgomezEWu3mdOh7w8dAOSEjypMm+ffto48aN4o198pOfFI+/8IUviOe9vb1KoMDq6uroiSeeEFUU69evp2984xv04x//mK677rpoXmba26sZh7GtPvlfTOSdCPdf1Sgec6HbFx8/jioKSPlxGErSJBikYucUZWvmdZZllYnDgIQL8jUHFpw4WVe6TixZlK0I+JWqEE5+8nJG2YHeA3G4WEg2iEWSw4H2MfKFKtO31SdQ9eYFdr5++rrlyvMv/Om4qPQESPVYxN+j3ltoO02KbEWkr6ikhLJ8OZFJ3fPGsdLK4pWiqlzvC1DmmIMaSnjUqRSLnOq3i5EfsoO9B+Ny2ZBcEIskxz6TAbtbGXvDyYbsEXU8ML8mhEnQ+ym+b6rNq1XebdDp6BKzWmH/4plB8gXU17Cnzj4lRpQBpPLY3621yX/OefnyYmXfI4/ompjCGoJYiGpLwRVXXDHnQfXPf/7zWb/m4EEEn/F6MdmWAhlY2fsuq6OH93VS27BT7Gx5/HAP3bohwW7UAC5Q80iz8tjt84vOsbwpD+XrMsJ2mSjVUTwHOdFmHIcqo7RLFptGmsTjQruLGpaU09kRpxhx0z7spLqiTGWvyQ2NN4hF8gCRIBZJvtFcqRSLvH3rEvrNnk6R9OUxAb/Z00Hv3C4tbAVIFVytLOPEoKFf6vA2G3RiHndYLFKaYPuKOGHCC+FPn54Ri4xNjVH28CRNFmbT0uJsOtk3QW6vn5oHHbS8TOo+OT18WnTaZJqk2ARgNohFEhMvRO+dVJcqd485lcc1WUayTk4pydRss9pxJnYhlahjsBJCY6N0XYGAKJbrsfco0wiWZASp3makFqeXxpweOtgxRltCh8jj7nF69OSjdM+ae5J6fBGAFneN7Qt1muTZjLS0RC3KTFYcT922oYIe2tVOU94A/flwD71jG+4p0mqnCcQ3acK70y9KgQys9kXlizerSya/+sRJGnV44npNAIvJ6/eKm3VZ54iLm0xC+0zCx2HkWnLVqqhEC4izs6W3EJ7FK3fF6PwB2p6l/llO9Ejje5g34KXjg1gID5B6BRyp0WnCOHn9lVvVWOS/nzpN/ROo6ITUwXPxTwyeUJ73jDqpaFIabzM9FhGV2olWnc3K1ZEX2q4Y3l+QNSwdOq6qUAtOjmtiEf7z8541AEg+3RPdYXuJujVL4Fdq3s97F5WOfVZUpOwQSRh8PaFEDic/lhYuVT7Ez99cZFFuAbmglJMnsjPDZ+jVjldjf80AUXKid4JGnVInxkU1BaTjw84UcOdF1crj3+/riuu1pAskTdLclNdPp/ukarDlZTmUM+3mJtlduaKErllZorTb/sNvD2I0BqQM7sbgCinZmX7pxr50ckpUVMhMehNZDVbpSaJVeM5yYGHUG8VhhWxV0K/sWmoecpArtNBNXsIKAMlfDSbvM6nKt1JZbgLtO1gEXM15+0ap03Xc5aUP/Wo/eXxYHg2pM9rG4VVn5He1j5DNK/2c1sYi+gw9ZWYVEBUkYIFWRcWMd/HIUC7iyA4lTfi1SR6L0THqpAmXOhYDsQhAchpwDIQ975uQdilajHqqmvJEHs2VBPdTnOjhjjlZrdtL6yqlPwePIPvLkV5lFBl7se1FGnFh9xqkhj8fUXd+XLmimFIF76BeVS4VcRzuHAvbswbRgaRJmmvqnxQ7P5j8zZdq/u22NVSUJc0qfqVpiL71zJl4XxLAotDepHPQ2xJa7Fc55VZu7FmhtVBtt07ECs9ZDiy0QX7uyCStLM9WDlebBtTgoHW0VYzFAIDk1THiJFfokDVVY5F/ffMqsW+NHegYo68+oVbmA6RKLMKFSfbWIfFYl5FB+TZ1V0iBtYB0idjtGqHTRLw7q5yyRh1iGTzHUcrrU1AtVGHd9m4adY3G6moBYJH0O/qVx06PT7yxoiwzZY86whIQYZLkfqouv050zDHumru4sVB5XeaRzs+fVJNG/qBf7DcBSHY8CvEvh6Wxe3pdBt2wZvaf8cnqrouqlMePH+6O67WkAyRN0txpTcC/IjSbN9WU51rp+2/fJF4w2YMvNdNZzaErQDJy+9yilVrWOuRQFpOuooA4rJBxpWTCB/nTDiy4ostikKrNeQnj8lL19elMv7qUMUjBsLEgAJB80iEWKcg00YPv3EwmgxR6/2J3u6gQA0hm/oCfTg6eVJ53jjopb9yhdJnIsbcSiyRqdTaPCM2aOe88y5RF2Tor2calPQfyHhOmTZowjAsFSD7aTpPhSbWzhAsuszRL4Pm1IEyS3E/xtAF5KXz2kF2ML795fTkZQ3sveU9T54i6x4XHPp8dORvjiwZYXAc7x6h7TBq1d0ljkYjBU8lN6yrEagXGHWNz7cuCC4ekSZqTR3NNvxFINdvrC+kjVzaKx75AkL785xN4cYGkxgkTX8CnPg+1Zhr8AarRq4cURp1RbSnX64mKi5MiyOeKTjnZkzk6SSWZJsoLdc/wkkaHW/2z46ACILlpW8t5VGiqWluVS5+9brl4zCHIl/58XHTPASSr5tFmcvlcYbFIoVMabyN3ecujubjTJGEPGiN0m3AsUppVqozoyrOZqCTbooz91e4EwIgugOTCZwHapAl3XsiKMk1KspTvpfgtTKImgPm6eBm8RmV2JeVb8sVSe4PbSwWZZrp8mXo/+OLpgbBYZE/3npheMsBik7tM2JvXpVaXCSvONovzTdY+7KRj3eqZLiw+JE3S3Kmwg4rUTZqwD13eoIzG4DFdL54ZjPclAZw37c252+en1mGpsrMkGKQci7qYsDizWB3NlZcnJU6SpMpTTprofQHKnHDRslC3CR82Ng2o1V/tY+006VGfA0AyJ01mVnunkndfXEuNJdKf8WDHGP3lqHpjB5Bsjg+oRQu+QICaBycpy+MVHSZ5VjVpwnvKeEeIWJ6cqGbZa8KKbcWUPazGGMtKs2btNumb7MM+AIAkMjY1FrYbUttpUmrRk94njQ3NNGWq91LMYpm1My0hGI0zCuTEaMHiVaKDX+6eWV2RQ6U5UgJ42OGhYz3SXjnGnSY80QAgGXEC8Imj0j4Toz6DrludwMUaF+DN69SY5S+a/S2w+JA0SXPyQQW30JdkmymVWU16+scbVijPXzgVvvgNIFlM+abCWqdbBh1ijjhbk20KC+zDRnPlJHAFN1/ztCrPTGMm2Yw26fGYg5ZpErtNmoMKHtHVMd4Rw4sFgMV0KtT1yqOragszKZXxSIx/vmml8hyxCCQr7nY9NXRKed4x7CS3L0BZbp+Yma/TjObiAg6lQCJRRdhrYjVaqdKtJoDkAo7p40LlIg4ASM4l8NpOk3LNvRTfj4RJ5PupCK9lRr2RVhStoMzQnha+V9R2m7SF9mKyQDAw4+8GIFnsbRuh/gnpe5n/jWv3vKaS69eUKSNQn0ABVlQhaZLGRh0e0VrOeF9AWAVFirp8qRocnOxFGxskJz6k4GV9s1U6rsw0hs2xzTXnql+YyIcVrEST4AkF9FzhycyTU1SYaVICn76JKQpoRuwhuAdITlNeP7UNSyMwGouzyBCas53KLm4oJEPoRgexCCQrUY3sd8+IRTK9PvHzWsZLiMVorkSPQ6bFIFo1QTWWyrEaxWgMNuRwkze0T276UmkASGy9k71ho7q440L+HueOuYj7TBL5dWyO1zIe11yXUaDZ+2pR9qwNarps5M45gGTEOz5m68ZINbynZUttvnjcNeqiwdC5Liy+1L8zhbRevDpdrs1IFblSK+qpXjv2mkDS4X+z+3v2hx04tocW+GWZDVSlTuYSXSZhydBED/J5fNg0PNKDWSanpCRKlnRQwZ01Y071hqZ/EgcVAMmIx/nInXLpEovwItaGYukQ5uzApBixCJBstLGIz8+juRxk9PspMxAQ8bb257guQ0dkNhOZEngZa26u1PU6i9KAlTI0M//lWISC4SN9UMABkDz3Uy+2vag8n5jyKQnQokwzmTX7ing8V5gkvJ+SLTOoCRW+r+I/K7NPecU9pQwJYEhGHIv87ZiUNDEbdHTNqgTdPbRIVpXnzujah8WHpEka084Q1469SXUry6WWWrvbJ7KyAMmEl553TnQqz/nATV7et7Q0mywuNZEgd2koEnX+7hxBvjyei5MmrEgzRnBY00aPgwqA5JS+sYj0Z/UFguJ1HCCZNA03UdNIk/K8dcghDhwzPT5R/aibbUxooh808s63CNdozTCRza12lGhjEe1IHxRwACSHvT17w55rv48Ls0xkcrpn3IsokjhpUuwJH1UU6bUMnSaQjHa1DNNQqJDhqhUloqA0la0I3UtMv5+CxYWkSZpyuH30273qwWu6VHdqkybsBMZiQBLx+r30dPPTYdUUb7SOhC0nlYN8s95MOeac5AryucpzGl4cyzcrFof05yrKUqtU5aCI8fJV7TJHAEh8XNX4q93qDoDlaRqLnOzFjQ4kD553/+TZJ5Xn3CnGBxUs2xM+msuoM4qRMNIHk+D7e5Y4RK7Irgyo1eZFWbMfNDq8Dpr0IAkKkMgm3BP0TPMzynMuPjvcORb2/W12SfcUvDydRwyGSfTXsgivY4zvp6wG68yuOR7RZQ8vRsNEDkgm/H38/54+kxajuWY7wz2FpEnUIGmShvgH4Md/d0iZo11XlEnrqiJXJKT2QQWSJpBcXSYc6Mv2t4+Kdmq2pMBGZTkWJcifMZoriSujeAGj6DQJBqkwwkEFL4MfdAzG5DIBYHF8/o9H6UCHdFDBr1/b6wopXSAWgWR1ZvgMDbukJAk70jVGI6FdADVGXdjSVWU0VzLEIPNUaFf41WpzbQGHdjwXQ+crQGI7MXiCvAG1M//lpkHqCI06thj1VFNoU4rQZuwzSYbOfZuNyDj78usMp5MqzNLoY1aUbZr1vooL0bggDSBZPHqwW0l+Li3JomtXp/ZoLra0hPdSS4/RaRI9SJqkoYOdY/TMCal9PNtioB/du5mMabB4dfpIDIaDCkgmJwdPhnWL7W2XgllOjly+rFj81xRKmpRnl8/8BRL9wIJnnXOgPw3PEtb7/GR0+8RhjEGfMWM8F8NBBUDyODtgp0cPdIvHVqOefvzui8hq0lO6QNIEkvnAUcb7eOQuE3ZZaVZYwUZFdkXyxCDzjbXxqoeLNpOBbKHXKz5o1FZkY0QXQGLrnpBiD8bFZ4dCB606XQbdvK5CJE7k+6lC6yzFHIn+WsavwXMlgKd3zYVesgft4Qlg7DWBZMGxyNefPKU8/+LNq9PifJPvm2oLpe/nM/12ZUckLK7U/5cEM5zRZCE/dvVSaixJ8B/8i6ymMFMc0DCMxIBkwTfkHeMdyvP2YSf5/NIPxnWVuUoHBldG8SHFjPm7yRDkR2gp504Txt0mPCe9MLS0cGzKqyxtZAjuAZLH6T51hM0HdtbTmsrI4yRSUXG2WRnxw0kTjMGAZKGNRXg3oMcn/RxeUZZDFZo7y9LMUso2ZydXDDLHQWOhJ3xEj/z96/L6yelRFyijgAMgsY1OjSqP5S45tr4yjyrzpdFVvAie7z9Ks2apVk+G17I5RnSV+9XxXHywnG+VEsLDDreyJ5Nhrwkki4MdY8p4uWtWltClS9VuqnQZ0eX2Baht2BHvy0lJSJqkIbn9VF4cnW70ugxlbjr/XUyExhsBJLJB5yC5fC7lec+Y+rixRGoT13t8ZPIFqS6vbuYvYLFEbNVO9AMLuTXe7JgKH4sRDB+LgepOgGSNRRJ81EWUO19HnV7qm5Be3wAS2fjUOI1NjUWMRbTLk+vz65PvoHGOpEn+tG/RSONCUcABkNhGXWrSZNylngMUKPcXQTK53LS6ZLU6XjCZxnPN81pW4lVfu7QJYK5SH3Wq91VH+4+KHVYAiW6vZsfrdavLKJ1o90FiRFd0IGmS5gcVvAchHa2rUqsv/ny4J67XArAQ7WPqsmTWHTqo4M6LslyLeMyt5LzLxKifJTmSDIcVEYJ8XsLINy1ir8k8BxWo1gZIDohFwmORPx1CLAKJr318WiwyqiZNKvLUvWq8y8RsMKdUdbZ50hW23yDSXhPuNMFBI0Bi4l0dDq9j1qSJvI/J4PWTNWiYvWufxwgbpi2GT7YEsDsjLBlUmmOedZk0d+TwDiuARLenTU2abEuj/YgMy+CjD0mTNNQZOqjgcZeVeWp7Zjq5c3O18vinr7aGtaICJPpBhdPjUyqBSnLMysxOPqzIt+TP/gskw2FFhCCf56Mry+B5rI0maSK34jKn10nj7vEYXSgALEYsks5Jkzs0schDr7eFjRsESPTRXPzvdSD0M7gg0yT2fMh7AAqsBckZh8yRNKHxcSq1lcyozmby3wPzBXw06BiM3jUCwKJ0mURKmnDHXCreT8n0E/awfVMrynPEPhd2tHs8LBbZ3bU7yhcKcGF8/gAdaB9VEoDVBel1vsmjUWUnenAOEg1ImqRxdWdFrpVMhvT8J7C2Kpe21ko3dM2DDnrl7FC8LwlgwftMtJWd2sQnB/l5lrzkDvIjHFhwdaeSNMlWDyqmj7TRLncEgMSPRbItBuWgIt3UFWXS1SukQ9je8Sl66jjmh0PydL3yv9lAqLuzIhSLyOO5cs25yTnShseYRrpOn48qdOqfqzDLJEb+sv7psYgdsQhAou8z0SZNuEAr22xQ9plYjdaUvJ8SxsZobcla5WmW2UDLQjtup7z+sGr1trE2JIEhoZ3onSBHaK/YltoC8b2cTrjwLMcivXYd6hzH1I0oSM8T8zTG+zt4djZLtyzsdO+5VN378PPXWuN6LQBz4fnhE+6JGaO5pidNinzmmeMwUqQyipfJWhzSYYzFqKd8m0kZz+ULqBVROKgASI6qMPl1jIP9dLvB0XpvWCzSFtdrAZgLH5zxfrXZCjiq8qxirxqPtTHqjDPH2iTLXrV5KrSrAmpCxaDTKd0m3P3Lh40yFHAAJH6nCR8uykkTPnSUuy04+cujgVPxfkoYH6cNZRvIrFfvGTcuUT//UMdY2MHr8cHj0btOgAu0R7PPZFvdLF2uKY5ft9ZX5ynnIlzQAosLSZM0g3EYqjetKqWK0C6Il5uGaNShziMGSNTRXBzEKt/HGWp1J6vMUNszk7LCc44gP8ecQ9YJJ+lCLeNlORZlaeGQXf3exUEFQOLjgJ6/d1m6xyI7GgppaYn0+ryvfTQsKQ6QSJ5ufjq8A3ZE3QtQkW9VRnPlWnJnJkKT5aBxngrtiqnwxI8ci7CBCXVEV9dEV5QuDgAWq9PE7QuQxyfdV2g7XnncsdWQ5J0mfN+n18/+MbudzB4/bSrfpLyrNMdC5aFzkWGHm4Y15yInBk9E/3oBztMrTerEmC1pmDRh66vU85PDnWNxvZZUhKRJmkHSRMUt9TetKxeP+fDm6RMYiwGJSTua63S/XQlkS7MtoutCVk5zJEaSJcjnalTrzBsV3mli9BPl94RmloYC++ljMXrsPVjACpDgsARexYfLN69XZ4v/7WhvXK8HYDbNI83UNNKkPG8bdijVjNz5mWMxKkvgZx3NlSwxCCuIfOiS1dIl4hFZmSYW0Y4L5WXwvHAaABK300S7zyRHkzRJiU4TTlznR9jLwk6fpm1V2yiDK/BClpWqf7am/smw1zOM6IJE7TJ56Yz0b7Mk26yMmUs3cqcJO9SFpMliQ9IkjQ8qqtP8oILduFZKmrAnjiJpAok9Q5wX872qqabgCmWtEq80siqpg3xWUzPjXWLWsCmbitoHZ1R3ag8qvAEvAnuABIdYZK5YBEkTSCxciPBU81PKcy40evnMzFjEYncl9xL4OWIQWUZLC1VbSsKqs2eLRYIUpF47vpcBErnTZLYl8CzT4SWTPsI9VYq8ltHJk2IP5pLcJcq7lmoOnJsG1L0mDN0mkGgCgSB95S/q6LhPvGmZMmIv3ayvUotV0Gmy+JA0STOo7gy3oTpP2Qnx+tkhGnOiKgwSy6RnkoZdw+Lx/vZRmnT7lAXCtYVqtSNXPmba1dEQ51I5mXBWroy416Soc4gyAkEqyjYpgVHftNmd2GsCkNgQi4RrLMmi5aEKz4MdY9SDEV2QQA72HhSVxrLDXWNihwfjGFoeL2e1T4lDuEyTGpskZQxSVyd1vc7G56OGIbWbNd9mJJNBp8Qi2j0AiEUAEgt/f/KeyPmSJgUuqVhrVnN1byTJ/ZTQ3EzkdtPqktXKu7IsBmXs84jDQ8OT6n3lvp596J6DhPKHA110rFva+bqyPIfuuqia0lVJjkVZO3C0a1wZgQyLA0mTNNMxot6I46BCCohuWFMmHvsCQXr8cE+8LwkgzPjUuBh1YZ/y0r52adGZLiODLltaHPZ5ddZyynBFOGgzmYgyZznESFTLl/NWs1n3mhjdPsrrGxMLWIs1C1jdPn/YiC4ASFxImszdbfLHgzhshcTg9rnp+dbnlecuj5/eaJEKOXiqy85lxcrhotXuovr8+uQ/aOQ9AMuWRfxwVY86tob/7HLnq9PjUwpbGGIRgMQrRPMFfHMnTYJBypua48AxmV7L5koA+/1ETU20smhl2IguOQnOTvRKB9LM7rHTqx2vRvd6ARaIf9b+91OnledfePMqMXo/nckjuhwePzUPqnEKXDgkTdKMvNMk06Sngsw5Rvmkkds2ViqPv/vc2bAbHoB4q8yppE/s+AQ5hq8jk2cHmQKNtKO2dsb3b30wf+4AP1LFVCLiAL++ftakCSvolpJHpTlS0oRpl8EPOdWxIQCQuLEI39/IVY3p7pYNFcrL9IMvNYsqT4B4e73zdXJ41YXvu1qGxPJktqosJ2w8VSMVKD+nk7rTZJ4K7aLuUXGwKtP+HQxqOn4RiwAk7miuSEkTs9NDNjJFXq7OhWjJlADmQrRImppEF3/YiK7SbKWTn7sKuWhP+/OAi/kA4u2BF84qP2+vX102Y2R5OlqnWQZ/okdNeMKFQ9IkjfAPvfZh6cantigzcttpmllTmStebNnQpJt+8FJzvC8JIMzZATs9edROpmAdVVoupV/f8yX6zMWfobtX303bq7ZTRXYFLQlkpUZV1BwHFma9mQw6A9nGpQPXwkw1aTKiGa2HnSYAiYt3M53uk2ZlV+XblNE26Y5HLt6xqUo8tk/56LvPqUu3AeKFYwx+02XoxH3E0W7pwMyo19EljUXK5xl1RlqpV7ulkj4OaWwkMqrjerSMvgAVB9Rkr7aIRR5bJidNeB8MACTeEnge1SUfulqMevEmd8xZjdbUSP7ON6JrSErsrilZo7wry2yg9ZXS4avPH6TXm0OdhWIqhy+s8xAgHnic/k9ebRWPTXodff7GOf6Np5FlpepZEDpNFhfuVNPIoc4xksfbbVqSZDcvUfZPN6wgo15KIv3olRbqHcc8cUgcjx9Wl4l+6IoGyrUZxczwlcUr6frG6+kDmz9ARW4p2E+ZIL9KOjzU4kSvzWgjs0PaYZKvOajQVmVzVazLi+9hgER0vGdCqVTftEStigKiT1+3nKyhg5tf7W6nFtz0QJzx4SHHGR/Z8hGyT5YoDRYbl+RRptmgfN6lxZvJ6osw0sZsJrIl2Rg+TpiUlkb8cHnANmvSRBuL8AEjqrIBErPTZNTppSmvNNq3PLQLgFnsLrIYLKmR/I1wP6UYl16f1pWuE7sxZdvqC8gcikVO9k7QwIS6O/JI/xHqm+yL5hUDzOmp433kCd1HvH3bElpSmGTxRZQ0FKtJk7MDuH9YTEiapJF9bWqgsLkmCX/oRxF33rxre614POUN0P976ky8LwlAqYR64og0F5ubw27doI6TCzMijaxKmaRJbu6s7+akicUhVYYV2DTVndNG2WAsBkBi2temvlYhFgnHY34+sLNe2bP2n387Fe9LAhAKbYU00H8RZfqvJn0wn1aUqWO4sk3ZtCNzeeqMCJXlRU7qlnjV+CNfE4uMONRRNgyxCEBidpr0jqnFVeW5ameJdWKOpEky3k/xTkuDmuAOMzlJ5POR2WCmK+uuVN7NXTfbatU/68tNg+J+lAUpSM+1PBf96waI4C9H1GLS2zVj9tNdVb5VdN4wdJosLiRN0siBDiRN5vIPVzcq80wfPdhFx0IjCADi6XS/nZoHpbF6W2oLwmZnLzhpkoyVUbzXZJblhZw0MXh84i3TrFdG+0yf/4+DCoBkiEWS8AAiyj54eT2VZEujB58+0U+75aXbAHHeQ8Qd68ZgGW0pvovu23SnSJawq+quItOEuvckJQ4a5yjeYEVedXQXxyE80kYeFSofLjLEIgCJ2WnSM652T1TkqfcbYjyXIYXGc3HCeo7XMrnbZFP5JirNLA1bKi2fi3SNuqh1SH2NPztylibc2JkAscf3+/LIOE4SrKua4992mjHodWLUL+PvV58f40EXC5ImacIfCNLBjjFleTK/yEC4PJuJPnpVo3jM9zuYJw7x5PL46ZvPnKHrv/2K8r43r5tjXvho+HLDpA/y2SxBPidNmHlySozrkis8J9xesStBNujEXhOARMOHiXLXKx8yLi+TDl1BZTMZ6NPXqlX733kWsQjED4/A+N5zTXTZf72gvO/m9ZW0sXwjfXTbR+mGxhtofdn61Ot2ZXMcNOZPG4kqj+hye/3kCo38YUiaACQOTgzsqNpBK4pW0NCEhTLISLqMDCrTFKTlOgOk1+lTpwiNLSBpwnurrmu8Tnm3XpdBl2r2VmkLOLjbpHkEO2AhdgKBoNg7vOnfnhHnmuymdeXY0TxNQ4mUNPH6g9Q5ilHliwVJkzRxqm+CJt0+pcsELzCzu3dHLeXbpKqK/e2jYdViALH0y91tYYk7/pa9fk3Z7J/s8xFNRKj40enmDpaTNGmijOiSZ4kHZy5gBYDEwtWKA6HFq7wTgW/KYaa3bq6iyjypuOVg56hygwgQa48c6KJvPBM+svbGtVIBh0lvom1V28Rh25yFG8l60DjHeK7cqfDvyUh7TVDAAZA4NpRtEImB6+reQu6xayjHdyftKL2P/n7LB+itK98quuaWZaiJgnRIAMtJE1afX08N+Q3K88aSLCrMlDpfBybdYcVp2GsCsfTXY730tWkja9+8tiJu15OoGrHXJCqQNEkTB9oxDmMhuMV+TaUUWAw7PDQYOtwBiDW5M0z2lo1VVJIdYTTX2JjUHhXppp8TJykS5HPLfAZlkGUytAw+bK+JOkscSROAxMPFCDKMCY2Mk0nrq3OVPWvasRgAsXRQM06PXbuqVBn/ECbNOk3Mk+EjfPIjJE0QiwAk7phQvp/YXltBVTlVtLZ0Le0s2UJ11ghd/WYzkdWaekkTvofUuGTJJcpjLrItyw3dewaJhibVc5F+R38ULhRgYeciFzcU0ppKdbcaSBpK1KQJ9posniQ9SYNzdVSzn2PTksiVU0C0slx9AT7Ri3mdEB9NmuqA5z51Of2/O9dF/uTh4dQ7rIhQ5ckBPHebmB1Tc1Z38rJHX0DqrgOARIxFkDSZy0rNou2TiEUgAWKRv3z0UvrBuzbP/CQu2pgrDknWTpM5DhozJiaoyKZWpBfYZo9FnF6neAOAJIhF5rufStZJHXN0zWk7TVhdXh0ZderOpuIs9bVtyO4J6zTBRA6IRyzy6/dvo1+9dxsm58yiAZ0mUYGkSZpoG3KGtVpCZCvL1RnrJ3vtcb0WSE/c/twWqixeUZYtfgDOGRh0daVm0iTCgQUnTWaM5wotYNXO2x12YoEyQCKRX9fY0lLEIgst4EDSBOKBD8TO9ks33TwujjuxZ41F+NBtMsLNuV5PlJOk1aAWi/Q2m6kpKtGrfy5tLDLqVLte2aADI7oAkiIWSbP7qdmSJqK7JEsdB12ULY3nYoOaTpMp3xSWwUPMnO2XzuRyLAbaUV9IOoz3nVV9sdoJjE6TxYOkSZpoG5aCg6IsE2Vb1OoBmAmdJhBv7cMO8oVm2C8oydnZGflj5XMsj0/mpEloPFeuVVriyIY1wTzrGO+IwUUCwLnGImaDjkojjRsEYWUFYhGIL94/ZA/tQ5wzFpkvBknWEaHzHDaW+dVRPTaTXoz4lWMRbQV258Qcfz8AEHNtw2ox6ZICaVdiOt5PzTaei5VmlSqPi7I0SZNpY8ux1wRigfcy94xPKbEIOkwis5kMyk5ELnrBTsTFkcRRLCyU0+NTFq/WFs4yhxjCcFW/SS99a6C6E+KhKVTZyZaWqJ1Ps/L7ibq7I398yRJKWhHaybXjuXj2f3GoCopHYjhCBzysZbQlRhcKAPPhwL1zxKXEIqgSm1tFrkVU1DHEIhD/WOQ8kybJHIPMc9hY5FWL0PgQpzTHohzwjLvUbhPEIgCJV5wm/5y1GPXSOznR2dGRmq9l3O0X6aB5YmLGXkxtpwn//cgFt0PTEsLYawKx0DxwDuciQGtD+5m56OVED+4fFgOSJmk2mqsGSZN5GfU6paKuZXCSprz+eF8SpPHcznlH2PT1EXnDR0EobLbkbifPypJGe0yTa8klk8tDGf6AeF6tqRLrHFVf71rHWikQlD4HAOKrZ8xFntD3bE2hprITZsWHsHLna/+EO2xPAkAsNA3YFxaLzHXQWF1NqZo0KQ/YxCLp2SrW20ecYV2vXn+EOA0AYmrc6VVG6IWdi/CYKnuEsdx8L1JRQUnLYJDuqSIV300br1iaqXaasOJQtwmPj9YmhNFpAgl3LgJ0yVJ139orZzEedDEgaZJG1RSsFgcVCyIfVHBH25nQDEWAWNEu7pp3PNdcFZ58WJHMLax87bPMQrcYLGTTW5W9JtqDig5Nyz3P2+2198boYgFgLu2a783aIhRwLAT2mkDCxyJuN1F/f+omTeZYoMxjQsuz1ZE92likU/N65wv4MC4UIMHGhLLaonMYzcWJh2R2DiO6eDyXNiFcnK1ZBq8Zhdxj78EyeIhpLNKA3czzurRRTZq8dnYorteSKpA0SbO5nTioOPdl8Ic7Z876BIhFRQWPnpp3pF6qtpLPc2CRb81X9ppwez3/XbHOEWdYAI+xGAAJeFCBrtcFWaVJmhxCLAJxrO5sLI4wEoMXJ0c6NONO10jVzSly0FifX6885VGh8qgf7noNIBYBSOhYJKzTJE3vp2ZLmpj0JiqwFsy616RvXE2ajE2NISEMUXdW2/WKpMm8uEhe3muyt20UU3MWAZImaaBtCAcV52prnRooPHJgjn0RAFGY+988OKn80JMXi0bEBxapWuE5x4FFviWfrHZpP4JBr1OCA57fKbfds+bR5hhdKAAsPBZB1+tCXFSbrzx+9EAXKjohLtWdJdlmyrWp+zvSKgaZ66BxZCQsaaLLyKDqfCkWcfsCNDChHi4iaQKQeGPLw2KRVH8tmysBPDIy413avSYVeVZlcMGpvgkKaJZL7+vZt8gXCjB7AYfNpKeKXOlnLMw93lfuNvH4ArS3beb3NyRg0uSBBx6g2tpaslgstG3bNtqzZ0/Ez/35z38u/o/WvvHXwSJVVGjbUGHOBUoryrKV6k4sUYJYaR2aFD/gFjSaa2pKWuCXivN3ZUVqi6lWniWPbOPO2cdiaGaJd090kz+ACgtALJJIXa816HpdkPriLNpaKxVxNA86aE8rbnwgNvonppQ9OnPGIoODqV2dXVgY+WNDQ7Qkp5oMOnVsj3bHWocmFuHZ/26fmkSB9IVYJIHGlsuxCBckzPValgpJkwj3U8LQzBE+dfl1yuNMs0EpvJ10+8LOlk4MniCHR30OsJjsU17lvr6hOIt0ockSsPC9Jq9iRFfiJ01+97vf0Sc/+Un64he/SAcOHKD169fTddddRwMDAxG/Jicnh3p7e5W39vb2aF9mWswRL8w0UY4lQqUYhOGg9B3b1Ju9X+/Bv0GIjUc1nU2blqhVxgtpp54RHCf7/N05gnyj3kiVU+qM3ap89aCiZ1zqQGHegJcGHJF/3kB6QCySOAcV3D1XnoNDn4V6e1gsgjEYkGCxyOho5I+Vhi8TTkpWK1FmhCSv10sGu4NqcmuUd1VrYpFeTSwSpKCY/w/pDbFI/GkP/JWCK16E7vPN/gU8YjDZxwzOlzSZJWG0unh1WEKYC0plR7vHlcf+oJ8O9R1azCsFUPzpUI/YMcw2LZmj8xPC7KhXCz4OtM8Rp0FiJE2++c1v0vvf/3667777aNWqVfTggw+SzWajn/70p3MeWJeVlSlvpakQdMeJy+Onvglp7n8NxmGck1s3VpI1NJv4sYM95HBHCKYAFonXH6Df75Paww26DHrLpqq5v2Cuw4r8eRIuKRDkV7hNYbPE5b0mfePSa56sa2KOlntIC4hF4otHObSHKsVqCmyoFDsH168po/zQaKS/He1Tqv8Bovn9+htNgu6ui6rTOw4pLo78saEhqslTkyZ5NqOy14RjEe1IvW47xv2mO8QiiVNMWppjJpvJkD6vY3MlTYaHZ+ymshqtInGi7crJNhuUxNPElDoKeX/vfowPhUXH/6Z+/YYai9y9JQW6V2OEz0WqQuNCOcnJZ0yQoEkTj8dD+/fvp2uuuUb9DXU68XzXrl0Rv25ycpJqamqourqabr31Vjp+/HjEz3W73TQxMRH2Bqr2EewzOV/clXPL+gqlFfXPh1EhBtH17Il+GpqUxjdcu7pU/MCbUzoE+fzn0M3+o6rAoyd9aLkZJ0xKsqXq9XGXl5weNcmJpEl6QywSf70TU8rYwbDFqzAvPoB9ayiB7vEH6JH9eD2D6Hq9eVgZLXXZ0iJaEqnoyu0mcqojqMKYTES2FCnWmmesTVVOVfgBd6iTzuX1i3hEhlgkvSEWiT8+6B8OFR6ExSLpcD81T9ccjavdI7ItlVvCdjatDnWbcH7kuKbbZMQ1Qm1jbdG4akhjR7rG6USv9Bq2vjqPVlXkxPuSksrGUJfwlDdAp/vs8b6cpBbVpMnQ0BD5/f4ZFRH8vK+vb9avWb58uai2+NOf/kS/+tWvKBAI0MUXX0xdEZZzfe1rX6Pc3FzljQMKUHWOqK3hEW96ICKMxYBY+uVuteX+nq0LqKZIhyCfd7MUSDP9p8sx55B1Qj2wKcu1hM1jl6G6M70hFok/7Z4hdL2eu3s0sQh3AKCiE6Lpl7vbFhaLzBWD8AJ1eXNwiidNKrMrKYMyZo1F5G5/OWmC7930hVgkwWIRzf6htLifOo+9Jvzapl0Iv6YiVySG2bGe8IXw3G0CEK1zkbdvxWvZudpQrY4zO9g5x0h3SIxF8Odix44ddO+999KGDRvo8ssvp0cffZSKi4vpBz/4wayf/7nPfY7Gx8eVt87OzphfcyLrGlWDg8o8qUULFm5dVS6tDmW1Odt9TFNVAbCYdjUPi+pO+VDxkoY5Att0C/IjjMYwG8xU4lJ/jJVrDio87cNU1DFE+T2jND7cQy6vmkAGmA9ikcXVNap+/yEWOXe8/HJ7vZQ8bhly0K4W6WcFwGLjOPep4/3iMXe7XrNyjlFA6RKDzHPQyLFIka0oLGmS6fFS/YidTKd7yTbmoIxAkCY9kzThRuU/LBxikejFItpdiHgtmz1pwgmSbYZacT9V0D1CBQE/1RVJ3So8tpzjEdnJwZO414JF0zI4SX88KBU9ZlsM9OZ10vQXWLiNmh0whzqQNLkQUd0SXFRURHq9nvr7peBbxs95JudCGI1G2rhxI509e3bWj5vNZvEGs+uOFBzAgnCwwN0m//zHY0q3yX/cvjbelwUphisP//upU8rzj129dGEz/+er8kyDIL/aa6WW0GMeiWH0++m2k520yTVFK8vVNt6Jlu+R9ZZ7iFB1l3YQiyRaLIKkyfl4+7Ya2t0yIh7/Zk8nXbyQxDrAOfrvp04rj++/spFMhjnq63DQqCxQ5hFdg07p8ea+Uarfe4ZM/gBlNhlobWsvuW1m6lpVRV3L2ym3fF2srhwSCGKRxIpFKrWxSLrcT82znymM30/0xz/S2iOHyN55ggJBacRqqdVC39MZqS0/WyTZG0uypE8P+ql5tJnWlKyJ6h8B0sM3nzlD/lAn0wd31lNmaJ8OLNyq8hwy6jPI6w/SwU4sg0/YThOTyUSbN2+m5557Tnkft5Xyc66cWAhuYz169CiVl5dH8UpTV/cYDiou1K0bKslilL5VnjvZj9Z6WHQvnh6kA6EKgKUlWeLf3LwCAaKxsfQI8uc4sCifkhYky5Uo13UOUcOIXewh0n6vuppOEPGizWeembHsEFIbYpH46x7TdL0iFjkv160uFUum2YunBsiHpY6wyPa1jdBLZwaVjrC3zTcOY64YJJWSJrm5fFo9+8ccDiKXS9lrkjVspzX7miknVPjC+9UCwSCZnW5q2NdM9OMfz31ACykLsUhinYuEdb0iATwzafLqq0THjpFBZ6CSzBLl3fVOF917ooOuP9NN3cOTYQumW0dbo3LZkF5O9k7QX470iseFmSa675K6eF9S0u5E5MQJaxl00LhT3bEGCTae65Of/CT96Ec/ooceeohOnjxJH/rQh8jhcNB9990nPs4tp9xKKvvKV75CTz/9NLW0tNCBAwfone98J7W3t9P73ve+aF9qSgcHHLtrZ+zCwmWZDbSlVhqL0T/hpuZBtRUVYDH8Ypc6P/xT1y4TS83nZbdLVUCzyc6OfIOfYkF+sVP9uzK5fXTJsDRCj6tTePGZzO62S8mS116TEieQVhCLJFABRx66Xs+H2aCnSxql10K720dHMS4UFtkvdqnzwz92zVLxb25O6XLQyDP8CwsXtAx+ybFOyggGxb0D47CDx9jIPF3tRA89JBItkH4QiyRg1ysvQed7qkh7FfmeKt2SJvx3smuX8rQ8qzxsCgcXcGzoG6FrT3dTjya+axmVe/8Bzt+vNLtMPnxlI7pMFmEZPDvchRFd5yvq/wLvvvtuGhwcpC984QtiyRnP5HzyySeVJWgdHR2k06m5m9HRUXr/+98vPjc/P19UZLz++uu0atWqaF9qSgcHpTy2Rp9wK2ySBh9UvNIkBROvNw8pragAF4qDTW1l57WrFtaiTxGWRqbcYcU8QX7epI/0ASK/jqikpZ+sJh2Nh/KafFBhNUmHPnaP5oZozx6inTuJLEgkpwvEIokRi/BBYo4VNz/ni3ddPRGqvuMdWNqbIYALMerw0JPHpLiiINNEt26YZ344ZwOamtIrDokUdw0MUHHVRrL6MsTsf5Zl1tPQpPRhh9tP2RapkIX3mgRHRynj6FGirVtjdvmQGBCLJGAxaWjEXsSufc3/HynTNcdJkekmJ6XOucxMotOniaamlA/lmHNEx4kvICWAc6xGGrC7aU3/KO3qGqWaQmnPyejUKI1NjVGeJYWmHUBMcXfm44d6xGObSU93b8FY7QuxtjJXeczFVjuXzTGiDyKKyZ3r/fffL95m8+KLL4Y9/9a3viXe4MK5PH4adnjEYyxevTDapdyvnR2ie3fUxvV6IHX8YX8XhUZ20l0XVS9sl0l3N9FvfpM+hxU8n5kD/fGZldX6IFGV20ztVjeVNfeTT1ONMunxURFJs509fo94M+lNRD4fUU8PUX19TP8YEF+IReIjEAhSz9iUEotwlSKcn0saC8NikY9c2RjX64HU8dihbvKExqy8ZWPl3F0mfOD2yCNz/4KpNCKUlajjaWbo6yNdho5W9PtJF/o71FbGOjxqpwnP/Xf5XGRrb0fSJE0hFol/0qRMLiblhMkPf5g+91Mcf3ECuFcqvpiBE8MNDUSHD0/7sgzKt+Qre5tyrVISmKO5QNsQ0Xqp004e0bWxfGM0/xSQwv56tE90U7Ob11UoXZtwftZWqUkT3kEE5yeFUucw59xOzBC/IKsqcpQAYVfzsLKYCuBCDxN/v69TiWPvvKhqIV9E9PDDc39OqgX5bI4lmbVTFsocdVD2sD0suNKOxFBGdMmGh6NznQAQZmjSrRzGIha5MEsKbEoRzL72UZryRhjRCHAOeP/X7/ZKsQibt7KTx7acOhX546k2IpTNtag71IFS36HGGDbTPLEIYhCAmFewj8jFpByLcLfcH/849xel2f2UeC3jjpOzZ2d8SNs9wgkn7gIQhuxhsQhGdMGF+N3eDuXx3fPtVYN5NRRnkdUofa8e60HS5HwhaZLCukbVxatYAn9heMfEjnqpwnNiykfH8aIDi+BI9zh1hcbW7FxaTBUL6QhrbZ17+WoaBvnlkxliNJccyJtCowidHn/YMviwEV04sACIic7ZZojDeeFqT7nbxOML0P52LJSGC9cy5KBTfdLPx01L8mhp6Twz/A8cSK8uk4UcNI6OUvGwK+y+QT6o4M5/LpKR8YguEYNo4hMAiN0+E1F80N8vdZ2n2/1UubqfZNbXsmPHZn1tyreG/13wiC5W4PKEnTk1jTSR14+F03DuBiamaG+bFNcuLcmijdUpGEvEGMciXPzNOkdcNOaUEsdwbpA0SZdOEyxevWCXLFVHdD19XDqgBbgQvB9Hdu1qaZ7xvLq6LmyMRAoeWBTbA5TXpyaS5LEY05fBi4OK2RYeAkCMYhEkTS6UvAyePX18jt1WAAvE+3Fk166eZ68aVyHPV7gR2s+QUrh7xmaLPK7swAHKNoUnm+RYJBgq4ggr4OCvmZiI7jUDgKJr+gQO3E/NnjRpa5v1Q1aDlcx6aeQxkydwFDjd1DwQWiZJRFO+KTo5dHIxrxjSxK4WbSxSinG+Udhrcqwbccf5QNIkXSoqUN15wa5bXSqytfIeCozoggvFo95m25szp/mqojjAnysgTlZz/Jlyh+yUM6wmRDLN+llniWM8F0DsIRZZXFeuKCGLUQrfHzvUgxFdcMF2aQo45o1F5otB2Pr1lHL48GauCu09e8hmtIndJguJRUQXLOIQgLjEIlX5tvlfyzhRmoq7D+dKanNBWcvs47XEXhNNt0muxSjORQpcbmoamCC3T41FDvYeXNxrhrTw+tnzOBeBea2Ztgwezh2SJikM1Z2LqyTbQlculypO+iam6OUz0jI0gPPBweXethHxuCLXQjWFC+wGi7S8T/a2t0k396mGx31YLLN+yBAIUqZe/VjYAlbNLHG3n3crhNpSuVKWF8IDQFR1j6ljGxCLXLgci5FuXCMd3o67vPQUuk3gAvDYKLmAI8diUMY4nHcMcuONRNUpOod8roIUt1scKmaZspR3RdqxJi+DR9IEII7nIvO9lr3jHUS6FDwqM5uJCgpm/xgncz2Rx/cU24qVxzpdBhVlmcnkD5DF5aXToRGPrHWslUZc0j0uwEK93iIVcJgMOtpUk4Kj8RKh0wQrBs5LCv4kgIizO+GCaZdjapdmApyrgx1jyuioHQ1FC2tB5bEYc41z+PznIwfCyY7/fuY4sNCOxcgMW8AaXoXt8DjUG4NR7AMAiDZ0miy+uzSxyO/3IRaB83eyb4JGndL8+e31hUpHdURzVWdfdRXR1q2UshbQxauNReZaBi9iESRNAOITi2QbpZ0mkXzyk6nZtS+bq2tuDgXWAjLpTcrzkmxpXBd3mxzvCb8/PdR36AIvEtJJ54hT7Nxgm5fkkyW0EwwuXENxptKhfgydJucFSZMU1hlaylWYaSKrCS88i+HK5cVUHAoQnj3ZH7b4DGCheLSbdi/OxQ3SYt95zXVYUVFBZFID2ZQ0V9LErB5UcIWKIXTwM310Dc/aVeDAAiBmi+D5+7IoU52HDedvW10B1Ya6E187O0xn+jWjBwHOocvkqXONReaKQ5YupZS2kKSJJhbhBJTZIN1qT/nU/Wpy5ytiEIDYn4uwSvcEvwDO/om5uUQ583TcJbvzTAhxgV9ZVllYZ3+mSU/5Lg/1T0xR77grLGkSCEb4OwbQ4HGVTx7rO/dzEVgQg15HjSVZSnLK58f35blC0iRFjTn5h5dbPG4oVlvF4cJfdO7ZukQ89gWC9N3nmuJ9SZBk2oYctPO/XqCfvtaqvG/HQoODuVrJOWmS6uYI8nlBoZbZICWKWzMt0uxw7UGFDAcWAFEfQ9g6JHV31RdlinEOcOH44OKd22uU59965kxcrweST9/4FF39zZfC4tiLG4vm73a1R0jQ6fWpuTRZq7CQyCgtP15oLDJalKMUy/g0h7SigAMxCEDMEsRN/ZPK9A3L0EDkT07z+6mIQmMXy7PCu1RKcyyi02T6rs4J9wQ1jzRf6JVCiht1eOj6b79CX/3rSeV9FzciabLY5KlDvJK53645C4EFQdIkRZ3sVW9qVparVU9w4d57SR1lW6SW+0cOdFPLoLqAGmA+//dGe9hc3a21BVSx0PF5c1V4nmerdVJpbJQOZmZhNoRXsHNVu1eno5PFueTRVFS4fUiaAMQKH1LwYSFbVZ7ilZsx9o5tNUrn69+O9aHlHs4Jj3WTE5psZXkOLQ1VIp5XDMLLhSP8fE4ZvN9g2bI5P2V6LNJZW0Jy2YbHNy0W4RGh/vBuWABYfF2jLpoMjcjj17p5O/dTXU1NxD2REW3YIP5jNVopz5KnvLso20xVoSXwHWLEktrRc6D3wGJdMaSoPx3qptOabmnuol5Xpf77gsVRnqueNfVqzqFgYZA0SVGn+tS5kitwULGocm1G+sBl9eIxHwb94KWWeF8SJJFdLepB/X+9dR099J5zmP+d7kF+VhbRJZfM+iGLITz455EYfdlWGrRZwg4qMJ4LIHZOaRaDrkABx6LisasfuaJBef4/L56N6/VActFWBH/l1tX08N/vmH+3WrrHIOyyy+Y8bNTO+2eTFXk0bpHe554ei3AX7AiWJQPEYndTWDFpuheh8TjnK65Y+OcXFRFVVSlPtSO6dBkZtMGm7m/a2zYS1m2CEV0wl9c1scg/Xr+C/vSRS8moxxH1YtPut9YW78LC4F9kijoV1mmCpMliu+/SOmWhkvYQHGAu406vsiiPvy95me+C9w2l+1gM2ZVXEt1004x36zP04k3badKZY6NRqynsoCJsPNfQUPSvFyCNnerVHlQgFlls92xbQnk2o3IIrh1FCBAJ7/ra3zEqHlflW+neHbWUZVYPvSJK9xGh8lib97434od1GToy66VuE6/ZSIGibBqxmmZ2msixCOIQgJiei6wqthENpPl4LrZ9O9Gddy7sc5csISooUJ4W24rD7rnqMgKUGzoX6R3z08ayzfSBzR+g9216n3hNBIg0Nu+NVinJlm8z0gd31oviZFh85XlqsUfPmKaAFBYEr2IpXlHBRWPLSrHTZLHxzeXqilylFZV3yADM541WPtSSHu+oP8d5nek+FkPGL2pbthBVVk57d0bYWAzuNDldlEsTZiM5NeeIXN2pHCw6HEROtY0cAKJX3bmiDEmTxca7mzZUS2MMRp1eMYIEYD4HO8aUA/xzikXSvTpbVlxMdOutET8sxyKDNUWUbTXSsE16ri3g8Pg9UgU2kiYAUXdSU8CxSu+KvAQ+L4/IZqO0sXr1vCMHhVWrpH1O/PfDhWo6PZVmlSof1gWJLrJVks1/Mdk8t9HSnMupIrti/u5FSGsneido3OUVj7fVFWLvYRRpR8H3juNe4VwhaZKCeGTU6dBIjNrCTLKZFlA9BudsbaWUNGFHujBLHOan7Upa8PJ3GcZihKutnXNE11RRNvVnWUSSZcCiJlP4kMIXkOYaCziwAIgKTk7K+9WKskzK/g1YXOsQi0AsYhHudI3U7WowpE+3q3YnQARyLNK3tJxyLAYasllmdJooe00GB6N8oQAgjy3nKRFVrrHIn4j7qZlycojq69WEcQgvhOeuuprcGtpWuY3eVno1mYJ1lEEGOtI1x98xQMjuCzkXgfMez9WD8VznDKfpKYgXO8rVTFgCHz3rq9WDiqPd47RzmRpIAMw1Q5wLKbbWqW3OC3LxxVLQyuMxOIHCb3zgz10T6Rrkv/Za2LvkkRhseHkl0bA0/qLPbCQKSJUs8lgMoz7U/ssHFtx2DgCLatDuphGH1IWJ0VzRo12YeaR7jG5al0YV/3Bedjefx0EF7xS7//7wGIQfezzp1e0qy8+XDhMn1Ap2bSzisZpooiibsvxBGlE6TcKXvnMsYkXSBCCqHG4ftYeWky8vyyH9po1ElRXhr2X8fcjdJ+nUMbeABLCwfj2RTqfuNmlqEg+zTFm0vWq70k2y2sT3XNLnHekep7dF+bIhtXarIWkSXUVZZjLoMsgXCGI813lA0iTVl8BjHEbUrK3UHFSgogLmMWCfUpYi82i3XKvx3Jf28eG+9oCfDyv6+sLmzKYN/nvgQF0zw1+u7gxmZND48jLS7eqgQDBI3dxS7vaGjejiYF/AgQVAVJzULoEvQwFHtKyt0hRwoNME5mGf8tLBTmmfSW2hjcpz1erDOfHPWz4w47e1a6X38c/f4WEit2ZXWLrgvw8+bDx6dNbxXJ1Lq8TnmAwZZM+xzdppIpbBy8UvGGMDEBWn++3KrcJKjkX4noCXmmsWm5PXS9TfLyWH0w0niszmyK/jGzaojzWdJtNHb9WRizIyMsXfNWIRmA8XEewJ7TPhbvSlJWn4vRdDel0GleVaxBjfHoznOmcYz5XicztR3Rk99UWZyuJMjMSA+fzpoDpe6/LF6kqSEynpGORzgM+zeGeZI97fUEp+m1n5/uw0GmaOxJAhaQIQFYhFYqM0x0KlOdJrHx9U8GJNgEj+erSXvP7g4sQiciJl2o6xtLFp06zvNmXmUn9jmfLckG0hh9FAHn9A3akmxyJ8WDuOewiAuMYiciIltLMjrXAXCXeTzGbpUqLCwlmTJtNZx0aooThLKeCd3lkHoPXcyQGyu6Vx2TuXFmP/TQz3mow5veT0aEaVw7yQNElB2gP8VRU4qIgWXla1plL6++0dnxKdBACz4ZvkP+zvUp6/ZVOaHjAstquuksZjaEZiTGVZ6OyWBvE82yIlS3pMRrHrKay6U4adJgBRoa00RCwSmxFdfAPaNuyI9+VAAnt4nxqLvHWzptIazl1dXXgVNsvIoIw3v1mM55JxLMLL4DlfIies5PFcAoo3AKIGscgCXH55eHKEZWYS3Xxz+Ps4SR7J8DCtC52L8OvcqdBOO4DZPLyvU3mMWCQ2KnLV3a8Y0XVuMJ4rBQ9n5aQJz67TfnNAdA4qdreMKEHZ1Svx9w0z8c4bbg9nm2vyqT5UiQMXiMeSfeQjRHv3igW1ukwD7fHkUMCgD0uajFpNNBUIUiYvk9EeVDCu8OSWdO5cAYBFc6hTGltpM+lpaQnGc0V7GfwzJ/rFY44B8TMGIu083NcujeZaVppFayvV0W5wnm67jWjlSqL2dun55s2UmWMleu0l5VOyLUaRNFkyzjsn/WQy6MILOLh4gyu6ASBqsQiPp1lTgde8WXGC5EMfItq3j2hsjCg7m+iii2beG1mt0nSDycmZv4bXSxflZNCjmtHl66vTsHMH5jUwMUUvnRlUFpTvqMc+k1h2msjL4BsxEm3BkDRJMe3DThp3SbP7N1TnotUtyjZogoE9bSN09crSuF4PJKbfa6op7kQ1xeLigP7SS8XDzICPAi+ry+GzLEZlx8mw1USZXt/M8VzygUW6jhcBiIKhSTd1j0kzc9dU5orDCoieDUvCY5HbNuL1DOau7LxzczXuERbL8uXSW4g1GCSjzkjegFcp4BgKLYPX7jVRYhF0mgBEBY+gaRqQDviXlWaT1SQVVcEsDAai7dvn/zwe0TVb0oSINtrUkT972kbpXTtqF/MKIUU8cqCb5AEQb91UKaa3QPSVT0uawMJhPFeKOaxZSC6Pa4Do2VanLuB+/exwXK8FEreaQh6HYTHq6MZ15fG+pJRl0BnUBe+aThM2aDHPPp6LYUQXwKLiCkPZes2icogO7mA06qWbztfP4vUMZuKCql/tlrohOIl568aKeF9SyuJkVI5ZHQMkJU0sM5ImHIuIHSdImgBExfGeCWU8L2KRRTLHiK6luilln+Su5qGwHU4AbMrrp5++1qo8x2iu2KnM04znGsd4rnOBpEmKOdypzu1ES2T0FWaZaUWZNHbkWM84jTulqjIA2f++1Ezu0E3yO7fVUE6o+wGiI9es3hRp/657zOpjHs/lC2gWoA0j4QmwmBCLxJbNZKCN1fnicduwU+nyAZD95NVWmpiSfu7dsamKSrIxTjaaci3hschIqNNkSrMc2R/0k8fvQQwCECWHQ6O5GGKRRTLHMnjD2KhSUDo06aEz/bN3pED64uKNQbvUZXnj2jKqKcyM9yWljco8m/K4HfsPzwmSJqncaYJZxTFxcYNUccHFFLtbceMDqr7xKfq/NzrEY6tRTx+8XFpQDtFTYFW7vwoy1UWsXRnhP+4cHk2w4EDgABCtWGQ9ul5jYkeDOhN6VzNiEVCNOT3001elyk6DLoPuv6ox3peUdrGI3WQgny6DnB41acIcXgeRy0UUUDtQAGBxHNYsgV+HTpPF2ycZicMRFou83ozOVwgfl/e/LzaLxzwd9GNXL4v3JaWV2iKbMi75dJ+0axcWBkmTFOL1B+hYtxQc1BTaKF9zYAjRczEOKiCCRw50KaMY7r24hoqzsWw82koyS5THORaDsnC1xxeceVChPEHSBGCx8DgGubqTDwur8tUZuhCbWAQHFaD158M9NOmWukzu2lJN1QVqtSFER2mmuuPQYtSLHWtOo0EkTbQjayY9k1LVFSdOAGBRybEIj0fmnSawCGxz/PxwOJRiUvY6zkVA4+nj/TTs8IjHb15XQctD01ogNswGPdUXSZ09zYOT4uwYFgZJkxTS1D+pjAHCPpPY2VZfoGRtcVABWq9pZsu/feuSuF5LuijNKg2bK14YSh4PBoLk01RyhnWaOJ2xvUiAFNY16qLR0KhKruzEsunY2LgkXxwMyQUcmCUOslcRi8S1gEMe58tJE96v4PHPEougeANg0TvsOkak+H51RS4Z9Tj2WhSZc4xTcjrF2HK50393y7CyUwZAG4vcs7U6rteSruREldcfpNYhxB0LhZ8eKaRpQG2zWlWuLiCE6Mq2GGltaBQaz+4csGOxEkiLzva1j4rHXGmNmZ3xO6hgLqOBXJqxGOg0AYgOxCLxwV11W2qlsRm941O4GQKBD6zkLuh8mxHfk3GKRYqyTOQ06sXjWWMRFG8ALKqmAXWfBl73YtdpotNl0I56qfPVPuVTpqBAeuNCHrmYlAt8NtdIe/ggtuRdzAwjuhYOSZMU6zSRLSvNiuu1pBuM6ILp9rWNKqO5LtG0KkP0F8Gb9eoYtKJQ0sQRGouhHYmhVGLjsAIgSrEIWu9jCWMxYDo+sJIXwPOseT7QguizGq2UY84Ji0W4eINpYxGn1ynFIijeAFhUOBeJEqORyBRhBPzUFJHfP22vCWIRIFHIwwU9jAt8eFQUxN7yMjUuQdJk4ZA0SdHqzqUlOKiI10EFkibAXtOMaru4UQ0eIbp4FJC2wpOrO5lPr6MJv9oi7gv4yOOX5qqKWeL+8OWsAHDh1Z2NJTioiCUUcMCcsQgKOGJKG4sUajpNtEmTQDAgEico3gCI3rlII85FYtdt4nRixxrM8JomJkUskhidJqeQNFkwJE1S8KCCW94qsXg1pi6qzSdTaFYqKiqAva6Z24ngII4HFZlq18nItLG6YSO6sIQVYFFjEV5l0lCMpEksranMpWyLVM2+q2WYApglnvZeP6vGpJc0IhaJ1zL4ApuJXCajeOz0SJ0/YbEIOk0AFtVZTQHHUnSaxDRpUleUSeW5FvF0b9uIMnkB0pf2XOQSFJPGTWWelWwmqYDjdP9EvC8naSBpkiLcPj+1D0tVSnxIIS8mh9iwGPW0qSZPPOalc52hxXOQnsadXjoamuG6vDSbirPVg3uI7TJ4q0lPmSbpEHEwmBG2HDlsGTwOLAAuGH9/ne2XKpeq823i+w9ih2O/7aFZ4iMOD50O/X8B6btbjQ+sWEWuhWoL5zjogqgWcBj0OtJnSYeILq9/ZiyCThOAqIzn4l1OhaHF5BCDZfAOh+j6l0d0TXkDdKhzLHbXBom5W61FKuDIsRhodYW0Cxhij0e0yqOTO0dcNOkOL+KA2SFpkiLahpziBYlhHEZ8YEQXyESFb+h+GJWdibAMXrpZmtBlkFczokuMxFCe4MAC4ELxvGJHaPQMYpH40I7FkJduQno60D5Kbnm3WmOROMiC+BRwMHOelLTifAkfJIbFIijcAFg0E1Ne6puYUmIRvPbFttNk+rkIYpH0dqJngsacXuXfBYq7E2dEVxOKqxYESZOU3GeCg4p4H1T84UCXksSC9KOd34oW1PgnTQpCFWZOo4GmfOos8SmfdEMl4MACYFH3mSAWiQ/tQcVjh7oxFiONafeZoIAj9opsRZRB6uGQOTSuhs2IRVC4ARCV0VzYZxL7TpPp5yJ/PtJDLs0uJ0jnWATnIvFWX6x+//KEHJgfkiYp1oLKEBzEx/rqPGV+557WEfrWM2fifUkQJ3JFDVdSbK0riPflpB2rwUpmvToSLccSmiNuNJBbU93p8mn2mODAAuCCaSuW0GkSH8tKs5QbomPdE/Qffz0ZNgoI0sdrmn0m2gMsiA2DzkA55hzluSlH3TepjUVE0gSFGwCL5qzmXAQFHPHpNKnIs9L6KmkMU8ugg/75saOIRdKUttPoYhRwxB2PT5ZhpcDCIGmSIrDsLP6Meh196+4NSsvh9184S2/+3iu0OzTDEdJD3/gUNQ9KN78cLGaHDuwhdrgNP9+arzzPsYaSJiaD2P8kc/vcagCPpAnAIsciKOCI1+vft+/eQCa9FOL//PU2uv7br9ALpwfifWkQ4/E0R7rGlEPDkhy1ywFiJ88i7Ttk5lxN0kQTi3gDXvJNYiErQFQmcOBcJLadJpr7qf9353pl6fSjB7rp6m+8RE8e643FFUKC4J918m61shwL1RfN8W8HYqK6QJs00RSQQkRImqRYcGDUZ1CN5hsBYosXsH72uuXKc67yfPdP94iDdEjH0VyopkiEg4rcUNLEZdCHVXcGKUhuv1t6gipPgEUdz4VOk/hZV5VHX7pltfKcF8K//6F91DqE17l08UbLCHarJQBtAYc110qB0G4F7U4T8XxiRFp2AgCLPCoUBRwx7TTR3E9x8cx/vnWd8rxlyEEf+r8DdKx7PNpXCAniYMeY8vPu4sZC7BdKtE6TURSNLgSSJimAK6XlLCF/ExhC1YUQHx/YWU/fedsGZckSL+H83vNN8b4siIHnT/XTAy+cnXW2PMRWvkXbaWIQ/3WYwneahO01QacJwAWT27yLssyUZZa+7yA+3r5tCT34zk3KeAxfIIixoWk0CuObmv+vMZorMQo4uPPYZTTM6DRhUx4n0RQKrAAWMxaxGHVUmqOO64XYdpqwW9ZX0M/u20JbaqX7Ms4Nf+Pp09G+QkgA+9pG6Gt/O6U8vwTnIgkh12akbIsUiyBpsjA4XU8BY04vubxS8F2Zr7Z+Q3xwBv3WDZX06/dvVw6Nfre3kzqG8aKUyl4+M0jv+fk+ZTQX/zDaVKPeLEMcR2IY9GQx6sll1IskppbLG2pLRacJwAXhQ8ABu9S5hVgkMVy/ppz+7/3bqSDTpCxjPdWHMUCp7EDHKL3jx2/QyV7p/2ezQUfbkTRJiAIOnS6D/Dbpe3F6LIJl8ACLV0zaMzal7NVAZXv8Ok1kVy4voV+9bxtV5kmx4QunB2l/uzSyCVLTmX473fWDXXS4UxoTyuPrL12KpEmidZvwa6XPHx6PwExImqSA7jF1Fl2FZl4uxBcfUrzn0jqlwvMHLzfH+5IgykkT2cryHPrBuzaLw3qI/0gMeRm8w2ggjy9AAc0IDHSaACyO/vHQqDtOmuRhf0Ki4OKND1/RIB7zS9//vIBYJJW9cmYobETeg+/cLH7+QfwLOFiGTap69weCYQcVooADxRsAi1tMGjqkh/h1msj4nvgfrm5Unn//eXUyA6SeV5uGlBGhNYU2+v49G6kUu9USRnWBVYlFerFGYF5ImqSAHm3SBMFBQnnfZXWiyo89f2pAXToNKedYjzqf9Rfv2YrRXAl2UJFrNShjMThxMiNpgsMKgAvSM44CjkT1zu01ym6nF08PoKosTWKRH917EV25oiSu15PuphdwZGSpo4K03SboNAFYHIhFYsBkItJHKAzk17EI5x1v3VQlloGz15qHyeUJH1MIqRmLfO+ejXTD2vK4Xg+Ew16Tc4OkSQrQZgcrUN2ZULi6b2tdgfL/U/OgupgOUkcgEKTj3dIoDA4Gi7MxPzfRkiY5ViO59TryZ2TMPKhgLheWsAJcABRwJC4eT3hpaBn4xJSPjmAJa8qSF+xyh1FNwRwjVCAmsk3ZpM9QDxd1mvhwKlQNr8QiKN4AuGDyaC6GWCRKeORZpBFdfC/F91Sz4L27VywvVgrY9rRhRFeqxyIGXQYtK5X2/ELiqNbEh12h3dgQGZImKXZQgTbUxHP5Mik4YC9pxiZA6mgfcZLd7ROP11RKS3chvkx6E2UaM8OSJhzki70mmoMKly/0+hkIRAzyAWB+SJoktp3LimYdJwmpY2jSrRRSra7IETs0IL54n4K2iMOQrRa3TS/gCCJpArCosUg5iknjM6JrjteynZpzEcQiqcnp8dHZAalQmBMmXLgDiTmei6HTJEGSJg888ADV1taSxWKhbdu20Z49e+b8/IcffphWrFghPn/t2rX017/+NRaXmRo7TXBQkXAuW6oGB680IThI5WoKthZJk4Qci5EbmunuNBpoSnNQ4fF7KBAMPcdojJSGWCS6ujXVnSjgSPRYBAUcqQixSGLSJk302dZZkyb+oJ/c46i6TgeIRaILxaQJsAx+jvupSxqKSM7n41wkNZ3stSv7TBCLJMF4rhGcf8Q9afK73/2OPvnJT9IXv/hFOnDgAK1fv56uu+46GhgYmPXzX3/9dbrnnnvove99Lx08eJBuu+028Xbs2LFoX2pKBAdluaioSDTLSrOoNEdqx9/dMhzWjg+pd1CxpjInrtcCsx9UiE6TUNJE22nCsNck9SEWiXWnCWKRRMNFNbwYnB3qHKNxlzfelwRRjUVwUJGIBRzmHE3SZFosMjmOA8RUh1gk+lBMmtidJrk2I62vlu7PzvRPUq9mBw2kBpyLJL6qsJ0m+B6Me9Lkm9/8Jr3//e+n++67j1atWkUPPvgg2Ww2+ulPfzrr53/nO9+h66+/nj7zmc/QypUr6d/+7d9o06ZN9P3vfz/al5r0szuLssxof0vQ1ny5wnPKG6D97aPxviRYZEdR3ZmQ8i3qQUWORVoC7zTqZyQux6dC//+h0yRlIRaJPvnG12zQUUGmKd6XA7O4bKk0ossfCNKuZnSbpHIsgqRJgnaa5FiUKmvXtFhkdKgz1pcGMYZYJLa7XstRTJpwnSYMna+pDbFI4rOa9OLsmLUOOSiIva7xS5p4PB7av38/XXPNNepvqNOJ57t27Zr1a/j92s9nXIER6fPdbjdNTEyEvaUTrz9A/XYpOKhEZWfCurihUHnMFZ6QOviHjFxRUZJtppIcfB8migJrQdjyQQ4OuNPE4fGTz6+OxRidCiUy0WmSkhCLxOZ1sDtUqcTjMLhYABLPxQ3qXpODiEVSzrFu6XUn06Sn+qI5qoAhpgqt6j2Az2KiTLNBGc+l7TYZGe6Ky/VBbCAWiW3Xa1GWCcWkCdhpwnAuktrkcxG9LoNWlqPTJFGtq5ISWiMOD53qs8f7chKaFLVFydDQEPn9fiotLQ17Pz8/derUrF/T19c36+fz+2fzta99jb785S9TuuobnyI5MVieixbURLWuSq0yO9qlZt8h+XWOuGhiSloCjy6TxLIkd0n48wIbDdvM1JVjo8yCbCoszSGv2UhdWdm0cvvtlFFdHbdrhehBLBJ9/BrIyUiGxauJf4M0fXwCJL9Rh0cZS7O6IhdL4BNIda4aW3isJjKX51HL2BS5jAbyVhVRZWUeeS0m8mVn0uaAjwy6qN6eQ5wgFolRMemEVEyK0VxRVlBAxPdN3HHCCRT+r/y4omLOL+XuA66t4TMsxCKphac5NIWWwC8tyULiMsG7z58/JY2GfLVpCAmuOSR9VPa5z31OzAaVcUVFdRodfIXPEEdwkKi44o8r//hQSduyCMlP+//naiRNEq7ThMdijE1JVUxLCm30WEUhHawoFAH7NSvVG9He+mKqyFY7UwDOBWIRTSyCAo6EVZpjETvW+ifcdKRrXHQIoSsoFWMR3PgmkixTFpVmllK/o5+8FiMdf8tW+v1eaRTX0pJsumldufK5neOdVJdfF8erhWSW7rEIJ0zkBdSIRaJszRrp7TxkmQ3UUJxFZwcm6WTvBLl9fjIbcLieCvj/Tx4ByzCaKzlG9rKXmwbp/Tvr43o9aTueq6ioiPR6PfX394e9n5+XlZXN+jX8/nP5fLPZTDk5OWFv6aRHszwLi1cTF1f8yQfqXAk4NOmO9yXBIjnWg30miYoPA+vz1QCAxwZxqzBrH3aGze9sGW2JyzVC9CEWiT4UcCQP+eeUfconXgchNSAWSWwNBQ3K49JsC5kM0i1456iTAppYpHm0OS7XB9GHWCR2e14Zul4Tm/xzyusP0pk+qTMBkt+xHnUkIGKRxMaJy7LQWPk9rSMzdr5CjJImJpOJNm/eTM8995zyvkAgIJ7v2LFj1q/h92s/nz3zzDMRPz/daYMDPhCExLVO84MD3SapQ9tWjOAg8TTkqwcVRr1OOdC1T3lpzOVVPoakSepCLBLbpAlikcS2tlIdF3oEsUjKQCySPLEIF1ItyZeWKPMhxaBdLaRqHkHSJFUhFok+xCLJQ/tz6kg39pqkimOaMfToNEn84lK524R3rO1vD+14hdgmTRi3iP7oRz+ihx56iE6ePEkf+tCHyOFw0H333Sc+fu+994pWUtnHPvYxevLJJ+kb3/iGmO/5pS99ifbt20f3339/tC81KbUPq4u2KvMRHCSytZpZ4thrkhq4U0FOgPHCQR57AomFx1xkUEbYXhNZ54haZd1r7435tUHsIBaJLm3HAmKR5NlrcrQLBxWpQo5FrEY91RdnxftyYJYda9pdJTwudLZYpG+yj5xedIClKsQiMYxFkDRJolgE5yKpFovwYIdV2JGR8C7VjOh6vXkorteS1jtN7r77bhocHKQvfOELYmnZhg0bxA9/ealZR0cH6XRq7ubiiy+mX//61/Qv//Iv9PnPf56WLl1Kjz32GK05z5mJqa5lUE2a1BVlxvVa4ByWwaO6MyXwqLUxp1ez1A6z4RONzWij8uxy6rH3iOdyGyobDf1/x1w+F035pshiQDt/KkIsEl0tQ2osUl+MWCSRaSv/EIukhnGnlzpHpArrVRU5yhhKSBxGvVEkTuSu1vBYxKM8DlJQfM6aEvysSUWIRaKrZUgd84TkcWLjn1X8o4rXXyAWSQ28m+ZMv108bizJIqsJe2oS3cbq/FnPlSEOi+C5GiJSRcSLL74443133nmneIP5tYYOKkqyzZRtMcb7cmAONQU2yrYYxBxxVFSkBozDSA68gFVOmuTa1NfJcc14LsYL48uyZp8TDckPsUj0tAxKBxU2kz7sMBAST3G2mSpyLdQzPkXHuicoEAiKcUGQvLDPJHlGdMlJk7liER7RhaRJ6kIsEj3yoR/XsNVourkg8dhMBlpakk2n++10us8uRhVajDhkT2b8/6MPS+CTCu9+4kIbfyBIHZquV4jxeC6IbmXZsEOqTkJlZ+LjQ4k1FdIPkL6JKRqYUPfRQHI61KkeVKwO/X8LiSffqlZRZJkNygHhxLSDilEXZnkCnCuPL0Cdoy6l4xUdd4lPvpmddPuoVTPmFZLToU51zNrqCozDSFT1+fXKY7NBrxwQjrt8YZ/HiRUe/woAC8ffM3IxaVW+FQfwSRSL8EH7qT6pQwGS12FNLCKfeUFik/a9SsVuHcNOxB4RIGmSxJrRgprc8zvRipq0vP4Afenx4/SDl5tn3VkDiSXfoiZNdBkZlBPqyuPqTm1wMDqFpAnAueLKJK5QYohFkgNmiacG/r77z7+dom89c0Z5H2KRxMWdrJlGtcgt1yrFIna3V/x/yeNBVxWvop01O8WYLgBYuEG7WxQCsPoixCLJADvWUgPfS3/3uSb6t7+cVN6HWCR5yPte7W7fjM5XkCBpksS0c+fqsc8kKWh/gBzBQUXS+uvRXvr5620kn7fvqC8U404g8TtNtAcVnPxyef3K+9FpAnD+o7kYYpHksFazYw2xSPJ66cwAPfhSszIOgw+glpVkx/uyIALuwtN2m+RaTWQIlpDFv55uqH8HffaSz9Jdq++izRWbSZeBW3SAc9GsPRfBBI6kgHOR1LCvfZS++cwZ8vgDyj6T9Zo4E5IjacIwoiuOO00g+gcVDajuTArrKrEMPhXsb1cP1++/spH+4eqlGEmTJJ0mLNeq/ujjigqeq8vQaQJw7rAEPvlo914c7UZ1ZyrEIn93cS390w0rsJ8mwa0uWU02o40aChrI6JyiH3V3ivd7PflIlABcACyBTz6rynOUfQo4F0mNWOSui6roS7esJpMBP8+SRfW0pMk6JLxmwL/mVOk0wUFFUqgusCpV7hwcYG5gctIGdu/fWY/AIMHxAYVJb1Key9+DTNuGik4TgHOHAo7kU5BpEjPf2fGeCWW8GiSXo90TYbEIZvgnvhVFK+iGpTfQssJlVF+kHkx0oroTYNHORRrQ9ZoU+GfWslKpO7JpYJJcHrX7H5LzXOQ9l9YpxYiQfJ0mnSPSjkoIh5O+FKioMOozqDJPuvmFxMbdCHKFJ89e7Z9wx/uS4Bz5/AE60SMdVNQW2sIO4CFxv+/yLOrhhPb/M+0y+LGpMQoEpdZiADj3g4paHFQkDTkWcXr8YYkvSA5cdHMsdFBRmGnCiNCkP6hA0gRg0UaFooAjaaytzBH/5eKNE71qIQAkDzkWsRh11IjvvaSD8VzzQ9IkSfEPlrZh6R91TWEmGfT4vzI553diLEay4UoYt086WF+jGXECyTOiKydCp4k/6Ce72x7zawNIhfFcpTlmyjKjuixZYJZ4cusec9GIw6PEIhgRmnxwUAGw+LFIpkkv4hFIvh1rWAaffMadXmoPnUnyuDWcSSYfFHDMD/+qk1TPmIs8oYNbLF5NLus0B+2HERwkdQuqdi48JM8y+EjjuRj2mgAs3JjToxzc1hehuixZd6whFkneyk6GWCQ5ledaxDx/hqQJwPlz+/zKYV9dcSaSyEl7LoICjmRzrAexSLLjc5Fsi1T0hlhkdkiaJKlmtKAmrfXV6kHFb/d0zji0hcR2VBPQaSt1IXk6TcwGvTL7fdzlC/s87DUBWLhm7FZLWnxzK+8M/+OBbhqwT8X7kuAcaLuDEIskJ67Ilccrdww7secQ4Dzx94+8mqsOBRxJZUV5NplDu0H/erQXle5JHYtggXgy4iSz3G3CXcw8ih7CIWmSpLAEPnlV5FnpxrVl4vGww0PfeuZMvC8JzrPTBOO5krPTRNttYnd7w5Ygo9MEYOFaQ+MwGAo4kkuuzUh3bq4Wj+1uH/3n307F+5LgHKDrNTXIBxX8PYgiKoALG83FMIEjuXAh27u214jHPP76K385Ee9LgnOArtfUikX4TKR3HEVU0yFpkuRL4FkDkiZJ519uWkXWUKX7L3a10dkB7FFIBnxDe7JXXQKfY8ES+GTsNAkb0RUMH9GFThOA8128ilgk2Xz2+uWUE2rJf/RANx3qxJiuZODy+JXqTl4Cz2OeIDlVa2aJa5PQALBwKCZNbh+7ZikVZ0t7aJ450U+vnR2K9yXBAnj9AdrfPqosgceZZGrsNUEsMhOSJqkQHKANNSm7Te6/qlE85iL3n73WFu9LggX43nNNyhL4HQ2F8b4cOAd5lvCW4XybSXk8GtrJIB6j0wTgvGKRBsQiSacwy0yfvm658vynr7bG9XpgYX74couS7N/eUIj5/UlMe8ikfT0FgPMr4GhA12vSybYY6fM3rlCe//iVlrheDyzML3e1U9+E1JWwta4QS+CTmDbZrH09BQn+ZScpObDOtxkpP1M9/IPkce+OGso06ZUKT7TlJ/4eoZ+/LiW3ePbq/VctjfclwTkw6o30/9u7D+i4qqMP4KPee5dVLMmW5d4rGBtsbFNtMBBawISYj5oEHFoSeggJvYYSCC20ELqptnEB994lW12yeu9ly3fm7r6nlZFlSd7Va//fOXv0VsW6et7dN3vv3Jkg7yD5flhA1y6hmhaHRRPsNAHo965Xb67NH2arzQ/actmURAq3x5FcT7zC/gYY1KmkrpVeXp8tjrmJ+O3zEYtomeMEr2O/SgAYWHmuFJTn0qQLxw+RezytO1JJ+ch2V7Wa5g56dnVXifkVZ6crOh5wZiyC597xsGiiQc3tJnlVF4GBtrMqLp6UII5bO830yc5ipYcEvfjn2hwy2Xtf/N8ZqXJgB9rsaxJ+gp0mzZ3N1GHuug8APeO6t/nVtoadyRH+YgIXtMfXy4Mun2rrbcLXuA+2FSk9JDjJLpO2TtuOV64DPyy6KxkAtJ7diYkKgIGQMqNjg30pwMdWchK0hWPIq+29TaxWov9sKVB6SNCLtzbmUUObSRwvnZRA4xPRBF7LHPtSOraBABssmmgQGq/qx7WzbMEBe3dLAVk5SgBV2pZfLdfsvHFumtLDgVPsaxLqsGhS12KicL9wSg1Lpclxk8lksQWBAHBix2pbqcNerhA1xLWNJyqkNa/3thaIBTFQp+35NeIj/3/9fh52mWhdQpi/2KnHsNMEoP848am2xVatAbGItnECB1dzYB/tKKK2TrPSQ4IT2GaPRdjtZyMW0Trecc4VjFhOBRI4joeleI1vQUVwoG2cITgjNZy25NaIxbCDJQ00ZkiI0sOCHgLyoppWcTw6PoT8vfHSqUXJoclktprF4gnvOvl22yGqbvAiz5YQum3aQtSFB+iHHIdMJCRwaL/P2ryRMaIBa0VjO23Lq0HfLhXiCaSsskZxPCw6EOV5dZJdPTTSn46UN1FBdQuZzBbUhQfoB8esaMyLaBtf084bFyfKlje2mWjDkUpaMDpW6WHBcSwWKx041iCO40J8xeI/aB+/l9tZUCsqGjW1mygQu/ZkiMo0yLE5D5rAa98F4+Pl428PlCo6FujZ/mP18vFYLGpp1qS4SXTJqEtoXuo8cTw6eji5UyA1tJpFbVYA6DvHUjKpKBWqeYhF1C+zrFEuEzp2CEph6K2WeIfZQsW1tgQdAOgbx/r7mBfRWyxSpuhYoGd51c1iUp1hXkQ/0hwWnfNQLrQbLJpofKLC8cEN2rRgVKxcFuOb/WUo0aXyRZPxiQgOdFlLHA0HAQaewIGdJpp3VkY0edvLYvBEBWcSgrrsL66TjxGL6DUWQYkugAEncGBeRPNOS4ukIF9bhvvqQ+XUbkKJLrXZX+w4L4IEDr1AX5MTw6KJBkkPYp5oT4rAdjitiwryoWkp4eKYS3RxJiGoyz6HiQpkd+ovu5PlVCA4ABhofzUkcGgfb8Ofkx4ljisb22lHQa3SQ4Lj7HOYqEB2p15jESRwAPRHnmN5Luw00TxO3jh7VIw4bmw30c9Hq5QeEhwHsYg+YV7kxLBoojG8C0HaLpUY7k8+nh5KDwmc4LyxcfLxt/tRFkOtGRUB3h4oQ6Mj2GkCcOrZndw8MNQfvRX0Fot8g1hEtbtePd3daGRcsNLDASdBdifAqcciPNk+JMxP6eGA02MRlOhSm/3HHJNJsWiix3mRHMyLdINFE43hBp3NHbZtipi81Y+zR3U1OduWX6PoWKA7zrgtqW8Tx2OGhJC7VEsNNA8ZFQAD09xuEo0CGWIR/ThrZLRcLnQ7YhFVae0w05Fy207k9Jgg8vVC0pQuJyqw0wSgz8wWKxVUt4jjoRH+5IH3aLpw+vBI8vWyTVMiFlHfc05qAp8Y7kdhAUia0oukcH+RlMMwL9IdFk00JsehhngKtqDqRmyIL8WH+Mq7GviCBOqwLa8rWBuXgGwKPYkL8ZWD8oIa25suAOhfaa4ULJroRrCvFw2PDhLHXCq0rRO1xNViR0ENSaEhYhH9Pe8iA33EcUENFk0A+qq4toU6zBZxjNJc+sGVVMbE265zhTUtVNPcofSQwGHHa6s9NhyHkuW64uXhLhZOpOcd+ix3waKJxqDZmX6NS7BdeHgnkWODXVBOp9lCz6w+It+fkRqh6HjAudzc3CghzF9+44XgAKD/CRxoAq8v0oQ8J28cLLFlE4KyLBYrPfkDYhE944xdVt7QjsVKgD7CvIj+50WO7y0KyuH3yU9+nyXfn5Fq68kL+pFgXzRp6TBjsdIBFk00BsGBfo1L7Moc3FOE4EAN3ttSQNn27YkTEkPpzBHRSg8JnCzBXv+4rdNClU3tSg8HQBMQi+jXuMSuiYq9iEVU4fM9x+T/i/SYQDp/XFe9d9AHKYGDHatrVXQsAFqBBA79Gu8wL7K3qKvxOChn9eEK+jm7Sn7/fOmURKWHBC6aF2FFtYhFJFg00RjHBoGO9fhB+yZ0y6hAcKC0dpOZnltzVL7/wAWj0M9EhxIdJiqKahAcAPRFrkN5rjQsmug4FsGiiRp2mTzlsMvk/vNHk6cH3r7pTaLjRAXKhQL0OxZBAoe+jEcsorpdJk98nynf//O5I9FbTffzIohFJIi6NZrdGeDtQdFBtvq3oA9jHGpU70VwoLhN2dVU29Ipjs8dG0sTk8KUHhK4sCSGVKILAE5OKiHJTVeTwjFRoScjYoPI2z4pvxcJHIrbVVgr7zyYPTxSNMgF/Um0l8RgyO4E6BvHctZp6GmiK8kR/hTi5yXPi6CEsrKOlDeJm1R9Y9GYWKWHBC6eFynCvIgMiyYay3yXJvV4CyrX4wd9NYKUMnYPlzaI/29Qzjf7S+XjJROGKDoWcB1kVAD0D79xlRrBc3a0tydCST3h/89R8cHimP+f6+3JA6CMb/aXyceIRYwRixQjFgHoEykWiQjwphB/2wQ76APPc0k91qqaOqikvk3pIRla93mReMxD6hQqcPQM73Q1pLC6hSz2RXZsQdX3VtROs5V25NcqPRxDN4D/4VC5vKvrjPQopYcEg5HdieAA4KS4UTE3CGSoIa5P4x12vm7OtdWvBmUWKL87YJuo8PJwo/kjY5QeErgIsjsB+qep3STiEYZ5Ef2X6Npo76UByvjWHouwRWPQV80I8yKowNEFiyYakuPYeBVbUHVp1rCusguPfXuYzNIqGQyqzTnVVN9qy649a2QManYaJaMCwQFAv8phpEZiokLvscjj32Vh56tCuDyalF172rBIZFLrWFyIH0lt85DAAXByeZgX0b1ZwyLk42dWHaHmdpOi4zGq7Iqu0lyTk8MoNsRX6SGBi4T5e4mEYYYKHF2waKIhOQ4TFSnIqNAl3u6YERskjg8ca6D3thYoPSRD+mRXsXx8Dmp26lqwnycF+XiKYyyaAJxcNmIR3Tt7ZIx4Yyw12n39pzylh2RIn+xELGKksnixwbaJKMQiACeXXdkoHyMW0aeZqRE0x17tobS+jZ7/8ajSQzKkTzEvYhhcdi3BnlDK/fSQwG2DRRMN2Z5fIx+PirPVmwZ98fRwp0eWjJHvP/F9FlU12bYew+DYXVhLX+wpEcfBvp40dwRKc+k+OLBvRS2tayOT2aL0kABUbbtD6UjEIvrk7u5GjyweI2e+v/DjUWzTH2RHyxvp/W2F4tjXy50WjMJEhd5JsUhdSyc1tqGXEEBvEIsY4z3aQxeOlnvnvfFTHmVXdC2WgevxboM3frYlzni6u9G5Y1GayyjlQrldQEUjegkxLJpoBE/kbc+zLZpEBfnIDcNBf6YODaelkxLEcWObiR77JlPpIRmGxWKlB786JN+//ex08ve27UIA/eJm1sxksVJZA4IDgN56LGzJrRbHvH17zJCu3hegL9wM/tpZQ8VxW6eFHna4NoLrn2cPfnVQzvC7ee4wCgvwVnpYMJjN4GtRogugN1IswhO50s5I0J+hkQF045w0+X3afZ8fFNdIGBx/++YwtZtsCYXXnTaU4kO7+m+BPkk7TRjKhdpg0UQjDpQ0ULO98eqM1Aix8g76de+5GWKXg1Qqaqs9MATX+jGzgvYW1Ynj4dGBdPWMZKWHBIMAzeAB+oZLNVU22nY/Tk0JJy8PhJF6xokDnKjDfjhUTmsOlys9JEPYlldDG7NtcV9CmB/dcEaq0kOCwW4Gj1riACdU0dBGufaeJuMTQynAXmYX9OnmuWny6+Pm3Gq5IgS41qGSBvr2QJk4jgz0ptvmDVd6SDDo8yKIRRje7WqoMbVkRmq4omMB14sM9KE7F46Q7//uw93YHjcIvtrXFYTx+ceEoLF2mjDUEgfoayzS1aAT9CnY14v+ct5I+f4fP96LN1CDHIvcPj+dfL1sTTnBODtNirDTBOCEeOJcgnkR/eNrIJfpkvzl8wOiOTkMXixy65nDREwI+od5kV/CjKDGtqBKTbFA/66cnkzTUmyBYHlDO9363m40Y3Khtk4zrTlc4dDLJFrpIcEgSY7oKndYUG3LXAOAX0IsYjwXjo+neRm262FtSyfd+J+d1GEv1QDOx3HedwdsO3q4jvtCNF01jOSIrkUTxCIAJ7Ylt6vP68zUSEXHAoPjrIwYWjwhXhw3tZvohnd3UEuHSelh6RaXQPtmf6k45v5254+3nXsw2rwIFk0YFk00oNNsoR32JvDRQT6UEol+Jkbg4e5GL105iWKDfcX9bfk13SaswLk2HKkUQRg7e1Ss3HQO9M/xNVXa7g8APfUzscUigT6eNDoejVeNgMvBPn3ZBHlC92BJA/2YiTJdrizNVdVkK4E3Nz1KPNfAGBCLAPSNVLbaywP9TIzksYvHUkZskPwauXKfbVIfnI9jPWnCfHpKhKiCAsbA8b7UCSK3Eju6GGYFNYC3H0r9TKajn4mhcC1xxzJdOwtqFR2PnknZFOy8ccjsNBKuGc+NJFleFSYqAHpyrK5VnsydMjSMPFG+0DBC/L3oz+d2lelCLDJYsUicomOBwRUe4C33M0QsAtCz+tZO0V+NjUsIJT9vlC80Cn9vT3rggq4yXbsQiwxKLHIuYhHDlcOLD7GV6OLXWqsVlW7wjlcDCh3qR3NzajAWnpyS7C5EcOCq0lyr7aW5gnw96fRhUUoPCQYRT/4m2bOoeaLCgjJ4AL+AWMTYHLN5dxfWKToWvTKZLXLTVd7tOm9kjNJDgkHESXEpUYHyIjXHpgDQnWNfLcQixjMhMVRU42CIRQanNNei0UgmNZrUKNvO18Y2E1U3d5DRYdFEY8FBUnhXvVswBv4/5+wztruoDqu9LrD6cLlcmmvhaJTmMqLUSNsbr3aThUob2pQeDoDqIBYxtohAH7lE175j9ehr4gIbc6rl3VxnjkBpLiNKcyjRlY++JgC9JnAkIhYxHN5ZNDLOVqLrSEUjNbR1Kj0k3eH5pnx7aa4ZqRGi8gkYS6pDLJKHna9YNNHaREViuG2rFBgr82xSUqg4rmvpxAuXC3y++5h8fPHEIYqOBZTNqGB5qCUO8AtFNa3ycQImKgxpUpJttwkvmBwubVB6OLqORS6amKDoWED5viaIRQBONi+CWMTIsQjnke4rqld6ODqPRTAvYkSIRQZx0aSmpoauuuoqCg4OptDQULr++uupqan3ZjJz584Vk8SOtxtvvJGMrFtGRRiCAyOaaA8OGLaiOld1Uzuty6oUx7HBvqJvEBg8OKhC0zM9QSziHIhFYKI9gYOhXKhzNbeb6Dt7aa4QPy86MwNlQo0oxSGBQ+rbAPqAWMQVsQiSSY0IsYjrcFLMV3tLxLGPpzstGoPSXEYklQpluYhFXLtowoHBwYMHadWqVbRy5UrasGED3XDDDSf9ueXLl1Npaal8e/zxx8nIimpb5RcubI8zpomJDsFBEYIDZ1q5r5RM9h4WiyfGy3VSwbiLJjnIqNAVxCLOUVTbNVGRgIkKQ5qY6JDAUYQEDmf6/mAZtdp7WHADeB9PNDc2eiySi1hEVxCLOHdehKFUqDEhFnGd9UcqqbbFVvJswehYCvL1UnpIoHB5rtxKJJO6rFju4cOH6bvvvqPt27fTlClTxOdeeOEFOvfcc+nJJ5+k+Pj4E/6sv78/xcZiVZNx/wppGypvQeUMEzCecYmhxP/1vA11U3Y1dZot5OWB6nqnivuY/HNdtnwfW1CNq1t5LmRU6AZiEeeX54oJ9iFfL0zoGlFGXJBI4OHeT1tza0SjajwWTh2fx+fWHJXvIxYxLux61SfEIs5TbJ8X8ff2kHt+grFwf7Uwfy8xub+zoFa8n0cPsFNnMlvoqR+y5PsXTTzx6xLoW3yon+jxyzuP8jAv4rqdJps3bxZbT6XAgM2fP5/c3d1p69atvf7se++9R5GRkTRmzBi69957qaWlK7vxeO3t7dTQ0NDtpieVje3izSnDFlTj4kBgfEKovEXuSYcLGgzc82uOUnmDrenq/JHRlBEbrPSQQCFRgT5ywI3gQD8QizhHS4dJblCN0lzGxcka01LCxXFZQxs9vPKQ0kPShX9tyKUCe9PVaUPDaUpyVxYtGIu/tyfFhfiKY8Qi+oFYxDksFisV23eacCyCZFJj4v/3WWmR4ri+tZPu/XS/SDSGU/OfLQWUWdYojkfHB9Oc9GilhwQK4corQyNs7/cKqlvIbK/KYlQuWzQpKyuj6OjuTzRPT08KDw8XXzuRK6+8kv7zn//Q2rVrRWDw7rvv0tVXX33C73/ssccoJCREviUmJpJey2FgC6qxPXDBKPLysAWHr67PpQ1HbH04YGAKq1vo3z/niWNeSb///NFKDwkUDsClDM/i2hZqN9nKpIC2IRZxDmmSgiEWMbY/nzeSfL1sbx/e31pI3+wvVXpImlbR2EYvrs2W36Q+vGQ0JgINTopFOIu6trlD6eGAEyAWcY7yxjbqMNuTSRGLGNpdi0ZQkD3ZjXtwfLyjWOkhaVpDWyc9teqIfP/hxWNQstzgpFikw2yhYw7vA42o34sm99xzzy8akh1/y8zMHPCAuLbnwoULaezYsaL25zvvvEOfffYZ5eTk9Pj9HEDU19fLt6KiItJtszMEB2T0ZvD3njNSvv+GfcIfBmZNZrncy+SG2amUZF9NB+Maag8O+GFh9OBA7RCLDP4isyQBsYih8Y7MRxaPke+//lOuouPRug1HquQd5VdPT8KOV5BjkePfB4L6IBZRLhZJDEcFDiNLjgigJy4dJ99/7adc7DY5BZtzqqmxzSSOL544hCZjx6vhIRbp0u/ifytWrKBly5b1+j2pqami9mZFRUW3z5tMJqqpqelXXc7p06eLj9nZ2ZSWlvaLr/v4+Iib3muIMyyawHWnDRWLJcfqWunn7CqqbmqniED9Pv5daUd+rXy8aAxqBUP3EojcaDI1KlDR8cCJIRYZXNj1Co4unZIoYhEu47CrsE703kOMOjA78mvk40Vj4hQdC6iDYwlEfu0dn2grzwvqg1hkcKEJPDjia+bUoWG0Pb+Wsiua6HBpI42KR+LBqccimBeBX8YiRtbvRZOoqChxO5mZM2dSXV0d7dy5kyZPniw+9+OPP5LFYpEv+H2xZ88e8TEuzphvJLrtNEEdccPjjKULJ8TTy+tyRG1BLovx65lDlR6W5nAmynZ7cMB9LDJig5QeEqhAgsNrLJfoAvVCLKJkLILsTiARi2R+Z+uv9uXeErrlzGFKD0mTpFjE092NJmByHEQs4tdjaURQH8QigwvzInC8CycMEYsmUiyCRZOB2VHQlUyKXSbwy1ikhYzMZT1NRo4cSYsWLaLly5fTtm3baOPGjXTrrbfS5ZdfTvHx8eJ7jh07RhkZGeLrjLeaPvLIIyKgyM/Ppy+//JKuueYaOuOMM2jcuK7td0bC2XsSbEMFtniC7fnDvthTouhYtLyDq6LR1tR4YlIoeXq47KUQNMTxNdZxlx9oF2IR58CuVzjeBeO6YpEvEYsMCO8Wzqm0NfseMySE/Lw9lB4SqIDja6zj+0DQLsQizlGMsuVwnPPGxomkA6m3icXgDasHorXDTAeO1YvjtKgAVDGBHmKRVjIyl84Uvvfee+LiP2/ePDr33HPp9NNPp9dee03+emdnJ2VlZVFLi+0C6O3tTatXr6YFCxaIn+Mtr0uXLqWvvvqKjErKMArz96IgXy+lhwMqwPWuR8QEyVkBeEM18MxONnVouKJjAfXAThN9Qixy6qTng7eHO8UE+yo9HFDJm6kp9mzErPJGyixrUHpImrPTIbOTS4wAMOw00SfEIqfOsUQMkkmBhQd40+zhkeKYy5fvLOy6rkLf7C2uo06zbbEJ8yIgGRKKnSYDLs/VH+Hh4fT++++f8OtDhw7t1rApMTGR1q9f78ohaUqHyUIl9bZgGdkUcHxZjCe+t5XF+GpfCd08F2Ux+mNHQdeiyRRMVIBdfKgvublx+bbudZNB2xCLnBo+N1JJjCFhfuRhz+gD4J2vUkkH3vmasQhlMQZaDmMKJirALiLAm/y8PKi102z4OuJ6gljk1EmxSGSgN/l7u3QaCzRk8YQhtDarUhx/secYJv5PoZ8JYhGQ+Hp5UHSQj6jOYvR5EdSkUbGSulYxecewaAKOLhyPshinQqp9ihri4MjH04Ni7Vn0jiUAAIysprmDWjrM4hixCDg6d2ycvIjGsQjKYgx816u0aweA+xdKWfS80wTPKwCitk4zlTfYSisjFgFHZ4+KIV8v27Tm1/tKqdNsUXpImpwXYdj1Co6k19rKxnbxGmxUWDRRMTQ7g95ewCYl2Sb7M8tQFqM/mttNlF3RJI65WRwylaCnshjVYqLYpPRwABSHJvBwIlz3+vRhXWUxdqEsRp+ZzBY6WGKL3VIiUUMcei4XylUHqppsE8UARuZYqg7zIuAowMeT5o+MEce1LZ3089EqpYekGby7bV9xnbyDKwkLkuAA5UJtsGiiYqjbCSfbiirBbpO+40Umyag4lBKB7hzfiBk5OACQOG7JRnYn9FSiS8IluqBv8qqaxYQ4QywCx3NcoEaJLgDMi0Df50W4RBf0DZde4oUmNjIuWOx0BOhpXqTIwLEIFk1UrKima6ICq77QW1mMb/aXKj0czXDclcPBAYCjBIfX2iKU6ALo9jxALALHWzA6lnw8bW8nvj1QilJCfXTYIYFjZFyQomMB9XFcoHZ8PwhgVI5lcxGLwPHmpEdRiJ+XOP7hULmclAC9O1zaNS+CBA44nuMCdbGB50WwaKKRiQpsQ4XjRQX50GR7Dez86hbRAwdOLrO0a6IiIxYTFdAdtqECdIdYBHoT6ONJs4fbSnRVNXXQUXv5S+hdpsNERUYsJiqgt1jEuBMVABKULYfeeHu601kZ0eKY+/BJJaegd4cd50WQwAEnKBVq9HkRLJqomLQFinfJxYdiGyr80ozUCPl4a161omPRYkYFJiqg122oBs6oAJCgJAacDGKRU4xFMFEBvUxUYKcJQPfnAUqFQk9mpIbLx1vzahQdixYrcGBeBI6H8lw2WDTRQEZFfIifWD0H6C042JKD4KAvzc6kniZDQv0oxN+2jRegp+xOIwcHAMfHIkG+nnLpA4ATLZpsycWiSV9IsQg/rzgeAXCEiQqAnmMRLk0dF+Kr9HBAhRCLDDyBw8vDjdKiApUeDqhMXKgv2bsBGDqBAzPxKtXY1kl19qZMjpN4AI4mJYWRt4ftabwF2Z0nxdsKm9pN4hiluaAn/EbMz8tDHO8pqhMLbQBGZTJbqKSuTZ7EQ4NI6An3B+PJf7YltwavmydR19JBpfW259XIWDRehV/ipJ7IQG9xvL+4XrwWAxiZtHgYH+pLnvb3vgCOuNeNtKC2I78WfU1Oot1kppzKZnHMCyZI0objeXm4U3JEgDjOKmuk1g4zGRGeGSqFJvDQF75eHjQhKVQcF1S3UGm9cVeA+5PZyVAOA3rCb8Smpth2cJU3tFNulS2YBDAintg12xt7IxaBE+HM3+n2182aZvQ1ORnEItAX0+1Z043tJjpQ0lVCBcBo6ls6qbHNlvSGWAROhBMQpN0mrZ1m2n8MfU16k13RJMf4nPwC0Ftlmw6zhXYUGLOyDRZNtNDsDMEB9LWWeK4xX8j66pDDm04EB3Aip6V1Pac25WAHFxhXtybw6GcCfY5F8LrZG8Qi0BenpUXKx5tyqhQdC4CS0AQeBlS6HPMi/YhFkMABPZvVLRYxZnyPRROVwkQFDCQ4WHWoXNGxqFlZfRu9vTlfvj86PkTR8YA2goPNmKgAA0MCBwxk0eQHxCInVNvcQa9tyJXvj47Hogn0bJZDAsdmg05UADDEIjCQWATzIifG5cpfWpst38e8CPTlObXJoLEIFk1UKreqq7TBUHsdOYCeTB0aThEBtrrHqw6Xiy3M0J3FYqU/fLRblA1hC0bFUEoknlfQs1HxwRRsr8/PExX8+AEwIsfydIhFoDej4oLlJJ+N2VUiUQG6414vd/5vL5U1tMlJL2OHYKICepYc4U/x9vr82/NrRP15ACPKrcS8CPQN91+QdnByb8och8cOdLnv8wOUX21bjByXECKXWAU4XlSQD42Ise1E2l9cR/WtxptrxKKJSh0t73qBT4sOVHQsoP4GTRdOiBfH3PBs5f4SpYekOj9nV8lbdLlB3D+WjlN6SKDy+vxSVkVtSycdLkMtcTCmo+VdvReGIRaBXri7u9FFExPEMa8zf77nmNJDUh2ewFl9uEIchwd403OXT0QTeDghfmzMtO98beu00O5C1OcHY3Lsk4VYBE5m6aQh8vGnu4oVHYsaZVc00me7bTFaoI8nvXDFRNHTE+BEZtp3vnJ8vy3PeGXv8OxQaSZatn1VPDbYl4J9vZQeEqjc0km2iQr26S5MVBxvo0OJpXvOyaAw+84cgL6UxdiRX6voWACUIsUiAd4eYsEZoK8TFZ/sLBbxLFCPZQ3uODudYoLxnIL+xCLGm6gAkBpWS0lNQyNRngt6x8mk/Fhhn+06hooBvcQit5w5TOzOAejNLIPHIlg0UaHq5g6qs5dYQjYF9AXXxJa2ze0sqKV9xchGc+TYCO60YV39KgBOZGxCqHycWdaVbQ9gFG2dZiqubZVjEWTEw8nwG+8pyWFyZjD6MHS3JbfrfMwejlgETo7LpkgQi4AR8YS3VLY8OdyffDw9lB4SqFx0kC+dYb/GltS3oc/acRCLQH+NM/i8CBZNVJxNwbBoAn3Bk1lXTEuU7//l8wNkRlaF3OjswLF6cTw8OpAiA32UHhJowIhY2yIky0R5LjAgrgMtbRRAmVDoqyumJcnH931xQJQNBaJOs0Xetci7yJPQzBj6gPvvedvLphhxogLgWF2rKE/HEIvAQGKRR1YeopYOk6LjUQveAbzVnkwa5Osp938B6E1MsA+F+nsZdl4EiyYqr9uJ4AD66qoZyZQeY3u87Cuup/9sKVB6SKrAWwilBSSpTwXAyXCNV6mpcVZZI7Z2g+EggQMG4qKJQ2hCoi0jLaeymV7bkKP0kFSB47LWTrPcAB47t6AvuM689PqbV9UsdgACGMnRCvRWg/47e1QMnW6vLsELb8+tPqr0kFQT23NVGzZtaLhcxgygN25ubnJVm/KGdqqxP4aMAosmKpTjMFHBmfEAfW0I/9clY+X7//guk/KrmsnoHEtzTU8NV3QsoC0Zsbbsm5aOrjJFAEZcNBke3bXzCuBkDeEfvWgMSe/Dn1+TTYdLjZeV1ls5jOlI4IB+yIizvf5yApDj6zKA8WIRzItA3yd5H1kyhrw9bdOd//opV5QwN7rusQjmRaDvRjrsSjLabhMsmqgQsjthoKalhMvbUXmi9w8f7RElIYy8BXWTQxP46SmYqIC+G+lQouuwwYIDAMQiMFCj40No+exUcdxhttAfPtxj+Ax5x1gEu16hP0baEzgYSnSB0SAWgVMpb/i7s4aJYy4YcPtHe0TZbiPbmN21aIJYBPojw2FehKtwGAkWTVQcHHDduIgAb6WHAxrzl/NG0tAIW63sPUV19OG2QjKqj3cWi5IYjEuXRQWhnwn03QiHiQqjBQcAUizC9fQTw2yl6gD66o4F6fIbrKzyRnrj5zwyqm/3l8oTFXEhvnKMBtDfHmtZSOAAAy+apEVh0QT658Y5aTQ5OUwcF9a00Is/ZpNR/XS0kr47WCaOg309aRT6mcBA+72WGmteBIsmKtPY1kllDW3ieFhUIGoeQ78F+HjSU5eNl+9/tvsYGRGXJnvwy4Py/dvnpys6HtBuSQwjbkMFY+Mdilw/X8rU47r6AP3h4+lBz10+Ub7/uUFjkbL6Nrrn0/3y/T/MH47YHk4hFjHWRAUYG1cMkHq9xof4ive4AP3B8eszl00gLw/bdfeLPccM2aeSe1Cs+O9e+f7v5g1HbA/9kh4TRFL4arR5ETxTVKagukU+To0KUHQsoF2Tk8PlpvC7CuuotN54/Rie//GoKFHGfjUlkc4ZG6f0kEBjhkYEkI+9Fq7RMirA2ErqWslkf1OJWAROJStNyvDkia+j5cZ7HX1lfQ7Vt3aK43PHxtJlUxKVHhJoTFSgD4XbKw8cRiwCBlLb0kmNbbZySqnYZQIDlBThT6fZm8KX1rfRnuI6Mpo3N+ZRRWO7OJ49PJJ+c1qK0kMCjQnw8aSkcNtO6SPlTaLPmlFg0URlimq6Fk2kByXAQJzrsEjw7X7bVkyjaO0w0/cHbH9zkK8n3X/BKKWHBBrk4e4msipYfnWz4Wvyg3EU1XQttCMWAWfFIt8YLBYxmS20cl+JOOZmtI8uGYtdJtBv/JiRSt1VNbVTdZNt4gvASPMiiYhFwFmxyL5SMtqOrS/22GIRdzeifywdR+58ANBPGfZYpLXTLMrdGQUWTVSmqBbBATjHeQ7BAW9FNdKbrB8zK6jZvsvknDGx2M4NA5Zmz7LnZArHN28ARolFEhCLwCng3RWSr/aVUEWjrQStEWzKqaaqpg5xfNaIaApDn0IYIMdeDvkOVQkAjDMvgt5qMHALRsWQp32h4Jv9paJ0plHsLa6XJ7hnpkVQfCieS+CMWKSZjAKLJirO7kwIw0QFDNzwmCAaHh0oXyyn/W0Nvbo+h4zgy71dtdMvHD9E0bGAtiVFdJUmMlJGBRhbt+xONIGHUxAX4keTkkLlhr7T/7aGnv4hi4zgy722zE62eEK8omMBbUuO6HpPiAQOMOK8SCLmReAUhPp7yyW6SurbaMZja+ihrw6KXRh696V9lwlbjHkROAXJBo1FsGiiMsioAGf61dSu2tlcd/Dv32XStrwa0jOuHb42s1IcRwb6iIwKgIFyLE3k2HMKQM+Kah0mKrDTBJwYi/D8xPM/ZtPazArSMy7nKJUJDfTxpDMzopUeEmiY4+swYhEwClTgAFfFIuzNjfn0lc5LdXUrE+rhTgvHdO3+BeivRIPGIlg0URlpxc7Xy100/gM4Fdzk641rp9ASe4YjT1bc9b+9oueHXv1zXTZ1mC3i+PxxcaIvBYAzMiqw0wSMwjF7aAi28cMp4ubnb/9mGl3uMGFxz6f75AbpevTGz3nU2G5rYLxgdAz5enkoPSTQMMQiYETY9QrOxCW7318+na6dmSx/7oEvDlClvUG6Hn2wrVBuAD9nRBSF+HkpPSTQsGSDVuDAoomK8PbAYnt2J5fmQrNIOFXc5GveyBh66rIJNCU5TK6F/J8tBaRHuZVN9O+f8+Smq7xoBOCsnSZGCg7A2Irt2Z0xwT6Y7IVTxvHsnPQoeuziseIjK29opzd+yiU9Kq1vpRd/zBbHnLdxwxmpSg8JdBWLGKeOOBibNC/i7+1B4egJBU6IRWalRdJDi8fQeeNsvV9rWzrppbW267Xe1DR30JM/HJHv3zgHsQicmthgX7FjiRVipwkogVe52022DHlkU4Az8W6Lv108Vr7/zQF9bkV9ZOUh6jTbapPeMDuVkhwy8wAGIjrIh3w8bZfKAgM1PAPjaukwyc2rUUMcnD1h8ehFY0jKCfrGXr5Kbx77JpNaO207en89I5kyYoOVHhJonL+3pyg5a7SSGGBcFouVjtkXTTgWQTIpONPDF44WCZbsuwNl4vGmN0/9kCXv6L144hCanByu9JBAB3OKCfZ5ak4mNUJPIIZFExVB3U5wpfSYIMqIDRLHuwvrqLyhjfTkx8xyWptVKa+C33xmmtJDAh3gN2lShif3edBjUA3QU2YnQywCzsY7qaWdr9wYnm96wn3jpAbwYf5edPvZ6UoPCXRWootLrei5zC4AK29sk8sto88rOFtEoA+dbm8MX9bQRvuO1ZOeHDhWT+9vKxTHAd4edPc5GUoPCXQiyR6LcHKQlGSnd1g0UZGiGoeJCmR3ggssGN3V/OuHg/rI8Gw3mWlPUR09/NUh+XN/Om+kyMoDcOZERYfJIt7EAegZaoiDqy10iEW+10ks0mm20L7iOnrgy4Py5/64cASF+qOkDDi/RJdjoh2A3udFeLEdwNkWjo6Rj3m3iR6YLVaxYPLglwdFL1t227zhFBPsq/TQQCeSDFguFIsmKp2okLY9ATjTom4TFeWkdVlljTT3iXW05KWNolcLmzY0nC6w1ykFcAbHbHsj1e8EY+oei2CiAly7aKKHBI78qmaa//R6uvDFjXS4tEF8blRcMF0+NUnpoYFeJyoQi4DOYV4EXG3+yBjRd0yKRbReaoj7qS16dgOd/8LPtKOgVnwuJTKArjttqNJDAx1JMmC/VyyaqAjKc4GrjYwLkrc4b8mt7haQasneojr6cFshXfX6Fiqt78r893R3owcuHIW6t+BUyQ6vxwUafc4A9BWXoZMkoCQGuADHuLyowPYW19OR8kbSooMl9fTxjiK68l9buvWZ4EmYhxaPFrWfAZy965UhFgG9w7wIDEaJrqlDbX0+cquaaVdhHWk1ifSTncV05b+20tHjSp7ef8Eo8vH0UGxsoD/JEQHysVF6rKF+jYqgPBe4Gi8mXDAunv65LodMFivd/ck++s/108ldQ2/sP9peSHd/sr/b53jyZcHoGDojPYpGx4coNjbQd+1OptWFRoCBledCLAKuccH4eDpk35Vx5//20Sc3ziRPD+3kcn29r5RueX9Xt88Niw6k88bG0cy0CHkiBsAl5bkQi4DOYV4EBisW2ZpXI47v+WQfrfzd6ZpaZFh/pJKWvblNLsUlXSuWTBwi+sfx3AiAMyUZcKcJFk1UJKfStjIc6u9FIf5eSg8HdOqmuWn0+e5jVFLfRptyqunSVzfTlKFhdPv8dPL1UneQ0Nxuoie+z+r2ubFDQsTCD54z4CpJ4cbLqADjkmIRb093igtBDWRwDS4X8fHOIsqtbBa7R5e+vIkmJ4fT7WcPpyBfL9X3UvvbN4e7fW54dCC9v3wGRQX5KDYuME4CR0G1MeqIg3FJscjxu6wAnOlXUxPpw+2FdOBYg9ilcdFLm+R5kbAAb9X3L3n060PdFky4osgHN8ygIaHYKQ6ukWTAUqHaSenSudrmDqpobBfHI2KClB4O6BhPRvzjknHy/Z0FtfTq+lx6yKGRulq9/lMeVTV1iOPTh0XSm8um0mc3z8KCCbgUB6BSxbd8TFSAjrV1muX+UMOiAjWV+Q/awkkaT146Xq4nzmW6/r0xj+79tPtOUjV6b0shHauzZUFzJufr10wR2alYMAFXigr0IX9vW3KT9DoNoEcWi1Uu28gxeIAP8nzBNbw83EUs4uVhC0Z4B+w7mwvoDx/tUX2Pk093FdORctvi4uj4YHrl6sm06vY5WDABl/Lz9qBoe7xrlHkRvBtWiSyHes4jYrFoAq41e3gU3blwBIX4dS02fLCtkNZmVZBaVTe1079+yhXHXCf84cWj6cyMaEzqgcvxNm2pCSVnRas9iAY4lcxOzlxjiEXA1SYlhdH954+icIdszpX7SumrvSWkVk3tJnpxbbZ8/8ELR9P8UTGaKucB2i2xy019pZIYHSaL0kMCcAlelG7pMItjJJOCq2XEBtOjS8ZSZKBPt7JXH2wrIjUnOT27+qh8/77zR9GiMbGqrxoC+pAaZYtFOJm5vrWT9A6zjSpq4CTBRAUMhlvOHEZ7H1hAf10yRv4c1/Lki7AavbQ2R0xWSFtpU6MClR4SGEhqpO3xxo/BSvuuQAC9QSwCg23ZaSm0676z6bnLJ8ifu++LA9TQps43Yf/akEs1zR1yLfQxQ9BHDQaPFPvy4rZRaomD8WQiFoFBdtnURNrxl/n072VT5M/99etDqn3P958tBfKO17kjomhGaoTSQwIDSXWYh8t1KKWoV1g0UeNOE2RUwCC6anoSzR4eKY7LG9rp56NVpDbFtS0iOGC+Xu70+3nDlR4SGDSjguVUGmMrKhgPYhFQyuIJQ+jcsbHiuK6lk9YcLie1qWpqp9ftO1493d1oxdnpSg8JDCbVvtPEKBMVYExSaS6WjlgEBtFZGTH0qymJ4ph3O317oJTUhpNKXrLveOXy0XctzFB6SGDoWKSZ9A6LJirM7kxHRgUM8nZ/bsgq+fZAGalFXUsHrfjvXlry0ibqMNvKEPzmtBSKCUZzYlAwo6IKExWgT9hpAkq67rQU+fjb/eqJRZrbTXTvp/vovOd/omZ7yZgrpiXRUIc3jQCDncCRW6X/iQowJsedJlw6CWAwXXf6UFXGIlwN5IEvDtA5z/5EtS223biLx8fTqHg8R2BwpRlsXsRliyaPPvoozZo1i/z9/Sk0NLRPP8N14u+//36Ki4sjPz8/mj9/Ph092lWrT6/47z5iDw64cVOwL5paw+CalRZJgfYme98fLBPZC8+vOUqd9oUKpTz69WH6ZFexyO5k3IPl/+akKTomMKY0g2VU6Anikb6TYpEgX0+KC8HiNAx+jxOppvi6rEr657psevL7LMXLhj71wxFR25x34zI/Lw+6bd4wRccExi4VyrDTRFsQi/Q/FuHm3FIfH4DBwjuth0b4i+OtedViXuSxbw+LBAolvbwuh97e3FWWi58fd5w9QtExgTGlGGxexGWLJh0dHXTppZfSTTfd1Oefefzxx+n555+nV155hbZu3UoBAQG0cOFCamtrIz0rqW+jRvuLcHoM+jTA4OOmYdxUXerZ8MT3WfT0qiP02gZbGQqlMp55wYR5e7qLEmKv/npyt+b1AIPFaLU79QTxSN9wIz+OR6Q3jLwLEWAwebi70YLRMeKYd5c+/l2WaLr+zOojio2pqKaF3t2SL5fkmpUWQS9fPYmig7CoCIMvJcpYExV6glikbzpMFsqxx9m8SMjvAQEGE8e/C8fYyoVarCTmRV5dn0uPfnNYsTFVNLbRv+zlQd3diKalhNMLV0yiJPviDsBgSgjzE4t2RolFXHYVeuihh+j222+nsWPH9jmT4tlnn6W//OUvtHjxYho3bhy98847VFJSQp9//jkZIZuCjcAWVFDIOfbgwBFfnKXm64OltL6Vnl19hO747x4RqDCuG/7u9dPR5AwUExPsQwHeHuIYJTG0BfFI3xx17GeC0lygoljknU0FcvP1wcLNX19Yc5Ru+2A3dZptwciNc9Lo/eUzaO4IW5IJwGDjXeEcjzDEItqCWKRv8qqayWR/A4hYBJRyzpi4X3zuo+1FVGLf5TGYpcp51+2t7+8WPVbYr2ck03//byYt6iFeAhgMnh7ulBxhS+LIq24mszRpp1OqWbrPy8ujsrIyse1UEhISQtOnT6fNmzef8Ofa29upoaGh201r9hTVyccjYrHTBJQxJz1KnhSWcDNWqQH7YLBYrHT9Wzvo2dVH6WCJ7bnMJWKundVVWxRAqawjKcOTM4/bTcqWiwF1xSP6i0UwUQHK4OSI8ADvbp9r7TTTGz8P3s5Xnqy85f1d9NSqI/LzIszfi26YkzpoYwA4WYkuXkjkCTXQJ6PGInsRi4AKjBsSIrLpHfHE8CvrcwZ1HH/8eK/Ydbstr0bc57ma2+YNH9QxAPTWDJ53Bw72YqJhF004KGAxMbZt+RK+L32tJ4899pgIIKRbYmIiac3arAr5GJn0oJQAH0968apJdMnkBHrmV+NJqszy+k+51GrPbHA1bkJ/qLQrwOftpw9cMEqUDwNQWop9ooKTKQqrW5QeDqgoHtFbLDITsQgoxMvDnV66chItnZRAz18xUd7+//amAqq3Nz51tZ+OVskTFIzjoT+dOxI9B0F1zeBzDFAWw6iMGov8mIl5EVCeu7ubiEE4Fnnhionkb08s/XB7EVU0DE55vF2FtbT6cNfzgf1x4Qi59xuAWkqX5+i8dHm/Fk3uuecekW3b2y0zM5MG07333kv19fXyraioiLSkvKGN9hXXi+NRccEUF9J9RRtgMJ05IpqevHQ8XTQxgc4da9uWWtXUQe9vK3T57+ZVai7LJeFx7PzL2bSoh+2xAEpmVDBMVChLbfGI1mORhrZO2pprmyRODPejYdHY9QrKmZkWQU9dNp4uHB8vEjkYlwp9c1Oey393p9kierpJHrpwNO3483y6dIr2Jh/BCA1Y9T1RoXaIRZyLd3H/dLRSHPOOwwmJoUoPCQxsUlKYiEUuGB9PV89IlucrXh2Enq+8q+UZh1jkrkUjaNuf59F1p6W4/HcD9HdeJFfn8yKe/fnmFStW0LJly3r9ntTUgW1dj4211eQrLy+nuLiuSVK+P2HChBP+nI+Pj7hplWM2xbyRqJEM6nHbWcPo632l4vjV9Tl01fQkl+z44JJcf/psP322+xi1myzic5OTw2jppCFoRAyq4jiRzP0fUEtWOWqLR7Qei2w4UinXEJ+XEYPXXlCNm+YMo//uKBYTCP/+OY+uPz2Fglyw44NLcj2y8jC9v62A2jptsUhGbJCoHc4ZpwCqjEUqsGiiJMQizsXJG8326gZzR0SRB157QSV+OzuF3t6UL+Yq3ttaQDfNTXPZjo+nf8iiN37Ok58LnMy0fHaq2IkLoBZp3WKRrr6YZPRFk6ioKHFzhZSUFBEcrFmzRg4EuA7n1q1b6aabbiK9WuOw5W7eyO7bbwGUlBEbTAtGxdAPh8qporGdrn59K50zNo6umZns1Is2l+Tira6OVixIx6QdqA5PoEkyHZpmw+BDPOJcP3aLRZDAAeqRFOFPSyYMoU92FVNDm4mufmMbLRodS9edNtSpiRw/Z1fRvzd238lyx9npWDABVcbnkswyxCJKQiziumTS+ZgXARWJDvKlK6Yl0Vub8kVixbX/3kYLR8eKxRR/735NqfZqd2EtPf9jdrfP/X5eOhZMQHVGOM6L6DwWcd4z/DiFhYVUU1MjPprNZtqzZ4/4/LBhwygw0LYqlZGRIWpvXnTRRWKC9A9/+AP99a9/peHDh4tA4b777qP4+HhasmQJ6VFbp5l+zrZtQeWVam44BaAmt501XCyasB0FteLGNQv/dtHYPv8bnB36zf5S0diPS8A0tJrEx8Y2E6XHBNHqw7Z/n503Nk5sgZ2VFumSvwfgVAyNDCBvD3fqMFsoS+fBgZ4gHjn5bj+pnwk3mJyWEq70kAC6ueXMNPpsd7HoJ8WxBN+4/9nzl0/oc4IF7yT5/mA57SyokeMQKSZJiwqgTTnV8vfOHxktYpEFo7GbENQnJtiHQvy8qL61k7LKtNfo26gQi5zcmkzbe0LuZTV7ON4LgrrcOCeN3t9aKN4HHixpEDde5Hj92ql93hXFsci6rEranFtNDa1dcQh/TAz3p33FdfL3npEeReePixPVNwDUJtDHkxLC/Ki4tpWOlDWK95N6TTRy2aLJ/fffT2+//bZ8f+LEieLj2rVrae7cueI4KytL1NuU3HXXXdTc3Ew33HAD1dXV0emnn07fffcd+fr6kh7x5LNUAuD0YRG6fZCBdo1NCKHfnTWM/r0xX9QTZxwsjIwLFiUrToZfPO/5ZB99vLO4x6/vP9b1/OeSXC9eORE7TEC1OMuHt6IeLm2gvKpmUXvZx9P5JevAuRCP9O5YXSvV2htsc9NVPKZBjc0m716UQS+uzRYJF+yrvSU0Mi6Ibp47rE+TFA+vPERvbsw/aSwyIiaIXvv1FMTkoFocJ3OG57a8GipvaKe6lg4K9fdWelhwEohFelfb3EFFNa3ieGJimEvKMAKcitgQX7rv/JGi75kUN6/NqqQnvs+ie87J6NO/8czqo/T8mqM9fk3qc8x4Mvr1a6aQtyd2mIC6q3AU17aKUnL8fpIX/vTIzcrvJHSEt62GhISIgCM4uGv7shp9ubeEfvfBbrm5U1/e+AEogV8m/rezmO783z5xn7Pt1905l+JD/Xr9mb98foDe29q3JvLv/3Y6zRqGrCJQt9s/2iP677Cvf3c6jY7Xzg5BLV0ftU5L55p3mVz35nZxzDWaeXIaQI1su0XK6Mb/7BL3eV3jh9vndOvx0NPP/P27THp1fd8at75y9WT0qwLVu/+LA/TO5gJx/OENM8SCt1Zo6fqodVo617wLcOnLm8Xx1TOS6K9L+l7VAGAwcVzx09Equu6t7aKiBvviltNofGJorz/30tpsscDSF49fMo4um5LolPECuMoT32fSS2tzxPG/rplCZ4+K0eX10WU7TeDkchya96VFnfgNH4AastounZIotqFyLU/elvrglwdFqYzq5nbx+B0eHUgpkQEUFuAtygZ8sK1QXjDhLat/XTKGJiWFia8F+3mKXVZ//my/6Gly3rg4LJiA5up3cokuLS2aAPQEsQhoKRZZNCaObjtrGL3wY7aIQR766iAF+3pRcV2rKLPFCyipkYEUbo9FVu4r6bZg8sAFo0QJUI5D+OfMVis9+MVB+nT3MZqTHkULR2vnDR8Y1/GxiJYWTQB6klPRLB8jFgG1xyJcOuvuRSPob99kis89+vVhGhLmR7mVTWI+ZHhMEKVGBthiEX8vWptp25EiuXPhCNFDkOOQYD8v4r2tj35zWMyfTEkOo4snoiQXqN8Ihx5rXC5US4sm/YFFE4XLc0kQHIAW/H7ecLHjhEt1Sb1O2O7Crvqbx+NqW09fNp4WT+h+8edKAi9fPVnU8AzywUsRaHOiAkDrciodJyoCFB0LQF/rinNSRk1zh8j2lHCvk948etEYumr6L0uLPv2rCfTg4tEiFkGJUNBKSQyjNGAFY8C8CGjNslkp9PamAlGWaFt+DZG9AuhehzJbPbn3nAz6vzlpv/g894zlr3GvCMQioAUZBolFUCRPBRMVnu5ulByhz/pvoC+8i2TZrKH9+pnHl477xYKJI86wQGAAWmGU4ACMOVHBvSMA1C7Ax5P+74zUfv0M7zDpacFEglgEtCQ9xjGBA83gQWeLJr2UXARQC+43csuZ/Suvv+Ls9B4XTCTcywexCGhFSmQAeXm46T6ZFOndCuEG2bx9jyVF+IsGwwBa8NvZKfSfrQVU19IpymC89uvJ1NJhpuyKJiqqaaH61k5xa+k003lj4+jcsXFKDxnAaWKDfSnY15Ma2ky6Dg7AOKRYJCrIR5QzAtCCX89Mpn9vzBONsBPD/eiNa6dSp9nyi1iEm1POy4imiyclKD1kAKfhibUhoX4iw/lIeZOosY+JNtBDMqmflwfFBeuv0T3o0yWTE+i1DTmUX91CMcE+Ihbx9HCjo+VNVCjFIi2d1NRhollpEb0mbwBojZeHu9gZyImkuVXN1G4yk4+nB+kNFk0UwkFuu8kijrEFFbQk1N+b/nfjTNqeXyt6kXB2JhszBL0dQP94UiIjNlhswy5raBOBMNeqBdCiupYOqmrqEMcozQVa4u/tSR/dMJM25lTRuWPixE5Yhj5TYKSdr/x+kkvm8seEMFQtAG3iiTaeYGapUQHk7o4FQNDObpP3ls+gtZkVtGB0DEUH2Rb8+L0igFFikcyyRjKLTQHNNDJOf499bG9QCOp2gpYNiw6iK6YlyQsmAEaSHtv1mp1Vjt0moJd+JohFQFuGRgaIrE1pwQTASNLRYw10orC6RUy4McQioDW86+/qGcnyggmAkaQbIBbBoolC0HgVAECbRjhkD6GWOGgZEjgAALQJPdZALxCLAABoU4YBYhEsmigEzc4AALTJCMEBGANiEQAAbRphgOxOMGAyaTSSSQEAtMIIyaRYNFFIToXDREUkJioAALQiPQYTFaAPORVdExWpkZioAADQitTIQPK0935ALAJ6mRfhxzUAAGhDfIgvBfl66joWwaKJQvKrbRMVEQHeaCIMAKAhIX5eIkCQeppYrbY6zABajUV8PN1FTWYAANBOA2KplBHvGuwwWZQeEsCA5NljEZaCBA4AAM1wc3OjEfaE0pL6Nqpv7SS9waKJAlo6TFTe0C43sQQAAG2WxWhsM4kAAUBruOkqN19lyRH+5G7PWAYAAG3FIiaLlXKrurL1AbQkv8q2aBIX4kt+3h5KDwcAAAZYLvRIuf52m2DRRAH5VbZJCjY0AosmAABaY4T6naBvJXWt1GG2ZSYjFgEA0B70NQGtq2/ppNoWW2YyYhEAAO3J0Hm/VyyaKFgOg6VE+is6FgAA6D+9BwdgtFgEExUAAFqDWAT0VJoLFTgAALRnhM6TSbFoooA8+xZUhuAAAEDb2Z2ZpZioAO1BLAIAoKdYRH8TFaB/eQ5l5ZBMCgCgPSPsPU30Oi+CRROlJyqwDRUAQHO4+So3z2a7i2qVHg5AvyEWAQDQtiGhfhTm7yWO9xTVkdVqVXpIAP2Sh7LlAACaFuLvRYnhfuJ4/7F66jDZyj/rBRZNFGx2xpDdCQCgPd6e7jQ+MVQcF9W0UkUDmsGDdmMRlOcCANAeNzc3mpwcJo65L0Suw+s6gBYgFgEA0L4pyeHiY7vJQod0tvMViyYK1hGPCvKhQB9PpYcDAAADIE1UsJ0F2G0C2pJfbcvu9PPyoJhgH6WHAwAAAzDJMRbJRywC2pwXcXMjSgxHeS4AAK3HIjvya0hPsGgyyBrbOqmqqUMcp2ALKgCAZk1xDA6waAIaYjJbqKjGtmiSHOEvspUBAEC72Z1sR4G+JipA37icnFQqND7Ej3y9PJQeEgAAnOK8yE6dzYtg0WSQ5TvW7USzMwAAzZqUpN/gAPStuLaVTBZb7XuUwwAA0K5xCSHk5WFb+EYsAlpS09xBjW0mcYxYBABAu9JjgijIXkWJk0n11GMNiyaDLM++BZWhnwkAgHaFBXhTWpTtdfxgST21dZqVHhJAnyAWAQDQB87OHx0fIo5zKpupttlW0QBAK6W5GJJJAQC0y8PdjSYk2fq9Vja2iwQ9vcCiySDLKutqipMaGajoWAAAwDl9TTrNVtpXXK/0cAD6JKusUT5OxaIJAIBueqztKsRuE9CGzG6xCOZFAAD0Ui50p452vmLRZJDtLeqaVBufaMsKAgAAbUItcdCivUV18vH4RFtWEAAAaBN6rIH2YxHMiwAA6CWBY4eO5kWwaDKILBYr7S22BQfRQT4UG+yr9JAAAOAUTHLM7sREBWhsoiLA24PSopDdCQCgl4kKPWV3gjGSSbmsi1RiDgAAtGlCUii521qs0c6CrkVxrcOiySDXEJeanXFmp5ub/REFAACaxD1Nwvy95IkKPTU9A32qaGijkvo2cTw2IURMVgAAgHZFB/tSYrifvCjeYbIoPSSAXjW1m+hIha08V0ZskOjNAwAA2hXo40kj44LlthSNbZ2kB1g0UWgL6gSUwwAA0Dxe/JYyPGtbOkUTVgA12+vQeweluQAA9FUutN1koYMl6LEG6nbgWD1JeUaIRQAA9GGyfV7EYiXaXaiP3SZYNFGqbmcCggMAAD1AiS7QbAIHYhEAAN3FIijRBWqHWAQAQH8m6zAWwaLJINrjkN3JJTEAAED70AwetETqrcaQ3QkAoL9m8HqZqAD9QiwCAKA/k3UYi2DRZJC0m8x0uKRBroEf4mergQ8AANo2LiGEvDzcdBUcgD5ZLFY5uzM6yIfiQnyVHhIAADhBekwQBfl4iuMd6LEGGmkCH+DtQcOiA5UeDgAAOMGQUD+KDba9v9xdWEtmrtOlcVg0GSSZpY3UYbY15UM2BQCAfnDzylHxtt2D3NOkvlUfTc9Af/Krm6mhzSTHItyTBwAAtM/D3Y0mJNneY1Y2tlNJfZvSQwLoUUVjGx2ra5Wrb/BjFwAA9NXvtbnDTEcrGknrsGgySPagCTwAgG6NG9JVcvGQfVchgNogFgEA0K+xDrHIwWNoBg/q3mXCkEwKAKAvYx1aURw8pv15ESyaDBI0gQcA0K8xQ4Ll44MlmKgAdUIsAgCgX2McF02QwAEqhSbwAAD6NTo+WFexCBZNBskee7Mzbw93yogLUno4AADgRKPt5bn0EhyAPu0pru8xCwgAAPQ2UYEEDlAnNIEHADDGvMgBHcQiWDQZBFzfPreyWRyPjA8mH08PpYcEAABONDwmUG4GfwAlMUCF2k1mOmxf0EuNCqAQPy+lhwQAAE6UFO5PQb62ZvAHdFASA/THYrHKO02ignwoLsTWMBgAAPQhPMBbNISXypbz676WYdFkEOx3yOycgMxOAADd4cXw9BjbLsKcyiZq7TArPSSAbjJLG6nDbBHHKIcBAKDPBqzSbpOyhjaqampXekgA3eRXN1NDm0kuE8qPWQAA0JdR9likqd1EhTUtpGVYNBkE2IIKAKB/0kQFJ1McLkOGJ6gLYhEAAP1DuVDQSiwyIRHJpAAAejRGRyW6sGgyCPY4Nl7FRAUAgP4bsKJEF6gMYhEAAP0bM6SrrwnKhYLa7C3qekwiFgEA0H+PtQMaLxeKRRMXs1qt8kQF15hNiQhQekgAAOACyO4ENZNqiHPvnZFxtlJyAACg3+xOriUOoNYEjnFDsGgCAKD7ZNISbSdwYNHExbiebGVju1y3090ddTsBAPSIJ6Kl0sxa34YK+tLQ1kk5lc3ieFRcsOjBAwAA+pMaFUi+Xra3+IhFQE06TBZ5IS81MoBC/L2UHhIAALhATLAPRQZ6y8mkvJlAq7BoMkiZnWw86nYCAOiWv7cnpUUFiuMjZU3izSGAGuwvRjkMAAAj8HDn3YS2shgF1S1i0RxADTLLGqjDbIuNEYsAAOiXm5sbjbLvfK1p7hCbCbQKiyYutsexbmcCggMAAD0bY6/fyW8Kj1Y0Kj0cgF/2M0EsAgCgayjRBapPJk1AMikAgBHmRbTe18RliyaPPvoozZo1i/z9/Sk0tG9v0JctWyZWpBxvixYtIr0EBxOQUQEAYJy+JhoODvQE8cjxu14RiwAAGKcBK0p0qQFikeOSSRGLAAAYpq/JAQ3HIp6u+oc7Ojro0ksvpZkzZ9Ibb7zR55/jQODNN9+U7/v4+JBWmS1W2m9/cMSH+FJ0sK/SQwIAABcaPST4uKZniYqOBxCPsL3FtkWTIF9PUUccAACMMVGBnSbqgFikKxbx8uCyLV3xMgAA6DuB46CGYxGXLZo89NBD4uNbb73Vr5/jQCA2Npb0ILeyiZraTeIY2RQAAMbaaXJAw8GBnhg9Himrb6Pyhna5NJe7u5vSQwIAABcaHhMoJqY7zVY0g1cJo8ci3Fsnp7JJHI+KCyYfTw+lhwQAAC6UFO4vEvYa20z2ZFJtUl1Pk3Xr1lF0dDSNGDGCbrrpJqquru71+9vb26mhoaHbTS025XSNHYsmAAD6F+LnRYnhfnJ2J+84BG3qTzyi7likSj4en4ga4gAAescT0sOjg8RxdkUTtXaYlR4SGDwW2ZpbQ1Z7SIx5EQAAgzSDj7PtNimtb6PqJlsSn9aoatGEt5++8847tGbNGvrHP/5B69evp3POOYfM5hMHeo899hiFhITIt8REdZRCsVqt9O6WAvn+nPQoRccDAACD24C1tdNMeVXNSg8HBiEeUWsswt7Z7BiLRCs6FgAAGBxj7OVCOXcjs0w9k+dg1FgkXz7GvAgAgPHKhR7UaBWOfi2a3HPPPb9oRnb8LTMzc8CDufzyy+nCCy+ksWPH0pIlS2jlypW0fft2kWFxIvfeey/V19fLt6KiIlKDjdnVIrOHTUsJp5H2FTYAADBOcLDPXr8ZnEtt8YhaY5E9RXXixjgOmTo0TOkhAQDAoMci2i2LoWaIRfqG50R+Omrb9cq7seeOQAIHAICREji0PC/Sr54mK1asoGXLlvX6Pampqac6pm7/VmRkJGVnZ9O8efNOWOdTjQ3R3tqUJx9fN2uoomOB7jg7p7OzU+lhALiMt7c3uburaiOhoXDfCAlPWF88KUHR8eiR2uIRtcYib2/K7xaL8AQOqANiEdA7xCLqikWuVXQ0+oRYpP+7TK6dOZQ80FtNNRCLgN4hFlFXLKL7RZOoqChxGyzFxcWibmdcXBxpSUVDG63JrBDH8SG+dPaoGKWHBPaSaWVlZVRXp80nK0BfcWCQkpIiggQYfNw3guemuXbzrsJapYejS4hH+tZ09et9peI4zN+LLpwQr/SQALEIGAhiEWXx7kIfT3dqN1kQi7gIYpGTazeZ6bNdx8Sxn5cHXTpFPSXDjAyxCBgFYhFlpUQGUKi/F9W1dNKuwjrx2qO1JL5+LZr0R2FhIdXU1IiPvIK9Z88e8flhw4ZRYGCgOM7IyBC1Ny+66CJqamqihx56iJYuXUqxsbGUk5NDd911l/j+hQsXkpb8cKhcbnS2dHICeXpgZVMNpMCAm+n5+/tr7skK0BcWi4VKSkqotLSUkpKS8DhXQJCvF6VHB1FWeSMdLm0UDVj9vD2UHpZhGTUeWZtZQR1mizhePGEI+XrhMagGiEXACBCLKM/b053GDgmhHQW1VFDdIhqwRgSqbxeCURg1FtmUXU2N7SZxfM6YWArx81J6SIBYBAwCsYjy3NzcaGJiKK3NqqSa5g4qrGmh5IgA0hKXLZrcf//99Pbbb8v3J06cKD6uXbuW5s6dK46zsrJEvU3m4eFB+/btEz/DL+Dx8fG0YMECeuSRR1S5zbQ33x8sk48Xjo5VdCxgw8GpFBhEREQoPRwAl+KsNw4QTCYTeXnhzYkSJiaFikUTs8VK+4/Vi95WoAyjxiM/HCyXjxeMxo5XNUAsAkaCWEQdsQgvmkhlMeaNxLVAKUaNRbrNi4zBvIgaIBYBI0EsoryJSWFi0YTtLqzDoonkrbfeErfe8NYciZ+fH33//fekdfWtnbQ5p1ocDwn1o9HxaACvBlKtTs6kANA7afspB8UIDpSbqPhwu60B5+7CWiyaKMiI8Uhbp5nWZVXIpbmmDcXjTw0Qi4CRIBZRx0QFUZ48UYFFE+UYMRbhxKFVh2wJHL5e7nTG8MErZQYnhlgEjASxiDrmRSQ8L7Jk4hDSEtSNckE5DJPFKpEVI9wAACiFSURBVO8ywRYwdcH/BxgBHufKmyQmKkieqAAYTBuzq6i5wyyO54+MQZlQlcFrNBgBHucqi0WK0NcEBtfOglqqbu4Qx3PSo1CqVmXwGg1GgMe58sYnhop+r2y3BpvB4120k0nZFGwhymEAABhSWlQgBfnYNnNyA1bH7EGAwY1FUA4DAMCIYkN8KS7EVxzvKawTmf8Ag2XVoa7SXItQmgsAwJCCfb1oeLStd9ehkgbR71VLsGjiRDwptjnXVporyNeTpqAcBjgB17n9wx/+oPQwVCU/P19kDUhNFPuKf+bzzz8npQ0dOpSeffZZpYcBLuTu7kYT7FtRKxrbqaimVekhgYFsspcJ9fZwp9OHRyo9HNABxCK/hFgEtLTbhHcfHi5tUHo4YMBYhDOM56ZHKz0c0AHEIr+EWAS0FIuYLFbRY01LXNbTxIiOVjRRjX0L6vSUcPJwx1YwtfnP/v9Qi6WF1CTEJ4SunXCtYr9/3bp1dOaZZ1JtbS2FhoYa7ve7Etcu5sCOm+052r59OwUEaKsBFvTf1KHh9NPRKnG8Lb+GkiJQOxhcr7S+lQprbNc5Xrjz9UI5DLVBLKK+WEDp3+9KiEWMbcrQMPp6f6k43p5fQ2OGhCg9JDAA7vN6yL5IlxEbTGEBtr4CoB6IRdQXCyj9+10JsYixTRkaLvd75VhkZloEaQUWTZxoq32XCZueop0HgZHUt9dTo6lR6WGAwUVFoRGiURZNJNvzauiSyQmKjgeMYWtujXw8IwU7XtUIsQioAWIRA8Yi+TV03Wkpio4HjGFHfg1JlWk5mRTUB7EIqAFiEWOYdlwsoiUoz+VEWxwmKqanIjgA5zGZTHTrrbdSSEgIRUZG0n333detR0J7ezv98Y9/pCFDhoiV+unTp4tMBUlBQQFdcMEFFBYWJr4+evRo+uabb8R2Ts5mYPw13qa5bNmyE2YHcMbDypUracSIEeTv70+XXHIJtbS00Ntvvy22VvK/8bvf/Y7M5q46he+++y5NmTKFgoKCKDY2lq688kqqqKgQX+vt91ssFnr88cdp2LBh5OPjQ0lJSfToo492G1Nubq74eR7L+PHjafPmzf06r/v376ezzjqL/Pz8KCIigm644QZqamrq9j3//ve/xfniMcTFxYn/B8nTTz9NY8eOFec0MTGRbr75Zvnn+fxfd911VF9fL/4uvj344IM9bkMtLCykxYsXU2BgIAUHB9Nll11G5eVdPQn45yZMmCDOJf8sPw4uv/xyamxEoKtmE5NCycvDTZPBAWjXFscEjlQkcIDzIBZBLIJYRHtGxgXLPda25aHHGgx+LDID8yLgRIhFEIsgFtGexHA/ign2Ece7CmrJZLaQVmDRxEn4hXprnr2fiY8njYoLVnpIoCN88fX09KRt27bRc889Jy5Kr7/+uvx1vmDxhfHDDz+kffv20aWXXkqLFi2io0ePiq/fcsstIoDYsGGDuCD+4x//EBcivqB98skn4nuysrKotLRU/PsnwoHA888/L37Pd999Jy6AF110kQg0+MYXr1dffZX+97//yT/T2dlJjzzyCO3du1fUzeSAQAoAevv99957L/39738XgdChQ4fo/fffp5iYmG7j+fOf/yyCIq7hmZ6eTldccYUIpPqiubmZFi5cKIIS3hb68ccf0+rVq7td/F9++WVx7jho4PP25ZdfimBF4u7uLs7HwYMHxf/Rjz/+SHfddZf42qxZs0QAwBd7/rv4xmM9HgdBHBjU1NTQ+vXradWqVSLo+dWvftXt+3JycsT54+CMb/y9fH5Avbgs0lh7GYzcqmaqbGxXekhgAFvzbAt0vGAn1Y8FcAbEIohFEItoD5eLnpRsuxZUNbVTfrW6yvGAvmMRNg0VOMCJEIsgFkEsoj1ubm7yzlfusSaVb9QClOdykpzKJqpq6pBrx3p6YD0KnIcvos8884x4seFsBr5Q8f3ly5eL1fg333xTfIyPjxffzxchvnjz5//2t7+Jry1dulSs/rPU1FT53w4Pt714RUdHn7R2Jl/o+YKZlpYm7nNGBQcEvPrPwcaoUaNEhsPatWvli9tvfvMb+ef59/LFdOrUqSLzgH+mp9/PmQIcJLz44ot07bW2uqb8O08//fRu4+G/87zzzhPHDz30kMh8yM7OpoyMjJOeUw422tra6J133pHraPLv48wTDp44EPnrX/9KK1asoN///vfyz/HYJY6N6DjTgb//xhtvpH/+85/k7e0tMh/4/4wzSU5kzZo14v8zLy9P/D8zHhP/LRy0SL+PgwjOauHMFPbrX/9a/OzxWSagLlNTwmlXYZ1cquCcsXFKDwl0rLyhjfKqmsXx+IRQ8vNGPxNwHsQiiEUQi2jTtJRwWn+kUi4XmhKJ+vHgOg1tnXTgWL04HhETROHoZwJOhFgEsQhiEe3GIiv32XqsbcuroXEJ2ujbg5l9J9mUg3IY4DozZswQFxnJzJkzRbYEb/fkCwt/5IwCvthKN15x51V4xltD+cJ12mmn0QMPPCCyLgaCt3tKgQHjCyhfFPn3OX5O2mbKdu7cKS64vI2UL2xz5swRn+eA5UQOHz4sMkDmzZvX63jGjRsnH/MWUeb4u3vDv4O3rjo2HuPzwxdhzu7gf6ekpKTXMXAGBn+dt//y38YX7OrqapF50lc8Dg4KpMCAcZDFgRJ/TcLnWQoMpL+3r38rqKN+5wZ7U3gAV9mU0/UYQ5lQcDbEIj1DLIJYREt9TTYctS2eALjKttwaskj9TBCLgJMhFukZYhHEIlqKRX7S0LwIFk2cZIM9e4edPixS0bGAsXBmgoeHh7gI83ZM6cYXFmlL529/+1uxtZEvXhxMcC3NF154od+/y8vLq9t9Dlh6+hxfYB23evJWzPfee09kCHz22Wfiax0dtp1ZPeFamv0djxQ8Sb/7VJ1sDLyd9vzzzxcBCm+l5fP/0ksvnfRvG6jezjOoe6eJn5ct2/+TXcVUVt+m9JBAxzYc6QpATx+GxooweBCLdP1ehlgE1GR8YgiF+Nn+777ZXyrvSARwBceFOcyLwGBCLNL1exliEVCTETFBFBvsK45596u0I1HtsGjiBB0mi7zTJDLQG/1MwOm2bt3a7f6WLVto+PDhIiiYOHGiyKjg1XWuK+l4c9z+yCv2vEXy008/FVsr//Wvf4nP83ZJ5tikzFkyMzNFhgHXmJw9e7bYHnp8FkBPv5//Nr448zZLVxk5cqSoJ8oBjGTjxo2iHidv9eXsBc5iONEYOBjgi/NTTz0lMl44o4UzMI7/2052XnkcRUVF4ibhWqV1dXUiswK0LdjXi66ZmSxfK15el630kECnLBYr/WSfqAjw9qDJ9hr2AM6CWMT5EIvAYPDx9KDls1PEMe8AeGGNrbY/gCuTST3d3WhmGipwgHMhFnE+xCIwGNzd3eimuV27s55drY1YBIsmTrCjoIZaOmwvAGcMjxIPBgBn4i2bd9xxh9ge+cEHH4hsCKmeJF+UrrrqKrrmmmvEhZ9rQHJjtMcee4y+/vprucbk999/L762a9cuUVuTL0osOTlZrM5zE63KykqRoeEsvPWUL5A8Xs7o4IZh3PzMUU+/39fXl+6++27RPIzrWPJ2Wg6I3njjDaeNjc8Z/x6uDXrgwAFxTm677TaRdSI1VnvwwQfFxZ/rjfK2Xz53UiYKB19cy1T627iG6SuvvNLtd3BwwX8PBxhVVVU9bk+dP3++qKnK4+F/n//v+P+St+ty5gto3w1npJK/vbfEB9uKRN8JAGfjhnpSb7WZaZHk7YkQD5wLsQhiEdCua2cNpVB/W3bu53uOYbcJuER+VTPlV9teYzh5I8i3e0Y4wKlCLIJYBLTrV1MT5d0mqw+Xa2K3Cd5RO4HUWI/NGYFyGGoW4hNC4X7hqrrxmE6GLxatra00bdo0uuWWW0RgcMMNN8hf58Zm/D2cKcHZAEuWLBFbPvnizHhVn3+OA4JFixaJgIKbcjGuO8nNwu655x5xUbz11luddr6joqJEk66PP/5YZAdwZsWTTz7Z7XtO9Pvvu+8+8ffcf//9YtzcQM2ZtSq5DikHTDU1NaKpGDdv4zqc3PRMwoHDs88+K84VNyDjbaccJDCu+/n000+L5mhjxowR22w5IHM0a9YskcXCY+dz8fjjj/9iHBwYffHFFxQWFkZnnHGGCBa4MdxHH33ktL8VlBUR6EO/nmHfbWK20KpD5UoPCXQIsYh2IBZBLCJBLAKDhSevf3t6126T7w6UKT0k0HlpLsQi6oZYBLGIBLEIDBZfL49uu024ZKjauVmtVnubLn1oaGigkJAQqq+vF/UCB8M5z/1Eh0sbiEsH7vjzfDFBBurS1tYmsglSUlLEKjqAnuHxrj77i+vpghd/FscLR8fQq7+eYojro1Epca4ve3UzbcurEccb7jyTkiL8B+X3Qt/htRmMBI93de4CmPvkOnE8Ky2C3l8+Y9DHgFhE3+f6t29vp9WHbZO5K287ncYMOfkkOAwuvDaDkeDxrj6Vje009dHV4njskBD66rbTVX19xE6TU1TR0CYWTKT/cCyYAADA8UbHB1OYvSzGpuxqMpnRrA6cp7Gtk3YV1IrjlMgALJgAAMAvJEf4U2K4raHvjvxaaukwKT0k0G2fVx/0eQUAgF+ICuq6PhwoqafqpnZSMyyanKINR6vk4znp2IIKAAC/xL2uTh9uu0Y0tptob3Gd0kMCHeFJChPXW0EsAgAAJ8ClT2bbYxEuF7rVvjsRwOl9XtMj0ecVAAB6NDs9Unzkulcb7YvtaoVFEyfWED8DExUAAHACZwy3BQds/ZGuBXcA58YiXY8zAAAAR2fYF03YBodrB4BTe6thXgQAAE5gjoZiESyanAKzxUo/25udBfl60sTEUKWHBAAAKiVld2ohOADt4NZ00uPJ28OdZqRGKD0kAABQqZlpEeRh3wGAWAScaYM9IYj7vJ4+DAkcAADQs8lDw8jXy7Yc8dPRSvF+Vq2waHIK9h+rp9qWTnF8WlokeXrgdAIAQM9iQ3wpPSZQHO8rrqPa5g6lhwQ6kFvVTMW1reJ4akoY+Xt7Kj0kAABQqRA/L5pgT/TLqeTrR4vSQwIdQJ9XAADoKx9PDznRr7yhnTLLGkmtMMt/Chyzc+aMwBZUAADo3ZkjosVHbj/hWMYAwCmxCMphAADASZzp8L51bWaFomMBfUCfVwAAGMi8CPtRxbEIFk1OwQ+HyuRj9DMBAICTOTNDG8EBaMcPB8vlY8QiAADQn1hkDWIRcIIfDmJeBAAA+u4sjcyLYNFkgPKqmunAMdsW1HEJITQk1E/pIQEAgMpNTg4TPbDYuqwKMpktSg8JNF4OY0tetThOiQygETFBSg8JAABUblRcMMUG+4rjTTnV1NJhUnpIoGENbZ20Lsu26zUqyIcmJYUpPSQAAFC5xHB/GhZtK12+u7CWalRauhyLJgO0cm+JfHzBuHhFxwIAANrg5eEuly1oaDPRrsI6pYcEGvbN/lKS+uZdMC6O3Lj7KgAAQC/4WiHtNukwWWhTtm3xHWAgVh0spw57EtB5Y+PIwx2xCAAAnNy8DMfS5ercbYJFkwH6al/Xosl54+IUHQsAAGhzK+pKh2sJQH99ta9UPj5/PBI4AACgbxCLgCvmRS4Yj3kRAADof7nQlXu73teqCRZNBuDAsXo6Ut4kjqckh1E8SnMBAEA/mp75etkuvx9uK6KimhalhwQaLRO6s6BWHHNZrnSU5gIAgD46bVgEBdvLhX65t4SyyhqVHhJoUHlDG/1sbwLP5conJqI0FwAA9L10eXSQj9xjbVeh7b2tmmDRpJ94C/Nd/9sn379wAjI7QX86OtRZTxBAD8ICvOk3p6WIYy5n8NQPWUoPCTTGbLHSXf/bK99HLAJ6hXgEwDX8vT3p5jOHyWUxHv8uU+khgcZYrVa6+5N9ZOIHkNjxGkfuKM0FOoRYBMB1pct/P3+4fP/v32SKa4ua2NJLoE9K61vpie+y6FCprQH88OhAumxKotLDgoH429+IzGalR0Hk4UH0pz/1+i3Nzc1000030aeffkpBQUH0xz/+kb766iuaMGECPfvss6Iu8WeffUZLliyRfyY0NFR8bdmyZeJ+UVERrVixgn744Qdyd3en2bNn03PPPUdDhw4VX+fvq6uro6lTp9JLL71EPj4+dN1119F///tfOnDgQLfx8O+94IIL6JFHHnHJKQEwghvnptEH2wqptqWTPt9TQreeNYyGRXffKdDWaSZfLw/FxgjqVNHYRs+uPkrb822ZOAlhfnTNzGSlhwU6j0UY4hEAfVk2ayi9vSmfSuvbRIbnnqI6mpAY2u17EItAT7hh7z/XZndrAH/D7FSlhwUDgVgEsQiAgi6bkkhv/JRHuVXNtC2/hn7OrqLZw209YNUQi2CnSR9xrdczHl9Ln+4+Ju57ebjRs5dPQBCpVRwYqOV2EnfeeSetX7+evvjiC3FhX7duHe3atavPf2pnZyctXLhQBBU//fQTbdy4kQIDA2nRokXdsibWrFlDWVlZtGrVKlq5ciX95je/ocOHD9P27dvl79m9ezft27dPBA0AMHDBvl5045w0+f5n9muLZHt+jbjm8EcAyY+Z5TT7H2vp/a2F4j4ndD77qwkU5Oul9NBgIDQUizDEIwD6wu9jbzurK8Pz013FvyhJzbHI+iO2iXEAtjmnmmb/40d6/ec8+XNPXDKOIgJtJVZAY5SOPxCLAJDRd5vcfna6fP/TXd3nRbIrGmnuE+vouwPK9DzBokkfcL35u/+3jzrNtm1Cnu5u9OiSsTQ6PkTpoYHONTU10RtvvEFPPvkkzZs3j8aOHUtvv/02mUymPv8bH330EVksFnr99dfFz48cOZLefPNNKiwsFEGGJCAgQHzP6NGjxS0hIUEEFPy9Ej6eM2cOpaYikwjgVF08KUFMerOv9pbKW1H3FtXRdW9up4rGdrrmjW20v7he2YGCKlQ2ttOK/+6ldpNF3OfHzl/OG0VThoYrPTQwAMQjAPrEjbt9PG1TAt/sLyWT2XaN4R4nv35jq4hFlr+9g7bmVis8UlCD+tZOuv2jPdTcYZvgdnMjuuPsdJo7oquZL4CrIBYB0KcFo2PkPms/HCyjVvs1Jr+qma7811Yqa2ijW97fTWszKwZ9bCjPdRIWUTd8nxwYnDMmlh68cDTFBPsqPTQwgJycHJHxMH36dPlz4eHhNGLEiD7/G3v37qXs7GyRTeGora1N/PsSDhq8vb27fc/y5ctFVsXTTz8ttq6+//779Mwzz5zS3wQAJJcymJUWKbagFta00NRHV1Nbp4XaTWZ5kX5qSjilxwYqPVRQGC+o3fvpflHOjc1Jj6K/XTxWNF0FGAyIRwD0iXcqnpURTd8eKKOqpg6a+MgqIiuJBXruu8bGJ4bQ2AQkCwLRQ18dFJNXbFpKuNhhkhwRoPSwwCAQiwDok4+nBy0aE0v/3VEs5t7HP/yDSOgQsYg9YXBkXBBNSg4b9LFh0eQk3tmcT5vtmTU8OfH4JeNQBgNUhet2Ht8sibedOmZkTJ48md57771f/GxUVFS3bIrjcX1OruHJdUE5aOB/95JLLnH63wBgVBeOjxeLJownKxzNSA2nV6+eLIIIMDbeprz6cLk4jgjwpqcvG48yGKA6iEcAtBuL8KIJa2zrnrE9PiGE/r1sqmgcD8bG2b9S2ZQgH09RHjQeyRugMohFALTpwvFDxKIJ63BYLGEjYoLo3d9MpxC/wZ+LR/RzEoG+XhTg7SFWu7BgAoMtLS2NvLy8aOvWrZSUlCQ+V1tbS0eOHBFbQaWLe2lpV32/o0ePUktLi3x/0qRJYhtqdHQ0BQcH9+v3e3p60rXXXiu2nnJgcPnll5OfH4JjAGdZOCaW/vL5ATmbkwOBQB9PkdX5+CXjyc8bCyZgqzvPW5Yb2kz06EVjsWACgw7xCIB+nZkRLWKPpnbbgkmQr6fovZYRG0RPXTYe739B8PRwE4kb1c0ddP8Fo7BgAoMOsQiAfs1Mi6DIQB+qamoX93kePizAm1IiA0QswsdKwKLJSVwyOYGmp4TT2qwKOm1YpNLDAWfx8NDEOLgp2fXXXy8ankVERIiL+5///GexHVRy1lln0YsvvkgzZ84ks9lMd999twgmJFdddRU98cQTtHjxYnr44YdFPc6CggL69NNP6a677hL3e/Pb3/5W1Ppk3CgNAJyHF0l+PTOZ3vg5j2amRtALV04UwQKAo/PGxdGUoWG0cl+p2LoMOqGRWIQhHgHQ98L89aen0HNrjtKExFB65erJFBuCUtTQ3VkZMfTD7WfQ/3YWizkS0AnEIohFAFTAw92NbpyTSn/9+jCNjAsWFTeSIvyVHhYWTfoiMdyfrpk5VOlhgDP96U+kFXxR522kvB2Ua2+uWLGC6uu7GkM/9dRTdN1119Hs2bMpPj6ennvuOdq5c6f8dX9/f9qwYYMIGC6++GJqbGykIUOGiOZpfcmuGD58OM2aNYtqamq61Q8FAOe47/xRdNPcNJG9x1vKAXrCvdR4Ugt0REOxCEM8AqBft5+dTtfMTKZwxCLQC97p+n9z0pQeBjgTYhHEIgAq8dvZqXTRxCGqikWwaAKgcpxR8e6774qb5Ouvv5aPORj4/vvvu/1MXV1dt/uxsbH09ttvn/B3vPXWWyf8GtcELSkpoZtvvnmAfwEAnAx2lwCA2iEeAdA3lH4EALVDLAKgbxEqi0WwaAIAJ1RZWUkffvghlZWViYwNAAAAgMGGeAQAAACUhFgEwHiwaAIAJ8R1QiMjI+m1116jsLAwpYcDAAAABoR4BAAAAJSEWATAeLBoAqBB69atG5Tfw9tPAQAAAHqCeAQAAACUhFgEAFzF3WX/MgAAAAAAAAAAAAAAgIZg0QQAAAAAAAAAAAAAAMCViyb5+fl0/fXXU0pKCvn5+VFaWho98MAD1NHR0evPtbW10S233EIREREUGBhIS5cupfLyclcNEwzGYrEoPQQAl8PWYQAbxCKgRohFwAgQiwDYIBYBNUIsAkaAWARU29MkMzNTvBC/+uqrNGzYMDpw4AAtX76cmpub6cknnzzhz91+++309ddf08cff0whISF066230sUXX0wbN2501VDBALy9vcnd3Z1KSkooKipK3Hdzc1N6WAAuCQwqKyvF49vLy0vp4QAoCrEIqAliETAKxCIAXRCLgJogFgGjQCwCzuBmHcSltyeeeIJefvllys3N7fHr9fX14oX7/fffp0suuUQOMkaOHEmbN2+mGTNmnPR3NDQ0iKCC/63g4GCn/w2gXZzNU1paSi0tLUoPBcClODBISEgQWWkAElwfbRCLgJIQi4BRIBaBnuD6aINYBJSEWASMArEInOr10WU7TXrCAwoPDz/h13fu3EmdnZ00f/58+XMZGRmUlJR0wuCgvb1d3Bz/eICecBYFP5ZMJhOZzWalhwPgMpxJ4eHhofQwAFQJsQgoCbEIGAViEYATQywCSkIsAkaBWARO1aAtmmRnZ9MLL7zQ6xbUsrIy8QIeGhra7fMxMTHiaz157LHH6KGHHnL6eEGfpK152J4HAGA8iEVADRCLAAAYF2IRUAPEIgAALmgEf88994gX2N5uvHXU0bFjx2jRokV06aWXivqdznTvvfeKTA3pVlRU5NR/HwAAANQFsQgAAAAoCbEIAACAvvV7p8mKFSto2bJlvX5PamqqfMwNps4880yaNWsWvfbaa73+XGxsrKivWFdX1y2rory8XHytJz4+PuIGAAAAxoBYBAAAAJSEWAQAAEDf+r1owg3J+NYXnEnBgcHkyZPpzTffJHf33je28Pfx9sA1a9bQ0qVLxeeysrKosLCQZs6c2d+hAgAAgA4hFgEAAAAlIRYBAADQN5f1NOHAYO7cuZScnCzqdVZWVspfk7Ij+HvmzZtH77zzDk2bNk10r7/++uvpjjvuEI3RuIv9bbfdJgKDnpqd9cRqtYqPaHwGAADQRbouStdJI0AsAgAAoB6IRRCLAAAAaCUWcdmiyapVq0STM74lJCR0+5o0sM7OTpEx0dLSIn/tmWeeEZkXnFHR3t5OCxcupH/+8599/r2NjY3iY2JiotP+FgAAAL3g6yS/GTcCxCIAAADqg1jEBrEIAACAemMRN6vO0jwsFouoFxoUFCSarzlrFYqDDW6mxlkeMHA4l86Dc+k8OJfOg3Op3nPJl3sODOLj409aFgJODWIRdcO5dB6cS+fBuXQenEvnQSyiXYhF1A3n0nlwLp0H59J5cC71EYu4bKeJUvgPPj6Dw1n4PwcPdufAuXQenEvnwbl0HpxLdZ5Lo2R1Kg2xiDbgXDoPzqXz4Fw6D86l8yAW0R7EItqAc+k8OJfOg3PpPDiX2o5FkN4BAAAAAAAAAAAAAACARRMAAAAAAAAAAAAAAAAbLJr0gY+PDz3wwAPiI5wanEvnwbl0HpxL58G5dB6cS3CEx4Pz4Fw6D86l8+BcOg/OpfPgXIIjPB6cB+fSeXAunQfn0nlwLvVxLnXXCB4AAAAAAAAAAAAAAGAgsNMEAAAAAAAAAAAAAAAAiyYAAAAAAAAAAAAAAAA2WDQBAAAAAAAAAAAAAADAogkAAAAAAAAAAAAAAIANFk364KWXXqKhQ4eSr68vTZ8+nbZt26b0kFTtwQcfJDc3t263jIwM+ettbW10yy23UEREBAUGBtLSpUupvLxc0TGrxYYNG+iCCy6g+Ph4cd4+//zzbl+3Wq10//33U1xcHPn5+dH8+fPp6NGj3b6npqaGrrrqKgoODqbQ0FC6/vrrqampiYzmZOdy2bJlv3icLlq0qNv34FwSPfbYYzR16lQKCgqi6OhoWrJkCWVlZXX7nr48pwsLC+m8884jf39/8e/ceeedZDKZyEj6ci7nzp37i8fljTfe2O17cC6NCbFI/yAWGTjEIs6DWMR5EI84B2IROBWIRfoHscjAIRZxHsQizoNYxHjxCBZNTuKjjz6iO+64gx544AHatWsXjR8/nhYuXEgVFRVKD03VRo8eTaWlpfLt559/lr92++2301dffUUff/wxrV+/nkpKSujiiy9WdLxq0dzcLB5jHJD25PHHH6fnn3+eXnnlFdq6dSsFBASIxyO/MEv4Ynbw4EFatWoVrVy5Ulwkb7jhBjKak51LxsGA4+P0gw8+6PZ1nEsSz1G+6G/ZskWch87OTlqwYIE4v319TpvNZnEh6+jooE2bNtHbb79Nb731lgh0jaQv55ItX7682+OSn/cSnEtjQiwyMIhFBgaxiPMgFnEexCPOgVgEBgqxyMAgFhkYxCLOg1jEeRCLGDAesUKvpk2bZr3lllvk+2az2RofH2997LHHFB2Xmj3wwAPW8ePH9/i1uro6q5eXl/Xjjz+WP3f48GErPxQ3b948iKNUPz4nn332mXzfYrFYY2NjrU888US38+nj42P94IMPxP1Dhw6Jn9u+fbv8Pd9++63Vzc3NeuzYMatRHX8u2bXXXmtdvHjxCX8G57JnFRUV4rysX7++z8/pb775xuru7m4tKyuTv+fll1+2BgcHW9vb261Gdfy5ZHPmzLH+/ve/P+HP4FwaE2KR/kMs4hyIRZwHsYhzIR5xDsQi0FeIRfoPsYhzIBZxHsQizoVYRP/xCHaa9IJXq3bu3Cm2+knc3d3F/c2bNys6NrXjrZG8/S81NVWsSvOWKcbnk1cQHc8pb1FNSkrCOT2JvLw8Kisr63buQkJCxNZo6dzxR94uOWXKFPl7+Pv5ccsZGNDdunXrxBa+ESNG0E033UTV1dXy13Aue1ZfXy8+hoeH9/k5zR/Hjh1LMTEx8vdwJlBDQ4PIWDGq48+l5L333qPIyEgaM2YM3XvvvdTS0iJ/DefSeBCLDBxiEedDLOJ8iEUGBvGIcyAWgb5ALDJwiEWcD7GI8yEWGRjEIvqPRzyd8q/oVFVVldju4/gfwPh+ZmamYuNSO75Y8ZYofsHl7VMPPfQQzZ49mw4cOCAubt7e3uJF9/hzyl+DE5POT0+PR+lr/JEvdo48PT3FCw/O7y+3oPI2yZSUFMrJyaE//elPdM4554gXXg8PD5zLHlgsFvrDH/5Ap512mrhosb48p/ljT49b6WtG1NO5ZFdeeSUlJyeLN1f79u2ju+++W9T2/PTTT8XXcS6NB7HIwCAWcQ3EIs6FWGRgEI84B2IR6CvEIgODWMQ1EIs4F2KRgUEsYox4BIsm4HT8AisZN26cCBb4gf7f//5XNOkCUIPLL79cPubVaX6spqWliSyLefPmKTo2teKakxzkO9biBeeeS8fasPy45OaG/HjkAJYfnwDQN4hFQAsQiwwM4hHnQCwC4FqIRUALEIsMDGIRY8QjKM/VC94CxCur5eXl3T7P92NjYxUbl9bwKmt6ejplZ2eL88bbe+vq6rp9D87pyUnnp7fHI388vhmfyWSimpoanN+T4C3T/JznxynDuezu1ltvFU3f1q5dSwkJCfLn+/Kc5o89PW6lrxnNic5lT/jNFXN8XOJcGgtiEedALOIciEVcC7HIySEecQ7EItAfiEWcA7GIcyAWcS3EIieHWMQ48QgWTXrB26omT55Ma9as6bZtiO/PnDlT0bFpSVNTk1gJ5FVBPp9eXl7dzilvr+LanjinvePtkvzEdzx3XKuP60hK544/8gs011KU/Pjjj+JxK73AQM+Ki4tF7U5+nDKcSxvuF8cXss8++0z8/fw4dNSX5zR/3L9/f7dga9WqVRQcHEyjRo0iozjZuezJnj17xEfHxyXOpbEgFnEOxCLOgVjEtRCLnBjiEedALAIDgVjEORCLOAdiEddCLHJiiEUMGI84pZ28jn344YdWHx8f61tvvWU9dOiQ9YYbbrCGhoZay8rKlB6aaq1YscK6bt06a15ennXjxo3W+fPnWyMjI60VFRXi6zfeeKM1KSnJ+uOPP1p37NhhnTlzpriB1drY2GjdvXu3uPHT8+mnnxbHBQUF4ut///vfxePviy++sO7bt8+6ePFia0pKirW1tVX+NxYtWmSdOHGidevWrdaff/7ZOnz4cOsVV1xhNZreziV/7Y9//KN18+bN4nG6evVq66RJk8S5amtrk/8NnEur9aabbrKGhISI53Rpaal8a2lpkb/nZM9pk8lkHTNmjHXBggXWPXv2WL/77jtrVFSU9d5777UaycnOZXZ2tvXhhx8W55Afl/w8T01NtZ5xxhnyv4FzaUyIRfoPscjAIRZxHsQizoN4xDkQi8BAIRbpP8QiA4dYxHkQizgPYhHjxSNYNOmDF154QTzovb29rdOmTbNu2bJF6SGp2q9+9StrXFycOF9DhgwR9/kBL+EL2c0332wNCwuz+vv7Wy+66CLx5ACrde3ateJCdvzt2muvFV+3WCzW++67zxoTEyOC1nnz5lmzsrK6/RvV1dXiAhYYGGgNDg62XnfddeJiaDS9nUt+IeYXVn5B9fLysiYnJ1uXL1/+i6Af59La4znk25tvvtmv53R+fr71nHPOsfr5+Yk3C/wmorOz02okJzuXhYWFIggIDw8Xz+9hw4ZZ77zzTmt9fX23fwfn0pgQi/QPYpGBQyziPIhFnAfxiHMgFoFTgVikfxCLDBxiEedBLOI8iEWMF4+42QcLAAAAAAAAAAAAAABgaOhpAgAAAAAAAAAAAAAAgEUTAAAAAAAAAAAAAAAAGyyaAAAAAAAAAAAAAAAAYNEEAAAAAAAAAAAAAADABosmAAAAAAAAAAAAAAAAWDQBAAAAAAAAAAAAAACwwaIJAAAAAAAAAAAAAAAAFk0AAAAAAAAAAAAAAABssGgCAAAAAAAAAAAAAACARRMAAAAAAAAAAAAAAAAbLJoAAAAAAAAAAAAAAABg0QQAAAAAAAAAAAAAAICE/wfnGd9y7EcDSQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "from aeon.similarity_search import QuerySearch\n", - "\n", - "# Here, the distance function (distance and normalise arguments)\n", - "top_k_search = QuerySearch(k=3, distance=\"euclidean\")\n", - "# Call fit to store X_train as the database to search in\n", - "top_k_search.fit(X_train)\n", - "distances_to_matches, best_matches = top_k_search.predict(q)\n", - "for i in range(len(best_matches)):\n", - " print(f\"match {i} : {best_matches[i]} with distance {distances_to_matches[i]} to q\")" + "starting_timestep_predict = 30\n", + "\n", + "indexes, distances = snn.predict(\n", + " series_predict[:, starting_timestep_predict : starting_timestep_predict + length],\n", + " k=3,\n", + " allow_trivial_matches=True,\n", + ")\n", + "for i in range(len(indexes)):\n", + " print(f\"match {i} : {indexes[i]} with distance {distances[i]}\")\n", + "plot_best_matches(\n", + " series_fit, series_predict, starting_timestep_predict, indexes, length\n", + ")" ] }, { "cell_type": "markdown", - "id": "3dc402cf-80b7-4d0c-b07c-2f8e7822ac97", + "id": "fcf10a34-930a-4fce-86f8-4dfa207cad11", "metadata": {}, "source": [ - "The similarity search estimators return a list of size `k`, which contains a tuple containing the location of the best matches as `(id_sample, id_timestamp)`. We can then plot the results as:" + "The `predict` method returns two lists, containing the starting timesteps of the matches in `series_fit` and the squared euclidean distance of these matches to the subsequence we gave in `predict`. Now, you can then play with the different parameters of `predict` to customize your search results to your needs!\n", + "\n", + "It is also possible to get the distance profile which is used to extract the best matches :" ] }, { "cell_type": "code", "execution_count": 5, - "id": "23efe48e-8257-4ecc-93a2-d72f19024ab5", + "id": "7d2bd3f7-7eb9-4406-be1c-b6fcd9c76730", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAE/CAYAAADCGZOXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAACnOUlEQVR4nOzdeZicZZ3v//dTe1XvezqdpDv7vgAJOzGICKLEwCCoyARRcQOcmeNRRmb4MR4XRp0zjoOO5ojixqKgIKsKElkESQIBQvalk+50p/eu6q59eX5/VFd1d/al07V9XteViyRdqbqrSep+nu/9XQzTNE1ERERERERERKSgWTK9ABERERERERERyTwFiUREREREREREREEiERERERERERFRkEhERERERERERFCQSEREREREREREUJBIRERERERERERQkEiyTFNTE88++2ymlzFu7rvvPi688MJML0NEJGdonxARkaPRPiFyahQkkrx311138bGPfWzcXu/GG2/kX/7lX07Lc/f29nLVVVdRVFREY2Mj999//2l5HRGRQpJP+8Q999zD0qVLcTqd3HjjjaflNURECk2+7BPhcJhPfOITNDY2UlJSwpIlS3j66afH/HUkt9kyvQAROX6f//zncTgcdHR0sHHjRt7//vezePFi5s+fn+mliYhIFpg4cSL/8i//wh/+8AeCwWCmlyMiIlkkFosxefJk/vKXvzBlyhSeeuoprr32Wt5++22ampoyvTzJEsokkqyzbt065s2bR0VFBR//+McJhULprz3xxBMsWbKE8vJyzj//fN5666301/793/+dhoYGSkpKmD17Ns899xzPPPMM3/jGN3jooYcoLi5m8eLFh33NpqYmvv3tb7No0SKKior4xCc+QUdHB+973/soKSnhPe95D319fenHf+hDH2LChAmUlZWxfPly3nnnHQDWrFnDr371K771rW9RXFzMlVdeCUBLSwtXX301NTU1VFVVccstt4x6/S9+8YtUVFQwderUI0bz/X4/jzzyCP/n//wfiouLufDCC1m5ciW/+MUvTu4bLSKSo7RPHPnU9+qrr2bVqlVUVVWd+DdWRCRPaJ84/D5RVFTEXXfdRVNTExaLhQ984ANMnTqVDRs2nNw3WvKTKZJFGhsbzfnz55v79u0ze3p6zPPPP9+84447TNM0zddff92sqakxX331VTMWi5n33Xef2djYaIZCIXPr1q3mpEmTzP3795umaZp79uwxd+7caZqmaf5//9//Z15//fXHfN1zzjnHPHDggNna2mrW1NSYZ5xxhvn666+bwWDQvPjii8277ror/fh7773X9Pl8ZigUMr/whS+YixcvTn9t9erV6TWbpmnGYjFz0aJF5j/8wz+Yg4ODZjAYNF988UXTNE3zpz/9qWmz2cw1a9aYsVjM/MEPfmDW19ebiUTikDW+/vrrptvtHvV73/72t80PfOADJ/AdFhHJbdonjrxPjHTHHXeYq1evPu7vq4hIvtA+cXz7hGma5oEDB0yn02lu2bLl+L65UhCUSSRZ55ZbbmHy5MlUVlZyxx138MADDwDJqPqnP/1pzjnnHKxWK6tXr8bpdPLqq69itVoJh8Ns3ryZaDRKU1MT06dPP6HXvfXWW6mrq6OhoYGLLrqIc845hzPOOAOXy8VVV13FG2+8kX7sTTfdRElJCU6nk7vuuos333wTr9d72Od97bXXaGtr49vf/jZFRUW4XK5RzeUaGxv51Kc+lX5P7e3tdHR0HPI8g4ODlJaWjvq9srIyBgYGTuh9iojkOu0Th98nREQkSfvEsfeJaDTK9ddfz+rVq5kzZ84JvU/JbwoSSdaZPHly+ueNjY20tbUBsHfvXv7jP/6D8vLy9I+Wlhba2tqYMWMG3/3ud7nrrruora3lwx/+cPrPHa+6urr0z91u9yG/HhwcBCAej3P77bczffp0SktL0/W73d3dh33elpYWGhsbsdkO3wJswoQJ6Z97PB6A9GuNVFxcjM/nG/V7Pp+PkpKS43h3IiL5Q/vE4fcJERFJ0j5x9H0ikUhwww034HA4uOeee47vzUnBUJBIsk5LS0v65/v27WPixIlA8sP+jjvuoL+/P/0jEAjwkY98BICPfvSjvPTSS+zduxfDMPjyl78MgGEYY7q++++/n8cee4xnn30Wr9dLc3MzAKZpHvb1Jk+ezL59+4jFYqf0urNmzSIWi7Fjx47077355ptqWi0iBUf7hIiIHI32iSMzTTPdL+mRRx7Bbref8nNKflGQSLLO97//fVpbW+nt7eXrX/861113HQCf+tSn+OEPf8jf/vY3TNPE7/fz5JNPMjAwwLZt2/jzn/9MOBzG5XLhdruxWJJ/vevq6mhubiaRSIzJ+gYGBnA6nVRVVREIBPjKV74y6ut1dXXs3r07/euzzz6b+vp6br/9dvx+P6FQiJdffvmEX7eoqIirr76aO++8E7/fz8svv8xjjz3GDTfccMrvSUQkl2ifOLJYLEYoFCIejxOPxwmFQgo+iUjB0T5xZJ/97GfZsmULjz/+OG63+5Teh+QnBYkk63z0ox/lve99L9OmTWP69On8y7/8CwBLly7l//2//8ctt9xCRUUFM2bM4L777gMgHA5z++23U11dzYQJE+js7OSb3/wmkJwcAFBVVcWZZ555yuv7+7//exobG2loaGDevHmce+65o77+iU98gs2bN1NeXs6qVauwWq08/vjj7Ny5kylTpjBp0iQeeuihk3rtH/zgBwSDQWpra/nIRz7C//zP/yiTSEQKjvaJI/va176G2+3m7rvv5pe//CVut5uvfe1rp/yeRERyifaJw9u7dy8/+tGP2LhxIxMmTKC4uJji4mJ+9atfnfJ7kvxhmKmcNhERERERERERKVjKJBIREREREREREQWJREREREREREREQSIREREREREREUFBIhERERERERERQUEiEREREREREREBbJlewJFUV1fT1NSU6WWIiGSl5uZmuru7M72MjNI+ISJyZNontE+IiBzJ0faIrA0SNTU1sX79+kwvQ0QkKy1dujTTS8g47RMiIkemfUL7hIjIkRxtj1C5mYiIiIiIiIiIKEgkIiIiIiIiIiIKEomIiIiIiIiICFnck+hwotEora2thEKhTC9FsojL5WLSpEnY7fZML0VEROS00XWQHI6ug0REZCzlVJCotbWVkpISmpqaMAwj08uRLGCaJj09PbS2tjJ16tRML0dEROS00XWQHEzXQSIiMtZyqtwsFApRVVWlCyNJMwyDqqoqnaqKiEje03WQHEzXQSIiMtZyKkgE6MJIDqG/EyIiUii058nB9HdCRETGUs4FiTKpubmZBQsWnPLzrF27lr/+9a9jsKJD3XfffbS1tR3zMbfccssxn2vFihWsX79+rJbGxo0beeqpp9K//v3vf8/dd989Zs8vIiIip4+ug06NroNERCQXKEiUAZm+OMqUgy+OVq5cye23357BFYmIiMh403VQkq6DREQkG+VU42qAu9beNX6vteLQ14rFYlx//fW8/vrrzJ8/n5///Od4PB42bNjAP/3TPzE4OEh1dTX33Xcf9fX1fO973+OHP/whNpuNefPmcffdd/PDH/4Qq9XKL3/5S/77v/+biy66aPg177qLPXv2sHv3bvbt28d//ud/8uqrr/L000/T0NDA448/jt1u56tf/SqPP/44wWCQ888/nx/96Ec88sgjrF+/nuuvvx63280rr7zCpk2b+MIXvoDf78fpdPLcc88B0NbWxuWXX86uXbu46qqr+Na3vnXU78UDDzzAN77xDUzT5P3vfz///u//DsAzzzzDV77yFeLxONXV1Tz33HO89tprfOELXyAUCuF2u/npT3/K1KlTufPOOwkGg7z00kv88z//M8FgkPXr13PPPffQ3NzMTTfdRHd3NzU1Nfz0pz9lypQp3HjjjZSWlrJ+/XoOHDjAt771La655pqx+598DPGEyVut/ezsHKSlL0g8kcDAoNRto8xtpz8QpXswTDiWIBpPEImZJEyTulIXTVUeGquKmFLlwWmzYLMYlHsc47Z2ERHJrEgsQYcvRIcvxAFfiAPe5I++QJSJ5S4mVbgxTUiYMK2miLn1pZS5jz6hStdBug4az+sgkULR0hvgD+8cYOuBAcrcdiqLHFR4HJS6bVgMA7vVQoXHTpnbjmEY2CwGZW47pW47VotKPiW/5FyQKNO2bdvGvffeywUXXMBNN93ED37wA77whS9w66238thjj1FTU8NDDz3EHXfcwU9+8hPuvvtu9uzZg9PppL+/n/Lycj7zmc9QXFzMF7/4xcO+xq5du3j++efZvHkz5513Ho888gjf+ta3uOqqq3jyySdZtWoVt9xyC3feeScAN9xwA0888QTXXHMN99xzD9/5zndYunQpkUiE6667joceeohly5bh8/lwu91A8jTrjTfewOl0Mnv2bG699VYmT5582PW0tbXx5S9/mQ0bNlBRUcF73/teHn30US644AI+9alP8cILLzB16lR6e3sBmDNnDi+++CI2m41nn32Wr3zlKzzyyCN89atfTV8MQfK0L+XWW29l9erVrF69mp/85CfcdtttPProowC0t7fz0ksvsXXrVlauXDlmF0eRWII93X52dQ0yGI4RjiUIR+OEonFC0QRdA2Ge29pB92BkTF4PYM6EElad0cCFM6qZPaEEu1XJfCIiucobiPKnLR28squHrsEw3mAUTJNI3KRrIHTC+4dhwLtm1XD9OY1cMqcWSxbeeOg6KH+ug0QEovEE//K7TTy0vuWk/rzDamFOfQlzJpRQ7nFQ7rEzvaaYGbXFNFZ6sOlaX3KQgkQnaPLkyVxwwQUAfOxjH+N73/sel19+OZs2beLSSy8FIB6PU19fD8CiRYu4/vrrWbVqFatWrTqu13jf+96H3W5n4cKFxONxLr/8cgAWLlxIc3MzAM8//zzf+ta3CAQC9Pb2Mn/+fK688spRz7Nt2zbq6+tZtmwZAKWlpemvXXLJJZSVlQEwb9489u7de8SLo3Xr1rFixQpqamoAuP7663nhhRewWq0sX748PXK1srISAK/Xy+rVq9mxYweGYRCNRo/5nl955RV++9vfAsmLvS996Uvpr61atQqLxcK8efPo6Og45nMdiS8U5Scv7eE361vpD0QIROOY5rH/XGOVh8WTymkcygiKJ5LP5Q1GKXPbqS524nFYsVmTpwwG0NYfYm+Pn729AVp6A8QTJoFInK0HBrj76a0AuOwW3j2nlmvOmsS7ZtXqFEJEJAe09gX4y/Yuntl0gFd29RBLHHkjsVoMaoqdTChzMaHUxYQyF3WlLsrcdtr6g7R5g9gtFmIJkx2dA2xp97F2Wxdrt3Vx/vQqvvOhxUwsd4/juzs2XQfl7nWQiIzmD8f47K9e54XtXThtFt4zr45zp1URjMTo9Ufp80fwhaKYJkTiCXqHfg3J4JI3EMUXivFWq5e3Wr2HPL/dajC5wkOxK1mBMGdCCTNrS7BZDdx2K2c1VVBb4hrvty1yTAoSnaCDJ0gYhoFpmsyfP59XXnnlkMc/+eSTvPDCCzz++ON8/etf5+233z7mazidTgAsFgt2uz39mhaLhVgsRigU4nOf+xzr169n8uTJ3HXXXSc8+jT1GgBWq5VYLHZCf/5o/vVf/5WLL76Y3/3udzQ3N7NixYpTer6RazWPJ6pzENM0eeC1Fv79ma3JU94hhpEMAM2sLabUbcdlt+KyWXHZLbjsVjwOK+dNr2JefemYTA6JxBKs3dbJ05sOsLGlnz3dfp56+wBPvX2AxioPn14+navOaMDtsJ7ya4mIyIkzTZMef4T9fUHa+oPs7w/S2hfkgDdEfzDC/v4gLb3B9OOtFoMLZlRx6dw6plR5KHM7sFoMrIZBbamT6mLnCR0A9PojPLKhlR/+ZRd/3dXD5d99gZ/ddDZnTKk4HW/3pOg66Niy7TpIRA7vq49v5oXtXVQWOfjpjctYPLn8hJ/DF4ryzn4fu7sHGQjF6BoIs6trkB0dg+zvD7K7259+7Is7ug/58/PqS7nj/XO5YEb1qbwVkTGlINEJ2rdvH6+88grnnXce999/PxdeeCGzZ8+mq6sr/fvRaJTt27czd+5cWlpauPjii7nwwgt58MEHGRwcpKSkBJ/Pd9JrSF0IVVdXMzg4yMMPP5xOPS4pKWFgYACA2bNn097ezrp161i2bBkDAwPpNOsTcfbZZ3PbbbfR3d1NRUUFDzzwALfeeivnnnsun/vc59izZ086zbqyshKv10tDQwMwOpV65NoOdv755/Pggw9yww038Ktf/WpUf4JT0TMY5rYH3+DlnT0AnDO1kn94zywWTirDZbOMawqow2bhvfMn8N75EwBo9wb53Rv7eeC1feztCfCV373NN57awvsX1nPbe2bSkGWnxyIi+aatP8gb+/p5Y18fb7T0s7nNRzAaP+qfKXHZOHdaFZfOq+PSuXVUFI1dr7nKIgefWj6NVWc08KWH3+T5bV186eG3eOoLF2VNebKug3LrOkhEDi+RMPnD5gMA/Pyms1nQUHZSz1PqsnPe9CrOm151yNcCkRitfUECkThdA2E2t/nY2+PHBLoHw6xv7mNzu4/rf/w3PnL2ZM6ZWkVdqYv6smTmqcuug2PJDAWJTtDs2bP5/ve/z0033cS8efP47Gc/i8Ph4OGHH+a2227D6/USi8X4h3/4B2bNmsXHPvYxvF4vpmly2223UV5ezpVXXsk111zDY489dkjDxuNRXl7Opz71KRYsWMCECRPSadQAN954I5/5zGfSDRsfeughbr31VoLBIG63m2efffaE33N9fT133303F198cbph4wc/+EEA1qxZw9VXX00ikaC2tpY//elPfOlLX2L16tV87Wtf4/3vf3/6eS6++GLuvvtulixZwj//8z+Peo3//u//5uMf/zjf/va30w0bx8Idv9vEyzt7qCxy8G8r5/OBRfVjkhU0FurL3HxuxQxuvmgaT206wL0v7eHNln4eWt/Cy7u6eeSz51NXqhRUEZGx1OuP8IPnd/LnrZ2jTnhTSl02Gio8NJS7aSh30VDhpr7MTVWRg6piJzNqi097eXBNiZP/+dhZXPbdF9jROchPX97Dzcunn9bXPF66Dsqt6yARObzN7T76A1Eayt3Mn1h67D9wEjwOG7PqStK/vnRe3aivh2NxfvSX3XzvuR088FoLD7w23BfJajE4q7GCS4ZaU1QVOxEZL4aZpXmrS5cuZf369aN+b8uWLTzU8dC4reFwUz0kO23ZsoW5c+eO+r3ntnTwiZ+tp8hh5Q//uJxJFZ4Mre747ewc4H/9+k3ebPUyq66YX3/6PE1Ek8M63GdkodH3QE6UaZp8eM2r/G1PssFwidPGGY0VnDG5nDOmlLN4UvmYZgadqrXbOrnxp+vwOKw897/eRX9bs66D5LAOdx2kz0h9D+TIfviXXdz99FauXTqJb12zOKNr2dLu43dv7KetP0iHL0S7N/kjPtTzzmmzcPHsWtq9QfoCUS6bX8d1y6YwvaYoaw6/Jfcc7fMx5zKJdMEixyMQiXHnY+8A8I+XzsqJABHAjNoS7vv42XzoR6+wvWOQj9+3jl998hw8jpz7pyoiknUe3tDK3/b0Ulnk4AfXn8nSxoqsnjyzYnYtl8+fwDPvHGDNC7u5doZF10EiImPg5Z3J/kDZ0Atobn0pc+tHZzN5g1Fe3tnNwxta+fPWTp5550D6a//vxT38vxf3UFfq5LxpVfzzFXNVfSBjKnuvjEROwa/XtbC/P8i8+lJuPL8p08s5IRVFDn7xibNpKHfzxr5+Pv2LDURiiUwvS0Qkp/X6I3zjqS0A/Mv753LutKqsDhCl3PLuGQD87o39alosIjIGQtE4rw1llJ4/PfNBosMpc9u5YmE9P7lxGc/+03LuvnohD958Lg9/5jyuXTqJUpeNDl+YRze2cd2PXqGtP3jsJxU5Ttl/dSRyEtbt7QNg9fmNOXETcLD6Mje/+MTZVBU5eHFHN197cnOmlyQiktO+9sRm+gJRzp9exVVnNGR6OcdtQUMZCxpK6Q9ECUZ1YCAicqpe39dHOJZgzoQSakqyv9fPjNoSPnz2FM6dVsXSpkq+dc1iNt75Xv74j8uZP7GU5p4A1615hXavAkUyNnLv7lnkOGzc1w/AksnZMzb4RE2rKea+j5+NzWLwi1f3smFvb6aXJCKSk57d3MFv39iP02bh61ctzLkeDtctmwJAIDx2Y9pFRApVqtTsopnZmUV0PCwWg1l1Jdz/yXNZPKmMlt4gH//pOnyhaKaXJnlAQSLJO10DYfb3BylyWJlRW5zp5ZyShZPK+PS7pmGa8M+/fVtlZyIiJ8gbiPKV370NwP++bDZTq4syvKITt3LxRFx2C6FYgnAsnunliIjktDeGDpPPmXro2PpcU+ax87ObzmZaTRFbDwzwuV++rvsFOWUKEkne2djSD8CiSeWnfUzxeLj13TNpqvKwvWOQe1/ak+nliIjklB+9sIvOgTBLGyv4+AVTM72ck1LmtnPFgnoA+gM6JRYRORV7ewIAOX+YnFLucfCzj59NdbGDl3Z285OXdb8gp0ZBIsk7G1uS/YiWTCnP7ELGiMtu5d8+uACANS/swq9yAxGR47Z+qEfd5y+ekdMHB5ctmADAYEh7gIjIyQrH4rR5g1gtBg0V7kwvZ8xMrvTwH9cuAeD7z++kzx/J7IIkpylIlAViMV3wjaVUJtGSyeUZXcdYWj6zmjOmlNMXiPLAa/syvRwRkZyQSJhsbvMBML+h9BiPzm7nTqvCAAKROPFE/kw50zWQiIynlt4gpgkTy13Yc3C4zdG8a1YNF82sZiAU457nd2Z6OZLD8utfxjj5+te/zqxZs7jwwgv5yEc+wne+8x1WrFjB+vXrAeju7qapqQmAeDzO//7f/5tly5axaNEifvSjHwGwdu1aLrroIlauXMm8efO48847+e53v5t+jTvuuIP/+q//Gu+3lvMSCZO3WrxAfgWJDMPg1qExyD96YTehqHpSiIgcy77eAIPhGLUlTmpLXJlezikpc9ux2yyYmBnNKNU1kIjksn29fgCaqnKvP93x+PLlczAM+PkrzbT0BjK9HMlRtkwv4KTcdVfGXmPDhg08+OCDbNy4kVgsxplnnslZZ511xKe59957KSsrY926dYTDYS644ALe+973AvD666+zadMmpk6dSnNzM1dffTX/8A//QCKR4MEHH+S11147He8sr+3qGmQgHKO+zEVdaW7fEBzs4tm1zKsvZXO7j99saOWGcxszvSQRkay2qS15aDB/Ym5nEaW4bMmzPePf7gKX/fS+2GGug3QNJCK5rrk7GTiZUunJ8EpOjwUNZaxa0sDv3tjPj17YxddWLcz0kiQHKZPoBL344otcddVVeDweSktLWbly5VEf/8c//pGf//znLFmyhHPOOYeenh527NgBwNlnn83Uqckmmk1NTVRVVfHGG2/wxz/+kTPOOIOqqtzvuD/e8rHULMUwDD61PPn35ZlN7RlejYhI9ntnqNRsQUNZhlcyNpz25GVbpibX6BpIRHLdvqHsmnzNJAL43IrpAPxmfSvdg+EMr0ZyUW5mEmUhm81GIpG8aAuFQunfN02T//7v/+ayyy4b9fi1a9dSVDT6w+mTn/wk9913HwcOHOCmm246/YvOQzs6B4H8OTU+2EUzawDYsLePcCyO02bN8IpERLLXpv35lUnksFpIGAaxhEk8YWZNI25dA4lIrmjuSZabTanKz0wigJl1Jbxnbi3Pbunk539t5p/eOzvTS5Ico0yiE7R8+XIeffRRgsEgAwMDPP7440DyFGzDhg0APPzww+nHX3bZZfzP//wP0WhyZO327dvx+/2Hfe6rrrqKZ555hnXr1h1yQSXHZ0/3UJ1xdX6eDlQXO5lZW0womuCtVm+mlyMikrVMc0TT6on5kUlkGAZFzuT5XiayiXQNJCK5bl9PMpOoMY+DRACfflcym+jnr+4lENGAADkxyiQ6QWeeeSbXXXcdixcvpra2lmXLlgHwxS9+kWuvvZY1a9bw/ve/P/34T37ykzQ3N3PmmWdimiY1NTU8+uijh31uh8PBxRdfTHl5OVarMkROxt6e/G5GB8kJNzs6B3l1Vw/LmiozvRwRkax0wBeixx+h1GVjUh6NOS52WkkA0XgCN+N7raBrIBHJZfGESUtffvckSlnaWMGZU8p5fV8/T7zZzrXLJmd6SZJDcjNINB6Nq4/ijjvu4I477hhaSnItc+bM4a233ko/5mtf+xoAFouFb3zjG3zjG98Y9RwrVqxgxYoVo34vkUjw6quv8pvf/Ob0LT6PJRIme4dOB/I1kwiSQaJfvLqXv+3p5dZML0ZEJEu9s384i8gwsqMsayx4HDZ2/dPtuO1WSutKxv31dQ0kp8NNN93EE088QW1tLZs2bTrk62vXruWDH/xguo/V1VdfzZ133jney5Qc19YfJBo3qS1x4nHk5m3w8TIMg787axKv7+vn2S0dChLJCVG5WZbYvHkzM2bM4JJLLmHmzJmZXk5OOuALEY4lqC52UuzM3w/+c6Yls4fW7+3NWPNSEZFsN9y0Oj/6EaW47VYMDELROPGEmenljAldA8mNN97IM888c9THXHTRRWzcuJGNGzcqQCQnJdW0Ot9LzVLePacWgBd3dBOKxjO8Gskl+XsnPU7uGqOspnnz5rF79+4xea5C1ZzqR5TnH/ypvkQ7Ogd5q7WfpSo5ExE5xI7OAQBmT8ivIJHFYuCyWwhG4wSj8YweiugaSMbK8uXLaW5uzvQyJM+lmlY35nFbipHqy9zMn1jKO20+Xtndw8WzazO9JMkRY5JJdNNNN1FbW8uCBQsO+/W1a9dSVlbGkiVLWLJkCV/96lfH4mVFRmkugFKzlHOnJUcDv7KrJ8MrERHJTsNjjvPv4MDjSPbsCaoZqRSQV155hcWLF/O+972Pd95554iPW7NmDUuXLmXp0qV0dXWN4wol26WbVud5P6KRLhnKJvrzls4Mr0RyyZgEicYzRdQ08yO1WsZO6u9E6nRgagEEiZZNTWYPbWzpz+xCRESyVCq7NN/GHJumiXuol0YgovIBKYxr4zPPPJO9e/fy5ptvcuutt7Jq1aojPvbmm29m/fr1rF+/npqamvFbpGS9VO/SfNsXjuaSuXUAPLeloyA+K2RsjEmQaPny5VRWnv6SF5fLRU9Pj/6CS5ppmvT09OByudI3BIVQZ7ywITnOeVObN8MrERHJPv2BCL5QDI/DSk2xM9PLGTOp6yC3PXn5piCRjLwOymelpaUUFxcDcMUVVxCNRunu7s7wqiTXtHmDAHk18fJYFjaUUVPipM0bYkv7QKaXIzli3ArZUymiEydO5Dvf+Q7z588/5DFr1qxhzZo1AIdND500aRKtra1KHZVRXC4XkyZNorlnHwBNBVBn3Fjpodhpo8MXpmsgTE1J/twEiYicqvRpcaUnryabjbwO6uoPkjAh3uvCasmf9ygnLnUdlM8OHDhAXV0dhmHw2muvkUgkqKqqyvSyJMcc8IYAqCvN76DqSBaLwYpZNfxmQysv7uhi3sT86tMnp8e4BIlSKaLFxcU89dRTrFq1ih07dhzyuJtvvpmbb74ZgKVLlx7ydbvdnh59KTJSImGmbwoKoSeRxWIwr76U15p7eafNywo1ohMRSdubpxNsRl4HfePev/Hijm5++LEzuXxufYZXJnJqPvKRj7B27Vq6u7uZNGkS//Zv/0Y0GgXgM5/5DA8//DD/8z//g81mw+128+CDD+ZVAFhOv1g8QfdgGIDaksIJEkGyl+lvNrSyrrmXT79reqaXIzlgXIJEpaXDEcsrrriCz33uc3R3d1NdXT0eLy8F4IAvRDiWoLrYmdFJL+Np3sRUkMinIJFktZtuuoknnniC2tpaNm3adMjX165dywc/+MH0ze/VV1+t8cZySvZ25/8EmyWTy3lxRzdvtnq5fIGCRJLbHnjggaN+/ZZbbuGWW24Zp9VIPuoaDJMwobrYgcM2Jh1XcsbZQ71M1zX3kUiYWJR9KscwLv9CDhw4kO4jpBRROR1STavzcYrNkSwY6kv0jvoSSZYbz+EGIpC/mUQjzZmQPIDbdkA9JkREjqUQS81SJlW4qS9z4Q1G2d6pPUOObUxSLpQiKpnW3F04pWYp84dqijft92V4JSJHt3z5cpqbmzO9DCkgw2OO83dPmFNfAihIJCJyPDp8ySDRhAIMEhmGwdlTK3lsYxvr9vSmDxlEjmRMgkRKEZVMa+kbblJaKGbUFuOwWdjXG8AbjFLmtmd6SSIn7XiGG4gcr1R2aT5nEjVVFeG0WdjfH8QXilLq0h4gInIk6UyissILEgEsa0oGif62p5cbzmvK9HIkyxVWQabkrf19yZGWDeWFM9LSbrUwZ0LyJHlzm7KJJHelhhu8+eab3HrrraxateqIj12zZg1Lly5l6dKlmnQphxWMxOkcCGO3GtTn8c2A1WIwsy45ElzZRCIiR3fAl2xaXYiZRADnpPsS9abbwIgciYJEkhf29w8FiSoKJ0gEMH+i+hJJ7istLaW4OHmze8UVVxCNRunu7j7sY2+++WbWr1/P+vXrqampGc9lSo7YN9SPaFKFB5s1vy9zUiUDWxUkEhE5qkIuN4NkBUKFx06HL5zeJ0WOJL+vnqRgFGImEQz3JdrcrkwiyV0abiBjKVVqVgjlx6ls0m0HtAeIiBxNoZebGYbB0qZkNtH65r4Mr0ayXWHMCpe8Fokl6BgIYTFgQoF98M+sTWZf7OoczPBKRI5Mww1kPKWaVhfCtMvZQ0Gire3KJBIROZpCzyQCWDK5nD9t7mBTm5e/O2tSppcjWUxBIsl5B7whTBPqy1zY87y04GAzUkGiLj+maerGWrKShhvIeEql0U8uiEyiZDbpto4B7QEiIkdgmiYHFCRi3lAFwjuajCzHUFh31JKXCrUfEUBlkYNyj53BcIzOgXCmlyMiknHtQyUFhVB+XFPipKrIwUAoRtvQ+xYRkdEGwjECkTguu4VSd+HmSIxsU5FIqHm1HJmCRJLzUkGiiQVwQ3AwwzCYXpPMJtqpkjMRkXRJQaH0nRguOdPJsIjI4XR4h7OICjnjsrbERW2Jk8FwTM2r5agUJJKcV6hNq1Nm1KRKzhQkEhEptJICTTgTETm61L5QVyD7wtGksoneadPBghyZgkSS8/b3JyPhhVhuBjC9tghQ82oRkWg8QfdgGMNIlmIVglRvut1d/gyvREQkO6UmmxXagJvDmT+xDIBNbd4Mr0SymYJEkvPSPYkKNZNo6AZhpzKJRKTAdQ2EMU2oLnYWzCCDaTVDBwXaA0REDkuTzYYtaFAmkRxbYVxBSV5LlZtNKtRMolS5WadOkUWksBVaqRkMB4l2dw1immpEKiJyMJWbDUtlEm1u82rPkCNSkEhyWiJh0taf/OAvxMbVAJMqPDhsFg74QgyEoplejohIxqSakxbSjUBNsZMSpw1fKEaPP5Lp5YiIZJ0OX3ICsMrNkofqpS4b3YMRTUaWI1KQSHJa92CYSDxBZZEDj6MwR1paLQbTqlMnycomEpHClc4kKiuMfkSQnHI5nE2kPUBE5GCdyiRKMwyDeUPNqzftV18iOTwFiSSnpfoRTSwv7A/96ZpwJiJSkOVmMLwH7NYeICJyiFQmUV1p4RwgHM28+mTJmaZiypEoSCQ5rdCbVqdMTzWv1oQzESlghVhuBmpeLSJyJPGESddgMkhUKFMvj2VWXfK+YUeHgkRyeAoSSU5LNa1uKPdkeCWZNX3oBmFPt0oNRKRwDZebFVqQKJVJpD1ARGSknsEw8YRJZZEDp82a6eVkhZl1JQBs79DBghyegkSS09q9qabVhXVDcLAplckg2b7eQIZXIiKSOenmpAWaSbRbBwUiIqOk9oVaZRGlzawbblMRT2jCmRxKQSLJae3eZCZRfVlhl5ulg0Q9AY2zFJGCZJomB1LlZgWWSdRUVYRhJA8KIrFEppcjIpI1OtS0+hClLjv1ZS7CsYQOmOWwFCSSnJbKJKov8EyiyiIHRQ4rA+EY3mA008sRERl3vlCMYDSOx2GlxFlY0y5ddisN5W7iCZN9vcomEhFJ6RhIBYmUSTTScMmZ+hLJoRQkkpzW1j8UJCqwU+ODGYbBlKpkucHeHp0IiEjh6Rgx2cwwjAyvZvwNT7lUkEhEJGV4sllh3yscbFatmlfLkSlIJDkrEkvQPRjGajGoLdEH/5TKZMmd0kZFpBAdKNDJZinpvkQKEomIpHUOHSDUFujecCSz1LxajkJBIslZ6RrjEidWS+GdGh9MzatFpJAV6mSzlGnVySBRs5pXi4ikjbxfkGGp5tUqN5PDUZBIclZbf7JpdaHeEBwsFSRqUZBIRApQZ4E3J20cKjne06MgkYhISnrqpe4XRkn1JNrd5ScW18ADGU1BIslZqVPj+vLCnmyWop5EIlLI0plEBdqcdKoyiUREDtE5UNgHCEdS7LTRUO4mEk+wVwfMchAFiSRnpZpWT9TJAKByMxEpbIXenHRiuRuH1ULnQJhAJJbp5YiIZFw0nqB7MILFgKoiR6aXk3VSJWdqXi0HU5BIcla7N1VupkwigIZyN4aR/L5EYkobFZHC0jmQDBLVFmgmkdViMHlogEFztw4LRES6hvaF6mInNqtuew82s1ZTMeXw9K9Fcla7V5lEIzlsFiaWuUmYw/2aREQKRXqCTQFPu2waKjtuVl8iEZHhptUFmmF6LNNqUkEiTTiT0RQkkpyVyiRST6JhqZIz1RaLSCFJJMz0iXFNAU+waRrqS7RHfYlEREaUIRfuvnA0U7VnyBEoSCQ568BQJlG9MonS1JdIRApRXyBCLGFS5rbjslszvZyMSQWJ9iqTSEQk3bS6VplEhzWtJrln7O7yY5pmhlcj2URBIslJ4Vic7sEINotBdbFOB1KmVCWDRC0KEolIAdFpcdLUVLmZehKJiAyXmxVwGfLR1BQ7KXHa8Aaj9PojmV6OZBEFiSQnpbKI6kpdWC1GhleTPdLlZjpFFpECkj4tLvAbgabq5B6wR3uAiIgOEI7BMIzhbCKVnMkIChJJTmpXqdlhDZebqXG1iBSOzqEbgdoC7kcEUF/mxmG10DUQZjAcy/RyREQySo2rjy3VvHq3mlfLCAoSSU5S0+rDSwWJWnoDqi0WkYKhvhNJVouRLjtu1qmwiBS49AGCMomOaFr1cF8ikRQFiSQntfUrk+hwyj12Spw2BsMx+gLRTC9HRGRcdA4okyilqSrVvFp9iUSksHUMKJPoWFKZRLsUJJIRFCSSnKTJZodnGMOnyOpLJCKFIlVSoNNimDrUl6hZe4DkkJtuuona2loWLFhw2K+bpsltt93GjBkzWLRoEa+//vo4r1ByTSgapz8QxWYxqPQ4Mr2crDU1lUnUrXIzGaYgkeSkdLlZmcrNDjbcl0inyCJSGFKZRDothqahC/49KjeTHHLjjTfyzDPPHPHrTz/9NDt27GDHjh2sWbOGz372s+O4OslFXSMyTC0acnNEqSDRvp4AsXgiw6uRbKEgkeQklZsd2ci+RCIihUCNq4elys3Uk0hyyfLly6msrDzi1x977DH+/u//HsMwOPfcc+nv76e9vX0cVyi5ZjjDVPcKR+N2WGkodxNLmLT0afCNJClIJDnpwNAHf325PvgPlio3UyaRiBQC0zRHnBhrT0hlEjWrJ5Hkkf379zN58uT0rydNmsT+/fszuCLJdh2+VIapDg+OZVpNqnm1Ss4kaUyCRKojlvEUisbp9UewWw2qi/TBf7BUJpGalopIIegPRInEE5S4bLgd1kwvJ+PqS104bRa6B8MMhDTAQArPmjVrWLp0KUuXLqWrqyvTy5EMSWUSqQz52DThTA42JkEi1RHLeEo1ra4rdanG+DBUbiYihSQ1vUalZkkWi0FjlQ4LJL80NDTQ0tKS/nVraysNDQ2HfezNN9/M+vXrWb9+PTU1NeO1RMkymmx2/FITztS8WlLGJEikOmIZT21DTasnqmn1YU0sd2O1GLT7QoRj8UwvR0TktOr0qWn1wRqr1Lxa8svKlSv5+c9/jmmavPrqq5SVlVFfX5/pZUkWU6+645cqN9ulTCIZYhuPFzlSHbE+3OVktA81rZ6gptWHZbdamFjuoqU3SGtfkOlDpwMiIvko3ZxUNwJpqWk1e3t0wS+54SMf+Qhr166lu7ubSZMm8W//9m9Eo8lyyc985jNcccUVPPXUU8yYMQOPx8NPf/rTDK9Ysp3KzY7fVJWbyUHGJUh0vNasWcOaNWsAVEMsR6Sm1cc2pdJDS2+Qfb0BBYlEJK91pppW60YgrSmdSaRyM8kNDzzwwFG/bhgG3//+98dpNZIPUkEiHSof28QyNy57spedLxSl1GXP9JIkw8Zlutnx1hGrhliOR1u/ys2ORX2JJNtowIGcLp3KJDpEU3VyD2hWJpGIFKh0KbKmXh6TxWIMHy4om0gYpyCR6ohlLLV7dTJwLJOHgkT71LRUsoQGHMjpoj3hUKnSgWb1JBKRAuQPxxgIx3DaLJS6s6pwJmtNV/NqGWFM/tWojljGU+qGQJlER9ZYOdSPQplEkiWWL19Oc3PzEb9+pAEHOlCQY0mXIGtPSKsrceG0WejxR1Q6ICIFJ1WGXFfqwjA0Cfl4pJpXqy+RwBgFiVRHLOOpfWi6mXoSHZnKzSTXaMCBnKy2/lSQSHtCSqp0YFvHAHu7AyycVJbpJYmIjJvhptUqQz5eChLJSMq/k5zQ4m0hGAtiN4roDQzgtLqp9DgyvayslQoS7esNYJqmTlEkb2jAgYwUjsXpHgxjMdST6GBN1R62dQywp8evIJGIFIQ/7vwDjb94nL6glUt3BJmZaML/Ygj3+cuxWHXbezTTqpPlZru6VG4mChJJjnil9RU2d22mzx/BZ2um3O3innU7KXWWcnHTxTSWN2Z6iVmlzGOnzG3HG4zS449QXaybJ8luJzLg4OabbwZg6dKl47Y+yU7pxqSlLmzWcWmzmDOa1JdIRAqIaZq8ufsVHHs30dcfZHpvgNroG7za+xwvx1/kf53/RYocRZleZtaaOpRJ1NzjJ5EwsVh0wFzIdEUlOcEX9gEwEI4BUOQ06A320tzfTMJMZHJpWSuVTbRXzaslB2jAgZyM1LRLNa0+1NQqBYlEpHCE42GMgQEAovHkvYHDZiFU5MQwLHjsnkwuL+uVuuxUFzsJRRO0D5XrSeFSJpHkBF/YB6bJYCgZJCpxDf/VLXWWZmpZWW1KpYe393tp6Q1wVmNFppcjBU4DDuR00CCDI2usGj4VFhHJd76wD5c/mV0aiQ0FiawWwkVOSpwlar1wHKbVFNE9GGZ31yAN5dpXC5mCRJL1EmaCgfAAi//4Fg27u5gwGKFmUgVTA35a5zZQ4izJ9BKz0uQRfYlEMk0DDuR0SAWJ1LT6UFNT5WbKJhWRAjAQHsCZChINZRLZbRYCHiclDt0rHI/pNUW8tqeX3V1+LppZk+nlSAap3Eyy3mBkEBMTpz+EdTDExIEgMzu9TNrcise04bCqgfXhNFYpSCQi+S017VLlZoeqK3Xitlvp9UfwBqOZXo6IyGnlC/tw+pMHB6MyiYpdqjo4TqnDhT0qUy54ChJJ1kuVmjkD4eEPfVvyr66zQlHuI0lPONMpsojkqbb+oXIzpcUfwjCM9GGB+hKJSL5LBonCmKaZziRy2CyEPU4FiY5TU5WCRJKkIJFkPV/Yhz0cwxpLpD/0nTYLcZuFotKqDK8ue01RuZmI5LkDvmQmkcrNDq9JfYlEpEAMRAZwBsLEEiamCVaLgdViEBrqSSTHNq1Ge4YkKUgkWc8X9uEMJGuMw7GDTgZcZZlcWlarL3Nhsxgc8IUIReOZXo6IyJhr70/1JFIm0eE0pfoSdeuwQETyW6px9chSM4BwkTKJjtfkSg8WA1p6A+nvoxQmNa6WrJdKH40nTOIJE8MAm8Vg0OOkQh/6R2SzWmiocLO3J0BrX4AZtTpFEZE8ce+9RCNRzlu/h4CriJq3ymDZUnApo2ikqdVD5WY6FRaRPOcLeZkQCOONj25NoXKz4+e0WZlY7qa1L0hLX4DpNcWZXpJkiDKJJOulMolSEW2n1YJhGGpEdxxUciYiecc0ob0d/559zOhp4YKeXVifezb5+zKK+kuISKEI9XdjSZij+pfGHDbiDpumm52AdPPqLu0bhUxBIsl6qUyicCxZMqWTgeM3Wc2rRSTPhAf6MaNRBkIxAIqdNnA4lEV0GKmL/b3KJBKRPBZLxIj39wEHTTbzOAHUk+gEpPYNZaAWNpWbSdbzhX1M8IdGTCqwAqoxPh6NQ0GivcokEpE88btX76N+7wv0B0wiRoioUcLWiBtf2zrm1cyj2KH0+JSaEiceh5W+QBRvIEqZx57pJYmIjLmB8EC6f+nIyWahIidF9iJsFt3yHq90JpEyUAuaMokkq5mmmc4kGpk+CsokOh6p8cd7lUkkInki3NeFiclgOEjC8BM3+tkS3s9TO57CH9FF7UiGYdCYKjnTqbCI5KmByAAu/1CQaOSQG002O2FNChIJChJJlvNH/STMxKieRKkgUaKkGKfVmcnlZb2p1ckTdX3Qi0g+ME2TaH8vAJH4cAlyuCi5F+jg4FDp5tXaB0QkT6UOlOHQcjPtCydmWnoqpvaMQqYgkWQ1X9gHpokzECY8onE1gLOyBsMwMrm8rNdY5cEwko2ro3GNshSR3OaP+rEPJjMj08MMhkoKHFYHLpv6Eh1MzatFJN8lg0QhYHS5mYbcnLiGcjc2i0GbN0QwEs/0ciRDFCSSrOYL+7BFYlhjiVGZRHGbBU9pVYZXl/1cdisN5W7iCVMTzkQk53lD3nRJQTh9WmxNnxbr4OBQTWpeLSJ5biA8gNMfJp4wiSdMDANsFkOZRCfBZrUwJdWuolf7RqFSkEiymi/sG64xHnky4HFS6irL5NJyhkZZiki+8IV9w81JD+o7oRuBw0tnEqk3nYjkqdTeMLLUzDAMQkVOShzqSXSiplbp3qHQKUgkWS1VY5w6GbDoZOCETVMDOhHJE96wF6c/TCJhEhs6LbZbk3tCmVMHB4fTpJ5EIpLnfMF+nIHIqANl0CTkk5U+YFYGasFSkEiyWupkIBxLNSi1YhiGPvRPQOqDfrduEEQkx/lC3uSeEB99Wqy+E0dWU+ykyGHFG4zS549kejkiImMu7O3BMM1RmURRp42Ezaq94SQ0qQqh4ClIJFktlUk08kMfUCbRCZhWk5pwNpjhlYiInJrBvk4s8YN71FmJ2a2UqQT5sAzDSF/wN+tUWETyjGmahHu7gINaUxQlBxmUOFVudqKmac8oeAoSSVY7pMY4lT6qU+Pjls4k0mmAiOS4UG8ncNCI4yInGIb2hKNI9SXSBb+I5Bt/1I8jNdksNrp/qcPqwGl1ZnJ5OalJrSoKnoJEkrVM00xnEoVHjDoGZRKdiInlbhw2C50DYQbDsUwvR0TkpEX6upP/TZcgJ28EAPUkOopUX6I93WpeLSL55bADDawWwh6Hpl6epAmlLlx2C92DEXyhaKaXIxmgIJFkrUA0QCwRw+kPHdKILlbswW1zZ3J5OcNqMWiqUuNSEcltCTNBzNsLMOrgIFSUDBLp4ODI0plE2gNEJM/4wj4cgcNPQtZks5NjsRjaNwqcgkSStXxhH5jmYcvNXJW1Ohk4AWpeLSK5bjAyiGMwCIy8EbASLnLisrlw2lRScCSpPWCvys1EJM+kqg7g0FJk9ao7eVNVclbQFCSSrOUL+7BF41hjiVEf+gmrBU9pVYZXl1tSzat3d6l5tYjkJm/Ie+iNwNBpsbKIjm5kfwnTNDO8GhGRseMdmnppmibRoQMEu81CRHvDKVFfosKmIJFkLW94xA1BfLi0IOx2UKqTgROi0wARyXUj+06EDzot1o3A0VUVOSh22vCFYvQF1F9CRPJHcm+IEI0nA+B2q4HFMAh7nOpVdwpS9w4qNytMChJJ1krVGMcSCeIJE4thYLUYSh89CdMUJBKRHJc6OIgnTOIJE8NI3gyEi1y6ETgGwzBGNK/WPiAi+cMb6h/VmsJuHRpyowOEU6ID5sKmIJFkrdSp8ciyAsMwlD56EtIf9F0qNRCR3OQbKikYWX5sGIZuBI6TmpCKSD4K+HqwxBOjmlbHbRZidqsOlU/BVJUpFzQFiSRrJWuMI+kbAudQ02r1nzhxlUUOytx2BsIxugcjmV6OiMgJ8/d3JW8EYiNvBKy6EThO6dIBNa8WkTyRMBOEe7uAg5pWe5xgGLpfOAVVRQ5KhsqUe/26dyg0ChJJ1kplEo3sPQEQ9jhUWnCCDMMYnnCm5tUikoOCvR0AhONxYKhHXZFuBI7XtJrUHqAgkYjkB3/Ejz0QAhiVSRT2OHFak5Mv5eQky5R1uFCoFCSSrGSaZron0chTY1Am0clSXyIRyWWRvp7kf9N7gpWw2wGgg4PjMH1oyuUuHRSISJ4YNeRmxKGyWlOMjeEDZt07FBoFiSQr+aN+4mYcp//QIFGiuEgnAydBDehEJFfFE3Fi3l7goJKCIieAbgaOw8g9IJ5QfwkRyX0jp15GhzKJ7ENZpipDPnXKJCpcChJJVvKFfQA4g5FR6aMArooaDMPI2Npy1bShU+TdChKJSI4ZiAzgCBx0WmxLnha7bW7sVnsml5cTSlx26kqdhGMJ2vqDmV6OiMgpS/UvhUN7Eunw4NSpCqFwKUgkWckb8mLEE9hDkXRPIueIIJGcOPUkEpFc5Q0NlxSM3BPCHp0Wn4hp1cnDgp3aByQLPfPMM8yePZsZM2Zw9913H/L1++67j5qaGpYsWcKSJUv48Y9/nIFVSjYZmUk0uieRQ0GiMdCUDhIFMrwSGW8KEklW8oV9OIIRSJijTo2jTjulRZUZXl1uaqr2ALCvN0BsaCMVEckFvrAPZ3DotPigGwH1Izp+02vVX0KyUzwe5/Of/zxPP/00mzdv5oEHHmDz5s2HPO66665j48aNbNy4kU9+8pMZWKlkE1/Yh9MfJp4wiSdMDANsFiN5gKC94ZRNrRoqN+v2Y5oqUy4kChJJVkrdEMQTJgnTxGIYWA2DcJHSR0+Wx2GjvsxFNG6yX6UGIpJDUs1JD3cjoD3h+Kl5tWSr1157jRkzZjBt2jQcDgcf/vCHeeyxxzK9LMly3rAXRzA8fHhgtWDofmHMlHnsVBY5CEbjdPjCmV6OjCMFiSQrpW4IUh/6TtvQh75b6aOnIl1yptpiEckh3tDQjUAsDoBz6EYgonKzE5LuTacgkWSZ/fv3M3ny5PSvJ02axP79+w953COPPMKiRYu45ppraGlpGc8lShYa9PdhD8dG9SMyDYOoy6G9YYwM3zto3ygkYxIkUg2xjDVf2IcjEE73nkg1rda0glMzrUalBiKSewYGe7GHY6P2BNOAiA4OTsj0oT1gl/YAyUFXXnklzc3NvPXWW1x66aWsXr36sI9bs2YNS5cuZenSpXR1dY3zKmW8JMwEkd5uAKKx4clmEbcD02JobxgjTemSM/UlKiSnHCRSDbGcDslpBeFR/YgAIiotOCVTq3WKLCK5J9jXCYycbGZN3wio78Txm1jmxmW30DUQxheKZno5ImkNDQ2jMoNaW1tpaGgY9ZiqqiqcTicAn/zkJ9mwYcNhn+vmm29m/fr1rF+/npoaDTvJVwPhARzBwzetdtvcOKyOTC4vb6QOmPcok6ignHKQSDXEMtYSZoKByADOQGRU+iig/hOnSJlEIpKLwn3JbIDRNwLJm0Vllx4/i8UYcVigfUCyx7Jly9ixYwd79uwhEonw4IMPsnLlylGPaW9vT//897//PXPnzh3vZUoWSQ+5gVH3CzpQHlupTCJNOCsspxwkUg2xjDV/xE/CTOAcUW7mHMokMouLcdlcmVxeTptRo/HHIpJbovEoCZ8XYFS5WdjjxMCgxFGSyeXlnNRhwa5O7QOSPWw2G/fccw+XXXYZc+fO5dprr2X+/Pnceeed/P73vwfge9/7HvPnz2fx4sV873vf47777svsoiWjBiIDw0GiEQcIKkMeW6meRM09OlgoJLbxeJErr7ySj3zkIzidTn70ox+xevVq/vznPx/yuDVr1rBmzRoA1RAXMG84eTPgCIRHfegDOCqqM7aufNBQ7sZtt9I1EMYbjFLmtmd6SSIiR5UaZADDp8VOq4WAx0mxoxirxZrJ5eWc1IQzNSGVbHPFFVdwxRVXjPq9r371q+mff/Ob3+Sb3/zmeC9LstRgZPCwmUSDbgcVjuJMLi2vNFV7ANjXEyCeMLFajAyvSMbDKWcSqYZYxpov7AMYXW42FCRyVejvxamwWIz0KfJOnSLLONKAAzlZvrAP58E3AjaLRhyfpHTz6k6dCotI7kr2JDp8JlGJUxmmY8XjsDGh1EUknqCtP5jp5cg4OeUgkWqIZaz5wj6s0TiWaCw97thhs5CwGBSXK0h0qlKnyCo1kPGiAQdyKryhEZlEI3sSuTXi+GSk9wCVHYtIDkuVm5mmSTQ+oieR20GxMonGVCqbaHe3DhcKxSkHiVRDLGPNG/LiCEaIJ0wSJlgtBjbLUI2xbghO2Yxa9SWS8aUBB3IqfGEfjkCYWCJBPGFiMcBmMQgXOTXZ7CSk+kvs7QkQG7qxEhHJNalys1jCxBy6X7BYjGQmkXrVjanUwINmBYkKxpj0JFINsYyl1LSC8EGTzSJuB7UqLThlqSCRMolkvBxuwMHf/va3Qx73yCOP8MILLzBr1iz+8z//c9SfkcLlDXtxBsIjSs2sGIahCTYnqchpo77MRbs3RGtfkKahoJGISC4ZCA9QGzzMJGSVm425qUOZRHsUJCoYp5xJJDLWUkGig/sRRdwOnRqPAWUSSTa68soraW5u5q233uLSSy9l9erVh33cmjVrWLp0KUuXLtWAgwLhC3lH96hL3Qh4nCo3O0lqXi0iuW4w5MMeihwy5CaqcrMxl8okUpCocChIJFknHSQa+tB3pj70XRppORaaqoqwWgxaegOEovFML0cKgAYcyKkI9HVhmOaog4OY3UrcbtWecJKmqXm1iOSweCJOdNCLYY6ebBZ12khYLQoSjTFlEhUeBYkkqyTMRLoRXfgwmUS6ITh1DpuFxkoPCVMf9jI+NOBATpZpmgT7kxljqT3BabMQ8SQDisouPTlqXi0iuSzVjwhGT72MuBy4bW5sljHpqCJDJld6sBjQ2hdIf78lvylIJFllMDJIwkyMLjcbKi2guBinzZnB1eWP6amSM/UlknGgAQdyssLxMIY/GcwedSPgdmA1rDotPknpcrMuHRSISO4ZGSRKTTazD+0N6kc09pw2Kw0VbhIm7OsNZHo5Mg4UZpWs4gv7AHAEI/QdlEnkKKvM2LryzYzaYv60uUNBIhk3GnAgJ8Mb8mJPnRbHRweJSpwlGIaRyeXlrHS5mTKJRCQHpaoOYHS5WUT9iE6bpqoiWnqDNHf70/1NJX8pk0iyijfkBUg2oosl++WkehI5y6sytq58M0OlBiKSA7xhb/pGYFS5mQYZnJIJpS48Dis9/gj9gUimlyMickJGlZsdfIDgUCbR6TBtaBKmWlUUBgWJJKukM4kCEcLx4XHHAJ7y2oytK9+kRh7v7VHKqIhkr9QgA3Nk4+qh02JNNjt5FovB1OpUNpEu+EUktwyEj5xJpHKz0yN177CnR3tGIVCQSLKKL+wD08TiD2OaYLUYWC3JcgJPhYJEY6WpKjmloLnbj2maGV6NiMjheUPJTKJ4wiRhmliM5J6gTKJTp+bVIpKrUplECdMklkhex9qthsrNTqPUwcIeHSwUBAWJJKt4w15skRjRSAwYblodt1kpKVG52VipLHJQ4rIxEI7R41epgYhkp1S52chyAsMwNO1yDKT6Eql5tYjkmoHIAI5AeFQWUWpvULnZ6ZEKEjUrk6ggKEgkWSVVWhAZ0XsC0A3BGDOM4VKDvfqwF5EslcokCh9mT1C52alJ7QH7erUHiEhuSZWbReOjh9wok+j0aSh3Y7catHtDBCPxTC9HTjMFiSSrpIJE4YMmm0Vcdt0QjLHGqlQDOvUlEpHs5A17cYQio06LAZWbjYEplamyY+0BIpJbUuVmqb3BPmJvUE+i08NmtTA5tW/ogDnvKUgkWSNhJtInA5HDnAwok2hsTR3Rl0hEJNskzAQD/j7s4dhwkMhmwTQg6tTBwalqqhrOJlVvOhHJFQkzQSDgxRaNH7Q3GERddmUSnUaacFY4FCSSrDEQHsDExBGKjvrQB6C4BIfVkcHV5Z8m1RaLSBbzR/zYgmGAUdmlUacdh92F0+rM5PJyXrnHTqnLhj8SV286EckZgWgA+9DeMPJQOeK247S5dL9wGjVWaTpyoVCQSLKGN+wFGCo3S9a6Oq1WAOxl5ZlaVt5KfdArSCQi2SjVtBqGbwScNks6s9QwjEwuL+cZhpE+LFBvOhHJFQPhAZz+oSDRiFLkiEulZqdb41AVwr5eBYnynYJEkjW8oeEg0cGZRM7y6oytK1+lpxR0B1RqICJZJ9W0Ghi1J6hp9dhRXyIRyTUDkQE8viAwOpMoVOxSqdlplupJpIEH+U9BIskavrAPAHsgfEhPIldZVcbWla8qhkoNBsMxugdVaiAi2SWVSWSaJpGh7NJ0kEhNq8fEyL5EIiK5YCA8gNuXDGyPzCQKlHnUv/Q0m1KpTKJCoSCRZI1UuZkxGMI0wWoxsFqS5QSeitpMLi0vqdRARLJZKpMonjBJDO0JNosyicZSqnRgry74RSRHDEQG8HiTWfDREYfKwTIPJQ6Vm51OkyrcGAa09YfS33vJTwoSSdZIZRIxEAKSvSdSFCQ6PVKnyJpSICLZxhf24QhFh5tWjxhxrEyisTE8wEBBIhHJDQPhZLlZ6gDBYiQPlQNlHvUkOs2cNiv1pS7iCZO2/mCmlyOnkYJEkjW8IS+WeAIGk83oHCOCRCWVEzK1rLymCWcikq1S5WYH96hLNa6WU9c4VDqgbFIRyRWDQS9uX/CQ1hSBUrcyicbBZJWcFQQFiSRr+MK+5If+QafGYY+TsiL1JDodplYnP+iVSSQi2SZVbnbwjYDKzcZOTYkTt91KfyCKNxDN9HJERI4p0t2BYZoHTTazE3PalUk0DtSXqDAoSCRZIRqP4o/6cfsC6Q9958iTAX3onxYzapLf152dgxleiYjIsFgihj/qxxGMpMvNnMokGnOGYYzoS6TDAhHJftGuA8DoyWaBsuTnmDKJTr/UnqEgUX5TkEiyQqofkccXJBxPTbGxAmBWVWKz2DK2tnw2vXa4J1FMDehEJEt4Q8lBBqPKzYayS+2lFdoTxlCqN536EolItosn4hjdPcDoyWbB0qEgkQ6VT7t0uZn2jLymIJFkhVSQyO0NHNJ/wlKjptWni8dho6HcTTRuarqNiGQNX9iHNRrHGouP2hMSFoOiUpUfj6XGobLjvSo7FpEsNxgZxONLNkwe3huSTas9do8OEMaBys0Kg4JEkhW84eSpsecwQSJ7jZpWn04z64oB2NGhkjMRyQ6+sA/XYHLSZSSWzC512ixD/YjKM7iy/NNYmcwk0kGBiGS7gcgAHm/ysyoaNwGwWy1qWj2OGoeyT/f1BDBNM8OrkdNFQSLJCulMIl9guMZ4qLTAVdeQsXUVgpm1ySDRzs6BDK9ERCTJG/bi8SYvQMPpvhNWgiVu9SMaY01VmnAmIrlhIDwcJBp5qBwo86jUbJxUeOwUO20MhGP0a+BB3lKQSLKCN+TFHoqCP4Jpgs1iYLUYJCwG7pr6TC8vr82sTW6qO9S8WkSyRHLaZYBYwsQ0wTq0JwTKPAoSjbHGavUkEpHcMOjtwh5OBiZSh8o2h41QiTKJxothGMN9iZSBmrcUJJKs4A17R2cRDZWaBUvclLkrMrm0vDc9nUmkIJGIZAdf2IfHFzykaXWwzEOZqyyTS8s79aUuHDYLXQNh/OFYppcjInJE4Y42AEzTJDp0zxAv92BaDGUSjaNGBYnynoJEkhUOuSGwDd8Q6NT49JoxIkgUT6i2WEQyzxtKlpuFD9oTlEk09iwWg8kVbkAX/CKS3UI9HcBwFpHdaiGcmmymTKJxM6VKQaJ8pyCRZAVvyDs02Wy4QSlAoNStU+PTrMxtp67USTiWYH9fMNPLERHBFxrKLh0KEo3cExQkGntNQ41I1ZdIRLJZtK8bGNGPyGoQKnICaG8YR+lyM5Up5y0FiSTjwrEw4XgYjy84fGpstQIQKi+m2FGcyeUVhFQ20Q41rxaRDIvGo8T8A9jDsVElyAmrhXCRS6fFp0FqWo36EolINov19QCkS80cNgvhYheAys3G0RSVm+U9BYkk41KTzTzewCHlZpaqGiyG/pqebqnm1epLJCKZlppsBqSzSx02C8ESN8WuUqwWayaXl5eaqjXhTESyX6K/D4BILNkewW61pDOJdIAwftSTKP/p7lsyzhv2gmniHgge0rjaXjshk0srGMOZRAoSiUhmpSabAensUqfVqlKz0yh1KrxXmUQikqUi8QgW38DQz0dkEhW5MDAochRlcnkFZWK5G4sB7d7hfrKSXxQkkozzhX3YQ1Es8cTwDYHNQtxmpai8JsOrKwzTapIb655unSKLSGb5wr4RmUTDNwKabHb6DPckUpBIRLLTYGQQlz8MMGryZajISbGjWJUH48hhs1Bf5iZhwv5+9TPNR/rXJBnnC/tw+cPJcZYHfeiX6oZgXEyrTmYSKUgkIpnmDXnx+IKYpjnqtFiTzU6fhgo3VotBmzdIKBrP9HKkQD3zzDPMnj2bGTNmcPfddx/y9XA4zHXXXceMGTM455xzaG5uHv9FSsZ4B7qxh6PAcJDIbrcS8TjVjygDGjXhLK8pSCQZ5w15cfpDROMmJmCzGFgsBuFil24IxkldqRO33UqvP4I3EM30ckSkgPnCPtzeALGEiWmC1WJgtRgqNzuN7FYLkyrcmCa09umCX8ZfPB7n85//PE8//TSbN2/mgQceYPPmzaMec++991JRUcHOnTv5x3/8R7785S9naLWSCQOdremfh4f61ZmlbkyLQZlTh8rjTc2r85uCRJJxqUyig5tWh4qc+tAfJ4Zh0FQ9VHKmxqUikkG+YD/ugeCo8mOAQJlHe8JppL5EkkmvvfYaM2bMYNq0aTgcDj784Q/z2GOPjXrMY489xurVqwG45ppreO655zBNMxPLlQzwd7cBJLNMU31wypKfWxXuikwtq2BNTgWJdN+QlxQkkozzhr04/WEi8eSpgNOWnFwT9jh1ajyOpqWCRN1qXi0imRPs7cCSMEf1nIg67cScdu0Jp1GqL5HKjiUT9u/fz+TJk9O/njRpEvv37z/iY2w2G2VlZfT09IzrOiVzgj0HgGTTapNkBmS0xAVAuas8cwsrUCo3y28KEklGmaaJL+zD6Q+lT41TmUQqNxtfU9NBIn3Yi0jmRHq7kv8dsSeEipM3Ampcffqks0kVJJIct2bNGpYuXcrSpUvp6urK9HJkjIR6OgEIR4ezTMPFChJlynC5mRpX5yMFiSSjwvEwkXjksOVmkWI3xY7iTC6voOgGQUQyLRKPYHh9wHDPCactOcjAwNCecBrNqE1+b3d2KptUxl9DQwMtLS3pX7e2ttLQ0HDEx8RiMbxeL1VVVYc8180338z69etZv349NTWakpsvokMHCCNLkUNFTkBBokxIBYlaegMq+8xDYxIk0jQCOVnekBcApz+UDhI5rcm/lvaKagzDyNjaCs1UlZuJSIalBhnAyEwiK+FiFyXOEo04Po1SQaJdXdoDZPwtW7aMHTt2sGfPHiKRCA8++CArV64c9ZiVK1fys5/9DICHH36Yd7/73bpOLBCxRAyzvx8gPYHRabcSLlImUaaUexyUumwMhmP0+iOZXo6MsVO+2tI0AjkVvrAPI57AEYwcUm7mqqzN5NIKTqonUXO3TgREJDO8YS8ufxhg1J6gQQanX32pC7fdSvdghP6ALvhlfNlsNu655x4uu+wy5s6dy7XXXsv8+fO58847+f3vfw/AJz7xCXp6epgxYwb/9//+38MeTEt+GnmAcHAmUZG9CIfVkcnlFawp6kuUt2yn+gQjpxEA6WkE8+bNSz/mscce46677gKS0whuueUWTNNU9F+S/YiCEQxzdP+JiMtOaVFlhldXWCqKHJS57XiDUboGw9QONQMUERkv/aF+nIOjM4mcNgvhIhcTdFJ8WlksBtNri9i038eurkHOatQeLOPriiuu4Iorrhj1e1/96lfTP3e5XPzmN78Z72VJFugP9uEMpA4QkplErqEs0zrtDRkzpdLDpv0+9vUGOGOKJszlk1POJBrLaQRqNFd4vGEvzsFQcpxlfDhIFC5S0+pMSJecdakvkYiMP2/IizMQJnHInuBU0+pxMKNGfYlEJPv4etuxDO0JqUwiq8dOzG5VqVkGpaZi7tJ9Q97JquJ+NZorPL6wD5c/TDSeLG+yWw0shkGoyKkgUQZMU/NqOU3Uu06OR6rcLJVFZLda0nuCys1OPzWvFpFs5O9qA0geIAztD2aZBwyDCrcyWDIl3ctOe0beOeUg0VhOI5DC4wv7cAbC6dRRh9UKoFPjDElnEvUoSCRjR73r5HgN+LqxRWKjSs0SFoOI26E9YRwoSCQi2cjfnQwSpVtTWC1Ei9W0OtO0Z+SvUw4SaRqBnApvKFluFjmoabXKzTJj2lCpwY4OfdjL2BnZu87hcKR714302GOPsXr1aiDZu+65555TA/UCFOw+AIxuTBr2OMEwdCMwDtIX/JpwJiJZJNzbmfxvam+wWwgpSJRx04fuG/Z0+4kNlQNKfjjlIJGmEcjJMk0zXW52cJBI5WaZMbe+BIAt7b4Mr0TyyVj2rpP8lTATxPqT/88jqexSm4Xw0I2Ays1Ov8aqImwWg9a+YHrMtIhIpkV6k71qw0OfS06blVCRE1CQKJOKnDYmlrmIxBO09AUzvRwZQ6c83Qw0jUBOTiAaIJqI4vSHGBhxagwQK/ZQZC/K5PIKUmNVER6HlXZviF5/hMoijRSV7LJmzRrWrFkDoAEHeWYgPIBjMHmROZxJZCXsceKyuXDanJlcXkGwWy00VnnY1eVnV9cg8ycqMCcimRWNRzH7+4HRWaaDRcokygbTa4tp84bY2TmYblshuS+rGldLYekP9QMM9SQaHSRyVtWqJDEDrBaDOROS2USb25RNJGNjLHvXacBB/vKGvTj9qRHHw3uCmlaPr+macCYiWaQ/1I8rvTcMZRLZk3tDiaMEm2VMch7kJKkvUX5SkEgypj/UjzUSwx6OjfjQt2IaBkUVdRleXeFKnRxvbvdmeCWSL9S7To5Hf6gfpz8EMKoEOVzsUtPqcaRpNSKSTfpCfem9IRQdkWVa7FIWURZQkCg/KfQqGdMf6scZCGOa5ugmpUVOyj2VGV5d4Zo3MdkLSplEMlZG9q6Lx+PcdNNN6d51S5cuZeXKlXziE5/ghhtuYMaMGVRWVvLggw9metkyzrwhLy7/QXvC0GnxJN0IjBs1rxaRbNLn68QRigKke6W5HFbCbgeVbt0vZNqMGu0Z+UhBIsmYvlAfLn+YeMIknjCxGAY2i4G/yEm1uyLTyytY8+qHgkRqXi1jSL3r5Fi84eS0y1jCJGGaWC0GNouFcJFL5WbjaDiTyJ/hlYiIgK+zBTsQSySIJUwMA8wSF6bVoiBRFhiZfWqaprLA84TKzSRj+kP9OAdDo7KIDMMgXKT00UyaPaEEq8VgV5df021EZNx4g8ns0shBPerCRU6Vm40jjTQWkWzi724DIDxUauayWQkXuwEUJMoCVcVOKjx2BsMxOnzhTC9HxoiCRJIxqUZ0qX5ELnvyr2OoyKkgUQa57Fam1xQRT5hsOzCQ6eWISIHw93ViSQyXmjlsFmJ2KzGHTZlE40gjjUUkmwS62wEIpkrN7FZCRclplwoSZQf1Jco/ChJJRpimmW5SGh7RhA5QI7osoJIzERlPpmkS6u0ARkyvsSVLzUAjjsfbdF3wi0gWiCfiRHu7AQhHhw+Vw8XJvUFBouwwHCTS4XK+UJBIMsIf9RNLxHD6w6PKzQBixR6K7EWZXF7BS004e6dNE85E5PQLxUJYfcmAxPBks+RpsdWwUuwozuTyCo5OhUUkG4ycepmabJbKJHLb3Ljt7kwuT4ZMV/PqvKMgkWREf6gfAJc/TCh1ajxUbuasrFXTswybPaEEgO0d+rAXkdOvN9h7mBHHydPiUmep9oRxpiCRiGSD3mAvzsGhvSE2XG4WLnIpiyiLaM/IPwoSSUb0BfvANA9bbuaunpDJpQkws254UoGIyOmWmnYJjOhTlzwt1o3A+NOpsIhkg95gb3pvSGcS2SzaG7LMcJBIUzHzhYJEkhH9oX4coShGPDGq3Cxmt1JWVpfh1cmEUhfFThs9/gg9g5pUICKnV+q02DTNUTcC4SIXFe6KDK+u8Bw80lhEJBN6Az04/SHiCZNoPIFhJIcahItdVHmqMr08GTKxzI3bbqV7MIw3EM30cmQMKEgkGdEf6sc5GCKWMEmYJlaLgdViEC5S0+psYBiGGpeKyLjpCyYziaLx5J5gsxjYrDotzpSqIgflGmksIhnm62nDkjAJpZpW26zEnXZiDpv2hixisRhMr032k93ZpebV+UBBIsmI/lA/roOaVhuGQajIqSBRlpihcgMRGSepnkTDPeqGp13qRmD8GYaR3gN2aQ8QkQwJHWhN/nfEZLNQkRPQZLNsk75v0OFyXlCQSDIiNa0gNc4y1Y8oXKxMomyR6ku0Q82rReQ06x/owhGKpnvUuWwWTAPCbgcVLpWbZYIakYpIJiXMBJbdewAIpQ6V7VYCZR5AQaJsoz0jvyhIJOMuYSYOm0kEKJMoi+gUWUTGQzQeJdLXDYw8LbYScTsxrRb1JMqQ1AX/tg6VDojI+OsP9VPRetDeYLPSN7ESl82F2+bO5PLkINOVSZRXFCSScdcf6iduxnH6wwRH3BAAxEtL8Ng9mVyeDFEmkYiMh5GTzYbLzZIlBSWOEhxWRyaXV7Dm1pcCsO2AgkQiMv4623dS3JeclhWMDJeb9TZUUumuxDCMTC5PDpLOJNLhcl5QkEjGXXcgeSrg9IcIDX3oux3JIFFRdb0+9LPEpAoPDpuFA74QAyFNKhCR0yPVjwhGjji2Ei7WZLNMmj2hBEgGiRIJTTgTkfHV9/Y6ABKmiT8SA8CcUE64yEltUW0mlyaH0VhVhNVi0NoXTGd+Se5SkEjGXZe/CwDnYCidSeQeyiQqrZmcsXXJaFaLodRRETntUpPNgHSfOpfdqslmGVZd7KS62MlgOMb+/mCmlyMiBSa0dRMAgUgc00zuCwON1QBMKp2UyaXJYThsFhqrPJimWlXkAwWJZNx1B7pxDQSx+MPEEiZWi4HdamAaUFajD/1soiZ0InK69QZ7cQ6GiMUTxBImFiO5J4SLNNks0+bWJ7OJtqrkTETGUTwagV27ABgMJbOIip02ehuSe4KCRNlJE87yh4JEMu66A91UtvWNqC+2YhgGA1UlVJfUZXh1MtJMBYlE5DTrDfbi8oeHp9fYLBiGQajIqclmGTZnqORsa7svwysRkULSveNNjEgEgMFwMkjkLHbirSnFbrGr3CxLpXrZbdrvzfBK5FQpSCTjyjTNZJBof+8hpWa9DZVUe6ozuTw5yKy65A3CpjZ92IvI6dEX6sPpD40qNQMIFyuTKNPmTEhe8CuTSETGU9+m9emfp4JE4cZqTKuFiSUTsRi6hc1GZ0wpB+CNff0ZXYecOv0Lk3Hlj/oJhf1UtPUNB4mGmlb3T6rWDUGWObOxHEh+2MfiicwuRkTyTjwRp3+oJ1G6abU9eWminkSZl2peveWAMolEZPwEtr0NQDSeIBSNYxgQnZbMHlKpWfY6Y3Iy+/et/V4iMd035DIFiWRcdQe6KevyYY3F0+VmbruVmMOGbXIjVos1wyuUkWpLXDRWeQhE4jpJFpEx1x/qx+4PYYknCMWSe4LTbiVus2LzFOO2uzO8wsI2o7YYq8WguduvaTUiMj6CQaItzcBwFlGxw4Z3kvoRZbsyj53pNUVEYgm2qEw5pylIJOMqVWoGpC843XYrvRMrqC5WfXE2OqsxeSqwrrk3wysRkXzTHeimor0PYNTBQbDUTZXKjzPOZbcyrbqIhAk7OtSbTkROv+COLQQjAWC4aXWiqphQSfLQoKG0IWNrk2M7Y0ryvuGNfX0ZXomcCgWJZFylgkTxhEk4lsAAnHaL+hFlsWVNyZOb9Xv1YS8iY6sr0EXl/l5M0xzVp653YgU1RTUZXp0AzBlqRKqSMxEZDy1vrE3/3BeKAhCakrxHKHWWUuoszcSy5Dil+xK19Gd0HXJqFCSScdXf3Upx72A6i8hpt2IxDPomKkiUrZYOZRKtb07eyImIjJWugQ4q2nqJxk3iCROrxcBuNXRwkEVSE842tylIJCKnl2madL71CpCsOBgIxbAYYJk9AYDJpZMzuTw5Dqm+RGpendsUJJJxFdm5DWDUibG/vIhwkZMaj06Ns9H0mmLKPXY6fGFa+4KZXo6I5JFg807s4dioPSFht+GrLdOekCWWTC4HdCosIqdf+953iPV0AdA5EAagothJcHIVAAtqF2RsbXJ8ZtUV43FY2dcboHswnOnlyElSkEjGjT/ix97cAkAgMjzZrG9iMuJc5anK2NrkyCwWg7OG6ovX71VfIhEZG6ZpYu7cAYzoR+Sw0ldfTsJqUblZllg0qQzDgM1tXjWvFpHTavtffw9AwjTpGgoSORqriTlsFDuKmVU1K5PLk+Ngs1pYPKkcgNfVqiJnKUgk46bFu4/KtuSHRaoRXbHTRl99BeWuclw2VyaXJ0exdKgv0Wt79GEvImNjIDJASUsHMDq7tLehEpvFRrmrPIOrk5QSl52ZtcVE4yabNa1GRE6T7T3b8W78GwD9gSjReAKX3Up8VrLUbMmEJZqCnCPObCwHYIOaV+csBYlk3BxofgdnIIxpmsMjLd12+ieUq8Y4y10wI5nl9fzWThIJ9SUSkVPX3bWPkp4BYHQmUW9DJVXuKiyGLlGyRarkbKN6TIjIGDNNkw1tG3jktZ9R2uUlnjDZ35ecblZb4qS7KZlVemb9mZlcppyAZenDZVUg5Cpdgcm48W3dCCRLzRKmictmIVBfTtxuZXKZgkTZbGFDGRNKXRzwhXh7vzfTyxGRPDCw7S2MoZhzKpPIHBpzrKbV2WVJqhGp+hKJyBjyhrz8dONPeXz741Tu64KEyY7OAfyROA6bheKGCgJlHqaWT6XSXZnp5cpxOquxAosBb7d604dAklsUJJJxEU/Eie3cDsBAqtTMZaevPnnhqUyi7GYYBu+dXwfAHzcfyPBqRCQfRLZvASCWSBCNJ7AYEBgac6x+RNklNdJ4Y4tKB0RkbOzp28OPNvyIfd59ABTv6mB7xyD9gSg2i8HcCaX0T6sFw2B54/IMr1ZORInLztz6UmIJkze0b+QkBYlkXLR7Wylt6wFgIBQFoMRlo29iBQ6rg7riukwuT47De+cla8L/+E5HhlciIjnPNEns2gkMl5q57Fb6G5Inxcokyi6z6krwOKy09AY1rUbGXG9vL5deeikzZ87k0ksvpa/v8DeVVquVJUuWsGTJElauXDnOq5Sx9E7nO/zirV8QiAYwTZMtO7vYt66ZvkAEi2Ewe0IJboeV7inVXDD5AqZWTM30kuUEnT1VJWe5TEEiGRedm17DNlROMDDUj8hd4mKgupSGkgb1nsgB50yrpNRlY0fnILu7BjO9HBHJZX19xHq7gRFBIqeN/gnlANR4lEmUTawWg4UNZYD6EsnYu/vuu7nkkkvYsWMHl1xyCXffffdhH+d2u9m4cSMbN27k97///TivUo4lEo8QTxy7tKh9oJ3fbf0dCTOZRfrHdzoIPb8FI56gssjB4slllLjshD0OmuZfwHumvWccVi9j7eyhvkTrmhUkykW2TC9ACoP/7Q0AhGNxIrEEVotBYGoNpsVQP6IcYbdauGRuHb97Yz9/eKeDz64ozvSSRCRH+be8RTSRzCpN9SPy15YRc9gwMKjyVGVyeXIYZ0yp4G97elm3t5f3zFP2r4ydxx57jLVr1wKwevVqVqxYwb//+79ndlFyTKZpste7lw1tG9jdtxt/1A+Ay+ZiavlUzpl0Dk3lTaP+TCAa4MFNDxJLxEgkTH6/sY3eDi8faO9lRm0x1cXO9GNdi87iPXNWYRjGeL4tGSOpyciv7+0nGk9gtyohIJfo/5acdrF4lOiWTQAMpvoROW30NiZPitWPKHdcNtSX6LGN+zFNTTkTkZPTs2ld+uepfSE0JRkYqnRXYrPoDCvbpKZc/mVbV4ZXIvmmo6OD+vp6ACZMmEBHx+HL2kOhEEuXLuXcc8/l0UcfHccVysF8YR+/eOsX3LfxPt7ufDsdIAIIxUJs6d7CfRvv4/6376c3mMwkicajPLjpQbzh5ACUF3d209IXYEV7L2dMGA4Q2S12ZtXNZ/lHbtfI+xxWU+JkWnURwWicTRp6k3N0FSan3c5NL2AZSJYn9QYiABR5HOwd6j0xqXRSxtYmJ+biObVUeOxsPTDAO20+FgyVH4iIHLdEgsHtbwMQT5gMDpUgW2Ylg9DKLs1OZ0+tpMhhZeuBAfb3B2kod2d6SZJD3vOe93DgwKGDL77+9a+P+rVhGEfMHNm7dy8NDQ3s3r2bd7/73SxcuJDp06cf8rg1a9awZs0aALq6FNQca/2hfu7beB/9oX4AYvEEO7sG6fSFsVoMil025tWXYrda2N6znT19e7io8SJ29OygxdcCwJZ2H2/s62N+l5frYmE8zuQtaYWrgnk187Bf9C4o0zVmrjtnWiW7u/38ZXsXZ0ypyPRy5AQoSCSn3d5X/4ATiMYT9PqTQSLrjDriDhsTSybitutCM1c4bVZWndHAT19u5qF1LQoSiciJa2nB5+0EkoMMTMDhcTAwIXkBObVcDUqzkdNm5aKZNTzzzgH+vLWTG85tzPSSJIc8++yzR/xaXV0d7e3t1NfX097eTm1t7WEf19DQAMC0adNYsWIFb7zxxmGDRDfffDM333wzAEuXLh2D1UuKN+QdFSB6s6WfV3b3EIqO7kX02u5ezp1exYKJpUQTUf6858/pr+3t8fOnLR1M7/FxS3cvpSXJDKK6ojrmVM/BcDrhwgvH7T3J6XP5gnoeeK2F329s4wuXzFTpYA45pXIzTSOQY+ka6CD+zttDPw9jmlDuseOfkTwxPrP+zEwuT07Ch85KnvI/tnH/IRcFIiLHMvjWekKxEADeYLIvUWByNeZQv4KDe1hI9nj3nOTN+5+3aMqljJ2VK1fys5/9DICf/exnfPCDHzzkMX19fYTDycl63d3dvPzyy8ybN29c11noTNPkt1t+mw4QrW/u5fltnYSicWpKnJw3rYrzplVRV+rCH4nx3JYOHt7QijcQTT9HW3+QJ95qZ35bL7fs72RCsQOAEkcJs6tnJ4MIF1wAHk8m3qKMsQumV1Fd7GB3t5+3VXKWU04pSKRpBHI0pmny6h/uxeMLYpomHb7kTUFdiYvuyVU4rU4W1i7M8CrlRM2bWMrChjJ8oRh/eOfQ1HERkSMyTfo3/i39S99QP6LI7AlAsh9RmUsZitlqxZxkL8G/7upJT6UTOVW33347f/rTn5g5cybPPvsst99+OwDr16/nk5/8JABbtmxh6dKlLF68mIsvvpjbb79dQaJxtqN3B3u9ewHYuK+Pl3Z2YzUTfKzCwV1mhI/vO8DV4RA3LKjjfQvq8Tis7O8P8vNXm3nizTaefrudX6/bxzm721nd1klThRvDMHBYHSyoXZCcdDxrlrKI8ojNauEDiyYC8OgbbRlejZyIUyo30zQCOZKEmeCpbU9gfeFFAPqDUcKxBA6rBXN6LRGPk2V1i3DanMd4JslG1y6bzNv7vfzk5WZWLp6o9FEROT6dnQwcSN5kxOIJ/OEYGAaWucmLSJWaZbfaEheLJ5XxZquXv+7q5pK5mnImp66qqornnnvukN9funQpP/7xjwE4//zzefvtt8d7aTLCy/teBpKTindvbOGy/T2sJE6De/h2sra5ixmv7WRuQyVLG2t4xB9nc4+fnV2DuKMxrt2+nwtiESbXFGMYBlbDyqLU/UBTE3zoQ2BVs+p8suqMBu77azOPv9XGV66Yg01TznLCKQWJTnQagc1m4/bbb2fVqlWn8rKSZeKJODt7d9Lc30ynv5P+UD89wR4m7Ghnji9IMBJnV2eycXVdqYt9S5oAOGviWRlctZyKvzuzgf96djtvtvTz562dulEQkeOS2LI5XaqQyiLyTSjHUZQ8MJhaoSBRtnv3nDrebPXy29f367NfpEC0+lqTWUSmif3pt/jo+t2Uuuw0TCwFkmPvF9YuxGqxsqt3F0ZrF1WtPSy2WzlQVUJHX5DKTi/1HjsuexEAFsPCwrqFFDuKkwGij3wE7PYMvks5HRZPKqOpykNzT4A/be7gfQvrM70kOQ7HDBJpGoEczWBkkPvfvp+2gdEphCXdA8z8205C0ThbDviIJUzK3XZcc+vpn1BOY1kjE4onZGjVcqo8DhufXTGD//PEZv7jj9u5eHYtFouyieRQvb29XHfddTQ3N9PU1MSvf/1rKioOnXBhtVpZuDBZfjplyhSVJuepA+ueJxxP9hXpH5p26Z9eh2Po6+pHlP2uXTaJe57fwdOb2tnb46exqijTSxKR0+yvLX8F02Tq33bQ/XozUWBiuQsAA4PFdYvTg2jm186ny9/F9p7tEI0y6UA/kwDKXOnn89g9zK2eS4mzBBYsgFWrwKZ5SvnIMAw+dm4jX3tyC//74bdorCpi3lBwcSwkEibeYJRQLM6EUpeqG8bIMf81ahqBHEkoFuKXb/2SA4PJIGIsnqA3ECF+wMvM5zexfyBMuy+IaUKx08bMuhLePHMqNouNK2ZekeHVy6m6/pwprHlhF5vbfTy1qT1dcywyUqp33e23387dd9/N3Xfffdiy5FTvOslfZnMz+7dvAJLTLrsHk8Ei+8JJANQW1SZPlCWr1Ze5+eCSBh7e0MqPX9zD/1m1INNLEpHTqD/Uz5auLUx5ex/u13YTjSfwOKyUuZNZP4ebVFxTVEOlu5IOfwed/k68IS8mJh67h0mlk6gvrk/ezC9fDhdfDLqxz2s3XTCVN1r6efKtdj5+32t85Yq5vGduHUXO0aEI0zTxR+Ls6wmwt8dPc0+AA94gALFEsr9t10CYWMIcmpodpS8QIZ4wAZhaXcT7Fkzgo+dMYVKFmp+filMK2aamEdx+++1HnUbg8XhwOp3paQRf+tKXTuVl5TQJxULs7d/LYGQQu9VOhauCCcUTsFsPTf2MJWI8tOmhdIDonf1e/rytkwn9g1yzaS8tseGGltXFTpqqPPQ21TBQW86H532IumKlqOc6l93KLe+eyb8+uokvP/wW9WUuzmqszPSyJMuod50AYJoc+P39+KN+ANq9IRImxCaUUVyfbFS9qG5RJlcoJ+Dm5dN4eEMrv17fwj+8ZyZVxeovKJKvNh7YiMvrp+mNPWwaGkJTX5ZsOm1gMKlmGkyfmQz0HDgAPh8AVouViSUTmVgykYSZIJaI4bAO5Y06nXDVVTBnTqbelowji8XgPz60mK6BMK/t6eULD27EabPw7jm1nNVYwQs7unltTw+haOKknr/ElQxp7On284O1u1jzwm5WndHAZ1dMZ3qNDp9OxikFiW6//XauvfZa7r33XhobG/n1r38NJKcR/PCHP+THP/4xW7Zs4dOf/jQWi4VEIqFpBFlon3cff2n+C3v695Awh/5xmial3QPU7etliX0yc+e/C8uixVCTnGzy9I6n2dO/B4CdnYM8u7WDmV1ert3VTonDisVpxWIY1JY6KXHZ8ZcXse2C2Vw5+0pmV8/O1FuVMfbRs6ewbk8vv3+zjdU/Wce3r1nEe+dPwKrSMxmi3nUCEN+1k9a3k01PY/FEetqlef5MINnPYulEZRDnill1Jbx7Ti1/3trJf/95J3etnH9cf65nMMyuLj8tvQESponDZuG8aVXUlrqO/YdFZNwlzARvtL/BpC37CQRjBCJxbBaDqqHR9bZl5+D+1L+CYyj4k0hAczO8+SZs2wah5Ge9xbAkA0RWKyxdmpxgVlKSoXclmeCyW/nZx8/mwXX7ePKtdtbv7ePpTQd4etPotjZOm4XJlR6aqjw0VhUxsdyN1UiWrdWVOqkpceG0WbBZDSo8Dio8Dhw2C7F4gteae3loXQuPv9nGwxtaeeT1Vq5YWM/XVy2g3OM4wsrkcE4pSKRpBLlvZ+9O7n/7/nRwyDkYon5HOxN2deAaTH6wd9GMuXULc/8yF+ukyWyf7OEtYwu47LT1B/nDW/u5aE8H1w4OMqnh0BrTYLGLXe8/nw+dcY0CRHnGajH4v9cuJmGaPPFWO5/91es0Vnm48fwmPrR0MsVO1ZcXAvWuk6MKhdh5/z2jsojiCZN4dQmJRVMAOLvhbFw2BQpyyT9dOou/bO/ivr82c+m8Oi6YUX3Ex76xr4/vP7+LZ7ccGiS2GPCuWTX83VmTeM/cOlz2o082Ckbi7OsN0FTtwWnTFCSR02l33278vm4m7Gxn70DyvqCmxInFMGid28Dy6z87HCACsFhg2rTkj3gc9u2D3l4wTXC5kg2qi5XZUajcDisfv2AqH79gKu3eIE+9fYBN+72cPbWSS+fVUelxnHSPU5vVwvnTqzl/ejX/dOksfviXXTy8oZUn32rHbbfynQ8tHuN3k990B1fAAtEAv9vyu2QKaDzBwCu7mPHXbXQFInitFtx2K5Mq3XgcNroD3bzZ8SZNYS8HXtnE+Zh0VJXQ1uLl0z0+pjmtNFQf2rwyWlaC+8ab+PTCKzTuPk/ZrBa+e90SzpxSwU9e3sPengD/9vhm/u8ft3PThVP5zLum43boQj6fqXedHIkZibDr+/+H9t1vAuAPx2jrT/YXCK+Yi8Vi4LA6OHfSuZlcppyEBQ1l3Pbumfzns9v54m/e5KnbLqKiaPRJ7d4eP19/cgt/3JwMDjlsFubWl9JY6cFutdDjD/PSjm6e39bF89u6KHXZ+MDiifzdmZNYMrkcq8XANE329QZ4bGMbz2w6wLaOAeIJkxKnjUvm1vKF98xi6mGuP0Tk1L3e/jr1Ow5AJE6PPzlsoKbESdxmZeD8pUwum3LkP2y1wtSpyR8iB6kvc/OJC0/P343GqiK+efUiPnHhVC7/7ov89vVWPr18GjPrlL12vBQkKmBP73g6fbK7/fltnPHCZvxDXwsm4gSjcbyhKLPqSihz2/GFfbzV8VbyAaZJz1stTAvFKHHZmFpdlM4QSE0rMCfU41p9E9bSsgy8OxlPNquFmy6cyurzm/jT5g5++vIe/ranl/96bge/Xt/CnR+Yp5GXBUq96wrX/q7d7PrhN0js2glAwjTZ2TmICdgnVWIZali9bOIyPHY1mMxFn794Omu3d/LGvn4u/o+1fOqiaUyqcNMzGOGFHV28vLObaNzE47Cy+vwmbrpgKjUlow+MegbD/H6oNOCdNh/3/20f9/9tH267lanVRRzwhegdujmFZAZrQ7mb/f1BHt3Yxl+2d3Hvjcs4c8qhUxNF5OTt9+1na+dmzt7SSo8/TDxhUuy04XHYaJ05gcVN5xzXJKloNEprayuhodIzEQCXy8WkSZOw2w/tfTtWZtSW8OGzJ/PLV/fxH3/czg9vOOu0vVa+UZCoQG3r3sbbnckywL7NbSx6aQtWw2BqdRGlbhuxuMn+/iC9/ghbD/hoqiqitsSZ3gz29QYYCMWwWy3MrC3BMAwshoUlE5ZQ6ixNNqK76qpkYzopGFaLweULJnD5ggmsa+7lrt+/wzttPj77q9e5bH4dX7hkFnPrSzSesoCod11uiifiNPc30xXoIhKPYDEsNETdNBkVGPX14HYf8c8mzAR/2vhbIr+4j5LeQQAisQS7uwcJRuNYnTaiHzwTDIMKVwXLG5eP19uSMWazWrjno2fyDw++wbrmPr79h22jvm4Y8HdnTuJLl8+m7gh9h6qKnenyg60HfDyyoZWn3j7A/v4gm9uTDXBLXDbePaeWVWc0cO7UKtwOK83dfr76xGb+vLWTj/6/V/nJ6mWcf5SSNxE5fpF4hEe2PELV3i4cgyHa+5MBntoSJ6YBbfMmc1Xd8ZXvtLa2UlJSQlNTk67/BEhOMevp6aG1tZWppznT7LZ3z+ThDa08884BNrb0s2Ry+Wl9vXxhmKZpZnoRh7N06VLWr1+f6WXkpWg8yj2v3YM37CUcjmH7rz9QNBiiscpDfdnwhb8JvIaV7d4gpaEo8w2TKZUeBsMxtncMADCvvpTSoRGYs6pmMbG0AVasSI601EZQ8OIJk/v/tpe7n96KP5KceFdX6mTFrFpWzK7h/BnV6RGqcmL0GanvwenSE+jh1+/8mg5/B66BIBN2dVDT3EVRv59KdyVz6xZgnzMPFi+GWbOSJQVDTNPkmbU/xvKb3+AMREiYJh3eEK39weSIWquFwevOwTZnIgYGq5espqm8KXNvVsaEaZq8uKObhze0kjBNihw2ljZVsGJ27SGZQ8erzx9hd/cg9WVu6stch725jMUT3PG7TTy0voW6Uid//Md3aU8ZQZ+R+h4cL9M0CcVCBKIB9g/s5/k9z9MX6mPJ02/g29xOmzeI02Zh0aRy+hqriV93LdctuO64nnvLli3MmTNHASIZxTRNtm7dyty5c0/7a/37M1v5n7W7WDy5nN999vyT7nuUb472+ahMogL00r6X8Ia9AOx9eSeLBkOUuGxMGHHK56sp5Z13zSNc7MLf7uOxrZ1UeP0s6vIy1+enGJhS6UkHiOqK6qg/YzlccgnUq6xIkqwWgxvOa+KSuXX895938NyWTjp8YR5a38JD61uwWgwWTyrjQ0sn83dnTsJhs2R6ySIFrX2gnV++9Uvivd0senUHlft7SZ8lGQa9wV427t/AolgU59at4PHA/PnJYJHLxc6XHsP5p0ewJEx8oSi7OgcJx5KDEcqKnAysOhPb7IkAnDvpXAWI8oRhGCyfVcPyWTVj9pwVRQ7OKqo86mNsVgvfuHohOzoHeH1fP197YjPfVnNSkWNKmAk6BjvY693L7r7d7O3fSzgeHvWY4t5BLM3dtHmTfeRm1BZjtRjsnzuJv5tywQm9ngJEcrDx/Dvx+Ytn8NvXW3mzpZ8H17Xw0XOO0ktLAAWJCk5fsI+XW5JjiDt8Ico2NmMA06qL0yVjZ511JYMfvYad235DOOxjTn0ptaVOXtrZw59L3DzXVMd5DgsfnODBn4DyomrOv/TzGPWTMvvmJGtNLHfzzasXYZomm9t9rN3WxdptyT4Wrw/9+O/ndnDtssm8Z24dcyaUYLMmA0bhWByH1aILDJHTrGOwg/s23ofR388ZT75Od7uX9UOTyKyWZDlyVbETf9TPhvYNzK+ZTxnAunWwbh2DkUHa21/HYppEYgm2HxggljBx26001JbQfsUSApOrAFhYu5D3THtPRt+v5AerxeBb1yzmiu+9yG82tHLFonounn34BvkihcI0TcLxMAPhAfxRP4ORQXoCPXQFuugOdNMT6CGaiB79z7+wja0HkiWfE8vdlLjs+Ms8zF52OZNKc+eav7m5mQ984ANs2rTplJ5n7dq1OBwOzj///DFa2bD77ruP9773vUycOPGoj1m/fj333HPPUZ9rxYoVfOc73xmz4R4bN26kra2NK664AoDf//73bN68mdtvv31Mnn88FDtt/OsH5nHL/W/w789s5bL5dVQVqyXK0ShIVEBM0+TJHU8SS8QwTZO31+/lA/1+JpS50tOnppZPpeh9KymqnMynz/o0j2x5hN19u6kscrJy8UQGQzHavEGmVRdxwGrBZXPxd2fdjMN99NM+EUieGsyfWMb8iWV8/uIZDISiPLelkx+s3cn2jkG+++wOvvvsDqwWg9oSJ4PhGAOhGC67hYZyN9NriplTX8oHl0xkeo1GqIqMlYSZ4JEtj2AODrD4D2/S1tpHh2/4VDmWMNnROUg0nmBCmZtIPMLGAxuZXjmdSaWTSJgJtnRtIWEmME2THZ3JAFGZ2860pireec9CfDWluG1uLptxGYvrFivwK2NmRm0x/+vSWXzz6a185bdv84d/XE6pS2Vnkt+6A910+jvpDfbSF+yjL9RHX7CPQDRAJB7B5Pg6igyEouzrDdA9ECEYjTMQihLrGuCGjXtJmFBd7GRSRbIdhf/MBVx1EgH+u9bedcJ/5mTdteL0vNbatWspLi4+bUGiBQsWHDVIlCkbN25k/fr16SDRypUrWblyZYZXdeLev7Ceh2a28OKObn74l13c8X71vjwa1XYUkNfbX2dnb3LKzOZ2H5O2tmG3WmgY+uD32D00TFsM06YBUOQo4mOLPsal0y7FaU1GW4tdNmbVJbM8bBYbfzf376hUgEhOUonLzqozGnjmC8v56ceX8dFzptBQ7iaeMGn3hhgIxbBaDELRBLu6/Pxxcwffe24H7/vui/znn7YTjsUz/RZE8sKWri10DnYwb+07dO/rpcMXxjBgVl0xZ0+tZEplcvpYc0+A3V2DJBImJiY7e3fS6mulub85PS2ztS+YHmxQPbee11cuxVdTyln1Z3HL2bewZMISBYhkzH3yomksmVxOuzfEN57ckunliJx2a5vX8ut3fs2zu59lQ/sGdvftpi/URzgePmyAyDRN+vwRtncM8Ned3Ty2cT8/fnE39760hz9t7uCNlj62HvDR3uvn8reb8VgMZtWVMKO2GIthkHA6uOgDn8duzb0AbCwW4/rrr2fu3Llcc801BAIBADZs2MC73vUuzjrrLC677DLa29sB+N73vse8efNYtGgRH/7wh2lubuaHP/wh//mf/8mSJUt48cUXRz3/XXfdxerVq7noootobGzkt7/9LV/60pdYuHAhl19+OdFoMmvrq1/9KsuWLWPBggXcfPPNmKbJww8/zPr167n++utZsmQJwWCQdevWcf7557N48WLOPvtsBgaSvWDb2tq4/PLLmTlz5nFNgX3ggQdYuHAhCxYs4Mtf/nL695955hnOPPNMFi9ezCWXXALAa6+9xnnnnccZZ5zB+eefz7Zt24hEItx555089NBDLFmyhIceeoj77ruPW265BUhmab373e9m0aJFXHLJJezbtw+AG2+8kdtuu43zzz+fadOm8fDDD5/K/74xYRgG//uy2QA8+FoLA6EjZ9KJMokKRnegmz/s+gOQPDH42zvtfKqznylVHmyWZKxwRuUMLOeeN6rhtMWwcMGUC1jWsIx3Ot9hS/cWegI91BbVcuGUC2kobcjI+5H8YrEYXDy7Nl0iEI7F6fSFKXbaKPfYGQzHaOkNsqNzgL9s6+K3b+znv57bwSu7e7jv48vwOPRRJnKyTNPkxX0vUn6gn6K2PrYP9Z+YU1dKmcdOwmIQevc8tng8PLm3j0m9A1zoHeQDhonLIH34ADAYjrG/P0jMYmBfPpsty+eQsFp4/8z3s6xhWabeohQAq8XgOx9axBXfe4kH17Xw/kX1XDRz7HokiWSbClcF8YRJKBonFjcJRuN4g1H84RjReIJwLEEgEsMfiRMIx/CFkr9vmCaOeAJ7PIHFNJlowDSXjUkuGxWJOAv2dFJT6cJudacD+g6rg+mX/z11VY0ZftcnZ9u2bdx7771ccMEF3HTTTfzgBz/gC1/4ArfeeiuPPfYYNTU1PPTQQ9xxxx385Cc/4e6772bPnj04nU76+/spLy/nM5/5DMXFxXzxi1887Gvs2rWL559/ns2bN3PeeefxyCOP8K1vfYurrrqKJ598klWrVnHLLbdw5513AnDDDTfwxBNPcM0113DPPfekS8QikQjXXXcdDz30EMuWLcPn8+Eemii6ceNG3njjDZxOJ7Nnz+bWW29l8uTJh11PW1sbX/7yl9mwYQMVFRW8973v5dFHH+WCCy7gU5/6FC+88AJTp06lt7cXgDlz5vDiiy9is9l49tln+cpXvsIjjzzCV7/61VFlbvfdd1/6NW699VZWr17N6tWr+clPfsJtt93Go48+CkB7ezsvvfQSW7duZeXKlVxzzTVj8b/ylCyaVM45Uyv5255eHlrXwicvmpbpJWUt3VnlOdM02dy1mSe2P5FMPTVN/ri5gzn7e6h12agudgBQ7ammsmJiclrNYTisDs6oP4Mz6s8Yz+VLgXLarEweylyAZMbRvIl25k0s5YNLGrhu2WRue/ANXtvTy6d+vp57Vy/DZbce5RlF5Eh29u7kwOABFmxu5YA3RMKEco+dMo+dqNPOG+9bQqC8iKnAtbUlPPl2O7+sKOF5l5Wb6zxMbO3F4w2QiCd4tb+fzZOqCZ8zg7MXJw8RzphwhgJEMi5m1JbwhUtm8u0/bOPrT27hqduqNcVGclo4Fqd7MELXQJh9vQE2t/nY3TXIAV+Inf3bMTo3csW2/RgWA6dhUG0xqDAMTAMME6wJE2c8jjsaxxmP47JYKLZb8DhtFDmseBw2XPbD9H0cMUiktqiWGdOX4bjiQ+P87sfO5MmTueCCZLPtj33sY3zve9/j8ssvZ9OmTVx66aUAxONx6oeG7yxatIjrr7+eVatWsWrVquN6jfe9733Y7XYWLlxIPB7n8ssvB2DhwoU0NzcD8Pzzz/Otb32LQCBAb28v8+fP58orrxz1PNu2baO+vp5ly5L7Zmlpafprl1xyCWVlZQDMmzePvXv3HjFItG7dOlasWEFNTTJYfv311/PCCy9gtVpZvnx5evR8ZWWyIsTr9bJ69Wp27NiBYRjp7KejeeWVV/jtb38LJINeI7ObVq1ahcViYd68eXR0dBzzucbLpy6axt/29PLTl5u58fymdA/UbBKNJ2jvD9HaF2B/fzI7ezAcS7fhGAzHCIRjxE2ThAkfWFjPtcsO//fgZClIlGf8ET9tA220D7bTNtBGq6+VwcggkAwY/XVXD609flZ19DOtpgjDMLBZbMysnAlnnAEOR4bfgcixnTOtivs/dS7X/ehVXt7Zw//6zZvc85EzVMIicoISZoK1zWtx+4KU7+tmjy8EQEN58tRyzwXz+PilX+Lx7Y+zz7uP2lIXH142hYfWt7A/EOHegTjvOW8WBvDclk6ayyqo8Di4fkHyQrvSXcn7Zr4vU29PCtAnL5rKr17dy9YDAzz5djtXLs6+Hh9SeCKxBN2DYToHwnT6Qsn/DoTpGgjhDUaJxk2CkTjdg2EGQjESpkkgkswMOpKo4aAunmBCJILFMLBaDFx2Kw6rJflrq4HDYcFutWK3WnDYLNiPckNsYOCwOrBb7XjsHoodxVR7qvE4i+G6j4Izdxv9Hnx9aBgGpmkyf/58XnnllUMe/+STT/LCCy/w+OOP8/Wvf5233377mK/hHPr+WCwW7HZ7+jUtFguxWIxQKMTnPvc51q9fz+TJk7nrrrsIhUIn9D6cI/4fWK1WYrHYCf35o/nXf/1XLr74Yn73u9/R3NzMihUrTun5Rq41PSU1C7x7Ti3TaorY3eXnqU0HWDkOe4Q/HGP93j46vCG6BsN0DYTpGgzTMximPxBN//sNx+IMhmIc8CUP7I7XvPrSYz/oBClIlMMSZoJgNEhXoIu9/XvZ0buDVl/rER5r8pdtXbzZ2s+MvgHOLLanN4qZlTNx2pywTCe9kjum1xRz/6fO4arvv8yTb7Xznrm1XHVG9k3b2N4xQEtvgL5AlP5ABG8wSnWxk9kTSpgzoYRyjwKzkjmvtLzC/oH9TN+6n47+IPGESanLRonLTqjIyYwLrqSmqIbVi1fz3J7n+GvLX3E7rFy1pIGH1u9jX2+An7y0B6vFIJ4wcdgsXDZ/AjarBQODVXNW4bDq77iMH6fNyq2XzOSff/s2//nsdt63YEJWnhRLdvvFq3sJR+OUuu04bRZC0TjBSJxQLJH8eTROOJr8eSSWIGGaxM3k9XYiYaaDPJ2+MJ0DIfoCJ9f/xGoxqC52UFvior7MxZz6UmbWFjOx3E2RK8Qfnnmdxf6Bk3pui2Gh2FFMmbOMCncFZc4yrJbDZGVfeik05HZ7iX379vHKK69w3nnncf/993PhhRcye/Zsurq60r8fjUbZvn07c+fOpaWlhYsvvpgLL7yQBx98kMHBQUpKSvD5fCe9hlRAqLq6msHBQR5++OF0CVZJSUm679Ds2bNpb29n3bp1LFu2jIGBgXS52Yk4++yzue222+ju7qaiooIHHniAW2+9lXPPPZfPfe5z7NmzJ11uVllZidfrpWHo//PIkrKRazvY+eefz4MPPsgNN9zAr371Ky666KITXud4s1gMPnHhVO743SZ+/OJurlxUf9oOmXd3DfLNp7fyl+1dRGKJ4/5zhgH1ZS4mV3hoqHBT5rZT7LRR7LJR7LRR4rLhcdiwWQwMg3TfyLGkIFEWisajtPpaiZtx4ok4cTNOLBEjGo/ij/rp8nexf2A/fcG+I04uME2T/mCUTl+Y/f0Bdnb6CURiWA34FDEqipIX7TWeGmqLamHmTKhUA2rJLbPqSvj/rpzPlx55izsffYdlTZVMqhj7D8oTZZomL+7o5vvP7+Rve3qP+LjpNUU8979WjN/CREZo7m/mz3v+jDUap/ydVjb3J3sRNQz9G+qY18g1k88DwGqx8t7p78Xx/7d35+FR1mejx7/P7JklCSSZBJNAyAokJBAC1FZRsIIeFCqgorgigktV6oVWL4++nh4RjstrPbzWHlypVemrRVFBUFDUqqAkUJQ1QiJZICQhezKTWX7nj4EIskjWmYT7c11zzfo8c89vZp57cue36E1sKN5AhNXI9NwENu6rpri6GY/PT2qMnQsznNgtgZ8W5yaey8CIgcF5ceKsNmNUAs9v2Mu+yibe3VrOjFGh9w8EEdqWfr6XksMtXbY/nRZYJcwZbibGbsbpsOAMN+N0mImwmjDpA72Aou1mIsKM6HQaFoOOflbTKYdM+pWfT0+zBtHRnkFmgxmjzohJb8JqtGIz2bAarZj15tP/cRwRARddBNnZnX35QZeRkcFzzz3H7NmzGTZsGLfffjsmk4m3336bu+++m7q6OrxeL/Pnzyc9PZ3rrruOuro6lFLcfffdREZGcvnllzNjxgxWrlzJkiVL2l0QiYyM5NZbbyUrK4u4uLi24WQQmOj5tttuIywsjK+//pp//OMf3HXXXbS0tBAWFsa6deva/ZoHDBjA4sWLGT9+PEopJk+ezNSpUwFYunQp06ZNw+/343Q6+fjjj7n//vu58cYbeeyxx5g8eXLbfsaPH8/ixYsZMWIEDz744HHPsWTJEm6++WaefPJJYmJieOWVV9odZzBMz03g6Y/2sK20jm+KDjM2OarLn6OwooFrXthEVWNgIZCRAyMZHG0jxhE4BsQ4zETZzERaAxPB+/wKi1GP1aTHGW7GbAjuNBqaCqX+X8fIy8tj8+bNwQ4jKGpaanh207Pt2kYpRXVTK/sqm9h/uJlDDa4TKpaRYUbm6H2ctyvQ28husjMibgQGnQFmzQoUioToZZRSzHstn492VDB2cH/evPVXQZ2DYltpLY+v3snGfYHikMNiYNSgwBCcSKuRcIuRg3UudlU0kOa089SVJ58H7JeczcfIo6QNOsbldbHlwBbWF63H6/cSt7MU74p8Gt1eou1mUp12fAYdvvn3MDFr6nHbKqV4f8/7FBwoaLvN6/Pj8vjbikMA2bHZ/G7I79Bp0oNDBMeKglLu/e9/k9g/jPX3XojJcPZ9FuUY2fE2+Otne6mod1Hf4qXV58di0BFm0mMx6rEYdJiNesKMgesmgw69DnSadswJLEY9MY5AYSjKZkbfDb9N1r/7DAnrviHMGIbFYCHMEDjX6/SnPv5qWmB6CYPhp5PNBlZrYEiZ1RpY6TglBXSd/97s3LmToUOHdno/ou8J5mfjmY/38Oz6Qn47NJYXb8zr0n3/cKiBmUs3UtXYynmp0Tx9VQ6x4ZYufY6ucLrjo/QkCkEn7epJ4Me5TyncHj8V9S4qG9y0eHzUu7wcqG2hxXP8cuA2k4FYu4nEMAPpDjNDqutI2RIoEEVaIslyZgUKRP37Q2pqt78uIbqDpmksmjacgv21bCo6zIv/2sfccSk9HodSir9+to8n1u5CKYgIMzLvgmSu/9UgHJbet1ys6B2UUrh9blp9rfiVH7/y4/Mf6X3q99Dqa8XtdVPvrqeyuZKDjQepaKzApwL5wu/z4/p8Dy63F5NeR1JUoBdRfXoSl2RMPOH5NE3jsvTLiDBH8FXJV7h9bgx6HfYjw3msRiuTUiaRHZstc4SJoJo6Ip7nPv2BvZVNvJVfwqyxvXNVJhEct13Q878jOuKiS++A864Hrxd8vp9ORxkMYDQGCj8WS+C6ph23krEQZ6Przx3E85/tZf2uCvZWNpISY++S/R5qcHHjy99S1djK+WnRvHBDXq9cXKfPFYn+mV/Kv0trcTrMxIZbSI6xMyjKitmgw6DTYdBrR8bvBQ6OPr/C7T0yrvhn562+QE8cv1/R6PZS2+yhvLaF6qZWNA0MOg2PT+Hx+fEeOW89ctnr9+P1K3z+wO2B88B1r1/hPXqb34/fD2ajDpNeh8+vaPE28aNrLxN2l+JBwwN40fBqoI4c0/V+hc3nJ8brw+LxoleKMJ2OOIuB2DADkWYDYSiMbg/az/qKneM4h5R+KT8Voy65RJKF6NWi7GaemDGc2a9u5qm1ezg/LYah3TCJ26m4vT4e+Od3vLOlDIA55w3mrglpRFilOCQ6p6SuhJW7V7YVfrx+b9tQZIXCr858jPvP1Ta3suNfPzChrAaA5Bhb29wt2ZfPIcx48jkQdJqOC5Iu4DcDf0NRTRH7avbR2NpIfHg82bHZWI3BH/IphF6nce/FGdz5RgFL1v/A9NyEXvlDXYjTMpt79YTSQgRLtN3M9Nx43vymhOc++YH/vHpEp/fZ3OplzrLNlNW2MHJgZK8tEEEfLBJ9XljJyq3lv/g4nRboFuptz9ThPUTRSrPOw9CSqhPu047EbTPpsZkNgZUKjDrs5sDEepqmgfKDq/W47WxGGzG2wPxDx/2AHzMG0tO7+yUJ0e0mDInl2rEDeWPTfn7/RgHv/f48bObuP8Q1ub3Mey2ff/1QhdWk55mrRzApM67bn1ecHXzKR1XzibmgvZRSNLX6qGpwU9Xo5sfDzZQcbmbazjKMeh2pTjsRYYGiZnhGNilDf/2L+zToDKRFpZEWJUOVRWi6NCuOoQPC2Xmgnr9v/JE55ycHOyQhhBAh4o4LU3k7v5R3tpZx67jkTv2DWSnFgrf+zbbSOgb2t/bqAhH0wSLRzNEDyUmI5FCDm/LaFvZWNlJW24LHG+jZc7R3j//ICgQAZoMuMMbYqMNs+On86Ph1DbBbDIRbjAyItOB0WAJDv/wKg16HSa9h1Osw6HUYj17WaUd6LR29rEOv0zDqA0vcHdurSacFlrxze/0Y9To0zc/SjRvJ3V+OTgt079e0QBxn0n3fqDPSL6wfDpMDu8mOw+wIDCv7OaczsGKBEH3E/5w8lG+LDlN4qJEHVnzH/505oluHvNQ2t3LTK9+ytaSWaLuZZbNHk3lORLc9n+gaNU2tOCyGXrHikd+v0eT20nJkZZ2j526vHwjksqO9U4+et/Vw9f/U07XF48P1syHJ6TUN/NrtZmB8RFu+CzeHk3XZLUF4pUJ0PZ1O475J6cx+dTPPritk6oh4YhzS60IIIQQk9rcya+wgXv2qmCfX7ublmzq+0vdfNuxl9XcHcZgNvHzTaKLtvTvX9Lki0bkpUZybcvoZypUKFIv8SmHS60Ju3gSlFJEmwxlNsqjX9Bj1RmxGG+HmcCItkYSbw3/5NSUlwfTpgXHKQvQRVpOB56/LZcp/fcn7/y4nOz6CW8d1z3+OK+pdXP/SJvZUNJLQL4y/3zKWpGhbtzyX6FoPvfsdn+w6ROY5EQyJc+CwGLGbA70zbebA8qJWkx77MdcD9+m7NWfUNXvYebCe70rr2FZWx3eltfxQXUqjYV+X7N9s1BNtMxFtN5OmvMwoP4DF+dMY/Dh7HGlJo9BnDu+S5xMiFIzPcDI+I4ZPd1ey+MNdPH1VxxYLEEII0ff8fkIqb20u4ZNdh9i0r7pDK519squCpz7ajabBn2eOINXZNfMbBVOfKxKdCU0L9OgJVZqmkeRIpJ+lHzpNh04L/FGi03QYdUaMeiNWo5VwczgmvemXd2ix/DRmOTERRo6E+HiZh0j0SalOB/9nejZ3vbmFhat3AnR5oejH6iaue2kTJYdbSHPaee2WscRFhN6qBeLkDje14vL4yf+xhvwfa9q1rcWoY1B/G0nRVpKibSRFBU6Doqw4HebT9k7y+vw0uLw0uLwcanCxp6KRPRUNFB5qoLCikUMN7hO20Wt6wvUaSc0ujGYDRrMBk8mA0WhA6QIr6JiVwqIUNo8Pi9+PCYVRgUUpTH4/Ri1w2eH1YKpuxFjuwX64se05THoTKf1SiLXHwgUXdslqNkKECk3T+I/LM/nyh8/5Z0Ep14xJJC+pf7DDEkIIEQKi7WbmjkvhmXV7+N+rdvDenee1a5XkvZWN3PPmVpSCBRPTuWhobDdG23POyiJRbzBr9GywjA6sUHDsigVKBU7HrlYQFha4rtcHbjOZApf1+sD9Bnmbxdnl8pxzqG3x8PC737Nw9U5cHh93XdQ186bsPtjAdS9torLBTU5CBK/ePIZ+tjMo1oqQsXzuudQ0tbKtrI6iykaaWn00ub00ub00uo9cbvXSeOS2JrePptbAZZfHz+6KBnZXNJywX50G/W0mTHodRoMO45GCUYPLQ4PLS3Or74RtjhVm1JMeaycrPoLshAiy4iOIDvfw6vqtjH3nmy5tA72mJ9ISSZw9jihrVGCp5LQ0yOvaZWCFCAVJ0TbmXZDMkk9+YMFb/+aDu8/H3gNz1gkhhAh9t44bzPJv9/N9WT1v55dy1ejEM9quweVh7t820+D2cmlWHHeO7zurhUuGDFUmE4waFewohOi1rv/VICwGHX/85zae/ngPLq+PBRMzOjVUqGB/DTe/8i11LR7OTY7ihRvz5A+NXqqfzcQF6TFckB7Tru3qWjzsr26mqLqJ4qomio+c7z/cQnWTm6rG1lNuq9PAYTHisBjobzORGmMnLdZBeqyd9FgH8ZFhJ/z3qt5dj+4XFljQa3r0Oj0aWluv06Ono/cZdAbCDGFYjVZsJhthhrDjvwt2O/zud9LDVPRZd45P5eMdFew62MAjK7/nP68aEeyQhBC9lNfrxSD/hO8zrCYDD1w6hHuWb+WJtbu5dHgcDsvpp2Spa/Fw8yvfsLeyiYxYB09dmRNyU9h0hny6hRB91pV5iZiNev7wj6089+leaps9/MflmWc039fP/auwirmvbaa51cfFw2JZcs3IXr1qgeiYiDAjwxMiGJ5w4gTlrV4/tS2tgYmjvX48Pj8KcFgMOCxGbCZ9u39A2Iw2bs6+Advm44ce67SjCytonf9RYrXCVVeBTebUEn2Xxajnv64dyWVL/sWKgjJGDerHrLGDuvx5XB4f28vrKaxooKiqicNNrTS4vOh1GhajnrgIM4n9rPS3mYgIMxIeFigcu71Hh6MGeh7WNnuoaW4lJcbOJVmyYqboAx59NGjPsXDhQpYtW4bT6SQxMZFRo0bxwQcf8NRTT5GXl0dVVRV5eXkUFxfj8/l44IEH2LBhA263mzvvvJN58+axYcMGHn74Yfr168euXbuYOXMm/fv3Z/78+QA89NBDOJ1O7rnnnu5/naLLTck5h2VfFVOwv5aH3/2eZ64+9eI3h5taueHlTXxfVk98ZBgv3pjXIysq96S+9WqEEOJnpuScg9mg4643tvD6pv3sPtjAkmtHMiAi7Iy2r6h38dynP/DGpv14/YppI+N5YkZ2r1gZS/Qsk0GH09G1c1PpdXqizf3AeGaf13ZxOGDECBg9GsI7vuyrEL1FqtPB/5qSyR//+R0PvfM9Xp/ixl8ndWqfSim2l9fzya5DfL6nkm2ldbT6/F0TMIEcJkUiITouPz+f5cuXs3XrVrxeL7m5uYw6zWiNl156iYiICL799lvcbje/+c1vmDhxIgAFBQV8//33DB48mOLiYqZNm8b8+fPx+/0sX76cb77p2qHhoudomsaiadlc8ZcveXdrOelxDu648MThY4caXFz3YmDhmqQoK6/f+iviI7vhN1qQSZFICNHnTcqM479vO5fbXstn8481XPjkBm78dRLX/2oQif2tJ92mutHNXz/by9++/hG314+mwa3nD+bBS4e2a0I7ITrNaAysSHmyOergxDnqjs5JZzIFbtfrA4+x2QInkynwuKgomaRanHWuHj2QBpeXx1bt5D/e2843xYe5+ddJ5A7sd8bHdr9fsfNgPZ/sPMQ7W8vYV9nUdp+mQUasg2HnhJMSYyPGYcZuNuJXipZWH2W1LZTWtFDb3Eq9y0NdS6DnkMWoP9Lr0IDDbCTSaiTCaiQ7PrKbWkKIs8MXX3zBFVdcgdUa+L03ZcqU0z7+o48+Ytu2bbz99tsA1NXVUVhYiMlkYsyYMQwePBiApKQkoqKi2LJlCxUVFYwcOZKoqPavjCVCR0acgz9fPYJ5f8/nybW70Wsac85PRn8kN+w8UM8drxdQVNVEmtPO63PG4gzvmwvXSJFICHFWGJEYyft3ncfD737Pmu0HWfr5PpZ+vo+B/a2kx9rbDvKNLi+FhxoprGjAe2QumEsy4/jDxelkxDmC+RLE2So2Fm66KdhRCNFnzDk/GZvZwMPvfs+qbQdYte0ANpOetFgHJoMOn19h1GuEGfVYjjnpdVBc1cz28jpqmj1t+4u2m5mYGcv4DCdjBvcnIuz0c1kIIYLPYDDg9wd6/blcrrbblVIsWbKESZMmHff4DRs2YPvZsOw5c+bw6quvcvDgQWbPnt39QYtuNzEzjj9eMoTFH+5i0Ye7+GDbAXISIzhQ62L9rkMADBsQzmu3jCHKbg5ytN1HikRCiLNGjMPMX68fxbbSWv7fZ/v4orCS/Yeb2X+4+YTHahqMz4jh3oszTjr/jBBCiN7rmjEDuSA9htc3/ciKgjIO1LnYWlJ7xtsPiLBwXmo0/2P4AM5Pi5YhyEKEqHHjxnHTTTfx4IMP4vV6ef/995k3bx5JSUnk5+czZsyYtl5DAJMmTeL5559nwoQJGI1G9uzZQ3x8/En3fcUVV/DII4/g8Xh44403euoliW522wUpZMQ6eHDFd3xXVsd3ZXUAmA06rhkzkD9cnN7n/xkgRSIhxFknOyGS52bl4vMrdh6op7SmmYp6NzqdhtWoZ1CUlSEDwmXlMiGE6MPOiQzjvklDuG/SEKob3fxwqBG/AoNew+P10+Lx4fL4cXl8tHh8eHx+EvtZyYhzkNAvrE+tZCNEt+uJiatPIjc3l6uvvpqcnBycTiejR48GYMGCBVx11VUsXbqUyZMntz1+zpw5FBcXk5ubi1KKmJgY3n333ZPu22QyMX78eCIjI9HrZTGTvmT8ECcf3TuOdTsqaHR70TSNScNi++zwsp/TlFKnX1s3SPLy8ti8eXOwwxBCiJAkx0hpAyGEOB05RkobhIKdO3cydOjQYIfR5tFHH8Vut7NgwYJO78vv95Obm8tbb71FWlpaF0R3dgm1z8bZ5nTHR+kbK4QQQgghhBBCnKEdO3aQmprKRRddJAUi0efIWAohhBBCCCGEEH3eo1007G3YsGHs27evS/YlRKiRnkRCCCGEEEIIIYQQQopEQgghhBBCiOB46623yMzMRKfTnXb+oDVr1pCRkUFqaiqLFy/uwQhFZ4XoFLgiiOQzEdqkSCSEEEIIIYQIiqysLFasWMG4ceNO+Rifz8edd97Jhx9+yI4dO3jzzTfZsWNHD0YpOspisVBdXS1FAdFGKUV1dTUWy9mxUlhvJHMSCSGEEEIIIYLiTFY3+uabb0hNTSU5ORmAmTNnsnLlSoYNG9bd4YlOSkhIoLS0lMrKymCHIkKIxWIhISEh2GGIU5AikRBCCCGEECJklZWVkZiY2HY9ISGBTZs2BTEicaaMRiODBw8OdhhCiHaQIpEQQgghhBCi2/z2t7/l4MGDJ9y+cOFCpk6d2qXPtXTpUpYuXQogvVeEEKIDpEgkhBBCCCGE6Dbr1q3r1Pbx8fGUlJS0XS8tLSU+Pv6kj507dy5z584FIC8vr1PPK4QQZyOZuFoIIYQQQggRskaPHk1hYSFFRUW0trayfPlypkyZEuywhBCiT9JUiE41Hx0dTVJSUoe2raysJCYmpmsD6kISX+eFeowSX+dIfL+suLiYqqqqoMYQbJIngkfi65xQjw9CP0aJ75f1ljzxzjvvcNddd1FZWUlkZCQjRoxg7dq1lJeXM2fOHFavXg3A6tWrmT9/Pj6fj9mzZ/PQQw/94r4lTwSPxNc5El/nhHp8EPwYT5cjQrZI1Bl5eXls3rw52GGcksTXeaEeo8TXORKf6G6h/h5KfJ0j8XVeqMco8YnuFurvocTXORJf50h8nRfKMcpwMyGEEEIIIYQQQgghRSIhhBBCCCGEEEII0UeLREdXNAhVEl/nhXqMEl/nSHyiu4X6eyjxdY7E13mhHqPEJ7pbqL+HEl/nSHydI/F1XijH2CfnJBJCCCGEEEIIIYQQ7dMnexIJIYQQQgghhBBCiPbpc0WiNWvWkJGRQWpqKosXLw52OJSUlDB+/HiGDRtGZmYmzz77LACHDx/m4osvJi0tjYsvvpiampqgxunz+Rg5ciSXXXYZAEVFRYwdO5bU1FSuvvpqWltbgxZbbW0tM2bMYMiQIQwdOpSvv/46pNrvmWeeITMzk6ysLK655hpcLldQ22/27Nk4nU6ysrLabjtVeymluPvuu0lNTSU7O5uCgoKgxHffffcxZMgQsrOzueKKK6itrW27b9GiRaSmppKRkcHatWuDEt9RTz/9NJqmtS0XGYz2E50neaJjJE90nOSJzscneUL0JMkT7RfKOQIkT7SX5Imuj++oXpEnVB/i9XpVcnKy2rt3r3K73So7O1tt3749qDGVl5er/Px8pZRS9fX1Ki0tTW3fvl3dd999atGiRUoppRYtWqTuv//+YIapnn76aXXNNdeoyZMnK6WUuvLKK9Wbb76plFJq3rx56i9/+UvQYrvhhhvUCy+8oJRSyu12q5qampBpv9LSUpWUlKSam5uVUoF2e+WVV4Lafp999pnKz89XmZmZbbedqr1WrVqlLrnkEuX3+9XXX3+txowZE5T41q5dqzwej1JKqfvvv78tvu3bt6vs7GzlcrnUvn37VHJysvJ6vT0en1JK7d+/X02cOFENHDhQVVZWKqWC036icyRPdJzkiY6RPNE18UmeED1F8kTHhHKOUEryRHtJnuj6+JTqPXmiTxWJvvrqKzVx4sS2648//rh6/PHHgxjRiaZMmaI++ugjlZ6ersrLy5VSgQN/enp60GIqKSlREyZMUOvXr1eTJ09Wfr9fRUVFtX3Jft6uPam2tlYlJSUpv99/3O2h0n6lpaUqISFBVVdXK4/HoyZPnqzWrFkT9PYrKio67qB0qvaaO3eueuONN076uJ6M71grVqxQ1157rVLqxO/wxIkT1VdffRWU+KZPn662bt2qBg0a1HZQD1b7iY6TPNExkic6TvJE18R3LMkTojtJnmi/UM4RSkme6CjJE10fX2/JE31quFlZWRmJiYlt1xMSEigrKwtiRMcrLi5my5YtjB07loqKCgYMGABAXFwcFRUVQYtr/vz5PPHEE+h0gY9DdXU1kZGRGAwGILjtWFRURExMDDfffDMjR45kzpw5NDU1hUz7xcfHs2DBAgYOHMiAAQOIiIhg1KhRIdN+R52qvULxO/Pyyy9z6aWXAqET38qVK4mPjycnJ+e420MlPnHmQv09kzzRfpInuobkic6RPNF3hPp7Fop5IpRzBEie6CqSJzqnN+WJPlUkCmWNjY1Mnz6dP//5z4SHhx93n6ZpaJoWlLg++OADnE4no0aNCsrz/xKv10tBQQG33347W7ZswWaznTA2PJjtV1NTw8qVKykqKqK8vJympibWrFkTlFjOVDDb65csXLgQg8HArFmzgh1Km+bmZh5//HH+9Kc/BTsU0cdJnugYyRNdT/JE+0ieED0lFPNEqOcIkDzRHSRPtE9vyxN9qkgUHx9PSUlJ2/XS0lLi4+ODGFGAx+Nh+vTpzJo1i2nTpgEQGxvLgQMHADhw4ABOpzMosX355Ze89957JCUlMXPmTD755BPuueceamtr8Xq9QHDbMSEhgYSEBMaOHQvAjBkzKCgoCJn2W7duHYMHDyYmJgaj0ci0adP48ssvQ6b9jjpVe4XSd+bVV1/lgw8+4PXXX29LOqEQ3969eykqKiInJ4ekpCRKS0vJzc3l4MGDIRGfaJ9Qfc8kT3Sc5ImuIXmi4yRP9C2h+p6Fap4I9RwBkie6iuSJjutteaJPFYlGjx5NYWEhRUVFtLa2snz5cqZMmRLUmJRS3HLLLQwdOpR777237fYpU6awbNkyAJYtW8bUqVODEt+iRYsoLS2luLiY5cuXM2HCBF5//XXGjx/P22+/HfT44uLiSExMZPfu3QCsX7+eYcOGhUz7DRw4kI0bN9Lc3IxSqi2+UGm/o07VXlOmTOFvf/sbSik2btxIREREWzfSnrRmzRqeeOIJ3nvvPaxW63FxL1++HLfbTVFREYWFhYwZM6ZHYxs+fDiHDh2iuLiY4uJiEhISKCgoIC4uLmTaT5w5yRPtJ3micyRPdA3JE6KnSJ5on1DPESB5oqtInui4XpcngjMVUvdZtWqVSktLU8nJyeqxxx4Ldjjqiy++UIAaPny4ysnJUTk5OWrVqlWqqqpKTZgwQaWmpqqLLrpIVVdXBztU9emnn7atSLB37141evRolZKSombMmKFcLlfQ4tqyZYsaNWqUGj58uJo6dao6fPhwSLXfI488ojIyMlRmZqa67rrrlMvlCmr7zZw5U8XFxSmDwaDi4+PViy++eMr28vv96o477lDJyckqKytLffvtt0GJLyUlRSUkJLR9R+bNm9f2+Mcee0wlJyer9PR0tXr16qDEd6xjJ5oLRvuJzpM80XGSJzpG8kTn45M8IXqS5ImOCdUcoZTkifaSPNH18R0r1POEppRSwS1TCSGEEEIIIYQQQohg61PDzYQQQgghhBBCCCFEx0iRSAghhBBCCCGEEEJIkUgIIYQQQgghhBBCSJFICCGEEEIIIYQQQiBFIiGEEEIIIYQQQgiBFImEEEIIIYQQQgghBFIkEkIIIYQQQgghhBBIkUgIIYQQQgghhBBCAP8fB/n2YoDJK9oAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAADFCAYAAACWyLzbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOwNJREFUeJzt3Qd0VNXWB/A/6aRCCGmE3kINgUBoIghKEanSRCkiKIIN9fnws+sTlfcsIAI+EUSQpoiCiiK9BAKhh5aEQAJphJBO+nxrnyTzCIIESHLnzvx/a83KtIRzuTP37nvOPvtUMxgMBhARERHRXbO6+z9BRERERIKBFREREVEFYWBFREREVEEYWBERERFVEAZWRERERBWEgRURERFRBWFgRURERFRBbKBDRUVFiIuLg4uLC6pVq6Z1c4iIiMjMGQwGZGRkwNfXF1ZWVuYVWElQVbduXa2bQURERBYmNjYWfn5+5hVYSU9V6ca5urpq3RwiIiIyc+np6apTpzQGMavAqnT4T4IqBlZERERUVW6VgsTkdSIiIqIKwsCKiIiIqIIwsCIiIiKqILrMsSIiKo/CIgMikzIRkZSBqKQsxKVeRUp2HtKy81FkMEBSJZzsbVDb2R5erg5oVNsJzbxc0MTTGQ621lo3n4h0iIEVEZmVy5m5+OVYPLadvoT951KQkVNw23/DztoKreu4IqiBO+5p6oFODd1hb8NAi4hurZpBKl7pcMqjm5sb0tLSOCuQiFTP1LbTSVi+Lwbbz1xSj0s52VmjubcLGtd2Rl13R7g72aGGoy2sq1WDvC0rtwCXMnNVb1ZEUibOJGYgNTu/zN+vbmuNXv61MTTQD/c2qw07G2ZREFma9HLGHuyxIiLdyskvxMrQGCzaHY3YlKvG59vUccPAtj7o2tgDLXxcYGNd/kBIrjXlb4XFpCAk6rLq+UrKyMWvxxLUTQKzkUF1MTa4ngrUiIiuxR4rItKd/MIiFVDN2xqFhPQc9ZxbdVuMDPLDqI71VI5URZFDZHhcOn46fBHrDsfhUkauet6qGtC3lTem9WqC1nXcKuzfIyJ9xx4MrIhIV7aeTsJ7G04g6lKWeuzj5oCnezXBw+39UN2ucvOgCgqLsPlUEr4NOY9dkcnG53v7e+Kf/f3R1OvvKzITkX4xsCIis5KUnoPX1h3HHycS1WMZknu+T1OM6lhXk8Ty0wkZ+GJbJNYfiVO5WtZW1fBocD28cH8z1HC0q/L2EFHlYmBFRGZBDlFrD17E2+vDkZ5TAFvrapjYrSGm39cErg62WjcPZy9l4oPfThkDPg9ne7w3pDX6tfbWumlEVIEYWBGR7qVdzcerPx7DL0fjjUnps0e0hb+36X3v90Qm4/WfjhuHKCV5/u1BrVDL2V7rphFRBWBgRUS6djg2FdOWH8TF1Kuwsaqmhtie7NHotmb4aTFL8bPNEfhyx1lV8qGWkx3eGdwaD7b10bppRHSXGFgRkW6tPhCL1348jrzCItR1r445owMRWK8m9OLohVS8vOYoTidmqMdD2vniX0PbqCrvRKRPDKyISJdlFGTG3zch59Xj+1t64T8jA0wil+p25RUU4fOtkZi3NVL1XjWu7YQvxnZQxUqJSH/KG3uYbp86EVmU5MxcjP1qnzGokhl/Cx/toMugSkh19hn3N8PKKZ3h5Wqvcq+GzNuN38MTtG4aEVUiBlZEpLmT8ekYNHcXQqNT4Gxvg/+OC8LzfZrBSqpw6lzHBu749dl70L2JB67mF+KpZWGYvy1KzXYkIvPDwIqINLXv7GWMXBCCuLQcNPJwwrpp3dQQoDmRmYFLJnbEY53rQ+KpDzeewsvfH1XDhURkXhhYEZFm/ghPwGNfhyIjtwCdGrjjx2ndKnQ5GlMisxnfHdJalWCQjrjvwy7g0UX7kJKVp3XTiKgCMbAiIk2s2h+jhsWk16ZPCy8sndRJrfdn7sZ3bYCvJ3RUQ54y9Dl8/h5cuJKtdbOIqIIwsCKiKiW5RTJT7pUfjqmlYGTh5AWPtoeDbdUvS6OVns09sfbprqhTozqik7PUUKj8JCL9Y2BFRFUaVP3njzOY/ftp9Xhqz8b4cHhbky76WVmaebng+6ld0Ki2k8ovG7EgBKcS0rVuFhHdJcs7mhGRpkGV1HYSrw7wxyv9/FGtmv5n/t0pH7fqWP1kF7TwcVXlJkYt3KsqzhORfjGwIqIq8cmfEcag6vWBLTGlR2Otm2QSZNHmlZM7I7BeDbU24tj/7sXes5e1bhYR3SEGVkRU6b7aeRZzNkcYg6pJ3Rtq3SST4uZoi2WTgtG1cS1k5RVi4uL9KrGdiPSHgRURVao1B2Lx3i8n1f2X+zZnUHUTso6gzBa8t1ltVUh04uJQHIy5onWziOg2MbAiokojy7e88sNRdX/yPQ3xdE8O//0dmRm58LEOxp6r8V+H4tiFNK2bRUS3gYEVEVWK3ZHJeOa7Q8aSCq8OaGHRieq3E1x9NT5IFUzNyClQRURPxHG2IJHZBlY7duzAQw89BF9fX3WQXLduXZnXJ0yYoJ6/9tavX78y70lJScHYsWPV6tA1atTApEmTkJmZefdbQ0Qm4UhsKqYsPYC8wiL0a+WN94e2YVB1GxztbPD1xI7GhHYJrs4kZmjdLCKqjMAqKysLAQEBmDdv3k3fI4FUfHy88bZixYoyr0tQFR4ejk2bNmHDhg0qWJsyZQpMhdSSmbn2qCpiSES3JzYlG5O+2a+Gsro1qYXPxrSzyDpVd0sqsy+Z2Alt6ripZW/GLQpFXOpVrZtFRLdgg9vUv39/dfs79vb28Pb2vuFrJ0+exMaNG7F//34EBQWp5+bOnYsBAwbg3//+t+oJu15ubq66lUpPr9xu8ehLWVgRGgtfNwdMvbcxrGRhLyK6JeldmbhkP5Iz89DK1xULHwuCvY3lVFSvaLLEz9LHO2HkwhBEJGViwuJQrHmqq0Us/UOkV5VyGblt2zZ4enqiefPmmDp1Ki5f/l9NlpCQEDX8VxpUiT59+sDKygr79u274d+bNWsW3NzcjLe6deuiMvXy94SLg42qhhx6jlOeicojv7AITy8PQ2RSJrxdHbBofPF6eHR3ajrZYcnjneDlao8ziZlqiDW3oFDrZhFRVQVWMgy4dOlSbN68GR9++CG2b9+uergKC4sPBAkJCSroupaNjQ3c3d3Vazcyc+ZMpKWlGW+xsbGo7OTRAa191P2fDl+s1H+LyFyqqr/243HsjrwMRztrLJoQBG83B62bZTZkTcHFEzqpQHVfdApmrD6CIpkVQETmH1iNHj0agwYNQps2bTBkyBCVQyXDftKLdadkaFES3a+9VbbBgcVDkr8cjefVIdEtLNh+FqsOxEJGzT9/JBCtfN20bpLZaamGVjvA1rqaOi69/2txbTAiMi2VnlHaqFEjeHh4IDKyOBFccq+SkpLKvKegoEDNFLxZXpYWOjespYYz0nMKsPXUJa2bQ2SyfjsWjw83nlL33xjYEvf5e2ndJLPVrYkHZj8coO5/tSsai3ZFa90kIqrqwOrChQsqx8rHp3horUuXLkhNTUVYWJjxPVu2bEFRURGCg4NhKiRhfVC74l4rDgcS3XwGrQxLiQldG2BCN1ZVr2xDAuuoxavFe7+cUL1XRKTjwErqTR0+fFjdRHR0tLofExOjXnv55Zexd+9enDt3TuVZDR48GE2aNEHfvn3V+1u0aKHysCZPnozQ0FDs3r0b06dPV0OIN5oRqKXBJYHV5lNJSM/J17o5RCYlNTsPU5aGqeVXpKzCaw+20LpJFuOpexthXJf6MBiAF1Ydxj4u2kyk38DqwIEDCAwMVDcxY8YMdf+NN96AtbU1jh49qnKsmjVrpgp/dujQATt37lR5UqWWL18Of39/9O7dW5VZ6N69O7788kuYmpY+rmjm5Yy8giJsPHbjxHoiS1RYZMCzKw8jJiUbfjWr4/Mx7VmrqgpJsdU3H2qFvq28VBHWyUsPIOoSiywTmYJqBpnOozNSx0rKLsgMwcpOZJciobN/P63W7vpucudK/beI9OKjjafwxbYoONha4YepXZmsrpGc/EKM/Wofws5fQUMPJ/z4dFfUcLTTullEZqm8sQcvMcs5HBhy9jIS0nK0bg6R5n49Fq+CKvHh8LYMqkxg0WYpxxCdnIWnlx9U9cSISDsMrG7Br6YjOjaoqXIZfj7CJHaybKcTMvDSmuJk9cn3NMTgdnW0bpLF83C2V4s2S/2wPVGX8dbP4aquGBFpg4FVOZSePNYditO6KUSaycwtwNTlYcguWQOwdGYaaa+Fjys+Gx0IWed6+b4YLA05r3WTiCwWA6tyeLCND2ysquFEfDoiuMI8WSDpAfnnD0dx9lKWqu82Z3Qgk9VNzP0tvYzB7jsbTmDHGdbfI9ICj4zlXKurZ/PiZXjWsaYVWaBv957HhqPx6gJj3thA1HL+3yxfMh1P9miE4e391KzNad8dVOs2ElHVYmBVTkNKlrj56XAc1+gii3IkNhXvbjih7v+zvz861HfXukn0N2UY3h/WGkH1ayIjpwBPfLNf1RsjoqrDwKqc+rTwUgugXrhyFWExV7RuDlGVkJNy8Uwzg6qZNKk7K6ubOnsbaywomSl47nI2ZwoSVTEGVrcxrblvq+K1DNcd4nAgmT/pmX1x9RFcTL2Keu6O+OjhANUjQvqYKbhoQhCcSmYKvrO+uMeRiCofA6s7GA785Vi8qsZOZM6+3HlWLedkZ2OFL8a2h1t1W62bRLfB39sVn44ONObIrd4fq3WTiCwCA6vb0LWxB2q72CM1O58zbsisydpzsuKAeOuhVmhdh0VA9TpT8IU+zdT919YdxyGmMRBVOgZWt8HaqhoGBRT3WnF2IJmrSxm5eGbFITWzbGhgHYzpVFfrJtFdeOa+JnigZfGagk8tC0NSBleQIKpMDKxu05CSYqGbTiQiIydf6+YQVSgJpp5fdQhJGblo6umMfw1tzbwqnbOyqoaPR7VDE09nJKbnYuqyg0xlIKpEDKxuU+s6rmhU2wm5BUX4PTxR6+YQVaiFO6KwO/IyqttaY/6j7eFoZ6N1k6gCyIzmLx/rABcHG7Vg81vrw7VuEpHZYmB1m+TqvbTX6icOB5IZkfybj/84o+6/PagVmni6aN0kqkCNajurivnSAfndvhh1I6KKx8DqDpQGVrsjk5mvQGZBhrWfXXkIBUUGDGzrgxFBflo3iSpBL39PvHh/cTL7mz8fR9j5FK2bRGR2GFjdgXq1HNG+Xg1IAfb1R+K1bg7RXa8DKDPGYlOuqqKS/xrahnlVZmxarybo39pbFX19atlBJKbz4pCoIjGwukNDAot7rVgslPRu7cGLaqkmmfU6Z0w71qsycxI0/3tEAJp5OasZoDJTMLegUOtmEZkNBlZ36ME2PupEdOxiGqIucaFT0qfo5Cy88dNxdf/53k25DqCFcFLJ7EFwdbDBoZhUvLEuXPVcEtHdY2B1h2o526NHUw91/yf2WpEOyZT7Z1ccQlZeIYIbuuPpXk20bhJVoQYeTpgzpjiZfdWBWCxjMjtRhWBgVRHDgYfjeLVHuvOfP06rHtcajrb4dHQ71QNLlqVnc0+83Le5uv/2z+HYf47J7KRPs347iY3HTWO5OQZWd7lchKOdNWJSsnEoNlXr5hCVmyzJtHDHWXX/w+Ft4eNWXesmkUam3tsYD7b1UTNCpXhoQhqT2Ulfoi5lYuH2s3h6+UFcyc7TujkMrO6GFE/s28pb3WcSO+lFcmYuZqw+ou4/2rme8TNMlpvMPvvhtvD3dlGfDSazk958H3ZB/by3WW14uTpo3RwGVndrcLvitQM3HI1HfqH2XZBEf6eoyICX1hxRJ1CZFfbagy21bhKZyEXiwsc6qBmhh2OZzE76WoZr7cHiwGpEkGmsa8rA6i51b+IBD2c7pGTlYVdEstbNIfpbi/ecw7bTl2BvY4W5Y9rDwdZa6yaRiahfq2wy+3Ims5MO7Ii4pNbAlFzR3i08YQoYWN0lG2srDGxb3Gu1jkvckAk7fjENH/52St1/bWBLNPfmkjVUlgylGJPZ14fjAJPZycR9f+CCcUUUexvTuFBkYFWBswP/CE9EZm6B1s0h+ovsvAK1ZE1eYREeaOmFR4Prad0kMuFk9gFtiiuzT13OyuxkulKz87DpRKK6/3AH01mGi4FVBQjwc0MjDydczS/EL0fjtG4O0V+8/fMJnL2UBW9XBzULkEvW0N8nsweguZcLK7OTSfv5SJy6WGzh44rWddyg28Bqx44deOihh+Dr66u+gOvWrSvzuiQ8vvHGG/Dx8UH16tXRp08fRERElHlPSkoKxo4dC1dXV9SoUQOTJk1CZqZ+q5fL/0Np0tzqkm5JIlOx4WicypmRWOqTUe1Q08lO6yaRDiqzSzJ7aWX2t34+oXWTiP5iTcn5doQJ9VbdUWCVlZWFgIAAzJs374avf/TRR5gzZw4WLFiAffv2wcnJCX379kVOzv+6kyWoCg8Px6ZNm7BhwwYVrE2ZMgV6NrxDHVVgMez8FUQmZWjdHCIlNiUbM9ceU/en92qCLo1rad0k0mFl9hWhMfiOyexkQk4lpKsCx7bW1YzpOLoNrPr374/33nsPQ4cO/ctr0lv16aef4rXXXsPgwYPRtm1bLF26FHFxccaerZMnT2Ljxo346quvEBwcjO7du2Pu3LlYuXKlep9eebo4oFdzzzJRNJGWCgqL8NzKQ8jIKUD7ejXwXO+mWjeJdFiZ/aUHipPZ3/z5uLpwJDIFa0rOs739veBuYr3wFZpjFR0djYSEBDX8V8rNzU0FUCEhIeqx/JThv6CgION75P1WVlaqh+tGcnNzkZ6eXuZmikYGFXdH/nDwAmtakebmbI7AwZhUuNjb4LPRgWoGK9HterpnY/RvXZLMviwMSUxmJ43lFxYZi3KPKDnvmpIKPdJKUCW8vLzKPC+PS1+Tn56eZWtN2NjYwN3d3fie682aNUsFaKW3unVNowjY9Xr5e8LD2R7JmXnYeipJ6+aQBdt79jLmbo1U998f1gZ13R21bhLpOIf03yMCVEHZpIxcNVPQFNZjI8u15VQSLmflobaLvSoRYmp0cQk7c+ZMpKWlGW+xsbEwRbbWVhjevnisd/UB02wjmb8rWXl4YdVhSOFsSep8KKC4zhrR3SWzB8HFwUYNB0qNKyKthwGHBdYxyZ74Cm2Rt3fxmmOJicV1JUrJ49LX5GdSUtnenIKCAjVTsPQ917O3t1czCK+9marS2YFbT19ilzlVOclzfOWHo4hPy1ElQN4a1ErrJpGZaCjJ7KOLk9mlKvvKUCazU9VLysjBttNJJle7qtICq4YNG6rgaPPmzcbnJB9Kcqe6dOmiHsvP1NRUhIWFGd+zZcsWFBUVqVwsvWvi6YwO9Wuq9Yt+OMhK7FS15IT3x4lENVNGZnRJTwNRRaY7vHh/M3X/jZ/CcTCGyexUtdYevIiCIgMC69VAUy8X8wispN7U4cOH1a00YV3ux8TEqLH4559/Xs0a/Pnnn3Hs2DGMGzdO1bwaMmSIen+LFi3Qr18/TJ48GaGhodi9ezemT5+O0aNHq/eZg1ElvVZrDsRyIVOqMqcTMvDuhuJ6Q6/08zepgnlkPqb1aoJ+rbxVYcYnvw1DfNpVrZtEFsJgMGD1/tgy51mzCKwOHDiAwMBAdRMzZsxQ96UoqPjHP/6BZ555RtWl6tixowrEpLyCg4OD8W8sX74c/v7+6N27NwYMGKBKLnz55ZcwFwPa+sDRzhpnk7NwgNOTqQrk5Bfi2RWHkFtQpJI5H+/WUOsmkZmSC+j/jAyAv3dxZfYpS8NwNY+V2anyHTh/RZ1X5fw60IRzR6sZdNilIsOLMjtQEtlNNd/qH98fUVXYZQxYZtQQVabX1x3Ht3vPq1mpvz13j5otQ1TZxWcHz9uNlKw8DGzrg7mqmCiXSqLK89KaI/g+7IKalDNbg/NqeWMP00unNxMjS7opfzkaj/ScfK2bQ2bsj/AEFVSJj0cGMKiiKiElPOaPbQ8bq2rYcDQen28pLu9BVBkycvLV+VSM7mS6w4CCgVUlkQR2qfsiCzP/EMZK7FQ5JL/lHz8cVfen9GiEHiZY04XMV3CjWnh3SGt1/z+bzmDj8RvXIiS6W+uPxKvzaePaTmhfryZMGQOrSiJd4o91rq/uS2+CDkdcycTJzFOpV5WanY82ddyMS48QVaUxnephQtcG6v6M1YcRHpemdZPIDK0qqQ05qmNdkx9yZmBViYa294OTJLFfysKeqMtaN4fMzPxtkdh7NkUlckppBTsbfp1JG6892ALdm3ggO68Qk5Yc4ExBqvAZz0diU9Ww87D2plm76lo8ElciZ3sb44fg25DiHBiiirD/XAo++TNC3X9ncGtVvJFIK1L9et4j7dHU0xkJ6TmYuHg/c0upwqwqKbHQu0XxsnGmjoFVJXusS/Fw4KaTibyKowpbskZKK8hQ4JB2vsZllIi05OZoi8UTO6rJE6cSMvD0Mq4pSHcvt6AQaw9dMA4D6gEDq0rWzMsFwQ3d1UlwxT4uAUF3R3L1ZMpx6ZI17w1tY/L5BmQ5/Go6YvGEjmp4eldkMmauPcb8Urorm04kqjxSb1cH9Giqj8k5DKyqwLguxYmd34XG8gqO7spXO6Ox+VSSyqf6/JH2ariZyJRIxX8ZFrS2qoYfDl7ApyVD1kR3MwwoNSFNccHlG9FHK3XugVZe8HSxR3JmLn4P53RkujOHYq7gw42n1P03BrZES1/TLI5LJGsKvju4uAzDZ5sjuGAz3ZFzyVnYGZGs7o8IMv2k9VIMrKqArbWVmpIsmMROdyItOx/TvzukFh99sK0PxgYXf56ITNUjwfUwrVdjdf/VH4+xxhXdtmUlhY9lma76tfQzQYeBVRWRwEq6xkPPpeBUQrrWzSEdkRyVf/xwBBdTr6KeuyNmDWNeFemD1FYbGeSHIgPw7MpDCGHZGSonWX9ydUntqnElk8D0goFVFfF2c0DfVl7qPnut6HZ8s+ccfg9PhK11NZW74upgq3WTiMpFLgDeH9oGD7T0Uvmlk5cewPGLLCBKt/bzkYtIzylAXffq6NncE3rCwKoKPVpSif3HQxeRdpU1XujWjl1Iw/u/FudVvTqgBdr4uWndJKLbIgnHUsBWZkdn5hZgwuJQlTtD9He99EtLOiAeDa6vRnv0hIFVFerSqBaae7mo6sSrS2Y6EN2MFFicvuIg8gqL1BV/6bIhRHrjYGuN/44PQgsfVyRn5uGxr/chKT1H62aRiToYk4rwuHTY21hhZJA+alddi4FVFXeLT+xWfHJcsuccCgpZeoFurKjIgBdXH8H5y9moU6M6Zj8cwLwq0jUZwv7m8Y6oX8sRsSlXMe7rUPbc0w19G3JO/XwowBc1neygNwysqtiQwDqo6WirEpH/PJmodXPIRM3fHqUK49lZW+GLse1VVWsivfN0ccC3jwcbq7NP/uYAcvILtW4WmZBLGbn49ViCLpPWSzGw0qBLXKYhi693FUflRNfafuYS/v3HaXX/3SGtEFC3htZNIqow9Wo54puJneBib6NmSU9bfhD57L2nEqv2x6j0BznutfXT57GPgZUGHuvcQK3SLQcVSU4mKhWbkq3WAZRVQKREx6iOrFdF5keK2341Pkjl0MhKArJMkwx/k2UrKCzC8pKl38brtLdKMLDSqPTCwLY+6v6CHVFaN4dMqG7Lk9+GqbwTuVp7a1BLrZtEVGmCG9XCgkc7qIvMnw7H4fWfjnNdQQv358kktQ6qu5MdBrQpPkfqEQMrjTx5b3FF4t+OxSOaU48tnpxQ/u/HYzgRn45aTnaYP7Y97G2stW4WUaUvffPJqHaQeRnSU/HBxlMMrizY0pKk9VEd66q0Gb1iYKURmXZ8n7+nqkj8JXutLJ4srrz20EVVr2XuI4HwrVFd6yYRVQmZ+SVFRMXC7WfxxTYeDy1ReFwa9kRdVsdAvS/ZxcBKQ0/3LO61+iHsIhJZ08VibT6ZiPd/O2ksAtq1sYfWTSKqUpJP+H8DWqj7s38/ja93RWvdJNLg4lLIEKBfTUfoGQMrDQU1cEfHBjXVDIivdp7VujmkgZPx6WWS1R8vqXNGZGkm92iEZ+9rou6/s+EEe/ItSHzaVaw/EqfuT76nIfSOgZXGnu5ZfCCR/ILU7Dytm0NVXK/liW8OICuvEF0b18I7g1uxCChZtBfub4ZnSoIrWcrp8y0RWjeJqsCS3edQUGRQyx7ptcTCtRhYaaxn89oq30qWuSldG4nMnxRFfPLbA6pQbEMPJ1UE1NaaX0eybHJh8eIDzTHj/mbq8b//OIOPN51hQrsZy8jJx3clJRam9GgEc8AjuQkcSKaW5Fot3h2N7LwCrZtElUxOEjPXHlPrYbk62GDR+CDUcNTfsg1EleXZ3k3xz/7+6v6czRH4cONpBldm6tu955GRW4DGtZ3Qq7knzAEDKxMwoLW3Wj/rSnY+VoZycWZzJ1XVfyyZATj/0Q5oVNtZ6yYRmZyn7m2M1wcW13JbsD0Kb/4cjkIWETUrWbkF+O+O4vziab2awMrKPFIhKjyweuutt1QvzLU3f//iKw+Rk5ODadOmoVatWnB2dsbw4cORmGjZa+bZWFsZu0D/u/Ms8gq4vIM512mZt7U4KfdfQ1qjWxPOACS6mUndG+LdIa1VnStJlXhmxUHkFnBtQXPqrbqSnY8GtRwxKMAX5qJSeqxatWqF+Ph4423Xrl3G11544QWsX78ea9aswfbt2xEXF4dhw4bB0g1v7wdPF3tVdfb7sAtaN4cqgRSDlatu8UKfZhjdSd+1WoiqwmOd62PO6EDYWldTi/OO/zoU6Tn5WjeLKqC36suS3qrp9zVVHQzmolK2xMbGBt7e3sabh0fxVXlaWhoWLVqEjz/+GPfddx86dOiAxYsXY8+ePdi7dy8smVSZLc21mrslgiu+m5l9Zy/juVWHVVkFWYT72d7FM5+IqHxFRJdM7ARnexvsPZuCUQv3Iom1/3Rt2d7zSMnKU2kwQ9qZT29VpQVWERER8PX1RaNGjTB27FjExBRn/IeFhSE/Px99+vQxvleGCevVq4eQkJCb/r3c3Fykp6eXuZkjqWPk4+ageq1KZ0mQ/p1KSMcTSw+oId77W3rh3cEytGEeuQREVUWGzVdO6QwPZztV/23Y/D2IupSpdbPoDmTn/a+3SnKrzKm3SlT41gQHB2PJkiXYuHEj5s+fj+joaNxzzz3IyMhAQkIC7OzsUKNG2ToVXl5e6rWbmTVrFtzc3Iy3unXrwlx7rWQ2jPhiWyRnCJqBmMvZmPD1fmTkFKBD/ZqYOyZQJa0T0e1rXccNP0ztqno5Lly5iiHzdmNnxCWtm0W3afneGFzOykNd9+oYGlgH5qbCA6v+/ftjxIgRaNu2Lfr27Ytff/0VqampWL169R3/zZkzZ6phxNJbbKz5zpx7uIMf6rk7IjkzD0v2FC9ISfokNarG/HcvEtJz0NTTWZVV0PPCokSmoH4tJxVcyYWKXLBMWLzfuHgvmb6reYVYWFJVf3qvJmZZv6/St0h6p5o1a4bIyEiVb5WXl6cCrWvJrEB57Wbs7e3h6upa5mau5EP2wv3FvVbzt0bhcmau1k2iOyBrPz7y370quJIZL8ufCGatKqIK4uFsj+8mB2NY+zqqBMMbP4XjtXXHkF/IGdWmbvm+86rjwK9mdQxr7wdzVOmBVWZmJqKiouDj46OS1W1tbbF582bj66dPn1Y5WF26dKnspujG4IA6aF3HVRVN++TPM1o3h+5gqRoJqs5fzlZd3d9N7gxPVwetm0VkVuxtrPGfEQGqkKikLC7bG4MJi0N5MWrCcvKlt+qsWfdWiQrfqpdeekmVUTh37pya7Td06FBYW1tjzJgxKj9q0qRJmDFjBrZu3aqS2SdOnKiCqs6dO1d0U3RLiqS99mBxYTxJYj+TmKF1k6icZJbLo1/tQ9SlLPi6OeC7JzrDt0Z1rZtFZJZkEogUEv3ysSA42Vljd+Rl9PtsJ/OuTNSiXdHqwrNODfPtraqUwOrChQsqiGrevDlGjhypCoFKKYXatWur1z/55BMMHDhQFQbt0aOHGgJcu3ZtRTdD9zo3qoW+rbwghYbf//Wk1s2hcpArZQmqTidmqJpkyyd3Rl13R62bRWT2ZLbt2qe7qVxGOXE/tigU7204wWKiJiQ5MxfztxXnVr3ctznsbMyzt0pUM+hwASYptyC9X5LIbs75VtHJWXjgk+3ILzTgq3FB6NPSS+sm0d/kVI39ah8ikzLVdHCZFt7E00XrZhFZ3FDTv345qSp6i5Y+rpgzph2/iybg9XXH1X5pU8cNP03rpsvla8obe5hvyGgGGno44fHuDdX9t9aHq9kUZHpiU7IxYkGICqqkDtmqJ7vwQE6kAZl1K0vgyIWou5MdTsSn48E5u/DVzrNcZ1BDUZcy8V1ocW3GVwe00GVQdTsYWJm4Z+9rqnJ1pGbLvK2RWjeHriPBlARVMSnZqkzG6ie7oDEXVSbSlPTub3zuHtzT1AO5BUV475eTGLUwRI0CUNUyGAxqWFYC2z4tPNGlcS2YOwZWJs7J3gZvPNRK3ZfaH6w0bDrC49LUwbq0TtWap7owp4rIRMhM3KWPd8K/hrZWie0Hzl9Bv093sPeqim06kYitpy+ptR5nDmgBS8DASgckib1X89oq1+rVtcdQxIOC5nZHJmP0wr2qerCUxpDhPy+WVCAyuVmDY4Pr4/cXeqB7k//1Xo1cGIKzvEitdFfzCvH2+hPq/uR7GllMbz4DK50cHN4Z3BrVba2xLzrFOFZN2lh78IKqlyN1xjo1cFd1qiSfg4hMk19NR3w7qRNmDWujFnIOO38F/T/byd6rSjZva6QqkizlFabfZzkLzzOw0gkZYpIpquKD304hLvWq1k2yyFyBTzadwYzVR1Tv4cC2Plg6qRNcHWy1bhoRleMCVRa6l96ra3Ovhn2xWw3rU8U6k5hhXGj59YEt4WhnA0vBwEpHxndtgPb1aiAztwCv/nhMneip6rq0p684hM82R6jHT/ZohDmjA7n2H5HOSO+J5F59MKwNXOxtcORCGgZ9vlslWGflcuH7ilBQWISX1hxBXmERevt7qnQWS8LASkesrarho4cDVGG1bacvYfk+DglWVY2qUV+G4Jej8SoB86PhbVUSprlPGSYy596r0Z3q4c8X78WDbX3UcOBXu6Jx/8fb8Ud4gtbN072FO87i6IU0uDrY4P1hbdT/tyVhYKUzTTyd8Uo/f3X/vV9OIDKJy91UpmPqanaXOkjUdLTFt5OCMbJjXa2bRUQVQCaczHukPRZP7KgWBY5Ly8GUb8NUDmUElxK7I6cS0vFpyRq3bw1qZZGTehhY6dDErg1UjkBOfhGeXXGYyzZUAhlmlXUaRyzcg8T0XBXQrpvWTS01RETmpVdzT2x64V5M7dlY9UrLiICsOfjaumNc1Pk2UyaeXXFI5aD2aeGFoYF1YIkYWOmQDEHJqu7SgyKVhWUJB6o4V7Ly8NSyMJXHJsFrz+a1sfbprqhfy0nrphFRJaluZ61GA/544V6VEyTDg8v2xqDn7G1YuD1KLZdDf++dDeE4k5iJ2i72agampQ0BlmJgpePid/8eEaDuLw05j9X7Y7VuklnYE5mMfp/twO/hierK9f8GtMDX4zty5h+RBS0ltvCxIKyY3BmtfF1VWZVZv51C7/9sx/dhF1ie4SbWH4nDitBYSCz16ah2KriyVFyEWec++zMCn/x5BnbWVlj1ZGcE1qupdZN0Sa5GpZTClzvPQr4RjWo7qVl/reu4ad00ItKIFGP+4eAFfLzpDOLTctRzzb1c8I9+zXGfv6fF9sjcqLTCsC/2qBnr03s1wUslpYHMTXljDwZWZvDFl2GrP04kqiuEtVO7clmV27T1VBLe+Pk4YlOKa4NJrZvXB7awqLorRPT3F17f7DmHL7ZFIe1qvnquY4Oa+Gd/f3So7w5LT50YPG+3Wi81uKE7lj8RDBtr8xwMY2BlQeQq4eH5e3AqIQONPJzUmnW1nC23G7a8pMjq2+vD1bCf8HFzwNuDWuGBVt5aN42ITFBadj7mb4/C4t3RqsCokCRt6cFq5uUCS5NfWITxX4diT9RlNavy5+ndzXoVCgZWFiYhLQfD5+9RywcE1K2B754IVgs4042vPpfsOYc5myOQnVeo6oNN6t4Qz/Vuyv8zIirX8VZKCqw+EAtJuZKSdsPb++GF+5vBt0Z1WAIJHV754ShWH7gARztrNcHH39u8z8cMrCxQZFImHl6wB6nZ+QiqXxNfT2TS9fXDpj8ficPs30+rALS0O//dIa3N/oBARBVP6gjK8aS011tyXUcE+eGpexubfUqGLK22YHuUCiol2f/+luZfXT2dgZVlOhybinGL9iE9pwBt/dzU0g01HM23a7Y8ZBbPL8fiMXdzBCKSile093Z1UAmWwwLrsII6Ed2VgzFX8OFvp7AvOkU9ll7wQQG+qi6WOQ4R/nfHWfzr1+IyP7IShaUUTU5nYGW5jl9Mw2OL9uFKdj6aejpj0fiOqFfLvK+ebhZQbTgah7lbIlVvnnBxsFFXk493a6jq1hARVQQ5lYZGp2DetijsOHPJ+LzUxHq6ZxOVomFuQZXU/ZLg0VKkM7CybDL9VYIrqRouhUTnP9rBYqqGSw7VT4cvqvWqzl7KUs/JmlWTujfChG4N4Fadw6NEVHmOXkjFF1ujsPGadQdltYwpPRqhexMP3ZZpmLc1Ug19Cimr8OIDzXS7LXeCgRWpBMsp3x5Q69zZWFXDqwNaYGK3Bmb7RZBpv8v3nceSPeeRXLIMRQ1HWzzRvSHGd20AF+abEVEVkvUGZRbhT4fjjIVFm3k5qx7zIYF14GCrj15zafv7v57Eol3R6vGM+5vh2d5NYWnSGVhR6dpN//jhqKqKK/q18saHD7c1q16b8Lg0rAyNVVWRr5YsO+Hr5oCJ3RpidKe6DKiISFOxKdkqKJFZhDITWchIwtjg+hjXpb5aScNUZeUW4LmVh/DnyST1WGp3STqFJUpnYEWlZBdLcTsZF5fFMaVe07+GtsZ9/vqdxSE9UnIVKMHUyfh04/OyBIV0tw9o4wNbMy1SR0T6JMVF1xyIxeLd54wzk2XprIFtfVUvVhs/01rp4VRCulpUWdb/s7OxUmvUPhTgC0uVzsCKbjRjUL4kUiFXyKyVV/r7o45O6q7EXM7G9ohL2HYqCdvPXEJBSde6THG+v5UXxnaqhy6Na5ntUCcRmYeCwiJsOpGoerEOnL9ifL5TA3eVrtGnpZemF4ZSmmZpyDm8/9sp5BUUwcPZHgsf64AO9S17ybR0BlZ0s6HBjzedVl9oiUskKHmsS33VtWtqi2amZOUh7PwV7Iq4hB0RyYhOLk5ELyWzbB7u4IeH2vpYfEkJItKnI7GpqpL7hqPxxovFWk52qmdoaGAdVTanKi8W9529jHd/OYHjF4tHAno1r43ZIwJUcGXp0hlY0a1mrUgy4t6zKcbu6Afb+ODRzvXRvl7NKq/tJB/Ds8lZCDt3BQfOp6iruNIZfaUkAb99/Zq4t1ltPNDSC03NsD4MEVmmxPQc1Uu0an8skjPzjM/LgvBD29VRvVj+3i6VFmQdOJei1kLccqo4l8rF3kbV+pMcMI4CFGNgRbcku156gmRphkMxqcbnJQerbytv9GxeG50aulf4YsTy7yak5yD8YjrC49Jx7GIqDsakqh6q6zWu7YTgRrVUMNW1cS0mohOR2Q8T7oxMxo8HL+KPEwnIyS9ek7B0Uk5Pf0/c19wTXZvUuutjc0ZOPn49Fq+WpZHRASHX1LIQvSzPw14qnQVW8+bNw+zZs5GQkICAgADMnTsXnTp1KtfvMrCqnB6sb/acx8bj8cgqmbVS2pPVytcNLXxc0cLHRS3T4FejulpoUwpsOthYl+ndko9TXmGRGnKUv5OQdhUXrvzvJrNjTsSn3zCIsrexQoBfDXRoUBMd6tVU4/k1zXhBTyKiWwU+G48n4LfjCdgTlVwmyJJjc+s6bmr5MjlGN/F0Vr1bfxdsSUmas8mZKogKibqMkLOXjX9T0kKGd6iDKT0ao6GHU5Vsn96YdGC1atUqjBs3DgsWLEBwcDA+/fRTrFmzBqdPn4anp+ctf5+BVeUW19wZkYxNJxKwO/KycebK33GwtUJ1W2sUFBqQnV9orNfyd2TJhya1ndUsvpa+rmqIr7Wvm5p5QkREfz02SyC09VSSGq6TC9UbkdUlJF9WjsmSAC/HYwnQ5GJWljq70ajA8A5+ahFpLxMu+2AKTDqwkmCqY8eO+Pzzz9XjoqIi1K1bF8888wz++c9/3vL3GVhVDfloxKZcxZELqaqkgVRzly+zBFsZN/iCXk+uqDxdHOBXszr8ajqijvpZHc29XNDc20U3xfGIiEzt2CzHYslHld6nMwmZOJOUgdTs/Fv+rqR6tPRxVTOouzb2UCMRzKEqn/LGHhWbPFMOeXl5CAsLw8yZM43PWVlZoU+fPggJCbnh7+Tm5qrbtRtHlU++bLLGoNyur10i03FzCgpVsTsZ9pPCnJJcLt3QMkToaFd8tURERBV/bJa0DLkNDfQzBlsZuQVISs/FpYxc5BYUqrqFchiW3FQpCi0XthWdM0t/VeX/w8nJySgsLISXV9nilPL41KlTN/ydWbNm4e23366iFlJ5SF6VfEH5JSUiMo1gy9XBVt0k34q0o4suBendkq630ltsbKzWTSIiIiL6iyrvbvDw8IC1tTUSExPLPC+Pvb29b/g79vb26kZERERkyqq8x8rOzg4dOnTA5s2bjc9J8ro87tKlS1U3h4iIiKjCaJIgM2PGDIwfPx5BQUGqdpWUW8jKysLEiRPL9fulExmZxE5ERERVoTTmuFUxBU0Cq1GjRuHSpUt44403VIHQdu3aYePGjX9JaL+ZjIwM9VNKNBARERFVFYlBpOyCWS1pI0OHcXFxcHGpvPobEplK4CaJ8pZSK4vbbBnbbKnbzW22jG221O3mNrtW+r+nSlpkZMDX11eViboZXc6Vlw3y8yuu3VHZZGdZyoe0FLfZcljidnObLYclbje3uXL9XU+VrsotEBEREekBAysiIiKiCsLA6iakbtabb75pUfWzuM2WwxK3m9tsOSxxu7nNpkOXyetEREREpog9VkREREQVhIEVERERUQVhYEVERERUQRhYEREREVUQBlZEREREFYSB1Q3MmzcPDRo0gIODA4KDgxEaGgpzMWvWLHTs2FEtB+Tp6YkhQ4bg9OnTZd7Ts2dPtVTQtbennnoKevbWW2/9ZZv8/f2Nr+fk5GDatGmoVasWnJ2dMXz4cCQmJkLP5DN8/TbLTbbTXPbzjh078NBDD6klJqT969atK/O6THqWNUl9fHxQvXp19OnTBxEREWXek5KSgrFjx6rKzTVq1MCkSZOQmZkJvW53fn4+XnnlFbRp0wZOTk7qPePGjVPLgN3q8/HBBx9Ar/t6woQJf9mefv36mfW+Fjf6jstt9uzZutzXs8pxjirP8TomJgYPPvggHB0d1d95+eWXUVBQUCXbwMDqOqtWrcKMGTNUbYyDBw8iICAAffv2RVJSEszB9u3b1Qdy79692LRpkzoIP/DAA8jKyirzvsmTJyM+Pt54++ijj6B3rVq1KrNNu3btMr72wgsvYP369VizZo36P5KT0LBhw6Bn+/fvL7O9sr/FiBEjzGY/y+dWvqNyMXQjsj1z5szBggULsG/fPhVoyPdZDsyl5EQbHh6u/n82bNigTmRTpkyBXrc7OztbHbtef/119XPt2rXqxDRo0KC/vPedd94ps/+feeYZ6HVfCwmkrt2eFStWlHnd3Pa1uHZ75fb111+rwEmCDT3u6+3lOEfd6nhdWFiogqq8vDzs2bMH33zzDZYsWaIusqqE1LGi/+nUqZNh2rRpxseFhYUGX19fw6xZswzmKCkpSeqYGbZv32587t577zU899xzBnPy5ptvGgICAm74WmpqqsHW1tawZs0a43MnT55U/y8hISEGcyH7tHHjxoaioiKz3M+yv3788UfjY9lOb29vw+zZs8vsa3t7e8OKFSvU4xMnTqjf279/v/E9v/32m6FatWqGixcvGvS43TcSGhqq3nf+/Hnjc/Xr1zd88sknBj260TaPHz/eMHjw4Jv+jqXsa/k/uO+++8o8p+d9ff05qjzH619//dVgZWVlSEhIML5n/vz5BldXV0Nubm6lt5k9VteQ6DYsLEwNF1y74LM8DgkJgTlKS0tTP93d3cs8v3z5cnh4eKB169aYOXOmugrWOxkCku70Ro0aqStX6SoWss/lquja/S7DhPXq1TOb/S6f7WXLluHxxx9XV7PmvJ9LRUdHIyEhocx+lQVUZXi/dL/KTxkSCgoKMr5H3i/fe+nhMqfvuex32dZryXCQDKcEBgaqoaOqGiqpLNu2bVPDPs2bN8fUqVNx+fJl42uWsK9lOOyXX35RQ5zX0+u+TrvuHFWe47X8lKFwLy8v43ukpzo9PV31WFY2m0r/F3QkOTlZdSFeuzOEPD516hTMTVFREZ5//nl069ZNnVhLPfLII6hfv74KQo4eParyNWQoQYYU9EpOptIVLAdc6QZ/++23cc899+D48ePq5GtnZ/eXk47sd3nNHEheRmpqqspDMef9fK3SfXej73Ppa/JTTsTXsrGxUQdxc9n3Muwp+3bMmDEqt6jUs88+i/bt26ttleESCazlu/Hxxx9Dj2QYUIaDGjZsiKioKLz66qvo37+/OslaW1tbxL6WIS/JTbo+jUGv+7roBueo8hyv5eeNvvelr1U2BlYWTMaxJbC4NtdIXJtzIFG/JP727t1bHawaN24MPZIDbKm2bduqQEuCitWrV6ukZnO3aNEi9X8gQZQ572cqS67sR44cqZL458+fX+Y1ySW99jshJ6snn3xSJQ+b2tpr5TF69Ogyn2fZJvkcSy+WfK4tgeRXSW+8TLwyh3097SbnKFPHocBryJCIXNlcP7tAHnt7e8OcTJ8+XSVvbt26FX5+fn/7XglCRGRkJMyFXO00a9ZMbZPsWxkqkx4dc9zv58+fx59//oknnnjCovZz6b77u++z/Lx+YooMkcjsMb3v+9KgSva/JAFf21t1s/0v237u3DmYAxnyl2N66efZnPe12Llzp+pxvtX3XC/7evpNzlHlOV7Lzxt970tfq2wMrK4hUXyHDh2wefPmMl2R8rhLly4wB3LlKh/YH3/8EVu2bFHd5rdy+PBh9VN6NMyFTLGWnhnZJtnntra2Zfa7HKAkB8sc9vvixYvVEIjMkrGk/SyfbTmIXrtfJcdC8mlK96v8lAO05G2Uku+FfO9LA009B1WSVyhBteTW3Irsf8k3un64TK8uXLigcqxKP8/muq+v7ZWWY5nMINTzvjbc4hxVnuO1/Dx27FiZQLr04qJly5ZVshF0jZUrV6pZQ0uWLFGzSKZMmWKoUaNGmdkFejZ16lSDm5ubYdu2bYb4+HjjLTs7W70eGRlpeOeddwwHDhwwREdHG3766SdDo0aNDD169DDo2Ysvvqi2WbZp9+7dhj59+hg8PDzUjBPx1FNPGerVq2fYsmWL2vYuXbqom97JrFbZrldeeaXM8+aynzMyMgyHDh1SNzmcffzxx+p+6ey3Dz74QH1/ZfuOHj2qZkw1bNjQcPXqVePf6NevnyEwMNCwb98+w65duwxNmzY1jBkzxqDX7c7LyzMMGjTI4OfnZzh8+HCZ73npjKg9e/aoWWLyelRUlGHZsmWG2rVrG8aNG2fQ4zbLay+99JKaFSaf5z///NPQvn17tS9zcnLMdl+XSktLMzg6OqqZb9fT276eeotzVHmO1wUFBYbWrVsbHnjgAbXdGzduVNs8c+bMKtkGBlY3MHfuXLXT7OzsVPmFvXv3GsyFfDFvdFu8eLF6PSYmRp1c3d3dVYDZpEkTw8svv6y+uHo2atQog4+Pj9qnderUUY8luCglJ9qnn37aULNmTXWAGjp0qPoy693vv/+u9u/p06fLPG8u+3nr1q03/DzL1PvSkguvv/66wcvLS21n7969//J/cfnyZXVydXZ2VtOxJ06cqE5met1uCSxu9j2X3xNhYWGG4OBgdQJzcHAwtGjRwvD++++XCUL0tM1y0pWTqJw8ZSq+lBeYPHnyXy6IzW1fl1q4cKGhevXqqhTB9fS2r3GLc1R5j9fnzp0z9O/fX/2/yEW0XFzn5+dXyTZUK9kQIiIiIrpLzLEiIiIiqiAMrIiIiIgqCAMrIiIiogrCwIqIiIiogjCwIiIiIqogDKyIiIiIKggDKyIiIqIKwsCKiIiIqIIwsCIiIiKqIAysiIiIiCoIAysiIiIiVIz/B6ZKumKZb2m5AAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -262,205 +299,310 @@ } ], "source": [ - "plot_best_matches(top_k_search, best_matches)" + "distance_profile = snn.compute_distance_profile(\n", + " series_predict[:, starting_timestep_predict : starting_timestep_predict + length],\n", + ")\n", + "plt.figure(figsize=(7, 2))\n", + "plt.plot(distance_profile)\n", + "plt.show()" ] }, { "cell_type": "markdown", - "id": "877b1b32-d978-4c54-a4e7-b475496f710a", + "id": "b5240535-5123-4ac5-a5e0-e0502ef80b3e", "metadata": {}, "source": [ - "You may also want to search not for the top-k matches, but for all matches below a threshold on the distance from the query to a candidate. To do so, you can use the `threshold` parameter of `QuerySearch` :" + "### 1.2 Motif search with StompMotif estimator" + ] + }, + { + "attachments": { + "f492cb89-5bf3-4641-8be2-a77805f20b88.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACaIAAAO4CAIAAACleISpAAAgAElEQVR4AezdZ2wcZ4Lnf8/N3h2wuy8WWODeLHDYe/EHbnawc4fF7s3MFiUqy5JzkoPkIKexx/bY8riYSeWcs5WzlV1s5pwzKQaJFEWKFMWcc+rcfzR7hqYZmk2yq6ua/SWM3e6qp556ns9TojT96+d5nrHwgwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLiVwDNu1VoaiwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFiIOXkIEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAzQSIOd1swGguAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQc/IMIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAmwkQc7rZgNFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAg5uQZQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABNxMg5nSzAaO5CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAzMkzgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACbiZAzOlmA0ZzEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAmJNnAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE3EyAmNPNBozmIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAMSfPAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIuJkAMaebDRjNRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABYk6eAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcDMBYk43GzCaiwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACxJw8AwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4GYCxJxuNmA0FwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEiDl5BhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwM0EiDndbMBoLgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIEHPyDCCAAAIIIOA6AY1G88wzz/ziF7/4zW9+4+/vHxYWlpmZmZWVFRsbu23btn/7t3/7xS9+8czIzy9+8YuFCxcaDAbXNY47IYAAAggggAACCCCAAAIIIIAAAggggAAC7iNAzOk+Y0VLEUAAAQTcX8AWc9qCTNv//eUvf/lf/+t/HXvE9trLy6uqqsr9e0wPEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABWQTcMuYcGhrq6ekZ5AcBBBBAAAF3E0hMTPxf/+t//cM//MMvf/nLidHmM88889//+3//p3/6p2+//Za/6dxtbGkvAggggAACCCCgsEBPT8/Q0JAsnx5RKQIIIIAAAggggAACqhRwy5hz06ZN//mf/7mMHwQQQAABBNxQ4Pe///0//dM//c3f/M2kMeff/d3f/frXv16yZIkb9owmI4AAAggggAACCCgpIAjCoUOHVPnpE41CAAEEEEAAAQQQQEAWARXFnFqttq2trbW1tb+/335fN2zY8Jvf/OYGPwgggAACCCCAAAIIIIAAAggggAACIwJeXl4+Pj72P1HhLAIIIIAAAggggAAC80lALTFnTk7OSy+99Otf//p//+//vWrVKq1Wa0c5JCRkxYoVdgpwCgEEEEAAAQQQQAABBBBAAAEEEPAogXXr1vn5+XlUl+ksAggggAACCCCAgIcLqCLmbG1t/dWvfvXmm28+ffq0s7Pz1q1ber3ezsAQc9rB4RQCCCCAAAIIIIAAAggggAACCHigADGnBw46XUYAAQQQQAABBDxcQBUx57fffrt69WqTyeTgYBBzOghFMQQQQAABBBBAAAEEEEAAAQQQ8BABYk4PGWi6iQACCCCAAAIIIDAqoHzMaTKZ/v7v//7w4cP3798/dOiQRqMZHBwcbd/oC5PJZPzrT3BwMIvWjsrwAgEEEEAAAQQQQAABBBBAAAEEECDm5BlAAAEEEEAAAQQQ8DQB5WPOpqamX/7yl7/5zW+WLl26YcMGQRC8vLw6OzvHjcSePXve/+vP//k//2f58uXjCvAWAQQQQAABBBBAAAEEEEAAAQQQ8FgBYk6PHXo6jgACCCCAAAIIeKyA8jFnbW3tM88887vf/c42Bmaz+V//9V/9/PzGDUlUVNTZv/68+OKLxJzjfHiLAAIIIIAAAggggAACCCCAAAKeLEDM6cmjT98RQAABBBBAAAHPFFA+5uzv7/8v/+W/+Pr6jg7Ap59++u///u+jbye+YG/OiSYcQQABBBBAAAEEEEAAAQQQQAABTxYg5vTk0afvCCCAAAIIIICAZwooH3NaLJZ/+7d/++abb0YHYP369QsWLBh9O/EFMedEE44ggAAC80zgcWPP1hsF86xTdAcBBBBAAAEEEEAAAfkEiDnls6VmBBBAAAEEEEAAAXUKqCLmlCTpV7/6VU5OTldXV3p6+j//8z/fvn3bjhcxpx0cTiGAAALzQyChuGFJQNj86Au9QAABBBBAAAEEEEDABQLEnC5A5hYIIIAAAggggAACqhJQRcyp1+t9fHz+7u/+7h//8R//9m//9rvvvjMYDHaYiDnt4HAKAQQQmB8CmpynC31D50df6AUCCCCAAAIIIIAAAi4QIOZ0ATK3QAABBBBAAAEEEFCVgCpiTpvI48ePU1NTHz9+bDab7RsRc9r34SwCCCAwDwR+SK0URGnavxHmQU/pAgIIIIAAAggggAACThEg5nQKI5UggAACCCCAAAIIuJGAimJOx9WIOR23oiQCCCDgpgJnYh8KoqQ3mNy0/TQbAQQQQAABBBBAAAEXCxBzuhic2yGAAAIIIIAAAggoLkDMqfgQ0AAEEEAAgUkEDmvuC6I0qNVPco5DCCCAAAIIIIAAAgggMEGAmHMCCQcQQAABBBBAAAEE5rkAMec8H2C6hwACCLipwPab9wRR6h7QuWn7aTYCCCCAAAIIIIAAAi4WIOZ0MTi3QwABBBBAAAEEEFBcgJhT8SGgAQgggAACPxMwWyxavdH/Yo4gSu29wz87xxsEEEAAAQQQQAABBBCYQoCYcwoYDiOAAAIIIIAAAgjMWwFiznk7tHQMAQQQcFOB2rb+r05lrAyOEESpqXPQTXtBsxFAAAEEEEAAAQQQcLEAMaeLwbkdAggggAACCCCAgOICxJyKDwENQAABBBD4mcDJyNLnN0c9tylSEKXatv6fneMNAggggAACCCCAAAIITCFAzDkFDIcRQAABBBBAAAEE5q0AMee8HVo6hgACCLijQH37wMqQiMj82uT7jcsCw6qae92xF7QZAQQQQAABBBBAAAHXCxBzut6cOyKAAAIIIIAAAggoK0DMqaw/d0cAAQQQ+JnA3rvF6/YldPQOVzb2PBsS8ai++2eneYMAAggggAACCCCAAAJTCBBzTgHDYQQQQAABBBBAAIF5K0DMOW+Hlo4hgAACbieg1Rs/OJgUcCnHZDZXNfWu3hj54Gmn2/WCBiOAAAIIIIAAAgggoIgAMaci7NwUAQQQQAABBBBAQEEBYk4F8bk1AggggMDPBLLLW5YFhktZTywWS3Vz7/Obowqr239WgjcIIIAAAggggAACCCAwhQAx5xQwHEYAAQQQQAABBBCYtwLEnPN2aOkYAggg4HYCh0JLPj6SojMYLRZLTUvfC1uicita3a4XNBgBBBBAAAEEEEAAAUUEiDkVYeemCCCAAAIIIIAAAgoKEHMqiM+tEUAAAQR+EjCazK/uiL2TWW079LS176Wt0ZkPm38qwSsEEEAAAQQQQAABBBCYWoCYc2obziCAAAIIIIAAAgjMTwFizvk5rvQKAQQQcDuBhOKGFzZH1bf321pe19b/8raYlPuNbtcRGowAAggggAACCCCAgCICxJyKsHNTBBBAAAEEEEAAAQUFiDkVxOfWCCCAAAJ/ETCbLR8fTt5wJlOrt65Ya7FY6tsHXt0eE19U/5cS/D8EEEAAAQQQQAABBBCwK0DMaZeHkwgggAACCCCAAALzUICYcx4OKl1CAAEE3E6gpXvoxS3RZ2Mfjra8sWPg9R2xUQW1o0d4gQACCCCAAAIIIIAAAnYEiDnt4HAKAQQQQAABBBBAYF4KEHPOy2GlUwgggICbCdyralsWGJ5f2Tra7qauwTd2xWlyakaP8AIBBBBAAAEEEEAAAQTsCBBz2sHhFAIIIIAAAggggMC8FCDmnJfDSqcQQAABNxP4MevJ0sCwgWHDaLtbugff3B13N7N69AgvEEAAAQQQQAABBBBAwI4AMacdHE4hgAACCCCAAAIIzEsBYs55Oax0CgEEEHAzAd+L2eL57LGNbu0eentP/I20qrEHeY0AAggggAACCCCAAAJTCRBzTiXDcQQQQAABBBBAAIH5KkDMOV9Hln4hgAACbiPQM6hbERReVN0+tsU1LX0vbokKupI39iCvEUAAAQQQQAABBBBAYCoBYs6pZDiOAAIIIIAAAgggMF8FiDnn68jSLwQQQMBtBDQ5NWt2xXX1a8e2uL13eO3ehLOx5WMP8hoBBBBAAAEEEEAAAQSmEiDmnEqG4wgggAACCCCAAALzVYCYc76OLP1CAAEE3EPAbDb/8USaeD5bpzeObXFn3/C7+xOJOcea8BoBBBBAAAEEEEAAATsCxJx2cDiFAAIIIIAAAgggMC8FiDnn5bDSKQQQQMBtBGrb+lcGR5yLGz9rs7NP++7+xDMxD92mJzQUAQQQQAABBBBAAAFFBYg5FeXn5ggggAACCCCAAAIKCBBzKoDOLRFAAAEERgXuZlYv9tc0dAyMHrG96OzXvrc/8TQx5zgX3iKAAAIIIIAAAgggMIUAMecUMBxGAAEEEEAAAQQQmLcCxJzzdmjpGAIIIOAWAttu3Pvq+/SJTe3q1753IPFUdNnEUxxBAAEEEEAAAQQQQACBiQLEnBNNOIIAAggggAACCCAwvwWIOef3+NI7BBBAQO0Cb++JD82pmdjKrn7t+wcST0aVTjzFEQQQQAABBBBAAAEEEJgoQMw50YQjCCCAAAIIIIAAAvNbgJhzfo8vvUMAAQRULVDfPrAsMKy1e2hiK7sHtO8fSDoRScw50YYjCCCAAAIIIIAAAghMIkDMOQkKhxBAAAEEEEAAAQTmtQAx57weXjqHAAIIqFjAbLHsuHXv06MpQzrDxGZ2D2g/OJh0LPzBxFMcQQABBBBAAAEEEEAAgYkCxJwTTTiCAAIIIIAAAgggML8FiDnn9/jSOwQQQEC9Aq09QyuCw09Fl5nNkzSyZ0D3wcGko8Sck9hwCAEEEEAAAQQQQACBSQSIOSdB4RACCCCAAAIIIIDAvBYg5pzXw0vnEEAAARULJJU0LvQNffC0Y9I29gzo1h9MOhx2f9KzHEQAAQQQQAABBBBAAIFxAsSc40B4iwACCCCAAAIIIDDvBYg55/0Q00EEEEBApQIno0pXhUToDKZJ29czqFt/KOmQpmTSsxxEAAEEEEAAAQQQQACBcQLEnONAeIsAAggggAACCCAw7wWIOef9ENNBBBBAQKUCX32fvvdu0VSN6x3UfXgo+UAoMedUQhxHAAEEEEAAAQQQQOBnAsScP+PgDQIIIIAAAggggIAHCBBzesAg00UEEEBAfQJ1bf0rgiMeNXRP1TRbzLlfKp6qAMcRQAABBBBAAAEEEEBgrAAx51gNXiOAAAIIIIAAAgh4goC6Yk6dTtfT06PVau3Th4SErFixwn4ZziKAAAIIqFngoKbks+OpBuPkK9ZaLJa+If2Hh5P3/UjMqeZhpG0IIIAAAggggAACKhIg5lTRYNAUBBBAAAEEEEAAAZcIqCjmNJlM+/fv/+1vf3vp0iX7fSfmtO/DWQQQQED9Au/tT9x+857JbJ6qqX1D+o8OJ++5M+WqtlNdyHEEEEAAAQQQQAABBDxTgJjTM8edXiOAAAIIIIAAAp4soKKYs6Gh4f/+3//7zDPP7Nq1y/6QEHPa9+EsAgggoHKBioZuQZTOx5XbaWf/kP7jw8m7iTntGHEKAQQQQAABBBBAAIExAsScYzB4iQACCCCAAAIIIOARAmqJObu7u3//+9+fPHmSmNMjnjs6iQACHixgMpsPSCWrN0bWtvXbYegf1n98JGXn7UI7ZTiFAAIIIIAAAggggAACowLEnKMUvEAAAQQQQAABBBDwEAFVxJxms3nbtm2/+93vBgYGpoo5TWN+goODly9f7iEjRDcRQACBeSag1RvfP5B0Nvah/X7ZYs4dt+7ZL8ZZBBBAAAEEEEAAAQQQsAkQc/IkIIAAAggggAACCHiagCpizoqKCi8vr/r6+uHh4alizp07d67968+//uu/Llu2zNOGiv4igAAC80OgvK5rZUhEV7/WfncGhvWfHE3ZdoOY074TZxFAAAEEEEAAAQQQ+IsAMSePAgIIIIAAAggggICnCSgfc5pMpv/4j/84fvy4xWKxE3Ompqbe/OvP66+/zmxOT3tS6S8CCMwbgY3X8r85nTltdwa0hk+Opmy9XjBtSQoggAACCCCAAAIIIICAxWIh5uQxQAABBBBAAAEEEPA0AeVjztu3b//t3/5tYGDg/v37d+/e/cwzzzz33HMHDx60MxIhISErVqywU4BTCCCAAAKuFDCazI2dA2azedqbdvQOL/bXXE2unLbkoNbw6dGULdfzpy1JAQQQQAABBBBAAAEEECDm5BlAAAEEEEAAAQQQ8EAB5WPOmJiY559//oWRn9WrVz/zzDO/+tWvXn75ZTuDQcxpB4dTCCCAgOsF4orqPzyU3DOom/bWEXm1i/01pbWd05YciTlTN/9AzDktFQUQQAABBBBAAAEEELAKMJuT5wABBBBAAAEEEEDA0wSUjznHittZtHZsMWLOsRq8RgABBBQX2HQtf82uuGm32zQYTZt/yH97T7zOYJq2zUNawx+OpW68ljdtSQoggAACCCCAAAIIIIAAMSfPAAIIIIAAAggggIAHChBzeuCg02UEEEDAmQJ6o+nlbdGv74jt7NPar7d3UPfajpi7mdX2i9nODumsMWfIFWJOR7QogwACCCCAAAIIIIAAszl5BhBAAAEEEEAAAQQ8TkBdMafFYuno6BgaGrI/DszmtO/DWQQQQMCVAoVV7UsDw17ZFtPRN2z/vrfSq17fEavVG+0Xs50d1hk/O54adDnXkcKUQQABBBBAAAEEEEAAARat5RlAAAEEEEAAAQQQ8DQB1cWcjgwAMacjSpRBAAEEXCBgNJm+OJG22F/z4tbo9l57MWf3gO71nbEHQ0scbNVIzJkWcDnHwfIUQwABBBBAAAEEEEDAwwWIOT38AaD7CCCAAAIIIICABwoQc3rgoNNlBBBAwDkCZrPF72LOy9ui4wvrn98c1dZjby7+laSKJQFhuRWtDt57WG/8/Hia/yViTgfBKIYAAggggAACCCDg6QLEnJ7+BNB/BBBAAAEEEEDA8wSIOT1vzOkxAggg4CSBuvb+pQFh5+LKq5p6V22MbJ065jSbLTtu3Xt5W7TBaHLw5tqRmNPvYraD5SmGAAIIIIAAAggggICHCxBzevgDQPcRQAABBBBAAAEPFCDm9MBBp8sIIICAcwQOSMUrgiOetvXXtw+sCA5v6Z5yNueQzvDV9+nfns10/MZavfGPJ9J8zhNzOm5GSQQQQAABBBBAAAGPFiDm9Ojhp/MIIIAAAggggIBHChBzeuSw02kEEEBgzgJltZ0rgsPTShstFktrz9CywPDmrsGpai2t7VweFJ5V3jxVgYnHdQZrzCkSc06k4QgCCCCAAAIIIIAAApMJEHNOpsIxBBBAAAEEEEAAgfksQMw5n0eXviGAAAIyCRiMpsX+mg8PJesN1kVouwe0i/3DmqaIOQ1G045b9776Pn1GjdEZTF+cTPvuXNaMrqIwAggggAACCCCAAAIeK0DM6bFDT8cRQAABBBBAAAGPFSDm9Nihp+MIIIDA7AUaOwcEUbqdUWWrYlBr8PYNbeycfDZnSU3H0sCwyPzaGd1Pb4050789M4N1bmdUP4URQAABBBBAAAEEEJhnAsSc82xA6Q4CCCCAAAIIIIDAtALEnNMSUQABBBBA4GcCJrN5950iQZRyHrXYThhNZi8fqaFj4GflRt6YzZYL8Y9e3BrdNEUIOvES2xG9wfTlyfRviDmnAuI4AggggAACCCCAAAI/FyDm/LkH7xBAAAEEEEAAAQTmvwAx5/wfY3qIAAIIOFegpXvo5W3RX5/O6OzTjta8wEd62tY3+nb0RVe/9sNDyd+czjAYrcvbOv5jMJq+/D7961MZjl9CSQQQQAABBBBAAAEEPFmAmNOTR5++I4AAAggggAACnilAzOmZ406vEUAAgVkKGE3mz4+nvrs/0WQyj61isb/mcWPP2CO21zUtfSuCw5809048Zf+IwWj66vv0P52a2Y6e9uvkLAIIIIAAAggggAAC81iAmHMeDy5dQwABBBBAAAEEEJhUgJhzUhYOIoAAAghMLnCvqm2hb2hcUf2408uDwstqu8YdtFgsOY9alweFG2c4ldNisRiM5q++z/jyJDHnRFSOIIAAAggggAACCCAwiQAx5yQoHEIAAQQQQAABBBCY1wLEnPN6eOkcAggg4FQBk9l8QCpZGRzRM6gbV/GqjZFF1e3jDppM5nf3J349qxmZRpP5T6cyvjhBzDkOlbcIIIAAAggggAACCEwuQMw5uQtHEUAAAQQQQAABBOavADHn/B1beoYAAgg4W6CstuuFLVHHI0onVvzClqjcitZxx3MetSwPCp94fFyxSd/aYs7PT6RNepaDCCCAAAIIIIAAAgggME6AmHMcCG8RQAABBBBAAAEE5r0AMee8H2I6iAACCDhHQG80fXYsdcOZzEmre3V7THpZ09hTeqNpw5nMdfsS+4f0Y487+NpkMn99KuOz46kOlqcYAggggAACCCCAAAIeLkDM6eEPAN1HAAEEEEAAAQQ8UICY0wMHnS4jgAACsxGQsp4sCQjLLm+Z9OI1u+ISixvGnqpr739le8ydzOqxBx1/bTKbvz6d8ekxYk7HzSiJAAIIIIAAAggg4NECxJwePfx0HgEEEEAAAQQQ8EgBYk6PHHY6jQACCMxQoH9I/8nRlHV7E0xm86SXrt2bEJVfO/ZUWmmjt1/osM4w9qDjr81m8zenMz45kuL4JZREAAEEEEAAAQQQQMCTBYg5PXn06TsCCCCAAAIIIOCZAsScnjnu9BoBBBCYmUBicf1zm6Kqmnunumz9oeS7P5+4GXg5N+hy7lTlpz1uNlu+OZ358ZHkaUtSAAEEEEAAAQQQQAABBCwWCzEnjwECCCCAAAIIIICApwkQc3raiNNfBBBAYMYCZrP5nb3xe+4W2bnys2OpV5MrRgv0DuoW+WkSS362jO3oWUdemM2WDWcyPzxMzOmIFmUQQAABBBBAAAEEECDm5BlAAAEEEEAAAQQQ8DgBYk6PG3I6jAACCMxIwGyxnI8vXxEcXlTdbufCr09lnI55aCtgMpu337z35q645q5BO5dMe2rDmcz1h4g5p3WiAAIIIIAAAggggAACVgFmc/IcIIAAAggggAACCHiaADGnp404/UUAAQRmJtA3pP/0WGrApZypduW0VSeezzocdt/2urlrcM2uuH0/Fk++jafD9//2bOb6Q0lTbAbqcC0URAABBBBAAAEEEEDAMwSIOT1jnOklAggggAACCCCAwE8CxJw/WfAKAQQQQGCiQFpp07MhEQ/ruiaeGnsk8HLu7tuFtiNXkyuf2xRVXj/NJWMvn/T1n89mrj9IzDmpDQcRQAABBBBAAAEEEBgvQMw5XoT3CCCAAAIIIIAAAvNdgJhzvo8w/UMAAQTmIFBW27UyJGL7zXvT1rHlesHGa/m2YkGXc7c5cMm0dX53LuuDg0n2Z5FOWwkFEEAAAQQQQAABBBDwEAFiTg8ZaLqJAAIIIIAAAgggMCpAzDlKwQsEEEAAgZ8J1LcPrNkV5+AWm7tuF/qcz7ZYLI0dAy9uiQ7LrflZXbN643M+2xpzmua49u2s7s1FCCCAAAIIIIAAAgi4mwAxp7uNGO1FAAEEEEAAAQQQmKsAMedcBbkeAQQQmK8COY9avP00+Y/bHOngwdCSL79Pt1gs+34sfmdvQkv3kCNX2S/je8EacxqJOe0zcRYBBBBAAAEEEEAAgREBYk4eBAQQQAABBBBAAAFPEyDm9LQRp78IIICAQwKVjT3PhkR8dDjZodIWy/GI0o+PpDR2DLy6PWb7zXtmsxOmYPpdzHmfmNPBAaAYAh4gMKg19A7qPKCjdBEBBBBAAIFZChBzzhKOyxBAAAEEEEAAAQTcVoCY022HjoYjgAACsgm09w5/fCRl7d6EB087HbzJ2diHa/cm3MmoXhkc0drjhKmcFosl4FLu+wcSDUaTg22gGAIIzG+Bm2mPvz2bOb/7SO8QQAABBBCYiwAx51z0uBYBBBBAAAEEEEDAHQWIOd1x1GgzAgggIK/ArfSqZ0MiHtV3O36by0kVqzdGvrAl6mj4A8evsl8y8HLuewcS9cSc9pnc86zZbGnqHBjWGd2z+bRaGYHDmvsvbIlS5t7cFYHJBLIftUQX1E52hmMIIICAMgLEnMq4c1cEEEAAAQQQQAAB5QSIOZWz584IIICAKgXu13S+sCXqcNj9GbUuLLdmgU/oy9ui69r7Z3ShncJBtpjTwGxOO0jueqqrX7tuX0JMQZ3KO6DVG09ElDrxqVZ5f1XevH0/Fj+3KVLljaR5HiWw/8fi785leVSX6SwCCKhcgJhT5QNE8/n0YzsAACAASURBVBBAAAEEEEAAAQScLkDM6XRSKkQAAQTcWKBvSPfhoeRPj6Z09Wtn1I3mrsE3dsZ9ejSlb0g/owvtFA6+kvfegUQdMacdI7c91dQ5sDwo/Gpypcp70D2ge2t3XFQ+s7VUMVA7bt17NiRCFU2hEQiMCGy/eW/DGRZS5mmQRWBQazCanLDTuSyNo1IVCxBzqnhwaBoCCCCAAAIIIICALALEnLKwUikCCCDgpgJXkyuXB4UXVrXPov1F1e1Z5c0ms9M+ktt4Ne/d/Yk6A+uazmI01H5JQ4c15rwQ/0jlDe3q176+MzYst0bl7fSQ5m3+IX95ULiHdNYtutnUOXA7o9otmipTI0Ou5n19OkOmyqnWwwV23S5MK23ycAS6PwsBYs5ZoHEJAggggAACCCCAgFsLEHO69fDReAQQQMCZAn1D+rX7Ei4kqCV52nQt/939iVo9MaczR1klddW19S8PCj8d81Al7ZmqGZ192le2xfyY9WSqAvP+eF17/5OWXpV0M/By7pKAMGUb09E3XNfmtKW5le3L3O+eWtro5SPNvR73rcH3QvZXp9Ldt/20XM0CHx5OvpJUoYYWmi2Wm+lVmQ+b1dAY2jCtADHntEQUQAABBBBAAAEEEJhnAsSc82xA6Q4CCCAwS4HiJx1/PJH25q64ho6BWVbh7Ms2X7fGnMPEnM6GVUN9T1v7lgWFH48sVUNj7LSho2/4hS1Rt9Kr7JSZ36e+PZu5/dY9lfTR53y2t1+oso3ZceveYn+Nsm1Qz92TShoEUXLeHH719MzRlnxzOuPL74k5HeWaT+XyKlsrG3pk7dEHB5POxZXLegsHK9cbTGt2xW36Id/B8iopZjCavo8qK3nSoZL2uKwZxJwuo+ZGCCCAAAIIIIAAAioRUEXMaTKZent729raOjo6hoaGpqUJCQlZsWLFtMUogAACCCDguMCnR1MEUUq53+j4JXKX3HK9wBpz6pjNKbe0AvU/aeldFhh+WHNfgXvP5JbtvcOrNkb+kPJ4JhfNq7JrdsVtVs1H2xtOZy70VTjm3HK9YLHSM0rV84TFF9ULoqQ3mtTTJBe35LPjqX88kebimzpyu/5hPds6OgI1uzJDWsPHR1ICL+fM7nIHr3p3f+L30WUOFpa12LDO+MbO2OCrebLexemVd/VrV2+MPKP6dSOc3nFiTqeTUiECCCCAAAIIIICAygWUjzkNBsMnn3zyH//xH//fyM+zzz6bkTHNDjfEnCp/qmgeAgi4nUBuReuK4HDfC9lDOoN6Gr/tRsG6fQmqapJ6cNy9JdXN1phz34/FKu9IW8/QiqDwy4mqWDbQ9VZms3mRn2bjNbXM4PniZLogKrxEasjVPMUXzh37JFQ0dCv4SzLmXp0gSp68tPj6Q0mfH1ddzKnVG787l5Vf2Tr2UeG1EwU6+7Tr9iX4Xcx2Yp0Tq1q7N+FY+IOJx11/ZEBreH1nbODlXNffei53tH1RSSVR8Vw6MtNriTlnKkZ5BBBAAAEEEEAAAXcXUD7mHBoa+u1vf5uWZv2AoKGh4d9HfnQ6nR1ZYk47OJxCAAEEZiowqDW8sDlqeVB4c9fgTK+Vtfz2m/esMadWRcmrrP31qMofN/YsCwzbdbvQrO5ut3YPLQkIOx+vimUDXU/VM6gTRClENTN4bJPOTYqukRpwKUdVMedCv9CiasWWZIzIeyqI0sCw3vUPp0ru+M6ehD8cS1VJY0abMaQzvL0nXpNdM3qEF84VaOgYeH1nrHhB3pjzrd3xB6US57Z8drX1Delf2xEbcClX0d++M257a/fQqo2RxyNUERXPuPVzuICYcw54XIoAAggggAACCCDglgLKx5xms9lk+mmpq9bW1v/23/7bwIC9neGIOd3yWaPRCCCgVoFT0WXefqHn48rVtgvmjluF6/YlDBJzqvXJmUu7Khq6lwaGbb95z6zuD01buge9/UI9cMk72+A+be0TRCn4iloWKvzgYJIgSsouxelzPks9Meew3iCIUl5l21z+MM7lWk1OjSBKvUP2vp44l/onXltY1a6qv6pe2x7zydGUie1U9sig1vDmrribMm8qrPLf3rIOQVVT7/Obo747lyXrXdbsitt9p1DWWzhYec+A7tXtMX4Xc5T9lomDrR0t1tw1+GxIxFF1zIgdbZULXhBzugCZWyCAAAIIIIAAAgioSkD5mHMcR0lJyT/+4z9O3KHTPOYnJCRk+fLl4y7kLQIIIIDALAR6B7XefpqUByraknO0F7tuF67dmzAwzGzOUZL586K83hpzbrleYDKpej5nc9egIEonI0tdSa8ekfL6bkGU1LNQ4dq9CYrvBLnhTKZ6Ys7uAa0gStmPWlz5fI69l5T1RBCl7gHt2IOyvl4eFP6wrkvWW8yo8uc2RX18OHlGl7ig8KDW8PqO2MtJMq62bTCa3twdV9HQ7YLuTHqLioburn7XPXjj2lBW27U8KPzbM5njjjv37es7YrfeKHBunbOrratf+8r2GN8L2cp+y2SmjW/sHHg2JOKQ6ncBn2m/pi1PzDktEQUQQAABBBBAAAEE5pmAumLO2traf/mXf/niiy+MRuM46G3btq3568+vf/3rZcuWjSvAWwQQQACBmQo8be17Z2/C58fTFNzazU6bd98pGok5PXc5RDs47n6qrK5raUDYxmv5Kv/M1Dad8UjYfZeBRxfU3sqoctnt7N+otLZTECX/Szn2i7ns7Bu74gRR0unH/yvRZQ2wWCxfnkxf7K9x5R3t3MsWw2eUNdspI+upOxnVgih19A7LepexlS/21+Q/Vmz26tiW2F4vCwz78JAaY85XtseciX04scHOOtLZN7zQN7Sout1ZFc6onvs1nYv8NHcyqmd0lRMLP3jauTQw7JvTGU6sc2JVr2yPUcma4R29wy9vi/E572YxZ317/8qQiAOhqlj4d+L4yneEmFM+W2pGAAEEEEAAAQQQUKeAimJOvV7/8ssv//M//3NX1yTf0c7Ly4v668/atWuZzanO54lWIYCAewmI57MW+2taVLYl56jhnrtF71hncxJzjpLMnxcPnnYuCQgLupJrMP60cL0Ku/doZDrjQRd+SLr1RsGyoDCdQRUsJTUdgij5XVRLzPnythhBlIZ1SsacfziWukg1MWdNi3VV4ZT7ik3Hv5lWJYhSS/eQy/7wLvQNTVMu1p3YzQU+0gcHkyYeV/bIwLDhpa3Rx+TckrCxc2CBb2hhlTIxZ1xhvSBKP6RUKuV8v6ZjSUDYn07JG3O+uCVaJd8yae0eemlrtHguS+V/ZY97Hmrb+lcGR+z7sXjc8Xn/lphz3g8xHUQAAQQQQAABBBAYJ6CWmLO1tfWdd95ZsmRJZ2fnuCZOfMvenBNNOIIAAgjMVCDlfuPqTZHl9YqtODdtg/feLX5nb0L/EDHntFTuV8D2GbH/xRy9OvK8qQSLn7QLorT3btFUBZx+fOO1fEGUGjvsbVLu9JtOVWFRtbX7Pheypyrg4uMvbIkSREnZ/Xo/PJTs7Rvq4o5Pdbvy+i5BlBJLGqYqIPfxH1IeC6LU1Dko941G6/cSpbii+tG3yr7QG4yCKL13IFHZZky8+8Cw/vnNUfslGdOdmpY+Lx/pXpUyM2uj8msFUbqarFjMWfKkY7G/5suT6RPxnXjk+c1RoszbfzrY2uauwRe3Rv/5XJZe3d9MGtedJy29K4Ijdt9x3d/g4xqg1FtiTqXkuS8CCCCAAAIIIICAUgKqiDm1Wu2aNWv+5//8nw0NDn1MQ8yp1OPCfRFAYN4IPG3rWxKg2XW70GRWzz6A43X3S8Xv7I3vI+YcDzMf3hc/sU6FEc9n6wxKzsybljK3olUQpZ237k1b0lkFgi7nCqJU19bvrArnUk/B4zZBlMTzaok5n9sUKYiSsjO81+1PWOCjlpjTlkPHFdbNZZTncu3lpApBlOrbXfS4Go0mQZQ0uTVzabMTrx0Y1gui9O5+1cWc/cP61Rsjd9yU8ReXbaZ7gUILCIfn1giidDlRxs1H7T8nRU86FvlrvjiRZr/YHM+u2hjxtcwTRh1sYUPHwItbor89m6nybyaN605VU8+K4HBX/g0+rgFKvSXmVEqe+yKAAAIIIIAAAggoJaB8zKnVaj/88MP/8T/+x40bN1L/+jM8bG+PH2JOpR4X7osAAvNDoL594JMjKe/sja9u7lVzjw6Elry9J75vUKfmRtK22QkUVrUvCQj79mymVtF9FqdtfOqDRkGUtt4omLakswr4XswRROlpa5+zKpxLPbaU98/qmE5ksVhWbbTGnMp+9eHN3XFeojQXVSdem/2oRRClqIJaJ9Y5o6ouJjxy5eM6rLfOnryRppbNa7sHtIIord2bMCM0FxTuH9avDInYeC1PvnvZVrTOq2yV7xZ2apayngiidDHhkZ0ysp4qrG739gv97HiqrHdZGRzxucxJqoPtr2vvf2Fz1IYzmSr/ZtK47lQ29CwPCt8uZ94/7o4qeUvMqZKBoBkIIIAAAggggAACLhNQPuZsbm7+xS9+8Td/8zd/P+bnyZMndgiIOe3gcAoBBBCYVuBs7MPnNkU2qGNVTDutPTQSc/YSc9oxcttTBY/bFvuHfX0qQ9l9Fqf1i7lXJ4hSyLX8aUs6q8B357IEUapuUsVXEGwp2rdnM53VuznWsyI4XBClHkV/J7wysj+oSubBJ99vEEQpPPfpHGFnffm5uHLr4+qqb8z0j8yevJioWLg1Dqqjd1gQpXf2xI87rvjb/iH98qBwWXfVzau0znTPLm9RpLO3M6ybwp6PL1fk7haL5V5V+0Lf0D8ckzfmXBYU/vGRZKX6OPa+T1v7nt8c9fXpDJV/M2lsmy0WS3l99/Kg8K03ClS8cMm4JjvnLTGncxypBQEEEEAAAQQQQMB9BJSPOc1m89CEH7Pd/y1CzOk+DxgtRQABNQoEXM4JviLjJA9n9fmw5v7be+KVjTSc1RfqGSeQV9lq29hsSGcYd0pVbyNynwqiFHg512Wt+uZMhiBKlY09LrujnRtllDULorThtFpizmWB1pize0Brp81yn7ItnGswqmK57+gCawwvZdv7dqCsIKdjHrrycbXNnjwZVSZrpxyvvKVrUBClt3arLubsG9IvCQjbcEbGP7npZU2CKGWUNTvO5cSSN9Ksm8KejXvoxDpnVFXB47YFPqGfHk2V9RfBkgDN+weSZtQwmQo/ae59blPkn1T/zaRx3S+r7VoWGL7leoH9zxbGXTUP3hJzzoNBpAsIIIAAAggggAACMxJQPuacUXNthYk5Z4HGJQgggMCowDt7Ew6Eloy+Ve2LI2H339oT3zPAorWqHaLZNyynomWxv+aPJ9IGtaqOOaVs69KIvhdctznll9+nC6JUXtc9e1znXZn6wJpkfH06w3lVzqmmJf5hgih19ikZcz4bEiGIks5gmlNPnHSx7fm8k1HtpPpmXM3JqDLr41rvose1fWT25EHV/P3V0DEgiNKaXXEzhpP5gr4hvbef9ResfPdJKLbOJE590CTfLezUfC25UhCl0zGKxZz5la1eovTp0RRZ8zNvP41KlkR+3NSzemPkV9+nq3wBhnHPzIOnncsCwzf9kK+S+ffjmiffW2JO+WypGQEEEEAAAQQQQECdAsSc6hwXWoUAAgjIJWAymRf5aRTc0crxjp2ILH1zd1xXv5KRhuOtpeSMBLLKWxb5az4/rvaY83a6dWnEP5/NmlHv5lL48+OpgiiV1nbOpRJnXZt837o16VffqyXm9PbTCKLU3mtvB3dn9X2qepYHWWeUquSz/uup1jltN9MV26vyaPgDVz6uzSOzJ3feujfV6Lj4+NPWPkGU3tgZ6+L7Tnu7viHdAp/Qjw7LuN5pVH6tIEpJJQ3TNkaOApcSKwRR+j5asXm9tn2LPzmaYjLJOJ9zgY9anq6Khu5VGyO/PJk+pO5vJo172EqedCwNDAu5lm+Uc5jG3VQNb4k51TAKtAEBBBBAAAEEEEDAlQLEnK7U5l4IIICA8gJ9QzovH0nB2T+OE5yOKVuzK66jT8lIw/HWUnJGAhkPmxf5a/5wLFXlszl/SLXOGXLldMZPjqQIonS/pmNGnjIVtk3Y+vJkukz1z7TaBT6hgii19QzN9EInll8SYJ1RqpLn9kL8I0GUfkipdGIHZ1TVYc19QZRKXPW41rf3W/fKvaqWRderm3oFUXpth+pizt5BnSBK6/YlzGg0Z1RYyrLOdI8vqp/RVc4qfH5kU9gTkaXOqnCm9WQ9tC7o/cmRFPnyM7PZLIjSy9uiZ9o2OcqX13c/GxKh/gUYxvW9qLp9aUBY8JU8+YZp3B1V8paYUyUDQTMQQAABBBBAAAEEXCZAzOkyam6EAAIIqEKgpXtogU9oRN5TVbTGbiMuxD96Y2esspGG3Qa6zcm69v6WbiWToYlS6WVNi/w0fziaOjCs6kVrL4/MGfrihOtyvvWHkgRRKqpun4jm+iOxhdatH7+Qc+lLxztlNlsEURJESdmHedHIjNL+Yb3jLZev5MmoUkGULidWyHcL+zUfkEoEUSp01eNaMzJ7UjznukWk7Xf/UX23IEqvbI+xX8z1ZztGVveVdZqpbXfMmHt1ru+dxWKxbQp7LOKBIne3WCxppdYFvT8+kmIwyrV+td5oEkRp9aZIpfo49r5ltV0rQyI+P542oI5ffWPbZud1weO2JQFhQZdz5RsmO3dX8BQxp4L43BoBBBBAAAEEEEBAEQFiTkXYuSkCCCCgmEBNS99C39CEYmVmYMyo21eSKl7fEatspDGjBqu28IYzGQp+HDwpS+qDJm8/zSdHU1T+men5+HJBlP5wLHXSXshx8L39iYIoFTxuk6PymdYZVWBdl/Lz4zLu8Od4kwwjH/oLotTUNej4VU4vucDHGrX2Dqpiz+DDYdbJlOfjHzm9mw5WuPdukSBK+ZUuelwfN/YIoqSe6cVltZ3qmW83dsiauqybhr64JWrsQee+vpRonUkcmV/r3GodrO1kpDXgPxKmWMxpW9D7o8PJ8uVnQ1qDIErLgsIdNJG12P2azhXBEZ8dS1XJNzwc7GxeZeuSgLCAS8ScDoJRDAEEEEAAAQQQQAABdxUg5nTXkaPdCCCAwOwEyuq6vP1C08uaZ3e5K6+6kfb41e0xTZ1KRhqu7K9891p/KHnv3WL56p9Fzcn3G739NB8fUXvMeTq6bGTKjoxb3I3Te2dPvCBKeZWt444r8jYi76kgSp+5MOW1080hnfVDf0GUGjsG7BST9dTojNLuAVXsGbxfKhZE6UzsQ1l7bafyXbcLBVHKedRip4wTTz2s63Lxn0f7jS+p6ZA7TbTfgKnO1rZZNw1dIWdCZptPGZarzMoQtk1hD2vuTyUg9/GE4npBlD46nKw3yDWb07by8CI/jdx9caT+4icdy4PCPz2W2j+kionsjrTZYrHkPGpZ7B/mfzFHL9ukWwdb4uJizOZ0MTi3QwABBBBAAAEEEFBcgJhT8SGgAQgggIBLBQoet3n7aVw2+WYufbuTWf3K9pgG5SKNuTReVdeu25e4606hqpqUWNLg7af56HCyyqeGHI94IIjS+weSXKa3ZlecIErZ5S7Kjez3S5NTI4jSp+qIOfuGrNsNCqJU365YzKkzGG1t6FTHnsG7R1LG76PL7I+jfGe33bwniFLWQxd9b+b+U2usuP6Q6/482qe7V9UmiNLzm2WcNGm/AVOdrWqyTntd5C9jQmYLGqXsJ1O1QdbjhzTW1ZIPhpbIehc7ldsW9P7wcLJOtpjTtvKwl49kpxkuO1VY1b48KPyToyl9bhVzZpU3L/bX+F7Ilm+YXDYEM7oRMeeMuCiMAAIIIIAAAgggMA8EiDnnwSDSBQQQQGAGAtY9Ef01D552zuAahYpqcmpe3hZT19av0P3nz23f2h234+Y9VfUnvqh+oW/oh4fUHnMe0lgXBV27L8Fleq/tiBFEKdNVuZH9fknZTwRR+uRoiv1irjnb1a+1RYwK/k4YHNbb2tDWq4rNbrfdKBBE6XhEqWuGYOJdNv9gbUBaWdPEU3IcKaxuF0TpvQOJclQ+izrzKloFUXpOHbsnjm1/+ci0V28/jdEk11zDfT9aZxLfyagee1+Xvbbdff+Piq1SYFvQ+8NDyTq9UaZeN3cN2n7bGE1mmW7heLX5lW3LAsM/PpKikvW6HWy57V+8PueJOR0EoxgCCCCAAAIIIIAAAu4qQMzpriNHuxFAAIHZCcQW1i/211Q29szucldeFZVf+9LW6Ketfa686by816vbY7beKFBV1+IKrTHn+kNJKl8Bz/Zh+pu741ym9+LWaGtuVOqi3Mh+v+5kVNsWZrRfzDVnW3uGbB/6K/g7oWdA5zWyN2dLtyoW0954LW9kh0LFlu60NSD5fqNrnoG8SmusuHav6752YL9fWQ+bBVFatTHCfjHXn7Wtpuvtp5FvSdWdt6zrFd9Mq3J97ywWi20e8567RYrc3WKxhOVaZ7qvP5SklS3mrGvvt/3Gk+8WjuvlVrQuDQj76HByjzq2JXaw5akPmhb5ab47l6UGQwfb7JRizOZ0CiOVIIAAAggggAACCLiRADGnGw0WTUUAAQScIBCaXbMkIKyu3Q2mSMYV1r+4JfpJS68Tuu3ZVTy/OWrTD/mqMoi5V7fQN/SDg0kqXwHPtvXgaztiXab33KZIQZRclhvZ79fN9CpBlD485LqtSe20p7FzwPah/5MWxb760NE7ZIs5VbJncMClHEGUDkiKLd0ZdDlXEKXE4gY7A+fEU1nl1ljxrT3xTqxzLlWllTYJorQyRHUxZ8Fj62q63n4a+dKdrTes6xX/kFI5F8BZX7t9ZLXk3cotxm6b6b7+YNKwTq7ZnE9aem2/8Qa1hllDOevC7PKWJQFh6w8l9wzonFWnC+qx7QL+7dlM+f4guKAXs7gFMecs0LgEAQQQQAABBBBAwK0FiDndevhoPAIIIDBjgVvpVUsCwpq7VDEVyX7rk0sant8cVdXkBhNP7XdE8bPPhkQEX81TvBljGxBVULvQN/S9A4kqjzlti4K+vDV6bONlfb0yOFwQpYTielnv4mDlP6Q+FkTpg4Oq2ArxaWuf7UP/6mbFvvrQ3DW4wDdUECWV7Bnscz5bECUF57T5X7TmrHGFLnpcbbHiml2um11t/09KUkmDIEorgsPtF3P92exHLbaYc1gnV0K28Vq+IEpXkipc3zuLxbJlZLXknbcU23PaNtP9g4NJQ7IJVzRaN1gVREkNax5kPLRucvnBwaTuAa0iIz67myYWW3cB33AmU740enYNk/sqYk65hakfAQQQQAABBBBAQG0CxJxqGxHagwACCMgrcCP18dKAsLYeVWwsZ7+r6WXNz22KdIv1de13RPGzSwPCAi/nKt6MsQ2IyHu6wDf0vf1qjzltH+U/vzlybONlfb00MGwkN6qT9S4OVn4luVIQpfcPqCLmrGr6y4f+j5X76kNdW/9C31AvUVJwf9CxY7fhTKYgSgqGPbacNbrARY+rLVZ8bUfMWAQFX8cV1QuitCxIdTGnLQ/29tPINxEwcGQi78WER4r4h1y1Lte8Tbk9p2+mWb8C8v7BJPmES2s7bTGnGrbDTCu1buv+/oHErn53ijltu4B/czqDmFORP6fcFAEEEEAAAQQQQAABlwkQc7qMmhshgAACqhC4llK5NDCsvXdYFa2x24icRy2rN0Y+qu+2W4qT0wss8JX8LmZPX86FJcJyaxb4hK7bl6CGD3Dt9Nv2Uf7qTZFmO4WcemqRn0YQpeiCWqfWOsvKLiVWCKL07v7EWV7v1MsqGrptH/pXNCr2O6G6udfbN9TLR1Jwf9CxqF99n24Ne5Tbeffbs9acNSLv6dhWyfc6rrBOEKWXt7ludrX9vkQV1AqitCQgzH4x159NLLZOM/X20/QP62W6u+8F60zic3HlMtVvv1rbb2YF95z+IeUvXwGRL+YsetJu+42nhmQx5X6jt5/mvf2JnX3uFHPalsf/06kM+Sbd2n9QlTrLbE6l5LkvAggggAACCCCAgFICxJxKyTt6X5PZbDS57MNVR1tFOQQQcF+BK0kVSwPDOt3h+/gFj9tWbYx4WNflvtpqaLnJbBZESTyvrphTk2ONOdeqPub0Gfkof/XGSJf9XWzb+jHSVbmR/Uf0Qny5IErr9iXYL+aasw+e/mVuk4JffXhU3+3tp/HykRRcOHes9mfHUgVR2qzczrvfnM4QREmTUzO2VfK9jsq3xoovblFLzBme+1QQpcX+Gvm6PLuao0fyV28/Td+QXDspfns2SxCl0zEPZ9fCOV7le8G6WrKCT/6VJOtXQN47kDggW5CcW9Fqizk7+pT/XlpSScNCX+s3kzpV0BjHH56o/NoFvqFffp8uXxrteGNcWZKY05Xa3AsBBBBAAAEEEEBADQLEnGoYBXttiCqoVdtn0/aayzkEEFC9wMWER0sDw3oG5Pro04kAxU86VoZElD7tdGKdHliV3mAUROnbs5mq6ruU9cTLJ/SdvWqfzWmbrLZqY6TeaHIBoMlkzaQFUQrLdVFuZL9TZ2MfCqL0zl5VxJxF1X+Z26TgVx9Kn3Yu8rfGnCrZM/ijw8mCKCm4865tOumPWU/sP0jOOqvJqRFE6blNrltE2n7LpawnI5MmQ+0Xc/3ZsFwrlLefRr6/678+ZU24T0aVur53Fovlu3PWkHXjNcX2nL4Q/8gac+5PlG++rG3lYUGU1LDLQHxR/QLf0LV7EzrcYS2Q0WfSujy+T+gXJ4k5R0l4gQACCCCAAAIIIIDA/BQg5lT7uJ6NfaietbnUjkX7EEDAAYFzceXLAsP6huRayM6BJjhapKy2a0VweElNh6MXUG4ygSGdQRClb05nTHZSsWN3M6u9fKS398T3DKo6cf/TKeuioKs2RuoMRhdg6Q0mW8wpuSo3st+pU9FlgmgdJvvFXHM2r/Ivc5tKaxWb4V1U3b7YP8zLJ7SyHzwIwAAAIABJREFUQbGFc8dqf3AwSRClgEs5Yw+68vUfT1ink97OqHLNTe9mVgui9GxIhGtuN+1dbmdY27PAR3Ux550RKG8/jXzrnX5x0vq78VjEg2mV5CjwzWnrasnBVxSLOc+MfAXkXTm3l04otu78KohSS7fym6nHFtaPfDMp3i22PBh95MJG1o34/ETawLBh9KAnvGA2pyeMMn1EAAEEEEAAAQQQGCtAzDlWQ42vj4Tdf2FzlHwtM5vNRpfMUJlLF+ra++9mVscV1vldzNn0Q/7R8Ac5j1osFovB5Fn/k3UuhlyLwKjAmZiHywLD5VtmbfRGc39R0di9PCi8qLp97lV5cg19QzpBlL76Pl1VCLfSq7xE6a3dcfJNNnJKf/94PM0Wcw7rXPE3zpDWmkkLonQns9op7Z9jJScjSwVRenO3KmLOrPIWG84D5WZ451W2LgkIW+ATWq6CPYNNZvP7BxIFUfJRbknqT4+mCKJ0I+3xHJ80By+/mVYliNLyoHAHy8td7HrqY0GUvERJ7hvNtP4bIw3z9tPIt5Pip0etCffhsPszbZtTytumEQdeznVKbbOoxPYVkJGYU65v6kTmW5dEFkSpsXNgFi107iW2ZZDf3hPf1qP8CrqOdy00+4mXj/TZsVS3+Eev4/2atiQx57REFEAAAQQQQAABBBCYZwLEnGof0F23CldtlGVtrsbOga9PZby9J/7lbdFZ5S3DOoNhJO806wbNpp/NWTEN9Ri7GhSU2nOnyMtHWugb+tLW6Fe3x9i2QYovqj+UeGx3YuCj1tLmXiWbp6AMt0ZgFgLfR5ctCwwfcklmM4vmjb3kSUvvssDwwipizrEqM37d1a8VROmPJ9JmfKWcF9jigTW71B5zfjKS4jwbEuGauSB9Q3rb59o301w0Pc7+IB+LeCCI0ppdcfaLueZsemmTDUfBGd6ZD5uXBlpjzjLlZpSOahuMpvf2W2POP5/NGj3o4hfrD1lXzb2WUuma+15LrhREaWlAmGtuN+1droy0R1BfzHl5ZOdIb79Qmebemc2WT45YE+4DUsm0SnIU+HzkCyj+FxWbx3xi5Csg6/Yl9sq2IMGPI0siC6LU0N4vh+GM6ozIs2aub+6OV8MKuo63/G6mdVnpT4+myLe2sOONcWVJYk5XanMvBBBAAAEEEEAAATUIEHMqNgp6gym+qL60trOhYyCppOFeVXt6WXNEXm3I1bwDUnFiSUNpbafJbA66krs82PlfWjcazTtvFT63KdL3QvYHB5Ne2RbzbEjEBweTjoY/SD27tefI6sHI7YOxe4fTTg9GbO3eu7B7x/8buP2dtlijLdboHsZri0KHsy8PJRzSV2cb6kuMLY9Mfa3DGWeHU04YW538jf6BYcN7BxI3nMmsbOzpH9bnVbRuu3HvvQOJXn7XXzj5yivnF9r+2xC6fn/ypuuF58/mHE5/kmgw6c0Wc2NPXWlzUV13TUljQUljwYOmouLG/Cv5pzbGfPvDvbP92j7Fhp8bI+CAgNFoqmrutX3/wIHijhY5EVm6LDBcq//Ztxkcvdi15erb+5cEhOVXtrn2tvPtbu09Q4Io/eFYqqo6dnUkHnhjV1y3ureJtS0K+mxIRL9L1nnuHsmkBVG6nurkv0xnN/qHw+4LovT6ztjZXe7cq5JKGmwxZ9ETxRayTn3QuDwofIFvqIIzSkdVdQbTupGYU8Elqd8dacDlpIrRVsn64lKCdUNEbz+1LBJ7caQ9giiZTGZZOz7Tys/FldugZAqljCazbV/YvXeLZ9o2p5S3TSP2vZDtlNpmUcmRkd+N6/YlyLfuuu3LQIIo1bYpH3OGZlt3e12zK65VBSvoOj5etzOs878/OZLimr/BHW+Y3CWJOeUWpn4EEEAAAQQQQAABtQkQcyo2Ij2Dug8OJi0PCl+1MdLbT7M0MGyxv8bbT2Nb/MrbT/PC5qgL8Y/+dCpjib/zv7TeM6B7/0DiyahSncHUM6i7EP/o8+Npa3bFeYk/Vm5b2r3j/03y387fdu/8XffO33bv+k/r/93x2+4d/69n78KefYt69i/pObLadqT/2udmg9aJrFVNvS9sjoouqB2t02gyt/UMBd0988p579GYc+yLNZeWfnzjNf+IL9Zff/ntyyvWXX3urcsr/vrfclvJ1y8uTq1Sxee2o/3iBQLjBAoet725O66mxcl5/LHwB8uCwvWqX63aYrE0dw0u9g/LrWgdJ8PbGQk0dw4KovTxkZQZXSV3YVs88PrO2O6B6f/KqGjo/vZspnyTZux0dt2+BNtegI7fPa6obtbRQnvvsC3Ju5bs0PS4lu4hWf8sHwgtEUTptR2q+OsyrrDOhuPgDO/Mh83i+WznbmuXUNywIjh8oW+ogjNKRx/XYZ1x7cjz+aVyS1K/sydeEKUL8Y9GWyXrC1t6t8BHLYvEnh3ZoFEQJad/IWmOjCejrMtNe/uGtnQPzrGqSS83GE0fHrZO5N11u3DSArIeNJstH4/MJRWVW6754MjvxrX7Ehz5K2x2GqMhutP/HTiL9ti2xX1jZ6xzf6POoiUzusS2zPVHh5PdYkP6GXXNfmFiTvs+nEUAAQQQQAABBBCYfwLEnEqOaVpp045bhdtv3gu8nPvegcQ9d4t8L2afiX1YWttZ/KQj4FLu8qBwQbQu1ur0VjZ2Dq4Mjnj0852lKht7zm31mSTgnDT1nOJgz+FVZq0zv3ScW9Hq7adp7x0ai2A2mzfH/vm1C4vHppszfX0+9+jYOp3y+kzMwz+fzRr3zW6zxaI3mJo6B4ufdBQ8bttyvSAi72luRevjph6z2WI2KzMDoKKhO6G4wS2m9DllaNyxEin7yXObIisaup3b+MNh95cHhRtVNvVk0j529A4v8tdkj+zFO2kBDjoiUN/eL4jS+kPJjhR2WRlbXPHajtiu/mliTq3e6HM+e5GfJr2s2WXNG73Rm7vjvXykZ0MiHPksu2dAt+3GPS8fKSr/p6/mjFblyAtbJi2I0qXE6afH5Va0LgnQLA0IczD2c6QB48rsu1ssiNKr22PGHZ/0bc+g7nJixbm48knPzv1gRH6tLeYseDz9DG+jybzxWv4Cn9DwvKdzv/VoDdEFtSuDIxb6hqphz+BBreGdvdYY/vPjii1J/cbOOEGUzso26KPythffj6R3Di4S2zekj75XJ+vuv99Hl9meSZ1BXQskHA23Lje90De0uUuWmFNnMNnWK95+8964MXLBW5P5L3NJ/3xOseWa9/1o/d24dm9C93R/hc0axLb9pyBK1c29s67EWRfa8sLXdsTK9EQ5q53j6vkhxbrM9fpDyY5/UWlcDW76lpjTTQeOZiOAAAIIIIAAAgjMWoCYc9Z0zrlwJOWy6Aym7gGdyWTWG0yjy14Nag05j1ptn54452Zjaqlr61/oGzqoNYw5ZjGZTANZV3sOTDGbc4pcc1ws2nNwuXnYmZPP0kb24hplGW1wz3B3YmXURzdenWm6OVp+c+yfR2tzygu90fTS1mhvP81357JGw0udwXglqWLt3oSXtkavCApfHhTu5RO6aGT+7stbo8Xz2RvOZKY+aDwUWtI9oDOaTK7JHbV64yvbYxb6hn55Mn3fj8U30h4/qu/u7te1dg/VtPSazObhGW7cqDMYD2tK1PB982mH0mQypz1oUufOlD0DuhORpaPzwE5Glq7aGDnu6wjTdnDaAgdDS5YHhY8+otOWV7BA35B+oW9oxkMFwi0Fe+30W9e09Ami9N6BRKfXPJcKbR/gvro9ZtqYs7FzwNsvdFlg2IV4ufIzOx15bUfsYn/NypCIzr5hO8UsFut3Vjb/ULDYX7PQN/REZKn9wlOdtQ2Wg9PjfC9kv7YjdnlQ+HnZZHbdLhRE6eVtDsWcJ6NKF/iGrpDtWxShOdZd1gRRyq+cfoZ3z6DOtm/lFaeupxqe+/TZjdaY855jewaX1XXJN9Oxf1j/9shkyk+Um6v9yjbrjumnoh9O9Ug797htFWUHF4kNz63x8pFORs3yD6MjLbdtXiuI0rDK1oE/IFnnYS/0DW3sHHCkIzMto9UbbQt6b7le4Mi1QzqD0WRypKQjZYwm04cjm8JuOJPpSHk5yuwc+d34zt6Eaf8Km/Xdj4ZZs2pBlCobe2ZdibMuvDaSF766PaZJnuDcWe0cV8+VkU1qPziYRMw5Toa3CCCAAAIIIIAAAgjMMwFiTlUPqMlkXrUxUhAlp8+7qmzsmWqSqKm3ZTjlRP/1r3pPvdF78rXuvd4/BZk7f9tzYFnPXu/e4y+OLFE7soztz+PPnv1LzMPO/NJxXGHdskB7y/a29TfvS9oYEPnFn35877ULi0ZTzNEXr573fuvyijcuLh09YnvxxZ21zh3+7Ecti/w16w8le/tptlwvSCtt+uxY6ivbYrz9NF+fyjikKbme+njX7cL9UnFUQe0BqfiPJ9KWBYa/vjN2gU/oQt/QFcHhz2+OWhkc4X8pZ8v1gpT7jWV1XQnF9SYZpntGFdQu9tccCC354GDS2n0JXj7SAp/Q5zdHPr85amlg2J/PZq0IDt9+894nR1NuplXlV7bVtfV39Wvr2/v7h/QlNR1VTb1VTb3Z5S0R+bW5Fa1Gk7mioXtJQNiPWdXOJZWjtod1XYvVN0Gwd1BXWN2+9XqBt1/oyuCIdfsSPj+R9uGh5GdDIh7WdTnXYb9UvDLE+Tv+OreRttpMZrO3b2hCUb0clXtOnVVNvdZJJ/sSVNXlE5HWNRVf2TZ9zJlV3vLS1mi/i9nBV/Jc3wXrN1SCI1YGR7T3ThNz5le2LgsMSyiqPyCVzHopxfL6btvn2mdjp8mNBrWGF7dG77x9b92+hKAreXL8TWE2m7fduCeI0ktbo6eVH9IZPj6S/Nbu+Oc2RV1KlGUJ0zsZ1TYcRxayrmruXR4U/vLW6MNh96dtvOMF7mZWr94YudA3NM+BPYP1RlPApdwlAWENHbJETb2Durd2W9eM/VC5udovbI4SRGnWub7j8raSu+8U2Z4BRxaJDbmaJ4jS85ujDEa5ls2wrVwqiNLQz784ONN+Ob387jvWLygs9A2tl+fZG9IZ3j+QJIjSxmv50za+d1D30tbob89kOusbZnqjaf0h692/Pp0x7d1lKrD5hwJBlN7eE9/ZN82CBLNugG3CqCBKj5y9qscsmnQp0bot7ivbYpo6ZZkfPIsmOXKJbeHf9w8kjltox5Fr3boMszndevhoPAIIIIAAAggggMAsBIg5Z4Hm0kuupz728pGcvhbWvaq2Z0Mi7PTEbNCZ+ttMfa36mvzByG3avBv6R0n6xxnGjqfGtmpTd4OuLE5flamvSBnOudK9Z8FoFNqzb5FzY87Q7JppP2A1mY1D+sGuoc782sysmpQdCf6f3nzjs9tvvXJ+oaj5tLAhr7ar+mFLybnco69f/Gmd209uvm5HYBanrqc+FkSpq1+763bhK9tiFo3stLp6Y+TFhEejE2fNZstoaD2oNZTWdjZ3DR4KLbmb+WTzD/kfHU7efadoRVD458dTF/trVo18llrX5sxFgG392nO3aPWmSL11GrG2o2/4dHTZ8YgHF+LL/S7m+F3MWRkc8eLWqFe3W6doLPCRlgSEvbo95p298a9si1l/MGlFkDWOfX5z1GJ/61ayK4LDd90uTC9r8vbT3EqvmoXbtJd09g1H5D111pfZcytaF/lr0suapr2vawqYzZbKxp5dtwuXjSxS7e0X+unRlA2nM/wv5XhZeSNKazud2BKz2bL3btFzm6KcWKesVb20NfpuphvE57IizLFyW3L29p74Odbj3MuPhN8fmSYY3Tndin9Xkir+cCw1NKdmnRJJ7XObrN//WBkc0drzs7XTJ2qcjyt/Z29CW89wWG7Nmp1xEws4cqSout2W4pyOKbNfvqKxZ2VwRGR+7f4fi9cfSnJkTV37FU48azKZN/2QL4jSC5un/43R1Dn4xs64q8mVgZdz1+1LkGNym235QUGUHFnI+lxc+UeHkzdezQu56sx0/Gb64+c3R3n7aRyJWhs7B5YHWTfyTCppmMg79yPdA9o3d1vXjH3/YNLca5tdDas2RgiidCz8wewun+lVW69bsyVBlHQOzJ5cvSny2ZCIBT5yLdxqsVhsaaIgSgPD+pn2RdbyW29YoRb6hta1O//fkBaLZVBreO9AoiBKQQ58+yTzYfMiP40jXxZx0ESrN75/0Bpz/ulUuoOXOL1Y4KVcW8zZMd1E/5G5/paa1r6JK9PYb9W2m9ZvmQiiNO3X3VIeNB6LeNA9oLNf4VzO2taZf3lrtEzzg+fSNjvXno0rF0Tp3f2Jsi5ebacBSp0i5lRKnvsigAACCCCAAAIIKCVAzKmUvKP3Tb7fuMAn1OlfEk++3/jajlhHGzFNObOhrng05uzes9A85MzZnNdTH7+zdzaTkPRGfUtfk9H008K8eqP+WPqu0TmdH15/ZZqezfD0pcSKpQF/mXha19b/Q+rjH7OqO6abADTuJmazRas36gxGnwtZi0ZyxKiCWe7xNq7m0bcmk3nr9YI3d0/5KXxT52DfkN42fbOhY+BOZrX/xZzlQeEfH0lZsyvui5NpIdfyfC9kfzaSxb6yLcbLR3puU6SXKF1PfTx6F2e9aOkaHJlNFb5qY2RUfq0jHyfZv3VSScMiP03qg0b7xWZ39kzsw5h7dRNnfTV2DhRVd7R2D/UM6jr7tJ192rzK1oTiev+LOb4Xshf4hAqi9OXJNCn7ydXkv2zIp9UbI/OfLg8Kv//UuTGnefedomm/OjC77stx1fpDSfJt9SdHg1VYZ2ltpyBKa3ZN+UdekTbbZkG9uDXa/lSYYb1x/aGknbcK69v7lwaEzXQ97bl3bXlQ+KvbY1cER9jfkExvMH19KuPLk+lavfF+TYe33yz/4s4ub/HykawrbU637G1SSYO3n6amta+4un3Vxsinrc5cLt7mZjCagq/keY3Mh5tWsrKx57lNkXmVrRcTHr26PaZFhoUNz8Y+9PKxfuifNd1C1kaTec2uuJNRZWdjy7886cwg5GpyxYtbrDFnVnnLtCZS1pM3dsWu3Zvgcz572sKzKNDZr12zK26Rn8bBudqDWkNuRWvfkDMDOdsu8oc1zpwya4ci8LI1W7IuEqubZi/M1u6hBT6hfhdzvHykoiftduqcyylbmiiIUt/Q9AmTzmAsedLhXP+pGm+bybrQN/Rp2/S/GfqH9Yc094+EP6hvd3Tacf+Q/t391pjT/1LOVG0YPX48ovT5zVGrNkbmOGmnbWvIOnL3L086uivtvar2G2lVTtwY4rtzWYIovbUnftp/5xtN5k+OpHj5SHGFM1uaIuRq3kJf678PH9j9d6DBaPK7mCOI0srg8Bhn/0+G0UG0rTP/4tZoB+emFzxuy61olWE9mtEWOfTi9MjuuWv3JcjxTSCHWqBQIWJOheC5LQIIIIAAAggggIBiAsScitE7eOPUB40LfUP7nfqZlMViCcuteXe/0/ZpMxu0P8WcuwXzkDO3kDkXV/7J0RQHuaYt1tRbPxpzvn/thWnLz6jA6ZiHL26ZfsqLg3V2D2gvJTxaFhTu9LXgbJ9cf3wk2cGWWCwWnd74qL67f1jf3DXYP6TX6o1avbG9d7i0trOuvf/e47Y/HEsVROlqcqXjdTpY8nZG9UtboxOLrR/oL/a3Lv87bnLzpLHHkM6gM5jae4dt/1U1945OBg3Pe+rtp0m+7/yY02A0LQ0ME0TpnT3xe+8WtfUMFT9pzyhr/j6q9I2d1u393tod/96BxHX7EtbuS1jgG7o0MGyBj3WxwTsZ1bfTqyamFLVt/csCw0qedDho5Ugxk9m863ah877l4Mg951Tmu3NZ+6XiOVXh8ReXPOkQREltg773bvECn9AXtkTZjznvVbUtCQjLfNg8MGx4dXtMRplLN2o1my1ePtK6fQkrgsPtT2Gpaup9YXPUjyMzj2ta+lZvjLT/wfRUT2Xy/UZvP80if82xiGmmx52JefjCliijybqV8kLf0DJnr25tsVj0RpP/pZwlAWGrN0ZO1eDR44XV7Yv8NB29w2mlTas3RpbXd4+ectaLI2H3l/hrvHykaffrrWjoXuyvSSttiiusd+485rOx5S9vi17k59CSAMFX84Ku5IblOPNfXGMxO3qH39gZtzI44q3dDs3VvpBQvsAn9EaaM7+QZFvX4YCrfkvbsqWR2ZM/fYltrMno65yK1kV+mruZ1oWOLyU+kmnV2qC/xq7TLolpMpkPSCVLAsKc/o+60S6PfeE/knst9A11ZNP01AdNK4LCVwSFO/5ltd5B3bp9CYIofXcua+x9J3399emMQ5r7fz6bue9H5/xt3j+kt939jyccijnLartWBIc78g2JSds/6cE/ncqwxpy74yd+s21c+dQHTV4j2fy2G/dmNKHT90L20oAwLx+ppMbevwN7B3UfHU7+89nML06mr9uXIFOyaFtn/oUtUQ4ug/zOnvg3dsYqvtzuySjr8viOb6Fa2dhzMUGWRdfHPRVyvyXmlFuY+hFAAAEEEEAAAQTUJkDMqbYRGd+etNImb99Qp6+0czW58g/HUsffbLbvzSbDTzHnzt87N+Y8GvbgmzOZs23a+Ot6hrtHY851V1ePPz2390fDH6yd1cTTqW7bO6hbuzfhYGjJVAVmd1xnMPleyNngPFWLxdLVr10WFC7Hfmwbr+W9fzBpQGvIftSyYORb7c9tivz8eOrNtKoPDiRdTHi00Df0etrjjt7hJy3WLDPnUcvFhEdeorTA17rj6WJ/azi6yBqRhgVcys0oa76WUuntp0ksdv4Sgveq2lYER5yOKXtzd9zqTZG2BgiiddXfRX4abz/Nun0JfzqVEXg5970Didtv3vvq+3RNTo2dQWzqHFwSEFb0/7P3Xs9tHF368M1W7d1ebtX+Abv17lt7t1VfbX3MWVQWlXOwLcmSbNmykQHmnCVSJJWzqIxBTsw555wzCZIgiBxn5leDkUYQwgCEIEu2hzds9JzuPn1m0AD66ec5k/6koYAglP6y88g3pl+KE4TM111fJSMjjkt/ukudE6s2eVjxN+V55uuuKJsCNj5F+2n12PZEweK61mQBf73TyHzS+kfOwmi2BpLZ312vjmby8CkszSMrYTSOXIkI2y5vIPKt/LYZH1wVdcyG07lRTB4+PW52VRNO5+a+60aH2Jsqln2BFLYmC0i+37wrSRiLq3KP+vC2cXJvKpLCc35Ni+Q/9oLsuNX4ZL7uQjVI6wY8qI4L2me3Jwgml1XD88oYFp5E/1Z9uMHtO2A7tuLxrAwEQbuTRXckQyMLSm8CuFVPYBheUer3p0v2pYkPZnjW59AYzLEJ/GAKcKG41o9ACKpGkPP2/aPobhZWEJpYUo0vbt4SDmIy/u6Mcep/KqtH2ZweOZEv6yYiGNxFhZb1pPWX241YvgCczn24RLrfjPqjxBXfRj55X3WGUDmn86vCaJwV20Lhw3DeN/n9XhP6JWRy2bPCSuKzdtqjFuaT1qTnnhNtoj5sapEvqAEk9i9eZMc8kC6p7lu8JRo86Kuat8PEN7WmY7bRvfktM7msimBwj+dURDF5+exefwHeF4trQ6jA4SzZ6iZe2ma90bIrWXi5tI58v/lcYbVK55n1i03219sN6IrXjXvcbVGh3ZUsbBlduSMe2hbP96gDj/W/pcINbl8IFdiZJJz3QgbZZEE+OgO9ezy25MZWjYt4/SjpdgP3HYp22z+jCKVyvrtevSU0eqsu/TH2BMz5x8SZGIWIABEBIgJEBIgIEBEgIkBE4NuJAAFzfjv3wrUnDYPLIVSOwou8L67bu6ktEQz4FeWCPsKc6f8fpPcnhyPrTRfzsd/2tbUmDQZzHn0S4yY8Plbnvus57z/wGIZh9Li6x93DrbprMFuv3WlMeObPdGUqnSmKybsvG96qM/j2IAhdKqm7XFoPwfC62kC+3wQ0T3FbppPLO8JsnB50ezGCwT2RW7E9UYBmMw20acAGkNj3pEOdE6udE6uNQ8vf2RR3t8XzT+ZVBlMAqb8hAQiCfiqrv1xarzNa5Er96IKytn+xfmDpec2YpHOO0zKd+bpLqTVq9GaTBUR3W8xWEH+veV1lCKNxOif8CXNaQSjlRefJPF+EoPFv1he6+rJ+4liOV0SlL+TAX6DbltGVABLbj1xzv8Qk9WXn7mTRjkQBDsyJ5IZ81n4kS2qxvVmKeH3RLJ7JAvrFAW86UelMwRTgckldFJOHnyb5Vf3EvlQx+o7e0BhPF1TdEnlIrunSgXfNU1FMRKMb54ALBEHMJ63nCqsxHd1LJXV3JUMuO/ycSqPZeu1u45EsWYwXMCfrSVtyeQcMI/mno5g8/DMcvnkV/7RtT4ooCEl16YGOf0c8tCdFtK42rKsNoTSOxn95EzNfdx3JkoXTuR5xZblSH0wBhB2zWoM5jMbZ1Bp9mzVOq4V17b5U8cm8yn1png8xiDvngigA43FrGI3jL4oVCELop3Dm6y4cP2EYlnXPxyYI9qdLAslsWc/WpDvte/7hRg06Ij57EoKgnHc9u5KEFiso7Jg9nlthtn6RdePq7YZg25kqnHUMhuG5VU0Aic143Ipg3gmCF3VfJJG5faB+vtUQTucGU4CJJQ8wp95kiWbxeK0zr+snTud7m+R1Q2M8mi0LILEve5KN1dhW0ZkVFbdlOpgCuFTgsPfcm7JCbTxiG/28F3Iv0q65YArQMLT8653GX+80+itt8LnC6ph4/uFM6Spu2uaxxc1wOlfQPjuyoIyJ5y8pdN5MELW5VFK3K1kYRAE6J1ZxWvVOraOK7lW9CxEMrn8TumPj5rN7Ylj87YkCb7K91g0sBZDYqJDJ101bW8hBsoAfzpJ6RH+ttrMIcWlij/RcLCbfcoGAOb/lu0P4RkSAiAARASICRASICBARICLwJSJAwJxfIqr+7LNxeDmUxsH/Ce3DeNlvuhn+ww5hGFZm/v8Y0gmfavVMAAAgAElEQVRq/InKJDxry3jV6cMcXTYxmg0YzHnoUaRLG58rU192/nbXs3iX9/1rjZaTeZUZrzzsHnrfIWqpM1qulNbn+Uk6DO1TYzBHMXl3xH7eZ7dYwYs3a6/ddaTzQhBc3bdYN7CU87ZnZ5Iw6033DzdqRB2zRbz+7Dfde1NEjMetzocDjGbrz7fqQ6icYAog7pzbatzw7U1m665koX/lVTe1xhAqp2Mcb3sL3yvnq1YQSi7vOFPg7Vamcw9/cM3IvDKUylnDZUv8wS796YZrHFoOICEJdL30XG+0rCj1X3prMul5+6FM6fYEAU5iM43BfLG4FlsDgeapYArgzR6rlzP1aCZX6kOonGt3GqOYPGdZafvmKS86MNqx3mi5VFLH8ol4Wl4zHhsv2JUszHG/RMu650OpnOc1YxgtKe1lp2/D2U/Buaw3WX6+1YCQWVk856sONUeyZW9smr0wDF+8WVvE8yC669Dcm5e/32s6nCUNpgD4ECMEwYm2p8tiBVU6065koW8Cwi5din/adiK3IoLOFXd4+BBpHlmJoHO7JteMZmtcmqR1VO6yw8+pnJGrd6eIfrxZtzsZ4dHi//1yp/Gnsoa5VU0Mi//CT4m0jWYrCjqmvcT7ngZB8OEsaTiduzNJGE7npr/q8nDGx/1MTuVXovlZ8blZRrP193tN1IdI2sgZuTqGxfNjUkZ7734sqQ2lISrTayqEye3yD4IgdvPU4SypzmixWMFjOTLmk9YvxC7FHPjxZm0MCyHvYor92CWHQs/UegyLPzCj6Jlcj2Rwvbw1CrXhSLYskMz2CDS+aZzcFs/XGMx1A0uhNA7+Qurgm7uXayr94UxpGI37/XXP+Rfygd6dSUIQgl43TB7NluHLpLsb0bn+RG7FnhTRoUwpSuJ3NkBramw65MNzSgiCwmicwdktZFv/7kZ1XJo4mAK0j+GtHo+rRr+zxWF2VRPiaXl056fHevTbdWyCYHZVg29stoDxT9siGbxifn8IFejy61k9/KGdr+aze22Aq9T5R4GDsdZoOVtQ9UD2V1CshWGYgDkd7i/xkogAEQEiAkQEiAgQESAiQETgLx8BAub81m8xqoO3tLGFw7/eTCn1RWfCM2+VqbzpUJkT8hHm3PRAs/CmQ8yGfL/5OrcPe/mZBYvVgsGc+x+EfmZvDs3jn7T5N6p6k+V0fiXKj3EY63Neag3m80U1t/0KSepNligmr0zoC3sJZy4ms/V8US26U+nSTKUzTSwhuWChD7xICEJoE+54FRq9mf6oBWXYuOzQ50qdwbIzSejfnX2dEUm514a7vbVVh602etz3N/yW73arDmzVfkWpP5gpZTdPbbUhYY9FoLZ/MYDE3uYFIQ9tclcyvD9dkvNBEBXrx78F1pO2U/mVsQl8HOaEXKmPSxNX9b6XmG4fWw0iA18CLnI3tblVTSiNQ33YEsXkTa3gkaJO5Fa8rH/P0AJB6Pd7Td9dr/6wLLnr3kX9fdnwziRhXJo4+41rFdDxpc0diYKM111608fchA8qRk75L9825pbOaLlcUvfzrfpIhgeY02SxhtI4bR+QvAKg15uMfdhAXhYuldSeyq8MoXLwz6ksb+iOZMtQfqHOdlroXZPfFpDf7zWdLayKZPB4nkSJn9eMb4vnLyp0Zgt4vqjmUeWol9P03mxiSbUzSUi63+zxEMOmTXFhdEFpNFt3JvntRI7GYEZhzuRyvK+Uar05jMZtGFyaWFIVAL3nrld7lJx1F4TDmdJQGieIDLj7lEcbqvXmk3kVbxomYRi2WMHtiQL/yr+jo0AQdL6oJpLBC6dzcbCu6RX1rmThpZI6FGrNetN9sbjWjwxjl7H6/kb1ziRBMAUYXfCgsFLVu7ArWTi5rJpf00Qxed5IksIwvKYyHM6SRtC55wo9AI3ni2roj1stVrB3aj2KyWsZWXHp8JYqkS8GGZLYBIHH0WEY3p8uQSXEF9a1EXTu7Kp6S2O5Mz6YKT2SJT2UKV1R4v1Ge1o9FkIB0OX6eE7FlvI+nsitOJwlDaEArbhBu3qrAU16arGCMfH8LQ3hbnbO9akvOo/nyLbF8z0C1dzW6QgG9wa3b2FdG07nep/w1XnQz6/JedsdQGIfSJfgrxhY9g0vn//Pd+xL90DAnF86wkT/RASICBARICJARICIABEBIgLfWgQImPNbuyOO/rSMysPp3Pk1reOFz3ud9Lzdv+DZZn4kBnNaFbOf590nra/dbSzhD3xS9RkvIAjCYM5994MhGCPDfEanH5qSHzT7Fxgwmq1nCqrin/pTXRaGYbXefKag6kWtPzXTjGZrNJN3k+9n+o7eZPn+Rk28XyH5JYUuiAL4ljbvw6128X9Ta9qRJLwt9ifQa7JYg8hAywjeKX4XruBWWazIKfuLN/2Wmhd3ND9c1Jssv9xu+P5Gjc/b4n5w4k/eRWXvQgCJHcX0gFRhszxbWBVEBs4WVH1ReVj6o9YLxbXb4vFgzrGFzVAqB7v1yxu6QDIbaMbLaIvNwi+FcZveYOKz9kgGD0f7UW+yhFCAvul1bNCMV4i0qQ85CEsEAyhDKN2NjEGpYOBica3JYsXGgmFY0jkXTuP4PZ2Y1mC+UFxLfdgcweDaD+dQhiCod3o9msXHABVh+6y/kvDZj3WmoOp8EUKew1/Ar3P79qaK0Bx4NhJ/Q87bHvt+Pqd8qaTufFFNFJOH/xxCEJT2snNvqshiBa0gRHvYQrMxCz9naOe2w/PK7QmC5PKOGE9024cVI6fyK802wecfimrojxDYybnDrdZsaIwozJng/osKCEGHMiUHMyToetI5sbo7RYTD4cb3YV+qKIrJC6YA+DInq5v6aBZ/egUBtCAIvnanMfUFoqjs3z+LFfz+Rs2OREEEnYspSDsMAcHwTX5/EBkoAHpRBie3dfpIlgzneIdDD769PJ1ftS8VIQIOz3uAOd80TsaliRfWtasqw4EMSYV3kv7yTf2hTOmOJMFJ3AMWK0p9CAV4XIVg/DNyTWyCAP+N4+VkFxU6NCvtaU/SFFqDOYQKYNzffaliaZfvmsn27u1JEZ0pqDqYIXV361Hj9FddGOE1/mlbIJm94vXR1YMZ0hO5FSFUTpP7VMcqrSmUyhG2v//lRb7fnOh1glX76XgsM5+0XipBKML4MKcVhPalibfF86dXVCAE7UgUZL/t9uHEj0d/vDTIfN0VQGLHpYk9rjldE2seF1IvB/0WzAiY81u4C4QPRASICBARICJARICIABEBIgJ/ZAQImPOPjLYvY7WNySPoXPyflD70y3zSmo6rMLbVPjevb/8Ic676Ez+7eqvBtwxn7qZw8GE4hnSarSZ3Zj7UX73VUOpXOqPZAp4trKI/QlTX/Pi3qTUdy6kQfNgT8UvPFisYzeL5kXeLeqU1mM8VVuOr4W3Vf43eHEQGuC1+RkrWVYbtiQL/HqKHICTtWbP77a2tzh3ltTCftP1UVu9D26/VpGVkJYTKSX7e4S+tua81ka81rrRrPoDEjqDjIVWYbyqdKZzOPVNQdThL5nFbEGvlQ4HyoPnq7YZoFh7M+bph4kTuxzyyVhCKZvL8u8zie94/o4hgcDNedUYyeDjaj21j8p1JQvvknfdlw3FpYnwkxuXQ+ezeuDTxsRyZS1RmRq4+mi1jPWlzULzsnlyLZPD8KM2K+qbRm7+/Xp1iy4Xs0lu0sqJ74UiW7GJxLYoswjA8PK8Mo3F8QHlxRoFh+FCm9Odb9WE0Dk7iTxCE9qdLHlW8p04iMt3P2w9nyQymT4Bh/IFwrp4pqLpcWh/N4qFMQXeWKp3p3PVqlFEKQVDuu559qZ7TZ7rrzV19/4wiJp6fz+6JxMWhYRg+d706ubwD1SMt5vf/cKPGL2zC1U19IJkdSGIz3Us0o2kpH1aMoFCHUmsMpXGWFL6c3oMgaGeSMDZBEELl4FPoqnoX9iK5ct8fZct+0322wAPp0F2QcepNZuu5QkRWNILBXXQzI5MF3BbPLwB6MdXciSVVNMtDrl+cQb28dCxHdjBDEkwBBuc28JvcEQ8dyZKtqw1qven7GzVenldbUeoOZkgOpEuOZOElz67uWwwiAz1TyBGQTa1pd7LILwv4/JpmX5r4WLbsVH4l/uxe10/uT5dgaxH9UUuKnwDv2ATBxeLagxkSfJjzVF7l85ox1MmeqfVt8XxJlwe9a2xGu5KE5wqrQ6mchqFlrNKhADRP7UwSjtt0TWAYflU/+YWyEvx2t4n2CBE2QE8POLiBveyeXLNPDEG630R50PxFj0xhQ7sspL3sDKNz96V6yLip0pmO51ScLfzTJHRwOVn7SgLmtI8GUSYiQESAiAARASICRASICBAR+DtE4FuBOS0Wi1KpVCgUWq0W25VwdwPi4+Ojo6PdXf2L1XeMr0YwuFPLeFp5PkyZ+rAF3X3zoa3LJqqbezCY07I87NLGt8orpXV3Jf7M+Hj0cQwGc+pMvmy0uZvIxeLap9X+VKWzguC5wmrSg2Z3I/pWv6ExHsqU1vT5U1sYhKAYFrKR55tL7lqpdaYzBVU4OercNcSp1xstgWS230VQV5T62AQBtpmF48CWLgVTgPrBpS01wTeu6FnYkyL69Y5julP8Vl/9KuNxaxAZ2JMi8svW/Fefzh/sgLB9NoDEDqVyvBlX1DG7O0VUJhzYnSKasnGhvGnlgw2yZ/qwOYrJW3WfeJXyoDn1xSc5/3693Rj/tM3j9wQf/HHZpH1sNYrJy2f3RjC4I660H2flmoEZxXVO3+n8KowwBMOwsH12V5IQX+fW5YjJ5R2HMqWnC6qSnBg5GoP56u2GABL7OrfvA3zzvg85IuEoLRH4mU+v1iMrcB67B+fhWVLoYlj8HYmCETvS2MK6dkeisNeGbbicpm+VO5MEpPvN4XTu2w9JQJ37qelbjGBw7VMaV/TMh1A53ZMfubbOrbyvOZQp/eVOY0w8/0XduLtWVhBKet4eTudieMAD2UgAia03ftQZdtd2S/Xdk2tRTN5t8WAoDe/dbbaAgWQ2plTfM7W2I1Eg33SbS9J7HxYV2mAKEEQBaO7PY1X3LgaS2fYYfAyL79vtMFvBHYnCPSmiUKoHoDS5vN3+iFiZaNCb/LLeTxy11JssZwqqjmbLIhm8hXXX3ycbh5b3pIjMn3Jn9ySLhB3+FD5x9vxghuRYTkUwBRjwlAwy6033ybxKjcFssoC/32v6+VaDc2/ONYsK7f50yen8yv3pEuerWE0xvz+czkVpxCAEHciQJD1vd1i+MGPvCzNy9d4U0bnCavtzMM7NFWpDEAXIeNWFnQt5Wj22PUHgFypzBIP7653GAxmSJYVb0dqldW0YjYN9NKj15sNZ0oRnjudUnD1Ha0KowKWSujAap27A9fdAKwiRHzSfyqvE+P1Ty6pwOtfvzH4Yhi+V1GW+7opk4Om3q3SmH4pqdiQJlFojOoXHlaPnCqu0Bj8vfe4i5lyfXN6xPUGwJ0WEf+qoZ2o9kMzO9/evGGd//rAaAub8w0JNDEREgIgAEQEiAkQEiAgQESAi8I1E4JuAOY1GI5PJ/Oc///m///u///d//ycQCPB3MP9WMGfnBELRwCGR+PYkke435bx1nffLtw5VZQc/wpwLfkulCcPwjyW1/mXInXy2E4M5Nw0etLy2FI3vr1e/tiWC2lIrHGMQgr67Xn3N34jUhsZ4IEOCczYcxyWcS7EJAjQ5EI7NVi9tak2n8itv+C85KwzDJos1kMzG2SXfqpOo/fyadls8/437zXffug2nc6v9CkgfzpQGkNik+37Gzn2bnfetVDrT+aKacDq3GTdDlfcd/q0sua0zASR2EBnwOGsQgigPmn8oqumaQOCTXjsVVo9tt2rwy+2GpOeIGKy7zUeLFWFBOXDmHleO/lBUg+1Zb3XQrdo3DC5HsxA57ggGd8iJFGWxgmcKqqKYvCgmz2HnuntyLZrFQzlMzoOOLCjfNExWdM9jBC/UxgpCP5XVnyusvniz1lmu/Le7jUezZTcFA12Taw59giBEutd0OEvqDmtxsPfy5abOdCK34pZoMJgCWKwgygW0b7umMpwpqLpSWq/QvN/URq8q1MbjuVvLQmffrbtyOJ3LfNIaQee++pAG1cHSbAFpD1tO5Vdi5C0YhmdX1UFkQOQnVGlnkpB8vzk2QfC0+j1Dy94HrdEi6Zp7Wj0WweDaj8hvR96Ds6sae+PPL7ePrUbQuc9qxoLIbJzeUD4lr3UGtTHb+IX2SDBOW/xLs3J1GI0TSuWQ3X+m3JEMhVI5WoMZ6+p8Ua1vx9cMJuv2RMFBW3rOhXW8YB7KlJYJP+Y7eF4zhsDMdulsMWc+p6A1mE/lV562LQJza679Id1vpjxodoCdEp+3O7/BP8cT57Z7UkSn8yuDETFthfNVtGZdbajuW7xqk4W3WJH3d8arrv1pYgwzc9fQ9rbS7E0V/3yrYU+KyJ2ZFYQul9Zn2/3cuHan8be7TQ7rnrvmOPVTy6rdyaJLJXXHcvC4pO+aphwgdvRkgF8SPAeRAdrDlv3pkkU3CDcMw3nsngufaoy/qp/YnSKyp/67m6bBjKQt+P1eUxiN6+5g4prKcDwHWaKxTtR6064koW/HCLBOXBbOFlaVCQci6NxJV0dvLVawcWiZfL/pdEGV/WfljFwdxeThIMEux/JjZcKz9v3p4t3JeDCnFYTuS4ejWXyXU/OjM39kVwTM+UdGmxiLiAARASICRASICBARICJAROBbiMA3AXO+efPm3//93xcWFmAYTklJ+c///E+9Hu+M+d8K5kR/kHvMrLPVh+na3cY8tj+Jd6o7xz7CnLOfkG+26puD/fmimie2pD4O9T6/PFu+F4M517T+zHp4trAKaJ7y2TGXDX+4UXPVu5P1Lpu7rFSojXFpkhZ/w0W7koR+T8CjUBtO5FaU+VUK2AoiSrCvG/wprQzD8PSKOiaez/2wj+wy8j5UxrD4Mu8SZXnT+eCsAs2j9iWyxHnjwOfYGM3WuDQxxd/k5s9x6c/S9l3TFHrfPTq8uqk/nCUt4vUZTJYgMlDvhkHisR9vDK6U1me96Y5gcN3BnGO2vJgO+9H904poFm9ajqTcw/4gCDm+sKLUOWAJmIHPhcqehW3x/LuSoQg61wEtsIDQdU5fIJkdacsU2PipqKBaZwqmAJU9yBcb7A+EoIqe+cFZRTAFCKFyAkjspk9boTLdzCetl0vr7bloMAxrDeYAEvtR5QjWm0MB1X64LxtG0EgI1hstyxu6t41T9oDfVklUSq3xaLbsSdVoIJm9N1XsfDpE1j0fQgGct4YtVpD5uHVfqhjLq+rgrQ8vQRAKJAOpLzoiGNznNa6ZlPRHLYEkdqng46Y/qtQdTGE/kLkNnffOQBAUxeQxn7RuT3AtUV7ZiwhEB5LZzE85xx3jq8jt9qsCOQzDzcMroTYJ3wASHszZPLwSQGLb45o/ldXn+CNh3sTSZiSDF07n/na3yWUYrSDEeNx6pbTO/mqJYOBgBh4F0N7YvqwxmLcnCI7nVITRODiYsc6AaDZwWz9K0/PaZgLJgN+xFpXOdCKv8kJRbTST5zK7hMkCBpDYdyWOGiePKkYOZUrtp+b38vYEwXfXq4MoAA6p+rZ4KIgMBJGBUsF7SPhx5eiORCG+IDDq6sSyaleykPWkbXuCwJ3zBpPFltV4EzMo4vX/UOSHTNvjS5s7k4TX7jYeyXYLc6KnRhy+7SwpdHtSRM9cnVHAnPSmYLaCgWQg/mnb/nSJu8MlRrM1jMa58Sn5HoKggxnSUjsM3t1wSq0xiAwkPGsLp3MdPkqwJvUDS6E0zoyd7oLBZL1YXOvf04HocEezZeW142F0LiaQi7kBw/Dqpn5nkjCMxnH4KIRh+HhuxbEcmf1BB/uGX7rMfNJ6PKdiZ5IQh7++qTPZeMlivxPuv/TscPonYE6c4BCXiAgQESAiQESAiAARASICRAT+khH4+jAnBEH//d//TafT0fhCEPTPf/7z9evXOOH+W8GcPVPr0SyeR8kpnHC5vPRzWUMhx58wp/rBaQzmNE/5M5fkd9er/SsE+sPLgxjMuaz6ZA/aZay8rzyVX8n3a8JLVCTqp7J6Zw6N9145WyrUhn2pYvsdT2cbH2ri0sSZr7vwqdhb7XZNZTiWI/PL9jQ2NATBAST2yzo/w5zjS5vRLL6k09uUS5g/+IUdiQJ7ShC+Mf5VlOeEwl2sp234xt/m1eaRlR2JAlT+7tv08Nv06nX9BHrfPYauZ3Itkvk+xeOBdMkLf79N7ONzobi2iIfoGbaMrEzL1Q4IHARBt0SDe1JE859ypAwm67EcmYPq8vDcxuFMaSSDV9O3ODCrcFgwQQjyWeuY0zKN8vaCyMDF4lqT+X1+x4V1Lfl+8w4bsUzWPV/Vu+CMsB7LkV0oruW2zvDaZtDEkCsbuhAqJ5TGOZot65xYu3qr4UDGJ1vk8k39kWzZbfHQz7cafiqrx/aFIQh6Wj0WQgXw1+1nNWM7EgUZr7ruy4aPZsuCqUAIFcCOiYAQ9Kp+omN81Wp9n7AQux0qnWliyYU2/rrasC9NLOxARI8DSOxfbjc43KY8ds8PN2qwfuwL9YNLkQxe14Qj8RS10RstneOrVhBaUxm85OYazdZAMpD7tjuSwXV5+EmjN0cyeFmvuzT6j8RBdLjTBVXOChZ6k6Vnat3habGfgnPZZLFGMnlpLzu3JwqcsSsYhu9KhlC6vD26DMPwusoQQGKX17pGZ50H8rKmbmApmAJUdM8HktnudDgtVoThGkhi2yePBJqnwmgceyFZL0d0MBueV8aw+JEM3i+3XQuhG83WE7kV75o+OQEm6ZoLpgCYkqdDnzgvN7Wm2ATBucKqMBrH4ayDfauhuY0wOrdp+GM6w9r+pSAKMDzvIUulfSfelJUa4/Gcip/KkFytLiW+p1fUgWS284c4cj6AyllXGXqm1jd1/kwSj7oNQlAojXO5tC6IArgj9kEQfO1OYwCJvS2ej6VKrepdiGZ69aNjZEG5PRHR8Ihi8tzFStg+ezBTav8GF7TNoHlA3TXxsh4dnf6oBQctNpissQmCgZlPyKw6o+VQpvTz03ZoDeYQCpBc3hGXJnYHc9YPLgeS2Q1OeQfeNEzGJnyMubspL2/ogshA1pvucDo343UXlvnY3p7+qIXxuNW+BgShtJedhzKlzh9J9mY+lPemIkrLwRSA8bi1omfBYeWUdM3tTBK+rBt3Xoi6JpDvFY+rRrEfCFYQcl6lfXDJmya0Ry3fXa9GZLqVbo9Qr6kMcWlid8rA3ozyDdoQMOc3eFMIl4gIEBEgIkBEgIgAEQEiAkQEvmgEvj7MKZfL/+Vf/uX58+fYPA8fPnzy5EnspXPhbwVz9k2vR7P4flcOvFRSV8TzZxIv9ePvP8Kc4/XOd83nmjMFVe7k6Xzr89LroxjMObfxydabbx1irY7nVvgd5bp6q+Fyab3zrgE2qA+FdbVhT4oI54C/D33CMHw4S5b2stNh48O3rrBWcqX+SJbsWY0LbUDMxodCCBVwRwbyoTe0yfDcRhST51+BWRiG96aI7CkpPrsHw3Dj0HIYjVPE7T+cJU0u7/icrr5W202taU+KaHuioHN89Wv58Gcct7x2HIWp9EZH+MdhOs+qxzAFQvKDZmdkyMH+c16ezKt8XjOO8BopQDAFiEsTX73VgO0Xa/Tm80U1CU/bnYco5vc7pNmLS5MEkNi7U0QBJLYzt2ZobiM2nt+3FQFekwV8XjM2saRiPG7dnSwS2BRHA0hslFo6vrQZTAECSOyqXryDMs0jKxF0Lhr5rDfdVhCBKjG80GwBRxcQiAiTEoVheHAWWUbaxuTX7jQGkdlxaRJ08VfpTHFpYo+f2iYL+K5pKsjmGzoQ4zGCb31/vVpntBjN1hgWP4DEth8RDe/jqtFgCrDmlKxRvqmPief3TK2j8w2mAPZb7aubehws3GwFw2hcd6eU8oHeQDL7vnR4e6Ig8Vm7y884ixUcX/zIA1OoDYFkoEw0GMngXSiudc5Zzm6a2pEodCnyn/S83Tl5ZMarrmAKINjK4SStAUFS89k9OxIF9kKRaBg1evOPN+v2p0uWN1zk6otLE2e96XL4iOycWL0nGXKodH7m3dUI2mdCqZzm4ZUgMmD4gME7GDOftAaQ2IcyJPawx4pSvztZhEHgDk28f9k/o4hNEESz+D+Vuf7ip7LRmje1nyB5nROrOBA4zujrasO2eP7F4tpwOl7SelHHbAyLb/8kdE+uBVOAZn+zadfVhqPZst/vNcWw+LdEgyNOMGrD4HIQGXAWrx6ZV8YmCGiPWrbF83+8Weuspts/o9iRKKjGXWFwAqXSmRBJ1UctQRTA3VGDhXVtXJqYdL/JPlDrakMQmf3YCw2VgRlFDIt/WzyEkxf2hxs1ic/aMXALhuGhuY3tiYLPp9UOzW1si+cnl3cccE8Lbh2V70oS2oOsaMQuFtf+cqfRZAHtAwiC0ITdamN/yWV5aUMXQedmvu6MSxM7nMVB7UEISnresTtZaAU/GQiG4bk1zb5UcVyaGF9VZWpFFUQG0MNAASS2A78fHeVojsz52yzCuaRxllytQi7n4mVlDIvXOLSMfrKcKajCsm/CMCxX6uPSxGkv3Wr5nC+q2Z4owFjCbWPybfH8z9cu9sZz8oPmy6V1sQmClQ8w54xc47BaLm3oophu0+t6M8o3aEPAnN/gTSFcIiJARICIABEBIgJEBIgIEBH4ohH4+jDn4ODgv/7rv3K5XGyeFy5cCA4Oxl6ihYSEhL0f/v7xj39ERkY6GPxVX/bPKGLi+e42KXye9fmimpIPElU+d2LfUPPsEgZzmkaq7C99ZvlkXqWzUN7n9Pnzu1MYzDm57k/87Gi2DH/X2we3r91tvFRSZ7Y67pL40BXWZE1l2JUsHJz95IQ7dtXnwoncipQXHc47Sj53CMPw0obuUKbUvxlPYRiOYAy5m+wAACAASURBVHCferGLtyXP+6YVkQxkD2hLrTwaH0iXOPBgPDZxabCuMuxMEtIetcyva88UVKW/crsb5bL5N1IJQlBt/2L807a9qaKGoWWHbcpvxMlv0I0nVaPo1qQ9RuXSzytl9ZjYXZlw0B104bLtViv3pYpl3YjCZwCJfSBDEhvPP5QpjWTyymvHFxXaRQWyBe/MgoJh+GX9RCCJnfCs/drdxhe1408qRwPJwHc3qofmNh5Xju5NFTEet66rDZg/v99rQlG6U3mVDtvrV8rqf77V0P1pqsvJZVVyeUc4nYu2Op5b0TT8fm/3UKZ0YEZxNFt28Wbdw4oRj7u0TcMrSbYkfJEMJH9nBJ2b/LwjiAIkPW+3gpDWYNmfLtmZJKzoWRic3XhZP/HzrfrzRbUWK0i634xG5jq3DwShfHZvNIvnpZ5eZc/CwQzJokK7vKHb1JqO51QEU4BIBu9KaX0QGUGUaY9aeK0zHeOrWqN5UaGdXdUcy6kIJLOTyztm5Gp28xQ20MK6NpgCLNu2gIPICBR9W/xeD3ZuTROXJo5kcF2S2NDgZ73p+qmsfmBGQX6AMF+f14yfLah6Vj324826faniK2WIP6E0zun8KpfEvt5pBF6Nf9qGfqxMLKsCyYjeeCSDF0Bin8yrxNjJepPl19uN2xMEv91tdJlW8GHFyMXiWuyRmFhSFQC9aIS3xfNpj1pc8hqdwdcVpS6czr0nHd6ZJNyVJOS2fJRFhWH4XdNUOJ3rTiogn917xe7Qks5ouS8dDiQjz39t/xLm25YK1zl9l0vr2sbkwRSga3LVga4EgpCkay6IDBTz+x2QVAiCrt5uuFRShzGG7cfd0Bjts+vZX3Iod02s7UwSbovnB5LZp/MraweWHN4U4s65w07qrIsK7c4k4W3xEATBIATNr2m8/OawqNDGsPjX7jaGu1LO3NSZEp62ke41JZV37EwSKu3yxU4sqUKoHFHnrIP/6Eu9yWIPxbm0gWHYCkIOYZRv6g9lShmPW9EDBHtTxQ5r7H3ZcAiVYw8IoZ1brNCvdxoDycjSF8Pi89vep01Fr66rDNQHyApw9XaDO2fw66dXVCFUIOt1VxDFLQUcaEao6tjJEqzDzNddv99zLUGM2cAw3D25HsngIasxmT23qnGIDAzDK0pdINlROUNrMIdSOc4y1/Y9e1Pun1FEs/jZb7vj0sTO9hqDmdMyfbG49vd7Tc539m3j5N5UkYPIcOfEWiSDdyKvMi5NfIPbh/LvnXvGajrGV3ckCq9z+qJZPMqD5luiQd2np4iMZuuuZKE7guDwvPK769XBFEch5fGlTQx1HpzbCCQD96XD4bbjMqFUjr3AOwRBwvbZUBqnpn8R8wotdE2sBZLZaS87sZXc3qCmb/F0ftWL2nF3b7oNjVH56bkEtHkwBRiYeZ/4YG+qCFONVuvN9EetUUwejtgA+knEetJWXjsu7Zq/we0LILHLhIN/wLe4a3cbSfebtsXzlzd0VhBqHFoOp3Nv8vvtPykuldSFUDnuAmIfvT9RmYA5/0Q3i3CViAARASICRASICBARICJARMAvEfjTwJz9/f11H/7OnDkTFRXll/l/+50MziIHltvH/ZlCEobhc9ernYkInxMNzYurH2HOAV9SLrkb/VhOBfDpTqI7Sy/rrwHnMJhzdPV9OiIv2+KbHcqU+j2VHeVBy8WbH5US8R3w8uqayrAjUTC6oPTS3kuzs4VV6N69l/bemC2saw+kSzh2Gba8aeXRZls8/1HFqEezLRl0TaxFMLg4uzxb6g0zPpole1U/ib30raDUGH+8WRubIBhb3NSbLD+W1GW/6fatq2+hlcmCgEAhVI7fH4xvYXZfwoeHFSMoorOuNuL3H83i1Q++h+qlXfMYsxO/lW9Xo1m83ul11LG6gSWDyao3WZLL24PIwN4U0dDcRiiVs6b6iFZio3RPrgVRgG3x/FAaJ5DEDiIDv91twtCapuHlYAqAaH2DiDTrjFwdQgVeN0yeyq/cniA4d73aYgVVOlPLyErbqDyUykHSKD5ptVqh9rHVMtHg8obuaLZsRyJiGUrlRDJ56a8628fkASR2bIIggMRGMTYHWALzzaEAwTAIQlYQWt7QtY3Ka/uXtAZLSnk7JlEwu6qhP2oJpiBoXyCZHUhio9vijMcIAy+SwQ2iIGyew5nS1BfeMrBBCMKgJgiCp1ZU6yo9CnVfKauvH0RkToPIwM4kwen8SjSxYiiVk/W6K5zO3ZMiio3nYxDXwIwiksFV6Uw7EgVhNE7Ki44YFs9gssAw/Ovdxgg6t3tyDWdreHBOgQKZKME0iIxQYAPJ7LhU8dSK2mIFBe0zbxsn96SIFta1DlDQps6IBsFGuERAoM6J1UAywqCNYiIwZwCJjZHzJJ1zaI0zURW9I9V9izuThBhnrkw0iNqfyKso4vUHktm/32uyBzXHFzd/ud2wN1WEDYH2g6ih0jiCtpmdScIAEvtMwcdDXXOrmmAKcDy3wkHXF3skuieRz4iNDwB8y4g8ksGNoHNDqZzLJXUuCWFYW3eF72/UlAkH28dWQ6iAM8F0XW2IZvEPZEjs0RGsK5vULcBx9f3qlzuNe1NEzvgQDMNrKkP80zaM+Ns0vLwnRbTLFo0AEjuczq3p+wR0oT1spj/6RFQThmEIhqkPWy6X1GmNlgKg13u994klVRSTl/SsPZzOHfv0OwxyOMB2oCGQzA6mAFc+ZZeubupDaZwXTqLB82van8rqY+L5JYIBDDXHQuRQeFgxciynwv6oBELLSxPnvuveFo/wpANI7MeVH79aWEGI+bj1x5JP8pJifXZNrIXRuJW9C0W8/hAqp/6DtOng7MahTGkMi/+kaiyYAnROuJAuaBtbVeAu5p3jq2E0TplwMIgCtI+5+AUxuazany5JcbWqNA4tb08Q4Lyv0Sm0jyFDiDpmA0nsfWniiWVH1WtZ13wwBXA+QLArSYh9ymDR2GqhbUweRuPclw3vSxU5t31ZNxFERt4RLr+SmSzWgxlSh8fyQnEtegcDSOwgClAAeMjrwWudOZAuuS1+v5KEUDk7koTJ5R3YMtI/o9gWz8cJ4/SKel+auPxDmmGrFarrX9ydLNqZJJy25drstKGVL+rGw+ncw1nScDqX9bQNW9uRr8cZkmjWe5F5+yCAEFTZMx9G42S86rKvh2GY0zIdzUIO3ARTgKu3GrClHjOzgFByeceeFJFDAk6l1hhC5Uwtq9AohVI/Sl4PzCoCyWzS/SZ3Sx/auaB9JoQKIB/ZNv2GnUmC7QmCkU/fxZgbn19Q60yTy6rBOcXFm7UZr7uiWbzavsUHspEY21s1iAxgHxZWKxREZv98yzUf/fM9+Vo9EDDn14o8MS4RASICRASICBARICJARICIwNeKwNeHOVHR2mfPnmEhOHjw4KlTp7CXzoW/lWgtoraXIMDXNXIOkcea0/mVdyRDHs28N9C8Jn2EOfv43jf0aHkkS4b9FvVo7I0BmXcBgzkHlv0J9uxPlzhsiXrjD74N80nrheJaj+fK8TtxuLq6aYhNEDgr/jmYbfUlojDpRntwq11h9nOrCGFI7IaBgZlttbAzSXhfNrzVVvj2baPycDp3S8KY+B2iV23Cnp/FOTaarZdK6k7mVdYPLoEQgri8bpjw+5LizVz8aNMysvLrncbdySIcJpkfh/uzd4XmCwwgsV1qaWKzW1jXRtC59lSSUCrHOYHWjFztkuqB9eOysKLU906tY/wJqxUMpgCLCi26Z2q/11nVuxDD4jMetx7MkLrsChV3XVMZlhS67qn1Yl5/k50WpVyp//5GzbGcioV17bnCqjMFVTsS3zOWnlSNhlCA9FedoTQOCrntTRWXCQf2p0uKeP2oJzEs/r408eyqxmQBV5R6jd5sBcHOiTU04SL7gySsH9nwSq3p+xs14Ta4K5zORVNxp77oQOmVASQEswmjcT7zPWswW6OYvMzXXSAIFQC9qS86f7vbGMHgBpER3PFYTsXyho75uPVMQRWqpdkxvmo0Wyt7Fw6kSzR68740cQQDSXYYSGbX9C0+qhzZmypyluJ0uF9ag+UGt++HopqbgoGs191pLzvLhIN3pUP2aoobGmM0i3csu2LfB+3HmVV1ztvuHYnCUBrnSdUo/RFy1geEoNcNkwEkds/UWhSTh4Yr910PBEFmC3j1dsPpgqqX9RMOGTExf9R609FsWekHEYufyurTX3Y+qxl7XjNmsYJvGia3xfOxD5rJZdXuFFFsguBsYXVsAj/jVdexbNnqJoK4Nwwuh1AR5GlXMgJzBpLY0ysIugPB8HVO3+5khGWODepcuFRSR7rXhCIfR7NlJ/MqN7WmtjH50WxZAImd9Lxdrf9E3BWCYF7bTCHQ6/I7wD3JcAyLPzKv7BhfDaVyAkjsa3c+Jsi0IiTgnhMI7OqYihVzrJDTeyRLigEnMAwrtcZS4UAQGQihckoEA85NBe1Icj5M6VfaNbc/XbLfphr9653G3+42XShGbhY6hNH21N2Tuvi0FXXMbU8UHM+pCKVxwunck3mVzrRCzE+s0DetiGBw89k9iCRD9Vh57Tg6lNZgZj1ti00QvGucTHvZebmkzj4xJwzDBpM1gs4t5vd/cA3pEoSg+KdtR7Nlp/MrA0js3Hc9K0p9/4yib1rhEp26eLM2kIxkssS+lI7a8lM+t+XE3Z4gOFNQdThLqviAZJss4KWSupt8t8fpdEYLkqTQYP75VsN316vVevOm1kR92BJG4/DaZtCkqqcLqtSf5prlt80EkNhZ7s8qLW/okss7IhgIsTiIDKBS22gM6waWzhVWZ7zqPJAuuVBcu7CmxWKLFZQa4+FM6Q1en9kKrqsMM3I1BMObWpP9cwLDcNPwSjAFqBtYCiIDgWT2XfEQ5UHzqfxKVJgUhBAO+o5EgfOj+/2NmqfVn3yrgSB4fk3TNLzicUnBnJR0zYfTufy2md3JQqwShuFFhfZp9Vg4nYt/LqRhaDmKyWM9bbvB7bsvG67sXYhk8N41TXVNrrWNyW+LB2MTBLzWaaPZqjWY+2cUq5v6hXXtilKn0ZtBCFpUaJmPW0/kVqA65AczJOeLavaliiPo3LdNU1qD2WC25rF7rpTW2z9v9n7CMGw0WxOetR/Jkq2pDB3jq99drw60nZyIZvEYj1ohCH5WMxZIYsu65yPo3IxXXZKuuT0pouuc9/jrm8bJXUnC2VU19naz7x+C4GJ+fwSDiz48epPVYgUnljZ3Jgl/vdM4ZMtmHUhmny2swk4Iwba7LO6c25UsjGLy0AdsdVO/bjtsVD+wtC9VLFfq0Q/KaCYv713P+NKmyWzNeduNzsLeAeeyFYT4bTNXSuuTyzvKa8cX1rVHsmTnrldLu+adjb2sGVlQzsjVDkC+Umsi3W9CT9iE07m7koT3pQipOoyGgLsJz9q5rTNXbzecu16l1BgNJuuLuvFQGsfvp1S9nMKXMyNgzi8XW6JnIgJEBIgIEBEgIkBEgIgAEYFvMwJfH+aEIOi//uu/WCwWGiAIgv7nf/7n5cuXOPH6W8GcI/PK7QkC/I0znFi5u3Q8t+K+q40nd/Ye67Xv6BjMaex659Hee4MDGRKXuoXe9+BgSRdcwWDO7oU2h6uf83JfqrjD1an5z+kz8XnHD0U1LoWnfO52dVMfw+LPrWl87sFlw8ul9cwnbdhJdpc2W62ckav3poiq+vAS4G21TxiG96WK/QvzY5kv7dEaHxxzbnKusPpx5YhzvZc1EATnvkN2hO1xIJxdby+7/epmkG2L8FxhdQyL783m+Fd3+Os6gHHX5tddbGpjvlX0LMSlibF4zsjVOxIFNiQJM0GSisXE83+6Va8xOKb5bBuVMx63Omg2oi2tIJT2sjOSwUPZVCqd+TqnN4LBVaiN6J4pJn+HAi2n8iuDyEDicxeJOT+68qHk8DxDMMxuntqbKnpWPRZIZodQgQcVI+hec6uNlBlMAY5kybgt0xNLm3KlzmiyxiYIUH3aAJsWrjPBpXcKYZ2mveq0WMGDGdIAEnsDl0r1wTVv/8/I1bLu+eM5FbuShShyn/uuJ4TKqe5bLOQg4n7f36h2uZft7QA2u7ZROUriByEIBCGd0bKi1Nf2L1b2LgzNbUAQsu2uM1raRuU7k4TIzaobz3nXc/V2g9ZgPpIt25EkRBP+PZANH8uW2Q61uMXPMMdAENKbLCYLiA6K1dsXCoDeX243hFA5qHYr9rjuShYtb+iWFNpoJi/hWfueFFE4nbum0kcxeXtTRD/fqv8R0Vy1CNpnIhjccieinv0QIASlv+yMoHN7p9bbx+QRdO7w/IbFCqJolhWEct52h9O5nGYkXbct+Su/omdhU2c6lInc7hAK0DS0AsPwm4bJQDJyXGBXshBFd9CPknWV4XhORXJ5Bw6qAcOwsAPBCNtG5UqNMZTGmVh6n3l0U2dqGERYyI3Dn6CkNX2LMTY92CJun/10UNzuYIYk6TkiFG/jBSIw586kj5DP3KomhMp504gnBtAztY4ppk6tqJtHVuKftgWS2HtTRcnlHTsSBXKndK1oQLA0sW8bJ49kyVCY9m3T5PjiZgyLjxETa/oXQ2xImIPzMAxrdCYUrh6Y3UCyM7B47KZPcqVPLqte1U/oTVb7tq2j8jAa9454KILBDbFRsVG54+7JtdgEgaRzDoQgsxU0mKwOywIMw/RHrRdv1trn5BN2zEYxeV0Taz3T63Fp4mAKcDRbFsngRTK44s45bFzIlkxRrTeF0jj0xy32WrIoQ7emb3F3snBfqriqdyGIAgC2pwi9R8dyZPZdYX06FNrG5CEUoKZvkfKwOYgMMB63ol+l+G0zgWQ2+0OHMAy3j8m3JwiCyEA0k9c5sSrunHOY6fKGLjYB0RDemyJqHZUHkYF3jQjwhi6t6J0KtDHFp2wIvYMnCGYPwWXCwVAaJ/N1V2yCYE+KaF1t2J8hOVdY1TIqf1473jWxZraC1X2LASR21wTCJA4gsW3MeEQTOx/oUesRTPRCcW3uux7n/pPLO375VIx3blVzKFMaRuNEMLhlogEHjHl5Q+f8HD6sGDmZWyHunNuZJHxVP4FCceymqW3x/BAqcDq/yh7cdfbBCkJoyupAGwU5Jp5/7no1huOCIJT9pjuUxkl72VnI6Y1k8C6V1H13vXpbPD8uTTy3qrlSWhdIBi7drBW2zwaQ2GcLqjR6s0JtOJ1fGUbj7EpGxGy3JwoKOY5vWwdPmodXticIuK0z0SzekSzZ48qRJYWubQw5M9czuRZB59IftczI1RGIyOoABMNA81QYjYMeRfr1TmPWG0eypn3/bWPyQDKSrDrrTXf6q86HlSNFvP4diYJ5G7Y9vrgZl4bgsnc/nHk1WawJT9tCaRzW07YCoPd4bsW5wuqdScITuRUVPfOn8iq/v1Gj1ptRnW3yA+RBPZVXmfisPYgCpLrPymnvEghBBjMCuKKVzcMrcWniAxmS+KdtVb0Lyxu6+sEl58/fyp4FWfe8s7C5XKk/W1gVw+KH07m1dsq9d2wU21P5ldG2XNQBJDaWXfuWaBD9PTU4txHJ4PVNr48vbobTudEspGzv6l+gTMCcf4GbSEyBiAARASICRASICBARICJARGBLEfj6MCcMw8+ePfvHP/5RW1s7NjaWnZ39z3/+U6vF24r9W8GcYwubOxIFtQOfiIBt6R67ND6SJX30GdiJc59absJHmLP9lbOBzzVxaWJp18f9Jp/7wRomiH/FYM722Y/UB8zA58LuZFHP1JrPzV02THvZ+f2NGvvT1i7NtlQp30S2iZcUeO+yLXWIGv9yu4H+uNW/aUQRVk2yyO8JLw9lSsqE7zPM+TBTl03qBpZCaX7IOOXQ+YWi2ru+nkhQqA3X7jYGkRH5Nf/eFwcnv9ZLdvNUkC3RILY7+bU8+cbHLeYjVMUgMntarsZxtZjff6agCtMOXVcbTuZV7k0VYSKNZgv4y+0GVLg19cXH9K4mC/ikanR7oiCEyimvHb8nHX5Zh3A1KA+aw+nc/emSlhGEr3YyryKMxvnxZl3Ki45AEnt3MgKboTDnmkqPOQZBcOqLjgASkoURq9xSYWReGcHgnsitOJghsU/SOSNXB5DYe1PEmHgp2u1t0dCxnIq6gaWRBaVL4cp+W0IylNz2qHLkcgkeR2dLrtobNw2v3JcOo6t9Mb8/nM5tGZUvrGt3p4i6XAlX2rf1b7lhcJn1pC2axYtkcp/VjOmMltP5VUezZTAMH8+R/XizLszGs/TXoBDyB2e86jqZV/mqfiIuTXy2sOphxUjuu26rTfIXfbpO5lUaTFYQgqKYvEOZ0ubhldgEPq91em+qKOVFB0YUducVt3UmislLft5xqaTOOYWnSodwai+X1km65sJoXEzddFNn6rKJzSaXd4g75w5mSH6+VQ9B0O5kEZpX9XJpffbb7gvFtdsTBeNLjrqdDs5sak3b4vn57J5HlaOHM6UOG/ek+83HcmSYyGfD0HIIlXMkS3YkSxbF5F28WctpmW4bW0WBuiUFArWirLjuybVwOjc2AREWbhhcRh+hlhF5BANRFXbwwf6lwWylPWw5nCXNe9cTyUDkcwNI7DAa95ZosHdqPZTGqR1YUusR7UcYhieXVbnvenYlCc8UVF0prUeJsw9kIydyK84UVNkyjC6q9ebzRTUp5R2IXDOEYEW7k0XuzmkNzm1gESsVDsSliadWVJtaEwTBw/OIZnUAiX04Sxb/rO0Gr39FqVtY18q650OonFf1E5EMLrp09E6tv22ajLYRfB1Yj/YzhWF4fk27I1HA+5AFc35NcyK34ueyevTjY0NjvCcdDqVyQqicaBbvdP7HzK8Ds4oQKudotuxEbkX35FpcmjiQzEbxYxScHl1Q7ksV70+XLCl0xfz+gxmSEsHAptakM1piEwQO4p8OXmEvr91pRHG+UuHAxyXXCgZRgHuS93TY2VXND0U154tqKnoWYhME4XRuGI3z272m1lH57KrmvmxYqTE+kI1EM3k3uH11A0s9tvMZAST2ldI6pdZ4NFuGstiL+f34zH69yfL99epAMgJeogrhJ3IrTuVVorBZJANRtw4gsXclC3unkefk2p3GXclC+qMW5pO2ABI783XXmsoQw+K7nLu0G9FT3Z8uoT1qGV1QSrvm4tLER7Nl2xMFV0rrQ6mcc4XVkQzuDV5/+5j8l9sNQWRgf5p4ekWFnap41zS1K0mY9rITy+7MfNKmUBuP51bQHrZIu+ZRxXIsti4LJgt4rrA6xHbHQ6iOdHmVzvTMRtKNsUm8BpHZEQwk2kgwy+oj6NxLJXWNQ8tNQ0jaZizvb9fE2m93m8LpCF4bRAY8aptvaIxhNE44jXu2sBpLrKszWo7nVEQxeT/fagBBCFFZYHCf2fivSxs6G6Gzr7Z/KZLJs8f2nOdoBSH089omUS6MSxMfzJCUCj9yi5VaY4TtfVQA9Fb0zLeNyvekiF7UjRtMlvYxeRidcyKvEuGYIox/YE+KiN00ZQWhYAoQmyAYmVfmvus5nCWNYHDvSYYcljJnZ9zVAM1TCHecgiDlYTTk3Ud72IIZz61pEp61BdrUzi8U12LaEiqdiWJLXrstnn++qGZ/uiQuTYxC3bX9i6gQ/ZJCt7Sh+6msPoDE7hxH9BgCSOyR+ffZOqwgFBOP5MS9Kxk6mVcp6Zpzph1jbvxJCwTM+Se9cYTbRASICBARICJARICIABEBIgI+R+CbgDlNJhOLxfq3f/u3f//3f/+P//iPmpoa/Pn8rWDO8cXNHYnCql4/s9kOpEscNKPwY+7xqk6QisGchtanHu29N9iTIqrs8ef0U6RkDOZsmq723hOPljuShH5UMkSHy37bfa6wGvtt79EHbwxWlPpIBtdlsi5vmruzId1voj5scQkSuGvisX58aXNHkrB9zEVuKo9tcQyO5chKPqgX4pht6VJ132IolWNPSttSc3fGV2813PTJ1Rm5+kpp/d5UMdAy7U7I0d2gf5Z6lc4UZtvndZnB8c8yiz/Az+ucviAyInw6vviePeZy0Ctl9VdvNWBvYUQmtH5iZ5IQBTlgGNYaLNsTBS/rJu5KhkKonNEFJYqJVvYuhFI5pYIBFKvYFo+wK45ky1DAIIDEjmLyAsnswdmNnqn1YAqicBhEZv9yu9FksaKbj1oDku4R+5taUcWw+F0TeAgNZuxcAEFof5okkMRmPEak/7A/ndGCMrEcmJFGs1WpNdpbYk3QwtDcRgCJ/awGEVo0WRAZQwcDv7+8Jx1GeGaTayAIrakMOL75fWi0Q7NNyhVontIZLXqT9YeimgvFtTAM1/QvokiJy6R3n+PM1LJqbyoCIB3MQHBxKwhhpB8rCE2tqLDncFs8/0RuhUZvTnvZGcHgHsyQ4GM272dkAYGWaTQHKtdVvudiXv/hLOm5wurT+VUOW97FtvydQWTgcJZ0ZUOHSAKkiU/nV1IftgQhzzMQxeRVe6c6gPocTudmvu5yYK2tbup/LKk9nlMxt6rW6M1J5e3o3r1CbazqXch60x3B4EYwuNV9ixq9WdY9H2oDNWEY7plaj2Bwv7tevSdFFMngodn+2E1TMSz+DO7JBhiG19WG2AR+NJPHa52Rdc9nvu4Sd86aLAjPNS5NfIPXd0s0eLmkTtgxuy9VbMs9OTK2uBlG46BcwBvc/rOFVeeLaoIpQMf4KghBzCetsQmCvun1NZX+QLoEXzsUe2DQI03bEwXHcmTMJ617U0XBFCC5vCMuTYzm0juQIdllY0wGktmijtlIBrKkBJLYz2vGT+RWkO439055JmOVCAYiGTyFBklRjEp559nRDXVGC+tJ2+uGiWfVY5FMHtbhXcnQoUzp8RwZp2UahBDY6WCGBEnoC0IoKo8mET+YIZVv6uVK/aFMaTAFyHvX0ze9HsXkYY8xNlmXhYrueYQy/hKhjNsb7EsVFwC9EASPLWyeyK0IpgADSPQtDAAAIABJREFUs4im7u/3mg5kSATtCCE1gsE9XVAVRAZ+Lmu4VFL3/Y0adInr+5D8OIgMCDtmES3c1pmWkRWHB89+OKw8MLsRw+I3DC63j6/yWqZXlPpNnaljfHVNZch6042u28nl7f0zinA6F2ieXt3U642WuVUN80lbOJ1byOk7lCl1uXCp9eartxtoD1v2pYpjE/hRTN4PN2qWN3QrSv262hDB4MalIU9aIBlJTnw4U5r+qisuTbwzSchrnanpW1TpEAHqMBqnZ3Kt0YYyonzr2v7FECoHAwuxieAUNrWm1lH5jFzdPbnm8KGAKlEjmUdtyZvDaNzLpXWpLzrQMxa3RINKGx7fNYngZ1c/kFNRTnzP1HoQIiTAwUA1HB/y2L0BJLa4YxazsVhBFC2+YeNwm8zWAqB3wnaEAgShU/mVKLy9O1mEf24J4UwbzA8rRkJsJwYQHJHOdfhUvcHtQ4HAYAoQw+JHMLjoeRErCC0pdJta06JCm8/uuVRSV/chd2wYjXMgXYLGZ2lD1z+jcOATYxPxpjC3pkGfpZy33S/qxmmPWiLoHHHnXBGvHwSh61xEzID+qCXvXU8oFRie20D7fNc4FULlPK4are1f1BjMgvbZIDJwk9+vM1rOF9XuTxNjahPPqseCyMD0CnLCyUG3P+l5+7Ec2b40sUtVbW+c/8ZtCJjzG79BhHtEBIgIEBEgIkBEgIgAEQEiAn6PwDcBc6KzUiqVU1NTIPjJz3uXE/5bwZyTy6qdScLPyVziMoZ7U0X4Cm8uW+FU6sTZH2HOpoc4llu9tDNJWNPnTzJrRiUdgzlrJxB6ir/+YuP5qCSgvzqEYTif3Xu2sMqlDqTPo6wo9eF07oYW2enz4x/9UQv5frPJ4vkt7P2gowtKdMPU+ybeWJ7Oryzi9ntj6b1NRc9CCJWz6G+OLOVBcz7bhewbvmPdk2sHMyQ7EgXSbt+THuEP8Y1cfds4uT9dcoPn57v5jczOX27kvesJpiBIjLMcHDoECEGDs4rdKSJ0XxUbd3BuI4LBbfugxd08vLIzSQhB0IxcjbJ5gsjAT2X1BzMklAfNBpMVoYDQuFFMXpwNBHrTMKnWm4t4/U+qRrETAOtqw4bGKOueR3EyNDekM/lGpTM5V2KOeSygBNbqXsfPjgPp4py33S4333H6HF1QBpEBLCEfjqW/Lj2rGdsWz0fzdPqrT5/7MZqtV0rrSfea0R44LdP0Ry1f4vDE6qZ+dEG5iCutDMPw7mTRuevVOqNFrtS/rJuo7lvw8oZaQSilvONd85TV1VdNhJGP5G/jXHeSmlTpTCdyK34qq78nHUbhkMNZ0os3a/um159UjVb3LXgPRVusYM7bHubj1k3dJ2k40dj2Tq0H2rbjdyUJ96WJb4s/yaHeOrqyLZ7/4826aCYvlMq5UlqPYhK90+uRDF7is3aGLV/gjiRhIaf3XGFVXJoYn+CIDtoyIu90RRd+UjW6J0UUGy+IYCA57a7easDUaM8X1RQAvSAIpb/qPF9U81NZfRiNiyZWrO5bjKBz3zVN3ZEM7U4RDcwovHnwdEZLyouOgxnSMwVVPxTVnMqvPJotW97QQTA8Mq+Udc8HkYFLJXWXSuqoD1vaRuWRTN6+VPHOJMHp/MrYBIGXZwHHFjejmLxCTl957XgUkxdAYmPkTnsnlzd0ZwurLxTX8tpmRheUJ/MqU1902MNgxfyB4zkVXRNrJ2z0weUN3eFM6ZEsmUJtgCCoshehWoZSkZyjzCet9j3jlBfWtSfzKu3l5VHjK6V18U/bavoWdyYh6WDz2D3owriuNtgQJnhqRZX0vH1bPH9Pish2ggR48CH1+MCsAkV3Akhs2sOWIDKwJRTQIVMs5rxab24cWi4TDXaOrw7OIuKf9pk19CYL9SEi7Zv1Gk9SFYbhDY3xJr8/n92LwVcwDCs0RrXedLm0/kiWrFQ4iDo8NLdBut8UQgUCSWzW07ZIBlfYMQuCUMf4aiCZHc3i70gU7E0Vf3fdnycXUf3epuHlDY3xBreP3zYD2ZK82hPHh+eVASQ2+cH7tRENkRWEOidWGwaX7Z8ZLHoOBYPJ2ooAz598c74rGQoks982fiLjjDZ8IBsOJCMnADrGVy1Wu1M8Dv1+eKkxmG+Jhq7ebpiVq7UGs/OnKmjT731UORKXJsZy7n5o7eJ/JIN3Mq/SxQVfq45kSSMZPFRxRGe0XCqp25mEJGYuAHpjEwSXS+t7p5E1hPygeVs8/2Xd+OyqJjaeb6/IotQaj+XIfr/XdE86vCtJiJGhYRgemtvYnihY3nifBdxeyGF0Qbktnh/N4vX+5eRq0VtBwJy+PpJEOyICRASICBARICJARICIABGBP2sEviGY0/sQ/q1gztlVzZ4UEafFxW9d7yPmbLkzSfiy3kc9QOfeYBjWVxRiMKe+7pZLG98qYxMEDR8OEfvWg0Or3KoEDOasHBM4XP2cl9Es3pRN2+1zOnFoe4PXfzq/alPrYj/UwdL7l8sbulAqx90Glvf9OFgmPGv7/V6Tf+VDh+Y2YuL5I/PvT3A7jOjzy++uV3vMmbTVzqVd88EUwDmD1Fb7cbBPeNqe8eqjOqjDVZcvJ5Y2D2RILt6snVhSfc4pe5edf4OVL+smwmgcj9DIN+j5H+ZS5pvuECpnO0Kxcg05vG6Y2JUsDKYCDhqDJos1hoXkaERdvVJaR7Ht50IwvLCuEbTP7rPRbgJIbBSQU6gN8U/buqfWlzd0GxojSkvCZw4FU4BoFs/voeibVhzIkDgvRzNytTfMPwd/ZuTqUCqnbmDJof7LvXzbOLkjUYDmYPtyo3jZs8kCku43ZdqBFvj31MtufTY7kI6sb/Yb1t53heO5Uotkit2OqIw6as9CMLymMuhNFiyz48m8yl/vNDqQPr10w2C2ujsPBIJQ4vN2RMWRiqQ5dBZdeFg5ggFXsg+nWPpnFFFM3m3xoFpvXlRov79Rg9rwXJFWvXQShuHVTf2+VPGJ3IpQKudsYbW9/vOTqjEkjaJw8Nrdxksldb/fa4pk8lC5XQiCL5XUZb3p3pMiKuZv4QCK1oDg1kqtUa03b2iMCMb5Ab5GcyWuKHVaA5LntWdqLYrJO19UWyYcROW4vTwKBkJIkuBgCoAykh9UjLhD6+fXtXtTRUFkJFtnIJldY5f5D01yuStZuCMRwR2fVo+tbuqP5ciO5VRgbkwtq4bnN5pHVhRqg5cBt4KQXKl3oHLCMJz5qiuahfA1D2dJi/n92HkR+27NFnB6RW37vSAMo3GwO4XS0HclCwPJ7Ag6d3eyCAupfXPfyqBNa3p4fiOaxXP4kra8obt2t8kevNzqEBsa46rKYP9u1Rot5wqr0Qd7X5oYXdt7ptZDqZxTeZUp5R1hdK6s50ud60JSC394Gu3nMiNHyIisp232lZ9f3tAYm4aXscfJvkODycptnd7qjwKtwezK/Y8dW6zgkkLn/Ph9tPhQimHxLxR5UF36YOvV/xm5GjvQA0HISju3pkGR8py33Vrje6WHFaV+b6o4iAz8eqcxLl08v6ax7728djyaxQujcRy07q0gNDKvNJgQ3YhwOtceFtabLNlvustrx/+SOR1gGCZgTvsnhCgTESAiQESAiAARASICRASICPwdIkDAnN/6XV7e0O1LEz+3aeX50dfYBP6bhkk/dmiou4PBnDpZgR97jmbymkdW/NhhUV0GBnPyh976secIBnfu0x/en995qXDwVF6lz2lvXDqwvKELpgC+7c+67BCtTH3R+eudRmdcAaeJx0sDs8ju7dQKXkJBj504G1wors3bOkXSuR/7GlHHbDAF8O+dgmE4/VVngtc7aDqj5UXdeBiNsy9V3DIqt3fvL1yeXFbtSxVTHjT799n7K0Xs/7F3H2BRXGsfwEnuzU31JtYYTSKJJkYTTUyM5SJgxd57T4wlJtHE6AICihUUVBQUjb33uEvvXZqoSJNeRHrbBZbtM/M9MNf59gLCArPLLvz3uc/NMHPmPe/5nRWRd+ec/bcejd3uMmtP41s8CsWyVbV7cHqn5P132yrlse+58dDiUlRemZAu5Nd72kOhIBfY+HDORyjf0qLjqdbu8+tWwGvRXao0bvS30qrc2GibhJxyTb7BwpIKfjoWpPxUSqNZaezk8zIhu2untyXzpXZ+m/+6z1Qc2xKq3r27rj1oers7pv3vf93ffT1GlaoAc4uKB6WV4o0nQoPi8xtdkVJBkEe4cUsO+tn/HcsszJj4rNxkhzuzREdhRc2TzNIT7v+/CZ+KXTds9ry0WiCUWl2Ozij4n/Wui/g1h+7FTt/lUbti51/3LS9HT9npnvxi37vbYRl162q6Riaz+cMbkx79GNamU2EFdT8h/3YyjLmkykFembCILyooFzbxJ5ogybvhmcvs/Q1NeYZmvIbrosdnl205E+7Ai6uRyMqrJCsPB6w4HFBv8W1Vkmm2jc+j3DGmvA1OIU1kywTJKqxUXv4kJa/2WcNfnEMXH/Q14HB3qvyzBBOw2YMqkcw1KkcdfxAadn0zNMP+79inuRXMyuoJOeUTLF3XOQZLZIqnuRXsfs9vmEDDM8UCkQGHu+9Wyz6L1jCODp2Zau3xx+lwdSdczBfllwvrTagDL46u2a92CKz3w3ZwQn7dxtteDf+o1j2VSxpwapdDV3faWhUfZU6tmg4kAwEIQAACEIAABCCgAQGUOTWA3KYuyirFC2x9zvr8z8JlbYpYd/MkKzduBJtPiEoeXP//Mqf7vrZnyESoXTKR1YLN2ahjTJnzViyb6+uO3e5SWF67axeLr7M+T1cc8mc+m89K5IKKmjGmXNZ/LWX/d2ztr56lClaSpIPEZ9f+Dov1B/V+Oxlm93csi3lSFOX+IMfQlKfKCoEt6teBF2d2IUqVW0oEIutrMcbmLruvx2QVdYrnOGkWgiRj0komWrqqsg+WKpIdr82eGw/Hba/d8Cw6pX7xWySVO7klGJnxrgSmNvqgDy8ye+5+7wU2PhMsXSdaujX8w5hTXNWWt/3PJ0J+cAjseOZtHJFMThRW1NT7JW8bY3aY21c7BHDYXiCdxpHIFMoPkDUhll8mVFMRmiDJEoGoiTQkMkUR/39+0kiqW/bA/UFOEwm35VKjf60TBHk1KM2AwzW7ELnn+kPlh4/LqyV1n5zwUlNpvLRSPGuP19azEVK54nmpsBXPZ6uiQRBksUC08+qDZfb+jX5vZJ7KFQilPzgErj4SqEolUpWuldvI5MQpr/+u3ap8XpXjtHxB7ZKq5yNPeCQYcLiNbkmrShwtaSNTEPV+cE1+zp+8w33zXy2rc7M4nCqR1IDDPaS0wyuLwbUz1IzdntsvqvRDKev510jk95MK6IW7Rf/7b43UvNq3+vkXyzU37HqMKffnuu2lG17qqGdQ5uyoM4txQQACEIAABCAAAQi8TABlzpfJaMv5yhrp4oO+9fZLa3ty47a7sPv7DkmcG1PmFN7b3vYMmQhjzV0eZZQyX7b94Pqjs0yZ80L08bYHZCIYNfaRf+Zq6w4uB6Yus/crFYhad3ujd+WX1+5S0+iltpx0dk/ceCJU9GKBqbaEYu6NzSwdt92l0U9nM21acbDlzH3lBRhbEaHhLS5R2WNMua1bR7FhNObMSY/EZj84L5UTVSLZeqfgCZauiw745pSw/PArk4w2H2w9F7H1bHgTtQFtTl6tuZEkaX0txmSH2wIbn3oLgCc/5y+w8TE05e28FvMyuqRnFWNMuZOs3M74PL3on9L0wnetGMgxlzjLy6puX9eK+Lil4wmsdwqxvBxdr+DR8Yap+oiSn9duMqfic6iqh222ZfjTwrHmLuf9km1uP5q1xyur6L+L/ZIk5fUwNygur9kIrWsgVxDL7f2trkS/7LtW68I2eleNRN7sTzXVItlPx4J+PBok/98dFhsNqMmTGQW1tR8nt4QivuiUZxLrP59ociyN9pWWL5hm7dGOf4PI5ESdcHyj6XXIk7P3eu258bC9hlYsEC2w9dl2LqLeJw/Kq8Sm5yMl/1v7VE7S2IzXju8T5Uw0dowyp8ao0REEIAABCEAAAhCAgJYIoMypJRPx0jREEvlSOz9bpT2xXtq0JRcMTbn11h5syd2NtJWlBDFlzuqbmxtp0dpTRma8J1llrb27kft48TeYMufxsAONtGjtKQMOly+UtPbuxu+7F5616IAvuw8rPCupNjTlNd5fG85eDkhd6xjM7qJtjzJKjc1dGt2gqA2ZUmYXIvfeZHmRsXsRWWM4XGYttbakp3zveb/kn0+EKJ+pd0ySpNWV6LWOQUZmvBsh6ey+Ver1pc1fBsbljbdwjc1k8yMR2jxe1XNTEKTl5ej5Nj6LDvg6eyT+Hf7/y5VbXo7+8WhgaGJBE3vKllWJlx+qrSjIFcrbWqnefzMtSyvFRXw2P8bRTH+4rPsCAU/yguLzWa+46y5Mar5g+i6PuGw2f1JSRSM1jz9jt2fis/KDdx7P3e+dW/I/u+WpEqHVbRJyylMbW2S71QHbcmONRL7eKXitY1BbgqjjXr5Qst4pWPNvDHWMpdGYWUWVM/d4sv5PpEb7etlJY3OX094sr7jzsr604fzc/d727ff0qlxBHLjzuNFdV5r+4Mu47S5HuHHaAKixHFDm1Bg1OoIABCAAAQhAAAIQ0BIBlDm1ZCJemoZcQaw45L/jyoOXtmj5BZKkDDhcr4e5Lb/1pXfIsh/8f5nz0k8vbdfyCwYcbmJOecvve+kdPikuTJnzYIDVS9u18IKcIMeYclkvyPk+zp233/s5q1t+ZhZWjjV3aeH4mm/+d3jm6iOBzG5hzd+gQouYtBJDM14TH9BWIUYjTXZfj2F9k6q79zMNONx6HzBvpO8WnroRkv6yJT1Jkiwor3mSVTZuu8t8Gx/NP8rTwqGot3lFde3uaD84BDZRsVNvBtoaXSpXbDsX8dOxoCUH/QzNeCsO+QuEUrFUcS04zdjcJTypsNnE5QqC9Td2s52iAQQgoKKATEEk5JS3yx9Smbx2mfpD954ssPXJLxeqmHAHayaRKTaeCN10qt2WTu1gnqoP51lJ9dx93ifcE1S/hfWWU3a6XwpIZT2s1gZcYOPDyr6/Gh7gBEvXSwEpGu60fbtDmbN9/dE7BCAAAQhAAAIQgIDmBVDm1Lx5i3v80SGQcz6CrQcXCJJ0i84Zw+H6PGKzzCkveMqUOStPL27xIBu7gZSK8kqrxphyk55VNHa9ledCMwOYMudOry2tjNLgNpFUbmTG/taM4cmFs/Z4ZRexuQxpah5/gqVrgxG09YTPo9xl9v5t2aWvYQbRqUXqqB3a3Y01Z3tvoZuhGcbm7D8jy43IWmrn11CGoqjnZcK5+7wn73Q34HAjk4vU8qhdox1r68mMAoHJDnfT85HammD75CWSyDedCtt2PmKZvb8Bh2toxvvFOZQXlT1uu8ueGw+ldVWK9skMvUIAAh1CwIEXt/igb3FnfSybIMlLAanKD8p3iFnVgUHklwkX2Ppcbtfy1dx93rdC03UAi6UUFx/wbWILTJY6YT+MyQ439e1ezH66bEREmZMNRcSAAAQgAAEIQAACENAlAZQ5dWC2fjsZ9sfp+02vxqP6MJ6VVC+09RljyvV9/Fz1u5ptqSjP/f8yp9PMZtvXb0ASpFREvajlEoJCUdCJMqe5K3deNjTjPc1ls8z58HkkU+bc6rK2fibNfa0gFGKZiCCJSrGAL6qoklQeDzuYVBgXl137UB27RT6KouKyy6bt8kgvEDSXVwuuJz2rMLFya8ENqjW9/7Rgoa2PoEaqWnOVWoUlFajjwVMnt4Q/z4SrlIHKja4GpU1Sg6rXw9rHeetloSDI5Of8beciDDhcy8vR9yKyNLBFWb0ctPPLO/czjc1dMgr/u0Wcdiap4ayqRbINx0Nsbz9acai2zFlb6TTlrXcK7sxlCQ1PAbqDQMcWOOYav9zev6xK3LGHidFpmwBfKNlyJjz8afNrEqgv80v+KQmsLjmjvlRZibzUzu9GiO6VdWfs9oxOLWZFQFeCoMypKzOFPCEAAQhAAAIQgAAE2BJAmZMtSTXG2XUtZsPxkLZseZhbUn0rNCOvTOgSlf3z8RBDM56hKc//CZtlTkJYzpQ5+YfGqcJRV9ckSJlY/jyuxsu2+tovNT72kpib4rCzlc5z6Ghndm42NuclP+erElDFNklFcUyZ8+c7S1S5K6s8LZefHZEd7JXMOxZqs9Prj0NBu/7g/vDb3yv+5K2Ze95ow+0lU/aen2DhynqZM7Ow0mSHG7sCcVllU609VBl4i9o8ySydvc+L3d1JA+Py1FGRPevz9De215e75J8yfZdni8RUaRwUnz9t1/9MllAsvxGSPt7C1ciMN32XR5WIzbqyKilpc5sifs2Sg36bToU9K2HzAWhtHnKzuQmE0h8cAk95Jq06EmBs7uLoGm9i5TbGlMuLzGr2XjSAAAQg0KyA18Nc62sPRFJ5sy3RAALsCoiltcsm46UxgY0nQtn996NmMg+Iy2N9VxHNZN7qXlDmbDUdboQABCAAAQhAAAIQ0FEBlDl1YOJuhaYvPuhXxBfRzzrSS1MSJClXEAqCVH6KSyYnJDLFGe+nBeXC7KKqkPj8+Owy29uP1xwLMuBwx3C447a7zN3n/ZNjkJEZLyAuj8XBkzLJ/5c5bUaS0hpSJqKo2mRJmYisqSClIlImqT0vl5A1FTXue/k2Iyud5/FtRyndOKLecdn+kQssrqSwWubMKktnypyrr8+sIyQYijpUgiAJsVwckR3Mjb9uH7iTad/EwZyz46buuVgtkjGhWDko4ovGW7iy+1HxRxkl03ezX5BLzxdM2+VRUS1hZeB0EK+Hz2aoIdXrwenrj4ewmCdFUed8k+c2eOyy7V1EpRSN2+5C1P3hF0sVxQLRjN2eRma82Xu9qkRSth7ybnue2hMhIrlwnIXr5r/uK39v1J70NJ9JeZVkqZ3frdDaTV4nWLrmFFdFpxYvt/fHm0fzc4EeIQABCEAAAroroCCwV7duzB7KnLoxT8gSAhCAAAQgAAEIQIA9AZQ52bNUW6SU57U7KV70Tznt/fRueOalgNSI5MKTHon7bz06cOexs0eiW3TOlcDUMz5Pt1+K+uNM+BhT7sw9ntOsPSZauo63cJ27z9vQjLf4gO8xl/ig+PxSgcg39rmRGS8oPp/NlAkF/8B/mCJl1aWfqq9sEEdcFIf+VX1lg+Do5OrLa6tv/Fb7/zd/rzqzVLkxc1fDg2f20/7Y4ZiSx+bTnM/5OfMvjKMLlosuTTwWuv/EfbuI7OCwTH/Pp/ccgvf8FXHEKcx2h+fmBRfHN1HXrHdp3tnpM2zOVotZLnMKxTIjM15sZhlbk0WQpO2dx7P2eLEVkIlTWCGcZOXG7rJ1rlHZDZdsZXps9QEvMutHh8BW397ojX95JS0+6NvopbacTMnjT7RyS3xWHppY8NupsNVHAqfsdOdFZSc+K29L2A58L0mSLlHZJjvc79zP1IZhiiTt/IRTMV80Z5+XX+zzNUeDTKzc6A8idLbHGrThnYAcIAABCEAAAhCAgAYEUObUADK6gAAEIAABCEAAAhDQKgGUObVqOl6ajNWVB7WPY5ry6J3VxnC4xmY8Y3MXo7r/H8PhjrdwNaj7//EWrn+cDnd/kPMgtVgiU6QXCBQE+Si9pJgvYqJHpxYbm7uEJLBc5hQcHt+wTtmGMyOFXIsrvvHjLVxT89ncmbK4uvDHG3PqFSnb+OXGO0v33wmbZu3BepmTJMkxptymd5QhSFIqJ8QyhUgiF0nkN0PTC8trZHJCKq993lcklddI5NlFVQqCTMwp33vzoQGHO3df/e0embdHqw+qRLKx211KK9ncnevO/cwlB/1andLLbvR5nLvc3v9lV1t3/oR74srDAa27t4m78sqE82186D/44y1czS9GZhdjOdYmwGovkSRpeTl6ga1Pbkl1M03VfLlYIFp80C/xGZu7C7coZZKktp2LGLfdpUQgWnssaMpOdzzk2iJANIYABCAAAQhAAAK6JYAyp27NF7KFAAQgAAEIQAACEGi7AMqcbTfURISCcuFZn6d37mfuv/XovF/ylcDUoPj8kMSCgLi88KeFVwJTU/P4Z3yeZhZWZhZVSmTNbFST/LxirLlLaGIBm6mTpPAupw1Fzbrlam1HVTpNr33o8+rPoqATpEjAi8qaaOmWxmqZUywX7/be2sa65sKLE7a6rN3h+btjqM3t2Iv5lbkX/VNm7PYUsv00J0VRy+z9rwal1UjkUvn/zKxMQbhF51wOTL0UkPLziZBl9v4zd3sut/cfa+6y6kjA73/d/8U5dM+Nh3P2ek3d6T7Rys3ySvSM3Z5rHYNn7vFcYOPD5uzXxVIQpKEpN79cyEpkmYJIyC7/82z4qiPs1w5DEwsW2rIscMw1/qdjQayMXTmISCI/4Z5o//eTHVceXA9Oo9esVm6A40YFsouqfnQIXO8UnFVU2WgDzZzMKxPO3uvF8qPzLUk9q6jSyIx3zCW+RiJf7xT8gwP7f5pakg7aQgACEIAABCAAAQioVwBlTvX6IjoEIAABCEAAAhCAgPYJoMypfXOi/ozyy4XjLVzDnxay25U8K4p/YLRqlc6RfJva/1WdWykOvyB54lp9lyO8Z04I66/DGRiXP8nKLb2Azac5KYqKzXsw78JY1Sud884bL740iRt/41l5pl+qe0R2kEhWU0/PLTpn1h4voZj9BSoP/R37x+n7s3Z7Wl6OevqsYv+tR395Je2+HjNtlwfzdO9ax6Dlh/xdorJ/OxW21N5v29lwqysP/jh9f7yF61Tr2mZGZrwJlq7HXONFEvmuazGLD7C/vCpFUTP3eEYmF9WTUa7MkWTtk3YkSUllCrmCiEguDIrPJ+s2mq39/7odf+QKQipX+D+pXVrZgMNd5xhcL2Dbv3yYXjx7L8vL9h7hPtl4IrTtuSECWwIpefyHCQenAAAgAElEQVSZezxNz0fSuxqzFbZFcZ6XVs/c7enzOLdFd7HSmKQoBUE68OJm7PbMKqqskch/Ph6y4+oDVoIjCAQgAAEIQAACEICAdgqgzKmd84KsIAABCEAAAhCAAATUJ4Ayp/pstTcySZIPUourRCzvIklKRUKXnQI7Q4GDSfXldZXOc2o34LQ3pguflSdmC+9sq/G0FQU6SWJ50jg3aaI3UdPMWo4xacUmO9wyCth/HitfkGvttYWudM6vK3nOvzDO2mvLfj/zfb6m+3zNdnn/ufDihJ9uzr8Xfz0o3fs5P6fpGY1KKZq7z7tGDfvwhT8tHLfdha5oTrB0XWbvP3mn+4pDAX+cDv/BIfDg3dh7EVkE8f/FxNoq4osXQZD55cKTnok+j3OZ8395JS21Y38lWIqifj4RuvfGQ5FULlMQCgWZW1KdWVh5mPvkrE/y5YBUZ49E62sx65yCfzsZZmjKm2rtMd7CdZKV29pjQZOs3NY7Bc+oLeVGz9ztaWjKm2btsflU2AQLV/u/n7wYDWv/Tcgpn2rtwVq42lVSqf23H23+6z6LMRGq7QJXA1MnWbm5P2jmD2/bO3pZhGcl1dN3ebhHazqBimrJoXtPvB4+m7vf28ktQVq3hLUDL87nUTsUXF+Gg/MQgAAEIAABCEAAAqwLoMzJOikCQgACEIAABCAAAQhouQDKnFo+QbqWHkmQMjEpl1KEnFLISJmElAjFIadqAo7VVjQJRW05qCWvlOf8KTvdMwvZL3NStY86KfiiiuhnYVViwePnUcXVhYravSz/+z8FoZDIJTKFjKRUylkmV7hF56hj3zuRRO7oGk8/kXkjJL1aLCuvFPOrJQqClCtqn39sNr96LdxjctSxEixFUftvPRpjWvv85VI7v61nw8eau4w1dxljyq3dWZbDpZ8rXXUkYIKl60/HghYd8B1jyrO+FrPBKeSSf8qsPV5GZrwxprXNTC9EOnskSmSKgnKhWPo/S/W25O3z0raZhYKJlq4vvdzyC395JRma8badi2j5rbhDjQIyOWF+Mcpkh1tYEqtrdKucck5x1ZSd7vcislS+g52GN4LTjMx4Rma8yTvcmWXM675bsBMfUSAAAQhAAAIQgAAEtFMAZU7tnBdkBQEIQAACEIAABCCgPgGUOdVni8gsCMjkhPejXKEaHpFkITkNhiBIMi6rjK1yr1gqzymuUkf6Rfya/bcerTwcMN/GZ5m9388nQvbferTnxkPvh7lxWWVyBZH8vEImJ3JLqgVCaY1E/iSrlKnBFPNFeWXC7OKqsMQCdVSLlcdbzBeNt3CNSqm/vq5yG4qiSivFgXF5F/xTLgWkzN7r9ePRwJOeiQfvxl4JTL0SmHrnfoaTWwIvMmv7pSh6fd2zPk/rRWjdl1u3bh09evTSpUtLSkpaF6Ed79q7d+/o0aPnzZuXn5/fjmkwXT8rqV5m57fAxied1S1+mfhNH2QVVZnscL8VmtF0MxavCmqke248nGjlttzef4wp9254JovBEQoCEIAABCAAAQhAQMsFUObU8glCehCAAAQgAAEIQAACrAugzMk6KQJCoFMLyBVEjUReLZbVSORimYKoe+RU20TkCsLqSvQCWx/lxX6rRbJTnkmVNVI656iUosk73WufRuVwx5jW7hJqwOEamvLo51PHmHLpp1QNzXhL7fzuRWQ5uSZU1khZGen06dP19PQGDRqUl5fHSkBNBlm9erWenp6+vn5mplYU2EiSeppbMX2Xx1GXeE060H1lFlZOtHS7Epiqsa5P1T1Y/DC9JC6rbPIO94Sc+hseaywTdAQBCEAAAhCAAAQgoHkBlDk1b44eIQABCEAAAhCAAATaVwBlzvb1R+8QgED7CAQ8yTM253HOR645GmR5OXr5If8Vh/wNTXlLDvpOqatuGpvzltj5zd7rtet6zG8nw34+EeL1MLeYL5LKFdnFVaUCkeXlaG5klqNrfDFfxO4YUOZk15OiKPcHOZOs3O4nFbIeuemA6QWCcdtdz/kmN92MraslAtH0XR5/v3iCM69MqO4Ho9nKHHEgAAEIQAACEIAABFgRQJmTFUYEgQAEIAABCEAAAhDQIQGUOXVospAqBCDAmoBcQT5ILf7FOdTiUtSKQ/6bT9034HAnWro68OJOez99klVaxK8RCKXlVRKJTFElklWJZPX6ltVudVjvHDtfoszJjqNSFJFE/sfp+0vt/Ir4NUqn1X6Yli8wNnc55Zmo9p4oiiBIi0tRy+z9SwQs1901kDy6gAAEIAABCEAAAhBgRQBlTlYYEQQCEIAABCAAAQhAQIcEUObUoclCqhCAgBoFHmWUaP5pv0bHgzJnoyxtPBmZUjTW3OV2mOa2yaQoKiWPb2jKc3RVdb3cKlHtmsktHSlBkO4PcqyvPZhg6fZ3eFZLb0d7CEAAAhCAAAQgAIEOI4AyZ4eZSgwEAhCAAAQgAAEIQEBFAZQ5VYRCMwhAAAIaEqDLnK+//vrAgQO/0rXXe++9p1V7czJzRpLUhhMhU63dy6rEzEl1HyTnVhhwuIfuPVGlo4pqyS/OoW7ROao0Vm5TIhDP2uM1eYe7W3SOTEEoX8IxBCAAAQhAAAIQgECnEkCZs1NNNwYLAQhAAAIQgAAEIEBRFMqceBtAAAIQ0C4Busypp8svfX39zMxM7WKlqGKB6AeHwF3XY1rxxGTrxhKXXWbA4drefqzK7XHZZSY73CZYukanFDdsryDIh+klGQUC+lLKc/7T3AqxVE5RVHRq8UQrt8sBqXLUOBvC4QwEIAABCEAAAhDoTAIoc3am2cZYIQABCEAAAhCAAARqBVDmxPsAAhCAgHYJoMyppvkgSepqUNp4C9fYzFI1dVEvbExaiQGHu/t6TL3zjX7pGpU9wcL199P3f3EObdigmC8ysXJbbu8vVxAF5cIfHQKnWntsPRteUin6/a/7Rma8wgqNbjvaMEOcgQAEIAABCEAAAhBodwGUOdt9CpAABCAAAQhAAAIQgICGBVDm1DA4uoMABCDQjAD25mwGqA2XhWLZlJ3uR13iSbLFW2C2otvwp4UGHK7l5WhV7t1786Hp+YgHacXjLVyTnlUo3yKWKkIS8o3NXcaauxy8G2vA4c638eGcixi3vbYsOsnKrV575XtxDAEIQAACEIAABCDQeQRQ5uw8c42RQgACEIAABCAAAQjQAihz4p0AAQhAQLsEUOZU63zY3n5sssMtJq2RhWFZ7zc4Pt+AwzU9H6lK5Pk2Pm4Psgsrahba+p73S2ZuEYplu68/XGrn9+vJ0G3nIgw4XENTXvJzvkSmOOWZZGjKs7wcLZUpmPY4gAAEIAABCEAAAhDotAIoc3baqcfAIQABCEAAAhCAQKcVQJmz0049Bg4BCGipAMqcap2YogrRWsfgxQd8y6vFau2Ioijf2OcGHO4fZ+4321FuafUEC9fsoiqZgvj5eMjvp8MVxH+fN80prpq+y2O1Q2D408Lc0up9Nx96P3pGByRJSiJTEK19MrWwsDA7O7ugoIAgiGYz1LYGxcXF2dnZ+fn5upi8tmEiHwhAAAIQgAAEOowAypwdZioxEAhAAAIQgAAEIAABFQVQ5lQRCs0gAAEIaEgAZU51Qyc9KzfgcK+HpKm7I4+YZwYc7q+N7bVZr+urQWnL7f3Lq2orryfcE5fZ+5dV1h7XiOW/nQybZOVWWSOtd0vbv1y0aJG+vv68efOqq6vbHk3DEdauXauvrz9lyhSBQKDhrtEdBCAAAQhAAAIQ0FoBlDm1dmqQGAQgAAEIQAACEICAmgRQ5lQTLMJCAAIQaKXA4sWLu3btOnLkyIKCglaGaL/bNm7c2LVr16+//jonJ6f9smi+593XY5Yc9Cvii5pv2oYW3MgsAw53nVNw0zHKqsQrDvlzzkdK5bVrz8akFU+19kjNq12W9rh7wngL11NeSU1HaN1VIyMjPT290aNHV1ZWti5CO941a9YsPT29IUOGVFT8zz6m7ZgSuoYABCAAAQhAAALtLoAyZ7tPARKAAAQgAAEIQAACENCwAMqcGgZHdxCAAASaEUhJSYmKioqLi5NK2X+Ar5m+23w5MzMzKioqNjZWIpG0OZgaAwjFsrWOwUvt/MrqHqBUU0+3wjIMONzVRwKbju/zONfIjPcwvYRuJpYpTKzczvo8vRGcNt7C1eJStFyhlkVlUeZsel5wFQIQgAAEIAABCOicAMqcOjdlSBgCEIAABCAAAQhAoI0CKHO2ERC3QwACEICATgrEZ5cZm7scdYlndsFkfRiXA1MNONxldn5NR95/69FaxyDlNofvPRlv4WrA4U7f5al8nt1jlDnZ9UQ0CEAAAhCAAAQg0O4CKHO2+xQgAQhAAAIQgAAEIAABDQugzKlhcHQHAQhAAAJaISCVE4fuPZm73zuzUF1Ltp72SjLgcJcc9Gvicczs4qqp1h7hTwuVUWQKIiyxYLVD4Oa/7iufZ/cYZU52PRENAhCAAAQgAAEItLsAypztPgVIAAIQgAAEIAABCEBAwwJaUeZUKBTV1dV8Pl8gEIhEze+UtnPnThMTEw1LoTsIQAACEOhgAjUSuZEZb+4+LwWhllVhj7nEG3C4iw74iqW1m242fJVXS6ZZu284HlItljW8+ry0OjWP3/A8W2foMqeeLr+wNydbbwbEgQAEIAABCECgYwigzNkx5hGjgAAEIAABCEAAAhBQXaD9y5xyuXzVqlVDhw4dPHhw//79jY2N/fyaWd8PZU7VJxgtIQABCECgCYGzPk/HmruEJBQ00abVlw7efWzA4S6w9akWNVLFpCjqflLh2O0u9R7lbHV3Lb0RZc6WiqE9BCAAAQhAAAIQ0HIBlDm1fIKQHgQgAAEIQAACEIAA6wLtX+YUi8XTpk1LS0ujKKqysnLChAlDhgyRSCRNDBVlziZwcAkCEIAABFQXkMgU8/Z5/+IcWlEtVv0uFVvuuhZjwOHOt/HhCxv/S83iUtTsfV5NLGmrYketa0aXOV999dXXdfD16quv6unp4WnO1k097oIABCAAAQhAoKMKoMzZUWcW44IABCAAAQhAAAIQeJlA+5c562VWUVHx2muvVVdX1zuv/CXKnMoaOIYABCAAgbYIJD0rNzLjmVi5FZTXtCVOw3vNL0YZcLhz93mXCOqvxy5XECGJBVN2uj/OLG14o2bOYG9OzTijFwhAAAIQgAAEIKAxAZQ5NUaNjiAAAQhAAAIQgAAEtERA68qcDx486NmzZ9M7dKLMqSXvHqQBAQhAoGMIrDwcYMDh/uIcKmxsj8xWj/GP0/fHmHJn7/VqWECNSik2Nnf59WSYRNb4tp2t7lT1G1HmVN0KLSEAAQhAAAIQgIBOCKDMqRPThCQhAAEIQAACEIAABFgUUHuZkyCI8vLy0sZeNTX1n5vJzMzs37//li1bCIKoN0hLS8tpL16fffbZxIkT6zXAlxCAAAQgAIHWCcRmljp7JE7f5WF9LSYmrZggydbFqXfXhuMh06w9Zu7xfFZSpXyJJEmry9HjLVwFQqnyeQ0fo8ypYXB0BwEIQAACEIAABNQtgDKnuoURHwIQgAAEIAABCEBA2wTUXuYsKir64osv/t3Ya+/evcocUql08uTJQ4cOraysVD5PH2dkZDx+8Vq/fv2kSZMatsEZCEAAAhCAQOsESJJ6mF5CVyXT8gWtC1LvrlVHApbZ+Rma8lYc8q+o/v/tORUEOW67Cy8qu157DX+JMqeGwdEdBCAAAQhAAAIQULcAypzqFkZ8CEAAAhCAAAQgAAFtE1B7mVMikQQEBHg09kpLS2M48vPzZ8+ePWXKFKFQyJx82QEWrX2ZDM5DAAIQgEBbBMRSxdZzETN3e0YkFymItj7TueiA788nQgw4XAMOd71TcHq+QCYnolOLLwekmOxwk8rrr1vQlsxbce+qVasGDx68dOnSpvfDbkVkDdzy66+/Dh48eM6cOY1+NEoDCaALCEAAAhCAAAQgoIUCKHNq4aQgJQhAAAIQgAAEIAABtQqovcypSvYikWjWrFmDBw8uKipSpT3KnKoooQ0EIAABCLRCoLxa8tupsImWbud9k4VieSsiMLfM2uNpdiHKgMOdtcdrjCl38k73HVcejLdwHWPKXWrnJ1O0c5mzqqqqoqKiqqqKZGmRXmbgGjiorq6uqKiorKzUxeQ14IMuIAABCEAAAhDonAIoc3bOeceoIQABCEAAAhCAQGcWaP8yp0QiWbJkSa9eve7cueP34tVw207lSUKZU1kDxxCAAAQgwK6AXEEc+jt2DIc738b74N1Y0/ORzh6J0anFLdpKkySpSVZuB+/EGpnx7oZn3grLWGjrU/tY5/GQYy7x1tdi2v60KLujRjQIQAACEIAABCAAAV0XQJlT12cQ+UMAAhCAAAQgAAEItFSg/cucJSUl//73v7t16/aB0isrK6uJkaDM2QQOLkEAAhCAQNsFcoqrltn51T15yTPgcMdwuBMsXM/5JjcRWV73dCZB/PfxwtyS6nHbXYIT8j0ePKuskVIU9TS34rT308C4PKlcQZ9pIhouQQACEIAABCAAAQhAoKUCKHO2VAztIQABCEAAAhCAAAR0XaD9y5ytEESZsxVouAUCEIAABFoqIJLKL/qnPM2tCEsqOOGeMG+/91GXuJj0koZx8sqEk3e4WV6OXmjrcykg5VZo+pKDfosO+OaVNb/hdMNoOAMBCEAAAhCAAAQgAIFWCKDM2Qo03AIBCEAAAhCAAAQgoNMCKHPq9PQheQhAAAIQ0JCAoEb6x+n7Bhzu7L1eoYkFyr1eDky1uhw9xpQ3hsM14HCNzXnjtrscuvckvUBAEKRySxxDAAIQgAAEIAABCEBAfQIoc6rPFpEhAAEIQAACEIAABLRTAGVO7ZwXZAUBCEAAAlonUFopDn9aOG+/91hzlzv3M6pEstJKsWtU9hgOd5KVm/3fsSnP+TdD0nddj9lx5YFQLNO6ASAhCEAAAhCAAAQgAIEOLYAyZ4eeXgwOAhCAAAQgAAEIQKARAZQ5G0HBKQhAAAIQgECjAiRFXfBLMeBwfzwauO1cxFI7v4mWrja3Hz3NrRCK5fQtEpmiGjXORvlwEgIQgAAEIAABCEBAnQIoc6pTF7EhAAEIQAACEIAABLRRAGVObZwV5AQBCEAAAlorEJtZuupwwIzdnmO3uyyz9zO/GFVZI9XabJEYBCAAAQhAAAIQgEDnEUCZs/PMNUYKAQhAAAIQgAAEIEALoMyJdwIEIAABCECgBQIkSVWJZOkFgpj0kvIqCfbebIEdmkIAAhCAAAQgAAEIqFMAZU516iI2BCAAAQhAAAIQgIA2CqDMqY2zgpwgAAEIQAACEIAABCAAAQhAAAIQgECLBFDmbBEXGkMAAhCAAAQgAAEIdAABlDk7wCRiCBCAAAQgAAEIQAACEIAABCAAAQh0dgGUOTv7OwDjhwAEIAABCEAAAp1PAGXOzjfnGDEEIAABCEAAAhCAAAQgAAEIQAACHU4AZc4ON6UYEAQgAAEIQAACEIBAMwIoczYDhMsQgAAEIAABCEAAAhCAAAQgAAEIQED7BVDm1P45QoYQgAAEIAABCEAAAuwKoMzJrieiQQACEIAABCAAAQhAAAIQgAAEIACBdhBAmbMd0NElBCAAAQhAAAIQgEC7CqDM2a786BwCEIAABCAAAQhAAAIQgAAEIAABCLAhgDInG4qIAQEIQAACEIAABCCgSwK6WuacOHGiHC8IQAACEIAABCAAAQhAAAIQgAAEIACBOoFly5aZm5vr0i+lkCsEIAABCEAAAhCAAATaJqCTZc6ffvqpZ8+e0/CCAAQgAAEIQAACEIAABCAAAQhAAAIQqBPo27fv1q1b2/ZrItwNAQhAAAIQgAAEIAABXRLQyTJnbGzsvXv3Huj4Kzg4+Ntvvz1z5oyOjwPpd0CBhQsXWltbd8CBYUg6LmBmZrZkyRIdHwTS74ACR44cGTZsWHBwcAccG4akywKXLl1644033N3ddXkQyL0DCri5ufXt2/fmzZsdcGwYki4LREZGGhoanj9/XpcHUZu7i4vL48ePdemXUsgVAhCAAAQgAAEIQAACbRPQyTJn24asLXdXVVUZGxuHhYVpS0LIAwIvBH755ZcLFy68+Ar/hYC2CDg7O2/evFlbskEeEHgh4ObmZmhoWFVV9eIE/gsBrRB48ODBW2+9lZubqxXZIAkIvBDIzc399NNPExMTX5zAfyGgFQJyuXzGjBkRERFakQ2SgAAEIAABCEAAAhCAAARUFkCZU2UqthuizMm2KOKxJoAyJ2uUCMSqAMqcrHIiGGsCKHOyRolArAqgzMkqJ4KxJoAyJ2uUCMSqAMqcrHIiGAQgAAEIQAACEIAABDQngDKn5qzr9YQyZz0QfKk9Aihzas9cIBNlAZQ5lTW07TgjI2PZsmWd87kxlDm17d2IfGgBlDnxTtBOAZQ5tXNekBXKnHgPQAACEIAABCAAAQhAQEcFUOZst4mTSqU3btzIy8trtwzQMQReIuDn55eQkPCSizgNgXYTiI2NDQgIaLfu0XGTApWVlT///HNJSUmTrTrmxYyMjOvXr0ul0o45PIxKZwUKCwsdHBywnLLOTmCHTbyqqur06dNlZWUddoQYmG4KEATx999/FxQU6Gb6yBoCEIAABCAAAQhAAAKdVwBlzs479xg5BCAAAQhAoO0CUql027ZtMTExbQ+FCBCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEVBdAmVN1K7TUqEBQUJBV3Ss5OVmjHbe5s5s3b1pZWR07dqy6urrNwRAAAhCAgLYLEASxdevWpKQkbU8U+UEAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIdSwBlzo41nx1oNLt379are7m4uOjWsBYuXKinp/fFF18UFRXpVubIFgIQgEBLBU6dOsXj8Vp6F9pDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEGi7AMqcbTdEBLUIoMypFlYEhQAEIMCqgK2t7c2bN1kNiWAQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABFQSQJlTJSbWGwmFwoCAACcnp6tXr+bk5LAevwMERJlTfZOYmprqpfSKi4tj+pJKpVFRUSdPnjx//nxSUhJBEMylkpISV1dXR0dHHo9XWlrKnMcBBNoiUFpa+uTJE39//+DgYIlEohxKLBYHBwfT3yfT09NJkmSu5uXl3b5929HR0dvbm8/nM+flcvnjx4/PnDlz+vTp2NhYuVzOXMIB6wI+Pj5OTk4ymYz1yNoQUCAQJCYmBgUF+fr6lpWVMSnJ5XJvb2+l76Beubm5zFU+n+/m5nbs2DEul1tcXMycJ0kyNTX1woULzs7OYWFhYrGYuYQDCLRIID8/PyAg4OTJk46OjgEBAfWWx09KSrpw4cKJEyciIyOV/waXyWQBAQFHjx69fv16vR878/Pzb9686ejo6OvrKxQKW5QMGkOAESgvLw8LCztz5szRo0c9PDyUvwHW+7Hz8ePHzF1yuTwyMvLkyZNnz56tt/K5QCBwdXU9cuQIj8erqKhgbsEBBFokQBBEaGjo5cuXHRwcrly5kpCQoFAomAiFhYVcLtfR0dHNza28vJw5TxBEXFzc+fPnnZ2dY2JilH+eFAqF/v7+jo6O169ff/78OXMLDiAAAQhAAAIQgAAEIACBdhRAmbMd8CUSyebNm/v06fPnn3/OmjVr6NChJSUl7ZCHdneJMqf65sfc3LxPnz7jXrxsbW2ZAtJff/3Vo0ePjRs3rlixQl9fPyoqik6joqJi1qxZgwYNMjc3Hz58+PTp05lb1JcnIqtVQCqVqjW+isFXrFjRq1evHj166Ovr11vnedeuXfr6+hwOZ8qUKYMGDWJ+MVpTUzNmzJhRo0aZmpp+/PHH69atY8Zy7969999/f82aNWvXru3Tp4+bm5uKaaBZKwSuXbu2cuVK5d/9tSKI1t5y4MCBDz74oHv37m+//bafnx+TZ2Vl5WuvvTZo0KAX30HHMW8zgiDmzp379ddfW1hYfPfdd8bGxgUFBfSNqampAwYMWLx48aZNm957772DBw8ql6CY4DiAQLMC69atGzBgwOrVq1euXNmrV6958+Yxv7L38fHR19dfunTp77///umnnx4+fJiORpLkunXrPv/8c0tLy6lTp3722WeJiYn0pZKSkmHDhpmYmJiZmX322WerVq0SiUTN5oAGEGgocODAAfrtt2bNmp49e44dO5b528HS0rJ79+7M98ydO3fSt5MkeejQoY8++mjjxo2rV6/+9NNPQ0ND6UsCgcDQ0PC7776ztrYeNWrUf/7zH+WPNDXsHWcg8DIBoVA4YMCARYsWbdy4ccSIEX379vX29qYbl5WVTZkyZejQoebm5l999dWiRYuYIG5ubr179168ePHvv//+8ccfX79+nb4kFovXrl2rr6+/bdu26dOnf/311/V+dmUi4AACEIAABCAAAQhAAAIQ0KQAypya1P5vXwkJCe+//35wcDBFUSKRaMqUKYsWLULRqN5MMGVOW1vbUJ16jRs3Tsv35jQ3N1+3bl09cIqiZDJZ//79r1y5Ql/asmWLoaEh/bt4Lpf7wQcf0PX4kpKSgQMHnjlzpmEEnNEVgSdPnij/CrId0w4ODs7Ozvb399fX1y8sLGQySUtLe/fdd+lfRSkUigkTJmzcuJG+un///u+//57+npmfn//+++/HxsZSFEUQxDfffHPw4EG6mZ2d3ZAhQ5hfszKRcdB2gaysrK1btwoEgg78N1dcXFxSUlJMTEzDMuc///nPCxcuNGS8cuVK3759k5OTKYoqKyvr27fvyZMn6Xfm2LFjV69eTd/i4eGhr6+PX9k3BMQZVQQeP37MfFvz9fXt0qULvTludXW1oaHh/PnzZTIZSZJHjhzp2rVreno6RVEhISF6enpMs6FDh/74449yuZwkyQ0bNgwfPpxeoRpXBoEAACAASURBVCEqKqpr164BAQGqpIE2EKgn8OjRI+bbWmFhYb9+/Y4fP063sbS0nDlzZr32FEVlZ2f379+f/ltbJpOtWbNm8ODB9CPFzs7Ob775Jv18Z3p6eteuXZmyfcM4OAOBJgRIkmQ+C0JR1JIlS0xMTOj2V69e/eSTT+hn4ouLi/X19V1dXelLJiYmzL+VTpw40b17d/pZz4iIiO7duwcFBVEUJRAIjIyMVq5c2YF/FmoCFpcgAAEIQAACEIAABCCgVQIoc7bDdJw6derbb79lOrazs3v33XeVF3diLnXmA6bMqaebry+++EJrP95LlzmJupfyeyw4OLhfv37MgrQBAQFdunTJzMykKGr58uXr16+nGysUilWrVn399dfK9+JYVwSEQmF0dHRZWdmlS5eY35W3e/IBAQH1ypz79u0bNGgQU/j08vLq168fRVEkSfbu3dva2prJee7cub///jtFUYmJiT179kxNTaUvxcfH9+zZ8+HDh0xLHLAlEB4e3r9///z8fLYCam2c2NjYl5U5663WS5Lk5MmTJ06cyJzncDizZ8+mKConJ+df//rXjRs36GGSJDlw4EAPDw+tHTUS0xWBjIyMDz/88MSJExRFJScn9+nTx9/fn04+Ly/vtddeu3XrFkVR+/bte+ONN2pqauhLzs7O33zzTXnda+DAgRwOhz5PkuSoUaP27t2rK8NHnlorIBaLJ0yYQP/VTFEUXeYkCKJeNSgoKOjtt98WCAT0QNzd3d999116gdDly5dPmDCBaT9nzpy5c+fWW9lea4ePxLRZwMLCYsqUKXSGU6ZMYb4BymSypUuXjhs3jqIouVz+7rvvMgvSxsfHd+/e/fbt2xRFHTlyZNiwYcw7c/fu3R9//DH+Fa/NM47cIAABCEAAAhCAAAQ6iQDKnO0w0Rs3bly6dCnT8d27d998801mPUbmfCc/QJlTfW8Ac3Pznj179ujRo2fPnkuXLk1LS6P7srOzGzlyZFVVFf1lXFzc+++/T6/HOGTIEAcHByYlKyurbt26VVZWMmdwoP0CJEkSBGFvb//tt98yv6DRkrQbljkXL148atQoZgvDjIyM119/vaamprS09NVXX1V+mPjPP/8cOXIkRVFXrlwZOHAgU3vLyckZMGDA2bNntWSMHSMNoVBoaWmZl5fXSdZcfVmZs3fv3t26dfv0008dHBzo74RCoXDIkCFr165lJvr69etffPEFRVGBgYFvvvlmSEgIc2nSpEk7duxgvsQBBFoncO/evW7duj158oSiqOjo6DfffFN5E4QuXbocOXKEIIgNGzYMHTqU6eLhw4cffPBBfn5+Wlpa3759z507x1xav3798uXLmS9xAIHWCWRlZX344YfMNz0LC4uePXu+//773bp1W7VqFf35OYqizp8/379/f6aLtLS0N954w83NTSwWjxs3zsLCgrlkY2MzatQo5gdU5jwOIKCiQGJiYmRk5LFjxwYOHMh8HKR3797KPyVu27bt3//+t0KhePr06fvvv898NKSoqKhv37579uyhKGrdunUrVqxgOr1x40aPHj0SEhKYMziAAAQgAAEIQAACEIAABNpFAGXOdmBfvny58m9CPT0933jjjYiIiHZIRYu7ZMqcpqamt3XqNXr0aC1ftDYkJMTT0zM6OtrT05Pe45CuWFhYWBgZGdFrNzGPhtC70ejr658+fZp5v9ja2nbt2hUfXmZAdOLg1q1bJ0+erKmpSUlJ0baEG5Y5p06dOmbMGGadsaysrC5duhQUFDx79uwf//gHs7Qy/ZjI559/TlHU8ePHhwwZwjxFnZ+fP2jQoCNHjmjbYHU6n9zc3E8++SQwMFCnR6F68g3LnBKJ5OTJk0FBQdHR0WfOnHn33Xf//PNPuVxeUVExePDgLVu2MMHd3d0/+ugjiqLc3d3feustZqtjiqJmz569adMmpiUOINAKgZSUlEGDBh04cIC+Nzw8/J///Cfz0RCKoj766KN9+/YpFIrVq1cbGRkxXaSnp3fr1i03NzcxMbF37970E5/01W3bttGPIDONcQCBlgo8f/78u++++/HHH5kbIyMjvb29IyMjfX19J0+e/OWXX9Lrfx47dkx5aZD8/Px//etfd+7cEYlEo0ePtre3ZyI4OzsPGzaMee6TOY8DCKgosGbNGkNDwx49eowaNSojI4O+66233mIWWqAoaufOnW+//XZNTU14eHi/fv2YjYr5fP7HH39sampKUdTSpUuZPRQoinJzc+vatSsWDlFxFtAMAhCAAAQgAAEIQAAC6hNAmVN9ti+NvG7dupUrVzKXeTzeG2+8gX8gMSD0AVPmdHFxqXdJy79cuHChlpc5lQGrqqq6du0aHR1NUdT+/ftHjx7NfFg+ISGhd+/eXC6XoqhBgwY5OTkxN+7evbtbt27MJkzMeRxop4Co7uXk5KT8AQutSrVhmXPevHmjR4+WSqV0npmZmW+99Rafzy8qKvrHP/5x/vx5Jn8Oh0MvA37+/PlBgwYVFBTQl3Jzcz///PNTp04xLXHQFgGCIFxcXOLj45nac1ui6cq9Dcuc9TLfv3//4MGDi4uLq6qqvvrqK+Xfft65c+ezzz6jKMrPz+/NN9+8f/8+c+/UqVO3b9/OfIkDCLRUICUl5ZNPPlmzZg1T14yKinrjjTeU/17u3r27vb09QRBr164dPnw400V8fHyvXr3y8vJSUlL69Olz6dIl5tKvv/66ePFi5kscQKClAuXl5VOnTh05ciSzA0K9CA8fPuzevfvly5cpijpz5szAgQOZBllZWa+//jqPxxOJREZGRrt27WIuHTp0aMSIEVhEhAHBQesExGLxwoULJ06cSC9q0qNHD+Wdts3Nzbt06SKTyeLi4vr06cOUOUtKSj788EN6u4Qf615M73fv3u3evXtcXBxzBgcQgAAEIAABCEAAAhCAQLsIoMzZDuyHDh0aM2YM07GTk9Pbb7/N7P/BnO/kByhzauYNIJPJvvjii7t379IfSf7ss8/oj9hTFBUWFvbvf/87MTGRfvaIeUqJIIh169YNGDCgU1U7NDMdaurlxx9/3LFjh0KhYH4hrqaOWh22YZnT3Nx8yJAhzO9JQ0NDe/XqRZIkvWGSjY0N09fSpUt/+OEHes3G3r17M6vhJSUl9e7dOzg4mGmJg7YISKXSGTNmHDt2rC1BdO7eZsucHh4e/fr1o1fxNTY2njZtGvONcffu3ZMmTaIoKiUl5V//+te9e/eY4Q8dOlT5CRLmPA4goIpATk7OyJEjN23apFz1SUxM7NWrF/PQcFlZ2WuvvUYXk6ysrOjf3dPBr169Onjw4NLS0qKiov79++/cuZPpdPz48SjAMxo4aKlAUVHR1KlT58yZw/zd3TBCTk7Ohx9+ePjwYYqivL29u3Tpwuy4SW8JHx4eLpPJFixYMGfOHOb2lStXTps2TWt/hmHyxIH2C/j6+r7++uv00jUGBgbMN0CFQvHDDz/QH5sTiURdunRh3sbJyck9e/akC6L79u0zMDBghmlnZ9enT5+8vDzmDA4gAAEIQAACEIAABCAAgXYRQJmzHdgfPXrUpUuXZ8+eURQllUqXLFlCbyzXDqlocZcoc6ppckiSFAqF9KeYCYJISkp66623srKyKIqSyWTdunULDw+nKIokycOHDzN7JtGfuKc/11xeXj5y5Ejm9wJqyhNh2y5AkmRmZmZxcXFoaCj9wG7bY7Iegd4x1M/PT19fv6CggNnx8f79+z179oyMjKQoSqFQrFu3buHChXTvGzZsmD59ulwupyiqpqZGX1/f19eXftP26dPn9u3b9Nv7xo0bvXr1YmpOrGfeqQI+e/aMLp8wE9Thh0+/Mx8/fvzWW2/5+voSBEG/r2R1L3r4Uqn0xx9/HD58OP3pEDs7u4EDB+bk5FAUJRaLv/zyS7oeT5Jk//79t23bRkdIT09/7733KioqOrwhBqgOgaysrI8//njp0qU1NTVE3Yt+X5WWln733XebN29WKBQkSV6/fv3dd9999OgRRVEuLi6vvPIK/TyxTCabMGHC/Pnz6drSzJkzjY2NhUIhRVF5eXlvvfUWvSG3OjJHzI4twOfzp02bNmTIkPz8fOV3Jv39kB47SZKenp5dunRxd3enN0fo27fvrVu36O+3HA6nX79+ZWVl9Poib7zxBr05Qnl5effu3S0tLTs2IEanJgGJRCKTyejgcrnc2dm5W7du9A8z9vb2I0eOpL8ZlpWVDRs27Pjx43TLESNGHDp0iG528+bNd955h/7LPTAw8O2336b/3SQWi6dPnz5u3Dj6m7Ca8kdYCEAAAhCAAAQgAAEIQEAVAZQ5VVFiuU11dfXixYu/+eYbOzu73377beDAgfHx8Sz3ofvhUOZU0xwKhUJjY+MtW7bY2tpu2rTpgw8+WLNmDfPv8127dvXv33/v3r0WFhb9+/fn8Xh0GgUFBcOHD58xY8aRI0cWLlw4evRo7JCkpgliMaxcLh87duyZM2dYjMl6KHd397Vr106bNq1Lly7Lly/fuHFjfn4+RVH0QosjR460t7f/9ddfe/XqFRQURPeel5c3ZMiQNWvWHDp0aPz48dOmTWMWFnN2dtbX19+5c6e1tfWAAQOUN5RlPfNOFdDGxmbDhg2dashRUVFr166dO3fuP//5z6lTp65bty40NJSiKFdX10WLFllZWdnY2CxcuLBLly7nzp2jfxMqEAiMjIxmzJjh4OCwYMGCzz//PD09nUYLCgoaMGCAqampjY3NgAEDtmzZQtfpOxUpBsuKwIoVK1599dW5c+euffGi15YnSfLKlSs9evTgcDi2trYDBw7kcDj020woFM6dO/f7778/evTo+vXru3fvHhISQieTlJQ0cODANWvWHD58+D//+c/kyZOZFR1YyRZBOo/A7t27//GPf0ydOvXFG3Mts9nBqlWrtm7damNj8/vvvw8YMGDVqlV0YUkmk5mbm3/88cf79u3bvn17v379mMfcc3NzBw0aNH36dCcnpzlz5gwaNCg7O7vzYGKkLApcuHBhyZIl1tbW+/bt++GHH/r27evs7EzHz8vLGzp06IIFC44cOTJnzhxjY2PmieGLFy++++67ZmZmNjY2X375JbMLMp/PnzVr1vDhww8dOrRhw4aBAwdixVoWJwuhIAABCEAAAhCAAAQg0GoBlDlbTdemGxUKxeHDh8eOHbts2bKUlJQ2xeqgN3t7e2+ueyUkJOjWEC9cuLB58+b9+/czm1xqVf4KhcLZ2ZkuVc6ZM+fWrVvKj2cRBHHlyhUTE5NZs2bVW+2Tz+dv3brVyMjo999/pz9fr1XjQjLKAgRBWFpapqamVlVVMdtbKjfQnmNfX98tSi9TU9OioiI6PYlE4uTkRH+fTE5OVs45Ozv7hx9+MDY2trKyop9Doq+SJOni4jK17uXm5sbU75XvxXGLBPh8/qNHjwiC6GzPxT569Ejpjbnlzz//pJ8tzsnJMTc3nzx58ujRo9evX5+RkaHsWVFRsX37dkNDw02bNinvkkgvqjx79uyJEyeeOXNG+buu8u04hkCzAidPnlR+Z27ZssXT05O5KyYmZt68eRMnTrx9+zZzkj5wdHQ0NDRctWpVbm6u8qXc3Nw1a9YYGRnZ2trinaksg+MWCdy4caPeO/PcuXN0hAsXLsyfP9/AwGDmzJl37typ9yGPO3fumJiYzJ49OyIiQrlHmUxmZmY2evTorVu3Mh9mUm6AYwioIlBYWLh79+7p06cbGBisWbPmwYMHyncVFxf/9ttvxsbG27Zto58kZq6GhYXRf2vfuXNH+UcggiDs7OyMjY1XrVrFbJTA3IUDCEAAAhCAAAQgAAEIQKBdBFDmbBd2dAoBCEBAXQLFxcUVFRXLly9nNmlTV0+I2wkEfH19//Of/zB7p3WCEWOIEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAgM4IoMypM1OFRCEAAQg0KxAdHd2rV68nT5402xININC0gFwuf/DgAUEQzKZWTbfHVQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACGhZAmVPD4OgOAhCAgFoEqqqqXF1dq6urjx8/Xm/dLbX0h6AdXSA1NRWbTnX0Scb4IAABCEAAAhCAAAQgAAEIQAACEIAABCCg2wIoc+r2/CF7CEAAArTAjRs3evTokZ2dDRAItF0gJiZGoVCUl5djf9O2YyICBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgoCYBlDnVBIuwEIAABDQkEBwcbG1tLZFIEhMTUZTSEHqH7qakpGT48OEODg4depQYHAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIKDzAihz6vwUYgAQgEBnFpDJZDExMcuXL5dIJJ3ZAWNnSyA3N7ekpCQ3NxfvKLZIEQcCEIAABCAAAQhAAAIQgAAEIAABCEAAAhBQkwDKnGqCRVgIQAACahfYs2fP6tWrFQoFQRBq7wwddAIBqVS6aNGixYsXo8bZCWYbQ4QABCAAAQhAAAIQgAAEIAABCEAAAhCAgM4LoMyp81OIAUAAAp1QIDs7OzY2Njs7Ozg4GAvVdsI3gDqGTJJkWlpaYWFhTk6OOuIjJgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABdgVQ5mTXE9EgAAEIqFeAJEmpVDpx4sStW7eqtydE72QCR48eHT58eGlpaScbN4YLAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI6KoAypy6OnOq5x0eHr677vX06VPV79KGllwud/fu3Y6OjgKBQBvyQQ4QaHcBkUj0008/8Xi88vJyPp/f7vkggQ4j8Pz58/Ly8sePH2MB5A4zpxgIBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQ6vADKnB1+iqmDBw/q1b3u3LmjW6NdsWKFnp7ep59+ihUUdWvikK2aBHJycvh8/vLly69evaqmLhC2cwokJCQMGDAgPT29cw4fo4YABCAAAQhAAAIQgAAEIAABCEAAAhCAAAR0VABlTh2duBakjTJnC7DQVD0Cz5494ym94uPjW9GPp6enUgxeRkZGS4Pk5OQoR/Dy8pLJZC0N0l7t09PT+/fvf+3aNbFYjOft2msWOmS/FRUVVVVVoaGhEomkQw5QOwclEAiUvx2FhIS04ttRUFCQcpDw8PCWDraiosLDw4MJ4ubmJhaLWxoE7SEAAQhAAAIQgAAEIAABCEAAAhCAAAQg0F4CKHO2l7zm+kWZU3PW6OklAufPn6cfKab/f9iwYS9p2NTpnj17KgdxcHBoqnVj106fPq0c4fXXX09LS2usoXadq6qq4vF4AoHgxIkTBQUF2pUcstFxAZlM9t1333l5een4OHQv/djYWOVvRx988EErnqb99ttvlYOYmJi0FCIyMvK9995TDnL//v2WBkF7CEAAAhCAAAQgAAEIQAACEIAABCAAAQi0lwDKnO0lr7l+UebUnDV6eolAvTLn0KFDX9KwqdOdtsyZmpr6wQcfRERENKWDaxBouUBlZaVMJgsMDCwrK2v53bijTQL1ypy9e/duxacuUOZs0xzgZghAAAIQgAAEIAABCEAAAhCAAAQgAAHdF0CZU/fnsLkRMGXOAwcOPNCp19SpU7E3Z3PTqxvXUeZs3TylpaUtW7astLQ0Pz+/dRFwFwSaEFi5cuX27dubaIBL6hNAmVN9togMAQhAAAIQgAAEIAABCEAAAhCAAAQg0HkEUObs+HPNlDmVV6XToeNPP/00Jyen489Thx4hypytmN6srKykpKTVq1eXlJS04nbcAoEmBEQikVQqDQgISEpKaqIZLqlPAGVO9dkiMgQgAAEIQAACEIAABCAAAQhAAAIQgEDnEUCZs+PPNcqcHX+OtX6EKHO2dIr27ds3bNgwFDhb6ob2KgocOHBgxIgRNTU1KrZHM9YFUOZknRQBIQABCEAAAhCAAAQgAAEIQAACEIAABDqhAMqcHX/SmTLnpk2bLuvUy8DAAIvWdow36M2bN5UfIG7d3pyffPIJE+SVV15xdnZuKc7p06eZCHp6eq+//npWVlZLg6i7fWxs7O3bt589e3bv3j2JRKLu7hC/EwqUlpZGRUVduXKFIIhOOHwtGXJGRsYrr7zCfEdq3d6cxsbGTAQ9Pb05c+a0dHSRkZHvvfeecpAHDx60NAjaQwACEIAABCAAAQhAAAIQgAAEIAABCECgvQRQ5mwvec31y5Q579y5o7le2ehpxYoVKHOyAYkYuiGgUCgkEsnChQsnTJhQUVGhG0kjS10T8PT0fO+99zIyMnQtceQLAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKC+AMqc9UU63tcoc3a8OcWIOp6ARCIxMzOzt7cvKyt7/vx5xxsgRqQNAgKBIDU1dfv27QKBQBvyQQ4QgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABNoigDJnW/R0416UOXVjnpBlJxaorq4WiUQcDufw4cMKhaITS2DoahTIz8/v1auXv7+/GvtAaAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACGhRAmVOD2O3UFcqc7QSPbiGgkoBAIPj2229tbGxkMhlJkirdg0YQaKGATCYrKCjgcDipqaktvBXNIQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhoqQDKnFo6MSym5efn90vd6/HjxyyG1UCoixcv/vLLLzt37iwvL9dAd+gCAhoWIEny/PnzxcXFXl5eeJNrGL9TdUcQxIwZM/76669ONWoMFgIQgAAEIAABCEAAAhCAAAQgAAEIQAACEOjwAihzdvgpxgAhAAFtFBCLxbm5uX369Ll796425oecOooASZI1NTW2trbe3t4dZUwYBwQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBWgGUOfE+gAAEIKBpgeTk5I8++igxMVEikWChWk3rd7L+zp49a2Zm1skGjeFCAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACnUIAZc5OMc0YJAQgoCUCMpksLCwsKytrwYIFCQkJWpIV0uiQAiRJEgRx6dIlJyenDjlADAoCEIAABCAAAQhAAAIQgAAEIAABCEAAAhDo5AIoc3byNwCGDwEIaFTAycmpW7du4eHhMplMox2js84n8OjRo1WrVsnlcoIgOt/oMWIIQAACEIAABCDQYoHk5GQHB4fly5evWbPm6tWrLb4fN0AAAhCAAAQgAAEIQAACGhdAmVPj5OgQAhDolAIJCQnOzs7FxcWnTp2SSCSd0gCD1pyAQqEIDg7+5ZdfxGKx5npFTxCAAAQgAAE1CAwcOPCdd95ZsWKFXC5XQ3iEbETgxIkTXbp0eeedd06ePNnI5Y54iiAIe3v7V199Ve/Fa/LkySoO9OrVq+/UvZ48eaLiLR2mWWpqKj32JUuWdJhBYSAQgAAEIAABCEAAArolgDKnbs0XsoUABHRVwNHRsX///s+fP9fVASBv3RHIz89fvHhxfn4+HhrWnUlDphCAAAQg8FKB7t276+npLViwAGXOlxqxfcHBweGVV17R09NzdHRkO7aWxisuLu7SpcuLEmftfxcvXqxirg4ODvSNjx49UvGWDtMsOTmZHvucOXM6zKAwEAhAAAIQgAAEIAAB3RJAmVO35gvZQgACOiZAEMTp06c3bNhQXV1dVFSkY9kjXR0UUCgUaWlps2bNevr0qQ6mj5QhAAEIQAAC9QXUVOaUy+WbNm36/vvvTUxM6nfZ6b/uhGVOKysruly3YMGCjIyMmpoa1ddf6dhlToFA8H3dy8rKquGfDJQ5G5rgDAQgAAEIQAACEICAhgVQ5tQwOLqDAAQ6kUBlZWVxcfGtW7cOHz6M5w860cS331BFItFPP/10//79mpqa9ssCPUMAAhCAAATYFFBTmVMmk5mYmOjp6fXs2ZPNdDtELG9v72nTpk2ZMiU0NLRDDKj5QUyZMoUuc7ZiyB27zFlWVkbLLF26tKEjypwNTXAGAhCAAAQgAAEIQEDDAihzahgc3UEAAp1FQCQSzZw5c9WqVShwdpYpb+9xkiRZUFAwe/bsCxcutHcu6B8CEIAABCDAmgDKnKxRItDLBT777DO6mNeK9VdQ5tTT08OitS9/c+EKBCAAAQhAAAIQgIB6BVDmVK8vokMAAp1QQKFQODk5xcTEPHz4MCMjgyTJToiAIWte4Pjx4xcvXuTz+QRBaL539AgBCEAAAhBQkwDKnGqCRVhlgX79+tFlzsrKSuXzqhyjzIkypyrvE7SBAAQgAAEIQAACEFCTAMqcaoJFWAhAoJMKVFRUFBUVjR071srKCgXOTvomaI9h19TUrF69etOmTarvI9UeaaJPCEAAAhCAQCMCBEFUV1cXFxcXFhZWVlbW+7yO6mVOhUJRWVlZUFBQWloqFoub/kmspYvW0kkWFhYWFxfX1NQ0HbyRQTZ5SiwWl5SUFBUVCYXCesNv8r7aizKZrKKioqCgoKSkpLq6uhWJSSSS8vJyoVDYbF8NG7Sld7FYXFxcTI+6FWk3TEb5jFAoLCkpKSgoqKioUOWnI6bMWV1drRxHlWPVy5wkSdbU1DCJSaVSVeIrt6Hfh0V1r6qqKuVLzR6TJCkSicrKygoKCvh8vkKhaPYWiqJasWgtQRD0n8Ti4uJWeDadFUmS1dXVtEAratJNB8dVCEAAAhCAAAQgAAFdFECZUxdnDTlDAAJaKpCVlTVu3Dgul5ufn6/K71O0dBhIS9cEkpKS7OzsBAIB679I0jUJ5AsBCEAAAjomQJKkn5/f8uXLR4wY8dVXXw0aNGj48OFTpky5du2aTCajB6NKmTMtLe2XX34xNjb+7rvvBg0aNHTo0NGjR8+fP9/Dw6Nh1TAuLs7e3v7gwYOff/65np7eO++8Y//i5e3t3VCwsLBw+/bt48eP//777wcPHvzVV1+NHDly2rRply5dUrFQ1DAmfUYul9+8eXPOnDmjogHmFQAAIABJREFUR48eMmTIl19+OWLECBMTk/3795eXl7/sLuZ8eXn5oUOHjIyMhg0b9sUXXwwZMmTEiBHr1q0LCQlh2tQ7yM/PP3bsmIODQ25uLkVRubm51tbWhoaG33zzDYfDYRoXFBQ4ODjY29tnZ2czJ+sdlJWVtbR3OoJMJrty5crs2bNHjx791Vdf0aOePHmynZ0dn8+v10srvvT29l62bNmIESOGDBkyaNCgb775xtjYeOfOnampqfWiKRQKLpdLT37Xrl3ppzn3799Pn7l792699i/7UpUyJ0EQkZGRGzduHDVqFJPYuHHjbGxs8vPzG41cXV198uRJe3v7W7du0Q1iY2NXrlxJvw+//PLL4cOHL1myxMvLq9HblU8qFIqwsLCNGzeOHj3666+/HjRo0LBhw0z+j737jovi2v8GfpaO2MUasVfsFYmaqKiU2FvU2LsxGqOJokZji4kxaoyaiNHYO/ZeQGNDQREFBQUBpfe+hd3ZeV4/z3Mnk9llWfrs8tk/cmfPnPI97yH3Xv0wMwMH7tmzh8tKT506RTdOw1eZTLZr165NmzatWbOGynTs2PF//6Jsoj8/LMtqvpvz9u3bQ4YMof8mtm3btlu3btOmTfPx8eHXo+dxdnb27t27N23adOzYMTrkxYsXU6ZM6datW5sPn65du44ZM+bSpUt6TohuEIAABCAAAQhAAAJGKYCY0ygvKzYFAQiUtoBCoQgICEhOTh43blzh/hhf2hVjPSMSWLt2rZubmz5/H2pEm8ZWIAABCEDA4AXevn07cuRImqBo/rNBgwa3bt1iGEZ3zBkdHT116lSJRKI5A23p3bt3eHg4H8vDwyOvztOnT+f3zMrKcnd3t7Kyyqt/y5Yt7969yx+i/3FQUJCbm5uJiYnWyevXr3/gwIG8XvEul8uPHTtWs2ZNrWMJITNmzEhISNAs5ujRo4QQKysrb2/ve/fu2dnZcTMMHz6c63/48GFTU1NCiNbcVyaTHT16VPfqiYmJ3GzcgVqtfv78+YABA/LadcOGDY8ePZrXrrl5tB6o1erAwEBnZ2duR4KDypUr//LLL6mpqdxwuVw+dOhQQTfuq7OzM9dT90G+MWdMTMz8+fMtLCy4yfkH9erVO3LkiEwmE6wSExNTr149QkifPn1ycnI2b96s1U0ikYwdOzY2NlYwnPsaFRU1a9Ysc3Nz/qLccYsWLe7fv69QKBo3bkwbafCZkpJSv359rpvg4Pbt23R+fsyZmprq7u6eV5ELFy5MT0/nqtLnIC4ujlbVu3dvqVS6bdu2vCYfNWpUdHS0PnOiDwQgAAEIQAACEICA8Qkg5jS+a4odQQACZSDg4+NTq1aty5cvF+7vZcqgYixpFAIKhWLr1q3Z2dla/yrTKLaITUAAAhCAgHEKBAUF2dvbc/Fk48aNZ8yY8f3330+fPp1GO4SQ6tWrHzx4UEfMmZKS0qtXLzqJRCJxcHCYNWvWihUr5syZM3DgQC5V6tSpE/9/KI8fP968efNmzZpVqFCBEGJqatr8f5+1a9dy3FlZWSNGjOAmb9u27bRp05YtWzZ//vxBgwZZW1vT4KdZs2bv3r3jRul5EBMT06VLFzqDubm5s7PzwoULFy1aNGrUqOrVq9N2CwuLv//+W/Nprmq1evny5bR4qjRhwoQVK1YsWLCgc+fONAeSSCTdunV7+/atoB4u5vztt9/q1KnDZVempqaTJ0/mOuuIOfVfXZAusywbHh7erl07uqiVlZWbm9s3Hz4jRoyoWrUqt2vu1j2uHn0O/Pz8mjRpwu2oe/fu8+fPX758+YwZMxo1akTbJRLJ4MGDuR8GpVK5cOFCevG5gU2bNqUtP/zwgz7rsiyrO+YMDQ11cHCg85uamnbp0uXrr79etmzZpEmTatWqRdvNzc35P3t0XS7m7N69+5QpUywtLQkhdevWHTVq1OLFiydMmMBhSiSSESNGaK32zZs3Xbt25XZXuXLlXr16ffXVV19//TVXVaVKlXbu3CmIOdPT03v37t28eXNOtVKlSlSmVatWL168oMtxMaeTk9PQoUPpvy+NGjUaN27cd9999/nnnzdv3pzb45w5c7QWmVcjF3N26dJlxowZ9F+6OnXqjBgxYtGiRRMnTmzfvj23tcGDB+MPYnlJoh0CEIAABCAAAQgYtwBiTuO+vtjd/wmEhYVp/hkbNBAoLoH4+Ph169ZlZmaeOnVK8++himsVzAMBrQLe3t5t2rTR8UA5raPQCAEIQAACEChbgeTkZC7kq1y58vbt2/n1MAzj7u5OQ0ru5q1Ro0YJMgyZTDZmzBgacjRp0sTLy4s/Ccuyd+7c4V64OG/ePMHTa/N9N+fatWvp6tWrV9e8xTAkJMTR0ZGu3qNHD0Ftgko0v65fv56Obd++fUBAAL9DXFzc1KlT6b13DRo0ENwWqVar9+zZQ8daWFhMnDiR/35HtVq9f/9+7j7LcePG8c+yLEtjTnNz87p16xJCLCwshgwZcv/+fQFOXjFngVb/4osvBKuvWLGCECKRSDp16hQYGMjfdXR09IQJE+iumzRpUtAXhb59+5YLnhs2bHj//n3+5HK5fNmyZTY2NtRtwYIFgv2yLMv9qBTiFQA6Yk6GYUaMGEHXrVWr1p49e/hLZ2RkjB49mlZuYWEheCQMF3PS4dbW1rNnz05OTua2xjDM9u3b6e8BEEL279/PnaIHSqWSW93a2nrUqFFJSUn8Pv/88w/dePUPH7oQ9xhb2lPPd3PSsTY2NitXruSeOM2yrEql+v7777lU/uLFi/wCdB9zMSed3MrKavr06fx/IxiG+fPPP21tbWmHv/76S/eEOAsBCEAAAhCAAAQgYJQCiDmN8rJiU/8RcHBwcHJy+k8TvkCgmARkMpm3t3ezZs2QMxWTKKYpgMCRI0fS0tJiY2P5f19WgPHoCgEIQAACECgjgR07dtBAq2bNmmfOnOGHIrQimUx2+PBhLr8hhGjGnC9fvqTxRqNGjQSZGbetZ8+eVa5cmRDi6OgoeO+j7phTrVY3bdqUEGJra3vr1i1uQv5BaGgoLcDW1jYkJIR/Kt9jehda1apVtU6uUqmmT58u+fARxEJxcXEdOnSgYeGOHTs0Mzm1Wv3s2TPax8bGRhD40ZiTZkLW1tY///yzIImklecVc8bGxtLKJRLJzp07NcNIweoPHjzgU7Rp04YQUrNmTUE77SOXy8ePH0+35u3tzR+o+zg3N3f69Ol0U02aNPH19dX81UOGYbifKEtLS4FqycWcFy9epD/qrVq1evTokeZGFArFpk2baPH16tXjx5D8mNPGxmbnzp2a/5ePYZgff/yRDq9bt64gbueuY+XKlf/66y/N5+Kq1eqnT5/SnxY6CSGk0DFnjRo1zp8/r1lkbm7utGnT6PwDBgzQ/422/JizQoUKv/32m+bkarX6119/pZPXrl1bIKAJjhYIQAACEIAABCAAAeMTQMxpfNcUO4IABEpJ4MSJE61atZJKpfjjdCmJYxmeQE5OTrNmzTw9PXltOIQABCAAAQgYgIBSqWzRogV9WuyRI0d0VLxq1SruqbaaMefp06dptrFs2TIdk/Tv358Q0qJFi7i4OH433THn27dv6eRDhgyRy+X8gfzjyZMnE0IqV64sSBP5fTSPFQoFnbxRo0YxMTGaHViWvX79Or2fdcyYMfwO+/fvNzU1pa9j5LcLjnfv3k1frjlkyBB+5sePORcsWMA/xZ+Bi8cE7+bct2+fPqt7eHjQG2H5q8vlcrpre3t77rGx/EVZlj1//jzt88UXXwhO6fgaHx9PH8BrZWUluMqCUTNnzqTz9+rVSxCul8TdnOnp6S1btiSEmJiYHDx4UFAM91WpVLZt25YWxn9gLz/m/OyzzzRDSjpDcnIy1TYxMeG/oVOhUHDPdB0+fLiOH+OIiAjubsuixJyLFy/O6ycqNjaWFmlvb6//Gzr5MaeTk1NOTg6Hxj9ITU2lkxNC8IZOvgyOIQABCEAAAhCAQDkRQMxZTi50ud7mhg0bNm/eXK4JsPniFoiLi/P3979///6qVasyMjKKe3rMB4F8BG7cuPH27duYmBj9fx0+nxlxGgIQgAAEIFBaArdv36aJTpMmTSIjI3UsGxwcXLFiRdpZM+Y8ceJEkyZNWrZseePGDR2T0BsEGzZsKMg/dMecz549a9q0aePGjbdu3apj8lWrVhFCbGxstN6UmddAlUpFU6VatWpx7zgUdE5JSZk/f/6sWbOWLFnCnWIYplmzZoSQWrVq+fn5ce2aB8nJyfXr1yeEmJmZ8ZNULua0trZ+//695kDaojXmZBiG3uFaq1atJ0+e5DWWZVmtq6tUKvp0Vjs7u9evX2sdnpSUNHv27FmzZi1dulRrB62NHh4e9Idk5MiRWjtwjWFhYdz7HYOCgrj2Erqb88yZM/SFmkOGDBGkqvylWZZ9+vSplZUVIWTu3LncDYv8mPPSpUuCIfyv9LWaEokkNDSUaw8KCqL3Q1eqVOnVq1dcu+aBUqnknv9c6JjTxMTk8ePHmpNzLR999BH9hYO8Qm6uJ3fAjznPnTvHtWse0J9MQkhB76vWnAotEIAABCAAAQhAAAIGJ4CY0+AuGQousICzs/OIESMKPAwDIKBNQK1W5+bmTp061c7OTv/fRNY2E9ogUEgBhmH69es3evToQo7HMAhAAAIQgECZCnCP6Jw5c2a+hcyePTuvmDPfsQzDZGZmtmrVihDSoEGDqKgo/hDdMSe/p9ZjtVqdk5Pj4OBAY86bN29q7ZZXY6dOnei+hg4dmpiYqOejQQICAuiobt26SaXSvCan7WPHjqWdr1y5wvXkYs6xY8dyjZoHWmNObvXu3bvnu/rnn3+uuXq7du1o45gxY5KSkorrt7WcnZ31uTmYbnPSpEmEECsrq6tXr/I3XhJ3c7q7u9Nn8ApuiuWvS4+lUmnz5s0JIU5OTlwgysWcZmZmed3ISIcPHjyYLsRPzb29velvCbi5uWmuKGjx9PSkl6bQMaeVlZWOG0ZZlu3duzchpEmTJoJ/EwWV8L9yMWe+AsOGDaP1P3v2jD8DjiEAAQhAAAIQgAAEyoMAYs7ycJWxRwhAoHgElErl4cOHPT09g4ODfX19i2dSzAKBggi8ePHC29v73bt3+f71YkFmRV8IQAACEIBA6Qlwr1E8e/ZsvqtyT6bVvJtT69i0tLTAwMCrV696eHh8/fXXXJpYLDFnVlZWcHDwrVu3/v7776VLl/bq1YsmKzY2NgWNOfft20df2Uhf/zlz5szz58/rfuAqy7Lbt2+nK06YMCE1v8+KFStoZ/4NqVzMuW3bNq2AtFFrzPn777/rv/ry5ctp599++41baOfOnWZmZrS9du3ac+bMuXjxov739nHz8A/UarWNjQ0hxNLSUp//f75582ZagIeHB3+ekog53dzcCCFVq1b18/PTfbni4+NpZN68eXPu4bRczGlvb88vVfOYZrcSieT58+fcWU9PT/rcY91Pdab9X7x4QVkKHXN269aNW1rrAdVo0qSJjtuIBQO5mLNVq1aCU4KvU6dOpfX7+/sLTuErBCAAAQhAAAIQgIDRCyDmNPpLjA2yDg4OTk5OgIBAEQWUSqVcLp8wYcKgQYO4X7Iu4pwYDoECCahUqunTp1erVi01NbVAA9EZAhCAAAQgIBIBtVrNpYP6hFIRERE0vcgr5qR3VXp5ec2aNat27dpcVCM4KFzMqVarZTLZ48ePFy9eTJ8LKpiWfi1EzKlQKJYuXcplfnQeiUTStWvX3bt35+TkaL2/c+nSpVoL0N24atUq7upzMeeJEye4Rs0DrTHnkiVLdC+k9ewPP/zAzS+TyRYsWKC5awcHh3379hXuhfdZWVl0XWtr63fv3nFr5XVw5swZ2v/HH3/k9ymJmLNr165aTXQ01qlTh/tVNi7mdHR05Jeqeaw15ty9ezddSPe1prMlJydzVWVmZvKX4E6NGzeO306Pg4OD6UBnZ2fNs/yWosSc3bt350+leYyYU9MELRCAAAQgAAEIQKD8CCDmLD/XuvzudO/evYcOHSq/+8fOi0MgMzNz6tSpO3bsSE1NLa7naxVHXZijHAmkpaUdO3YsNjY2ODi4HG0bW4UABCAAAeMSyMnJ6dChA81F9Hl2JcMwtLPWmDM4OHjhwoW1atXiEhruwMTEpHXr1pMmTerWrVvhHlobHR29Zs2axo0bSyQSblp6IJFIGjduPHr0aJrcFCLmpFf12rVrQ4cOrVmzpmD+SpUqOTs779u3T6FQ8K//zJkzBT31+frtt99yk9CY08zM7Pr161yj5oHWmJO7DVefRbk+3333nWD+ixcvDho0yNbWlutDD6pUqeLq6nro0KEC/UJhXFwcHW5jY5ORkSFYS/Pr3bt3aX/BPY4lEXO2aNFCsMd8v1atWlUz5uzTp4/mRvgtWmPOn376iS4neDwvfyB3zDAM93NeuJhz2LBh3GxaD4oSc/bu3VvrnFwjYk6OAgcQgAAEIAABCECgHAog5iyHFx1bhgAECiYQGRnJMMyGDRsQLxUMDr2LVeCnn36ytrZ+8OBBsc6KySAAAQhAAAKlKqBUKrt06ULTl+jo6HzXTkxMpJ01Y87w8HD+HZYVK1bs16/f6tWrz58/HxwcnJubyzCMWq3+6quvChdzfvzxx1woZWlp2aNHjyVLlpw8efL58+fZ2dl08j///LNw7+bkNq5WqxUKxbVr10aPHl25cmVuRfqqxcmTJ/Pfd0jf9UgIGT9+/BW9PxEREdxyNOa0srK6ffs216h5oDXm5O4l/eKLL/Re/Ap/dW4htVotl8svXbo0YsQI+v5IbuMSiWTOnDn6/1pheno6HWttba3PT9SlS5do/7Vr13L1sCxbEjEnjdhr1qy5f/9+PcXu3LnDMAwtjLubs3Ax565du+hO9+3bx9+p1uPs7GzuEiDm1EqERghAAAIQgAAEIAAB0Qog5hTtpUFhxSaAh9YWG2W5nCgmJqZNmzanTp0ql7vHpkUhwDDMpUuXEhMTr169qlarRVETioAABCAAAQgUVmDo0KE0UNHnJrObN2/SzoKYU6FQDB48mJ7q3r37oUOH0tPTtVY0b968gsacSqVyxowZdPKmTZtu3749r7dm/vHHH0WMOfk1y+XyFy9e/Pnnn/3797e0tNTc+L59+2jjN998wx+o/3FRYs6///6brr5o0SL9V8y3p0wmCwgI2LFjR9++fem7JAkh48aN0/rYXs3ZGIahbzm1tLR8+vSpZgdBy7Zt2+gudu7cyT9VEjHnyJEjCSF16tR5+/Ytfy09j4sYc54+fZp6rl+/Pt8VQ0JCKEuh382JuznzRUYHCEAAAhCAAAQgAIESEkDMWUKwmFZEAtnZ2Tk5OSIqCKUYiEB6evo333wjlUpfv35doGdnGcj+UKbBCHh7e1tbWx8+fNhgKkahEIAABCAAgbwFvv32WxqobNy4Me9e///Mxo0baWdBzPnkyRP6jM26deu+fPlSxzyTJ08uaMwZFhbGvT/y1q1bOib/8ccfizHm5BZSKBQnT56k6Z1EIvnnn3/oKR8fH6rh4uLCdS7QQVFiTm51V1fXAi2qZ2e5XH7gwAG6QYlE8vDhQz0HtmvXjhBibm5++fLlfIfQR++am5ufP3+e37kkYs5FixYRQiwsLAIDA/lr6XlcxJjzn3/+qVSpEiFk6NCh+a547do1Ko+YM18rdIAABCAAAQhAAAIQEJsAYk6xXRHUU/wCp06dOnfuXPHPixmNV0CtVicmJoaEhPTr18/Hx8d4N4qdGYDAy5cvExISrly5kpWVZQDlokQIQAACEIBAfgK7d++mgYqbmxv3GkKtg5KSkho0aEA7C2JODw8P2j5mzBitY7lGR0fHgsac169fNzExIYR07NiRm0frAb0ztaDv5jx06FDHD58DBw5onZZlWYZhnJ2d6R737t1Lu6WkpJiamhJCmjRpovVhsNxsubm5M2fOdP3wefLkCddelJiTv3pkZCQ3p+YBf3XuDsu9e/fSXR87dkxzCG1hGKZ3795010eOHMmrm6B9/fr19Bm/CxYsEJwSfI2MjKTPyK1Vq1ZAQAD/bEnEnL/99hsN4wXvAeWvS49TUlJGjBjh6uq6fPly7oG9RYw5g4OD6QtQTU1Nnz9/rrko16JSqfivfcVDazkZHEAAAhCAAAQgAAEIGIQAYk6DuEwoskgCeGhtkfjK5eCrV682b978/fv3CJbK5fUX0aYzMzNr1669cuVKEdWEUiAAAQhAAAJFE4iOjqbZj42NjZeXl47J9u/fT1M9QkheMeeKFSt0zPDo0SM6Q4MGDaKiovg9c3NzBw4cSAipWbMmv51lWS7mHD9+vOAU/+urV6/oTZ8FjTmvXLlCk7zu3bvreGTI7NmzabetW7dy69IU0MTERPDMVa4DPXj8+LGVlRUhxMTEhP/E3aLEnCzL9urVi86pe/VHjx5prn7u3Dm6HScnJx0PpJ00aRLt5uHhIdhUXl/DwsKsra0JITVq1FAoFHl1Y1l2/vz5dPIuXboIIvaSiDlv3bpFU1ULC4vw8HAdhdGklhAyd+7c4no3p1Kp7Nq1K93v9OnTdbz4IDExsWrVqrQn7ubUcZlwCgIQgAAEIAABCEBAnAKIOcV5XVBViQsoFIorV64cO3bM39+/xBcT2QIRERHHjh07ceJEdHS0yEor+3KSkpIePHjw9u3bFStWpKSklH1BqKAcCyQnJ8fExDx9+vTdu3flmAFbhwAEIAABIxSg7ywkhHzyySfv37/XusOgoKBu3bpx0Ysg5uQys759+8rlcq0zPHz4sEaNGnQGOzu7vGLO6tWrC4Y/fvyY3s1Zv379vH7pLTw8vHPnznTyChUq3LhxQzCJjq/p6ek0BaxWrdr169e19kxKSmratCmd39PTk+tz4MAB+jDbRo0a+fj4cJEY14FlWZlMNm7cOJolC25wLGLMuX//fm71R48e5bX62LFj6epff/01V1haWhrdda1atbjH8HJn6UFCQkKdOnXori9evCg4m9dXuVzOvfB1/Pjx8fHxWnteunSJTm5qanrixAlBn5KIOdPS0jp27Ei3M2bMmOTkZMGiLMuq1eq7d+/Sp8sSQm7evMn1KeLdnCzLnjlzhibxtWvXPnXqlNakMyIiwsXFhRZJ/5nX3ZyjRo3iauMOgoOD6Si8m5MzwQEEIAABCEAAAhCAQCkLIOYsZXAsVwYCo0ePnjx5smDhhISEBg0amJqaLlq0SHDK6L8ePnzY1NTU2tpa8EIao9+4PhvcsWOHra1tXFyc1r+10WcG9IFAcQmMHz9+0KBBxTUb5oEABCAAAQiIR8DHx4cGkBKJpGXLlvfu3RPUduPGjdq1a9MXLtIQRRBzJicn03YrK6tDhw4JhisUir179zZq1Ij2IYTY2toKnvLKMIyrqyshxNTUND09nT9DZmYm927OZcuWcQ8RpX1UKtWFCxfatm1LkzxCiKWlZUHfkbF48WJaW+PGjUNCQvir0+jryy+/pPNbWlryf/cuJSWFi1dpdiUYGxsb+9lnn9F7WJs1axYTE8PvUMSYMzk5uVOnTrTy2rVr8/NXukpsbKybmxtdvXnz5oLV582bR8c2bdr0zZs3/MJYllUqldOmTaMdLC0t09LSBB10fL1//z4dSAjp16+fIKhjWfbAgQNVqlShfSZNmqR5O2lJxJwsyz548IBqmJqafvzxx/w7a+l2/vnnnyZNmtDCPv/8c/7dvUWPOVUq1eeff04nr1ix4tatWwV/xomNjeXu+OQABXpSqZSe+vTTT/nl0foRc+r4scQpCEAAAhCAAAQgAIHSEUDMWTrOWKUsBdzd3desWSOoID4+nv4y78KFCwWnjOArwzDPnj3z8fHh3oXD39ShQ4cIIRYWFgX96xj+JMZ37OXltWfPnri4uJcvXxrf7rAjwxLIzs5+//59WFiY7hcpGdamUC0EIAABCECAE1AqlevWraP39hFCKlasOG7cuF9++eXs2bOHDx+eNm0afYRmlSpVTpw4QQNRQczJsuzSpUstLCwIIWZmZsOHD9+3b9/58+f37NmzYsWKNm3a0GDmo48+oimORCJxd3f/448/+Ona9OnTabehQ4eeOXPG09OTu4Nw586dFSpUoCFo3759PTw8zp07d+DAgTVr1vTs2ZPe62lra8vdBjd27Ng9e/bkdZMit3HuICYmhssLLSwsxo8fv2vXrjNnzpw4cWL9+vXNmjWjhdna2mr+YuLDhw+5Gz0tLS1Hjx69Z8+e8+fPHzhwwN3dncbDhBBra+vTp09zK9KDIsacNLcTrL53716tq585c0awekREhL29Pd2alZXVpEmTPDw8zpw5c/z48bVr1zZu3Jieql27dl43uQom5H/ds2cPd/Nu/fr13d3dPT09z58/v2/fvuHDh1taWtLJHR0dtT4/toRiTpZlN2zYwP2o16tXz93d/dSpU2fPnt2xY8egQYNoVRKJpF+/foJAvegxJ8uywcHB7du3p6tYWFi4urru3r373Llzp06dWrx4cc2aNelrTfv160fjWEJIdnY2H5ZlWfpDVa1atV9//fXChQt79uzh/sSEmFNgha8QgAAEIAABCEAAAqUvgJiz9M2xoigEjDvmlMlkXbp0qVq1auvWrTW5EXMKTOhfKOzcuXPq1KmCv1wQ9MRXCJSOwJ49e1q0aCG4s6R0lsYqEIAABCAAgdIRyM3N3b9/f/Xq1WkAQ/9pYmLC3SJpY2Nz9uxZhmHyijkzMjJGjBjBH87lNLTRyckpODj4+PHjNA2ljQcPHuQ2eOHCBW64qampiYmJk5MTPatWq5ctW0bjTNpHMLm9vf0///zz6tWratWqcZPo/5wYtVodGBhIX7TJDedvnyas+/btE9x+R8t78eIF/4m+NOvl6AghLVq0uHHjhubYosecLMs+f/5ccAugmZkZf/WWLVvevHlXJePoAAAgAElEQVRTc3W1Wh0QEODo6Mhtmb7pkz/W1NT06NGjWh+vyl04rQdqtfr8+fPcLZs0vePuyqWeY8aMiY2N1Tq85GJOmUy2a9cu7rG0tDD+j5ZEIhk9erTgbmOWZYsl5mRZNjw83NnZWYDM//rFF1+8ffuWXhRra2vNCzdz5kzuktFrvWXLFsqImFPrjxMaIQABCEAAAhCAAARKUwAxZ2lqY62yEXBwcOD+woKrwOhjzubNmxNC6tWrx22ZO0DMyVHQgyVLlqxatUqlUhXi71MEU+ErBIoooFQqw8PD4+LiuLtJijghhkMAAhCAAATELPDy5cvZs2d37ty5QYMGNWvWrFatWoMGDTp16rRkyRLu8Z5jxoxxcXFZv3695q+jqdXqU6dOOTk5tWzZsk6dOtWqVatXr16LFi0GDRr0999/0wdsZmdnf/XVV507d27durWDg8OtW7c4EJpltmzZ0vbDp3HjxnPnzuWfvX379uDBg1u3bl2vXr1q1arVqVOnWbNmTk5OW7dulclkLMvm5ub++uuvXbt2tbe379Kly65du7jh+hxIpdKff/65Z8+e9vb2derUqV69up2dXatWrbp3775y5cqEhAQdk8hksq1btzo5OTVt2rRu3brVqlWrW7du69atHR0dv/vuO/5zbvmT3L5928XFZdiwYYGBgfx2wbGXl5ebm5uLi8uTJ08Ep+hXravb29s7OjouWbIkr9Xp2Ozs7LVr1/bs2bN169Z16tSpUaOGnZ1d69ate/TosXbtWt1jtRbDb5RKpatXr+7Zs2eTJk1q1apFWVq1avXZZ5+dPHlS81m13NgFCxa4fPhIpVKuUc+Ds2fP0rGhoaF5DXnz5s3cuXO7dOnSsGHDmjVrVq9evVGjRh07duzfv7/mDbt0kszMzAkTJri4uKxcuTKvaWn7pk2bXFxcXF1duX9rBP1zcnL++OOPPn36NG3atHbt2vTflFatWg0ePPjs2bM0UqVBZtu2bQVjWZYNDQ11dna2s7Ojnvb29sePH6fdkpOT6d5///13zYH8lpUrV7q4uEyfPl3/3+TLzs6eNm2ai4vL8uXL+VNpHm/ZsoWWIXhOsmZPtEAAAhCAAAQgAAEIGJ8AYk7ju6bYkVDg2bNnmg9+RMyJh9ayLOvv7y+Xyy9evHj//n3hzw2+Q6AsBHx8fFq2bHn79u2yWBxrQgACEIAABMpAQK1WJycnh4aGBgYGBgQEhIaGJiUlFeiXz7KysqKiol69evXs2bOQkJD3798rFAr+TugSMTEx6enpgplVKlVUVFTgh094eLjgrYQsy8pkspiYmJCQkICAgFevXkVGRmrGYKmpqTExMSkpKZpBLL+MvI6zs7NjYmJevXr1/PnzN2/eREdH658DSaXSyMjI4ODggICA4ODgmJiYrKysvBYq9vZCr65Wq4uy63w3kpWVFRERERQURFmioqJ0BJz5zlaMHVJSUsLCwgIDA58/f/727dvExES5XF6M8+ueil6vly9fBgQEhISEREdHcywnT56kMeeIESO0TpKZmfnmzRvux0zzJZ1aR6ERAhCAAAQgAAEIQAACpSCAmLMUkLFEGQsEBARo/rYyYs5yHnOqVKrc3Nw+ffrk+6vBZfzji+XLk0BUVFRycvLmzZsL95ek5YkKe4UABCAAAQhAAAIQ0CWQm5t7586dy5cvX79+nYsztQ5gGGb+/Pk05ly3bp3WPmiEAAQgAAEIQAACEICAaAUQc4r20qCwYhMo4kNrZTLZ69evb9++/c8//7x580b3HxG1Fs0wTHx8/KNHj7y9vQMDA7Ozs7V2y6sxPT09KCjI29vb19dXz4c4yWSygj60Ni0tzd/f/9atW/7+/snJyXkVYxztMplsyZIl79+/f/36dVpamnFsCrswdIHIyMgePXps27bN0DeC+iEAAQhAAAIQgAAEylwgMzOzQYMG9O2nV65c0VFPSkoK/cOjpaVlZGSkjp44BQEIQAACEIAABCAAAREKIOYU4UVBSaUhkO/dnLm5uUFBQfPmzatSpQr9zVb6T1tb20WLFr19+zavvHPv3r3Dhw+fOXNmUlKSQqHw8vLq37+/qakpN0mlSpXGjRvn5+fHMIyOrWZmZl64cMHV1ZU/1tTUtE+fPhcvXqRPsrp8+fLwDx8umDxy5Mjw4cOHDh1asWJFQoiVlRXtMHz48GPHjtHl+O/mVKvV/v7+48ePt7Cw4Cq0tLQcMGDAjRs36DuHdBQpOHXgwIHhw4fPnj07rzhWoVCMGTNm+PDhn3/+eUBAgGA4/ZqcnDxjxgw6j9YORWlUq9UpKSlZWVlubm6nT58uylQYC4FiFMjMzExPT1+/fn14eHgxToupIAABCEAAAhCAAATKrcDkyZPpH/E+/fRTra/tVKvVsbGxTk5OtNvAgQPz+kNuuTXExiEAAQhAAAIQgAAExC+AmFP81wgVFlVg+fLla9euFcyiO+ZUq9Xff/99jRo1uORPcFCvXr0//vhDMCf9+vXXXxNC6tevHxkZuWLFCho3CoYTQmrWrLlhw4a8ks7Xr1+7ubnxo0f+DGZmZi4uLqGhoevXr6ftUVFRdPUVK1bwe/KPV65cSftwMefZs2c9PDzq1q3L78YdV6xY8csvvyzQwzPXr18vkUjMzc0fPHigFefevXt0fhMTk507d2rtc/v27UqVKhFCZsyYobVDURojIyMdHR2fPn2akZFRlHkwFgLFKCCVSseMGbNo0SLBi8SKcQlMBQEIQAACEIAABCBQ3gSioqLat29Pb+js3r37/v37k5KSOITo6Oht27Z17NiR+wPatWvXuLM4gAAEIAABCEAAAhCAgKEIIOY0lCuFOgsvMHLkyIkTJwrG64g55XL5l19+Sf+wZ2Zm1qpVq3Xr1l29evXixYtLlixp1KgRvb3SxMRk7969mjkljTlr1Kjh6OhICDEzM2vZsuWSJUtOnTp18ODBRYsWtWjRQiKREEIsLCxOnDghKIxl2YyMDAcHB+5Pm40bNx4/fvyuXbsuXLjw008/tWvXjhZQq1atGTNm0G5czHn06FGtd3OOHDnywoULdC0ac5qZmfXo0YMQYmpqWqdOndmzZx89evTkyZOrVq3q2rWrmZkZnXnZsmX6J503btyoUKECIeTrr7/W3BfLsqtXr6bTEkKmTJmitc8vv/xCq7p9+7bWDoVrlEqlAQEBWVlZW7duzc3NLdwkGAWBYhdgGCY7O/vYsWMnT54s9skxIQQgAAEIQAACEIBAeRa4d+9e/fr1uT+CmZiY1KlTp0WLFtWqVaN/JqWnqlateubMmfIMhb1DAAIQgAAEIAABCBiuAGJOw712qLxIAjpizjNnzlhZWRFCzM3NV69eTR8Pyy2WkJCwYMEC+mfCypUr+/j4cKfoAY056R8XK1WqtHnz5vj4eH6f9+/fL1q0iHb4+OOP+adYllUoFKNHj6ZnK1asuGLFitjYWH6fjIyMn3/+uWLFihKJxMbGhvbkYk7aU593c9KBEolk7ty5ERER/CVSU1O3bNlCO9jZ2b1+/Zp/VsdxQkJC7dq1CSG1a9eWy+WCnjKZ7LPPPqPTEkLs7e0FHejXvn37EkKaN28u2JTWzvo3+vn5tWrVSnAt9B+OnhAoIYEdO3ZMmDAhKyurhObHtBCAAAQgAAEIQAAC5VaAYZhnz57Nnj27cuXK3B/E+AcVKlQYMWLE/fv3yy0RNg4BCEAAAhCAAAQgYOgCiDkN/Qqi/vwFHBwcnJycBP3yijkZhunfvz/NOD09PQWjuK9r1qyhSefs2bO5RnrAjzlXr16tebsny7LJycmtW7emjw8SxKje3t40vJRIJJs3bxZMTr+q1WoPDw/+r98KEkH9Y85hw4bl9f4V6iCRSC5duqS1DK2NXEbr5eUl6BATE9OyZUtCiKWlJSFEIpFoho4pKSn0RtKhQ4cW1z2XwcHBv/zyi1wu5z+jSVAbvkKgTATkcvnLly9//PFH/e+ZLpM6sSgEIAABCEAAAhCAgEELZGVl3b59+6effho2bFiPHj0+++yz2bNn79y5Mzk52aD3heIhAAEIQAACEIAABCCAmBM/A8YvcPLkybNnzwr2mVfMeezYMfpIWFdXVx33VyUmJtrb2xNCPvroI8Hr9LiYs0OHDnnNwDDMrFmz6G/R+vr68mtbtWoVzS8/+eSTnJwc/in+sUKh+OSTT7jfwy1czNmwYcPU1FT+tPzjo0ePmpiYEELyegspvzN3fPPmTVrVwoUL1Wo1186yrJ+fn+WHz8KFC2mfX375hd+BZVn6xFpCiIeHh+BUIb7KZLLs7OybN2/OmDFDcJkKMRuGQKB4BYKCgkaMGIH0vXhVMRsEIAABCEAAAhCAAAQgAAEIQAACEIAABCBQfgQQc5afa11+d5rz4SPYv9aYU6VSffTRRzSBu3XrlmCI4Ku7uzvteefOHf4pLubcs2cPv11wvH79ejr88uXL/FMuLi6EEBsbm8DAQH675vGLFy+4N2gWLuacM2eO5rRci5eXF33R5oYNG7hGfQ7q1KlDCOnZs2dGRga//48//kgIqVGjhr+/P72hs127dvwoVKVStWrVit7kmpCQwB9buOOVK1e6ubkVbixGQaBEBVQqVU5OzuLFi2UyWYkuhMkhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCBirAGJOY72y2Ne/Avo/tDYkJKRixYqEkMqVK+u4k5JOvW/fPppTLlu27N/FWJbGnFZWVrpzyj179tDhJ06c4A9v164dIaRly5ZxcXH8ds3jnJwcBwcHOkkhYk4TE5MdO3ZoTsu1+Pr6Vq9enRCycuVKrlGfg6lTp9LXc75584bfv3PnzvSVnDKZ7PPPP6dPr3337h3X58WLF1WqVCGEDB06lGss3EFAQMDr16+fPHly8uRJfpJauNkwCgLFKyCXy6dPn/7kyZPinRazQQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAoVwKIOcvV5cZm/xXQejfnzZs36V2GPXr0iMzvc+DAARox9u/f/995/xdz1qxZMyIigt8uOD548CAdfvz4cf4pmiz26tVLcCskvw89zs3NHTFiRKFjTnNzc8HSgiWePn1qa2tLCPn+++8Fp3R/PXLkCH3wLz/Bff/+PS114cKFLMueO3eOEGJqanr+/HlutgMHDtCBV65c4RoLdzBw4MBPP/20cGMxCgIlLcAwzNy5c3U8MrqkC8D8EIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASMQAAxpxFcRGwhH4F9+/YdOXJE0ElrzHnmzBlzc3Oaxun/z86dO/Mnp3dz1qtXj3+fIr8DPdYac6alpdEXcw4dOjTfd0kyDDNnzpxCx5wWFhZnzpzRLIxrKXTMGRAQQPPRwYMHc7Pt3r2blurj48OybGJiYrVq1SQSyerVq7k+06ZNI4Q0aNAgJiaGayzowS+//OLt7R0dHY1XHhaUDv1LQUCpVK5Zs+bQoUO4ybgUtLEEBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgYNwCiDmN+/pid/8noP9Da48ePcq97VL/mLN58+Z8aBpz1q9f//379/x2wbHWmDM8PJyuq0/MybLsN998U5SY89y5c4Kq+F8LHXMqFIrWrVvTmzXT09NZllWr1aNGjaJPsqXpTk5OTs+ePenzabm8x87OjhAyaNCgwr2tkGEYlmXnzZt37Ngx/kZwDAHxCKhUqm+//fbatWviKQmVQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAwUAHEnAZ64VB2UQW03s15/fp1+tDafv36Bev9iY6O5ldTlJhTqVRaWVkRQpycnLKzs/nTah6rVCr6FkxCSCHezWlhYVFCMSfLsj/88APNX/fv30/v3ezYsSMhZOzYsXQjKpVq9uzZhBA7OzuVSsWy7D///EOHbNq0SXOz+bYolcoBAwbcuXNHpVJxuWm+o9ABAqUmwDDM4cOH169fL5VKS21RLAQBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAwIgFEHMa8cXF1v6/gKur66hRowQcWmPOZ8+e2djYEEI6deok6K//16LEnCzLNm3alBDi4OCQlpame1G5XO7q6irCuzlZlo2IiKCFDRs2jGGYwMBA+s5RDw8PblMeHh6EEIlE8vz5c5ZlR44cSYeEhIRwffQ88PX1zc3NvXLlCl52qKcYupW+gFqt/uOPPyZOnEhvOy79ArAiBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEjE0DMaWQXFNvRIrB+/fpff/1VcEJrzBkbG1u5cmVCiLW1dWZmpmCI4Gt8fPzTDx9BtFbEmLNv376EkFq1ar1+/VqwouBrampqs2bNxBlzsizbtWtXQkjr1q1jYmIOHz5MCKlcufLdu3e5XQQEBNDiv/nmm4SEBCrfvXt3roM+ByqVKikpqU2bNsHBwfr0Rx8IlInAs2fPFi5cmJycTO9dLpMasCgEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAASMTQMxpZBcU29FXQGvMqVQq69atS7O3P//8U8dcKpVq/vz51T58BA9ZLWLMOWfOHFrAsmXLdBTAsuzWrVslEoloY85169YRQipUqPDo0aPRo0cTQho1asR/wK9KpbK1tSWE2NraXrhwwdzcnBBy6NAh3bvmn42Kipo5c6ZarY6Li0N6xJfBsdgEvL2927Rpk5SUJLbCUA8EIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAcMVQMxpuNcOlesr4ODg4OTkJOitNeZkWXbDhg00OHR0dNTx2Nj37983b96cEFKtWrWUlBT+5EWMOT09PS0sLOi9j+Hh4fyZ+ceRkZH09kfdMWfdunX5o+jxoUOHCCEl+m5OlmW9vb3pE4BXrFhRtWpVQkj//v0Fj+v86quvaP3Dhg0jhNSsWTM+Pl6zYM0WlUoVGxsbFhY2evRoHZdJcyBaIFDKAikpKStXrnz37l1ubm4pL43lIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQgYtwBiTuO+vtjd/wmEhoa+fftWYJFXzJmVlfXRRx8RQszNzSdNmiSXywUDWZbNysr69NNPTUxMCCGTJ08WdChizMl/FK2joyP/9kduodTUVCcnJxoQ6o45a9SowY3iDkon5oyKimrSpAkhpGLFirTI33//nauBHvj5+dFT9FZOFxcXqVQq6KP1q4eHR9euXZVKpUwm09oBjRAQiUBUVFSHDh2ePHkiknpQBgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABoxFAzGk0l7IMNqJWq1+9ehUYGFgGaxdkyfv37/v4+AhG5BVzsiz7559/0tSNEDJgwIDHjx9nZWWxLMswTGpqqre398CBA2k499FHH/n7+wtmLmLMSe+DpLc/EkLat29/79497obFzMzMe/futW/fnhAikUisrKy0xpwMw7Rr1472efHihVqtVqlU3M1kpRNzMgwzaNAgWh4hxNTUNCIiQmAll8vr1avH9Vm7dq2gg+bXsLAwX1/flJSUI0eOaJ5FCwTEI6BSqY4cOfLs2TOtvy0hnjpRCQQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABAxVAzGmgF04UZSsUirFjxw4bNkwU1eRdRIEeWsuybE5Ojru7O83eJBJJzZo1O3XqNGDAgN69e7dt27ZSpUr0VOXKlR8+fKhWqwUrFz3mZFl279691tbWdKEqVaq0a9euT58+Tk5OHTt25BLQVq1a0XdeEkISExMFZQwfPpwOb9SokbOz8yeffOLu7k77lE7MybLs4cOHaQ2EkA4dOmhaKZVKNzc3rs+jR48Eu9D8umnTJldXV812tEBAbAK5ubmDBw8+fvy42ApDPRCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEjEMAMadxXMey2YVarY6LiwsLCyub5Yu2qo67OenEO3bsaN68uZmZGRfCcQcVKlTo06fPw4cPtZawaNEiQoidnd379++1dqCNBw8epBOeOXNGsxvDMJ6enm3btuXuK+VWl0gktWvXnjNnTk5Ozty5cwkh1tbW3J2a3FQ+Pj5VqlThRhFCRo8eTc8eP36cEGJpaXnx4kWuv+bB06dPbW1tCSGrV6/WPKtPS2ZmJvfE2m+//VZziFqtXr58OS2yYcOGKpVKsw/XcvjDR6FQCF6GynXAAQTEI+Dr63vv3j2GYZRKpXiqQiUQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIxJADGnMV3N0t5Ldnb2mjVr/Pz8SnvhAq63YMGCJUuWCAYpFIo7d+5cv349JCREcIp+VavVERER586dmzNnzsCBA9u3b9+jR4+pU6f+8ssvt27doo+x1TowNDT0+vXrd+/e1f2kytjY2OsfPjpCu7i4uMuXL8+dO3fAgAHt2rX7+OOPx48f7+HhERgYKJfLFQrFkCFDaKSqNUq5cePGhAkTunTp4uDg8MUXX1y4cIEWnJSUdP369Zs3byYnJ2vdAm3MyMi4ffv29evXIyMjdXTTferBgwd0m1FRUVp7vnv3jnYICAjQ2oFlWZlMlpOTs2vXrr/++iuvPmiHgKgEVq1a9d1334mqJBQDAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQMDIBBBzGtkFLdXtpKWlDRw40MvLq1RXLfhikydPnjt3bsHHlc0ItVqtVCp139dIK0tNTa1fvz4hpHPnzvr0L5v9FHlVpVL56aef7ty5s8gzYQIIlIZARESEt7e3XC7X+ssHpVEB1oAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUD4EEHOWj+tcMrtUq9WZmZmaj0stmdXKy6z79+8fNGjQkCFDXr16pXvPFy5ckEgkhJBRo0YxDKO7s4GePX/+fExMjJeX18uXLw10Cyi7vAmcPHmyZ8+eum/mLm8m2C8EIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgZIQQMxZEqrlZc63b9+2adNG/Lt1cHBwcnISf520wi1bttDwcsyYMTru0UxMTGzcuDEhRCKRbNu2zVB2p3+dCoUiKSmpUaNG+/fv138UekKgDAWysrIuXryYlZUllUrLsAwsDQEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgnAgg5iwnF7pEthkXF7dly5YSmbpYJ718+fKNGzeKdcoSnMzHx6dSpUqEEHNz8w0bNshkMs3F3r175+LiQj58bG1t379/r9nHoFuioqKmTJkSGhoaHh6uVcCgd4fijVXA19e3fv36uPPYWK8v9gUBCEAAAhCAAAQgAAEIQAACEIAABCAAAQiITQAxp9iuiCHVk5mZmZqaKv6KExISEhMTxV8nV+FPP/1kZmZG79Ts16+fp6dnVFRUfHx8bGxsSEjIkiVLbGxsaMZpY2Nz7do1bqARHDAMk5qaKpVKBw0aFBwcbAQ7whbKg4BKpbp161ZmZmZSUlJ52C/2CAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEBADAKIOcVwFQy1hm+++eaLL74Qf/WG9dBalmUZhlmzZk2FChVolkkIsbKyql69esWKFenzbGl7nTp1jh49Kn7/AlX46NGjTp06vX//Hu98LZAbOpetQHR0dOPGjf/++++yLQOrQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAoVwKIOcvV5S7mzWZlZcXExBTzpJjufwJBQUHOzs6VKlWytrY2Nzc3MTExNTU1Nze3tLSsWrXqlClTjOz9fzKZ7ObNmwzDXLx4UalU/o8B/wkBsQtERETEx8fHxMSo1Wqx14r6IAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQgYkQBiTiO6mKW+lU2bNj1+/LjUly3wgtu3b9+9e3eBh4lggEqliouL8/X1PX369O7du/ft23f69Ok7d+4Y34MxGYY5d+5cnz59MjMzRQCPEiCgr4BcLh84cOCCBQuQzetLhn4QgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpJADFnMUGWv2kYhrG0tPzzzz/Fv/WePXsOHDhQ/HWW2wo9PT0XLFigUqnwoNpy+zNgoBtnGCY6OloulxvEW4oNFBllQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhDISwAxZ14yaM9fQCqVymSy/PuhBwTyEMjMzIyKijp16tSaNWtwM1weSGgWr8DmzZudnZ3xX4PivUKoDAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEDBqAcScRn15S3Jzvr6+zZo18/HxKclFimfuXr16ubi4FM9cmKX4BFQqVcuWLceMGaP+8Cm+iTETBEpDICUlRaVSRUVFlcZiWAMCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQ0BBBzapCgQT+B4ODghQsXhoaG6te9LHtt27bNIB6uW5ZGpbu2SqU6e/bs06dPfX19Hz58WLqLYzUIFINAUFBQ+/btMzIyimEuTAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKFEkDMWSg2DGJZtVrNMIxarQYGBAoqIJfL27Ztu2zZsoIORH8IiEEgPT1dqVSGhITgvwDFcDlQAwQgAAEIQAACEIAABCAAAQhAAAIQgAAEIFBuBRBzlttLX9SNL1++vEWLFqmpqUWdqOTHOzg4ODk5lfw6WCF/gfT09OnTp9+6dSshIUEqleY/AD0gIDKBzMzMzp07P3nyRGR1oRwIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAuVOADFnubvkxbXh5OTkp0+fMgxTXBOW3DxxcXHx8fElNz9m1lMgISFBJpNNnz7d399fzyHoBgFRCWRkZDAM4+fnp1AoRFUYioEABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUA4FEHOWw4teDFtWqVTe3t4+Pj7FMFfJT3Ht2rVbt26V/DpYQV+7x3YAACAASURBVJfA69evGzRocO/ePV2dcA4CIhaQyWRDhw798ccfRVwjSoMABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUI4EEHOWo4tdjFvNysrq16/fjBkzinHOkpsKD60tOVt9Zs7Jydm0aVNaWtr169ezsrL0GYI+EBCbgEwmUygUd+/ejYmJEVttqAcCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQPkUQMxZPq97MexaqVRmZ2cXw0SYwqgFMjIyLl++3KFDh6CgIKPeKDZnzAIMw7i7u7u4uMhkMmPeJ/YGAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQMCgBBBzGtTlEk2xiYmJo0aNevz4sWgq0lXItGnT5s2bp6sHzpWMwOHDh4cOHZqYmBgVFWUQr3EtGQbMavACGRkZAQEBV65cwY+xwV9LbAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAwIgHEnEZ0MUtxKwkJCSNHjnz16lUprln4pebNm/ftt98WfjxGFlwgLS0tNDT00aNH06dPT01NLfgEGAEBsQicO3euZcuW0dHRYikIdUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgMAHAcSc+EEojADDMLm5uWq1ujCDMcbYBdRq9VdffdW3b9+UlJTc3Fxj3y72Z8wCUqk0MjJyx44dOTk5xrxP7A0CEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAgAEKIOY0wIsmgpK9vLzq1asngkL0KsHBwcHJyUmvruhUNAGGYR4+fHjt2rXo6Og7d+4UbTKMhkAZC8TExNjb2/v7+5dxHVgeAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEtAkg5tSmgrb8BOLi4q5evZpfL7Gcv3v37sOHD8VSjVHXoVQqp06d+tVXX+EmTqO+zuVicyqVKikpaevWrbGxseViw9gkBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAFDE0DMaWhXTBz1hoaGvnv3Thy15F/F27dvIyIi8u+HHkUQkMvl48aN++OPPxQKhUqlKsJMGAqBshdgGGb06NHnzp0r+1JQAQQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCOQhgJgzDxg06xSYOHHizJkzdXYR0Uk8tLakL8aTJ08SEhJ++OGHa9eu4Y2tJa2N+UtagGEYhULh4eHh5+dX0mthfghAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACECi0AGLOQtOV64GqD59yTYDNfxBgGCYkJMTKymrz5s0IOPFDYRwCW7Zs2bhxo3HsBbuAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIGDEAog5jfjiluDWpkyZ8uDBgxJcoFin/umnn7Zs2VKsU2Ky/xNISkpavHhxZGSkp6dnXFwcUCBg6ALqD5/jHz6GvhfUDwEIQAACEIAABCAAAQhAAAIQgAAEIAABCEDA6AUQcxr9JS7+DWZnZ9vb258/f774py6ZGQcOHDh8+PCSmbuczqpWq3Nycvz9/atWrerp6VlOFbBtoxO4du3apEmT8HJZo7uw2BAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBgnAKIOY3zupbornJzc3NycvCE0hJFFvnkd+/e7d27d3BwcFhYGH4SRH6xUJ6eAgzDeHt7u7u7y2QyPYegGwQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCJShAGLOMsQ31KUvXbpUvXp1X19fQ9mAg4ODk5OToVQr8jpVKlVkZGR8fPzgwYPT0tJEXi3Kg4CeAmFhYb169UpMTNSzP7pBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAmQsg5izzS2B4Bbx+/Xr79u0JCQmGUvqePXsOHjxoKNWKvM49e/Y0bNgwOjpa5HWiPAjoL6BWq4OCgkaPHv327Vv9R6EnBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIlK0AYs6y9TfI1RMSErKysgyydBRdBIEXL15s3rxZLpc/f/4cD6otAiSGiktAJpP17dv3yZMn+KkW14VBNRCAAAQgAAEIQAACEIAABCAAAQiIWODNmzfu7u6LPnxEXCZKgwAEjF8AMafxX+Ni3+FXX31lb28vlUqLfeYSmhAPrS0ibG5ubkZGxo8//jhq1Kj09PQizobhEBCVQExMzLBhwy5duiSqqlAMBCAAAQhAAAIQgAAEIAABCEAAAhAQs8DNmzdtbGzIh4/4f3dcqVQ+ePBgy5Yty5Ytmzlz5rBhw/r27Ttq1Kivv/5648aNZ8+ezc7OFrM2aoMABHQIIObUgYNT2gWkUmlmZqb2c6JszczMxO2nhb4yUql04sSJkyZNkslkcrm80PNgIAREKLBx48bjx48rFArx/99xEeqhJAhAAAIQgAAEIAABCEAAAhCAAATKrYABxZzv37/v2LGjlZWVRCKhuazgn+bm5q1bt7537165vZrYOAQMWgAxp0FfvjIoXiaT/fXXX7du3SqDtQu7pKen5/nz5ws7uvyOU6vVT58+jYyM9PDw+Ouvv3Jzc8uvBXZujAIymWzatGk///yzSqUyxv1hTxCAAAQgAAEIQAACEIAABCAAAQhAoKQEDCXmvHfvXrNmzQS5prW1daVKlQSpp4mJyYIFC3JyckqKDPNCAAIlI4CYs2RcjXfW1NTUQYMGrV271oC2iIfWFu5ixcfHt2/ffty4cbm5ubjXrXCGGCVagZCQkG3btik+fERbJAqDAAQgAAEIQAACEIAABCAAAQhAAALiFDCImNPf379SpUr8jHPx4sXe3t4xMTFxcXEhISF//fWXnZ0d18HS0vLAgQPiBEdVEIBAXgKIOfOSQbt2AZVKlZWVhdBLu46xtGZkZPz888/Pnz+/fft2fHy8sWwL+4DAvwKbN2+eNm2aUqn8twlHEIAABCAAAQhAAAIQgAAEIAABCEAAAvoJiD/mlEqlbm5uNMKUSCTOzs7Pnz/X3FxGRsaWLVsqVqxIe1avXj0wMFCzG1ogAAHRCiDmFO2lEWlhYWFhXbp0efbsmUjr01bW6NGjJ0+erO0M2rQIMAyTkpLSpk2bo0ePajmNJggYuEBOTs5vv/3GMAzeLW/gVxLlQwACEIAABCAAAQhAAAIQgAAEIFBmAuKPOb28vCwsLGh42bRp09TU1LywGIbZsWOHubk57TxhwoS8eqIdAhAQoQBiThFeFFGXFBcXt2jRooSEBFFX+d/i3N3dV69e/d82fNMuEBYW1rZtW19fXyRA2oHQavgC9+7d+/TTT7Oysgx/K9gBBCAAAQhAAAIQgAAEIAABCEAAAhAoGwHxx5wjR46ksWWNGjVevXqlmyk9Pd3R0ZHLRNPT03X3x1kIQEA8Aog5xXMtDKOSjIyMmJgYw6gVVRZEQKVSXb58OT09fenSpXFxcQUZir4QMAwBhULx559/ymSytLQ0w6gYVUIAAhCAAAQgAAEIQAACEIAABCAAAVEKiDzmzM7OtrS0pLHllClT9CFctGgR7W9nZ/f+/Xt9hqAPBCAgBgHEnGK4CoZUw9GjR9u2bWtIFbOsg4ODk5OTYdVcytUyDHPhwoUqVao8ffq0lJfGchAoNYH4+Phu3brduHGj1FbEQhCAAAQgAAEIQAACEIAABCAAAQhAwCgF9I85VSrVkydPHvzvEx0dXQogb9++pZmlRCLZuHGjPitu2rSJDqlbt25oaKg+Q9AHAhAQgwBiTjFcBUOqITEx0eBewuzv76/1/dKG5F6Stfr5+U2YMCE9Pd3Hx0ehUJTkUpgbAmUjoFarjx49GhERER8fXzYVYFUIQAACEIAABCAAAQhAAAIQgAAEIGBEAnrGnAzDLF26tFq1ajYfPvXq1QsKCioFhqCgIJpZmpubnzx5Up8Vly9fToc0bNgQf4Okjxj6QEAkAog5RXIhDKaMq1evPnnyxGDK/VDo8+fPS+d/Pg2LhWVZuVyelJR05MiRDh06REREGFz9KBgCegqkpaU5OzsvWLBAz/7oBgEIQAACEIAABCAAAQhAAAIQgAAEIKBDQJ+YUy6XL1u2jGaHhJAWLVqI9i5JhULh4uJCS7W3t5fL5Tr2jlMQgICoBBBziupyGEAxU6ZM2bBhgwEUyisRD63lYfx7yDDMzz//3KtXr6SkpJSUlH9P4AgCxiXg4+Pj5eUVFRUllUqNa2fYDQQgAAEIQAACEIAABCAAAQhAAAIQKBuBfGPO3NzcefPmWVtb0+ywXr16Yn5b1v37921tbWmpS5YsKRtTrAoBCBRKADFnodjK8aDs7GyGYcoxgDFsXa1WR0REhIWF3bhxY+vWrbigxnBRsYc8BBQKxaRJkxwdHTMyMvLogmYIQAACEIAABCAAAQhAAAIQgAAEIACBggnojjlzcnK+/PJLmhpKJJK2bdsmJCQUbIHS6q1WqwMCAurUqUOrrVy5clJSUmktjnUgAIFiEEDMWQyI5WcKqVTav3//x48fG9aWV6xYsW7dOsOquUSrzc3NnT59uqura25ubokuhMkhULYCqampR48ejY+PxzOZy/ZCYHUIQAACEIAABCAAAQhAAAIQgAAEjExAR8wplUqnTZtmaWlJg0N7e3txvlBMpVL5+fktX77czs6OlmppabllyxYju1LYDgSMXgAxp9Ff4uLcYEpKysSJE/39/Ytz0pKfa8SIERMmTCj5dQxgBZVKtXPnzvv377979w4P8DSAC4YSiyawbt26pk2bvnr1qmjTYDQEIAABCEAAAhCAAAQgAAEIQAACEIDAfwTyijkzMzO/+OIL7j7Orl27ZmVl/Wfkf7/I5fLsIn8UCsV/Z83z27179zZt2vTdd99Nnjy5bdu2EomElkoIqVSp0pIlS5RKZZ6DcQICEBClAGJOUV4WsRaVlpYWHh6O/64X6/XJp67U1FSpVDpz5kwPD498uuI0BAxf4NKlSykpKb6+vngss+FfTOwAAhCAAAQgAAEIQAACEIAABCAAAXEJaI05MzIyxo8fb25uTrNDR0fH0NBQ3XUvX758QJE/33zzje5VuLOzZs3ick3+QYUKFdauXatSqbieOIAABAxFADGnoVwpUdR54MCBhg0bhoSEiKIavYtwcHBwcnLSu7txdoyLi+vQocOJEyeMc3vYFQT+K+Dl5VW1atVbt279txnfIAABCEAAAhCAAAQgAAEIQAACEIAABIpBQDPmTEtLc3Nzo9mhRCL55JNP9LnJ0tXVlR83Fu64a9euem5p7ty5Zh8+/Ps4uUU///xz0b5DVM8NohsEyqEAYs5yeNELv+Xw8PDLly/rfs5A4WcvsZEnTpw4c+ZMiU0v9onlcvnp06czMjJ27tz54sULsZeL+iBQZIGAgIDU1FQfHx88mbnIlpgAAhCAAAQgAAEIQAACEIAABCAAAQhoERDEnElJSSNGjDA1NaWRYb169cLCwrQM02gq5ZjTz8/v0IfPrl27vv/++08++cTKyoqLOSUSSZ8+fRITEzXKRAMEICBeAcSc4r02Iqzs/v37vr6+arVahLXpKEn64aOjgxGfYhjGz8/P1tb2r7/+MuJtYmsQ4ASys7NtbW03bNjAteAAAhCAAAQgAAEIQAACEIAABCAAAQhAoHgF+DFnUlJSz549ubCQEGJjY3P9+nV9VvT29j5c5I+Pj48+a2ntk5ycvGbNGn7Y+fHHH2dmZmrtjEYIQECEAog5RXhRRFqSWq2ePXv24MGDDe5Fd+X2obWvX7+eP39+fHz8gwcP8GR5kf57hbKKVeDdu3cJCQnPnj1LSUkp1okxGQQgAAEIQAACEIAABCAAAQhAAAIQgMC/AvyY083NzcTEhB9zEkIcHByys7P/HSDuowcPHrRo0YJuwdLS8vTp0+KuF9VBAAL/CiDm/NcCRxAwMgF/f/927dq9efPGyPaF7UAgL4EBAwZ8/PHHeZ1FOwQgAAEIQAACEIAABCAAAQhAAAIQgECxCPBjTi7gnDVr1rFjx7jIc8aMGcWyVulMcv/+fW4jEydOLJ1FsQoEIFB0AcScRTcsLzOkpaUtXbr00qVLBrfh/fv3HzlyxODKLkrBFy9e7N69e0pKikwmK8o8GAsBQxFISUkJDw9/+fKlni9+MJR9oU4IQAACEIAABCAAAQhAAAIQgAAEICBCAUHMKZFI5s+fn56enpGRMWjQIJoX6v/oWpFscNiwYbRyOzs7kZSEMiAAgXwFEHPmS4QO/18gKSlpxowZp06dMjiRcvXQ2uTk5JcvX4aHh58+fdrgHi9scD9aKFg8AmvWrKlcuTJeES+eK4JKIAABCEAAAhCAAAQgAAEIQAACEDBiAX7MaWJisnbtWu6dWWFhYRYWFjQvdHR0NCAET09PWraZmZlarTagylEqBMqzAGLO8nz1C7Z3mUwWGRmpVCoLNgy9S0uA/k/vxo0be/fuLZfLS2tZrAOBMhbIzc19+vRpRETE5cuXy7gULA8BCEAAAhCAAAQgAAEIQAACEIAABMqHAD/m/OGHH6RSKX/f+/bts7KyopHhsmXLuASU34cey2SyrCJ/cnNz+TPHxcWNGzdu8ODBQ4YMKdDfZvv5+ZmZmdGyk5KS+HPiGAIQEK0AYk7RXhrRFfbkyZOPPvooPDxcdJXlV5Cbm9uoUaPy62Xw53fv3v33339nZmampaUZ/GawAQjoLXD69Olq1arduHFD7xHoCAEIQAACEIAABCAAAQhAAAIQgAAEIFAkAX7MKUgZWZaVSqWDBw+meaG1tbWXl1dei40dO7ZmkT+DBg3izx8eHl6jRg26enR0NP+U7mM/Pz9TU1M6UKFQ6O6MsxCAgEgEEHOK5EIYQBnx8fHbt283xNsE161bt2nTJgMgLmyJCQkJubm5P/300+LFi/E4hcIqYpxBCgQFBcXHx2/atAn/19Mgrx+KhgAEIAABCEAAAhCAAAQgAAEIQMAwBfgxp9a/kAwICOCyxv79+2tGoXTfrq6uNFYsyj+7du3KV4yLi2vVqhWd8PDhw/xTuo+3bt1KR9WoUUN3T5yFAATEI4CYUzzXQuyVhIWF+fj4iL3K8lefUql0dXVdsGCBQqHQ8fyH8geDHRu/QFBQUN26dbdv3278W8UOIQABCEAAAhCAAAQgAAEIQAACEICAmATyjTlZlj19+jS9OdLExGT16tVayy+JmDM7O9vJyYkGlr169WIYRuvSgsb09HQ7Ozs6ysXFRXAWXyEAAdEKIOYU7aURXWF//PGHm5ub6MrSoyAHBwcnJyc9OhpYF5VK5eXllZaWdvz48RcvXhhY9SgXAkUTSP7wWbt2bWRkZNFmwmgIQAACEIAABCAAAQhAAAIQgAAEIACBggnoE3PKZLIxY8bQ4NDU1PTevXuaa9y4cWOfxufvv//WaNPV4O3tLZjZ3d2drmtlZXX16lXBWc2vUql00qRJXKm//fabZh+0QAAC4hRAzCnO6yLGqtLT02NjY8VYWX41vX79OiwsLL9ehnc+Ozu7c+fOu3btMrzSUTEEiiaQk5PTvXv37777Ts9fxyvaahgNAQhAAAIQgAAEIAABCEAAAhCAAAQg8B8BfWJOlmVDQkKsrKy4WySVSuV/ZimxL0+ePKGLEkJat26dkpKie6mdO3daW1vTIXXr1n3z5o3u/jgLAQiIRwAxp3iuhdgr2bp1q46XRYu5+gcPHjx+/FjMFRa0tszMzKVLl8bGxkZERBR0LPpDwNAFVCpVWlra0aNHb968aeh7Qf0QgAAEIAABCEAAAhCAAAQgAAEIQMAQBfSMOVmWPXbsGE06JRLJzp07tb7IsyQEZs2aJZFIaHJZqVKlLVu2xMTECBZSqVR+fn5DhgzhMlFLS8tNmzYJuuErBCAgZgHEnGK+OuKqbf78+SdPnhRXTfpVY2QPrc3IyEhLS5s0aVJUVJR+AOgFAaMSWLNmzZgxY4xqS9gMBCAAAQhAAAIQgAAEIAABCEAAAhAwKAF+zKm78Nzc3PHjx9McsUKFCg8fPtTdv7jOxsXFde/encsvzczMWrRoMXTo0OXLlx88eNDT03Pjxo1OTk61a9fm0lAzM7Ply5eX2i2nxbVTzAOBci6AmLOc/wDou32GYWJjY3Nzc/UdgH4lIxAQENC2bdt8H7NQMotjVgiUsQDDMJmZmf7+/nv37i3jUrA8BCAAAQhAAAIQgAAEIAABCEAAAhAoxwL8mDPfGzQDAwOrVq1KE8fBgwfLZLLSkXv27FmnTp3Mzc25sDOvA4lEUrt27dWrV8vl8tKpDatAAALFJYCYs7gkjXyeuLi4Tp06PXv2zBD3uWDBgqVLlxpi5fyaU1JSLl++nJaWdubMmez/x955gEVxdX08ioq9REMSC5pEk2h6MUYjvYmJSd4UU01i8lpiASsdsXcRBQugiEgvNtCgIBakiCIgAgosddmF3WV7Y5vfM3vi/eZd7AJSzjw8y+zuzJ17fnfm7sz933OOVEr/CteRQBchkJGRYWtrKxKJHnr33EWAoJlIAAkgASSABJAAEkACSAAJIAEkgASQABJ4JgQuXrw4YMCA5557bsCAAY9SgRMnTvTo0eO5557r1atXamrqo+zSIts0Njbu37//o48+Ii6bzZXO/v37L1iw4Pr161qttkUOioUgASTQlgRQ5mxL2h34WDweb/v27R00Survv/8+f/78jktfq9Wq1erw8PCxY8fy+fyOawjWHAk8MQGdTieRSFgslo+PzxMXgjsiASSABJAAEkACSAAJIAEkgASQABJAAkgACXRNArdu3YqKivLy8vrmm29sbGzMzMy++uqr5cuXx8TEoEtJ1zwl0OpOQwBlzk7TlK1rCIPBuHz5Mvrsty7l+5QeFxfn6ekpk8kqKyvvswl+jAQ6OQE2m/3ll19mZmaiH2cnb2k0DwkgASSABJAAEkACSAAJIAEkgASQABJAAkgACSABJPDIBFDmfGRUXXtDPz+/jz/+uK6uriNimDRpko2NTUesuUS/HDt27M8//9RoNB3RBKwzEnh6AnK5XCgUzp07F72Znx4mloAEkAASQAJIAAkgASSABJAAEkACSAAJIAEkgASQABLoNARQ5uw0Tdm6htTV1eXl5TU1NbXuYVqn9FOnTp05c6Z1ym7dUpctWwYCJ2qcrQsaS2/HBMRi8fz58wMDAzE7QjtuJawaEkACSAAJIAEkgASQABJAAkgACSABJIAEkAASQAJI4BkQQJnzGUDviIfcu3dvTExMBw0XyeFwuFxux8JeUFDAYrEKCgqKi4s7Vs2xtkigBQmo1WqJRDJ//vx//vmnBYvFopAAEkACSAAJIAEkgASQABJAAkgACSABJIAEkAASQAJIoBMQQJmzEzRiq5ugVqudnJxWrlzZ6kdqnQN0xKC1P/30086dO1uHB5aKBDoGAbVavWPHDm9vb8wD3zEaDGuJBJAAEkACSAAJIAEkgASQABJAAkgACSABJIAEkAASaFsCKHO2Le+OeTSdTtfU1IRxU9um9RYvXlxSUoLA24Y2HqU9E1CpVBs3bly4cCGGq23PzYR1QwJIAAkgASSABJAAEkACSAAJIAEkgASQABJAAkgACTwrAihzPivyHem4TCbz+++/P3XqVEeqNK2uAQEBQUFBtA/a6Wptba1KpVq5cuWlS5faaRWxWkigrQhcuHDBycmJx+OpVKq2OiYeBwkgASSABJAAEkACSAAJIAEkgASQABJAAkgACSABJIAEOhIBlDk7Ums9q7ryeLyNGzdeu3btWVXgKY87efJkOzu7pyyktXevr68fNGjQxYsXW/tAWD4SaP8EdDpdUlKSmZmZQCBo/7XFGiIBJIAEkAASQAJIAAkgASSABJAAEkACSAAJIAEkgASQwDMhgDLnM8HewQ7K5/OzsrKampo6WL07SHWlUmlkZKRWq42NjRWJRB2k1lhNJNBaBBoaGlauXFlTU6NUKlvrGFguEkACSAAJIAEkgASQABJAAkgACSABJIAEkAASQAJIAAl0fAIoc3b8Nmx9C86cOdOnT5+O61ZlZmbm6OjY+pye8AiFhYVDhw6trKx8wv1xNyTQuQhUVVV98sknZWVlncsstAYJIAEkgASQABJAAkgACSABJIAEkAASQAJIAAkgASSABFqYAMqcLQy0UxbH4/ESExM7rml+fn779u1rh/W/evWqs7OzWq1mMpntsHpYJSTQxgS0Wm1AQEBeXp5CodDpdG18dDwcEkACSAAJIAEkgASQABJAAkgACSABJIAEkAASQAJIAAl0LAIoc3as9no2tU1LS4uNjX02x+6kR9VoNHK5vKamxsnJCeWcTtrIaNZjE1CpVLa2tikpKY+9J+6ABJAAEkACSAAJIAEkgASQABJAAkgACSABJIAEkAASQAJdjwDKnF2vzR/fYl9f30WLFj3+fu1lj0mTJtnY2LSX2ujrERQU9NVXX7WrKmFlkMCzJZCUlHT27FmVSqXRaJ5tTfDoSAAJIAEkgASQABJAAkgACSABJIAEkAASQAJIAAkgASTQIQigzNkhmukZV1Iul0ul0mdciac4PIvFYrPZT1FAS+5669at7OxsDodz/fr1liwXy0ICHZzAggULvL29O7gRWH0kgASQABJAAkgACSABJIAEkAASQAJIAAkgASSABJAAEmg7Aihzth3rjnukuXPndugwkmfOnDl37twz56/RaNRq9aJFi/7+++9nXhmsABJoPwTy8/NjYmJEIhH6cbafRsGaIAEkgASQABJAAkgACSCBLkXg5MmTjrggASTwFAQCAgK6VKeBxiIBJIAEkED7IYAyZ/tpi/Zbkw0bNly7dq391u9hNWsPQWu1Wu2cOXPCwsJkMplIJHpYlfF7JNCFCPj7+3/44YcKhaIL2YymIgEk0OkI6B5t0T7+8mgF6zodUTQICSABJIAEkECbEti9e/dzuCABJPAUBObPn9+mFy0eDAkgASSABJDAXQIoc94lgf/vQ0CpAzy8EQAAIABJREFUVBYVFSmVyvt8jx8/nEBVVZVEIlm/fn14ePjDt8YtkECXIcDlcgMDA3k8nlAo7DJGo6FIAAl0TgJEjCQ6puZei/ruorrPcvf7//9vUAwpX6vVkoPqdChzds7zCq1CAkgACSCBtiRA/2F9lHUmkzl+/Pju3buHhITgb3FbtlQnPhY58cgtH9wK/v+toX6N3B/CZnj6deJTAk1DAkgACSCBRyGAMuejUOrS29y4cePNN9+8detWx6Xw119/LVq06FnVXyKRjB8/PjAwUKPRaLXaZ1UNPC4SaIcEzpw507dv35KSknZYN6wSEkACSKA5ARh4Mhh1Mhh7IvJlE21RNlsU91mabfj/H0B5pHyVSkUGvMhQF9xsoALavO3wEySABJAAEkACLUtAKpWam5uD55upqalKpWrZ8rG0rkZAp9PBTSa5t4R7P7hnlN9dZDIZfKJUKpuamuCGkNwBwk1gV0OH9iIBJIAEkAASQJkTz4GHEODz+UlJSR3a12rBggXLly9/iJ2t8LVcLj969CiHw0lNTeVwOK1wBCwSCXRUAk1NTREREQ0NDVVVVR3VBqw3EkACXYDAPSfUg7hI5EYYgQI1EkadRCIRm82urKwsKSnJy8vLzs6+dOlSamrqP//8ExcXFxYWtn//fl9f3y1btmzYsGHt2rU+Pj5r1qxZv3795s2bt2/fHhAQEBISEh0dnZiYePbs2fPnz2dmZl67dq2wsLC8vJzJZDY2NsrlcoVCQSRQGOSCKkH1iPBJ5vjjNP8ucMKiiUgACSABJNBGBGQy2dy5c/v16zd69Ohu3bq98cYbGAGrjdB3xsOQiXQajUatVqtUqqamJoVCIZPJGgWi8tqG/NLaK8XVWUVVGYWVWUXVOSU1+WXM8loOly+U6e8Jm5qa1Go13P6h0tkZzxG0qf0T0NzRKu7oNO2/olhDJNBZCaDM2VlbtsXsSk9Pj42NxbR5TwBUJBK99957WVlZT7Av7oIEOjcBBoMxYMCAmJiYzm0mWocEkECHI0B0TZhQT8RCGHKCUaempialUklm1vP5/Nzc3NjY2E2bNv39998zZsz47LPPPvjgg/Hjx7/yyisvv/zy888/379//169enXr1q1fv37Dhg0bNWrU66+//vbbb7/33nsffvjhxIkTP/roo/fff/+dd94ZP378mDFjXnzxxYEDB/bQL3379h00aJCJiYmpqenrr7/+7rvvTpo0yc7O7o8//vDy8jp48OCFCxeYTKZMJqNrn3TXTyJ8Ej9UMLPDtQ5WGAkgASSABJBAeyAgk8l++eWXwYMHh4eHf/vtt0ZGRnFxcRi6qT00TUesA7nnVKvVRN0Ui8W5t6p9E7L+3n36p03HvvCOdlwV7+iTMG1V/PTVR6f7xH+z/tgvWxMX7T27NS4rs7BSJJbI5XKlUqlSqcCzE+e3dcSTAevcsQnodHe0KHN27DbE2ndoAihzdujma4vKr1mz5osvvhAIBG1xsNY5xqRJk2xsbFqn7HuXymKxZs6cWV9fL5FI7r0FfooEuioBnU6Xl5fHYDAqKio0GrwF7KrnAdqNBNoTASJtGgQKMxA1xWIxk8ksKirKzMyMiory8PCYMWPGK6+80qNHj759+w4bNozIkFZWVrNmzVq5cuX27duPHDmSnJycnZ1969YtNpvdoF/qH7aQzRgMRm5ublpaWmxsbEBAgJeX19y5cz///PMPP/wQZFQQRHv27Dls2DAzM7MFCxbs27fv3Llz+fn5FRUVdL9PInzSJ/uT8LbtqUGwLkgACSABJIAE2ikBnU5XWlo6ffr0wYMHh4SEqFSq77//3sjIqENn+WmnrLtAtZoLnBKJpIbFOZtza/7ufxy846atirfzjHH0SbDzjLHzjLF2i7T3jHHwjrPzjJm2Kt7eKxZeHX0SZvsmncoqrmZxpDIZiJ1qtRrdOrvASYQmIgEkgASQwL8EUObEU+EhBPh8fm1tbYeemXjhwoXLly8/xM6W+7q0tJTNZru6ujY2NrZcqVgSEmhHBAwkAeIeRF8hLlAGKzKZbPLkyT4+Pgafw1t6CQbr5KAtCIKU+YgrBlWiv72nOQ/9kF6CwTqpUgvai0UhASRACJBLjD7ARKKEgbOmXC6XyWRFRUWHDx92cnJycHD44IMPRo0a1bt376FDh3766aezZs1au3ZtaGjo8ePHz507d/Xq1ZKSktraWhAx2f+7sJ50+d9iqHf19fUsFqusrCwvL+/SpUtJSUmRkZE7duz4+++/bW1tR48ebWxsbGJiMmHCBAsLi99++83Pzy89PV0kEhm4e5LsniSfEx0LYYUrSAAJIAEkgASQwJ07d+rq6pYuXfraa6+99dZb586dg9sGlDm7zrkBt0lanY760+o0mv/5U2m05M/gK+qtltrr7nLn36K0Wo1GAx6cEolEKBT+k12yYE/yF2soXRPkTGu3SFv3KPLW3isW1m09ou29YmEbO88Ye69Ye6/Yef7JxzNKhCKRQqGAMLY4oa3rnJ9oKRJAAkigixNAmbOLnwAPMV+tVs+bN2/v3r0P2a59f81gMCorK9ugjjqdLiQkZPz48Twerw0Oh4dAAm1J4O4jmQ7UOLqAZ5CmDpLDgduQwSubzS4qKhIIBPX19Uql0uBbkuiOnl6OeB21+Ci8gUVa/UMmyYZCKgPWNX8lG8CKgS3kLWTOI2/pKwYl0A9hIPqSqrZli+OxkEBnJUDGleCqJ9Fo4WoViUTV1dX5+fmHDx/+5Zdfhg8f3qtXr+eff97U1HTixInz5s0LDg7Oz88n3pb19fV0GbK5lFnXootB+fRDg/xZX1/f0NBQXl6ekJDg7u5uZ2f32muvmZiY9O3bt3fv3jY2Nps3b87IyCgtLeVyuRDcjOT1hP4WOnkMdNZZz3+0CwkgASSABJ6YQGRk5OjRo2fNmsVms6EQ9OZ8YpgdaEfdnTsarU7RpObwpSyepIolqKjl3yxvuFFaf6O0vqC0vuAW+3ox68LVynPZFeeyK9JyKnIKmdeLWQW32bBNYXlDeQ2vtl7I4oob+FKxrEml1mo0lMapUqnkcrlYLK6ua9gakzF99VFw4gTZ0sE7bvrqo44+CbYe0fBq4x4FSidsYOsRbecZY7nyiLVrhK1HtIN3nIN3nFfo+co6jlwub2pqgudKvK/rQOcbVhUJIAEkgASejADKnE/GravspVQqV69effDgwQ5tcNsErb1582ZoaKhIJEpJSVGr1R2aGFa+ixMw0ADg0YiIcAaqHggDkKOOZKqT6xehUMhmsysqKoqLi/Py8q5du7ZgwQJra+usrKycnJzc3NyCgoKSkpKqqqr6+nqxWAx7wSsUZaAREl0QKkOkVjJHFWr+0OYjBhJRk2Tak+kXqVQqkUjIq1S/kLx3dGMVCgWpdnN7r1y5kpmZCfZeu3YtPz//UewlAvAD7KWb/FB7cQMkgATAZZPM0oA+RKVSkR6Mz+cnJyd7enpOnz59woQJAwYMePnll7/44gsfH58jR46kpqYWFRWxWCyQFelaY3MRk3xroEHS34I4+oDItfSNDdZJ+SwWq/nR6+rqyAawI4PByMjIiIuL27lz56xZsyZMmNCnT5/Ro0dbWFjMnz8/LCyssrKSeHmC5EnvYzHcGV4+SAAJIAEkgASAgFKprKuroytGKHN26HNDo9EUFBRwuVxihU53h0qup9VptFq1Vu+dqdY2qTRShapRJC+p5BaU1mffqLmUW3nywu1jaSXwdzS1KCb5pn9E9o7DmTtCM/yOZB1JzI9JLoxPLYINTl68ff5q5dWiuvzb7OIKDrNBLJIqJTKFVCoXi6W8Rn7+rSrnwNQv15908I5z9Elw9EmwcY+atirewTvO3jvO3ivW1jNmxvqTEKUWtrHRu3jaecZMX33UzjPGxj3K2jWC2lIvdv7ldzr9RoVUKlUqlTCPjX7eEntxBQkgASSABJBApyGAMmenacpWMUStVjc2NjY1NbVK6Z2lUK1Wq1Qqvb29rays5HJ5ZzEL7ehCBIjsRzwaif4HShtRAhQKhUQi4fP5bDa7urq6rKzs5s2bSUlJAQEB7u7uv//+u52d3XvvvTdixIg+ffp069bNyMioR48evfRL9+7de/fu3adPn953F2Nj4549e/bo0cPIyKh79+4DBgwYM2bMhx9+OH369P/+978+Pj7BwcEpKSlFRUUMBqO2trahoUEgEMhkMoVCQVdAm8ddJCrgPVsRpA7IuieXy6VSqVgs5vMFdWxORS3rdiWzqLy6qLy2qLy6hFFTWlHDqKxhMCpKS0uLi4sLCgpOnjzp7+/v7u7+xx9/gL0jR47s27cv3V5jY2Owso9+gXVjY+NevXo1t9fR0RHsDQoKOnv2LLG3vr5eIBBIpVIi+oIzKLEXEq6AOShF3LOt8cOuTAB6NiJwkm4NpjXI5fLGxsaKiooTJ078/PPPAwYM6NOnz7Bhw95//31PT8/09HQiLhLV0EBTJJ8T+RP8KcHRk6NfuHcXHo/XqF/4j7zA9vDK0y9cLheK5XA4Bu6k9MoY1JMIn2BRfX19cXHxnj17HB0dhw8fPmDAgB49ekydOjUgIACyh0KfA/MtoLcxcKbvyicV2o4EkAASQAJIgE4AZU46jfa5rtVqeTxedHQ0xNySy+Vff/21qalpamrqiy+++Nxzz61btw5q3qTSiKWKep6kXO+sefUmMz23KvlyWeL5WzH/3AxPLAiKu7ovJmd3RLZfWObmg+mbDvz7tzH40vqgi+5+qa6+Z119z7rtTFmz7/z6wAsbgy/BNpsPpvuGZQZEXtkXnRMYm3PoWG54Ul70qbyY07kJZ64fPJbxn/UnwDuTEizdIsFl08o1wtIl3MYt0tYjGsRLe69YEDVtPaIhbSck7Jy2Kt5x9VFbj2gb9ygbt0iIYfufdQnp+eVisVihUKhUKrida59thLVCAkgACSABJPD0BFDmfHqGnbmEoqKiSZMmpaSkdGgjN23a5Ovr20om6HQ6d3d3b29vtVpdX1/fSkfBYpFAyxK45+g/SUoHGgBJTSeRSG7fvn369OmAgIDly5f/9NNPdnZ2H3744ejRowcNGmRkZPTCCy+89dZbZmZmM2bM+O233xYvXuzh4bFhw4adO3cGBAQEBgaGhIQsX758+PDhISEhUfolIiIiPDz88OHDBw8eDAwMDAgI2LFjx7p161xdXRcuXPjLL784Ojp++umnr7/++pAhQ3r16jV06NCxY8d+8skn06dPnzVrlru7e3BwcFpaWlVVFTghgfBJD71Ij74IEiAJUElPf8Lj8RhVzNhz11cfPjffL/G7tTE2K0I++WvrRz95THD867XPvnpjovWEDz4d//Y7pqamYO+wYcPGjx//2WefPcDesLCw8PDwiIgIsDcyMjI8PDwsLCwkJATs9fX1Jfb++uuv06dPnzx58htvvEHsfe211wzsPXfuXGVlJai8xF4D1ysSbRKauGVPGywNCXQUAqSLI87oMK0BujU+n5+amurh4WFnZ/fyyy8PGTLE3t7ex8cnJiYmNzcXtECiGoJkSN7CCpEziZYJMiRdyBToF6F+Ed1dxHcXycOWuxtS/+/uLYLSoGRQS4kICnIqXf5ks9n0ahsYAmbeunXr1KlTO3fu/Pnnn8eMGdO/f/+JEyfOmTMnIiKirq7OwMUTYJJJJNjJdJTLAeuJBJAAEkACrUcAZc7WY9siJZeUlLi6ur799ttGRka5ubl37tyRy+XTpk0zNjYeO3bsmDFj5s6ddzkjU63RqtRagVhRWy8sLKs/f7XyxPlbh0/kBUReWRd4wXN36uKNpxauT1q4PnHh+sRFG5Lu+bdwQxL83fNb+HDhusQFa08sWHvi7zXHFq076rzx6LItR7/yodJqTlsVb+0WOW1V/LRV8fZ6sdNiRRik4QS3Thu3SIhMC1k5QcsEBRTC2EJUWwfvOPjQzjPmh80nzl8voyudeP/WIucVFoIEkAASQALtkADKnO2wUdpRlYRCYUJCApPJbEd1evyq2Nvb/+c//3n8/R6+h1gsBkQBAQEYA+ThvHCLdkCA7tgEvk1E3QT/SLFYzOPxWCzWpUuXNm7c6OjoOGTIECMjI2Nj4379+g0ePHjcuHFfffWVu7t7eHh4dnY2m82GgX5wLWpoaDAIw1hXV5efn19ZWXn16lUYdievxLWIvgsph3hEVVVVnT9/PigoaMmSJXZ2diNHjhw4cGDfvn179erVvXv3ESNGzJw509/f/8aNG2w2m8/nQ3AecHwE6+gBKiH3CZ/Pb+BwGFW1ftFpNssPmjsHTvx97Tirn4a99n7PPv27deve3ainUU/jHr379hny0gvjPnplytdvzVg4+a9NrnuOZ+fdrKioqK6uZjKZxIuLmABGPeCVbAkrdHuBZHV19YULF8Bee3v7UaNGEXuNjIyGDx8+c+bM3bt3N7e3uZcnPse2g2sOq/AMCNCD0xK/bT6ff+vWrVWrVo0YMaJnz54DBw60srI6fPgwk8mEi5HognRvSKJr0qVNLpcLuiZojQKBgMiZIE8SEZOEvIao1yTGNT06Nz0OtsEG8BaCactkMiiNFA7HEon+X/7k8/mNjY1QN9Izk+yhYIuBdaQfbmhouHDhwuzZs4cOHdq7d++ePXv++OOPGRkZHA5HJpPd07lTq9U+g9bFQyIBJIAEkAASaDcEUOZsN03xPxVpamoqLy///fffu3fvbmxs/PrrryckJMAWIHM+99xz7773fmllfRGDc62o7uK1qtPppfEpRWGJeUHxV/3Cs7aEpK/Zd37t/vMbgi5uPnBpe2jGjsOZfkey9kReCTuZH3nqRtyZomOpxanZjKyC2vwSdjGDW1bdWFknqGGLatjCarawmiVk1PBLKrj5Jez03KqkC7ejThceTLi2NyrLLyxjy4E0711JSzbG27lFWLmEO3jHfb72OPho2nvFUk6ZkINTH4EWxE5bj+jP1xyzdY8CmdPWIxpkUXuvWAfvOMqt0zWCuH5au0Vau0VOX330x83Hb5TVkui1GAHof04UfIMEkAASQAKdiADKnJ2oMVvBlMrKypiYGJVK1Qpld/giVSqVjY2Nj49Ph7cEDejsBEDrIr6MBrqmQqGQSqUlJSUxMTGenp7ffffdRx99NHTo0MGDB3/wwQffffedi4uLv79/fHx8enp6WVkZfcScqALEZ4g+gA7rWVlZY8eOPXXqVPOvHvwJKZNIiSAzQMTF8+fPR0ZG7tixw9nZ+YsvvpgwYYKxsfHLL788ZcqUWbNmbdiwITExsbq6GlQByLIpEokEAsG/Iu7lyx7rfT+y/8HkzU8HvvRKzz79exj3GfDimBde/2T0pBlv2M9+77tlE2et+WyBn8WSIMulQeZOgRZLgiyWBJk77//C/dC6kNMZ124wGIzKysqampra2lomk/lgcx767f3sZbPZxcXFYK+vr6+zs/OMGTMmTJjQq1cvsPfXX39dv379yZMna2pqDLyvwKUVA0529ksc7aMI0OdwqNVqmOigUCjEYvH58+ddXV2nTp06aNCgt956a8GCBaGhodevXyc9GP3yhCuRiH8cDgdEzcbGRj6fD4omuFeKxWJI4gsyJPEsN4iqTWJNG2TbhekXD3gl28MKlEO87cEzFSRSuVxOF0GJA6hQKBQIBMTjE3w96X24QXZP6GwrKiqOHTvm4+NjZWXVu3fvCRMmzJ49OyIigsvlgo3EiZzet+BZiASQABJAAkigCxJAmbO9NbpSqYyOjv72228H65fZs2cnJibKZDIq46ZOp9HqxBKpvYNDr169du4JySqoOZFWEno8b8fhDPddKcu2/bNI75EJrws3JLnvStkRmhGccC0li3H1Zl1JBbe2XiSSKhVKtVrz2JO9tDqdQqniC6VMduPN2zVnLubP2U6l2yTapK1HtJ1njJ1nDISfhYC0th7Rjj4J01bFg/Y5ffVRG/coK5dwa31wWrqjJ/h6wifTVsUTn84Vwan1HC7MWoOkJ+2t1bA+SAAJIAEkgASengDKnE/PsDOXEBERYWxs3NFn60+aNMnGxqYF20mn0yUkJBQXFzMYDHq++hY8BBaFBJ6SAEibMO5PvDZhfFyhUMjlcolEIhAIrl69umLFijFjxnTv3t3IyKhnz57vv/++i4tLSkpKXV0dDPQT+Y2uBBisk20MVm7fvl1bW5uamno/70YYVTfYi7w1OAp5SzYgCmh9fX1dXV18fPy8efPGjh3bs2dPIyOjbt26vfvuu+vXry8sLGQymVVVVWlpaYsWLRo1atRzz1Eem92MevR/wXTM5Bkf/uQxdfFey6VB1ssPWC4NtnAOtFwabLZo79RFe82c95k57bNYEmjhHGi2eK/Zor2T//Y3c9r7H8/QS1fyy8rKKysra2troW6kYq1nL5gMQkVCQsL8+fPHjRvXq1cvYu+mTZtu374tFAqbJ9ij5/JEB/SnvMRw93ZCwGAaB/huKhQKmUzG5/MPHjz4xhtvdO/evW/fvt9999358+fh2oFLlXQpJHtlfX19Q0MDSJuga4KbJl3RJI6YBhmCiTs1BHclIV5J9lyDmNIPuAZJB06soxdCyid+6mA16KAk3jhd+wS/T1A9weMT0nyCG+v9aLDZ7IqKCg8PD+LTv2zZstraWgh9plAoQO8klpJqt5NzA6uBBJAAEkACSKC1CaDM2dqEH718tVodFxdnYmLSrVu3nj17zps3j8/nw+5arY4vkjMbRMUV3MzrFZ9OsezXf6Bf6Nm9MVe2HqK8NtfsS1u9N23TgUs7D2fuj7kadjI/Nvnm2UxGSQVXJFHqdI9eiwdtqdVq1Wq1QqEQiUQNDQ1J6XmQX9PGLfKLtccdfRIsVoRZrAizdou0XHnESp+VE6RNynHTNQJEUCqkrd59k2TrtPOMge2tXMJJkFsqgK17FPW5a4SjT8LekzkCgUAmkzU1NWk0mgfchT7IAPwOCSABJIAEkEA7JoAyZztunHZQNZFIdOPGjXZQkaeqwoEDB8LCwp6qCNrOcrmcz+dPmTIlNjaW9jGuIoFnT4AMMet0Ohh3hkFw4tUkl8vZbHZSUtLq1au//PJLU1PTgQMHTpw4cfbs2Vu2bDlx4kRJSYmBow/x9SECHlkh3k704KskUx2Xyy0rK5s0adLq1ashguI9XyGfHHmF3UmsRQiBSyRDcujmg/IgVzD1S01NTU5OzpEjR7y8vD7//PMXXnjByMjIxMRk2LBhPXv2HDLsxZffmvK69U8fzFwxZe42y6WBlkuCpi7eY+EcaOG8X++4ud9ySbDtyhBz50CLJYGWy4ItlwaZOe0zd9pvuTTYegUV4Xbq4r1mTvunuR4KPn6xvJxRW1vLZrOJOnJPS+FDYilJpEdMhui1hD/xM2tuLOFAyOTl5cXExKxdu/bHH398++23+/bt++abb/7444/btm07f/58Y2MjyeUJSgzKEs/+csUaPAUBel9H/NRVKhUofBwOJzo6evbs2aNGjXrppZd++OGHvXv3FhQUwPXSvE8zuHjBZVMkEhlIm+A3SWK3Nhc1m6uY9HqS9ce1m+x4z5V7yp9078/mqqdEIoE4tyTCLd3Lk97hwDqbza6trY2NjV20aNG7777br18/R0dHPz+/oqIimEtBd+4E/06o6uNaitsjASSABJAAEuhwBFDmbCdNJpPJJk6c2K1bt1deeWXbtm0VFRWU+6aWct/UaLQKpbqsmpd9o/b4uZLAmKwJ733au+/ABWuPUek29e6bXv6pOw9nRp66kVVQW8EUiCRKtfqxnTUfjAKe0JuamiQSCZ/Pv3GL8fO2JMjHSaLOOnjHOa4+SjliukfZ69067b2otJ2OPgn2XrEQ2xaUUcqb826IWnAA/Tepp1esnee/3p8Q1dbeK3b66qMzN524fqtKJBIpFAq4W3twbfFbJIAEkAASQAIdjgDKnB2uydq0wvv27fPz82vTQ7bvgzEYjAkTJly+fBlnwLXvhuqitSPj3eC+Cf49MMYtk8kuXbr0/fff9+zZs7t+sba2PnToUEVFBXGIJLpacw8nuqJJckmCPgfqHQRFhDR18MrhcHg83tmzZ1ksFrhDPeBVoF9AXYDdSXo5Ho8HXkdwOJBUiT9WXV0dk8msra2tqampurtUVlYyGIyTJ09+9dVXvXr16tatm5GR0ZgxY0aMGNGtW7fnnnuuZ+9+w9+3/HjWqikLdk2Z7zd1gf9nC/0/nec3eZ7fZwv8py7eo1c0gyyXBdusCNEHqg20XHbA3DnI3DnIzHm/zcpQq5Uh5kuCzZcEWS07EHYqo6amhs1mc7ncxsZGkqWvZe2tr6+HlqK3DqwTKYKoOLdv396xY8f7778PTrrPP//8woULCwsLZTIZ6J2ggkBIWzhtuug1g2Z3TAKgotEFzqamJoVCwefzfX19hw4d2r17dxMTk127dtG90unXDlxN0JtBTFq6uimVSiGVJj38LLlqDGJBE3XzGbIkQKAy93P3BPdT8EaFUN4Q3lYgEPD5fOhsyeQSogcTV1f4jTh79qyZmZmRkVGfPn1mzZpVVlYGrJRKpUqlIlMoMPPTMzwf8NBIAAkgASTQZgRQ5mwz1A8+kEwmGzNmzHNUxJ5uy1es4DYKhWJFJVNws5yTfr06+XJZ+KmC/XE52w5dXuWfPPatT/oNGLwj9HJA5JXQ45TjZmZeLZcv02pby8sRYiypVCqFQiEUChsaGvYczaDCz7pFWrtGgBI5ffVRO88YUDRhBfRLEEEh+yY4a0IwW2vXCEjACW6d1Fu9xyfooKCPWrtFOnjHwfruo5mNjY1SqVSlUuF92oNPJ/wWCSABJIAEOiIBlDk7Yqu1XZ39/Px8fX3b7nitc6QWCVqr0WguXbrE4XCcnJxu3rzZOjXFUpHAkxAwyEhHYjbK5fKbN28eOHDgt99+GzNmzMCBA83NzZ2dncPDw4nXJt1xx0AzIz4uR4YtAAAgAElEQVSa9NR09Ox0QqGQJKgDtydIUyeVSkUi0ezZs2fOnMnn8yFrHYyDw/A6eSVfkRVIpSm5u9AzzEG4Rcgzx+PxOBwOiJ11dXW1tbXV1dWVlZUXLlzYsWPH999/b2pqOmDAgEmTJv355587d+5MTk5OT0+PSEi0+e+asVY/vfT21AEmpkY9e/cbNuLldyxet5/94a+rP527c+qiPRZL9lsspXJwTl28z8xpv8XSA+ZLD1itOGS5PMR6Rajl8kNWKw5ZrzxstTLUxiXMcvkha5cwW9ewmJRr9fUNfD5fLBaDQNKC9hKPK5B7QZghfpx0KYKoEUS6zs3NDQwMnDNnzscffzxgwIB33nln4cKFUVFRFRUVcrmc+KVhMNsnufBwnzYnQBfzNBoN6evEYnFycvLChQtHjx5tamr6+++/R0ZGgo+1wQUC+X3B8ZrH4zWXNg10TXCIJxkoYUiotQbAWoEn+XUASZjMgKFPgiGxbYnk2djYSELagrRJFGLyk5GWlubi4vLhhx8OHDjw66+/PnjwYG1tLT1zJ4HWgXC1QgtgkUigqxCA/pn+Sp97R+ZekHkhZMuuAgjt7LwEUOZsP22rbGqKjIqaMePLfv37m7z44px5C/ccTIhLLtwRetnLP2X5tmSnTaedNp1asPboK29+PGDQkOSM0pvlDTyB/AmybD6u1UTmFIvFHA6nlFH5l28i6JEgUjp4x32x9riDdxxJqAmhax2840CnJJKnnWeMvVcs7GvnEW2llzatXMJtPaLBxZOKbesRDeFq7b1iP19z7PM1xxx9Er7feLysskYoFCoUCszQ+bgtiNsjgVYiQO6IYOUBt0/kURS2bKX6YLFIoEMTQJmzQzdfq1ceRsRa/TCtfABISfWUB4mOjh4yZMjFixc1Gs1TFoW7I4GnJ0C/ByIj1yQ4oVQqTUxMNDc379evn5GR0fjx4/38/EpLS6uqqgzGrA2kTbpvE13RhPiN9BCOdBmPxHIE2QxC8ZSUlKSnp0MwQ/CCesArhNUlr+ByBOZAJlEYiJfJZBKJRCwWg+8Rl8ttaGhgs9lMJjM6OnrKlCl9+/Y1MjIaN27c2rVrL126lJ2dnZOTk5mZefHixcRTyXaLdnz8+4aJv2+YMnf75DmbP/jRw3TS5736D+7W3aiHcd9h4z768EcPiyWB5k6BlNK59ID1ylDzpcGWyw/ZuBy2WH7IYlmorVuEtesRW7cIK5cwyxWh1i5HrF3DLVcc/mpV1M3SSoFAACEcH2ApfEUshZV72ku0B7rTFUmtR1yv7hdtkt6ydXV1lZWV169f9/LyGjlyZM+ePQcPHvzdd99lZmZCO0KOPbqig7fOT3+RYgktRQDORhgeMujuZDJZWlraBx98YGxsbGJismXLltu3bxO9n1wFMC2goaEBXK75fL5QKCSTEkDyh+6ruadmJ1Pp7vnbQU/bDB0OPaotdDL3dPevrKw8efLkRx991KNHj5deemn79u1cLpfuNU6mUGCX0lKXA5aDBNonATKpAhTNe2YObmpqIncaOBOifbYj1uoJCKDM+QTQWmOXJpWGJ5BVs4U5hdVH4lLe+2hyt27dehkbv/H2J4tXH/H2T912iPLdPHwiP/xk7keTzIcNe0Gt0bZU0s2HWgRZOSH/UW1tbVr2jWmr4qkQtT4JoGvauEcR1RO+AidOkpLTcuURW49oCF0LCqitR7TFijDLlUesXSOoOLce0fQd7b1iIZeno08C+fzgqStcLlcqlUKGzodWGzdAAkig9Qg0fy5Tq9VkNioZDSODbCT9EJFC8Qmr9VoHS+6gBFDm7KAN10bVtrCwuHTpUhsdrNUOk5CQcPLkyScuvri4eOfOnUKhMCEhQalUPnE5uCMSaCkC9OF+tVpNRqjZbPaJEyeWLVs2bty4IUOGWFtbe3h4pKWlkRCvxBEHZAASihZG/4kAAGFXm6emA08dkuWRLmHCuBW8hoeHf/bZZ/X19QaT98ndGFkhG5AVejlwk0fu80DvJEPwAoGgoqIiNjZ28eLFY8eOHTx4sLm5+YoVKyDDaHFxcWFhYV5eXk5OzuXLl8+mpC7aeHDynG2T/tr8yezNk/679dP/bp08Z/uU+b6T52ybMGPh8PdtBrz8qlGvPgNffvW1qd988KP71EV7LJcdtHENM18WYrbkgMXyUBu3cHvPaFv3SKuVR6xcj1i5HLFxj7DzjNbnTYmeuyuRyWqQSCQKhQJuQImZZIWYSVbuaS+YDM1K7m7pqidM3aDrECS0Lz3gJPFjo0e1rampOXbs2OLFiz/99NNBgwZ9/PHHPj4+586d4/P5dOdOGH+E++ZOJvO01GWI5bQNAfL4RwROiE9bW1sbHBxsaWk5cOBAGxubXbt2MRgMAymORKY1CEsLfud010O4EunD7p315Cd20cHS2SqVStLbiMVimFoBUcSJD33zvuXYsWM///zzyJEjx44du2rVqmvXroHYSU/bieHR2uaSwaMggTYmQL8pJTmSoRuRSCRCkZgvFPGFIqFILBJLIOIFiZ9PgufjnUYbtxoergUJoMzZgjCfoCitTqdPwKkVSpRFDM7Fa1WHT+b7R2S7+6V8N2/r+I9s+w18vkePnu9+YuOxfs+1ohquQCaSSKdNm/bCCy88weGeeBcIQyKTyTgcTmVlpfuBsxBIFlwz7T1jbNwiSUBay5VHbNyjiB8nydz5r7+mW6StXhO1p9JwUp6dDt5x0/TJO23co0AWJbtQnqCeMcRJ9K+dp2rrWGKxWKlUqtVq7HufuEFxx05PQKe3EGZC6O7cufsW/v/79mkgwLMYjAvB+I9CoZDJZFKpVCwWN/IFrAZeDZtbw+Yy63n1XL5QRIUNu+cdFF7IT9MQuG8nI4AyZydr0BY2JyoqisVitXChbV7cUwatTU5OnjBhQm1tbZtXHA+IBAwJGIwlgRIml8tZLNb69etfffXVPn36jBgxYu3atQUFBff03YRx//r6egjbaCBt0v01IbQsETXBDZEuyxGtjsh4Wq1WpVLxeLyoqCiVSkXG0w3NoL0n25Axd3pp9MF3usxZU1Ozbt26sWPHgr3e3t7Z2dklJSUVFRXl5eWlpaW3bt0qKioqKCjIycm5dOlSZEKS9aJdn83f8el/t02eu8N84e4p830/nr154l9bJ83ZMem/2z+d6zvpv9ve/9Fz+PtWRr36GPXq3e+FUW99Pt/a5bD+L8zKJczWPULvzRluvjzUYsVhK5cjdl7RDl6xDqtiHbxjrVzCgxOzIQoQ5DuhWfnvqoGxxPXBwGQAS0dNfEDB7xNQwE0wuLeKRCLIbwpqBD3gpIH/LkieLBaLwWBkZGQsXLhwyJAh/fv3f//99w8dOiQWi5vfOkP1mpuDnyCB1iZAejzoCkDglMlk/v7+I0eO7N2794wZMy5cuNC8ryPBaekZc8F9E9RN4rtp4L7Z1Z4S6b0Qvechs2fkcjl0MkKhEJzI6WIn0TsheHhBQYG7u3ufPn0GDx7822+/lZeXE7GTiBkodrb2VYPlI4G2IUB6DxJCXC6XQ9oCbiM/La9se3zWnF3/fLcu/tu18T9vTfppS+LPWxMX7E31PZqTfqNCdHe0DiZD0CdXtU398ShIoKUIoMzZUiQfqxyd7o5Wq5PKVcx60a1KblZ+zZnM8iOn8vfH5mw8kL5m34W1+85vCL64NyrbPzT525/+6tGjh7Fx7+vXr9+5c0cul7elzAkPgBqNpqmpSSwWs9ns4pLbDl4x1m6RNu5R4HAJr9NWxYO6CfolpN60XHnEYkWYxYowG/32dp4xsDGsOHjHwS427lHUNnpxdNqq+M/XHAOlk1JA9cWCJ+iP205dvVkuEAjkcjk8rT8WdtwYCXQyAtCTNKk1Gq2OL1KoNVqhWMHhS5VNmtJqnkAsr2ELmQ0ikaSpsLSe1SCu50luV/KEEmXBbTazQVTNEtawhDK5ulEg5wnkTSqNVNakUmvv3KE6qPs9VxrcQcEcU6lUKhQKSyqYB05d/ds/+YdNx/+zJu7rNbE/bD75w+aTP21N/HV7ktuhC/EXb9Y18EDvhCAZeAfVyc5JNOcpCaDM+ZQAO/PuAoHg4sWLCoWiMxv5QNsOHz78008/UTORhcIHbohfIoFWJ0CG+8HHEZz8eDxeYmLi3LlzTUxMxowZM3PmzCNHjtTU1NC9NulhG+vr6zkcDo/Ha2xspLtswuR6+ug/ccGhj02D3AWPavc0uLq6+pNPPmEwGPf89rE+vKe9XC43KSlp3rx5JiYmo0eP/v7770NDQxkMRm1tbU1NTXV1dVVVVWVlJRE7i4qKcnNzL6Vfnrs50nLJfvPFe6f8vctsUYDZooDPFuw2W7THfPHeqQv9p8zfNXVhwNRFe8yc9po57Zu6wG+czawhY97p2Xdg74HDxkz5zwc/eZkvCbZaGWbjFmHjTs2fdfCOtfeKsfWMsvOMcfRJgBmyv28/yahhSSQSiAJ0v/vaJ+AA5ImuTIKZECmCrgETBywS2Jbu4gnnA/2sKC0t3b17t6Ojo4mJiampqbu7+4ULFwQCAUSypYdGeUDTP5ZRuDESeDABONPIaU/mt1ZVVe3Zs2f8+PEmJibfffddYmLiPePTwhwO6OXAK10qlRr4bsLVRBKcPLg+XepbwA65POk/NyBgQPdC9E4IG04XO1ksVkFBwbJly8aPH//iiy+uWLEiOzsbgmMrlUqVSkV3me1SYNFYJNDJCEAvAe6bMpmMyjbHazx/vWxj1KXvN1DD6/o0ctF2ntRQvr2X3p1oVTzlveRNpZSbufH4joQrl29UcPlCmUxG7x9a5Papk9FGc9ozAZQ52751dDqdRqNVNKnrOJKMvOqElKIth9K9A1KXbf1n6ZbTK7Yne+5O3ReTczS16HYVVyRRanW6ysrKlStXlpWV3blzR6VS7dixY/HixW1Tc3iqVavVCoVCIBBUV1cnXcixcgmngs26RTquPgqSJESsnbYqngSYhf7TwTvOziPaxp166rTVr9i4RVIKqGsE9LS2HtGOd105YTOq+/Wgul9I6gkCp71XrI171Oc+8Scu5kPcWpiYi893bXMa4FHamIBOd0en06k12iaVRqFUi6VKkUTJ4UtZHHF5dWNlneDqTeb1YlZWQe3py6XncyqiThfGnrm5P+7q/tir+2Jy1gWeD4zLWbv/wvbQDN+wDDe/lK2HLq/df2Fj8EW/I1keu1J2hWeu3X9+88H0gKgrqwLSAiKvBMVdDYq7mpBadCQx/3haybkrFdk3mPm32BVMfm29qIolVKm1arVWrlCp9Q+i9Duo8mpW3IUbi/ckT6NGmag/cNS2cY+i1j2i4VqGuQtfrzvqE3YhNbeM20jdQaHY2canFh6unRNAmbOdN9CzrN7Zs2fHjRtXU1PzLCvREseeOXPmH3/88VglyWSy0tLSa9eu7dq1S6VSPda+uDESaEEC8OABI/JkrF8ul4tEooCAgHHjxvXr12/s2LF79+7Nz8+vra01GG6mZ6Tj8Xh8Pl8gEJBxf5KXsXm00ocqms1t1Ol0Uqk0IiJCJBI1//YRPzGY2gbOWwqFgs/n79mz58033+zXr9+YMWP27NmTn59fU1NDRDumfqG/raqqKisrKygoiDiRar38oNXyA1MX7zNz2m+5NMh6+UHLpcEWSwItlwabO+03d9pnuSRw6uI9Zov3mjnttVwaZO60f+rCgEl/bX7N7PuefQf2MO47aMTrb3+9xGJZiLXLERvXcMuVlDenrXuUvTf1wGnvSeU+sfeMOX6pUCgUyuVyyEj3iFY/1mZwStBBEdWTRLilO3qSmJN0F08DIZzFYlVVVeXm5q5Zs+aFF14YPHjw5MmT4+PjiXMn/e4ZnbEeq71w48cl0HyKAzgU7t6929TUtF+/frNnz87KyqJ3dyQsM0zjgNSbIpHoAdERu+wwukEHQhc1ifRL/5DonWRSBXQvJGg2j8eDiRQGvUphYeGOHTsGDhw4bNiwWbNmlZWVkXnHOHnicS8K3B4JtB8C0IdAkrmmpia5XE6FVmtsvFLImLPz1IzV8bae0XZelJBJpYVzj4Sccw5ecdSAnXecg3e8AzVgF2PvSY3ifbX22NLgc4XlTLjfoMf877K9dPtpa6zJIxJAmfMRQT39ZlqtrkmlEYiVlXWCwnIqPu3J87eC4q/tOJzh5Z/q7Z+66UD67vDs8KT8kxduldc0yuQqeu5NuL15+mo8bglwZ9vU1CSTyXg8HoPBOHjyMnhkQj7OaaviHX0SQMWkFA69PAlvrVzCbfUKB6TetHIJt3aNIHonfKufUwITSqh+1Vof/JbsRSQTkEit3SL2JqRXVTP5fGpKq0ajgV79cY3C7ZFAuyJAOWXq41er1FqprEkgVtTUC68V1RVXcJIu3jqdfntfzNWdYZm7I7LXBV7cHZHl5Z/q5pfi7X9u6dZ/VgWcc/E947M3bX3Qxa0h6Xujs7eFZkYk3Yg6XRh3tuh8TtWJ87fOXalIyWacySy/UsQ8dq4kJbP8bHZ57JnCM5llYSfz9sVePXA01zvg3M4jmRuDL3nuTl0beH751n9cd55dvS/NxffMusAL+2NyAiKzEy/eunqTef5KOZcvlsnk9ZzGBg43Ji3vp80niMBJzWyAKNb6yQpE8iTXMqx8sTr+L7/TmYUVkDUJhmvIFF68iWpX5ydWpi0JoMzZlrQ72LGkUmlRUVFTU1MHq3ez6rq6uvr4+DT7+L4fqNXqb7/99ocffujKnqz3pYNftCEB+nA/DDFLpdK8vLwtW7a8+uqrJiYmDg4Ohw8fhji09CFmEpnWwHcTYtLeT92kx7sgQ+GPaK5Go/nmm28uXLjwiNvfc7Pm9spksvz8/G3btr3xxhsmJibTpk0LDQ2lpxqleyWSSLwQU5HJZDIYjPz8Are9x61WHrJaGWqx7KAlpVOG2riE2bmHWy0PMV8SbO4cZL4kcMrCPZ8tDLBYEmTuvN/COdBs8V5qZWmQuXOg2UL/N2x/GzzqTaNefQaNeP2tGQsmz9tpuSLUbGmIlUuYtVuEtesRi+WHrd0iHVbFOe1LhemxLejQ2ZwVaR0gBjoERPWEXK1EkAAHLIlEQtckuFxuc/9OIhRVVFT4+vqam5sPGTJk8uTJISEhpaWlcrkcPC2Idy/eOjdvF/zkKQnQR89hVodcLudwONHR0RMnThw2bNiXX36ZkpLSPAEn+KlzuVwQOElwWhKZli7gkcvnKWvbEXcnhIl4CZybaAuJTw7Q4HcB1unOnTKZjASzpWfuJL9EsFJWVrZ8+fKxY8eOHDlyy5YtxcXFzcPYYmfSEc8lrHOXJQA6AdxsyGQyoVBYUcMKSrzy1bqjkEZuus9RakjOKwZG3u299HnjVlHeSJQCqk8j92/SOC9qipiNe+TnPnEhybn13EZw64SJYtBfdVnOaHgHIoAyZxs0FmgYSpWGL5KXVTdS8WkT89fuu+C28+ySzaeXbf3HfdfZrSHpx84V5xazBGI5Xd1sg+o9+BB631ONUqmUSCQcDqe0tHRrxLkvNyRCvFnoKsHzEpwy7fUzRSidwz3Kxj3KciU1s/b/c3Dq3T3BNdNgL8fVVPdr7UbNL4FC/vX+dI+ycYsEbzAbt0iPwNOFJeUsNkcmk6tUVHpOvBN7cAvit+2KAISZVak1arWWJ5DV8yS3qrhFjIacm8zzOZXhSQWRpwq2h2b47EnbEpLutvPs5gOXtoZc3h6aERyfG5yQG/1PYUJqUXZBbXYBs7yGX9sgauBJm1SaJpXm36ybT2GtQqlWNKn5Inl5TSOjlp+RV306vfSfy2WBcVd9wzK2h1723HV2yeak9fvPrdlzxvfQufCknEX+px3v+nCTHgBuk0DOhCkOdvqLGj6BV1uPaGvXiM9XxQadulbL5hK3TqJ0PoUduCsS6MAEUObswI3X2lU/ePDgzp07u5TUp9Vq/f39jx07VlVVVV5ejjd8rX2OYfn3I9Bc8FMoFOXl5b///vvw4cOHDh26bNmyy5cv19bWstls4sJI1M2GhobmGelI2EASkLalhv6hthEREZWVlfez6MGfw6gZSb8H+QlKS0v/+OOP4cOHDx48eMmSJenp6RCPt7m9HA6Hbq9AIODxeCwWq6KiIjPn+h9bj9q6Rdh5RNq6R1i7HLF2CbN2DaM8MleEWqwIsXUJs1oRarn8oOWyg2ZOgRZLgsyc9k1ZEGDmtM9s8d4pCwI+W7RnysKAyfP93vnO5YU3JnXr1r3PYJMxU762XBpk4xZuR3kqRNq4R9pQM2ejHX3ic0sqRSIRTI/VaqnEDG2wwAMqwUjPaQoungZ6JyDicDgQc5KevxPECQaDkZKS8vPPP/fq1euVV15xdXVlMpnNxc42M7ANGOIhni0BcvbC6LlSqZTJZKdPn/7oo4/69es3Y8aMc+fOMZlM4rBOhPmGhgZwVRcKhRKJBFwGDVR5KLwr/6aTLgKy6EGUJBLsWvq/yz1/LEgDkTx80LdAsEqRSEQi2ZKZKKSvzsvL8/b2NjY2fvXVVzdv3iwQCEiMSjJz4tmefnh0JIAEHoUAmSHR1NQklUoFAkF5dd2ywBTH1QnTVx+d5kM5JE3zjrfzjJm2Kn66z9HP1x6j0sJ5x09fc8zWndI49V6elAJq6xE9zSvOcVWCtT76ooNntHNgSnkN20DpfJRa4TZI4NkSQJmzVflTwWmV6kahvLy2Me8WOyWrPD6lKCDqypaQdI9dKT4B53wPZwbGXY07e/NqUZ1IolRr2ujh69GtJjKnWCyur68vLi72OZgMAiRkP5m++qidR7SVS7iDd5yjTwLVkeplD/JK1zZAywQFlGTf1GdUibP3irVYEQYf6p9MY6h0nnrVE5KAOvokTF9z7K8tR0MTLp65VJhbVF3N4kukyqYmzaObg1sigbYnoNHqtFqdRN7UKJLX1osy82uy8msOn8jfF5Oz5WD62v0XXHae8dmT5rk7dfXe83uirxw+WZBxveZmeUNNvaihUSqVN4mlyiZ96gzd04uZj2O/TndHo9Gq1BqRRMHlS6pZ/BulzLjk69tDUpbtODHDJ3766qPT1xwDl27w46Rf+NTd1JpjMMsBwlmDIzjk3LV1j6K8tz2ilgWlVtU1SCQSpVKpVv87d6ErP/k+ThPhtp2NAMqcna1FW9AeNze3v//+uxPInJMmTbKxsXkomUb94uDgsGrVKrVa/dDtcQMk0BoE4EGIjCMrFAqRSJSVleXk5ATxaZ2cnAoKCujqJmSnY7PZdHVTJBLBiH/zjHQwWt2C87w8PT137979BDQMRt4hRK1YLM7KynJ2dh40aNDYsWMXL158T3vBd5Oom8Re8DESCAQNDQ0VFRVn03O+Xhtv5xlt6xFp7R5hR816C7dyCbf3jLbziLJyOWy+NMRqeaiNW5j1ysNWy0OslodYLjtoviTIbPH+zygXTyqSrYVzoIXzfiq8rXPgp39ufPltM+MBzxsPeP41y58+nbPdxvWIrXuEnTsldtp5RocmX+Xz+XK5HPKdPAGWFtmF7uhpENUWEEHWYZK/00CZIBpSVlbWr7/+OnLkyFGjRm3atKmwsJAudhL1CG+jW6TVumAhpBMgIRAVCoVEIsnNzZ0zZ87gwYMnTZoUERFh0OOx2Wzw4CQJOCH7Jom/jQkg4VwieMkkEoVCAcIkt5FfzKi7XMA4eqkw5PS1XQkZu45m7zmRE3w6N+bCjdTcsrzSWmY9TyKRkEuePjMG1sEZFCamSKVS8BpvbGzkcrnNu5Tr16//+OOPQ4YM+eSTTxITEzkcDhE7ScnYk3TBTgBNbksC0CeQOwQSDQKuQXhV33+BWBEymUwkEnE4nNyi8nm7Tk+jhMw4B+9YO/coe30Af1vKAynSxjXC2j2CciFaRQ3c61+POqyKo9KZe1Jx/qmxeL3Tkq0HpXraeUYv3HOmrJotlUphnA7uMdqSDx4LCTwBAZQ5nwDaQ3fR3aHy6mm0OplSxeVLb5Y1nDhfEhR/zWNXyoptyc6bTq3ckbx6b9q+mJz0vOpKlkDT/tRNYiM83cNDfV1d3c2bN71DzoJySfWNVP9Jxaj8d4LI6qPgvEWSdM5Yd4KaKaLPymntGmHlQj3JUjNFVlECiaNeI7H1iJ6ud+U0XxEG5UCxEO6SBLAFseQr9/A5HqFr/E8fiMtOu1JWVcen/F+1eAtGWgxXnj0ByKkpkiobhfLC0oacQuap9NKwk/l7oq7sOHzZ1feMm9/ZTcEXt4dejjx1Izq5MK+EVVknEEmVGm3bypiPgApuvWB8D0L9czic1JyiH7ckwpwGytNan0+XivbvEU1mJxC3bJgAAZ0G8f+mPLbvBru2dY/6yzfpZlkNpACAWaR4ST9C4+AmnZAAypydsFFbyiSFQiEWiztB55ibm5ufn/9gLEwmc+LEiUFBQY2NjZ1A2X2wsfhtOyRwv8HoGzdu/Pjjjy+++OLrr7++a9euvLw84nhHhCgY7if+TCQjnVK/0LOgtaC0SWcYGxublpZG/+Sh6/e0Vy6XFxQU/PDDDy+++OJrr73m6+t7/fr1e9rL5XLBXnqeUbAXMkUJhcKGhgYGgxHzT7otJUBG2XpQf3djplGjabYekfb/3keGW644bLnikPnSELMlwVOdgyyWHjBfCvFsgyyWBJo7BZo77zd33m+2eK/lkuApC/w/+MVn9OSvjHoa9x70wuhJn5st2mPrHm5PlR/lcTC1oYGaTNeqcWsfSphsYICayBKgdpB4tqBMNM+xx2KxmExmZmamh4fHwIEDR48evWjRooqKCoVCAQ5zdH2iE/xeEG640gYEyFA7PPiBWtbQ0LBs2bLhw4ebmpoGBweXlpYSp0DisP7g+LQ4Mg5tRx6qwUFWoVBIpVKhUMjhcqPPFTjtO/vT5pOfr06w0+d8snGLtNcHmQTVwcE77rtNJ//rd3p7fFYho04sFoPYSZwv4deEuD5fv6QAACAASURBVHaBeyh4jYvFYoFA0NjYSPzFiQ9uVVVVamrq9OnTBwwYMH369Ly8PLr3rUHg9DY4A/EQSKBTEoBrn/z6Q5d4PyET4lQ3j19NC2VNrSr0C0ySgJlkeUWl8/yS7D2pOx9rl3Ab13A7jygbaiZZmOWKw+bLQ61dw229ovS3W9HWbhE27lQnAzdjIGrauEfZe0VTqqc++5S1G7XxnztPl1azpFIpyTLVKdsIjepMBLqCzEnvVR53/QnaWq3RKprUQomSxZGU1zbm32anZjMOHru+PTRj5Y4zrr5nvHanbgy+ePhEXkkFV6FUt7F71uNapNPp1Gq1QqEQCoV1dXU3btzwDjlDXDbBux2USL3jexQomqB2gDAJ8gYRPsFB08E7bvpqKlq4tSs1oQT8O+86zcfaukdBqFvw+oJXUD2/dA370y3UddvxLQfTYv4pyCqovlXJ5fClIolCpdZqWiBy5+MSwu2RAEVArdEqm9RiWVNZTePVQmbU6RvhSfnbDl322ZO2Ykeyu1/K6n3ngxOup2YzcovZ1SwhVyCTK9TteYrDHf10DXjgValUcrlcJBJxudyUK0XfrD9GwlPDZUt1Be5RMI8B4lGTQNNwmwS9Acic8Anx84a3CwL+KauuIz6dGHYLr6uuSQBlzq7Z7g+3WiwWT5061c/P7+Gbtvstbty4cfPmzftVs6mpKSMjQygUzpkzJysr636b4edIoFUJkMFiMlP+xo0bS5cu7dev36uvvrpq1SoGg0HPSAfD/cR9EzLSSSQSkneTRKaFFEdE4GxZISo8PPyXX35RqVSPBQdu9Yh3EQiThYWFy5cvHzhw4Kuvvurl5VVRUdHc3vr6eiJwQoBKur3gfqBSqRQKhUAgYLPZt2/f3h+fauUabrnyiI17JMQD0U9ujbXzpEbWpq2Ks6f0zihr13BqkM4t3GrFYcvlh6xXUqon5dbpHPTZ4n1mTvvMnQPNnfZbLAm0Xn7Q3Hn/1EV7zZz2T12wa8T71sb9hxj3H/Kmw+zPFuy2cglbsDuxqqZWIBAoFAqIGfJYcFpjYyImkdPMIMeeVCoVi8VCoZDP53O5XEhuSpQJIqiXl5fPnTt3+PDhI0aM2L17N4PBIEkg0HmuNRqu05dJTkgYQ+fxeCdPnhw/fryJicmiRYuqq6vJSVhXV2fgwUkScCoUChgNN1DgOj29hxpI8EIEYJFIxGRzEi4Vztx03I4SG6L/datyj7LziLHVd4nUrGFvKqmegxflWGDvGevgFfe5T/zWuKyiChak1SSc6SIK6c8hEC7MnyBiJ3h2glzNYrFqa2v37dv35ptv9u/ff8OGDZWVlcRhlP6D9VADcQMkgAToBIj2ANc+0TXhF58ImTAnDIJOwwULrpl1dXWVlZWlpaXFxcWFhYV5eXnXrl3Lycm5cuVKdnZ2VlZWRkZGenr6xYsX09LSkpPPzFsb9MmfWyb9d5v5In9zp73UPLDlB6xdDttQMmeo1fJQW/cIfeQMSuC0Whlm7UZ5IFm7Uh/auEXYukdQs9D0Q/P63ibGzoNyZrJxj1p1+Hwjnw83GBqNpmVvXOnEcB0JtAiBLiVzwrQJeidDd/8m3Q5sBp3SY0HW3bmj0eoEIkVpVeOZjDLfsMtr9qUt3568dMtp502nvHan7g7PikkuvFFazxXIHqvkZ7gxyJxyuVwoFDKZzIKCgjWHku29YsH/kjhf6mN6x4KGATN07Txjvlh7fPrqo1Yu4Tb69JwQtdLaNWKK80Hz5YdBy7T1iLb1iIasftauEeABBm5hsG7tGkHkT0efhOV7kvYcOePpe3LuqrjF608u3Xxq84FLh47lpmSWszgi9Ox8hqdKVzu0TndHpdY2qbRcvuwmo+FKYW1CSpF/ZPb20MsuO8547ErZdODigaO5wQnXcotZTLZIoex4IfdgHEatViuVSrFYzOVybzOq/txx0lofUBqmOxBRE65l/SSwWLjYYWoC5OKFy5m66vVTVIlbJ6Vx6qeL2bhHeYem1XOoPJ0qFRWi9wk64a52EqK9nY8Aypydr01bxiK5XB4cHHz+/PmWKe7RSqE/n5N7aPptNHEbot86P/Tp98FBa4uLi/v37x8TE/PQch7NCNwKCTwGATjn4cQGgVMul1dWVi5evNjU1PSVV17ZsWNHXl4efayfLnDyeDyhUAjxWmEAmqibRHYCgfMx6vQ4m6alpa1Zs6apqekRdyJ6G915q6KiwsnJafTo0SNHjty2bRvdXiKwEUH3ofbCbFk+n89kMouKinwjz1KPhR4xdl5URigImwZ3kPrpbzF2npRnp7VbhOXKI7aUY0EMFcx2ZZj5skOWyw/p03aGmFEJOwPNlwRSYqdzIBXGdkmgmdO+qYv2TF28d+Jva1+Z/KVRT+P+L4waZ/Pr75tiim6Xc7lcqVQK95et2gSPSJ5sRm8CokyQHHsgTjwgkm1dXV1GRoabm1ufPn0mTJiwefNmHo8HOhMxtl3ZSwzHlfZDAPo9iFILXoAymaygoOCrr74aPHjw999/n5aWVltbS1Qxtn7hcDg8Hk8gEIDDOl0Yo3d37cfMZ1sTuHeCaR9SqZTP51+8fvtv/+Qv1hy194qFsTA7LypopL1nDBVtUp8zD1wK/nUd8IyFScS2HtFWrhEzNx3bezKnUSCSy+XEy4rctpFw62QKhVwuJ2Inj8fjcDjENR9atqCgwMfHZ+jQoe+9915YWJhIRJVs4CP+bBni0ZFA+yfQ/DedhKkn7pjgiAmKJofDuXr16vHjxwMCAtzd3WfPnj1jxgwrK6tPP/30gw8+eOutt8aOHWtqajpixAgTE5OhQ4cOGjRo4MCBAwYM6N+/f79+/fr37z9gwICB1DKoZ9+BvfoPNh4wtO+QF/sNGzngxdGDho8dbDr++VfefemtqaYfO46z/vXdb5w/+WOd2aIASuZ0CaMmk1HTyA5brQyzcY1woDzII/WSZ5SVyxEbKo06FXVjmldMYOIVoVBI4v+jR0L7PxW7cg07scxJfuXJgAzEh4CHVuhb5LSFRNahBxMihTx4sEWr1anVWplCxRPKy6ob03Orw5MKvANSV2xPXrghcenWf7z9qTScqVkMFkfczv23DC4HInMKBAImk5mfn789/AyVkE8fZvbfMJV3Vcxpq6j0xo4+CZBNE+QNe/0nX6w9DhtTEumaYzb6tHzWrhHWrhEQ05KSPfR6J+gfkKQTdBS48YNH4J0x50tLy68VlB2Iy3Ld8Y/zpiTvgHNU8M/TBbnFdberuFyhTCxVqtXUI52BLfgWCTw9Aa1W16TW8ASyglvsy9erY5Jv+h3JWrv/vJc/db0Hxl+NTynOKWQymHyRVKl31+7A5yE8IkFGcx6PV11Ts2z/GRKclkiV4JcJsxnAn9vei+oHHLwoz2yScJdy3da/hVkR4MNNpefUJwKAzQJPZtPvoKAHfvpWwxKQQEchgDJnR2mptq6nXC4vLy+Xy+VteWAQL2HkHWIowSM6mXdM0m7BtEEysvlkleRyuU5OTjwe7+zZsxoN5l1/Moq415MQgLsNOOHJoLBCoairqzt06BCMLs2fP7+0tNRA4DSITysWi8GdES4N4mTTBjrTjRs33nvvvfr6+kexn24vETgVCgWLxYqIiDA1NTUxMZk3b15FRcU97eVyuaBtPNReuI+UyWSNjY01NTWFhYWbw/75Yt0J/VMf5a5EJTKhnDgpvVOfFEqfI4oKXRtl5UopnTbukfrYtlG2HpEOVP7OSBvXI5bLDlmtOGS9MtR6Rajl0gOWy4JtVoSYO1HJO82c9lksDbJcGjzpry0vjPu4h3Gfl0a9EhoWzmAwBAIBjNBBT/XgZ/tHwdji29CHR0kwWxJ2kjh3GuTYg1ywxcXF33zzzaBBg959992zZ89yuVziVNdu7W1xgFjgExCAsw5+6CFKbX19/f79+59//vkxY8bs37+fyWSSfuB+HpwghhHPvyeoRifehRAGR3mRSMSqbziWXvDV2qNfrDsBmZwg7RNEMJu++hiMqX2x7oSte7SdRww9TRT4B9hQLu9USDSPQ+crmQ2QOQ/SD9N/bkiXQn7X5HI5pPEjnp10sZPFYmVkZJiZmfXv33/OnDm3b9+WSCTNe5J22Hl24vMHTWu3BIhUQB6X6E9MMGWETFqqr68vLy8vKCi4ePGiv7//vHnzLC0tX375ZSMjo759+w4ZMuSll14yNTUdO3bshAkTzMzMvv/++3nz5rm5uW3ZsiUwMDA8PPzo0aPJyckXL168fPlyVlYWOHSmpaWdOnUq4MAR89mrP/jB5e0vF493nPO6zawxn30z4gM7kwlTBo9+q++wkX2GvNR70Au9+g/u2ae/Uc/e3bobGRn3GTj8teHvWLxiPvOdb1dM/HPjZ3/7mTvvt1gWYr7koJnzAcsVoXYeUVTCTn3aTkuXsCs3ykQiEQTGgH4Gu4J2e3J28Yp1bpkTBE4yf0IfAF/WKBBVs7i3q9k3K1iFjLqCMmYhg1VcyS6rbWA28AWifwPdw6Qo8lxwv0tYd+eOVqeTKVQNPMn1YlZ8ys1d4Zkrtic7bTq1YN3JpVv+8QlIC0/Mv13NkyoeL4BQOzkzicxJvDkPHk0lTpwwmQzefrH2+Odrj9vpp6M5eMfZuEVOXRICkS0dvOM+X3MMpqOBRAp3cbCjoz5FH0gdoGVSaTt9Eqatip+x/uTna487+iR8oX+184wOTbpcWVnJ5XIlEgmzQZCQcnPzwfRFG5OcNp9eti15Y/DFyFM30nIqGholYqmSStnZgTWmdnIKYDX0qXY1OoVSXcMWFtyuP36uZE/UFc9dlK7p5X9ua0h67JmbZ7MYPIFc3Y7z7D5uQ8KTETyRwSyHqLNX4YrWT8SnMuzaecZQgWr1+qWVftYCzGCAQBcQ9AIudri0/99dGyLcrjxi7RYJG4AD6MwNCfm3KsVisVKpRIfOx20y3L4TEECZsxM0YquYcOnSpVGjRmVmZrZK6f9bKBmSA/ESgtf9H3tfAh9Vea5vq5TNpYpatYreW71avV7qvf+W1ipZJjuoFVurxfa26tUilDUkk0lmskESwr4khC2QfZashOxAEpKQDbKvZE8ms+9rNvD/e7938nU6QUQMkMDMj1+YTGbOnO8757zn/d7nfZ7HaDQaDAa9Xq/T6RQqjUyplqs0SrVWq9MbDAYkrtFCJ82e/3XDlt8CAgJCQ0Nt/qTVahsbG1999dX29nabP9l/tc/ALZ0Bivkh4IcnvFarTUlJefPNNxcsWLB69erS0lIkMiLrhdb6qSElvQps1BppFeyWDuHrr79uaWlZuXKlWCz+1i+yHi+1iNPr9Xw+/6233pozZ86XX35ZUlKC4Bn+nDpe1OO1Zg3Sqx63j7tBYU7olRsYaGhoCIvNgYY4qJ0BgcmDkwp2Jn4pHmxAOjEXxJ/uIGALYrZkAQm0Tg+2wIUorQHJwDfRxTfB2Sdu2cZjzt4nHDcc/e2aaMcNR5atP0QEbA+9+VXUb7/av+QPPk+98qsHie3c2bNnsWQ/taP5Wyfttr3B+ujQgimCTxiB1Wo1kjulUqmNjPDAwMDp06dXrlz54IMPvvvuu2VlZUaj0QZxtz46t21Q9i+agTOAZwJeoVgsQ3fYkpISFxeXBx98cN26dXV1dRTgFIlE2NWhVCq/icFJtzkDx3undokmVGNjY0ajUaPRSKTSQ6dq3gnJ8AxMs/AGgL4pAI47i8dgEt9iEve8gjKADRBEWkDYAlRJwjU2tBiTcptbAO+LvTn1nQPWvi/WRCubkEI9O6/D7Ozp6YmOjn7++edfeumlgwcP6vV6a1onVe+4U1Nq/177DNzBGaBR7prQJiVUYX9Sa2trYmIik8l8//3333zzzRdffPHRRx+dM2fOSy+95O7u/sUXX2zduvX48eMCgSA/P7+ioqKpqam7u3t4eBibmZA3T2/0mIXiz6GhoYGBgZ6entbW1tra2i1R6Y7Q4HXkrbUgbuG06diyDTFv/+PQsnUxb/3j0JtfHXxz9f7ffLHrV3/d+t9/CvjFH7a8uuLvLzr96flfeT358i8f+snz9/9oPrE2f/zhp//98Z+98dP/dn3F47Nf/iXUcctJhk+Cm38KAwQ24gJPFkmkUq1WOzIyQtv46ITgkzt4aOxfbZ8BOgN3JcxJ0wlcu2GQUak1Fc29e9IqN8QU/ikiYwWbuzwoHQ0jPQPTlgel/yEs66+7c5ixxdGnauovD+nIDZ2CnVM1qC0MTtOYQmPsF6kbOsV55ZdjBDXbjpZujMzz3pnP2ncm/Oj5/LLLYrl+9qJt1JtTq9UODw83NzefLipFZ3RsLEMbThcW1ysoHVpyCfLhzEzG54BzMJMtBpyEtoViG/hZQER8k6iyJeKdy0MyATENzvAiBwg4YWzBO6FZ72499fuI7Kxz1f39/QqFApUtx8cn+oQqbm4za9+ZdRG5AfvPHEiu4uW3NHSKuwaVCo1RS5idds9Oesnbn9z4DFy9enVkdFxvHO0eUp6p7uEXtGw7UsqJOhd+9Pzu+AtH+BdrWoRCqU5nGL0rqcO48h0ZGdHr9VKptKOza92hQk9C42YQbBJWZISICaxN6LxPRvlZy4tk8cXwS8FqlQuLC2GBiNbSZRpEA3/Q/KdqPQy/lN2CchUR/8ee1NkbPG/8TLO/0z4DdAbsMCedCvuTf5kBs9nc1NSk1+v/5dXp/uWaCbROpxsSyy629R86VfPlgQIvDt/RO57hl+IVmO7O5i8PTP/f3bmRgsrS+t4hiUKrg8Z/qnJmzSqgO+vl5eXp6Ul//frrrwUCweLFi28EobH+lP25fQamZQao7A/Wf/V6fU9Pz0cffTRv3rxf//rXFRUVtMZEMT+pVCqTyVQqlVqt1mg0NqZ0txlFMxgMzs7OjY2NNzgbU8fb1dX10UcfzZkzZ+nSpZWVldccLzI46WApwElLXde82HEZaTQa5XJ5f39/fX39jvhccDsIAAYnJohu/nzMAnHhB7I/gbBE9+SkvbP1FJCc/IiGrU+845YER+iPA101dzCu47n6JQPhgJm4bOOxN9ceIszOY44bjjiAnm3M2/+IXrb+8KqQhG0ROxYvXjx37lxfX9/BwcGp5KQbnLrb9jYMxfRIWTOxEJzQaDRKpVIul1Ow01pQNCkp6cUXX3zggQd8fHwGBgZm/nhv28Tav4jOAD3HaK+DXC7ft2/fwoULX3311YKCAmuAUywWo061SqWiotw2CPo1IwD9unv2CS6nUauW8DglcfmXPAPTPDlpxPQOun1xFc3wS3bcEu9CWkBghczmu/hzGX7wBmsBJXzuybFgnwwmtIx8uT+vZ1BsMBioeq3NhNPDjc0T2M1jMpnQAxiDiUQisT7oHR0d77333rx58959992Ojg7sZrO+u9l8hf1X+wzcCzNgcylR3QX0IB8cHGxpaTly5MiHH3741FNPzZkz5+GHH/7JT37y0ksvffTRR7t37z579qxIJJJKpZLJBxofWEOY9DLE2/rUn0KhcHBwsLe3t7Ozs76+PjP/rOuWE4zNsdDj9Y9oh01HHDbELPvHIcbmY86bj5P2rxhHkPo/5LAOUiPnTcfe+kf0b9dGE2T06Jtron7z9/3//eegl90/f+YXjIee+re5Dz76wLyFP7x/zg/vn/PYv73+H05/+tXfQt9as9/L90RrZ7dCoZjaMWYnd94LJ/8sGuNdBnPSpgo0k0MJeqFEllvZ9tddpxFaQ19JzBCQSIQajFQrgsiupv59X05ZQ7dUAVa7NuUaCG5Xr2r1ZqlCX9Ms5OY2746/sGVXwcaIvA0RuYHRxVG8moxz7W09spHRWa+5RaEOrVYrFotbW1vLy8s/icyyCNIGgHGA45aEZZvjUI4SjfpwuUpRTCBy+aVgkkZTNXyCkpWIay4PznAL4C8PyUTKl6WXly3wIq+7sLgfhKaWV18aGBhQKpUIc9KMWqkxCQpath8vWxeesz4i13tH/tbDJck5jUWV3cNSrVY/MnHFTuycRZHpTu7qlStXx8avqPXmth7Z+Uv9J7PqAqPOBh8qDj5UHMOvySntlKqMpllotPld5xQtWkwmE1I5c85fXB4MNGuQpCbgJV6hsFIjSmOoOouhFSMAepZbehqYyY7E4xylaxHapMac7ux/uo14svld/cOU0GndkPpdh2B/v30GZt0M2GHOWXfIbtMOV1dXh4WF3dK+D8rqwPqXwWBQq9V1Hf07+RWf7s72CIAw7cLiuZPMzwXsCvjg18JJBUUjQCwEq3ZkByeWFTf0YO8/bRWkuRpO1s6dO99++21U15RKpXl5ee3t7Vu3blWpVLdpNu1fY5+Br0GpA8tV1iROlUoVGBj47LPP/ud//ueRI0e6urpovQlLUchnksvlyONEZ0qEOVGuFlkvNpac+F236PqVSCQffvhhVVXV9Y+q9XitgY2goKDFixfjeK1VeXG8aL+nUqk0Gg1e1zaYmc3VbbMPFOaUyWQIc0Zx8ynAaRH68ON6BKZ5Baa7Eg1bFz9QsoVaP4k5/2yPBcs6vjMzieGX7MEReHIELn7g2enkk0CcpU46+8Q5bznptPn4svVHlq0/7LD+sMOGww7rY/62LbGyqrqiooLD4Tz99NO/+MUvYmJiVCqVDUhzi46OzYTcxK/0LKVgJ7Lu9Hr9N8nYikSi5ubmsLCw5557bsmSJdHR0bNovDcxRfaPfNcZsFY8GxkZMRqNZWVlbm5ujz/+OJPJbGxspHEPmdxyuVypVNIgMPXambGXz3edmel9vzXGqdPpxBJJYuFFV1YK9guDjROTtANzAMgEZgAz2Y1YcmL0w+Ia9gi7B8B7YOU82SBM+kWg0dg1gOfCSvlHVP6QWGY0GkdHR5FbP3UseBdA82lrCq9Op6MattZgZ39//7Fjx/7jP/7jlVdeiYqKUqlUdlrn1Fm1v3IXzwBN3qxhBmto02QyDQwM8Hi8jRs3uru7v/zyy/Pnz3/hhRfee+89Fot1/Pjx/Px8jKg21Myp4KUN0ok5GP2U9ZPh4eHBwcGenp62traampqNe/kOG444bgAq59vrANF03nycsSXWceMRhw1HLJzOtdFvrYmCDrB1h9DLHFBP0hBGMiWAP8HpfB38/PX/7frFR6yXPb/897c//Mmrv134xOIfzpk79+FFP37u564r3t+zZ09NTY1Go0GYBJES6wYIO+H7Lr4iZsvQ7hqYk9616S1br9fLFMqMspavDhZ4EVlUpBA5+yZhhoC8Q3SVwz4qXElRoG55YOrmo2eL63s0RMmW2BKNj41N6AxmldbUNaho7BSfLu2MSqkOOVS8fnuu984C9oGzUSnV1c1CpcZ0d+R7FOa0MLo6OqqqqnbG5wIFNiTTMygdUzKcUgYzebl/0u+CoRSGU4pJGmIe0KlGXDwR4cB5ptgnsjZREhMZYxQpAVVMn0S3AP6Gg6eaW1qEQiG6q4yPj+Nxx8vt6tWrfcNqXl6z/74z68Jz/PYWHUiqSs5tqmsf7h5UKLUmvXF0fOLqXUm8my0BZ4bv55UrVyUKfVuvLKe0c09CRWD0ucCoc+yDZ5NzGxs7xYMSrcE0K6Wnv+u042V15cqV0dFRrVYrk8l6e3u/2Jttua7JVUxEdNKxBQEWXGTZhRAmBlJsH7G+2DECYxxAY04GwT4xLDCYyU4+iS4srjtbEH2qRq1WWyv/f9ch2N9vn4FZOgN2mHOWHrhbvtsHDhz42c9+dou+hvYmI5vNYDBoNJrBYfH+jCr3AD4S9t04qZjYoV4HBPdJX2UPQkqA8E0QUA9O6qZj5zr6RNbdvrjo/frrr6VS6csvv3zfffd5e3uPjo5+9tlnL7300sDAwC0amn2z9hm45gxYQ0eI6+v1epSGXrBgweeff25tS4nFJmRwKhQKpVKJPE61Wi1XKiVyhUiqEErkQoliWKqUyFUKtVaj0xuNJkp5xLLytK8Mr169umPHjpycnGuO0frFa473woULL7300vz58//6179OBXSlUqlCoVCr1ZSrOlWV+ltHhDCnwWBANmdDQ8OJ9Hw3Nh+kGkGQlodu7bAaDABxD2AvMVNcgKkpeGfrKXe2wMkHcE03f75HYKpbAN/RO+G3648Tz84Uhl8y/GMmuwfwnX0THTeDupoTMex02HjUYcPRZRsO/3Zt1NqdKTU1NW1tbT09PY2NjS4uLshPGhgYoIZ29AB964isZ/V2PqepuTUqjw3dCHbKZDLK7BQKhcg8bmxsZDAYc+fOXb58eW9vr8FgMJvNY2NjiIJcH6K+naOzf9ftmQF6r6eOvCaTSaVSJSYmPvzww88880x2djYFOKlKrXWXg00QsJ9C1z9w2DI8MjKCMbC+9fIfwjJA4IiomQFpgAU8APcAAYOZwvBLgSd+yVA+4wg8A9OwvoYraujwIGppy4lzJ3ICGMwUgoxCC4hbAH8Hv1ypUlOk07pMZrOf+CfK7ESoG8FOhUKBkYTCMJcvX16xYsXcuXP/9re/icXAGcVbG4ZN+zlgM7f2X2f7DODVYR0tqYUHGm0aDAasjh04cGDp0qUPPPDA/PnzFy1a5ODgEB4eXl9fTyVnEbmklxLelymcSZFLJHZKrR4y8pBPPhT/+pDL5SKRaGBgoLOzs7i86oPARGfvWKctJxw3HXfYdMxpcywDzMtPQMvXhiNOG485bgT6JuRFG486kD6wt/5xyIGI/L+99pADEbb97dropV/ufXP1gTdX739rbRQQPTccWbbhsBN86siv/2/Xq15fPPnKr+YufGT+/AX333//Cy+84OvrW1tbKxKJtFqtyQQZL71BWOt82EPEbL8iZuP+3x0wp3Xmj2tVnU4nFEtDk8s8SVkGde+pEyQuqSy0JBYXi+9Ymse+UsctCRQK9eSkRp2qkSvVRqNJpdFLFLpz1T3pZ1rDjp5n7S3aFJm3fnsOJ+rsgeSq7NKOPpF64spd5QaJTy5BaQAAIABJREFUMOfo6CgKDnV3d9fW1uYUnP0wLOPdIMHvOMmrguP/L+T4+pBo1rZ9W8N3hUXsWhMcheqUFhaXH6RtQNMMzkCfdYsPy2Q7GuZstDUNzTvxoCBdDP3/PDipqfllHR0dEokEzY+/ybpPox8RFLZujy1bH5GzYXuu757C8KPn+QXNxTW9UoVebwTPztl4tdr3+RbNwNWrX5tHxodluqomYXx2g8+uAuaewoADZ/PKLl9qGzaZxu+18wUj6vj4uNlsViqVQqGwtLoBL0YMnni1Wptu0vgJRSqCgxKVWoskNV7jCG06bI5zIrROVxJ7kQhEP46rtv/blzc4LDEYDFiKmbFFp1t0Qto3ey/PgB3mvJeP/vXGPjo6KpPJrveOm/0bruRpk6BOp1OpVEU17f+3N8cDZGkF7kQ90i0AcU3oYrP0qYFeeQppZuG5Et4VSd24zkwwcfljeGbCmQaSPQO3YHx8HJHO5OTkuXPn3nfffQ888AAKSFZXV9uj/M0ePfvnvvMMWJd3Edc3Go2dnZ1r16594okn3NzcsrKyaE0Kq1ESiQQxTqw4yWQykURSWtcRlVnpH3vmy32n/xiW/g6H+15I2h8isv8Umf33qEJmbPGBzJr8mstShZryO7Hugzvwnff7Wh8YGxvbtGnTyZMnr/VHy2t0vBTYMBqNXV1d69ate/zxxxkMRmZmplgsxiFTQJdyVacyOOnq60YuW1xGGo1GpVI5ODjY1NSUmnNm5VYwpZvsfUuhGj7QekyK9ZBHsnjohgJNr0HpKPiD73QDUDPJ2TfJySeRQAI89wAeg5nk4pfsxkpx9k1w3gKenQzfePDs3HRsV1z2pUuX2tvbe3p6BgcH+/v7jx8//l//9V/PPvtsREQEukx9E/X8OhN7+/+Eh5Iq2SKhBL15KBlLLpdbk7FEItHQ0BAdb1hYmFKptOHj3shxvP2DtX/jtM+AddUeQ5/JZOrt7V21atWPfvSj1atXt7a2IsaJcQ8bHVClliJbtHiNZ6P95LnOYaJFNIPBoFKp+gaH1hzMQ5oFg5kC3sOToQxWyGjyxALYEvBOsOoEfoDFF8oPhNGwoIaR08kn0XFLAvAASLMIUOQDU98PTatq7sEyGSZd1zlAeD5QA+DR0VFsm9BqtSqVCiMJvTX09fUdPHjwhRdeeOONNzIyMq6v2HGdObH/yT4DM3kGaFiz4W4iumkymXp6emJjYz/77LNf/vKXCxYs+NnPfvbxxx9v3749KyurtbUVYUtraJMimpSaaYNoymQyVAfBFjrsoqONdJrJh9bqgZL1EolkYGCgvb2dn1uygp3kvCWO4RPvtOWkk/cJh43HHTbHMnzinbecdNh4zGHjMcdNx4nWReyyDUedNsU6bDz69vrDy9YfeXtdzG9B5zZm2bqYZRti3lp7COFPp01HCa0TnM6B/Um0MeA962OWrYvafuD4jh07Pv/88zfeeGPhwoWvvPLKH/7wh507d9bU1Oh0Ohu807oZgk7vTD4H7Pt2d8zAXQBz0pwNBXjQ27uiqfvvBwuWh2S6swVeQRahRVqmB7wzEPw+kDuI2jmIa+L7XcFGLsmSY5Bu9Y2Hz9S29rd1DTd0CLl5DUcENax9hZt25PnsKmQfAIyzumlIozPfZejZlStXdDq9UChqbeu4UFmdl1/I5aUei43bfzAmZPu+kPA9YRGAa9r88912wDMo3UZXAxERpGyCmC0TOtWWB4OxOqZ2LsSn0zMwDXEUpHKiWyfafP59b/bFixd7enpkMpler0dBjm+6DK8QZmdybhNr35mNkXn++8/E8Gv5hS1NlyW9QpVKa9LZmZ3fNHf3zOtovanVjzR0itPPtkYcLwP6ZvS59DOtF1uH5WrjPUv8xaA6NjZmNBpRZuz4qXKMn1jfxr5SjJCW51bOu5TBicRNKEYRV87JihaokWFAwCiBsCginfjZD8Mya1thmTYyMvJNujv3zHlqH+i9NQN2mPPeOt43PtrVq1eHhITc+Ptv/J1YNB8bG0OXJplMllTU4E4sBDw4qWCSFwSytO5sPghLBgGL39Wftzw4w4MNnnluATxALFBtksX1Cszw4KQ6EhDClcXdllIuUyipX9T4+PivfvWr+yYfP/7xj8vLy298V+3vtM/A95wBLLJg2QUL/Xq9vqqq6oUXXpg/f/727dvRltIa80OMkxopDQmHs883fBSeTlQsuG5svisrxcMC2nGdfZMxxaE8xXeCM47lXRJJFXorIh1mNtcpQN/IMGtqaq4PcH49RZgX7dYrKiqef/75Bx98EMdrjemiJC+qUyKJkxJSaafCd2rMx0K/yWRSKpVDQ0MtLS15RcV/jiBuB2zi60464zw4qe+GZYOYjz8f1ooBAsctCW9vOkFXj8uDgALlGsADKSFOGqaMSPEkrjMp4PTO4jr5JjKYSR7QcJfkxkryDOC6MuNPFZY2NjZ2dnb29fUNDg4ODw+LxeLBwcHPP//8Rz/60WuvvdbS0oIsBGsI50YOwR15Dy18UHxiZGTEGp+gZCxryEokEq1evXru3Lmvv/56c3PzVEueOzIW+5fezhmgsBb6RBoMhqKiogULFjz55JM2JE504qRxwLpRg6oRfs/wdTsHfke+i66l0f1FAnK1l0AKKTCNAWtmLsSxAAG4N7GAyO7kkwDqRiwerpaxQObsm2Qt8U05AUADJSx2/KyLP9eDDVbHDGbKl3tPyxUKTLqwJeU6w7cJJoh0Go1GbJuQy+Uymcz6nlhXV/fqq6/+6Ec/ioiIQGk1JG9Nyx3tOvtp/5N9Bm7PDNAgSVUTkIqtUqkyMzOdnZ1/8IMfzJkzZ9GiRWvWrKmqqkLes/U1Yp1QIbSJP2265ZTkYQ1nIo6pIw89eRjIw/ivD5PJZDQaUWxtcHCwvb39cOoZR+84BjOR4Zvg7JPg4pfE8AUlf2f4d9LJ+6TD5hOAgHrDT1dmopP3CSfvk85bTry94ehv18c4bjru5H3CBQDRo44bjoGALYCgMQ7rD7/1j+i310WDHO6mI8vWxThsPOK06ZjTpmN7kvLb29t7e3uHhoba2tq2bdv22muvzZ079/777//5z3++Z8+ewcFB5HeOkgdyYe33jttzDtu/BWfgLoA5qbmA2WzW6XRKpbK6uXvlNgA4LRoPvkmw9oH8AbRPsS+KKqauCMmkBnJI5XT2TUL2J6JxJBWBj78XnOq/L4e5M2fdtqx1Ydmhh87tib+QVdzeJ1LPXrLXZDC/Mj4+MTY2rtPre3r7KqtqTmXnHouN375jrw2EOfXXbRG7tkXs2hqxe2v47pDw3aywA6uDoh2843GB784WUMAYARIQtg3OWBGS6cYGG07kdzp4x+Ns43s8OKkIiOJGwLkzKC02o7ipqWlgYEClAsPUsbGxGzHt0+pHknOaQmNKNkbmbdye67e3aNuRUn5By5nKHglhdk5MXLFHg3twBsbGr/QOqysaBsKPnvfbW7gpMm9/clX62Q7z2Pg9OBs2Q6ZLM71eLxaLu7q6OLEFZPH1L4YgFM6korUoP0t4nMkuBPjE6xqJm7hwQ2gTGliJBQl2puIiDsOyJzg0peZXtuIC6gavdJsh2H+1z8AsnQE7zDlLD9wt3+2jR49mZGRM+9dQtgFinBKJ9MjpmpXbsjwDUz0DQaWWltWImGSyMzMFbKX8uNiV5oG9aZBwC1z94Q7hQshYnkHpLn7khsHisk4W9w9LseiWlJQ0CXFa/v/v//5vkUg07eOyb9A+A1NnAIss1OAQHZXWrVv34IMPvvfee+fOnbNWa8RCPzbay+VyqVQ6KBzOPN+4JirXzR/QfTSPREM1zH5oIxhmM0g9xBc/2XH6ZEHDsExpMpmmizh4+PBhJpM5dZj0FWs6AiJhfX1969evf/TRR999992ioiLrepxYLEYbTlSpNRqNNpy/74Ru0n3ACGM2m9VqtUgk6ujoKCsrZ8aACwLaxkAWCF0U0JUMGGdQmqs/D0r//jyi30i4TaRXDvNF/CC2xOKSHsVvJzvpUryCIIn05Ag8AniufsmfRaZeulTX0dHR29uLGCcdtVAo5HK5S5cuff7557dv3y6VSlHQdVaAnYhhWzM78RAbDAZKxqIatjjkoaEhLpf75ptvLl68ODw8XCwW2xxiO3BFz9u77MlkuWeCMoDFYnFgYOBPfvKTd955p6SkhF4UGPeQzK3T6RAOn66QdZfN6vWHQxvIwEZLJuvs7v1HdAGWHZ0BoRRgEIPQF5zuTrw5kejpGgBIJxbCkBYA+CUrxdEHuJvOvsD1pGioG9H6Rt4G3mucmcm5lW3WhM7r7+fUbhjqzk4jiTVBvLe319fXd+7cuStXrmxvbzcYDHhTs+tgf+s8298wM2cAwyNFFKx9Nzs6Og4ePPjHP/7xueeee/TRR1esWBEaGpqTkzM4ODgV2kTiJhI6rUFNa6cD6uau1+utUUwTeZgnHyNWD0QKiXke/MBfDQaDQqEYHBxsbW3dHp/nuCXOYfNJJ58EN5D9T0ZlCxe/ZFdWsrs/19Uv2dk3wdE7zpFAnss2xi7bFAu+5oCDxjtuPuGw6bgjvAJMUEfvEy4+8cs2HH1r3WEQvN183An+egzAzo3gev72ukPMqLSm5ubLly/39/cLhUKRSCQUCsvKyvbt2/fJJ5/87Gc/W7RokZubW0hISFlZGcYitHO28e+0pxwz84q4O/ZqtsOcuHoaHx/H/lSFQnHuYvsHW9MhTwjgu/gRV2+i+kD9HbGejioRtCiPiQG6DtHaPWkPBUlbhD9d/XnvcASfBwnWbcvYHHk6KqWyuKZXqTHOoiv0ypUreoNBIpF29/Q2NDaXV1QWFJ5Nz8hOSOLFHIndtefgVBTT5pXInfv2H4yJOXz88NHYsL1HvwiN/UvQiT8FJ/w+MGlFQJIb8VIh0CaxFSD1MVSqpKgnrkk9A9NWhGahZBHOMELRSN/ElS/meF5B6e6c1M92ZpRX1nR2dopEIo1Gg6Z9NzjzE1eudvTJYzPqvHcWbIjIZe4pPCyo5RW0tPXIBkUatc5sGhmfmLjBjd0d1/29O4qrV6+Ojk3Ut4vyyi/H8GtZ+4pCD5fknL/cI1QrtaZ7d17+deQYV0dGRrRaLTTft7Ztisp2IvJgLiwobtPyFJrv4koN+0XgAid0bbzSMXiigy/GW6yZewSmIY2bCvBQm2R8Q1xejYJ0o9phzn89OPbf7vIZsMOcd/kBnlHDw1iPPE6NRiOVyk7k1npwQJaWZHIpwOBkg2WUEzPJwTvOmQlC5O6Bqe6cVFcWz5mZRDJm6AREf2bM5zwCU90DQMbWxQ/I+67+XE58iUyulEgk6Mppg3Q6ODiYzeYZNTP2nbmbZgAZnLToTAkrFy5ceOKJJ+bOnbt3796pACfKiGHHPcr3hcSdBe4yJxWXNFiSdif1aI/AVIYfF14hMoMWOg5RckZdC1AX9E36y87TvUIpIgdUUfAm1h/Dw8PR0dHfdIysx4tKR2az2Wg0Xrp06bnnnnvggQciIyMR1cD6FGVuqdVqrVZL7Rut0b6b2EncPSwgjo6O6nQ6mUzW09NTU1MTl57vyuIxiOS1C4u7zDsO3GL8ue4BAheAkC2enc4+IAZCgWRcq+O0W7RtyWy7BwiWQz9sBorcegSmOfkmAhTN4rqyUuJPlba1tfX394tEIvS9otVJHP7Q0NCXX3553333OTo6qlQqJK5R98qbHvg3HZ1pf30qQdlsNuv1emuIApUncbz9/f043mXLlikUiqnjnflDnvY5vIs3aF3BRxInCvV4eHj88Ic/ZDKZFOBElrNMJkMnTgpfWV8L9nPjBk8VWqCkRPaSmiYPjoDcKVJAsZYNMOeKkCxLxwYx3XRhcR23JKIxp3uAABo4CLnTjQ1q3h7sVDd/8OxksMALCvqIfZPe2hDr6JNIyBwg4g2hj833iS2WSGXWDp03vtv0RokqnXq9HhUyUc9geHgYfX/LysqefPLJefPmFRYWokylDRZuP1VucM7tb7tTM2AdG7H7DQF+1IGvra318vL6wQ9+cN999/37v/97dHT0VEFaarQpFou/CdfUarU6nQ5BTaPRaA1nIvJHUUykPNKfKDpCFV+xa4326tHA0tra6h+TBdc+M9GNzfOC3lOBmz/XmZkIhG9/nqN3vAszefKVJA+2wI2V4gqm5omO3vEO3icdN8c5bo53BrpnnCMo3yY4+8Y7ep9gbIl33BS7bOPRt4DNGevsHevscwIgz43H1u1NrW9sQphzaGjI+iaCufSpU6dcXFweeOCBH/zgB6+//npycrJGo8Hh46hxmJQFjmnMnToT7N97V87AbIc50dgbV6xqtbpvUPh+EBh2oL8jVuRxfQTLTCKUilgmrqE8A9OcfZNQXghZR5ZFK1uA7uCU3wk6+YSG+A6bK8i/WNc2aJ5UU5zJ93Gz2TwwOFRbe+l0Tn7siYTInftsYMvr/xoRufvQ4ePpGafKKyo7OrvkcoVKpRoaGurs7KyqqsrKPv1+MA8kzYj2LFpvAipJOnSdmcmIYlIsGTmaiGHgxHoGpoHsGScVERH8oKs/6J/hTzwcLn7JmfnFLS0t/f39crmc6nB810tSoxuJy6oPjSnZNMnsDI0pSclvPl/XL5Lrx8avzORD+V0Ha3//1BkYG7+i1o5knmv321e0YXvekfTaM9U9ppGxqe+8x1+5evUqGnNCUO3rq2toXLM3kzSHwbrMMwjExlBNB2maeFFbYE5mMq7dSKRNgcbTyS58jLEoD45vhpI4wURRt5b2oLgF8HfwzkskEp1Oh7q19mvzHj8n753h22HOe+dYf7eRPvPMM83Nzd/tM9d9Ny3Dmc1mrVYrlUrP1rT+LhjSYlcWd0Vo1j/bWNgCMIViQQ8LxHc2YXkCfsl39QfvKGwP/GcnC1Fgw/ju5s9zYfHc/LmHT1cnJSXNnz///vvv/+EPf/jEE098+umn4eHh6enp7e3t4+N2IYXrHi37H7/HDGAxi0qQmUwmsVgcEhLyxBNPuLq6FhYWWmOcqNpKu+9R/7O2uWttVIEHW4BmG56BqR6cNFcW4Jr4D9eWK0KzyLUAXQLYKosZD/IUseHro4hT+TWdOp0OiYO0yvOdxldSUvLuu+/q9fprfoqOl2Kccrl869atjz32GIPBmDpeuVyO6pQIbFiLECKD8/tkYLgzY2Njer1eoVD09/fX1dWdPXduzd7M5SGZRGUxGb3oXKAwB02yIF3L5hNVRqjmg2UCR+DJgeY4nE/aFofmdog6Y2KKHCko8wXw3AP4f92RWVF9qbu7WyQS2RxT6jmHRz8+Pn7JkiWLFy+OjY3F1JPSDmZ+Ae6bgG29Xq9WqxUKhbXyJDJOEhMTlyxZ8uyzzx47dgyZu7NovNc87e0vTp0BemJQCrtOp8vNzV2yZMkrr7wSGxuLkBUCnBKJRC6Xq1QqJHHSAEVj1PeJA1P37e5+BfOr0dFRg8EglUp7e3u3JhZblscgfWFRpvVCkyc/sHJBHVpcD8O6OsBCasdI6MriWTpmiCUnkUpLRt4nLsJhWU5MPV39eat2nG7q7L+JJTQ9Yejt0mw2I0FcqVTa+P6WlpZ6eXk99dRTkZGRMplsasPE3X2I7aObvTNgfZ6j9jsCnBqNpri4mMVivfHGGwsWLHBwcAgICDh79iyyma0TRUrctEY30VYTzTRtoE1kaVJcE6mZFOqbimXiHn7Tz4mJCZPJpFAoBgYGmpubWUdyPYPSUNYCYwumRu5EZQdjiwvYlic7eMc7+yS5EpMREFXzTSQyPCkufslOPiB4y/BLIpq3iQwm9Io5+RCS6JY4Z594hm88Y8tJR+Lr+fed/Iam5u7ubuoCgBOCeCc+F4lEFy9e3L179+9+97snn3zy+eef/+KLLwQCgVwupyro2ENjfYux32Vm72U10/Z89sKceOFPTEyMjo6iH2dX3+DaqHyLXiILOshRLgjr6RbAkiygyHqThwWZ5cEZzsxkFLPFxRSqKWJFHnV0JvvaYfHl6s/zO35GLIP2R7w27+D1ePXqVYPRKJXJ+/oGWlrbq2sunisuPZWdm5wiOHLs5O69387O3LFrf/ShYyfjkwWpmbl5haXnyy9equ/o7BIOizRa7cTEBJ6xmK0hu0sqlfb39zc0NJw9e3Z3XJZ7ACxFEY+EKWVxvYKATYskLdRtcvJJRCwZQU0L/Eka14ijEw+az3xOOvskYqsuHKDJHmh3f+7uxLyLFy9evnx5eHhYrVZj4n0jirVTL7fRsYnGTsnBlOpNkXnrInK8dxUc4tdknmtv65HL1SaDaXR0bOKedWScOl13xyvA4Byd6B5Qniru2BVXse1o6a6TFfUdYr1p9A5evDN5bhHmxEax3t7e2kv1a/dnLyd2bLiYwsuTrNdgXYYRkjpxMnyR4QPREiMAXtcYcvHNWKTyCEzDT1myMsL/hljtlxIcd1YsFlN7TvuRmsknjH3fpnEG7DDnNE7mXbWp9vb2kZGRaRwS9uxjGU4ul7de7lm5Ld0N5CJTXIBlhS7KfHdwe+Iy/JLJEzCUcuekLofanIWpSZLmJGdfMLT3YKd6BWUg/Onqz3f0TXRjcS2ZtD9vU8jeqKiojo6O//mf/3FycqIp5jQOyr4p+wzYzADF/NCJ02Qy9fT0/OY3v5k3bx6Hw6EqptQ8iYJhiA9JJJKWzp4/78zxAvdNS20aq8lEFyjZcUsCNHMRJWfSBCDwJJVrVxZcKSQNgjZbd06qV1A6ww/yGzdWSur5JjQuQmzpxpc0er0+PDx8dHR0bOzaPXo24zUajd3d3UuXLp03bx6bzbYZr1QqVSgU1iROa0bOzanU2sw/KiKOj48bjUa1Wj08PNzS0lJeXs7NzHs/FBZ7SGaCRgqUYAoQEEd36EH25KQhaQnYS8TpBFeYHuxUNLSja3vwiucIXAHaBPFbj8BU/OAe7tnW1tbBwUG5XK7VavV6vU6nQ3KSTCaTSCSUhSASiTo7O728vB544IFPPvlEo9FgRZLWH2d+GkorI1gcoYad1uO1LtR2d3evXLnygQce+OCDDxQKxVRYa+qhtL8yi2YAzwckBGD0MxgMycnJDz/88M9//vO6ujo8GTD0UcFqvV5vg1dNVxyYRVP3/XcVF9IjIyM6nY7ElssfhGUB6gBCFwBYkibfJAQ+XVlckkEluxMtDWdmElLbob+YENYtLcMs4LvjWtrNH5yfYGvgQ5yCT1D5Fqqf/rzCKov1C8oG3PiI6GljfeagFyC9J9IwMjg4uHnz5jlz5nz88cdyuZw6/iLnbObHzBufFvs7744ZwNMb69o2WH5aWtovfvGLuXPnLly48KuvvmppaRkaGqLtUNapgkgkougm6nsjA55Cm9aUTRuyJs0oKDvzu14mGFuMRqNcLu/r62toaNgSneUZaDEKAYDTn+fsC7LYnqCIKPBgC9wDeG7++A9CDS3PAd8oKIMs4hIZrGRIcUmDBTDD/FNc/VIctyQwmIlOWxKcfeOcfRLe3nhi2cbjDt4nvtwpaGoBkYzh4WGpVCqTyahCPg0OFPIUCoXd3d27du1atGjRnDlzHnvsMXT2tXZGmBbtkLvjFLWPYrpmYFbDnHj/NZlMGo1GIpEcOVXpCaJB0FYO1o8B/GWbQQXH2TfJYQuo2SNyic2geI1jdkERNctSCxQjUP0e0g98jwcn1dk3CS52v5T3QjNziOg9Ip3fv9X1xo+m2WweHBJeqmvIKyiKT0jZtefgjl37I3fu275jb0Tk7utTM8MidoVv3x0dcyw1Let8WUVHR6dSqbRez14nzNJmXKPRqFKp0F3lwoUL+QUFgTGWRShtsXX153kFpa8IybRAxQF80CJCzhYLtIio7BCY8AWlf+x/JDBsT0j47uUBMOHvbstGOJnhl7Jsc9za3anlFReam5sHBgbkcrlOpxsdHf1WS/XrT+nExBWxQh/DrwmKPue7q3DLzoKQQ8X7Ei/klnc2XhYrtaar1/+8/a+zZwbGxid0hpGzVd3B0cU+uwqOpF5s7JSMT1yZvX66t2HuaQalUCi6u7uray5+uQuKUXiNQ2M96RlFJgMatGGopHgnwpZYv8KuBVIGhHZVStrG3ggnXxBBdJ1sTEHePMMvhR1bdBMK1bdhcuxfYZ+BWzoDdpjzlk7vbN14f3+/QCCYRmVXSjVA7KF/YDAiucSDAzx9iyseG/JpR59EBkE9nXyTENrBv7r5g3AKwy+FtK2BhBqDOHFieufsBy3DmPlZ6G4gY8v/+76cQZEEzdW/Zxo3Ww+kfb9v4wxQ1IeSGtVqdXJy8ssvv7xkyZKEhIRrMpnQOUmj0ahUKrlcXt/e8+nubMhpSPrCYFrcULCp1sE73oXF9SDcTXdOqotfihMpIREGMxSgwcITGr64xLwWBHBc/GAh9F5IWmFtp16vp9jSDU5MV1fXW2+9deHChanvtx4vohpqtZrH47366quvv/56XFwc1RZDgTWZTKZUKqlK7Q0uCKd+77e+Qltl0aOuq6vr0qVLZ88Vb96f6uwLhCRkvhJ0E2znIHdkA0KM3cqoT+sZCEIi2CcLvARmMjRVBENuSkJTMkpkY0qKS80v952uvljX09Mjk8lQVtFsNo+MjBiNRkpzxNocVWIUi8WRkZFPPvnksmXLysrKbPCe66yTv3USbtsbKM5NCXw4Xo1Gg9Rk1OzFk39oaGjnzp1PPfXUsmXLzp8/j+O1Fxxv28G6dV+EpwFWyhDwlkgkmzZtmjdv3qefftrT00Nr0GKxGEmcWq12Kq/31u3h3b3lK1euoB2ASqUaGBjIL7tkaRP25wOESbibFjYGUb/AzOqfpTRYFUNBE+8p+ByWzYhrkmoawUq5JEMDH3Ts7cCFtwcndSe/DK1fRkdHb7yNxvqgWEcSFLA1GAy0Z4JKfw8ODu7Zs2fx4sUMBqOystJa89wOkFvPp/35jcwAhSEpCoibUc8uAAAgAElEQVRPEB28JkaIH7n+xmk8xC2gw6XZbDaZTJWVlSEhIUuWLFm0aJGXl9fu3btbWlrw9LZG7FCxFiE92gyn0Wh0Oh1abJpMJkwwro9r0gFef4ev81dapEOaeF1dnV9M9uTCTYApEHaAgeIi4R6BFFsgtH95EB1FWKmBawA0W4DPAhNWcJA1BYCqthsbBLHdOQJn30SHzXHg/stKYTCTGH7JzmAPDKTPdftPtXdcFgqFeO/AhFmpVKJ0BIU8KTaM6r5CoTAhIWHVqlXPP//8008//dVXX2VnZ1PlfOsU1B46rnMC2P90gzMwe2FO2oau0+nkcnlbV++fd57G4jtW4WHhScSEsKETkTOkEHkSWzgn3yR8gwu4eoN+NUKkmIfgRvA5CrHikhYjxuqD+SKJjKqn3kiAvZEjcuXKFaPRpFAoBweHOjov19U3lpVfyM0r5PHTj8XG7dkbFb79W7DMyJ37DkYfiT2RkMJLzTqVW3S2uKq6trW1fXBIqFZrbrp1Hgc4MTGBHqhKpRJZ8hcuXCgsLNy8D8ybMGfD9Sb4qZNuZgtxk+gMATkefZ2IJjBo2Aalewam/ZlzfFvErrCIXR9zYnF5i3aebv68f+xNKy4ta2pq6u3tlUql1n7q33+xaTCNldUN7DxZsSEid9OOvID9ZxKyG4pre3uFKp1hdGQU+t++/7fcyHG3v+dWzMDY+ITeOFrXLtp6pMR3T8HRtIsV9QNyFZjpXidlounHvXzocXWGjWKXL1+urK5Zsy8Ll2NUno3GSWrViX+iStSYYtHCOPK5SaIFhXRUpWb4gaotxT4xSuMqb1viOaFQ+F2NeG/FiWTfpn0GbucM2GHO2znbs+a7Tpw48dprrykUiunaY1wno1ytRCKpbWz7Y2Q2rG+BzZmM9pwEmwG9DifI3pJRoxzSaKjQEWNOdCVkA3MfEmgkbnJSLXcLUsgDRj+8zcJjy65o0Wq17u7uv//972+u9DZdM2Dfzt09A7RES0mcer2exWItWLDA3d29sbGR1l/EYjECfhqNBv2T0I1MoVAMDw9vOZzvTJzJ3dmCFSGZLizA5FCQGVYsBIrDnAZ/EntI0FbF1jBoiicXAlw4/rzJpSZUl94PTu0dFCPSOT4+/q1J59WrV/fv3z80NKTT6aYeOzre8fFxSuPz9/dfsGCBh4dHU1PT1PGq1erbxtyyLvoPDg62trZWV1dn5+StDIYCPcGGLdxND04qaUwGASVYWPrzgdvEsnTJARHKL8UrMN0rKN2Tk7YiNAt8UwIETr7g4olvw0L/h2EZBSUX2tvbhUIhCgFhEY1i3qjEiGA2StLhFAmFwrq6uiVLljz00EOHDx82GAyo4oukqNkStehSh44X+VgqlUqhUEgkEkpSEQqFjY2Nb7zxxkMPPXTo0CGKUqCOnL3aOPVam/mv2EQDo9EoFotdXFzmzZt34MCBgYEBLDqjKa9CocDQNxXknvkjnbF7eOXKFSqV0d3dfSyrjEG045x8k9xJdRKWwaSxzC2AD3VG0Nm22G3i2hiU0Ah1A4Meg5kCRTR/oubNSkHNAGwNISoCqR5sSL0srcQs3lcHc62tX25uorAmYu3WaTQadTodpXVSsPPMmTM//elPX3jhhQsXLlDxc2yYmK4i6c0Nwf6pWTEDtPqGJxsKyVK/TETZp+q+0o4crOtNPdPoCYybpa0/1K3cw8Pj4Ycfnjt37po1ay5dujQwMGANbVKRD6lUitr+yNpEu02DwYB9ISj8gMocuEu39O6Jyzeqhl1XVxd0PMeDnUr67QQu/tBa50Yc4LyCMjzY4HfuygISOTr7egZmeARCGxnNSEFTkSzTvILA19MVmlYhkhCjdJ4H8aly8+e6BnDBDoDFZfgmMY8WdHX3SCQSlUql1+uNRqPBYEBHcIQ8Kd6JyQadVZFIJBQK29radu3atXjx4vnz5y9ZsiQzM5NOJkqV0HTLnoHMiut3Zu7kLIU5MX8bHx83mUxILgxJOAcrI98kUAMiCQOuQ5EwRC5esHukpXl8QrupQA2CLJGwGcIV2N7QuY5+H8hMQt0IS/7gzzuZX6vRaEwmE16J37o+veYJMDIyIhQO1zc0FRYVJ6cIoqKP7N0XjRzN7Tv2fiuoGRaxKzrmGD81o7ikrKWlTSKRGgxGk9mMS7lpX4vhTcdsNmM/bk9PT1NTU2VlZfbpXJ/90HRLAWacMTRbQQwDjTkREcHlPxYEnHyTPgxM2BYB8O2XgdGIQOMH1+4WFJ0raWho6OnpEYvFarWamqlP49DMI+NNl6WRJ8q37Mr32V3I2ndm18mKE5n15fUDfcNqvXHEzuy85qk7w18cn7jaPagsuNAdFF3sf6DoXHWPaXRsnPRwoRI+NnJhxxW9pdokJzN8jLdu97AeZTAY5HL55cuXq2tq1x84hSgm9txj/LQ01pO4iqAmiLRNMuAnK1QQGTCuInsbOyEQy6T0UCR0YhsKbuFAWhnCnBhjby7A3ropsm/ZPgO3aAbsMOctmtjZvdmrV69qNJrpSn0whx4bGzMYDEqlcnBwcCe3ZEVIJkpBgqcdBxbMbgGC5SEZQPFEaXKwbQDwBlNqABWIyCSgFMQsCpAGXyRjwYqa3CcAwyA1OEBGXfy4f9udLZHJ2Wx2eHi4ndA5u0/KGbz3tMqPGKfRaGxpaXn//fcfe+wxFos1NDSENRdUHqNMJqyzIPVNqVQKh4ejMytgrQLd7gCh4T8sNOOaEG1OCJMGiIZELwjonkDBIc7k2NLlQbjR0MIJXfNgcIv/1h7MHxLJ9Ho9Em6mFums51gikbi4uERGRlq/iM/peBHjxPH+/ve/X7Roka+vLwqLUWBDJpOpVCpUcDVPrhhvtTcSZZXpdDqJRNLd3d3Q0FBSUhLHz/ooLM2VWMJMZpbpkDUSoQ/kdFpgzgCgKYBWNqDLfK/gDAhZRF0EP2hxDiZCwcsDU6P5RfVkASmVStGjjhbOaK3TumQvlUqtK3FNTU2rVq167LHHmEzm0NCQzURNPQQz7RXrqrHNeG1onXhi4HgXLVrk4+MzMDAw68Y70+b/Du4PHnrrg15ZWbl06dLFixcnJCRMbXdAjBOPOLoxYWXZvu76PgeRMgOkUmlnZ+f2pDNOPtCK4criegZBl4YH29IuY6lUolsnC/vMQDQJO3+Jf14SwTghubIstklaRRfS8Dr8idxZOAJiyMf7MCzTWhPppsdCgSJqYWgTNrFhQiQS1dfXu7i4PP7448eOHVMqlSaTyZqeZT+dbvoQ3AsftM5hKNUSwTOtTieRqwZEsn6RrH9YPihWSOQqrQ6gNWRPUldpm8Blc+rSzSoUCj6fv3LlykceeeT//b//x2azW1tbbeibFOCUyWQIcKrVasrdpF9tU0CkO4BffYsOnDXM2dfXV19fHxmf685JRWoRluBdWTxPTqob4RVhskq4XFyvQLAmwf4J/Ah2iTl6JyDLHN4MEj6wdsOAY+nYI+mrRR+bxY1IPtff3091MkbIw2QyWQ6ZVqvRaNRqNRr6SqVSCnbS3FskEnV3dx86dMjNze2hhx761a9+FRUV1dnZiXNLQweuE2/pfN6iw2Tf7B2fgVkKc1pTOSUSSWV9mwcHmj6RjomIGurWknwAVB8cyXoTsU+8YLEKj51P+DqsZEmqgDCbg3c8XuAMJuhvoWkIdI4SDuKH4Zk9g8N6vX5kZIQuD20O6NWrV01ms0qlHh4Wd/f0trS0VVXXFhadE6RlHj+RsGdf9LfKzEbu3Lf/4OGjx+MSk3ip6Vm5eYVlFZWNTS39/QMqlfqm2Zk2+3mDv1KRM5PJpFarhUJhV1dXY2NjaWlpdnZ26OHUlaFAjsfcDJfwCIRYMjFkxpMkzZ0tWB6cgYfsXXZKKIE5/bftR279u4H8wMOZZ86eq62t7ezsFAqFKLwxMjLyfUDl6wxTpjTwCprZB8+uj8hh7i0KP3Y+81x7XbtIJNMZzWNj4/ZmkutM3sz609WrX6u05ottou2xZT678uOy6povS0bHxrHYhf1b2HKk0elUGq1SrVFptDo9tGSh4ARNWr7pup5ZA74Fe2MNc3Z1ddXW1m6JzkYiJlaT8Bq3hE1CZqC5kFcwiPxjjwh+xC2A7+iTuGzzSXwRDZgw8EJ8JnQIFCez9K3689xY3JTC6uHhYdpKYl8f3YLjbN/kTJwBO8w5E4/KHd+nr776islkjo6Ofv89weUi1uDQ8qGl7fI7QUSRgxhzYnK8IjSTRHNoVCHxnee4mehzcoDxOZlGA4RJ+gGBpI++UG4BIIXEYKY4eMcv2xzH8IM+FyefRKct8S7+vOVB6UUXO3U6ndlsxlvs9x+RfQv2GaAzYF3YohhnZWXliy+++OSTT546dYoKt4pEIuzQV6vVOp2OpoBIehOJRKW1Le+FpGIN2pmZ7BWc4cFJddyS4OAd7+yb7OiTiEAmCHkxUfiLiAKxuB6BaRQKxbYAVxZ3shUg0ZVF2gg4oB7mHsATFDeoVKpv7ZktKysrLS1FrxE6WLS9pPVBOt7GxsZXXnnlkUceSUtLmzpelUqF46VQFmVCWG95ep/jAhJVHAFCFgo7Oztramry8wuiE9LfIYDl8uDM5cEZKLnmyuJZpB39geEEdARCfoLDQTQesX8CuucCLZ4K+H7wTeHw98ZnV1ZWIZUTpxfxG5vTY3R01Gw2WysxUrdOkUg0ODh44MCBhx56yNHRsa+vz2a6pnd+bt3W6OmBtE6TyYQ0VqVSie6ktOw4NDS0f//+uXPnOjo6CoVCOl57oL51R2fat0zVimg0KCoqeuqpp15//fWamhprmW7a7kD5u7QPwF5T/v7HZWJiwmw263Q6sVjc2toafLJweXAGqkG6+YMABhVHwpsF3mgYzBQnnyRgt0/6QMPCeJKjSRplkt38QdMbcjB/rmcQMRogSunYf4YYJ9TdWFyhUEhvLt/zmNqEkalhU0QenZ2dq1atWrBgwbZt21AnHCt39hjy/c+ou3UL9NRCp0ys06GiRnFd13behb/uzvkoPOODEMEfwtJXRZ7+U2T2X3blfrovPySpPL+mU6WxldqmWKM1MRRxOKPRmJyc/NJLL82fP3/p0qUCgeDy5ct46lr3fyDNHe2KqekmcpSpLC1yJvDEvg0ZlPXRp6K11JvzMD9/eTBo0pKCO4QXrMITyBMaTKFFFV7kvx+R68bmu/qBeAbhHllURhy94x2947GpAjvJwK4PQBHwmCdiJHw3Njipk4JdyonTF4aGhpRKJTKQrBkkSL1FvBOZ3yqViuYblP9NJ7yvr6+8vHzVqlULFy5cvHgxh8PBJgl75431Qbc/v4kZmL0wJ1W8HxwcPHLqgrUWIiULYs+TBdokZRlsD3Uh602s0iD8CRZCLO5bG2KhFENEFCcth6BtHf/hZqnrh1dganZFi1qtRodO7DYYGRkZHhY3NbWcKz4vSM04fPTEwegj+w4c2r3nYOTOfd/KzoyI3B116CiPn37mbEl9Y9MQUZrV6cAMHg0pb+IQT+9HKMBsMBgUCgWaCtfV1ZWWlubk5p5MSfvfMAikLizu++yE9wPiMJFDSMPVn+ewJQF91pHXhdUzVxY3MHxPWMSubRG7PP1T/hjKi+Vll5SU1tbWtrW1DQ0NKRQK6l9z6/DGK1evKtTG3POXg6LPbdyRx9xbGBR97qigNv1MW3OXRK01jYyNT+9k2rd2K2ZApTWfyKgLjDobdrS0tLZXpzehfNfkul595tLlSN6FLw/kfxSe8XF42v/uyf3fXbl/3ZO77vC5g6cuVrYOqDVaXPTRXqJbd9bdihn4/tukorXozXnp0qVtJ3KwBcHSNE/avDCJwn5TxCnRl3eyIz/NM+ifjp5oL0IzKPwsjdXYfIZGyGDQG5yaX16HMCcWw+0w5/c/rPYtzIoZsMOcs+Iw3e6d9PX1jYiImJbWNqwpjI+PG41GhUIxNDSUkFflTkhRAM8QFqZbAM8zMN2dzXdmgiynO+FxoqkARm20FnAP4AOHYNLcxZkJhuoMZjKk2rCiBkoostlc/LkMpkUHKTT5/C9+8YaTk9PY2Nh08VNv9/Gwf9+MnAE8tylx0GQy6fX6Y8eOPfroo8uWLausrEQLRuzTt6nyU3EPg8GAbmo7+GVQOeKk0r4tN1J69gi0+JNjCycuERF+c/ZNQp9OV5BaTQYOKKgOooAt1LUtHJ1JVxWGX8pfd2YPiyVI6PwmfvPIyMiqVas+/vhjk8lkPfHW4x0dHUUE6/jx4w8++ODbb79dU1NjbTmJ47VmblHBt+9ZAbfepes8pwtIvV6Pkaetre3ChQsFBQVHkjM+2goVOqIDzKcGnO4BAnc235UFqrYuLC4uHQEeIJJrIAgcYKm7OfkkLvOOY/ilrODwd8Znnz9f1tzcPDAwIJfLrfuRcffovGFdFd06sR4nl8utBWxFIhGXy33llVdee+21M2fO4KasGW/XGe/M+ZMNuIuLIqo8aUNjTU9Pf/XVV1988cWCggIq2IvFXHsiPnOO6TX3BE9sPKsx+iUmJj755JMMBuPSpUtYVrZu76Ca1dah4Jpbtr/4XWdgYmLCZDJpNJrh4eHm5mbm4RyvoAxYKhM1SBCY9QNmP6qcebAnbw2kWIniAXRhDLrcHIElPLKB1YFgA+pkINkd+kKIUjrwPolvOsMvpbdvAHEIFEX/ntfv1DCCLUE2ArYikcjHx2fhwoVr164dGhqaam/8PXfjux4I+/tn7AzQM4q24Oj1erlCWdvWG5Nd83FEJsJ1eGK7QuEJup2wsgztmByBG5v/QVjmnvSqqtY+pRokFikhBmMaZXCKRKL4+Phf//rXjz76KIPBSExMtEE3UdsDrTeVSuU10U1rWVqENu/IEobCnAqFYmBgoKmpiZt9ZmVoBlGXhe4HoGP6gbraipBMdw5qh6SCFLZvktMWSKU8AlM9A9OXB2cgUuIVnOEZnI70TVzoWYx+/fmgYQurQi7GKM+g9OXBmZ5BacXV4Ptg7SxFO2xQSGB0dNQa70Q3dNTMx/4qa7wTj8W5c+c++eSTn/70p88++2xERERzc/PUaizFsGfsWW3fsZkzA7MU5pyYmEDFe5lM1tXVvSkmH1eO/yy/gLUQWYf6pSCESYlH2KeO1zJR2EpyJetNWqwHIBN0cYCrTde2lpWpP8+LzXsnIOk9/7jfB5zcFZd9vqy8oPBManpW7MnEvTfEzty778ChmCOxJ+OTuby0zKyc4pKyuvrG3t5+hVI1Pj7TgTRMoVEVCdXOxGIxig9VVlaePXs2LSMr+BD/T6HJW7Yd3Bq+e23QQRdmIh4XxJVR9JLiGdgevT40ComtIQeTTufmVVRUNDQ0dHZ2YqcIxTi/qQIwvRdUW49sf1LVxu15a7adDokpjkqpLqnt7RepVYB0wlLvql3HdnpnfJq2Nj5xZUCkPpp2cXNk7rG02q5+udk8gkn4sERWUnc5PKXsd6EAvEEnE5iI8RlMkHiBeiwJF6DMx0ldFZl9IKumpm1ApdFap0z3DtiJGZTJZFIqlb29vfX19SfSCrHxFK9iypsHTjaWx4kdG2RQPomYgtJWBsQ+PQnPGxJU0paKazTMYCksip6+K0IyP9mZXd0ACiKU82NfFk3TVWLfzEyfATvMOdOP0B3ZP0RupuWrqS4H8gy6u7vZJ86A4Qr09IE+J+pwkpUwyNUSW3Vi4RCY5gq6nXDXdPHjuvgBJuHsmwzMA/IprEEAGhGU7mGpyhGYhwR92lb85YG8onPnGxoaUAvFHtyn5bDaN2Jd4kcgR6lUrlu37uGHH169enVbWxut8kskErlcjs6URqOR0k1wbaPVaqVSaUtH58qt6V5BGS5+Kc7MZOIvm+bJSQPGDDRwgQizzcLSHV1pSR89ep84+Sbi5ePCgj56olj7T/9IcsVBo33SmTo0j0Q2lc2h1Ol0aWlpWB6y/hMdLy0RajQab2/vhx566NNPP73meCmJ844AdXSHkeQkl8v7+/vR+6SoqCien/nnMChi4ioddZOcfcCKhuEHdHCGH5JlCU2BA/0T7hYZW94y7zhcZ360TZCUWXC+rKyurq63t1cqlWq1WrPZjB0VUyuSGAzpBCKDBGkH1LpSJBJVVVX95je/+clPfpKYmGiD/M2uhQEizXS8k+2fSqlUSmuOIpGopqbmN7/5zZNPPpmYmIgKcnjCUPk46/PQ/nyGzAAt0CBHWaPRhIaGPvLII59++ml7ezuNftSH2LqC/F1rxxSfoLV+Spwi7jAT1q/jm++1Gz0aa6H0WUNDA/t4nos/yJ6DhR4n1TMI6oxwZyHiZtjYgQJoHuzUFaGZUIgkyCX2yqCpM3Z1eASmeQanu/hxvYJAf/LtjSchGEJIxH4ayM3IF/H7+vsVCoXRaJwWmBPPcxrGrU2gNRqNUqmkupT9/f1RUVELFy585513ZDIZPdMo9e1eOxlmSIiYUbtBUbGxsTG0Q1Or1QNDou3csg+2QqkOb/FubD6uNTA3wK4yqtxgqSIF8FaGZgScLOkeEGu1QO7E4h16eWq12pMnT/785z9fuHDh+++/X1hYaG3AiU1vaNCuUCiUSqWNMq2Nwhvu9p2dScxbzCAXqUKfy7PF5/+yIwsmDUTSuAwga6Z6BaZ7BqW5BQg8g9I82AJnP2i8w4qbKwuMOUmjKteNLcDWPehzJeVREOkBn2ALqIxVvBUhILaxIjjDKyjjLzuy2js6JRKJVqul6zi8qOmtATWuEWbGhBzFrrVarVqtVqlUMpkMxWyt8eahoaGamhomk/noo48+//zzfn5+SqUSky56IOjNxR5G7ux5OPO/fTbCnFiCx1WSSCRqbm17PxjkarEjAa9fDIOW6Ec6P9Br09En0WFLguOWBHg/6aOyXO9kYYWEJM/ANCzWQ5JAbMKJG4ilDXd16NHA8H1B4XtCw3dvi9h1fdXZ8O27o6KPpnBTCwrPXrxY19vXL5PJVSq1Tq83m80zH9S85glME2kqWSEWi3t6elpbWy9dulRaWpqXlxefxAvbDgRN320HXYkNDaZwFoyEeNzgDQuwZN/EjRHHcSa5PEFVVVVzc3NPTw9q1VpjnLdtOTkyOt7RJ49KrmYfOOu7p3D78bLD/NrTJZ01zcIhsdY8Oj5x5co1J8f+4h2cgYZ28c4TZX57CpJzGpQavdFo0ul0KpWqpqV3zcG8FUEC0IlhcaGxCW7fKUT4CsQYLI6SAXzUesEay8rQDObJ0o5+aLLHIgldu93BMd6er6YxVq1W9/f3Nzc3nys5/7uQfzabkoZ7CIl4XSNmSdMni8YhcBigWQTnE1dnpDwOr2MGi4HaLYAPuRPJoLC0tXpvdlt7p0z2L5ZVt2fs9m+xz8CdnQE7zHln538mfrtIJHr88cf3798/LTuH5ciRkRG1Wj00NNTU2v7F7iyM1JY6Aun9cSG6amCoSSwJUaeIBG6+y+RSGT3tSYktFUhXJNtGsJPhBwAn2SzPIzCdcBF4UJ4LTPtjeFZsUuq5c+cwD7avVKflsNo3QmVRkdc4NDT02WefPfzww0wmk5pTohaZQqFAjNOaaIId6EajEd1q9/NLIHchCSJCaB4cwYrQLJQFc2GluBATNQfveLcAAYp6gW0ki1CfoWOAR5c9aInkzExi+IGSs5MP9H4ymMmOWxJQPuizffnDYinV7bG5IiIjI998802JRGJziG0gOhzvvHnz/Pz8qFDtdcaLpSKb77L5iun9Fetf2KdsNBo1Go1UKu3p6WlqaqqqqioqKkpPz2AfEnwQApk6VaMF4iZheSIXgcFMcWODyBL20wHPiS1w2JKwIiBp04H0tOy88vLyurq6zs5OkUikVqtRUe2byIjWJXsstlLkDwkHFBzq6+v74x//+OCDD4aFhclkMroquG3r0mk5FvQQ4FFAeUCtVqtSqeRyuTWyKxQKP/nkk3nz5oWEhMjl8pGREWto/HaeNtMy8Lt7I7SyTAFslUq1devWhx9++Msvv+zp6cHTGKOBUqnUam9es4h+F4XMKXeHEuKxHk0N83DxjB+8d84cCnMODQ01NDSExUOzMPb4Yy0MURwSwSCgufgBSImFS09ijgUJFTiaQx4Fdw1/KEouJ9rpWK9Ey4B/Md8iTTa4tP5ga3pfXx96PmGfx7RMvvUJgOcbVgOR04kNE3i+JSUlPfPMM87Ozu3t7daVlNkVM+/u0HGnRkfvvHjb1el0CoXiTG3HJzuzPTmgwwwXCwfKdqSEBAxmSuKkKhquAdDqhFcN9pP9LiQts7xVIlPoyEMmk2VnZzs4ODz66KPOzs5ZWVm0m4fe2TEqUvdNjI1oYYV3PWSF0hYfPP/v1Lzh92LuNzIyotFoRCJRZ2fnhQsXgo+dcmML8B+DmeLoA1AH2HMG8N04BCbxgwDiQmxEnJmgjI1EcEuRjvSNuQbwsBsPe8gsCpb+PPSZg18J7/xEVll3d7dNkc46vNAogcGfGkWbzWYqm6/RaDDxoO0RVD8fe8v+/Oc/P/300z/96U+jo6P7+/vxoNDbij2M3NmTcFZ8+2yEOamgIqoKnSmvQccT0Koh7h5Uj5oI20C0JPkD5AmosIVUJCzdOPvClU4L9G4BfK9gUJVARa7Jog1Q5DHGfhF8xBrajIjcs3vvwajoo0ePx8UncgWpmUVnztVerOvu7lEolLMUyPzWU5curlHpR61Wi8XigYGBzs7O+vr6CxcuHD4aGxaxK3z77iOx8TuOCTbv438awfvT1pSPQrkfbxP8JTLjT1u5n0WmbtjL336En8hLT0tLx1lNSuK1tLT09vaKxWKlUnln86KRsYncssv++8+sDctZF5GzO/4Cv6DlUptIpjIaTKNo2Pmtc2V/w22YAfPo+OVB5a64ii0788vr+1UaMNrUaDR9Q6IDGZWeINgAiwvPwHRwu/DnuwagRj1EBg9OGqZMFHuj1HBn3+T3QtK455okcjBOQkjZVKAAACAASURBVA1bvLFa381vwwBv81fQDEqr1Q4NDbW1tZWXlwcfybSgksQF2XFLAmqA03nDIIkkeCziYaSlwRM/jks2dzbfKygdhXDh0ASlA1mCtJW4swXrIrgNze3Tvjq7zdNo/zr7DNzEDNhhzpuYtLv8I2azubi4uLu7e1rGidVJbATu6+urutiwKjwN0mifRDdCxISqGQf0ZuEGSYBJrMo5MYFNBUabIImGTcHg/8QgrxAoiOTKJI6TokOKWwDoJhHNW4tVjAuL58nhP/bsfzg6OqIf4d19N52WQ2bfyPVngJbMkMZkNBpbWlqWLl369NNPp6SkDA4ODg8PoyKZXC5XqVTY72+D3CDwo9frJRJJ5+XuT3acJrU2gQcHaDcA3hPTTVd/6JS3SPajwCBps3X15yF+6RbAI321oA/GIIJCxMszCdeTluJdgKVsh9nn+1szyxsuo3iFDaGzsLBQp9P19fVZXyZTx9ve3v7rX//6qaee4vF4iOkiRwFJq1i5ozU7msVab/P6MzyNf8X4g1C0RqMRi8V9fX1tbW01NTXFxcU5OTlx3PSAg9zfBUF9E8twqLrmyUmjoiKYVhLmAc8rIIUZlR7HP3XmzJnKysrm5ubu7m40pbPBOK85Xut6HDIPTCbokVSr1Uol0Byx9DY8PNzT08PhcObNm/fZZ5+h7dxsdLaYOl5k0mg0GhvB3u7u7q1bty5cuPAvf/kLOvzNxvFO46k7YzdFeVF4Wcnl8s8///zHP/5xeHi4TYeHUqmcSum+8XoxjTzWZWv0YNP/68NggHU4FqYpCwe7DWbsNE7vjqEvADaTNTQ0HOQVWdtrYUnRnQNwDt4FQOSc3Eo8Ay1K6dh8hkHP2Tdp2SZwBAByG9yDSA8ZEfSGt5EOMyhrEg4HtGyzuH/fl3MrYE6cJRpG8EygvAekwmPMHBoaOn369DPPPLN06dLu7m7K6cR7HG5heufcvrVZMQM0jGC80ul0EqnsSE7tyq0ZIIhKFh1IMHJjgzIt3vpdWRawzc1/UreZGHgD/MlOdQ3gOvsmOvkkeLF5YcnFIrE4JyfHwcHhwQcfZDAYp06d6u/vp7dypA9SBifq0+r1ekoDHSMPSj6+8Qh5e+YfJ3B0dFSn08lkst7e3tra2uzcgpWhqV5B0FQKyzSfRCffZAYLdCmJay9I7LizBc7ExxejCoruYBsf5lSoz4avUKN0C00hALHntL9EZl2saxwYsAhiX998hAYKVCTCxghrcicSweVyOXZI0F4rNFyoqKhYs2bNj3/849dee+3w4cOICkxNZW/PtNu/ZdbNwCyFOfHSVigUPT09xzNLiFeupbqCnQe01QML61SiljKKJiVwgFeEbpHOk+3p+GZMPAD+JC50dG21KuiE99YDa0Ji/hZ49I/sWEFeaWfn5WHSM2o2m6cq4sy6U+IGd5ginaOjowgpyeVykUjU09Nzvqw8IhKonPsPxuTnF+Tn558+fTojM5Ofmp7MT0vipaUI0vlpGZlZWTk5OYWFhcXFxeXl5Tt37w+L2HUyLqkPOK8ytVqNGZF1/+gN7ts0vg0MOzWmgoruoOhizsFzwTHFB5KrEk83nqvuae2WyVXGiSt2BdtpnO+b3FRDhzjsSOm2wyXFVd0GowmdlVq7B7+KLlgelLYiONMjEMQbsI0JOYiYCbizBe+EZkG4CIAaLNRMyGIBGvE5aQwm1KncA3jshFKFCprCqeb/3Z2fW2dQYrG4q6ururo67VTOh9vSlgdnuLEhg0J+PBI3SQYFDSXuBAHFzjCMmbhqs3CESGUPF3fg10baVfFTGLexgW9lIPdz36OFpXUqlcX5+N6Jqzd5Adg/dhfNgB3mvIsO5jQNRaFQVFRU6PX6adkerjZNJpNcLu/u7i6tvPj7EGjgdWGleASmQe9JYCpq1UIoJ9IHJJMGgTU3f2BkIgKKDANw4gQpJBCzdWZabAhJYg1EfgYTQFBnP2KhRxq0MSnPrWxBKTPM8K4JP0zLYO0buetngJbMxsbGsE+8oaHhl7/85XPPPZeWlkZ79r9JqJZifuPj42azWaPRCIXC4uqmd4KJwwGh10AGAwKDAFWieIWTD6jRQvrCSSX0Zb47m+8CGoOQNaI1GiY3mP1gY5cbqD1DowBZoxKkk9gnuPnzkovqNBpwlrKGOWtqav7t3/6to6PD+iBajxeLy5cuXcLxpqamUvNROl5ENWjyescLdtb7j951crlcKBR2dXU1NjZWVVWVlpYWFBRkZZ3aE5exemfqx2GCD0IFy9lcjwCuuz/Xk83zYnPfC+J9HJb69z0Z4ccyMk/nlZSUVFZW1tXVdXR0DA4OSiQSCst9E4/Tekq//vpr3CuMjQiWU1on5ScJhUKRSHTo0KFFixYtX768u7ub9j/e4LfYfOkd/JWOF30c8UTSarWI7NJSo0gkiomJueZ47+5V0B08NN/1qxHjpDxOiUSyZs2aRx55JCQkxKbDQ61WIzxv3eFxI19HzxaKbhqNRr1er1SpO/tFlc09CWfqI7hl66PzvthzevXBgrXRBf5xpQeyarIr2uo6B4ckCixPI0xOUa4b+erZ+x5kc6I3J5jnnT7nyYH8ylJlmFTnhubrybsM1i6Xh0DNgkHMt5A+ZSli+iQ6eMeDei38g/KlV2A6tN0Q7BM6uCe3iTqfW+PODAwMUNHaWxH5rYM58h6QGk5j5vDwcElJycvkUV1dbYN03opdmr0nzD2y5/ScoeVjsUQac6r63ZAMADgJlROvEaQswwqCpEwuLFh9AOoZaCEwwRtAQgPkGQkSwHXekuDofXLpZ5H/w/jdQw89tGTJkqNHj1KHckpqx+xIqVRiSMSejJGRERqgZv4NndpzqlQqUOVpaiotLQ0/mbMiJAPiCdG7Jgsxgo4QkwXQsibmprQM584Grif4dZHynDV2gs89SZMfGEoFpyPw7B7A380tae/ooMacOFc3cvZii5u1mC3qSej1elSyxSYJSu6k2XtRURGDwXjkkUeWLVtWVFSk1VocxaiWvj2S3Mj834PvmaUw58jICJqnXL58eVtc/jtbTyE1E39irRzlgnCZibV4IG4SrSBac6ehEllH+EGs0XsRX17EPi1r1UnVHGyMgM5d36TDWRUSiYT24N5TtRqaWlOlH2zMPR4bj9TMgoKihoaGixcvVlVVVVRUlJWVnT9/vrS09Pz582VlZRcuXKiurq6vr29ubm5vbz96/GRYxK7DR06IRGLrfJjqBNzBy/Pq1a97hlT7k6o2RORu2J7ns7sghl+TX9HV2a+gtM576tDfwWNh89Wj4xM9QtXWwyW+u/MbO0VGkxktYy+29ny+Px8UUIPAahcqq4SQTRwroAkSrSuIZD10OHkFZrgHAEpHlGwhK8A4gIsLVxZ39f7crkEQsEUV+hu/rdvs8Kz4FcsXuEaTy+UDAwMNDf+fvfcAj6u6toC/PEJxgv1oJiE/eUBewuMn4f2EEEKz1UbdQCgJkJA8UiAJNu622qi627jJttxtrDpdXbKq1XuvMyojaXpvGo26+b999ui8eZIB2ZZlSZ75+MR45s6995x77rn77LXXWk0FBYWhZ9J9IyGCwhgJ51vMWturSIlBGzJ/7Do6pCyPUuqxYzF2xQ2wgIyk1oEy4R/O3XE6bUNk/HluscFowtSc8+ZaFMPGeZJz0gNOmHNOunFJ7SQlJWXZsmVtbW1z0iqqiKLRaEQiUX5p9Yf7Un0jQNYAl8e0HhAnehDkBIUTlntgouv2eEZQkmNizgezEsHwLT5l7dxNomnuFgjWejDLhwF06hUCErjwAH7/0w0bNgwODo6Ojs6P6fqcdJ1zJwutBzBlRgklg4OD6enp//Ef//Gb3/ymtLRUJpPJ5XJas28yma6ZZsWdIEqq1+v7+voSc6q8kDFDCl2JdDPJFoVy4TYh+mkkOoR0M94XYB4ZjMEleKhMxTosyDjDnQV3kNv2ONBcJVq4YKtGsktQERbO35tUhBZEo6OjWNhVW1trs9mEQqGjLtDM9mZkZDz11FMvvfRSaWkpzQqp1WoU5r1me2/7RaSJTuxzi8Wi1+uR1tnZ2dnc3FxdXV1SUlJQUJCTkyNIy4znpZ1npZ5OSDkZn3wqIflsUko8PyMl83Jefn5xcXFVVVVTU1NHRwc1O8ELjSnL68p/0RND27mhoSHM2ms0GhS7k8lkUqmUzWY/+uijr732mlgsRsIo6tpd17Fu+1VAcBdrlsfGxihKQVONmB2WSqUCgeDxxx//zW9+09HRsXiR3YXQ4XN7DrhUw6wxYvMymey9995buXLl+fPnUbkaWew4GzhSkGc/VulNQQcJuWENubXCgAuFf9yf5hdOcuVTha6UK4Cru7d3pXxyNOuIoFrYB8kdx/GD579UF3hYN2M2mxUKRVtbW1FJ6ZtRYPSCYRWVi/SPTEEROYJZsj2CEl22xlId2jVRKbhg9gmHkm3EMu1eAEQCFx40IeC4gz9Beih6wLBzqyQSiV6vp7IZt6Kr6fCgVp1oF4Si3wqFQiaTlZSU/Jy8mpqa6BjANMrsx+Hc3jvOvd2WHqCjZWxsbGhoCMUAT6ZWr4kAyTXwtkCjIyYYzaIYBoZMKPjsSZwCEASFrFMI0Jc9ghM9AhIYUG0Z77bl/JOvvnXfiofvXfGw7583VldXi8XigYEBnAyVSuVMgBOdCxyFChbFmKTmUmazGQRIRKLq6urUrLwP98BSjghg8Oxi18EsTwA4YaJgEPtekhLleIKxgsCX6KqBoVQwCwpSsRo1hEPJ5UBKCOeD5BoR+PndLkFZdb1YLMZC1etdweGcT/FO1M9wVLJF7Ws6e1DbTolEwufzX3vttQcffPCdd95paGigwS2lQ+GFuxWz3G25WZwHvfkeWHQwJwbkWHGrUCg6Ojq2xaRCGQfJz6AEItbRImeLKuEjtQijCyycQvUIiMdImQjm7oHPTSqoGMEs1+1xds85kqWBNSw5EMpIIBVpd3yBQqGgNbh32s1FY2w6U7W3dxz44ujuvQfPX4wbGBjo6+vr6ekRiUQdHR1tbW2tra0tLS2tra3t7e0dHR1dXV29vb0DAwNyuVyQnLZ778HDR06oVGrHQsOF06UjoxPtvZrjSdXbD+WEnyjcd770vKA+9YqwvkOh1FqsQ6NOYufNz0jXu4d2sWbPuZKIEwWXS7tGRkYQ42wV9f3tSBZG+7BAIAJjDFBuSHIPIHla8qD3Jv4+iHd6h4HsP+i+MNlEEgY0YDC76xUKRp5eTM7Ws/kaLThhU2X4hTM4r7ffvnl7el8PDw8bjUaFQtHZ2VleXs5Lu/xGOCj842wJQVFAAgKc9JOp5B7gxDgJY8UJJLcDE71J6htXwVQYnFI5Qa72eEZhaXXgPu7hLws6e+ROqs83Xynnt0uvB5ww5y2/pjS5tlhm8KtXr1qt1omJiTnpGhTntFqtKpWqs7Mzt6jyd7v4XiRNBrM2OOGx3QMSSWE1D0Jnsrj1IooHaJLnRfgHUOEbIcDcHGCcBLxBySMkvQFxLQAwTkYQi9gWsogZDNBGf+P/x48//thisVzvInlOesC5k6XRA46qMjabzWw25+fnP/74488//3xDQwMK1SLGiUK1mBbBAI46U9K0y+joqNVq1Wg03d3dJ3jFHgEJrqD6lQBiIASS9AmDijkfIBMI7GacgO4DxZOK9dtruGDkg7azFxPAUXCajBBgKOkemIR2U2RLoiIChGnW5lOX1Wq1xWLBSrrR0dFnnnnm4sWLjlcKU4TUDs1iseTm5j7++OO/+tWv6urqsL0KhUKj0ej1epPJ5Gj7QdkJC2HSo32OcxFycA0Gg0qlkkgkvb29HR0dTU1NtbW1lZWVJSUlV65cKSCv/Pz8goKCwsLCkpKSioqKmpqaxsbG9vb2np4eiUSCZicUy7mxJlP9TwR1qIDtNEHX0tLSp59++qc//WldXR1VeqFHdLxqC/y9Y94ZkU5EKbC9FDi/cuXK008//cwzz9TW1i5qZHeBX47rOj3HCcFms6nV6r/85S8rVqw4duwYVnhQpW5qReyYzZ/NVOB4CBQ31ukNlW3itcezsaAV136eIaDUjaWvmA2nvAF7+VQI+41IQUx6nVimtlqtWMG6GO+X2V+giYmJkZEREORUqTo6OioqKrafzADNKCY8ERC88cWHSwjY50CCkqA4xPgZnHUYweClhzwMVDvHVCZgFUS3k0RW8BBhEDNj/8hk/4hk/8hkvwjBB/vSiqoaZTKZ0QiySOPj4zjrzv78Z7ml42TuOGdS1z2cQxobG59//vkf/ehH5eXlM6foWR7Ludli7wGcT5Acg/hcWmmzbyjbjcRRfpHJVJAWMDnC0WQEJSHZCMe5F+EpYjoeJGTAdi7BIyDedfOF538f8L2HHrt72f0/et79tX8dff3zmEMJOZ2dQrFYLJVKabkbZXBSSe1x8qLT0Wwmxtt+ITD6xahVp9OJxeLGxsbi4uIjl1I8gxI8gpM8SXUdATmA2AErOJLoBDJHMISsOHUTdBnszzFY9Q3nr9mRAtokpLAV5qIQMDHB1N5vdwj4l0va2tpo/cSNJenopIH6GRRCoLadBoNBp9Op1WqVSkWlhrFm8YsvvnjiiSceffTRmJgYqVRKLyKagC4KiPq2D5475wQWI8yJHCODwSCTyVpbWzcfT8O7jwKZyC7yRfEtcm9iGt03nP/mzjSMGbDEAd2IMDzwDecToQgog/CLEHgEQkGVN8nU4wSLER21QMYytfAv86VSqdEIgpbfLE+9VAcVXSKh8g2Xl7J778F9B460tbVjSSiK30ilUolE0k9eAwMDEolEKpUqFAq1Wo3eMSWl5cgBHZBIF3Jd7OjYBDe3PehI3tqdGdsO5kSeusLJaWvpUil1gyNj4xOTi+LxuEQGo0ZvPcOrW7szvbJpYMg2jOLJXWLJZ8ezwUI7MAlhNg/iuu0DPtxsjwBQv/AmCvM4UaDMHij2BZEa/WAWFuLjeo2kc2HpAfJ7QUkhFwrVWqiMXNq5WYxAMAFFlf/r6+sLCwtjEpJ9iOiFnQHPBKICFouQMMlO9KT8eDuPMxisrGCKDuejgzJCpLAZ+Qqn0/d2CXKulHV0dB44e/mzSG5rl3x0bMwZtCyR29XZjNn1gBPmnF0/zWIrx6UUrR5F6gMuazHUcFzcLswHOIfD+ec//zmLFs9qEwpzYqlgbnHF73ZAKg3m6FAuqEKRaR21yLGGl+hEQTGvX2Syf1SynZQJT1nQT0PZExKCA/DpBWIIXN8IPjFwTvQJ43qRJ6gdASI1iclFjUql0glzzuqCOTe6Vg/MxDjPnDmDhd5CIqiF5pQajcZgMFgsFsyt07pvnBxwx7irkZGRwcFBpVLZ2dl5MKnQnkcLYhF7Wh6Kd3lAtsiuDYjj2c1udATxjWcwAPnwCcSRoKLmHpjgARg/gJ34WyJ+C6K1mLyDwJSUEfz9ULpSqcSa2ba2NrPZ3NbWNjw8TJvuiDcg9nb27NlHH3303XffbWtrc8R00X6PYrqO8xvd221/QydnykXDRhkMBo1GI5fL+/v7e3p6hEJhe3t7S0tLU1NTI3k1NTU1Nze3tbV1dnZ2d3f39fXJZDK1Wq3X669puXoDUzpd1lIh0MHBQSQZOFp1FhUVPffccz//+c+rqqoQ6XQcXbe9h2d/AjPbi9ak05DdkpKSF1988ZlnnikqKlrU7Z19zyzkLTGkoUNUKpW++eabjz32WHx8PMU4aYaFEl+oYOxs7guq2YXykmazuU+m2JVQ/O7uVMyL+Ucm4+QGGXMmmOli6hwlHDA3h4tArAVxC0j48xfpKWXtjhUYS3WNhzDn4OCgRqPp6uqqqamJT83zJdY4aCpMUpBx0D8Es8Quwu5yDyA+6AFgD4M9bK/Fhn4mvCuooeGgiyEK4a7ZARfFl5QSe4dyN5y43NreoVQqzWYzls44PvLmfGB/wxyCSUCZTFZeXv6rX/3qmWeeqauro5zO6xqQc37azh3Ocw8grIWkBK1WK+wR//mLdEwh0dQbzhukNB6gOI8giJeQmUQCJwDkwB1ge5zbtlj37XGMoIRX/r5v5dO//u5931/5Xy/98v2g1etPumw4vXrDKZ9t59IKKlHmgfqyW61Wio3h8KNFb/PcGzd5OOxMJH7J5XKhUFhbW5uXnx9xiu8bBowE6FJSk+obIXALTHDbnuAVCpMGkaOMx+wbseiDYNU7lOcfBUUSvmBcwvcKgaSne1ASSZhyocIvgr8v7nJ9fX1PT49KpXKcWG64IdPiQMS/0ewZy610Oh3V0sCCCblcXldXt23btmXLlr3yyisCgQAv6PVW8NzwOTt/uIh6YPHCnHq9XiqVNjc3b41JpwAnIhOMoCR89OM/kTPkWLiANCOMJVDGFjFRKEcLTERuKN0e8jk4VxBPFkzWIyvUM4Qdev4y1jTcsTAnjnaMcPr7JfsOHNm992BsXJLZbMGyDIvFYjKZjEajwWDQT73Q79lsNlOX+vb2TvxtVXXtAuedT05elanMyQWdO04VBRzO3XmmOIZVLchvr2iWiGWGoeGxsfHJRTQJLNJTHR2bOC+oj4gpPMuvtQ6NoMWPSqWKFpT5Et0LpJdgdQLe7B5BYLXLIEoYtIKBEUwU9YipJDW8QF0ZRjDkptwDIMRCjQefUG5SQSNWImJZwy1dONzeS4MRlM1mMxqNcrm8vb29qqoqNy+PeRJcTjHXh+sve+0IOlUROTd0NcbZkq7doNI0EswXkCWPSULcxovJeSuKd4Gf29jYKBaLr1S0bdyTIshvHRkBmPP29oPz6M4emM8ecMKcN9vbOCk7pl2wVnRkZGT4/75GyGt0dJQy9BcmJHDo0CFvb++b7Zep3yPMOTg4iDBnQUnlR/uSAeAkonOYoPRicvwjkwnDAKhmMNGTpyDw8cOIeBFBbkAwCqSiEmGFTDTiQd42ENIQpDQYqoCRpgDYJyGGQno0hPPgj59ZvXr1nKyTp5rl/P8d1APTME6j0cjhcB544AFvb++enh7MhiiVSkxsYcT2DSoxFOY0m80Y6xxIKHhzF6wtcfCj6ixdauIaEiMbu5LzlEotyfJz0F8KSTkQ4qCVFDEk9w7luhHaE8Sg4VAjD0ojQUl/2JMsl8uRebOGvBxxiGntNZlMbDb7wQcf9PX1FYlEjtq8iHGiDtuiQN0cJ+qREQjl0RQTyUBqtRqlUyUSyQB5YZGsXC6n6nO4kpzW5JvETuhZOVpXmkwmZBgolUrs887OzpdeemnFihUFBQWLndOJTaZcYavVStuLypNyuby5ufmll15auXJlfn7+om7vYp8rHTHOoaEhjUbzP//zP/fff/+5c+coARexf6rUfb2zAR4C+Xlgw6nXNwn7/hGdDRIOEeDT5kdkDFHS0C9CsCYqxYvJgW8jkzGDhvl0zMTh9u6BiZh0OySowpJh6hm89NbS1B0AhdAbGxvzrhR/vJ/vEw7StR5BiW4B8SgTh4CEX2SyTygPXDlBhxPKtNGGEGz2SHkNPIZCoZTYJ5SHmJB/BBA3QTGJoBdgvRMGBTfeodwv00t7e3s1Gg1aA8zPQppS4VFCGatDaLWEVCrt6Oh48cUXH3744crKysHBQcoLX6Q402KfRubz/PEGR+zfarUaDIb+AUnI+VwYrkzA5LzJ2EYSEkncA8YPlAViZ06STSAgRpYbHEZwovv2OLetsS4bzzzr9+l37/v+Pfc/+DPPv7zyr+hV60+6bDztuumM+5ZzLhtOf3aQ09XdLZfL9Xo9gus0FMTl3nx2wtweC3VrsQZFp9MNDAx0dnZWVlZmZGZtjIZ0mz2/RjqWlFOQddkUm9ODrOl8wrjEVx6ynD5hoFziCxMIxzOEhZJ33qFET5jJ3nw8raqqqrOzUyaTGQwGhD3mynOERlzoQDE6Omqz2WZ6djoyO8vLy1955ZW77777k08+6e7uHhoaGh4eplYFzillbgfbIt3bIoU5h4aGKMwZdDLNO5SLJWV4k9IVKKbR0brYi8l5c1c6LDCJPSdWQXkxOS5bY1/bcN51W5wdIiVcLhKBABWelu0iOQllObBYDWmd+xIKBgYG0FHlzmRz0pE/Pj5+4WI8MjJb29qRLOGYXbQ5vDDX6Oj3rFAoDx46tnvvQR4/le5zgb9p7lJFxBSu3ZXxrx3pUaeKLqbUlzUMaAxWy9DoxMTVyatXF/j5L97TGxufFPXr1u5KP8OpMQ/CaDKbzRqNprJJ6Ecogyit503k/YlOXqIHEU1FtXmcE7xDYTVBbMthaYZhFSrcIjjquj3OZWsssD8hTwXqfd5hvA/3JMuVamrSufSWZnRUYNRBJTH6+/vb2toqKioys7L+dZC7JhJy3Y56swh54pxpLyMjpSEU1MSIC1OFmDZHEicsjcM4B+Oyq6qrhUKhQqHo7VdExuSdYlUPWkccc3303JxvnD2wVHvACXPe+JXF6ZgSNzFDNzwMTH9cLym1+q4BZWuPrLlb2tYr75aoFRqDxQLZluHhYVz9OqpJLJDZZ4y8brxf/u8vKcyJxLWSiqq/HEgmqTfInWGACyEy0UIhWA5x0wxm+QCbUwDQZmAiRsA+4XzPYNbqLbEuW8BNCousSbgMybgpQwjQXmMEs4lKG5sRwn4rkrfz4AkWi0UlOhdIP//ffnL+a4H2wDTMz2AwHD58ePny5Z988klfXx9m+VUq1dfZ0c0cbI4uRzKZrLm5eU9sjicTNNNwnPuGg86PewBQk1EkBMlMJKaBOnfkH8C9w+QgARoLbPFuImqEQEfwYnJct8fjxriqJNaeIPb44R6BTCbr6OhoJi+5XE7Pc1p7jUbjkSNHHnrooU8++YRiutdsL2ag6H4W6OX86ivHeZvKl9FJ22g0ThXI6nU6Hb43Go1msxlJuqivgijO3NapYM8j0okEFLPZjDpFmG6TyWQ1NTWurq4/+clPCgoKZjKGF2yf2BMK+QAAIABJREFUX/PEaKoRSRWIdOr1euSwysirrq7O29v7qaeeysjIWOztvWYnLPAP6c1CrRDlcvkHH3zwwx/+MC4uzpHHifzmmazu2TQQRz7FOHU6XXFj19+jc5BDYK/0J5KqMDEGAiCBrtuwJiSlrOhW4lgPC4BohABzbV7BrIi4IoPRRMHym6xLmE2j5nkbR66VVCptb2+vrKw6EJtJCshIgUsIMRckxdfoaI7gJTx0QmEDz2AQpAWbPSD9E60ksjHKnlPFWiTR+oUD/Izr8E8OZzQ0Nff39+v1+vkkYTgOzplIp1wul0qlpaWl/01e7e3t09Rrl94YmOcht5APR8toKCkht7L1rZ0pGFyhPjOwnENAVw1ycFBDCYqpDqklltu2OGLeyWIEJbpu/fKXf2A+9ORz//bde378a9+X/rrHZcNpl41A4ly94ZTrprPuW8+7bDrnsuksJ69GoVAgMrfEOH+UHYsKwGKxuLm5uaSkRJCaEXgi2S8cEEqcH6aK6lhYeMoIYgFNNoSF9pwY0MLkTGidvuGgyuMWkOC6LQ7i1RB26Jn0krLylpaWvr4+jUaDazdKxZ6rgUcjECy3cqx70+v1Wq0WZWwprVMkEkVHR//kJz/5+c9/fvLkSZzu6ELeiXTO1XVZvPtZvDCnTqeTSqVNTU17LmbYi5nIShPT6xTFxDUmfugbzkfEwjeC7x+ZbI+1mBA5IBCCZVWYi8dsDybocYqgCX1qNefF5HyZXuaEOXH8d3X37CeunLFxSegCQJON01TiZsrFTU5O2my2I9End+89eCQ6ZuGvyuktbzDbiuv6D14q33m6KOrUlWOJVUlZrZnFXaJ+rUxtnnDaddKemrs3V69+1TWgO8mu2XmmqKFDTiuZevoGNp7OQzDSgziFwWOdiFsgqIY19BgyIcCGRBT8CbBQpnjbuDRDK3RMScECLYzvHcb1CEzamVBsMBjQpHNph+VYjYooskKh6OnpaW5uLi4uTk5NCzgBJV/YUZDZA4kLyGajcBGufKlzuR3aDIZsOW5MNDPA+ooRzHozghOdkF1aVtbS0tLf36/VamVK3dG4sv0XiuVq8yKaDeZujDv3dOf2gBPmvMFr75hhwfTc0NCQ2WxWqLVNXdKDvIr396ZiqZrrNhAKw5DON5z/3t60nayyirZ+pUY/aLUODw9Tcifu8wZPaO5+xmAwoqKi5mp/VLRWrVYLhcKq6up1x9KBmTElQQ5aRmFcoj0L+A1YuYAXFNsrjPvmrnT3oCQf0KQFDoGnXcE80W1rrNv2eJLuBM0EICWE8eyGnYTgD7E4MDt5jGD2n/YnF5RUdHR0OEVr5+qa3jn7oZgf+ggajcZLly7df//9v//97wcGBlC7FTE/NKe02WzTALCZfYUwJ2bfJBJJU1PTvoQ8T7KkhFmCCO5j4OgTBrLMmDBCUo53KPeNHWl+ZEkJtIOABLftyNEhSv3hfN8IAanDZeHScfXmS/aMHll8ksoAcEr468GMgYGBzz777IEHHlAqlXTmoclBzPiYTKaLFy8uX778d7/7HWK61H7Psb1Uim1RxE/YWGypI00NE+U2mw1FzKwOLxSdo/ks2l6MyOeq1fSZQpFOfKY4OrLI5fK+vj43N7fvfve72dnZi12Nk+YZR0dH8RajyC6KT8rlcpFI5Orqunz58szMTCfSOXM+uaWfOF6goaEhg8Hw6aef3nvvvTExMZTHSSdASnBB+H+W61Uc9gijWq1Wo9HY0CH+0xcZmApHjXoAJ8h057otzm17PNILMGWG5U1U9AwX2zjpobsealR6MTmB5wu1hv/1fJqr2/aW9v/sd46PqtHRUbTn7OrqamhoyM3L+3A3nzFlpcMIYiH3AkFigu4AruMdxkWAB/lV/hFA9MTwlQCfEEqBPpXdFhqon/BgIqVpb0TwU/PLkXRlMpmGh4dxepz9md/klvSZhZQs6vWLJHiZTNbV1fXcc8898sgjzc3Ni33CvMm+unN+jqNibGzMarXqdDqJRLI7ocifUMDdAxLJAoEQkZkkxAqF7BIsQ0gYRtJwbO9QjntAvHtgvGdQosvms0+tfv87/3bX9x95/Jcfhr7++UmXDadWrT+56vOYVetPum4867r5nNuWC25bL7puufinfYJ+iQwdAeYcmbu9V5By7pH+JZfLu7q6amtrCwsLk1NSA46xfUIh7+YTxveNACE1LybHbTsxUcaZh9DE0azE7ldCXDw9Q9iu0NVgu+DLZEeeS71ypaihoaGrq4sCxlQeYG57AMeJYxyIlcqoDImmBo6GnQqFoqWlhcFg3HfffR9++OHAwACNSei1XmJPlrnt8KW9t0UKc9psNmRzNjU3n2FnYTIdCVh2eCOM9+audN8IAcU7XbfFrdr8JWbbMR5AUQ00iqPlDlTtFqFNLLfF4MEvQvDGzjQ/smJFLrgXk11QUY+itRTzWNoD5htax+OnoiunVCrHzejSlc5aWFpB/9INcPsLX9rJoEaj6RsOtAC/Uumsx5Oq1u3O+GxnxqZ92VExV/KrexqEipHRCefsOufXS2OwXqntCz6SV944oDcNjYyMmM1mpVJ5uaL57V2pa6KSSZUSC5QYSMzvF5HsHwHiDd5MjjcRCcNSSCx8JFad8Ll7QKLLtli3bXFugfBwZ4QQDyYiaw+LDpBz4MMaLQSqnRpF/XcCEYVGUBiXSqXS7u7u2tragoKCtLR0ZgzHlwkJOkdDEGTKMoLJ2o1Yb2KtCdW5xYWY6/Z4mF2DWW+Gs08nZZaWlmIEhe5UZov1NKc6/HhBt0TnvIPm/A5y7nAh94AT5ryRq4NBhqPAIJjb9UiOp1T97XCGN5MUxYdy0YwEXfFw5sLgj/xlf3wo8xC/srFLOjgIYCc6MC+EglA+n9/Q0HAj/XKt31AtNbVa3dXVVVdXt/vLDAyOwb+aSBxgVL1mR4pnCBT/ejG5jKCk1VsvuQUkYCUgMBJIotM7lLsmKgXzEVPsN+AfoMitTxj4SBFFNSgr9o9MWROVsul0zrO/eM7FxQXl1OZK9ehabXV+tqR6AG9zLPTGFP8XX3yxfPnydevWDQwMyGQyR8yPGvZ8a4p/Jsx5OKnAXtkahrVyLJw6qBcdhi9kGWmfWzDQAVIOk4OJfp8wrj/RdQQ7BFJDB/cC2p+QkgIsp8Ubau3RdIFAUF9fn56ePjY2RldHWK2P1XxGo/HQoUMPPfTQ2rVrxWLxzPZO0+xapMETXTFOkBeVBkJSO9agONoqzxK8ueE7gT5cEPgZGhqyWCyOSKdUKq2rq/Px8XnyySfz8/NvjD93w6c35z+c2V5HpBM5nQ0NDW+99dYTTzzhRDrnvP+/YYcYjWChEibC1q9fv3LlytOnT+N1USgUarVap9OZTHaiJE1Gz3I2oFcflXyMRmNXn/TTIxkgFxmU5B+VgiETVAeHQlSAtR1YN2YvECazHAU7afkwpSr+75ugpJNp1Qg/4HnO8iS/oYsWzleUETs0NISSku3t7WVlZeeSkteEAkJJuFOQaKCApWcIKSxDRwAihA5PByIayQhhgSYtE4CfNVGpIKQRwgYlOgI24wIbweaQc9n1jU29vb1qNQhPYRw7zx1LR9HY2BiaLhuNRo1Gg/LXMpmsoKDgySeffP311/v7+2/MOHbhXGjnmXxrD9DxMDw8bDQaFQpFV3fP+7uT0XEWKQWwQIgCpwxSWwmpJXsiaUonBoVqPQLiXvxj2ENP/vye7//7U6/+9uVPDry+LmbV5zGvrzvx+rqY19Yef23dSddN51w3X1i96fzqzRfcA+LejOBcqRci5L/Elhu0Y9FaXq/Xo0lnXV1dUVFRZmbmoXOsP+1mezLBggsUxYkwCWjtBCW6BySCijhRBsYSFhQvwSh39dZYj4DEj/dyTyWlFxcXY4ZOLpcjycNRbPxbr/6NbUCbNk3hA13SNRqNI9g5MDBw8uTJ//zP/3z66afPnDkzTZ14Iazib6wTnL+6yR5YvDCnRqvrFffnFJYfPcv2ISksR2DSOxTKQRjBLFTIwOIziCUC4aZG4cr/dd8ketT4La46kb+FsdyaHaloKYdgJ4Z2b+5Kf2Nn2gf70ltaW6VSKRWpnh/1+5u86Lfi5wMSKTprJrF4o6NjN3aIgsJi1LwVibpvbA+38VfDI+PljQOH4yoCDueGROcfT6r+MrWxvHGgpUtlto4Mj4zfxnNbSoe+evWrZpHqwMWy6IRKucY8NjaGK4j+/v49CYUAZE5J5XkTwol/ZDIRwGB7gAcnyyM4CSndmJLCAn2ik8HGCQQ/AT+mYMj3ugUkuGyN9Qgkvw2EfyIf8UJ2vV6vt9lstFpoKXUybQsNMzCC0ul0MpkMbc6LioqysrKOfcn9617AgD2DgauAViyEsQMFZLj+pREsRlB+pPoEVmeBiZuj+eyUrNLS0qampq6uLrSmIm4dYxlFnczo/LZutVP7mV4O55s7oQecMOd1X2Va+InsE5PJpFSpeVca34qC+nckECC3AFNvOBPhV3QD+kjwDeOdzqjV6PQzs9XznCqiHaFQKOYwuKSuyzqdrre3t6mpSZCZD2kyMKJn4X/gpBUu8CJunWBVzeS4gYsD2ysE5nq70AF4dkKRCyiqMcGA0ItYeHoTyiZE2KEcj0CWTxhvTVSKf2TymijwkfILF5xJKR0YGNBqtVRO7XZ1LO1h55uF3wMYjlCM02QyJSUlff/738cKbqlUin6NqFV7XTevI8yJMkEnufk+TJBYJK5FbGJWxMU14VSMCMilF5PtH5niFyFAKjMylnzC+W7b419df271FiBuYk4fviICYogWUDwAdgIO8AmMTyLuu+++rKwsrJlFmJNinMg0jY+Px/b29fVNay/lxNCQdGncUxTuxas/rUh23gYtPTodfoh0opqrdOrFYDDuuuuuwsJCtLVw1D+ft1OdqwNhV1NkF5FOx/b29PR4eHgsW7YsLy8P+ROLur1z1W+3bj+OE6DNZjMajSEhId/97nd3795NMU6VSoVatVQM9nr952hxK9KDZDI582IhJsiw8B/TZLjMw+U0FLcCYQgIhYjewTo5jIfUdsy1ITkAQy8UVsKIyy+MW9fRe4skEG/dtZjlnh0lJZVKpVgsBkJnbt7O82l+kQIU/4eAiiQrPQITQSIymO0XLvBmct0DgXRl52qEQPrSMwQeN/5R8MSBqAxcuBKmlCcBHPIJ5X6wV1BWWYWGzQaDAbVJ5jB6nGXDvyJS5DiWHNVrNRoNksJlMllnZ+fjjz/+7LPPSiQSinRS1fHZH8i55cLvAZy7kMqp0Wj6+vq4udVESI3rG8ZHEM6TCZppyFjCfBwjKBGGN6TtEhiBCa5bL7lsOveM3yd33X3vPd//9+c/CHp9Xcyrnx17+R9HXl17/PX1J102nXPbdtFj+yX3bZc8gxLct8e5B8QxghK9mexTadWoaEoDpIXfabM8Q/pcQF19g8Egk8m6u7ubmprKy8tzcnJSU1OjTnPeCAPyBynCg6UZFkz4hJI6VJI5hdkmBFKoXkyudwj7rQjOvvOC3NzcsrKy5uZm9EeYN4yTth1bh5qQOJOgogYFO5VKJTXs7O3t9fPzu+uuu959912kdTqKM82t1Ac9Q+ebhdwDixTmHBqyqdTaNlHPJXbu1qgzvw2zOwdhfLV6yyX02sS8Fv71JQtPDNJoSAahBalssM+oxL0Pa9PRZJ0RzPKPTHYPTER0017FHpWC69zPjqa1t7fLZDKj0YjCSLcllrjtA2xiYuLUmQuIUHYKRTd8Pt09YtxJSUn5De/k9v7QNjJ+lle3/VDOv6LS1u/NPBhbEZvWJFGaDGbbpFPAdi6uzfj4ZHqJ6LMdaSX1/ePj41RPtaOz8/09qeQO5XqFcoCvCc9xDhBOgpOI4yZkcd0CElD9Av6GsAmVkwsMFgAyAQr1CExatfmS2/Y4t23xHoFJPpjCndqbW2Aigwj4bTmbL1coqeTeEr7xHSOowcFBjKBEIlFTU1NlZWVubm5KSsqB89y3I9k+4KoA2LCd1UCU3uh7pE7hTOsVwvp4Hy+Bn1lQUFBZWdna2ioWi6kSBlontHarN+/PahYpnTDnXNw3zn0smh5wwpzXcakwCU4VBVFgrVnUH3AOcDsqS0sr16gzMNbBYRbJPitNGewhDvHP6OyK1j6sCaW0TjzcdZzfXGw6Ojq6YsUKpVI5FzuDfWDqbXh42GAwDAwMtLe3l5aW/uMQ35M85+yOLFtjGeALBQ9RkndI8grh+IRC4pIQOIgXFzgXQhrOrl0O4rRg0wWitWE8v0hANL1DOXghvJigEuzN5LwVxa9ubN25c+fRo0exUGhp4DFzdXWc+7lmD9BABHXwDAZDTEzMAw888Omnn/b396MjHab4UbsV5UxpzvSbxxj15jSZTDKZrKWlhZNV9EaUAAyKSBW8o8cJXVgiodObqKthnZd/VLJ3KI8BJXVQXeEemOAeQP4LTKRi/QiF2m8ZqLG1C7XtuZhx4MABpVKJ2P+09ppMplOnTq1cufLTTz/t7e1FVEOpVCJti2KctL3X7EPnhzfTA3hFKPBMOZ1qtRo956RSaU1NzerVq3/2s5+VlZVR5bRFelEc2+uoXovtxRFYV1fHYDB++tOfFhcXL/b23szYmIffTpsQLBbL0aNHH3nkESaT6SherdPpzGbzzCKPWZ4hPcr/qiRVtr69M5lIpNqNihnBLNdtcUgXcCVK9VDQCmtjCAZQgtU3jIdiD1jkYRezDUpy2Rrrui3Og+TUqMnxezt4YinMe7eFdzjLnrmxzaYROhHbKysry8jKDjwhWBMFUrR2lTnyBl0AsPIaCs6IEydugD2JrFmMbO2AUAgEYNjDf9qfnHL5SnNzc19fn1qtvu0ZCjqc8KmNGQStVkuRTj6f/+CDD77zzjtIPEVMYpFOmDc2Qu6QX1HA22KxAJWzq2vLqRyisWaXpQXXKALkY3wFgVNgAllfsBmBCR4B8R4B8S9/sn/lf730nX+76/Ff+bz86UH04CRCtSddNpx233oRJWpdt1502x7rEZjgGZzkEZxI7qmkTSdzbiO5+ZZe5Wmr4MHBQWQkdHd3Nzc3V1RUFBYWZmdnJ/FS9p7jrz/MezdyStwohA2IJilm9Qxmg09nGO/9Xbz1h3lfXExJzsi+cuVKZWUlxTh1Op1j/da8LYdpA+lK32azDQ4OmkwmFNVwpHWKxeKjR48++eSTL774Io/HM5vNqHHiqGrwzcuBW3qxnDuf5x5YdDDn5ORVo3loQKYrqu6MTymPPMr7+7bj7wR+6RvORy0NJGvimhSNgZA8hBwvvJ0RrcSoDNNfmKjBUl1chGKlFAQPxEwdk/W+4XwgeBG5Re9QzsHEPKFQqFQq8T5CQ8p5voIL4XCdQtHe/Yd37z14KS5xfPzGaYvDw8O4H0Fy2uSiBTdGRsfr2hUxrJpdZ4ojY67sO1/Ky23PLe8W9emkKqdb580O2LYezfGkmrDjBaNj40jlNBqNEokko7gO71m4i4nuC7IJfUJ5XqCsw4IIiliGkbJUgOKm9PngK7cAADUJhMmmNZREFQZsMhhBxJiMFDyREgfWOzuTxf0DJpOJKjfcbMMW6u9prmNsbGx4eJiq1/b09LS2tlZXV1+5cuXy5cu85NSDF3hbjnI/2sN9IwLKTHFqxb+4QPttFO/vXwhCTwlOJ6Zm5+SWlpbW1tYixqlUKvV6PY2gJicn27rVETGF2WVdi3cqWKiX1HleC7oHnDDndVweR8bJ4OCg0WisbO1+Y0eybzj/jZ1pKOuBruz2XBLxJvFict7YmYZQBH6OFXBeTA6VMncPSFgTya9oAZ4BrYi/1eqIX9fyua2jwYzDyMgIgjoikaiysvIiJ80/gr9mRyojhO0WGO8GCA3w8V0D4oGnHwGJTqgMCkr0DuP7hPP9I0AngQTZoIbkRTRVfICFwCElLTyiagspPC9S8IL97B3O25eQ19XV9ctf/tLd3R1do5xrzq+77s7PsQdothT9KS0WS2Zm5vLly996663+/n6pVIryrVqt1mQyzeSFfOsAw2T0yMiIxWKRy+Xt7e1FpeV+oWysb/UMZmF9HKmBTV2zAyx+waqdKIe8sv4c6tD6hPPXRCVD6jmIBRh/RDKoixDjBFS6QGiT/IXKXEhVk+XlGzvT/MO5Ry5yUc6CioQgcRAV/1JSUu6///63335bLBZje5VKpVarNRqNqM3rTOLc6psFc204eVJOJ+U4UqRTLpe/9tpry5Yta2xsREad46W51Sc5t/t3jP6/DukUi8WrVq269957a2pqpjEIv/W+m9uzXcJ7o3leugyLjY39zne+s2HDBrlc7ihejROCo+T+dV0FLPhAuVqtVtvX1/f5yTx8drsHJNjnQyKpCgtpkg7DNR6mz7yYHCyEohk0jKyofgb1kUKuAIZbHkFJZ9JraB5tbqOd2zsq8MLRimzksdXX1xcVFaWnZ2yOBnl/zFmQbCPoALsFxPuGgYueJ5MkI4KAjeEfCVrBFAHyCoFI1SeU57o93mVrHGre+oVyOBl5VVVVQqEQtSWxYgZRw9vVD/TZTdVrDQaDI9JZXFy8bNmyv/zlL/jsxpTK7T3n29VXS/i4+NxExVqpVNrW3uEdChMIzgPeTC4QOolaDPhFhcAiwiM40QOczuM8AuLctlx67u1N3/m3u+75/r//8g8hqz4/uWoDmHG6bDjtsuH06o2nXTaDSq3LpnOuW7902x4LDE6o0WQzQpKw1PK3O5IxWT8yMrLEdGspc3p8HLKiw8PDFotFp9PJ5fLe3t7W1tba2try8vKCgoLMzMzU1FQej3cxgb37DGvToaR/HmB9vDvh072JGw+y9pxmx7H4KSkpWVlZ+fn55eXldXV1ra2tPT09CoVCr9fTtfD8FyLgNEJdDCitE31/dTqdWq2m3uFyubytre3Xv/713XffvWPHDovFYrPZaK72dq3il/DdvZCbtuhgzvHxyT6ZvrxBfORS0T8jWB9tPvv2p1/8bsvJNUTFAUOpKfQCJDSIqEM8xF2EuIlfgZxGKHfNjlS/SEjd4DbIQ2IEQzE68eu1q535R0LGDHmiWEGFSvhv7UhOK6zq7e3VaDQ0O39d8eRCHhjXdW5srmD33oN79x9WqzXX9cOZGyMr9FJc0sjIyMxvF9EnwyPjmcVdG/dnfbYzfe2u9MDDucn5HaV1/cOjNw4DL6Lm36JTHRubTCsWBRzOFfZpJycnR0dHBwcHtVptb2/vrth84BGGIvMEhPSw0pFwNEFaD4sesN4UUk/BbM9gEKr1CEh0DYiHjDepaQAaKLHMgPVaIJhHQj0EoayAQxlRdPALF/iE8XMqWgwGw5KncTvmdmgEpdVqFQqFWCxub2+vr6+vrKxEsDM1NVUgEHA43JOxnKgYVlA0e8vhpODopD2n2ecSuMnJKRkZGbm5uUVFRVVVVc3NzUKhsK+vT6lUGgwGnEVpRshqGwk5WpBR3GVzCj7fotvJudsF2QNOmHO2lwXBCUwhWSwWrVZ7pV74py8y/IgfnuMzAAM71PGAdfWUUQEWwVE+InxFmIhQGkOkWX1C2bySNqPJhBP9bUm+VFdXHz9+fHR0dLb98m3b4YpxbGxscHBQrVb39fU1NjZm5+StiwbzefIIBGI+yCAQW01IQJDeIBK1EBnT5ygG0PauJjkLfO6iSSfJygGz0y5YF8z6YE9yUWVdX1+fVqu9Xa5R39Y9zu8XVg/QBAcyQiwWC5/Pf+yxx95///3e3l5HzO/GME5MEk1MTKA0v0qlEgqF1dXV206APAigkgS5JIa+HL9wUGVEIzQPUFQDHTAGsbNFQWwUofUJ5aLgMwg4k28R4/QMAfomI5iNGs7+kcl+Ecm+4bz3dgkKS8pVKpXZbEaYEzNWWLSenp7+4x//+L333hOJRLS9Go2GQhpoV+mU5JqHgUtH40ykE23npFJpeXn5f//3f7/wwgttbW2LHfnD9lLtTdSL0+v1qF6LnM7y8vLnn3/+hRde6OzsdGwvLh7m4aIs7UPQIYcLsMHBwby8vB//+MfvvvtuZ2enXC5HQ2Iq1u1IZL/enkHfbpTIlslk3Pwa/6gULBTDeQ9ZgyiaSvkBGA+g9xtMg0TAFpidAQmu2+JA0JvYvdhLX4nlJC0yw4Dhr4cyVBoICZYkCIEkpKGhIfBTUCpFIlF9fX1xcbEgJS3oGNs/DNx0vELYWA1jdzwFAQAuMF+DIQ2BSDNKemI3+oTxiIlOInpx/f0LAT8TMM62tjaJREJ5V/MPSMwccnQA0ye40WhEpBPVJo8ePXrvvfcGBwdrtVpHUvidmVGd2YFL4BN8gqDFlFgsLq+p9wwGzpB7QIJXKBcMMgiNAMMkiLvIAsQ9IN51y5evrz3+45f87152/w/+35d//ecowDjXnXh97YnX1p5YveG0y6azLpvPewB9M95l65duW2MJ6s/yCmExgpPAzpYU3XuGsJuFvSjjjLq1S6BXHZtAn9QYyuKTGmmdYrFYJBK1tLTU1tZWVlaWlJQUFhbm5eXl5ORcJq+cnJzc3NyCgoKSkpLKysq6urqWlhZMz8lkMq1Wi3EpKq3dRp9LxzaiYSdGyGazGYsnHGmdIpEoMDDwkUceefPNN+vq6qjCAV59Z7TsOHiW8PtFAXNe/eqriYnJoeGxPrmhWaRMLxKe5dVEHM/5fCdv2x524O7YXUfjP9iT7DmlSImWAW5AeYcAAOUcqOYQRgiOYmZoIIepGGpAgDkuqgyBrADcMwR74fx/HklraGzu7+/X6XRWq3XpiW3McthLpTJ05eRwk2+GyomH4wvSdu89GHPqnNlsmeUJLNjNJiev1rbJzwvqAw7nBB7JPRJXeUHQgG6dVtvY2PjEgj3zBXtiSt0gN6896mRRn8yAj3Kz2YxZqX8eSac+IGiBZJdLZdqla6FcjKhikDqGRLft8W4B8TgtoA1aaiviAAAgAElEQVQn5KwCwWvJk4gX+oYLGEFQxO8RRNzHpiopMQDzDGEf5ZVqNBq895dS+ek1rz5dp1CnHpPJRCMooVDY3NyMFWPFxcWFhYW5ubkYQWVnZ+fk5OTl5WEEVVVVVV9f39LSIhKJBgYGFArFzAgKcyNDw2O7zxaf4dU52ZzXvCLOD5dqDzhhzlldWZySaOWFRqOpaul6M8q+WgbFyICEKTUeljtJt3kxAZ9AZA5l1ihih3EhlQUDtlY4nwAbXP9wbkVzj9lsptnDeU6+xMTEuLm5DQ0NzapfZrERdt34+LjNZtPr9XK5vKOjo6ys7CI305OkINFr0z0QHpOMYOB0wifA4QBVOuwrEE8DgyjwiPIC2gEI2HrbperAvNM9EH4I6rXhAp8IHmG2cQ8k5Le3t8vl8ldeecXHx2dsbGzJPztncUGcm3xtD9DIA7kgg4ODFRUVP/zhD1999dXOzk70p6S8xpnarbO8VfEoo6OjQ0NDWq22p6envr5ekHnZJ4xLBjaQlV23xbtsveQRZFdpxhuBrAnBsx3rZLGYDm8QO00hlIu1csRWLdkf7GmB8ekXkewJTkiwmPQO5e6Mze3q6kLsHynOdGYrKSl55JFHXF1dsb0ymWxme5ee3dTXDogF8AWOlmuq1yLSic5YP/3pT3/yk59IpVJU41zUvpWOqgnXRDrFYvGzzz77wx/+sLe314l0zuEgdZwAUU6npaVlxYoVnp6eEomEYpzUjxNnjxurx6KkdpQ97O7p/Wd0FmKZ7mSK8w7l+kelrNkB9R+4nPYMYbsQAVvMjgHBnVQ7IRqKuB0GXTgfegQlrd5y6bWNFzDv5gZkxFh0h7pSLzKZTHj+S4xwgx2Lzxej0SiTyUQiUWNjY3FxcXp6xrEvuW+EQz2NR2CiX7hgTVQKFaFFmSlQkCOpTO8wrmcwBLGgFhApWL011m1bvBeTvf04Pzcvv6ampr29vb+/H58jlL00y4fgHA7ambtyHMbIC0ekE2EJqVQaHh5+zz33JCQkmEwmOoE4oYiZPblIP8H6CavVqtFourq6couryMoClK7tawSiewFCtUxYPjCIGaf79kuv/it6xY9++m933f1fHh+t2nDytXUnXv3XsdfXnQCwc/2p1RvPumy+4LbtkkdAvHtAvEdQAoRbNPtPLDOwWM07lJtZ2ow4OlbTL4T7Ym6v5kxSwtDQEHpYqlQqiUTS29srEona29tbWloaGxvr6+vryKu+vr6xsbG5ubm9vV0kEvX29kokEpVKhZ4IFCCkNRO3vetoQIJx8jQNW0rrlMlkqPvygx/8oKysjHrQUDrFEnvQzO1wWhp7Wxww59Wrw6PjSt1gZrHoLK8u6HDOJ2GCz6IEm/emxMTnFxRXlpaWxiRlImUTwM7twM0iuReObzjfBWo7QKMSC3DR+xwzXbgxKatN8QnjgXRQZLJ3KFRQoaQtTo/UQQB3i9un5ZV0dHTc4cack5OTx2POoKGmSNR98zdFaWnF7r0HDxyM1mi1N7+3hbCHsfHJ2LTmoCN5/4xKW7crY+eZ4pPsGpnaPDg0umh1eW9Pv05OXu2TGyNjChMymxWawYmJCZvNZjQaQZ+gvf33O8E1jHhtcvyigIENNZHBUM7lEwZa04wQljeTSwgqSWAZFsYD4DOYDeBoQAIWRGJxgz3XzeR4EENuYn8OBROewSSLS37oFcLZdi5PqQR7ziVZfjrzGtPczsTEBFWMMJlMWJSJEZRQKMQIqqGhob6+vpa8aATV0dHR3d3d19cnlUrRRQtNZBxVahzDp8iYoktpTRKVaebJOD9x9sBS7QEnzDmrK0v5JVarVa/Xd3T3fXo0E+Zxgm76RggQY8PHADIMkECA9S8A3RF5VSAiEHoidQ+2oxTw8CCS5cGstyL5tR19WGY+/4jC4CA87WbVKbPeiCY0TSaTWq3u7e2tra3Nz8+POC3AImiAeMMglUl0D1iMIBYRlQLXa3xM0jIiwHsg9QZ5Ov/IZIyhURTFgyhHEUCI4x3KXRudUV5Z09XVpdFo9u7dGx0dvfTEo2Z9BZwbzqoHUOuM0phqa2t/8YtfuLi4tLS0oB/nN/hTOgYT33wwDG4QSTUYDP39/S0tLYWFhRuiU/yAcCnAiQXiyGAWsTdgEc1AIAqgE6dPKOgCgeMvKIfAghOnEVh5gnECxzME0nlQOUu8PL3Je1hhhnJ/tyeltKpWLBajcD8KTg4PDw8ODjY3N//yl7989dVX6+vrHdtrNBpvGNP95q5wfvutPeCYTLwmp1NOXtnZ2Y8//rivr68j0onpuW89xELbgEb/tM6RqvUiH0sul2dnZ//oRz/y9fVVKBQU2V2k7V04/U8lKxAc6unpefXVV5999tmKigqKcd6kHydtrKNFsVKpLK5p+d1u0ErFbBpOaLRKjEZTKI+GhE6QzSABGJknAcPwIPJoqzZdxDJkSuJEbihWh+CHm07nI2lg6YEQePvgXIG+L3K5vKenp6mpqbS0NDc3lytICz7BezfSnqnElCViyXYuGhilk3iMycZnjWcwyz+M/cl+9ll2ZlFRcV1dnVAoHBgY0Gg0jtqSs38I0mFwi944dgI+3aYRsP7xj3+sWLGCy+WiyCRyR5w4xC26HPO8WwpzIi8hq7BiDVFTtK8siO0FCMkwWUQ5JtEzONFt25e/eGv9sgd/cP+jT/zit+tXrz+1av3J1Z+fXL3hlPvmc66bzrlsOu+y+bz7tlhGUAIDpDUSvZhsr1BI6mGxBWbwkc3gEZTEzq+n1ISluvSYFpygywPaWOp0OpVKJZfLJRKJWCzu6enp7u7umnr19PSIxeKBgQG5XE4BzsHBQaw5WGi44LRmYkYSmzltVpHL5fX19W+99da9994bFRVlNptpFQVFbef5XnAebj57YIHDnJOTV622UbXe2tChyK3ojmHX7D5XEh5TGHYs71h8GfdyQ1NbT1dXV11dXUFBwadf8MEMiDgBkbpzMAwCvdmpuAuCBJSgJEbpVIoWqmyjUtZEAdJpDyRC2Bi5YUUarQXxixD4ERw08FRGQ0NDb28vmnzTqqn5vHYL4Vjt7Z2IcV6KTZyTRFx7eyfacwqFXQuhgXNyDmPjkzVtsqPxlVGnioKj83acLsoo6SqpH5CpzTrT0MTk1Tk5ypLfyeTVq3Xt8vV7MrNKunA5ZrPZDAaDVCptbmn5YG+KXyQweShICUBmKCRXPcE1DD2SIENFeN4JJKBC/X9YWeA9TnKzUKxP/jk1gZC0FSzEiNGSXZMvmPXpkQy5XE79RBbOauIWjQSMK3Cpgho8jgo0GEHJZLKBgQGMoKaip67u7m6MoLD4WK1WY4kYrayiZe7TVjQnkqpi2NVW29gtapFzt84eWIA94IQ5v/2iYO6PmjMrlcp9iUUQrpEIDzma+CTAPBouepGR4FACw/IL5xNnZiiQwbwb0ECJDAhsTAqNkRK67WyeVm/A7C2ukOdtxl+9evXatWvnJMCiPYvz+NjYmNVqNRgMEomktbW1vLw8M+vy50eTPUNYUAFERNvhORrGcwXz6kS0EiRE2AQw4yTUWCpSt2ZHqn9kCrDTgAjL8mKCASEREAYp+T/sS84uKG5ubh4YGNDr9ega5aRy0ivifDOtB2iogSkMq9UqEol+8YtfPP3007W1tTTFf8N+nI6Hw+AGIRyz2SyXy4VCYVlZ2Vl25puRpCaOqHlA1p5YnniH8dwDiV4QKaFFDhMQPUPYfpHJuJj0Cedjfo3QmOCHAIgSpwQvJhsWkxEQsHox2V8kFrS0tEgkEipCOzw8PDQ01N3d/fTTTz/77LMNDQ0z2+soo43n79gi5/tb2gMzs2xDQ0MWi0Wv12s0GkomKCoqWrFixYcffkgT94tXLg/vR0cOKyrFOba3qqrq4YcfXrNmjYnIvFOg4pZeiyW8c+xzCqVbLJY1a9asXLmyrq6OTgiO4tW0w28sOKFQhF6vl0ql3LwaP5BqsDvBgAjt9vipZzqoZeA/QfeCwJmYPsNJckoKwi7/gHOgH7GAohvQwjI0OfYJ44nEUovFsiS10eilRGl0vV6vUCh6enqam5urq6uLi4uzsrI4/ORdZ7i/38WjasD/WytDuG4MIi3lG8H3D+esP8yJ52fk5OZVVFQ0NDR0dXXJZDKNRoO3HoUlbmwk3KJ7inbCNX06u7u7f/Ob3zz55JOtra10wnRCEbfoWszzbnFusVgsSqWyo6MjPb/UZ0pL1juUa1fF2A7UZK8QlldwEiMg/mceH911970PPvHzVz45sHo9mHGuXn/KZeNpxtaLHlsvumw+77L5AiMgjhGU4BkCws7wH5Pttj0BLDOYbABQSSofeAzBSYwgVvzlapVKdSdQExwf1mNjYyMjI6gEYDabjUYjRikqlUrp8FKr1RqNRq/XGwwG5B/YbLbR0VE6kyxAajU2Ew07sRQSw7CZSGdfX9/OnTvvu+8+d3d3xzIs5/Qyz/PA/B9ugcOcI2MTMrWlrl1+JL4i4HDu2l0Za3dl7L9YFp/eKBSrrUNDer2+v7+/ra2toqLidFKabyjIOazZkYp/ie+JYIrUBaW0OOlhoS0U44bxMP2F4ZZvOJ8aomN5GRao4Q+p8IY/MzE1F6icUqnUYIDE19IrPpvNUJycnExi83bvPbjvwGGtTj+bn3zrNhKp7OChY7v3HswvKPrWjRfXBlbbaHqxaP2erH9EpW3clx12rKCwVtwkUjrdOmd5HSevXuXmtAdH59V3KhDmHCIzgEQiaWhofCeKjTKzkKwmJfKYuCbV81zvUOBuwtoBisY4yNUG+JMJhG+/SJglIBAKntKnRW0Y+BXHPQAS4HafshAO4YxCrdjHX6TKZDJcU4yPjy+o1cQsu/TGNqMRFM14DA8PU4V8DKK05KUhL61Wq9Pp9Hq90Wi0WCxWq5XagVOAk2Kojqd0uUx0hl83aJszTzrHnTvfO3tgYfaAE+b8lutCcyXoIKVSqS5XtviE4VIZ9I58SG4O6llIVS9M2QGw9PUg/4E42NQb3whw2oPyYTL1Y2hIBM3hJ1jwYlfzYLIzKtocp/t5m/H37NnDZrPn/HCUujE4OKjRaHp7e5uamsrKyjjJGX/7QuBP/E0JJAxCKN52dhrU/mAYTXqMA6AmsDmxOIjnF8Gn1YJeTPDXIY7W7Hd3cONT8+vr67u7uzHR8Otf/9rd3d0Jc37LWL9Tv6ZBBiYvrFarQqF45513nnjiiaysLJrinytNLYw/UKcCDWvFYnFdXV1uXt66I1AJgQtCrKJApjIwmMP501SvkaNJ7hoeIwiYTESfVuAdBlqO9v8CE0HLMYwPNwiT88d9KQWlNUKhELVBhsgLGT/vvffeY489lpaWJpPJ0H5Pq9VSKJT6JDkxztt1l9AsGwJRNpttJtJ55syZ5cuXb9myRavVYt5waSCdSC5ETqcj0nn27Nnvfe97mzZtQhe0mwTebteVXQjHRSIsNVrTarUbN25csWJFbGws0oVVKhVOCNOI3Td28jiYR0ZG0Ammp6dnf0I+VeG2S1yQpz+GSXTqYwSBr6RXCNu+riZvqMgtps9wY6whQ5gTBdbwW6ptm13ZvlTN82hhBBbTDA4OGo1GlUrV19cnFAqbmpoqKyuvXLmSm5ubkZFxLjF559nkLccEnx7g/GUv50+7WH/alfjXvex1h7mhp5JPxKelZGTn5+eXlZXV1ta2t7f39PTI5XIk9U4rf7mxwXDrfkXnTMcqaZxAFApFW1vbiy+++PLLLwuFwmmjes4D4FvXRueeZ/YABlcWiwWvckZ+KarpTLGIQO7CPSCeEZToHZzksv7E//P/ud51z31PvLzGZf1J9y3n3TefX73h1KoNp1atPw1CtZvOu2y56BEYD5goeJGAqAYWpLpsi7N7A5NkH+UleIawefm1SqVycHBwSRZSTOtzmlNDQRT0eke802azDQ0NDZKXhbwGBwet5GWz2VBNBO3eEQWcxj+YdqDb/k86peDUioCuyWTS6/WOBsAymezUqVOPPfbY66+/Xl5ejkq8zij6tl++W30CCxPmvHr16sjohEJj6RRrcyt6EzNbok5dCTySu/d8ybHE6swSkViqHxsbx3hMoVB0d3c3Njbm5+czY3jewNxCJSEon8U1Jua1aFEa8RtiIaiJKSxPEphh3MUIZrltj1+95RJUhJB5EhU7cLb8U/iFnYfPFhUX9/T0qFQqNGyafxmzWz0wZrP/gQEpunLyBWlzla0yGk3Rx07t3nvwUmzibM5hcW0zOjaRU94dnVAZcDgv+Gj+heR6Tk5ba7eqT26wDY9PTMBzaXG1aD7P1jYyfl5Qv+N0UadYe/XqVSSi6HS6/v7+urr63+8CZVpIRoVxfcMg1+pJKu9B9p8UNHgRRNMnHGTD1kSleMMGbFKECugmLNCI6ZIPUejxDuMxgpJ8w2GfLltjqYs5TgIewSxGCOtf0RlSqdQx7z2fvXF7jzUtgpqYmMA8Dw2iMGSifzF3Nzw8jPZ2FN3EhfzXDfv8yt7jSdVa45x50t3eTnMe3dkDs+kBJ8z5Lb2Ey7bR0VE0eunu7dt8Jh+lPEAwjZDxEbZ0FFijdfEo8eG2PR6LiD2DwYHZDl2QLB6tdkFIDx3aGcGs30bwpArVPC+Sx8bGBgYG5pbKSfsXK6wRLcZIuqmpqbi4mCtI/eywwAcEOdGPk+sbAc9CL1J27Q2GhWhkzfEHgXiBTxjE3Iji+ITxfcNBMdh1W5zrtjjvUO7vdnAEWWAcJRQKZTKZwWCw2WwDAwMymezrpn56hs43d2YPYGRAFTL1ev3777+/cuXKjAzQ0KCyWqjdSk1zb7LeHOu20AtBJpO1tbWVlZWlpGW8HwWe7SRGTPIJB5Nakq9PcN0Wj++9QqF0DlSypyzcGcFJvuECv4hk71COf1SK3Q1lexxhQkM+jpRQ8Pwj+eys4paWFrFYrNFoUCLMYrEYjcaPPvro4YcfzsnJ+br23pnLzoV2O2CKjVb8OSKd6NMpkUh279593333XbhwYVrifqG1ZZbnQ+9N9BqkSCdtb3R09H333Xfu3Llp7XXO9rPs4a+++oqmbikalJiYuGzZsp07d6IqDop1U/Fquqaa/SGmbYkKGcPDw+gEIxQKNx1Pc9se77oNZi3/yGSUu0DzJ58wnn8U6Nli7gwe/cTJG4uLMdZCQiem4bBMxD8yecoT3V5QjCEWchE8Q9gXsmq0Wu1SVXqYhnSix61Wq5XL5X19fZ2dnU1NTbW1tRUVFUVFRXl5ednZl9MzMlPSMpJT01PSMtIzsy9fzikoKCgpKamqqmpoaGhra+vu7pZKpWq1mpa/UNbFgr3dpo3twcFBg8GgVquVSqVCocjNzV25cuXbb7+tVCpnmgJOG7TOfy6WHkCY02w2I8yZc6XMjzhLeTFhiQHaGEEJjMAE75Ck19ceW/HDp+66Z9nP31r3+rrjq9efdN10xm3zWddNZ103n3fbetFt65cuWy66bbvkGcLyCwfRNgaJvrCWAh00UMYNJyKEBLyZ3Cs1zXeU0RQdG3TmcYQ8x8bGRh1eY+RFnyM3GUvTQ8/bGzqrIHsVaZ3oS0rnFplM1tjY+MILLzz44IM8Hg8F5aga5wJHc+etJ5fYgRYgzHn16ldj45Maw9CVGnFselPA4dzPdqav35MVfqLwcnl3t0Q/OjZB7VqGhoZ0Op1EIuns7KyoqEjPyNwczUejJcQ8sBwfaZ2IbmL6Bf0CaDoL34CGUAh79ZZLODei5u2aHalYuwbx27aLzN1Hd+89+MWhY/kFRVqtjsZjCzaiuEUjdmJi4sTJs6hY293dO1dHGR8fjzl1jjBEj9yizN5cneqN7efq1a/0ZtuhuPLgo3lrd6Zv2Jt1mlvHzW1TaC22kXGngO039KpEaTrJrgk/UWAbBuqkI8xZX1//0YF04FuDQRKPYTcUA243aOYxYS3mQRQskOvpFy4ARbEQ0BjzAEn/JNft8Z5Mtt8UsxPFxiB8IsZthMnNB51bgFEJMTSEwzyfhzJjNpvtjmJzTrtGMyMorBujQdTM8GmW4URTp3Lf+dKJCSf2P63Lnf9cyj3ghDm/5epiTnl4eNhkMsnl8sLq1rd3JvuRDBo1G0CAk1aoEU0kYBxitQuUq0ypTaKblJ33SWhb+C1osTpQPJGCkFTYZDQah4eH542R093d/cADD1y4cOFbOuWGvnYEjDGSFolENTU1eXl53OS0LdE8PxCeBSEUnwg+2jy4Eect6C6oDCKC7+B7D4VFECiDSScPdYDJEzfpky8ErNScioqK1tbWvr4+NI4aGRnJzgY6wp0WN9/QVbrjfoQJCyrVaDab9+/ff//99+/du1cqlVKM02QyzcRRbmZEYaJ/dHTUYrFotdqenp7GxsYrV66cY2e8t1PgCcZRU6YIZLS7BSRg6t8rhINxJCwaifcJunj6RQje2JEKVvAgMGL/LVlYAoncL4y7Nza7oaGhu7tbLpfr9Xqr1Yosn3379t1zzz179uzB9iqVStTmndv23nED6xY0mIa/tNbPZrNR5I+q1/7rX/964IEHkpOTBwcHHVH5W3BGt3yXeHtSZBfRGtTBQ59OhUKxbt26733ve1wudwm095Z36LUOQGX5UeO0sLDw0Ucf/fjjj7HoQalUolbtNG3Pm6k3xyPabDa9Xi+RSNrb2z/eL7DXdpCFNEZTlNqOiCZyCBjBwBvA6g1GUJLb9nhSCAVLa1TRYISAgCTOn1gRhRsQboHd+9OLyTnEq1Cr1VarlWJ11+qbRfwZThc4V1DDaaPRqNFoEOzs7u7u6Ohoamqqq6urqamprKysmHpVVVXV1tY2NDS0trYKhcLe3l6JRKJUKvV6PTWcowqTN/McnIf+pY/4maRwhUJx6tSphx56aM+ePSaTiRrpzTJrMA8n7zzEDfTANDZnUWm5XziPLNM4jKBET6iTiPcIiPvVH0K+9+APvr/yx8//PuD1z2Ne/zzGbdMZ9y3nV60/tXrTWfetXzIC47yCE922x63aeMGFsJGQpoDlFF5MNi7cyGKE2HwSpRlGCMs3lNsh7LpDRGtnXiCceWi4gks/lHulfyntgG48cz8L9hPaNLTUwokF3Tq1Wi1FOhUKRX19vY+Pzw9+8IOTJ0/qdIDiINI5z2Y0C7Ynl9iJLSiY8+rVr8bHJ82Do6J+XXmj5FJq46HYipDofGZ03rGEalZ2a5/ciGw3CtsjoVOj0fT397e0tJSUlPBTM/+6l4Wi3whPehBWFtqgYB0/hl5oK2APzIgHE/puYg06NS12UDhjbzrEij4OXMPdew/u2XeIxeZJJNKxsbE78Pnb0tqO/fBlbMLc4pF8QRruWaFULbHbjTZnyDaWWdIVHlMYEp2/93xpdEJVUW1fk1Cp0lmB1jk5Sbd0vqE9oNBYdp8t4eS0WW2jM2HO9ccA5sSFmL1MYcpYjdzLSaTaHrQJ7Ys1Sv0kqzO37QkuW2NB94LJBbGxIELuDAF5f0Yw5HIZIfCGJK/A6dMzhH1SUCKVSo1GoxPmpEERhknf8JduOZtVWFu3+hSnVqIy0THgfOPsgSXfA06Y82svMU4fuIwZGhrSarV9fX1fsIqpEAetXPOPSrFjEsGQXwNiAcHnqKaHXYWSpN4QBGUEw0OCEZSECrdAYiCoJyOY5UrSdl5MTvCXRUq1Zj6r20ZGRkQikcl0SyZBmmwaHh42m80ajUYqlXZ0dFRVVRUUFKRnZBw8x3o7EkQPvEM5ayKTkbXpY7cvTYISbFADBhwUO9YnnO8fmeIemOiyNdYrmL3rbHLm5dyKigrkq6lUKmoc9dJLL3l4eHztlXZ+cQf3AEVQkBvH4/GWL18eFhY2MDAgl8tpip+ae1N/ndlEFd/Qr3g7YPbZZDLJZDKhUFhTU5Obm3siVvDmjmQIMSMEhMFMcP1QDh38GBoyglk+oRCGIksJItEQNgoHTbmnEKN4EkEGn8ooKavo7OyUSCRqtdpkMlksFpPJdPny5RUrVgQEBPT39ysUimntdUxk32R7v6ErnF/Nvgcc82uUf2w2m3U6nVqtRuRPKBS6uro++eSTdXV1VqsVkU4MlGd/oIWzJd4peJ+OjIxYrVZEdml7u7q6XF1dn3rqqdbWVqvVitJweJ8unFYs2DOhExHmatvb25977rkXXnihtbUVJ0CVSqXX6ynGiUVXN5mHok4wNKH2pwNp/lEp6HGOfxHLRKVZKpvmHpjoui2Oop7IqaKoJ36OG9tpB1EpU5xOKIqiOTiPoKSdcVcUCgVC40s16ew4XSDxCB9zRqNRq9WqVCqZTNbf39/b29vV1SUUCjvIq7OzUyQSdXd3i8VifA6q1Wq9Xo9A4PDwsKPI5KJ4LlC2Cg5yFJlENEIul0dERCxfvjw2NtZisQwNDTm1rxfsZDXLE6MwJ3pzVlRUfrQ/2RdV12AdEee27dKza/5597L7H3riF7/5216QqP08ZhVQOc+6b72weuNZj+2xXkGJnsGJHkTblhGS5LY9DioqwJQEbAWoeI83qWdFH3TQ7AnleTHZfzmYjpYZ86zHM8v+mbfNHHNw13w/b2dyKw5EZ9dvELBVKBRisXjjxo3Lli1bu3ato5sAXUrcinNz7vO29MCCgjknJq5arCNdA7q4tKZ9F0o3H7i8+cDl3WdLzvHrW3s0wyPjjqQeGgcODQ0ZjUa1Wt3T09PQ0FBcXCxIzfj8EJvodUPuBf01wZAvIAEWoSQhgzpkU6AI6GfYMdHARAREMdnlFyHAXzGCEkNPCQqvFNfU1KZnZKFY6+69Bw8fjSkpLb/J8PK2XPqbOej4+HhCEgc5l3qD8WZ2NfO3NbX1CHM2NDbP/HbJfDIxeVXUrzvFqd20P+vzPZk7TxcdTaisbJIoNBbbyNiSaeYcNkSusWw/lJuY1TJoG3OEOQcGBhoaGg5cykKDD8LRBBgSl1SYffUE7T02/GWy3x3DlccAACAASURBVNiZhl5sfuECXIsB1zMw0W1bvOv2WPeARPeARA8QsIX0FFhyBiV5h3GByglqiOBT5hUKZmQFFQ13pjfnN1zTa0ZNjh9+w29nftWvMB2OrTBbR2Z+5fzE2QNLtQecMOfXXlmcSnABYzab5XJ5e0fnH/eno/wsSqghwICZOMDn7CteZO7bfQgw9eYZwnZD805C3HTZRtbMxE7PTtIihpSwW2Le6RnC/mBfWmfPgMVioWmXrz3XOfpCKBRevHjRbDbP0f6m7wYj6fHx8eHhYYvFotPppFJpZ2dnfX19eXl5Tk6OQJAccpz7+yiWH/jfsBhBRG6OKANjh8PTETrKLkPnFcJ+bwdnczSfk5JVVFRUU1PT3t7e39/viHEu1Qzm9M51/vs6ewBHI2bEhoeHBwcHS0pKHn744bfffhvtxxDzMxgMyGuktyHODNd5tGtsTgmdVCkIUf/c3Nyjl5LfiYJ8GaEps3zD+OhtABl8Jsc7jEsmE1hhAg4ahu6bHPdAWHbiUtMtAIrp3LYn+Idzw8+ml5WVNTc3462BJqMWi6WsrGz58uVvv/22I6aL7XV0dpyr9l6jC5wf3VAP4NB1RP5MJpMj0tnW1vbcc8+5uroODAxQAsFiRzodmRPYXpVKhchud3f3Cy+88PLLL/f29iJQMSdo3A1dnEXzI7yv6SjCWejPf/7z448/Xlpaip7EiG8hgW8OrcUQ5rRarWq1WiwWNzY2vhdl16LHMjIvJgdrxTB9hlkzXGA7+kKBYEaEAEVuHTFOrPPAwAwtP5FMAGVkBCVlBLMiLhXKZHLqBbW0ZzkaeqHwkc1ms1qtWOmi0+k0Gg29lfC6K5VKdGM1GAxYE4PTyDSAc1FgnHhD4uznWBqi1+ux1V1dXb6+vk8++WRNTQ2F850gxKKZyGacKBpk4PQiFAqrq6t3XkgHxdrgJPeA2NWbzv3M/aO77rnvsV+85vL5cZcNp902nXXZeHrV56deWXtiFcE4GYHxPpB6g/JKLybHP4KIZIAwD1SyAsZJdNtgRiJlZN6h4F/lHcb1j0peE5WyM66wt7dXo9Fg2Q2uQWacpvODpdADdB0xU8BWpVKhOLZUKg0PD3/kkUf+9re/9fT0DA0NoSkpTjJ3GqizFK7617RhgcCcE5NXh4bH1Hprfbsiu7R7/4XS0OMFYccL950vZV9urWyWjoxNTGsBHcbo0GQ0GmUyWWdnZ11dXVFRES85dcsR9m938H3C+YhfYp0Hohr26jRC5yI1uHafTtiSLEhpsRooXoZy347kRp0R5BcU1tXViUQiqVTa3NJ64cv4vfsPIyAXG5cokd5BNkP9/QPY9pTUjGnX5eb/qVSqsVczs3Nvfm8LfA9SpfkUp3bH6aKQ6LzwmMKkrJbi2r7uAb3eZBsZHV/gJz+fp3f16lcVTZKImCus7NbJSVj9jI+PDw0N6fV6uB+bm/lZ+aCBEc4noQ7LIzAJvDZDOWDDSdT7fcMFQNcJSATx6qAk0OEL5/lHJuNs4EfWZVgVAeoXIXY4E6FNwuZko+8SWnv+YX96cwtU1prNZpQwXESLi/m8cDdzLJnKfJZfZ7WN3sxOnL919sDi6gEnzPm114smhlBarb+/P6eklhICKIvfg0CVOJujV4GdTDBV/IKwJVhykto3yifAPWApHPFtBt1arJdB9qdPKDevug0p/Kjj8bXnOkdfcLnclStXSqXSOdrf9N3QvOrY2JjNZhscHESks7u7u62trbq6+sqVK5dzcjjJ6SfiBBuPcN+N4kBUTUxMoU+YHK8Qkmhgsn+7I/mzQ/wjl1I4KVkFhVcqKiqamppEIpFEItFoNEg7oLjU3/72t3Xr1k0/G+e/7+AewKGIwAlinHq9/pVXXnn66aebmpqQxqTVag0Gg8ViofwVzEfMYfiFLBNHpaC2trbKysrc3NyLrJSPdoEkiBcTRr5vhMAvAmxo3QMSvZkcVxJZUrsUwiHgEDtbrk8YHy3uPEPYb4RxjyVlFZeWNTY29vT0KBQKnU5nNBpNJpNKpVq1atWPfvSj+vp6TG1rNBps7zSM8w4eJgu36fh4wnwuchwdkT+ZTHb58uXHHnvsvffe02g0S+CCzmwvZaTJ5XKZTJadnf3www+///77arV6CbR3HkYeBX6o7ymTyXzwwQfj4+NlMplCoVCr1VgS4YiUz8nsR3EIlUrV09NTV1f3xz1gyI2xE60IRjMnvwgBxl3/P3tfAhbVdfbf1KYmmlijzVJtkzapJv26pEmbttkFBNySJp9pki9N/22+LmlromZRdhA1CCIgiIKi4sI6AwPIzrDv+zIswzILs+/7ygDD/7nz4vmmY0CUmWEG7n18fIa5d8495z3nnnvO+76/3w8+7DpC2nOsAHCclvkQEzvHuDFuUiqBkOf2wKxdR0hAmAarrFmEQWAWcE5+lVHH4XKtN9V2aZoTOu7uboFWX4jy2mg0GgwGnU6n0WjUarVKpVJaDpXl0Gg0Wq1Wr9eDRx4CnDBm3NFQ1hOIwWAAULhUKoU4RH9//9NPP+3p6SmVStEbH4903t1IW/JfwfSi0+nEYvHo6GhHR8eN0vJdIZleftdf/yxl0y89v7V6zZOv/Pfrn559/eD51w+cf/2zC68dOP/qgQseX1z2+PKKx+FrHpi0ebqXf7pXIDYpWRSqiDeZeLBtGhL6xaKeFu8eplcXTtp5JPeNo3nppS1MJlMqler1+pXJwbjkY8CZFYC5BeZVo9EISSRKpdKawJbH46Wmpq5bt87T05PBYAA9DNCl4POMMzvLofdykTCn3jjJFqha+zgnLzcEJVR+GlHsH1dxpaCnqpUhVxmmgan26wyBkt60Wi1ICw0PD3d1ddXU1BTcuJFwJeedcAvhpCUXH0NlhWDZabD0wuQ5LbrFwCoEiemwRYXv4fOfTxBSCYW1tbWdnZ1UKpXD4UilUozwWaVqbmk7ETUb6YyLP1tWXmk0Ln/g0eTkZNJ5TD4z8mQcnc74um5Z1HfT09PRMQkRkTFpGdmTky4X6puenqZSqS0tLYtqpNWPDcbJ9gFu2Nnqz06WHoopD0msIpYPtPdzxXKd1VUr/ePk1HRrP8f/dEVzH2fCNAVhToPBoFAoMEjP4GBdff1fTuZhiVxBmEAYPOzAFuYdRLhJVJvh5Y/hebYHZlsc3ZirytMfI6rdgYVCsSWTjwWyAglhXha+Q8gM2x2OcZXtCidh/46QAi6Rh4aoAoHAml9npXeSvdsvlGquFPQo1AZ7F4yXh1vAdS2Ahznn7BvYukBqm1gsptPpZ4i1XgFAJo6l9MIyDhAGQGALaSxIjN3TL93DEtrEJKMsnLSzwdFbhaNuinfCywMBRmOJjVKpFDKCFyOFNWcj//OE0WicmHBgogdytIEUImA6JRIJKEUNDg52dXU1Nzdjwc6yshs3bpDy8lIzck9dJoYlEQMSc748nRWUSIhMIV7IIOUVFJaWllZVVTU1NXV2dvb399NoNA6HYx3jBECP2Wz+17/+9cUXX/xnW/G/VrQFIL4I2A6tVisQCN57773Nmzc3NzcjGJNcLrc7jMnG6EgVT6fTQeiRTqdTKJTm5uaKiors3Pwvz+S+dYTgZcmVm1VDCcUC/yDPiVGoWdAGMBftCCFi0dCwXA+/NC+/a389mZNOKm5oaOjp6RkeHmaz2RC4lcvlfD7/o48++t73vtfa2urM9to0H//zri2A5lLrUD1E/pBIZ2xs7Lp16+Li4qx9au4LHUDOxImJCUhNkMvlEokEtffs2bPr16+Pj4/HAxULGVeIyROMWVRUtGHDho8//pjNZgN/NaREAJZ9cnLSjt5YiENoNBoU5vx7bAHEMm8SbmNLrF1HMBIkyCEDOCasuwDiCaspQA94HE7zCSbssuSCWKbHWS4NWJhhicahObPZYxbq2u2BWbHERg6Ho1QqUe6wO0bvFtLRNteg52jScgC+E0KeBsthtBwTlgOuAUU9mHPc1Eo2Eyak2cnlckCy8ni8GzdubNiw4dNPPxWLMakIkNCze2KTTV/gfzrCAuCsB3g6nU7v7u6urq7+W1TWawcvfP9572+tvv+Jl97+3cenX92fhMU4D154/bOU1z+76Hnoyna/669/ecUTI6dN8zychglKWXJPwdkHqyxP/3TvwKwdYZimAICTdmJcbZhTDwN0hhD/EEFq6ujjcDhyuRxUptz3neuI3ll+ZdrMLWh9gjg20BKloKDgRz/60a9//eve3l54seLCEMtpPCx5mNM0OSVX6Zk8RU07M6u0PyCe7BdXcSy55mxmW207UyjVzG9t2JDCvlij0UgkEi6XOzY21tPT09DQUFFRkZuXfzgha294pndQFlIQsJokMV7K3wdffyMMi3D4hhB3h2OREixfLZT47tHM4xdyy8rKm5qaenp6RkdHuVyuTCZDD8L09LREIs3IIp6IigUA4qXU6ywWx75alfNbwPlne3op0Nir1zKmphyiInn1ekZEZMyFi1c0Gq3zGwh3FAgEJBIpPz8f/gwLC9u8eXNmZuZvfvObe+6556GHHrJjxaampiua6fHXW4LOkA/Flp3JbCNUDHZTBQKJRmfACWxnLT3EkIQn1ZQ300yWMOfU1BQIigkEguHh4ebm5ojUIt8QoJYlegVkYnpqfuk3d1IY4AR0lCyC5ele/qAshlH6W7Zalg1XMNEnGAuRevpj2fnAarszjOQTTNhzLB9zWIXN5rBeLmwaHR2FtTcAVNx0o2HHYWz3okQy7ZnM1skpa7Zyu98ELxC3gGtZAA9zztkf4AwyGo1qtVooFA4PDwemlHkcTgOh9Z03HXCw9cWS2m5qRlom/QzMN3czuomBNS2fPf3SUbwTkAqzpyx0H/B6AGccLA0PJJWLRCKU3jJnXe10IiYm5oMPPrBTYXMWY+1ls8Yh8Xg8BoMxPDxMoVA6Ojqam5vr6+tramoqKysrbh5kMrmqqqqurq65ubmjo6O3t5dKpdLpdA6HIxKJEL+o9dZxznrgJ1aqBWAEQqwd4ovR0dGrVq1KTEzkcDh8Ph/k6CDGaTQaHUotBcEGAFQplUqBQMBgMPr7+9va2qqrq4uKii+k5X4Wl70rJNsnhODln+kFTM4hWLoc5r4PycH4bK2A4J7+GW98cebMVVJxWUVTUxOFQoEMAJFIBDhOqVQaGRl57733JiQkQIzTpr044ae7PBloLgWRV41Go1AoxGIxQJS4XG5AQMDGjRtLS0uRK8GtCfRs2qtWqyFQgdyIAQEB69evJ5FIIEqKgnPu0qFOqyfyZwGyjcfj/exnP/Px8RkdHYUYp/X7FG077bXzvDXM+VkiFubcdYQEwcvZvA1LbBKAm4DX9A0hYlDOwCzEjQHixK99cfXVz69st6SLWejuMy3SxURPgBeAoJRFMAZWWdsDMi8VtqzMMCeMMWvXPEQxAY1kHddEgW179bvThvdcN7J+9YNMqUwmgwmTxWKFhIQ8+OCDBAIBF+mcy4Bu8T2sqfR6vVwuHx8f7+vrq6urC4+/9PBTz3577Xf+a88/X/p3wsv7El/59Nyrnya9duD89sNXt/td2+6f5uF3zdMvzScIkx3xtbDRAvLbOxgTpkLaVKCagSVhhOb6hGAiAjvggwW+cPwaeXhkhM/nAyG2W79w3aK7XaeSaHpB6zGVSmW9ROFyuZWVlVu2bPnZz37W2tqq1WoBK49ScpfNTOs6neLMmix5mFOuMrT1c/OqqAGnKz4/WXowqjQipa6ylT7Kkk3cQlT7tZZBYxjS0GUyGZ/Pp9FoFAqlra2ttra2uKTkejbpxPnsPx9P9w3OBignBD98grL/HHYx7MTpQ1+d3RGMZaphUgL+6f+OISZcy88pKK6urm5ra4OsdB6PB6LvwJaEFhsGg6F/cCghMRmCf6dizxQVl+v1yxOBZJyYuJ6eFREZc/LUaalM/rU9svgvy8orIyJjTickSSTSxZd2pyXw+fyAgICf/vSn995778GDB+HngYGB3/72tx999NE1a9Z88sknBALhTou97fViuTa1oCfkbNWhU2VfnipLym67UUtl8hxl5NvWx6UumJ42k1voR5NrOwZ4MzMz8NQbjUZIbqDT6R0dHdmF5LeOQiSS6Omf7uGXBrpIXv4YpBtyvHzDcsCnDWkNNowXFiYMDPAN265d4XmWFNVcjJ/MQofra8lA/f2xvNauXiaTKZPJdDqdc8gLXao7nFMZgURDqBjAI/3OsTZ+FxexAB7mnLMjwA8I6S08Hm9gYGDfmWIEKdgRmoMgBYAY8L6Z9ovCnDDvY39ioCssL9g6qOlj2TkDURssB+ECQB7Apvp/ogpgtwxJwQ7dApnN5gsXLhw+fHhOi9jvBLxTUYAHmNMQ6SKHw2EwGCMjI4ODg/39/b29vT09PV1dXd3d3T09PX19fQMDAyMjI3Q6HXAnYrFYoVAAYgn0w9CKGar829/+1svLy37Vx0tybwuggQeOzs7OzkcfffRvf/sbz3KAJhnwHjsB0gHuZoi56vV6pVIpFovZbPbw8HBvb29LS0t1dXVpaSkhN/9Icu6fo0nvHCO+GZ7ja9lDzmbRBmXtDM7676PEP0XlHYjN/uCv+/7+9783NjZ2dXUNDQ2Nj4/z+XyJRKJQKFQqlUKhaG5u3rRp0x//+EcOh8Pj8azbizacUCv37uaVUXvklZiYmIDxLJfLRSIRiFZSqVQPD48f/vCH/f39CKLk1o5XaC9I6qJAhXV7X3nllaeffnpgYACJdLp1e+0+ilF8C3L29Xq9SCTau3fv448/DthugUCAYpxA/wvvUzvWBJHWikQigFtFXCkGTlqY02BNBasgCHPezBEm7j1ZBuFMwG7C91iu8aHroLuJIqA7QnM8/dJBSw9FTyEs6h2UXVTfDUowMMmv2BkPGj7X/3bsdBcpymbCVCqVMpkMJhA+n79r164tW7bQaDRcpNNF+usuqgF7N6PRqFAoWCxWf39/SUnJiy++eP/aB3/6xr9e3Z/02oHkV/cnvbo/+fWDKR5fpG77MtXj0DVPv+vbAzJ8grO2B2JJEhjxGiY3hQE0fUOJGEY8EMOI+wZjJI3w2ceCddgZmrsrHNOc8w7Kfu+rvI7uXgaDIZFINBoNzlh7F93n1j9B65PJyUnY2KJkLKFQCFuM7u7uZ5999vHHH6+vr1epVNYc+zjw1617fwnDnIaJSYFU008T5ZCHkggdn58s9YutiLnanFbUN8aSLhwmCCsBa5IYoP9hMBhDQ0Pd3d2NjY2VlZUlJSUkEulaBuF4cva+GMIHx7P2Hsn8n6NpX0WdhvDkvq9S9sdmR17IyibmFhYWksnkhoaGzs7OwcFBBoPB5/OtcZzIY4N8XDKZPCOTGH0qHko7c/b86BjdBTlXFzlcGQwmqHLeKCxdZFHz/Ly7pw9IcVlsRylS3Xp3o9E4MDDg7++/bt26NWvW/PKXv4yPjzcYZsPVgYGB3/jGN773ve91dnbe+lt7fSNT6tKK+o4l1xyKKY+8VH+e2NHUw+aJ1RrdhEWQ0l73cb9ypqbNVIb0UEx5Xde43miCpx7UxBQKBZvNplAojY2NX5wr3HV0FpDtHZiFsdda/rdszbJBqtwHUyvP3R6U5RWYZZFPwuKakBMGBIewj/Oa1TXPtSyiMBmmnWG5lo0eISm3bnh4mGvREEE+N/ezqcvXWCLX3agdMRhdjrna5S2HV9CNLYCHOefsPNgq6/V6hUIBmsx/i8nHkASW/DXwmsH0jZSfYKMLwE3Q6YQLLK+BWdo04FjzCbYIMlsShMHvhmW9WchsIS0O2HHfDCPyeDylUumEMOfMzAyXy0WrkDntYqcT8FqFgBPisAXBJMiv5/P5XC6XxWIxmUwGg0G3HAwGY3x8nM1m83g8pBwGAU6j0YhAnDZ7xdra2oaGBjtVHC/GvS2AYpxA1djf3//DH/7Qy8uLTqcjSU6FQgFoMBhRMFYd12zkGYFIlUqlArIgOp0OG8uWlpa6ujoymVxcUpKZW5iSWXDmWl7clbzoy6RTl3Ljr+ZdyCjIIBWHhR974403Kioq2traBgYGxsbG2Gw2RCyUSiVIr1Gp1Keffnr79u3QXohxyuVyZ7bXcZZcmSVbO+51Op1KpUKOey6X29DQsGnTpvfee+9WBmY3NRdqr9FoRO0VCoXwymhra3vyySfffvttGweio59idzGm9WwD1jt//vx9990XHx8PWHaRSCSTyWxGi31bB0owIJ7HZDL7+vouEsv2HMFSx4CiFpZJO0Jz3vyqEPSfsHVRYNbrX17bdui6r2X5tOsIaXd4HsCt9hzNRzLnENe8ya2EbblBFAokP3eH5+05VrD7SG7fAJXP56vVasDr48PDvl3syqUhKDOwiahUKqlUChNIa2vrli1bduzYweVygfsaIcKRB9aVm4bXDb0dQGiKw+FUVVX94he/2Lx585f+wdsOJL366TmQ5Hz1wPnXDqZs+yJ126Gr3oGZmBhnQAbmy5tlXSOCEpVl5sFkArwDMUpGDK9g0S6BPRrGVRuWC+Lou4/knCfVDg0Ncblca8ZavFNWlAXgVQKBIpDqhEinRCJBkc729vZXXnnliSeeKCsrQxkV+FTj7uNkqcKc5pkZrlCVVzl0ntDxZXTZ4Zjyo8k1F3O7hpkSudowtxbn19vbZgDrdDqFQiESiTgcDp1OHxgY6Orqamlpqa2tLS8vLykpKSwsJOXlZxFJadm5V9Iyo6KxSGdUdByBmFNeXl5TU9Pc3NzZ2Ql7UmDestli23hsoFqTk1ODg9QzZy9ApDM6JoGUd0MuV3x9pd3w28nJyeQLly1Qzngmk+W4FjCY4yctAeP2zi7H3cW65OLi4jfeeOPRRx9dtWrVe++9V1paKpX+B5A0MDDwnnvuOXbsmPWvHPHZODFV3zUen94alFB5MKo05mpTRnFf/5hIbzRNTjqEItgRrXBEmU09rKPJtVdv9MLzDpsyo9GoUqmAt7ajo6OorPIPx3IAjbMjFPvg4ZcGgJzZhNSALO/gWQU3C0Nhzs4juTuPkCAbzMM/fVahE9PszNgekIlR3QZm7QzL3RmGZYb5BBP+efpGbx+FTqcLhUKNRoOogxzR5BVeJouvLK4bwTcyK3wYrLTm42HOOXscJn0gPmKz2T09Pf8bjVGKw+QOaE4vC+e4ZcrGdr/gj4P/sQCnZbcMJLSgqwfOO+S2A7oPn6DsbYeuw9YaCvf0zwD05xtHiBwOR6FQ6HQ6oLWZs7qLPjE9Pf273/0uOTl50SXdQQHgkgApHZPJBAJROp1OrVZDlr1EIhGLxaKbh1gslkgkMpkMoGnWAU60Rbx1xcxkMlksBy4i76DB+KVLagEYbzDStFqtXC7/y1/+8sADD1RWVkKMUywWy+Vy52v7TVuOyclJyKcDt4hQKGSz2WNjY4ODgz09Pe3t7Y2NjbW1tVVVVWQyGYicyWRyZWVlTU1NbW3tyZMnf//737e3t4+OjrJYLABxKpVKtVqtshxisfjDDz/cuHFjeXm5dXtVKhXCcd76+Cxpj+E3v70FkFcCac0iZDygB0gk0gMPPBAbGwsZM7CRcOuOtglUKJVKax8igUB44IEHjh07BsqLy6C9tx8EC74CzYGQ5zE2NrZ58+Y//elP1lh25IRCb9UFF7+gC9HiSiqVstnsgYGB/LKqdyPyALgJpBe7wnIB3+kdlL37aL5PMAFSx0C8EyKX3phKcSbaSKMoKUo4Qwu2PUfz9xzN3x2etzs8b9cRUkBKOY1GA0UAtK/Gt38L6jz3vwhNmIhb0prrOzk5ec2aNYmJicDoAAQhbj1bun+P3UELYCmFcAkUCuXll19+6KGHYmJiMjIyPj2e8toBDMf56oHznl9e8fjyiqeFqNbDP207BtacxStsD8z0DZ4FJfjcTD/1CSHsDs/faQFuevplwO4PXHU+QRh17b6Eotb2ThqNJhQKccbaO+izZXcpvGQh0omSF62lxLlcLo1Ge+WVV7773e/W1NSghQrOXuvWY8H5YU6zeUZvxHCcnYO8pOyOyEsNX0aXhp2tupzXVdY0pl2EEqFNDjpSxOByucC2NTAw0N3d3dHR0dLS0tjYWF9fX1dXV1tbm5GZjQKTzc3NFApleHj4Vmkh9GKd/906YTLlFxQhWOfphKQh6ojJtBwUFru6e8FQ165nTU87MOQmEovjE5IiImMKbhQ79PlSqVRFRUXPP//8qlWrHnnkkffee29sbOxr7xgYGLhmzZry8vKvPWvfL83mmcZu1qkrjX6x5UeTa+OuNVc0j9E4UplSv2IxnWbzDIMrDzlTVdlC0xlm0ZxAkqTT6SQSCYPB6Ovra2hoiE0l+QTOkhECFAfbfGGYziwfC7E/2rUBghPzbwcTMaCnhbDQNzRnz7ECbEcWmGUJkWZ6BmT4hmLUFz7BhDePkjKK66hUKpvNlslker0eQQvsOwbw0mZmZvpGhO39GEcxfuAWWDkWwMOcc/Y18sSBvkt3d/e/EgoR4BJClRCb/L+cXwy8bxHMs8zsAMkH0lov/wwPv3SgYpsNi1oA+xYoZ9brh65Z4zvBN+cdlP1BVAGbzUZhToe64cxmc21tLZfLndMijjmBMonQqtpkMk1MTBgMBr1er9PptFqtxurQWQ6DwQDwTeSHBe/G15oIJ611TNe5WakolAggMKVSmZqaumHDhitXroBEJQAfl0qXy9ozYgNT43K5TCZzbGxsaGiov7+/p6enu7u703J0dXX19PTU1ta+//77ra2tsF4ErU1gctZqtYDZUiqVV69e/c53vnPu3Dkul8vn86G9NrCtr32C3KynV1h10RSKmKa0Wq1CoZBIJCBaOT4+/vHHHz/00EMVFRXLRqQTIp0QqLBpL5PJ/Oc///nd7363srIS2ovkZlfY0LBtLkwyKBzO4XBef/31X/ziF319fTAHAru19SCZ3wlle4OF/Q19ZzAY/uYLCwAAIABJREFU5HI5l8sdHh6ub2j8JD4f1lc+lszf17+8BiFMoMRAlP6YOLpFcdPDonQOKuYQ14TPcNY3hHhTCSbHOyh71xESJBFjojJhRHJTN5PJlEgkoAQDtMb41Lew3lsOV6G3LSw1NRoNcH0LBAIul/vJJ59s3ry5p6fHBhG+HFq+fNuA+hTlsXV0dDz33HNbt27Nzs6urq7Oz8+/dDX9j0cub/vs4rYvLnseuurpd907MNM7MNPj8PXZ2SaEYIFpYuQ6oH2OsOC7j+bvOpK3MxSjsbV4+mZ16TA0QzDx/0WRymsaBwcHORwOLjG1fEfZQluGRiMSpIBAEVqVcbncvr4+X1/f733ve3l5edaqK/DOxd9HC7W1y1zn5DDntNk8YZoaZUkzSykJaS0Hoor9T5Pj01tzyEN8scYwsVhyQjSGYUbV6XToRcnn89lsNp1OHx0dpVKpAwMD/f39FAqlr6+vu6fnytU0COClpWcxGAwg30IcIch1s8C15eTk5NgY/VLqdSgz8mQcMSdfKBS7TLffTUUMBsPVaxkA5ZRKZXdTxIJ/o9Ppks5fioiMSTp/acE/upsLQXHzG9/4RlRU1ODg4Dyx28DAwO985zstLS13c5s7/830tHmMJbtW2Hs0ufbTiOLwpJozGa1NPSy90WSanLrz8tz+F+aZGZ5IdfxC7SVSFxJrBMCJwWBQKpU8Hm90dLSzs7O4tPzLMxhfhVcAplnuE0SwoDZzPS0+bWDW8bGo8G4PygJyC++gLFhN7Q7PxzLDMBXzHJ9ggpd/poV9B1tZYYWEEmPSSjs7uxgMBp4Z5oQhVdfBbKVw7hTc74SK4bfALeA4C+BhzjltC2FOnU4nk8nGx8e7u7v9L5QgyCZKYNkRmgMeNJDkBCACxCzB9XYz2zcbsAhwvWXGx9KBoZz/u97CmISSYj5JLGGz2XK53AlozqmpqaKionnWJXNayn4nwF8P4agpy2G65Zi0HKDlgO8G7Wf75V8SoqvV6/UqlaqlpeVb3/rW//7v/0LMTygUSqVSiPkheQDnOxpsNpZ6vV6j0Vjrh3E4HGByZlqO8fFxJpNZX1+/bdu2kZERiUQil8vBY6K3HKAPpFKpuru7165dC+0FKKcrtHf5DztntdB65ABQTy6Xi8ViEOmk0+lPP/30a6+9JhaLtVotyqR2/gi3lz2gvciHiBSwoL1sNvv555//zW9+IxKJkEjnAr0q9qqhq5WDRsjExIROp1MqlTExMffdd9+lS5es8zysY5zwRrZ7Q6AmwI8kFAppNFpbW9u13JJdYbl7jhVgwE2/dKRo7uGXjq2awvMgt8zjcBrspQHrCWz/1jyTKOS5OzwPKZ3Dyg1IOP6VUDQwOMThcBCxpPs+BXbvmhVVILh1kKox4voeGBj45S9/+atf/YrL5aLwAx4Ld+WxgSY3FONkMpkvvfTSxo0bCwoK+vv7W1tbyWRyQUFBenrW/4Rf9wnM8AnMtIhrZvuGEnyCMJ4e32AMZAAYcZSTip0KysLwmiEEIK2dnWGCCLBx8w7O/sPx3NyS6t5eTJVTLBYjKuyl3U+5cn+tkLqhYQnpFCgfC3Hsj4+Pe3h4bNiwoa6uTqlUgngESt7FX0zuNU6cFuY0m2emp806g4kv0bT0sRPSW46fr/syuvRock1mKaW5l20XcKC1QwaohiABV61WKxQKqVQqEokgMYjNZsNWlMlkjluOs0kpEJVsbmmVy+WwswbSoLsb3kbjRHFpeXRMAhR78tTp7p6+iQl3hXWO0egnomIjImOKSxyOaDSbzRBSjYiM0ev1jnumTp069dBDD91zzz0vv/xye3u7Vqud616BgYEbNmzo7u6e6wJHfM/iKxMz2w7FlAfGk8POVufXUFkCpVyln5rCRroj7ujKZY7zFXHXm6/kdxuMs4FeSD+F7aFUKuVwOFQqtampqbi4+N8xxD1H831DiTvCZmkLIVQJqaX/R2NrSQ4Dxh2fIMKOUOKuMNIOS2YYlsMalO0dTPANJviEEH2Cso6llra0tAwPD/P5fBBOwrXMHTpg8quplFGBQ2+BF45bwNUsgIc55+wRFOaUy+UsFqu7u/vktVIMInAEo64FKloQ3cT+tIQngZPWOzALlKI8/dLhMhCF8vBLf/Wz1G2H0yC0idSnsMiofwaUCacA0+AVkBmRVuU00lqRSPTMM88YjcY5LeKUE7Cwtl5eQ9Tz1v/hmoVUKjIyMi4ubiFX4tcsVwvYYL8EAsGuXbueeOKJjo4OJMmJvAxosbUka1/kGUEbS71er9VqEZOzVCoFMmf4/9ChQw0NDZANB9hNyJadmJgAZSCNRsNms3fu3PnUU0+1t7fzeDyhUCgWiwEmbh3TXZL2Ltch5/x2wcixoT4WiUQQ+aupqdm8efO+ffsUCoVer1+WkU6ZTAYORB6PRyaTN23a9I9//AOiWUi5ecUOcsjzAPyrWq2mUCjf//73P/30U5DktM7zcMLYmJ6eNplMGo1GKpWyWKyenp7q6urPz97YFY5R1wKhxXbLsgoSxTA9PIt+ubUGJ0ZXG4aBq+Af5I1ZBypA+Nw3hAghTzh1saCeRqMJBAKcWNL5c5RL3RFNmCDSCa5b0M+7fv366tWro6KigMDZYDDgfJIu1XfWlUFLJhTjHBgYePnll3/yk5+QyWQajUalUnt7e5ubm6urq4uLiy9dJ/z5qwzvwEyMqDYw0zeEgCluBmYBcNwnBNORAtHf3UfydoTl7AjBXHsgKwVuPk//9G2H0zwOp/kEE/4YQcy4QW5rax8ZGeHxeLCsQlTY1vXEP69AC6BJBgYnYDpBDJjH43G5XAqFsmPHjk2bNhUWFgJ83GQy3V0oaAWa16Wa7LQw59TUtM5gGmZKssv6z6S3HjpVFppYlZTdnl9N5YnUBuNicZw2VkUTLOJhhvRZjUYD21KFQiGXy2U3D7lc3kfpB5HO6JiE4eERawTnXaenm81mOmP8eloWgnVmZBJZbI7bLelNJtP5lNSIyJhTsWdYbI6NtR3xJ7myBoxGozEcUT4qs7+///jx40899dS9997r4eGRnJysUHyNnOqShDnN5hmOUEWqGjpxsf7TiKLj52tTcjobu1lKjcHujwwyiMt+UGmNcdeaY642SeQ6VEkE6FSpVCKRiMlkAltYTn7hgXiSr0WaDcPhBBN2huZiCWH+mVgKqUXNzZJymrXrCGnXEUx30zeUuP0mrHNnGMknKNvDL33boTTvwCzfoOyjl4pq6pt6e3uZTKZUKgWhKLTGRvXBP9jRAnHXWxgcuR0LxIvCLeD6FsDDnHP2kTVpLZvN7u3tzbxBBr5ZaxY1bMa3TP3AcQSOuR0WQlqfoOydYbm7w/OQQJRPCBHDKFj+wS4a3HDbLfpS4IObRXZa3hwkciuXywWv9OTkpEMXc+ADndMcTj9hHe/82s8Lr5G3t/dbb7218OvxK5eZBZCjAdHVnjt37r777qutrQUYE0hyajQa2IwBVnjhcXS7mwtuDY8k2lhCzNKaxhl2mK+++mp9fb3BckxMTCAXCcQzgLH2woULq1evLigocM322t2AK7NANGwA4whdb+1QCwgIWL16dU5OjjViz60xjrcyUdu098EHHwRGOGv12ZU5PGAHC9OIWCz+1a9+9dxzz4FrHuU9IDSJo0cFWl8pFAo+nz80NNTU1JSRX/7mEYw0EmCXnn7pQF2LLZZCiIjMH+gufIIJu8PzQDJglh7DP8M3NAfWVBh17c1Yxa4jJJDt9Akm/CWmsLunl81mSyQSrVaLMlpW5pBY4a1G3lsU+7dGwH/yyScPP/zw+Pg44nVHC4MVbjdXa77NWwC4uB966KHS0lI2m81kMlGks729va6urri4ODub+MmpLO/ADNh8wc4Oc9v5pfuGEDwPp3sGYJFO32CijwXEiSVb3IRvWoDmmASJd2DWR1G5uTdKQIJufHxcLBbDMhJ32LnaIFnC+kCSJdIUADAcsNdyuVwOh0Oj0X79618/8sgjvb294PC1zjRy6MZ/Cc2y/G7tnDCn2Tyj1U+whYraDubJ1KbQs9VfnCw7kVJfUDPcPyp0nFXhdQnbUkimhFRao9EIGkNAIAT/G43G2vpGACxeunxNrVbfdXTTpkVms7muoelU7CysMyo6rqGpZXLSzpFdm5va98/2ji4IOqZnZDvn6R6ijsAd6xua7NuWry1Nq9VGREQ8/PDDq1at2rRpU0ZGhlartW7pkoQ5oaoqrTE1v+fQqTL/uIrgM5XZZf1jbKlErjObZ1YUpFOlMWaWUIITq/hiNepEhAfQ6XRyuZzP5w8PD7e3t1dWVubl5R2Oz/INzt4ekLkjBINpIgAPloEamL3tEMb8P4vtCc3ZEZYL6B1wmG/D1EawXNWdwZlRqQV1dXVdXV3Dw8M8Hk+pVALlEs6YgjrC7h8mJqaiLtWLZBq7l4wXiFvAlS2Ahznn7B2Y7oGmHDIua2vr3jmei8AEwJa2IzRn99F8mO7Bv+bpn7Ht0HUsY8UCMtgdngexz50oycWS+QKc5hDaRDRrsNneGZa752j+e5E3Wrso8A7Q6/WODnMSicTw8PCpqZXIUz/nIMBPuL8FkCsTcdNVVFSsW7fu4MGDiKoRVEMA4uZSrkwUuAIOZ9hbApGz0Wi8cOFCXl6eSqUCnwhcA/UHl4per1er1bW1tQ8//LBNe5VKJdJ7d3RIw/0Hkdu0AAYM9L7RaLSRgxoZGXn11VdfeOEFoK61BvK6TQtvqSjamAFVr0KhEIvFIEpKp9N9fX2ff/55Lper0+mWR3tvMcDtv0CjAviI1Gr16dOnV61adfnyZS6XKxAIIM8DHKwI9nr7chd3xdTUFAxRiURCp9M7Ozura2qDz+UA0QXkgc2miAVlw58A9PS2KMEgbn8L0MqSU2wh29hzrABIkwCSBbtu+P/9E/klVQ3AkoSyx3BiycV1o3v/+tblAUKEDw0NPfvssx4eHlwu18mPhnvb1Lm1hx4EvWGdTsdkMnfv3v3UU08VFxdzLQfHcoCS3PDwcF9fX1NTU0VFRW5ewYkUwvvHs70Ds3xCCLuP5Fk4bAm+wUQv/4ztgZhLDnZ5SH8EkiosW7y0t49kHb9YUFRa0dTU1N/fD3S1KpUKgL/gsHOuJfC7ua4F0DxjrSaOFiocDqevr2/btm2PP/54TU0NIspGmuLWEQLXbeSKr5kTwpzTZrNxYopKl1wv7I252vRFdNmRpJoUUldxw6hAqnGC0CAsJtF4RjtTkBOCzSn6TMovhOhaYVGpHZ1LZrOZzeYQc/IjT8ZB+dfSMkfHaG4xAHU6HeiMRsckSCQS59RZpVKDobIJJKdNJjweLykp6aWXXlq1atXPf/7zI0eOMJlMaO8ShjlnZmYkcm1xw2jstaYDUcVHk2uSstvru8YNE9h065zucIW7TJimssv6QxKr+v4zNwLyGIDgRC6XA3VtR0cHpm5+48api8QPvsryCcneHphpAW7meQdl7QjJ8Q7M8vRL97IIdoIwJ+zCZgVHgolYxqp/+t+jc1Kyiurq6np7e0dHR5F0CErrcQXLLMs60Diy9GKKWDYnj/SybDXeKNwCeJhzzjEAzlOj0ahWqwUCAXCUB1+4Mau1GYxhDjCao6DsXUdIXgGZOy0ITsv2GAtwApIA+zMAVJcxWiSMYw2kmOG3FvLbWX2XoOw9R/N3h+fBvx2hOQeTyigDg0KhEAm9OHR1kpKS8tlnn9lxJTqnZZ1+4re//a2Xl5fTb4vf0CUsAJn+4FzQaDR8Pt/T03Pz5s2Dg4NA3yqTyRBdrUvFOG3Mh7aXsMOcmJj4wx/+cPjwYZskWZRsC1EfPp//yiuv/PjHP6ZQsJwJoKaE9gKvGh7jtLHzMvgTxoDJZII4t1wuB+paLpc7NDT06KOPfvzxxxDnRmPArVsN7UV5DDKZDERJuVxuZ2fnpk2bPvzwwxULyYLpAkhiYTxIpdLHH3/8/ffft8nzAMArTJgOXWzAYENVUiqVHA5ncHCwra2tvLz8k/h8H0tcc3aJFUzYfTTf43Da64euIyl0Dwv5P4h0evphyCqfYMIbx2/sPpoPSFBQi/H0S4cUNJ9gwq6w3CRiVXd3N7AkAehqWS543PpZdn7l4QFBcTKVSgWIcD6fn5yc/K1vfevs2bMgHQRkD/gb0/l9NNcd0ZsOiDqEQuHvf//7Bx98kEQicblcnuUQCoUSywF85kwmc2hoqKOjo6GhoaysjJhLCkjM2hmSvSOEiE0aAdj2zSeEAFmqPsHZmLcuKAvyJHxCCN4BWTtDs79IyC0oKq2rq2tvbx8cHBwfHxeJRGq1Gk8dm6un8O9nZmbAq3CrTiePx+NwOENDQz/4wQ+2bt0Ku34EcIFdCW5A17eAo8Oc5pkZvXFSKNXWdDCPna8LOE3+PLr01JXGssaxMbbMyfax2ZDCutH6f7PZLJfLTyecgwBba1uHfWs4PT3d3tGFIp0RkTElZWTXV+scHhkDkGtpGdm+Bpm/tDOJ5yMiYy5evmYwOFWaanp6urCw8KmnnvrmN7+5f/9+qOTShjlnZmaME1OE8gH/0xV+cRV+ceXZZf18iVqpMawcTOf0tJncQt93vKiyhW4zchDxj1arBZHOkZGRnp6exsbG8vJyUl5+6DnizuBsbJkUSvDyx7LELI7xbN9QLN6JCZmHYjLns6mowUTvwKzfHyGeulxQVVUN1BcMBoPP58tkMq1Wi2KcTth12rR05fzZ2M1OK+zV25vPfOUYEG+pm1oAD3PO2XEolqDRaEQi0djYWHt7e1p+xZ4wAszd2wOzth26jgE3g7LRhO5tIardHpgFWcCWbTOG4t9uAXdaXwZ6nLvC8wDl6R2UvftoPoQ8ISCanIcpSAG1Gjij56yrPU7Q6XSlUmmPklyujJSUlKtXr7pctfAKOcUCaMWm0+mUSmViYuLGjRtv3LiBJDlvFd9ySr3u+CbWu8rq6upz585JpVLrL6FEaC/AtpRK5dmzZ9evX5+VlQXtFYvFSqUScZbiHts77gZ3+AFy3FtH/sDJy+VyQ0NDV61atZyoXK3ba0PVy+FwQkND165di9qLVK/coSftUEdkHASd3Lt37zPPPDM0NMTn8wUCgUQiQXkezuRaBN5ayBoWiUQMBqO/v7+xsZFAKvxbDGn30XxMCj08b0doDqyIkHgeJmd+M1HM+hRIp8P1cDFICXgHZe8KJX6VWtzS1k6lUhFLEjDW2sHEeBFubgEIP0xOThoMBq1WC9S1AoGAzWa/++67P/nJT9hsNsjmgUcGXrtu3mi3rz6a2WC1I5FIPv7448cee+zy5csQ4OTz+SKRSCqVKhQKpeWQyWQikWh8fBypdZLJ5KKiogxCXuTFnE9jif/zFWF3WA7QrFn2axjWc3tg5o4QwvsRpH2xuV9dzMsgFVWQyU1NTd3d3UNDQ0wmUyQSWUty4ssqtx9bDmsAWp9DGqJcLpdIJKAHzOVy29rafvnLXz777LM9PT04gtxhneCogh0a5gQc5+i4NKdiMCG99fOTpUeTaq4V9Fa1MsQy3eSUs4Fo1nvPeT4zGMyYuDMRkTEJick8vsDupheJJHn5RRBJjYiMuZx6fWCQOjnporRkSJUz9vRZLpdnd2vMUyAxJz8iMibx3AWZbAn0+TQaDYFAyMnJgRrW1NRERUUJBPYfD/NYwOaUQmWobKWfyWjdH1kckVJ3rbC3uY9tME6aVgam02ye6R0WBJ+pyiUPTZj+43mxZkhSq9USiYTD4YyOjvb29ra0tIDAeQYh76sLufticv47HEsF88UAnVhcE9zj3oGY03vXkdz/icg9EJ9z6kp+flFpbW1te3s7hUKh0WgQ4wQMD2zJ8Rinzfi0459ms/nqjd68qiHcyHa0Kl6UW1gAD3PO2U2whTaZTDqdTiqVMhiM7u5uclXN32PzsdhkWC4wGgEXuad/hk9Q9u7wPEgBBoI1AG5iV950yc1mBAdjyE5gYwPkAfwK3HPwknjzGKmzGxNnlslkkCDsaGq1Rx555PDhw/gkOOeAwE+4oQVQsj/AmLq7u++9914b+lbEEOUuwgBTU1N+fn4//elPtVpbAgrwoSAY38jIyNq1aw8cOGAN2wLMAWRO4O5aNxzUt68ydOvU1BRAlLRarVKpBC0oHo83Pj7+5JNPvvrqq5BKiahcHf2KuX297/YKeFkj7SutVqtQKFB7uVzuc88997vf/Q4kQKC9KwchgeZAg8GgUqkyMjK++c1vRkVFoTlBLpejvAcnz4Goy0Chk0aj9fT0VFdX5+Tl/zkKY7+AtdP2wCxgy/DGds6kHaE5nv4Znn7pkBy26wgJeDK8AjI9/TMA8ekdlP36l9de/fyKBRiacfzSjebmloGBASaTCaljRqNx5YyBu32wVsrv0AQCeSEA6AQE/MjIyOOPP/7BBx+gdChgdcZfnUs7OKxjnDCz7d+///7777948aJNjBNyOHSWQ6PRKJVKsVgMgogDAwPt7e0NDQ2VlZUlJSV5+fnEnNzMbMLZ1KyjSZlBiVn+celHz2XGpxIyCbmkvPzi4uLKysr6+vq2tjYKhTI6OspisYRCIYwNRI2Aj42lHRuufHeUUQGYTmudTh6Px+VyGxoa7rvvPh8fHxhUgCDHOZBduU9R3RwX5jTPzBgmpsRyXX0XK/pKU0hi1Rcny+KuNde0MzgCV09Pb21tB/xi0vlLjhDRNJvNNDojLv4sBDtPRMWS8m444kaoo+/6Q2tbB1QyKzvXyd62hsaWiMiYU7FnOM4Nr1rbyslNtr71136enJrOqxryi6sISqgMO1tNrBjkS9QqLYbpXPaH2WwWSNR+cRXpJRSd3mTdXrQeRixoUqmUx+MxGIyhoaGurq7m5uaampqysrIbN27k5JJSM4gRF4gH47L+GZ39l68y/nEy84vT2dEXczKJ+TcKi8rKy2tra1taWnp7e4eHh5lMpkAgUCgUsOvEidmtLe+gz3rj5Jn0ViZP4fxsGAe1CC8Wt8ACLYCHOec0FOxUIb9bqVRyudzBwcGWlpYL2SV7wkmQtAKhSsBl+gCN7c2I5o7QHKBNA141YE4DMluE6UThT8B67jqCSTpj+IMQQmoBpiDF5XJVKhVyQ89Z10WfMJvNqampLS0tiy7JFQvASWtdsVccXyfkUADAEJ/Pf+utt370ox+1tbXx+XygMrOGaEAOvqstxG3sxGazo6KixGKxVCq1PoUiWyaTCdrL4/HefPPNLVu2tLe3o/YiqlIE23Lx9lq3Ef+8cAvculEBiBKfz+fxeI2NjY8++mhERITN+F94+S54pXU8T61WI6peHo9XV1f32GOPBQcHo/aukBCXdVou8FK88sorL7zwwtjYGMwJUql0CW2CugzIkbhc7sjISHt7e2VlJYFUsD+WYIFSZUE22M6wXJ9gAvBnePqne/ilQ5IZUGjsCM3BeDUCsYu3B2RuO3QduDT+O5wQfa2orr6BQqHQ6XSBQKBUKoGeF/cdu+BTvFRVQmEzoD9VKpVAXcvlcsPDw7/5zW+SSKQlAT0vlUFc+b7o7YboChISEjZs2BAcHMxisVACB2iugyoziMbB6giIPaRSKZ/PZzAYw8PD/f39XV1dLS0tDQ0NtbW1VVVV5JtHZWVlTU1NQ0NDS0tLZ2cnhUKhUql0Op3L5YKksXWOCI7jdOVh4yJ1sx69AB+HrCzg2+DxeCUlJd///vffe+89Nput1WoNBgOelegifTd/NRwX5pyammZw5UV1I8nZ7Ydiyo8l114idZFb6GK5bmra1WMyer0hMzsHwnuFRaUm03/EVOY36cLPSqTSouKyU7EYcjQiMuZsUkpvL2Vy6j9gagsvzRFXajTaCxevRETGRMckiJ2lyokaMjpKOxEVeyIqdnCIir7EP8hVhvJm2tmsts9Olpy4WJ9W1Nfcx9HqTa7/WC2+76QKXXox5fj5WuEtko3gUEJcaChVmsfjMZlM0Djv7Oxsbm6ur6+vrq6uqKgosxylpaXl5eVkMrm6urq+vr6lpaWrq4tCoYyMjIyPjwN7ENpy4m6oxXfiQkoQybSX87pHx6XTKyGAvxCL4NesGAvgYc45uxqFDSYmJsA/CFCDmtraL+JzgZN2R2gOAAgw7eUAjJx2h0WhExGmAQntzrBc8NDBxUCthoVF/TNAvBMgCADx9Akm7Eso7OmlMBgMkUgExOWO9sepVKry8nK5fAm4LObsAPudUKlUarXafuXhJbmBBaxdCcBjWVhYuHr16mvXrnG5XFhsuaPg1rVr19avX0+l2m5UbNqrVqtJJNL9999/9uxZ6/aCIh1OEuIGI3jRVYQhMTk5iXzBQNkHoIGDBw/ee++9jY2NKKfS0W+ZRTfoNgXYtBdp7IHw1SeffPLAAw/U1tbCI7BCIFlom6rX65VKZUxMzHe+853+/n6Q6ZVIJMC1uFTQRjRrAaGuVCoF+diOjo6ampr8ghtRF7PfDMdUXrwt4uWwjsLQnH7p8M/jcJpXQCYopgPoc8+xAu/ArFc/v+Lhl/5BRE56blF9fX1vby+IwUB7offdF758mycBP31XFkATCPBJIkQ4g8F4/PHHfXx8JBIJctA4TcL2rpqynH8Elp+cnASogVqtvn79+urVqw8dOsThcCDGKRaLIcap1+sRfH/q5oHEEQHZyefzWSwWnU4fHh4eHBykUCg9PT1dN4/u7u6+vr6BgQGIbkIYVSwWAxwBBBRxRMJyHnAOaBt68aG4u02kMyUl5Z577tm/fz8CkeNjzAH9YOciHRTmNJqmVFpjWz/3TEbr0aSaz06Wxlxtqmymj/MUdm6Aw4ozGAwJickRkTFR0acHh4YddJ/p6Wk6g3kqNgEinZEn465ey1CpXMX5MzBIBVRreUW1gywwT7F8viD2dGJEZEx1Tf08l63AUyYThun88lRZwOmKsHMYppMn1mj1JldPH1h0V5nN5sLakejo6yGpAAAgAElEQVTUxrLG0a8tDL2n0JJJoVBIpVIQdKDT6SMjIwMDA319fV1dXZ2dnR2Wo7Ozs6enp6+vb3BwcHR0lMFgsNlsgUAASzJI3EFbMDzP/mstb98vx1iy6CtNIpnGvsXipeEWcH0L4GHOOfvIOplFp9PJZDI2mz00NNTc3EzML/5jBBHilADEhP89/TMg2AlONy//DG+LJCfEL8EZtzMsd0dozp6j+bPQBIuTzisgE7AIPsGEt47l5ZTVDw8PczgcYKxFCS9z1nXRJ/r6+p544onS0tJFl+SKBZBIpMLCQlesGV4nh1kA1mdA36rRaGg02jPPPLN3717kBZPL5eCydJf1ltFoTElJAfzBrWazaS+bzX7uuef27NnD5XL5fD7ADtyrvbe2Ef/mjixg/QoDgC9AlAQCAY/H6+jo2LRp07vvviuRSADv4oQXzR3V/y4uhqcAaexZU/X29vY+8cQT77//PlDXgsbe8gbf2MwJnZ2dDzzwwL59+6znhCUXAEOYe4gtyWQyDoczMjLS09PT0NBQVlZ2NTvv8/ict49k+YZg8U5P/wwg+fcJwcj/kRAA5JbBNb7B2f8vMifiUh65sqqlpYVCwZLGgFsSwhKA5cU32HfxiC3vn8BotM4LAYgVmUzesGFDWloaBLcQwwo+hJw8HmBOQ2TXGo2murp68+bNb7/99vDw8Fw4TvS8W//caDTq9XqgsZXJZGKxGBJiWCwWk8mk0+k0Go1OpzMYjPHxcTabba30Ccz/iFAUxbzx8eDk8eC+t4OpBkYyZPmABxl0Onk8XkRExMaNGxMTE1fOisV9exNq7ogw59S0eXRc2tzLvl7YG3iafORcdXx6c2HdsECicS8GwrExOoh0xsWf4ztApBMNHr3BUE6uio6ZDXaeOXu+s6vHYDCgC5bkw8SE6UJKakRkTFz8OYFA6Pw6KJWqc8kXIyJjMjKJzr+7i99RKNVklfXHXG06EFkcndpYUE3tGxbYKFa6eBPuonrTZnPnIO/IuWpyC12rn7i1BORDQO8pkH9CSTlcLpfFYjEYDBqNNjo6OmI5RkdHaTQag8GAnDChUCiVSpVKJWRUw9YblmTLewN+qz2X6htyCz0hvWUlAJSXysL4fV3WAniY8zZdg8AQKpVKKBTS6fTu7u7q6uqLWQV7jpB8QrBgJ0ANwOPm6ZcOPjjvoGwMqRmY5RNMgIjm9sAs76DsXeF5EOMEfxwQ22IwUAvJ7e4w4pXc8q6ubiaTKRQKVSoVIqu5TUUXd9pkMonFYqPRuLhiXPTXOGmti3aMw6qF8v0huqNQKPbt2/fd7363oqICYEzWbGbIBeaw6tin4IGBgY0bNxYVFd1anE17lUrl/v37H3vssaqqKmgvrDK1Wi2CbeH+uFvNuMy+gS0KinUhiBJozvF4PBKJdN9995HJZBTrcvddBzR5amoKAhUajQYArHw+n8vlFhUVrVmzpqioCOR4TSaTu7d3nhELpgBxVp1OJ5fL//a3v913333t7e02c6C1pNw8BTruFGLWhelaJpPxeDwajdbf39/a2lpbW1teXkHIu3HiQs6HkRZW/5vS5sD/D9oB2OLqCGl3OOnfsTmXsotLyskNjY2dnZ1DQ0NMJlMkEuHOYsf14HIq2UbSWCwWCwQCLpf74Ycfrlu3bnh4GIjfUXbUcmq767fFZq5gsVhPPfXUiy++ODY2BjFO8KmpVCrEVWuzwIMXItBlw/RoMBh0Op1arVYqlXK5XCaTSSQS8c1DIpFIpVK5XK5UKtVqtU6ns0GIwksE5lvXNyBeQ9exgHXQHS3PkKY4h8PZv3//6tWr09LS8AxF1+m1eWpi9zDn9LTZaJpq7mUTKwZirzZ9GlF8LLkmq7Svb1TodlCz6elpclUt4CwvXb6m1ermseQiT01PT4vFkpSLVxGs88rVdNmS0pU1t7RDZXJIBUvCIzIxYbp8JS0iMib2dOIizbssf67SGFPze/59vDAwnnw6raWimabRTkxNud1zdmedw+IpIi/Wh52t0ei+JswJZaH3lHWwU6PRqFQquVwulUrFYjGkA/Ith0AgEAqFoKykUChUKpVWq9Xr9RDgtKYlwN1Qd9Zbd3v1ycsNFc00PMx5t/bDf+fGFsDDnLfpPJjfJycnwVHI5/NHR0fb29vJZPLZtPw/ROSBatQOC0YTMdPeGsLcaSGzhZiobzCGQkCxTwiFYvS2IYRT10ubW1qoVKpAIJDL5Tqdzjmu2JqaGn9/f5VKdRtz4KdxC7iDBZDkG6Setba2bt68+d///jfQtwLhGFBnWC+5XLlldXV1o6OjLBZrcnLy1npat1elUjU1NT3yyCP//Oc/ORwOQDmtma+AmxRfX95qxmX5DdqiTExMAHszaM7xLMfbb7+9ZcuW8fFxCIEvJ0AntBdp7PF4vPHx8bfeeusHP/gBjUZb3iF/1Okmkwk6va2t7ZFHHomKioKNKCJdNBgMS97p1rU1Go1qtVomk/H5fCaTOTQ01N3dfTPYWV5UVHydUHAqNT/wHOnT07n/isn5W2TWxyezD8QRw87nJabdyC8sIZPJ9fX1bW1tfX19IyMjLBYLYpwoOLGMY9vLcgZzcqMQoBPBiyEvpLy8fM2aNV9++aVUKl02eSFOtu0ib2eTzsVgMLZt27Zly5bGxsb5Y5w297VOAIKotslkmpiYAHynTqfTWg6N5dBqtRDaNBgMAN8Ezn8cwWljVfzPu7AAevehxCyFQgFeYx6PR6VSvb29f/zjH7e3tyMoDArb42v4uzC4Q39i3zDntNnME6uGmeJLpK6jybXhSTWRlxqIFQNMnsJNcWaTk1NZhNyIyJgTUbHkyhpHD2CdXl9VXRt/Jgnii6diz7S0tut0DgyvzjW61GpNUvKlWVVOsWSuyxz9fW7eDTCFVCZz9L3csXwaR5aU3R55qSEgjnw2q62xh0XnyCYnp92xLQuss95oSi/ui0ipGxgTzf8TWDWh/DBYMhkMBr1er9PpNBqN+uYBCye0apqYmDCZTDarpvnvhZ+1owVUGmPgaXLfiMC90P92tABe1Eq2AB7mvH3vg9cDaUex2ezBwcHW1lYymXwuLe+NcAxegCE1gzEwgW8I0SsgE8KZPsEEj8Np2wMxQtpdR0gotAnEtjvDsB96HE7bdui6l1/6niM5F7JLG5ua+/r6xsfHZTIZSIihLc3tK7qIK4hE4ssvv7xcBSzfe++9jz76aBHmwX/qThaABxby9DUajUKh+NOf/rR169axsTE+ny8UCmUyGXCOIai0o7dbizSfwWB49tlno6Ojv7Ycm/YCbGvTpk1UKhXaC25ZSKbDY5xfa8Pl/aXNCEGaczwer6Cg4P777w8NDbWBKLn4EzF/f0F7QbkNZgCAZPF4vOLi4nvuuefo0aMwAyBIllu391ZrgPMU5kC1Wi2Xy1977bWXXnoJqBfRHGgwGMACSw5FQt5eRDgM3l4Oh0Oj0YaGhnp7e9va2hobG2traysrK8vKykpKS4uKS4qKS0pKS8vLyysrK+vq6pqbmzs7OykUyvDwMJPJ5PP5aPaDnTYe47x1tODf2FgASFwg8AB5EiKRiMvlfv7555s3b6bRaEjRFlIEbH6O/+kIC6A5DeXr7Nu3b82aNcXFxcDCLRKJrFkrkFtt/spAsRCzhJAnqH6CFw88dDZOOnwOmd+k+Nk7sgB694H+GbyvET5mbGzsxRdffOqpp+h0OkQ6l+ui5Y6M5poX2zHMaTbPTE6Zh+iiui7mVyl1n0YUhSRWXiR1Nfeyp9057CKVys4lYdSpUdFxXd29ju5Hs9ksFIpSr2IoxojImMiTcRdSUtkcrqPva1N+Ty8FVDkrK2tsTjnzz5bWWURpb1+/M+/rLveaNpupDEliZtv+E8XhSTWZZQOt/Vy9YXKZbQ+tu2Nqarp7iP95dGlDN2tqYRMLindahzzRemni5mGyHKCHji+ZrG3u5M/lTbTj5+voHLmT74vfDreAK1gAD3PevhdgEwIifyqVSiQSMRiMvr6+5ubmsrKyS+k5fz6RDeRpviHEnWG5O8NyvQIytwdk+gRlYyHMgEwk2IkEOHeE5uwIzXndctY7KPu9Y9nns4obGxt7enpGR0cFAgHiqHHO60Emk8mXlNDj9t2wiCsOHz4cGhq6iALwn7qTBcBHiR7Y/Pz8NWvWXLhwgcfjCQQCiUQC7IXuIq9Fp9MpFIpSqZwLbG3tk1WpVGQyed26ddBeoVAokUhsfLLLeMnuTsPUiXVFfjR4KMCPBhAlLpf7wQcfbNmyhUql2jjRnFhB+9/KGt8M6EBE1fuPf/zjqaeeYrFYy6m9NhaEQC+K06Slpd17773JycnWc6Cr4XfR5nlychJqrtVq5XK5WCzm8/ksFmtsbIxKpfb39/f09HR2dnZ0dLRbjo6Oju7u7r6+voGBgeHhYTqdzmazBQIBinlANHfJQas2fYT/6bIWQKhBayZJGIRbtmz5+9//LpVKVwLxtet0kM0rTKFQJCQkPPjgg2fPnkU4TljqAEvHHYWCYOaBW0DXz/X/kqeDuE6P4DWxowVQIhq8+FQqFYjFgox6aWnpI4888u6774pEIkRCAwnQdqwDXtTiLWCvMKfZPKMzmGRKfS55MCG9JSSxOiC+8nJeN2VEoNa5vbTQwODQyVOnIyJjTick8fnOUKmcnp5uam49c/Y8BDujYxJqaxtUavXie3whJZhMpvMXMFXO+DNJYol0IT9x0DUsNgcsUFRS7qBbLINi2/u5Jy81hCfVhCfVXC/spbFlMpV+enrZstf2j4kiUuou5nbqDKYFdt+tSyYIZ6L/rVdQ6OIFFo5fZkcLTE2ZzxM7zxM7hFKtHYvFi8It4C4WwMOcC+op2AAjp6FAIKDRaBQKBSKdmUTS0eScPWGYGCcAN0FrE8lzevqle/ln+AQTfEOI2wOzMFinBdzpcTjN0y/NPzEnp6Ckvr6+t7d3dHSUy+UCXS1SzFpQFRdx0dTU1IEDBz788MNFlIH/FLeAq1gA6elqtVoWi/Xiiy/+6le/GhkZAfpWhJN2Dh304o3y6aefvvPOO/OUMz09DcA1rVbL5XKff/75F1980bq9wLAH4AY8xjmPJZfrKdhmoHC4DXXtyMjIj370o4MHDwKgE/QzlkQ8xo72R4EKo9Go0+mUSqVEIhEKhTweb2RkZOvWrX/9618hl8hp71k7tm7+omC5YjKZQOqSy+V6enr+/Oc/p9FoAoFAJBLBHAjBP+fkUc1fYZuzKEQNKy6NRmPNPMxms5lMJs1yjFkOGo1Gp9PHx8cRRzdILyM9GBdBrNo0E//TZS2AgmrWUQeYPb766qv77ruvtLQUqT9OTmLJ/viL1XG9iboDAfQLCwsfeuihv/71r+Pj45C6Yc3Cjab0O+0XuH6e/x3XRrzkFW4BGORISxtkz0QiEUQ6CQTCgw8+ePz4cZh20CINn3ZcatjYL8xplin1LL4iMaP1cExF8JnKr1LqCutGFh6HcCmz2FTGbDY3NrVAvO1aWpZzxrDZbJbJ5Dm5BYCqPBEVeyHlysjomE3dHPFnU3MbNLagsGRpN1YTJhM0/1Lq9aWtiSPsbK8yDcZJYsXA8fN1+44XnkptbOvnsviKZUz4qdQYIy/Vh5+rYQuUd2rDeRZLd7r6utNb49cvxAJylf7UlaZLpE7jxNfIXS2kBPwa3AJubQE8zLnQ7kOuN51Op1AohELh+Pj4wMBAa2trTU1NSUlJambuvlOZ7xzN3hmK8dZ6B2WDQueO0BzfECL8AxlO7HMw4fehmfvicq4QC6urq1taWigUCoPB4PP5MplMq9U6cxszPT2dm5ublpa2UFu423W//e1vvby83K3WeH3v2AKwrrL2FKSnp69bty4jI4PH4wFVI4rlOIcO+o7bYPUDmUzW3d2tUCik0q/PAL21vampqWvXrr18+TK0F/BMOp3O2vFndQf840qxAAwVFBHXaDQIJ8fj8Y4ePbp69eqmpiZrgKNzvA+O6wAb6lq5XI4AnaGhoffcc09NTY1Ne929yTMzMygkgKRJ8/Ly1q1bV1paaj0nIAprF3R2wFiFvGAI1hoMBq1Wq1KpYDIEQj/BzUMoFIpEIolEIpPJFAqFWq3W6XQGgwEIJ6EcKNNxgw0veZlZAEUdYOwplUpAFff19X3/+99/5513hEIh4lwBKvhlZgEXaQ6a0FAu19jY2M9//vPXXnuNwWCgGKdcLkeCqThu20X6Dq/GHVkAzTmQmwUsFEKhUCAQ8Pn8oKCgb3/721lZWQqFAl7f+Di/I/M64WJ7hTlNk9MN3eM55MGwc9WfR5deye8pa6IxuAonNME5tzAYDBmZRAj+lZRVTE46yQU/NTXV0dl9LukiCnaWlVfKFQ40rEqlPpOIoUijYxIkSwrlhJ69ePlaRGTM2aQUtVrjnL52x7sYJibzqqh+sRUhiVXnstpLG0cVaoNpmYp0GiYmu6j8kDOVbRSOaXLKHfsLr/NcFuCKVMFnqnqogrkuwL/HLbC8LYCHORfav2izDd5DhUIhEolYLBaVSu3p6WlpaamsrCwqKkoj5CVczT0YR3jvq9xdYbkQ18SUOwOztgdkbg/M3Hss50BC3ulrBRm5RRXkyubm5q6ursHBQSaTKRQK5XI5SHI6cwMzNTXV3NwsW76a5J2dnT09PQvtafw6t7UACmzo9XqNRiOVSn/xi1/s3bsXpJtQvr/RaHT9GOfMzMz169e3bt2qmHsPZt1eYCL93e9+t2PHDhaLJRAIUHsNBoMz5xO3HT7Lv+LWyTpAjAYQpZ6enk2bNr377rtisRi4TN3iAblth0F7kZabVCqF9lIolA0bNvzxj3+UyWTLKQkABQhRSEAoFD7zzDPvvPMOzIHA6wjBXVeGd0ND0KILaGwNlkOn02m1WrXlUFkOtVqt0WgAu4mim0iZzwXhqrcdt/gFrmABeL0iwTyZTCYUCvl8fnJy8vr169va2pZkue4KlnFmHWxw+Xw+38vLa+vWra2trUBXC/B0pLaOL3Wc2Tv4vexoAevXN0Q6VSqVRCKB9KyRkREPD4+tW7f29/cDY7Z1MvQyyNCyoyWXqii7hDmnp806gymjlBKV2nA4pvzLU2XlTTQmTzG1vGgzJRJp7OnEiMiYk9GnBwaHnNllMpn8RlEpBFlPRMWeS77Y00txUMJfR1c3hFSrquuc2ca57lVSWhERGRMXf5YvcAZd8FzVcP3vx3mKExfr/eIqDsWWp+R2ckVqncFkXo7MteaZmZFxSdy1poS0Fp1+oby1rt+DeA1nZmYaulhBCZViuW5ZDl28i3EL3NYCeJjztiaavQA8btZ8mCqVSiwWs9nssbGxgYGBjo6OxsbGysrK0tLSwsJCEomUkZ2TeDXn1CXiifPZJ1MIiVdz0rNJN27cKC0traqqamhoaG9v7+/vHx0dZbFYIpFIqVSCixnRaTpn66LT6V544YXS0tKF2sLdrqNQKIODg+5Wa7y+d2wB8EsCVaNSqTx16tRDDz1EJpMRlBP5wgB+4Zzn646bMTNjNBq7uroUCsXo6Og8P4cojtFoBF7H8+fPr1+/vr6+HiAOwNyIojg4nmkeS66QU/AWQ3SmCoUCIEo8Hi8mJubhhx9uamqCZwTxfLq1ZWBCAHi3tdAjj8dLSUnZsGFDT0+PDaDT3duLYjNA1RsfH7927VoikYjmQMR65+JzIOoI62Dn5OSkyWSasBxGywGfAbg5aTkgQu8gpxWqFf5hJVjAesGvUCgkEglwSL7wwgtvvfWWWCxWqVRA/owDOh0xHuDZR2K9arX62LFja9euTUlJgbwNkUiEKCuQ2jqe2eCIvsDLdIIF0IBHiUow7UB61vDw8JYtW3bv3s3n85EGLeQBuOxexglGc51bLD7MOTVtHucp+kaEMVeb/E9XnLrSdCGnc5AmmjAtQ5TV2Bg9OiYhIjLmzNkLSpXKyf1IHR49f+EyCnbmFxTJFQr7Pkemyclkyy0SEpMdihlduOl6+ygRkTFR0adHx2gL/9UKvNJsnukc5J3Lbv/sZGlESh25hbZcH8OZGUwJ+CKp0z++orWPY99HYAWOHNdpstlsjk9rSSvq4widPbu6jhHwmqxwC+BhzjsYABAnQIAYiKaAp5jH4zEYDCqVSqFQurq6WltbGxsb6+vra2trqy1HTU1NXV1dQ0NDa2trV1cXhUKhUql0Op3L5YpEIsgKtyGicdrLZnp6GvJD78AWbnUpTlrrVt11l5VFD6bBYFCpVFQq9emnn37zzTeZTCaocqI0AtcX02ptbd20aVNDQ8M8trBp78jIyBNPPLF3797x8XEE5YS0CWjvPEXhp1aIBVDEyGQy6fV6a0Dn+Pj4Cy+8sHfvXqVSqdPpkMvYaa8hR3QBai/S2ANAJ5/P53K5L7300vbt29G0sAwArAj5ZDAYNBoNk8n87W9/u23bNjQHKhQKcI+6HeYJrb5g3gMqWuv/kbcXz+dwxKO0MsuECQRJQspkMlDLS0xMvP/++/Pz8+VyOXrJ4pF1uw8SeNiRRm9FRcXGjRvDw8NBhVcgEAA8fUnSQ+3eWLxA3ALWtPOwSAOaFpRgkZWVtX79+s8//9xm5sEnH1cYPIsPc5omp9sp3JK60ZAzlQdOFKfmdZc10tTaCVdond3rMDU1VUGuhkDjpdTrOp3O7reYv0CFUlldWx99Kh7qkHjuQmtb5/w/uaOzSIK0uLTCRZ5QLpcXFX06IjKmrd2eLb0js7jLxdPT5uo2xucnSwPjKy6SOsktNK1+wq13xHNZ3myeaehmHYwqyakYMC3HjIq5Gr68v9doJw7FlOdXDWuW6RtkeXcf3jq7WAAPc96xGcHxAVnesP1Wq9Uo2Mliseh0+sjIyODgYH9/f19fX6/l6Ovro1AoAwMDw8PDdDqdxWLxeDxglQT0jNFoBACN8zORZTLZyZMn79gQ+A9wC7iSBdAjqdVqFQrFuXPn1qxZU1FRwefzQZUTwbac/4gt3E5ms3l0dFSpVNbW1s7/K5v2nj59evXq1QUFBdBeqVQKxFbLA5Y3vynwswu3ALy/EMAR3lwAUUpOTr733ntLS0uXGaATnhTrtCQ+n8/j8RISElatWkUikZCom1tDslDPTkxMaLVapVKZl5e3du3a6upqNAe6C5x9rvEMIcx5/p/rh/j3uAXuzgIo0qbT6RCyanBw8Mknn3zjjTf4fD4odIL69bJ0gd2d3Rb5K5jNpqamUIx5aGjoscce8/X1pdPpgE2XSCSQpAKAWlde1y3SGvjPV5QFrAe/Xq+HSCdQ1/L5/P3792/cuLG0tBQRM7hd0tJy7c1FhjmNE5NKtSGrhBJ3rTn4TGXImcraDiZXqF7GrxWTyXTJohZ5Iiq2pna+vF4HjRmz2UyjMZKSL0WejINg5/W0LLFYsnibK1WquPhzGCvvqXipVOag+t9psTKZ/MxZTCu0sGjZ8rfdqU3muV4i153Naj96vjY8qfpyXtc4V6lQGyanliF3rUCqOZPRmpjZKhCr5zEIfspdLGCemSGWDwYlVLZRuO5SZ7yeuAXsbgE8zHmXJrXeh6BcY6VSKZVKxWKxQCDgcrlsNpvFYjEtx/j4OIvFghxk0JJRKBQQh4AAJ2xUlmSjTqVS33zzzbs0hDv8LDg4+Pjx4+5QU7yOd2kBoGoEj5harRaJRD/5yU8++ugjoG8Vi8VKpdIaLX2Xt3H8z7hc7tatW+Pi4ua/lU17pVLpc8899+6773I4HARxALpamFjmLw0/u3IsAG+u6elphBVAmnMDAwPPPPPM7t27BQKBVqu1Vn5ya/sg3DN4DBGgk0qlPvnkk2+99ZZIJLJ+WBbv4FgSc1lDOdVqtVgsfu655/bu3YvmQIByIpzuklQSvyluAfeygM2rVi6XQ7whISFh48aNTU1N7ouQduWOgPcUSsdRKpUfffTR+vXra2pq0IQml8utM1RcBC7jylbF6+YuFrAe/zqdTqVSoXULg8HYs2fPf/3Xf42NjdmMfzddurhLp9y2nosJc5rNMyqtkSdWx1xp+iK6NPRs9cnUxlGWdHp5SXLeakOpVHYu+WJEZMyp2DPDI/OptNz6W3t9o9Xq6huaUaQzIfF8TV2DwWBcTPmtbR2gylldU7+Ycuz7W51OB3Hli5ev2bfkZVma2TzTPyaKvtK0/0Rx5MWG7iE+W6A0TixDBmmDcbK4YTT4TFX/mHBZUmQvy/E5T6M0+okLOZ3Hztey+Mp5LsNP4RZY3hbAw5x32b82FGqgdmYwGHQ6HejkKRQKuVwutTrklkOpVGo0Gp1OZzD8f/a+PD6KKl1bRQQEZBERR2H0Xq9zv1HGcXQUt3FkC4s4zuA44qjjnXHUO46joMiWALIknaWTkJ0Q9kD2sIUkZN8hKyH7RrZOd/VWXb3v3fl+nRfP1A0QOkmnu7r69B/Qqa4657zPqTpVdZ7zPK8OKTiRXZ5L/NZ0Op1Wqx0jEO5w2O9///s///nP7tBS3MYxIoCkjSC54HK5Dz74YGlpKZ/Ph1UFSMrJZMGWTCajKCo/P1+pvMN6OiRQg3jj4uJmz55dV1cH9rwkSdKnP/DcxxjPKjYehu5cZrNZr9dDBkdkiQZz9yUlJUjQCeSZWyOB1iQhQSeK99ixY7Nnz66trUXxwr3YHeNFY6BWq5XL5UeOHJk+fXpycjKSd2PZmTt2K26zaxGAAdNsNiORNBo9nn766U8++QTutlqtFhsnOLCn6GtTFApFUlLStGnTEhIS+Hw+0qbTBzQmP9c5EBZclOcggBZY0J9bhEKhQCAoKSl57LHH/vCHP8AKLVi6hC8Bl58b46E5TWbLtQ5hYVX3zsj8rzmZx89fzS7v1OqMLg/KCQ24evUaMIL+gaESicQJNd6yCpKUHT0WDy3x5XCPHIsXSyRjWz1jNpujDx4eSjt6UKlU3bI6l2y0WCwJSam+HC4nIMRkMrmkDfP6Rd8AACAASURBVG5XaWFVz+agSz7h+Scv1ude6ZIpdG4Xwh0bbLFaW7sl3mF5oScvq7XsdMm+Iwhs2qGfUPjGlUQmVOoM+DJnU8fiWEaHAKY5R4fXsL3RlDG8k5tMJqPRaDAY9Ho9cIcajUY99NEMfbRarV6vNxgMRqPRZDLBjCooOF1IRQQEBGzdunVYaPhPjIAbIQDmZlqtVqVStbe3P/XUU++8805PT88waSNaT8DA0AwGw1tvvfXZZ58ZDHd+xIRZV1CndXV1LVq06I9//CNk5ZRKpaAvYY0aj4Gd5dZNQrctpH4GiRKfz+/t7f3lL3/58ccfo4yV7FADoxlDnU6nVCohxx6fz+fxeC+99NLvf/97yEiKLhm361+gcpHBY39//29/+9sXX3yxs7MTjYF0ha7bBYgbjBFwFQLDLi40WnK53BkzZpSVlSGdNJMfMFyF3hjqpQ/XKpWqrKxszpw5H3/8MST7EAqFUqn05hzSLnyHGkOM+BCMwB0RQGQ/JNsG02xIMRAWFjZz5sxjx46BdS0yacBXwR1RnbgdxkxzWq2DeoM5q7Tj2Nmr33MvfeOfWVh1fUCksLLQHfMW8JvN5ty8QvCMTUpOd+E5rNFoqqprwyJioDHckIjcvMIxyABKyyqghEs5+WMjSm8Bk4M2Iaj7+nkOKpLlxUhkGv/DpVuCc/YeLDqcXssXKy1svDIVKn18xrXtB3Lbex1g2szyc4Lx4dW0CL4LulR+tY+V5yrj4ccNZAoCmOZ0WE/AVAi8lpjNZtOPH+OPH9hgHvqARMaFD3P0sFNSUo4ePUrfwrLvL7300rJly1gWFA4HEADOhm5uFhcXB1kqkZSTLm1k2isHRGEymRQKRW9v79WrV0fu2ZvjjYqKuvfee5OTkyFeupObS0ywR24//pUhCCDxH+RxBInSwMAAnE5VVVX0q4Yht6rxQIcE0BAv8pY/cODAvffeCxJqyPEGqgj3ChmIAYPBAPLcvLy8WbNmHTt2TCAQgJwdlE9YcDaeUwgf65kI0OXgYCAJo2VVVdVjjz32ySefSKVS+vXFzGcMd+k7eDkCgxy1Wk2S5Pr16x944IGrV68ODAzQF23QRWzuNVy7S1/gdrocATrTCUk64dGFz+dv2LBhwYIFPT09SqUSXPfxMgvX9tfYaE6rdVCl0QulqkNDHoO7o/L9DhU3doqMJhZ6Y96ug0wmU/ypJKAGC4tKXDuek6Qs7sgJmodtTH8/z/7bulyuCOSGgWKSJGW3C9lV2xubWgDnsvLLrmqD29V7+RrP/0jZ98GX/I/YrGvFpNpotLhdFHdscFOXaEtwTsqlJlYa894xfNbsYLEOpuQ0bQ3JGRAqzBYWnqis6SkcyEQjgGlOxyOM+E54Xb/5X8dXOb4Si4qK+Hz++Mpg9NEJCQmpqamMbiJu3FgRgMvNZDKBlFMmk/32t79dvXr1wMCAQCCQSCRIl8Zk9iIyMnLVqlVqtfqOMEC8KLGiTCZbvnz5a6+91tfXd3O8mOa8I54euwM6kYYJHOvq6v7jP/7jgw8+IElSrVbr9Xp2zJ0hhRBooJGgs76+/tFHH/3oo4+kUinoHd0uXjQG6nQ6tVpNUdSHH374/PPP9/f3g4s1JAJHXemx5zwOHCMwZgQgnzHIqiCfMZ/P/+KLL5544on6+nqZTKZSqdAl5tpZ2jHH6PIDYShDZhUKhSIqKmrevHnp6elgVysSiegLuZj8UOdyMHEDWIAA/YqANRYomfqVK1eefPLJt99+e2BgABalIY8oPP64pOvHRnNaLFZComzrEe+LLf6aczHwaNmh1BpWGmOO3Cm8AX5g0AFg4Fpa20beeaJ/NZlMtXX14ZEHoT3ckPDM7FyKsivLXXnFFXC+LSwqneh2jqF8iUQKQSUkpozhcM88xGS2pOU2f8O56B2Wd6mis7VbrNay0FB6QKSISan2P1zaw6c8s6PZEbVcpQ88VnbkTB1PqGBHRDgKjMDYEMA059hwu8NRoLi63b93ONi5P5vN5smTJwcGBjq3WqfWph/6OLVKXJmzEEAyJhBp5efnT5kypaCgACVwQln3XO4OfTtIwMU6NzfXnrkJerwURdXX1993330lJSU3x4tnAG8HON4+ODiIuDEkAUQ557755puFCxfW1NSoVCrIOccCvnxYvOD/Jhj6bN++feHChY2NjW6RwffmsxdCQ0sf6uvr77333ujoaD6fTxAESM2Q2sOeQebmKvAWjICHI4Dk4JAPGzRV7e3t06ZNi4yMRPmwweUbX2VjO1vg8cZkMgGdXFNTc/fdd3/22Wewag3sasGlExmMY6jHBjU+yi0QgGkEMIhCy5hg8BEIBFFRUVOnTj158uQw1318Ubikc8dGcxpN5spG3sWSdu/wvG84mYlZjZev8TyzBzs6u4AgjIqJ0+v1LulEeqVGoykpOR1l6ww9EHW9u2fkrrFarZHRcb4cbkRU7Bjcbum1T9B3q9UKYtOIqEP2pMiZoGa4XbEDQoVPeP620NxDadWZpe1SSuN2IdyxwQajOSGzwTs8r+DKdbPFMyyz7wiKG+7AEym3hORklnTgNKtu2Hu4yY5EANOcjkTTHcsym835+fnd3d3u2Hg724xNa+0Eyu12G2boJBQKX3nllddff72jo4MgCLFYjKScJpMJ5guYFmNnZ+eSJUskEok9DRsWr1gsfv3119944w3IygnxAp8B8dpTJt7HYxGgzymjjJUCgaChoWH+/PkcDgfNnYHA0d2BgngRHYhUER0dHQsXLty3bx+aQHcjQSdSe+j1epVKJZPJPv3008cff7y6uhoca0HKCX689vtuuXtf4/ZjBByLABo9QP4ulUqFQqFAIPj8889/9rOfCQQCiqK0Wi2i3xxbuyeUhlai6PV6tVotkUjee++9BQsWVFZWwooNujkHEq55AjI4Rg9HgD74wF1eJBIRBMHj8TZs2PDUU0+1t7eDb7bBYGDH05o79vjYaE6d3nQmvyUqsfL74EubudkltT2kQuuO4Y+/zVarNftSHmgNT51O1ukYwXQ2NDYfOnwcWuUfGHL+QpZYIr1dsCgrZ15+0ciE6O1KcML2hMQUXw43NCxKKiWdUB07qjCaLKcuXtsamrMnpuhQWg1PyMLUuVbrICFR+saVhJ2+3CvAgk63PHPNFuvxc1f3HSy+2kYwdghyS2Rxo90QAUxzumGnObTJ/f39ISEhAwMDDi2VWYWxQIrELEAZ0xpE+2m1WoqisrKypk+f7u/vT5c2ovl9Zt7vrVZrZmam2WxXFhYULwhKLl26dNdddwUEBKAMfCzLp8iYE42dDUFCAYPBQM/QyefzN23a9Oijjw6zB2QBCnAFwTQ6RVFisVggEPD5/M2bN8+cOVMoFILzpNFodJe7BhoTtFqtQqFobGz8z//8z48++ojP5wuFQolEgmY/McfJghMYh+BCBOj5jEEOThDE+fPnH3jggaNHjyJBpxuNHi4Ec1jViOMEdwGFQnHhwoVJkyZduHABOE6xWIzMtwFhdxmih0WK/8QIjAEBNPjAjV4qlYpEIoFAUF1d/fjjj69btw58s+nvO8x85RlD7O5yyBhoToPRLFPoDiZX74ws+CG60P9IaWuPxJM7TqfTB4dGAqdYUOjiJJ3oxNPr9WfPZUCrfDlc/8DQaw1NN3cTRcmR9FMmYy5LVFJa4cvhBnLDenr6UIz4yx0REMs0oScvbw/L4xwuqW0RSGQag9GuqZs7lsycHSwWa3FNz3fcS9llnTo9C415mQP1BLWEkKh2RxfGpFRLZSwUHE8QaLhYtiKAaU629qy9cVVWVr766qs1NTX2HuCG+x0/fjwhIcENG46bfAcEkI+cSqUiSXLTpk3z589vaWkBKadMJoNke8z0kdNqtV5eXhUVFXcIkvaz2Ww2Go0g25JKpV999dWMGTOuXr1KEIREIpHJZEjKiWcAabDhr7dGAGhOlHOOLujMzc198MEHIyMj6YLOm9/qb10ug7ciVQSaKwRJVmZm5uzZs7lcLgg6jUaju0gihhG3R44ceeCBB8rKytDSB7VajaY+GdwzuGkYAaYjMGz0gPy+HR0dL7zwwtKlSwcGBtCSAnCMZ3o8TGqfZehjNBrBrraxsfGRRx758MMPUUpOkiTp8MITDgtuSUzqBNwW5iIAN3qTyYQWaUGWgYGBAT8/v+nTpycmJsLTi16vZ6x7DXPxdUTLRktzWq2DKrWeL1L6Hir5p28G90TF0bNXtTpPpxYkEml4ZKwvhxscGtnd0+uInnFMGW3tHUePnwKykxMQkpp+js8XoHuQ1WotLimHX4uKyxxT5cSUcr2715fD9fMPrm9onJgaWFvq5Wu8rSE52w/kZpdDhk4Dy0K1Dg529JF7YooiEyv7CbuS0bIMAXcPp76N8D9cmpTdpDOY3D0W3H6MwDgRwDTnOAF0+8MtFoter2e3zgOb1rr9aXqrAIbNOUokkoULF+7cuRNkTJCRDjILMnPO0WKxJCYm2p8bA+I1GAzA0AwMDDz11FPffPMNn88XiURoEhAYGvTqdSvk8DaMwL8RQGsF1Go1Ejj29PS8+uqrzz33nEAgUKvVMHHGgtsE0gzBXKFMJgNBZ39//69//etXX32Vx+NBvCAY+jdMjPyGwgEjTZIk33jjjT/84Q90j0f60gdGBoEbhRFwDwTol5tKpaIoCqwjuVzuvHnzioqKKIpCoyW+BdvfqQhYkHKSJPn3v/99+vTpxcXFw4YyuBPhvOP2Y4v3ZAcCcI3ASke43aOnFx6P99prr7344otgv6HVapGlMx6FnNn7o6U5LRYrIVG19kh+iCr8x74Lsak1BVfYnD/I/r6ou3oNZJFBweEKpdL+Ayd6T5PJVFhc6h8YAnRmUHDY5StVUKnZbI6MPuTL4UZGH9IbGM1+SUkZNyTCl8PNLyyeaMRYVj6l1O09WLQl+FJqXnNV04BcpWNZgIODgxqt8Ux+i3d43rV2gdHENrkq+/qLHpHVaj129qp3RF5jp4i+HX/HCHgmApjm9Mx+/3fUx48f/+ijjzQarG3/Nyb4m1sgYLVaYWkzOLiGh4cvWLCgvr5eIBCIxWJwcEL0DKPe9g0Gw+effx4UFDQqnK1WK2gdNBqNTCY7fvz4vHnz2tvbBQKBRCJBfm5ulFZwVOHjnScIgWHLBSDnHJ/Pj4mJmTVrVnZ2Nl1Dw6jraGyADFsugOKNj4+fPXt2YWGhUqlk8vIIetR0IzuKooqLi0HVgaScSqVSr9fjpQ900PB3jMCYERg2epAkSRBEV1fXI488snv3bvCthdEDGyrYDzIo1WAJl1KpLCkpmT9//p49e0DKiR7nQJXOzFVr9geL98QIjA0BxHTCagCw3wA7isLCwvnz5+/cuRNZ1yKmc2x14aPGgMBoaU6D0Vxa15eW37olJOdrzsXimh6pHE/F2IA3Gk1nz10EKjEl9az9q4HH0GujPcRqtV6/3hN/OpkTcIPsPJ2Q0tvXX/KjlLOwqJThL0oqlepg7BFfDjcpOW204Xv4/haLNSGr4dug7OAT5UnZDQIxgzh4R3WN1ToIEnPO4VKxTM3wk9lRUbOjnF4BFXb68u6oAr0B89Ps6FIcxbgQwDTnuOBjwcEZGRn/+Mc/7EwN6Kbxrl279r333nPTxuNm3w4BWNes1WqVSiVBEAsXLnznnXf6+voIgiBJEsw2mWk+abVaT58+3dDQcLvQbrmdHq9UKn3iiSfee+890DrIZDJktolnV2+JHt54OwSQkgbMkJGgs6+vb9GiRZs2baJLlFgm6FSpVDKZDHJc8Xi8Z5555quvvoJ4DQYDmF3fDjcmbEeGwxDI+++//9///d/Xrl0DF2tkOMz8QJgAJm4DRsAeBGBtAXirIkHnt99++/jjj0skErlcDoJOvN7IHjAHBweBOYYla5B94LnnnvvNb37T398Pzhx08thdvMTtjB3vhhEYFQL0pzWNRiOXy8VisVAoHBgY+Oyzz+bMmVNSUjLsvo8nqUeF8Hh2Hi3NqTeYM8s6jpyt2xKas5mbXdPMZ1+qvzHjaTKZjp2wOcRyAoKvXKkeczkTdKDBYLh8uQqIWMhziSSeMorpVp8GgyH+dJIvhxsRFTtB+LC42AGRcseBPL/DxUfO1Pby5WazlX3B6gymswWtmwKzUnKazGYL+wJkZURWq7WgumdPTGFxDYO8vlkJNQ7KXRDANKe79NSEtNNisXR1dfF4vAkpnTGF7tmzx9/fnzHNwQ1xAAJIVKHRaBQKRVpa2n333RcdHQ0OrhRFKZVKnU7HtKycFoslNDT0448/1ulGZ3UC8YLTpkKhOHfu3KRJk2JiYvh8vlgsBiknxAsJFx0AMS7CMxCgSwRQxkqCIPh8/p49exYtWjQwMABXE/i4uvusGZooBPGQXC6HHFd8Pn/v3r3z5s3r7u5WqVQonyWT4zWbzUgCde3atUWLFn366aeIGwAZLpZyesZ1jKN0EgLoXgw0A4weOTk5s2fPPn78OPhGMvDZw0nojL4aupRTLpeHhIRMmzbt9OnTsIRLLBYj5phpj3OjjxUfgREYLwLo3QdWWkCGYIFAUFdX95Of/OSvf/0rSZLoAQZLn8cL92iOHxXNaUvMqTFEJFzZFpq7K6og4GgZX6waTW3s37evjwfeqpyAkM6u6wwMmCCEScnp4K8LlOfphFTmywasVuv5C5nQYLVazUBgGd6k7LKObQdy9h4sqm8jlGo9K4nAbj61L7Y4+HjFgIiFilWGn2Bja55Ypk7NbdkVWcBno8h4bJjgozwcAUxzevQJoNVq33333X/84x8ejQIO3t0QQEQFvOfLZLIvv/xy1qxZXV1dBEFAVk61Wm0wGJiWw8lqtRYVFXG53FG9CEG84FirVCqlUunf//73GTNmtLS0oHghAx/T4nW3M8tD20s/wegCRzAPDA8PB32AXq9nx6wZTBSiCwomCvl8fl5e3kMPPeTv74/0EEyOF7l2Q1LV+Pj4yZMnl5SUgGMtfekDVnh76IWNw54YBJCKGvlGdnZ2Pv/882+88YZYLEbOClh6eEf4h916Ojs7Fy9e7OXl1dvbC+MYoo2RMweT153cMV68A0Zg/AgMM6uXSCRCoZDP5588efL+++8vKyujKEqr1bqFI8X40WBOCfbTnFbroE5vEss0QcfKvw3M4hwujUqs0ulNzImFCS2xWq21ddeAjTt46CijknQifAwGQ1NzC2I6A4IOXLiYPaoXfFSUM79cvnJDitrS0urMetlRl5TS7IzI94nIv3ytXyxVsVKErdObKur7vMPyL5V1Go3YAdUNzty2Hsm+g8VRCZUkNj93g+7CTXQGApjmdAbKjK3DbDaXlJRUVlYytoUOadhLL720bNkyhxSFC2ECAmhqDKScEonkqaee2rFjh0AgAMdalUqF8mMxocHQhvLy8pUrVxIEMdomIVZGrVbL5fLe3t6f//znX375JcPjHW2YeH9XIQAXFEgD6RKl69evL1269PnnnycIAvQB7LA/hXjBJhGuKbFYLBAIenp6Xn311VdeeYXP56tUKmZm9oWTBI2BWq0WmOn33nvvtddeAwkULPWgL31w1amF68UIsA8BWGEAGfLA5ZsgiG3btj3yyCMVFRXD8oKzL3xHRXTzOLx379758+fX1taCJF0qlaIVJ1jK6SjYcTnujgC8ESCfZ4qiJBKJQCDo6up68803Fy9e3NfXNyzFOF4c4IROt5/mNJut1wdk1c38nRH5X/lePHXxWmktthm8dRdlXMwGEvHs+YtGIxOZ4KLiMuBiOQHB8CUqOq61rZ3JZGd3dw80NSs799a44623R8BkssSm1mzmXkrNbalu4lPK0blz3b5gBv1itQ62XBcHHisLOVnBEyrwHYRBfXOrplgs1rKrfRv9s/KruvGKmVshhLd5IgKY5vTEXkcxa7XaY8eOCQQCtIWVX9ra2jo6OlgZmgcGhSgZlErw7Nmzc+fObWhoQDImjUYDFAWjnsw6Ojo+/fRThUIxql6jTwUCn5GZmTljxozm5maBQACOtcyMd1Rh4p1diwCdNkMSJT6f7+/vP3fu3IKCgmGzZq5t7fhrR0sHdDqdQqGQSqXg0xsWFvbQQw+VlZXRHV+ZlpEUjKkRLa1QKLq7u2fOnBkXF4ckUMi2jmmNH3/f4RIwAq5FAI0ekBpcKpUKhcJr165NmTIlOjoaFhnAQismy8FdiyHKymk0GgHGmpqamTNn+vj4wFoNiUQCknR4lsNOFS7vL9wA5iAAVs9w7SgUCkgxzufz4+PjJ02aFBERAVbP2D3bmV1mP81pMlmaukRFNb3bD+R+5XvxXEFbN0/mzKa6UV0KhTIqJs6Xw/XzDy4uKWfUS/3g4KBUSgYEHfDlcP0DQ2tqr3KDw4E+DOSGJaWkj/Z932n9olaroZ0xsUeYBqnTQBhPRVcaeJu5l05cqC+s7pFSmvEUxdhjTWZLUlbj1pCciyUdJpyhk7H9NNQwQqo6ndkQFn+5V0BZLCzMF8ts+HHrGIoApjkZ2jHOaRZJkkuWLGloaHBOda6q5fLly1VVVa6qHdfrWAQQHwP8hEQiefXVV1euXNnX1ycUCiUSiUKh0Ol0yLHWsbWPrTSSJN99992WlpYxHI5mVBEfs3bt2hUrVoDcAcWLM/CNAVt8CEIAMWeQ/xVJlJqbm2fOnOnn50dRFKgD2SHoHBwcBOc3WC0hk8lA0Nnd3f3QQw8FBAQMUxEhoJjwhb7UAxxr9+7du3DhwsrKSoIgbs5mx4Q24zZgBFiDALopDxs93n77bS8vL7gAkWkknkO8Zb/T12+p1WqxWPzBBx8sWrToypUr9OzCkCMZ7H8xkrdEEm/0QASGXT70FOMrVqz49a9/TXfPxq71zjlD7Kc5dQZTdnnH8fNXvw3K3uifdbVVoDdgW8jb9hKPNxAcGuHL4YYciOrt67/tfk7/wWKx5OQVAF9YUlo+ODio0+nOX8gM5NqIT18ONyIytqm5Va83OL1pd64wIuqQL4cbHBqJ03PeGayb9jAYzftjS/wPlx47W9dPyG/6nSUbBBIl93h5wJHSHj7FkpDYGIbFYm3rleyNKbpY0k7KtWwMEceEERgLApjmHAtqrDnGYrHweDyj0ciaiG4ZCDatvSUsbroRrWLWaDQURVVUVEyaNGnPnj0gYyJJEtwmjUYjc97tKYr64osv2tvbx4A5xIv88Wpra6dMmeLn50eXbaEcPHgecAwI40NAWANz93CmgcBRKBQKBIKPP/74lVdeQTnSWGMeSI+XPkv4+eef/+IXv6A7TzJNkjVsqYdAIFi8eDFa6oHFZPiKxghMNAL0+zIaPU6fPj19+vTm5mb66IHl1LfsC/QgB1LOioqKBx98cM+ePXQpp1qtZrJz+C3jwhsxAk5AAK1LA0EnGL3AA1t1dfX8+fODgoJwfm4ndAS9CvtpTq3elJ7XHJVUuSU4Z2tIbku3GOtv6Eje/L2m9qp/YKgvhxsTe0SjZco8vkqljoiKtbXq4BE0k2YymXr7+mPjjgHT6R8YkpiURpKMY4nOZ2T5criB3DA+n+WObjefTg7ZcqWBt/dgUVRiZTdPxtbrV28wnS1o3RKSk57XotGyfK7YIWeFSwoxmS0XStq9w/IzS9uNJotL2oArxQgwEAFMczKwU5zXpIaGhi+//NJ59eGaMALjRmCYBovD4dxzzz1FRUUEQYDLGcpIx4TpRYvFsm/fvoKCgjHHbbFYjEYjqEZIkvTz85sxY0ZeXh49XpByMiHeMYeJD3Q5AkgfoNPpVCoVSZIikUggEGRlZU2bNq2+vl4ul4NECbQ1Lm/w+BsAF5dOp0M+vQKB4OzZs9OmTSsqKqL71jJqAQFiCEDKWVhYOGfOnICAAIIgRCIRRVF0emD8KOESMAIYgWEIIEEnsHRgGlldXf3444/7+PhIJBJw+TYYDPi+PAw6WFUDD3LoXvP+++8vXryYx+Oh9VtKpZIu5by5ELwFI+DhCECSYL1er9VqFQqFRCIRCoU8Hu+vf/3rtGnTGhsbmWxKwb6+s5/mVGkM4aeubDuQ6xtbEnbqCl+sZB8ajo3IYDAmp54B4jAl9azBwAjGpbCoFNx0Ky5XDotXo9FmXLwUHBoJbQ4KDqutq9fp9cN2c+Gf9fUNvhwuJyCkpbXNhc1w36q1OuP+Q8U/RBfWtxNavZGVTKfFaiUkSu6xssjEyusDMis2Q2Xk+ao3mLzD8iITqzp6SUY2EDcKI+AaBDDN6RrcGVJrfX391q1bGdKYiWvGN9984wlhThyAjCrZbDYbjUZgJkQi0dtvv/2rX/2Kx+OJRCKSJMGxljkOrhaLZffu3dnZ2WPGEDLwwVwqn89fs2bNL37xi76+Pnq8rBHYjRklfKBDEIC5e71er9FokESpsbHx6aef/vLLL+mZ0tgxd49mCYEvFIvFBEFcvXr1qaee+tvf/sZYvpC+1IMkyeDg4KlTpzY2NoJrN57ZdMi1gAvBCIyMABot0ejR39+/atWqZ555pq+vD3LjMTBH+MhBOeFXWE+DHmwUCsXFixdnzJhx6NAhkHJKpVI0iGG7Wif0CK7CfRGgr4ME732CIAoLC+++++4dO3ZIpVJkb8M0Uwr3xfx2LbeT5jSaLKRcG3Ss/Nug7KBj5XGptZSSQezX7aJz+Xa1Wg0SSciC6fL2SCTSQG4Y+L5S1C1sS61Wa29v/9Fj8T/KOkNPxCfweAMubzk0QCyW+PkH+3K4N3O0DGkhw5thtliPnr3qHZ5f2TggU2rZqqIzGs0V9Tzv8PxzhW1KDRPtlxl+njihefVtxDeczOyKLp3e5ITqcBUYAXdBANOc7tJTE9JOqVQqk7E/7/1HH330+eefTwiCuFCnI2A2mxEN09PTs2DBgsOHDwsEArFYjJziGDI1dv78+YSEhHEihOKlKKqxsXHhwoVBQUGQgY9p8Y4zUny4yxGgS5SQby2P64NDBwAAIABJREFUx3v//fcfe+yxvr4+kCjBMgKXt3b8DYB4DQYDXQwxMDCwfv36n/3sZ9evX0eKIkbRunQRqlQqXbNmzdtvvw0qKHCsRSooRolQx99fuASMAHMQQKOHRqOB0ZIgCC6XO2fOnLy8PLg763Q6k8kEDpPMablrWwK4mUwmyANNEMSyZcsWL17c1NSEpJwqlYo+iOFxzLVdhmtnLALI2kGr1crlcqlUKhQK+Xz+p59++rOf/ay3t1ehUCCHG3wdTWg/2kNzWixWEalq75Xsjiz4yvfikbN1F0raTdhm0L6O6bcl6bTpIwODDggEQvsOmpC9LBZLZnYu8JelZZdHqMNqtRYWlYYcuCHrDOSGVVyu1DLAd1elUodHHPTlcC9kZI3QfvzTCAiU1PRuDso+X9Ta2ClSqFm7WEEoUYWevLwtNLe6aQALOkc4H1z10+H02uAT5Q0dItw7ruoCXC8zEcA0JzP7xUmt+vzzz7HM0UlY42ocgQAyOgP9xNGjRx955JGenh6CIEABoFarmSPljIuLCwoKGk/cKF5IvRMfHz937tzOzk6IF+YvGJWFdDzB4mNdjsAw31oQBwgEgri4uOnTp2dkZNCnzBjF/I0NOnqSS7jEwKf31KlTs2bNunTpErrEmOPTCwpUoGblcnlvb++sWbNOnz49bKkHKLzHBgs+CiOAEbgjAvTRQ6lUymQyoVDY0NAwderUAwcOgLeEVqvFN+hhSNLTmioUiuzs7AceeCAqKkogEAiFQizlHAYX/hMjMAIC6JkNEltQFCWRSAQCQVtb26JFi7y9vWUymVqtRosGRigK/zROBOyhOc1maz8hr28nvMPz/+mbkZDVUFLbO856Pedwi8VSXnEFyMVDccduqaF0DhqUXB4eaeMIDx46irJy3q5qi8XC5wuSU9JBPenL4R47cbrrevft9nfOdr1ef+z4KV8O9+jxU86pkX21iGWabwOzki41VjbyZAqmpIx1OM4Wi7Wmib8tNOfEhXq5Sufw8nGB40FApTF4h+en5bdIKdaegePBBx/ryQhgmtOTe3+wuLi4vLyc9RC89NJLy5YtY32YnhAgyJjAwVUqlb7yyivr1q0bGBgQCoUymQxJzVwunqivrw8NDTWZxmUfgWZRNRqNUqmUSqVvvfXW2rVr+Xw+0+L1hHPPQ2KEOWgkmJZIJARBtLe3T506dd++fcN8a1kgDkC+tRqNBqYICYLo7++fO3eun58fA31r6Y61MpksPDz80Ucfra2tRUs9WJY/1UOuOxymOyKARku1Wi2Xy8H1evny5evXrxeLxWj0wHaRqHMRK4Oycq5fv/75558Hu1o6aJgeRqDhLxiBERBAJhwgK4f1Fnw+/+uvv548eXJjY6NCoYB03TAQseCxbQQ0XPiTPTSnwWiubuRnlXZuCc75mpNZVN3LF+HEnKPrtJTUs8AXZmXnumq1ZX5hMWTlrKqutbP1ZrO54nJVyIEooGl9Ody8/EK1RmPn4Q7fzWw2p6Wf9+VwuSHheEwYM7y+h0rCT185m9/C7gy7Wp0po7j928DsopoelRZb1475fHHwgRaLNTm7aVdkQWFlNyuzwzoYL1ychyGAaU4P63BauFar9dChQ11dXbRt7Px64cKF8SRHZCco7hkVcnBVKBRXr16999579+zZAzImIGAY4hGXm5v7xz/+UTO+FxiYvABjN7lc3tbWNn36dA6HA/EOS/2F31Lc84xmXKvRlBn4uJIkSRAEn89/9913V6xYQZIkWkxgsVhYcNYNi1cqlUK8n3zyyWuvvQbxghKCIfEix1qVSiUWi5csWbJ06dLu7m5I1gsuuzhZL+OuK9wgNiIAo8cw1+u4uLh58+YNDAzQfWsZMnq4thMQx2kwGICSyc3NfeCBB44ePQqLt5AE1mAwYG7YtZ2Fa3cXBNBlhV4WxGKxQCAoLCy87777tm/fjh7b8IPBhPapPTSn3mguq+1Nz2v5PjhnY0DW5QaeXMVar8sJQpuSyw8eOurL4XICQiorqyeolhGKFf+YlTMsIkYuV4yw580/CYWiM2czgOn08w8+fOREU3OLy8jaAhtZ68vhisTim5uKt9iDQEFVN/d4eUJmQz8xujPBnsKZs4/JbOniyfYeLOIeL+/qZ3+yM+YgP3JLBkSKL/dn+B8ulcqxlHNkqPCvnogApjk9sdchZoqi5s6dGx8fz3oIJBIJSZKsD5P1AYLuCkQAFEVFRERMnjz54sWLBEFIJBKlUknPQOMqAoYkye+//16lUo2/O1C8YIgXExPzwAMPMC3e8YeJS2AUAvQpM7qPa3p6+owZM/h8Pt3H1VVXmWMRM5vNRqMRBhaZTAa+tWlpaZMnT25vb1coFOA8yZBpd7PZjEiC2trauXPnbt68+ealHphWcexJgkvDCNwSAbTsQKlUkiQpFAqrq6vnz59/8uRJIO2QXSQ7RstbgmDnxmE3F4lEsmLFCsjKSU83zqhlJXaGhnfDCLgKAXCvQQ8GMBARBCEQCN5///1nnnlmWIZOV3EqrsLHafXaQ3NqdcYzBa0HU2q2hORuP5DX0UuaLVantZA1FXV1XfcPDAElYn8/z5lxWa3W8xlZwA6Wl18ZW9XNLW1hETGI7LyQka3T6Z3/hNDQ0ARtuOIKtnhs0DHtKJlC+0N0YWj85c5+lk8z6gymrNKOPTFFhVXdBqOZaR3hme3JKG7fGJCVlN1kMls8EwEcNUZgBAQwzTkCOCz/yWQytba2ymTsX5WDTWtZcCrDBJnRaATHWolE8pe//GXBggXd3d1CoZAuujKbXfn41dTU9OKLLzY1NY0Tc3q8CoVCIpFs2LDh8ccf7+jogHhVKhVIV10b7zjDxIczEAGUOw2cGMG3trGxceHChZGRkciJ0WQyOf+1fCLgQrJp8K0FJURlZeWiRYvAt5a+fmIiGmBnmTCbaTKZUBau+Pj4KVOmXLhwAZZ6yOVyhjTVzojwbhgBd0cAmUhDvnCRSNTZ2blkyZJ169ZJJBKKotAlidkFuLMYjUaQchYUFMydO3f//v0oKyesKQEpJ4bL3S8N3H5nIgDrLSDdAEVRsFrr2rVr8+fPj46OhqQe8MqAl0BNUL/YQ3NqdMak7MawU1e2HcjdGVHQM0BZMcs5pv64fKWKE2BjOo+dOG0wOM9FUyolgaE8eOiowWAcU9ttB0kk0qzs3EDuASAaow8errt6zcmvVAQhhNoTk9LGHIiHH2g0mYOOlQUeLW3rkTi5+5yMvNU6yBcro5Or9sQUDoiUZsyrObkDbqpObzTviy32PVTS2CG66Ue8ASOAERjENKfnngTV1dV///vfe3p6PBcCHLn7IIDc4TQajVwu7+/vf/755z/77DOBQCASiWAyUa/XgymTS8KyWCx79+7l8RyzsJRONVEU1dXV9dxzz/35z39Gsi2NRuPaeF0CMq7UCQigyWjkWysUCru7u5cvX/7qq6+iJQUuvNYcCwIaWyBe8K3t7u5+7bXXXn75ZZIk0ZIC184P0pc+gML7+++/nz17NqS1Q/OYRqORIcJTx3YTLg0jwEAEYPSABVgKhUIqlYpEor/+9a/z58/v6OiA0UOv10OmSQa235lNAkoY6eY3bty4YMGC/v5+kHLCAhrMxDizR3BdrEEADUQ6nU6pVMJAJBAI/ud//mfevHkCgYC+CgqvIZiIfreH5lRqDBEJV3wi8vfGFAafKBeIcWLOMXaF0WhMTEoDli4l9YzTTum8/ELIyll39doYm047rLPzOjc4HFKN+nK4x08mKBTOOyVMJhNUHRQc7jQAadGz4avZbIlKrNx2ILe2ha/VG9mdH9FgNOdXdn8XeCk0/rJSjd22XXwCN3QIv/bPjDh1RW8wubgpuHqMACMRwDQnI7vFKY2qqKj48MMPr1+/7pTaXFlJZGRkXFycK1uA6x43AkgzoVKpKIpqaGiYOXNmUVERkjFptVqDweBChZlQKHz55ZdPnDgx7lhtBdDjlclkly9fnjNnTlpa2rB4MZ/hELRxIXQEkLUgmo8WiUR8Pn/Tpk0zZ85sampimo8rvfFj+47m35HzpEAg2Lhx409+8pP6+nqGxAv9ghxrpVLp66+//re//Q2WeshkMrVajUiCseGAj8IIYARGhQB9tITRQyQSHTlyZPr06efOnZNKpZAuFy8+QDQMrCZpb29/+OGH/f39bynlZLcqYlQnGN4ZI2AnAmaz2WQyGQwGtVotk8nEYjFBECkpKVOnTo2IiEBLLnCGTjvxHO1ud6Q5rVarQqUPOVGxJSTHL64kMrFSKHVAfpPRtpM1+0ulZERULCTprK2rd0JcEokkkBvmy+FGRcc5io9UqlR5+UX+gaFA2UZGH7pSWa3XO4lDOnbilC+HGxAYSpLst3abiDPEYrWeOF+/JTinspGnUOtZ7x0qV+lOnK/fEZ5f10pMBJ64TDsRMJosO8LyfMLzy+v77TwE74YR8DQEMM3paT3+f+L1kKmEJUuWLFu27P9Ejv9wKwSQjAnWKZMkGRoa+sQTT/D5fKFQCIk5UQYsl0RWVlZ25coYs3Tc3GD6hCCsyz548OC8efMg3mEzpzcfjrdgBMaDAD3VEzgxwnxZcnLyfffdl5CQIJfL1Wo1WAuy4yaCVhXQ483IyLj//vvT0tIY4jyJaE5kjzlt2rSMjAxQeEOn6PV6s9mM12WP5/zHx2IERoUAGj0gmbFYLG5vb7/77rsDAwMlEolcLoc1WB6+JglyjQMHQ1HUN99889Of/rSyshKt0gDRPMhe2XFbGdVZhHfGCIwTAboPh1wul0qlQqGQx+P9v//3/5YtW9bf369UKpGHNr7Exon2zYePTHNarFadwSSSqvbEFH7lezEmuTo1pwkrom6GcVRbBAQREGTzfeWGRGg02lEdO9qdrVZr+pnzQEZWXK4c7eEj70/KZNEHD0PhvhzukWPxKrV65EMc8mthcSnwxF3Xux1SoAcWcja/9bug7EsVXdd5MrXOef7JLoHaah3sFci9w/ODjpYLSTX23HZJLwwODjZ3iT/74dy+2GJ2C4hdBS+ulx0IYJqTHf04lih27dq1Zs0ao3HsqQXGUis+BiMwegTotJ9cLpdIJG+88cb69ethgmzYIuXRFz/eI4xG4wcffLBp0yaTyTHGETfH+8477/zud78DPkMmk6lUKpCuYj5jvJ2Hj78VAnAG0oWDQqGwvb192rRpPj4+FEXRfVxvVYCbbaPHCyMMQRC9vb3z5s3bu3cvXHEu94hGklNgU06ePPnII480NjaipR5arRZ7Y7rZmYeb6/4IwIUJoyWwCwRBvPLKKxs2bBCLxRRFabVaGD08llpAK9VAytnc3Lxo0aIPP/ywr69PKBRKpVJ6Vk6PRcn9LwUcgSsRgKvMbDaj7N0SiUQgEKSkpMyePbukpISeWN21DvyuhGnC6r4DzWmxqrXGAbFyV2TBP/dnHD1Td6GoTYfNBsfXHRaLpWiIqPPlcGPjjjlKYXnLRglFogPh0b4c7jizct6y8MHBQZVKXVRcdiDMVoUvhxscElFaflmr091uf4ds7+7pAQ/empqrDinQAwsprOr+LjD7Ykl7a7dYpWE5zTk4OChTaPMqunaE5WWUtGt0eA7ZBae8yWyJSa7ezL2UXdbpgupxlRgBN0EA05xu0lET0MwrV64cO3ZsAgpmXJFvvPHG2rVrGdcs3CC7EaCTEBRFdXd333PPPXv37gUHV3h1dxXtp9PpcnNzjUajozjOwcFBpHvQaDQURQmFwunTp3M4HBQvWpGNaU67TyK84ygQgPkyk8mE9NPgW7ty5cp169ah9JxsUt5YLBaj0YjiFQqFfD7/vffeW7NmDYrXhW5vaOmDTqcDKuWdd955/fXXr1+/LhQKhyUQHUVP410xAhiB8SFAvzYVCgVJkkKhkMPhPPnkk/Rr05OXICDBKyjRjx49Onny5JycHPrKLZzBdHynIT4aI2B7dzCbzWiBGoxFfD7/hRde+Pjjj0mSHObAj5cUOPCkGZnmNJgsQqmqtVviHZ7/L7+L6fkt5df6sBBn/Pibzeajx+OBGsy+lDf+Am9XQk5uATCCDY3Nt9tn/NslEmlUTByE4+cfHBEVKxAIx1/s7UrQaDQgh83NK7zdPnj7yAjUtgg2BmQlX2qqbODJFBNLS4/cEuf8arUOCsSKo2frgo6VtfdKnVMproWOAKXSfxeUzT1e0UfI6dvxd4wARoCOAKY56Wh40HeTyVReXt7W1uYJMQcHB0dERHhCpGyNkT5HRpJkYmLi1KlTk5KSQAcAagnIfeV82i8iImLdunUGgyNX8AHjAiuySZI8f/78jBkz0tLSYM4UTPBcFS9bzzEc1zAE6BcdRVFisVggEERHRy9atAjEN4hrZ8dMGYoXtJIikUggEBw+fHjevHlCoRBNDrpKA0GfvpTL5X19fQ8++ODf/vY3Pp8vFotlMplGo3G53nTYKYT/xAh4CAIwesAiCZlMJhKJKioqpk+fXldXJ5VKVSqVJyutkZQTkj2TJLl69eqlS5fy+XyUaxzdTZz/COchpygO0xMQoC9QU6lUFEXBk8z+/fthOBpmbs+OhzeG9OzINKfeYOrhU3WtxI4DeV/7Xcwq72jomED6iiGYOKcZCoXyYOwRW47JoANNza0TUalEIoWsnAcPHVUqJzajqslkrrhcGRYRA2QnNySisKhkgoSqer3+4KGjvhxuUkr6RODmCWV29Eo3+mfGX7xWVNMrkWk8IWST2XK5vn9fbHF0UpVCrcfLNZzZ6VarNTm7aWtI7pm8VtbngnUmsLgu9iGAaU729aldEVEU9dprr/n4+Ni1N94JI+BSBOhCK6lUunnz5lmzZtXV1YlEIhBaabVaEFo5s5lms7m0tNRkMqlUDn7nGRbv999//9hjj1VVVYlEIplMplQqdTqd8+N1Jra4LpcjAHmekBOjRCIhCKKpqen++++vra1F7mesSTg3LF5IR1peXj579uysrCwkGXdVvMCjQGY7mUxWUFAwderU0NBQoVCIjDHZlC3V5ec/bgBGwH4E0CIJtVotl8vFYnFLS8tTTz21f/9+iUSiUCgQjWd/mazZc9jQWltbO2XKlPPnzwsEAli5BY80sHIL8y6s6XcciPMRgMTqJpNJr9drNBqFQgFPbqWlpQ8++OC3336LrCnYZMXhfJxvWePINKdaY7jaIsi73LUlOOcbTmZRTW8/FuLcEscxbWxpbQdS0D8wdIAvGFMZtz3IarWmpJ6F8q9U1tx2P8f9YLVa1Wp1YlLaDVknhxsVHdfb2++4Gm6UZDKZoJbog4cdXriHFMgXKf/ld/FQak1GcRshcfB0EGMxJCSqC0Xt20JzK6/xTGYrY9vJvoaJZZov9pz3PVQiU0xsNmL2QYcj8jQEMM3paT1+I16z2dzW1tbf7/hnJgYC+tJLLy1btoyBDcNNshMBs9lsNBohq5NAIFi3bt3ixYuRjEmlUun1erPZ7GQdwLVr15599lmKouyMwv7d6K5TBEGsWLHiueee6+vrAz4DxYsnBO2HFO85WgSQBAeuO6lUKhQKu7q6nnnmmV27dslkMrVazSb5IHKepMfb2Nj4zDPPbNy40eXxIh5FpVKRJBkTE3PvvfcWFhbSl3p4sivmaE9vvD9GwIEIDBNbSySS3t7elStXvvbaa2KxGCmoTCYT8BAOrJrhRQEy4H+uUqmkUumGDRueffbZ5ubmYVJOF1qCMxxD3DyMwKgQQAslwZoCHPjXrFnz/PPPX79+Ha3ZwmslR4XqHXcemeZUqPQVV/vOFbZu5l76xj/z8jUeKceT1HcE1d4drFZrfkGxn3+wL4cbfzrZsQZLfL4g5ECkLStn7BGj0XnJCI1GY3VNXcyQUNWXw+UEhGTn5MlkMntBsWM/q9WamZ3ry+H6B4Y6FjQ7KmfJLpRS9zXnYkTClZScpgGRgiVR2REGX6SISa76IbqwoUNkxUSnHYiNfxerdfBcQevWkJz0vAm0zh5/O3EJGAEmIIBpTib0ggvaIJFIvvvuu4GBARfU7fQqBwYGBAIHL+5zehCeWyEkqoS1yXK5vKOjY/Hixd9++y2aI1Or1U6WMVkslvLycovFIhaLHd4xw+Jtbm7++c9//sUXX7gwXofHiAt0CwSQEyNQayKRqK+v75133vnlL3+JVNRsotbok4MkSUK8Xl5eixcvlkqlSHLk5OUUcKrQl3pIJJKNGzfOnj2bx+OBwhuWPuBZS7e4rHAjWYkAGj2USiVJkgKB4B//+MesWbPa29tlMplKpdLpdEaj0TNpTuQKUF9f/9BDD/3v//4vn89HUk7k6OuSoZWVZyMOypMRgJcIg8Gg1WpBXE4QRG5u7tSpU/Pz8+HhDa1Rw8slHXWqjExzUkp9YVVP8qWmbwOzNwZkNXaK9AaTo6rG5QwODprM5qSUdEifeTHz0u0wgVswrOO0DH3MQx8T7QNbYPG0xWLJzMrZ7xfk5x/c3OyCTE8KhSL9zIUbsk7/4APhMQ2NzeO8bOkgXL5SBYV3dF43m80IBgQCwgHfoG95UukNpk2B2UHHyo6cqe3hU57D95nNlqKqno0BWTHJVXKV/pbg4I2ORUClMfiE55+8cK17wJHLHRzbSFwaRoAhCGCakyEd4exm8Pn8FStWEATh7IpdUV9OTk5BQYErasZ1OgABRPup1WqKourq6mbNmnXp0iWCICBHoFqtdrL/kkwme/bZZzMzMx0Q3k1FQLw6nU6tVstksuLi4gcffDAhIYEgCJIkwf7OyfHe1Ea8wSMQoBulovScmzdvnjx5cmdnJ/ucGJFiEi49SGq1cePGhx56qLGxkZ6e0/ndDwpvmLWUSCReXl7r168XCAR0hTdoxZzfNlwjRgAjQF8UIpPJhEJhdHT01KlTMzMzhy0KGecEpXtBTR9UKYoCTHJzc9HYBa4AMJHqUci4Vz/i1roRAsiaArIFgxWHQCB46aWXPvroI6lUKpfLYW2Bq0z43QhM+5s6Ms0pU2hzKrpOXWz4Nij726Dsjj6p2eI5hIj9KI5rT0IoCjkQBaRd/bXGm28owG4iXtM49DEYDHq9Xkf76PV6g8EAvwqFIk5AyD7fwLjDx1Uq9c1ljqvFdh/c2NRyKO4YhMYJCDl/IVMsloytMYjiBRza2zug2OxLuXQcAASEg8lkQrdpT1utNXIvWa2DW4Jz/A6VRCVWXufJPOqqVqr1WeWdu6MKrzQM6PTmkYHCv44fgZpmvk9E/qXyLoMRoz1+OHEJLEcA05ws7+DbhWexWBQKxdiekG5XJmO3Y9NaxnaNPQ0DkYRWq1UqlTKZLDk5ec6cOTweTygUokSVzhRJ1NTUaDSa3t5es3lCHjLo8ZIkmZSUNGXKlOvXr0O8IArBfIY9Zw7eZ5wI0J0YKYqCJE9xcXH33HNPZmYmsj5jzUzZLeM9fvz4jBkzLl68SFEUSrDn5FsnWuqh0WgoihKJRE888URUVJRAIIApS1c1bJwnGD4cI8AaBIbxeSKRqLi4eNKkSVFRUfSL1GKxOHn0cCHCiG6B5zeSJH/3u9/95je/GRgYEAqFkLVUq9UiNw7PQcaFnYKr9gQEYDgyGAzgWysWiwUCQWBg4P3339/a2ooeZrADhANPhpFpTgmlSc9rjk2p3hqSsyMsr49PYZtHB4KPiurp7fMPDPHlcCMiYxWKfzuIIoLTZDIZjUbg8zQajVqtVqlUSqVSoVBQlJyi5HK5QqlUqlQq9dDnZHzCnn3+e/cHVFyuQrpGVJ3TvlitVpVanV9Q5B8YCqxkWERMVXXtaBuABKwmk8lgMOh0OkIohAKjYw4rlUo54CBXKBQ2HAAErVar1+uNRiMiOz3qSeaOIAceK98fWxR8oryjV+pR17XVahXL1FGJVdwT5S3XxR4V+x3PCofvYDRZfogqjEmubrkucXjhuECMAPsQwDQn+/rUrojOnTv33nvv2bUr3gkj4DoE4M0EHM+USqVUKv3Xv/718ssvCwQCkUhEUZSTaT+VSrV69erPP/98giChx6tQKKRS6ZYtW5599lkUr1qt1ul0mOacIPxxsXQE4GxEaXGlUilBECUlJXffffeBAweA5gTrM9ZMT9O9YSHe2trayZMnR0dHD4vXmSHTGRSZTNbR0TF16tTa2lpwfVQoFOCHyRq+mX4S4u8YAbdAACg95K4vkUh4PN6MGTO+++47kFyDu75HTQ5aLBaUaFwul3d1dc2ePfv06dPwPIO8fHFWTrc4w3Ej3QiBmx/ehEJhfn7+vHnz9u3bh0z4YYWBG8XF5KaOTHOKSHVC5rUD8Zd3hOX+EF0wIFIyORa3bltBYQkk6Tx+4rRWq4VrAexYwclZrVaTlLypayC7si0kteLzAxlv70pavTtt1c7UVbtS1+xO//2+c5+FZfkmlB3PvLJtf5j3D34HwqJVQ8ZRiOdz5isA6g6r1dre0Xn4yAlOgI3K9eVwE5PTBIQQ7XC7LwAC3JGB5dVoNCqVii+SVjb37OXcKO2d3Ulrdqd7+aSs2Z2+dnf6nzjnvonJjTxflVfT0dojkCuUiO90IeN7uxhduP1weu3eg0WcwyVtPRJPo/qMRktRdc+WkJzErEaV1uDCXmB31RartbaF/zUnM7O0w2z2KM0wuzsWRzeBCGCacwLBZVrRRqOxv79fq7UlvW9sbDx+/DjTWjhB7fn000+/+uqrCSocFzuhCCB9lVqtVigUEonkueee+/TTT8HxTC6XI8ezCW0GFM7n8zuHPiRJTlB1aKpUrVbL5XKJRPLmm29+8sknBEGIxWK5XK7RaPR6/QQJSScoKFysmyIAL8Ymkwmsz0iSFAqF/f39M2bM+Oqrr0iSRIsMWJOyBWhOerx8Pv+nP/3ppk2bwHkSFhk4maugK7ylUmlsbOzjjz/e2dkJiTkhaSiWZbjpVYabzRoEhl2nQqHQy8vr7bffRtcp3LtZM1qO3HHyx5e3AAAgAElEQVTo9qHX68EG3Nvb+8knn2xqakKJxrEMfWQMb/6VnlMNdDkj/4v2v7kot9iC2o+m6dkdr6M6BeAym806nQ4JOvv6+pYsWfL666/39fWhtwm8aNJRmI9McxIS1ZH0Ws7hkt1RBf6HS/liTHM6Cvjh5Wi12rjDx3053P1+QVnZuaBBBPmmWq2WkrLMK61fx+S8zzm3amfKSu/k1TvTlm9PXOmdtGxbgtfQlpU7klbtTF2xPXHVztQ13gnrd8YHn84RkzKNRqPT6QwGA1qa4xKyU6PRlJRVAJXry+EeCI8uKCoxGI3DgRj6G42cQPTCSiylUkmIpLEXqz8NzfzDvjMb90YCabre58Ty7YkrIPyhf718Urx8UlbvSv0g4MJ3h/KK6jqUSiVMRBiNRkx2AuZpuc27Igt2RuQ3d3miolFKadLyWvYfKq5vF5pMllueh3jjOBFQag3+R8oCjpa1dmMp5zixxId7CgKY5vSUnh4cHNRqtStWrLjnnnsWLFiwZMmSP/3pT99//31kZGR2drbxNo9Hbo3O66+/ftdNn6VLl7p1UJ7WeET7qVQqiqL6+vomT54cGBgI02TOzA5oMpn++c9/Pv/883K5fOJ6YVi8QqFwzpw5oaGhKF7k8DZxbcAlYwQQAsguFWbKIF2ll5fX2rVrRSIRPV2lS972UTsd9QXpJlUqFUmSEO8HH3ywevVqEEBARisX0pwSiWTDhg1vvPFGT08PSsyJFd6OOgFwORiBMSMANCc9H56fn9/TTz8tEokgrzZaJDHmKtzoQHiYATMApVLJ4/EeffTR999/v7+/H2TosD4DJxofVZ8C7QeiHJi2hgRyw/41DX3QHLT73p09Ld5RnQwj7IxoTlhkAIsmCYIIDw+fP39+WVmZTCbD3jAjADiGn0amOfliZXRS1Z6Ywj0xhcHHywmJagxV4EPsREChUIZHHtznG+gfGNra1g7cnpSkSq9d/2dk9krvpBXbk7x2pq70Tl629bSN2NueuGpX2sodScDqrfRJGSI+k1d6J3v52HjQFTuSPvA/d+Fyq0Asg9dwxHTa2SSH78YXECdOJiCy80R8ooAQ3rwGGoYCZFGrVqv7BeJTefXr959ZPsTjevmkfLwrbq9f8C7f0A27bTSnl08KMJ1Aea70ToY/YfvGg7mVLX0KpRIYX7jLuO8txiH9klPR5RORvzUkp6FD5GlqzsHBQYvF2nJd7BdX4hOR39YtseCsww45q/5vIdc6hDvC8opqe0i5Ta2EPxgBjMAdEcA05x0hYtUOsbGxNxF/d3322WespDmTkpKmTp1Kj/f+++8/f/48q3qU1cHABAeIyYBlycnJmTZt2qlTpwiCkEqlKpUKsQ4TioTFYqmsrOzv76+rq5u4p3n0NgLzpDKZrLKyctq0aenp6UKhEOIFd0oPkYNMaJ/iwu1BAKaqDQaDWq2mKAoyPO3bt++ZZ54hCAIEAQaDwcm0nz0tH9s+iOakxxsSEvLkk09KJBKI1/nz8sj4ERTtjz322IcffjgwMAAKb2cq2seGKj4KI+AJCNBHD5lMJhKJioqKpk+fDo8rcrkcHlc8xFwalshAxgGKos6ePTtlypTY2FiwpgCWBTzP8fPMHa8OxPbBOWY0GiGtmlarhfRykEEN/tVoNFqtVqfToWxqaEZ+4h5f7xjCqHbwtHhHBY6dO8MLBVpnIJPJCIK4fv36ww8/zOVywZ0CvUC5y4lhZ+wu2W1kmnNApAg7fWVnZH7AkdLo5CqxTO2SRnpIpVar9VpDk59/8J59/oHcsO6enh4esetk8e/23nBkBerOy8ZiptgUnDuSV+2yaToRsQc/rdhhk3i++X38ih1JK3ckrd2d9nVMbm1bP8gZwcDWhdeORqOtra0PORAFWkxuSEROboHJZIJehhEAPZZoNBqFQlFY2/FFxKXVO1NsDr07U21xeSe/tTPxTz+cWrfj5JqdNkZz+baEFTuShn6y8b62LdsT3/w+ftnW0yuGmOD1vuf2nS7jCaXDGF8XQuHaE7u0rm9HWN6mgKyrrYTJ7Iksn8lkKaru3hqSc+riNbX21sJi1/aRW9eu05tDTlYcO3e1e0Bm8UAi3a07DzfedQhgmtN12LuiZqVSOWvWLDrz9/TTT7OS4xwcHCRJcvHixfRgX3zxRYqiXAE8rnMsCKC3dOQhGRoaOmfOnPz8fFADgGcmsA5jqcDuY+Li4h577LHW1la7jxjLjvR4FQoFSZIxMTEPP/xwUVGRUCiERFYwb4WnBceCLz5m9Aigc1Kr1SJBQFFR0axZs/r7+yFdJaR3Ysf7LVIgaTQaerxTpkzh8XiI1nUyUWEymUCTQVFUS0vLpEmTtm/fDtyJMxXtoz998BEYAQ9CYBixJxaLOzs7Z8+enZeXR18k4eTRwyUdgG4c6OFt27Zt999/f1tbGxq4kDUFfp65XR8B2wdggkBTr9drtVpbUgOFoptH1Lf3ZV5pO5pVG5BYtje+yDexLCjlcmxm7bmyltq2vi6ekFL822DQtVnlbhfjsO0QLEzNw43vRrxyRc+A8Gp7X9aVtqPZtQGJpbZ4k8oDUypiL9acK2upae3r7BfK5P/OHucW8Q4L37F/IjcOtGyLIIi//OUvS5YsGbZGih3Pb45Fb7SljUxz8oSK4JMV28NyD8RXHDtbS6l0oy0f728PAmiFhMFgSEs/t3uP387d+3YHH/ooKGPtnrOrdqXZck/uTFm+LXHVrtTVu9LX/nBmpY+N81u37xwoOFcNqTyB8hzKUnlm+RDTabO0HeL81u1OPV/RIqNs65bg9ce1Cz1FIvHxE6cDgkKB7IyMPtTT0wsiS3oaDqFYklhQ/y4nA1JvrtqZCmrO1UOYrB5ied/ae+5HgjMZSFDAwYaSd/KbW04t3XIKGOKV3sn/G5Hd0s1H8zCeLOusaRZsP5D3L7+L1c0Cg9HsmcOpSmNIz2/5jnvpfEGrRneDa7fnmsX7jIyAdXCwoUO0KSCrsKpbb8DAjowW/hUj8G8EMM35byw85Nu//vUvxPxNnTo1KSmJxYEnJiaiYO+66660tDQWB8u+0NBMmVarBdrv888/f+SRR1paWoD2AxkTLFSfuPDb2tpEIlF2drbBMLHJ1RHFApSSVCr94osvnnrqqYaGBpFIBJQSVj9MXEfjkm9GYNg1KJVKCYLo7e2dNWtWUVERot5Zk96Jfg2CdJIgiPr6+ocffvjMmTP0a9Bp77FophIU7VlZWffcc8+hQ4cIgkDpQp2w1OPmcwNvwQhgBOgIIO07WhTS09OzePHi3bt3g7+0Wq1Gs6L0A9n3HW4cBoMBHt6kUukrr7zy0UcfCQQCeHjDjrV37HQ0Xw9T1UBwKpVKmUxWfLVzz6mS/wnOePuH9JXeQ86K3snLtyXYJqC327LKDSWcS/ko6OLmuPwzZc2yH9PYo2xqiEC9YzOcuQOcNsPipSiq+GrnD/Elfw3JeHvPjXiH3CYTvHySIX/eSu/kNbtSPgzK+D4uP72shaIU8HbA8HidgC1YQWi1WqVSCc9vJ0+enD59enl5OTy/ISdtpz3SOCFql1QxMs3ZR8j94ko2BWaFn74cn1GPBU8T1EeQuxdcoEhSdiju2Jc7Q3+3yzYqQrrNG6as2xOXbT29dMupZdsSlm9PWOmdsnpXmi0T524bn7dyR/KKIafWFT/62Q7JOhOXb0tYti1hhXfyut2phzJr6A4NrmU6jUZjfX0jNyQCyTrPX8iUySgQ/dtM4wXC4LQrb+1OW70rbaV3MhKtLt+euHTLqaVDzr3LtiWs3pUGJOiN28oQrQtqTts9ZXe6LfwdSSDrXOmd/D7nbHF9F9zNPXlZSVOXyDs87yu/ixX1/Uq13mT2xPyUZotFRKoiEyp/iC6sbuJ7pKh1QkY1jc4YmVgVeLSsV0BhJeeEQIwLZSkCmOZkacfePqzq6upp06YB+bd27VrkbnH7I9z7l5dffhmCff311907Es9rPZo0BGWVUChcvXr1008/DaZnFEVpNBqDwTCh53Bra+v8+fNzcnKcAD89XjAI/e1vf/vrX/+6v78fJkmdEK8TwsRVuBECiOZEohyhUMjj8Z5++umAgACSJGEl70QvNXAaYhAvTJEolUqSJIVCYWtr6y9+8Yvt27c7f1pwGP4ymSw2Nvbuu+/OyckhCGJYe5yGEq5oBAQQfzDaLyOU6fKfbo4FJhNv+S99Z5e33MkNgPSciNvj8XheXl6rV68Wi8Vg0wpPLKzXL8LDDGREk8vl7e3t06ZNKyoqEggEiPHV6/WerP+445lJ5/y0Wq0tXbSMqmzq/ioqe2jeOclmtDhkt7h8a8Ly7TaPQRAb3Ugvt8NGAcJs9fsB57OrOkhKQZcfuXZe/pbhQ85Ro9Go0+nUarWMoqpber6KyoJ4V9jiTV3pnbQM4t2euHKnzVBxKF4bs/vveP3PZ1b+O154PmFgvLcEwbEbUcJgSDcuFAqrqqp++tOfbtq0SSqVIp7GM8FxLNQj05w9fGpXVMGX+y9EJlQmZjXqsCjHsej/WBqMIZBogyTJs0V1a3elePmkLN+WAApOIPbe/D7+ze/jV+64QX9Cks5l2xJWArE3xHHahtOhRJVePqkrtiet9Em27TD005DuM+lgRjVJySGVDBNMGnR6fUrqGf/AG7LOiMjYtrYOiqJEYknYmcu2m4V38tKtp718bF+A5f3Nt8dhfQzQwGBOCzEOyTptdxDQd4K408snxQbCkKUtcKXr951p7OKpVCq0CNsDF0x09JE7I/K/8r1YUtsrpdQGo/nH89Hj/m/oFPoeKo5OquwnPMg8D731wDuR+aYPuHHY/y8qwGKxXGsTfMO52Not0huMqCKPO7FwwBiB0SOAac7RY+bmR0il0hdeeOGuu+76r//6L4Ig3DyaOzc/NTV12rRp999//8WLF++8N96DSQjQX1coiuru7n7ppZc2bNgANKdCcWPKZuJoTqlUKpPJzp8/7xyvY/DpgtczmUzW3d29ePHid999VygUSiQSiNdoNE5cvA7sfPQoNuwLfVp82E9u/Wp0cyywZeR4mR8yREHPjysSiQYGBlasWPHHP/5xWHonB54/LiwKLkOdTgfqSZFI1N3dvWzZslWrVg1TTzqh+xDNiRTtO3fuvOuuu1pbW0UiET2/nRMa48JOcaOq0VCAXnfRm63xxw9sgfdY2I3J3UcfysxmMzQeQjHc9EGhobiYHJrDzys0esAiCYIgPvnkk/nz56Ps2mgq0OFVM6rAYThs2bLl6aef7urqAhzQwwwTpoYZhRtqDDz9mkwmUMRSFNXVx99/unj9/jNePimrfFJW706DuWYgMlf4JHt5D83mb09csSMRMq6t9LZthPRyXt6Jm2Lzqlv7kAkKozhmGC5QvAqFoqufv+908bv7z3r52PLnrdmdvtIb0sXZ1KsrbfEmew35LiKXRVu8QyyFzV5yR8LGg7k1bf1oJRaj4kUdPdFf0GuFRqOB1ZM8Hm/58uUvvPBCb28vGFQgzetEN4bd5d+O5rRarXqjub1Xuiuy4J/7M+LSa88WtHqm3muiTwA422F5jUwmK6lre3dv6tKtp1fvTh8yZU1atSvVa0jLuGxbwrKtNs5y1dBSCRvtN0Rhgq5xaGCx0aIgfISRB1i9oeH09NBKi8Tf7T2bmF+PXFthrYBrH3gMBmNzS+vBQ0dB1ukfGJqYnBZ0Knf51tMrdyS9tddmzLtqZ6qN6RxKO4q8eWHwhF+Xb09EhC76AsOsbcXJkKDTxhZvPb1sW8Kqnanvc85VNXejOwsTcJjoM21Y+X0C+e6own/6ZuRevs4j5FoPtmxVagzFNT1bQnLS85rlSu0woNz9T/R+B+/m8NwCT2vo5chkMv34qmfLoX7Lj572ueUOqASNVh+bXHUopUqvN5pMN9hP+usVvUnuDi9uP0bAsQhgmtOxeLpHaRs3brzvvvvi4+Pdo7njayVJkr/85S9ffvlluVw+vpLw0c5GAL2xAN/Q2Nj45JNP+vn5IdoPLaKciJYZjcZf/epXwcHBE1H4Lcukx0uSZG1t7eOPP+7j44NmBic03ls2acwb0YMXev6DpzM04w/+NjDxhJ7Yxlydyw8cxgSghXgjxOsWy+chLph8ROmd+Hz+J5988sQTT9DZd9bok5BJLMQrEon4fP6GDRt+8pOfiMViNEHvnO6DVymDwQCKdrFY/Omnny5YsABEUZArFERRrp1bcfkFyIQGIPUVmC4ajbZXXLCa1Gq1Go1GbfuoNEMfrVar0+ng/RZGCWYOg2hkg3d4FBGEo1Sq5AqlXKFUKFUKpUqtVkNckEPaA03MkIoRLZLYsWPHpEmTWlpapFIp3amVCWfsBLUBQDAajRqNRqFQCIXChx9++IMPPhgYGIDFGR6u/BgZdjSMgKhRpVJJpWRzR+9nBzJX705b88OZVbvSVu9KX+mTsnx78qpdqWt2D6WX805etStt7Q9nl29LXOGdvMon1TYrvT3R5tC4M3X1zrSlW0+/ufXU7/ek5dd0UPIbWeVA5gjX+Mitmrhfh8UL3qpt3f2fH8i0JdL7MV5bOr3tSbbYd6e/ZUunB/GeWTZERazamYbiXbXTlnJv6ZZTb2499bsf0vLrOmWUHFmheNoUPDKJQU7aQqEwJCTk4YcfLi0tBUMOD1l7MXHnMJR8O5rTbLaqNIamTpFPuE3vdTLjWnZ5J/YedGx3oGEEnpYpimru7PmT39nl2xKWbrX5rAJJOSRkTEJblg1JG1fvTrfJPYdGy1W70pZtPf3m9/HLtp1e6Z2EEnl6+dh0kJC80yYfH1JDrt6Ztu6H1KbOfuTa6pz3ghGgAxwUSmVySnpA0AEgO/f6Bf9u+3HgKcGzF0SZ4FIL6TZX7Ux9a89ZAAHIXZuZ7ZZTy7cnQvJOiN0m9xxKz4loUVDEbozJEYklYMuPbisjtJNlP/Elyj0xhf/cn5FR0t7eK1Wp9SwL0P5wrNbBHr4sLq1mT3RBU5eIZes50AsRmtpCpCa8zSH6EhwpFAoFRVESiUQkEgkEgoGBAR6P19/f3zf06R369PX19ff383i8gYEBPp8PM5wkSSoUCpVaXVzZuTP8Ul0LD8oH+nPYclJPe6qx/2zEe3o4Apjm9MQT4OrVq6tXr1YqlR4SfHx8PLtTkLK1H4H2A1kVSZKVlZVz587NyMgQiURoxnCC3DKBzMjOzu7u7nYavChemOgpLCx88MEHT506BfGiNelM5pPQIyAiNY1GIzz2aYc+MMVPn+jX6/UGgwFUqm633P6W8UI2lBHiRc+pKF6Gc1SQ3gmYNolEQhDE9u3b77nnnt7eXmDaIOEcw6Ow80JGRAWidQmC2Lx586xZs1paWpwcL5qjhMYQBLFmzZq1a9eCoh0c59gEvp19xKjdYBCAnoI3Xr1eD6+4SqWSEg/IWgsllSclRaHSPF/xpb2SXI60JIKsS6a6LispqUplIz4RL4jeV117NdFHNghKp9NpNBqbSFFG1bT2JeQ3BKVc/iG+aMeRvJ3Hi344Vbr3VGlAyuXojJqcms4+gW3CC3hcJBVy+QygE04bNHqoVCrQTkVHR99zzz25ubn0RSFmM5s9zYaNWjk5OZMmTQoNDUWLM+g5Sl17njvhlBhtFYAejeOUFtS0fRSUsWZX2ppd6eAcuNJ7yJ92SHOzbJtt8n35dpuqBtLL2fKrDSXsHGL+klZ4g71t6vLtNn3Smp0pxy/VkbIbSR/QQ8ho2+mo/enxKpVKiURSUNP+F24minfljsSVO5K8dtoMJG0aLBSvje5NW7XLRmp6+dgknjCPP/Svzd7WZlO5PXG1T/LR7FrEdLo8XkfhZn85sOwG5R0QiUQtLS0zZ86MjY2FQQktoMQXo/2o3rzn7WhOo8lCyrV1rQLI3peU3VRS23fz4XjLeBAAes9kMgGdLxKJ/BNLhhSctkFg1S7bMojfbj5pS8a5NeHNLfGQlfMGc7njBoXpZVPJpw8RojcWiNgIv20Jv9180nbs1lM2Jb1t1Uiq185U20IKGxua8Pew7Os8QqVSIUd6F15HwL6AKVRNbV1kdJwvh/vtvogVW095DYk4/z97bwLfVJm9jyObqLiioqijjs7o6N9xwZ/zVRDapntBcQXHZZwZxxlRWQS6JG26sAoIspVSttI1TdONHVpaoHSh0Ja2dN/bJDf7nu6U/+e8J7zGlhbapmkp6YcPn+Tm5uaec+9973vPc57ncfCKslsRwfKONqG5hJHp4B2NSDAs94lxD0gwvSUMVxxaHbyiZi8Pt/eMdLqm9OtGsoryv65cwbbk8+glhFM+nEMO5pjeQt+VqQyrdp3+YfXh5PSyy9VSrf72hTmvXr3a1dVVWS/fdCDzl7DMRon2FjqO3XaVPgddF9TEB70W8mc0GqVSaX5+/tGjR/fu3bt69eoffvjh73//+7x585ydnWfOnPnGG2+8+OKLf/zjH//whz888cQTjz322MMPP/zggw9OmTJl6tSp06ZNe+qpp5599tk///nPr7322jvvvMNisebOnTt//nyW2yfuH/170+atiYmJ2dnZDQ0NRqMRfxSrZ1hAw4sOpze0ZXYYB6JumbS9tWVgWDJggzmHJe3D/6PNzaNNSWD4c2rbA0tngJrKIOx3+vTp8ePHV1dXS6XSoe5B/v7779977z1LB3SD7dFihFarVSgUycnJkyZNOn/+PNp6mRMgbrCh4fiYTgcp6aelpaW5udmg12tUCrVcrGq4LM+Pl5zZLju1QZq6QX5ut6L4qFpUqVPJ9FqouGFNnBKARnJNHIOl7cNIdsR49Xq9Vq3EeBUFSdKzO6Sp66WpG+UZoXISr1Yp1WvVyHnqBu6O2CkpnplIzZHL5RKJZMuWLWPHjs3OzkbRs9GEtNEavTmsu2XLlnvuuefMmTPm8Vqh4QB3prW1FWFOkUg0ffp0NpvNMIxcLscW8tGU/OEYugb7m3QcwJYOo9Go1+k0Sqm8/KwkYZF4x4y+/oXYSU4EKRsu6zQqCnYOeyEexzdsVaFBaTRaISOLSs3/csMhAE6I8hv+D23+HIAZUDHS1U/g7i8IiDhbVitSa7QYFx3Y6eA52LyPyO/T0QMvWLlcnpycPHbs2IiICJlMZt6XMCJ33zI7Za5LoVKpVq1aNXbs2PPnz1MdDqPReBtWQm8yuebZUyqV5bVN89cddPWPR2c4sKLkxrG8Yxy8ocjuQIrOLn4CF+K7xvKJQTM5AvWBdC2wlDg8Vz+Bi5+A+HfyWT7R7ty4g1mlGuL7QLsQbnL3LL4anfeieeTlyvq/rz/k6h/v4hcHpCt2rIu/AJAJEq+9VxTJAMAMTr6xGK8zl1BXiVQvIX3yXAkawfKBDDh4R7ty4w5nlyGHtb29fSTPLS2e3qtXr+IZ1dbWhhRzuVwuFovd3Nw+/vhjuVyuVsN0FBGaETsFHYq0WHybvcGcbe2dYrkup6iJsyV10dojiWllBeWj3zDI4unte4P0zqvX6+VyeW5xpUdAPLLYnf1AzRt7IACxI3xEc16mC1eARpU47BADSyCA4vjp5BvrRHjktJHCDUdjGISj3fyBBBmRWqjRgEknznOG8Toy75YWi5mgiPRvV+7xYIMBJ1pygp458eZEjPY3eXPCZ7X3jESTTkpvxRWgawTUbiGTOOsDSNgfRAIQKvYITPQITMy5XKvT6W5D122lrmXN7jPfrz4cn1pyqZxR61r6Pl1H/ad6Y9vB9LLlv5wIP1SoNbQN4xXRr1TTxxNECulDENXmwTqPVquVy+Uikej8+fNbt279/PPPn3/++bFjx44fP/7OO++86667Jk+e/MADDzz33HMzZ8784IMPvv32W19f361bt4aFhfF4vMTExGPHjqWlpZ07dy49Pf348ePJycl8Pj8iImLnzp1BQUE//PDDp59+am9v/+wf/3T3PfdOnjz57rvvvvPOOydMmDB27NipU6fOmTNn5cqVKSkpDQ0N+GSBz1ndaAMU9cS4+pUK28q2DIyCDNhgzlFwEG0h2DIwOjOAMCea0ikUirCwsKlTpyIhQKVSYe8k3sUtGH9LS4tWqz1L/iy42ZvZFJZ7MF65XL5///677rqrqakJYU5zAsTNbM1q6+D8CZvdqLUS0JjUamV1ruxssCT+e/HeOdev9e+cxRz4SHpwhTw7TN1UptfpmpubkdhEa/0jbX5sHi9iAEg4VqvVipoL8oxgSfwPzL651483+F3mwIfS5OXy7P3qpjLdrRDv1atX6ZmJDQcSiSQmJmbcuHHx8fF4JaLo2Ug7UgO7BLBc0t7eTkceiUQiEAjuvPNOgUCAMCd9jB/YT9z8t/Cyam1t1el0KpWqqanpySefjImJQSHr20QD8+bTZeU1KcBJxz3oUBHXS8+FMtFfXX8EuC7qGWInif9RUZCgVSt7goLWD4peAuhxpdPpqhuYnYdyv9xwECt9plKXDzAesApmXixz5vCdfGNdfOPc/eN8wk6n5VdrtTrzLhZaSrByaFb4OTwlcPTQaDQKhSI3N/eOO+7YsGGDVCpFrsNoGi17ppSePDh+ymSyjz766NVXXxWJRLRBDdljVmgT6bl7I3kJnjwdHR2tra2I+V0sqf5sbRJaoIF8IjFUI85qfLBPA+ZNNBKM8MIE2I8TyyIijdfq1FCsR7dOqNeT2r0TO9adyz+UVarVaoexNN8tXoVCkV9S/eWG5N/iJbZ5NF4sqUN5nSvAeNElDuJl80i8MQTKBbVeMiJdi5cT6+IbezCzRHMt3tsK6cRZhPmgxDDMli1bpkyZ0tjYaO7wbbskBzM+9AZztrZ1NDKacwUN7C0pi9YeTU4vK62VD+aHbN/tlgF60zEajUqlsqa+8dutR90DEgCB8+G5cIGC6ezLd+Oa5L5dwJIT+J3g8suJdQ+Id2JDzwSo0UJ3RbTdighoIvGKQnlbBPYo8HkNLwRyOX7ls3VJjT4gmUYAACAASURBVELx8PYi47Sqs7MTbx8KheLMxdJPfz4ErR5EZhYtOV384jwCEzEh+D/mAWFLFhHmRVDTzjMS+a9UrRfGVSLtiz1tmAc070QgOTDitEyuMBgMtI2p25EarW/VehPMyT95+UKJUKW93WHOq1evqnUtSWmlvttSz+TVt7WPaP0S+khC0U0qRYuUzebmZr1eX1BQEBUVxWazP/nkk9dff/3++++fPHnySy+95Obm9t///nfVqlWhoaECgSAtLa2goKChoUEikTBmf+Kb+6PfEArFgdsP7whPuVRYdPbs2eTk5P37969fv37RokXz5s174403Hn744bvuuuuFF17w8PBYvHhxaGjouXPnFAqFOdezZzP96CjUjNaRxBaXZTNggzktm8+RvjVaoKdDOfWQ6/YCV8BHwVt3TOwWL5Ud6BYsbXi51eMd6edfP/cPpTJRgkYmk3E4nDfffFMsFsvlcnwyHwoa0549e55++mmpVNrPnbXA6rRWjmJ3AQEBL7zwAsZrziEbadcjfbjq6OhAYUOtRiNvKJckLu5HoX/HDCbEXpLys0Yp1ev12F1OkU4LJNdym6DYBsrKGQwGrUajaCiTJCztZ7x2stSf1XIRyhFTUsUIrDTRBmGsvUokkrS0tPHjx2/fvl2lUmH37hDJR1vuuPVjSzRehHWlUml2dvb48eNDQkLMYV0rHKlue1JfXz9x4sSioiIEDAwGA/YEWGFP+pG+22PVbuMAEGWUSqYsi9n3fr/GAfOVGd6/FE0V2P2Adzcrl+NpUIi1GAwGlUp9qbz+s3XJRAkzztVfgLKZWPIzoZ6+QJUAU0AOKGQCxokt/xweiKGxYzbGZWvMaJ04vRxpNzJLnbZXrlxpa2tDkE+pVDY1NY0ZM2bFihUIc+I129HRMYrDpyLnarVaLBY/99xzGzZsoDMZBPIt3qBmqcM3jNvBJxT0llMqlY2NTZy9qc4AW4KQIFxr7Bi4uEC+FRY6c/gsosvq4idwDRC4+IK9HNAfSaXe3hvkGZ39Yt39E50JmcmZy3fwIvZyHL6LL//LDQdLqhvNS/NWPidxHEB9RaVSWVvf4L3npLMvhObgbYqXyNUKnNhAysR4WT480I0MiKdUcvCZI86jEK8vxAtcT6CBxpni9cV4kytqTfGOzLnlEJ17FE5G3VqVSiWVSlNTUx988MHY2Fh0AMEpt20iMZhD0BvM2dLWUSdUn7lY50NgzoNnymqFysH8kO273TKA8+S2tjatVisWi5PPFLgRFWsH7yhHMh66ByTMXZlMhgWYkziyeXaekfaeUYjzYUeIibsJiqxxbkQeHKVunX1h8LFbHj5jyV4HL9B6tfOMnL08nOUd7RaQ8N6qgx4BgBoGJ+eoVKDJQWdu3XZyqN/Sy5xM21RCoXADLx0BS4pEzl11EAVp8Z7C8ol596cwJ04s8FOJzjkluToB+guNNahM6+wL9xoH7+iZS/a9u+wAJJAI+c5eHu7iFzcnKGnuymRXrmDeysTq+iZKbLXy9HWoM9zH9rX6NmRzRh8ryipsVGiMfax8+3zUyGjX7j27bOPxk1nVHZ1dIzZwWitGNTLkbiJxU6fTFRUVeXt7P/HEE3fccce4ceMmTpw4ffp0X1/fjIwMqVQqIX+ITXbDMUWD+4s9lL0m+EjWxRK6WYqA4o9KpdKioqLNmzc7OTlNmjRp3LhxY8eOve+++7766qv09HQsG7a0tFBLFFrrtvJMb8Qed9uOjfoM2GDOUX+ITQHiIG5ew8JeFfQ0bmtrQ/88+haVN27dMbFf8dJul1s33lF2HlPkDMuFCPstWLDg/fffR7XGbg4QlgqfYZjCwsJt27ZZ3zqrq6sLYU6j0Yjx/utf/3J2dmYYRqFQoCPgCJTbok9WWJsD/oqwWpK2Sbzbzbx8f/OvmfCPZTnhGqWMQjidnZ14PljqKA9mO9g1TI+URqORC6uZU5tFe9xvPkbzNSHe7DCNQoLFXwp2jqhpKAXbUPRMKpUWFxdPmDDBz89PqVSOPk6hebxKpVIqldbV1Y0bN2716tU0XuvAulS4G5lhGRkZ9913X1NTkznMaZ09GcxVMyq/250iwzQy6VvFoY7mV/cAXjNhH8nyBOa0TquViuj8EG+7Op1OKpPvO573XlCCe0AC8cADMzxs5CdGgLDQicP3CEykeKc5CAqv2TyoDPpE/7DjRF5FE3WYHlGjumXPz66uLuyAQQa2RCJ55plnvv76a4ZhsEkCuYwjaoS3YAZw8ESdbZVKde7cuXvvvffy5cs4c0PX89uN6nEz6cWrj1LuGIZJOJ3vERDvcs1jEmvx9p5RLB9APQnTCK4s0knAc/Hls7xjwKHTT+DqHw+2lITZiWK2jmyTvRzLJxo1CZEiuTrqjHlp3prnJJ06Njc3q9VqhmGSTufPDTTFe42dySPKihAv2OlB4L/FS+AKcCT9LV42zwVoW7GOPjGzSRWeBYq10JmBTCZu2CmlEqCI2+0MxIkr0rzw+eLy5csvv/zyF198gfactPngZs5V2zrXzUBvMKexpb2iXp6SU+29+eTidUdPZlUzcv11t2BbOLAMUL0ZpVLZ0NCwKjIdZatxWgIzFl8gdII5sWmIAMdNZ04sonowS/GOdvHjO5HGLBNR3hsgQDSedOLwnIEAKnAiyvyI+ZHvAkCIjsjvBwoSD584cfLUqbQzp89knDmbmXEuy5r/zmZknjl7Li397ImTqYcOH+ULkuavTUSuv4nET+BMoPtfE7Alps7QnYZ5QAAYu0YgCWCEHGPvGTlr2QFg2HtHYxKQuEl8T016HpgE6ITzi9skyFQoFBTuteY9ZWAnj0W+ZWhu/3lvxverDocfunTmYp1MZYM5Ia8dnVcuV0nX7c3YwTtf2aAYUTgnzkAo5wdL4sjd1Ol0ubm5v/7664IFC/785z9Pnjz59ddf/+c//7l58+YjR45UVFSYg5rXhTIpMDngF+VV9ZxNSYdOXayqacCN9PwhsViMeyKRSBobG9PT00NDQxctWjRr1qwpU6Y88cQTHh4egYGBqampKpWqN7zzNrlCLXKZ2zZyy2XABnPecodsIDtMR3Nqm9fa2trc3Gw0Gg0Gg/73fwaDoZn8oca3uaPSQH57OL5zw3h1Op1er8f/MV7k+KOT823V5zscx+fGv2kOcyLsJ5VK33777f/973+o1ogeVwj73XhzN7fGuXPnpkyZkpGRcXOrW3gthDlpcVAqlbq4uPz73/+WSCRKpXIo4h1kAPQYYUkXeX5MTYk48jNx8MwB1PfNvjJTkrBILm5AVtMIQf6uG6+wrkIc+bnoukKU/Vg4U5KwRC4RUrxwpA1B3SrXMplMKBROmjTpu+++UygUKHxn2YtxkCfnIL9O46Wwrlgsfuyxx5YuXYrUB6uJLtLyDQDqRMj62WefFQqFMplsJDO8B5n/kf/1bhinVCoVHeKIdwxy3Lvm4rlztjQ7HAEhqzEDKOpA5ZplMtkmQbZHYCLUsALiQYqWE+vqS5yZOCCY6QiwCtS53AISXP2AX4UCblg1A/9ODrh1unLjgUzAif10TWJlPZDXKQV5VD5gU5hTr9er1WqJROLs7Dx37lyxWIye4lYbPYblOqKdGTglWLx48ZtvvtnY2IgzGbzHYWfGqDz6A845bXRDb7mSypp5aw65EHyOuEsCUOfIgcsNYTx7r0h87UJ4S0A5IkxNN3+BSUvQ2yTcCvgox8TydIarEqRc3bjx4G3pHXM6D+jjKF1rzSOCwFtbW5tOp5PL5ZU1dZ+sP4x4JI3XCeMFpni0nVekow+ADdfi5Tt4RbHYPKytE+CBxAvepQIQ6WXDC2eOKV53/wQnX76jd8yx7JJhiXfAJ4ZFvkizDeojxFdMLBbPmzfvxRdfrK2tpbQP7D6xyC/ehhvpDeY0GNuKKiVHzlZ4bjqx5OejZ/MaNLe9dZ8FTw/zc1sqlVZVVX2+HtT1YZwk4tUwUPhEIxgJXMwVESyfGCQpAkecDCksUOAHtiJ+itRGVHN1D0hwD0wkehWwAkKexN4Sxk/klDsAdT76f+yNfv6rAoLWrly9ftWaDWvW/WLNf6vXbly5en3Qqp/9uCu92dxvvddTR1KaB0rcBFVeryhzoVpAN4k2gIN3tL1XlAO6IKMMACF6zglKwlYbB68onPghVRT9j0158Ipy8eU1CsXUodOa9xQLnlT93VRLa8eG/ecWrjq0LyH/5LkaRq4fUZBef8Ox4PpXuq4WV0r9tqX+vC/jcpXMglse2KawknNddBM7rqKjo1977bUJEyaMGzfutdde27hxY3l5eVNT03WxRlzIMNKqGmFxWX16dvnBtMtxJy7tT7ywK+785ohzq0LS1+/LYG9JWb/vHHtbyprdZ9buOfvzvozVu8/siM7ZEZMdc7Qw/njx6fPVeZcbiiuaKmqZukYJI5ElpxaExp69VFIjlcqk5M9cApeip+bYp/nC2trayMhIV1fXO++8c/z48dOmTVu9erVYLDYajdfFO63WTTuwo2b7li0DA8uADeYcWN5ujW/R0ZzS8FtaWgwGg06n00ibFCWp8sw9kmP+TNxCJupL8YFPmIgFTMw/JMnLZKnrFXl8Ve0FvRb6Xqmp0giXGusWb1tbG0poQryyJnlJqhTiDWAEEC9z4FMS79eSpJ+kKesUF2PVNbk64ox1q8R7a5yFA9pLPJRmunkgsvTEE0/4+/sjzGlxZEUul9fX1y9dulQmG555WDeYUyKRvPLKK1wuF4uDFo93QIfld1+iZXF0plSpVEzhCfG+98zQymtV+34Afr99hYn7n7wm3xz5G97nJfN4kaYjLjzB7O3Fg7P/IUv4/1HU5JuTXUbOvJNSASjVmGGYF198ccGCBVKp1ByP+d0pcsu+ofEaDAakPojF4hkzZnzxxRcI6zY3NyP6PqQh4m5Qfo9cLudwONOnTxeJRAhz0o7pId0N28a7ZYCW1YxGo0ajkTRWi5K8LDXu4XaYnbMlGaEqpZwe4iEdDfCGa6412iQS/xqfhaZWKIYJ2AkHOBDXCoXRKPLmYlKsJSKTBEEBCgVxAQRbLGJ2RdkPH69KOF9SO4w6md0O5VC8xVs5NWyWyWTff//9jBkzhEIh1YccTU0h3XJIvQa0Wq1UKv3DH/7w9ddfozGnlRW/u+3YSH5LZxfNzc0qlUooFO06mOURBB0GDj7RTmyeKxdM45w4fGgp8I93JtCmCxfwS6zIA7eGMDgJxhln7xU1e0W4vWcUSNcSNWkkNlF7OVd/MKtzZPN+CjnBSEE8w8piIRQOJ57TwpCkTIyXZYoXwFoUToR4iYUeEFsB5QU7PTf/BCjKIy3JD+K1M8Ub/ft4oTmD2nk6smOW7TopkZnc44Z0UB1R5xueYO3t7UajUafTKZVKhmE2bdr06KOPnj59mrLMR7GYthUOR28wp97YVlDOHDxd7rnpxNKfj2bkNxia26ywP7fDT9ATG91thELh8YyLJolvDnj0mgOWTmzo8EDMD22MiZNxNBLfwfqXeFgS4FOA5r7A/vTjO3jDUEOlX2FEgnaKODduPJGvgEHGzT/+a24Ixy/IP3BN0KqfV65eb2WMc9WaDStXrw8IWsP2DVzhxZnntYvGaJ4EHEIxCYhWIquVILiQHIIKg8cztsvgbQLzhq7JuAWUtMXAUeQDUeE5K5NTcstQJGAUz3O6XVyt7Z2/hGUuXHVod3zesYwqG8xpnh+tvvXImQrfbam848X6YR36ulWJUZwWh47k5OSFCxc+88wzU6dOnTt37rp1686dOycSiRiGoQBnQ6Oo4HJNxoXyxJRL0Ycv7hac3xKZtWb3mZ/WH1u9+8yKTSc2hp3zD07bGpWzdvfZ0LgLv0ZkhR8q2B5zPlRwMST2QjAvN5h3fhdZHn2kaN3ejNC4CxvDzrG3pvgHp3F3pLG3pKzde9bzlxNBIek+v6Zwd6T9EnZuc3hmeHJeRPLF+JOFR04Xp2eXZedXFZbWVdU2icSMic5JdpJCntfAV0YikRQXF4eEhHz55ZfPP//8ww8//Omnn4aFhTU2NmKhG+sYtLEe82N+7GyvbRm4pTNggzlv6cPX187j5A9ZKShBptfrgREirpecXCvZ48KE2PVBumKC32V2sSSRf5dfOqTRaFBqrK2tDbuw8eFweFGHbsH3Gq+ojoF43SDePsgWwe+KQxyYyM9kBUkatWrkx9st/FH2Fo8mwpxIqBKJROPGjQsODjaH/Sz1TC6VSp9//vk9e/ZYX6uWHjha9KH2hw899FBoaKhEIkH7Q+u329N96/kCD1BnZyeqYCmVSkllrni3s4Vr/RGfKRrLqXrtMNakusWrUCjENUWigQrz9pqlyL8rhNWUaoBtJT2Tb/0l3XAduVzOMIyHh4eLi4tIJEKqMdLORtRNYcCJovGaw5xffPGFi4sLKrxR79ghjZfuBkWX58+f7+zsjC53lOE9jKPWgDN8i36RPiRT7BnEgo6t7WMq1evFfqNOCPAqviBAefah5nTimUZ5nFKpVJCW7wICblHOvvw5gUmOHJ6rn8CFG+fiG4eamU64xA+WQNmLA5CJIxuqY05ENJLqpJnKhT48YI+xY/696bBIYtIkH5XSteYdSxqNRiaTbd68+S9/+UtjY6NcLqcSBaPSBo9SEg0Gg0ajyc7OHjt2LBpzymQyjUZjMBhG053CIuOY+ewClKKl0vLKqu+2HsbatIN3lBM71tUvziMwEfk0ThyQE3Tk8IBz4w2qrc7EDReK+PgCKtQAE7r6xblwQYmRVPNjZi8Lf/enMJY3dCrYe0XaeQIf9ON1SbkltdZ0UzOPV6/XQyWurPK/v3aP1z0wcS7hDzlDvDyna/ESsiaU4LFSj2gojE5+Ale/OGcSLzH4jJm97ADE6wPUc8BBPSMcfWI+WpNUVNmg1WpbW1vxCWJIb+IWOUMGvxHMeUdHB+1KlEgkeXl548ePj4yMVCqVWq0WtXyHcZo9+DCHdwt9wJx5ZeKk9DITzFnQ0NzSPry7Omp+nU6SDQaDQqGora0NCjsBF/vycAfvaI8gUG0l3VrQKuHKFXgEwhIi3Ary147X1L/pdMXBO8reMwpZnjgCewCVE1RtWb+1bcWi5SfSzRECZPnwlgQfq62tYxiJSqXW6/UGg9FoRHG0lubmof1nMBiJeoRGKpXW1NScv1jwHtdkn+nsF4d+nJT47h6QgMCkIxtUwRHaRI4m5gGWeEfbe0ZSrBdBTUCCTfxXouoBGDC8oHgqyuHuTM6WyWR6vZ7e60f9GNvWfuWXAwBz7hJcPHy2Umxjc/5+iGlt6+QdKw7YmR51uFCla/79h1Z6RyceKJKE+rRGozEmJuaZZ5658847H3nkkQ0bNpSVlTU2NorFYooa1tY1HT1TvCM6m7MtxWvzye0xOQHB6Ttjc4N5uecKGlKyq8trFWcu1lU3qSrqFWK5vk6kVmqaGxi1QtMsU+mVmmatoUWpbVZomlXalkZGo9a2NIq1jFzXwKibJNqSamllg+LI2YqiKkniqbK03FresSL+ieJdcRd4x4s37D+3Oz5vdejZzRFZ/jtOef+awgaP58P+O055bTq+cX9GKP/8wbSSnEs15VWNQpHIfM9F5C0uqamp4fF4b7zxxoQJE6ZMmRIYGGgwGCirh1q2jcoHEyudYbafGXkZsMGcI++YWGiPcPJHPeS0Wq2ioUSS9ot4j0t/626SmH8o8hO0Sim6d4xMGVv6FIeyn+BkBvFuYvrvmcdEfyWHeE1ueSMzXgudJiN0M3g0zdVQCwsLJ06cGB4ejqZ0FAoa/Oy5ra1NKpX++OOP2dnZw5gOc5hToVA0NTWNGzcuMTFRKpWONJiTXmttbW0osCYqzRTv9ejvwHJT68d9r2Qah5f9Q+NFTBckW0syRbsHaMZ5g6j5/5URpBNrcCOn5GTO0UGYc+HChW+//XZTUxMax9IH2mG8iCz405TZhmqxDMP4+Pj87W9/k8vlVoN1zSs4KpVKJpO99dZb8+fPp3691iGVWjCrt/qm6FDQ0tKi1WplUmlTNo/ZOfsGF/WNEM1ev77/fWlNgTmVf/D3u56HoFtQUqk07ULJe0EJpNQVBXUuUhY01bPYJk4DGDVx+EhoQLwBu/5ZxMOJxQb0xYUL9UT0gqJ1QydObGDkGSkhVLW1tY1wjZCe6brhErxsW1tbjUYjnCQyWXJy8mOPPdbQ0EBt8DDwG27qllvBnMmqUql27tw5fvz4Y8eO4ZBlrlUwFGfyLZcu3GF6AaJmmlAozMorfi8IhKABwiRXkJMf1Ohd/YDOSHg2wGh08Il2JrRpk2CgTzRQq9lgvUagUChJz1oW5uAVhbVsZ19oSrgGhfJY3jEIoEamFiiVSqPRaB0xYRovjqJNTU3pOYXzViYQOz2gSeGYgwK2jj489OmEeL2jXczjRTs9dqwDcSGF9gvvmFk/Qbx2npGEyIUUWKjFO7GJzjYAwPzwlAKVStXc3GydeEfIadmz/UIsFr/00kuLFy/GWY2tBWGQR6o3mFNnaLtYKkpMK13xC7A5c4qaWts6Bvlbtq9jBujdFhtEQLF2XQLyEV1849wInkdaImBIRF1WAt0RXQqQriVjLPRMxAC66RWFrE20pTSf2DiTdZDOCCMwkRNHHBRbLhx9eH9fl9jY2KRUKq0/tiCloaWlRa1Wg0tfdoG7L7SzgKeAfzx4q4OUdywLxkyYlSEjE/RmQWYWbi64HNFNCJ9gwJgNU8bIrQc3giugVgfODCne6cjmccNOiRkGW0lGZStbz6uvo+PK5vCs71YeCo7NTUorE0q1XTbVWrM0dXVdvVwl3RqZzdmamnWpsbPzitmHQ/sS5xv4oIElcdT5q62t3bp16+uvvz5lyhR3d/ddu3bV1dUJr/2VV9VnXCiPPpwXzMtZFXp6W1RO0qlS/vGi/FJhbnFjk1gllmkUKp1aqzcYm5tboImhpQWs3tDurZ38UR80eNcBf6itCP934t+V9o5OuDV3Xuno6Gxr72huaZerDI2MWqtvNba0SRR6lba5ukFZ2aDIKxWfK2jIyG84nlUde/wy71hxSBwwRFfuSvffkRawM33ZxuNev55cGXJ6X2Je5KGLR9KLz5wvP3+psrq2sb6hCSNrbGxMSkr68ssvn3766ccee8zX1/fixYuo2oj7SJmdQ3tUbFu3ZcAqGbDBnFZJs9V/BIf19vZ2LLWoVCppfjKz10Mc/G6vBbW+K3E7ZzNx/1MzoDaGxkIjZyg0J1igKq9arZZeOiLeN7cv+uaN4pXEfaeWNtB4R18xzupnZT9+kJ7ALS0tqLB06tSpe+65RyAQyGQyCvsN3kjmypUrn3/+OZfLbWsbZhGhK1euIOtap9MpFIq8vLy77rrr2LFjqE6J5+Hg4+3HMeh9VcoRNxqNSqWyoaFByP/fAAeWvi/DHTOAJnWYrVTIh7EzFH342traTPHWVQv5C4cq3h0zxId9FTIJIrsj5xERYfjm5mbomFEoGIZZvXr1K6+8Ul9fj4Sz1tbWEXJ+9n7m9uMTjBdVSTHebdu2vfDCC8hJwo6foY6XWoQaDAaEOadNm/btt99S4W5aTOlHYLZVB5EBOhTo9XqFQiEszxXumTOEQ8GOGUzkFwrpb0ZHQ9Fpi0FhD4dcLq+orl204xihiPEByyS2TEBxAIOrGJZ3DLwAZgO8BiVM0vhPHDrjEdF09IHlKGYLkMPycKQFIG5BkBueIL1QrVajRMHIaeYYxKnxu6/SJgm0wcvPz7/77rvr6+vNYc6hHj1+t0NWedNt2qZQKBYuXHjXXXfV1taiCAdOY24rbOlmEk/zZjAY5HJ5XV1dSNI5N3+BM4dPBQMdvMEOzY2b4OwXxyLiio7sWLRGYwHYCaqJUJJGeznPSCLDyHPmEMiTHevuD1K3yLcmTNBYZ2KyS4jXvKUhJ6VSqV6vpz7oN7PbA16HxosTqtra2j3JmW7ASQXfTUINj7X3BrzB3T/BhXstXh+eq388oJXX4iVOcjEOXtFASyVIJynBxzhBZR/oSoBSQEJiHNmmeNHW9L/bYF5ttXgHnCiLf7Fns9oPP/zwf//3f/QpY5TN4iyewL432AfMmVssik81wZwXS0XtHZ19b8r26U1mAGHOlpYWjUbDMExJaalHQPyclcnIs0ScEqVlcUpDyJ3QLIJ4nj1xoAQYjyB/yIB39uUD0ZNQFcHfFyYzfGLPCd8Ch/JrGKcjG2ZBJo1cNs+FHV1H7vLYMWDNiQ0WEHBEraurO5ie+9HaQ27+YItOQU1kcyKcaUI9fUx2pBTQxb40U4sJaQ1BFix+C/xN/eOvNc3wqVYti2zHBJR6Rf24/XB9Y5NarcYnlNtBCbPzSteWyOzvVh7aEpkVe7yokdHYYM5ul3Bn55XcYuGvEdmbw7MYuf6KVWBgnGxQ+ia2HioUitDQ0GnTpk2aNOmTTz5JS0urqKioJX91dXVFpdU7eVmbIzJX7TqdkFqWmV9XUSuRypVKpVqtBmlDA6FpI1O7hfwhtImgJkEzTf+ZoMzOTiwgm/+PFwX93/yjsKT8Mxdqr+GgsA3cXHt7R1sbYJHNLe3tHZ0afYtW3yqU6vLLxEUVTOzx4oTU0l/CM7fH5GyLOu+77ZTvtlSfLSmem44HhaStDEnbHp0tOFGQlVdeXllTXV198eJFDofz4IMPPvTQQ8uWLVMoQMmfkjvp/nQ7iLa3tgzcWhmwwZy31vG68d7SMR2L8iCZxQhFp7aIdtpboBh34GNZySmNBuYuVMB2eJuyzeNFgXW5lBGf2iK2CMEi7AP55RQtiRf7XKw5bb3xwR69a9A6SHNzs06nk8vlsbGxDzzwwNGjRy34QN7V1WUwGFavXr1///7hPY2vXr1qDnPK5fKjR48++OCDaWlpVOpthBQgzA+NVqtlGHFDyq8WGFt6xztFISzJpaOIpWEZzpoHq0e8TH1ayMD7J3oP+ULvBwAAIABJREFU87cc7nIUFx5Ha5ORQ5GkbGOE4SUSyYEDB5555pna2lqVSoXCwqOpcN8N1pVIJPHx8VOnTsXxxzrx0gZtFLJmGGb8+PErVqyQSqVo8kdRotF7KxhBkWFBDZVd1Wp1U1NT07G1QzsU7Jgh3jmbOc9DrtUQ2cHSU12tVotEouQzBXODEhFBcURSJupDAmYAvf8s72j0uHIC8ABgCdS2Rbc/gkOAoiYpHfJZRMYWGFq+8M+VK3Djxjv68P675XCDkEFHwNE0buD5ag4nKBSKxsbGCRMmlJWVjbS7uWWvLrxX4qOHVqsVi8VOTk4osi2VStVqtXWGTcsGZYWtUUISJq2iouLbTYdY4CpHaDccAtFxeGjDCWVoE1/TxMhx5pCrjFBtTPZyhLOIhWwnDh++6BcHzp1Qto5x4vChmg88Ub4LuR7fX5lQ3wCqDDjJHIpeCvM0mscLCr3l5Yu3HyFQAZiPAswJNsA8dMUj8YJIL4whJmNO1EiEEcbBKxoGn9/FC2m5Rtv6LV6AKzixLv4w/rj5x1fWNlotXvPYh/c1VnuxeVShUEgkEh6PN3ny5Pr6eto8autCGPAx6g3m1OhbswoaY49fXr7x+E/rjxVWMB1WJDMNOJxb4ovIUUZL46ampoJLRY7e0dAbQQyJ3QhJ0YFgmQDREXgSeYfYv0XVVp19+W7cePfAROojbhL9JiROV8KAtAfnThheEBREbVvQxCYOwcRCOLawpEIikeh0OhRssNqzKu2skslklZWVUUcy5gQmIMAJzsSk58PBK6pnEgCbZPOwTYQ0moA6uqmBhlA/TTcL0u7m4hdHnTsxdSyfGHvPSGh6I3gqbv/bzYeqauqoQsBtAXN2Icx5cHNEVvTRogax2gZz9hxAmls7TmZV+20/tYkgnUN9deCMlDI4UXvs8OHDjo6ODz30kB3LafveiCOnLySkZgtSshNTzh9JL9gdl+OzJSXuROGZC1UlFY1SmVyhUODNEQHO5mu0TXPWJsKQJnomRQivXKEoZrcXPTODSzqvXEk+Vc4/WazWtdCvmG3vCv7ENdQTCaKAh8JDXEdna2uHUmNUqI0Sha6iXlFSIzuaUXk8s2pbdM5uwcU1u8/4bT8VGJLuuenkrxGZewU5R04XRcSdnPvxl8/96aUXXnxxz549EomEukSNHC5Tb+myLbdl4IYZsMGcN0zRrbSC+ZhuNBpVKpVEVC9KWi4OnvVbDf1m6uy9r8PscWMKDnfzixquSQzGS6d3arWaETaIk5ZbBuPEJOx2lVw6SlUZ6RPgUN+eb6XTbgj21bygjDBncHDwI488cvr0aSwUmnPdBvz7ycnJ33zzDXJZBrwRS32RnsbI/wgLC3v88cczMzNHVGEUr/TOzk4slMjl8vrCdFGIg6WGl163E/0PqVSq0+molKul0t73dmi8lOrUUHzOMi0jvY+xkITwTyWMCMUqcczpez+t8CmF3JBdLZFIUlJSpkyZUlVVRWHOEbKrFskGxX5ovFlZWZMmTTKHOYc6XlqURJizoqLijjvuCAoKQuFuc2qURUK2baTvDNBLQK/XS6XS6rJCUYhjr0NW3xd4fz4V8f7FMIy5eV7f+9mvT/FWi/LjMpmstrbuX5uPzAlMgmIfSEQCHOLiC9qPYGrFBR8mqBJygD2GorUu3DikOGApzc4zwm5FpAO4BgIfAtdEigDQAojBJ6Gp8U7klAxRUP3KwFCsjFcuNmkB61cofPDBB0+dOiWVStGfkvoCDsWvD9c2KXyFlsa1tbXPPvvstm3bGIZBVUyj0ThyGneGK0s9f5dW6lFvsLi42MWXT5RmI1hsnntAAl50yEaCRoGABBc/cNwEBUVvoOPYe0YSC09A/kCulixEjpEzEZ12C0xAwo0Tm+fKhcsZCaBIuXZix2bklZtrLfbcSQsuwfMEFXpFIlFxcfEHQVA9t/eMYLFjwEaOiCiax0t0s0F19nfxkl6K7vH6gsi2+7V4HbvFC3AFZOlEzmWlUnm79QlRfQicUUgkkszMzIcffjg2NlahUAy1OroFT6GRuaneYE6VriU9tzbi0KWfNgDMWVIju2IdKtPITJNF9woHT6PRqFAoGhoacvMKEKJDDiLwF4lYK4wD/gLUbnX2jYUX/tDu8N6qgyhpCwOLF4jWokUlAqIeQUlIgncPSHDwjpq17IALzn8I5oceyaTHwjScunIFmXmXxWKx9VsoOjs78SlVIpGUl5eHH85wJYgsMjjd/EFpA4VqqTGnKxcS4uIXN2dlskdQEnL9sVEGsUzMoat/PH4KEKZfHHE7BksCop1u0r81Ab1koStX8M3mw2WV1XK5HPvYbgd6QGfXVcLmPPjLgazIw0X1Npizl8tcrWsRnCxhb0k5dq5SbxxCETVaD0eRP41G09TU9PXXX997771PPfdnp28D3/Pe4+65x3HpLtaSnZ8HxHpvObk/KT9wb9pnQfz//JIUnJhRVl2PplFarVav15sru6L8LAKBCENapCZcUafYxb9QUa/oQ9QXq1IU+6TAZ3t7e1sbSOYajc0Gg0Gr1Wk0WoVSJVOoSuuktSLwDb1QIjx1vkaQUhJ+8NKG/Rnr9p712nzSa/OJH1fG/ctr94JvOP/4z5KCS4U6nY7O1W+Hi7eXU9W2eDRkwAZzjoajSGOg4BAqeEjEQtGJdQMXqu2lEicKdZGXpms0aqPRSMlVFhniaSA3+YLGi1KKUglD4p1p2cojs4slKz6pNYvXNu7f5AEa8Gp4ZFHEFWG/tWvXPv7449nZ2VgvGyTM2dXV1d7enpCQwGazh+XU7ZkZfEpBSQ25XL558+ann346NzeXuuaMBDYnThzb29sNBoNSqRQKhXWHV4p6GSgsexk2ZcVgc6g166Q94m1qOBRo2bh621rT2b1y+e+kenueM9ZcYo7xKJVKiURy6dKlu+++u6KiQqVSjT7IDWFOKpotkUguX748bty4pqYmhHWtUCGlMCcyaC9cuDB27NjNmzfjo5e5Ye3AzgS9Xt/ZaRNPu9nkUVkwpHLWJfuJd8woXPv/eruELbY8eGZTYSpqClmWIkDHN6PRiEHFn7qAmAoQv4j2rCtX4LEyCSEHJ3asI2FZ2XtFwmrE5w8JnciNANs/QkFD9VqsrLG8o+1WRNh7gs2now8UE4EP6hv7/Y4TcjkIJVlzSL/Zgz249WiTBMIJQqHwD3/4Q1RUFJIa6ZU7QuYeg4v1t2+bgygqlQqF90tLS81Fttvb223z599SRl7Rs0WhUNTX1+deLABIklwm2F4ApWpfMJPDyjJSGynryI0b70IUaB3ZPHtgN0ajPy4IKvoA8QivTfIilkUInYTTGevCjUNJRmdfPi81Xy6X4zPdULM58Txpbm5WKpWNjY15+QUsHx4W1l38BB6BoDcL2MO1eB0IldMULycG4iUwLYkX2ilQQ5vYyJF4CbIL8YIELojWgrw22On9Fm/EyYtWi7fb4R7Gt4gJId9arVbLZLKSkpJXXnnl22+/lcvlw6WYMowJsexP9wpzaltOna89cOjST+sB5iytlV2xUb0slHocPFHuu76+/vyFPA/iQ4m2kZR5Cf6U/tAvQrBJQscknG/UszV5TxK+u92KCGdfvntAAvaXAEmRzXMiqhXoYenqBwgfmSaZ/Cxd/WjjCO9sbqFIJFKr1dZhxtMsYgFBp9MxDFNWVhZ+KGNOAIyTOFQi1dLZl+8RlORCMFpcgncHaJ3xjzdN4XCSRnrUYO5HmZ1kNoj9aiZSLFFKN7fnxFmiI5v39cbk0ooqKgx+O9zxrxCY838rD/5yIDPyUGGdDeakp+bvX3RdvapQGyMPFfr8evJUTo3O0Pr7zy3wjgKcWEIEUUOZLCkp6dVXX51070N/mv3prEUhdktCZy/Z5bB092eB/CUbjvoFn/INTfkogGe/fL/98v0srwgHz3APP96qiPTMomqZQmku6EppjpadwLe2deyKu1haK9f1E/2l8aJRncFggJDl8rzSmuDEzA+DYh08w1leEZ+s4i8JPrqRfy42vSjqRGFKblViWsmJzKqElJIdMee3x5xf8cuJlbtOs3898WtExvGz5XmXGxvFSp2hefTJ7VjgJLNt4hbJgA3mvEUO1I12k/Z3oKKaTqeTSCTC1F8tyWs0BzP2vS+rvmjeiW/Z4f5G4cLntELX0tKi1WplMllT+s6hinf/B/LaS7TXFW9yN7OTtnUGloGeMKe3t/eTTz6Znw+1GORDDKbg29jY+OWXX+p0uvb29oHtocW/RWFOnJNxudw//elPBQUF5m5ew/60gMeF+qDU1tQI9861WDXffITp+TriM6axVqfTWQFeogcX421tbUXfl7qKYuG+D6wTrzDqK6ahGp+Wh5o1SOPt40W3ErZUKm1qaho7dmxZWZlSqRyVMGdHRwfCnGBuLZWWlJRMnjy5oKDAarBuN05Yenr6uHHjdu3ahf7Eg2n16OrqOnXqlJ2dnUQi6eOg2z4yz0BnZ6epoUoqrSnNF+52F++YMfOF+xc6PlG+8W9DOiw08f4jFotxBmLBZ046vun1eplMVl1dw96XQrTaBC5c6NN38oVynqneR5w4EdREKVqsebHQxcrXpIqJ+KiDV9Ts5eFgIkgQTaigEaNBFJM06ZtxBecv14wozrr54R7Ma9okgTCnSCT6y1/+smXLltsB5qStIVu2bHn++efFYrFEIqFjpg3m7Hle0Uq9TCarqak5l3MRivIBCY5E8JlIQ8citgd0ahBojQMRWjbPwQt4nCwfsItz9gVNV0cin2jySKP2coR+DdKFsE3gejr7xrqAfmOciy8fgE+fmJDkTNQrs0LPAc4lDAaDTCarr6/PPo/xJmK8xEcz1s0faEaoNOtqFq+dZ6SDTwyOS+bxOnNif7PTAxAUOZ2wTQcTxilwAWI6iOKyfGK2J2RKpdLRKprd8xzDJeYPVhqNRi6XC4VCZ2fnV155BS9S2nQy1FB3b3t4Sy+/SZizrFZm/YLJLZ3YPnbefPCsq6vLyb2AbHUyaQHHTWRzYj8H9l2ZdCZ8Yz2IagUxHYdeEIT67JaHz1y634EMqoiSIiOcmJETF2QiD84Cx1+T+bEJTSS/dfHSZaFQiL7j1qwU0acVhmFKS0sjDp1x40JEyG2FPSQ8VMwGdqERb2NQCwCuKpHfQNtRN/94B+/omUv2zV4ejnM8yMO1OwvM90gDCgy/18w7cUZH+ff/2XyopLyS+j0Pe+Gij/PHUh/ZYM6bz+SVK12V9YqNYed8t53KvSy8+S/ecE0sC9P+YJx+NzY2cji+U6ZMeejZV976epXdktB3F+2cvXiX07K9y389tir09Dc/J30YGOuwPMx+xQGHFQccfaIcPCOc2DFO4LwbPdef7x9xuqaJwSoH9S+37BjeeaWLf+LygeSC1rb+dR7TkDs6OgiVEzpWJVJp6OHzC9YkOnPIGOUd5egdZe95YPZPe+2WAY7r5B3+Hifi08CYL1fHLt95dFt81qFz5ecKGo5nVfOPF+/g5awOPeP168mgkNPr9p7lHS0qrZba/KRvePrZVhiBGbDBnCPwoAxkl2g3B8X86i8eFe0aSkW1xKUSsdBcRtKyg37fWaDxtra2oqhpU8EJi/NWf1e4FPwoFTdptVoqm2nNePvOxuj7lJZfkd0ok8kWLlz4zDPPlJSUUNhvYPWyjo6OwsLCb7755rPPPmtpaRk5qUOY09SHJZMtWrTo5Zdfvnz58iDjtWyA+EhpNBrFYvHmzZtzDu3+3TXSE5u04JJQp6ZLqUjoHCKPup656kY7qMlOYHZYmCxunsCsgDd83nsal4hCnZuKT48cwkFPmFMsFt99993Z2dkjB+YsKSk5cuSIUqnseSj7uwTjbWlp0ev1CHOWl5c/8sgjKSkpVou3G8x56NChcePGRUREIMw5MKM7vV6fmZn5/vvvjx07dsyYMUKhJR8y+5vkW2V9bCNrb29HLwChUFh5Lk600068Y8azj941ZsyYR+6bEPjRs+eDpptfzpZ8HeLQWJGPhM6Ojg5LzT3wPottK2KxOK+w5F+bj5CKWJwJ5uTEghwZEa1FiTZHHygIEp03nhMHXkOxjDgzmYRqiScWyycaKl/sWJNhJ/jqkbIg+S7Wzpx9+buPXkAT4oHdzUfs+WMOc6pUKpFINH36dD8/P8QSsFmnvb3dUsdxhOQBo8ZWAIVC8f7773t4eIjF4p5C36Ms8EHmH2niKIVdWVmZlpHN8uFBeZrgeSAPSBSksRCPJXXCyCF+t0SiFi4oQqR28yckJA65KjlgUQky0X5xjhwekpAcvIBIjd5yTuxYexSX9onZKshgGIY+0A3pAaLIhFQqrampycjKYfmACiKhj8e6EmVsB1DMhjK9C9l/wjRCKDcWuOCgzRsLK1DSFUEdqJ0eC7RqIW8OXtFopwd2wuxYQEkB/Y3ZxM9AC72RoJIyyPOnX1+nFylKREil0sWLF0+bNq2oqEihUFCiuQ3m7FdWceWbgjk3HKuoUwxg47avXDcDdDCRyWR1dXW5Fy66ozgtcaPE5g8YPQj/G5q0yNCBdMz3Vh0CpiYHNGyxlwu5ng5eUXYrIlDAluXDc/ED204EBREmJPL7cWjGidAgtJ5wYucECEpKy4YR5kR355KSktijZ98LgqBwqDQNmNeSgG/xLoCUTbTtRFFfXO7oE0OTQF0JTF4GZDuYQ2R2oh0y4sQufnGLth8pq6hCo5nB9KNf94iPzIVXuq5ui875YfXhTeFZNjbnDY9RV9dVoUS7ds9Zv22pmQUNre39w/Z62z6tDOOTu1KprKqqWrR48aS7Jz/1huOsH7bZLQl1+GmP3ZJdn3F5G8Oz2CGpc3yj7Jftd2FHA/63IpzlHcXyjnKEpxV4rnFk8+xWhDt4R3+6NvFUfpVOp29paRkKFcOM/IZd/AulNbKu3mK73nJKcEKME+uHhRUNi4OPu4L/OjQ3uHLjSCzRzuwYF1+ek080yzPciR01e+ne2UtC7ZbumU2IrbMWhzgs3fWvn+P8956IOXEhJPrk0VPn9ydc2JuYt3LX6YDgNO72U+HJBflljFCqa24ZKfyQ62XFtsyWgd8yYIM5f8vFrfsKRzqqWSGXyxsbGxt531qyytYTrgieKTyz2/oykniYaFMqimc2NjQ08RcObbw7ZopO70CzAex3tj0HDt0lYw5zIrvxq6++eu6556qqqtBChopr9ascU1xcvGDBgkfJX2ur5bUyBpMQNLzEaYpUKv36669fffXV8vJyjLe5uXnYC8H0otPpdNXV1RMmTPjTUw9zP3imces7Q3zpzSDbn9mYHoIPTi0tLVYQ26Txmqz4qqvrY78bokjzVr/59azHnnzozrF3jDH9RPDMhrQQsVhMSXuDObsG/93rwpxTpkw5duyYUqnU6XT0FB38bw14C4mJiZMmTXr77bcjIyP7NTL0/MWeMGdFRcWTTz7J5/MxXnzaGdK7AIU5Ubibx+ONHz8+Pj4e9eX6C3N2dXWdPHnS0dHxnnvuGXPtzwZz9jz0PZfgw3N7ezuyHuvq6iqPbRKTjgeEOceMGTNu7B1PPzxpoeMTl39+y+KjhCh4Vv35RBz9LHgjwJPcaDQqlcqGhobUzLz3A+GR2GSo6QvumyhrhiUt0sWP/n8AMzj6QI8/NvU7eEUjqwxF0qCOxgYmqBlvIAaIoUQ4zpnDd/UXuHIF7H1pEqlMr9ePsloYquKjJ5BKpRKLxbNmzVq4cOEohjnp7ZLOYR588MGlS5cyDIP+4tTsp+f1dZsvoTCnRCKpqKhIy8ginOkY4N+AEydoDwK3gBPrSliewEr0g0sJzNX8E+YEgZMukhSxvQCoSGwerMYVuAcmYlOCGzfezjPSbkUEFarFq5tF+hJCkjKRL24F11hEJui0KiMzG3BcaKfgu3DjfouXNEmAe5xZvG7+CXNWXovXO4bGC3V283h9eNeJ15QlGMG2J0C8COtakB8/8s9kOrFB03GpVLpv377777//2LFjCoWCdmBYYYI98nPV3z28GZhz2Ybj1Y2q/m7Ztn5vGegGc+bl5X22BoZHNzLTAOHua/qrc1cdBGASPgKjSjvPyNnEaxOAOv94D+Lm68zhewQlApWcTF2IkzF8ivMfFxDB5jmxY1FV2z0gYe7KgwQiTXTlxjtxePNXx5eWDSfMiaK1paWlh1Iz5gYQY3VwI45Fw1EQrQ1MnLMy2ZHNQ0iS5RMzY8k+7DJx5QrmBCWh3oabfzzeVvDOgmq9KBKAXW7UjBOtPeesTEbLTxc/cGrn7D1ZVV2NbM5RNrXr9TzsuhoquLB80/Etkdk2mLO3LJkvb23vzCxo8N2auir0dEmNbPAy3jgFRcBPr9fL5fKysrL33nv/zrvvfdn9Pw7Lds9evMv+p92uK8K+W5O8NuzM/MBYR88w++X7Hb0j3f3jnHyiXeCRJ9YVzuEoBPtxrEAXgHkrE0OPXlSpNc3NzVT0YpB1BkyITGPcGplzPLOqvZ9w75UrVzo7O2nIKpUqq6j6601H5gQlgjy1Xxzwuf0FLG9o9iJPajEs7ygndowbN87RO9LRK4LleYC1Yv+sxbtmLd6F+Zn1484Z3+94+yu/F/76ppOz6/kLBTWN8rJaWfSRoj0JAHmu2X1m3Z6z8Skl1U0qm/q6+Sltez0CM2CDOUfgQen3LtEGlubmZiypNJyLtHihrecGmT1u0triYdEco49qJjHJ88ni4CFkWZli3/8BUw3Stc3NzSNBRrLfJ8qt8wWcr6ACA8Kcn3zyyZ/+9Ke6uroBwJzt7e1lZWVLliyh9f2pU6eOtGSg5ozBYFCr1VKp9NNPP50+fXpVVVU3DMkik6qBxY4XXWtrq1qtLi0tvQaUjHniwTu3ffWnonWWL+53G3MaBEuFQqFKpRIKhXgBDmk2aLwajaa+vv5S3nkx4W9126tBvj0fNJ39/tMP3jOe5pNusIH/Q0NDg1qtpgPOkMbb91lBs6HX69HVSSwWT5s2TSAQYHUMYc7hrY4lJibSNL755pvHjh1Tq9V9x9Xbp/QWQ+OtrKz84x//uG/fPqvF29nZieYiCHPu379/woQJR44coTAnfdbqLQpcrtfrc3JyPDw8aHLoCxvM2Xfq8FOcYlHx6qqqqqq4FXidUpiTpvTheycEffzsxVVv0gvZEi9m1p3aKRKJNBoNPeiDHw0o3oBqmQmpWU5g7xfp4BUFvCgueFC5+gmc/fgmJhloZgIggcaB9p6R9p6RAHYS+TIT0EK4VghwgsamL9/eMwptPoGIRpYgFOrM4f9v65HaBqFGo2ltbR1NymbogUdhToZhnJycvvjii9ENc9KOcpVKlZubO27cuK1btzIMg4oUI+EGcTMXu/XXQZgTK9QVFRVnz2VDGZ0rQMs3bCNw4kBt3R1NOqHUDlidsy9wH938E1xJLRtaCohRpb1npLMf3yMgAWr9WJoHu0o+UrGRf4PeulTLMeJYjkgkonI1gx9b+kgj3tf0er1EIqmqqsrMykEsE+LlxkFoJooV2Om5+PFpBqAE6Q/xItfcGZis0SzvGHvPSBeirU3iBTlfIJqTeE12elyBM4dPYNR4glXEhh3JuZ1hztbWVnzWkMlkeXl5EyZM2LsXzODx8RZvMX0cQdtH181AbzCnUtt8Mrt6X1L+0vXHlm083iDWXPfrtoUDyACFOeVyeX19fX5+PjskGacuJmtwwhTHcr8jG4ibzhw+whiA4RHCFqqwOnhDp4UrNFXEuXHjQRgcDSl9Y7EXBN0r5wQlzQuK/+fK8K9WRpgGaq5g3prD760+uCT4WHlFBXpzYjPukPZBmqcLb74U5jydkfXRKtD9ph0wpjsI4XfiLQDgT+9oBC+xHQ0xTnSARtkA1LxFsiZO83Ad9wBorwHQNDCRApzvrTo4b+2ROUFJv/LP1NTU3F7enFev7k246LX5xK8RWQeSC2qFqsHjdubHd1S+vtJ1tahSErgzfXN4VnWTsl9Exp4Joc2F2I1aUVHx1T/+MfHue19y/8+sxSGzFoXMWrTTbdme5ZuPrQ0/w1q2590le+yXh4FvpXckCOazY9z9BcTRHDoy6egBDQHEI4DlHe3C4e07lq9Wa5BoYRFVao2h1WfzyeT0crnK2DOoPpZgmRT9ODHktAtlH6876G7msws8bPJ0Zrciwm5FBHBVfaIdTf+iXDk8hxUHZv+03375vtlLdr+7aNfMH4Ltl4bOWhzy7o87p38ZePdDj/9/f3214NIlUoZqNba0ldXIiiqloXEXgnm5PptTft537lhGVaNEa+inn2gfcdk+smXAghmwwZwWTOawbYoOdtgeW19VItpvFQO54HdFZ/colWDObE3lHxov2s431FSK9r1niUoiksZ6/z/43aaze6mwz23VAmzlkxurhOYw59y5c1944YWmpialUqnVaimb84Y7dunSpS+++GLq1Km0DD1mzJiRD3POmTPnb3/7W21tbTeY84bxDt0K+DzZ3NysUCiKi4vN8zlh3B0vPXGP3wfP1Gz+v6G7EoVhn1RVVa1cuXLmzJkWpDT1ljGMF6lOmZmZLg4zDy3/q2h77+NDT8p7n0tyg6b/c/bjf5gy6Y47zHN5jc25Y4Zot3tNTQ0qVVoh3t7ygMuxbbC1tZXCfmKx+Nlnnw0LC7Ma7Nf3Hl69etUc5hwzZsykSZNmzpwZHh4+gKItBSpovFVVVS+88MLWrVutFm9HR0dbWxsV7g4JCZkwYUJKSgr6EyM7qm9wqKur6+jRo66urrTD43enmk209oanFFkBT/6WlhaVStXU1FRWVlYT8S8c6HrCnGPGjBl7xx1/fPSuhY5PXFrz/yw1HtYfXt3Y2KhUKi0om4/4ilarZRimoqIi8vBZBwKTYLM/wgmIa/7G0YSm4FgH7yhs6jfxNb0J8OkDzAmqYQswjB8pFnAAkgFrKyJv6+zHByFN4v351caDZdX7wcKeAAAgAElEQVQNKpWqubkZJ1QDuFRv7hhadS3zCYxKpWIYxsPDY968eRTmRMxvdASLmaV9ITqdTqVSRUZGTpo0KTExUSKR0AHT1h143bPwypUr6L6Bl2FWVrY7F5oM3IFFxHeG64ioznIFcLmxeSygKJkkoN0DEqFaDfRN8OxE8sHs5RHEVo0Heq2Eco2cbNRdJNcsQIloqIZt/imZBcMFc2ZlZX24Mt6VG+fun/BbvGyeSRMSinTgr4kh0Hgdr8XrzImdvSJ89vIDjkRD+7d4/fjwLR8eELMI8EniJTlh8w6dzb9tYU6EmRHmVCgUIpFo6tSpfn5+KC6N8woLSqNf95wflQt7gznlauPBtPJgXu6Sn48u33icketHZfjDEhTeao1Go0KhaGhoKCwsjEo6QWFOBDJnLw+394py9gXMD2csThyeKzcevcMdr7VtOZNmEfwurgkfESDQPTDBPSCejK78eSsTlq3euXrdL/5rfp3rFwPdJ4Qx78oVrI1IqaysZBgG+0UsgoLcZFZRzg17RyoqKnJzc7/bnIw8fozF3jMSvTZpEkx2m758ey/grrG8wemZytvSF8QEOsok7UtATZDlICFf0xWPc/GLo2CnK1fAP5FVX1+P4mfD/uh6kwkc5GpdV6/uS8zz2ZKybk/GjpjzlQ1KG8x5MynVGloTT5VytqZsjcquF2kGnDRKjdDr9QqForq6+osvv7rznvtemvOdHRFlffeH4A99ooJ2p3+zMRkgvSW7WV4RzhxAN51QmdYL2jER0Tep1xCAEF/Dtc8Gkw4P/7gDJ/I1GvAvo+q1NxPpddfp6roacegSZ2uKWtvSr8cBym7CjiWFQnGhuPLz9QfJyAbXI3EUFkCXqi94E9h7RqEju4sf35nDs1sRYe8Z4eAVae8Z7ugdab88zH552KzFobMW73p30c5Zi3baLYEXb34ZcNeDj82YMbO4+DJBOoHh09HRaWhuU6ib80rFaTm1G/ad2xKVs+lA1qHTFU0S7XXDtC20ZWC4MmCDOYcr85b8XSzHYw2uoaGhNjNWFDzbUsW1vrcjjPqnSCQqLS1du3atFfhVmDWspzQ3N6vV6sDAwOzknX3vpAU/FYYvEIvAXt5oNFotXkueK7fItmiVkLIbnZycXnrpJYZhKOzXd8msvb29pqbmxx9/nDRpUrfK/i0Bc7JYrHfeeae+vv4m47XCgcWauMFgkMlkly5d6pnVMWPGTHtg4rZ//HkoZBtL1v9t579fmjZt2pgxY+677z4rKOHQeOVyeWpqKupSfvzWI+f836jb8vaARxXR9hl5q95kv//0/Xf/xuA0T6b5litLL8nl8pEg6ohIT1tbG16ScrlcLBa/8MILO3bsoFVsq3mm9na2d4M5aVb/+te/njhxQqvtxxScPjVR0kN1dfUrr7yyZs0aq8VLYU5ktG/dunXChAlnzpxRKBQaDfST9nEVGAyGCxcuODk50STYXlg/Aw9NBmZngSXAztoEn7q6OrlcTtWS+/VUfN1LBuvdGo0GZ3EHDqa7ByS6gJULPM8jkAkApx/fxRekz9DeD8pe3vDYjN6cCGECAwCcYIAAAeZ5vgC6YEkR6RH2KAPle40eygGDwPlrEovKa9D7YDRNqOgEBs1cJRLJhx9+6OjoiBMYpEyNMm9O2gWl1WoVCgWXy508eXJubq5UKlWpVHo9eBr1PWe77il6OyzEmQZWqCsrK3Nycr7ekOgWkODKjYcrkQO9AqaryTfWiYOgHahGu3IF7685TNaJdfdPANoBfAocHbvl4eCs5h1NrCiB2ujKFTiAXhnPRIUkLrlQ02fHenDjLpeUUdhvqCEuyuZEb86cnJzvfk0itnAkXkKkoKMHspFMNXdu3AfrjmK8bhBvAsF9Y+1JvPa/xQty2WbxAiudjGZ80J9kA/B5sbCUYRjqCDD4sfRWOVGpALvRaNRoNAqFgmEYd3f3+fPnS6VStVqNXctDfQ7cKunq1372BnPKVIaE1NJt0TmL1wHMKesna6df+3C7rYy3Wix/iUSiy5cvnz59ev6aRLScBA1VryiTazg7Bpx6/eI8AuFTFy5qOYLvppt/vJu/gAyVJqV9VLNAJ06C8CW6cUFmH+me36/ctWbdL2vW/fLTqh1OPtHYTuHqyw8/BCzGYRFrxUHVaDTK5fLq6ur8/PwQ/nFXrsDNP94jKInlEwM2zATIQTUO98BEYLjC+A/9LvjaI5A0zYDEpcmtAFtn8C0AunBXArYr5gdfu5L+G8ieDyirO/tE5+Zdwp48FCJCX63RfWZSmHPN7rNbI3Mq6hUDRuxGd6J6RtfeceVEVjVna+q+xDyxTDeAvOEJhtUJhUIhFAo3bd486a67n3nnw3e+M/lxfsiOXLf/7KdBsbOW7rVbHoY2nODFS+RnqDs4PvvANeIdjSc2PsWg7DMq1szxjztTUElvlANmbHde6Yo6XLx+/7ncy6KeaeljCd7EsbPBYDCoVKrymvq/r0vGsc4NnA4SnNgwP3QmjG3gYfvEOJNppMl5lw2Ww2T9SEefKDvC6WR5HrD7aY/d0t3vLgp5Z+HWmd9vf/fHna9+6jX+zru/W7jQvHuDzpeudF3VN7dfLBHxj5eE8C/4bjsVzMstqZFp9a10nT4CsX1ky8BQZ8AGcw51hod8+1iNRc6HTCarrq6uOxhgXigf0tdZQW/9+1//eOaZZ8aPH2+dpi0aL1I577jjjj9Oe+A7xycurLSsRlwvnK3gdxsL0+RyuU6n66PEPORHfbT/AK0SIsbAMAyLxXrttdduEubMz8//5z//2Y3BaV7jnjRp0t9H2N+CBQvmz5//6aeffvzxxx9++OGjjz76yCOPvP/++x999NEnn3wyf/78BQsWfPbZZ8O415999hnu4Ycffujq6mqeT/PX48fd8cpT9/jNe6Zi498sMvhU/fJ/AR8++9c/TJ4wzkR7vO+++5A+PuD55c1cQObFuOPHj9MY7797/LzpDx9cNhBmZ3bA9G/sH3/64etA73T7H7z5CP03x9Xxww8/xBPgM/I3XCcA/rr5KfrBBx/cf//9b7zxxsg5RWfNmkXT2O3FpEmTZs+eHRYWdpOTb3OYE1HG6urq1157LSAgwNwud0hFervBnBs2bJg4cWJWVtbNwJynT59+9tlnuyXB9tb6GRg39o5v7KcJtw3WwLhOsBx1wKgJ7k2eyX2MdficrFarm5qaLl++vDchFcpevgBAuviCgCRSo7AEhiUthD8JSYLn6MNz8kX8II6gMqaSGWKcpI8YsFJXroDwOIHTCbKZHD4LCo7QOv3xqvhLZdWjr+ufTmCMRqNarZZIJAsWLHj77bdHMcyJt8vm5matViuTyb744ovHH3+8sbGRUsQoC7mPE/L2/IjCnFKptKqq6sKFC2v2HSZqtPHOvnwWlKGjSZO+YO6qg7TE7Mjm2XlGgD4tucTcAuLdAhJYPoRwEAR1fFRdA1TPL87VH5r6sXHBkY0QKVh+ovbgouDjFRUVEokEG6qGWqiG6mTIZLLa2trc3NwNB464cuMIfdNkMopchLmrD5F6OniUEsqFebwJ7jRegltcizeGxBsPRT0C5ZrH6xGQOCco6ZsthysrK60W70g7q6m4n1arValUEomEy+W++uqryDXHjgR8nB9pez7C9+cmYU6lpnmEB3IL7R6FOdHAqKysLCMjwycU3OncAxJx0Ls2MvCcfeNciA0wyxsAOTKWwoCDFC6c5+AAi8xv7K5Ajhdx34wFU+SAxLkBcb5rtqxZ98uqdZs+8z+AMOq8lYk5FwuQxajX661TEKNHqrOzs729vbm5WalU1tXVFRYWnko/vWAd6MriuIpoDSKRSPbCuLBdBpNw7VYCare/3UFIjwiugP0iqH/rEZho3sfmyObNXh7u7MsP3He8pKSEKvdiw8TgJ6s00pH5wgZzDvi4dF29KpbpYo8Vc7am7E/KF0l1/TpbKK+R9jpkZmZOe+KJJ19nzfxhx4zvt89atHOBH4+769QH3GiHFQfsVxy4RmSMcASAH2ZKqGzhEZSESCG4bJDOMGdfwALtPcHIA68OfA7639ajCqXSaDTSSlS/9vnq1atdXVfP5tUv+fno6Yv17R2d/cqeea+SWq1mGGZzXIZbAFgIY1ubIxtoqdeGL+hjYPnwQMCWw3MDzQyI15HNcw9MsPeKtFsRbu8Z4egd5egFtM53F+2a8UPwjO93zFocYrdkl93S0Jfc/zPpnnuDd+6kPfc9p4idV7rkamN1oyr8YMG2qJz1+zIST5XUCtUDAK37lQrbyrYM9J0BG8zZd35ugU9pNVav14vF4tLS0oYDf7cIutDHRoTb3yla+5bX3D/cO2kc1g3Hjx9vHXclGq9Op5NIJLRq+cDd4wM+fLZ43VsWVJW8bgYaj65kGGb0uUmNqHOdVgkR5hSLxQ4ODtOnT+8Gc/acWFy5csXLy2vixIn0xLC9GK4MPPnQnbwfXh7M9Vi+8W87//nnxx/ofjTvvfdeKxifdHZ2trS0oNnJ0aNHe6Zx3vSHzwdNr785Zqdo+zs/L3iuNwZnz43blgxRBl5++eWioqIbDnf0RmMwGBDmrKmpeeONN/z8/IYL5ly3bt3EiRNzc3NvBua8evWqRqP57rvvpkyZMnbs2N6S+dRTTz1j+7uJDDxN/p566qknn3xy2rRpTz58z1NT7nxqyp3jr/Ve9MzwxPFj/78n74n6/qXBjIF0ElIjWFFVVSWRSPpm8d7wxKYr0PqgSqVqbGwsKiraG59KjDYJTsAVADRCIEns6Cc+eYCX0MZ/0wMzm6jREjAGiwVYI3PzB24WVhJnrwh38gEaGfZKQ8mMOHp+tjbxUmmVTCYzGAxWLgvSPAzFCzqBoTDn559/Ticw1ACv5wRmKHbGCtvE0RK7LTUaTVNTE4vFcnV1RWNOSj3vWRyxwr6N/J+gsJ9cLq+pqcnLy0s6mjqHFK0c2bFYsXLzT3D3ByaNEzGhdEGlQcKeceKAAi1oz4JErQnkI9cskB0dOUS1lcMDezkgg0Kl3iMw0SMo0SMg0QNECBN3JmRUV1dLpVKDwUCtf4cubzRehUJRX1+fl5cnOJL6XhBU3xzZsSwyOJjiJS5TIJBI4oXiI5JZgeQK1qQsH56rH3A0zVlHwATFeDkYbyx4yF2L180/YUd8BpKuqMPWqLkSb+ao0ZEf9aWlUmliYuLkyZPFYjF6slDBgJvZmm0dmoGbhDnVuhb6FduLQWaATtR1Oh22ieTk5ITyj88JgNGP5R3jAu7F8UBwXxGO5X7CagJ0k0hQgBI4qLAGJECnCCGIo4wtUiEB5yA8RZjbsHluATAOO/vFfcoNX7V205p1v/is3upM1C9WhR0rKSlBYx3ry31RNQW1Wt3Y2FhSUpKZmckhNqXoMIqwJQI2iFmi7ybCvTgxA6X0AJDndfePc/ONYXmB5zHmAXERlAegtE4EfsDulLA/nTix7wUK0s5mVVRUdON+jfoB1gZzDvJCbhCrE1JLOVtTY09cFvVH1ptOPlGWpry8fJad/eRHnpzx300zf9gxa9HOz1cKAnenOyzd/e7i3bOXhb27dJ/dcmxNMKnUIlMTH1twNMAnFzyr8ZJBmBPXIUIR0SEHs9UazYC7Tmsa1ZxtpwQpJQp1/7peKJWzpaVFo9FIJJLC0sr3gsDN3QTWEkHp2cvD7QCdjQZ9Wq8oUNkBaBPQTYRCnQknG+aNgHoCAuroHeWwInzm4t3vLg6d+ePO2Ut2zSYw56xFwVOee/2pp57Kz89H6VqUornuRX2lq8tgbE/Jrok9fpm9JSUsuaCB0fYXxx3kuWT7ui0DNAM2mJOm4lZ9QR1x1Gp1Q0PDpbxc8U57Whobihfn/N/4H2taN0LS+PHjUZ6ib6uwwWeZKtaiS1a32uJzj971o/OTOYHThyJw3KYw4u+NDXUKhcI68Q4+Y7fiFmiVEAUZRCKRnZ3dW2+9xTCMSqXS6XRUC6VbdF1dXTk5OYsWLXrggQe6nRu2t9bMwF+euPvnBc/lrR6gNV3Zhr8FfPTsa09Pvi6KgDDnUCvgIcyp1WrFYvHhw4evm7377hr30f97JGnpKzdEMkTbZ5z2e32Z+1MP3zvhupuyLRzqDIwdO9be3p7P5yuVym7jRs+3tHpiDnNOnz7d29sbYU5aIe35XUst6cbmXL169cSJEy9evIgwZ3Nz8w0VBbq6ukpKSrhc7qOPPnrd9AqFQkvt7SjeDs46DAaDRCKprq7Oy8ur3v85zgeu6805ftwdrJcf3PftixUbLeZVXJ3giwykoYM5DySeMimScYneLLC+gNYJSmVEgRZrYdSrhlDE+ICdsAFfAWNOdoyrH1TKEI/B+ho8P/sg3hmHD9WAfRKjrH9sPFhcXi2TyazPfhjS05VWXlAZUiKRfPnllyhHYX7xXrdMMKQ7NkQbNx8t1Wo16nv7+PgwDGO1ppAhCs0Km6UVaqVS2dDQUFRUdCr99L83AuznzOE7+8WyvGPsVgDzAC9DU02ZyM/CRUf+EXo0iA2CAxMxmXMGEyb4Lotgn0SYEVQKgcRJgEO3AEAHP1wZf/JcHgpiD7hm168s4fS+ublZpVIJhcLCwsLjqWlfrwcuAhYZSbzhEC+RQ6TxYnnRwRuGGogXxLEhRtSW7C3e/5+97wBr6zrf98B2YjdxtrOa+WvS5p82qZu2iScbDLazmtjZaZI2TWLH2+yNMY6N48X0YCO02GD23ltISAgEEghtMcTe/j/nfvhEwZiAkWSMpcePn4t0dXW/c+8595zv/d73NXNAsK65A2UbgYa+5xmTXYJIV7CIW0zVFbO8ClN6q1wuLy0t/d3vfldSUgJKRTC10KpSxSxP9c7abZYwp6pv6M6KayGfLX7U9vX1dXR0CASC6urq9KycL07FG9tEmdhFETqTUepgHsFqIhN1EkgPHNdmgVC2iR0Sq7RwQhK12z3iJ9FBmwiASIkSCjTAWrtQD3j6g3Tt/9wvfvxTfF5hMRhzdhPgh45ln2GOOjw8DCvWxsbGysrK8JjU7c5kcNwEc3QUDgHKAuyBh1yi8gyVyLzjQvrOPfDwMT/bY+c+cg03d6Rsd48DJ06jo6gRwKwUBmqMBJs7otHV0plmezG1qrq6paVFnfi1kO8fTZ2bHuacZ0uOj0+0SroDKRUO5zIjk+skit6J2R0R85iVSmVLS0toaNjq1av/aPb51n0Bm/b4fuAYtedEkrVduJltBDhxmtgiuw28lrFyjTG1jzY6GgEQpokdmmsZEbMLqITAJE4gR1q5Iq6zqX30DhcKiye8NQEMTovS4XxmAKViaHhsdGx8doFO7gUwJyj0KhQKvqD14MUsa/c4C0cqmukRwtqm9tEw38PuvLinb5sSr23U1iPhhoRPp4ltpIlNhIlNhKltuPGR4K37kVWn8cFLW/cH/O0T5xWr7vXw9JTJZLPRMhwbG+/pG2Y1ySlprNOhxUHUymq2ZGhkbqTVOTWLfmd9C0zbAnqYc9pmuZPehBVyX18fuC4zcmO0hPC1X9jYcPKfh61/v3rVJINTPW1qYGCgm/o1HK9CoWhpaVE/B7x9373LQTPzN7GHW2gr4aWd/IZaKHy+C1fIuukbN8KcW7duffPNN0FVaQaYE5+eUCh85513Vq9evXTppNIpvj0Wsjdnb28vqEi98cYbW7duFYvF6r5WtzcrOjo6Ojg4qFKp2tvbi4uL1dsTby9btvSJB1Ye3/Wi6MItijTyTr/p/++X162dyuDEP7EwN6xef7jC4422c78dteDMW18bPrFm1fLpbkwUnPqgxKrIaW9HZsBgbHYbbwD1bEJ3dzd4c/71r389duyYQqFQqVSAvtze1NjNvDkNDAxefvnlhISE2TegeioQsznfeOONI0eO4Hi17UU6Beb08PBYuXJldXW1OlIyS93mwcHBPXv23HfffVOYnXqYEz8yZtiAFBKY5wHM2RDx3bQw54rlS//45Gry3nmx2NVHALzdmPQTJNGAcTX/ejLM6cFszqjELCuCxGnpRIMsAKhcIrk2QugSMmWgJ3ldivY69ZMoJd5yONToKBJ3QjRQuyikaksQqgi8E1UNm9pFm9iTTG1JxD7k/51NamhquRtgzi+++OL//b//B3IUkAYdHh6e/XA0w825ED6CDjI0NNTb29vR0cFisR5//HEqlSqVSsHJWM8Pm+EywbMGavNFIhGHwykuLj4ekmxJ4JHmhIUSclYjygiMET+JqCRwQYClsS2hpeZCt3ShWThTJ8UYwc7TmWrpjIBMlNcGRzq0D7KXs3CmWToiWUILF9p355KY9WyhUAh1+tquHiPk2iZwDZlUKmWz2UVFRceCkU6vlVssjtfINsrUnmRkE2Xp8ku8RmrxoiGIEJ8E7UQUlDPiNEAen1BrpBLxIhzUkqAlWbjQ95xPZLE5eFo1NjY2y2foDFfwzvpIfS4HEtO1tbXPPvusP6FKB3M50OK7s+K67Wc7S5izt3/4tp/qojkBLFkJeungMl5aWhpBT9nmTN3hmWDpTEVEdkKZ1tyBbOUWAwwn4H+b2Ucb20QCx93KNZagOZLMHCjbPeK3u8dZEn6cZgRrHOA9QD1R+YUT9R2nCE9vROj08D7tH5VYU1PT2toKfGjgxOuykaFTj4yMgD2nQCBgsVh5eXl7TiMv0u2EPSfCdNGgGg0ytlA6A7ANmAiYO1L2eAQAduvl7fMfz5AdnglQtTY53yOaEeibAP+A5u0kFOpIoaTksdns9vb2zs5OzATQZTvcrt/Sw5zzb/mx8XFlV190KtM9MJeaylR2DcxG8hSsN0DOkMPhfPrpp6vue3Drj/4bv79gcfDS3uNJHx2jmdshAM8cFVwiTrYlgVPC2gRKqTAKiHRfYa5FIPqwj9HRCESItI8GArQ5kp1AhwrNqOnu7p6r63z/4Mip0KLzpFJGo/QWGg1PtlUqlUgkSi9mWDojr1ygbGJiOu6exAayJIdYLJBhJyrvQGxOwgcdUbSRcS/639Q+ysQ2csvBK5v3XzI8eNno4KXNP/pv+TFg817/J183efnlP7W1tc2pa09MXJN39V+OqfIllXkG5rWKuuYK695CE+m/om8B3AJ6mBM3xZ26gQ3k5HJ5Q0NDXeIZnBfT4EaB8/ofzJ565uFVN8MYli1btnfv3n379h0gXge18zpw4MD+/fv37du3Z8+e//3vf1999dXNzmfJkiUvPHbvfsunS1w1zOxsD9rWwsgXi8U9PT2Q5r7bFsk66CoY5gTYTywWGxkZ/f3vf58Cc858JsPDw5988snu3bsffPDBKffJunXrZv6u7j8FEBHDnG+++eaWLVtEIpE6zKn7s1L/xdHR0YGBge7u7pvBnK8+vcZr1wu3zOAU+25sP7/hR4unVxncVGNzynVcUH8++8g9cQf/PMtRN8/prwe2/f6x+6dBc/ERRP5GjNpq9RXjbUyLq6fGMMz5l7/8xdvbG8N+ul/bq9+f165duxHmNDAwMDExiYyM7OzsnLLzzH9CvENDQ+pszvXr19vZ2eF4dQBzDg0Nge6lXC53d3dfuXJlTU2NOkFqTk+f+vp6R0dHddNiPcw5820An8LCsq+vTyaTNTc3V1dX10U7QD/FbM6VBktNX33w4jcvN53WGIMTDwViv83s9CAQrdUGzCkUCplMZmxqzvueMdsIoUhYEhOLYQowL0HxEgqct7nEICNA2yjIFULuz9SeZGwbaXgkHKcJIAWGtOMIPhlCI64bBKIqY4do24vpfEHrovTmhJk5sDllMtmXX375yiuvALsRi7jexvF8Nrf97PeBDgIa7x0dHWVlZatWrWpoaJDJZB0dHeD2pwP8bPYnvKD2xM9WcOIAe8645IwPvOKsXGOh30Ga3tQBWW8Cu3HSZc2Rao6ATEKdFeGaCPskaElU2MGMSGkBYwns5RB66jpp3rnNmUpLL25qahKLxSqVChtNabV9MB2ht7dXLpc3NjaWl5cnpKTvPo5oQzDygKwiFFtYEIqIk6QrHK892cIZoZigvWbhhKgM5kRRBWZoWRI2VBDvJOPTkRJ1tYjH44GmIsxY5vQM1WrL6ObguP37+/tVKpVCoeByuX/729++/fZbuVze3d3d19cHd8KiGaB007CzhDn7B0d0cz53ya9AumB4eBjGEx6PV11dnZube/hCDGiuWhOApRVyqUQcTZiuALBhhtStkU8n8ptERRIIE0VETyckdQv7IxDUAb0JdE9Ml7d0pv3bPfiYt4+Xt8/lK2HYkBKEXnQ/quCncFdXl0gkamxsLC0tjUlI2XWMYPC7oqkd4l8SdDRAd0CcE7xLTe2jP3O5DMAtIJ0/eASCfzM8VnDpG8Z6gSMLLHlT+2jHwPjKyiqYpvb09IAb910yhuhhTo2MNuMTEw18xZXYasfzWVHJdb39v1ELCH0flCH4fH5VVdW6dY+/ZPa54YEg4/1B33klfOZFN7UNt0SSGEj3gpgURSM1V1tE2sazKbwB0ycoCECFZbZRRkQZBNQBQE8xPBKOJhuOlANBWXjxMktHBllH3yV6lVdQbgNfeWv1LmDl3t/fr1Qq+Xz+aUrudc/1SRVuS2eatTvyzYXFmpkD2fAokr6wJER6iOUY8jiAHXC8xraRRjYRxsiqM9zEJmLroeCtB68YHry8ZV/gW9+d27TH941PnVfcs4ZGo8lkMuCwzn6IGxkZE4i7aRn1noG5IfE1tQ2S8fFZknU1clvpD3L3toAe5rzjrz0kU1QqFVTFsmLcf0mN+W6c/3b7+Q2HrH5/z4o7EnhYsmTJmlWI2XnL3LIbG7A9yJxXldHe3g72nHdhLbAO+syNMKexsfH69evnBHNWVFQ89thj+fn5MpnsvffeMzAwwKjYwoc5N27cuHnzZqFQuKBgTmBzikSikpIS3JhLly559L4VPp/8n0Z6mejCxsgfXnn2kXuWTcPCxb+55B4dvlatWkfSkzwAACAASURBVDWz26vB8qUf/POxRp85wxvt5zd8a/zkPSt+FSsecwRXPmQwGOq0g9u4YsSpWID9gM355z//+dSpUxj2W1Aw57Jly1544YWUlJRba7RpYc6//vWvTk5OOF4dw5yenp4rV66sqqrq6OgAez9wyJjrgDw+Pr5///577rln6dKlephzNq0H+aP+/n65XN7S0lJbW1sZf07kt0Xsu/H5x+5dtnTpi4/dS9//Ku65Gt8Q+W2tK0gA/zwNCkvC7BEqV+rr69Nz8j8/EbvNFeXCCDomkrs0IwgQ1q6xpg7R25yRsKSJbdTWw2Fo2eyEfDqt3WNBGQmJvLnHA34JEIulE8qvmTmSLQjqGMqpOVIROOFE3e4WZ+0WGxBX2NbW1tHRgTODt9ZbZ3MRdbkPHi0xzPnFF1+8+uqrixLmhGBHRkaAT6NUKkkk0rp160QikVwu7+zsBNRED3Pe7A4E2GlkZARUeQQCAYPByMvL842It3Aim9qRUZbZmW5sE2l0JAKZ2l7Py0/mnZ2QUK25E9jLxWxzibFAXGqkLohy+i40xEYimJFEd6YgezlXBACYO1LsAlMYDAafz8eMah2saHC8/f39nZ2dfD6/trY2JyfHLyLe0pliYos4E5Yuk6QrxP8m4gUKhQWKFElqmzuSrZGdHhEvYcKH4nVC5sFmjmSUoLQjEQ31q3gP+ibV1tYKBALQVLw7C1XV27+npwekPs3MzDZt2iSTybq6uvr6+m67fMjNOstCfn+WMOfg0OhCjuJOPDdI/Q8MDIDud319fWlpKSU26R03xLsixk+kMwn/trlMTmMA9kOSlTYRZg5kazdUZoHGEGeaqR3JyCYSQD5zB8q3Ln4eXj6HPC9YOSD2PIyfiCPuQDrqeR5AwcLCYrlcjuG92WMAmmpwPOsAirZAIKipqcnJyfGNiLd0QKgM4DownIJEJzwjoB3ecQjGPE4Pwnb0gKcvUrC8LoBpZBO55VCo4ZFwqCmxJiwAoSrO1D76q59ohYWFTCYTKK2a8lbQVONo+zgT166FxNbYn830uph/LqKUK1DOhomo7bO6E48/ce2aWN6TkNvg4psdnsRok3bNEMXExMTQ0FBPT49cLudyuUFBQSvuWfPWNyeMD1764USifWCG4aErxkfDzOyRfjXoUQOiae5IMTwSDrCl0dEIwPygRnPr4TBT++jNB4KBxAk8ZrjP4btYCdbaLaalVQT1YbOZ346OjQdSK44F5RXWtPbNvdhlgniNjo5CyBKJpJ7N+eHCVWLIols6oyEOMdcJ/3WidAMNfeic0RSRgoR2CB4qipfYILRqIw0h3oMhhkfCDY+EmzuSjWwizR1JJkfDjI+EGB68ZLgfWXVu+N/p+5944d1/fYBTUqDLPaclWxlTSM+o//F4SlQKc3R0fE7fneE20H+kb4GbtYAe5rxZy9wx7wNhv7u7WywWM5lMJsVRsyk20YWN9P2v7n5r3f33TqNV+wvssCC31q42+GzT4wmHfts5b/aNJgo0b6pIbWtrAyVJHSQF7ph7UXMnOgXmlEgkJiYmr732GsCcmBwwww8mJCQ0NzeLRKLRUbSkBM/O77///qGHHrojRGu3bNmyadMmDHNCXeQM8ergIyxaKxaLy8rKoMf/5fe/8/jX8zVet+jBebN+x/V589znf9j8xwdWLJ8G7QRvTm13PdBV6+npkUgkKSkp045wD60x+I/Rk2m2r81HHzvP6a/7LJ5+8oFJZidukwaqPZPJFIlEoIsyy2pBLd0JeAkNiXuAOV955ZUzZ85g2G+BwJwrVqwwNTUNCwtTqVS33BpT4pXL5Twe77XXXnNzc8Px6hjm9PLyWrlyZUVFxTxhTmgTNpttZ2c3G5vSW27DRfNFDHMqlUqBQFBXV1eUShb6G4t9N3619YmAr15u+fkt3G21sdEatKOmsgwcjzQOc4KZU0NDQ3Fx8WE/hFOClhEUPlsSCplI+5FI/5nZT0ImqFLYHuUQcdUw8CQQkHldEgo8AtGq2xGtwFGVsVustVusFQG0WLvH5pWhMg51EaTFse6dMnrIZLIp3pyQBFxMwYJcHhD9XVxc1q9fLxaL5XI5oCYwgdF95veOGIIAdoKlnEqlkkgkQOhMz8j4/hTV2C6KoHKiPLWZA8XUnvSLs5Qj2Qy9iYBAqOgnavMpJvYk1A2RX1rMZOWBXbSxbSSR4EYuuQQsSv30p/jUXOQnJxaL1Zcz2r4tcbxA/5VIJI2NjRUVFSmp6f87RTYh4jWxV493cpxBmTv1eK9TV02JeAl/uJjtHkSlBYo3alLCF5EYEHcBxZtTxOVyJRKJ+pxK2/EuwJsQE79AZVosFu/evfvpp5+G0RhWWHpPlrleuJlhTl9S2RGfNIezmcOjeouyuTbtb+wP9zOopstkspaWFgaDkZubGxQV974HDUjegHEi/YnrjEYjAsMzsYsGehbwO2EaQzh3ovoSxIU6En7I84KXt4+T19l3XAmMkzA/RoUUNhGeflGADv581re1tQ2mZ7fFvAOXL4DqkkQi4XK5ZWVlaemZjv6I3YWJ8ki30xnVqG1zoYMxoZUL9bAHwmuPefv8xy3I7tg5L28fm2PnrZyQiamlM82IIMAROAryKUB4MIGgmDkg788dTqSohIzq6urm5mapVDp74Oc3rusd9XFUCsMjKPfElQI9zDnP6zY2Nt4oUAbH1ThdyIpIZnT33tTMGLI03d3dIpGorq7uk08/u2/dc5u+O/OhU9Ths6kWtuFGh0OMjoSZO0TDNMnwKILtgcII5Gz438SOhKxnbZGJr7qeDfCYQZAGPoXv4ulWZEZVZ2fnbEwZhobH0ot4bv45ibmcju6BW2uiiYkJmGl3dXUJhcLq2rq33ZExAaZmmtlHm9iiHmruhNicRr+O18KJQuyMDImNjkaiuRZisSMoFAaHyU5tj1rD8HCI0eEQhHQeuLh1f+DWHwMefenvzz33PI/HUyqV4FIHyOucYunuHapgibwu5v0cVlzBEumrAebUevqd59oCephzri224PYH7AFGeQaDwaB5aCPLJrqwscrzDaNXpop/4tS/gYGBUqmEItCRkZFRrb1gIqtQKAQCQW1tLT6BGzesX3+YdeIf84Efpm1JYaB5Q1laa2srPNtmU8Kz4G6aBX9CU2BOmUxmbm7+pz/9SSKRdHZ2Ym/Om8UxPDz8zDPPnD59esoOExMTnZ2du3btWvhsTlNT0w0bNsBtNhtYd0qk2vgT0nAA+1VUVDzwwAPH92wXnv9tN8pp+9Fs3mw/vyF67//7/UNTtbLvu+8+HairYZhTKpVevXr1xhHmow3rWn5+S6QJ0rzId2Pr2bf2mD+10mDZZMv4ba5ND2GxWGKxGBPHb2M+bkriHmDOl156Sd3PaSHAnM8++2x6evr88+lT4gWY89VXXz1x4sRtgTllMpm3t/fKlSvLyso0AnNC8Yc2BorFd8zx8XEYDcDGsr6+Pi8vr/nyh2LfjRqfYEw7MNbRjjEYjNbW1o6ODiwFNv/RYGxsbGRkBEtllpeXX6FdBf4lrHsNbSKMjkaAaC28YwK2mo4UIxuEmhjbRCEmhH20qQNiaqJ9CETBxB59ZOaIUgZWLoQQrgMFxM0QXErYCn53JqmhoQEgBwyDzT+ohXD7TRk9ZDLZJ5988re//W0RszmHh4ehAkYul+/atWv79u1isVihUGCF3ttbprMQ7ooZzgFnqPv6+jo6Otra2lgsVlFRESUu+e1jCZBlI9yVUFXBNhc6wTOIADq1KdjLOZItUQafbopYjNEWztQdHgmEPyXdkshlE/zOSMSlJvrpNmf65ZgsTG3s6ekZHh6ev+PvDDFO+Wh8fBwYwEqlsrW1lclkFhQUUOOS3vdKMHegGNuSCMk1FK+1awxKuh2NQAG6xJgh9hXiJVgikd4Y8AC2cEI+fDhelOyzIxnZIj4WyusRuctAWmZ1dbVAIAD/vLsZxoMV1uDgILbJOHjw4MMPP8xkMvEK625unyn36iz/nBnm9Isusz2T7nQha3RMr9c3yxad7W7wwAVfla6uLrFYDB7qmZmZ58PjLOxJFkTSH+quTOxIUGtl6YzGE1NEfI80tkF6+yZ2JEtixDC1QwaWRM0EZfPBUMdjZ7y8fWyPnbN0iLJ0poNJubkj2c4vtri4mBRNBaQzNS3zNupgA+QwPj4OXht4slpaWpqenn7wDCr1ACgXPVAIrv929zjwHdjjHgghHHA/b2ITsd/D18vbx9HrzA4XspVrzHb3OMMj4VsOhSJklyDFAgBsTMBCVk5kakJqRUUFl8sFnx1w5bzbnvjkNObxy/k/XSlEMCdfz+acbeeddr+JiYn+gZGkvAb7c5kX6ZUNfOW0u42OjoJ8q0AgqK6u/stf//bQ83/e8sP5/3rEbzsaango2OhomCmhZm9ihyw2oAsATXPLoVD4Z0wY1gLOB4r3wNo0sSOhuZZNJPA7oSzAyjUGm3GYO1L2+acC5gcd/2brl4mJa/RMtv25jMS8BkVX37SxzOZNmDX19vaCYu3V/HJYheGOaYZ8DYhKUwc0IZyM1yYSRQHxHg4ztkGu56bI6QBRP5FMtyPFnNiwdEZzyy2HQ02QCXq0uX2kmW2E4YFLgHQ+8w+rRx99tKysTF239mYhzxxOPU8WmlDrcC4zLpsz8576T/UtMJ8W0MOc82m9BfHdKTBnRezZadNkGnlTdGFjzP5Xd7352P33/qL/Cdl/AwMDKAcGGrv2mgayjV1dXe3t7Uwm80bsYe1qg083rks8/Bct5R/bL1pxKnMEAkFHR8dcrae11yyL7MgY5uzr6+vs7JTJZDt37nz55ZeB3TgzzFlVVVVdXS2XywcGpi+YmpiYYLFYC63Fpnhz7ty58x//+EdLS8vCEa0FhcO+vj65XM7hcFJTU/NSY9v9DDUytsxwkOaf3zz7+R+2/PHBlStXQH+///77dZCSw/EqFIr09HQ81Dxy34qvDZ/IsHtdGyNMvtN6aIrWizurClLB3kz3Kcgbe8eUxD3AnM8991xYWBiG/W47zAm2Ujee/C28MyVeuVze1NT00ksv+fr64nh1yeaUyWQnT55cuXJlcXGxpmDOW2iWu/MrcDMMDQ11d3cD16q0tLQgxk/st3mGgUtTH7UGbSvOz2az2UDsxsvpW1teql9B4EBgqcza2trsnJyvTsYQBk50Uzsk5gZw5qTaG2FeBWRNsNucpHg6kE2JpbK69aY5YQqIyKBuMYBrIp4EkUNE8rZudGpaYUtLC9Z50yXEot4I2tieMnrIZLJdu3Zt2LBhEcOckFrt6uqSy+Wvv/76t99+C8GCvDa+abXR2ovjmJhgBxYk2GHuSnT8h8foVqAQeN1WDaShURfDvpUEr9rSmY7q+onOaOlEs3KlAw/b1IFM7Ey2dEKV+9tdqGci08rLy3GdgQY54rO8HJiAhQfV6urq7Ozs4Oj43V50UERE4pAEiXySII6qKBBHAZJ6kzKMThTI01mgeNHYZeFEA5Y5QVpCmT5rF6pPeGp5eTmHw4G6MUjEL6YxZ5bNjncD7bu+vr6uri6ZTPbzzz/ff//9ubm5MLtYZCriOGqtbswMc/qTyx0vZHoE5Izpbck0fRmgTARuacAA2tvb2Wx2SUlJenrGqSsx77oRNKbrtKdJGMM2apKVdV3QFaoiCKiA2J+QdrRyInseRwachz19LRwpBChCsnAguQTF5+bm1tbWNjQ0+Ppd9PL2OX3GVySWaFtnaIbGw+UyQJSXSqXNzc11dXWFhYUx8UmHzlItCcsAGE6B1mZiR/rE+QpgnO7Hf37fBVWQfOeBwnE//vPbzohVj4AiRwrUjhgTjUZgw1Gm9tE7nUiB5JTi4mIWi9XainzW1WV75z9HnSHYhfYRLb3+ZHDhiSsFp8OLG/Qw57wvz+joeLOwIyK51vF8Zkh8taKr/8bykNHR0d7eXiBwl5aWPvvC/6176e//caf/cCrJ0iHSzC7S1C4SVWHakZAzJdH9gfiIChqcafARSNcSeCGCA0HVGVDPbQSoCVMOVGdmj3BBsKQFBPFfXvESiRS8Km+G64+OjRdUtzr7Zocl1MzATP3NBoPejUV6Gxsbg2OzjAg3TVP7aGv3uMlCUqKaAfEyCa1aiNfUDlE8p8ZrG4U5nVAAMSnoTVgemNhGGh8NMzocYnjoitHBS1v2BTy/6f0HH3ooPTNLJJqU6r3lGdTExIRY0ZtXJdjvnULPYA+P6BUOfvP663e4lRbQw5y30moL6juAjoDlOIPBKEylaiq5drPjCM9vqPR8w/I1JP6JX7qEOQcGBm4Gc77790eZ3v/QKsOs7dJOdm050OzwUnlB3RKL4GRuhDl37dr1hz/8gc/nd3R0YJhzWs7Whx9+aGZmdsc1AnRkgHWlUunu3bvXr1/f1NSkDnNOG6/OIsXO5x0dHWBQl5+fz77yxc0GCs2+zwzfExgY+MwzzyxZsuT+++/XQaU5Zht0dnbm5OQsWbJk+fJln299hnvqn+3a5LBCuzVE7a2urmpubl4gxnU4cQ95MYA5n3jiCTqdjmG/2w5zarAvYGQLvEjlcnljY+Pzzz8fGhqqVCpVKhXkAbUqTgVZm/7+fgAPzp07t2LFCpyIHBgYALBfg1HrDzVtC0CZ/PDwcG9vr0Kh4PP51dXVmRkZ3CufanaUm/Zo9VTHioqKpqYmmUzW09OjQQEJuMkHBwfBnpPNZhcXFwfTru70RAvmyepmlCMAuxcqMuy0J5nZEdxNQrftF7vN6wKS5khXM9rcgTK5sz1yDUSitQ7Rls4IvUCrbofo788lVVbXtrW1dXZ2Lr6UOh4tsTfnu+++a2ZmtrhhTmCGyWSy+++/38XFRSKRqBdk3HJCZNouufjehHsGFMk6Ozvb29sbGhrKy8uzsrICI+O2uyPTODOidACRCVwQkgeuaRbOVIKpSTJzJG93iwNoEOzTIJdnRTAgDY+EI1ICUZFwPCS5pLSUyWQCtRHMU2+WpNNSU+N4YdLb3t7O4XDKysoyMjICI2K2E6KIeAgiCKmISIScR52pJrYkY1tkG4zs9BAUSrEg7PRMbFE2c5tLjLkD2fAooh+ZOZCNbUnHriSWlKB4+Xw+yA7pcXc8u+ju7pbL5dHR0atXr46NjYXpTV9fHzTR7V10aOne09JhbwpzdvTFZLL9yeXOvlmeQbnjep0+LVyAKQgf2KgzGIyioqLU1DS/UOrbLtFIapWY2AC9G0ooCK78L+gFwXOKBgNjQEN3eUQDCrjX8yJRfkGzdCSfuByTk5MLFEaxWJyTWwD7XPALGhkZuY3wHkiPAFEeEmVNTU1g0hkXn+DqT7Z2oW73iIfQkEu6C8XJC3FVj3n7fOAcBhDOv90uQzi7PJDCp6l9NDIaIEptzBzI293RqGtiR/rALZocm1hQUFBbWwtytd3d3bhi5m574tMz6k8FF3lfyT8VVsjhK/S9fP69fOLaNVXv0NXCRpszGbZn0lOLmsbGx9UPOzIyAjr/XC63sLDwmedfen2DlbNfpunhK8ZHQs3sIswdSEjvgZgsXS9iAMlWZMcLCtUmtlGGR8InsXwHMjJBt4mcnHsgjiMBiDogtw54E741ue1EaRYIVSoVJr1M6fsTExPxOVzbMxmxWfWtkm71k5/rtvp6TSwWs9nss6QMM0KD1xQ5g1AsnenImxzRNCexWPAfAUleouoLWXhOidfIBnHZgdkJZFaiy4OKb4TRkVDjo6HGh69s3Rf4/Mb31j7wYELKpGvbwMDAPCeNo2MT7Ga5Z1BuEL1qZOxXV3aujaPfX98C07aAHuactlnupDcxm1MsFtfV1eVkZ7UFmE2bLNPsm6ILG2MP/Plf/3j0/jVIUtLAwEA3yorqUuz19fWAsz6w2uCjt9YlH9EWg1O96VrCv2Qx6/SitVrtJOowJ9Qaf/nlly+++GJjY+MMMGdra2tmZqZMJuvuntdkQquh3ezgU2DOr7766rXXXuNwOB0dHb29vQsBUMfV911dXW1tbfX19SUlJcWUkyLfTeodRBvbwgCzkqxEFovF5/P9/Px27NgBuf4pE8qbte2tvY/ZFV1dXRUVFR9//HF4eHgJ9aQ2ApxyTKGfUWk6ta4OjTNdXV1w9W/BBeHWAp/2Wzhxrw5zPvTQQ6mpqXcJzMnlcp966ik6na5LmBOkIAHmDAgIWLFiRXp6+hTwYNrrpX9Tgy0AXU8dgWAymXl5eUX080It09nbAi1KM+kMBgMEJMAQRVOpZ+jUUB0sk8mampoqKyuvpmd+/3OMmT3Z3HHSmwq53BEmLlD+T4hJTgqgQVIMvDZR+TDKBSD4ASxtQNsNqFfAEAUy2TYXWkRyATCrgO2nQexWg9f9lg+FR0sMc1pbW7/77rsY5oQaBa0+v2755Of0RUyjwQKYPB5v2bJlZ8+elUqlMFubjXHRnH50se6Mp1hQTtHa2lpfXw+Sg0ERtE+PowICwuOWivTTnOnmDhRCMhr5WSJnKcLPEkQICVFBZNuJwFHCogl1RlvSe27kn8MTi4uL6+rqIDHd09ODL5COb0jIyKsbkcCsMj09/Qop5nNvKkAO2Ebul3gRCyFi0pGUUPEFEUUiXpqZw6TZnold1PvulJNhiYWFhUwms7m5WSKRzJCRXKz31bRxjY6OqgtN5+bmrly5MiQkBISmMfKtqWfNtOewyN68GcwpUfZGJNb6hBY6Xsg8FpS3yKJeUOGABs/AwIBKpQKOF4vFgiE0jBzzw2mqFeFOB/wtc0eKlQvd0hmVjFgQOvzGNpGIrUjUkRBDCrL4/dT5EmB+X7petnCifOlNuRSNsL3q6uqGhgaws+3s7AwOjYDdysordTyQTrkEGOkECXSQ8K2urs7Pz09JufpzMP1TL4olwfSydCAdJmxHvbx9vnMPAHTE8Ej4R05XPL1Pe3n7/NsjBBRuiUngpGIt4sc7kw+cpcckphYVFTEYDB6PJ5FIYK0KIje3d7k6pUF08ycBcxa6++d4BuayeLLbew/oJmQd/Mr4xIRA1B2TyT56Ot0zKK+CJVIX/R4eHgbLNg6Hk5eX98r6tz78/tR79uFbD1w0OhxsfDTMFImvTtptqsOck1Afwc4ESjdQIbFoLa6BQE60rjGI0Elo28JB4E80A7EncZoEgO7fmJUaGBrNr2p19c/2J5dLlL1j85Mrh2XFwMBAZ2enSCRisVjeoVe3e8SDvD90XjMHRENH1WCOaOO6TDcax8CnE1ibsI+lMxXFSxiRTMbrQDa/Hi8aDG0iTGzCjY+EbNkftGmP/1Ovmzz48CMpGdngnzJ/mBPun9oGyUVaRUwmR8/p1EGHutt+Qg9z3vFXHAzzoJ6FxWLl5uZygz+fkjTX3p+t5zZkBLtv27bNwMBApVLpoEIWw5xisZjD4SxbtvTDjU/Xev297ZwWPQLVG5AT781ms9va2rq6unRgEHjH36C3FMCNMOeePXueffZZFosFibNps73Hjx9/7LHHZDLZLf3mbf6SOswpk8kOHDjwpz/9iclkLhyYE6due3p6xGJxY2NjVVVVelpyY9Db6h1E89t+m+pobqWlpVwuVyqVqlSqrq4urbLo4FaYEi+Hw6mqqspIT+UEfaD5GH9t8FlLciwuLuZwOFgbRAfxztwBYOU8PDysDnOuWrWqrKxMZ7DfzGeo2U/h6oMSI9AdOBzOww8/nJOTA/FCzbJWr8uURGRwcLCBgUFSUpJSqYRllQ6kmzXbqnfo0SBlA0M0pM+4XC7KnaVdZV3+t1ZHgzLaT6UlJTAUwEWfZ/2s+iUAjAo6tbpDXiQt3swuCsGThBUTiB1BZhDpuTlQEBWAYHZiNie8Y06ssRFFwCMO5J6MbSJN7ZDIJPjiIJ1JJ5pbcGpVVTWPx5PL5b29vTCPWkxZIfzsAJhTKpWamZl99tlnixvm7Onp6ejoKCgoWLVqVUhIiFQqVdeiWEzXV70TaXBbHTOGcUYgELBYrJKSktTU1Gha7B6faKTIivog2dotdpsrkqi1dKKZ2EYZEfZyILlmQSjTmtmTCXu5WDMH8uaDIcY2UR97UUmxyfkFBQwGo7m5WSwWqyemdQ9oqROwVCqVXC7n8/lMJrOkpCQjI4MSE7cXxYvAWqAQbXOho9qLX+JFxsCTYwtCc4l43Yl4D4QY20bt8qRGxV4FYUmIF3PHb6OwpAZvmPkcSh0QUigUHA5n+fLlZ8+elcvlXV1deFjW/V0xn6Bu73dvBnOKFb1XYqu9Lxc4nM/0vpx/e09ycf86XqeARoVUKhUIBGw2u7y8PDs7OzEp+UIo7X03BNeB4fHWSac69CeYHyMdC3vyNlc6okY5U63dYn/wmPSt/MQl5KcrsUkpqYWFhYDttbe3g9zO0NBQZ2eXz8/nvbx9fP0vDQ8P38Z2hnEVcoMgsSAWi5uammprayeHVnqcky/FzC7qW7cggGadvX62tI+cdPI7GvGha6QHAXPu9QxCMI9bLNA3QSTgQ3fS5ej4jMysUkISoKWlBTDO/v7+u5kCTs9AorXOvlkuftnMJj3Mqcke0D84UsIQOp3POuyTlpzfODQyCkcfHh4GLUM2m52Tk/PRD8f2uIYa7r1gePCyuV2EuT3J6EiY0dFwCyeKlWvMNqKmAbiYUDsFnGYACLFeKwwOgBEa20SiMgg70tbDYaiO05ECkrZoXUPUnJnZk+obm7u6um7UpBkZHY/NbnA4lxWZzKjjSuffHJAXBZizvb29rq7OKzjZ2BadCWHZjgI0sYsytkGW5NtckFcIDhbFi87/F4NeKO8gilCRJDUs0IxtkYOpqR3J8HCYuSPZ1C7S8FCI0aErG/cGbNpz4eEXX3/86WdzCstABaS/v18jq9HRsYmCakFEMoOWVj//VtIfQd8C6i2ghznVW+OO3IapTE9Pj0wm43A4BQUFNWQXsfb5VZDaaw8wqSjNb2xsTElJAQM5jYx6M1wJ2QmTywAAIABJREFUDOtKpVIulxsSHFxLstdqnlH94CI/w8qCtIaGBoAf7uYp3QzXaP4f3Qhz2tvbP/3005WVlRjmBNlS+K2+vr6EhAS5XF5ff6c+JjHMCexVNze3F198sbq6GrNX1eOdfwvfwhEgdQuUJoVCIRAI6uvr8/LyUmnBrQHm6t1Es9stF98tyUqsra0FPhNW07qFEOb0FZyDGxgYAAyAxWKhelhaMN/fUrMxqh+t+eJ7hZmJNTU1YFyHl45zOnmN74zTBwBzyuVygUCwfPlyDoejM9hP40HNcEB1mBPIlGw2e/Xq1XV1dTqLdwrMGR0dbWBgQKPRAOaEG+NuE4aa4ZJp+yOs2t3Z2dna2lpXV1dQUJCSGNMQ+J56/9Xc9iZm2N68vDwGg8Hn8xUKBQx9mr3i+FHb09MjlUrBETA7O/tsWNzb7nQgboJVFfDDDI9GIDgBFvy2USaEURNe/5s7oGyCNZEUQ8XRzlRTO8Q/A3VNWEt/+3N8SVkFh8MRCoXd3d2YSabty6fL4+PRA2BOiUSyefPmPXv2qOu4Dg8PLwLkDyNzAwMDPT09SqWSRqOtWbMmJiZGJpMBzDk0NDQ6OroIgtXBLYRnWQMDA93d3TKZDJDO4uLirKysxMTEM8H0r7zJVo5ISxAZVdpFm6OafVR5QJQjgEY0BdXsO5EhdWXpSP7Yi+IeRE9LzygsLKytrQXyTUdHB55NjRMvHQR440+MjY3BrLK7u1sqlfL5fCBgIVgiMfFsCP3rE0S8zjQzIslIxEs1d0TRIdI50LMIPhbEa+EY/bEXxSMoJjMzs6ioqKamhsfjicXiBRLvjS1wW96BZoduq1AoJBLJvffe6+rqqg5z3rkkex6PR6FQHBwcviJeTk5OQUFBeXl5vb292mvt2cCcPqFF2jsB/ZHx8wjroADSWV9fX15enp+fn5qaSqHFeAaQv/CMtHZAwpVAbwL9CQvC6Bd0IAECMbWPPuqJwEsvb59oWmxWVlZxcTEMoSKRSKlUQkHAyMjI6Ohodk4+7BmXkHwb6wOgLE9dGwBU0JuamphMZmlpaVZWVlJS0qWQCE/vn728fVyPn3nb6RcNT0tn2g7HSLfj6CMbz/NAlDe1I73rRv7+NP10cExiUlJOTk5ZWRmLxQKMs7OzE/jfo6Oj2s4BLtibXA9zau/STExc6+wZKKlr840udffPSchpkCr7JiauDQ0NdXV1CYVCFouVkpbtcDZtg8l7//jSw/hwsIlNmKlthCnSoYlG6hcudJBfhp6ObnLPBAIXJIGmq7FNpOGRcDMHRP3c5kIHn2+Qa0aw39EIQhWWBvAnHArJ5rvSm1oEN8Kc8o6+hNwGpwtZIfE1yu4BjQiVw2Ktv79fqVQKhcLa2lqfiKswTEFQsI0hTzRBAmUdZyqK1yMeif8TVadGNhGT8SIjgF/Fu82FbmqPFGvNUTldtIlthMmREKNDl9/876k1jzz16ta3C0orBAKBQqHQFMx57dq1sfFrLJ6MllGfUyEY06vXaq8j3X1H1sOcd/w1BwO5vr4+hULB5XKLi4sLEy63a1lIDSfyGiP+V1lZ2dzcDFX5ujHMA4ssuVze1NRUUVFRlBiCz0fbG9zQrysrK5uamiQSSU9Pjw7iveNv0FsKAOdeseabt7f3448/XlRUNC3MGRsbu2bNmszMzFv6tQXxpSkw59mzZ5955pmysrKFA3Neu3YNrsvg4GBXV5dYLG5ubq6oqEhNTS2NdBP5btZG7xP5bS1OCi8vL+dyuWKxWF1wTAeXDbA9qAuWSCQ8Ho+I92pJpIs2ghX7bpT4bS6Kv4T5W0AZXwjJphthzqqqqt/97ndcLlepVIJdLqgV6eC66OAnMFCBYV0mk7ls2TJIbegm3ikwZ2Ji4vLly8PDw/Uwpw5ugBt/Ao9+vb29Uqm0qampqqoqOzs7lRwo8Nd8nQfv0r9y0xMrKioaGxvFYjGYAtwoi3Tjec71HZzvhlwYl8stLy9Pz8hwC0Il/JYuNAsnmqUL3dKJZkFoHCEyGWZzEj6d+CPQsEU5ApcYWHgTzDOEwVg60cwcyO950JMz88AUUC6XA8qyEMa3uTbazPurT2C6urokEsn69eun2FUuJpgTnMBUKpVSqQwMDFy7dm1GRoZMJuvq6sLql3qYc+Z7Bj7FRBwsKIqRzsrKyoKCgrS0NHpsfGA4bf9p8g5XVJ4P2B6oTCOXSsJKDWXrXOnWrvRvTlDPh8fFJqbk5OaWl5fX1dUB5geXBhtK3SwpjzPmMAEYI16AicL/87+seGoBLtQQL5vNrqqqKigoSE9Pj4lLCIqg7z9D2eGGxhCI15RQ1QZlNlSNQRCwrFxjvvqJciEiPjbxak4ucs5jMpkQrzqxWLOVIrO5rAtwH0gdDA4OAglbKpW++OKL+/btk8vlnZ2dIGV8J47Mw8PDrq6uTz75pIGBAZjawP9Lly697777Xn/9dRqNpqXLMRuY82xkiZZ+XX9YaAE8hA4NDUECQS6Xt7a2crlcBoMBIF9KSgo9Ju5KBOVEYPR3P0W974GonMaEKOWk+68daacr+SvvKJcLkV4/IevKEyfP5OfnV1ZWYvlrWJvDEArs8J6e3lOnz3l5+xw/cZrNabi9VwTaYWRkBDRpOjs7xWIxn89ns9mVlZVZWdk/nTpLnKrPef9LzhdI/z5O2u6MnAiRGaFjtNtxFLXH8dPvu5H2nIw6GUgKi6bFJSRmZKBamerqag6HIxAIpFIpfspjjHP+D4Xb23S39ut6mPPW2m323xoZHeMJO06FFO4/kXIppkregZRgAOasr68PjEx38c144IkXnn9rJ/KSPHjF6Eio0ZEwRG10RooXSGmWuL2hOhODgsB0tHCiXh8BEMaJXL1tIrHvxvUysknpWsI7AHElPzgeJ2htxSoRMLXo7hk6G17idCErMY/bKu7WlEsrLCvUYc6L1FTgaxIUTFROCk6iAN/+Eq8dEuL+dbwI9DW2iTK1J1kSmO5kvLao+xMytmQze5KxTYThoeCtBy5v2R+0/mP7pcsNzPecqqiqBo9zDcKc165dGx4Za2xVUtPrm1o7Zn9L6PfUt8DMLaCHOWdunzvgU1irAI2dz+dXVlZmZ2VwL+3WUhZe/bAivy21yQFgIAfCHdrIwU25BhBvf39/R0eHQCBgMBi5uTkNlz9VPzEtbbf7ba1ICgSXLMjQ6WHOKVdHU3+qZwlBMTIwMPCRRx7Jzs4GXzosEDE+Pp6bm6tQKJKSkjT167flOKOjo7AaATZneHj4unXrCgsLp4V1b8sZAswJUlfgHdXW1lZXV5eXl5eSFF8d/L3IT8NIp9DPqITiDb5K6nwmnZWL4oUi1JEIhUImk5mbm5uUGF8V/IPIb4tmhxqhv3Ex6ThorAGVUzcU+dncTpCLBBstYDdevXr10UcfbWxsXKwwJ1QegOiTXC7Pz89fvXo1NpzTvWhtTk7O8uXLAwIC9DDnbO5Yje8DyPfw8PDAwEBHRwd2zktJSUmNON0SYK2x0cBvE/fSR5nJ9KKiIhaL1draqlAoent7tWQKgBH9np4eYGnX1dUVFhampKQ4+dN3uiGA0xycnJxRLTNaSDuhDTBtMrWLtnCmWrvG4oJi5FjjQAGFKCSnaROB0gpOlM9P0GOS0ysqKpqamkQi0e0VzNT47aF+QPUJTGdnp0Qi+eMf/3ju3LlFyebEbDyVSqVQKLy8vB566KHi4mKghWG+4N2Z+lS/K2a5jdP0GDyGNH1jY2NdXV1ZWVleXl5GRkZycjI1Ju5sCN3BL+aHn2O+PE7+4jjlY4+oz46RvjkRfeQC/VRwDDk2KT09PTc3t7i4uKamhsvl8vl8LDAILFtIzE17dfCZjI6Ojvz6NUq8ILk/Txs2/CswtIJ6rVAobGpqqqurKy8vLygoyMzMTEpKotJjz4bSHfzoe87Q/+1N+eI45ZPJeMlHL8ScCo6NjklMT0/Py8srKSmpra1tbGwUCATq8eqXbPgmVCd7dXR0SKXSTZs2ff7550DCvkNhzr6+vo8//njJkiXPPffc3r17k5KS6uvrMzMz9+3b9/jjj2O888CBA52dnbgpNLUxG5jzAqlUUz+nP87NWmDKkAJAvlgsFggEAHaWlZUVFBRkZWWlpKQkJibGxcVFU2iXI6kBYVT/MOrlSFoUhR4XF5eYmJiQkHjSByGXfgGX6uvrm5ub29raZDJZd3d3f38/DKGwIIUhtLmFD/BhWDhpaOh2Stdeu3YNVm1QLtnX19fd3a1QKNrb27lcbmh4FBBP/QMvX01NTU5Ojo+Pp9PpEdG0ixFU/1DqydMXYAcajZacnAzPkZKSkurqajab3dLSIhKJFAoFeKsPDw/j7N+0j5KbXanF9P78Yc7W1lYG8RIKhYupZTQYy8TEREf3QEIeIkp6BObmljUKhLJ2kYjN5pwOyQ2ITHzurbdX3Pu7t771MTocbGobbmoXZe6IGNtgukFotKIyzZ3HEi2cqEY2kZjMbe5IMTwasXH/la2HwwDdxDo0pnYkY5tJSWdzR2SRbk4c0Ng26lDAVbAwg5zk6Nh4NVtygVTmdCGLnsVW9Q1pkJsIywpYfgqFQgaDQU/KtHCiWrshUBZXvAGJE8cLYjwoXmeasU2kmT3Zwoli6YIEeG8WL6K32kSY2ZNMbCJMjoYZHry8dV/gI/+3/sFnXvnP8aja2lrNenPi26NvcITJk/mRK4QyFX5Tv6Fvgfm0gB7mnE/rLYjv4hRVd3e3UCiE/FRWfFi7r4ZT8Dem8FouvltWlAsKriA+pgP4AQZ64FeJ0LONXVRUlJkQJfQ3uvEMNfsO//KHxXmZHA4H/BgGBwd1EO+CuMl0fhI4oYyLMWk02tq1a8GXTqVS9fX1QcKCw+Hcd999Fy5c0Pk5avgH1WFOuVyelpa2du3arKwswJAwrHt7lxCQzxoZGYEOKJPJgFGdk5OTGB9Tful7zcplF4e7ZGWkVVdXNzU1AZ8Jkw900w4Q7+joKFaQ4/F45eXlWVlZCfGxZZe/02y8JRGOmRlpQF0FGAB70Oom3hnuafWkWGdnp1wuv3Tp0gsvvMDj8RYU4XiGEOb0EcQ7ODgIMKdMJiOTyU8++aQ6zKltrsMUNmdFRcWyZctOnz6thznndCk1tTPkzmCgBpsAPp9fV1eXn5+fmJiYHOXH89+ukSlH/aVP0xMoeXl5tbW1LS0tYEiMhz5NhYOPA09bwFSAesjj8Wpra1FcSUnHL1ItnMigXouqnpFnFc3EnmRMyNUaHUXeeCDyZuGElJEQ/OmANDNREgH5BUaZEDafX/8UE5OUXlRUVF9f397eDmpvWPb/to9vuDU0sjEF5hSLxb///e9JJJI6zDkyMrIIosY3D0zVFArF4cOHH3vssbq6OrlcDrlgLcHzGrlSC/AgmEAJJWXwDFIqlRKJRCAQNDQ01NXVVVZWFhcX5+bmZmZmpqWlpaSkxCckxcYnxsYnxScmXb2ampGRkZOTU1RUVFlZyWAw2Gw2n88Xi8UKhQL7OuPE9I2NgHECeAYNDg4ODAz0E6++3t7+/v6BgYGhoSHIbmOw88bjzPId/HMwtwRYAuJtbGxkMplVVVUQb0ZGRmpqanJKSlxCUsxkvMlXU1G82dnZhYWFM8erX7LhK6I+o+vo6JDJZB9++OGOHTvwDEd7Txx8DhrfOHr06PLly19++eWGhoYpo2tmZuajjz4KSKeBgcHevXs1/uuzgTn9yeUa/139AadtAQD5YEgBURalUgmMRi6Xy2KxampqysrKioqK8vPzc3JysrKyMolXVlZWTk5Ofn4+Si5lZZ8kWI9kCr2trQ33joGBgZthe/EJyUDoLCoum/bEdPmmOtI5MDAA7ZBfUOj9E9Kk9fO/WFVVVVlZWVJSUlhYmJubm52dDY1wJTgUYM6EhKSSkhIYVzkcTnNzs1AoxNLWYDqAHwFTOp0uI73tvzV/mPPbb799jHgdOHDgtocz+xMYHR0tKSmhUCh+fn7BwcEpKSkCgWD2X5/rnuPjE7LOvvhsjqtfttOF1NgMRmUtNym72isoM4pM3fCl24p71jzzDysEzh26Yngk1NSORNhSEqIy12mdAPIRHpb07e5xgGgiG1rXGBPbKGPbKFjaAFcSQ6GwDkLiNM40qOMMSSoG942BgYHBoZHcSoH92QzPoLxSplCi1LBAOoY5QXeHyWRmZuW8fyxumyvdwhGtuTAR04pQ6DV3pCIjc7soZG3gSDG2iYB4rd3izBwQ9dPCGeJFqzmjoxGmdiQLZ0RRBZdic4do46Nhxkix9spr7x9YvmLVqzu++ykkgcFgtLW1dXZ2aiMH3tUzWFEvIqXUqXqH5npj6PfXt8CNLaCHOW9skzvsHQxz9vb2SiQSDodTXl6ekZFRGbxHpE2HznZ/o/y4y1VVVc3NzTKZDFhHOtACUo8XhOMqKyszMtKrQ38U+W7USJJx2oO0+20tjgsoLy/n8XiQdhwaGtJBvHfY7aih04WrjGW75HJ5bm7u6tWrKRQKGOMBzAmJm6tXr3Z3d2vol+d8mNHR0dLS0qKiorq6urGxsWvXrg0MDFRXV584ceLzzz83MjLavXv30NBvP7DBdBYqLuVyOYPBWLVqVUpKCsS7oGBOyL5BWlMkEnE4nIqKipycnDg6pezSd21+Gig4EPib5Ud6paWllZWVNTY2ikQirAqiy0QVTjhi7ygorSgvL8/Ozo6LoZVd1Ey8rf5mBVEe6enpZWVl4FoH/PiFkyBWT4p1dnbKZDJXV9fXXnuNz+ffJTDn6dOnX3nlFZzm0EESEFLMALHL5XIul7t06VJ3d3dIVWPT1rs5szDn8Xp+X8BIJ9R5SKXSlpaW2travLy8q1evxlMjqoO+EM7DMqDVz7Qs9HBKclJ+fj620ANYAhShtXSt1cEqdaSzsLAwNTX1CinmS28KWkjbR1s606zdYtGynxBBMkZMTVTpbGIbNakn6YBkM7e5IrsXoyPhRkcjdrqSnQLjwMyJyWRCIXBPT8/Q0BDOjs3vsiy4b2OYs6+vD8TiHnzwwezsbIlEAoKQwAXX0tXUZXPAc2F4eBiTRb766qsnnniiublZP0zN50Jg5A8XwAEXRyQS8fn8pqYmNpvNYDCqqqrKy8thClpEvIqLi8vKyiorK2tqaurr65uamvh8Pk5MA0sPJ+in1aqF0QBrWaOlJY9bERYY/58PI9/eFG69gfKRZZ6PexujqlelGhoaAl+6ea6GcLxYZRHiFYvFra2tPB5vhnjLy8srKytra2tZLFZTU5NAIGhvbweUvbe3FwMSMNrM56Ispu/iGR2MUTKZ7Mcff9yyZQvMcICkdWfZEGRmZi5ZsuT1119XqabnguTn569atQor2YaGhmr2gs4G5gyiVWj2R/VHu1kL4CEFT6R7e3tBLUkkErW2tjY3N3M4HBaLxWAwqqurK4lXRUUFDJ4MBoPFYuXmFZw4iRDBnNw8nHzAgx6sRqc8xyUS6anTyM7T+6efZTL5zU5PN+/jNSyM50NDQ7zmFuCbnvQ5V15e2dLS0tjYyGazmUxmTU0NoJ4VFRWJiQis9fL2SUhIZrPZjY2N8BzB4wOQWWGImEESQDdhLoRfmT/M+dFHH8Ho9PXXXy+EiGY+h66urrS0tA8++GD16tV4UMUbr7zyipeXF4fDgbTYzIe6hU/HxibaJN3HL+bsOxZ7LizL/kx6VHxBbGzsbqdLT683u+f+h9/4wmPLgUsmNhEWDuTtbrGWzlQA+cwdyEZHI7YcCoWizElo045k7kixRrshnA+7Wlo60xB30xFBpLBh5RoDzp07PBPe9oyrrGWKRKLu7u4mgTQsvtrFN/tYYC6DKx0ZRclAzb4wyQdMo+rr63Pz8v7jg84ZTs8EUVeRjs52z3jwIrV0oUO8Ww+Hgak5itclxgQBn2Rrt9htk/EilBRiJ6DcaDNkzxlufDTM3DZiy94La5/8v7VP/p/RjxcS03KgUBVcVOY567uxfcbHJySKntwKfmwWZ2R0/MYd9O/oW2BOLaCHOefUXAtxZ5jJQSU+6LgymczCwsK02AhBwLZpETsNvOm3qYZkl5uby2az29vbsfiYxoe8G1tcPd7Ozk6hUFhfX49q7hKjW7XgjwVtJfLdVEtyyM9HnlJCoRDs1vXyRzdeHU29ow5zghIai8VasWJFaGgo5M76+vp6e3vXr1+/b98+Tf3orR2nvr7+/vvvX7NmjZGREUibvvvuu48++ujSpUthwvf3v/99cHDwNw+uDnOCsIyBgQGdTgdZmAWl/Kaew1UqlQKBAJDOzMzM2BhaZvhxvr/ZfAYZbtB76ZTA9LTU4uLi+vp6oVAI1B9Ii09ZUv5mw85/B4gXMrkQL5vNrqioyMjIoNOo6WFeAj+TecUb8HYGxT89La2kpKS+vl4gEIDVMQgi6T7eaVsMJ8WAaSGTyb755ptNmza1tbV1dHT09vbqAPab9sS09CbEq+5cdejQoQ0bNshkMp3FC/UEAwMDMAaKxeIVK1YcPnxYoVBgOxxdov5aauo767B4BgJOchKJpKmpqaampqioKC0tLZZGTg070RDwzlwHBJHvZsalL9OoQWmpKYWFhTU1NUBh7+rq0gGeDUFBNhAjczwej8FgFBcXZ2Rk0GITTl2mf+iBpJ+w+R/o1sL/5gS6iXmckCawcCTvP0OLoCfl5OaB1hmfz5fL5djadrFmx3A+AhpTKBQaGBhwuVypVIp97xYHm1Md5gQx8w8//PDpp58G4iAGS3SwNLizhpHZnC30StzCAwMDkKZXKBRSqbS9vV0gEPB4vMbGxoaGBvb1F4fDaWxs5PF4OCutUCgwuA4JegD8boZxqv+iSqXi5qTTv3o/bPuGyJ0bo3ZuDrV6M9jyH1cs3oh4z7giLAge/Rg3nc90ZUq8QGPt7u4GSdVp4+UQL4i3paVFKBRKpVJ4PsIgox7vfM5tNtfrztoHL7IwzOnm5rZ+/XqpVApyETqQ5ddgiw0ODu7cudPAwGBm8BIDCUuWLFm/fn1XV5cGz2E2MOflmCoN/qL+UDO3wBSQD2Sxe3t7YVSRyWQikUgoFLa2tvL5/ObmZh7xam5u5vP5ra2tQqEwv6AI0D42p6G/v39wcBCPdTd7qE1MTJSWVkwqvtLjR0ZGZj5JHXyKh9bubtWVkAg4t6zsvI6ODvw0aWtr4/P5LS0t0Ag1NbWTIcTEtbe3w7gKzxEMcIIewLTPER0EtdB+4q6COdva2kxNTe+55x6Ma0678fTTT/v4+GjpyTs+MdEm7qSl1RwPynI6n+XtS4sg0RzORGzZc37tU39Y+/TLm/b4GR4KNrYJ3+ZMNbGLskT/T+rQEM6UkcY2k/+Q0YYjKtAEpib4cahbeCKOowN5u0e8tVssQgcJuuSPvikNDQ28ltYqJt/7Ys53HvHRV+sE4q6h4VFt3JzwyB4aGlKpVDKZjMvlFhUVeQYnWxAILviJmCLHEDLI2Fq60JHcLtLdQas2Y9uoX+K1RfFaEvFaOCGUlGCCIpTUzCEa6dzaRxMIMcnMJuyFTe8a3LPmjc9cvjgWUVJSAguZ3t5eLeXAJyautUpUtMz69JJmTdmaauNy6I95R7SAHua8Iy7Tb5wkdk1TqVQikaixsbG6ujojIyMj+nybv+lc022z2b/p0u7ctITy8vLm5mackddZvhWjLD09PVKptLm5ubq6Ojs7O5US1Do/fOVmsXOvfFKQmVxZWdnU1ATUVW2w9X/jMt9NH+MVuHqKf+XKlefPnweYEyzEGhsb6+vrb2/DVFZWwvTuzTfflEqlH3zwAQY44f1//vOfs2RzAnsVIA2JRLJu3TpfX9+FCXOOjY0ByUClUkmlUkA6S0pK0tPT4+LiqJFXKoK+EvjNbfAR+W5q8bcsDT4QRyenpaUBQRYsKnG2VGeDjPpNBUtEIBnAmMPn89lsdklJSVpaWlxcHCUytDzwK77vLcUbciCWTk1LSysuLq6rqwONSh3wt9QDnM32FNhPJpOZmppaWVm1t7d3dnYuSpgTiocA1oWubW1tDc5VuolXHeYE0cLf//73//3vf7Hp3e0C/mdzwyzWfWA0UEcE29vbGxsba2trJ5HO2FgyKTL9shMn4H2+n+nMohrtvptb/C3rAj9OCTsVG0NPT0/HGCdo4/f29qpb6GmvVceJF4zqvb29HR0dIpGIx+MxmcyysrKcnJyUlBQqPcYrgPLVT9T33MjbnNDKGa2KHckW1xMESAfJifKuB/2jY7SD52iR9KSMjIz8/PyqqqqGhgaBQCCVSnFVHKZyaikJor22+s0j49ESIITKyso1a9bw+fxFD3NKJJIdO3b86U9/ArAEP7hvlhH+zZbU7wADDsy4hoeHh4aG+vv7e3p6IFOvUChkMplEIhGrvaRSqVwuVyqVXV1dPT096tl5DHACAHBj82KlR1AR4NdURe0yj9ixMXLnxjDrt9C/7W+FWr0Zsu2foVZvhm/fUBkWpOrqwtKF8+/L6vGC4GR/fz9GJm4hXjzO3Bjs3fwOXmRBvY5cLr9w4cJLL70kkUjgzgEWrJa4OBpveblc/tRTTy1ZsuSRRx755ptvlErltD+Rnp6OU/Nr164tKiqadrdbe3M2MGdwXPWtHVz/rfm0AAxr6qMoKLjCQNrZ2akkXgripVQqOzo6Ojs7u7u7MzKzvbx9Tp0+LxKJgbY+y/EkNAyZX544eYbX3DKfM9fgd8fGxjKzcglBXR8yhT48PDw4OAijq0ql6urq6ujoUCqV0AhyufzEyTNe3j5RJCo8R/r6+gYHB3HhyCzbQYPnv8APdZfAnASKX7pu3TqMa957772vvvrqzp07d+3a9dZbb73yyitr1qzBny5ZsmTPnj0DAwPauHyjY2MyRdfJK/lnwgv3Ol/6av+p753OG+3ze+1fh1fc+7sn/mL41nfnN+2/ZHw03NSeZGpPgvrLbS50pEC3WQMZAAAgAElEQVRDQJuIvIiWLVRTQqsG9GlhN9hhu3uclWuMlSvyv7R2izWxIwHr0dKJ6kvPKypjBEXneQZkHAvMjkqu6VT1z38KNENDjY+PDw8P9/T0KBSK5ubm8vLyqPgMC8IoFAidWw+HGR5BwRKAJSJoEsAtiteYgDZxvChqQp8W8F1C8xZJ8li50C2dqBYO0cZHQk2Phv5x2zfLlq94yfgTowNBJ4Pjq6qqWlpaFAoFGCrNcKrz+ah/cKSyXhSZwuCLNFmHNJ9T0n/3Dm0BPcx5h164X502zrv19fUplcq2tjY2m11cXJycnJwbcWw+EmrTwn7cix9mJ9NKSkpYLBY2kNNSWcev4lT7Y3x8HGQkQaOcw+GUlpampaXlRhwT+WnYlLQp6L2cFGppaWl9fT0oki8QBVG19lhsm7ACxzAD1Bs+//zzjo6OAHPa29tbWlreFtBrSlurw5w//PADxjhXr169Y8eOAwcOxMTEzKbaESvBwgxGIpGsX7/ezs4Os1cXFKSBDT+womZbW1t9fT0kxJOSkqhkUkzImfygvTw/i2mHEfU3Rb6bGvx35ly2iY8KSkiIz8rKKi0tZTKZ2JcOJ1y0OoOccmXV/8S5v8HBQVA9am1tra+vLy0tzc7OTk5OppJJsSFn84N+bJ5FvBLfTVz/HbmXbRNJv8TLYrEgD67O35rNnaN+ntrbhiFXnd343HPPffLJJyDDqA7GaO8cdHlkiBfKLIBN8re//e3LL7+Uy+XA5tcBexXLBqpUKqVSKZVK33zzzV27dmGodUGNCbq8Orf3t/CMCyAHQARbWlpgQMjJybl69WpsbCw5KiIm5EzKJdeigP8y/D/g+Vm2+hq3+xnyfU0a/ayq/XYXXPwxJdgrLjKATqMmJydjWdfm5maxWAy3mW4wzmvXrqmjC0NDQ4DP4RKWmpqakpKS7OxsFFpcfEh0zPkQmmcg9eCZ6O9ORX/zU/R/vKP2nIq2O0/+OSTmCjmeFpeUkZlZWFhYUVFRV1fX1NQkEokAnseD+SKGvjDMCYBxbGzsk08+yefzcc+F0eN2Pc402H0w8w88jIVCoZmZ2aZNmwDmnELb1eDv3lWHwpwkPO8CvBMy9X19fT2/fvX29vb19SGzKIJ7pJ6dn7nTwSCAJ97tTVz6l+9G7NgYbv1WxI6NETs3Rr29GQDOqLc3hyPscxP1423N5cWgQT2D2eecrteUeEdGRtTj7e3txeGqVKqenp5bjndOZ7XIdr4R5oyKinrqqafuUJiztbV1+fLlOLd+4sSJaa9XXV0dTtAvX748Pj5+2t1u7c3ZwJxhibW3dnD9t+bZAnhUAbATjyrYeLhP7QX2w4ODgzGxCV7ePr7+Fzs6OjGwN5sHdxOv+aTPWS9vn/O+gX19ffM8eY18vbqGAZac5y4EyGRy3A5DQ0PTNkJA0BUvb5/g0MhulWp4eBg/R+bUDho58zviIHcJzCmRSF5//XU80j7//POpqakKhQKu0ejoqEwmy8zM3Lx5M86G3XvvvZcvX9bGRRwfH+8fGPzpSkFtfUtgRMruH37613/ct+07b3zo0p8sv16+8p7nNrxjdCjY+GgYMum0RwgloioS5EUQpwX6prFtFPbdBIDQwgmJ3BKFm9RtLnTQrbV0QWYcIGnztnvMqUuJ7ufjj/wUdzokt7peODA4rI0Y1Y+pnvpubW2tra3Nyc3dezbO2j2O4GuSkHuIPaJjAqhJnC1S3DWxQxAvpqsa25LU450U43EkE+Yj0RaOZBObcOMjIa/969CK1fc98eqmzT+c22kfHH81k8lktrW1dRGVbdorgZq4dk2q7CenMf3IFSNjeula9VtAvz23FtDDnHNrr4W5N85PDQ4OApldIBCAX1RSUlJuqGurn7E6qDCf7cag99PjIgoKChgMBrjv9PX1YXHF2Uz+NNKGsNofGhrq6ekBYh+TySwqKkpMTMwK9dBgvNygf6XHRxUWFgLoIpPJ1BP6OotXI412Bx1kCswJKX5DQ8Ovv/5aIpFwuVyRSJSXl7egYM5HHnlkxYoVS5YsWbt27d69e+eqhoSZWwBzSqXS7du3f/bZZwuTuYXHHCi3B8Zbe3s7l8tlMBhFRUUZGRkJCQk0Gi0qMiLxyrGSwP80BOzk+W9r9jNv8TVr8TNv9rNo8rNiB/yr8OK++NAzFAo5ISEByEzV1dUNDQ2tra1yuVylUmmQKHDLXQDiVYe+lEqlUChsaGiora0tKSnJzMycjDcqKuGKV3Hgtxy/nU1+U+NlBbxfGLQ3PuwMhUKJj4/PyMgA8haXy21ra1OXc1wI97Z6c2GYEyA3oVC4atWqPXv2qN+fkOVU/9aduz3lWkskkoceeujw4cO6jBdgToCWYQz86KOPzMzMgBOGn0T6x5DubzMYELDnU3d3t1KpBPoji8WqqqoqLCzMysq6evVqYmJiTEwMhUIhk8kkEimaeFGpVDqdHh8fn5KSkpmZmZ+fX1FRwWQyeTxee3s7MPixpdzMyIRmYwdOJ34YQWcXi8V8Pr+hoYHBYFRUVBQXF+fl5WVlZaWlpV29ejXl+is1NTU9PT03N7ewsLC0tLSmpobNZvN4vNbWVplM1t3dDT55UBKny6A020SzORoeLQHmPHXq1CuvvALt0NXVtZh6LsCcQ0NDAHMKBIKtW7du3759njBnf3//bNr5LtwH99BR4gXJ+mHiNUS8ABHs7e2FHSAlPZt6KTym4YVkaUhA9LtbSO9sprxvSHp7c+SOTZE7N0Xs2Eh+d2vkzs2kd7ZEvb0pbPuGdOeDCoUCRMzg5zR4XfBUc4Z4IQWPs/DQRBo8h8V6KDzOd3V1KRSKlJSUBx54QCKRgOovrke5I8JnsVg4875kyZIvv/xy2nteIBC88MILeE9/f38NRjcbmDMymaHBX9Qfaq4tgJdyY8QLjyojxAsGUtiG8SSYkHi9Ehze14d4WvCazY+Oj49TaXGg+5qaljnt3Tib42hqH5lMft430Mvb56dTZ9ichtm0A5ka4+Xt4x94uaurG5oLhtbZN4KmTv6OOM7dAHNOTEz88MMPePx89dVXWSzWtFdnYGBg9+7deM+nn366p6dn2j3n8+bExERORcvP4cVyuaKpqSkzK8/peNCOL52N9wdu+THgD0YfLzNY8dyGdzbvCzS1jTS1i9p6ONTYJoIQsL2u1Ergf9bucWDMCWK2Zg5kQAEB/sTAJ8jVmhHsyd12Id87hbiciY/NqOE0S4ZHRnXQx7EdhkqlEovFICqWkJz2nicimyLg9rr8LAI1HSlGiLQaZWoXTWC6yF4UgFtEUSWMSC2cqEY2kQSVM9rULsroaITR0XAT2wjDQ5df/+DwinvWPPbS3zfv8du6L8DFj1pcXNzQ0CAWi1VE3YP2YE64Jeqb5adDizJL9dK18+kid/t39TDnYrgDYM4BiRXQn5FKpY2NjVVVVbm5uYmJiWnhJ3n+1vNBN8W+G0W+m2uD/5cWF5WTk1NTU8Pj8UQiEYAQmqrhnf3FgMkWFB13d3dLpVIej4cKW3JyEhISUsN+ava3mm+8fpsZV75Nj4vKzc2tra0FggXUsOiYujr7Zlk0e8IUHENokOL//PPPrays4uPj//znP7e2tmJw/fZGjdmcMJ979NFHExISbuHxjxOjPT09EO+3335raGgIsMoCTIzCsIORGKxzCIKuFRUVBQUFWVlZKSkpcXFxNBqNQommRgXHRATEhvvFRvjFRl2kkULpNGpcXFxycnJmZmZBQYF6rl+pVKpjnDqYQc58I90Yr1KpbG9vb2lpYbPZlZWVEO/Vq1eRbC+VSiFHUyOvXI/XPyYyiE4Ko1EpsbGxSUmTWo6VlZUsFqu5uVkkEikUip6eHozpLjQYAGfEQFS5trZ2xYoVrq6ucH+CWctCg2ZnvqAzfwriMP39/d3d3QqFgsfjLVu27Pjx45AB1IFd4rVr19Q7F4wJTk7/n73rjovi2v4UFYi9G5NofGqMPzXGJPbeC7aYxBgTU15i6ks0ybP3JCIWVFQEC4L0JgoqXbr0IgtLr8v23jvL7wMn3jdZ2gLLsrvO/AGzM3fuPed7Z+7cOd97zjn2zjvv0Gg0bH5QnOZsvyt76Cyyv8M8BGgeGo1WV1dXUVEBZGdGRkZqampCQkJsbGxMTEx08xYTExMbGxsfH5+cnJyenp6Tk0MgEMrKyurq6lDPorxoBh4H0GRSpVLB+1csFkPORQqFUlNTU15eXlxcXFBQkJubm5WVlZGRkZ6enpaWlp6enpmZmZ2d/ezZs6KiotLSUpQqD0ZylM8JRgnzvmnR2xxei99///2iRYvq6+sZDIa50pxCoZDL5VZXVy9cuHD79u10Op3D4cAbTaVSwX2ly5Oo0WhiYmI2b96sS+EXswyAicYfMEBj/7JYrO3btz99+hSV1AUoFLLi77BAdbUPf/3aZ+MC741NXpu+mxf5b10S8P5Sv6b9xd4bF9zdMM/Lfp73pgVemxZW5mXz+Xzkeq5Lc50qg8YlrJrYfdz+3ik8oTCa1MEkJykpyc7ODtGcaJLThZoNfwmNRhsxYgSyqp88ebJVGaqrq19//XVUzMXFpdVi7XxutPNxh9OcrYJptAfR8Ig4PxhG0F+NRnPpsouDo5N/QIhK1el8e2KxxPWGu4Oj0yXn6zQavRdxUKvVfv7BzeFqLyYmpWBnX+2AEBuX0Cy8C5vNwV7Si4oYc9MvAs357NkzFPT71VdfpVAo7fQIh8OZN28eGmyvXbvWTuGunVKqGk65JTzJqOTz+SQSqaCgID4h0eWG164Dlxf+eGXhj1cmLdth3c92zIyli352Xfq756pDfmuPBa086LfyUFOAVghRC0FowU0TkneuPR6y8Y8HKGPlqsMBKw/6QT5OcOXcfNjnmwO3bvrF5hdV0plchUJpGOsHeIBAuB0mk1lZWZmfn5+YmHjUtSksbVPc3WMhq440SbvioG9zVs6gdSfurT78N2urpe+ao4ErD/kv3++79mjQhpP3mmjOfd7LfvdY9rvH5JW7+tr1HzV13vxvLyzde+OLP71jYp/k5+fX1NSw2Wz4Pu3pMUGmUPlHEE64xDM4RuEN37VbFL+qdxHAac7exV+fraPhD5hOMplcWlqal5cHTGewn2fBjZ31Lku7QP5RXBbVXV/11Ovw40fhCQkJkKKSQqGgwU7vC3h1wQU5/IG+VCq1oqIiJycnMTExPDw8yNcr/8aurulLbdY3zetQxOOHiYmJubm5FRUVVCqVw+FAuNpe0VcXTMymDHx1YPOE0en0U6dOTZs2rbq6OjAwEGs+612ttWjOM2fOdO3djwyjiOY8ffr0+PHjjTnMHTK0Qd5KMIizWCwymVxZWUkkEp89e5aZmZmSkpKYmBgXFxcdHR0VFRUZGRkVFRUdHR0XF5eQkACuP3l5eUQisbKyEtmCwU1cqfx7+tg1VPV4b2ANbVh9mUwmhUKpqqoCfbOysoDY0NI3KioK9E1OTgZXJ6Qv1kEQ9DUwt6ELSloWsdjY2D59+ri5uUFQZWQR6/Vu0kUXXcqAvojmTElJ6du3782bNw2pr1boSwaDcffu3fHjx8PLCI2B7ZjkdNEUL9M1BNCAgBhBSCDHZDKpVGptbS0wgoWFhXl5eVlZWZmZmRnPt6ysrJycnIKCAiKRWF5eXl1dTSaTmUwmn89H457hV48BDsjkByy7XC6XSqVAYjEYDCqVSiKRampqKioqSktLS0pKiM1bcXFxSUlJWVlZVVVVbW1tfX09+POBEycEz1SpVDB3Aui6BrtJXIVGS3ibr1q1asuWLVpdbBizSE/DBfMWCKzC4XAqKyvnzJnz1VdfMRgMraUYHb4apFIpgUBYv3492MV6WnIzqB9rocbu0+l0CwsLS0vLnTt3VldX65IbvrGxETnmQsL1ipKSgA9W+G5pct/03bLIr3mnKYDtxgWe6+Z4b1zos2mh5/o5d9bOvr363ZQbl9hsNpoG9BC2WB1b3e+hds21WjRMAc2Zm5trbW1NpVLRjFShULTD6hkVLGq1+tKlS2PHjh09evT8+fPp9NZZpby8PMSGWllZBQUFYbWQy+UXL14cN25cv379Zs6cGRcXh8gtGo3m6Og4b948GxubwYMHf/jhh4WFhVpTL11oTr8IArZFfL8XEWh1DMEeFApF4I4ZFh7RNTmfPSNAnFgvn4DeepQaGhogw6iDo5Onl69E8o8siVh9tfZzcvOBGaVSaR2+vruGjzld9SLQnEeOHIHpGaz67bD74uPjUZ7OlStXag2YHV7eYYFaCv+/FyIJZVSxWMxgMMrLy7Ozs+Pi4m7c8dqy323JHrcFP159c903fW37D3ntzUXfX1q81/1vsvNo4Jqjgcv2e0M01+ZgtoErDvhuOBm68Y8H646HbPwzzP7U/bXHgpft82726fw7r+e64yGbTgT/eT0kPPppRVUNh8uVSqWGDGSFTIU8Ho9EIpWUlGRmZoY9ivzkr+A1Te6bPqsOB6w/3hRld/2Je03CH/BdfTQIHD2XN1Oha48FrzsWvPpI4PL9vuuPh9ifvNdMc4asOxa0+qDPvO+dX3lnjZV131dnrVr8y/Vlv960P3jHMzA8LS2tpKQEXDkhXU6HvdP9AjyR7OydlMiU8u5XhdfwYiKA05xm1e/oMxVW49bX15eXl+fl5SUlJT1+/Dg0JDDq7pk8151kl05kr6x1XZVxZ09E4K3IyMiUlJTc3FwIGQomDPgK6i2jPKw+VigUkEeKQqEgZvfRo0f3ggOivM7ku33aKX1Jrqsy3H955H8zMjIyNTU1Ly8Pqy8M7r2lr1ndrO0q0yrN6efn16dPn6CgIA6Hg3UjbremHj+JpTnHjx/P5XK71iSau4D/B51O9/Ly6tevH6SDRZSGsX1swHcRehKlUil4NTEYjPr6evD+IRKJBQUFeXl5OTk5YO4Hv5/c3Fww9JeVlSHXHy6XCwm9FAoFmMWNSuVW9YVsnWQyuS19s7KysrOz8/LyCgoKsK5OwGFr6av3L4Gu3ZDYq2BNiUKhQLSfj4+PtbX1gwcPtGg/7FWt7pNIpIiIiDt37pw5c0ZH82ur9fToQay+4Mrm7+9va2sbGhoK+homnht6ocOYwGAwnj59OmDAAKA5jWcM7NG+MPLK0VIPRHaKxWKBQMDhcBgMBoVCAVKwsrKyoqKivHmrqKiorKysqakhkUgUCgXRgWKxWIsO7EXdsWQnis0LPC6Xy2Wz2QwGg0ajUalUSvNGbd7odDqLxeJwODweTygUggcnjORYD4le1MswTaNFEuD7Pm7cuC+//BKykyIm2yxpzrKysnfeeeenn37qFM2p0WgiIyPff//9gQMHorX/hukps2yFwWAgGAcPHvzpp5+mpqZ2OI+CKahUKuVyufX19YUZab6bm9hN3yZqc77n+rl31s72sp8f+P4y740LmrjPzYvguOf6uY/2fU+n07FBRzpsziyRNy2ltGjOZ8+eWVtb19bWogTkJkRzQnppMplcVVXVDp/04MGDfv36wdMxatSoZ8/+lylTo9Hs3bvXxsZm586du3fvtrKyGjJkyNGjRzUaTXBw8NSpUwcNGrRr1y4nJ6ctW7ZYWFi88soreXl52B7Xheb0j8RpTixmRr1fUVkFNGfq0/SuCSqTyT29/KCSzKycrlXSzavKKyovXLzq4Oh0+cp1BoOpe21lZRVnz192cHQiFBJ1v+qFLWn2NKdUKl2zZg0MnsOHD6+uru6wr8lk8uTJk+GS6dOnCwSCDi/RvYBGo3mcXHb2TqpY0hSvn8fj1dXVEYnE9PT08PDwqzfvbj14a9mvN5f8cv2tD34bMGp8/xGvTF2/e8mvtyGA7cpDfhDAFsK9gu/m6iOBiOmEWLVNTp+HA5qowaa8noEbjgedvROWnJpeXV3DaE6rBGZhg014kLVNJBLR6fSamhoCgZCUlOQTFPbZmZB1J5qC8YLk64437a865P/8SMDKppSc/muOBq5tzlEK9O2648EbjgevOey38oDXOzuPDnltal+7gVNWf7HkF5fFv7iu+O3m2dtB8fEJz549A1dO8PYxjJ1KpW5IyKo55ZogkvR43lPdbzy8pAkhgNOcJtRZHYsKwx/ygQO3qoqKivz8/NTUVMge5+/vf9/zcvaNL2qvr66/vozisqiFf+cisssS0vXlVW4bktz3hwT6hYWFxcTEpKWlPXv2rLy8vL6+nsvlikQimUzWWw4HgIWWvhwOp76+HvRNSUmB7IABAQGhns7Zbl/WXl9Vf31pq/pSrjfpW+26PvnOf+8F+4eFhUVHR6elpRUUFFRUVJDJZC6XCybI3tW34zvAXEoAmQTWVeCwa2pq4uLi+vbtSyQS2Ww2n8+H8J6Gede2gyuW5jx9+nQ7Jds/BTH3IRgFl8tlMBjh4eH9+/dPSUlBtC5ES26/HsOfxTJ/kCkKyE4ejweRNslkcl1dXU1NDdj6K5q3ysrK6urquro6CoWCwmQB4SeXy43WqRGMKYjbaKkvg8EAfaurq1vVt76+HvRFhC6EekN+TobvwQ5b1AoVwGQynZycLC0ts7KyICIlxDDBPowCgWDu3LlTp05duHBheXm5RqOpqKj497//jSLeWFhY8Pn8DpvulQJIXxh8mEzmhQsXBgwYkJKS0pa+PSEnojmRGNXV1ba2tgQCwZBi9IRqZlYnGgOB7FQoFDKZTCQSCYVCPp8PvCCLxWI2bywWi81mIy5QLBZLpVJ4naEJBlTYuyiBDIjvBNXkcrlMJpNKpWKxGBQUNG/C5k0kEkkkEqlUCmM4GsZhZZjBDAG9ixuEm4ZFIQKBoL6+3sLCYv/+/VQqFbKuIqc3MwAELc+C/NwlJSUzZ878/fffW0ahaFVZuVxeWFi4YsUKRMuhnV7vRNMVAEtzIjw//PDD2tpapVLZll7gvS2RSFgsVk1NTU5ctJf9fO+NC5v/LvCyn39n3ezmQLXz726Y1+zNucBz/VzP9XN9Ni0I/vojbBITYxi+2lITP44QgB6XSqWQg7mgoMDGxqa0tNREaU6kVzs727dvR0/E7NmzZTIZKpycnGxhYfHpp582NjbKZDI7OzsoeezYsZdeeuntt9+uqqpqbGxMSEhA/knnz59Hlzc2NupCcwZGFWIvwfeNGYHk1DRgKItLSrssJ4PBArLQxfUWl8vrcj1du1Amk7lcv+ng6HT2/OWSkrJOVVJPpjhdauJH454kdurCF7OwwWhOtVrt7Ow89fm2Zs0awwDOZDJnzZoFo+Ls2bN1aVQsFqNLJk+eTKPRdLlKxzIqVcP1gMygaCKkmAGHTqD94uPjQ0JCLt/w3nTQfeneGyv/6770P1dHTJxl1afvmOmLF/7ksvpQU6rOJt/HQ/4rD/ltOBm6/sQ9yMcJf9efuGd/6j5wn5DPstlLMuiid0R6enpxcTGVSuXxeIjza3V+q6MinSoGX2QqlQpWpFGp1MrKyuzs7Ojo6Ft+Dz5yaHJFbU41+mD9idB1x4NXH26KTAuU58pD/quPNKXnbI7TG7zygN/KQ74rDvisOOC94nf3KSt3WfXp23/Eq+/tOrV0741FP7uu/PXGadeAmJiY7Ozs8vJyGo0mEAgMTOsWVTIuej+NSWt6+eIbjkBnEcBpzs4iZuzlWzJ/VCq1qqqqqKgoOzs7OTkZUseFBAcH+9556Hk+1v1Y8u3fn974IfPm7oyb3z+9+Z8E9wPRnn+G+7iEBAWGh4fHxMQkJSVlZWUVFRVVV1eDHwlwfsZAuoA9GphdsVjM4XBA38LCwqysLKRvMOh790LsnWNJt39Lu/lj5o1vM25+l3qrSd+YZn2DApsITtA3IyOjqKiopqYG6dtzWWeM/ZbqDfnASgI0p0Qiqa2t3bhx42effTZy5Mh79+4BzYmYFYNNL1pFAtGc1tbWxcXFrZbR5SCW5gTvwISEhFGjRt25c4fD4fD5fCPRtx1d4GEE04lCoQBTuFAo5PF4HA4HrPwMBoNOpzMYDCaTifx+BAKBSCRCxnFE+Bm5saxT+jIYDNCXy+WanL4tab/9+/f37duXRCIB39ZyzUF5eTl8Do0aNaqwsDApKWnSpEnIwAQ7xk9zgmsyk8ncu3fv4MGDS0tLUcI5A7z+0LJNiUTC5XKZTGZtbe24ceN8fHyQUykwSe08lfgpwyAAgxV0GRoDgRGUSCRACoqeb2KxGNGBwAhiA7oaRmDdW9FSDVG5TSuomzdZ8yaXyxUKhVKpBF1MZRjXHQfdS6rVarlcDr7vWVlZlpaWTk5OsLoF+e6bkzenTCZDNOeMGTMOHDiAaE6UQ11rnqbRaCIiIj788EOsByf2BaE72nhJLQRapTktLCwGDx78+eefJyUlafUFXA43rVgsptPplZWVGdER3k2JORd42c9rdtxc4LFujk+TH+cij3Vz3Fe/57luTlPQ2jWzPdbNCd69nVRXh6apRj5z04Lrhf2J/HeB5iQQCLa2tkVFRYjmNFhsOsN0QXl5+UsvvQSDjK2t7aNHj1C7KpXqu+++s7W1TUlJgbWMgwcPRsPRW2+9VVFR0djYqFAoVq5ciY5rZQDVheYMisZpToS6se8EhzwAmpPOYHRH1qTkp2fOXnRwdIqKjutOPZ29ViaXBwTeAxUePopsZ41LqzVzuFznq64Ojk5+AcGtFsAPYhHQJ83576/USrlS2Uo6WLVa7eDggGZNI0eOjI2NxYrRc/tkMnnKlCkw+n3zzTe6NCQSid5++2245M0332SxWLpcpWMZgVh+1iOVTBcgA4VAIGAwGNXV1bm5ubGxsffv33dy9Xz/gNui/7gs/Ona4v9cm27/Xf/hY20Hj5i09OOle26sOOC95Nc7Kw76rjkauP54yLpjwetPNIV7XXmwKXPnuuMhqw75Lz/gu/S/XisP+m0+GXTR62FK6tPCwkLwa0ThKwwc4Q/01QpkmJ6eHhsbe9v/wS6HoKZkosS6xR4AACAASURBVM1OnBtOhq49FtxE3B5uSkS66nDAsn1Nuqw9GrTuWNCaIwFrDvuv2Oc1dcN3g1+Z3K//4PHzNs/+6sy8768s+una6t9vnnLxjYiMysjIKCkpIZPJPB4P2SF17KPuFxNLle73c10CMpSqhu7XhtfwoiGA05zm1uPIIIWYPz6fT6fT6+rqKioqCgsLMzIykpKS4uLiIiIiwsLCQkNDQ0JCgp5vISEhoaGh4eHhkZGRsbGxKSkp2dnZBAKhrKyMRCIxGAxYvYLcj1r9WjYkpkhfCL8D2QHpdDpkxiIQCJmZmcnJyXFxcZGRkaBvcHDwc3WDQN+HDx9GRETExsYmJydnZ2cXFBSUlpaSSCTIlQWB15AV0pDavbBtQbdCnwqFQiaT6ezsHBYWNmXKlOPHj7PZbLSKqtdthYjmHDx4MJPZiYAwWp0LNCe4gECczLy8vH/961/79u0DWhflhe31h05LcvQTeg1L/kEOS5lMhgz9yOlHJBJhbf0oRC02tqHRagoqI33R4hKFQgHeTp3VF1WFwDSqHXArBAc1LpdLp9M//fTTadOm0en0tmg/LM157949a2trZBvq27evjY3NkCFDJBKJUamJhEH6gu2eSqV+9NFHEyZMAH2xkQzQJT2xgz5mUKzg+vr699577+DBgy8gzQmrXoBQ7wm09VIn8n1EY4KyeYOR4Tkt2EQHwoinat5g0INBQC9i6L0SNECh8Rl21P/csGeNWR2944OtELtiic/nh4eHW1lZeXt7Q3RioDkNsEgCK1LP7Wt5cxYXF0+fPv3w4cNaNCdWAJVKRSQSFyxYgN4I+I6BEdi0aROJRNKK7Qk0p0gkotFo5eXlaXExd9fPDXx/acDWpb5bFnltmOe5fq7v5oXIv9N74wKPtXM8183xsp//cN93tbW13OY8VUql8oV99rH3ufHvt6Q5X3rppWfPnpklzalSqdauXQsPmqWl5R9//IHtIC6XO2PGjKlTp0JIEi6Xa2NjA4WHDh1aXv53bjCRSISck+zs7KKiorCV6EZzFmEvwfeNFgGNRuPiegs4QkXbTvC6yC8UCl1vuENVlVUdh/rUpU5dymTn5AG96nL9Vmc5zsbGRrlc7nK9CQHnq666NPeCl9Ejzbnr4y2U0mxiUdPSCuymUqlQdkwLC4vRo0fX1NRgC/ToPpvN/vrrr1c1b66uOt0SNBoNMaMzZ87U7yd/URXjxNUnoDJ8LENkAiaTWVFRkZOTk5iYGBYWdtPdc8dht6W/uC7++fqSX9yW773x6tsrrKz79rHpP33LLwt/dl32X89l+7yWH/BZfSRgzdHAlYf81h5rSmy59mjQ4t88Vx8JXHsseNsfQT73o9LS0ggEQk1NDYPBAI6zV2byML9C69K4XC6JRCoqKsrKykpISAi49+BLx8C1R5t4zTVHg+xPhm44Gbp8v8+Kg34rDvgu+d1z2X7vZf/1Wr7Pa+X+u3P/fXrAyHGWVtaDxkyY8+XpOd9eWvzz9aV73Dbuv3njbmB0dDRwnPX19RwOByXrMbBpLptIPnolrp6mz4jHPfqk4JUbDwI4zWk8faE3SWAEBEMtCpzFZrNpNFpdXV1paSmBQMjLy8vMzExJSUlMTIyPj3/y5ElcXNyT5i0pKSk1NTUzMzM3N7eoqKi8vLy2tpZKpbLZbEi2hDItGXikawsgrL5oBT2LxaJSqbW1tWVlZQQCITc3NzMzMzU1NSkpKT4+Pq5509I3JyensLAQ9KVQKGC+h2EdhZJrSwb8eE8goFarpVLp/v37d+3aVVdXV1lZuWDBgi1btqCPcMgc07v3IaI5x40bx+FwuoMDSoHG5/OZTGZ1dfXMmTM3btzIYrF4PJ5YLDYGfXVUED2VarUavH8gvivY98H0D34/yPUHLtGxfmMr1ll9EbFhbIq0Kk9L2m/58uVffPEFsmWjAObockRzDh48ePbs2WAwGjly5L59+x49epSXl8fo3vpo1FBP7CDzH9CcNTU1S5cu3bZtWzv69oQY8OWmVCoRzUkmk+3t7devXw9jAkS/VKlUvTsG6ld3Eol07do1Z2fnyMhIqJlGo7m5uW3btm3hwoVvvvnmkSNHTEJfNCZgyT/sPhQwCV20uhhJ3uqOVuEX7SfQnLAohMfjubq6WllZxcbGokUhhl8Q3XNdoEVzEonEadOmHTt2DA2VsCYSCaDRaB48eDB27FgDE3t4c1oIvP766/Hx8ahfINKyXC5HNGd2Wpr3liXemxYEvL+0idFcN8d74wLfzYt8Ni302bjAf+uSJhfPTU1JOn02Loi9fAZoTsPHcMOqgO93CgE0zwFvzsLCwgEDBuTm5qIvLHPy5rx//z4KNrtq1SqtNalEItHGxubChQsAYEpKSp8+feCR+e2331Sq/7lVhYWFbdy40d7e3s3NTSqVYgHXheYMxL05sZAZ8b5YLLl85bqDo9N1t9vdF7OwkAg0p7uHt0gs7n6FHdZAqidfcm6S3/mqWz2Z0mH5lgU0Gs0dTx8QWyL5x63esjB+RI8058a5r/seev+3PY5YVJVK5dGjR5E/+oQJE1JTU7EFjHA/KSkJOZ5u375djx87Gk2jo3tKcMz/Vo1gU01TKJTS0tLc3NzExMT79+97evkcdnLfcsBt4X9clv16a/lvt97efuDl6Yv62g0Y/MrkySt3Lfjx6vJ9d1cf9m+KYdvs3LnuePDao0HL9/usO+Rz6HrovUfRT58+JRAIlZWVNBoN+TVC0BrDIw8LapVKpVQqFQqFLBarurqaSCRmZ2c/efLkQdhDh9uhH/8V1ETZHg9e1+TQ6b/2aOCqg77L93ut2O+1aM/NaZt+GjVldl/b/kPHT5u26cflv95cuvfGgh+vrdzjsvesh4dvcHR0dHp6OpFIrKurY7FYWNdVA+vL4knv3M97mk8ycLt4c2aAAE5zmkEntq4CWNMgeJpMJhOLxXw+n81mU6nUurq6qqqqsrIyIpFIIBDy8/Pznm/5+fkEAqG4uLisrKyqqopEIkGgLT6fL5FIZDIZEC0G9tBvXcN/HoVBH+krEon4fD6QnUjf4uLidvStrKxE+iKnVZRcSo+v538Kjv9qEwHozfj4eGdnZ+jKTZs2TZo0CSxoRkL7IZpz+vTp3QzCCXSgVCqFW5dGo61Zs2bWrFmQDddI9G2zt9o40b6tH1nJ27ja9A6bpb7IHCYUCtlsNoVCmTx58pUrV8C/v9XpL6I5kXV17ty5QqHQJHoU6SsQCFgsVmlp6dSpU//880+s+Q/WvvSoOojmhDEBXt/ffPPNiBEjmEwmWvpgZjSnu7s73DM7duxobGwsLCzE5nO1sLD46aef8Ndxj954eOXdQUCL5jx8+DAEtMf6gvfKGvDuKNXWtYjmBKakuLh42rRpR48eRZO0VpmSqqqqxYsXo1cDvmNgBN5///2W4eOw3pwVFRXZWZkB32z3tm+KW3t3wzyP9c0RazcvCvpgGRCfkJjTc8PcW6veyX4Si6U5YRbU1j2DHzcSBLQe3sLCwv79+8MSNA6Hg+Z1RiJtd8RQKBQTJ06Ep2zKlCktnYqcnZ0tLS3ZbDa04uLiYmlpCeXLynTNaKgLzRmA5+bsTkca8FoGg+l06ZqDo9O9++F6aTYs/DFQhrm5+XqpsJ1KRGLx5StN8WYdHJ2SU9PaKdn+qccRMVAJiURuvyR+Vo8057p3xt7eu+bnXy8hVFUq1Q8//IDmCa+++qrWQg1U0qh21q1bh2S+d++eHmXjC2VHrsQlZteiOrG+PRwOh0wml5eX5+TkxMfHh4eHBwYGurvf+d3BdfVvbkv2uC386dqiX1zn7T47bPy0JgktLSct+WjFPs/l+73WHPFfddh/xUHflfu9914KDg4Ni42NTU9PB44TJTLrdYcflNQGfFjpdHpNTQ2RSASfzsjIyHv37p1wCbA/6r/ykP+yfV4r9nuvPuy3cr/XW+/v6de/KSS7zcChMz/at+y320v33mhydf3ZZfcf7rc9vEJCQuLi4tLT0yF3G5PJFAqFKDOR4b++1eoGr7D8x8l/x1RAPY7v4Ah0iABOc3YIkakWQPwBGvrB01EoFHK5XDabzWAwqFQqmUwmkUh1zzcSiUQmk6lUKoPBgNCg4MEJAxysWzFCjhNyaSCCAbzisPqyWCwz09dU78vOyP3w4cOtW7eSSCQgV+h0+p49e0aPHl1UVAQf4Wie0Zla9VwW0Zxz584ViUTdqR2R9EjfX3/9deLEiQUFBVwuVyQSGYO+nVUQDUTt73S2WqMt376a6KzRyt+qYHBnwmSaxWLV1NT0798/MzMTS7ZphY/WojmnTJmiu7WoVRkMdrBlqNhnz54NHTo0KioK9AUfSsOs4kR+tMAi0On0EydOWFhYlJaWcrlcsViMUt8ZDJ+ebghLcxYWFk6ePBl9J8POL7/8YvgPrZ7WGq/fbBDQaDRKpRLSVbJYrC+++GLs2LEUCoVOp8MzC77v5nEPazElxcXFM2bMOHjwYPs0J8zYY2NjP/vss0GDBmk94PDTbO4HwyvSVm7OoUOHfvvtt2lpaa3ee+AMIZFImExmVVXVs/z8h2dPNTlrblrku3mRl/0CL/v53hsX+G1e7L1xgef6uU2ZOzct9NowL3TvN4WFhfX19QKBAN3brTZheCjwFttBQOvhLSwstLOzIxAIDAbDnGhOFou1Zs0aGFUWL15cXd1K1NCnT586Ov7tO6XRaL799lsoP27cOAhj2w6M6JRONGcknpsTAWbUO9XVtecuODs4OqWmputFUAaDeeWqm4Oj0+UrrizW34S6XmpuWUlEZAyEq70XGob1RW5Zsv0jObn5QHPm5Re0XxI/qw+acwcMO0unDrv4/eoTbn9ncpXJZL///jsKoz19+vS8vDwjB1wqle7ZswfUsbCw2LhxYxfCJrejY1o+6b8Xoooq/5c0F+vrIpFIuFwujUarrq4mEAhpaWlPnjwJDw/39/e/defuH5fdf/jr5idHb246cGvFXrdZOw6NfXul3ZDRfe0GjJm28N33f/r86PW/3AJ9gh9ER8ekpKTk5OQUFxdXV1dTqVT03Q0WgF6c52D1hZXQTCazvr6+tLQ0Ly8vLS0tPj7+0aNH/kH3LtwO/OGv24s/2z9u9jq7oWP69R888s25/7fxh8U/XVv3u9tHR25++9ftw07ubh4+oaH3IyMjk5KS8vPzy8vLSSQSm83GhuftLX1ziZQT1+M1mnbuCPwUjkArCOA0ZyugmNkhNBSCqVoul0ulUolEIhQKBQIBj8fjNm+c5o3XvAkEApFIJJFIIGQr1qMRzPTGDFGr+orFYpFIpLu+KEqt8etrzH3RTdlIJNK+ffvgbuRwOAwGw9XVdfDgwbGxsfDqbRkqs5stduFyRHPOmzev+zSnSqWCYHewEMHT03PEiBEJCQnGo28XIMIvMXUEkAEUwik/fvx4xIgREMkEHP1bhlPWojljYmJMBQREc0IIBCaTGRMTY2trC5Hb29K3h7RDNCeEz2UwGDdv3rS0tIQxUCgUyuVys/EMAwwRzfnxxx9jXb6GDx/+22+/ubu7k0h47Joeut3waruLAMw/IZaUQCCg0+lr1qzZtGkTrB1EYULMxgNbiykpKSl566239u3b1yHNCUCr1erKysrVq1cjcxja6W5PvMDXt0pz7tixg8lkauXjxIKEFjNxOBwSiUQkElNion22LWuiM+2bHDq97BfcWTvby36+35YmpvPOmvc81r7n/f7yp2H3SktLaTQavI/g3u4tcxhWI3y/fQS0Hl4CgWBra0skEs2M5jx48CC4Zs6ZM6ediDvojlWr1SjPwt69e9vHEHtWF5rTP5KAvQTfN1oECouKHc9ddHB0qqio1JeQiUmpwBr6+Aa2HIo1Gk1WVlZ6erruzHqrghEKicBx3rzl0c0AuWQyBQSOjf1HhPNW233BD+qD5vwY5j/zJwx3+Nz+YkBWY2OjTCbbuXOnlZUVnJo6dWqH2ZHi4uIiur1101v06tWriJcdNWpUfr4+PZg1mkbfR88OXI5hcP4R/xkMtmgmA9GYSCQSJC9LT09/8uTJ48ePHzx4EBAQeNfL+47n3dt3PG+6e151u+PidmvPnj2vvvaalZWV3UsvLVu2zM3NLT09vaCgoKSkpKamBvw4hUKhkeQyQ8qCfQbZK+rr68vLy4uKinJyclJSUvz9/bdv3z5kyFBra+tBgwbt2LHjylWXa27ubrc8bt/x9Ljr5evnHxwcHB4eHhMTk5ycnJ2dDU6cEJtXIpFARJZuDkrdHBx4ItlZ95R6umnEA+umsvjlekQApzn1CKZRVwXGF3Byh3eAQqGQy+Wy5k2K2eTNm0KhAHYTeXAatXothNPSF/l3tq8vpAmEeL8tqsQPGA4BMpn88ccfl5eXq1QqSBfE5XKZTGZCQoKNjY23tzeLxYKV43CXGk6yFi3pkeYESgP0BVo3Ly/PxsYmJCSEzWYbib4tAMAPmDMCMJOGx1AsFvN4PCaTefDgwXfeeae+vh5uS5RqDtmJGhsbsTTnwoULTQgj9BiKxWIul8tgME6fPj1t2jQajYbVV8t7tYcUhFe2XC6HMAwMBiMyMtLKyurWrVssFgsbSaaHBDB8tYjmHDVqFHzYz5w5MygoqKVVyPCy4S3iCLSPAFokAfl0yWTytGnT/vrrLyqVCr7gyESCHS3br9OYz2oxJSUlJW+//fbevXt1pDlBNY1GExcXt3PnTqxnpzFrbeSyYWnOoUOHfv311xkZGR3eb6gr+Xw+lUotLy/PzMx87Hnb9+M1XvbzwZWzaWfj3/tNxOfGBY/PnizIz6uqqmIymSjOAb481MjvEBAP9TjEiiAQCP369SsvLzcbmlOhUJw9exaybH788ccoJm37vcPj8SCLp6WlZaey3+lEc0bgNGf78BvL2bT0TAdHp7PnLunR81KhUEC2yzNnL8bF/U0cBgYG2tjYFBYWzpkzx8LCYsmSJXK5vMsokCnUCxevOjg6OZ67VFKqa7zltpqTyxXAmAYF3+/wDdJWJS/I8W7TnA2f7PgAPnmmDHzll+W7owhMkUj0ww8/9O3bF47PmzevtLS0QzxHjhwJ5bvz96+//uqwoVYLFBcXf/LJJ4iXtba2PnXqlH4/3+QK9RXfdM8HeQ0N//Dvg4kHNporyrNTU1NTXFyck5Pz9OnTxMTEqKiohw8f3r9/PzQ0NDg4OCQk5N69e/ebt8uXL+/ateudd94ZNGjQ66+//sEHH5w+ffrhw4fV1dU8Hk8kEkmlUlheDBZjZCSHSIcgg94fFlQtSkinbt4g1xUELxQIBFwul0QixcTEXLp06fPPP58+ffpLL700ZcqULVu2nDx5MjAw8P79+yHPt9DQ0LCwsIiIiLi4uOTk5KysrMLCQnDiZDKZsKQb4kX1ehBHqUzpHZ4fk17V6i2HH8QRaAsBnOZsCxlzPq5FAarVatXzDcZNGEZ7fVzTVx8gddBb4bm6KrPUV1+49WI9crl83759VCoVLVPi8XgsFotMJtvY2Jw5c4bFYvH5fLAY6nf+1Fmt9UtzaulLpVLHjBlz7tw5pG+v07qdxQcvb9IIwNwau9qAwWAsXLhw69at4N3YFtOGpTm7/L3UK9AhB0qRSAQ056ZNm7Zu3Qqp9bD66v1LpqW+wJrI5XLEMRcXF1tbWx86dAgt9VAoFL270LKl2N05gmhO+ER/++23+Xy+AaDujsz4tTgCgIAWzVldXT148ODExEQajQaGA2OYtOixs7SYkrKysvfee+/bb7/tFM0J8igUioqKik2bNsGDr0chX7SqgOa0tLT84osv6HS6jsHikHFQJBIxmcza2loCgZCYmPjA9YrP+0v8ty72sp/vu2VRUxjbjQv8tywO2LY8/NwfmenppaWlkD8eFjz17oT8Revr7uir9fAWFBRYWlqSyWSzoTlv377dr18/CwuLn3/+WSqV6ohVYGAgDEEvv/wyj8fT8arGxkZdaE7fx3jwT90R7c2SEZFNaSmvXHUTCPTmQkSlUv/7330n/zjj4Oh0ydkF5u1+fn4WFhYTJ04cM2bM6dOn8/PzuzPd9fENBP/L1KcdL23RBV+X67ccHJ087/p2h3zVpSFTL6MHmvPjbTDy/GvY5O83HYl9Vr9x40bEF86dO5fL5eqCUm/RnBqNJiAgYPTo0SixsY2NjYuLi44zEF1UgzJiqfL0raSI5NZZfDBxo/iFEokE2Q+rqqpKSkoKCgqysrJSU1MTExPj4+NjY2Ojo6NjYmJiY2MTEhJSUlIyMjKePn0aGxt78uTJWbNm9e3bt3///qNHj96+ffvdu3cpFIpUKpXJZIrmTalUapmU2yI+EVXZqR0sr4kaUjZvIIBMJpNKpUKh8NGjRz///POkSZMGDhzYt2/f8ePH//jjj/fv309MTGxV2fj4+OTk5LS0tNzcXCA46+rqwLADbC6E6TIGLqChQROeWHrx7lPdbxK8JI5AY2MjTnO+iLcBGmER/6e1gwqYBzpIHS010U9UwDz0NWktGhoa9u3bl5SU1NjYCGYXpVIJjhFsNptGoy1evHjXrl0MBoPH4yHHiF5UWe80p1KpBEqDxWLRaLSNGzd+/PHHWo4gvagv3vQLhQCMjRBLGeKm1tbW2tjY/P7770D7iUSiVmNHI5rT2to6ODjYhEADmhM+GzgcDoVCGTly5KFDh8Bwj+LyGWbqDx9sCoUCOyZMmDBh586ddDodlnpASJnuWEaMqnewNOegQYMSExONSjxcGByBdhBA6xJgkURCQsLAgQPJZDKdTtfyBW+nEhM6hZgSWDVfWVk5b968zz77DEtzdio3mEajSUhI2LFjhwmBYGyi8ni8r776Kjs7u1MvBbh1VSoV5Hmi0+mVlZV5eXkpKSlRIYH3Du/x+3Kbz4crPbcs8ftsY/Debx7dup729CmRSKyrq2MwGEKh0BSTxxtb3xlSHvTwgjdnZmZm3759Ibw2h8NBmb8NKZK+2tJoNI8ePRo2bFifPn2OHz/ekqFRKpUPHjyorGwlHqm9vT2QDStWrJDJZLqLpAvN6fPome4V4iV7EQH/gBAHR6fb7nclEl0J8rakFYlE0dHRX3/99cCBA4cPH3Hk6AlgIqOi4xoaGoDmHDRoUHp6t5KAqtXquLgEqDkg6J6+uCX/wCYc3G7eEQj1Rve2BZRJH+8uzdmg2vHBZhh5Rr+5cvuBe9u2f2ptbQ1HLCwsDhw4oCM+mzdvXtxiW7JkSYtj7R3w9/fXsbnGxkaVSpWamrpt2zaswGPGjLl161anpn86tkii849ejWPzJe2Ub0l2wmuORqPV19dXVVWVlpYSiUQCgZCXl5ebm5uTk5PbvD179oxAIBQXF5eVlVVVVdXW1mZnZ7u4uHzxxRcLFiwYN25cv3793nzzzR07djg4OPj5+T158qSoqIjFYslkMhQNEQIiAhmJuEnwq2nnLyoJO3C5UqkEOhOFYOTz+RUVFSkpKSEhIc7Ozrt37549e7atre2oUaPefffdDz/88MyZM3FxcVVVVeXl5SUlJUQisaCgIC8vL+f5lpubm5+fX1hYWFxcXFFRUVtbSyaTwcwIJh00lzOMoaOdfkSn8ktpFzyf8oSdeCOja/GdFxYBnOZ8YbseVxxHwBgR0Gg0p06dIhCaAvvANAWlueJwODQa7fDhw7NmzQKaE32Hd8qao1+19UhzYvXl8/lA6546dWry5MlIX5h89KK++kUPr83IEcDek/CREBcXZ2lpef36dawhu2UEV0Rz2tnZRUZGGrmaSDykr0QiAX3T0tL69et369Yt9AwaklZE8kilUvSRtmvXriVLltTX15tfqr/GxkYszWlvb98TH8mou/EdHAH9IoBCXgPN+ddff82YMYNCoQDNifUF12+7vVUbYkpgEUx1dfWiRYu2bdsGbweRSAQxrzo7Y2lJS/SWgqbYrkaj6ZqNGzl0wqoaCoVSXl5eUFCQkZER/+RJ9MPwyHvBESFBsY/CU5KSsrKyIIcTg8GABTcqlcp4jGKm2HEGlhkeXjS1ePLkyYABAyC8NpfLRZ9XBpZKL83FxsaCR4u7u7tCoWhZJ5FItLGxuXv3rtYpoVCIQkT+9NNPnRq4dKE574brM0edlvD4Tz0i4HrD3cHRydc/WKFUdrlapVLp7+8/c+bMl156yc7O7rvvvisrK2Ox2BBX1unSVVI9GWjOTmWBbVWewqJiCDDreO4Sk8VqtUwXDkbHxjs4OjlfddVj8N4uiGH8l3Sb5lTv+HALkJrjpy8ZO2kW8uOEgzY2NvHxOmVIFYlEwm5vun95aTSaPXv2YDMOWFhYLF68uKSkpFPjp+5d/DS/7vTNRIVS1eEl8AWNMrVJpVKRSATmNTqdTqFQ6urqampqqqurKysry5u3ioqKysrKqqqqmpqauro6EolUX19PpVLJZHJlZWVRUdHTp0/Pnz9vb28/ZMiQvn37Dhw4cOTIkePGjVu4cOF33313/vz5+/fvEwgEmBRBojT4CyRoW3+xJdE+JJSrqKiIioq6du3a3r17169fP2nSpDFjxgwZMsTW1tbOzm7BggVHjhyJiYkpKCiAkLNkMrm+vh5Uq6qqqqysrKioKC8vLysrKy8vr6ysrK6urqmpIZFIFAqFyWRyOByBQABvfCMkOKGXiyoYDreTaiidiK/Q4e2BFzB7BHCa0+y7GFcQR8BkELh586anpydWXI1Gg/Uko9PpDx8+HDBgQF1dHYfDgWVHSqWyF2M26pHmBAdWpVIpk8kEAgGHw6HT6aGhoTY2NiUlJVwu1xj0xfYOvm/2CGjFYGSxWNevX7e2to6Ojoalf2KxGAKbaH3PIJpz8ODBKSkppgJUS31v3LgxaNCgqKgoCBzdlr49pKAWzQlLPe7cuTNu3Ljq6mqsLVIL/x6SxwDVYmnOsLAwA7SIN4EjoC8EtGi/lStXbt26lUKhaMWB7MUZpBNc6wAAIABJREFUi740hXq09K2trV2+fPnq1atb0pxmM0DpF0Cjqg1eNyhGPYfDIZPJEOctPz8/MzMzo3nLyckhEAglJSU1NTUQVAD7WsQ72qj6tB1htGjOsLCwESNGaNGcphiCuLS0dOrUqf369bt48WJb8nt5ednY2ERHR2vhk5ycjNynbt++rXW2/Z+60Jwe9/ParwQ/awwIqNXqs+cvOzg63Q971LWXNZlMdnNzmzVrlrW19fTp0/ft21dW9r8Ym4TCIqg/MDgUaM78/G7x3wKh0O3mHQdHpwtOV0pLy/WIYU5OXlOO0vOXyWSqHqs1v6q6S3M2Nn6y42MYfKytrVHc1zlz5gwbNgyOz5gxg0ajGQ90DQ0NycnJkFMWDZuTJk1ycnLqlB98ZzVyC8xyC8rW5SoUqw8WICqVSrlcLpPJxGIxZLJks9lMJpNGo1GpVAqFAgRhPWYjk8mU5xuNRqM/3+CqvLy8gICAP//88/PPP1+1atXs2bOnTJkyduzYAQMG9O3b9+WXX542bdrChQvt7e0//fTTn376af/+/UePHj116tSZM2cuXLjg7Ox88eLFs2fP/vnnnydOnDh06NDevXu//PLLrVu3Llu2bObMmePHjwcuc/To0ZMmTZo1a9ayZcu2b99+6NAhDw+PlJSU+vp6BoMBQoEWWoqQmjekEIVCoVKpdDqdxWKx2Ww+ny8SiSQSCcTghWyjCDRdEDZYGZFEefHu06xCssFaxBsyAwRwmtMMOhFXAUfATBC4du2ah4cHVhlEc4pEIh6Px2Aw8vLyRo4cee/ePTabLRQKIW5t175DsA11eV+/NCdWX8gLmJycPHr06Nu3b3M4HPAFMbNUfF1GHr/QAAhgaT8ej8dkMn/55RcbG5vq6mrIDYnScWkZNxHNOWLEiG5+wBtATdQEfAuhILFMJvP7778fPXo0kUhE+rZK66Ia9LsD3xuw9EEoFHK5XDqdXlFRYWNjk5eXZ5ZLHxDN2a9fP9ypS7+3E15bTyOAZQ5oNJqdnd3+/fu1mANweutpSQxTvxbNWV9fv27duvfeew/RnBDSHMYxw4iEt9IdBMChEzGdbDabTqeTSCQI8lZSUlJaWlpRUVFTUwP2NT6fL5FIwGcXd+XsDvKGvxZ8XJA3p4eHx/jx47UGq7ZoQsNLq2OL5eXlr776qq2tbWBgYDs+zV9//fWIESNycnK0qr148SKy1xcUdC6Ppi405+3QXK0W8Z9GiACdwYDor/EJTQl0urCdO3fOyspq1KhRgYGBdDpdy0ahUCggiabjuYtXrrpYWFgIBIIutAKXKFUqj7u+KBCu1rdYl6uFC8srKh3PXXJwdCIWl3SzKvO+XA805yefoMEHdnbv3s3lci9cuAA/ra2t//jjDyOBUalUHjlyBFGwFhYWdnZ2Bw4cIJFI+r0DtfRVN2j2O0U/SCjVOt7hT+TZCSFhge+USCQikUggEPD5fB6Px+Fw2Gw2i8ViMplAH9KaN+AOge6kPt/gFFCMDAajvr6+oqKCSCTm5eWlp6fHxsbevXv3woULhw4d+vbbbz/44INly5a99957M2bMeOONN15//fWxY8eOGDFizJgx48ePf+ONN6ZPn/7uu+8uWrRoy5Yt//73v/ft23f27Nnbt29HREQ8ffoU1paVlZXV1dU9Z1rpiNfEigdEJsgGvCyDwQBSk8PhcLlcPp8vFArFYrFUKpXL5ZBbFPKJGvNEXSJT+kcWxmVUddjReAEcAYQATnMiKPAdHAEcgV5D4MmTJ6dOnWq5/gtYFrlcLhaL+Xw+k8ksKyt79913d+/ezWQyBQKBRCIB1qG3RNc7zalWq+VyOdC6TCazuLj4rbfe+uyzz1gsllAo7HV9ewtn/bZLp9OJzRuTydRvzWZWm1YMRjKZvG7dumXLltFoNLTOANyptT5sEM05atSowsJCU4EF9JXJZCKRiMPh1NXVrVixYv78+ZCIFNZVtKpvjyqIjM6w9IFCoUyaNMnZ2RnbBSZnjmwLMURzvvLKK22VwY/jCBghArBKSaFQSKVSHo+XlJTUp08fV1dXKpXKYrEgxDRMV7SMnkaoi44iadGcVCp1y5YtEydOxGlOHQE0wmIw64aXDuSo5vF4LBYLGdcgyhmPx9NK46Q1BzBC1XCRsAggmhOC+Dk5OU2fPt2kaU4Wi7Vy5UpLS8s9e/YQicTif25EIrGwsDAvLy8iImLy5Mmvv/56TU2NFiBffPEFMArDhg1rhyXFXoX2daE5b4bo5ISE6sR3egWB/GcEYA3znnWO6kbS3r9/f+bMmX379v2///u/mzdv1tbWolOwU1tHAofO4ydPjxgxssuDp0ajSU5JA2ldb7iLRGKthrr5k0ymOF265uDolJSU2s2qzPty/dKcVlZW33zzjUgkgihfGzZsAP/O/v37Z2f3/hjCYDA+/fRTRMr2799/3bp1mZmZXb6Ndb83WDzJQefYbCJF90talgTKs6F5U6lUyMtTKpWKxWIgPnk8HpfLRaynlsdkS2YR2E+gHrVYRsY/N2aL7Z/n//bORC1Cbc/Z1ab/z/1L//5PpVJRiwwGg8lkslgsDofDa96EQiG4bAKviahNlGXAAL3Wsgs6e0Sj0fg+LvB+2MUBubPN4eXNAwGc5jSPfsS1wBEwbQTCw8O3bt3a0ncHOZNBiAkWi0Umkz/44IN//etfNBqNz+eLxWKZTNaLJv6eoDnBmQxoXQqFYm9vP23aNBKJBPpCakDT7u9elV6tVv/6669jm7eLFy/2qixG3TgKYSeTyYRCIZvNrq6uhog0dDoduRKiuTJWGROlOcHwB1Gj2Wx2YWHhG2+8cfz4cS2rvYHdVmDpA1rqQaVSN2zYsHnzZnAwNbOlD4jmfOedd7B3FL6PI2DkCADNCauyeDze9evXbW1tIyMjaTQahLxuy/fdyPVqRzygOeVyOeTmpNPpO3fuHDt2LJlMRmkFVCqVMS8Sb0e7F/YUevUrFAqZTAa2P5TtSyQSYV0BkB/ACwuXiSqOpTlZLNbhw4fnzp2LpTl7dwlpZ1EVCATLly+HhHajRo2CGb7W3zFjxowYMeKll16ysLCYMWMGsAioIalU+t5774Ht/ttvv0XHddzRheZ0DczSsTa8WC8iEBEZA8RhTW1d18TQaDR0Oj04OHjGjBl9+vSZOHHib7/9xmAwUG0ajSYhMcXB0en0mQubt2zrMtNApdIuXm6iIZ2vuPJ4+k9cx+Zwr1674eDoFHIPTyGBeq+VHT3SnNbW1seOHcOOTgQC4bXXXoOhaebMmdgbqRVRevgQmUx+7733rK2t0YqQoKCgll4KPSRFQRl9z9lIQsX/HqUuNAQzUvQXBbHA8p3g6CkUCsHRk8vlcjgcLUdPxC+2pB4RE4mlJxEViljJlhQmlEGXY3e0qkJBdLHUJrCb4LKJ2E2ZTIbYTZiwgREDIdAFDA1/SWEl/ZJXmuHbxVs0XQRwmtN0+87cJG9oaKipqals3iQSibmph+vTBgIkEumbb75hsVitngdri1KphEXlkJru2LFjgwYNysrKQsvJlUplb9nR9E5zoqh3YDek0WgnT558+eWXMzIyeDwe0LpgN2wVMfxghwio1erPP/8cJuinTp3qsPwLWwAWGcDTJxAI2Gx2Xl6enZ0dkUhEiTkhWl3LT3RTpDnRogqpVMrn81ksVlJS0sCBA5OSklrq21LlnrtPgOaUSCQgFZVK/e233wYNGkShULBLHwwpUs8pi2jOdevW9VwreM04AnpHANGc4Av+ww8/DB06tKysjE6nQxYcmUymVCrVarV5PKoomzjEn+BwOAwG4/vvvx8zZkxFRQVOc+r9BjNkhTD3BiYMbH8Q5A3+Kpo3yOSE7GWGFA9vq/sIqNVq5HrOYrF27969atUqoDmxrufdb8gANSgUim+++QZm9Tr+XbNmjZZgbDZ70KBBFhYWlpaWycnJWmc7/KkLzXnNP6PDevACvY6Au4c30JzdiSULWjQ5Ifn6LliwYMCAAYMHDz527FhRUZFKpWpsbJRKZbfdvRwcnU796UjtUs5FgUB4pZmDPHP2YnZ2j6R9lUilkPXT9YZ7r/eLMQugR5pz27ZtCoUCq6xGo4EwyBYWFtbW1o6OjtizWvvh4eHB3d60PN1REzQabcWKFTDGWltbf/TRR91/RlDluuzEZVT9dTOJwdGb1zIYD8GzU928KZs3mOrAGi+xWCwUCiG2LfCdyMsTOWLS6U1RZLG0JZah7M7+81qb/tPpdGgRXDYhGi2Xy+XxePzmDXw3YSEasJsKhQK+OxDBaeCF2rp0qy5lcoiUS95p6gaNLoXxMjgCjY2NOM2J3wbGggCTyZwyZcr45i0hIcFYxMLl6GEEnj17NnHixLZmVMiOBmEkITXdgwcP+vXr5+3tDekqwUOit17biOZcuHChWKyHiReW5uRyuTQaLTY21s7OLjAwkMvlQtjMVv3nerijzKd6nObUsS9hhSPWt/jMmTNvvPEGck5CfoQtrfamS3MiZywmk3np0qXXXnuNQqGAMxbSV0cA9VUMOyaw2Wwajebm5tanT5+EhAS01MNslj4gmvPjjz/WF4B4PTgCBkAAnlPwfadQKKtXr16xYgWVSmUwGCi1tjkl5oTpmVZI7SNHjkA+ZmOYnhmg0824CWA6YRoA5j+tv7016zZjzA2pmhbNaW9v/+GHH8LszuRozsrKSltbWx0JTii2f/9+LbTT09Ph1JgxY6RSqdbZDn/qQnNe9sadUToEspcLKJVKCNN6wemKvsLLCwSCuLi4Dz74wMrKauzYsR999BGBQNBoNAWEIuBTr7ve7uwtp1KpHoQ/hsvvhYZ1Nsayjig3NDTc8fRxcHRyPHcJ2FkdL3zRiumR5vz6669boieTybZt2wYD1NChQwkEQssycGTkyJGdGglbLXz69OmW9atUqs2bN4PHvLW1tYODA5/Pb1ms545oNBq/x4Q/XBOE4n/QwHppUYvvhBSeSqVSoVBgKU+RSIQoT5TRE5J6tsp9YulPLGEJ+62eRQkCEKMJpCa7eYMUmxCQVtC8YcPSYqlNWIiG2M2Whhq94GawShhc0R9uCVR2UyRnfMMR0AUBnObUBSW8jCEQoFAo/fr1g9dtZGSkIZrE2+hVBKRS6dGjRysrK9t/9SIPCYlEwuPxGAxGTU3NSy+9dPjwYTabjdJzmo3BBekrFoshFR+VSh09evTx48fNUl/D34M4zakj5igxJ9yKTCZzzpw527dvh8ScAoFAKpW2FdbMRGlOMNkjfdeuXfvhhx+CMxboC4k5dQRQX8UQfQJeYnQ6PS4uzs7O7tKlS4g+MXzGUH1pp1UPojl37NihdQr/iSNgtAhgfcGFQmF5efnEiRMvXLiAvKNEIhEEnG9/wmO0CrYqGHpHiEQimK44OTkNHTo0JSUFpzlbRcxED6LgZr0VN8VEcTNasbHjFeRenTVr1u7du02U5iwvL3+3k9vDhw+1eodEIo0dO3bEiBEnT57swiitC8153gNPcKiFutH95HJ5552uODg63fXy07twOTk5GzZsGD58+IkTJxobGzUazVUXNwdHpzNnL6aldy6gcWEh0fHcJQdHp5u3PXuUgAx7GAFkKo1O1zsgZlNhT9OcjY2NlZWV48aNAzPpjBkz2opRrBea86+//tLqmoaGhnPnzkHr1tbWR44c0SpggJ8KpfpmSI5/JEGlbujR5tqnPOVyuVQqlclkEolE3LxBOk8gHcHpE2hI7vON07wBT4n+InIU8ZdQDIhMuBS5aWIZTRSNFsSQN2/gtdmS2uzCu6xHse1y5UKJ3D00N7Owvss14Be+aAjgNOeL1uPGqy9Ocxpv3/SMZCwW6+23346IiOiwelh0DDEbmUwmlUrdvHnz+vXrwcXK/KyHKEYlj8cDfXft2rVy5UrQVywWA7dkNnOXDm8A/RbAaU4d8UTsGsRPJhKJ/fr1+/PPP5FzEnKkblmhKdKcWvrW1NT079///PnzSF+ZTNYrzliw9EEmk4nFYh6PR6fTq6urR4wY8dVXX6H0nDjN2fImxI/gCBgMAaAN5HI5TFTS09Pt7OwKCgqoVCqLxYKA8+b34sbSnDBd8fDwGDhwYGRkJKzKQu8IfLpisFsRbwhHoEMEtGhOJpM5ZsyYffv2oQjbKJFwh1WZTYGGhobi4uKcnJyu5c1pi+aksUSeYfnnPFKPXo1zuN3pWLhmA6+pKEIi1Z89f9nB0Sk65klPyKxQKLKysvLy/o4xW1tbd+36TQdHpyvXbuju0FlbR3K6dNXB0encBefKquqekBPVmZ6RBTQnoZCIDuI7WggAzXnSNf6UW0JhBaMLE55PPvkESMRWvTkbGxvVarWzszOU6dOnz/nz57VkgJ+ffPLJhm5v4eHhWpVTKJSpU6dC64sWLTJwrFoQRiJTXvZO93tcYJi4pWh1FzakrUqlgqi2ELofKEZIYS6VSiXNG+I+Rc0beH/CX0SFav3EHgfvTEiCLhaLoU6ovCWvqVQqwfEUgm2AyweSXKsTTfqnXKHyfJD/OKnMpLXAhTckAjjNaUi08bbaQwCnOdtDx7zOaTSa6OjojIwMHQPCQH4gSM/JYrHodLqHh8eYMWNoNBqXy0U0p461GT+WWvrSaDRvb++BAweSyWSIUWl+TiGG7BSc5tQFbZQWVyKRQGJOT09PGxubkJAQBoPB5XLFYjEk5mz1uTM5mhNZ/UBfFosVEBAwcODABw8etEzMqQuAeiyDPLylUil4tFOp1I8++mjBggV1dXV8Ph9F0+3Cp7Ue5dRLVbg3p15gxCsxMALoIYW1CKdPn546dSqFQkG+7xKJxGzWIiBsgeaEwOZAcz569MjOzi4oKAinORFK+A6OgLEhAOOVQqGAMDlUKtXKyurMmTMvMs3ZzT5qi+ZkcMUh0UUu/hnHXZ78dTOxm63gl/c0AsTiEvCSLCAU9nRb4NCZlJwKPKJ/QIhare6wUYlE6nnXF3xA4xN6nDivqq4B8Z7EJ3Uo2wtb4F4s8YLH0zO3k857pJRUszSdJ+I6pDnhblm7dq2lpaWFhcWwYcPIZLLBAI+MjIRwtTY2NkRi7xDefKHM8XZyQbmhvYoRa6jFd2pRnhDeFiLcyp5v0ucbsJXt/31etslVFG3ApMrlciBWgWTVojZBMJDTYLeEgRuSK9X34ohugTkGbhdvznQRwGlO0+07c5McpznNrUfb1ketVn/55Zfnzp1ru8g/zoApDdJzstlsOp1eWFg4fPjw8PBwDocjEAhkMpk5GRCRV5lIJAJ909PTR48e7eHhYZb6/qOze/4HTnPqgjHWOQmote+//37IkCGlpaVaiSpbpdZMkeZUqVRYe/3u3btfe+01AoGgi766QNrlMoiClUqlfD6fyWTSaDQ/P79Ro0aVlJSgpR7mkZ4Tpzm7fJ/gF/YiAuitDSGvZ8+e/emnn1IoFDqdjpJqm9MsBaDG0pwwNGVnZ/ft2/fWrVvm52jei3cX3jSOgH4RwC7L4HK5+fn5ffr0uX79ulaIfl1IF/0KZrq1tUVzMrni0Lhi18AsoDm7wH+YLiamKHlmVg6wenQGwzDySySS6663oNFCHTwmo2Lizpy96ODodO9+uAGeUJFIBLIFBocaBhBTbCUklnjeI/XsnZRLXk9La3qK5mxsbKyoqJg4cSJ4Vc6dO7et0LV6x/DQoUPIlVPvletYIYMj/sMtsZZm0ISgbckGnCKW+ETJy1FeT6Aksd6fQFW29RdbHipBf5GzJtZfsy3ZzPK4St0QEkt0uIEvtjDL7u0RpXCas0dgxSvtAgI4zdkF0EzxEhKJlJTU9JZq1QmsVY1QYDSUrrK6unrhwoUffvghhIND4ZVaZVxardOYD7bUt7y8fO7cuRs3bgTGBQ8E153uw2lOXdBDNyEkXautrV20aJG9vT2kbsIm5mz1oTM5mlNL36qqqjlz5qxevRo5Y/XuIINIFKFQCEsfyGTywIEDw8LCOByOSCRCSz106VxjLoPTnMbcO7hsrSIACxGUSiX4gpeXl1tZWV24cIFCoYDvO8ScgIUIrQ6YrVZr/AfRCgyxWMzn81ksFolEAt2xq0PMJnW68fcILiGOgC4IaNGckZGRtra2fn5+EKIfLR41AImii7QmUaZDmvPo1dg/3OLVDZ338zIJ/c1FyNi4BAdHJ6dLV8ViicF0otHoECnX3cNboVC21a5GoykoKATS8co1NxaL3VZJ/R6/5Ozi4Oh0x8NHqWxTNv22aHK1BUcXnXVPOXcn1dknvayG3YXVDLp4cwIsly9fBodOKyury5cvGwarjz76CGjOJUuW+HV+S0hI6L6cNRT+0atPxBL8Juw+lqZXQ0ODJiWPdOBitELZscu76amHS9wDCOA0Zw+AilfZJQRwmrNLsJneRW5ubp9//nmn5EamNIjZyGKxqFTqd999N2TIkKqqKoifqVAoeiVtXqcU0bEwCicF+kJ6zn//+9+vvPJKSUkJNsuX7lSxjk2bQTGpVJqSkhIYGHiteQsJCcnIyMB+m+E0Z4e9jCLWQqRoDodTWFg4cuRIX19fOp3O4XCEQmH7vJpp0Zxa+rLZ7IyMjDFjxri4uIDVD3jEXhxhsCwsh8NhMBhUKnXZsmW7du3CBodUq9WmTqLgNGeHjydewNgQgCkKJOYUCATu7u4DBgwICwujUqlMJpPP50OIbzN4PLWQ1+J3WSwWjUZ75ZVXDhw4ALG+zSmetpbu+E8cAdNFABZOyeVykUjE4XA8PT0HDBjw+PHjXs9EbrqQtk9zXg/IPOQce8IlXqluMF0dXwTJQ0LDHByd3G7ckclkBtNXo9E8jogG/jIhMaWtdlkstkuz3+fZ85dLSw2Xo87LJ8DB0cn1hrtQKGxLthf8eEAkweFW0rk7qVd8Mspqe5bmlEql77//PpCOr732Wn19vQHAnzVrFrTYtb9r1qzpvpCpeXUXvZ6q1fhKke5jaXo1qBs0selVf7gmCsUK05Mel7g3EMBpzt5AHW+zNQRwmrM1VMzqGI/HS0lJUavVXSDn4JtcKpVCmkAGg+Hu7t6nT5/Q0FAgXeRyOUSEMw/ItPSl0+ne3t79+/d/8OABOG+1kxbRPBDorBYajUYsFv/555/Dhg1rOQsfNWrU+fPnhUIhmGU///xzKHPq1KnONmT25SESi1qthrxN4KPj4eExfPhwsNoD0d7+HWhyNKdarQaWAvT19va2s7OrqanRSszZhbFLLzcM0JwQU5fL5cLSh4MHDw4cOJBGo/F4PKlUqlAozIBHwWlOvdwweCWGRACtQoDEnF9++eWYMWNKS0upVCqK3QoZtQ0plQHaapXmhOUX2JHTDMYlA4CJN4EjYDAEUHwIoDlPnz49ZMiQtLQ08D4XCoXtT/AMJqcJNdQ+zXnNL+O381EHLsXIcU8U4+7UO57eDo5O3r4B2NWxBhCZw+GCQ6eDo1MdqRXiqqGhwccvEFJyJialGkAk1EREVIyDo5PzVTcmk4UO4jsIAU1j493w/KPXnjjcTu4yzblz506wS3zzzTeo5rZ2WCzW66+/DuXffvttlUrVVkl9HR80aFBL04ruR/RCc0alVFz1zdSXRng9JodAdhFlv1M0nS02OclxgXsFAZzm7BXYX8RGWSxWQkJCUFCQm5ubl5dXdHR0SUkJ1mSM05xmf1ukpaXNmTNHIBB0QVMwI8pkMqFQyOVyGQwGkUi0tbU9dOgQi8USCoVg5TeP7HQQ0VelUoG+4LxVWVk5bNiwEydOsNls5EtnNvp24ZbQusTX1/fNN99sf849adIkT09PlUqF05xa6GF/gmsj0H5gtWcymStWrNi6dStErOXz+R366HC53LPN27Vr1zgcDrZ+I9xvaGgAfSFCL4PBeP/99zds2IAi9EokEqVS2YvGekQnQHpO8Jry8fGxtbUNCwsDj3bzsEviNKcRPiC4SO0gAAMmel/X1tbOnTv3gw8+oFKpkOhOJBKhOPPt1GOKp1r6wdPp9O+++27FihXAl4AbKz5RMcXOxWU2YwQQzSkUClks1vfffz9y5Mjy8nImk4nN9o39SDdjNPSiWvs051W/jD2OEf+9ECWV9zghoRd1XthKLjlfd3B0Cr3/UG1wv9u8/GeQdDMwOFSp/Md9olar454kgrun511fsdighv6s7FwHR6fzTs6k1vjXF/ZWQYprGhvv3M895BzrcKvrNOeTJ0/gqzk+Ph7V3NZOQ0NDVFQUlD937hyXy22rpL6OX758GZrr2t+goKDuS+ISkBXztKL79eA1mCICDRpNJoF8+mYSidYVM7IpqozL3E0EcJqzmwDil3eMAIlE+uqrr/r06aPFQFhaWs6fPz8qKgqSf+A0Z8dQmmwJtVodHx8P39VdUwIlkhGJRDweD+LWbt68eeXKlQwGA5yZwMpv6jEbAR/kHQK8Czhvff7550uWLIEgeGZG63btroCrNBqNj48PZKqAQcbKymrChAkffPDBf/7zn82bNw8bNszKygqNP3/88QdOc7YDONZqDyv9iUQipFuj0WgcDgcSc/Yu7deO/J09hSz1MpkM9K2rq7Oxsbl69SqK0ItYit4aXrCdIhAIOBwOnU7PyckZNmzY77//jl36YOp2SZzm7OwNjJfvXQRgkYRSqYRoE/n5+cOHDw8ICACaE+v73lujR8/hg8YlFN6cTqdfunRpypQpWklJTX1c6jkM8ZpxBAyPQENDg0KhgMeWTqdv3bp10qRJNBoNnLBRLmH8sdW9a3SkOSVSPLGc7qAauqRcLgcqMTrmiaHbbm4vMOgeCFBeXokVoLaWdN7pioOj07kLzvwuLRbH1tbZ/YrKKpCqtLS8s9e+COX1QnO+CEB1U8c/biQkZNV0sxL8chNFQKNpzC2m7LsYXVqD+5SbaB8aWmyc5jQ04i9Ue1wu9/Tp06NHj0YEQ8sdKyurzZs3Z2dn4zSnGd8bNTU1//c4nOfZAAAgAElEQVR//5eS0mbCiQ51R1SERCLh8/kcDodGoz148GDo0KGVlZXgzCSTyXoxeV6HKnSqALKcgr5sNptGo4WFhQ0aNKiwsNCcnLc6BUurhR88eGBnZwdji52d3VdffZWamqpQ/C92v0AgCA0NXbRoEZTp06fPq6++Cvt40NqWkGLvPYgRfenSpUGDBkVFRSHLtTk9a+AoCRF6BQIBi8VycXEZPnx4bGws0hc5SvYWUQEDINbllMlkksnkxYsXL1u2jEQiAfcMcWtb9qkJHcFpThPqLFxUFHoBAkrzeLwbN26MGTOmrq4OOAM+n2/Ga5IQzYnWiNDp9IiIiAEDBsCamF7PaozfojgCOAItEYCsBLAyo66ubunSpZs2bULhOsRiMcwlcJqzJXRtHdGR5hRK/vdt0lZV+PHeQqCqqhr4vMysnF6RobqmFkLXXr7iyuH87aLH5wvcbt5p9qe8UkAoMrxgFArV6dJVB0en1Kfphm/d+FvEaU4D9JFC2XD82pOiCqYB2sKbME4EiJUMR/eUgjK6cYqHS2VsCOA0p7H1iFnJ8+OPP2JdrCwsLKZPn75z587du3fPnz8fS3na2Nj4+/v369cPDkZGRpoVEC+2Munp6XK5XCAQdIchQDQniltLp9Orq6snTJjg6OgIzkwoO50Z4K2lLzhvEQiEyZMnHzx40Pz07U6XvfPOO2gwuXDhAniHt6xQoVDY29ujkrCD05xaQCE6DVntqVTqpk2bJkyYUF9fD57EyATWnSdaq91e/In1nObxeDQabdWqVdOnT6+urmaxWLpE6DWM8EDHyuVyFEmYRqO5urq+/PLLz549Azkh/59J9wuiOb/44gvDAIu3giPQHQSwAwiXy12yZMn27dspFAqdTofEnGhmYtIPZqsQIZpTLpejiN+5ubn9+/fPzMyEvOkymQzyppuf+q1igh/EETB+BLDJ10tLS6dNm3bkyBGc5uxOx+lIcwpE8u60gl/bowgkJT8FmrOsrNdiY0ZENiXCdHB0evQ4CmYXPr5NKTkdHJ1C7oUZPpRuY2Mjm8O56nLDwdHpQfjjHsXfRCvHaU4DdByFKTpwKaaOigcsNQDYRtoEnSM65ZqQXUgxUvlwsYwMAZzmNLIOMRdxlErlvn37EMc5fPjww4cPFxcXY/Wrr693cHAYM2YM8A0TJkxAgSVxmhMLlEnvc7ncRYsWnThxovsWLhS3Fln5yWTyJ598MmHChP9n703Ao6iy9nFWSVgCAWRXlEEdGQcER8cdPx0WHQVmGLcZHRVGnHyKoo4oiyiDNE2gQxYgCQQIO4SEPWHLAiH7QvaQfel09b539d5d/X/g+N1f/TskNL1X9+3HBztVde895723blfd95738Pl8lUoFWaB8mD/PvT2F/AWdXpFIxOVy//a3v02ZMgWCt+6aH9G99vhnbTExMTCB9O/ff/Xq1b3vPVepVC+//DKd6cQ0p123omVrFJ1TXV09ZcqUdevWCQQCqVRKjxp0/aa2a937f3bfT1BWVvbQQw99++23kFfPfxR6kalarRZ0awUCQWtr68iRI/fv3w/5tBCj4H0kcYsYgeBEwGKxIMXampqakJCQuLg4giBEIpFUKgX5R+D5AhIfu+0XkDf9oYceSkhIQL8XmOYMyK7HTjEXAbPZbDAYtFqtQqGorKwcO3ZsSkoKykqAXy6c6FkHaU65Wu9E5biIdxA4ejwVCEWhyGdBY0ajcfeeZBabExW9vYtHlJSUQ3znnn0HSVLrHRzsWiFJ7a7dt0zas++g3Sn8p81mwzSnF4ZBQ7sk6kB+lxDTnF4A2x+boChbY4c05nBhYVWXP9qHbfI/BDDN6X99EhAW5eTkDBs2DOiE8ePHl5SU3JF+sFqtXC73kUceoRMPffr0wTRnQIwCm0AgaG9vFwqFBoMbtq9215YUCASxsbF9+/a9ePGiQqFA8mjU7Q/TMUT+kiQJWpoCgSAuLm7w4MHp6enIX6B1A4BwcqK/dDrd6NGjYfaYNWuWTCa7ayVHjx6lzzaY5rRDDEYdWrWXSqWpqamDBg1qamoSiUQoOgfUoQNg1HX399ixYwMHDiwrK0OKtX6i0AvTmslkAgZaLpeLRCKCIN5666158+ZBzlStVhswOVPtRib+EyPghwign2mdTqdQKCIjI0eNGpWZmcnn88ViMcjLB7b8I0IA7T9rbm5+5plnPv30U4iG93liYz8cNtgkjIAPEUB7KEmSlMvlBQUFAwYMaGxs9J9k5D4Ex+mmHaQ5pUrfMFVO+xVUBaOidwDN6ZZVC6ehq6mpY0duY7E5O+KTgOOMit5BEHynK3SxoMVi2X/gCGQGdbGqgCyOaU4vdGtOSTtr9zU1iUW/vQC2nzYhkpE/bs/KLm7zU/uwWX6GAKY5/axDAsWcd999F7iEgQMHHjt2rPfV8KysrAEDBtC5B0xzBsBAMJvNS5cufeutt7Rat73UWa1WIGA0Gg2k5ywtLb3vvvu+//57WOUPpAU1FLyl0+nUajX4W1NTM2zYsLVr18rlcrVaHUj+OjHms7KyBg4cCFPHxo0be59noH69Xj9jxgw022Ca0w52kEhCirUSieSNN96YP38+5JlTKBQQM202mx1B265yP/wT1vuQv2Kx+J133pk9ezafz4c1elDo9RN/6auTCoVCLBbz+fxt27aFhIRUV1erVCochOGHYwybFMAIIMVakiSFQuG8efNmzpzZ1taG5B/RzoM7bvULAGQQzQl5xCUSCZfLffPNN5966imxWKxQKPCkFAC9jF0IJARg1kL7pfbs2TNhwgTQ2YY3CyQLERiPed7pu55pTu2prPrtR4q/Ymf8Z+tFkYz0jj24lXtFgCS1mzZHsdicuB2J91rWvdcbjcZDR34VqgXaNS+/0Gql3NvKPdV28vQ5sEQmV9xTwWC4+P/RnEm5cYeLmjqklC/7KjAhv3C9af+ZChXphqiJwAQo0L2iKFsnX7nzePHlwpZA9xX75x4EMM3pHhxxLXQEFApFaGgoEAnLli276+KO1WpdsmQJIh5wNCcdTOZ+r6urUygUnZ2dbnTBbpVfJBLx+fxFixY9//zzBEEABwORE4Hxcn5Hfz/++ONnnnmGzsEEjE7vvQ6V7du3I2Xs6upqB4uXlZWhUpjmpINGV6wFZr28vHzQoEGxsbF0xVqIF6QXZOh3tJMAMv7KZLLm5ubQ0ND4+PjuirV+4qPFYgGtOYjw5vP5WVlZo0aNYrFYKMIbYm39xGBsBkYggBGArVcwgVRWVj744IMbNmwgCAImTKVSCYRBAP9G2wXESyQSgUDw2WefhYeHt7W1QTwr5Ay+67tAAI8T7BpGwE8QQI89aANlRETE7NmzQWcbPUWYTKbAeI3yGuw90Zwyle5ifnPSyfKvIy/8Z+tFQqT2mkm4oXtCQCAQAs2ZdvLsPRX0xMVqtRriOFlszslT5ywWiydacbzOvLxCoDlvNjQ5XipIrgSac3XMlW0HC/adutHGk2Oa0+1df/Bc5Z6T5SaL1e014wqZggBPpFoTk3m5oJUpBmM7fYsApjl9i39gtr5x40bgLEeNGtXQ0OCIk1KpdOzYsYjpxNGcjoDmz9fs379/xowZAoHAvUai0CudTqdSqcRisUAguHr1alhYWFlZGWSnMxgMAbPKj/yFOAnk79ChQ4uKimA9IpgXEL/66iuYNMaMGeP4igxJkpMnT4aCmOak36EoLgfuL6lUunr16vvvvz83NxcUa0EXOpBoTovFYjQa4f6SSqU///zzxIkT8/Pz/U2xFnUTnVaRyWRCobCjo2PWrFl/+tOfIEVxwNMqCAr8BSPgWwRgwkTbDg4fPhwWFlZXVweKtYgwsFgsVqvV8V8o3zrlROtIZgM2x4hEoq1btw4ZMiQ3NzfwnsqcwAcXwQj4DwKI5tRqtWq1WiqV/uEPf1i2bBmatUiSBKH+AJ6yPNEdPdGccpU+q7ht/7nKbyIv/mfrxU6+0hOt4zpdR6CxsRlozoLCYtdrc6UGiqKqa2rBGBabc/rMeZ9vEmpobAKa81puviuuBWTZX6M5Y6/EHSk6dK6qna/ANKd7O9pise47fePYhRqzGdOc7oWWSbXxxeq4I0VnrzrELDDJMWyrZxDANKdncA3uWp9++mmgEF5++WW12qF9ixRFff7555jmDIyB09nZqVQqq6urPbH90GKxQHY6eD8XCoV8Pn/WrFlLly6VSqVKpRJ0XAMmeAL8hW3XUqlUKBS2tLQ8/fTTf/vb32QyWTAEi/R0U1AU9f7778Ok8eabb/Z0WffjBoPhtddewzRnd2ToAowKhaKtre3ZZ5+dPXt2V1cXyA8iBVefv3J3N96JI3b+tre3P/nkk6+++iqXyxWLxUql0g/9RTZrtVqFQgER7Ww2e+LEieXl5UqlEklEBkYfOdGtuAhGwDsIoJsRUtzNnz//rbfeglBOutxCYHOcNpsNcEAx8SKR6MyZM/fdd9/hw4dlMhlKmo5nJO8MS9wKRqAXBNBuNq1Wq1Kp+Hz+oEGDtmzZgoT6tVot7BbFNGcvMHY/5QjN+e2WC82dsu5l8RF/QKC07AYwee3t7pShcsI1HsHfFvNrllAWm8OOjKqurXOiHjcWkcnkAM6J1FNurDYwqqJstp3Hir/anB59sADTnJ7oU6PJkpRWdg7zW54Alzl1EmL1pt25F643M8dkbKkvEcA0py/RD8i25XJ5eHg4UAifffaZ4z4mJyf369cPCuJoTsdx87cr29vbp06dWltb6yHDYEENcunJ5XLITrdy5cqQkBCQyfVDZsIVKOwWUsViMUEQ33zzTWhoaEVFBSS+gui6YFtDpCjqzTffhBljxYoVjoNsMpkWLVqEaU47xNAefyRllpmZGR4efuTIke4KrgGw/tXd34yMjOHDhycmJgqFQplMplar/TBDFZoAdTqdUqkEicjm5uaRI0cmJibi2Cm7UY3/xAh4DgF6FGNVVVVISEhiYiKkuIMJJEiSZ6OoVqB7xWJxfX39gAEDNm3aJJVKVSoVmkg91xdeqxkURHJychobG6FRmUyWlZX1n//8Z/Hixc8+++yePXu8ZgxuCCNwrwjQ71alUpmVlRUaGnr48GFIJ4wzfN8rnuh6R2jObyIv3GyT4EgvBJpffcnOyb3NKW4jSa0PDTOZzEePp4IlZ89dAOna3UnJGtKXWV2tVmvklmgWm7N7z35PbGH3IeCuN01RtphDhf/ecJazPx/TnK7j2b0Gjda4/WhRdklb91P4SPAgwJdotibnpV2pDx6XsaeuIIBpTlfQw2XvgEBTU1NYWBhQCFFRUXe4oodDhYWFAwYMwDRnD/Aw47BEItFqtcXFxXq93kMWwyu6yWSCVX4IcMzIyAgJCYmMjJRKpUhXMzBCKNDOa7q/mZmZ/fr1i4qKQv6CTm8AkE+ODxuKoubMmQMzxg8//OB4QZPJtGDBAkxz0hGjbn/oCq4SieTLL7+cNm0ahHLa8WcBMNLQBgJQrJVIJN9+++2DDz7Y0dEhFotRSjl/u7PQBAixUzABEgTxwQcfPP3001KpVK1WB1hEO32g4u8YAT9BAP00wwTy/fffT5w4saCgAFLcwYQJ2o+B8SjSC+wAhcFgIElSoVDA5rPHH398yZIlENWKQswD4Idjy5YtQ4YMGTx48FdffWWz2erq6p588skhQ4bAE0WfPn0iIyN7wQqfwgj4FgHIhWEwGDQajUKh4HA4o0aNysnJgXTC8PxgNBoxk3Gv3eQgzVnfJg6AafBewfH/6ymKOnM2ncXmxG1PNJpMvjKYoqj0jEsgV3vk6Am93pBx8QqLzdm0Oep6XoGvrIJ29+w7yGJzdiYkaTQa31rib61jmtPTPaLUGHallhVXd3m6IVy/PyPAl6g377l+OuumPxuJbfMfBDDN6T99ESCWVFRUDB06FF74jx8/7rhX9fX1AwcOhII4mtNx3PznSoqinnvuuWPHjnnUJFhQM5vNer1epVLJZDKRSNTV1TVjxoy5c+fyeLwA24xs569UKhWJRARBPPfcc/Pnz5dIJCqVSqfTwapEUL08UxT11ltvwYzx5ZdfOj7qDAbDSy+9BAVxbk7ADUIbzWYzLH7J5fLW1tZRo0atX78e9vj7p4Kr453e/UpEc2o0Grlc3tnZ+eCDD65btw75i5bm/Y2lsFqtQEiD5UAqHDx4cNCgQTk5ORDhjUXnuvc4PoIRcBcCaMLU6/Uajaazs3PmzJlz5szp6uqiB0VB5mzYROKupv2wHjvGF0LMIyIiXnjhBYlEgmYkyFHqh/bfk0nr16+Hh4eIiIiampqpU6fCn+jfrVu33lOF+GKMgDcRAJoTSUx/+OGHkydPbmxsBBEL+j5Rb1oVAG31QnNml7QdOFf5zZaL30ReqG8VW3E4p//1t9VqPXj4OIvN2Zd8yGw2+8rAurqb7MhtLDZnW/QOoVBks9kkUlncjl0sNidyazQc8ZVtZ89dYLE5MXHxYrHEVzb4Z7tAc0bgaE6PdY9IRm7cfY0ncigPmseswBX7EgGKsjV3SvecvJFyyVN6gb50D7ftAQQwzekBUIO7yuLi4sGDB8ML/8mTJx0Ho7a2FtOcjsPlb1fK5XKLxZKXlyeVSj1tG6zyo83IsKZ24sSJsLCw8vJyhUJBkiSs8geGjiudj1EoFBKJhM/nZ2RkDB06tLq6Gq0hQtiZp8H3n/opinrvvfdgqnnnnXccN0yr1T766KNQENOcgBvcUxAkDVlvf/nll/vvvz8rK8tOwTUwst7Cujz4q1KppFJpVFTU2LFjc3Nz7fz1N44TMuFByl4II5NKpQKB4MaNGw899NDHH3+MkuGZTKbAmAAdv7XxlRgB7yBAnzBVKlVWVtawYcOOHDnC5/NB4psuee0dk3zbCtLvhelUKBSmpKSMHj1aJBLZRcb71k7XW6fTnK+//jpiN8eOHfvhhx+uW7eurs7HSdRc9xHXEKgI0LX6VSoVj8d76aWXXn31VZi4AuxW9XIn9kRzKjWGvArusYs1/9l6i+asbhJaLFYv24abuysCFotlZ8IeFptzIu20r56c9XpDfELSbUYzpqnp1/xzFEUVl5RBXsxDR1IMBuNdffHQBYVFJSw2Z2tUbEcn10NNMLRairJFHyyM2HA26mDBkYzqTr4C72Rwb1fyxerYw0WEGIcRuxdXhtUmkGjWx189drGGYXZjc32EAKY5fQR84DZLj+a8p8C+69evY9Fa5o6LZcuWffzxx96xH1EUWq1WrVbLZDKhUEgQxPTp0z/99FN6TqzAkF2i+wsBrEKhsL29/Q9/+MPbb78NurVIptI7XeAnrSxfvhwWGX/zm984/l6qVCqHDx+OaU7UiSgyCakOtra2zpw585VXXuFyuWKxWKFQaDSagNk6YOevXC7v6OiYNm3a3LlzQbEWbZUATtffgqQRxUKPaCcI4p///Oejjz5aW1tLj/BGvYy/YAQwAu5CAKXI1Wq1CoXiyy+/fOyxxwiC4PP5gUfsOQIa0JwoREwoFNbX1w8bNiw3NxdtvAiMnViI5kRxnA899FBSUlJgPG060tf4GuYiQH+bUCqVtbW1U6dO/fnnn/l8PjzpgYiF2Wz2t8ce/8e8J5pTRRqKa3hpV+r/w7n09eYLN27yzWZMc/pdf5pMpsitMSw25+KlTJ8MfoPRuP/gUaAzL1y6Qn+lpSjqwO1Tm7dE19b5LC9dc3MryOfevPlrXmq/60UfGYRozuhDBccuVncKMM3p5p7oIJSRe68bzRY314urYw4CFGXr5CsPnqs8nF7NHKuxpb5EANOcvkQ/INtubGwcNmwYUAjx8fGO+5iSktKvXz8oiEVrHcfN51fCwlZ+fn51tZd+eEACDglsKhQKkUjE5/N/+umnoUOHVlRUgMBmwOjFIVYG9PHAX4IgVq1aNXDgwKKiIjt/fT4kvGZAdHR03759YdJobHT0vev48eOoFI7mtNlsaOULLVKnp6cPHTr0+PHjEJmkVCqRgqtP3v/dO6KQvzqdDvYNnDx5csiQIUlJSeCvnwtfw4RgsVjQhAC6tXl5eYMHDz527BiaEAKDV3Bv7+PaMAKuI0CXWOByuaNHj960aRNBEAKBANgCUJIPHrYAAIEZSS6Xi0SilpaWGTNmfPfdd1KpFDZemEymAOACEc0JDx5PPPFEfX19APwsun5T4Br8HwHYI2U0GiGN7vXr1wcPHpybmwsTl1KpRCkw/N8Xf7OwJ5pTTRrL6ohT2fXf3aI5M4preAYTXqz3t96zCUVioBjzC4q8bxxFUdfzCsGAxF37NCRpZwOX27UtZgeLzdm+c5dWq7M7650/+QLhFk4si80pKCzxTotMaYWibJz9+REbzu08Xnw6u54nVOFoTvf2XW2zOPZwkQnTnO6FlWm1iRXan3dkp2b6bKsH0wALdnsxzRnsI8Dt/ovF4vDwcHj///bbbx2vPyYmBnEPmOZ0HDefXxkdHT116lS5XO41S4DmtFgsBoNBq9WqVCrQcc3Ozh4+fPjq1ashoFOv14NsI9NXoOi0LkmSSqUS/M3NzR0wYMCPP/4ol8vpEnlM99fxgZSRkYFCwL/77jtHllBJkhw3bhxMUH369ME0J6I5jUYjiKBKJJIPPvjgySefRJFJ9NHleO/47ZVopQ/5u2TJkilTphAEIRaL5XI5pKcCjtA/7yZgOk0mE0yAoFtLEMTcuXP//Oc/0yPa/VB0128HBjYMI+AIAmifBEwgbDZ77NixOTk5MGEG2OOHI4DQf0TgEUUsFnd1dS1evPjxxx8Xi8X0jSMOVui3l9FpzlGjRpWVlfmtqdgwjIAdAvT9GXK5fMeOHePHjycIAm3wCk5hGDuUnPuzJ5pTozWW3yRO59SvvE1z5ldy9QafpX50zrVgKHWjogpYxtpaH6yhi0TirVFxLDYnOnanXKHsDrjVaj17/lZqTBabc+ZcBj3Ws/vFHjoik8njdiSy2Jzz6Rc91ARDq6Uo29bkvP/dcC4htexcbhNfrME0p3u7sqiat/M4JtfdCyrDaqMom0RO7k4rP3i+imGmY3N9hACmOX0EfOA2a7Van3jiCWAR5syZo9VqHfGVoqh//vOfiHvANKcjoPnDNQKBoLq6eu/evWazt1/bIDudXq8nSVImkwkEgq6uroULF86cObO1tRXizyB6wCfvA27vHfBXp9NpNBrwlyCId999d+bMmQKBAJYRwV//JGbcDojNZpPL5aNGjYJ5Y8KECS0tLXdtZdeuXWiewTQnLE/bBeIUFhaGhYXFx8cLBAKJRBJgyV8RQYgCj2pqasLDwxMSEsBfeuiq304dsPXBZDIhLyCifd++fUOHDr1+/bpdQGfwzAl3nQHwBRgBFxFAVAFJkh0dHbNmzZozZ057ezufz4cJkyRJo9FosVj8dgJxEYHuxYH6pe+V4fP5q1evvu+++2pqavxcBry7O70codOc7733ntHos0xpvRiJT2EE7ogAetiDFOyLFy9esGAB7M+QSqUBtqHtjgh47mBPNCepM9a2iC7kNX+/7fKKzRnXyjq0OpPnzMA1O4dAesZFIBG53C7nanC6lFyu2LFzN7ReUlre0+M6SWp3xN+6jBMV197R6XRzThckSXJ30n4Wm3Pg4FGnKwnIgrdozn23aM7E1LLzmOb0QB9n5DaduIyznnsAWUZVKZGTm/dcP3GpllFWY2N9hgCmOX0GfQA3vGLFCiAShg8fXlFR4YinUqk0LCwM0Q+Y5nQENJ9fk5OTM3jw4Koq32yroSjKbDajZTWxWCwQCIqLi0NDQ0+ePIkCHM1mMyTY8zlcLhoA/kIAq0KhAJnKhoaGIUOGpKWlMSIEzUUE7lh81apVKAp80aJFOl1vYj5CofCZZ55B8wymOW02m11oo1gs/sc//jF16tTy8nKhUBhgkUlI/xnuI6VSKRaLP/nkk8cee6y6ulokEqE0cv4fCI4mBBQ+JRAIKioqHn300ffffx854s8xqXe8o/FBjICfI4C2HKnV6vPnzw8bNuzQoUMQESWTyegCrcFDc8JPiclk0ul0wKAIBIKjR4/279//6NGj9OcT2KLh513ci3l0mvPMmTO9XIlPYQT8DQE0dymVSqFQGB4ezmKxIDEn3KRGoxFr3TvXaz3RnFq9ubFDmlnU+sO2Kys2Z+SUtKk0BueawKU8h8DupGQgGpUqleda6V6zxWI5czYdmj58JKX3Z4aGxubNW6JZbM7Bw8d6v7J7Q64fMZlMBw8dg5BT12sLpBowzenp3jyT05ByEZNbnobZ3+uXKnTxx0uOZHgpRZq/w4HtuxsCmOa8G0L4/L0j0NLSct999wGX8OKLLxoMd3mgpyjq3XffpXMPmOa8d9S9XUIul3d0dPz000/elKu1cxIFdMKyGsQzLV68+KmnnhIKhfQ0M95/H7Az1S1/WiwWo9Go1+tBp1coFPL5/MWLFz/66KM8Hi84V1fVavWMGTNg9ujbt++SJUskEskd0a6srJw9ezZciaRug1m0Fpab0e5+kiTlcnlxcfHEiRM///xzUHBFUTiBsfKFaE4UBFlUVDR69OjPP/+cx+OhSCyDweD//oIvRqMR8QpCoZAgiIiIiAcffPDGjRswAQZbhPcd7318ECPgLgRgXwgSzP/kk0+mT5/O5XIRVQARUUG4vQD9lIDghFAorK+vHzhw4Jo1ayBQDPQwmS6jjWjOgQMHajQad40rXA9GwNMIoJBrnU6nUCguXLgAuySRbgdJkoEkgeNpPO3q74nm1BnMLVxZdkn7D9FXvmJnXMxvEcnsMy/aVYX/9DICZrOZHbmNxeZEbo22WKzebP1GRVXk1hgWm7N330G9Xt9700aj8djxNOBECwqKe7/Y7Wcpijp56iyLzdm0OcpBqTa32+CfFVKULXJv3v/+ci75TEVWcZtQRlL+aShjrUpIKblS2MpY87Hh7kFAINWw91w/iXNzugfOwK8F07EihlMAACAASURBVJyB38c+8fDVV19FtOW2bdt6J5kyMzPRxfAF05w+6TXHG5VIJJMmTTp58qTjRTxxJSyrGY1GjUYjl8shwPHIkSOhoaH79++Xy+WgHef/jIWD4Nj5C7Tu/v37BwwYkJSUBIxUsGnl2Wy2Y8eOhYSEoDnk/vvvP3HihFwu1+l0er1eq9XKZLLt27ePHDkSrpk2bdrixYvhe5DTnNbbHxSCI5PJNm3aNHjw4JqaGnquJhhUPSkpOTh6/eEyur8qlUoqlW7YsGHgwIFFRUXgr1qtRrmp/N9fNCGQJKlQKGBCuHHjxqBBg+Li4iA4gxGUrT+MDWwDRuCuCCDJa9hb0NzcHBoampCQQBBEd8lr/59A7urvPV2ACGD6dPTiiy8uXLgQ0nMGGM05adKke8IHX4wR8C0C8MBgMBhgT9vKlSsfeOCB4uJigUAglUpRpg+mb0TwFcg90Zx6g7mNJ79a1r4q+sqX7Ixz1xo6BQpfGYnbvSMCMpkcuMN9yYfueIGHDhKEANrdvCW6udkhFkcoFAEjuy1mh0gk9pBhPVV79VoeGNza1t7TNUF4nKJsm/dc//yX80cyqvIrOyUKh9J1BSFQTrsce7go43qT08VxwcBAoKVLvjut7FTmzcBwB3vhaQQwzelphIO0/lOnTg0ePBiIhPvvvz8xMfGOuRspikpPT586dWqfPn1QfFWfPn0wzenP48ZsNovF4vXr19fV+VgoH5bVgKRRKpVSqVQoFDY2Ns6aNeu1117r7OwE0iKQSBokOaVQKCQSiVAobGlpmTFjxrx583g8XoD56+BdYDab9+zZM3z4cMR09u3bd+LEiS+88MKcOXP++Mc/3n///XCqX79+r732WmtrK8oEjGlOs9kMy14KhaK9vX3y5Mnfffcd5GqiKw32vlXFwZ7y7WUolBMt8xEE8eijj37xxRcoEkuj0SBe0P9ZCnpwhlKplEgkAoGAIIh//etfTzzxhEgkUqlUer3e/wV4fTswcOsYAUcQgAkENBW0Wq1SqVy6dOkjjzxSXl4OirUglR8YZJ4jgNhdg6YjAAfyCMTExDz88MN8Ph8JAzA9iQCK5nz22WftEMB/YgT8GQGr1YryeQsEgldeeeXZZ5/t6OgAuX54WgjCMHR3dVlPNKfRZOGJlAWVnatjMr/clHEm52ZTp9RdjeJ63IJAe3sHsHeXrmS7pUJHKtHrDQcOHYV2r+cVOP6SVVBYvGlzFIvNOZd+0ZGG3HhNbW09GOz9WFI3euH2qijKxk7KvUVzXqguqOJKMc3pbojXxmVWNQrdXSuuj0kIUJStna/YmpyPozmZ1G0+tRXTnD6FP3Abt1qtCxcuRDnz+vTp8+KLLzY0NIAejsViMZvNMpns008/Bfqhb9++n3766cCBA+FPTHP689B47733IiMj/cFCtOxoMBg0Gg1krBQIBIcOHRoyZEh2djZaWQuMV3fkL5LchJXECxcuDBo0qLCw0M5ff+gjr9lQUlIyadKkfv36IbLT7suAAQOWLFmi1+stFstHH30EZ4OW5kRjCXYJQGjjqlWrxo8fX1BQ0D2U0/E3cK/1+D01dEd/N27cOGbMmKqqKrq/DBJtA17BbDbr9Xq1Wi2TySCgMysra/jw4RDhrdVqIduW/7O299Sh+GKMgJcRgDkE9oVoNJrKysoJEyZ8+umnEMopFotBQIJB+yTcCyDgQ/9BEQgEbW1tISEheXl5dptmmDsdIZpz8eLF7gUQ14YR8CgCaJekWq2+cePGww8/vHr1arSnDdS2mb4LwaMA9l55TzSnyWwRyzSltbw1sbdozlPZN2uaRL1Xhc96GYGKympg72rrvBQnRFG2S1eyoNHUtNP35K9Op9ubfAjKdnK77qmsixcLBCJo99Tpcy5WFUjFKcrGwjSnx3rUarN9v+1yaR3fYy3gihmAgNVKNbRL9p+tOHu1gQHmYhP9AAFMc/pBJwSoCTqdbunSpfQYzf79+0+bNm3evHlvvPHGM888ExoaCkzDoEGDlixZUlNTgzJ6YprTPweF1Wo1GAzbt29PT0/3EwshoNNoNJIkqVKpZDIZxDO99NJL8+bNC6SMUAA43V+lUon8fe2111588UWRSMQs1U33jiK5XJ6cnLx06dJZs2ZNnjw5LCxs2LBhU6dO/Z//+Z9169YVF/+ayASCyH++/bl69ap7bWBKbYj2Q6GcFRUVDz744N///nculysSiexWpZniV0920ikK0FSsrKwcM2bMhx9+CP4qFAqNRqPX65m1JQJNCBBBBQGdLS0tr7322syZM9vb28EpCOjsCRx8HCOAEbgrAnT1CJVKtXXr1rCwsIKCAj6fLxQKJRIJUlMIWtVHUMWEbVgymUwoFHZ1dT3zzDOffvqpTCajpw8PAJrzs88+u+uYwRdgBPwEAdgUBUmFlUrl2bNnBw8enJ+fj9S2SZI0GAyY5nS6v3qiOc0Wq1ylq2wQrI3LXL4pPeVSbWGlV6kppz0KnoLXcn/VYpXLvaEnTFFUVXUN8IUxcfFOaM/W1TdA8Z0JSSqV2ms9ZTQaIZB0V1KyH25+pSiqpaVFJpN5DRBoiKJsGxKvfrHxfFpmXcVNvkJ9lxyrXjaP6c1p9eZVMZcb23EQPNN70iX7b93dXNl/43PScxtdqggXDhoEMM0ZNF3tC0fNZnN0dDSK0bQLroI/Bw4cmJycTFEUQRCY5vRFL91Dm4cOHVq2bNk9FPD8pYi9gFxZcrlcJBIRBHHo0KGQkJATJ04olUoQorRYLAGw+EgPmFCr1cjfpKSk++6778CBA0qlElYrzGYzdfvj+U7wrxZQiJv5/z5++DLmc8gAJXpWzsjIyP79+xcXF8OSPSRqQpFJPjfYRQPoFIVarYasnH379s3KyqL7iwSumbIKjyYECOiECYHP5x88eDAkJCQlJQVNCDABuggjLo4RCE4E0JMGSEfI5fKpU6dGREQQBAGS18EspYCGBEVRZrMZtp2hbMHLli0bOnSoSCRCyf8YTaWgaM6IiAjkOP6CEfBnBOjTFyTm/P7776dNmwaR6FKpVKVSabVarG/vSif2RHNaLJSaNNY0i36My1rOSj90vupSQYsrDeGy7kWAoqjz6RdZbM7WqDjvPPkrVartO3cBT9nW3uGcO6fPpEMNefmFztXgXKn4xD0sNiduR6JW67MMlBRFFRQUKJVKm81msViWLFkyatSo2traRx99dMCAAatXr3bONadLUZRtfXzOFxvPn7/W2NAuVZMGp6vCBbsjIJRp1sfndPJV3U/hI8GDgMVqbeqQ7kotu5DXHDxeY09dQQDTnK6gh8s6hEBdXd0vv/zyxhtv/Pa3vx07dmxoaOiIESMee+yxuXPnbtmypbn519lKr9evWrXqu9ufhgYckO4Qtl67CEiCU6dORUdHe61RRxoCJg+ly1Kr1RDP1NDQ8NRTT73yyitcLpceQ8B0xgv5C5uyVSoV+NvU1DR9+vQ//elPPB4P+Wu9/XEERnxN8CAAQwjCblAoZ3t7+29+85vly5cjBTN6FKB33vw91wX0NT5QtyYI4vHHH//kk0968pcpLoNrFosFuhJl6ORyuc8999ybb76JonLxCqbnBhiuOeARQPtC9Hq9SqXasmXL2LFj8/PzISunVCpVKpU6nQ72STD9McPp3gSUjEYjPbg8Pj6+X79+GRkZIOoLGtrMhQjTnE4PD1zQVwjAcwJ9W9u0adO+/vpru6TCIGXhKyOZ3m5PNKeVsun0pptt4nXbs7/YeD75TMX53EarlWK6vwFjv9lsOXY8jcXmJO7e54Unf4PBePR4KovN2bQ5Kiv7mtMwKpWqnfFJLDYnJjZeJpM7Xc+9Fkw9eYbF5myL2SmW+CC6jiCIhISEV155ZeDAgUVFRTabzWw2v/POO3369Hn66afHjBmzYMGC06fvTQT4XhHofj1F2X7akf0F63zG9aYWrkyjM3a/Bh9xGoEOQrEmJrOTf4vVxp+gRcBqperbxD9EX8ksbAtaELDj94QApjnvCS58sfMIwP5utVqtVCpVKhVJkkaj0QsPlM5bjEvSEKiqqlq4cCFJkv65OAUpZ1DGSkhQd/DgwdDQ0HPnzgVexiw7f4VCIZ/PT09Pv++++y5dugTymygOD99ltIGMv9oQMYaSqMlksq+++mrSpEnFxcWgYAZb+wNjyR75C4vvkIV07dq148aNq6+vR1k5IYcl40Ie0b4H+gqmUCgkCOLs2bMhISFXr15FgRqMDqLCty5GwIcIoH0hWq22tbV10qRJf/nLX7hcLuyTkMlkkNnObDYH+V1Gz/8nlUqFQmFZWdmAAQPWrFkjk8lAWoPRbAqmOX14G+KmnUMA7dLQarUqlSo3Nzc0NDQtLQ2mL4hEB8V+/L7gHMI2m60nmhMqbCcUP+3M/nzj+cQTJWlXak0mq9MN4YLuRcBoNCXtPcBic44eT/X0+Kco6vKVbIjCTNi1R6dzSd00L78Iqtq9Z7/FYnEvLD3Vdj2v4FbkKye2o4Pb0zWeOK5SqX744YewsLD+/fsPHz48Li4OXEY059SpU7lcrslk8nQndveOomy3Y7XPXy5o6eQrtXpT92vwEacRqGwQbNqdK8dSwE4jGBAFrVaqpIa3PiEnu6Q9IBzCTngcAUxzehxi3ABGgOkImEym0tLSiIgIjUbjn77AEqTRaNTpdBDPBAv98+bNe+GFFwQCQYBlrLTzVywWQ0bSBQsWPPnkk11dXSigM8iXXP1zuPrWKqD9zGYzCuUsKCgYNWrUv//9766uLpFIBIvRer3eZDIFwPjp7m9hYeHgwYM///xzHo9Hz0LKUH+7OygWi/l8fkNDwwsvvPD8888TBMHEtKO+vU1w6xgBQACFv8NOAo1GExcXBzuokOQjyLEGxr4QF/sd8cEajQZpaD///PPz5s0TCATwZAJAudiQr4pjmtNXyON2nUYAaE4k+bBixYqHH364tLQUBLfp29q8zxA47ZS/Feyd5uzgKzckXP1qU/rO48XHLtboDGZ/sz9o7dHr9dGx8Sw2Jz3jkqdBaG1tj4rewWJzYrcnisRiF5szGAx79h2EwNCKiioXa3OweENjM4vNYUduq6v3hu6ayWS6du3aihUrxo4dO2TIkLlz5yYkJIBcLRiMaM7ExEQHXXD7ZRRlWxubuZyVnl3SJpCo9fjudivEpbW8DYlXJXKfiSS71RtcmZMIWK1UQ7vk+22Xr5U5KfTtZMO4GGMRwDQnY7sOG44R8AoCAoHgrbfeamxsNJv9960MbVWGgE6ZTAYL/WfOnBk+fPi2bdsgQR3T1dJQh9P9hUSDEMB64sSJoUOHbt68GXZnB4y/yHH8xUUE6KGNkM5WKpWuWLFiyJAhVVVVEMppl5WT6cteILgNeyBA5PmLL77o379/SUnJHUNXmegvTAjIR6lUCimKd+zYERoampqaimkYF28cXDxoEUBzpl6vJ0lSqVROnz79vffe4/F4SPIaQjmxLrTNdkstACURUCgU8CSWnJw8duzYtrY2hUKh1WoNBgPj4ubR+Mc0J4ICf2EKArD5ABJ4d3V1zZw5EzJcgJoFffpiikd+aGfvNCdXqNqy7/rKbZdiDhXuP1Ohwtn7/KYLVSr1ps1RLDYn93q+R43SanWxcQksNmfzlujq6jq3tCWRSLdwYllsTkLiXu+obYnE4s1bollsTmFxqVtc6KWSq1evPvPMM0OHDu3bt++iRYuqqqq6JwQFmrNv374tLT5LeUtRttUxmV9uSs+7wVWo9CYzjtXupVfv+VRWSVvM4SKNFksB3zN0gVSAomxXS9vXbc8qrPZqHHkgYRhsvmCaM9h6HPuLEbgHBMxmc0dHx+LFi2/cuHEPxXxxKSIzICkUqKW1tbVBUtj6+noI6IQwAiYyGXagooBOrVarUCggQ2dHR8f8+fOfeOKJhoaGAPPXzn38p3MIwBo0PZSzvLx8zJgxW7ZsQUv2KCtnYIRyWiwWs9mMFK0rKysnTJiwYcMGO38ZrTYJTIzJZIJwDblcDuxCR0fHzJkzFyxYgIS7MRPj3I2DSwUtAujmgn0h0dHRo0ePLiwshFBOsVgMm6gQdRcATxeu9DWiOXU6HWwrEQqFXC537Nix+/btg1TBSFHflYZ8VRbTnL5CHrfrHAJwS0IwulKpzM3NHT16dGxsLJ/PFwqF6NmA0VLSziHj3lK905xdQtW2g/mrY69w9uclpZXJlDr3to5rcxqBpqaWXwMiK6udruSuBQ0G44nUU6Axe+rMeZPJPbqmVqv14uUsqDb9wmUvMJ0KhTJ2+y2y9sLFK3f12ukL9Hr9ggUL+vbtO2bMmP/93/+tqKjoqSpEc6rV6p6u8fRxirKtic1csTmjqLpLozVaLDjzrjshv5jXEn2oUKkxuLNSXBfTEKAoW1kd8UP05ZIaHtNsx/b6BgFMc/oGd9wqRsD/ETAajUuXLj137pxOx4D3MViLRHwGCiPIy8sLDQ1ls9n09DNWqxWU6Py/F3qyEPFViL8BYqOiomLEiBEbN26k+wt8VZAvv/aEZPAcR2FJKEulSCR68cUXZ82a1dDQIBQKJRIJXVTQCy/MHgXfzl+lUimVSl999dVZs2Z1dHQgf+lZOZl7j6B9D0i4G4Ss09PThw4dmp6eHkg969FhgyvHCCAE6HMISZINDQ1jx4597733Ojs7CYIQCoUg8a3T6dAGAubOIchrF79YrVaTyQShY3K5HDII/O1vf5s1a5ZUKqVnEHCxIZ8UxzSnT2DHjTqNANoDSpKkQqGIjo4OCwtrbW0FxVoIsAbpFzx3OQ3yXXNzEiL1zmMl6+NzNiXlxh0pEkr9NAWMKwgwtOy13HxQYW1pbfOcC2U3KtiR21hszu49+w0Gd8alqVTqyK23wis3bY5qbvGgCwAOSWp379nPYnOOHD3hObh0Ot306dP79OkTGhr6448/9kJhIprTh9PXrdyc27O+j7pU1SS0WjHH6eZxcfxSbdzhIlLnzrvGzSbi6jyPgMVKXSpo+SXxWn2rq3LfnjcWt+AXCGCa0y+6ARuBEfA3BCiKkkgk7777bkJCgg+fHR2HBdGcRqORJEmVSiWTyWCh/7vvvhs/fnxdXR3KQGO9/WGEXz0hYOevUqlE/v7www/h4eFlZWXIXxCIY7S/PeGAjzuOAIwZWICGxGkHDhy47777oqOju4c2wlYAxyv3wyvv6G+/fv1iYmJggQ9Ci/R6PcQxMHrrA5oQDAYDdC7se2hpaZk7d+7jjz/e2dlJkiQ4a7FY/LC/sEkYAX9DABgCs9kMsYkbNmwYMmTI5cuX6aGcoMKK5hB/c8H79qD0nECrwEQUFRXVv3//goICRKswVC0A05zeH1G4RVcQQPejRqORyWSzZ8/+xz/+ATOYRCJRKpU6nS5gdG5cAcrFsr1Hcwokmt1pZazduf9NyNmanCeQYJrTRbzdVvxYykkQkhWLJW6r9P9fURePAGnZqOgdndyu//9JN/xVf7MRhGSPHDvh6QRDRqPp0JHjLDZnR/xuN5jecxVGozExMfHFF18MDQ2dNGkSi8Wqra3tvvvWT2jOdTuy18Zm1raIKMxy9tynzp05dK5qx7FinM/YOfQCppTVShVUcf8TdakO05wB06kedgTTnB4GGFePEWAmAnv27ImJiVEqlQxaEKezGiRJyuVyyFhZVlb2yCOPLFq0SCKRgCAnrEh2f1xmVl/R/QViAxLylZaWPvDAA3/9619FIhFKusPcVFjM6hR/thZt6gdhZ4lE8sLtT3t7O4Q20jM4BgApjgIcwV8ej/fyyy/PmDGjtbUVUlLR9wEwmuOEUUfvX/o+j6NHjw4YMGDnzp3gL1LX9Oexim3DCPgcAfrWAZIkxWLxgw8+uGLFCpSVUyaToV/YANgX4i7AkUimVqsF3VqBQJCbmztkyJCffvrJTreWcT80mOZ01zjB9XgHAYvFAoq1KpWqvLx88ODBKSkpsLMNoqvR5ifG3YzeAdDBVnqnOUUy8kh6ZfTB/FXRV37akc0TqhysFl/maQRiYuNZbE7k1mi9Xu+JtlQqNYQ/sticvPwiT6w8WK3W1LTTEJNaVtajvqtbvKMoKu3kWQge9TSlarPZFApFdnb2q6++2q9fv/Hjx//9739vamqiO+InNOd/E65u3J3b0C7BNCe9d9zyPf5YScKJUr3R7JbacCUMRcBssWYVta7dntnBVzDUBWy2lxHANKeXAcfNYQQYgIDRaPziiy8iIiI89NDvOQjoeaHUajVk6OTz+f/973/DwsJOnjyJIgkCIPYCiBmLxWIwGCBtGPJ38+bN4eHhZ8+ehbRhIEiF12E9N/D8vGY0VGC1S61Wy2SyLVu2jBw5Mj8/XyAQiMXiAEvRZDcVyGSy7du3jxgxIi8vD/wFVWdGZ4mzG3V0VkatVqN9Hnw+//XXX//DH/4gEono+zzwmqYdgPhPjAAdATSH6PV6pVIZERHx8MMPNzY2olDOQHqcoDvu4nc0EYFurUwmA93a55577tVXX+XxeCCgjWR+XWzOy8UxzellwHFzriBAURTkYtdqtQqFYvny5VOnTi0vL6c/9aEXBFcawmV7pzklcu3JK3UJx0tWci6vjsnsIJQYMX9AQKvTQWLLuB2JnrCHoqhLt3NnbtocdSLttOeeurldPAjo3LwlWiKVesIXVGd2Ti6ARhB8dNDTX65cufLGG2+MGjUqJCRk2bJlhYWFQLL6Cc25cfc1zv78pk4ppjndOxIoyrY7tSwprdxowipE7oWWYbUZzZbUK3Uroy5xhfjXk2F95ytzMc3pK+RxuxgBP0WgtbV1/fr16tsfPzWxV7MsFgu81UNAp1gsFggEbW1ts2fPfv7559HmZZPJFBgBjnb+ikQigUDQ0dExf/78WbNmCYVClUql1+sDxt9eOx+fvAMCwHEi4TIQErx27dqwYcM+++wzLpeLQhsDRruMvs4O/hYUFAwfPvzzzz8nCEIkEkEYFmTUY6h2YveeRmQ2yr0K+x4IgiguLh4/fvz69evpAax430N3DPERjABCAM2ZWq328uXLISEhq1atoody4t9WhJXdF4gsNxgMdN3a48ePjxgxorq6mi4bwLhZCNGcK1assPMa/4kR8DcEUKJcjUbT0tLy6KOPLl68mMvlCgQCqVQKdyJ+O3BLr/VOc8pVuiuFLUcyqr/devHbLRdvtkksFqtb2sWVuIIAwRcAY5d28qwr9fRUtry8EtjHhMQ9crkHg5Aoisq9fivJKIvNOXsuw6NCXJVVNdBQWblnI0ftUNXpdKWlpREREQMGDBg5cmRVVZXNZvMTmjNy7/XElJK2LjnWrLXrNRf/tFqp2MOF+05X4AnTRSSZXtxosqRcrFkTmymRa5nuC7bfOwhgmtM7OONWMALMQICiqPj4+Pnz50s9vBnQc3Ag5Ua9Xq9SqaRSKUjXZmdnjxw58pdffpHJZPRkWp6zxDs1I2VO8FcikYC/Fy9eHDly5Jo1a6RSaSD56x1UA6kV4PwsFovRaERRvx9++OHIkSNLS0v5fL5EIrELbfTcjmPvAIsmAVBNFAqF77///tixYwsKCgQCQeD5i1Dtzu/CbMDlciMiIgYNGlRcXKxWq3U6ndlsDox9Hsh3/AUj4C4E6DsGICvnu+++O27cuPr6egjlBIaAJEnIacc4rs5dQPVUDwqERQLpkCh9ypQpSLeWnhS5p3rwcYwARsAVBOgPfqdPnx46dOiRI0dgs5dcLsea265ga1e2d5pTqTFcLW0/caXu262Xvo68UN0oMhhxcJIdhD74s66+ARi7wqIStzfP5wu2xewERdz6mw1ur9+uQoqi9uw7yGJztnBiuFye3Vk3/snl8gC0c+cvuLFax6tqa2v76KOPgOa0WCw///zzyy+/7Hhxt19JUbat+/P3nrrRQSgwzeleeM0WKvFE6a60MpMZ7wtxL7QMq02m0iWmlK6KuSJXeURdnGFwYHMdQADTnA6AhC/BCAQHAhaLJTIyUqPRSCQS5nqMFvqNRiNEEkgkEj6f39nZuXTp0jFjxly7dg000yBHHSxoBpi/END5r3/9a/z48fn5+fQQLqYzWMztKV9ZDivOZrNZr9drNBqFQnH69OkRI0YcPnyYz+fTQzlhUz/TRwj4azKZwF+5XH727NmwsLBdu3aBvwEZyolGF3If6BkkZF1aWhoWFrZs2TK5XK7VapFOHdO7GzmOv2AE3IUAeoqAOeTKlSvDhw9PS0sjCAJy2gFDAOHgmOPsDjsACJMwaKQLhUI+n798+fJx48bxeDzYbBEYvzjd3cdHMAI+RwBNYhBUrVQqv/jii6lTp3Z0dPD5fLFYDCktUK5u/CTgYpf1TnOqSENRNe98btN3nEsrNmfkV3JlSp2LLeLiriOQV1AEjF1nJ9f12ug1WK3Ww0eOQw7LvLxC79xf9Tcb2JHbWGzOjvjdOp2nBhhJagG03Un76S5787vl9sebLfbSFkXZ4o4UpVyqwTl3e0HJuVMGk2XbwYJD5yq9cwc5ZyQu5QUE1KQhIaV0bWymzmDyQnO4iQBAANOcAdCJ2AWMgHsQqKys/P3vf9/Q4PEth+4xt+daIJYLLbHJ5XKxWMzn8+vq6iZOnPjee+9JpVKNRoPWKJm+TNmTvy0tLb/5zW8WL14sFouRvyDRiZ8Xex4+AXWm+1JXfX19eHj4X//6Vx6PJxQKJRKJnYQgo/2381ehUDQ3Nz/wwAOLFi0iCAL8pbP+TL/3u3cWIhgMBoNGo0GzH4/Hg+yk5eXlKIYDB3R2BxAfwQjQw8G7uromTZr01ltvdXV18fl8CAdHDIHZbGb6TikPdTeS/EW6tQKB4MSJE4MHD96zZ4+dfoCHbMDVYgSCFgH0JAAaHgKBYPz48Zs2bULx6PAghLcauGuE9E5zarTGGzf5l4taVkZd/oqdcbW0vUuoclfTuB6nEci4cBmYSKPR6HQl3QtabAvdVgAAIABJREFULFZIyclicw4fTdHrvRR+dJtbTQEOMjsn13Nv+ttidrDYnOjYnQaDobv7wXaEomwJKSVnsuv5YnWw+e5pfw1Gy7YDBYknSq1WHCjrabD9uv52QpF8pmJrcp4Zx/X6dUf5kXGY5vSjzsCmYAR8iMCBAweEQqFYLLZaGa8LAa/3INYEqpVSqVQgEPD5/JSUlJEjRyYmJqJlSljoZ7TXPflLEMSRI0fCw8OjoqKQv2az2Xr748PBhpv2DgL0gQFLXRKJJCIiIiQkJDMzE3b0y+VyjUaDsrd67q3YCy6Dv2azGcnzCoXCzz77bMSIEZcvXxYIBGKxmO5v4HGcADJ93wMIdwuFQoIgOjs7X3311WnTpnG5XCxk7YUBiZtgIgL08HeVSrVu3bp+/fqdPXsWZeWUy+UkScKcyegnB4/2DsBolye4qanpkUceWbRokUAggM0W8EDC6N8dj8KIK8cIOIcA/QZUKpXR0dHjx48vLCwETQv0IAQbNZxrApeiI9A7zak3mNu65GV1xOqYzC83pafnNlY3CenF8XfvI2A2W1JST7HYnNjtCe5t/ebNxsitMSw2Jyp6u0gkdm/lvdem0Wi279x1y6m4BKlM1vvFTp89eiyVxeZwtm2XSj3VhNO2eb8gRdkOnKvKLmkXy0nvtx7YLer0pq3J+QduRXMGtqPYu7sgIJBoIvdc/yXxGh4Jd0EKn/4/BDDN+X9I4P9jBIIYAYvFMn369L179wYGBiixFgR0kiQpl8tFIhFIub7zzjsjRowoLS1VqVSI3WH0YqWdvyBMivz961//OmHChJKSEpDqhb3bjPY3MEapp72AUWEXUpObmzt8+PDIyEgkV4tCOQNguRloTnTXKxSKrKyskSNHrl27FvkLd0FgZ9RDdC9Sq4N9HgRBHD16dMCAASwWK7BDWj19c+H6AxUBdO8AP9fU1PTAAw9EREQQtz90iW+YQzA/19NIoM/GEFYOeYJZLNbEiRMrKyvRTw+OKe8JQ3wcI+A0ArDbCWS3+Xz+Y489Nn/+/Pb2dhSPjrY64UnMaZDpBXunOY0mC1+krm0Rr427RXOeyq7Pr+rE6/Z0AL3/3WAwJO8/zGJz9h884sbW9Xr9zoSkWyk5t0Q3Nbe4sWYHqyopKd+0OYrF5hw9lmqxeGTnenZOLiQB7XC32K+DPvrVZRRlO3axJr8KK1G7v1tInSnqQMGprHr3V41rZBQC9a3imMNFe0+VM8pqbKwvEcA0py/Rx21jBPwBgUuXLlVWVgoEAovF4g/2uMsGiqJQXBcKaeLz+UVFRRMmTHj//fdhO7PBYDCbzSDl6q6mfVIP3V96NqyysrIpU6a88847MplMo9EYDAasUuWTDvJyo7DKDDHNJEkqlcra2topU6b8+c9/5vF4sNQFyoEoLInRq13IX8TtNTU1/e53v3v99dc7OzvR0h5JknDLQygno13uZUTRAzrVajXs8+Dz+Vwu96OPPpoyZUpraytduhYLb/YCJj4VPAgguVqdTieXy994440nn3yyvb0dlB4hHBzmEJPJhHcL9T4wEJharVahUEgkEoFA0NTUNGnSJDabTY8nw0j2jiQ+ixG4JwTQAwCk6D5z5syQIUMSEhLQfi9Ijov3atwTqr1f3DvNabFSatLQKVSu25H9xcbz+89UZOQ2Gk0B9dLdOz5+eJbUanfE72axOafPpLvLPL3ecOjwrZScLDYn48Jlsy/WVbRa3a6kZLDhRkWVu1yj11Nf38Bic9iR22rrbtKPB+d3irJlXG9qbJNqtO6UPg5OMO28VpMGdtL1Q+nVdsfxn0GFgMVCVTUINiRcTb1SF1SOY2ddQQDTnK6gh8tiBBiPgMViWbhw4Z/+9KeAXO5HoWxolQ3EG0+fPh0SEnLgwAGFQqHVavV6PQplYzQOVqvVZDIZDAatVqtUKiUSCfh78uTJ0NDQuLg4uVwOO7gR08lofxl/+3nMAcT5mUwmJFe7dOnSYcOGXb58GcnV2hFdHjPHGxWjJXXwVywWf/TRR6NHj7506RLyF8nzBqpcLQIaBoDZbEakL3AMfD6fIAjQjZTJZFqtNrADWxEg+AtGwBEE0DMDSZLx8fEDBgxITEykh3IqlcrAEIFwBA0XrwHZTPgNQlvNCIJYvnz5uHHjBAIBPbYe77RwEW1cHCOAEIB5zGg0QmbciIiI8ePHc7lcJN2P92ogrNz1pXea02ql9EazQKr5b3zOctb5xBMlaVdqSa3JXa3jepxAQKVSb+HEsticnKvXnSh+xyL5BcUQSbl9524f5q3kC4Sbt2xjsTmJu/ep1Zo7murKQYlEumnzLSq3qLjUlXoCoyxF2bKK2jr5Sq0e39Fu7lK11hh7pOhivg+iot3sCa7OBQQom63ipuCXXdeyStpcqAYXDS4EMM0ZXP2NvcUI0BGor69PS0sjCEKjcf9DML0hX31Hq2x6vR5CmsRisUAg6Ozs/Oijj8LDw69evQqbmg0GAyinMXqtrSd/29raPvzww7Fjx167dk2tVgO3ERjMrq+Glj+3CxQXcN4gWaZQKFJTU0eOHLl161aCIJD0In0k+LNHd7WNPvJBIDE1NTU8PPyXX37h8XiB568jgMAwQBK+KKCTIIjt27cDf6NUKnU6HRayviue+IKARwBtDYF9Qu3t7dOmTXvzzTfb2toglFMqlSoUClBEQE8LAQ+LKw7SN1vAtCwWi/l8/pkzZ8LCwnbs2AFyAiikDG+6cgVtXBYjAAjYPQ51dHSMGzcuOjoanv0kEgn87qP7DuPmFgR6pzltNpuVopQaffTBwlUxmeyk3J3HisUyrVuaxpU4h0AXj8diczZtjiovr3CuBrtSPB6xLWYni82J25EoEIrsznr5zytZOZs2R23aHJWVfc3tTavV6ujYW55eupzl9soZVyFF2QqruxRqvcnsEYlgxgHiRoPVpGHz3rxz15rcWCeuinEImMzWwuquDYlXKxsFjDMeG+wrBDDN6SvkcbsYAR8jYLValy9fHh4ezufzfWyKx5qnr7JBgCPKUVdbWztixIg33niDLuVqvf1h7lob8hfyiimVSplMBgGdTU1NEyZMmDdvHviLdEoDPqzNY4PLfytGw8BgMIBk2c2bN4cNG/b222/Der1IJEKCgSiu13/9uZtldH/hNm9raxs7duzChQuR1CTwE/Rhf7daA+E8LHcajUbY5yGVSiE9XldX1/PPP//EE0+0tbWRJIlgYe7UFwi9hX3wHQIwh4DEt16vV6lUS5cunTBhQmdnJ0EQfD5fJBLZzSH4Zrlrd9FR1el0oDDB5/M7OjpmzJjx0ksvEQQB+8xAARhDeldI8QUYgbsiQFe2UCqVq1atmjx5clVVFUEQIpGI/goQANk67oqG1y64K81ps9k0WmN8SsnPO7N/is+JTM4jRGqvmYcb6o5AWXkFi83ZvCW6sbG5+9l7PaLRkBAbymJzCotK7rW426+XyxWx2xNBupbL7XJv/Vrdr7q4x1NOurdmJtZmpaiyOkKrN1msON+umztQozVuP1p8OrvBzfXi6hiFgMVC5ZZ3fLkpvUOgZJTh2FhfIoBpTl+ij9vGCPgKAbVavW/fPpFIVFNT4ysbvNMuokD0ej1kKATxRoIg0tPTx4wZ8+OPP6IQDUjSyeg0UXR/NRoNLCwKBAKCIM6dOzdmzJiVK1ciZjcA/PXOKGJKKxCLTE/LpFaru7q6Fi1aNHHixNzcXFivl8vl9MxMATDggZ8AudrOzs6FCxdOnjw5Ly8P+YvkamFdL3jW0+kinCg9HkEQlZWVU6ZM+eSTT5CQNQrvZspox3ZiBNyFAOxwQiLPycnJISEhUVFRwHHSw8Hpwg/uaj2A66E/kICihlAo5PP5+/fvHzFiRGZmplKppEtnBzAU2DWMgHcQQNkrSJKsr68fN27cxx9/DIq1EokEhVDDL753TAqGVhyhObV607ELNTGHin6Ivvzj9sx2ngKzIj4cG+kZl1hszhZOLEG4utuboqhz5y8Ap5h26qzJ5BfipTcqqsCkg4eO6XR6N0JtNJoOH0lhsTm7die7sVqGVlVcw6trFVssVgrfz+7uQjVp3Lzn+pkcTHO6G1lG1acmjZcKmlfHXFHj9LeM6jjfGotpTt/ij1vHCPgGgbi4uJCQkMzMTN807/VWLRYLiDeCchqENPF4vJUrV/bp0+fEiRNorS0A1vrpilWQmAeU4ng83tdffx0SEpKWlgZJSY1GYwD46/XR5L8NougZGO2wrJyQkNCvX79Tp07x+XyhUCiTyVQqFV2ulrmc3x39jY+P79+/f3JyMnCc4K9OpwvOJJSI84YYNZlMBrMfQRCxsbEDBgzYvXu3XYpW5o4H/70zsWX+jQA9/qm1tfXxxx//4x//yOVy6aGcKO452LZKuNh1gC0kCVYoFPA0QhDEzJkzP/jgA6QrgB9FXMQZF8cIwEY3+q6v7du39+/f/+LFi6BYC49DOLuwJ4aKIzSnzmA6m9OQlFb+HefSyqhLTVwpJkY80RcO1rl330EWm8PZtl2pUjlYpKfL6upvAqG4KynZZDL3dJn3j59IPQ3CvDW19W5s3Wq1njpz/hZJvDXGjdUysSqN1hh9qKi5U8ZE4/3fZqVGv3V/Xmpmnf+bii30HAJGk/XA2cpvIy96rglcc+AhgGnOwOtT7BFGoDcEKIpKT08Xi8VXrlxhdBRXb052OwchTSDlqlKppFIphBTU19e/8MILM2bMaG5uhrV+lK6GuWv9KH7CaDSCZinyt7Gxcc6cOdOnT29qaqL7i6Vruw0ZRh6ArjeZTGhN+dSpUyNGjPj6669BvhX28qPQRohhYqSrt43uzuinp6fff//9X331Fd1fkiQNBkNwxi4jJhjNfkjIurm5ef78+b/97W9v3rwJQwKYhuD5XWDuyMeWuxEBurazUqn85JNPpkyZUlFRgThOtFUCZ7F1AnY0S0O0PXoaiYmJGTZsWFFREWy7CQD5dCfAwUUwAm5EAD38wxOgUqmcPXv2vHnzYCoTi8VIeRvvKnAj7FCVIzSnwWi+Wtp24nLtd5xL30ReKKsjSJ1fhP25HQ3/r9BisURujWGxOTFx8WaLxRWDudwuqGrT5qimphZXqnJ7WR6Pvy1mB4vNid2eIJcr3Fh/ZtZVYHal0uBl+Cib7cZN/tGMKq7QVabcjV0TSFWptYbIvXkXrvvXbRVICDPCF4mcTLlUs3G3+9MMM8J9bKRzCGCa0znccCmMAFMRKCsrGzRo0O7du5nqgFN2QzwBSNJptVoQb4SklR0dHQ8//PCLL74ok8m0Wi09TR2jmU4IYDUYDHb+1tbWPvLII0899ZRIJEL+uh6eArvInfjXqf7Ehe6AAH2FCxaUb968+bvf/W769OmNjY0otJEeusd0ehspsmq1WpVKBWP76aefvnnz5h39hfF5B+wC+pAd+a1UKlFAVWtr66RJk/7yl79AODuQwUwfFQHdmdg5dyKAgp/Q1pDt27eHhIQkJiYStz8gVxtIYg/uhM+xuug/TCRJyuVymH/Kysoeeuih9957Ty6Xo50oeI+FY6DiqzACd0AA/dZrtVq1Wn3hwoXQ0NCCggLY9SWVSpGSh+vP/HdoPrgPOUJzGk2WkipexrWmlVGXv2JnXC/rFErI4IbNZ97L5Apg6Q4cOuaKESaT6cDBo1BVfkGRv60bUBR14dIVMC/lxCmL1eqKs/Sy5TcqodrqmuCNtDNbrGmZdem5jQKJhg4O/u4uBNS3gmULz1zForXuQpSR9Yhk5J608oSUUkZaj432EQKY5vQR8LhZjIAvEGhoaODz+bm5uSqXFVp8Yb5LbdLFG0G6Fq3179u3b9CgQWvWrJHJZPTlNkYv9yN/DQaDnb979+4dNGjQ6tWrlUqlu/xFBCe0a7FYzLc/JtoHwuksFgsEEQYn5+TSIO65MCxv0cXK+Hz++++///DDDxcUFNjJ1QYAm4WWzlHIskgk+uCDDx544IHs7GzEcapUKpCrDebYhe5jgy5dm5SUNHjw4C1btigUCjpWPY81fAYjECAIoGkE9gOVl5c//PDDixcvbm1tRfFPkMlYr9ejcHB/W8f0/86gB3QiOQ2CIL755puJEyeWlJTARI0DOv2/K7GFfosAms2MRiNJkgRBPPHEE6+//np7ezs8EcF+ArSV028dYahhjtCcFivF5SuqGgRr47KWs9LTMutLangM9ZfpZre0tgFLdyUzx2lfLFbr5SvZv5KIqaf889lAbzDs3rOfxeZsjYprbml12lm7gm3tHeD4xUvBkv/IDgGbzVZczTt+qba4hidX6bqfxUdcR4DUmbbszTt6ocb1qnANzEVAINXEHy89cLaSuS5gy72PAKY5vY85bhEj4BsEjEbjlClTvv76a9807wet0rXpIG0hpKnr6upavXr1kCFDLl26BMwfSNcCIeef7y2OwImkeiG2Ty6XI383bdoUGhp68eJFpVKp0WggSadz/sLaCoqXNRqNBoNBr9frdDrt7Q95+6PVanW3P3q93mAw2LXIXJAd6QiPXgNsMWK1dTqdRqORyWQrVqwYNmzY4cOHgeOUSCRobMN6PXMxt+PtgMX/5ptvwsLCUlJS6P5qtdoA4HRdHD9ohEA4u06ng4BOgUBAEASXy33//ffHjRtXVlYGmx5MJhOjd3i4CBcuHjwIoGlTr9er1eqXX3552rRpbW1tPB4PUtkBx6nT6QwGg3O/j8EDZi+eIgIGbbqCR5HW1tbRo0evXbtWoVDQd1z1UhU+hRHACNwRAfQQDnm4Dx8+3L9//6SkJCTgj6LSIZTzjpXgg04j4AjNaaUohVrXQSjWx2d/wTqffKYy/XqT2eK2ADunjQ/CgqWlN4ClcyVpZWVl9abNUSw2Z/OWaIlE6rcwtrS0gazu7qRkd736KRRKAHDfvoN+67hHDSN1pjWxV85da6xvFatJg0fbCtrK9Ubz7tSy09k3gxYB7LjFYq1rFW/dn3/2aiNGAyPgOAKY5nQcK3wlRoDBCEil0s7OzoaGhs7OTga74Zrp9LU2ULmUSqUCgYDP5xME8fbbb48ZMyY3N1etVut0OpSFy12vBK7Z7kxpur8kSdKjKDo7O999992hQ4fm5OSgQIp7jXiD+tFKMbCbJEmq1WquQFJ6s/NSaePJ3NoT12pO5tWfyrt5tqAhu6KtspkQSZXAedqRnc44GfRlUC8AiUWSpFKpPHz48MiRI7/99tvOzk6BQCAWi+VyOUrJyehFLrq/er2eJEmFQnHw4MFhw4Z98803yF+UgwpFCDH3RnbLGEcBVXq9XqPRgHA3MJ2tra3PPPPMSy+91NHRYUcMBzlobkEeV+KfCCBWwGAwyOXy77//fvjw4ampqSBXKxAIkMYj3irhYg+iRxEIvlcqlZChkyCIn376aezYsfX19ei5C++xcBFtXDw4EUD7GrVarVwuX7Bgwe9+97u2tjYkbqHRaAwGA3oiCk6UPOe1IzSnzWYzmixShXZrcv53nEtRBwr2nrqh0mCCxHPd0mPNl/4vCtPp1JIymTw+cc/tKMnYhsamHlvygxMmkyk17TSwkjlXc90iDm+xWIE63RoVZzab/cBLr5pAUbYrha0/bLucV9EpkpNGk0vpXb1qOqMaM5kt0QcLDqdXMcpqbKw7EbBaqeom4Q/bLueUtLuzXlxXoCOAac5A72HsH0bgNgIREREvvfRSkIMBUU0oaSVKEwVMZ0VFxeTJk5977rmOjg46IcTcRTfkLz0pqVgsBn+rq6snTpz4xz/+USgUgr8Qw+rg+w8Iz4I4LSj+aTQapVJ59UbzyqSs99hnFqxPnbf2+Ks/HPmf7w/PX5c6b92J139K+/PPaX/dePqDrec3Hc+vaSFIktTr9UajMQBIZZ/cXHaBekDel5SUjBo16oMPPujo6BAIBCKRSC6XB4Z8K53jNBgMQN7X1NSMHz/+7bffbm9vB05XJpPBovk9DWmf9KA3G0U7EiB2DZLkAamTnp4+evTof/7zn5CiGOHm4GzgTS9wWxgB1xFAxBv8eKWnp4eFha1cuZLL5ULwk1gshhBD0HjEqexcxNxumwXSligsLJw8efInn3xiF9CJN1i4CDguHlQI2P24X79+ffDgwVeuXIGodIlEolAotFot7CzEP+ueGBsO0pw2m02jNcYdLVode2XDrqvRBwv4YpzVzxMd0ludVqs1Ne0Mi83ZsjXGud8ai8Wyb/9hFpuzaTMnO+dab435xzmlUrWFE8tic7bF7OTzhW4xKvk2ApFbY+QKhVsqZFAlBqOFk5y/NjbzRoNAqzdZrBSDjGeQqRYrlXii7MDZSitGmEHd5lZTDUZzUU3XfxOuVjQI3FoxrizAEcA0Z4B3MHYPI0CSZEtLS1dXV1UV3gx1azjQlwNQ0kqIarp27doDDzzw/vvv83g8YOCQfqNzL0L+MPzQ8iLSiwOmkyCIkpKShx56aOHChZ2dncjfu67nIvbUZDLBGrFareYJxKdya5ZFp89Zc2zu2pR5P56YuzZlzprj8348MWfN8Tlrjr+26v8dn3v77Ly1KT/szblW2SaRK+lJAZnLK3u5u+kcp9FoBI6zqqrq97///dNPP11RUYF28Qcex0n39/HHH3/66adra2uB0+3OcTL35nXviIKtCSjqlx7ezePxWCxWeHj4vn37UFgVqHS61wZcG0bA5wgAx4kyGdfV1U2dOnXBggUojlMkEkEoJ+zCuVedA5876J8GoEcvrVarVColEolAIODxeJ9//vn48eOLioroMw+etG02G/zEo39hAkc7zCy3P+ggugxD55/j36NWQSgnPJALBIIZM2bMnTuXy+XSHwJRgmE8QjzRF47TnFq96Uh6VdT+gh+ir6yNy2xok+AVfE/0SC91GgzGA4eOsdicXbuTe7msp1MWizU7JxeCI/fsPaDRkD1d6VfHS8sq2JHbWGzOqTPn3TIJXLycCYK9ndwuv/LUC8bUNAt/3pkTfbCwqVNqtlgpzHJ6BnSKsm0/UrT/TAWeJD0DMANqNZosmYWt33EuNnX6rzA4A3AMPhMxzRl8fY49DjIEjh49+uCDD/J4vCDzuzd3YUXAZDLpdDqVSgVRTSBdm5ycPGzYsM8//1wqlQLzB0ucjObeevF3//79AwcOXL58uUwmQ/72koQMLRCbTCakfplX1bIsNuONn1Lnrk2Zv+7Wv3PWpvxp9bHXfjgCrOfctSlzb5Odc9YcR/Tn7S/H/rwu9fu9OZ18CZ1nBbTd8hrW2zhg+DnEWoESoFqtlslk8+bNGz9+fGFhIaSolEqlkJIzAHQX7fyFO3fBggXh4eHXrl2D5Tzw1055leH97DbzUSws3Lyg94vCu7lc7r///e+RI0cWFBTQb0Z8G7qtA3BFfoAAsEEg6qDX63k83uzZs6dOnVpSUoJoTjSNoOAnfBe43nUoghaiyWUymVAo5PP5N2/eHDNmzHfffYcDOu1ARjM2MJrm2x/T7Y/x/z4mkwmO01lPu3rwnwGMAH1Cg9Tse/fu7du37549ewiC4PP59LzsvTzbBzBE3nHNcZpTbzCfv9qQlFb+TeTFrzdn3KgnDMag0/z0Tqf01IqGJBN372OxOSknTvV0TS/HO7ldnG1xEBmpYE4go06nhwhUduS2quraXhx08FRVde3teNao2rrgSp1oMJo37r7KTrq+9+SNTr7SQbjwZc4hcOBcZeKJMpMZ5zB2Dj/Gl9JojeeuNvy8I0cgwcoHjO9NbzqAaU5voo3bwgh4FQGLxdLY2CgWi8+ePevVhv2+MbTcBnufVSoVrLgRBMHj8dasWRMeHp6QkKBUKgODL0H+ohg4uVwOK4wEQWzYsCE8PDwxMVEulyN/e0rfaMeY8oXilKs1C9envv5T2uvrUuff/m/u2uPz1qbM/yntjZ9PzvvxxLwfT8xfl/an1UduBXeuTblFed4O9IQoz/9Zeei1H478dcOpy2XNKrUGKQQymlf2wh0AfYoW6zUaDUEQS5YsGT169OnTp4HjBKUyOwVmL9jmiSaQv8Dpgr8RERGjR48+c+YM8vf/Y+87wKOssvdxbSAIqEhR1LWvjZ9r27UAKZMK6uq67trWXf+6rquiICnT0sAQgQCh95I2mUwanSSEEAIJJQ0kDdKn9z7pyf859yTXMSCEQJKZyZfHB5OZr957v/ude97zvi9iuswo+q0uoCnR1tZWLFPAIg+kVZWWlr788sszZsyorKzEqYDS2X/rgMznTAs4UQvQaQSRfqPRyGaz7777boFAQDFOigpQ8hOj8Xijuhjjh9bWVvSQRkKnVCpdsmTJ3XffXVZWZk/oHMnNTgcqNVlobm622WxWq5XYn5v1BqPBaDKZzGazxWoFr3Oq/9/e3s6gWTdqxDr+cXCoUJEGtVrt5ub2/PPPNzQ0oGKtTqfDx4oZGIPam/2HOVvbOvJLGtNyKgKjM79bsj/3TL1Cw2RvB7Vz+h5crzesWr0+Mio66/CRvt9d7W+Dwbhu/WZkMZaWnbva5o71/cWa2p+WrYqMil69dpPBYLzOi1MqVUhpLTx55joP5Vy75xc3BK7I3CA8vftIJQO9DHbfibLKt6eXtLYz7qeD3dIOenydqXlHRmnY+lyLrc1BL5G5LIdsAQbmdMhuYS6KaYEb0QJFRUVPPPFERkbGjTiYqx0DUwOU1WQwGDQaDZpWNjU1zZ8/f+LEidu3b3cNtU9UP8MMI3U0pPcrFou/++67cePGbdmyxWD4lX5sHwoLFZ1DFqxKpVqRWjg3PH1OeDoimn4hqT4hKSwCZwJxkwucTt+QFP/wdAJ2Ag7qwxexOEmoZ4vUT0+2gMVJejsiNS77lywnUvf6XICrjcKB3g8Fq+gA1uv1YWFht912W0xMjFgsRotKnU5nNpttNpsLWJ/SsUc5xOHh4bfccsvy5cslEgner16v74PpMuPnskOMgg02mw1JwEqlEukpvWtKAAAgAElEQVTs+fn5U6dOff/9941GIy16YNjVl21G5kOnawGcRigkEBMTM2HChJiYGMQ4ZTIZWnLSaZN5Dd3YLraPu8xms1arxZnn7NmzTz/9tL+/P6poUO2BG3t2xz8avtnpyw6LUaxWq8lk0mh1BefrN+8vDtp25KvV+/+7ev+8jYe/3ZD9/aacsIQTO7PPll4Qm81mnLSRhcyAnY7f49d/hRTmxHGSmJg4ceLEwsJC9BhWq9VGo9FisbS0tDDj4fpb+wpH6D/M2d7RebFJe+q8hL8m59vIfclZ50/9zOgtXaFpb/xXSqVqyU8rIqOiT58pvqajt7a2ilIzENtLS9/b1u5kNNyurq7sw7lIwTySe+ya7v3Sja1Wa/TKtYAWZ18zWnzp0Zzlk9a2jrWJpwKiM1MPlxdXSA3mZme5cie9zrwz9WsFpyzWVie9fuayr7MF9KbmTaKiHzfndXQw2tDX2ZYja3cG5hxZ/c3c7chpgaamJp1OFxMT09LSMnLuuv93iqkBWimP+o2UW1BdXT1nzpz77rsvKysLkU6ad8M8VP9P5CBb2gNjyGHV6/UqlUqhUEil0osXL/r5+U2fPj0nJwfhDXuxPtwXPT6Rh6HX6+ubJEsEx/zD0vxCU715QtSk9QxOJFq1AvfAeA/yuzcHjDmRwekbkoIMTi/C5gSwkyP0C0v17lW4ZXGSdhwq1mh19sicgzSg41yG/dBFzE+j0WzZsmXcuHF8Ph9zWyqVipbwU4zTcW7hmq7k0vvVarVxcXETJ04MCAjoc78Mj7M/bdsH7KFFHgj2CASC8ePHc7lcrVZr/yQymHF/2pbZxpFbgNb6WK3WrKyse+6556OPPqqvr5dIJFT1+rJvQEe+Kee6Npx8UFgCHToxCFm8ePGECRP27duHERe+tkbanENnZgQ4LRaLVm8oqW5am3HyH1EZPTIYnCQWJ8k9KIFUiQl9IQADN3TfkJSPl+2NO3yuqlHBCGM410Mx4KulGCfWL9bX10+ZMuWjjz5CuVq5XK7VamnRBmq0jLRnasBte6079h/m7OzsUmktFxs1izfnff/TgU0pZ1IPl7e0Mlyla23ygW9fUVEVGRUdtXRlZWX1NR2lpPQs2ltu2bartc0pqUUmk3nDpm2RUdHLolcrVapruv0+G7e0tGzaDNq/otQRVE/fKDfw1uSwY7KyC2trmrQMw6zPqLjhfx4talix64TRfGOSmTSjxbwKb3hPDdIB66X6lXGFaxNPDtLxmcO6agswMKer9ixzXyO6BaRS6Z///OdFixYxb/ErjwNMeiIlzmw263Q6tVqNSbfy8nJvb+9HHnnk5MmTJpPJarW2trZiNbTz6qlSqJLqVdoju/7+/g888EBeXh69X+pLSukFNptNr9fL5Yo16QUsjtCLA1k2IGhyhUSxVuTFFQLGGZRAfDqB3OnNFQLkyRZ4siE9580XeRE2JwuydUIWB0BQHz7s6MVNfissZe+J8pGc6LzyiLXH/DCxZTAY4uPjJ0yY8Nlnn9XX12OyXqvV2hORf0uC+MrncoRvaRaP8lYNBkNsbOzYsWM/++yzxsZGer8oy0ZZLMzUd4Xusx9FlB1Lp4KGhgY2mz127NidO3cy7NgrNCN+Zb9mtv8diYCUDmj/FTM4r9qqg7EBBdhsNlttbe1TTz3l5uZWWVnZR67WZrPZVzUNxpWM5GNiEILzuclk0ul0SOisqan54x//+NZbbyEp374LXP55wcnh0nC0qKJ+wabsdxelQcjES4ZoipfMYgu8uEIWJwmjJuILAFEWq7ee7O9Ru6OSCxukKnuLZZyIRvLAc8l77xOZ83i822+/ff/+/bT8S6/X91FlcMl2cISb6j/Mifo6Jmvr6oSTQSuzwjbkLt91gpG+HMpOzD2aHxkVvXzF6sZGcf/P29jYhOTFFavW1Tc09n9Hh9qyq6vrTFEJElK3bNvV3Dxw9KitrT0+URgZFb1tR5xD3ePgXUxHZ9eu3aVBKzIjNuSWVsqN5pb2DsYzcvDaG45cVa9etDFXpbVc02nomouuxew9zu0dzanOAe5yTWdhNh6CFqhp1EZsyN2bd20lKUNwYcwpHLwFGJjTwTuIuTymBa65BZCYuGbNmsrKkeUJf80t1d2NGbf29nY0/DMajehUJ5PJJBLJ6dOnZ8yY8Yc//KG0tNRkMrkAUeyy94vwhkQiOXny5NNPP/3ss8+ePXvWvgCcZlKam5uNRqNcLj9y+rx/SLJHUIJncKJfWBrSNH1CAKr0ZCd6cZNZ3B5ZWh+eCKmc8C1hIXhxkjzZiSzAR1PQqtOLK/QISiDkziQWWzAnVFRW3YANjjiry2c5+zl0MQSnFGSr1WowGPLy8qZMmeLn50etmDQaDVpUYqaYRvD9PItDbUZz4khBNhgMJ06cuO+++2bPnl1TU4OWnK50v0PW+PZjiSKdKpUKpWtlMtkHH3wwadKk48ePo96ds3OCB69hETPGSbKjowMXz+3t7W29P/QT+yoZZk4bvB659MgU18cXfUNDw4svvvjUU0+VlpYixqlQKDQajV6vR2QITeyYPrq0Ja//E1q5QgmdGo0Ga8v27Nlzxx13CAQCSqh16pdX/9vKvk1QSFwsUyZmlby9KA2LwPzD0lEwA4Mo0M/oKQ6DQAsEM/gQaPXgoByBJ1vw1qK0vQWVeoPRZrPREj1mSPe/U5xiS0pPt1gsVVVVjz766L///W97brp9oRLT+4Pap9cEc3Z3d1ub2+L3li3bns9fczh8Q25lnZrBSwa1g+wPLkxOi4yKXhmzXq3R2H9+hd/NZvOWbbtQ7vVo3vErbOn4X3V2du6KTUQ+a1Fx6YAvuLOzM2P3PtKS60bI9FJWLY/cksdfm7MytqCyTt3c2tbZyQhpDngE9WvHBqk+atsxjcHan637oJu4/mpra2ttbW0hP7ben+bmZvyktbUVV7jMGq0/LTzE27R3dh45Vbt409HKevUQn5o5nbO3AANzOncP0tmc/oJFK1ixgv/SMha6zQiJRZy7awd69W1tbZ988smXX35ps9kGeoyRtR9NgLa0tFzWqe6pp57685//XFNTQ/MFTo290fvFJCMiu9SZr7Cw8Pnnn3/ppZcqKioosothYmtrq9ls1mg0JeUX/haZ4UtgS2KrCcQCT3YScjSBskmIm57BiV5coV9ICsE1Bd7cZN+QFI+gRABH2UBEQC6Ce2CCe2C8Z3AiYX/2mHd+vzFTIleZzWbGT4g+jbTjkAdjtVqNRuOBAwemTZvm6+tbUVFBrZgQ47RH5elBnOsXiq9TjPPAgQNTp0719/evrq6WSqUITtD7RXDCecnWQ9w7GBLQIo8+Jp0VFRVubm6PPvroqVOn7JFOJn7AbsLnEYcotmFLS0tzc7PNZrNarRa7H6vVarPZcEWNy2lmoA7lUKczZ3t7OyL6//rXvyZOnLhnzx7K46SWnC4wbQ5l2w7sXLR4hapKYARSV1f35ptvPvbYY5WVlTTccnkaIt4g9YvV6/WNEgVnxxEwNSc1ZH6hqRBHcYU+ISl+oalzIjK8iUTtnPB0z2BgdvryU7x5AHZSy3P3oASP4IQ5IaKIhHyJQm2xWOxtCAbWa8xejtYCiHHSGs1///vfTz755IULFzA0UqvVSOVkun5oOu5aYc7Wto4TJY0ZOZXBK7O+izqQX9LQzzz+0NyOU58Fg9tLE2I0ObZm7abIqOg1azdZrVbc7KqR7cFD2WjnmbF7X7uzWXJe2ptKlSpmzYbIqOh1G7Y0Nw/cXfJwzlGEfs3mayPbXXpJjv9Ja1vHJtGZhcsPRe86ITh4TqoyOf41u8AVmq2twauy6iX6K98LferxMW9ra8O0nsViMZlMYM6i1dWKFaVVDafL609XNJRWNVU3ypVqndFoxMr+lpYWqgiFmYSrTgtXviTm2+tvgc7OruOlTexV2TrjwKep678M5gjO2AIMzOmMvfbLNVPk0p5J0Esh+OX/iFLQsmhm1v6lBV3rt66uLpPJlJOTk5iY6Fp3Nrh3QzmOfZBOuVwulUqPHTv2+9///pVXXrlw4QKm3uyzBs74NGHaF9NqVqvVXjhOIpHk5OQ8+OCDr732WnV1NY38mpubrVarTqeTSKTLhccQpPQkyrT+YWleXKFbQBxk1oIS3ALiPIITPXslalmcJI9gYGrCLkRyzZsHsCiQD0B4TUDycbA9shOA4skXeXMEBwrL9Xq9zWZzalD5Rg1cmqm31279+eefH3/88aeffrq8vJxifpSQ5NTeZvb3S7V5S0tL//CHPzz++ONlZWU0kUd5q/R+nfGRvFHj5FqPYz8V2Gw2apWHnM7i4uLp06fPmjVLKpUywne0bengRHQT50YoAdHqGqXKijppfllNWt65uENFuzKLE3POpub9nFtac65GXC9VanQGqiRJy4cxkKPHZ365sS2A/YUpD71eHxgYOG7cOKFQiJoNqHqt00GmA6XpqVT7jb0M5mj2LUBLWFCTQKPRYLh16NChMWPGLF682GAw2HeHC8/qnZ2dODjBiVOrLa9p/DzmkH9YWq/xOfHdDE0lHgFQQwZq/2yBX1gaCGmEpvqFpvmEQNQEYRUv2ZtPtueLPIJhSy9OEnvHESlBOpmiMfsR6AK/I8zZ3NxssVj27dt38803L1u2DF05qTt7c3Mzw00fmr6+Vpizvb2zvEZ1rKiRu/rwN5H7dudWllXJh+ZSXfgsNDxDaQ1MhCGRq5n8QKBrNKJk66Yt2ymqcYUUWVdX19lz53GX9Ru3aXU6F2jArq6u7MO5eFMpqbs7OweovHqmuEf/tvrCRRdolivfgkxljthwNGB55vb04uzCGo2+X/zCKx+T+bY/LRC+HvjuV9jSHuPE7JbNZjObzSqN7mKjXHC47PtNh31CIEzyCE7wCEzwI3ZLvmEpvvyUT1fuX7+vqLxWplDrLBZrc3Ozs2f5rtBQzvVVV3e30dIizPx5ZWwBQ5p2rr5zhKtlYE5H6IVrvgb72RwFDFtbWy9LI0BGgdUKszZWqbS1tTFMgmtucSfZYdeuXe+++67JxNSXXVuH4QPVRwtUo9Egw0AikWRkZNx///0+Pj5isRiRPyoC5ozUsUvv12g0qtVqer/79u17+OGHWSxWbW2tyWQykx+DwaBQKM5VVH8cvX9OeDrRpxUAJMlLBtZmaJpfaCr+Tv/15iX7haYCuTM4ER2kPIMTAQcFQmci5OCIm5QvSdLh73gQFifp39F7FEogdGJTu3CW86qDla7baTLUYDAcOXLkkUceee2114qLiymPU6fTURIMXbRf9fiOtoH9/WIKz2Aw5ObmPvHEE6+99lpJSQm9X3RxsydgjeRxMrB+pHxEhJP1ej016ZRKpTk5OY888oi3t3dDQ4O9P/HIbGcaeqEmLQ5Oo9GoVGt2Hz8fFpf37xX73wxPRbwB6ewo2U34WKJPovcHb8+NzS6rlShpBQkF1fDgA+tEZq/LtsClb7ro6Ohbb7110aJFYrEY8QClUqnRaBDjHFF+kJdtsSH7ECd5yq+lZgFSqTQoKOi+++6z15PAd9mQXdtQnshedFSn01XVNH67IdOPFHthgOTDF3myoQ4MasgC40nFWDLOKqifgZYBPdK1vGQy+YAjAO7uAToZwqBtORKFmk7gI3P2HspuHYJzYXUmirJIpVIPD49nn30WK97kcjm6syOL14UfnyFo5/6f4lphzq4uSOCKFcYfN+d9vXhv9M7j29KKzda2/p+R2dK+BejCAcMzVNewWq1ms9loNKo0ugaZqqZJfqFBdrq0B7NMSdttsVgwRUbxTkrupPOkXK5cvXYjSrxWV7sOmGc2W9au23yd93Wxphax0iNHj9l3h+v93t7emZ5TGRidyVudnXemoVFmsLW0u95tOuYd/bQtv6TyN6tALg31TSaTUqXZe+J8wJbD70SkevGEPiEiH5KtAoNzLtSEQTQFH4q8uRBT+Yem/G9t5s7M0ia5But629racDZwxkSfY/bjAK5KqbXs2l22Lun0APZldhnhLcDAnE42AGgYR9FNm80GXowGg0yprhXLjxRd2HGwOCL2SNDm7MBtR0Jijy0XFSQeOXeqvKFJptLoepyHsMCNoUk5Wfdf8XKbm5ulUulPP/3kAmoqV7zRQfmSPlmULYfpfoVCgZyPw4cPT5069dVXX62vr6dqrk6KJNFkPUV2LRaLPZFLIpGgOujMmTNra2v1er1Wq1WpVI2NjetS83yIKVQPR5Mn8g9Lh7I4XrI3kbFF1ygvDrAzvYllFNVSQ/iTED0FnsECj2C0lUpyD4x3C4z34gLFk8UGETZI1XGTdx//mSF00vCdsm+NRmNNTc3TTz99//33nzlzhibrtVqtyWRCIy6nntuppCFq1RqNxvPnzz/zzDMPPvhgYWEh9Z3S6XSucb+DMqP1+6B9pj6z2YxTAZKrpFJpfHz8mDFjvvrqK51O5wKjq98Nc5kNcWR2dHRQnUCFSpN1uuqDqAyctbBiAwAGjpDFBQq7J5kJYY3NB+tib26yD0/0dkTa9kNlclI47AIGupdpKQf46NKBfejQobFjx37zzTc4tpHHeVmM0wEu3/UvARG+trY2m81mNBqxsEwqlVZUVMyYMcPNzU2tBrVVij27WIvQ8dna2gqLOL1eLJHO33TIMxiiI//wdF8yY/iGpPiS+MojCLT9ffgioG/yRV68ZHfiaO4RDBVjviE9uCY6CIAvAEnqYdDFYgt+Ep7QaGECp7IHLtaeI+p2KBkajTZiY2NHjx6dk5NDqZy0AsypQ0Hn6tMBwJzNLW1qvSUmvjAgOnPRxtwVsScuNmkZq79r7XecS+kLBQU29AajRKHOLbkYKch/d1GKe2A8zKUhIt+QlE8jwGIzMip63tLY5aLC42drZSqtyWym8S0u7ZHg2NHRkSBIRl3W/OOF13ptDr59Q0NT1NKVkVHRsXGCgRE6VWoNNmZcfJKD3+z1XF5Xd3dZlXyt4FTwqqzFm48WlUvVOmtr+wApsNdzJSNzX8GBn7MLay977/ahFA0mK2oaA7YeRpEwnxCRFw8WX55cCK5gacYjrknkQ7o68wmBqn0WN+mDqN3Hymq0Oj0VMXLSXN9lm8u5Puzq6tKZbCt2FezNqx6yK29ubjaQH4vF9YW4h6xVh+VEDMw5LM0+wJPSqdyej6/X68uqG9ftOf31ukPvLErHNS2p/xVA3QqHFLAQfci/Re1ZuCVn1+GzNWIlyqZRVj4jQT7ALnGY3err6998802pVOowV+R8F0KfL4p0gpR/r5aaWCwWCAT33nvv3Llzm5qaLsVXaOGns9w5vV/KqOhzv8nJydOnT/fz86usrJTJZE1NTecrKt+PTEMgk8UFkNKHD3xN1K1F9oAXRwicA3YP0ROUadlESw3K6CC4JDV0QiB0Bid6BCWCuRQnyTM4kcWGA7I4gHqiyG3w9lyFUmW1WrGkzula+PpHgn0fUcwvNzf3ySeffPnll0+fPk2zWi6D+dmTC1HP8OjRozNmzHjppZcKCgokEolcLkdBNsqrpvoE19/gI/MIdJghemc2m3U6nVKppEjn5s2b77333nnz5mk0GpoJGmn1rTSz3NLSYjab9Xp94bmLAVuy54anga9waApSrCiXHTzziKOeF5kqaWyGRcQewYn/XrE3Lf+88ZLShBE40d3w544OaRQWtlqtKSkp48eP/+ijj5qammQymVwup86+9gx4pvFveF/81gGxj3A5gzgf8sglEsmaNWtuvfXWHTt2GI1GnHBcL81E5xOr1arX62Vyxdr0E15coUdwokdwoi/JuNE5hJAykz2CE72I/r8v6P8L6cRCSscSPdnEDT001RsrKnjJHkEJXlAxJvTiJM0NS9lXcJ6W6I202fu3BqEzfo78EpzZLBZLWVnZtGnTvvrqK4wG5XK5RqOhK5SOjg4slXPGO3Wua75WmBPvztbSLso8vyquYMHSg/OXHjxR1qg12pzrxofxavu86FFgQ63V5RRVR8TnfbR0jw8fFp7evGQsOMPis/9GbEFk7v3QWNAZ4iV/umJ/eHxe/lmQL8I3DpaDtLW3Z2bl4MbxCUKbzdW6pqOjI333PgRxj58YCIjb2tqGlqXLolcPDCgdxvHT/1MbzS1rEgrZq7JC1h3ZIDzdKDd0djEimv1vv+vdMqug5sCxywBdNIzE1SsW6cZnl7wfmUFU/VNIcQOxNieO5v6haSDsHyLyD03zJFX1PjwCgvYSPb15QvegBB+ecIkgv0GqvBTpZNYI19uX17J/V1f3uQuKH7fk5Zc0Xst+17XtihUr/o/8fPrpp9d1oOHeub293UZ+Ojo6hvtahuf8DMw5PO0+sLPaOwgC+8pobJIpF8cfI+hCEosN9bwAcIIxHjiyYIqNuLaAWQuLI/AixPy54albD5QqNVCoYi/TwczdA+uXYd8Ls/xcLvd6bOSH/S4c4QIoc+63kM7Dhw/fe++9zz//fF1dnclkogEQVblxhLvo/zXQ+0Wk02q1onqtQqGQSqVisfjgwYOTJ09+4YUXiouLq6urMw4XepNFI+bgkJcJ/CR+MhhHEQVab54QWQgeQZB082SD+2bPL4EJ6N/J4iTNJl6ewEKAqUkItp29uyMO6s1L/mT5vnMXGoxGI3pKjbQJyn4BT/0pq6qqHn/88XvvvffkyZP2mB9dnFMNzP4PAwfZkt6v/dNXVlb2xBNPTJ8+vQ/Geen9jrThcQN7DecBrIVHETyTyaTVaqmKtUQiWbRo0S233BIeHk79iV0PePitJqUjExfSJpNJoVDuOX5ubljqnIgMvxCo80A2FeFapc4JB4I7i5s0NyKDxU5CDVtCwIJJksVJ8g9NY3GhnsMzODEyKV+h1lLW2shp1d9q7RvyOc19IFmwurp6ypQpr7zySmNjo4z8IMZJOU9UhZ6ZRm5I+/fzIBTqQ1IazjlS8jNr1qwZM2ao1WoKQjtplHXZpqCruebmZqPRqFAozvx84f0lu/1CU73AOyqRxYGJAn4hmTh3KAhL9AANDORuprqD8r/Al5/iH5aOBufI6cQZxm1h7KwFOz3ZiX6hqb6hqZjp8+MK6sVynGpwnrnstTEfOngLUNaazWbTarXvvffe1KlTCwoKUMxfqVTq9b+ioTj47bjM5Q0M5mxt7Thyqi5x/7nA6Mx5S/bvzasqq5IzCEp/RgUNzNDOg9SLGOqaZN9vzMJwCwAMUjiCNbjgsUKSYPMXr0fkcg5PSGSHIEWGZWrzN2XXNMlplFtVdWHp8pjIqOily2O0On1/rsrptlEqVUjojIyKlsl/Uxf0Cve1cdM2bE8Xtkw6X6PkrckJWpG1KrYgOfNnhcZ8hQZhvrrhLVBVr10RV9DnsPYzAPI4ZXLlUuEJv7DUueHpfuFpvrwUEBsDpTEhFtkjX9MvLM0/PN2HcLt7NHjYICGGn0DCigRan6040CRT0dUZwwjq0/5D8Gdbe2edWMtfk/PzReUQnA5PsXDhwlHk5/XXXx+yk97wE7W2tr7//vt4Ix4eHjf8+E5xQAbmdIpu6qYpm1+ybCr1rkNFH/60ByZoXrJfGPAJiCSa0BsoVhDMAczJgRRbL/wAkZwXD4AHj6CEL2IO7Cus1BtNjNmycwyC37jKtra2zz77LDc39ze+Zz6+thawf9aam5uR2KRSqeRyuUQiaWpqEggE06ZN8/HxQaTTnmrgjAXyFOlEf18kVdD7bWxsTExMfPDBB2fPnp2Tk7Ms/pBnYJwXJ5HFEbA4Ah8eZOI82USflpfMIhMLiwPrRh/+L+tGXGe6B0JWzvsXhhNk/Km1JynOEBDEFNalqIv7dkR6XnGlvW7ttfWlM29tH74jj9NgMGRmZj766KOvvvpqUVGRvVYtNZajThJOl6yn49DefzQrK+upp5569dVXT5w40ed+bTYbFTN0xufOAcem/dSHK0aKdEql0sbGRh6PN2nSpOXLlxuNxpHjh2r/JGKzqNXqrfvPvLUoA4js4SChgcpIqM7tyRZg0AVwZng6Ap9QPkwoVtRCD3fxDE705Sdzd+bWihXoo+a8ZQoOMqTpTIJsJ5vNduTIkfvvv9/Ly+vixYuIcSqVSrVajRin/Rvc6aZNB2nzAV+G/ZyD3H1qDFxUVPTQQw998cUXOp2OppmQmjbg0znOjghzYk2JRqNpbGzk7zqKgooewQm+oEyb6sVFvBO0LqAkokfPH+vJhOAawBZghg4J4kDcJKEXjcqwwAIs0skK0SM4cZkwX6c3oHStCzNvHKejb/iV4MjBMMlsNqekpNx1111r1qyhARJSOekLmpnTbngX/NYBBwZzdnZ2SZTG87XK8A253/y4b8WuEzvSSzQG62+dhfm8u7snJ4ZVMjQtJleqNu07887idN+QFOBs9QZmvsTq2Icn8g1NZbGTfLiCwB/XRkZFhy1ZidvAEjUIplNYe4aIPvhpz47MEoVaq1AoNxAAb3n06vPlFS7c8idPFyEjMy1j7wDeC3v2HkCYUyxxTUUxudq0NbVo3pL9nJjs/fnVP19UmG2tLjweHPDWpErTithCe0FvujSjPE65XLFEcGxuOFSdYkGDN8l4k4go0T2oJ4gCAVsyOUBoBIEWOIzgJ6hS5hcCVaq41+cr95fXSUwmE1bbY7GdA7aPq15SW3vHvryqsPVHZGrTkN2ja8CcQqFw3LhxCHM+9thjQ9Z6DnUiBuZ0qO64/MXgrEqTvzqdTiKTsbcd8Q1JmbsIin/nklSaZ7DANxQKe+dGZBAGp+jNxXtwYUzlj8iiV+gfls5iC0AZki1Yv+e0Xm/AJILzpsgv33Aj4FNc8QYEBKjV6hFwu0N0i/apN5vNRiUcUbi1qanp1KlTU6dOfeCBB6qrq7Hqk8pmOmNO4dL7RSdOmUzW2NhYW1ublZU1derU6dOnf8LbMHv+ttk/7HQPjGNxBJ5soBr48FO8iRQtllwABSEIAsrZhIu3Ce0AACAASURBVE/gFhDXS00A5TQvLvDOSU0GsX/ng2OKW2AcWV5C2Z1faKo3eMUDMd2LJxRkndFoNBaLBWenIRoBw30a+0w91aotLi6eNm3a9OnTy8rK0J8SCUn2GKfzUsHsk3fIKj516tS0adMee+yx4uJier9arfay9+uMz91wj7LLnJ9OBRRZt0c6JRLJvHnzbrrpppiYGBSTbGtrc3nrLxyZyHc3mUyIcfqGpviFwPLYkw1ueWTSS/BkJ84OiEXpSCjg4IPLC4AWRLoW189YjsbiAqET19VEtVs4b2OWVAEC3dRK4DLdw3x0tRagiQ8MmK1Wq0QieeSRR6ZOnVpeXo40QYVCQTFOCgYwpRJXa9pB+d6+v+yrymQymVQqDQ0Nvfnmm1NSUpC7jyqCA0jCDsqlX99BkZCHVE6pVJpTeHbuot1zIzLAOIqT5EuiIM9gwdyIDP9QkrPjAc8AYUsvrnBOWHqvtm2KT0iKW0Dc7B92uQXGYSIPNf9BjJFMTT580RxSjeHFTfpgSXpNo8xsNiN9mXlvXl83DvXefV7QSqVy2rRp7733Hj4vlKFuXzHDdPGQddLAYE7wHjPaGmT6mPgCTszhHzfnrYorqK5Xt7aNUJW5q/YXro/s1UcMBmNto/SLVYfA0jgEFpIYdAGLnZ8ChgJcsBWYG5HhzU9+MySJG7k6Mio6cPEaUlMrQtcVLBzpKUfjCQO2HF67cTuidxm797W3t7vwo9TR0RmXIMSbbWwUX7UL+mxQVFyK+5ZXVPb5ygX+bGnryDhSuXzn8flLD0Rsyj1e0tgo0ze3trvArTnRLWj01sWb8/TmHnSZho5YK6bX6+VyeWRiHhaS+oakenOB+YMzgDdX6B4Y7xGc6MMDrVpfPmjYugdCZQOYJREjAJgKuCLyJ6kk4yfjZt7c5H8t3ydXqsxmMy2tduGpwNGGhMnSkl/S8OOWPKOlZciuzQVgToVCceeddyLGOWrUKAbmHLLBw5zo2lrAflVjsVh0Ol1lXVPgtlz/sLQeSIDbQ4piEeImkqJYHIE3D0I3KGoLSwNqFGh3ULonEq2A1unNE0YKjjfJgZXPyHZdW98M99bt7e0RERGrV69m3rg3vCtoCIWSdyaTSafTqVQqmUwmJj+7d+9+7LHHXnnllaKiIiqqRjP+Ttcjl96vXq9XqVQSiaS2tra8vHzXrl2PPfbY+GmPvPBx6Kz5Wz0C43z5yeAOBQZR8B8xiwJWE+rTYqINviJschZbQCTXEnElSTylAOwkSo9ACQX+EycJy2nhc6Ig5MUVxqScUCqVmJVzjfzmVceqfV+g04xer09ISJg6daqPj8+5c+eoNNlvYX5XPYVDbWB/v6jNq9frBQLBgw8+6OXlVVRUhNq8SqVSq9VSpWia8na6Z82hGr/PxdC+oIZ56NerUCgwkVpTU/Pf//53ypQpGzdupLpedN7rczQX+JOi7whIKJVKYU6pDy/JMxgo7P7h6aAbGQLuL95E5gjM8AhJ3Ycv8uWn9BCwenVrUU+SzIo90ybiEGQWTVoUn6fV9VgJuAxrbYjHANI7qB/n8ePHn3zyyVdfffXs2bOIccrlcrVa3cfJmBHwHOJu6nM6SsrBAhetVouy+VVVVS+//PJrr72GMUBLSwtO+84+5+M029raarFYNBpNbV1dyM4cVFSjE4h/eDowxfnJ3nwRxkUQRBHLc5xhqAwjqvVgGEZnGE+2wC0wbvbCWNwMFobEzcQ3JCUtv9xeIcPZG7PPWHLhP+nbGckrarX6s88+mzp16pEjR5DKiZ7l1H6VmdaGeDAMDObs7u7u7Oxqbmk/kF+9I6M4cEXm/KUHs0/W1kv1zLN52R7EB4F60+p0utKq+q/XZfqEiMgsSledSR5BCSg+iXAmbMAXvRsmDF2yKjIq+ttFG3qmTZ4Qq9aQB4/z7ecRW3+Mio6Mit6ydadWq8VCWxfukeoLNQhVrl670WAwXrblf+tDmUyO+xaePP1b2zjv59UNmpC1OT8sPxiy7sim5DNihaGDEZUe8u60NrdtEhUVV8jwzJdbmpX48pM9gqHeFGBOfnKPqCGpRvXiQMabrs5IqgpyUDT7BDI8XPB6g694IIuINWcYU3F2HKF1qMzqbCg7v16qXxVXsCbx5FA+c84Oc+r1en9/f4pxMjDnUI5Y5lzX1gJYsEapFRKZ/L9rMpHqhItewAmIVqR7UIJbACFFEZtlXBvDqpgwCRBvwDo1VFEDgSN4JST68kVLhQW47qW542u7Smbr4WiBzs7OiIiI5OTk4Ti565+T5hTQKdBsNiPyJ5fLpVKpRCKprq5+5plnxo4dm5+fbzab7Yk4zkgNsb9fymFVKBT19fWVlZVnzpxJSUl96PcP3zp67Esfh7ot3OkZHOcNQh8QOxIN2ySqQOtBNNYI0gmkTPgzKAGp5N48CEPdgxIR/oQIkp3kQyYxjEFR1RasOgmAGrrzsFwuHwn2nLRCmRovIbtFr9enpaWNHz/+9ddfr6qqQl4jxfxQcZES8Z3rscQhR4uycdQZDAaRSDRhwoSZM2dWVlYipkvzd3i/VNjThZMOw9WVlElMHVL1er1araZIp1Qq/fLLL2+++eaNGzdSHQhc+Lled+DgxCdRpVJVXax7d3EacjeBi8lP9uQIgDXFE3kGAwhBoM1EkI4MEfmFpVLRSEif9SANgjmkRg2+4iez2EnuQQlYd+zDS96077TBYLBarRTOcb0mHbyBbZ/9tNlsDQ0NTz/99OTJk7FUglI5KcaJpdnOy4AfvJYc4iPTjqNlLiibL5VKKyoq7rnnnq+//hqfC/taTOd9NLq6upAdjq6cp8vOf7p8DxRGhALJAIrGgCye4huaigrYPkRgzS0w3rvXQI6oLAKP3JsnBEUNkq3zCBbMWrDTIyjBbWEsiy0ASyoilI3EJphniFbbl6sPqdVqqpDhvM04xKN02E9HazjwfXTw4MGxY8cuWbKEzmy07s3+MRn2yx45FzBgmLO7u7utvbPwbNPeo1XsmOx5S/YLM88fK2mw2NpGTuv1807pywLLRHQ63c8X6t+OIPRNsmYkgkAksgqMdw+M/4XRxUsGyJMteCckftGSFZFR0Z+Hb/HhAUW+R2mDCxEdBGbc5Lf58YuXAMa5ZFnMhZo6eyKXq5bbdnV1paXvQbQyK/vINb0XWlvbfloGyHFmVs417djPTh/GzVpaOzILagKiMwNXZK5NPJWaXaHSMYLSw9AhHR2dG5NPnz7XQzXGtyFGjBqNpq6h8W+RGah4gZUNsObiAK7J4oGzEosNxakewYne3GT/UFjEQXqcJ/ILS/MITIR6CFzK8UUsbpJ7YJxbQDxK9YDkdYjIPzQlI/9nWkLkjCm+YeizG3HKBql+2Y7j+/Kqb8TB+nsMZ4c5t27devPNNzMwZ3d3NyNa299BPyzb2dc463S6ukYxe9thIlUEBAJIorGh9gSZ9ShhhASpXjG0RGQY9DCren06sbzXmwvq5KQQGOpW1mWc1Or01KbIxSKVYem+wTtpV1eXUCgMCAgwmxkX9MFr5st44iKnE6kGEonk2LFjr7/++sMPPywSiVBXzV7UwrkeIgqzUUszVGhsamqqrKw8derUgYOZ/1i49O6Hnh494d7n/vKd+8IdHoG7PIPivblJPvxkL24SYY3DlNITUPZAm0DxRB0hUnLRI1oLST1SN4e/eBKmghcxSPAiNp9ITA/akimVSg0GA/oiOFeTXtPQpPASEumsVqvJZJLJZJGRkXfeeeeHH3544cKFxsZGsVgsk8lUKhUay6GzsjNm6inG2dHRQX1hFQrF0qVL77777g8//LC6uroPxmm1WvsgEy48Hq5p8NzwjTH26IN02ld4/POf/5w8efKmTZvows8ZB+GV2w3rhWk2rba+6T+r9oMAGsmXYbEwIaknEAVvsDxncWAhjaQr2AxW1wL/sLRf1thgngf2w1iX9ksajlBC349ML6lqsLeBYUb4lfsIv7V/eWFR4PHjx5955pkXXnjh9OnTKMCAk4k9I9yFWcj9aTSH2sa+Nt9kMlGtbLFYHBYW9rvf/U4oFGKI5ewQDo7VtrY2i8Wi1WqbmpoO5Re9tQhEd5AU7s0VEp3/HmIB6KoRSQxEK0F4DVWyg6FWzCM40S0wHmssvLhJ8DvxSvcNSfEk7gAsYoiOS8IeDDUkpbSqDkvH8BFwqJHAXMxvtQAtCLNarRcuXHj66af/8pe/iMViGiYZDD0GNHRmY14fv9WYg/H59cCcXV3dBlOzWG78advx76IO8NfmLN2eX1Wvbu/oHIxLdd5j0rSYzWYzGAw1DeKvVu/zDEqEVBgpE0FOJ5bewmRI7DaB5UkgTC+e8H3+jsio6B+joj/kb0NsA+vMyNJV4MVNeouXwI8E0A6g0IhtCzdnNcmUWMfselGu/UhoaWnZuBl0eletXq9Uquy/uvLv7e3t6zdujYyKTknb7UowsK2lff+xCytiC775cV/klrySSmmTQt/SyqhJX3k4DNa3u3OrVsUVtrV39lmaNTQ2sbfnQL1piMgzGMpM0drcPRDI3J4YI7EToaCBnYRREIFCf1Hi8eJAeRms6bBiDFjgsHbz4QH/249wQz9Ykl7bKMWKB4bQOVh9/OvjdnZ1F5Q1ha8/UivW/fqbwf3LqWHOoqKie+65Z9SoUWPGjJkwYQLjzTm4Y4U5+oBbALPAqJmp1+ulUmnswVO+UP5PClIIQgn4JZjYASmT6EDC8pgUBUNpG5LxfWC5Cwk4so1wDrEuYHHAaL2ntoVUCvuFiPadOI95BGaNNOBeG7IdBQLBO++809HBxFuD2+T2paM2mw3Va9VqtVwuRxXH2trav/zlL6NHj169ejX61VFzNWcM9+3v12q14sxTXV19+vTpAwcPfRq+7U+fR096/MXf3XLb036fs4Lj3BbudAuI9eYm+YWIfAG5BEaCb2gq0BHAX4oI2xLwEnNzQNnkgFQI4WtC5axvaIonO9E9IA6z/8jpRKiAxUnibMmUSCR6vX4kwJwdHR2UOmwwGFQq1bx582699db//e9/FRUVNTU1dXV19fX1UqnUBdiN6Dltj3EaDIagoKBbb731q6++qqurw+SdUqnU6XSMH+fgTnOXHB3nATogLRaLXq/XaDS0wqOhoeGrr766/fbbly9fbjQa0eOQRg6XHM/5PqAzYXNzs8FgUCqVCVlFWJNBgAeBXwiQpQCQICtn90A0IQYqACqkYdyFkrYwueFCmoRbPnyyGgdN71/Ua/1CUj2DBYvijup0OiR0MiXD/Rk32FOIASDGWVlZ+fjjjz/44IOFhYVNTU2IBPRxMqZjlUEC+tPIg70NfdzQaYlqZUul0rq6uueee+6Pf/yjTAamkvaVZIN9VYNxfLzT1tZWk8mkUqlqa2s3p+V5BguwfgIiIiLAg2gleJkTLJNERyCYQfJ3UKLqw092D0rAOgkfcCdJ9eJg6SqUncHaEJQzYGGIsxaymvxC0/xC04RHSnU6nc1mG1GW54PRm0N2TJzfMCGg1Wrfeeed6dOn5+fno1wtynuYzWb7SmVmZhuy3sETXSfMaWtpU+stm0VFYety2THZIetyCs+KVVoL04/YvLQSFJ8Co9GoVCrDduUCtT0Y5IJ6K/gBq0DBSSifDQakE1ajoF0J7K7PFwPMuWjJivf4O314UG4LahzsREyIeXGF8xZtRIzz+4i1Plzgev6UdFyr1dk7eQ/x0Bqy0xUXly75CaiuW7bt6n8Go6OjIy4+KTIqeseuBFfKStWItZuSz0RuORa4Mmut4OTFRo3GYG1vZyoPhmw8/upEZ6uVm0Rn1DorVdkxGAxyufzgibN/idw7Jywdi+x7hGc5Qv+wdHjwoQpfCMZtRM3Cmw9sTnzY4dkPEZGS01j3wASP4AQvDpgoYWm+Twis2mD78DSYUjiCZcLjzOrsV10yyH+0d3TllzQujM5s6+ga5FP96vDOC3NqNJrnn38eoU0/8sPAnL/qWuYPx2kBLFdpaWnBxfCpc9XvLE73DUlF6zvvXkKARxCocACVMyjRk43/gooasqO8eUL/8LQeVUl2j6okiwM1v7MXxroHJeACmMz1Kf9ZtV+h1KANnqtq0DlO/w74Ss6fP//ll1/K5fL+x6ADPhezY3f3L5xOXFyZzWaag0N6U2Vl5aeffjpp0qSwsDCpVGq1Wu05dk6XqrZPOJrNZszElZSUZGZlf/7jrtnfbXzjfzH3P+9+65g7H5n515nfrvcMivPhCry5SSQlB5Z1JEZMnRuR0VNswQaLFI+gBCLPCAvOHl9hUqvhF5KKMxiZi6DkFlihZH7z4goXxx0Ri8U6Haww29vbXXLBT4ksKMCCAGdJScnf/va30XeMe+uT/61Nzl4We+CnuIPRgsMxybmb9xQmZhcfPlNVUSfR6Xvq99va2trb251i3qbZCmqhZzKZqqqqPvroo7vuuisiIkIikSDGeamLHoKjLjkMHGqypdAR4tCoJ4yq3VjeIRaLL1y48P/+3/+bNGlSTEyMwWCwn/RcoINovXDPHFhXP29D5puLdoPsdlAiZscI2CDyD0/3CRGBDQw/BTBOspaGag++CJ32cBp0Ax2kOBBHIvQsnCd7FTWAyIWyHN5c4ZnztQzXqv+PA9I76GSSm5v7xBNP/PnPfy4qKhKLxQhzoiWnXq+3l1l2uldz/9vEGbek70Gq1o5u6FKptLS09KGHHvrss8/UarW9O4AzzjM4tba0tOj1eplMVlVVFb79IERHgQksYvSLXptU6wK0Z3s0aRPRDsAtIM4dWJsQcUFWDpQwgEGO6TwvLmT3PIJ6nAJomQVhNRHfKa5wqTAfW5KBOR3/SaHxEhVX2LZt24QJE6KjozFSUigUarXaYDDYS/rjXo5/d650hdcDc5KVZndbW0dhWdOe3Cru6sPzIvfvyCg5eOKi3tTsSq004HvBmbOjo6M3LaYW5pT4hcL6kVaHuMNKEyZD98B4+IUDVgIsLhSfoT6QD1/03eJNkVHR4UtW/oUfh47IUEoSCCUjnuzEf4bvREtOzo+rfdgw07I4SX+N3H209AIql2CB1IDvwsF3bG5p2b4zHlHeU6eL+vmG7ezsyti9LzIqes3aTW1tLqK0rDM2px+p/GHZIU5M9qaUM5kFF82W1k4G4hy+EWw0t7BjspvkBizARWvzhsbGRXFHIIkNVadQ7uDLS/ELS/MNTQVidwho5+Bqq8dDhCvESjL06fTmJrO4oGeL6zKshACdDJgQAPX04gHwiezw95dkVNZJRoKJ0vB18q/OrDPaYuJPbko+86tPB/8P54U5w8LCbrnlllGjRj388MP19fXvvvsuA3MO/nhhznDtLUAX/Khr1NDYFLzjKAg/hqR6gMMKUTcikmhougmhGKlTw9kcuQIeQQkw0fNFPvxksiQG3gC6uXgSyJOQ90Ft0o+UtHgGJ27eewpNOhFR6GeIc+33x+xxDS2gUqksFgvdoaSkZMaMGXK5nH7C/DLYLUDXV1RdE5FOpVKJSGdjY+PixYtHjx793nvvyWQyi8VCCz+dUeUG77e9vd1ms6Gu2rlz544cyf3fT/HuP2ydPX/LrHnrH5n1t1E33TT5yVc8A3exguPcA2I9guLdgyCP7xGcgJrYkFmDyQrI5ch8Qvs6P7BGAOo5RJbE2hPdp4hfAtRtsMhM5cMXbUg/7sIwJ23n1tZWm81mNBpVKpVUKs05dvyxJ5+6dfQd//fXBbPnrZ/93caZ8za9MW+j+8Id7gt3erETPIPi54QkvxeZPm9j1sHT1SYTWMPSIYfpe8fMc9FHqa2tDalXJpOprq7u5ZdfvuOOO+Lj45uammQyGWbuUJjXPnnHIBODPdfR42NPUaE86terVCplMplEIhGLxQ0NDQsXLrzjjjuCgoJw7UftvZ03eMAHB2/cZrPpdDqJRHLk1FlffrIvyakBP4DEYFjJQSw2e4QlwT+PGHOC2BGxffImhk9ApSKETrTzhKJjTpJHUOKsBTvdiH2URxDYw7gHJ3jxhCGxeWqNBrlWjDgSHZCX/aXPFHr8+PEHHnjg2WefLSoqaiI/VOVbp9OZzeY+k+Rlj8l8OCwtYP9qQOUMKl0rlUpjYmJuu+221atXo+SM884zuLhrbm7WarVisbi8vPzbVRkkOw9Vp3MiMvxCU3xQ75owO3v4mnwRLPGAoJDmQ6TV0J4TdgwG+NMLBNlgFsLaC3SYA61sNnyLH/oRmwBvXjJne65crjCZTKgA7JihwrAMQgc8KZ3iMF6qqqqaNGnSF198QeVqsRqMEp2ZV8ZwdeJ1wpzd3d0dHZ0VtcoTJY0/bslbsPzQ6oST8fvP1jTpWtsZ3SYoOEZ4w2q16nS6qtrGL1YfJERM4o9OTPVQuBJATSJXizVnXjwANghfM9EnRMT+cU1kVHRI5Cp/Dkh8Qx4MS9NCUv4WGrc4CriMkVHRH4TuApQ0GAzX/cPSPlt1QK3WUula541vr/p0GAyGZdExkVHR6zdutU89XXnHwzlHwcr0pxU2m+3KWzrFt2Zb6/HSxh0ZJfOXHgjfkJt2uOL0z5Lm1nanuHhXvciuru5V8QV5RfUdHR3Nzc1Go1Eul1dVX/hHVIYvD1JMwOfmgVShX2gqeIUQMQxvoprjFhjnxcEEeDLMDxwiSMsTsTAZDh7nSVAbAZQh+JfMIaBzizxON1Lu4B+asregApUwqB6Mq7b2sN9XV1e3xmDdmHxm79EhNebs7u7uP8yZm5s7Z84cX/Lz3nvvKZXKYWy33Nzc0aNHjxo16o477jhw4EB3dzcDczLenMM4IK90appbxHk85+TZvy3ZPTcig9TtCnxCQGfDC4Q40vzD0kG3lmAJtGjFPyzNmwuCRSTjluIRnDh7YSyUAJMlMcoZUW9OJHQifcqfn1xdL8HVL5NQvlIPDeF3P/zww4cfftjU1GQwGHg8XnV1tSupggxhQ17XqWiuobW1lbLuNBoNRTolEsnatWsfeOABT0/PU6dOUR8pGgw50bqIJvpRsFEqlVZUVOTn5wesSnL/YZv7gq0z522YNW/j03O+HD3+nokPPPnyvxa7B+z0CIx1D4zzDE7w5gnnRuz24gkJmSmZiNmmePGEbgFxb8zf4RYQh1xzEkHCJEaScYAc4AzW+2+SNzdJlHUSRWtdj81JR1RLS4vZbNbpdDK5vKC0ImBxzIRJ08ZNfvCFDzizv980a97GWfM2zp6/dfaCbe4LoZFZbCJRzhGwOAJvsj7/cvWhfSerZCqQoUPNZAcE1+mgwlQFxTj37t37+9///rnnnsvMBB9We4wTHyLGj/O6Zq7r2Jl2GfXrxYGqVquR0ymRSOrq6hYsWHD33XdzuVylUklHIPJur+Pkw7Yr3jWtF1apVHV1dUFbs3oiJV5PdTCwplDLiJjhEZ00sIGBUjNSPgwZNCIjCaq2RJyWkAwSgNMJyAQgmjjpIQgKZR/BkHT7ePn+8pommrZ2ohfHUPYZ7SY0MzabzWlpaVOnTmWxWBUVFcjjlEgk9k7GFDlmgtuh7Kn+n4u+E9EQl8pmSKXS+vr6d95559FHHy0pKXFquBqT9TabTaPRNDY2nj179r+rdvfQC0gIhPMMYYfDVAMlYuRztOEEvyi+CGYbouKDv3vzQMAWdW7plOIfno6ewUSxDUpjUfmWxUn6fsOhJnEPKYEpae3/+Bz6LfGJQE0Fq9Xa2Nj4xhtvzJgxo7S0FIMle/8C58X+h75hB+OM1w9zdnd3t7d3mi2t8fvKlmw9FrgiM3BFVnZhbb1E3zaypTLpqwHXpHK5fNfBU36hoPOPQAWw3klmzLfHLaXHZg8FNmCCJcR3H77o3dCEj0J3fBK6lRVMrPsQ6eQKvdmJgYvXom3nF+GbvblCFqHLw8wZAlPujoNFyJmmi/rBGEWOcMzcvHyUrj1wMKuzs19ykWfOlCA8XF/f4Ai3cD3X0NXVXVIui9ySx4nJDlyZuTWtWKYy25rbu/rVEtdzZmbfq7TA4ZN1aYcr2trarFYrRlB7jhYjn4dYm0MSCRZcPCGq4yAdE4pNSRCFCzQ0AvDigYq1W1C8J1mOsTiC2QtjPYMA2sR8OP7bq7sDs4E3L3lxwjGlUmk2m+nb9ipXzHw90BZo7+gsKGsKWZtTUase6DEGuF9/YM6urq4jR4488MADSJccPXr0smXLhpHL3tDQ8Oijj+LF/Otf/2puBhEIBuZkYM4BPgODtxvN3eA8rlar6+vrlwpyUciRyG70GLTMXbTbp8fEBeZlj2CQ6cBFL87OyN30IiYuZIkLfngILcDkDpDDdvcg4Pi7B8Zj6s03JDXuMLi2IKjAJIMGr6P7f+Rnnnlm1KhRL7744qlTp954442CgoL+78tseQNbgC60qHiU0WhEwgFyOqVS6aFDhx566KGHH3744MGD6JTT0tKC8RA+2jfwegb7UJ2dnW1tbWazWalUXrhwobCwcMWOdK+gWI+F22d/v2nmvA2vf7Pu+b+zb7vzrtETJv3xAw4gcMHxQOsMgMDRk2hi+4elzQknlgmcJNCqDUv1ZINCiEcQ8A8gMCX6tIR0DrV43jxCAAVh27T3IjOOFEI2ByUxXalKHYUWcSAZjUa1Wi2RSDamHX1pzj9vGT32nkf/7/Uvl8/6DrDkWd9tmj1/i9uC7R6BsZ7B8R5A3E9kcQRevY6nPTLmnKRv1meW10sdU5URnx28a3tK9NKlS++6667Zs2cXFxcjJkF5nPaFAg6I2g720+c4x7fPtCLLSq/Xoz+xVCqVSCRNTU0rV6688847P/zwQ7lcTpFO2mvOBdThRI3gmdFolMlkpecq3lqUQREFKBmGiKtH89+Lk0T10IiQBsRUQDIIhsCsRz8tGBQpEZzwgt2F/uHpXjwQ2CDPco/SBqTVuEL/EFHWqQp0PHVthbQBD3I6JrGbrFZrfHz83Xff7efnV15ejsMSha8RUuuWagAAIABJREFUBkB9BYa7NuAGH7IdsTwC34xohU4ryS5evPjSSy+98MILCoWij3StE80wXV1d7e3tVqtVpVLV19eXlpZ+tgyYB8grwrWbZ3CiLz/FLxSIm758EWhdcIWQduckuQclEBke4CX4hUJwRWYVzM0BkAmrQhJZEf0MKJvArJ8XV4hkBU+2YN66Aw2NYoPBgCVETheaDtloHPYTUUVuVHLm8/m333777t27peRHLpdrNBqDoce5AF8WjJvJcPXaDYE5u7u7W9s6Dhyr3ppSxF6VPX/pQWHW+cJzTWKFYbjuyxHOi9Uhra2tZrNZrVZXX6z9649phL8FmrRoWjw3PAOFu2EhyU12BwADikKwnqzHubO3lARnWozQULLyA/72H5cAj3PB4nXe7ES3wHhPDlA550SkzyEmf/+JOVAvlptMppaWFhrcOkLj3PBrMJlMq1ZviIyKjlq6sqr6Qn+OX33hIsKcJwpO9md7h92mq7tbrjHvP1bNXZ3NXZ29dHt+2uEKg7m5g9GrdYA+EytMizflWZuhNFyhUFy8eJG9NdObm4yFCDgV4EONZpye7ETQyCHenL/4IvFF3sTQ1z0IdBBBmycUyiBINSqs3UitKvH3ZQuQHurDFSFT/ONlezElRScBB2gV17yElraOw4W1izYelalMQ3yH/YE5U1NTx48fj7DiHXfcIRQKhxHj7O7u/vrrr3/3u9+NGjXqscce02q12GIMzMnAnEP87Fz9dBTmRIqPXC6vrKr+eOkeZER59zIJgL4Zmgpy4ewkH6JEhC5QmDgjluyEVcATehB+AIsD/p2zftjVa+tCVD56JYyoprk3V8jZmStXKC0WC8Vmrn7RzBaD1gKNjY033XQTzqR/+MMfjh8/zlA5B62xr35gml3FNJzVajWZTFqtVqVSKRQKZDj9/PPPPj4+48aNi46OVigU9gK2zuUsSGUbNRpNfX19cXFx6t5DBObcMXv+lpnzNrzx7brZ32+c+fWaSY+/cNPNtzzu8RFwPQN2zlywffYPO8E4CrRnk334pLqCL/IPS0OnKCQ8AQ0dZEYgyvQG/wPI3KFp/Jzw9LmLMr6IOVB89rxcLncxLwSK9lmtVjToKiu/8MNK4QMvet9y+5jpf/Sc+c1at/mbZ3+/yf2HbZ4BO72C4z0CYr2JASpkOTm/uHCRFgbDLSBzBCe+HZGaUVCh0xsdyiiRPjWISWDCrqGh4ZtvvhkzZsznn39eV1cnk8nkcrlSqdRqtZi2Q3lJmrlzokT21ecRp9oCu89+0JpMJnufTgn5Wb58+eTJk//+979fvHjRZrNhAt25ZjzsFrxfdGLWarUNDQ1pOacQWsCKYMQ7MWuGimdoCdMDPxBMAgDLXh2kX7yjenBNKArGRTWqdgNnKxS5VkDe8g1J2brvlFartVgsra2tTNq6z+OCQTK+nlpaWjQazfLly8eNG/fxxx83NjbaY5zU3BfnQ5cnYfRpKGf8k74sqJA7la6VSCRpaWkTJ0783//+pyGqzohbO1c5JoU5lUplXV1dcXHxf6LT0YuExD8QI6FNlG8IiCUiCxO8pkJS/EJTEdfE8gicgrD4FZR7eMlAaeKDkI9fKPibuAXE+YWkomgbrgqJy5Rw/oZDjU0Ac1KRDOb16oAPC0I7KKVgsVhSUlLGjx+/ZMkSinGqVCr0G8Z+dAprdgds5xt1STcK5uzo7GqU6c9dkEfvOrFw+aGw9bnRu05kFly0NruI6+EAGhxf90jllMlkcQdP+fIhUgIwg4hSUqzCk6woewI2bjLAGMR+D+ZY/IW4pSC0OeuHWFL8QWxWuMJ/hW/nRca8GwrWA2SqhDUstTeeG5ZytLhar9ePBBpARWXVT8tWRUZF79yVYLNd3R1WrlAizClKyRhA/zrOLmKFMXH/uWU7Tsz/6eDynSeOlTRcbNK2tnUyVE5H6COztXVlXMGJ0kaDwUBkxirfiUiFECi4R7EfxMC4ybQm1ZefAk89lKWC1g4ERYFxUABBFP7xGSd1q3bKOqGggAjgKCcJJxnggvMgPYWHPV9dZ88FcoRmcclr0BtbtqYWL91+3NY81GLRV4Y5Ozs7Dx48OHnyZMzMjx07duPGjcO4Tu/q6kpJSbn55ptHjRp11113HTt2jI4HBuZkYE46GBzlF8zgYIrNYDA0NTXtP1YMIrSABAAfv5c6kEiUNFJYbIEHUStC2xVQQgPBNCDjQ0lLMClJ630BYL0wOA0QfhUcCvQ6oPANiaEsdtLfl2TUNooprjCMj66jdMmwXsf69etxJsV/p0yZkpKSMqxXNNJPTgsR7M0FdTqdWq2mSGd1dfXChQvHjBnz7rvvNjWB/CBNs9IiUMfPK9GFpV6vF4vF586dO3r06Jc/JXkG7nIP2Om2YNsb365//Zt1s+ZtmPn16odfe+fmW0dPeuyFV/+7yjMo1jMI3DrdAmLdA2IxpiS0cqiSo3wF1FjDCjuMIOdGZPiHgRA3Se2lRMblVFdXo0IIpvsdv9Gu+nhgq6Ion06nk0qlZT9XfMJdN2HaI7fdMf6ZOV/O/Gad2/eb3eZvmf395tnfbyU8zl3uAbE+IMMCsDHQO4hsHWY5oemIaDlO5nNDRZv3FxmNRnuFxqte1SBtYA9I4POCFqSFhYXPP//85MmTt23bVl9fL5fLFQoF8q6MRqPVaqUcaOdKYQ9SMw77YSnSaa9ei0gnJbJLpdKUlJRp06b96U9/On/+vPMinXizyBtQqVQ1NTXr0/I8gxPdA+PdgxK8+T2WAb58ACa9uclAuiKaZiAjCdUGoKvhHthr+0T4miDTTexegHrFEfiFphJrPfDV8+GJcC3d4xzDhzCPuz1bqVRS3sCwDwDHuQAKg9H5ZN68eaNHjw4KCqqrq0MAAHmcGo2GmvtSgSkXeIM4Tl8M0pVgF1Oerr10rVgsXrFixbhx45KSkpxUuhZhTovFolQqa2tri4uL56/bA1EQEjFJcZg3OJIAxRODJZTxRz9g/3CwKcHEnAeILgrcAuO8+ckkcEr1DREBWZyb5MsX9Sz3QlN9Q1Ix7vINhYooFieJtyNHLBbTfD2+pgepN5nDDqwF6FOA6heFhYX333//22+/XVdXh7oXSqUS/YZRPoHBOAfWzjdwrxsFc3Z1dRnMzTKVcdfu0h835wWvymLHZMfvO1sn1pltrTfwgp3oUKgtZLVatVptbV39go2HgHRFgqUeSJINdk5oiO4RlIC8Lsyb9WbPQEYInZu8enUpQcmWkEFRNpzFFvhz4lEIje4LmkM8gEu9uMLo5BMqlcpsNlNlCCdqw2u61K6urt17DyCh89Tpoqvua7PZEOaMWb3hqhs77AatbR0nSpuW7zwRtj6XG5OzLa2kukGj0Vv7qdzrsPflMhfW3t4Rv+9s8qHzKpW2qamppOwc6uXA0oyXPCeC5I6w9IE48qLqFSCdbKB9g5ItJ6m3PgzIPx5BCTBdcMBhBGVpoc6MWAIREBS8gTAAg1UeF3w99+afxTK7trY2JkM+eENLY7Ct2HUift+5oV+1XQHm7Orq2rlz55133ok5+YkTJ+7fv3942Ufnzp2bOnUqXs+CBQvsSaUMzMnAnIP3hA7wyDTFZrFY1Gp1TU3NTwk5SKsnDABQ58CojtTzQq2ZR3Ai/k6WwSKwgyK2yVCQEggRmzcp8sXqNiILmUwonqBz60W2JGYGhEoFZp+pBWd/VbA2wDthdrvuFujs7HzrrbfsYc5Ro0bdeeed2dnZ131s5gADbwH7TCvlHKCQI0U6pVLpli1bHnjggWefffbw4cMWi+XSvP/Qv7yv6Z7pXGQymRQKRXV1dWFh4Y7kvd7seI+AXe4/bJ/53eZXv1rz2tdrZ367fta8DU/5/2f0+EnjJj/44kf82fO3uQfEstgJnsEQQRIr+F/cN6lekA9fNCccoE3gHPDANx7Wn4TPNDcsJedEUV1dnUajsVqtLhBQUoAcERStViuVSgvOlPr8P97oO+8ZO2n6/723cNZ3G2d/t+mNbzfMhH83vvHdFveFO1nsBC8iVOtJXDmx3oX+68kGchhZioOonSdsmbRlf5FGqx9epJNinOgs1dzcbLVa1Wp1amrqQw899OSTT2ZkZFAzTopxUtFdhnp1TU/rYG9Me7MP0qnRaBQKBYWXMjMzn3jiiaeeeiovLw9ROqdDmJBDg3IaCoWiqqoqMi4bSv6Jwr8fUeHGMMyTLcDnDqMsDMaQfQWOUFyoNnMPBJo1ABIkTUZLE2BKJP+hUTHUfADxHSoYvLjC/8bsVygUVLd2sDvXKY6P7yPKKm5ubq6trf3rX/961113LV++nMLtMplMqVRqNBqj0YivXacbgU7RHYN3kfbxFVL/dTqdSqXCLpbJZP/85z/vuuuu/Px8fFk415vCHuZENmfo1n3I1CQrO1ivebKhEqInfU+qUbFuFT4k0rX4xvcLhfpX98AE90CgHyENFFgLYAaMNaxwtB5hRlL5ihPXcuExBuYcvAF8/Ue2jxWbm5uVSqWPj8+jjz5aVlZGQyaUq8WaMOd6BK6/fRzzCDcK5gSHzo7O5pb20kp5VmHN4s1H50XtD9uQu2t3aUFpU3vHiHMIpCGZyWSSy+Wny8o/iExlsSGC6gm9eEDhgjURT4jYJ0ZfAFRg8Rmx3GOxe9ZHuDHadqIVHxaiebIFUHYWkgIilsTeD8M5zJ75hqR8uuKgRNLjooIPnWMOxRtyVXK5YmXM+sio6GXLY9QazVWPiRtHRkXbiC3cVbd3tA3M1tZDJy5sTD69YNnBxZuOJh44W1DWaLK0to9sW1yH6qbOzs6jZ+pWxRXUNsrr6uoKThf/UgrGTe55eImbGy1TwFRJD0GTK6Q1qUQZCyYQ4HqitXmvhacXBzjchCnUQxIltCJCHOcKN+8tQJ02l6916NP1GJZc9d8+ew3sz47OruzCGt5wGHN2d3f/FszZ3t6OijKYlh8/fnxCQsLwJnI7Ojr+8Y9/4PU8//zzJtOvBH4ZmJOBOQf2AA7iXvbxnFKprKqq+jpmn0dQgntAHCoRwTKVn+wbAtpEqHGEszxJpQErHzkHmE3DUA8qVoJRwxZSb/5hab3TOoCmRDoSVsJwZJjxhdv2n3IZaGEQu2rwD61UKp988kkKc950001ubm7JyckSiWTwT86c4UotQDNx9jqclHaA+TixWHzs2DEPD48pU6aEhoaq1Wqr1YpSnMjpdPBCMLzHtrY2i8WCurWlpaWZWYf/szzVj5/sGRg7a/7WWd9tmfXdppnzNr7xzfpZ8zb+6dOIu3//3G13jH/49XfdFmwFWic7wZvQykkxLAByIKEGYrZQruGFriq96tl+YalkeQkzW/jOrPPnz9sn4xy8ua40XLq7Ub0TAT9sT7FYXF5e/rrXmzffetvUZ96Y+dUKxDjdF2x1X7Bt9vyts+Zvc1u4g8VO8OYBP4NIlENdIWY8IX3Jhhid/gftCUwO+MQ/RLQ7/2fK6Rx6TqT9A0LNODUazRdffDFmzJhPPvnk7NmzNGFHtSX7PCDDGz5euUNH5re0W7FPzWYzTnpKpRIlu6VS6cmTJ2fNmjVlypQdO3ZQyW6ah3X8PqUxGBpznj9/Pnxntn94mjchSGEqrQfLJBobCDD0gJpQGpxIc23kUQWDAIQusCIN/2RxknxBYVKEzANvLqAUtP7jgyXpUqlUr9dbrdb29nbHb7TBfhzowKMo+/nz5//0pz9NnjxZIBCIxWIq5IgYp8FgwMmEZiKYNhzsPrqBx6fdjcI2aA1AJ5nS0tLnnnvuxRdfvHjxYh+Tzht4DYN0KCpaS7051yUdANtycCHpCZBouQOsyNhAPvAmIdO7Sw+ySFbOLwS29yFkJo/ABGJHEkuk26DICcmg7kHgB4wsJUz5QXDFhbx/YuYpiUTCiNYOUhdf52H7DH6dTvePf/xj+vTp2dnZdJZTq9VIVbfXvbjO8zK7X2cL3ECYsxuWDF1iheHni8q1iaeCV2VzVx+O2paffqRSpja3tnVc56U60e74OLS3t9tsNp1OJxaLs44X+3JBqIzFSfILJ7LevXZ6doEZLJSgeowLVSMQicEaKonFBvlKj6BELDvrpQGksbhQF4KTJ3xIAA9EROBPPrgMQMwWIjp1rlqr1dISUheOK7q6uo7lFyBHM1mUbk8Suuz4EaVk4MZyueKyGzjyh11d3WVV8k2iM1Hbji1YdmhlbMHR03UXGjRtDMbpSN3W2dmpN1p/WJZ59NTFmpqao8dPenGFc8LT8XHG6lLUxcFCsZ7VFnn2IT0Opj9CUKAl1Qx+YanI/0ala1ToIfq0IIgNutZA64SozIcr8gwWeLBh3lglypPL5WazmVqbO1IL3fhrobgmzWJ1dHS0X/JDs5p0++u5FGtzW1ZhTdDKzJbWYXjZXRbm7OjoWLNmzdixYzEnP3Xq1KNHj145LVlcXFxw3T9qtfoKLbl8+fJbb7111KhR06ZNKysr67MlA3MyMGefITH8f2KKjToQ/Hz+/EdRacQ8INGHl+wfno5CRsim9w0BUfKecjbCxPcPS0WFDS9ukkcQQJ4If5Lte6j6WN5L/gXOvmcwLIyRQYWvhEVxuSqVivGFGvbRcObMmXvuuefmm2++//7733nnnZMnndvafdjb84ZfAD6t9mQ1o9GIVp2UXHLhwoXPPvtswoQJ77//fnl5uclkQlonpZgMPQTVz3bAYIUuLyUSSXl5+fHjx1fH7fbhCjyD473YCR4BO2d9t/mNeRvd5m+e9d2G179e9+qXK6bNmH3L7XdMfvJPf/p8mdsPO7zYCb4hyb58MOCEeQmFtUlFBSmhJZIg3CTiRAWSI95c4d9+TM3OP11dXS2TyaiAtpOuJ+2TVshN0Wg0jY2NIpHovgcfuu2O8Y/M/vsb36ybTcw4Z8/f4r5w++wF8B+LneC+EBix3lBWTMToULecIJ0Qc5PiFUh3EriFxUmCIB6BT47wrfCUs9WNJpNpiI1kcNhgHIxgmNVqNRgMeXl5M2bMmDx5ckREBMISaMaJpITLCjv3c6Aymw1ZC+BgpsLLNpvNbDZfSmSvr69/7733xo4dGxUVpVQq7Ws7HP8pto/BUKybt+XAnIjdkC/jAGbpywezABY7CRbJhH/ZA09yYT0MPp2EuAnwJzEIAHSBA0k35Gv2GL2QZTYm4KhcUo/sLVvwToRILBajPWdbW5vjN9qgjkCcUuioa25uPnjw4NSpU5977rkTJ05QfB15nNTc1x4AGOENOKi9M0gHp9ntlpYWq9WKkRUSxyUSycmTJ++7776PP/5YqVSiaKezFFJQmFOtVjc0NJw9e1awJ+vtiHQCW8JbnpjGQdXpm4t2e/fUoYJbJ1S7BiUCchmaipxyzMvPiYBVIYvMMBASEMHbHlyT0BrAYgrkHJP9w9JRPONkaTmNrLCKgnlABmkYD+CwSFhvb29vbm62WCwrVqwYM2bMsmXLEOOUyWRYFuakos0DaBBn2eXGwpzd3d0tre0mS8vRM/WCA+eid51YsOzQT9vzM3Iqz11QjhxGJ74I7MttRVmFmNEiFWZQGgshGScJlMx6l0gYrXkEQX0/Yp9kfRTvSTTMCN4JCyjkA6B7Hx4EPiTxG7FTAblaqFoj9n4QrXEESdlFND+GStHOMj4HcJ1dXV3bd8ZHRkUvXR5z4WLNlY9wouAUwpyVldVX3tLRvm1r7yypkO/aXfrDskMha3NW7DqxL69aqbXYmttHzoPmaJ1y2evp7OxsbW1NPXx+TeLJCxdrcvMLCUUbkkhA+wkFnX/MaYNCRlgqCFmHAD8b/8X0ODzO3CTgC/FFLA7UQPQCn0RCgxSHeQSDSAYtPGWRzBXWnK0SHcPwiVqbX/ZSnf1DuuyiAUlbWxumdGzkx9r7g382Nze3tLS0trYiAIqYKB7kWpuiq6tLpbWs2HVie3rJte57Q7a/FOZsa2uLjY2lGOekSZP27dt31XPdf//9lKc04F+++OKL3zrRiRMnbr/9djxyRETEpZgrA3MyMOdvDZ5h+xxTbFi2JpFISsvO/nPZ7jkRGd48KCUjiCaw6TG5BjUmJIYj4EEPj7MH9YQqYFCJROSSCBkJfHr/9OIK/cLSvHsFbyGe65VI8mQLvlt/gNaquHwYN2w93Y8TJyUlvfTSS+vWrausrLx0/urHAZhNBr0FaDKOWnUajUb7vL9MJmtsbExISHjssccef/zxHTt2mM3mPqw1RDodLdNE8aqWlhaTyaRUKmtqaoqLiw8cOjQvWjg7YJdHUDx4cC7cMWv+lpnfbZr57Qawk5y/+Y1v1j/z1jdjJk6+466pz8z9Lyso1is4wZsj8ATlRmJHFyKCxBxXCBk90FgjrgnA6RQRSC9leULW2XPn6urqkAKLirWO1j5XHVs0TETMD5tRq9XW1NR8//33kydPnjj9iRc/4L7+9bqZ364nOPGmN+ZtmjV/m/vCnbN+2AG2pmAHGA+cV4BPoKFw8vcIJqE54cISWqfALSAOi1qwYAU24yV/vWZ/k1QxZEYyfe4X9ZxRfT00NHTq1KmvvPLKwYMHKSNBpVJptVrUlrQ3rx1YZHzV7mA2uCEtYN/L9jC2RqOhdCupVFpXVxcSEjJ69Oj3339foVDY969jTne0cRCHsNlser2+qamprKyMv+0gUgHQRNMvjDhrBieinAZWDaPspC8/ZU54ui+x3kStSFSPxFpjTJz5ETkN3Gvmgp1oE4Ulw5h9Y3GS/r4kvampiYE5u7u78Q1Lp1Cj0bh48eIpU6a8/fbbp0+fRoxTJpNhzYROp6PzCS0kcroXBx2KI/wXTJRQvIeqZUilUolEEhsbO3HixO+//x65NZhecfC5BcdzR0dHc3OzRqMRi8Xnz58/kH3kn0vTiRgD4W6yBX4hKf6haf7h8CEWtnoEQ+D0C9mILP1AYpGs3Xz4IPhPjpDUq8kGJRc90g5haXMJFDrn/7P3HuBxVWf+MNUGFwgkhLpgsiTff5csBAKBBLC6Rg0TCIEsWfqSGIMXY6tr1Nyb3JssV7Up0qhLVi9WsXrXqI6kqRpNr2q2pO95zzs+mcjGOLYljWTN40eWRqM7955775n3vL8WnuwZnrzmUGZ3dzcu8Ra0zrZ2i2EHADXrZrM5IyPjkUce8fHxEQqF1P1CrVYjXRJPn80SJW1tbKd7f245zDk5OXlpfIIvUJTU9J1KqveOyA49XHiUXZ17oUdjGLo0fltAMHhHjI6OGgwGzEo/kVLiuTHZheQCuAB3FtBNOgdicwyrL0c/yN5zId62+DILm4T0xxAawQnTNRhC1kHT6Q+rUQaTxAdYGYbjdOroH7ebXSKXyzGR4XZw2ugR9O7ec3Dr9oijkSeHr+lG2y8UIcx5obJ6uu+1W7v9rn4V+1zLnuiKtVsztxwvictsrmqRzIqM7NYe1/zbGsKcfWLlMU51dVNvcdkFEngEjFK4kYFMD2WPG4E88VeW25zUSF4bUxgAbbKdAlkOfrGoBcJYN3TUsPx5SKITEW5aINJgCP1FyNMliHM8rVwqlVIG+fxbX1iv8bEUwcgho9Go1+uVak1zjyS3ppNT2BCX38gqbEk835pX093ULVFptAaDgfroXLx4ESWe/2pLZ2JysrlrYHNkSU2rdFau4Skw59jY2LZt2+677z4EFFesWFFRUXE9531aYc6JiQlHR0fcJRcXlyl2tThuCzDnAsw5K3fQtd6UUn3VaghYrqmt+8tmrkc42Mzi3A0uZ0QOhatfRDFxagYlAYmPItM6FG2eZE5Hzi+0v4OB1YLbcQ3mgqkR0YCSFhuHkIUhQWr1/szbgatyrdNgG79TqVQXL160jX1Z2IsfHAHah6VIp8Fg0Gg0SqXSOqqzubnZ2dn5/vvv//LLL3t6eigX+4ZLgR/coVv6i0uXLqFxnEajkUgkfD6/vLw8LSPzr1vYzgHx9t5nHX3OOvlGO3qfcfA+9Yc1h9745pDdd5H264//4e97Hn72hbvuvveJF+zeXLPfwfuMo280g8lxD0kgNSjPHSzUOA5+cUCwRRtbMkGt3Z9WU1PT1dWFto1oDDLnYH68KmiSHEb9KZXKqqoqOzu7JUuW/OI1N7t1kXbfHXvjm0P230c5ep+y+/4EZJp6n7HzPmO34YyjX6wzKbWxWQnTPhpdXtZuInkZ2ItgyoR2tcRfBQp6YLG4BrEzytuoN920jqF1ZYw3wtDQkF6vr6+vd3JyWrZs2erVq6nuamBgABUJFJPAJjWtiW/pJbywsVs/AtaTHopOrhSyy2QyDofzxBNPPPfcc5WVlZgiRsEnm23OToE5Gxoawk/nIr3AYpURSGy3mQkelw3TnEk+riuTEIrDkjzCkvCeJWr1eAffOGeiVgcElBh0E/8Mi5MttuewkLNwjZnczyPShUKhSqUymUzzIJb4hq8/CnSNjY0NDw/LZLI1a9YsWbLk73//O/b9kTMhl8upwolmYCNF73rWoje8ewt/OK0jQCcZapFtHdIplUp9fX0feOCBs2fP0mrK9j9BqFhco9FIpdL29vbS0jL/o2kgOyDaTUf/OPRjxGmEEZKIcZvu0HpjgcgAZJ2xmCwFck+S5otfkQuFbTtImIPZhuO1MQVk5UTo4BaSEJdVIRAIBgcH0bDnNrxNsFa5ga/TerXjxq016xcuXFi6dOmqVav6+/spOUypVKIjNxbGt+Hpm4GzcGNvMR0w58TkpHloTK01VzaJD7Ortxwv8dmTsy/mQkGloFuovh1wTpwwR0ZGdDqdTCZrb2/fx8qFRD2y5EEpp5M/9LIsVLPLMgAqBgCAE01ogRSSiDa2UIMR6AIXUIyQBJdAWI2iP61TIKxJwduWsEvRxsM9lOcWnBh8Op86ft8OThvj4+OJSamIX57LybvGKnJ0dGzbjj1bt0dk5xbc2B008381PjEhkutYWc2+ETnMA/mbIksSctt6pVqtYfj2YBHM/JDZ775QAAAgAElEQVTf1DuOj4+PjIyotbr9MeX5VYILNXUwA6Bekwn4JSGkstxJtYNwJlrmOAeQXLZgruvlCE8smbAN7haa6B4Ccb9EzE3crTFBAEBT8PmHDjyT40aQ1OTCWqlUqtfr56Wak3ZyLl68iMsuNFMRSgeLG7qZZ4ve2ZSEA2KJRQgF2RXS7LzCkwPPlBTW9wgHlEajyZrcjJu9znNvHh5LKWwPPVw4oDJe55/c2pdZw5yjo6NHjhyhosk77rhj3bp11/l2L7/88hM3/fD397/y7S5duhQcHIwY57/927/JZLIrXzM5ObkAcy7AnFe9MGbzyfHx8bGxMbPZjMaG1TW1f91usR13C06EMisElARE1pPgGQa6AcuaNhS8O97elIbJySDkJ/WZIyioLPWce1gSBMAEsDzCkpwCWG+tP4MkOKS5WcQHQZzvj2ZjGTc0NHQ7sNVm83wvvPe8GAHaj6PUJ5PJpNVqVSqVQqEYGBhAgKe3t/fAgQOPP/74Cy+8cObMGZ1Ohz1ZSsq2wdY/Nv0RpaNpUiUlJSfZaavCwIfW2T/OyS/W0TfayfeM/foTEDC57rjdd8feWnvk96v3/X+un9/3wM+WPfJv/+n5d7vvTzj5xTCYkBzpyuS4MiFvEvEARjCUqi5BnC8jUrILzre2topEIqVSaTQaEReZW93qKdfD0NCQwWCQy+VhYWFPPPHEiy++yNy8i+Fzwn591JtrIdPUwfuUo/dpB5+zroEs1yCWMyCaLFeSx4nuc+6hPDRTgjw/JjBU7H1icBF+WeUPNEaae+oWQtxXAtlrDmbhMOI1Nk13G5aw1ka1JpNJLpdv2bLl6aeffuWVV7hcLrbqZDIZYhJarYX3N8Vbcm6d6GkazzmxWXqRI6ptMpn0ej3FISiknZub+9prr61YseLIkSNIgMU72mYBiSthzt2xubiQcwsGZgayyvAZvPsQXSBJeJAaAMQyAnwi0uDoH79yAyTnwbqaeTkyCpJ0ieUGESVYEc6AjLz+aNbtDHNSBMJ6SikrK3vjjTeefPLJyMhIoVBIdZwU46SG8HPFv3RO3Oazu5M4ydCyCrkUVDUuEonWrFnz85//PCUlxWQyUeDnGq3Y2T0cqk4eHR3V6/XokFFVVcVKOecBHmtJ6Hrt4BuD3TfidA0tJEYwlxGc6OAbC4Swy318+tGPLDFKoXBlcpFRgatFeD4ITIDcQhI/2ZVa3dCCSnGz2XwbUijwirpqytSY1QON1y6RB7Vfm9aLhxZRaIOhUChee+21559/vra2ViKRSKVSJIdptVq81OdiYTytAzjrG58OmBMP6uKl8R6ROjmffyCuct3OrI3HiqPTGs/X9usMI/Ne00l5IVqtFpNTdsfluASxIc4clo2JAEySqgz1WJQxBr8NTQSSRwhY2hIMIw5SnHwhnw/nQwqHwGsCWA5+caCPDwavWvyH61P6IyMk0fd4rkgk0mq1GM9py581t+qO0OsNBw9Hbt0esXf/YYn06v10fK8Dh+BlvKTUS5dmIVHvXz3eiclJoUyXcb7zQHzlms3poYcLT/Dqztf2G4fG5v1t9a+OlY28HtWcRqOx6EKHT0ROZR3/3U2QzutBpNh4n1orL2lbmxGcsGpLOjbP0VYHV3N2PjFvrT/j4BvrjAm+SJ4g3DI0RIQZACXjENDLdgliVzW0zFchkPWiHhWcer1eIB44mFL5eUQGgxB5cdxwYnQhNpNAqSd6eqqt/3h3xt6kqg7hwJSy/DrBTpXGdCal4WB85WylUFOY87e//S2TyVy0aBECivj1wQcfLC8vv547or+/X3DTD71ef+V7paWl3XPPPbg/hw8f/qGPoQWYcwHmvPLimeVnEOY0mUwqlaq/v7+6pubTXakWJQGQdtmo2nEPTfQIIzZHAHmijgeYJljn4QREWm/x9j4xgIOGJXmGgWs5LIwD2a7I/2VykcMCjGD4nrgeBXFCT+ctwJyzfB0svP0cHIEpLTnkQFkb2CIju7293dHRcdGiRZ9++mlfX591cxZb/zZlvIYHhYJOrVYrlUr5fH51dXVubu6JWM6fNoNcwC2Ey2ByXALinP2i7defgoDJDSfsvot881uwY339q50Pr3j+rnsWPf5fK9/65qD9htNOfjGuQWx3WHxC4pSjfxzgc4HsD7cmpWYX1NTUoKma9UpyrqBftH1GO7Mmk0mn01VXV//ud79bsmTJu+++W1hU9MWWGLt1x1f+37E31x512HDS0ecMIzDeNYjtEhjvDHnJcTAyEBIDDERsYjoBcAItTvwRJ3nS6IT53ykAfGvtvKMvr+fj0ePOLSSxqL5Lq9XShM5be2PRshipfyMjI3i8jY2N9vb2S5Ys+fDDDzs7O9FvDY0laXieNdfvh6q0W7u3C1u7tSNAr3YqZL8S6UTX7g8++GDRokXr1q2jUZ0Ui7q1u3TzW7OGOcVicWNj44mkfJIcDJ5m2FDDwCcMbQJhASERuwZxPTeCLaSjXxwWY2ie4RTAsvOOXrnhLDDP4B9wO9xDeS5MsNCg3TRLxEAw18mftSOu0Dqb83a7O3BWocImvV6fk5Pz85///KmnnsrLy6O518iZUKlUlDOxIAq/+evf1rZAP2JGR0fNZrPBYFCr1RTp7OjoWLly5VNPPVVZWTlX4J+JiQmMmkPPnsbGxuLi4oDIDK9NKahSoua06GjtyoQ5AT/xSRMf1OQkVopDG0wIeTKIaRuAo0wOEYNC/YCic7TF3sUq7urulslkOp2Osuts7YxP0/7QWQUdSkZHR0dGRoaHh4eGhsxms8lkMsLDZCLf07ip0dHRGeDlWF/kw8PDAwMDr7322jPPPMPn8611nFqtdopweZrGamGzNzAC0wdzTkxMDg2PDaiMxbV9u06Xhx0p8t+Xd4hVVVrb3yfR3sCuzqE/oTCnRqMRi8UtLS27Y3MQpMQ0TdBvBbChJxbKcw3iYL4AdrpQ0In0MjpzUv2WB6GVQHIKoduCPJTJQYyTSEUt1jhYmEFzn6Ad3seyhUKhWq2+rWgizS2t23fu3bo9gs1JvEY5ejY6fuv2iLPR8aOjYzZ+jU1MTAwojaxzzYH784MO5DMP5sdnNgskGoXGfGl8rvQbbHyMb/3uUZhTLh/cFlV8JqUu4HiGR1gSqLSJXa2FYwoe1DzwsAV+WIJFjhnEdfKPh6VZGM8jLBlXbUQ7lOjkD/0WMLgGxyyQJ7oEgjcPg5kAKZ6E9OAewnMP5f3PrnQ+ny+TyeafbTXN4BwdHcU2jnxQkVHW8udtqbDgBdUsSOFJjcoCDDjIEoqHS2BqKgnKeKK2f2cjL+l8q1KtQScnNK67HqSzvn1gw65zGSWzFvFLYc67yQPRxIceemjJkiX4/aOPPqpUKm/99X19WzQYDK+88sodd9xx5513urq6XmNCXoA5F2DO67umZvBVU2DOmpqa1XtTQTcQloScNex6I/AJ03QgqOzRlhaMCmE9DAkuDDLLM4ITHHxjob9GcjqR2IIUFchShuBl4KfA8/6gymeQH48lly7AnDN4zhfeav6MAO1W0L6/0WhEWefg4CCVdXZ3dx86dOiXv/zlr371q/379yNBewrqQxUtsz461HnVZDKp1er+/n4+n19RUXHu3LljsbwPN4Fw3IE4rLoGxjv5RdtvOLVyXZTd91Fv/d+xP6w59NbaI299e+g/3P53yUOPLXn4sV85f2L3/QlH32hn/3gH3xh772g777NOAfF/i0hMPZdfXV3N5/MlEolGo5lDpmr0ZOFYUddWo9HY19fn6+v72GOPvfLKKydOnGhsbEzLKXJYHwVGtRtO2a8Hl1onv2gG0JPZxHU8nmTJwPfY2YT0TZjnIVwZC0oX8oxzINveB1Ri6F+HL7ZE/RH3Ffg+JJEZXaJSqeia/JYs4K48XprEKRaLAwICHnvssVdffTU+Ph6FCAhIYBinTqczmf7Jz8QGRcyzftPNlR2YMuMNDQ0ZjUaNRqNSqawtuwUCwd69e5988kk7O7vi4mJbNrBFmHN4eFin00kkkpaWlqyCEtRuYvWFBALXIK5HWLJHOPjTAmYJFDSWnU+MMwbmhYCMAO9cN/I93Lkk+cmFGNjiUhAXiqRgI5aVwQme4Slvb0zm5FbiHGg2m283Rw28oihtQqlUfvvtt4sWLfrss89aW1upSpjqwnE+QV8Ea57QXLmDFvbzR0eAXhJIo9Hr9XR6kUgktbW1v/vd71599dXOzs5/tZ/yo289HS+gRAqdTjcwMMDn8y9cuJCUmfvBZlAUkcVdInysE+0mrvJwmYZCJQylcw/leRB/bFfCXnX0Bx0Sg8jNcUnoEgTuDvgybPH/9/bkipqG/v5+hUIxY4nd0zGA/9I2aa2C0nDr2kyv1wtlisL67rN5jbu55dtY53clVO7mVUUkVp7Mbsys7OoUyg0G45SsKbrBf2k3rvFi68/Q4eFhrVb7xRdf3HfffWw2GzFOmUymUCg0Gs1CJOc1hnHWfzV9MCce2sVL463dgyd4dVuPl6zdmrE5sjgpn1/TKhkauTg+MW/9a+lsqdFoRCJRc3Pz3rgcRkiCR6glGsAi4QqGFABsr2NDzJXJfXszdM+c/OOJCB4ym1yZXAff2LfWn4XZlURvIgTiFgwmHNgooxRS2tO3UNCIYol5Mre/v/92gzmHh4ejY9loXVtdW/dD91pySsbW7RGHj0ZdO8Xzh/58Jp+XKY35VYJDrMrVG9P89ubuPF2WXdZtGh6dLQHZTB773H0v6neoVCobmrsOxFawsxtWbUrGpRnBOFk4OXiGw5MWFDOA5eAb6+gfDzcyE+YBot5muzITACK12PtzIVskmKjDA0GeiLc/MFzDwQfRMzzZa2NKWHRBV1eXXC63bk/N3fHEPceSBulfIyMjZrNZo9EIhNKt8aWrNia7hwG+i5OnazAXBwQjFQhTBFKTcCVLZ06i+GTjHMs8W9zZL7PmIF674TM6Ns7JaQ06mK/QmGdrYCnMiaDmHXfc8cYbb7S2tkZEROAzd955Z0BAwKzs3sWLFz/99FPcjV//+tdyufwau7EAcy7AnNe4PGbnV9Ywp1AorKurCz+V6R7GcwvlIV0XpTw4p2MTzULjZXLf2ZqBMQMeYUnuRLvpEgTNcTufGLsNZx39QTWFPF/3UB6WdLhsBj3W5dhO50B2TnkdOo8vmNbOzkWw8K5zeQSsexYjIyNDQ0NXNbBFWaSLi8uiRYt+97vfNTQ0GI1G7NUieXxmnLKuZ6TpEVHrWpFI1NbWVlFRkZ+fn5KS+tUONgO6/PHO/rFE1hm78nuEOSPf+Obgm98efuObQ298e/jNr/c98svf3nX3PcsfXfHG33Y5ep99cx3gnW5Mtu+hxIKCwtra2vb2dnRUo2YX1y6Jrmf/Z+A1dIioiBMrxYKCgmeffXbZsmUbNmwQCARtbW11dXUH4zId1p9wWH/SyfcswThj7L3POvnHuTI5LoEswlMB6QYIN8k63JK+Sfgrjv4sB79YJ79450AgpoBvbQCLzN4JzoGg7cCPA9fLa36XIM5HO9M7ekXIPcQkp5sfEHq8ly5dwuA0s9ms1Wrz8vKeeeaZZcuWrV+/XiaTWWOcSqUSdZzYNLS1i/zmx+R23gKi+/RiMBqN1F7SWnuXn5//2GOP/eQnP+FwOKgwRkWRTRnYUvWAwWCQSqVtbW3l5eWf7UoFnhkTEqGc/FmuTK4HgRlQ1oksV3IzQkMN221QZRGVAKyiCRMWIgMINRjvaOQLY6aUZ3iyJwFNPcOT/7IjreBCvUwmQzn7bQJz4pRiTSgeGhqqq6t79tlnly9ffuDAAUoSov6NarVar9dPgcxxxX4734zz79jpxw1mBSF1DLPPEQeqqqp69tlnX375ZaFQODQ0RGeVW8LpueXjSdPmjEajQqHo6empq6srLi4OO5oAUeXQM4I5hHJYAb+EYgAmH0A9kUhBUjndIFAKqgXnQLZHWJLXplRXYvDjCJ19yKnCP3QN4ryzKTkp9zzlkFHHRdscols45lMsB5CIo1Cpy5t7faIK3IMTSNUENuP2YFmZ6BacwCB6Dhz2T3enp5a3D6q1JpN5eHiYKjtv4bjh9XDx4sWRkRGDwRAaGrp48eKkpCRrX261Wm0wGKyr4jlRGN/C82j7m5pumHNiYsJoHu2TaQuqBLtOl4UfLQ7cl38grrKgStDRN2vKkuk+LxTmRO17c3PzEU4u9LiAWwa6dlReglMliTfGGE54kkyJ4F7G5BJGSLLFYpHJdSUxnI6EIYqWOWh1ZnHpIFmeFCPBJ1HXxWAm7GYV9vX13W4w5+TkpEQqQ0HnwcORarXmque9oKhk6/aInbv3m0ymq77AFp6cmJiUq01xWc0g4gQdZ0FcZlN7n2JAZRgHHee8ZQzYwuDf5D5QmBMJ9zGplccTa/xOFDJIaqYreOHEOwUAnIl+OZAh4s9y8mddpqjGgX8YsRCDYBGi9QTskwgQSV/Fot10Y4KmkxGc4LUpxTMMVmfuITzPUB47t0ogECgUCrPZjHXmPLhgsMDGCsRsNut0unaBaPWhHER2UVXlEZoEU+vlVTCKozw3pqCFJOYiYyFKQkxh9EgEQ7xrEPeT3Rm9EgCGMVcCS7IfuhIUmqHD7KpDrKofesEMPD8F5nz++edFItHk5OT4+Pjvf/97hBiXLl3a398/Azsz5S1iY2Mp+BoUFNR2zcfKlSvxxU8//TR9IZ/PNxgMUzY7X39cgDlt7szSkg6Zaw0NDTEpOf9QEhDtJoo1vTalYpQLmJJDvzsOHQtJT43nuREk+S6BHI/wJM9wsLd1xiCoy+a0l+lpsDzGWcw9lOe1KfW/d6TVNc1b53GbO98LOzRPR4B2LqxDvFHWKZfLrTu2Z8+eff311x999NF169a1tbVRoRvFgWyhb4uHg9a1Op1ucHCwt7e3ubm5srKysLAwKSVt54nEv25mQX0ZxHYJiIeoTr8Yhw1gYLsS3GuPvLX2yMp1kW+tPfL829/85KlfLV72k6dfdX/9y+2fbYw+EpOcm5tXWVnZ1tbW19c3ODhoneFny0Xkla15zDMwGAwVFRUfffTRgw8++Mc//jEtLa23t7erq6u5ubmqqjrgcOLK76Mcfc44+kY7+sY4B4BLrVMAijhJK5M0LgEvwWV8IItkQnDAVgX8bMGJDqt2ss6HH0n3E5BmsLMLScSqHT4LghPe3ZxcUteBkMlNwpzWx4s5VgjkGwyG8vLyv/71rw8//PA777yTlpYmFoupUS0VcVIgH91LsE9ny+d3nk5O03JYdKWEsDdGdarVaoVCQWWdMpmsvb199erV99577yeffNLV1YWYxJTrYXYvCWsQQi6Xd3Z2VldXR3LOYXgwmmo4+MY6+MYiv/Uyj5gwhYMTkHng6AcOSBYKGvGdxooLSzWIlSLYJ1JiYa0YAsnrJIQvYc3BzFZ+u1wu1+v1w8PDN3nPTsvJvtUbnTKxjIyMqFSqHTt2PPnkk2+++WZGRgZyJuisMjg4qNFo9Ho9flyOjY1RD+TZvXhu9cAsbM8yAniFIN98eHiYIp2URZGUlPToo49++OGHKpUKMTzqkWWDg4jdOpSMi8Xi9vb2mpqa7Jzc7w8kMphcACkDOQwm9Ik8wpPtfWMdSWgcqsYd/EhCJ2GmYqAU6sU9wpNp998pgOXoB2HAbqTZ5BaSuC06u7auvre3V6FQ6PX6kZGRORGfdpPnDhtqSD7DiHTZoDK+oGnNoXMMEulnKaUIFuIcxGEQdBmfpHbijGDux7vTD2fU9koszc0pH1g3vJNTVBQGg2Hbtm333nvvpk2bZOSBPv9KpZLyORYmuhse7en+w+mGOUmbdWJ45GJL12BUYt2W4+e/3ZIRdqQwPqu5tE5oGh4bH5+HCM2Unlhzc3N0Sr5biEWaSbP3cA5kwJKHSLUC2Q5+cfY+/5gqPcKgUeYSBG7eWGhhUx6D+hAxRXIJiXkC9RIQR6CPn+QeBlounBZiMstvQzUn3jvFJWXbduzZtmNPTm7BVe+mmtr6bTv2bN0eIZZIr/qCWX9yYmJSojDkVwn2x11YvTHNn+g4c8q7DaaR4ZGLs757Cztw7RHA2QA9DyQSSWVt8+4zpSfTGv64EULZ0M7Q3ifaYoVFRJnY32aEJKAnLZJQ8X4HNjna0hK8E5hkgQCIeoaDhBHWd2h+GwSWrYyQhL9sSymvaUTPalQBXcMv9NoHYju/pSt3lDFoNBq+QLj2aI4n8fTGsAMwK4IQJRDFguk3sYfEAumf+lFMooK9XERhNjww8gNYn+xOb+gUGY1GinRedaU2MnqpqLqPeSC/vXc2iTsU5rzzzjs9PT2FQiE9XwKB4Nlnn0Xs8P/9v/83ODhIfzUz32zevJnCnDf2zT333JOcnDwzezvr77IAc876KZi6A9aTuFQqbW5uLioq+vOWZGxnEwkmG+XzGKvuQVSbTgHxjkRhgGUc+haiySG2vKGqIzHsDDAZh3a5MziPg8WHZ3iKFwRKwVePsKT1x7Lb+O2Dg4M4H90OLbap52Dh54URuBUjQBtzVOGHfvdTWv+IBoWFhd13330/+9nP4uPj0cPWppSdtBJC136tVjswMNDT09PS0lJdXV1UVJSZmcnj8XZGsf+0keUSEO/gEwMAnn+Mo+8ZwPO8TztuOGn33bG31h6x//64/XfH/n3l+3fffffy5ct9fX0zMzNLS0sbGxu7u7slEolarUbal01pvKyvCBwNa5UAVTQaDAaZTObn53fXXXc9/PDDZ8+elUqlYrG4r6+vs7Ozubm54sKFbyM4b60/ufL7k06+Ma5MtpNfPIRukhqdQdAOquRwhIV6jL1PjCORb2JpDp1NfygcqabfLYTnABRFtGaCRT6Z5y3BCa5BHF5xA/rW3pgyDJtx9Hjp9Ww2m41Go1wuDwoKuvfee5cvX37q1Cmq4MQOnXVyHhVDLAgRrC+n+fE9vUjQbnR4eJhOd0qlkqIRON2lpKQ89NBDy5Yty8jIsDU1Ht7dGASoUql6e3sbGhoKior/sgUWuu6hSU4B4NFt7xODlhhOASz3cGJ8FJoIKGZAvHsIj7wS1AbAI2YCCwGJw1i2OQexQbsJrhuQHwNLaKJFwAV5XGapQCBQqVRYg82DhfSPXuH08wUtJSUSiYODwz333LN27dqBgQGJRCIWi0UiEcKcAwMDKpVKp9MhbYJGDF512fyjb73wgrkyAniRINKJmjytVqtQKOjckpWV9cADD7zzzjtqtdqaP2ELRLEpg4xcCpxklEplf38/2mOkpmeu2ZMMokwLIRWWaaQ24LgSKTlp68eToG6uW0gCg8klDj1ct1CeV3gyATWRugrxSLj6c2Vy1h1Kqa6ubm9vx1ROhIHnN8xpfbXgh5FGo+noEX21PxPwY7CzI0EwTBguEn1KovhCQNyJhRbWV0QmgjQyllc4L7Oyw2Aw0oCJm6lkcA8R8EY3Zh6Pt3jx4m+++QZ5kLSC0ul0qB2xZeR+yhV+G/44AzDnxMTk+PiE3jTSI1LnVfbsPF0WTnI6d50pSy/qqOfL5t+w054YzebknStaFQb2s/gPJsBAmOswa9M9DMxsHf0h8oPBBENFYJFCjx5iBWBeDYa/RemnM0lrsqTKBYGhJfTENiZ7hadQqAMYaSG8VVvSVm1J99qUcr6y7jbM5sTrymAwRkadRutaqfQqF1tHZxcqPqtr6m3zUuwVa04m1TEPFqCOk53d0ilUDqpNly5NzEuWgG2ehRveK0pC1ev1AwMDnZ2dOQUV+2MvRKU3QLQ5ExZczv6g8CGRvdAkcQtJJJRxrnMAkfQQ9hgjOIE4XsBnPUwjQWDVAzwGslhDbSIasboRvBNtFLfG5HV0dIjFYvQiwg7VDR+LLfwhXXlhZ0+lUvX0i7/ck+lEqPYe4QA9INYLHDuISYpBXJNgCjC7OvrF4kIYBpDMn0g9Qedw0IASo2DnQPYnu9PkSsuqFtlaV46AyTwan9m0JapEZxy58rcz9gyFOf/rv/5Lo5mqXN+7dy/FF5lM5jUWnkKhsPemH0NDQ9YHvgBzWo/Gj36/AHP+6BDN9AtwEh8eHtbr9XK5nM/nl5WVBUdCyBNErYBqh2XvE+PgF8sgtRo2xJ0DIdDFhWg6AfIkqnzI3UTnQ5zHyXoY3cnRaxuzPL02pWKQJzbHjyaX9vT0KJXK+STJn6aziN2T6/w6TfuwsFlbHgG8NjATiCJher0es+us0zplMllRUdFnn322dOlSJyen+Ph4jQaCu2k/hWJ+1/hMnb6hwAOhIZ1DQ0M6nU4ul4tEou7u7sbGxgsXLhQXF+fk5KSkph2JTgw9wv12N/vjTbHvBZ99O/CMu+8JT5+oVb6RfwmK/HrLicA9Jw9GRUdERHh6ei5evPi1116LiIhoaWkRi8UoNbBZPIze7NSlk0Y9mUwmkUi0b9++3/zmN0899ZSPj09DQwNa6kkkEqFQ2NXV1dLSUnGh8ottLPsNZ+y9z7oEsUinEjqYuAKHzlqgpcvmGAAiToQ/kXeMmVvwlRDraAKNKynNiX0TwJ9kU6Rkh8R4KOJPZlZhHNcPFZfXuHKsTz0NzEMrZpFIdODAgZdeeunxxx/39vZuamqiUVIDAwMo4tRqtRgoNTIyYi26usY7Lvxq7o6AdXMZlb40nJhqOhHpLCkpef/99x9++OHVq1fz+XxrWOJmesc3P3R04Tc0NISmGq2trWXl5RtPpnuGJ7sRqzQMzMOv2GtDvTUuhqFLDjQyaKajfTR2zJEYizUbvhL/FvPzsNf29f6MxqYmoVCI8//Y2Ng8hjlpo5+mwmg0mgMHDqxYseKll146ffp0b29vf39/X19fb29vX1+fUCiUSCQIc+LEQjFynNlm98q5+WtvYQvXHgF6b2IUtMFgUKvVWEdJpVKRSHTw4MHly5d///33RuM/sCjbJGtSQadWq5XJZAKBoKGhobCwkNHPVIgAACAASURBVMVLX7s/BQqDEGKbRqKkcKrBNZqlqQSyJNAcEJk4ONyiMQ8KxB384hx8Y0HcEMDyO5pWVFLa3Nzc29urVCqtCfXXHu25+1s6saABCV4n7ILG97ekuIcluYUmuofw3EN4rkEwS7uF8DzC4UlXJsg4IAY1COsujguTtEHJy9BLwyOYu4dXKR6AsPObJFjgYp961Z4+fXrZsmWrV6++EuPEi5lKSOfueZnfez4DMCcO4MVL40bzaFOnPIpXtzXq/Ddb0gP25UUm1GaXdRuHRi9eGp9P40x7YlqtFqNecgpL/2cHWJS5MsHVximAZe8d4+AXZ7lbCfxJel8J4FcJyygQaRFvW7idLfQFgna4BJKVVxAX4/fcQ3guTI47Sf0kXjgW48rLvh3cv25PxoUquuPM7/LsqldRY3MLwpxRJ89e6UwrlQ7s2LVv6/aItPSsq/75LD45PjEhEGvSijq2nzi/emNawD7I4yyo6h0aGRu7eGkWd2zhra9/BPCTfWxszGQyqVSq/v7+hsbGyPjCKF5d8OlSBknPJWVPPPa6nSFNCe59BOfAjIcgoG6hwIqgqm4nEtuJSzAASgOBDwFEsdBEz7BkkjTJ+StEm9cLBAK5XG4wGKjd2vXvvA2+EmdXLKdxgt2bUO7KBHtIl0A4fJwwLcFJhFtPW1WIH8M6l4QmYOsJ/YHdQ6EutfD1YVMgo3cOZPufKpDK/wlcmNLPrOMPhB4pzCjunF3raApzvvHGG1eeNaPR6Orqikjno48+2tLScuVr8Jknn3ySAqI3/M3XX39tvf1z5859c92PZ555Bt/3wQcfpH+0du3axsZG623O4+8XYE6bO7k4iaN4XKlUdnV1VVVVxSRl/3Fjokd4snsoDyFMiGcjrkQuQRyvTSnuIRDeibaHYH0WluQRhumbQFDFXjmhpMGchQpO6pCGa2lMGHYL4ZVV1/f392s0GprdYnNjZAM7ZI12WIucLl7xsEanpkzoNnAcC7swEyNAe3MUErPOrrPu/kskkurq6pdffvmuu+56/fXX0cN2aGjIGvabxU4uXvaI2g4PD9Mmo1Ao7OzsbGlpqaurq6ioKC4uzsvLy8zKSk1NS0pOSUjksTlc8o/DZnMSE3kpKSkZGRk5OTkoA33xxRfvuuuuV199taGhQaVS6fV6ajqHN5ft3Di4P9YBctSlNjs7+xe/+MWdd9759ttvt7a2oqiRwn5isVggELS2tlZUVn25i+fKhAxO1yA21NOX+YboPcsIAa4x4SPHA3XusmoTycjAQb78W0ydwRdjFoUjFPQk15O41VnMbAPZ+7jnsTSnYRLXOaS0XWgN1aOSpqSk5Je//OWdd97p5eXV0dGBR4oIllwuVyqV6Co5pd2MV+91vvtM3JwL73GrR8D6mrHmdqCKHXu4FP6PiopaunTpE088kZubaw1Z4efmrMx1dJYbGRnR6/Uymayzs7O2tjY1M8crnAdrP2D3g3DTwTcWe2cYBoPfM0JA+oNSKo8wiAxA9QDaTiK5GM2lic4ACGoEPYXa7O3QRF5uBZ/Px3D04eHhG+Al3OrzOV3bw+uEApzDw8NCodDOzu7OO+98//33+Xx+b2+vQCDoJI/2js4LdS0F5Q25F5pKatorW7o7+kRKks1pMpmo84E12LkwyUzXmZvV7eJHMI0RohnAGGQolUpPnTq1aNGi7777jhoaXyIPW7sesIqgDTuJRNLR0VFZWZmfn5+ckvp/e6A17xTA8iCyb+wo2fvGEvcwsA4jhQEIOt1Dk9xIUwnpTS5BHDC5hQxvSPsOjUopKCiorq7u6uqSSqW0Oz8PhAjXuAxphYZlqkqlOpRaDfnH4cke4UlYcbmF8iDOHALRSeJpIJsRkuC1McUtlOcRmswIBRdxIKaQPCoEmJ0RFGFy/u9onnQQvJFHR0dxzvlXry5rjNNsNhcXFz/44IMMBkMkEslksoGBASyiFjTr1zjLtvarGYM5ycUzrjeO9Eo05+v6D7Eqt50477s3Z0vU+YTs1tJ64djF+eNei3cKFmMDAwMdHR0VFy58dygdUpY2pqAqC5MCUJaNlrOYEYDoBYM43EJKXwALazNswVNvaiSIIOaBSZxgsAGJyCAFcw6EuRTlTduic6eUZ//qjW9rF+0N7A83MXnr9ohtO/ZU19RN+XODwbgrYv/W7RGRUaen/Gp2f5yYmKxpkR5hVwcdKIBIzoMFnJzW9j7FoNq4kMc5u6fmX3p3umpAw3+pVNrZ2XnhQmXwgXOxmU2f7EpzCQT1oXMQG3JDiIzbsl4LYpO8XqAuMZgJ7sE8t2BgOzkFEWq4PwvIpuHJAIv6QXPGKZDlEsRmhIIRrguT4xnKO5VSzOfzxWIxmoXc2Of+v3SwM/Di8fFxrKUxJz6vssUjlEcaR+AZhhMm5dPDM4Es5HsxmAluoYlOJEfJQq2DbIV4qul08o9fueGsnXe0SxCH5nd6hPJ4xc0YSnXlAJqHL2aVdgUdzB9UzXKy77VhzsnJSYPBQCHMZ599dmTk6tpT+pobxjjvuOOOr776asqVQAGIH/3m3Xffxbd+7rnnrF88ZYPz+McFmNPmTi5eiGNjY2azWaPR9PX1NTY25hUUfrs/lWQDQPvbGeU+pJUGUSKErkKk99CAQ1YvFnCoBKLNblT2OAWwXYJAvA80DSbXHSgtEFrAYHIj2EV8Pl8ikeh0OuqgbXNjNHs7hGeH4ppjY2Ojo6MjIyPDw8NDQ0PmKx4IUI2OjqKMyRrynL2DWHjnWRgBWpxZG34aDAaUdaLxGu3TCQSCw4cP/+EPf3jooYe++OKL/Px8g8FgC8pOev1bG8fpdDqFQiGRSPr6+lCwWF9fX11dXVFRcf78+aKiooKCgrzLj9zc3Pz8/OLi4pKSkrKysurq6oaGhrq6ur179/7hD39Yvnz5J598kp2djUFENqJknZyctEZupigaBwcH2Wy2l5fX0qVLV61alZCQQAE/9BxTkIdcLu/v7+fz+RWVVV/sSgKvOX8I40SQ0jkA0A53XFqDcQrM80SdiXZqlsADaMCRvASy5LYkdCI3GenGaMNyOU2Bg4t/pwDWTnYJutVdJ8x55fFSvEqhUHC53FWrVt17771eXl5cLhedJK0BTrVardPprOGHWUStZuFuv73fkhbTuILCKwejOjUajVKptCZ2yGSy4uLi9957b9myZV9++WVTUxNCVlS5MvNaRtx/nOLMZjNaSra2tpaWlh6KSWEEAMuV6APg5nUKiIeKK4DtSux6LLct1mZANYBmmQuTA71yclNDGz0EzGwdfJGpFod3LrqoBUSdq2toEggECoUlBM42hWg3eYFP+RwZGRkZHBzctWvXk08++eKLLx47dqy3t7e7u7v4Ql1kYsGGA0nvh8bYrTtu9/3Jt9ZFOficdYGsYpZbcIJHCPdvB8/tSryQVdUpkoO+akEyfpOnZk78OX48WSOdKpVqcHAQP3lFIlFYWNjixYuDg4ORZGObLgK0JkRWq1qtlkgkfD6/pqampKQkLT1j41H2h5sslYAXIbk6Ec4TtJn84vArPoNLPEKYSHEJZL+1/oxzAOvj7YmH4zKKi4vr6uqQh4QCcapBnBPn+gZ2kgoUqCvS8Yxqr/Akd7Lmhd4lk+tMCGGgAwNI2FKJAfhB6i6iRQD404U8AyvuQDaRe8LpAC+NQLb/6UKhdNBkMlGk8zp3lc5+Y2NjmDKbkJDwyCOPvP/++/39/XgNy+VyhUKB6RVYBtPF43W+y8LLZn4EZgzmxEMbn5gYGbvULVRzzrXsj638dmuG9+6c3WfKE3JaVbqh4dF5IlDDeXJ0dNRoNA4ODvb09NTU1BzlZHuFp0B7/XLeB6GBxmOhRUoyQDSJPTW0yMBdAxghlvhzrNzQrxLuaAJ/ouMiIzjBAwTfUKQh5OkaDIs1R/94j2DO2oCtu3bvjWdxi4pLW9va5fLB0bGxmb/SZvcdlUrVwcORW7dHHDgUqdXprXdmfHx834EjCIKO2czIXLw0XseXnU1rCDtS+PXm9KAD+btOlxXX9i3oOK3P3Zz4nq7OcEJQKBR9fX2QKlJYvPdMUXx2y9/3ZyMjAeFJRnACiIJIpptbCHhlQeOFTBqWbnkAxMAhmQx8qkN5CJFaGBJMWL65hST6HM0sr6zu6emRy+U6nW54eBiXZnOX5UBHktafrZ2CzyLSCSsXRsmNzJYkogVIHg5+sbhoxcUvmoeRLhaMD2INMNOieSTMmQQlJWJ6JJ0Q21vOxztTRdIBo9FIm1F44U1MTvIFii3HS3j5/Fm/FH8U5pyYmDh8+PCdd96JIOLGjRuvmgHh5ub28k0/du/efcMD8t5771GY84Y3Mqf/cAHmtLnTh1PPxYsXcYWG697y8nJuyjmP0ATshoNw059l7xPtRJT4oOkJ5kJYC0jsSXEWxEFBJyZ3OoPuMw6Jach9Q5qwcwAbktXDkhnBAHl+vjulpq6+u7tbLpdfOQfZ3EjN7A5N6fvTpr/RaNTpdBqNpksoK6zrjMurj8qojjpXG5PXlFreVsMXKpRqvV5v3fGnDdy5+wE5s2M/r96NUvjRTctsNuv1eq1Wi306a6lTb29vVFTUo48+ev/993t6enZ0dBiNRrPZTCnkqFGgeseZuZysbwQqTqWyTplMJhQKe3p6Ojs7+Xx+c3NzY2NjfX19ndWjvr6+sbGxmTz4fH5nZ2d3dzeqdk6dOvXUU0/dd999Xl5eXV1deLzY5UGHEGu0bAaOlx4sAjaU1oByRr1eX1VV9dprry1atOjFF1/Mz8+nXSpKxtdoNFryUCqVIpGovb29orLqsx2JDn4xJCQGFt6X47U4YJ4WloRudR6hkPZHpvFkCOUKZONsT2MPkI9MjMfht+6hPHtfKEMZpJQHjQKs3kEt6hLE2cMuQfIKrSyvOnq0AYfHi5A8Wo+aTCaDwVBbW/v666/j8RYUFAiFQuzKyWQyquDU6XSIyltDDrMiy5tXE8ccPBi8fVAHPDIyYjabkdhxJdIpFovj4uJ++tOfPvjgg4cOHUJbRdo+vuq1Ot3jQROhdDrdwMCAQCCora3Nzc0NOZ7uGZ4EqzvS+8Zbz5nYprkEcjxCk0iJFedMUqDQugeXgqAl2piC3miMkAQHX1g6OgUCiRh9gT7ekVJRWdXZ2SmRSDD6ZV5aotFJlTJ+amtrf/3rX993331r165tb2/v7u6ua2jxO8RzXh9p912kw4aTjt6n7NefcvSNdvSNcfKPdfAFjbsLWVHjoto9NPGDbakx+U0GIyg78cpZAAam+x6Zxe3jVUSRTp1Op1KpKH9CLBZHREQsXrw4NDSU2gnQ62FW5pOrjpX1UZhMJrVaLRaLOzs7Gxsby8rKsrOzubxU34NcRhAbPR7AEIzYOViMaskkgxgn+K9isymI4xHK3RSVdC4nt6ysrLGxsauri0aeU4zTdgbhqiNzY0/Szh31NAYWWl4dAzOSSfA5mBuFJLqF8tyYCY7+cY6+cQTM4LmFJLgGc1G2RTp08DKYXsByA6ov4AczucBKIZwVpwC2z4n8QeU/3GuvZ0jpZyJinCaTqaSk5JFHHnnrrbfwNEmlUjT812q1+DlIzfHw6G5sZBb+agZGYIZhTpLTOWkaGhMP6itbxEfYVdtPnvfenR16uPB0cn1maZdSY7qea3IGRuZm3gJvGap6v4xqFH641SqDE1Y9bLh5/YlNDrlPIZwP1djkhnULBRMOzIoDTNQ/nhGSCNpuoJxCR57ot0B4BB6VBAiBci4E0jrRnGNV4Klv1vl6+wYGMcPDN23bsm33jl179+w7zOHyqqvrlCrVPBjt6zlTExMThUUlaF0bHcuawkSMi+fir5RK1fVsbbpfYzCNZpV27YutCNyft/FY0e7TZVmlne19SoXGtKDjnO7Bn47t0wkBU0WkUml7e3tVVVVqRm7o4YL4nJa/7s7E9gjctuRedg6EkE70TSWetNAzx1sbKKrBXLI6S7ZgdYFAYEWFNxRXQezPdyaXnC9raWkRiUQqlQq5TXO9p0GLT5RUyWQyVl7Nu9vS3UOT0JbWLRhEU4zgBK9Nqe5hPKSMIBcE+R8eoUmOROaOoqmV3tErvc86EE0nzqXILKFEfI9QYKU4B7CPpFZptVqz2YwrXJw2TUOjp5Lrd58p1xqGp+Oy+Ze2+aMw5+Tk5NjY2Ouvv44g4s9+9jORSHTlW1xV/nSFHupHnrgZvsgCzLkAc155Wc7yM9brNJPJpFAoBAJBfX19QUHBxkieS0AcijVBmE+VBBYbcaBRoAAIqRMo6CQm4wmYYUBiOIHPgpZHWOehosgjjHcyBaScGK4+NDR0paJ8lodm9t6edv9RyDU8PIzalC6hLKWsLTS6+C/bUyEWIpDtEkiq52AwOkCGi0dY4teHc49k1JU29yo1OuquRqlAt0llPHtnz7bembY5qCjQbDYjWK5Wq5VKpXVgp1Qq7ejo2Lhx429+85uf/exnX3311RSlozX4N8NNEHogFOzEm0Kr1eJRyGQyiUQiEomEQmF/fz9+xW9E5NHf34/f4FexWIysjk2bNr300ksPPfTQl19+ee7cOayHRkZGUBVNwd1pPV56y1P3M9RtYyalVCpls9nvvPPOokWL7O3tjx071tfXZw34DQ4OqlQqTI8zkodWq5VIJJ2dnZVV1V/vTcUp2o1U3jhvU6Ix/ohlOso3LxfowLADWrFfHDKO0WSJutQ6+QOiaSHWBXGpI5NrECcytQKxk5GRETrzTLkx8IRe9XgHBgY4HM677767aNGilStXHj58uLe3lx4vilZVKhW61KLsGM0AbLCzPOWoF36c1hGgswQCEujwrNPpcK6Ty+V4FaEUuLa29rPPPvvpT3/q7u5+7tw5vV6PSLk1uWFa99Z641QSZDQaVSqVSCSChM6ysuT0rDV7k9zDeHijIbSAvGDoiQej3wboO52JZ4aFMgxABagE4A9JqrqF9ErqBJcgzkfbeEnnCpuamvr6+qz9pae0kKz3cG59T2dUa/vrtra277///uGHH37rrbeio6M7OzvrGpv3x+e8E3B65XfHHNafsF9/wtH7tIPPGQfvM46+0U7+cS7E6Jt6luAw4gzpEsj+cl9mZmWHwSqXccEle25dJ9e/t5QxhgW5Tqez5k+IRCJ/f/977rknPDwcPbKopYpNldzWR2EwGBQKBc07Lysry8/Pz8zMPMPiMY8kfrEj4e0QtlswxNHRwCRCUYWln3to4vubEr/albApKik5/VxhYeGFCxeampq6urrEYjFGcqIJ9g8VANc/8jb7Svy4QZawwWBQqVRFNW1vhyY6+hOmL7hQEhOjEFiggSiTACHYA8VYL7Q1IllTLBeANuOdAsD6yA0CqCxSThSLAMElOCEuv8HaB/hHLy38WMGa2Wg0JiUlPf74415eXt3d3RLykMlkg4ODtJSyvmh/dOM2e15ukx2bYZiTjurE5KRYrufltR5hV63dlvnd9sygA/lH2dXtfQqFxnRpfG4b2NKbemhoCNPj2traysvL98dmuIJME2Y/xwAQZNOJEW5tMNiARRDGf+CEiaUX2H1fVnZ6bUwBnhnT4nyDAU+W1VlIIuGUgG+teyjPMzwl5GDsvv2Hdu3et3nrrvBN2zdt2bl56y6E9PDr3v1HYuM4ObkFdfWNAkGfUqW6mQ41Pb82+M3Q0NDxqNNbt0fs2LWvta0dqzv8Wlh0Hkejs6sbn5nF/debRrLLug+xqgL353+7JWP7ifNnUupbuuRjF8fn+n0xi6M6629NjaxxdSYUCltbW8vLyxOTMo+ySk+nNfz9QA6hjJNl2uUYEZgNmBbptgtEmwOVHHvpkMZN1mLIOnX0j0eozyWQ89nOpIy8krq6uu7u7sHBQb1eT8NE5vQnMs6ro6OjWHb29/evPZSFy1XwniWtJIhTIeQ5RIgJ6MC6nFxumV1xaiWWRdgDhxEGEnAQx9E/3s4n2t4nFtFNi74zkP3B9tRuoQxZXBQtFsp0h1iV3Jw2W7gxrwfmnJycHBwc/Pd//3dEOleuXKnX/5O0fdZvk8nJyQWYcwHmtIXr8Cr7gGKa4eFhjUaDrf8LFy6kZ2V/vS/NnazZqGzcIyzJwS/O3ieGEcwFZU8QB6KDSco65KgDC5XlEsT12piC9RyGuMCqDyKXoSeO01loVEZ1TY1AIBgYGNDpdFT0c5Wdu82ewkKNJkihJEWuUB5MvvDeJjCfJHYoiQxmAginIOuezSAx1xRmILgF9+0w3t8OZJ9v7rNODKJSvNtsUG/rw8Xygra3qDIYZZ1qtdoa6cSIx46OjsjIyCeeeGLZsmVvvPFGSUnJlUpHei3NWO1F1zbYuaZ4JwK3er1eRx5arRZFjZp/fqhUKqVSqVAoUISBnr14vJ2dncePH3/mmWeWLl36xhtvnD9/nh7vlcjHdBwvNaa+UtHIZrNfeOGFxYsXv/LKKzk5OT09PRTwwxaVUqlE11aj0Yi21UNDQxjy19XVVV1T+93BVEZIIlioXTa3JG1KoBVD8hY014Bc7MoEZjF6g8DCmyy2XYM49j4x9j4gBgWmIXkxutQSQT/hIRIRJ24BXhbEYeVWUyvyq3Y58ZqkCAQqOPE8crncF1544f7773/11VezsrKmHC+KOK2PFwFpypKZjrNzW08fc+3gcZag0x2VdWq12ilznVQqFYvFBQUFL7zwwrJlyz799FOFQkGJQXhF0VluuoeBNtcwA2ZwcFAgENTV1ZWUlKSmZ6zZw4MWGACWoAHCpaCjPzjQQk3FhAUeuGVAdww4wrTd5hrExdU1lm0Y6rkqjMNNy6uqsuTnqdVqJLoivjvdRzqt26dnHy8AquDU6/X79+9/9NFHly1btmfPntbWVj6fX1ZZ++nmWMcNUU7epxy9Tzl4n3L0AXTTOSAOBG3BXEc/GGFUtCMRBL8i6RiMlXxj3ZicTXGlskHgXFt/WCxMRNN6omd+4/QzC6V7RqMRKVYDAwNSqVQikQiFwu3bt99///2+vr7WVbdN3Vb0KFDep9frlUqlVCoVCATNzc01NTWlpaV5eXkZGRmJSSnRrIRDZ7jMQ5w1u9lf7OB8tDHusy2sNTtZYUe4kbE8Ni8lLSOzoKCgvLy8tra2ra1NIBBIpVKVSkWB3qt++s/8uZumd8TBRDs7lUolkUi8j+eCpD6IgJokgxOLKyi0AtnQzSRrYedAllsIJHES5T1oO5zAAwl6nTB7E0NyR784uw1nHQjJDMSgZKr3Ckng94gNBsP1hLzg7mGdbDabz50798gjj9jb27e1tYnJQyKRDAwMqC9HDltzxaZpxBY2ewtHYLZgzsnJyaHhMcmgvqFjID6r5RC7ynt3TuD+vAOxF1hZzc1dcpN59BYe5sxvyhrVQN/aurq6rJz8z3clYTWFiQDIEEVLM/ScBFVWENzUhL4AYXKulnhdrkd4MvTEQiCIDkjqQRyXAABK0ZsapEtkheURmuRBSri/7Umprqnt7Ozs7xeCvUdvb/H5sugY1s7dEEV55b+du/fv2Xf40JHjnISkqurawUHF/KhAaEUnFkvx2KNOnLlo9eC3d+BoVFbW0HJ95o99fGKirk16JqVhS9R5/31520+WHePWlNT29Um1OuPIxMTkxNxG/2f+LrStd6RNcr1eL5fLBQJBU1PT+fPnE5MzI86eP5pQvfZInjOhKIGpIbRnwdrKNYgLUbu+cc5BbPcQsLCGfyGkQiDeGOhQ7eAXa+8T4xzI/nwXLyu3sLa2tqOjA5niZrOZtsdn/qq+VeeAlp1DQ0NqtVoqldY0tbqHQBoxSFpJHjmDCcRcRnACtJKIFS0x+QeswbLsIiwxXNsi6OAcwHbwj7Pzjnb0j7f3ibEgoBgEEJIItRaBJzxCEzPK29CyCNf1k5OTxxJqfPbk6E028VF1nTDn5OTk8ePH7777bkQ6N2/ebGuXxALMuQBz3qpJ4xZvB1tCyLMYHBzs7e1tamoqKSnhJKd/sYvkrhPXHZySMOoJqaZIcsfwTmi9hSQ4gWsHB9Q/oTyMVSf8dxCDXu6+sb0Pp5WWlra1tUkkEpTkW2vJb/GxzanN0Q8D7KTo9XqFUpVa1vL53gxc/SITEANdINw+2DKwWHCj1OAf6RGBbEYQewurtFUgubIHZ2vz45w6UXNyZ/E2RwSdgp0GgwEBgCn4n1Qq7e3t3bFjx+uvv/7AAw8wGIyzZ8/29/dj/45iS1T5NAMqFgpz0tsEjwXNXTGwdujyA+12L/8E/5tMJqPRiMerUqno8VKBV09Pz86dO3//+98vW7bM1dX1zJkzAoFg+o4Xl2S0HY9HgaYTBoOhqanpwIEDL7/88vLlyxkMxunTp60tW1HRqFQqkYaPoCw22XE7NFemrr6eeTwTnJFIvx7dZcFBhWlJ73MmVAlSICau2pIGYs1AjltIghuxt3UOAmsmO+9oEpMA4k4kIGMavHMgTPVUKAZSj0COZwg3o6ROKpVi4jJtdOJZu+pFqNfrm5ubDx48+Nvf/vaBBx5wdXU9efIkteRF7d3g4CAer06noyA0NVijHL05eWcu7PQtHQHaGaEGtmj7jLJO6xtfRh69vb1hYWHPPffc448/vmfPHqFQOMW5ms48t3Q3r7KxS5cujY6Oms1mrVYrk8lAbkiQTnZiytq9CW5MNjU6s0irSaPcLTjR3ifW8qsQuNPxt5Y2XEgiaa9D2pOjX9znO5MSM/MvXLiAzW61Wo0sV5zJ53pVQD8a0L1gdHRUo9Gkp6c7Ojo+/PDDH330UUVFRU9PD5/PT8sv/2hjnMP6KGef02BU63PG2S/Gweesc0Ac+QcutY7+cZ7hybR2RZYeHVXsdRICHzfoTFGPSIZVFqVcXOUELzw1l0eAspFozCFFOiUSCUJHwcHB99xzj5+fH3ZVZtcK+6qDTT+IUfJuMpkw71wkEgkEAj6f39DQUFlZWVZWVlRU8GpTIQAAIABJREFUlJeXl52dnZWVlUkeWVlZ2dnZeXl5xcXF5eXl1dXVjY2NfD4f7RYUCgWGZFPAbK7PJ1cdQHwSsZCLFy9SL7u0840eoYluoYlgIR7Edg9LciVUCUQ37X1jgIwC3U8gpxKTfyioAOoISaS6fOzoWTRhEMPMgsBOJrwGiq4A1obI7IFBJSWmXHWE6ScgnmKDwcDlcn/+85+vWrWqq6sL7UwQ41SpVJhMT3HThVLqGifdpn41izDnxMTkpUsTgxrz+TohO7vVd0/O+p3nvHfn7DhZml8paO9VDI9cnLuwDs6QY2NjZrNZrVajeKusrOxQbLpbMDSyPIjqCFdVcP+SGCZssgPSielOIHkHSMNqfQSgJiYLWFAQyOKFhRgmpiOVwZXJfTuUzc0saGlpEQqFSqXSZDLhSmdiYmJs7KJsQN7Y2JyTW8DhJp04eXbPvsNXop5bt0dE7D0UG8fJyy9qamrp6xeq1OrR0TmT60lnMLpAHh4eTknLxCPNzi2gC3yFQolPZp3LpfEBtJrF7Uz3bTsydqlXojmdUh92pHDDrux1O7IOxlcmF/C7ReqLl8avOkVP9y4tbP/WjgB+3OPqTKPRSKXSrq6u2tragoKC5JT07cezWeeat7AqPMMgNtIjHISbQH0I4joGxEPzhOg1rZ1pGcGJkPUbyLbzjnYOZHmEcH0OJ6dn51VVVfH5/P7+foVCgUuzebCgwNFDJ3CEGHZzS7DsgcYUCQSxpJMGgwEksSokze0QQD1R6oo8MJcgjoNfHKTF+4HZJCGbxjkFxOMUCipPoO/DVwsZJRBMj3Zzy/8xkY6Pt3Yr9kZX1LbKbu1FcsNbu36Y02w2u7q6Isz59NNP8/mzHyxqfdQLMOcCzGl9PdjW98hVoTYddAaPT0z5fCePJLUQAhop3VyZwHPHIo+sx2C68QhLtigJiGzI0T+OEQxKAgaTa+8bY7ch2jmA5RzE+XZfcn7R+bq6OoFAoFAo5o0k/+ZPJ63n6EepRDawNf782xvBwITkM0Nyg3MAiGI9QpOobsMzPAUNJJESCG044vbuBv3NOAe/uA+2JOfVdBoMBpojNQOg1M0PyMIWpmMEcAlHu8DUEvmHwM7Ozs7U1FQnJ6f777//6aef9vf3xzBdahZKfa4objcDZb31Kog2H60onpZvEeegyC6Cu9TtVq1WU8wDxZ1YvGZkZDAYjCVLlqxYscLX13dgAALM8XjRyZbm3eJbX//x0t1GL1x6FqwDKRsaGj799NMnnnhi8eLFn3zySXl5OYokEO27EuC01p9RnavZbFYoFL29vY2NjXvjs2H2CEnEBAinABZwjUMSvcJTUGHPCIaVOYQc+Me7gKYz0TM82SMsmag2OTDPkCkdojcDWOi1gmw74sECDTvw0mRy8SPgw+2pVQ1tMplMr9fTaK5rHG9zc/Pnn3/+5JNPLl269OOPPy4tLb3q8aLmACcxaxQKT8F03CkL25zTI2DdzaesDr1er9FoaDIxpThIpdKWlpYNGzYsX778ueeei4mJofe79c1+/Xf6jQ0d1gAjIyOYnIe+0/X19YWFhSmpadsiOV7E/9A5ACI2vTamuBKzaLLwi3XyZ2HSG7kfgXyAabueG5ORpuAaxPE5mJh+DhbSra2tfX19SqWS6q7mQXcbzzjFtkdGRjo6Otzc3JYsWbJy5cri4uIe8mhra8ssLH83ONppwwm776Psvj/h4H3aYcNp+w2nHX2j7bzPOvhQu1pQq7sEgo0kXTwjzAkNC5BigCQLQItA9lcHzgnEcszRoZThG7sMFv7KZkeAXmNXIp2oDu/r6ztw4MDSpUs///xznU6HH1U4h8xMy/V6ho7WIVTubDKZNBqNQqGQyWT9/f3d3d3t7e3Nzc0NDQ21tbXV1dVV5FFTU1NbW9vQ0NDS0tLR0SEQCIRCoUwmUyqVCHDS450H88m1RxLnapRyyuXyjm7BBzvTvTalgpST2FSi+wUq7GECCeIyQkgDLojrwoRYZWzYYVSnk3+8nXe0vU8Mpk85kWiYy8xg6Nldzu1jvx2aUN7UTQWdV34kWV+i+FESGxv70EMPvf3223w+3xrjxLNmNpspxmk7l+i1B3/htxjW9ec///nuu+/u6OiYlQEZHbukUJu6her8yp74rCb/fXl+e3O3RpVEcmuKa/t6xOrxOWtgay3eGhgY6O7urq2tzcvPDzkKlQBSE9BZkcHkuofxEN10xSZ7IDTiQb8VynMPS6KNMoQ9kG9KyKMxYH7G5DCYCbgFEIGBvw5r44m0ysqqrq6ugYEBNKm+KtRx8eJFs3lIq9MJReLSsoo4FndXxIErIc9tO/bsijiw/+Cxo5GnEhKTq6prB+TyK+eNWbmEprwpzj90BqMfT0j/FYsl23fuRevagvK6C629NXxhY5do156DW7dHsDk8bCfSzyBKwp7Wg1XpzHEZzftjLgQfLPCNyDnIquLmtta2ScRynXHIJrRiUwZ54ccbGAF6TY6OjtJc846Ojurq6oKCgpS0jK1H0qKSaiPT6j0JIQk5kYxQWIihWb2THxF5Y/gusTYEJXcQ5HP/KZx1nJ2Wk5uH9NP+/n65XI4XM2Vy38A+286f0IWtTqeTSCQdHZ3/vT2ZLlSR5wGjBHnkFvtZhDZdmVyUwDKYFo8iUiOB/797CASyIESKizJscDn6Ax5BayeYfkMT1xzKxnAWqIiGRtjnWg6zqkbHxm1kiK4f5pycnNRoNCtWrECk087OzqaCZhZgzgWY00buqavsBuWq0Bm8vb29uro6Pz+fnZjy990JjCCWMzHZIDJNcN4g6zHw1CZye8hpYwQnWCT5VnwKIgNiOfmz3JjsgCMp588Dxtne3o5yH5Tkz/sl8VVG/J+fwg9RrOpQzNHZK2aeLfYI43lCwhagxVhbIxHYORCwCvA+CoZYeyrggKU1sSkHwVYwGNzBywJYq8J5qWV8tRbSOukH57QWf/98fAs/2dAI0IoNYTZMsEPwDzEABP8GBgYo+CeVStPT099///0VK1YsW7Zs9erVmZmZIpHIZDIhzDZbPMrJyUm6NLrGN5RDQC28jEYjxTwUCsUAeVDYQyKRZGRkfPDBBytWrFi6dOnq1auzsrJEIhEFd6//eK33yhqRxT2hg9/V1cXhcP70pz898MAD//mf/7lmzZqKigo6/jKZbGBgQC6XKxQKtVqNMZx0Z6zvaEpYUalU/f39zc3NCZkFxOWSRD0FsACqhIk6ySMcfGtRtQlKL/848KElTrZImMBikSjDgG6MnrfY8UffWmeS2ewRBpQL/OoZnrz28LnOri4s0+koUUAXRbdms7mrqyshIeH9999ftmzZf/zHf6xevbqsrOyqx0tjR+nFRpF1OrY2dHct7IrNjABeHnhHULU0JhNjTx/9q+ldL5PJsrKy3NzcfvKTnzg7O6elpVGggt5i0wqr0zJgZGTEaDQqlUqRSNTZ2VldXV1YWJienn4qPuGbCO7bwbAaJP0yFjbdsPoijtOWyCiAOYOBWewaxPEI5vzPFs7BmJTc3LzKysq2trbe3l68Q5H5RMnvNnPqrndH6AyARAo8y2azuba2dt26dYsWLXr55Zf3798vJI/u7u7W1tbckgt/Djm78rtI+/Unnf2i7dafcvaPdQmId/aPcwBC3lli7QvDix1J5IVg3YWdTbqoRiwZJkNilMQ8XahQqVHTOXeH9HqH/rZ8Hd6hOKVQ91qcTKh7rUQi2bVr17Jlyz7//POBgQFKLrSpS4LOjZQWgAEZWq0WyyGxWNzf39/T09Pd3d3Z2dlx+dHV1SUQCPr7+1EOqFQqsRqhdCu8E3H78/gaoUCIRqMRiUTs3GqcimnOlnsoD/0nyaIM2GCuJKkLHTWIdyWkBlhkB0yOJRoGXC7hxc6BYKRh7xMDHFYmQKdAFCahMPuSKzUaDQo6r2xyUZkpatmPHj364IMPfvTRR/39/Sg4FovFAwMDeOKs3ZUXluFz63KdRTUnDtTExOT4+IRpaLRPqimt7w8/VuQTkbN2a2bg/rzYjKaimj61fsgWks9u4LRS+REKOsViMZ/Pt2Q5RUBMANZa8NGP+s6wJLfQREeCZDgTN3vUb2Fhhosmi2oziGvvHQ3pnkS0hFw0JFER5+rYb/fySsvKWlpaxGKxWg3lBHWt/NEDuXjxklw+2NDQlHUuN46VcPzEmb37Dm/bsedK7HNXxIHYOE5BQXFrK18klmg02tHR2cfkrFsTlJSs0mgbOkUJJS3MM0VfbT6zZTsczoYtRwAeDoVWZMBWgDk374k8mFxR3NDTJ1XgtEaXn1dOkj86ktfzgvHxCcmgIb+qJ/Rw4bodWet2ZPntzeFkN9e0SuRq06VLCw226xnFOfMa+sGKqzO1Wo081Lq6urKystzc3KNns84k1R5JrFl7JM9ivkratlAYhIDmmxFiidzG2BGPYPbHW7mbo5LSMs+dP3++trYWeUjoijGfWrW0K6XRaIRCYW1Di2coBN4hHQQLJJweEfvECROd/B38Yu28o8GZ1i+O+NmSnjbRcWKHyjIJMxPAMMMvDreDonkER12DuW+HJaIJ8OjoaE559/pd2V1Cte1ceTwe713y2Lx58/XsVWJi4nvvvYd/0tfXdz1/MjOv2bNnD+7V119/PTPvaGvvsgBz2toZ+af9wZloZGTEYDAolUqhUMjn86uqqgoKCpJSUsOOcDzCgJniFMDCjjaZTXjOkCkS5+hHhPkB8YjGIf/dc2OKW0jiSsgXiX0vnHssPj2voLC+vr6jo0MkEqFd7cjICC7+/2lXbrMfsCNADet0Op1YIv3+eL5HGCRyoccRfGqSWBdHfxhqsEVicl2JazmKCS47quFy2rJ+xrA9skiO9wpN5BQ36/V664/P22ykFw7XMgK0W0eVjog/WYN/g4OD1jGWGEBVU1Nz8ODB559/ftmyZb/+9a+DgoK6u7tpKiSa2VpDArQNPbtDT493fHwcW+EooKSYh7WNLQXbxGJxbW3tkSNHnn/++aVLlz7//PMBAQFdXV30eEfJY4rey7rBZ/2+VGo5OjpqnUZZV1f3xRdfPPvss4sXL7azs4uNjW1qasLQUFRwWmdwYktxCuBnLSql3Te1Wi0Sifh8/vnS0k+2A90Y/+EEgtbi2JjDPj5xWWE5Ad4J5pZEIE7W8ISzgpUoyD0JUc7CsCMrfCBhEIKLWzAEzMRklvX09AwODqJQDIdoyvH+7//+7y9+8YtFixa99dZbcXFxVx6vNaCr1+uvcbyze10tvPucGAFkOeAnLBILMFrPWs+NYKdMJhMKhenp6W+++eby5ct///vf5+bm0qYJ4ut4u01TU/jKtbRMJuvq6mpsbKyoqCgoKEjPyDzNSgo4mPDuJrjd0KOeuvRYWAiEkeYexvMKTVizmxvFzjiXm19WVlZXV9fZ2SkWi6mRBp2r51ZLBufYKawR7IvJZLKvvvrqsccee/rpp6OiojAcQSgU9vb2trW11dXVfRPBWfnd8Tf/L9LB+7RrQJyDT7RLYLxrIJvUsbFgVQJB8sAScydiTfTlRtUmuiQhAopj7kz+0AJ8BrEjuGUajXZ+BOrMiVt75neSfqYjK3FoaMhgMFCkE91rAfdis3/605+6urpKJJIpSOfM7/MPvaP1sdCwc2vGGwa3I+PNmmulUqnQMJ/OjWigMa1z4w8dxcw/j7M0CjsUCkV3d0/omXwQEKBWA/wtwGbWPRwkmyDNJNaU0NQjMzNWYsTbFqoyZ6CXcVyYHOcAtr1PDPhq+MVCwy6YS/gTFigUIr6I/OuvuzIGB0GIfyX+QeEZrLi2bNmyZMmSNWvWCAQCmseJ6lutVms0GoeHh2n5Orc+Amb+pNvaO846zIkDcgmQzrEBpbGiUZRS2L7txHnmgYKwI0W7z1Yk5rWV1Qv1phFbG7of3R+cGKnn8+DgYF9fX1NTU2lpaUJKxn9vAU4/3tQoIcIFkYX2BLIklnMgdMYwbRdfQ8joQC21942FHg7xgcB73znAkkfw1a7E3MKShoYG6zXUjYU6Xbx40Wg0qVTq3t7+0rKKeHbCD2k9d+85eOjw8aiTZ3lJqVXVtVLZwKXxWdA5WXOR0WVKq9Xl13SuPZLz/tZkdAZ2Y3J8toBJ75bte/4n9BRmOa3bfGTr9ojgrfu9gtlvhyd9vDtjT2K5UDaIOnVatFsvzH/0AvjRF4yOjZfVCw/EVW47cT5gfy7zYH50ekN+ZU9nv1KlNY+MXvzRLSy8YG6NAF10ULd/jJns6elpa2urqak5f740Patoz+miHadLk0ta1u5Pfm9zMmnhQlfWEh0SEO8Rwv1sZ2L48eSz3PS0zOyioqKqqqrm5ubu7m6xWIzR5tiktW7szK2xmrK32GYcGhpSqVQCgaCwvJYRGIcKKDfiS+QWDL79lmxySzwnrG2d/FmMkASSZkqYJYT7Bfgo8R5zJcUVIKNMCDymMypQTHARR9z+kWvSyO+B8zWoOxB7oapZspCVO+UcLfx4S0ZgAea8JcM4jRuhkxGkQioUiHRWV1cXFxdnZmaeYfG+JkoC0gP6x5QEHfMQYqhNBJ3Y8YEqkPh9/Smcs24vNyk9u7i4uK6uDqNBqO047bJN41HZ/KaxvKOhXP0iCfN0ATqSgzCfhOrRzho040igizsYRcIgY+KLkz96UQIUTXjBZNInHuVuzAQXcD/neoUmFNV3WpshLKxsbf7qmN4dxOUcInDYJsYYS71eb21jO0XZiV28d9555+mnn16+fPmf/vQnNpvd2tqq0+moxPCq/q7ThA1c/xhNOV5sBplMJprZqVQqsbVHwU7Ed7lc7h//+MdnnnnmgQceeO+991gsVmtrq1YLHe3h4WGK72LPCAUN9Cv2Q0dGRqiWUalU1tbWRkZG2tnZ3X///b/61a8++eSTgoIC+qaYGohoH7YUdTqdwWDASBIcW9w+Dim9kfEAR0ZG9Hq9TCbr7u6uqqo6wclwD0mAsCgm18E/zsEHYqJciEkIaMRDeYhQOhAqHNp94MocW/lYJoJ1eRAw6RjBCZ4bk2kyDcAA8CSXweT8z3ZeY2Njb2/v4OAgDg5eTkqlsq6u7vjx4/b29kuXLv3lL3/58ccfX/t4sQ1nDXBe9Xiv/9QvvPK2HQG6QMUKB+9E2s1XKpVyudx6isO7LzIy8qWXXnrggQc++OCDwsJC67A95GZNufVuyfDSXcW1tNFo1Gg0MpmMonTl5eWFhYXnzp1LSU09eJYXcCT5bxHJH23lfriJ8+dw9vvhrL9sZH26nbv+QHJEdBovNSsvL6+0tLS2tralpaW7u1sikaD/szXbic4et+QQpnsjdIis+2Jms7mlpSU8PHz5/8/el8C1VaXtj1Vbu9nW1qV1Gz8d7biNf0dHHT9bIOy0jlXrVh119BuXau3KlrCWbtKdtnSnZQsJYS8Q9n3fIRAgAbKThKyEsIP/3zkvPXMHatVKW6C5P3+Yws3NPe+998057/M+z7Nw4WOPPbZp0yY+nw8EO8A4W1paauvqAkOTbZBE7fnVW87ZuIbauIZau4bZuIbTPCJpHqi9A9UjLlcnnXxixqZhGO+EqddYMsRLcQxIIOwBurOxmwAns6LZ4sVwve+Bm358ArEDpxPmD8CDlOFNLpeHhYU98MAD1tbWPB6PSna8HnnjmgMCTxN1XkR0JqiO5t2XN5PJBF/KRDoeBBVnTEnu10RydHQUXDlhllXXwPvs4CU8cUIEesL0gmkVIYLDotjGDWkg2WLrX7xSY1rhmh1Qwax2IIATUoqtB7KVsvNkgUcAquVhqR5H7+iscj5VzRJETSAfgpyyQqHYsmXLggULXF1dYVYpk8kUCoVSqSQKw+DmTtzTf83ALftMnQhMEZgT33s/DQyOaPVmnkB1hlOx81Tuln2p235M3Xu24EJ8Db+9y2QemHZzDPI0mc1mcONraWkBNz52TPwXe1GDAnqisWIWNC4gEVpcBANGEeISeUeDFO0YrwjX4rFYJep+AK8+mGPYeTK/2MdO4mZUVFTw+XyJRAKMbWL88fsDODIyqlSpq2vqLiVzQ8OYJ0+fP/jzXM+w8Kis7Dx+c4tC0anXG64r1xO+g8jkHDFodfpKvsgjJNvJZ6zMBQtSWw/m+94XgdC5c8/BN71QL8g3/qd37z3gv+fQWgaav9nTkXDRuoBYZk69TKUhotyTSKgwmQei0xtPsCq2BXI37U72Csr6MaSwoEokUxlNvQMWN86pkyQn8UyoMyWCdOr1eqVSKZVKBQJBQ0NDZWVlfkFx0MWsYFYZh1vDzciNik0KDos7cjHuYEjM8dC4UHZi4qVLXC43OzubuJu3tLSIxeLOzk6tVgu9R6QwDh86iaO4KYeCDuOenh6VStXa2pqSU7rWL8aeEY2bPFAihQUUKTch0g7u+rJ2C7fGizJoIMNQMeJrQtZFjV/YoA0KU/ZebEcvDs0DiQNDHoauX9DJSCup71SqmSn1zNT6gYHB359Ob0okLR86xSNggTmn+AX6CVaqsEzq7u7WaDQymUwoFNbV1ZWWlubk5CSncC+wErxPxr6/e8yiwB6rpMIkDy/wkFORozfHxTf2n3tj9p6L5ySl5efnV1RU1NfXt7W1kVROtQOZ6nG5nudH2m97e3sNBkNnZ+dFbrmTFxsaUvDCmGVHx+5QdPTLyygmFh9HSgjROKejtl+YLgMNC1m54PW2PYNNc4uE+bcdnfVuQGw1XwQt2Ff0e7ieY7UceypGACpcpGRMuIYAAxgMBq1WC+AfIXdC3UQsFpeWlp49e9bOzm7u3LmPPfaYi4vL+fPnoYkBALmJ+B+p8ZFZ4w0Oys+NF5isAO6OGy8wvch47e3t58+fT8ZLzEphyH1468cbvAZnEZPJ1N3dLRQKAwMDV69evWLFikWLFn344YdsNrumpoaqnAkGnGq1mnAmrmgOesUZMIxucHDQZDKp1WqRSFRTU5OZmfXVoQQXbMZJWt6g9cHBC60JcQ65rJ+GeyMQqOkV7YA5oERUBJaaNDSJRPkHc8pZ2PWTRXOPcGBEnYjOamho6OjoUCqVgKYIhcL9+/dbW1uvWLFi8eLFH3zwAZPJrKmpodJVJ46XALpQibMQDm7wMzIjP448+FSxbqB1Usnc1CextbU1NDT0hRdeWLx4sZWVVXx8PEiSUuWwIKFNYsTguQbeeX9/P4jYq1QqqVQKjcM1NTWlpaUFBQVZWVnp6ekpKalxicnsuCRWXBI7LikuMSU5lZuZmZmfn19SUkIATlhI63Q6+PanLqQn8eSv96HgIkLHA2kfEQgEX3zxxcMPP7xixYrdu3dXVVUR0FoqlXZ0dIDXIDe3ZJ1XOM31ovWOC6u3XbD3ZDowWNau4UjsyD3SekcYplthOwBcr0RSJe6R9tiQfgy9gEU1zoowQ4OZ1X/Ynx7MLcFckCqBCFuW09f7lrhZx4dbkXA6IZN0dXVR1WszMzNXrlz55z//uaCgADqiyHM36Xnjd8aBpB3ycBGpeZjMwE9osYJRjOv2uHVudUjOgH+IxeKSimonDHhA9Q3gzLF1GQY2sAwG4mtCRQ/Wy2hphvUtsSUV29kHS26gGn0UsBPA5pPmibCTMd1LL8RscPTmBLILIckMDAzAjUTEQvr6+vR6/bvvvnvXXXcdPnxYIpFAox5gnBqNhjQjkgR161y43/mMTKm3Tx2YE5DOwcERfXdfY5sqt6LjbExVYEgR/Uim97GsU9GVMRlNPKGqt386UdxIegeDW41GA9K15eXlGRkZkdFxPxyMcvFFD+OYqAZuOncCrXvUVs5CNh9Igxo/vz4cpKNIZ6EOBuwmgLNBtLNvLCZts3cERSelcEtLS5uamkQiEWECXKcqzeDgkNHYrVSqBIK2/PwiZhRnP3a4HCdvu2ffwQOHgk6cPBtyMSIuPqm8olImVwwNTeZ1HNcwZDKZtFrtqUvl7+1JhOZ+wDzAswli+O3OM3CeG3eedGCwP/M7B/98xycMtL6RMwsj2tmH800Qt5IvMplMpKXjdwrYDg2P5FW0hyfV+gbnMI5l7T6TfzC0OLOkrbJRrujq7u0bHB4enVJZwnIykxgBUrMC0SxocTMajVqtVqlUisVigUDQ1NRUU1uXmlV6OKxgf0hBbllTTl5RzuWtoKCguLi4rKyspqamsbGxtbW1vb1doVCQ72UojMPMasZ8Lw8PD0MWVSqVfD4/Lr3wzZ1xjj4xY0IX4K3micyMAe9Eqy08cYKuUxv3sfYFxOz0i3X2jUVET6xoCBIaMONCqZg+RvuxxXYAoLVDc2fSPJixOdXcgibPIxlKTTe0dk3ijWE5lCUCEAELzDnV7wRSQqIinROZBFwuNz4+/mxk7M4zcZuOxH2yJ/qjXez1vpEf+DM/3s3+4TBnz7m4yJjktPT0nJyckpKS2tra5ubm9vb2zs5OnU5HbVe5YqV+qodpUs8P4CXixVXZ0Pqmf4yDD3LCg/kxytTuCKcEwTScspGwJCgD0/BuyKjZNxZUEUAWyYHBtvVkWu0IQz4Q7hHA2XLwRurwvmG5OsxCIyvkGfNtOqlX5hY62LgKF8i6AvUQwM6J4B8BA0BYtaKiYsuWLc8999w999yzePHizz//PDExkcfjQUcq8e8cxBuh5RHI8wbH+ufGazabf+V4y8vLt27d+vzzzy9dunTJkiX//Oc/Y2Nj6+vrQQ3SaDQC+cGIN7lcXlVVdeHChbVr1y5cuPD+++9/7bXXdu3a1djYSOibEMZxgJ/BYCAA50TA74rJE345NDQENTiZTMbj8fLz849FXnLCfQ+wLLfB1CUotAHMCTRNtDjHMCeYdzr5IFdgJKnkEWmPTODZNA9kGWXtFm7rEWlHZyKVcmQrFWnrEfnJnuis/GIej9fQ0FBUVHTu3Lk333yTjDcgIIDH4wFPDm6eiSJ4ZLy9vb19fX3Eg5PcJ5ZMdYOflJn3caSqAvgNlZuiAAAgAElEQVQEaNgCGQv6OSYyO5VK5cmTJ1944YWFCxfa2tomJSWBEOW4R5Lcpb8/aPAUE5I9CGPCWloqlba1tTU3Nzc0NNTU1FRUVJSWlhYXFxdd3kpKSsrLy6uqqurr6/l8vkAgkEgkYMYGBW5qxeeKOeT3n/+kHwGmptRenIGBAb1eX1ZWtmnTprlz5/7xj3/8/vvvGxsbqX6roCAKMCePxzsQme7kxbLziLTefpHmHmGPFtJMO3qUky9yN4cWYJIAocRm7RoOGIMdHQGiSGcJT8ZgN0J8h31A5NbWIyq/qhlcXaFGOenRsBxwKkSA3JMTkU7qTVhYWPiXv/zlkUce4XK51LUPpIupMBDqOZBBkTwJs7VxP+Gvk5jxqOcw9V+PjIwMDAyAvUtbW1tMWiHNI9LaNQKk0oBOhJID0lLDTAUkqINk65De2o5wq+2hVkhRAylbAtXA1pNpizw4EQ5q6xnl5B1L80AsT1Svx8AJMMBwOQ9VAL88lKxUKru7u/v7+8mVAhouj8d75ZVXli9fzmazyfQSME6tVmswGKBTh8DtljnV1L/frniGUwrmhDMcHf1pcGhEpe3JKGm7kFDjfjj9u12Xtu3n7jyVm5zfUsNXdE83AVvi5WQymQDpbG5urqyszMnJSUq6tPNU9Nt+LAfsHYDmD55IPhE6osBmiOYeCULTRI7L1gMxAWw9mKh9wRM97+t3sg9djM/OzgaMUyKRqNVqeLSvE8Z5xdtpdHRUpe6qrqlNTEo5fyH8RPDZg4ePXdHX88f9R0LDmdk5+a2tQpVKbTR2DwwMXvGYv/hLaskRGv0FYrn7+WwXvziIGHjsoTYyHFh7rAq+dmcsY/fR3XsP7Nxz8F3fyI98LgRgw87P/S+g4OOKGdA67ensf+yMSS7hg4XK72zs6OkdrOYrAk7noRt796Ut+1JPsiqiUhtkqm5z3+CQxYzzF6/3jNgBFk2E7Q2tqATslMvlYGrO5zeHJ5YeCi06ySrPL+dXVtfX1dXzeDw+n9/S0tLR0UFMsuFLGeQx4JGfmpPDa756AHOaTKbOzs6mpqa49AIHpGaBzEGQBA6yPWKDlA5yNMfLMSzxjVBPZ99YaG6AOhXYGIPKN6QFtHbDoKaDV/Tq7aE0LK6DV3aofR9RgzzRi0hu1e4zeVKFFpzyLNOea76aljdeJQIWmPMqwZkqf6JOO6D/Qq/Xq9VqKK41NTXV1taWlZXl5+dnZ2dnZGSkpqYmp6QkJCXHJyUnXUrhctMyMjJycnIKCwsrKipqa2v5fH5HR4dcLgdfZaqCxHQpsV2/a0MsXsDovl0kdjuXDbYuNHfkvonMNRksGnK2Z44526PeQNwqiNAIFhTdUAuMNxKwtfUYQynQApuOlM1xPS4KWbwwWEji3IvtxGAV1LSCSefQ0JDlKly/6zvtjkyKXCAgQ2V2dnd3GwwGnU7X1dWlVqvHgQEAXAkEgvT09MDAQCsrqzlz5jz66KPW1tYMBqOgoAAq7ABfEYonFceCYg3cjTdsCnL18RqNRhgv2JQShhCo0oH/PJfL3bdvn7W19bx58x555BErKyt3d/eMjAzA82JiYr755ptXX331/vvvX7JkyT/+8Y9jx47l5OS0tbURaTtA+wDg7Orq0mq1xIAT+B9E/pcaop+7tSCAQ0NDfX19RqNRpVIJBILy8vLUtPTvDiA6OLA5QVEcXhOpEKjdgwwIaonAdTrcbMG282Q6+XCcfTl2nkxr1zDEfHINtXWPsPWIoLmF09zDHRmRZ6IST5w48fnnn//tb3+D8b711lsnTpzIy8trb2+n4uKdeFOpVF1dXRqNRq/XG41GAuj+pvH+XBwsv7dE4OciAM8IwcyIhi1RrqbmN6gUg/4zk8l0cnKaP3/+X//61927dysUCtLAQQjHk1X6p54k1K/NZjNkJJVKpVAoJBIJAHgtLS18Pr8Rb01NTc3Nza2trW1tbWKxWC6XE141IXGSU71hafbnLsTVf0++C+BKEdAXlMZjY2OdnZ3vvffep59++tChQ9XV1VRsCdKvQqGQyWQikUggENTVN7yDKpJRNm7h1jvCgI+O7M+9kIsegS2ht4x0BwP2SaicpNsMfo/IWJgDShTVYId/HU5Wd2l6enpIWe3qI7X8dZpGgDp/gNZ+wumk3o3V1dXvvPPOfffdFxgYaDAYSHvEFC9mkQfwii+m6SWblNMeGRkBXwClUtnc3BwcnQW9X3b0KBe/ONQ2cRn5QLkFS6ihFIFN+xy9YxAugvvJaB7IwM/GLdIaKe6g1lWcWFDtD63ycHkOISK4yRXXBDF0Smd9tC+xXSw1GAy9vb3gigqWE0VFRc8888xjjz2WnJxMZlxg7g7qGuRbYIbxRSblsk6vg0xBmBMC2DcwJOk01LUqk3JbQuKrvY5luR5M23e+4ERUWUp+S0Orqm/60DqJ2lZfXx+0NUgkkubm5qqqqry8vJTU1AvM2O2HWQ4M9JAiTQiseA89o/a4awEmDwDaOXhxUL/CZY2cNV5M+vFoVlxyXl5eRUVFY2OjWCyGQhnVU+DG35aDg0MGg1Eu72xuac3LL2SyOIeOIEfMif8dOBR08tT50PCoxKSUiooqqUw+OPgbIE8qK85gMLR2SH84mYn1gZCUJQI2PBAYbOMeAVLeZJ72T9/zcDKM3Uc+8Lmwc8/B3XsPbPQ/6eDFdvSOgYUtzOUQ0ukfcy61Sm8wms3ma2vvGBkZbenQhMTXHA4vcT+U5nkk41xcNSutobpJ0SLSmPuGRkYsZn83/j69mZ9IFmgT+2U1Gg1M/6RSWX1TW1xG3c5TORGX6tIKm2TyTrlcDl2n49zNqXfmFF+a/da4E5hToVDweLykzMK1/jHQuICWWlhlGnN1Ypx80IoM+j/skRES4ru7+MfDCguMRXCzKdPBK9rZDyGgDmiKhcySUWcJoniiQjcqiYNmOLbP+3hv4v6LhcXVAmgfsbA5f+sVtOz/KyNggTl/ZaBu/m5QTx/XpKxWq+VyORDzGxsb6+vrq6urKysry8vLy/AGHIKamhqgEQiFQrFYTPj4ZH0FVbYZlsev7ZrBJK+vrw/kajNK6tbvTVzjFw/tfo5jvg4sZ984Z1/kZY26V3A7G0yUnX1jgZWPOFXeHGu3iNWoTTjc2j2C5h5FOlzsQb3Wi+3ki75abD2jPt2f2KlUmUwmQui8tvO3vGumRoB0iINwGeiV9fb2grIr4J2g9AhOliDURi2s8Pn8gICAl156afny5XPnzn300Uc3btwIFE+5XN7T00MkXsehnlC1IXpoVGzvOiUNarGSjBdoXiaTyWAw6PV6jUYD6AKUziUSiUgk6sBbO96qqqoYDMaTTz45e/bsP/zhD/Pnz58zZ85tt902d+7cv/3tb0eOHGloaIA9Ozo6RCKRRCKRSqVA4gTDJJ1OBwacVENKyJa/dVpGRNX0er1UKgV6ZWoq99MfY1H3A+ojxhK1uMSPiAVukWhOiciakdauYXaeTHs66o1Ai3b3CHsvlpN3tCOD5chg2dOZ1q6h1jsurt4WQnO9uOr7E6/9X+Bz63549hXru+++e968eQ8++KC1tXVQUFBLSwshE8CNAYCuSqVSq9VarZaMl+gbE9gbrv5Mfbgs47rpERj3yJN+DnjedTodPO9UrAKQM6VSmZmZaWdnt3Tp0nvvvdfb27uurk6v10MSIwjiJAIYcKokL0ESBi1xOElov6C2TUA+Ae4O6D9fv9O7TpeSXCDSND0wMNDT09PR0cFkMp9//vl58+Y9++yzx44dg55oaqohNHHI2ABzXkwqsPWItKdH2XoyEaKAu8Rc/OMdvDlQDkOJ0YO5ensokZSE9mEoUwJfEyZmSNvWMwrV3XCzMFgJINtjtwhgf7r4xZU0tFlW1Nfp3phqhyWTJVDBgRxCJgzw3ScUCjds2LBw4UIfHx+VStXb2wvC12R6M9UGZTmfn4sAIB+gDatQKJqamg5EcKEn7PKa6zKYQWcjgiYuwEF6scJ08LGSnCcSxoAmM3sGGwtsRNpiLQ3IPI7eMbiTFfWq2jNYQOvEhf6odwNiea3tWq0WqJnQkRwZGTl79uzXX3+dz+eTfNjZ2QnTLfJFQChi12k6/XNxs/x+ciMwZWHO0dGfhoZHenoHO+T6klrp/gtF2w+kbdqTsmVf6uGwYja3oaldPTg0PXAhmIdA129vb6/RaFSr1WKxmM/nV1VVFRQUpKWlxcfHh0awvg+MeMs7wskL28IxUO8UTCRgzgCQJ+5EZzp6Rr4XwN5xlBPBjk1JScnPz6+qqmpqauro6FCpVEYjQuMm0ZJzUu660dFRjUZbXVMbn3Dp9NkLQcdPHTgU9DNcz8MXQyNzcvOFbe1arc6Em70mphoS2IGBAbPZbDAYmtskXxy6BM39CCfGKAUId1u5htE8ELABKAjqF3GPcN+FCJ279x74zv+k/55Du/cecNt1FMBRPGcbIwMA5OnsE83JayB9Ib9pgTk4NFJSKw2/VLd9P/f73cmuB7j+J3MKaiQNQrWpd2BweGRSImw5yLSLAHWRAtVyaMHs6ekBVgCooGk0mtY2WVhClc/xrKDI0qxSoUyhNRi7wdKIGKCQxiMAUKddNK5ywgBzdnd3A8yZllP4ph9CIkFm1hbzdpA5iG8sdHqN+a+hxq8xe3LktemNHn8n3xg7T1SYsvVkOuFefFAxhLfYeqIsgRk+kUj4EAv+v7MrPuB8QVwasjKxLMqucpksf/r9EbDAnL8/hjfoCKRRheoKDlyHrq4usFwWiUTt7e0CgaDl8tba2ioQCIBGIJPJoNYGfHwgPVDbVW7QSKbqx0CEIbw9PT0ajUYsFu8Kz8ZgQ7SNB6qgOTCinXxjXfzigFtA80DzNqxhi1I5gTzRFwADdcSMlecwcfMy2yDKekf46m0XgdYJzYbIUc+bnVnRAsVZsuidqqGynNfNiQDcolDTobo09fb2wjQOqEVU504ouJMKCyCCpaWlTCbTzc3tjTfeWLhw4fLly1977bUNGzYcPHiwsLBQr9cDjW8c6kksoAjqSWTToDJI6oPkPK/5BSlTwkeAZi9MWM1mMxX5uNyjJxWLxR0dHe3t7UKhsL6+PjIycseOHS4uLs8+++yCBQsWLVr04osvvvDCC/Pnz1+8ePGLL764bt06Hx+fhISEpqamtrY2QDoB5gRS4zgSJ4F+Ccz5m8ZL+ie6u7uVSqVQKKyurs7LyzsfFf9OAMcJtUpEOaBeOZYD9kWwcUezRluPSJp7hLVrGM09wg4gAbdwYG3aeUY60Jm27uG2bmFvbDr14of0x99Yf//KV+5+4LE75y6YN3/B3//+982bN587dy4/Px90MmUyGeFUjRPjJfTNiYDuZJHhbs4zY/nUaRUByBiE1gmEGHjkIblRPTvHpbXMzEw6nf7EE0/cf//9a9euDQkJ0ev1fX19hKpFbdSYWOX5TXEiy2kqcYeahw140+v1BoMBFLMncqPJ+fzOk/lNZ34NO5P6F1VRoKenJycn59///vdTTz21ePHif/7znxwORygUEoY99IsAwAmuxlqtFqAmVJRsbv4uKBm3bkSBnj+gDuAEgyZL+D80p8IdweD7YoOZGZftYS4bB7hHom5iXHSjAqIwJYN5lz2DfT61UqfTAdfqd9pBXUMMLW+5kRGgphFAOnt6eqARAZrAIHWIxeJ9+/YtWbLkzTffbG5upgrbWL71buT1+p2fNTo6OjQ01Nvbq9PpZDJZQ0PD7pBLzn6xQL5ETnsMREICJxFANMEBHZfwEH0TZQlgemFNNlDMvuw1xUHsBDrqOXPy5tCwviXZHxhjNu7Mdf7RNY2Crq4uAEU0Gs22bduWLVv2xRdf1NXVwf0GQrVdXV3AGqHeb3DH/s44WN5+cyMwZWFOCMvQ8IjO0Ncm1SXlNp+LrQo4nccIygw4nXcorDguq6msXiZTdU/xqQgMhExIBgcHwT5Ao9HI5XKhUNjQ0FBeXp6Xl5eWlpaQkBDKjD50NooRFPn1j8wPA5hrvZiOXshwbo0vZ60386OAqG8Cmd5BkYfPRUVFx6Wmpubk5BQXF9fV1QmFQqlUCo4n1A6YqfmcDg0N6fUGiVTW2NSck1vAZHGOHA2eSPTcvffAgYNBp86ERDKjk1PSKiqrpVLZwGWuJ6HJglatSqXyOJuBFp70KOS9R8f0LG/E68I0d/QTpmcAY9jTWWsYkT4Y3dyy85jfbgRz7txz0P5ymwg0n9lhAj30sb2zKz6tDKnXUl0bfvERFisMhdWSU9GVB0OLPQ5nMIIyz8VWRafxBBKtoqt7yIJx/mIEb4EdqDNA0pAKrk/my1tPT0+7tCsxpynwfKF/cG58dlNZvaTH3A8t7FPzSZ+sS0dgThCtLSgs/sdOTMT0QqwbPGVCKy/oUYClGfo9ne3sG7s2INHGDbWlgswh7hSJWrXt4htbL+AufARn2tKjwPAYF7IuW5sj0jzr3d0J/ufyvjmQ3Nra2tnZCTa9v5U2MFlxsBxnxkfAAnNOs0tMLa4R2TTwrruii1VnZ6dSqYSqPSlkw6SN0HQs63m4CcjU+T/aRy2t7+6OQ8katQGy0HQNdQEj43qEQCDUk21PZ1m5hdthIXK8DxvWxvZ0ZOiCvySibNwRI4H4SKEvD6QJgL9LkL8UWmPb01mHYks1Gg2IeEwi9WSa3eKW0/0VESD36jiwk+ABxLlTrVaTuh5BBQiTT6FQCIXCkJCQ9evXP/LII/fcc8+cOXMWLVrk6Oi4b9++4uJigUAgl8u1Wi1AnkThFjC/qwCfpIJPRUB/8TXBTQE8gJ/gHgo6lr29vQTmJITO9vZ2Ho9XVlbGZrM3b9788ssvz5kzZ+7cuffcc8/jjz/+0UcfhYSE1NTU1OKtpKTkyJEjb7755ooVKxYvXjxnzpy7777b2tra29uby+VWVVU1NzdLJBKNRgPURqPRCMgfEcOEzEnATnLOvzi6oaEhMI3Q6XQSiaSpqamsrIzL5Z4Lj16/M9oBkTWj7FBiQcRNG9cwW48IezrT1iPCekeo1Y6LNm6hDmiHcOutZ1dtCn713wf/+pHn//zvO0sefmrWHXfOumM2QjeXPPDQX6zXfeUZExOblZVVWlpaX19PbCdAmwXIBCDGS+ib1DFSvxosiehXPI6WXSY/AvA0gSwqTHUARDQajfDgU2VsCWe9s7NTIpEEBQU99dRTCxYsWLp0aUBAgEAg0Gq14/BOaoL6PaW9cecJJFSg2kNrMHzuFZskpuxCmtQICN5MknBPT49EIuFwOK+88spdd9314IMPbty4EQw4xwGc1EYKmHxCW55KpRKJRGXV9esD0DwKFtIEzoRZ0xhtHSMT6E/4v7Elt2cUELBsseMLWYfDEUBJCXALwDNsPaOAxuEdmqtSqUEwY3h4ePJvWcsRp1IEyFppeHgYuiUA6YQ+Ceq9GhUVde+9965cubK6uhpuD0IBn7JP6FSK9M0/FwJzgldfbW3tvospNthYxAH5jKD6na0ny8YjEkmu+cQ6Yl01RETwiXFE1lO4b5XOQiQGT+RuDrK0sKxz8AbttUgHb1QBXL09FKejaCTeiN09kYCtR+TbftFVDc2dnZ16vV4sFq9fv37u3Ll0Op3MuknDB1HGI6wRyyzr5t9Dk3EGUxzm/Omnn0ZGR4eGR7pN/RKFISGHfyq6kn40c+OupB0H0vyDc+Kym5pFmt7pIGALmZk0/ff09Oj1epVKJZVKhUIhj8erqqoqLi7OyclJS0tLSUlJSEiIjY3lcDjRl7eYmJj4+PhLly5xudzMzMyCgoLKykpYLonFYpVKpdPpwLmZ+nUwGbfJjTjG6OioVqerrqmLjU86cfLs4aMnAg8cvSLXc8++gyEXI7Jy8gTCNp1Op8OdeUqV6lRiqT0Dm6p4XBbrxkwsW+zhh1vNImmeTEcvxABDwIZnlINX9Jf+57/0OWXrHvGZ79lPfC+85YOcUEEGHE3YvLDxCq6A2SAAlfWWfwxPKCUNH1fvP+sfHG4Sdu2/UOhzPPv73clbfkzdf6HoXFx1h0yv1ZuHhlAevRHBtXzGNIkAmQRSl2nUshK87usfTC8R/hhS4Hoo/RS7Ij6brzH09vUPzWDVYyJaq1Qq+Xx+aWnpVwcTkQenF6K823ogn070dOOuL4Ru+iCdQpp7JGbmhNvTkYz/Gv8E9OzjRdzagET0GumEjxmiExNfZPSGHQHsGey3/GN3HMtc7xu/9RRXIBCoVGMShhaYc5o8UtPvNC0w5/S7Zj/99BPJ3eO8kQAA6O7uNlK27u5uoBEQ+iaZtFkWV9TLD1GFpmCtViuRSGKyykFUFoBJW3oUOLKgbwLMuML/RC0t9mi5G2HHQDacyGyPHkVzZ0IxDtrWwMYAWbngjI+ai5E9DKJ7gmennSfrm6BUqUxBynBXn/BRz9zy+taMAClGEzCAKD0SvJOI2XZ1dVH9LEnxhUCeHR0deXl5oaGh/v7+H3zwwbPPPnvXXXfde++9f/nLXxwdHb/88stdu3ZFRUWVl5er1eoevFGxT6jpQ30ffg5c0zYOIYDDArpJ8ptEIsnNzT137hydTv/oo4+srKyeeuqpRYsWLViw4K9//etHH33k4+Nz9uxZLpdbXV0N6GZNTU11dXUN3mpra+vq6qqqqhITE4ODgz08PN55551nnnlmzpw5y5Yte+655+zt7T///HN/f/+IiIjS0lKlUmkymYioL2C91zBeIp+i0+kAYK6vr8/Pz09KSjoZyv54Z6T1jlBr11A7jwh7z0g79wiaa+jqrSE2rqGvfxv04gavZ1y+eXzV+hXPrVr62HPzlz10x13zZt05Z9GKx5c/t+p/Vr3/7Fub/vqJ3+ofTmz58TwrOiY9Pb2oqKi2tra5ubmjowNkJAlLdRy6OQ4BInjt74F/bs1H0jLqSYwANb8RmI2AnSBje0WwU6FQdHR0JCQkbNu27fHHH1+6dKmDg8PevXubmprGNStAjwJMhK4Z0oA3UmdlcFhqr8a4D5rEKE3WocgoYCDwnULtg9bpdBERER9++OGf/vSnhQsXvv/+++fPn6+vr58oIzzO1Zi4/ILkgFqtbm9vT8mvdPFCMrM27rgvGJqIMXcT1GjtcSsxkKWQ4yaWn7XFlnggegY/QWESSmx2WNPbxj3Sns5y9EbtaEDuBLzzy0OXZAqF0Wjs6+uzwJyTddtM5eNQH0lolQCkE+y9qUhnXl7eqlWrHnjggaCgILDfhl4fkhmm8jAt5wYwp9lsJjBnUGQaeuqRUmW0nReylLPHbCRUyPNGyzfQXsPmmhxnv3jAQcc859wjrVxR66oTQkBjnbB1H+qW8OLAGhDMg4HrAE6fth7M93bF1DU2S6XS+Pj4F1988YknnmAymTKZjEywlUqlWq0mWin9/f0g22NZhs+YG3jqw5y4fPTT4NCw3tRfze/MLG27EF+9/0Kh74ls+tHMYFZ5XBa/uFYilhsGh6ZBJxAhIEL/qNFo1Gg0nZ2dYrG4tbW1sbGxpqamvLy8uLg4Pz8/JycnKysrMzMzIyMjMzMzKysrNze3sLCwtLSUAJwdHR0ymQw42cTUCVripu9qaGhoSKfTi8SS+npednZeFCvm6LGT47ieAbsDd+76cd+Ph06cPKNQdGZXNL21Mw5gTkh3eA4WDpgliGeA9q8drmUBZom6RrCNH5DdIUOCex+UzmAmhmAPrHJp4x7p6M3ZE1Wk1+t7enpAFviKcR4ZGe3sMmWUtDFTGryPZ9GDMnadQSzkxNzmvEqRzohAqRmTRiwDuR4RIMtJUt+gvhgdHe3tH2pq70rIbt5zpsDvZE4wqyK9uK1BoOobGL7iPXk9TvKGHROa/8xms0qlamlpqaioCIpMgQcW4Ew7Ouvy/Ad5c4I2NQ1PjUDXELSsgc+DV1uxjl7Rjj4cWJHheRGqckPjKdh8frjv0g8H0t7fmbjGP/4IJ7+9vR1qiVd58G9YQCwfNFMjYIE5p/eVJQUpUpMiyALBG+A3hKADM7bpPezrc/YwYx4YGDCZTCqVSigUep1PQ2ka2ltw4Qz5sngw7eks0Cu3cY9AFE9YPyPXFqxS68VGDS+uYUiFkoHcN6GT5T8Zn86ycWOiXmBs7mKP1JBQi/FbO+NahCLQ2YMF8PUZqOWoMy0CZAJ3RbwT2N7gZwkFPqB4KpXKTryNgzxBbBDWigkJCe7u7qtXr77//vvB6PHOO++8/fbbH374YUdHx61bt548eTIjI6OlpUUkEkmlUoVCAVgaFUi7rBFy5f8DYkocRgkrXS6XSySSjo6OxsbGpKSkw4cPf/PNN6tWrVq2bNmsWbNmz549f/78RYsWPfDAA87Ozn5+fqmpqW14EwqFLS0tzc3NfD6/qamJd6WtsbGxqampubm5tbVVKBS2tbW1t7e3trbGxMS4urquXr36vvvuI+OdNWsWjHfLli3BwcHp6enNzc3XNl4o9Gu12s7OThhacXFxamoqh8O5cOHCp17Bq7479tr/Bf6/912fdvz84ZfsFz+88s65C/9w222zbr/j9jvn3DFn3uz5i5Y98f+eWP3+ix/Rrbeepm0/97/fHXv1qyNvfH/cacepwODQ+Pj4jIwMUF5qbW0FM2bwggL9TNL10tfXR+XjTvfF/Ex7qi3jwRGgYhXEbYW0cRBmJ7HpJcxOYM90dnaGh4e/8sorCxYsmDNnjouLS0pKCpHKofJpYNH7exa0VKTwiq+n7CUlZ0ulbw4MDPT29mo0mubm5s2bN8+bN++uu+5avny5l5eXWCyGrw8QwSalfJAPAYlaIh8CuBE0eZhMJrVaLRAIWGnFdm7hoHHk6BPj4odqakgrEmvPEhstQC7RzIqOZCcvewREorZitwgbbKSHO8YQromqchgHhd1gf2B52npGrd8VJ5bKDAZDX1/f0JClKDZlb8ZJPjGSQAgp3GQyQd6gIvQSieTDDz+880NFD1oAACAASURBVM47P/vss87OTsIvsXwtTvL1uA6HmwhzhsSmI+NMH1Shg/yAyd/Rjt4xkCIue00h7qY9Ay3o0DrOh4O4nl4cGw+mjSvqW3XyRhV5xGzwYNI8UJ8rUDyxUwliNoCoo51n1Cf74uobGk6fPr1o0aInnniipKQE5tUymQzaPjQaDVTzYd5FrEl+zzfOdYil5ZDXHoFpAXPC8EZ/+mlweKS3f0ik0Jc3ys/HVXsFZW3fz/1hT3LAqdyzMZVl9bLBoanucUgqYDAzJC7parVaoVCIxWKhUMjn83k8Xm1tbXV1dWVlZTneKioqKisra2pqGhoampqaWltbOzo65HK5SqXSarXd3d1E8wzy/wzrRRgdHdUbDDU1dbFxiUeDTh44FLT3x0MBuwP9du49dPi4SCRiXMjBYCTicSLEAgvPQo8Ipryjhv4xlW/sc4wc0D1RX4g9nW3jFmHlFo7a/VGtDKmagaknNPQ7eKNiF8hgIijFN8bZJ6a0oQ1MOgcHByeGenh4tKRWEp5Uu20/9/s9l7b8mOpzIptbJCjnybrNA9MCj7/2nGJ55yRFgKxxfu4F9XMa29RHIkpdD6Z5H8/eezY/Lqu5Ta7r7hkYGh5Bb6fuOj1fAw8e1ndtbW21tbV5eflv+iEDY1hJWbtGWLuGg4cISOYg23LPKCdfNIOywV2nVjvCkY0IuG9izX8MajIhG5CeBnsvJHX7wb6kTYHct7Hj2xpfTlJuhVgs1mq1vb29V3zqp2dcLWc95SJggTmn3CW5hhOCrA31KaKgOO4F6UqeESn6GoL0y28BmBMUaxUKBZ/P/3x/IgYs/8v2CfcCozZh3N6C2oRtxoj8EVauYdZu4bZY4oM4EGBYFO2GOAr4GwJ5NXtEoc4XbNcMngdopU1nZZbxqHn/l0/asoclApQIUFd9E/VsiX+nXq8HLlRXVxfQoag1a2LfSMzVgB1VXl6elJR09uzZ3bt3b968+b333nvjjTeeeuqppUuXzp49e8mSJY888sgzzzzz6quv0mi0tWvXvvfee59++um///3v7777buvWre7u7p6engwGw8fHx9vbm8FgeHp6urm5bd68+dtvv/3yyy8/+eSTd99919nZ2dra+uWXX165cuWDDz64cOHCO+644/7773/22WdtbGw2bNiwY8eOwMDAixcvcrncmpoaqVQqk8mkUqlEIhHhDRw629vb29rahHgTTNjg94BugiunWCyWSCRwNLlc3tHRQca7Z88eMt6VK1fCeBcvXvxz4924cSMZr5eXlw/eqOP96quvPvvss/fff3/NmjWrV69+6aWX/vznPz/88MP33LN09py5s2bdPmf+ogX3Przk0WceePr1R19d+6Ttx8++ufHFDz1f+dfeVZuCV28+9cb36Cf8t2pTsNP2Uz/sPXcmNCoxMTErK6ukpKS+vr61tVUikSiVSo1GYzAYuru7gZAK3E0AOIn0LvmCoNxNlpeWCEyVCFAnOYRiSJidRKN7okA3ZDOZTJabm7t3714nJyfQsv7ggw+OHTtWX18PeAbB+wnt8lZ4Ikg7M4waKLMgCdDZ2clisTZu3Aga4H/961937NgRGxsrFoupNDjyZUHMEaiWxkB8BywZJLuhh6y5uflCUiE2JEYNv7AeJq6csKgGwydbzygEhWL1WvgNDUELyBSKQJ5jOrcMXFDDRTcQrQW5WuhQRgU1b3ZbB1pXgy8A3FFT5f62nMf1jAB1XkQ0FYjoPWnzEolEhw4duu+++1avXp2fnw+ZYRyt07KAup4X6hqPTURrtVqtTCarr69P5GY6+XLAUg7V6JHrOWonRaV5XHnH2CeiGry5K9HRJ4bmjvRsUQryRn5UNPfIVdsurt5+EQOZqF6PE0gMEB2QcxVe0MFBbD0irXdc/GZv+HvvvXfXXXd9/fXXfD6fdNsAxqnVag0GA2hgkp5jSwq6xus9Vd82jWBOCOHIyKjO2CtS6LPK2kITa/dfKPQ8muF9PHv3mfyI5LrCanG7TD805cFOmMaQOUxfXx+09hLWPrTMikQiWBVS132kN5c8oeMAzhmf8IeHhzUabatAWFJanpiYnJBwKa2oZo0fQiKRMAZuPnPyjUGELW/UNQKQJ6Jyoj5+lFEdvZBYJXj1oVmZBxK3RKmS0nNmjZrSIkHwDJEEPKJg4oeQUS/2ZwcuyTtV3d3d43hdIyOjHTJ9YbX4NKfyUGix+6F0xtHMYHZFZEpDfWtnh0w39W/OqZqrLOf1yxHQ6M31raro9MZjzHK3g+m7zuSFxFVzC4XlPLlM1T00PI3hzpGREWJnLhaLeTxeUVHRjuPx6HHGjExrtwirHWE2+EG2xeq1gIDaMVg2bhGwZCPsT7QcwxVs+D0szZxw96qTb4yLb8xn+y79a1fSWoyhOnpxPt+fUMdrlMlkhNUz49PsL99tlj2uTwQsMOf1ievNOCosma7y82ac1HT6TMj7fX194JxXW9/wfgDHegciHDh4Rbv4x2EBW1RKs/WMcsIq5KSx144e5eIb58CIBrTSxg31swDbAO8P5H1k4W6L7A2iaJ5I+hyZx9CjkPULxjvtGeyzSaVdXV0g32ERrZ1Od8+UOVfIAOMWflC5JgbsP4d3ElVbKGST8h8p2RDWDlS3YbfOzk6RSFRYWMhisQ4cOLB169YNGzY4ODi89NJLjz322LJly+bNmzd37ty7fmabO3fuggUL7rvvvj/96U+vvPLKmjVrPv30U3d392PHjsXFxZWXlxNHSVJSn3hiMsomnbBJJmywC+CaAG2CvBgRGaMOmXwukF9hvEVFRSwW6+DBg1u3bv3444+vYbyPP/74Sy+9ZGtr+/bbb3/55Zeurq4BAQFHjhw5f/584NEzHzJO0baeXr0p2GrzKavNp1b9cBJATastp9/4/sQbm05Ybz1js/W049ZTm/acCbkYzuFwUlJScnNzy8vLGxoa2trapFIpVSRtolwnoa9Zym1T5vG1nMgvRICKWAwODoLrHpXcqdVqqYbE4x5kpVIpFAr37t37xBNPzJ49+/bbb3/xxRdPnToll8uhnZxqokltAiCI4DRdj1G/F0hLHMjqguBHX1+fyWTS6XSZmZnr16+/A28LFy784osvampqSB/MuHgSA06tVguec4QsDsgxgY2JGYxCoWhsbDwVk0PcXEAGA9BKEEcCCiaslhGh0xW1mkF9DUmoYVM94G5Clxhhf8ILWJzDn4ijDM2D2Spsh/nV4OCgJen9wpM2s/4MeQMm+UBTNplMBoNBo9FAbwSZ29TW1j799NOzZ88+c+YMwaVmJKdnxlxhAnPqdDq5XM7j8TKzcj7YHY+WbBjapLkzbdyRfI6LXxy0UzhhWif6vVskZi2gvtU1/vE45zAdvWNcdsbbebJo7kxr9wjEBPXhOHhzQHrHwSua5hlp78m0QzbqLAd61Gtf7lt0z7IFCxacPHkSPALgdgJ2u1arBeFuQFBISpymXyUz5raZ9IFMO5gTLJCGR0ZN5gGlxpRb0X42tsovOPvbnYmb9iRvC0w9EVWeUdym7+6b9FhN+gFJhgdNo/7+/r6+PurMUKfTabVazeUN+rFIA+itbOoE1C6z2azT6cQSyb8OJiEAg45b0BjRiH/pH+/owwFsEvBLqx1hY5M0sGqCRjQGAkHBLABZeCJ35Cga/MTyG9AXAuQBxJX3iXHxR1naxTc2paQRMA8in9DbP5RS0LrzZK77ofSNuxCJ88CFoosJtR1yvUZvHhwcGZ7OONOk3/+WA17XCGiNfSn5re6HM+lHM7cHcvedLwgMKeIWCURyXU/v4PDwRBLydT2d33twIl5oNBplMhno1p7npL61K97ZLw7NfC4vuBBvB7QM6bi1lI6aw5DsP1YxtKcjBR20NMOqhGgRR2djHze2LR3p/L/pH7vtaPqGnfEg2IOK5z4xbG6hQCBQKpUTOxt+78As77dE4L8jYIE5/zseln/dwhEg7S0ajUYkEpVX1Xy0Lx6sNJGPCx1ldkzlZCPXKJziEWyJJ3NQhoPsD2U19B3AAM9OpHdEvhjQFwa256RhSyp76CBGx0Fzyj2R2URPz+LJfAvfjJMzdKjkwoRmnJ4tFfIkgrFAitJoNF14m6htSwC/iUAjKX9T9yGiuCKRiGjJNjU18fl8EIxta2uTSCRkN/JeUnMkhyW/IfsQ0BGIRCqVSo03OPmuri5Yz0L9XXulDXYg+0/ieEEuqbW1tbm5uQlvRCBXIpEoFAqZTAaSvK2trQ0NDVVVVcXFxVlZWcnJyXFxcSwW62Jo6NGT53wOnt20+8wXvqc+8Dy53uPUOtfj77oHb2Cc/GrnGY+DF/efDA2NYMbGxnK53Ly8vPLy8vr6eoFAIJVKVSoVuEBRV+/EldlS4p+cB8xylJsRAYLYkZw2saQFSYz0bVDzFYjZSqXS7OzswMDA9evX//GPf1y0aNHrr7/+/fffh4SE1NTUEJ1VwvIcB3mS1Epe3IxIXPkzySmRQFG7XoALCwgxMNtEIlF8fLy3t/eaNWtWrFixaNEiGo3m4eHB4XDa2tpA2JMEENIvlO9BnxzEGI1GY3d3N8QNgkbNNj/99BOwObu7uxUKRUNDw+nYHMApoVgGvCtoE3bCKCaV4ul0WfcCqWIgkzxcg8NcgbHd8JwKXlvtCAOiAHCwQF4SY6isFkFbV1eXyWSyqCRd+daZ6b+FUjg8AlTSj1qt7uzsJJONmpqar7/+etmyZR9//HF9fT2gU9QMMNPjNM3GB1Pcvr4+g8EASjx5+fk/BCWQYj3NA4nT4qp6HBKzxf/htRsWvr6st4ZFs6Ps8J5oHx8OQkk9UX+qgzcSv4UyPV7QsZy8ox28WLY7Qp60+XD2vLtff/11FovV3Nzc3t4ulUrlcrlSqezq6oLmD8IMtuDl0+ze+i2nOx1hThjf0NBIT+8gv0OdXdYWllS773yB97GsrYGpe87mn42pSi8Wtkt1vX2DvyUYN2FfMuEhzE7S4AuOKeCQQn6azWYiODE4OEjtP4BD3YQx3PCPJMnTaDSqVKrssgYXX5T3QKsWWs1gZoWzH1IdQ1ZNDGRvjPQqGdEgAI7Yn25YxxvpezNpHpFWO8Iul7mwnRNW4ICcbOeJjvMfk2M6a29UgUql6unpGRwcNPcO8Nu7UvJbT0SVexxJdz+UvudswZHwkoRsPjhx9vZP9Vvxhl9GywfeiAgMj4yotD0lddK4rKYj4aV+J3K2BnJ3n8k7FV2ZUiAob5CL5Hp9d9/A4FQ3NoaZ8ODgYE9Pj1qtbm9vr6ury8zO2Xw0AYrV8PgjXRxcvkZY5tj8Bz22KC1gvNPZN9YFW5ujYjisyBjR9l5sW48oZ2/2v/enbNyf+rZPrItvrLNvLJLBYLC3nkiur68XiUQajQae92kGEd+IG83yGZMWAQvMOWmhtBxoukdgZGQEkn5XV1dbW1tRacX6AI6LXzw0s+CmYKRlZM9gO/vEQm3OAbW3IO0OO0+mlWs4mgUyELrp5Bvn4h/3n7zvzXH0Qr3AoO/h4BWNvDmxcAd0waCGYvcImkekV0i6QqEwGo1gH2Xp9p3uN9XUOX/qChBIPKTSTUCCcTaZeryRBlhQuCVYoBJvExFKAkPCC1I6vPqLce+i/pMKZ05ENDUaDQCZer3egLfu7m6TyQQCrcQOtPe/N7PZTNa6VJSXAL0AkwBuCmAJdbyE7Uo9z980XrlcDlq7HR0dAoGAz+c3NDRUVlYWFRXl5eVlZGQkJycnJCTExMSw2WwmkxkZyYyIiIyMZDKZUWw2OzY2NikpKT09PScnp6ioqKqqqrGxERicVICTyKNRiZtT5560nIklAtccgXEJjTA7wZ/JaDReRcmW9ExAblEqlfn5+V9++eXdd999G96WL1++ZcuWkpKSnp4eEHkmLE9SDiMF66kmb0toDVTWJlWQlqCbhw4devnll++4447bbrtt1qxZNBotIiICcuw4dJMImFPdN3U6HTHghPza399PzTlwjWAaQ2BOuVxeX19/PiHPCbtpEvomkDUB44Q1NhTXkJaGX9xlohXSQ7N2iwAlW2Rq7hsLbwGJWkdvDrKQwZQCVFDDSpWgcLvGj9MiaFOr1RaY85ofuhnwRrgnCePHbDZ3d3fr9fquri7w9wVFB4VCERERcfvtty9fvryoqAjyALHypd7YMyAm030IUKkHwxGVStXa2lpcXLw/NNnBO9rRO9rBB7lJWbshRjhqp2CwHLw5NHckqAMpwtodafZYu4WjdlV31JPq4DVG3LRjIEKnjXsE9Lk6eLEdUAkvEmGcdKbVDycXrXj8tlm32771cWFhYV1dHZ/P7+jokMlkSqWSyHdTYXLLmm6632xXOf/pC3PCoIaHR/sGhhXq7roWZVQqz+9kzo6DaRsDkhhHMw+GFl3KbzGY+q8y/Cnyp3HzH9LXRaZAIF9BmrFgOUxdIt1SDykxNgYq/InYAmjit8fkLXsv7HfugZwFMJA5pj1L5mYIFMH4JZKlBeK7F0JJARNFuRS1g6B/wl9R+kVtavj3DDYoZNp6Rn0SmCiTyYxGo7rLcDGh2j84e/PelM37UnYc4O45k1dUK21s6+rpHZz6ANIUeQosp3EDIjA0MtooVLO4vC17UzyOZHy/59K+cwX7zhWExFfXNCtK6qU6U39P3+AUFLclDX+9vb0g9d/c3FxcXJyYnOpCR71fqKyNuxls3NEjj2BLbKuJJKkvEz3HyuC4CYzmjmraNE/mGv8ERx/Oh7vifE/mfOIfb4tr5rgYjmig63bGxaUXNjc3y+VyolhrUS68AffqLfsRFpjzlr30loGPjwCBOdVqtVAoLCwpf29XDM0jEprOnHyQOYGdJ+pTc/RGpi+O2KgAFel8Ypy8Y1zwdwD0vsEMz8aDaeuBMruDFxJEcsRTPSfvGBv3yNXbQxElFDfE2dORPgDSA6FHBYRmE/W8oaGhW2q2Pf56WP59HSJAsAGogFPxTtL32tvbS1pfu7u7jXgzGAyAelKVfwgKqLq8ARYICocEnvytL+Aglw+J/k9omgBqAq4JRXaDwQBEIgJtQn9uX18fdTULS1zyE/4E+C4Zr8lkGjdeHd4I0Du54wWClFQqFYvFHR0dQqEQwM7q6ury8vKioqLc3Nzs7OyMjIy0tDQul5uamsrlctPT0zMzM3Nzc4uKisrLy2tqang8nlAoBBtOkEcjDE6i/wPX/TrcUJZDWiJwkyNAqloAXUAeg4caOhhI78IVyZ1UAE8ikaSlpQUGBn766acvv/zykiVL7r33Xisrq++++y4oKCglJaW1tfWKwCckUirfi4jcTjoISs3h5FOAiEDoraSi14+3vr4+hUKRn58fEhLi6en51ltvPf744/PmzVu5cuW6desYDEZ0dHRLSwtRpiXcTWpwlEqlWq2GDKzX64nXL8k248qF426LoaGhvr4+o9EIMGfkpdy1fmhORUgDsKhGiknY9w6MnRANCxMLwAyPrKsxbhFhhxWQkIakBxN4A9BxDOgF6T6Gd324N65VILTAnOOuyy34T8gYoNQHkL/JZJpo1alQKMrKyt5+++077rjju+++6+jogFt9HE35FgzgFBwyLN9MJpNGo+no6KisrExIzVzjgyrsiIjpwbTeEYZQTKQ0i0XYfJCerSPCO5H1JlTe0YqMgR1GcE0f7DztGSzMC49y8uEg0BQBnxE2288/afvJXXcvW7TiiRff+eFkZGJpaSloaYA8CRiim0wmIlRLcJQpGD3LKU1KBKY7zIk1bH8y9vTLlMaiGklUasPRiFLvY1nov+PZJ9kVqYWCBoHKZB6YlHDdgIOQfhQyU5r44lZeHMFX4cDAgMlk6urqEovFO06l0tyQAhmaj2FpSpg+gSilPZalBcUyWw8mkp/F7SM0T6YtJnH+h/GJsU8AQTECGmnnyUIGnzjxomNi+BPAVDs6y8UvtqiqsbCiOSSufNepHO9jmYxjmfvOFZyOrmBzG1rFGkVX98jIFASMbsBdbPmIqR6BkZFRlaanslGRWiA4G1N54GLx1kCu74mcXafzjkaUhCbWphS0VjTKW0XoNtYYegcGb3J1F5IeOIl0d3er1WqRSFRTU5OdnX00PPFNvxgCZyJyjjfHjs5evT0Uqt9o1uSBeNtgZw6dEPZ0trNv7Ad7L/37APervclf7r30D+8xnrejFwc974xoZ9+YQ5EZNbW1HR0dsBAb58U71S+z5fymYQQsMOc0vGiWU74+ESAwp0qlEggERaXlG/YloHZgtE7mgFEB+LG7IIwT0/Y9oxxQLxv6GnD2jXfyiQFdIzDmtN4RjqifvjHOvrGIyomb4xx9kAiSHSMKvcUnFi3CGchrCkw9j0Tny2QyMAmzwJzX5zpbjjoWAWq5nFTJJ9bHx8nbduMNyFJ6vR6wxnFwIJG9JQRQAAiv8pMox1LFZqlwJpA1AXMlfE2gbBJcExhX1C5dwrgat9yF8ZI+X4BGAPX89eO9bPKC/k/O/ypjpP6JRAbQXKCHEryzpaWFx+PV1dXV1tZWVVVVVFSUX94qKyurq6vr6+ubmppaW1tBIU2lUmm1WhCN7O/vJ3iDpU/C8rTfIhEYB3YODQ2NwzuBs6XVauHRI+TscSRsws+WSCRCoTA+Pv7LL798+OGHZ82aNXv27Hnz5j3yyCPvv//+8ePHeTweiJ5B/gFAkZqCIJcSBJT6guTbX/+C+naSuEi6pmYwIFaazWaZTMZms7/77rsXXnhhwYIFc+bMuf322++66y4XF5fg4GAejycWi4nzMZVtD0EYp0xL5W7CwGGwBPWBAuLP3W+EzalQKHg8XkJGwT/8ULuYPQP5nVPJAYB3AsxpR2c5+8au3Zlg5Rpuh3cD902aB/ONLSFvbL0AgmlQlQPXPRs3BH8CwwBEbrF+RsRXhxKFbcib08Lm/LlrdOv8fhzSCca0BoNBq9WCVSdB+qVSaWho6KJFi5YuXZqcnAzqo/Awwuzi1gnaVB4p4STp9XqpVFpfX19QUBBw7pKLfzwwCSBFoD5UD7Rqc/DGCzHwn0NluDERRQBBEZ8Jl+lRLqKzEKfTI9LWk+nIYNPcI1Z9H7zk0advu23W8uet/vfboA98Q7kZWZWVlU1NTe3t7QqFoqury2AwEAXvoaEhC8Y5lW+eyTq3GQBzErfO/sEhc99AfYsyPot/OKxk057kTXuSf9ib/GNIQVxWU0tH17RYXJB13y++mKx7YHodB9qdidx3a2vr+wHR1m7hNm4Rjl4cZ/84VPIC4W7sr2QH+t7/MeRDLSBA/MKtZkwbtwgbNyRsRiz9xtKvJ8JNL+t+I83bsQyMDwjJ+au9nE0BnG/9Y7/2iws4lR1+qbawRixXdesMvYNDFifO6XVn3bpnOzwyMjg0YjIPtkm1ibnNx5hljKOZWwNTvYKytgWmBkWW7TtXkJLfkl3WXt+i0nX3Gnv6R0ZHbzyED3NgpBFtNuv1erlc3tzcXFpamp6ezgjmOPnEOvnGjHG1cYMCrMts6WOPNnrePVF/GHqQ6az3dsVtP5rhdijtXwFJLrhgThw9wazXnsHyPXupvLycUDl7e3st7iG37nNyo0ZugTlvVKQtnzPlIzAyMgJNbQBzlpVXfLIvHrrPUAsbEqRF9TgnTOIEM3aaOyJ3gloa6vlFncJo9ubkjb4erFwjrF3DEQjqxUHtbx6oa9gOcTfH1ADwFwbicdrRUZnPnsFmpZVZYM4pf6fMwBMki0Cic0glBhHuIxUIJCRIInULbEjAQam0SNCSvfpPgl+St4/DMqmIAlVGkmqeN45NBYO64tWa9PHC+RuNxqsPk/yVOl54F2DGAMMQ9TyJRCISiTo6Otrx1tHRIRaLJRLJFZ2fQFLPUlC74hW3/HLGR2DcQw1YIOB/fX19oFPd3d1tMBiAkg54J1A8CbpJ9GypUJ9SqaytrWUymd7e3hs2bLC2tn7yySfnz5+/ePHiF154Yd26ddu2bTt06FBYWBiXy62srGxvb9fpdH14Gwd/Qi4FePI3/STcdELQBGxGJpPV19fn5ORER0efOHHCy8vrk08+ef311x988MG5c+c+9NBDr7zyyttvv71ly5bTp08XFBR0dnZSWa0wTOqoCbqpVqu7urpAehEY8z09PQTTBXFaSLkk8lcpfQLMaTKZOjs7Gxsb84tKPtgTB639GHtAbABoI4N2MeSTh81gxmiadNRM5uKPpmTYaBP1DuNpFaIU/If0iRQyUA8ZUEIBPXVCwrYc/4uZ7R0dxA/mKt8OM/5JsQwQqvnwXUlonWaz2Wg06nQ6ImBLnovMzMw1a9YsXbr022+/raurIwxmah+VJao3MQIAcwJfvLOzs7m5uby8PCMz85/7YqE9wgGtwlAVHpBLVFjH6QUom3aeLFtPJGbr7Bfr7BcLvRTQMIF8SZApSZj1jtBVP5z6E23D7HmL7n7gsef+8d3qzadpW0+fCI8rKCioq6sTCAQymUyj0RiNRnKHAMZpyTY38d64YR89M2BOarikSmNZnSw6jXfgYqHvieytP6b6BecEs8pjM5vqBSqVtufGV+eppzc1X5tMJqFQ2N8/DQR+R0ZGhoaGent7dTqdVCpt4vOdSQc/JrtD6xjMuOwvexiDAi2yKEYi3gjkoLkjdhfuKkNYJqLI41Yz6DYDPijw5lG5zAtpeMAbcTZGhTWaB3OdF/NbH+b2HxN8j2ecj63ILm1r6egymQf6p7zT4dS8Dy1nNRUiMDr6k6l3QKTQl9RJYzKbLiRUH2eW+p/MdT+c4XUs0y84Z+95JHIbllSbWdqeXtzGE3a1SXVtUp3G0Gsw9Q8NjwxfNxIzUfsHGQyRSFRfX19cXJyamup+jLPGF8vtYCFD9MBiduaYuA6D7ezN/nBPwgc7491P53gcy/p696X/C0xeg1ibyNbNacwpIAIbmaMH3DX4UlZeYUNDg0gkgmbT/v5+ojc2Fa6ULG5+CwAAIABJREFU5RxmZAQsMOeMvKyWQV1LBAibE0RrKyoqNh5JBNsnmmcUmK5D1Qx5L9NR4h4z4/SK/sfuS/ao4Zfp5B3jiEU57Ogsa9eIVVsvWG0PtcFTQBCwxdk/kgauMHTEBMV2L6hyZ+cZVVJZJ5fLYZFsYXNey1W0vGeSIkAq16QUSIhHQGWYSCQiICjU9//bDXNMCJeYZVJfUPeE944DMgk2QChN5GQIqkdO+NoCQN4+brzUwYL/HyFO/f7xksGSFwAe9/T0ENwU4E/gy+p0OgBKjUYjMFlBm5dKF7gK0nBtkbG8yxKB6RUBeJbJg0zwTnjKzGYzseMdh3eCvDYV+SMcR4J6yuVysVgsEAgaGxu5XO6ePXvee++9J5988o477rjzzjvnzZsHxK/777//mWeeWbNmzTfffBMQEBASEsLlcquqqsRiMYCFJOmRZ3/cC7KD2Wzu7Ozk8Xg5OTksFuvAgQNbt2597733/va3v61YsWLZsmWLFy8mZM377rvP3t7ezc2NyWRWV1e3tLSAV9yvGRogoATdhGxDFaeFbDPRffPX3B7Dw8MDAwM9PT1KpZLP55eVle04kQhwAq6aoRoZ2AE4YYonIKCg8A90T3sG28UP0QtQt5kPFsnAlTjoMiawKBhBYSGNWHDuXOMfv2Zn/PmkIrFYrNFozGbz4OAg3CS/5swt+8zsCJCu9oGBAXD2NRgMGo0GaJ0kA4hEonPnzi1YsOChhx6KiIgY59YJ2tQzO1BTeXRQsBsYGDCbzRqNpq2trba2tqCg4OCFOBssq+iASZl2dGTJSUN+UawxWzgPvI7zRPRNVMLDKQW1sXpEgmWJi2+srUek9fbQFz/xm7/sodvvnPPH1958/ZujqzedtNp8esfBiPSMjLKyMj6fL5VKAeOEPAlzVMuNMZVvm8k9t5kHcw4Nj/QPDOmMvdJOY3ZZe1BkqX9wzve7k7cFchlBmSfZ5dVNilvWLnF4eDg1NXVgAEn4CoXCJ5988tixY3FxcU888cSSJUuysrIm9+66HkeDbmaz2azVakUiUUVN3eWSFxPJyTJYdp6IeQkgB6CVqPaFGV0or7pjbVvInNjLyZ6BvTyR8AZKpw4M1L4PoKYNxj7BBAq3+yOjAeBxAuPTzi3c7UfOxbjS0toOkVzbbe4fGBwetejUXo8LbznmTYrA8MjowOBwT++AtrtfINEmZDdHXKp3P5TBOJq5PZDrcThj56lcxrHMI+ElR8JLOJlN0emN2eXtuZUinlDd3KExdPd1GXqHh0eHh0cmZQSk0aG7u1upVAqFwrq6uvz8/ITERK8T6OHFcyFkau7sg6R33g2I++FY2raj6b7B2Zt/TN0cmLr5cPrbfnFr/eKcfDhY94LpwMBevG6RyPLcNdyRwfY+k5idk1dTUyMUCjs7O6HEbaFyTsoVtBzk6hGwwJxXj4/lr7dQBADmNJvNXV1d7e3tVVVVB8JSnHywlwAj2haxMJEPswMj2sUPUQrsvdiO3jE0jygbt0gbN9S0gqifvjHOfnG2nixbLLbmhAgHSNYDFsyOPhwHLzY2eGfb428C5NDpxQZrz3/uT6qp5ykUCqPR2NfXZ4E5b6Gbb2oPlUCARBmSkD4J7nhFHUXCQPpNLwjJiRx8HKhJ7O6oJzZZIaQe8waPlwwcwkVgVAJ4wAugcxFtXtIQR858skJhOY4lAtM6AvBETMQ7wZCvt7e3p6dnHOSp0WjUajXhO4KaNFGwJOwugnoS7qNUKi0rK4uJiTly5Iinp+e//vWvt956i0ajvfrqq88999zjjz/+wAMPLFmyZO7cubfddtvcuXOXLFmyfPny//mf/3nyySdXrlz5zDPPPP/8888+++yf//znJ5988vHHH3/ooYeWLVs2f/78O+64Y/bs2Xffffd999336KOPPv300y+//LKVldWaNWs2bNiwZcuWffv2hYWF5ebmCgQCOHPijgznecXzB+BTqVSC+TGYbgK0aTQaweqYcDfHZZtrqN0DzGk2m6GNrLq6Oiop0xGLWAByCaRMEDgCcQsilQHkAMAnSF0M9JQA1LRBuAUbynBA5XT2jXXxi0OLc2QxgBqTC8prZTKZXq8nkytLR8i0fron6+ThW544+/b19UGbkVarVavVSqWSPD4KhaKysvL999+fP3/+unXrcnJyQMMWgH8yLZmsE7Mc5zdFAAp2/f39BoNBLpe3tLRUVVWlZ2TuOBrj5B0NRXa04GKwnXxikascaO34cBwYbBu3iDHpbEQEj7Jxi7BHKziOoxfb0Yv1xsajj/39rTvnLlj00JPPr9tsteX0qs2nVm85/aFPCDvuUlFRUUNDQ0dHh0qlgvod0dWwTMl+0xWc7jvPPJgTrsjg4EiPeYAnVMVnNZ2OrvA9ke15JGPbfu7us/mstIa8SpFc1d0/MDzdL9+vPP/h4WEej7d///6nnnpqxYoVnZ2dP/30U1NT0x/+8IfXXntt1qxZTzzxhLOzc11d3a884E3cDb71oPmsra0tv6TCFsl6I/DSwSsaTcboLGTCh19D5xnQuXBHCJSz2KCcgdydGNFg6UdmYmhWhg8FFp4wWwP1Wki54OWJj4mcmw6eTU3JrW9t79TpTcPDI5YZ2k28NywffSMjYO4b7FSbGgSq4lopi8uL4vKCWRVHIkr2nMlnBCFrZMbRrCPhJfvOFZyNrToVXRGRUh+X1ZRdIcqrFFU2yhsEKpHcIFLoxQqDSmtWa83mvkGTeWBgcBgJPo8gWBSkccf1DUApb3BwcIzSLZO3tAorq+sysguSUjL3nk/5+lDKxsNpW46kBYQUMI5ne5/I3nyA+21gyicB8eu8OQ5Yp9DOE6UL9LB7sZ18Ylz84qxdw61dkXj1uzvZgReScnLzqqqqWltb5XK5Tqczm80wR7I84DfyHrs1P8sCc96a190y6itEgHS1aDQakUhUW1t7KS3b2Q/NvTDGidRlMdsgzskn1g4tlWMcwWPZPQJ8COwROxOJ1iIJNbwDsvbEIrd29Chc0fuPYi0yncLfB1CPc/GLcz+b0cRvViqVJpMJ6PyW74ArXCfLr6ZSBEgdh4oIEhCUwJO/8gUAEtSf5PhTZNDkfK73eEkQJoaO/AlewClNkfhYTsMSgakZAXhMSGqClgLoJAAKNWhug4I0sDzBcxfcc4mXJwE+CfhB+F7jsE+5XC4SiYRCIZ/Pb2hoqK2tra6urqioKC0tzcjISEhIYDKZZ8+eDQ4OPnbs2OHDhw8cOHDw4MGjR48eP3789OnTYWFhsbGxXC63sLCwvLy8qqqqpqaGmPICR5Oc1RXhzImgLOwPuCa4IIP/scFgINAmyIMDnx6iBCkIss01X1yYX/X19el0OpFI1NDQUFBQ8EUgkvcHYNLaNdxqeyhAm5eNAMb+ZOMWgU3QUckMeABUMTTccYwKcwTaRMdEfudIQAmYBO6nUppbWqCPGCZX1zwQyxtnXgQmIp0gYKvX6ycK2IrFYi6X++yzzy5evPibb75RKpVEU4Fo2M68EE39EQGhE7ymNBqNRCJpbm4uKSlJTuFuOYo6HlAlDhfjgGmEHXwRXQkkE6F/wt6Lbc+IorlF2npE2jOiHOjMZ1y+uuvuZbPuuPMp+0//d+PR1ZvPWG0588amE2vczoaz4/Py8mpra9va2pRKpcFgALspi1Dt1L9brscZzlSYE0t8/zQwONxtHhDJ9cV1UnZ6o19wjtvhjK0/cr2CsoIiS+Oym1S6nusR1Sl1TD6f/+GHH957772zZs168cUXL126NDyM8F2AOWfNmkWj0aRSaW9v77So3oBgO1gJtLa2ZhWUgpYszJocGNHIjJPOdvThOPtgKW865mh6RyPnTtxJBpglzQPpgVu7RWCiPC6OYYYAKG04eEdbY8f0scNeZnmOOQt4R4+VzryiS6p4coXKaDT19w9cQy/dlLpVLCdjicA1R2B4ZHRwaKS3f6i7p19r6O3U9LSKNJWNisyStrgs/qnoir1nCxhBWVv2pfgcz/p+zyX/k7mMoKx95wt+PF944GLx/otFZ2MqD1wsTsptCWaVs9IaUgtb2WkNl/Ja2Gm86DReSkFrbFZjSkErJ6OJk8mLTKk/FV1xklV+nFl6JKwo8Hy+74ks7+OZW/al7AzO3vJj0teByR/tin/bL9aFEe3kxXb2iYFH286TZeMeAT2mqDcCO/jae6HWB2u3iI0H2Ky45Pz8fBAWAkl/qG+TOdI1h8jyRksEfk0ELDDnr4mSZZ9bIgKkDKfX6yUSCY/HKygo+PpALFkY0zyY1m7hth6RTt6Im+/gFU3zQI4C4MAMyrTWyIA9ws6TBTuAJq09nU1zRw5SUNFz9OZg7JO9xj8eTR8x28DRK/pMYoFAIFCr1T09PQMDA8PDw9NionxL3ByWQf5MBKiw33V9/TOff6N/fV3HSD04mIdRfzPx9Y0evOXzLBGY5hGAhwgQO2I/TPw7iWQ0WAsbDAaQjNbgTY03QAon0iWpqCcBHX/uBTApCZ+SHJP6grrPzx0Hfk9wVrlcTvYkb/85aFOv14MyNhA3zWYzVSp8ojIthO6arz+VayWVSvl8fmlp6ZGwxLU747AABppK2WKncxDwBz1bIHoCOQDTsBB4CQvs/yytMXRBpGuhrRj0b2GftwNi84rK2trawBJmYABV0K55IJY3zsgIkMxAaJ1EwFan06nVauhvIK0DLS0t27Zte/TRR1euXHnu3Dm5XD4R7LRM4G/krQJYNXgAGwwGpVIJ7aq5ubnsuKRvDsY5+8Sg5lTsKoLSC51Nw62rDgzUmWrjEUHziHREAoxsW/cI6+0h/+8Dz3see/722XMfeObvr/7fj69vPPH3jcdWfX/ije+D13mePRMRk5mZWVlZKRAIFAqFXq8HNWyirnEjx275rKkQgRkMc5LwGk39bVJdQbX4XGzV/guFHoczPA9n+gbnHGOWpRULG4Qqg6lv5umM6vX69PT0DRs2zJ07d9myZW+++WZcXBzVfRNgzoceegg0bEm4pvgL0Njo7u5WKBQtLS2ZecUIicQoJky9YFrl7IvMAlCHmScTuTV5MO0YyGIAza+guR8hl0iuFsGZdBbmAHBonkyaO9p/zAUZo5sAi8JhAUZ18MbatlgLt6lFoNFoTCaTRdByit85ltO76REYGRnt7Rs0mPqlKmObVN8gUJU3yItrxCn5rWnFbczUemZKfUh89YX4mjOcyosJNaeiKy7E1wSzykPia05zKs/H/X/23gO+qiL9/7+hiiCWYFms6666qD9d111F3RWBBAK66goquut+ddddFVGKUtIDAtKLQJAmJZDeSe+99977vTe5vfd783+dOzj/s0mI6STkc168wrnnzsyZec85586ZzzzPU/Sjf96FsOJTgfm+0eXe0WWRqTWRqdXJOXVpeTWZeRUZ2YUZmdmJiYlh4eGnvQLXH/Z/f6f/chc/En+N8UfNeDQMXGG15CGxeJmoba7+73j4fHU46KxveHx8fGZmZklJSV1dHdE4FQqFVqs1GAxkmHTDGaICNz0ByJw3fRejgQMlQKMxy+VyMubLycnx9I1e4RbAvBi7BSzZyrg5YpxvMKM3X3sX/2sKpVsgE33diRn2WQeIjF9yO2usFztnv2VMuBcm3Dr5GXhje+gKD/KmzRgcMNYGTOGMU7WcwpKWlhaxWEzeljETN9CeQzoQAAEQAAEQGDABqmpQ+04awpNt4km82hLVU2rdxNZNaN2oe1uqehJxkWqNbO2TLUb22B9gsh652KImj8dj65rEXpNE2aTeaKVSKbHaVCgUbGmTqJtst7R0pn6Y0ia7N6itFYkB09TUxDjMiI775/5QomISMwLiyoxEeKIzYg5ugddsrayDrpXbQ4hZAD1oXXPGTKgRY9DlrgHEXa21ZP+dF+PKysra2tokEolGoyHriNl1wz4IUALUstNgMGi1WrVarVAopFIpidZJfNh2dHSQmzE7O/uTTz6ZOXPm888/Hx4eTtYKEH9c1LITYidlO9o7pO+IQadEIuHz+bW1tfn5+UlJSUGh4d8e8V/m4rfU0WeZC/N8IEonWZ9q5+Sz6JuLS7Zetnf0Xubk/Zevjt/zuxemzrjl9gee+MOHzq9+deKVdSdeWXvi5bXH/rzOc7XL2fNXAuPimJCcNTU1HR0d1A8bfXKOdktR/jgkMBlkTvO12HIGsVxT1SgMTaw+5Z+/7XD8twdiNx+M3fFj8qXw4qTcRp3eOA47aAhVUqvVp06deuaZZ2699da5c+du3bq1trZWq9X2KIrInB999NHEetqzZc6amprkjGzGP61HkINrIJmwIvE1GT3S2ZdZF2KVORkh0yP4zZ3h1kBOPtSNrZ2T76vfXPjLpgvEQ/i1wZhLwHLXAOvqf1+ilRIjzmWu/oxc6sT4SFtuTePgFtDQ0MBeizaxYPa4JPARBMYDAUt3N3FXazZbTGazyWT9Z7aYrf/YL8JkiZhKpZJIJDwer6GhoaqqqrCwMC0tLT4+PjIyyjsg5KRXkNOJwE/2Bf3VPYB5QWOitjG2PQ7Ofh99H7DteJDn5VD/kIjY2Li0tLT8/PyKioqmpiYejycWi4kdJ1nBgPnt8XBtTIY6QOacDL2MNg6IAJmG0+v1SqWyq6ursbGxsLAwPDrhn/tCX98eYh2T+Vqd0/raOftafZEzjsgZx0dWR2rLmZgujAckYtxJzAiWuTK/BMwA0eq13Dpw9HNwYwIeLHcJWOEe7OAeZG+N1n7UL6mqqqq9vZ3GjsLPwIC6DYlAAARAAARAYBgEqCNo4qCVLXlS1ZP6tmW7tyXmnmwnt0KhkNh9sr3dEh2ULX8Odp+omNTckxTOljPZTmglEkmfoiYJ7svWNanVJluVGY3ZJWprpdFoxGJxR0dHTU1Nenr6GZ9wBycmMN416wEnX2aOzGrWyYyOnBmXkmRejMaLIhqndTEZ89Xr20Mc3IPsrBkZq6xt3laHGVZTAxf/978PiUvLrbV6rFUoFDqdDlHPh3Gj3PxZybwPeQ4YDAYSx1epVMpkMrFYLBQKyb1MZE4ej9fZ2RkeHr5o0aLbbrvt/fffT09Pl0qlOp2O3lmI2TlmFw3tO51Op1KppFIpDdKZlpYWfjVi+0n/d7b7LXPxs3fyXeER/LpHMDNT7+S9ZOvlRd9ceO3b8y/8a+8jL701Zer02fPu/+2Svy9a/+PSb869tuH0i58feeXLE/abTq3dc8EvMCQxMTE/P59onGRlKnHAg74es74ehyeaDDInG7tQos4pbQ9LrD50MWv7yeRvD8RsOxK/96f04765OWXtrXzZRBc7pVLp448/zuFwfvvb37q6uvJ4PHbz2ftE5ty8eTP74PjfZ8uc1dXVmVnZK9wY/7TMLJYLM/Riprxc/BxcA8lgjKxFowE1yeL+lduDV1gHYMTEk1E+tnkv2epNHNgSo89r0fucGZNQRjq1Bvsk4zQSs8DO2fef+0Ihc47/awY1vCkJ0Bc0vV6v0WhkMplQKOTxeM3NzVVVVSUlJfn5+ZmZmUlJSXFxcdHR0RGRkYGh4T5B4VcCwwNDr0ZFRcfGxiYlJaWnp+fm5hYXF1dWVjY1NXG5XKFQKJfLaTxOOKO+Ka+fcdsoyJzjtmtQsbEmQJ/yarVaLBa3tbWVl5enpaUd8QpnxnzXjDUDl27zXryFcUtLTAfIehbGaMCNKJqMv46VHsEr3IPJCjgSv50ZHbr4L93mfW1uzsnPwRqY04E57vevA2F5BYX19fV8Pl+hUNAX5rFGgPOBAAiAAAiAwGQlwF7cypY8DQYD8W3bQ/Wk5p7E4pOE9qTaJ5U/idtbEuyTWIJSNZRoon3+pSmJhEkLIQE1JdaNyJnETFMulxNLTWqsydY1ifRC1Bej0UgjbpImj0GHsx1mdHV1NTc3FxQUxMfH7zoXutKdsde0GloxE2EObowxwWubvUiQTsYaYJs3+ZbMmpF960Ar6PXtTOA9B7fAxVuv2FkLWUECc7oGvLk9OCA2vby8vKWlRSQSwU/GGPTyTXAK+hCgfq21Wq1KpZLL5dSsk+3Dlsvl1tXV+fv7//73v7/zzjtXr15dWlqq0WjIHUcXEGDl4thcG2azmejTKpVKLBa3t7fX1tYWFxenpaVFR0d7+YdtOuK3zNlnmQujdy7ZdsXe2cdu25W/bDj10Auvz5xrO/O2O3+37P8W/mf/ovWnXttw+rWNZ15d/+Nfvjq5xvn0D2e9w69GpKSkFBYW1tbWdnR0iMViGmQE/Ts2/TtuzzLZZE6jyazS6EVSdWO7JKe0/WJ48aFLmd/sj/76+0jHI/E7fkwOS66ubxVNXB+2XV1ds2bN4nA4zzzzTFxcXD8XHpE5t2/f3k+acfgVW+asqanJzc392w7GdRkzYeXEGL4Ta0vGN8b2EKJNMp4ztnkzYzNHH2KFucI9mDEDcPIlMZjIwWtuad0CmOVr1oX+ZLHaz/NjQW/sYOwHmOAC20Pe2BG63DXQ+WxMj8gCo7Hebhz2AqoEAuOBAJkDJ88EErJBKpUKBIKOjo7m5ub6+vrKysri4uKCgoLc3NysrKyMn7fMzMycnJz8/PyioqKKioq6urqmpqb29vauri6JRKJUKmlAB2ic46GjJ1UdIHNOqu5GY/sjwF4ILJfLu7q6GhoaCgoKEhMT1x70X7Ltsr2jr72z1bDAyW+J4xU7J59l1njsds6Mi1qiXzLRNxkvtQEOboyXWiZIp1UffX1H6DKrT/Ml25iZODsnJqKn1QyUCeZ8LjSlurq6ra1NJBJRp2oY4fXXW/gOBEAABEAABEaBABkMULWD7diWGnqyVU+tVktsPdVqtcq6Ka2bwroR7VP280ac37KlUCJY9vhLk5Gdn3Mz/xM5k61oqlQqtVqt0Wi01k3380Zc0faWNon1KmngKPDru0jyFm0wGIj8wOVyKyoqMjMzr0bFfH2E0SnJun7qw3bpNm+y9p+ZKbPql0QBJSIoUUBf3xG60iOYxOMkJqEkNJS9s99K94D9XtGFhYV1dXVcLlcmk2m1Wnis7btvcLQvAnTeh7jzIj5se4id1JU0j8dra2vbvXv3ggULZs6c+dVXXxUVFcnl8h6WnZjo6Yv0SB4jj2uidCoUCoFA0NbWVltbW1RUlJ6eHh8fHx4efu6y/9cH/d7d7rNs26WXPzvyhP3/zZh9+8w5d85/ZtErnx9atP7UX74+uWjDKbtNp1duPvUPtzN7T14KCAiIjIxMT08vKioisaaIxqnT6eCrdiT7b8KWNdlkTtJRJpNZpda38KRxWfWXr5bsOJnseCR+/Z6oTfujj3lnXwgrqmwQSOQak3lCyp319fUff/zxgw8+OGXKlCVLlsTGxorF4t5XKJE5d+zY0fur8XyESBpKpZL69/70wLXRlNXk3Y8Zgzn5rnBj4i5ZZ7eY5WiMwMmEYWLWpVnXnzGGm8zYzBqeicicxAyARO5c5upvXejvt8Lt2qK017eHMGH83Jkh3+vbQ/66M+yNHaHekenNzc0ikYgsHMEP5Xi+clC3m48AfeE1mUzUkYlCoRCLxV1dXTwer7W1tbGxsa6urrq6urKysvznraKioqqqqra2tqGhobW1lcvldnV1icViYsTJDsaJm/rmu2zGeYsgc47zDkL1xpQAnYZTq9USiaS9vb2ysjIrK8svNOrve5i1bEu2+VhDFPiR6bbXmFCdV6zuZxnvakz4AWdfa6ACxhUtMxZ0C3hjR+hKxtogZIXVAxszKNzmvczqBoS4+PA4G5VfUNjU1NTZ2SmTycg7MzTOMe14nAwEQAAEQAAErk+Aap9EI6S2nkT4JOaeVPskRp9E/iQmlWrWRqRQ+pdoovQvPU52WPkYIZNubEVT//NmsG5G60btNW+IqNknSIvFYjQatVqtQqEQiUSNjY3Eyio4PGLDkcAV1mkvB/cg6s1sqaMPcVFr78zYFtgxHv6ZuHpk0o34uaUO0MikG0lj7+y7+3xEWkZmZWVla2urUCiE0VWfPYKD/RNgK51k6ketVlMftgKBgPqjpm5sS0tLPT09H3/88XvvvfeDDz4oKCgglp1kzQGVxMZ4kUH/zbyZvmV3GX3UcLnc+vr60tLS3Nzc1NTUmJiY0NDQ46fOvWz/1q2282fNvu33i9+0+8/2Fd94rvzG8+3NJ/7penLT3jPfHz9/8pyXf0BgZGRkUlJSTk5ORUVFY2Mjn8+XSqXEDxvt0JuJIdoyBAKTU+a0WLpNZotWZxRJNa08WWEVN62g+Zh3zp6zaVsPxW05FLv7TOoPV3KyStukip4hLYcAeeyzWCyW2traffv2PfDAA7fccsuLL7544sQJnU7HrsnElTkNBgOROevr6wsLC11OR1xTNK1hmBZvvfzaZq+lzMQXM+tFviJ/FzPzXX7WxfrMgn6yyGyZs7+9y7Vkdo5MgCciba7wCGJ81boFOLgy0QTIoI4IosQR7hvuAbl5BS0tLRKJRKVSkQB+mAdjX2PYB4GxIUBGUOTFlh21QSKRkBEvl8vt6Ohos27t7e0kVj2fzyfqpkwmUyqVarW6xwo/jHjHpvtwFjYByJxsGtgHgW6z2UwWbhODTjINl5qaesYn7C2PgJXbmfk1OtRzsDqqXeZ8LRQzM6qzRjJY7saM5OwcfZe5MD5sX9/OWCosd7GGJXDx/9lYgYnluf5YeFZWVmVlJZfLJUuDMbzDVQgCIAACIAAC45kAVT3JOyG1+CSOLonQSBVQKoL+LEcy//9sctnf/+z01DSTWmey5Uy2b0x23cYbQ+JSUqPRyOVyHo9XV1dXXFycmpoaHBr+9eHAFa7+RM5c4R5EVoYRLXOFe9DiLZcZL2rOfsRF7Qp3ZuKMeNEgZqBLtl5ZvOXy4i2X39oRtP8SY3dVVlbW0tLS1dUll8upKSfmzsbbJTHO68O+wcmNTH3YSiQSkUhEpn54PB5VOvl8fnNzs7u7+2+95Z8NAAAgAElEQVR/+9upU6d+9NFH+fn5IpGIOo6md+s4b/sErR7tMvI2p1QqpVJpZ2dnc3MzMesMDg7+7LPP5s6de9dddy1dutTT09Pb29vr5+3y5cs+Pj5BQUHh4eGxsbGpqal5eXllZWX19fUdHR0ikUgul2s0GoPBQPpxglJCtUeWwOSUOdkMDUaTSKZq5UuDEyrPhxa5Hk/cfCh2w96ozQdjzgYXBSZUtfBkKo1hQtp1dnfL5fIdO3Y8+uij06dPf/DBBy9cuMDj8chwYoLKnGS+S61WCwSCpqamkpKSU/5xr28PXsn8C7V38qOB0q3OyXyZiSzGDxnjh5asJ7Mu6w8kTmuXWWe3mL9WP2fLXJkpL3sXxoiTxBpwcAskwzaidC5z8SdjNjtn33XHrpaWlra3t8tkMrg0Y99T2AeBsSdAR1DkfZa8rmo0GhqlhbgXIjFTpFKpXC4noVKISyH2kj5YcI599+GMlABkTooCOyDAECDhowwGg0ajkUqlXC63trY2Pz8/ISHh2MWg1buCHZi4BYHLXAOWu/iTqOzE4ICM836ehgtZ4RHEjPZY03Ar3YOXufgv3nrltS2XmcGfk9/nh4NjkxgPSE1NTQKBADNxuARBAARAAARAYAIRYGuKdJ8YULK1T2JbOVJ/afnkHZKel+yMZ3p0iEWCoHd0dNTW1hYWFiYnJ4eGX/3+TOBbHtbZMWeyRCzEGv6ccZJGZE5m3s2JiR1AJs7ILNtKj+DXNnsxsTmdfNfs8j8XEJOWnlFcXNzQ0NDZ2UnsrrCAbDxfFeO/buTOotE6ibk2MeskATuJWSefz6diJ4/HKy0tPX369PPPP3/HHXc4ODh4eXkR58lkpQLb3hrq+8heA2Sezmg06vV6EmhKLBbzeLywsLC33377V9btyy+/9PLyio2NjYyMvHr1aph1u3r1amRkZGxsbHJycmZmZkFBQXl5eX19fWtrK3mYqFQqth82dNzIdtzELQ0yp8XSrTeatDpjp0jZwpNlFrfFZjYcvJC148cU56MJzkcT9p/PPBtUVF7XqdUZJ2hHc7ncS5cuLVy4cOrUqa+88opIJOru7p7QMqdGoxGLxW1tbZWVldEJKau+D7vmMMOqVjKONKyDLrLgzM7Jh1nNbx2AERPPZS7+JOImCerJrDxz9CGSJ3Fde83QkyZzCSAWn4zBgLP/Eqt7sx8CkisrK3k8nkKhICvSxv9QdoJewKg2CAycABlH0XEv8WhCRr/EsRDxKqTVaukaPqPRSF1cYHQ0cNRIORoEIHOOBlWUObEJEL9qer1epVKJRKK2traqqqqcnJzo6GhPr8B3dgbaO/ky0qZrwEp3xkxzmbPfkm1XrJE7/RZv9rKucfNf4cbYIqxwZ8ROaxRPP7Jybck278Vbryxz8tl4LCQ1NbWwsLCmpobH48lkMuoBCcO7iX0BofYgAAIgAAIgAAK9CFD5QafTKZVKEjmvpqYmLy8vOTk5MjLyvHfgJ3v9HJyvGW4SV2nEcJNInla3/9ZoT1YvasTDrZ2jzwqnK+uPBIRFRGdkMBpnbW1tR0eHRCJRKpVarZa+ePeqEQ6AwEAJ9Jj0IR69VCoVCdgpFAoFAgGfz6eWnVwul+xfuHDhueeemz179oIFC65cudLa2qpSqXQ6nV6vp7NCWPY+0G64fjrSQWQVCNE4yXOmo6MjJibG3t5+xowZ999//8aNG7Ozs/Pz87OzszMyMlJTU5OtW0pKSnp6elZWVl5eXnFxcWVlJRE4+Xw+iTWl0WjYXYaXtet3xaT7BjInu8tNJjOvS1HXLL4SWerpm+t4JH7T/uhN+6K3Ho67fLUkJr1eKFXrDSZ2lgm0bzQa/fz8Fi9eLBAIuru7W1paHnvsMU9PzwnUhO7ua97LtFqtVColC86ysrI8zoQ7uAUu2eq9lKVWLtl6xRqVkzHovKZ3OjNiJxmerXBnAm2ucAuyapy+dlaXGyvcmY+MRLqNieJ5ze7TavHp4BZI1v2T7G99FxKbml1bW9vZ2Ul+Fo1GIx6tE+taQm1vVgLkTiRjKrIyj7gRIhFSqG+hHov2IHDerNfDxGoXZM6J1V+o7VgQoNNwWq2WuK5taWkpLy/PyMiIiYm55B+ydr/vMqsHWnsnxn/aSo9gMlazc/RZvPUKETLJqI5EHbBGWWdMORd9e2nJNu+3Pfz3XQiLS0giGmdbW5tYLCZ+zDETNxYdjHOAAAiAAAiAAAjcCALEyJUdpLO9vb2mpqaoqCgzMzM+Pj4kNOyHCwHrD/n/bYc1IoA1JOfP3v4DHKyBA4iJAAnytHq7r7Nn8MWAiITExOzs7PLy8oaGho6ODhIIQKfTESUJE2c3ordvtnPSSR/qzkur1dKAncSNbVdXV2dnJxU7edatsbExMDDw448/njt37hNPPPHZZ58lJSUplUoidlL7TrZ99s3GbjTbQ/qFTsNR98K1tbXu7u4vvvji7bffbm9v7+npWVRU1NjYWFtbW1VVVV5eXlpaWmLdSktLy8rKKisra2trGxsbW1tbeTyeQCCQSqVKpZIEWKWOavEwGc3OnJBlQ+Zkd5ulu1urN6o0ho4ueUObOC67ISihcs/ZdLfjiS7HEtyPJ53wyfWLLW/hSo0mMzvjBNrX6/Vm80StPJE5TSaTXq9XKBRdXV1NTU0FBQURUTHv7Qy0c2KEyaWOjEJp7+K3zNl/mSvjjXbx1sv21vHYtW8ZW8xrsTaZIZnVCccKj+DXt4es9AhxcAskJTATYm4By10CSOJrrjjcAld6BK9wD9pxIba0tLSpqYlMhU10qhPoAkZVQWBQBMiwp5+/gyoNiUFgtAlA5hxtwih/QhIg03DEda1MJuvq6mpubi4tLc3KykpISAgLCzt0zn/1Dv9ljr6M2w23QDtH3+XXom8yCqjdNl97Z+YrJkK7i6+DqzWegZPfClffj3f7BoRGpqSkFBYW1tbWtre3CwQChUJBZ+Im9KB5QnY2Kg0CIAACIAACIDAmBMhLMgnSqdVqlUol8SfZ1NRUVVVVWFiYnp6ekJAQFRUVGByy92zA2kOBq3YGv+Hmt9LV18HFZ4WLz0oXn9ddfVZ/F/DN8RDPK6ERkZHJycnZ2dnFxcXV1dVs95JkZAU7uTHp2MlyEnoBk9hm1DOqSqVSKBQymUwsFguFQuLGlviwJWadPB6vs7Ozqalpw4YN991334wZMxYuXBgcHMzn84k3Fxptl6ydx4r4gVxS1IKTulbT6XQikaikpOT999+fNm3a7bff/te//jU9Pb2zs5PL5ba1tbW2tjY3Nzdatybr1mLd2traeDxeV1eXUCiUSCQKhUKtVmu1WmLBSTsF/TKQfplsaSBzXq/HjSZzXauooJJ7NrjwwMXMLQdjN+6J3nwo1vV4YkhiZVZpm1JjMJknaMjO6zV6AhwnT06DwUAjCFRUVKSmpu69cJWJ0OkevNw1YLkbmcjyX+7C7JPQ6cxxF387R58l27wZB7bWOS47RyZgJ7Osf0fo6x4hRNcky9Hsnfwc3BkzUGaxmtVpLWPQ6cG4Q3t/Z2B+fn5NTU1HR4dMJqMDtgmAD1UEgUlGoB+Bk3w1yXigueOdAGTO8d5DqN8NIUAGf2SZm1qtlslknZ2djY2NFRUV+fn5qampUVFRvoGhe84E/He/3+segfbOjLrJ6JpOfsuZHX8H69DQzomJILXCLejd7/w3/xB41i8iPiEhMzOTelQTiUQ0JCcx5bwh7cVJQQAEQAAEQAAEQGAMCJBXYpPJZDAYtFqtSqWSSCSdnZ1tbW11dXVlZWUFBQVZWVnJyckkcl5IaPiVwNCffELOXAk5fSX4gl+oX/DVyKiouLg4EkKvqKiIeJhsb28XCoUymYx6P4PGOQYdOjlP0UNg0+v1xLKTiJ0SiYSKnTRmJ9E7+Xx+WVnZqVOnVq9efeedd/7ud7/79NNPAwMDJRIJEdWocSd5L8A13OMCI4ojtQun/mnVanVaWtrWrVtfeumladOmLVq0aN++fZmZmXzrxuPxOqxbu3Xr6Oig3SEQCEQikVgslslkSqVSrVb36Z8WAmePjsBHSgAyJ0XRY8di6Vaq9VKFppknrW4SRqTWXIkq234yaduRWPcTSTtPpZwLLoxKr2vly8wQO3uwG+WPJEiTVqslC/rr6upyc3OvRsf/YxcjSTKhl6xi5Ar3oOVugcR5hp3jz/Ndzn5U9VzhwWiizMp+Zya2uoNroIN7oINrIA3PSeIOkBKoA9vlLn7HvKOJKWdnZ6dSqdTr9SaTCY/ZUe52FA8CIAACNz8ByJw3fx+jhUMgQBdrk2k4jUZDhoCtra11dXUlJSXZ2dlkAi48PDwwKGQPY3AQvGpn8ApXvxWufnZMqM4ry52ufLArYMuxwDM+jLVBfHx8enp6QUFBRUVFQ0MDl8sVi8XEFZLBYKDLhIdQW2QBARAAARAAARAAgYlCgC4mMxqNOp2OrCcTCoVcLrepqam2tra8vLyoqCgnJ4cEz0tKSkpMTExISEhMTExOTk5NTc3MzMzNzS0qKqqoqKAh9EQiEbHBoh4ysMp4olwSE7ee7IuZiJ0ajYbG7BSJRAKBgLix7eHJls/nNzQ0bNmy5a677po+ffodd9zh7u5O7Fq0Wi31Z4u4R93d3eRGZqMmnmlJ9M2urq6LFy8++eSTU6dOnT179qpVq4qKirq6uojA2cOmls/nd3V1iUQiiUQilUrlcjmVNnU6HQ03RcVUPEMm7r05ZjWHzDkQ1AajuaKhM72o5ZBXpvuJpI17o7/+PtLpWMLOM2l+MeWVjQKtnonLOJCikGZECJAF/SqVSiQStbS0lJaWpqenB4Rc/au7v70LI1jau1yTM5lV++5BJCQnCdW0xBqnyZ74qnUPuhYo3cn3WtgmF/8lW71f2+y1eLMX4/PWxX+FG5NmuUuAnTOTZu2hwKysLBJGXSQSaTQao9GINT0j0q0oBARAAAQmOQHInJP8AkDz+yNAX6f1er1Go5HL5UKhkMfjEddqJSUleXl5GRkZSUlJcXFxUVFR4eHh/sFh3oFhVwLDfIPCwq5GREdHx8fHp6amZmdnFxQUlJeX19fXt7W1dXZ2SiQSlUql1WpJrBe8RffXE/gOBEAABEAABEDgJiJAhj00RgARO+VyuVgsFggEPB6vra2NRtGrqKgos27l5eWVlZXV1dXsEHpCoVAqlSoUCmKDxQ6hdxMBQ1PGLwHyvkDd2Op0uuvF7OTz+b3FzsbGRm9v77Vr1y5YsGDWrFmvvfaas7NzbGysXC6nYmcPE08q+93EqgBtI3lKULe0euumUqny8/MPHjz49ttv/+pXv7r//vvff/99T0/PsrIy4jG4N2fikFYkErHVTeqWlsjJ9KQ3MdjxeyNN2JpB5hxI11ks3TKlVihV1zSJiqp4AXGVP4UWuZ9I2no4zv1E4r6f0s8GFabkN/OESjPEzoEAHXYa8pul1WoVCkVnZ2d9fX1hYWFKSsqhC6GvuzGmmfbOfnZOvtYYTEwYzpUewctc/Jdu8yahOpds8166zZskIBIm8W22wj1o8dYrr225bOfEOLMlUijjAtfJj9E4t3r/Z39AfGJKaWlpW1sbDd4EU85h9ycKAAEQAAEQYAhA5sR1AAL9EaBKJ3GtplQqpVKpQCDo6Ohoamqqq6urqKgoKirKz8/Pzs7OzMxM+3lLT0/PysrKyckpKCgoKyurrq6ur69vaWnh8/nEUa1GoyGrhuGrtr8OwHcgAAIgAAIgAAI3LwEy0CKBCXU6nUajUSqVcrmcuv0kcgV1NdnR0UFC6BF7LLlcTkLoUQtOuMe4eS+W8dsyIo8RqcxoNBJbQ2LWSd3YUsvOPsXOzs5OgUCQmZn5t7/9zcbGhsPhzJo166uvvmpoaCCvDHq93mDdjEYj9Wd785m/UKGRrW5SpFqttqur6+DBg7/97W85HM6UKVP++Mc/Xr58mc/nE6tZNlvqlvZ6Aid5aBArIjw3xu/dNe5rBplzUF1kNJnVWkNhBTchs2HPuXTHI3Eb90Z/tSvC6Uj8wYtZgXGV1c1CvdE0qDKReAgEyDOWrOaXSqUdHR21tbWFhYUJCQk7TzGWl8vdApY5+y9z9mfUShc/InMSLdPO0cfeyXfpNp+l27ztXfyu+a118XdwZ+w+7Rx9X9vitWQrE79zqZMP8XBLQniu3uEfEZdcUFDQ0NDQ1dVFgjcRx2ZYXDKETkQWEAABEACBHgQgc/YAgo8g8D8EyMs2tTYgA0GlUklm3/h8fnt7e1NTU319fU1NTWVlZfnPW0VFRVVVVW1tbUNDQ2trK5fL7ezsJAIn24gTL9X/gxsfQAAEQAAEQAAEJhMBaglHDAuoL0q1Wk30TplMJpVKJT9vMuumUChUKhWVf4jwQ7QfKpNMJopo63ghQNdHEutDvV5PxHuVSkX1TqFQ2NXV1cOTLdXkOjs7q6urz58///nnn//pT3+aOXPmU0899fHHHx8/fjwzM5OE8KRWnuwrn0ieE3GmmL5tsaVN+ijQarVlZWUXL15cv379yy+/PHfu3Mcff/zDDz88fPhwVlYWn8/vTZLA7OzsJP5pSdxN9kODWsdSaBOR23i56Cd9PSBzDuoSMFssJrNFItN0CpWldfzssraw5JofAwr2/pTudDTB42Ty/vMZZ4MK0wpb+UIlbsxBsR1UYrrIjHj/FggEra2tZeUVPoFRW3Z4vrPhh2WO3kw0TfdAxqzT2ZdomXaOPstdAxgR1PX//8eYfrr4LXdjjts5+S53CXBwC7R3YnzekmRLHX3snX3/vdcvLDohLy+vsrKyvb1dKpWSSOp08Dao+iMxCIAACIAACPQmAJmzNxMcAYE+CNBpCxJHSqvVkgkLoneSADBcLpdYG7S3t3d0dHC5XBIAhr5dq9VqGveFCpwYvveBG4dAAARAAARAAAQmBwEqTJKhETGJY4scmv/dSOTC3pZtpJzJwQytHO8E6IuDyWQyGAzEky0xViZSPX2DICodDSFJJDqedWtvb6+pqdm5c+fjjz8+ZcqUGTNmzJs376OPPoqKipLL5RqNhkbxJLaePVRP9rvGOHnd6K1oEj2Y2mvqrBu544uLi7ds2fLII4/MnDlz6tSpd99999q1a9PS0trb24nVJvVMS+jxeDwSj1MgENDom1TdpM8NOqWOJ8Z4v4smSP0gcw6toyyWbo3OKFNqKxq6rqbWevrlOR6NJ5adjofjD17MDIirrGoS6vSw7Bwa4F/ORVaWGI1GjUYjk8kqa5qO/hSzacfFv/1nz+v/t33Fx9+tcPJe6RFM9EtitUnsNZe5+BMntHaOVmNNR5/lLgEr3IMYTdTqnHa5K2MJau/it8I9iMT1/OpQYERUbG5ubmVlZVNTk1AoVCgUiN/0y52EFCAAAiAAAoMhAJlzMLSQdnIToG/m7PAwJPqOSqUiNgdyuVwmk5G/CoVCqVSq1WpqbUDjRZF5h8mNE60HARAAARAAARAAgf8hQMdabLsu4tKW/iU6KPXbOU70m/9pBj5MegLkSqZiJ1Hl2WE7FQqFVCoVi8U9nNlS6Y4oncRasaurKzc399ixY59++umf//zne+65x9bW9tVXX/36669PnTqVkJDQ2NhIzGJI6EpirUhVT3LLkLcPtv3i6Ol8tPmEAD01FTWJrklWMxCb187OzqysrMuXLzs7O7/xxhsPPPDA7Nmzn3vuuTVr1uzatSsuLo64xqGhN3uD6urqogIneR0jNt8kAGefFpx4ekz6O3UEAEDmHDJEo8ms05u6JKraFmFOaXtEau2l8JKDl7J2nUl1O5G0z2rWGRhflV/B5SNm55Ap95vRYrFodYbSGm5ATPGh80lb9gVv2On9pdu5De5nXL8/s233qc/3+a50ZeJ0klCddk6+y1wYT7YkZueSrVfIcQc3xl2tvQtJ6Utc1C518rFz8v1gp/+BC2Hx8Qk5OTlVVVUtLS3UXS35kcJzuN8uwpcgAAIgAAKDIACZcxCwkBQEKAHyuk7f1dlv6WQZMnEn1XttNS0BOyAAAiAAAiAAAiAAAtcjwFZKeu9fLxeOg8C4IkB1PrpKkhosqlQqsjJSIpGIxWKhUMgOMEllPGrfSRS+1tbWurq6iIiIdevWPfroo1OnTr311lvvuOOOJ5988vPPP/f19W1vb9daN/oyQt9HrrdWoLf22fuOG+AR+opEI5WSkxKhl6iwhIBWq5VKpbGxsS4uLgsXLrzrrrtmz549ffr0efPmrVmz5uLFizU1Nc3NzTwejzS8R9xNtptfgUAgFArFYrFUKpXJZEqlkgqcfZp9j6srBJWZ6AQgcw6/By2Wbr3BJFNqKxsFV1NrfwzIdzwav2lf9LqdEdsOxe0/n+kXU17VJFRrDcM/F0pgE2jmSs8GF7ifSPjMI/i/7oGfuQVs3hN04HTEWe+YmPjUq5ExYeFXz1wO+vA776WOPku2eS/ZemXpNm8idhKTzWshPF38HdwCHdwDyd9lzv7L3QJed/N3PhEQHhmdmpaWn59fVVXV3t4uFAplMplGoyEap9lsZtcH+yAAAiAAAiAwHAKQOYdDD3knLwH2qz41OOjxPk+tDdiJJy8ytBwEQAAEQAAEQAAEBkyAPXzqvT/gYpAQBG48AXoBUyeBxJMtO3KnXC4n9p1E7yQRMYhNZ2+XttTKs6SkxMvLa9u2batWrXrxxRcffPDBGTNmPPDAA0uXLv3ss8/27dt3+fLluLi4wsLClpYW4iSQqIzU7pMIgfQvlUJ7GIPS9xq6ypOdkmbvsfSTCK48Hq+8vDwlJcXf3//YsWMbN2588803n3jiiZkzZ95zzz3PPvvsypUr161bd/LkyfT0dC6XS2KX9uOZlsTdJLabRN2Uy+VU3WTHLqWGpDAYuvG3wU1aA8icI9KxJrOFWHZWNwmyStrCkqovhBUfuJC56zRj2bn/fMZPIUVBCVV5FR3tnXKTCdrYsKirNPryus7QxKqjl7Ndjye6HU9wP5Fw8ELaheBc/6iCuNSSlKziguLSrOyc1NTUuLi4sLCww+f81+7zfne7j4MrE4nTwTVwmStj1mnn7Gvv5MsIn87+y1z97Z18X3e+/MkeP49Twd6BYbGxsZmZmcXFxdXV1a2trQKBQC6Xq9VqvV5PfXIMqyXIDAIgAAIgAAIsApA5WTCwCwJDIkBnLq63M6RSkQkEQAAEQAAEQAAEQAAEQOCmItDDvpPIjVqtVqPRqNVqhUIhk8mkUik18aSaX29zRmroyefzOzo6GhoaKioqCgoKLly48OWXX/75z3+eM2fO9OnT58yZY2tr+6tf/eo3v/nNokWLPvnkk+++++7KlSvp6elNTU0KhYLEwiSSJPsvdVHD3mEnYO+T+nO53Ly8vODg4IMHD3755ZcrVqx4/PHH77///nnz5s2dO3emdXvmmWf++c9/HjlyJC0traysrK6urq2t7Xomm+w2dnZ2EsNNEnqTeKbtM0QIDcB5U106aMy4JACZcwS7xWLpNlssxLKzulkYmVZ3OqjA6Wj8N/tj1u2M2HwwdvfZtIvhxYWVXIlMM4LnnTxFmc2W8vquc8GFHp7JX+6MWLcr4qvdkbvPpF4MLYrPqmvni/kCiVgi6ezqamtrq62tLSkpyc3NTUlJiYmJCQ0Nu+IXePqir8dx77X7vD/Y6fM3D7/X3fxX7QxevcPvk+99Nh/xPXzW98IV/+BQRuBMTk7Ozs4uLy9vaGhob28XCAQKhYJonEajkXoRmDzw0VIQAAEQAIHRJgCZc7QJo/ybn8D11E16/OZHgBaCAAiAAAiAAAiAAAiAAAj8EgH6gkD1ThKokoSo1Gq1KuumVCqJ3knid7Jd2vbQO4nFJzuWJzF2JLEqS0pKQkJCjhw5smnTpvfee8/e3n7hwoVPPfXUQw89ZGtrO2vWrOnTp999992PPfbY888/v3jx4rfeemvNmjUff/zxF198sXHjxm+++WbLli2Ojo5OTk5bt2799ttvN27cuG7dun//+98ffvjh3/72N3t7+xdeeOF3v/vd/Pnzb7nllhkzZtxxxx3333//E0888cc//nHx4sVvvvnm2rVr9+zZ4+3tnZ2dzeVyBQIB0W6ptNnDcJPdok7rxlY3pVIp23ZTq9VS801ickpnz2HB+UsXI74fAQKQOUcA4v8WQS07q5oEmcVtwQlV50OK9p3P2Hkq1eVY4p5zaWeDCvxjK7JK25u5Uq3e+L+58akPAmaLRShRF1bxAuMqj3nnbD+ZvOPH5O9OpRzzzrl8tTQ6oy6vvL22WSBTahRKtUajUSgUYrGYx+O1tLTU1taWlZXl5eWlp6cnJSXFxMRERESEhYWFhIQEBQUFBgYGBQWFhISEhYVFRkbGxsYmJiZmZGQUFBSUlpbW1taSVSxisVipVGq1WhImmTyl+6goDoEACIAACIDAMAhA5hwGPGQFARAAARAAARAAARAAARAAARAAgcETIJIncaxKY1hSvVOtVqtUKoVCQUJ49nBpS/S/HgIhdW9LVU/i3pYk7uzsbG9vb2hoqKqqKikpyc/Pz8rKSkpK8vPzO3ny5K5du7799tt///vfa9aseeutt+zs7F555ZWFCxf+6U9/es66/fGPf3zxxRdfeeWVJUuWvPHGG++9994nn3yyfv16Dw+PH374wcvLKyYmJjMzMy8vr7i4uKKior6+vrW1lZ6aipqkbrSqdIfWmfqkFQqFIpGIBt3sU90k3Kj/Q6oiD743kAMEhkIAMudQqA0gD2PZaWYsO+UqXW2rKDK97lxwodWyM3rdrohv9sds/zHlpH9+SkFzK19mGUCBkzaJXKWLyWzw9Mtz/iHxy10R6/dEfXsg+tClTJ/o0tyydoFYpVTrTWYL41PdbCbLbsiCG5lMJhQKidhZV1dXWVlJfzjS09NTU1NTUlKSk5NTUlJSU1PT09Ozs7Pz8/OLi4srKyvr6+tbWlq4XK5IJMWEpFUAACAASURBVJLL5SqVSqfTGQwGmNpP2usQDQcBEACBMSAAmXMMIOMUIAACIAACIAACIAACIAACIAACINA3ASp5EpNEo9HYw5+tSqVSKpVsr7YikYgG8uzh25bH41H5kO5QK0kijvL/dyN6ZNcgN6pi/m9hzCd6un50TZKLnlpo3YhPWqlUKpPJFAoFCbqpVqvZhptE3SQKMUHXN1YcBYFRJgCZc1QBE6VTIFFXNHSlF7UGxFacDyliYnaeSXM/kbj7TKqnf553VFlyXlN1k1Cq0JrMUDyvdYhSrW9oE8dmNpwPLdp/IWPHjyk7fkzZeSrF0zfPO7IsNrO+oLKjhStVafR6g4nkIT4GTCYTiR5N/KhLJBKBQMDlcltaWhobG2tqaioqKsrKykpKSop+3oqLi0tLSysrK2tqasgCFxJlmRhxajQavV5P4j1Ta/tRvWxQOAiAAAiAwOQkAJlzcvY7Wg0CIAACIAACIAACIAACIAACIDDuCBDdjuqdBoOBmniSOJpU8pTL5VLrJrZuPVTPHgaUVHekwmfvHZpm4Du9C6FHehTSQ9QUWDdirymxbiTcJpE21WrGd6JGo9FqtUTxJd4OexhujrvOQ4UmGQHInGPQ4WzLzqYOSVJuk09k2Y4fk7cciv36+6gNe6K2Ho7dfS4tMKGqoJKn0hjGoErj+RRavamiQXA6sMD1eOKGvVFf7Y74dn+M45H4Ez65QfGVJTV8sUyj1hrMZuanpkdDqDd1KnZqNBqlUimVSkUikUAg4PF4HR0dra2tLS0tTT9vzc3Nra2t7e3tPB6vq6tLLBaTRSpE4ISj2h6Q8REEQAAEQGCUCEDmHCWwKBYEQAAEQAAEQAAEQAAEQAAEQAAEBk2AKJ3sGWcawpMteRLHtsTKk/q2lUgkNKInW/i8XkRMKkZSeZLukK/ox352aCFss05q60lsRGmITSptEpNNuVyuUChIUFKibvY23KSuDimZ3hP0g6aMDCAwbAKQOYeNcKAFmM0WncEklmlqmgS5ZW1hSdWXwosPe2XvPpPm9EO8m2fSoUtZZ4MKw1NqMovbOjrlao2hl4o30HNNxHQ6vbGjU1FQyb0cUfqjf77HyaRtR+J2/Ji696eMc0GFPlFlCdmNhVW89k65Vmc0msz9t5FadlI3thqNhvhRJ3GjyQ8NWWFDXIvTJ7lGoyEhk6kFJ4Jx9k8b34IACIAACIwIAcicI4IRhYAACIAACIAACIAACIAACIAACIDACBMgwh5x0EpNPKnqqdPptNZNbd3Yhp4y60bMPXtrnwKBgO2hlkqSbJ1yIPvU5SzVMomcSSJrUkVTIpEQUZNY+fSpa5KZcWL6w54fp85pR5gsigOBYROAzDlshIMrgFh2mkwWg9HcJVZll7UFJVbuPpO29XD8lzsjPt9xde13Vzfui/b0zYtIqW3ukOr01zyyDu40Eyq13mCqqO8KT6nZcTLlm/0xX+68+gUDIcrxSNyVyNL47IZmrkSu0mn1RlNfFpzXayv96TGZTD1+cYipPfnRYVvekwCcJAYne23K9U6B4yAAAiAAAiAwggQgc44gTBQFAiAAAiAAAiAAAiAAAiAAAiAAAqNFgJozUuGTTEAbrJvOuhHhk85EE+2TGH0qFApi99lDBCVuY8lfaqBDrEJFP2/s42SfnYvoqaRY+c8b8UCrVCrJhDhxQkuMNUlV9Xo99UZLHdIifttoXT0od6QJQOYcaaKDKE+lMTR2SAqruRGptT5RZZ6+uQcuZLqdSHI9nvj9ubTDXlk+UWURabWF1bwOgUKtvamMOy0Wi0qj5wmVeWUd4cnVJ3zzDl7I9PBk2r7nbNrBi5kXw4oCYityytqrGwVimUZvMA0hcClVOs1mM3uRDYmOTH50yF9yhL08hf5UDaJHkRQEQAAEQAAEhkEAMucw4CErCIAACIAACIAACIAACIAACIAACIw5ATqJzPZtS2eiydQziWrZQ/ukJjjE5y3xFqtkbQrW9rNeee1/1jcKVg4lKUSlUlE5k4isvRVNtrEmqS011mS3aMxx4oQgMBQCkDmHQm2E8lyz7DRbjEazXKVrbJfklXf4RJWd9Mvbcjh23e6IL3deXbc7YuvhuJ2nU8KSqstruxQq3Qid/IYVY+nuFsk0xTX8i2FFe86lf70nau3Oq59/d/Xr7yP3nEs/7pMbm1WfW94ulmkMRrPJNGL+YtnPZ/LQ7vGXJrhhaHBiEAABEACByU0AMufk7n+0HgRAAARAAARAAARAAARAAARAYCIToPPL1MST6p3UyIZa3hDtk8T4pD5viQEo2wyU6JT9/GVn6SFnklPQM9I6sHVNOkVOKj+R8aPuk5cAZM5x0vd6o1kkVTdzJdmlbQlZjZfCSzz98r4/k+bhmexyLMH1eNIRr+xzwYVhydXpRa2tPJlCpfvF+JTjpGnd3d0WS7feYJLItXUtotTClssRZWeCCnedTiHmmx6eyUe9sk8H5IcmVcdlNVQ0dDVxJRqdcfzUHzUBARAAARAAgTEgAJlzDCDjFCAAAiAAAiAAAiAAAiAAAiAAAiAwpgR6yJ/U8SCJtUbVR/YO1SZ/cYedi71PtMweiiatyZi2HycDgVEmAJlzlAEPonirXbvFaDJbFUFNR6c8Nb85MK7ywMVM5x8S1u+J+uK7q2t3Xv1qd+TuM2lngwpTC1oa2yVqrWEQ5xjzpGaLRSzXlNTyQxOrD13M3Lg3+stdEV98d/XLXRHfHoh2PZZwPrQ4JLG6oU3cJVZqdQaj0WwyW8xmy5jXFCcEARAAARAAgRtMADLnDe4AnB4EQAAEQAAEQAAEQAAEQAAEQAAEQAAEQGBiEYDMOQ77y2Lp1uoNMqW2ulGYU9oenlxzOaL0uHfOvnPpHp5JTkfjt59M3n0m7aRfvldEaURabXZJewtPqlTr9QaTxXLjBUKTyazVGcUyTXWzKCGn0Te24kxQwYELGd/9mOJ4NN7ph/hdp9P2n884F1TgHVmakt9cUMEVSFRKtR7q5ji8GlElEAABEACBMSMAmXPMUONEIAACIAACIAACIAACIAACIAACIAACIAACNwMByJzjthctlm6T+Zpxp1praOXLyuq6rqbWnA8t+u7HlI17o7/aHbF2J2MWuW5XhNPR+H0/pQfEVeSVd7TxZRqdcezlTqPJLJFrqpuEyXnNl66W7D6TtmFv1Je7ItbujPhqd+TGfdEensk/+udfjijNKG4tqeUrVXq93mQwmY0ms8XCOLbFBgIgAAIgAAKTmQBkzsnc+2g7CIAACIAACIAACIAACIAACIAACIAACIDAoAlA5hw0shuRwWy2SOSatk5ZfmVHYk6jT1TZKf/8Qxczvz+T6nY8cdvhOOcfEtw9k/afz/jRP/9KVFlkel1GcVtTh1Qk1Wh1RoPRxCiJIyckWrq7zWaLwWjW6Y0yhba9U15UzYvPbgxOrD4fUnTcO3fPuXT3k8lbmYrF7ziZvO+njBM+uZevlsak16cWNNc0C9v4sgkUW/RG9DnOCQIgAAIgMOkIQOacdF2OBoMACIAACIAACIAACIAACIAACIAACIAACAyHAGTO4dAby7w0cqdVXDRpdMYWnrS0rjMqvfZCWNHBixmOR+M27oteu5OJ37luV8RXuyO+/j7S6Wj8oYuZ50OLItPqMoraqpoEHV1ypVqv05sY5XPADTCbLXqDSa01dIlVtS2i7NL2qym1pwML3I4nfbM/5uvvI7/aHbluV4TVdpOJHrpxX/R3P6b8GJAfEFeRUtBc2SgQyzUqrUFvMBmMZpMJ0TcHjB4JQQAEQAAEJg0ByJyTpqvRUBAAARAAARAAARAAARAAARAAARAAARAAgZEgAJlzJCjegDIs3d1iuaaVz9h3xmc3BMQx8S+PXcnZdy5j56lUt+NMCM9vD8Y6/5Cw63TKnnNpBy5kHLmcfTa48HJEaXRmfVx2g/VfY0ZxW1ENv5kr4woUfKGSL1R2ilR8kZInULbx5VVNgtyK9uSClrjsxrjshujMev+4irPBhUeuZO88k7rtcML63ZHr90Rt2Be9+WCc89FEjxNJu06n7j+fedw7xyu8JCq1NqOotaKxq6NLrtUzvmlvACmcEgRAAARAAAQmCAHInBOko1BNEAABEAABEAABEAABEAABEAABEAABEACB8UEAMuf46Ieh1MJkNhuMJq3OqNLo5SqdRK7pFClbuNKial6sVfg8HZB/xCtr5+kUl2OJX30fuW535NffR23YE/XN/phvD5B/sd8eiNl8IHbb4bhtR+J7/9tyKG7zgdhvmX9M+m/2x2zcG/31nqh1uyPW7or4kjEbver8Q/yBi5k/BReGJlan5DeX1vGbOsRCiVqq0CrVerXWoNMbjUZE3xxKFyMPCIAACIDApCIAmXNSdTcaCwIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgMFwCkDmHS3A85TcYTSqNnitQlDd0ZpW2xWTUBSdUXgwrPh1QcOBCxp5z6d+dSv3uZMqOk8keJ5K2HY7fOrB/jkfinY4kuB1P2u6ZvN0zecfJ5F2nU/f+lL7/fMahi5nnggsD4ysTshvyyztqmgWdYoVCrRvBOKDjCTDqAgIgAAIgAAKjSAAy5yjCRdEgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAI3HwHInDdTn1os3WazxWg06/RGtdagUOtlSsbKUyzXCCTqji5FeX1ncQ0vt7wjrbDFP67CJ7psAP/KA+Mqw5Ork3Kbcsrac8ra8yq4NS1CrkDRKVIJJWqxXCNT6pRqvUZr1OlNRpPZDOe0N9NVhbaAAAiAAAiMFQHInGNFGucBARAAARAAARAAARAAARAAARAAARAAARC4KQhA5rwpunFAjdDrTR1d8hautLZFVFrbGZlWF5Zc84v/wlNqotPrknIa8yu51c3CmmZhXatIIFHrDZAzB4QdiUAABEAABEBggAQgcw4QFJKBAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAhMRgKRkZFPP/20o6NjQ0MDaT9kzsl4HaDNIAACIAACIAAC448AZM7x1yeoEQiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAwLghIBKJdu/ePXv27Iceeig9Pb27uxsy57jpHFQEBEAABEAABEBgUhOAzDmpux+NBwEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQGAiBxsbG119/ffbs2RcuXIDMORBiSAMCIAACIAACIAACo00AMudoE0b5IAACIAACIAACIAACIAACIAACIAACIAACNwMBmUy2bt26OXPmnD59+t133506daqfn5/JZLoZ2oY2gAAIgAAIgAAIgMAEJACZcwJ2GqoMAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiBwIwhotdpPP/10+vTpjz322JQpU5588kmdTncjKoJzggAIgAAIgAAIgAAIdEPmxEUAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAgMlIJPJ7O3tp0yZMnXq1EcffdRgMAw0J9KBAAiAAAiAAAiAAAiMKAHInCOKE4WBAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAhMKAJKpbJtkFtJScn8+fNtbGx27tzZ2to6yNxIPrEJtLS01NfXV1VVlZeXFxcX5+fn5+TkZGRkpKSkJCYmxt+4LSEhISUlJT09PTs7Oz8/v6ioqKysrLKysra2trm5eVShSySSCXXTo7IgAAIgAAI3DwHInDdPX6IlIAACIAACIAACIAACIAACIAACIAACIAACgyVw6dKlxwa/3XbbbTY2No888sjgsyLHxCbwm9/85uGHH54/f/69995ra2t7xx13zJkzZ9asWdOnT58yZQrnxm02NjbTp0+/5ZZb5syZc/vtt9va2t5zzz3z589/6KGHfvOb34wqdHd398Hed0gPAiAAAiAAAiNCADLniGBEISAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAhOSgLe39++xgQAIDIPArl27JuTNj0qDAAiAAAhMfAKQOSd+H6IFIAACIAACIAACIAACIAACIAACIAACIAACQyVgNBpV2EAABIZBQK/XD/X+Qz4QAAEQAAEQGBYByJzDwofMIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACY08AMufYM8cZQQAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEhkUAMuew8CEzCIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIDA2BOAzDn2zHFGEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEACBYRGAzDksfMgMAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAw9gQgc449c5wRBEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEBgWAQgcw4LHzKDAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiMPQHInGPPHGcEARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAYFgHInMPCh8wgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAJjTwAy59gzxxlBAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAASGRQAy57DwITMIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgMDYE4DMOfbMcUYQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAIFhEYDMOSx8yAwCIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIDD2BCBzjj1znBEEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQGBYBCBzDgsfMoMACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIw9AcicY88cZwQBEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEBgWAcicw8KHzCAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAmNPADLn2DPHGUEABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABIZFADLnsPAhMwiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAwNgTgMw59sxxRhAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAgWERgMw5LHzIDAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgMPYEIHOOPXOcEQRAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAYFgEIHMOCx8ygwAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIjD0ByJxjzxxnBAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQGBYByJzDwofMIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACY08AMufYM8cZQQAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEhkVgXMicFoslNDR0w4YNe/bsGVZrWJnNZvPevXs3bNhw/vx51uHh7ppMpvPnz2/YsOHw4cPDLetG5zeZTK6urhs2bAgMDLzRdcH5bzABPp8fHx9/5syZn376KSsr6wbXpt/Tc7nczZs3f/vtt5WVlf0mHPSXWVlZGzdu3Llzp0KhGHRmZACBG01Ao9EUFBT4+PicPn06ODhYLpcPoUYymSwpKeno0aPu7u6bNm1ydHTcu3dvQEBAS0uLxWIZQoHIAgK/SKCoqOibb75xdXXl8/m/mHggCSwWi6+v74YNG44ePTqQ9EgzGgTMZnNFRUVgYODp06cvX77c0dExGmdBmeOcgMFg8PDw2LBhw5kzZ0a2qkaj0cnJacOGDXFxcSNbMkoDgYlFQCaTZWRkXLp06cyZMzExMROr8qgtIaDX68m0zLlz50aKicFgcHR03LBhQ1pa2kiViXJAYJgETCZTeXl5QEDA6dOnvb29eTzeMAtE9uETEIlEYWFhQdYtJCREJpP1LtNoNHZ0dNTW1tbU1NTX16tUqvr6epIlKCgoODjYaDT2zoUjo0FAp9N1sTaRSGQ2m/s5kVqtbm5ubmhoqKysbG5u7j9xP+XgKxCYKATGhcwpFAofe+wxDofz6aefjiC49evXc6xbQUHBSBVbVlZ233332djYuLu7kzK9vLzmzZtnO6Tt/fffH6mKDa2c9957j8PhzJ49u76+fmgldHd3y2Sy+fPn9wPgvvvue+KJJ959991z5861tbUZDIYhn6ufjD/88APpiJ9++qmfZEP7KjMz89577yVtfOSRRwYrBJrN5jVr1lBEq1evHlo1hpzr73//Ozl7bGxs70ISExOnT59ObhYOh2Nvb987zTg5YjabV65cyeFwbG1tW1tb2bX673//S9qoVCrZxwe+n5CQcOutt3I4nJMnTw48F02pVCr/8Ic/kDpERUXR47+409HR8cADD/TTQb9YAjvB/v37SVFNTU3s4zfTvr29va2t7d13361SqQbVrl//+tcEjq2t7SeffDKovN3d3S0tLb/61a9ICfPmzevzbhpsmQNPz+PxyJO2zx9Kg8FAnufkRp43b15xcfHACydP8j179tx22230UcDemTp16gcffCAUCiF2DooqEv8iAZPJ9PLLL3M4nBdeeEEikfxi+gEm8PT0JBfwcO7TmJgYcr97enoO8LyDTfbQQw/Rh9KuXbsGmz0kJOSee+4hJTz11FO1tbWDLWE46UnlFy1aJBQKe5RjNBq3bNliY2NDesHGxuby5cs90uDjZCDg6+s7xboFBwcPub0BAQFkEF5WVsYuZPny5RwO54knnhjOConW1tbnnnvO1tZ25cqV7MKx34PAgw8+aGtra2dnN4IP6h6nGL2PpPLkUXngwIHBnujKlSt33303yf773/++ubl5sCUMJz2p/LJly6RSae9y+Hz+888/TwdsCxYs6J0GR8Y/gYsXL3I4nClTpkRGRo5gbV999VUOh7Nw4cLh3LZpaWn0RZWOWNg78+bNe+CBB5577rnPP/88ICBAIBBA8BhOJ7788ssU79tvvz3YorRaLbu/RlA4H0hNXnrpJVL5PqfLjEbjxo0b6eBw2rRpAQEBAykWaUaVwI4dO2in3H777VVVVfR0Foulqanpww8/JLNkdFR//Phxf39/movD4Vy8eJHmGuyOh4fHQtZG5hwGW8gvps/Nzb3vvvvu7WvrZ11sbGxsXzmYYzfq6t24cSP90edwODNmzGhvb+/dfLPZnJmZaWdnN3PmTHZ6Oma2s7NjN+3//u//eheCIyAwEQnceJlTp9O9++67HA5nzpw5g52W7Z+4Uql85plnOBzO0qVL+3wx6D9772+1Wi15o3700UephLBnzx72U2NQ+zf8jbqlpeXhhx+2sbH517/+1bu9AzwilUpvueWWATZ85syZDg4O4eHhI76KZO/evaQOozEdmZqaOm3aNFK+jY2Nh4fHAOGQZI2Njb/+9a8porHXEf/617+Ss4eHh/eouVKpZNeNw+G89dZbPdKMk49ms/mHH37gcDhTp0718vLqUaunn36atHHItpgGg+Ef//gHeRb1OTTvccYeH81m87Jly0gd/vWvf5lMph4JrvfR19eXXF133HHHcN5CSflr1qwhdRjO2oXrVXWcHH/44YfJXMBgJe3bb7+dwOFwODNnzuyhlP9i6zZt2kSz29jYXL169RezjGCCjo4OMkjtvT7GZDJ9+OGHtG4cDufee+/tMR3cf02ioqKef/559ruKjY3NLbfcwj7C4XDuuuuuU6dO9V8UvgWBgRMwGo2bN28mT/VBrQ75xVNotdrFixdzOJwHHnigrq7uF9P3mSA8PJzcVocOHeozwfAPzp49m965f/jDHwb7E0DGz6SE+fPnj7iTg/4bSCr/7LPPCgQCdkqLxbJ7927aLg6HY2Nj4+fnx06D/clAQCaTPfvssxwOx8HBQafTDbnJp0+fnjJlCofDKSoqYheSlZVla2s7depUJycn9vFB7VdUVNx1110cDueVV14ZVMbJlpjc73/605/EYvGEazv7SfvKK68M1t3FW2+9RR9oDz/8cENDw1gSIJPLL774Yu8fCIPB8NJLL9G6cTicZ599dizrhnONCAGBQPDUU0+Rd/CBvz8O5NRRUVFz5syZNm3acFymJSUlsRUO9vXW5/7MmTNXrVoVEhIy4rM9A2nyTZDmySefpGCnTp1aUVExqEYdOHCAZudwOCdOnBhU9mEm/t3vfkfOnpqa2qMoi8Xi4eHBrtu0adNCQ0N7JMPHMSZQVlZ2991303756KOP6IDNYrFcvHhx7ty59FuyY2Njc/z4cbPZ/Nprr9Gvnn766a6urqFV/u2336blcDicxx9/vE/dbmiF01zx8fHss7D3P/zww+stznB0dGSnZO8PzTSC1qfPHY1Gk5eXl8HaWlpaeqSk1lykMtOnT+8T16lTp/pcv05lTvK7Q1s0snPUer2+sLCQ1Y6MMR479YCGj5OKwI2XOU+cOEFurd27d484+itXrhAztdOnTw+/cGdnZ1JV9jyvl5eXra3tXX1tRLqwsbG5/fbb+/r+rt6z1cOv5KBKsFgspFE2NjZJSUmDyksTU5lz2rRpvZvJNhOkz9CZM2f6+vrSEkZkZ8xkTrJyfFB1DgsLIxM0hMDI/oR0d3drtdr33ntv1apVX3zxRZ8V60fmPHz4AcyRugAAIABJREFUMKnV008/nZWVJZPJBmsh1+cZR+NgS0vLgw8+yOFw3nzzzd7lD1/m7O7u1uv1ZJy3aNGiIcilMTExBOYzzzwz8HHe559/TnKtW7eud7sGewQyZz/E2DKnjY3NoH4XVCrVjBkzSE+RWfsRlzljY2NXrVr14Ycf0mU07Lb0I3NWVFTY2tqSum3fvl0mk/F4vIFPLmRkZNBBsI2NzeLFi0NCQjQaTXd3t0gkio2NdXBwYDd8ZOUo0kaDwfDVV1+tWrXqP//5D7vV2L+5CaSkpJBr77PPPhvxltbX15PCv/zyy6EVPsYy59y5c7OzswdeVZlMxh5ijbjM2dLSsmrVqtWrV1/PIvZ6MqdUKn3xxRfJQ+M///kPl8ttbW0dJU8eA8eFlGNP4J133iGXwTD9yl5P5jSbzR988AH5Rc7JyRlaAyFzDpDbTSNz3nnnnaWlpQNsNfF1QZe6cjicEZc5zWbzoUOHVq1a9fHHH/dZq35kzujoaHKL3XrrrefPn9fr9SKRqM9CcHA8E3jzzTfJeq+UlJSRrafJZLK3tycPyR7LRAZ+IipzTp8+vfdUz1133TVnzhz6msDe+f777wf+MjLw+tz0KdkyJ4fD2bRp08CbrNPpHnroIXYvjLjMWVdXt2rVqnfffTc5Obl3xfqROYVC4R/+8AdSty+++ILP57e1tV1PW+pdMo6MBgG1Wv3AAw+wLxj27yOfz++hhJGURObs7u6+dOkSe5Lzv//979AqecNlzhdffLHP9U8Gg4E9DcIGNWQPcP0jKisru/fee9kn6m2PNBCZUyqVzpo1i10O3R8bmbO5ubmHLc0777zTf9vxLQiMFIEbLHNyudzHH3+cw+G8/PLLo/EjJ5VKFy5cyOFw5s6dO+SxHWFdXFxMnjgODg4DXGdH1lfOmzdvPK9c4PP5RDoacj2pzLlkyZLenWg2m0UiUXV1dWho6EcffXTnnXeSJ+z999/f51T+kK/sixcvPvnkkwsWLAgLCxtyIdfLyLbmJPW/3qxfnyWwVwGPhldYpVJJ5joffvjhPiuwadOmBdat9zTQqlWrSIuG40+sz5OO7EGTyUTmy2677bY+XwJHRObs7u4+evTo9OnTZ8yYwV7NMMC2mEymRx99lMPhzJo1a+D2oOQZOGvWrEGZ312vSpA5r0emu7ubLXNyOJx33313gA9zMo6no8NRkjlPnjzJ4XBuvfXWPn+tBALB888/v2DBgm3btvVoY0JCApl/XLNmzWCdyppMJroSc8GCBVevXu2tRpjN5vT09EWLFhECs2fPZnuz6VGZoX3UarVPPPEEh8OZP3/+0EpArglHwGQykYvqkUceaWxsHPH66/X6//73v+SeSkxMHEL5YyxzcjgcV1fXgdezx6L4EZc5S0pKiN389VYrv/zyywsWLFi9enWPKD5cLveRRx7hcDivvvrqYJ9IA28+Uo5zAr6+vuQn41//+tcwZ7qvJ3NSZ/IcDueZZ56hEzeDIgOZc4C4XnrppQULFnzwwQdDWAU4wFOMXjK2NSeHwxmUh/AelhwjLnOaTKb333+fxOPok8DChQsXLFjw97//vbcLk4MHD5K7zNHREQ/bPumN/4PEXS2Hw/n888+H+ajss7ENDQ333HMPh8P5y1/+MjRTbCpz9rnOmJxUq9Vyudzo6Oj169ffcccd5LK0tbXNzc3ts1Y42A+BHjLnc8891zs0wPWyp6am9njcjbjMmZ2dTVT5Cxcu9K7Gu+++Syadek9rNDc3k1nHJUuW4HnVG90NObJv3z62Tvnee++xqxEbG8teT0nuazINcvz4cbIeev78+ezjISEh7BIGuH/DZc558+b1GSaWz+f/v//3/2gDe+xc7/1ogK3uM9lIyZzUQKtHnTkcDh0t99CwR9YUBzJnn/2Lg2ND4AbLnDt27CA/k+fPnx+lBicmJpJ7+5133uktwg38pOvWrSPqRZ8Ll/osZ0LInN3d3T4+PgSRm5vbEMYc/cucbDImkyk9PZ2aDf3jH/9gfzvMfZPJpLNuo/GGQGVO6p731VdfHWCFuVwuGT1MtW43ROY0Go0ETu/+pSPpjo6OAbbohiSLjo4m/jNfe+21Prt4pGTOtrY2MlybO3du7wmFX2w79Wu6cePGX0zc3d2dlZVF2vXCCy8M4XS9TwGZszcTeoTInDY2NmTIfueddxKbRZrgejsGg2H16tVkWE+W1Y+G09r+ZU6LxULu4t4/ZAEBAaRF/v7+12vC9Y7Hx8eTK3Du3Lm930jZuVpaWuibs4uLC/ur4e9D5hw+wwlXgpeXF7n2vvjii96/TSPSHCLUcTic+++/X6vVDrbMMZM56fBg/vz5A0ShUCjIIlkbGxviznrsZU69Xq/T6fR6fQ+wzc3NZJZzy5YtPb7Cx0lCQKvVEhOiu+66a4C/s/2Q6Ufm7O7u3r9/P3mXHFpcKMic/ZBnf0Xu994Lodhpxu0+Gb1MmzaNvJHdf//9A3zSyuVyssqZPmnHXubshzwN0NX/+G3c9gsqplQqSfhMW1vb3sP7keLj5OTE4XCmT58+tMCfA5E5aVXNZnNhYSF1crtmzRr6FXYGSIBOzpB5p1tvvbX3OvXrFbV9+3YyrUcNucZY5jQYDNebdKquriZv4m5ubterP46PJQGz+f9j77vDqji6//deuHQuCiIIRowFLFhQBBS7RsWoiUZjiRorJir2EmuCLfb42nuMJUZRLLEjNlARCygiiHSRIl063Lvze56c53ue+c3uXS5W3rz3/nGf2dnZ2TNnZ2fPnM8p6kaNGiEMZmxs/Pz5c5oAUE1gA47j9PX1O3To0KNHj3PnzkHL3bt30w26d+/+FhqtTw5zchwnquSPjIxELx16mFCuzjDnl19+yRBsaGjYtm3brl27orGaDuakZ7uu/G/iwKeEORMSEiDSd+3atauaI61KzwAcOm1sbGgf/Cr1EB0dDeE4XFxctI8G898CcxYWFoIbjZOT01t8lrSHOQkh5eXl8+bNgzXX3t7+3XUfVXqOb90YYc6BAwfWqVMHctRpmQQLTWlGjBgBEO/7tZQhhFTqzSkxcHC54DjuveSvlbjRu5wqLCz08vICNdatW7dEu3pfMCchZNq0aTBFly5dKgqpihIAlefPn4d9hY2NjTbhf2FcHMfNnDmzqvcSJUMHc4qyBSphc2VoaAhZljmO27Rpk0R7PIXOSR07dmzatOkn8eZEYoSFo0ePQkS1gIAA4VnpGkzqOXr0aEzFoemSGzduAJ76xRdfaO8Iq6k3ul4Hc9Lc+F8oZ2ZmwtZaX18/PDz8ww0ZY8EdPXq0qnf5aDBngwYN2rZtC98dLY0Vrl+/DnLpN998A+mKPz7MqYmfcXFxQNvy5cs1tdHV/7s5cOvWLUDfx4wZ8+6yjTTM+fz5c7BOa9u2rRB0r5TPOpizUhb9CxoAzOnk5ATJYjmO09Lj5OLFi4A0DBs2DPyQPj7MKcH/yZMnw4fj1atXEs10p6otBy5fvgxL5YcI3Y+jDg0NhQzEHTp0eAtLhSrBnHDTHTt2wH7BzMzsLYzMkPL/zQLCnMOHD4eEKVoaTxNCICqsk5NTu3btYHH4yDCnxCOLjIyEpXjdunUSzXSnPhoHli9fDpME/vv27VtUVETfHdWY2Ozw4cN0A0JIRUUFaJKhjYmJyVuoI6oDzCkaHfr06dNgkoscoAufCuZ8/PjxIep39OhR5sEVFxczebvNzc2FOK4O5mQms+7wX8OBTwZz8jyPFojTpk3T0qby7fi+f/9+MN58u/xMPM9jdpkqJRD9b4E5eZ4HFzSZTPYWCeqrBHMSQtC7wtra+oPC2283W0SvQphz1KhRP//8M4Rx0yaxX05ODgQ6MDAwwCRk1RPmfAuEW5RXH6LywYMHgBBLRMB7jzBndnY2QJVNmjQRTegtMcbU1FTMcHDy5EmJloSQpKQkPT09kJbeMXMV3kgHcyIrhAWAOY2MjDZt2gRst7Ky0kYr6ufnJ/vnt27duuoMc4rGcxbyga7BF2fPnj10vWi5sLAQ2jdo0OAtFCWifUKlDuaUYM6/8tThw4cBm//6668/qAT47NkzUBJ5eXlVlZMfDeZ0cnLaunUrLEpdunTRxoZgyZIlYPpz/fr1agtzVklmrurT0bWvthxQq9XwodTT09MSTJIeizTMWV5eDgqyqqbchpvqYE5p5v87zoJu3dnZedu2bbDSenl5abPSzpkzB1ba0NDQ6gxzvn79+t/xpP6nRqFWqwEeMDQ0/BBp75GZpaWlHTt2BBvNI0eOYL2WhbeAOWNiYqysrOBdS0hI0PJGumbAAYQ5169fD4k2LSwstEGLHzx4ADrPUaNGYULBaghz/vbbb7pn/ck5EBcXB7YI8J5yHLd//36Gqh9++AHPgv5T9LuJPsTQ2MXFpao7u+oAczZu3JgZPiHEx8eH5gBTrhTmLC8vj42NvXHjxunTp4OCghITE4W3YGq0CVrLXCI8zM7OdnFxoam1tbXFWLXYvqowJ8/zqampr1690sY95q2D1lZUVERFRYWFhVVn7TTyUFeonhz4ZDDnq1evQLCzsLAQDYTN8KuwsPDq1at79uzx9fWdNGnSjz/+uGLFiv3799+/f79SM+HY2FgAHoyMjGJiYpieKz18/PgxpDSwtLSs0i5Ce5gzIyPj4sWLa9asmTVr1pgxY6ZPn75y5Up/f38JubC8vPzBgwdBQUEIwxQVFQUGBv7222/Tp08fP378vHnzNm7cePXq1ZycnErHGBISAuugqalpVYOXVhXmLC0tBZ2jhYXFw4cPRWlLSEg4duzYf/7zn3nz5o0fP37OnDkbN2708/N7+fKlpq9mfn5+cHBwUFAQkyMqLy/vzp07t2/fBvf83NzcgICADRs2zJ49W3vfDhrmfPbsGYAlX375pSjxdGVQUBA0Hjly5OPHj7Xx5oyLi/Pz81u+fLmPj8+4cePmzJmzYcOGy5cvZ2Rk0D0TQnief/78eVBQ0JUrVwAts7W1Dfq/H/1avX79GqrB0ofn+aioKKixtbWFR3/lyhWoefr0KXOjT3743XffQZSMffv2aSIG0Rp40KWlpQ8fPtyzZ8+iRYsmTpw4derUFStW+Pn5xcfHV7piEEImTZoEeo23iKc9atQoYOmwYcOkAxAdOHAAWtra2jJGWGAcFxYWdvDgwXXr1s2YMWPixIkLFy7ctm3buXPnJGQLTTBncnIyPF/gT0FBQUBAwJo1a3x8fMaMGTN37ty9e/fGxMTQ79ebN2+uXbu2cePGmTNnjh07dtasWYcPH3748KE0vlVaWhoWFvb7778vWbLkhx9+8Pb2Xrhw4c6dO+/evSsco+jTTEtLO3fu3Jo1a2bMmDF+/Pj58+dv3bo1ODgYZR3Q6cvlcqwR7UdYiTBnUFAQCnaVahbUarWnpyfHcebm5iEhIdrAnLm5uTdu3MAVbMqUKb6+vkeOHBF1AS8qKoJHA9o0IyOjffv2Qc2DBw8QhVWpVOHh4UFBQZjFEC/8+eefYQXYsmULXBgSEqKNMzEhpGXLljAJDx48KOQYU1NaWjp8+HDwPNM0DVQq1ePHj/fv37948WLvf36LFy/+448/NEVTSExMDAoKCgwMhJ18rVq1YAjCzQDP89HR0UeOHFm/fr2Pj4+3t/cvv/yye/fuwMBALQfLDEd3+Ak50LNnT0gEEBwcXCkZPM/Hxsb+9ddfy5YtmzJlyoQJE5YtW7Z///6AgIBKV5Xi4uLu3btzHGdgYKBJ5NBEgDYwJy6tQUFBGAVIU4fCevQxiouLgyC0tra2lX6F1Wo1rGDNmjVLS0urFOYsLCwMCQnZtWvXwoULvb29J02atGTJkn379omu56WlpfAO/v7776AVnT17Nr6VNMOjo6ODgoIeP34MWo+SkhJoduzYMTAVmjRpEl4olJ+Tk5P9/Pw2bdo0c+bM8ePHL168eMeOHRcvXszPzxcySlfzX8SBkydPwmelXr162jzN0tLSe/fu7dixY8GCBRMmTPDx8fn1119PnTqVnJwMMok0zEkIuXTpEtyxYcOG2ucwA5a+X5gzLS3t/Pnza9asgb3YrFmzNm7cGBAQoE0oILVa/ezZs8OHD2/cuHHWrFkTJkyYP3/+5s2bT506JdwC4HyIi4sLCgrCBHivXr3y8/NbuXLltGnT8LNbWloaEhISFBQUEREBF7569ero0aM///yzt7f3Dz/8sHTp0mPHjr148QK7FRZg4xAREUFL0YWFhfCOw7WwMdmzZ8/ChQvHjh07derUZcuWnTlzRqhcE/avUqkiIyOPHDni6+s7derUcePGLV269I8//oiOjsY7Pnr0CEZBC6vCroQ1CHMmJyfDglmvXr1KdQIqlapJkyYcx7Vu3To7O1sbmFPTjj4+Pl5IVWZmZlBQ0I0bN3r06MFxnIWFBS6YUVFROEYh59PT06HlwIEDYeb//fffUCP8zMGe+rfffpsxY8aECROWLFmyc+fOS5cuafNuCmnW1bxHDmDaIEdHR23kh4KCgps3b27atGnu3Lnjxo3z8fFZsWLF6dOntbEaP3XqFEyVdu3aMaqSSkf0FjBnamoqaM84jtMUsUOtVkdFRVVpxauoqICtUFhYGJCdnZ196tSp5cuX//jjjxMnTly0aNGhQ4eYZUp0gKCvP3/+/Lp162bPng3qpm3btt2+fRvlnJiYGHitJLbz8MqvXbsWNq0zZ87csGHDlStXqvoloolEmNPPzw9ypnAcV6k1Ks/ziBWdPHkSQ1ZKwJyFhYV3796Fjy9+C/bv3//o0SPhkFHG27VrFyBeCxcuxCULI7SlpqZCJeKyeOGhQ4fAOX7atGnQJjg4mGFUYWHhhQsXdu7cuWjRonHjxs2ePXvTpk3Hjx/XZpLTPNSVK+XA2rVrYU2Af7lcnpycDFcFBgau/ufn6upKtwGXGDh1+/ZtvAWGPcDGFy9exLPaFHDqQg+Ojo6o4obLk5OTlyxZMvv//61fvx7FA23uEhAQgBRCoXXr1nQNcgB7A7UPtBEm6dQEc6ampu7YsaNv374QupK+haWl5eDBgw8dOiTMlPzHH3+sXr162rRpILHgVa1btwaeY7wfPz+/UdRvwoQJqPA/e/bs6tWrlyxZgjpe6Mfc3Hzx4sXQD2r7URsGbURdcVQqVVhY2OLFi93d3cFAGdxbzczMOnfuvGbNmsePH6O4Anw7fPjw6tWr582bh3maoX8nJycg4MiRI8wlBQUFJ0+e7N+/v6OjIyaJ4ziuZs2arVu3Xrx48e3btzWpnvBh6Qo6DiAHPhnMeePGDVDLDh06FKnRVDh16lSLFi1MTU0Zn3GZTFazZs0vvviCCSPO9KNWq9Ed8y0yiu3fvx/uO3XqVKZn6UNtYE61Wn348GF7e3sMoI8rmqGhoY2NzYoVK0QDCSYkJNjb2yuVSrCHunHjRsOGDSFKGPbAcZypqWnjxo0vX77MLCUM5SqVCpe5quI6VYU5CSEAcyqVyvv37zOUZGZmzpw5s06dOox5EaSUqFev3ooVK5hL4PDo0aMWFhZKpfLmzZt0A6ivXbv2vXv3UlJSPD098cvBJNmmr2LKNMz55s2bLl26cBxnaGiYnp7OtGQOly5dCtrVy5cvVwpzFhcXL1y40MbGhhm7TCYzMTFxcnI6e/Ys3b9KpfL29lYqlZjuVC6XK//vt3fvXmy8cOFCqI6OjiaElJWVjRw5EmrA6A8gHKj56quv8MLqUMjLy4MJU6dOnaioKE0k0TDn69evvby8atasiaODl8LAwMDe3l6bOKUXL16EV1L7JKxI2IMHD/Bbzoho2IYQolarx44dCy1XrlxJnyKEvHjxYvDgwZaWlswQOI4zMjJq3rw5CjrMhZpgznXr1sHzDQ0NffLkSZMmTfBFABpkMlmdOnUwtVVsbKy7u7uZmRm96urr61taWi5ZsoS5KR7m5OQMGTLE0tISvVShc7lcbmFh0bVrV1FFD15OCDl16lSjRo2Y9VAmkymVSldXV4AJ3x3mvHv3rr+/P9A2ZcoUaRH50aNH8BScnZ3Ly8srhTnv3r3bqlUrc3NzmnWA09eqVWvMmDEoicLAo6Ki4NGAVCeTyUxNTaHGxcUFF5nMzMwmTZoolUpMdxcZGQnNkF0mJiZQU79+fS0TNX311VfAB9FQLfSjAdOKnJyc9PT0169fi35TsrKyRowYYWVlxUwAPT09Kyur0aNHC1W9K1asgEUMmAzPGkZBR7wsLi5eunSpra0t07NMJjMzM3N3d9cGLWOGozv8VBzIysqCz5yrq6twm8dQVVFR4evra2NjAx8CmK4Av5mamrq4uAQEBEi/witXroSrBg0axHQufVgpzJmUlARvpVKp7NixI6rGpLulz8I67OTklJycvGrVKtAcSRj0wLWBgYGwvHz//fdqtVoa5nz16lXPnj0tLCyYr4lcLq9Zs2a/fv2YaIfJycnwAuI3wsjICGqUSuWzZ8+Qfnd3d6VS2bt3b7AzSExMhGb44TA0NMQLjx07hheWlZVt2bKlbt26jLQDyHeTJk1OnDiBjXWF/y4OqNXq8ePHwxunjcdGampqnz59atSowXwxDQ0N7ezs1q1bx/N8pTCnSqVq3Lgxx3EmJiZVjY3xHmHOM2fOODo64hcZmADfdBcXl7t370o8yuTk5O+//97a2pr5xsF2o3HjxqI67vLy8kGDBimVyoYNGxJC/v77bzs7O1wqkf8pKSn169dXKpX9+vUjhFy4cEH49ikUChsbm9WrV2tSJLVr106pVPbv3x/V2YSQJ0+ewDs+bdo0QsiuXbtsbGyYpcbQ0LBu3brHjx+XWKiLioomT55cq1YtZk2Qy+XW1tYTJkyAmzZu3BhGoYlITRyG1czZ2Tk9PR22Znp6epVau165cgWm5eTJk9VqtTTMqVarjxw5IrGjX758ObOjP3nyJMg/MGpa/vn+++/RacbV1VWpVH799dfI+UOHDgHb8Vmbm5tDTbt27ZAJpaWlGzdutLe3Z7gK+0pnZ2dmX4kX6gofgQMqlQrTRmzdurXSO4aFhbm6uuKWH2UhIyOjunXriq4PdJ8VFRVgSmVpaRkaGkqfqrT8FjBneHg4KriFyAEhJDk5ecyYMRIrnmjQrPz8/B49eiiVStieh4SE1K9fn9aJg41yrVq1Zs+ezbxuzDCPHTvWsGFD4XKtVCo7deoE+/evv/4aXitN5sUXLlxwcnISdmJiYtKyZUtGJcUQIHGIMOfJkydv3LgBz7pTp07SI8J8AVZWViUlJZXCnImJid26dRMVDi0tLQcMGEBbzBNCUMZD4dDY2Bj4o1QqURk7evRoqERvjfj4eKhBXS5KlTVr1qRDPty6datly5YMP0EHWKdOnYULF2pjDSDBWN0p5EB5eTkk9cCVxN3dHbf2YO6Pp0QLtFL91atX+L5D43HjxmFveFOJgjTMWVRU5ObmxkiJMplszZo1VbqLEOaEKH04QEa9lpKSQsszmHkN24vCnHfv3m3SpAkggtiSKejr67u5uTFaESGMylzVtWtX4OH06dPpUwqFAlWOiHrQDZjypUuXoB/U/0MDUZhz7dq16JrP9AOHNjY2O3bsoB8E5mERbc9xnLu7Oy0QxsXFdenSBeK3i14ik8ksLCx69erFcExiRulO/Y9z4JPBnJD9TiaTbd68WeIZlJeX79ixA5cJKyurVq1adejQwc3NzdHREaX2rl27apI/oPNDhw7BO+Pp6YmbBIn70qdABpXL5VXdDFQKc+bn58+bNw9Hp1QqW7du3alTJ1dX1zp16sBSLpPJvvnmG0YJRQiJjY0FIWPVqlW7du2CjAsKhcLJycnDw6NVq1b0PtPMzGzLli24X6JHh+X169cDiyZNmkSvO9hAU6GqMOfz58/hRlZWVozh8Js3b/r37w9nZTJZ/fr1XV1dPT09W7dubW9vj9+2FStWoIcTUoWhia9du4aVhBBwRzA2Nj558iS95srl8pEjR9ItJco0zEkIwcgMM2bMkLiqrKwM1C5OTk4vX76UhjkzMjL69euHY7S1tYWxu7i4YOJruVy+YMEClPBUKtWPP/5oaWlJN7D852dlZXXo0CGkDZNNgoKyvLx8/Pjx0BK4DcYyUDN27Fi8sDoU/vzzTyCydevWEi8vwpwnT56E/Kkcx9WoUcPFxQWmEHjyQVcjRoxgjAeZkcbExIALuEKhQJyJaSNxCLl/jIyMAgMDNTUrLi6G1HTm5ubMLcLCwsCzDdRbTk5O7u7u7du3d3Z2RiFSoVCIrkiaYE5U9O/evRsSsurr6zdu3Lh9+/YuLi62trYw9/T09I4fP/7w4UPYDMvl8rp163p4eLi6utavXx8WK7lcLrohv3Xrlr29PXBYX1+/UaNGHh4eHTp0aN68OW5Bzc3N//rrL1GeFBYWolciKCudnZ09PT3btWtnY2MD3ZqYmOzfv/+9wJwVFRXQj7OzM75TQsJ4ngcnS47jAHuQgDlLSkq2bduGUpqJiUmLFi08PT3d3d3r16+Pb7eHhwftQxAdHQ2vHizpIMlBjbu7O07UjIwMmNjTp08HOmNjY62srCwtLXHDqVQq4cImTZpI2ATQw9y/fz/w9vPPP5dWwtJXiZYjIiIgJQxguo0bN+7QoUP79u0bNGiAm4Tu3bujIA6drFq1ChYx0O3K5XIYgqWl5dq1a6FNaWkp2gRwHFe/fn03NzcPD4/mzZvj2E1NTQMDA2khW5RIXWV14MDGjRtxKRYajNMUpqSk9O/fH94dmUxWr149ePSNGzdGCdDMzEw6CNv169fhdgYGBtKyIn1rQog0zHn//v0GDRpAzx07dtQmEhHTPyEEJjDAnOHh4fA179Gjh7Al1qhUKswuDObSmmBOtVrt7+9vYmICRBoaGjZr1qz9Pz9HR0cUPuvXr0/na0lOToZ3ED+apqamUFOrVi167QI/p44dO4Jj/atXr2BFwguNjY3hQivTZ8DDAAAgAElEQVQrK/qDtXz5cry7vb29q6trhw4dWrRogVbPRkZG0qAIckNXqG4cyM/Pd3d3B70koyQVkhocHAzCBgD8Dg4Obm5u7du3b9KkCeA3Mpns66+/Xr58OXxEHj16JOwEaubOnQvWD2vWrNHURrT+vcCcxcXFtP6rVq1a7dq18/T0dHFxwVmtr6+/f/9+0RUvISEBv556enqNGjVyc3ODl8La2hreXwgox2zlysrKwDPexsbm3r17KP0C/1FUe/nyZa1atTiO69Sp0/bt24Ekc3Pzpk2benh4ODs741309fV/+eUXUUY5OjpyHNejRw/aniMsLAzIGzZsGApLlpaWLVq0aN++fdOmTXE1qFGjhibzhRcvXsCWGboyMTFp0KBB+/bt27RpA9tbjuO6dOmSmJgI/mHdu3cXbgNFacZKWGkB5rx79y5woE+fPthAWFCpVJ07dwaSrl69SgiRgDnz8/Pnz5+Py5rEjh69KAgh/v7+sELibIdDS0tLb29vfNawl+zVqxdugo4fP05fCPsdqOnWrRuOZdGiRYia161bF1ZaZ2dnnJPGxsb+/v5V2vVj57rCO3IgMzMTggoqFIpK3Z0PHTqEG0BTU9OWLVt27NixXbt2tWvXBgFJLpf/9NNP0h66P/74IyySlZpSMUN7C5jTz88PdkMGBgZCo4TExETUyUisePv27cO3AEjKy8vz8PDgOK5Vq1b+/v6wVTc2NnZ0dHR3d2/VqhUq0DiOGzduHL4y9IiKioogWxO83QqFws7Ork2bNh4eHg4ODsBPS0vLEydOdOvWDdow9qmEkNLSUjptoZWVFeht2rRpg4uenp7erl27qrpYEUJomJPneVBx2NjYSBuw7tu3D953MBKVgDlVKpWfnx8tHDZv3hyEw8aNG+Oi0bBhw6CgIGRdUlISLDK4gNDCIYYaQvNZtGx++fIlIxyamJhAV7Vr10bE5fbt27jg16xZs1WrVvANRac0PT29GTNmiH5DkUhdQUsO5OTkoHYFJjnt9VtVmJMQAk4g0BXHcS4uLsIgLhK0ScCcBQUFaBGC/RsYGEybNk24tkjcghAihDnPnDmDelSO42bPnk33gEpIsJ8QXi6EOa9fvw7Z4pFUiUK9evXQMZ0Q8tFgTvS1lYY5i4qKZsyYIUE/fWrZsmX4OHB5pxvQZRrmfPr0KQhXdAPRskwmGzp0KPNRoJ+XrqzjAHLg08CcarUavlimpqawc0CCmIK/vz+arc2cOfPp06evX7/Oy8vLzs5+9erVuXPnGjZsCBKbdATR3Nxc2HtoE6OGpkGtVsPO0MbGhrZhp9toKkvDnBUVFTNnzoR9u0wmGzVqVHR09OvXr/Pz87OysuLj41etWoXq8n79+jGSK8Kcbm5usDsyMjI6ceLEq1evcnJyXr9+DbFP0fjCyMhI2tAvLS0NxBp3d3d6B6tpdFhfJZhTpVKhZNmwYUP6RiUlJX369AGGNGjQ4NixY8nJyVlZWXl5ea9fv37x4sW8efPgrJmZmdBYWxrmNDIywqAEjo6OO3fuDA8Pp7eaOBzRAgNzvnjxAhbf2rVrS3zCz549C7Ly6NGj1Wq1BMz55s2b1q1bQ2MjI6MNGzbExcXB2DMzM58+ffrtt9/CHRUKxa+//gpE8jyflpYWExMTHh4O09vOzi7m/350PE8G5iSEpKenQ0P8EoeFhUFNtTKT4Xkex+7j4yP6dKASYU6Y8zKZ7Lvvvnv27FlmZiZMoSdPnmBwJ7lcDobnmjosLS1FlZOoPammC6H+119/hec1efJkTS2vXbsG8/mLL76gt0Bv3rxp2bIlTIZu3bpdv34dXurc3Nz09PSwsLBBgwbB2YYNGwpBnUphThDmzM3NDx06lJKSkpubm5mZGRUVhcZfDRo0ALWjQqFYuXJlfHx8Tk5OVlZWYmIi7ugsLS2ZeZKWloZJSS0sLPz9/VNSUnJycnJzc9PS0u7cuYOClIWFBR3nBPmzdetWNEt3d3cPCQlJT0+H1T42NnbJkiUwyS0sLKDZuwStvXv3Ls/z3t7eILbSKn6kBwpZWVlubm4cx9na2kL4HQmY88iRI7hpbNeuXUhISEZGRl5eXk5OTlJS0smTJ1GT+NlnnyEoUlZWBq8e2E8YGRmdPn0aapKSklD9JIQ5VSoVNNu4cSOs3ocPH4aahIQElDWZETGHJSUloLvkOA48OaSNhZnL8TAhIQHfQWtraz8/P5hdubm5ycnJx48fhy8p6Cbo1SkrKysmJiYiIgJmXe3atWEIMTExqFY4ffo0fA1r1qy5d+/epKSk7OxsmFpBQUGohmjatKkuqBE+kWpb4HkeNTjobCRKbWFhIS7aenp669evT0xMzM7OzsnJSUlJuXz5Mq4qSqVSQpgsLCxETFQoPIjeGiolYM5nz559/vnnsBR37ty5Uh2lprvQMOebN29AblQoFBJmCtHR0aDu/Pzzz+HboQnmjIiIwPfOysrq8uXLaWlpuf/8Xr16dePGDUSYatWqhfEtKyoq4B2E4cvlcl9fX6h58eIFrWBiYE61Wv3ixYuYmJjAwEBYCWfPno2vM2obQ0ND4ayJicmKFSsSEhKysrLwA4efMCsrK52LtqZpU53rk5OTIbRM8+bNpelMSkpC0yhTU9ODBw/i2p6amnrmzBm0YkEllATMGRwcDDJV3759pe/LnH0vMOf69etxy/bdd99FR0dnZ2fn5eVlZmY+fPgQMbwaNWoI/agKCws9PDxgMXF1db106VJKSgp84zIyMp4+fTpmzBg4W6dOHeYbhzCnlZUVbHPkcnnv3r3Pnj375MkT9JVHmNPY2BjMzjp37nz37t3U1FSI0PD8+fNx48aBIGFsbCwqpEnDnKampgqFQk9Pb/To0TExMRkZGbm5uampqZGRkT179gT6GXdweBC5ubmA1MJ2ftCgQc+ePXv58iVIpzExMd7e3nK5XCaTderUCZa+d4Q5c3NzwRhRoVCgBxIzKwghERER4FTUsGFDEKg0wZwVFRWzZs2C6SeTyUaOHIk7+uzs7Pj4+F9//RWnx5dffok7+jdv3sTExERFRfXt2xegSlww6TDFQpizsLAQWqLyNyQkBGpwb3v37l1Yac3MzNauXUuvtA8ePPjmm29gn2JraysMrSTkhq7mvXMgOjoalriWLVtKd37+/HnUhnXs2DE8PDwjIyM/Pz87O/v58+eYPE8ul0v7Np06dQpm6ZAhQ6TvyJytKsxZXl6Oi54wikZhYWH79u0lVryxY8fiiod7JSAJYU5DQ0PgXtOmTS9dugQ75YyMjNjY2Pnz54PIZ2BgIOqxvWHDBtxv2tjY/P333/Hx8ZmZmbBZO3LkCHzC7O3tQbjiOA73I8iZzZs340s9ZMiQqKgo1NuEhYUh5KNUKm/duoVXaVlAIfnkyZOEkE2bNoElEA1ECbsaOnQoLCPwmZCAOR88eIAawjp16gQEBKBwmJKScv36dbCH5jjO2toaQ52Xl5fDInP8+HHYPq9evRpqaOFQCHOq1WpoduHCBVhUFy5ciBfC5vrly5dopjNgwIAnT56AyjczMzMuLm716tUAHisUCl3Sd+Gjf4uao0ePwlsGHwJjY2P8dmDyJjil6Z/25iSEoNk0tDc3N6cBvEoplIA5Fy5ciJs46Fwmk02dOlVLRQd9ayFOee7cOXxbOY7z8vLC3QohBDRFcFMnJ6fIyEiGGwzM+eLFC8AmmGYShz179sTwztUN5vz9999xlZMYApwyMzM7d+4ccLtKMOeIESPoqSh9I319fT8/P/qZ6so6Dohy4NPAnHfu3IEZXKdOHUZ8YajE6KC+vr7MKTi8desWCPHGxsaMayDTvlOnThA+FO0XmAaih1euXAFS27Zty6j1RdvTldIwZ2hoKJgsGRsbe3t7C1OLqdXq3bt3g6GNgYEB7ZxHe3PCttDFxUV0q/b06VOweuM4ztHRUTRsCNCsUqlASW1mZkZ/5+gRiZa1hzkrKioOHjwIsqNMJtu+fTvd4d9//w0bbMjNRp/CMjp7MbY28HEF2V3UmxMeokKhGDx4MK1hx56lCwzMSQjx8vKC6eTv7y96bUVFBeR+l8lkQJImmJPn+bVr18L6rlQqt2/fLrRSUalUc+bMAYHe3NwcJU64dUFBAXz+HRwcRIkRwpzYDAXZt2ALdvLhChkZGYidSGixCSHYDJ7L9OnThe9USUmJt7c3SNhGRkaYykiU/vnz58O06d+/v/CJiF6Clbdv3wZxvFatWkIyIPgnTA+O45iItYsXL4b7duzYUVR1XlxcDAoRjuNQnsBbo46YWQ/Rm5PjOCcnJzS6xAsJIbhWcBxnZWUl7JwQMnz4cPASoF1zCgsLu3btCmQ3a9ZMmBmIEPL69Wsku169eowDa2pqKmxvFArFl19+KVxsy8vL169fjwaksN+r6qSFh2JkZARui35+frDm9O7dWwgYA2dCQ0Nhyfrxxx+hRhPMmZGRAfthhULRr18/VC/SHL58+TK6f02fPh0hTGizY8cOcGMV1eQKYU7s+ejRo4AB37hxAyu1L1y7dg3xV7lc7ubmtmbNmuDg4JcvX2q/hVi3bh2swG3btn3w4IHw7sHBwaAklclk//nPf5gGJSUlkK7bzs6OOUUI6devH+yohRdCFO4+ffrI/vmdOXNGeLmuplpxICYmBsQ2juOktat//PEHTOzatWtjPG16LC9fvgS/MY7jOnfuTBtO0c0IIWjGsWzZMk0vO3OJhDdnUFAQJp3q1auXhLWTsE+mBj7r4M1JCFmxYgUspJMmTdJE5549e4AtCBKLwpx5eXkAA8tksvbt24t+TSIjI5GB3bp1Q+U7EBkeHg4rLbONxyEwMCfWY+Q0UW3UhAkTYIw+Pj7CFaa8vHz06NGwmGhKUoA30hWqIQd2794Nz/f777+XIK+4uBi1WvXq1bt8+bKwcVxcHJMXSvTjCBcmJydDGIwaNWrQWipht0zNu8Oc8fHxICcYGxtjEAL6LiqVysfHB15bZ2dnRnTZsmULcMzJyUmTfQMinTt37qR7RpgTelAqlQsXLqQt56AxwpwgIY8bN0701Zs4cSL04+rqysgnhBBpmBPypPj6+goF5tzcXMwCPmPGDGZlO3DgAHBGqVT6+voKn11JScn8+fNp8e8dYU5CCEra06dPZ+hB9m7evBkWIlwANcGcDx48wB39xIkThWK/Wq3es2cPWHgbGBgwqdBVKhXgE1ZWVnh3uiCEOfHs5MmT4ZEJP0MjR46EU3PnzqXNU+Da8vLy4cOHA368ceNG7FBX+Ggc2Lx5MzygSZMmSdw0JycHUHmZTDZmzBjh5kKtVm/btg1moJ2dHQ2QM91GRESA6GJpaYmKdaaN6KH2MKdarX769CkCbGZmZsK99tatW2HgEiseIp349gFhCHOCcDJgwADhckcIWbt2LezvGjduzCxlkZGRoAfQ09MbOHCgcL8JYb1RPQKkMjBnYmIiAM8GBgbMLh7oBLN+AFObNm3KrPmiTKYrGZgzLCwMTNZoFyi6PSGksLAQ2vTu3RtWUXwKDDiam5sL/ctkso4dOzL7cej28ePHCFT06dOHof/u3buwKTtw4ABDBiFECHNim8jISBB6UXzFU/7+/vAhaNasGcNtSPSzbds2UHY1atSIoQc70RW05ADP87TOh+O45s2b06Gt9u/fP/CfHwPayWQyqB84cCAT3zUzM5MBq1avXq0lPYQQFAjhjYPcnOXl5bhOQj16N1UpNg+SIQpz+vj4YOfNmjXDN6KoqAjNNTiOGzVq1LNnz7AlFJgFatasWQwTIDxhly5d+vfv7+npifoW7Ecmk+EbOm3aNC8vr44dOzLgYt26db3++S1atAjGIhG0duPGjQMHDuzXrx8GAIB7GRkZeXl5weND3y00F4Y2dNDa1NRUWu6CBlZWVt26dYOxwEKKA+E4rmHDhrCRnD17tpeXV9euXZk2NjY2MJA5c+bAypyens4M1sHBYcGCBWfPnj116tQvv/zi5OTEsNTZ2Vko0uAj1hV0HAAOfBqYE+OVtWvXTrgdwmeTmZkJHzxXV1dRKQTQAkjNbWBgII2CLFu2DN5D0S0o3pQpINTx7bffMnIS01J4KA1zosZf2uN+37598FH//PPPaV6hNyekMhJVKwNJycnJYLGlp6cnEdiN5/lRo0YBi6qkKdYG5iwpKfnzzz+9vLzQGnHgwIGMhL1gwQK4u1D0Qd7GxsbCJtPLywsroSDtzQk9Dx48mNHiMZ1oOhTCnNevX4fdL4IfzLVRUVGwoW3RogWsxZpgzvLyctRF+vv700+Z7rO0tBQRrC+++IKejf9imDMiIgLYqFQqpZ3MaJhz+vTpzOxCTpaWlmLWKGdnZ03cJoTcvn0bpo2zs7Om9Qe7ZQq5ubkAhnEcJ2pJmpCQAIsbx3H0DrC4uBgUxxzHSRhkHDx4EGgT5lPESaIJ5jQ0NGQEUyR+y5YtKEmIqkUIIdHR0bAi0fu6CxcugH+Anp5eeHi4Jp1RZmYmeA/L5fJdu3bhfQkh48aNgxF169ZNuIeHliqV6sCBA0jhO3pzEkKysrJgRdLT00OBj6aKEDJ79mxYYxHW1QRzopTcoUMHiQkTEREBN7W2tmb2aZ8K5lSr1RcuXECvGthCKJXKxo0bd+7cef78+UFBQZqeKbArNzcXUGo7O7vw8HCGh3gYHh4O+FbHjh2ZV08C5qyoqAAJ2MzMDLILY4dYCAwMBK6OGTMGK3WF6smB8+fPwxpiaWkpVLUjzTk5OaC2MzAw2L9/P9YzheTkZLAGq1u3Lh1PlWl26tQpWGG+++47Zu4xLelDUW/O0NBQDCo+YMAACZUi3ZWmMgNzpqSkwKehXr16wmwF0AlAtrVr18aAYKIwJ6wnHMeZmZnFxsZqIuDVq1ew6zYxMWHsJD4EzKlSqTA20Z07d0SpSkxMhDa9e/cWbaCrrM4cgAgcouYsNNn37t2DF1wul4eEhNAyLd3s2bNnsFzA+ysBcxYUFKC5lagzIt0tXX5HmLOiogIFmB9++EHTmpafn492+ocPH0YCysvLcT8oKi5CyytXrsDXk/nG0TCnoaHhtm3bRDlJw5yenp5CJTLcBVV4xsbGQkmsUphz2rRponcnhAQFBcET7NOnDy3Mq1QqgBNkMtncuXORLUxBrVYvWbIExb93hzmTk5NhpXVyckKdJnNTsK+ytbVFGxFNMCfCCaKmG9jt/v37RXf0HwLmVKlU6AMtdCAGkqKjo0Fyg4ytSKeu8HE4AMEq5HK5dNCgo0ePAlrWrVs3TbZcarV65syZ8IrNmzdPE/1ZWVkY2krTrBC9FmHOnj17Jor9oqOjAwICdu3a9dVXX9FhYxctWsTAkOXl5fBmadogAwFXr14F6YhZ8WiY09bWFrM/MmS/fPkSBBuZTEaLUjzPYzTOzz77TJNZP8/z9+/fx306482pUqmmTJkC3B47diwzQKSkoKCgXbt20ExCiMX2dIGBOcH/FZDFkJAQuiWW//Of/8C91q5dC1s2XJcQRIHG2LJWrVqaGEgISUlJAdzUzMyMuemHgDkhOT3HcYwpDw5QpVKB94ulpaWE2hPb6woSHMjKygI1JswZCEcvtDEihKAmHFrK5XKJbjF+DDTu2bOnRGPmlCjM+ffffzNYHcdxX3311dupc0WD1p47d27nzp3IDVNTU3Qcio+PR9t0juO2bNmCMhLyjYY5MzMzMWA1NujSpUtkZGRxcTHP8wUFBbdv30YfcWxjYWEBKYr4f36PHz9m4gmPHTsWTqE2RgLmBMYWFBRANDK8i52dnVCuk4A56UQM0EmrVq3CwsJAxVpQUHDz5k3cDuNdwB4dqI2Pj8egQdBg4MCBzED27NmD18ISd+HCBXpuhIeHM50YGhoycU3o9rqyjgPAgU8Dc0ICFY7jRo8eLfEkQkJCIGH1Dz/8gG+1sP2aNWsgExidwlrY7MiRI/AWYWIzYRthDWIGCxcuFJ6VrpGAOaOiooAYMzMz6d34y5cv0Y6GRh9pmFPaYpoQ8ttvv4Gs9tVXX0nQjMuZBNAovBxhTmNj427dunWnfp06dWrevLmNjQ0tKerr63fr1g3Vc9Ahz/M//vijUqm0trbG/aTwXhkZGSCgu7u7M2crhTn19fVFncyYfkQPhTBndnY2yKAODg6iAi64ochkMkyNownmxLRhbm5uohIGknT37l3gpJWVFY3K/Ithznv37oHE0KpVK+SDaAFhTjs7O+mP371798DG08DAQGKbl52dDS9po0aNJNygRYkhhOAq179/f6HN0c6dO6HzBg0a0Dr39PT0pk2bKpXKunXralKWEUKCg4Ph8m+//ZYhAJcsTTBnvXr1aHs9+nJ/f3/YSysUCnpbSLfJzMwEW+A5c+ZgPQpbEydOxErRwr59+0CU/Prrr7FBWloaqDs5jmOM3LENFPLz89G3491hTkIIUr5ixQrhV6agoABsRBwcHDDHmCjMmZ6ejsF2pHez5eXlGCuMSU39qWBO4G1mZuZPP/3k6OjIWN7BTLO1tZ08efK9e/dElSwYMmvatGn0fGYeX3l5OWjAFQoF805Jw5ygGTQzM9OUliY9Pb179+7NmjXr2rUrc1PdYXXjwOHDh2EF7tixowRtiNLVr19fuDGjL5w/f75MJpPL5efPn6fr6XJCQgLMZC8vL4mllb5E1JszICAAVG8cxw0aNOitd9p4IwbmJIQMGTKE4zgIXo3NsJCXlweIft++ffFlFMKctNM/E1cKu8IC4gdMZPgPBHNiqHwm9gbSU1RUNHbs2GbNmnXo0AErdYX/Fg6AYkWhUEjHlVq7di28kpWGT0THO47jJGDOiooKdNqWFiQYTr4jzIlY0eeffy5046Pvde3aNfiWff3117gK5efn9+zZU6lU1qlTh8b/6AsJIU+fPgVlH2PlScOc9erVQ0GFuZyGOaWZAwKeoaGhMNiSNMwpGo+XJgOE+S5dutAi6LVr12Aa2NvbazJjgk4iIiLQDeLdYU70HTE1NRX1JM7NzQUP3UGDBuEuTxTmjI6OhiGYmppKx9lOSUlp1KgRND59+jQy5wPBnKhv1RQz882bNyNGjGjWrJmnpycSoyt8NA6At5yRkdHff/+t6aY8z8OKWqNGDdooVtg+KioKLAKNjY3pV4xuWVZWBrHNOI6TXp/pqwghCHPC7NXm38HBYcuWLUw/hJA3b9706tWr0hUvMjIScHomgS4Nc4qGi8A7Qt5TjuPoCFiYD1VfX//PP//ExqIF3FAzMGdCQgIuBYy5KtPPzZs3Yc3v3bs3LiNMG9FDBuYkhKCLyMiRI4XWJCUlJbAJ1dPTw5AAojBnYWFhjx494AlqCpWHJIF0zXEcY1T9IWBOjGWyYcMGJIApHDx4sFmzZi1bthRdtJnGukMJDjx9+pR5i0eMGCHUVlUV5kQVDXTeoEEDCRqYUwzM2bhx45MnT6KxDlLbunVrCWye6VN4KOrNee3aNTDWh7ugU9Ddu3dBDIBQW5cvX5aGOWlhFbpq0qSJ0O8iPT0dXDhwUBzH7d27F6l98uQJA3OOGzcOz0IB9VfQiUKhePnyJd3mHWHOvLw89OeGW4huS7dv3w47ehxLv379UL5NSEhgEEphDHN0c8IeVqxYkZaWhqtcWVnZlClTWlK/Nm3aREZG0oPVlXUcEHLg08CcGEflp59+EtKENcXFxffu3QsJCWHeW2wABVCb6uvrQ/x65iweXrx4Ed7DoUOHYmWlBU9PT3jrNm3aVGljpoEEzLlt2zbotmvXrtJyD8/zP/30EzSeMmUK3gJhzpo1awoj1WAzKERFRYGnzueff86cog/RkGrGjBl0vXQZYU5cnjQVIHLanj17ROMMJCQkhISEPHr0SEJLHhcXB2Yj7dq1Y6iqFObs0aOHEMZgOtF0KIQ5VSoVBnf666+/hBdCyA5bW1sUNzXBnGPGjAGOrVy5UppCtVoNJpCGhob0DvlfDHPeuHEDtm10FAUht+mgtRMmTBAV1PAqlUoFMYf19PSYWNDYBjzFQeipW7eutPKFvgrLsbGxgOd9/vnnDKhfXl6Oe6fff/8dLyGEVFRUhIeHh4SE0LsyugGUDx8+DHNGKC5gz5pgTqGohP2jBl8CfsjJyQE1jbe3N14IkU9q1qxJo+94li5kZWVBbFI6wPLt27dB11+/fn1pLSHP8+vXr4exvxeYMy0tDZ5yt27dhJvVAwcOwL28vb3x3RSFOW/evAnYQ6NGjRB7oAdOlzGhvYeHB13/aWFOoOTly5e3bt1avXp1p06dYHMOHIB/c3Pzr7766unTpzTZubm5sOHnOE7CnQ4uwW8f484rAXMSQoDncrnc29tb9O3meT4zMzMtLU2TWwZNsK78aTmwdetWWBuHDRumiZKKigrMyoymQpoaJycnHzly5NChQ8xKS7cvKCgAG4727dtLYAn0JUKYMzAwEJ2ex4wZA7a3zCVVPRTCnIGBgfDqiQayw8AktDmaEOZMT0+HOId16tSpFIt99OgR4AdNmzal6f8QMCchBF3u+vbtq8nxHTLv6l5n+nH8t5RBfWNoaHjp0iUJmsHcx8TEJCAgQKIZxOJDg3oJmJMQMnbsWPhUVSnc8TvCnH/99Rd4GVZ6U57nQf5p06YNrh5qtfrZs2chISGYHFeUG1evXgVvzl69etENaJhz5syZKKjQbQghCHPKZDLpPSPkujY0NBSKc9IwZ/369YVCFE0GGCN6eHjQe0D0KxozZowm4qETlUqF26X3AnOePXsWLEdFrZ9RX0m7FiG2QfvHb9++HWZdly5dKt3RL1y4EBrToYA+BMxJCEFPjq+//jovL49+FlDmeT4nJ0cnOAk583FqQJFtamp6/fp1TXfEvWTnzp2l90eEEIQwJQBRhL6qpNd6C5hz5MiRoqbbarU6Kiqq0hUvMDAQpCNm+48wp0wm0+SLCcz87rvv4F2j40agHqlly5aoRioicPUAACAASURBVNfE/AsXLgANDMx55swZWPMxgKSmHjAVvbOzs4QRv/ByIcyZlZUFxDg4OAhtUAICAoAkOgkLPmvamzM5ORmAB3t7e01wONITEhICVsjOzs5YSQj5EDDn3r17YWtgY2Nz584d0c9BaWlp2j8/IXREk6crV8qBwMBAeDvwf9q0aaI8r5I3J8Yrhm4NDAwklLoMkQzMaWJighbwSKSLi4tw8vM8P3LkyGGaf7Nnz0bhRBTmTElJQasgCE4LtO3duxdjSIBGVwLmVKlUGJwfCNbT0xPNt6JSqeiUn9DY29sbV6TqAHM+f/4cdTtAoaibRGJiIiLB0Ixe67SBOTFrA1wOrmvOzs7Dhg3bs2cP5NgqKCjI+v9/yCtmFukOdRxADnwCmFOtVmNSOlE7LyROtFBRUZGfn5+enh4XF3f//v1Zs2bBW1EpzHnz5k3YImrv7aFSqdCTEi07RKkSrZSAOXErznjziPaDn6JOnTqhfQTCnBKABPaWmZkJApO+vr6ojhhabt++HVZzIXaCXQkLCHOampo2adKkKfVr1qxZq1atOnXqNGzYMF9f30o14EznPM+XlJRkZ2enpKRER0efPXsWtt8cx70FzCma1I25o6ZDIcxJCDl37hzMvWbNmuFzgR4yMjIQnMNtiSaYE82TAwMDNRGA9ZCFnuM4en/yL4Y5kckjRoxAJogW0JuTtocSbYnPTiaTSYewBky9Vq1a0po1TXcBZa6BgQGT5DI7Oxv2GLVq1ZJ4H7FbtVpdVFSUmZmZlJQUGRn5+++/47okfFUrhTn37NmDPTMFjBE0bdo05hQe5ubmgqpr1KhRUMnzPIg4rq6umiKh4eUlJSWAMctkMmyMXqSV7hhpT9b3AnMSQuB7pFQqMUoJUFtWVta7d2+Qt2irMVGY89ChQ2BGI8E6ZEJERAQsHXK5nMZEqwPMiUSCzfWpU6cmTpzo5OQEX08g29zcnEY6Hz16BF4m9erVK6vsh7FDGUdkaZjzt99+g90vx3F2dnYHDx5MTk6mWUeTrStXcw5gnmBhjm2kPCcnB3JG6uvrSyuO8RLpQnFxMQRTatasmfb6EQxau2HDhjNnzuAkNDAweOvgEAydQpgzLS0NggjVrl2b0RIWFBSAwGBgYEBv9YUwZ2xsLBhwaBONMD09HYKly2QyGhP9QDDnsWPHMMJHrVq1Nm3aFBcX9+bNG1ENC8Mu3WE150B5eTnsI0xMTGjlspBsCM3i6OjIePYLWxJCMASCtDCGUTRoMyzRDunKd4Q5IQSigYHBqVOnKvsAloG8UbduXdH86EgVz/PFxcVZWVnJycnPnj07fvw4hpqUgDkl4vghzOno6Ih3ES2MGDEC8nfSX3loKQ1zMm6mws47d+7McZybmxvKfoQQjLRJo4nCa6HmxIkTIIS8F5gzKSkJbEFsbW2ZlfbNmzewMhsYGNCW1qIwJybC0GabiTt6T09P3Dl+IJgTAydwHGdtbb1169b4+PiCggLdSqtpgn3MelwqLSwsJJKUYxpLb2/vSpcX9O+hw2Izg8II2xIxoplLaG9Oa2vrWWK/6dOnjx49umvXrvXr10cTSS8vLy2tyoQrHvpiaoI5P/vsMyGddM2cOXNguQgKCsL6J0+ewIZFwswOG7948QLj9NCrFuQoUSgUf/75Z6UPpX///hzH2draCg1H8EbCghDmJITAUmNoaOjv709fwvM8fPv09PRo121RmPPp06egoRIqEOg+oZySkgI2RjKZjMZEPwTM+eTJEzAXhkwxkydPjoiIyM7O1uEZwufy7jUY4xDeEY7j5s+fL9ptlWBOtC3AbqVtEeg7MjAn9oAFPT09xjcALlepVNhGtODk5ITpRURhTp7n6ditNjY2gM5iNjeO45o2bVpUVCQBc6akpDAumHZ2dujrQo+UEHLs2DGG1C+++ALVGtUB5gwJCcH3EUg1NzefLPhNmjQJbIhxOHZ2duhooQ3M+ejRI9xcYyd0wcHBwdvb+8aNG6mpqbrVgJlIukMJDnwCmLO4uBi2OhzHSftfIt08zycnJx89etTHx6d///4dO3Zs0aKFvb09fKfhTagU5gwNDQXP9yZNmmDP0oW8vDwMOV2pubGwK00wp0qlGjBgAJAtnU8U+kxKSoLGbdu2RQ0UwpzDhw8X3pqpqaio6NChA3SCSw/ThhDy559/wkLTtm1b4VlNNQhzdu7cOSsrK5f65eXlvYWCUqVS3b9/f+PGjaNGjerVq5ebm5ujo6OVlRW9CL4FzKkpH6GmcdH1ojBnUVEROHbo6+sz2hw016U3vaIwZ0lJCTwXjuO0kYDPnz8P7ekwdP9imHPv3r0w3ko9jBHmlLCKxWcaGRkJ3c6cORMrhQVIqmFubi4dWVp4IdSgFdj48ePpNufPn4fJzCA9dBtCSEFBwdWrV319fYcMGdK9e/c2bdo0aNCASQYu3KVUCnNKLGUIc65bt44hBg+FMOebN2+AmbSIhu2ZQkVFBXrzo75y165dwBDp/DTQVUpKCtzufcGcW7ZsgbszkcmfP39et25djuMYyxhRmHPz5s1AVaWeZ4SQzMxMaMxxHK1Bq24wJzCc5/m0tLRLly5hNh3gCa7taHNds2ZNSCwv8Y/uBcwaLg1zvnnzBqcNAM8NGzbs0aPHrFmzLl++jLpCZrLpDqsnByDfLcdxtD8iQ2pqaioAb5VqspgLNR2WlJSAdYidnR3uJDU1xnqEOTt06MBsX5s2baoplG5MTMwEzT9m1EKYU6VSod6cUf1fvHgRFIjMt0MIcz58+BAWGVGXUBwgFAoLC9u0aQPt6T35B4I51Wr13LlzcWMsl8vr1avXpUuXKVOm+Pv706o0hk7dYfXnQGpqKkwkMzMzIU6G9PM8D8JMq1at0K8RzwoLCIah2CBsQwjBQLhVyur6jjAnmkO5u7tLfPvgFLi6agp9UVpaGhQUtGrVqmHDhvXs2dPV1bVRo0ZMYioJmFPCTRNhTiaGhJCNbw1zjhw5UtgbXSOEOXmeh/SEHMdJpJDATlDD+F5gzoqKiuHDh8N03bdvH96FEHL69Gmo/+677+h6IcypUqlQOSshXWMnuKNv06YN7ug/EMypVqunT5+ONiV6enoODg5dunSZOnXq6dOn0QYXadMVPiYHXr16BXPMyspKImIQIpeNGzeudHkBQwSO42jlAzMojBCojfoIr0VvzgEDBmClsFBRUZGUlLRgwQKcdQcOHBA2wxpY8X799dfhw4fTKx56UHEcpwnmbN68OfYjWhCFOTH7z9KlS0Wvoiuzs7MhczDjzQnwoZ6eXrt27Sp9KBCl38LCQvrjRd+XECIKc167dg2yiqCdMVxVVlYGIlyLFi1oiw1RmPP27dsw8bSxyi0oKED4hzYF/hAwJ8/zf/31F+LKHMdZWlq2a9duxIgRO3fu1MYciuGh7lCCAxgDGSYDx3G//PKLaPsqwZwY6A67ZRSkoreASvyS4rXCQvv27YVA17vDnIQQDJ0INwXxlXZnBAkHhRCkDXNzRkVFQZ4jPCVhxnfz5k1sBgUPDw8UCaoDzHnz5k3cpjGkSh9aWlqiQlsbmLO8vBxj/Ej0rK+v36xZMx8fH222DBLTTHfqf4cDnwDmLCgoQMitUpCvtLQ0PDy8a9euNMSF74CxsXGdf36g95QGTR8+fAi2/HZ2dlo+4MzMTFBzcxzHJN/WpgdNMGdpaWmvXr1gFNp8tnmeh+G3bNkS322EOekMeRJUYRiBK1euaGrm5+cHDklViqWOMGf37t21cU3TdHdCSE5Ozq5du+i4Afis5XJ5jRo1PvvsM5DwGBU5IUQ6aK1cLtcG/dJEmyjMSQjB+Jm0cJCXlwffRUNDQ1rpIApzvn79GseoSWdKU/XkyROQ/mnx9F8Mc2IoAxrWpRmCZYQ5JYB8bJyRkQHK4uHDh0vYNUP8HyMjo7ebPBEREaAZr1GjBvoP8TwPSjG5XM7E7QTywKpj5syZtBkHThKFQmFlZYXr0lvAnBISJ8Kc27dvR14xBSHM+eLFCyDv22+/1WYFmDp1KrS/ePEidO7r68vUMDelD9VqNTR+XzAnGpBaWFjQep/Dhw9Dwj8GfBWFOTGnCA6Kppkp45LOGDdUT5gTiS8tLR09ejROS7QWP3v2LJ3TAp5Opf8NGzbEngkh0jAnBJHesWNH3bp1kQC8Ra1atWbPnh0dHS3c/NC30JWrCQdwBRA1ywUik5KSALqrVCmv5aBKS0sBN61Zsyb9mktfjjAnrjkjR47Efe/cuXNFwzHdunULJ6ewwAAwQpiTEHLlyhW40MnJiXaGAIRYX1+fcdsSwpyXL1+GHmjhRGKwHTt2hPa0Tc8HgjmBjBMnTtSvX1+YCdjCwmLixImhoaGivJUYgu5UdeBAfHw8TCRzc3M6sCdDW3p6OjTz8PDQ5n1cs2YNtJfWFGO8Ezc3N+aOEofvCHOiiQBQqM2/mZkZk5ggLS1t2bJlol9SfX19S0vLzz77DDZommBOAwMDiTEizNm9e3eJZoSQt4Y5K/WgFcKcpaWlGKQHnS0kyKuoqIAd0HuBOQkhaDnapk0btNxSq9WTJ08GxQJq64AqIcxZWlqKEaqSkpIkiIdTKP45Ozvjjv4DwZxwx7/++svBwUG40taoUeOHH354+PChbqWt9Kl9iAaxsbGwVlhbW0ukmhs6dKg2SwrT5tdff9VEM264KnW/pnvQEuaES9RqNWjAOI7r168f7n/pDtPT05cvX67NiqcJ5qzUIl8U5vT39wdeSexzkU61Wg1yIwNzMgkIGeaLHpqYmEhEEsY7YkEU5kxLS2vRogXHcWZmZoiIEEIeP34MesJp06bR+yBRmPPMmTNA4erVq/F2mgo8z+Ng7969i80+BMwJnT979qxt27ZKpZKGujmOUygUvXv3PnHihDYCA9KpK2jiwM8//8xMVE2LRpVgTtzfYecSiYcZ2rSBOTmOW716NT3JCSHvBea8c+cO0sxx3I4dO2JiYugayHIlAXNiaCu8qlWrVpoSc6C7BTZ2c3PDl7o6wJy4D0UKtSxYWFigjaM2MCch5NatW/Xq1WNeeU23a9u2bZUCgDPTTHf4v8OBTwBzlpeXY+7rSrN/z5s3Dz2m9fX1GzRo0Ldv3ylTpqxYsWLv3r0XL16Mi4s7ePCgNjDn7du3oauWLVtq+YBLSkrQjOvChQtaXoXNNMGcZWVlELaR0XHjhUyhqKgIXvVWrVohEoYwp4+PD9NeeMjzPCZskAA59u3bB3KSNoFw8S7vC+YMCwvz8PCAbTzHcaampm3atBk+fPi8efM2btz4559/3rlzJzY2FrIAVhXmNDIyopV3SLyWBU0wZ1paGmDnHTp0wI3i5cuXIcDj2LFj6f5FYc6cnBxcx1NTU+n2ouV79+5Bezob/L8Y5sSoDpMnTxZlCFYizMkoj7ABXXj9+jU8o5EjR0rAnLC9sbCwoIV7uh/pclFRESb3xej8cXFxYOVqaGhI+81gVydOnGjcuDF+7K2srDw9PceOHbt48eKtW7eeOHEiLCwsNDQUpsFbwJwSY3k7mDM5ORmIGThwIOqJcDhMged5iPDGcRxGaUaM8ObNm0x74SE6QL8vmLOiogIDDCB0Rwjp0qULBBp68uQJTYYozLl69WpggrS1DfRTVlYGjZlkltUc5iSElJWVobtw+/btYTgXL14EDVqDBg3maP3bsGEDzdVKYU5AOuPi4s6ePbto0SJPT0/Ah5CTNjY2a9asoQ2Z6f515erDAcx5JqFkSUlJgRzArq6u74Xy4uJiiL7g4ODwFt6cEMVx1apVBQUFjx49gtAg1tbWoqCLNMw5ePBgekSiMGdZWRnk8DM1NQ0ODob2GFWpTZs2jMujEOa8fv06vBo//fQTfTvRskqlAsmK8an6oDAnISQlJeXixYsrVqzo0aMH47JmaWk5a9YslHhFydZVVkMO5Ofnw8QzNTUNDw/XRGF2djY08/T0FFWCMxcuX74c2ou+cdh46dKl0Oyrr77CykoL7whzgphnaGg4YsQILT+AS5YsofPOBgQEODs7ozmvhYWFu7v76NGjFyxY8J///OfYsWP3799//PgxOApogjmtra0lRlo9Yc6Kigq0+mUELdGxFBYWwvN9XzBnaWkpfGhq1qyJ7qQlJSUg/Ht4eDAyrRDmLCsrQyyBwURFh4A7+pYtW6IC9IPCnISQ5OTkCxcuLFu2rFu3bowlsZWV1fz58+lsqaJk6yrfOwfy8vJgMltaWtJ5MZgbYZKjrl27arm8zJkzR2IzhTgEo6Ng7sscVgnmJIQgZtC6dWuE87HPq1evtmjRQnrFe/LkCShY3i/MiRZglaZSJoSUl5ejgywdtBb2jAqFYujQoVo+lEWLFtHBe5AVmgqiMKdarf7hhx9g2tCgFOJD58+fpzvEpYnOzXnx4kXowdfXl24sWq6oqGjVqhW0pzM1fDiYkxCSn58fFBS0ffv2b7/9Fq26gQaFQtG/f39tzNlFh6OrRA5g6AtgLMdxmtwJqgRzYv5s7FZiLUJioIDTGK8VLVhbWzOJzN8LzFleXg47O7jpqFGjtm3bhgTI5XKA1iRgTpQk8aqmTZtqUu2GhIRgMyi0a9cOU2hXB5gzMDAQdfIMqdKH5ubmqInVEuYkhERFRf3000+w5kv3L8x9wEwk3aGOA8CBTwBzEkLQs1AiMR7P84BfchxnaGj45ZdfatoCHT58WBuY8+rVq+B8zWwRpacCxmqQcDvQ1IMmmJPn+UGDBsE7fOLECU2XYz0mcnNzc0MjJoQ5Bw4ciC01FYqLi8HcWCaTSaiNNm7cCOBKpXkQ6Ru9F5izoqICshdAkIply5aJKj7y8vKAq1WFOY2NjT8EzFlWVgaTWU9PDxPtgEBgYGDAJNsQhTlVKhUCWrQESXOYLh89ehRmzrJly7D+XwxzBgQEwEbom2++wfGKFhDm1MYi4enTp8BGieRwhBBIfl67dm1GohIlQLQS/X27du0KQDhGN0WUiL4wKiqqdu3aQJuTk9PRo0fps1hGMas6wJyYYKZLly6M8h0JxkJ5efmQIUNggBimaffu3fCURd1b8VoooAX0+4I5waIfXsOBAwdCBFS0s6MzIgMBojDnzp07YVCrVq1iCBYeIjDMcRztwfDxYc7g4OAhQ4YMGjQIYXghtUyNn58fjNTMzAxOhYaGguKsSt9WplttYE7mkqKioitXrowePZoOaT5z5kwJwwWmB93hJ+HA+vXr4XWbMmWKJgKysrLAhFz78BuauoL6oqIiSCHcsmVLUelC9HL05lQoFLRSydfXF5asli1bCpH14uLiKM0/pr0ozEkI2bZtm+yfHyrjcFc8Y8YMZpILYc7IyEhgMhPcTHSYeXl5LVu2hPeaTvn5oWFOmpjy8vLg4OAZM2bUqVMHt9aDBw9mRkpfoitXTw6Ag46xsTGdJExIKnw1tAxa++OPP8L8lIY5wQmP4zg63onw1kwNKqc8PT2ZU9ocfv/99xzHWVhYoEWCNldhm9TUVHDQ4Tiubt26GAANG0AhKSlJGua0sbFhLqEPqyfMSQhBrag2ovv9+/dhGrwvmJMQsmHDBo7jZDIZhhNHG5GFCxcy648Q5uR5fvDgwUCVn58fzXPRMu4+XF1dcUf/oWFOmpKysrJbt25NnTrV1tYWV9oRI0YwI6Uv0ZU/EAdgqVQqlRIBw9atWweza82aNe+FjG+//RY61IRqiN6lqjAnIQQkLjs7OyZuWVpaGiJn0iseZCJ/vzDnw4cPwcp5+vTpoiOlKzMyMjB3FQ1zQmROU1PTSoPS0b1VqSwKcwJ+DKJdo0aNYAFJTEyEB2phYcEIt6Iw54MHD6D9hAkTKiUpOzsbTO44jqO91T8ozMlQ9eLFiw0bNjg6OmIsH2tra3QXYxrrDrXkACgcYCbAv4+Pj+hXoEowJ2r4sWftFWiiMKeFhYUwdCqzeVSpVHXr1rXT/OvcuTNqv0VzcwLT6NCp7du379mzJ46iadOm0Ab1b3gKZbaEhARYsvDUZ599FhMTI/pETp06hc2g0LVrVxQJqgPMGRwczASB6N69e7AWv5CQEDQm1h7mBC5VVFScOHGiV69etWvXNjMzQ1MYhldyuXz//v2ijNVV6jiAHPg0MKe3tzfMVwkh4/Xr1xiffdWqVYxBJQ6AEAL65Upzc54+fRokg++//56+XLqMdqYSbgeaetAEcxJCpkyZAhzQJp7Yn3/+CY379OmDfvoIc7Zu3VoTAVifmpoK9mjS1r4YwWDBggV4baWF9wJzhoaGwnarSZMmErJLdnY2pEusJjAnIQSjqkKWC57ngdVt2rRBQ13goSjMSQiBhGEcx509e7ZSbkNSDblcTgfS/BfDnEFBQbAh6dSpkzRzEOakjRY1XfL777+DXkNi31hWVgbf13r16r215WBqaipICXZ2dtHR0SUlJSjGiep0li1bBsuUl5cXbezPDOTRo0ewJlQHmJMQAuZXzs7OzJxnyCaEFBYWghmskZERqvv9/f1Biq006Bkh5Nq1azD29whzVlRUwGvr4OAAGzm0dz548CAzClGY89ixYxAGWRtQATOjKJVKOq/kx4c5jxw5Ar7FPXv2ZIap6fDq1avAf47jIEZxfHw8SPbvgki9BcwJFKrV6mfPni1cuBBeNENDQ2k9uKZx6eo/GgfQrEEiyVNRUdEXX3wBFmwYxkcThbm5ucePHz948KCErjA7OxuW1s6dO0vIk8wtEOYcP348HTwWQ4dxHLdo0SJtgnUzPeOhJpgzMTER0viBPyvP87gDF2rWhDBnfHw85D7s1q0b3ktTITExsUGDBhBFgx7mx4Q5gTae5xMSEn777TdYUhQKxY0bNzSRrauvnhwAmdbAwODcuXMSFAKy7uDgIBHbFi9HO0iJ5Z3neUy1yEQLwH5EC+8Ic65atQq8vc+cOSPav3TlH3/8AaKmp6enhLvPixcvwPCOMScqKysDZdx/Kcy5cuVKkCgkpHFk4O7du6Hxe4Q5o6KiYLWBAOk8z2N4DyFOL4Q5CSE+Pj5AlTbZ/tBWtXfv3hgE6GPCnMBMnufj4uLWrl0Lk0qhUAQFBSGfdYWPwwH47JqYmEhkdUXfO21AqUrJVqvVGFCNyfwtfe1bwJwwOktLy/j4eLrzgwcPworXoUMHBgGlm8XGxoJhx/uFOZ8/fw7axX79+tG3Ey1HREQgbkHDnJDXUF9f/6+//hK98N0rNcGcKpWqbdu2ELcW8umgGkq4hIrCnFFRUYBAM4wVpfnFixew6JmamtLC4ceEOYGw/Pz8kydPgkmQTCbTJk6J6Ih0lcCB48eP414eCmPHjsVPEs2lKsGc+PXEzunsXXS3wjLqx/BaFxeXsLAw1JljvZmZGeO7UlpaWqL5R09dCZgT0oLAXSwsLED9CIfjx48HgiVgzqKiIlj0kE5jY2NRXR/P8xjWCBuPGDEC95LVAeZ8+PAhiAdIYZs2bRCGED4+0ZpKYU61Wp2bm5tD/QoKCgghr1+/Dg4O3r1795gxY2AJQjKgUCWoQpQ2XeW/ngOfBubEd1vCQys0NBQ+w/b29tKPYcaMGdp4c+LuaN68edId0mcxWsjMmTPpem3KEjDnkSNH4C1t2rQpvfgKu62oqOjevTs0Xr58OTZAmFMmk4WFhWG9aOHKlSugAu7QoYNoA4gHiInuqyT7vheYEwNSoeOCKJ0pKSlgVlZ9YM74+Hg0NklJScFQ5lOmTGGsojTBnChAzJs3j7mEYUJpaSm4+pmammLAT0LIvxjmfPDgAXxlHR0dGW4whwhzVho6lef50aNHcxwnl8sPHDjA9IOHSUlJ8N45OjqmpKRgfVULYOitr6/v5+eXmpoKlqEODg6i/XzzzTccx5mYmEiA/XQ+oWoCcwIgYWhoWOlalJCQAGp92j7j1q1bIE22aNFCVMhGXvE8j+/Le4Q56eTzx44dy8jIACzTysoKhU6kQRTmvH//PgRdtLCwABEN2zMFnufRoGTo0KH02Y8Pc54/fx7MY/X19dHUkSZJWD506BC8FyYmJnD2zZs3EA6U4ziJ0FvQODg4eN4/Pya5oATMefXq1QH//C5duiSkB2rUajWGgtfG0EFTP7r6j8CBY8eOAbhOLwLMfXmeR58DOnQB0wwOr1y5AgvIt99+K9oAchfBvB0wYABtW6CpPdQjzLlx40amZXR0NIhV1tbWlU575lr6UBPMWVxcjCqqx48fR0dHA/116tQRLpJCmDMzMxNgJBMTE1o9R98ayxcuXABDEwYT/RAw5+PHjwcPHjxgwIAjR44gAUyB5/m5c+fCeOfPn8+c1R1Wcw4AHq+vr08HgRfSPGDAAI7jlEqlRCB9uKqwsBAjbUrAnGVlZYiGahMpB0l6R5jz5MmTMFd//vln7FO0wPP8mjVr5s2bt3nzZrR2hzD+BgYG0paO9+7dg8Qr/zKYE5Wtjo6O6Mogyr2ysjKwc+U47j3CnIWFhbjLjoiIwEge9vb2Qo2eKMyJtshMKmXhKFQqFYJM9HftQ8CcDx8+HDhw4IABA44fPy6kBGp4nkcNsjYYraZ+dPVvxwFIiW1gYCCR7QKjv3Ts2FE6Xg7P81u2bAEBW9OmtaioCHRTHMdJm6EwI3oLmBPQOGNjY8afCcKuKhSK06dPM3ehD0NDQ8FUi0Hj8vLyIMb+2+XmTElJgU2cvr6+pniSSMbvv/+OHs+0HHXhwgVY8yvVKPI8v3btWsi+JL03xJtCQRPMSQg5cOAAGO0tXbq0tLQU/OeUSqXQgA9lSHpblJaWBp2bmppWGq365MmTYMLL2MJ+CJhzzpw5AwYMWLBggYReNDw8HL6DzKxguKc7rJQDDx8+hDmM/0OGDBHdHKHWBVrK5XKJzjE0BTS2tbWVaMycYmDOOnXqQNCv3NxclACRWgcHhyq9UHgvCZjzwIED+L7jjaCwb98+6EEC5iSEQGwP+lovLy+hIJGfn49Kn9k35gAAIABJREFUS2xM+1MJYU5hjHFU2kMPCoWCsZMrKChwc3PD/jmOs7OzE6p6MG4ltMQ36+XLlxiyG05ZW1szizmEmD5w4MBe6vf333/jRBLCnEwQyocPH8JWGun84osvGK/0kpIShGOwmXTSMXzcusL/Mgc+DcwJrlQcxzVp0kTTrub69eugt+rfv7/EE8rIyABLq0q9OceNGwfvRpUwPIxd3qdPH4nvriiFEjBnamoq6LaMjIykkzPfv38fzNn09fUx1DUhBGFOjuPatm2riY1AGBo409sqhma1Wt27d29gkdCClWlMH74XmBMDUkmrRc6ePQtK+eoDcxJC8MO8bds29LcQ8lATzPn06VPQMDZq1AjDstMcxvL27dvhAX322We0q9+/GOaMiYkBXNDAwIAeMvIECygxWFlZSWOE169fB6ldoVBI6NcwaLaLi4v03hJpEC2cPn0adPojR4709/cHUFxTqlHQgNSrVy8hIUG0N8i1jr6G1QTm9PX1hU1Xjx49hCp4eiAAMHMcR4ccSUlJQZOx3bt3S4D9OTk5GD/n/cKcAQEBsCZ7eHgEBgZCec6cOTTxUBaFOfPy8pAwX19fiSEUFxe3bt2a4zg9Pb1r167R/X98mDM2Nhb0CBzHLVu2TIjp0uQRQtRqNQrW+GnmeR4U1hzHjR49WrjTxk7KysoGDhwIjtSnTp3CekKIBMyJUJO7u7sEhT/99BMsj0uWLKF71pWrGwdu3LgB33FDQ0PhjgupxYjf9vb20tooCHKgp6cngW2gz9CECROEe068KVPAuSeEOQkhK1asgLW9a9euCFowPVR6qAnmpGNF9O/f/7fffoPpLRrZWwhzlpeXjxgxAi4ZOnSo9JD79u3LhG0Esj8EzHn//n0wYWzQoIHEWrFr1y4gftiwYZXyUNegWnEAIsfKZDLp1F+Yk7t///4SYgPP8xjXlOM4CZgzMzPTxcUFpo02WRKRae8Ic4aHh4ORk42NDWRvwp6ZwqVLl0BS8vT0RGkfjNtq1Khx584dpj19uHbtWpAe/2UwJ26HTUxMJCyZCCGXLl2C1fL9wpyEEIwLOmTIkF9//RWmkKgRpCjMiUMwMjKS9uh98OABxD5hdvQfAua8ffs27HQaNWqEOkd6RkEZ82gItajCxrqa98uBCRMmwJdXIoWTWq0G/3hTU9MrV65IEPD06VNYIuRyuaYFMCkpCZLRchwnVFhLdP4WMCfoQ+RyeVRUFN0z2P5aWFgw/lh0G3grAXJAtTs0eEeYs6SkpF+/fvCOjx07VmKzVl5ejh8UjuNomPP58+ewabW2tn716hVDOX149epVeCht27atNNwRfaEEzJmQkAAZK5s1a5aamgrm7998841wLKIwZ2lpKWbOGj16tLRwCDHt5HL59u3bafI+BMwJSsiaNWsyaA1938TERBB3Jawk6fa6siYO5Ofnw8yEd4HjuD59+jDwElxbJZgTjZ6h2759+2oiQFiP2lS41tHREWfC3r174XOG1Orp6W3evFnYSaU1EjBnUFAQgOh4Fyj8P/beO6yK4/sfn72NKkivIlYUxY6oaESs0WjsHTWaROwlxpqoMWosIAoaI1YUFTviG0sUCyp2BUUREUWK9C7lcu/d+T2/nOczz353770ignXuHzrsTjnz2tnZmfM654yhoSFR6mqnOe/evSuUc8mSJWS9hzFOSUnx8vLigS8Wi7mqSyHNyWMHMcZEGwNCVjvNKZfLSUhLaIJhmO+//563cVuwYAGvL56enmRHLKQ5u3btyn1GcXFxZF0HrTg4OAi/TREREXCX/Pvzzz8LZzxuzTRNEfg4NGdqaioMU3Nzc00nbt68eRNUIU2aNNE0jsvLywmB91aaE76LtWrV0r6T5I2Jly9fgqhNmjTRZBzHK0L+1EJzYoyJrfrgwYM1LTJUKhXY+SKEeJ6vXJpTIpEcOHCAtMtNsCx7/vx52FebmJjwTovk5lQoFFZWVgghKyurt5p3cQtWC825dOlSwNnHx4dbOTedmJhIPj8Qxo17d9euXTDP8pgD4NRr6GxOEIB885o0aQKEpVrXQ000p1KpJPHf//zzT02jPSMjA9gRhBBPj09oTnt7ey4mJD1z5kyAV7jzcXR0hFtVs4oiTdRQoqSkxM3NDSQktlRq2yI0J7wsmt6pkpIS4vXl4OCgKRvGmBwhSUJVqG33rRdfvnwJUSwMDQ27du0Kwc00HeEDizxjY2PhkyINXbp0iRxQ8YnQnHfv3iXvpha7jStXrsCjlMlkvO36iBEj4FaLFi008dngCQHZwBn3XQct2APq6uoK6e3CwkJyBAsEXTEwMFC7CVdLc2KMiV7e2dlZ08cCrK2hC66urjzdE9Ccenp6ao/pzczMhFBLwmDvBw8eBLqlCgEeiWW3kZHR7du3yTBTm0hOTia0KPdLeuPGDfjKWFpaavFsi46OBuslZ2dnHmFJaE5h5L3s7GxAzMDAQNMnjGVZ8l5v2rRJrfD04ieCQG5uLqzutPsTZGRkwKASi8V+fn6avozx8fEwH2o5BAVjTHRGmzdvrjwO2mnO/Px8YutaZVcYLTRnZmYmICCVSkF+CwsLsnvk9kJIc2KMicOBjo6OpnC+LMuSE2JsbW15Ly+hObmuANx2mzRpghDq3LkzbypOTEyERyw8q7iwsBAU/dqf/vz58+Gtnzt3LrdFmv70ESBHG/br10+LtNevXycW+mopJSh7584drn29FpozISEB6EZN0TI0CfOeNGdhYWGnTp1guGrRGnPt99evX0+EAapDV1f3zJkz5CIvERsbC59OhBBP6f+5B63FGBM7/X79+mlak6tUKqKyr3aaMz09HWZaPT09mNKF6xB4ImppTowxma8GDRqkpQvgx4YQ4i3dCc1pYmLCe/TwZ6NGjRBCvXr1Imc9kGzkPFpebMCCggLiJMFbb5Oy3DN0aAg4LiwfJk2+0UIVNleAJUuWwPTSoUMHTRYhSqUSYpsJ9UXcqohurWHDhtzrb01XgeYkp/TxYrfAwZa6urrh4eGa2tUy470nzQnekIBn7dq1b926pVYGlmWJxQNk5tKcXBfw4cOHa3rli4uL4Yx5hJD2WGVCGciSVejpW15eTiZDsBwViURqDeBINt4Sjqxsa9WqxXs6RBKWZY8cOQJ9F57dQ2hOtSfkkUfPi1eMMX78+DEseslZyKRFohfVYiscGxsLa0tPT09SkCaqhgAZnPCUmzVrptamv/I0Z05ODnxJoUKE0F9//VV52bTQnDk5OTxpEULalXia2tVCc6alpYEmnMhPxj85W4GofEkecjYntAhmo+QuJNq3b+/n5xcWFrZixQqid+XmgYPPiMxCmtPS0vLkyZMJCQnEWqKmaU6MMdkeckV1dHQ8depUSUlJdHQ0iU7BzcCNayKkOQ0MDI4cOZKQkAArFrlcDoYa3BqsrKz+/fdfhUKh/O/3+vVrUJ+SPAzD8OY0Ah1NUAQIAh+H5sQYQ8QJmUymSd2fnZ0NqhCGYQIDA3kLO5Zlnzx5MnPmTGI0IRaLtYTAIlFonJyctBteEWhIAgJ/GRoaalKwkpy8hHaak5jUMQzz3Xff8YzdMMZpaWkjR46EV9ra2pqngObSnAghU1NTPz8/oRnO1q1biR7By8tLmIHIfOvWLWjrXf1Wq4XmJMET2rZtK2QIKioqTp06xeWxnJ2dieSQ+Ig0p0Kh4H191apsNNGcGOMjR44AR8swzJw5c4TrjHv37sErgxBq164d1ywIHKHgRTAwMOBZ2QA4ny/NiTGeN28ejMwBAwZo0nRjjMnwACQHDx5MrMDIUImNjR09ejRQ0QYGBnCsBbnLTeTl5YECFyGkRffELaIpLZfLyYofOmJmZiaUDYqvWLEC8owePZqnOIbQEIGBgYRQRAjxYgxijMmkwTtPlDgzCRk+IvmFCxdg+8Ez2yQZMMZEs889hFKpVJLTiaytrbdv386bsWGQEyu/UaNG8eaily9f2traAnnZo0ePyMhI3r6xqKho1qxZDMMQq7Hq9ebEGP/+++8APvzbokWL7Oxsbt8hrYnmlMvl5FCK9u3bX7lyhTdcy8vLicchwzC7du3iZdixYwcEYL9y5Yqw3RqiOePi4iBgAOwZDh48KBx4GGOFQnHy5EnylrVp04bHU5IQo46OjiEhITwGV6lUhoaGgvkzwzBr1qzh9V0ul8Mbp6enJwycQFjwrl27qnXsCwoKgq0vz0lCCCO98ikgQHaz2kO1r1mzBhgOPT295cuXC6NWREVFkYl61qxZwpEDnSVh3xBCam0INGFClEFqvTkxxrdv34ZRbWtrGx0drakeLde10JzCCEgjRowQTq0YY7U0p0KhIG9lo0aNTpw4wZtUMcZbtmwhhgvz58/nvbZxcXHga8INpsTtSxVoTowx0cY2bdpULWgRERHwsRCLxVo+WFxJaPrTQSAzMxN8TSwtLdUOVxD1zZs3ZB6wtLTcuHEj7/0FDh58j8h3XwvNeejQIfh2v6tf2nvSnBjjQ4cOgYRSqXTy5MlchTh0Ni0tbcyYMZDH2dk5MzOTPC8SOOTbb7/lre0xxuXl5fv37yfnwyGE3NzcSFmM8RdAcz558gQGDELIw8MD4tRx+/j48WMSVxYecTUGrYWGiO871D9+/HiuACStieZMTk6GgcowTL9+/bTv6K2srHjkikqlAgF0dHSERCbGuAo0J8aYxElq0aIFz4QFenTmzBk4AVosFvOUDKTLNFFzCLx69QqMF62srLRMlY8ePYLHhBDq3r071+kHZMvLy1u5ciWw2jY2NkJXGNIFMKZECAnNJUketYkq0JxAZyKEeERdcHAwvGVaZjyu4ps3470/zVlWVkaMy+vVqxcaGspbGsnl8oULF4KuAETleXNijElwJrFYPHHiRGFgktevX0+YMAFWsE2aNNFkv6sWba5lHg89yA+7RSKbnp4eb8sP2TTRnAqFAqIIQFy9sLAwHgIY402bNsHqFCH022+/8XZ8oLVjGEatXSlRerwTzfm///0PdFlisXjnzp28FjHGL168cHd3h0XpkiVLNEFHr1cSgX/++YcMIYSQrq6u2kBilac5Scw5qFZfX/+dFvBkQQjFud6cGGNyYg5X5vHjxwvHifbua6E5VSoVT50LbbVt25Z8l99Kc165cgXs7bhyak83btyYx03Ex8eTRRGvLNH7fQCaU6lUkneZJ4amP93c3AgRizFOTU0lm3RekQ4dOsC0s2XLFh47DspAU1PTxo0bN2zYkDcVw1iNiYnR/qDpXYrAR6M5SQAuLefuEG5GJpONGzfu1atXLMsWFRVdv379xx9/1NfXh7fCxMQE3px58+ZlZ2erPc987dq1kKdfv3487epbBwExLwoICHhrZm4G7TQnxpgs9RBC9vb2mzdvhi1uaWnpvn37SAhEhNCqVat4YhOak4TUEIlEvXv3jomJgVnjzp07/fr1I0bQ9evX1+6jScJgLl68mNuLt6arheZUKBTEVdHIyCgwMLCsrEylUiUlJR08eLBZs2bQEYlEApOdRCJ5+vQp1+PtI9KcLMsuXryYTN92dnZql7NaaE6WZcnB1wzDNG/ePDQ0FBSOsHshPISRkZFahy3YKSGE9u3bB68JlyslrxIXMXiyxKpILbfx1qf/ATJcu3YNsG3QoAFXN8RrmhAwJGCanZ3djh073rx5o1Ao7ty5s3TpUrJxYhhm9uzZvBq4fz548AD0SkZGRlo2n9wiWtJBQUFkeCCEhg0bpilzZGQkKJ0ZhmnWrNnFixeVSqVCoXj8+PGGDRvMzMxATUbs+mUyWVJSEldj8lFoTghnCid0wupkwIABRH+dkJDg5eVF5qJWrVqphXTr1q3gkogQMjQ0nDFjxsWLF8vKyioqKsLCwlq2bAkT/sCBA8Htstppzvz8fGI3gxDSdB6zJpoTY0wiksGRY4sWLYKpQKlUnjt3zs3Njehqhw0bJtxVHjt2DBAYOHBgRUUFy7LJyckEqxqiOYHqIMiLRCJHR8fg4OCkpCT46KSmpp44caJnz57kCYrFYqGJQGxsLLGClMlkXl5eT548YVm2oqLi5s2bPXr0IMW7du3KY1PgdYBjihBCvr6+KpWqrKyMKIszMzNJoC1dXd2lS5cmJSWpVCp4tfv06UMq/+233zS9XPT6p4NAeHg4TIm9e/dW654IohYVFZE48AzDdO3aNSoqSqFQsCwbExMzY8YM8sK2bdtWy16XHJ5namoqfO+0wPJWmhNjvGHDBpiaeGcXaamWe0s7zfnkyRMythFCO3bs4JYlabU0J1ilkJWVWCz+4YcfiBbj7t27ffv2JTNS165dhcikp6eD5tTNzQ0oqMTERO7LWzWaU6VSkQNjpFKpt7d3XFwcGO3Gxsb+8MMPZDoaO3Ys6SNNfC4IlJaWkiMw1JrskI5kZGSQVZlIJGrbtu3evXvBkCU5OXnixIlk8I8aNQrGqhaac8yYMbD8UOtfQhoVJgjNqa+v71LpX0hICKmKZdk5c+bAnMYwTJ06dQ4ePAgzUkpKyl9//WVgYACzhIWFBY/Ge/bsGdFn2dvbHz9+HGzYnz17tm3bNktLSwBBV1cXEJBKpYmJieQc9C+A5mRZloSNheOj/Pz8YMdaVFTk7+9PNjitWrUCNKqd5uQ6DYvFYk3np2iiOTHG+/fvJ+t8Ozs77o4+ODjYyckJBgBCSG3YHrIHnzVrllKpZFmWu9+pGs2pVCrbtGkDUslkshkzZsTHx8NM+/DhwzFjxpCZ9j2D1pAXgSbeCQHuCufq1ataynJprdq1a69duxZ4tdzc3KNHjzZo0ABGF8Mw2g9mAuc/iUSiJe6OWjGqQHMSy1Fe9PLnz5/DewS6L96MZ2VlJZzxnj9/Tma896c54eAnIoNMJps4cSLoGDHG58+fJ/tNCwsLEnqE7EcAH5ZlCf3DMIyNjc2+fftgzk9NTfXx8TEyMoKHYmZmRrbDarFVe1GLNyfGuLi4mER1QghpCg2qiebEGGdmZpIz+aRS6Y8//kjUp7du3erduzdZHHp6egoXhy9evNDV1UUIubu7y+VylmWfP39OFoeEGnknmpNlWeLZLxaLv/nmm6tXr5aWlrIsm5qaunnzZhIIxNraWguXrxZPelGIQF5eHjxE8uVSO3uQcQ7ZtJzN2a1bN1IVQsjJyUmTTb9QGO4RYFAJj+ZkWZZXP5z+c+7cObW1abqohebEGHPVuaQvP/74I6ntrTQny7J//vknKVuZxL59+0j9kMjMzOSyANxKPDw8IM8HoDnB54roV7liqE1bWVnx7C3y8/OJlw6viJubG0wsLMuq9Qrl5ef+6e/vz6NFeADSPykCGOOPRnMSyqd169bCzyc8G4VCMXr0aLLLBfae7BMQQmZmZsuWLXv27BlZhSCEhAcvlZaWEv2pJiWRltFAzoPs0qXLO71Ub6U5McYhISFw6AK8vSKRqFatWmRtgRCytrYOCAgQQkRozr/++isgIACUXFCJjo4O0f3BlW7duvH21bz+FhYWEl3Du/quVQvNiTG+cuUK12CZYRjuGk4sFrdv3z4sLIyc7QddI+eVfkSaE2N86dIlMlCHDh3Ks0kHtMmY54Wcgrssy65YsYLrqCcWi4lmBIzXmjdvHh4ernYQTps2DQBBCBkYGEgkkp9//pk85c+a5lQoFEBrGRkZkeD4pGskQT7Dz58/nz59OiECRSIRdyABhTZlyhTtrH9QUBDs/8eNG0eaqHIiPz+fWGOIRCIuK8mrk2XZrVu3cic0yX8/8nBlMtmAAQPu378Pvo/kOvGB/lg0J8b41atXI0aM4FpdyWQyLvhisbhPnz6a5qLy8vLVq1eTiQi6JpVKiSJGIpEMHTr02bNnMN1VO82JMYYzY8ClUq3xO8ZYC80J85irqyuZwxmG0dfXJ11ACOnp6c2fP184pWOM79y5Q84olUgkurq6NjY2RIyaoznLy8vXrl1LfG3JoNLR0SHGvHCRYZi2bdsePnyYN27hz1u3brVv3570HT7Z3L5LJJLhw4drsqggrswIIX19falUOnToUKgZoieRAKFkbJBZF2bIn376iWveoVZIevFTQKCiogLedAcHB+3b4JcvX/bv3587jUgkEu4Kh2GYb7/9VovKQ6VSEffBd2XBK0NzZmZmksjP69evV/tqa8FcO81ZXFxMGEGZTEb0ULwKNdGcGONHjx717NmT+xrq6upyAZRIJGPGjOGq1EnlBQUF5MMKUxlCiKserRrNiTG+fv06z2haLBZzpYLHyjNwJoLRxKeMAMuyJMri0KFD1S5Zifz37t0jBxOQrwx3FdGkSZODBw9u27YNviyaaM7c3Fz4etauXftdQ+8QmpN8+yqT4AW9KC4unjt3LgkTCp8kng7Ryclp//79vCmCZdlDhw6RuDvA1HLfBalU6unpGRkZSSgrEA+iqH0BNCfYya1fv567/GMYxtDQkLuc6N+/f0JCAvS9b9++PBjJiNKUgJm2efPmau1Qc3NziUWIkZERWVHzatNCc4JTL7HHgudYq1Yt7irF2tra399freRca0gdHR2ZTNapUycSnqdqNCdsTkm/ADrengJO21KLCa/v9M9qR4Bl2blz58JzGTt2rPapMjAwkPh0wvSir6/PfUFsbGyWLFlCxoxQ2uzsbHAzsrOzEzocC/Nzr1SB5gwODoZ5rGnTplw/dZZlDx8+XJkZj7dIgBmvWmhOjPGFCxdatWrFVSrytGdNmzY9ePAgvHoSiUQIbGlp6YIFC7TP+Y0bN96zZ4/aV54LrzCtnebEGBPFjlgs1qRV0EJzYoxjYmI8PT21LA6lUun48eO5vllEzqysLOKkJRKJAARCOFWN5oTgZMOHD+eKxDCMrq4u9zE1adKEup6TB/E+ifLych5xqDYUcCVpzuzsbKLBgDlt5MiRhPmujJzavTkxxvfu3SNeH9AEcPzEHLwyrWinOYlnBakfIXTw4EFS81tpTsjp5+cnFJVbJ6QdHR33798vnPlZlvXz8+OuhEnZD0xzYoyfPHkydOhQ7jacCEMSDMO4uLhcvHhR2JcdO3aoLUtoTozx06dPv/vuO+66l9TMS0il0nnz5pHHQRMUAS0IfDSas7i4GIz0GYbRwquVlpbu2bOHy37BcJfJZMOGDUtJSVEqlRUVFeQAS7U0561bt2DmtbGxUcs/aQEILJ6AiRSJRNqt7Xj1gObLzs6OmM/zMmCMWZbNysqaPXs2YWXI+yyVSgcPHgw+K8KChOZcu3Yty7KJiYmjR48WziNmZmZ+fn5avCWg5sOHD0O7devWfadvEgTSBHg9PT21uFMIu8C7wrJsTk7OhAkTuKt2kMrKysrX17ewsBBjnJiYSHyGGIYhZ7tqpzkNDQ01nU3FE0Ptn1FRUfCAuIE6uTkrKioI7bR9+3buLZJ+/PgxWKKppTkxxkqlMjk5+fvvv+fuigEBfX39BQsWqF1rQv1lZWVEHQlFKklzurq6Qn5N3AOR/yMmNm/eDEJq+bZB9yUSSUlJiUKhuHLlCk8lBDW0aNEiMjLyrQMVVn56enpaiNV3AoQbPEq4COBWpVKp7t+/T1TbIDb827Rp0/DwcJjErl+/TkhxhmEIVaCJ5gwICIBKtFiVVjloLZFfLpdHRESQzQ9XeBsbm5CQEF6sWlIQEiqV6vHjx7169eJuaaASBweHkJAQ2GdWmeaEQ1LVns0JAoSEhMD+qkePHpoeU5cuXUDFwFX3cztSWFi4YcMGQmwTEBiGcXd3j4uL0zT8lEol2bhCqUrSnCdOnIDJX62rN1c2TWmWZRMSEsaOHSucfIj8tra2Bw4cEAYO5dZZUFCwcuVKYd8RQg0aNLh69aqWT3B5eTnP6I/QnPCtzM3NnThxIpGHm+jcufP169e1VM4VkqY/BQTAELUyB2yUl5eHhIQQhyfuczc3Nz9y5Ij2WaWwsBAURiYmJm9dC/GQIacM7t27l3eL++fjx49hO9q4cWNNTCQ3PzcNKwcnJye1BVmWJQFFRo4cyS3ITcPZCsLDNSFPWVlZSEgIl0IgGDZp0uTixYuaXhwwuyGZIcGd9zTRnElJSbDaEZ7NCSKxLPvmzZulS5eq3cY3adIkLCyMBIni9pSmPwsE4uPjYbTo6OhoMmzijoTVq1cLw3zp6+tPnToVCKfAwEDtNOemTZugRXd3d01fWE3QVQvNiTGuqKiIjo7mfcXI6zN37tzc3Fy16wpwhenTpw/JTBJ16tQJDg6Gd+HRo0fk28owDI/mdHBw0NRBjHF2djbMAN99952WbBhjEj1V6IgDlkbdu3fnTqQvXrwAabWHSMEYQ1T/Ll26qLVGUqlUjx496t69u3APWL9+/f3795eVlaWlpUFbEydO1N4L4V2giDTRnCzLkkMuNUWsxRiD/1PdunXJSV3chmBHP2fOHLU7+kGDBmna0cPgIeeLQx8rSXOSoxB4Z3OCYCzLFhcXL1y4UK0C0cXF5fTp09o/oNwO0nS1I0CU5kZGRjw/GF5bKpUqNTV12LBhaj+aPXr0SEhI0E6nER+jAQMGvBMxgDG+du0ahBqqvO1vbGwszFcMw/CO8oEZjzfgYdjzZjxCnJAZr6SkBM5p69SpEw8i3p/kyBtN4Q3z8vIWLFggfDWkUukvv/ySk5NTXFwMCsA6derwKoc/IdgScaWALpB/p0+fnp2drXbOV1sb9yLsNIUhf0meuLg4MKNp06aNpia8vLxAGE3n2JWWlgYHBwu1rAihZs2aXbt2TUjuggAsy5JvLunv2bNn4a4WmjM+Ph6eqfBsTigrl8vDw8PVrldNTU3XrVundqIjsNDEOyGwZs0a8vjAOZJrkQBVLVu2jJtHV1dXbRORkZG8D9/p06fV5tR0cdSoUdyGmjZtyrN0VCgUZEiTnGKxWPsik9fc1atXeSqmixcvkjwqlYrraQCtcIdcfHw8T08SFBREipOEUqlMSkrq16+fcD1gX0iXAAAgAElEQVQDdYrF4rFjx/I6SIqDTvj06dNCn05Ccy5atIiAADb0PPOskpIS3nLU3t5e+HxJVEiorX///lwxIC2Xy0+fPs214uI2LRKJli9frsl7RKlUXrlyxcXFhVsEzl/gfrDKy8tDQ0O1cMMMw7Rq1erixYvvylMIu0OvfCUIfDSaE2N84MABGPFubm7aF9l5eXmXLl3avXv3unXrtm3bdvLkSd7pXCzLxsXFXbp0KTo6WljVsmXLGIaRSCRqnfEr86QJQzBs2DBNn/zK1KMlT35+/pkzZ7Zv375mzZq///772LFjvNmKV5ZLc5JbaWlpJ0+e/Pvvv9euXbtz586zZ8+q3UyS/JAAr1mEkEwmi4iI4N39wH/CqathYWEBAQG+vr579+4VasbLyspu37596dIlQu18YCFrurnU1NTQ0NAtW7asW7du+/btZ8+eBYpXe7u5ublHjhzZsGHDli1bwsPD1R4rqL2GT/YuOcjWysqKFzdGu8z379/fv3//+vXrN2/efOjQIeIYp73UzZs3YV3i4eEhXBBoL1tdd1Uq1d27d+GBbtq06eDBg4TRJ01kZWVFRkZGRUW9EyakeI0mHj9+HBISsnHjRl9f36CgoJs3b77TpjopKen48eNbt25dt27d7t27r169+q6KyxrtXWUqLysri4yM3LNnz/r16/39/UNCQuLj4zXtRbkV3rp1659//vHx8dm/f39MTMwH7nhycvLhw4eXLl06bdq0KVOm/PLLL2vWrAkODr5y5YqmJSxXeEiXlJRcvHhxz549Pj4+AQEB4eHhcXFxwk+zsGBxcXFYWNjGjRsDAgJOnjwp3ACwLJuenh4ZGbljxw4fH5+goKB///03Li6uMsAKm6NXPiICN27cgM2kg4NDZRYqLMveuXNn//79mzZt8vX1DQ0NjY2N5WrbNfXl+PHjzH+/adOmacrzNVxnWfbevXvBwcEbNmzw8/MLDg5+8OABd5OpCYTY2NidO3euWbNmz549N2/e1MSJaiqu5TrLstnZ2Tdu3AgKClq3bt2uXbvOnDnz8OHDykilpVp661NAAIK4wknMlZGnuLj4/Pnzu3fv9vHx2bx5c1hYGG+jp6WSwsJCUDTr6el9dD8PlmXj4+MPHz68ZcsWHx+fAwcO3Lx5k6sm09QRlUr14MGD48ePb9y40c/Pb//+/UK31Pz8/KioqKtXr6p1v9ZU82d0naAXEBCwbt26ffv2Xb16ley7N27cCHqDZcuWfcqd4u3ojx49mpKS8tZVikKhuHDhgr+//8aNGw8fPpyYmPjWIpUEAfjXqKgoWJHCTPvo0aPqqr+SYtBsahGAeMUikUjtMYfCImlpaaGhodu2bYOP5uXLl9XaSPEKZmdnA0mvr69PAsDy8nzgP1UqVXR0tPYZr6CgoKZnvIKCgvDw8MDAwPXr1wcGBp45c4asSB88eAAGW507d9YCDtiJHjlyBOb8/fv337hx4zOaolUq1Z07d/bt2+fr6wufHnIAlpZeY4wfPny4Y8eOtWvXBgUF3bp1qxoXhyUlJQ8fPjx69KiPj8/ff/994sSJ27dvf8rm+NqB+mTvPnnyhOs7C0dfVU3alStXculDZ2dnSkeBG1JQUNCyZctmzJjx448/zpo1a8WKFSEhIZVf3yYlJd29e/fSpUuRkZG3b99OTEys2gN6/1IKheLmzZsbN25cuHDhlClTfv311zVr1oSFhVVGRw0h3+7du0c6otasB4wFg4KCFi5cOHXq1NmzZ8+aNev333/fvXv33bt36Yh6/4f4VdXwMWnOiooKiEdhYGCg/fiW93kkSqUSjOWbNm1aZVZMLpfD6tDOzk54uuH7iFflsmppzqrVlpeXB6ZVPXr0+MAq9aoJTEt9bQioVCpilbl8+fIa7T7LsuRYqSNHjtRoW7RyisCnjABVgX3KT+dzl02pVBKL7yqcJlDJ7qtUKrA/lclkN27cqGQpmo0iQBF4TwSysrIgELqbm9s7GTlVod179+6BzcTo0aOrUJwW+bgIFBYW5ufnaw8UgTFWKBTE7aDmPhkfFwra+leIQHJyMpw+6+7uXnPdP3fuHEQWnTx5cs218lnUXFpamp+fXxnVfFBQEHhuaQrl9Vn0lwpJEdCEAMuykyZN4rrZDRo0qGp0dcuWLUk9IpHo+PHjmhr9aq9TpcpX++hpxz8KAh+T5sQYR0REgIf7nDlzaqj/xPZz6dKl7zO/BAUFyWQyhmF8fX1rSNR3qra6aE5yiDrDMGr97t9JKpqZIlBDCKSmpkJYFQcHh/T09BpqBWN8//59iJng7u5OfUpqDmdaM0WAIvCVI5CYmAiRKj09PWvITDs0NBQ23oMGDaLz+Vc+3mj3PyQCSqUSAlOLRKILFy7UXNNET1erVq2PHpCm5rr5pdb88uVLcAGpW7eu9rU9ObxcKpVqOQvmSwWK9utLRUChUMDRSyKRqLrOSeFhxbLsiBEjEEJmZmb37t3j3f2q/iwpKYEzs8RisfbDjIgpnkgkOnTo0FeFEu3s14NAbm4uOQsMIWRpaVkFf8GzZ88SjhMh1K5dOy3HbH092NKeUgQoAh8RgY9Mc5aVlQ0aNAghZGRk9OrVq2oH4vnz53Xq1EEINW3alMSgqForeXl5cIqhqalp5T3Nq9ZWZUpVF815+/ZtONTN1dW1MvHfKiMbzUMRqAkEgoODxf/9/P39a6J+qHPKlCkMw9SuXVv7/qfmBKA1UwQoAhSBrwSB5cuXi0QiXV1dcqhPNXa8uLi4R48eCCF7e/vc3NxqrJlWRRGgCLwVgZcvX4Ilq7W1dc2F1j9//jwcVjd48OCqeSG8tSM0Q80hoFQq4dB0qVQaGBioqSGVStW3b18gRAcNGqQpG71OEfgcEUhMTARXyzp16lT+eIjK9/TUqVNwAuWkSZO+8rh/LMtOmTIFKJlOnTppUnyxLPvHH39APE9HR0dqV1H5wUZzfl4IsCw7e/ZsLkk5a9asd+pCaWkpHGFLKvHz83sfz6J3ap1mpghQBCgCahH4yDQnxjgmJgYipnbu3PmtIWvU9kHLxUWLFolEIlNT0+vXr2vJVslbUVFRxsbGCKERI0ZU5pixSlZbtWzVQnOWl5cPHz4clICfAndbNShoqa8EgaKion79+iGE6tatW5mDjqoAS1RUFLD+M2fO/Mq3glVAjxahCFAEKALvhEBqamrz5s3BFq3aiZADBw5IJBKpVLpt27Z3kopmpghQBKoFgZMnTwLTuWrVqppwp87Ly+vYsSNCqGHDhjW0LKwWHGglWhDYvXu3gYEBQkhPT2/Dhg0JCQncKMe5ubkXLlxwc3MDFaqVlVVsbKyW2ugtisDniMDhw4f19PQYhtmwYUP1MgQZGRlNmzaFVRa198IYR0dHw2lWIpFo5MiRDx484DpClJaWxsTEzJkzB4hhhmGWLl1aEx+vz3GUUpm/SATi4+O5Dp0SiSQmJqbyPd2/fz/EdoZvdOfOnT+6krzywtOcFAGKwJeKwMenOTHGhw4dAiet4ODgagQ6Li6uVq1aCKFZs2ZV15GTfn5+IpGoVq1aly5dqkZRq1BVtdCcFy9e1NPTE4vFAQEBVZCBFqEIfGAEHj58CDTkkCFDqn3XkZOTQ7aCNWFO+4Gxos1RBCgCFIFPH4Hr16+DOmn+/PnVqN1LTk6G8OPdunWrdhO6Tx9VKiFF4FNAQKVSTZgwAazTakLDDueJGBgYnDhx4lPoL5WhCgiUl5dPnToVNKRisdjBwaFjx46DBg0aPXp0t27dnJ2djYyM4C7DMPv27eOSoFVojhahCHyCCFRUVIwaNQohVL9+fU0uhlUT28/PTyKRGBsbX758uWo1fHmlIiIiTExMEEIMw1hYWLRq1apv376jRo369ttvW7dubWVlJRKJ4O60adNq6EiFLw9V2qPPF4HTp0+D7zJ8aseNG1dJW3+VStW9e3cohRCytbWNi4v7fHGgklMEKAJfDAKfBM1ZVlY2atQoc3PzAQMGVBeyKpXqu+++Mzc3b9GiRTW6CGRnZ3fv3t3c3Hz8+PHVJWrV6nl/mlOpVLq5uZmbm3/zzTd0DVe1p0BLfXgEtm3bZmVl5eDgUO1BZQ8fPmxtbe3o6Hjnzp0P3y/aIkWAIkAR+DoR+P333y0sLNq2bZuUlFQtCLAs+9tvv5mbmzs5OWVkZFRLnbQSigBFoAoIPH782MHBwdzcfPHixVUorqWIUqls3bq1ubn56NGjqfeAFqA+/VtyuXzFihX169eHsLREZ0oSMpnM1dU1PDz80+8LlZAiUDUEHj58aGdnZ25uvmzZsqrVICylUChcXFzMzc2nTZtWSd5CWMmXd0WlUp06dapVq1YQK5jMMyQB9hbLli0rLS398rpPe0QRECIwffp0YPcRQlZWVpVkKyMiIkgphmHWr19f7U4IQlHpFYoARYAi8FYEPgmaE2OckZERHR39+PHjt0pcyQwsyz558iQ6Ojo1NbWSRSqZLTk5OTo6+smTJ5XMX0PZsrOzf/nll5kzZ169erVqTahUqocPH0ZHR1MlYNUApKU+CgJyufzRo0cxMTHV7nCZlZUVExMTHx9fXc7fHwUf2ihFgCJAEfi8ECgqKnr48OGjR4+qUaOUlJQUHR394sWLzwsKKi1F4MtD4OnTp9HR0fHx8dXbNZVKFRMTEx0dnZOTU70109o+PAIqlerFixfHjh1bunTpwIEDGzVqZGtr26JFi549ey5cuPDSpUuZmZkfXiraIkXgQyIQFxdXvVMlmSSr0eL/QwJSo23l5uZGRET4+vqOHz++devWtra2Tk5OXbp0GTdu3OHDh589e0YJmxrFn1b+SSHw+vXr9evXr/6/36tXryoj3oULF/6vxOqAgIDq9USvjAA0D0WAIkARUIvAp0JzqhWOXqQIUAQoAhQBigBFgCJAEaAIUAQoAhQBigBFgCJAEaAIUAQoAhQBigBFgCJAEaAIUAQoAkIEKM0pxIReoQhQBCgCFAGKAEWAIkARoAhQBCgCFAGKAEWAIkARoAhQBCgCFAGKAEWAIkARoAhQBD5pBCjN+Uk/HiocRYAiQBGgCFAEKAIUAYoARYAiQBGgCFAEKAIUAYoARYAiQBGgCFAEKAIUAYoARYAiIESA0pxCTOgVigBFgCJAEaAIUAQoAhQBigBFgCJAEaAIUAQoAhQBigBFgCJAEaAIUAQoAh8UgcLCwoyMjA/aJG2MIvCZI0Bpzs/8AVLxKQIUAYoARYAiQBGgCFAEKAIUAYoARYAiQBGgCFAEKAIUAYoARYAiQBH4DBHIy8u7evXq5s2bx40bV7duXYRQly5dPvF+5OXlHTt27ADnFxcXVxmZk5KSQkJCHj16VJnMNA9FoJIIUJqzkkDRbBQBigBFgCJAEaAIUAQoAhQBigBFgCJAEaAIUAQoAhQBigBFgCJAEaAIUASqDYGTJ0926dLF3Nwc/d9v0aJF1VZ7zVR0//59MzOz/5P3//+/VatWycnJb23twIEDEolk7NixLMu+NTPNQBGoJAKU5qwkUDQbRYAiQBGgCFQzAkqlUqFQfM3Lmi8SAeiUQvBTKpUqlaqaxxCtjiLwySCgUqkUCsXXPMgpAp/MYKSCUATUI0BfUoqA+pFBr1IEviwEWJZV/vf7srr1Dr0hCHzNG+13wItmpQh8SghER0cDayiVSk+cOPEpiaZGFqA5xWJxnz59Bg4caGJighCaM2fOWzfFQHOOHj2aTlNqYKWXqooApTmrihwt9zkj8ObNm0ePHp0/fz4mJqaoqOhz7gqVnSLwGSOwZs0aLy+vyMjIz7gP7ye6j4+Pl5fXxYsX36+aT6v0ihUrvNT9xo8f//PPPy9YsCAwMPDJkydvXfh+Wr2i0lAE3obAzp07vby8QkJC3pbxi72/Z88eLy+v4ODgL7aHtGMUgc8cgS1btnh5eZ08efIz70fVxd+2bZuXl9exY8eqXgUtSRGgCHzyCCQnJ0+dOnXmzJmZmZmfvLA1ImBaWtqMGTOmT5+elpZWIw3QSikCFIEaQ+DOnTtAc1paWj58+LDG2qmeioHmbNiwYXJyskqlCgoKEovFUqn077//1s5fUpqzeh4AreX/RYDSnP8vHvSvTwMBpVJZUVGhVCqrVxyWZTMzM7/99lupVEp86kUiUYcOHZ4/f659Cq5eSWhtFIFPCgF44z487dSjRw+E0O7duz8pND6kMN9++y1CaNu2bR+y0Zpuy93dHSZY5v/9kVkXEuPGjSsuLq5pYWj9FAG1CLAsW1FRoVAo1N6t2sUff/wRITR//vyqFf8CSk2ZMgUhNHv27C+gL7QLFIGPjkDFf7/qFWPUqFEIoVWrVlVvtZ9RbePGjUMILV269DOSmYpKEfiyEaiJJVlMTIy5ubm9vX1iYuKXjZ6m3j158sTW1tba2vrJkyea8tDrFAGKQJURqIlFGhHGz88PFCZOTk4lJSXkenUlWJZVve1X+bZI0NolS5aAUn3JkiUMw5iZmd26dUtLPZTm1AIOvVVlBCjNWWXoaMEaRGDr1q0uLi4rV66s3ja2b9/u4OCAEJLJZM7Ozh4eHk2bNgXK09raev369ZTprF7AaW2fCwL+/v4uLi5r1679wAJTmvMLpjnbtGmzifPz8fH5888/f/311379+llaWsLCvXHjxvfu3fvAo442RxHAGL969crFxaVLly7ViAalOSnNWY3DiVb1lSOQl5fXsmXL9u3bv3nzphqhoDQnpTmrcTjRqigC1YLA06dPXVxcPDw8qqU2qITSnJTmrMbhRKuiCPAQyMvLa926dfv27WsiNKBCoRgwYABoSyZPnsxr+n3+zMnJOXXq1OrVq+fMmfPTTz/9qPn3008/Vd6LlNCcEolkz549LMvm5OR4eHgghDp37lxQUKBJZkpzakKGXn8fBCjN+T7o0bI1hcDy5csRQl5eXtXYwL179xiGQQiZmZlFRUXBKXEKheLo0aMymQwhxDDM+fPnq7FFWhVF4HNBYPHixQihSZMmfWCBKc35BdOcY8eOVTucVCpVSUnJkCFDYO3esmXLvLw8tTnpRYpAzSHw7NkzhJBYLK7GJijNSWnOahxOtKqvHIGsrCyxWMwwjBb1UBUgojQnpTmrMGxoEYpAjSLw4MGDal+SUZqT0pw1Omhp5V85AtnZ2VKplGGY3NzcaociPT3d2dkZVCX//vtvddW/b98+U1NTkUgENWv/VyQShYeHV7JpQnMihOzs7OLi4jDGiYmJOjo6CKGBAwdqChpHac5KIkyzvRMClOZ8J7ho5g+EQLXTnPn5+d26dUMI1atXD6Zdbk8ePHhgbW2NEBoyZEhFRQX3Fk1TBL4GBCjN+bGe8ldIcwLULMuuXLkSnOkXLVr0sfCn7X61CFCasyYePaU5awJVWufXiQClOWvouVOas4aApdVSBKqMAKU5qwydloKU5tQCDr1FEXhPBGqU5rx7927t2rURQiYmJmVlZe8pKsb45cuX3333HY/XFIlEUqlUpuGno6Nz+vTpSjYNNKe5uXm9evUQQt27dwcTvWPHjhkbG+vq6gYGBqqtitKcamGhF98TAUpzvieAtHiNIFDtNOfDhw8tLS1FItGuXbuEErMsO2PGDIRQ8+bNqzc2lLAteoUi8AkiQGnOj/VQvlqaE2NcUVHh5uaGEJJIJKmpqR/rEdB2v04EKM1ZE8+d0pw1gSqt8+tEgNKcNfTcKc1ZQ8DSaikCVUaA0pxVhk5LQUpzagGH3qIIvCcCNUpz7t69GyjJ77///j3lxBinpaXZ2NhAXEOEkEgk+vnnn2/fvp2dnV2g9adQKCrZOtCcLi4uUVFRBgYGCKEJEyYolUqFQjF16lSEkLGxcXJysrA2SnMKMaFX3h8BSnO+P4ZVrCEtLW39+vWenp4NGzY0MjKqX7/+N99888cff/BCYCuVSh8fH29vb02Hh9+9e9fb23vjxo1cOQICAry9vc+fP19RUXHhwoXp06e3aNHCzMzM2tq6ZcuWU6dOvXr1qtBz/Pr161OmTAkICFAoFE+fPv3zzz/d3d2trKxMTU0bNWo0fPjwkJAQTZMdy7L//vvvpEmTmjdvbm5ubmZm5uTkNHr06CNHjgj9I3///Xdvb+/U1NSHDx/OmzevTZs21tbWJ0+exBgfOHDA29u7Xbt2CKHGjRt7//e7fPkyt3dVSF+6dEkmk1lZWcXExKgtvmnTJoZhTExMqjc2lNq26MWPgoBSqbx169b06dM7dOhgZ2dnZmbWvHnzgQMHBgUFZWRkcEWSy+Vz5szx9vaWy+Xc6yS9d+9eb29vnn3TkiVLvL29nz9/XlxcvGfPnoEDB9avX7927doODg4eHh6rV69WS+SsW7fO29s7MjJSLpefOXNm8uTJzZs3NzU1tbGxadOmzcyZM2/evKn2yFiVSnXmzJkffvihWbNmZv/9nJycxowZc+zYMeFLmp6ePmfOnMWLFxcVFYWGho4YMaJx48Zdu3bFGO/bt8/b27tNmzYIoaZNm8Ibd+3aNdLZ90yoVKqTJ0+OGTOmcePGpqam1tbWbm5uixcvvnPnDsZYU9DalJSUlStXuru729raGhsbOzo69uvX759//lEb3RSQT0xMLC4u3r179/fff0+Q79at2+rVq9PS0jT1ory8/J9//undu7ejo6ORkZGdnV3Xrl1Xrlz54sULbhGWZffv308m1V27dnl6etrb25uYmLRv337ChAnBwcGaTO1UKtWpU6e8vLycnJxMTU2trKzat2+/cOHCW7dusSyrluYsKioKDg4eNGgQDAY7Ozs3N7cpU6ZcunSJK9Vb0+Xl5UePHh09enSTJk1MTU0tLCyaNWs2adKkM2fOKJVKbvHy8nIY8+Xl5Q8ePJg9e7aLi4uZmVn9+vX79u27ZMmSmJgYteOQWwlJu7u7I4Q0Ba0l2TDGT58+NTQ0RAitX7+ee52mqwuB9PR0Hx+f7t27N2rUqFatWvXr1+/SpcuyZct4n0KVSrVx40Zvb+9Hjx6pbfr+/fve3t4bNmwgw+D+/fvTp0/38fEpKyt7/vz5X3/91aVLFxsbGxMTk4YNGw4ePHjfvn3CuQhjvHjxYm9v75cvXxYXF+/cubN///716tWrXbt23bp1PT0916xZk56erlYGsEX97bff3Nzc7OzsjIyMHB0du3fv7uvrm52dzSty9OhRb2/vU6dOlZSUBAQEfPPNNw4ODhCX+9mzZ1OmTIHIjQzDwKS3Zs2a0tJSXiXCP1mWvXz5sre3d/PmzS3++7Vq1WrGjBmw3NIStPbRo0fz5893dXW1srIyMTFp0KDB8OHDDxw4IDzQJSMj45dffpk/f35WVlZ2dnZAQED37t3r1KljbGxcr169Pn36bNmyRYs9VlZW1rp167755ht7e3sjI6O6dev27t3b398/JyeH2x2lUvnXX395e3snJCTk5OT4+fm5u7tbW1tbWlp26dIFoCPPmluQZdmrV69OnTrVxcUFEGjZsuW0adPOnTsnl8vV0pylpaXh4eFjx45t3bq1hYWFtbV1mzZtvLy8Tp06pWna5LbITRcWFgYGBg4cOLBBgwYmJiZQ1axZs6Kionhr2szMzJkzZ86ZM6eiouLKlSsTJ06Eb1CTJk0GDRq0atWqxMREbs1a0iqV6tdff/X29s7NzT1//vzEiROdnZ3btGmj9puupR56Sy0CRUVFBw8eHDx4sIuLi6mpqZ2dXfv27SdPnhwREcHLHxkZOXXq1B07dqgdmQUFBcuWLZs7d+6rV6+goEKhWLRokbe396tXr4qKirZv396vX7969eoZGxvXrVu3e/fu69evz8rK4rWCMYZX49atW+Xl5WFhYZMmTXJ2djY1NbW1tXV1dZ07d+69e/fUyoAxzs7O3rhxY58+fRwdHWvXrm1ra+vm5rZgwQK139CgoCBvb++LFy/m5+f7+vp27ty5Tp06s2fPzszMnDJlyoQJE5j/fhMnToRpSsvcyO0Fy7Lnz5+fNGlS06ZNzczMLC0t27ZtO2fOnCtXriiVSk1Ba/Py8nx9fT08POrUqVOrVi0HB4cePXr4+fnxVsjQ0PLly729vWNjY0tKSg4ePDhy5MhGjRqZmJjY29u7u7v//vvvCQkJXJG4ablcHhQURJZqNjY2nTp1WrJkSWxsLDcbxvjff/+dMmXK/v37VSrVoUOH+vXrV7duXRMTkzZt2owZM2bbtm35+fm8IvAny7IRERE//fSTs7Ozubm5hYVFmzZtZs2adfHiRYVCoZbmfPPmzYkTJ0aOHNmyZUtzc3MbG5t27dpNmDDhzJkzaj9katvFGFd+cV5RUfHLL794e3uXlZU9ffp00aJFrVu3NjMzc3Bw6NWr16+//qpp/a+26WXLlnl7e6ekpDx58mThwoVt27a1srIKCQlRm5le/FgIvHz5cuXKlR4eHvXr1zc2Nm7YsCEse3iBppRKJTxQTfuXq1event7//PPP6Qjly5dgissy8bGxi5fvrxjx46WlpZmZmaNGzceNWrUkSNHeCt/jHFhYeH8+fNnzZr1+vXrgoKCrVu39urVq27durDz6tWr18aNG7UoRh4/fvzrr7+2bdvWxsbGyMioXr16vXv31rREgc1aenr6nTt3Zs6c2bJlS0dHxytXrjx48GDKlCnDhg2D84Ngrtu6dWsl37uysrLAwMA+ffrUq1cPJq5u3br5+PikpKRoClrLsuzt27dnzZrVunVrS0tLUHONHTv2+PHjJSUlBFJIxMfHz5o1a8WKFYWFhSkpKT4+Pl27drWzs6tdu3aDBg0GDBiwc+dOLaK+evVqxYoVnTp1IvvZ/v37BwYG8vazCoVi/vz53t7eeXl5qampf/31l5ubm6WlpY2NjYeHBywyNX10Kioqdu7c2bdv33r16hkZGdWpU8fDw2PdunVJSUmaaM7Xr18LtwbLly/nbQ14UAj/zMnJ8ff3h6bhe9e+fftff93VUdgAACAASURBVP31wYMHPGmfPn06ffr0P//8U6FQnD17dvTo0Q0aNDA1NW3WrNnQoUPXrVuXkpIirF/tldzc3Llz586bN6+goODUqVOjR492cnJyd3cvLy9Xm59efE8EiouLQ0JChgwZwl2k/fzzz8JF2rVr16ZOnRoYGMhbkIMAhYWFy5Ytmz17dlJSEhFJqHzu1KnTW5XPZWVlCxYsmDp1akpKSlFR0bZt27799ltHR0eYuHr06OHr68vb9ZAWMcbx8fELFy5s166dra0tTFy9evXy9/cXznWg8btw4UJBQcGGDRtgkTZr1qysrCxYpIlEIoZhfvjhB5i4Xr9+zW3ofdLDhw+HKTEgIABjXFRU1LNnz/bt27fj/Dp16iTcRQobLSoq+v7774E0FYvFgwcPjo6OFmZ7zyuE5szIyAgODjY0NKxVq9bBgwcxxnl5eV26dEEINWvWTPimU5rzPZGnxdUiQGlOtbDU+MXMzExHR0exWCz0HK9duzaXYygvL4fA3OfOnVMrFth6dO/enXu3T58+oDhevXp1rVq1eK0ghExNTffv388tgjHeuXOnSCTq3bv3mTNnbG1ticUHKa6jozNx4kThEpBl2dWrV4PhBskMCR0dHW9vb572UF9fHyF0/vx5JycnyMYwzN69ezHGI0eO5NWAENq8eTNP1Hf9c9++fQih+vXrE/UHr4a1a9cihOzt7QsLC3m36J9fBgIXLlwwNTUVji6JRPL9999zGc3c3FzIpkmVDMcKrly5kouMo6MjQujQoUPu7u4QipPblkgkatmypfDT3rFjR4TQP//8s3jxYngvuKUQQlZWVmFhYdyGQI2yYsUKtfl1dHSmT5/O0x1HR0dLJJI6deosW7ZMV1cXmmjUqBHGeOjQobwWEUKawkrwxHjrnxUVFb/99htpkdtQ7dq1t23bppbmfP78edOmTYXHBkgkkhYtWgg1y4D84cOHO3bsqBb5Vq1aCUthjLOysrp06SKRSLiCgY2bjY3N/fv3SQeVSuWIESMQQitWrBgyZAic5sstJZPJ1J4Pr1AoVqxYoaenx80MaWNj4y1btghpzpKSkgEDBgibQAgZGBjs2LGDSKU9oVKpZs+erRZ8PT291atXc7egOTk5INXp06ft7e150jIMY2trGxUVpb1FcrfyNCfGGE6nHzFihFD/QiqkiaohkJWVVa9ePU0rjStXrpBqy8vLW7VqhRA6deoUuchNwDfUw8OD7F3hWGt3d/fw8HB7e3vhgkEmk40YMUK4AXNwcEAIHT582NXVVe0L27p1a7WqvcuXL1tYWAgbEovFLVu25G6bMcagyF6yZMl3331H3vHevXtjjIODg3kjHCHk6uqqSWPOxWHv3r1GRkbC4gYGBkuWLNFEc967dw96zSsok8mGDBlSXFzMbSI+Pt7MzMzKyurEiRMNGjQQPj6JRNKlSxchs4sxTkpKcnFxUVukbt26XGKvrKwMZs7Tp09369ZNWERPT2/FihVcwSAdEhJiYmLC6whCSF9ff/78+UKaU6VSafoK6Orq/v7778ImNF1RKpXDhg0TiooQMjc3P3z4MLdgdHQ0QqhWrVpbt24FWwquzAzDtGnTppKkkUKhgAl58+bN5Onb2Ni8fPmS2yJNVwGB0tLSYcOGwck93AcE3zuuEh9jvG7dOoSQpo9FSkoKMIt3794FSeRyOXzOjhw50rJlSzIPkIbEYnG7du2EaikwtQwKCpo5c6bab6idnd3FixeF/c3NzfX09BSuXmB/cfXqVV4R2Kz5+vr27NmTDOzhw4ffvn2bCMlNaDJ45VarUqk2b96sdn1Yq1at1atXq6U5U1JSWrVqRWQgjYrF4jp16sTHx3ObwBg3adIEIXTgwIFBgwapXa44OTnxzMWghsLCwmHDhgmLMAxjYWHB3f9ijJcsWYIQGj9+/I8//igcJBKJZPjw4TzBMMYsywYGBqrdkxoaGv7xxx9CmrOiomLatGlqn7Went7atWuFrai9olKptCzOZ8yYwV2cFxQUAM53794FPAnskDAyMgoNDVXbkPAiPPHIyMhmzZqRenhvkLAUvfIhEUhLS6tTp45wfhCJRLa2tg8ePCDClJSUwHeWZ/tOMmzYsAEhNGjQIHLF398fzj87e/astbW1cKWko6Mzbdo07gjEGKenp1tZWRkaGh4/frxRo0ZqJ8mOHTtmZmaShkji5MmTpqamwoYkEomrq6twXoX368SJE3Xr1oUhqqend/r06YCAADJiSWLAgAGVYa3evHnTt29ftStJa2vrTZs2mZub29vbcxc/GONz587BWUWkOUiAzorHWV66dMnAwKB58+ZhYWF169YVPj6pVNq7d2+1C8iEhAQnJydhEYlE0rZtWy5Eb968gWyxsbFubm5CVA0MDNRqw968edO/f3+1CFhZWfn7+9va2lpbW3O/HZmZmVq2BpGRkeQRa08UFhb26tVL2Ds4mY/3iQwLC0MIOTs7r1q1Svh5Yhima9eulXniGOPnz59LJBJzc/NVq1aRSbt+/fo8ZaN24endSiJQVlY2YsQI4fcXFmlbt27l1uPr6wtHgKnd0aelpQETf/v2bVKqasrnoqIiW1tbsVh89OhRZ2dntRNX+/bt1S7yz549a2ZmJnzFxGJx27ZteZq6fv36IYTWrVvXq1cvskAaOnTonTt3eLMH/Pn48WPStfdJKBQKY2Nj2MXAK6lSqTIyMiDeIUJIKpVu2LAhNTWV7Mq1NBcWFkYgmjlzJu8roKXgO93i0pxyuXz8+PHAOMBe6eXLl/Xq1WMYZurUqbxqKc3JA4T+WS0IUJqzWmB8t0rkcvnYsWMRQtbW1uvXr3/58mVFRUVSUtLff//dtGlThFCHDh0Iv1JWVlZlmvObb74Ri8WmpqZLliyJjIzMycmJjo729/dv2LAhQkgmk+3bt48rOnxpHB0d9fX19fT0xo8ff+rUqYyMjBcvXhw5cqRr164SiUQkEk2bNo1bSqlUQsRLsVjcv3//CxcuFBUVpaWlnTp1CvalIpFo/Pjx3FkYlP6urq4IoSZNmnh7e2/duhW+K7GxsREREbAJ79GjR8R/P7UUBVeGt6blcnlGRkZOTg5XDFJKpVLBE+ncuTNdJBFYvqREVlaWpaUlQqhdu3YnT57Mzc0tLi5++PDh7NmzYW+wYMEC0l9C+ZDXkNyChBaas0WLFgzDtG7dOjAwMDY2NjMzEwxsQc3q4ODAs9gFmrN79+5isdjc3Hz58uXXr1/Pycm5f//++vXrQTOuo6Nz5MgRIoNCoZg3bx6E+vz+++8vXrxYVFSUmpoaFhb2ww8/yGQykUg0adIk7lAHmlNPT8/KykoikXh6ei5YsODEiRMY40ePHkVERIAVbd++feGNU8sxEAEqn/jzzz9lMplYLO7Vq1d4eHh+fv7r16+PHTs2aNAggB3WcLt37yZ13r9/387ODpy5/f39Y2Ji8vLyrl69umDBAmCpx40bRzJDApT1Li4uDMO0bdt2+/btjx8/BuQnT54MyDs6OvL0dHK5HM7rtbS0XLp0aVRUVEFBwf379319feFQgWbNmhEclEolWNXp6uqKRCIPD4+wsLDMzMzc3NzLly8PHToU1r68GRVjvHbtWnginp6ep06dysvLy8jIOHHixNChQwEBOHdh27ZtpFMHDhyQyWT6+vpTp06NjY0tLS3NzMw8duxYjx49RCKRrq4uTw9ICnITb968gVlUKpWOHTv2xo0bxcXFL168OHr0KIxesVg8f/58MkjImNfX17ewsJg/f35MTMybN28SExP//vtvUEn06NGD24SW9DvRnAsWLEAIderUSa2OQEsr9JZ2BCoqKiZMmAArjbVr15KVxtatW0EN6urqSsx6ysvLW7ZsWQWaE+zTdXR0Ro0aFRoampaWlpSUdPz48R49ekilUoZhJkyYwJMTpjUiw86dO588eZKRkXHx4sUff/wRXtiGDRs+f/6cW/D+/fsWFhbgdL5r167Xr18XFRVdu3Zt7dq1derUgRmDWwQU2Y0aNUIIWVhYjB49evXq1UDVZ2RkRERE/PPPP2AnC5PenTt3eLotbuuQPnjwIKjO27Rpc+DAgaysrJycnDNnzkyaNAlULfCVmT9/PrdsaGgoQNG6detdu3bFx8dnZGSAr5WOjg7DMDw2EWhOfX19BwcHkUjUq1evkJCQxMTE9PT006dPDxkyBFZQHh4ePLvjhISExo0bwxnkvr6+9+/fLywsjIqKWrZsmZWVFUJowIABpI+lpaUwcxoaGurq6g4aNOjChQv5+fkZGRn/+9//gKoxNDTkzTaHDx8GBFq0aLFv377MzMycnJyzZ8/+/PPPgAA0NHv2bIJAXFwcGNuBXqCoqCgvL+/ChQvDhw8Xi8UMwwQHB5PMWhLZ2dmtW7eGtevs2bNjY2OLi4vj4uL27t3btWtX+CAGBAQQ6w2gORmG0dHRsbe3X7t2bUJCQlFR0dOnT//44w/49Ai/JmoFIDQnfBo6duw4Z86cgwcPCm3+1BanF7UgcOzYMR0dHT09vcmTJz969KikpCQrKys0NLR3794ikUgikXBjGIA9YhVoTrK32r17d1xcXEZGxoULF3744QcYzM7OzjwjCaA5e/bsKRKJLC0tV61adfPmzezs7Dt37qxcudLGxgYhpKuryzMKSU1NhQmnVq1aS5cuhdgeMTExgYGBYEQilUoPHTrERQNoTtjlWVtbjx07du3atXfu3CksLIyIiAgJCQFHgbCwMJimKjPkAgMD9fT0GIbp2LHj0aNHs//7QUgJ0FSamZkhhFatWkUkSUlJad68OULIwcFh3bp1d+/eLSoqunnzJulsz549eU0DLdehQweGYRo1arRp06YHDx5kZWVdv3593rx5YA2gr69/8+ZN0grGWKlUDh48mGEYY2PjOXPmXL58OScn59GjR1u2bIEKTU1NuVpCoDllMhnDMK6urgcOHEhLS8vLy7t58+bEiRNBbefr68ttAmO8Z88eUKO3b9/+8OHDgEB4ePiECRMAAXNzc4TQ0qVLScHr16/r6+tLJJIxY8ZER0cXFxfn5uaeOXNm4MCB8AhgwUzyq00IF+fFxcUpKSmaFuf5+fmgGDU0NDQxMZkyZcqdO3dKS0tfvXoVHBwMo6JNmzZCUyG1rUOXYU/RqFGjn3/+ecuWLdQUQy1WH+ViaWlp7969EUJ16tQJCAhITk4uLy9PTEzcsGFD/fr1EUI9e/YkglWZ5mzQoAHsICZNmhQeHp6VlfX8+XMwwBX/95s7dy5phdCcUqm0fv36DMN4eHjs378/ISEhPT393Llzo0aNIq8Sj+k8e/assbExGAwdPHgwMzOzsLDw8uXLf/75JywD2rVrl5uby20LFgmw1HRxcZk2bdqOHTsyMzNTUlIiIiI2btwIZqYw18XExJAdCrcSbvrNmzcDBgyA2XjSpEk3b94sLS19+vTp7t2727dvzzAMvNRcmpNl2d27d8OSrHPnzsHBwYmJiWlpaadPnx45ciTDMCKR6O+//+a2AjSnmZmZhYWFVCodNGjQ0aNHk5OT4dXu27cvzCqDBw8myw8ofvv2bYDCyclp8+bNDx8+zM3NjYyMnDdvnomJCcMwEF8EMhOa08jIyMDAYPTo0ZGRkaBPO378eMeOHcHelMtWYozLysrAWFlXV3fChAlRUVElJSXPnj0LCgrq2LGjSCTS09OTyWRcmrOiogLoB2tr63Xr1nG3BjDntG/fvjJzTlpaGvgq6OvrL1myJCEhAfQqO3bsgA+oRCIJDg4mmJw8eRIhJBaLpVJpo0aNAgICXr58WVhYGBsbO3/+fDB8mTFjBhd5TWmgOWUyma2tLWzJf/3112PHjqml1jRVQq9XEoHQ0FAdHR1dXd2ffvqJu0jr06ePSCQSi8VcPrvKNOe7Kp+B5mQYBnY97u7uQUFBZHs1btw4mLiEDgZXrlwBbVKLFi2Cg4PT09OLioquXLmyevVqW1tbhFCLFi249gdAc8Ia0srKiizSioqKIiIiDh06BBuZ0NBQmLg0aQ4riTbJFhERAcsDrotOdna2p6enWCweNWoUV0hSSm2ivLwcdtwMwwwcOPCt86raSipzkUtzYozz8/M7deqEEHJzc8vIyGBZds+ePTAD7N27l8wMEMpRIpGMHj2ae7EyLdI8FAEtCFCaUws4NXUrLS2tSZMmYrGYt5DCGF+7dk0qlYrFYhI47n1oToSQra1tZGQkd0ZTqVSvXr2C/aSjoyPXIQBoTphVV65cyTOqys/PBy5QR0eHS9VkZWWB8tHb25s3uZeVlYF1oVgsPnv2LAGU+DZ169YNJj5yCxLVfjYnr37en9euXQNlx9SpU7lY8bLRPz9fBMAVydDQkGfYpVAoYGclk8mIyphQPrzxTLqvheZECHXt2vX169fcT3VFRcWZM2dq167NMAzPBxRUEgghR0fHe/fucYefSqV68eIFGCW0bNmSkECpqanm5uYMw8yYMYPHypeVlfn5+cFG4vz580RgoDnh1V68eDHPeQjCSCKEuDsuUrbKieTkZFhlDhgwgBc5pKSk5JdffgF5EEJcmnPSpEkMwzRv3vzp06fcppVK5YkTJxBCOjo6vG0eKOsRQh4eHunp6Vzk5XJ5eHi4sbGxSCRavXo1t0J/f38wQT1//jwXdozxgwcP6tatKxaLd+7cCUUIzYkQ8vT05MUaKi8v79mzJ7AIXBO5lJQUmFj69OnDi4xXVla2ePFiYkvIpTnBbbR37968GTg7Oxvow2XLlnE7ojZ97do1Q0NDqVS6evVqXj3FxcW///47sALEoJKMeRMTk3PnznEBYVkWXh+JRMJDXm3TGON3ojm3bdvGMIyzs7PayHiamqDX34pARkZGs2bNRCLRpk2beJlv3Lihq6srFouJy3KVaU54ixctWsRTghcWFoJjn0wm44UiJH6N3bt3503Icrk8NDTUyMhIJBJxldcKhQI2aTY2NlwlOPTrxo0bcOLI4sWLSU+B5gQvw7CwMO6QhjzvejZndnY20HUuLi68sBByuTwwMBCmO4QQl+YsKSnx9PSEyYE3DZaVlQHVqq+vz2VZgOYEYEeOHCmcbTZs2CD57/e///2P9BdjPGfOHIZh6tSpwwtGxLLs2bNngSCEaOEYY0JzIoS8vb15jy8lJaVZs2YMw3C9LXNzc2Gx16xZs5cvX3Jn2oqKiqCgIJjuEEJcmnP+/PkIITMzM8Kpg8zl5eXwjPr06cONpsDtETe9ZcsWkUhkYGAgPAohLy8PGP2GDRsSJIHmBOYmMTGRK61SqVy5ciUAQvJz2+KlCc2JEPrpp5/It5iXjf5ZBQTGjBkD327upxP0I+DozzVBqzLNCRQCT00vl8sPHTpkaGgoEol4XjKgpQXjifj4eO7soVQqExISYNXh4eFBVlMsy4L9mbGxcUREBLEnAEyys7NBWdalSxey1MQYA80J7sgRERHchiDgBGjQuEW0g5yRkQGWIq6ursROC4rI5XJfX1/iRsmlORctWsQwjLm5OVkSkFYuXryoq6srlUq5fDPx5gTbwVevXnHfL4VC8eDBA9DvT548mdup4OBgWHcdP36cd6DJixcvXF1deXMO0JwIobZt2wofH4T/cXFx4eKTmZkJE7VQvymXywMCAoj3D5fmhIOjGjduTB4oIFBWVjZ48GAIws97pgQikkhNTQUfEbWLc3C/E4vFZHFOaE5dXd3du3fzdPRnzpwBhQA37gJpS5ggH6BOnTrxVsLCzPTKh0cgLi7Ozs5OKpUePXqU2zrLsufOnYM1OdFcV5nmhJWDj48P7/3Kzc2Frauuru6zZ8+IAODNCaWEm7Xy8vLAwEBYLh44cICUqqioAHbBxcVF6LR97tw5MAndsGEDKYIxJq/ed999l5WVxZ00YOcFu1duEe3py5cvS6VSiUTy119/8fqbmpoKOxHwpCfenOnp6cCzTpw4kbe4Kikp8fHxAR817uQJNCdANG3aNB4F+ObNm4ULF4Jz1b1797gCjxs3DuyeeRG8FQrF0aNHYT9L9GmE5gQLDN6i6OHDh/b29iKRiOc8d+PGDTCl/eOPP3gIvH79Gmx5wdiRbN/S09OdnZ1FIpG/vz9XWoxxVFSUjo6OWCzmrSF52cBjHiZnIyOj8+fP8+bGnJwciJDZoUMHQnUDzQlfVeEnA3QCOjo65BUQNkquAM0JT2TevHm8J0Ky0US1IODl5YUQEvqBFBQUwO5m3rx55F2uMs0JT7PyymegOaGUUMcil8v37dunr68vFou3b99OcKioqAAFeMOGDbnTIGS4dOkS6Iu4qyNYuYFXolBfVHNnc86YMQN617VrV1gb5Obmdu7cWSaTbdq0ibdlIx1Um7hy5QpUZWJiwpuj1Oav8kUezYkxjomJsbe3B8N6jLFCofjtt98QQoaGhtyFDfXmrDLmtKAWBCjNqQWcmrr1/PlzW1tbXV3d8PBwXhsqlapDhw5mZmYQhhsMtarszQnqNu4OkzR3+fLlWrVqyWQy7rKV0JwtWrTgLbCg4OvXr8HRasiQIWQ/BtolY2Nj7qKQNIQxBgKge/fuhDQCmtPY2JjoWLn5McaaaM6zZ89uqfRPuF3ntULOUAG7YzMzMx6zIsxPr3ymCIBOE8K08rqgVCobNGhgZmZ248YNuEUoHzJieUW00JyaRpFcLv/hhx+AzuSq8wjNuWrVKrJM5DZ38uRJ/f9+ZLqAFaeFhYWmzQCsO/v06UNIUEJzDh06lFs5SYNDtpDmLCgo2Lt3byXfuV27dhHElErl5MmTIeguT7sNjebl5YHdHJfmfPDgAXh/8jweiJzgofjNN99w91SgcDQzM+PtJKFUeXk5GK7Wq1ePIP/q1Ss9PT2RSLR8+XJSOTexevVqhFCjRo2AIyQ0p5mZGU/XBqVg8nR1dSU7OpVKNXPmTPAk4+rgSCv5+fngG4QQ4tKcMCSEMT0wxqtWrTIzM6uMB1L//v1B/6hWI69UKuE0Vm9vb5jJyZgfN24cb6uMMa6oqADnp127dhH5tSTeiebct2+fWCyuV6/e+3vtaxHpK7z16tUre3t7HR0dYdQ7lUrVpUsXMzMzcqr3+9Cczs7OahcMmZmZwGj27NmT+8LCRQsLi+TkZOFzKSsrg9e8QYMGhKE/dOgQkFKaPut//PEHKKcIAUloTqEqBxp9V5pz8+bNCCFjY2NeRCOorbS0FAJQ82jO06dPSyQSfX3969evCzuLMYbpetq0aWSpRmjOunXrkjmcW7agoABoGBcXF4L848ePQT9FjDO4RTDGEydORAi1bt0aXvD/j733Dqvi+P7HZ/deei/SlGIBRSyosfcYNWJ5q9HYYkks0YgtJlasqIANUbFhDwQ1BjTGXhONFSsqahQrUkSQ3u7d+T3fnOczz/z23l0uV1DUuX/A7O7U1+7Onjmvc84QmrNq1aqas4QgCDCBDxgwgNQTERHB87ylpaXWmbagoKBPnz6wlqZpTpiLWrZsSeohiUOHDjk7O7dp00brpEqygagG8T9GjBhBP0skz71796pWrapQKIgSEGhOnue17vtbWFgIpKxoj21SIZ0gNKemoofOxtJ6INCmTRspE6vly5fb2dkNHjyYvBp605yOjo5azWjy8/OBxCLfehgCvF88z4eHh2sd1M6dO42MjCwtLcl7/eLFi1q1askIFadOnTIzMzMwMKCNPgnNqfW1TUtLKxPNKQgCyLq2trYiDT6MIicnp0WLFvCSEkXevXv3jIyMNH2YyMDHjx8PLg5ktiE0p5mZ2YkTJ0hOkhAEAZRZzs7OxLwjLS3N09OT4zh/f3+Sk05s3boVfN3IvEc06SJbGSj1119/GRgYVKtWjfjxC4KwbNkyhJCNjQ0RxugmcnNzgT4XeXN26dIFIdS9e3c6M6QjIyMdHBy6deumVZSl84Nw7uDgIC+cd+vWDQZIaM527dqRIZMKS0pKYMW9dOlSclImATSnkZERWcvIZGaX3j0Cly9ftrW1tbS01BRj1Gp1w4YN7ezsduzYAR17G5rT19dXU4zHGL948QI80YcNG0Z0OITmrFq1quZDiDHOyckBtszb25vMAOHh4eBDKRVTF3T0FhYW9LsANKebm5tWEeL69etlojmLiopgovb19SWLO/q2Pnv2DAL/0t6cW7ZsUSgULi4umgZzUBYkjUWLFpElOaE5RZ8J0lZ6ejqs5j777DOC/LVr12A9K2K1SSmIovTFF1+ASENoTnd3d03eTq1W+/n5IYTogGpFRUXNmjWDuGha793z58/BcY325nz8+HG1atWMjY21bojTunVrOzs7TeNI0m1IpKWl1a5dm+O4mTNnii7B4blz5ywtLQ0MDPbv3w9ngOY0NDTU3DMLY1xYWAi6QVEEEa2VE5qzV69eWjOwk+WIAGypqBmYB2O8cuVKOzu7gQMHkvnkbWjOMimfCc3p7OysVceSl5cHDKWXlxdZS4KMYWRkJKV/BrtMc3NzstAjNCdNlxJ4ZWjO69ev66g9Cw8Pp2O2YYzz8vIgeg0JvHH37t22bds6ODjoGP+G9BBjDKbtCKHWrVtrXUDRmd8mrUlzCoKwbt06MMzdvXu3IAj5+fkgbrVr145MdIzmfBvYWVkpBBjNKYVMBZ5//vy5l5cXx3FDhw4lHwbSXlJSUkJCAlkWvo03p6GhIZmmSf2QyM3NBfbx559/JpdAU69QKGSEDND0ETfQ/Px8CL24YMECUo8oERMTY2ho6O7uTuRaEnJNaraVojnJ+hxW6fJ/S/V5ys7O9vf3B/V9lSpVdN+NQDRAdlj5EdiyZQvYWm7bto0sXUi3ExMTExISiG0UoXwIaUdyQkKG5uzXrx9ZB4pK3bp1C55Y2pYKOC0ZA8bMzExYxoBOKj8/H+J0ERWVqBWM8a5duyAAEQlXBTSnoaHhrl27NPPLeHPeunULonvJv2tw1cHBgTBVr169ghhoZcxNQwAAIABJREFUtL28qOk///wTChJvTn9/f4hfKjUzPHjwQKlUmpmZ0UYVQHMOGDBACvmbN29CQ0Suhc35atSoIbLcJz3My8uDMETgWE9oTime+MCBA8bGxvXr1yf6+oyMDFiB084opH5IgIuViOYErWvdunXJ7SOlMjMzExISCMjkvCiRk5MDD4nMHqtLlizhOK5Zs2bwkJNnXnPdC5XD3KuVMBC1XlZvzqioKKVS6ebmppX00qycndERgeTkZG9vb47jBg8eXKqkoTfNqVAoiAWGZsd27twJGmfaaxNozmHDhkm95qDtQgiBRbkgCKBn//zzzzVnb2g0KysLZiqyFRnQnM7Ozlq1PxjjMtGcKpVq8ODBsOWMVLcvXLgA8wztzdmjRw+E0P/+9z/NWwA9j4qK4nm+VatWZL0HNCfHcUFBQZqQwhlinEvEKiAVmjRpItW9rKwskNbAf5HQnLQQSDcXFBSEEOrRowecFAQBLHV69OhBVAZ0fowx2VCQpjknTZoE+lBNwTI/P//BgweJiYlSfSb1v379GpzAaIqIXAUbYVAa9u3bF84DzWlsbEwcWOn8GGMIQiX1TaQzE5qTVn3SGVhabwQgGrynpyd5kklVb968SUhIoFcxetOco0ePlnoB4+Li4LWl9fXw7ba0tBSFYSB9S01NhXh9hAe9cOECz/PW1tZkZ1CSGRKFhYVNmjRBCI0ZM4ZcAprT1dVVq5q+rDQnMbbQNFkjLZ45cwbGS2RIMOpq2LAhUdCTzJDIycmBqYOwiYTmlAlv+PDhQ4hXQSLanT592sLCwtHRkTgwiRoqKCgAIoTwQEBztm3bVqs0fuvWLVtbWycnJ8JYFBUVgbHFN998I6qcHJ49exYQoKVT2FbZ3t6eSIkkf05Ozv379588eULodnKJThDhXBQ4hM4THR1tYGBQs2ZNkO4Izbl9+3Y6G0nD4yEjQ5KcGGOgOWmihb7K0u8dgTt37kCMTX9/f83p6Pnz5wkJCcQ6QW+aU6lU0nt8ikYN2xv7+PiQhoDm5DhuxowZoszk8Pz58/DKwJurUqlAsCFfW5KTJDIzM2FLDtpoFd7u/v37aw5fD2/O+Ph46JWMrRL4CNI0JxiWjRkzRup1hsXRV199RVaUQHPyPE9IaDJMkiDrWbKQGTNmDPjASYk38fHxCoXCxsYGxGNCcwYHB5Nq6QSIUvTMdvfuXUBAFD6dLgVGzDTN+fLlyzp16nAcN2TIEM0bIVJC0lXR6evXr/M8b25uLgpLTvIUFhZCvMpvv/0WTgLNWbVqVU0vOsgAVLGUjEdqJntzKpVKHU1v6bIsXVYEIGpCzZo1RVv/YIxBSHv27BlZmulNc5ZJ+YwxJjTnhAkTSOuioZElCZhJqdVqMKLVas8EZd+8eQOWATt37oQzQHNWq1ZNq5AmQ3OCpTu8oaX+bdq0Kd35u3fvEk+A+Pj4P//809XV1cPDIy4uTvOdpQtqTUPQFHA8aFvGX/v27WG3F601i05q0pxgKP/zzz9D6yAex8fHGxsbcxxHnKYYzSlCkh2WCwKM5iwXGMtWCXFWQAjVqFEjIiLi5s2bhNcU1fU2NGezZs1EtZFDQRDAtH/w4MHkJNCc1apV02oXA9kuXryoUCicnZ1BTLl//z7M3VoNpaHIjRs3HBwcaE95oDmJxyrpAElI0Zz+/v6ddf6RTxSpliTy8vIOHjxYv3592AeiTp06Wu2RSX6W+NAReP78OUTQUigUvXr1OnHixIMHD7TqTTDGhPKRyiBDc8oopktKSuDJp3dwBJqzdevWUggLggCxX0A1lpCQUOobFxcXZ/ffj6jtgOa0s7O7efOm1oakvDkTExO/+uorHd+5/v37kyDYDx8+9PDwMDExkbEeEAQBlsFAcwqCAGiMHz/+kcTv8uXLNjY2xsbGdEQdoDllDN4J8sQIDjwe2rdvf//+fYmmHgEZAxsyEZqTDuFII3nq1Clzc/N69eqRmfDp06eenp7GxsZHjx6lc4rSYGtMe3Nu27YNwsrZ2trOmzfv0qVLSUlJUutkUW1wePXqVdh0UOqzgjH+448/FAqFm5sbzPbkmad1ynTlvXv3RgjJPN505jJ5c0ZERMDmXrTRN10bS+uHQGFhITiXgBP5xo0bb968Sd5QUZ1605yOjo5ErSOqE2N8//59pVJpYWFB4vBjjOHNIo6kmqXICxsdHY0xLioqAu5fymwcagCNMCHYgOaUUcOVieYsKioCH6Dly5drdpicga8MoTkFQXBycoIXR2qe2bFjB1hIECYYaE4TExMZ5V1xcTHMEiC6kM/EsGHDpBp6+PAhhJyFJSuhOWNiYkj/6cTGjRsRQt26dYOTgiCAbZwo7jpdBGMM4yV3AWN89epViCFpbm7u7+9/7ty5J0+eSBGlotrI4YkTJ2BOI2QwuUQSEBOyQYMGcAZoTgsLC6lpEKYprY4FpE5IEJqTCYoiZN7+MCoqCiyKbGxsAgICLl68+OLFCym+TW+aU3OLENLzkpISUL7T1vRAc8psR61Wq8EPderUqVAV2NJJeWBDHtD10J7NMGtJRWgoK82ZmZnZtGlThUIhRZtBN8AihNCc8Jn4+uuvpaaOR48ewcx25swZghtEfqNdi8glSKhUKnCYJv70u3btUiqVPj4+V65ckWoLtmkgpm9Acw4ZMkSrCHT//n0XFxcnJyfi65mbm9uqVSvN0I6ivsEmyjTNeeLECeitpaXl1KlTz58//+zZM8JziIprPSTCObF108x25coVOzs7e3t7+CASmpNE1BQVgXU6ecZEV0WHQHPKf6FERdjhu0QgJycHvqEIIR8fn19++SU+Pl6rzzF488DqgKzjRF2F712fPn3IedgkyN3dXWr+xBgfP34coqeQaO1AcxoYGMhY/BQXF8MsDXHys7KygMEiRh6kD3QCvrA0aQczrdTsVFZvzn379iGEHBwc6EZF6b1794LDN7xigiDA7LdmzRqpKSgkJAS2eyQaAKA5bWxsZPhjYkZ26dIliOkKIXMmTZok1dA///xjZWVFxGNCc0oZZgUGBiKEBg0aRMZ48OBBiBhEzmgmDh48KNqbs7CwELaggn3cN23aJLM00KwQzsBWJg4ODsRAXDMnKBaaN28Ol4DmrFOnjpRbPOxgLWM3SZoAb04LCwsprEhOlnh7BHbt2gVvro2NzezZs+WFNL1pzjIpnwnNyXGcDNVdXFwMPQdNTm5u7hdffIEQCgkJkYEF1npEPACakzYvoMvK0Jxr167VUXvWuXNnUYiLP//8E5Z4VapU2bBhg7W1tZWVlYw+je6SKK1Wq4lDaqlsq2YGnud1eSWhUa00J6hVwSe4a9euMK8eOHAAFobh4eGCIDCaU3TX2GG5IMBoznKBscyVJCUljR07FhxuFAqFg4NDgwYNBg8e/Oeff4rMNN6G5iQmVFr7BwJT+/btyVWgORs3bkxkO3KJJO7evWtnZ2djYwPGtrCfhIWFhZQpDcb40aNH7u7u9M4uQPbIWJ9J0ZykG2+TSEtLGzhwIPRBqVROmzZNRkv7Ng2xspUKgYsXL4IMDcEP3dzcmjdvPnPmzFu3bomeXkL5SL0IMjSnvM4UbPnpDeRkIpQS9GDDpy+//BJjfOjQIYSQpaWlqM8kM3gpwQYwxAILaE4nJyfNPVSgoBTNSVdbpvTVq1ft7e1tbW2lPBtgHQgen6DSys7Odnd3B9+v6hI/Nzc3nucNDQ3J5kYYY6A5ZZboGGNYcM6ePRviH0I8RlNTUw8PD4mmqisUCoQQ6IwIzUmv2GlANGnO27dvOzo6WllZkaB2dH6Shk1iaJozNzd35cqVIJpzHGdtbV2nTp0ePXps2bJFSl9PaoMErD9tbW1lHpKLFy8qlUpjY2OokzzzUuvPiqM54Uvk6+srxcCJRscOdUfg5cuX48ePJ5JGlSpVGjRoMGjQoD/++EOkNdab5vT29pbR6iYlJTk6OpqYmND7ugHNKRXIC0YHczXElM7NzW3dujXHcaGhoTJjh5ea0HJAc44dO1aqSJlozoKCAlDrE/271mpheUxozrS0NPBncnBwkJpnHB0dOY7z8PAgmm6gOa2trUFfprUhjLGnpydCCGJd5uXlATFjZWUl1ZCHhwc4RP7+++/03pz0raHb0qQ5YXtU4i9LZybpTp06ifbmVKvVv/76K9k3ztzcvFatWp06dVq5ciWJMEyKSyXAtdTR0VFmTouJiYEdXyAP0JyWlpZSajg9aE4ZLadUz9l5eQTy8vJWr15NvndWVla1a9fu3r17RESEpiel3jQniZuntTMNGjRACNFOePA2/fTTT1rzw0nw/+vduzccTpkyBSEkY12KMd68eTMEviaPsby7XllpzpSUlOrVqxsaGoJST6rzIHYCzVlQUAARKS0tLaWmjurVq8PUQcu3MB/KxzYEJph4r4InmZGRkZubm1Rb8LUiLuZAc44aNUqr65UmzZmZmVmrVi2FQiEvEELHiB4THA62bNkCC0OEkIWFhaenZ9euXdesWUPHDpGCtKzCOcSVJTQnca0T1a8HzSlltiKqmR2+FwSePXv2zTffwOJCoVA4Ojr6+vqOGDHi2LFjZE6AjuntzdmiRQuRHokeaVxcnLW1taOjI2FPgeY0NjaWkgSgOAQ/APP0pKSkunXrKpVKeSkO4ivQMhjM81LWQmWlOUNDQxFC9erVowcoSsMOTcSb8+XLlyCSOTo6Sk1BdnZ2EKObBPMHmpOOSSZqBWKuurq6IoRgk4isrCww+bK1tZVqyNXVled5U1NTMB8hNKfUOl2T5ly3bh1CyNvbW7M/5MyFCxesra1pb06M8cuXL3/44QfNpcGBAwdESwNSjygBsT2JVZnoKhxu376d1lcAzVmvXj0pK7ey0pw2NjZSjqFa+8NO6odAfn4+2dOa4zgQ0vz8/DZt2qQppOlNc5ZJ+UxoTp7nDx8+LDMu0DJBJKr09PRGjRqVagcGRgBDhgyBaoEjlJIGZWhOmV6VegmUcrB9L/CdZmZmtOKr1BpIBkEQYCrWpDB1OWNgYCBvrE8awhhL0ZxwyczMjOM42HlErVbDHOLk5PTgwQNGc9IwsnR5IcBozvJCssz1lJSUxMTE9OnTp06dOnZ2diD1IoTc3NxOnTpFVnSl0pxgQdypUye6B7ByHjduHH1SlAaBiV6TA81JwhiK8sMh0JxWVlYQf2zPnj2lmpIlJiZ6eHhwHEciUcBKUjM0EGmxgmhOlUp1+vRp0LEaGRl9/vnnbAsTgvmnkMjMzFy0aFH79u09PDzMzc3JB37IkCG0vpVQPlI0J1A+IqcWINtohwBNSIHmpI22QN/0448/amYmZ4DmbNeuHcb4119/hcgP5Kpm4t9//61WrRrHcSRWGNCcrq6umiIpFC93mvPChQuWlpZOTk60F5eoq4IggHoRmIPk5GSI0eHm5tZA9te4cWN6nQzIg+5e1AQ5BJpz4sSJEN4Q4k/a2trKtvP/Lq5cuRJjTGhOqaitmjTntWvXbGxs7O3t6RjFpD8kAR2jaU64dOPGjZEjRzZo0MDJyQnixSGEbG1tIyMjpQLtkjph8e/q6krOaCYuXbqkVCp5ngcVno7PfEV4c/bq1Qsh1LVrV6ngopqdZ2d0R0ClUu3bt69Pnz7e3t60pOHq6nry5EmiDiuV5tyxYwdCqEOHDkQ42bt3r6GhYf369WX4aaA5jY2NydefeHPKEw+g7wAvluzsbF9f31IddMaNG4cQateuHfQQaE7apkQEWplozvz8fNBhyev1wFKY0Jwk3IWnp6f8VNOxY0cRzWljYyNjI4IxBrcnUDu+fv0aolO4uLjIN9SgQQPQgxNvTikDYRHNqVarwQyF3tBdBCnGuGvXriKaE/K8fPlyypQpTZo0gU2h4ONrZmYWEhIi5c5CVw7Rn7y8vOiTojT4digUCvDBIjSnlE5ND5qTeMCImmaHb4lAfHz86NGjGzZs6OzsDDodMHjauXMn7b8rT3M+e/bM3d2dDhtbVFRUrVo1hJCMYzTGGOQQ2lkcaE6p4A0wWKA5O3fuDIegGhOtxUSwbNu2DSGkVCqJuxUs1qQ88MpKcyYlJTk5ORkbGx87dkzUNH0IJB/QnFlZWRCR3snJqdSpg373geYkW+HS9ZM0NDRw4EA4M2PGDDBEqFevnnxbJEwr0JxSESY1ac7Xr1+7uLgYGBiA2xnpiSghctcgVxMTE/39/Rs1auTi4kKeQwsLi7Vr1xLOg2QWJcoknAOlRGhOKfMyPWhO5t4kui+V7bCoqCgyMrJnz561a9e2sbEBAwLYXpFYpurizQl70Gp6c7Zp04bIdZpjj4uLs7KyohcmQHOamJicPXtWMz85AzQnGHo+efKkRo0aRkZGUptcQKkBAwYghIYOHUoYXKA5ie81qRwSZaU5QVMkEwwJY/z3339bWloSmpPsYOLl5SU/Bfn5+ZFXHmjO6tWrEyFN1HOa5gQDi6SkJHAbdXd3l2/os88+++uvvzDGhOaUsrzXpDmDg4MRQsRdUrNXGONLly7Z2NiIaE5Y1cbGxpa6NNBaJ8Z4xIgREJJXKgPGGDatIN87oDnr169PPn+ismWlOe3s7EgQFFFV7LDcEbhz586YMWM0hbQdO3bQQpo8zfnixQsPDw/R/sR6KJ9pmlOe/AOaE3YxS05OrlOnjoGBAQQKkoJo+PDhCKHevXvDWhJoTikH0AqiOWGHYLCKI9Frv//+e6k+y58HLSIM6l4Zfw8fPtQ9rIUMzYkx/u2330xNTQ0NDSH6d0ZGBhj616pVKzQ0VKlUDh48mHws5EfErjIEdEGA0Zy6oFSBeQRBSElJiYuL+/3330ePHg0G73Z2dmQzg1JpTpByREtrWDnLBB/HGIPaiA7pBl8aLy8v+oslGvyNGzeMjY0dHBxgKxTw5lQoFFL28hhj2I7CwsKCRPAHmlOG/6ggmvOPP/4A8zovL6/Y2FiphaVoyOzwI0OgsLDw0aNH586d27p1K2hhOI6rXbs2WXqVSvnAh1krzSkfwwciZdGKIaA56ZWqJtqgPhs6dCgxGFcoFDKc0M2bNx0cHCwtLYklAdCcbm5uUu6A5U5z3rp1y8nJycrKSsYhSRAEYA6A5iwoKADCcsWKFZml/WiDUygl72MEyEMeQRAmTJiAEOrXr196erp8U6Ai14PmvHfvXrVq1czNzWEFq3lb4Qx0XpPmhKuZmZnx8fFHjhyZPXs2bBehVCqljApJE+DNqVQqte4kAdkgdJWDgwOs5Et95ivImzM/Px9ujb+/P5NuyR0s9wRIGlevXo2JiRkzZgxE57O1tSVq61JpzuXLl2ulOT08PGScXZ4+fWpqampubk6T/WBpBG6IUiOF8KqbN28G7Q8wUgsXLpTKjzHu168fQui7776DPEBz0v46orJlojkLCwtBBSP1qkLl4O9IaM6cnBzg8/bt2yc/z2RlZRH+GLw5zc3N5b0rIOI36BmLioqaN2+OEAoICJBvKDMzE3RMZaU5BUEA7kfefwvYVjpoLQ17bm5uQkLCqVOnQkJCgDTlOK5v375SzkykLHhzGhgYyKy3IyIiYCcIKFURNKdUTG/ST5Z4GwTevHlz+/bto0ePzpkzB1xqFArF5MmTyadBnuZ8+PChra2tVpqT3ilAs4egj6ZDKcKjTsz5NYtgjLt164YQIr5KkydPRgjVqlWLFk5EBSFaft26dcl5WKxJRfAuK8356tWr2rVrGxgY7NmzhzShmfDy8kIIAc1ZXFwMgTR//PFHHacOqBBoTnkmuGrVqqQhjPGaNWsQQi1btnz27Jl8W0R0KSvNmZWV5ePjo1Ao5O84cDZSX4ecnJy7d++eOHFi0aJFsGbkeX748OEy61yMMQSQ1FE4B7/wiqA56Q0dNG89O1NJEFCr1UlJSZcvX96zZ88333wD/J+TkxMxyCjVm/PHH39ECNGLRwha6+PjIzMFnT17FtypyV7IQHMaGhrKRNjCGMMCBCYW8ObkOI6eMzWBhYklICCAXIJh3rt3j5yhE2WlOTdt2oQQ8vT0pCsRpQ8dOmRiYkJozjdv3oBIduTIEfkpKDs7m3x3gOZ0dHQkewCLWsEYFxQUQAxGWPEVFBQ4OzsjhNasWSPfUGZmJtwvPWhOsD6sWbOmZn/ImVOnTpmZmWnSnJCBKCHppYGdnZ08D4QxhgDs1apVk3nY4Htdp04daKvcaU57e3sp020yfJYoXwSIkDZ37lwQ0nienzhxIlm/yNOciYmJdnZ2WmnOMimfaZpTXtqBTsKOReDNyXGczKZpGGPgNadMmQLQweGKFSu0IlkRNOfLly/But3a2nr37t27du0CVyhra2v9HngwsIP1kS52pVpHqstJeZqzqKgIzJFdXV3Bt+TFixcQlwjCGjGaUxeQWR7dEWA0p+5YlVvO/Pz8p0+fJiUlERGKVH3nzp2aNWuC1w6Y4xUWFtatWxchpNU0VRAEmDK00pwuLi5SZuxFRUWgtp40aRJpHWhOCwuLFy9ekJOixO+//w4up2BCRXaAl3IIwBiTmCFEtNWb5ly+fHlfnX90zCK1Wr13716lUqlQKLp27co2gRPd1o/7UBCE1NTUp0+farrBqdXq2NhY0BeTMFkZGRmwECK2nDQ+xcXFIH9opTknTZpEpD26FESJgWg54AkNV4HmdHV1ldLe5ufnt2/fHiEEGhlii0pXImro+PHjZmZm7u7uDx8+hEt605zJycnff/+9ju/ct99+S+SnJ0+e1KxZUz6mf2ZmJtjLkziQwDrT3q6ioalUqpT/fjRcwBT++OOPmjMqFCdxikj82CVLlgBnI2VVijFOSUlJTk4Gj149aM4XL17UqVOH53kZ96+srCxAgHAnKpXq6X8/zacoOzsbnFDNzMxkuo0xPn/+PDzAhOcWwYgxjoiI4Hne19cXXor3QnOq1WqwMeQ47uTJk5qdZGfeBoGCggIpSSMhIQE03ba2tiBpFBUVAY2nNeSdIAiTJk3SSnOamZkRAxHN3p48eRIhZG1tTfNDQHPOnDlT6oV98eIFTJUQbqGwsBD2Jx41apRmE3CmpKQEKEZwv8YYly/NWVxc3KVLF4SQjHtobm4uaPEIzYkxBkW/zM7BBQUFycnJaWlpxAMDaE6lUimjqX/06BFARMCH7UuHDx8uBRHos5KTk4FC0IPm7NGjB0JoypQpUjcuNzcXpDtCc6rVaqkJraSkZM6cOQYGBoaGhrQXi9b+HzhwAOY0KXcKQRCAZyJRixnNqRXJSnVS5nuXl5cHNvWmpqbEqAscmPr166dVtXr16lWe57XSnPPnz5d6aJ8/fw6vEuzEAfgAzenp6Sn1qc3JyQEfUDLhhIeHI4ScnZ2l/EvUajUsuwYPHkzuQvnSnLBnHsdxUrwpKAdhmz2gOTHGgPOAAQNIr0QJ0dQBV4Hm7N27N5m4RKVevXoFnmpkY6c9e/bA3pxSEBG5i9jalpXmzMvLA4FZJvJETk4OTNSE5pSfpiZPnqxQKIyNjeUDJOoinB87dowWzhnNKXpmPu7DnJycp0+fpqSkaM5FV69eBb9zZ2dnEP7z8/Nhb06tQR3IZKJJc1pZWb1580YKSSDGvL29SRAOoDl5nl+7dq1UqSdPnsAkSeh5MKuSsXIoLi4GdRY47kDN5Utzgp29oaEhvR4UDWHz5s08zxOaE2MM2wxv2rRJlJMc5ubmJicnp6enk9sENKd8XN9bt26BiELW3eCPRWQhUj9JlJSU0OtZPWhOELANDQ2ldH0Y46ioKJ7naZpTfmkArANZGpDeihIQgN3W1lZKYahWq8Gdl3xZGM0pwvCDOJQR0vLz88Gp19TUlKjXyJ7BWoW0Gzdu8DyvleYsk/KZ0Jwcx0n5WWKMnz17BhMXzKI5OTkQol8mglpxcTGsjolaRm+ac//+/Tpqz/r27UsvGzds2ACTScOGDV+9evX06VN4KxFCkyZNIvOS7s9PZmYmRLAzMjKiJ2Tda9AxpzzNiTHOzMwEI7PatWuD30V0dDRIpAghRnPqiDPLpiMCjObUEajyzPbXX3+5u7u3aNFC60oPDEIRQiA6CIIA0uTq1as1O5GTkwNeDlppToSQlJrsyZMnTk5OPM+vW7eOVAs0J0Lohx9+ICfpBDHnb9myJSz+i4uLQYvXqlUrrZ80jLG/vz9sn0B28NKb5iRe/PABkP8LMQqg/3fv3oVdEMaNG0fWz/TQWPojRqC4uHjIkCHu7u5SwhBoeQYNGgRPtUqlgsWY1o24jh8/Dg+eVprTx8dHytgKfJQtLS3pJxBoToSQVnYBY3zjxg07OzulUgnGlcXFxRC/okOHDlJv3NixYxFCjRo1IutYvWnOmzdvgimc/LsGVx0cHMiC582bN40aNUIIyajdv/32WyhIaE4wT3ZwcCBzheixPHr0qI+PT+PGjYnNBNmbs379+lK+qnPnzoUNQgjy0dHRsP0SXQ/d1p07d+rVq+fj4wPRcfWgObOzs+HmDho0iK6ZTsNuggghIk+/fv3a3d3dw8NDq0k+WUjLuMJjjIuKisAZbvjw4VpVkGq1Gnijnj17goLgvdCcZ8+eBfPnzz77TEqbTMPF0mVC4Pz58+7u7p999plWsx7Y5RchBASkIAht27ZFCGk1WSW6Y82gtQghqV3ABUGAcIje3t60HgpoTl9fX6mAChDb0MrKCl5YQRBA2e3q6koIDxEUsbGxsJolHpDlS3Oq1WqIH9iuXTt6LHQ3wOMQIUSvV2EjZ09PTynNY3h4uI+PT+/evcl0DTQnRHKm6ydpQRCgWjs7O+JgtHDhQoSQvb291tsNsct8/vvBd62sNCfG+IcffgBnLKlw7mDHTQetzcnJcf/vB7tPkSFAIikpCYxUpCRVkj83N9fKygo2S9a6yH/58iXw3MRcidGcBL1Km8jIyIDvHe3tTXp7584dkBCIvc7GjRs5juvcubPWJ3D69OlgVEGIARK09rPde0ykAAAgAElEQVTPPtM6dQiCAHtqWltbEz0dxhhoTqVSKRX99e+//7awsDA0NCS7Ft24ccPU1NTIyEhq54K7d++CRxTtD12+NGdhYWGfPn0QQn5+fgRGUWLmzJmAKqE5gTyWUVjHxcXB1EEzwUBzuri43L17V9QEHIJ3tZmZGXH3hwCSJiYmUqgmJiaC3EXk4bLSnMXFxYMGDUIIkWDCmn0DUZzYDmKMs7KyYJrSam+RmJgIhBPhazXrhN09QTjv2LGjlHAOIl/jxo1BWGU0p1YkP9aTe/fudXd379atm9boBVFRUQghAwMDWP6o1WqQlEjIDRqW5ORkCMaoSXPS31+6CMZYrVaDNVvnzp3JIwo0J0Koffv2ovxwKAgCkBm2trYw8arValg116pVS4pg27lzp6b5SPnSnImJidAEsTXR7H+7du0QQjTNCXH127Vrp/UjgjGeP3++j4/PiBEjyCcDaE6E0Ndff63ZBMZYEASwrnBwcCCe6BA0yNHRUUon8Oeff/r4+DRr1gzsJ/SgOQn9LKXcwBgDr0PTnP/884+7u3vTpk21yoqipYHW8WKM7927Z2ZmZmBgQG/YTGe+f/8+uMKTrV4YzUnj86GkiZBGxCq650RII1dBk/z555/TAhUpAos7rTRnmZTPhOaEJQmZzUhD8FbCmsXa2hpedkEQxo8fjxCqXr261MQVHR0NswoRBvSmOaEtELdK/du0aVPovCAIYFOLEBowYIBarS4pKRk5ciTU4OTkRAwpcnJyiFM+PXCtaXC/Rgi5uLgQiVprzrc5WSrNiTFOSEiAnewgUkthYSFs0slozrdBnpXVigCjObXCUrEn79y5Y2VlZWpqqnVvKohlb2BgQDSAELKyV69eIoW1IAiHDx8Ga1kpmrNNmzZEd0ZGVVBQAOoABwcHeookNCdC6MqVKyJdkkql2r17N0JIoVDQi71du3bBHm/0SWhLEIQHDx5AJF6adNSR5vzmm29InyGxffv2IJ1/9D4Tc+bMgX3ayXpbVDM7/LgRAGnDx8eHKIXp8UK0w9GjRxMXOjDmCg0NFb0FBQUF4DSDENJKcyKE1q5dq8nZPHnyxNfXl+M40Y65hOb08/PT1IPn5+eDlUDNmjXJ7qG//PKLUqmk9WtkLIIg3L9/H944uns60pwk3iOpMC0tbdWqVTq+c2FhYYRHxBhDvBqE0LFjxwiwpOa4uDgi9hGaMyUlBSzOpk+frim2Zmdnw06WjRo1oisERTlCaP369ZrIP378uEGDBhzH0dYbWVlZoHDs1KmT5iNRVFQEq/qqVatCN/SgOTHGsEcmQujw4cN0hwGE69evk82fCM1JWNtJkyaJJnzipqlQKKRoYAJvcHAwz/POzs6a6mO1Wn3jxg2wniPIv2Oas6Cg4NKlS7AGtrGxkYkERUbEEmVF4MGDB9bW1sbGxlq3rY2MjIRd4oikAWYH3bt3Fz14giCcOHECJA2tNCdC6Pz586KpUq1Ww16JPM/HxsbSnQflHUJo8+bNmi/sw4cPvb29OY6jreBv374NYsOMGTM0WcaMjAwwgYINjKEtHWlOjuPovsmkY2JiYMrasWOHCCKM8ZMnT0DvL6I5b968aWxsrFAotm7dqll5RkYGWOmOHDmSAEhoToTQwYMHNdu6cOGChYUFz/O0z9arV68sLS0RQt9//70mRLm5uWAwV7NmTahQD5rzzz//VCqVCKGIiAjNXj1//hz820RqVmAfO3XqpNmrxMREV1dXjuM0pUcRVkTT2rRpU83ZT6VS7dy5U6lU2tjYkM0RGM0pwrByHlavXh1Cv2p+8S9fvowQ4nmemE/FxMQYGhp6enrS3uEwrocPH8LDqdWbEyG0c+dOzSbu3btXq1YtjuNo0wRCcyKEBg4cSJTdBMC8vDyYLX19fcnTmJ2dDVvzduvWTVOoUKlUCxcu5Hnezc2NDAdjXL40J8YYvLUQQr///rum1HH//n0IpUjHkk1PTwcbgqFDh2rq/vLz80FRXr16dfqtJ9Pd7NmzNV/tzMxMQKN3794E9ry8PLB+a9GiBS0rArAqlSogIAAhVKVKFfJdKCvNiTEGIzaE0J49e+gOk+eESIzEmxNjXLt2bYTQV199RZomtxvW7DzPy2zBAJlhFjI0NNTkcbUK54zmJCB/ConTp0+bmpra2NhoDcazdu1ahJCpqSmh32ByGDhwoOhFFgRh586dIJJppTkRQtevXycSBWBbUlIC+1koFAr6+SQ0J0Jo37595G0ld+T69esQUZAYRmCML1++DIuI4OBgzSKpqangnEqCK0BtutCcPM+TpktNDBw4EGxYNY0tVCpVbGwsyGw0zXnw4EEDAwNzc3OtQXpfvXoFAuqcOXMIgITmRAidPn1a83YcO3YMPlU055ecnAzbQwQEBGhCBFvOw86aUKEeNCfGGDSERkZGmsavKpXqjz/+IOwIgejevXtWVlYmJibEmoTGWXNpQF8l6dzcXD8/PzAoIU8suapSqUJCQnier1q1amJiIpxnNCfB58NK1KhRAyE0ZswYzcf4ypUr8OQTDdX+/fuNjIxonRUZLBHSpGjOMimfs7OzyaaVu3fv1uzb7du33d3dOY6j42Zfu3YNZqEFCxZofush7L/ITEpvmvPYsWM6as+CgoJIAPCXL1+SNTLZ2yUuLg7kW57nYYPkkpKS4cOHa34dCNqiRFJSEig2EUIODg5nz57VlI5ERfQ41IXmxBhv3LiR53mlUnnkyBGYZsH6hHlz6oE5KyKDAKM5ZcCpqEsZGRngglmvXj2RJHrx4kXYrI42RCUbfqxdu5YsQVUqVWRkJFmvStGcCoWic+fOdKSdrKyssWPHgnw8bdo0IsZhjGma08vLS7Src0REBPh1de7cmRbyioqKQNapWbOmSJ164sQJUGE0aNCA6FIxxqXSnIsXL4Y9JzQ/QvrdlSZNmoiUj/rVw0p9oAicPXsWIs0OHDiQqKXA723z5s3gUkZvmQkRGmvVqnXlyhUy5Ozs7IkTJ8K6RYbmNDIymjVrFq3nunbtWrNmzTiOs7S0pNl3jDGhOZVKZffu3cl6AGP86tWrYcOGwau6cOFC8qrm5+fDlieenp4iU4kjR47AhmcNGzak37hSac558+aB4ZimpEiGX9bEmzdvQDh2c3MTRcn4+++/QfcNCzBCtmGMp02bBkAFBATQurOkpCRY0FpZWRFFNnSJKK2MjIwCAgJo5K9evdq0aVOO46ysrEjEWigVGxsL2H7zzTe0bXVOTs7cuXNhm3Ti7K4fzZmVlVWrVi2EUNWqVYm0Cq1fuHCBUAK0NyfGeObMmRzHwb6J5KZjjFNTU8EF09vbu9R78fLly/r163Mc5+vrS8eDVavVkZGR4JrQsmVLsjqtCJqzf//+edQvMzPzyZMncXFxK1eu7NWrF7xHQNWU41NXKjKfToY3b96AgXndunWvXr1KP0uXL1+Gt4aWHA4fPgxmTGFhYbSkER0dTRaTUjSnh4cHbBJJ4I2MjAQau127drTAgDEmSzhjY+N58+YR43eM8ZUrV5o0acJxnJ2dnUinvH79eo7jlErl9OnTacHg1atXvXr1UigU1tbW9D64pdKcT58+hflHygucjAUSeXl5sPGkpaVlcHAwPTvFx8e3bdsW5hORpFFYWNirVy8woV2zZg39qN+6dQs8aO3t7Wmmn6Y5ra2t6Q8TxvjkyZOwWK1du7YoIkhQUBDHcaamplOnTiV3EGOcnp4OtsDm5uZkNtCD5szPzwcvNwsLi0WLFtE37s6dOx06dCAI0BT1jh07FAoFx3FLliyh19V5eXkTJ05UKpUODg5EASfCnD68fv26sbExz/Pt2rWjAy0UFhYGBwfDR3z48OHkvjCak0av0qbnzp0LH+gdO3bQc9Tr16/BZdnLy4u8NQ8ePLCzs+M4bvTo0fRXOz4+nohSUjSnsbFxYGAgeTwwxhcvXmzUqBHHcY6OjvQTRdOcSqWyT58+NKv68uXLfv36waO+cuVKus+nT59W/Pfr0aMHsbiH3YV/+uknsD8LCAig3wJ5mjMjIwP2ZNLlBYFbnJOTAzHBbG1tw8LC6O4RQRTmPZq0CAsL4zjOyMhowoQJ9NTx5s2bH374ged5MzMzEStAaE5DQ8OxY8eSDQvA0ad9+/bgEiEK2k8sZnr27Pn48WPyWObl5YWFhdnY2PA8TwcG14PmzM3NBfHSyspqxYoVNNo3btxo2bIlmaZomnP16tU8zxsZGYlAy83NHTlyJM/zrq6uWp2fyBAwxnl5eSCce3l5aQrn8OGjwxgwmpNG76NPw5aWCKEmTZqQaPPgdXT69GkIpvq///2P4PDbb7+BSLZt2zYyBxYXF2/YsAG2tNe6Nye83XXr1hXtJbR27VrYn6V79+60SEbTnGZmZiLrXrJY8/DwEEWMDwwM5DjO3Nx88eLF9DyTkpLSqVMnjuOcnJxE8XLkac6EhATovKbJL8FElLh9+7atrS3Hca1atRKRx+vXr4fxirw5MzIywOTLw8Nj+/btZH4QBOHixYsg4zk5OdGDpWlOZ2dn0b6VsbGx8Gp/9tln5DZBPyGQvrW19bx58+hPz7Nnz8C62srKirjI60dz/vvvv/BNbN68OS0AY4w3b95MojHR3pyZmZkgefr4+Fy7do2+d5cvXwYdwhdffCGCWvPw7NmzCoWC5/lu3brdv3+fZMjLy5sxYwYs8X7++WeCCaM5CUQfVmLBggUQaXbbtm3005KRkdG/f3/YH5c83v/++6+DgwPHcaNGjaKlgtu3b7dq1QpecBmaU3flM01zGhsbi+wtzp8/DwbuLi4u9GSLMV62bBnHcbD8pIeTmpr65Zdf8jxfpUoV2t9RnubMyMgA7aKmnYF+dxmCXogs/ARBIPHPnJ2dr1y5snPnTgMDg1ItREkfBEGIjo4GeRIhZGNjM3r0aJHcSzLrndCR5iwsLAQXDisrK9ibZseOHUqlktGceiPPCmpFgNGcWmGp8JMnT54Eqk+hUPTo0SMkJGT58uXDhg0D4zgXFxdawMIYd+3alfvv1759+7lz5wYEBDRv3lz53w+YTlpZSQyEhw0bBia6xsbGXbp0mTVr1owZM0BfqVAo+vXrR0u6hOb09fUF+3qEUIMGDSZOnLho0SJwooKPmeiDAT5Gtra2sHSsX7/+zz//HBoa2rNnTzjj5uYGsxiBtVSaMyIiguM4a2vr+fPnh4aGHjlyhJTVLwHCrpmZmYvsr3379jRHol9brFTlRCAwMBCMoezt7SdOnBgWFjZ//nzwAeI4rmnTpoTywRjHxcWBjl6pVA4dOnTZsmVjx44FEwRLS0t46Wh3SeKE16NHD5B4qlSpMmTIkKCgoKFDh8IDb2JiIlpAEprz+++/B0ccU1NTPz+/gICAadOmwaIXOiB6Vf/++29Y2sFLOn369NDQ0O7du8Mb5+7uTrOzEPlWqVS6ublJKfTXrl3LcZyNjU1gYODKlStFJg5639CjR4/CKKCfU6dOnTt3LkwmSqWyU6dO4CVA05zPnz9v2rQpDMTBwWHYsGGhoaGjRo2CudHQ0FAzPBEQNt27dwfkHRwcvvnmm6CgoG+++QaQNzU1XbVqFS3OgmZh9OjR8EiYmJj06tVrxYoVU6ZMAfUBz/O9e/cmbhz60ZywMzExRqlXr96UKVPmz58PVIFCoejYsSMEJ6G9OZ89e0Y4YF9f33nz5oWHh48fPx78XA0NDenMMrdm//79VlZWwAw1a9YsICBg+fLlHTt2BGy9vb1pnV1F0JywnpH6y/O8g4OD7jK6zEjZJSkETp8+TSQNPz+/4ODgFStWDB8+HN4mZ2dnWjeBMe7WrRtIGm3btp07d+6cOXNatGgBe1rDY6xJc9apUwd24UUI1a1bd/z48UuWLIFYtQghV1dXosQhnQSV0Jdffglvn4ODw9ChQ4ODgwcPHgxaMFNT07Vr14pe2OLi4j59+sAiDYqsXbvW398f+C0TE5Np06bR9GepNKdarQZ36p49e27YsGHlypWaDkakz5B4+vQpGC4ghGrWrDl27NjAwMD27dsbGBjwPN+0aVOI5CbyDLt+/bqLiwu8d9WrV//hhx+WLl06ZMgQmK8sLCxo1wqMMdCc1tbWzZs3h1Kurq6jRo1asWKFn58fnLGwsNC0xH/16lWnTp0AIhsbm0GDBoWFhY0dOxZQVSgUAQEBBFU9aE7Y6sbLywsIjBo1aowZMyYwMLBjx46GhoY8zzdu3HjUqFEib87i4mKwz0AIubu7z5gxY/369T/99BN8YXmenzBhAlGEiQAXHW7YsAGmQRMTk44dOwYGBgYFBTVu3JjjOIVC0aJFC5r6YjSnCL3KeZiUlARxFBFC9evXnzt37rp16yZMmADvtVKpXLNmDd3zn3/+GZ5wNze3KVOmLF26tEePHiYmJsBWmpqaaqU5O3fuDLONo6PjsGHDQkJCBgwYANOgmZnZxo0byXsBbcE3ety4cfC8mZub9+rVa+7cuVOnToWA8AYGBmPGjBEJZhjjRYsWwZRrYWEBU+6iRYvAU1CpVH7++eeiSUae5hQEATpQt27d8PDwWbNm0ZZwNCx0Oj4+HlTVCKHatWv7+/sHBga2atUKKNhWrVqBhp2mOd+8edOjRw8A1tLS8uuvv169evUPP/xAPh9TpkwhfAC0BTTnwIEDYXqxsbEZMGBAYGDguHHjQJoFszMRsBjjgIAAKAIr06CgoOnTp8M2fjCH0CZ6etCcMIWCjR0sWn/44YfAwMA2bdpA5KHmzZtDYFua5szKyvr8889BXKlVq9asWbM2btw4ZcoUsAnjeX7OnDkiBGjMSfrvv/+2sbGBGbJBgwaawjkJ7gf7VEGL9JBJVRhjiJQ+depU+qRUGnh0rfsdSBVh598xAgcOHICH38jIqF+/fkv/+/Xv3x9EEQ8PD9EarW3bthzH8TzftWvXBQsWzJw5s1GjRgqFwtDQEJQ5mt6czZo1c3JygiewUaNGkydPDgwMJFaVPj4+dBAvjDHQnMbGxsRUy8XF5dtvv122bFnv3r1h2jQ3N4+KihK9y69fv+7YsSNMGi4uLiNHjly/fv2oUaNAsDE1NV22bJlohoSxi7hPcgvy8vKg7JAhQzb+9yPcCckjSpSUlMydOxdmco7jOnTosHDhQn9/f5gADQ0NBw4caGdnR3tzYozPnTsH/qkcx9WuXXvSpElBQUH9+/eHwdrY2IgYC6A53dzc6tWrBwJYrVq1xo4dGxIS0qFDB3iFbW1tT506JerekydPGjVqBEUcHR1HjBixcuXKkSNHQoeNjIzo/VD1ozlVKtXixYuhQoRQu3btFixYMHHiRPAxMDQ0/Prrr53++9G2MvTSoHv37ppLA9o7QjQo+jA4OBimHXNz8y+//DIoKGjx4sVgZ6NUKjt06EDPbIzmpKH7gNLJycngKwIbkM2ZM4cW0hQKhUjBMn36dHiVXF1dQUjr2bMnLaRppTnLqnwGmpPneTILOTk5DR8+fOnSpf369YMZ1czMbOvWraKJKycn58svv4SJy8nJacSIEevWrRs7dixIOyYmJgsXLqSXJPI0pyAIoGn39vZeu3bt7NmzRQr8st7oqKgomL1JGFuo4fHjx7BoggmH4ziy663uTcTExEBvoRLYTr5Vq1adpX9du3YV2RzLNKcjzQlB/iGiOHzO4IFhNKcMtuySHggwmlMP0MqnyOHDh+ENJ3MNQsjMzOyrr746ffq0aFJOTEwcPnw4iEokf82aNcPCwtasWYMQ+vLLL+luwcp52bJl58+f79mzJ0iWpKCtre28efMyMzPpIoTm7Nq168OHD8nqjpQyMjIaOHCg1PT9/Plzf39/EHfoIkOGDKHdFKBF+JYkJCSIOkAOb926BVt+QlVTpkwhl/RIENmRdEwqUadOHa3R5PVolBWpbAjk5uauWrWKcE7kGXB0dPzpp59oozOMcUlJyZEjR8AFk+QEcer06dPgZLB8+XJ6jEC2HTlyZOvWrfXr1xe9rT4+PiJvJygLLggbNmw4ffp0165dyVoFGq1SpUpQUJBILwYFnz59Om7cONGrbWxsPGzYMM03i3hz0lpguvMQlYiMVKSmp3OWKS0IwqVLlzp16gQSDKnfzc0tJCQkPz8fwppFRkbS1WZkZMyaNUskinEc16RJk507d9JsNJQC5I8ePbplyxZN5OvVqyfyQiBt5eXlbdq0iSgESfeqVasWEhJCh/smNKfWnQsxxqdOnTI3N2/YsKFoFxZBEOLi4jp37gyrd9JE1apVlyxZkpub261bN4SQKKDljRs3hg8fLrq5CoWidevWW7ZsKXXlTwZ4586dwYMHix4qMzMzf3//J0+ekGzg7wXGg1J2Hr1790YIhYaG0qWk0hCugAyWJAwNDW1sbHx8fPr377927doHDx6IvnRSFbLzeiNw5MgRooghN8LMzKxPnz4nT54U4f/48ePvvvtONHfVqFEjNDR03bp1EMmHFNm7d6+hoWHr1q0TEhKmT58O2n/ShIGBQd++fUU0KowCaM7jx49HRET4+PiImmvQoMGhQ4e0jjcrK2vTpk2EaCRtNWrU6I8//iAdg7JAcy5YsEBrVXBy6NChpHVvb286mKRUqQcPHvTv31/0TlWpUmXq1KnJyclA8tHac6gnOTl55MiRoklAoVB06tTpwIEDNDtLaE5HR8eLFy8uXboU1FVksLCHliZ5DA29efMmMDDQ3t6ezg+6iYiICFrlBDQnx3EiHwgy8I0bNyKEevXqRc5A4tGjR4MGDRLNTvb29pMnT37x4sW4ceMQQtOnT6dLPX78+OeffxZN6dCrZcuWEWsSuohU+uzZs5rTKZjEib5uQHNaW1tLTZgwTUntpEh3oKSkBJQmtGkInYGl3waBW7dufffdd7AuIM8tz/MtW7bcuHGj6Pbl5eUtWbIEiDSS2dLSctKkSVeuXPHw8LCxsSEm6mRvzlOnTm3YsAGiYZNSCKHGjRuLjAxgIEBz7ty58+jRox06dIC7Two6OjqGhoZqfW5VKtXhw4dbtmwpknns7e1DQ0NpB2hoCBZrIiqXBjMsLIxuXWtv6fyQvn37ds+ePemCCCFHR8fZs2enp6cDyUe2TIMi2dnZISEhxC6NDLZOnTrr1q3T9K8CmjM2Nnb37t1NmzYVjdfd3V1qw93CwsLo6GhiLUEasrGxmTNnjshDHWjOsWPHiqZ36PP9+/ddXFycnZ01hd67d+/27t1bNFE7ODhMnz49LS0Nvg400QsTL+HXSa/gIQkLC9O8d5qww5knT57oKJyDNyfP81ILT6A5Z8+eLdUWfR4W4JqGyHQeln7vCMTExIB9Lf2MWVpaDh48WFObfPfu3f79+4PWG/JzHOft7R0REQFRr2hN9+rVqxFCvXv3fvz4sb+/v2iSNDY2Hjp0KO1CDVAAzWlubn7u3LlVq1ZpylctW7YURSEiGGZkZKxYsQIsgOnhtGnT5tSpU5rvLIgNIp6V1KZSqXr06EHqad26tdR7QYpgjFUq1e+//05sQ0nxpk2b7t69Oy4uzt7e3s3NTTTwhw8ffv3116JZS6lU9ujR4+TJkyJ2FmjOevXq3bhxY/78+SS6CbTF87yfn5+mpgs6mZGRMW3aNNG9ANPqqKgoesEFqiqO46QE0cDAQITQiBEj6OEDAvv37wc/VDJ8mLh+/fXXmzdvuri4VK1aVcQuHzlyBMK90EXMzMz69u2r9d6JGoVDlUp19OjR1q1bi5C0s7Nbvnw5PTqMMdCcDRs2FEm8pGYweNLFzBrCn9rb24vMAkhVLFG+CMTHx48aNUokpHEc17Jlyw0bNmgKacHBwSKB39LScuLEiXFxcdWrV7eysqLdJSGUYFmVz0BzKhSKM2fOhIeH165dm54nEUJNmzbVtDwAWDIzM9esWQO6I/r5b968+dGjR0UTF9Cc9BYhImxXr15Ny1pv6ZkDW9dpRowrKSlZsWIFjJHjONoQX9QfmUO1Wn306FHNNRQNgijN87zu9ujx8fFVqlRp1KgRrUCT6s+FCxdIeDxolNGcUlix8/ohwGhO/XArn1KCIPz777/bt29ftmzZkiVLYmNjRQs8UTMpKSk7d+6cMGHCggULDh06pHWNDUUIzQmHycnJmzdvnjp1akBAQHR0tFbWhKY5IWZRSUnJ3r17Z8+e/eOPP4aHh5PA66Je0YfAaixcuHDOnDnh4eFSshpdRCqdlZUVFha2cOHC9evXv009UvWz858mAsXFxRcuXAgNDV2wYMHatWtPnz4tg4NKpbp58+by5csnTJgQFhYmMvAUFQSBCVTGarX6woULy5YtmzhxYlBQkChcKl2Q0Jxw8tmzZxs3bpw6deqcOXP27t0rWiTQBSEtCMKFCxcWLFgAPhBvo4R98+YNvHEbNmx4m3o0Owlbjq9evTooKCggIEBHETA/P3/Xrl1z586dPHnytm3b7t69S5vX0a0A8gCyWq0+f/780qVLJ06cGBwcTPaQp/OL0sXFxYcOHVq8eLG/v//q1asvXbpEB20TZdb78P79+6tXr16yZMns2bOlWBxR5SkpKbGxsStWrAgICIiMjJRaRYtKaR4WFRWdOXNm7n+/LVu2sGWhJkQf9xlBEB4+fLhjxw6QNGJiYuT3qE5NTf3ll18mTJgwf/78gwcPSs1ChOYE8qykpCQ2NnbOnDlTpkxZs2aNjNcR0JwQelqtVp87dw5e2JCQEFE8aqn78vjx402bNgUEBISEhGjuPitVSvN8UVHRr7/+unDhwpCQkPPnz+virAOVJCUlbdy4MTAwMCAg4LfffpOCSNRibm7u9u3bZ86cOW3atOjo6MTERNFyGvKDN6ejoyNoA1Uq1ZEjRxYtWuTv779y5UpdtNgFBQW//fbb/PnzJ0yYEBERcevWLSm9kqiHuh8mJydHREQAArt379a0PtGsKjMz8+jRoytXrpw1a9bWrVtFIQc088ucyX7bRLIAACAASURBVMrKOnjw4Ny5c+fNm/fbb7/JCMMylbBLlQqB1NTUffv2rVixYvbs2b/88ou8uJWXl3fo0KFp06b99NNPUVFRUh81QnPCw6ZWq//666/g4OAJEyYsXbpUylaABK0lRN2jR4/Cw8N//PHHefPm7d+/X6TU0wpjenr677//PmfOHJhFdZ9bNGu7cOHCokWLFi9evG/fPt3JNtgwODw8fPHixbNmzdq3b58uk0BhYWFMTAx4RG3cuPHGjRtSpYDmBGFGEIQbN26EhoZOnjx50aJFJDK25ljIGZVK9ddff4WEhEyaNGn58uXnzp0r09BIPfKJZ8+erV+/ftGiRbNnz46JidFFtHv9+vXBgwdXrlw5Y8aM7du309pY+bZEV8tROBfVzA4/dAQEQUhISNi8eXPIf78//vhDagaDkT5//nzLli0TJkxYtGjRiRMnpB5jQnMCS1dSUrJnz55Zs2b99NNP69atoyNv0wASmhNEC7Vaffz48SVLlvj7+y9fvlwX52BBEB48eLB27VqIGaP3UgVjXFBQEBERsXDhwqVLl169elVEN9LdFqUFQTh79uzSpUuXLVsWHBwsM7fTBV+9erV58+bp06fPmjVr7969UhARmhN0dCqV6sCBA/Pnz580aVJYWJgujo/5+fnR0dEgHm/fvj0hIeFtvgj0EEhaEIR//vkHEAgKCtJFloalAa2E1Hvt//r1a5D/58+ff+DAAanVOuktS3yICKSmpu7fv58Iabdu3ZIZRX5+/uHDh0FIi4yMlOG9CM1ZJuUzoTnBrE2tVp8+fTooKAikOzpqglQnBUF49OjR+vXrAwICli1bdvPmTamcpZ6/ePEiCGmxsbEVuh65e/duZGTk33///ZYTyN27d3/66aeBAwcOKO03cOBAvaWgUnFjGRgCFYoAozkrFN73VrmI5tSxH6IvjY6lWDaGAEOABK2V8oyRgkhEc0plY+dlEKBpTpls7BJDgCFQjgiIaE7da6ZpTt1LfTo5RTTnpzNwNlKGQPkiIKI5da8cvDkJzal7wU8nJ01zfjqjZiNlCFRaBEQ0p479FNGcOpb6pLKJaM5PauxssAyBikZAP+WziOas6E6y+hkCDIEPDgFGc35wt0ynDjOaUyeYWCaGQPkhQHtz6l4rozl1x0oqJ6M5pZBh5xkCFYcAozkrCFtGc1YQsKzaTw0BRnNW3B1nNGfFYctqZgjogQCjOfUATZcijObUBSWWhyGgHwKM5tQPN1aKIcAQkEeA0Zzy+HyoVxnN+aHeOdbvDxYBRnO+r1vHaM73hTxr91NGgNGcFXT3Gc1ZQcCyaj81BBjNWXF3nNGcFYctq5khoAcCjObUAzRdijCaUxeUWB6GgH4IMJpTP9xYKYYAQ0AeAUZzyuPzoV5lNOeHeudYvz9YBBjN+b5uHaM53xfyrN1PGQFGc1bQ3Wc0ZwUBy6r91BBgNGfF3XFGc1YctqxmhoAeCDCaUw/QdCnCaE5dUGJ5GAL6IcBoTv1wY6UYAgwBeQQYzSmPz4d61c/PT6FQrF69ukwD2Lp1q1Kp7NGjh9T+9mWqjWVmCHxSCNSsWVOhUFy8eLFMo27durVCodi2bVuZSrHMNAI1atRQKBSXL1+mT7I0Q4AhUKEI/P7778bGxh06dMjOzi5TQx4eHgqF4urVq2Uq9elkvn//fpUqVapWrZqYmPjpjJqNlCFQ7ggUFRW5ubkpFIobN26UqfJmzZopFIo9e/aUqdQnldnHx0ehUJw4ceKTGjUbLEOg0iKwZs0ahULRv39/tVqteyeTk5OdnZ2trKzu3bune6lPKueZM2csLS19fX1TU1M/qYGzwTIE3gEC+imfs7Ozq1WrZmhoGB8f/w46yZpgCDAEPjgEGM35wd0ynTqckZGRkpKSn5+vU+7/y5Sfn5+SkpKZmSkIwv+dY/8ZAgwBnRB49epVSkpKcXGxTrn/L9Pr169TUlIKCgr+7wT7X2YEAPmSkpIyl2QFGAIMAX0RKCgoSElJycjIKKvAkJaWlpKSwl5YKeBVKlVqampaWppKpZLKw84zBBgCpSIgCIJ+s016enpKSgqz+JRBGOSuoqIimTzsEkOAIfDOEMjLy0tJSXnz5k2ZWlSr1WlpaampqUzekMKtqKgoNTU1PT29TPyxVG3sPEOAIUAjoJ/yWW/pjm6apRkCDIGPGAFGc37EN5cNjSHAEGAIMAQYAgwBhgBDgCHAEGAIMAQYAgwBhgBDgCHAEGAIMAQYAgwBhgBDgCHwcSLAaM6P876yUTEEGAIMAYYAQ4AhwBBgCDAEGAIMAYYAQ4AhwBBgCDAEGAIMAYYAQ4AhwBBgCDAEPmIEGM35Ed/cD2loBQUFZd3f60MaHusrQ4AhwBD4/yOQk5OTl5f3/z/HjhgCDAGGAEOAIcAQYAgwBBgCDAGGAEOAIcAQYAgwBBgCDAGGAEOgDAgwmrMMYLGs5YhAbm7uxYsXo6KiAgICunbtWq9eve7du1eezbpevnx5qbTflStXHj16xIiKcnwqWFUMgY8YgbS0tJMnT27YsGH8+PHNmzf39vaeOHFi5RnvgwcPSpvzLl27di0pKYlt4VN57hrrCUOgciJQWFiYqsMvMzOzrBtaV87xsl4xBBgCHxYCKpUqPT291Fnq9evXBQUFZd2C+sOCgvWWIcAQYAh8HAjk5eWVOqunpaVlZWVVHq3jx4E8GwVDgCHAEKg8CDCas/Lci0+rJ2fOnKlbt66joyP6v1/v3r0rj/Y8ODj4//pV+n9PT8+JEyeePn06Jyfn07qLbLQMgXeOwIsXL1q1atWgQQNviZ+Pj0+bNm169+69YMGCQ4cOvXjxopLop1atWlW7dm0LCwsyp2zevPmd4yfZYK9evUjH5BMcx7Vp02bJkiXx8fFqtVqyRnaBIcAQ+FQR2LNnj/w0Ql+tVq3ad999t2/fvoyMjE8VMDZuhgBD4J0i8Pjx4xo1atATkUza0tKyV69emzZtevbs2TvtJWuMIcAQYAgwBHRGYPHixTIzueiSl5fX5MmTz5w5k5ubq3MLLCNDgCHAEGAIVHYEGM1Z2e/Qx9q/wsLCpKSky5cvE4Fj/vz5lWewhOZs+d+P53mEUIsWLeAQ/jZu3NjGxob039TUtHfv3iz0buW5iawnHyUCRUVFt27dOnHixGeffUbePoSQtbV1ly5dBg4c2KZNG2dnZ47jEEIGBgbe3t5BQUGFhYXvHY2cnJznz5/HxsZCt42NjV+9evXee0U6ADSnjY1Ny5YtfXx8OI4zNzcXTXr16tUzNjYmsDs7O0+fPp0xnQRDlmAIMAQAAUJz0kJUs2bNaCGqadOmtK2bkZFR69atb926xTBkCDAEGAIVjQChOb28vFq2bAlzkYeHBz1HtWzZskaNGrAGRAgpFApPT88dO3ZUEuO5ioaI1c8QYAgwBD4sBAjNSQufosWspgavb9+++fn5H9ZIWW8ZAgwBhgBDQAoBRnNKIcPOvwsEHj9+DBpznuf379//LprUrQ2gOWfMmAHZjYyMEEKa2vzi4uL+/fsjhNzc3ExMTBBCrVq1SktL060RloshwBDQH4Hjx48Tvo3n+ePHj5O6SkpK9u3b16ZNG3hzEUL169f/999/SYb3mDh58iR0u1GjRpUqWiPQnDAPnzlzRqFQNG3aVFOX9++//yKEjI2N69WrZ2BggBCaO3cui/zzHp8o1jRDoBIiADTnV199BX0zNTVFCGm1A1uyZAlCyNHR0c7ODiHk4+Pz9OnTSjgi1iWGAEPgY0IAaM6qVas+ePAAY/z9998jhFatWqU5xrNnzyKELCwsqlevzvO8ra3t4cOHNbOxMwwBhsA7QOD8+fNbtmw5e/bsO2gLmjh16tSWLVsuXbr0zlp8Bw2VlJSkp6c/ffo0LS2tqKjoHbT4bpoAmnP27NnQnJQGr6ioqE+fPhzHubu7g/1umzZtKpXx8buBi7XCEGAIMAQ+SgQYzflR3tYPZlC7d+8Gjb9SqaxUii0dac6SkpJBgwbxPL9u3bqYmBhzc3OE0Jw5czS5gQ/mlrCOMgQ+EASWL19OaM6GDRtqhrzOzs7+8ccfIQ/Hcc2aNUtJSXnvgxszZgx06dtvv9W0nHiP3dOR5nz69ClCyMPDIzk5edy4caDyqyQU8ntEjzXNEGAI0AjoTnOuWLECITR+/PhTp07Z2toihPz8/JjlBA0mSzMEGALljoDuNGdcXBxCqHnz5gkJCY0bN0YIVa9enbn+lPsdYRUyBHRBwN/fHyHUpUsXXTKXS56BAwcihPr06VMutb33SnJzc+fPn9+lS5fGjRt7enr6+vp+/vnnEydOTE1Nfe99e/sO6EhzgqOCQqGIiIjYu3cvaPAWLlzINHhvfwsqeQ15eXmPHj16/vx5Je9nxXUvPz//0aNHH1kE/tevXz969IhFn664x+aDq5nRnJXilqnV6rCwMD8/v/fi0ahWq1etWuXn5/fHH3+8SzgEQZg4cSJo/OvWratf01lZWQ8ePIiLi9u3b98vsr9ff/1V9ybKSnNu374dY7x48WKe5319fTMzM3Vvi+X8xBHIysrq27fv119//ebNm3cPxaZNm/z8/Hbt2vXum36bFgVBAGUTTCArVqyQqs3Pzw/yIIQ6d+78fh0oi4qKrK2tEUIcx4WFhUn1Wea8IAhpaWm3b98+e/ZsdHS07Jz3y9GjR2WqEl0qK81ZXFyclZXl5eWFEBo7dqyoNnbIEHiPCJw/f97Pzy8gIODd9yEtLc3Pz2/o0KHvvmn9WszLy0tMTLx27drBgwcjIyNlppSoqChNaxKpRstKc06ePBljfOTIESMjI1tb27i4OKma2XmGwEeAQEpKip+f34gRI979WPLz88eOHdu3b1/wYnz3HShri0VFRS9evLh58+aJEyd+/fVXmTkqMjLy/v37OtavB82JMX758iVIcevXr9exIZaNIaAVgUuXLvn5+c2cOVPr1Qo9+erVqw9LUKHRAJrziy++oE9WaBpozl69elVoK++m8uvXr8OeLzzPW1tbOzs7W1tbQ1xuLy+vv/766910A2MMGrwrV67ExsbKzOq//PJLmTR4ZaU5o6KiMMbz5s3jOK5JkyY5OTnvDAHW0HtB4NChQwihhg0bvpfWK0OjEA7Nx8dH9zVdZei2fB+mTZuGEPL395fPxq5+OggwmrNS3Gu1Wj1y5EiI/vfuO6RSqaD1efPmvcvWc3NzO3ToAAzE8uXLy9p0YWFhaGhomzZtHBwcYB8+QmZoTRgaGurehH40Z0JCgrm5ubW19cuXL3Vvi+X8xBFIT083MzPjOO69PDaTJ09GCE2aNOnDugvPnj0juyUZGxsnJiZK9f/q1atVqlSBOcHc3PzcuXNSOd/B+X/++Qd6wvO8HgGXEhMTx4wZ4+vrCw+M1omOPtm6dWvdB6UHzYkxjomJQQjVqFFD94ZYToZARSMAj6Wnp2dFN6RZ/7NnzxBCPM9rXqqEZ6Kjo7t06VKtWjWFQkFPHVrTSqUyLy9Px1HoR3NmZGQ0a9bM0NAwNjZWx4ZYNobAh4hAYmLi+5oosrOzYfvtd6nR1vseXb58ecCAAV5eXmQPAq2zE5zkOC48PFzHtvSjOTHG06dPRwgNHjxYx4ZYNoaAVgQOHDgAnsFar1boyefPn7+v+eftx3XkyJHAwMDIyMi3r0rHGmJiYgIDA3fv3q1j/kqbLTExsWrVqgghU1PT4ODg8+fP37lz5/z587Nnz1YqlQgha2vra9euVXT/CwoKVqxY0aZNmypVqpS7Bk8/mvPOnTtGRkY2Njbp6ekVPfwPq/6SkpLffvtt3bp178X98e7du2FhYfS2RG+PHqM5P2Kac/To0W//hLAaPg4EGM1ZKe7jp0lzJicnOzg4IISUSmWZAmUIgvDgwQNfX1/RWpfjOF76Z2xsrPvN1o/mLCkpsbe3Rwjdu3dP97ZYzk8cAUZz6vEA7N27l7z+vr6+MtaXWVlZbdu2JZmnTp2qR3PlVSQkJAR6YmpqWqbAGiUlJUeOHHF0dCQDgYT0hPf/rrRt21b3nutHcxYUFPA8z3FcYWGh7m2xnAyBCkWA0Zylwvvy5Uva0x3mE3khytDQsKJpTrVa3bdvX4TQpk2bSh0Cy8AQ+HARYDRnqfeuqKgoMDBQ0wJDRuxRKBTr1q0rtWbIoDfNuW/fPo7jWrdu/TF5QugIGstWjggwmrMcwWRVlYpAUVERuKWamZmdOnVKlP/YsWOwReWgQYMqLu6RIAj3799v2LChaDErL3yWSYOnH81ZUlJiYWGBEHr8+LEImU/8MC8vr3Xr1hzHxcTEvHsotm3bBhHjy7FpRnMymrMcHydWVaVFgNGcleLWfDo0Z3p6+tWrV+/fv19SUnLgwAGw4fL19S3Tbbh27Vrt2rWJhOTg4DBixIjVq1dHRkZGSf+io6N1b0U/mlMQBLCSu3r1qu5tsZyfOAKM5izrAyAIAsSmgElg2LBhMhu5CYIwbtw4Ml107ty5rM29TX6VSvXkyZNLly6lpKQUFRX169cPejJkyBDdqy0pKVm+fLmpqSkZRd26dadOnbpp0yb5Se/YsWO6t6IfzalWqw0NDRFC7yXksu6jYzk/KQQ+bprz+fPnd+/eJTc0Nzf36tWruhOQGOPk5OTWrVsTh3hzc/OvvvpqxYoVO3bskJahon799Vfd1fr6eXMKggBquNWrV5MBsgRD4OND4OOmOTMyMu7cuUPuWlFR0bVr15KSksiZUhNZWVmDBw8G6QIkn7Zt2y5cuHDr1q0yc1RUVJTukXj1pjkPHTrE83zz5s2ZdVep95FlkEGA0Zwy4LBL5Y7Av//+6+rqynHc7NmztVY+fPhwCOaZlZWlmaGkpOThw4d08KTXr1/fuHGjTJtZXr582dPTkyxmHR0dv/322/LV4OlHcwqCAI4K8fHxmmP/lM8wmvPju/uM5vz47ikbkSYCjObUxKSUM2/evImMjOzatauHh4erq2vbtm3DwsJevXqlVqtJydevX0dGRm7btk2rTZBarf7777+3bdu2c+fOgoKCs2fPbt26tV27dgih//3vf9v++z19+pTUhjEWBCEzM3P79u2dO3d2d3d3c3Nr3759eHh4eno63S7GWK1W79mzZ9u2bSqVKisra+fOnR06dKhWrVqLFi1+/vnnU6dO0S5EgiBA6+DtRFov902Jc3Nzjx071rhxY47jjI2NDQwMvv/++wEDBoCgU6Z93dLT093d3aGgoaFhy5YtaZGLBu1t0vrRnGlpaVZWVkqlstwBfJuxsLLlhUBWVtbu3bv9/PyqV69erVq1Vq1arVixIi0tTaT5ffjwIbzFWrdoLS4u3rVr17Zt26Kjo/Py8nbs2LFmzRojIyOO41atWqW1YFZWVlRU1JdffglzTps2bVatWiWac+Dd/+2337Zt21ZSUpKdnb1r165OnTq5uro2bdp06tSpx48fF737Fy9e3LZtW5cuXWDTSmj60aNHbwlXampqVFTUoUOHiouLnzx5MnPmzGbNmg0aNOgtq6WLFxUVde7cmSyT1q5dS1/VTMOaB/LXqVNHM0O5nxEEITU1NTQ01N7enud5ExMTY2Pj8PBwb29v6MaZM2d0b/T8+fNgZIoQsrCwmDFjhu5ldc+pH815584dhJCJiYnuDbGcDAFAQP3/sffdYVEk3d7VEwlDlCSIAREEc0BMqChGdFHUdVUwIuasa1rjrrgqKqK4CiKYMO+aFUHBrBgXA6igSFRAQEDSzHR/z33P/eqpp7tnGJDd6+47/KE11VWnqqu7Tp86vxOUyqSkpPnz57dv397S0tLJycnX1zc2NrasrIxcIrlcfunSpYiIiNu3b5P1uJyamrp///7IyMiMjIy0tLTIyEhI3WRpaQls7d69e7gxsMrnz5/Pnj27bdu2FhYWzs7O48ePj4uLY43LMMyTJ08iIiKePXtG03RycvKUKVNatmxpbW3t7e29ffv2N2/ekAJYWVnZ/v37t2zZAsl3YeioqKgaAZDkPHG5tLT05s2bGzdu/O677+rVq4cQGjJkCMMwlZWVoaGhwBw6derEnT+mQBZKSko6deoEjEgkEjk5OT148IBsUCfl2sGcZWVlHh4eAoHg74xHVyf3qyXyr1wBmqbz8/ODgoK6d+/eoEGDJk2aDBo06NChQ4WFhSzd7sOHDyMiIo4dO8a7DcvLyw8fPhwREXHjxo2SkpLIyMjNmzeTjOLkyZPl5eV4DSEJd2BgYNeuXW1sbOzs7AYPHnzkyJGioiLWuAzDgCwH7Oj58+cTJ050cnKysbH5/vvvQ0JC3r17h7tUVVWdOnXqt99+A4vMpUuXApv6+jB9VVVViYmJu3fv9vX1tbOzQwi1bNmSpmmFQvHw4cOmTZsihGxsbDTEIGmaXrNmDZbxrK2t/4pwkbWGOUNCQhBCf2dqQPxiaAv/JytQXl5+9erVH374wdHR0crKqn379kuWLElOTiYtLBUKxeXLlyMiIm7duoV3HDnbd+/egaDy/v379PT0yMjIuXPnIoTMzMxgG969e5dsr1QqX7x4MXfu3Hbt2llYWDg5OY0bN+7atWtcDkPT9JkzZyIiIqqqqkCtNGzYsEaNGjk7O/v7+x8/fpzc4LyCyuHDh8kTIjkNzcvnz5+PiIgARpSfnx8WFta7d28bGxsHB4fvvvvuxIkTxcXFqqiVl5enpKQsXLjQ3d3d1tbWwcFh8ODBe/bs+fTpE3cxMzIyIiIiWDG3Y2NjIyIi8vLyysrKYmJihg0b5uDgsHfv3uP/+eMOTdM0HJljY2O5s3r16lVkZOSlS5fAr/Hdu3cRERF37twhW9I0DWftUaNGOTs729rauru7L126NC0trbKykmyJy5WVlbdu3fL19XV2drawsGjTps3cuXOfPn36V3hPyuVyFlqZkJCgp6dnamp6//59PCWyEBwcTFFUvXr1cnNzoT4/P//y5curVq3q06cPiJqLFy+GtJoLFiwAUzkvLy8N55+Xl9ewYUNg7FKptHv37rxqUnJKtSjXDub8+PGjrq5uTcPL1WJ6/7guWpjzH/fIqp2wFuasdom0Df4FK6CFOWv2EO/du4fVQ/gAhhCytbXdu3cvppWdnd2qVSuEkJOTE9d89enTpzY2NhRFjR49uri42MPDgyQFZVZkgJs3b7Zr147brEmTJgcOHMDjMgyTl5cHzW7evNm1a1dWF6FQOGTIEAzCffnypU+fPqw2CKG6zYp0+/btPn36CAQCU1PTtWvXnj17dvPmzUZGRuCcJBQKyaUj74VbrqyshDSiCCEdHZ3AwEBVoiS3b41qagdzHj16VCwW29vbkyeKGo2rbfzNrsCTJ0+6devG3Sz169cPCQkhld2PHz+GZJDjx49nHUeVSuW2bdsQQkKhcNu2bY8ePeJNSvH8+XO8Dvfv33d1deWOa2trGxYWhpsxDPPp0ydodv/+fZz1FncUCoX9+vVLSUmBLlVVVUOGDMFXceHgwYMkzVqUf//9d4FA0LVr19DQ0Pr16wPlmnpsqx+3uLgYp9tECD19+lR9+61bt+IblMlk6ht//dXy8vLffvvNwcGBoqiWLVuGhIRcvHjxu+++k0qlYrEYIWRpaUkqR9SPmJ+fD0pDhJCDg8PNmzdZsLr67ppfrQXMiSNMenl5aT6QtqV2BRiGKSkpWbt2rampKd6bUJBIJAMGDMCcimGYqqqqqVOnIoSsrKySkpJYq1dcXNy5c2eEUIsWLdLS0n766ScWQYTQrFmzcK/i4uIVK1aYmJiwmkml0sGDB5NWUwqFYsyYMQihn3/+efPmzRBjn+xlaWm5Y8cOTPny5cvkVSibmpp+fT6b+/fv9+3bt3nz5pj+/v37P3/+7OfnBywF6i9cuIAno6YQHBwMSZhgZQoKCtQ0rvWl2sGcSUlJFhYWhoaGN27cqPXQ2o7aFaiTFaBp+uTJk9iwEu8+hFDr1q1ZyaKOHj2qr68vkUi4uSErKirGjRuHEBKLxefPnz99+jRJCsp2dnY4eYdSqYyKimrQoAG3Wfv27Vlbo6qqCozVdu3a9fPPP3M5qo2NTXh4OCxISkoKlspI4gkJCV+5YtnZ2X369OnYsSMm6+PjwzDMnj17ZDIZrgwICNBkoJSUFLDnQAi5ubklJydzoQ5N6KhvUzuYU6FQQM6UtWvXqqevvfrvWIGcnJxRo0aRn1p4n01NTefOnYsDmcjl8pkzZ4KEz3UIKy4uBp1M8+bN3759u3r1arwpcIG0+S4uLl61ahWvoDJo0CBSUAFpCohkZGSMGzeOda6kKKp169bYtvLKlSt4RFwwNDTEqqFaPzXQj4WHh0dGRjZu3BgTx4Xu3bs/efKES//z58+jR4+GiKm4MRSaNWsWFxfH6gI4Fis5LoBwd+/eHTNmDI5UMXv2bBsbG6lUevPmTRaRjIwMCIjdsGFDri3anDlzIP8uAHiLFi1CCJEPiGGYpKQkrp4NrFEXLFjAdfXOzc2dNGmSrq4u6x4NDQ0nTJiAkUXWPGvxs6qqKiYmZuLEiayjGXx61JibhISECAQCc3PzvLw8GPfAgQP9+vWztbXFc46Pj8/Ozu7fvz8OJy6VSv/8889q51lRUeHr6wt0dHV1t23b9hdp8GoHcx48eFAoFDo6OuIdXe0dfZsNHj58uHPnzlWrVq1Zs2b37t2JiYmseZaWlib+50+VIuLt27e4QWpqakJCAnzygoKCoJ67X96/fx8ZGblu3boVK1Zs2bLl2rVrvA+3qqoq6T9/9H/+7t27t23btpUrV+7cuTM2NvbTp0/kVIuKihITE3/++WeEUKtWrWDoDx8+kG3Ulz99+nTixIlff/112bJlgYGBFy5cAGMO9UFrS0tLL1y4sHnz5mXLlq1fvz4qKor3EJefn5+YmJiWlgZz+PDhw8GDB9euXbty5cqgoKCbN2/yrgA54bdv3+7bt2/t2rU//fTT1q1bpUmT8QAAIABJREFUr1+/zvtEUlJSEhMTQc2Ynp4eFha2atWqjRs3njlzhvUhIIlDuaCg4OTJk3gFzp07Bzme1MCc79+/P3r06ObNm1esWBEUFHT69OnaHRLz8/OPHz/+66+/Ll++fMOGDUeOHMnJyeHOsKio6NmzZ5mZmQzDlJeXX7x4cdOmTT/99NPevXtv376tJiMVlxSEeePNzfnp0yd4f3gfJZeUtubfsQJamLMGzzEmJgbi55ibm69cufLJkycvXrzYsmULmKkKhULSY+D9+/eGhoYIoQkTJpBsq7KyskOHDoCMpqSkgJtCWFgYSIdDhgwJ/88f6c156dIlGLd+/fpr1679888/nz9/vnHjRjh7C4VC0hI/NzcXZAgDAwORSOTh4XH9+vWCgoL79+/7+vqCmO7n5we3LZfLL168iEf/7rvvuKPXYIE4TZVK5fnz52HQRo0aYTSiuLgYwzB6enoPHz7kdOWvSE5OtrKyAgvo8ePHk9gSf4fa1tYC5qyoqICH6OPjo6FdW21np+33d6/A9evXpVIpQsjExGTZsmWPHj1KTk4ODg6G4MlCoZCV5SI8PFwkEkmlUpbeOTU1FV5gX19fhmHy8/PDw8M3bdoEG3zr1q2wAbEbaGxsLFwyMzNbuXLl48ePX758uXXrVsxzSONfbOJgaGgoFArd3NyuXr1aUFDw4MGDyZMnwzYExRP4M125ciU8PBw8uT08PGBoEl2o3SqfOnVKIBBYW1ubm5tTFCWTybp160aCAbUjS/aKjo7GJy4LC4tq9V/Lly/H7UUiEUmqzstyuXzJkiXUf/6+++477J/x8OFDPAfwxNJw6F9++QU66unpnT17VsNetWhWC5jzwoULUqmU+/7XYnRtl/+qFaBp2s/Pj6IooVDo7u4eFRWVnZ195cqVsWPHAsdzcnIirYXy8/MBZbS2tiat8jESKRKJAHV4+PBheHg4gAoWFhbA1jCfpGnax8cHDE369u177NixDx8+XLp0CSsxO3TogNmvQqEYPXo0QgjU9CYmJoGBgW/fvs3MzDxw4ED9+vVBmXjp0iV4dhkZGeHh4eCERFEUDH3o0KGvd5IA+nK5HDAMXV3dnJycwMBAsVgsk8mwTpOryOO+VEqlskWLFiBE9erV668TomoBc1ZVVXl5eSGE/gWaJu7Ka2v+cStw4MABMAhwdHTcvn17cnLyw4cPly1bBttQJBKRsaMrKyuBtxgbG7M0cUBHIBBs27aNYZi0tLTw8HAwyMCM4vjx41haCA0NhXGdnZ1DQkJev36dkJCwePFiOFSKxeJXr17hxayqqoLgFoaGhuCIExwcDO5iYWFhxsbGID+A59Pnz5+joqKCgoIgz/eSJUuATWGlNiZbu4JSqQR4g6KoLVu2JCUlyWQyQ0NDbFfBxYC5A9E0PXDgQJi2vb09yfC5jb+mphYwp1KpBIBKIpFg/ebXzEHb9xtfgZSUFDA4kEgkkyZNunbtWkZGxsGDByHqO0VRJNr96dMnLKiQjnQKhQJkEpFIdPnyZYZhHj16FB4ePnHiRIRQvXr1YBvieBU0TU+YMAEEpD59+hw9ejQnJ+fy5cujR48GAalNmzak6rm4uBj2i7m5uUAgaNCgwbFjxwoLC1++fLlmzRqwKW/dujXwpczMzPDw8LVr14IYAEMfPHjw6wUV0IFMnTpVJBIJhUJPT88TJ06kp6efP39+1KhRMHN9fX0W0imXy2G/i8XisWPHPnv2rLi4+P379yEhIWDrYGBgAEpw/KrAsYgFc+rr6yOEIOi9WCy2tbX19fVNSEjo3bs3Qgh8EDEFhmEOHDgAiyaTyVhTomna2dkZIbRv3z7osnDhQhbMWVlZCSdxmUy2fv36jIyMgoKC+Ph4Nzc3AFlZSYKzs7MBK5JIJKNHj758+fKHDx+OHTvWp08fwAtnzJhBTq925YqKigcPHnTt2hXEwg4dOpB0ysvLU1NT09PTVRnLgntx+/btWVw3Li4O0FkjI6OysrKRI0eKRCKcSEVXV5f8JJEjkuVnz57B7qAoavLkydWe3Mm+NSrXAuYsLy8H3eykSZNInW2Nxv0/b1xUVDR06FB4q8l/fXx8yPPU2bNn4ZWbP38+9wjw5s0bsCNv3rz5u3fvyAjDmCbmVAzDKBSKHTt2YMMC3KZNmzYvXrxgPeW7d+8ihKytrQsLC4El4vbgvnL8+HHcZcGCBeRVKC9btkyTdaZp+vr16xCFmCTSoEGDu3fvQrTwNm3asEjRNJ2ZmQl7n+wlk8n27NnDejGCg4MRQkOHDq2oqNi2bRsWcnDHnj17FhQU4Nshx6qqqtq0aRNuiQsdOnRgGXV9/vwZ9nJBQcGuXbvwcQ+6iESipUuX8uKpNE3fvXsXJD1MH4Jq3L59G6xyW7RoQbICpVIZFhZG2qVBRwsLi8jISO6rQt4RWVYoFJcuXcL8AY+uq6vLTX0CR+bJkycXFRVhaAB3sbOzYzFnciBWWRXMmZeXByEzpVLpmTNnWL20P//FK6CFOTV9uLm5ue3bt4fojiyrpZSUFMi41qxZM1Ku3bVrl1QqNTQ0PHfuHAxTUVExb948hJChoWF0dDQeW01uzuzsbGC4gwYNIn28GIZ59eoVqITatGmDJRIMcxoaGu7atYvE2yorK5cuXYoQMjIyIg/hCoUCXCRXr16Np1QnhcOHDxsZGUFIFvKj+OXLF7A+Rgg1aNCAaxakanSIFATmvSw/OVVdaldfI5iToqgpU6a4u7sjhCwsLDCaW7uhtb2+tRUoKCgALLBnz56PHz8mp5eWlgZ6cDs7O6wch3AuwBMaN2785s0b6PLp0ycw/GzatCmuBLBTX1+foqjs7GySeG5uLpjGe3h4sHhOamrqyJEjEUL29vbY8BDDnDKZbOvWraTcU1VVBWdaAwMD1ijAkebOnUsO/TVlgDlBRpk4cSLXnf1riENfHO8aIaSJyDtp0iQsMzVo0ODrJ6CKQlFR0dSpU0EM7dWrF2mcm5SUBHOgKOqXX35RRYFV//nz5+7du0PH+fPns4RsVuOv/FkjmNPCwiIsLAzcTEeOHKk5D//KSWq7/ztWABuNBQQEkJ9yCCNmbW0tlUpZkSqePHkCfkhLly7FB7OjR4/q6elJpdKtW7eSK6MqNyc2GmOFgqBpOioqytzcXEdH5+TJk0AKw5wIIWdnZxYT/vjxI8TYGDNmDClopaenI4QEAgE5nzopK5VKwFfatWu3f//+evXqrVixIj09fcSIEWZmZsOGDdOEP8THxwM/adasGWlOVyczJInUFOYcOHAgfEyNjY1ZfnIkWW1ZuwJ/zwokJSWBmmb8+PEsQOvRo0cgE44aNYp02cnMzIRAPp07d8Zf/6ysLHt7e4TQ8OHDSV6nKjfns2fPYFw/Pz+W4XlCQgJ4rk+aNAkLeBjmRAi5uLiw/N1zcnLgCDlz5kzMNouLi1u0aEFRFCvq49cvLE3TYIArFou3bNliZWU1YMCAT58+bdiwwdzc3NXVlXVHvCO+fv0aC2xRUVG8beqksqYwp4ODw6pVq2QymVQqDQwMrJM5aIl84yuwYMECiqLs7OxYRqvFxcVgQGlpaUmeqhITE62trQFXwzvuxIkT4Oq9efNm8n5V5eaMjo4GUHDjxo0kh6Fp+ujRo5aWljo6OkePHsWkMMwJ6giWQH769GkDAwOpVIpNshiGycjIqHNBBWBO0ISEhoaSclFFRcXRo0cB5Ro4cCDJCS9cuIAQ0tfXP3ToEAsSePXqFWDMrNhFamBOhFDjxo3/+OMPLA4dPHgQIdSoUSNcA5a+ODaYSCRiBcl/+vSpQCCQSqXY/YgLcwJOIJVKr169ih8EeNZC9BETExPyQWzYsEEoFFpYWJAPDlIPgMbJ1NT0axxqMzIygoKCevToAYCTSCQaMmQIKzIcOU9uOSUlpUmTJgih0aNHk8+OYZj4+HjwtfX29oZ4bGFhYc+ePXN1dbWyspo+fbomEEhQUBAw9l69emGbHu40vr6mRjCnQCCYNm0aoCCWlpZc38evn8/fQ+Hly5c9e/akKMrAwKB///7z58+fPXt2r169ICmSu7s7NmaCmPBCoVAikWAFNZ7k6NGjKYpq2LDh06dP8/Pzp0+f7unpCfZSrq6uw/7zl5ycDO0/fPjg5+cH74aLi8u0adN+/PHHoUOHAlBqa2vLivN869YtcHfu3bs3RVHOzs6zZs1auXKlv78/6BNMTU0vXrwIxPfu3Tts2LCWLVuCjwEMzdqqeNpkoaKiYvv27WAkYW1t7efnt3r16gkTJrRu3VooFOrq6kIwMy7MefToUThmNmjQ4Pvvv1++fPnEiRNhAkKhcO7cuSTjApizT58+o0aNEolERkZGgwYN+vHHH2fOnNmrVy/Yhi1btrx16xY5N4ZhsrOzx48fD8/F1dV1+vTpixcv9vLyggnb2dmRmsbCwkLYNVOmTNHX1zc2Nvb19V2zZs2cOXOwNcPixYtJ5gZcJSQkBFBeKyurSZMmrV69etKkSW3bthUKhRC7CGIg4Y8UTdObN28GsLZjx44LFy5ct27djBkzIDKZvr5+ZGQk60Z4fyqVyhUrVoABbqtWrebOnbtq1SofHx9YRj09vTlz5pCg+6pVqxBCbdu2bd68OXhoLFiwYMWKFWPGjIG3rnHjxtzoCLxD88Kcqampffr0oSjKyMiIxXt5iWgr/00roIU5NX2ax44dAwGFpeqC/qWlpRCHllTMyeVybGMLX5fr16/r6+sLBIKgoCByYDUw5759+wQCgaoQEx8/frS0tBSJRCdOnACCGOYcO3Ysi+uBPziIzrg9WOKogjlzc3OTNft79eoVhltgJm/evIEvn0QiYTkhff78GUQKhND06dPJpVBfBkMPiqI0j3OrnqCqq7ww58yZM2cTf5MnT/bw8CBDylhYWJDwlSri2vp/1gpcunRJJBKZmJhglyDW/CHVBMtys6ysDOp79+5dXl6uVCohXZxEInnx4gVJIT8/nxfmPHHihFAoNDc35zVlKisrg+xKWPLAMOd3332HVWB4oIqKCtj7LLWRKpgzLy9Ps63/P61Is2IMc7Ki5cBMwFZOQ8pv3rzhnoXKyspIo7lqk4l++fIFjHlBUnRxccFroqagVCrPnTsXFRVFqhjUtIdLQUFBINoaGRnh4zFcSkhIgAlIJBKWukQN2Tdv3oDGRCwWkzY0arrU+hIX5rS0tJw1axbmebNmzRo7dqyLiwvcCFiCt2zZ8q+eWK3vSNvx21yBL1++wEly2LBhvDMEjVK7du1YVyGbnY6ODpyxMR1PT0/y8MkwDC/MWVpaCu5QI0eOZFGGn9OnTweoAH5imFMoFPImEAoNDaUoqmPHjuSZTRXMWVlZqSHfS05O5o1EdP/+fdh6bm5uoMgglWi8d8StBCgRITRx4kRNNFNcChrW8MKcU6dOxfxk9uzZU6dOHTRoEHzI4Nb09fUxzKzhQNpm2hWo8xVQKpXg19K6dWusBiJHiY+Pl8lkZmZmrCPh69evTUxMKIqC6KyVlZXgPK2rq8tySOKFORUKhZ+fH0Koffv25HC4fOHCBV1dXSsrK5zkEsOcIpGIV0seEBCAEHJ3d8fsQhXMqVQqMzIyNGRTb9684UpH7969w3KOh4cHRVF4nvgWqi2Eh4cDER0dHa4EWG13zRvwwpxubm4kj5o1a9bw4cNJ9w6BQDBlyhQWDKD5oNqW/6AVyMvLAz3Gzp07eafdpk0bhND48ePJq0FBQRRF6ejogG06FlT69euH9yC054U5S0tLQd89fPhwkiwuz549GyFEOuphmFNfX588jkEXuVzeunVrhNDy5csxEVUwZ2Vl5atXrzRkAixBBcOcS5YsYQGWMO7u3bspijIxMSGDny1ZsgQhNHDgQDw3sjBt2jSEEMvTUT3MeerUKZJCZWUleCKSeENhYWGXLl309fXBgWHhwoVkF39/f4QQKaByYU4QRx0dHcmOUK6qqtLT06MoCofbLSgogDmocieApRs0aBCXmvoayA+6atUqcGYF6HrAgAE1NWL7+PEjdrUkFwpG3759O/Bk+DytWLFC/ax4r4Lej6Ko/fv38zaoq0pemJOrwevTpw+OdgBJMVj2THU1n7+BTmVlJWicxGIxqWGgaTo8PBx8N+fNm4dnUlZWBt4mbdu2Jbfqjh074EGTcRdU5eakaRqCUggEgnXr1pF0sLVHt27d8KAMwwDMCUOMHDmS/L5/+PABbKSaN29OdomIiEAIubq6kpXqy/Hx8RDCukmTJjgXAMMwFRUV4CUPE2DBnPiE2KFDB2ymxjAMTdNgvy6TycjIbQBzAilbW1vWIXHv3r1gr8ZaYZqmQbYUCoUbN24kb+TBgwfA+Xv16oXrMcyJEGrXrh3pUEHTNHwLzM3NWXqYu3fvYoyQ9GuqrKzEtvgsmDM9PR3AaZaXfElJCWAZNjY2eFZqClFRUbAmffv2JWdF0/S0adMoihIIBOTbBTAnKJQ2bNhAytvJycnwHFV9ClnT4MKcOTk58I2WSqU4bDurl/bnv3gFtDCnpg+3f//+IMtysUOwC4OUDP7+/qTmKDc3F+z9R44c+eLFC0it5OnpyRJD1cCcoKCfPn06ufPxpOVy+fjx4xFC+OuFYc7Tp0/jZmQBjtx79uzBlWq8OUH+A4al/l+KokJDQzHN9PR0fCz08vJixULJyclxcHAAgqoSoWNSZAFYsFQqnTp16q81/GMZUZJkuWVemFPNChgYGGzYsEETO2XuWNqab3wFwOxr+PDhqvQa4CQ9evRoFnOIiYkxNTXV0dEJDQ2Njo42NTWVSCRbtmxh3a8qmHPAgAEIoXHjxrHIQnelUgnyjZ+fH/AcDHMeOXKENQT8hINucHAweVUVzInPq2pee3wJQrEBWYA5pVIptsgjh/v06RNvyhZMiiwYGhqSh2Ggc/XqVdzG0dGRq2gjh4MAcWCgCr0gXDCrDevnp0+fPD09oX3Dhg1ZekxWY/wzLi4OnNelUunhw4dxPRT2798PBLnxl1gtyZ9Pnz4FJUuDBg1qyPD+p7kmZo94OC7MideZt1C/fv2jR4+q2hSYrLagXQHWCly8eFEsFpuZmbF0ZLjZhw8fwJQBmwzDpZKSEuDGdnZ2T58+haNXs2bNuKG2eWHOP/74A/JmsUwQ8LjZ2dkwLqjmMczZv39/3IYsnDt3TkdHp1WrVuQxUhXMiTkA725iVTo4OJADQXnKlCnQzMjISF9fX5XZDbcjWQOOZQghLy+vmrKUTZs2ab7feWFO1m2SPyUSyYwZM1i+aOTMtWXtCvxtK1BSUtKqVSuKoljyEp7Aly9f4HyE017CJYVCsXHjRohhk5CQsH79eoqizMzMuBoWXpgzLy/P0dFRJBKpMuUsKSmB0xMW8zDMSSrl8TwZhtm/f79QKOzcuTOO+qMK5szJyQFVKbkxVZWNjY1JnwMYEXM5PT09Y2PjGkkgeM4rV66EQVu0aFFTHrVx48ZHjx5hUuoLvDCnqvuF+p49e8bHx5P6XPVDaK/+o1cAzkfOzs4sOyp8UzExMQKBwMrKijR1KikpgdCRTZo0efLkCRzl7O3tuZA/L8wJISXNzc1VqRRycnJAUMGRQjHMqQpFgxA4JFioCuY8fPgwKy6imh3RrFkzvBQMw8CxUSQSsWx5cZvMzEzQg+E8JjRNHzt2bM6cOap0VjNmzEAIjRgxAhNhGEYNzFm/fn1Stw69vL29EULz58/HRFJTU83Nza2srCBIWPfu3fGlwsJCCwsLgUBw5coVXMmFOcEaQ19fn5chnDp1KiwsDJu2QH5Be3t7ljYM03/58iVgUaqkU9wSF+Ry+dWrV2fMmAG2sBRFOTg4LFmy5OHDh6QeErdXVaioqDh8+LCTkxMkaNi0aRO3JUQVFggE9erVc3R0rCmGCgTBt0xHR2f69Ok1Zew10uDxwpxqXmMDA4NNmzbhh8W9/W+/Br7y9erV4+pMGIY5ePCgVCq1tbUlWdCjR48gPMyECRPAMv7mzZsGBgYCgWDGjBmk3kkVzJmbm2tnZ0dR1Jo1a7jfxFevXgFod/z4cbyAGOYcOXIkV60dHx8PluKkaFELmBOCgbdq1Yp7xiwvLweUESFEwpxyufz7779HCDk4OHCDkH358gUitJEQIIY5pVIpmTwObpam6bCwMOClpCCUlpZma2vLxTih18uXL8F5BvNDDHNaW1tz+Wpqaipk1GL5KYJDuaOjI/nEYYiKigrINMyCOa9du6avr29kZMR113n79i24SbB8c/FjxYWPHz+C8n/YsGEs3yeAmSG4Wps2bfBZEmBOiqJWr17NZVzBwcEURTVu3Jj7UPCguMCCOV++fNmtWzewYDh//jxupi3896yAFubU9FmDGMGyESM7QzQGLy8v8tvAMExcXJyhoaFAIABttbW1NXfnq4E5IZMfyxuSHBc+5z/88ANUYphTlXwMAjd5dFcDc4KPuRrhAF9iwZybN2/GgjI39earV6+AL9vY2HA/jeTdkeXKyko8XC0KEomEpKa+zAtzBgcH79y5E/APqVQ6f/78o0ePQux4kUiUkJCgnqb26j90BSBmDssJkryX8PBwgUDQt29f1kmYpmkwU4U8nQihXr16cWE5VTAn8Bw1ri0gY3333XfAczDMqcogERAC1mlBFcwJSUQ03GhcmNPe3p53Gvn5+bCemlDmhTkh+i50Hzt2LFdQJh8NwzB37tyB0yMk5MPOr6xm5M87d+6A1xeMwvLTJVviMlY+IoQ6derEMmRhGAbO6gghlm0jpsBbuHnzpiYLpapNjcbiwpyNGjXasWPHpk2bACe2s7Pbs2fP6dOnu3TpAlk0/tHHQt4F11b+DSuwZ88egUDQo0cPVRofhmFAlY9PenhWcrkc1GQQ8MfAwIDX2Z0X5tyyZQvkHeA6u2P6gAKCNTSGOZcsWYIbkIXr168bGBg4OzuTMetUwZzYRUnVbiXruTBnZWUlyJDQ7OeffyZnomFZLpdjk39yOA3LIpGI5YyiZlxemDMwMHDnzp0TJkyAEUePHn3o0KEdO3aAbmX37t1qCGovaVfgb1uBgoICY2NjsVisxhBzzJgxLAcpmJ5SqQQ/CYlEAmjE2rVruScdXpgzIyPD0NCQmyuOvHH4UmMOgGFOlmcA7nL27FmxWOzi4oK1/6pgzqysLBA7NWEIXJiTpmkcBxIh5Onpyb1rPCtVBZqmwWhYkzlw21AURToKqBoF6nlhzuHDh+/cuRP0ZSDO7du37+LFi/Bp4EYOUD+E9uo/egUgeMmaNWtU3UVqaqqJiUm9evVY2mS5XA7aXiyocPXgDMPwwpyg2IU4QKrGhYR5OOAkhjlVGWUuXrwYITR58mRMUBXMGRkZibU33P3FquGFOVV5ooNLAOT3IRFH8JfCE8OFwsLC3bt3g7JIc5iT9FjFpCIiIiiKcnV1xTzw9OnTkP8IlGY6OjpYd3f16lWpVNqkSRMSuubCnK9evYLVkEqlM2fOVCNVMgwDsPecOXPwlFiF8vJyyKLHK9CyGtM0ffPmzXbt2sH3BXJRRUREVFRU1JTlFhUVDRgwAJ+RQ0NDuUhDWVkZgBxwv1wrXtb0eH9WVFSwXp4a/ayRBo8X5gQNHuC1Ojo6ixYtOnbsGCBeYrFYk2Xnva9voZKmaXCJmTZtGq9KpKCgoEOHDhRFsYI/x8XFCYVCiqIOHjzIMAyE4u/atStLTa0K5ly2bBlkYSNdDMkFWbduHUKoe/fu2GsTYE49PT3ShoDsAi7FpENqTWHOrKwseJ9VSUQfP34Ea3sS5rxz546enp5IJCIzrJETe/r0KbhK4+MehjkXLVpEtsRlnGW8Q4cOeAXmz58P2UkxL8LtoYC924GlYJiTm10Y2oOBApkLKTs7G1Zg3bp1LOLws6ioCPIKk7k5Y2Ji9PT0DAwMuDAnqLC6du1KPhdeyqdOnRKJRGok2EePHsHGx7o4gDmbNWtG8ltM/NGjR/r6+vXr12cZPeMGZIGEOd+9e+fo6AimG48ePaopYyTJasv/3BXQwpwaPbv8/HwQ+zp16jRQxR9sp65du2ILBSCtUCggvy7EFofk86xRVcGceXl5MK6rq6uKYQfC0Qt7uGOYUxUDrRHMSdfkD99UaWkpRB4AXzRcjwvwaYRc8biy2kJVVRUpadVIQgJOV+0QuAEvzAnCX05OTtu2bSmKGjNmjFKpLC8v9/X1RQjVq1dP1QEDk9UW/nErUFBQAHuwY8eOqvYgeEh36NABG8vj2ywvLwedFEKodevWvHaavDAn5jkuLi6qxgV1f5cuXUAYwjCnKokTZqIhzFmTrU/j+2UYBrw527RpQ4YKIRvUmjLYgsFxEbY/Ca+SQ+CyUqkcPHgw5hVmZmbY/Bm34RYePnwIRogQRgNLY9yWuCYqKgpO4wghrh9GQUEBjvXKvYqJcAt37twB20Z8CzUq9O7dm0tTVQ0X5nRxcQHR8OTJk2KxWCQS7d69m6bpgoICiFIwatQo9Wd7VWNp6/+bVwDCHJmZmfXr108VcwNIj9eu/OzZs1gSWLt2LVZOkUvKhTlpmgaTDgsLi/79+6saF3bx9u3bIZ4/hHglD5DkKDWCOUGXpzn3IwcCcw28952dnbmGFKz2vD8VCgUZZh8T1LCgo6PDMuXhHQUqeWFO+EQqFAovLy9QO378+FEul69du5aiKENDQ21WTjVLqr30t63Ay5cvqf/8de/eXRWvAK306NGjubP6+PEjJOlECHl4eLCUhtCeF+ZMSEigKEokEvXo0UPVuCCc4DiZGOZUZSVw7tw5DWHOr+RRRUVFYAKFEBKJRGrMc7krhmswo9aQKbGaCQQCMlgRJstb4IU5IacMTdOrVq2CLFYQeTI6OtrQ0FAikbDyQPNS1lb+C1bgy5cv4H/m7OysajP26NFDKBTyWmReuHABWyatWrWKpRqC9eHCnDRNAyRpbm5eraCCX0UMc5Iz7rl2AAAgAElEQVSBJchHAPpfTWDOr2EC4M3p5+dHDs0qQzxYb29vsp6m6devX+/bt2/x4sUjRoxwdXVt0KABxvBq5M0ZERFBUoYynOmsrKwgjDDDMD4+PgghcCoFjx/scxYQEEBR1IgRI8jTDRfmZBgmPDwcRyeSyWTu7u5Lliz5/fffMzIySK16RUUF2A3b29urepH69esnFosRQmT+VO6NMAxz7dq1Xr16QWMjIyMvL68DBw5oLphhml++fNm2bRu84RRF9evX7+rVq+S0cctjx45hNtu3b18uDopbqilUVVXBnDGpGhUMDAzUEGdd4oU5YdqQP5uiKF9fX9DgjR07FqIvaJj/jzXWt/BTqVTa2toihP744w9V8+G1ypLL5RAVrHnz5mCiZGRkdPPmTRYRVTAnqDVUgXwMw8TExEgkktatW+O0oABzmpmZ8drBMwwDO4W0768pzAmnP319fVU6KOzbQ8KcUVFRIpGodevWas5WIPLhXLwAcxoaGqrSuTEMc+TIEYSQo6Mj5swQBURN2GdACjt37gxkMcypKpP68OHDEUKkMe7Zs2cRQnp6enhQ1gNVKpVgTEbCnElJSeDd26lTp1OnTqmxQmZRI38GBgYihLhIOW5D07SrqytCyN/fHyoB5vT09MRIMG7MMExSUpKVlZWlpaUm2xPDnE+ePOnYsSNo/s+cOUMS1Jb/q1ZAC3Nq9LhxSqRqv8q8QRTj4+Oho52dHSt4NwyvCua8c+dOtSNCgxYtWgApDHOqMrqvEcyp0epwGmGRSCwWc30cca4LiqJUpbvgkPzfCsB09fX1t23bFlPDvxrZaqmBORmGiY6OBs+wX3/9lWGYsrIykJIHDRrE9dVTdS/a+n/ECmDLo2p3op2dHa94BBHMEEJjx47lvWVemBOncqx2XEdHRxAOMMypSjqpEczJO1VNKgHm7NKliypLC02IqGpTUFAAVswAQKoyu8Pdr127RsKEq1ev5j3F4fZQqKyshBBPCCE7Oztu2BNWe4ZhcHt9fX0u742PjwfbOolEwr3KpYZrnj9/Dn6lTk5ONWR4/9Oc93ODibMKamBOpVIJMZdkMhlkbYmOjhb+569apJk1ivandgUgu0+1nE1V6u43b95AyhOEkCrbUi7MqVAoQJ2hybgLFiwgYU740HMfXE1hTi4FzWu2bduGZ64hH+MljqORz5s3r6Ys5d69e5pruNTAnAzDPH/+3MzMjKIoyM4ul8sBUba3t9eE3/LemrZSuwJ1tQLAQPCOU1Mgox3i0SsrK728vKDXhg0bcD1Z4IU5Dx8+rGYs8pK7uztQwzAnK3wuHqtGMCfuVYtCeno6tqJo1aoVrwGKJmTh/AXhT2rKo65du8Yrh/OOqwbmBP4PQlGXLl1KSkqUSiUI8xKJpFoognc4beU/awXS09MhDwW573jLurq6XBP21NRUyCuGEMJul6wV4MKcSqUSUhHxDsSqxN6BGOZUpXCvEczJmqTmP0G6WLp0qZou4Mzk5uaG2yiVypUrVxoaGmKfQrhNMzMzf3//kSNH1gjm5AUDPn/+3KJFC4qiILSjXC43MDCgKAqAEIhb6+npCVMChz8y5hnDMLwwJ03T7969Gzt2LH7QCCGJRGJsbLxs2TIMbOfm5uI8TawnyP0JfnV4cbiF5cuX4/VJSEiondIpOzu7c+fOACSbmZlFRUWpAUohXCeE8FHlhMedJ7cGHMhkMllwcHBNGfvTp0+5BFXVqIE5aZq+dOkSaPDA5rukpKRz584IIRwZSxXZb7a+rKwM9s68efMCVfwBJOnj48O6i4KCAhzCQSgUnjlzhqsk4YU55XI54NZjx45VMWbgtGnTRCIRqfoGmLN+/folJSWsmcBPwMBOnDiBr9YU5gQX0latWmEK3ALIGCTMCal27e3tAwICVN0OZLvE4SIA5nR2dlYj6ty6dUtHRweHC8aLNm7cOFWjTJw4USgU4ihBGObkdZNgGGbcuHEIoR9//BHf5oYNGyAgLa7hFiACJQlzKpVKYM7AxJo0aTJ//nyuDp9LiqyBuGXDhg3jvkW4GSDrHTt2hBqAOX19fXkdkV+/fm1jY2NpaZmYmIgpqCrAZ65r1644U5VQKFRl/6eKiLb+37QCWphTo6eZk5MDUsX58+dT1f5lZWWx9nZqaqqDgwNFUWKxmKIoPz8/LkNUBXNmZWXBuJcuXVI7bCp2ov8WYM5hw4bBtFu1asWypqFpGseclMlkvPKomkcCjlxCoVBzc1011NRcUg9zQmYIsVisp6cH+ahv3LgBUddWrVrFfb5qBtJe+sZX4MOHD/Aynz59Wv0ezMzM5KqAL168qKOjIxAIRCKRQCDYvXs3tw0vzIl5zrlz59SPi3nONwVzduvWTZUU+zVP/MmTJ9jC19jYWBWgC0MUFRVB7Dh4gp06dSKNc9VPQ6FQxMTEnDp1SpU1HNm9rKwMe3+C1p68qlAoevbsCXPgVYmSjVnld+/egbGwTCbTZCas7jX6qQbmZBimpKTEw8MDIdS7d++ysjKapjdu3CiRSIRC4YULF1hfvRqNq23837YCkMy4X79+ycnJ6pkbV2enVCrHjBkDDk8URbm4uLBkDFhMLsxJ0/SsWbMgJ+Xr16/VjwveVzho7f85zKlQKMD5ACEklUpZ8fFq9P7AIiCEeGXRGpFS31g9zAnpgsDZZd++fUqlMi0tDbIh+vj4aM6o1c9Be1W7ArVbgSdPniCExGLxjRs31PMKLv+haXrHjh1isRgsgYRCITb/JyfDC3OCEtDQ0PD27dvqx83NzQVq3w7MCY4L4MrJzUVK3rv68tGjR0FeMjU1/Sus5fDo6mFOhmFwYI85c+ZUVVXRNO3j4yMQCJydnbXWGHgZ/62F4uJi8G7Zvn27+s347t07FtqkVCp9fX2xoNK+fXteJTUX5qRpGnTNnp6er169Uj8udhP/pmDOCRMmqHklwKsMp7irqqqCwKFSqbRPnz6//vrrhQsXXr58WVBQAMcKUNlrHrRWlV4evJeATlxcHEKoXbt2MM93797p6Ojo6+sXFhaWlJQYGxtTFMUK/MMLc+LbLC4ujo2NDQgIGDNmjL29PUVRAoFgyJAhkE/uy5cv4Ny/cuVK9Q80NTW1WkPY48ePOzs7g/1uo0aNVq9eXSMjfoZhEhMTIR6PmZnZ7Nmz1SfazMvLwxht+/bteQNL4nVQX4C8OUKhcN++fepbfuVVNTAnUF67dq1YLMZKyLi4OD09PYFAoCo8zFfO56/ufu/ePfhiVvsvjvxHTgk8NxBCPXv25EW7eWHOtLS0aoeDBlZWVtgVDyQca2trFsPE8/l6mBPsWQcMGIBpcgsAnZIwJ07YWe1NzZs3DwgCzOnm5saLz0Gbx48fm5iYmJmZQcrw1NTUaulDA1tb29TUVIZhMMypShbiwpyQ/9LDw4N747gmKiqKlZsTLu3fv799+/a6urp4no0bN542bdr58+dVPTJMk2EYCJ9GJoEmr0J506ZNCCEDAwNQhwLMOWnSJK52lGGYWsCcMHMnJ6devXohhMzNzV++fMmdhrbmv2EFtDCnRk+ZpmlwqVETEEAVIR8fH4qinJ2do6KiBAKBUCjcsmULq7EqmJOmabAR0zx3bt3CnAcPHlyq8R8WLnHYIk9PTxZbzM3NBYd9yAlcU4Hp+PHjOIovL0NkLWytf1YLc5aWloJfbMeOHSEM3e+//w5oVrW2eLWelbbj378CNE2DPS8rv7cmM3n79i3Esvbz89uyZQtFUWZmZtz88LwwJ+Y5v//+uyZjMQxTtzBnVFSUxlt/KXj4wTzBm1MVzFlRUbFz504NKa9evTo9PZ28fRzvGiE0adIk8hK3HBAQgDFRU1PTanOncyloWEO6/HLjY8TExGCPUt60MWpGKS8v79u3Lwht06dP/0vRRPUwJ8MwT548EfznD7QYCoUCcuw5OzvXlJOruWXtpX/9CgQFBVEU1bNnT/VmCrzrsGnTJtjUYWFhZmZmAoGAV6fGhTnBOAkh1K9fP2xlzzsErqxbmPPNmzca8r2lS5cGBgbiaTAMU15eDom+EEK+vr5fwwdevXoFQlSTJk2weRw5Vl2Vq4U5lUrlokWLEEJg6QzppgAZUhPQqa6mp6WjXQE1K5CXl6erqysWi3kz6qnpyDDMpUuXIPb11q1bIcyDq6srV3vIC3OmpaXp6OjIZDLNnVfqEOb88uVLcHCwhmxqzZo1oMTHqwFabISQq6vr1/CoDx8+YJGpdnng8JTUF6qFOWmaPnfuHEVRQqEQspq9f/++adOmFEUNGTJEPXHt1X/6CtA0DQCPqgxnam4wMDAQBJXQ0FBLS0uBQDBu3Dhuey7MyTDMxo0bKYrq06cPbxA/LhGGYeoQ5kxJSVm2bJmGTIAlqIA3p5OTE+8kGYaRy+Wgel65ciW0ycrKMjU1pShq0aJFvAIhHPq+Hua8e/cuBHL88uULZL+DoB2weq1atRKJRNevX4cc6l26dGFxMPUwJ75fuVz+4cOHLVu2gHcddmzt06cPQggDJLh9LQpKpTI3Nzc0NBTHmzUxMRk6dCgLl1VF+cmTJ/Xr16coytbW9t69e2oQGqBw//597KMfEBCgiqwm9YcOHYLDLHd5NemueZtqYc7i4mIw24VPFU3TJ0+eBA3ekSNHNB/oG2n5+PFjWNg9e/acUvtH6mpg8p8/f8Ywtp6eHq/zCS/MmZmZCYNu2rRJ7ZinLl68iDM6/Q0wJ4B82Dmb9xnt2bMHIUTCnLDBXV1djx07pv52cOBrgDm7dOmiZhPdu3dPJpNhoPf9+/ewaIGBgepHuXz5Mlg8YJgTryHrjrgw5/Tp0xFC/fv3Z7UkfwLQS3pzwlVIS/Ty5cvAwEA3NzecIEZPT2/+/PksrkgShDIIgTilArcBwzDg7GRjYwPUAOacPHkyr1a/djBns2bN3r17V1hYaGdnB0F0/wq/C96701Z+UyughTk1fRzg7z9p0iReBZlSqdy1a5e3t/eaNWswv1MoFBBnTFdXF/DRdevWicViCwsLFtShCuZkGAZMrmbOnMnrIwhDeHt749xRdQtztmzZEjhytf9SFBUaGgqriWFOlv6Rpun169fj4+vgwYMhI72qEO3cZ5OWlgY8C0AOXpmY26sWNdXCnAzDPHr0CKTMiRMnggpj9uzZAoHAwcGBN4FzLaah7fItrEDXrl0RQt9//70qF5OIiAhvb+/ly5eTh9KKigrwvwG778LCQpCqPTw8WO8tL8zJMAycGCdMmMDLc2ia/u2337y9vVevXg3MoW5hTkiQUO3GhwZk5FL1MGd+fn6DBg00JMtKeCOXy/H2pyjq7t27ql6PioqK/fv3Y4zT3Nz8LzU+wIc3kUjECqyRn58P7w+EAYGEEwUFBertZ8n7CgsLg+XS1dX9Sw9g1cKcDMMcOHAAjF5B+ZiSkgIHJG9vb1UiOHkv2rJ2BRiGOXHihEgksrCwSElJ4V2Q3NzcESNGeHt7szI1Xr58WSAQiMVi0LacPn1aX18fIRQaGso6IPHCnAcOHEAI1a9fn6Wdx3P48OEDjAvJ2OoW5gT1mYasz8HBAc+KYZiUlBTgZhKJBJtFkw1qVO7RowdMo1+/fp8+fapRX80bVwtzMgyTnp4OH5oBAwYAA9m5c6eurq6hoeHFixc1H0vbUrsCdbsCnz9/btKkiUAggORtXOJlZWXz58/39vZmRcTKycnp0KEDpHYDvxk4JkybNo1l9MkLc3748KFhw4YikUhVDu/S0tIZM2Z4e3vjELV1CHNmZWXh+HXVcipjY+PHjx/jlSkuLgbnbIqifv75Z1xfu8K0adNgAg4ODqo+E7WjTPaqFuaExjNnzhQIBPb29gAkxMfHQ/SO1atXqzoUkKNoy//cFYBQ6q1atWKd2vAdJSQkDB8+3NfXl8wQERMTIxKJxGIxaGbOnj0rk8kQQr/99htWEAEFXpjz8OHDAoHA0tJS1THh48ePIKhgN/E6hDkjIyPBEKpaDoAQatasGV4KfGhFCLF0XLjNixcv6tevLxQK8YkM0EeZTPbixQvcjCwAQPj1MKdSqYRIhnv37nV3dxeJRDgwZlVV1ejRoymK2rp1a5s2bRBCx44dI+fADVorl8uXLl3avXt3sH5gNca5P4cNGwbnd/AVc3R0VHVQSklJGT58uLe3t6p14A5RUlKybdu2zp07A+OVyWSTJ0+Oi4tjfWjIjjk5Oe3ataMoys3NTZUYTLZnGGbfvn2gtdPV1dWwC4sC/pmSktKoUSN4r/z9/VXtKdy+1oVqYU6GYR48eABsfMqUKaC6mT59OkVRzZs3/8d56peVlcEBAVwGNV83hUIBtoYNGzYcPHgwRVHm5ubJycksCrwwp1wuhxevRj4AfwPMCc6CDRs2ZN0F+XPlypUsmDMwMBCMSzR/LQHmbNSoEa+ODoaLiYkRCoVNmzYFk325XA42cKdOnSLno6ZcC5gToAdbW1s1ZAMCAni9OVldPn/+fPjw4X79+gETwOYprGb458SJExFCAwcOVLMmP/zwA0Jo6NCh0KvOYc5WrVrhLXzlyhUjIyOpVPpXx4DEK6AtfFMroIU5NX0c27dvpyjK2tqaVwT58uULuG2tWLECGzvExcVB7ItNmzaBDq6goAAgQJb1hxqYc8OGDRRFNWrUCLzXWdPNz88Hw1JsY1W3MOeKFSsmaPyHgxRhmBNnGIZpR0ZGwkcRpBxQlP/xxx8dOnRg3ZeqnwqFArtzicXitWvXqmr5lfWawJxgtQ1hG0ElgRMwuLi4VBt45CtnqO3+t63Avn37KIqqV68er10/TdNgDTBnzhysaqdp+qeffhIKhQKBIDY2FnhCYmKiVCqlKIpltaQK5tyxYwdFUfXr1+fVa5eVlTVv3hwhtHz5cqBftzDnqlWrNN76E6Kjo/HjUA9zlpSUzJ8/X0PK06ZNI/nen3/+iQ/elpaWeLXx0FCgaXrp0qU4e1+9evUuX76M2TKrcZ383LFjB0xMKpWSHwiapv39/XG+GRMTkxcvXsjlcn9/f/V2duSsysrKIHEIeMDz2lqS7Wtd1gTmlMvlIMU2adIE4mU9f/7cyMiIoqgVK1awNDi1nom24797BXJycsBF3tfXl/dO4QBmYGBAgnBlZWWggRo6dCjocWCng1k6K44rL8yZmZkJuWRUOYLD0dfAwACyu30NzElRFOvWbty4oSHfmzBhwpIlS8juONR/hw4d1OiwyC5qylFRUdhE18fH5y+yctUE5gQfcV1dXYqi5s6dq1AoysrKIBeXg4ODqhhNam5Ne0m7AnWyAnK53NfXFyHk4uLCK2ncu3fPxMRELBaTsXZomvb29qYoytjYOCkpCWYSGxsLOQtYehZemLOiomL48OFgfs57I3FxcQYGBhKJBEwxGIapQ5izsLBw3rx5GrKp6dOnkzDMtWvXQArS09PDc+O9BU0qc3NzIVw/QsjR0VFDRyVNKJNtNIQ5s7KyGjZsiBDq0qULsN+9e/dKJBIjI6PY2FiSoLb8L1uBp0+fgnoXWxWQN0jTNOTFaNGiBXbXrqqqAvP0IUOGQCWcBymKsrGxYUXPA5izcePGJNmsrCw4v7AsxXGbNWvWQNA/nIa21jAnV1C5deuWhhyAK6jgzN/+/v68x4H169eDwIZ3NPANQ0NDEifGd3rv3j0In/j1MCfDMIDotGnTpnHjxubm5mSsV0i727lzZ4FAYGVlxU2XwPLmpGkastB17twZz5YsgKHG8OHDQd3/8uVLOAlu2rSJbIbLkJKpXr16mqMs0LewsPDSpUvgiQFvhYuLy8WLF3k/W7/99hvcoObRAnBK+2HDhuHZ1q6AQTWw+l2/fn3t6FTbSxOYk2GYs2fPSiQSkUi0f/9+hmE+fvwIQHinTp3+WRo8pVIJ9kkHDhzgXRwISxASEkKKKwzDXLlyRU9PD9xUvnz5AsrbYcOGsW6fF+ZkGAaMFFWd4xiGefv2bUhISGRkJN5QfwPMefbsWYSQQCDAgf1Za1JRUQHbjfTmPHjwoEgksre3z8vLY7WHn0ql8rfffgsJCcGRCwHmFAqFDx8+5O3CMAxEIG/dujW2b4D41Sz1ONk9OTk5JCTk4MGD0KUWMOfFixdhBbgpFWCgqqoqCDRCenNeu3Zt2bJlUVFRXNZRUlIC8nCTJk1Idw5y2lAODAxECLVq1UpVlqXPnz/D8R/ngqlzmHPy5Ml4YpWVleDda2Fh8ZeGL8Ijagvf1ApoYU5NH0dqaip8/3r16vXs2TOsNKdp+v37956engghQ0NDLDZ9+vQJBL6+ffti/s4wTEJCAiR7mDlzJmYWSqVyypQpCKHFixdjyjCzpKQk+Hp5eHi8ePECX4XM5/3794fA0xgIqQXMqVQq/fz8WBmMNV0XvnYY5nR1dQUmW1xcHBERYWpq2q1bN7h9iqLy8/N///13HR0dbhRfPqr/W1dWVtajRw9sbOju7n7jxo2ayoVq6MMlDWFOuVwOsmyTJk1ARn/z5g04q82bN09r51vtOv8jGmRmZkLAwK5duz59+pSUADIyMkBakslk9+/fx7cTExMDKjCWVXtkZKSurq6Ojs7x48dx40+fPoFPEsuG7u3bt+C82LNnz8TERHLvv3//HiLgy2QybFBfO5hzwYIFCKGpU6di+nhitSuohzlrR5NhGJqmf/nlFwxzuri4sEgpFIrs7OyTJ09Cagc4R7m5ud2+fZvVss5/xsbG4onh3B4ZGRlTp06VyWTYm9PGxubjx48rV65s0KBBjRy+k5OTsQusSCRauHDhmzdv6py9aAJzMgzz7t07W1tbhFCvXr0A6QwJCZFIJPXq1YNExXW+vFqC/74VCA4Oho/4unXrSJitsrLy3LlzEORt7ty5+MZLS0sB/TI1NSUVNJmZma1bt0YIeXh44DxVDMOcOXMGIdSkSRPWNgGLXYTQr7/+ivWSDMNUVlaePHmyXr16QqHwxx9/hHFrB3PilOp1iNI1bdoUOAxpTIMXp6aFyspK8F0Amq1btz5//jxWmNaUmqr2GsKcDMPs2LFDKpUaGxuDB2dWVhZY8PTr1498pqoG0tZrV+CvWIG4uDjgUaNGjSJDzigUiqSkJDjfubi44JR7CoUCVDz6+vqsXAOzZs2iKKpp06akNQYOX0YyQIZhoqOjYVwfHx8yaL9CoXjx4gVk/XBzc8OB4msBc5aUlLRo0QIhxFJ6fs0ywqEJIdSgQYOv37Y0TYeFheHYP1ZWVqGhoZmZmaT4/TWzhb4awpwMw9y/fx+OrkuXLq2qqiotLQUtYbNmzUis9+unpKXwra3AiBEjEEKNGjW6cOECCd0VFhZClnEdHR0I08IwDH4xTE1N8dGMYZisrCzAPnv37k3uDtBHN2jQgCWobN26FZhAQEAACTlUVlb+8ccf5ubmQqFw4cKFeK1qAXP+FYIKhjmlUun69evJOy0tLd28eTNAfTNmzMDnzczMTCMjI7FYzLICqaiouHz5soWFBUgpQ4cOxV1wAgKc4BPWAc7RGITAi4MLMTEx4EqFEHJyciIltPj4eHyI8/Ly4roisWBOhmH++OMPYFBr1qwhebhCoXjy5Ako7shwx6DlMzMzO3LkCPkilZaWAvOUSCSRkZF4tjUqKJXK06dPe3h4QIBZgUDg7u5+6tQpFmYDkTxUwee8I9avXx8hJBQKuR6uvO3VV5aVlXXv3h3ebYRQnz59bt68Sb7h6rtreFVDmLOyshIeip2dXUZGBk4EiBBatGgR9x3QcPS/vxlN04MGDUIIDRo0iNcOMj093dHRkaIoHPmPYZhnz55BOrYRI0bAzV65ckVfX18kEoWEhJDbTRXMCX44QqEQq6BZ9z558mSEUKdOnfD54m+AOXNzc+FjvWDBAt44iM+fPzc2NmZ5cz569Ah87kNCQlh3AT/hUCkSiXD+I4A5EUJt27Ylj5O4O7bonTNnDl7P1atXUxRlYGDA0vjhXpC9uFevXsCgagFz5uXlgafyzJkzeV/jlJQUYBQkzAmnclX5dyHIrbW1NWl8jOeMC/Hx8QYGBiKRiFRy4qsQhQ4hpK+vj9+ZOoc5p0yZgkdkGAY7IHl4eGCwmWygLf+LV0ALc2r6cJVK5d69e8EVwNraeuzYsaGhoSdOnFixYkWzZs0QQlKp9MKFC3AGKy8vBxCC3Ml4pP3794vFYj09PdJpHazMnJyczpw58/vvv2OXIAiHC+M2aNBg3LhxYWFhx48fX7JkCWi+dHR0SF+lWsCcNE2DAOfs7Ayjs+wN8cw1LACPRgiJRKIuXbr4+/u7uLjo6OgMHTr01q1bYMcBqblMTEx8fX1rClK+f//ezc0Ni6SmpqZt27b94YcfFixYsFD1H8s9Qv29gNBpa2vr9p8/kGV5D9g5OTmg9Le3t4fGIJfLZLJz586pH0V79R+xAkql8tChQ+D+YmlpOXr06N27d588eXLNmjXgwy2RSE6ePIlfj6KiIicnJ4RQjx49sGwHd1peXg7K+qZNm+IToFwuh00xePDgS5cuHThwAGyOlEpleHg4yXP27Nlz4sSJn376CfOc8+fP43FrB3P+/PPPCCF7e/sTJ06cPn2aFXO1Fg/oL4I5nz17hhNIIIR0dXWXLl0aHx9/+/bt33//PSgoaPDgwQ4ODthfvGnTpnv37iVNTGpxLxp2KSsrw6He9PT0vLy8xowZY29vLxQKAwICZs2aBcxKR0enffv2UqkUx2vSkL5Sqbx48SKc4cFGr2HDhj179pw0aZJqhvc/V3bu3KnhEAzDAMzZokULNze31q1bUxTl4uKCRXOSzp9//glvbNu2bd3c3Dp06AABc2xsbHgtssm+2rJ2BQBWHDJkCEVREonE1dV16dKlf/zxR1hY2ODBg+H01bJly8zMTFgrpVIJYYgkEgnXe+bRo0ewNebOnYvPtPfv36coSiaTbdu2LTo6GoeaqKioAOMwqVTapUuX5cuXn5E8FFcAABotSURBVDlzZs+ePQMGDIBzb8eOHUncAmLWYbNT1rO7fv26gYGBs7MzaSVaWVkJurxJkyZFR0cfPHjwK7lQVVUVlnZ4j46sWWny8/PnzxMmTMAogr6+fsuWLYcPHz5nzhw1LGXx4sW8Z2beEQHmNDMzI4Uo3kNmcXExPBRra2toDJHNhELhhg0beIlrK7Ur8FevgFwuX7lyJexlBweHqVOnHjhwICoqatq0aWB1pK+vf/fuXfyJfPLkiYWFhUAgWLJkCa6ESWZmZtrY2EDSSqzSraiogA04Y8aM6Ojoo0ePwu6Qy+U//vijUCiEAHrTp08/dOjQ4cOH/fz8QMzQ19d/8OABHqIWMKdCoejYsSPYKl28eDEqKurrsTo4wyKEZsyYUSePpry8fOfOnRiWEAqF9vb2AwcOnDZtmhoetWjRIs0t2wDmlEqlHTt2dHNzA4V+UFAQ7/y3bt0qEolkMlmXLl3c3NwAJ0YI9e7d+ys5PO9w2spvZAXu3bsHh3pDQ0NPT8/NmzefOXMmMDAQhHnY74Ba0TS9detWsLC8fPkya/6PHz8GQYVMQvTkyROKovT09LZs2XLlyhXsBl1RUTFo0CCKoqRSaefOnZctW3b69OnQ0NCBAweCoNKuXTtS6qgFzIkFlQkT/icez4EDB77+NQaY08vLC0IZderUadmyZQcPHty7d2+fPn1gL7u7u5PY25cvXwChMTExGTt27MmTJ0+fPv3rr79269YNREE47To4OOzatevSpUuwqmDzWlOYE5sOI4QmTpxIPqCSkhI4ayOENm/eTF6CMhfmrKys9Pf3RwiJxeKePXuCq9yRI0emTp1qaWmJEGIdiJKSkuBeZDJZ3759AwICzp07FxQU5OrqCh51kydPxhIsdwKa1JSXl9+/f9/X1xfuRUdHx8vLi+wIE3N0dPxO7d/06dNBL4eFT2traxyfgCRYi/K7d++w7S9CyNTUtF27dqNHj65DDR7AnA0bNiSFT6wqIeecnZ0NX/NmzZpBY3Nzc3CK5W5hsuO3Vo6KihIKhTo6OmQKITzJefPmiUQic3NzbHtRWlo6cOBAwCCxWC6Xy9etWwcpbMkYXQBzIoRwnGegXFBQAK/0yJEjua/uoUOHwCt969ateCa1hjk7duyIZR5MTVUBpBELCwtu+Kv09HQQflgwp0KhAIdFY2NjrsX2hw8fwIC+d+/eeBoY5kQIrV27lrRdAHRtwIABCCETExPSrzQzM7NJkyYURfn6+mJS+Eb27dsH/uu7du2CylrAnAzDrFixAiFUr149VuYXhmEyMzOxPQoJc0ZHR+vp6UkkkoiICDwfKCiVSriXzp078+4j3L6iomLYsGFgGERaJEOD5ORkeGHIiEp/NczJMMyNGzeMjIwkEsm+ffvwVLWF/4YV0MKcNXvKsbGxTk5OWDcEuidIx0haooWFhQGQyWv9VFJSAlzA3t4ei5UnT57EMhZCiBXM4cKFCw4ODtxxnZycWMZfAHNSFMVrWsIwDLAqzEDh/lmj4xC4NVud/9/69evXwMSxbs7IyGjEiBG5ublv3ryBkyR8R6dNm/b/O9Xs//z8/GHDhoEQjEdRX5BIJJqPsWXLFi41Vcz9+fPnkH2H1cXExARDWZoPrW35ba7ArVu3WrVqxd2DTZs2DQ4Oxu9GeXk5+HeamZn9+eef3Ht5/fo1nDTc3d2xP/esWbNAmwavEJmW7OrVq87OztxxmzVrxkoKBTAnRVFYj8YaHXAsUuJkGObChQsgVMHQ1UbeZ9Hk/gSYs3v37jU1X+CSgprKysqZM2fiRJusXQaHTD09PRMTk8aNG3fo0GH48OFnzpxhGUerIl5X9cHBwRiGhBna2NjAUm/YsAFqIGiVqlQu1c4kMTGxc+fO5GeCuxSsmm7dulVLFjfw9vZmdVcFc9I0vXbtWmyQS/YaOXKk5kAIHlpb+C9cgaKioilTpoDOjnyF9PX1Bw4cSLo9Ac+EuKa8CxUYGCgWi42NjW/cuAEN0tPT4TQFlL29vXHHwsLCcePGgRUzOa5MJvP09CTzwGFvzo0bN+LuZAFgzhYtWmBkFK56e3tjjm1oaMg97JFEqi1jDaZIJMLQb7W9qm0ASf6srKx4NzK5MrgsEolUfVy4w0HcYNwXClifwmqfnp4OYSFZ7WUy2Vemg2INpP2pXQHNV4Cm6T179nD3iFAo7NixI6kHLCoqAtyrdevWJPyAx7p79y7YBpHR3QHJgHfe2toaB3JUKBTBwcGWlpasvSkUCl1dXTEWAsQxzKlKg3Pu3DmxWNypUydy9/3888+kTAU5RPBsa1EAxaJAIMAxjWpBhNslMjISLMZYnEHVT4qiVHljcImnpaXZ29uzSKmCOT9//uzu7s5qDOa8NbIn405DW/ONr0BaWpq7uzuO9A7vAKQUmTVrFlbjvH371srKCiE0c+ZMfCQkby0oKAhiHWM1enZ2NhjLAk0SlCosLJw4cSIwDfKtk8lkgwYNYsWDASGBoihVOocff/wRIcSKlDhixAgsqOjr62MIhJxzjcqgPQ8PD9+xY0fjxo3JUy3ofEaNGoXd0DHl5OTkdu3aYRNVuFmhUNi8efPdu3fHxMQYGBhAJXZgVQNzqgkgWVVVBUGGEUJcM3QvLy8YhZcCF+ZkGObz58++vr7gBEY+Iz09va5du5JCLNxsVlbWwIEDWXcKIdl8fX1VRZjEC6V54enTp99//721tTWZE6q8vJz1QSHnTJYdHBzgrS4pKYH6bt26kZ8PzWfC2zIvL8/Ly4sr/JNzYJVrpMEDs0gWBd4tyTDM06dPwfWN1d7ExITE43lv5NupLC0t7dixIzzfmTNnPnjwIC0tLT09PSEhAYJ2CoXCJUuWABQnl8t/+eUXMLDApgP4Xvr3709RVMeOHXHc0aqqKvj2LVq0KCcnJz09HdQ7EGQLeEiXLl2uX7/+5s2brKyspKSkwMBAAwMDiqL69u2LNV0Mw9QC5oSjRNOmTZ89e5aTk8NlIHjmuPDo0SPwP5FKpZs2bUpMTExPT09OTo6Ojm7bti3EbWbBnABMAuZtbm5+4MCBxMTEzMzMt2/fXr58uXv37gDJk4a2AHMaGBgIBAKhULh48eIHDx6kpqbCsgOKrKOjwzKTheRrsGg9evS4ceNGSkpKZmZmUlJSQECArq6uQCAYOHAg9sqtHcyZmJgIYf+lUmlAQACswKtXr2JjY11cXCiKAj0kCXOWlJTAU5ZIJDt27EhKSsrKysrMzHz69OnUqVPBm4uFHeAFJwvZ2dlg1WdtbX3s2LEXL15kZWWlpaWdPXsWbAisrKzI5M1/A8xZVVU1ffp0hFDjxo3xW03OWVv+t66AFuas2ZOlafrt27fHjx+fPXu2t7f3999/v2rVquPHj79//540ynj58mVMTMzt27dVqdozMjJi/vOH5eOKiopz585NmTJl7Nix8+bNY+nFaJpOSUk5cuTIrFmzvL29R40atXr16pMnT6anp5PjgpNETExMbGysqi/648ePY2JiWOdw1ui88EyNVur169d79+5dtGjR0qVLd+7cefv2bfgoVlRUHDx40M/Pb82aNdeuXdNcZcYdvby8PCEhYd26df369euqwV/Pnj25RFTVZGVlwQMi/2UtNe5L0zSsKtkYynWF9OCxtIX/qxWA8NSnTp2aO3fu8OHDR44c+dNPPx09evTdu3fki1FeXn7jxo2YmBjWFian/ezZs5iYmKtXr2JbhOLi4l27do37z9/KlStJxS6Epz5x4gTmOStXruTyHEjRpH7vP336NCYmhqUor6ysvHTpkr+//9ixY+fMmcObf5ScfLXljx8/xsbGPnz4kGXaVm1HVQ2USqWq/QW7LD4+/s6dO48ePUpJSSkqKiIfhyqadV5fUVFx69atwMDA+fPnr169OiIiIikpCcwbP3z4sG7duhkzZmzbtg2H6ajdBHJzc6Ojo2fMmOHm5qYBz+s6ffp0zQd6/vw5i4ORcZhZdIqKimJjY1ntY2JiHjx4wDXqZPXV/tSuAKyAXC6/d+/ehg0bxo8f7+np6e/vHxQUdP36ddZ3Mzs7GzibKqXD58+f4+PjY2JisE+SUqm8f//+zJkzx44dO2XKlLNnz5JrLpfL79y588svv4wbN87T03Pq1KnBwcE3b97EDBka0zQNvBqTJYkwDFNQUBAXF3fv3j2WpJednb1+/XofH5/x48dv2rSJ5dPPIlLtT7lcDhstLi6ubpmbXC5/9uwZuMJ369atWpbSo0cPfPaudtr5+flc/qDmo5CUlMRtHxMTo4lSo9rJaBtoV6B2K6BUKp8/f753715/f38vLy8fH5/169efPXuWpZIuKiqCt5er2sbjPnjwICYm5vHjx3gXvH//fvXq1T4+PhMmTNi+fTsZRFGpVCYmJu7Zs2fKlCleXl6+vr4bNmw4f/486RYAlPEBhHWsw+Pm5eVdvXr1wYMHeFyIrhkZGTlhwgRfX99ly5Z9fRiG169fg1hbtzxKqVSmpaUdPnx41KhR3bt3r5ZHdevWjYyThBeBt1BRUXHnzh0W21HF7SH0KKsx/Hz+/DkvfW3lv2YFPn36dOXKlSVLlowaNcrLy2vhwoX79u179uwZqWnJyckBQYW7SWEdiouLr1+/HhMTg4NgK5XKhIQEEFT8/PzOnDlDrphcLr97925AQAAISFOnTt2+ffuNGze4mhOFQgFDk3ucJPXmzZuYmBhsSAGXcnJyAgICQFD59ddf1UcjJKmpKmOYU6lUvnnzJioqatasWV5eXj/88MPKlSvj4uLI4K4kkYKCgrNnzy5dunTEiBHDhw9fuHDh+fPnQcFVXl4eExPzyy+/BAYGYofCt2/fxsTEsM5T165di4mJUTUEDIfFDJawxzBMamoqbGdeS03gb3gCePLl5eW3b98ODg4G9d20adM2btx48+ZNVVJfcXHxtWvXli//f+3dTUhUex8H8NRaFFRIpOb4ggqTUpuSTmkvtIjIigjaRUTdaFGbKIKgVa2MIIJeFlrQImhbEBERQYsMRYqiUsuKMsmEFmlKhS/zQAcGH8fu09O1e73nfFxNNvP3fD8/mxy/5/zn6Pbt2zdv3nzgwIHGxsaHDx+O/UZKL/5XboyMjDx79uzOnTvpRYaGhiZ81Zb5nNbU1BS+jkv/8Pknv9BIr/9/3QgvPD1+/PhP/gZv7dq1P79+d3d3Zqgf/cc0MjLy4MGDzPvfvn37RycN/PyR/J337Onp2bNnT3Z2dlZW1ty5cysqKpLJ5Lx588Jdcw4ePJiuG69cuRKetFFfX5/5gr21tTU3Nzc7O3vsexyG7881c+bMRYsWJZPJ9Dbd/f39DQ0N4YkIM2fOLCkpqaysTCQSYY23evXq9HNdSPELNWdLS8vs2bNzcnLKysoWLVp0+PDh/6k6PDzc3Ny8ePHicL/lvLy8ZDJZVFQUXlBeV1fX0NCQWXOmUqnm5uZwM7bs7Oy8vLzKysry8vLwvITc3NzLly+PfYINa84NGzacPHkyvG51zpw5ZWVlyWQyBMnJyTl16tS417OpVOrTp09nzpwJT4+YNWtWaWlpZWVlYWFh2FKvW7du7O8Af63mHB4ebm1tDd/SJScnZ/78+clksri4OBRYt27dhQsXpk2bNrbmTKVS79+/Dy9azcnJSSQSVVVVCxcuzMvLy8rKmj59+tGjRyd8bswcx/3798NN2mfMmFFQUFBVVVVRUREyLlu2bNzPon9DzRl22OGpz+vXr0//Q8g8cp+JmICaM2IDFYcAAQIECBAgQIAAAQIECBAgQIDA7xVI15y/98tYnQCBiQS+fft24sSJJUuWlJSU5OfnFxYWJpPJ2tramzdvpnv0wcHBffv2BUEwduPQcYudO3cu+P6RPjGiq6urtra2qKiosLCwvLz86tWrYx9y69atVatWlZWVFRQU5Ofnl5eXL1269PTp05kd6qNHj4Ig2LJlS+ZfhQvu3r07CIKxO88PDg7u37+/pKSksLCwpKTk59+ArLu7e8eOHclkMvH9o7i4uLq6+uzZs6lUqqmpKQiCcTtXhwcwMDCwd+/esKzNy8srLi6uqqratm3b69evx0ZOpVJhzbl169aRkZF79+7V1dVVVFSEAqWlpStXrrxx48a4h6T/ODo6ev369ZqamhCtoKCgoqKiurr6/Pnz42T6+/uDIFixYsWPyrljx44FQTDhZh49PT27du1auHBhIpEoKioqLi5esmRJuF9FS0tLEAQ7d+5Mf2OEx9bX13fo0KHFixeXlpaGj0omk3V1dbdu3Rpb8aaD/OjG169fjxw5Ul1dXV5evmDBgkQiUVlZ+ccff2SeA9TQ0BAEQX19/YQnInR1dW3atGnjxo3j+vIJv+7FixeDIBi3HWb6nq2trTU1NWvWrJncHUfS67sxBQXUnFNwKA6JAAECBAgQIECAAAECBAgQIECAwNQVUHNO3dk4stgIfP78+eXLl48fP25ra+vp6Rm32cwvMwwMDDx//ry9vb2rq2tcFZdKpYaGht68efP06dNwf9SBgYEJW6tf++pDQ0MvX75sa2vr7Oz888u1M9f/8OFDe3t7R0dHZ2fn2A0zMu+Z/szo6Ghvb29HR8ejR486Ozs/fvw4rgsM7zm25kylUqOjo+/evXvy5Mnjx49fvXqVeb14ev30jRDtyfePd+/eZV6mn77nX7nR29sbCrx48eInBfr6+l69etXR0fH8+fOenp6fvIgz8yC/fPny9u3bp0+ftre3/2g3psxH+QyByRJQc06WpHUIECBAgAABAgQIECBAgAABAgQIxEJAzRmLMQtJgMB/X83JgwCBKSig5pyCQ3FIBAgQIECAAAECBAgQIECAAAECBKaugJpz6s7GkREgMKkC467mnNS1LUaAwCQIqDknAdESBAgQIECAAAECBAgQIECAAAECBOIjsHz58qysrEuXLsUnsqQECMRTQM0Zz7lL/S8SUHP+i4blUAkQIECAAAECBAgQIECAAAECBAj88wLXrl1rbGx8/fr1P38ojoAAAQK/U0DN+Tt1rU1gEgTUnJOAaAkCBAgQIECAAAECBAgQIECAAAECBAgQIEAgYgLd3d13795ta2uLWC5xCERGQM0ZmVEKQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAuAmrOuExaTgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKREVBzRmaUghAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCIi4CaMy6TlpMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAZATUnJEZpSAECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE4iKg5ozLpOUkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgEBkBNWdkRikIAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgbgIqDnjMmk5CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECERGQM0ZmVEKQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAuAmrOuExaTgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKREVBzRmaUghAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCIi4CaMy6TlpMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAZATUnJEZpSAECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE4iKg5ozLpOUkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgEBkBNWdkRikIAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgbgIqDnjMmk5CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECERGQM0ZmVEKQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAuAmrOuExaTgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKREVBzRmaUghAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCIi4CaMy6TlpMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAZATUnJEZpSAECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE4iKg5ozLpOUkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgEBkBNWdkRikIAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgbgIqDnjMmk5CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECERGQM0ZmVEKQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAuAmrOuExaTgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKREVBzRmaUghAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCIi4CaMy6TlpMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAZATUnJEZpSAECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE4iKg5ozLpOUkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgEBkBNWdkRikIAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgbgIqDnjMmk5CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECERGQM0ZmVEKQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAuAmrOuExaTgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKREVBzRmaUghAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCIi4CaMy6TlpMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAZATUnJEZpSAECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE4iKg5ozLpOUkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgEBmB/wAsJLpioS1YsQAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "6aecb58e-9de9-4264-959e-4180ab3fa27a", + "metadata": {}, + "source": [ + "When doing motif search, it's important to define the type of motif you want to extract from a series. We'll use the figure and definitions given by [1] and make some adjustement to clear out some confusion due to the naming of each method:\n", + "\n", + "![image.png](attachment:f492cb89-5bf3-4641-8be2-a77805f20b88.png)\n", + "\n", + "For now, the `StompMotif` estimators supports only the following configuration, which you will have to specify using the parameters of the `predict` method :\n", + "\n", + "- for **\"Pair Motifs\"** : This is the default configuration with ```{\"motif_size\": 1}```, meaning we extract the closest match to each candidate, so we end up with the pair ```(candidate, closest match)```\n", + "\n", + "- for **\"k-motif\"**, which we define as the extension of **Pair motifs** to : ```{\"motif_size\": k}```. For ```k=2```, we would extract ```(candidate, closest match 1, closest match 2)```\n", + "\n", + "- for **\"r-motifs\"**, which we renamed from **k-motif** in the figure, because it is a range-based method : ```{\"motif_size\": np.inf, \"dist_threshold\": r, \"motif_extraction_method\": \"r_motifs\"}```\n", + "\n", + "These configuration will extract the best motif only, if you want to extract more than one motifs, you can use the `k` parameter to extract the `top-k` motifs. \n", + "\n", + "**The term `k` of `top-k` motifs, while also used in `k-motifs`, is not the same. To avoid confusion of both terms, we use `motif_size` instead of `k` to specify the size of the motifs to extract. This avoids the phrasing \"extracting the `top-k` `k-motif`\", which would be confusing and ill defined. Rather, we extract the `top-k` `motif_size-motifs`**.\n", + "\n", + "The `top-k` using `motif_extraction_method=\"r_motifs\"` will be the motifs with the highest cardinality (i.e. the more matches in range `r`), while for `motif_extraction_method=\"k_motifs\"`,which is the default value, the best motifs will be those who minimize the maximum pairwise distance." ] }, { "cell_type": "code", "execution_count": 6, - "id": "23ad7adb-2b01-4425-a2e8-c393f3721a0f", + "id": "ff23faf5-2941-441a-8c4c-0cf66eaca121", "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "match 0 : [195 26] with distance 0.1973741999473598 to q\n", - "match 1 : [92 23] with distance 0.20753669049486048 to q\n", - "match 2 : [154 22] with distance 0.21538593730366784 to q\n", - "match 3 : [176 25] with distance 0.21889484294879047 to q\n", - "match 4 : [23 20] with distance 0.22668346183441293 to q\n", - "match 5 : [167 23] with distance 0.24774491003815066 to q\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\antoine\\Documents\\aeon\\aeon\\similarity_search\\query_search.py:270: UserWarning: Only 6 matches are bellow the threshold of 0.25, while k=inf. The number of returned match will be 6.\n", - " return extract_top_k_and_threshold_from_distance_profiles(\n" - ] + "data": { + "text/plain": [ + "([array([[ 40, 192]]), array([[192, 40]]), array([[158, 8]])],\n", + " [array([0.21749257]), array([0.21749257]), array([0.23961497])])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "# Here, the distance function (distance and normalise arguments)\n", - "top_k_search = QuerySearch(k=np.inf, threshold=0.25, distance=\"euclidean\")\n", - "top_k_search.fit(X_train)\n", - "distances_to_matches, best_matches = top_k_search.predict(q)\n", - "for i in range(len(best_matches)):\n", - " print(f\"match {i} : {best_matches[i]} with distance {distances_to_matches[i]} to q\")" + "from aeon.similarity_search.series import StompMotif\n", + "\n", + "motif = StompMotif(length=length, normalize=True)\n", + "motif.fit_predict(series_fit, k=3, motif_size=1)" ] }, { "cell_type": "markdown", - "id": "0efd83a5-b36f-4809-be96-94de734d931c", + "id": "ace51787-71c2-4f0e-bf37-b46b51ace354", "metadata": {}, "source": [ - "You may also combine the `k` and `threshold` parameter :" + "The above use of `fit_predict` is equivalent to the following calls, with `is_self_computation=True` indicating that the series in fit is the same that the series in predict, so it shouldn't match the same subsequences as motifs : " ] }, { "cell_type": "code", "execution_count": 7, - "id": "65db1593-3873-4a47-9e2a-d8dfcf42dd1a", + "id": "c5dde2db-178b-444c-99ab-f659137638b8", "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "match 0 : [195 26] with distance 0.1973741999473598 to q\n", - "match 1 : [92 23] with distance 0.20753669049486048 to q\n", - "match 2 : [154 22] with distance 0.21538593730366784 to q\n" - ] + "data": { + "text/plain": [ + "([array([[ 40, 192]]), array([[192, 40]]), array([[158, 8]])],\n", + " [array([0.21749257]), array([0.21749257]), array([0.23961497])])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "# Here, the distance function (distance and normalise arguments)\n", - "top_k_search = QuerySearch(k=3, threshold=0.25, distance=\"euclidean\")\n", - "top_k_search.fit(X_train)\n", - "distances_to_matches, best_matches = top_k_search.predict(q)\n", - "for i in range(len(best_matches)):\n", - " print(f\"match {i} : {best_matches[i]} with distance {distances_to_matches[i]} to q\")" + "motif = StompMotif(length=length, normalize=True)\n", + "motif.fit(series_fit)\n", + "motif.predict(series_fit, k=3, motif_size=1, is_self_computation=True)" ] }, { "cell_type": "markdown", - "id": "ff62a385-d58e-4fb1-95dd-eb0474711531", + "id": "d16036a3-f5b9-41d2-ae23-a1bcf0737c93", "metadata": {}, "source": [ - "It is also possible to return the **worst** matches (not that the title of the plots are not accurate here) to the query, by using the `inverse_distance` parameter :" + "While the above example only use `series_fit` to search motifs in the same series, we also support giving another series in `predict`, which will use this series to search for the motifs matching subsequences in the series given during `fit`. For those familiar with the matrix profile notations, this is the case of using `MP(A,B)`, while not using a series in `predict` is doing a self matrix profile `MP(A,A)`." ] }, { "cell_type": "code", "execution_count": 8, - "id": "6d6078ab-9104-462e-9856-1d0fc9594b24", + "id": "59117ea7-2cbf-49d6-829a-792805b4aaf7", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAE/CAYAAADCGZOXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAAClSUlEQVR4nOzdd5xddZ0//tc5t9fpLTOTOklIAiGEgdCLomiQUEQQEUGaWFDXn7vi6rLoWlB3v+sqKEQpKggoKIhIESRSQ0hCei+TTE2m3t7OPef3x7nn3Htn7qTM3Ln19Xw8WCd3bvnMbHLen/P+vD/vj6AoigIiIiIiIiIiIiprYr4HQERERERERERE+cckERERERERERERMUlERERERERERERMEhEREREREREREZgkIiIiIiIiIiIiMElERERERERERERgkogKzMyZM/HKK6/kexg588gjj+Ccc87J9zCIiIoG4wQRER0J4wTR5DBJRCXv7rvvxqc//emcfd6NN96Ib3/721Py3kNDQ7jiiivgcDgwY8YM/P73v5+SzyEiKielFCfuvfdetLe3w2Kx4MYbb5ySzyAiKjelEicikQhuvvlmzJgxAy6XC0uWLMELL7yQ9c+h4mbM9wCI6Nh98YtfhNlsxqFDh7BhwwZccsklOPnkk7Fo0aJ8D42IiArAtGnT8O1vfxsvvfQSQqFQvodDREQFRJIktLa24p///CemT5+Ov/3tb7j66quxefNmzJw5M9/DowLBSiIqOO+99x4WLlyIqqoqfPazn0U4HNa/99e//hVLlixBZWUlzjrrLGzatEn/3o9+9CM0NzfD5XJh/vz5ePXVV/Hiiy/iBz/4AZ588kk4nU6cfPLJGT9z5syZ+MlPfoLFixfD4XDg5ptvxqFDh/DRj34ULpcLF110EYaHh/Xnf+ITn0BjYyMqKipw3nnnYevWrQCAlStX4rHHHsOPf/xjOJ1OXHrppQCAzs5OXHnllairq0NNTQ2+9KUvpX3+17/+dVRVVWHWrFnjZvMDgQCefvpp/Nd//RecTifOOeccrFixAr/73e8m9osmIipSjBPjr/peeeWVuPzyy1FTU3P8v1giohLBOJE5TjgcDtx9992YOXMmRFHExz72McyaNQvr1q2b2C+aSpNCVEBmzJihLFq0SDl48KAyODionHXWWcq3vvUtRVEUZf369UpdXZ2yevVqRZIk5ZFHHlFmzJihhMNhZceOHUpLS4vS3d2tKIqi7N+/X9mzZ4+iKIryn//5n8p111131M9dtmyZ0tfXp3R1dSl1dXXKKaecoqxfv14JhULKhRdeqNx999368x988EHF6/Uq4XBY+cpXvqKcfPLJ+vduuOEGfcyKoiiSJCmLFy9WvvrVryp+v18JhULKG2+8oSiKojz88MOK0WhUVq5cqUiSpPziF79QmpqaFFmWx4xx/fr1is1mS3vsJz/5ifKxj33sOH7DRETFjXFi/DiR6lvf+pZyww03HPPvlYioVDBOHFucUBRF6evrUywWi7J9+/Zj++VSWWAlERWcL33pS2htbUV1dTW+9a1v4fHHHwegZtU/97nPYdmyZTAYDLjhhhtgsViwevVqGAwGRCIRbNu2DbFYDDNnzsScOXOO63PvuOMONDQ0oLm5Geeeey6WLVuGU045BVarFVdccQXef/99/bk33XQTXC4XLBYL7r77bmzcuBEejyfj+65ZswY9PT34yU9+AofDAavVmtZcbsaMGbj11lv1n6m3txeHDh0a8z5+vx9utzvtsYqKCvh8vuP6OYmIih3jROY4QUREKsaJo8eJWCyG6667DjfccANOOOGE4/o5qbQxSUQFp7W1Vf96xowZ6OnpAQAcOHAA//M//4PKykr9v87OTvT09KCtrQ0//elPcffdd6O+vh6f/OQn9dcdq4aGBv1rm8025s9+vx8AEI/Hceedd2LOnDlwu936/t2BgYGM79vZ2YkZM2bAaMzcAqyxsVH/2m63A4D+WamcTie8Xm/aY16vFy6X6xh+OiKi0sE4kTlOEBGRinHiyHFClmVcf/31MJvNuPfee4/th6OywSQRFZzOzk7964MHD2LatGkA1Iv9t771LYyMjOj/BYNBXHvttQCAT33qU3jzzTdx4MABCIKAb3zjGwAAQRCyOr7f//73ePbZZ/HKK6/A4/Ggo6MDAKAoSsbPa21txcGDByFJ0qQ+d968eZAkCbt379Yf27hxI5tWE1HZYZwgIqIjYZwYn6Ioer+kp59+GiaTadLvSaWFSSIqOPfddx+6urowNDSE73//+7jmmmsAALfeeivuv/9+vPvuu1AUBYFAAM8//zx8Ph927tyJf/zjH4hEIrBarbDZbBBF9a93Q0MDOjo6IMtyVsbn8/lgsVhQU1ODYDCIf//3f0/7fkNDA/bt26f/+fTTT0dTUxPuvPNOBAIBhMNhvPXWW8f9uQ6HA1deeSXuuusuBAIBvPXWW3j22Wdx/fXXT/pnIiIqJowT45MkCeFwGPF4HPF4HOFwmMknIio7jBPj+/znP4/t27fjueeeg81mm9TPQaWJSSIqOJ/61Kfw4Q9/GLNnz8acOXPw7W9/GwDQ3t6OX/3qV/jSl76EqqoqtLW14ZFHHgEARCIR3HnnnaitrUVjYyMOHz6MH/7whwDUkwMAoKamBkuXLp30+D7zmc9gxowZaG5uxsKFC3HGGWekff/mm2/Gtm3bUFlZicsvvxwGgwHPPfcc9uzZg+nTp6OlpQVPPvnkhD77F7/4BUKhEOrr63Httdfil7/8JSuJiKjsME6M73vf+x5sNhvuuecePProo7DZbPje97436Z+JiKiYME5kduDAATzwwAPYsGEDGhsb4XQ64XQ68dhjj036Z6LSIShaTRsREREREREREZUtVhIRERERERERERGTRERERERERERExCQRERERERERERGBSSIiIiIiIiIiIgKTREREREREREREBMCY7wGMp7a2FjNnzsz3MIiIClJHRwcGBgbyPYy8YpwgIhof4wTjBBHReI4UIwo2STRz5kysXbs238MgIipI7e3t+R5C3jFOEBGNj3GCcYKIaDxHihHcbkZEREREREREREwSERERERERERERk0RERERERERERIQC7klEVG5isRi6uroQDofzPRQqIFarFS0tLTCZTPkeChHlGeMEZcI4QUQaxgkabSIxgkkiogLR1dUFl8uFmTNnQhCEfA+HCoCiKBgcHERXVxdmzZqV7+EQUZ4xTtBojBNElIpxglJNNEZwuxlRgQiHw6ipqeEFnXSCIKCmpoarQUQEgHGCxmKcIKJUjBOUaqIxgpVEVJJkRUYgGoDD7IAoFE8ulBd0Go1/J4imRlyOIxALwGV2FdW/s2IaK+UG/04QTY1QLISQFIIoiDCKRlgMFpgMhb+tk9cESjWRvw9MElFJGAoNodfXC0/Eg4Oeg9g7tBcxOQazwYyFdQuxpHEJau21cJgcvHCOo6OjAx/72MewZcuWSb3PqlWrYDabcdZZZ2VpZEmPPPIIPvzhD2PatGlHfM7atWtx7733HvG9LrjgAvz3f/832tvbszK2DRs2oKenB8uXLwcA/OUvf8G2bdtw5513ZuX9iWjiFEVBf7Afh/yH4Il4sH94PzpGOhBX4rAZbTip4SQsbliMals17CZ7vodbsBgnJodxgqjwKIqCLm8Xtg9sx77hffCEPTCIBkiyhLA0tvrCJJrQ6GzEjMoZcJldMIpGTHNNQ5OrKQ+jLzyME5NTKHGCSSIqGoqioMfXgx5fD8JSGDE5hlAshE5vJ/r8fRlfE41HsaFvAzb0bQAA1Npr0T6tHac3n15UFUbFZNWqVXA6nVN2UT/xxBOPeFHPlw0bNmDt2rX6RX3FihVYsWJFnkdFVF5kRUanR40JkXgEsXgMgVgABz0HMRAcyPiakBTCmu41WNO9BgAwzTUNy5qXYXHDYi4qTBHGCcYJonyTZAmbD23G251voz/Yf8yvi8kxdHo70entTHt8Xs08fLTto6iyVWV7qGWJcSK/cYJJIioKYSmMP23/E3YN7jrqc4NRCfsHAjjsjaC5yoY5dU4YRHWiPxAcwIt7XsTGvo04f+b5aKtug1EsnH8Gd6+6O3efdcHYz5IkCddddx3Wr1+PRYsW4be//S3sdjvWrVuHr33ta/D7/aitrcUjjzyCpqYm/OxnP8P9998Po9GIhQsX4p577sH9998Pg8GARx99FD//+c9x7rnnJj/z7ruxf/9+7Nu3DwcPHsT//u//YvXq1XjhhRfQ3NyM5557DiaTCd/97nfx3HPPIRQK4ayzzsIDDzyAp59+GmvXrsV1110Hm82Gd955B1u2bMFXvvIVBAIBWCwWvPrqqwCAnp4efOQjH8HevXtxxRVX4Mc//vERfxePP/44fvCDH0BRFFxyySX40Y9+BAB48cUX8e///u+Ix+Oora3Fq6++ijVr1uArX/kKwuEwbDYbHn74YcyaNQt33XUXQqEQ3nzzTXzzm99EKBTSVyA6Ojpw0003YWBgAHV1dXj44Ycxffp03HjjjXC73Vi7di36+vrw4x//GFdddVX2/p9MVEa8ES/+uPWPYybuGZ8bjmF/fwBDgShm1Towo8auJ4R6fD34844/Y+OhjTi79WzMqppVUIsKjBOME4wTRBMnyRLW967HmwffhDfi1R+XFQW9I2H0+8IQRQGKAnhCMYSicRgMAkwGEWaDAKvJgNZqO2oc5rSFhF2Du7B/eD/Onn42zmo9C2aDOR8/HgDGCcaJyceJwrk7JhpHRIrg0U2PosvbNeZ7sqzAF5GwvdeLvYf98IZjiEiy/v2NXSOwm41ocFtQaTfjpOYKVDvM6PX34oktT8BisGBR/SKc0ngKWtwtZb9qvHPnTjz44IM4++yzcdNNN+EXv/gFvvKVr+COO+7As88+i7q6Ojz55JP41re+hYceegj33HMP9u/fD4vFgpGREVRWVuL222+H0+nE17/+9YyfsXfvXrz22mvYtm0bzjzzTDz99NP48Y9/jCuuuALPP/88Lr/8cnzpS1/CXXfdBQC4/vrr8de//hVXXXUV7r33Xr2kMxqN4pprrsGTTz6J0047DV6vFzabDYCahX///fdhsVgwf/583HHHHWhtbc04np6eHnzjG9/AunXrUFVVhQ9/+MN45plncPbZZ+PWW2/F66+/jlmzZmFoaAgAcMIJJ+CNN96A0WjEK6+8gn//93/H008/je9+97tpZamPPPKI/hl33HEHbrjhBtxwww146KGH8OUvfxnPPPMMAKC3txdvvvkmduzYgRUrVnDyTzQBvogPv9nwGwyGBsd8T5YVjIRi2NrjQcdAAL6IhOioOOG2mlDnsqDKbsbJrRVwWU3YN7wP+4b3wW6yY3HDYpzSeAoanA25/LEKEuME4wRRsRoIDuDJLU+mVQ4FIhLWHxzGth4vQrH4Mb+XxShCEARYjCLaZ1RjUbMbMTmGVR2rsK5nHS6dfynm1cybih+j4DFOFH+cYJKICpokS3hs82N6gmjPYT9e39WPUCwOSVagKMqY1xgNAloq7WhwW7H7sA9DgSj2D0gAAtjUNYLTZ1Zj6YwqmAwiIvEI1veux/re9ZhRMQMXt12Maa7CKz3MldbWVpx99tkAgE9/+tP42c9+ho985CPYsmULPvShDwEA4vE4mprUfdeLFy/Gddddh8svvxyXX375MX3GRz/6UZhMJpx00kmIx+P4yEc+AgA46aST0NHRAQB47bXX8OMf/xjBYBBDQ0NYtGgRLr300rT32blzJ5qamnDaaacBANxut/69D37wg6ioqAAALFy4EAcOHBj3ov7ee+/hggsuQF1dHQDguuuuw+uvvw6DwYDzzjtPPy6yuroaAODxeHDDDTdg9+7dEAQBsVjsqD/zO++8gz/96U8A1CD1b//2b/r3Lr/8coiiiIULF+LQoUNHfS8iSheMBfHbjb/VE0Sbukbw7r4hROIy4rKMDGECZqOI6VV2VDnM2NHngzccgzes/lve1D2Cs9tqceK0ChhEAcFYEKu7VmN112rMr5mPD835EGrttbn8EQsK4wTjBFEx6g/045ENjyAQCwAAPMEY1h4YwrZeL+KyGigqbCa0Vif60imA22aCw2KAJCuQ4jJicQWeUAwHBoMIRiUAQDgWx6s7DmFz9wgumF+PaZU2+KI+PL75cSyfuxynNZ+Wl583nxgnij9OMElEBe0f+/+Bg56DAIC9h/342+ZeyKkzfgEwG0TMrHFg4TQ3GlxWWE2iXhF0xuxqDPij8ISi2NcfwLZeL97ZN4i1B4bRVufE/EYXplfbIYoCDngOYOW6lTi16VR8eM6HYTFa8vEj59XoSipBEKAoChYtWoR33nlnzPOff/55vP7663juuefw/e9/H5s3bz7qZ1gs6u9VFEWYTCb9M0VRhCRJCIfD+MIXvoC1a9eitbUVd99993Ef26h9BgAYDAZIknRcrz+S//iP/8CFF16IP//5z+jo6MAFF1wwqfdLHWumpCcRHdnzu57XV4U3do3gtR2H074vCIDZaEBbnRMLm9yocZr1FWAAOHNODfp9EXhCMezo82Ffvx+v7TiMd/YOYm69Eyc0ujGt0gpBELBzcCd2D+3GWa1n4cKZF8IgGnL+8+Yb48TRMU4QFZbDgcP4zYbfIBALQFEUrN43hDUdQ/q/p7Y6J06dWYVGt/WYdhUoioJgNA5BADqHQnhjdz8O+yL4w9pOLGh044IT6mAxGvD87ucRjAVx/szzp/pHLCiME0dX6HGicDbZE43iCXvwbte7AIDukRCe36ImiE6dUYUvXNCGOz4wF1/5wFx84YI2LD+pCTNrHLCZDWkXJkEQUOeyoK3ehQ8vasTHl7ag0W1FLC5je58Xz2zoxq/f3Ie1HUOQZHX7wbredXhg3QPo9nbn5efOp4MHD+oX79///vc455xzMH/+fPT39+uPx2IxbN26FbIso7OzExdeeCF+9KMfwePxwO/3w+VywefzTXgM2gW8trYWfr8fTz31lP691PeeP38+ent78d577wEAfD7fhC7ep59+Ov75z39iYGAA8Xgcjz/+OM4//3ycccYZeP3117F//34A0MtDPR4PmpubAaSXgB7p5z7rrLPwxBNPAAAee+yxtH3VRDRx3d5ubO3fCgDYdcinJ4jOn1eHL1zQhi9/YC6+8sF5+Pz5c/ChhQ1orrLBakqPE6IgoMFtxbwGFy5d3IRLTmpCjcOMcCyOzd0e/HFdJx56qwNbuj2QFQWyIuPNg2/iwfcfxGBw7Pa2Usc4wThBVExGJ4je3DOAd/er1+4FTW585swZ+NjJ09BUYRuT3BAFERWWClRYKmA32fX+dIIgwGExwm42Yn6jCzecNROnz6qGQRSwvc+Lp9d16ZVGr3W8hnc6xyZGShnjRPHHCVYSUcF6/cDriCtxKIqC13f1Q5YVnNxSiXPaajNm+W1GG06oPQFVtirUO+pRYanAjoEd6PR2Yt/wPgBAa7Udnzx9OkaCUezo82Fnnw/DwSje3DOAzd0efPCEBkyvsWMoNISHNzyMT574SbRVt+X6R8+b+fPn47777sNNN92EhQsX4vOf/zzMZjOeeuopfPnLX4bH44EkSfjqV7+KefPm4dOf/jQ8Hg8URcGXv/xlVFZW4tJLL8VVV12FZ599dkyjuWNRWVmJW2+9FSeeeCIaGxv18k8AuPHGG3H77bfrjeaefPJJ3HHHHQiFQrDZbHjllVeO+2duamrCPffcgwsvvFBvNHfZZZcBAFauXIkrr7wSsiyjvr4ef//73/Fv//ZvuOGGG/C9730Pl1xyif4+F154Ie655x4sWbIE3/zmN9M+4+c//zk++9nP4ic/+YneaI6IJu+1jtcAAFJcxuu71Gqic9pqccr0zKfLuMwuzK+djwpLBZpcTbAardjevx2d3k4c9ByEIAiY2+DC3AYX+n0R7OzzYWefF75wDK9sP4SNnSO4aGEDGtxW9Ph68Kv1v8INJ99QVkcfM04wThAVi6HQ0JgE0boDwxAFActPakJbvVN/rsPkQPu0dsyrmQeXxQVFUeA0O9MqRmVFRo+vB/uH92MgOIDdQ7sRjAVhMog4a04tFjS58ez73Ymqoi5ctbQFTqsRL+19CS6LCyfWn5iPX0POMU4Uf5wQlAKtW21vb8fatWvzPQzKk6HQEO5dcy9kRcbew348t6kHdrMRnz17JkwGNYt/Yv2JaHA0wCgaUeeow8zKmeOeVBaRInh1/6tY17MOcSXZlE5RFBwYDOL13f0YCkQBAEunV+HstloYRAFmgxk3LrkxJ32Ktm/fjicPPTnln6PJdBoBFabt27djwYIFaY/xGsnfQbk76DmIh95/CACw4eAwVu3qR63TguuWTdcXEtqntaPCUgGTwYRGZyOmV0wf96Qyf9SPl/e+jM2HNkNBcmqkKAp2HfLjzT0D8IVjEEUBZ82uwakzqiAIApxmJ24+5eacHHvMOEHjYZzIjL+D8qUoCh7d9Cj2Du+Foih4Y/cA1h8cmyCym+y4YOYFOKXxFJgMpuP+nD1De/DSnpf0bc+BiIRnNnSj3xdBrdOCT7S3wGI0wCAYcOupt6LR2ZjVn3M0xgnK5HhjBCuJqCC9efBNyIoMRVHwzj61JPS0mVV6gui6k67D3Jq5x/x+FqMFy+cux3kzzsOOgR3YcngLOkY6IAgCZtY6ML3ajvc6hrB6/xDWHxzGSCiGjy1uQjQexWObHsMtS2/JyQ0AL7RERMfmnx3/BADE4jLWdAwDAM6YXQNBECAKIm479bbjmow7zU5cueBKfGDWB7C9fzs2H96MHl8PBEHA/EYX5tQ58OaeAWzoHEkkjCRcML8O/qgfj256FLcsvQU2k21KftZUjBNEREfX5+/D3uG9AIB1B4YzJoha3C247qTrJnXtbqtuw+zTZmNVxyq8fuB1OCxGXHlKC/6wthMD/gie29iLK05pBsQ4XtzzIm44+YYpP02ZcYImiz2JqODE5Ti2HlZ7TOzt92PAH4HTYsRJzWp3+TlVc44rQZTKaXaifVo7blxyI76y7Cs4bdppECBAFAUsm12DT5zaAotRxL5+P1btPAxFURCIBfDMjmfYLJKIqEAEogF98r+524NgVEK9y4o5dQ4AwJLGJRNera20VuLM1jNx26m34QunfUHfHmA0iLhgfj0uPXkaDKKAjV0jWHtATU4Nhgbxwp4XsvCTERFRNuwa3AVArSja2DkCALh4UWNaguj6xddnJbkvCiI+MOsD+GjbRwEANrMBl5/SDLvZiK7hIDZ0qrGiY6RDb4FBVMiYJKKC0+PrQSQeAQDsOaweU3nK9CoYE1VEF866MCufU2WrwiXzLsHt7bejwdEAAJhWacOKk5thEAVs6vJgY5cHAHDAcwCbDx+90z4REU29/SP79a/3HvYDANpnqtu/DIIB5804LyufU++ox1ULr8Jnl3wWldZKAMCcOicuXtQICMBbewawJ/H5mw5twoGRA1n5XCIimhwtSTTgj8IXkWA3GzGvQU0QucwuXL/4+qyfZLysZRk+MOsDAIAKmwkfWqjeX7zXMYyIpLa7eHX/q1x4poLHJBEVHC3DrigKDg4FAQAza+wAgOkV09Hibsnq5zU4G3DrqbdiUd0iAEBzlQ0fXqiuQL+9dwD+iNrh/uW9LyMsHd/RiURElH1anIhKMnq9YQgCML1ajRML6xbqCZ1smVE5A7e3344ZFTMAAPMaXDhnTi0AYNXOw4jF1dMxn9/9POJyfNz3ISKiqeeL+NDtU08p3j+gJvJn1Tr0bV5XLLgi6wkizbnTz8XJDScDUO9fplXaEI7F8f7BEQDqYviOgR1T8tlE2cIkERUcbfI/GIgiGJXgMBtR7TADwJSdNGYUjbhiwRWYVTkLADC/0YXZtU5EJRlv7FYb0fmjfrx+4PUp+XwiIjo2iqJg75C61ax7JARZVtDgssJqUk+gmao4YTVace1J16LeUQ8AWDqjCvUuC/wRCe/uV4+0PRw4jLU9bJJLdLy0I7AXLlyIRYsW4f/+7//GPEc7+aitrQ2LFy/G+vXr8zBSKga7h3brX+8bUHclzKpVtyM7TA59vj8VBEHARbMvgkk0QRAEnJ1YUFh/cBihqLqIsL6Xf3epsDFJRAUlGo+i09sJAHoV0fRqu575n101e8o+2yga8YlFn4DNqO5NPn9+HQyigJ19PnQNq2NZ17MOkixN2RiIiOjIhsPD8ETUrcCpcUIzq2rqJv9WoxVXL7oaBsEAURBw4Qlqwmj9wWEMJ07IXNO9hlsJiI6T0WjE//zP/2Dbtm1YvXo17rvvPmzbti3tOS+88AJ2796N3bt3Y+XKlfj85z+fp9FSodO2mgWjEvq8YRhEQY8Tc2vmTnnjaJfFhdObTweg7lCYXm1HVJKxt1+tajroOQhZkad0DESTMekkETP/lE0HRg7oF83OxOS/NXFRtxgsU34Uvd1kxwdnfxCAupe4fUY1AOgN7yLxCDpGOqZ0DESlhnGCsim16efoOFFnr4Pb4p7Sz6+11+Ks1rMAAE0VNixsckOWFWzuVhNXg6FBDAQHpnQMRKWmqakJS5cuBQC4XC4sWLAA3d3dac959tln8ZnPfAaCIOCMM87AyMgIent78zFcKmCSLOlxYv9AAFCAlio7zEb1tnd+zfycjOPs6WfDIKgVrjNr1CqmXo/atiISjzBOUEGbdJKImX/KJu2iHpcVdA2HACRXiGdVzYIoTH3x29KmpWhyNgEAFk5TbzYODAUhyWryaufAzikfQ6mQJFZdEeMEZZe21SwQkTDgj8BoENFUaQUwtdWmqc6dca6ejFo0TT15c1+/X68g2jnIOHGsGCdotI6ODrz//vtYtmxZ2uPd3d1obW3V/9zS0jImkUTU6+tFNK5WdnYMqgsJsxNbzQyCIWdxwm6yo8ml3k80Vqgxqs8T0r/f5e3KyThKAeNE7k36jpuZf8omLUnU5w0jFpdR7TDDaTUCyN3kXxRELGlcAkCtJqp1WhCVZHQnkla7BneV7FaC73//+5g3bx7OOeccXHvttfjv//5vXHDBBVi7Vu2xMTAwgJkzZwIA4vE4/vVf/xWnnXYaFi9ejAceeAAAsGrVKpx77rlYsWIFFi5ciLvuugs//elP9c/41re+lbGShEoX4wRli6IoejVnZ2IbcHOlDUZRnc7kKk6YDWacWH8iAKCpQu2HNBKKYTgYA5Dc6lCKGCdoKvn9fnz84x/HT3/6U7jdE6sKXLlyJdrb29He3o7+/v4sj5AKXZ+/T//6kFet3GmuUltJzKicMWUNqzPRDtupd1kgigIGg1H9lLNSThIxThQ/Yzbf7Hgz/01NTWnPW7lyJVauXAkAvKiXIUmWcDhwGAD0hExrVbLPRK4m/wAwr2YeXtjzgvq5tQ4M+CPY1x/AjBoHPBEPXtr7Ei6YeQGsRmv2P/zuu7P/nsfwGevWrcMTTzyBDRs2QJIkLF26FKeeeuq4b/Hggw+ioqIC7733HiKRCM4++2x8+MMfBgCsX78eW7ZswaxZs9DR0YErr7wSX/3qVyHLMp544gmsWbNmqn4yKnCMEzQZI+ERhCQ1PiTjhDr5FwURMypn5Gws82vm4+3OtyGKAmbVOLC9z4t9/X5UO6px0HMQ73a9i1OnnQqjmNWplopxgkpQLBbDxz/+cVx33XW48sorx3y/ubkZnZ2d+p+7urrQ3Nw85nm33XYbbrvtNgBAe3v71A2YCpKWJArH4vCGYjCIAqrt6gE4za6xf1+mkpYkMhpE1DktOOQN45Anguk19qlPEjFO0CRkbe9ONjL/t912G9auXYu1a9eirq4uW0OjIjEcGoYCtUJHawBa51Kz/XaTHTW2mpyNpcpWpZ9gM7vOCUA9HUGrIFrdtRq/WvcrDIWGcjamqfbGG2/giiuugN1uh9vtxooVK474/Jdffhm//e1vsWTJEixbtgyDg4PYvVs9TeL000/HrFlq89iZM2eipqYG77//Pl5++WWccsopqKnJ3f8vqXAwTtBkDYYG9a+HRsWJekf91CTux9Fa0aofdDC7Tt3KoJ2iAwAv7HkBD7//MALRQMbXFyPGCZoqiqLg5ptvxoIFC/C1r30t43NWrFiB3/72t1AUBatXr0ZFRcWYhQQiLUk04I8AAGqdahUPADQ6G3M6Fi1JBKhVpwDQm9hy1h/oR0SK5HQ8ucA4URqysryVrcw/lbfUyf9wUJ38V9pNAIAaW82Un0Qw2vya+TgcOIwGtwV2sxG+cAzdIyHUuSywGA0YDA3ilX2v4OpFV+d0XLlmNBohJ/oxhcNh/XFFUfDzn/8cF198cdrzV61aBYfDkfbYLbfcgkceeQR9fX246aabpn7QVHAYJygbBoPJODGS2NpVmVghrrXX5nQsoiBibs1cbDq0CdNr7BBFAb2eEIaDUTjMRpiNIrp93Xjz4Ju4uO3io79hEWOcoMl666238Lvf/Q4nnXQSlixZAgD4wQ9+gIMHDwIAbr/9dixfvhx/+9vf0NbWBrvdjocffjiPI6ZCJCsyDgUOAQD6fWoCRltIAHKfJKqwVMBpdsIf9at9iTrVlhoAoEDBPW/eg8+1fy7n48oHxoniMulKImb+KVtSJ//DIXXyX5WY/NfYc58pnl+rnn4gCILe8O6pdV345aq92JI4xWZ7/3aEYqFx36OYnHfeeXjmmWcQCoXg8/nw3HPPAVAz9+vWrQMAPPXUU/rzL774Yvzyl79ELJbowbFrFwKBzCvmV1xxBV588UW89957Y4IAlT7GCcoWbTEhKskIRCUYRAGuRN+6XFabarRTcixGA1oqbVAU4Ddvd+CX/9yrnqoD4P2+90umjx3jBE2Vc845B4qiYNOmTdiwYQM2bNiA5cuX4/bbb8ftt98OQJ2P3Xfffdi7dy82b97MrWQ0xmBwEJKsNjnWk0RONUlkNphRZavK6XgEQdCriZoq1MrTXk9YjwkKFDz0/kN6u41SwDhRGiZdScTMP2WLNvkPReOIxOIwGUTYzerRkfmY/De7mvXs/+KWChwcDiIciyMqydh92I8TmyugQEGPrwdzqufkfHzZtnTpUlxzzTU4+eSTUV9fj9NOOw0A8PWvfx1XX301Vq5ciUsuuUR//i233IKOjg4sXboUiqKgrq4OzzzzTMb3NpvNuPDCC1FZWQmDwZCLH4cKCOMEZYu2mDCiVZvaTBATVab5WEyYUz0HBsGAuBLHKdOrMBSIIiLJiMVl7O33Y1atA2EpjMHQYM4rnaYC4wQRFbLUptX9/vRKogZHQ05OSR6txd2CHQM74LYaYTcbEIzG8cbuAbitRixuqUQUUbzT+Q4uO+GynI9tKjBOlAZBKdDlrfb2dr0DOpWHh99/GAc8B9AzEsIf1nai3mXBp5apTUivXnQ1FtYtzPmY3jz4Jl7Z94r+Z284hofe3A+ryYDPnTcbgiDgg7M+iHNnnDvpz9q+fTsWLFgw6ffJlrvvvhtOpxNf//rXJ/1esixj6dKl+OMf/4i5c+dmYXTlJdPfDV4j+TsoRz9d/VOMhEews8+HF7b0Yk6dE5eePA0AcOvSW9Hszv0Wxed3PY/3et7T/9w9HMIf13WizmnBdWeoMezKBVdiccPiSX8W4wSNh3EiM/4Oysvf9/4db3W+hbis4Ber9iCuKPjC+W0wG0WcNu00XDLvkqO/SZZ1jHTgkQ2PAAD+urEHe/r9+veWn9SEeQ0uuC1ufO3MzJXWx4txgjI53hiR+3Qq0Ti0SqLRfSaA/FQSAcAZLWfgpPqT9D+7LOoqgHpiglrO2u3rHu/lBGDbtm1oa2vDBz/4QV7QiWjCJFmCJ6xu9dUqiapS40QeKokA4AOzPoA5Vclq0nq3BYIADASikOJq/4VuL+PEkTBOEFE2aJVEQ4Eo4rKCSpsZZqN6u5uvvj/Nrmb9kIPz5tXhrDk1aK1WT2/WtsR5I16EpfC470GME7k2BeeyEh2/iBSBP6pm1oczTP6rbdV5GZdRNOLKBVdimmsaXtr7EgRBQIPbiv0DAfR5w6iwm9Dl7YKiKDlvrD3V7s7S0ZkLFy7Evn37svJeRFS+hkJDyRMwg1rfOvVwA4fJkdOTzVLZTDZ8evGn8fzu57G2Zy1MBhE1DgsG/BEc9kUwrdJWsosJjBNEVCgURdGTRKP7EQH5SxKZDCacO+NcvLz3ZbhtJpw+qwZumxedQ0EMJk7pBNTTzlorWvMyxqnEOFGcWElEBSH1KPnkCrE6+a+wVMBkMOVlXIDadO6UplMgIHF8plu9EdFOJ/BH/fBFfXkbHxFROUiNE/oJmI78HW6QShAELGtepv+5YVSc6PX1Ii7H8zI2IqJy4I/6EYipDY9Hn2wmQEC9oz5vYzur9SysmJ88Cr7GoY5rKNE3CQD6g/05HxfReJgkooKgbTUDkivElXk82Ww0q9GqNx1tqFAn/4e8ybLQbG0lKNAWYZRH/DtBpNKaViuKMmYxIV9bklPV2GtgMagTf20xQYsTcSWuH8s8Wbwm0Gj8O0EEDAQH9K8HA1qSSL2XqLXX5nXBGQCWNi3FWa1nAQCqHCYIgoCRcEzflpzNE854TaBUE/n7wCQRFYS0yX8osUJcQJN/AHpD1AaXOvk/7AtDltV/dNnYSmC1WjE4OMgLO+kURcHg4CCs1vxsoyEqJPoJmLE4IpIMs1GEzZQ4AbMAFhNEQcQ0l9pEu6FCTRYd8mR3MYFxgkZjnCBSDYeH9a89IXXBucKWTBIVgjp7HQDAKIqotJkARe2fBKjbzbKBcYJSTTRGsCcRFQRt8u+PSJDiCuxmA6wFNPkH1MZzG/o2wGY2oMJmgicUw2AgijqXJSuT/5aWFnR1daG/n+WmlGS1WtHS0pLvYRDlnbaYMKL3IzLrveAKaTFh/8h+1DgsMBoEjIRiCMfisJoM6PZ14zScNqn3Z5ygTBgniICR8AgAQFYU+MLq4TJuq3qrW2Wrytew0qRueatxmDEcjGIwEEW925q1SiLGCRptIjGCSSIqCNrkf/RWM6CwJv+aRrcVnlAMfd4w6lwW9Ph6Jt282mQyYdasWdkYKhFRydEWE/R+RPbk1oFCWkwAAIMooN5pRY8nhD5vGDNrHFlZTGCcICLKbDikVhL5IxJkRYHDbITRoG6aqbRW5nFkSXWOOv3rGqcFe/r9evNqX9SHsBSe9CEMjBOUDdxuRgVh9OS/qgAn/w2OBhgEtbqpYVS/iUg8klbmSkRE2ZN+AmaykghQG5JWWQtjlTh1MUGLE4cTcWIgOIBYPJaXcRERlTqtksib2GrmtiXvJQolRpgNZj1hVeNUY1hq8+ps9iUimgwmiSjvIlIEYUmdRPtCWnmoemEXBbFgsv8G0YAGZwOA5GkJAykX9kP+7DQlJSKidN6IV//ap90AJOKE2+LOe0NSjcvsgsPkAJCME/1+dfFDgcLTa4iIpkgySZS4l7AlN8wUyr0EkOxLVJM4nVOrJAKy15eIaLKYJKK801aHASAQUS/szsQeYqfZCVEonL+mDQ41SVTrVCf/g/6o3hguWyfXEBFROl/Up3/tHxUn3BZ3XsaUiSAI+mJCbWKVeMDHxQQioqkUi8f0OKE3rbYmFw8KKUmk9SWqtJshCgI84RhiiRPOuJBAhaJw7r6pbKVN/qPq5N9hUSf/LrMrL2MaT6OzEQBgMxvgtBgRi8t6MOrz9+VzaEREJcsXScaJQDQOAHBa1O2/LkthxQltMaHaqTbWHglF9RsAxgkiouzzRDz6195w+nYzp9lZMNWmQLIvkUEU1N56CjCcqCbidjMqFEwSUd6lTf61FWItSVRok//ECjGQrCbqT6wSc4WYiGhqaIsJiqLocaLQFxOMoohquwmKoladAqw4JSKaClrTamBsT6JCqiICxp5wBgBDiSTRUGgoL2MiGo1JIsq7TNsIHObCnPxrK8QAUDuqL9FweBgRKZLxdURENHHaYkI0LiMWl2E0iDAnTq0p6MWEUXHikP+QvkWZiIiyQ+tHBCSTRNp2s0JpWq2ptlXrX1fY1CSRtivBE/YgLsfzMi6iVEwSUd5pk/9YXEZUkmEQBVhNhTn5t5lsev8Lrd+E1pQUYJkoEdFU0BYTApHEVjOzAYIgACi8xYRae63eS0+rONWSRCEplLYwQkREk6edMByXFfiiEgQh2beu0CqJrEYrbEYbgGRzbS1JpEBJ2zpHlC9MElHeJSf/ySqiQp38A8mtBHXa5D+lKSn7TRARZZ+2mDB6qxlQeIsJRtGIWnstgGSc6GecICKaMlolkS8cAxTAaTHBIKr3ElW2wqokApJjqkhsidP6KAHpW+eI8oVJIsq75ORfXSFOnfw7zc68jOlItC1nVXYzDKIAbziGiKSOnf0miIiyb8xiQpHEidTtZvpJmOxfR0SUVVpixRtSY4TbmowRhVZJBCS3wGlJIk9i3ED61jmifGGSiPJOm/zr/YgSJ9YAhbdCDCT7TYiioDecG9CaknLyT0SUVYqi6IsJ/kyVRAVcceowG2AzGRCRZPgSY+diAhFRdmmJFU+iIkdLvgCF15MISCauXFYTIAD+SAxxWV1I0LbOEeUTk0SUV6mT/9EnmwGFOflPa149asvZoQCbkhIRZVNICiGuqNWaek+ixGKCUTTCarTmbWzj0RYTBEEYEye43YyIKHvCUhghKQRg7MlmAgS9l2gh0babGUQBLot6CqYvkeDidjMqBEwSUV5F4hHEZPWiGIimrxAbBAPsJnvexjaeGnsNjKI6Rm3yPxhQJ//ReBTeiDdvYyMiKjXaQgIA+EfFCZfZpfewKySZFhMGU444lhU5L+MiIio1mU42cydONnNb3DCIhkwvy6vU6iZta5zWvJrbzagQMElEeeWP+pNfpzSuBtQ+E4U4+RcFETW2GgBApX3sXmKWiRIRZU9qnAiMihOFuCUZUOOXxaAmh5JxQr0BkBUZnjBPryEiyobUpMro7WaF2LQaSO+TpDevTtxL8D6CCgGTRJRXqSvEo7ebFerkHxh7KoE2+QdYJkpElE2pR8aPiRMFuCUZULeZVduqAYwTJ3gTQESUFemVRInG1Ymj5QuxaTWgjkuAuhCux4hEgisYCyIiRcZ9LVEuMElEeZU++ddON1PLQgt18g9An/y7U46ulBO9iIZCQ3kbFxFRqdEWExRFGdO4ulgXExgniIiyQ1ucleIyglEJoijoMaIQm1YDgEE06L2S3BliBLecUb4xSUR5ldZropgm/4mgYzKIsJuNkOXkzQtXiImIskdbTIhIMuKyArNRhNmoTl+KYTHBZTMCAuALS8nTa1hxSkSUFVpCxZuoxHFbjBAT7SoKtZIIGLuQ4GW1KRUQJokor7TJf1SSEYvLMBoEWIpg8p+6x1lfJQ7yVAIiomwbfQKm1o8IKI7FBKMowmk2qpVQYS4mEBFlk5Yk8uhbzUz69wo5SaSNLWOSiPcSlGdMElFeZZr8a82qC3nyr60QA2Mv7txGQESUPdpiwugtyUARLiYwThARZY2iKHrSXT/ZrEiSRNpCgt1sgEEUEIrFEZXUky+53YzyjUkiyitt8j96qxlQ2JP/CkvF2IZzieAUkkIIS+G8jY2IqJRoiwkZ40SRLSZocWI4NAwl0ceOiIgmJiSFEI1HAaRsN7Oq11uDYCjoGKEtJAiCoI9ZjxGsNqU8Y5KI8kqvJIoW1+TfIBpQYa0AwKakRERTRVGUZCVRNP1kM6CwFxPcFjdEQZ1mjY4TkXgEISmUt7EREZWC1Iob7fqqXW8rrBX6NbgQpVY5ZVpIIMqnwv2XQyUvbfKvbzcrjm0EAI58vDEv7kREkxaMBSEravn96J5EZoMZZoM5b2M7GlEQx/Sc4GICEVH2pM63k9vN1BhRyFvNgPST17Qx+xLVUJ6Ih9WmlFdMElHeROIRSLI66dd6TWgrxAbBAKvRmrexHQvt4p4xScQyUSKiSfNH/frXgVHbzZxmp97DrlBpiwmZjjjmYgIR0eSkVhJ5EwcDaFu3UpMwhchpdsIgqIvj2pi1nyEaj7LalPKKSSLKm9TJfzCxjcBuLp7Jv7aX2GEZ23COK8RERJOXHifUxQR7ouLUaXbmZUzHY8xiQpiLCURE2aIliSJSHOFYHEaDoMeIQq8kEgRBb13hSiSJfCkLCZ6wJy/jIgKYJKI8Slsh1ib/luKZ/GsrxBkbznGFmIho0jLFCUcRxgm72QCjQUQkpt7IAFxMICKarOTJZskqIm2RudCTRIB6EA6Q3G6mVRIBPOGM8otJIsqbQDSgfx0c1WuiGCb/qWWsYxrOcYWYiGjSArGUOJGh4rTQpZ5eU6FtJ+BiAhFRVmiJFL0fUeI6CySvv4VMS2Rp4/alVJt6Iqwkovxhkojypui3EdjGJom0IOUJexCX43kZFxFRqdDiRCwuIyrJMIgCLEZ16lIUcYKLCUTH5KabbkJ9fT1OPPHEjN9ftWoVKioqsGTJEixZsgTf/e53czxCKjSKouhJIm0rr3adBYqkkiix3cxuTrauiMXV1hWsJKJ8ykqSiBd2mght8h+XFYRicQgCYEskiRxmRz6HdkysRivsJjuAsZN/BQov7kQJjBE0UVqc0BcSTAZ9K4HDVPhxItNighYnvBGvfngDUbm78cYb8eKLLx7xOeeeey42bNiADRs24K677srRyKhQBWIB/Ro6+mQzk2gqihihJbIEQYArcShD6oIzUb5kJUnECztNhDb5DyUm/zaTEWJi8l8MK8TAkU84Y5KISMUYQROlxQntZDN7YhINFEecMBvM+jgrEjcvjBNEY5133nmorq7O9zCoiKRu2U3tSQSoyZdCPwAHSPYkAgCXLf2EM8YHyqesJIl4YaeJSK4Qa30mDPr3imHyDyRXACrsGY435lYCIgCMETRxoyuJHCUWJ3gTQHTs3nnnHZx88sn46Ec/iq1bt+Z7OJRnqfNs76jtZsWw1QxIH6fbqi4kaH2JGB8on3LWk4gXdhpNa0gaGNWPCCieyb+2lUBbufCGY1AUBQAv7kTHgzGCMtEOOBjdtBooojgxquLUm7qYwObVRMdk6dKlOHDgADZu3Ig77rgDl19++bjPXblyJdrb29He3o7+/v7cDZJySrt+KoqiJ9/dietsMTStBgC3xQ0BasWTy5peSRSSQojGo3kbG5W3nCSJjvXCzot6edFXiLWTzYpsGwGQXAEwG0XYzQbEZQWBiJr04uSf6Nhw8k+ZxOU4grEgAOjXVbsluZhQDL3rgLGn13jDEuTEYgIrTomOjdvthtOpzg2XL1+OWCyGgYGBjM+97bbbsHbtWqxduxZ1dXW5HCblkHb9DMdkxOIyzEZRP9ig2lYc1csG0QCXxQUg5YQzVptSAchJkuhYL+y8qJcPRVGSvSaKuZIo5eQaN0+uIZoQTv4pk2AsCAVqMkWrJHIkKolsRhuMonHc1xYSbUXbaBDhsBghKwr87DlBdFz6+vr0Su01a9ZAlmXU1NTkeVSUT9pirLbVzG016X2IUufnhU5fSEj0rdMqiQA2r6b8yckMq6+vDw0NDRAEgRd2AqCWUMqKesTj6Mm/STTBbDDnbWzHY/TJNX2eMDyhGJqrbJz8Ex0jxgjKRFtIAFJONyuiEzA1qTcrFTYTAhEJnlAMbpuJFadECddeey1WrVqFgYEBtLS04Dvf+Q5iMfXm//bbb8dTTz2FX/7ylzAajbDZbHjiiSeKojExTR1tMVZbnNW29ALFs90MSDav1rabaT2JAC4kUP5kJUnECzsdr9TJv15JlNhGUCxVRIB6YRcgQIEy5oSzYCyIiBSBxWjJ5xCJ8o4xgiYiPU6kn25WTHEitTFphc2EnpEQPKEYWsGKUyLN448/fsTvf+lLX8KXvvSlHI2GCl0sHoM34gWQ7POmbdcCirOSyGkxQhAAf1RCXFZgEAV4IqwkovzISpKIF3Y6XmkrxJH0SqJimvwbRAPcFjc8EQ8qrJlPrmlwNuRreEQFgTGCJiJTJZF2ulkxxYkKawVEQYSsyPpNjBYnwlIYYSkMq9GazyESERWV1AobfbuZLXkfYTKYMr2sIFVY1UoigyjAaTbCF5HgD0uosJtYSUR5k7PTzYhSaSfWAGO3ERTT5B9I3Us8NknEVWIioonRTsBUFGXM6WbFFCdEQYTb4gaAMRWnAA85ICI6Xqnza09IjQ/a9bWYqoiA9GpTly15WjLAnkSUP0wSUV5k3EZQhJN/ILnvucLOyT8RUbZocSIalyHFFRgNIsyJk2uKLk5Yx48TXCkmIjo+qfNrfbtZIsFSLCebabSeRADgtmrNqxNJIm43ozxhkojyQpv8S3EZUUmGKAqwmop78u+0GCGKAoJRCbG42pSbk38ioonR4sTorWZAEcYJbTFBWyVmxSkR0YRp101FUdJONwOKq2k1kNxuBgDOxM8QSLTi8Ef9+kE/RLnEJBHlxejJv91k0BvVFtvkXysTFQVBD1DaDQAn/0REE6PHiYi2JTnZRrFY44TDbIBBFBCKxRGR1J+LFadERMdHu24Go3HEZQU2k0GvNC227WZmg1nvS+dKHM7gC6tJIlmR03ZfEOUKk0SUF9oFb/RWM6C4jjYG0lcsRvebYCUREdHEjI0TyUoih6nI4kTipkUQhJRqIvXnYpwgIjo+2iKsZ9RWM6D4KokA6H3rnIkkkT9RSQRAP8WNKJeYJKK8GLONwFK82wjSjzdWL+5a0BoODUNRlHwMi4ioqJVunEhfTGDFKRHRsVMURa8kGr3VDCi+SiIgJUmU6EnkDzNJRPnFJBHlhXZqTSlsI3CZXTCK6vhHT/5jckz/WYmI6NhIsoSwFAYABCPpFacChJKrOOViAhHRsfFH/YjJ6vUz2bRajQ9G0Vh09xHA2EoiHyuJKM+YJKKckxUZgaiaOMm0jaDYLu6CIOgnE+g9iVJWAHh8JRHR8dFihPq1tpigxgm7yQ5RKK7pi8PkgElU44MWJ3yJFXBJlriYQER0jFK36HoS23a17WZV1iq9x2kx0ZJEdrMBoiggHItDShyCwyQR5UNxzbKoJARjQShQV03DMXXyb0tM/q1Gq16VU0y0rQQu69iTa9hvgojo+ARjQf3rUCw9SVRsVURAYjEhcYKNSzvimHGCiOi4pV4vte1mFUV6splGSxIJggCnOb0vEZNElA9MElHOpXbpTz3dDCi+KiKNliTSyl21FWKAk38iouOVliRKxAmbSb2+2k32vIxpspJxYmzFKeMEEdGxSUsSjWpcrVX2FxstSQQk+xJpJ5wxSUT5wCQR5UWruxVV1ipEJbUk1KqtEBfZiTUabfJvMxlgNAiISLJ+vDEn/0RExyc1SZSsOFWnLEWfJNK3JXMxgYjoeHkiahsHWVH0RIo7kVhJPSSgmKQmt0afcMYkEeVD8e3roaLX6GzEzUtvBgC8sPp1DEtDuGXJyWitEYuuz4RGC0qCIMBlMWE4GIU3JKHOZeDkn4joOKUmiYKx0qoksppEGA0iopKMcCwOq4lxgojoWGnXS39YgqwocJiNMBrU+wdtW2+xSa0k0rYkpyaJZEUu2nskKk7820Z5NRKMQYAJs2oaMaNyBlorWvM9pAlJXbnQSl61LWec/BMRHR8tSSTLCiKxOCAAFlNpVBIJgqCvemur4IwTRETHRjsQRqvG1ObdQPFWElmMFlgMFgAplUSJ+JB64A9RrjBJRHmjKAqGAlEAQLXdnOfRTE5akkhrSpoy+efxxkREx05LEmlNq21GA8TEiTXFniQCxm45Y5KIiOjoFEXRr5cevR9RcmNMsfYkApLVRK5RiwgAt5xR7jFJRHkTiMYRjcuwmQz66WbFyml2wiCoP8PoE85icgwhKZS3sRERFRvtSHitH5HVlIwRpZAkGn3CmSfs4WICEdFRhKQQYrJ63fSG1CSKdrKZQTAU7QE4QDJJ5LSoP48/kuxbxyQR5RqTRJQ3Q/5EFZGjuKuIAHX7AE84IyLKDq2SSD8BM2UhoVgPOHCYHDCKanxIbktWb3JiciytDxMREY2VdrLZqO1mldZKCImK02KkJ4lG9SQCmCSi3GOSiPJmKFg6SSIg08k1PN6YiGgitIRJKVUSpS0m8IQzIqLjpvUjApKVmBWJJFGxNq3WaEkiu9kAQRAQjMYhyTIAJoko95gkorwZCkQAlHCSKMTJPxHRROiVRFpPInPxJ4mAZJxIbjfjYgIR0bFKvU7qPYmsyUqiYqYliURBgDMR8wIRNQYySUS5xiQR5c1gCW03A5LByWExQBQFhGJxxOLqCgAn/0REx0ZRlGTj6sR2M1sJVBIBKYsJo07BBBgniIiOxhNRK4nisgJ/VIIgJLdnFXPTaiCZJAJStpwldiUwSUS5xiQR5c1wiW0308pcBUGAy8LjjYmIJiISj0BW1AR7eFQlkUk0wWQwjfvaQqfdxDjMBhi4mEBEdFy066QvHAMUtcmzQVT7EJVKJRGQbF7tSzSvZpKIco1JIsqbwUBpJYkyHm8c4vHGRETHI7WBc3BUJVExVxEByTiRupjAOEFEdGy062Ryq5lR/16p9CQC1F0JQHK7mS/q4wmYlFNMElHeDJdwkkjvNxFOTv55cSciOrpANKB/PbqSqFSSRADgsqUfcsAkERHRkWmNq7Xrpta0Gij+SiKr0aqfgOlMLCIEEiecSbKEsBTO29io/DBJRHkzVGJJIpfZBYOg3siMPt44Go8iJIXyNjYiomKRqZLIXmKVRECy4tTHxQQioqOKSBF9Lq1VYGrzbQECXGZX3saWDYIgwGl2AgAciSSRP5I83MAX9eVlXFSemCSivCm1JJEgCHqpa6YTzlKP7SQiosxSk0RaJZE1UUnkMDvyMqZscZqdycWEUSecxeQYFxOIiMahNa0Gxp5s5ra4YRANGV9XTLRE1+hKIgDwR/15GROVJyaJKG9KLUkEJJuSJrebJS/uqcGNiIgy05JEiqIgFCutnkSpiwkubTEhzMUEIqKjSd2Sqy3CatvNir0fkcZlUZNEWiVRIFFNCwC+CCuJKHeYJKK80ZNE9hJKEmmVRBmON+bkn4jo6LQkUSyuIC4rMBpEmAzqdKXYk0RAcjHBbdNOwUyJE1xMICLKKHUerS3CatfRYu9HpNEqiZKNqyV9GzK3m1EuMUlEeRGLy/CGJYhCetO5YqdN/p0WIwQB8EclxGX14s7JPxHR0WlJotCok82AEkkSjd6WnFpxysUEIqKMtEqiWFxGMCpBFAW94kabfxc7rZLInFgcicVlROMyAFYSUW4Zj/4UouwbDqpVRFV2M0RRyPNoskeb/BtEAU6zEb6IBF84hkq7mZN/IqJjoCeJYiWaJEpbTBAQiEiQZBlGUeRiAhHROE5qOAlVtips7e2FSZZQ7ZBQaa2AL+IruUoiQRDgMBswEpIRiMRhMRpYSUQ5xSQR5UUp9iMC0lcy3DZTIkkkqUkiTv6JiI4qmSRSK2xs5hJLEiUWE0RRgNNihC8cg1+LE1xMICLKqNHZiEZnI3zew3DIIk6vr8XXzlyGuByHgtI4GVKrJALUvkQjoRgCEQnVDjMriSinuN2M8kJLElWVWpIopXHe6KaknPwTER1dIBYAAISiaol9qVYSASknnCW2nHExgYjoyDqH1YWEliobAMAgGmAUS6PuQaskApLNq/2JE85YSUS5xCQR5YWWJKoptSRRpsl/KHlxl2Qp4+uIiEhVLpVEQEpfohAXE4iIjkXnkJYkKv54MFpqJZFTO+FMSxJFfHoTa6KpxiQR5cVwiVYSmQwmOEwOAMkTzlKPN2apKBHR+OJyHGEpDKBMKolGnXDGxQQioiPrGg4BAFqriz8ejGYxWGAS1fsHh54kUvvzxZU4QlIob2Oj8sIkEeXFYIlWEgHJVWKXlccbExEdj9QJ8OhKIpvRBlEo/mlL6mKCK8MJZ1xMoHJ00003ob6+HieeeGLG7yuKgi9/+ctoa2vD4sWLsX79+hyPkArF6O1mpUQQBDjNTgCAw6LGPn+U8YFyLyuzLV7Y6XjplUT2EkwSWUYdbxxKXty14zuJyg3jBB0LbasZMLaSqBSqiDTaYsLo7WYA4wSVpxtvvBEvvvjiuN9/4YUXsHv3buzevRsrV67E5z//+RyOjgpJ51CikqgEt5sByS1no7ebAexLRLmTlSQRL+x0vPRKImcJJolGVRL5IxLkxB5i9pugcsU4QcciLUk0qpKopJJE2mKCLb1xNcCKUypP5513Hqqrq8f9/rPPPovPfOYzEAQBZ5xxBkZGRtDb25vDEVIh8IZj8IRisJpE1JbgPQSQbF7tyJQkYiUR5UhWkkS8sNPxGg6WfiWR0SDCbjZCVhT9As/JP5Urxgk6FulJotKvJHKmLibIXEwgGk93dzdaW1v1P7e0tKC7uzuPI6J86EpUEbVU2SEIQp5HMzW0SiKHORkftIbVrCSiXMnJeYHjXdibmppy8fFUgAb9apKouoR7EgHqCWfBqARvSILLauLkn2gcjBMEAPNq5uHLy76MYCyIx1e9BHs8iOVzF8NojKHGVpPv4WWNvpgginCYjQhEJfgjEtw2ExcTiCZp5cqVWLlyJQCgv78/z6OhbNL6EbWWYD8ijVZJZDaKMBtFRCUZEUmG1WRgJRHlTE6SRMeKF/XyoVUSlWSSKO3kGhP6vGF4wzE0w8bJP9EkMU6UNqNoRLWtGi5zJSLhRlgF4MNt50EUS2vFOG0xwaYmibzhmJok4mIC0RjNzc3o7OzU/9zV1YXm5uaMz73ttttw2223AQDa29tzMj7Kjc6hRJKoBE8202iVRIBaTRSVoghEJFhNBvij/jyOjMpJTo4JOdYL+2233Ya1a9di7dq1qKury8XQKA8URcFQoISTRCmT/9EnnHnCHr1klIiSGCcoVeqW5FJLEAHpiwnaCWe+MLclE41nxYoV+O1vfwtFUbB69WpUVFSw0rQMdQ2XdtNqIFlJBKT2JYoDALwRb17GROUnJ0kiXtgplS8iIRZXYDcbYE30miglDpMDRlG9qI8+4Swmx9J6bhCRinGCUmkLCVUluJAAjN6WnH7CGRcTqBxde+21OPPMM7Fz5060tLTgwQcfxP3334/7778fALB8+XLMnj0bbW1tuPXWW/GLX/wizyOmfOhKbDdrKeXtZimVRE6Lep/ki6jxgT2JKFeyst3s2muvxapVqzAwMICWlhZ85zvfQSym/mW+/fbbsXz5cvztb39DW1sb7HY7Hn744Wx8LBWp4RKuIgIAQRBQYanAYGgQblti8h9OHm/siXjgMDvyNTyivGCcoONRytWmQHIxQZKlMSecaYsJjBNUTh5//PEjfl8QBNx33305Gg0VKq2SqKVMKomcFvU+QjsAxxfxQVZkiEJO6jyojGUlScQLOx2PwRKf/ANApbVSTRLp282Sx1eOhEcwzTUtX0MjygvGCToeepKoBE/ABNS/75XWSgwEB1K2myUXE0bCI0wSERGN0j2iJomaS7iSyGK0wGq0IiyF9RMwtfsIBQr8UT/cFnc+h0hlgGlIyrlSryQC1CQRkOw14Q3H9O0DI+GRPI2KiKg46HHCWfpxQltM0LabAYwTRESjecMx+MISrCYRVXZTvoczpbQkkDPRk8gfSS42sy8R5QKTRJRz5VJJBKjHV1pNBsRlBcGo2nSOk38ioiPT4kRNGcQJbVuyLyJxMYGIaBzdia1mzZU2CELpHWiQSksSaQfg+MNMElFuZWW7GdHxGC7xbQRAcvIPqKvE4Vgc3nAMDotx/Ml/PA4YSq+RNxHR8dLiRFUZxAmTQYTNZEAoFkcwGs8cJxgfiKjM9ehbzUq3H5HmuCqJnnkGEEWgsjL5X3MzYwZNCpNElHNDZbSNAFC3nB32ReANSWiqOMIK8TPPALt3p1/kTzkFaGiY8vESERUSvZKojOJEKBaHJzTOYsJvfgMMDKTHh2XLgIoKEBGVA70fUWXp9iPSaEkiu9kAURAQisUhxWUYDWJ6kkhRgC1bAElKf4NvfAOwlf7viaYOk0SUc6XekBQYVUlkS29KOhIegaIoY0tlPR4gHAb6+tT/AGDuXCaJiKjsDAfLp5IIANw2Iw77ks1JxySJRkaAYFD9r6dHfWzp0pyMk4ioEHTrJ5uVfvJDSxIJggCHxQhfOAZ/REKl3ZyeJAoExiaILBbAas3haKkUsScR5VypH20MAE6zEwZBLfPUm5ImJv/ReBQhKTT2RSMjYx+rrJyiERIRFa5Bf+nHifRtyclDDoDkYgIAdauZzzf2DVhFRERlpCtRSTStsvQTIKmnl7lGbTlLSxJluneoqABKvGcTTT0miSjnhoKlP/nXjjcGMO7xxmkkiTcBREQJw2UQJxwmB4yiOvl36cccq3EiJscQjAXVJ3o86paCVE4nYCrt032IiFLpPYkqy6cnEQA4RzWv9oQ9ySdygZmmCJNElHPlUEkEHOfxxl7v2JsAlwswckcoEZUXRVHKIk6kLibolUSh5LYBPU7wJoCIKHm6WRlsN6uwJBeJtebVvkQlkS/qg6zI6jcZH2iKMElEOVcOk39g7PHG3vARjjfmRZ6ICIBaUh+LK7CbDbCaSvt0lrFxIsNigseDMRgfiKiMRKQ4DvsiMIgCGlyWfA9nylmMFlgM6s85upJIVmQEogH1ibx/oCnCJBHlVFSS4QtLMIiCvnJaqrTJv8UowmwUEYvLiEhq5v+YkkTcakZEZahcFhIApGxL1rabZVhM4E0AEZW53pEwAKDRbYXRUB63r9qWs9E9iYCUvkRcRKApUh7/yqhgjOgn1pggiqXdVE2b/AuCAJdF20qQbEqahjcBREQAyjNJZDUZ9MWEcGzUYgLjAxGVuW69H1HpbzXTaEkivZIoU5KIi8w0RZgkopwaLMPJP6AebwwkTzhjkoiIKLNyTBIBmU84U78YGftC3gQQURnRk0Rl0I9Ik6wk0g7AGZUkUhTeP9CUYZKIcmo4oFUScfKvpDaq5kWeiAhASpKo7OJE+glnrCQiIlLpTavLsJLIbjFAEAQEYxLisnrv4I14gWAQiMXSX2QyAfbSP/2Nph6TRJRTWiVRjbP0J/9Os3PM8cbadrNoPJo83hjgTQARUUK5VhK5Rp1wNhIegSJJ6umXY15YOfYxIqISVc6VRKIgwGE2AAoQSGw580a84987CKXdzoNyg0kiyqnhYPlUEgmCoB9hqZ1ck1oq6okkms3F44DPN/YNuJ2AiMrQkBYnyiBJ5DA59MWE0SecxeQYgoN96paCtBc51NViIqIyoVUSTSvDSiJgbF8ib8TLptU0pZgkopwa8Ccqicpg8g+kHG9sTW9cDaRsJfB6x94EOJ28CSCisjRYRnFCEISUOJHeuw4AfIc6x76INwFEVGa6RtTq+9YyrCQCkiecaYvNnoiHuxBoSjFJRDnV71OPsKxzW/M8ktyosGqVRInJf8rJBOw3QUQ01mFfBABQ77bkeSS5MbriNHUxITDQM/YFjA9EVEakuIyeEfX+oWwriRLNq7VKIl/EB2V4eOyLuAuBsoRJIsqpw97E5N9VHpN/bYXYZjLAaBAQicURkeIAAE84USbKJBERke6wV70ZqHeVx2KCFidcoxpXA0BooDfDCypzMCoiosLQ5w0jLitocFtgNRnyPZycsRqtMIlqckjfbpaoJIorcUQGD499EeMDZQmTRJRT+gpxmSWJBEEYc4QljzcmIhqrv0zjhL6YIMn6YkJk4FCGF1TmbnBERHnWOaT2I2qpKq9TuwRB0KuJnNp2s0hyESEy0Df2RYwPlCVMElFOHU5sN6svl+1mlmSyZ/RWAm43IyJKF4vLGAxEIQpAjbM8kkTatmRBEFL616mLCdEhrhQTUXnrHC6/fkQaLUnkGlVJBEVBdKh/7AsYHyhLmCSinInLir5CXFcmk//0443Tm5Lqp5sxSUREBCBZRVTjtMAglscxvulxQqs4VRcT5KGhDC+oHPsYEVGJ6kqcbNZaXV6VRADGVBJpPYmMUQnR4KiTkY1G9fRLoixgkohyZjAQgawA1Q4zzMby+KvnsrggCurP6h41+Q9LYYSlMJNEREQJ2pbkhjJpWg2kJ4n0E85CMQiygrhnGMro0y+5HZmIykjXkFpJ1FLGlUQOixEQgEBUgiwrsPrDiMQj6U+uqACE8lhcoalXHnfqVBDKrWk1AIiCmHJyTXLyrxkJDgE+39gX8iaAiMpQuTWtBgCn2QmDoDZj1bclhyWYgxHIcQmSnDwVE3Y7YDbnY5hERHmhVxKVWU8iIJkkMogC7CYjFEVNFFkDEUSkUUkiLjBTFjFJRDmjbzUroyQRkOw3ofeaCCcn/N6BbkCW01/AmwAiKlPldrgBoC4maDcCyTgRgzWg/i7CUjj5ZC4gEFGZ0XoSlVvjaiCZJAJS+hJFJFjGqyQiyhImiShn9KbVZbRCDCS3EiQbkiYriQL9PWNfwIs8EZWpckwSAck4od0E+MISLAE1ZqbdCDA+EFEZiUoy+rxhiALQVFle9w9AepJI70sUHqeSiPGBsohJIsqZQ9p2szLqNQEkJ/8OiwGiKCAUiyMWV6uHggO9Y1/AizwRlSltu1ldmZyAqdEXE1JOwcxYScTtBERURnpGQlAUoKnCBpOh/G5bMyWJfBF1ESESj6T3rOP9A2VR+f1ro7zRKokaymyFWOtJJAgCXNoFXmtePXgowwt4kSei8qQ3ri63OJHYluwwG2BILCYYvWofDm43I6JypfUjKsem1QBgN9n1nnVOa3olkazI6T3rGB8oi5gkopzRG1eX6QoxkLrlTL2oR4f6x76AF3kiKlP6tuQyjROpiwnKSAAAk0REVL7KuR8RoMYErZpIiw3+CLcj09Rjkohyptx7TQApJ5wlKomk4cGxL+BFnojKVDmeggmMjhPqYgJGWElEROWtK5Ekaq0uz0oiILnlTKskCgajMIeiAJDel8jtHvNaoolikohypl9PEpXXCrHb4oYAAQDgGnXCmeD1ppeKArwJIKKyFJcVDPjVOFHrLN8kkRYnDB715ohJIiIqV51D2naz8qwkAlKSRIlKInhDEBKtiPRKIqcTMBrzMDoqVUwSUU4oipKyjaC8Jv8G0aBf4CsSK8SeoFpJZA1E0m8AAN4EEFFZGvRHICtAtcMMs7G8picuswuioP7MFTYjLFIc8cRKsSRLiMVjgMEAOBz5HCYRUU5p281ay7QnEQC4LC4AySSRwRvSG1brlUS8d6AsK69ZGOXNcDCGWFyB22qE1WTI93ByrtpWDQCotKtJopFgFMaoBGNUQjAWTD7RYFBXA4iIyky5bkkG1MUErZqo0m6GOxxFOCbr3w9JIfUmQBDyNEIiotzTGle3VrOSyGgQYTMZ4ApHEYurSaJoXF1MYJKIso1JIsqJcm1GqtGSRFV2MwBgJBSD2acGvlAslHwibwKIqEwxTiQXE9yRGMKxuP69YCzImwAiKivhWBz9vghMBgENZRoXgGSSCFCridyRGKJxdRFB327G+EBZlpUk0Ysvvoj58+ejra0N99xzz5jvP/LII6irq8OSJUuwZMkS/PrXv87Gx1IRKddmpJoaew0AwGoywGoyIBaXIY+oFUQhaVSSiKgEMU7Q0ZR9nLCpcaLSZlaTRFJc31IQioUYH6jkMU5QKq2KaFqlDQaxfBdQ05JEViPc4Riikpok0ltWMD5Qlk26w1U8HscXv/hF/P3vf0dLSwtOO+00rFixAgsXLkx73jXXXIN77713sh9HRaqctxEAyck/oK4S93nikAb9AJC+3YwXeSpBjBN0LMo+TiQWE8xGEQ2yDEUBIpIMq8mQ3G5GVKIYJ2g0rR9RSxn3IwKACkvy2u+2muCORBERk0kiRVEgMD5Qlk26kmjNmjVoa2vD7NmzYTab8clPfhLPPvtsNsZGJeSQl9sINFU2dctZPBH8xmw3IyoxjBN0LPQ4UaZJotQ40SgnbgASW8643YxKHeMEjab3Iyrjk80AwGl2wiiqdR0VNnU7ciTRs05WZMTkGOMDZd2kk0Td3d1obW3V/9zS0oLu7u4xz3v66aexePFiXHXVVejs7Jzsx1KR6RlJlIxWlGeSqMpWBQFqqazWvFoZDgAAYnJMPbkG4EWeShLjBB0LPU5UlueqcWrFaYOeJFL/NxQLQXG7M76OqBQwTtBoXUOsJAIAQRD0gw3cVqO+HVnD7cg0FXLSuPrSSy9FR0cHNm3ahA996EO44YYbMj5v5cqVaG9vR3t7O/r7+3MxNMqRzsRqQEuZrgYYRWPayTUAIHiSFUR6XyJe5KlMMU5QuceJCmsFDIJ6+mdtXAKQrCSKK3EEHKa8jY2oEDBOlBeebJak3UPUGgSY47JeSQQAIUiAnb8jyq5JJ4mam5vTMvldXV1obm5Oe05NTQ0sFrV8/JZbbsG6desyvtdtt92GtWvXYu3atairq5vs0KiAdGn7iqvLdzVA6zdRlagkMniTvYj0LWdMElEJYpygo1EUpezjhCiIqLZVQ5AVVCdWiUMpJ5wNGmP5GhrRlGOcoNHYkyipyloFAKhT1JiQerCB3yrwZGTKukkniU477TTs3r0b+/fvRzQaxRNPPIEVK1akPae3t1f/+i9/+QsWLFgw2Y+lIqIoCrrLfIUYSD3e2AwoCgyBSPLkGq2SiNsJqAQxTtDRDAaiCMdktd+CtXwrZqpt1TCHorCZ1OmZVkkUs5gwJPnyOTSiKcU4QaN1JrablXtPIkBtWwEArmgcRlGAogCxuHoP4bMwQUTZN+nTzYxGI+69915cfPHFiMfjuOmmm7Bo0SLcddddaG9vx4oVK/Czn/0Mf/nLX2A0GlFdXY1HHnkkC0OnYtHviyAiyaiym+C0TPqvXNHS+k2YjSJqAQiyop9cE4wFAasVMJvzO0iiKcA4QUfTyd4TANSK055gBFajuu0sIsmQFQURuxmDocE8j45o6jBOUCp/RMJwMKbOmZ3leZhBKm27mSUQgWAyQIpIiEhxmI0iRkzxI7+YaAKycse+fPlyLF++PO2x7373u/rXP/zhD/HDH/4wGx9FRaiTe4oBJLebAUCzOv9HOBZXjzeOhQCXK08jI5p6jBN0JDzFRlVjq4ElGIEoCrAYRUQktfdExG5BIMgkEZU2xgnSdKVsNRNFVspo283MwQhEo4hARD3YwGUFhk1SnkdHpSgnjaupvHVxTzGA9OONmxLxTju5JhgLQnE68zEsIqK869K3JDNOWIJRAIDVpK4mhGNxRO0WVhIRUdnoGuLCQSptu5klFIXFpFWaqhVEw6Y44jKriSi7mCSiKdfFfkQA1FJRUVD/yTVAO944eXJN2M6tZkRUntigVFVjr4E5GAGQTBKFYnFE7GYMhYb0PnZERKWMMSGd1WiF1WiFORiB1aj1rEvcS9hM8Ea8+RwelSAmiWjKaZVErWV+oddOrgGAeq1hdcrJNV4zJ/9EVJ541LHKZXbBEVLjgjWleXXUboEkS/BEPPkcHhFRTjAmjFVlrYIlEBlTSRS1WzAcHs7n0KgEMUlEU46VREm19loAQN2oSiIAGOLxxkRUppLbkss7TgiCgOq4WlVqS6skUhu3DgQH8jY2IqJc4WEGY1XZqtTtZqMqiSIOC0bCI3kcGZUiJoloyvFCn6QliaoTyaGIJEOW1QqiQSaJiKgMybLCnkQpqmJqcijZk0hGJLEdmUkiIioHh7xhAEBTBWOCptLkgimsJokEALG4eg8RtZkxHGIlEWUXk0Q0JcKxOFbtPIyIFEf3CCuJNDU29YQzaziavAFIlIseFkN5GxcRUa55wzG8sbsfh30RRCUZ1Q4zHJasHLpa1Cqi6skGFqMIQVBvBHxm9ffCJBERlYN+n9qbrd5lyfNICkeNbIWgqBWn5kQ1kc9ggGwQud2Mso6zMZoSj685iO88tw3nzatDLK6g1mmGzWzI97DyTqsksgSjsJpEhGNxhKJx2M1GHBKDeR4dEVHu/PzV3fjVG/tx3rw6AKwiAgBEo3AqJgDqjYDNZIA/JuNQHGgEk0REVPoURcGAXz3lsdbJJJGmOmaEL/G11WRARJIxYlTvrVhJRNnGSiKaEgcTW8xe39UPAGhmFREANUkkxmWYIjG930Q4FociAIeFICRZyvMIiYhyY3ScYJIIgM8HuykZL60mA/xmI4ZD6nZkJomIqNR5QxKicRlOi5ELzCkqY8nfhdaXaDCRJGJPIso2JoloSvjC6cmOcj/ZTGMz2VAZTe83EYrJiNrMUEQBQ6GhfA6PiChnxsYJLibA64XNmIyXNpMBPrMJwwF1Vd0f9SMshfM1OiKiKdfvV7ea1XGrWRpXNPm1dg8xKKq38oFYABEpko9hUYlikoimhDex6qlluqfzCEtdo+IAkH5yTdTGk2uIqLx4w2qc0I5651HHAHw+GEQDrEYrgESSyGLCUDB5dzAYHMzX6IiIppzWj6jWac7zSAqLMRCCxaDeL2j3V/1C8laefYkom9iTiKaEtkL83csWYWefH9efOSPPIyoc9fHE5N+c3G4WtvHkGiIqL1qc+Ok1S7Bm/zAuWzItzyMqAD6144TdZEdYCsNqNsCvGDEcSJ5+ORAcQLO7OV8jJCKaUqwkGofXC5vJhkg8AktiofkwBGiRczg0jEZnY/7GRyWFSSKaEtoK8YImN645bXqeR1NYquNmDAEwigIMooC4rMDLk2uIqMxoFaenzazGR05syvNoCkQiSaRtObOaRPgFE0ZCUciKAlEQGCeIqKQNJCqJ6ti0Op3Pp1eZWhOVRL0QcLKiQBAEVhJRVnG7GU0JLUnktpryPJLCUy2pCSHt5BoAGEiUi3LyT0TlQFEUeBOVRC7GiSSvFwD05tVGUYTksCIuK3rlFeMEEZUyrZKIJ5uN4vPpCwhGgwiDKGDEYEAoFgfAE84ou5gkoinh0yf/LFYbrSKa/GenNZ47LAgA1Mm/oih5GRcRUa6EYnHEZQVWkwizkVMRXcp2M42hUv1aa17NJBERlTKtJxG3m43i88FmSh5sYDWK8FuM8CSqcllJRNnEmRllnaIo+jYCrhCP5QjHIUBNCmmVRH2JSqJoPApf1Je3sRER5YI3pC4ksNp0lAxJIlPidFCtefVQaAiyIud+bEREOTDASqKxolEgHNa3mwGA2WxEwJRMEvGEZMomJoko6wLROGRFTYBwhXgs0R/QVwJsZvX30xNPfp8n1xBRqdO2JLPaNIWi6Ekis8EMg6AuIpir1RMxtUqiuBLHSHgkL0MkIppqrCTKwOMBkOxXBwBxpxUQBH1hfiQ8wgUEyhrewVPW+Tj5H58kASMj+iqxtt2sO+WaPhhikoiISpsWJ9w2VhLpRkaAuLpiIAgC7CY7JLMRrorEdrNg8oQzLiYQUaka4OlmY/X3AwCMolFfQIgntiJrlUSyIsMb8eZnfFRymCSirNO3EXDyP9bgICDLaUkiv8WI/rgMSVYzRew3QUSljtvNMjh8OO2PNpMNgQo7qh1mAMBwYrsZwDhBRKVJlhUM+NVrXY3TnOfRFJBEkkg99EatJpJqnQAATyKeAmxeTdnDJBFlXfJkM1YSjZG4CdCSRKIgwF/hgKIAnsQqMVeIiajUcbtZBombAI3dZEew0gGX1QiDKCAQkRCR1EojVpwSUSkaDkYRlxVU2EywGA35Hk7hSFlE0LacyfVuAMlKIoDNqyl7mCSirEtuN+MK8RiJm4DUPcWRGheA5CoxV4iJqNR5w6w4HWNUJZHdZEegygFREFBpU1fURxKLCYwTRFSKtCqiWlYRpUtZRNCbV9dXQBAAfySGuKyejMzm1ZQtTBJR1nG72RGMqiQCgHidmiQaCiQbz0myNPa1REQlQmu0ye1mKTIliSrVptVVDvX3pDWvZsUpEZUiNq3OIB5X21UkaNvNwtVOOC0m9cyDxAI9t5tRtjBJRFnn43az8SVuAkwGE0yiOulXEuWiWiWRAoUXeSIqab5EJRG3myXIMjCQXh1kM9oQSDQmrban9yXyRX2ISJHcjpGIaIr1+8MAgDqX9SjPLCNDQ/qhBoBaSRS1mhCzmlCRWJDXtpxxuxllC5NElHVeffLPFeI0sRgwnLx4a9VEhsZEkijApqREVB68PN0s3fCwevplCoPDCWtlLQCgKtG8eij1hDP2JSKiEjPg43azMUYfamC06VWmWpJI24o8FBqCoii5HR+VJCaJKOv0bQQ2rhCnGRgAUi7cNpMNYYcl5XjjqH5h5+SfiEpZcrsZ4wSAMU2rAQB1dah11AEAqrRKopTFBG45I6JS0+/ndrMxRsUHq9GKUJV6slmlPb2SKCyFEZJCuR0flSQmiSjr9IakrCRKl+HkmkClA3azAWajiIgkIxhVy0lZSUREpczHOJFu1EoxAKC+HjW2GgDJnkQjoeRiAuMEEZUarSdRrZNJIt2o+CAIAgwNTQCAylGVRACbV1N2MElEWcejjceRoSlpsNIBQRCSq8RBNiUlotKX3G7GOAEgcyVRfT1q7ep2M4vRALvZCCmu6Ak2VpwSUanRG1czSZSUIT5YGlsAAJWJ+4eRULLKlEkiygYmiSjrktvNuEKcJtOe4ip1T3GyKSmPNyai0qfFCfauS8hUSVRXhxp7jf7HqsS2Am0xgXGCiErN/oEAAGB6jf0ozywTo04209iaZwBAWuNqWWtZwYVmygImiSjruI1gHKNWAmwmG0KV6p7i0ccbh6QQfBFfbsdHRJQjjBMpMpxsBiCtkghIaV4dSFacskEpEZWKQERC90gIJoOA6dVMEgFQTzaT5fTHnE5UVqnbzcxGEXazEXFZgT+ixlVWElE2MElEWadvI+B2syRZBjyetIdEQYS5YRqA5N7rQ96w/v0ub1fuxkdElEPcbpbC60073hgAYLMBDgfcFjeMovo70rZfHPaq2zFicgy+KBcTiKg0aFVEM2ocMBl4iwoAGBkZ+1hNDapt1foftSrT1BPOiCaL/wIp67yhxAoxt5sleTxjVwIcDkyrnQUAaKqwAQD6vGHEZXVluNPbmdMhEhHlQlSSEY7JMIgCbCZDvoeTf5luAqqqAKiLCdrNQFOFFQDQ40meXMMtZ0RUKvYc9gMA2uqceR5JARkeHvtYVVVakqhCb16tVpkySUTZwCQRZZ1PryRikkiX6SagshItbrXxnM1sQJXdjLis6E37Oj1MEhFR6fGlVJsKgpDn0RSAcW4CNNqWs1qnBSaDCE8ohkBEggCB25KJqGTs7U8kieqZJNKNc/9Qaa2EKKi38Vrzak+i119ICiEUC419HdFxYJ03ZVU4FkdEkmEUBVhNzEHqxrkJaK1o1f/YVGHFcDCKXk8IjRVW9Pp7IcmSvtWAiKgUeMOsNk0zzk2AZpprGnwRH2rttVhSNw3buhW0152Djy85gfGBiEqGVkk0p96R55EUkHHig0E0oNJaiaHQECr1Qw1i+lOGQkNoNjXnaJBUingXT1nlS5n8c4U4xTgX+XpHPcwGdQWgqVLdctbrUfsSSbKEPn9frkZIRJQTyZPNmOAAcNRKonOmn4Obl96My064DB+ZdwFMSiv2HTIwQUREJUWvJKpz5XkkBeQI8UHbclapnXCW2G4GcMsZTR6TRJRVPjatzmyci7woiPqWM63fRO9IskSUW86IqNTwZLNRjlJJlGrpdPXmYP2BDDGFqMi9+OKLmD9/Ptra2nDPPfeM+X4kEsE111yDtrY2LFu2DB0dHbkfJE0JKS7rjatn17GSSHeE+KAliSq0xtWhmH7i5WBoMBejoxKWlSQRL+qk0bYRuDj5T5cpSZS4yLe61S1nNQ4zzEYRvoikJ9vYvJpKBeMEabSTzVhJlHCUSqJUp0yvBABs7PIgKskZn0NUjOLxOL74xS/ihRdewLZt2/D4449j27Ztac958MEHUVVVhT179uBf/uVf8I1vfCNPo6Vs6xwOIRZXMK3CCoeFsQEAEA4DoVG9hQwGwKVWWmlJIovRALvZgLiswB9R78NYSUSTNekkES/qlMrHY40zO8LpNVpfIkEQ9FPOtC1nnZ5OfVWAqFgxTlAqHm6QQpIA36jm04IAVFRkfHql3Yy2eieikoytPZ4cDJAoN9asWYO2tjbMnj0bZrMZn/zkJ/Hss8+mPefZZ5/FDTfcAAC46qqr8Oqrr3KOVCKS/YjYtFqX6d6hogIQ1dv31BPOKm1q64qRRF8iJolosiadJOJFnVJ5Q9xGMEYsBvj96Y+l3ARo282A1C1napLIF/XBE+GNABU3xglKpccJNq7OfBPgcgHG8RdaTk1sOVvHLWdUQrq7u9HamjzMo6WlBd3d3eM+x2g0oqKiAoOD3FZTCrR+RHPqmCTSHaXKtMZWo3+dbF6t9iVikogma9JJomxe1FeuXIn29na0t7ejv79/skOjPOA2ggwy3QS43WrJKACr0Yp6Rz0AoMGtJokO+8L6U9mXiIod4wSlYpxIcRz9iDSLW9UFhq093uyPh6gEME4UH1YSZXCU+FBprYQA9ZCgaodaSTQUUJNEwVgQoVhozMuJjlVBNa6+7bbbsHbtWqxduxZ1dXX5Hg5NALcRZHCEfkQarZqo3mUBAPT7I3oVBfsSESUxThQ/Nq5OcRz9iDQnTlOTRFu6WWVKpaO5uRmdncn5TldXF5qbm8d9jiRJ8Hg8qKmpwWiME8VnZ5+67XYuk0RJR4kPBtGASmslgLFJIgAYDrPalCZu0kmibF7Uqfit2a9ekOrdljyPpIAcoR+RRmte7bAY4bAYEZVkBCLArMpZepURUbFinCCNoihYs18tg2ecwIQqieY3umAQBezt9yMUjU/JsIhy7bTTTsPu3buxf/9+RKNRPPHEE1ixYkXac1asWIHf/OY3AICnnnoKH/jAByAIQj6GS1kUjsWxvdcLQQBObM7cj60sHUN80PoS1TqtEBU3gsF6LGtehuVzl8Nldk39GKlkTbrWO/Wi3tzcjCeeeAK///3v056jXdTPPPNMXtRL2LYeL17ZfghWk4grTmk5+gvKxTFUErVWtKLKWoUWdwuW1s/E+/sNOK/pQqw4mb9HKn6ME6T5x47D2NbrRZ3LgosWNOR7OPk3gUoiq8mAufVO7OjzYXufF0unH/n5RMXAaDTi3nvvxcUXX4x4PI6bbroJixYtwl133YX29nasWLECN998M66//nq0tbWhuroaTzzxRL6HTVmwrdcLSVYwr8EJJ082SzqGReaPtH0ERtEIp9mN5996GRG/jLNbL2KlLk3apP8l8qJOmvte2wMAuPb06ahzcYVYdwwX+Vp7Lb5yxlcAAAe6dmLz/j3Y1uPHipNzMD6iKcY4QYBaRfSzf6hx4nPnzYbVZMjziArAMSwiZLJoWgV29PmwtdvDJBGVjOXLl2P58uVpj333u9/Vv7ZarfjjH/+Y62HRFNvYOQIAOLmlMq/jKCiKckzxoc6R3E45u86J7b1e7D3sxymMCzRJWUnX8qJOew778LctvTAbRHzuvDn5Hk5hOc6bgIXTtKak7DdBpYNxgt7YPYCNnSOodpjxqWXT8z2cwnAMiwiZLJrmxtPr2byaiIqfniRqrczrOApKMKiejpzKZALs9nFfMrdeTRLtZpKIsqCgGldT8Xp09UEoCvCJ9hY0Jo5xJ4y/EnCEm4ATm90A1Mk/jwAnolLx6OoDAICbz5kFu5lbChAOA6FRp88YDIDr6H0ktL4dW7iYQERFbmOXeh1bwiRR0nj3DkfYhq81/dZOiiOaDCaJaNIURcHftx0CAFx1KnvopAmHgUgk/TGj8Yg3Ac2VNlTaTRgKRNHrCU/xAImIpl4oGsfru9WjqD++lHECQOYqoooKQDz61GzhNHUxYWefD1FJzvLAiIhyYyQYxf6BACxGEfMb2WhZN4GtyG2JJNHuQ74pGBCVGyaJaNK29njRPRJCvcvC/cSjZbrIV1QccSVAEAQsmpasJiIiKnZv7O5HOCbj5NZKVptqJtC0WuO0GDGr1oFYXMHuw7whIKLipFURndhcAZOBt6W6CWxFntuQqCTqZyURTR7/NdKkvZyoIvrQwgaIIk8jSjPBm4ATE32JNndzKwERFT8tTnx4IU80000iSQRAX0zYwjhBREWKTavHMYH4MKPGAaMooGs4hGBUmqKBUblgkogm7eWtfQDUJBGNMsGmpFq/ic1dGV5PRFREpLiMV7czSTRGpvhwDCebaU5KxIlNXUwSEVFxSjatrsjvQArNBOKDySBiZq0DigLs6w9MybCofDBJRJPSORTEjj4fnBYjzpxTk+/hFJ4JrhRrzfs2dI6weTURFbV1B4YxHIxhVq1D75lAmHQlkRYn3j84kp3xEBHlkKIo2JhYDD2lladxpZlgfNCaV+9iXyKaJCaJaFK0LQQXzK+DxWjI82gK0AQazwFAS5UNtU4LhoMxHBgMZn9cREQ5krrVTDhCP7ayM8kk0UktFTCIAnYe8nFrAREVne6REAb8UVTZTWittuV7OIVDlgFPhgrRY7h/OKFR3Ya8o49JIpocJoloUlbtPAwAuGgBtxBkNMHtZoIgJFeJOzPcSBARFYnXEnHig4wTSYoy6e1mdrMR8xtciMsKNnPLGREVmQ36VrNKLiCk8nrVRFEqux2wWI760gVN6glx23jwDU0Sk0Q0YYGIhHf3DUEQgPPm1eV7OIVHliecJAKAU6ZXAuBWAiIqXgcGA9jXH4DbasTSxDWNAPj9gDSq+sdiAWzHt5qux4nEzRYRUbFg0+pxTKLKdGHiQIPtvV62q6BJYZKIJuztvYOIxmUsaa1EtcOc7+EUHp8PiMfTH7Na1f+OgTb538DJPxEVqVU7+wEA586rg5HHGyeNdxNwnKvpp0xXbxw2cDGBiIrMxk61AnIJFxDSTbBVBQA0V9rgthoxGIjisC+S3XFRWeGMjSZM20Jw4fz6PI+kQE2iiggAFrdUQhDUktFwLH70FxARFRjGiXFMsh+RRtuWvP7gMFeNiahoSHEZm7vVJBEriUaZxP2DIAhY0KRWE23r5ZYzmjgmiWhCFEXBPxMrxBfM51azjCZ5E+C0qP0mJFnBlm72myCi4hKOxfHO3kEAwPnckpxukv2INLNrHXBbjTjsi6DXE570sIiIcmH3YT9CsTimV9u5G2G0Sd4/6Eki9iWiSWCSiCZk92E/ukdCqHWaceK0inwPpzBNolxUwy1nRFSs3tk3iIgkY3FLBepcR2+4WVayVEkkigKWaFvOGCeIqEhsTGlaTaNMchFB60vESiKaDCaJaEJe2a4eaXz+vHqIIk8kyGiS282AZL+JtxOr8URExeLVRJy4gFvNxspSkgiA3hD87b0DkxgQEVHu6CebtXCheYxJxoeFTcnm1UQTxSQRHTdFUfDM+90AgIsX8UjjcWXhJuCCxBaNt/YMIBiVjvJsIqLCEJHi+OumXgCMExllodJUo/V7enX7YfYlIqKisKZjCEByMZQSYjH19MtUggBUHHsybW6DE0ZRwP6BAO8daMKYJKLjtrnbg12H/KhxmHHhCVwhzkiWgf7+sY8fZ5Ko3m3FktZKRCQZb+zmKjERFYfXdhzGSDCGExpdWMQtyemCQfX0y9EmmCQ6qbkCDW4Lej1hbGUPCiIqcF3DQezrD8BlNbKSaLSenrGPud2AwXDMb2ExGtBW74SiADv7MsQaomPAJBEdt6fXdQEAViyZBhOPNM7s4EEgFEp/zGSa0E3Ahxaqq/B/33YoCwMjIpp6T61Tq02vOrUlzyMpQLt2AaMrfqqr1RgxAaIo4IML1DjxMuMEERW413epi55nz6mFkfcR6XbsGPtYU9Nxv4225YwH39BE8V8mHZeIFMezG9UsNyf/R5DpIt/WdlwrARotSfSPHYcRl7mVgIgK24A/glU7D8MgCrhsSXO+h1N4MsWHefMm9ZZanHiFSSIiKnCv71Ir7c+dV5vnkRQYRckcH0444bjfakmiV936gyOTGxOVLSaJ6Lj8Yzu3EByVogDbt499fAIXeQCYW+/E9Go7hgJRrD+YoY8FEVEBeeb9bkiyggvn1/FUs9FiMWDv3rGPL1gwqbc9c3YN7GYDtvV60TUcnNR7ERFNFSku461Ek/3z5tbleTQF5vDhsf3qBGFCiwhLE72eeN9AE8UkER0zRVHwy3+qk9ur21vzPJoC1tcHeEaVd4rihFeKBUHQV4lf3to32dEREU2ZiBTHQ2/uBwBcdSrjxBh796qJolR2O9A6ud+V1WTA+YmDDrg1mYgK1cauEfjCEmbXOtBabc/3cApLpiqiGTPUGHGcTmh0wWYy4MBgEAP+SBYGR+WGSSI6Zq9sP4xNXR7UOi249vTp+R5O4RrvIm+zTfgtP3JiIwDg+U29kLnljIgK1BNrOtHjCeOERhc+vJCnmo2Rqcp0/nx1IWGStDihnSpHRFRo/pnoR3TePFYRjZGlrWYAYDSIWJxoCv4+t5zRBDBJRMdElhX8v7/vAgB84YI5sJmPv7dO2ch0kZ/kVoJTp1dhWoUVPZ4w1h5g6SgRFZ5QNI57X9sDAPjqRfMgikKeR1RgZFltWj3aBG8CRrtoQQOsJhHrDgyjc4hbzoiosCiKolfEn8d+ROk8HqA3Q4J/EvFh6QxuOaOJY5KIjslzm3qwvdeLRrcVn1rGKqJxjYwAhzKU+s+fP6m3FUUBly6ZBgD4y8buSb0XEdFUeOTtDvT7Ijix2Y2LF7GKaIzOzsynXs6enZW3d1iM+NBCtZrouU0ZjlEmIsqjjV0e7OjzodphxtltTBKlybSA0Ng4oVORNXpfIi4u0wQwSURH1ecJ4z//shUA8JWL5sJqYhXRuDJd5JuagIrJN/m+7GT1lKC/be5DLC5P+v2IiLJle68X/5uoNv3Xi0+AILCKaIydO8c+NmeOmijKkhUnJxYTNjBJRESF5fF3DwJQT0e2GHkvkSbT/cMkF5hPSZxwtqnLA4n3DXScmCSiI5JlBV/7wwaMBGO4YH4dPnkaG5EeUaabgEkebaxZ0ORCW70TQ4Eo3twzkJX3JCKarHAsji8//j6icRnXnj5db6BMo0zBTcBo582rhdtqxI4+H3Yd8mX1vYmIJsoXjuEvG9XkNe8lRolGgf37xz4+yfuHWqcFM2rsCMXi2NHHeEDHh0kiOqKH3tqPt/cOotZpxk+uOpmrw0cSiQAdHWMfz9JNgCAIuCyxSvz/Xt6FYFTKyvsSEU3Gj17cgd2H/Zhd58B/fGxy/ddK1uAgMDAquS8IwNy5Wf0Yi9GA5Sc1AQB++LftXD0mooLwl409CMXiWDarGrPrnPkeTmHZtw+QRs3pnU5g2rRJv/Wpib5Eb+/l4jIdHyaJaFydQ0H8z8vqyuePPr4YdS5LnkdU4PbtA+Lx9MdcLnW7WZZcf+YMTK+2Y3O3B//y5AaedEZEebWhcwSPvN0Bgyjg/645BXazMd9DKkyZqoiam9UbgSz7wgVtqLSb8NrOfnzv+QynqRER5VBEiuPXb6iVMjwdOYNM8WHuXHUhYZIunF8PQD2hmuh4MElEGSmKgrue3YJQLI5LFjfhgwvYhPSoxttqlsXqq0q7GQ/d2A6X1YiXth7ST5wjIso1KS7jm3/aDEUBbj5nFk5qmXzvtZKV6SYgS1uRR5teY8fK69thNoh45O0O/D7RB4SIKB9+/cZ+7B8IYE6dQ690pARFAXbvHvt4luLD+fPrYDIIWNsxhKFANCvvSeWBSSLK6K+bevHazn64rEb856UL8z2cwheP5+wmoK3ehfs/fSpEAbj3tT34567+rH8GEdHRPPjmfmzv9aKlyoavXpTdbVMlJRAADhwY+/gUJYkA4PRZ1fjhlScBAO5+biu29nim7LOIiMbTPRLCvf/YAwD47mUnwmzkrWeazk7AN6pfkMGgHmqQBW6rCWfMroGsAK/tYDURHTv+S6Ux+n0R3PXsFgDANz+6APUua55HVAT27QOCwfTHjMasHW082tlttfiXi9QbjH95cgP6POEp+Rwiokz2HPbjfxKVjN+7/ERuMzuSbdsAeVRvoIoKoGFqK3Q/fmoLrj29FVFJxpd+/z78EfaxI6LcCcfi+LenNqq7Ek5q4rH3mWzZMvaxWbMAszlrH3FRYjfIK9sPZe09qfQxSVQmej0h/PadDhzyHjmZoCgKvv3MZgwHYzinrRbXns4TCI7J5s1jH5s/P6tHG4/2hQvbcO7cWgwFovjkynewt98/ZZ9FRKVvb78fv1t9AJ5g7IjPk+Iy/r8/bkRUknF1ewsuSPQ8oHFkuglYtCirW5HH85+XLsIJjS7sHwjgU79ajcNHmQMQEWVDVJLxxcfW4609g6hxmPFtHmowliwDW7eOffzEE7P6MRctVJNE/9zVj3AsfpRnE6mYJCpxsqzgd+904EP/73Xc9exWnP+T1/DfL+3EcIZ9qYqi4ME39+OlrYfgtBjxo6sW8zSzYxGLATt2jH38pJOm9GMNooCfXrMEi6a50TEYxBX3vYWn1nUhKvE0GyI6dlFJxs9e3Y2P/vQN/MczW3DeT17Dytf3IpCh8kSWFfzwhR3Y2DmCpgorvv0xbkc+Io8n81azKY4PGqvJgPs/fSpaq23Y1OXBZfe9hZe29vHQAyKaMoqi4Ot/3IhXdxxGpd2ER29ZhqYKW76HVXj271e3I6cyGoETTsjqxzRX2rCwyY1gNI43dvOUMzo2TBKVuO/+dRv+49mt8EckzGtwIhyTce9re3DmPa/im3/ahJ196j7YQETCt5/Zop+E8p+XLkRzJS/ox2TXLiA6KulmtQJtbVP+0TVOC/7wuTPxoYUN8IYlfP2PG3H+T17DY+8e4NHHRHRUiqLgjsfX4//9fReicRlz653whGL4wd924Iwfvorv/XUbOofUrbTDgShuf3QdHnxzPwyigB99fDHc1qmrliwJmVaJa2uBxsacDWFmrQPPfOFstM+oQq8njM/9bh0u+t9/4q+beqAoTBYR0bELx+IYCR65AfIjb3fgLxt74DAb8OjNy7CgyZ2j0RWZTFWmc+eq9xBZtmLJNADAr9/Yl/X3ptI0qSYCQ0NDuOaaa9DR0YGZM2fiD3/4A6qqqsY8z2Aw4KTEqtn06dPxl7/8ZTIfS8foLxt78MjbHTAZBPz0mlNwyeImrDswjJ//YzdW7ezH42s68fiaTpzQ6MK+/gCicRlmo4ifXLUYly1pzvfwi8fGjWMfW7BAXQ3IAYfFiAc+fSr+9H43HvjnXuw+7Me3/rwFv3m7A+fOrUOt04LTZ1XjlNZKiCIrwyi3GCcK2wOv78NLWw/BZTXigetPxZmza7BqVz9+8doevNcxjF+/uR8PvbUfJzS6sfOQD3FZgdtqxH3XLcW5c+vyPfzCpiiZ48OJJ+Zkq1mqGqcFj926DL9/9yB+/cZ+7OsP4Eu/fx8PTt+P02ZWo85pwdlttVjQ5GIFMeUc40Th6xwKYuXr+/Dshm54wxLOn1eHm8+ZhXPn1qZdM97eM4DvJxacf/KJk3FiM0+9zCgcBrZvH/t4lreaaT61bDrue20P3t0/hHUHhnDqjOop+RwqHYIyiWWkf/u3f0N1dTXuvPNO3HPPPRgeHsaPfvSjMc9zOp3w+4+vX0p7ezvWrl070aGVvT2HfVhx71sIRuP4r8sW4fozZ6Z9f2+/H795uwNPretCMBqHIACnTq/Cty5ZgFOmjw3MNI6ODuCRR8Y+fv31WTuZ4HjIsoK/benFPS/sQNdwKO17jW4r5jY4Ueu04MzZNfjISepKdsdAAEOBKELROE6ZXoXGCjYqLwbFco1knChcq/cN4lO/Wg1ZAX79mXa9b4Fmc5cHD7+1H89t6kEsrsAoCjhzTg3uXrEIc+qceRp1Edm4Efjzn8c+fscdQE1N7seTEIvL+OPaLvy/v+/EgD+9ImB6tR0zax2od1lw/rw6XLSgAaFYHAcGAxgJxhCR4lg2qwZVjuw1VaWpUyzXSMaJwtY5FMSVv3wb/b4IAMAoCpASW1bPnVuL286bjcPeCJ7b1INVO9UTd286exbu4unI43v5ZeDtt9MfM5uBf/3XKetn+pOXduC+1/bigyfU48EbT5uSz6DicqTr46SSRPPnz8eqVavQ1NSE3t5eXHDBBdi5c+eY5/GinluyrOATD7yDdQeGcdmSafjpNUvGXRn0hGLY0DmCRdPcqHVacjzSIifLwMqVQF9f+uNuN/DVrwJi/nZzhmNx/H3bIfSMhNA1HMKr2w+hZ9QJaAZRQHxUXwpRAM6bV4er21vxwQX1iMUVbOn24OBgEH3eMOpdFsxtcOHEZjcsRkMufyQapViukYwThSkci+PD//s6Dg4F8fkL5uAbHxm/B8JhXxg7+3xY3FKJChu3lx2TaBT4+c/HHm3c0gLcckt+xjSKLxzDy1sP4ZAvjAMDQbyy/RAGR/UrzBQnzAYRH1rYgE+0t+DcuXXwhyVs7vbg4FAQA/4IplXaML/BhQVNLhgN7GqQT8VyjWScKFzDgSg+fv/b2NcfwOmzqnH3pYvQVGHF79ccxAP/3AtvOL13nc1kwGfOnIGvXzwfJv77z2xwEPjFL4D4qCbSS5cCK1ZM2ccO+CM450f/QDgm4693nMMqLzri9XFS+2EOHTqEpqYmAEBjYyMOHcp8tF44HEZ7ezuMRiPuvPNOXH755ZP5WDqKP73fjXUHhlHrtOC/Lj/xiKXjFTYTzp/HLQMT8u67YxNEAPCBD+Q1QQSozUovPXma/ufvrFiEXYd96POE0Tkcwt829WL1/kFYTSJm1jhQ51IThKv3DWLVzn6s2tkPp8WIYFRCpv6mDrMB582rwy3nzsapM1h5RuNjnChMK1/fh4NDQcxrcOJrH5p3xOfWu6yod7HC8JgpCvDqq2MTRADwwQ/mfjzjcFlN+PipLfqfpbiMHX0+HPaFsa8/gOc29WJj5wgcZgNm1TlQ7bAgKsWxZv8Qnt/ci+c398JlNcIXHtvgHAAq7SZcOL8en79gDuY1uHL1Y1ERYpwoTOFYHLf8di329QdwQqMLv76hXe9D98UL23Dt6dPxf6/swtoDw5hZ48CJzRW45rRWVLPScHySBDz//NgEkckEnH/+lH50rdOC65bNwINv7se3n9mCpz9/FgxsQ0HjOGqS6KKLLkJfhhvh73//+2l/FgRh3GTEgQMH0NzcjH379uEDH/gATjrpJMzJsBVn5cqVWLlyJQCgv7//mH4ASucJxfDDv6l7XL91yQlsKjpV1qwBXnpp7OPTpgEnn5z78RyFKAo4odGNExrV5oHXnzEDwagEq9GQ1qdoKBDFsxu68Ye1Xdje64VRFHBisxttdU7Uu6045A1ja48Huw758cKWPry4tQ83nz0LX794PqwmVhaVK8aJ4tI5FMR9r+0BAHz3shO52ptNWoLo3XfHfu+EE4BZs3I/pmNkNIiJleUKfOAE4JZzZyMQkWA3G9L+3fZ6QvjT+m78cW0nOgaDMBtFnNRcgVm1DtQ6LegaDmJztwcHBoP48/vdeH5TL75y0Vx87rzZrCwqY4wTxSUuK/jKE+9j3YFhTKuw4pHPnj7mnqLaYcZ3LpuaHjolKRYDnnwS2JehefTZZwMVU1/Z89WL5uL5Tb3Y0DmCR97uwM3nFG5MovzKyXazVDfeeCM+9rGP4aqrrjri81geOjHfeW4rHn6rA6fPrMaTnzuDDSizTZaB114D3ngj8/dvugmYPj23Y5oiPSMhVDvMGZM/XcNBPLr6IFa+vheyApzQ6MJ91y1ln5IcKpZrJONE4fnc79bipa2HcPmSafjpJ0/J93BKh7ZC/P77Y79nMABf/CJQXTrNQhVFQddwCA1uK8zGscmfvf1+/PqNfXh8TScA4PRZ1fj5taegwc2qtFwplmsk40Th+e5z2/DQW/vhthrx1OfPYjXgZPl8wB/+AHR2jv2e2632qpuiXkSjvbLtEG757VrYTAY8/+VzMJtz97J1pOvjpJZ0VqxYgd/85jcAgN/85je47LLLxjxneHgYkYja6GxgYABvvfUWFi5kI7OpsH8ggN+9cwCCANy9YhETREcjy8DBg8C2bcCBA+qfjyQUAh5/fPwE0dKlJZMgAoBplbZxq4Naquy486Mn4M9fOBuzah3Y0efDip+/ib9vy1wiTuWLcaKwvLtvEC9tPQSbyYBvLl+Q7+EULkkC9u9X40NXl1ohdCQeD/Dww5kTRABw3nkllSAC1IqP1mp7xgQRAMypc+KHVy7Gb286HfUuC9bsH8Ly/3sD6w4M53ikVOgYJwrLcxt78NBb+2EyCFj5mXYmiEbz+YBNm4C1a9U4cbT7h85OtYdppgSRIAAf+1jOEkQAcNHCBqw4eRpCsTg+89Aa9I3qWUpTQ4rLOOQNY0efF1u6PdjQOYLXdhzGn9/vwotb+vDWngG8s3cw7b939w3ivY4hrDswjPcPDmNT1wi2dHuwrceL7b1ebOoawXsdQ+gcCmZ9vJPqSXTnnXfi6quvxoMPPogZM2bgD3/4AwBg7dq1uP/++/HrX/8a27dvx+c+9zmIoghZlnHnnXfyoj5F7nlhOyRZwdXtLVg4zZ3v4RQmSQL27gW2bgV27VKPoNTY7cD8+cCiReqWAENKgmT/fvWUGq838/suWgRccsnUjr0AndxaiefuOAff/NNmPLexB198bD0evLGdR2OTjnGicMiygu8ntiN/7vzZrOgYLRpV48LWrWqciKY0cXa5gAUL1OOJW1uTR9grippIeu659HiS6owz1CRRmTpvXh2e//K5+OqT7+OtPYO48eE1eOK2M7BoGpumkopxonDs7ffjzqc3AQD+42MLccbs/J3EWFA8HmDLFjU+9PSkf89uV7cTa/cPWl9SSQLeegv45z8zJ5IEAbjiCmDekfsCToUfXnkSDg4FsaFzBJ956F08dssZen9SOrK4rGBfvx+7DvnhCcXgj8TgD0vwRST1f8MS/BHtzzH4E48HovGjv/kEffHCOfjXi8c/gGQiJrXdbCqxPPT4rN43iE+uXA2byYBV/3oBJ/+ZdHUBTz8NDB/DKqbVCrS1qTcGnZ3qa8dz8snAZZflvVl1PimKgu/+dRsefqsDNpMBj96yjA2tpxivkfwdHK8/re/C1/6wEQ1uC177+gWwmye1TlRadu0Cnn0WCASO/lynU40PFgvQ0QGM02QXAHDuuephBqzsRVxWcMfj6/G3zX2ocZjxx9vP5DaHKcZrJH8Hx+OwL4xrHliN/QMBXHryNPzsk+OfjlxW3nkHeOWVsc2mM7Fagdmz1XuC/fvHjykGA3DllWpiKU+GA1Fc/cA72H3Yj0a3Fb/49FIsnZ7duftQIIrV+wbR4LZiTp0DDosRRnH8vmOFZvchH1bt7MfBoSC6R0LoGg6icyiEUOz4Ez6ioPbxqrKbYTKIMIgCqhxmVNpMCMXi8IVjaUXLSuL/xBUFsqJAlhXIihpLZUWBogBmowizUcTlpzTj+jNmHPeYpux0MyoMh31hfPWJDQC4Ojyujg7g979PXxk+knBYXTE4mgsvVFeIi+RiN1UEQcB/XLIQvrCEp9Z14ZbfvIc/f+FszKx15HtoRARgz2Ef7np2KwDg//vwfCaIUm3dqi4gHG3LgMbvBzZsOPJzDAZg+XLg1FMnPbxSYRAF/O81S+CPrMPru/px48Pv4c9fOAs1Tq5eE+XbcCCK63+9BvsHAljY5MYPrzypaG7kp4yiAKtWqZVAxyocVqtLj8TpBK6+Ou8tKqocZjx26zJ88bH1eK9jGNc88A5uPXc2vnhhGxyWic8RZFntV/e3Lb247x974Iukn4BpNopY0OjCktZKXHZKM05prSyIv2uD/gjWHhjGlm4PukdC2N7rw/bezDtImittWNDkRq3TDKfFCKfVCJfVBFfia6fFCJdV/c9pMcFpNcJuSj8sqNBxlljkIlIcn390Pfq8YZw2swpfuKAt30MqPJ2dwGOPqacKZIvVqpaIzp+fvfcscqIo4J4rT8KAP4JVO/tx0yPv4U9fOAuVdh6FSpRPnlAMt/52HfwRCZcsbsInUo49L3vbtwNPPXX0nkPHw+0GPvEJdVsapbEYDbj/00txzQOrsbnbg9t+tw6P3bKMp2MS5Um/L4I/ruvEQ292YMAfQVu9E7+7+XQ4J5EkKBlvvnl8CaJj0dKiJojchdEWpN5lxe9vPQM/+Nt2PPxWB36xai+eWteFOz96Ai5f0nzEpEZUknFgMIA9h/3YfdiPPYn/9vb7EZGSiy5Lp1ciHJNxcCiIcCyOqCRjY5cHG7s8+M07B7BomhvXLZuBy5ZMm1RyaiJGglE8t7EHz27owdoM/fJcViMuXtSIBU1utFTZ0FxpQ2uVHRX20j89nFeAIhaMSrjj98njKX9x3anjNpAsW7KsbiEYL0FkMqlbBsJhde/wsZg5U00Q5eCoymJjNIi491NLcdUv38aOPh8+89Aa/Pam05koIsqTQX8EN/9mLfYPBLCgyY2fXLW4IFbsCkIkAvzlL+MniCwWNUYEg8deZbRwIXDppYDNlr1xlhi72Yhf39COy+97C+sODOP2R9fh/k+fykQRUZYpioKRYAzdIyF0DAbQMxLCYCCK4UAUQ4EY9g34sa8/uR1qcUsFfvWZdlb3AcDQEPCPf4z//epqtWJ0ZOTYFqEFQd15cN556T1PC4DJIOI/L12ES0+ehu88tw0bO0fwtT9sxCNvd+DC+fVoq3fCZBAQjMaxt9+vJ4UODgYhyZnjZ4PbgvmNbtxyziycNy+9T6k3HMOWLg9W7erHH9d2YmuPF//+58344d+246sfmocbz5oJwxRW3CiKgvc6hvH4moN4fnMvoomElsUoYun0KiydUYkZ1Q40V9lw6oyqso1NTBIViXAsjp19PoyEYvCGYvCGY3hiTSc2d3tQaTdh5Wfa2XAsk23bgIGBsY9XVgIXXwzMnQsYjeo2tN271W0He/Zk3pZWWwucfbbag6iM+w8djdNixEM3noZrVr6DTV0eXPPAavzultNR7+I2SKKp5I9I2HXIB28oBk8iVvz6zf04MBhEc6UNK68/ldvMUq1dq55aOVpDgxofZs5Ur/XhMLBjhxof9u/PvKAwbZraf+iEE8p++/GxaHBb8fBnT8O1K1dj1c5+3PjwGvz6htNYvUB0FIqiwBuS0O8Po98XRb8/ggFfRP/fAb/2dRQD/si4N/Eam8mAZbOrcdPZs3Du3FouImjefDPzAsIJJwAf+hBQk2jofbT7B0FQDz0491ygqWnqxz0JS6dX4c+fPwt/er8bP3pxBzZ1ebCpyzPu8wUBmF5tR1u9E3PrnZhT70Rb4j+3dfxKG7fVhLPaanFWWy2+9qF5eHFLHx5dfQBrDwzjv/66DX/Z0I0VS5rRPqMKi1sqsvZ3cigQxZ/Wd+HxNQexN5EcFQT1cIWPL23GRQsacl7JVMhK7jfxjac24ZkN3TAZRBgNAoyiAKOofm0xiqh3WVHtNCMSkyEril46ZjGKMBhEmEQBBlHQG0oZRQEKgMFAFN5QDBajCKvJoDeMspkNsBhFhKJxRCQZFqOYeEx9XJIVSHEZ0bgMKZ5oNAX1Ih+Xgaikvi4qyYhIMiJSPOVr9c8D/ig2dI7omc5U06vteOSzp7H5YyaKkvm4+sZG4IYb0ld6zWa1edyiReoNwMGDQF+f+rUoqhf22bM5+T9G0ypt+OPnzsJ1v16NnYd8uOaB1Xj0lmVoruTqOuXf9Q++i/c6hmASRRgMaowwGdRrv81kQIPbigq7CZFEY8LWajumVdhgMggwGkQ1ruj/q8YJSVYw6I/CH5FgNanXfzkxwbSbjfoqXFSSYTWpccRmMsBkFCHFFcTiMmIZ4oQkK3pMiCZiQiSmxpRILBEz4jJ6PWFs6vIgnuGG4MRmNx664TTUs19dUiwGvP322MdnzwauvTb9OGKrFViyRP0vGlV73PX3q01MDQZ1W1nqiWd0TP7/9u4+OKry3gP49+ye3WxeNuElCYmbhLAEkpCQgBAoWtsLClcvTLCACmKdqr3Qt2k7jtqZO3M791pLOt5hWufeOo5SlToo0+t1lAGLrehtGSBeJGin+IawgYSEAHkhr/t6fvePs7vkDSG7yZ6T5fsZdjY5eTk/nt093+xznvM8ZXmZ+MPWZdi84wPUn+7A5h0fYOdDNRx5Sqbww1cbcLHbB9U68n1B5PhvCb/m9SM2gOGTzkI/jg/7UrTvYei2Yd836IsDgRAuRTuB/PCHrnNkI4BMh4oZmQ4UZ6ejcGoapmfYMS1dv+VnOVCenwmblSc+h7h8Gfj445Hba2r0ueYGH+uHv39oatJHIWmaniMzZwJTJ89CLhaLgg2LCnBnZR4OfNqGT1q70XhJ71CxWS2YlZ0e7QianZMR9ygbh82Kuxe6cPdCF/78SRv+9c2/Ry9FA4DFM6fiZ3eVoaZ4Wsz7aO/14T/f+xKvfnA2+trJdabg3sWFuK+mEIXT0uL6PySrpOsk8oU7XXyjdKgAiPYcTkZzZ2RgRqYDmQ4bnA4VuZkOPLhsJrI5LHR0X3wx+qozd9751ZcCqKr+RsHtnrjabgB5WQ78YesyfPt3/4dPWrtx73NH8LvvLEZZnjmuw6Ybly+gwRvQ4MXoOXHyQm+CKxofVouCefmZyHamwOlQkemwoWBqKr5zSzHPjg3X0DBy1RlFAdasGdpBNJzdri9XbMCSxclozgwnXv/eLbh/Rz0+burCxufr8cKDi/lHOxnu46YuNHeOMtLQBJwpKrKdKcjJSEG2067fZ6Qgxzno3pmC6en2G/ZSmbgcPjxyJbPUVOCOO776ZICqArNm6bdJLiNFxdoFLqxd4ErYPlfOm4Gvuadh399a0XC2E+9+egEfnunEPc8dwR3luXjsH0tROsN5zZFF3kAIfz93GQ1nO9FwpgsHT15Enz8ERQH+oTQHm5YUYUVZLjtHryHp/mr8j3uqUbeuCgFNPyMbDGnh0TyCgUAIbd1edPb7owfNpo5+tF726mdwNUEoJAhoGkKaREcBAfqSdZmpNviD+puLyPNqwK/BGwwhzWaFw2aFP6hhIBDCQHhiLjV89iFyttkSPvNgUQCLosCuWpCiWpCiWgd9bEGKzQq71YIUmwXpdhXVhVMwLZ1n166bCPDXv47cXlSk9+pTQkzPSMFrW76Gh18+imNnOnHXMwextvom3LO4EAuLpsR16cuAP4Qv2vSVBz5p7cYXbT0Y8IcgQHSkn4h+Mi7VZoHTYYPVokS/polAURRYFf3NtUXRzxZaBp0dHC7dbkVmqg0WRUFICx8zwseKUCh8r2lQFP13RF7zaniEor4PIKQBgZCGwmmp2PKN2TG3AcVm1z8vDY/cCT9+IQ2B8H2fL4S2Hi+6BwJItVkR0gRnOvrR1u1FSJPwz1zJFf3x16BAwfQMOzIcaniEjxYeiSro9+mjfdLtKuyqBb5gCAMBDQN+fbs9MppJtYSXhkU0J6wWJZwF+uikSC4MzQwrMlNVLCicAudXDPGmsFAIOHRo5PbKSn2eCUqooulp+O/vLcMDOz7AZ+d7sGL7/2JjTRFqF9yEqoIspKixv8nt8Qbw+flITvTg1IVe+IKj50S63YoMhwqLoueEJvrojmg2hI/fkY9He6OiAEhPUZGZqmfblVy4kg+RzyO/16oosFrD94P2E9T0EYZVrim4t4aToCfas5tvRr8/FD7ua4OO//oxPxgShEQQeRZEng+DnxWRp0j0ftBXR/szY/jviHyP3WqJdgrlOFPY8TOR+vqAY8dGbl+6VJ+njiaU02HDxiVF2LikCD3eAF446MGOg6fx7qcX8O6nF8KjvVOQm+nAtDQ7vMEQ+nxB9HiD6PMH0esNotsbHDGqenlpDn52VxlPVI9B0nUS2awW2KxAKkY/gJbmORNcERnC4wHOnRu5ncvVJ1xWqg2vPLIEdW9/ht1Hz+LNj1rw5kctUC0KZmWnw52TjkyHDXbVEr1FLtcEgJCmX34TCGk42zGALy/0ovXyALr6x3G1OoMsnjmVnUQG0HPi6meQ5oF/RCS1v/0N6B5lWdvbbkt8LQQAyM9KxR+2LsOTez/Bno9b8Er9GbxSfwZ21QJ3OCcyUvROVrvVOigrLJBwh44mAl9QQ+OlPpy62IvWy170eK9zQQoTq60OspPIAFUFU4wugYxQXz9y3jm7Xe8kooRyOmx4dOVcfPtrM/Ff753E/zScQ68viMb2fjS291/15xQFKMtzYmHRVNxcNAWLi6dhVnZ6AitPDknXSUQEQJ9wbrj8fGA235AbIc2u4hd3V2LLN9x4pf4Mjpxqx4mWyzgZXiEhFqpFgTsnHeX5mZiXn4my/ExkOtTwKB79jF2kP3AgEEKPNwARfYQG9H/62eTwWV0tPE9YSCQ6N8BgIkCfP4jugWB0/9bwnDSReQoiZ4YB/SywFj57rIlE55oJaaKPDlEtmME5YogSS9NGz4fyciA3N/H1UNT0jBQ8s3Ehfri8BK8cOYMPPO34oq0Xn53vwWfne2L6nXbVgjm5GSjPz0R5fibK8pxIs1vDI4GG5kSfL4hen358H5ITop+sCIl+TA+Fj+OjEQF6fEH0eANQoIyaE1aLBVaL/lSM/K5IXlzJIoFq1edKc2dzzkmihPD5gKNHR25fvJgrVhoox5mCf19biX+rrUCvL4i2bh8udHvR0e9Hmt2KdLuKDIeKjJTwzaHGNQKVdOwkouRz7hxw+vTI7bfdxlFEBiucloZ/+adyAEC/P4jTF/vgudSHfn/wyuS84Ql5/SENCsKX3Vj0jp+bpqSiJDdDn3wx3Q7LBC6RSURJ6LPPgPb2kdu//vXE10KjmjvDiV/cXQlAv1zs9MU+NLb3RS/PHDyReyQnrBb98i/VoqBwWipKcpxwTU3F1DQbV2siouvz4Yf6apaDWa3AsmXG1ENDKIoCp8MGp8OGklx2nk80dhJRctE04M9/Hrk9O1s/U0ymkWZXUenKQqUry+hSiOhG4PcD778/crvbDbgSNzknXT+nw4bqwimoLpxidClElMx6ekZf8XLBAsDJqUroxsNpvSm5/PGP+vLEw916K0cRERHdqESA11/Xl64fjqOIiIhuXIEAsGvX6Cte3nqrMTURGYwjicg47e36AdhqBSwW/V5R9FswqN8GBvShn6GQfgsE9O2hkH7f369/j88HNDUBHR0j95OVBVRVJf7/R0REY6dpej5YrVduFot+A/RjfyBw5dg/OB8CAf3nA4Gh+fDll/rnwxUUJMVyxUREN4RgEOjsHJoPkfcPInoW+P3Xzoe+Pv39hdcLfPrpyCXvAa54STc0dhKRcZ5/Xj+ATyRFAWpr9QAhIiLz8/mA3/524vdjswFr1nCUKRHRZHHpEvDccxO/n4wMYNWqid8PkUnxcjMyzmi99uPtjju4ohkR0WSSiGwAgLVrgby8xOyLiIjil4h8sFqBe+/lXER0Q2MnERkjMiR0Ii1YANxyy8Tug4iIxlci3gR885v6pQRERDR5THQ+KAqwejVQVDSx+yEyOV5uRsYQ0W8T4aabgCVLgOpqXkZARDTZaNrE/e6ZM/WTB6WlE7cPIiKaGBPVSWSx6Fce3HYbO4iIwE4iMoqm6cvSh0L6x5GJ5SKdR6qqD/dMTQUcjiuf22xXPo58PS0NSEkB7Hb90oHp043+3xERUTwi+RC5adrQfFDVK/kQyQObTb9FJrpOS9NvdrueES6XvpABERFNTlbryHwY3HEUyYLUVP24P9r7B1XVsyE1Vc+H1FR9EYP0dOP+X0Qmw04iMoaqAj/6kdFVEBGR2UydynwgIqKRioqYD0QJwDmJiIiIiIiIiIiInURERERERERERMROIiIiIiIiIiIiAjuJiIiIiIiIiIgI7CQiIiIiIiIiIiKwk4iIiIiIiIiIiMBOIiIiIiIiIiIiAjuJiIiIiIiIiIgI7CQiIiIiIiIiIiIAioiI0UWMJjs7G8XFxTH97MWLF5GTkzO+BY0j1hc/s9fI+uLD+q6tsbERly5dMrQGozEnjMP64mP2+gDz18j6ro05wZwwEuuLD+uLj9nrA4yv8asywrSdRPFYvHgxPvzwQ6PLuCrWFz+z18j64sP6aKKZ/TFkffFhffEze42sjyaa2R9D1hcf1hcf1hc/M9fIy82IiIiIiIiIiIidRERERERERERElKSdRFu2bDG6hK/E+uJn9hpZX3xYH000sz+GrC8+rC9+Zq+R9dFEM/tjyPriw/riw/riZ+Yak3JOIiIiIiIiIiIiGpukHElERERERERERERjk3SdRPv370dpaSlKSkrwq1/9yuhy0NTUhOXLl2PevHmoqKjAM888AwDo6OjAypUrMWfOHKxcuRKdnZ2G1hkKhbBw4UKsWbMGAODxeLB06VKUlJTgvvvug9/vN6y2rq4ubNiwAWVlZSgvL8eRI0dM1X6//vWvUVFRgcrKSmzatAler9fQ9nv44YeRm5uLysrK6LartZeI4Mc//jFKSkpQVVWFhoYGQ+p7/PHHUVZWhqqqKnzrW99CV1dX9Gt1dXUoKSlBaWkp3nnnHUPqi9i+fTsURYkuF2lE+1H8mBOxYU7EjjkRf33MCUok5sTYmTkjAObEWDEnxr++iEmRE5JEgsGguN1uOXXqlPh8PqmqqpITJ04YWlNLS4scO3ZMRES6u7tlzpw5cuLECXn88celrq5ORETq6urkiSeeMLJM2b59u2zatElWr14tIiL33HOPvPbaayIisnXrVnn22WcNq+3BBx+UF154QUREfD6fdHZ2mqb9mpubpbi4WPr7+0VEb7eXXnrJ0Pb7y1/+IseOHZOKiorotqu11759++TOO+8UTdPkyJEjsmTJEkPqe+eddyQQCIiIyBNPPBGt78SJE1JVVSVer1dOnz4tbrdbgsFgwusTETl79qysWrVKioqK5OLFiyJiTPtRfJgTsWNOxIY5MT71MScoUZgTsTFzRogwJ8aKOTH+9YlMnpxIqk6iw4cPy6pVq6Kfb9u2TbZt22ZgRSPV1tbKn/70J5k7d660tLSIiH7gnzt3rmE1NTU1yYoVK+TAgQOyevVq0TRNpk+fHn2RDW/XROrq6pLi4mLRNG3IdrO0X3NzsxQUFEh7e7sEAgFZvXq17N+/3/D283g8Qw5KV2uvLVu2yKuvvjrq9yWyvsHeeOMNuf/++0Vk5Gt41apVcvjwYUPqW79+vXz00Ucyc+bM6EHdqPaj2DEnYsOciB1zYnzqG4w5QROJOTF2Zs4IEeZErJgT41/fZMmJpLrc7Ny5cygsLIx+XlBQgHPnzhlY0VCNjY04fvw4li5dira2NuTn5wMA8vLy0NbWZlhdP/3pT/H000/DYtGfDu3t7ZgyZQpUVQVgbDt6PB7k5OTgoYcewsKFC/Hd734XfX19pmk/l8uFxx57DEVFRcjPz0dWVhYWLVpkmvaLuFp7mfE18+KLL+Kuu+4CYJ763nrrLbhcLlRXVw/Zbpb66PqZ/TFjTowdc2J8MCfiw5xIHmZ/zMyYE2bOCIA5MV6YE/GZTDmRVJ1EZtbb24v169fjN7/5DTIzM4d8TVEUKIpiSF179+5Fbm4uFi1aZMj+ryUYDKKhoQHf//73cfz4caSnp4+4NtzI9uvs7MRbb70Fj8eDlpYW9PX1Yf/+/YbUcr2MbK9r+eUvfwlVVbF582ajS4nq7+/Htm3b8OSTTxpdCiU55kRsmBPjjzkxNswJShQz5oTZMwJgTkwE5sTYTLacSKpOIpfLhaampujnzc3NcLlcBlakCwQCWL9+PTZv3ox169YBAGbMmIHW1lYAQGtrK3Jzcw2p7dChQ9izZw+Ki4uxceNGvPfee/jJT36Crq4uBINBAMa2Y0FBAQoKCrB06VIAwIYNG9DQ0GCa9nv33Xcxa9Ys5OTkwGazYd26dTh06JBp2i/iau1lptfMyy+/jL1792LXrl3R0DFDfadOnYLH40F1dTWKi4vR3NyMm2++GefPnzdFfTQ2Zn3MmBOxY06MD+ZE7JgTycWsj5lZc8LsGQEwJ8YLcyJ2ky0nkqqTqKamBidPnoTH44Hf78fu3btRW1traE0igkceeQTl5eV49NFHo9tra2uxc+dOAMDOnTuxdu1aQ+qrq6tDc3MzGhsbsXv3bqxYsQK7du3C8uXL8frrrxteX15eHgoLC/H5558DAA4cOIB58+aZpv2KiopQX1+P/v5+iEi0PrO0X8TV2qu2tha///3vISKor69HVlZWdBhpIu3fvx9PP/009uzZg7S0tCF17969Gz6fDx6PBydPnsSSJUsSWtv8+fNx4cIFNDY2orGxEQUFBWhoaEBeXp5p2o+uH3Ni7JgT8WFOjA/mBCUKc2JszJ4RAHNivDAnYjfpcsKYqZAmzr59+2TOnDnidrvlqaeeMrocOXjwoACQ+fPnS3V1tVRXV8u+ffvk0qVLsmLFCikpKZHbb79d2tvbjS5V3n///eiKBKdOnZKamhqZPXu2bNiwQbxer2F1HT9+XBYtWiTz58+XtWvXSkdHh6na7+c//7mUlpZKRUWFPPDAA+L1eg1tv40bN0peXp6oqioul0t27Nhx1fbSNE1+8IMfiNvtlsrKSjl69Kgh9c2ePVsKCgqir5GtW7dGv/+pp54St9stc+fOlbffftuQ+gYbPNGcEe1H8WNOxI45ERvmRPz1MScokZgTsTFrRogwJ8aKOTH+9Q1m9pxQRESM7aYiIiIiIiIiIiKjJdXlZkREREREREREFBt2EhERERERERERETuJiIiIiIiIiIiInURERERERERERAR2EhEREREREREREdhJREREREREREREYCcRERERERERERGBnURERERERERERATg/wHYm9QfAzcDgAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "([array([[149, 4]]), array([[ 62, 201]]), array([[3, 5]])],\n", + " [array([0.15686187]), array([0.27831027]), array([0.29831867])])" ] }, + "execution_count": 8, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ - "# Here, the distance function (distance and normalise arguments)\n", - "top_k_search = QuerySearch(k=3, inverse_distance=True, distance=\"euclidean\")\n", - "top_k_search.fit(X_train)\n", - "distances_to_matches, best_matches = top_k_search.predict(q)\n", - "plot_best_matches(top_k_search, best_matches)" - ] - }, - { - "cell_type": "markdown", - "id": "b5240535-5123-4ac5-a5e0-e0502ef80b3e", - "metadata": {}, - "source": [ - "## Using the speed_up option for similarity search" + "from aeon.similarity_search.series import StompMotif\n", + "\n", + "motif.predict(\n", + " series_predict,\n", + " k=3,\n", + " motif_size=1,\n", + ")" ] }, { "cell_type": "markdown", - "id": "b5e13c31-2aa3-4987-8d44-8a296c81a318", + "id": "9190fdf4-db3d-4d51-b2c8-41b88a9f6f74", "metadata": {}, "source": [ - "In the similarity search module, we implement different kind of optimization to decrease the time necessary to extract the best matches to a query. You can find more information about these optimization in the other notebooks of the similarity search module. An utility function is available to list the optimizations currently implemented in aeon :" + "You can also return the matrix profile with the same parameterization as `predict` (minus `motif_extraction_method` parameter) using :" ] }, { "cell_type": "code", "execution_count": 9, - "id": "d22e2d74-f44d-4c81-ba1b-72d618bd5862", + "id": "4c36738a-e6a0-4452-aee2-ccbad99d6d8b", "metadata": {}, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAADFCAYAAABJhsbEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAM0BJREFUeJzt3Qd4FNXaB/A3vfdCEtJpkZLQMYKAgjRFBBTFAuJVpMhVUa+iIrZPvOLlckEU71Xk2mgXQUGK0nsLLbSQBNJIT0jvyXzPeza7JhBgkd2dndn/73n2mdkCeyazM/POOe85x0qSJIkAAAAA4Iasb/w2AAAAADAETQAAAAB6QNAEAAAAoAcETQAAAAB6QNAEAAAAoAcETQAAAAB6QNAEAAAAoAdbMjMNDQ2UmZlJbm5uZGVlJXdxAAAAQOUkSaLS0lIKCgoia2tr5QRNHDCFhITIXQwAAACwMOnp6RQcHKycoIlrmLQFd3d3l7s4AAAAoHIlJSWiwkYbgygmaNI2yXHAhKAJAAAATOVmaUFIBAcAAADQA4ImAAAAAD0gaAIAAADQA4ImAFC8gxcLaPoPxyi3pEruogCAiiFoAgDFW7r3Ev0anyUeAADGgqAJABSvqKJWLHNLq+UuCgCoGIImAFC8osoascxD0AQARoSgCQAUDzVNAGAKCJoAQPGKKzVBE2qaAMCYEDQBgKJV1dZTdV2DWEfQBADGhKAJAFRRy8QKy6upvkGStTwAoF4ImgBAFflMjOOlgnLUNgGAcSBoAgDV1DQxNNEBgLEgaAIARSuq0Aw3oIWgCQCMBUETAChaEWqaAMBEEDQBgKKVXB00lSFoAgDjQNAEAKpJBGeoaQIAY0HQBACqSAR3c7AVSwRNAGAsCJoAQBU5TW1buYolplIBAGNB0AQAqqhpauevCZryETQBgJEgaAIARStuHHKgbWPQhOY5ADAWBE0AoIrmuXb+bmJZWl1HlTX1MpcKANQIQRMAqKJ5LtjLiRxsNae0fAw7AABGgKAJABSroUHSBU0eznbk5+Yg1pEMDgDGgKAJABSLm+IkSbPu4fRH0IS8JgAwBgRNAKBYxY0DWzrZ2ZCDrQ35uTYGTWieAwAjQNAEAIqlbZrzdLYTS9Q0AYAxIWgCAMUqqqzRNc0xBE0AYEwImgBA8fPOIWgCAFNA0AQAiqXrOdcYNPm7OYplXmmVrOUCAHVC0AQAqslp8m+sacoqRtAEAIaHoAkAVFPTFO7johunqby6TtayAYD6IGgCAMUqapx3ztPZXjfApVdjrVNKQbmsZQMA9UHQBACKr2lyb6xpYhG+mtqmS/kImgDAsGwN/P8BAJi895xnk6Ap3NeFjqUVUcpNgqaLeWV0NqtEfM7X1YEe7RVCVlZWRi8zACgXgiYAUE0iOIvU1TRVXPffLd6RRPO2JDR7raa+gSbEhhutrACgfGieAwDVJIJra5rYpfyyFv/NV3su6gKmriGe1L+9n1j/YMNZOpZ2xQSlBgClQtAEACpontMkgjfNaUopuLamaeWRNPrw13NifeZ97Wnd9L7030m9aESXAKqtl2ja98coH/PWAcB1IGgCAEWqrqunytr6a2uaGocdKCyv0U3oy2rqGuijjefF+pQBbWjGvW3FOucxffJwDLXxc6Hskir6x28XTLwlAKAUCJoAQNFNc5y77eb4R3qmi4OtbpDLS02GHdiblCf+DU+18trQDs2Svl0dbOmDhzqL9Q0nM6myRhOMAQA0haAJABQpt0TTjObjYk/W1s17vema6Jr0oNtwMkss7+8SSDZXfZ7dGeFDwV5OVFpdR7+dzTZy6QHAIoKm3bt308iRIykoKEjcqa1bt67Z+5Ik0TvvvEOBgYHk5OREgwcPpsTEREOWGQCA0gs1OUvBXs7XvKcNmi42Bk1VtfX029kcsf5AdGCL/x8HXmO7B4v1/8VlGK3cAGBBQVN5eTnFxMTQ4sWLW3z/k08+oYULF9KSJUvo0KFD5OLiQkOHDqWqKswFBQCGk35FEzSFeF8/aNLWNO26kEdl1XUU4O5I3UO9rvt/aoOmvUn5lFVcaaSSA4DFBE3Dhw+nDz/8kEaPHn3Ne1zLtGDBAnr77bdp1KhRFB0dTd9++y1lZmZeUyMFAHA70gs1QU2Il9M17/0x7IAmaNpwqrFpLjrwmqa8pkJ9nKl3hDdJEtFPxy4bqeQAoFQGzWm6dOkSZWdniyY5LQ8PD+rTpw8dOHCgxX9TXV1NJSUlzR4AAPrWNIW2UNMU2aSmqaKmjradu3HTXFMP99DUNq2JyxA3ggAARgmaOGBirVq1avY6P9e+d7W5c+eKwEr7CAkJMWSRAEDlOU0tNc/xa9w5jpO6H1i0lypq6kWSNw9meTMjugSSi72NyIfaei7XKGUHAGWSvffcrFmzqLi4WPdIT0+Xu0gAYOa4BijjirZ57tqgydHOhoI8NM12F/PKycvZjj4a3UWvueV4+IEJd2mmU1m4LRG1TQBgnKApICBALHNyNFXhWvxc+97VHBwcyN3dvdkDAOBG8kqrqbqugTg9KdDTscXP9In0FstHe4bQ9lcG6qZL0cez/SLIyc6G4i8X086EPIOVGwCUzaBBU0REhAiOtm3bpnuNc5S4F11sbKwhvwoALJg2nynQw4nsbFo+jc17OIYOvzWI/v5wNHm5/DHNij58XB3oqdgwsf4v1DYBwJ8NmsrKyujEiRPioU3+5vW0tDRR9f3SSy+J3nW//PILxcfH04QJE8SYTg899NCtfhUAwI17znlf23NOiwew9HdruRZKH8/dHUkOttZ0Ir1IDEEAAPDH3AN6Onr0KN1zzz265zNnzhTLiRMn0rJly+hvf/ubGMtp8uTJVFRURP369aPNmzeTo+OfP3kBALSYBN5CPpOh8HQr43uH0rL9KfTDwTS6u53+zXsAoE63HDQNHDjwhlXVXNv0/vvviwcAgKkHtjSkcT1DRNC0/XyumPzXw/mPiYEBwPLI3nsOAMAYzXOG0DHInaIC3KimvoE2xGca9bsAwPwhaAIAxUkzQfOc1uhurcVyLUYIB7B4CJoAQFFq6xt088IZu3mOjeraWgyUeTT1CqUWaKZlAQDLhKAJABQlq6iKGiQie1tr8nN1MPr3BXg4Ut82vmJ97XHUNgFYMgRNAKDIJHCeFuVGk+8a0pjumiY6nsS3gSM2ALBIt9x7DgDA1Eqraunpb45Qflk1RTROxmuKfCatoZ0CyM3xjMil2nkhl+6Naj6/JgBYBtQ0AYBZ45qdmatOUpzIKarQTWti7J5zTbk42NJjvTSTiS/dm2Ky7wUA84KgCQDM2qLtSfT72Ryyt7Gm14dFUdcQTzHa9+A7TFvbMyE2XMx1x6ODJ2SXmvS7AcA8oHkOAMzWtnM59M+tF8T6h6M7i8Empw5sIwbY5YF0TYl76nEz3abT2fTNvkv08dhok34/AMgPNU0AYJaS88ropRWaOS4nxIaJgEnL1AGT1jP9InS96ArLa2QpAwDIB0ETAJhl4vfkb49SaXUd9Qr3orfv70jmoGeYF0UHe1B1XQMt3XtJ7uIAgIkhaAIAs/PGmnhKziunAHdH+vyJHmJMJnPANVzT72kr1pfuuyR68wGA5TCPMxEAQKOk3FL6NT5LJF0veaoH+bkZfwDLWzGkYyuKCfagipp6+nxHstzFAQATQtAEAGblh0NpYjnojlaip5y54dqm14ZGifXvD6bS5SLNlC4AoH4ImgDAbFTW1NOauAyx/kSfUDJXfdv60J2R3lRT30CLtiXKXRwAMBEETQBgNtafyqSSqjoxcGX/dn5krjS1TR3E+v/iMlDbBGAhEDQBgNk1zT3eO8xk88r9WT3CvOmuNj5U1yDRf3ZflLs4AGACCJoAwCycvlxMJ9OLyM7Gih7pGUxKMG2gpifdiiNp6EkHYAEQNAGAWfjhUKpYDuscSL6u5tVj7ka5TdyTrqq2QYwSDgDqhqAJAGRXUlVLP5/IFOtPmnECeEu5TVMba5u+3Z8qtgMA1AtBEwDI7ufjl8W4R239Xal3hDcpCY/bxOXm0ctXHNbkZAGAOiFoAgBZ8eS73x9M0w0zINe8cn8WJ6w/d7dmTrpl+1Korr5B7iIBgJEgaAIAWcWlXqGEnFJytLOmMd2VkQB+tVFdW5OPiz1lFlfRptPZchcHAIwEQRMAyIpH1WYPxgSRh5MdKZGjnQ09FRsm1r/ae0nUngGA+iBoAgDZpBVU0IZTWWL9yTs1QYdScfl5YmEeNuFY2hW5iwMARoCgCQBk89mORDE4ZP/2fhQdbH7zzN0KHiZhdNfWYv2LnZjIF0CNEDQBgGy1TGuOXRbrLw5qR2rwXP9IsrG2oq3ncmn3hTy5iwMABoagCQBksWh7ItU31jL1CPMiNeChB56+K1ysv/vLGaqpQ086ADVB0AQAJpdaUE4/HdfUMr00WB21TFovDm4nmuou5pfT13sxSjiAmiBoAgCTm//7BVHLNKC9H3UPVUctk5a7ox3NGh6lq03LLq6Su0gAYCAImgDApM5mltAvJzVTprw2tAOp0ehural7qKcY5Xz+7wlyFwcADARBEwCY1Ke/JRAPY/RAdCB1bu1BasSjhL91f0exvjoug85nl8hdJAAwAARNAGAyR1IKafv5XNHD7JUh6qxl0uLk9hFdAkSAOHfjebmLAwAGgKAJAEyCR8n++yZN8DCuZwhF+LqQ2v1taBTZ2VjRrgt5tDcxX+7iAMBtQtAEACaxIyGXjqZeIQdba9WMy3Qz4b4uupHO54lmSUyvAqBkCJoAwOgaGiT6ZLMmIfrpvuEU4OFIlmLawLYiUOTpVfYnF8hdHAC4DQiaAMDo1p/KpPPZpeTmaEtTB7QhS+Ln5kDje4eK9c+2J8ldHAC4DQiaAMCoeFTsf/x2QaxPGdCGPJ3tydJM7h9JttZWdOBiAcWlYjJfAKVC0AQARvWP3xIorbBCjJI9qa9mihFLE+TpRGO6aybzXbwDtU0ASoWgCQCMZl9SPn25+6JY/7/RncnZ3pYs1dSBbcnaisSQCwcvIrcJQIkMHjS9++67ZGVl1ewRFaWZUgAALMeV8hqaueqEWH+8TygN7RRAloyHWHisMbfpzbXxVFVbL3eRAMAcapo6depEWVlZusfevXuN8TUAYKZyS6ro6W8OU05JNbXxc6HZjaNjW7rXh0WJxPCLeeX0+c5kuYsDAOYQNNna2lJAQIDu4evre93PVldXU0lJSbMHAChXfEYxPfjZPjqZUUyezna0aHx3crK3kbtYZsHDyY7eHdlJrH+xM4kSc0rlLhIAyB00JSYmUlBQEEVGRtITTzxBaWlp1/3s3LlzycPDQ/cICQkxRpEAwARjMS3de4nGLtlP2SVV1NbfldZN60sdg9zlLppZ4alVBkX5U229RB9tPCd3ccAM8KCn0384Rk99fYhq6xvkLg7cgJVk4CFqN23aRGVlZdShQwfRNPfee+/R5cuX6fTp0+Tm5tZiTRM/tLimiQOn4uJicnfHyRZACfJKq+nllSdob5JmqpB7o/xpwWNdyd3RTu6imaWU/HIaNH8X1TdItGZqLPUI85a7SCCj/LJq6vnhVrG+6vlY6h2B34OpcezBFTc3iz0MXtM0fPhweuSRRyg6OpqGDh1KGzdupKKiIlq1alWLn3dwcBAFbPoAAOUorqwVd8gcMDnaWdMHozrR1xN7ImC6yfQqj/QIFuufbtGMYQWWK7WgQre+60KurGUBmYcc8PT0pPbt21NSEsYmAVAb7gH23LdHxWjfnOC8YUY/eio2XPSahRubMagd2dtYiwEveWgGsFypBeW69Z0JebKWBWQOmripLjk5mQIDA439VQBgQtyy/8qqk3T4UiG5OtjSskm9qK3/tU3w0LLWnk5iKAY2bwsm87VkKU1qms5kllBuaZWs5QETBk2vvvoq7dq1i1JSUmj//v00evRosrGxofHjxxv6qwBARmuOXaZf47NEbcm/J/SgTkEechdJcabd04ac7GzoRHoRrT1+We7igEzSmtQ0sT0XUPNoMUFTRkaGCJA4EXzcuHHk4+NDBw8eJD8/P0N/FdzApfxy+tfWRBr+rz2iV0ZJVa3cRQIV4TvhDzacFesv3deO7mpz/WFF4Pr83RxpxqC2Yp170nF+GFhuTROPacZ2XUATnbky+JwGK1asMPR/CbdowdYLtGBrou75uawSSsgpFcm5YT6agxLgdsz5+Yy4wHdu7U6T746UuziK9my/SFoTl0HJeeVinr73R3WWu0ggU07TxLvC6Z2fz9CexDzRs9KG590Bs4K551Rm1dF0XcDUv70fzRnZkQLcHSkpt4weWrwPc17Bbdt8Ops2nc4mW2sr+vvYaLK1wWnkdtjbco9DTaD0/cFUOpleJHeRwIT45uNKhaaGcVTX1uTmaCueL9mVTF/tuUib4rOuO+UOv45cONOy3NkzVWh/Uj69+VO8WJ9xb1t6ZUgHsT6iSyBN/vaoGKH5ya8O0YcPddbNgaXFBx56PMHNVNTU0fvrz4j1yf0jkcdkIHe19aUHY4Lol5OZNP3HY7T+hX7k5WIvd7HABNIam+Z8XR3EiPF3t/OljfHZonOAlpuDLd0fHSh6XHIHgtKqWnp55Unaei5H5MQFeTrS03eFi56rYFwImlSiqKKGpv14jOoaJBoZE0Qz72uve6+VuyOtfD6WXvvfKVp/MpPe+Cmelu1PIRcHW1EFnFVcSfllNdQ1xJOeuzuS7uvYCtXC0KJF25Mos7hKnLhn3NtO7uKoCtc2cUJ4WmEF/XXFcVo2qTeOQwuQ0tg0F+bjLJZTBrShK+W1ZGtjJYKo42lFdLmoklYcSacNp7LoxUHtaM2xDDHMB6usrRdNu7N/PiNqfcdfdUMMhoWgSSX+vfsiFVXUUodWbjTv4ehrao0c7Wxo4WNdqZ2/K83//YLugGsqLvUKxaXGUUywBy2ffCc52+PnAX/gJl5uLmDvPtgJ88kZmIezneiFOHrxftqTmC9qGt4YHiV3scDIOEhuGjRFB3uK82/T6YkOpxSK3wOfo/+vceodHhdtyZPdycfFgZYfTqMvd1+kt9bGk5+rAw3u2EqmrVE/XBVVMoXFN/tSxPqrQzuIAKklHEj9dVA7eiA6UByoVbWaOY64apfH2eG7l2X7UkQz3q6EPBreBWNrgQbXSM5ed1rMl8ZTpAy+w1/uIqlSVIA7ffJwNM1YflzktPSO8KJ7o3ABVPuUOiz8Op10rK2t6M5IHzG9yrcHUkTwxB16/jOhBwV7aQItDq6vVNTQqqMZ9MLyY7Rm6l1oOjcSBE0q8MXOZFFFGxPiqdfFLNLPVTyu9trQKCqvrhdNd5wwjqAJmvbI5JGreZqUd0d2Qv6bEXHzOtco8HHIg4dufPFuCvRwkrtYYCSpV9U0XQ831U7qGyGa33hsNA6mtPh4/L/RXSinpFoMV/DCj8dp/Yx+4mYYDAvdXhSO85G+P5Qq1l8d0v62L2Z3Rmomijx4sdAg5QPl+/1sjshlYh+PiabQm5zc4fbNGhElhnPgXlQvLj9BdZj5XvXDDeg7HAy3JDQNmLTsbKxpwaNdKcjDUYzTx0116FlneAiaFI7vRmvqGsSs2P3a3v4Ag70jfMSSx3UqKKs2QAlByfjkO3PlCbHOvXMe6tZa7iJZBAdbG/psfHdRU8D5LJzkiwug+lTW1IvaIRZugJsR7nG5cHw3USv184lMWnkk3QClhKYQNCkYJwj+ciJTrD/T1zCTpHq72FNUgGb+MJ5TDCx7eIEp38VRaXUd9QzzojdH3CF3kSxKuK8LffpIDPFhzYm+3IED1JkE7u5oS57Ohhliome4N70yRNN7es4vZyihhU4/8OchaFIwvgPNKq4Sg6EN7GC4xFxOOmQYCNNyca3GG2viRY0j99L5/InuYhBGMK1hnQPEuGqMm0i/3ntJ7iKBEYYb4ADZkKb0b0MD2vtRdV2DGPeLb4DAMHAWVLCfT2gm+BzROfC6Peb+DOQ1AV+ceaBFHvWbAyZ/d0e5i2SxnugTRq80jrvG8/19d0DTUxbU0fzNQr0NmyfIOU/zx8VQK3cHMVTI7HWaAWnh9iFoUqjqunoxaiwb1TXIoP838posG4/F9OGvmrFg3rr/DuoVrgmiQT4v3NuWnh+gmeOP85t+aOz8Acp2JrNELO8IdDf4/+3j6kALH+tGnDPOw8lsPp1l8O+wRAiaFIrHUeI5i/hOok9jc5qhIK/Jcpvk/rU1URcw8UWak79Bfpyv+MawKHq2X4R4/tba07QvKV/uYsFtis/QzDMYHWycMZX42jBtYFux/va6M2LmCLg9CJoU6ueTmgTwkdFBRplqQZvXxGPzgGX49kAq/XPrBd3wFXyRxnhM5oP3Bdf8jesZLJ6/t/4MhiJQsOKKWkppnHeuS2vjDUQ5Y1BbauvvSvll1fT+hrNG+x5LgaBJgfjHz2PnMGN1Af8jrwlBk6VM9qw9ob42tAO9cG87BEzmGjiN6EheznZ0IaeMfjiUJneR4E86nVmsy2cyVM+56w1f8fexPLUW0U/HLtOO87lG+y5LgKBJgb47kCrGZuIRwDsFGb4tvGleE5+YOUgDdc+yzpM981Qpo7u1pmkD28hdJLjJHHUzh3QQ6zwMwZVyNLko0akMTdDUxUhNc031CPOiSXdpmnZf+99Jyi2tMvp3qhWCJgUOhvbdQU0S6OS7I41WG4C8JstwMr2Ixn15QEz2zHkVc8d0QQ2TAjzeO1Qcn5zX+OlvCXIXB/6E05eLjd4019TfhnUQE7rnl9WI6Xl4nD+4dQiaFIZ7QRSW11CItxMN7WTciTwxXpO6rYnLoEe+PEDZJVUU6edC/36qp0GHrgDj4TzGdx/sJNa5iQ43Nspz6nJjEriJgiY+tj97vJuYP3JPYj59ufuiSb5XbRA0KQjfGWgHt3umbwTZ2hh39yGvSZ1q6xtEEvErq0+KZl6e5Hnd9L4U4IGxmJSEb2oe6xUi1l9fc4qqauvlLhLoiZtU0wsrxXonEwVNrF0rN3qvMdjmGsrdF/JM9t1qgaBJQX6NzxKDofGQ++N6ak6WxoS8JvXhcbcmfH2YvtmnGSDxxUHtRA2Tu6Od3EWDP2HWiDvI381BnBcWbE2Uuzigp/jGprkIXxfycDLtscfXjrHdg0UO4/QfjtGFHEyzcisQNCnozuS99ZreTZP6RpCLg63RvxN5TeqyIyGXhi7YI4aRcLG3oS+f6kEv39e+xRnTQRn4gqudZuU/ey5SfGNyMSgjaDJVPlNTnLP40ZjOYpJ3nldy0jdHKLcEieH6QtCkENwdnGt7eLyNqSbs3YS8JuUrraqlt9fFi5Mj/4ba+bvS2ul9aWinALmLBgYwpFMAPRAdKGoO/rbmlGh+BfN2ysiDWuozDMGXT/agcB9nulxUSQ8t3qdLTIcbQ9CkANvO5dDa45fFcPjzHo42abIu8pqUPcL3ljPZdN/83fT9Qc14PpP6htP6Gf2ofStNDSKoAyeF89hN57JK6MtdyXIXB26Sm3oiXRM0dZahpknLy8Wevn2mj+gEkllcRQ8v2U+/nsJUKzeDoMnMZRdX0etr4sX6X/pFULdQL5N+f9O8Ju3kkmDegdKGU5n0wo/HqM9H2+j57+JE77gwH2f64dk+NGdkJ/SQUyFfVwexb9nCbUmUlIs8FXN1OKWQckqqyc3BlrqGeMpallAfZ1o7rS8NaO9HVbUNNP3HYzT/twQMR3ADCJrMfFLeKd/HiSYVzi2aeZ9mQDtT4rymezr4ifWPN2nmJAPzlJxXRuP/c5Be+PE4bTiVRbml1eRgay2ac7e81J/6tvWVu4hgRDxxNx+rNfUN9PJKTc9IMD8/HcsQyxFdAs3iBobz4pY+3Ysm99dMCL1we5K47pRX18ldNLOEoMmMvfvLGVGNyz9qTtp1sreRrYcONw1uOZNDh9BMZ5bWn8yk4Qv20MGLhWIcFg6UVky+k07OGUKvD4syi5MzGD/Bd+6YaPJ0thOJxp9sPi93keAqPCzExvhssT6mu3GmwPqz4369OeIO+scjMWRvY02/nc2hsV/sp/RCzdx48AcETWaIq0bnbjxHyw+ni/mCFo7vRmE+LrKVh/NfHusdKtb/b+M5VN2amc2ns+illSdEDUP/9n70+8sDRKDESfwIliwLj7X1ydhosf7V3kuixySYDw5GyqrrKNjLiXqFa/JFzcnYHsG04vk7yc/Ngc5nl9KDn+2l/cn5chfLrCBoMsMmuRdXntCN1jr7/o6ivVluLw9uL7qp83xJ2mlcwDw6CcxYflz0nHq4RzAte7oXhXg7y10skLk33cTYMLE+c+UJOptZIneRoNHaxqY5nuPRXIf66B7qRetf6Cd69l2pqKUnvjpEn25JQK/MRgiazAjPIzVx6WHR1GJrbUXzx8XQM/00kyzKje88ZgxqJ9bn/HKGlu3TjEwO8vnhUCpN/i6OauslGhkTJGYyN9cTMZi+SV170Xvs3wcoLhXjrMmNJ8ndnZivC5rMvcZy1fOxNK5nMEkS0Wc7kuiRJQcotQCdgRA0mYnMokoat+SAyElxdbClZZN605juwWROnu8fKaZvYe+uP0ufbccIxHLgWqUPN5ylt9aeFut8AuYAm/MSABg3y373lz7UM8yLSqrqRG3BLkyZIavVRzPE8co95iL9XEkJv6FPHo4R89W5OdqK/NoR/9qjS2S3VAiazAC3GY/+fB8l5JRSK3cHEeH3a+drlommsx+4Q0y9wT797QIt3pEkd7EsCveknLD0kMhXYTPvay8CJjsjz0MIysMdSDhw0nYnf/a/R8RwFCBP2sWy/ZqpiyY0Np0qxQPRQbT5pf7UO9ybymvqaeaqk/T8d0ctNkkcZ1qZe1LwxKmP/+eQGLeDR2r+aVpf6hjkTuaKAyeeeoMTjdm8LQkYTM8EOPl++/kcun/hHtqXVEBOdja0aHw3+uugdmKfALSEe9z+Z0JPuj86UDTjcv4b5yTyeF5gOr+cyKS80moKcHcUQYjStPZ0ouWT76RX7msvarS5J/Wg+bto3pbzIq3EklhJZnb0lJSUkIeHBxUXF5O7u/kGD7frZHoRzVx1gpLzNG3ET/QJFV0+TTGnnKEs2pZI//j9gljnkzIni/M0L2A43NNmTVwG/Xd/Cl1sHFy0jZ8LLXmyh5ixHEAf3Cz09rrTtPywZmT4YZ0C6MPRncWgmGBcfIkd/q89ojfaG8OjaMoA002DZQzns0vogw1nxc0b4wnkn707kibGhpOHs3In/tY39kDQZGLFFbX07z3JtGTXRXEi4xnK//5wNN3TwZ+UaOG2RJrfGDhxSg0PTfCWwoI/c8RV31/vvUT/i8sQgRPjXLdHe4WIJjn8feFW8an+853J9M/fL1Bdg0Q+LvY0+4GOYlBM1FYaz+4LeTRh6WHR+3j/rEGi2VQNv6Xfz+bQP367INJKGA+kywN2ju0eLCYDtrdVVkMWgiYzw9MarDySTj8eShPtwox7PH0wqhN5OtuTkvF8Vxw48UHEeMqO+eO6Uo8w0075ogYlVbX0+Y5kWrrvkm5EZ54biu/ieAwVDpwAbseZzGJ6ZdVJUfOhnV/ynQc6mXVagBLV1TfQ+lOZ9OmWC2JSXJ73UTvVjZrSBn6NzxK5rdrfE+MAMbaNLw3s4Cdy6pQwDAqCJpnxn5V/RJtOZ9Om+CxKzC3TvcdTonAy9fAugaQmB5IL6NXVJ8UJgmudJvWNQK3ILZxgVxxJF7UABeU14rXYSB8xsne/tr4YSgAMnpj81Z5LtGh7okgSZ73CvejJO8Po/i6BZIuOBbdVS/zLyUxafTSdUgo0ydLcwWfd9L4U6OFEaiRJEp3MKKaVR9LEzXN+meYc1jQnqn0rVzFQMqcV8HqYtwu5O9netJaTp3NJv1JBaQUVooOUs71xricImmTAf8rTl0to4+ks2nw6u9kEt3Y2VuLiNyE2XETfaq0O55qSOT+fobXHL4vngR6Oor27T4Q33RHojm7xLVy8+LfCd2o8KbK2ZombOO+N8lft7wTM5wL/983nxc0dpwuwSF8XmjmkPY3oHIhgXY/j93xWKZ3MKBJd8nnw36QmN8g8pQ3P6cY1xZZy89jQINHZrBIxxMWuhDyKS7ui+21djZvwuJmYOyxw5xb+WE1dPVXXNYiadu4sxUNmaPGgm12CPYxSbgRNJlBRUycOkuNpRXQs7YpYcpfwpj8Irpoc0SWA7o1qpYq2bH3tTMil2T+fpvTCSt1rfFC08XehSF9XauPnKtbDfVzEwJl84Mh1d8uHQEVNPV2pqKEr5bViv/LB2yBJ4mDnJe+7YC9n8nW1v+1AprC8ho6kFIqaOb4j5efaEywn0z/eJxRDCIBJZRdX0YojaaLDAQ+Iqe1w8NSdYTSmRzC5O1rOuetG54m0wgqKS70iAiTuzHMuq1RMX9QUnx7uauNDD3VtLVoTLL1JnW+kz2WW0IXcMkrMKaULOaWUmFOmq1HXh5eznWji4+ZNY6V9IGi6QTPIjoQ8cTHUXhA5uOEkNgdbG3KwsyYbKyuqrK0XF8/yas2Su1XysADZJVWUU1xFOaVVlFlUdU0EzYHBPVF+NLxzIN0T5W/RB0xlTb0YtXpPYr440WgTmlvCJxpvZ3sRQImHqwP5uNqLqli+C+FfKd918FD+XFtla21NdrZWZGdtTbY2ViLgsrO2EgmufIfCJ7LqWl7Wa55rX6vTvF5UWUOF5bV0pbyGCitq9J4Rnn8nPG8UB1BBnk4U5OFIwd5O1NbPTQSB2qpjLisH0NzNmKuqeXk2q5gOXyrU1ShpcTfk8b1D6em7lN37BJSvtKpWdEDgpjvt8coTuHZq7U7dQrxEs0qoj7M4PuslierqNedRPu40ywbNsl7zGp8P+XjmDi98U6CEmlO+JHKTZWZxJV2+UilyNvn8xTfGVzc7aS/oMSGeFB3sSV1DPCgm2JN80CvxprTnSL5p5GtFRW29uPY2vR7zur+7g0mCdtmDpsWLF9O8efMoOzubYmJiaNGiRdS7d2/ZgyYOgDq+s8Vg/x83P3UL9RQnlO5hntQpyAOTpLaAT6TcXHkxr0x0nU/OLaPkvDJKv1JJBWXVomZHbnyAcuDmbG8jmiX4AOYln+a5FooD5psdLdprws0+x2NycQ+TgR386Z4OfsghAbMLnriJ/bsDqc3yMW8HpyhwsMXNVHzjw7WpXHPb9EbJz81R95zPrdc7l/IFl3MnM65UiiZGXnKZmwZw9U0COWsrKxG4+bs76mo/yqrqRGBYWlUnzkEcEBVV1Igb5uudjziA7NzanbqGeFHXUE/qGuxJId5OiggGwYyDppUrV9KECRNoyZIl1KdPH1qwYAGtXr2aEhISyN/fX9agiWsUxn15QBy0/OCfeq22BkI86qm+XhK1G3xw8wXUxd5WDCPfyt1RHHRcM8CJfVxdyK/B7eETGwclXBuje5RVixMZN5vxXR+fkxztrMWJltvMa8XdbIO4o+X12roGcXLkfWrPdyg21k3uWDTr2tf4wXe9Xs725O1ir1vyvr7RyY9/O1nFmhN1xpUKUdPIz1MLKkQAePVdKH8fn/x9xQXBnkK9XUSgxAm3uBMFJeDLA/++uTmKHykF5eI51w5wEKSt9dUsNc+1ARHfcFRU14ljuaixye9W8KEY6O5Ifu6OZGNFxBeqkspa8d3aJkRj4h5grb2cRDoB3xBzsxBuitVL1qCJA6VevXrRZ599Jp43NDRQSEgIzZgxg9544w2DFBzA3HATrraZjwMzHvQNd6AAmoRpvqnILanS1OQ0aGqLCsqb3yhp1zkVgj93I3yTE+LlLGp6uLmc8w41gZy1LoDjpnuuZeIbLP7/c0uqxeucNuHqaKtZOtiKmxi+weGmNm1SMr+O49dylOgZexg84aampobi4uJo1qxZutesra1p8ODBdODAgWs+X11dLR5NCw6gRJaU6A9wKzg/hbud80MffC/PNUqphRVUUFYjnvPdPee2cK2wNsBBUAOmZvCgKT8/n+rr66lVq1bNXufn58+fv+bzc+fOpffee8/QxQAAAIXiYIhrf9CMDeZG9uxTrpHi6jDtIz09Xe4iAQAAABi/psnX15dsbGwoJ0czpYYWPw8ICLjm8w4ODuIBAAAAYFE1Tfb29tSjRw/atm2b7jVOBOfnsbGxhv46AAAAAJMwysiLM2fOpIkTJ1LPnj3F2Ew85EB5eTlNmjTppv9W25kPCeEAAABgCtqY42YDChglaHr00UcpLy+P3nnnHTG4ZdeuXWnz5s3XJIe3pLRUM1MyD1EAAAAAYCocg/DQA4qZRoWb8jIzM8nNzc1o3Uk5ouSgjJPOLWUsKEvcZkvdbmyzZWyzpW43ttkyttnU282hEAdMQUFBYpik6zG7idG4sMHBwSb5Lt4JlvQDtNRtttTtxjZbDkvcbmyz5XA30XbfqIbJbIYcAAAAAFACBE0AAAAAerDIoInHhZozZ45FjQ9lidtsqduNbbYclrjd2GbL4WCG2212ieAAAAAA5sgia5oAAAAAbhWCJgAAAAA9IGgCAAAA0AOCJgAAAAA9IGgCAAAA0INFBk2LFy+m8PBwcnR0pD59+tDhw4dJLebOnUu9evUS09D4+/vTQw89RAkJCc0+M3DgQDFFTdPHlClTSKnefffda7YnKipK935VVRVNnz6dfHx8yNXVlcaOHUs5OTmkZPz7vXqb+cHbqaZ9vHv3bho5cqSY2oC3Yd26dc3e586/PMdlYGAgOTk50eDBgykxMbHZZwoLC+mJJ54QIwp7enrSX/7yFyorKyMlbnNtbS29/vrr1KVLF3JxcRGfmTBhgph66ma/j48//piUup+ffvrpa7Zn2LBhit7P+mx3S8c4P+bNm6fYfT1Xj2uUPufstLQ0uv/++8nZ2Vn8P6+99hrV1dUZvfwWFzStXLmSZs6cKcZ+OHbsGMXExNDQoUMpNzeX1GDXrl3ix3bw4EH6/fffxUl2yJAhVF5e3uxzzz33HGVlZeken3zyCSlZp06dmm3P3r17de+9/PLLtH79elq9erX4+/AFZsyYMaRkR44caba9vK/ZI488oqp9zL9bPkb5RqclvE0LFy6kJUuW0KFDh0Qgwcczn3S1+EJ65swZ8TfasGGDuFBNnjyZlLjNFRUV4rw1e/Zssfzpp5/EBefBBx+85rPvv/9+s/0/Y8YMUup+ZhwkNd2e5cuXN3tfaftZn+1uur38WLp0qQiKOIhQ6r7epcc16mbn7Pr6ehEw1dTU0P79++m///0vLVu2TNxAGZ1kYXr37i1Nnz5d97y+vl4KCgqS5s6dK6lRbm4uj8Ml7dq1S/fagAEDpBdffFFSizlz5kgxMTEtvldUVCTZ2dlJq1ev1r127tw58Tc5cOCApBa8P9u0aSM1NDSoch8z3mdr167VPedtDQgIkObNm9dsfzs4OEjLly8Xz8+ePSv+3ZEjR3Sf2bRpk2RlZSVdvnxZUto2t+Tw4cPic6mpqbrXwsLCpH/+85+SErW0zRMnTpRGjRp13X+j9P2s777mv8G9997b7DUl7+uWrlH6nLM3btwoWVtbS9nZ2brPfPHFF5K7u7tUXV0tGZNF1TRxVBoXFyeq8JtOEMzPDxw4QGpUXFwslt7e3s1e/+GHH8jX15c6d+5Ms2bNEnewSsZNMlzFHRkZKe44ueqW8f7mO5mm+5yb7kJDQ1Wzz/l3/f3339Mzzzwj7kLVuo+vdunSJcrOzm62b3nCTW5y1+5bXnJTTc+ePXWf4c/zcc81U2o5xnm/83Y2xU003LzRrVs30ZxjiqYLY9q5c6dohunQoQNNnTqVCgoKdO9Zwn7m5qlff/1VNDteTcn7uviqa5Q+52xechN1q1atdJ/hGuaSkhJR22hMtmRB8vPzRbVe0z804+fnz58ntWloaKCXXnqJ+vbtKy6cWo8//jiFhYWJIOPUqVMiR4Kr+LmqX4n4IslVs3wy5arp9957j+6++246ffq0uKja29tfc0Hhfc7vqQHnQRQVFYm8D7Xu45Zo919Lx7P2PV7yhbYpW1tbcYJWw/7nZkjet+PHj282C/xf//pX6t69u9hObr7goJmPjfnz55MScdMcN89ERERQcnIyvfnmmzR8+HBx8bSxsVH9fmbcBMV5QFenFih5Xze0cI3S55zNy5aOe+17xmRRQZOl4XZjDhya5vewpu38HK1zEu2gQYPEyahNmzakNHzy1IqOjhZBFAcMq1atEsnBavf111+LvwEHSGrdx3AtvhsfN26cSIb/4osvmr3HeZtNjwm+CD3//PMiCdec5vHS12OPPdbs98zbxL9jrn3i37Ul4HwmrkXnDkxq2dfTr3ONMmcW1TzHTRV8V3J1Fj4/DwgIIDV54YUXRDLkjh07KDg4+Iaf5SCDJSUlkRrwHUr79u3F9vB+5eYrrolR4z5PTU2lrVu30rPPPmtR+5hp99+NjmdeXt3Jg5suuKeVkve/NmDi/c/JtE1rma63/3m7U1JSSA24GZ7P59rfs1r3s9aePXtETfHNjnMl7esXrnON0ueczcuWjnvte8ZkUUETR+A9evSgbdu2Nase5OexsbGkBnzXyT/GtWvX0vbt20V19s2cOHFCLLk2Qg24mzHXqPD28P62s7Nrts/55MM5T2rY5998841oluCeJJa0jxn/tvkE2XTfck4D57Bo9y0v+eTLeRJafFzwca8NJJUaMHEeHwfMnMtyM7z/Ob/n6iYspcrIyBA5Tdrfsxr389W1yXwu4552St/X0k2uUfqcs3kZHx/fLFDW3jx07NjR6BtgUVasWCF61yxbtkz0uJg8ebLk6enZLAtfyaZOnSp5eHhIO3fulLKysnSPiooK8X5SUpL0/vvvS0ePHpUuXbok/fzzz1JkZKTUv39/SaleeeUVsb28Pfv27ZMGDx4s+fr6il4ZbMqUKVJoaKi0fft2sd2xsbHioXTc85O36/XXX2/2upr2cWlpqXT8+HHx4NPV/Pnzxbq2p9jHH38sjl/exlOnToneRREREVJlZaXu/xg2bJjUrVs36dChQ9LevXuldu3aSePHj5eUuM01NTXSgw8+KAUHB0snTpxodoxrew3t379f9Kbi95OTk6Xvv/9e8vPzkyZMmCApcZv5vVdffVX0nOLf89atW6Xu3buL/VhVVaXY/azP75sVFxdLzs7OonfY1ZS4r6fe5Bqlzzm7rq5O6ty5szRkyBCx7Zs3bxbbPWvWLKOX3+KCJrZo0SKxQ+zt7cUQBAcPHpTUgg+8lh7ffPONeD8tLU1cPL29vUXw2LZtW+m1114TB6ZSPfroo1JgYKDYn61btxbPOXDQ4gvotGnTJC8vL3HyGT16tDhIlW7Lli1i3yYkJDR7XU37eMeOHS3+nrkLunbYgdmzZ0utWrUS2zpo0KBr/h4FBQXi4unq6iq6JE+aNElcrJS4zRw0XO8Y53/H4uLipD59+ogLk6Ojo3THHXdIH330UbMAQ0nbzBdTvjjyRZG7onMX++eee+6aG12l7Wd9ft/syy+/lJycnERX/KspcV/TTa5R+p6zU1JSpOHDh4u/Dd8k881zbW2t0ctv1bgRAAAAAHADFpXTBAAAAPBnIWgCAAAA0AOCJgAAAAA9IGgCAAAA0AOCJgAAAAA9IGgCAAAA0AOCJgAAAAA9IGgCAAAA0AOCJgAAAAA9IGgCAAAA0AOCJgAAAAC6uf8HJJZ6Q11XEH4AAAAASUVORK5CYII=", "text/plain": [ - "{'normalised euclidean': ['fastest', 'Mueen'],\n", - " 'euclidean': ['fastest', 'Mueen'],\n", - " 'normalised squared': ['fastest', 'Mueen'],\n", - " 'squared': ['fastest', 'Mueen']}" + "
" ] }, - "execution_count": 9, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "QuerySearch.get_speedup_function_names()" + "MP, IP = motif.compute_matrix_profile(series_predict)\n", + "\n", + "plt.figure(figsize=(7, 2))\n", + "plt.plot([MP[i][0] for i in range(len(MP))])\n", + "plt.show()" ] }, { "cell_type": "markdown", - "id": "bf12616c-6ace-478b-806f-5419c2c19f2b", + "id": "7d2522e0-e6f4-412e-b0cb-2945016d188a", "metadata": {}, "source": [ - "By default, the `fastest` option is used, which use the best optimisation available. You can change this behavior by using the values of t with the corresponding distance function and normalization options in the estimators, for example with a `QuerySearch` using the `normalised euclidean` distance:" + "# 2. Collection estimators\n", + "\n", + "Now, we'll explore estimators of the `collection` module, where you must provide single series of shape `(n_cases, n_channels, n_timepoints)` during fit and predict." ] }, { - "cell_type": "code", - "execution_count": 10, - "id": "6313f26a-5788-42dc-881a-40746458414c", + "cell_type": "markdown", + "id": "5aea3e4f-e613-4646-b012-e64c5ec9586f", "metadata": {}, - "outputs": [], "source": [ - "top_k_search = QuerySearch(distance=\"euclidean\", normalise=True, speed_up=\"Mueen\")" + "## 2.1 Approximate nearest neighbors with RandomProjectionIndexANN\n", + "\n", + "This method uses a random projection locality sensitive hashing index based on cosine similarity. W we define a hash function as a boolean operatio such as, given a random vector ``V`` of shape ``(n_channels, L)`` and a time ser ``X`` of shape ``(n_channels, n_timeponts)`` (with ``L<=n_timepoints``), we com \n", + " ``X.V > 0`` to obtainhash of ``X``e \r\n", + " In the case where ``L 0``` instead.\n", + "\n", + "The ```RandomProjectionIndexANN``` estimators use the parameter ```n_hash_funcs``` to create that much random hash function as defined above. Each series `X` of the collection given in fit is then represented as an array of ```n_hash_funcs``` boolean, which is then hashed to a dictionnary as ``h(bool_arry): case_id_array}```.\n", + "\n", + "To compute the nearest neighbors of a series ``X`` given in predict, we first transform this series to a boolean array using our previously defined hash functions, and theusedthe resulting o `h(bool_aryy)``` to look at the bucket in which ``X`` falls, and consider the ```case_id_array``` as the indexes of its neighbors. If this bucket doesn't exists, we compute a distance matrix between the boolean array of ``X`` and every boolean array making the keys of the dictionnary to get similar buckets.\n", + "\n", + "This method will not provide exact results, but will perform approximate searchs. This also ignore any temporal correlation and consider series as high dimensional points due to the cosine similarity distance.y distance.\r\n" ] }, { - "cell_type": "markdown", - "id": "6ab51d84-7220-4333-b50e-2db695eaf45d", + "cell_type": "code", + "execution_count": 10, + "id": "cc719800-0119-42f9-9018-32288c2db69b", "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "match 0 : 32 with distance 1.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABk0AAAHDCAYAAACJcV3vAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd8W+d1Pv6HJEAQ3HtviqQkam/J1rBkW5L33vGKndmZpk2TNknTkfTftG7ya5M003tvybIteUiWJcvak6Io7r33BECA/895L7FIgqIkbj3fFiFxL8a9FA2+9z3vOcerv7+/H0RERERERERERERERFc478k+ACIiIiIiIiIiIiIioqmAQRMiIiIiIiIiIiIiIiIGTYiIiIiIiIiIiIiIiDQMmhARERERERERERERETFoQkREREREREREREREpGHQhIiIiIiIiIiIiIiIiEETIiIiIiIiIiIiIiIiDYMmREREREREREREREREDJoQERERERERERERERFpGDQhIiIiIiLln/7pn+Dl5YXGxsbJPpRpb8+ePepn+cYbb0z2oRARERER0UVg0ISIiIiIiCbVT3/6U7zzzjuYan7961/jmWeembT3N5lM+N73vof4+HgYjUasXLkSH3300aQdDxERERHRlYBBEyIiIiIimlQMmgzv0UcfxVNPPYUHH3wQv/zlL+Hj44MbbrgB+/btm7RjIiIiIiKa6XSTfQBERERERETk7tChQ3jllVfw85//HN/97nfVtocffhjz5s3D3/3d3+GLL76Y7EMkIiIiIpqRmGlCRERERERupKfJPffcg+DgYEREROAv//Iv0dvbO+RxL7zwApYuXapKR4WHh+O+++5DRUWF22MKCgpw5513IjY2Fn5+fkhMTFSPa2trU/ul70dXVxeeffZZ9b3cJMPiQr1CXnvtNfzkJz9BQkICgoKCcNddd6nXlJJWf/VXf4Xo6GgEBgbiscceU9tcPf3009i4caN6jMFgwNy5c/Gb3/zG7TGpqanIzc3FZ5995jiuDRs2OPa3trbir//6r9Xj5DXkvCSoMbgfjM1mw7/927+p/XL+mzZtQmFh4QX/DaQXimSWfO1rX3Nsk+d/9atfxYEDB4b8nImIiIiIaGww04SIiIiIiNxIwESCAT/72c/w5Zdf4v/9v/+HlpYWPPfcc47HSCDghz/8oXrsE088gYaGBvzP//wP1q1bh+PHjyM0NBRmsxmbN29WQYs///M/V4GTqqoqvPfeeyroEBISgueff149f8WKFY4AQUZGxgWPUY5NgjV///d/r4IQ8t56vR7e3t7qWKWpvRy7lNdKS0vDj370I8dzJUCSk5ODW265BTqdDtu3b8e3vvUtFeD49re/rR7zi1/8Qh2zBF7+4R/+QW2LiYlRXzs7O7F27Vrk5eXh8ccfx5IlS1SwZNu2baisrERkZKTjvf793/9dHZNki0hQ5z/+4z9Uua2DBw+OeH7yM8zKylKBK1fycxInTpxAUlLSqP49iYiIiIho9Lz6+/v7L+LxREREREQ0Q0mgQbI3JJjw7rvvOrZLIEH6e5w8eRILFixAWVmZCmz88z//M37wgx84HnfmzBksXrxYvYZsl4l9uf/666+rTBBPJDAh+0fTP0QyTa655hpVpurYsWMqUCIeeOABVc5qy5YteP/99x2PX7NmDaqrq1FaWurY1tPTowIuruR5khVTVFTk2CbvIQEQeU9XP/7xj9W5v/XWW7j99tvd9snllWSl2I9zzpw56ufg6+ur9ksASjJ3Tp8+rV7fE9knQZpPPvnEbfvZs2dVwOf//u//8PWvf/2CPy8iIiIiIro4LM9FRERERERu7NkWdpJxIezBCAkWSFaGZJlIhoX9JpkkmZmZ2L17t3qcZJKInTt3oru7e0yPUUph2QMmYuXKlSpgIZkfrmS7lLLq6+tzbHMNmEj2hxz7+vXrUVxc7CgbNpI333wTCxcuHBIwERIwcSXlwewBEyEZKkLeayQS2JGyX4NJiS77fiIiIiIiGnsMmhARERERkRsJfLiSrBIpMWXP1pCMDAlQyOOioqLcblKyqr6+Xj1OymJ95zvfwR/+8AeVsSGlun71q1+NKjBxIcnJyW737QGawSWrZLsEeFzfc//+/bj22msREBCgyojJcdszZkZzbJKNMlKWyEjHGRYWpr5KCbGRSGBncC8WYe8tMzhThoiIiIiIxgZ7mhARERER0YgGZ09IEEK2ffDBB6pZ+XDltuz+67/+SzV2l3Jfu3btwl/8xV84eqVIc/RLNdz7jrTdXpVYAh7SjH327Nl46qmnVJBFMkEki+a///u/1bmNpQsdjydxcXGq/8tgNTU16mt8fPwYHSEREREREbli0ISIiIiIiNxIJolkidhJo3UJJkhzeHvmiUz6y2OkWfmFzJ8/X93+8R//EV988QWuuuoq1ZPjX//1X4cNyownafouGRzStN01C8ReUsyVp+OS85f+LeNp0aJF6pja29vdmsHbG8jLfiIiIiIiGnssz0VERERERG6khJar//mf/1Fft27dqr7ecccdKoNCGr4PzpiQ+01NTep7mfB37SUiJHgipb5cS09JmazW1lZMBHvmh+txS0mup59+eshjPR3XnXfeiZMnT+Ltt9++6AyS0brrrrtgtVrxu9/9zrFNfmZynNKnZXAZMiIiIiIiGhvMNCEiIiIiIjclJSW45ZZbsGXLFhw4cAAvvPACHnjgAdX83J5pIVki3//+91Wfk9tuuw1BQUHqeRJI+NrXvobvfve7+PTTT/Fnf/ZnuPvuu1VGigRQnn/+eRW4kMCD3dKlS/Hxxx+rcllSdkoyWCQwMB6uv/56VY7r5ptvxte//nV0dnbi97//PaKjox2lr1yP6ze/+Y0611mzZqnHbNy4EX/7t3+LN954Q52XNJ6XxzU3N6vsFcmgsf+cLoecv7y+/IylR4y8/7PPPqt+3n/84x8v+/WJiIiIiGh4DJoQEREREZGbV199FT/60Y/w93//99DpdCrw8fOf/9ztMbJPAiHSB0QyToRkP0hQQgIuQoIH0vxdSmJJfw5/f3+1TXqhrFq1yvFaEiyRQIuU7+rp6cEjjzwybkGT7OxsFfCQ95LATmxsLL75zW+qZvASAHElP4OysjL8x3/8Bzo6OrB+/XoVNJGeLZ9//jl+/OMfqyCRBDMkoCK9Ui6nT8tgzz33HH74wx+qQJM0jl+wYAHee+89rFu3bszeg4iIiIiI3Hn1j1X+OBERERERERERERER0TTGniZEREREREREREREREQMmhAREREREREREREREWkYNCEiIiIiIiIiIiIiImLQhIiIiIiIiIiIiIiISMOgCREREREREREREREREYMmREREREREREREREREGh1mGJvNhurqagQFBcHLy2uyD4eIiIiIiIiIiIiIiCZRf38/Ojo6EB8fD29v7ysraCIBk6SkpMk+DCIiIiIiIiIiIiIimkIqKiqQmJh4ZQVNJMPEfvLBwcGTfThERERERERERERERDSJ2tvbVbKFPX5wRQVN7CW5JGDCoAkREREREREREREREYnRtPRgI3giIiIiIiIiIiIiIiIGTYiIiIiIiIiIiIiIiDQMmhAREREREREREREREc3EniZERERERERERERE5M5qtcJisUz2YRCNG19fX3h7X36eCIMmRERERERERERERDNUf38/amtr0draOtmHQjSuJGCSlpamgieXg0ETIiIiIiIiIiIiohnKHjCJjo6Gv78/vLy8JvuQiMaczWZDdXU1ampqkJycfFm/5wyaEBEREREREREREc3Qklz2gElERMRkHw7RuIqKilKBk76+Puj1+kt+HTaCJyIiIiIiIiIiIpqB7D1MJMOEaKbzHSjLJcHCy8GgCREREREREREREdEMxpJcdCXwGqPfcwZNiIiIiIiIiIiIiIiIGDQhIiIiIiIiIiIioqlmw4YN+Ku/+qvJPowppbS0VGVTnDhx4qKeJ8955513MNlSU1Pxi1/8AlMdG8ETEREREREREdHYa2sDjh7VvkZFAYsXAwEBk31URFekF06/gG5bN6aSEEMIHln0yKS9/549e3DNNdegpaUFoaGhV9z7j6dnnnlGBbxaW1vdth8+fBgB0+DvAIMmREREREREREQ0dvr7gYMHgU8+kS7Uzu379gFbtgALF8qy58k8QqIrTpupDR19HZN9GHSFi5IA+jTA8lxERERERERERDQ2mpqAp58GPvzQPWAiensBKQ/zwgtAS8tkHSERTSN9fX34sz/7M4SEhCAyMhI//OEP0S+B2QEmkwnf/e53kZCQoDIYVq5cqTI47MrKynDzzTcjLCxM7c/JycH777+vylxJloeQfVK+6tFHH/WYNSGZIO+99x6ys7Ph7++Pu+66C93d3Xj22WdVySl5jb/4i7+A1Wp1PO/555/HsmXLEBQUhNjYWDzwwAOor69X+0Z6f5vNhv/4j//ArFmzYDAYkJycjH/7t39zO6bi4mL1fDmWhQsX4sCBAxf1cz19+jQ2btwIo9GIiIgIfO1rX0NnZ6fbY/70pz+pn5ccQ1xcnPp3sHvqqacwf/589TNNSkrCt771Lcfz5ef/2GOPoa2tTZ2X3P7pn/5p2PJc5eXluPXWWxEYGIjg4GDcc889qKurc+yX5y1atEj9LOW58ntw3333oaNjfAOADJoQEREREREREdHlkUnML78E/u//ZBZs5McWFQG//rX2eJttoo6QiKYhCUrodDocOnQIv/zlL9Vk/R/+8AfHfpnIl4DBK6+8glOnTuHuu+/Gli1bUFBQoPZ/+9vfVoGVvXv3qkDB//f//X9qgl4m+t988031mPz8fNTU1KjX90QCJP/v//0/9T4ffvihCgzcfvvtKgAjN5nU/+1vf4s33njD8RyLxYJ/+Zd/wcmTJ1U/EQmU2AMjI73/97//ffz7v/+7ChCdPXsWL730EmJiYtyO5x/+4R9UsEh6m2RlZeH+++9XAabR6OrqwubNm1WwRsplvf766/j444/dgiK/+c1v1M9Oginyc9u2bZsK4th5e3urn0dubq76N/r000/xd3/3d2rfmjVrVGBEgiByXnKTYx1MgkMSMGlubsZnn32Gjz76SAWD7r33XrfHFRUVqZ+fBK3kJo+Vn894YnkuIiIiIiIiIiJyzwjJy5OZPKChQZZ6a0ERIV/tN9f7EvwwmUb/HpKFItkoZ84At96q9TwhIhpEggv//d//rbIVJMtDJvDl/pNPPqmyFJ5++mn1NT4+Xj1eJuclqCHbf/rTn6p9d955p8qKEOnp6Y7XDg8PV1+jo6Mv2FNEAiASSMjIyFD3JdNEAiWSFSFBmLlz56rMj927dzsm/R9//HHH8+V9JciwfPlylZEhzxnu/SWDQoIn//u//4tHHtH6vch7Xn311W7HI+d54403qu9/8pOfqIyQwsJCzJ49+4I/UwnC9Pb24rnnnnP0F5H3k4wcCSrFxMTgX//1X/E3f/M3+Mu//EvH8+TY7aRfiZ1kgMjjv/GNb+DXv/41fH19VUaI/JtJho0nn3zyifr3LCkpUf/OQo5JzkWCOfb3k+CKZPtIxo74yle+op47OPtmLDFoQkRERERERER0pTObtSCJBDEKCwGXEjPjqrJSy05Ztw6QSUEfn4l5XyKaFlatWqUm3+1Wr16N//qv/1JlsGTCXb5KpoUrySyRklNCSmZ985vfxK5du3DttdeqAMqCBQsu+jikDJY9YCIksCDBAgl+uG6zl98SR48eVeWlJNNEmr3L5L+QQI4EWYaTl5enjn/Tpk0jHo/rOUjpLCHvPZqgibyHlPRybch+1VVXqeOTrBcvLy9UV1ePeAySmfKzn/0M586dQ3t7u8pykUCMZOTIz2o05DgkWGIPmAj5uUgASfbZgybyc7YHTOzn6/pzHg8MmhARERERERERXana24Hdu7VgyeAeJBNFAjRyDLm5WtZJQsLkHAcRTSuSseHj46OCE/LVlT2Y8cQTT6hSVDt27FCBE5nol6DLn//5n1/Ue+n1erf7ElgYbps9MGIvgSW3F198UTVAl2CJ3DdLkNoD6TFyscdjDyrZ3/tyGS9wDFJm7KabblLBKMn2kIyZffv24atf/ao6t9EGTUZrpJ/zeGFPEyIiIiIiIiKiK42U1Dp+HPjVr7SvkxUwcSUrh6VXwfvvyxJt99vJk1qpMCK6ohw8eNDt/pdffonMzEwVJFm8eLHKNJGsA+m34XpzLQslmQxSOuqtt95SJad+//vfq+1SRkq4Nm8fK5KB0dTUpHpvrF27VmWADM6OGO795dwkaCHlp8bLnDlzVPaLBHbs9u/fr/qUSAm0oKAgld3h6RgkSCVBCwk+SSaQZPpIZsrgc7vQz1WOo6KiQt3spIdLa2urx0ycicJMEyIiIiIiIiKiK0lbG7B9u1aGa7ytWKGV3frsMy34MZpgzqFDnvfLRNrWrYBLqRYimrkkO+M73/kOvv71r+PYsWP4n//5HzVZL2Sy/sEHH8TDDz+stkkQpaGhQU32S/kq6fkhvTe2bt2qHislsqTniEzWi5SUFJW1IM3Fb7jhBhWscC23dTmSk5NV4ECOVwI2Z86cUU3hXXl6/+9973uqqbo8X8pmyTlJw3XJ5BgL8jP78Y9/rHqmSPkweX3JvJFeIfaG8//0T/+kjlv6rcjPT3qtSGBFHidBKenxIucmfVBk+/9JmUUXEnSRTCD5t5BSYJJ9MjgDRcqlSa8ZOR5pHC8lvr71rW9h/fr1WLZsGSYTgyZERERERERERFdSdsnOnRfXtP1ShIVppbZSU7X7N98MzJsHbNsGtLRc+uuePQsUFwPXXQcsWSJ1WsbskIlmshBDyJAyR1PhmC5EAiI9PT1YsWKFyi6RxuRf+9rXHPul4bu9aXlVVRUiIyNV9oOUjxKS7fDtb38blZWVCA4OxpYtW1QjeZGQkKCaqP/93/89HnvsMfVe0nB8LEg5LnmtH/zgB6oB/JIlS/Cf//mfuOWWWxyP8fT+P/zhD6HT6fCjH/1IZXBIDw8JYIwVCV7s3LlT/Sylb4jcl14vTz31lOMxjzzyiOpRIj8raTovP9e77rpL7ZMgiDxWmsZ///vfx7p161TZMzl+uzVr1qhjvvfee1XGjQRpJBDjSgJG7777rgrEyGtIpov8+0gwZrJ59ffLX8yZQxrPhISEoK2tTf2HQERERERERER0RZMghQQbpG9JTc34vpdkgCxcqDV2Hyg940bKgEn/kgMHtCDO5UhJ0YIxkZGX9zpEM5hMfJeUlCAtLQ1+fn6TfThEk/b7fjFxA2aaEBERzVQdHYDUFZUL04wM6eY22UdERERERBOltVULlEhz9aqqi3++wSAF57XsEGnMLhkd9psY7r7wvkD7XFnpfv31QE6OlnVSV4dLVlYG/OY3sqTbfbscg/QzkPIu8fGX/vpERHRFYtCEiIhopl0c5+VpF8guzdTg4yP5scD69YCOf/6JiIiIZmyvEgmSXGqgRMyeDSxaBMyaNb7jRgnESImdffuAvXulhs6lvY48r7Z26HZZPHTqFCDlZOSciIiIRomzJkRERNNFby9w/rxWUsFsHrpftsvFoaeLyc8/1wIqUkM1OXncD5eIiIiIJkBXlxYckEBJZeWlv440P5ZSV9nZmDCysEcW9Uhzd8k6cV30Mxb6+oC33gKefHJoNgoREZEHDJoQERFN9Yvgc+e0YEdJyaWvwLNrbJROecCKFcCmTcPXmSYiIiKiqU/6gXz5JfDpp1o51sshPUi2bJm8cq4S0Hj8caCgQAv8DD6f5mYgP//SXlsWG732mhY44diXiIhGgUETIiKiqaa9XQuSyE3qNF9ug8zB5PUOHtSCMRs2aKsJ/f3H9j2IiIiIaHzHi2+/rS2qudym7ZJdkpWFSSc9UeQ4PB2LZFzv2KGVILtYDQ3A9u3AHXc4e68QERF5wKAJERHRVNDSovUhkUDJ5ZRVuBhywfnuu1qjzJQUrdaz3EJCJub9iYiIiOjinTkDvPeeVrr1UoWFadklq1YBfn6YFiSYImNWyaw5dOjiFxadPg0kJWkZ10RERCNg0ISIiGiyyIo3e9P24ZpXThSbTVulKLcPPgDi44E5c7QACms/ExEREU0NEiR5/32tf8mlBkqkd0hODhAXNz0zLgwGYOtWYMECYOdOoLz84p4vz5GxbmLieB0hERHNAAyaEBERTRRZDSfBEXtGifQXGW96/cXXuJZm8nL75BMgMlILnkgQRS4wp+PFNREREdF019QEvPCClp18MUJDtSDJdA6UDCchQeuB0tPjnnEj4+033wSqqoZ/nvQHfP114OtfZ3laIiLyiEETIiKiiSDBEimjMBGlt+yrCOUWG6s1CN29G+jru/jXksDOvn3aLTjYWcJLSiP4+IzH0RMRERGRKwmUPPus1sdktIESe0bJTF/0Io3rBzevv+ce4Le/Bbq7PZeolcDKAw9wPEtERMNi0ISIiGi8Sdmrl166+IyP4chFoQQtUlO1izzXWs5yXzJDpKSW68XxVVdpz9m2TWssf6nkQl3qR8tNjkPqSsvFeGbmzL4YJyIiIposMv567rnRBUykL90ttwDp6Vf22Ex+DtLw/cUXPfc9KSoCXnsNuPtuQMepMSIicse/DEREROOpsBB45ZVLy/KwCwzUymPJ7VIzPCIigEcfBY4eBfbsATo7cVmkFMLJk9pNAji3384G8kRERERjqatLC5iMpiSXNHWXXh/Tpan7eJs1C1i/Xhv3epKfD7z8MnDffVpJWyIiogEMmhAREY2Xc+e0mslSO/liSQBCyipIoCQpaWxWC8prLFsGLF6sZb/I8cntcgMopaVayQgJykgJLyIiIiK6/AUqEjC5UA88CZLcdBMwb95EHdn0sW4dUFGhZZV4IvskI0VKdfn6qk39/f1oM7WhpacFQYYghBvD4e3lPXHHTUSTzmw2w3fgM4GuTAyaEBERjYfcXK1Wss12cdkg9kDJeDbqlEwVWX0ntxtv1PqsSGN6CaA0N1/aa8rz7IGToKCxPmIiIiKiK4fJpDV9r6sb+XHJycBdd3HRiife3sCdd2r9TaSPyUgLgJ5/HnjwQVRbmrEtfxtqO2sdu/31/siKyEJ2RDYywjPg68OJVJrmfvrTS1vYNx7XpT/4wQUf1tXVhW9+85t46623EBQUhO9+97vYvn07Fi1ahF/84hfw8vLC22+/jdtuu83xnNDQULXvUbk+hcRPK/A3f/M32LVrF7y9vbF27Vr88pe/RKpUTYBcxj6K1tZWLF++HL/61a9gMBjw2GOP4bXXXsOZM2fcjkfe9+abb8a//Mu/jPmPhKYOBk2IiIjGkpThOnEC2LHDcw1lVzExzkDJ4F4kE0HeTzJZ5HbddUB9vRY8kSCKNK+/GE1NzsCJlBQjIiIioosjk/uSqVxVNfLjZOz20EOO7IiZoqGrAY3djeizDS1tq/PWqayP6IBoNUk6Kv7+wP33a2NUyd7xpKICVf/7Mzy7wAazr3sp3G5LN07UnlA3Hy8fpIelIzsyWwVSgg0MWNE0JAGTqRA0GaW//du/xWeffYZ3330X0dHR+MEPfoBjx46p4MVoWCwWbN68GatXr8bnn38OnU6Hf/3Xf8WWLVtw6tQpR0bJJ598guDgYHz00UfqfkhICH7yk5/g8OHDKpgijh8/rp4jARya2Rg0ISIiGovVgAUFWqBBvprNo6s7LXWWw8MxZcjFpwRx5CbHJvWz7QEUKW0wmiCQlJCwB04CAibiqImIiIhmhrNngW3bgN7ekR8nGckPPjijAiaV7ZXYWbgTFe0VF3xsoG+gCljMjpyNtNA06H0u0I8kNhZ45BEtm0T6xAyjpqMGBaX5WFAdiJPXLYDFOPzP1tpvRUFzgbqJuMA4FUCRLJTYwNjRB3OIaFQ6Ozvxxz/+ES+88AI2bdqktj377LNITEwc9Wu8+uqrsNls+MMf/uD4b/Tpp59W2Sh79uzB9ddfr7YFBASox7iW5ZJgizzWHjSR79evX4/09PQxPlOaahg0ISKicdFl7sL5pvNqpZiszooJjMH86PkI8J1BE+k1NcDevcD58xe3UmfFCq1R51S/qAoLA1av1m7S90SaZUoQpbh45PNtaNBqcMvqR5bqIiIiIhqZxQLs3AkcOXLhx0pm8le+MqYN36WHR01njcrykGwOmfyP8I/ARDD1mfBJySc4XHUY/egf3SSquRPHao6pm95brzI/jHqjOg/1f8N8Fb4rQ5Cx/TSCLd4I8wtTWSIygSoBm8LmQvWYwOZOLPrwBF5flI4vG7sRGWhAemQAksL9ofcZ2tdEfm5y21O6B0adUb2erd8Gq82qvkovlFC/UKSEpqjASlpYmvoZE9HoFBUVqf4iK1eudGwLDw9Hdnb2qF/j5MmTKCwsVKW9XPX29qrXt5s/f/6QPiZPPvkkHn/8cTz11FOqrNdLL72E//7v/76sc6LpgZ/URER00eQiwGw1w8fbR10IyM0LXipAkt+Uj/zGfHXxMfjCZ1fRLqxJWoP1KesvvCJsql/Y7tkDHDhwcT1LxJo1WhmsqR4wGUzKbS1dqt26u7WVehI08kRqcP/iF4AMZuU5shJnup0zERER0ViRiXspgyq95GTxidyXm4wlpbSr7LsQyVB++GGt5NQYjOdLWktwrvGcukkgwlWkf6TK5JBbQlDCuGRQyAKr986/h3ZT+yW/hsVmUdcfo37Pq2OxaOdJGFpLVcBFGr0397j39Gsva0L0uXp0LUhDbVsvzlS1QefjheSwAKRHBSAtMgABhqHTaT19PcNmpjR0N6jbkeoj6j2lL8qs8FkqyCL75d9CypHJ98OxlyVLDU1lQ3qiYcjnkz046lqSyzVbZenSpXjxxReHPDdKAtEDJNNkMOldIv1NpGeKBFTkde+SXlI04zFoQkREoyKDkFN1p/Bl5ZeqMeJoV4K5ktVW+8r34WzDWdycdbNaaSXaetvURVNZW5m6aJHHSRDGPgBS/zdwoTb4e1khFh8Ury7owoxhGHclJcD27ZfWMH3dOuCaa6Z/8EAu1OWCXcpwjdT3RCYEpMyE3CRrRUqSRUYCRqP2GvabfhoH0IiIiIguREq3Sp8SKeN6qUJCtBJTl5HFK1kdklEhQRIZe5usJo+PlcVQMm6XW5BvEBKDE90mJu3XAq73R9o3+L7FakFVh3vfFtmfV9OB4+Ut6O0bujBJ5+2FxDAjMqICkRhuhE4avV+knhB/HN+6SAVO0NnrFjCR969q7UFlSw+kgO6DJ4vx8oI0tPn5os/aj+LGTnWTy5TYYD+kRwaqIEpEgO+og0oS5LEHqi5WiCEEm9I3qex9lgGjK0VGRgb0ej0OHjyI5ORkta2lpQXnz59XZbLsgY8alwV9BQUF6JaFfgOWLFmiSnRJPxTpWXIxpP/JI488ospySdDkvvvug1GuZ2nGY9CEiIguqLqjGu8XvK+yRy5Wr8WKHosVoUa9Y3AvFyfPnnwWcyLnoLW3VaW0X47T9aexs2inKiUgwRN53YtqEDkaUlt61y7g2LFLe/7GjVrQZKaQgaI9cCJZJRci/VEkO2c4EkhZuxZYsGD6B5SIiIiIXEmg4M03Ly9gEhGh9TCRwMkllMyVTIy8hjwUtxR7zGYYSYe5A3mNeRhPbd0WfHKuDuXNzonO4bR0m3G6qk2VykqN8Ed6VCBigv0GBWUGEnnku373+74+3ggP9MPxLYuwcNdJ+Lf3OJ4r713T5uwnk+Png582NOHFeak40WNFt3mgOX0/VAaK3L4oakSwUa9KeMn1jk2Sh/r71c1qA7y9gLhQIxJCjfCRO5fzMzK14a28t1TGytb49YjzGeb3QcbSMinMRUk0Eh8fTJfjCAwMxFe/+lXVDD4iIkIFPv7hH/5Blcqy27hxI/73f/9XNXq3Wq343ve+pwItdg8++CB+/vOf49Zbb8U///M/q34oZWVlqpn73/3d312wP8oTTzyBOXPmqO/3799/WadM0weDJkRE5FGPpUfVGD5affSiMktau80obuhSK7GqWnvVRYisCLsmOxqBfs4/PUMuvvr74dtrgcWgR/8lXFRIBozcpKawpLDbAyj2lXF2Td1NanWXXDhKAEdqIEvZAXm8pL1L2THFbIb53FnUHtmNjtNH0dPV6mg+GWGMUO/heKwn/v4wbdqAgiR/FOS9jfqu+mFX9UmqvdRWTg5JVscRFeBME7b/W8iKQFkdKCv/DDqDajwpj00KSZqcVH17xskzz2h9TC6VNI9/+22gvBy44YapM4gnIiIiulwnT2p94S6VZOrK+MhgGPVTWnpa1FhXxtoVbRUjjuOttn5UtfSgsKFTBQ0km0MCABnRgYgOMox7RoPN1o/jFS04UNyksjns/H11A3nnTr19UspKe4zFakNBfae6XawAXx3SogJQujwTNx0uQGBbN0oau1Df4Ryjp4T7q2CHREj+urASBcvTcSoyFMWNco3ThcZO52Pbeyw4UaFdJ3jiq/NGSkSA+tmmRgTA6HuR493+fgQ1dSKqrAGRZQeR3/4cOoLikRaaNrTssUwmy4r8zEztJuWHuDCJXP3gB5hOJOAhJbakVJb0Jfmbv/kbtLW1Ofb/13/9Fx577DGsXbsW8fHx+OUvf4mjR4869vv7+2Pv3r0qmHLHHXego6MDCQkJqrH8aDJPMjMzsWbNGjQ3N7v1VqGZzat/cNG3aa69vR0hISHqP56LTbkiIiKN/Gk4XnscHxd/rJq4uzL32XC6qhWt3RZ4e3lpN2+Z9PdSFzplzV1o7jJ7vFi4elYk5ieEOC7A9L0WRFQ2IaK8EYEVTejp7IVJr0P+7AQUZMXDSwVPBop1ean/Hxjza9vCA3zV6q6RSEmB7Mhs+On8VL8VqSnsSWCfNxa3+SOppgvd506jrbPJ44WmPdAhAQ5p8GgvKSYruywZqSiL88fJkB4UdVVe9Ko+ex1pCdDIMUvpMilbNhx/vb9qLKlqTgcnOLa7/ol3PYfBf/pd90nN5AB9wMVdIEuTeAmcSPDjcqWkAPfeOya1uomIiIgmlUzq/frXgMlzGSyPpBnxTTdpmbgXIGO7uq46LVDSkKe+H4kEHEobu1DU0IWSxk6YhimFJQINOpXJIRP99kl++zDSWXLL5TgG/mdU+wB17XCopMktWBFk0GHjnGikRQYOOR65Dilvth93l8pov1zBVhsezSuDf7Mz+CLnGz2QveKqNTYU51dlojs0AG09FhQ3SLmuLhV0ksyS0ZJhdojRV/27SRBIy0rph8SMfGxW+PVZYVA3G/wtfUhv78F6swmZvt5DslVk7J4elq4WU3kcv0uGkgRP5s/XgikMoFxxpOF5SUkJ0tLS4Oc39Hd7OtqwYQMWLVqEX0gfzXEm/61K4ORb3/oWvvOd74z7+9H4/b5fTNyAQRMiIhqyMu2dc++oSXpX8ufifF0n9hY0oMs0kJo+kv5+RHabkNNrgl+3CT1WG6xe3rB5AWHBfliZFIqUpnboq1rQ2mlGc7d5yOueignDB1kJ6L/AwD4q0IBZ0YFqRdzF1BS2M3T2IrK8EVHljQipa4XXJfxllGOsT4tGQ2oUmuPDYNNN32wJg49B9ZuRQExWRBYCfIc2xBs2cLJtG3D+/OUfQGgocP/9QEzM5b8WERER0WSQqZYXXgCKii7+ufHxgDQalsbvHshiGskikWwSCZZIyduR9JitKgu8qL5LLXKyZ2y48vb20ib/J2OWyAtYlBiKNRmRaqHVaDJUqtt6VPCk22R1W1ylFjINum+/PJBgh2TUuJ6/n6UP954uRXxnj7qeiAz0nNVj8/ZCRU4S6tNj4GWzwdvWD0uvBbWtPejw1aEr2B8+PgMLy7y8VHaMBKhKmrphNvchtaUTqa2dCDZZVHDEt8+mBUmsWrBEN8y/i1u2Sri/WjQ2+HpHFnLZF4mNSIInt9xyWb1xaPph0OTSNTQ04JVXXsH3v/99VFRUIEx6ddKUxqCJBwyaEBFdGvlzcLTmKHYV7YLZ6p4p0txlwu5zDahoGbnGsLfNhqT2bqzsNWFZdw+S0A8/vbe6KClr6kaDSxq7jPOlprCnlW12udGheC878YKBk0CTBRnNHcjp7sUsHVQ5AZWB4u2tXfdJ40pvL62msazQ8vJCl9mK3pYuRHf0INhPN2KwRc5BUu/l6ivYT++2yqs9Mgj5a7LRFT50Rdzg1XEVzd2qx8uQn52XF+JC/BAW4Dvia8iKuurWHvjpfRAb4qeeN57kIlPKf0nwxKgzOpp82r9KOQAJssgFmsHHF/71LQg4dQ6GcwWAxXLpbyyrK++8E8jOHsvTISIiIpoYR44A7713cc+Rcd3q1ejfuBHN5jZVklUahzt2w0tlL5e0lKg+JYMzwgeTsWtRQycK6ztVgGG42R+ZiE+L0MpxSdkoyUKR7Imi+k419h8uuDLWIgIMuHZuNOJCJqa5spyjBE6KBzJtus1W+Nts+OeWFszqcblegZfK5JZxrvxbNPU0XfBnbvbToykxAk3JkWiJC4NV74PA5k5EFdbCP7cK3c2dKmPfbLWpoI6M5VVgR746MuqHBrxc/xXkWiQ10l+VMHPl4+WDWeGzVJ/HEReRSW9CKfk2bx6zTq4QDJpcOvlvKTIyUpX8euCBB8b1vWhsMGjiAYMmRERDyUe99MI4VnNM9fGQP/zBhmDVx0PKOUX5R+Hz8s/VYwZP8h8sacLx8la3lPO0yAAsTw1Xg3zZHtDajYy8CsRWNiPEG6ox43DsaeyeAiX+vj4I9feFfiAgYX/HsoRwfLE0Q2WqqKR+WQDX34+Q5k74FtYhvKIJcZ1aE0dXchyyEivc3xdBRq0usgRKWrrMqomkXCDZSf1meW95vDRxlJV2cv7Sn0WyYOTY7T8C74GU+pAQPzRdlYXGeckee7BI9szFXHjK+0v/F7nFBGt1pDt7+9QFr9wqXdL/5eeVPvDYpDAjdB5+7pMhDEZc3R6KRVVW+NTVX9qLyEXc0qXA+vVcDUdERETTR0sL8JvfqP54Hi1frpUj1WbMtYnsjAzUGiz4sPBDlLaWXvTbyvi4qcusxp3So6TBpeyVK5lsz4jSAiVJYf4eG5TLWLi0qUst2JEhrP1RrvPsrlkdF9zn+B/7Fy+EGPXIjg0acgxJwUlYErfEMflvtVnVz6SguQC9fc5m7ZdLfmaysMtfr1PXMfM/PYPQ2lZVhjcnKgcR/hFuj5egifRHlCCKNGYfiU0WiPkbYOwYep1yMSRoIv8Ocj3iKjbYD0nhQ//9pPeiLHiSHogjyskBbryRZXGvADMxaELkCYMmHjBoQkTkrq6zDjuLdqpgycWQjIhdZ+vQ0WtxW9W0ITtKTdQLH0kxP1GKxLwq+YMyqte1N5uU1W4yvA8y6hHmLzdflT3hSWNyJIqXpiOkthVhNS0Iq2mF3qQdm6nPqvqoSDCkvXf40mFyMeHj5aVWdV2IBIMkQ8Y1qDJYSVggPsxMQLvRgMRQo1uDeztZRVbT3nPJJQ6kjrRc1NZ3XPjCUAJEyeH+MAyUMxjylm6VFpy1pAfvk+CRXHxJYGykf4/RkoDcfZEbEFHfIX+kge5u7dbTA9TVjTyZ4Dg5PSAN9666SptQICIiIpqqZEz87LNAaenIzd1vv33YrG8JmPTZRlEK1+V5NW29joySwRPrdrI4SAVKogJVdvN4N3i/VJLBfG36tVgWv2zYY5TgiZQRlp5/55vOo6W3ZUzf37vPivn7C7GhOxphxpHL8FisFpV9IuWNJZgiWUASbNHKgan/Rae586J7G3r6d27ptqCsqcttAZqM/SX4Jddpg3udSMZJTECM6pHo8d87MBC47jpg9mzAcIEgC01bDJrQlaSXQZPhMWhCRKSRAfrukt0qu8RTI/Ph9Flt2FfYiBMVrW4Bh2Up4VieGqZlM/T3I6a4HhlHiuDbYx6xAXuQIQi1nbVDmphLWryM3XXSRX4MyetK8GRwdoinoISsbpOSV3IRMlIDRwlKBAcZUBUZjE8C/XE6KOCi09nl/eRCNTLI4FhxZyclu6QmswSTRvrnkgsiCWh0mvpUPWppoDke5MIqIdRPHa8EyeTndKl8fXxxa/atyInOcd/R0AC8/DLQ3Dy6F5IBjwROJIAi5buIiIiIppqDB4EPPvC8X7Jnv/Utt4Ugpj4Ttp/fjjP1Z0b1Fn02KfnaowIlUmKq2zx8kCU6yA+zorVAyXB9MAYHK6S0k8lqUuW/xmKi/2JJKawbMm9QGfGjJYGLnr4et0CFp68SjCppLXEEXOR5g0lvkLvm3ImEqnbt37Gj47LOSa6B2nrbVHBFslMuN0vG3stFsn8a/Awwy7WZF1Svk/TIQPj3modcnwXoAxATGAO9t179+0opZvmdk5+HBHlC/UIRF5oI38zZWvAkK4tZ3jMMgyZ0Jell0GR4DJoQ0ZVOVl99UfGFKrc1uDeJZHmcr+tQE+7SPD0m2A9GX2c2QU1bD3bl1qnSVXYJoUZcNzdGrU6TCERwYwfSjxQhrK5drb6SCxB7fwshaeByoSNp4faU8B5Lj6q7fKEGla4ro+yva+f658q+fXAgZujPol8rr9VlRmuPFhQJ8dOrviGS2eLaZFL2SZBFBVy6zOiz9cOo90FAqBF9mbHoy45DS2KEqktss6/oq9dKZnla0Sci7OW2ogNVn5ULreobrpxXpL3RvQRcAp0XvKoec1O3dsHc2KWCP+PFnnWi9TPRFlEKvY8XfHU+apWb/DwNElwy6rE4ORRBg1a8rU5crVYO+ni7ZLBI1snrrwMlJaM/GCkhIGW7pKwF/9YTERHRVHHmDPD224B1hDHZQw8Bs2Y57sriotdzX1eT6q4ka+RwabPKfLaXtfJyWWwjpbOGX/RixKyoAKQPk30wmGQgZEdkq2BFWliaGoMLmdiXsr3SYF5KYslirMuldezQjtF1m/QLiQuKw8qElSpoM1EZMHIdUdFWoc6zuUdbwJMSmoJFsYvUgh/FZAJ279YCYWMwdSbjaAnUdJm71HWaykpRDeO17BT5OpgcW1VHleN+e1QwGlKiUBAVjHfL29X1m50ExjbPjUFGXx8iKpsRXtmE4MZ2eI3i0OWcpRxZiF+ItiEpSfXXwZw57HsygyaRU1JS4M9ybDTD9fT0oLS0lEGTwRg0IaIrmVzQvHz6ZbeBtZCPelmF9nlhowoiuJIMAqmHKxPeZ6rbHNcDkl1y9axILI0NQlhtKyIqm9Tg29BtUquRMsMzEeAbMOpjk2Oo66pDUXORW0NLIbV+vWfPQXTGAsw6UoKA/tGVhZILOlmx1dDVcMGawvY/d6O5EDP56VGbGIHWtGi0xoaif4ReIfK6Hb19KsgymDS6H65s12hJUEQySVwDWyOtOlOZNY5Ak+sFqfObwWdvrzVtJ+XY5HflQsGg0QRZts6LRUqE++9Ickgy7p57t8pAcpCJhQ8/BA4fvrg3kSwlqcW8ahWQkHDJx0pERER0WWSc+fnnwKefjvy4JUuAW25R33aYOnC89jj2lu11K8clWST7CtyzvkciY3YZb82KClTZyBcaN4Ybw1WQRG6JwYnDTtQPl81hX6xkH0sPDoJc6P60VlMDvPceUOV+jTXm5GclE3yDbq0w4fO+QpwJtcAU4CyhJQu5jpW14EBxk6Nvovy858UHY05csCrDZui1IONQIWJKLtxjUBrJL4xd6J7pk5iole9KSRmfc6YJYbPZUFBQAB8fH0RFRcHXd+TMM6LpSvWpamhAd3c3MjMz1e/8lAya7N27Fz//+c9x9OhR1NTU4O2338Ztt9024nP27NmD73znO8jNzUVSUhL+8R//EY8++uio35NBEyK6Ukna93MnnxuySk36Yew934jKlu5hn5fQ3oW1pfWI7+iGj60ffd5e8PP3RWZCCPyMvvDr7IX3QB8QWYGUEZaB6IDo0Q+yZDI7M1Mb9Nts6LOYUdVShrr2auiCQuCXkY3U2avgbw/AyMXI88/LcpiLOn9ZrSVNGRu6G1Rd4YspSSZ6goyqb0pDSqRawTWeK6r89f6qBIKdHOtos3AmigwPJOOmqKELJY2djlWO9n93e79Js7Uf5j6r6hUzZEThBaxOi8CKtHC33xcpEXBPzj1qNZ+bw4dh++ADdPW0qQtzCcrZVzxekKyGu+YaID398k6ciIiI6GLI4o/t24ETJ0Z+XEgIrN/4Ogq6ynG85rhqaD44a1oWrLx/ugZ17c5xsGQ+yzDKPs7qt/egC/NXmcwpEf6qjOxI4gLjHIGSixrHk5PNBpw+DZw6BXR1ATIRJzedTvsqffoqKrTHXYgEIBYsAKKitD4i9gCJlJ/18G8jY/PchlzsKtqFdlO7276mThN25taivsPktj3UqMfsuGDMjg1CZl0rsr4sgK7XDIuM3602tUDLT+fjFmiTEl6SbTNkcZyU7Lr2WiA6+qJ+bDR1mM1mNTcrk8lEM5mXlxcSExMRKD2bBpkyQZMPPvgA+/fvx9KlS3HHHXdcMGgiqWLz5s3DN77xDTzxxBP45JNP8Fd/9VfYsWMHNm/ePKr3ZNCEiK5EkrYtARPXiXcp8/RFUSNya9rdemRIyr6sPGpp60Xq8RJknq92XIXJED0xzIj4UOOQiym52MoIz7jwJLas/pcgSXa29vVS6uHKai4JnFzsgC48XL2vKS0ZxbYmnG/MR0lLMSwWkzbhLyuw+vuhgzcSgxIwKzRdTdw36Mw4a6lGfvN51cRxMCk1Zr/QlPrOUqpAbhcT6Ij0j3S8RkJQwpCfr6w2lBJm8rqe6kjLRa48PysiS10syWOlHvPl1kYeCzKckAuwHrMVe87Xq/4sdqkRAdgyL9atsbysatwyawuWxy9XPwupqyxl5XJz9yDmUC6iyhvVCsUI/wikhqaq8hGjIr93118PRESMx2kSEREROfX0AK++OnLT94HyuUeuy8HnPpUeS11JOa6PztY6mnxLBsm6rCgsSAi56CCHjKFkjGsfe0qWOE0AWfRVWAjk5wMFBe6LwGRsunChFiwJvfR/Dxn37yzcqbKUXEmmiZRzO1LWPGzPQylNrOsyYcPZMmQ0Ofu0yK9WVkyQ2m8ni7sWxy1WpdPcyIMXLdIyT1jiaVqSa7a+vj5YRyohSDTN6fX6IRkmUy5o4vZGXl4XDJp873vfUwGSM1IHdMB9992H1tZWfChlO0aBQRMiutJIaSoJmHSYnYNf6Uny1tFKdJj63MpwSbkt6Y0R1NKFOXvzENDapdK6ZaJb+mEEGHRuE9v27BK52JJU/gtKSwO2bh2bFUh1dcBzz2kruTyRlV3JyVpwRlY/DTNRrho+tpSo0mBywRoVEIX0sPShFwEDtY3L28pR2a5d0Mo5y2Ml4DGY/PmUGtTSTFIyXIYLcshKLXmuBJuGew1P7HWkazpqVAaNHLPUeB7u30DOqaytTNVkbultcev9MrhmtKvh9sk5SN3qy816kWOQi7YvipscATupqX3jgjjVR8fV4tjFiA2MxWdln7kFrIIb2pF2tFiVhrMHjCR4Ilk6FyQDpBUrgPXrtVV7RERERGOtpQV48UWgsXHEh8mY8qPYbpxcMPz4WErnHitvwanKNrdx+43z4xA9aNw0ElnYJBnhMm7Pjswe3ZiJxo9MSldXyyQVEBmpXR+NYYaPNLPffn77kCCcqc+qAnDnajpQ0drttnhO6e/HgroWrC+pQ4BFu1aUw5JFda49cIw6owqcOPq7uAoJAR54AIiJGbPzISKaCNM2aLJu3TosWbIEv/jFLxzbnn76aZVtIiczGgyaENGVQj6+pXfJS6dfcptsbuw04a1jVeg2a4Ng6VWyMi0CC5NCoIcXkk+XI/VEqfwBuOB7xATEqMl6vc/ITSRVM25Z3S/9JcYy3b+pCdixAygu1u7La8fHayWYJEAjJZn0Fzg2uujfq/quekc2TU1nzSW/ljSp/+BMjWpWal8xuXF2NHLiQ0Z7MAirbkH6sRIENXWo4I4EWGTl5HBBryFkBdzGjVrTeJahICIiorEik+ESMBlpcY+sAeqsw8cJJhQsSnIbi0hZJJnYPlPVhqpWZyNvkRkdhGvnRsOgu3BPOxkPSQayBEpkzD7sBDfNWHIN+H7B+zhT71x47Ep6FZ6r7VABFFlUJ2W4Ag06BPjqEKwDQiqaEVRUh4zmDgTabJgbF6wW0dlJpreU6hq20oCUErvrLm3hGhHRNDFtgyZZWVl47LHH8P3vf9+x7f3338eNN96oau4ZjcYhzzGZTOrmevLSC4VBEyKaaaRPh2QUSHaDXIDJ154+94ssqX/89vEqlTUiIgMNuH1RPGI7ehBZ0YSosgb4t1245JVkSMgFmGQ4XHBFvzThlhX9MnAeD/JnSoInUh9YSn0N87eAxo+UDZM+MXJRJiW1JHAhf9Pt2SmSCSOZMSarSWU9naw76f78Xgt2nK5BbZuzPMGipFCszYxSQZTBpJb3oZJm9Tx5nDQ0lUfJ72/i2UqE1raq40gJSVFN5UdVrmL2bODOOxlgIyIiossnZZdef13rYeGBTLMUtZbg43lG1GbGuWWVHC1rQX5dB8wDZbjsVDmuzCgsSHQvxyUT12uT1zoWMclryyS2lDCV8rk+3hcOrtDMllufi51FO4f0OnElvzeDx81S0mvbyWqUN3Yiqa0L89q6cK8vEOJSuklKu82Lnjd84EReT0rpr1zJBUpENOOCJqPsrjp1/exnP8NPfvKTyT4MIqIxJ5PRUiqpqLlIlWoa3OB9sOrWHrxzokq7AOvvx3KLBQ+ZrYh79zB8e8xuA19J3ZeVaDKwlrJeMjEuZaxkMloCJbKa32PvEulZIhkesqpo/nwty2Q8yQBcUtppUgQZgtRttKQcxLvn3lVBFPV8Pz3uXpqEz87XO8pOnKhoRUOHSZXr8vfVfs+kRJwES05WtcImvWckU6W5G3EhfliTEQkkR6IxORKBTR1IzKtCX3Gp+v2dGzX3wpMF584BL7wA3H8/y3URERHRpZNm79u2jdjsW8bwp9sKsG9VPFriwxzbJbNk19naIcES6SWREx+syiO5rvIXaaFpuHPunaPv7UZXpJzoHDUGlyzxk7UnUdRSpMoOuxpuoZEE6m5aEIe3jlWi3MsL5aGBOKjzxt/4eyH7fDV8+qyqbO/xmuOYHzN/aKa3LG6TUvpSok5KNHvoIUBENB1N+/JczDQhoplEBrcy2D1SfQRlrWXD9skYjkwuyyqhPqsNIT1mPFJei3VGb+gkwOFSl1Z6a0hT84ttJqmyO6RviNxmzWK2B42osbsRr+W+psp8uZISFLvz69WqNhFk0GHL/DhUtfSoppWDJxFcJYf7q+BJbIh2sSaBwPhzVZhb1I5FYXNGV44iNhZ46CEgkBMPREREdBEkSLJvH/DppyMGS6QfXRFacGRDJrpDA9R2mXL5srgJB0uaHY/V+XgjKzoQOQkhiA/xGzI2l4zedSnrsD51vVrURHQxpM+JlOw6VXcK1R3VF3y8VCl4/Uglmrq0ubWIAF88kBOD2WcrEZ9frco6SyUCCZwEGzzMs0n55Hvu4QIlIprSpnUjeCnHdfr0ace2Bx54AM3NzWwET0QznsVqwRtn30B+U/4FHmdDU6dZrdRv6DShscOE2o5etTo/taUDj5TVYkG4v1vpI8kumR89f+QV+TKhfPvtQFSU1riwrw+wWLTMkoAAplzTRZGJg+3523G63vk3XdS09eC9UzXoMmk9dwbT+XhhSVIYIoMMaoKhucu99EVWTBCunROjevUIfY8Z83IbcG1LGAJG0/A0PBx4+GEgNPRyTo+IiIhmqtZWIC9PKw8rzd7lJos4XUoW2cl0SpupTU1MS5nStqggnN44Dxajr2MyemduLUoau9zGMpvmeO5ZEmIIwS3Zt6jFTkRjsZhJFuNJFrgsopOsJcki/6z0M+Q15jkeJ2PzV49UoL3H4ijzfOuieESb+5D1RT7CBkrkSv+c6IDo4d9MGsPLAiUpqUxENAVNmaBJZ2cnCgsL1feLFy/GU089hWuuuQbh4eFITk5WvUuqqqrw3HPPqceUlJRg3rx5+Pa3v43HH38cn376Kf7iL/4CO3bswGapkzgKDJoQ0XQkH8Wvn30dZxvODtknq/JlormsqRulTV2q0fuQT+7+fqyqbMRt9c1q1Zq3S4Aj3BiOnKgczwETeezatVpfEqZU0xj/Xh+sOohdRbvcSgTIRZkETuT32vXXUBrEr0qPUA0qha2/H/m1HThQ3OS4gBPRQXIRl+BWwiK83YL7q8IRVddx4QOTC7mvfAWI9nDBR0RERFee7m7go4+A48dHNcaRjNrytnJ0WbSAiJQRPbtuDmwDwZCmThO2n6pRfUzsY52rZ0ViSXLYsFnf8UHxWBy7WDXetvcvIRovUpr5xVMvoqS1xLFNfldfO1KJbrO2uEnK6N6yMB5xgb7IPFSosk5EYnCiKuccoA8Y+rscFqaNs2WhEhHRFDNlgiZ79uxRQZLBHnnkETzzzDN49NFHUVpaqh7n+py//uu/xtmzZ5GYmIgf/vCH6nGjxaAJEU1HX1R8oSaW7aTM1tmadpQ2daOypXvEskV6qxV3FddidXcPEsONbgGTKP8ozIma4zmtPyJCyy5JTBzbEyJyUdJSooKC0kzeNRi493yD+j1PCvfHVRkRiAg0DPt8eWxudRv2FTY6/luQXim3LYp3e44PvHGL12zMP1gKb5n4GImUmHv8cS2zioiIiK5cMiVy7Bjw8cdAT88FHtqv+gzK2MYeLBFV2fEoXJmJfm8vNfF8uqpN9XKTDHHhp/fBDfPikBzhnhUrK/8XxCzA4rjFahKaaCKZ+kx49uSzbiW8JMv73RNVaBtYsCTVCzbnxKqFedJXMONwIbwGZhGlx4mUfo70j0SIX4jzmlOqFEjGSVzcpJwXEdGUD5pMBgZNiGi6kYuu504+h370OwImrx+tRF1777CPl1RpWWkfFWRAurUP648VI7Rj6AVeTECMSp8etn+JTBQvWgSsWAHouZKNxp80kXz1zKuo6axx2y7DkNH22JEVm++cqEZHr3YRJyW6bl4Qr4IurpIs/rj1cAcizRfInJKSdF/7mlaCjoiIiK48tbXAe+8BlZWjGssUtxSj3dTutr14SRpKc5JQ3NStgiVlTc5gin3sfvPCeIQY3cfc61PWY23KWui83Zu/E00kWdT0p+N/UmW87HrMVrx3qhpVrc5rzNXpEViRFo6IqmbM/ewsdBb3cnXSXzA1NBVxgXHa2N5gAO6/H0hNndDzISIaCYMmDJoQ0TQhF12/PfJbt5VqH5+tw5nqNsd9o94HKRH+SIkIUM2wpSSRztyH1BOlSMirUo35hkvvzwzPdE5Gy6RwSgqQlQVkZzNdmiatb8/289tVU0pPDD4GXJ18NRKCE7CndI8qe+FKSnvJ6rf6Dq1Rpbe3F66bE4M5ce5/8w1dJlx3oA45/VEw6o2eD0oaVs6de7mnRkRERNOJjJ8/+QTYv1/7fgQ9lh4UNBeguafZ/SW8vHB6VSZ2GvxwsqIVnYP6tckK/blxwViXFQW9j7fbWOf2OberxU1EU0Fbb5vKOHH9He+z2fBpXr3KCrfLjgnCyvQIJJrMWPDpGfh1Dl3klxCUgFnhs7TrUCn9fNddwJw5E3YuREQjYdCEQRMimiZ1ZJ858Qwq250r285UteHjvDpHQ+xbFyYgMczoCH542foRW1iL9KPF0JucPR5cV/ikhaap9H5HwGTBAmDrVq0cEdEkk2HH0Zqj2F2y2y1YKKssl8Uvw7qUdfAfaOgujy1qKcJ7599TqzvtpETXB2dq3JqqLkwMxeqMCFX+wvGaJgsWfpyLOaZAJAUnwaAbpvyXlA2QbJNRZrsQERHRDLBjB3D48AUf1tLTgtyGXDVud2XWeePN7CRs77Gh2+y+4j7YqMf8hBDkxAernhCupIzRffPuU1+JppIucxdezX3VbcGSGreXtWBfUSMGiiIooUY9coJ8cX9uKRJ6zUOyxiXbJCsiS9sutzvuAObPn8jTISIaFoMmDJoQ0TSw4/wOHK52XqzVtvXi9aMVqn+DkNqxrqvng+vbkHmwEEFNWqNrqRkb6BvodgvyDXLPLtm8WSvBxQlhmmLMVjMKmgpU4ESaSMqKtGGDGgA6zZ146fRLbvWWbbZ+7Dlfr+qF20nAZE1GBOYlSE1l7Xfex2JFzu4ziKhuRXRANJJCktR/K24efBDIzByvUyUiIqKpJD8fePnlCz6strMW+Y35qoRuvxdgNhrQHeiHM94+eFlnQDWc42sZdqRFBGB+YihSI/yHLT2aHZGtMkykDwTRVCTBwe3523Gy7qTb9sL6TuzMrXX06LEz9Flx37kKLLFaVEUE1997WcQnv/OOwIn00ZTFfEREk4hBEwZNiGiKO1F7Au+ce8etbuxLB8vQMZDWL6vmr5kdrb737TapzJKE4kaEGcMQbgxHqF+oahzpsReENN+7+27WkKUZFWR58+ybyG/Kd2yTIcyJilbsL2pEn7XfrXb4+qwoR68T7z4rVr15EL49ZnVf/htKDklW/x0pSUlaU3gGF4mIiGa27m7g178GOjs9PkTGF2VtZTgS1IHq7Hj0BBlhCvRDWVsvPj1Xj5ZubTxhlxkTpPo9hAf4Dvt6EiS5JvUarEhYMeo+bkSTRX7/95Xvwycln7ht7+ztw/m6DhQ3dqKqtVc9TuisNtx6rhwre02YFR3oWLgkZMHSnMg5DJwQ0ZTBoAmDJkQ0hRU1F6lV89Z+LZXf1t+Pd45Xoby5W92PCzHirqWJ0Pf3I+FsJdJOlWNB2Gw10SvZJRcUHw/cey8QEjLep0I0oWz9NnxY+CEOVR1y2y6N4fcVNiK/VsvCssuICsTKtHBEB/sh6XQ5Mo4Wu+2PCYhBZkSm1oD10UcZZCQiIprp3ngDOHNmxLFGrrkKe+YY0ZTsLKGVW92GT/Lq1bjdLjUiQGW4yjhjOLLSfnn8csyPma9K6BJNJ2cbzuLtvLdhsQ0tCd1rsaK0qQvFDV0oauiEzWrD1vNVWN/RhcwY98BJlH8U5kTN0a5jZftttwELF07w2RARaRg0YdCEiKaostYyvHDqBbfBp0z2HinVmu5J3eMHViYjuaENsw4Vwr+9RzV0l6bYFyTluFauBDZtAnTu9ZOJZgoZtnxZ+SV2Fe1S5TJcVbf2YE9+vaNJvJ2UC1gZH4R7Pj0Nvdm9JrmUtFsQswD6zGzg4Ycn5ByIiIhoEuTmAq+/7nG3qb8PnyVYcDDNF9aBHmlq3FHcjIMlTY7HxYX44epZUUgIG9ovUBZi5ETlYHnCctUQm5klNJ1JaVzJ9G7qcf7+DybBk+0nq2G12rC+tA5bG1uRFRMEb2/n777Bx4D4oHjEBcXBV8rxMnBCRJOEQRMGTYhoCpKG78+dfE6VGbI7V9OOD3Nr1fdyUXXXwjhsPFeJuMJax0r42ZGzL3zBlZ6uNXuPihrfkyCaIgqbC7EtfxvaTe1u22VYc7a6HfuLmtA9KEByY30zbm9uQ0SAr9t/U9JTRQInhm/+GZAwigAlERERTS9SjkvKckl5rmGyS2Sc/tE8f1RkOLNLpM/gx3l1yKtxjjUWJYViXVaU20p6offWY2XiSqxJWgN/vVYelGgmsNqsqrS09DmpaKsYsmhJSMWEbSerVLncNeX1uLmuWQVOfFwCJ8ILXogKiEJ8cAJCFqyA16JFWl9BLvgjognCoAmDJkQ0xUgjyWdOPIPevl7HtsL6Duw4XeuoBysXYPdV1iP+fI26L82qF8cuho+3ttJtWKGhWrP32bPZj4GuOBKA/KLiC1V3WRpXupJGlWdr2nGsrAVtPVpml5+lD986lI9QHy/Mjg2Gr87brd74vLV3IfCRJyb8PIiIiGh8mPpMOFp9BJ3P/xH+ReVq0jbAN0AtmJCxtpQMKm0tRWWsP05vmucYT0v5oR2nalDRMhBk8QLWzYrC4uRQt4UX8vylcUuxLmUdggxBk3WaRBOiy9yFguYC5Dfmq6+u4+/Klm68e6JajcElcHJTbROyY4OHBE5cs71TQ1MRHp4Ar/nztcwTWbzEa1oiGkcMmjBoQkRTSENXA54+8TS6Lc6VbSWNXdh+qho2m/YRPD8hBPfrbZi7L9+R2i8XYEb90LR/Ra8Hrr4aWLNG+57oCtba24qPiz/GmfqhNcql9nhRfSeOlLWgrr0XG4prsKqyEX46b8yJC4ZhoPyGkHrjWf/w34hMz5ngMyAiIqKxJNMc5xrP4YPCD2A8W4A5n+d5fKzFoMPhW5fD7G9Q92W8sDO3Fs1dWna4TPpuyYlVDd9dzYueh01pmxBmDBvnsyGaeqraq/D8qefdFgVKqdx3TlTB3GfD6vJ6bCyvR3SQQfX9MbqMuQcHT1JCUxBhjIBXRgZw992A0cM1MBHRZWLQhEETIpoiK3Gk94I0rTZZTW7py++eqFIp/0Imbm+PDcDSD47Dp8+mts2Pno8I/4jhXzgnB7j+ejZ6JxqmZ5A0iq/p1LK1XMlwp7KlB/uOV+Irn5+BztYPXx8tcGL0dV7EdSXGYMmdf4a49AWAjCO42o2IiGjaLab4oOAD5Dflw9jeg6XvHYVuUMlOV2fXzUF9eowq67m/sAm5NW2wVyCSid6bF8YjPtQ5iSvZKptnbcaqxFUTcTpEU1ZNR40qP93T1+PYVtvWi7ePV8I0EDiRPicixKhHTLAfwvz1w5aelsyvlJAURM5dBq9HHtH6dRIRjTEGTRg0IaJJvlCTkkHHao4NKRkkq2/eOi71XrXgiNR6vTErEst3HFNN30V6WDqSQ5KHvnBMjNa3JDV1Yk6EaBqvLJX/BivaK4bs7+i1oPnlg8gu0S7gdN5eKnASYHCvpZwUnITU6Cz4xMUD8+YBy5fz4o2IiGiK9144WHUQu0t2w2KzwL+tGwt3noCh26zKbbV0mVVzan9fH/j76lQGSUNKFE6tm4OTlW34sqRJrZC3Cw/wxS0L4xHq7+vWu+SOOXdgTtScSTpLoqmlrrNOBU66LF2ObfLf2qHSZpyv68DysnpsKNH6dQopjytBSMlAGdwbSIT5hSHz/m/Df/21E3YORHTlaGfQhEETIpp40kDyYOVB5DbkqoaSg8mqm7eOVzouxtKjAnHjvFgs2JuHqLIGtU2CJWmhae6rb3x9gWuvBZYt46Qt0UUobyvH/vL9aqWpK1tLJyJ+/Ql6TFpQUyZNsmOCEGx0L3UnfU6yI7K1shvSpPLee9mokoiIaApq6WnBa7mvObJN/Vu7sGjnSei6Tahp7UVlazcGz3zYAgz4YON8VFr60dKtleKyT+quSovAwqRQt34M0gfl/vn3IzE4ceJOjGialKN+9uSz6DR3um3vMVuRW90Gny8LsSKvEj4u/xFKxrcjeDKo74le74fU7/0MCbMWT9g5ENGVoZ1BEwZNiGhiSCbJ2YazKlhS1VE17GOau0w4UtqCc7Udqr+CSA73xy2L4pGaV4VZh4vUNrkAywjLGJquLBO1c7iajehyLuTezHsTtZ3OVW7pn51Fx74CdAwETuRaTQKZEQG+Q/4bjA2MVcFMw5x5DJwQERFN8QnbgOZOLNx1Er2t3Shp6EKPxTrs896am4zzkS7lbr2AeXEhWJ0RMSQDNdI/Eg/Of5D9S4g8aOpuwkunX0JTT9OQfTLt2FTcCO8vChBRXAfDQNUFoVfBEz/EBPm5BU+6woMR9Vffx/KkVcOW8yIiuhQMmjBoQkTjrMfSo9L/j1QfGbKixjWz5HBpM4oa3PcnhBpx2+IERDZ2YNGHJ+SDGHGBcciKyBo6IFy9Gti8eTxPheiKIE0qXzz1oqNkl7GtG8veOojztR1o67E4Hhfqr0daZAAMuqHNKkP9QhEyfxliH/9LGI3uzWCJiIho4smCCCkN1G3pVvcDmzsx9/3jqKlpQ0OHs6egiA32g5/eG11mK45HBOPl1DhHj8G4ECM2ZEepnguDSdbpbbNvg1HP5tREI7FYLfi8/HPV09O1QbyrhuYu1B8sQdi5KqS1dEqsUjHovFXpateAZdn8ZATfcDtuyroJeh/3jHAiokvBoAmDJkQ0ziV/XjnziuPizJV8pJY2deFoWSsqW9z3G/Q+WJQYimWpYfC3WLFs22FVYzkmIAazI2cPDZgkJwPSBM9n6OQtEV08s9WMV8+8iqIWLbsr43AREs6Uo7ihC42dzokVKcWRFOaPmGDDsCvbWpKi0HvHLViYuFT9t+vtxbJ5REREE62qvQrPn3peTc562foRVVqP2M/yUFzWjL6BYIiQSdj0yADHZGxrTAhOX7sAFh9vtPaYVdku6V8y+G9+uDEcmzM2D7+wiYhGDJ6crj+Nw1WHHSXzBqtv70X5kTJcteeMI3AiiSZpkYGICjKo+/1ewPGti+Gfno17c+5lphcRXTYGTRg0IaJxTP///bHfq8lXV6Y+qdfajpMVrW6r1oVcoC1NDsO8hBBVI1muzObtzkVkeSOi/KMwN2ru0AuxgADg618H+DlGNOYl9d48+ybyGvPUBMusQ4WILaxBW1svShq7YHEpFxAkkyxRATD6Di3H1ZQYgdxrchAeFI31KeuRE53D4AkREdEELmKSDFKzpRfRJfVIOVWGvro25Nd2OLJHhlsE0RIbijOb5sOq97woydfHV/1tX5m4EjpvluQkulQy3SglrCV4cqb+DKz9Q0vlRew9B+zNR5dZK5krJOMrJcJfNYrvCTLiyC3LEBAYhscXP64yv4mILhWDJgyaENE4kEDJ74/+Hg3dWtN20dJlxomKVpytaXebbBVh/r5YmhKG2XFB0Lk0cI/Pr0bWgfMqwyQ7MnvoRKtc1D38MJCWNv4nRXQFsvXbsC1/G07UnlD3deY+BDV2QNfYgbJzteiqaEZMZw98B/6bDvLTISLQoPqdSN1lu8akCORuyEG/j7cKgK5PXa+CoAyeEBERjZ+SlhK8dPIFhBdVq2CJf1u3WrSU79I/UP52Z0YHaQuWBjTHh+HMxnmwDVOC025R7CJsStuEIAPLcBKNpXZTO/aV78OxmmNqEZOdt9WGRe8eQUNRvVtJvUCDTpXrkv+Gq7PjcX51lipp/dUlX2Uwk4guGYMmDJoQ0RiTj8q38t5SacZ2ZU1d2Hay2rGazU6avC9KCkVqZIBaHePKv7ULV394FhmByYgJjBn+zTZtAtauHZ8TISLHf9NSc3lP6R4VRHFV0dyNE4dLccOhAgRYnBd1IsSoR2SgQZXxkBWsroETIcGTa9OvVQFRIiIiGjtWm1VNun6Z9xFmf3oKIQ3tantLtxnn6zpUmS373+rsmCC3ptJNCeHwuvc+XJe9FRabRfVCqeusU02rZRwgpbgWxixEVEDUZJ0e0RUTPNlfvh9Ha446gifSi2jJe0fR0NqjSl3b/1uWxUry33Kgnw5nrslBY0oUlsUvUz1OiIguBYMmDJoQ0RiTlOIdBTsc99t7LXjpYDl6LVbHgG5OXDAWJYUgPECrwTpYnF8Ubvq8DvGdXp7rImdmAg88oGWbENG4k0kTyTqp7qh2295ntaH4dDUWfHgC6HZvJCt03l6ICzWqprItqVHIXT/XETgRKxJWYMusLcw6ISIiGgP1XfV4O+9tNDWUYdEHx+Hf3qO2N3eZUVDvDJhIpndmTKDbwqWeWanI+tr3kRHNBQ1EU0WHqQMfFH6Asw1n1f3kU2VIP1aCzt4+FQQ1D2R8y3X2/IQQ+PjpceyGxegKD8Sdc+7E/Jj5k3wGRDQdMWjCoAkRjXGTyT8d/5OjBqtklrx+pAK17b3qfmpEALbMi4Wfh9rIKSEpWJuyVjWd9jpwwPMbSR+Tb31L+0pEE0ZWmB6sPIhPSz5Vq09d+Td1IHP7MXQ0daGxywRzn21I8CQ+1AjveQnIv2aeW+BESnzcmn0rm8cSERFdxt9oWZUumaHe3T1Y9OEJBLR1q31SyqeoodPxWMkCnRXtHjAxLFiCZX/2U+h9/Sbl+InIM5mOPFB5AB8VfQTYbCogKhlkUvZayu11mrRMlGA/PebEBaE3yIhjNy2FV0AAnlzyJDPDiOiiMWjCoAkRjZFuSzd+e+S3aDO1ObbtPlePk5Wt6vtgox4PrEgeEjCR1eU5UTmqgWRicCJQXAw899zIb/bgg1qmCRFNipaeFmw/vx3FLcVu2wOaO7Fo50noes3q4q2uvReNneYhwRPr3Hh03b4c3i6fB0viluDmrJsZOCEiIroIMk1R0lqCj4s/Vtmg+l4LFu48gcCWLjWhWtrYhaYu599iKZ2ZERXg+Htr8jfAd+N1WH/HX8Pb23MPEyKaGn2K3jj7BmxNjVi27Qh8+qxqodLpqjZH39CEUCOSwv3REhuKU9ctQGRQDJ5c+iR8fXwn+/CJaBph0IRBEyIaA/Lx+OLpF1HYXOjYJitePjhTo76Xfgb3LktCdLBz5VqAPkDVWZWbo4Fkdzfwm98AHR2e32zlSmDr1nE8GyIa7X/3uQ25qma6lO6yk1rLMlmjH1jx1mO2orK1G02DgifNadEwPLQaPnpng8rl8ctxQ+YNDJwQERGN4u9waWspdpfuRnlbudqmM/dh4YcnENTcqcpxlTRqgRO76CAD0iK1gIkES8oWJCN+7Y24cS6zPYmmU6+T13JfQ9/Rw5i9P1/b1mPB2Rqtd5GYHRuEUH9fVM1OQMGqTCyIWYDbZ9/O/86JaNQYNGHQhIjGgJTq2Vu213G/ucuElw9VOC7SNs2JUfVV7ZJDkvHwwoeh83ZOlqKqCnjjDaClxfMbxcQATz4J6FyeR0RTon76mfozOF13Gi29LUMCJ6LH3IfKlh631a4tEjj5ylXw1jlLda1KXIXNGZt5UUdERDTCanMpw1XWVubY5iMBk49Owb+2VTWIds30lAVMaREBiAj0hTnATwVLajPjsDx5teorxr+5RNOLNIaXstgBH32GhHNValt1aw/Km7sdmd3zE0Ng0Pkgf002arLikBScpBYs5kTnuF+HExENg0ETBk2IaIwbv0t68CuHy9XqNiFN36+fG+O4GJMMk28s+4Yzu0Q+WqV/yccfq/qsHkmg5GtfA6Kjx/mMiOhSyVBJSoOcrj+N/NN7MPfDI26BE9HWY0F+bTtsA6Oq5lmx8HtgtVvgZE3SGlyXfh0ncYiIiFz09vXivfPvqYUKrnwsVszbdRKWonpUtPS4ZZeE+euRFhkIX503OsMCcHLzIlj89Lgq6Spcm34t/9YSTeNyub879BtkfXAIYbWtahwujeFburW+g4EGHebGB0vUVP133xajLWL01/tjcexiFUAJM4ZN8lkQ0VTFoAmDJkR0Gc42nMXrua+jH9rHo3xMfnCmVg3W7DWT712eBP1Aw2cveKkMk7SwNGc5rnfeAc6fv/Cb3XADsGLFOJ4NEY11n6MjR7ej75mn4d3bOyRwcq62XcVMRWN2PPzvWwlvl+bwDJwQERG5/1199sSzqOuqc99h7kPkW4dhOV8LU5/NLbskNSIAkYG+6m9pV4g/TmxZhD6jQQVL5O8s/8YSTW/5jfl448hzWPreUfh19qLPqvU3sX8WxAb7ISXCHxZ/A47csgxmo69bb1HpKbgxbaMKpBARuWLQhEETIrpEUkP5+ZPPw9pvdWz7vKABR8u08lqymu3+5ckIC3AOzDalbcLalLXanfJyrRxXu7P2qkfS9P2BBwBe2BFNO91lRaj635+iprEEtn7nZE5rtxn5dR2OwEnD3EQE3LMc3t7OwMnSuKW4MetGdVFHRER0peqx9OC5k8+hplPrFyhstn6cr2pD7LtHEFvf5vZ41+wS0R1sVAGT4MgE1dcgIThhws+BiMbHR0Uf4cTJnVjy/nHVGL7T1Ifc6jbHGNuo90F0sAE+s2KQt3Ux+r3dr6mNOiOuSbtGZZ5wzE1EdgyaMGhCRCMwW804Wn0UVR1VqhyArEAJNgSrEltSR9lkNTkee6ysBXsLGtT3Etu4aX48MqIDHfuzIrJw/7z7tRVtZWXA888Dfe5le4YVHg589atAQMD4nCQRjb/qarT//n9xquyQqsFs19JtVplp9hFW3fwkBN25zC1wMi96nprg8fH2mYwjJyIimlQyBpeAiZS/tGvvtWD70QqsP1yIWc1ahrcIMeqRGGZEkJ/esa0n0A8nti7Gstkb1cQoexkQzSxWmxXPnnwW3aeOYt7uXLWttr0XpY1dbo/z9vJCxeJUWDfORXSw35DXiQmIwdbMrUgNTZ2wYyeiqYtBEwZNiMiDus46dYHWZXEfbA1Hyux8eKbWcX/j7GgsSAx13A/1C8XXl34dRr0RaG0Ffvc7rTTXhaSmAnfeCQQN9D8houmrqgptv/tfnCo/5JahJv2PCiRwMnC/ckEywm5fCh+XUl2Z4Zm4J+ce6H2ck0BEREQznanPhOdPPY/K9krHto5eC946XI4Nx4uR3ahlbAcPBEuCXYIlojfAgPI7NuGG5Q8gMThxwo+fiCZGu6kdvz3yW0QdzkXqiVLHGLumrQcdvc4FSzLefmV+GmwZ0diQFYWIQMOQ15IFSzdm3qhduxPRFaudQRMGTYhoqE5zpxp0dZidK9c8KWvqwrsnq1WJALEyLQKrMyIc+/Xeejy2+DHEB8UDZjPwpz8Btc4Ay7AkG2X9emDdOsBlxTkRTXMVFWj9/f/idMURt8BJU6cJhfWdjsBJT0I4Am9ehK54Z3PKlJAU3D//fvjphq6MIyIimokZ3y+cegHlbeWObV2mPrxxuAJrjxdhbkMb/PQ+SI8MUEGTIc8P8IP+q1/D1Qtv5qIDoitAcUsxnj/xHHJ2n0FkeaNje7e5D3XtJjR2mmC19aPTV4enl8xCt8EXCxNDsCo9Qn2WuIr0j8QTS57guJvoCtbOoAmDJkQ01Jtn38Tp+tOO++09FtW4OdBPhyCDDrqBFeB17b1442glLFatT8G8hBBsmh3taCopNVHvm3efKs2l6u9ID5NcLWXYI8kqkewSyTIhopmntBQtf/gVTlcddetx0tJlxvl6Z6muID8dIpemoGJZBjojtGyzEEOIKi2yIGYBay4TEdGMXsD0eu7rKGsrcw+YHK3E8pMlWFLTDIPOGznxIY6+JXZe8EJkdCoS/uIfEZqYMQlHT0ST5XjNcbx/6k0s3X5ENYZ3JQETCZxUt/bgfKBRZZz0e3mpnidrZkUiJz5YlfCyWxizELfPuX0SzoKIpgIGTRg0IaJBSlpKVE1UOwmMvH60An1W50egDKwkgCKpvr0WbbV4RlQgblwQ5zbQujX7ViyOW6zd2bsX+PTTCzd8v+029i8hmumKitDy9K9xuuq4W+BEgrP5tR2wDQy5Agw6zI4NQmt6DAqXZ8AUqK12iw6Ixqa0TSogaw/SEhERzQSFzYV4O+9ttxK5slL8zaOVCKxsxv2nS1TAZG58MAw6H7dgSUxgDJLj58D/yW8BUVGTdAZENNlltr88+CaCX3wDXjbnONtOKkRUt/Xg9dAQfJbk/JyIDjLgxgXxqjeS3aOLHmWPE6IrVDuDJgyaEJF7E7nfHPkNGru1dF6ZuHz1cIUKnIwkIdSI2xcnODJQhExork1Zq93JzwdefnnkN587F7j7bq00FxHNfOfPo+WZ/8OZmpNupbo6e/tUn6S+gZJ/EqSdHRcEr0A/nLpugSPrRCQFJ2HzrM2s005ERNNen60PHxd/jC8rv3Tb3mO24s1jlWhu78HjxwoRb7KogIlrOZ1A30DkROXAGBwOPPooEBMzCWdARFNJ195PUP/mc6jprFHl/gYzWW14OikGH3o7gyQxwX64b3mSY1FSlH8UvrHsG/Dxdi/fRUQzX/tFxA1YA4KIZrwvKr5wBEzE6ao2R8BEVpxkxQQhPsSIID+9YyAlA6ubF8a7BUxWJqzE1clXa3fq64E33xz5jWNjtQwTBkyIrhxZWQj7ypNYEL8YOm+dY7NksclkkH7gM6XHYsXJijbUVbdh9senoe+1OB5b0V6BPx3/E47VHJuUUyAiIhoLDV0N+MOxPwwJmNR39OK1IxWqpI6U5PIUMJEyOsagMODhhxkwISIlYO1GpK3eilWJq1RQVcrcujL4eOPrNQ34u0AvBBu0sbhc+8scgF1DdwMOVB6Y8GMnounFeTVPRDQDtfa2Ym/ZXre6yfsLnQGU6+fGIiHM6LgvWShSmksu2lxLcs2Lnocts7ZoQZXeXuCVV7QG8J74+wP33Qf4+o7HaRHRVDZnDkIe+RoWvfo8TpUedKyC8/fVqbrKeTXtMPXZ1OdNVWuPupAz2g6j9+6V8BkoSSLlvbblb4OPlw8Wxi6c5BMiIiIaPSlmcbz2OD4o+AAWm8V9e3kr9hc1qj4E/uY+bKxsxJw494BJgD5A9fnSGwOAhx4C4uIm6UyIaMqR6/Fbb4V3bS2ivLxVc3cJghQ1F8FkNWkP6QfWnKuCMTES/9yvVz1O9hc1YVZ0oBqPi89KP1PX+KF+oZN8QkQ0VTHThIhmtMEXa/sKG2Hu02qgygWaa8BESKBEBlKuAZO00DTcNvs2LWAiFQ23bweamz2/qbc3cO+9QCgHYERXrKwsBP7tP2DeXd+Cr1+gY7NMCs1LCFHZbPZPGSnZZc6rQf5Lh3C2ul1NKtltP78dNR01k3ACREREF08WCrx97m0V+Hcdg8vCpXdOVGNvQYMKmIhbapuwODoARl9nwMRf768WC/j6+AIbNgCJLFVJRIMYjVoJbB8fdY0ufQFXJKxASkgKvL2c05yLKxvx7eoG6Kw2mCxWfF7gXDwpn08yV0BE5AmDJkQ0Y+U35iO/Kd9xv7KlW63wFtJo8upZkRd8jfnR8/HA/AecZXaOHAFyc0d+0g03ACkpl3n0RDTt+fkheOttmPfT36NjcQ5s3lqYREp0pUUGYGFSKCICndloSwqrUbivAAeKmtxqwb+a+yq6Ld2TcgpERESjVd9Vj98d/R1O1Z1y217S2IUXD5ahrMnZBP76ID3u8epTPb7sjDqjKsmlAiaRkcDKlRN6/EQ0jSQkANdf77gr/UnSwtKwNG6pW+BkncWMh8+Uqsw2mQuQOQE7mSuQOQMiouGwPBcRzUgWqwUfFDpXjsiKtt3n6h3318yKRMBAjVORHpauygC09baptF6DjwHZkdmIDYx1vmhNDfDhhyO/8bJl2o2IaEBweBw2fevnePPAnxD0/scIrW11ZJ1kRktPpT5UNHejtceCm89V4Bl/A6KD/VQJAXuZwTfPvokHFzzodhFIREQ0FUiG5InaE3i/4H237BIZf39R1IijZS2ObZLRvXluNG7/Mt8ts1sCJotiF8GgM2gbtm5Vq8iJiDxasQLo7AQ+/9yxKcA3QGWclLSWqPu+Om+s0AFep0rw/KJ0NSfwwMoU+AwsZpI5Awm2qGAtEZELBk2IaEaSPiYy0Wh3oqIFTV1aXwEpizM/wdkwTuqgPjj/QbU6xSPpY/Laa4DV6vkxycnaBR4R0SBSbuTBtd/C4dgcdP7Pf8Gno9OxTwK4s+OCUd3ag/Lmbtx2thyv+fsifGUqwgO0C7iiliLsLtmNTembJvEsiIiI3FltVlVKUoImrtp7LXj/dA1q23od2yTL8rq5MUgva0BwY4dje5R/FLIisqD30WsbZs8GMjIm7iSIaHqSwOumTUBwMPD++1opbQBJIUmo7axFT1+Puh8TbEBqZzvWltXhk4x4HC9vwbLUcLVP5gx+c/g3qrzX4rjF8NP5TeopEdHUweWKRDTjVLZXYn/Ffsf9jl4Lviwe6EHiBWycHe22su3GzBtHDpjI4GvbNqDFuUpuiIAAR11VIqLhSJbIyqxrcNV3f4nk8LQhWSNxIX6ICPBFXGcP1p+rwvaT1TD1OQO1n5d/jryGvEk4ciIiouEzTN44+8aQgElxQydePFjuCJh4e3thfVYUblkYj3CTBelHi9V2Hy8fZEdkY27UXGfARKcDNm+e+JMhoulr+XLg/vsBvfY5ImNsCcTaSd8TCdouqWlGSI8ZX5Y0q8CuXUtvC3YW7cRTB57CjvM70NTtLJVLRFcuBk2IaMY1n3wr7y3Y+m2Oi7k9+Q2wWLX7CwYaMLv2LJF03BEdPgycPet5vwRg7rgDCAoao7MgopnMLyUD6Q98G6sSVyE+KN7tgi49KlDVd19U24yEkjrsyq1zawwvzXUbuhom6ciJiIicPiv7DHmNeW7luD4vaMA2CfpbtKB/sJ8e9yxNwsqoAGQdLMSKtw/Bt9eCQN9ALI1firigOPX3z+Gqq4CwsMk4HSKazrKygMceAwK18rZhxjDVIN4u0KBDfKAB60tr0We1qTJd8nXwXMLh6sP41eFfqQxv1zE4EV15GDQhohnlw8IP0dwzkFUC4FxtB4oatDI4MhG5JsPZ/F36llyf4WweN6zqamDnzpEfs3YtSwgQ0cVZuhS+S5arVXCpoamOzVJfOTs2SH3dXFCN1tJGHHGpBS8Xcy+eflH1XyIiIpos5xrPYU/pHsd9WaD01rFKt/4lGVGBeHhxPFYX1WDlmweRcK4K3rZ+JAUnYUncElW60k1ICHD11RN5GkQ0k8THA088AURq1/wZYRkqo80uKcyIhc0diGvvRkljF/6wrwT7CxtVZQpXsgBTgsKun3FEdOVh0ISIZtTF27GaY477bT0W7M53Nn+/Zna0arxstzFtI4IMI2SHSDmul14auY9JaiqwYcMYHD0RXVFkVe1NNwExMapZZYQxwrFLPqekCbzeZsNteRU4dL4eZU1djv1Se/m5k8+h0+zsi0JERDRRGrsb8Xbe2477shr7o7N1qGrtcSvH9VCUH9ZvO4KUU2Xw6bNC763HgpgFyAjPGFKiUpGyXAPldYiILkloKHDXXWqsbdAZ3KpK6Hy8kRrhj2tKa1UJ7l6LFYdLm/Gn/aXYcapGfYa5ZpdI4CS/MX+SToSIJhuDJkQ0I8jk4bb8bY77tv5+7MqthblPS7mdExeMrBhngCQ2MBbLE5Z7fsHubuCFF4DOzpH7mNx5p1wZjtFZENEVRSaG7rkHXn5+mBM1B0ad0bErzN8XiWFGRHX34rqCarx/phaNnSbH/qaeJhU46bZ0T9LBExHRlai3rxcvn34ZJqvzb5Jkl5yv0xq7++q8cffSRGzw9cKij05Db9JWcIcYQrAsfhnCjVrz5SHS0oA5cybmJIhoZouNBRYuVN8mBCWocoB2EYEG3BCgw7U+NhXgFRIoKajvwOtHKrDr7NDSuK6VLIjoysGZPiKa9mRQ8+65d90mD+Xizb7aLchPjw3ZUY59kqJ7a/atw69wExaLlmHSNEIDOPYxIaKxEBEB3HYbdN46zIue5/a5lBBqRKi/HgvqWpBZ2Yi3jlWhpcvs2F/fVY8XTr2gJrCIiIgmYswtvQMlcG8nmZD7ixod9zfPjUWyrw/m7j0Lr4GJx+SQZCyKXaRWfXtciHTLLdr4mohoLFxzDaDTqZ5J2RHZbmNs6W/yWFsHnlidipVpEfD3dVajyKtpx7FyZ5lBGWe/euZVWKzuJbyIaOZj0ISIpr0j1UdQ0FzguF/f3osDxQMXc17AlpxYGHTOgdA1adeoppPDstmAN94AKitHflP2MSGisSIra1euRIBvAGZHznZslos8KdMVYNCp/ibGlk68eaxSlR60q+6oxounXlS9ToiIiMaT1Pc/33Tecb+t26IyIe2LsmXycVZkAObuzYOh2+wox5Uelu7e7N1Otslq8G98g83fiWhsSY+kVavUt1KSe27UXLf+JgFt3cgob8DqjAg8fnUarsl2No3fV9iEimbngsy6rjpsP7+djeGJrjAMmhDRtNbQ1YBdRbsc9/usNnyYWwubTRvQLEsJR0KYs+SN9A5Yk7Rm+BeTQdCOHUD+BeqWZmWxjwkRja3rrlPNK6MDolWDXDudtzfmxAYhROeF2/PKYeo2qUa7nb19jsdUtFeoUil9Nuc2IiKisSR1/aW+v2vj9+2nqmGyaL3/0iIDsCo9XPUvCatpUau6JWDisRxXdrYWLLn9dmZuE9H4uPpqwN9ffRvpH4kVCSuQGJzoCJ6knSiFj8WqxtsLk0KxIk37vJLgyAdnatzG26fqTqnFmkR05WDQhIimLVOfCa/mvgqLzbnqel9hI5oHytdEBRmwOt3ZXNngY8Dtc273XJZr717g6NGR3zQxEbj7bvYxIaKxpdNpny1+fmpFruskkzStlL5MiZY+bCqqVZkmknHSbXZeyJW0lmBn4c5JOngiIprJ2nrb8M65dxz3ZUJR6v7be21JH64t82IRXt2ClJOlapuUw5HV3UMkJwOPPw7cfz8QEzNxJ0FEVx4/P2D9esddKRE4K3wWVietRmZ4JkIsPkjMrXDsX5UegeRwLcjSbbZix+lqWAcWY4oPCz9EZfsFKlIQ0YwxIbN+v/rVr5Camgo/Pz+sXLkShw4d8vjYZ555RqXuut7keUREQ/qY5L+Lxm5nDeWSxi6cqGhV3/t4e2HrvFj11e6GzBsQ6hc6/AsWFAC7d1+498ADD2jNm4mIxpqUJrn1VjX2yYnKcfu80vt4Y25cMFY2tiKqswct3WbV46R3YIWvOFx9GIXNhZN08ERENBPZ+m14M+9N9PRpvQKF1PsvcGn8fvPCOASb+jDn8zx49UOt5I4JjBk+W/uxx7TACRHRRFi2bEj5P+klmBCcoDJPrq/xR0Bzp9ru7SVzCHGqJ6qoaevF5wUNjudZ+6145cwrqjwuEc184x40efXVV/Gd73wHP/7xj3Hs2DEsXLgQmzdvRn19vcfnBAcHo6amxnErKysb78MkomnmQOUBnG0467gvK6935tY67q/NjEJ4gLPZpExASomAYZlMwHvvjfyGgYHAQw850nuJiMazv4mPt49qDB9sCHbskokpyTi5tlrr2SQrfHecqnGrr/zuuXfRbXHWYCYiIrocn5V+hvK2csf96tYeVe/ftfF7hJ8ecz87C99eC8L8wpARNkzfv9BQrRQXm70T0UTy8QGuvXbYXbJQKcEYjRuOd8JnIIPb6OuDG+fHORZfyqLMczXtjud0mjvxzIln3Po7EdHMNO5Bk6eeegpPPvkkHnvsMcydOxf/93//B39/f/zpT3/y+Bz54IqNjXXcYpi2S0QuylrL8HHxx259TGTi0L7iOj0yAAsTQxz7ZdLxpqybhm9AKSTDpK3N8xv6+gIPPsgGlUQ0of1NZBWcBHsDfQMdu/z0PrhF149Uk1aGsKKlG8cHMuxEh7kDO87vYKNKIiK6bCUtJdhbttdxX8baH6jG79rfmOWp4ciIDkTa8RKE1LfBT+enmi0PGXPLpKWUoDQ6+wwSEU2YuXOBhASPu+d4R2PNsQatxymA2BA/bHBpDP/xuXrUtvU67putZtVP8HDV4XE+cCKasUETs9mMo0eP4lqXqK63t7e6f+DAAY/P6+zsREpKCpKSknDrrbciNzd3PA+TiKaRDlMHXj/7uioVYLcnvwH1HdogJsSox/U5sW4Xa7fNvg1GvYeLtKoq4OBBz28ovUvuvReIixvDsyAiukB/k7vuUpNMEjhZGLMQAfoAx25ZAfetPueF2/7CRjQN1JUXuQ25OF1/esIPm4iIZo4ucxfeynsL/dAmESVQ8nFeHTp6tV6C8SFG1TswvKoZyWcqVM9AyZDU+wxTxvb660ecsCQiGlcyN7B5s8fd8vl1dWc4Zp13ZtHNiw9GTnywY5HmG8cqUdyglfES8tm4o2AHPir6iIuViGaocQ2aNDY2wmq1DskUkfu1tc4yOq6ys7NVFsq7776LF154ATabDWvWrEFl5fDNlkwmE9rb291uRDQzWW1WFTCRlFi7M1VtOFOtZYnofLxw04J4tRLb7qqkq1RT5eFf0Aps2+ZYUTKsrVuBjGFKDBARjafwcGDJEvWtTEBJxolR5wz+ZrV04rogbWJKGlR+mFvr1qjy/YL3VeNeIiKiiyUTgNL4XbIX7U5XtaGwXhuDG/Q+2DI/Fn69Zsz+PM/R+N01M9IhJwdYsWLiDp6IaDjSS2n1ao+7pUn8jaV6hNRp42dZhHlNdjQSQo2OwMn2U9U46ZLhLfZX7McbZ99An00r70VEM8eENIK/GKtXr8bDDz+MRYsWYf369XjrrbcQFRWF3/72t8M+/mc/+xlCQkIcN8lOIaKZGTCRxu+uNZXr2nuxO9/ZH2nT7BhEBTn7mKSGpmJT+ibPLyoZb3V1nvenpGiN44iIJsPatVpJk4ELOQmc+Hg5g8L3tLYhPMBXfd/QYcKXxc7Vcb19vWrCiyvfiIjoYpj6TPig8AMUNBc4tkkPrc/OO5shXzcnBiG+OszZm6f6mMQGxg7f+D0iArjlFvYxIaKpQargSPDEgzBDCG47bYG+RyuDq/Pxxu2LE5AVE6Tuy7Ba5h/2nm9wG2NLlvebZ9/kuJtohhnXoElkZCR8fHxQN2hSUu5Lr5LR0Ov1WLx4MQoLC4fd//3vfx9tbW2OW0VFxZgcOxFNHTL59+LpF3Gq7pRzm8Wq+pjYV1YvSAxVDZLtgnyDcNfcu1Sq7bCam4E9ezy/qUxU3nwzL/KIaPIEB7sFbqXMYEa4M/MtqqYV90f7w3vgc+pIWbNq0GtX0lqCPaV7eAFHRESjWqB0sPIgfnnwlzhUdcix3WK14f3TzjH3wsRQzIoORPLpcoTVtsJf74/M8MzhS01KHxODc0ETEdGkkmt8KYEb4Cx7O1iqTwSuO9EBr4HPPAmcbJ0Xi2Wp4Y7HHCtvUZ+Lkn1il9eYp8bdRDRzjGvQxNfXF0uXLsUnn3zi2CbltuS+ZJSMhpT3On36NOI89BMwGAwIDg52uxHRzCHlZf50/E8obil2bJOLNmlC2T5QUzk22A/rsiId+yVQck/OPcOXCBAygfjee0DfCCm069ZJ5HcMz4SI6BJcfbU28TQgLjAOEcYIx/1lhTVYlR7h+GjbmVsLc5/zAu6zss/wx+N/RF3nCFl1RER0xZLAem59Ln51+Fcqw6Tb0u22XzJMmru0VdeRgQaszYxU5WtST5SoMbc0fvfxdmZBOmzZAoxyoSQR0YSROcM77/S4OFLKci3rDcOmgj5HGW/ZdvWsSFXZwt47taC+E28dq1KBZddx99mGsxN0IkQ07ctzfec738Hvf/97PPvss8jLy8M3v/lNdHV14bHHHlP7pRSXZIvY/fM//zN27dqF4uJiHDt2DA899BDKysrwxBNPjPehEtEUU9tZiz8c+wPqu+rdMkzePl6FsqYudd+o98GNC+Kgk4btAzZnbEZSyAil+k6dAoqdQZghoqKAq64ao7MgIroMQUHA8uWOu3Khlh2ZDb231s8krKYFm/y8EBfip+639Viwt8BZQkVUtlfit0d/i4+LP4bFqgWbiYiIJEAi2dzSM7C5p9ltn/w9+eB0jeofaF9tfcP8OPj1WTH3s7Pw6gcywjKGX6Q0dy6wdOlEnQYR0cVJTweuucbjbgkIX1Wtw831YW7b5yeG4JaF8dD7aHMP1W09+OhsnVtW99t5b3OxEtEMMe5Bk3vvvRf/+Z//iR/96EeqT8mJEyfw4YcfOprDl5eXo6amxvH4lpYWPPnkk5gzZw5uuOEG1dj9iy++wFwZeBHRFaOouQhPH3/arQGlZJa8fqQClS3aCjgfby918Rbkp00eivnR87EiYYRmk729wM6dI7+5lOVyWdlNRDSpJIird37O+fr4Iisiy3E/42QZNufEOi7gZIJrT349TH1Wx2Ns/TbsK9+nVhKXtJRM8AkQEdFU025qV2Ptwmb3Mtg9Zis+y2/AswdKkV/nHIdfkx2FcH89Zu/Ph6HbhEj/SMQHxQ994dBQ9jEhounROzDLOZ4eTBYqLc1rxb2WbLeS32mRAbhraaJj3H2+rgNHyloc+y02C14+8/KQrD0imn68+mdYoWsJskhDeOlvwlJdRNNTQ1cDfnf0d2rAYVff3ot3T1Sjy9znyDC5ZVE84kKMjsdEB0TjiSVPqAlFj3bvBj77zPN+6R9w001jdCZERGPko4+A/fvdNp1rPKcy8kRDShTei43Au1Xtjv2BBh02ZEer2vOuvOCFu3PuViVViIjoyiNZJc+dfA6tva2ObVJi5nh5q+qP5VrmUcbca2ZFYn5CCOLyq5F94DwMPgYsi18GvY8zoK9I5vfjjwOJiRN5OkREl6anB/jtb4FW52fhEN7eKNuyGi+aDsNs1UoViqL6Tmw/Va3d8QJuXRiPtEjnmDs1NBVfWfCV4csXEtG0iBuMe6YJEdHFkNXQb5x9wy1gUtLYhdePVjoCJqH+vrh3eZJbwMSoM+LenHtHDph0dwMHDoxcBufaa8foTIiIxjjbxNf9821W+Cw1cSWiyhrwyKFz+OvuLgRbtQyTTlMf3jtVjW0nq9Ex0ANK9KMf75x7R/WMIiKiK4sE26VfoGvAREpxvXSwHF8UNToCJjofL6xIDcejV6WqgIm+x4yMo8Uq8C5B9yEBE7FpEwMmRDR9GI3APfe4ZXQPYbMh5aNDeCJ6C4J8gxybM6IDsXqgryD6oXquNneZHPtLW0uxs+gCFS6IaEpj0ISIppT8xnzUdTlrgObXdqgJP3uDNQmU3LssSQVO7AL0AfjKwq8gwt/ZHHlYskrb7FwdMsTWrYCf1heAiGhK8fcHVq5026Tz1mFO1BzHfe9+YH1zG35dU4/b2joczSuLGzrx3IEy5A7UpReyUu7Dwg8n8ASIiGiylbeV45kTz6DT3OnY1tRpwmtHKtDSrY2RparWvIQQPLomTWWYGHTaKum04yXwtdjU350Qv5ChL56RAaxZM3EnQ0Q0FuLjgbvv1jLlPLFYEP3OR3gwfrOjr6BYkRbuyOiWgPO2kzWqB6vdoapDyK3PHd/jJ6Jxw6AJEU0pByqdmSASKPk0v97RWE0GJHcuSYDR15niGmGMUCW5hq2p7KqjAzh0yPP+5GRgjnPykYhoypHJKIOWWWIX6heK2ZGz3bYFoh+PtLfjJ50dCBiY7JLP04/y6lDd2uN4XF5jHs43nZ+ggycioskkn/fPn3wevX29jm01bT1aNrdJy+YO8/fFQytTcO2cGFXi0S6ooR2zStuxMGahKoc7RGAgcPvt7GNCRNOT9DaRvqYj6elB7Nsf4fb4jW59T66fG4vIQG183tptVhknNpcuCJJt0mfTPmOJaHph0ISIpoyq9iq1As7ubE07TAMrNTKiAnHj/DjoBhquieSQZHx1yVcRZgy78Ivv26dWiHi0cSMv9IhoapMSAtdcM2RzbGAsFsQscJTqsl/ELWzrxI8DgTlxzlqtn56rh83mvJB7v+B9WKwjfDYSEdG0ZrVZsatoF146/ZJb+dvypm68dazKsSo6JtgP9yxLQsTA5J9dsG8Q7i4LwPK4ZcNnmAhp/C6BEyKi6WrxYq3E4Eja2jD3w6NYH7nMsclX542bF8ar/k+irKkLB4ubHPvbTe2qDyERTT8MmhDRlPFl5ZeO7yW7RJpR2q1MC1eTgHY5UTl4eOHD8Nf7X/iF29qAI0c8709PB1JTL+PIiYgmiJTouv76IbWXw43hWJ6wHInB7rXkM3MrcHeYAVFB2iRYY6cJJyqcn61S0/6zss8m6OCJiGgiNXU34Y/H/4gvKr5w215Y34F3T1Y5yt8mhvnjziWJbtncEoi/Nv1a/LnvWiR3+riNw91kZ2urtImIprurrwZWrBj5MY2N2LC/CrOD0hybQox63LggDt4Dn5PHylsd/aHEkeoR5iKIaMpi0ISIpgRpSJzbkOvW/F3SW0VimBHRwc5eI1Ia4K65d6l6/qOydy8w0BjZY5YJEdF0IBdjUqbrz/8cWLLELUNOPhOlOfzSuKWORpVe/UDOvnPYkhYODDz0QHGTW2N4mUyr76qf+HMhIqJxIYuPTtSewG+P/hbVHdVu24+Vt2DH6RpYB7IO06MCcduieLVa2i4lJAV/ueovcXXUUuh3jxBY1+mALVvG92SIiCaKjKvlMy0nZ+SH1dTgzhNmRPs6K15I8DknXsvuloD0udp2t6bwDV0N43jgRDQeGDQhoilBmqTZ+p2rMWR1ht2SZOdgxNvLGxvTNnpe7TZYczNw/Ljn/bIyLtF9ZTYR0ZQXHKyVQ/nGN4DMTLddQYYgLIlbgkj/SHXf0G3ChlOlWOByIbcn33nhJp+9O87vcPSPIiKi6Utq57+V9xbeOfcOzFZtAZLoNvdh28lq7D3fAPvH/dy4YNw0qPxtVkQWHlrwkJbNvXs30NXl+c2uugoIG0WZXCKi6UIawkuPpjRnJslw9BVV+Mp5I4xevo5tCxJDHd+fqmxzG1sz24Ro+mHQhIgmnVzQHa056rhf39GLypZu9X2ovy/SIgMc++ZGzfVcT3k4n30G2JzBmCGYZUJE01lMDPDgg9pNLvIGSGA5MzwTPl5aqZWIyibcazHBf6D0SlFDJ4obOh2PL2srw8m6k5NwAkRENJb9S1498ypO15922y419l/4slxlctstSwnHdXNj4O3tXIg0P3o+7s25F3ofPVBbCxw+7PnNQkO1UjZERDONZNHddx8QHz/iw4JKq7HlrEnS+NR9KYcbG+LnKIlb09breKyMs9lHkGh6YdCEiCadlA/o7XMOKFx7mSxOCnXLKlmVuGr0L9zQAJw65Xm/pN3Gxl7CERMRTTGSbXLttW6bDDoD0sKcq+TmnCjFLVFGx/3d+Q2OevZCGgW39LRM0AETEdFY21u2FwXNBY77UoLr84IGvH28SmWaCGlWfOuiBFydGek2xl6RsAJ3zLkDPt4+QFER8PrrjonAYW3ePKS/FhHRjGEwaIuSIrXMbU+yKnuRdrzUcX9BgjPb5HRVm+N7me84U39mnA6WiMYDgyZENKmkLIxrA/guUx/y6zrU9wa9D+YOlJMRScFJQ5oceyQXeTt3er7Yk4vEDRsu8+iJiKaQ1auHlOpKCEpAoG+g+t7b1o9bzlYgPVhrCi99TQ4WNzse223pxu+P/R4lLSUTfOBERHS5Ktsr8Xn55477vRYrXjtSgaNlzmB4crg/HlqV4pbFLdanrMfWWVvhJdklzz+v3ZqaPL9ZRgYwe/b4nAgR0VQREAB85StAiOdKF0a9EYsLO+HfplXKyIoJVPMY4nxdh/ostmOJLqLphUETIppU55vOo7nHOWl3srIVtoHGlPPjQ6B3qbG8Omn16F/40CGgsNDz/gULgKioSzxqIqIpSILBt90GBAW5bPJS9ent/Dt68M2ODvgMlGORhsBSPsA1cPL8qedVnyn2OCEimj6lbt/Oe9vRH1A+vz/Oq0Ndu5bJLSW41mZG4fbFCQgw6BzP03vrcWv2rbgmfAm83nkH+N3vtCyTkfj4AFu3an9ziIhmOgmYPPywFkDxID4wDqkntGwT6REl/aLs2X5nq50N4as6qlDdUT0BB01EY4FBEyKaVK5ZJn1Wm2qYJry9vLAwybmiI9QvFLMjR7mira4O+Ogjz/ul7v/69Zdx1EREU5Rc0N1xh9tkVrAhWGWc2GVWNGJLkNa00tbfj7eOVaG6tcexXybd3i94H9vPb1cNhYmIaGr7uPhjNPU4M0PO1XagsF7rW+Wn98G9y5KwNCXMrRxXbGAsvrb0a1hsDgd+/Wvg5MmRy3HZrVp1wXI1REQzSkSElnHi5zf8bmMEksrbENisfe7OT3DOY5yqcm8If7Ta2cuViKY2Bk2IaNJIemppq7P+Z16NM301MyYQQX7OOskrE1bC22sUH1kWC/Dmm0DfCBN9ixcD4eGXefRERFNUWhqwdq37prA0+PpogRJxV20jIvy1z1ipc//GsUqccam7LI7VHMOzJ55V2SdERDQ1FTUXqexAOym9uDu/3nF/4+xoxAS7T/RJj8AnljyBKH2INm42OTMOL7jiet26sTt4IqLpQnqhPvCAtgBzEAlIxwXFIe2YVuI2PMAXiWH+6vvWbjMqW5yLk07VnXLr50pEUxeDJkQ04aw2q1rF/N759xzbZPWFlImxW5Ic5vje4GPAkrglo3vxjz8G6p0XikMEBwObNl3ikRMRTRPSsyk52XFX563DrPBZjvthTR34s3CD44JOyiJKKZfd5+pVKQG7ivYKvHz6ZWacEBFNQT2WHrxz7h238fSu3DqY+7QyXbNjg5AV4yzZGKAPwIPzH8SWWVvU3wV88QXQ7iwdM6KwMG3CUJojExFdiWRsvXDhsLviAuMQWdmM4AbtM3VBoku2SWWr43uLzaICJ0Q09TFoQkQTfnH34ukX3VbECSnL1dJtVt8nhBrdVsRJwMSgG8UFWkEBcPCg5/1SkuD22wF/bZKQiGjGklVwUqZL56xdH+UfhUh/Z0mVuafKcNe8WCxKCnXrK/X28Ur0mK1ugZPPSj+bwIMnIqLR2FGwAx3mDsf9ExWtqGjRsgMDDTpsyI527PPx8sFDCx5CZkSmtqGjA9i//8JvIuVorrsO+Pa3gZiYcTgLIqJpRMp8S2+nQWS+IsI/AmlHi9X9jKhA+Ptq4/Cihi50mfrcKm6wdyDR1MegCRFNmIauBvz+2O9R3KINJOz19Peeb3ArI7DYJcvEC15Ymbjywi/e1QVIA8uRrFmjla0hIroShIYCV13lVjpgTuQchBi0lW+GbhNSz1aoSbVr58SoRsFCSgi8fKjc7eJuf8V+1HXWTcJJEBHRcM7Un1E3u+YuE/YVNjruX58Tq/qZ2G1I3aDKxzh8+qlW1tYTmRSUsfNf/qX2t8QlCE9EdEWPr5cuHXZXfFA8wmpbEVrTAh9vL+TEBzvmPHKrnWVw67vq1aIkIpraGDQhoglR3VGNPx7/I5p7mh3bpH/Juyeq3cpyyYrnjKgAx/05UXNUE/gRySqNd9/VAieexMUBGzde5lkQEU0zMtElZQkH+Hj7YGHsQlVCQCSfqYBfZy/mJYTgriWJjhVx7YNq4ktzeGkMz1VxRESTT+rhS6lbOymr+OGZOkd5RRlPJ4c7M6uTgpNwVbIziI7aWuDEiZFr9//5nwPXXw8YjeN0FkRE05T0dtI7+6/ahfmFwagzIl16m/T3q/E1tDVJOF3VroIndoerDk/kERPRJWDQhIjGncVqwatnXnVreCaluF49XIGyJi3Q4e3lpRpVyopnWQ1tzzJZm+zezHhYZ84A58973i8DmjvvHDaNlohoRvP1Ba691m2Tt5c3siKykBmeCR9rP9IHygjEhxpx/4ok+Ptqn5WF9Z0oqu90PK+yvVKVEyAiosn1RcUX6LZoZbjEoZJm1Hdo4+wwf19cPctZilHvrcftc25Xn/2KTNrt2qV99eTGG7XV1ERENFRgILByaDUMmceQbBPpaxJR0YQQox5pEdqC0I5eC0obnYs8cxty0WFyllckoqmHQRMiGnfHa4+jzeRMRy1v7sYrh8odPUykdMDtixOwINH94mxIGYHh9PUBn3wy8mO2bAEinRePRERXlPnzgcTEIRd1CcEJKuskoawFIXXaZ3SQnx7rsqIcj5NsE1Ofs7/Jx8Ufo900yqbBREQ05jrNnThQccBxv7XbjMOlzY7P9i3zYqHzcV7mb561GeHGcPcegMXOUrlDzJ0LJCWN09ETEc2gbG7D0L6rsYGxKkiddlzLNpkv2SYufadcs7i5GIloamPQhIjGlZRycW36LjXyt5+shqnPpu5HBPji/uXJSHIpISAZJltnbcW6lHUXfoPDh4FW5+BjiDlzgCVLLvMsiIimMcnek+DxMKT84dL4pVh0otax6jg7JggpA6viOk19OFDU5Hi8yWrCBwUfTNCBExHRYHvL9sJic/Yikc9oe8mXZSlhiAn2c+yTjMKlcS6192024KOPPL+4ZGUPyk4kIqJhSOlC6fs0iN5Hjyj/KAS2dCG6tAGpkQEq48S+eFT6T9lJ0KTP5uwhSERTC4MmRDSuSlpL0NjtbEp5uqoNFqsWMJFJuXuWJyHE31kP1E/nh4cWPKSav9vLdHnU0wPs3et5f1AQcPPN2oQhEdGVTDJNFi4cdpd87i5FHJJyK9V9r4FyiTof7bPzRGUratp6HI/Pa8xDXkPeBB04ERHZSW9A15XJUpIrv04r72LU+2BZaphjn9TVvyX7Fvfx9NGjQEOD5zeQcjPhLlkpRETk2apVgL9z8aedlOgSyafL1aTrQpeKGq7ZJl2WLuTW507QwRLRxWLQhIjG1cHKg47vpTnlqUqtBIxcv107JxoGnbPPSKR/JJ5c8iQywjNG9+L79mmBE082bRp2EENEdEWSz8RhmlaKYEMw1hWYEVbdou7LirjV6RHazn7gk7x6R4NhIQ2ITX3OlXJERDT+dpfsViVd7PYXOjMBl6eFu42rr8+4HkGGIOeTe3uB3btHXjW9dhS9BImISCPlua6+ethxdZBvEAKbOxFS34658cHQD5RNPFvTgV6Ls/TtwaqDqjoHEU09DJoQ0bhp7W3F+SZng3ZpKtxt1tJPMyIDVe18u4ywDDyx5AlE+A9M0l1IWxtw0BmQGSImBliw4DKOnohohgkOHnFCLD0kFUv2FcGvQwtGL04KQ1SgVqu5sdOEY+VaQEV0mDvwyplX0GMZIXBNRERjprazFqfrTzvuVzR3o6xJayosY+oFLnXzpTSM9Kwastio29k8fogNG7TACRERjd7y5VqFCxeS4ZcYrPUTTMirVD1c58YFq/t9VhvOVjv7A1Z3VKOyXcv2JqKphUETIho3h6sOo1+WKA846ZKKujDJmaKq99bjrrl3qRIxoyYr5aQJvCdSj9mbH3FERG5WrwZCnZ+/rny8fTA3MA3zPj0DH4sV3t5euHZujKPC4ZfFTarhsGv5xT8c+wOaup0rnYmIaHx8UvyJ43tZlby/yFn+VjIDXZu/b0rfpBoRO7S3A19+6fnFIyKAZcvG4aiJiGY4yeKW0oaDRAVEwdfHF1FljTB0mdzmP6T0rb0XlfiycoTPZyKaNJxRJKJxYbFacKzmmON+fXsvqgdq4kcEGJAY5lzJtiBmAYz6i1jZVlcHnDzpeX9aGjBr1iUeORHRDL+wu+UWj72eJNsvzeSP2fvOqcbw0lB4UZJWI1/Kc+3MrXUrKdDU06QCJyUtJRN2CkREV5rS1lIUNBc47hc1dKG2rVd9HxHgi9lxzlXOScFJyI7IvrjFRtddpzWBJyKii7dkCaDTuW2SwLX0NvHq70d8fjXCA3xVT1fR3mNBSYOWKWjvF9hucmafENHUwKAJEY0LKR/Q0+cs23Ky0jXLJMStKeWKhBUX9+Iff6wm80a88GPzdyKi4aWna5+THmRGZCKuokU1r7SvYLaXU6xp68WrhyvcMk7ks/75U8/jaPXRCTh4IqIri2SVuGaZyOrkL1yyTNbMioS3y7j32vRr3Zu/19cDJ054foOUFCB7UJCFiIhGT/qozp8/ZLMKmsALceer4W21YZFrtolLFQ7pVSVVOohoamHQhIjG5eLuUNUhx/0esxXnajvU9746b8yO1ep5ipSQFMQExoz+xUtKgALnSrsh5s0D4uMv8ciJiK6gMl0e+j5JKYH0sHSkHS9BREWT+ty+cX4cjHptFXJLtxmvHK5AZUu328Xe9vPb8WnJpxN2CkREV8KYenfpblS0Vzi25dW0o7lLC1zHhfghPVJbuSwywzOREppycYuNrr+ei42IiC7XMCW6ZEwdHRAN314LokrqkRrhj1B/X7WvoqVb9Qy0O1pzVFXrIKKpg0ETIhpzcmEnzSrtcqvbVFkXkRMXoibg7FYmDh1ceNTTA7z/vuf9UlZg06ZLPGoioiuITJDdfDMQFzfs7rjAOIT6hmD2vjzoe8yIDfHDfcuTVWkBISW63jpehdyqNrfn7S3bi+M1xyfkFIiIZjKZPHvj7Bvqc9VOGgh/WeTsI3XVrEhHVomsZpZeJm7KyoDz5z2/SU4OkJAwDkdPRHSFiY0FkpOHbE4I1j5jE85Vqc/rRYkhw2abdFu6cab+zAQdLBGNBoMmRDTmXLNMpITAyco2t9JcdsGG4KE1lz2xWICXXwYaGjw/ZvlyIEyrvU9ERKPob3LffUCAc5WynVzUzY2ai8A+H6ScKlPbQvz1uHd5kqMes83Wj4/y6vB5QYNbM8sPCj9AS0/LBJ4IEdHM0mnuxLMnn0VuQ+6g5u9N6DBpvUlSIwKQGObv2D8/Zj5iA2OdLyKfyx995PlNvL252IiIaJyzTWTOQ90aOxDc0I458cGORaTnatvdegUerDqoPuuJaGpg0ISIxlSHqQNnG8467kuDs45ei+Pizp6OKpbFL4OP9yiaTlqtwOuvA+Vaff1hGQzAunWXefRERFeYkBDgnnu0ybNBDDoDFsUuQmZRK4xtWikug84Hty6Md6vJfLSsBfsKnPX1zVYz3jn3jirZRUREF6e+qx5/OPYHVLZXumWYfHCmFsfLBwLSXlqWiZ2Plw+uSb3G/YXy8oBK52sMsWwZEB4+9idARHSlmj0bCHaWIrdLDE5UXxPyqtRYem6c9pg+az/OuGRtS7WOE7Uj9KAiognFoAkRjanD1YfdJsrcG8CHul3cLY1beuEXlJUW7747cmkBcfXVWgM2IiK6ONIEeOvWYXcZ9UYsiVmEVfldjm3e3l7YkB2NjbOjHWVhjlW0uPU4KWsrw5eVX07AwRMRzRxV7VX447E/orXXOX7uMvXhjWOVOF/X4QiYbMiMQlSQwfGYpfFLEWYMc19w9ImzefwQvr7A+vXjcxJERFcqKRcuAelBIv0jVX+TqNJ6+PaYtcVHA62kTla0qsC43YeFH6Kt1738LRFNDgZNiGjMlLeVY1/5Psf95i4Typu1SbRQo141PrPLic5BgO/QkjBDAiY7dwKnTo38OKnJL02NiYjo0sgFXmbmsLv0Pnqs7YrAWu80t+0LEkOx1r7SuR/YlVsHU5+zxMAnxZ+oFdNERDS6klyvnHkFJquzMXBTpwmvHK5AbVuvuq/38cbNC+KxKNkZIDHqjFiXMijb+tgxoMnZ+2SIq64atjQjERFdpqVLteCJC28vbyQEJcDb1o+4/GpVfSNtoNytlFw8UOz8vJa/Advyt7FMF9EUwKAJEY1ZWa7Xcl9zyzI5Uuqsab8gKdSxIlmsTBhFA/h9+4AvL7BSWXqYPPggoNNd4pETEZFqDH/dddrXYcjF3qZCK26YtVU1G7ZbnByKhFCj+r6914K9551luqz9Vryd9zasNmcghYiIhieB5g7zQDYJgNKmLrx6pMJR5jbQoMPdSxORERXoeIx8Ht819y4E+jq3wWQC9uzx/EaBgVxsREQ0XiQgPW/ekM1xQXFqPB1/vhpeVhuunhUJH29tTH20vAXVrT2Oxxa1FOFYzbEJPWwiGopBEyK6bDIh9vrZ19UKObu8mnacrWl3rIqz1+0UssoiIThh5BfNzR25rID9ou8rX9G+EhHR5YmOBhYv9ry/vBwrOkNwd87djk0SDL8+J1Z9zovc6jYUNzj/FtR01mBv2d7xPW4iommurrPOrY59XXsvtp2ohrlPW4wUHeSH+1YkIzrYz/EYvbce9867FxnhGe4vJgGTLmdJxSE2bNDKcxER0fhYsWLIJinPFRsYC0O3GbFFdYgINGB1eoQzY/tsHSwuZbp2Fu10K9VIRBOPQRMiumzyB11Kc9nVt/fi47w6x/31WVHw0ztTVFckDB1EuGltBbZvH/kxfn7AQw+xgSUR0Vi65hpAr/e8/6OPMDc8260nVYhRrz7n7T7Oq0eP2Zld8nn556pOPxERDW9X0S70y6yZqk7bj73nG2AbKM0imSV3L0tUmSZ2Qb5BeHzx45gdOdv9herrgYMHPb9RRMTIwXEiIrp8CQlAotb83VVaaJoKnqQdL4GPxYolKWGIDdGC4a3dZnxR6CzTZbaa8e65d1mmi2gSMWhCRJdFVsUdqjrkuC8TZe+dqoHVpv1xn5cQom524cZw1c/EI5sNePttoFer3TwsKcV1//1AbOwYnQURESlBQSOXbZEa+ceO4fqM6xHm56ypnxMfjLRIrTZzt7kPn5yrc1zkSdnGt8+9jT5b3/gfPxHRNFPYXKhKsdgVN3ShaqBMi9S9v2F+nCObT8QFxuHJpU+qUi9u5DN3xw5tLO3JtdcOqbVPREQTk20ifQKzIrJUM/ikM+XwloztubGOMl3HK1tQ2aL1hBUlrSU4XH14Qg+biJwYNCGiS1bTUYP3zr/nuC8r4j44U6Pq2ouYYD9syHauPpYanrdk3wKd9wj9R/bvB8rKPO/39gbuuQdISRmjsyAiootqELxnDwxW4LbZtzn6m0iZrmvnxDiyCgvrO5Ff66zN39jd6BZgJyIiLagsWSZ2suhoX6GzN5RrzXshmSWPLX4MwQZn2VuH06dHHkOnpgKzB2WmEBHR+MjJ0fqvDhLpH4mYgBgk5VbA0GVCeIAvrsqI1Hb2Ax8NKtP1UdFHaO5pnsgjJ6IBDJoQ0SWxWC2q8bvryuEDRU0ob9ZWRhj1PrhpQRx0EuQYcF36dUgNTfX8olVVwO7dI7/xzTcDWVljcAZERDQsg0Gree+J1MrfsQMpwUlYk7TGsTnAoMPG2dGO+7vz69Flcv6N2Fe+D6Y+0/gdNxHRNMzYru+qd9w/U9WGlm6z+j4h1IiMqAC3si735NyjSrsMIRnau5zBlyFkPH7DDRLhHuMzICKiYUlWn2T3DWNW+CwY+3WqTJdYlByK+FCj+r6tx4J9Bc7gucVmwYeFH07QQRORKwZNiOiSfFn5JVp6Wxz3C+s7cLi02bHiWEoJBPk56+LPi56HVYmrPL+g2Qy89dbIJQUWLWIdZiKiibBkiVb73pNTp4DXXsM1iVcjOsAZKMmKCUJ2bJD63tRnw6ES58q4bks3DlQeGN/jJiKaJqRe/aclnzrum/qs+LLYWc9+bWaUGlMLyerbPGuzytoeljR/7+z0/GarVgHRzs9qIiKaAHPnAklJw5bpyo7IRmxhLQKbOgbKdMVA56N95p+sbEXFwGJUcb7pvKryQUQTi0ETIrqkUgKutTVlNcTOXGfj97WzIpEU7u+4LxNqUpbLfuE3rA8/1GrleyKprVu3jsHRExHR5ayOczh3DrqXXsHtqVvdJvLWZUY56u+frm5TfyPsDlQcUMETIqIr3RcVX6DT7Ax0HC5pQY/Fqr7PjglyNAcWC2MXIjbQQy+/ujrg0KGRe1WtXz+GR05ERKMi8x+bNw+7K8I/Qn2uzzpcpHpSSQ+rq+1lugB8dr7BrQn83rK9E3LIROTEoAkRXbSi5iK0m9od94+XtzjqbspF3uLkUMc+P50f7pt33/ClBOzy8lRj4RFLCtxxh1YyhoiIJobUvh9mdZybsjLEvbkTG6NWuJXpWpyk/R2w2fpx0GXltMlqUmW6iIiuZB2mDuwv3++4395jwfEKLYNbepismeWcONN767ExbePwLzSa5u8yYccxNBHR5EhMBObN81imK6ahBxEV2lh5YVKo6gsrGjtNKGnscjw2rzHPrZwjEY0/Bk2I6KIdq3EGOPqsNpwbaPYrF3nXzI52KyVwx5w7EG4M9/xi3d3Atm0jv6GsjrvQxB0REY0t+SyXPlJ6Z6nFYdXWYvWus4g26RyblqSEwaDThpl5te1o6nT2MpGG8K6BdyKiK42U5ZI69XZfFDWqJvBiUVIoQozOz93VSauHb/wuTp4Eyss9v1FamtaMmIiIJo9kb+uc42Q7nbcO2ZHZyDhSBC+rTc2jrExzzp0cLGl2yzb5vOzzCTtkImLQhIgukpQRyG/Kd9wvauhC70ApgVnRgfDT+zj2rU9dj6yICzRtP3gQ6OnxvF+CJWvXjsGRExHRRZMa+A8+eMFVyj6t7bjlQDN8u7XgiPwtWJaqXfTJtd4Bl2yTPlsfSwwQ0RWroq0Cx2uPO+7//+z9B3Rc53kn/n+nVwwGvfdKsPciUpRE9WLJluUex47jbLyb/DblbNbJPydlk6zPZs+WJOvEceLYjm0VF8nqskRSlWKvIAgCBNF7n95n/ue9F7h3hgQoSiIwKN/POXNw33uBwTsSOHPvfd7neYZdQWUBknjv3D7z3inYjXbcVnbb3E80NCRnmcyHzd+JiJYGpxPYuXPOQ2KBaXnUhtJL/dK4KteGXLt83j3iDqI3qbfJxdGLmPDfoKQ5Ed1SDJoQ0Ydyfvi81NNkVsugS9leV5ypbJt0pvkv8mZFIsBJtTfKdcRNOlGWS1z0ERFRelRWAl/5CmCz3fDbShIZ2H6sD5qk1dJWo7yqrmPUK134JWcsTgbUJvFERKtBLB7DS+0vKWOxgvjdK2PKeFdVdsoCpDsr74RJP0fQ2uMBnnpKPpeez+7dQF7eLZw9ERF9ZGIhqFXt+5qsIrMCNac7UdQ2eF22yYku9Xw5gQTL3BItIt6JJKKbJi7skktziea+sysfRBmB0iyLcmx9wXoYdB9Q0qW5WS7PNZ+HHpIbwBMRUXoVFQG/8RvySrl5iIu8jQEHKi70SGPRDD75ou9Ix7iyLYLvb3W/tcCTJiJaWo4PHMeIb0QZtw55MDAtZ1yLJsDrS9X32DxrHjYXbb7+SaJR4JlnAPcNyhw6HGz+TkS0lJjNwJ13znkow5SBHEsOGo62o/jygFTBI9sm94QVnxH9U+o9k/Mj5zEdnF60aROtZgyaENFN63P3YSIwMWeWydriTKWXibClaMuNn0zUazl2bP7j5eXA+vUfc8ZERHTL5OQAX/uaXLJrHuIm39rWcTiH5IbG60oy4TDLAXQRZO9LKjHQPNKMEa9685CIaCUTN7ne7HpTGQfCsZQskzvq86T+gLPurbkXWo32+vPn558H+uUyLvO6/37AKN9wIyKiJWLrViA3d85D5Znl0tf6Y1dQ2jqQUqoxOdtELDw60ntkESZLRAyaENFNS84yiScSuDQor3ATsZKmYrVBZaG9EEX2ohs/WVcXMDp645ICrMFMRLS0ZGQAX/2qHNiegwieV2dWYc27rTAEwtINwF3VOcrx969OKA0tRYmBJ5ufxKjvBp8FREQrxKtXXk1p/v5exzgCM30B6woyUJmrlkCszqpGbXbt9U/y3ntypvaN7NoFNDXdwpkTEdEtIcqOP/DAnIcyzZnIMstVNupOdODu8WmpmsfswqMhVyDlvownJPfCIqJlHjT59re/jcrKSpjNZuzcuRMnTpy44ff/7Gc/Q2Njo/T969evxyuvvLIY0ySiGwhGg2gZbVHGPRN+eENRabsqxwa7Sa5bP5tlkpx1MqcbZZmI8i8NDbdg1kREdMtZLMAXvjBv+UTR0DI/ZpECJ2JVdGNRhlJiQFzwdY37lO91hVz43pnvoWOyY9GmT0S02C6PX0bbRJsyHpgKKBnbRr0W++vV3iM6jQ4P1j2onkvH48DAAHDokPy4kdpa4N57F+hVEBHRx1ZTM+/7dIWzQtmuO92JL4XVfoAnk7JNYokY3u97f4EnSkQLHjR55pln8Ad/8Af48z//c5w5cwYbN27Efffdh9F5Vpi///77+PznP4+vfe1rOHv2LB577DHpcfHixYWeKhHdwMXRiymr4y4OJJXmKlEbwOu1eqzP/4CyWuPjQHv7/Md37mTzdyKipV6X+dOfBnRqw+JZ4kZfVVYVsgenUH6xD1qNBntq1GyTw5dHMe4NKeNQLCRlnJwaPLVo0yciWizhWBivXFEXAcbiCRy+rJYm3FOTm7L4aG/ZbcgNaoGzZ8VqQuB//k/gX/4FePfdG/8i0fRdvC/zHJqIaGnbs0cuo3iNTFOm9Jh1oHsYTT45w6Rz3IdRjxpEEefNvrC6EImIbr0FP6P63//7f+PrX/86vvrVr6KpqQnf+c53YLVa8W//9m9zfv/f/d3f4f7778d/+S//BWvWrMFf/dVfYcuWLfh//+//LfRUiegmS3P5QlFlpbDVqJcyTWatyV0Di0FtCD+n48fnPybqL2+eo+klEREtLSUlwN13z3nIaXZKGSdVZ7qQOeJCTZ4dhZlm6ZjIUvzpqT50T/hS6jO/1P4SftXxK2mbiGilEH1M3CG1afuZ3ilM+MLSdoHDjE1FGXCMulB2sQ873+vG7T8/Cfz938u9S1pagIBakuWGGYCf/7wc0CYioqVPlFJ88MHrFh4lZ5uIhUdfmnbL/aykbBO5Z6AgFrSeGLhxFR8iWsJBk3A4jNOnT+PupAtqrVYrjY8ePTrnz4j9yd8viMyU+b6fiBbesHcYg55BZdw65JZ6mgiil4lW+yEawIsLv3Pn5j++ZQsv+IiIltMFX339nIeqnFXQJBJoevsSjMEIHtlQjPwM+f09HI3j+XODuNA/nfIzR/uP4sW2F5W+J0REy9nVyas4PqAuFnIFIjjeNQFzJIr1o1P4L2MT2Pf0EWx55SxqTl3FTo8DOv9NBEmSicySz34WyFabBhMR0TKwYwfwyCMpu0RfkwxjhjJujEVR75cztK+MeTA5E3SfXdgai8u9sYhomQVNxsfHEYvFUFBQkLJfjIeHh+f8GbH/w3x/KBSC2+1OeRDRrXV26KyyLW5ktcw0gBfWJjWAFx/wlc7KGz/ZmTNARC3zlULUbhYnDkREtDyI9+3HHgMy1VICszJMGSiyF8HkD0mBE7tBhye2lUpZJ7OfJ6JU1zvtY0ogXjg7fBYnB08u6ssgIrrVOqc68dTFp5TsOb0/hNHXW/D4uU78f8cu42uD46gdc0EXlY/n2/KlDL0P7aGHgMoPOP8mIqKlaetW4NFH5XPqubJNtBp8JjCTnZ1AyoIjT9iD9okblD0noo9l2Rc8/da3voXMzEzlUVZWlu4pEa0okVgE50fOK+NBVxBTfnl1Q2mWBVlWubnvTTWAj8VuXJpLNH/nKjkiouXFagUef3zOOvp1OXVwmBzIGp5G1dkuGHRaPLShCFvKs1JK1bx8YQjRmFqW62DnQbiCau8sIqLlpGuqC081P4VoPCqNi9sGUfODd7D+9FVUTXlh0mpQmm1J6QlYm1370bL9xA03IiJavkR58jvuUIY5lhzYDGoJ9E2+AAqCcrbJpSE3IknnzKeHTi/yZIlWjwUNmuTm5kKn02FkRG10J4hxYWHhnD8j9n+Y7//jP/5juFwu5dHX13cLXwERtY63IhgNzt0AvlhdWayBBpsKN33Ak7UCN8oGExd+RES0/JSXA3fddd1urUaLjQUbkWvNRXlzL3J7x6X6zLfX5+Guxnwl0H51zIt3roxf1ziZZbqIaLnpme7Bk81PSvXmhbzuMWS/0YyeYfUcuDLHCn1SoFmUMzTq1IVIH0hk9z3wgKhjfWsnT0RE6SEqboj+rjPZJmWZ6oJwvU6LT3h9Sonb9hGPcqxjsgNTAbXXCREtk6CJ0WjE1q1bcejQIWVfPB6Xxrt3757zZ8T+5O8X3njjjXm/32QyweFwpDyI6NY5NXhK2Q5GYrgyKn9AG/Va1OXLJVZmVxOLUizzEje+btSbSARGK9Q0VCIiWmZuuw2oq7tut06rw9q8tShzlKHx3VZYXH5p/4ZSJx7dVCxdCAoXBqYxOK3W8m+baMPl8cuL+AKIiD6eXlcvftL8EyVgYnX5kfurC+gY9SrfU+AwIdumBkhENl5xRvGNn1ivB2pr5SDJf/pPwO/9HrBzp1LOhYiIljmLRc44mZFnzZOyEGft9fhhDcvZixf6U7OxmW1CtEzLc/3BH/wB/uVf/gU//OEP0draim984xvw+Xz46le/Kh3/8pe/LGWLzPrP//k/47XXXsP/+l//C5cvX8Zf/MVf4NSpU/id3/mdhZ4qEV1j1DcqXfzNujzsQTQmr/pdU+hQbnTdVAN40fx9YODGWSa88CMiWr7Ee/inPgU4nXMc0qAmuwZNjhqsf+sSdBG5aWVljg17qnPkb0oAh1pHEYur2SUi2yQ525GIaKka9Azixxd+LGXKCeJ9Lv+F0+geUOvP52eYpPe92Sw7kaldn1N/fXlbESQRi4n27gV+7deA//pfgS99SawwBPLyeM5MRLQSJd0TEYuOCu1qxR2HXoM7p+WMxRF3EKPuYEoPWjaEJ7r11LDlAvnsZz+LsbEx/Nmf/ZnUzH3Tpk1SUGS22Xtvby+0SanJe/bswZNPPok//dM/xZ/8yZ+grq4Ov/zlL7Fu3bqFnioRXeP0oLpiQZRIaU5qOra+VC3NZTfaUZd9/epihc8HvP76/MdtNoD/xomIVsYquc9+Fvje94CovBoumVhNbQ6YETzWiQt7a6ULw01lTlwedmPUE8KEL4TTPVPYUZWtNLg81HkID9U/lIYXQ0R08z0Af3HpF0rARGRYZ752HiMdoyIeLMmzm1CVqwZMhOqsauk8GiYTUF0tlzoUD5GBrdOl58UQEVF6ZGUBTU1AS4ty3tzv7pe2xWfHfW4vfpXjRFSnRfOACwccZumYL+KTsrPX5q9N6/SJVpoFD5oIIktkvkyRt95667p9TzzxhPQgoqXTAH7IFcSET74QLMq0INduSskyESsh5vXGG0BALbkyZ/1OsaKOiIiWv6Ii4KGHgOefn/NwtiUb+z0JjLUPYaihGFqtBnevKcBTJ3ulSo7HuyZQV2BHltWolIncULAhpbYzEdFScnzgOCYCE8pYc+wqAqe6pPc0QZw3V+elBkxKixpQuutB+QZZVRXPhYmISM4onAmaWA1WOM1OTAflxaslRh02jbtwqiBLqgKyry5PKps+e77MoAnRMivPRUTL08XRiyklUZLrZm5IyjIRZQVuWJqru1suzTUf0YeIDeCJiFYWUZN5y/yfDTnWHOy57IPJF5LG+Q4zNpdlSduiPNfh1lGlCXwCCbzY/iLLDhDRkiTem04MnFDG2t4JGH51QQmY5NiNqLkmYOK87QBq/vofoXn0UbkXFAMmREQklJbKGYczknte6bQaPOTySNmMkVhcytSe1TXdhQm/Grwnoo+PQRMi+sAG8IGw2gDeZNClNICvza6VVj/MSZRmefHFG/+iBx+USxIQEdHKIt7fi+dvbtxgr0DTyS7pwk/YXZODDLNB2u6b8qN1SP7cme2x9X7f+4swaSKiD+fS2CW4Q/KNK5M3iNwXz0A705tJNHyvzbOnBEzy6jZh41e+CQ3LbxER0XzZJjNyrbkwaOXzY6FeB9ROyufIokTX7CIjgQ3hiW4tBk2I6DpDniEMeNSm7a1DbqUxb1NRagP4bcXb5n+iI0eAiRusdmhoABobb9GsiYhoSRErpz/zGbnPyRyMOiN2eDKR1z0mjQ06Le5qzFeOv3NlTAraz3q75224gmrWIxFRuombVUf7j0pN3yvPdmHLL47DNybfzBJxkmt7mBTl16DpP/0FNAb1BhgREdF190my5f5+Wo02pSG8zaTHPePy+fCYJ4QRt5y1PdsQPhq/vqcgEX00DJoQ0XWSVyhIDeAH1JtU60vU0lwOkwN1OfM0gBfBknfemf+XGI3yKmQiIlq5nE7gU5+a97C4CNxxfhz6UEQaixuM9QUZ0nYwEpMCJ7PERaC4OUlEtFT0TfcgfuY0dj57HJXnezA57VcWGonG7yIYPKvYUYL63/pjaMT7IhER0Xy02pRsk+QSXcLmWASFHr+03Twg9zsRAtGAlP1IRLcGgyZElCIUDeHCyAVl3D8VwJRfbgBfmmWRygzM2lq0VVr5cJ14HHjpJSB2g/rzd94JZKoBGCIiWqFEvf6NG+c8JFZgN1krUHeqS9m3vz4PppmmliLTccSt9tc6M3QGgUhgESZNRPQBBgYw+n/+Go1H2mAMhKWFRsMu9f2qMNOsbIvSKtWP/QY0tbVpmiwRES0rmzYp2doWgwVZZrn3n5BjN2HP0KS03TbikRYazVVmnYg+HgZNiChF82gzwrGwOk7JMlFXxolgyeaizdc/wfg48L3vAV3qDbDrFBYCO3fewlkTEdGSdt99gNU65yGb0YadY0ZkDU7JY5Mee2pyleOne+T9gvh84sUgEaVdfz8C//xteHs7lF1ikVEoGpe2My0GWI1qc3fn+u3Q33lXWqZKRETLkCjjuH37vA3h9waCyAyGEY0lcHlY7QPY6+rFmE/N1Caij45BEyJSiBVyyTej/OEoOsa80rbFoENtUgP4+px6qTxX0g8Dx44B3/mOtPJuXqKu8yOPyCmnRES0OoiAyQMPzHu4PLMcm08NSH0BhLXFDliNcpPkK6MeuPxy+S7hWP8x1msmovQR57wvv4yB6d6U3UNJWSZFSVkmAacd5V/9PfkcmIiI6Gbt2AHo5PPhHGuO1A9wVmGGEVsH5P6xzf3TKQ3hxUJYIvr4eNeSiBSDnkEMe4eVccugG/GZusxrizOlFQ1zNoCfmgJ++EPgtdeA6AfcyBKrJUpKFmD2RES0pK1bJ5fqmoPIXmzSF2Lvk+9i90+PYvtr5/CfRsaxp3cUmf4QzvSq2Sa+iA/nh88v4sSJiJJcvYroQB+GPEPKLm8oCk8wqiw0EpkmwkhVPsJf+TVkOPPTNl0iIlqm7HZgwwblXLnIXqQcEtmMe6c9MEVjmPCFMe5Vq4VcHL2YEkQhoo+GQRMiUiRnmYgP2YtJpbnWlahZJU6zEzVZNfKgtxf4p38Curs/+BdkZAB3sTQBEdGqJFZZP/wwYFRXySXLseTAprfC5A8hc8yNnW4f7ugZxddOdyB6vgeBsFqv+f2+9xFPyGVwiIgW1XvvSQGTWEJ9TxpyBVJ6mbjzM3HmoS1o3d+EHTW3p2miRES07CU1hC/KUIMmQrFFj43DM71Nkkp0TQYmMeRVA/tE9NEwaEJESp14sSJhVu+kH66AXA6lPNsKp9WYkmUimvfC5QKeegoIq6sabliT89OfBsxquQIiIlplMjOBAwfmPCQ+V8ocZcpYr9MiP8MEQzyOh1t6MX38qnJsIjCBtvG2RZkyEZGirw+Jri4MeNRStOFoHJMzK3z9VhNGHtyEsw9uhjvPgUpn5XU3uYiIiG5afj5QWyttmvVmaQHrrBybEdsHJqCNx6WG8MnZJcn3dojoo2HQhIgk7RPtiMTVmvEXB9zK9obSTGVbpIVuKtwkD955BwioK+vmlZMD/PqvAxUVt3jWRES07IgyjaWlcx4qsBek1Gue7QsgikPWHG6Bs3NEOXak7whLDxDR4nr3XYz7xxGMqv1Lht1BiHeioF6H049tw2RtodK/ZFfprjROloiIVoQ9e5TNfJta7tGg06JUC6wZc8ETjEifR7NYoovo42PQhIiuW4kgVsx1jqsN4Kty1Qbwa3LXwG60y31Mzp794CfetQv47d+e9wYZERGtMlot8IlPKI0tUw5ptCh1qJ8XJoMOOXY5iBKPxVHw8jnk9oxJ4353P/rcfYs4cSJa1UZGkGhrS3nficUTGJm5SXWuJAdNVbnKsWxLNupz6tMyVSIiWkGqqoDCQmkzz5oHjbScSJZrN0nZJkgkUkp0uUNu9Lp60zJdopWCQRMiklbLXZm4oow7x7zSRaBQV5CR0gB+a/FWeePtt4H4DerJO53AV74C3H+/XJqLiIgoudSACJzMrMZOVpxRDJ1GDagUZ1qU7eEpP5rebEFu77g0PtJ7ZJEmTESr3nvvSVkm4kbUrDFvSDpnjmi1cG2uhM2kV47tLNkpBYKJiIg+FnG+PNPbxKAzSEH5WVk2A4p8AVS4fGgf8SLOEl1EtwzP4ogIrWOtKc0sRT3MWQ0FGcq2yDARtZkxMQGcPz//E9bUAN/4BlBZuXCTJiKi5W3jRuA3fxPYsUMu3yiC7Vot9Fq9FDiZJW5CZlrk4HsoGseUN4Smt1qQ0zuOtok2jPnkzBMiogUzOYlY8wVcnVJ7K4kbU0PTcpna84VZWFOXpxwTdec3F21Oy1SJiGgFWrcOcDiuK9Gl12rhtBixo38c/nAUA1Nq+fRLY5cQT9xgoSsR3ZC6FIaIVq3kFQjBSAw9E35p227So9ipNm5fm7dWXjEnskzmq48pVkGI7BKTaeEnTkREy1tJifyYJTIYvV4UHnkL/c/8HySkTgFytokrIPfdGpwOIttmxNq3WnDpjrV4v/B9PNr4aLpeARGtBkeOYMDVl9rLxBWUArlxjQaD68uxLkM9Z95StCWlPxMREdHHIsra7twJvPEGcqw50n2Z2YBIrt2ImlEPcnxBaQFsWbZV2u+L+NA11YWa7Jo0T55oeWKmCdEq5wv70DXdpYyvjKopnfUFGdAklU5Zl78OGBsDmptvvAIiT11pR0RE9KH6nTgcsN3/CLT771R2Oyx6WI1yyS5fOAp3MAptPIG1b7Zg8OjrmApMpXHSRLSieTwInT6BnumelP5/AzNZJhcLnNi8QQ3+ihtZojQXERHRLbV1K2A0SlnZOZYcZbfTaoRWo8GOgXF0jKql1oXm0RvcuyGiG2LQhGiVuzZlsz2peVhDoVqay2l2ys1533rrxlkmd9yxsBMmIqKVT6NB/ad/Cz3ry2eGGhQ71d4mgzM3KzWJBBrfacGZ176ftqkS0Qp39Ci6xztSStn2T/mlm1LijNi1vRp5GWqG9ebCzcg0Z6ZpskREtGKZzcCWLdeV6BI9aEVvk7Wj09D5guid9KWUYo/Go2mZLtFyx6AJ0SqXXJrLF4qib1ouzeW0GJCfdAEoskw0o6NAS8uN69PnqCseiIiIPqqCjELo774XvevKpHGOzQiTXj51FaW63DPlujQJQPfCi5h672Ba50tEK1AgAM+RNzHkHUo5Xx71hKTtqwVOrN1Yqhwz6Uy4q+qutEyViIhWgV27pMVFohm8TiNnYQu5NhP08QS2DE6ibdir7A/FQuiY7EjTZImWNwZNiFYxV9CFHpdaaqBdNICfSSKpL5yjNJfIMrlRSZXbb1/Q+RIR0epyW8VedG6tRt/aMukzqSRLzTbpm/IjMZv5mEhg8Ml/Bk6cSN9kiWjFSZw5g6sjreo4kVB6/wmh2+phNaptQvdX7ofNaFv0eRIR0SrhdAJNTdBpdci15iq7M60GKeNk89AEeobdiMbicy6UJaKbx6AJ0SrWMpaaNSIFTWY0FKilucSHcYE7DrSqF43X2bQJyM5emIkSEdGqVJFZgbLMclzdVo3e9eXIs5tgNsir6jzBqNIcXhjzj8Hz3DPA8eNpnDERrSQj77+O6eC0Mp7yR+AOyu87wwVOVCT1MhGrfneU7EjLPImIaBXZs+e6El2ip0m2zQhrJIaGwQl0jaslutrG2xCOhdMyVaLljEETolUsecWBuPE05ApK27l2E3Lsammu9fnroblRlolOxywTIiK65UR2yYHqA1IZgs4tVejZXIWy5GyTyYCabQKga7oLeO01oL8/TTMmopUiOjSAnjY1ey0uZZmoN6GwvxF6kWk9496ae6XmvERERAuqpAQoL0eWJQsGrSGlRJewY2ACbcNuZX8kHpECJ0T04TBoQrRKTfgnMOgZnDPLpD4py0TYEHIC7e3zP5loRibSRImIiG6xSmclqrOqpcBJ96ZKTO9rgNUoZ5v4wlFM+dWVc5OBSbgC08ArrwBxtSwBEdGH1XH4FwhEA8p42BVEKCq/r8Rz7MhsKlKOVTmr0JDTkJZ5EhHRKrRnD7QaLfJsecouh0UPg06L7EAI+rYhhKIx5dhb3W/BH1HLSxLRB2PQhGiVuq401/DcpbmKbIXIeu/U/E+k1wP79i3MJImIiAAcqDqgbPdtrMT0nU03zDZJDAwAZ84s+jyJaGWIx6IYPX5IGUdicQxMqwEU845qaGayTDTQ4L7a+1J6ARIRES2ohgYgJyelRJdmpkSXsLVvHB2jakP4icAEnr74NKLxaFqmS7QcMWhCtAqJm0vNI83KeNIXxpg3JG0XOMxSE7FZ272ZQF/f/E+2dSvgcCzshImIaFUrcZSkrOKO7anDqU2V0nYgEsO4V802Ef0HpoJTwKFDgJ8r6ojow+s6cxhxt0sZD00HEYvLwdn8DBPC68uUY1uKtqDQXpiWeRIR0SolAvW7diHTlAmjTg6UCLl2ebvM5UPH6V5MJ2Vk97p68cvLv0xZbERE82PQhGgVGvWNSg1zZ7UlZ5kUqlkmmngCay6oJbyuYzQyy4SIiBbFXVV3SSu6Z1fSZd6xBkfK5dV1/VN+qd/ArK6pLsT9PjlwQkT0IfW+95KyHY8nMOoJKveobI1FCNrN0tikM+HOqjvTNk8iIlrFNm2CxmZLyTaxm/TItMiLYDd0j+CX5wYRCMdS+toe7jqclukSLTcMmhCtMmJVwetXX08ZK/1MNKn9TDaOamCZUgMq19m9G7DbF3S+REREQoG9AGvz1yrjsmwr+jdWYNpslPoMjHnkjEnBE/bgwsgFhE8eA0SpLiKimzQ61Y94i1rGdtwbQnQmyyTHZsJ0vdrLZF/FPtiNPBcmIqI0MBiA7dtRnFGcsrCoLt8Oi0GHxjEXEpNevHhhENGY2uvv3d53cWaIZWyJPgiDJkSrzKnBU7g6dVUZD04HlSa6pU6LtDJB0Mbi2HxZLUtwHatVaj5GRES0WO6svFNqejlrR30eDtbINzAHpgLSivDkMl1nBk/D/Yun2BSeiG5a67vPQTfTPFcsLhp2y1kmQr7TgrFKuemuWW/GjpIdaZsnERGRCJpYLQ6UOkqVXXqdFo2FGTDqtNg2MI7B6QBevzSSUpbrpfaXcHVSvS9ERNdj0IRoFZkMTKZkmYimlgdbR5RxY6Ham6Tk8iCKYpb5n+z22wGTaeEmS0REdI0caw42FW5SxkWZFsQbitCRnYFwLI62EU/KSrpgNIjzZ19F1+Fn0zRjIlpOxHvG9Il3lLEnGIV/pqyJzaRHqK4QUZNc9kS8FyXXkSciIlp0ovLHhg2oyqpCljlL2W0y6KTS65tHppHjC0rVRY5cnVCOxxNxqb9JOKb2PCGiVAyaEK0Ssx+KkXhE2XekY1zJMil0mNFUJAdN9OEoNl3xzn8h6HQC27YtzsSJiIiS7K/YD51Gp4z31ObizbpiRLUauAIRXBxwIRCOKsdjiRg6fvYdvNv6Kza+JKIbOn/lPTgG1L5/yVkmRQ4zRmoKpG1RBoVZJkREtCTs3i1lYosytjaDTdktqoiszbHiq2c7sHVgHKe6JtDc70opZ3us/1iaJk209DFoQrRKiA/DXlevMu6b9ONc37S0rddpcO/aQmi1ch3Msot9qDbJF4VzuvNOQC+X8SIiIlpMmeZMbCtWA/e5dhPu3FONs5Xy51YwGsfFQbeyKEAwhKIYeuZf8W6PuoKciOjaBUbd770EzUxsNRSNYdInv48YdFpk5NgwUZItjety6pBtkbeJiIjSKi8PqKuDXqvH+oL1KYtfs2xG1GZZcc/VIXzmYjdOXBhQPtsE0QOQi4qI5sagCdEqMOobxaHOQ8pYXASKmpazbqvJRbZN/mA1BsLY1hNFlkVN7UyRnw+sX7/wkyYiIprH/sr9KSUISrOsqHp8K6IOuaxkLJ5A27AHA9MB5UIwv3sMA0//Cyb9amkCIqJZHZMdsLV2KOMRd0jZzs8wYbwqHwmdfPnMLBMiIlpSZvrNin5b6/PXp2RlF2aapcoi1VNefPV0O3xnupVj4/5xjPjUe0NEpGLQhGiFi8VjeK71Oak8yax32sfgCUaUG02bypzKsYbL42jIrJr/Ce++G9DyrYOIiNLHarDic+s+B4te7b1lzzDD9vg2ZRHAbFZl17hPCZwUXe7HlZ/9c1rmTERL2/kLb8A+6ZW24/EERmdKc4k87AJRmqu2UBrnWHJQk1WT1rkSERGlqKwEysulzQxTBprymlIOFzvlc2ZrJIZ1b7agpKVPOXZx9OIiT5ZoeeCdT6IV7r3e9zDkHVLGnWNetAy6pW2jXot7mgqg0chluXThKO6YdEhpnXMSH8J1dYszcSIiohsosBfg61u/jjxrnrLPVZmH7C0VKM1SgymjnhC8IbXHSeitgwi98+aiz5eIli6x0jZw5rg69oUQjcvBVhGIjWbb4M7NkMY7S3cq585ERERLgvhc+vSngcKZAL81B1VOdTGsuPfjsBik7VA0joL322H2BJSgCUt0EV2PQROiFcwf8eNI3xFlHAjHcLB1VBnfXpeHzJkPTuHOaSdydPYbZ5nwIpGIiJYI0VPgN7f8JhpyGuQdGg06dtejsMCByhy1EeaQK5jSt2D0uR8DZ86kY8pEtATL2L7U9iIKrsrlScSNo5Gk9wxR1mSkukB6fzHpTNhYsDGNsyUiIpqHwwH85m9KjeGF4oxiaKR8SVlOUjb2lDuI0kv90vZ0cBoDnoE0TJhoaWPQhGgFOz98HuGY2uTrrfZR+MPyatuqXBvWFjuUY1nGTOwauEFApKZGSfckIiJaKkx6k1Sqa1/5PmkctJvRfGA9crItUvNmQTS8DEXUMpX97n7EX3gBaGlJ27yJKL1GvCP4actP8Y8n/xFT7Rdg8ss9TERmmi8sv1/YjHrYTXqMiqAJgE2Fm6T3HCIioiVJrwfuuw/48pdhyMpJ6VUrMidn7/hM+MIovDIEfUgu294yynNiomsxaEK0QolVcmeHzypjdzCCthGPtG026HD3GrUsl1h98IR+A/Qu+ficZlYrEBERLTXi8+xA9QE8Uv+INHYVZKL1rvXIm6nfLAzP9CcQQrEQJnxjwLPPAsPDaZkzEaVHIBLAzy/9HP906p9waeyStC+ve1Q5fx66JsvEnZ+JgEN+L2EDeCIiWhaqq4FvfAMZm3cpu8RiotlKI+FoHAFvCMVtg9K4ZayFJbqIrsGgCdEKNegZlMoNzGoVfUxmPgM3lzlhM6l9S3aX7UZxS+/8T5aXJ2eaEBERLWFbirYg15orbU+WZGPsgY1KWUnR2yQ206NgNtsEsRjwq1+lbb5EtLh8YR++c+o7qU1vEwnk9oxh2h+W+v6JzDRBr9VIpUxms0xqs2ulGvFERETLgsWCoq/+LqbK1P5/OXY1W3LCG0Zp6wC0sTjcITd6XTe4J0S0CjFoQrRCJWeZiBUDLUNy83eRj9mUVJYrx5KDu0yNQE/P/E+2axd7mRAR0bLIONlZslMZe+qLcHl3nbQtAiZjHrn8juAKuaQLRHR1Ad3daZkvES2uV668Iv3bTz5HdrUNo+PKGC4Pe6TSXLNKnBZodBqMVciB2OT3FiIiouXAbLBAd5tcwlbIshmUWzuiRJfBH0J+p9zTK2VBARExaEK0EkViETSPNCvj/qkA3AG5VmVFtg0ZZrX5+/aS7dCfODX/k1mtwIYNCzthIiKiW2Rj4UaY9WZlbLutHoerC5USXcmlB6RsE+Httxd/okS0qEQGtig/Mktkljx9sg89b7enBEssBh3q8u1SaS5XfibCVpO0yEhkmhARES03VZvugCcnQ9rWa7VwWuSG8BGRYRKMouxin5R1KUpWxhPxNM+WaOlg0IRoBWodb5Xqtc9qGVRX1CU3f9dpdFhvqQQu3mBFwbZtgEENshARES1lRp0RW4u2KuO8DBMG11fgdHEOgpEYpmcWEQhjvjGEoiFmmxCtAsf7jyvbInj6cvMQRlwBNI7L58lWoxws2VCaKZUvEZlrYxVySZMH6h5QegESEREtJ/W5DRhcX6mMc+xy0ESY8IZgc/mRPTAJX8SH7mmeDxPNYtCEaAU6O6SW5hI3iK6MepUG8NV5NuVYQ24DbOdagPg8qwl0OmD79oWfMBER0S0kmjVrNepp7uZyJ96ryEdYp8VwUpPnBBIY8AzIA2abEK1Y/ogf50fOp2Rhi3J9xZ4AcmMx1BfYsb5EDZbMmqjMx7019zLLhIiIli2T3oSsrbchaJczsbOsRmhnPutEH694IiFnm7BEF1EKBk2IVpipwBS6pruUcfuIR2l821iYIaVjztqcsw44dYPSXOvWARlyGicREdFykWnORFNekzKuzrXB6LDgVHEOXIEI/GG1FM+QZwixeIzZJkQr2OnB04jG1X/3Z/umpa8N4y6UZ1uRbUsNlgimylp8ed/vYE/ZnkWfLxER0a20rnAD+ptKpW2dVgOnVa4mEo0npFLuWcPTsE940DrWKp8XExGDJkQrzbnhcynjlsGZBvBIbQCfYcxATZ8XCATmf7LduxdmkkRERAtsV+kuZVvcDN1c5sTJ0tzrsk0i8QhGfHIDTGabEK084ubPiYETKb1MOse9Uv32DVNeZNvUMiVCtiUbW4q2YPf9v4nijOI0zJiIiOjWqsuuw0RDOaJGvTTOtZuUYxPesPS1rKUfgWgAV6eupm2eREsJgyZEK4ho2pUcNBn3hjDiDio13fMzzClZJtpjam3n61RWAoVy41wiIqLlptRRKj1mNRVnImYxStkmY96Q1PwyuSG81CCe2SZEK45o/u4Je5TxOZFlkgCKPAHUm7RKiRJhbd5abCjYAIfJAaxZk6YZExER3VoGnQG1RWsx2CAvBnBaDFLGiTDpl0t05XeNwuQNomW0Jc2zJVoaGDQhWkG6prrgCrnmzDJZW5ypbGviCew41gtMTMz/ZMwyISKiFZRtYtRrsa44U8o2CWm1yqKC2X4HzDYhWnlEMPRY/zFlHIrGcGlIPj9umnQjP0NdaWsz2JBrzZUHpaVApnruTEREtNyty1+H/jUliGs10Go1Um8TQZRzn/ZHoEkkUHqpH5fHLyMSi6R7ukRpx6AJ0QpyZuiMsi0++C7PXBSKFQSin4kkkcDe81Owd800vp1LdjZQX7/g8yUiIlpIa3LXyCvGZ2wscyJo1EvZJqJEVzSuZpt0T3dLGZvMNiFaOfrcfRj0DKYsKApH49L58O2hEAw69XJYZKYpfU2a1J5IREREK0FNdg20jkyMVhdI4xy7Wp5ywheSvha3DyLh9aB9oj1t8yRaKhg0IVohxCpZsSJgVte4F4GI3MCrJs8Os0EnbVed7cbaAblm5bx27hQF4Bd2wkRERAtMp9VhR8kOZZxpMaCxwCFlm/g1mpTeJsFoECNeZpsQrSTJWSai9IhUmgtAgTeIOoN6rmvQGpBvy1d/kEETIiJaYfRavbSgqG+mIXxmUomuKV9EWniri8ZRfqHnul65RKvRggZNJicn8cUvfhEOhwNOpxNf+9rX4PV6b/gzd9xxh7TCJ/nx27/92ws5TaIVoXmkGbGEHCQRLg4kl+aSV9mWXOpHdXM/8qx58z9Rfj6wdevCTpaIiGiRbC3aCqNOXUm3szobQaNByjYZEtkmsXmyTfr60jRjIroVpoPTaB1rVcadYz64A3K5kdvDIVhnmuEKouG7CLJKSkoAp3PxJ0xERLTA1uavhS/bjsmSbKmnV47NqCwsmPTJi2uL2wbR39cCb/jG92+JVroFDZqIgElLSwveeOMNvPTSS3jnnXfwW7/1Wx/4c1//+tcxNDSkPP72b/92IadJtCLqNZ8dPquMvcEoeiZ90naG2YCybCvyukZRe7JDWkWnXBRey24HPv95QK9eRBIRES1nFoMlpbeJ02pEU5GcbRLQaKTAyaxQLIQhz5A8OHkyHdMlolvkxMAJJETH9xlne6fkjUQC+0NyGRJBA40UNFEwy4SIiFao6qxqqYdX96ZKaZyX1NtrzCN/NmrjCZSd78KFkQtpmyfRig6atLa24rXXXsO//uu/YufOndi7dy/+4R/+AU8//TQGB9W6snOxWq0oLCxUHiJThYjmJ2o1D3uHlbFocJmYuUYUN4acY26sebcVmgRQaC+c+0lMJhHpBLKyFmnWREREi2N36W6Y9WZlvLMqGyGTmm0SSco26XH1IBaPAS0tgN+fphkT0ccRioZSev2NuoMYmA5I2/WJOEpiUeWYWFBk0qs3jRg0ISKilUqr0WJDwQa48xyYKM2B3aRXSrm7gxGEZkq8F10ZxuW296UFukSr1YIFTY4ePSqV5Nq2bZuy7+6774ZWq8Xx48dv+LM/+clPkJubi3Xr1uGP//iP4ecFK9ENJV8Uig+1lkGXMl5bmIGGI23SagGrwZrSEFeh0wGf+xxQVLRYUyYiIlrUbJM9ZXuUscNiwLriTJwqyYUo1jM4czNVCMfCcuPoWAw4q2ZxEtHyITKwRZ8iZTzTy0R4OBpWG77PNIBXiHNhLiAiIqIVbGPhRulr1+ZK6fMwL6kh/JhXzjbRJBKwvX8yZXEu0WqzYEGT4eFh5IveCEn0ej2ys7OlY/P5whe+gB//+Md48803pYDJj370I3zpS1+a9/tDoRDcbnfKg2g1ETd3mkeblXHfVACumXrN5dlW1A9OwOaSA48iyyT5IlEixp/6FFBVtbgTJyIiWkQ7S3ZKiwdm7RDZJmYDLudlYtgdRDiqZpv0unrlbJNTp6RSPkS0fERiEbzX+54y9oWiaBvxSNvlgRD2jM6U6RJNcE2ZyDBlqD+8du3iTpaIiGiRiftC4uHNycBYRR5yk0p0jXvDSnZJftcIWi+9ncaZEi2zoMk3v/nN6xq1X/u4fPnyR56Q6Hly3333Yf369VJPlH//93/Hc889h6tXr875/d/61reQmZmpPMrKyj7y7yZaji6OXpQCJ8p4QM0y2VhgR9XZbqVe85yluR54gBeIRES04onyO7eV3aaMRTmCDaVOnCnOluIiydkmkXgE/e5+YGoK6OhI04yJ6KM4OXgypXnt6Z4pxOMJ6GNx/ObwOJI796VkmQgszUVERKvAxgI128Ro0MFhNkjjYCQGb0guYSnKu3t/9ZK8kIhoFfrQQZM//MM/lPqV3OhRXV0t9SIZHR1N+dloNIrJyUnp2M0S/VCEjnkuWEU2isvlUh59fX0f9iURLWunB08r24FwDFfH5ItEi0GHvZMumPxyemWuNRdGnZp2Kdm7F9ixY3EnTERElCY7SnbAbrQr4+2VWRhx2jFqM2PEE0Qoql4U9rn7EI1H5WwTIlo2vUyuzTI53y+X5rqjdwSN4g7QDNHnSJwfKyoqgOzsxZ0wERFRGqwvWC/1N/E7bRipLpizIbzg6OxH16X30zRLovRKXmhzU/Ly8qTHB9m9ezemp6dx+vRpbN26Vdp3+PBhxONxJRByM86dOyd9LZqn14LJZJIeRKvRiHcEA54BZdw65EYsLl8Mbsi1ovqCmqFVlHHNvyGnE7jjjsWbLBERUZoZdAbsK9+HVztelcZWox6byrNwpj8b93cMYmAqgOo8OagiAiYi26Sy3QBMT8ufm0S0pB0fOA5/RO2HeaJrUjo3Lp/24mG3D8YctURfSUaJWrZWqwXuvz8dUyYiIlp0YhFRbXYt2ifa0bOxEls7RqAd9yGeSGDCF0ZlTgJarfwZOf7ST1G7bl+6p0y0cnqarFmzBvfffz++/vWv48SJEzhy5Ah+53d+B5/73OdQXFwsfc/AwAAaGxul44IowfVXf/VXUqClu7sbL7zwAr785S/j9ttvx4YNGxZqqkTL1ukhNctE1J1sTirN9ci0B4aZtEqxki7LfE1Ty7vuEo2GFm+yRERES8DW4q1wmBzquDwLV0qyEdJppZV1oizBLBE0icYiwGn185aIlibR+P39PnU1rDsYwcVBF4zRGB7pGESJ06wcE9nXxRnyNalk/365CTwREdEqsalwk/Q14LBgtKEI2Ta5MolYbDDpV0vAhy5fRKCzPW3zJFpxQRPhJz/5iRQUOXDgAB588EHs3bsX3/3ud5XjkUgEbW1t8Pvl1UBGoxEHDx7EvffeK/2cKAX2+OOP48UXX1zIaRIt2yaXF0YuKONBVxBTMx9sdWY91nQNK8euawBfUACsX7+4EyYiIloC9Fo9bq+4XRlbjDqsq8zFxYIsiFzNgaTeJiLbZMA9AJw5A8RYz5loKTvad1QKnFybZXJX5zAajFoYdOqlb3lmOXRanTwQC/pEyVoiIqJVpD6nHha9RdoW2SY5Tnn72hJdCSQw+MozaZkjUTot6DLz7OxsPPnkk/Mer6yslFbHzxJN3N9+++2FnBLRinFp7FLKhWFyA/hPu9zQRePKuMh+zcq5u+8GkoMoREREq8jmws040nsEU8EpeVzuxAtludg6OIFxTwglTgvMBp3S26TEUQJ9ayuwbl2aZ05EcxEluY72H1XG0/4wWgbdqJ70YOvoFIrL1PJ6Jp1JzTIRWdef/CSgmwmgEBERraKFROvy1+Hk4EmEbCZ4N5bDOOxGOBqHKxCRvhr18oKD6QsngJEReQEu0SqxoJkmRLRwzgydUbZFKZErox5puzAcwbYxueGlkGPJgUlvSm1yWVu7uJMlIiJaQsQK8/2V+5WxCJCUNRahL9MmZZsMzpVtcvJkmmZLRB9EBEHDMbWUyPHOSeijUTzY3o+iTDP0SVkmFc4Kqfmt5MAB0bQzHVMmIiJKu42FG5Xtvg0VyMpUs03GvWq2iSfsgevQK4s+P6J0YtCEaBka94+jx9WjjNuGPYjG5Kytz067kbxW7roG8PfcwywTIiJa9TYUbEjp9yWyTZrLcpWSBKGk3iYi2yTadRUYHU3LXIloft6wFycG5B6ZwqQvhMsjbmwYnoIzGkNhptrLRPT5E2VrlYVEu3alY8pERERLQklGCXKt8vlv2GJEaHOFckycDydXB+p//zUkpuQsbaLVgEETomWeZZLcAL7Q48dOry+lyaXINFE0NgKlpYs7WSIioiVIrDRP7m0isk2sm8vhM+jn7G0y6BlktgnREvRe73uIxCPK+GjnJBLxBLYOTqLIaYFeq17yVjor5SwToxF47DEuJCIiolVN9L6dbQgvTG+pgs1skLYDkRh8YXUR0Zh3BK3Pfy8t8yRKBwZNiJaZWDyG88PnlfGIO6SkTT46PAmrUZ/Sy0RpAC++ihIEREREpGSbOM1qr4NNlTm4VCIvNhjzhhCKJmWbuPoQPXcWCKslgIgovTwhD04NnkpZFXtlxIPKaS8KwmEUOtQsE6vBigLbTC32++4DstRMMyIiotV8PqyBfN8oaDfD31SiHOse9yGelG0y/O4ruNJ7Li3zJFpsDJoQLTPv9r4LX0TNJrk4KGeZVE55sDWSeiNHKT8gbNrEms1ERETX9DbZV74vJdsktq1KyjQR14eD00HlmFjJPjTeBVy8mKbZEtG1RFkukQk262jnhPR16+AEip0W6LSalCwTaTFRbi6wZUta5ktERLTUOEwOVGdVK+Po3noYZ3qBeUNRdI37lDJd2lgcJ5/9fxjzjaVtvkSLhUETomWkZ7oHb3e/ndIAXvQzEXd2DvSMIseuNnwXddothpkmXno9cMcd6ZgyERHRkiZKEmSaMpVxQ2MhuvLk8agnmJJt0uvqRfSk2juBiNJHNH4/OaiWzBOZ151jXmQGwmhy+VCQoWaZ2Aw25FlnFg/t2MGyXEREREm2FW9TtiO5GcjcWqF8VIoszmG3upAo/1I3fnrmRwhE1FK2RCsRgyZEy4T4QPpF6y+QkNa/yr1MDrWOIhKLY82YC2sTsZTVdCkN4MXFYaZ6Q4iIiIiSsk0q1GwTi1GH0OZKaXuubJPByyeAoaG0zJWIVGeHziIYVf99numRm9NuHppAcaYZ2qTz4qqsKjnLxGQCNm5My3yJiIiWqsbcRlRkqk3gXTtrUZNnV8Y9E364/HL/MH04CvP5Fvz80s8RT8TTMl+ixcCgCdEyIAIkL7S9AHfIrexrGXTjyqgH2ngcd/WNoiRrJqsEgEFrQK41Vx6YzcA+9WYQERERXZ9tIkoTzCrcVgGvxahkm4Sj6gVh11QXug/+Ii3zJCKZuElzrP+YMvaForg84oE+FsfW0WnkJ2WZ2I125FjkXkVSwEQEToiIiEghFhY83vS49JkpuPMc0NcWSKUuZ7WPeqRqJ0LppT50jV/B4a7DaZsz0UJj0IRoGTg9dBqt463KeNIXwlvtcg3JjcNT2GIzwKTXKcdLHaXQamb+ed92G2BRP+iIiIgolV6rT+ltYjEb4FtflpRtopYfEBmfV9/5Jc72HE/LXIkIaB1rxVRQziwRzvVNIx5PoGlsGhVWQ0r2dXlmuZxlMpt9TURERNcRC4g+u/az0Gnke0u968tRlmWB02qQxrF4QioPH43HYfKHUdAxjPf73md/E1qxGDQhWuJGfaN4reM1ZRyNxfFK87D01RCL4dPT7pReJlaDVQqaSDIygF270jFtIiKiZWVz0WZkGDOUsf22OmhmbryKOs4jSbWcdZEoTvzq31JWuhPR4mVgi5s0s0Qm2IUBlxTh3Do0iUKHmmVi1pvVXibV1XITeCIiIppTWWYZHq5/WNqeLM6CLycDtfl2WAxyICUQiaFj1Ct9Fpdf7EMiGsXxAS4kopWJQROiJSwSi0h1IqPxqLLvvY5xqdGlcNeEC412uXyIoIEGTXlNUn12yf79gEFeFUBEREQ3zjbZW75XGeuybEg0qP3BusZ9GErKOClqH5QWNbzb8+6iz5VoNetz92HAM6CMLw26EIrEUOLxY10iDqNevcQVC4mYZUJERPThFhLtLt0tanZJ2SZ6rRYNhRlKFue0PwJ3MAqLJ4CiK0NoHmlGOBZO97SJbjkGTYiWsLe635IyTWZ1jnml8gOCPRbDF0PBlPIDNdk1Sg1K5OQAmzcv/qSJiIiWqa3FW1OyTay31aEoU1213jPpR/+UX1pd5xj3wD7hwaGuQ9LnNREtjuQsE1GS68zMufHWwUkUOc0pgdBCe6E8yMwE6usXf7JERETL0D0196AmqwZjFXkIZFhgNuhQlWNTjo/OZGBXne1GLODDpbFLaZwt0cJg0IRoifKGvSllP7yhKF6/NKKMvx4Nw6HGS6QGlyUZJeqOu+4CdGqfEyIiIroxcZP1Ew2fUMZTpTkoKMtGaZbaG6x/KoDeSTlwUtw+JO0TQZO28ba0zJloNZnwT6T8W+sY88IdiMAWjmCnLwCrUa8cK84olv5NS7ZvB7S89CUiIroZokfup5s+jWxbLnrXyX3+su1G6GcW7U76w3LJ+FAE5c29ODt0Ns0zJrr1eOZItESdHjyNWCKmjA+3jiIYkcfrM4zYOyGvqhOMOiMachvU8gPFxUBT0+JPmoiIaJmry6nDPdX3SNsJrQZD9UUozbKiItuqfM+QK4juCT/yO0egm/lsfrXjVcTi6uc2Ed16R/uPIoGEtC0Cl6d75Gbwm4amUJphSilZqywm0uuZfU1ERPQhWQwW3F97P4ZrC+HPtEKr0SB3pp9uIgGlbHzppX6MDLRh3D+e5hkT3VoMmhAtQeKmy6nBU8p40hdG57hX2rYZ9fhaKABdXL5gFNbkrpECJ4q775bqTxIREdGHd1v5bXig9gFpe7iuCAkNUOS0oCpXLUsgGsOPjHqQ3yWX0ZwOTuPM0Jm0zZlopfOFfTg3fE4ZD7qC0r9DfSyOvRMuOCxqlkmBvQAm/UwQZd06wKb+2yUiIqKbI0rAZ1iduLq1WhrnO9QFCqOekLSAQRuLo+p0J7NNaMVh0IRoCbo8fhmesEcZX+hXs0puz7GgYuYGjVCeWY4sS5b6wzU1QLX8gUZEREQfzc7SnXi04VGEbWZMlOZI+wocZtTm2VNu2uZe6lfG7/S8g0gskpb5Eq1k4qbMG51vIBqPKvtms0w2D02i1qJXM65nGsAr2ACeiIjoI5fp2ly4GRNlOZgudEplMO0meZGCPxyDLyxnWRd0jaKj+W1mXdOKwqAJ0RJ0YuCEsh2OxnFpyC1t63UaPDg6CY3IhRRZJwYbKp2VqT984MDiTpaIiGiF2ly0GY83PY7hBrVnWG6GCfkzZYBi8QS8V0fhGHVJY7Hg4fTQ6bTNl2ilOtR1KCXLZGomC9sQi+GOwQnk2NWM6yxzFuzGmeBmaalctpaIiIg+8vmwRqPF1W010jgvqRzmbEN4oehoM65MtKdljkQLgUEToiVm2DuMHlePMm4ddkuBE2GX1YDS3jHlWFlmmRT5V4g+JrwwJCIiumXW5a/DPfd+A2G72gy+JMuiVMEccYdQ/0YzzJ6ANH63512EY+F0TZdoxTnSewTv9b6njEWw8q32MYjWJtsGJlBl1Ut11pPPjxW7dy/2dImIiFYUp9mJqqwqeHIzMFJdIPU1mf3cnfCFpc9l6ftGXOg4+nKaZ0t06zBoQrTEnBw4mVKK4HyfWprrsckpaGZamRi0BuTb8tUfFB9ad965qHMlIiJaDRry16Dw9geVsUmvQ0GGWdqOJxIYH3Jh4+sXYAiE4Yv4Uj7LieijOz14WirLlXxu/HrLMHomfDBFY9gzNKlkfs1mYYtME0lBgbygiIiIiD6WLUVbpK+dW6qgMeiQY5MzPEXARPTgnaU7eBhuv1w+k2i5Y9CEaAkJRAK4MHJBGfdPBZQPoA3aBGpH5PIfQlFGUWqWyfr1QF7e4k6YiIholWi85/PQ69USQMVOC7Sz2SaeILRTXmw42AxdOCqtig9FQ+mbLNEK0DLagpfaX0oJmLzZNoa2Ebnv387BCWzMtkCv06ZkmSi9TcRioqQMFCIiIvpoGnMbYdFbELKb0ddUek1DeLVEl8XtR+9P/0V8aKdppkS3DoMmREuIqNUciasNZJOzTD4zqQZMhOKMpDJcWi1wxx2LM0kiIqJVyJiVi+y7HlbHeq3UGF4Q14WD0wFkTHiw7s0WhEI+HOs/lsbZEi1vnVOdeLb1WSREDa4ZRzsncKFfPje2RGP4UjQEh8WgHM8wZqDAViAPRLnahobFnzgREdEKpNfqsaFgg7Tdu74cpkwrzAadNPYEowjMNIQXvO8dRuKNNxg4oWWPQROiJUKsnktuAO8ORnB13Ctt1wVCaPL4lGO51lyY9fKNGsnmzUB29uJOmIiIaJWp+/RvwVdZck22ibySfdQTQjASQ9bQFBrfbcXRvvelDFIi+nC8YS9+funniCXUGzBneqZwomtSGf9HXQz5RvlmzezNnDV5a5hlQkREtMAlumJGPbq3VKWUxxzzqBnWwWgQ04deBt58My3zJLpVGDQhWiI6JjswFVRrPzb3u+TAfCKBz025UhpclmSoN2yg1wP79y/2dImIiFYdg9GM/K/8J7jyHPJYp0VRppptMjAtB0nyu8dQfPwSjvYfTet8iZajt7rfgj/iV8Ytgy68c2VMGd9b4cSeEfWcWafRSatfrQarvKOsDKitXdxJExERrXAF9gLlXtRQXREspVmYvUs15g1Jff5mDXmHgHfeAd5+O02zJfr4GDQhWiKSs0yisTguDsjluKrcfqwPq421xAWh0+xUf3DbNsAh37whIiKihbW5fAd6HroNvkz5Bq0ImuhmmpuIVXaBiLw6vqylD83n34AvrGaKEtGNTQYmcWbojDIedQdxsHVUGe+sysEj0x7oovK/Mw00WJe/Dg5T0rnwXXcxy4SIiGgBs00SWg069zfBMZNtEonFMe1XS82P+8cRiUXkbJMjR9I2X6KPg0EToiVygXhl8ooyvjLqlW+6JBL47NikVDd9lojsK6UHDAZg7950TJmIiGhVEmWA9jbcgwv3bEDIapKaUM9mmwgDU/IKeU0CKDndzmwTog/hza43EU/ElfF7HeNSCVthY6kTtxfaUHJ5QDnelNeELEuW+gSVlUBV1eJOmoiIaJUQCxUMWrmfmCfPga77NyGmlKpVG8KLz/IR34g8EP1NTqiLhImWCwZNiJaAkwMnU8bnZhrAbxiZwlrEU8oPiJRIxa5dgN2+eBMlIiIibCzYCGtuEc7fuwERkx6FmWboZ7JNxr1h+MNRaTu3bwKtZ5ltQnQzRrwjuDh6URn3TfrROykHIR1mA/bX5GDtO63QxuRz44acBuTZ8lKfRGSZEBER0YIw6U1Ym79WGZvXleD1jVWIazRSpkloJhNUGPQMKgsf8NprwMhMEIVomWDQhCjNwrEwzg6fVcbDriBG3EEYozE8ODQBu0mvHCu0F0orXCVmM7BnTzqmTEREtKrptDrcUXkH/E4bmg+sh1avQ5HTohwfmFIbwJeeYrYJ0c043HUYCcg3V8RNlvevjivHdlXnoP5MJ5wjcvnamqwaFGUUpT5BTQ1QXr64kyYiIlqlJboE0XvXsqkczzeWSYGTUbfaEF70J3OF5M9txONsDE/LDoMmRGnWPNKMYFRNYzzfL2eZ7O4bQ7VJp5biEqW5HEkN4G+7DbCoN2iIiIho8awvWI9cay7c+ZkYqi9GoUPNNpnwhRGYyTbJGppC28nXmG1CdAN9rj60TbQp465xH4Zc8vlxts2IO3w+lLbKZbkyTZkodZRe/yTMMiEiIlpwZY4y5FnVTM91xZloz3fipYZSjHhDanbJTLaJ4vJlYGhosadL9JExaEKURuLDJLkBvCjn0T7iQWYgjD1DE8i1y021hCxzltQEXuJ0Art3p2PKREREJK2s00rZJkLPxgrAqENxUrZJf1K2SZnINul7Py3zJFoO58OHug6ljN+/OqGMH8oyofGY2vuvKqsqZVGRZO1aoCRpcREREREtCPEZvLV4qzK2m/WoyrXhUr4Tz1cXYyqpIfyYb0yqrqJ4663Fni7RR8agCVEa9bp61eZYAC4OuBGLJ3Bn1zAKbUZoZ1asXpdlcs89gF4t20VERESLTzShFivtwhYjBhpLUDBPtoljzI2O468y24RoDp1Tneie7lbGbSMejHvl8h5VJh0eutCl9DHJtmTDaXamPkF2NvDww4s7aSIiolXe308pHS/68ZZkSl+bC7Nw2Jmh7BdlN4e9w+oPtrUBg0nZJ0RLGIMmRGmUnGUSjyfQ3D+N8mkvGsdd0o2XWSadCTmWHHlQUQE0NaVjukRERHRNtsn+yv3Sdt+6ciRM+nmzTaTeJsw2IbphlolYPHRsJstEG4/jd4fHYfarK1SrnFWpT2A0Ap/7HEvWEhERLSKLwYJ1+euUcUWOFQ6zQdp+PssBf0wt0TXkGUop2cVsE1ouGDQhShN3yI3W8VZl3DnugzcYwYGrQ8iyGmA26FKyTKQyBOJx//3yVyIiIloy2SYRswH9a8vmzTaxT3rReeQlZpsQJbk8fjml3vmlQTemAxHoY3H8ev8Yqrx+5Zj4d5ZhUlevSh57DMjPX8wpExEREYBtxduUbXG/at1MtonHaMCRbPXzOhANYCo4pf5gezswIPcpI1rKGDQhSpPTg6cRT8ilBoTzfdPYMDyFAl8wJctErGItshfJg02bgKKZbSIiIlpa2SZNpYhbjPNnm5y+gqO9R9IyT6KlJhqP4mDnQXUci+N41wQcwTC+dL4Td4WDKb1LRC+TFPv2MfuaiIgoTUoySlBgK1DGa4sd0M58bv/MZkM0qdy8yDZJwWwTWgYYNCFK00XiqcFTynjCG0Kkdxz7u4elDJNMi5zWKOTb8mHQGeTyAwcOpGnGRERE9EHZJjGjHr3ry+fNNrG6/Oh5+wVmmxCJ+yXdb2EioDZ8v9DvQtaoC79+9irWxGPImCnzIRTaC2E1WNUfrqsD7rxzsadMREREM8TChuRsE5tJj5o8m7Q9qtXhdH6WcmzcP45QVO5XJrlyBejvX9wJE31IDJoQpUHrWCt8EfWGycTpHnzxfBeskRgKHKaUVXUiei+5/XbAbk/HdImIiOgms00GGosRtZtukG3SjsOXX02t7Uy0ygy4B3AkKevKF4wg9F47Pn+hC7ZIFGXZ6r8fDTSodFamNn7/1KcALS9liYiI0mlDwQYYdUZlvL7UqWw/m2FHXKeduyG8wGwTWuJ4pkmU5gbweS192PjmRRjicSmVMS/DpBxzmBxy7easLGDXrjTNloiIiG422ySu16FnQ8W82SYmfxjTr/0SL7S9kFKmk2g1ZVz/8vIvpRsoQiIeR/gXp3BnWz+0iQRy7SZYjfqU3n5m/UzpWjZ+JyIiWjJMelNKQ/iyLAucM5VT2gJRtFXkKceGvNc0hO/oAPr6FnfCRB8CgyZEi0w0u+xz9wGJBGpOXkXOwYtIxOUPjrwMI/RJq+aULJN77gH06sUjERERLd1sk6G6IkQclpRsk55Jv3KhWNo6gPZL7+LZ1mcRi8fSNmeidHi7+22M+ceUseatyyhqk5vBG3RaVOSoZbh0Gh3KM8vlgQiUfOELbPxORES0DBrCCy86MxHTy/e4gtEgJgOTqT986JB0b4xoKWLQhGiRnRw4CW0sjrVvXULpxV4Mu9W6jskN4A1aA/JsecCaNfKDiIiIlkW2SUKnReeWqpRsk2l/BFdGvYgnEtAkEqg7fgUXR5rx05afSivviVZLWa73et9TxrEJL8zvtSvjqlybFDiZJQImUtmPggLgt34LqEwq00VERERpV5xRLD1mNRU7oJs5/z0zFUBfbZFyTCwgTsk26e4GTp5c3AkT3SQGTYgWkT/iR/NoM+qOtiOvZwyuQATBiLzC1GE2pJQiEB862oZG4JOfFOH6NM6aiIiIPmy2yWhVPjzFWajJsysf45O+MNqHPYjHE3COuFBwdQRtE214svlJhGPh9E6eaIGJ4ODzbc+rZbkSCQRePg9E5XPhHJsR2Ta1LrrdaEdZZhnQ1AR87WtyuVoiIiJa0tkm4r5WbZ7cj1fc7zqU71SyTaaD09IjxRtvAOPjizthopvAoAnRIjo1eAqOvlEUdcgNsEaSskwKM00pDS8L7npErtksajcTERHRssk2KbQXSgseruysg9NuQkNBhhI4mQ5EcHnYg1g8gZpTV6EPR9E51YmnLz7NHie0or3T8w5GfaPKeOTyEHJnzokNOg0qc20p58KNeWugvfse4IkneD5MRES0hIm+Jiadek9rQ5naEP6dIS/66tVMlK7prtRsk0gEeO45IMaStbS0MGhCtIir6071HJWyTGYj7lN+eVWpUadFllW+GExogOg9B2D9xONAUn8TIiIiWh7ZJp9u+rRUUsiXZUN/UymcViPWFDqgnYmcuIMRtA65ofWFUHm2S9onAidHeo+kefZEC6N5pDmlLJcvGIHh9RZlXJmTWparwlkB+699Ddi3jxnXRERES5w4791QsEEZlzgtKMuSe5SJCiu/ystC0CYHVdwh9/W9TQYGgPfU8wSipYB3ZIkW8WIx52QLLN6gNB52yV8FUfNcNMyK67RouWMtah76Ei8QiYiIlqlcay6+uP6L0oq77o0VCFmNcFgMWFOUodR49oaiuDTkRkFLP+wTHmnfu73vwhv2pnn2RLc+0/rZ1meVTCqxuvTKex0omXBLY1GSK8duSi3LtfdhoLExbXMmIiKiD2dX6S5p8dCs3TU5yvZ7/S607K6fP9tEePttYHBwcSZLdBMYNCFaBOLD4MyFX6GspU8aR2NxjHrk0lxi1WmBw4SoQYdz92+CtmktKjIr0jxjIiIi+jjESvlf3/TrMFoz0LG9VtqXYTagqcghlSIS/OEYesZ9WPtmC/I7RxCJhPBm15tpnjnRrSOyS15qf0npYyI0906j+nSntK3XaqTm78lluRoKmqC7++60zJeIiIg+mhxrDjYWbFTGxU6LlEkqeEJRvJvQoX9NiTQWi4TG/df0MYnHgWeflct1ES0BDJoQLYKOiSvIOXwU2nhC6WUSn4mq52WYoNdp0bWlGu48B3aX7payToiIiGh5K84oxlc3fxWB+ipMFclNrG0mPZqKMpWMk3FvCPEJL5reacX2X57AwLsvY9Q9lOaZE338BUOHOg/hYOfBlP2neyYx/m4b8n1yxrUImFxblitj392AU62FTkRERMvD/sr90Gl0ynhPUrbJia5JtG2qhD/TOn+2iWgIfzD13IEoXRg0IVoElw8+DeeIS9oWwZJht1qaqyjTDHduBgYbiqVyBOsL1qdxpkRERHQr5dvy8dXNv4Hh27cgPhMosRh1KHValO/pmfBLF41WdwCN711G71//EXD2rLjznMaZE3004m/5lSuvSOXmkve93zGOo5dHsa9nVDkHTi7LZTPYUF7YIPcxISIiomXHaXZiS9EWZZzvMKM23y5t+8NRnB3yoHXfGiQ0Gvgjfoz4Rq5/kuPHge7uxZw20ZwYNCFaYMPDV2F+8x1lLFaURmJxpYazyahH+54GJLQa7CjZAb1Wn8bZEhER0UKUK/j8nb+LqU1qj4aCTDNMeq3SGH46oJYi8I72YfLp7wM/+IG84o5oGXn96us4OXgyJWDyVtsYTnRPYvvAODJCEZRlWVCeLa80nS3L1ZjbCO3+OwCLGlAkIiKi5eX2ittT7mvtrs4RH/SSUz1TGHda0bNRLknfPd2t9DxL8corQCy2aHMmmguDJkQLrPtn34UhFFUuGoemU7NMRE1Hb7YdBq0B24q3pXGmREREtJAr79Z9+j8iaDcrPc2Sbxr3zmSbzLo6eRUJscruO98B3n2XF460LLSNt+Fo/1FlHI8n8KuWEZzvn5aCJbv6xqT65iVZ1pRytLXZtcgoKAO2b0/TzImIiOhWyDBlYHux+nkuskobCzKk7WAkhnO90+hZXy5VXAlGg+h391//JKOjwKlTizltosULmvzN3/wN9uzZA6vVCudN1qQVF4p/9md/hqKiIlgsFtx99924cuXKQk2RaMG52y4gdPqEMnYFIghE5JseGSY9DDl2dG+uksabizbDalBvnhAREdHKUl+0DtOffEAJnIiMU7tJXoknzg9GPSHle30Rn1yyIBoFDh0CvvtdYGAgbXMn+iC+sA8vtL2gjEVJ2pebh3B52A1jNIYnWnrQlG1FYab8958cMClxlAAHDgB6ZlwTEREtd3vL98KoMyrjXdU5ymKJ071TCMQTuLxvDWJ6LTqnOnFp7BIisWsawL/5JuDzLfbUiRY+aBIOh/HEE0/gG9/4xk3/zN/+7d/i7//+7/Gd73wHx48fh81mw3333YdgUF2ZT7RsxOPof+ZfkIC6anTQlZRl4rSgY2cdYgadVJJgV+muNE2UiIiIFoO4WLx9xxM48dh2dOyoRdhmQkWOumCif8qPaFwtUSAuImPxmQyTkRHgX/8VeOst9jqhJUcsfnv5ystSsG/W6Z4pXB3zQpNI4JNtfdhr0yMvQ+1hIoiSXKWOUqCoCFi3Lg0zJyIiolvNZrSl3ONyWo1YW+SQtsPRuHSOIBrCd2+SFxGP+kal0p6TgUn1ScS9YLFwiGilBU3+8i//Er//+7+P9evX3/SJ9v/9v/8Xf/qnf4pHH30UGzZswL//+79jcHAQv/zlLxdqmkQLJnT8fUx0XVLGvlAU7pl65Wa9FtHGIoyX50rjNXlrkG3JTttciYiIaHEUZxRjXclm9DeV4vjjuzB051oYc+WSBZFYahnPcCyMPnef+sMiWCKCJuJBtIQ0jzZLq0RnjXlCONY5If3N3nN1EA8Y5MyqWWLB0Nq8tSi0F8o77r1XRBXTMXUiIiJaALtLd8OsV7NLd1RnQ6fVKL1Njl6dQE9DsRQ8mT3vvTByAe0T7eqiobNngcHB9LwAWvWWTE+Trq4uDA8PSyW5ZmVmZmLnzp04elSti0u0LAQC6H/+R4gl1PrjQ0lZJrk5NlzdWZfyYUJERESrw4GqA1KDzLhOi8GGYvR99Xa82lAKt8mAQVcAoah6/tDn6kMoqpbtkrz9NnDu3OJPnGgO7pAbr1x5RRnHpD4mw9LXHQPjeMjnl1aYztJqtFhfsB55tjx5R1MTUCWvNCUiIqKVwWKwYE/ZHmXsMBuwqcypLJw/3jWBp88M4NT68pSfG/QM4vzIeUTjUXnB0KuvMsuaVnfQRARMhIKCgpT9Yjx7bC6hUAhutzvlQZRunc99H33DbcpY3PyY8Mo3PPRaDXx7GxCaqWde5ihDWWZZ2uZKREREiyvTnJmyYCIzwwzd9mr869Y6nCzKQe9UQDkmFmB0THZc/yQvvgiIRvFEaSRuejx/+XmpkesskWEy7g2hYcyFB/vHUZatlqDTaXTYWLBRzbAW136PPpqOqRMREdEC21myM6V37201uSn9TUY9QfxdrwcnrRbpnCJ5QYYoUyvp6wMuXFj8ydOq96GCJt/85jelP+wbPS5fvozF9K1vfUvKSJl9lJXx5jOlV3vrEfS88bOUfQNTAaWziaXYieF16t9pcuSdiIiIVk+DTJvBpox3VGVDYzHiYG0x/m9NCYZM6sr8Mf9Yao1nIRYDnnkGGB9fzGkTpTg1eApXp64q4yFXAKd6JlHs9uMT7f2oy7NBm1R2qy6nTgoaSjIygC9+ETCl9jkhIiKilcGkN0kZ1rO0Wo0UNPnc9jJkzWShiszU/2exoXnUK/U7mTXkGYI/4pcHb7whVs0v/gugVe1DBU3+8A//EK2trTd8VFdXf6SJFBbK9WxHRJPLJGI8e2wuf/zHfwyXy6U8+kQEkihNrk504NKP/4/U8HLWwHQAox75zV1cM/ruWouETv6nJ1bZNeQ2pG2+RERElL6LyDsq71DGZoMOO6vk1fcDDhv+orIInRsrEJ+p/ZxS33lWIAA8+STgn7mgJFpEIpD3+tXXlXEkFsevWkZgCkfxydZeVDpMsJn0yvFcay4KbDNVBYxG4AtfABxyU1giIiJambYUbbmuJH2Bw4wv7izH5rIsaewSC4dyMnF1zKt8TwIJ9Ez3yAOvFxD9rj2exZ08rWofKmiSl5eHxsbGGz6M4gT4I6iqqpKCI4cOHVL2iVJbx48fx+7d8/d7MJlMcDgcKQ+idBA1x19/7dtwDqgrPoddQfRNqjcyzGuK4a/JV8big0PUdSYiIqLVeREpbiTP2lTqRK5dXnU/4ovg+Rwn2m5rlMai/FGvq/f6J5mcBJ5+GohGF2/itOrNluWKxCPKvveujGPaF8IDVwZQhASKnRblmEFrQH1OvVyOQzyeeAIoKkrT7ImIiGixiM/++2rvwxNNT8CiV88N9Dot9jfk4fEtpbAa9Thalof+OOAKqOcWI74R+MI+edDaCvz93wMHD8oLh4gW2ILdre3t7cW5c+ekr7FYTNoWD6+IDs4QQZbnnntO+Uf0e7/3e/jrv/5rvPDCC2hubsaXv/xlFBcX47HHHluoaRLdEsPeYTx57keoOK6WpxvzhNA9MfPmDqA0x4bQ/RvkC0UATrMTmwo3pWW+RERElH46rQ731dyXUrLgrkZ1ccXRzglcLclB96ZKaSyCJkqZgmS9vcDzz7NJJi2aCyMX0OPqUf8EJ/043z+NjcNTWDPhRk2eXalXLoiAiVE3s7juwQeBurp0TJuIiIjSZG3+WvzH7f8Rddmp5wCi99m+ulxEdDocripE/6Q/pb9J93RSD79IBHjvPeDv/k7+KsZEyy1o8md/9mfYvHkz/vzP/1wKlIht8Th16pTyPW1tbVJJrVl/9Ed/hN/93d/Fb/3Wb2H79u3Sz7322mswm+WG2URLkYh6/+TCT5Bz8SqsbjnaPekLp6QVSivtdtXA75Rrl4vskkcbHoVBZ0jbvImIiCj9RI+HNblrUs4Z1pXIPR9EXee328fQvbECI9UFUpkCUaYr+UJS0dwMnD69mFOnVUpkPV1bluvgpRFk+0O4++oQyrNtsBh1ynFRkivPlicPRAWB7dvTMW0iIiJKswxTBr6w/gt4pP4RdTEFgIbCDKnHSWteJi6ZTSnZJqK3nzes3l+TBINyxskPfsAytbT8giY/+MEPpAu6ax933KHWbhbjr3zlK8pYrEb6b//tv2F4eBjBYBAHDx5EfX39Qk2R6JZ4reM1hFwTqDwnR7+n/WFcGfWk1GosKnQoq0SFxxofQ1VWVVrmS0REREvLA3UPpFw47q3NhcUg33QW5xTdE3603dYAV34mpoPTGPWNzv1Er70mGgIu1rRplTrcdRi+iJpNfbJrEj5/CI+29iLHqEOBQ23sbtKZpMCgpKYGuOeedEyZiIiIlghx73dr8VYpeDJLq9Fgd02OVJnljZoi9E4HUxYJdU11zf1kAwPAU08BcbWBPNGtwmYKRB9D23gbmkebUXOiA/pIDP5wFO0jXqU6hqhLXpljRffmKkRNclbJQ3UPYUPBhvROnIiIiJYMh8mBOyvvTGkKv69uZmU+gDfbRhEGcPGudQhkWNAx2YFIbI5yBKKvyc9/DoTFdxPdeoOeQZwcOKmMRXb1qd4p3N49gkJ/EFW5tpSyXA25DdBr9YDNBnzyk6IGXZpmTkREREtJpbMSNVk1yrgu3y7dQxu1W/Dz8nxMBNV+fROBCbhD7rmfqK8PSKpqRHSr8KyV6GOUJnj5ysvIGphEQdeoFAW/OupDfCZiIlILa/Js8GfZMdhQLO27u/pubC9hSQIiIiJKtbN0Jwrthcp4TVEGSmYaaYsSBSe6JxExG3Dh7vXwGxLonOqc+4nGxuSME6JbLJ6I4+X2l6UycYI4932rbRTlE27s7B9HUaYlpSxXcUYxsi3Z8kD0qLTb0zV1IiIiWoLuqrpL2RaLLnZX50jbFwqz8bd15Rgtz527t8m1RKmupPYPRLcCgyZEH9HBzoPw+qdRf+yKNB5yBeELy5FwUVJDRMnFm37HjloktBrsLd8rPYiIiIiuJfqdiWzUWeIc4sCafKk5vHCqZ0pa1R/ItKJ13xoMeYekUl1zOnNG7nFCdAudGTqDAc+AMm4f9sDcPoRHLvfDqNcqQT7BoDWgyjlTinbnTjZ+JyIiouuUOEpQn6O2ZajOs0kl7oV2aPD82gqceWgLpgudmAxMwhWcJzAisqxfekms6FisqdMqwKAJ0UcgItynBk+h/EIPLJ4AgpEY+qb8KW/04ibHWEUepoqzsL14Ow5UHUjrnImIiGhpK8ssw9airco422bC1vIsaTseT+BQ64i0un+yNAd9a8ukMqGxeGzuJxMXjpOTizV1WuF8YR8OdR5SxsaRaRT+9Dg+dakXtkgUlTk26GYCfEJNdg0MOgNQUMA+JkRERDSv5BK1YtHQrplsE+Fo5wSmczNw7r6NOH/PBrRFh+d/oitXgIsXF3q6tIowaEL0IYka4i+0vQCry4/y5l65LNeY2sek0GFGhtmAqEEnZZnUZdfhwboHU+o7ExEREc1FlPK0GWzKeEdVNhwWuS/awHQAzQPyCrvOLVUYcernL1UQCsn9TWLzBFWIPmSGdSAagDEQRsORNhT9+H0UTMi1xbOsBmTbjMr3ZpoyUWArAPR64PHH5a9EREREcyjKKEJTXpMyFn2BRclPQWRZi8xW0SB+qiQbR7fkSxkn83r1VcCvLmgm+jgYNCH6kN7ueRuT/gnUH22HNp7AqCcEz0yDKpNei7Jsq7TdtbkKcDjwSMMjDJgQERHRTbEYLLi35l5lbNBpcXdjgTJ+r2McnmAECZ0Wl/Y3oTswNH9jzMFB4PDhxZg2rWA90z04O3wWOb3j2PHscTgu9mHEFZCOiVPcihw1yKeBRiqzIZ373ncfkJ+fxpkTERHRcnBH5R3SOYQgziH21KjZJsc6J6SMa0FUcjmaE5D6rM1JBEx+9avFmTSteAyaEH0Ig55BvN/3PgqujsA5PI1wNI7eSTWKXZUrlybw5GRgsLEE99TcA4fJkdY5ExER0fKyoWADKp2Vyrg8x4q1xfL5hDj3OHx5VMp0DWZY0LanXirTNe/F4/vvA/39izV1WmHCsTCeb3seWQOTWPdmC3ThKLrGfcrxUqcFZoPa/L3UUQqb0QY0NADbtqVp1kRERLSc5NvysS5/nTIWi5FLs+Rsk+lABBdmMq2Fcxvy0R0Zm//Jzp8Hrl5d2AnTqsCgCdGHKMv1y8u/hDYYQs2pq9LNiq5xL2IzEe88uwlOqxEJDdC+ux4V2VUpdcmJiIiIboZYYfdI/SPQa9WyRvvq8mA1ymNx07ptxCNtj1bl40qVA72u3rmfTNQPfeEFICpnxRJ92LJcocE+rH2rBZqEnGHtDcl/SyJYUpTU/N2kM8nBvpoauSwXM62JiIjoI2SbCHtqcpXt96+Owzdz/hExG/BGvR6BiJz1OqcXX5SbwxN9DAyaEN2kVztehXukFxt/dR7GYAQTvjCm/BGldEZFjlyWa6CxBIH8LOlmB8tyERER0UeRY81JaYwpblDf1aiWOnqrbQz+sHzxKHqoXdJMSM265zQ6Crz33sJPmlaUzqlOnLvyLtYfvAB9JIZQJJaSYS1qjmuTznWrS9dD9+hjwBe/CBjVHidEREREN3Puu7FwozIudlrQVKRmWr97ZVw5NlSRjTMZorfwTHPha01PAwcPLir46x4AAEE7SURBVPykaUVj0IToJlwYuYDOM4ew9cXTyJj0Sm/Y3UmlCcRFo16nRchqlHqZiJsc4g2fiIiI6KPaXbYbxRnFyrg23466/AxpOxiJSYETIa7XoeX2RjRPtM4fOHnnHWBkZHEmTsteKBrCi82/wPpDF2H2haSbElfHfNdlWAtxrQbRXTuR/82/ArZuBbS8xCQiIqIPT9xLM2gNynhvXS5MM2VALw+70Te7eEOjwTvrMjAWVct2XefECZbpoo+FZ7REH2DcN4Yzz/0jNr5+AYZQRLpovDLqQXTmojHbakSO3SRtd+yoQ352mXSTg4iIiOjj0Gq0eLThUenrrDsa8pQeEu0jHlwd80rbviwbWpvycHroNPrd/devvIvHgeefl78SfYBfXXkVJQePI2NCLgM34g7BHZQzrI0iwzpXzrAeL8/FmU/txuYv/xE0FrVUFxEREdGHlWnOxP7K/cpYlKbdm1SmS/T1m13AEbKbcbAaiMVj8z+hOPcN3KCMF9ENMGhCdAORoB8nv/3/Q+Wxy1IdZ6F/KgBPMKpcNFbl2aTtiZJsTFTm49HG1JsbRERERB9Vgb0A+8r3KWObSY/99XkpF4+zNZ5715XBnWVFx2SHlCUrsgVSDA4Cx44t3uRpWWqfaIfrxZ8jt3dcyWpKLstVk2eHXqvFUF0RLt65Fns2PswMayIiIroldpfuRp5VPdddV+JAocMsbU/5wzjdM6Uca6/OxGXLPFnWgtsNvPrqwk6YVize2SWaTziMlv/1X2G51K7smvaHMTCtRqnrCuxSP5OQ1YT2PQ3YW7EPhfbCNE2YiIiIVqJ9FftSLh4bCzNQkSMv2hABk58c70HnmBcJnRaXb2tAQqPBVHAKJwdPYtyv1n+WHD4MTE4u9kugZUBkJ3VNdeHMM3+Hskv9yr6ro17EZxYPFThMyLQaMFmchfZddSh3VmBX6a40z5yIiIhWCp1Wh4fqH1LGolew6Os320btRPcEXAE5+1XsfGWtEd7ENQuFkl24AFy6tNDTphWIQROiucTj6Pne/8b0lWZll+hj0jEql8AQyrOtyDAb4M2y4ewDm5BXVIP9FWoaIREREdGtoNfqpUxWDTTKxeOBNfmwGfXS2B+O4YXzgzjUOoIppw1968qk/dF4FBdHL2LAPaA+WTQKvPCCuBueltdCS08kFsGZoTP4zsl/wnv/+mcoPNGiHBtyBeGZyWQy6bUoz7bB57Th0h1roTeYrisfR0RERPRxVTorsbFAbQqf7zBjY6lT2o7GEni7bVQ55nOYcbhWN39TeOGllwCvej+P6GbwDJdoDq6XfoHeE28o42v7mDitBhRlmjFalY+zD26BJisbTzQ9IUXEiYiIiG61Ukdpyop+h9mAL+wsR1WunHEiNA+48OTxXhyvKoDfofaXuDJ5BUOeIfXJurvlxvC0qomg2js97+D/HPs/eLH1eThffwdlLX3K8UA4ir6p1LJcMZsJzXevR9Soxz0197AsFxERES0IcZ5h1stluYTdNTnKgqHOcZ/S1084U6pDd84N7sf5/cCLL3LREH0oDJoQXSNx6hSuvvwjxBJqM6lr+5jU5Gegc1sNLt2+BjGDDo81PiY1rCIiIiJaKHdW3YnijOKU/iaf2FgslSzQ6zRKreenzg7iZ+UFKT/bNtGGUZ+6Kg9vvgk0qxm1tLqIfjc/OPcDHO46jGDQi7VvtaCoY1hZLDThDaFtxKvcWyjMNMOWYULzXesQtJtR5azC9uLt6X0RREREtGLZjXYcqDqgjE16HW5P6uv3VtuYVBFGotHguYY4QvqZGl5zaWsDzp5d0DnTysKgCVGyzk4MPv0vcIfcc/YxEW+/laVOtN63EX3ry6U35j1le9CQ25DGSRMREdFqYNQZ8aUNX0oJnIhSXRtKnfjCjgoUzDTJFP0nnpsO43CWI+XnW8daU3uc/PKXQG/v4r0AWhJEUOTZ1mfR7+6HLhzFhjcuSE3fI7G4dM57tncaV0a9UgN4wWzQoSzbitZ9a+DJc0h/h1K5uNni4kREREQLYGvx1pTz3voCu1QqX/AEIzjaOaEcc5uAt5vUDOw5vfwycOXKwk2YVhQGTYhmjY8j+JN/R+dEh7IrFk+gc8ynjPOKM3HliV2YLMlWSmUkR76JiIiIFpLVYMVvbP4N3FZ2m9LjRMi2GfGZbWXYXimfowjfMVnQEY6rN8uRQMtoCyYDM43gYzHg6afZGH6VOdJ3RMo80oej2PSr87ANTKJzzIuzvVPom/QjHFP/ZqxGHeoLM3Bl3xqMV8irO++ruQ9Os1xXnIiIiGihiL5pD9c/nNLXT2RY67Ty+FzfFIZdQeX738/yYLDkBlVgxLnvM88AXV0LP3la9hg0IRL8fiR+/GNcGWxOKcuVfOFosxkx+antCMzUCLfoLexjQkRERGlpDC/qPP/6pl9Hpkm9MBQXkLfV5mJvba40Dut1+LucLAx7QimBE9Ecfjo4rdZ4fvJJICBn1dLK1j3djUOdh6CNxrDuUDOsY260Drkx6glhpnWfJMtqwJoiB9aWZ6Hzvo0Yri2U9tdm12JL0Zb0vQAiIiJaVUSmyfYStSSo02rErmq5p5ooI3qwdURa8CzRaPDzmiCiFtP8TxiNyue+zLamD8CgCVE4LL1hjg20YyKgpvaJVL9htxyx1mo08D22Fd589cYE+5gQERFROlU6K/GN7d/A+vz1Kfu3VWZjZ5V8MdmXacO3s50YSwqcxBNxNI80wxueaaA5Pg789Kfy6jtasTwhD35+6edAPI6md1qROTyN7nEf/OGYEnQrdJixqcyJhkIHbA4zmu/ZgPFyOQiXZc6Szn9ZlouIiIgW011VdyHDmKGMt5RnIdcuB0bGvSEpW3bWpDaE9zfJ5y7zikSAn/wEGBhYuEnTssegCa1u4o3yqacQ6enClQm1rqGoBZ5clmvytnoEG9Q6ijtKdrCPCREREaWdWW/G402P4xMNn0gp17WrOhtbK7Kk7eaCLPzYYpGae88SmbUi4yQcC8s7RJmC730P6OlZ/BdBC04EykTAxBvyoP5ou9TDRATSxmb+JsQCobXFDlTm2qQeJhGTAefv24TpIvlvqDG3EV/Z9BWpKSsRERHRYp/vPlT/kDIWCz3uXlMgNx4GcKxrAi5/RDn+pmkQY1sab/ykoRDwox8Bw8MLNm9a3hg0odVLpOTN1DK8OnUVkbj6Bjs4HUBgpvllb1U+jHc3KcdEGQz2MSEiIqKlRJRMEjWfZ4lsAFGmSzSJF96uKMBL0GPaPxMkARCMBqUeJ+KGumRwEPj+9+XzI/Y5WVEOdx1Gj6sHVWe6UHRlCL5QFF0T6gKh6jwbrEa9tB20mXD2wc0I5Gdhc+Fm/Pa238bn1n2OGdZERESUNmIBx5rcNcq4MNOMTTPnudFYAocujyAh6nXNlKP9acE4fJvX3fhJg0HgBz8Azp2Ta30RJWHQhFaneByxn/0UExeOo3WsFcNeNbLsD0cxMC3X9e7PtEH7yW3QatV/KuKGhEl/g/qIRERERGmwtXgr7q+9PyVwcmdDHpqKHFKN5xfrSvB2MC6d68xyhVxStu3sRaaktRX49reB11+XLyZpWWsbb8N7ve+h9FI/Kpp7EY3F0T7iUe4NFDjMSomLoN2My5/Yg12bHsbv7/p9PNr4KArtcj8TIiIionR6oO4BmHTq/bg9NbnIMMmLPnon/bg87FGOjQXG8Q/ZV9BdnZ16nnstca77y1/KWSdcNERJGDShVadvqgfH/+GbOPrGv6F5tBkjvhHlWGKmLJd4P52yGNF9/0bkOuXG74KoGV6XU5emmRMRERHd2K7SXSkZsSJwcndTAWrz7IjqtHimsRwnXSFEYjPZJQCGvEMY8FxT01n0N3n/feA73wHGxhbzJdAtNO4fx3OXn0N+5whqT3RI57pXx3wIReX//zaTHhU5Vmk7bDbg4r2b8endX8PtFbfDZrSlefZEREREKofJgbur71bGRr0WdzbmK+O328dSFgcFYyH8sHQC72d5EYmp1WXm1NkJ/NM/AUeOsM8fSRg0oVUjFo/huUvP4r1//CYCZ08gGlffSGeNuEPwhqJwmwx4dUcDNjUWKMesBmvK6k0iIiKipWhfxT7sK9+njEW/ivvWFSLPboLfqMe/15ehZSIg9XCb1THZgcnAHKvrpqfllXfiKy0rgUgATzU/BVtnP9a8e1naN+QKYmqmRJuoB16fb5f+PmJ6HZrv3oDbt34SpY7SNM+ciIiIaG7birehzFGmjKvz7KgrkJvEByMxPHOyTyq5Pyuh1eDgBjteNfXOfa57bd/jN94A/uVfgPHxhXsRtCwwaEKrglhV91L7S3C9/oJUxzmZuGEw5QujY9SLnkkfvEY9nlpfhR1bSqHXqf9E7qu5jyvuiIiIaFm4q+ouKetklkGnxSObimE16jBhM+Of6krR4k9dQHJp7BL8Ef/1T+Z2y4ETn9oDg5b+YqGfXfoZ4lc7sPatFmgSCbgCEal0xazafDtMBh3iWg2aD6xDRdNubC/entZ5ExEREd2IyKL+RMMnoNPolH131OfBYpDH4nznZ6f7cKRjHLH4TI8TrQZnd1fhTeNgSnn+eYnm8P/2byzXtcoxaEKrwrnhc+g78QYqz3UrQZTZQMnpnim0jXgw7g3Bp9fh6fVVKKnLR2mWXKpAqMmqwYaCDWl8BUREREQf7oJSLPhoyGlQ9jnMBjy8oRharQYjGRb8ZW0ZDpbmSVkGgsjCPTt0FtPBObJKJiaAH/8YCIUW82XQR/Rax2uYuHwW6w43QxtPSCsvRR+TWSVOC7KsRiQ0QOvtTdDX1OGR+kekvxsiIiKipSzPloe95XuVsSg3+tntZSjKNEtjkUx9snsST5/ole71Sft0WrTc0YR3MqbmPte9lt8PPPkk+/utYgya0Io34h3Bmyd/ijXvtCqZJa3DHiVQMht5Dum0eG5TNYobCrG/Pk/5eYPWIDV/50UkERERLSfi3OVTaz6FfJta67nYacGBmdrPosfJP2qMePbO9RiqK5JuoEfiEZwfPo8B98D1TTOHhoCnnpJLF9CSdXLgJFqbD2P9wQvQReNS43fRGHX2nNdpMaA0S+7Zd2VnHaari/GZtZ+BSa82ViUiIiJa6uVoC+2FythpNeKJrWVSc3hRelQY84bw1IlenO2dks5r4zotLu1fg+c2GBGy3MR5jyjR9fOfA3G1FyCtHgya0IoWiobw7Nkn0XjwHHRRuZFT36Qf7oB6sS/qOTudFkx9ZicefWgd7mrMl0pYJJe3yLJkpWX+RERERB+HuBH++XWfl3qzzVpbnInN5VnKYpJfdEzg7XUVOP3INrjzHEgggSuTV9A20YZ44pqLxO5uXjwuYZ1TnXj71M+x8fUL0Edi0g2CK6NeKdNEEKUragvsUkCta1MlBhtLpBIXyYE1IiIioqVOr9Xj1zb8GvKs6qJnkU29oyobn9tehmybUdonFo2IBvGXhtzK9/UUW/GLuwqQ2Lr1g39RR4fc54RWHQZNaGX3Mbn8AvJfexdWt9wEatIXlhpgCiLwXJdvx+aqbAQ/vxvONcXQa1P/SazPX59SD5yIiIhouRGLP0QmgVajnufsq81FRY7cq03cUBe1n48HYzh/70a4c+VmmqLmsyjXFYxeU5agrQ34p38CjhwBPGrJJ0qvgalevPOL/40Nr56BISQvEOqZ8Eu1vQW9VoOGwgzpfLdvbRl6NlZgZ8lOrC9Yn+aZExEREX14ou/w17Z8DZsKN6Xsz3eY8YUd5coiIeHNtlGlVJfQ7uvFkY1ZwG/8BpCnBl7mdPQocObMrX8BtKRpEtfl3S9vbrcbmZmZcLlccDgc6Z4OpdGpwVNoefofUHGhR7kh0DzgUkoTVOZYUZhpQdueBgzVF6X8rFiNua98H3aU7IBOqzaXIiIiIlrO50Yvtb+kjMW50QvnBzE4LS8uETaWOnGg3ImtvzoHm0tuGi6CLcUZxSjPLIdRJ6/aU4hVKDU1wKZNQGMjoNcv3gsiWSyG1oNPo+/FH8PoVf9fjrqD6Bz3SduiSMWaIgccFgMGG4rRvqsONdm1+OKGL6YE04iIiIiWo9axVrzY/iL8Efn8ddah1hHpXqAgsk8+v6NcqS4jzoG+sukrKLcWAT/8IdDfP/8v0OmAL38ZqKhY2BdCSyZuwKAJrUhDniG8+PO/Qf3bF5XSEy2DbvhCUeWNUmSZiJIEV3bXS/vMejMacxuxNm8tqrOqGSwhIiKiFefl9pdxcvCkMpZLFoziQr98MTnbJPxTNdm47VAzzF41y0Sn0aHEUYIyRxkMOsP1Ty7OvR94AFizZuFfCEldTqNnTuHys9/F+MCVlEOiFG3rkBuzF3rVuTZp1eVIdQFa9zUi15aH39zym9L5LxEREdFK4A178ULbC2ifaFf2id5uT5/sU7JMxCKS+9aqvVAcJgd+e9tvwxqKA9/9rrixPP8vsFqBr38dyGIJ/+WKQRMGTVa1wOgg3vrun8DS0a3s6x73YdgtX/Sb9FqsL82ErzAL5+7bKEWLH218VCrFxUAJERERrWSxeAxPXXwKHZMdKfsvDriksgWzGbl2kx5PVDjxwPutMAYj19WQFlknIngiemNcR2ScPPigHEShhREKwf/j76P1+MvwhFNLpE14Q7g65pMWDQmFDjMqc20YL89Fyx1rYTZapYBJjjUnTZMnIiIiWhjiNve7ve/icNdhZd+UL4wnT/QiEpN78t3TVCD1+JtVl12HL6z/AjTDw8C//RsQST33TZGbK5f0EgEUWtFxA+Zi08oRiSB26CBa//J3UgImk76QEjAR1/X1BRmI2S1ouXMtEjot9lXsk+ofMmBCREREK5043/ncus9hY8HGlP3rSjLx6a2lsBnl8lreUBTfbx/H/yougPuaJVbReFRqOH5+5Ly0fZ3Ll4Fvfxs4dUrKhqBbK+b1oOfv/hvOHvlFSsBE3CTomfBJjd9nAyaZFgMqcqyYLM7Cpf1N0Oh0eGLtEwyYEBER0YokFvSIcvuiksysLJsRB9bkK2OxUEgsMpl1ZfIKfnbpZwjn5wCf/OSNf8H4OPDkk0A4vDAvgJYMBk1oZWhtReIf/gFtz34Xbt9kSq1usdJulmh4arEacfHOtQhbjKh0VuKOyjvSNGkiIiKixScyRR5rfAz3196f0s+iKNOCL+wsl77OOh6O448zM3HWHUIgEkt5nungNM4Pn0ckNsdqvFAIeOkl4Pvfly8u6WOLJ+I43/4u3v6Lr6Lr0hFE4up/d7FysnXIgyGXWk4t126SFgtNluWi5c51iOu0eKD2AakMLREREdFKDpw82vAonGansq+x0CEtEhKisQRebh5SMk+ES2OX8L0z38N0dTFw5503/gWi98nPfy71laOVi+W5aHkTKXOvvAKcPYurk1fR5+5TD8XiUh8TETgRcmxG1Obb0ba3EcN1RbAZbFLdwgxTRhpfABEREVH6dE11SSvrkptmihJdolzXia5J+MJyJokpGsPWoUncHQhig0kD/UwDTUGcU20s3Hh9k/hZBgPw8MPAxtTsFrr5YMnF0Ys4euEVlD//FixJfWYETzCCKyNehGcu/DUzC4UcpVno3lyJ0ap8Kd16e/F2PFT/UJpeBREREdHiGnAP4N/O/htiidic/U1q8ux4YF1hynmt1WDFZ5qeQOWh08BFuU/yvDZvBj7xCbmsDS0L7GnCoMnqMDkJ/PSnwPCw9EYo0ulmxeMJqfmlZ6bxu9mgw7oSB4bWV+Dq9hpooMGvbfw1rrQjIiKiVU9kjDxz8RkMeYdS9osFKKJB/KnuSTXLJJFAUyyKr1m1KB+YgGHmXMuit0jlTk160/y/aNs24P77Ab1cAow+mCvowi9af4GJ7lZseOM8TH61FIS48B90BTHkCihV0Aw6LUpq8jC1qxaj1QVIaOWLeNG7T2QXsRwtERERrSbH+o/htY7XlPGkL4ynkvqbFDjMeHhDETLMBuV7RCb2gxX3YOvrzdAMDt74F+zbBxw4sHAvgG4pBk0YNFn5Ll9G9NlfwO+ZkC70RV3tWeJPWtRyFm+EsxePDRXZGNxVi8GGYikCLEpysSwXERERkUyU2Hqp/SWpT8m1wtE4zvZO4XTvlLQtOC0GfHpjMWqHJlFzqhOGUARmvVnqlWIxqOW9rlNcDHzmM4BTLZdAc5sY7cErr/49zJ29yB6YhC6qrpIUZbhEzz6RFTRLm2mB4f4NcK8pUYIlYqHQXVV3YW/5XqlUBREREdFqIu4RPtPyDC6PX1b2dY378EpSeS6rUY9HNhallKgVKvS5ePi9MeQG5JJf83rgAWDnzoV7EXTLMGjCoMmKJP5UOyc6MPT8j2E4egKBaGDO7xMNMGfrOWu0Gjhuq8Pk3gZELHLJCJFd8qUNX0qp4U1EREREQMdkBw51Hrou60SY9ofxizMDUjkoIcOkx6e2liJfA9SevIqCzhGpRJcInNiMtvl/icUCPPYYUF/PcgbX8vmAM2fgPncCzed/hUhUzSwRARKRVSLOc5ODJeI/oaU4C+7P70bUoV7si+yfx5seR2127aK/DCIiIqKlIhAJ4J9P/7O06HrWmCeEF88Pwj1zXqvTanBXYz7WFst9T2aZPQEcONyNOlNRSo+UFOJk7JFHgC1bFvaF0MfGoAmDJitOLB7DSxd+jvjTTyFrWH2Tu5a4kOyZkGtyDzqs0D6yGc6GQuV4njUPX9vyNWklJBERERFdT1wetI634s2uNzHmH0s5JgImz54ZwNRMmSixMu9TW0qkpuMiG6L+aDvs/qhUDirTnHrReR2rFaisVB95eas3iBKNAseOAe++C497XMr4icbl0meCLxTF5WFPSsNS8V8qL8OEjJo8tD+wWVkgJBTZi/DZdZ+d/+KeiIiIaBUZ8gzhB+d+gFBM7mciBMIxvNw8iP4pdVH2pjIn9tbmpvQ5sU96senVs8jTOVCfUz9/VvVDDwHbty/sC6GPhUETBk1WnBfP/RSJH/8IjnHPnMfFajtRjuvqmBdBvQ6HqwuRd0cj1peqF4oZxgz85pbf/OALeCIiIiJSGpAf7jqcsjJP3MB/7uyA0kRT9I775OYSqSa0LhJD1ZlOlF8eQlNeE3KtuTf/C202YNMm4Lbb5IDKaiAuxS5fBl5/HZiaknqYXBi5oDQsnQ1UiYBJcnZJnt2EkiwLQiXZaL57PaJGtU+M6C3zUN1DMOjU2txEREREq50InDx18Sm4Q25lnzi/ert9DBf61XNdu0mPHVXZUtaJyEARnENT2PDGBRihw7r8dfMvTBH9+3btWvgXQx8JgyYMmqwo566+j/5v/3cpsiuIP9kpf0S6YPeHY/CHowjN1NcesZnxXFM56tcUYU+tepEuSkX8xubfQKFdzTohIiIiog/mC/vwows/wrB3WNkXjMSkwMmIWy6JatRr8ciGYpRly8GOvO4xNB5pwxpHNYozij/cLzSZgN275YfYXg5CIWBiQn6IEluiBFlWlvyw21MzaGIxwOUCJieBI0eQ6OyEL+LDuH8cva5eKVg1yxWIoG3Yg/jMJZu4iK/Js8Ni1GGyOAstd65DzCA3d7carLi35l6pPBr7lxARERFdzxv24pmLz6DP3Zeyv7nfhTfbRpVzLsFhMWBXVQ4aCzOg1WqQ1zWKpncuQQctthZtnb8c7d13A3v3LvRLoY+AQRMGTVaMkeGrOPM/fg+WKTnDRLx5XR7yKDUHk10oyMLrtcWoLXHivrUFysWi6F3yhfVfYD1nIiIioo9RC/onzT9Bv7tf2ReKxvDCuUEMTMslDcRKvPvWFqK+IEMaW1x+rHuzBQ3xLORYcqRSBiad6eZv6Itsk3375DIHejWTYlGJS6V4HAgGAY8n9eF2q4ESMZ6PwSA3vhcBIBEs8XqRiMfhCrkw5hvDRGACwagcfLq2h0zbiEeaguAwG9BQmCH9dx6pykfb3kbEdVqpd8mesj3YUbIDJv0yCTIRERERpYkogfpy+8s4O3w2Zb/oc3L06jg6x30p+7OsRuyry0V1nh0lrQOoO35FWqyypWgL9Np5zlHvvBPYv38hXwZ9BAyaMGiyIgQnR3Hsv/9HYHx8zibvsxI6LU5sqMRYYzFKnBbpYlKbdDH+aMOj2Fy0eVHnTkRERLTShKIhqaRB93S3sk/02HileQhdsxeXGmB/XR42l2dJQ1Guq+5YOwqvjswc1ki95exGu1QyNdOUKW3fMJAigieFhUBurvwQvU+ys+VsDhGQuNkgjAhsXLkiP/r75UCIVis/dDp1W2SCiB4js49beLkUiUUw5B3CoGdwzkDJLFF29sqoGjBxWg2oKc6EqyQbg40lmCzJlgJQu8t2Y1fpLvbrIyIiIvoQxO3wEwMn8Kurv0rJ8p3tl3z06gR6J+WeybMe3VSCqlwbSlv6UHvyKvJt+ViTu2b+89iyMrlU15o18jkmpR2DJgyaLHuJ6Wmc+x+/D9dQV8rFY/uIvIpPvB9V59qhz7Gj474N8OXIKxqvtb9iP+6sunPR5k1ERES0komb/j9t+SmuTF5R9sXjCRy6PIKWQbU+9LaKbNxWmyNfRCYSKG4fQs3JDuhmSqom02l0cJgcUhBF9EARQZSbJi5AzWb5ITI5RCBF9EYRgZbZryIjRARKhoaQDuJyyxP2YMA9gDH/2HUX5snfF4jEMOENK9k702YjAlV5qNxbB09xlpRZIjTmNkoLg+ZtREpEREREH6hzqhM/v/Rz+COpARJhYCqA96+OK+dloo/fF3aUS2W7ZjNORFWbUkfpjX+JuD+9YwewZcvq6du3RDFowqDJ8jYygu5v/3d0955PqZvdPOBSGmBW5liRWZqNc/dtRMg+98q628puw93Vd7OmMxEREdEtFIvH8IvWX+DS2CVln7ikONo5gRNdk8q+NYUOHFiTD/3MjX5DIIyiK0PIGpxC5pgb2tjcwQPRWLPSWTl/g81lQGSRiKbuogTXdHB6zgtxJaASjGLKH5YWCCX36TtcUwRrYxHuaSqU6mjPWp+/Ho81PgadVu5lQkREREQfr3/fOz3v4NTgKcQSsevO1V68MITOMbnPcoHDjCe2lUKv1aKobRCNxzqwuXCTtADoA4kMaZF5Isp2pav07CrnZtCEQZNl6+pVTP7wO2juPYUEEsrqxZZBF3xh+Y0r22ZESV0+zt+/CWFrat1m0fC9OqtaashUl1OXlpdAREREtNKJbIlXr7yKk4MnU/af75+WmmjOnMZJ5boyjHpkWg3ItIiHEVlWA0oyTCjyBOAcnkb2wCQyR12LFjwRlz8iqBGJR6Sa1iIIJC6QZ7/OtU8Q5bBEFszsYzZoEY6Fpaaisw8RLAnFQjecg1gQNOoOYcwbRCSmXo75DHq8U1mAC4VZ2Fiehf31eSkLgETt7IfrH5Z69hERERHRrSPO4UTwRPQ6Sc4MFudtT53ohSsg91feUOrEXY350nZhxzA2HuvGtqKtMOgMN/eLKiqAz36WWSerNWjyN3/zN3j55Zdx7tw5GI1GTE9Pf+DPfOUrX8EPf/jDlH333XcfXnvttZv+vQyaLF+eY++g7yf/iFHPcMp+Ec0d9YSUVLiqtUVoeWAzwhajVBd7b/leKRVO1BIUF9XMLCEiIiJaeOIy4t3ed3G463DK/o5RL169OKRkCM9HBFGKnRbpsS4YxJbWfmSOX99QXZzfZVuypYbnohyV6N8xb9PNeYgL38nAJMb949JDBEY+LjEfEVARQZOb/e81HYhgxB3EtF++6J4V02hwuiQXPRvKUVacKTUaFaUfku0s2Yn7a+/nuS4RERHRAhLnjG9cfQOt463KvlF3EM+c6lPOb+9fV4jGQvm+c37nCHaeGEJjdh1sRtvN/RLRn++LXwRychbmRdDSDZr8+Z//OZxOJ/r7+/G9733vpoMmIyMj+P73v6/sM5lMyMqSG0neDAZNlp9QJIiWn34b3oMvX1fjedwTQsdMCpy4PixfW4LOT2xFxCxfRLJnCREREVF6nR06ixfbX0w5jxOBgbO901LZKbEqT6zQ+yBOsx6PmrW4u28UGa65y1nNEkGT2YfoiSKyPsRXaTyzPftVlMia8E9cV27hVoprNQg4rPA7LAjazTAGIzB7AjC6AwhP++EORDDuDUnlt0SAxG02wG0ywGM2wlCchcT6UhSWZ0sLhOYiFgkdqDrAgAkRERHRIhDntT8890P0uHqUfRcHXDjYOiJti/Kzn99ehhy7XAEnt3ccjUfaUGrIkTKlxSKfDyR68YmMk8rKhXshtPSCJrN+8IMf4Pd+7/duOmgivu+Xv/zlR/59DJosL60X30LHc99DxtW+lP3iz3LCF0bnmA/xmT9RZ30Bxp/YiahJDpiIMlxf2vAllicgIiIiSrP2iXb8rOVnUsmruYSiMbj8ESmAIjKIB6cDGHYH58xGyTIb8GlDHHsm3Mic8Mzb+2QhiHNQMSUxrxgSiECDsEaDuF4HXaYFiQyzVB42ZDHKX20mKVASspkR1wDeUBQjbvn1iaahY54QdNEoMoMR6OIJ+Ix6eI16ZJgNWF/qxNpiB2ym+bNmRBDo3pp7saNkx6L9NyAiIiIiwBPy4J9P/7NUfnXW6y3DuDTklrazrEZ8fkc5jHq1f1/J5QGUtg+j0pCHisyKDy7ZpdMBDz8MbN68sC+Gln/QRARMRDkvkV1y11134a//+q+R8yFSlRg0WQaiUcSaL+DiKz/A1JUL1x32BCPomfBLF52zwlV50HxxD2JG+aIyw5iB39722zef9kZEREREC6rf3Y8nm5+ct+n5taLxuNTXQwQYusZ9UpAhmbgQ3VmRhXqTFrn+EGwuP6wzD5HJoQ9HoYtEof2AMmDJvHYzWjNtOGEy44rZhEAigWgkhpjIAImKrzFEoUFUq0FcZHVck9mRYdIjL8OkPEQ/EhEYGfOGpK8flFFTkWPDhtJMVOXaoJ0na0SUny3PLEdjbiM2FGzg+S4RERFRmnRPd+Pfz/+7klEdicXxzMk+KYNYyLWbcFttLipzrEpGsFjwk981isq2UWzTFCPXmvvBv+i224ADBwAtF4YvpGUbNHn66adhtVpRVVWFq1ev4k/+5E9gt9tx9OhR6ETkbQ6hUEh6JL/4srIyBk2WIr8fOHIEoZPH0NJzEu6QHJmdJS4yeyf9mPSl1oUeri9Cxmd2QDcTMBGZJV/Z9BXpYpKIiIiIlg6xEk/UgL48fvkDm6Ffq3/Kj2OdE+ifSg2eCAaddqaRvPywm/Uw6rQw6jQQxQ+siThssQRs0RiskQiskRjM4QiMoShisTiuxjU4qjfgXCAmXewulmybESUzfVtKsyxShslcDFoDarJrpEBJfU49rAY2BiUiIiJaCo70HsEbnW8o42l/GE+e6EU4qp5TivM9ETwR53yKRAKZIy48dCmCOk3uB5dZFQ3iP/1pICNjQV4HYeGCJt/85jfxP/7H/7jh97S2tqKxsfEjBU2u1dnZiZqaGhw8eBAHRLRtDn/xF3+Bv/zLv7xuP4MmS0xHB/Dcc3BPDuHi6MWUhpniT1BcHA+6AuL9RGEx6ODb34jQ3npokiKt91Tfg9vKb1vsV0BERERENykWj2EqOIWpwJTUTHN2e8w/Jo1vpG9SDp5cm3nyYYlMDoNei2gsPn9Teg2k4IsIykhBGH3ytkbelp4jIa0oFBklyRfIyaxGNQulKNOM4kwLLMa5F37NKrAVYHvJdqzPXw+TXq6JTURERERLh7hv+UzLM9KioFnDriAOXx6Rys4mq86z47aaHKXXiWAIRnDn8RFsjxZ8cLkumw14/HGguvrWvxDCggVNxsbGMDExccPvqa6ulspr3YqgiZCXlyeV6PoP/+E/zHmcmSZL03RwGn2uPngC07C+cwz2U+cRiUUw6htFAuqfnFjp1zHqlepbz9JrNSjJtWHyvo0YqytMed5NhZvwaMOjbIJJREREtIyzUcR5Yq+rV3oMegZTzg+TgyfiPHE6IPdCcQcjiH+IUlxzMRl0qMm1oTbfjpIsixQc+TDnleLSyR2IYswbxJgnDL1OIwdK7KYb9iZJJprTN+U1ScGSMkcZz2uJiIiIlrhgNIjvnv5uyuIfcV54ZdSL969OSNkns8S53d7aHGwpz0op2bX5ZD/ucGUhw/QBmSTiZ+64A9i3j+W60hg0ubkz+6QAhngslv7+filIU1RUNO/3mEwm6UFLg6hh/cqVV6RsErMngKa3L8Ex7sFcITNfKIr2EQ9CM6v1xNtIUaYF+QV2XL57A6YLncr3ipJc+8r34Y7KO3hhSURERLSM2Y12rMlbIz0EcfH5Ts87OD98PiV4UpZtlR6z4okEvMGoFEDxh2MIx+JS1od4iIU4s+NI0n6xb/a56vLtKM2yQqf96OeS4jw002qQHrX5N/9zFr1FKi1blVWFdfnrpP8GRERERLQ8mPVmfHH9F/GT5p8ogRNxXlhfkIGaPDsuDbpxrGtCutcpginvXhmXslHuaSqUspbjOi1O7yzDVHM/dl8ZRr4tHw6TY+57nCK/4c03gd5e4LHHWK4rTRasp0lvby8mJyfxwgsv4H/+z/+Jd999V9pfW1sr9SkRRBmvb33rW/jkJz8Jr9crldl6/PHHUVhYKPU0+aM/+iN4PB40NzffdGCEjeDTxxV04Yfnf4gp34TU8KjuWDv08zTDFOUNOse8mF0saNBpUFfgQKihCFe31yBoF9WpZaKusyjJlWdbvIAdERERES2uCf+EFDy5MHJhzsyT5cRpdkpBEvGoyKyQGoBy4Q8RERHR8l8s/nL7y2gZa7numFi4c6JrEie7J1P62z28oVj6Oiu/cwSNR9pggUG61ykCKBnGjLnPFc1m4J57gC1b5AwUWv6N4L/yla/ghz/84XX733zzTdwhUoxmInLf//73pe8NBAJ47LHHcPbsWamUV3FxMe6991781V/9FQoKCm769zJokh7TgSn84o2/h6m1XQqYGINyuS3x5yX+wmKJhFRLWjxEwGTIFVR/2GGBY18dXGvLEEoKlogaz/fV3ofqLNbxIyIiIlpNwZNj/cekutGesGdBfofI/BALc0QwQ/QSMeqMMOlmvl4zFg9xgTzsHZYeQ94h6asoM6aBBlmWLBTaC5WHOIe1GJKagBIRERHRijLgHsChrkPonOq87phYJP5ay7DSB09kmtzbVIDafDVjxD7hwdo3W2DxyvdHRdZJbXat9HVOlZXAI48AOTkL9ZJWBfdSCJqkC4Mmi8zthvv9N3HmtR8A01PK7kA4Jr1JeEVa2jw/2ptpw/TGCtTcXgedUZ9yEXtPzT1S/xJRlouIiIiIVh9xmSKCFaKJvNRMPjClNJQXdaVDsRBC0RDCsTBiibmzm5PZDDY05jZK/UQqnZXQaW/cpJ2IiIiI6EZE0ORg50GpR1+yKX8YL50fwoRP7cPdVORAU7EDxU4LtBoN9OEoGt67jLzeceV7RJayOE+d836oXg/s3w/s3i1v04fGoAmDJgsvEgGOHIHvrddxvu+UdLE6yx+OonXII6WlzSWq1eDNmmI49jdgQ5kzJf1MrMz77LrPItuSvSgvg4iIiIiWv2g8Kp2PzgZRREBldiyCI1nmLKn8ARfkEBEREdGtJG6tnx85L5XtisTlyjuCuC96sHUEbcOpmdM2ox51BXapH0qRw4Syy4OoOXlV3KRPWegzb8N4g0HOPKmtlR/Z2SzddZMYNGHQZOGIP5dLl4DXX4dvbFB6U0gOmIiGR61DbkRnmpUYdVqYDFrotRpotRp4HFYc3VGHvLp85GeopbiEtXlr8Wjjo1IJBCIiIiIiIiKi/3979x4bR3nucfy367XXdrzra3yLL4mdm5OQQBJMAuSiBhlSxGloekRpqVKE0hutKLS0alWaVqqERP+pWqHyX9s/KApIhJ4iqopCEhSaACeUpglxsI1NHF9jO77fd+fofZfdeLGTrDk4G2++H2ky3p3xZsbyPJ6ZZ97nEQDMAx2DHdp/an+kUXwkodLcqyMN3Zqc4eFyX2qybq3MVXWSo9WH31fqxyNTTAnY8qxyO/Lkig/9ZGdLVVXSpk0S98Ivi6QJSZPPnvk1aWuT/v53BZsa7bCzxguNUaUQPpkwWeD1qKrQJ09S6OBuW1ak+uqlCiRHl0IwgeCOijt0a+mtNMgEAAAAAAAAMO+YErIvnn5RH3R/EPW+6W/yYdegPmgf1Ec9Q7bn81QVCzN01+JsrXuvUQWNnZH3M1IyVJldaXvoXZEp2VVdLd1+u5Se/tntVAIhaULS5LMxOCh9+KHU2Bia9/Wpd7RXdd11GpoYil51dFKn2/sjB32G16OVRT553G5NeJNVt2mZOpfkT/svTP+SL636kipzKq/abgEAAAAAAADAZ83can/jozd0qOmQnBk6PY9OmD7QQ6pt79fZnuHI+6nJSfrcynxtHh/XsmMfREadGKaNQUV2hU2iXJHXK916a2jkifkaESRNSJrM3tiY1N4emsyIkpYW6fz5i4snx9RwoUGdQxeznWH9IxM60zEQSZj4Uj1aUeTXQHGOOirydb58oQJTGr0bpq70stxl2la+TQtSFlyFHQQAAAAAAACAudfQ06BX6l5R90j3Jdep7xzUa6c7NDJxsZKP6XVyx5IcrTp1VotqW+Sacue+MKPQNopP9US3PJiRGW2yZYt08800jv8YSROSJhe9+WYoERIMRk+BwMWvzYiSnov19qaaCEyoub9Z5/rPKehE194ztfiaLwyro/9i5nO0IFOFW5erp7JA4+mhbKYZRlZTWSOvxytvktf2LDENOQEAAAAAAAAgEQWCAdV21epk50nV9dRpMjg5bZ3h8Um9XttpEyhh6SlJ2lSRq1s9UtXRD7Sg7+KIFNPjpNhXbPudxNQX2twf375duvFGyX2F/igJrp+kCUmTiGeflerqZv1t5iA2iZLmvuaoviWG+ZXpHBhTc89wpH9Jqy9Np9dXqHr7ciV/3MPEWJazTPetuU8eNxlNAAAAAAAAANcfU8XnTPcZm0Cp76mPejjd3Gs1VXwOnjmvsSmjTrLTU7SlIke3DI9o4dku5bRekGd8MpI8KfGXqNRfquSk5CtvwK5docTJdax/FnkD7mQnullkEM0BanqVdA9324TJRHBi2joDoxNq6hrW0McH6GCKR29WFil9U6U2lecoyX2xkfvKvJW2XwkJEwAAAAAAAADXK1OBZ23BWjt1DHboQO0BtQ+222Uul0srC/0qyU7XoTMXR51cGB7X/5xs1/9mpWnLTRUq3poqX1e/clp6lHuuR8Hus2rpb7Flu8yoE5NIMZ9l5lMnJytLo2VZKo3zz2A+YaRJotu/X87779vGQ2ZImBk18sn50PiQ+sb61DfaN21USdjIeMCW4uoZGrevAy6X3i7JU/eGCm1aVaiM1OjEyKqFq7S7ajdluAAAAAAAAABgCnNf9vBHh3Xk7JFpLRFae0d0pK5LrX0jUe9XLszQ5spc5WWEWiL4zvdryb8a7QiUyzl9+0qNr6nSI5se0fWsn5EmMGW1nj/1vCrOHFf2R62f+nNGJwJquTCi84NjMtm1Vl+6mrIz1FxRoI03leim7PRp37OhaIPuXn63zWQCAAAAAAAAAC4yD5p/bsnntCJ3hV6qfUnnh89HlhVnpem/N5ao4fyQ3qzvsiNOjIbzg2roGtTyfJ/teaKFfp2oWaestguqeLdR/vP90/6foawF6qwoUC4Pts8KSZMEZYZiDYwPaNyZ3mAoFmOTAbX2jupUUGryZ6ipvFDNmQvkTkvRLUty9F8lWXJPKcVlZKVm6a6ld9myXAAAAAAAAACAS1vkX6RvbvymDjcd1tFzRyPN4s293aX5GarIW6CTrX1668OeULsER/qgY0B1nQO2pFf14hxN5mfqws4blXeuxyZPFvQORT6/cf0SOW4X7RNmiZ9WgjJ17AxzUFyJqdA2MhlUa3KyPvR4VJvkUUOGRx2LUjWaHPoV8Xrc2lCeoxtLs5TiiR5BYg6628tu122lt8XWeAgAAAAAAAAAYO+t7qjYoY3FG/V64+s60XHCtlowzEPra0uytKrIrxPn+vROU49GJgIyDTdOt/XbKcys6/FnafWYS1s+6tCSshx1leZG/g/Ejp9WgidNWqpKdL58oeq7htQ2OKbxoKOJoDTmSOOOo7Ggo8HJoDqT3JpImj5MKznJrZvKsrS+LFupydOXm1Eld1beqey07KuyXwAAAAAAAACQaDJTM3Vv1b3aXLpZ//jwH6rvqY8s8yS5tb48W2sWZeq95l4dP3tBYxPRvamDQUemkNe/cv36d3aG7luRrwJX6IH6JBfluWaDpEmCJ00G8nymLZCODwZ0smfMDO6aspZLMoNGUqIPmiS3S/m+VJXlpGldaZbSU6b/muQvyFdNZY2W5iyd830BAAAAAAAAgOtBYUahHlj7gBp6GmzypG2wLbLMVACqXpKjdaWZ+ndzr1p6RxUIBhUIOpoMOnYemTLTIt/HSJPZ4aeV4EmTqSNGZmLeT0lyK9/vtU2GzFTg89rs5Uxy03K1ffF2rclfY2vrAQAAAAAAAAA+W5U5larIrlBtV60ONh1U51BnZJnXk6TqJaHSW7E2nkfsSJokKDPkyiVXpP7d+vIsrSr22wSJJ8lls5IetyvmxEemN1PbFm/TjYU3yu2aOaECAAAAAAAAAPhsmHu3VQurtCJvhU51ntKhpkPqHume9ecw0mR2+Gkl8AFlRpuMBUxJLsmXmixf6uw/x5ThMk2I1het5+ACAAAAAAAAgKvMPMR+Q8ENWp2/2jaKP956XC0DLQo6wZi+n54ms8Nd8AQ2NWkSCzMyxdTMK8ssi0w+r+mJAgAAAAAAAACId/LEVAIy03hgXN3D3ZoMTirgBELzYGj+yfdy02Mv5QWSJgmtIKNAvgmfTZ6Ep2R3ctTr8JSVmqViX7G8Hm+8NxsAAAAAAAAAcBnmnm6Rryjem5GQSJoksAfWPhDvTQAAAAAAAAAAYN6gozcAAAAAAAAAAABJEwAAAAAAAAAAgBCSJgAAAAAAAAAAACRNAAAAAAAAAAAAQkiaAAAAAAAAAAAAkDQBAAAAAAAAAAAIIWkCAAAAAAAAAABA0gQAAAAAAAAAACCEpAkAAAAAAAAAAABJEwAAAAAAAAAAgBCPEozjOHbe398f700BAAAAAAAAAABxFs4XhPMH11XSZGBgwM5LS0vjvSkAAAAAAAAAAOAayh9kZmZedh2XE0tqZR4JBoNqbW2Vz+eTy+WK9+Zcc9k0k0xqbm6W3++P9+YASEDEGQBziRgDYK4RZwDMNeIMgLlGnJmZSYOYhElxcbHcbvf1NdLE7HBJSUm8N+OaZg4WDhgAc4k4A2AuEWMAzDXiDIC5RpwBMNeIM9NdaYRJGI3gAQAAAAAAAAAASJoAAAAAAAAAAACEkDS5jni9Xu3bt8/OAWAuEGcAzCViDIC5RpwBMNeIMwDmGnHm/y/hGsEDAAAAAAAAAAB8Gow0AQAAAAAAAAAAIGkCAAAAAAAAAAAQQtIEAAAAAAAAAACApAkAAAAAAAAAAEAISZPrxNNPP63FixcrNTVVt9xyi95+++14bxKAeeoXv/iFXC5X1LRy5crI8tHRUT388MPKzc1VRkaGdu/erY6OjrhuM4Br2xtvvKF77rlHxcXFNqa89NJLUcsdx9HPf/5zFRUVKS0tTXfccYfq6uqi1unp6dFXv/pV+f1+ZWVl6aGHHtLg4OBV3hMA8zXOfP3rX592fnPXXXdFrUOcAXApTz75pG6++Wb5fD7l5+dr165dOnPmTNQ6sVwnnT17VnfffbfS09Pt5zz++OOanJy8ynsDYL7Gme3bt087n/nWt74VtQ5xJjYkTa4D+/fv12OPPaZ9+/bp3Xff1bp163TnnXeqs7Mz3psGYJ5avXq12traItORI0ciyx599FH99a9/1QsvvKDDhw+rtbVVX/ziF+O6vQCubUNDQ/b8xDzkMZOnnnpKv/3tb/XMM8/orbfe0oIFC+y5jLn5EGZuZJ46dUqvvvqqXn75ZXuD9Bvf+MZV3AsA8znOGCZJMvX85rnnnotaTpwBcCnmusckRI4dO2ZjxMTEhGpqamzsifU6KRAI2BuZ4+Pj+uc//6k//elP+uMf/2gfHAGAWOKMsXfv3qjzGXMtFUacmQUHCa+6utp5+OGHI68DgYBTXFzsPPnkk3HdLgDz0759+5x169bNuKy3t9dJTk52Xnjhhch7p0+fdsyfm6NHj17FrQQwX5l4ceDAgcjrYDDoFBYWOr/+9a+jYo3X63Wee+45+/r999+33/fOO+9E1vnb3/7muFwup6Wl5SrvAYD5FmeMPXv2OF/4whcu+T3EGQCz0dnZaWPG4cOHY75OeuWVVxy32+20t7dH1vn973/v+P1+Z2xsLA57AWA+xRlj27ZtziOPPHLJ7yHOxI6RJgnOZA6PHz9uy1iEud1u+/ro0aNx3TYA85cpi2PKW1RUVNinLs3wTsPEG/O0w9SYY0p3lZWVEXMAfCqNjY1qb2+PiiuZmZm23Gg4rpi5KZWzcePGyDpmfXPOY0amAEAsDh06ZMtUrFixQt/+9rfV3d0dWUacATAbfX19dp6TkxPzdZKZ33DDDSooKIisY0bW9vf321FuAHC5OBP27LPPKi8vT2vWrNFPfvITDQ8PR5YRZ2LnmcW6mIe6urrs0KupB4NhXtfW1sZtuwDMX+ZGpRm+aW4omKGev/zlL7VlyxadPHnS3thMSUmxNxU+GXPMMgCYrXDsmOlcJrzMzM2Nzqk8Ho+9gCD2AIiFKc1lyuQsWbJEDQ0N+ulPf6qdO3famwtJSUnEGQAxCwaD+v73v6/bbrvN3rQ0YrlOMvOZznfCywDgcnHG+MpXvqLy8nL7kOuJEyf04x//2PY9efHFF+1y4kzsSJoAAGbF3EAIW7t2rU2imD/Kzz//vG3QDAAAMN98+ctfjnxtnsA05ziVlZV29MmOHTvium0A5hfTc8A8UDa17yMAXI04M7XXmjmfKSoqsucx5oEQc16D2FGeK8GZ4VjmyaiOjo6o983rwsLCuG0XgMRhnpZavny56uvrbVwxZQF7e3uj1iHmAPi0wrHjcucyZt7Z2Rm1fHJyUj09PcQeAJ+KKUFqrqXM+Y1BnAEQi+9+97t6+eWXdfDgQZWUlETej+U6ycxnOt8JLwOAy8WZmZiHXI2p5zPEmdiQNElwZvjnhg0b9Nprr0UN4TKvN2/eHNdtA5AYBgcH7VML5gkGE2+Sk5OjYo4ZCmp6nhBzAHwaplSOOYGfGldMzV3TQyAcV8zc3IQw9cLDXn/9dXvOE75QAIDZOHfunO1pYs5vDOIMgMtxHMfeyDxw4ICNDeb8ZapYrpPM/D//+U9UgvbVV1+V3+/XqlWrruLeAJiPcWYm7733np1PPZ8hzsSG8lzXgccee0x79uyxTQurq6v1m9/8RkNDQ3rwwQfjvWkA5qEf/vCHuueee2xJrtbWVu3bt8+OaLv//vttc+aHHnrIxh1T49v84f3e975n/zBv2rQp3psO4BpOvoaffgo3fzcn+CaOmAappl7vr371Ky1btsxeHDzxxBO2Tu+uXbvs+lVVVbYfwd69e/XMM8/YRqvmgsKU2zHrAcDl4oyZTI+23bt32ySteRjkRz/6kZYuXWqboxrEGQBXKpXz5z//WX/5y1/k8/kivQHM9ZEpYRzLdVJNTY29afm1r31NTz31lP2Mn/3sZ/azvV5vnPcQwLUeZ8z5i1n++c9/Xrm5ubanyaOPPqqtW7fasqMGcWYWHFwXfve73zllZWVOSkqKU11d7Rw7dizemwRgnrrvvvucoqIiG08WLVpkX9fX10eWj4yMON/5znec7OxsJz093bn33nudtra2uG4zgGvbwYMHHXNa+slpz549dnkwGHSeeOIJp6CgwPF6vc6OHTucM2fORH1Gd3e3c//99zsZGRmO3+93HnzwQWdgYCBOewRgPsWZ4eFhp6amxlm4cKGTnJzslJeXO3v37nXa29ujPoM4A+BSZoovZvrDH/4wq+ukpqYmZ+fOnU5aWpqTl5fn/OAHP3AmJibisEcA5lucOXv2rLN161YnJyfHXjMtXbrUefzxx52+vr6ozyHOxMZl/plNkgUAAAAAAAAAACAR0dMEAAAAAAAAAACApAkAAAAAAAAAAEAISRMAAAAAAAAAAACSJgAAAAAAAAAAACEkTQAAAAAAAAAAAEiaAAAAAAAAAAAAhJA0AQAAAAAAAAAAIGkCAAAAAAAAAAAQQtIEAAAAAAAAAACApAkAAAAAAAAAAEAISRMAAAAAAAAAAACSJgAAAAAAAAAAALL+D0r275CRixU6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "match 1 : 159 with distance 2.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABk0AAAHDCAYAAACJcV3vAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd8W+d5PuybE9x7b4qkKJLae1jWtmXJkixb3nY84jhN0yStmzajTdK0/Tf9miZxmuFMO47txFO2vC1bW9YWNanFJe69J0gC/H7Pe4gDgEskxc37SlHiACBwQFPgec+zHDo7OztBREREREREREREREQ0xTmO9Q4QERERERERERERERGNBwyaEBERERERERERERERMWhCRERERERERERERESkYdCEiIiIiIiIiIiIiIiIQRMiIiIiIiIiIiIiIiINgyZEREREREREREREREQMmhAREREREREREREREWkYNCEiIiIiIiIiIiIiImLQhIiIiIiIiIiIiIiISMOgCRERERERKf/2b/8GBwcHVFZWjvWuTHj79+9XP8s333xzrHeFiIiIiIgGgUETIiIiIiIaU//1X/+Fd955B+PNr3/9a/zpT38as9c3Go341re+hYiICLi7u2PJkiX49NNPx2x/iIiIiIimAgZNiIiIiIhoTDFo0rvHH38cP/3pT/Hwww/j5z//OZycnLBp0yYcPnx4zPaJiIiIiGiycx7rHSAiIiIiIiJ7J06cwKuvvoof//jH+OY3v6lu+8IXvoCZM2fin//5n3HkyJGx3kUiIiIiokmJlSZERERERGRHZprcd9998PHxQWBgIL7xjW+gtbW1x+NefvllLFiwQLWOCggIwAMPPICCggK7x2RmZuKee+5BWFgY3NzcEBUVpR5XV1en7pe5H01NTXjxxRfVdblIhcWNZoW8/vrr+OEPf4jIyEh4e3tjx44d6jmlpdXf//3fIyQkBF5eXnjiiSfUbbZeeOEFrF27Vj3GYDAgNTUVzz33nN1j4uLikJGRgQMHDuj7tXr1av3+2tpa/MM//IN6nDyHvC8JanSfB2M2m/H//t//U/fL+1+3bh2ysrJu+N9AZqFIZcnTTz+t3ybf/8UvfhFHjx7t8XMmIiIiIqLhwUoTIiIiIiKyIwETCQb86Ec/wrFjx/B///d/qKmpwZ///Gf9MRII+N73vqce+9RTT6GiogK/+MUvcOutt+LMmTPw8/NDW1sbbr/9dhW0+NrXvqYCJ0VFRXj//fdV0MHX1xcvvfSS+v7FixfrAYKEhIQb7qPsmwRrvv3tb6sghLy2i4sLHB0d1b7KUHvZd2mvFR8fj+9///v690qAJC0tDVu3boWzszPee+89/O3f/q0KcHz1q19Vj3n22WfVPkvg5V/+5V/UbaGhoeprY2MjVq5cicuXL+PJJ5/E/PnzVbDk3XffRWFhIYKCgvTX+u///m+1T1ItIkGd//mf/1Htto4fP97v+5Of4fTp01Xgypb8nMTZs2cRHR09oP+eREREREQ0cA6dnZ2dg3g8ERERERFNUhJokOoNCSbs2rVLv10CCTLf49y5c5g9ezby8vJUYOPf//3f8d3vfld/3MWLFzFv3jz1HHK7nNiX7TfeeENVgvRFAhNy/0Dmh0ilyZo1a1SbqvT0dBUoEQ899JBqZ7Vx40Z8+OGH+uOXL1+O4uJiXL9+Xb+tpaVFBVxsyfdJVUx2drZ+m7yGBEDkNW394Ac/UO99586d2L59u919srySqhTLfqakpKifg6urq7pfAlBSuXPhwgX1/H2R+yRIs2fPHrvbL126pAI+v/nNb/DlL3/5hj8vIiIiIiIaHLbnIiIiIiIiO5ZqCwupuBCWYIQEC6QqQ6pMpMLCcpFKkqSkJOzbt089TipJxCeffILm5uZh3UdphWUJmIglS5aogIVUftiS26WVVUdHh36bbcBEqj9k31etWoWcnBy9bVh/3nrrLcyZM6dHwERIwMSWtAezBEyEVKgIea3+SGBH2n51Jy26LPcTEREREdHwY9CEiIiIiIjsSODDllSVSIspS7WGVGRIgEIeFxwcbHeRllXl5eXqcdIW65lnnsEf/vAHVbEhrbp+9atfDSgwcSMxMTF225YATfeWVXK7BHhsX/Pzzz/H+vXr4enpqdqIyX5bKmYGsm9SjdJflUh/++nv76++Sgux/khgp/ssFmGZLdO9UoaIiIiIiIYHZ5oQEREREVG/uldPSBBCbvvoo4/UsPLe2m1Z/OQnP1GD3aXd1+7du/H1r39dn5Uiw9GHqrfX7e92S1diCXjIMPYZM2bgpz/9qQqySCWIVNH87Gc/U+9tON1of/oSHh6u5r90V1JSor5GREQM0x4SEREREZEtBk2IiIiIiMiOVJJIlYiFDFqXYIIMh7dUnshJf3mMDCu/kVmzZqnLv/7rv+LIkSNYsWKFmsnxn//5n70GZUaSDH2XCg4Z2m5bBWJpKWarr/2S9y/zW0bS3Llz1T7V19fbDYO3DJCX+4mIiIiIaPixPRcREREREdmRFlq2fvGLX6ivd9xxh/p69913qwoKGfjevWJCtquqqtR1OeFvO0tESPBEWn3Ztp6SNlm1tbUYDZbKD9v9lpZcL7zwQo/H9rVf99xzD86dO4e333570BUkA7Vjxw6YTCb87ne/02+Tn5nsp8xp6d6GjIiIiIiIhgcrTYiIiIiIyE5ubi62bt2KjRs34ujRo3j55Zfx0EMPqeHnlkoLqRL5zne+o+ac3HXXXfD29lbfJ4GEp59+Gt/85jexd+9e/N3f/R3uvfdeVZEiAZSXXnpJBS4k8GCxYMECfPbZZ6pdlrSdkgoWCQyMhNtuu02149qyZQu+/OUvo7GxEb///e8REhKit76y3a/nnntOvdfExET1mLVr1+Kf/umf8Oabb6r3JYPn5XHV1dWqekUqaCw/p5sh71+eX37GMiNGXv/FF19UP+8//vGPN/38RERERETUOwZNiIiIiIjIzmuvvYbvf//7+Pa3vw1nZ2cV+Pjxj39s9xi5TwIhMgdEKk6EVD9IUEICLkKCBzL8XVpiyXwODw8PdZvMQlm6dKn+XBIskUCLtO9qaWnBY489NmJBk+TkZBXwkNeSwE5YWBi+8pWvqGHwEgCxJT+DvLw8/M///A8aGhqwatUqFTSRmS2HDh3CD37wAxUkkmCGBFRkVsrNzGnp7s9//jO+973vqUCTDI6fPXs23n//fdx6663D9hpERERERGTPoXO46seJiIiIiIiIiIiIiIgmMM40ISIiIiIiIiIiIiIiYtCEiIiIiIiIiIiIiIhIw6AJERERERERERERERERgyZEREREREREREREREQaBk2IiIiIiIiIiIiIiIgYNCEiIiIiIiIiIiIiItI4Y5Ixm80oLi6Gt7c3HBwcxnp3iIiIiIiIiIiIiIhoDHV2dqKhoQERERFwdHScWkETCZhER0eP9W4QEREREREREREREdE4UlBQgKioqKkVNJEKE8ub9/HxGevdISIiIiIiIiIiIiKiMVRfX6+KLSzxgykVNLG05JKACYMmREREREREREREREQkBjLSg4PgiYiIiIiIiIiIiIiIGDQhIiIiIiIiIiIiIiLSMGhCREREREREREREREQ0GWeaEBEREREREREREZE9k8mE9vb2sd4NohHj6uoKR8ebrxNh0ISIiIiIiIiIiIhokurs7ERpaSlqa2vHeleIRpQETOLj41Xw5GYwaEJEREREREREREQ0SVkCJiEhIfDw8ICDg8NY7xLRsDObzSguLkZJSQliYmJu6vecQRMiIiIiIiIiIiKiSdqSyxIwCQwMHOvdIRpRwcHBKnDS0dEBFxeXIT8PB8ETERERERERERERTUKWGSZSYUI02bl2teWSYOHNYNCEiIiIiIiIiIiIaBJjSy6aChyG6fecQRMiIiIiIiIiIiIiIiIGTYiIiIiIiIiIiIhovFm9ejX+/u//fqx3Y1y5fv26qqY4e/bsoL5Pvuedd97BWIuLi8Ozzz6L8Y6D4ImIiIiIiIiIaPjV1QGnTwO1tUBICDBvHuDpOdZ7RTQlvXzhZTSbmzGe+Bp88djcx8bs9ffv3481a9agpqYGfn5+U+71R9Kf/vQnFfCqlc9/GydPnoTnBPg7wKAJERERERERERENH7MZOHYM2LsX6Oiw3n74MLBhAzB/vqQ9j+UeEk05dcY6NHQ0jPVu0BQXHByMiYDtuYiIiIiIiIiIaHiUlwN//COwe7d9wES0tgLvvScpyEBl5VjtIRFNIB0dHfi7v/s7+Pr6IigoCN/73vfQ2dmp3280GvHNb34TkZGRqoJhyZIlqoLDIi8vD1u2bIG/v7+6Py0tDR9++KFqcyVVHkLuk/ZVjz/+eJ9VE1IJ8v777yM5ORkeHh7YsWMHmpub8eKLL6qWU/IcX//612EymfTve+mll7Bw4UJ4e3sjLCwMDz30EMrlM7KrzVZfr282m/E///M/SExMhMFgQExMDP7f//t/dvuUk5Ojvl/2Zc6cOTh69Oigfq4XLlzA2rVr4e7ujsDAQDz99NNobGy0e8zzzz+vfl6yD+Hh4eq/g8VPf/pTzJo1S/1Mo6Oj8bd/+7f698vP/4knnkBdXZ16X3L5t3/7t17bc+Xn52Pbtm3w8vKCj48P7rvvPpSVlen3y/fNnTtX/Szle+X34IEHHkBDw8gGABk0ISIiIiIiIiKioZMTmBIgOXAA+O1vgaKi/h+flwc895z2+O6BFSIiGxKUcHZ2xokTJ/Dzn/9cnaz/wx/+oN8vJ/IlYPDqq6/i/PnzuPfee7Fx40ZkZmaq+7/61a+qwMrBgwdVoOD/+//+P3WCXk70v/XWW+oxV69eRUlJiXr+vkiA5P/+7//U63z88ccqMLB9+3YVgJGLnNT/7W9/izfffFP/nvb2dvzHf/wHzp07p+aJSKDEEhjp7/W/853v4L//+79VgOjSpUv4y1/+gtDQULv9+Zd/+RcVLJLZJtOnT8eDDz6oAkwD0dTUhNtvv10Fa6Rd1htvvIHPPvvMLijy3HPPqZ+dBFPk5/buu++qII6Fo6Oj+nlkZGSo/0Z79+7FP//zP6v7li9frgIjEgSR9yUX2dfuJDgkAZPq6mocOHAAn376qQoG3X///XaPy87OVj8/CVrJRR4rP5+RxPZcRERERERERERkVVMDZGTImTygogKQzGkJjFiyu7tfHwp5zn37gIsXgS1bgJiY4dt/Ipo0JLjws5/9TFUrSJWHnMCX7S996UuqSuGFF15QXyMiItTj5eS8BDXk9v/6r/9S991zzz2qKkJMmzZNf+6AgAD1NSQk5IYzRSQAIoGEhIQEtS2VJhIokaoICcKkpqaqyo99+/bpJ/2ffPJJ/fvldSXIsGjRIlWRId/T2+tLBYUET375y1/isce0eS/ymrfccovd/sj73Lx5s7r+wx/+UFWEZGVlYcaMGTf8mUoQprW1FX/+85/1+SLyelKRI0Gl0NBQ/Od//if+8R//Ed/4xjf075N9t5B5JRZSASKP/5u/+Rv8+te/hqurq6oIkf9mUmHTlz179qj/nrm5ueq/s5B9kvciwRzL60lwRap9pGJHPProo+p7u1ffDCcGTYiIiIiIiIiIpjoZ1iuBErkUF4/e60pQ5vnngYULgfXrATe30XttIhr3li5dqk6+Wyxbtgw/+clPVBssOeEuX6XSwpZUlkjLKSEts77yla9g9+7dWL9+vQqgzJ49e9D7IW2wLAETIYEFCRZI8MP2Nkv7LXH69GnVXkoqTWTYu5z8FxLIkSBLby5fvqz2f926df3uj+17kNZZQl57IEETeQ1p6WU7kH3FihVq/6TqxcHBAcXFxf3ug1Sm/OhHP8KVK1dQX1+vqlwkECMVOfKzGgjZDwmWWAImQn4uEkCS+yxBE/k5WwImlvdr+3MeCQyaEBERERERERFNVSUl2vyR3Nyx3Y9Tp7TKlk2bADnpx0HxRHQDUrHh5OSkghPy1ZYlmPHUU0+pVlQffPCBCpzIiX4Junzta18b1Gu5uLjYbUtgobfbLIERSwssubzyyitqALoES2S7ra2tz9eRGSOD3R9LUMny2jfL/Qb7IG3G7rzzThWMkmoPqZg5fPgwvvjFL6r3NtCgyUD193MeKQyaEBERERERERFNNdL7XoYlHzkiZ9pG9rXkhN5A2njJYN/XXgOSkoDgYPv75ISotN9JTpZm+iO2q0Q0vhw/ftxu+9ixY0hKSlJBknnz5qlKE6k6WLlyZZ/PIZUM0jpKLjIv5Pe//70KmkgbKWE7vH24SAVGVVWVmr1hqaQ4JcFhG729vrw3CVpI+ykJ+IyElJQU1e5KAjuWapPPP/9czSmRFmje3t6qukP2wTKs3pYEqSRoIcEn+R7x+uuv93hvN/q5yn4UFBSoi+VnJDNcamtr+6zEGS38K0NERERERERENJXk52uD2A8fHtmAiQRLVqyQ5vvSY2fg1SMywFmCObaXQ4e0gMrvfgcUFo7cPhPRuCLVGc8884xqG/XXv/4Vv/jFL/Q5G9KW6+GHH8YXvvAF7Ny5U83GkIHxUk0ilSWW2RuffPKJui89PV3NHJGT9SI2NlZVLchw8YqKClW5MlxiYmJU4ED2V4abyyB1GQpvq7fXd3Nzw7e+9S01VF3me8gQdAkU/fGPfxy2fZOfmbyOzEy5ePGi+plIEElmhVgGzv/bv/2bCorIHJbMzEz1s5P3ImQgvMx4sbw3me3ym9/8xu41JOgi70cCL5WVlaptV3fSLk1mzcj+yPPLfzv5b7lq1SoslJaNY4iVJkREREREREREU4HRKJN3gZMnhz7AfaDkxNu2bVp1iNi4EZBBzO++C5SVDf15S0sBOXkoJ9Sk3z5noBANiK/Bt0ebo/GwTzciJ9FbWlqwePFiVV0iAZOnn35av18GvluGlhcVFSEoKEjNQZH2UUKqHb761a+isLAQPj4+2LhxoxokLyIjI9UQ9W9/+9t44okn1GtJBcZwkHZc8lzf/e53VeBh/vz5+N///V9s3bpVf0xfr/+9730Pzs7O+P73v69mi8gMD6mSGS7SPksCSfKzlLkhsi2zXn7605/qj3nsscfUjBL5WcnQefm57tixQ90n81DksTI0Xip3br31VhWokv23WL58udrn+++/X1Xc/OAHP1CBGFsSMNq1a5cK2MhzSNWK/PexBGfGkkNn50j/lRxdMnjG19cXdXV16h8CEREREREREdGUDpRI5calS9rX9vbBP4dUiNheut9muy3DeufOBZYs0VpqdSftWo4e1VqDSYuwmyEzCyQYIy27uu+vM/OEiYSc+JYqi/j4eFVdQDRVf9/rBxE34F8QIiKiybo4zsoCioq0hbEsJBMSOFCTiIiIaCpobQWuXdMCJXJMOJTghL8/MHMmIH3lw8KG7zhSAim33KI97/vvAzk5Q38uaaXz5pu93xcUBCxbBixYMPTnJyKiKYlBEyIioslCeoRevQpcvqwtPm0Xx9KCITYW2LJFW0ASERER0eTS0qIdC0qgJDtbq+gYLBnou3ix9F4Z3kBJbwICgEcfBc6fBz75RDuWHU6VlcB772nD5VevHt7nJiKiSY1BEyIioomgrU1b/F65AhQXa9sWlsVsXV3/vanz8rSBnytXatl9bFlARERENLHJsZ8cH54+rSXN3MxQd5k9Ir32JVgyWuQ4VgI0iYnA7t3AuXPD/xrSBkze04wZw//cREQ0KfFsCRER0Xgl2XbSVkEqRyRgcrM9n4VkHMrCMSNDqzqJiRmOPSUiIiKi0VZfD+zapR0n3gxJpFmzRmtlJZUmY8HTE9i+Hbj1Vmt7WVs1NcCxY/0eD3eYO1DaWKourR2tcHF0gZerF4I8ghDw1htw+fJXWHFNREQDwqAJERHReCLVIpItKBepDLmZbMH+VFQAzz8PTJ+uZd3JzBNZrBIRERHR+K8uuXAB+PBDbXbJzZAEmm3bgMBAjAuyH33ty7x5wAcf9DoDpbK5EplVmTCajHZBlJaOFlQ0V8Ch8grcfpIJx6e/DH/fUHV/Z2cn5H+9XRcODg7wd/NHsGcwHB1uPpgkz1veVI6SxhKYO80I9ghGpE/ksDw3ERENLwZNiIiIxpoEMCRIIhUl0nprNEkli1ykNUJ0tBY8kSDKeFk4ExEREZFVU5M2PF2OG4fK1VVLnJk9G0hKGtm5JcNJjk9lBsrFi8DHH6ufhbHDiMzqTBU06Y8ERFpK8lH+4rP4YFXqoN6zu7M7kgKTkByYjMSARBicDQP+XgmOFNQV4HLlZVypvILa1toezz09cDqSg5KR4J8wqOcmIqKR49BpCaFPEvX19fD19UVdXR18fHzGeneIiGgUNRgbcK3qGuqMdWqB0p2bsxtCPEMQ5xcHVydXjBn50yttBywVJTKkcrwJDrYGUCIjJ85imoiIiGiykkQXacclgZPBMhi0Y7vUVCAhAXBxwUTR2NaI4oZiFXCQY3w5jeXQ2grD0ZOoSD8MGG2qbTo7YW5oRVWjEW4uTvD1cIFzt5Zj2QsTUDAzekj74uTghHj/ePgYfOwqVCyn1izX5X8mswn5dfloam8a1HPPDp2NtOA0ODk6DWkfibprbW1Fbm4u4uPj4ebmNta7QzRmv++DiRuw0oSIiCY8yTDbm7sXp4pPwdRpuuHjpb+xZInNCJqhMrvcXdxHZT9RVgacOgVcvar1oB5pcoAgAQ9pYTDYHAmpfpHL4cOAl5c1gBIfzwHyRERERKPt5EmtNdVgjwXl+E0CJdOmTahjOAmQXK64rCo0pFLD0jrLjozmi5mvb5rMnUjPr4Hfx+cwq6ZF3SZ5Pz5uLgjwdIW/hytcnR0x7XQ2GgK9UBvuP+j9krVGVnXWzb25Gzy3XA7mHcTmpM0qiEJERKOPlSZERDRqqpqrcLXqKrKrs1VvYcmmCvcOV6XuQwleyJ8wKXP/KOsj1BuHFoSQHsJRPlGq8sRB/ufgoH+V+7rf5uniiVCvUCQFJMHTdYAzQORP7WefAUeODD54MVjyt0/aLaSkAHFxgJOTVtXy7rta0OZmSTuHxERtAS7tHNxHKeBERERENFWdPg28997AHivHZnIcKIESSXaRY8FxpqW9RbXUkoHtTW09qzAscz8Go6SuBXsul6Oy0QgnsxkPn8tBRIMWOLHl7uKkAimtLs7YOT8Bld4e6vDcOs9Ee5x8cXQAwnzcMC3YC7GBHnBxGvrsEXNnJ0rqWpFd3ojcyiZ0mDsRE+CBacGe6mtfzz0ndA5uS7ht4OsOol6w0oSmkuGqNGHQhIiIRoylh6+0zJJgSX+9hiVAIW2zUoJS1FcpR5fbLBcJWthuS5n+x1kfq+ftrt1kVguT7lwcHeEoq59hIPsT6xer9jclOEUv0e9BBrlLwOLs2Zt/UWmrYBncLgGRbq0G1LY8pjcmE3D0KLB/P9DRcfP7Ynk9WYyvXw+Ehw/PcxIRERGRlRxDSkuugZy6kRkld9wxLpNapI2uJDtJ5cj12uu9ttIdCmOHCUeyqnCuqFaLdHRVlywLcMeWQ5fQUtOMNlPvr9Xq7IQ3ZsaiyOfGAQknRwcV3EgI9kKkvzscHRy62nBpERa9OVfXdUsgpsloQnZFI3IqGtHcZur3uSU4kxjsBXdXpx5zTzYkbMC8sHkqiYtosBg0oamklUGT3jFoQkQ09uRPy5nSM6qsvPuww5FU29yG/VcrcL2q977Bzk6OiAvwQGKIF+KCPFWf4+Ei1SoSQJGWX4EegdZAxVtvAZcuDf2JpTWWBEksrbFuNluwuho4dEgbHtpq0//5ZsjibdMmYNGi4Xk+IiIiIgIuXAB27rxxwMTDA7jzTq26ZBzpMHfgfNl5pJeko7C+cEjPUd/SjqyKRlWhUdFoVIlRKiDRFZTo/qMJ9jJgfWooQn3c4FdSgzmfnEOzsQPVTW2oaW5DiwQubOIO7U5O2DkzDgX+XmrbEpOQL1INIi2/hpsEXCT3qMPU87mlfdgtiUGYFenbI0AS7BGskrWkQj/SO5IBFBowBk1oKmll0KR3DJoQEY2tssYyvH/tfRTUF/T5mLqWdhRWN8PF2VGVuhucby4QIIuZ03k1OJ5bNeCFjSxWovzdVQBF+htbbrOsPSzXZdPB5rqnwfmGwZZQz1Ck+iVh7oGr8CkoH/yCJiBAC5JIa4WoqJEZwi4Bnbw86zD64ZixIoGTxYuHY++IiIiIpraMDC35RqqW+yNz57Zs0RJtxpG82jy8d+29fivNpUpEKjF6qxrPq2pCVnkTyhsGluQjyVHLpgViXrSfXWV59MUCJJzK7vd7zU6OyFidhqrorsSnLh0mMwpqWroqRZrQ3Db0am1nJwfEBniqtUd8kCecHR1QUNOM7Iom5FY0oanbc4f5umHdjFAEe/deRS4tgyV4IpeEgATVapioLwyaDF5bWxtcpTU1TTgMmvSBQRMiorHRZmrD/uv7cazwWI9ye/lTU1rfqhYb0sNXeg1byKIm2l9K3T1VubsEJQajuFb6F5ehqqlNv02eI9Cz5wFORYMRLe03HhTfH4lfRPpp1SpSPu/l1nN/ndo6MGvPBfiV1aly+iCPIAR7BsPb1bvvAEpYmBYkkWBJSMjIBEr6IocCpaXWAMrNzD5h4ISIiIjo5khF8Btv3DhgcvvtwNKlo3vceAOtHa34NPtTnC453ev9TcYOvXKksKal15a6ffF2c4HB2bErmcma1CRD3pdMC4Svu0vPb+rsROqBSwi5XtHvc3c6OODyrSkojw/p/f7OTpTVG1WbrdqW9q7EKm0/uv5PsSRbqetdrbckUSs20LPPuSXy3OUNRpwtqMXlEmsikzzX/Bg/LJ0W2O88FZkTKQPjLUEUPze/ft8rTT09TiL/139pSXRjTboofPe7N3xYU1MTvvKVr2Dnzp3w9vbGN7/5Tbz33nuYO3cunn32WfVv5e2338Zdd92lf4+fn5+67/HHH1fbBQUF+Md//Efs3r0bjo6OWLlyJX7+858jTtpeA+pxtbW1WLRoEX71q1/BYDDgiSeewOuvv46LFy/a7Y+87pYtW/Af//Efw/4jofETNBncmSkiIqJeFkZXK69ib+5e1Bnr7O5r6zDjRG41LpXU95mZZTZ3qkwyuey9Wq6GLXq5OncNYke/X2XRda2sQX8uWaDMjfZXWWZS2t7jtTo7VZAlq7xRZXU1tLYP+v3Kuq6wplld9sv++rqp4ElisCeijO0Iyq9EaHYZ3LsGT7Z0tKiqG7lIBpiU1UsQxdfdH46xsdbWW/7+GDPyg5OZJHJZswaoqQGuXtUuUo1yowW7rQ8/1L4ycEJEREQ0ODJ37rPPgGPHbvxYCZgsW4bxQk78y7ySjzI/QkOb9fhcyDpAggFyDF5S36rPHhmIEG+DSlaS5CoJjgy0gjstOA0LIxYipyYH124PguOH+xFUUNXn4x06O5Fy8BKc2k0omd5zVp+8rhz3y2W4yXNLO7Hb08KQGu6DvVfKVSsx+ZlKNf210gbMjPRVFSpSedL9Z2DqNCGrOktdPsz8UFW9Sxuv2aGzEeAeMOz7S5OABEzGQ9BkgP7pn/4JBw4cwK5duxASEoLvfve7SE9PV8GLgWhvb8ftt9+OZcuW4dChQ3B2dsZ//ud/YuPGjTh//rxeUbJnzx51Iv3TTz9V23Jy/Yc//CFOnjypginizJkz6nskgEOTG4MmREQEk9mEemM9vFy94OLUS4ZWN1XNVfpw9/y6/F4rSyQoIUGFRmPPYIksCqYFeaqqD7vghRQ81A1tzkaItxvWp4QgxMftBi25PNRl1XQtoyuvqlm1ALDti2x7XfVN7gqWWIIu0l6s643CqaAKhvQcuFfVw9VshrOnKzrl4uLUY0Ej1ThFDUXIay1F1sbFCE8LQEpwIKb5eo+vP8gSwJGsRbm0tADXrmkBlKwsqVMeWOBEfmBLlozG3hIRERFNfOXlWjuugVT8btgwbgImLe0tKlgis0tkwHv3NUFGcT0OZVbA2NEzCcfHzQURfjJUvefzBnkbVKCk1+qRfkiVxaakTariQkgFxrpp61A96wE0vfYyYJMxbnusripGAEy/YkZdWAyaFsxCcUOxWvM0tfc+L3EonB2dkeCfAHcXd2RWZfZ47ugADzy8NAanr9fgxPVq1Xq4wdiBozlV6uJlcFbBExkaH+3vrtqSdVfWVKYu0gVA5i5K8GRmyEx4uHgM2/sgGi2NjY344x//iJdffhnr1q1Tt7344ouIkjbWA/Taa6/BbDbjD3/4g/7v/oUXXlDVKPv378dtt92mbvP09FSPsW3LJcEWeawlaCLXV61ahWnTpg3zO6XxZlydoyEiotElQ9oP5R3CpYpLqiJC+Lv5q8wkGWge7ROtDiokqCLBEVk0yKWqparfYY37rparNlwWUpYuPXynBXuqg3zbFlyW4IWU6EupvgxpHAwpVV+eEIg50r94EK0JLBldchkMWfxJK7DSnErEHb6KoNIa/b5mlUnXoloNuDk7wt/TVWXEyeLGcnDWbnDG+Q1z0BBoQGnpGZwpPQODkwFJgUlqkHxyULJaTI0b7u7AnDnaRbIfc3K0wfZnz/b/fR99BBQXAwsWANHR46ptBBEREdGY0zN1OoHTp4Hdu7VjrRtZuxZYsQJjSRKBpNL8YvlFVd0glQ7d1TS14bPLZSiq1dYYFtJCV1WOhHipoe3DNczczdkNiyIWYWXsyl7newR4BSPgiW8A778PpKf3+1yR6fmAbwJw61aY0Ymi+iJcqbyi1kEyo0VLqRo4adEb5xen1liJAYn6/knimTy3BJ1OFJ1Ah1n77+/s6KjajSWHeWPf1QpVkW8hCWkXiurURQImMf4eva6xLArrC9Xl46yPkRSQhGXRy9S+EE0U2dnZar7IEpuEvICAACTLPKcBOnfuHLKyslRrr+5tnOT5LWbNmtVjjsmXvvQlPPnkk/jpT3+q2nr95S9/wc9+9rObek80MYyjszJERDRa2k3tOJx/GJ8XfK4fnFvUtNbgSMERdZHKk3CvcBUwMZqsc0h6I624zhfW4lhutRqaaCH9e9ckB8Ova9h6f8GL5YlBaGkzqYwqVeGhV3rIdtd1m69yCfRy7TGYXRZN6+LXqcwqCwkKyeJOFiVSVTNUjuZOzM8tQ9y563D0cERrtJ8K9MjFtqqmtcOMkrpWdXF10gIonoGeyL1tLloC7Qd1ys9WFp1ykUXV2vi1mBs2d9gWkcPG2RmYPl27REYCH3zQ/+PPndMuQUHAvHla4GWcDSklIiIiGhUyN+7oUaCoaEDBEUnUaW5vtgtIGFcsRdvcBDg3lqm2SwOpEB8usj9SMZ1ekq6OWSVw0hs5jj+dV43juVqVhEVKmA8WxweoY+KhCPMKUwlG4d7hcHRw7Jppov6/qtqQ9rc3TDxydAS2bAEMBu2/RX/27QOMRjhu2IBo32h12ZCwQa2jLNUhtvtgOW7vfpvMG+nrv5O8D8tzS8BHWmtlVmfq98v6afu8SFWVn1OpDYyX4fGWn6usuXIqG9VFyHpKgidJIV4I9LIfIC8BGukSIJdZIbNUNY783IgmA/m31n1kt7Tksq1WWbBgAV555ZUe3xscHKxfl0qT7mR2icw3kZkpElCR592xY8ewvwcafxg0ISKaQuRAQqpKdmfv7jF/pDeNbY12B+7dSZsqqSiRi8z4sF0Yebo6Y1VysDpoH8zJf3dX+wDIYMki4PbE21XAp7tp/tOwMXEjShpLcLniMrJrslW2WF+Lvu58Kuox/chVeNVYs70kYCNtBeRi7DChpqldBVDqbealtJnMyDSa8JegQLReLENCcKPKsJPye8kksyU9oHdd3aWy2bYmb4Wna88Dt3Ghqzz5hoETUVkJSF9YucgiVapXPDysl7AwLagitxMRERFNNpJE8s47WsbPDUhCU3Z1tmqvZNsCN39WDHI8M4D0S2pbTspLgpClQnykZldI+y1pvSXBEtmnPh/XZkJmeQPOFdSqqmwLH3cXrJsRohKpBkMCIBHeESpQIu/P332Y5v/JukRa8cgx6f79/T/2yBGtNe3mzXrVtARA/JyGf9C6vL+HZj2k1mpSFWI7F8bbzQVzovzURdoK51c1a0GUyia7uZFl9a3qciynSs0+kUCVVKt0r0C5UH5BtVLbNmObqnwhGs8SEhLg4uKC48ePIyYmRt1WU1ODa9euqTZZlsBHSUmJ/j2ZmZlobpY+EJr58+erFl0yD+VGw7+7k/knjz32mGrLJUGTBx54AO5ct04JDJoQEU0RZY1l+Cjrox69hkVRTQvOFdbC281Z9Q4O93XrNdAhFR4yc8SS6VTV1LP6RL5NDuiXJQTC4GwfAJFMKwlcSI9huUiWlgQvpPpDghc3Q9qKbZ6++YYH/vK+ZAEml3XQeqJaAkraHBNLZYvMOelEp0laUuXCISMDbWdPoaozGBUu6LW3sbzfMF+5uKkFjbQlqG5uQ46DE15Ni0W9m6uU+ajeznKRYfVxgZ4qgCJfbYfXSxbYc6eew7bkbap114QPnFgYjdqlttZ62/nzwOefA/fdB8TGDv9+EhEREY2VqiqtJdQAAiYSoDhXdg6tHdYZf2YnR2QtSkBxcoRdu1M5Xi2oL1AXSYgK8QxBcmByj4QbCa7InI9In8hek4r6IvM8pGWUVJV0r0y3kISh7PImXC1rQH51s12mt+zq/Bh/LJ0WqNrpdhfsEawHfHwMPU9ierp4jlzVtTzv6tWAtOGRtmj9OXVKm/EngRNJ9hlB8n7TQtLUemZv7l6cKj7Vo/WZb0ML1pZU4a6Kejgb21USW2WjERUNRlX1Lv8F6txckefnifTKRhzKckG0vwdSwn0wPdRbtU0WEpR5+fzLWBixELcl3NZrSzOaxJxuLlFxNPfDy8sLX/ziF9Uw+MDAQBX4+Jd/+RfVKsti7dq1+OUvf6kGvZtMJnzrW99SgRaLhx9+GD/+8Y+xbds2/Pu//7uah5KXl6eGuf/zP//zDeejPPXUU0hJSVHXP5d1K00JDJoQEU1yUta/L3efOuju3n9XSr0PZVbiWpk1k+l0Xo2qEkkI8VQBFBmwLmXgEiTJrWpCa3vPnsXCW4YSBntiZoRvj2HsslhbErUEq+NWq9ZZFr5uvlrwIvIWVJ8/gaqMk2iur0KbhwGV82egw9NdBS9sL5aAhiWoIYs/6csrww2dHId+8Gcpo1czIFtbJT1FG34uX+UkvwRFXDzh7eepXk9+rhLoqWiqsMsEs5DFoVd0ABoSw+AyPRwralqRVd6I61VNKqBiaWkmP3u5yAJGgk0yn8Uy0FEqfV658Ioq15fFzGi2YBhU4EQWnnIy4GY0NclEP+COO4CFCzkDhYiIiCY+sxl4+23pEzOggMnZ0rN2LXEbA7xw6dYUNPvduEqjvKlcXfoix7nSBkqCFH1VpsgcQ6l0OF50XM3B6I0cf0uA5GJxPXIqGu0qzS2kTZRUl3RfE0j1yPLo5WowubTTGnPLl2sVJzcKamVkaHP91q+XlPURP041OBtwR9IduCXmFmSUX0TB5eNovXAGgfkV8KizZs8LXwAq997bBUZ3R1XxXlnXiLRyLUGpzNMNOQHeuBTgjfOR/tgwKxwBntbWXbJGlMomWWtIUtvNrKdoAvnudzGRSMBDWmxJqyyZS/KP//iPqKuzds74yU9+gieeeAIrV65EREQEfv7zn+O0zIrq4uHhgYMHD6pgyt13342GhgZERkaqwfIDqTxJSkrC8uXLUV1dbTdbhSY3h87uTd8muPr6evj6+qp/PIMtuSIimkwkqHC6+LTKUrIMebeQ/rfp+TU4cb3Gbv7IoDgAYT5umBYkgwe9EOTl2ms2WJxjIO4IXYFQn3Atk0QyQuSr9HKWoWvXrgF5eYCpWzBGMkPuvVebnzEa6uu1XtMSKLl+vef+9EOyASWAIpd8bzMqY4LUpdm3Zzaa/LzzqptVAEUqdozdglCBngZsnBmmSuptycLynpR7VB/ncUkOSqXiRE4O3CwZHi/BE5mhQkRERDRRHTwI7N07pIBJxrRQ/MXXF/UdPY+tnJ0cVPWADFP3dR9aUo1Upki1h4UkJskcQ0na6Y1UMVwqrlPBkvqWnkEgaSE1PdRLtYPqbcC7JB1tmb4FgR6BGHcuXNCCWwM5jpW5flJ1EhExtNeSNUZxMSAnfCUxS5K1LJfetqXKpa1NVftUt1SjqrkKVS1VfVb/2LZLkwoUuRi7focaDC44HB8G3xWJmBfj3+O/kSSjyVzF+eHzR6zdG40NGXiem5uL+Ph4uLnZBzMnqtWrV2Pu3Ll49tlnR/y15NS5BE7+9m//Fs8888yIvx6N3O/7YOIGDJoQEU0y8rEuLbikF273vsNyX3ZFEw5mVtgtdmQuh7TTcnZ0QHZ5ozqp31vWmFRPxAZ6qAGDcvFw7XlS28Fkhl9ZHUJL6rGsORAxHTdRWi8BlnvuAdLSBvb4xkYtC6ymRssWk++X15ZLX9elwkECJbJ4uRlSHbFqFZoMjqq1lrQdy6nJ6VFSb0t+xtIaTfo/Xyqp13/mUnWyIiEI82L87H520t5MssAWRy4e0yHxEhyShX2DsUGV8kuVT4xvDBzKy4EDB7Sf5yCCTr2Kjgbuv5+D44mIiGhikv76v//9DU/Edw+YGD1c8fncePyupLnPCm9bQV4G1epVKsT7SmIaKlk75FU143xhnao47376yN3FSbV8kkBJX+193Z3d1fGrnIwfy+PXG5LkqTfeGNgxrLyPgADtsZIIJl/l4u2ttZqVpK9p07T2X0J+bvn5WkvaS5e0QMhNkP8O9cZ6dUwuARSpgO/3sa0dav6J5fcpW6pOFiVg+fyYPoNu8X7xqnWXtFCTgfU0sTFoMnQVFRV49dVX8Z3vfAcFBQXw9x+m+Uo0Yhg06QODJkQ0VTW1NakhjWdKz/Raml/VaMSBaxWqnN5CFi5zonxVr2EJnFhI2yhpIyUBFOmTKzM6JEgS6e/eY3C5eh6TGcF5FQjOq0RoWRMiXQNV+f+w9MaVRcnWrdqg8O5kESrBDmmhJZebDXwMRUgIsGWLdpK/lwqUzKpMNbNFvrab+27NIFlgH18sVV8tJIPwtrRQlblnS1oqyKwTdxf3Uf8d+yT7E/V71p0ETWSfVPagBKJkUXjmDCCBlKGSv+OSyScLz/G8yCYiIiKyJSfSf/tbOdvW92NcXNBkMiK9NB2tJiPaDc6ojgrEyfhQvHapfEABk+4k8ab7IZO05QrxNqigykArU2RWyaXiepwrrENtc1v3J0RsgLTk9cG0YC99RkZ38rqSWHN74u2DmqUypqQK/tVXB9RO7YakYjouDggKAi5f1ipLRogE3iR4Im2D64y9v47ZrLVVK63X5uW0Ojvh4PQI+C5PQmqkb69zZ4RUI0mL5dTg1PEd9KJ+MWgydPJ7HxQUpFp+PfTQQyP6WjQ8GDTpA4MmRDSVSPm89BuWk9hXK6/2WtUgC67jOdU4W1hrlx0mJ+RXJQer7LSbEVBYhfnnKhDZZlAnzL1dvUfmgFraNS1erFWR5OZqF6kqae47s2pEyULo1luBFSsGNMCu3dSO7JpsVYEilSi2Az4tOsxmHM2uwul8qZTRbjO4OGFDSggSQ7ztHutr8MU9qfeoYMVIk98bGUr6SdYnPVq92XJxdMH6aeutlTDy+1ZUBJw9q7U8a2jQ58MMigzmW7sWiI9n8ISIiIjGv08+AY4e7fv+wEAUPnQnXr/2tqoYsCivb8VbZ4r09q1SvbFlTkSPE9oylzCrvAnZFY0o6zoJPlBy7C8BFKkelypzWx3mTlwt1SqgLTP4LLwMzkiL8EFqhG+/gRd/N3/MCp01fuaWDJZUhPzlL1p7rAlI1hhljWWq40BvFSiSECe/N5IkJ7ICvLFvRhQi4wJ7nU1pEeoZqoInkrzF4MnEMxmDJkR9YdCkDwyaENFkJPNJpIdtaWOp3aWvnsPa93SqDLHPsyrRYpOp5uPmglunB6nF0lAPeGWI4wyHYMw/X4HIkiY1rHBUSMm7nHgfS/IzS04GNmxQC96hkCGb0kJNKlBk2Gb3BU1BdTM+yShVvaMtZkf54takYH1IvNoVOGBFzAo1JNLNeWQOfqVv8vvX3kduba7d7XL4IIMmZdFsu08i1jcWd824C/7uvZQuS+sCaUkgwS7Jutu/v//Bm7YkW0+CJzEjHygiIiIiGhJJFHnxxT6Pb0zoxKH103GgI0vNEek7YOKO7fMi4ercf2skCaDkVDSpWXlNNseOFjLPQh4zVFH+Hpgb7afmGDr2UVUiSVNSVSKXCO+IiX9SvbYW+PBDbfbiBCXH6rJWlGN4WUd2T9SStmsVDVoyk/wWFvt4IDPQB7UxQYiYHoIZ4b69/u6FeYVhw7QNSAhIGLX3QjePQROaSloZNOkdgyZENNHJx7K01yqoL9CDI5It1F9rJ1v1re24XFyPjBL7IY0yMHJRbAAWxPr3OMktvYbXxK/BrJBZqhriSuUVXKu6hjaTtRzfx+CD6YHTkewVh/jzBXA+eerm51ZMFDKUPiEBmDFDaxXl0XPA+1BJwOTdq++qn3n3CqE9V8qRWdZglxm4aVYYAjztg1QSMFkevRxLIpcMSwBLqmJkHovs04XyCz0GTcoC67PLZSqz0dvgjPWpoYgN9LR7jLRmkwWV9ELud+Esi9G33hpcBYr0iF6yBEhK0ubTEBEREY0H0pb05ZflxESvd9e21mJvjAnnU+0Tb7oHTCJ83XHXAAImA1XdZBxUZYqsFVLCvDEn2q/PqnSZtSdVBzI0PN4/fvLNvZBTZXKc+tFHWhBlPAkLA1JSgMREbZ1iS373srK0S2WlWluWNJYguzq7R1cCCaaV1xtR1dSmEu4sat1ccT3UD1iWgITksF5bd8naQ471J3yAbIpg0ISmklYGTXrHoAkRTWTSaktOoPc2k6Q/ki0kGWYZxfXIq27SWztZyIDGW5KCVJWJLalUWBCxAGvj18LDxT4QICfKpS9uU3sTAoxO8C+shIMcfEtbrLZuvY2Hg6entgCQXsLjgQRGpKJEAiVykr77gmQYyZ9iGQD6UdZHdoEquV3+m+6/Vo4OU6e+iF2THIzUcJ8eixT5byhVJ4siFsHFyWXQvZAlUCaBkqzqrF6DdNKmQVq9Sfuw7ocPsyJ9sTIpuMfiXoImm5I29b+QrqwE/vpXoKpqUPsMGcInLdtk3g0P/omIiGgsyXy9N99EfX0FihuK1Sw4S+KJVJTIsVOlnyvSN81DZ9dJaLntckmDOtaztEuK8HPHXXPtAyZxfnF6S1apWJbqAXmNobBUpsiJ8h6LBjm88nBFSriP3bxDW4HugWr9MCd0Djxd7ZNmJiWZb3LoEPD552OXMGYwaOskWZfIZaCDqKWtsfxeHjyIlpoKdZzf28wTWUtWNbapAEpTmzVZyuTggMvRwWi7dTqmJ9hXvIu5YXOxNXnr5AuYTeKTyLGxsfAYxgRAovGopaUF169fH99Bk4MHD+LHP/4xTp8+jZKSErz99tu46667+v2e/fv345lnnkFGRgaio6Pxr//6r3j88ccH/JoMmhDRRCUzSV7PeL3XuSS2TGatLZJk+6tLYyvKG4z6Qqv7kMZFcf6qrL47aaF0R9IdCOv0BI4cAQoLtcHqMqvD9iIntMvKbu7NhYZqJ7Xl+WWxIRe5LoESabUk1RuRkVrrK1mQfPopxkRAgHUxInM0RrmKQUrnd17eqYJntqoajfjwQknX4laTFOKFFYlB8PNw7bVFggzdTAtO6zf7S3oey+9dRkVGr9lntvKqmlTli231kizmbX/vJCi3ITUU0QH2v2+rYlepSqZ+Sd9oqTiRhd1guboCc+Zo82X8/Ab//URERERDJadUjh9Xc0zyaq73aGlqYXZyxKktC9Ds56kHL/ZcLsf1qib9Mb0FTKTS+760+1R7XFt1rXXqJLhc8uryVDvfkSInxVOCUrAocpFaQ0zJ6gJJ7pE1ytWrA28t2xdZY0hSlgyJlzWSBEXkq+Viuy3XBzA/sV/SGvejj9B57pxaZ8jvaF+/L9LirbiuRQVRLNodHXEhLgSdK5ORMi0Qjjb//WW9cXfK3XByvMl9pBFlNpuRmZkJJycnBAcHw9XVdWr+O6ZJr7OzExUVFWhubkZSUpL6nR+XQZOPPvoIn3/+ORYsWIC77777hkETiXrOnDkTf/M3f4OnnnoKe/bswd///d/jgw8+wO233z6g12TQhIgmorzaPLx0/qUebZCkRVNlY1dwpOtS1dwGs7nvj24fdxekhcuQRh94d6ssUfcbfHBbwm1IC0qFw/nzwMcfD/+gQzmJLQsBCYZICyWZRTIYJ08CH3wwtNeWOSNSqu7rqy1oJDgjX/u7Lo+V9luycBnjg0dZwBzMO4gD1w/Y9bmWKo8D1ypwsciaHSYHuvLfenF8gPrv3p20TNictBneBm+7QElmVSYull9UFSX9BUo6TGYU1DTjUnEDMsutbcKcHB2wKC4AC2P9VSXMoaxK9VgL6Xt9S2KQno0mFU0Pz34YiQGJN3jzZu2//YED2syTwZIg39KlwC23sPKEiIiIRp4kAsnsi9OnVeWHVO32JWtxIgpTo9QJnYtFcvxUYZd8khzmjXUzQu0CJsmBybg37d4eAZPujB1GVDRXqMphW3IsKa1+JbAylMoUTxdPVVUilcOyhiD5YRu1IISciJOLHH/KV6lIkap8aeklSUDymO6io4FZs4C0NC15bLRduQK8/z5aaytV8ER+N7qvPy2a2zpQWNOikvUsWpydUDAnFlGbZsPRphKpr8AejS9tbW0qoV1OJhNNZg4ODoiKioKXl1eP+8ZN0MTuhRwcbhg0+da3vqUCJBcvXtRve+CBB1BbW4uP5aTeADBoQkQTjRysvnDmBRhN1pkOV0sbcCS7EnU2Wf398TI4I8rfHWkRvuprb1kjchArvWelfZNrsxF4773hH24oJ6rXrAEWLNAWEDfj7Flg164bZ3LJIkUGhEtwRi5DHM4+3sig+LcuvYWGNvvB99fKGrD3SrkKqFnIUM5ZEb5YFB+gfhe6zztZP229ui4L5tya3H4DJfK8kvGYXd6kvkqwxlaknzvWpYQiwNNa4VLb3IZPL5WhqNa6OEwK8VbzVyy/i9I67MsLvgxfN9+BLUaPHdMqoAYz68RCFqGrV2u/h5x5QkRERCNBToq//rpqXVtvrMeZkjN6woucZqltadeOozqB0hA/7FuRrFJJssobVVKKhaerM9amhCAh2P7kzkADJgNlW5kiARTbtUf3WYcyzH1W6Cw12J0nwodAEoGkil/aDsuMEUnMkhkkUtU+1uSEucxpuXBBJWtJO2aZeSLzdvoMnlS3oLrZGjwxhvvB4dEVMHtZk5Ti/eLx4KwH1VxDGr/ks6mjowOmqTKblKYkFxeXHhUmEz5ocuutt2L+/Pl49tln9dteeOEFVW0ib2YgGDQhoolE2jE9f+Z5NLY12p0U//BiSW8thlURhPQZDvE2IFguXm4I8naFh2vfixkZ0pgWkoY1cWvg7+YHSHWJHCgPZ3WJ7JicoF67dliHpOPyZS24Y5sNIyfBIyKA+HjtIhlbIzhvZCzJkPh3rrzTI2vR2GHCmfxapOfX2GUoWipA5CLXB0oCJTIY9FqZtojvrZJJ+lqvTAxSFUy9BeXUXJaCWhzOqlQt5MSq6cGYF2PtuRztE43H5z4+8PJ9ORkhgRMJoEj23mAFBwO33aYF04iIiIiGi8yKeOUV1ca23dSOU8Wn7IIQ0ta0pE471s7z88TO1FgYnXse/0jC08qkoB7zQ6Ra+N7Ue0es5ZEct8kcPduqZguDk4Fte6aCoiLg3Dmt3VhdnapSkmCaXHpLsJIkKVmnWpYJjn4eMD28HMZQX7tjfakul6QtIqLxaMIGTaZPn44nnngC3/nOd/TbPvzwQ2zevFmVj7m7u/f4HqPRqC62b15moTBoQkTjXYOxQQVMalpr7BZYu84V6yetQ7zdEObr1hUgMSDIy7XHAL6+hHiGYH74fMwKmQVPKauWMvGMDCAvb3jfSGwscMcd2nDCkSDBnUuXtPYH8rkurzeFWi/Jn+njRcfxafanPRYwEuw4nVejghW2FSGBngY1W0R+d/oigRcZAiqLn7zqvgMl04I8VeZjTKAHXAbwu5dd3oj3zhfrFTD3LohCuK/17/eyqGVq3sqgNDYCR4+q1hdDCvYtWqT9jrLqhIiIiIbjZPNf/gI0NanjtPNl5+2O52UWXWa5lhB1NiwAuxPDYe52DCItdNenhCA20LNHstOquFWqMpzDtWlUyClBmV8pwZNr19CWn4uCugIUNRT1mHsisw2vljXoCVIGD1d03rMI9UnWdWCCfwIemf0IA29ENOGDJhO+zvJHP/oRfvjDH471bhARDYrMlXj5/Mt2C6ySuha8f75EP3ktmWeymBrMAadkhkkp/byweYioM8PhylVg15+AiorhfQMykFBmlsydq80tGcmDYgmQzJ+PqUr++y+NWooY3xhVdVLeVG4X1JBh8PNi/HDyuhY8kcV7VZMRr53Kx7xofyxLCNSDHTLYMadSWm9pFSWWBY8tb4MzEkK8VKBEWnFJ4KM3C8IX4NbYW9X8ldMlp/Xb5XsXxPqrYI78Ln94vgQPLYmFu6uWKXm08KjKapR2XTLrRDIoA9wDVEm/wdnQ+w9BepFu2ACsWqVaCahhq+XWn8MNyZwUCbzcc8/Nt40jIiKiqUtOLL/5pl4BKwO1bY/npZVRdkWTqt/YkxAO89JErPUywKHrmE4OmV2dHHtNRon0jsS2GdtU4hPRqJFfSkl+k8uqVXAtK0PC3r2IvnQB+XX5qvLEEjyRGYopYT64XFqv1hHG5jZ4vHYM4bfNRMmiBPVc2TXZOFZ4DMuil431OyMiuikTvj0XK02IaKKRUngJmMhBqEV1kxGvnyrU51TICevNs8L7PGFtyUQL9QpFmFeYfpHFllNTszYLRAYRDqeQEOvcEGmJ1UePSBo5smC5UHYB+6/vt1ugW5Q3tKrZIhUN1r+LvrK4CfdBflUziutbem37JnNQZAZJUqgXwn3d+g3UyUJehsvH+sXqt8lg+dcyXtMHScoi6q30QhR3zTiJC/TEtrkR/T6vlPHflnCbqo66ITl0uX5dC57IQMuBkiqlBx+cUpVKRERENAzk2EOSMKTFbdcplMrmSlwst85j7TCb1YD3OnMn3p0RDdeZUbgtNfSGCVAyM2Rt/FqVJMPqEho3CgqAzz5Dw7WLqpqq3WxtlSuJWFdK69Fu0v4tuLs4IWRZArJWpcLk4qR+p2WWYbBn8Bi+ASIiTK5B8NKO64JkkXZ56KGHUF1dzUHwRDQpSM/jVy68ooZ8W9S3tuP1kwVoNGonnGWQ+11zI+3acMlARtvgiFyCPIJ69jmWE8mS/SZZ9UMZni0tjGSQekeH9SLtBGR4oe8ABnjTqDCZTThbehYH8g6owaP293WqWSfHcqp6rSSxDZRIcG56mDcibhAokYCGDCNNDU7F9MDpvT42vSQd7159V99ubO3AK8fz0NIVCFyeEITF8TcefikBmUWRizBgxcXA7t3a7/5Ag3+PPKK1eiMiIiLqTgZ3S0VJZSVQW6vNL5GvbdZB2E1tTThTekZPGJHTKplljcg1d+KNtDgg1Bf3L4q+YWtTqSTelrwNgR6BI/62iAZNThdmZaFh1xu4cHm/Sv6zaGkz4XJJPdq6WgTLzM2glHBcWDcL7e6uiPCOwBfnfXHE5vIQEU3ooEljYyOyujKd582bh5/+9KdYs2YNAgICEBMTo2aXFBUV4c9//rN6TG5uLmbOnImvfvWrePLJJ7F37158/etfxwcffIDbbx9Y/3MGTYhoPAdM/nrxr8ipybEr4X/jVCFqmrUDUJldsmNBFAw2gyIXRy7GHYl39J+lJh/lMvPhs88As33v2QGZORPYtGl4h7jTiJOF+uni06rypKVDq+qwqG5qw2eXylBcZ709wNNVBUrkEurT/5BPH4OPGkIql1jf2BsueORwYtfVXSqYYyHVLTvPFqrqFnkpCQZG+Lmr647SoqIrqcKWZFjKsHg5iTBg8vsvJzc+/RSoqrrx4yUA+OijWjCQiIiISDQ3A3v2AOnpejVJb8c7pY2lyKrOsps1J9W1x9o78VZaLDo8DHhwcQz8PFz1+/3c/FT2vRz9yFdpTSotdSUphbMfaNxrbUXjX/6EC5+/DaPJWtEuyVEXCutg7vr3khzmDUOYL85vmI1Wb3esjlutLkRE48W4CZrs379fBUm6e+yxx/CnP/0Jjz/+OK5fv64eZ/s9//AP/4BLly4hKioK3/ve99TjBopBEyIarye3X734qlpg2WbnSAujykbtwFMWVvctjIKHq3Xmggxxvzvl7v4XU9KiUNpxybD0oVSXbN4MpKYO/ntp3JBsxw8zP0RGRYbd7fInXoY1yu+atMjy97Qu3nvja/BFWkiaqiiRVm+DXcRLYPAP6X9AWVOZfptUvMilL06ODlgQ44/lidYAhrerN7688MvwcvUa1OvDZAJOndJOeNhkg/ZKAoRPPsnACRER0VQnCUcSKJHjhxb7JJTux/PXqq7ZzZcTdS3teLcd2JUcjQ4nR2ydE4FpwdZjGAmMPDDzAQZHaGIzm9H04S5cfOd3dslaZfWtyK1sUtelsmp2lC86vdxwfv0sNAf54qn5T6mqEyKi8WDcBE3GAoMmRDQeWynJvAdZZFnI7JKd6YUo75o94Wlwxn0Lo9X8CYvEgEQ8OPPB/jP8S0qAt97S2gcMhpwwnj0bWLlSC5zQpHCl8grev/Y+GtsG3p5NAhQSKEkLTkOUT9RNL+ilv/fvTv9OL9+Xw4y3zxQhv7q53++7PS1MzV6xiPOLwxfmfGFovb2lZdcrrwBN2gKuTzLw8umntRZ0RERENPUUFgIffqgdO/RzLF/bWovM6ky0drTa3Vfb3IbXXd3wUWwoOh0csCQ+AMsSrAkZUlHy9IKnVatTosmg+eQRnP39f6KtrdmapFXagNqWdr2yfXqoN0zOTri4Jg3OScnq34CLk3WdS0Q0Vhg0YdCEiMYJWWS9eelNXK68rN9m7JCASZHKyhFSWXLvgii7KoBon2g8OudRuDr1URkgM0skG+7s2T7bB/QQGgpMn65dIiN5oniSamlvwe7s3arPdl8C3QOREpyiWm8NpaLkRjLKM/DGpTfsgoSHMivR0NoOGbMihx7yVWauyPB64ezkgPsXxqgWdRYroldgQ8KGoe2EtOl6+WWtD3l/duzQ2tMRERHR1Kou+eQT4PjxHndJ8klNSw0a2hrU9eb2nokf0o4ov6YFLwf64VSkFiSJCfDAXfMiVQtS4eLoorLsQ71CR+ENEY2ewotHcelXP4Bri5Yk1dZhxrnCWn2eYmKIF4K8DCqQeOWWGfBauBxzwuYgwT8Bnq5M2COiscOgCYMmRDQOSKsiCZhcrbqq3yYHlG+fKURJnXai2N3FCfcujEKAp/VEcYhnCJ6Y+wTcXdx7PqkMZj92DDh0SGvLNRApKYDMhfLzG4Z3RRNFYX2hmnciWZGyaJcZJVK9JMGSII+Rb0n1UeZHOF7U80REdzJ35WJxnboulVbSA9zNxVpddX/a/Wqfh0SCixI4KS3tfzD8V76iDV0hIiKiyU9OgbzzDnDunN3Nxg4jLlVcQp1ROy7pi8xxuFLVjL/GheFakK+6LTbQE3fMDLM7hpEWu7NDZ4/QmyAaW3vS34LxxT/Co04LKkrL6azyRr397pwoP7g6a0l615ZNR3FyhJrpE+4djqSAJMwMmYlgz+AxfQ9ENPXUM2jCoAkRjS1ZdMnQ9+u11/Xb2k1mvHOmCEW1Wg9YWVTJ0HfJwrGtAJAh2N4Gb/snlI/qK1eA3btvnDlvISeB168Hli/nCWEakyor+TdgO8enNx0mM14/Ja3qtEDitCAvbJkTrle/GJwM+NKCLw090CPBxVdfBXJz+37M/fdrwUUiIiKa/C5c0Nrbdjt2Ty9Jtxty3V2bwRm5JuBAkwlHIgJQ626Ao6MDbkkIwrwYP7vK3cWRi7EpadOIvg2isSQzfv54+BcIe28ffCvq1W2ZZQ2oamrTk6FmhHnr/y4yFyeiKDXK7jnCvMJUYFECKJLgRUQ00hg0YdCEiMZ4KPcrF15BcUOxXYXJu+eKUVijZeIYXJxwz/xIhHhb+xv7u/njiXlP9DxglCz5jz8GrlsDMDckc0qk7VB8/DC8I6KhL6YO5h3E8cLj/Z6EqG9px19O5Ks2XmJ5QhAWxwfo9/u5+eHe1HsR6RM5tB1pbwf+7/+Ahoa+Z5t8+csMLhIREU129fXAr38NtLbaJXpIW1PbmXBymqQozB/nw/yR1+mI6+ZOFLV0oNHYoT/G38NVVZeE+NjPK5keOF1VyvY7l5BoEpD17vMnfosZ+y8iqKBKJQmeL6xTX0WQl6vqqCABFKk+yV4wDQWzYno8j1SgxPrFYn74fBVAGdJMQyKiAWDQhEETIhojda11eOn8S2oYtkVLmwnvnLXOMJEy5XvmRyHUZoElJ4WlwkS+6mSI9d69QHr6wOeWiKgo4L77AH4G0jhh7jSrAaoyPFWuy6HHkYIjdrN+rlc1qX8n6NRiF9vnRane4BayeFo/bT2WRS0b2gwWaWsnwce+PPggkJw8+OclIiKiiUGOp196CcjJsbmpExkVGXbH7hUuznjO2xvpHr20yu2SGu6D1ckhevshi6VRS7Fh2gYGTGjK2H99Pw7k7EPSsWuIuFaCmuY2NRjelhy5e7k5w8/DFeVLElG7NLHP43lpVb19xnbVxouIaLgxaMKgCRGNMhkQebnissqqt+2DLNlob6cX6mXKBmdHdTI4zNcaMJHKEplh4u/ur91gMmlDKQ8cGPjcEuHkpLXiWrUKcHYexndHNPykDcbv039vd5LiWE6Vuljm/dy3MBr+nq523yc9kFfGrlQD7yUjtKm9SWWn+br5qvt6nQVkqTZ59lktGNmbyEjgqadYbUJERDRZyfH1Rx/Z3ZRdnY2C+gJ13ezkiCvJkfjv5k7Ud2iZ8rYkQBLibVCzGpJC7Vvperp44q4ZdyEpMGmE3wTR+CKVWn8880cU1xch7lwe4s5eR3FtCwpqmvvM+7swPQI1y5OQHO6rqlC6k2SpW2NvxcqYlQxAEtGwYtCEQRMiGgVy0lYy5TPKM5Bbm6sy6G3VNrdhZ3oR6lvb1baHqzPunh9pN8PE29VbteQKcO9qRdTSAvz1r0B+/uB2RuYx3HYb4N8VeCGaACqaKlTgpM2kBRXlkGTX2WJVdSJcnByxLiUEM8IG9vfc3dldVaNIaX+v2WtHjmhzgfryyCNAYuIQ3w0RERGNW5WVwG9+A3RY22uVNJTgatVVffvsrSn4dUUryhuMevuthBAvFSiRi5zc7e34IsE/AdtTtsPL1WuU3gzR+Dum/+3p36rWvJGXCpF0Igsmc6dqwVvb0o665ja0dgtE1rq5IiPED5WJoQhLCEFymLea+Wkr3Ctc/duS6hMiouHAoAmDJkQ0QuQjM78uHyeLT6rKElOnNoOhu4oGI94+U4TmNm1h5uPugrvnRaqSZAtZWElLLn3AtdkMvPyyXcuAGwoNBTZu5OwSmrAk6PjGpTf0bZlr8vqpAlR3VWeJtAhfrE4OVkGUgZDhqxsTN/bsh9zWplWbNGuzhXqIjgaefJLVJkRERJOJVHE//zxQVKTfJG1Dz5WeQ6f0BZURgvEh+F8/P2RVaHNNfNxc8MDiaJX01BcnByesm7Zu6K1DiSaRs6Vn8c6Vd9T1iKvFmH70mt39coxf29yOqiYjGlqtwUtR7O2OzIhABK1ORkKkX49/Z2vj12JZ9DLOOiGim8agCYMmRDQCrYTOl51XwZLypvI+HydBksyyRhzJroSxK5sm0NMV2+dHwctgXXT5GnzxhTlfQKBHoPWb9+wBDh0a+KD3tWuBefMARx480sT2cdbHOFZ4TN9u6zBj39VyXC6p128L8HTF5lnhCLSp1BLmzk5V+i/DJW2lBKXg7pS74eLUreRf/o3Jv7W+fOELwLRpN/2eiIiIaJzYv1+72LTVTS9JV1nxwuhhwLOz4nG0qF5vw3X/wugexxwWcuI2LTgNt8TcglCv0FF6E0TjnwQiP835VLXQDcssQfKRq3Do5Yyjsd2EyqY2VDYY0dJuTUJsdHXGybWzMHdhLNxd7atOZgTNwI7UHXB2ZBtqIho6Bk0YNCGiYdLU1qTmlJwpPaO3EOpOBr1nlTfiWnkDCrv1bpVh73fNjbQ76JPKkkdnP6pmMOiuXAFefXVgc0uWLAFuvRVws85FIZrovZBfOv8Srtdet7v9UnG9Cp60m7QApLOTA6YFealMteY2uXSohZajgwNmRfri1qRgONoET2J8Y/DgzAft55zInCCpNpFWeL0JCNDa3QUHA0FB2ldD7ydNiIiIaJy7dk07xpaKbjlfYKzHhbILaDdr7XPFG3On4ZXKVnVdCka2zYlEXJCnXXW4HFNIqyAZTh3hHQEPF48xeDNE41+7qV21vZN5QbUnDiJm3+leAycWcjxfWNOiV5lL265Xl87ArbPCMS3YvuWdBCslcMLKLiIaKgZNGDQhomEgFSV/PvdnlSnTndncidzKJlwoqkNetQRKen6UxgV6YtOscJWtZiGLrIdnPQxPV0/7Hsu///2Nh74nJ2tzSwJtqlOIJgkJSr6e8TqyqrPsbpcF1IcXSlDZeIN/HwDig7R/c7ZtvCRI+cjsR+DnZlPqf+AAsG/fwHZMKrmSkoDNmwEeVxAREU0cGRnAW2/pAZPK5kpcqrhkN4fwTHQw/sPBVR3bi9XJIZgb7WdXHf6lBV/ivBKiIZA1ctWpg2h+9SVUN1Wqtnh9Pq6pTa2vZRbKhVB/fJAchdRwH6xKDobB2ZqAuDx6OW5LuG0U3wURTSYMmjBoQkQ3qa61Dn9I/wMa2hrsbm8ydiCjuA4XCuvQYLTvxSpkQOT0UG8khXoh2MtglwUT5xenst4Nzgb7GQsSMKmo6Htn5LNs2zYgIWGY3h3R+CSHJJ8XfI69uXvtTmh0mMw4mFmB84V1+m1SUeLh4qR6jVc2GfWTHWE+btg6N8KuB7m3qzcenfOodYhkayvws5/dOFBpy9cXeOwxrRKFiIiIxuXxu7TdKqgvQMDVAiQdyoCXi6cKeEgSVGZ1pt3ji11c8E9hwWjqOiMyJ8oPa2ZYB067Ornii/O+yBZcRDcrMxPYtQvG2iqVmCiX7utsS4venMpGNfvk7ZQYXA32RbivO+6ZHwlnm6QomV24NGrpKL8JIpoMGDRh0ISIbkJrRyueP/O83ewSyXI/kVut2nDJDAVb3m4SKPFSwZIQb/tAiUVyYLIqJbabryDP8+abWhZcX5ydtcHUERHD9O6Ixr/8uny8dekt1BmtQRJL0FJmBXm4OsHg7Kj/WyuobsZ754vVQkv4ebhi+9xI+HpY/735GHzw9IKnrZmie/cCBw8ObsfkuEICJ6z2IiIiGlcyyjPw7tV3YTQZex1C3V1lcxt+EBmKIk+thWdMgIdqqWtp8+kABzw460FMD5w+KvtPNOlJ0tLZs8D580BxsZotVNJQgsL6QnTCur6WU5QVDUZcrTfid/MS0WBwQWKwFzbNDlcteS3/Pu9Nuxepwalj+IaIaCJi0IRBEyK6idkKr1x4BTk1Ofpt5fWteON0oT5XQXEA4gM9MTvKD3GBHn32VZVBdTIkcmXMSjg52g+zw5EjwO7d/e+QVJjIsHeiKaalvQW7ru7ClcorA3q8LK7eOVukAitCAivb5kaquUIWsrC6L+0+baO5WZttItVeg+HtrQVOZN4JERERjblTxafwwbUP1InXqIwCJJ7M7vfxpXUteNHHG0ejQ/SAyZ2zI+xa6jKTnWgESZeFCxdUEKWhogiXKy+rIIotOab/sMWMV9Ji1bAhaZu3anqwvu6WdbbMCY31ix2jN0FEExGDJgyaENEQyMfhO1fewbmyc/pt9S3tePVkgRpQJ9xdnJAW6auGTksrrr4EugciLSQN88Pn289SsCgoAF54Qe+x3KsFC4AtW27yXRFN7H+TJ4pOYE/uHjXz5EbqW9vxzpkifZCkzDa5d0EUQmwCJ/en3Y+U4BRt49w54O23B79jXl5a4ESGxBMREdGYHScczj+sjhN8KuoRe/Y6Aouq1XF7h6lTJVDYtvSRx+dXN+NdL0/smRauTsSmhPtgfUoonLoqTMTCiIXYnLSZw6aJRlptLfDcczC3tiC3Jle11rO7u7kNv/L0xslIrcp7ZVIwFsT66/e7O7vjyXlPItiTx+RENDAMmjBoQkRDsC93Hw7kHdC3W9tNeP1UgX4CNtzXDXfPj7IbMm3L381fBUpmhsxEqGdo3wstKU3+zW+0g8S+REYCTzyhtecimuIk8+xMyRnUtNao4IlnV39yN2c3HMw7aNfGS/7dvnuuGMW1LWo7yMuABxfH6CdDZL7JVxd/VX2vIu3xjh4Fioq0lnkD5empBU5CrL3PiYiIaHTIaYzPcj7DxZMfIPZ8HgKKa9Tt8vdfAiMWUj3i6arNQGtpN+H9QF8cjA1VAZNFcQFYnhBod8w+I2gG7k29t2eFOBGNDGnXtXOnPpcooyLDLlmqpKkN348MRYWX1krvjpnhSA7z1u+XNcEjsx9BmFfYGOw8EU00DJowaEJEgyQnZKUVkEWH2awy1gtrtBOvfu4uuH9RDNxd7RdQUhacFpymMtKifKJunJEmH7lvvAFcutT/ydinn9YGTxNRv+qN9Xjl/CsoayqzGxwvFWIyi0gsTwjC4njrAPcF4QuwJblbFVdHB1BVpbULqKwErl4FSkr6f3EPD+ALXwDCuEgjIiIaLeZOMz499CJaPtwFv1ItCUlOaxTUtOhJE705EBeKozEhEi/B6uQQNfjdllSI3zn9Tjg69J4gRUQjQNbHb70FXLyoNhvbGtXa3NRp0h9ysQP4QUwYTI6OKhFK5g9FB3jo90sy1IMzH2SrLiIa1rgBjwaIaMorqCvAe9fes89cu1SmB0ykJddd8yLtAiZSVbJh2gY8s+wZbE/Zjmjf6IGV8Ken9x8wkefYsYMBE6IBkgHvT8x7AnF+cfpt0opjQ6pUe2nbx3Or9IoxcbrkNK7XXrd/IqnqCg0FZs4EVq/WKr3irM/ZK5mL8uKLNw6uEBER0bDNH/xs50/g+sKf7QImuZVNdgGTAE9XeLs565WmnyWEq4CJbG+eFdEjYLI6bjW2TN/CgAnRaJMD9s2b9fWvVI5I5wYZ9m6R5tSJL1fWqACLydyJ984Xo7SuVb+/taMVL51/Cdeqro3JWyCiyYlHBEQ0pXWYO9QcE8lYsziaXYUrpQ3quiysts6NgJ+Hq35/jG+Mau+zImYFPFysGS43VF4OfPRR/49ZuxaIjx/COyGauiS7TMrykwKS9NtkAPz8GK3nsSyu9lwuUydVLN69+i7aTe19P6mrK/Dww8C0af2/eEuLFjgpLh6Gd0JERER9kb/jB9/9BVze/0BaZqjbzJ2dyCpvRHmDVl0q4gI9MT3UG2kRvlgYFwCXexYh7I7ZuCUxSLXsTAzx0h8rQZKtyVtV0IQzTIjGiLs7sH27FkCRBEV3fyQHJet3y7/NDcZW3FXfqLbbOsx4K70Q+VXNduv6Vy++ivNl58fgDRDRZMSgCRFNaTIPoaqlSt++XFKPE9ertQ0HrWdquK/WP1UEeQSp0l9pyzUo7e3Am29qLYD6Iidnb7ll8G+CiNS/yW0ztllnlQBYOi0Qvu4u6npRbQsuFFlnn1S3VNvNMOqViwvw4INAQkL/j5M5RX/+szYXhYiIiEbEpT2vArvegUNXDoQkRVwrbUCVTTVpYrAXwny1Y4EOFydcXpWKhjlaoEQCKDLrzMLF0QUPzHxAteUiojEmFd7Ll+ubMqMk3i/eLnDySH09VrZrAdJ2kxnvnCtCZpmW7CgkEXLn5Z04WnDULlmKiGgoGDQhoimrrLEMh/MP69uNxg7su1qub69KCrbLRJPh0w/PehjuLtYgyoDt3q1VmvQ3x8Qmu4aIBk/K+W9LuE3fdnFyxLqUUH37cFYlGlutgcsjBUdw4PoBtLS33DhwkmStYuk3cFJQcJPvgoiIiLorO/IpKl/5vR4wkQqTq6UNqG3RqkblEDo51BtB3gaYnRxRmBqFk3ctRnl8SJ/HDI/PfRzTA6eP5tsgov6sWWM3K1A6PER4R+jbzg4O+HplDRYbtFOZZnMnPrhYgguF1sQo8Un2J/jrxb+iwWgNqBARDRaDJkQ0JUkWirTnsW3Ltf9KuSr1FSlhPpjX1drHkon20KyHVKnwoEiGy9GjwMmT/T/urrsAb+9Bvgsi6m5e2Dy7rLSYAA+khmsD3uTf994r5Xrmmfz733d9H3527Gf4JOsTNVS+VzLv5P77gek3OLFiNAIvvQTk5w/jOyIiIpramtOPI+f5n6DT5rg9v7oZ9a3tejtdOXb38XVH/sxoHNuxFLlLkrFmzjasi1+HtOA0BLoHqra68nVZ1DJ8ddFXEekTOYbvioh6Pea+916tXVdXdYm035VuDxYuJjP+oaQCCwK6Ehk7gT1XynAit9quukTmm/z65K+RUZ4x+u+DiCYFh85JVrNWX18PX19f1NXVwcdHO0lCRNTdscJj+DjrY31beiG/f75YH/z+hWVx+uB3GUInpfu2fVUHpKkJ2LULuHaDgXTLlgG33z6Ed0FEvZHWW7JIkt7GorXdhD8fzUNzm7a9aVa46nXenZODE+aGzcXa+LXwdPXs+cQmE/DGG8CVK/3vgMxDeeQRICZmmN4RERHR1GS+cB7nf/0D1LbU6LdVNhrVsbulwkSSI+rmxyNvdiza3Vzg6uSq2unG+3NOINGElJurJSKZzXqi05XKKyhvsnZuqAv2wS8TInHSpspkdpQfbk0KgrOTfX74rJBZ2JS0aWgdI4gIUzVuwEoTIppyaltrsTd3r74tJ1T3XbFpy5UcrAdMxJr4NYMPmOTkAL/5zY0DJuHhwLp1g3tuIupXgHsA1sSt0bfdXJywOjlY3/4ko1QNhq9ttvZAF6ZOE06XnMYvT/wSZ0vP9uyF7OSkZb+lpva/A21twMsvs1UXERHRzbh4Edf/+BO7gIkkQORUNNkNfa9YkYysxYkqYOLu7I7H5jzGgAnRRBYfD2zapG86OjgiJSgFkd7W6jDfinp8saIatyQE6redL6zFX07ko6y+1e7pLpRfUAlVhfWFo/QGiGgyYNCEiKYUOQn6/rX30Wayniz9PKsSTV0Z6LLwkn7ItgPoVkSvGPgLSCb6p59qmTENDTfORt+xQytDJqJhtSx6GcK9wvXtpBAvJAR76YNjZSj8i0ev48MLJSjvtrBq6WjBO1fewUvnX1JVKz0CJ/fcA6SlDSxwUsjFGRER0aBlZKDi5d8ivzZPv6nDbMa1skY1z0TIUPfGVTOQP0ur7JT2W0/Me4Jtt4gmg4ULgSVL9E1p1ZUYkIg4vzj9trDsMmxtM2JDSqhq0yeqm9rw2skCHMupUsf8Fg1tDXjx7IuoaKoY5TdCRBMVgyZENKVcLL+IrOosfbuwplmdPLUMjV6bEqIOyCxtubYmb4WTo7Xq5IbzDGQQ9Oefa7NMbmTzZiDQmhlDRMNHMtLk3698FfLveuPMMCyI9Vf/1oX8M71W1qAy0t4+U4TyBvvgSU5NDp47+ZwaGG87/0gPnMyaNbAZJ0VFI/AOiYiIJifThfPI/eP/4lLpRbvEp5zyJlUhLjxcndC5IQ0Fc+L04/YdqTsQ4tn74HcimoCkhXVCgr4px/MSNJE5JxaJxzOx1OCIhxbHINjboG6TwKoETV4/VaCCKBbt5na8d+29ntXkRES9YNCEiKaMssYyfJD5gb7dYTJjz2VrW67lCYHwcXOxy1SP8I4Y2JNLv9WdO4E8azZcnyQos349MGfOIN8BEQ1GuHe4XaWYBEtWJgXji7fEY3lCkJpfZJFX1YS/nijA4axK9dlgu7janb0bf0z/I+parT2T4egIbN9+43/HlsBJsTYziYiIiPpWceoA0n/5L8irzkWnTHjuUlLXiuqutpqSUe6wYSaK5llbcK2btg7T/KeNyT4T0QiR421pjRtkHQQvpJpM2nVJsNTR3Im0/RkIdXHEA4tisCQ+QE+ClDZdrxzPU8f5Fvl1+Wo+ChHRjTBoQkRTQmVzJf587s9o7bBmkp+4Xo2arsVXmI8b5kT76ff5uflhddzqgb/Anj3A1as3fpy3N/Doo8AttwzyHRDRUMhMohlBM+xukxkni+MDVPBkTXKIHiyVrLNT16vx8rE8FFQ3231PUUMRnj/zvH27LlnIbdt248BJa6tWhZaerrXwIyIiIjsd5g4c//RPyPj1D9FktG9xW9VoRL7N3+X2NSmoWpKob8vf+UG10yWiicPNDXjoIcDdfoh7qFcoZofOhquTK9waW5Fy6AqcHIBlCUG4f2E0/D1c1eOkRddnl8vtkqI+zfkUJjOPyYmofw6dk6wurb6+Hr6+vqirq4OPj89Y7w4RjQM1LTXqZKf0MbWQE6LSjkdKdx0dHPDQkhjVF9ni0dmPIiHAWgrcr7NngXfeufHjkpO1E6weHkN6H0Q0NHKoIwPeD+YdRL2xvsf9spg6eb1aXWx7H6dF+KjKFAmyWPgYfNSA2UCPQPtKM/kMOH/+xjvj7w+sWgXMnq0FXYiIiKbw3+fihmKcKzuHolP7kLj7lJyg0O9vN5lxvbIJVTbtdSRY4rnZmqwQ6B6ILy34Etyc3UZ9/4loFGVlAa+80qMNdrupHZnVmShvKkfO/Hjkz47tut2MXWeLUFjTorZvSQzCwrgA/fvuSLwDS6KsM1OIaGqoH0TcgEETIprUpJ3OC2dfQG1rrX5bcW2LCpjIgZSQjHNp1WMxJ3QOtqdsH9gL5OcDL77Yf/a4DHq/7TZg0SKtNRcRjQnJKLtQfgGH8w+r6rPuqpuM+OxSOYrrtMWV8HB1xvZ5kXqPZOHt6o3H5j6GII+gni36Llr7r/dL5hmtXg3MnMnPBSIimlIa2xpxtvQszpWeQ0VzBQxNRix65wScu+aVWKpLciub0GGTzJA/Jw5Bd89XCU/CxdEFT81/SmWcE9EUsG8fcOBAr3dJ0ORadSZOrU9Fbbi/uq2iwYhXTuRBOv25OjviieXxcHfVkqHcnd3xjaXfYMCVaIqpZ9CEQRMi0hZkL5x5AVUtVfpt5fWteDO9EG0dWsAkPsgTd86OUL2RhaeLJ766+KvwcBlANUhtLfD73wNN1h6pPXh5ae24QrmYIxov5NDnatVVFTwprC/scd+Fojo128TyOSGVJnfPi0SIj3VR5eXqhcfnPt4zcPLWW0BGxsB3JikJ2LEDMFiDMkRERJPVscJj2Ju7F20ma/VI6oFLCMnV5gxKUpMES2yHNzs7OqDllunoWJsKB5sqzXtS7sGs0Fmj/A6IaMzIsfbLLwM5Ob3ebeww4kJTDj5bF49WL+24/dNLpcgo1irN50b7YXVyiP54aeu3IWHDKO08EU20uAH7QhDRpCQteGSGiW3ApLLRiJ1nivQToTEBHtg8K1wPmIiNiRsHFjCR4c5/+Uv/AROpMHnwQQZMiMYZGQ4p/c+/OO+LuDf1XhUAsb1vdpQfvrA0DuG+2mKrtd2Et84UqWGStkHZP539EyqaKqxPLCdy7rkHSE0d+M5kZgJvvKEtAomIiCaxE0Un8HHWx3YBE7+SGgTnlKG+pR3ZFY04W1BrFzCRuQRed8yGaV2aXcBETnYyYEI0xViOtfs40WlwNmC2VwIWfXge3pVaa26ZceLspH12nC+sQ43N54sEcaWVNxFRbxg0IaJJRzLHf3f6d6pE10IGvu9ML1InP0WEnzu2zInQD6DEwoiFA1t8SYGetOEptz5/r+66C4iMvIl3QkQjSQIkaSFp+Oqir2J++Hy7+7zcpC1XFCJ8taGTxnYTdqYXorSuZ+DE9rNGX8zNmjW4Hs379w/DOyIiIhqfqpqr8EnWJ3a31TW0wvn9sypQcqmkXrXSscwWk+qSxBAvGDakonRxgt7K0gEOWBu/FuunrR+T90FEY8zTU6vS7mM2oAyGT3QNxdyPzyAorwJeBmcsiNHadck8U6kmtzB1mrAnd8+o7ToRTSwMmhDRpHK+7Lw6iSknMy3qWtqx83Qhmts61Haojxu2zY2Ai03AZFbILGxK2jSwFzl8GLh6tf/HyKBnmVVAROOeu4s7tiZvVQPeA9ytAyKl9/Fd8yIR6dcVOOkwY+eZQpTYzDxpam9SnzlljWXWJ3RyAu6+W7sEWJ+vXwcPAleuDOO7IiIiGh+k9eVHWR+pE5QWhzMrcenN02gsqFZ/Xy2kAjzE26CqPs2zonF9/jQ9YBLsEaxmmNwae6tKfCCiKSomBtjQd1utKJ8oeHS6IG1/BqIvFmBBjJ+aUyikoq2oazi8uFh+sUe7XiIiwaAJEU0K5k4zPsv5DDsv70SHWQuOCGmn88apAjQYtduCvAxqqLPBWRsAJ1KCUtTgd0eHAXwk5uYCe/f2/xhpzSMDnoloQon3j8dXFn4F0wOn2wVOts21Bk6kvd/bZ4pQXGtdbDW3N+PFcy+itLHU+mRyMmf2bOCrXwW2bgX8/G68A2+/DVT2HFBPREQ0kV2pvIKs6ix9O7+qGVevlWFFvrVS09fdRVWWzI/xx7RgLzi5uSBrkVZhIsfoK2NW4ssLv4xIH1ZxExGApUuBlJRe73JydMI0/2lw6AQSTmVj5sks3BKvVZuIg5kVKphrsTt7t902EZFg0ISIJryW9ha8evFVNdTZ1rWyBrxxugCNXQET6Yl89/xINdTZIjEgEfek3jOwgElDA/Dmm1p7rr5ERADbt+sZcUQ0sbg4ueC+tPuQHJjco+Ikyt9DD5y8c7aXwMnZboETS9XJ/PnA174G3Hmn1lKgv1lJr76qfSUiIpoEZH6JzDGx6DCbse9qOdbmlMDVZFbzwyRQkhLuo5KbLLMGc+fFoc3DgBDPEFVdsm7aOjg7apniRERqvd1PO2z57LDMLYy4VoId1woR6OGqJ1ZeLdNmnoj8unwcLTw6SjtORBMFgyZENGFJNoi04/rliV/iWtU1u9uPZlfiwwsl6DBpAQ5ZkO1YEKWX5Yp4v3jcn3b/wBZgJpM2rLm/we/e3sADDwAuLjf5zohoLMlnggROZFi8hbTzk7Z+MQEedhUnRTaBk5aOFhU4KWko6fmkEjxZuBB46CHtel+k0uSdd/oPzhIREU0QB/MOos5Yp2+n59XCp6gaKRV1ataA/F2V5ARbTX6eqJmVhHXx6/D0gqcR4R0xBntOROOewQA89hiQbE12spAWfpIgaRFSUIXH0a5vf55VhQ6TtTWgdK3Iq80bhZ0moomCQRMimpAqmyvx53N/Vu24ZKaARbvJjA/Ol+B4brV+W2q4D+5ZEAVPgzU4Eu0TjQdnPaiyygdkzx4gP7/v+2UQ3b33Aj4+Q3xHRDSeSFn/van3qvZ9toGTrXOsgRP5vHnnTBEKa5rtAyfnXkRxQ3HvTyzZcJs39//ily9rs5OIiIgm+PH60QJr9nZ9azvOZpXjtiztb2R8kKfdbBIZ8h7kEYQZX3gGz9zyT1gZu5LVJUTUP1dX4P77gWXLetzl5+aHQPdAfXvZ9TIkexvU9YbWduy7WmHX7vvNS2/azUYloqmNQRMimlBkXsm+3H147uRzyK3NtbuvuqkNr50sQFaFdqAja7CVScHYkBoKZwlq2AyGe3j2w3B10spzb0hOYB450v9jZBCdDKQjokkVONmRugOpwan6bc5dgZPYQE9r4ORsMQqqrYGT1o5WFdTtM3Ai7bqk6qQ/MjspJ2eY3gkREdHoksrvDzM/1Ie/O3aYUPPxRTx17AoCW4wI83GzS2iSIe/Lo5dj5vqHkDB/nfobTEQ0ILLWv/12LTGpW5vshIAEFZAVzm0deLy1WR3Pi4ziOnWxaGhrwFuX3lIBFCIiBk2IaMKoa63D70//HgfyDugLMCFltUeyK/Hy8TxUNmqzAKTMf+ucSCyI9bfLYJsVMguPzXkMbs5uA3vR6mqtVU5/ZACdDKIjoklHTtrck3IP0oLT9NtkobVldjjiugIn8hm061xRj8DJS+de6jnjxGLjRiAqqu8XlvZcMkOpvn4Y3w0REdHoyKjIQE5NDhxMZkRcKULSS4eQnJ4Dj3aTqtyMCnDXHyvVJEmBSXDx8NISkYiIhmLRIq0VrlSfdPFw8UC4d7i+PeN6Oe6K9Na3914pR0WDdZ6gJGbuv75/FHeaiMYrBk2IaEIwmU3468W/oqypzO7261VNeOlYHk7kVsNs1mYA+Hm44oFF0ark35b0Rb475e6Bt+RqbARefrn/ocwBAcC2bRz8TjTZAyep96igq23g5M454frnjMxPkuHw+dX2rbqk4qSs0f5zS3sCZ+C++/ofDN/crM1SkplKREREE0BzezN2Z+/GO1fegVdVAxa/fQKJR66htKBGf4y0ubStApc5g6oCfM0abUYgEdFQJSVpx9g25DPG4KS15XLo7MTGwgrMivRV2yZzJz44Xwxjh8luFpPtzFQimpoYNCGiCeFU8Sm7jO1GY4ca9C7zBOpatIFujo4OWBQXgIeXxCDAUzsoErIIe2DmA6ovsm3VSb8kUPLKK1qlSV8sJz3dBli1QkQTlqODI7anbMfs0Nn6bXLCZ/PscEwL8tIXXe92qziRk0cSOKlosvZM1skMJPkMsTlx1ENBAfDZZ8P8boiIiIaXVFhKC91njz2LIwVH4FZRg3kfnYF7YyuK61pg7NDa3Xi7OSPIy5oF7uXqpQ16Dw0FFi8ew3dARJNGYqJ26SJJk9Ju19KmKyi/Ett8XBDira3ja1va8emlMtVW0OLty28jqzprDHaeiMYLBk2IaNxrN7XjcL51KHJzWwf+ejwf18oa9Nsi/dzx8OIYrEgMUiX/tsPfvjjvi5gRNGPgL9jRAbz6KlBS0v/j7rwTCAsb5LshookcOLlrxl2YEzqnR+AkIdhLrzjZda4YRTUt+mOa2pvUcHgZiNtDbCxw2239v/DRo8ClS8P4ToiIiIaHnGQ8XXwaPz/2c9VCt83UBmdjO9L2ZcCpw4zG1g4U1Vr/JnYf/j49cDocXFyArVv7TyIgIhoMOb62+azxdfNV800skk/nYPOsMBictc+drPJGnCmotasYf/n8y/jg2gfqc42Iph4elRDRuJdekq6Gslmcul6DprYOdd3NxQm3pYZhx4IoBHpZq0tEgn8CvjT/Swj1Ch34i5nNwM6dQK79kPleBznPnTvId0JEkyFwsm3GNswNs/77d3J0wKZZUnFinXEirbqKbU4SNbY14sWzL6KkoZdg7JIlQKp12Hyvdu0CqqqG8Z0QERHdPOn9/96199QJRqWzEymHrgDVjSrB6WJxnRrTJcJ93eDhah3+Hu4VDp+EVOCLXwQiI8foHRDRpBQSAixYYHdTpHckgj2C1XXv6kZML67G7WnWJMjDmZV2QV5xsvgkfnPqNyioKxilHSei8YJBEyKaUFUmTcYOnC+q1U9USiuu1Agfu4w1Gfa2fcZ2PDL7EXi69jMvoDtZ0X300Y0zuqOjgTvuGMK7IaJJEzhJ3oZ5YfPsAyc2w+HbuwInJXXWhZcEf/+Q/gfVtsS2/F9lwclspMDA/lsGvv460K61IyQiIhpr12uvq+oSW4Enc1CTnodzhXWobrJmZ3u4OiHK30PfNgb6I+Yr39YCJuHWIc1ERMNm9Wq7ofByziA5KBnuzu5qe1p6LhL93bEwLkBtmzs7sTO9EGfya+yO1atbqvH8meexJ2cPzJ1aq0EimvwYNCGice10yWm7KpPTeTWq/Y2YHekHbzf7oe4Lwhfga4u/hjlhcwY+v8TiwAHg5Mn+HxMcDDz0ECBtBIhoypLPl63JW+0qTqRV152zw9WAW9HWYcbbZ4pQWteqP8bUaVIDcl86/xIajNbPNhgM2nyT/j5bysqAjz8eoXdEREQ0uMSm966+p2/LCcasz7PQ9ME5VDYa9dulbW5coAdmRviqBINmH3dcWpWKoGf+Be5pc+za5xARDSsvL2DlSrubnB2dkRaSppKgDM1GRF8swPJpgYjuCurKjMID1yqwM70I9a3WZKVOdOJQ/iG8nvE6AydEU8SoBE1+9atfIS4uDm5ubliyZAlOnDjR52P/9Kc/qRMRthf5PiKaem5UZbIwzl+/z9PFE0/OexJbkrfA3UXLHBmUq1eB/fv7f4yvL/Doo4D7EJ6fiCZt4MRuxomTI7bOidAXXhI42Xmm0G4Gk8ipycFzp57Dlcor1htlCK7MSurP6dNAaekwvxMiIqLBOZh3EFUt1raR2ZnlmLb3ola5rU5MOqgkgrnRfgjzdYejowNqwvxwctsieM9fhvkR9m1ziIhGxNKl2jrehperl5qnJGIv5MOnphHb5kaozyuLgppmvHwsD5dL6u2qTuTY/VTxqVF8A0Q0aYMmr732Gp555hn84Ac/QHp6OubMmYPbb78d5eXlfX6Pj48PSkpK9EteXt5I7yYRjdMqE5kD0GuVSZQfPA3Wnsi3xNyCGN+Yob1Qayvw/vv9P8bDQwuY+PgM7TWIaFLPOJkVMss+cDI3ApF+7nrg5MMLJdidUaquWzS3N+PVi6/itYuvoaKpQrtxzpwe/Zd72Lt3hN4NERHRjZU1luHzgs/17ebmNoS8dwYe7Sa1LX//5sb4IcLPXSU6CaOHq6owmR6Sgh2pOwZfEU5ENBRSxb1uXY+bw7zC1FwlR5MZafsy4NZhwurkENw9PwpeXecZ5Lj9k4xSfHC+RLXetQ0ad5i1GatENHmNeNDkpz/9Kb70pS/hiSeeQGpqKn7zm9/Aw8MDzz//fJ/fIwdQYWFh+iVUMi+JaEq5YZVJrL9dpsjCiIVDf7FPPwUa7LPAexxoSUuuoKChvwYRTerAyfaU7UgLTrNrR7JtbiSmh3rrt10qqcdfjufZtesSlysv49cnf423L7+NmpYabWZSf/3dr10DCgtH5s0QERH1Q9rSvHv1Xbv2NMZ30hFS16SuB3sZEB3goVpWWnQ6OKBs0yrsWPQYHpj5wNCqwomIhmrWLCAyssfNUm0S6hkK98ZWpB68DAdzp6qQe2RpLFLCrcmSWRWN+DyrUt+WxM5zpedGbfeJaBIGTdra2nD69GmsX7/e+oKOjmr76NGjfX5fY2MjYmNjER0djW3btiEjI6PPxxqNRtTX19tdiGjqVZm4OA1xxkhurtbupi+y4Lv/fiAqamjPT0RTJnByd8rdSAlK0W9zdXbEHTPDcFtqmAqiiNqWdrx+qgAnr1erYZO2fZLPlZ3DL078Au/nfIyGrRsBJ6e+X3DPnpF9Q0RERL04WXQSRQ1F+nbrqesIv1JkbckVaB32LjxcPBBz35fw6ObvqgHMrDAholEnnzu3397LzQ6YETRDBU+CimsRe+66ut3NxQm3p4WpWYXOTtpn1sXierS0adV04kjBEc42IZrkRjRoUllZCZPJ1KNSRLZL++jHnZycrKpQdu3ahZdffhlmsxnLly9HYR8ZlT/60Y/g6+urXyTQQkSTt8pEDlq6V5nI8PehvVA78J51gGWvNm8GEhOH9vxENKU4OTqpliO2gRNZjKVG+ODhJTEI9dFmtEmwRLLVXj2Rj+uVTXZ9kmXxJX2Sf5X9V+QnBvcf8JULERHRKKlrrcOeXGvQ3qm6AX4fW7Ot44I89SQBIa1zF97+BBI2PshgCRGNrZgYYPnyHjfLZ1OEdwQWRSzC7Cs1CMy3VpQkhnhjZoQ2D6XDZMa5Qu2chJCZTlcrr47SzhPRpB0EPxjLli3DF77wBcydOxerVq3Czp07ERwcjN/+9re9Pv473/kO6urq9EtBQcGo7zMRDS85YWhbZXLKtsokchirTPbtA6qr+75/2jRg/vyhPTcRTdnAyb1p92J13Go4wHqCyM/DFfctjMbiuABYbi5vMOKds0V443Qhimpa7J6ntaMVL/vlo6TVunDrtdrEJuBCREQ0UiTA/0HmB2gztaltmQPg/uZJafqvtv3cXRDo6WqX2BSXtAiOW7dpWd5ERGNNuuDEx/d6l7QNnBc2D1sudcCr3qjfPi/GXw/6niuotZttIometslPRDS5jGjQJCgoCE5OTigrK7O7XbZlVslAuLi4YN68ecjKyur1foPBoAbH216IaOJqMDaowWp2VSaF1iqTBcNVZVJUBPTTJlDNMdmyhYs8IhpSqy4Jmjw570n4ufnpt8s8puWJQdgxP0r1fLcorm3BG6cL8PaZIpTVW+edtLm74rOgehQ3FPf+QlKFm5k5sm+GiIgIQEZFBq5VXdO3/fdmoKOwRl13dHBAfJCnXTXJ9PCZcHzgQcDVGkghIhpT0np7xw6gj/OG8hkW5xaGu84b4dSuteLydXfB9FAvdb2l3YRLxdaRANKqMK8ub5R2nogmVdDE1dUVCxYswB6bvtvSbku2paJkIKS914ULFxDe30BUIpoUJEvjvWvvoaXDmnEtff9N5mGuMjGZgHff7T9De906wN8aoCEiGqxo32j8zcK/wezQ2Xa3R/l74KElMdg0Kxz+HtaTSXlVTfjriXyk52knoUT+zGhcqs9GUb21f7ydvXtZbUJERCOqpb0FH2V+pG8HZpXAfCxb344OcIfBxTqHK8onCj73PiJZlKO+r0RE/fL01GaW9jM7MK7NA7MPXoVDV1XJwtgAu1mr5q7zE+Lz/M9HeIeJaNK253rmmWfw+9//Hi+++CIuX76Mr3zlK2hqasITTzyh7pdWXNJiy+Lf//3fsXv3buTk5CA9PR2PPPII8vLy8NRTT430rhLRGJMhyLYZbJJxfa6wbvirTA4flpK3vu+Xoe+LFw/tuYmIbLg5u6kB8XIxOBnsMtmmh3rj0aWx2JAaCm83awD4YGaFChiLdjcXFKZFI7M6E4X1vcx3kxlxly6NzpshIqIp6dOcT9HU3qSuu9c1w+uj8yrjWkhCU1jXzC7L373YdfcAM2eO2f4SEfUrMhLYtKnPu50dnTGzzoAZh6+o5KRgbwNiAz3VffWt7bhW3qA/Vo7Ryxr7ObdARBPWiAdN7r//fvzv//4vvv/976s5JWfPnsXHH3+sD4fPz89HSUmJ/viamhp86UtfQkpKCjZt2oT6+nocOXIEqampI72rRDSG6o31+DjrY327w2zGJxmleo9Qye4YliqT2lrgoLX9Vw+ScbJ1q1a6S0Q0TKTa5CuLvmI3JF44OjogLcIXjy2PxSKZd9JFBsUfz6lS1wtSo9BucEFWdRby6/J7n8/U3j7yb4KIiKac67XXkV6Srq47dpgQv/scyiutswendWvLNS1lOVw2bxmTfSUiGjCZXTpvXp93S8VcWG4Fko5nqcDJQpsEztPXa+xmmXxewGoTosnIoXOSTS2SIIuvr68aCs/5JkQTg3wM/eXCX1SWhsXhrEqc6sq0lsyOBxbFqHkAwtvVG19f8vWhBU3eeQc4e7bv+9esAVatGsK7ICIaGGm1tTd3L7JrrK1NLE7kVuNItnX4++L4ACybFoiYiwVIOJ2jbksKSEKkT6T9N8oxj3x+zZnDoC8REQ2LdlM7fnPqN6hq0YL4005koeGzDDS0asPfI3zdERPooT8+yD8SM//1/4DAwDHbZyKiAevoAJ5/HijufX7glcorKG0sRe7cOFyfE4tXTxbo8we3z4vUq09knqGcn7CdZUhEEz9uwFU1EY25s6Vn7QImJXUtOJ1XrWdh354WpgdMxMbEjUMLmFRUAOfO9X1/SAhwyy2Df14iokGQgMejcx7F43MfR7RPtN19EiRZmRRsF0T5PKsKhTMi1GB4IRUnjW3WLF+lvh7YtQt47jngitZKgIiI6GYczDuoB0w8qxvhcjxbD5gYnB0R5e9u185m2he+wYAJEU0czs7afBNv717vthynx5+9jqgrxXbVJqdsZhCaO804VnhsFHaYiEYTgyZENKbqWuvs23KZzNidUaaf71saH4ggL+scgJkhM5EWkja0F7vRwORt2/odCEdENJzi/OLw5Lwncef0O+EAa2BY5jetnm4NnJzKq8aB3BrkzY5V253oVPOfei0WluDwq68CL7wANFj7LRMREQ2G9OjXW850diLm8BUUVmlzTcS0YC+V3GQRsXYbPOZxJiARTTC+vsAjjwBu1tlMFp6ungh01wLBiScysayxCX7uWvJmQXWzXnUiThefVuc2iGjyYNCEiMaMnPB79+q7MJqM+m1Hc6pQ09ymrof6uNllc3i6eGJTUt8D2/pVVARcvtz3/bNmaQPhiIhGkfSBXxixENtmbLMLnMyN8cfaGSH6dnp+DQ76e6PVy02fA1XSaJ0J10N+PvCHPwCN3SpSiIiIbkCypuUYXb6KsOwy1F0qgcmsBeuDvQzw7TpxKAzR8Yi//2/GbH+JiG6KzFx++GHApWc3ixjfGPXVoRNIO3wVm7XCb+XUdWu1Sbu5HW9eehMms2l09pmIRhyDJkQ0Zs6VnbPr6V9c24LT+dqBh7Tjui011C6DTbKxPVysfZMHZc+evu+T/v8yC4CIaIzMDZuL7Snb7QIns6P8sMYmcLIvsxIXFyeis2vgbk5NDowd1qBzD3V1wM6dgFk76UVERDQQJ4tOoqihSF13NrbDd/9lVHclNTk7OtjNMXFwdMKMp74Nh15ONhIRTRjR0cB99/WYDejr5gtfg6+67tDZie2X8jGjsUVtZ1U0qHMYFgX1Bdh/ff8o7zgRjRQGTYhoTLS0t2B39m59u13acl0qk74zigw+DrRpyzUrZBZSglOG9mI5OdqlL/PnAwEBQ3tuIqJhMjt0Nnak7lDDJPXbIn31IZONxg6832LG2Y1z0RjghQ5zR6/D5O3IZ9/hwyO960RENElIe5k9udZko6hT2SguqtW344I84eJk/TsVuO5O+Mcmj/p+EhENu6QkYPv2HjdH+1pnEDp3duJvC0sRWd+kOn9/dLEUre3W6pJD+YfU/EEimvgYNCGiMSGLseb2Zn37eG41arsy2MJ83TDfpi2Xl6sX7ki6Y2gvJEcy/VWZyPC3W28d2nMTEQ0zmdl0b+q9esWJtO+SNl3OTtr2ucJaXHM34NSWBbh0awryHOpR1awN6e3Tvn3A9eujsftERDTByazBNpN2TO5dUQ/z0WyV3CSkl3+gp7U3jat/EFLuYVsuIppEpG33HfbnHmSuiW3Hi2hPV3wxqwihDS1oaG3Hp5fK7GYNvn35bTQYOVuQaKJj0ISIRl1RfZEalGZR3WREep5tW64wOHa1nxFbpm8ZeluuK1e0eSZ9WbIE8PEZ2nMTEY0AqapbErVE35a+8UviA61x4MtlkLby5dNCcWL7Ynya7AyTe8/hlTr5pjff5HwTIiLqV2ZVJi5XajMAHcydCNmXgfKuQcdybB4f5KmC+RaJD/0dnNzcx2x/iYhGhJwjWL1a35TPvWn+0+y20wLc8cilPAQ2tSK7ohHnCqwVeU3tTdh5eac+F4qIJiYGTYhoVMmBwweZH6Czqw+XZGTsu1IBc1dmhgx+D7DJYJsTOgfJQUMs+Zc+/nv39n2/wQCsWDG05yYiGkFr4tbAx2AN6M6P8Uegp9aysLzBiLOF2sKs08kRVxJ8ceDOmYCfX99PKAGTt9/WAihERETdtJva8WHmh/p2+KVC1Fwr07ejA9xhcHHStwNmLUbIwlWjvp9ERKNi1Spg2TJ9M8gjCGFeYfq2wdkJM/3d8OCFXPi2tOFQViXKuoLMIrc2F4fyDo36bhPR8GHQhIhGVXpJOoobivXta2WNKKjR2nT5uLlgYVyAXVuujYkbh/5i588DFRV93y8BE48hVrAQEY0gg7MBm5I26dtShbcuxToU/mh2lWoHYHG4Mh0Vd6zqMbzSTnY2cIiLNyIi6unzgs9R01oDr6oGzN59Dt57LqK5TevT7+HqhDAfa0Wjq8EDM77wjKRbj+EeExGNIPl8u+02YMEC/aakgCS7Dhj+Hq5IcnfGXZfzYTaZ8eGFEhg7rPNNZCh8Xm3eqO86EQ0PBk2IaNQ0tTVhT451vogcUBy8Zg1qrE4OthsseVvCbXB3GWLJf10d8Mknfd/v6QksXTq05yYiGgUzgmaoi0WEnztmRfqq69Jfft/VCrsqvneb0tG5fn3/T8r5JkRE1E11SzVOXdyN1AOXsPC90/DKr0JhTYt+f/e2XDF3PAjXYGvGNRHRpCSfe5s3a3NOVBKTE9KC0+DoYD1nER3ggcT2dqSV16KupR17Lpfr802ku8b71963m3dCRBMHgyZENGo+y/kMLR3WBdixnGo0tXWo69OCPDEt2Eu/L84vDrNCtIOTIbXl2rkTaLG+Vg8y/N3V2gaMiGg8uiPxDrg6WT+rViQGwcPVWV3PqWhEVrl1TklBfQHOxbsDyf20NJRF2zvvAO3WKhUiIpq6OtvbcebF/8GCt44iJLdc3ZZX1QSTDM8CEOJtgLebi/5437B4RG1+YMz2l4hoVEkV9113ATO0RCZPV09VcaLf7eCApBAvrC6ogJPZjGtlDcgortfvr2iuwJXKK2Oy60R0cxg0IaJRUVBXgDOlZ/TtykYjznYNS5O2M6uSrW1nJHND2tLYZrQNysGDQF4/ZbDS99+mzJaIaLzydfPF2vi1+rabixNWTQ/Wtw9cLVdVJxaf5nyG1js3Ar5aRUqvamuBI0dGbqeJiGjCKHzt93A6dgwOXZnQkild1dSmrjs7OqgsagsnByckPfp1wMUaRCEimvScnIAdO4CEBLUps01CPEPsjs/neblgbkm12v48q9Lu+FzaH7LahGjiYdCEiEacscOI9669p2/LAcPeK9ay1cVxAfB1ty6+lkYttTsIGRQJlhw40P9jpH2Ns5apTUQ03i2OXIxwr3B9e3qoF2IDPdX1BmMHTuRqCzTR1N6EfaXHgHvv7X++yeHDWvCEiIimrLbr2Sjct0vfNnd2IreySd+OCfCwa50bvGIDvNLmjfp+EhGNOTl/cP/9KjFJkjunB06Hu7O1lXiglwHbaurh2mFCS7sJl2yqTQrrC5FXx9kmRBMNgyZENKKkz/7OyztR3qSV+4vLJQ0ortVaZ/l5uGJBnL9+n4/BB6vjVg/txaQdl7Tl6i+LY/ZsIC1taM9PRDQGpPpuS/IWOECrvpOF2urpwXB01LZP59egpisrWJwoOoEyPxctQNwXac/16acjv/NERDQ+dXYi65Vfwmgy6jeV1LWitV0bYuxlcEawt0Fd73BxQvWK+Uh6/B/HbHeJiMactPdes0ZddXZ0Rmpwqn58LhLcnbGoqEpdP51XA3NXm0Pxef7nY7DDRHQzGDQhohElg9+vVl3Vtxta23Eo0zq8eE1yMJxtsqFvT7jdrn//gEmg5N13tQHwfQkI0Aa5DbXtFxHRGInwjlAVJxb+nq5YEKMFnGVBtv9ahd3QyQ8yP0DnkiVARETfT5qRAeTmjvzOExHRuJO57y2UZ1pb5xrbTSiqabYb/t7p5IiC1Cgcv2cpFtz7DTg5sy0XEU1xkoQZrLXK9TZ4I9InUr/L0+CM26rr4NHWgfrWdlwrb9Dvy6zORFlj2ZjsMhENDYMmRDRizpaeVf07LaSv57tni1W5qpCBaZYWMyLBP0FlawzJqVPA5ct93y+BmXvuAQxaxhwR0USzJn4NPF2sn5mL4wPgbXDWh/ZmV1hbquTX5eNCZQZwxx39P+lHH0nUZeR2moiIxp3r5ddw/c0/6NsSdL9e1QxLUnSorxvq06Jw/O4lyF6ciNTYhYj1ix27HSYiGi/kvMK6dfpmtE+0XbVJnJcrlhZoSaKnrtfYzTKxPTdCROMfgyZENCLkhN17V+3nmHx8sRQVjVoLAJlhsnZGqN1gySEPf6+qAj75pP/HyIFNpDULhIhoonFzdsOGhA36tvSZv9V2KPy1Cruhk7uzd8MYHgLMmdP3k5aXAydPjtxOExHRuCItc4+8+mO4NLfqt0nb3JrmNv1vS/vqFFy9ZQaMXm49/vYQEU15yclAVJS6anA2INTLel7Dx80Zq6rq4NPahspGI/KqrRV8F8svoraVMwWJJgoGTYho2NW01ODVi6/C1KlVlIij2VXIrmhU112dHbF1TgTcXZ30+1fErECgR+DQXnD3bqCjo+/7ExKA5cuH9txEROPInNA5KqPNIjHESw3qtbQ/PHndOhS+sa0R+6/v12abSA/mvuzbBzRZq1SIiGhyajA24M3P/4Cwc9n6bRUNRhTUaLMGRWiMP0rnWKtK1savhZer16jvKxHRuCWJnjazA22PzSUJNMrHgFvyyvVqE9t5r0cLjo7yzhLRUDFoQkTDythhxF8v/hXN7daMiisl9TjRdSJPji82zQxHoJe1TVaMbwxWxa4a2gtKP/6r1pkpPXh6Atu3c44JEU0KshBTVXm2Q+GTQ6xD4fNqUNuVLSyOFx1HqUMTsKqfz9jWVmDv3pHfeSIiGtNj9FcuvIKgo2fh2FWVWNfSjpyupCYRHeCB+lUpMDtriU3hXuFYGLFwzPaZiGjciosDEhPVVU9XTwS6WxNAAzxdsai6HoFNrSisaUZpnbWyL70k3e5cCRGNXwyaENGw2pO7R5X925b7f3rZOvDs1qRgxAVZe/L7ufnh/rT74eRorToZMOkPKlUm/ZGAiRez44ho8gj3DseiyEV2C7P50dpQeJMMhb9qHQovGW07L+9E+6IFQGA/1Xzp6UBBwcjvPBERjTqT2YTXM15Hc85VhORqx+nNbR24VtYAS7f9UB8DvBJDUB4foradHZ2xNXkrHB14yoCIqFc2s00kEdRCkpoifN2wIl/7vD2dZ60Ebze340TRiVHeUSIaCh4BEdGwqW6pxqniU/p2fUs73j9frE7iiVmRvpgb7aff7+rkiodmPaQyM4bk/HmgpKTv+xcu1LM/iIgmkzVxPYfCe3UNhb9e1YSscmvmsASyP8vb1/9QeAmyvP46UF8/sjtORESjTlo1ZldnIfFElto2dphwpaRBP0b393BBXKAnspYk6dXZ22dsV0F6IiLqQ3g4MHOmuurr5gtfg69+V7CXAbNqGtVsk8yKRn1ulDheeBxtJus2EY1PDJoQ0bA5lHdIZTVbSIVJc5s21yTa30O1kLEMepfWMjtSdyDEU8tmG7T2dmDPnr7vNxiANWuG9txEROOcu4s71k+z9lKWWVG2Q+H3XClHo7HDrk1XVkDX4Mq+NDQAr76qfb4SEdGkUNJQgs8LPkdodhl8KhvQYTbjamkD2rpadHkanJEY4o2yxDA0BPuo225LuA1pIWljvOdERBPA2rWAo2OPahNpnRvhY8C8kmpISZ+00LVo6WhRbbqIaHxj0ISIhm34+7myc/p2UU0LCqq1Xp3ebi7YPDscTl099y2LsemB04f+gseO9Z8Rfcst2jwTIqJJam7YXET5ROnbSSFeSAzW2hG2tpuwO6NUb9Ml3rnyDprXrgSc+mmHWFwM7NqlVZ4QEdGEb8u16+ouFQyflp6r/iZklzfpSU0GZ0fMCPOW8m/kzp+mblsSuQTLopaN8Z4TEU0QAQHAnDnaVfcAu0rwUG8DFpbVwNlkxuWSejTZJDR9nv85OszWbSIafxg0IaJhcSjfvsrkWG6Vfn3ZtEC4uVhP0s0Pn4+lUUuH/mJNTcDhw33f7+MDLL2J5ycimqBD4delhKqsYZFf3YyzBbX64xvbGvFuxWF0rlzZ/xNfvAgcOjSyO09ERCPuaOFRlDaWIupSIQzNRlQ3tektYpwdHTAjzAcuTo7InxkDo6cBKUEpuD3xdr0ynIiIBqDr3IN8dkb7Rus3Ozs5IsbdGWnltaodYnq+tdqkoa2B1SZE4xyDJkQ0LFUmZ0vP6ttFtdYqE193Fy2DrUukdyQ2J22+ucXY/v2A0dj/QDYXl6E/PxHRBBHhHYGVsdYgiLurE25LDdW3D2dVorLR+nl5pfIKzkz37r9Nl9i7F7hyZWR2moiIRlxlc6WaZeLa0obY8/loN5nVzCuL+CBP9Tej1dOAgpnRqnLx7pS7OfidiGiwQkOB+Hh1VdqPG5wM+l3hvu5YUlylqrjPFdahuc1aXXI4/zCrTYjGMR4REdGwV5kcz6myG04s/TwtpAe/k2M/rWFupKICOH26/2Fss2cP/fmJiCaYVbGrVEDaIjbQE/Oi/dV1yWr7+GKp6mFv8XH2J6jauAoIucFMqZ07gbKykdtxIiIaEdKG692r76qTcbFnr8Opw4S8qma0myyD310R4OmqrktbLj/vYDw480G4ODHpiIjoZqpNJPBsW20icwdTnYC42kZ0mMx2s03qjfU4U3JmTHaXiG6MQRMiuim1rbV2VSbFtS2qJYylyiQlTBsoKWJ9YxHnFzf0FzOZgA8/BGxO/vVw++1SFzv01yAimmAkEC3ZwS6O1pNdKxIDEeSlZblJpcmRLGswu83UhrdzP4T5gfsBD4++n7itDXjtNQ6GJyKaYE4Vn0J+XT48apsQca0Etc1tetWhzBiUKhOp+m4I9EZFQhjuTb0Xnq6cBUhENGRJSYC/lrQU7hVud1we4eeOxcXV6nr3ahNJQGW1CdH4xKAJEd2UQ3ndZpn0U2WyOm710NtySaDk7beB3Ny+HyPtZuJuIihDRDRBBXoEYmPiRrseyhtnhqmTY0J6KOdXaQFtUVhfiBPNmcB99wGO/RwOVlcDR4+O7M4TEdGwqWutw6c5n6rr007nwGwyI6fS2pYrNsBDZT6L7EUJWBFzC8K9w8dsf4mIJgU5nl6yRE9oivGN0e+Sz9xl7W3wbzaqapP0POvMQVabEI1fDJoQ0U1VmZwpPdNrlYmPmmVirTKRg4YhV5l0dgIffKANJ+7vIGXDhqE9PxHRJDA/fD5mBM3Qt6XSZEVCkL79yaVStLab9O09OXtQE+oLbNrU/xMfPgw0No7MThMR0bAxmU2qLZdUFPqV1CCooErNGWzr0BKcfNxcEOzdVYUYHQin+ASsils1xntNRDRJzJsHGAz63EHbapNIqTYp0RJMzxXWoqXNekzOahOi8YlBEyIaktaOVuzO3m0/yyRXKzkVS+IC9Aznm6oykYDJp5/2P8dELFgABFlPDhIRTTXyGbtl+hZ4uXrpt82L8UNMgNaCq8nYoQbDW7Sb2/H+tffRKZ+fixf336Zr376R3XkiIrop7aZ2vHrxVWTXZKvj54ST2WhobUdpfau6Xw7LpwVrbbk6HRyQszABW5O3wtnReax3nYhocpCAydy5fVabrG9ugaHDhHaZbZJvP9vEtuU5EY0PDJoQ0aC0tLdg//X9ePbYs7hUcUm/vaSuBXlVTdYqk3D7KpN4v/ihveChQ8CRI/0/xtsbWLNmaM9PRDSJSE/6u2bcpW/LybH1qaFwcdIO+S4W1aGwxtqmS06unSs7p82Diojo+4nT0zkUnohoHCczvXT+JWRWZ6rt0JxyeFY2ILvC2pYr2t8Dbi5O6nrx9HCkpaxCrF/smO0zEdGkJC26upJFu1ebxHi7Ym65Fiw5V9Ct2iTvkKoWJKLxg0ETIhpw9tq+3H0qWCJBE1mc2TqWY60yWTxcVSYnTgB79/b/GHd34JFH+h9mTEQ0hSQGJGJJpNZT2dKOZUWitRLvs8vlqp+yxSdZn6DR1KIFTvqr+tu9e+R2moiIhqSxrRF/OvsnNfhdOHaYEH0qG1dKG/SWjJ4GZ4T5uqnrHS5OqF4yG+unrR/T/SYimpQCAoDp0/Vqk2jfaP0ug7MT7mxogkNnp6o2kZmDFnXGOrvW50Q09hg0IaIBDZT8Q/ofcCDvAIwmo/19Le347FKZtcrEzQUpNlUm0T7RQ6syuXIF+PDD/h/j6go8/DAQGjr45ycimsTWTVsHfzd/fXtOlC/Cfd3V9drmNhyzaafY0tGCj7M+BmJjgZSUvp80OxvIyhrZHSciokHNF3z+zPMobSzVbws7nYPczArUt7arbUcHByR0teUS+bNisHHOPTA4a333iYhomC1dql+N9I60qzaZbnBEWmWdun6W1SZE4xqDJkTUr87OTrxz5R2UNdm3ZZGTbp9eKsWLR67jYrH2R18sjh+GKpO6OmDXrv4f4+QEPPAAEBU1uOcmIpoCXJ1csSV5i74tn8MbUkP0z+fTeTUo7+pzLy6WX8TVyqvA+vXa52tfPvkEMFurVIiIaGxID3wJmFS3WIPg5tJaNH56CU1t2kBhZ0cHpIR7w8NVm1ti9DDAf/UdSApMGrP9JiKa9OLigJCQPqtNHqiqhYvJ1Gu1yYXyC2Oyy0TUE4MmRNSva1XXkFubq2/LQMlPMkrx4tE8ZBTXwywtW7oGmy1PCEJahH2VyTT/aYN7QTkZt3Mn0NLS92McHYF77wWmDfK5iYimEPn8nRc2T98O8DSo9omWgPhnl8tgNmuf4UKGwpcZOoBFi/p+0ooKbb4JERGNGXOnGW9eelMFTixqGo1ofP0k2roCJjLLKjXCB95u1gzn8qWzcHvKnWOyz0REU4YkjfZTbZLk5oSlRVV6tYmllaI4UnBEHacT0dhj0ISI+nW86Lh+XXrgv3G6EJdL6vU/5AZnRyydFognV8SrKhNLVYkDHFSv5EFXmcjg97y8/h9z113AjBlDeDdERFPLbQm3wcvVS99eGBeAQE+tJUt5g9Euu62hrQG/O/07HJ3mCrOb1vu+V/v2AUb7Vo1ERDR6Msoz9BkmQioHL35wASGV9frxuSQyWSpMhDEsGLff/U/wcOEcQCKiETd7NuDj02e1yZbaevi0tqlqkwtF1s4d5U3lyKpmO1yi8YBBEyLqk/zBzqnJ0bdloGR9i9Yf2eDihGUSLLklXgVN3Fzs27lIW65Yv9jBvWB+PnDgQP+PueMO7QCEiIhuyN3FHXck3qFvS3uu9akhEtlWjuZUoaa5Tb/f1GnCJ8UH8WF4I1ra+6j4a2rSWih2aNnMREQ0ulUm+6/v17fbOsz4+GQ+ll8rUtserk5Ii/C1OzY3uLhh8dM/RIgX5wASEY0KZ2et7W2XCO8Iu2qTaG8DVl/XWqCfya9Fh037W6k2IaKxx6AJEfXpeKG1ykQqS6R01OKuuRFYMi1QZUnY8nPzw/1p92NV3KrBvVhrK/DWW/33yp81C1i8eHDPS0Q0xaUGp2JGkLU6TwbCz4vShsSbzJ14/WQBsssb7b7ndJQjDjVm2A0XtnPpEvDKK9pnNxERjZoLZRdQ1aK1dRHnCmux6FoRPNs74GVwRmq4j2qbayGVJbO3Pg3/aaljtMdERFOUnL/omsHq7OiMSJ9I/S53Fyfc0tiMyPomNLd14GpJg36ftEcvbigek10mIisGTYioV5JhfL7svL5dVNuCykatHUuYj5s66WbL380f25K34WuLv4aU4JTBvZi0+nrvPW0AfF/8/YE779T6gxIR0YBJm8RNSZtgcNLaconliYHw83BV11vaTXjvfDF2Z5TC2KH1VO50csS1+bG4UnnFrgWMndxc4IUXgAbrIo+IiEa2yuRAnrUqWz6zi88XYl6JNgw+IdgLzk7WJb63qzfmJq2E522bx2R/iYimNDl3sXGj3WwTRwfrZ3S4nxvWZZeo8yGn82vsZpmw2oRo7DFoQkS9Si9JR7tZa8VlKRm1mBvjp1+X2SUqWLLka5gXPk/16xy0M2eAjIz+B7/fcw9gsJ7wIyKigfMx+Kj5JhYyIPi+hVHqBJvFpZJ6vHIsH4U1zWq7MiYItaG+qk1jZXNl709cVgb88Y9AZR/3ExHRsJGEpuqWaut2Xg1WXy5Q14O8DHB3dbJLaJobNheum7fyGJqIaKxIpYlUnKjjbxeEe4Xrd3m7uSC5vR1p5bWobmpDbmWT3eyqmhbr7EEiGn0MmhBRr1lsJ4pO6Nt1Le3IqdRat3i6OiMpxFu/LykwSQVLbDMmBkWqSz76qP/HrF2rl7USEdHQzA+fj6SAJH1bBgTfOTscG1JD9VYu9a3teDO9EIcyKyC5bteWJ6PDxQlXK6+izWSdfWKntlYLnBRoJ+6IiGj4mcwmHLhuX2Xi+HkmQpu0NomR/tYqcCcHJ9Wa0Wl6MpDKtlxERGNKZpu4aPNMonzsz2tIBw+ZbeJiMuF0njVI0olOHCs8Nuq7SkRWDJoQUQ9ycqzOaG2Vdb6wVnXQErOjfNUgYYulUUtv7sWOHAHarRUtPUybBqxYcXOvQUREqk3XvWn3Is4vzu42GRj88JJYRPp1nXDrhFq0ncqrQbOvB85vmI1ml05cq7pm1zbATksL8PLLQEXFKL0bIqKpV2VS02o9oVZ+IhfLs7Se98FSZWIz+F1OyrkY3IFNm9jalohorPn66uc03F3cEewRrN/l7+GCYLMZq3PLUFTTjNK6VrvuH83tWgU4EY0+Bk2IqIfjRdYB8O0mMy4WaQEUCZbMjPTV75M/9vF+8UN/ITnJJq25+uLhAWzfzsUeEdEwcXVyxaOzH8XKmJWqvaKFr7sLdiyIwsqkYP0j92hOFSoajKgP8cWZTfNR6NCA8qbyvp/caARefx1o66MihYiI/n/2/gO6rSy7E37/RCbAnHMmRYpBOatUClVS5ZxTd3W7k8OMPR7Ps+eb5TC2X7/xRPe47f46VnV35ZyTVKqSqpSzKFHMOUcQBEFEvnXuJe4lRBKiVMz8/7ywiIMLAgduFXHv2WfvfeNZJuN6mei6rMg5UK78Fb86y0TayXzTTUBMzDzMloiIJhBBk4gI6W56ZHrABqbkSBPWtfXiltp2nG5QSzCKcumn2k7Ny3SJiEETIrpKx1AHGgYalHFF+yCcHp90vyAxHBajTjm2KW2T9CV/w06fDr64dt99QLhaCoyIiL450XtqT84ePLvmWanmvZ/4e74uMxrrMuVFNp9vFJ9c6oDH55MyTs7cuRbnRtsx4lF3wE0gMk3ef19qaElERDPjXMc5DIzI/QUNDhfi3jgFrdsrjePDjTCNyzIRi3H6hCRmahMRLSSiPJco0zXWazDKpPaJFdmCot/g+rZe5B+5gsEhdY3keMtxeHyeeZky0XLHoAkRBRBfyn6iDMu55nEN4NPVL3aTzoSyxLIbfyOvFziuvtcEBQXyjYiIZkVGZAZ+tOFHWJe8LuDxzTkxUkNhoWfIieN18o43l9mIk/tKcNrQO3WZLuHCBeDMmdmdPBHRMsoyOdR4SLqv8Xix4tPzsHXKWeBi65JSWlFkoGh0SBU7mO++G9CpG52IiGgBEA3hx3q1pkeo2SYaTQiSIuRz77L2fpjfO4MQn3yubXfb8euzv0a7rX2eJk20fDFoQkQKu8uOi10XlXFznwN9dnmXQ0pkKBIjTAENhUWZlxtWXg7YbFMf37r1xl+biIimRfwdv3vF3bi74G7lMZ1Gg33FSdIFnHCqsQ9tAw7pvsegw4FtyahJUb8PJvXRR0A7L+6IiL4JEaA+UH9A7jU4Ooqiw1cwXNsN79hi2tVZJlIvk9vuALLU3lVERLRAiCodd94JaLWICY2BWW9WDom1Fs1YFY+IK63IEyUYvXLFjzZbG35++uf4uOZjOD3OeZs+0XIzJ0GTn/70p8jKyoLJZMKmTZtw4sSJoM9/7bXXUFhYKD2/tLQUH3744VxMk2jZE43Gxqd+nmtWm02uzlCzTEQd/I2pG2/8jcQO5aNHpz6enAxkZt746xMR0XURgfDCuEJlLBbiNmfHKn+yP73UIfW4EnxaDV4r8GAoXu1xNYHHI07ogJEgpbyIiChowGR/zacoP/0RMs81YO0HZxBV14mOQfnvqlhbuzrLJGXXPcDmzfM4ayIiCkqsdTz0EEJ0uoBsE51Wg4RwOdtExMWHzzSg4MBFpeTtKEZxrOUYfnryp6jqrZq36RMtJ7MeNHnllVfwH/7Df8Df/M3f4MyZM1i1ahX27duHrq7JG4keOXIEjz/+OL773e/i7NmzuO+++6RbudiVTkSzxu11BzSAHxh2oa7XLt0PM+qQGx+mHFsRtyKgBud1a2gAOjqmPr5lC5u/ExHNIdHPRGSbWPQW5bH1mdFIipQzSgYcbnxV3aMcc4V48XapHqOmIBknfX3Au++yvwkR0XSJgHNzM0aPHMGFn/w/CPnv/x1rPzyL7HMNCO8eRGPvsJplEmaEcVyWSVzpJhjuupfn0EREC11REfDYY0iISg2o3uE/7xZ67S60Ha2D5+vqgLK4g85BvHjxRSmAQkSLPGjyv/7X/8L3vvc9PPvss1i5ciV+9rOfwWw249e//vWkz//nf/5n3HbbbfiLv/gLFBUV4e///u+xdu1a/Mu//MtsT5VoWTvdfhpDriFlLPUyGftuLkuLgnasTIuwOe0b7mA7cmTqYxERQHHxN3t9IiK6bhaDBXcV3KWMRXkuUaZLp5X//p9vGUDjWDBdqPH1oG7nquAvevly8P5VRETLmcsFVFQAn3wC/PKXwI9/jNFf/hK1L/8r+s8egc4lZ4CLBbO6brvUZ0rJMolWs0xcMVHI/t5/kkq+EBHRIpCfD+1TTyMlRi2nKMotis2q/jJdUpb3FxV473QLrMPugF//pOYTdA51zvm0iZaTWQ2auFwunD59Grfccov6hhqNND46RWke8fj45wsiM2Wq5zudTgwODgbciOj6s0y+avpKGdudHlxslRtMisWy0lS1BEuiJRGZkd+gdFZ3N1BdPfXxTZt4wUdENE+K4ouwKlENhESbDbgpL14Z77/cCc9YmS7hI00tfNuu0YPq00+BxsbZmTAR0WIzNAScPg28+CLwT/8kSjPIZWtbWjDq8aCmrwYtgy3K0/0Bk+6xgImQFx8Go04+X3aZ9Aj/9vdhDAtSMpGIiBae7Gwk/eg/QmMKDSiRuyo9EtFmvTQOc3kQXtGK3x5rwOlGtXy6KNf1ZeOX8zJtouViVoMmPT098Hq9SExMDHhcjDumKM0jHr+e5//4xz9GZGSkcktPV2sCEtGNZZmcauhXUv/LUqMQalCDGJvSNkllXG7YsSBppAYDsG7djb82ERF9Y7fn344IY4QyLkuLRHqM3KjS5vTgfIscVBd6hntwfmVs8D5UPh/w6qsAN7YQ0XIuu3XyJPCrXwH/838C770HVFXJj49TP1CPVltrQMCkdlzARJyB5yeEITZsrO69VoOm27di7co9c/yBiIhoJphyCpDyx38Fj1EOkggiKF6QGC7dDFoNNraItVUfDld3o6ZLXbep7KnEsHt4nmZOtPTNSSP42fRXf/VXsFqtyq25uXm+p0S06LNMLrQOKFkm6zKjlWNhhjCUJpTe+JvZ7cD581MfX7sWCFYfn4iIZp1JZ8J9hfcpYxEov7kgXl6tA3CyoQ9Oj1c5frDpS3geuA+wqP1QJv37L3ZTX7VASES05LndwO9/D3zwgdSvZKo+TyII3WRtuipgMqSW5BIBk8RwNWCiCUHVzSW4bdf3YNTJjxER0eKTV7IDRd/+C+kcfPz5d4zFgFXpUVipD0Fen0163F8RRPCOelHexf7PRIsyaBIXFwetVovOzsA6e2KclJQ06e+Ix6/n+UajEREREQE3Ipq5LBOLUacc256xHXqtugPiuokddlMtmInsFVGai4iI5l1OdA7Wp6xXxnFhRhQlyudYI24vTjf0BzSkPDFYATz4YPAGxK2twIcfsjE8ES0f4u+dCJY0NAR9msvrknYMq782ihopYOKSxuJPqwiYiAU0p9mI9vxkXLh7E/be/adIi0ib9Y9BRESzK3XTLVhffCvSI9IR4t+pBEi9ZbNizdjZ0SeNm/rsGBpR11TOdZybl/kSLQezGjQxGAxYt24dDhw4oDzm8/mk8ZYtWyb9HfH4+OcLn3322ZTPJ6K5yzJZl/wNSmeJXcbBmgGvXAlEq+9HRETza1fWLhi0BmW8OTdWag4vnGkekL4z/A43HsZIRgqwe3fwFz1zRq7lT0S0HJw6BZwLvqAlAiRVvVVw+9Qmv+3WEfSOBUzcOi3CV2egd9dKnLhvA44+vBl1N5Xg3p0/kALcRES0BGg00G27CbkxuViXsi6gVK7IOlnl9SDNapdi8RUdasnbNlsbG8ITLdbyXP/hP/wH/OIXv8Dzzz+PiooK/OhHP4Ldbsezzz4rHX/mmWekElt+//7f/3t8/PHH+J//83/iypUr+Nu//VucOnUKf/zHfzzbUyVaduY0y+STTwCHY+rjDIwSES0oFoMFW9PVJu+RoXqUpcqNhkUz+BP18o43weFx4EjzEWD7djkIHsxHH8klaoiIlrKmJvnv3TV02jul0lx+fRoNDmj1+DwnCb9bnYPqH+xG1/0b0LoyDcNRFui1BjxZ9iSyo7Nn+QMQEdGcWrMGMJulDatrktbArJd7CvobxIveJsLltkEp4O7HbBOiRRo0efTRR/E//sf/wF//9V9j9erVOHfunBQU8Td7b2pqQnt7u/L8rVu34sUXX8TPf/5zrFq1Cq+//jrefvttlJSUzPZUiZaVOc0yqakBLlyY+nh6OpDG0gJERAvNlrQtARdsG7NjoNdqlJrKA8PyTmjhaPNRDLntwL33AvHxU7+o1ys3hrfJtZmJiJYc8fdN/J3z+YI+bcQzggpbAzpzEnF5RxG+emAj/lN+Bt4oysCJtHgklaYhZ6w0oiCy/54qewpZUVlz8CGIiGhO6fXAxo1KdklSmNqmwKTXYq3dgZhhJ/qHXegYHFGOXei8AK9P7TdIRIuoEbzIEmlsbITT6cTx48exaVzfgi+++ALPPfdcwPMffvhhVFZWSs8vLy/HHXfcMRfTJFpW5izLxOUC3n8/+HNuuunGXpuIiGaVaC68I3OHMjYbdFibIQfVfaOjOFrXqxwTpWUONR4SDeeAxx6TfwZbUHz3XfY3IaKlxx8YHlLPsycwGjG6YQPe3xyDQ49sRMWOInTlJOKLzmH02F1KL6ktubEBAZMnS59EZlTmXHwKIiKaDyJoIoInABIt8mZzv4RwAza1dCvZJn52tx01fTVzPFGipW9OgiZEtIyzTA4eBAbk155UYSFQUHDjr09ERLNKNISPNMpluYS1mVEI1Wul+5UdNnTZ1J1up9pOoc/RB8TGyo3hg6muDp6FSES0GH38cfAShKKr+4MP4lhZDMrDhjE6lr3XOuDAqSa57KHoH7WvOAk6jXq5fnve7QyYEBEtdWazXKZrbPNSTGiMcijWYkRZtxVhTjcqO21SuVw/lugimnkMmhAtQ+c7z89NlklbG3Ds2NTHxS5kZpIRES1oOo0Ou7J3KWOjTosN2eoF3JEaNdvEN+rDq5dehcvrkgPiO3dee3Ex2G5sIqLFwp9Bd/Jk8Oft3Imu1CgcqD+gPOTy+PDJpQ5gLPluS06sVL/erzCuEKuTVs/a1ImIaAER/V5FgB0IKNGl1YQgPlSPdW290vdGbbddOVbZWwm7Sx0T0TfHoAnRMiRqXs56lokoTXCt0iu33AJEqHWaiYhoYSpLLEO8We1TIhrCh5vkgHpDrx3NfcPKsY6hDrx++XUpgIKbbwZWrJj6hR0O4IMPZnfyRESzSZSi/eIL4Cc/Ac6cCf7cFSvg2LIBr5S/Ao/Pozx8qKobgw63dD8lMjTgfNyit+Dugrul+vZERLQMREcDxcXS3ThznLSByU8E1Ne098Hg8eJyu1qiS5x3l3eVz8t0iZYqBk2IlhmRYdJsVUsGiLROf5ZJ6UxmmYgMk46O4M3f16+/sdcmIqI5pQnRYE/OHmWs02qkndB+H1/qwNCIugBY1VuFT2o+kXfJ3XcfEBY29YtXVACXL8/e5ImIZoNo8n76tBwsEUETtxz0mFJsLLz33oPXKl5Hr0PN0KvrHkJ5m1W6r9dqsLc4EZpxAZJ7VtwDi8Eye5+DiIgWnq1blXPwBEuC8nCESYdIjGJVRz8a++ywjajfPSzRRTSzGDQhWmau9FzBqD/3H0Btl1oWpTQ14ptnmYjMEnEBKXqZTEWrBe65R0k5JSKihW9F7AqkR6Qr48LkcCRHhipZi++cb5VKBfgdbz2OE60ngNBQ4M47g7+4yDYZVrNViIgWfHbJb38LvPfe9EoMGgzAY4/h45YvUNdfpzw8MOzCp5c7lfGOgnhEmQ3KeE3SGqyIC5KtR0RES1NKCpCdPaFEl8g6FNkmG1t7oPH6UNFuU461D7VLGd9ENDMYNCFaZiq6K5T7YpGr1eqQ7kebDYixGAMa/153lolo+P7738sXkB51x/EE27cD8WqZFyIiWvjERdotObcoY7ET+u5VyYgIlb8rum1OfFzeDt+4sowfVX8kZZ2gqEgpMzApu13ub0JEtBjs3w80NEz/+ffdhxOuepxsU/udOD1evHu+DSNurzTOibOgJEXdwBRlisJtebfN7LyJiGjx2LZN+hFuCJdKNfrFhRkR7nRjZbcVFe2DGB137s1sE6KZw6AJ0TLicDtQP1CvjOtE47Cx79e8hMDSKSvjV15/dsm//RtQWxv8uXFxwE03Xd/EiYhoQciMypR2PvuZDTrctzoFBp18SlnXY5dq8/uJzEbR30Ta9Xb77YDZPPWLX7gAvPoq8NlnwIkTwJUrQF/f7H4gIqLrZbXK573TIbKr770XtUlGKYjs5/ON4sOLHeizu5TNS3uLk5S+JSEIwf2F98OoUzc0ERHRMpObCyQmSt8N47NNTHqtVKZrU3MP+u1OtFtHAvrXen1yMJ6IvhkGTYiWEbHbV2rMO6amWy0nMD5oEhsaG9DwN6iRETW7xOm89vNFWS6d2jeFiIgWlzvy70BaRJoyFlmKd5WlKDX4zzUP4HzzgHLc5XXhxYsvwqYflQMnwYjeJl9/DXz4IfDyy3KvgN/8Rl6kJCJaCI4cAbzTWJASGXZ/+IfoLkjDq5deDSiPe6i6G429dmXx697VKdJPv63pW6UgNRERLWPi3Hos20T0NREBdb/4cBPih0eQ0z8U0BB+2D2MS92X5mW6REsNgyZEy0hFj1qaS5QCaO6T68eHm/RICFd3shXFFyk73YISJbheeuna2SV+mzcDGRk3MHMiIlooROnGx0seR7QpWnksI8aM3YVqk8ovqrpQ3yMvCAqDzkEpcOIqKgBWXGd9/sZGOXAiSkASEc0n0b/kWlkmaWnAd74DPPooWvQO/Pb8b+H0qhuLzrcMSMFlQaMJwV1lyQF9THKic7A7e/fsfQYiIlo8RHnbyEgp8zAmNEZ5OMZikDYsbW7uRlWnTSr56PdV01cBJbuI6MYwaEK0TIidvjV9NcpYLGb5687nxYcFBEmK4oqm96KnTsmLWdOxYQOwb991zpqIiBYii8GCJ0qfgElnUh4rSY3E+kz5Yk58vXx4sV3qczK+OeUbFW/Cd8ftgPE6S86IgIkInPT3z9yHICK6XkePBu/b9+CDwHe/i9H0dJxqO4XfnP0NbC61SW9T7zC+qFRLGO5ekYC0aHNAtvfDKx+GVqNmnRAR0TImyjxu2SLdHV+iS6sJQVyYARlWO2L7hnCxRc3K7rJ3obqvel6mS7SUMGhCtEyIgInHp17k1XRNXporwhiBlPCUa7+gywUcPnzt50VEAE8+Cdx5p5xeSkRES0K8JR6PFD8CTYh6OrktLxb5Y98pbq8P75xrxZBT/e6p7K3Ep93HbiyILkp0Pfcc+5wQ0fwYHgZOqo3cJxBZdKWlcPs8eLfyXbxf9T68o+rOXxFE/uBim7L7d21GtBRs9gvVhUrB6FB96Ox+DiIiWlzWrgVCQxFrjoVeo1ceTo6Uvy82tfTgbNMAPD61FPvXTV/Py1SJlhIGTYiWiYputTSXWMhq7JPLppgNWiRHmQKyTKZVmuvYMcCull6Z1Jo1Ui1n5Od/g5kTEdFCJcrI3FVwlzIW3x/7ipOQGCF/r4iAybvnWqXvHb9jLcdwMsEj1/u/0cBJb+/MfAAioukS575i09BUduzAwMgAfn321zjbcTbg0JWOQbxyqglOj/y3MDvOgu35ccpxEXwWQWixIEZERBTAYJAqd4jvivEbXEMNWsSYDVjRY4XeaseVdjWzsdHaiGZr8zxNmGhpYNCEaBkQGSaiCbyfaDzp8cq73HLiw5TmvcLK+JXXfkGHQ26COZWwMDm75N57AZMakCEioqVnbfJabM/Yrox1Wg3uWZUi9csSumxOfFTeoZSEFD6s+QjVu1bJ5QbMammaaRkclAMnPT0z9yGIiIIZGQGOH5/ysC8nG8dHW/CzUz+TShH6eX2j+LKyGx+Xdyjn3iKofHtJcsD59x35dyA7OnuWPwQRES1aGzcCOh3SItICsrxTokKl9vAbW3pwqrE/4Hz762ZmmxB9EwyaEC0D9f31AQ0opyrNZdFbkB6Zfu0XFAETcfE4lbvuYnYJEdEysid7T0DQ3WLU4b7VKTDo5FPNuu4hfFWtBjlGMYrXKt9E57bVwH/8j8Cf/ZnUBwAPPQTs3QukpgZ/Q5tNDpx0dc3ehyIi8jtxAnCq59LjieySF6Jb8FHNRxjxqOfHdqcHb55pwdlmtRfTyuQIPLwuTfnbKGxO24z1Ketn+QMQEdGiJjamrloFvVaP5LBk9WGTDhEmPco6++EaGEbtuLWeKz1X0G1X+2gR0fVh0IRoGajoqQjY8VbXI5fVEhds6eOaTxbGFQbsWpjU0FDQnXbSQpeo6UxERMuGKMt1f+H9SA1Xgx2xYUbcWZqslHw809SPCy0DynGX14UXL74Im9sOREYC6elASQmwdSvwzDNARsa1v49E4KStbfY+GBGRKMklSnNdxelxSuVvv0ADasPdAcfaBhx48UQTWgcc0lijCcHuwgTcujJRysbzy4/Jx97cvXPwIYiIaNET58ghIdJG1xApv0SWEmWCzjeKdW29UraJv3eWwGwTohvHoAnREucb9Uk7DPya+4bhGqunnBMXBq1G/bItip9Gffmvvgpez3n3bjZ8JyJahsTOt8dLH0eUKUp5LDPWgt0rEpTxwcpuNPSq/bCsTiteKn9JCqAEMBqBp54CMjOv3Zj5+eeBpqYZ/CREROOcOiX/rRkjFqNaB1txovUEOu2daCxT/06NuL04eKULr51uljJNhDCjTsouKUuLCugbKLLzHi159NobloiIiITYWKCwECadCfGWeOXhyFC91Kt2bVsv+vrtaOmXA/bCxc6LGHQOztOEiRY3nqERLXFN1iYMu9ULvZruyUtzGbVGZEdlX7sB78mTUx/PygJycr7hjImIaLEKM4ThidInpO8Uv9K0SKzLjFYWGz+82I6eIbXMTZutDW9WvCkF+Sc0vRT9scR3SzCiZM7vfgfU1s7wpyGiZc/tDujjJwK8F7suorqvGt5RLwbjI9CfHCX9bStvteL5Iw043zIA/ybf1KhQPL4xA8mRocpriN3Bt+bciodXPgydRjcfn4qIiBarbdukHxmRaka2CMiL3iahHi/KOvpxsqFPOSa+q442H52XqRItdgyaEC1xomyAn2gK5q9xqdOGIDNWLc21Im4FtBpt8Bc7dAjweqc+ziwTIqJlL8GSgEeKHwnYPb09Lw658XKgXmQ7vnOuTdmFLYiMyP11+ye+mD9wkp197YXNF18ErqiZlURE39jFi3IpQAA9wz042XoSfQ51MUpkmXQMOvHyyWbsr+iEwy2fJ+u1GmzLi8MDa9OkHk9+Zr0ZT696GtsytgVknRAREU1LWpqUiS02KsWExigPx1oMMOo02Njag+ZeO7oG1R5bp9tPw+FWs0+IaHoYNCFawsSut/H9TER9Zf/FXFaMRbqg8yuKu0Zprr4+4OzZqY+Lxu/Xqj9PRETLQm5MLu7Mv1MZi8XB20qSkBhhksa2ETfePd8Gt1fNLjnSfARfN30tNVUOyDrR64EnngDy8oK/qQjqv/oqUF4+C5+IiJals2fh9XlR2VOJ8q5yuH1q7xJrlAVv2D14+VQTOsctThUkhuOZLZnYkBUTUAY3JTwF31/3feREMyubiIhmPttEZDVGjrhR1G2VepuMz5I82RakYggRTYr5wERLWPNgc0D9ypqxLJOrS3PpNXppgSuogwcB31WlU67OMiEiIhqzLmUdeh29UjBEEIH6e1al4OUTTbA5PdIi4yflHbizTG0W/1ndZ9JNZKlEGCMQZ46TGiWvSV4Dw2OPAW+8AVSomwEmEN9Tb78NJCYC8WqtZyKi69bXh+G6SqkevMMTuENXZMr9FHqca7Eqj8VYDNi1IgHpMWomt9/a5LW4I/8OluMiIqJvTmxYjY9HZNeodL7sX/NJCDeipX8YG1t68HxCJAZyYxFlNkjHRKbk9ozt7KNFdB34XwvREia+GMeX5vIHTTSaEGTFWZRjeTF5MGjlL9NJtbfL5QmmsnIlkJw8Q7MmIqKlQtTtH5/JKMrU3LsmFQadRumz9VVNz4TfE5kmIuOkpq8GH9V8hJ+d+hm6nf3Aww8DZWXB39TjAT74QKRbzvwHIqJlw3HqGM62nw0ImEhN4AccONo7jJMWuU+JyCa5KT8eT27KnBAwiTJF4bGSx3DPinsYMCEiopkhNhtt3SptOkqPSFceFus8yZEmJA05kNFvx7nmAeWYzWVDfX/9PE2YaHFi0IRoiRpyDeFy92VlXN9jx9BY/fjMGDNMerV/SVF8kNJcYtHps8+Cf2Hv2jVDsyYioqVEXMw9UPSAVJbGLy7MiDtK1OyS0439uDhut/ZkRA+BVy+9CveoF7j/fmD9+uBv3NAAXLgwMx+CiJYf0QfwizcDynE53V5cbh9Ec98wLsZHYTQkBPHhRjy5KQPrMqMDSnGJAMnNmTfjjzb8EQrjCufpQxAR0ZJVWgqEh0tZ2aJflp8ohStOsTe3dONKhw1en7qJ6EInz42JrgeDJkRL1Jn2M/CKxaUxF8YtSJWlRSn3tSFaFMQWTP1CtbVAXd3Ux1etYgkUIiKakl6rx+MljyPSGKk8JrIdd65QvzsOVHbi11/X4/XTLfj0UgeO1fXictsgBkfUBcvu4W6caD0hB+vvvFPaYRfUp58CDja9JKLrZ628gN622oByXBdarbCNyBuQyhOjsD4rBo9tyECMxRjwuytiV+APN/whdmXvkv7+ERERzTidDti8eUK2iU6rQYzZgOz+IUT2DaGx164cE/1uRX8TIpoeBk2IliBR1uR022llPDDsUr4sI0L1yIxVdyKUJJTApDNN8UK+4FkmWi2wc+cMzpyIiJaicGM4nih9Akaturi4Ki0KazKi5cEoMOhwS3WYxU5uETT59HIHfn+sEUNji5TC181fw+lxyoGTW28FNmyY+k3tduDAgVn9XES0NF3Z/zJGxR+mMU19w8pu3b6YMOy6KQ/b8+ICsktEXXnxd+7x0scRExozL/MmIqJlZN06wGhEgiVB2gzrFxcun29vau1BRbtNeVwETK70XJmXqRItRgyaEC1BVb1VsDqtk2eZpEZCM1YSRdiQGmTBSZQ26eyc+vimTUCUmrVCREQ0lcSwRDxc/HBAA8qb8uOwNTdOKnFjHFc20s/l8eFkQ58yHnYPy9kmgvguu+UWqTTBlE6fBlpbZ/iTENFS1m/thP282hdQZLxZHXLWm1GnQeYtRUiLDuxdUhxfjB+t/1Hw7G0iIqKZZDJJJWu1Gq1UpssvMlQPnSYEhd1W9LT0YcStViA533F+niZLtPgwaEK0xBvAu70+XGoflO6L3XDFKWp5lOSwZKSGp07+Im438PnnU79JaChw000zOGsiIlrq8mLycHve7cpYBPE3ZsdIDZR/dHMufrQzV7p/V1kK9Fr5NLW8zRpQputI8xGMeEbkgdEI3HZb8L5c778vZ04SEU3DuS9ehsatZri19qtl/pJjLRjIS1bGInvu/sL78dDKhxCqlxvDExERzRmxkVWrRVJYUsD5teghqBkdxbqmbtR0DSnH6vrrYHOq2SdENDUGTYiWmN7hXtT2qzWYqzptUuNKoSAxHKEGbUCWib8R7wQnTgCDcrBlUiJgIgInRERE10F89+zI3DHpMaNOK2Wd5CWEYXW6nMkoSuKcrFezTRweB463HFd/aeVKIDd36jdsbwdOqpsJiIim0ufog/X4l1NmmWgKU+A2yX1KRDmUH67/IVYlrZr6fJqIiGg2RUQAZWWIMkXBoDUoD4ugibCqox99Fe3K46L0ZHlX+bxMlWixYdCEaIk51XZKuT86OorzzdaA+vF+oo9JaULp5C8yPAwcPjz1m4iSXBs3ztCMiYhoudmdvRsPFD0QtO7/2oxoGHTyqeqltkFl4VI42nIUDvfY7m9/Y3jREHMqInPSxl11RBTc0fKPEdmuBmlbxmWZpEaHojNf3ckrsuaiQ8f6MhEREc2XrVul4H2iJVF5yGLUwqTXQu/z4dZDlxB/tBohXjnz+nwnS3QRTQeDJkRLiNvrxtmOs8q4c9CJLptcwiQh3ITECLUB7+qk1dBr5Z1yE4iAychY6ZPJ7N4dfHGKiIjoGsoSy/AnG/8Ef7zxj/F4yePSAqToC+AnMiPXpMsLkr7RUZwYl20iynMdazmmvlhMDLB9+9Rv5nQCb70FeNSSO0REV2eZdB87gJCx/u+DDrd082eZRMWGoS9VDvRmRmYiKyprPqdLREQki48HCgqk/oF+IogSHyZnnohcyKhjNVj7wRlY+u3oGOpAl71rHidMtDgwaEK0hFzsuqjWeRc7CFoGlPur0iIDSgdsSJmiAXx/v1yaayrJyUDpFBkqRERE10F8L4nGlSviVmBT2iYp+0SUF/BbkxGlZJtcbh/EwLBLOSaCJqIxvEIETUTwZCp1dcDrrwNetRkmEZHf4YZDSKhRS5i0DKhZJqLxe1duIkbHei3tzNrJklxERLRwbNuGMEOYdPOLHSvRJXQPORHWa8O6904hvbwZ59vPzdNEiRYPBk2IlghRimt8A3iHyyv1MxGMei0KksKVY7nRuYg1x06dZRJsQenWW+VSKERERDNMq9EG9DsRZQXWZUQr33PHx2WbOL1OHG0+qv6yyIAUZbqCuXIFePttNoYnoglZJnXlh2G2Dk+aZRIXZkBHnlyai1kmRES04GRkSD3+xpfoEufR4Sa5QsiI2wu7ywuNbxS5p2ox+N7r8I3yfJgoGAZNiJaIVlsr2ofU3XGX2qxS81yhODkC+rGdcf4mvJMaGgIuXJj6TfLygJycGZw1ERFRoFWJqxBtUvsErM6IkoL/wpWOQfTZ1WyT463HYXfZ1V8WDeGL1RJfk7p4EXj/fRGFmYXZE9FidKjxqiyT/sAsk+HoMAzFyLt3mWVCREQLjvheeuABxK9YG/Bw/Lhskx6bU7kfe74KzZXqplsimohBE6IlYnyWiaj9fqFVbQBflhap3I80RqIgtmCKFzk5db138SUsskyIiIhmOdtELEr6GXXjs02A4/W9yjGX14Wvm78OfIHbbwfC1ezKSZ05A3zyCQMnRCRlmVxsO4eEhi41y2REzjIxjc8yCQlhlgkRES1cFgtM3/8RnDdvx+hYcD/GYlAKhfQMOaW1Ir+OT9+cr5kSLQoMmhAtAU6PE5e7Lyvjxt5hpaRAZqwFUWa5AZiwLmUdNCGT/KfvdstBk6msXAkkqqmeREREs6U0sRSxoWoZydXpUQgdyzap7LShd8gZ0NskoJllWBjwzDOA2Rz8TY4dAw4enIXZE9FicrD+IKJae6F3eiZkmaRGmwFNCDpzEqQxs0yIiGhB02iQdPvDOH3XWtijLNBpNYgeWw/y+EZhHVsnEpznT8Pd2z2PkyVa2Bg0IVoCRMDE7VO//MqnyDLRhmixNjkwXVNx7hwwPK6h7tW2bp2h2RIREQUngvvjs01EM/h1mWMlu0aBI7Vqtomox/xu5buBdZnj44GnnwZMpuBvdOgQUFk58x+AiBaFzqFOlHeVI34sy8Q6SZZJX0oMXGYjs0yIiGhRKIovgjM+BqfvXoemknTEhU9eosvn9aDlk9fmaZZECx+DJkRLwPnO8wEN4Ot75fruZoMO2bEW5djK+JUIM8j1mAOIFE2x43YqmZlAauoMz5qIiGhqxQnFiDfHK+NV6VHS95pQ2z0k3fxaBltwqu1U4AskJwNPPgkY1GzLSX36KRvDEy1TBxsOIsTrRVxTD0ZHR9HcNxyQZSKySrpy5EzrXdm7mGVCREQLnkFrkAInPq0GdetzMVKSDp1G/v7qG3bBM+68t+/r/cE3zxItYwyaEC1yAyMDaBhoUMZVnTb4xhrAFyWHQzP25egvzTUpscu2V921O8GWLTM4YyIiouvPNtFrNdiRH6eMD17pgtPjVcb76/bDOqJmWkrS04HHHwd0crBlUuL7TzSHJ6JlpXWwFVd6riCmtQ86txcDDjeGxkp0iXKAIstELDj1pMcyy4SIiBaVVYmrlPstZRmIHWsIL/bL9g65lGM2ex/6D306L3MkWugYNCFa5C50XggYX24fVO4XJUco96NMUdIF36SOHJn6DWJjgRUrZmCmRERE10dkSCaHJSvjFUnhUq8uQSxuHqkJbAr/QfUH0m7xANnZwKOPAlq5J8qkvvgC8KoBGCJa+j6v/1z6GV/fNSHLJD0mVMoq6UuNgdegw+7s3fM4UyIiouuTHZ2NcEO4dH84yoLRQvV8usM6EnC+3HHgHbnHLREFYNCEaBETX3TnO9TSXH12FzoHR6T78WFGxI3tJvDvNJi0pEBrK9DUFDzLhKUIiIhoHojvrbsK7kIIQpTx7sIEqamlcL51AG0DatPmqt4qqc/XBPn5wN69U79Rfz9wXv0+JaKlTWRp1/bXQuPxIq65VzqHHnbJgVOLQac0ze3KikdeTB4yo6bYeERERLRAM7ZXJanZJtYNuQgzypnXDrcXthE5s1Lo6WmC6+TxeZkn0ULGoAnRItZqa0WvQ91lWzE+yyRFzTIRyhLLrj/LxGwGVqlftERERHMtNSIVm9I2KePIUD225sTKg1Fgf0VnQG3mD6s/hMOtBlIU69cDUVFTv9GXXwIe9QKSiJbupqMDdQek+6I0l8btQXO/Y0KWiSjN1ZsexywTIiJalNYlr1M2HlkTI6HPVnsF+jfbCt5RL9o/e5M9/oiuwqAJ0SJ2ruNcwAXglbGgibjQW5Eop2IK6RHpiDWPLTBdvbP28iQ7cv02bAD0+hmeNRER0fURi5aizKTf6owoJEaYpPtih/iphn7lmN1tx6e1k9RmFuW5duyY+k2sVuDs2RmeOREtNDV9NWgebJbuJzR0o3vIiRG3nGUSbtJJgVmhNy0WBcklSAlPmdf5EhER3Yjo0Gjkx+YrY8fWPLUhvN0Fl0cNknS2XMHopUvzMk+ihYpBE6JFyuPzoLyrXBm39DtgG2temRVrhmUs9VIYn5YZ4PhxuRPYZETTXBE0ISIimmcGrQF35t+pjDUhIbilKFEpO3myoQ99dqdy/GzHWdT21U58IZE9GRMz9RsdOsRsE6IlTGwy8vcyEaW5opu6pXNov/Ros/J3pTsrgVkmRES0qG1IUdd0BjLjYUqRNyGJVaAum5ptMuweRu/+96ZeHyJahhg0IVqkRN32Ec/INRvAa0O0KI4vnvgCLS3A6dNTv0FZGRAWNoMzJiIiunFip1xpQqkyjg83Yl1mtHTf6xvF/styM2e/t6+8LV0ATsg2ufnmqd/EZgNOnZqF2RPRQnCp+xLah9ql+7Etfejtcyg7bUWGScRYlolXp0HK2psRb1FLmRARES02oi9XtEk+Xxa9ap1b1cyTrkFnwLlzZ/VZoL5+PqZJtCAxaEK0SI1vAO/2+lDTNSTdN+g0yImzKMdWxK1AqD408Je7uoAXXgDc7uAN4ImIiBaQ2/JuQ6hO/U7bnB2DqLFFzjarA+eaB5RjNpcN71W+F3AxKCktBeLipn6Tr74K/v1IRItS51Cn9DfBL6a2A60D43uZmJX7fenxuLng1jmfIxER0UwS2ZMbUtVsE3tRKgzR8nqRy+tD/7B6ztsz3APHgU+ZbUI0hkETokXI7rKjuq9aGYuAiQicCAWJ4dBp1f+0VyetntjH5He/AxyTNMn1y88H4rmzjoiIFhaLwYJ9efuUsfi+21OUqIy/qulB75BapquipyKg/5dEowF27pz6TYaGgBMnZnjmRDSfbE4bXrj4Apxe+e+D1u2F61Kbcv4cYzYgbFxp2/gNN0u14ImIiBY7sSak08jfcT6tBsMbc5RjHeMawo9iFJ2XjgF1dfMyT6KFhkETokVI9DLxjapNuyrGleZaOa40l0VvQW50buBCkAiYiPIjwWzfPsMzJiIimhmrElchJzonYHf46vQopUzXx+Ud8PjU78iPaj5Cn6Mv8EWKi4GEhKnf5OuvAacafCGixcvldeHFiy9i0KmeL49cbEZ7j5ylLaTFqBlso3o91u54dM7nSURENBvMejNKEkqU8ej6bGhMcqb2oMMNh8urHGuztcH32WfMNiGa7aBJX18fnnzySURERCAqKgrf/e53MSQWbYPYuXOnlD42/vbDH/5wNqdJtOic71RLc9lG3GjqH1ZqMSdHmpRjpYml0Gq08mBkBPj978V/mMFffPNmIDNzlmZORET0zYhzw7sL7oZeI1/sCdvz4hBrMUj3u4ecOFrbG7Bg+lbFWwGbDURN56DZJsPDwIULs/QJiGiuiP/u37j8htLHROi2OdF1pEYZi3Nns0HNMoletRkRYbFzPlciIqK5aAjvNeoxuCZLGXeOyzYR5829tReBioo5nyPRsgqaiIDJpUuX8Nlnn+H999/HoUOH8P3vf/+av/e9730P7e3tyu2f/umfZnOaRItKs7VZiv77XemwiTxKpQG8WEwavxtXImqzv/QS0NER/MVLSoC9e2dn4kRERDNElM25ukzXbSXJ0Grk78DTTf1o7lObwDcPNuNw4+HAFykqApKSpn4TUaKLu+yIFrVPaj5BZW+lMh5yevDRqSZk9gwqZbkyxvUy0YZoUbDj/nmZKxER0WxJjUhFSniK+sBNBXDptcqGI5Gt7ddqawU+/xwYl7lNtBzNWtCkoqICH3/8MX75y19i06ZN2L59O/7v//2/ePnll9HWpi74TsZsNiMpKUm5iUwVIgJGPCN4o+INZSya244vzVWUpP63kmBJQFLY2GLQgQNAY2PwF8/NBe6/X671TkREtMCtS16HgtgCZRwfbsTW3LEG76PAJ5c6MOJWyw182fglWgZb1BcQmwx27Zr6Dbq7gYaG2Zk8Ec264y3Hcbz1uDJ2eXx451wrktr7ofONwmLUITchLGDDUW7SSphXls3TjImIiGbPxtSNyn1dmAntq+QKIyJg0jOuJ+DAyADsbY3Auav6AhItM7O2Onr06FGpJNf69euVx2655RZoNBocP66evE7mhRdeQFxcHEpKSvBXf/VXGBYlEqbgdDoxODgYcCNaikSA5J0r70hfYH5VnUPos7uk+6lRoYg06wOyTKSLwJ6eaze0TUsDHn0U0I6V8iIiIlrgxHfcvSvulfp3+a3NiEJ6tFnZUf75lS7p+9NfpkeU6fL4POqLFBQAsUHK8LAhPNGi1G5rxye1nyhj3+goPipvR/+AA9sau2DQabAiMVzJThPSI9KRsmEXoFNLdRERES0VxfHFCNWpPbw02wswNFaeUpTo8p8zC1J1ky++ADzjzpuJlplZC5p0dHQg4aoGmzqdDjExMdKxqTzxxBP4/e9/j4MHD0oBk9/97nd46qmnpnz+j3/8Y0RGRiq39PT0Gf0cRAuF2ClX0aPWley3u7C/olMZrxprgiuEIARliWVqlkmwtErx3+mTTwIGuRY8ERHRYmExWHBv4b0BgZS9xYkw6uRT3KpOm1zGckyvoxcnWscFQsTmgg1qjecJrlwBrNZZmj0RzQax6PNRzUcBfYwOVXWjvseOXfUdSHC6UJgULgVO/OLMcciJzgGKi+dp1kRERLNLr9VjTfIaZRwfY8GVojTp/rDLK2048usY6oB3oB84eXJe5kq0KIMmf/mXfzmhUfvVtyviAvMGiZ4n+/btQ2lpqdQT5be//S3eeust1NbWTvp8EVixWq3Krbm5+Ybfm2ihah1sxWe1nyljj9eHDy62w+31KWW58hPClOP5sfkIN4YDTU3BG3hFRQEiKBmq7jYgIiJaTESJrvHNLcNNeuwpSlTGByu7YB93Efhlw5ewu+zqC6xeDejVTM0AYsfdqVOzNHMimg2Xuy+jydqkjEXw9FzzALL7bFjf1ouCxPCAxu/hhnAUxRUhRJwPi3K1RERES9T6lPXSJls/7aZcDJjkDbQd4xrCe0e96LR3AocPixI/8zJXokUXNPnzP/9zqV9JsFtOTo7Ui6Srqyvgdz0eD/r6+qRj0yX6oQg1NTWTHjcajVLPk/E3oqXE4XbgtcuvSV9afl9WdSs1J6PNBuwqTFDqMYsvwN3Zu+WFns/UQMsE4vlPPAHwvxkiIlrk9ubulXaK+4lF0cKxPl+ij8HRul7lmNPrxMGGg+ovm0zAqlVTv/jp0yxNQLRIiPJ7n9UFbjQ6XN2DULcHd1a1IDvOgshQNUhq0plQmlgKrUYLbNvG0lxERLSkxYTGIC8mTxnnJ0fgeG6ydF+UfvdvzPVv3h2120X/hXmZK9GiC5rEx8ejsLAw6M1gMGDLli0YGBjAaXGhOebzzz+Hz+dTAiHTcW6s8VBysvwfMdGy62NSGdjH5ErHIC62yqVCdNoQ3FmWHFBeQARMpAbwIuMrWObV2rVyaS4iIqIlUG7ggaIHoAlRvw93FMQp34+X2qzotqm75E63nUbnkFriMmiJLtFb79KlWZo5Ec2ko81HA86bzzQNwOZwYV91G1K1IYgPNyrHdBodShNKYdAagNRUYOvWeZo1ERHR3NmQqp736rQaaNZkoMtikvbddg2q58t2tx2DzkHgyBFABE+IlplZ62lSVFSE2267Dd/73vdw4sQJfP311/jjP/5jPPbYY0hJSZGe09raKgVZxHFBlOD6+7//eynQ0tDQgHfffRfPPPMMduzYgbKysf4MRMvI6fbTuNJzJaCPyYEKNYNrV0EC4sLUiz+xY2B7xnbA6wX275/6hUUZkp07Z2/iREREcywlPAU7s9TvNlF+Z2NWjHRfXASKLE1/g8tRjEpNopWGl4mJQFbW1C/OhvBEC57NacPhpsPKWJTlO9nQh5KuART2WJEZaw7IzBYNcUVfJOm8+IEHAK12HmdPREQ0N8S6UZRJ7Ylblh6NQ9mJkzaEb7W1Ai4Xs01oWZq1oInwwgsvSEGRPXv24I477sD27dvx85//XDnudrtRWVmJYbGDD6IPtQH79+/H3r17pd8TpcAefPBBvPfee7M5TaIFyeV14fP6z6fuY5IcgZUpEQH1mO8vvF++GDxzBuhVS5FMIHbShYfP7gcgIiKaY1vTtyLaFK2MV2dEKaV4WvqHUdet7pKr669DVW+V+ssbN079wq2t8o2IFixx3izOn/2+rumB2T6CW2vakBhhCuhjIoKs0aFjfyv27gViY+djykRERHNOZGaL3iZ+4lzZm5+E1ggzXF4f+ofdyrFue7f83Soawjsc8zRjoiUYNImJicGLL74Im80mNWn/9a9/jbAwtVl1VlaWFMHcObbjPT09HV9++SV6e3sxMjKC6upq/NM//RP7lNCyVN5VjmG3HFAUvqrpUfqYxFgM2H1VH5OHVj4k75YTTbq++GLqF7ZYWH6AiIiWJFFuR/Q3Ucca3JSv9jo5XN0Nr0/dPSeyTby+sZ5hK1YE7/PFbBOiBavd1o5zHXJZZ6FrcASX2624s7IF5tFRpEWHBvydyIoayyzLzwfWqwtHREREy8GapDXQhmgDsk2+zFKzTfxEdrb4jpXWmXguTMvMrAZNiOjGiGDiydaTynjY5QnoY3JHaTL02sA+JplRmfLgWvUmRZDSqJb0IiIiWkoK4wrVBVEAufFhSI2SF0wHHG6cb1b7HfQ5+nCidewCUJTmWbdu6hcWfU1Yz5loQZ43f1zzsbSw4x+Lcnx5vTZkWO1IiwoNOG8Wfx9EHySYzcA99wBjm5CIiIiWC7HhtiShRBlnxZoxkByNxigLrA43HK6xTUUA2mxtcsmuY8fkUl1EywSDJkQLkPhSah9qV8aX2waVnbFlqVGT9zERbDY5aDIVUXpANIAnIiJaokQW5m15t0lZmP7xzQXxIi1Tcqy+V9qM4Pdl45ewu8aCISJoMlVfA48HOHt29j8AEU3biGdEyhhrtDYqj9V0DaF1wIENrT0w6bVIjDQpx0J1oVJpLsndd7NcLRERLVvjG8KL8+Wy1EgcyUiQxp02NdvE6XWi19Erl+c6dWpe5ko0Hxg0IVqATrapWSYiou/PMhFK0yKV+2GGMLWPiSDKcrnV+pMT3HILm1wSEdGSlxSWhDXJa5RxQoQJxcny96fL48Oxut6ARdfP6j6TB6KM7MqVU7+wqOfsk3uLEdH8EWX1RJbYT47/BMdajgX0ADxc04M4+wgyB+zIiDFDMy6TRGw2ErXcsXo1UFQ0T7MnIiKaf6nhqUgOS1bGxSmRaIkOQ2u4Gd02Z0BJ29bBsd5+YpOu2EhEtAwwaEK0wDjcDqmfiV9j77CUHimIC79os0E5tjF1o9zHROjulhvATyU9HSgsnMWZExERLRyidKVBq35nbs2NVUr0iM0I/j5hguiFcKXnyrUbwlutQE3NLM6aiK6lqrcK/3bq3/Bh9YcB/f+EM00DGHS4sb61FxGhekSb9cqxaFM0YkJjgNBQ4Pbb52HmREREC4fYfDs+2yTUoEVBUgSOZMRLAZPecefK/SP98nfu0BAzr2nZYNCEaIERCzcenxq5v9CiZpmUpUUp98UuubXJ40pt7d8v0lKmfuG9e1mzmYiIlg2Rjbkjc4cythh12JAVI90XX5efV3TBN+57893KdzHkGgLS0oBkddfdpNkmRDRvvUtevPgieoZ7Ao71D7vw3vk2HKntQajbg5LuAWTGmNVs7LEsE2ksStWyvx8RERFKE0ph0qllLFelRaE2JhydFhM6BkfkXiZjKnsq4Rv1AV9/DXjVnidESxWDJkQLiPhCOtWm1oi0jbhR3zsk3Q8z6pATN5ZVAqAorkhaEJI0NACVlVO/sCg/IDJNiIiIlpHNaZsRZVI3HKzNiEJkqLzzvM3qwOnGfuWY2D0nAifSpeEGddfdBCLTpF/9PSKaG6fbTweU4hJG3F58UdmF3x1tRG23fM5c1tGPtDCDFCj1E31MpOxsETQJlk1GRES0jOi1eqxJUkvaJkWakBgZiqMZCRh2eTHkVDf0Wp1WKXAyKs6Dy9XqKERLFYMmRAtI/UC93GBrTHmrVUkeKUmNhEaj7pZT0ijFEz4bq8U+GY1G7mVCRES0zOg0OuzN3auOtRrsLU5SEi+P1vWia3AkoOzPmfYzQEkJYFJ33QUQ37vBymES0YwTWWCf1arnuyJL7ExjP35zpAHnmgeUrDGLTovHvS4py8RPG6JFVlSWupEoUu0PSEREtNytT1kfMC5Li0RlXAT6Qo2o7bbD7VX7+XXaO9FobQQOHw5e6YRoCWDQhGgBGZ9lImpIlrcOSvdFKYGSFPUCL84ch8zITHlw+TLQOtaUazLr1gGxsbM4ayIiooVLZGZmR2Ur49SoUKzPlMt0+Xyj+PhSh9Q82k+U/+nzDgGrVk39oiJowrIERHPmQN0BOL1qbfVDVd04VN0Np1v+71CnDcGm7Bj8x/QwZOlCAspy5cbkqv2NNm2a+8kTEREtYLHmWORG5yrjFYnhiAkz4Vh6nJTRWdVpCyhp2zDQgM6GS0BFxTzNmGhuMGhCtEDYnDa1CS2Auu4h2F1yKqQoyxVm0gXsBJAuBsWCjehlMhWDAbj55tmdOBER0QImvi/vLbwXRq3aw2BzTiziw+Rxn92Fr2vULE+3z403K96Eb924vmFXs9t5oUg0R1oHW3G2Q206K7LDzrUMyIMQoCg5At/akoUtuXHIrm4P+N2MyAwkh431KEpKAjIy5nTuREREi8GW9C0Bmdn3rk5BXVocBo162EY80vrU+P4mYu2q9+O3mG1CSxqDJkQLhCgHIjXVmrQBvJplotfosTpptTw4dSp4XfVt24Cwsb4nREREy5Toa3JH/h3KWKsJwW0lSdJP4WxzP5r6hpXjLYMteL37SwynxE/9ouI7mIhmlVig+ajmo4DxF1XdkJsPAdty47CvOAnhJj3C+oYQ1SEHU0TfP3G+nBOdo2adiCyTcRkoREREJMuLyZOys/0iQvW4a00aTmbK58I9Qy609DuU46MYRUX5QfQf/3Je5ks0Fxg0IVoARLBENLf0E7tem/vlxZuoUD0yxtVlLkkogUlnAkZGgC+DfEGJYMkWdbcAERHRclaWWIbi+GJlHBtmxPa8OGX86aUOqQSB3+Xuy/id4Qrq+uvg8alNMBUNDUB39+xPnGgZO995Xgpi+lV22tA2IC/aRJkNWJMRpRxLvdwiZZQVxhViXfI6KViqMJuB0tK5nTwREdEiIjKzEywJAU3hU3avxJBBrnrSOuBAt00tlSnOjytf+VeMOtXHiJYSBk2IFgDReHbQKfcvES6OyzIpTYsKqMusNID/+mtgWN0VO8GuXXJ5LiIiIpK+S+8suBPhhnDlsdXpUUgf25gw5PTg8ytdAaUHOtOjUeNsx/GW49LC7fhjEmabEM2aEc8I9tepZWhdHh8OV/co45sL4qHTyJez+hE3NvWbsTF1I5LCkgLOnZUefzq11C0REREFEptznyh9QsrW9MtOiYRrc54yrusZwqDDrYxH+rtQ98Hv53yuRHOBQROiBeBk60nlvtvrw+V2OWgiyoasTI5QjqWEp0g32GzAsWNTv2B8PLBmzexOmoiIaJEx683SLjo/sbC6d2UijDr5lFg0unz1VLOyk92n1aAjP1nqc1LTV4PyrvLArJPz5wGXa+4/CNEycKjxEIZcQ8r4ZEMf7E75v7/sOIt081vfHoLssHRoNdqJLyQCKxvGNh0RERHRlESW5uMlj0tl4f0sN69AWIK86UjsHxLnyx6vWlp+4MAHgFXd+Eu0VDBoQjTPeoZ7UNtfq4zFF5DTI38BFSSGI9SgXvxtSBm74BNludxqdH+CW26RLxCJiIhoQs1msRvdT/RC2FOUqIzbrSNS4OSDC20YGHahrSAZo2Ob1nsdvbjYeVHtQSZKZZaXz/lnIFoO58fHWtQNQuK/xTNN/cqmIpFl4qfzjmJbh35idonfypVAhLoJiYiIiKaWGpGKB4oeQAjk79VRvQ64rQyRoXIgxeMblXqc+NnsfbB9+Pa8zZdotnBVlWgBZZmIsh/nm+UGllc3gBepksUJxUBvL3DmzNQvmJkJFBTM3oSJiIgWuVtzbkWcWe1nIjYp3Lc6FTEWtaxlddcQfnusER+32dCZqPZGsDqtqO1TNzuwRBfRLDR/r/5IDU6KrJOqbnh9cnm8NRnRUj8Tv1t7oxDmvKp03niiATwRERFNW1F8Efbm7lXGPbmJiChIUsZdtpGA5/cc+xxoUXuQES0FDJoQzSOnx4lzHeeUccfgCLrGGmslhJuQFGFSjq1KXAWD1gAcPAj41IvICW69VdQbmd2JExERLWJ6rV7aQacNUbM5s+IseGpTJvYUJsI81vDS5xvFueYB/MIZElCGoNXWinZbuzxoawPq6+f+QxAtUV83fx2QhV3fY0ddj126bzHqsDErRjkWMWrE2lr52KRSUoC0tNmdMBER0RK0OW0z1iSNlX0PCUHnjkLpe1gYdnmVkplCx1AHfB99KNfvIloiGDQhmkcXOi/A6ZWDJML4LJNV6ZETG8C3twcvA1JUxAtDIiKiaRA9wkTgRKdRm0NrNCEoTYvEt7dmYVN2LHRa+Xv4jNmEszZXQCP4qt4qDDoH5cGrrwJdXXP/IYiWmCs9V3Cg7oAy9vh8UpaJ3015cTCM9SAS7u6Lg37cos0EW7dyMxEREdENEOtROzJ3KOPB+AgMr0xRxt1jG34Fsa41UFPOsrW0pDBoQjRPxMLLidYTylhE6au65GaXJr0WKxLlRltCbnSuXEbk88+nfkFxQbh79+xOmoiIaAkRZS9/sO4HyI/JD3hcLMpuyY3F05uyEKrXYjQkBAcjwtDUN6w8ZxSjUmN4kTUKhwP43e+AfrnnAhFdv86hTrxZ8ab035b/XPnzii70D8t101MiQ7EiST0/ztDHIe9KkGBlUhJQXDz7EyciIlqiokOjkRWVpYyHd62EVysvJfcMOeEbt6FIysLevz94/12iRYRBE6J50jDQgO5hdedceatVKgMilKREQjf2RSRIDWsbG4Hq6qlfcPVqIF5tiklERETXFm+Jx5NlT+KZVc8gKUyt1SxEmvW4sywZmpAQnE+KRsugU7pA9HN5XbjUfUnuvWCzyYGTIXkDBBFNn91lx0vlL0n/TfmdbRrA5fZBpfn7rsKEgCzse7piEBJsYUZsJmKWCRER0TeilOgSe3WjLGgtyVAawvfb1e/tnuEeuPt6gLfeArzeeZkr0Uxi0IRonozPMhGNLS+2WqX74tpOlAbxizJFIT8mT47YT0WrBXbunN0JExERLWE50TlS1sn9hfcj3KDuZk+LNuPmgnjYDXoczYhHXfdQQA1nUaJLlOqSSnf19cmBE5F5QkTT4vF58MqlVzAwMhDQx+Rwjbq5aF9xEuLDjcp4Q9gKxF2qm/pF09OB/MAMMiIiIrp+K+NXwqhVv4Nd2/IxNNb/b3yJLpEp2mXvAi5fBt58M3gvXqJFgEETonlgHbFKNZv9xALM0NgCTHZcGCJD9cqxDSkboKmuAZqbp37BDRuASDXQQkRERNdP7GJflbQKz655FiadSXm8LC0SxSkR+DojAZfiIlHZaYN7XGN40fyyfWisMXxnJ/Dii4BL3XlHRJMTwcYPqj5Ak7VJeax3yImPytuVXrKiv1DBuLK1YYYw7GnWA54gvUz27GGWCRER0QzQa/UoSShRximJ4TixQu6lO+Bww+VRz4mV8+FLlxg4oUWPQROieXCq7ZRSr1k4N64B/Or0KOW+aE67JnEVcEBtiDmBwQDcdNPsTZaIiGiZiQmNwUMrH0IIQpRgiigNlBgZivdWpOFKuBnVnbaAOs41fTUYco2V5hIbHd5+W6wIz9dHIFoUjrcex9mOs8rY4fLi3fNtygJMXkIYNufEBJwbP56yD6aLl6d+0dxcIEutv05ERETfzOqk1cp9UbY2ZE0G2sJDpXH3uNK14lxYOR8WTeEZOKFFjEETonkoQXC6/bQyFrXRWwfkMh7RZgPSo+UvHqE0oRTmyjqgK0iTy61bAYtldidNRES0zOTF5OGWnFuUsU6jwV2rUmAyGfDWygxUGAwBjeFFX5NLXZek73mJKE1QF6R8ENEyJ7JLPq39NKBc7QcX22F1yH1K4sOMUlmugD4mK+5B6pnq4AswIsuEiIiIZkxaRBrizHHKeGVKFN5fkY4RnVYq0SWVqR2Xga0QgRPR44SBE1qEGDQhmmNiQWXYrS6ynL8qy2T8heHG+NXBe5mYzcCWLbM3WSIiomVsa/rWgHIEYUYd7ipLhk+vw2vFmbjgAfrGNcB0eByo7KlULxzFdzizTYgmELtQX7v0mhRs9Puyqhst/fI5stmgw92rU6DXqper2zO2o8wbB1y8OPULr1wJpKTM7uSJiIiWGbFONb4hfKRZD3NqFF4pycLAKJRy80LnUGfA97v0vf3BB3M9ZaJvjEETonlsAD/i9qKiwybdN+g0KEqOUI5lRGYg+XwtMDg49Yvt2AEY1YZcRERENLMXiGJne1JYkvJYSlQoduTHY0Svw6slWTg15JK+z/26h7vRZmuTB+3tcsYJESnEQsrrl1+HzSWfAwuX2wZxoUXeSKTVhEjByQiT2uNvRewK7EnYDLzyytSBSLHxaNeu2f8AREREy1BZYhk0IeoycnFKJNojzFLgpNWhBk3cPjd6h3sDf/n0aaC6ei6nS/SNMWhCNIearc1otbUq48vtg/CMNZItSoqQAid+my0rgCNHpn4x0fh9/frZnTAREdEyZ9Aa8FjJYzDrzQGN4fMTwjFk1OOFlVko73NM6G9ic44tCH/+OeBVgypEy92BugNoGGhQxqKsx4Erncp4d2GCFJz0S7Ak4IGCexHy2muA1Tr1C69aBcTHz97EiYiIlrFwY7hUvtZP9B0Ta1gicPKvOalwjssODSjR5SfOiZmBTYsIgyZEc+hQ4yHlvijdcWFcaa5V4xrAhxnCUHiqEfCo0foJdu8GdLrZmywRERFJokxReLDowYDG8LesTEBUqB7WUAP2J0SjqVctvTmKUVzqHutv0tsLnDs3j7MnWjgquivwdfPXylhkab1/oU3qZyKUpEZKO1f9RLDyiZLHYfz0ANDYOPULa7XAzTfP7uSJiIiWufElukQJzYLEcOl+k8WEt1bnwqPXSuNeRy8cbrl3r0JkYF+5MrcTJvoGGDQhmiOiVEd1n5qOWNM1hIGxRpcZMWbEWAzKse3uZGiqqqZ+sfR0oKxsdidMREREityYXOzI3KGMjTot7ihLlkoJnUqJRc2IB71DTuX4iGcEFzovwOlxAl98Abjl73yi5Xwu/PaVtwM2EH16qVNp/J4QbsLOAjVTRJQAebT4UURdrJbLegSzdSsQHT17kyciIiIUxBYEZF+vHFdi/pDThwt7V8GrkwMnLYMtE1/g4EE2hadFg0ETojlyuPFwwEXi8fo+Zbw2U73I0/qA1ecmSWUcX6/59tvln0RERDRnbs66GdlR2cpYLPLeXBAPj1aDrzISUNdjD+hvMugcxKm2UxjobgZOqD3NiJZT/5LKnkr89vxv8fPTP4fTqwYWTzX2o65nSLpv0mtxZ1kydONKe+zN3YvMfh/w8cfB3yQ3l71MiIiI5oBWo5V6m/glR5qUDcBtAw5UGQxoWJUpjduH2uH2XrVpqKsLuHRpbidNdIMYNCGaA51DnajoqVDGYlGlZ2w3amKECZkxaqR+e6cRpn61MeYEa9YAKSmzO2EiIiKaQOx8f3Dlg1IZTb/S1EisSAzHhaRo9Bj1qOq0wT3Wr8zfDPN8x3k0vv8CRh1XlSkgWqJEptXR5qP4v8f/L14qfwl1/XUBx5v7hnGktkcehAC3FSchMlRt/F4cX4xNofnAq68G35EaEwM89BCg4WUtERHRXJfoEiVr12aom4BPN/ajtSgVrlCDtHFCZJlOwGwTWiR4dkk0Bw43BWaZnBiXZbIpO0b6ohH0Dhc2VMk77iZlMgF79szuZImIiGhKImBydX+TPUWJiAwz4VBmIoZdXlxstWLI6QnocVLffhlfvvj/nVjfmWgJsY5Y8UnNJ/jfR/83Pqn9BP0j/QHHxXlwS/8wPrzYrvSC3Zwdi6w4i/KcOHMc7jGtQsivfw0ECzQajcDjjwOhatN4IiIiml2JYYnIispSxoXJ4TAb5H67Nd029Lt8aCzNkMattlYpeBKgrw84f35uJ010Axg0IZplPcM9uNSlph829g6jc3BEuh8fZkT2uIvEHdVuhI2qu+wm2LkTsKjPJyIiormXHZ2NnVk7lbFBp8FdZcloTI1Bp8UEl8eHS21WdI193/t5j36Nn37+/8NH1R9hYGRgHmZONLNEEERklYi65W9cfgP/fPyfcbTlaEAZLsHj9eFSqxUvHG/C66db4BgrY5cZa5E2EPkZNHo8OZwH4wsvA3b71G8sNhw9+CAQr/ZAISIiormxNX2rcl+n0WB1epR0X2yIONPUj/YVKXCajXB5XVLllQlEvz+PusGIaCGSQ4FENKu9TMQO08l6mWwcyzIJ8Y0i70QNVluTAOMULyQuCjdsmKNZExERUTA3Zd6EJmsTavtrpXFsmBFPbMrCxeERJB6tlC4aRTlOkXGSFWuBRhMCrceHlNNVOG4Mwcm2k1IJItFQU5wneH1eaSeeuB+qC0VSWBJiQtVsVKL51ufok3r0iADJkGtIypoSARP/ee5kbCNunG+xorzVGtDvR4i1GKSyXP5/4xqPF081RSK66di1JyMyrwsKvvmHIiIiouuWH5OPeHM8uoe7pXFZWiRONPTJmyTaB7E5J1bqbbLiaBWaB5ul89qAc1qrFTh7lmtctKAxaEI0yxeXF7suKuOWfgfarQ7lQjEvIQxalwcrv7yMgr4QhCeGT/1it90GaLVzMW0iIiKaRn+TB4oewC/P/FIpQRRm0mHj3pUY7ehDSL18Edllc8Lu9Erf+aEGLZKr29GRn4zB+AjpHGH8ecJkpcAyIjOQGZmJzKhMJFgSpPclmmuiL897Ve/B45verlCRZXW6qR9VnUPSpqHxkiJMWJ0RhfyEcGg18gKKyebA3WfsyBidxrluaSmwbduNfRAiIiL6xkQARGSbvFP5jjQ26bUoSYnAueYBKXBysXUA5rwkZFxsAoaGpbWxWHNs4IscOgSsXg3og1RbIZpHvOoimkVfNX0VUL/xeH2vcn9DdgxC7U6s/fAsYlv7pMWQKRUWArm5sz1dIiIiug4WgwXfWv0tJFoSlce0Wg2Md65CbnwYxtaDYXd5cL5lQGoSb3d4UHC0SsoyvRaxm/9y92V8VPMRfnbqZ/gfR/4HPq39lH1RaE41W5ulRZFrBUxEcKS+x443TrfgxRNNqOywKQETkWlVmBSORzek47GNGShMilACJqGDDuw+UI8in1qma0ppacA998jluYiIiGjelCaWSht8/NZkRCtfz+earXADaFgt9z4R2SYT2GzAqVNzNl+i68VME6JZImqVn+s4p4xbBxxSpokQbTZgvWYUZR+cgcHhQrQpGhHGiMlfSKcD9u2bq2kTERHRdYgyReG7a7+L96vex4XOC9JjgwmRCClORXF1hxQocXrkDRR9dpd0C++zIyQuEr4teddVfmvYPYwjzUdQ1VuFp8ueRqQpctY+F5EgNv+If9vjNwG1DTjQP+yC0+3DiMeLEbcPTrdXyqoSj48ndp6uSouSynZYjJNceo6O4ubTvVgbUXDtLKqiIuC++7gjlYiIaAHQaXTYlLoJB+oPSOPIUD3yEsJR3WnDsMuDKx026HMSkSmyTawDGHQOTlz3Er1NxPd7lNwThWghYdCEaJZ83fR1YJZJnZplcodFi7WfnIfGKx+fMstELKTcey8QHT37EyYiIqIbYtAacH/h/UiLSMPHNR9L3/+163OxobUPpWmR6LQ60TE4AvfY975txAN8Vo6Xh7xwmI3wjY5CJJ7IP0cRYdIjNSoUKVGhSI0ORdhVi809wz148eKL+M6a78Com6oZGtE3d7rtNDrtagPXy22D+PRyxzV/L8pswNqMKBQlR0CvnRgMCUEI8mPzscMahVQcR4g/LWuq8+Hdu4Ht25lhQkREtICsT1mPw02HpYbvwrqMaCloIpxu7EdxSoSUbSJK0ovM1eKE4sAXcDqBt94CvvUtkZY6Hx+BaEoMmhDNAlFO42zHWWXcYR1BU9+wdD9eG4K7LzcpAROxQ1XcJjAYgAcfBFasmLuJExER0Q0RGSMbUzciOSwZr156FbYIoLEsE9ln66XAR3KkCd1DTrRbR6SG2AavD1uutODtlRkTXqtnyCndREkv/869tGgzNmbFINIs77IXC9mvX34dj5c+zj4nNCtEZtPn9Z8rY/Hv9nC13KtnKimRoVibGY2ceAs0kwQ4jFoj1iSvkf5bidGFA//yL8EDIaGhwEMPsUwtERHRAhSqD8WapDU43npcGidFmqSNP6LSisg+FWU7Q7LikXHBAvR3SyVmxe8EaGwEjhyRN0cQLSAMmhDNghOtJwLqPp+o71Puf3fQBpNTVHeUieauE0REAI8/DiQnz/5kiYiIaMakR6bjB+t/gDcuv4HGEh8S6zphtg5LPR0SI0xICDeif9iNdqsDxX2DqBq0ozE+Ulpg1o6tHVtH3KJqkcLqcMPqsKKhx47HNqYj3CQHTqr7qvFJzSe4Pf/2efq0tJQdrD8Ih0ftn3OsrhcOt1e6nxFjRnFKJEx6DYw6rfRTlOISt8nEhsZiU9omrEpcpWZHHT4MWK1TTyApCXj0UWZcExERLWBb0rdIa2CjkE9e12VGS0ETf7ZJTnwY6tbloGz/Ram3SUFswcQX+fxzICcHSEmZ6+kTTYlBE6IZJtIST7aeVMaidnldz5B0v2jYgY19VmVHnajnOCHLRARKRMBEBE6IiIho0RFNMZ9Z9Qwudl3EOZsWGW8fDMhIibEYpJtQ4nPi5JZM+HTqYrPT40X7wIh0wSlunYMj8PpGpYby75xrwyPr02HQydklYmdfrDlW2rlPNFM6hjpwqk1tztorZT7JAQ6dNgS3rkxUgnfBZERmYGv6VmmBJCAjamhIDppMRZwHf+c7cuY1ERERLVhiTUuU3SrvKpfG2XEWqY+vyDQR57FioxDSYtGel4SQmnbp3MCkMwW+iM8HvPkm8IMfsHcZLRjM5SeaYaL5+/hdeWca+6WfOq8P3+7qDyhVILJMAhrAFhYCzz7LgAkREdEiJ77fyxLL8PS9f42CXQ8h0jh50/bQoRHknaiBdmwHvyB27mfFWbAtL04KkHx3e7ZUoksQZbs+Km+Xep/4fVT9Eap7q+fgU9FyMDo6Kv2b8u8YFeMvqrqln8KGzJigARPRr2Rl/Er8wdo/kPruFMYVTiwhd/Ag4ApsGh9gzx4GTIiIiBYJsUFi/DmwyDbxO14nV16p2ZiH4TAjGgYaJn+Rnh7g009nf7JE08SgCdEMEo1fjzYfVcZ2pwcVHYPS/R1tPcjV+AJ2ocaExqi/nJcHPPIILxCJiIiWEHHhmPLgt7EmewvWJq9FvDl+wnNSqtqx+fVjyDzXAN24Ep5+ZoMO965OhXEsu0TUhz5UpfaWEIvbr11+DZ1DasNuoht1qfsSGq2Nyri2ewjNY735IkL1AQshZr1ZCoqIeuZb0rbg/sL78Wdb/gyPFD+CtIi0yd+gqws4c2bqCYis67KyGfxERERENJtSwlOQFZWljAuTw5UNFg29drQNOOA16FCxowgd9k6pb9qkTp4EqqrmatpEQbE8F9EMquiuQP+InFkinGsekMppxA85cM/AIHTRZuVYekS6mmUi0g/vugvQMI5JRES05ISFAbfcgoj335fKF4i+Z0OuIemCUezKF+cD4v9Wt2rg7rSiMT8B57PN6AiRy3sKopzXXWUpeOtsq5RlIs4xROmDVelRSnnQl8pfwg/X/3BiyQOiaRL/jj6tVXd5erw+fFnVo4x35MdDp1XPV+/IvwMlCSXX9yZiF+n4pj1X27cveHN4IiIiWnC2pW9Tskh0Gg02Zcdgf4W8oedoXS8eXJuGwYRINJRlILGmEUXxRZO/0DvvAH/4h4DFMpfTJ5qAK7REM0SULPi6+Wtl7PL4cKHVipDRUdxR24aUcHUBw6g1It4ybqfp7t1A1FW9TYiIiGjpWLcOSJN33us0Oqn+s9iVlxyejKSwJCSGJUrnBinGOGxp8uGHR134c812RBvUsl7pMWbsLkxQxl9UdUnN4f0GRgZwoO7AHH8wWkq+avoKg045S9rfwNU24laav+fGWwLKzBbHF1/fG9TUyLepiFK1WepOVSIiIloc8mLyArJMi5IjlPKyImPVn7XaWJaJarMDdpd6DhvAbmeZLloQGDQhmiGijEGbrU0ZX2qzwun2Yk1bH0q9XqVhqyC+SJTazikpwKZN8zFlIiIimiti5/z1ZJW6XAj//Ct857QPsQNq74eS1EilPJLYrP9heTv67Opx0bxbNPEmul69w7040nxEGQ+OuHGyUa5DLrKhbi6IV7KkRWbU7fm3B/bmuxbR5DXYIoj4b+PWW7/BJyAiIqL5Is4JdmfvVsZaTQg258QqY5FtIjYbj2o1qLipCHX2lqlf7Px5oFEtFUq0pIIm//iP/4itW7fCbDYjapo76MV/PH/913+N5ORkhIaG4pZbbkF1NZta0uLwdZOaZeLzjeJM0wDCnW7sbOhASpSaZSJ2l4pdpcrF4d13sywXERHRcpCUJGeXXofwXhuePO5A3qk6pVn89rw45MWHKZmtX1R2KU26RX8TqYl3sPJHRFcR/14+qP5AKh3nd7i6Bx6v/O9odVoUYsOMyrH1KeulDKnreAPggw/kfiZT2bABiFUXV4iIiGhxyY7KDuhtsiIpXCoxK4i+Jo1j2SaOiFAcKY6QytVO6cMP5Q0XRPNk1lZqXS4XHn74YfzoRz+a9u/80z/9E37yk5/gZz/7GY4fPw6LxYJ9+/ZhZGRktqZJNCO67F2o7lMDfNVdQ1Ipgz217UgwaKUGrn6iFIcInEi2bJGbXRIREdHysH078PjjQGLitH8lxhiJ3e0mbHj7BKLa+6WdfPtKkhAx1mCzqW8Ytd32gOzXy92XZ2X6tDSVd5Wjrr9OGTf22lHdaZPuh+q12JQToxwL1YViV/au63uDr74CTp+e+rjJBNx88w3MnIiIiBYKcY66K0s9R9CEXJVtUitnmwjt+Uk4H+Wc+sU6O4ETJ2Z3wkTzETT5u7/7O/zZn/0ZSktLp/V88R/N//k//wf/5b/8F9x7770oKyvDb3/7W7S1teHtt9+erWkSzYijzUcD/i2fbuxDZv8QCnusSI4KVY6JUgap4anyIDoa2LlzPqZLRERE82nFCuCHPwSeeELpc3ItYtNFvjYBqz69gNimHui1GuwoiFOOH6rqlpp2+4lm3qKpN9G1ONwOfFzzsTIW/44OXlEzQkRmk0mvVcai9IZZb57+G4gSGweu0WtHBEzM1/GaREREtCBlRmVK/U388hPCEDeWrdo5OII6fz++kBAcWmmB1Stnn0zq4EFgKEg2CtEsWjA1gerr69HR0SGV5PKLjIzEpk2bcPSouiBNtNDYnDZc6LygjFv6HeixOnBLbTssBh0iTGqWiWjyatSNlTYQdc318g5RIiIiWmZEL4iCAuC73wW+/W0gN/eav5ITnYMoQwRWHrqM8O5B5MaHSc3h/f0nRNNuP6vTGlA6lGgqB+oPwO5WM5VONvRhwCE3f0+JCsXKlAjlmCjJtS5l3fRfvK4OeOed4M8RJblEaS4iIiJaEsZnm4jsky25k2ebOMNMOJorl++alNMJfPbZ7E6WaKEHTUTAREi8qlSBGPuPTcbpdGJwcDDgRjSXvmz8Et5Ruca4cKqxH2vb+xA/PILkKFNAg8z0iHT5TlnZtBZHiIiIaIkT5wlZWcDTTwPPPAPExAR5agjyY/Oh9fhQeuAiQodGsHNcc27RtFuUB/X7uvlr9DvUQArR1ZqtzTjVdkoZ99ldODkWfBMlNfYUJgScy96Rfwc0IdO8hBTXcK+8ErweucEAPPQQoFM3GREREdHilhqRihWxK5RxTpwFiRFyr9+eIadU0t7veLoGfZYg5xZsCk+LIWjyl3/5l9JJc7DblStXMJd+/OMfSxkp/lt6+tiiNNEcaLe143SbWp+52+ZEd7sV2xu7YNRpEDvW8EqIDY2FxWABjEbg1lvnacZERES0YOXkAKIf4E03AZrJT9PDDGFSqS7DiBtl+y8iUa/BqrRI6Zho2i2ad/uJpt6iTBfRZLw+L96vel8Zi12fByo64fPJuz/XZUYHNH9fm7wWGZEZ03txqxV44QV5h+hUxL/xRx5hfz8iIqIlaHz/M7FevPWqbBPfWLbJqFaDL4rUsvaTYlN4WuhBkz//8z9HRUVF0FuOuNi7AUlJSdLPTtHoZxwx9h+bzF/91V/BarUqt+bm5ht6f6LrJS4sP6r5CKMY+0M/OopD1d3YWd8Bk8eLpMirskwi09WazeHh8zVtIiIiWshE6c49e+SeJ1NsBsqOyoZOo4PZOozSA+XYmhktNesWqjptaOlXa0NX9FSgtq92zqZPi8exlmPotKvXXhXtNrQOOKT7EaF6bMxWs55ED5NbctQyykF5PMDLLwM2uZH8lO6+G8hTa54TEaJ/tOoAAE28SURBVBHR0iFKehbHFyvjjBgzUsd6/vYPu6RzVr8LYXb0ZCVM/WJirXj/fvkcg2ghBk3i4+NRWFgY9GYQKdY3IDs7WwqOHBjXJFCU2jp+/Di2bNky5e8ZjUZEREQE3IjmQnlXOZqsTcq4pmsInoYelHX2S1kmieFy6qEQbghHpDESiIsDNm2apxkTERHRopGQAHznO8DGjRMO6bV6KXAiRHZZsfp4dcDuvS8qu5VsAUFs8hBZJ0R+AyMD+KLhC2XscHlxuLpbGe9ekQC9Vr1U3Je7b/rN38WiRnt78Ofs2gWsWXMDMyciIqLFYmfWToRA3kwsNhVvzlHPV4/X9SnZJsL+PG3wvr9HjgA/+Qlw+jTgVUvkEy26niZNTU04d+6c9NPr9Ur3xW1oSK1bJ4Isb731lvIfz5/+6Z/iH/7hH/Duu+/i4sWLeOaZZ5CSkoL77rtvtqZJdENcXldAuQu314dDVd24tbZNGmfGWqDRqFkmopSBlHVy++2AVt4JSkRERBSUOHe47TZx0jzhkCjRZdFbpPsJ9V24p70HCeFGpVb0xTar8tye4R4crD84hxOnhUxkR39Q9QHcPrX/zVc13XC45QWI/MRwZMXJ/7YEEaArSyyb3otXVgLHjgV/ztq1wI4dNzh7IiIiWiziLfEoTSxVxmnRoQHZJtWd6hrxFU87OtdNPOcNIPpYv/ce8NOfAhcusGQXLc6gyV//9V9jzZo1+Ju/+RspUCLui9upU2qjwcrKSqmklt9/+k//CX/yJ3+C73//+9iwYYP0ex9//DFMJnXHPtFCcKjxEGwuNZXwVEM/shu7kGJzIDJUj2izGh2PMkUhzhwnL3iw+TsRERFdD9H34cEHgdTUSZvC+2VeasHjZvXU/khtL+xONbvkSPMRqek30fnO86juq1bGrf0OXGoblO4bdBrsLIhXjmlDtLiz4M6AkrNBFzLefjv4c/LzgTvvlAOCREREtOTtyNwRkG2yaXy2Sb3a20T4LGEIiFWPT6mvD3jzTeCllwCXa3YmTsverAVNnnvuOWkX09W3nTt3Ks8R429/+9vKWPzH81//639FR0cHRkZGsH//fhQUFMzWFIluSO9wL442H1XGVocb5TVduLm+U/oayIq1BFxY5sXkIUSkGO7bN08zJiIiokVNnEc88QQQHR3wsNiYEW9WF7hvutCADRFytonT7cX+ik7pfFsQPdjeuvKWlC1Ly9egcxAf13ysjD1en/TvxG9bbhwsRp0y3p6xXd78cy1ip+cbbwAOuSfKpBITgYcfZtY1ERHRMiLOI8Znm6RHhyJlLNukzx6YbVIzWI+2m1ZP/8Wrq4HXXhMLzDM7aaLZDJoQLVXiQtM7qtZPFGW5bqrtgMXtkZq/hxrUC8HU8FSEGcKAbdsmLHQQERERTZvFAjz1FBAqX2T65cbkQhMin9Lr3F78sK0L4Vp580Z9jx2X2+UMAqHP0YcDdWr/QFpeRADt/ar3MeIZUR47WtcrlccQEiNMKE2LVI7Fhsbipsybpvfihw4BjY3BA38PPQTcYP9LIiIiWjrZJpuzA7NN/Jt8hM81jcD27dcXODl/fmYnTMSgCdH1qeypDChn0Nhrh6umE6s7+qRmmanR6kKGXqNHVlQWEBl5fX/wiYiIiCYjyhU8/jigUzMBTDoTMiMz1acM2PEnLnVR/MuqbthG1N4Vx1uPo76/fg4nTQvFhc4LqOqtUsbtVgfONPVL97WaEOxdmQjNuGxpUZZLp1H/rU2poQH48svgz7njDiBezYoiIiKi5ZVtUpJQoozTY0KREjku26RrXLZJXw1aNhbK57wJCdN7g48/BmxqCX2imcCgCdE0NQw04I2KN5Sx1zeKw5c7cVtVqzTOiDFDJ+qOj8mOzoZeO1aWS+yuIyIiIvqmMjKAu+8OeCg9Ml3ObB2zsb0Xt0POinV5fPjsslqmS3j7yttwepxzOGmabzanLbAsl8//70Ieb8qORWyYXNpNEI3fc6Jzgr+o+OWKCuD114OXxSgtBVZfR6kNIiIiWga9TWKUY8frArNNvmj4AlixAvjhD+XefjHqcyc1MgJ88AHLdNGMYtCEaBqqe6vx+wu/D6gDfr55AIVVrYh1OBFm1CEuTC03IBYuksOS5cbvRUXzNGsiIiJaklatAtasUYaiPFdhXKFyISp8q60baV45cNLUN4wLrVblmNVpxSe1n8zxpGm+y3I5PGq/keN1fdLOTiEh3IT1mdEB57G3590e/EVbW0UTS+CVV4AhdXfoBKI87V13sfE7ERHRMhdviQ/INhEbj5PHsk16J8s2GWwBxMZksfnij/4IuOcewGye+g2uXAEuXZrdD0HLCoMmRNdwqesSXip/CR6fR3msvmcIVy60YEtTtzTOigts/p4fk48QUbOZF4lEREQ0G0S5o3ElC8RCt8hy9TP5fPiLvn5oRYNuAIerezAw1rtCONN+RtoUQktfeVc5KnsrlXHn4AhONcpluTSiLFdxovTT766CuxCqD+ydoxgYkBu+/+IXwXuYCKLhu2j8blQzWIiIiGj5mtDbJEi2ycH6g4HnFGvXyoGTYD76CLDbZ2HmtBwxaEIUxNn2s3j98uvwjcoLDkJVpw3vnWvD3soWaEdHkRhhlDJN/BItiYg0RQK7drH5OxEREc0OUfrzkUcCGmunR6QjwhihjDOdLjw7KNd39nh9+PRyJ3zjLkbfq3qPZbqWuCHXED6s/jCgvOynl9RybZuyYhA3riyX2AEqspYmdfEi8NOfyj+n45ZbgJSUb/gJiIiIaCllmxQnFF+VbWJSsk1qxmWb1PbXoq6/LvAFCguBEjVbZQIRMBH9TYhmAIMmRFM42XoS71S+g1GoiwuXWq34qLwdpe19SBscRqzFgMxYi3JcG6KV6z8nJQGbN8/TzImIiGhZiIuTs1rHiB17YsFblOvyu31wCCtH5MBI24ADZ5sGlGODzkF8VvfZHE+a5ooIjIj+NePLcp2o70WvXf73EB9mxPosdYenRW/BHfl3TP5ionfJm28Cbvf03jw/n+fCRERENMHNmTdf1dskVjl2pLYXPp+6BvdZ7WcB2SeS228PXqZLbO6oVDNsiW4UgyZEk2iyNgXsyhPONPXjs4pOWEbc2FXfgYRwI/ISwqAZV35LBEyMepOcMjiuKTwRERHRrCgrk8sVjDHrzQENvLWaEPxJ/wD0Prm/yZHawDJdp9pOoWGgYY4nTXPhROsJqSa4X9fgCE42jJXlChFluZKkfx9+dxbcKf37maC5WS7JNd3mqtnZctNWlqglIiKia2SbZMaYkTLW26R/2IVLbYPKsfahdlzsuirD1WKRy9QG8/77gEPdNEJ0I7iqS3QVUYrr3cp3lQwTEdUWtRUPVXUj0ebA0+drkWXRI/uqPiYp4SnSTdpVx1IERERENFfEjrvERGWYGp6KKFOUMk72evGsbUgpz/TZZbU8kyDOe9zeaWYQ0KLQOdQZkEXk9vrwUXmHUp5tQ1YM4sPVslzF8cVYGb9y4gv19gIvvQR41N5+UxKLGCLz6emnAZNcaoOIiIjoWr1NtufHKceO1vXC5VFL5H9e/3lAj2FJcbFcqmsqNhvwYeBGaKLrxaAJ0VUquivQM9yjjM83D0h/tMs6+qSASXGoToqEjw+YpEWkyc3fo6LkXiZEREREc9nfRDTc1ukCynSJsqF++6xDKBor09U64MDFVqtyrM/Rh4MN45pt0qImFhberHgzYIFBbP4RuzeFhHATNmarZblEdsmkZblEXfDf/x4YHg7+huLf3U03Af/u3wHr1zPbmoiIiIJKsCSgLLFMGadEhUqVXIRhl0eq9OI3MDIgZc8GEOtxd94ZfJOGKNM13T5sRJPgGS3ROGLX5eGmwwG78k7W9GBfdSvuqGpFblQo0qIDAyZZUVnIjc6VHxO768Y1ZCUiIiKas/4me/YoQ5POhNyY3MAyXX0D0HnlnXtf1fTANqJmlxxtPorWwdY5njTNhv11+9Fp71TGdd1DSpBMp9XgtpLAslwiYGIxqD36JC4X8OKLQL+6aDGp0lLgT/5E/rdnVDNXiIiIiILZlb0LOo284UfYlhunlL8/3dgPu3Pc5o/GQ3C4ryq3FR4O7NsX/E0++ACwqhuFiK4HgyZE44i6zx1DHeq4pgsPnK7BmvY+xIUZkBwl11n0E8ESETSRAiYlJXLTSyIiIqL5sGkTkJ6uDJPDkhFpjFTGKT4vnhm0SfdF2YPPr3QpZbpEWdJ3Kt+Bd6z3CS1OtX21ONZyTBmLBQdRjs3v5vx4xFjUDT4lCSVSaa4APp/cw6T1GkG0rVvl3iWR6r8xIiIioukQpWQ3pW5SxtEWA0pTI5UNzMfre5VjI56RgA3OitWrgby8qd9kZAR4++3p92UjGodBE6Ipsky0g8NY+dYppNqGlXTB8QpiC5Aema7u7rxWIyoiIiKi2STKIt17b0CZrhVxK6AJUU/5b7cNIX9YLtNV32NHZaccRBG67F2TX5DSojDsHsZbV94KOLf99HInHG45EJYTH4aS1AjluAio3Zl/Z0AGtdS75M03gcrK4G8mNgvdeussfAoiIiJaLm7KvAmhOnWtbVNODPRa+bz1Yusg+uxyaVHheMtxqVRXAHEOc889QGjgel2A+nrg6NFZmD0tdQyaEI1psjZJN0Hn8iDxzVMwji0qRJsNMBvUtMH0iHS56buQkwM8+yxgNs/PxImIiIj8xEaO3bsD+lWIrFg/vSYE/66/H3qvvJD+RWW3VDva73DjYSl4QouLzWnD8+eex5BrSHnsXPMAGnvt0n1xHntrUaISIBHNV+8vuh+h+nGLDE6nXJKrvDz4m2VmAvfdJy9UEBEREd0gUU5WNIX3E+cr6zOjlc0fX9eo/Ya9o16pBKk/S1oRESGXyg/mwAGgU828JZoOBk2Ixvh3VoZ4fSj6vBz2JjUVMHVclonYralkmGzfDjz1FGC5qg40ERER0XzZvBlISwvY7BFuCFfHoz58r70HIaOjGHF7pcDJ+AvSd668A9+o3PuEFr5uezd+eeaXAX1MeoacUt8av73FiQg1aJXxtoxtAcE0DA0Bzz0H1NVdOyj32GNKNhMRERHRN7EhdYNUqstvbWY0LGOblmu7h9A6oPYyKe8qx3tV700sJ1tcDKxaNfWbiM1CovSoyKglmiYGTYgAtNnapH4mos5hwdEqjNZ0wumRFwsiQ/UIM+kC6oMbQsOARx8FbrlFLoVBREREtFCIcxORCXBVmS6RXeC3y+vG7Y3yIntVp026KPVrtbVKJRBo4WscaMSvzv4KVqfa5NQ24sYHF9rh9ck7MdekRyMrVt3gI7Kld2XtUl+krw/41a+A9vbgbxYWJm8WClYCg4iIiOg6iGbwe7L3KGNRnmtLbqwyPlzdHZBdcqb9DH5/4fcTG8PffjsQpQZfJujqAj75hP1NaNq42ks0VopCyLjYhKTqdrT2q398x/cyEYsNqTmrgO9/Hygqmpe5EhEREV2TyAjYpS6MhxnCkBGZEXBBer/DgfWtcjaCaAovsk78Pq//HH2OvjmeNF2Py92X8bsLv5Oao47PMHnlZDP6h+Ua4HFhRmzLUxce9Bo9Hih6AFrNWNaJCJSIgEl/f/A3MxiAJ54IvhhBREREdANKEkrUEvgAViZHINZikO53WEdw4EqXshlEqB+olzaNBJyrmkzA/fcHLx968qRcqouBE5oGBk1o2RMlDSp6KpBQ14mcM/XoH3YrDTPDjDpEjMsyicwuhPkP/728EEFERES0kG3ZElCmKzMqU+px4hcXZsCD7b0o6LHC7vTgq2q1nJPb58a7le9OrBtN887usuOj6o/w2qXX4PGpZSaa+4bx6qlmDDk9Srb03WUp0I01VBVuy7sNceax89jWVrkkl13uezIlkVny9NNAirqYQURERDRTRFb0rTm3KmONJgQ3FcQr4/JWK94+1xqwwadnuAe/OP0LKes2oO/atm3B3+yrr4CDBxk4oWti0ISWva+avkJkxwAKv7oiLQyMr5coepn4G2Y6LSak//D/AxiN8zhbIiIiouso0/XQQ0rvNdGXrTCuUDksznFy4sy4v6oFqYN2lLdZ0dQ3rBxvGGiQSiDQwuD2uqXs6J8c/wmOtx7HKNSL/coOG9461wrXWHnZxAgTHt2QjkizXnmO+N9+bfJaedDdDbzwgtz8PZjISOA73wHSx/r5EREREc2C7Ohs5MfkK2NRWvS24iRoNSHK5hCRTTswlk0rODwOKeu22dqsvpDItE5KCv5mhw4BX345C5+ClhIGTWhZ67J3oeHS1yg9cBEa3ygGRzzSTkvBbNAiauxC06PXYuTRBxGbOK5hJhEREdFCJ8opibJKevmcJsIYgbQINfvEqNMiJyoUD15qRKLNgQMVnXB71Sbwn9Z+ikHn4LxMnWS+UZ8UvBLBkgP1B+D0qoEOseHndGM/Pipvh2+sbEV2nAUPrUuDeayJqpBgScC9K+6VNwMNDAC/+x0wrAbIJpWQAHz3u0C8utOTiIiIaLaIjFijVt2oXJgcgQfXpiFUL5cVFeVHXz7ZHFBSX2TdvnLpFbXHiVYLPPigcu47pS++YOCEgmLQhJYtUf/5vS9+jtJPz0E3luI3PstE9DIRF5ajISG4tKsEG9fcNY+zJSIiIrpBqalyxslY9mx2VDZMOpNyOCHciERtCL59tgbbztXjXLnaEFws0L9f9T7LdM0TEbD6zdnfSKXSbC5bwDHRv+Td821Sg1S/ktRIqSSX6Fnjlx6Rjm+v/jZC9aHA0BDw298Cg9cIhGVkAM8+C0REzPyHIiIiIppErDkWD618CNoQbcDa3GMbMhAz1uNElOh682yLlGXrN+QakjaWKMSGD3HuK7KugxFlukTghOe5NAkGTWhZEhf+H3/1HDLe/QI6l0eJWA863NJ9k06jNJ2q3FqA2JINSA5Pntc5ExEREd2wFSuA22+X7oom4CtiVwSW6YoPg6h+UNbZj81vn0DE4SvQjp0jVfVW4fnzz6NlsGXepr8cWUes+PXZX6N5cFzJCQC2ETc+u9yBF443or5H7UeyOScWewoTpDrg40tyPbPqGbmXjcMhZ5j0jWuaOtW/FdHDRPQyISIiIppD+bH56rnLGFFu9JH16ciIkR8TTeE/vdyBPrtaqutU26nAMl3ifObhh6cXOPnNb4Curln4NLSYMWhCy9LxM+/B8tIb0I+V4hKR6pquoQlZJo1lmejIT8ZNGTfN42yJiIiIZsDGjcDWrdLd6NBoJIepG0JE2YP0aPlCVO/1QfvFFWx44xgS6jqV/ia/PPNLvHrpVfQO987TB1g+xI7J357/LQZGBpTHnB4vvqrpwXNHGnCpbVDZFBlm1OH2kmQpaOLvxSdsSNmAR4ofgV6rB1wu4MUXgU75f88pFRUBjz567ZIWRERERLMkMyoTf7D2DxBnjlMeM+m1uHd1KoqSI5TAyedXOgOyod+reg9enzfwvEaU6rpW4KSpCfjZz4ADBwC3vJmaiEETWnbqq07A9ot/gd7pVv7QVnXapJ9CtNmA+HAjOnITUb8mC5mRmdIfbCIiIqJF79ZbgZUrpbu5MbkwaOXMWiE50gSLUe6D4XB70dFqReGXl5F5vlF5zuXuy/jpyZ/inSvvoN2mlvGimTPsHpYCJr2O3oBSXM8facSphj7lnNWg02BbXhy+vTULK5LCA15jT/Ye3JF/BzQhGsDjAV55BWgOzFiZICdnegsLRERERLMsJjQG313zXamsrJ9oCr+7MAERofLmjpZ+ByrabQF9i4+2HA18oeJi4IEHlDK1U/L5gMOHgX/9V6CmZoY/DS1GPCOmZcXaVo+Gf/476EfkFD4RkRZlDYZdXiVynZtgQXdOIiq3FUp/VPfk7JnnWRMRERHNEHHBeP/9QGYmdBodCmILxh0KQU6cBf5Lyo7BEZxvHkD44StIudwc0Jj8bMdZ/L+n/1/86syvcKHzgtSEk2am597vL/xeuuj3EyVk3zzTiuGxcmliwWBtRjSe3ZqNDVkx0I3rXyJqgN9feD9uyrxJzjrxeoFXXwVqa4O/cVoa8NhjgE5tHk9EREQ0n0Q/tqfKnsK65HXKY6Jv2+4VCcr4UHU3HGNresIXDV+g39Ef+EIlJdMLnAj9/cDvfw/s389eJ8scgya0bHgcdlz85/+MELta+7lz0Cnt3BM0ISEoSAxDf1YCKrYXYlQTgu0Z25ERmTGPsyYiIiKaYaL0kuhZsXUr4sITkWBRLzxFpklGrFpD2unxSSVMnW+eAU7VT3gp0W/jzYo38b+P/m8cqDsAp0c+r6Lr5/K68OLFF9Fma1MeE/323jzdogRMEiNMeGZLFnYUxCPUoDZJFdIi0qRSFquSVqk7Jl9/HaiqCv7GCQnAk08CBjXriIiIiGghEL347iq4C1lRWcpjWXEWFCSGK+X2ReDET2zkeb/q/YCyXZLSUuC++6YXOBG++go4cmSGPgUtRgya0PIwOooL//a38HS2BzTRbOxTAyi58RYM5ybi8s0rMarVICc6B7uzd8/ThImIiIhmkcgo2LsX+KM/Qs72u6HXqD0skiNDUZIaiQiT+pjd5YHx3TM4/+FFNPUNT7gQtbvtONx0GP968l/RZG2a04+yFIgL/FfKXwn4/53d6cEbZ1pgG+vBFxdmxP1rUhE5VpLCLzY0VupdIkpYJIcnqwGTt94CKiqCv3F0NJu+ExER0YImsmdF4ERk1PrdXBAvlSoVKtoH0dw3rByr7a9FeVf5xBdatQp46ikgMnJ6byyyTa5cmYFPQIsRgya0LDS/9TwGL5xUxi6PD1WdQ0qmnajhHbIiGZd3FksBk0hjJB4selCuA01ERES0VMXEwPT400j80/8H1gT1AlI0Fy9KDkdhUjjMYxkNYl/e+uPVOLe/Ar892oizTf3S7r7xrE4rfnf+d6jpYy3o6XJ73Xi5/GXpAt9PlJkQAROrw6303BMBE1FK1s+it+DO/Dvxhxv+ECvjV6pN4MUJ7rvvAhcvBn/j8HDgmWfkn0REREQLmGgKL8qPjs+O3p6nNor//EoXPF6fMv645mOpT9wEubnSpiFs2XLtPm7inOqNN4B29vFbjrgiTEve8JnjaHr/BWUsdkaKMhPusT+m4SYdwopTUb6rGD6tRopci916FoNlHmdNRERENHfyynYi68/+DnXbizE6tvYuFuGjzAaUpkYiLz4MRp0G2tFRPHC5EZk17Th2uQO//Koe+ys60TtW7lRw+9x46eJLuNLDnXnTDZiMDzKJQNSbZ1vQZ5d78ImMnwfWpkqLA36iKeq/2/TvsCF1g1S2QuF0Au+9B5w7F/yNzWY5YCIyTYiIiIgWAVFCX2TY+olzVLEJ2t8D7mRDf0AWtCh7KsqfTiBKku7bB3z/+0BqavA3dbuBF18EBgdn8JPQYhAyOqHI2+I2ODiIyMhIWK1WREREzPd0aJ6Ntrbi/I//PQaGepTHWgccStqeaCCVWZaKy3evg08nX3DeXXA31qWoTaaIiIiIlotB5yDOvfcL+N5/b8Ix3+go+u0uqUG8bcQDjyYE1bERuJQQhYbYcOwrTUH+WH1pQWTsiqbkpYmlc/wpFgdxES+CS/UDaq8Yp8eLt862osM6Io1FoOSRdemINKsludIj0vH0qqdh0BoCgyXHjwNHjwIOR/A3FqW4vvUtIClpFj4VERER0expGGjAc+eeU8aiT/GLx5uk81StJgRPbspAjMWoHBel958ofQI6jbr5JIAoaXrqFPDxx/L9qSQnA88+yx5wyyhuwKAJLV1DQ2j67/8FdY3nAmpDl7dZlbJcOdmxqH1kC5xjf1DXJK3BPSvuUcsbEBERES1D/fvfR+ubz6FnWN14Mp5oTN456ES3zSldpA7rtTiXHAPL3lKsyFCzF0IQIp1brUleM4ezXzxN38WF//gMExEw6RyUAyahei0eXp+OGIt6cZ4UloRvr/42TDp5VyVGRuRgybFj1w6WCEajHDBJSZmFT0VEREQ0+96+8jbOdahrfV/X9OBkQ590PypUL50/jc/QLYorwsPFDwcvwX/yJPDBB8HfuLAQeOSRa5f1oiURN+D/yrT0iIhIZSWG/u0naGi6oDzs9Y2iukvtY5IYY0HLXWuVgElKeAruLLiTARMiIiJa9qJvuQslD/5I2lAier1dzWzQITvOgrWZUYgPM8Ls9mJrUzeyf3cYPSfVzIlRjOKdynfwZcOXUrPz5c7mtOF8x3k8f+75awZMHlibFhAwiTfH4+myp9WAiehZ8s//DBw8OL2AidgZKZqfMmBCREREi9je3L0w683KeGN2jHLONOBwS+dU4/vuVfRU4P2q96Vy/VPasAHYvDn4G4um8J9+Kq870pLHTBNaWrq6pJQ6X20NzrSfwZBrSDlU32NXLkQtBi00j25Cd36yNDZqjfjh+h8iOpR1nYmIiIgk4jLho48wevw4BkYG0GprnTTzRFxONPQOK+dZgqYkDd47VyubU4SY0BjcmnMrCuMKl9UmlS57lxQoEX1LOu2dE45LPUzOtKDL5lQCJg+uS0NcWOD/755d/SzCjeHy/y6HDwOffz79Sej1csAkM3NmPhQRERHRPBKZJiLjxM824sarJ5thc8qbdFIiQ3H/2lSpLL/f1vSt0rnolOehojzXyy8DVVXB33zPHuAmtSk9LR4sz8WgyfIzPAx88YVch9DnQ21fLZoHm5XDoiFUZYdNuq8JAcJuKUbXTYXKcVFve1XSqnmZOhEREdGCJS4V3nlHaSw+4hlBu60d7UPtAY01xSVFU98w2sd6cQhJ8WFw7VmJ9sI0jIoTsDGZkZnYl7dPyvJdyobdw/i09lMpYCIybibjcMkBk+4hp5LB8+DaVMSOC5iITJ9n1zyLKFOU/L/HJ5/I5bimS6cDnngCyMn55h+KiIiIaAEQ556i1Gl1X7XyWJ/dhddONcMxlmWSFWvB3atSpF4nfiJosi1j29QvLPrE/frXQOfEjS4B7roLWL9+Bj4JzSUGTRg0WV4qK+WLeRE4EQESRz/Od55XDru9PlxoGYDbK/9TNxWnwvrwJuXivTi+GA+tfGhZ7XgkIiIimjZxuSCCJgcOSD3jBN+oTyov1WRtGve0UbQOONDSr5aKig83IrIgETV7SjESNlZWakxpQil2ZO5AvCUeS02fow8vXHgBvY7eSY+Lhu/NfcM4VtcnNTD1B0weWhdYkksESkQPEylg4vXK57wX1PKz15SaCtx9N5u+ExER0ZIjNvOIpvAdQx3KY12DI3j9TAtcHrmpe0FiOG4rSYJmbM1P9Nt7quwp5MbkTv3CVivwi18o572TEq/30ENAcfEMfiKabQyaMGiyPIgLR3HxfuSI8pDT48SptlNw+9zSWPzzruy0YWBYHiM+HO7v74LXqJeGEcYI/Gj9jxCqD52fz0BERES0WIiSBXV18qJ9RQXgdqNxoBH1A2oPE6F9wIHGPnkziyB298XFh8N65yoMZCUEPFdcuBYnFEvBkwRL4LHFqtnajJfKX5IyTfx8o6PoGnSisdeOxt5htA+OBNTVtogMk6sCJtGmaHxr9bfkgInbDbz22rXLRYwPluzcCeTlyRf1REREREuQKMv/67O/ljas+LX0D0t9TURvY6E0NRK7CxOUzdKiH8oP1v0AkaaJffsUra3Ab34DeIL05NNq5Wze3CABGFpQGDRh0GTpE1Hf118HmtUSXOKfsqhpaHValcc6rCNo6LVL93ujLDA9exO00RblIv2ZVc8gOzp7Hj4AERER0SImSheIZpgnT6Ll8jGpX8d4Ypef6HMiggV+Rp0GI5vz4Ny9EtBpJ7xkUVyRFDxJDpd7zi0k4jxT7GYUgRCHxyH9FGNtiFa64BYBDnEBLhqNvlnxZkDTe1Em9r3zbVLJiMlEmPRSze1oc2DARGSYRIoklOpq4MwZoK3t2hNNS5ODJeLincESIiIiWgZE771fnfkVbC65LL9Q3zOE9863K+eiO1ckYHV6lHI8LSJN6hen1Uw8Jw2obPPKK/LGoakYDMC3viVvWKEFj0ETBk2WNnHh+OabgEMt/SDU9dcFlIgYcnpwqc0Ku06Lw5mJyLytBFkJ4QENoPbm7p3TqRMREREtKeJS4uxZtL7xPKpb1fKogiiLIHb6+Ruc+w0lRqL/nnWIS4uatDzqmqQ1uC3vNhh1al+PubrgFuUdrCNWaROOGPvv2132KfuS+Bm1RqnPy/jntQ048O75NqnZ+3giQJIZa5Zu6dFm6PxNSkdHkWkNwSP61bA0tgFdXdObvEYjl+FavZrBEiIiIlp2uu3dUsaJ2Nzid6V9EB9fkkt3aTQheHhdGpIj1Uozm1I34fb824O/8PnzwFtvBX9OaCjwzDNA8sLb+EOBGDRh0GRpEv9UP/8cOHx4wqHe4V5c7LqojD1eH863DeJIQhS+zkhAYU6cFFX2SwpLwh+s/QPoNLo5mz4RERHRkmW3o+nVX6D+y3cmBBfsTo/UJN7qcKsBFa0Gg8lRiCpOhSk/Efa4iIBm8fHmeDxa8ijizHFB31b0VrnUdUnKNhb9Q7w+r7RjUJzjiSwQ8VOv1Uuvkx2VjbyYvIBgjMPtwIXOCzjTfgad9ms0/LxOVZ02fHKpQykNIUpvrUmPRkasGZGhcqnY8SI7BrDqfAe2abOvL2AkGr0//DCwYsVMTp+IiIhoUWkdbMXz55+XNrH4Harqxpmmful+uFGHJzZlItSgZpeIHsclCSXBX/jYMeDjj4M/x2QCnnwSSE//hp+CZhODJgyaLD0iFe6996SdjFcTpRFEHxN/GQTxT/qAV4MXE2LQZzYiKdKEh9elS/W0BXHxLGoXLsWmo0RERETzqfX8V6h+/n8BfWpdaf/52YDDjabeYTiuyrqwGHVIigtDSE48OvOS0J0VL2VLiMyN+wrvQ1F80aTvVd9fj09qPwlo/nktIpCSFZUlBU/E713qvhRQSmsmiM96urEfX9X0KI9lxJhxZ1kyjJOUJQsddCDnVC3yOt1SfxeDVi3TdU3iAv3xx4HMzJmaPhEREdGiJarQvHDhBXhH5fNNsXnljTMtUvavkBlrwX2rU5RsZ3He9f1137/mRh1pE/ehQ8GfI0p1ifOybLYBWKgYNGHQZOk1fBfluC5dmnR34dn2s0rdQp9Wg3czEvCcK0S62DbptXhiU4ZUK9rv7oK7sS5l3Zx+BCIiIqLlwjMyjOrf/h/0HD2gXLD6iUuPXrsLrf2OCcGTMKMO+Ylh8MRFoH5tNnrSY6Xzue0Z27E7ezc0IRolw/jT2k9R2Vs5a59BlBazjbgxOOKRfopsGTFfh9uHEZf46ZVKbum1GilrRNxi9Bqk+Lzo6RzEue5hWE16jOh1WJkcgT1FicoGnrH/R8A47EJBVS9W1g8hMTRO6mMyWbmyKYWFAU89BSQlzcr/D4iIiIgWI5FB/G7luwHl+1883ohhl3zuuTknVrqNz3D+7trvwqQzTf2iYvn8gw+AU6eunQH8yCNAQcEMfBKaaQyaMGiydHg8wKuvAlVVkx6u7q1Gq61Vuj8cEYoDa3Px69p+6YJcuHd1KrLj5MbvQlliGe4vvP/6LkiJiIiI6PqMjsJx4giaXvoZ2geaJzk8KjVGbx1wKBewgk4TgvyEcESa9bDFhkvBk76UaBh1JoTqQ6Xsk57hngnBGKfHi9ouO1xenxSc0IaEyD81IVIDepF5LAIcUxkakXvh1XYPSWXEnJ6JDT/1Xi8sLg/CXR6EOd0Ic3kQ7XAixuFCjMOJCKdafswvISEc8RkxGAkzwWvQwWh3ItFjQhrCEauPlJrH39B5aXQ08PTTQEzM9f8uERER0RImzjPfqXxHKt/q19w3jDfPtkixD4QA969OlbJOxgdOHi99HDGhMcGr4Lz+OnD58rV7zT34IFBcPCOfh2YOgyYMmiwNLhfw0ktAff2UtQqr+6ql+53ZCTi3Lge/O9smRZCFDVkx2JYXF/AH8Hvrvnd9JQ+IiIiI6MZ1dsL2u1+hvvYU+hyBJbsEcSnSP+xGY689IFCRHmNGSqRJCijYYsJgiwvHcKRZuTktJqkHim90FJdaB3G0ricg+HI1ETzJijJhI0ax2jmCxAE7tE4PehxuNFtH0GV3wocQ+ESwZXQUWp8POt/o2M0Ho8cLo1edn4hz6DQaqeSDmMPVxPGcuDDEhwf2JkkOS0Z+bL6SNXPdjEZg3TrgppvkpqNERERENIHb68Yvz/wyoGfdifo+HKmVy6eGjlWmCR9XmUZsZnmk+BGplGvQzd0icHLlSvAJiJPBVauAjRuBlJQZ+EQ0Exg0YdBk8RsZAV54AWieuDNREBfdFzsvwqsNQc3GPLTkJ+Htc21Sk1EhNSoUD65Ng2asDIJeo5dqFLKPCREREdEcczql3nTWU1+j0do4afDE4/WhpnsIA8Nqtka02YDcBIsUnLjaaEgIuj0+VA6MoNc7KjWWH9FppduwXothgw4OnU66LzJCcvtsyBoYgmEs8GEx6OD2+qTMlKuJzBRxM+i0Yz/lm8hUEZkw4qc4xRQBHXEp5faOSpkuI6J0l9srva4Iloy/CBdEI/qMyIzrzyxJSADy8+WbaC6qndgXhYiIiIgCiZKuPz/9czi9TmksztvePd+G+h67NI61GHDP6lSpzKqf2NhyV8FdWJu8NngbgbffBi5enN5ExPmbCJ6sXMnzuHnGoAmDJoub1Qq8+KK0M3Eydpddqk/o0gIXbynFQFIUvqzsxtnmfum42aDDk5sypKaifg8UPSCV5iIiIiKieSAuOWpqgBMnYK28iKbuavQ6eq96yqhUrqulX27UKYj+dOKC1l9qS9w0ImBiG5EyVMaLsRikQIt4HREKkX6OAk63V3quCGZMxaDVSIEOcRPvOZNCEILCuEIkhiVO/5dEI9Ft24DVq4HIyBmdDxEREdFyUdFdgVcuvaKMxQaXF483YXDErWSc3L0qBSlRgRm8W9K24NbcW6fODhalut5/Hzhz5vr60e3YAWzYIGei0Jxj0IRBk8WrtVUuyTU0NOlhl9clBUyGNB5cuLUMg/ERuNAygM+vdEnHxUX0/WtSpZIOfuuS1+HuFXfP2UcgIiIioiDERWZ7O3oqTqP85Afw1NdC55LLqwr9wy7UdA1Jpa+mQ2yUyYw1I+KqzI7xxCWP3eVFv90lvb6/lFe0WY+EcBOizPpZ6Xmn0+hQHF+M6NDo6f2CmMPatcCuXfKFNRERERF9I5/UfIKjLUeVsTgXfOdcGwaGXdJYbMrZU5iIlSmB68hFcUV4aOVD0Gqm2FAjltQ/+QQ4duz6JlRUBNx/v7xJhpZf0OQf//Ef8cEHH+DcuXMwGAwYGBi45u98+9vfxvPPPx/w2L59+/Dxxx9P+30ZNFnEKiqAN98E3BObaApenxfnO8+jJ8SBC3tXYSgmTKp/Lcpy+f8Z31KUiJJUdTdeUlgS/mDtH0gXrERERES0sIjzuwNVn6Dp8zeRcaERhrFdf2IXYFWnLWifEpEdIjbKxIUZrjvgIbJOxG/ogjSH9xPN5406o9QXT5R81Wv10k9xfun2ueFwOzDiGYHDI/8UxLFESyIyozKn308vJ0dc/ACJ15GRQkRERETXPN98/vzzaLI2KY+Jc80PLrZLDeL91mVGS72RxYZsv9KEUtxfdP/UGSdiPfLgQeDQoeubVFIS8PjjzChejkGTv/mbv0FUVBRaWlrwq1/9atpBk87OTvzmN79RHjMajYiOnubOLAZNFifxT/DIEeCzz6Z8yrB7GDV9NWgPseP8vlVSA9DeISdeOdUM11jT0LUZ0dhRoPYsMelMUh+TmNCYOfkYRERERHRjyrvK8d7FN5B4qQEZ5c1S5om4TBFBExHgEFkn/pvHNyr1GIkLM0o7A8cTF7QiyOEb9Uk376hX+jldobpQJIcnI8IYIZ1LioDHtJu2azTwRUdJF7+aYQfQ3y/3c5mKyCQR1yviormkBMjOZqkGIiIiolkw5BrCc+eeQ8+w3AheEOeVX1Z1SxVs/HLiwnB7aZLUw258BRvR5yToJh2xrrl/v5xRPV3iXPCxx4C0tBv4RLRogyZ+zz33HP70T/902kET8by3RTOdG8SgySIj+pZ89dWUzZPEbr2GgQZ0DnViOMwoBUxGwkMx7PLg5ZPNGHS4lT9qd61KVqLB4uL2qbKnkBOdM6cfh4iIiIhuTJe9C6+UvwKrtRNpl5qRXN0O41jZhOlIsCRI534i2OEnLnUGnYNS/xTRDNTulht/jifOG+PN8VKwJNIYOfUFsckkX9yGh6s/xfVGbKx8i4qSAifj3hwYGZGDJ+JayOORf0fsKBS/p2MmNBEREdFcERuyX730qrTOON755gF8UdWtVLFJjzbj3tUpARnJosfJ3ty9wQMnHR3A118Dly5NP3gizgfvvRcoLb3BT0XLJmgiAiainJfILtm9ezf+4R/+AbHiImSaGDRZBET5LfEH5NQpoKVl0qc4PU40WhvRbmvHKEZhiwmTmr67zEZ4vD68caYV7Va5SWh8mBEPr0+Xdhz6iQjw+pT1c/aRiIiIiOibExtm3qt8D5e6L0lBB6PdCbN1OPA2OAyDwy0uZKTfEVkhudG5iDRdu7yBI8SL1ngjOpMjYE+ORVJ4CvKjcxGqNQJer3yBq9XKF7Djb3o9gxxERERES6BU14fVH+J0++mAx0X5f1Guy1/NJifOgjvLUgKymndm7ZRu12SzAadPy+ueU/RsnmD7dmD37sANODTjFm3Q5OWXX4bZbEZ2djZqa2vxn//zf0ZYWBiOHj0Krbh4mYTT6ZRu4z98eno6gyYLkfhDcfgwcP68vOtuCmIXYEVPBTw+uSFoT3osKnashFevlWoNfl3Tg47BEaXx52Mb0hE+rvGniP7uy9s3Bx+IiIiIiGaDqDld1VuFbns3nF6ntKFGBFT89/UaHZJN8dgYW4bC8GyEiOsBcX45PKze7Hb5pxATA+TlARkZclCEiIiIiJYlsRR+vPW41CBebNT2E5uz3zzTKpWGFQoSw3FbSVJAj5M92XuwLWPb9Mq3ig05ly8Dole3OC+9FnGe+uCD7HOyGIMmf/mXf4n/9t/+W9DnVFRUoLCw8IaCJlerq6tDbm4u9u/fjz179kz6nL/927/F3/3d3014nEGTBdjk/d13AYecHRKsLENFd4XyR6t5ZRrq1ueidXAER2t70dyvNmgSaXIPr0tDYoRagmFF7Ao8WvLo9GtPExERERERERER0bJS3VuN1y+/Lm3K8RObtd8+1yr1OxFKUiKxpyghoCxXbGisFDgpSyyDTjONTGSrFXjpJbl817WEhgL33QesWHGDn4rmJWjS3d2N3t7eoM/JycmRymvNRNBEiI+Pl0p0/eAHP5j0ODNNFjiXC/jkEzkt7RpE3xKRYSKMhoSgenM+ziXH4EhtLxp6AyOyMRYDdhcmIC3arDyWFJaE76z5jtSwk4iIiIiIiIiIiCjY5u3nzz0f0PeuvmcI751vh29syXxNejR2FMRN6GciSsSKajfrUtZdey1SrI+++SZw5cr0JrZlC3DLLcyQnsegie56AxjiNldaWlqkIE1ycvKUzzEajdKNFqD2duCNN4CenusKmHj0WlzaWYwvRjU4eLIJ4zLlEBmqx+acWKxICg9Ijws3hOPxkscZMCEiIiIiIiIiIqJrSrAk4OlVT+O5c89JpWCF7LgwqSzXR+XtosUezjb3QyxBbsmNhX5cc/hB5yA+qf0ER1uO4uGVDyM9Mn3qNxIJBo8+Cnz+udy64FqOHgUaG4H77xcL8jPyWen6zFoNo6amJpw7d0766fV6pfviNjSuAY4o4/XWW29J98Xjf/EXf4Fjx46hoaEBBw4cwL333ou8vDzs28f+FIuKqB0t/gD88pfXFTAZDQF6MuJw+u71OOjT4OCVLiVgInqW3FKUiGe2ZKEoOSIgYBJmCMMTpU9Mq/knERERERERERERkb9yzVNlTwVsxBb9TG4pTFTGZ5r68auv6nGsrhcjbm/A74vgyW/O/QaXuy8HfyOxlinaTzzwAKCbRh5DWxvws5/JgRaP3PeZ5s6sNYL/9re/jeeff37C4wcPHsTOnTvlNw8JwW9+8xvpuQ6HA/fddx/Onj0rlfJKSUnB3r178fd///dITFT/kc5kmg3NIFEiTaSYlZcDtbWAT26aFIz4p9dp78SF4Xq05SehPT8ZzjATzjb148uqbuV56zKjpWiuTjMxxpcXk4d7V9yLcGP4jH8kIiIiIiIiIiIiWvoaBhrw+wu/h8enBijONQ/giyp1U7cgsk1KUyOxNiMaYSY1+KHX6PHsmmeREp4yveo8r70G9PVNb3KxscD/v717D46yuv84/snmsuS2CbknhFxIwl3AikGqBRULImK19Pcr2mnRWvprazuttrbTTi3tTGecsf902unUTmda+4elxftItb9hFPFHAUEQkVsETLjlRu736z6/OWfdTZYE3I2EkOT9mnl82H2e7J4ds988z/mec7533y0VFob3oXB1apqMByRNrrIzZ6Q9e6QPPwwr69na3ar3E9p0cHq06nNT5bh8M0cuTpiUFqTYhMnF6wYWJBfo9sLblZeUdwU/DAAAAAAAAIDJWhx+8+HN8joDg8Hr2rr1bkWjympa7QBwP5crQstK0rVoenJQ+YCNN2y09U5CGoC+dav0wQehN3DhQumWW6S0NN/MFYSFpAlJk9HX2Cht2yYd/YSpZxfp7O3UyY5z2jnfo5qi4BlEB0436u0TAwmTJYUptn7J4IRJrifXJksKkwuHJFIAAAAAAAAAYKSO1B7R80eflzN4eomk5s5e23d5uLJZ/d6BY3cvyFZxxsAKONkJ2fr69V9XdGT0J7+Z6ZY/eFB67TWptzf0Rpo+7+JiqahImjFDio0N/WcnsRaSJiRNRk1Xl69eiZld0h+8ht/lmKlt5Y3lOj6lTUeWzVZX4sCX2QSadysatPuj+sBzSwpT7QyTwVYVrdJNuTeRLAEAAAAAAAAwajNOXj7+stp724cca+/us7VNPjjfbB9HRbr03zfkKsMzJXDO3PS5tjh8yH2YtbW+5bouDAwmD5l5j4IC3wwUk0Ch3/SSSJqQNLnympt9NUvefltqHxowLqetp02HLxxR2ZwMVSzMlxPpq01ifvVO1LZp16l6NXX0BM43s0vMNtjq4tVakrvkCn0YAAAAAAAAABhee0+7dp3dpXcr31V3f3fQMdOn+b9HqnW8utU+TnBH6f7SPMW7B2qcLM9frtsKbwv9Dc1ME1P03QxUH2l3fX6+dNttviQKhiBpQtLk02ttlSoqpPJy3z7UwkQXqW6r1nv951W2pEhNWQNr/J1t6NDOk3WqaekKOv+zRakqLQxOmNxVcpdKp5WO8IMAAAAAAAAAQPi6+rq07/w+7Tm3J2jmSV+/V88fOKfqZl/fZqZniv7rhlw788Tv3tn3alHWovDe0BSJf/VVqbJy5I02M05uv13KzR35a0xAJE1Imlye+V9uNq/Xt7W1SdXVwVtLy6d6C+8Utw5M7dJOT5OaM5MDhd7NjJK3yi6ooj54tsq05Fh9riRdWUkDU9mMNSVrdOO0Gz9VWwAAAAAAAABgpHr7e7W9YrudfTJ4qa5/7D2j1u4++3hmZqJWz88KWpbrlrxbbH1mV8RAMuUTmf7avXt9M096BlbnCdvMmb6ZJ9nZI3+NCYSkCUmTAWY9vFOnBhIk/m00REdLc+aobWaBtnTu15n280GHT11os1PXevoG3j8twa2bi9NUkBo3ZJ2/u2fercU5i0enrQAAAAAAAAAQItON/sKxF3S49nDguQut3dry7ln19nsvWXagaGqR1s1dp7jouPDLJbz+uq9kwqcxZ460YoWUlqbJrIWkCUmTgGeflU6cGN33iIiQd+ECfbSoQO+1n1RZfZkt/O7ndRztOVWvvRUDS3wluqO0tChNs7MT5booWRITGaN7Zt2j+RnzR7fdAAAAAAAAABDGjJNnDj6j863ngwaKv3qoUvq4l/2zRWm6sWBq0ADx5CnJWj9/vbISssJ/05oaX+LEDIw/d25kA+IffHDS1zppIWlC0iRg82aprGzUXr41O1UHFqRrn3POFny/WGdPv/59pFqnBy3HVZKRqM/PzVRMVPC0tAhF2HX+bi24VUlTkkatzQAAAAAAAAAwEq3drfrzgT+rpXugvMG7FQ22frNfUXqCVs3LCur/jHJF2eW6rs+6fuR9n11dvhrUJ09KR474HodS4+RrX9Nk10LShKRJwJYt0tGjV/xluz3x+r/ZsfpPbJ2c4IkiAbUtXdp6qEotXb32scmu3lKcps/kJQ9ZimtW6iytmLFCGfEZV7ytAAAAAAAAAHClVLVW6S/v/UW9Xl+/p+li31veoN3l9YEZJ1PjYrR2YY5S4mOGDBwvTinWZ7I/o5mpMxXpihxZI0zCZPdu33a52iff+AZF4UXShKTJYM8/Lx0eWGdvxEySIytLTkGBjiZ2aWvfUXV6u4ec1uf1qvxCu45WtaiivsMGDCM2OlJ3XZet6SnBa/flenL1+RmfV35y/qdvIwAAAAAAAABcBUcvHNWWI1uCniuva9frh6sCNZ3NTJNVc7NUlJEw7GvER8erdFqplk5faksWjEhHh/Sf//iKx/f6kjhBxeAfeGBkrzvBkDQhaTLgxRelQ4fC/7nISCkjQ8rLkwoLpfx81XpbtfXDrTrTfCboVPMrVNPSrWNVLTpe06ru3v6g41meKVqzIFuJU6KDnl+ev1zLC5bLFRG8TBcAAAAAAAAAXOv2nNujf5/8d9BzTR09evX9KtW3Dww4X5ibrIXTk4fMOhlc82RNyRqVpJaMvDFtbdLOndK+fVL/x/2z//M/Unb2yF9zAiFpQtJkwMsvSwcP+v7tcg2/RUVJycm+L1BWlm9LS7OJk57+HpU3ltvi7gerD8rrBBcaqmvr1pvHa1XZ1DnkrRPcUZo/LUmLC6YqyrzPx6ZETdF9s+/TrLRZo//5AQAAAAAAAGCUHK49rFeOvxJYqsswM022HavRiZrWoHNzkmM1PydJJZkJio4cOpB8Xvo8rS5ZrYSY4WemhKSlRXr7bd/yXV/60shfZ4IhaULSZIDJKpqltfxbCBo7G3W87rhONJzQ6abT6neCZ44Yvf1e7fmoXu+daZJ30K9QVGSEitMTNDc7SbkpsXJd9J6mZsn6+euVEptyBT4cAAAAAAAAAIyt2vZa/ePwP9TQ2RB4znS7HzjTpF2n6tTvDe6CN8t2zcpM1I0FKfLEBq/OYwacm3IGpubJxXWhw2L6bD/Nz08wJE1ImoxITVuNtldstwmTy/noQpu2l11Q68cF3v2FjW7In2qzpO6o4YsXXZdxndbOWjvy9fkAAAAAAAAA4BrU1delF46+YAeiD9bZ069j1S06fL5ZDe3BBdvNbJOlM1K1aHqyXK7gBEeSO0nzM+bbLSsh69MlUCCSJiRNwlLfUW+TJUdqj8jR8L8OpsD7+cZOHTrXrFMX2gLPR7oibEb04iW4BkuLS9PthbdrTtocvtwAAAAAAAAAJiTT1f5WxVvacXrHsMeqmrt0pLJZZTVt6usfKIOQkejWHXMyleGZMuzrpsam2uSJKXdgEijUiA4fSROSJurz9tlltsx+uM2ssWf2Va1Ver/m/SG1SoyWrl5V1LWroq5DZxo7gr7IRl5KnG6bnWFnmVzMHem2X+RFWYuU68klWQIAAAAAAABgUviw/kP968N/qbm7edjjXb392nWqXofON8k/ht10ny6aPtXOPDHLd12KWb4rPylfhVMLVZBcYFf1sf29/b22z9e/H/xcely6ilKKNJm1kDQhaWKSIX/a/6ewf878OpTXteud8gbVtHQNe05cTKSWzUy36+5dnAwxX9jFOYs1O222oiOD1+MDAAAAAAAAgMnAJCxMkfgDVQd0tuXssOdUNnXqjWO1qm/vDjwXFxOlWVmJtu810+O+IoPRTX2Ue2bdo8msJYy8QdRVaxWuqihX+P9rzzZ02MJEZprYcImS/NR4FabFqyA1fki2MyEmQXcW36l56fOYVQIAAAAAAABgUjMDyq/Pvt5uplD8e1Xv2RV/Ono7AufkJMfqgSV52n+6Ue+U19uC8R09fXrvTKPdkmKjNTMz0SZRUuNjRtzvahI4CB1JkwkqnKRJVXOnnQ5mkiaDpSW4VZKRoIK0eLuu3nBfyghF2JklK2assFPDAAAAAAAAAAADMuIztKp4le1D3V+5X2+Uv6Ge/p5AzejSwhTNzEzQzpN1+qiuXV6vb3Go5s5e7atosFvilGhNnxqr6Slxyp0aax+HyizVhdCRNJkkSZM9H9XrZG2bzVb2eR31e712bzb/l9AvJT5Gny1KVVF6wmWzl6bo0NqZazXNM23UPgcAAAAAAAAATJQ+2yW5SzQnfY5eO/GajtcdDxxLjovR3QtybL2TU7VtKqtp1dnGDvmLa7R29epoldlaAudnJrplqlCbWtR9/aav16teu3e0al6mspNi7bmmrglCR9JkkiRN2rv7VNc2sDbecMx0r5tmpNrpXq5LJEvMbJKiqUVakLlAM1NnshQXAAAAAAAAAITB4/Zo/fz1OnbhmE2etPa0Bo5NiY7UvGlJdjN9umYgvNkqmzvtgHi/po4eu11Kd69Jp/iwPFd4SJpMkqRJlMtlp3pFuSIU6XIpKtL/7wi5oyJtYaG5OR77eLgZJSUpJSpJLVGuJ1euiOB6JgAAAAAAAACA8JgZJzOmztCO0zu07/y+ITNC4t1RWjg92W5mNompRX2usUNnGztV3dwlr38ayiD+PuDBR5hpEh6SJpMkabJ8VrrdwmESJbcV3qacxJwr3DoAAAAAAAAAgDvKrZVFK7Usf5nK6sp0uPawTjWektcZmCliREW6bD0Tsy21s0e8au3qCwyOj470DZofbgUhapqEh6TJBGWWzTKJk5F8IfKT8m1RorykvFFpGwAAAAAAAAAguCzCwqyFduvo7dDRC0dtAuV002k5QfNGfEySxNSmDgXLc4WHpMkEFk7SJDIiUvnJ+bp5+s12Shi1SgAAAAAAAADg6ouLjtPinMV2MwmUiqYKu5U3lutCx4WwX4/lucJD0mQCK51Wqn5vv02eREdG2/1wmzvSbeuWmHMAAAAAAAAAANdOAmVu+ly7Ga3drTaBUt1Wrfbe9kAfb7Qr2vbv+veDnzP9vwhdhOMMUy1mHGtpaVFSUpKam5vl8XjGujkAAAAAAAAAAGCc5A1cV61VAAAAAAAAAAAA1zCSJgAAAAAAAAAAACRNAAAAAAAAAAAAfEiaAAAAAAAAAAAAkDQBAAAAAAAAAADwIWkCAAAAAAAAAABA0gQAAAAAAAAAAMCHpAkAAAAAAAAAAABJEwAAAAAAAAAAAB+SJgAAAAAAAAAAAJKiNME4jmP3LS0tY90UAAAAAAAAAAAwxvz5An/+YFIlTVpbW+1++vTpY90UAAAAAAAAAABwDeUPkpKSLntOhBNKamUc8Xq9qqysVGJioiIiIsa6OddcNs0kk86ePSuPxzPWzQEwARFnAIwmYgyA0UacATDaiDMARhtxZngmDWISJjk5OXK5XJNrpon5wLm5uWPdjGua+bLwhQEwmogzAEYTMQbAaCPOABhtxBkAo404M9QnzTDxoxA8AAAAAAAAAAAASRMAAAAAAAAAAAAfkiaTiNvt1qZNm+weAEYDcQbAaCLGABhtxBkAo404A2C0EWc+vQlXCB4AAAAAAAAAAGAkmGkCAAAAAAAAAABA0gQAAAAAAAAAAMCHpAkAAAAAAAAAAABJEwAAAAAAAAAAAB+SJpPEH/7wBxUUFGjKlClasmSJ9u7dO9ZNAjBO/fKXv1RERETQNnv27MDxrq4uPfLII0pNTVVCQoLWrVunmpqaMW0zgGvb22+/rbVr1yonJ8fGlJdffjnouOM4+sUvfqHs7GzFxsbqjjvu0IkTJ4LOaWho0Fe+8hV5PB4lJyfr4YcfVltb21X+JADGa5x58MEHh1zf3HnnnUHnEGcAXMqTTz6pG2+8UYmJicrIyNC9996rsrKyoHNCuU86c+aM1qxZo7i4OPs6jz/+uPr6+q7ypwEwXuPMrbfeOuR65lvf+lbQOcSZ0JA0mQT++c9/6rHHHtOmTZt04MABLVy4UKtWrVJtbe1YNw3AODVv3jxVVVUFtp07dwaOPfroo3r11Vf13HPPaceOHaqsrNQXv/jFMW0vgGtbe3u7vT4xgzyG89RTT+l3v/udnn76ab3zzjuKj4+31zKm88HPdGQeOXJE27Zt09atW20H6Te/+c2r+CkAjOc4Y5gkyeDrm82bNwcdJ84AuBRz32MSInv27LExore3VytXrrSxJ9T7pP7+ftuR2dPTo127dulvf/ubnnnmGTtwBABCiTPGxo0bg65nzL2UH3EmDA4mvNLSUueRRx4JPO7v73dycnKcJ598ckzbBWB82rRpk7Nw4cJhjzU1NTnR0dHOc889F3ju2LFjjvlzs3v37qvYSgDjlYkXL730UuCx1+t1srKynN/85jdBscbtdjubN2+2j48ePWp/bt++fYFzXn/9dSciIsI5f/78Vf4EAMZbnDE2bNjgfOELX7jkzxBnAISjtrbWxowdO3aEfJ/02muvOS6Xy6murg6c88c//tHxeDxOd3f3GHwKAOMpzhjLly93vv/971/yZ4gzoWOmyQRnMof79++3y1j4uVwu+3j37t1j2jYA45dZFscsbzFjxgw76tJM7zRMvDGjHQbHHLN0V15eHjEHwIiUl5eruro6KK4kJSXZ5Ub9ccXszVI5ixcvDpxjzjfXPGZmCgCE4q233rLLVMyaNUvf/va3VV9fHzhGnAEQjubmZrtPSUkJ+T7J7K+77jplZmYGzjEza1taWuwsNwC4XJzxe/bZZ5WWlqb58+frpz/9qTo6OgLHiDOhiwrjXIxDdXV1durV4C+DYR4fP358zNoFYPwyHZVm+qbpUDBTPX/1q1/pc5/7nA4fPmw7NmNiYmynwsUxxxwDgHD5Y8dw1zL+Y2ZvOjoHi4qKsjcQxB4AoTBLc5llcgoLC3Xq1Cn97Gc/0+rVq23nQmRkJHEGQMi8Xq9+8IMf6Oabb7adlkYo90lmP9z1jv8YAFwuzhgPPPCA8vPz7SDXQ4cO6Sc/+Ymte/Liiy/a48SZ0JE0AQCExXQg+C1YsMAmUcwf5S1bttgCzQAAAOPN+vXrA/82IzDNNU5RUZGdfbJixYoxbRuA8cXUHDADygbXfQSAqxFnBtdaM9cz2dnZ9jrGDAgx1zUIHctzTXBmOpYZGVVTUxP0vHmclZU1Zu0CMHGY0VIzZ87UyZMnbVwxywI2NTUFnUPMATBS/thxuWsZs6+trQ063tfXp4aGBmIPgBExS5CaeylzfWMQZwCE4rvf/a62bt2q7du3Kzc3N/B8KPdJZj/c9Y7/GABcLs4MxwxyNQZfzxBnQkPSZIIz0z9vuOEGvfHGG0FTuMzjpUuXjmnbAEwMbW1tdtSCGcFg4k10dHRQzDFTQU3NE2IOgJEwS+WYC/jBccWsuWtqCPjjitmbTgizXrjfm2++aa95/DcKABCOc+fO2Zom5vrGIM4AuBzHcWxH5ksvvWRjg7l+GSyU+ySz/+CDD4IStNu2bZPH49HcuXOv4qcBMB7jzHAOHjxo94OvZ4gzoWF5rkngscce04YNG2zRwtLSUv32t79Ve3u7HnroobFuGoBx6Ec/+pHWrl1rl+SqrKzUpk2b7Iy2+++/3xZnfvjhh23cMWt8mz+83/ve9+wf5ptuummsmw7gGk6++kc/+Yu/mwt8E0dMgVSzXu+vf/1rlZSU2JuDJ554wq7Te++999rz58yZY+sRbNy4UU8//bQttGpuKMxyO+Y8ALhcnDGbqdG2bt06m6Q1g0F+/OMfq7i42BZHNYgzAD5pqZy///3veuWVV5SYmBioDWDuj8wSxqHcJ61cudJ2Wn71q1/VU089ZV/j5z//uX1tt9s9xp8QwLUeZ8z1izl+1113KTU11dY0efTRR7Vs2TK77KhBnAmDg0nh97//vZOXl+fExMQ4paWlzp49e8a6SQDGqS9/+ctOdna2jSfTpk2zj0+ePBk43tnZ6XznO99xpk6d6sTFxTn33XefU1VVNaZtBnBt2759u2MuSy/eNmzYYI97vV7niSeecDIzMx232+2sWLHCKSsrC3qN+vp65/7773cSEhIcj8fjPPTQQ05ra+sYfSIA4ynOdHR0OCtXrnTS09Od6OhoJz8/39m4caNTXV0d9BrEGQCXMlx8Mdtf//rXsO6TKioqnNWrVzuxsbFOWlqa88Mf/tDp7e0dg08EYLzFmTNnzjjLli1zUlJS7D1TcXGx8/jjjzvNzc1Br0OcCU2E+U84SRYAAAAAAAAAAICJiJomAAAAAAAAAAAAJE0AAAAAAAAAAAB8SJoAAAAAAAAAAACQNAEAAAAAAAAAAPAhaQIAAAAAAAAAAEDSBAAAAAAAAAAAwIekCQAAAAAAAAAAAEkTAAAAAAAAAAAAH5ImAAAAAAAAAAAAJE0AAAAAAAAAAAB8SJoAAAAAAAAAAACQNAEAAAAAAAAAAJD1/1xq7av8jXiFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "match 2 : 203 with distance 2.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABk0AAAHDCAYAAACJcV3vAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4VOeVN/C/eu+9NwQIEL33YoptbNxt3HFLnGyy2Wx2k+xu2rbst9l12iZxmnvvGIxtusGA6QghgVDvvff+Pee9zJ0ZSTMSMKr8fzzzoJl7Z+aOysx93/Oec+x6e3t7QUREREREREREREREdIOzH+0DICIiIiIiIiIiIiIiGgsYNCEiIiIiIiIiIiIiImLQhIiIiIiIiIiIiIiISMOgCREREREREREREREREYMmREREREREREREREREGgZNiIiIiIiIiIiIiIiIGDQhIiIiIiIiIiIiIiLSMGhCRERERERERERERETEoAkREREREREREREREZGGQRMiIiIiIlJ++tOfws7ODlVVVaN9KOPewYMH1ffyvffeG+1DISIiIiKiq8CgCRERERERjar//M//xEcffYSx5ve//z1eeumlUXv+9vZ2fP/730d4eDjc3NywaNEi7NmzZ9SOh4iIiIjoRsCgCRERERERjSoGTQb2+OOP47nnnsNDDz2EX//613BwcMAtt9yCL7/8ctSOiYiIiIhoonMc7QMgIiIiIiIicydOnMBbb72FX/ziF/je976nbnv00UcxY8YM/OM//iOOHj062odIRERERDQhMdOEiIiIiIjMSE+T++67D97e3ggICMDf/u3foq2trd9+r732GubNm6dKR/n7++OBBx5AYWGh2T6ZmZm4++67ERoaCldXV0RGRqr96uvr1Xbp+9Hc3IyXX35ZfS0XybAYrFfIO++8g5/97GeIiIiAl5cX7rnnHvWYUtLqO9/5DoKDg+Hp6Ylt27ap20y9+OKLWLt2rdrHxcUF06ZNwx/+8AezfWJjY5GWloYvvvhCP67Vq1fr2+vq6vB3f/d3aj95DHldEtTo2w+mp6cH//Ef/6G2y+tft24dsrKyBv0ZSC8UySx55pln9Nvk/k8++SSOHTvW7/tMRERERES2wUwTIiIiIiIyIwETCQb8/Oc/x1dffYXf/OY3qK2txSuvvKLvI4GAH/3oR2rfp556CpWVlfjtb3+LlStX4uzZs/D19UVHRwc2btyoghbf+ta3VOCkuLgYO3fuVEEHHx8fvPrqq+r+Cxcu1AMECQkJgx6jHJsEa37wgx+oIIQ8t5OTE+zt7dWxSlN7OXYprxUXF4cf//jH+n0lQDJ9+nTcfvvtcHR0xI4dO/CNb3xDBTi++c1vqn1+9atfqWOWwMs///M/q9tCQkLU/01NTVixYgUuXryIJ554AnPnzlXBko8//hhFRUUIDAzUn+u//uu/1DFJtogEdf77v/9blds6fvy41dcn38PJkyerwJUp+T6Jc+fOISoqakg/TyIiIiIiGjq73t7e3qvYn4iIiIiIJigJNEj2hgQTtm/frt8ugQTp75GSkoKZM2ciPz9fBTb+9V//Ff/0T/+k73fhwgXMmTNHPYbcLhP7cv3dd99VmSCWSGBCtg+lf4hkmqxZs0aVqTpz5owKlIgHH3xQlbPatGkTdu3ape+/dOlSlJSUIC8vT7+ttbVVBVxMyf0kKyY7O1u/TZ5DAiDynKZ+8pOfqNf+wQcf4M477zTbJsMryUoxHGdSUpL6Pjg7O6vtEoCSzJ3U1FT1+JbINgnS7Nu3z+z29PR0FfB5/vnn8bWvfW3Q7xcREREREV0dluciIiIiIiIzhmwLA8m4EIZghAQLJCtDskwkw8JwkUySxMREHDhwQO0nmSTi888/R0tLi02PUUphGQImYtGiRSpgIZkfpuR2KWXV1dWl32YaMJHsDzn2VatWIScnRy8bZs3777+PWbNm9QuYCAmYmJLyYIaAiZAMFSHPZY0EdqTsV19SosuwnYiIiIiIbI9BEyIiIiIiMiOBD1OSVSIlpgzZGpKRIQEK2S8oKMjsIiWrKioq1H5SFuu73/0u/vKXv6iMDSnV9bvf/W5IgYnBREdHm103BGj6lqyS2yXAY/qcR44cwU033QQPDw9VRkyO25AxM5Rjk2wUa1ki1o7Tz89P/S8lxKyRwE7fXizC0Fumb6YMERERERHZBnuaEBERERGRVX2zJyQIIbd9+umnqln5QOW2DP73f/9XNXaXcl+7d+/Gt7/9bb1XijRHv1YDPa+12w1ViSXgIc3Yp06diueee04FWSQTRLJofvnLX6rXZkuDHY8lYWFhqv9LX6Wlper/8PBwGx0hERERERGZYtCEiIiIiIjMSCaJZIkYSKN1CSZIc3hD5olM+ss+0qx8MMnJyeryL//yLzh69CiWLVumenL8+7//+4BBmeEkTd8lg0OatptmgRhKipmydFzy+qV/y3CaPXu2OqaGhgazZvCGBvKynYiIiIiIbI/luYiIiIiIyIyU0DL129/+Vv1/8803q//vuusulUEhDd/7ZkzI9erqavW1TPib9hIREjyRUl+mpaekTFZdXR1GgiHzw/S4pSTXiy++2G9fS8d19913IyUlBR9++OFVZ5AM1T333IPu7m786U9/0m+T75kcp/Rp6VuGjIiIiIiIbIOZJkREREREZCY3Nxe33347Nm3ahGPHjuG1117Dgw8+qJqfGzItJEvkhz/8oepzcscdd8DLy0vdTwIJzzzzDL73ve9h//79+Ju/+Rvce++9KiNFAiivvvqqClxI4MFg3rx52Lt3ryqXJWWnJINFAgPDYcOGDaoc12233Yavfe1raGpqwp///GcEBwfrpa9Mj+sPf/iDeq2TJk1S+6xduxb/8A//gPfee0+9Lmk8L/vV1NSo7BXJoDF8n66HvH55fPkeS48Yef6XX35Zfb//+te/XvfjExERERHRwBg0ISIiIiIiM2+//TZ+/OMf4wc/+AEcHR1V4OMXv/iF2T6yTQIh0gdEMk6EZD9IUEICLkKCB9L8XUpiSX8Od3d3dZv0Qlm8eLH+WBIskUCLlO9qbW3FY489NmxBkylTpqiAhzyXBHZCQ0Px7LPPqmbwEgAxJd+D/Px8/Pd//zcaGxuxatUqFTSRni2HDx/GT37yExUkkmCGBFSkV8r19Gnp65VXXsGPfvQjFWiSxvEzZ87Ezp07sXLlSps9BxERERERmbPrtVX+OBERERERERERERER0TjGniZEREREREREREREREQMmhAREREREREREREREWkYNCEiIiIiIiIiIiIiImLQhIiIiIiIiIiIiIiISMOgCREREREREREREREREYMmREREREREREREREREGkdMMD09PSgpKYGXlxfs7OxG+3CIiIiIiIiIiIiIiGgU9fb2orGxEeHh4bC3t7+xgiYSMImKihrtwyAiIiIiIiIiIiIiojGksLAQkZGRN1bQRDJMDC/e29t7tA+HiIiIiIiIiIiIiIhGUUNDg0q2MMQPbqigiaEklwRMGDQhIiIiIiIiIiIiIiIxlJYebARPRERERERERERERETEoAkREREREREREREREZGGQRMiIiIiIiIiIiIiIqKJ2NOEiIiIiIiIiIiIiMx1d3ejs7NztA+DaNg4OzvD3v7680QYNCEiIiIiIiIiIiKaoHp7e1FWVoa6urrRPhSiYSUBk7i4OBU8uR4MmhARERERERERERFNUIaASXBwMNzd3WFnZzfah0Rkcz09PSgpKUFpaSmio6Ov6/ecQRMiIiIiIiIiIiKiCVqSyxAwCQgIGO3DIRpWQUFBKnDS1dUFJyena34cNoInIiIiIiIiIiIimoAMPUwkw4RoonO+UpZLgoXXg0ETIiIiIiIiIiIiogmMJbnoRmBno99zBk2IiIiIiIiIiIiIiIgYNCEiIiIiIiIiIiKisWb16tX4zne+M9qHMabk5eWpbIpz585d1f3kPh999BFGW2xsLH71q19hrGMjeCIiIiIiIiIisr36euD0aaCuDggOBubMATw8RvuoiG5Ir6W+hpaeFowlPi4+eGz2Y6P2/AcPHsSaNWtQW1sLX1/fG+75h9NLL72kAl518v5v4uTJk/AYB58DDJoQEREREREREZHt9PQAx44BBw4AXV3G27/8Eli/Hpg7V5Y9j+YREt1w6tvr0djVONqHQTe4oKAgjAcsz0VERERERERERLZRVgb85S/Anj3mARPR1gbs2AG8+CJQWTlaR0hE40hXVxf+5m/+Bj4+PggMDMSPfvQj9Pb26tvb29vxve99DxERESqDYdGiRSqDwyA/Px+33XYb/Pz81Pbp06dj165dqsyVZHkI2Sblqx5//HGLWROSCbJz505MmTIF7u7uuOeee9DS0oKXX35ZlZySx/j2t7+N7u5u/X6vvvoq5s+fDy8vL4SGhuLBBx9ERUWF2mbt+Xt6evDf//3fmDRpElxcXBAdHY3/+I//MDumnJwcdX85llmzZuGYBKqvQmpqKtauXQs3NzcEBATgmWeeQVNTk9k+L7zwgvp+yTGEhYWpn4PBc889h+TkZPU9jYqKwje+8Q39/vL937ZtG+rr69XrkstPf/rTActzFRQUYMuWLfD09IS3tzfuu+8+lJeX69vlfrNnz1bfS7mv/B488MADaGwc3gAggyZERERERERERDQ0MlkpmSRykclBCYzIpb0d2L8f+NOfgJIS649RUAA8/7y2f9/AChGRCQlKODo64sSJE/j1r3+tJuv/IoHZK2QiXwIGb731Fs6fP497770XmzZtQmZmptr+zW9+UwVWDh06pAIF/+///T81QS8T/e+//77aJyMjA6WlperxLZEAyW9+8xv1PJ999pkKDNx5550qACMXmdT/4x//iPfee0+/T2dnJ/7t3/4NKSkpqp+IBEoMgRFrz//DH/4Q//Vf/6UCROnp6XjjjTcQEhJidjz//M//rIJF0ttk8uTJ2Lp1qwowDUVzczM2btyogjVSLuvdd9/F3r17zYIif/jDH9T3ToIp8n37+OOPVRDHwN7eXn0/0tLS1M9o//79+Md//Ee1benSpSowIkEQeV1ykWPtS4JDEjCpqanBF198gT179qhg0P3332+2X3Z2tvr+SdBKLrKvfH+GE8tzERERERERERGRkWSBpKcDly4BVVVaYMNkZbdNSMDl0CEgLQ3YvBmIi7Pt4xPRhCDBhV/+8pcqW0GyPGQCX64//fTTKkvhxRdfVP+Hh4er/WVyXoIacvt//ud/qm133323yooQ8fHx+mP7+/ur/4ODgwftKSIBEAkkJCQkqOuSaSKBEsmKkCDMtGnTVObHgQMH9En/J554Qr+/PK8EGRYsWKAyMuQ+Az2/ZFBI8OT//u//8NhjWr8Xec7ly5ebHY+8zltvvVV9/bOf/UxlhGRlZWHq1KmDfk8lCNPW1oZXXnlF7y8izycZORJUCgkJwb//+7/j7//+7/G3f/u3+v3k2A2kX4mBZIDI/l//+tfx+9//Hs7OziojRH5mkmFjyb59+9TPMzc3V/2chRyTvBYJ5hieT4Irku0jGTvikUceUfftm31jSwyaEBERERERERHd6AyBEgliXCkfMyKqq2UpOTB7NrBhA+DuPnLPTURj3uLFi9Xku8GSJUvwv//7v6oMlky4y/+SaWFKMkuk5JSQklnPPvssdu/ejZtuukkFUGbOnHnVxyFlsAwBEyGBBQkWSPDD9DZD+S1x+vRpVV5KMk2k2btM/gsJ5EiQZSAXL15Ux79u3Tqrx2P6GqR0lpDnHkrQRJ5DSnqZNmRftmyZOj7JerGzs0NJSYnVY5DMlJ///Oe4dOkSGhoaVJaLBGIkI0e+V0MhxyHBEkPARMj3RQJIss0QNJHvsyFgYni9pt/n4cCgCRERERERERHRjaqwEPj8c6CoaHSP49w54PJlYONGmQ1ko3giGpRkbDg4OKjghPxvyhDMeOqpp1Qpqk8++UQFTmSiX4Iu3/rWt67quZycnMyuS2BhoNsMgRFDCSy5vP7666oBugRL5HpHR4fF55EeI1d7PIagkuG5r5fbIMcgZcY2b96sglGS7SEZM19++SWefPJJ9dqGGjQZKmvf5+HCoAkRERERERER0Y1GepDs2wecPGn70lt92dtrPVAG09ICfPihLM8GgoLMt8mEaEQEMH064MjpLKIbxfHjx82uf/XVV0hMTFRBkjlz5qhME8k6WLFihcXHkEwGKR0lF+kX8uc//1kFTaSMlDBt3m4rkoFRXV2tem8YMilOnTplts9Azy+vTYIWUn5KAj7DISkpSZW7ksCOIdvkyJEjqk+JlEDz8vJS2R1yDIZm9aYkSCVBCwk+yX3EO++80++1DfZ9leMoLCxUF8P3SHq41NXVWczEGSlsBE9EREREREREdCPJygJ+/3vgxInhDZjIZJpMZEoD4CVLhp49Io3iJXBiepFjlYDKH/4A5OQM3zET0Zgi2Rnf/e53VdmoN998E7/97W/1PhtSluuhhx7Co48+ig8++ED1xpCG8ZJNIpklht4bn3/+udp25swZ1XNEJutFTEyMylqQ5uKVlZUqc8VWoqOjVeBAjleam0sjdWkKb2qg53d1dcX3v/991VRd+ntIE3QJFP31r3+12bHJ90yeR3qmXLhwQX1PJIgkvUIMDed/+tOfqqCI9GHJzMxU3zt5LUIawkuPF8Nrk94uzz//vNlzSNBFXo8EXqqqqlTZrr6kXJr0mpHjkceXn538LFetWoX58+djNDE0T0RERERERER0I5AJwT17gJSU4X8uqbG/ZQtgaAJsKLu1YwdQUnJ9PVBeeQWQps7ymCb9BIjIMh8Xn35ljsbCMQ1GJtFbW1uxcOFClV0iAZNnnnlG3y4N3w1Ny4uLixEYGKj6oEj5KCHZDt/85jdRVFQEb29vbNq0STWSFxEREaqJ+g9+8ANs27ZNPZdkYNiClOOSx/qnf/onFXiYO3cu/ud//ge33367vo+l5//Rj34ER0dH/PjHP1a9RaSHh2TJ2IqUz5JAknwvpW+IXJdeL88995y+z2OPPaZ6lMj3SprOy/f1nnvuUdukH4rsK03jJXNn5cqVKlAlx2+wdOlSdcz333+/yrj5yU9+ogIxpiRgtH37dhWwkceQrBX5+RiCM6PJrrd3uHMwR5Y0nvHx8UF9fb36QyAiIiIiIiIiumE1Nkq3Xe2Sl3dtmSUy0SpZIoZMEWtfy1yMNHWXVcJXyraYkTJdkjWyfz9gpa7/kLi6AtKouE8TaPW8EkxhXxQiNfEtWRZxcXEqu4DoRv19b7iKuAEzTYiIiCaihgYgIwMoLgY6O4EpU7T6z32a4xERERHRBFRfL4XhtUCJNHq/lkBJcDAgNeXlHLJvf5HrIQGNxYulmD2wa5d2znqt2toAKcFzpQyPGanTL8+zfPm4Cp7I2uaSxhJk1WShqKEILZ0t8HPzQ6xvLCb5T4Kvq+9oHyIR0YTHoAkREdFEUVUl3ea0wbEES0ylpQFffgncdpt0wRutIyQiIiKi4VJTYwyU9D0XHCppsC69R6SMli0DJQPx8QEeeEA73k8/1TJibKm5WWt0LyXJbr4ZY1lzRzOya7NVoEQuEigxVdxYjAsVF9TXQe5BKniSGJCIaJ9oONpzao+IyNb4zkpERDReMkckICIr8UpLBy5l0NVl/TEqKoAXXtBKJUgZA6ZmExEREY1v3d1ak/QzZ4Cysut7rJgYQGrtBwRgxEgGiGSzxMdrAQ55LVK+y5aOH9f6q0jJsDGip7dHZZNkVmeqIIl83YuhZQNVtlSqy7GiY3B3cseC8AVYFr0Mzg7Ow37cREQ3CgZNiIiIxiIpoWCaOXI9zTL7Pu7Jk9rjyoo7KYswjsoVEBEREdEV5eXo/eADtBblqswEKevk7eINF0eXq3scFxdg/Xpg3rzROy+UxTy33gqsWKGd9/ZdDFRbq2VNt7df2+Pv3KmVGwsPx2hp6mhCdk02Mmsy1f+tXa1W95efZ01zBxrauhDi7QJ35/5TePJz/yL/C5wuPY11ceswK3QW7O0G6CNDRERXhUETIiKisUICGkVFWkBDLtXVw/dcUv7gnXeA0FBg6lTtEhLCAAoRERHRGNfd1YnyPR+i+fOdqG6qQFtXm9n2UM9QJPglwMnBafAHkwbqmzdrzdvHAjkOS8cyaxbw2WdaCbKrJUGYt98GnnlG63UyQtkk0pNEMkkko6S0qXTQ+7R3daOwphV51c3Ir2pGY7sxeBTi7YrYAHfEBHgg1McV9ibn7RKQ2Z6xHceLj2NjwkZEeEeooIv619urAimSiWLHc30ioiGx65V3zwmkoaEBPj4+qK+vh/dY+dAnIiKyVlIhN9cYKJGay6NF6kpLw3gJoEh5BjaNJyIiIhozCusLkZK+Hw7bd8CtrMrqvlK2aWbITLg6DlCO1dNTyzZOTgaio1HfVo+zZWdR1lSG9q6hZ3LIJHyQR5AK0EhvDQf7ETp3zMzUGshL9snViosDHnlEa0Y/TBraG3Ck4AjOl58fUjZJVVMH8qubVaCkpK4NPUOYpnN1ckB8oAcWxQfAx81pyD8vfzd//eLn6qd+fpHekcxOmeDa2tqQm5uLuLg4uLJEM93Av+8NVxE3YNCEiIhopElZARnsSZBE/r/WMgPDSU4uJk3SAijyP0+uiYiIiEZFa2crPrm8EzWHdyPhVDYcunqGPEkugRNPZ08te0N6h0iwJCpKBQ06ujtwOP8wjhYeRXdv93UdowRnpDn55IDJ6n8J2gymu6e7X5aMgdzfalZEZydw4oTW76/N5DFkiquy0voTL10KbNgAW5PXI5keB/MOqu+ttWySguoW5FW3qGBJk0k2iSkHeztE+LrB38MZRbWtqGpqH3CfOdF+WBDrBxfHawtaSUm3RRGLsDRqKTNRJigGTehG0sagycAYNCEiojFJPm4lQCL9RHJytAyT4ebrq1YPqhIGgzWJt0YyTmJjtSwUuUhGChERERENO8laePXcK/A6fBzRFwrNtsl0jky4S9+L+tZONYGeEOSpshBEq6cr6uLDsXTDk4iZvlQvwyr3u1R1CZ9lfYb69nqbH7Md7BDlE4UpAVNUECXQPVBNxsvzFjcWI6MqA5erL6tm5lLCaiCO9o4I8wxT908MSESIR8jQJ/T37tX6n1hzzz3AjBmwlfy6fHyS+Qkqmiv6bZPXXdnYrgdJSurb1G0DkayR2AAPxAa6I9LPHU4OxgwQ+VlLyS5VuqumBR0mwTN3ZwcsSQjE9HBvs7JdV2N59HLVF4WBk4mHQRO6kbQxaDIwBk2IiK6ffDTICb8MamSgJtcNJ88yCLrar6WesgyWIrwirjptX5obljeVqzq9A5GVc1K32c3JzepjVDZXormzWR2POi6T4/Ny8VIDsWErKSABiw8+uLb6y5ZISYG+Axq5LShIq01t2qOkpkZrfinBGlsICzMGUKQnCgdWRERERDYn56+vpbwK/2PnEJNaoG7r6elFXWsnaps7UNvSga4e8ymdZg9XBCybhK5pEWjy81DnaQ52DlgTtwZezl6qx0VqeSqya7P7PZ8EX5rahr7QxsXJHkFeLoNO0ksZqHCvcOTX51s8px9KNkSif6IegOmb5SLjDCk1pfT0AK+/DmT3f406Jyfg/vu1jOrr0NzRjN3Zu5FSntJvW2l9K1KL6lWwpKXDcjaJBEekV0lsoAf83J2H9LySrXIitwbnCuvQbfI7EOjpgig/9yu9TKD+l80OdnYqICMXX3ftf0eTgIzBfdPvw7SgaVf1PaCxj0ETupEwaGIBgyZERNdG6hfn1OYgsyZTNSuUYImtuTi4qJVisupM0vYHCnTIx5LUU5bVZ3IsxQ3F6mTfGgl8SB1lWYlmWM12tY8hg8hl0cuwIHyBbYMnUnrrrbe0viXXy89PC4ZIWYXIyKurxSwf9+fPA59/DrS0wGb8/YGbbtKOicETIiIiIpv1L3kj9Q2EnLqI2HN56ra2zm5cKmtU//clZ7pfRQXhy5hg2Ds54tbkMDUJPxSNbZ04dLkSmRVXH9Bwc3JQzxMX6IGYAPdrLhFlCzK+kCboKngi57t/+hNQV2c9m/ruu7WyZVdJMmROl5zGvtx9/UqMtXZ040hWFS6UDJzF4+vurAVJAjwQ6ec2YPBiqOpbOnE4qxJZ1/Cz83RxVD+ztVNl8ZidPib65sJvDtwLh8YtBk3oRtLGoMnAGDQhIrq6bBIJkEhgoaC+wGJ6/HCQZoPSdFACKfoxoVdllTR2NF7XYzvZO6Gzp/Oa7hvkHoRbEm9BnF8crltrq7bKrajo+rI6JFAil+Dg6w9MyADy+HHgwgWguho2s2SJVhuagRMiIiKi6yILf95NexfhZ7MQd1ZbeNPc3qUCJp3dxvN1yfCQrAGnIG/kr5uOdytbUVzXqm+7KSkE08Itz4t09fTgTH4dTuTVoMvkca+V/ZUeHPFXgigSHLA4DmlsR25VswrY9GeHAA/nK5kXTldVLkrGGIsjF2NVzCq4VNag9y9/QXNrPapbqtUYo2+j+147IH/VbLTNmIoQzxCVzSKlxaw1RpcFWVKKq6SxpN/rSitpwJdZVWaBLUcHO5X9IUESCVJY+r6YkuCFBIHkIkGg3NpcNW7LrctFV0//rJWi2hYculyFisaBe8RYsyQ+QDWUN1gYsVCNh2jiYNCEbiRtDJoMjEETIiLLpCFhdk22HigZSjaJDKbU0jW7K2W3YPhaM1Fr3kpauqxU83G9xv4dTU3Aq68C5eVXdz/5fsbEaJkbUv5K+pIMB/n4l6CJNKOXBpoS2LneU4LFi4GNGxk4ISIiIrpKta21SK9MVxcpkRudWoD401pp1YbWTmSUN+plmKRniUy++7g6oXRaJHLmxaPbyUEFPj5LKzPLOliaEKiahPc9Z5feGgczKlWJL9OsEQmyGLIOrOoFalo6kF/dYhbIMSUNzCV4Eh/oiWBvF9XMPKeyCTlVzSoINBRSRkoeQy4RkpUxxExrCTpIBnr9ycOI3Hti0P2zFk5C0bRI9bVkWST4Jaj7S1kxw/dOFpidLD6JUyWn+mWxS7Bi/6UKlNUbgxbOjvYqIJEc4TNoNokEaaK8o1RWvgRKLPVw6ezuxPny89ifu1+VHjYl03tVTR3q5yFBM7m7PII8jtwmfW/qWjpR39qh/i9vlN4qWomwhxfH6KXBZMT35Nwn1QI3mhgYNLl6HR0dcHYeWrk8GlsYNLGAQRMiooGDJYfzD+NE8Qm0d5uvrupLBlsyoJEGg1J/t85kIGWR4YT8yhfGgIq20dnBHjH+7ogP8kD0ENP25eNJ6irLceRWtaiT/IHI6jNZhSYr2vqu2pLHkIGgrGLLq2pBY3uXfmyG45MBhaz8WhjnDzdn8+OS19O3VJehZrKsYLOYjSJlAF55ReslMhSOjlo9ZckmkX4k7u4YcRLkuXxZC6BI/edrbRy/cCFw880MnBARERENQrIeTpeeVj1GSptKtRt7e7WAyRktw6SmuV2VzTLM3EhJpSmhXnB0dEDa6mmoirnSx+OKnt5efJFRiZQiY1kqd2dHs1MzeSzTHhuybWaEL5YkBOhN5IdKFlgV17aq8+2cymY0DJg5Yhsy+T9QPEcm+5dNCkBcoOeA90s4kYWo9MEzv3NnxyJ/VsxVncdKb5Fj2dXq+206uzYlxAsrJwfBw8XRap8WCZBIdouMK66mJJb87hwuOIyvir4aMPNkKA5nVuJ0fq36OsrfHXfNidADNRK0eWbeM8PX85FGdxL5P/8T6O5f5m/ESYm8f/qnQXdrbm7Gs88+iw8++ABeXl743ve+hx07dmD27Nn41a9+pX5vP/zwQ9xxxx36fXx9fdW2xx9/XF0vLCzE3//932P37t2wt7fHihUr8Otf/xqxsbFqu+xXV1eHBQsW4He/+x1cXFywbds2vPPOO7ggVRpMyPPedttt+Ld/+zebf0to7ARNLL97ExHRhCCZJTsu70Bdm+V6vhIYkQBJXlUziupa0NV9lfF01WRQK6/Vv3VIrwrEXCxrUBdJ24/0dUNCkKdqVGgWxZABQGe3WrEmA6+hDLokpb+gRtLRK9WASQIzwV6uKKlrRW51s1qZN5iqpnZ1bEsTAjAjwkdvZimvp+8gRJpXZlRnqEtSYBI2TtoIX1dfrRSXBB0kc0OCDh2DBJtcXIz9SeLjgdFexeLpCcydq13k2KVpvARQ5HI1PVBOnNBG4rfcwsAJERER0QBUGafKNOzK3IWWTuN5lnNLO6YeyYB/sbbwpryhTZ0TG/i6OSExxAv2DvZIX2UMmEiWgqHMrpzHrp4SBE9XR9VXQ1hqQi7CfdywemqQOn++FpL5EaPKTnlg1WRt0ZNkkuRWNqO0oXXARGbJbJBFS3LeHu7r1nc4oJrbS7kpee0ldW0qEGT4vg00TJFz+e3nStQiqlWTg+Hj7mS2PXtBAuy6uxGQWoRWVTar/4M4Ozog9mwuHDu61P6DncfKsVwub1JjkGaT76+MR9ZODVZBiH6v285B9WE0lN0K9gi+5qx9F0cX3BR/E+aFzcPenL3q9+lqLY4PUK9BxlOFNS2q/FtSmDaJWN5cjuPFx7E0auk1HR+NcRIwGQtBkyH6h3/4B3zxxRfYvn07goOD8U//9E84c+aMCl4MRWdnJzZu3IglS5bg8OHDcHR0xL//+79j06ZNOH/+vJ5Rsm/fPjWRvmfPHnVdJtd/9rOf4eTJkyqYIs6ePavuIwEcmtgYNCEimqBkAPZZ1mcqfXvAbJK6VhUksZZNIifxwV4ucLyypEsNL/S4SK8aBBmGHNpY5kqiep/bG9s70dGlDeR6enpVkEMuV0PKBRiCGQbdvb1m9YIlq+R0vuVghaTIy2syTbLs7JbXoT2OpNSnFtdjzZRgNYAbTEbZBTQdPYiljT6Y3OgCh35DPgtkRcOjjwKBgRiT5KTR0EdFyrNJ6S4JnkhAaCh9UE6e1H7wt97KwAkRERGRicb2RtUP41LVJbPbAwuqMOVIBrqb2lDS3IHq5g6zElay2EiCDHb2dri4MgmVsUGqnNPy6OUqS+FA7gEcKzqm9pXz3QWx/vB2dcLJvBq1KKkvySiZE+2HpDCvfhP3qiTvIOdwA/VClPsEeLqoizy/NESXrHHJQJHzdBlXxAd5ItrfXZ2XWxPi7Yp5Mf4qk8OwoEqCI32DMIayU0KCNfk1eZgf469KksnYoaReSoI146UeZ8y0c8LScssLyZwc7OBT2QzPyiZU3zQDLhayRCQwdCCjQgUaTPuWLIwNwLwYv37lzfzd/LE2bq3KKJFghy35ufnh3un3YkXTCpWxVNtWi+6ebhVIk5+H4WfZ2tmKmtYatZDOUFrMycEea6YE4eMUrTeLBICk74oh+15+p6RksVogRjRKmpqa8Ne//hWvvfYa1q1bp257+eWXERk59PJxb7/9Nnp6evCXv/xFf2978cUXVTbKwYMHsUF6cwLw8PBQ+5iW5ZJgi+xrCJrI16tWrUK8LHykCY1BEyKiCUYCAKkVqSpgYrpyTUjmxpeZVciparKYTeLh7IjYQK1RoayQutoU/YF0X1ktJgOWHIsNHwduJBkXoNUw9vNwtljCS61mq2pGab35ajYZKKnHCPSw2Eiyqb0LX2ZWqpVVorKxHe+cKsTkEC9Vh7kvWT2WGOyJwJIaTP4qE65NbZCuJfWOrirFvu9qMjcnNzVQ8nDy0J7b318LmAxXrxJbk7rR0dHaZf16oKoKSE8HvvjC+uqkU6e0YItkriQnA26DB6GIiIiIJio5b00pPYsvTn+Azo5WeKk07V615MY7rQhuZ/NxqbkdzR3dA2aDRPm7ycktLi1PQkVcMKYGTsXdSXfDyUHLqpDsZzkX/Tz7c/1+UsZLLkMl5aFkcn9++HyrjdANvTWkKXlGVYZqXC9N1vuSyXfJXDBkL1wLKesr5+VysfR9lX4vhy9XqYwPGXccz61GWkm9ylgxXWB1KC4UHY4OWJ1bZuE1SU+QduB4NkpzqnFq0SS4uJhnrUjWS35Ni1oIZiA9W1ZNCVL9V0w52juqoJZc5OvhFOoZqi6DkYDKKymvIL8+X12XIJaMbaQEnGThSBP79dNC1LbOnk6VDbV1xtYJ28eSxr7s7GzVX2TRokX6bf7+/pgi/T+HKCUlBVlZWaq0V98yTvL4BsnJyf36mDz99NN44okn8Nxzz6myXm+88QZ++ctfXtdrovGBQRMiognWQFJWrkmj974n9ymFdTiaXd2vUaOcAIf7uKqUegmWBHm62PykWFZbGdL2V19pUCirzkwHMabHE+rtOqQVaAOtZpOmlhJICfJyGVL/FKkLvWlGGJIjfNWKMTVQAnC5vHHg/ds7EVhShfldHXA1GRi1dbWpy0ByanPg4uACz6gEuG7ZglgvD5gPqcYRyY5ZuRIIC5MlO9Z7n5SVAbt2Abt3a1krs2ZpQSPp2SK1RTn4IiIiohtAQ1s9jr/xC9gdO4ZZJue/co4u/UCkrOxAy5ncnR0Q5uOmzmt77YCMZVNRnhCiSjLdOvnWfoGNJVFL4OXihQ8vfoju3qsrvTM7dDbWx6+Hh7PHkPaXYI00SpeLBC7KmspU8ERK2JY0apkLg5EFRjG+MfB0Nu9FIhkRxQ3F/ZqtWxoPTA31VoELCZacLahT31dZGDXQmAfxU1EW648FKXl6jrgsupL9JWPFUApsamUdnI5m4MOkaHRZaOIumTxSCk0CD31J+a1bEm9Ri6fGEulRsnnyZjx/6nn9d2TVlGAVCJLKABJsmhbmjQg/bcGT/EwvVFxAckjyKB85kWV9q0kYSnKZZqvMmzcPr7/+er/7BgUZ+0JJpklf0rtE+ptIzxQJqMjj3nPPPTZ/DTT2MGhCRDQBSHr88aLj2J+7X60IMiVBgL3p5ShraDMrdWXIvoi2UTbJ1ZzQyMBPLrYmq9mmXuNKNhkYPLgoGqlF9TiaU92/jEFvL+aU1qiVaS7dPUgHEODhrAJBgwV3RKW/C/Yt8UNX7nbY5X7cr6mipM5L6ntSUJJqMu/uNArN4K9GYiLwwAPAW28N3jRetkvzPNMGehIwkewTCaCEhgLLlmmBGCIiIqIJpLSxFIf/+hMEn7tsdrtM0mdfWd1vShqHS7aznGcaztFVwGTpFJRNCsXq2NVYFbPK4iKnGcEz1ET9zss7hxS8kBJfGxI2IMon6ppfoxxLmFeYuqyKXaVKkGXWZKosFFk8ZDo+kWwWCbRMCZiCBP8Ei83Pmzua1UIweRz539LiJAM5H1+RGKQm/A9mVKKwtkXdJufqCVfGPfqYJz4A9TH+SDp8CXYmE60SMJF+iHUtnahr7URCTSPuv5CHd6fHqAwV0wVh86L9sCDOX5W4MiXZPjdPulllAo3V7IwgjyAsi16GQ/mH9EVkyxIC1QIyse9SOR5aFKOXGfvo0kdqbCI/L6KRlpCQACcnJxw/fhzRUv1AFovW1uLy5cuqTJYh8FFaWqrfJzMzEy0mfTnnzp2rSnRJP5TBmn/3Jf1PHnvsMVWWS4ImDzzwANxYReGGwKAJEdE4J6u6Ps74uN+gSPqWnMitwan8Wn3FlEiO8MGySYGDBkrcHN3UibHU3jWskDKs9pJVHEP92jR1f6C0/cFIMEEGcbJaq2/5K6nJm1mdieLG4kEfI9I7Uj2GrJ4zrEKR+0uDQ0OzdynnNSvKF1PDvFBe367qnnrXtyCsuAYRRVXwaGhGiYMdmq+MbaXWdG1Lpwq4SOmvvuTxXBztURMViPSVSeh2drTYYF5UtlSiMr8SJ4tPYl38OswNmztoaYRRNWkSsHUr8OabgwdO+pKfgZzIysVQ8mvjRmDhQmagEBER0YRQWF+IHZ/9BkkpxoCJlHUqkuyS+lb9NjnzCfN1Uz0/+p6jt7u74OKKqagP88etibdgQYRWV9+acK9wPD33aZWxUdFc0W9RlXCyd0Kge6CaQLc1yXaR81i5yFhAmopLIEUWCEnz876LhwYi5+yzQmepiywQq26pRn17vXlvwp5OHCk4YjYWkAz0u+ZGoLG9S2XqSKP6gVTEh6Db0QHTv0iH/ZVMfDl393V3Vhf1+N09mNsLrGtuQPqiRNQHaWMROb937BMskXP2JZFLVNDI2aF/iV+bkPPmy5e1PoOFhUCr8XdIJ+fRUgY4Lk47V5f/XfovVlsRvUJlkMjviEiO9EF6aQPKG9pU1r70wpFG8UIyUt668BYenvmwygyiCcBh5BZNXu9xeHp64sknn1TN4AMCAlTg45//+Z9VqSyDtWvX4v/+7/9Uo/fu7m58//vfV4EWg4ceegi/+MUvsGXLFvzrv/6r6oeSn5+vmrn/4z/+46D9UZ566ikkJSWpr48cOXJdL5nGD7vevvlL41xDQwN8fHxQX19/1dFDIqKxTN6uZdAjl+rWalS1VKnBgwxC+jZilP4h+y5WqIaLpr04bkoK0VOtLQ2wJLAggZII7wibTtjL8Zc2largiawWkwBBR3cH7Lp74FPZgIDCaviV1MCpoxsO3j7oXrUS4XNWqsDNYFkXTR1NKngi5QBkcNrc2QwvZy/E+sYiMSBRvSZLjyGBk8+zPsfFqovqujqeinrVjDOwsFr1LOn7Oioa21XjR6mTbEmHgz1y/LyQGxMEuymhiAvyVN97SwO3gYR5hqm0/utZ+TcicnK0wIlJCvQ1mz0b2LxZlvTY4siIiIiIRkVubS7eOf0KZn14FK7NWvnXprYuZFU2mZWolYn9hCBPlWHSV0VsEC4vmYzo0CnYmLARIZ5arwkyPzc/U3oG+3L39evnaGkxlWl2i4/0KdxzGvadgy8AKk0MQ87cOHS6mQdFYnxiVLk0CQjZhEzTyXl1W5sWGMnL0wIl+fkSdbv6SWlZnS8BlGnTAD8/fZNkAUl/E4OKxja8eaJQD0xtnB5q1o9Gyg0/NvsxNWak8UV6d+Tm5iIuLg6uUiZ5nJHyWs8++6wKckhfkr//+7/HJ598gtmzZ+NXv/oVSkpKsG3bNhXQCA8Px69//Wts3bpVbXv88cfVY5SVlalgyq5du9DY2IiIiAjVWP5//ud/1Pyx7FdXV4ePPvpowGNYuXIlampqcMG0egKNu9/3q4kbMGhCRDTGycn/ieITOF1yetBMjbYrzfsuFNebNVRfEOOPBXF+/SbsTbNJ5P++9YSvW3OzdpLf2Kg1FJeLnLg7OKC3sxO9OdlAVjbsZEBgQk9lX70akJTbq8w8kCDSVQV82ttRcHo/0g69D6ecPDh2DD5okkyewtpWtRrLoMnZEVn+3rgc6I18Xw909/l+S/p+jL+7WgHX9yVJ+rsMmAdqPi/lCwxBH/neyD/5WUkJhHi/+OFbzXY15Of83ntyRnv9jxUeDtx/P+DjY4sjIyIiIhpR0gfinbR3MOmLVIRml6vb6lo6VM88w5obOReM9HVTGSaS4WCqy8kBdWuXInTpBkwLnj7m+mKMRa2drapU8amSU/16oUhWjYx15JxaSoP17dvSkZ+D+r/+HrW1JWpRWnu3FuQaSKeLI3LnxKEyNhheDm5YG7UK0/2naGW+PD2lKYLlg5R9ysu1BUf19WoMogIjcun79dUGR4ZCfs/mzgU2bNCzTz64+AHOl5/Xd/kqp1pdDLvfmhyGScFeZuPHbXO22S5ARCNivAdNBrJ69Wo9aDLcZOo8MTER3/jGN/Dd73532J+Prg+DJhYwaEJEE4VkQBwrPKZWTg2UUm9K3sqzKppwIKMSLSYT/mE+riq7RCbpTckk+9q4tVgYsdC25Z/kI0VqiUraeGYmUFKi3XY9lizRTuwHC5zIAEMGIHKprdWeV4IWcj+5WPraENjp7lbBFkMGjwyWTD8iZdtAQavm9i4Ut3fjeGI4LkcFofdK7V8htZClsadpeTRrDOXBFsf7D9rA3rSBZpxfnBoASvDLz824emzEyUq4kyeBs2e1n8H1kAHnffcBMSwBQERERONHemU63k9/H/65ZZh+ME3dJuWOMisa9dNiySpJCPKA+5XSraaT+8FT5yP4ka/BJyx2NA5/3JMyYPIzkMx8WWQU6hmKON841bjeKglmvPoqehsbVdZ6fVu96qPSN6NfSHkxeWwpb9ZvLBUYCEyerF2iorQFY3V1QGoqcP48UFmJUScLk26/XZpFqN4x/3fi/9DapZX6kvGP9IRJKarTF+DdPjNc9YQxkNf+6KxHGTgZRxg0uXaVlZV466238MMf/hCFhYXwM8nWorGJQRMLGDQhovFOym99WfClqjE70Em6oRZyQ1un6qdR29yBgpoW5FU3m2U0LJ8UiJmRPv0aEMrEuqSPS01hm6mpAY4dAy5etE2mQV+yIkpKNplmbsjHV0UFkJWlBWgKCoZnRZaJ2tZaVVpMBlIGFXHByFo4CR190vQN2ru6kV/dgtyqZuRVNfdr9jkQGUDLzy8pzOuqG0gGuQepAIpcpKzXqPREkZ+NlA84c0brVXK1/U4M5Oe9eDGwfLnWMJ6IiIhojKpsrsTRwqM4V3YOTi1tWLD9JJzau1DV1K4WN5mWzE0M8URzoLfKKJFFPNLoPTQoHnOW3wO3eYvMz3lp5MiY5pVXtCCHLchknUywmjSoHlOuZJ2kNWTj3fR39ZtlmnBPernqcWLIiL9zTgQi/dzNFm4tiVqClTErx0bWO1nFoMm1k/F4YGCgKvn14IMPDutzkW0waGIBgyZENF5Jk8S9OXtVKa6+KeVC+pOcLahVjSPrWzvRbaGfRnygB9ZMDYaXq/lqKg8nD2yatAkzgmdc9US8RZI6fviwFjDpHjwYcF1mzADWrNEm4yUzJDdXK/s1wuRjU5pNXuouR/rCONREDL1cgmScVDS0m9WxNihraFMNF01/rmE+blg2KQAesgrxyo9M/pPyXB6ulhtbmqbPqx41AYkqWObmZLmfzbCRDKC0NO3n1tCgZaMYGsAP9XfG2VkLnixdqg0+iYiIiMaIgvoC1Yxceuspvb2YuTcV/sU1qGhoQ06VcbFNoKezKsdaF+6PlA0zVcBEztFlQdO0oGmj9yLISM5XX39dyzy5Eci82fr1OOJaiT3Fh8wW6X16oRSZVwJ+zo72uGtOJEJ9zM/FfVx8cHPizar0mc3GmGRzEzFoQmQJgyYWMGhCRONRUUMRPrz4oUoj70t6ZpzKq0FmZRMGiKWYZSesnhKExGDPfiess0NnY0PChkEbqg+ZfHSkpAB79w5PZslY5u8PzJmD5rnJ+LL0uKoBbJp5cj0kGHb4cqVqEDoYRwd7RPu5Iy7IA3EBHvB0td443dHeEXPD5mJ9/PrByxOMBPkdys7W+qD06WljkZzwSOBk0SK9DjMRERHRSJNplOzabHyR9wUKGwrNtoVfKsbkrzJRVt+KvGpjY/JgLxfEBXqg28UJJ7csQLuHC6YHTVcBE5udo5NtSJb0kSPa4rBrzZgeCYZ+kabkeK9lms/BAWnuzTjqXo3qqAC0ebqqxVw7Ukr0igYuTg7YND1U/R73JVnuq2NXs0n8GMWgCd1I2hg0GRiDJkQ0nnT3dONg3kFVjss0u0TemqXk1qm8WhTWGgdbhvRoXzcnldrv5+Gs/vd1d1IDMZlIN+Xn6ofNkzerxoe2OeBuLWNg3z6guBg3jMhIYMoUYOpUrU5xn6BUe1c7unvNsya6erqQV5enGoFKSS+piTxU+dXNqpawZBcNVZCXi8oyigv0RIi3i8WVXtE+0Xhk5iNjI3BiKIPw1ltaqbWhkoDJ7NnAwoVAQMBwHh0RERGRmfy6fNVwPL8+v9+2kMxShO5PQ1lNi1oMYxDq7YqYAHd1fpa+MgkV8SFYEL4AtyTewtX5Y5n06PvsMyDjShbRWCDN5mVckpQExMYCjn0WTkk2t/R4lBLGcrmKBW6qT2ZNlsqqb/L3RNG0SBTHBOHD86UoMhmTSrbUqilB8O5T2UBEeEVgfvh8TA+ezrJdYwiDJnQjaWPQZGAMmhDReFHeVI4PLn6A8mbz1O/Gtk5VQ1aCJn0zSeZE+6o+JYM1CZfyTUujlqrVPkOeHO/o0HqCyIm3rFgyDOCkBJahb4hkBkhJLltzcgLi44GwMODLL0d/RZd8D+R4ZEAiTRy9vK47OCarEGUQIvWu+wZQJMOoqcN8QCMruy6U1KOs/sq+vYZEo161rbiuDS0dA3+f3J0dEBsgARQPRAe49/t9kfIP9067d+wM0uV36qOPtJ44VysxUQueTJrUL5hFREREZCsljSUqWCLnc331dvfAZX86vE5ko7nd/PwswtcNkX5u6rxLeuGlr5qGZVHLcFP8TWPnXIysk3HQp59qi31GgozFZKJPLrJYyM0NCA3VFnDJYq6h/t7IdJ/0U9mzRyttPKS79KpSc2VNZep6s487Ls+MwYt1HSio1ZrFC1mstyjOH3Oj/dSivr5cHV0xK2QWFkUugr/b0MsZ0/BOIsfExMCdvSJpgmttbUVeXt7YDpocOnQIv/jFL3D69GmUlpbiww8/xB133GH1PgcPHsR3v/tdpKWlISoqCv/yL/+Cxx9/fMjPyaAJEY0HZ0vPYuflnWbZCfJ2fLG0EQcvV6Cjy9jQXLJK5sX4q6bgfTNJBiIp0bdNvg1hXmFDO5hLl4D9+/uv9JeTdQkeXG+QRJofJiRoJ/0SlJFsFbnI13LCFhOjrZKSwImQE/o339SCOCNJBiMSIJHBiByv9NEYIR3dHTiUfwjHCo/1y1ixRH5fyhvaVYN5uVQ0DpzJYm9vpwIo66YGw8PFuBJNBuvrE9ZjzJDTEQmYye/itZyaSMbJypXATK0+OBEREZEtyMKWTzM/RVplWr9tspDlcn4NQj49h/Ay8+bhLo72iPBzQ7CXNmHT7u6synKtmLJBNc9mwGSckUVdJ04A588Dzc3aWMkwXpL/OzuBysqhPVZQEJCcrJ2/GgIjpkESeUxb/n7IufWpU1rwZAhjLDUurbqIimbj+LAhwAt7o4LwXkOX2cItfw9nrEgMQuyVTKq+pGH88ujlWBW7CvZ2g49laXj09PQgMzMTDg4OCAoKgrOzM9+DaELq7e1FZWUlWlpakJiYqH7nx2TQ5NNPP8WRI0cwb9483HXXXYMGTSTqOWPGDHz961/HU089hX379uE73/kOPvnkE2zcuHFIz8mgCRGNZfKWe7jgsFqlZkpOPPddrEC2SS8LTxdHrJwchEnBnrC3ckIjzfcC3AMQ7BGM5OBkFTQZ0gmQpG7v2gVcuACbkueWQIgEICQLYIByVoMqKgJee23ovS4MJCNEMg7k4uOjDRAkOCP/W/ta9pXVW4M0Vh9u1S3V+DTr0wFXMA6mqb0LeVcCKJKl1NltDLyJEG9X3DMvEk4mgTcJrs0Ln4cxpaREK/8mWU3XQrKVNmwA4uJsfWRERER0g6lrq8NfzvylX0Zwj6zGL2tEWlopNp7KQlBLm1nGb7ivGwI8zCclU9bPxIKVD6hscJqg6uu1rBS5SIksCaQYyPyUBErkEhIyOot86uqA7duHlHXS09uDtIq0fj03K4J98GpoAL6sbTNb5yQL/ZIjfTAtzAduzv2rIiT4JeCeaffAzcnNNq+FrlpHR4da0C6TyUQTmZ2dHSIjI+Ep5Qz7GDNBE7MnsrMbNGjy/e9/XwVILphM4D3wwAOoq6vDZ1JHcggYNCGisUpOPD/L+gwnik+Y3Z5V0YR9F8vR2mnMMEgK9VZ1Yl2d+p9wSnBkceRiFRyRVOdrqhUrZZB27tRWSdmSBEs2bdImrq9XWRnw6qvWj1FWDUiKugRJJEAzWgMQG5KPZemDcqTwCArrC8163QxVV3cPiupaVRBFBvSG3y0JwN2aHKYP4GW118MzH0a8XzzGnLw84MABrYfOtZCg3fr12ko+IiIioms4d5eAiZTlMmsAX9mEo9nVcCutxV1pBfDo1Fbd+7g5IczHVf3fdwFTYXIMkrZ+S/V6oBuEBEwKC2WSSltEFhExNsYpMgV4+rSW3T3I5Ln8DeTU5qCoocjs9i5nRxyel4C36jtR3mC+yE1KdSUGe6mS0vL3YPq3IP02H5jxAEI8Q2z8omio5D2sq6sL3VL5gWiCcnJy6pdhMu6DJitXrsTcuXPxq1/9Sr/txRdfVNkm8mIG0t7eri6mL17KejFoQkRjiTQFl/4l6ZXp+m3y9nssuxon8oy1cd2cHLAuKRiTgr0GbOAtqc2J/onXnkorAQipx2vr7BLJ1JAJ6unTbTsYkLrBkg0jPVWEPHZ4uJZFIJeoqBEtozXSpBdKS6c2mDEET+T3RlY9ZtZkquCKadr8QCob2/Hu6UK95Nv8GH8sTww0qzf85JwnEeQxBoMLcooiq/RkUFdcfPX3l8yhefOAm27SSh0QERERDdGRgiPYk7PH7JxK+g5KSdSplfXYnFEIx55eFSSRniVeAzTFFs1L5mPO1r9DuHfECB490SCkTJeMsaTJvWTGWAmgNLQ3qHGHacZVrx2QPTceB4J8cb6kAYV9+nGKSUGe2DA9FM6Oxkx3J3snbJm6BTOCZwzDiyIism7cBk0mT56Mbdu24Yc//KF+265du3Drrbeq9DE3qTffx09/+lP87Gc/63c7gyZENFZI0++3L7yN3DpjGnRPTy/2XSpHWkmDfltCkKcKmEjDd1OR3pHYkLBBBU2uOfBw+bJ2kVX7tlxVIvV2ly8Hli0z9iQZDvIa5Lil/FafRl43utrWWj2AklubO2BPFCnZ9XFKsZ5Cf1NSCGZE+OjbfV191aqvUM9QjEly4FKu6/hxbVB3tSTb5OGHteAeERER0SCqWqrw/Knn1cIn0dbZjVeO5aOlvROLi6qwOrdMldKN8ndXQZOB+HkGIejBpxG2ZD17B9DYJmWLpTyyBFBkcd0Ai5Zl6lCyrmRMa/i7EGUJIbi8dAqq27qQWlyP9NIG9fdi2vNk88xw9b8pKVN3U/xN7HNCRCPqhgqaMNOEiMYyyRJ4JeUVlDWV6bdJr4lPU0uRU3Wl7JQdsCoxCLOjfM0GVNI0b3XsaiyLXnb1J5NNTcBXX2lN3quqYFMSHImP10piSWaJNHOnMUEayksKfWZ1pspqau1q1belFNbhQIaWlSI9cu6YE4Fof+PPTn7HlkQuUb9zTg7DGAC7XtXVwMmTwNmzchIw9PvJOYEEToKDh/PoiIiIaJyTKZIXz72IgvoC/bbdaWW4VFyHDVmlWFJdj+gAd9XDoW8wxA52qpRuZEQSvB57WivJRDTeGt5L+a5DhwYskyzjjeyabJQ3l+u3NQR64cLaGehwd1FlgjPKG3HociXar2S6S6bJpumhiA8y7y8wPWg67p52NwMnRDQmgybmy5lHWWhoKMrLjW+8Qq7LixgoYCJcXFzUhYhoLJZWeuvCW2YBE1l1s/1cCUrrtclse3s7dQI5OcS8HFeIRwjuTLrz2lb+p6drDf6uZkLZNCAi5a7kZFkukt0hJY4CAowN1qVviWSY0Jgj/W2mBk5VlwURC/DC2RfUwEbMivJFXUsnzhbWqualO8+X4IEFUfD3cNFrFksfFQm23Dr5Vkzyn4QxSX4XpW/O2rVASgrw5ZcDrobrR+pJv/ACsHWr9jtMRERENADpP2gImNh396C8sAatacW4p7gKifXNSIr0NSs3ZAiWyHl7jG8MXKPitPMNLuKk8UjGeYsWAXPmaIvwjhwxG1fKeCMpKAkR3hGq/6JkZXlXNWLeztNIXZeMpgAvTA/3QYSvG3aklKK6uV2VCf44pQSL4wOwKM5fDzamVabBO9sbGydtHMUXTEQ0ThrBS2ZJamqqftuDDz6ImpoaNoInonFnf+5+HMo/pF9vbOvEh2eLUdOsTWLLYEtSlU1X+8uAS/qWrIpdBUf7qwxMSIBj717g2LFrO+ApU4DNm7USWKap2kICJzTuSMbJG6lv6P1QVLAkpUTPcpJScGumBKkG8X1XSsrKryVRSxDhFTG2S0pIk00p23X48NAChTIQvPtuIClpJI6OiIiIxpHa+nJ89OZP4JtXBveGVjg0t+F8QR06urVz4vhADwR7m5eKlcySWN9YuDu5A9OmAXfeObxla4lGUmsr8PnnwLlzA25u72pXiwSldFeLXRfS1kxHTYS/2ibBkj3pZcisMPZCiQ/0xM3JoXByMI4vb028VS34IiK6YcpzNTU1IetK8945c+bgueeew5o1a+Dv74/o6GhVhqu4uBivvPKK2ic3NxczZszAN7/5TTzxxBPYv38/vv3tb+OTTz7Bxo1DizwzaEJEY4H0lpCyXIbJaskweeN4ARraOtV1d2cH3DE7wmzQJUGSe6bdo7IErlpjI/Dee1rPkqslmXw33wwkJ9u2iTuNmdWSuzJ36ddl8CKN4aWZqYFMAKyZGjxgA1NZNTk/fD6Sg5Ph4jiGMzulfMAXXwCnThmDfZbI7/kttwALODgjIiIirX9ab1oaTr30n2iuKtFvzq1qQnmDds7k7eaEpFAvfTGJm6MbpgdPh6fzlZJD0udv3TqeT9PEI9OGJ04AspjZwhSiTC1Wt1Yjqy4H5xZGo2xSqH77qfxaHMmuwpWhsQqcbJ4VpkoGGxYOPpj8IBIDEkfuNRHRDalhrARNDh48qIIkfT322GN46aWX8PjjjyMvL0/tZ3qfv/u7v0N6ejoiIyPxox/9SO03VAyaENFY6GMijSMb2rUm7/I2+8n5UmRVaitspFnknXMi4OtubIbn6uiKrTO2qpT+q5aXpwVMpI+JLbJLaML5NPNTHC8+rl9vbu/C3ovlqkG8gaz2WpoQoMp4GQYwplwcXDAzZCZWxKyAt8sY/nyVHj7vvw+Ulg6+r6wEnTVrJI6KiIiIxqqKCuDTT1F6/igyqjP0mxtaO1VTayHnRjMjfeDq5KBvnx06G76uvlpG9q23AvPmjcrhE42Y7Gxt3CnZJxZ0dnfiYtVFnEryQUFytB5EzKtuxq7UUrWAS8yJ9sOqyUFmZb+emPPEtZWnJiIab0GT0cCgCRGNJnlLfTvtbVyquqTfdr6oDvsvaQ24ZaD10KJosxX9Xs5eeGTWIyq1/6pIKSIpSXT06OAr601J4/bERG2yOC6Oq+FuANKvRPrrXK6+bPa7mlXRhAMZlWjp6NJvD/F2VfWGYwLcBwyeONk74b7p943tlWDyt/HOO9rAzhrpifad72jZVkRERHRjkfMFWcB5/DgaWuuQUpaC7t5utam7p1edwxsaWccGuCPUx3i+IOVL1bmQnEvce6/W94/oRlBdDbz1FlBZaXEXGWfk1eXhWGgnMhclotdeG1PkVzfjo3MlartYMyVYLdgykIVZT899Gl4uXNBHRMODQRMGTYholJwsPolPMj/Rr1c3teONEwVq4CVumxmOhOArKfwAAt0D8fDMh7VVakMlARKpKbtvn1aSaChCQ4HJk7VLeDh7lNyApCG89DeRAYwpKR13JKsKqcXmzdS9XZ2QHOmD6eHeqveJKSklt232NtUAcsySHj/btwPnz1vfb9UqYICsWCIiIprAamqAV18FamtR11aH1PJUPWBimNwtrW9TX3u5OGJauLdelkuyb6X/gqOvP/DQQ0BIyKi9DKJRCzhKZvdl44KsgVQ2V+KIRzXOr5iMnis9TGTMse9iufpa/qRunxWBuEAP/T5hnmHYNmebyjwhIrI1Bk0YNCGiUVjJL5PRMind1aOt2u/q7sFbJwtR1aTVQZ4Z6Yu1U43ZJEHuQeqEUDWNHKrcXK0RX1nZ0PaXJpRSfosliEitmuzGvtx9+KroK/U7a6qkrlWV7Kpp7jC73d7eDpOCPDEn2hdhJissZSXYM/OeMdbxHovkFGfvXuDIEcv7yArRv/s7wNW8qSsRERFNUB0dwPPPq8BJbWstUitSzc6L6lo6cKmsUZ/UnRnhCzdnY1kuKVfqP3kWcN99LHFLNy5ZyLdrl9ZP0IqmjiYcsC/A2dVT0OOo/R0dzqzE6fxavUTwffOjEORl7J0oPT7vn36/HqgkIrIVBk0YNCGiEVDfVo/s2mxk12QjpzYHrV3mtV0PXKpASlGd+jrAwwVbF0bB8coKG1mpL6nHIZ4hQ18Nt3s3cMlY9mtQ/v7A/fdz9Rv1U9pYih2Xd6Ck0djoVPT09Ko+J+eL65Ff06w3a1TsgFtnhCExxDg5EOMTg0dnPQoHe+NEwph07JgWbLRk9WrtQkRERBPfjh3A6dOobqlGWmWaWcCktqUDl8sb9V7XkYEeCIjwQ6uXK9o8XREVnYwVSx8AYmOZuU0kfyhSLnr/fqu71bTW4LBdIc6vnY5uZ0et52dqqSoVLDxdHPHAgmh4uhqz29fErsGq2FXD/hKI6MbSwKAJgyZENDzkhO9i5UWkV6ajuLHY4n7ZlU3YkaJNSDvY22HrwmgEehpXz9ySeAsWRiwc/Anb2oBDh1StZVVuaKiSkoAtW7h6niySCYITxSewP3e/Kt3VV31Lp0qfTyupR2tnt74S7P4FUWa/y/J7LL/PY5qc6rz0EpCfP/B2+TuR3ib8eyEiIprYMjKAN99ERXOFOqfvNVkhUtPcjsyKJnXa0OTsiMy58Zi6YTrsHO31PoTfXPhNuDryfIHIjJSO/vhjq302ZbHWKfsynF8/E13Ojqoqw3uni1DWoJXBk0wTyTiR8Yawgx22Jm/F5IDJI/YyiGjia2DQhEETIrJtoORCxQUVKClrsl4WS95Sq5o68P6ZItUrQqyZGoxZkcaeJVMCpuCBGQ9YTzeWE84zZ7RVOy0tQz9YWfG2bh2wdCkbvNOQM6Z2Ze5CRnXGgNu7enqwN70Cl8oa1HUfNycVBHR1MmaXbJmyBXPC5mBMy8kBXnnF8va1a4GVK0fyiIiIiGgkSS/A3/8eNVWFOF9u3vNMyunKqvceOzucCg9AxYJ4rJkdqRY/GWydsRVTAqeMwoETjQNZWcA772jl7yyQ6gxpDjU4v2EWOl2d0NzehbdPFqKhrVNtnxLqhU3TQ836B0k54AD3gBF7GUQ0sTUwaMKgCRFdf++Hi1UXcbrkNHLrcq3u29rRjcLaFuRXt6CguhmN7VpPE5EQ5InNM8P0Ez9Zofbsgmet9zEpLtYaWFdUXN1Bx8QAmzYBYWFXdz8iAAX1BThZfFIFB00boQpZCfbOqSJUNGorwWICPLBldjjsr/xeO9g5YOOkjQj1DFW9etycjL1Pxgw53XnhBaCwcODtbm5aton0OCEiIqKJRc4D3n4bHWnn1flOZ482SSsqGtqQU9WMcg9X7JgaheBJwbhpWoh+niMWRSzCzYk3j9LBE40TJSXA669rAcoByPSjjDVyXVqQvWAS6kJ9UdXSofqAdnZrWSorE4MwN8ZPv4+MLZ6a+xRcHHmOTkTXj0ETBk2I6DqySiRQcq7sHJo7Bz7ZMzSIlNVocimTieQB3km9XJ3w4MJovXGkpBhL/4c4vzjrq+HfeAPoMgZeBuXnB6xfr5XkYnYJXafmjmacLTur/g5q27QGjUJWgL15vEAv1TU/1h/LJwUO+BgeTh6I8onC3LC5YyulPjsbePVVy9slS2vFipE8IiIiIhoJZ8+qRUnSi7CwwbiAoqy+DXnVzehwsMdf5yYiJjEIa6YEm2WEzw+fj1sTb2VTaqKhqKzUsrsbGy0uTkwpT0FDewPa3Z1REReCr7zc8XphgxrLyt/ZXXMiEOVvXGTIxvBEZCsMmjBoQkRXQfo5SE1jmSjOq8uzuF9NswRKGpFZ3oTKpvYB95EU/ghfN0T7u2N6uI8eMBEroldgXfw6ywdSWwv86U9Aq3lDeYtkRbyUE1q0CHA0Ns0jsgU5PXgn7R2VcWVQWNOCD84Wq23iluQwTDZpDD+QWSGzcNuU2+BoPwZ+R+W4//pXoKho4O3u7lq2ibPzSB8ZERERDRc5x/7DH9DR2oSvir7SG7+3dHThfFG9+nrX5Ag4LEzAysRAs4nZxZGLsTFhIydria5GTQ3w8stAvfb3NdD4WxZotXcbx9Spnb1408MD6cG+qgywlAOWssAGM0NmqvF0kEfQiLwEIpqYGDRh0ISIBiFvfbLKTDJK0irSzE7YTHV09SCjrFE1xDaUJupLmmLHBLirQIkETByvNK8zFekdiW2zt8HB3hhEMdPZqU3mllnvmaLIoG3uXGDNGsDTc/D9ia5Re1c7/nLmL6hsqdRvO1tQiy8ua9fld/32WeEI83HVmzYOJMYnRvXxGRNluzIztbIB1nqbSLYJJ0eIiIjGP+kT+NJLQEFBvyyTy+WNalHU5QBv5G6ahZWTg8yCIzJBuzZuLQMmRNeirk4LnEjQcgCN7Y1q0aIhiCnjcxl3fxgagONRQQjydMF9C4yN4Q3i/eJVubzEgETY21kefxARDYRBEwZNiMgKqaO6P3c/qlqqLO4jtY3PF9erEzdDfVVTId6uSAz2xKRgT/i6W1+VHuYZhkdmPWK5j4m8DX/0EZCSMvjBx8UBGzcCoaGD70tkA9Ut1fjzmT+jrUsLGsppw+70clws1RrDK3aAt4sT/Dyc4e/hjBAvFySGeJk1Tw10D8RDyQ/Bz81Yo3hUyN/bn/+s1Vy2RDJNAgO1S0iIVvrO338kj5KIiIiul5S7ff994OJFtbJ9oCyTZidHvLFkKh5Yk2g2OSvBkpUxK0fx4IkmgIYGLXBSXT3g5rKmMlyqumTWR/F8SQP+Oj0Gxd4e/RrDm/Jz9cP6hPVICkxiYJOIhoxBEwZNiMiCg3kH1WUgbZ3dyChvRFpxw4BZJcFerpga6qUCJd4mqcIDkf4l4V7hqqfDrNBZ1ksTnTgB7Npl/cBlwlaCJZMncwU8jbjM6ky8kfoGeq8075EBzbuni1DeMHD2lZCsq80zw81K1Emvk63JW1Xm1ajKyADefHPo+zs4aH9/CxcO51ERERGRrUgW99tvA1lZ6mpWTRaKGor6ZZm8Oz0GEYsTzBpP3xR/E5ZHLx+VwyaacJqatB4nFRUDbu77tykBzSM1bfjz7AR0ODogIcgTc6P9EO7rOmBwZFXMKqyJWzOsL4GIJg4GTRg0IaIBnCk9g48zPja7rae3FwU1LUgvaUB2ZRO6e8zfEmXFmQRKkiN8EOztavXxfV19keCXgAT/BMT5xg2tFFF+vrb6RkoHWJKcDNxxhzZxSzRKDucfxr7cffp1ycCSsnWVje1q0qG2pUOVszPl5+6MO2ZHwMfdGGSUAOLmyZuRHJxsuVzdcJNTH+kfVFp6dfdbvx5Ytmy4joqIiIhsob1dWxyRp/UqtJRlcjbMH4enx2Dbslg9yyTYIxjPzn+WK9eJbKmtDdi/Hzh9GujuNtskf5fny8+jrq1Ov626qR0f2DnhkymRZiWxZ0f5qrF533LYD898GJP8J43ACyGi8Y5BEwZNiKiP3NpcvHr+VbOaqafza3GusA5N7V399g/2ckFyhK9KCXZ2tFwrNcIrAtOCpmFq4FT4u/lf3QCrsRH44x+11TeWSBmuJ58EnKxnthANN/mbeTf9XVXeztL2lo5ulDW0Yd/FCjUhIdycHHD7bOl7Yh5E9HL2wpywOZgXNg8+rj4YcZcuAW+9dfX3k54nK1mug4iIaExqbQVeew0oLtZvGijLJLsHeGHuJCyZGmqWZXLf9PvUuT0RDdPfZ3o6cP68tnjQSmN4KZf9+/BgnPM17+EpTeLnRvtiQaxx7B3gFoBvLPjG6C3IIqJxg0ETBk2IqE9PBmlm3drVqt92OLNSBU1MyeSuBEmmh/sgyMvF4uNFeUepwVRSUJLKLrkmssJGmlIWGptR9uPmBjzzDOA3yj0giEwGNO+nv4+M6gyr+9W3dmL7uWKVgSKkt8nNM0IxKdhrwFJ20shxadRSxPrGYsTI6c9f/mI2qTJkq1YBq1ezVB4REdFYUlkJvPceUF6u39Q3y6S5vQunyhrxxsx4NAZ44Yllsfqq9RCPEHx9/teZZUI0Uo3iv/wSOHVqwMbwosPJAW8unoqj1a39ygKvmhyEOdHGcfLGhI1YErVkBF8AEY1HDJowaEJEV7R2tqqASXWrsflcWkk99qRrgykZE8UFeGBauA/iAj3MGlebkl4Ms0Nnqx4lAe4B139ge/YAR45Y3i4H9tBDwCSmGdPYIgOZc2XnkFKWolZtdveap9ib9gjaeb4ERbVXgpV2wNL4QMyJ9jVrtGpqYcRCbEjYYL0HkK2bU0rgRP6/WsuXA+vWMXBCREQ02qTc5uHD2gr2PvpmmaTWtOB3ceEo83LHyslBqleCAbNMiEaYlKiWUtVXsk4qmiv6ZbXXhfoiZcMslDS2IaWwDpfKGtXtLo72eHxpnN4/0dXRFd9a+C14OHuMwgshovGCQRMGTYhIkjl6uvHa+deQW5er31ZU24IPzhaj50rvkjVTgjErynK2iPQmmR8+H1MCp9huIlcaUkrZAGtkMnbFCts8H9EwBlCk/nBlcyWqWqpUMKWypVLfLj2C9qaX42KZMSgh5e6SQr2RHOmjahP3NSVgipq0GLH0+q4ubZJFBmuyQrWqCmhpGdp9lywBNmxg4ISIiGg0FBUBhw4Bly8PuLmpo0n1NDSsXK+xt8c/+viiysMV7s6OzDIhGisZJ88/r/U9AVDbWovMmky0dBrPx3PmxaMgOVp9vTutDOml2thiZqQP1k4N0feTcbv0TiQisoRBEwZNiG548ta24/IONVAyqGvpwFsnC9UKeCGN5FZPCe53X28Xb8wKmaUyS2ySVdK3j4mcFDY3W94nKQm47z5OxNK409bVhrcvvG0WqJS/xa9yqnE8t6bf/uE+bip4MjnEyyzLS5rE35l0J+ztLPcTGlYSNElLA3bt0sp4WbNwIXDzzfx7JSIiGslG7zt2ABcuWFw4lVeXpzJMeqF9jrd5uOC/I0JwpqVrwNI+90+/X5XeJaJRIH/LUlrPZPxQ21ar/oZrWmvQa2eHszfPRkOwjyqx99LRPHR296jT7wcXxuiltaXs79fmfw2hnqGj+GKIaKLEDUZpNoKIaPjISda+3H1mARMJlGw/V6IHTGICPLAyMUjfLidYM4Jn4JGZj+A7i7+DdfHrbB8wkcnXDz+0HjAJDATuuIMTsDQuSVr8wzMfVkFHA1mxuSQhEFsXRmNamDccHYy/2yX1rfg8rQzvnS5CR5exfnFqRSp2Ze5Sf8ujwt0dWLAAuPPOwf8WT5wAPvlk8OAKERERXT9Zjf7qqwMGTOS8QTJfTxSfQGFDoR4wafF2w+4V0/SAiYezI5IjfPT7yQTr1MCpI/caiMjcjBnALPPxg7+bP2aGzMSiiEUIcQ/CjP0X4NrUBg8XRyyM81f7yen3F5cr9TGD/M1/lvXZ6I0hiGhCYdCEiCYUOUH6NOtTfFnwpVmJoF2ppaht0ZpS+3s445bkUNibrGzfNGkT7pl2DxL8E4Zvdbs0usvJsbzd0RG4917AxXITeqKxTspq3TH1DqyOXW12e4i3KzZMD8VTy+OxenIQAjyc9W2l9a3YkVKCrm5j4ORUySnszdk7uoOemTOBe+4B7Ad5T5AGlh9/rNVlJiIiouELmEiJWynL1Yc0fL9QcUFd2rvb9dubfN3x/vxEvJNp7G+4INZPL8slVsWsYlkuotF2yy2Ab/+y2W5Obiqo6d3lgBn7UuHQ0YU5Ub7wcXPSy29nVxoXJUqW2cWqiyN66EQ0MTFoQkQThtQr3p6xXa0uM5AJ1/2XKlBQo9VEdXNywJbZEXBxNPZLWBC+QDWgHlYFBcCBA9b32bQJCDHWZCUar2TiQYImdyXdBRcH8yCgq5MDZkf74eHFMbh7bqRq4igKa1uwK7VMBTkNjhQeMQuAjorp07VgpsMgPVbOngW2b2fghIiIaIQDJlK+RxZbVLcaAyNSzicrNhj/GhmK9y9XoaldyzLxdnPCDGaZEI09snDwrrsGzPKWRY0JfgnwrG3GtEMX4WRnhxUmVSMOZVaaLb7anb1b9TQiIroeDJoQ0YQgtYvfS39PNaI2kGbvu9PKkVZSr65Lz4TNs8L1VSki3i9eZZkM6+oy6Y/w/vvWJ1OnTQPmzRu+YyAaBZJS/61F38KSyCVwc3Qz2yZ/c1H+7rhjTgScrqz2zKlqwp70MrPsEim1ZxoIHRWGPkODBU5SUoAPPmDghIiIaAQCJrJgKqc2B+fLz6tME3WbvR0KE8Pw/PxE/KDXCZfrtObShvK898yNNMsykUUezDIhGiOio4FVqwbcFOgeCF9XXwQUVSP+dA4SgjwQ5eeutjW0duJsYZ2+b11bHX557JfYfmk7KporRuzwiWhiYSN4Ihr3Ors78Xba28iqydJv6+rpwWepZciq1FaYyGBo0/RQTAn1MjvxemruU6oPw7ApLNQCJnXGk7h+JA35a18D3MwnlYkmkq6eLqRXpquVoAX1BWbbJBNs+7liPctE6oyvnRpsNolx2+TbMC98lAOLWVnAW28BXdpqVatB0LvvHjzIQkRERNcUMGntbFUleBraG9T1bkd7lE4Ox5mYIGzPqUV1sxZEEdIDQUqDTgr2NDu3iPWNxWOzHmPQhGgskSnKd94BLvYvsSXZIzKWEBlLpyA13B+vH89Xd5FFWI8tjYWni2O/+0mWyqrYVYj2iR6Rl0BEEyNuwKAJEY37DJM3Ut9Adm22fltndw92ni9FfnWznmFy84wwNVAycHdyVwETaTA3LGSl+aFDwBdfWG8QLb0Stm0DoqKG5ziIxqCSxhK8fv51NHca6w9nVzRhZ2qpnmUyP8YfyxMDze63ZcoWzAmbg1ElfYnefBPo7LS+HwMnREREwxIwqWyuxKWqS+ju7VbXWz1dcW7jLByva8fhzEp9EYbEQmZF+mJJQoBZaV4R7BGMh2c+DG8XzhkQjTkdHcCLLwKlpf02Xa6+rMYSUoIvZeMsfFDXgfNF2gLFaH93rJ4SrHqYDmRF9AqsjVvLQCnRDazhKuIGLM9FROPagbwDZgGT9q5ufHS2WA+YODrY4fZZ4WYBE0d7R9w//f7hC5hIVslLLwEHD1oPmIi1axkwoRtOuFc4Hpn1iFmWV0KwJzZOCwGujGFO5dfgeI6xNrn4OONjpJSlYFTFxwMPPQQ4DzwY06Wna1lm3dqEDhEREV1lwOTVV/sFTMqbypFWmWYWMPlqbTLezanFwYwKPWAS5OmCrQui1QSqacDEDnZYHLkYT855kgETorFKzrO3bgW8jFUiTDPEZDxv19uL6QfSsCbEQ++RKNnrrxzLUxnshTUtZiV/xeGCw6Nf9peIxg0GTYho3JISP0cKjujX2zq78cGZYhTXtarrzo72uHNOpKpfbOBk74QHkx9EjG/M8ByUpBE//7zW+H0ok6/Llg3PcRCNcdJ49aHkh+DsYAw+TA3zxtopwfr1YznVOJlXo1/vRS8+uvQRUstTMapiY4GHH9YaVg4WOJEeJwycEBERXX3ApLjY7GbpWyKrzA0kYLJr8WT8Na0cOVdK8oo5UX64f2EUgr3NS/BGeEXgmXnPqH6GLo6DfIYT0eiSFeASOHEy9iMVMnaQwIlwau/EvCOXsGlqsN4jUeRWNeP9M0V4/XgBLpY2mAVPpEl8cYP5ewsR0UAYNCGicam9qx0fXvxQTaIKORGSpu/lDVqzR1cnB9w9NxIRvsY+IbKq/dFZj6rm78MWMJH6qzLQG4yfH3DXXVrdAKIbVJRPFB6Y8QAc7IwrQGdG+mJFYpB+/UhWFU7n1+rX5W/+g4sfIK0iDaPeqPKRRwDXQXoipaWxOTwREdF1BkxEfl2+WYbJyzNi8VpGFZratV5jbk4OKsN81ZQgOEoJXJMxwK2Jt+LJuU8izCtsBF8MEV2X8HDgzjv73+wVrsptC++qRmzILcNTK+LUGMLLpKdJVVM7Pk8rw8GMSv02eQ95N/1d1ReJiMgaBk2IaFySFSK1bcaJ1PSSBuRUNekDpnvnRSLEZHWZnFRJo0eZpB0WUm9VJkaH0iYqLg544gnA01gyjOhGJUHMe6ffC3s74ynJvBg/LJtk7Gci9cnPFpgHTt6/+L6qZz6qIiOBRx8dWuBESnUN1geFiIjoRmYlYNLW1ab6GBgCJnuXJ+GzYllBrm2P9HPHQ4tjEB9kfn6dFJiEv1n4N1gQscDsXIOIxgnpEyglrU3I37L8bRv+piMyShCdX6XGENuWxal+pqZzASlFdcgoa9Sv17XV4cNLH/Yr30VEZIpnDUQ07kha/unS0/r1+tZOHLxsXD1y07QQBHgaU+69nL2wbfa24VtZ1tgIvPHG4BOisuLtppu01ekD1GclulFNDZyKO6beoeqMGyyI9ceS+AD9+heXK5FSqDV5FD29PXg37V3k1uZi1FfADTVw8utfA199BXRpK2KJiIho8ICJyKvLU4smVNP3TbNxoKxJVlHo5bjumhsBT5MV5tLz4LbJt+G+6ffB05kLlYjGtRUrgBkzzG7ycvHCrJBZcHPUKktMPpYBj9pm2NvbYUqoFx5YEIU1U41lf/deLEdNc4fZnMLRwqMj+CKIaLxh0ISIxpWWzhbVDNqgR5XlKkNnt1b6Znq4NxJMVpj5uvpi25xtCPIwlvuxKQmUvPmmFjixxt8fePJJYPlyLXhCRGZmhszElqlbzAIni+IDsCjOGDg5kFGB80V1Zun1b154c/TrEg81cNLUBHz2mRY8OXGCwRMiIiIhq72lxK2FgImc/5c1lekBk9yuXuRUNattEihZNikA9iYlb4M9glXvknnh82DHUrhE45/8Hd9+OxBkPqb3cfVRWWSSdeJj747pBy7AoUM7v5a//ZkRPkgK81bXZb5gV2qpPm8g9uXuU31SiYgGwpk7Iho3JH125+WdaOowNnqUkj2Gxu/erk5YOdl4IiV9ErbO2Ap/N//hOiDgww+BEq1UgEWzZwNf/zoQETE8x0E0QcwOnY3bptxmdtvieH+VdWKw/1IFLpU1mDWFfT31dVQ2G7PNRi1wMpQeJ0KCrLt2Ab/5DZCZORJHR0RENHadPQvk5FjcLFmlhoBJm4cLjmZXmS2wcDRpAD0vbB6envu0CpwQ0QTi7Azcf7/2vwkp0RXiGaL+9pe6T8Ga8416yWwJnKydGgx/D2e9x8nBjAqzzPX30t9Dc4cWhCUiMsWgCRGNG6kVqUivTNevy0nP0exq7YodsGF6CFwcjQ2l18atVSdQw+bAASDdeDwDWrwYuOOOfid3RDSwuWFzsXnyZv26DHaWJgSoGsUGu9PKkXtlhalhBeqr519V9YlHlQRGJXDiYiwPaFVDg1ba79y54T4yIiKisamlBdi71+LmxvZGFNg3qoBJu6crCmpaUFSrLZjydXPCtCuryEWEV4Q6h3BycBqRQyeiERYYCGzZMuAmGTNIlYnlTX64N88ddlcySpwc7HFrcpgeXE0raVD9UA0a2hvY34SIBsSgCRGNCzJg2pW5S7/e3dOLzy6Uqf/F3Cg/1QDSIMYnBkuilgzfAZ0/Dxw6ZH2fxERgw4bhOwaiCWp++HzckniL2SBo+aRAJEf46GX5dp4vQfGVSRPDgOfVlFdHf6WYBE6kVNdQAycyQNuxw2JJEiIioglt3z4tcGLBpZ4KPWAik5r6gikASxIC4WBvLL+1Ln4dy3ERTXTTp2sLE62YlteC9V9VwvFKqS7pd7rOpL/J/oxytQDTIKsmSy3QJCIyxaAJEY0Ln2V9hrauNv36VznV+olOgIeLWolu4OzgrJpKS6rusCgtBT429lUZUHAwcM897F9CdI0WRizExoSN+nWZBJFmjpNDvNR1CZhuTylGRaPxfaG6tRqvnX8NrZ3GYMqoBU6kh1FY2ND27+4G3n5b63lCRER0o5AFA2fOWNxc49SFvSsiVMBEZFc2obxB+9wP9HTB5BBjH8M43zh1IaIbwPr1QFSUxc0ybljQ5o+luy/CtVEbF0hvkxlXFmB1dffik/Pm/U325uxVZX+JiAw4m0dEY15mdSbSKtP06zJYOpVfo762t7fDxhkhZrWMb550M/zcjKV8bKq1VWtUaa2Bs7s7sHXr0FeaE9GAJFtsXdw6/bo0ed04PRQxAR7qekdXDz46W4zaFuMAp7SpFC+nvDz6GScSOH3mGeC++7Svh1Kq6913tQAKERHRRNfTA+zcqfce6EuySg4kuekBk54+WSbS/N00q4RZJkQ3EAcH4N57AQ9tTDAQKdM3zzEa83adhXdFvbpt9eQgFXAVMn44nV9rlrV+tPDoCBw8EY0XDJoQ0ZjW2d2JTzI/0a/39PRi78VyfXy1OM4fwV7GxstTAqaoZtLDQp70o4+AWuPJ1YAncA88APgNU9CG6AazPHo5lkYt1a9LGY7NM8MQ5qP93bd0dOODM8VoajMGMsuayvDSuZfQ1DHKmRsyeTNtGvDss1rmmdRhtiY/H9i9e6SOjoiIaPScPq1lb1tQFu6NVD/joohLpY2oadauh/m4IfbKAgrD+X+kd+QwHzARjSne3oNWdvBx9cFU1yjM/jwFQXmVaqHlLcmhaiGWkIWYjW2d+v5HCo6gvk0LsBARMWhCRGPaF/lfmDV3PldUh8pGrSyXrBKZF+Ovb/Nw8sBtU24bvlVmR44AGRnW95HGdNHRw/P8RDcg+XteH78ec0Ln6LdJQ8ctsyP0lWIy2HnvTJHZoKeypRIvnn1RrRobdfKeNGMG8I1vAEuNAaABHT/OxvBERDSxSTlK6WViQY+DA3ZN6tU+P6WUTk8PjuUMnGViBzusjVs7AgdNRGNOXJxW4cHZ2eIuElANdvFH0qF0eFU2wN/DBTMjjWW6vsyq0vft7OlUZbqIiASDJkQ0ZpU3lZulyMqE6DFDWr4dsHZqsFnzx82TN8PT2Vjb2KZyc60O7pRly4CZM4fn+YluYDIxIgHRpMAk/TZXJwfcOScCPm5O6npdSwfePV2E+tZOsx4nEjgxDbyOKlkJd9NNQGKi9f2kXElJyUgdFRER0cjaswdoM/Yk6ytzWggKHYzZoheKG/SFEVKiM9LPXd+WHJKMEM+QYT5gIhqz5Lxaegn6aIGQgcYRko3mDAckHs9U1SMWxweosYTIKGtESZ2xH6I0hC+sLxyxwyeisYtBEyIak6SO8Y7LO9DTa2zOdiCjUm/Wlhzug3BfN32bTKYmBRknVG1Keg28957FmstKbCywzth7gYhsy97OHndPu9usyauHiyPunhcJ3yuBk4bWTrx7qtCsx0ltW60KnFS3GFeojnrg5K67AH9jllw/0jNJGsM3j3JfFiIiIlufU+/YAaSkWNyly8cbOwK13oWirbMbx02yTJYmBJidG6yOXT2MB0xE40JICPDUU0BEhMX+JjKG8K5qRHBuhQqYLIk3vpd8cblSzT8YfJb1mdl1IroxMWhCRGPS6dLTKGoo0q9nVTQhp1Jbcebu7Ihlk4y9AZwdnHFz4s3DcyDSlFmaM1ubvPTyGrSeKhFdP0d7Rzww4wFEeBkHRN6uTrhnfhT83LW0/Kb2Lrx7qgjVTVoZP1HfXo8Xzr6A4oZijAlublrvIyulBFBfD3zwgdYol4iIaLyX4/rsM+A3v9F6mVhxYlYgmnqNWSgn82rQ2tmtvp4S4oUQb2Mvw7lhc+HvZmURAhHdOGRM/vjjWj/BAYR7hcPdyR3xp3Ng39WN5AgfBHho5+LlDW24VNao71vcWKwyTojoxsYZPiIacxrbG81qiXZ09eBgRoV+fdXkID2dVqyLWwdvF2/bH4isLvnkE6DQSnquBEruvRfwHKayYERkxsXRBQ/NfAihnqH6bZ4ujrh3fqTe46SlowvvnS7S+x+J5s5m1Rz+cvVljAnBwVoPJGuys4EvvhipIyIiIrItyZyU8ra//jXw1VfadSuaE6Kx37FAv17f0olzhVqJTSnJuyzRuGjKyd4Jq2JWDePBE9G44+Skjc0XLBiwTNck/0lwbW5HVFoR7O3tsHJykL79SFaVXtVC7Mneg7Yuy2UEiWjiY9CEiMYUSYPdlbnL7ARF+pjI6nFDHePJIZ5mK0YWRPQ/KbKJ/fuBM2es77N+PRu/E40wWSX22KzH1N+/fpuzI+6eG4lgL20FqqxKlebwpfWtZs0d30x9E6dLrK9yHTHTpwPLl1vfR4ImmZkjdURERES20dEBvPIKcPgw0GnsN2aRkxP2THZAV48xsCINmrt7tBI5c6P9VHapwdKopfBy8RqeYyei8cvOThujS+ZJH5KZFuAWgOjUAji3dqi5hbhAD7VN5htO5RlLAzZ2NOL/TvwfUspSWKqL6AbFoAkRjSlny87iYtVF/XpFQxvOFdWqrx0d7FTzd1klIuxgp5q/Sz1jmzt2TBvkWSOpv4sX2/65iWhQbk5ueHTWo4jyjjLe5uyAu+ZGIMxHC5y0d3bj/TNFyL5S2k/0QuuXdCD3gFnPpFGzdi2QkGB9HynTVTdGmtkTERENRiYYt28HCoxZI4MpXzAN51pz9evSmDmzQiuX4+7sgAWxxjJcXs5eWBa9zMYHTUQThpTAtdBvNME/AY5dPYg7o73frEwMgv2V+YVT+bVoaDMGeZs6mvDhpQ/x4rkXUdZUNkIHT0RjBYMmRDRmVLVU4dPMT/XrXT092JNervdfXxQXAJ8rDZ/V9chFZivNbUaaU37+ufV9AgK00jpXTrCIaOS5OrrikVmPINY31nibkwPunBOJKD93db2ruxc7z5cgpcg86PBF/hf4+eGfqybxkn5/sfKiGhiNOCnxd/fdgI+P5X1aW4F33hm0rAkREdGYIKW40tKGtq+dHXqXLMGOgCr9JlnVLY2ZDZYkBMLZ0Th1sTZureppSERk0axZQFjYgBnrEd4RCM0qhWdNE/w8nDEryldtk8y2z1LLUNfSYXafgvoC/PHUH1WDeNNsOCKa2Bg0IaIxobunGx9c/ECVzzE4mlWNyivNnAM8XFRavoH0MFkTu8b2B5KRoa2MG2zlyv33Ay5a/wQiGj0yafJQ8kNI8DNma8jEyh1zIjAlVEvLl8DrgUsVqlaxaXq9vN/k1+fjSOERvJ32Nv736P/i5XMv41LVpZHNQnF3B+67D3Aw9mrqp6REa6JLREQ0luXnA3v2DG1fydp+9lmkzYlAUWOxfnNGWaNqzCykX9n0cGPvQulpNit0lu2Pm4gmFlncuGnTgJtkwZWznRMSTmSpgcKiOH+9Z2pJfSte/SofR/v0OJFs9a+KvlJjhfYuY99EIpq4GDQhojFhf+5+lDSW6Nfzq5txpqBWb/y4aUao+t/glsRbVENomw/y3n0X6LEyWSqTmg88oDVxJqIxwcnBCVuTt2JKwBT9NvW+MT0U82OM5TxO5tVgd1q5Xh+9LxkM5dbl4q0Lb+E3x3+Do4VH0dpp7IkyrCIiLA7sdKdOaZlwREREY1Fj4+Dn0iIxEfja19SCgRovR3yeZczwlklK6WVisCIxUC+dIzYmbBye0rxENPHExABJSf1udrR3VIETv7I6BBRWq4DJ5plh8HRxVNtlrHAirwavHMtHVkWj2aKrwoZCvJ76Ojq6zbNRiGjiGZGzjd/97neIjY2Fq6srFi1ahBMnTljc96WXXlL9Ckwvcj8imrhya3PV5KRBS0cXPk8r168vmxSIIC9jgGRq4FR1sanaWuDNN62Xv5EBm5TRiY+37XMT0XWTwc990+/D7NDZ+m1yDrE8MRBrpgRLEyTlYlkDXj6Wh8/TypBSWKf6Jg0URKlrq8Pu7N147thz2Hl5J5o7mof/RcyfD8ycaX2fTz/VynURERGNJd3dWinJpibrmZVPPAE89JAqmyM9Al44+4JquGxwtqBWNWQWsQEeqlGzgSyOiPOLG97XQUQTizSFHyCbW8p8ezh5YNLJbDh2dCHSzx2PLonFvBg/2F9ZrNnY1omd50vx0bkSNF95XzKU63oz9U10dhurZBDRxDPsQZO3334b3/3ud/GTn/wEZ86cwaxZs7Bx40ZUVFRYvI+3tzdKS0v1S76s/iaiCamls0WV5ZIV3kJWcexNL1eBEyEDpTlXaowKT2dP3Db5NtsehKwc+fhjoE0rA2DR5s1aGQEiGpMc7B2wZcoWrIxZaXa71CnenByuZ6s1tHbiYmkDDmRU4I0TBfj9wSy8e6oQF4rr0WWShm8o4XWq5BT+cOoPyKnNGd4XIIFZeZ+xlskm71NHjgzvcRAREV2t3buBwkLrn3H33ANER+uTji+de8msn1h1UztO5tXqCx8ky8RAskvWJ6wfzldARBORvz+waFG/m+U9ZlrQNHg2dWDql5fUnICU+F2RGISHF8Ug2l/rj2iogvH+mSJ9jkJIdvo7ae+wxwnRBDbsQZPnnnsOTz/9NLZt24Zp06bh+eefh7u7O1544QWL95E3r9DQUP0SEhIy3IdJRKNAAiQ7MnaYrS47X1yPnCptRbebkwM2TAtR7wkGd0y9Ax7OxhVnNnHmDJCba32fdeuAefNs+7xEZHPyfiENYjdP3gw7Q3oJgEnBnrhnXiQifN3MSv0JyTQprmvF3ovl+MuXuaosiKwsMyWTOq+ffx35dcO8kGMoPZOOH9dKoBAREY0FqanaZ9Ng59JXsrUzqzPxasqraOsyLlgqrW/Fu6eL9B4CyRE+CPA0fhYuCF+AQHdjEIWIaMhWrtQy3fqQeYV54fMQX96BmPMF+u3+Hs64c06EKtnlcaVkV01zBz48U4y2zm59v8yaTLyX/p7qz0pEE8+wBk06Ojpw+vRp3HTTTcYntLdX148dO2bxfk1NTYiJiUFUVBS2bNmCtLS04TxMIholqRWpuFh10Wx12aHLlfr19dNC9JMUsThyMSb5T7LtQTQ0aCvjrFm8GFi+3LbPS0TDan74fDww4wE42Tvpt4X5uOHe+VF4dnUCHlgQjVWTg1SzeB834z4yEDqVV4MXjuThk/MlahLHoLu3G29eeBOVzcb3qWEREABs2WJ5e2cncPjw8B4DERHRUFRWahnb1khPgWXL1Jep5anqs1QyOQ0KqlvwgclkZLCXK5YmBOjb3RzdsDp29XC9AiKa6KTk/+qB30PcndwxJ3QONhW6IKKsxWwh1qRgL9w7L1Kfk6hsaseHZ4vR3mUMklyquqQqZ/T0DtLLiYjGnWENmlRVVaG7u7tfpohcLysrG/A+U6ZMUVko27dvx2uvvYaenh4sXboURUVFA+7f3t6OhoYGswsRjX2yssy06WNXTw8+vVCm9xaYFemL+CBPfXuIRwhuijcGYG1WlmvnTnkjsbxPcjKwcaNWUoCIxpUpgVPw+OzH1WDIlKO9PUJ9XDEn2g83zwjDtmVxKoiSFOqt1zCWTLjMiia8faoQl8oazN67pPmjaTmRYSGlAK31Tzp9WuvFRERENFo6OrTG7xLMH2whgJ0dMqoy+k0uZpY3YntKsZ5hIn0FJDNUGjMbrIpdBTcnt+F9LUQ0sUnvwKioATdJgCTMMxSPZ3thmUeSWba6r7sz7p4bCXdnLXBS3tCG7WdL0NFlfB9Lq0zD3py9I/AiiGjCNYK/GkuWLMGjjz6K2bNnY9WqVfjggw8QFBSEP/7xjwPu//Of/xw+Pj76RbJTiGjsO5B7AM2dxsbKJ3JrUNWkBS8CPJzNahhLg+e7p92t/rd5KYHLly1v9/HR+gswYEI0bkV4R+Br876mmseaDoD6kiDKxhmheHJZHBbHB+gDI2m3tDu9HIU1LWZN4qVUV0d3x/Ae/Nq11hvufvHF8D4/ERGRtcVHn3wCWOlVCicnreSkqysa2xvx4aUP9T6GQnqJ7bpQqi+aSgjyxB2zw1VfAYPJAZOxKKJ/PwIioqtibw/cdx/gaVyY2ZdTZzfWn6rB12ZuMysHKOW67poboQdzS+pb8XFKiVkvxKOFR1FYb6WvExGNO8MaNAkMDISDgwPKy8vNbpfr0qtkKJycnDBnzhxkZWUNuP2HP/wh6uvr9UuhteZzRDQmlDaW4kTxCf16bUsHTudrK6bt7eywaUYYHB2Mb08bEjYg2MNKY+Rr0dwMfPaZ9X0kYGKtrwARjQs+rj7YmrwV313yXdw77V4siVyCaJ/oAQOxkn4vQZMnl8dhRriPuq2npxc7zpeoEoIGpU2lqobxsKbiR0ZKCq7l7SkpWlkUIiKikXbunPY5ZI1kmAQHa30ML+8w62FytqBW9RKT2IuYFuaNW5PNxwCJ/onqc9u0vyER0TXz8tICJxJAsUTmKw+cxGMzH4W/m79+c6CnC+6aEwGXK0HdotoW7Dxfih7DmxiA/bn7h/f4iWjiBE2cnZ0xb9487Nu3T79Nym3JdckoGQop75WamoqwsLABt7u4uMDb29vsQkRjlwyaPsn8RF9lJtcPXKrQV5jNjfZDkJeL2eoyafxoc7t2AS3GleP9zJoFJCba/nmJaNR4uXhhevB0bJy0EU/MeQI/XP5DPDPvGRVEcXEwD5BKs/i1U4MRG+ChrksK/kfnStDU3qXvc7n6MnZl7lLvY8OabWJpskie98CB4XtuIiKigciiSMkysWbhQmDGDPVlSnmK+sw0KKtvw6FMY9Bfzv+ll6GhRKZIDk7WepM5GPuOERFdt+hoYNMm6/ukpsLrxDk8Nusx+Lr66jcHe7vijjkRejZcXnUzLpc36ttz63KRW5s7fMdORBOrPNd3v/td/PnPf8bLL7+Mixcv4tlnn0VzczO2bdumtkspLskWMfjXf/1X7N69Gzk5OThz5gwefvhh5Ofn46mnnhruQyWiEXC27CyKGow9irIqmlBwpeyNl4sjFsUbV3NIH4ItU7bYfnXZpUtAWprl7R4eWh8TIprQHOwdEO4VroIof7/073Fr4q1mqfgyeXNLchiCrwRyG9s6sf1csVkN41Mlp7A9Yzu6eozBFJuSvnBXJp0GlJ4OlJQMz3MTERH1Jb0A33kH6LLyuRcRAWzYoL5saG/AZ1nG7G4pZ7M7vUzPMJkf66/K8pqe7y+MWIi7ku5Sn9NERDa3YIG2SNKa/fvhk3pZBU68XYyLs8N83FRPRIOvcmpUVrrBgbwDw7ugiogmTtDk/vvvx//8z//gxz/+sepTcu7cOXz22Wd6c/iCggKUlpbq+9fW1uLpp59GUlISbrnlFtXY/ejRo5gmDVGJaFxr6Wwxa5AmE49fXDauMls1JQhOJin56+PXw8NZW+Vt04HeYCvjbr0VcDdvHE1EE5uzgzMWRCzANxd80yy7TVaSbZkdAS9XbaVrZWM7Pkk11l8X58rO4aVzL6l67cNizRrrZQT2sxQAERGNAJkI3LEDqK62vI+rK3DvvYCjo1aWK8O8LJdMMNY0az3Bgr1csTQ+wCxgsipmFW6edDNLchHR8JH3FynFPVjbgF274JdVpAInns7GXiixAe6I8HVTX9e1dOBiWYO+raC+ANm12cN37EQ0Yux6J1gIVIIs0hBe+puwVBfR2LLz8k61KtvgcGal3sskJsBDNX40DJCivKNU+RybD5ikcbK1cjZJSVrDSiK6YUmfkrcvvI2M6gz9tprmdrx9shDtV7JMkkK9cdO0EFXGy8DL2UuVEpHm8zYnk1SnT1t/71q3ThrK2f65iYiIxNmzwPbt1vfZulXvx3W29KzKxjQorW/FO6cKVexFPj+3LoxWfQIMNiZsxJKooZXxJiK6bnV1wB//CLS2Wt5HFi5t3YqyMC/88dQf9TLjxbWtePe01lPZ29UJjy2N1ccFksn+9NynGfwlGudxg2HPNCEiEsUNxThdYpzwk4bKZwvq1NdycrFmSpB+UmEHO9w6+Vbbn2RID5OjRy1vd3PTskyI6IZmb2ePu6fdrQY8Bv4eLrhtVrg+GJIVZR+cKUJLh7E8SWNHI1489yLOl5+3/UGtWqVW7Vp08SLwu98BH38M1Nfb/vmJiOjG1twM7N5tfZ+lS/WASV1bXf+yXGnGxu+L4gLMAiYzgmcwYEJEI8vXF7jnHusZ3T09qiRhaE0HZoUaS3pF+Lkh2l+rTtHQ1om0EuP5d0ljidniKyIanxg0IaJh19ndiR2Xd5g3f8+oQM+VUdP8GH/4ujvr+y+KXIRQz0FSZa/F4cNaeS5LpI+JpzHtlohu7HJdDyY/CD9XP/22SD93bJoeqgdOiuta8eaJQlWyy0B6m3xw8QMcyj9k2wOSVTBSf9kaeU89cwb47W+BvXuB7m7bHgMREd249uyxvho7Kgptq5YhpSwFb6S+gd8e/y3au42fj8dyqlHbopXlCvF2xfwY4+erh5MHbkm8ZXiPn4hoIAkJwB13WN+nsxN44w2sdpmqFlcZLE0wZnifyK1RwWGDA7nsbUI03jFoQkTDSk4UPrr0EcqayvTbMsobUVSrDbq83ZywINY4aJJaoatjV9v+QGTl9cmTlrdHRg7eDI6IbijyfvTQzIfg5qjVLBaJIV64d14UPJwd9ebwb58qRGa5eT+T/bn7Va8Tm1q+HHA2Bpgtkua8X34JvP669Ua9REREQ5GfD5yz/JnW6mSH7TOc8IuvnsOHlz7E5erL6O41Bu5L6lpxpkArySsLDzZMC4G9SXnLzZM3w92J/QSJaJTMnAncfLP1fdra4PveDixySdBvCvVxRXyg1oO1qb0LqcXGbJPy5nKkV6YP3zET0bBj0ISIhpWstk6rTNOvN7d34dDlKv366slBcDRp/i61jF0dXW1/IAcPWp88vOkmrSEcEZGJQPdAbE3eCid7rRG8YYC0dVG0WikrZFWZNIc/ll1ttqJsV+YuVLUY3++um4eH1hR+qHJyBi+lQkREZI1kLX7yicXNta21eCm6Bmdbc8wCJQatHd3Yk24sy7U4PgABJmW5koOTkRSUNDzHTkQ0VIsWAasHWbzZ3IyVX+TBo0nLmhOLEwL0r0/m1aLTNNsk74DqlUhE4xODJkQ0bGRlhZwoGMjE4o6UEr0HQHygJ+KDjOWw4nzjVD1jm6ustLo6DpMmAbGxtn9eIpoQon2i8cisR1T5EANPF0fcOy9SNYQ3OJ5bjSNZ1fr1ju4OvJ/+virZZTOLF2tBXmv9TUydOAGkGQPXREREV+Wrr4CKigE3yefcl+5VKI8yZo2Lts5uVd//o7PF+POXOWZlueZFm2eY35w4yOpuIqKRIj0EFy60uotbayc2H6uGS7NWfjDYyxWJwdqchsxzpBRqfVuFLJ5KLU8d5oMmouHCoAkRDQspx/XhxQ/167L6eu/FCpQ1tKnrXi6OWJcUrG+X2qBSy9jmzd/F/v1arX9L1q2z/XMS0YQLnDw972mzfkuSJbdheghWJAbqiWqn8muQX92s71PaVIp9OftsdyDyRFKm69vfBubNs9640kCaw9fU2O4YiIjoxiDlbSVb24K85mKkzYvSrxfVtmD7uWL86XCOyi7Jq25GT492Du4kn5ksy0VEY5mcZ0uZLinXZUW8nT/m7k6Fc2uHnkEHfSxQi44uY3bJ3py9aO200g+KiMYsBk2IyOaaOprwZuqb6Ozp1G+Tk4dLZQ36RONts8Lh4WJcKb00aimCPIJsfzDFxcDFi5a3z5gBhIXZ/nmJaMLxdfXFE3OewPSg6fptEuidF+OPFZOM71+fp5XrGXXiWNExZFZn2vZgpDH8bbcB3/wmMN14PANqbwfeeYf9TYiI6Op89pnWANlClsmxeGe0eWqlKisa2vDBmWLkVhkDJYbMzLnRfnhwUbRZWa6ZITMxNXDqCLwIIqKrDJxs2QJMnmxxFxdHF0zq9cOsz1Pg1Nap3tumhnjrmXZnr/RwEo0djfg8+/MROXQisi0GTYjIpqQMzdsX3kZ9u7EJWk5lE45kG+v6b5wWguArvQBEhFfE8DR/l+ySvXstb5cV2lfTH4CIbnjODs64Z9o9WBu31uz2OdG+iA3QyndJwGR3mtRvN04afXTpIxVQtrmAAODee4Enn7TeJL6sTJv8IiIiGorLl60uPMp1bEJeknHh0cm8GvRc+dyTQMmcKD/cNz8KTy6Pw8rJQfBzN35Gebt44+ZJLMtFRGOUg4N2fh0XZ3GXKJ8oeNe3YebuFDh2dGFxvL9eNeNEXg1qm419T86VnUNGVcaIHDoR2Q6DJkRkU4fzD6OwoVC/XtXUjk8vlAFX5g6XxAcgMcRL3+7l7IUHZjwAR/sh1ue/GtIEOTfX8va5c7UJRyKiqyADopUxK3HvtHvNbpNSXe7O2nuZlCQ5a1LTuLmzWZUsNA2k2FRUFLB5s/V9Tp0CUllXmYiIrGhpAXbv1jIUrSyS2j/NDb0O2nRCTXMHMiu1hQHyOfj40lismhKEcF+3fqV3pT/YIzMfgZuT2zC/ECKi6+DkBGzdqp1jW1hIFekdCa+aJkz98hJ83Z0xK9JHbevu6cXu9DI9kCx2XN7BMl1E4wyDJkRkM80dzThSeES/LqutPz5Xgs5uraanBEsWxvnr2yVQsjV5K7xcjEEUm5FyNJ98Ynm7NFGWRm9ERNdoevB0LIlcol+XiaKN00P0619mValyJQbZtdlm75E2J/WXJRhszY4dQJUx84+IiEjp6AAOHQJ+/Wvg6FGrJR0zI91RHmQMepzKq9EXSM2N9lWlePvycfHBqphV+Naibw1PSV4iIluTLO6HHgLCwwfcLEETmdMILKiCX3ENlk0KhK+bk9pWWt+GM/nGMl2Scf5p1qcjduhEdP0YNCEimzlRfEKtPDM4cKkCDW1aHeRgLxfV/NF0tdkdU+9AuNfAJyDXRVZ07NxpvfHx4sWA1zAEa4johrIufh3CPI3lSWICPDAvxk99LTXdJdPOtBmkNIVPKUsZvgOS5pUhxsDNgJNiH36ovU8SERHJ58HZs1qwZP9+beGRFd0uztidYLwu5/qXyhrV1y6O9ki+stJaSJN3WVzw1Nyn8J3F38GauDVwdTSW6CUiGvNcXYGHHwaCg/ttcnJwQrxfvPo6/nQOnOwl8zxUbwp/LKca1U3G99Tz5edxsdJKv1UiGlMYNCEim5BmkBI0MTBN03dzclCN351MVp1JaZsZwTOG52BSUqyXoJETn2XLhue5ieiGIqvL7p52N5zstVVlYmlCIIK9tEmh2pYOHMyo0Lf1olf1N0mvTB++UgL33We9v0lxsTZBRkREdPgwsH070Nw8pN0zZkei1sFYq19WUhtK0MyK8oWLo4O+bdOkTdg4aaNajd23TBcR0bjh7g48+uiApb1l8ZSfq58q0xWcV6nKEs6N8jMp01WuFlIZ7Ly8U1XoIKKxj0ETIrKJM6Vn0NplrNF5WlJRr5wbzI/1g5ercUIxKTAJa2KHqQG7lJ2xVpZLrFgBuLGOMhHZRqB7IG5JvEW/7mBvh5uTQ/VAcXppg2qQaxo4eS/9PVyuvjw8ByQDuttvt77P3r1AK+sqExHd0OS8+eDBIe/eEx2FPT7VZqV4L5TUq68dHewwO8pX3yaTiMO2QIqIaKR5egKPPaYtwDQhAeEpgVPgYOeAuDO5sOvuwdKEAPi5awuYyhvacMqkTJf0Ofwk85Ph63NIRDbDoAkRXbfunm4cKzymX29q78Klsgb1tbOjPWZE+JhNLt6ZdOfwrDaT2svvvgt0aiXBBhQdDSwx9iAgIrKF2aGzzSaHZKC0dqoxjf9IVhXOFRgHTD29PXgn7R3k1OYMzwHNmAEsWGC90e+BA8Pz3EREND58/rnUkhzavsnJSFubjNoOLUgizhXWoatbm/ibEe6jensZLIteBns7TjcQ0QTi7Q0sX97vZik7OMl/EtwaWxGWWar6Om2YLqXJte1f5VajyqRMl2ScS8YJAydEYxvPYojouqVVpqG+3WQAVVCnUlHFzAjzNH1pAOnsYKVszPXYvRsoL7e8XbJL7r4bsOdbHxHZlgSCN0/eDF9X4yrbpDBvVarL4ODlSqQVG98rpQfUm6lvYn/ufuTW5pr1hLKJDRsAX+Px9HPypPX3TCIimrgyM7XLYBISgGeeQe9dd+Fw5Sn95vaubhU0EfZ2dno/L+Hp7KkWExARTTiLFg3YGzXUMxT+bv6ITcmHQ2c3wnzcMC/GX22T8lyfp5XpcyTidOlpbM/YrhZSEdHYxJlDIrousjriSMERswHU+eI6vUTNnGjjhJ1MJk4LmjY8B3LxInDC2FNlQFu2AD7GrBciIluSVWZ3J91ttrJ2YZw/FsZqAyax51K5noknOns6cSj/EF5OeRn/9eV/4eVzL6vMvbauNtv0N9m0yfJ2Wd22axebwhMR3Wi6u7UsE2siIrQa/o88AoSH42LVRVQ0G3t0pRbVo6NLm+ybGuplVopXmr9Lzy8ioglHzq9Xr+53syrTFTAF7u09iEwvUrctjvdHgIe2YLSysR2fXTAPnJwrO4cPL37IwAnRGMWgCRFdl+zabJQ3lw84gEoK9YaHi6PZAMrB3ph1YjONjcDHHw++ImTqVNs/NxGRiSifKGyZssXstiUJAZgTfWUFbi/weVo5siqa+t1XMk1y63Lxefbn+OWxX+JUyanrT9ufMkVbJWxJfj5w4cL1PQcREY0vkmko/UwsmTcPeOopID5eXb1QcQEfXPxA39zV3YMzBdoiKdhJ/0J/swUE88PnD+PBExGNsjlzBmwK7+Loosp0RV0ogFNbJxztpUxXqFpMKjIrGvFJaim6TMoiplakql6HUvKciMYWBk2I6LqYZpnIh//ZQuMAaq5Jmr6boxvmhM0ZnoPYt896Q+PQUGD9+uF5biKiPmaFzsKtibearTxbmRiI5Cv9nSQQsutCqWoOL6vOBgqMtHe3q1rHb114C80dzdd+MFJM+eabAQcH66UNOzqu/TmIiGj8kJ5W1pq/SznbdevU54d8Pkk2pEzomZaQTCttUE3gRWKQJ/yvrKQWCyMWqolDIqIJS8p9y/vkAEI8QhDi6Ivo8/nadW9XbJ4ZrgdOciqbsDOlVAWfTXucvJ32tu1L9RLRdWHQhIiuWXFDsVoVbZBR2ojmdu2DPiGw/wBqWHqZlJYC585Z3u7sDNxzD+DIEgFENHIWRCzAhoQNZoETaQwvGXiG2sbSHP714/n446EcfHK+BCmFdahrMQ9eZFRn4Pcnf4/M6iHUnbckMBBYvNh6tt6hQ9f++ERENH4cOAC0WSkBKWVn3N3Vqmepty99t0xdLm/EocuV+vUFJlkmTvZOWBxp5fOGiGiiSErSyhgOVKYrcAriMivh2qS918YFemDLrAg4OmiBk7zqZnycUoJOk8DJ5erLOJhnJaBNRCOOQRMiumZHCo1ZJrIS7VR+rX59fqyf2QBKgiY2J6uzB6vHfOut2oQhEdEIWxq1FGti15gNotZPC8HUK4ETg7bObmRWNOFARgVeOpqHgxkVZqvPmjub8Xrq69iVuQud3Z3XdjArVw7YtFJ37BhQYaxVT0REE1B5OXDK2My9n6AgYP58tHa24tXzr6p6+6bn+idya7ArtVSvyT85xAvB3q76PvPC58HdyX14XwMR0Vgg2dw33TTgJlksOjNwOhJSS/TbogPcccfsCDg5aNOwBTUt+OhssV7a3FDFo6ypbAQOnoiGgkETIrom1S3VuFh5Ub+eU9WM2isrpCN83RDm46Zvk7JcHs4etj+Iy5eBvDzL26dNA2bNsv3zEhEN0cqYlVgWtUy/bm9vh00zQvHw4hismhyE+CBPODuan46dK6zDmycKVOkuUyeKT+BPp/90bYMpFxfrZQqlKfBbb1kvdUhEROOXLDb67DPtf0s2bkR1ex3+cuYvyKsznmNLkGRPejmOZhv7oEwL88bG6aH6dQc7B9W/kIjohhEXB0yaNOAmbxdvbGgJgVen8Tw/0s8dd86J0M/9i+ta8XFKsV6qtxe9+KroqxE6eCIaDIMmRHTV5ENdau3Lh7rBqbyBs0zsYDc8AyiZ4JM6/JZIOa4NxtI4RESjQbJLboq/qV+2XaCni2oOf/uscHx9VQK2LozGorgAvd5xdXMH3jpZgDP5tWY9TypbKtVk1vGi41ffJD45GYiOtry9pgZ45x3t/ZWIiCaWjAwg11hWt5/Jk5Ef6KQ+Y6pbq82yIT88W4T00gb9tqUJgSpz0vCZJTZO2ggfV613FxHRDcNCbxPh4+CBx7tmqP6uBuG+brh7biRcnLR+g0W1rcivadG3X6i4gJZO43UiGj0MmhDRVTtVcsqsl0lhTQtK67XVyQEezogNMGaVTA+eDj83v2E4iFNAtXFA18+iRYCvr+2fl4joGgInN0+6GatjV6tAcl/2dnaqSeSShAA8uDBaBVQMK3sPZVbig7PFaGozNoaUJpGfZn2qmsRf1aBKygjccov2vyUyoSYrkYmIaOIYbLGRvT0uzArHKymvoLXLmHEofbbePlmoJvWEBEluSQ7Dwjh/9dlmMC9sHhaELxje10BENBaFhQHTp1vcHJCWg8dnPAwPJ+MciZz33zQ1WL9+vrDe7DzftDQiEY0eBk2I6KrUttZiT84e/bo0L9t7sVy/Pi/GfBBlWpbGZqR8zBdfWN7u7g6sWGH75yUiukbyvihBk28v+rb6P9onGvZ2/U/DAjxd8MDCKMyL8TMLTL92PB9ZFU39msT/4eQfkFtrZeVwX6GhWlDZmpMngRMnhv6YREQ0tsn7umQTDkCyFlNiXPFe5UF09xozDaVszFsnC/Xyu+7ODrhnXqTqY2JqXdw6bJ682ez8n4johrLESmWNpiaE5Ffh8dmPw8vZ+P6ZEOQJTxdH9XVudRMaWo19C08Wn7z6jHIisjkGTYhoyOSDe3vGdnR0a4MncSSrCvVXPuDDfdwwNcx4IhDvF48wrzDbH8jhw0CLldXVa9YArsamlEREY4Vk3knQ5Ik5T+AHy3+AR2Y+guXRy+Hp7Knv42hvjxWJQSp13zCYkvIoO8+XYP8l8ybxjR2NamXwvpx96O4ZYlktaVpprUyXkGyT7OxrfJVERDRmWFlsJA3fUxozsSPMWHpLXCptwAdnitRnjyGT/P4F0WY9Cx3tHXHvtHuxImYFAyZEdGOLjNQulnz1FYLcA3FX0l1mfQ6TI7SShhIfSS02ZpvUttUiqyZreI+ZiAbFoAkRDdnJkpNmTSFl9bM0LBaODnZYPz1ElZkxWBWzyvYHIavkjh+3vD0wEJg3z/bPS0RkY84OzkjwT1A9T76x4BtICkwy2x7l764axk8KNgZUzhdJk/hCVDUZm8RLf6nDBYfx4rkXVTbgoKTn0/33Wy9h2NMDvPuu9TKIREQ09h06pAVOTMgCqMzqTJwoPoETkz3Q5eyoL5A6ll2Nz9LKVIlIEe3vjvsWRMHHzUm/v5SZkVXTUoaXiIgALF5seVtpKVBQgFjfWAR7GMtyzYjwUcETcaG4Hl1y/m0y90JEo4tBEyIakprWGuzJNpbl6ujqwZ50Y1muZQmB8HN31q/PCZ2DGN8Y2x6EnER8+qn1JsXS/N2eb21ENL64O7njvun3YcuULSqYYuDq5IBbk8OwbmqICk6L6uZ2vHmiQAVQTFP3ixqK8Pyp55Fanjr4E3p4AFu3As7G5+qnrQ146y2gy9hPhYiIxhFZbGRSblFq5UtJx+NFx1HcWIwmHzeUTg7XtnX3qGDJ8VxjsFxWQd8xOwIujlrDYhHkHoSn5j6FSG8rq6qJiG40SUmAt7fl7V99pbLyTPs/ebg4YlKQtjiqtbMbWeXGUrwS2B7SYigiGjacWSSiQcmk3EeXPkJnj7HO5pdZVWho065H+LphdpRxxbK3izc2Ttpo64MAduwAMjMt7xMfDyQm2vZ5iYhGiAyk5oTNwdfnf91sMkpuT470wdYF5k3ipVTXzvOlevkU0d7djvcvvq/es01LKQ4oJAS4+27rjeErK9nfhIhovNq7V19sVNdWpzJL8uvz9d4l2QsS0Gtvh6LaFrxzqggZZY3a/eyAlYlBWDs1WF8FLRL8EvDk3CdVqUkiIjLh4AAsXGh5+6VLQG0tZobMNFsgNSvSOI+SUqRV8TBkkp8uPT18x0tEg2LQhIgGdbz4OArqC/TrBTUtaoWzcHSwx/ppIWa1jG+fcjtcHV1tGzCR+vpnz1reR55fskxYU5mIxjl/N3/V82RlzErYycyVaZP4BVFmg6vsyia89lW+mvAyda7sHP546o+obK60/mRTpmg9TqyRWvjNzdf4aoiIaFQUFADp6epL+SxIKUsxC6bXhvkhw9sDH50txnuni1DR2Kaf29+WHI65MX5m5/fzwubhweQHbXuOT0Q0kUiZcCdjKcN+cxonTsDF0QWzQmbpN4f7uuqLokrr21DRoL0XizOlZ1SGIBGNDgZNiMgqaRB5IPeAxbJcKyYFwtekLJcMqCb5T7LtQRw4YL2PiZg9GwgNte3zEhGNEns7e6yNW4vHZj+msvcMZDJrzdRg3DYrXJXuEk3tXXj/TJGqQ99zpQa9qG6txgtnX0BpY6n1J1u6FJhlHLz1094OHDxog1dFREQjQibndu9WX0p5l/TKdLVq2aCtqwd/9vLC6ycLkFdtDIpLw/f75kUiwaSXlgTvNyRswObJm+FgbyzTRUREfbi5WT+nPnNGnVcviDCW6JLg9MxIrSG8OF9kbAjf0tmCtIq04TteIrKKQRMiskpWK0u5F4PDmZVovFKWK9LPzewD3sfFRw2qbOrIEa2B5WC1+dets+3zEhGNAdIwUsp1TQ2canZ7QpAnHl4Ug0g/d31+TOrQy2rhhlZjKcXWrla8nPKy6ndikawkvu02rVyXJadPa6W6iIho7EtLA4qK0NjeiAsVF8wCJuUNbXit0w5HW7qk/ovi5eqEDdNC8dDiGAR7GzNJnOydcP+M+7E0aqlZ1gkREV1DQ3hZiHT2rGoGL+f4BlNDveHsqE3PXipvMCu9y4bwRKOHQRMistrLRFJCDWQiLrVEW/ngpMpyhZoNoLZM3aLSTW3m1Clgj7H5/ICkifGDDwKexhVxREQTrUn8/dPvx62Jt8LR3lG/3dPVEXfNjcDShED9vbikvhWvHzcv19XW1YZXU141K7PYj6MjsNFKL6qeHn3VMhERDa/6tnq1cEkCHnl1eVdXnqWzU/UykRXK58vP6/1LRFVjOy7XtOJgdLC6LhmL0rvksSUxmBbuDXuT83ovZy9sm7OtX9CeiIisCAy03mdVKmj09Jg1hJeASVKollne1d2L9NIGfZssfCppLBneYyaiARlH3kREfRQ3FqOyxbiyWH14X1mRNi/GDz5uxnqd88PnI94v3nZPnpEBfPKJ9X1kkk8CJhERtnteIqIxSIIiksof7RON99Lf09+bZYJrYZw/ovzd8GlqGRraOtHe1YOPzhXj9pkRiA7QMlEkY1ACJ1KPPs4vbuAniY8HJk8GLl8eeHtmJpCVBUyycQlGIiJSGtob8HnW57hYdRE9vT367RIwj/KOUu/fcb5xiPCOUGUcB/Tll2ivKlcBk84eY+ZhXUuH6oN1PCYYTS5OKlt82aRAuDj2L7klgRIJ1Hu5eA3PCyUimujZJnLePJDaWuDCBUydMR2ezp5o6mhSN8t7sqERvJTomhPlqy+K+qroK9yVdNfIHT8RKcw0ISKLTLNMJOskrURb8SCf3dPDjTX2fV19sT5+ve2euKEB+Ogjrd6MJfb2wP33A7HGtFYiookuxDMEz8x7RgWqTYX5uOGhxdGIDfDQV6ltTylGbpWxVr1Mnr2e+jqyarIsP8GGDdr7qyWSbSJZJ0REZFNSt/4PJ/+AtMo0s4CJkEyT3Lpc7M/dj7+e/Sv+35f/D2+kvoFjhcdQ1lSmztNFXWEWCj55U2WpSJahgZTWvVzehEZnRxyPDERyhA/WTAnuFzCRwMy22dvwwIwHGDAhIrpWshApKMjy9r174dDVrfrBGgR4uuhldyXIXVBjzBqXIHh2TfbwHjMR9cOgCRENqKO7Q5UEMJAPbUMvkxh/D1X72GBx5GLbleWSybj33wdaWy3vI1Gbu++2nvZKRDRBOTk4qYa8UrLLzdFNv10mvzbPClP9TkR3Ty92nC9BVoW2gs0w8fZm6puWB15SUmCBsVxAPxUVWhNLIiKyifaudnx48UO8m/6u6kM1pPt0t+Ny9WV8nv05nj/1PH5x9Bf43fH/w8HffQ85VZfNHqelowsZZY3o6e3FodgQxIb5YM3UYLMSu0HuQSpQ8sScJxDjGzMsr5OI6IYh76/WepvIItGjRzEvfJ5Z1uAsk36xJ3Jr9IC4+DjjY7NgOBENPwZNiMjiajcJnOjXr2SZCNMsEwc7B8wMmWm7J5am7/n51ve5/XZg+nTbPScR0TiUFJSkmsTH+BgnuBzt7XFLchgSQ7QVwj09vfgktVRNmBlIfft30t5BVUvVwA+8ahXgamwE3M+BA0AbB21ERNdLek394dQfkFKeYnZ7aX0rXvsqH386lI2d50uQUliHmuYOswk0U9K/xD71AnzLtNIuBu1d3bhU2oiunl6UerqhbkoENs4INetdsipmFZ5d8KwqycVm70RENjJzJuBlJWPvyy/h3dZr1jcqPsgT3ldKoBfXtar3foP69npVvpGIRg6DJkQ0oLNlZ/WvWzu6VQ1k4ebkoD7MDeRDXpoU24QES774wvo+mzYBc+bY5vmIiMY5H1cfPDb7McwOna3f5mBvh5unh+oNJWWS7bO0Ulw0aSopq5TfuvCWWuHcj7u7FjixpLlZK6EozYaJiOiaHCk4ghfPvoi6NuOkmAS6v8qpxjunilDV1I6Wjm6VLXggowKvHMvDX77MxWcXypBWUq96WBk4tXVi0slss2BJWX0b0ksa0NHdo1oSnpoTj81zIlRw3WBJ5BKsjl1tuT8KERFdGycn4KabLG/v6gL27MHCiIVm5/Drk0L0619mV6G2pcNsjkayDIloZPDsiIj6kdXHsvLN4FJZgyrzIpLCvNWHucGcMBsFMFpatLJc1vqYJCcDixbZ5vmIiCYImezaMmWLWV1kexl0TQ/BjHAtzV/eWnenl5vVR5b3+g8ufjDwyuWFCwF/f8tPeukS8Oqr1kspEhGRxYDJnpw96FXhDOg17N85XaiCJob3ZXkvN9Xc3qXOy/ekl+OFL3Px0pFc7L1YDpe9aWirb0FRbQvOF9XhbEEd8qqb0d6l9Ua5FB+KZasmwdnROPyXTPENCRuYXUJENJzZJpGRlrdfuICYejvE+cbpN0X5u2NWpK/eo3B3Wrkqr2iwI2MHWjt5/k00Ehg0IaJ+zpaeHbABfN/SXD4uPoj3i7/+J5STgI8/1mp7WuLnB2zerNUHJSIiMzLpJX1OFkUYA8tSfmVdUjBmXqmPLO/nu1JLUd9qXJ2cUZ2Bg3kH+z+gg8P/Z+8/oNs483vh/0tUgmADe+8UKYrqvVi2JVly72Xt9XpbtmWzubnJyX2T/HOSm5vk5L15z81Nsimb7c3ruute1WzZ6l1sYu+9EywACYD/8zxDzABilcTO7+ccHM4A4GAgkcTM/JoyFH4qdXXAT38K9Pi3gyEiosnV9NTgSNUR/2Ptxl68eLZOVod4/6bvyIjE79+ViWe3pWBPVhRSI60w6P1P33uGRtBT3ATXuUp5vN7QPSSrU3yNhgQi+vFNCDIZ1PuyI7JlsJ0BEyKiOST+xopOGVM95cMP8dCqB2HUaTNjd2dFIWysTZdo13i5rlt9zD5sxwcVH8zhThORF4MmROTH7XHjSssVdb3N7pTtAYS4sEBEBmsD30U7mFkp5z9/XslanoxoI/Dkk4B5lobNExEtQ+Li171Z92J38m6/++7KiUFapFWuO0bceOdqE0bcSvax8GntpyhpLxm/wZwcIC1t6hdtbwd+8hOgpWUW3wkR0fI0MDyA3xb/Vq0wEQGTo9fbcLikVf27LC6UPbU5SQZNRCut2NBAbEmLwGMbE/GdOzPx1OZk+VhiuAUGjOJQedO417GaDEiyWbA2MQwhT25FcKhFfSw5NBlPr3kaep1+/t44EdFKJSpN1q+f/PHmZkSU1uGezHvUu0RV4MG8OGAsrn2qshOdY9dkhGut13C9Y4rrJ0Q0Kxg0ISI/5V3lGBgZUNdFz2Qvb5sXIQABs9Oaq7sb+PjjqZ+zfz+QmHj7r0VEtMyJIMmBjANysK9vxcm9+XEIDzLJdREIF626fNtyvXH9DbQNtN24MeChh6YPWNvtwM9+BlRXz/K7ISJaPsTf3DevvymzhL1EdUhhY69fRfcXt6ciIVwLcvgSLXITbRYZNHlqSzL+X5sRd4QaES8Tm0wyQL4xJRxrk8KQZAuCIyMGHWnR6vfHWGPw3NrnYNRrGc1ERDTHxPUMMeNkMkePYmvkOr82XeJv/cZkm1wWrdLFsbuYe+XbpsvhUqoTiWhuMGhCRH4uNV9Sl11uD663KCd2oh1Adqw2AD7dlo7wQKXX5m05eVIZgjaZrCxg167bfx0iohUUOLk7/W6/Vl2BRj0eXh+v9rMvb7XjQq1W6j/sHsZLBS+h16FdvJMiI4EXXlCGw0/F6QR+8xuZLUdEROOdqj8lk5O8RABbDHj3uicvFvfkxfnNHQk0BCIxJFEmK90ouqYdWQV1MiAuWndlx4TIqnCzQakgcRt0KN+Rrba2zY3KxVc3fBUW48QBGSIimiOhocAdd0z+eH8/Aj76CI/kPAyTXklyEnZnRsI2lvTU2ufwO3YXia5nGs7M7X4TrXAMmhCRyu60o7xTO5krb+vH8NgAyVUxwepJmLApftPtv+DAAHBFawU2TnAw8OijnGNCRHQLxIBf34y1CKsZh0Sp/5iTlR2o6dAqC7sd3fjxpR+jpf+GVlui0u/3fm/qwfDCyAjw6qscDk9EdIOGvgYcrT6qrotWXGLGlMgeFsTsqTU+Fd2C+Pv9nS3fwTc2fwP/z57/B8/mPyuD4aJaJLS9D6s/m6Ctoo/a9WkIj0+XlYe/v/X38YX8LzBgQkS0UHbuBMKnSDq9fBnhH32KQ+lamy6RuHpwTax6OeRMdSe6Bob9El49o1rLXSKaXQyaEJFKzDLx9li+sTXXmkTtRM5isMhstVmZZTJVlcljjymBEyIiummiX/2TeU/6VQVmxgTLti7SKPB+YTO6fU6+RNuYn17+KSq6Kvw3JgImX/86kJAwfcvFt94SfWhm980QES1RQyNDeL34db8LW5+UtqkXvqKCzdibrbXQEvMCRdD7hfUvICwwTK04yYnKwX3Z9+H3s5/DdysikB+Ri/jgeHlc7iUqUsTf/NTsrXj8a/8fvr3l27LyUARaiIhoAYn2XAcPTv2cK1ew6VQ1ssMy1LviwyzYnKIkLon2XNcaetTH+px9qOyqnLt9JlrhGDQhIrXPsu8A+J7BYTR0K9nCoiQ0ISxQfWxd7DoYdIbbe0GRkXzu3OSPr14NZGbe3msQEa1wVpNVZhcbdVof5e3pEciMVgLSoprwtYsNsuTft1XXbwp+g8vNl2/YmBX4yleA7OypX/T6deD06Vl+J0RES/P4+u3St9Hj0C5ylTT3yVkmglGvw/1r42U2sdehzEPYlbxLtlocx+EAXnwRZqdLBkJEIGV70nbsTt6NbYnbcEfqHdiQsAnpL/whwq1jAXIiIlocxDWO1NQpnxJQXIzHro0gCNqx+5Y0m5xpJYj26S6PFoS/3HLD8ToRzRoGTYhIEu1YOoc61fXisZM571BK3xO3WRkAf+0aMDg4+eOcY0JENCviguPwSO4j6rr4e35oTRwircqA98FhF16/2IBqn1ZdIiP6rdK38G7Zu7KtjDo03mQCvvAFYMOGqV/0yBGgtnaO3hER0dJwvOY4Sjq0Nlqisu/YdW2Oyb7cGERYtf71opJbBD8m5HYrLRDb28c9JAa7BxmDZJUKHngASE6e7bdCRES3S1xTEX+jpxoKDyCouh5PXRmBfsStzibMilESnhwjblS1a8fspR2lGByZ4roKES3uoMm///u/Iy0tDYGBgdi+fTvOTZVdDuC1115Dbm6ufP7atWvx/vvvz8duEq1oRe1F6rK4OFbaalc/11fHh6qPiTYA4gLcbREX306dmvxxcaLHkz0iolmTH5MvM5G9xKDhJzcnISHMovbXf/tqEwoa/QfBX2i6IOec/NPpf8J7Ze+hqrsKHpHp9vDDQFra5C8oMuBef10OtiQiWonE388TtSfUdZfbg/cKmuXfWyEvPtTvGFu01Xok5xH/ChMxI6q4GHj3XeDf/g2oqpr6RUXS0ebNc/BuiIhoVsTEKAlI0wROUrrc2HisBAFjnxm+c6+81YqCe9SNa63X5nCHiVauOQ+avPLKK/jjP/5j/PVf/zUuXbqE9evX49ChQ2hr0zJsfJ06dQrPPvssvv71r+Py5ct49NFH5a2wsHCud5VoxRJBkqI2LWjSZneid2hELifbgmA1G2Z3AHxZGdCpVbWMwyoTIqJZtz9jP7IistR1i0mPxzclInssc018FhwtacWpig6tssRn1sn5pvP45dVf4vtnv4+rbQUYfeKJqedO2e3Ab3+rBFCIiFaQ6x3XZaDZS/xNPVLSio5+p9r69u5cbc6IqBB5YvUTsIjj76Ii4KOPgB/9CPjHf1SqSy5cUGZGTdf25R5tgDARES1Sog35888DZqXqe7LZhKv6TUgprJfryTYLQgKVQEtt1wDsDuV6jSBa6t547E5ESyBo8k//9E/4xje+ga9+9avIy8vDD37wAwQFBeGnP/3phM//l3/5F9x777340z/9U6xevRp/+7d/i02bNuHfRGYNEc2JJnsTuh3aiVjZWJWJsCo2xO+Ebk3Mmtt/wamqTMSw4Zyc238NIiLyI/6GP5X3FNLCtQoRw1g//U0pNvW+czVdeL+wBc29QxOegInPizeuv4EXq99C30MHlZLEyVRXA598MvtvhohokarrrZOD30eh/f38vKJD9qEXRF/6B9bFy3kmgfYhJBY34OkiIPknr4mTZ9F2QZkL1dioVGfPRGIi8PjjU/89JiKixUPMNnnhBcCiVH1PRHT4SCqul226RBWiaJsujfq3U28daEVzf/N87DXRijKnQZPh4WFcvHgRBw4c0F5Qp5PrpycZECru932+ICpTJnu+0+lEX1+f342Ibq81V1mr0k5FfDB7hwUL6eHpsl/ybREngFP1ud+xQ/yhuL3XICKiCZkNZjy/7nnZrstL/K3fuyoad66KBsaut5W32vHK+Xr85PNqHL/ehvquQXg8/hfvKroq8G9t76JobdzU2W0nTgAlWk9/IqLlqn2gHS8VvASXx6Xed7muGxdrleSkAIziuYRgbC1rwtY3z2PHb89ie0EXclrdwK2ex4aFAc8+O22rFyIiWmREwPsrXwGs1gkfDjGFINxjRnx5s9rW0XusXtzc53f8LapNiGh2zemVyY6ODrjdbsTGxvrdL9ZbWlom/B5x/808/x/+4R8QFham3pI5B4HotlpztfY51VLPlIgg2b7Fy/ci2y2bJAAqiSyL6YYLExHRbTHoDLINjO+ME2Fjig0PrlWyn736nS5cbejBby814IefVeFUZYfsy+817B7Ga7YmHDc3YWBYG0o5zhtvTDi8mIhoubA77fj1tV9jyDXkV739aXk7AkdcuKuqGf+3qhFPnClF6rVaWHsGYNKb5PB3vzkmN0O0dvniF6dulUhERIuXuP751a8CodqMKy/x2SCrTYrq5WyTUIsRKTYliVW0U2/o1j5vCtoKMOLWWnYR0e1b8uncf/7nf47e3l71Vl+v9PsjoplptDei19k7SWuuYL+2LuKk7rb09CjDLCezdStgMt3eaxAR0bTESdg9mffg/uz7EeBNWQOQFROCr+1Oxz2rY5EeZZVtZLwcI26cq+7Ci2fr0NA96LsxnNocg8/7CmW7xwkNDwMvvww4HHP6voiIFoJn1INXi171O6YWfyc/KmpB4LALz1+twhP9A0gz6fyOrUVCkgic3BJxzPzMM8pQYSIiWrqiooAHH5zwodjgWFgGhhFT3TZuILxviy6HyyHnaRHREgmaREVFQa/Xo7W11e9+sR4XFzfh94j7b+b5ZrMZoaGhfjcimjnfKhNRdSJasgg6nX9rrkxbJizGyfttzsiZM5MPBNbrgW3bbm/7RER0U7YlbsMz+c/AqNPauogKwzWJYXhkQyK+uTcD9+XHIzs2RH4uCN2Dw3j9YoMcGu90ueV9LrMRhXfl4Xp3OWp6aiZu19XZycHwRLQsXWq+hPo+LXlPDHx/+2oTPG4PHrlej9U6IMmmHUeLYPWa6DUINd/kuauoSElIAPbuBb77XSAjYzbfBhERLZTs7AmD4CKwHhkUqQyEHx1FZrQVZqPSDaS83a4eiwuXW9iii2jJBE1MJhM2b96Mo0ePqvd5PB65vnPnzgm/R9zv+3zh8OHDkz6fiG6zNZfPPJPmXgfsTqUHsyj7DBz7MBZuewB8Vxdw8eLkj69bx9YCREQLQFQRfmXDVxBr9W+PKpgNeuTEheCBtfH44rYUxIcFqo8VNPbiV6drUdWuzMGyR4WgbOcqGTSp7K6cOHBSXs7B8ES0rDhdThyvPu5Xlffm5UYMuzzYW9OKjQ4n0qOtfi24VkWukhfBZiQ8HNi8GXjqKeBP/xT45jeBffuUWSZERLQ8iM+I3f6tc73ig+NlS8eIxi4Y9DrkxobI+13uUZS2aJ1Cqrqr0OPombddJlruDHP9An/8x3+ML3/5y9iyZQu2bduGf/7nf8bAwAC+Knr2AXjhhReQmJgoZ5MI/+2//Tfceeed+D//5//ggQcewMsvv4wLFy7ghz/84VzvKtGK09DXgD5n3yStuZQPYkEfoL+91lziwtm77wIjU/TYZGCUiGjBJIYm4ltbvoXCtkIUtBbIky73qJa5JkQGm/HUlmRcre/BqcpOjLg9cuaJyKbenGrDnqwotGTHI6TDDpQ2yEHIOZE543v1i8Hw8fHA6tXz+yaJiObA53WfY2BEm+kk2hiKv4257b040NaN7PhQ6Hz+DqaFpyE+JH7yymvRYUHM6UxKUm4iOHKrM0+IiGjpyM8Hjh0DerVWj0KEJUJWnKQU1KErKRJrEkLlzEGhqKkP65LC1edeabmCu9LumvddJ1qO5jxo8swzz6C9vR1/9Vd/JYe5b9iwAR9++KE67L2urg46nVbwsmvXLvzmN7/BX/7lX+Iv/uIvkJ2djTfffBP54o8HEc0q3yoT2ZqrTckWFj3sM6Kt6mOZEZkINGjZxTft6lWgquqmS1GJiGj+iP7662LXyZvoi1zeWY6SjhJUdFXIge/KcwLkwHjRvvHo9TbUdioXCi/WdsMx4sH+1TGo2JaF4O4BoK1FBk7yovPktscNhhf9m6OjF+KtEhHNil5HL043nNbWB0fkhayoAQceLG/EqoQQv9lQCSEJSA1L9d+IOAbOyVGOh0XrLcOcn6ITEdFiJALnIpn0ww8nHAg/3FqH0PY+IDoU0cFmtPc70drnkC0ho4LN8rmXmy9jb+re8cfeRHTTAkYn7J2wdPX19SEsLEwOhed8E6LJiV/9fzr9T7APK9UljT1DeO2C0os5I8qKhzckqs99fPXj8iLaLenvB/7934Ghocmf8/WvKxl1RES06AyODOLjyo9l5tqNnyPXGnpxvKwNGDuazI4JxqH8OAQ5Xdj8zkWYB50IDwzH2pi10Ou0lo+SqDb5vd9TThCJiJag35X8Dtdar6nr711rRn1jN758pRJrzHqkRASpj0VaIuXgd1l9FxIisgWVYElExALtPRERLTrDw8D//b/jrp+I4/FzjefQnhKFon35uFLXjU/K2uVjm1Js2LtKS0T68vovI92WPu+7TrTc4gYMPRKtUHW9dWrARCjz6YUpBv56GXQG2V7lloksiakCJlu2MGBCRLSIBRmD8Gjuo/jSui/JAIiXuPC3Pjkc9+fHq0PiRcXi21eaMGAyoPDuNfDodbK3sqhsHJen09wMnDo132+HiGhWNPY1+gVMmnqGUNHah4dKGxAzPIKEcK1KW7RVEVV3MmAiKkmefVbJJmbAhIiIfJlMwNatEx6Ph5nDEFXfgaDeQeTGh6qVjCXNffB4tOPs6x3X53WXiZYrBk2IVijf1lyeKVpzZUVkwWxQSj1vWmkpUFg4+eMiy+7AgVvbNhERzSvRqvH3t/4+diTtQAB8BhrHhuDhdQkw6JX76roG8btLDWgPt6JsR7a8r2uoC432xvEbFUPh29rm700QEc0CEQQWFXi+6xXnqvGlK5XI7LIjyRYEg08L6vTwdK3a7sEHlTZcREREE9m+fcJWjaJFV8AokFxYj0CjHulRynWboRE3mnqH/IImy6ypENGCYNCEaAXyjHpQ3F7slxk3OOySy2mRVpgNWquUNdFrbu1FnE7gvfemfs4DDwCBtzErhYiI5pXIlr436148u/ZZWYnolRZlxeMbk2AyKIeWzb0OvH6xAbXpMWjMVdo9iuHyorWAH7cbeOstwOOZ3zdCRHQbxAWp2t5auRzUM4Co313Awc9LkGAfgsWoR0yIlnAUbAqWF7rUC2EbNizUbhMR0VJgtQIbN467O8YaI2eVxFa2wDToRFZ0sPpYZbsyZ1Dodfaipb9l3naXaLli0IRohbbm6h9WKkuEslbf1lzaB6+4ILYqctWtvciRI6JZ4OSP5+UBubm3tm0iIlpQ4rPh+XXPw6zXLgwmhFvw1OZkBJmUwLsYSvlZeQcqt2ZiICxIBuwnzHxrbAROa4OUiYgWM7fHjcNVh2F0jGDVqVJsfuMcXEUN6uMpkUFKG64xmbZMZT01FTh4cIH2moiIlhTRwtHns0QQFYsRlgjoPKNIKm6QSUu6sedUtvf7HWOXdpbO+y4TLTcMmhCtQJeaL6nLovdlhW9rrigtaJIdkX3zrbkcDuCdd4Dz5yd/jqguuf/+W9hzIiJaLNLC0/CVDV+RPZa9okPMeHJzMox65RCzsLEX1T1DKN2Ti9EAoM/Zh4Y+7eKi6vhxoKNjPnefiOiWAibvlb+HgfYmbHn7AhLKmtHa64DTpVTLhVmMCLcY/Ya/2yw2QAwafeopQK9VcxMREU1KzLwSiaY3iAqKkl8TSpsQPDqKRJtFrvcNjaBzYFh9HueaEN0+Bk2IVpheRy8K27Q5I7Vdgxgcdstl0RPT21pFyI/Jv7mNV1QA//EfwMWLUz9PZNkFa8EZIiJamuJD4vG1jV+Tgym9Iqwm3JGtnNAJR4pb0W6zoiEvWa5X91SPb9PlcrFNFxEtakMjQ/j1tV/L5KPss+UwDzox4vagsUfrI58SoVWZiNlPGbYMpS/9M8/w2JeIiG7Onj3j7hLBeMEw4kZ8aRMyfVt0jSXDCqI9V4+jZ552lGh5YtCEaIU503BGtkjxulTXrS7nxoWqy0adEdmRygDfaQ0NAW++Cfz611O35BLS0yfsz0lEREuTyHi7MXCyNjEMyRFKBYrd6cKJsg5Ub0zDYKhl8jZd9fXAv/wL8NOfAr/9LXD4MHD1qvIZQ0S0gDoGO/CjSz+SQd/gTjui6jvl37CazgG4PaNqpZ3VbPALKlsj44AXXgASldlOREREMxYfD2Rk+N1l1BsRHhgul5NKGpAVoVSa3DjXRCjtYIsuotvBoAnRCsuQu9isVYG09TlQ36Vk+4pWAhnRVvWxnKgcOfB3Wu3tSnXJlSvTP1dk2j344LjenEREtLSFBYbhsdWPqesi0/qe1bFqm66ipl5U9ThQultr01XfVz9+Q729QF0dUFAAnDwJvPEG8G//BtTUzOfbISJSVXZV4seXfoyuoS65nnq1Fi63B9db7OjsV1qhiJ7yyTatVSFMZiQ/8gLwve8BKSkLtetERLTU7d49aYsu8+Awshu7EBOitFRvsztgd4yoz2OLLqLbw6AJ0QpyoekCht1an8sLtVqVyaZUmzpETNiWuG36DQ4MKNUldm2Q/JTuvReIVMpJiYho+c048f3sCLUYsTc7Wl0/UtKK1ohgNOYqGdc1PTUYGPbPiJvys6aycm52nIhoEtdar8mWXA6XQ65bu/oRXNmKwqY+9A4pF6bE4bNIPBItbkcDAtCYkwDjH/0xLAfuBUwzSEAiIiKajKg0ERUnE7ToEpKL6pERpSW/VvlUm9T21srEWSK6NQyaEK0QLo8LZxvPquviRK+8TQl2WIx65MVrrbmSQ5OREjaDrLjPPlOygqcjThgffhjYsuUW956IiJaCAxkHYAu0qev5iaGyx7/QL9t0taN6UwaGggNlm67SztLxbbomImaevPQSUF4+l7tPRKSq663Dm9ffxCi0v1HW0+UobOyFY0SZB2jQBWB1XCiigs3w6AJw4aHNaL97G7bl7FvAPSciomVDROZvqDaxGC2wGpVASVDvIHYNa4mxle3aXBNxrF3WWTaPO0u0vDBoQrRCXG25iv5h7QP0Um03vNepNiSHwzDWQkXYnTK+BHQcESw5f37654kZJt/5DrBp063tOBERLRmireOjuY/6tek6kBcrM7CF4uY+VPQOoXR3jlwXbboa7Y0z27gInLz8MlDK/sxENPfJRm+Xvu03B7C6pBl956rVGSYi6Sg/MUxW1QnN2fEYjrLhmTXPyJ7zREREsyIvD7BpSUm+LbqE9ZXNCB2bqdXQPaQG9gWRoEREt4ZBE6IVQJzwnao/pa4PDbtR1KxUiIhgyfpkZZCY98M3J1K5mDWlTz8F3NqH8ThmszK/RAy/vOEDnoiIlq/U8FRsT9yurocG+rfpOlrShtboUFRvSJPr1d3VauubaYnPnVdfBUpKZn/HiYjGnKg9IYe/e4m5TO6jxfBmHIUHGbEmMRSBRr1cF2252jeswnNrn5MD4ImIiGaNTgfs2jVp0CSsw46deuXzyTM6ippOrUVXRVeFTAQgopvHoAnRClDaUYrOoU51/WpDD1xu5UM1P0E74RN2Je+SmcFT6uycevB7QgLw+7+vtOPi0HciohVnf8Z+RFgi1PU1CaFIjbSqbbpOVnSidkMaiu7MQ1tCGIqdDT4NcGYQOHntNaC4eG52nohWtNb+Vnxe97m6PuB04drVBuS1KwlH8WGByIkNgUFcxPI+Z80qfOnO7yHdlr4g+0xERMvchg1AkNLyVgg2BcOsVwbAC/vbtXm1lT5zTcRM26ruqnncUaLlg0ETomVO9Io/WX9SXR9xe3C1vkcui+DIxhSb3wfvuth102/0+HHAo7UrGOehh4CwsNvccyIiWuptugIQoH7e7M+NgXGsFeS1xh409QyhPT0GBfesw9sPZKHoW48B//2/A1/72vQtHcVn0OuvA1evzsfbIaIVVJ19Y1uuT0rbsLmqFbrRUTm7RASAfROMwoMiceCFv0ZkkDaYl4iIaFYZjcB2rZJbfA75Vptkd9mR5ByRy7WdA3D5XK+53nF9nneWaHlg0IRomavvq0dDX4O6XtzUh6GxHperYoMRNtaHWdiRtAMGndILc1ItLUBh4eSPr1kDxLMtARHRSpcSloLtST5tuixG7Mwcu6g4ChwpafU7ofug6mMMBZmAlBQl+O5zYjgh8b1vvDGz+VpERDNwrvGc35ylirZ+tNV1Ib+tRw59T43UsnyFxJBErDvwHAJjEhZgb4mIaEXZtk0JnozxDZqIIMqDvX1yedjlQUPXkF/nEd9kACKaGQZNiJYxUYr5ceXH6rrHM4pLdVrZ5uZUm19W8JaELdNv9NixyR8TWXd3330be0xERMvJvvR9CA/U5mZtSA5HbGigXO4aGMaFGu0zaWBkQPvMEp8n994L7Nw5/Yu89x7w2WdzsPdEtJL0OHpwrFo7znW63Dhe2oYd9e2yyiQtyqpWywmpYanIjloF3d47F2iPiYhoRbFYgM2b1dWwwDC/pNctPXaEOoblcmV7v98xdmOflhBARDPDoAnRMg6YvHjtRb8qk4r2fvQOKSWbKRFBiAlRLlwJImASaNDWJ1RXB5SVTd1nM0rLdiAiopVNBOQfXPWguq4LCMCB1bFqa5vzNV3oGnCqj19uuSwHw0viOQcPAnv2TP9CR48CR46oQ5qJiG62ne17Ze/J42evz8s7oOsbwrqWboRbjIi0mtTHrEYrUsNTlQprHvsSEdF8EQlFYzO1dAE6vxmCtkAjtjcps2yr2gfkZ5sXW3QR3TwGTYiWIafLiV9f+zVqe2vV+4aG3ThdqQ2D35KqfbiKD1vRmmtK4gNXXJSajF4P3HXXbe45EREtN1kRWX7zsqJDzGqlo9sziiPFbX4nde+UvYMR94gWONm/H9i7d/oX+vxzpeqEgRMiukmFbYUo7ypX1xt7hlDQ2Iv1LV0QjVDSo/znmORE5cjjZ9xxxwLtMRERrUhidmx+/oQtuvS6AOzt7UfgiAsDwy609jn9gia+x9tEND0GTYiWYcDkxYIXUddb5xcw+e2lBnQPKtlzosIkOcKiPr42Zi1CzaFTb7iyEqjVgjDjbN3K4e9ERDShQ5mHEGTUZgHsSI+QmdtCU+8QrjX2qo91DXXJwIl6Yudt/SiCJ9O5cAF4910GTojopo6dP6z4UF13uT04Utwq/46sbe2Wx8xmo159PCk0STluXr0aiI1doL0mIqIVa/dudVFUmgRAC+rHmvXY1Nw1rkVX51AnWvpb5nlHiZY2Bk2IlmGFyUQBk45+JcvAajLgvvw4v2y5Xcm7bq/KxGSaWfsUIiJakawmqwyceBn0OuxfrV1sPFnRAbtjrLoEwLXWazjTcEbbgPjMEhnd998//YtdvAgUF8/i3hPRcnah6YLs9+4l2gaKRKOU3gEkjo4ibmwOkyBa2aaHpysrM6mAIyIimm0iYJ+dLRfFTBObRZtVGx5kwpamThjcHpS12v2qSwraChZkd4mWKgZNiJYJt8eN3xT8BvV99ep9g8Mu/4CJ2YAnNyfB5tOTeX3sesQGT5MlV1AANDdP/viOHUBw8Cy8CyIiWq5Ei65MW6a6nhwRhDUJSpXjsMuDDwpaZLsuLzEUvrKr0n8j27YBjz2mBFGm8uGHgFNrSUBENNnxs2+Ats8xgvO13XJ5XVsPMqL923KtilwFvU4PJCYC8fELss9ERES+1Sa+LbpMBh3i9QGyUlLMs23pc6iPFbQWwDPqmfddJVqqGDQhWiZO1Z/ym2EiAyYXG9WASfAEAZNISyTuy75v6g27XFNXmVgswK5pKlWIiGjFExcexVB4o05pyyXckR0tP5+8bbqOl7apj41iFK8Xvy7bdflZvx54+mllltZk7Hbg+PE5eBdEtJyIrFv7sF1dv1zbA49nFEa3G3ePDCPIpPx9EmKtsdrAXfF3iIiIaKGkpgJJSXIxOijar0VXZLAJ2xs6EDA6itIW7TNOfN75diUhoqkxaEK0DIhsgbONZ/1bcl1sQOfADQGTIP+AyZc3fFm2GZjS2bNAr9ZrfsIMh8BptkFERATI9gF3p9+trgca9XhofYIcXCkUNvbiWkOP+viQawgvF76MYbcyk0slZgk89xxg1AIwE35+TVUlSUQrmmhZIpKOvBwjbhQ2Kce8eZ12pARrx80i2JsVkaWsiICtzxBeIiKieSeqIMeqTYx6oxbUF3NOrCbYnMPIbe+VLbpEMoBvtQkRzQyDJkTLQE1PDfqHtSFfZ6o60Tkw7BcwEb0tfQMmX9nwlemHvw8OAp99NvnjoaHA9u2z8A6IiGil2JG0Qw5S9ooNDcQBn/kmn5S2o7F7SF1vG2jDGyVv+PVkljIzgQcfnPyFxPPFUHgP2xAQ0XgVXRXy74vXtYZejLiVvxcHnQ4Y9dqpclp4mrwoJeXkAEFB87/DREREvsTnUWSkXIyxxqh3G3Q6mTArqk0GnS7Udw+qjxW1F8HlcS3I7hItNQyaEC0DhW2F6rLoB1/aqpRgiszdGwMmot+lCJiEmEOm3/CJE4BD64E5zr59U2f5EhER3UAXoMPTa55GsEmbhbU6PhSbUpQhlp7RUbxX0OQ3GL6kowQfVHwwvg/zunVAWtrkL9bYqAyGJyK6wcn6k+qyy+PBlXqlyi3MOYzNrhG/KpO44DjtGzdsmN8dJSIimohOp1abiOs84hjbKyrYhLj+IaT2DOC6T4suh8shkwaIaHoMmhAtcSJLoLi9WF2v6xqU7QWEjKjgcQGTL6//8swCJl1dwPnzkz8eF6dcrCIiIrpJotJRBE70Adpckj1ZUUiJULK3B4fdeOdqE1xjWd/CucZz41t1idYEDzww9XwTMZerX6vGJCJqsjfJSm2v6812OQ9QOOR0ytaBXomhicrwdyE4WKlyIyIiWgzENZngYPk55TsQPtxikkm0OxraUdne73dMzRZdRDPDoAnREieyBES2gFeZTxZBTpwWHDHpTTOvMPFeZHIrwZcJ3XOPktlARER0C1LCUnB/9v3quk4XgPvy4xFqUSoY2+xOHC5ulZUnXmWdZfjp5Z+iz9mnbSg6Ws2ym5ComPzoozl6F0S0FJ2s06pMROu/i7Xd3hXsF+1px4is3cSQRO0b166dOkhLREQ0nwwGYMcOuRhrjfU7ro4IMiG9ux97rzegtkU7di7tLIXTpcy/JaLJ8Yon0TJqzSWyByralWxak0GHtEit33JuVK5fK5QpNTQARUWTP56VxSw7IiK6bZsTNmNLwhZ13WLS4+H1CeosAdFu8t2rTRh2adlxLf0t+NHFH6HZ7jPk/Y47AJvS3mtCBQVAZeUcvQsiWkq6h7r9qrSrOwbQPahUsG2BB7EuLWkoPjhem2UisDUXEREtNlu2AGYzbBYbDDqDendUsFl5uKkTa393DqHtfWq3kusd1xdsd4mWCgZNiJYw0aKktKPU76TPO8AyKzoYBp8Blvkx+TPbqMjo/fjjyR8XrVBElQkREdEsuC/rPll14nuCd2hNHHTi8wZAVccAXrtYj36HNrTSPmyXFSei8kQS87Xu16pWJvT660Br6xy9CyJaKk43nMYotAo2tcoEwAM3ZN4mhSZpK/HxQKyWxUtERLQoBAbKwImojvQdCB9qMaiJSKMddqx95yLSL1ZB5/agoI0tuoimw6AJ0RImAiYjHm1QZekkrbksBgsybTOsDCkrA+rqJn9cZNjxhJGIiGaJ6MEs5puIOSdeWTHBeHRDoqyaFNrtTrx0vg5tfVo7SvH590rhK6jsGqsgyc4G8vImf6GhIeCXvwQ6Oubw3RDRYjY4MojLzZfV9ebeITT2DMnlGJMea7u0Y+nooGhYjBbtm1llQkREi5Vo0aXX+wVNAgICEGk1qbmx3f1OpBbUYdN7l9BYV4SB4YEF3GGixY9BE6IlzDc7wOlyo7pT+dALMumRbNNac+VF52kDLKciPkk/+2zyx0Um79133+ZeExER+RPtI7+Q/wUYdVobnJTIIHxha7I642TA6cJrFxtQNdaGUnCPuvHbkt9qM07uvRcwKSeHExoYAH7xC6Craw7fDREtVucbz/slHF2s0apMHjKOwjCitebyrYCTc/zyZ1i1TURENN9CQoC77kKYOQxmvdKWy7dFl9DRr7SiDO7qR/6RayhqubYgu0q0VDBoQrSEM+XEEHivirZ+uD1Kq4HsmBA5+MtrbezamW20vl6ZZzKZnTuBUC0TmIiIaLYkhCTgubXPIdAQqN4XYTXLwEl8mHKfaEH59rUmFDb2+n0evl78Otwet/IZtX//1C9ktysVJ73aNoho+RsaGcKZhjPquphjUtGhBGGtJgN29mpVJuGB4Qgxa1XbWLUKsFrndX+JiIhuyp49CHjgAUSHxat3Wc16BI5Vbvc5RtQ5gdaeATSe+mjBdpVoKWDQhGiJKmkvgWfUM21rrhBTiH+m3FROnZr8saAgYPfuW9xbIiKi6aXb0vH1jV+XFyy9gkwGPLEpCatixz7bRoFjpW1o6dVaddX11uFY9TFlZdu2qdt0CT09SsWJCKAQ0YrwWd1nGHIprbjUWSZjo012RgchslULpCaHJvt/M1tzERHRYifmAW7bhpA//FP0RYdqLbp8qk06+7XZXaYz59E9yOproskwaEK0DFpzDQ67UN+tnASGBBrVjFzvAHgxEGxaosd7qTZUfsIemWbtw5aIiGguRFuj8Y1N3/AbwGzQ63BffhzWJynBFI9nFO8VNMPh00rnZP1JZTC8OGF84gklM3wqokXXr34FDCutCoho+eoe6sbZhrPqetfAMIqalLZ+Ykju3SNOBIwFUKxGKyIsEf6JQ2JmEhER0RIQk5qH+ifuQdWmdHh0ARO26PJWm5w69guMijbtRDQOgyZES5Do3V7bU6uul7f2qx90ospEZBPcdGuuM2eUmSaTzTLZsuU295qIiGhmrCYrvrz+y1gTvUa9T3y27V0VjfgwZTCz3TGCj4ta/U703ih5A72OXjkIE08/DWRkTP1CbW3A8eNz90aIaFE4Wn1UzkDy+ryiQ/3bsSXVhuT6TvWx5LBkv2NprF2r/E0hIiJaAsRn2Nr49ahbl4pLD26GLtwCq0n5HBsYdqHf6VKf6zrxCa60XFnAvSVavBg0IVqCitqKMOrtJ3Bjay5v+xLRC94SgfhgrZ/llINxr0zxQblxo5JlR0RENE+MeiOezHsSd6Tcod6n1wXg/rVxCDQqJ35VHf24VNejPi5a77xW/Joy38RgAL7wBSBlmhaV588DfWOD5Ilo2Wnsa0RhW6G23j2EqnZtlsmuSAtC25W/AWJ4bow1xn8DHABPRERLzNoYJXm2PyIY9fkpiArRqk0q2/pl1bYQ1taLz0++JCsyicgfgyZES5DviV/f0AiaepXWXBFWE6KCTX4flH6ZclNdMHJp2QZ+xPeL1lxERETzTHyG7Uvfh/Wx69X7RBvKQ2vi1PWTFR1o6tHmFDT0NeBI1RFlxWQCvvhFIDFx8hcRn38nTszROyCihSSqST6u/Nhv/UR5u7q+KzMSCT5VJhm2DP+2tmFhQJLWKpCIiGgpsFls6nyu5ux4REQFI2is2mRoxI367kH1ufFXK/HG9Tf8ZuYSEYMmREtO52AnGu2N6nppq3+ViW+QRMwzmdbICHDu3OSPr14NRPj0dSYiIppH4nPtgVUPIDooWr0vPcqKLWnKZ5NndBQfFDRjaFhrvXO64TQquyqVFTGP6/nngdjYyV/k8mWgmxl2RMtNaWcpanu1lrZlrf1o7XPIZdHjfXVCKGKq2+R6iClkfJXJmjVKAhEREdESsydlj/zqNurRnJeErJhg9SOtudeB3qERuRxV34mO2hKcqj+1kLtLtOgwaEK0hKtMxrXmitNac8UFx8lhutMSbbkGtSyDcXbtusU9JSIimh0mvQlPr3kaRp1RvW9XRiQSw8fmmzhd+KioxW++yTtl72DYPTbs0mIBHnlk8hdwu1ltQrTMiDZ9hysPq+suj0dWpnntyYqC1e5ASKdyLJ0ZkTm+QputuYiIaIlaFbkKq6NWy+XG1UkwB5mQbNParle298vPRiGlsB7Hq4+jpb9lwfaXaLFh0IRoCREXg3yDJl0DTnT0O+VybGggwoNMN1dlIj4gT5+e/HHRB54tCYiIaBEQiQAPrnpQXdfpAnBffjwsY/NNajoHcKVem2/S4+jBsepj2gYSEpTqyamSCDq1Nj1EtLRdar6EziHtd/pqfS/6HEpWbUpEEFIjgxBdo1SZRFoiER4Y7r8Bmw2In8FsQCIiokVIJAKIY+dgUzBGAo2yTVd8WCBCAg3y8WGXBzUdSgJtbGUrDPYB/K7kd3B5JmndTrTCMGhCtIS0DrSifbB92iqTGQdNSkuBrq7JH2eVCRERLSLr49ZjY9xGdT040IB787X5JqcqO+WsL6+zDWfljBPVXXdN3mpHVKl88skc7TkRzSeny4lParTfZ8eIG+eqxwIoAcAd2dHyYlJMTTsCECBnmYwjqkzYmouIiJYwq8mKh3MelssNa5JF1hGyooOh1ymfbyIJt7PfiYDRUSQVN6BtoA2f1ny6wHtNtDgwaEK0hPhWmYiqEzVoEgCsitWCJilhKeOz5SaqMvn888kfj4wEcnJuf6eJiIhm0f3Z9/vNHUiNtGJtYphcHnF7cPR6m9qmaxSjeLv0bdmmRxJzTaZqt1NYCLQpmedEtHSdrD+JgZEBdf1sdRecLqUFSV5cKKJDzAjqHURwVz/iQ+LlRaVxxDwTIiKiZdCma0vCFjiCA9GWHgOzUY+0SO1zr7pjQFadJJQ1w+AckbMB+4f7F3SfiRYDBk2Ilmhrrja7Ez1j2bRJ4UEINislljOqMhEXk955B2jUBsqPs3Mns+uIiGjRMeqN4+ab7MmOgnXsc7C2cwDXfSoxRcbc53U+SQJ33jl1tcnx43O490Q01+xOO07Xa+1newdHcLVBad1n0AdgZ2akXI6uboM+QI+08LSJk4dEkJWIiGgZOJh5EBGWCNTlJ8v1qGATIsbau7s8ozJwone5kVjSKNtzXWu9tsB7TLTwGDQhWiLq++plf/bpWnPpAnRYEz1FZpy4IHT4MHD58uTPCQoC1q+fhb0mIiKafVFBUdifsV9dNxv02JerVZ98WtaOwWGtH/OJ2hNoHxhrbxkVNfVnXEkJ0NQ0R3tORHPt09pPMeLR2vSdquyAx6NUn21KtiEkUAm4xlS3yepsk16bCahiay4iIlpGxGfdY7mPYTAiBJ2JEbJFZXq0FUa9clm4e3BYtrJMLm6Q1SaXmy+rldtEKxWDJkRLhG+ViUe05mq1q4Nws2OC1cfSw9MnbjHgJVpynTo19Ytt2wYYtQxeIiKixWZb4jYkhSap65nRwcgea1UpTvo+KdVmgLlH3Xir9C14Rj1atYluisNgVpsQLUmdg51yALxXW59DPWa2GPXYnGaTy9buAdj6XX5/Q/ywNRcRES0zyWHJuCP1DtStTZHrImASFxqoPt5ud8Iw7EJKYb2cpdton6IzCdEKMKdBk66uLnzxi19EaGgowsPD8fWvfx39/VP3xbvrrrtkxNP39u1vf3sud5No0RMXeYraitT1xu4hDDiVDNrUiCAEGvXqY2tj106+ofPngaNHp36x0FBgx45Z2GsiIqK5IyorxWBL0V7H665V0bJPs1DWakdVu3bcKQbCn288r6zYbMCmTZNvvLyc1SZES9DR6qNacFTkClV0qMvb0iNkVZoQXdMmE430Ou3vhyomRrkREREtM3em3glTehZ6o0Plupjx5dXe75TVJWIgvHnA6ZeEQLQSzWnQRARMioqKcPjwYbz77rs4ceIEvvnNb077fd/4xjfQ3Nys3v7xH/9xLneTaNGr7q72G2bpzZi7sTWXQWdAblTuxBspKADef3/qFzKZgGeeAQK1bAMiIqLFSgyEFxlzXmKuyZ3Z0er6settcLrcfhdU1cGWe/cCBm0e2Dhnz87RXhPRXBCB0eL2YnW9rnMQdV2DcjnUYsTapDDlgdFRZDYOIS44buINscqEiIiWKZEssCVxK2o2KPO8TAYdwi1KlxExDL53aAQ6twep12plt5Nh9/AC7zHRMgyalJSU4MMPP8SPf/xjbN++HXv27MH3v/99vPzyy2iaJnMvKCgIcXFx6k1UqhCtZAVtBeqy2zOKijblgo9Br5PtSLyyI7IRaJgg4FFbC7zxhjLPZDLiwtGzzwKJibO890RERHNnT8oeRAdpgZLV8SFIiQiSy/1OF076ZJqLE79Paz5VVsTx5ZYtk2+4sBAY0BIWiGjxEpmxR6qO+K37VpnsyoiEYawlX3D3APJ0sbKjwYTEPBMiIqJlSnQn6UuMQndc+PhqE7tTfo0va4a+q8cvGYFopZmzoMnp06dlS64tPiejBw4cgE6nw9lpMvdefPFFREVFIT8/H3/+53+OwUElQ4hoJXJ5XChpL1HX67oGZK92ISNKG9w1aWsutxt4+23Ao7UqGEecRD75JJCePst7T0RENLdElaVo0xUA5QKouBC6f3Ws+vl4raEXbXaH+vyLzRfRNdSlrOzeDegnaM/j/fy8xLYEREtBRVcFanpq1PWy1n719z4q2OxXmb2+wYUIS8TEG4qLAyIj536HiYiIFkiQMQirY/JQtTlDrtusJhh0ynF01+AwXG4PAkZHkX65Wg6EJ1qp5ixo0tLSgpgbesEaDAZERETIxybz3HPP4de//jWOHz8uAya/+tWv8Pzzz0/6fKfTib6+Pr8b0XJS3lkOp1uJ9gulLRO35jLrzbLSZJyLF4HOzqlf5JFHgNxJ2noREREtgcGWYjC8V5jFiB0Z2kXRkxXa56CYd3Cs+piyEhIC5OVNPQtsqqQDIlpw4nfat8pEVGWfqtSqTPZkR6lVJeHN3djWrGOVCRERrWgb4zbCHh2K9pQo6AICEDVWbSKak3T0Ky25Ymra0VVZiM7Baa4nES1TNx00+bM/+7Nxg9pvvF2/fv2Wd0jMPDl06BDWrl0rZ6L88pe/xBtvvIHKysoJn/8P//APCAsLU2/Jycm3/NpEi70114jbg8p2pVWI2aBDaqTSfkQQs0yMeqUXpcrhAD75ZOoXuPdeYP36Wd5rIiKi+bU/Yz/CA5U2A8L6pHCEBCqfi7WdA6gfm20giB7NTfaxdrHbtGDLOCIZ5zaOa4lo7hW0FqB1oFVdL2zslT3ZhWRbEFLH2vUZnCO481IXwsxTtH7mPBMiIloB0m3pCDOHoXpzBkYDgBifFl2+Fdrpl6pwuYXVJrQy3XTQ5E/+5E/kvJKpbhkZGXIWSVtbm9/3ulwudHV1ycdmSsxDESoqKiZ8XFSj9Pb2qrf6+vqbfUtEi5bT5URZZ5m6XtU+IAMnQlZMiNqbWciPmSAz7uRJYKr2dmII7o4ds7zXRERE88+kN+HerHvVdTH3a2eG1mZHzDcQcw681Mz0pCQgIWHyDZ87N0d7TESz0cb2eM1xdV0MsT1brWXE7s7SqkxWnSnHKuMU56EZGYDNNrc7TEREtAjoAnTYELcBg2FBaMmKR5DJAKvZIB8bHHZjwOmSyxFN3ai+dExWdRKtNDcdNImOjkZubu6UN5PJhJ07d6KnpwcXRWugMceOHYPH41EDITNx5coV+TU+Pn7Cx81msxwU73sjWi6ud1yXJ4Nepa1aa65cn9Zcoidlhk3pR6nq7RXDhSbfeFQUcOeds7zHRERECycnMgfJoVrVcW58CCKtSuZca58DFW396mNV3VWo7KoUQ1CmrjapqQFatSx2Ilo8LjRdQI+jR12/VNctL/YI2bEhiAsLlMsxVa1Y366H1WSdeEMGg1J9TUREtEKIoIlQsz4VHr3uhmoTrUV87JkCVHSWL8g+Ei3LmSarV6/Gvffei2984xs4d+4cTp48iT/4gz/AF77wBSSMZfM1NjbKIIt4XBAtuP72b/9WBlpqamrw9ttv44UXXsDevXuxbt26udpVokVLtA/xEsPfRXsRwWoyINFmUR/Li86DXnfDINvjx0V51+QbP3Bg8uG3RERES5DIKD+QcUBdFz2a92Rr1SanKjvh8fhXm8jqEzHHIEhreTkOq02IFh2Hy4ETtSfUdZEVe7G2W/3d35Wp/O4H9juQe7YSaeFpUx8X3zCPk4iIaDmzWWxID0+HMzgQjbmJiAw2yVwioaPfqR4zh3bYUXHqvYXdWaLlFDQRXnzxRRkU2b9/P+6//37s2bMHP/zhD9XHR0ZGUFpaisGx9kGiQuXIkSM4ePCg/D7RCuyJJ57AO++8M5e7SbQoDY4MorJbm+VT2dYvB1sK2bHB8mTQa23MWv9vbmkBrl6dfOOpqUBOzhzsNRER0cJKDU/FqshV6npapBWJ4UqiQffgMIqa+tTHmvubUdRepGSZb948+UavXQOGhuZ2x4noppyqPyWPl73OVXepbWzzE8NgCzIhwDOK3M+vIy0wDmaDlkHrJzNT9ISer90mIiJaNDbFb5Jf69amAGajWqEtrj11DSoD4QXPiU8w4NQqtolWAqVh3RyJiIjAb37zm0kfT0tL8+stLYa4f/rpp3O5S0RLRkl7iV/fSN/WXDk+rblCzaFICUvx/+bDhwGf361xDh5U2pEQEREtQ6LapLyzHKMYldUnYq7BqxeUuXdnqjpl2y6jXskdOlZ9DKujVkO/ZQvw+ecTf36OjIiescDOnfP9VohoAnanHafrtTa0PYPDKGjqlcvid3t7eoRcTiqqR1RbP1KSJpj9J1gswKOP8riYiIhWpNyoXAQaAuEIBOrzUxDdVyarTIR2uxNRwUoQJbijD2XnPsDGO55a4D0mWiaVJkR062Tm65jBYRfqu5VMulCLEXGhSn9m7wB474BLqaJC9LqbfMOiBUli4hztNRER0cKLscZgfdx6dT0h3ILM6GC5PDDswuU6bQZC11AXLjVfAsLCgNzcqVt0eTgEk2gx+LT2U4x4RtT10z6t9zal2OQwW9GWK/1yNVLDUmHQTZIr+NBDQIiWjERERLSSGPVGtXNJQ14SLOFBMBuUS8W9QyNwjihzwoTuj97EKI+FaQVh0IRoEeof7kd1d7W6Xt7Wrya+rooN8QuS+LXmEh9gospkMmKGyf79c7PTREREi8hdaXdBH6DN7tqdFakmk1+o7cLQ2LBo7wXYYffw1C16uruVxAQiWlAdgx1KoHNMW59Drci2GPXYlBoul5OKG2AJMCExdJJkoQ0bgLy8+dlpIiKiRWpj/Eb51W3UoyE/GdE+A+Hbx6pOBF1DI1qKzi7IPhItBAZNiBZpay7RUsSr3Kc116oYJVNWiLBEIC44TvtGMcektXXyDW/bBthsc7DHREREi0t4YDi2JW5T1yOsZuTFh8nlYZcH52u6/JIVZKsfMfNrqmHQHAhPtOBESz3fFrafV3Soy6Itl9mgh37YhbjyZqTb0qELmOCUNzwcuO+++dplIiKiRSs+OB6x1li53JiTgPBI7ZqTaNHlO1ah5f1XF2QfiRYCgyZEi7w114DThYYeZfhseJDJL+rv15pL9Fs/dmzyjQYGAnv3zuFeExERLS53pN4Bs1773NyREQG9TvncvNrQgz7HiN9Q6QExVFokGExGVJp0acEWIppfDX0NKG4vVtdrOwdQ16W1sF2bpFSZxFW0IAyB6kWgcR5/HDBPMhieiIhoBRHXlNRqE5MBHetSEGYxynWny4M+h0t9bv/1axiurVqwfSWaTwyaEC3CwZa1PbV+rbm8RSeiysS3Ndea6DXaN54+Ddi1ipRxRMBEDLskIiJaIYKMQdiTskddDwk0YkOyclHV7RnFmcpO9TGn24nP6j4D1q1TEg0mc+HC3O40EU1IZLoeqTrit37Sp8pkV2akEhQdHUVSSSMybBn+c/+8srOBlJT52m0iIqJFb13sOrWtbcPqRETYgtTH2uwOddk96kbze68syD4SzTcGTYgWGZE959uaq8y3NVecNqgyKihKDrqVBgaAkycn36hoQTBV5iwREdEytT1pO4JNWpuBrWmifY9yCFzS0ocOn17N5xvPo9s9AGxUsu0mdPmyUt1JRPOqoqsCNT016npZaz/a7Mrvb3SwGTmxynFyZEMX4oZNso3thKaaXURERLRCE41yo3LlsstsxODmNBjGqrO7BobhcmttMbuvnQVaWhZsX4nmC4MmRIu4NVe/w4WmsdZctiATIq0mvyoTNXvuk08Ap3bRZxwx/N1gmMO9JiIiWpxMepMcCu8VaNTLwIkgWjSf8slUF9lzx2uOA1u2TL7BoSGgWGsPRERzb8Q9gg8qPlDXRaXYqUrtd3dPdpR6XCwGwE9aZRIVBWRmzs9OExERLSHeFl1CU34KwsMs6vFyR/+w+liPowf2o9pnMtFyxaAJ0SLS5+xDXW+dul7e5lNlEhvi35orZqw1V0cHcPHi5BtNSADy8+doj4mIiBa/jXEbEWmJVNdFi65gs5JMUNUxgMaxBAWhoLUALeYRICNj8g2ePz+3O0xEfj6p+QRdQ9o8oWsNPegdUiq+kiOCkBKhtBGxdg8gu1ePsMCwyatMJgqmEBERrXAi4SDUHCqXRywmODem+Q2E99V+/hOgvX3e95FoPjFoQrSI+A62HNeaK1ZrLSLacqmtuY4cATxaqeQ4Bw/y5JCIiFY0vU6P/Rn71XWDXocdGVoQ5fPyDjkfQRAtMo9WHQW2bp18gw0NQHPz3O40EUnN9macbjitrtsdIzhdpc0j2pPlU2UyNstkQmJW0fr1c7/DRERES5AuQIcNcRvU9b6tGbAEKgPhB4ZdGHBqA+Fb7M3wfHZiQfaTaL4waEK0iBS2FarLfY4RNPcqA7cirWZEBpvHD4CvrQWuX598g6tWAWladgAREdFKtTpqNRJDEtX1vPhQRIy1vWzuHZIVJ17lXeWoiTUDIdossXE4EJ5ozrk9brxV+hY8o0qCkAhuHr/ehmGXsr4mIQyxoYFy2eAcwcZ2vezLPqFNmwCT1uqWiIiIxldnezmtZvTnJ01YbTLsHkb32U+B1tZ530ei+cKgCdEiIfpCNvQ1qOvlrf0TVpmorblERuzhw5NvUGTc3XPP3OwsERHREiMy0Q9kHFDXdboA7MqMUtdPVnTAM1ZtIhyuPopRcZF1MteuAQ4luYGI5oaoMGnp14bNlrf1qwHOIJMBd2Rrv8PJ5W1It2oXd8YdF2/bNvc7TEREtITZLDakh6er6649qzA6NhC+o9/pd6wsqk3w0UfKtSmiZYhBE6Il0JorO1bLdI0LjkNUUJQyhFa0B5mMuNATHT03O0tERLQEpdvSkRWRpa5nRlsRH6ZkqXcNDKOkuU99rNHeiKJks4iuTLyxkRHg6tW532miFapzsFPOMvEaGnbjk9I2df3unGgEGvVyOcAzir3tFpgNWmW2n9xcIDx87neaiIhoGQ2EH40IRnd2nFx2eUbRPaANhO8Y7MBw+XWgtHRB9pNorjFoQrRIFLUVqctisGVrn5K9GhVsVtuHqK253G5llslkROuBu++e2x0mIiJagvan7/erPtmTpSUYnK7shMutzQl7v/VzOLLSpm7Rxew6olkn2nC9U/YOXB6tf/qJ8nYMDrvlcmZ0sF9SUV5HANJgm3yDO3bM7Q4TEREto5a2Zr2WhODYkwP32OywNp8WXWIOYGt/K/Dxx4BL+7wmWi4YNCFaBLqHumVGq1e53wD4kPGtuS5eBLq7J9/grl1AsH9LLyIiIgLiQ+KxNmatup5osyA9yiqX+50unKvpUh8bHBnE8UjtM3mc9nZlvhgRzapLzZdQ01Ojrtd2DqiVYCaDDnfnxqiP6RCAg+2h6jD4ceLigJSUud9pIiKiZcCoN2JtrHasbEuJQElajJrg63QpCQyCaKE52tkJnDu3IPtKNJcYNCFaBIratSqTG1tz+c4ziQ+OR4Q+GPj008k3JoIlImhCREREE9qXvg/6AKWtj7AnK0rOOBEu1HT7Dbo8a2pDS6B2cjjO+fNzu7NEK0xJewneL39fXR9xe3C0RGvLdUd2NILNBnX9gDsNYe1aa70Jq0wmC6gQERHRlAPhRVJC765sDI61xPQ9Th4YGYB92K5coxpQZo4RLRcMmhAtAoVthepyz+CwWvIYExKI8CCtNVd+TD5w+vTUH0aiLZdoz0VERESTDrnckrBFXY8MNmNraoRcFgMuDxe3wOMZa7sVEIBjEb1+bYL8lJQA9imqUYjopipMXi16Fe5Rt1/bvD7HiFxOslmQnxCqPhYZGIHtpf2Tb9BqBfLz53aniYiIlpmEkATEWLWqzuzUCJxIi1WDJqKNpldjXyPgdALHji3IvhLNFQZNiBaYKGcUN6/SlomrTIQ8axpw6tTkG4uKAjZqGQFEREQ0sTvT7kSQMUhd35YegcixGWIieeFindYGsyo1BOV9WqsgPx4P8OqrwLA2GJOIbo64+PJ53ed4u/Rt2SPd63pLHy7XK7+Lel0A9q+O9WvD9YQnF/q29sk3vHUrYNCqUoiIiGh64rN2U/wmdT000Iju1UloswbC6fLINl1ebQNtcLqcwKVLQIt2bYtoqWPQhGiBXW256nfCWNIy8TyTxJBE2C4UKhH8yezfD+j4a01ERDQdETC5L+s+dV1ckL0nL07t4nOmqhNdA0ogxGU24kqUC11D2rwTP/X1wCuvcAgm0S0Qx7+Hqw7jSNURv/uv1HXjw8IWeJNZd2REwuZTgb0ldiMSLpZOvmGLhQPgiYiIbpGYAejbznZtig1HM+PlcnOvQ71fJDs02ZvEBzrw4YfKV6JlgFdXiRaQZ9SDgrYCdb2lzyHbc3nbD4RajOpj6wPTph6ulZgI5ObO7Q4TEREtI6LtZU5kjroeFxaIjck2uez2jOJISavafqApNxFlnWVweyaZb1JZCfz2t0rlCRHNiPj9EtUlp+pP+d13urIDn5RpFSRrE8OwJVX53RRCTCG4py8aEMNnJ7NnDxAYOHc7T0REtIxZTVbkRmnXmDKireiOs6EsMlRWmgwOa8lCImgij5Frajjvj5YNBk2IFlBlVyX6h7U+zMVN2hDL1fFav2ZdgA5rizsA9xSDaA8c4JBLIiKim2w98MCqB2DWm9X7dmZGInwsaaGpZwhXG3rlsj0qBI1xVlR1V02+QTHf5J13mGFHNEMn60/icstldV3MFDpe2oaz1VpV1/b0COzLjfFry/Vg+iGYT56ZfMMhIcC2bXO340RERCvA9qTt6rIuIAAbksNxLCMO7oAAtPhUm4x4RmSbLun994ELFxZid4lmFYMmRAvoSssVddnl8aCsVWnNZdDrkB2jtebK80TBUlw2+YaysoD09LndWSIiomUo1ByKQ1mH1HWjXocDecqgS+FkRYfat7l0dw4q0IU+p5bkMM7ly8BHHzFwQjQN0e7uWLU2NFZUd4l2XNfGApXCnauisTMzyi9gclfaXcip7gP6pvg9vPNOwKhVbBMREdHNSw5Nlq3ivdYkhmIg2ILziZHo6HdixK1VWDf0NWgD4t99l4ETWvIYNCFaIA6XA6WdWh/m6vYBOVBLyIoOhsmg/XpuLxuY+uKLmGVCREREt2Rj3EZk2DLU9SRbkGwHJIiTwaNjbbqGLSZcPbgOhUN12knhRM6cAU5p7YaIaLxPaj6RrWq9RMDEm0AkgiSH1sRhY4rWkks4kHEAd8btAD7/fPINR0QAGzfO3Y4TERGtEOLzeEeSNh/MbNBjTUIoTqfEwG4woM2uzdwdGBlAj6NH+2YGTmiJY9CEaIEUtRXB5dF6QJY0a9lyeT6tuaI7HUhs0obDj5OfD8Qrw7iIiIjo1k4IH1r1EIw6LTN9T3YUQswGuVzXNYjSsYu5jhALPr8rHbUjHVNv9OhRoGOa5xCtUO0D7Sho1eb6NXQPorxN+R3T6wLw8Pp4v1a1AVB+R/ek7EHA6dPA4ODkG7/7bkCvDa4lIiKiW5cXnSdniXmJFl1Oox4fZyWgtdchW2v6Vpv4YeCEljAGTYgWyNXWq+qyGKBV06mc/AWbDUiKsCgPjI5iT8mAnGkyIZ0O2LdvXvaXiIhoObNZbNifsd8vk+7u3Bh1/URZOxwjymyxwXAr3toSjCH9FEPfxUD4Y1rrISLSHK85jlEoF1lE1dapSm2gu5hfkh4VrK7rA/R4as1T2JywGejvB0TQZDJxcUpCEREREc0KvU6PbYnanLDwIBMyooJRGh2G99Ji0TUwrD7WOdSJwZHB8YGTS5fmc5eJZgWDJkQL1MO5rrdOXS9tsavR+dz4UDlgS4irbEVav5LlOqHNm5UWBERERHTbxAmh6N3slREdjKwY5eLt4LAbn1dolSPdERZ8vDUSo1NltBcXA42Nc7vTREtMs70Zxe3F6npt5yCaeobksi3I5FdhYtKb8Py652WWK9xu4PXXgWHt4sw4IpnIZ/4JERER3T6RuGDQademNiaHy68XE6PwSlyUX9vaxr4Jjn3few9oGxsUT7REMGhCtACutmhVJkKxX2supezRMOzCmmstckDthMRwy71753ZHiYiIVhBR2flwzsMys93rrlUx6pyxwsZeNI5d3BUuB3aj8p7NU1+kPXKEQ+GJfPgOf7+xymRnZqSaPCQ8s+YZpNvSlZUPPwRqaibfcEoKkJ09R3tNRES0cgUZg7A+dr26nmSzICrYLJcPh4fgzJoU9bGW/ha/VvSSSHxgBTYtMQyaEM0zcXLo25qro9+J9rHhWbGhgYiwKh88qVdqkKwLl33WJ7RzJxCi9ZUkIiKi2xdtjcbulN3qenCgAbsyo9R1MRTe7dGCIG95SjC8bs3kG6yuBqqq5m6HiZaQ+t56lHeVq+uV7QNoszvksrj4kj1W2SVk2jKRGZGprJw/r9ymsn8/q0yIiIjmyPak7eqyuE61MUWpNhF+ZwlC+bYsuewedcuq0nGuX2cFNi0pDJoQzTPRlqvH0TPhAHhvO4KgngEklTQi1ho78UbCwoA9e+Z+Z4mIiFagO1LuQIRFa3+5LilMJjYIom/zxdou9TH7sB2fpIkS0SnaabLahEgmDh2tPqqui9a0pyu1lne7MiP9koX2pe/TAo8ffDD1xnNzgdTUOdhrIiIiEmKsMTKhwSsnNgRBJqU6u6KtHyUZsWrgpNHe6NeyS3X8+PztMNFtYtCEaJ5dabmiLns8oyhptstlnS5AfuiIiypZ5yoQbgqFxTg2EP5GBw8CJtN87TIREdGKYtQb8UD2A+q6aBe0f3WMekH3bHUXega1uQqne4tQkRU5+Qabm4GiorndaaJFrrqnGjU9WnutslY7OseGx8aFBiI9yqo+lhOZg8TQRKCrC3j1VXHQPPmGbTbg4YfndueJiIgIO5J2qMsGvQ5rE8O1jir1PWjMS0JTTgIcLge6Hd3jN1BRAdTWzucuE90yBk2I5tGIe8Rv8GVd1yAGh5Vej+mRVlhMekTVdSCiqRtxwXETbyQ9HcjLm69dJiIiWpFEW6B1sevU9ZiQQHXopWjPdex6m5pBN4pRvGxrQNVQ08RZdYLo4yz6OROtQOL3wneWifgdOuMzy2RXVpQalAxAgFJl4nQCL70EDGlzhMYRSUTPPgsEBc3tGyAiIiJkRWQh0hLpV42t1ymf38VNffLzvXZdKjx6HVr7Wyc/JmYFNi0BDJoQzaOSjhI43c5JW3PpXG5kna+Ug2hFT/VxdDrgvvvYr5mIiGgeHMo8BItBq/rckRGJkECjmvhwpV5rt+kyG/FJkgulnaXwjE6QFS8y5i9dmp8dJ1pkyjrL0NDX4HcM3DM0IpeTbEFIidCCHmti1iDWHQj88pdAe/vkGxXHw088AcTEzO3OExERkSQSHHyrTaxmAzKilXlkQyNuVHcMwGk1ozEnAe2D7eMHwgui0qSycj53m+iWMGhCNI8uNl1Ul50uNyra++VyoFEvWxKkFNYjsN+BqKAoGHQT9EbfupUnhkRERPPEarLinsx71HWTQYe7c7Skhk/L2nGqskOtLmlYnYhaTxcK2wrh9kxQVfLpp8Cw1taLaCUQvwsfV36srrs8Hpyt8qkyydQyVkWVyX5kAD/84fTDYvftA3Jy5maniYiIaELr49bDpNfaxeeNzeb1TQyuW5uCEX0A2gcmSX5gtQktAQyaEM0T8WFR26v1brzebJeli4KYZZJU0YLUq8rjE7bmslqBu++evx0mIiIibIzbiJSwFHVdZNNtSdWGxJ+r7sLHxa3yM91j0KNmfRq6hrpwueUyht03BEj6+4HTp+dz94kW3JmGM+gc0oIkBQ29sDuVzNO0SCsSwsequUZHsa/JDNtr7wADA1NvdO1aYM+eOd1vIiIiGk8ETNZEr1HXUyOCEGRSkn6rOwcwNOzGiMWEhrwktPS3TLyRpiagtHS+dpnoljBoQjRPLjVrLTlERmpBY69cDhgdxVNtXcg5VSqXxQeQLdA2fgP79wOBgfO5y0RERCueaEPw0KqHoA/Qq/ftyY7CnauiRVq8mlX31pVGWUXakh2PwVAL+of7ca312viKk88+U1p1Ea0Adqcdn9Z+qq6LWX5nJqgy0Q+7sPbT69ha3DN95mliojL4ne1qiYiIFqzaxEunC8Dq+BC57PGMorRFqTapz09G5+gAhkaGJq828UzQ0pZokWDQhGgeiD6OV1quqOstfQ509DthdLvxtepm5Fdp0ff44Hh1EKYqIQHYuHE+d5mIiIjGiDlj92ff73ffxhQbHsiPV4dfihknr11ogF30c96UIe8TgRMxy8FvOLzLBbz/PlsS0IpwuOqwX8XVyYpOOF0etZ1HTGggDM4RbPzgMtZ1GhBomCZBKCQEeOYZwKjMFiIiIqL5lxqWivDAcL8ZvV7FYy26XCYD6vKTJ682aWsDiormfmeJbhGDJkTzoLi9GEOuIb+2BKGOYTx/pQrbnQ6/58aHxI/fwP33M5uOiIhoAW1O2IwHsh+QMxe8smND8MSmJDmbTBAJEa+cr0dNXDj6opSMu9aBVjTZm/w3VlEBFBfP7xsgmmd1vXWy2sqrpdeBouZedT7Q7qwouZx7shShPUN+bfAmFB0NfPWrQKh2YYaIiIjmn0j03RC3QV2PCjYjJkRJfGizO+UxsdC4OgkN7m7/BCJfR44ADv9rYkSLBYMmRAswAL6jph0vXKlEwpATkVaz+liEJWJ8ht3evUBS0nzuLhEREU1ga+JWPJP/DIw6LctdzGN4eksyQgOV++yOEbxX0ILSLZnqcyq6KtDrUC4Wqz74gCeJtGx5Rj14v/x9dV1cLDle2gaMXTPZkR4Jq9kAW1M3ouo6ZMaq2aAdE4+zZg3wjW8AEdo8ISIiIlo462O1Fl1CXsL4gfBuox6leTHodd5wHOzV2wu8+y4rsGlRYtCEaJ4HwJc19OKRa7UIHnbJaLy3rYe3NZefffs4/J2IiGgRyY3KxZc3fBlBxiD1vgirCc9sTUaIWRmC2dQ7hPd6h9G0SvlcH8UoitqL/AfDi6Hwopcz0TJNGPJtxyFadbT2OdTfl/XJ4QjwjCLzfAUsBguSw5In3pBOBxw8CDz5JGAyzdfuExER0TRsFptMevDKiQ2R802Ekma7nG8iNOUkoB6TBE2EwkKgoGDud5joJjFoQjTHLjZf9Muys5wsQ+SQUqoYG6pl1IkB8JFByjBMGAzAU08pVSZsy0VERLSoJIUm4esbvy4rRL1E1vwD6xLUZIgr9T14PzEaw2MVKCJgUtRWJDPwVefPA42N8/8GiObQ4MggjlUf86uyPlnRoa7flRMjf0/iypsR3D2ArIgs6AImOC21WoEXXgB27eLxMBER0SLk26LLYtIjPdIqlweHXajtGpTLHr0O57KC4Pa4J9/Qe+8B3d1zv8NEN4FBE6I5HgB/teWquj5Q14m8MqWvebDZgCCTkpHqrTKRJ4zBwUq/ZtGGgIiIiBYlkeggAie+VaJxYYG4OydGXf+wqhPn87Q5DaI1QVV3lbYR0YrgnXcAj08ghWiJEwET31l+Zyq7MDisXCjJjglGSkQQ9MMupF+uRqQlUksa8mU2A9/8JpCWNp+7TkRERDchLzrPr22tb4su70B4oT4zCo1RU7ThdDqB3/2Ox8S0qDBoQjRPA+BFC4KojwqgG+vVGONTZaIOgI+LU/o1JyYuyP4SERHRzFlNVjy79llYjUpWnZCfGIb8hDC57HKP4od9I2iLUdaFhr4GtA20aRtpaQFOnGAvZ1oW6nvr/Wb5iUGwVxp65LJBH4A7VkXL5ZSCOpgdLlllMqE77wTCtN8bIiIiWnzEPLLV0avV9bRIKyxGvVyuau+HY2SsuiQgAJ9vigIslsk3Vl8PfPbZnO8z0UwxaEI0h3xPGqMK66Br7JLLoiXBuAHwyenA177GE0QiIqIlJNQciifznkQAtPZBd+VEIzY0UC73Olz499BQuH1mmJV1lvnPN/nkE+Df/x24cgVwT9G6gGgRG3GP4M3rb8oZPt62tJ+UtsuvwtbUCIQGGhHY70BycYOcY2IxTnDxxGYDtm2b790nIiKi22zRJa515cSFyGW3ZxRlrXb1sXJXK+yHppnZ++mnSvCEaBFg0IRoHgbAi5PDsM9KMTYHa/wA+LBE4JFHOOCSiIhoCUq3peOezHvUdYNehwfWxiNwLNPuqsONj6LC/dp3lneW+2+kowN4803gX/8VOHsWGBmZvzdANEttuTqHOv3acjR0K/3MQy1GbE61yeX0i1WwwOg3PNbPPfco8/2IiIho0UsLT5NJRNO16BJJFZdtDmDTpsk3JtpziTZdol0X0QJj0IRojpxpOKMsjI4i+1QpusZOGicaAB+x70GlNRcREREtSTuTdmJNtDaPTFwkvj8/Xp1f/VNjINpMWs/n9sF2mWAxTm8v8MEHSvCkuJhtu2hJqO2p1Y59AdgdI/i0TPv5vmtVtAwmhrb3Iba6DZkRmdDrlKCin9RUYLXW5oOIiIgWNzGbd33senU9JiRQJgoLLb0OdA1o1dXnG8/DffAeIHKCeWZeYiD8sWNzu9NEM8CgCdEcuNB0ARebldZcsVVtMFW1qQMwbxwAH5W0Cvq79y3YvhIREdHtCwgIwCO5jyA6SJnZIKREBmF7unJS6AoIwH+Gh8HjEwQp7yqXLY0mZLcDr74KvPQS0KPMhCBajESrubdK3/Jry3WkpA3DLmWY6+r4UGREB8sAYNa5CoQHhvv9nvg5dEj2PSciIqKlY32cFjQR8uK1apNrY7PNBPuwHYU9ZcDjjwO6KS5JnzsHNDfPzc4SLXTQ5O///u+xa9cuBAUFITxca0cwFXGA/Vd/9VeIj4+HxWLBgQMHUF5+Q+sCokVO9Cl/r+w9uWx0jCDzXDkae5Rh8BMNgI979huAUcs8JSIioqVJVI8+k/8MzHrts35rWoSabXfZZMInEWF+F5sruyun3mhZmTLv5ORJzjuhRelo1VF0DSlz+4Sipj7Udg7IZavZgDvHhr+nX65BWLsd2RHZMsg4zvr1QELC/O04ERERzYqooCgkhSap6yJhwqAPUI8L1IHwAE7Vn8Ko+Ly/e4r5JiLJ6P33WXFNyzNoMjw8jKeeegrf+c53Zvw9//iP/4h//dd/xQ9+8AOcPXsWVqsVhw4dgsPhmKvdJJpVjX2NeK3oNTXTLuNCJZqbetEzqGSRGm4YAI+NGxGa6x+RJyIioqV90vhwzsPquphhdk9erJo8/x/Bwbi4LhXDgUrCREt/i98F5wmJ+SaHDwM//CGz7mhRqempwdnGs+p6n2MEJ8q1tlwHVsfK2T4JpU1IvVYr+55bTdbxGxIJRPv3z9duExER0SzbFK/NKrGY9Gq1yYjbg4LGXvWx1oFWVHVXAbt3K205JyMGwl+5Mrc7TbQQQZO/+Zu/wX//7/8da9eunXGVyT//8z/jL//yL/HII49g3bp1+OUvf4mmpia8KYZiEi1y3UPd+E3BbzDiUQIkIe19CLhYg+ZeLeiXGROsDoAftpgQ99gLC7a/RERENDfyovOwOkqbyxAbGohNKcoQbNco8GO3Hqee2I7y7dlwBAeitKNUDoefVmsr8NOfAjU1c7n7RDMiKqXevK6dp8m2XMWtaluuNQmhSI+yIrKuA9lnyhBiCkFKWMrEG9u1CwjVWnkQERHR0rI2Zi2sRi0xYqM49h1LGrpS1wO3Z9Sv2kS253roIUA/wYwzL5E0NKR1biFakTNNqqur0dLSIltyeYWFhWH79u04ffr0gu4b0XQGRwbxYsGLGBhRWhGIEkLb4ULUjLUmEMRJoy3IpK733b0bq5JZZUJERLTciNZD92ffj0BDoHrfzoxIhI8dB4iEisvNdjSuTsTZx7bhys50lAZMU23iW3Xy8stAW9tc7T7RtESARLSj7XFofcpFFmld16A6w2/vqmg5+D3vRDH00CE3KnfitlwiWCKyTYmIiGjJMuqN2Ja4TV0X178yo4Ll8sCwC6UtdvUx0Z5WVFsjKgrYuXPyjQ4OAkePzu2OEy32oIkImAixsbF+94t172MTcTqd6Ovr87sRzfdJo2jJ1THYod5nuFyDjlKtfUZCuEVmmXr1pMTijvu+BV3AovkVJCIiolkUYg7BvVn3qusGvQ4HVseo6ycrO9E7OIJRvQ6tWXF47a5oNO3fDgQFTb9x0br2xReVYfFEC+B0w2lcbb2qrvcOjeCzcu1Y+EBeLMIHnFh7pAB6lwfp4ekTt+US2aViGKxJSywiIiKipWlr4lYYdAZ1fXOqUmktXKztltfPvE7XjyXI790rsuYn3+jFi0Bj4xztMdHkbuqK7Z/92Z/J7KCpbtevXyoB53YAAFMtSURBVMd8+od/+AdZkeK9JScnz+vrE11qvoTqnmp1faB7AKMfFMBbeRgZbEKyzaI+PqrXY+2X/xSxIXELsbtEREQ0T9bHrkemLVNdT7IFYV1SuFx2uT04cr1VO3kMCMDrpnIMf+ebwCatJ/SkenuVwInTOWf7TzSRiq4KHK48rK6LdhsfFbbInuVCfmIYVgUZse7wNRidIwg1h/oNh/Xz2GNAWtp87ToRERHNoSBjEDbGbfRLII4PUxKIOwecqB2rSBUK2grQ5+xTEifu1RKNxhHHyu+9B3iU4wyiRRk0+ZM/+ROUlJRMecvIyLilHYmLUy4gt4pezT7Euvexifz5n/85ent71Vu9GBRENE/cHjc+q/tMXXeMuNH+5mV5giiEBhqQGR3s14og8f5nkJm5ZUH2l4iIiOaP+Px/KOchmPRaFv3urEiEmJUMvPquQRQ2aVXSYiD8kZZTwMMPA1/9KhAdPfULiGrsV18F3O65exNEPjoHO/F68esYhRLsE0G/46VtaOpV+o2HBBqxNyMCa44VwtLvkFXVk7blOngQyM+f77dAREREc2hH0g4EeIeZ3FBtcqm2W132jHpwtuGsspKbC2RlTb7Rpibg0095zEuLN2gSHR2N3NzcKW+mWyytTk9Pl8GRoz696kSrrbNnz2LnFP3tzGYzQkND/W5E86WwrdCvl3PVtQbkVCuBP4tRj1WxIdD5nCQmJK/Bqoe/uiD7SkRERPMvPDAcBzK0mX1mgx77V2vtaD8rb0ffkJJsIZxrPIeq7iogNRX49reBdeumfoHKSuCdd5QsPKI55HA58FLhS/Kr17WGXhQ29splvS4AD6yNR25hPcLalWBghi1DZp2Os2PH1D3MiYiIaEmKDIqUCRNeGdHBCLMY5bKYfdZm144jLjRdgNPllBXXuP/+qYfCi6DJv/0bcPUqq05oXszZQIW6ujpcuXJFfnW73XJZ3Pr7+9XniCDLG2+8IZdF9tEf/dEf4e/+7u/w9ttvo6CgAC+88AISEhLw6KOPztVuEt0ykVn3ed3n6rpzxIX4E9dlPF38vc+JC5H9y71irbHIfu4PAKPyYUFEREQrw9aErUgJS1HX06KsyItXEn2GXR4cLvZp0wXgretvKSeQ4sTxkUeA6Sq5r1wBPvlk7t4ArXgiG/R3Jb/zm+EnKqU+LWtX1+9ZHYu8/kGkFNTJ9TBzGBJDEsdvbM0a4NAh5YCZiIiIlp1dybvUZZFIvCnFt9pESzx2up0433ReWYmIAPbsmXrD3d2AuI78n/8JFBUxaYiWZtDkr/7qr7Bx40b89V//tQyUiGVxu3Dhgvqc0tJS2VLL63/8j/+B733ve/jmN7+JrVu3yu/78MMPERioDdAmWixKO0vRPqidKPaerkJ8txIUjA42I9Co98syzdn+AAJEySERERGtKCI56OGch/0GY96ZE6216eoelBn7Xr3OXnxU+ZGyIgInzzwDxGrVKZNm35WWztE7oJXuWPUxlHWW+Q1+f6+gGZ6xixWi9ca6MDNyPyuR60adEaujV49vyyUqqMQcEwZMiIiIlq3ksGQkh2ozp/MSQtVrZGWtdtgdWpX1kaoj+KjiI7g8LiVoYtMCLJNqbwdeew14+WVgRNsW0ZIImvz85z+XGXM33u666y71OWL9K1/5irouDqr/1//6X2hpaYHD4cCRI0ewatWqudpFolsmfnY/q9VmmWBoGHEntQsV8eHa4HdxgWRN/HroRKkhTxCJiIhWpKigKOxL3+fXpuuePG1u32cVHegZHFbXLzVfQnln+diTzcAXvwhM14ZWZN71aNl7RLNBBEt8q6tFddQ7V5vkLD8hNdKKPRmRWH2iBCbHiOxjnh+Tj0DDDYlvkZHAF74AGLTgIRERES1PvtUmRr0O65LC5LJIuLhS73+8errhNH508UdodXYB99038xcRCUOvv86KE1paQROi5ay6pxqN9kZ13Xi4EKYh5UJHhNUk55l4ibYExt13AFFRC7KvREREtHgGY/q26UqJDFJPIF1uDz4ublUz94W3S9/G0IgyYFsGTJ5/HpiqAtvhULLuOCSTZsngyKD8OfRNHPq4uAUd/U65bgsy4b78OKQV1MHWolwAWRW5CmGBys+1SgRKnnoKsGiJRURERLR85UTlIMISoa6vTwqX888EETS5Wt/j1562daAVP7z4Q5yydGB069abC5xcuza7O0/EoAnRrfHNtgtu7oHlSq26nuhTZaIP0CMxMRfYu3fe95GIiIgWF12ADo/kPCJbF3ntyYpWh2M29QzhSp2WeWcftuPdsne1E8qYGKVV11RDMhsbgY8/nsN3QSuF+LkTP3/9w9pMykt1PahoU9ZNBh0eWp+A2E470q7WqMlC8SHx4zcmZpjEaZVVREREtPyPe0XCkJfVbEB+gpJU4faM4nhpG9660oQBp0t9jnvUjY8rP8Zrqf1wP/6YMudkJj74ALDbZ/9N0IrGoAnRTWrsa0RVd5Vc1rk9sH10TbYpEMItRvlB4CVOGk33PwSYTAu2v0RERLR4RAZF4kDGAXVdXHi+Jy8WGOvgebKyA10DWpuuovYiHK0+qm0gPR144IGpX+TsWaC4ePZ3nlaUgrYCFLdrP0eiuuRU5dgg+ADgvjVxyGnvxZpPixEwqszwy4zIHL+hvDxgy5Z53HMiIiJaDDbEbYDFoCUW35EdJStOvGo6B/CrM7VqQoZXcUcJPgvtBr77XeDhh4GwGypYJ6q2fu89tumiWcWgCdFN+qxOm2WSfLUG/fVd6nqCT5WJ6OecuP4OYM2aed9HIiIiWry2JW5Deni6up5kC8LGJJuaefdRUQtcHiUhw1vherbhrLaBjRuBDRumfpG33gK6tGMUopvR6+jF++Xvq+vy57KwRX4VDgYb8fi5Mqz5pEi2qBXzS9ZEr5FZpX7Cw5WLHZzrR0REtOKY9CbclabNtjbodbg7NwaPbEhEkElJOBYz0t691oTDxa0Ycfsf//a5BoBNm4DvfQ8Qc4KnavN5/TpQVDS3b4hWFAZNiG5C+0A7rndcl8vW7gGEnK3E0NgQzJBAA0LH2msIMeGJsDz2FE8SiYiIyE9AQAAeyX1Enkh67c6KlPMhhNY+Bz4uavXr8/xhxYcoahs7ERTHFuLEMTp68hdxOoFXXwVcWssDopkQP3dvlb4Fh8uh3ne2qhPt/U6EDznxfFUTvl1Ug7D2PrUdrRj8btRrx8GSTqfMMZlqDg8REREta1sTt8qKE1/pUVZ8aUcqMqOD1fuKmnpxpLhVXXd5XPi05lNtNtq2bUoixlTefx8YGJjld0ArFYMmRLcyy2R0FKtOlaK5a3DCKhO5/tBzM++/SERERCuKaGV0KPOQX+bdvflxMOiVZIuyVjtOlHWogZNRjOJ3Jb9DdXe18g2i9efTTwPGGy5U+2pp4XwTumnnm86rrWiF5t4hnK/twtqWbnzjUgXuG3VBNzbIVciKyEKwSbvooTpwAEhMnK/dJiIiokU80+/+7Pth0Gnt7C0mPR5cF497VsfCqFcuT5e22mXykNfllsvoGBxrDSqsXj11N5fBQSVwQjQLGDQhmqGuoS7Z21lIvN4E1HWqA6uCTHo5z8QrJHUVwu6+d8H2lYiIiBa/TfGb5AVnr9jQQNyfHy8rUYTL9d24VNftNxzz5cKX0WRvUu4QlSYPPTT1i5w7B1RpF8BvbMFU01MjK1hEMEaclIrqAt8KF1o5PKMeXGu9hsOVh9X7RJsM0ZZrdWsPHihrQFpooN/8vkhLJOKCJxjwnp0N7Nw5X7tOREREi5g4thXtab+1+VuID473u39NYhj2ZEWp931e0eF3bHKs+pj/xkS1dVDQ5C8mWnRxth/NAu2Il4imdLTqqPyDHdjvQPqlKpT1DPlVmXgvcIwGAElf/I7SkoCIiIhoEuLY4eGch/FfF/4LAyNKK4GM6GDsz43BkRKlPcFn5R2y5/Pq+FC57nQ78aOLP8La2LXYm7oXUevWAbW1wMWLk7/Q228D3/kOYDaje6gbhW2FcsB8S3/LhE836owIMYfIC+I5UTmypYJvZuBM2J129A/3y+8TVTXjWjfRoiGCZCUdJThefRztg+1+j4mfv7DmbjxQ2oBgswEJ4YF+Pyfi58N7DKzKyACeeIItaomIiMhPtDUav7fp9/BJzSeyk4uopBbyE8NkolDv0AjquwZR2zmA1EirfKy4vRiNfY1IDB2rXrValcDJ669P/kJiKHxa2tTBFaJpBIwus1Syvr4+hIWFobe3F6Ghyskl0e1q6GvAjy/9GGGtvcj7tAiOzgGUNCt9nAMNOqxPDldPGN07dmD/t//fBd5jIiIiWipE5cjPr/wcw+5hvxkSp6s65bJOzEDZkKCePHoFIABrYtZgb8JOxLz8jtKOawJOlxNVmZH4fF0YGu2NN71/EZYIPLjqQWTYMqZ8nkguEbPfTtWfksdOvqxGqwyeeG9p4WlIt6XfdDCGZldFVwWOVB2ZMIBW0zmAk59V4IvXqhHk9mBtUhgsRr36uBj8Li5+qIKDgbvvBjZuZPIQERERTUkEQ14telVdv97Shw8LleORmBAznt2Wol5nE8eNX17/ZS1RQ1zKFrP7SkomfwHRyku0smUSB91i3IBBE6JpiF+Rn1/+GdxnTiHzfCXg8aCwsQ8Dw0prLjG4KjrELJeHggOR91ffR2pM9gLvNRERES0llV2VeLHgRRl48B5/HC9tw7WGXrkuej0/tC4BKZETZ8zlIAp7PyhGjMkmqzrcHjc6hzrRbG9Gt0Np8XX1nnXoTrz1eWvrY9fjUNYhBBn990EM6hRtnU7WnZSvOVMikLIreRe2JGyB2aAcS9H8kD9fNcdxovbEuMeGXR5cqe/B9bJWPHuhHCHOEaRFWREXqlWZxFpjsTp6tbIi5urs2qXczPx/JCIiopkdi/zi6i9kq1jv+m/O1aHd7pTr9+XHIycuRH3+8+ue92tri/5+4N//HRjSusCM88gjSjIH0RgGTRg0oVlU1lyIKz/8X4ipbpPrHf1OVLT1q7NM1iaGqdHu9sfvxVMP/9mC7i8REREtTVdbruKN62+o657RUbx3rRmV7cpxh5AYbsH2jEgk27TWoOpjJY1YdbYCYYFhsjWWCGb4cljNOP/IVrhNBnQPDqOsxS637XB5EGwyyFkVVrNefhWtmFIjg2RrMF8iYHJHyh0yMCMqWAZHBuXMtz6nUoF7KywGC3Yk7cDmhM1yO6LqQdzaBtpk9U2IKQR50XnIj8mHXqdVOtCt+7jyY1kR5EvML7nW0IMLNd3wDA3j+StViB50IMxiRG5ciPrzZtabsTVxq1IltGEDsG8fwPMuIiIiusWuLr5Vrm9eVqqixdzgL+1Mg16nHH+IGWpiJorf8e/Vq8Ab2rHzOCYT8O1vAxG3njREywuDJgya0CzxdLTjs//9XYy2t6kXL67W98DpUrJAxQlkeJBJLrdkxmLXH/5/SAlLWdB9JiIioqVLVGscrtIGcbvcHrx5pQkN3YN+z4sPC8T29EgZ2PBtVbDho6sIb+mZcNvOETfORofj1/FRaBvL4puKyaDD7sworEvSEkRmQlx8L2zsRU3noNxGaKABoRYjQgONCLMY5FeD/ubbN4m2XmKOi6h48QZPxKlM11CXzFLscfTAYrTINmITDicnqaC1AL8t+a267vaMoqChB+dqujE47ILe48HThTVI7RlAdLBZ/oz5/n+Jf3+bxQbs3asETIiIiIhu0SuFr8jZat7jut9eakBDt1I9cnduDNYnhavPfWL1E3Kun0pc0n7pJaCsbPIXSEoCvvY1tg4liUETBk1oNnR0oPGf/xblDVfVu5p7h1DbqVy08M2667dZMfj8M3h68wsLuMNERES01IlD848qP8KZhjPqfR7PKK632HG+pktWiPgSPZ/z4kORHRsiK0QC7UPY+tYF6F1u+bjL40FX/zDa+52wO5TKk1fy01AdobU7MBt0akLIROLCAnFgdSyigqduveQYccu2TuImlicjMgbzE8KwJc2GkMCbHxBvC7RhW+I22QpMtDXzth/zJapSHsh+QAZRSCMqeH5y6ScY8YyoP2/v+lQzGd1uPFZSh63OYSTZgmAx+Vf2JIUmKa0xRIWJaHnBPuFERER0G9oH2vEf5/9DHQovrru9cr5eLouK56/uTpNtar3HgH+w7Q/8K49Fm67//E9gYGDyF7nrLuVGK14fgyYMmtBt6u+H+0c/xNnCD9WhrOKiw5W6Hrg8yq+MaMslLk50JEei9I48fGvPf0NUUNQC7zgREREtdTLLruS3KGwr9LtfVLyWtdpxrroLXQP+wRNx7TrZFoTcuFDs7exB8uelsie0eJ74Pl92sxHv3JWP1KRwGWwRlR+iomVg2I0Bp0veqjsGUNystdwSw+g3p9qwPT1CrToQ+ymOi8TzxeyVgsZeWWUyUzpdgAz4bE2LkMkoN87VEIGeoWE3kmwWBPoMIJ+pMHMYnsx7EslhyTf9vcuRaKX2w4s/lBU5XqcrO3G2WplDEzTswndrm7FRPzquLZv3QoXI7tRlZQPPPQfo2SqNiIiIbt9b19/C5ZbL6vq7V5tQMZbQsSszEtvSI9XH7s26V7Z19SMqTX7zm8lfQBwoi2qTZB4TrnR9DJowaEK3YXgY+MUvUFt0CtU91erddV2DaOpRSgQjg03Iig1B9cZ01K1NweaELXgo56EF3GkiIiJaTsQg96PVR8fNnRDE4buYryYqTyZsszU6imcLqmV7JV8Wo15Wi4jjGEdyJK7dsw6eKdpkiZZgR0va/KpbxDw3ETQRQQ1xuzEgI4gq3JzYEGxKDYdJr0Ofw4W+oRH0OUbQOziCqo4Bv+CKeP7qsZan7XaHDPb0DCmVEIJo8bUhORybUmxTBk/E/hj1AX6txHQBOuxP3y8Hzt9Mi7HlxjPqwa+u/srv2Fb8DL17rUku2xxO/G1XN5I844Ne+gC9bD8rgk+6+ATgq1/lwHciIiKaNb2OXnz/3PfVeXwi6edXZ2pk9y1xHPjVXelq9WugIRDf2/Y9WE1W/428+y5w4cLkL2KzKfNNeAyzovUxaMKgCd0icaL4yisYLi7A2YazcI8qrSWcLqXdhPhtEefbeZnRqNqfj+7ECBh1Rvzh9j9EiFlrc0FEREQ0G8Ssjk9rPvW72O2ro9+J0ha7vImghFfY0DC+fqkcltFRGSgRsynEkHffwEFregxK9q6essWSqLQ9X92NC7VdcvbFVLxttzal2sZVjvgS1SOX6rpxtaFHBjpmSpw0b0y2YWNKuAyeiH1r6nGgtnNAtk8V/xbRIWbclx+PCKsyc85rVeQqPJr7qBxkvxJ9VPERTjecVtc7+514+Xy9DF7F2QfxP1o6kGExjAuWJIYmIjk0GUa9EQgPB77+dSCEx7xEREQ0uz6u/NgvWehIcSsKm3rlsphrIuabeG1J2IIHVz04PgH6v/4L6FQqaCeUnw88/jjnm6xgfQyaMGhCt0D8Knz4IXD2LMo7y9Fob1QfEn2eRdajYEiNwsgz2+EMDpTrd6beibvT716w3SYiIqLlr663TgZPKrsrJ3xcHNI39zpk8EQMzwwJNODBoUHsu94g22BNZnD7JgTf/6jM7LM77bAP21HbU6vOvPASGX+flrXLqluDLkAGMMQsFPHVpNfLYIUYGC9al86UdwbK5bpuv5kqIvgiAj1iXouoZClpscu5Ll7idWNDA9HU65BtxW4k+l7vy43B6nj/c4FQc6hs1yWqJlZKdYk4pj3fdB4VXRV+/+4iYNIzOIz0Lju+Ud+K1REWNaAmqnMSQhLkv5NJPxZ8sliUthbR0Qv1doiIiGgZGxoZwr+c/Rc4XA653u904RenamSChzhE+eL2VHW+XgAC8O0t30ZscKz/RpqagB//WEmInoyYy/bwwwycrFB9DJowaEK34PRp4KOPMDA8gAtNF9QhVIPDSp9uoTEiGMHf2gfzWPak1WiVVSZmA8v7iIiIaO419DXgRO0JlHWWTf/k0VGs//gabM3+g9KDTcGIscYgOihaGZT+4IPAli3q491D3Xiv/D2/C+23wqw3IzMiE/3D/XKOhgjKeI+vfImK3up2pZWYCL7Ygkx+gZ7eoRGcr+5CUXOfDA5NKEC0a9D7DaBfkxCKu3Ji1OGh3oDAvvR92J28e9m26xLHspeaL+Fi80W/+SWC+Pd7+2qTnFkjAiYvlDdiXXyIDFR55cfk+8/pE5Ulzz8PxN5wYYKIiIhoFn1W+5lsT+sl5vidquyQy2J23+ObEtXjt/TwdLyw/oXxx3OffQYc1bYxoY0blcDJMj0WpMkxaMKgCd2soiLg9dcx6vHgWus1dDu0iwvXm/tkX+1OixkVT2zD+lVaSeD92fdjW+K2BdppIiIiWqk6BztR0FaAgtYCdA5N3obANDSMTe9dQuiQB7HWWMQFx43vAS1OGL/wBSAnR71LnCIUtRfhg/IPMDDiPxtlOiKpRAzo3Jq4Vfad9hpxj+Bq61V8Xvf5uIv5MyHmoYih5aLyROyfGFaeGhmk3CKsMOgD8ElpG4qatAH2kVYT7l8bj8ixzESvrIgsPJb7mGzXJap4ituLZSs0cQwYYgqRwZ670+5WgkpLhPj3/azuM9nawtsT/EbiwoO4AJHUO4AvFtdiY1yI35yY1LBUpNvStW8QlSUiYBIWNh9vgYiIiFYwcSzzb+f+Db1OJXFZVBT/8nSt2oL2wXUJyIoJVp//zJpnsDp6tf9GRJXJL34B1NZO/WIMnKxIfQyaMGhCN6G0VM4xEX9YOwY7UNhWqD4kBp+KNhf9JgPe3LYKj+7PkcNPhQhLBL679bvQ6yYfSEpEREQ0l2Rbrv5mGTwRxzCivZbvTIqcqBxsMqYg43efQOdQ2h1MyGgEnnhCCZz4nDyKVgki4+9y82V11ttERJuE+JB4bIjbgI1xG5UZGFMMuRdJKuICf9dQ102/ZzETxeFyI9xinLBapKS5D0evt6mtu8Sx276cGOQlhI6ruBH77ftvduPjz+Y/K+d6LHaVXZWyOmiif0/x71DW2i9nyLT2ORBrH8IXC6qwPioYYUHa/1OkJVJWmaj/pikpwLPPKq25iIiIiOZBUVsRXit+TV2vaLPj3WvNclnMzPvSzlQYxlprhQeG4w+2/QEMuhvaw/b0AD/4ATDVsa+waRPw0EMMnKwgfQyaMGhCM1RWpgRM3G7Z9/l843kMuYbkQ6KHtmjLZXeP4sX16di4MxM5cdrgy6fXPI286LwF3HkiIiIijTiWaR9ol0kgoppEVJWolR4i2+5XvwJcE1cgqFJTgYMHgUT/QIFosVXdXY3BkUF5Yiq2K9qTihZcYjnEHOJXVTLT/RUnxiLY09LfIrcr2kKJ/RY3sVzSUSIrJ7z9rWdKzGB571ozOgeUmXSCmHEiZp34tuuajnh/X1r/JSSFJmExEi3PPqr8yC/px0vMLClo7JWVN962ZRGDTjx/tRK5IWYkhGvBEFFxsyl+k3bRITdXCaKJYBoRERHRPBGXqX9+5eeo7a1V1397qREN3YNyfXdWFLamRajP35++H3ek3jF+Q3V1wK9/rQyIn67i5P77ecyzQvQxaMKgCc1ARQXw0ksyYCKI1gxV3VXqw809Q6jpGsRv16RiMDMWT21OUjPvkkOT8bWNX1u2vbCJiIhombYjfU3L3JtSfj6wfz9gs2GhiYDJmYYzOF1/Gk63FgTxEsEaEdQQx3EiEONbYfFJWTsKG5UWD0KE1YQHJmjXJZJlmnscaOwZQlpUEGJCAv0CJ19c98VFNUBevM+LTRdxpOrIuH8TMTj1RFk7ytrs8B0hE+YYxrdK6pAdqEdUsEk9jhUVSZsTNsvAiSTm24iLBxyQSkRERAtAJNP814X/Umfhtdud+M25WjGuTya/fGVXGqxmJdHDpDfhe9u+JxN4xhFJQy++OH3gJDwceOABIDt7Tt4PLR4MmjBoQtOpqgJ+8xs123LYPYyzDWfVthMjbg+u1Pfgg/R4XEqKxHNbUxATqp08f3PzN5EQkrBgu09ERER0S06dAj7+eGbP1euBPXuAO+9cFBfQRauw0s5SGRwRF/rDAsOQYcuQARMx4L2+tx6vF7+u9sH2ut7Sh6MlbfL4ThCzT+5eFYPVCaFo7B5CRVs/ytv6MTisHBeKoegPrU9AWqQ2+0WckH9x7ReRGp46rtWYqMLpc/bJm3htcVwpAi02iw22QJv8Kr5/tjTbm/Fu2btotDf63S+rpOt7cKqqE8MuLXgk3s+6sEB8q6QWsSMj45J+/Aa/b9sG3Hcf21QQERHRgnqn9B1cbL6orh8taZUVtEJefCgOrolTH1sfux6PrX5s4g3V1CiBkxFlLsqU8vKAe+8FeD152WLQhEETmkp1tfIH06c9xfWO6zKS7VXV3o83w0NxIj0O+QlhOJAXqz4m+nQ/kvvIvO82ERER0W0Th/4ffgicPTvz79mwAXjkkSVxIV0EVt68/qYMrvjqFu26CprR0a9VZZgMOr/ggi8RaBDDRtOjtMCJUWfEqshVskWZ9yYCJt4syKlYjVY5D8/bfiw2ONa/fdoMOF1OHK85LhN9bnxNMatEBIba7FobM4tRj02pNmyIsGDXsUJYewbGbTM7Ilub2bJ+PfDoo0vi/5mIiIiWt4HhAXz/3PfVFq0iueUXp2rgHDt2+8LWFMSFacdR39r8LTlf77YDJyYTsG+fkkiyCJKGaHYxaMKgCU2moQH4xS/8/lCKXtC+0esBpws/DjDieHocTEY9vrzTv+zvD7f/oRwMSkRERLQkeTzAG28ABQUz/56tW5WWTUvggro4vRHtvA5XHR7XruvTsnY1S/HGIElqpBVuzyhqOwfU+0Qrr4zouTvuEwNMxQB2MUtEr9MrXwP049ZFdcil5kuymsWX0+XG6cpOOeTd96wuPzEMe7KiEOzxYMNHVxHc1T/uddPD02W1jjrD5OmneXGAiIiIFg3RmlXMbvO6XNctj+WE+LBAPL0lWa2gzbRlyjl0UyZQi44zMwmceI+NnnpKqbymZYNBEwZNaCK9vcCPfgT0ayeN4sf/cstl9QRUrL9kDMSrsRHyosAd2dHYnKr18r4n4x7sTtm9ILtPRERENGvEKcCFC8Dx48CgMlhzWrt3AwcOLInAidDQ1yDbdfU4evzuL22x41hpG9wej2zBlR0TIitKROWJCJp8WNSC8la7fK5OF4D78+ORFTOzwIk4lhTbEAGXuZx9J15HtBT7tLQdA2NtxYRIqxn7V8fIIe+GYRfWf3QVIZ3KexHBF1HdIlrMWk1aBQ0yMoDnngMMY0PgiYiIiBYB0Qb1P87/BzqHOsfWR/Hi2Vp0DSgzSh5cJ47RtFkmL6x/QbZunbXAyebNwIMPLpljX5oegyYMmtCNxNCnn/0MaG4e1xPat33D2Vgb/kG0SQgIQHiQCV/akSpPegXRUuH3t/6+zPgjIiIiWhYcDuDkSeD0ab/WpZMS7Qr27sVSIdp1vVX6lmzF6svl8SAAAepxni+PZxQfFbfI4IqgCwjAoTVxSLJZMDTixtCwW/0qAhb9DhfsTuWrGMIuZqeIAEyYxeh3E8eWYgB7kOn2jiV7B0dwvLQNNWMVMd45LTvSI7ExxSbfk14ETA5fQ2h7nxzwLua+xFpjZfWKn6Qk4IUXlFYURERERItMeWc5Xix40a+d/ttXm+Sybey6nUhyEeKD4+UM4ikTV9ragLffVjrRzMTBg8CuXbf5LmixYNCEQRPyJX7EX3sNKC72u1sM6TzXeA4uj3KBoC47Hv8/twH2YWUY/CMbRB9rLavw2fxnkROVM887T0RERDQP+vqAY8eAq1eVY6epiAGZO3ZgqRCnO+KY7+PKj+EeVY7zpiOGqh8ubkVJs387rNlgNRkQHWJGVIgZ0cFmWM16JdARoARxfG8iYGMYW/aMAhdru3G2ulNmWnqJKpm7cmJkYEbQj7ix7vA1RLT3Iy08TQZMJrx4EBsLfOUrgMUy6++RiIiIaLb8+tqvUdFVoR7XvX6xAY09Q3J9f24s1iaNtRsF8GTek8iPyZ96g+JY9+JF4MgRJYFoKuIYSrQwXb16Ft4JLTQGTRg0IV+ffKLcblDUVoT2QaUXYtOqePwkyoaLdUr7BtHT+tENCX69EZ9f9/yctlkgIiIiWnAzHZQp2hWIAfGiUmGJHB812ZvkkPi2gTa/+8WA9+zIbFlNfK31ml/g5GhJK4qaZhY4Mep1CDYbYDHp5Yy8PodLntjPFvHP7Ls58Vp35UQjMzpYPUYVs0uyz5Qjs9+IrIisyQfNR0UpAZNgzukjIiKixa21vxU/uPADjEI5EGrqGcKrF+rlstVkwFd2p8njMMEWaMMfbPuD8dW1ExHt+z/+GLimHf9NyGhUjpsSE2//zdCCYtCEQRPyKipSqkxu0DHYgcK2QmU5JQrHNmfipQsN8sRWZPJ9cXsqIqxKmwJdgA7f2fIdRFuj5333iYiIiOZdRQXw0kuAewZVGTYbsG6dcouMxGInBsOLNg/N/c2yPVdscKzsfW3Sm+RxoKhGOd1wWn2+uO9sdRfquwZhNuph8d5MOgQa9bLVVkigQQYwzAadX4KNaPNld7jQOzSCnqFh2X+7o9+J9v5hOEdmVvEyEfESG5Jt2JkRKduACcGddqRdrUVio10GgKKCoibfgPh/Eif+IVoPcCIiIqLFTCS+XGm5oq6/c7UJle3KzOJdmVHYlh6hPnZ/9v3Ylrht5huvqgJeeQVwOid/jkg0+cY3gDCtqoWWHgZNGDQhoalJmWNyQ6akaMd1vvE8nG4n+m1WXLx3I359pRHtduWPozgB3Z6hnfRvT9yO+7Lvm/fdJyIiIlowJSVK4onHM/PvEQPFReuumBgsVeLU6Gj1UXxe9/mcvoaYfSKOPTtEAMXllu22xE1Ut3iXxc11w/3BgUbsSI9ATKhSQRLS3ieDJVENXbINl2jHNWVmpQhyffWrAM+TiIiIaAnpdfTi++e+r7bYF8kovzpTI6twRRLJV3ely2pfwWq04g+3/yHMBvPNJQ2JIfFTHfuK1qZf+xpgvont0qLCoAmDJiubiAx//vmkA03LOstke4bhQCMuPbgZn3cM4vOKDvlYpNWM57anqENBg03B+O7W78JiZK9nIiIiWmFEq4I33ph+xokvnU4ZlnnnnUorgyVInB4drzmOE7UnsFgFeEaReb4CSSWNCDWHYlXkKnncOiWRGSkCJuHh87WbRERERLNGVASfqj+lrh8paUVhY69c3phiw52rtA4xd6beibvT7765Fzh/HnjvvemThJ57DjAYbnLvaanFDfg/TMuHOKG/cgU4elTpSzhJZFoETDy6ABTdnY8WnQ6nqzqVBwOAA3kxasDEW9LHgAkRERGtSKLllqjYfeedmX+PyM4TySuiRer99wPZ2VhqRIutfen7kBqWinfL3kW3o3vcc8SskCBjkMxkFEEL35s4drQ77fL7uoe60TXUJW8DIwOzsn86lxt5J0oQ19CDjMhViA+On37unjgpFC25GDAhIiKiJWpPyh5car4Eh0sZ3r4jIxLXW/rgco/iWkMPNiSHI8yiJO2IdqtbE7dOn1Tia+tWoKtLScKeqpXX734HPPmkkixEyxYrTWh5qKsDPvgAaG6esof1haYLGBwZxPXdOWjOisPvLjWivntQPi7+uN6Vo7WTyI3KxTNrnuHwdyIiIlrZzpwBPvro5ipOvPLygPvuW7LzM8Spkjh27HH0wKg3ykCJxWCZ2XDRG/QP96Olv0UOMxVfxU0EVrxtJmbCMOzC+mPFWNVvRrotXc5imZY4J/ryl5fEzBkiIiKiqYgWqkeqjqjrJys6cL6mSy6vjgvFofw49bHVUavx9Jqnb+66nkgAEvNNSkunft6mTcBDDynD5mjJYHsuBk1WDjGg9Ngx4OTJKZ8mfsxFWy4x9LMhLwkV27JQ1NSLw8Wt8vGQQCO+tCNVHaZp1pvx3W3fldmCRERERCuemBUnjrkqK28+eGKxAI8+CuTkzNXeLWkiscftccM96pYBlMmWPb29sP32PQR3D8gAzrT0emDjRmDfPiAoaD7eChEREdGcGnGP4F/P/ivsw3a5LmbD/exkDRwjbtlB5ovbUhEdos0cuTfrXuxI2nFzLzI8rMxIniIxW9q9G7jnnlt6H7QwGDRh0GRl6O0FXn8dqK+f8mniR/x6x3W0DrSiKzECBfvXon/EjV+eqYVT/FEF8MiGRKRHWdXveXDVg9iSsGXO3wIRERHRkiJaoBYWKvNORCDlZohZJ/v3Kxfz6eaIVhG/+hXQPb5V2Dji33fzZuVEXswxISIiIlpGRIuut0vf1tZru3GivF0ui4DJM1uSYdArSdG6AB2+tvFrSApNurkX6esDfvxj5etUDhwA9uy5hXdBC4FBEwZNlj9RJvfmm8DQ0LSZe8XtxWgf6kDzqgRZYTISEIB3rzWhukPpK50bF4J78+PV7xH9q7+y4Stsy0VEREQ0lfZ24MIFZWimaGUwE0lJSg9oztaYWYCqogIoL1e+Op1TP18MJPUGS3geRERERMuUuNb3H+f/Ax2DHXLd5fHgxTN16B4clutrE8Owf3Ws+vwwcxi+teVbss3qTR/rioqTQaWt/6REmy5xDEaLHoMmDJos73ZcR45MPZTJ+1SPG4VthagJ9chgiT0qBC63B+8XNKNqLGASaNTjhZ2pCDIZ5Lo+QI/vbP0OooKi5vytEBERES0LLS3KsPjGxpm36xInl7m5HKB5I5HNePEiUFY2fUsIX1Yr8PzzQLyWCERERES0XImOMi8Xvqyud/Q78fL5OjkUXrh3TRxy47XrwtkR2Xhu7XM3nyAtjm9/8QulZddkxDYffJCBkyWAQRMGTZYnEdl96aVp23EJou/zxcFKXFhjQ3tatPwDNuL24O2rTajvUiLEel0AHlqfgLRIrS3XvvR92Ju6d07fBhEREdGyIypNxMX+o0cBh2Nm32MyAcnJQGqqcktMVKolViJRRSJm9InEoJGRm/temw340peAiIi52jsiIiKiRUVczn6x4EVUdFWo9/nOLhbtuZ7dmozIYG2+yf70/bgj9Y6bf7HqauDXv1YSuady6BCwc+fNb5/mDYMmDJosP3a70se5rW3apzoDPPgoYRBX0i3wGPTqYKi3LjehqVdp52XU6/Dw+gQkR2ileTHWGHxr87eg17HPNhEREdEtt5T64AOgqOjmv9doBPLzgb17lUDASgk2Xb4MHD+u/NvdrNhYpcIkJGQu9o6IiIho0RoYHsAPLvxAHQovfFzUguJmZQ5JhNWEZ7elyGuAQgAC8ML6F5BuS7/5F7t+HXjlFRGtmfp5d90F3HmnUn1Ciw6DJgyaLC89PcAvf6kMwJyGPdiMl1aPoMmq9dUeGnbjjcsNaLMrfaBNBh0e3ZCIhHCL+hyz3ozf2/R7iLZGz9GbICIiIlohxOmFCAS8/z7gct3894uWXRs3KsGTpTDIXFSGiONUcevsVKqjzWYl8CNuYn5LcLBy8iyeK1pw9fYqQ93Pnp1RUtCERHXOs88CgYGz/Y6IiIiIloS63jr8/MrP5ZwTQXSZeeV8vWzXJeTGheLQmli1LZfVaMU3N38TYYG3cIwpjm/femv654lqk4MHGThZhBg0YdBk+ejoUAIm4uRyGu0ZcfhFUif6dVpLg36nC29cakDngNJ70GLU47GNiYgJ1U4uLQYLnl/3PBJDE+foTRARERGtQK2twGuvKcdzt0KvV3pD79kz+4PNRTss0UZMBGi8N/F64uRWtF4QNxHw8d7Ec0Xls6gG8X4Vx6ciUCICINMRbcdEO7LpBonO1OrVwOOPK9U5RERERCvYybqTOFx1WF3vHhjGS+frMOxSAin7c2OxNkkLkiSEJOCrG74Ko/4WjqNEK9WPPpr+eZs2AQ88oBxf0qLBoAmDJstnqKhoyTWgDG2flMGAih2r8JLhOtzQKkw6+51480oT7A4liGI1GfD4pkS/foYiwixK82KDY+fsbRARERGtWGJo5rvvAteu3d52RPupqCggMlL5KuZ3iIHyoqJDVFqIryIoMVlGnwh81NYCFRVAefmtB3IWkgi8pKcDW7cC2dnMXiQiIiIam28ihsKXdpaq95W12vF+QbM60/ipzcmIC9MSqNfFrsNjuY/d/GB44dQp4OOPp3+eqDTeskVJAmIr1UWBQRMGTZY+Mez9xRenHSTqsYXj3O50fNh/2f/buwbxzrUmNaocGmiUAZPwIJP6nFBzqAyYRAVFzdGbICIiIiLZruvKFWXWiQiizBVx0isCKUFBys1qVb6KyhAxwPNmB6wvBiJIlJWlBElEOy5WlhARERGNMzQyhP+6+F/ocfSo931S2oYr9cp6sNkg55tYzQb18YOZB7EredetveDFi0pi0Ewuq4uKZlElvG0bkJLCxJcFxKAJgyZLW2Eh8OabU/bAFj+2zVYP3toaitYA/0qU6y19OFzcCrdH+dGOCTHjkQ2Jfn8YbYE2GTCxWVbIkFEiIiKihTY0pARPamqUqo9pkmNWtORk4NAhIClpofeEiIiIaElosjfhJ5d+AveoW66L64K/vdSApp4huR4fZsETmxNh0GmD4UW7/syIzFt7wYIC4I03AI/W9WZaGRnAo4/OfutZmhEGTRg0WZrEj+KJE8Dx41M8ZRTdjm4UGLvx2R0pcJmNfo9dqO3GyQqt3UJapBX3r42Xw9+9RGWJCJiIShMiIiIiWqDjPjEAXQRPKiuBsrKZZeotd2Jw/D33KNmIzEIkIiIiuinnG8/jvfL31PUBpwsvnauTM4+F/IQw7F8do7blCjQEysHwEZaIW3vB0lJlht8Uid/jiFZdX/gCkMjZyos5bqBdSZ5lf//3f49du3YhKCgI4eHhM/qer3zlK/KH1vd27733ztUu0mIi/riI6OwUAROHy4FrrdfwaUAdTuxN9QuYDA27caSk1S9gkp8YhofXJ/gFTBJDEuWwJwZMiIiIiBaQOFGNjVXaFDz7LPCd7wB5eVixRFsxUVny3e8q/w4MmBARERHdtC0JW7A+dr26LrrOPLQ+Qc41EQqbenGtodfvWuNLBS/B6XLe2gvm5ADPPafM1psp0Tr2Zz9TKlVo0ZqzSpO//uu/lsGShoYG/OQnP0FPj9ZTbqqgSWtrK34mfnDGmM1m2ETG1Qyx0mQJEoPeX3kFqKub9Cl9zj4ZMGlNCEPR3Wvg0SuBkBG3B5frenChtkudXyLsyozC1jSb30CnnMgcPJH3BEz6m/hDRkRERETzp6VFSaIRWXtLhWjxIM5XxPwRcQsLU45vxflPd7dyE+veYe7icd+bCB5lZt7cyTYRERERTWjEPYKfX/k5Gu2N6n3Xm/vwYVGLXNYFBMi5x0m2IPXxNdFr8GTek7c2GF5obAR+9zugs/Pmvu+OO4B9+5gwsxLbc/385z/HH/3RH804aCKe96aYZ3GLGDRZQsQJ5KVLys17IjkBu9OOq61X0ZQagZI9uRjV62RfwqKmXpyp6sLgsFYCJyLHB1bHYnW8///91oStuC/7PugC5qy4ioiIiIhmizjxFMeIDQ3KyefNtDyYKRHoEAEP0Yfa96bXK8EN71dxEwPYg4OVm2ip4P0qbqKqXjx3KmIIvdstMsJ4UkxEREQ0x0Ty9Q8v/hD9w/3qfSfK2nGprlsuW4x6ORg+1KJ1sXkk5xFsjN946y8qjvWKi4Fz54D6+pl/X24u8NhjynEizambiRtok7EXiU8++QQxMTGyumTfvn34u7/7O0SKjK1JOJ1OefN987SIiT8g168rJ8Gif/U0BoYHZIVJVV48qjZnyJPMhu5BHClpQ8/gsPo8ce65Jj4M2zMiEBKo/cET7sm4B7uSd916tJiIiIiI5pfo8ezt8ywCGb29QEeHEkARXwcHlUHy4jzA9+tUwZXAQKWiIytLuYmAx3wRQRdxIyIiIqI5J9ryP7PmGVlx4h0MvycrCh39TtR1DWJoxI13rzXjma3Jauuu98vfR3JYspyFfEtEEs3atcqtuVkJnogWXNMl/4jrpD/+MfDUU0BMzK29Ns26RVVp8vLLL8sZKOnp6aisrMRf/MVfIDg4GKdPn4Z+kuyt//k//yf+5m/+Ztz9rDRZZMSP2ZUrwNGjQL8W5Z3K4MggLrVeQeH2dLRkx8v7xB+2t640ykoTr6zoYOzKikKE1b+lgT5Aj0dzH8Xa2LWz/GaIiIiIaFEeb4qKDhFQEVXM4qu4iftFEpYIwojKEiIiIiJaES42XcQ7Ze+o644RtxwM3zs0Itc3pdiwd1W0+nhccBx+b9PvwaCbpToDcSwqOiqVlU3/XFHdfN99wKZNrExeau25/uzP/gz/+3//7ymfU1JSglxRVnQLQZMbVVVVITMzE0eOHMH+/ftnXGmSnJzMoMliIv5AvP22EjmdoaGRIZzvLsSlvdnoiQuX9zV2D+GNK41wuZXZJQlhFtyxKgrxYZZx3x9mDpPzS1LCUmbxjRAREREREREREdFS8V7ZezjfdF5db+tz4JUL9WpC9qMbE5EWaVUf35G0A/dm3Tt7OyCqpkUS+cmTM3v+mjXAQw8pVdK0NNpz/cmf/ImcOzKVjIyMm9nktNuKiopCRUXFpEETMShe3GiRqqoC3ngDsNtn/C0OlwNnhspx7tAaDIUpQ5mae4fwpk/AJCMqGA+si1dL6LzMejP2pOzB9qTtHPhORERERERERES0gokASNtAG2p7a+V6TGggdmdFyRknwsdFLfji9lRYzcpl8jMNZ5Bpy0R2ZPbs7ICodL7nHqX1lkgqF6MLplJUBDQ1AU8+qbWrpXl3U0GT6OhoeZsvDQ0N6OzsRHy80pqJlhDRr+/YMeDUqZv6NtGS64S+ARcOrYbLrPR9bu1z4I3LjRgZC5ikRlpx/7o4v4CJKJvblrhNBkyCjEqghYiIiIiIiIiIiFYuvU6Pp9Y8hf88/58YGBmQ921MDkdd5yBqOgcwOOzGx8WteHRDgjoP+c3rb+LbW76NEPMszsBbv15pGfvyy9OPLujuBn7yE2DPHuCOOzgbbwHMWVPfuro6XLlyRX51u91yWdz6fX4oRBuvN0QVAsTPSj/+9E//FGfOnEFNTQ2OHj2KRx55BFlZWTh06NBc7SbNtr4+4PRp4L/+66YDJl0xIXg514Uzd2erAZN2u1MGTIZdSsAk2RaEh9bFw+DTjzovOg/f2/Y9HMw8yIAJERERERERERERqYJNwXhs9WPqugiOHFwTiyCTUk9Q2zmAy3XaaAkRXPnPC/+J49XHMTCsBFpmRVIS8M1vzqyCRLT1OnEC+M//BCorZ28faGEHwYs2Xr/4xS/G3X/8+HHcddddyosHBOBnP/uZfO7Q0BAeffRRXL58Wc4/SUhIwMGDB/G3f/u3iI2NnZPeZDRLxKDN4mKgsBCoVUrdZsxiATZsQFV6OF5qOYIRjzKISejod+K3FxswNKKUrSWGW2SfQaNeC5hsiNuAR3IeUSPBRERERERERERERDf6qOIjnG44ra6LYIlI1hZ0ugA8syUZsaH+s0REd5uNcRuxM3knIiwRs7MjokWXmHNyMwnna9cCorAgOHh29mEF6purQfBLAYMm86i3V2nBVVCgRD9vhtUKHDwohxsVdJbgjetvwDOqbUMMfX/rqlZhEhcWiMc3JsFk0AIm+TH5eHz149AFzFnBFBERERERERERES0DLo8LP7n0EzT3N6v3fVbejou13XI5PMiEpzYnqfNNfAUgALuSd+Hu9LtlIGVW/P/bu/Pguuq6j+Of3Cw3+76vTbc0XYUugNgWqBaQpwJWhk2nMjx1UHBYFB0dsTrjDDP4j6PjiP7hMqOg8DygD1UYC5YWkEJpaU33NU2bvdnuzZ7ce575/S73JrdJStImpEneLz0c7jknl3Mh59dzf5/z+32PHw/Ugu7sHN3xpji8meZrzhxp1iwphnrOY0FoQmgysXp7pbffDqShpnbJWM2bJ91+u01GTXGl1068Frb7ZGO7/lFRK58/8KtpEt47rypQbHRk6JjyzHJ9aeGX7LyEAAAAAAAAAPBxmjqb9Os9v1avr9e+Nv2PL3xw1tZUNkwN5fK8ZF1dnKb0hKGhRGlqqe5efLdio8JHpFxWqYOXXpIqK8f2c5GRUlFRIEBZsMAUIx+f85nGPIQmhCYTwowm2bcvMLrk4woWDScqKjC6ZOVK+Ry/DUt21+wOO+RAdZveOFKv4G+lKfr+X0vzwqbkmp8xX3cvupvABAAAAAAAAMCY7KvbZ4u9B7V29urPu8+q+6MSAVaENCczUctL0pSfGhf287mJubp/yf3jVyje9Lm+9Zb05psKdYqOVVmZdOONUm7u+JzTNERoQmgyfnp6pKoq6fRp6dgx6fz5S3sfU5dm40YpO1vtve164eALqmqrCu02v4a7K1v075MD71+Wm6T1C3Ntwhs0O2227lty3/gNgwMAAAAAAAAwY5h+yJcOv6SKhorQto6efu2talFFdVuoXECQeaj71sW5YbPgpMam6stLv6zM+MzxO7HaWmnrVqk6UGflkixcKJl64tnZ43de0wShCaHJpTG/Ci0tUl2dVFMTGBZm1mOtVzJYWpq0YoV0zTV2pMk5zzkbmHh6PKFD/H5HO483at/Z1tC2q4rStGZ+ZliB9wWZC7SxfKOiI6Mv/XwAAAAAAAAAzGjd/d36zZ7fqLmrOWx7T79PFefa9OHZVhukBJmpukz5gKTYgX7J+Oh4+3B3YXLh+J2Y6Yf94INAoXjzMPulMP2pixdLa9dKmeMY6kxxhCaEJgNOnQrMjWcuuODi84W/7ugIBCX19Zd+MQ5m/r0vWhS4OPPz7YVqiryboW9/P/Z3+ZyBoW5dvT69eqBWVc0DBY+un5upFSVpYYHJVblXaUPZBoq+AwAAAAAAALhsLV0t+uN//qimrqYh+0ytkyN1Hr1z4rw6ewN9mYnuKBucZCS6Q8dFu6Jt3eWyzLLxPTmvV3r1VenQoUt/D9O3unRpIDxJT9dM5yE0ITQJ+eMfpRMnPpl/lglJVq6UiovtRWl+tera6+xQt4r6Cnl7vWGHN3p79Mr+Gnm6++xrV0SE1i3I1qKClLDjVhev1k2lN4WFKAAAAAAAAABwOfr9/dpdvVu7zu1SW0/bkP2m3slfP6xWa1eg/9Id5dIXlhWoIC28zsmniz6tdaXrxr8G8/Hj0o4d0rlzl/4eLpd0111SeblmMg+hCaFJyHPPBWqRTKSiIunmm6XCwFC0rr4ufVDzgfbX79f5zuFroByt82rb4Tr1+wK/fvExkfr8kjwVpsWHHXfL3Ft0beG1E3v+AAAAAAAAAGYsn9+ng40H9U7VO6rvqA/b19nbr7/tq1G9p9u+NvWXTY2TudnhheALkgrsqJO0uLTxP0Ez8sTMKHTyZGAxMweNltstPfqoFB/e7zrTeAhNCE1C/vxn6ciRiXnv1FTpc58LFBj6aGTJ3tq92nZqm50XcDhmaJsp9r7nTEtoW05yrP5raV7YnIBmGq47F9ypJTlLJubcAQAAAAAAAGAQ0795suWkXjvxWtjD4KY4/N8ranWm6aOwIkJaPTdLVxenhs2O445067b5t6k0tVQxkTF2GffZc0x3vimzsHevtGdPoBTDxZjpuW68UTOdh9CE0CTkxRelgwfH9z0zMgLF3c1UXFFRdlNjR6NeOfaKqtqqhhxup+nydOtIrVfH6r3q6hu4kMvzku2UXFGRA7VKYqNiddfCuzQnfc74njcAAAAAAAAAfIzOvk49V/GcznnOhT0M/vrheh2u9YS2lWYmaP3CXMXFjDwtlwlOUmNTNSdtjp3GK8kdPkLlsrS1STt3Sh9+GKhdfaHYWOmxxwLrGc5DaEJoEvK//ytVVFzee6SkSLNmSaWlgcW8HjTv31tn3tLbVW+HFXg3Wjp7daTWoyN1XrV9NO9fkElY187L1LKi8DQ2OyFb9yy+R+lxFCcCAAAAAAAAMDn6fH36n0P/o6NNR0PbTFf6uyeb9H5lc2hbgjvKTtd1YdmB4ZiRKJ+b8zktz1s+viNQWloCtU/27w+MRAm66SZpzZrx++dMYYQmhCYDXn45cLGMVlyclJsbWHJyAkXd09Ls9FtBfsdvU9bjTcd1oOGAWroHptoKDlczjce+cy1h12hwzr/ZmQm6uiRNeSnhBZMWZi3UHQvusOkrAAAAAAAAAEwm0w+69dhWW5JgsNPnO/TPg3WhGXVM1+k1pRlaVZou1yjCkJKUEn2h7AvKiM8Y3xNuagqEJ+Yh+uAoE1PTBCI0ITQZYAKTmhrJ5Rp5iYwMBCMmKDH/zoa5sE2yalLVY03HdKL5hB2iNpxTje3afrRR3u6BkSXm7YrS4lWWm6S52YlyR4UPV4tQhNbNXqfri64f/zn+AAAAAAAAAOASme7zNyvf1I4zO8K2t/f067UDdTrXMtBPmpnoVmp8tGIiXYqOdCkmKrCUZMQrOyl8iqwoV5RumHWDriu8TpGukaf3uiSNjVJzs1RWNr7vO4URmhCajBsTluyu2W2n3xopKDE6evr15tFGHW/who0qWTkrXUsKUuwwteGY+iUbyzdqXsa8CTl/AAAAAAAAALhc++v221Enff6Bh8X9jqPdp5u163TTkBl3wkRInypM1afnZNoQZbCkmCSVppVqVuosW0De1D/hwfLxR2hCaHLZTK2SPTV79FbVW2rvbR/2GPOr0+Dt0anGDn14tsVOyxVUnB6vmxZkKzV++Km2ol3R+lTup7R21lolxiRO2OcAAAAAAAAAgPHQ2NFo65zUd9SHba9u7dLrh+ptjeeLSYqN1mfLs1WSkTDiMSnuFM3PmK+VBStt/WeMD0ITQpNRzcdX2VqpqrYqNXc12wDEJJj2fxEROtVySp4ez5CfM8FIVXOnnbev8nyHOnr7w/bHRUdqzfwsLchNGpKIuiJcmpM2R0tzlqoss4zaJQAAAAAAAACm3Mw8/zz5Tzs7z2Cmf7Wn368+n9/2ofb5HPX6/Kpr69b7lU3q9w10w5fnJWvt/CzFRo88LZfppzX9qDeW3mhHn+DyEJoQmgzL/Keu9laror5CBxsPjjiCZDhmjj4z1OxATZt8/uF/ZczFvmZeluJiIocMMVtdslqLshYpIWbkFBUAAAAAAAAApoJDjYf0f0f/T9393R97bGtnr14/3BBW/yQ+JlLzc5JUmBavwrS4EQOUyIhIrchfoTUla+hbvQyEJoQmQ4aNVTRU2LCkpbtlTD/b2duvDypbtP9c65CwJCoywhZ4L81MsIsZXnZhGmqGka0rXSd3lHtcPgsAAAAAAAAAXAlau1v1ytFXdLLl5Mcea7rhD9Z4tPN4Y1iZAytCykp0h/paTYhy4Sw+Ztae5XnL7dRdRSlFtpA8Ro/QhNBEbd1tOtBwwIYlde11Ix5nghCTdJpfAnMZBqbokn19uNajfWdb7ZCyoOhIl8rzklSamaiitDhFRYYXLgrKScjRhrINKkwunJDPBwAAAAAAAABXgmpPtS2DYGb26fH1qNfXaxez3dvrHTKjz46jDTre2B7ohB1GfmqcPjM3065HqhddklpiSyFkxmfaQCU6Mtqug4s5JtI18vRfM42H0GRmhybmAv3th78dcb/5T17T2q0jdR4db2hXd5/vY98z0hWhZYWpWjErTfExI6eY5oI0Q8WuK7yOixIAAAAAAADAjNXT36PXT70+pP6JYfpkTQH5c81dOtvSqfPtPUOOmZ2ZoE/PzVRm4qXN4mOm9jL9tWZar0dWPaKZzDOG3IAxPNNQQVKB4qPj1dnXGRaUNLb36GidV8fqvPL2hBdwv1hYsjg/RatK05Xgjhrx4jPJphkatixnmeKih09AAQAAAAAAAGCmMCULbpt/mxZnL7b1T5q6mkL7TA2TOVmJdjG6en0609Sh9043q6Wz1247db5Dp5o6tCAnWVcVpyo7yT1k2q6L8Tk+dfV38XD7GBGaTEPmIliYtVAf1HwQ2vbS3mqbWF7I1CWZlZ5gL1JHjmzZEsf837EhybKiVCVfUKvESIhOsCGJWWanzaZmCQAAAAAAAAAMwzxw/tCKh7TzzE69V/2enbrrQnExkVqQl2yLwx+q9WjXqSY7lZfpqzUzBpnF9OEWpcerJD1exRnxw/bbDseMNsHoEZpMU0uyl4SFJhmJMaHQxBURoeL0eC3ITdLsrETFRA1fl2Q4iTGJWl28Wsvzl1NsCAAAAAAAAABGwdQcWTd7na4vvl6HGw+rsrVSp1tPy9PjCTvOZWb+KUixfbf7z7Vpd2VzqLyCWR+v99rFSIqNVmyUy9ahjjZrV8RHfx+hJQWpykoKPOhu6ptg9Oj1nqaKU4qV7E4OXXQLcpPV6O1RWW6S5mUn2eRyLMx0X58p/oxW5q+0FzgAAAAAAAAAYGxio2J1Vd5VdjElFVq6W2yAcqDhgE61nAodFxXp0vKSNC0uSLYlF840ddqH4nv7/aFjvN19Ci8zP6A0MyEUmjDSZGwITaYpM7edGW3yztl37OvclFjdtaJozO+TGpuq5XnLdU3hNVxcAAAAAAAAADCOfbjpcel2uTrvap1uOW0Lx1d7q0PHuKMitbQw1S5+v6N6b7cNUKqaO9Xc0as+n18+W3MhXJRrYHYh+nXHhtBkGluSMxCajFTAfV7GPBuumHn1IhTxUV0Tv005zcVkks+xFBcCAAAAAAAAAIxdaVqp/vvq/9aR80f0xuk3dL7z/JCpu/JS4uxy7eyM0HYTpvT5/errd2yIYpbU+IGghJmDxobQZBrLSchRVnyWGjsbQ9tMMDIrdZYNVMozyxUXHTep5wgAAAAAAAAACDAPsJdnlasss8xO2bWvbp/OtJ6RzwnUNRmOCVPcrki5R+jtZ6TJ2BCaTPMLbHH2Ym2v3K6CpAIblCzKWqQkd9JknxoAAAAAAAAAYASuCJeW5iy1S5+vT2faztiaJyebT6q+o35M70VoMjaEJtPc8vzlNjjJiB8YrgUAAAAAAAAAmBrM9Fpz0+faRXMkb49XNd4aeXu9NlDp9fXapc8/6O8HbTd1qzF6hCbTXGJMol0AAAAAAAAAAFOfmUmozF022acxbbkm+wQAAAAAAAAAAACuBIQmAAAAAAAAAAAAhCYAAAAAAAAAAAABhCYAAAAAAAAAAACEJgAAAAAAAAAAAAGEJgAAAAAAAAAAAIQmAAAAAAAAAAAAAYQmAAAAAAAAAAAAhCYAAAAAAAAAAAABhCYAAAAAAAAAAACSojTNOI5j1x6PZ7JPBQAAAAAAAAAATLJgXhDMD2ZUaOL1eu26qKhosk8FAAAAAAAAAABcQflBSkrKRY+JcEYTrUwhfr9fNTU1SkpKUkRExGSfzhWXppkw6ezZs0pOTp7s0wEwDdHOAJhItDEAJhrtDICJRjsDYKLRzgzPxCAmMMnPz5fL5ZpZI03MBy4sLJzs07iimYuFCwbARKKdATCRaGMATDTaGQATjXYGwESjnRnq40aYBFEIHgAAAAAAAAAAgNAEAAAAAAAAAAAggNBkBnG73dqyZYtdA8BEoJ0BMJFoYwBMNNoZABONdgbARKOduXzTrhA8AAAAAAAAAADApWCkCQAAAAAAAAAAAKEJAAAAAAAAAABAAKEJAAAAAAAAAAAAoQkAAAAAAAAAAEAAockM8ctf/lKzZs1SbGysrrnmGr3//vuTfUoApqgf/ehHioiICFsWLFgQ2t/d3a2HH35YGRkZSkxM1MaNG1VfXz+p5wzgyrZz505t2LBB+fn5tk3561//GrbfcRz98Ic/VF5enuLi4vTZz35Wx48fDzumublZ999/v5KTk5WamqoHH3xQ7e3tn/AnATBV25mvfvWrQ+5vbrnllrBjaGcAjOTpp5/WypUrlZSUpOzsbN1xxx06evRo2DGj+Z5UVVWl2267TfHx8fZ9nnzySfX393/CnwbAVG1nbrjhhiH3Mw899FDYMbQzo0NoMgP85S9/0RNPPKEtW7Zo7969WrZsmW6++WY1NDRM9qkBmKIWLVqk2tra0PL222+H9j3++ON65ZVX9OKLL2rHjh2qqanRF7/4xUk9XwBXto6ODnt/Yh7yGM4zzzyjn//853r22Wf13nvvKSEhwd7LmM6HINORefDgQW3btk1bt261HaRf+9rXPsFPAWAqtzOGCUkG3988//zzYftpZwCMxHzvMYHIrl27bBvR19en9evX27ZntN+TfD6f7cjs7e3Vv//9b/3hD3/Q73//e/vgCACMpp0xNm/eHHY/Y75LBdHOjIGDaW/VqlXOww8/HHrt8/mc/Px85+mnn57U8wIwNW3ZssVZtmzZsPtaW1ud6Oho58UXXwxtO3z4sGP+uHn33Xc/wbMEMFWZ9uLll18Ovfb7/U5ubq7z05/+NKytcbvdzvPPP29fHzp0yP7c7t27Q8e8+uqrTkREhFNdXf0JfwIAU62dMTZt2uTcfvvtI/4M7QyAsWhoaLBtxo4dO0b9Pekf//iH43K5nLq6utAxv/rVr5zk5GSnp6dnEj4FgKnUzhhr1651Hn300RF/hnZm9BhpMs2Z5HDPnj12Gosgl8tlX7/77ruTem4Api4zLY6Z3mL27Nn2qUszvNMw7Y152mFwm2Om7iouLqbNAXBJTp8+rbq6urB2JSUlxU43GmxXzNpMlbNixYrQMeZ4c89jRqYAwGi8+eabdpqKsrIyff3rX1dTU1NoH+0MgLFoa2uz6/T09FF/TzLrJUuWKCcnJ3SMGVnr8XjsKDcAuFg7E/SnP/1JmZmZWrx4sb73ve+ps7MztI92ZvSixnAspqDz58/boVeDLwbDvD5y5MiknReAqct0VJrhm6ZDwQz1/PGPf6zVq1frwIEDtmMzJibGdipc2OaYfQAwVsG2Y7h7meA+szYdnYNFRUXZLxC0PQBGw0zNZabJKS0t1cmTJ/X9739ft956q+1ciIyMpJ0BMGp+v1+PPfaYrr/+ettpaYzme5JZD3e/E9wHABdrZ4z77rtPJSUl9iHX//znP/rud79r65689NJLdj/tzOgRmgAAxsR0IAQtXbrUhijmD+UXXnjBFmgGAACYau65557Q35snMM09zpw5c+zok3Xr1k3quQGYWkzNAfNA2eC6jwDwSbQzg2utmfuZvLw8ex9jHggx9zUYPabnmubMcCzzZFR9fX3YdvM6Nzd30s4LwPRhnpaaP3++Tpw4YdsVMy1ga2tr2DG0OQAuVbDtuNi9jFk3NDSE7e/v71dzczNtD4BLYqYgNd+lzP2NQTsDYDQeeeQRbd26Vdu3b1dhYWFo+2i+J5n1cPc7wX0AcLF2ZjjmIVdj8P0M7czoEJpMc2b45/Lly/XGG2+EDeEyr6+77rpJPTcA00N7e7t9asE8wWDam+jo6LA2xwwFNTVPaHMAXAozVY65gR/crpg5d00NgWC7YtamE8LMFx70r3/9y97zBL8oAMBYnDt3ztY0Mfc3Bu0MgItxHMd2ZL788su2bTD3L4ON5nuSWVdUVIQFtNu2bVNycrIWLlz4CX4aAFOxnRnOvn377Hrw/QztzOgwPdcM8MQTT2jTpk22aOGqVav0s5/9TB0dHXrggQcm+9QATEHf/va3tWHDBjslV01NjbZs2WJHtN177722OPODDz5o2x0zx7f5g/eb3/ym/YP52muvnexTB3AFh6/Bp5+Cxd/NDb5pR0yBVDNf709+8hPNmzfPfjl46qmn7Dy9d9xxhz2+vLzc1iPYvHmznn32WVto1XyhMNPtmOMA4GLtjFlMjbaNGzfakNY8DPKd73xHc+fOtcVRDdoZAB83Vc5zzz2nv/3tb0pKSgrVBjDfj8wUxqP5nrR+/XrbafmVr3xFzzzzjH2PH/zgB/a93W73JH9CAFd6O2PuX8z+z3/+88rIyLA1TR5//HGtWbPGTjtq0M6MgYMZ4Re/+IVTXFzsxMTEOKtWrXJ27do12acEYIq6++67nby8PNueFBQU2NcnTpwI7e/q6nK+8Y1vOGlpaU58fLxz5513OrW1tZN6zgCubNu3b3fMbemFy6ZNm+x+v9/vPPXUU05OTo7jdruddevWOUePHg17j6amJufee+91EhMTneTkZOeBBx5wvF7vJH0iAFOpnens7HTWr1/vZGVlOdHR0U5JSYmzefNmp66uLuw9aGcAjGS49sUsv/vd78b0PamystK59dZbnbi4OCczM9P51re+5fT19U3CJwIw1dqZqqoqZ82aNU56err9zjR37lznySefdNra2sLeh3ZmdCLMX8YSsgAAAAAAAAAAAExH1DQBAAAAAAAAAAAgNAEAAAAAAAAAAAggNAEAAAAAAAAAACA0AQAAAAAAAAAACCA0AQAAAAAAAAAAIDQBAAAAAAAAAAAIIDQBAAAAAAAAAAAgNAEAAAAAAAAAAAggNAEAAAAAAAAAACA0AQAAAAAAAAAACCA0AQAAAAAAAAAAIDQBAAAAAAAAAACQ9f+nLlozvZkf5wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "For more information on these optimizations you can refer to the [distance profile notebook](distance_profiles.ipynb) for the theory, and to the [analysis of the speedups provided by similarity search module](code_speed.ipynb) for a comparison of their performance." + "from aeon.similarity_search.collection import RandomProjectionIndexANN\n", + "\n", + "X_fit = X[:-2]\n", + "# we use a single series for this example but it will be converted into a collection\n", + "# as this is a collection estimators.\n", + "X_predict = X[-1]\n", + "index = RandomProjectionIndexANN().fit(X_fit)\n", + "indexes, distances = index.predict(X_predict, k=3)\n", + "# as X_predict is converted to a collection, we select the first returns\n", + "# to obtain its results\n", + "indexes = indexes[0]\n", + "distances = distances[0]\n", + "\n", + "for i in range(len(indexes)):\n", + " print(f\"match {i} : {indexes[i]} with distance {distances[i]}\")\n", + " # A bit of hacking of the function defined for series estimator to show best mathces\n", + " plot_best_matches(X_fit[indexes[i]], X_predict, 0, [0], X_predict.shape[1])" ] }, { "cell_type": "markdown", - "id": "4149c40f", + "id": "c4c7a34a-3620-475c-96b8-a9bb605d09c3", "metadata": {}, "source": [ - "# Series search\n", - "For series search, we are not interest in exploring the relationship of the input dataset `X` (given in `fit`) and a single query, but to all queries of size `query_length` that exists in another time series `T`. For example, with using again our simple GunPoint dataset:" + "You can then play with the different parameter of the estimator to affect the speed vs accuracy of the index, for example increasing ```n_hash_funcs``` from the default 128 to 512, and considering larger vectors (``V`` of shape ``(n_channels, L)``) for the hash functions by tuning ```hash_func_coverage``` (a float between 0 and 1, with 0.25 as default) such as ```L = n_timepoints * hash_func_coverage```:" ] }, { "cell_type": "code", "execution_count": 11, - "id": "d510c4cc", + "id": "1b22b743-5710-4691-b740-8edaa3bbac2e", "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "match 0 : 17 with distance 12.0\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAJcCAYAAAC4425vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAADT3klEQVR4nOzdd3hUZcLG4WdKeu+9EELvEKoKiAURxa4oKNiwrvWzrLrq2svquq6uig0UBduuYAE7iiAlVAGBAOkFUgikl5nz/RGIBAhFSc4k+d3XlWvamXOemQyT4Zn3vMdiGIYhAAAAAAAA4Dizmh0AAAAAAAAA7RPFEwAAAAAAAFoExRMAAAAAAABaBMUTAAAAAAAAWgTFEwAAAAAAAFoExRMAAAAAAABaBMUTAAAdWFZWlnx9feVwOMyO0uJmzJihE088sUXWvXDhQsXGxv7h+/v6+mr79u2SpKlTp+qBBx5odlmLxaKtW7ce9bqPdXlX4kqvz//973+Ki4uTr6+vVq9erV69emnhwoWSpIcffliTJ082NyAAAC6K4gkAgA4sPj5e5eXlstlsx22dq1evlr+/f5OyY+XKlQoMDFRGRsZx287xlJGRIYvFovr6elO2X15erqSkpD+9ntGjR+uNN944DolaXmJior799tvDLtMSr88/6v/+7//00ksvqby8XAMGDNCGDRs0evRos2MBAODyKJ4AAOigWqpkGTBggG6++WZde+21MgxDdXV1uuqqq/TII48oMTGxRbaJ9qc1S8Cj2VZmZqZ69erVCmkAAGhfKJ4AAGiDnn76acXExMjPz0/dunXTd999J0lyOp166qmn1LlzZ4WEhOjiiy9WSUmJpN9H9bz55puKj4/XmDFjDhrps3v3bl199dWKiopSTEyMHnjggcbdnLZu3apRo0YpICBAoaGhuuSSS5rN99BDDyk/P1/Tp0/XE088IV9fX918882HXPZQo432H7lzuO1u2rRJp512moKDg9WtWzd9+OGHjbcVFxdrwoQJ8vf315AhQ7Rt27Zm844cOVKSFBgYKF9fX/3yyy9yOp167LHHlJCQoPDwcF1xxRXavXt3878USU888YRCQ0OVmJio995775CPRzp4t7/D7Q737LPPKioqStHR0Xrrrbea3fb999+vRYsW6eabbz7o+f7222/VpUsXBQYG6qabbpJhGI23vfXWW+rRo4eCgoI0duxYZWZmHnL9+35Pb7/9tuLi4hQUFKRXX31VK1asUN++fRUYGNhkm9u2bdOYMWMUEhKi0NBQTZo0SaWlpZKkyy+/XFlZWTr77LPl6+urZ5555oivz5KSEsXGxuqzzz6T1DBKLDk5We+8884h844ePVp//etfNWTIEPn7++ucc8457L+F5n7fNTU1jbv79evXT507d5Z0+BFbS5cu1YgRIxQYGKh+/fo17pIHAECHZAAAgDZl06ZNRmxsrJGbm2sYhmGkp6cbW7duNQzDMF544QVj6NChRnZ2tlFdXW1MmzbNmDhxYuNykozLL7/cKC8vNyorKxuvq6urMwzDMM4991xj2rRpRnl5ubFjxw5j8ODBxquvvmoYhmFMnDjReOyxxwyHw2FUVVUZixYtOmzOn3/+2QgICDD8/PyM3377rdnlDsxgGIYxatQo4/XXXz/sdsvLy43Y2FjjrbfeMurq6oxVq1YZISEhxoYNGwzDMIxLLrnEuOiii4zy8nLj119/NaKjo40TTjjhqDO8+eabRufOnY1t27YZZWVlxnnnnWdMnjz5kPf/4YcfDJvNZtx+++1GdXW1sXDhQsPb29vYtGnTQY/HMAzj7bffbpJFkpGWlmYYhmFMmTLFuP/++w3DMIz58+cb4eHhxq+//mqUl5cbl156aZNlD3Tgdvate/z48cauXbuMzMxMIzQ01Jg/f75hGIbx6aefGp07dzY2btxo1NXVGY8++qgxfPjwwz5H1113nVFVVWV89dVXhoeHh3HOOecYO3bsMHJycoywsDBj4cKFhmEYRlpamvH1118b1dXVxs6dO42TTjrJuPXWWxvXl5CQYHzzzTcHrf9wr8+vvvrKiIiIMHbs2GFcc801xgUXXHDIrPuei+jo6Mbn7vzzzzcmTZrU7LaO9Ps+8HnfP/9DDz3UuO6cnBwjODjY+OKLLwyHw2F8/fXXRnBwsLFz585mswIA0J4x4gkAgDbGZrOppqZGGzduVF1dnRITExtHYbz66qt6/PHHFRsbKw8PDz388MP6+OOPm4wmevjhh+Xj4yMvL68m692xY4e+/PJLvfDCC/Lx8VF4eLhuv/12zZkzR5Lk5uamzMxM5eXlydPT84gTdffu3Vt2u119+vRR9+7d//DjbW67n3/+uRITE3XllVfKbrdrwIABuuCCC/TRRx/J4XDok08+0SOPPCIfHx/17t1bU6ZMOabtvvfee7rjjjuUlJQkX19fPfnkk5ozZ85hd8t69NFH5eHhoVGjRmn8+PFNRmD9ER9++KGuvPJK9e7dWz4+Pnr44Yf/0HruvfdeBQYGKj4+XieffLLWrFkjqeH18te//lU9evSQ3W7XfffdpzVr1jQ76kmS/va3v8nT01Onn366fHx8dOmllyo8PFwxMTE66aSTtHr1aklScnKyTjvtNHl4eCgsLEx33HGHfvzxxyNmbe71KUmnn366LrroIp1yyin68ssv9dprrx12XZdffnnjc/foo4/qww8/bDJR+f7b+iO/70OZNWuWzjzzTJ155pmyWq067bTTlJKSoi+//PKY1gMAQHtB8QQAQBuTnJysF154QQ8//LDCw8M1ceJE5eXlSWqYh+a8885TYGCgAgMD1aNHD9lsNu3YsaPx/nFxcYdcb2Zmpurq6hQVFdV4/+uuu047d+6UJD3zzDMyDENDhgxRr169DrvblyTdeeedGjVqlHJychrLqz+iue1mZmZq2bJljVkDAwP13nvvqaCgQIWFhaqvr2/yWBMSEo5pu3l5eU3uk5CQoPr6+ibP5f6CgoLk4+PTZPl9v5c/Ki8v7089hn0iIyMbz3t7e6u8vFxSw3N46623Nj5/wcHBMgxDubm5za4rIiKi8byXl9dBl/ete8eOHZo4caJiYmLk7++vyZMnq6io6IhZm3t97jNt2jStX79eU6dOVUhIyFGvKyEhQXV1dU0y7H/7sf6+m5OZmamPPvqoyevy559/Vn5+/jGtBwCA9oLiCQCANuiyyy7Tzz//rMzMTFksFt1zzz2SGv4jPX/+fJWWljb+VFdXKyYmpvG+FovlkOuMi4uTh4eHioqKGu+7Z88ebdiwQVJDefH6668rLy9Pr732mm688cZm5yX69ttvNW/ePL322mt65ZVXdOuttzbOr3OgfWVNZWVl43UFBQWN55vbblxcnEaNGtXksZaXl+uVV15RWFiY7Ha7srOzG9eTlZXV7PN5qOckOjq6ycifrKws2e32JkXL/nbt2qWKioomy0dHRzc+xuYe3+FERUUd9WNo7nEcTlxcnF577bUmz2FVVZVGjBhxTOs5lPvuu08Wi0W//vqr9uzZo1mzZjWZW6q5rId7DA6HQ9OmTdMVV1yh//znP82+/vY58Llzc3NTaGjoIbd1rL/v5sTFxenyyy9v8pxWVFTo3nvvPab1AADQXlA8AQDQxmzevFnff/+9ampq5OnpKS8vL1mtDX/Sr7/+et1///2N/4EuLCzU3Llzj2q9UVFROv3003XnnXdqz549cjqd2rZtW+PuUR999JFycnIkNYzusVgsjdvdX0VFhaZNm6Z//vOfCg0N1ZlnnqnTTjtNt99++yG3GxYWppiYGM2aNUsOh0NvvfVWk4nAm9vuWWedpS1btujdd99VXV2d6urqtGLFCv3222+y2Ww6//zz9fDDD6uyslIbN27UzJkzm33sYWFhslqt2r59e+N1l156qf75z38qPT1d5eXluu+++3TJJZfIbrc3u56HHnpItbW1WrRokT7//HNddNFFkqT+/fvrv//9ryorK7V161a9+eabza5jfxdffLFmzJihjRs3qrKyUn//+98Pu3xERESTx3Ak119/vZ588snGcnH37t366KOPjvr+h1NWViZfX18FBAQoNzdXzz777J/KKjVM3m6xWPTWW2/prrvu0hVXXNFk17kDzZo1q/G5e/DBB3XhhRfKZrMdctk/8vs+lMmTJ+uzzz7TV199JYfDoerqai1cuLDxNQwAQEdD8QQAQBtTU1Oje++9V6GhoYqMjNTOnTv15JNPSpJuvfVWTZgwQaeffrr8/Pw0bNgwLVu27KjX/c4776i2tlY9e/ZUUFCQLrzwwsZdhFasWKGhQ4fK19dXEyZM0L/+9S8lJSUdtI777rtP3bt316RJkxqve+GFFzR//nx98803h9zu66+/rmeffVYhISHasGFDkxE3zW3Xz89PX3/9tebMmaPo6GhFRkbqnnvuUU1NjSTppZdeUnl5uSIjIzV16lRdeeWVzT5ub29v3X///TrhhBMUGBiopUuX6qqrrtLll1+ukSNHqlOnTvL09NS///3vZtcRGRmpoKAgRUdHa9KkSXr11Vcb57a6/fbb5e7uroiICE2ZMqXJc3M448aN02233aYxY8YoOTlZY8aMOezyt956qz7++GMFBQXplltuOeL6zzvvPN1zzz2aOHGi/P391bt3b82fP/+osh3JQw89pFWrVikgIEDjx4/X+eef3+T2v/71r3rssccUGBiof/zjH0dc38qVK/X888/rnXfekc1m0z333COLxaKnnnqq2ftcfvnlmjp1qiIjI1VdXa0XX3yx2WWP9ffdnLi4OM2dO1dPPPGEwsLCFBcXp2effVZOp/OY1wUAQHtgMfYf8wwAAAC0A6NHj9bkyZN1zTXXmB0FAIAOjRFPAAAAAAAAaBEUTwAAAAAAAGgR7GoHAAAAAACAFsGIJwAAAAAAALSIYzs+bBsVGhqqxMREs2MAAAAAAAC0GxkZGSoqKjrsMh2ieEpMTFRqaqrZMQAAAAAAANqNlJSUIy7DrnYAAAAAAABoERRPAAAAAAAAaBEUTwAAAAAAAGgRFE8AAAAAAABoERRPAAAAAAAAaBEUTwAAAAAAAGgRFE8AAAAAAABoERRPAAAAAAAAaBF2swMAAAA0p97hVHW9UzV1DtU5DNU7nap3GKp3GnI4m7/ccL7h1NPNKh8Pu7zcbPLxsMvb3SZvd5s87DbVOZyqrXeq1uFUTZ1TtQ6HauqdkiR/TzcFeLvJ190uq9Vi8jMBAADQNlE8AQCAP62m3qHdlXUqrarTropa7a6qU63DqTqHU3X1RuP52nqnauqdKquuU1l1vcpq6htO916urKlvLJqq651yOA2zH5qsFsnP003+XnYFeLnJw25rvM0wfs93YNL9bjroNjVzP+OABY39bj3wNne7VYFebgrydleAt5sCvdwV6O2mQG83hfh4KNzfQ+F+HgrwcpPFQnEGAADMQfEEAACOyDAMFZbVaFNBmbbsKNOmgjKl7ShTYVmNSqvqVFnrOKb1ebpZ5efpJj9Pu/w87PLzdFOkv6d8POzydLPKw2476NTdbpXNapHdatl7apXd1vSyzWqRm+33yxZLQylWWbvvp77htMahmnqH3GxWudt/X7+73Sp3m1WSoT1V9dpTXafdVXXaU9VwuruqTnWOpg3Q4Tqd/QsfS5PrD1iumfsc7n7VdU4Vlddqa2G5SisbirtDcbdbFe7XUEKF+XnI290ud5tVbnZL4+N3t1llt1rlcDpVv3e0WJ2jofjb93h9PWzy9XCT797fma+nXb4eDWVciK+7Qn095OlmO2QGAADQcVE8AQCAg5RU1GpFRolWpJdofd5ubS4o067Kusbbw/w81C3CT10i/BTo5bZ3pM3eETde7vL3ssvTzdZYbLjZLA1lR+Nlppk83uodTu2prteuyloVldVo576fPdV7z1crvahC1XUNI8/2382w1uFsHFG1r7hz21fs2awyDKmipl5VdYcvGH3cbQrx9VCIr7tCfDwUFeCphBBvxQV7N5wGecvHg4+fAAB0JPzlBwAAyiut0oqMEi1Lbyib0naWS2oYLdMzyl9je0WqW6SfukX6qXukv4J93E1OjAPZbVYF+7gr2MddncN8j+m+hmHIaTTsVni43fLqHU5V1DhUXluv8up6ldfUaVdFnUoqalVUUaPi8loVl9eoqLxWObsqtSy9+KCRWKG+7ooP9tbQpBCd2iNCA+ICmUMLAIB2jOIJAIAOqrrOoc/W5mnGkgxtyNsjSfL1sGtQQpDOHRCjoZ2C1Sc2oMmcRmifLBaLbEfR/dhtVgV4WxXg7XbU6y6trFVWSaWySiqVWVyp7JJKbSss1+s/bdcrC7cp1NdDp/YI16k9InRil1B21wMAoJ2heAIAoIPJ312lWUszNXt5tkoqatUl3FcPjO+hYUkh6hHlLxujT3AcNeyC6a6+sYFNrt9dVaeFm3fqm4079MW6fM1ZkS1PN6tGdgnTtJFJSkkMNicwAAA4riieAADoAAzD0MrMXXp7SYYWrC+Q0zB0ao8IXTkiUcM7h3DUM7S6AC83ndM/Ruf0j1FtvVPL0ov1zcYd+vLXfF346i8a3S1Md57WTX1iA8yOCgAA/gSLYRx4cN72JyUlRampqWbHAADAFIZh6MG5G/Tu0kz5e9o1cUi8Lh+WoLhgb7OjAQepqnVo5i8ZevXHbSqtrNMZvSJ1x+ld1TXCz+xoAADgAEfTtzDiCQCAdswwDD3y+Ua9uzRTV53QSf83tqu83fnzD9fl5W7T9aM667Kh8Xrr53S9sShdX20s0Ln9Y3TrKV2UGOpjdkQAAHAMOJYxAADtlGEYemrBJr29OENXnpCov53Vg9IJbYa/p5tuO7WrFt19sqaNTNL89fk6/Z8/afbyLLOjAQCAY0DxBABAO/XCt2l67cftmjwsXg+e1ZN5nNAmBfm466/jeuinu07WsM4h+ut/f9U9H69TdZ3D7GgAAOAoUDwBANAOvfzDVv3ruzRdnBKrRyb0pnRCmxfu76m3pw7WX8Yk64PUbF306i/K2VVpdiwAAHAEFE8AALQzbyzarme/2qxz+0fryfP7ymqldEL7YLNadOfp3fT6FSnKKKrQ2f/+WYvSCs2OBQAADoPiCQCAduSdXzL02Be/aXyfKP3jon6yUTqhHTqtZ4Tm/eVEhft5aspby/XyD1vldLb7AzUDANAmUTwBANBOLN1erAfnbtBpPSP0wsT+stv4M4/2q1Ooj/530wid1Tdaz361WbfMWU35BACAC+ITKQAA7cRrP25TqK+7/n3pALlROqED8Ha3618T++v/Tu+qz9fl65Uft5kdCQAAHIBPpQAAtANbd5brh82FunxYojzdbGbHAVqNxWLRTScn6+x+0Xru681asq3I7EgAAGA/FE8AALQDby1Ol7vdqknD4s2OArQ6i8WiJ8/vo8RQH90ye4127qk2OxIAANiL4gkAgDaupKJW/12Vo/MHxCjU18PsOIApfD3semXSIJXX1Okvs1er3uE0OxIAABDFEwAAbd77yzJVXefUVSd2MjsKYKpukX564rw+WpZeoue+2WJ2HAAAIIonAADatJp6h2b+kqmRXcPUNcLP7DiA6c4fGKtLh8TplYXb9N1vO8yOAwBAh0fxBABAG/b52nwVltXoGkY7AY0eOruXekb5644P1yq7pNLsOAAAdGguVTxdddVVCg8PV+/evQ95+8KFCxUQEKD+/furf//+euSRR1o5IQAArsMwDL3xc7q6RvjqpC6hZscBXIanm02vTB4op2HopvdXqabeYXYkAAA6LJcqnqZOnaoFCxYcdpmTTjpJa9as0Zo1a/Tggw+2UjIAAFzPL9uL9Vv+Hl19YidZLBaz4wAuJSHER89e2E/rcnbryS83mR0HAIAOy6WKp5EjRyo4ONjsGAAAtAlvLkpXiI+7zukfY3YUwCWd0TtSU0ckasaSDC3eWmR2HAAAOiSXKp6Oxi+//KJ+/fpp3Lhx2rBhQ7PLTZ8+XSkpKUpJSVFhYWErJgQAoOVtLyzXd5t2avKwBHm62cyOA7ise87orqRQH9398TqVVdeZHQcAgA6nTRVPAwcOVGZmptauXau//OUvOvfcc5tddtq0aUpNTVVqaqrCwsJaLyQAAK3grcXpcrdZNXlYgtlRAJfm5W7TPy7up/zdVXrs89/MjgMAQIfTpoonf39/+fr6SpLOPPNM1dXVqaiIYdMAgI6ltLJWH6/M0bkDohXm52F2HMDlDYwP0vWjOuuD1Gx9v2mH2XEAAOhQ2lTxVFBQIMMwJEnLly+X0+lUSEiIyakAAGhd7y3LUnWdU1ed2MnsKECbceupXdQ90k/3fPKrdlXUmh0HAIAOw252gP1deumlWrhwoYqKihQbG6u///3vqqtr2Bf/+uuv18cff6xXXnlFdrtdXl5emjNnDkfxAQB0KLX1Tr3zS4ZO6hKq7pH+ZscB2gwPu03/uKifzn15sR6at0EvXjrA7EgAAHQILlU8zZ49+7C333zzzbr55ptbKQ0AAK7n640F2rGnRk+e38fsKECb0zsmQLec0kXPf7NFZ/SO1Jl9osyOBABAu9emdrUDAKCjm7U0U7FBXhrVNdzsKECbdMPozuobG6AHPl2vwrIas+MAANDuUTwBANBGbN1ZpqXbS3TZ0HjZrOxqDvwRbjarnruon8pr6nX//35tnD8UAAC0DIonAADaiFlLs+Rms+jilDizowBtWpcIP911ejd9vXGH5q3NMzsOAADtGsUTAABtQFWtQ5+sytG43lEK9fUwOw7Q5l11Yif1iw3Qk19uUmVtvdlxAABotyieAABoAz5bm6ey6npNHpZgdhSgXbBZLfrbWT1VsKda03/abnYcAADaLYonAADagFnLMtU1wleDE4PMjgK0GymJwRrfJ0qv/bhdBburzY4DAEC7RPEEAICLW5dTqnU5uzVpaIIsFiYVB46ne8d1l8Np6NmvNpsdBQCAdoniCQAAFzdraaa83Gw6b2CM2VGAdicu2FtXnpioT1bl6Nec3WbHAQCg3aF4AgDAhe2urNO8tXk6d0C0/D3dzI4DtEs3n5ysEB93PfrFRhmGYXYcAADaFYonAABc2CerclRd59SkoUwqDrQUP0833XF6Vy1PL9FXGwrMjgMAQLtC8QQAgIsyDEPvLctU/7hA9Y4JMDsO0K5dkhKnrhG+euLLTaqpd5gdBwCAdoPiCQAAF/XL9mJtK6zQ5GGMdgJamt1m1QPjeyqrpFLvLMk0Ow4AAO0GxRMAAC7qvaVZCvBy01l9o8yOAnQII7uGaXS3ML34fZqKy2vMjgMAQLtA8QQAgAvauadaX20o0EWDYuXpZjM7DtBh3H9mD1XWOvSv79LMjgIAQLtA8QQAgAv6YEW26p2GJrGbHdCqukT46bIh8XpvWZa27iwzOw4AAG0exRMAAC7G4TQ0e3mWTkwOVadQH7PjAB3O7ad1lbebTU/N32x2FAAA2jyKJwAAXMz3m3Yqb3e1Jg+LNzsK0CEF+7jr+tGd9e1vO7Q8vcTsOAAAtGkUTwAAuJhZSzMV4e+hU3tEmB0F6LCuOqGTIvw99OT832QYhtlxAABosyieAABwIVnFlfoprVATB8fLbuPPNGAWL3eb7jitq1ZnlWrB+gKz4wAA0GbxiRYAABfy3vJMWS0WXTqE3ewAs10wMFZdwn31zFebVedwmh0HAIA2ieIJAAAXUVPv0EepOTq1R7giAzzNjgN0eHabVfeO6670ogrNWZFtdhwAANokiicAAFzEgvUFKqmo1eRhCWZHAbDXmO7hGtIpWP/6dovKa+rNjgMAQJtD8QQAgIuYtTRTCSHeOqFzqNlRAOxlsVh035k9VFReq9d/2m52HAAA2hyKJwAAXMCmgj1akbFLk4bGy2q1mB0HwH76xwVqfJ8ovb5ou3aWVZsdBwCANoXiCQAAF/De0iy52626aFCc2VEAHMJdY7uptt6pf32bZnYUAADaFIonAABMVlFTr/+tztVZfaIU5ONudhwAh5AY6qNJQ+M1Z0W2thWWmx0HAIA2g+IJAACTfbomV+U19ZrEpOKAS/vLKV3kabfq2QWbzY4CAECbQfEEAICJDMPQrKVZ6hHlr4HxgWbHAXAYob4eum5UZy3YUKC12aVmxwEAoE2geAIAwESrskr1W/4eTR4WL4uFScUBV3fViZ0U4OWml37YanYUAADaBIonAABM9N7STPl62HVu/xizowA4Cr4edl11Qid9s3GHfsvfY3YcAABcHsUTAAAm2VVRq89/zdd5A2Lk42E3Ow6AozR1RKJ8Pex66XtGPQEAcCQUTwAAmOSjldmqrXdqMpOKA21KgLebpoxI0Jfr87V1Z5nZcQAAcGkUTwAAmMDpNPTesiwNTgxSt0g/s+MAOEZXn5gkT7tNL/+wzewoAAC4NIonAABM8PPWImUWVzLaCWijgn3cNXlYvOauyVVGUYXZcQAAcFkUTwAAmGDW0kyF+LjrjN6RZkcB8AddOzJJbjarXlnIqCcAAJrjUsXTVVddpfDwcPXu3fuQtxuGoVtuuUXJycnq27evVq1a1coJAQD48/J3V+nb33boopQ4edhtZscB8AeF+3nq0iHx+mRVjnJ2VZodBwAAl+RSxdPUqVO1YMGCZm+fP3++0tLSlJaWpunTp+uGG25oxXQAABwfs5dny5A0aWi82VEA/EnTRibJYpFe/ZFRTwAAHIpLFU8jR45UcHBws7fPnTtXV1xxhSwWi4YNG6bS0lLl5+e3YkIAAP6cOodTc5ZnaVTXMMUFe5sdB8CfFB3opQsHxenDFTnasafa7DgAALgclyqejiQ3N1dxcXGNl2NjY5Wbm3vIZadPn66UlBSlpKSosLCwtSICAHBY327coZ1lNZo8lEnFgfbixtGd5TAMvfbjdrOjAADgctpU8XQspk2bptTUVKWmpiosLMzsOAAASJJmLctUdICnTu4ebnYUAMdJXLC3zu0fo/eXZ6qovMbsOAAAuJQ2VTzFxMQoOzu78XJOTo5iYmJMTAQAwNHbXliuxVuLdemQeNmsFrPjADiObjq5s2rrnXp9EaOeAADYX5sqniZMmKB33nlHhmFo6dKlCggIUFRUlNmxAAA4Ku8vy5LdatElQ+KOvDCANiUpzFdn9Y3WrF8ytbuqzuw4AAC4DLvZAfZ36aWXauHChSoqKlJsbKz+/ve/q66u4Q/39ddfrzPPPFNffvmlkpOT5e3trbffftvkxAAAHJ3qOoc+Wpmjsb0iFe7naXYcAC3g+lGdNW9tnt5blqkbRyebHQcAAJfgUsXT7NmzD3u7xWLRyy+/3EppAAA4fj5fl6/dVXWaNCze7CgAWkjPaH+d1CVUby/O0NUndpKH3WZ2JAAATNemdrUDAKCtmrU0U53DfDQ8KcTsKABa0LSRSSosq9Hc1XlmRwEAwCVQPAEA0MLW5+7WmuxSTRqaIIuFScWB9uzE5FD1jPLX9EXb5XQaZscBAMB0FE8AALSw95ZlytPNqgsGxZodBUALs1gsmjYySVt3luuHzTvNjgMAgOkongAAaEF7quv06eo8TegXrQAvN7PjAGgF4/tGKSbQS6/9uN3sKAAAmI7iCQCAFvS/VbmqqnNo8rAEs6MAaCVuNquuOrGTlmeUaHXWLrPjAABgKoonAABaiGEYmrU0U31jA9Q3NtDsOABa0cTBcfL3tGv6T4x6AgB0bBRPAAC0kOXpJUrbWa7JQxntBHQ0Ph52TR6WoAUbCpRRVGF2HAAATEPxBABAC5m1LEv+nnad3S/a7CgATDB1RKLcrFa98TOjngAAHRfFEwAALaCwrEYL1ufrgkGx8nK3mR0HgAnC/T113oAYfZSao+LyGrPjAABgCoonAABawIep2apzGJrEbnZAh3btyE6qqXfqnV8yzY4CAIApKJ4AADjOHE5D7y/L0vCkECWH+5odB4CJksP9dGqPcL3zS4aqah1mxwEAoNVRPAEAcJz9uGWnckurNHkYo50ASNeN6qxdlXX6aGW22VEAAGh1FE8AABxns5ZmKczPQ6f3ijA7CgAXkJIQpAHxgXpjUbocTsPsOAAAtCqKJwAAjqPskkr9sHmnLkmJk5uNP7MAJIvFoutGJimrpFIL1heYHQcAgFbFJ2IAAI6j2cuzZJF06dB4s6MAcCGn9YxUYoi3pv+0TYbBqCcAQMdB8QQAwHFSW+/Uh6nZGtM9XDGBXmbHAeBCbFaLrjkpSWtzdmtZeonZcQAAaDUUTwAAHCdfbShQUXmtJjGpOIBDuHBQrEJ83DX9p+1mRwEAoNVQPAEAcJzMWpqpuGAvjeoSZnYUAC7I082mK4Yn6vtNO7VlR5nZcQAAaBUUTwAAHAdpO8q0LL1Elw1JkNVqMTsOABd1+fAEebpZGfUEAOgwKJ4AADgO3luWJXebVRenxJodBYALC/Zx1yUpcZq7JlcFu6vNjgMAQIujeAIA4E+qrK3XJytzNK5PpEJ8PcyOA8DFXXNSkhxOQ28vSTc7CgAALY7iCQCAP+nztfkqq6nXZCYVB3AU4oK9Na5PlN5fmqWy6jqz4wAA0KIongAA+JPmrMhS5zAfpSQEmR0FQBtx3cgkldXUa87ybLOjAADQoiieAAD4E7buLNOqrFJdMjhOFguTigM4On1jAzUsKVhv/pyu2nqn2XEAAGgxFE8AAPwJH6zIlt1q0fkDmVQcwLG5bmRnFeyp1mdr88yOAgBAi6F4AgDgD6qtd+qTVbk6tUeEQplUHMAxGt0tTF0jfPX6ou0yDMPsOAAAtAiKJwAA/qDvftuhkopaXTI4zuwoANogi8WiaSM7a1NBmX7cUmh2HAAAWgTFEwAAf9CcFdmK9PfUyK5hZkcB0EZN6BetSH9PvfrjNrOjAADQIiieAAD4A/JKq/RTWqEuSomVzcqk4gD+GHe7Vdec1ElLt5doZWaJ2XEAADjuKJ4AAPgDPl6ZI8OQLk5hNzsAf86lQ+IV5O2m//zAqCcAQPtD8QQAwDFyOg19mJqtE5JDFBfsbXYcAG2cj4ddU0d00nebduq3/D1mxwEA4LiieAIA4Bgt2VasnF1VjHYCcNxMGZEgH3ebXlnIqCcAQPtC8QQAwDGasyJLAV5uGtsr0uwoANqJQG93TR6WoM/X5SmzuMLsOAAAHDcUTwAAHINdFbX6esMOnTcgRp5uNrPjAGhHrj6xk+w2q179cbvZUQAAOG5crnhasGCBunXrpuTkZD311FMH3T5jxgyFhYWpf//+6t+/v9544w0TUgIAOqpP1+Sq1uFkNzsAx124v6cuGhSrT1bmaMeearPjAABwXLhU8eRwOHTTTTdp/vz52rhxo2bPnq2NGzcetNwll1yiNWvWaM2aNbrmmmtMSAoA6IgMw9AHK7LVNzZAPaP9zY4DoB26bmRn1TudemMRo54AAO2DSxVPy5cvV3JyspKSkuTu7q6JEydq7ty5ZscCAECStC5ntzYVlDHaCUCLiQ/x1oR+0XpvWZZ2VdSaHQcAgD/NpYqn3NxcxcX9/mE+NjZWubm5By33ySefqG/fvrrwwguVnZ19yHVNnz5dKSkpSklJUWFhYYtlBgB0HB+kZsvTzaoJ/aPNjgKgHbthdLIqax2a+UuG2VEAAPjTXKp4Ohpnn322MjIytG7dOp122mmaMmXKIZebNm2aUlNTlZqaqrCwsFZOCQBob6pqHZq3Jk9n9omSv6eb2XEAtGPdIv10ao8Ivb04Q+U19WbHAQDgT3Gp4ikmJqbJCKacnBzFxMQ0WSYkJEQeHh6SpGuuuUYrV65s1YwAgI7pu007VF5TrwsHxZodBUAHcOPJnbW7qk6zl2WZHQUAgD/FpYqnwYMHKy0tTenp6aqtrdWcOXM0YcKEJsvk5+c3np83b5569OjR2jEBAB3QZ2vzFO7noaGdQsyOAqADGBgfpBGdQ/T6ou2qqXeYHQcAgD/MpYonu92ul156SWPHjlWPHj108cUXq1evXnrwwQc1b948SdKLL76oXr16qV+/fnrxxRc1Y8YMc0MDANq9PdV1+mFzoc7sEyWb1WJ2HAAdxI2jk7WzrEafrDx4zlMAANoKi2EYhtkhWlpKSopSU1PNjgEAaKM+WZmjOz9aq09uGKFBCUFmxwHQQRiGoXNfXqzSqjp9d8co2W0u9Z0xAABH1bfw1wsAgCP4fF2eYgK9NDA+0OwoADoQi8WiG0YnK7O4Ul/8mn/kOwAA4IIongAAOIxdFbValFaks/pFyWJhNzsArev0nhFKDvfVKwu3qQPsqAAAaIcongAAOIwFGwpU7zR0dt9os6MA6ICsVotuHN1ZmwrK9P2mnWbHAQDgmFE8AQBwGJ+tzVOnUB/1ivY3OwqADursftGKCfTSyz9sZdQTAKDNoXgCAKAZO8uqtXR7sc7uy252AMzjZrPq+lFJWpVVqmXpJWbHAQDgmFA8AQDQjPm/FshpNIw2AAAzXZQSp1Bfd738w1azowAAcEwongAAaMZna/PULcJPXSL8zI4CoIPzdLPp6hOTtCitSL/m7DY7DgAAR43iCQCAQ8grrVJq5i6d3S/K7CgAIEmaPCxefp52/Wcho54AAG0HxRMAAIfwxbp8SdJZHM0OgIvw83TTlOGJWrChQFt3lpsdBwCAo0LxBADAIXy2Lk99YwOUGOpjdhQAaHTlCYnysFv16o/bzI4CAMBRoXgCAOAAGUUVWpezW2f1ZTc7AK4lxNdDEwfH69PVucrZVWl2HAAAjojiCQCAA3zxa8NuduPZzQ6AC5o2MkmS9PpP201OAgDAkVE8AQBwgM/W5iklIUgxgV5mRwGAg0QHeun8gTGasyJbO8uqzY4DAMBhUTwBALCfLTvKtKmgTGf3Y7QTANd14+hkOZyG/vVtmtlRAAA4LIonAAD28/naPFkt0rg+kWZHAYBmJYb6aNLQeM1Zkc0R7gAALo3iCQCAvRxOQ/PW5mlYUojC/TzNjgMAh/WXU7rIy82mZxZsMjsKAADNongCAGCvj1dmK6O4UpOHJZgdBQCOKNTXQ9ePStLXG3doRUaJ2XEAADgkiicAACRV1NTrH19v0aCEII3rzW52ANqGq09MUoS/h5748jcZhmF2HAAADkLxBACApOk/bVdhWY3uH99DFovF7DgAcFS83G2687RuWp1VqvnrC8yOAwDAQSieAAAd3o491Zr+03aN7xulgfFBZscBgGNywaBYdY3w1TMLNqm23ml2HAAAmqB4AgB0eM99vVn1TqfuGdvd7CgAcMxsVov+Oq6HMoorNXt5ltlxAABoguIJANCh/Za/Rx+tzNGU4YmKD/E2Ow4A/CGju4VpeFKI/vVdmsqq68yOAwBAI4onAECHZRiGnvjyN/l7uukvY7qYHQcA/jCLxaK/ntldJRW1eu3H7WbHAQCgEcUTAKDD+nFLoRalFemWU7oowNvN7DgA8Kf0jQ3UhH7ReuPn7SrYXW12HAAAJFE8AQA6qHqHU098+ZsSQrx1+bAEs+MAwHFx19hucjql57/ZbHYUAAAkUTwBADqoj1bmaMuOct17Rne52/lzCKB9iAv21hXDE/TRyhytzS41Ow4AABRPAICOp6KmXs99vUWDEoJ0Ru9Is+MAwHF166ldFObroQc+XS+H0zA7DgCgg6N4AgB0OK/9tF1F5TW6f3wPWSwWs+MAwHHl5+mmv53VU7/m7taspZlmxwEAdHAUTwCADqWytl4zFqdrbK8IDYwPMjsOALSIs/pG6aQuofrHV5u1cw8TjQMAzEPxBADoUP63Old7qut1zUlJZkcBgBZjsVj0yDm9VeNw6tEvfjM7DgCgA6N4AgB0GIZhaOaSDPWM8ldKAqOdALRvnUJ9dOPozvpsbZ4WpRWaHQcA0EFRPAEAOoxfthdry45yTT0hkbmdAHQI14/qrMQQbz04d4Oq6xxmxwEAdEAUTwCADmPG4gwFebtpQr9os6MAQKvwdLPp0XN7K72oQq/+uM3sOACADojiCQDQIWSXVOrb33bo0iHx8nSzmR0HAFrNSV3CdHa/aP1n4TZlFFWYHQcA0MFQPAEAOoRZSzNlsVg0eViC2VEAoNX9bXwPedis+tvc9TIMw+w4AIAOxOWKpwULFqhbt25KTk7WU089ddDtNTU1uuSSS5ScnKyhQ4cqIyOj9UMCANqUqlqH5qzI1theEYoO9DI7DgC0unB/T915elctSivSF7/mmx0HANCBuFTx5HA4dNNNN2n+/PnauHGjZs+erY0bNzZZ5s0331RQUJC2bt2q22+/Xffcc49JaQEAbcWna3K1u6pOU4Ynmh0FAExz+fBE9Y7x1yOfbVRZdZ3ZcQAAHYRLFU/Lly9XcnKykpKS5O7urokTJ2ru3LlNlpk7d66mTJkiSbrwwgv13XffMVwYANAswzA0c0mGekT5a0inYLPjAIBpbFaLHj+3jwrLa/Tc11vMjgMA6CBcqnjKzc1VXFxc4+XY2Fjl5uY2u4zdbldAQICKi4sPWtf06dOVkpKilJQUFRYWtmxwAIDLWrq9RJsKyjR1RIIsFovZcQDAVP3iAjV5aILe+SVD63N3mx0HANABuFTxdDxNmzZNqampSk1NVVhYmNlxAAAmmbkkQ4Hebjqnf4zZUQDAJfzf2G4K9vHQ/Z+ul8PJngMAgJblUsVTTEyMsrOzGy/n5OQoJiam2WXq6+u1e/duhYSEtGpOAEDbkLOrUl9vLNDEwfHydLOZHQcAXEKAl5seGN9Da7NLNXt5ltlxAADtnEsVT4MHD1ZaWprS09NVW1urOXPmaMKECU2WmTBhgmbOnClJ+vjjjzVmzBh2nQAAHNKspQ3/obp8eILJSQDAtZzTP1ojOofomQWbVFhWY3YcAEA75lLFk91u10svvaSxY8eqR48euvjii9WrVy89+OCDmjdvniTp6quvVnFxsZKTk/X888/rqaeeMjk1AMAVVdc5NGdFlk7vGamYQC+z4wCAS7FYLHr03N6qrnPqiS9/MzsOAKAdsxgd4JBwKSkpSk1NNTsGAKAVfbAiS/d88qvmTBumYUnskg0Ah/Lc15v17++36v1rh2pE51Cz4wAA2pij6VtcasQTAADHg2EYentxhrpH+mlop2Cz4wCAy7rp5GTFB3vrb5+uV2290+w4AIB2iOIJANDuLE8v0aaCMk0dkcg8gABwGJ5uNj1yTi9tK6zQ64u2mx0HANAOUTwBANqdGUsyFODlpnP6xxx5YQDo4EZ3C9eZfSL14ndpyiquNDsOAKCdoXgCALQruaVV+nrjDk0cEicvd5vZcQCgTXjwrF6yWy266+O1cjjb/RSwAIBWRPEEAGhXZi3NlGEYunxYgtlRAKDNiAzw1CPn9Nay9BL967s0s+MAANoRiicAQLtRXefQnOVZOq1nhGKDvM2OAwBtygWDYnXBwFj9+/s0LdlaZHYcAEA7QfEEAGg35q3J067KOk0ZkWh2FABokx49t5c6h/nq1g/WqLCsxuw4AIB2gOIJANAuGIahGUsy1C3CT8OTQsyOAwBtkre7XS9fNlB7qup0+wdr5GS+JwDAn0TxBABoF1Zk7NLG/D2aMiJRFovF7DgA0GZ1i/TT3yf00s9bi/SfhVvNjgMAaOMongAA7cLMJRkK8HLTuQOizY4CAG3eJYPjdE7/aD3/zRYtTy8xOw4AoA2jeAIAtHl5pVVasKFAlwyOk7e73ew4ANDmWSwWPX5eHyWE+OiW2atVUlFrdiQAQBtF8QQAaPPeW5YpwzB0+bAEs6MAQLvh62HXS5cNUEllre74kPmeAAB/DMUTAKBNq65zaPbybJ3SI0Jxwd5mxwGAdqVXdID+Nr6HFm4u1Cs/bjM7DgCgDaJ4AgC0aZ+tzVNJRa2uHJFodhQAaJcmD0vQOf2j9Y+vN+v7TTvMjgMAaGMongAAbZZhGJqxJENdI3w1vHOI2XEAoF2yWCx66vy+6hnlr1tnr9G2wnKzIwEA2hCKJwBAm/XD5p3akLdHU0YkymKxmB0HANotL3ebpl+RIne7Vde+k6o91XVmRwIAtBEUTwCANmnh5p26YdYqdY3w1XkDYsyOAwDtXkygl/4zaaCyiit1+xwmGwcAHB2KJwBAm/P1hgJNe2elOof5as604fJ2t5sdCQA6hKFJIXro7J76btNOPf/NFrPjAADaAD6pAwDalC/W5evWOavVKyZA71w5RAHebmZHAoAOZfKwBK3P3aOXftiqntH+OrNPlNmRAAAujBFPAIA247+rcvSX2as0ID5Qs66mdAIAM1gsFj1ybi8NjA/UnR+u1W/5e8yOBABwYRRPAIA2YfbyLN350VoNSwrRzKuGyM+T0gkAzOJht+nVyYPk52nXtHdTlbOr0uxIAAAXRfEEAHB5M5dk6K///VWjuobpramDmdMJAFxAuL+nXrt8kEor6jThpcVasq3I7EgAABdE8QQAcGlv/Zyuh+Zt0Ok9I/Ta5YPk6WYzOxIAYK8B8UH69OYTFOzjrsvfXK43Fm2XYXC0OwDA7yieAAAua+aSDD3y+Uad0StSL08aKA87pRMAuJrOYb769KYTdFqPCD32xW+6dc4aVdU6zI4FAHARFE8AAJf07tJMPTRvg07rGaEXLx0gNxt/sgDAVfl62PXK5IG6a2w3fbYuT+f9Z7Gyipn3CQBA8QQAcEHvL8vS3z5dr1N7hOvlywbK3c6fKwBwdRaLRTednKy3pw5WXmmVzn7pZ/24pdDsWAAAk/FJHgDgUj5YkaX7/verTu4WppcnUToBQFszulu4PvvLiYoK8NTUt5fr8S82qqaeXe8AoKPi0zwAwGV8lJqte/ceve6VyYOY0wkA2qiEEB/998YRmjQ0Xq8vStc5Ly3Wb/l7zI4FADABxRMAwCX8d1WO7v5knU5MDuXodQDQDni72/XYuX309tTBKiqv1TkvLdZrP26Tw8lR7wCgI6F4AgCYyjAMvbFou+78aK2GJ4Xo9StSKJ0AoB05uXu4vr59pE7uHqYn52/SZa8vVc4uJh4HgI6C4gkAYBqH09BD8zbosS9+07jekXpr6mBKJwBoh4J93PXq5EF69sK+2pC3R+NeWKR3f8lQZW292dEAAC2M4gkAYIrK2npd926q3vklU9NGJumlSwdSOgFAO2axWHRRSpzm33qSekT5629zN2jo49/pb5+u18Y85n8CgPbKbnYAAEDHs7OsWtfMTNX63N169Jxeunx4otmRAACtJC7YWx9cN0ypmbv0/rIsfZCarXeXZqp/XKAuGxqvs/tGy8udLyIAoL2wGIbR7mf3S0lJUWpqqtkxAACS0naUaerbK1RSUauXLhugU3pEmB0JAGCi0spafbIqV+8vy9S2wgr5edp1Ws8InZgcqhOSQxXh72l2RABAM46mb2HEEwCg1fy0pVA3vb9Knm42fXjdcPWJDTA7EgDAZIHe7rr6xE666oRELU8v0ZwV2fph0079d1WuJKlLuK9O2FtCDU0Klr+nm8mJAQDHwmWKp5KSEl1yySXKyMhQYmKiPvzwQwUFBR20nM1mU58+fSRJ8fHxmjdvXmtHBQAco/W5u/WPrzdr4eZCdQn31dtXDlZskLfZsQAALsRisWhoUoiGJoXI6TS0MX+PFm8t0uJtxZqzIkszlmTIZrVoaKdgjesTpbG9IhTux2goAHB1LrOr3d13363g4GDde++9euqpp7Rr1y49/fTTBy3n6+ur8vLyY1o3u9oBgDm2F5br+W+26PN1+QrwctMNoztryvBE5u4AAByTmnqHVmWWalFaoRZsKND2wgpZLNLgxGCN6x2pM3pHKirAy+yYANDhHE3f4jLFU7du3bRw4UJFRUUpPz9fo0eP1ubNmw9ajuIJAFxf/u4q/evbNH20MkcedquuOqGTrh2ZpAAvdo8AAPw5hmEobWe5vvw1X/N/LdDmHWWSpH5xgeoT46/kMF8lh/spOdxXEf4eslgsJicGgParTRVPgYGBKi0tldTwxyQoKKjx8v7sdrv69+8vu92ue++9V+eee+4h1zd9+nRNnz5dklRYWKjMzMwWSg4AkKTdVXX6aUuhvt+0U1/8mi/DMDRpaIJuOjlZYX4eZscDALRT2wrLtWB9gb7ftFNbdpSprLq+8TY/D7uSwn3VOdRHUYGeigzwUpS/p6ICPRUV4KUgbzeKKQD4E1yueDr11FNVUFBw0PWPP/64pkyZ0qRoCgoK0q5duw5aNjc3VzExMdq+fbvGjBmj7777Tp07dz7sdhnxBADH375vnL/ftFPfb9qplZm75HAaCvJ20xm9I3Xj6GTFBTOPEwCg9RiGocLyGm3dWa5tO8u1dWe5thaWK6OoUjv2VKve2fS/Pu52q6ICPBXp79lwGuC199RT0QFeCvF1l7+Xm3zcbRRUAHAILndUu2+//bbZ2yIiIpSfn9+4q114ePghl4uJiZEkJSUlafTo0Vq9evURiycAwPGRXVKp5eklWp5eosXbipSzq0qS1CPKX9ePStKY7hHqHxcom5UP5wCA1mexWBTu56lwP0+N6Bza5DaH01BxeY3yd1crf3eV8ndXq2B3deNpauYu7diTrzrHwd/LWy2Sv5eb/D3d5O9ll7+nmyL9PRUb7K3YIC/FBXkrLthLUQFe/A0EgAO4zFHtJkyYoJkzZ+ree+/VzJkzdc455xy0zK5du+Tt7S0PDw8VFRVp8eLFuvvuu01ICwDtn2EY2l5U0Vg0LU8vUW5pQ9EU4OWmIZ2CdePoZJ3cPYwJXQEALs9mtSjc31Ph/p7qFxd4yGWcTkPFFbUq2F2tvN1V2lVRqz3VddpTVb/3tE57qutVWlmrpduLlb8mV/vvP2K3WhQZ4Cl/Tzd5u9vk7WGXt5tN3h42ebvb5OVmk81qlc2qhlOLRXabRVaLRVaL5DQkp2HIMIzG806j4W+yccDlfefd7VZ5u9nk5W6Tt7u9YTt7tyVJDsOQ09mwrMPZsG6LRQr0dlewT8NPkLc7hRmAFuMyxdO9996riy++WG+++aYSEhL04YcfSpJSU1P16quv6o033tBvv/2m6667TlarVU6nU/fee6969uxpcnIAaF6dw6ni8loVltVoZ1m1Cstq9p6vUXFFjXw97Arz89j77azH7+f9PeTp1rpHfttdWac1OaVanbVLa7JLtSa7VKWVdZKkUF8PDe0UrGkjkzQ0KVhdw/1k5QMqAKCdsVotCtv797hPbMARl6+tdyqvtEo5u6qUvatS2SWVyiutUnmNQ5W19dpdVaeC3VWqqHGoqq7hOqezoQxyOI9+xhOLRY3llGXvqdVikUVSrcN5yFFax8JiafhSKdjHXWG+HooP9lZCiLfiQ3wazgd7K5D5sAD8QS4zuXhLYo4nAC2ltt6p1IwS/VZQ1qRY2vdTUlmrQ73LBno3fLirqKlXUXntIT98+nnYFebvsbeQaiimDiynwnw9jvmDYGllrTKKK5VZXKGMokqlF5VrXe5ubS+skNTw4bNruJ8GxAeqf1ygBncKVlKoDx82AQA4jvaNanI4G0oop2HIZrXsVzL9XjQdSZ3Dqcpah6pqG8qtylqHquscsuy9v81iaVy3zWqR09nweaC4olYlB/zs2FOtrJJK7SyrabINP0+7ukf6aUinYA3pFKJBCUHy9XCZcQwATOJyczwBQHtQWFajhZsbJtRelFak8pqGo+e426yN35LGBXtrYEJQY1EU5uuhcH9Phfl5KNTXXR7230czOZyGSip+HxW184DyamdZtdbllGrnnhpV1TkOyrNvu6F+HvL3tMuy9xvQfZ9TG85bVFxeo4ziSu2uqmty/6gAT/WK9tcFA2M1IC5QfWID5Ofp1lJPHwAA0L5CSMdlFzc3m1UBXlYFeB2/v99VtQ5llVQqq6Thy6qskkqty9mtV3/crpd/2Cab1aLe0f4amhSiIYnBGt45RD4UUQAOgRFPAHAUduyp1gcrsvXdpp1am10qSYrw99CY7hEa0z1cKQlBrTIEvbymXjv3VDfurrdzv3KqsKxGZdX1MiTtG2Zl7D1ryFCQt7sSQ3yUEOKthBAfJYZ4Ky7Yu9V36QMAAG1XRU29VmXt0rLtDfM/rskuVa3DKW93m87sE6ULB8VqSGIwu+QDHcTR9C0UTwBwGE6nofeWZerpBZtVUVuvfrGBOqV7uMb0CFfPKH92PwMAAB1adZ1DqzJ3ad7aPH2+Ll/lNfWKC/bSBQNjdcHAWMUFe5sdEUALonjai+IJwB+xZUeZ/vrfX7Uyc5dOTA7VY+f2VmKoj9mxAAAAXFJVrUMLNuTr45U5WrKtWIYhDUsK1tUnJunUHuF8YQe0Q8zxBAB/QHWdQ//5Yate+XGbfD3seu6ifjp/YAwflgAAAA7Dy92m8wbE6rwBscotrdL/VuVozopsXftOqnpG+euWU7ro9J4R7IYHdDCMeAKA/SxPL9G9/12n7YUVOm9AjB4Y30Mhvh5mxwIAAGiT6hxOzV2Tp5d/2Kr0ogp1j/TTX8Z00bjekRRQQDvAiCcAOEq7q+r01PxNmr08S7FBXpp51RCN6hpmdiwAAIA2zc1m1YWDYnVu/2h9vi5f//4+TTe9v0pdwn1185hkndU3+rgc2Q+A66J4AtChGYah+esL9NC8DSour9G0kUm67dQu8nbn7REAAOB4sdusOndAjM7uF60vf20ooG6ds0avLNymu8Z205juzAEFtFf8zwpAh5VXWqUH527Qt7/tUO8Yf709dbB6xwSYHQsAAKDdslktOrtftMb3idLnv+br+a836+qZqRqcGKS7z+iuwYnBZkcEcJxRPAHocBxOQ7OWZuqZBZvkNKT7z+yhK09IlN1mNTsaAABAh2C1WjShX7TG9Y7Uh6nZ+te3abro1V90Svdw3XVGN3WP9Dc7IoDjhOIJQIdRVevQVxsK9PbidK3N2a2RXcP0+Lm9FRfsbXY0AACADsnNZtWkoQk6f0Cs3l6SrlcWbtO4fy3ShH7RuvakJEajA+0AxROAds0wDK3M3KWPV+bo83X5Kq+pV1ywl164pL/O6R/NXAIAAAAuwMvdphtHJ+uyIfF65cdteveXTM1dk6fBiUG68oROOr1nBKPTgTbKYhiGYXaIlnY0h/cD0H5U1TqUW1qprzbs0Mcrc5ReVCFvd5vO7BOlCwfFakhiMIfvBQAAcGF7quv04YpszfwlQ9klVYoJ9NLlwxM0cXCcAr3dzY7XbtTWO5Wzq1KZJZXKKq5UZnGlcnZVqqbeKYfT+P3HMFTvNOR07n/qlNNQw6lTcu6tFvZ9yt7/C16LpeGn4XbLfucld7tVXm42ee798XKzycu94byfp11+HvaGU0+3xlNfj4YxNIYMGYZkqOEL58bTxuv2v75hee1/mww59y7jNAzVOxoeX73TUL3DuffUkMP5+/n9b3M4G+7n3G/dzr3b33fd/hn23Rbq66HbT+va4r/f1nA0fQvFE4A/xbn3D9G+P0pN/iAd8Afq92Ua/jg1/LHa+2a+3zoO/CN3qHXvu25PdZ0KdlerYE+1CnZXK393tXZX1TXmG5YUrAsHxWlc70j5eDDIEwAAoC1xOA1999sOzViSoSXbiuXpZtV5A2J15QmJ6hrhZ3Y8l1dV61De7irllTb85JZWN57PKqlUXmmVnPs1Al5uNsUFe8nLzSab1XLAj1V2q0VWi0X2g26zyGppKHOk34udhvN7mx79XhDtv0ydw6mqOoeqah2qrnM0nN97uay6XjX1ztZ6uo6Z1dIwYb5FFsnScNmihufCYrHIon2lW9PrEkK89d8bTzA7/nFB8bRXeyieSipq9d1vO1TrcKqu3qk6h6Fah1O19c79rnPuvc5ocl2d09D+v2Zjv+a13mk0rKPe+fv69p4/3EvDZrXIbrXKbmt407HbrHtPLQc12A1nLPs1301b8P2vb7jP7wscy5iUo34hH+WCxlEuuP+ba8Plpm+kTTa5321N72v8fr6Z9R24fHPL/r6t5nPtu+9B6zngITuNAwogx8HfdriCUF8PRQV4KsLfU1EBnooM8FSkv6cGJwYrPoT5mwAAANqDTQV7NGNxhv63Olc19U6dkByiK0d00pju4R16NHtZdZ0yiyuVXlShjKIKZRRXKqO4QpnFFSoqr22yrMUiRfh5KirQU3FB3koM8VZ8iI8SQryVEOKtMF8Pl5uKorbeqbLqOpXX1Kusul57qutUUeOQpP2Knf2Lnv0Kn73/N7XsXXj/yxZLw3nr3hsb/o9r2ft/XGtjueZms+49bXrZbrW43HNlBoqnvdpD8bQ+d7fO+vfPh7zNzWaRu80qN7tVbjar3G1Wudute69raKZ//4fXYN8/RpvVIne7VR723+/jvve8tZl/RIahhvLB4dxvKGJDGebYr+RqWnDsO39wAbbv/KGuM3Rs5dPR/ru3HOVaj3p9+5dmB9xv35vRwQXbwbf/fj9LM8sevI0Dt73/ydFs+4BNNlm/RZLd9vu3GlZr01Ob5eDrmn4DYpXNqqanlt+/FTnUNyW2vevdf5km67Y1vd3b3S53O/v7AwAAdBS7Kmo1e0WW3v0lU/m7q5UQ4q0rhifq4pRY+Xm6mR2vxZTX1CttR5m27CjTlh3le0/LtGNPTZPlIv09lRjqrU6hPooN8lZMoJeiA70av6B1Y64sHEcUT3u1h+Kppt6hnXtq5L6vXLJbGwsnWlYAAAAAHU2dw6mvN+zQ24vTlZq5Sz7uNo3pEaFB8YFKSQxW90i/NjEheWVtvYrKalVYXqOifT9ltSoqr1FhWcPl/N3Vyi2taryPp5tVXcL91DXCT8nhvuoU6q3EUB8lBPvIy91m4qNBR3M0fQsTnrQRHnYbh3wHAAAAgL3cbFaN7xul8X2j9GvObs38JUM/pxXps7V5khrmK+ofF6hBCUEamBCo2CBvBXm7K8jbrcULqYqa+ibFUWF5rYrK9iuWyn8vliprHYdcR6C3m0J9PRTq666UxCBdFhGvLuG+6hbpp9ggb9k68O6FaFsongAAAAAAbVqf2AD946J+kqS80iqtzNyllZm7tCprl175cZscB8xN6u9pV4ivh4K83RTg1bB7Xv1hDmiz7wA5+899Wn/AXKj1BxwY50AWixTk7a5QX3eF+nqoX2ygwvw8GsulUD8Phfk2XA72cWc6CbQbFE8AAAAAgHYjeu+cRmf3i5bUsCvbhrw92rGnWrsqalVSUaeSihqVVDacFpbXyGrZb35Ri0UeblZ5H3gUN9t+c5Tum3t070GXrPtdtlks8vO0NxRKfg2lUtjeMqkt7PoHHG8UTwAAAACAdsvb3a7BicFmxwA6LOpWAAAAAAAAtAiKJwAAAAAAALQIiicAAAAAAAC0CIonAAAAAAAAtAiKJwAAAAAAALQIiicAAAAAAAC0CIonAAAAAAAAtAiKJwAAAAAAALQIiicAAAAAAAC0CIthGIbZIVpaaGioEhMTzY5xXBQWFiosLMzsGHBRvD5wOLw+cDi8PnA4vD5wOLw+cCS8RnA4vD7atoyMDBUVFR12mQ5RPLUnKSkpSk1NNTsGXBSvDxwOrw8cDq8PHA6vDxwOrw8cCa8RHA6vj/aPXe0AAAAAAADQIiieAAAAAAAA0CIontqYadOmmR0BLozXBw6H1wcOh9cHDofXBw6H1weOhNcIDofXR/vHHE8AAAAAAABoEYx4AgAAAAAAQIugeAIAAAAAAECLoHhqIxYsWKBu3bopOTlZTz31lNlxYLLs7GydfPLJ6tmzp3r16qV//etfkqSSkhKddtpp6tKli0477TTt2rXL5KQwk8Ph0IABA3TWWWdJktLT0zV06FAlJyfrkksuUW1trckJYabS0lJdeOGF6t69u3r06KFffvmF9xA0+uc//6levXqpd+/euvTSS1VdXc17SAd21VVXKTw8XL179268rrn3C8MwdMsttyg5OVl9+/bVqlWrzIqNVnKo18ddd92l7t27q2/fvjrvvPNUWlraeNuTTz6p5ORkdevWTV999ZUJidHaDvUa2ee5556TxWJRUVGRJN5D2iuKpzbA4XDopptu0vz587Vx40bNnj1bGzduNDsWTGS32/Xcc89p48aNWrp0qV5++WVt3LhRTz31lE455RSlpaXplFNOoaTs4P71r3+pR48ejZfvuece3X777dq6dauCgoL05ptvmpgOZrv11lt1xhlnaNOmTVq7dq169OjBewgkSbm5uXrxxReVmpqq9evXy+FwaM6cObyHdGBTp07VggULmlzX3PvF/PnzlZaWprS0NE2fPl033HCDGZHRig71+jjttNO0fv16rVu3Tl27dtWTTz4pSdq4caPmzJmjDRs2aMGCBbrxxhvlcDjMiI1WdKjXiNTwZfrXX3+t+Pj4xut4D2mfKJ7agOXLlys5OVlJSUlyd3fXxIkTNXfuXLNjwURRUVEaOHCgJMnPz089evRQbm6u5s6dqylTpkiSpkyZok8//dTElDBTTk6OvvjiC11zzTWSGr49+v7773XhhRdK4vXR0e3evVs//fSTrr76akmSu7u7AgMDeQ9Bo/r6elVVVam+vl6VlZWKioriPaQDGzlypIKDg5tc19z7xdy5c3XFFVfIYrFo2LBhKi0tVX5+fmtHRis61Ovj9NNPl91ulyQNGzZMOTk5khpeHxMnTpSHh4c6deqk5ORkLV++vNUzo3Ud6jUiSbfffrueeeYZWSyWxut4D2mfKJ7agNzcXMXFxTVejo2NVW5uromJ4EoyMjK0evVqDR06VDt27FBUVJQkKTIyUjt27DA5Hcxy22236ZlnnpHV2vA2X1xcrMDAwMYPgbyPdGzp6ekKCwvTlVdeqQEDBuiaa65RRUUF7yGQJMXExOj//u//FB8fr6ioKAUEBGjQoEG8h6CJ5t4v+NyKA7311lsaN26cJF4f+N3cuXMVExOjfv36Nbme10j7RPEEtGHl5eW64IIL9MILL8jf37/JbRaLpcm3B+g4Pv/8c4WHh2vQoEFmR4GLqq+v16pVq3TDDTdo9erV8vHxOWi3Ot5DOq5du3Zp7ty5Sk9PV15enioqKg65iwSwD+8XaM7jjz8uu92uSZMmmR0FLqSyslJPPPGEHnnkEbOjoJVQPLUBMTExys7Obryck5OjmJgYExPBFdTV1emCCy7QpEmTdP7550uSIiIiGoei5ufnKzw83MyIMMnixYs1b948JSYmauLEifr+++916623qrS0VPX19ZJ4H+noYmNjFRsbq6FDh0qSLrzwQq1atYr3EEiSvv32W3Xq1ElhYWFyc3PT+eefr8WLF/Megiaae7/gcyv2mTFjhj7//HO99957jcUkrw9I0rZt25Senq5+/fopMTFROTk5GjhwoAoKCniNtFMUT23A4MGDlZaWpvT0dNXW1mrOnDmaMGGC2bFgIsMwdPXVV6tHjx664447Gq+fMGGCZs6cKUmaOXOmzjnnHLMiwkRPPvmkcnJylJGRoTlz5mjMmDF67733dPLJJ+vjjz+WxOujo4uMjFRcXJw2b94sSfruu+/Us2dP3kMgSYqPj9fSpUtVWVkpwzAaXx+8h2B/zb1fTJgwQe+8844Mw9DSpUsVEBDQuEseOo4FCxbomWee0bx58+Tt7d14/YQJEzRnzhzV1NQoPT1daWlpGjJkiIlJYYY+ffpo586dysjIUEZGhmJjY7Vq1SpFRkbyHtJeGWgTvvjiC6NLly5GUlKS8dhjj5kdByZbtGiRIcno06eP0a9fP6Nfv37GF198YRQVFRljxowxkpOTjVNOOcUoLi42OypM9sMPPxjjx483DMMwtm3bZgwePNjo3LmzceGFFxrV1dUmp4OZVq9ebQwaNMjo06ePcc455xglJSW8h6DRgw8+aHTr1s3o1auXMXnyZKO6upr3kA5s4sSJRmRkpGG3242YmBjjjTfeaPb9wul0GjfeeKORlJRk9O7d21ixYoXJ6dHSDvX66Ny5sxEbG9v4OfW6665rXP6xxx4zkpKSjK5duxpffvmlicnRWg71GtlfQkKCUVhYaBgG7yHtlcUwDMPs8gsAAAAAAADtD7vaAQAAAAAAoEVQPAEAAAAAAKBFUDwBAAAAAACgRVA8AQAAAAAAoEVQPAEAAAAAAKBFUDwBAAAAAACgRVA8AQAAAAAAoEVQPAEAAAAAAKBFUDwBAAAAAACgRVA8AQAAAAAAoEVQPAEAAAAAAKBFUDwBAAAAAACgRVA8AQAAAAAAoEVQPAEAAAAAAKBFUDwBAAAAAACgRVA8AQAAAAAAoEVQPAEAAAAAAKBFUDwBAAAAAACgRVA8AQAAtLJFixapW7duZseQJL3yyiuKiIiQr6+viouL5evrq+3bt0uSpk6dqgceeOC4b3PHjh0aOXKk/Pz8dOeddx739QMAANdB8QQAAFqVr69v44/VapWXl1fj5ffee++4bOPDDz/UiBEj5O3trdGjRx+XdR4ti8WirVu3HnaZk046SZs3b26lRM2rq6vTHXfcoa+//lrl5eUKCQlReXm5kpKSWnS706dPV2hoqPbs2aPnnnvuoNsvuOACXXvttU2uO++883TzzTe3aC4AAHD82c0OAAAAOpby8vLG84mJiXrjjTd06qmnHtdtBAcH67bbbtOmTZv0/fffH9d1/1n19fWy21vnI9iRtrVjxw5VV1erV69erZJnn8zMTPXs2VMWi+WQt7/88svq1auXLrvsMp188sn64IMPtGrVKr377rutmhMAAPx5jHgCAAAuoaamRrfddpuio6MVHR2t2267TTU1NZKkhQsXKjY2Vk888YRCQ0OVmJh42NFRp556qi6++GJFR0cfcbv71v3MM88oPDxcUVFR+vTTT/Xll1+qa9euCg4O1hNPPNG4/PLlyzV8+HAFBgYqKipKN998s2prayVJI0eOlCT169dPvr6++uCDDxrX//TTTysyMlJXXnll43WStG3bNgUHB2vVqlWSpLy8PIWFhWnhwoWHzJuYmKgnn3xSPXv2VFBQkK688kpVV1c3eSz7b6u553XLli2Nu/sFBgZqzJgxkg4/Yuvzzz9X//79FRgYqBEjRmjdunXNPq9LlizR4MGDFRAQoMGDB2vJkiWSGnbfmzlzpp555hn5+vrq22+/Pei+kZGReu6553TttdcqKytLt9xyi1577TX5+vo2uz0AAOCaKJ4AAIBLePzxx7V06VKtWbNGa9eu1fLly/XYY4813l5QUKCioiLl5uZq5syZmjZt2nHbXa2goEDV1dXKzc3VI488omuvvVazZs3SypUrtWjRIj366KNKT0+XJNlsNv3zn/9UUVGRfvnlF3333Xf6z3/+I0n66aefJElr165VeXm5Lrnkksb1l5SUKDMzU9OnT2+y7c6dO+vpp5/W5MmTVVlZqSuvvFJTpkw57C6C7733nr766itt27ZNW7ZsOeh52n9bzT2vXbt21YYNGyRJpaWlRxwZtnr1al111VV67bXXVFxcrOuuu04TJkxoLAf3V1JSovHjx+uWW25RcXGx7rjjDo0fP17FxcWaMWOGJk2apLvvvlvl5eXNjnabOnWqOnfurIEDB+qMM87QGWeccdh8AADANVE8AQAAl/Dee+/pwQcfVHh4uMLCwvTQQw8dtGvVo48+Kg8PD40aNUrjx4/Xhx9+eFy27ebmpvvvv19ubm6aOHGiioqKdOutt8rPz0+9evVSz549tXbtWknSoEGDNGzYMNntdiUmJuq6667Tjz/+eNj1W61W/f3vf5eHh4e8vLwOuv3aa69VcnKyhg4dqvz8fD3++OOHXd/NN9+suLg4BQcH6/7779fs2bOb3dbRPK9HY/r06bruuus0dOhQ2Ww2TZkyRR4eHlq6dOlBy37xxRfq0qWLLr/8ctntdl166aXq3r27Pvvss2Pa5kknnaTi4mJNnjz5mPMCAADXQPEEAABcQl5enhISEhovJyQkKC8vr/FyUFCQfHx8mr39zwgJCZHNZpOkxmIoIiKi8XYvL6/Guam2bNmis846S5GRkfL399d9992noqKiw64/LCxMnp6eh13m2muv1fr16/WXv/xFHh4eh102Li6u8fyBz8OB2zrS83q0MjMz9dxzzykwMLDxJzs7+5DrOnCb+7abm5t71NtLS0vTP/7xD91444268847VVdXd8yZAQCA+SieAACAS4iOjlZmZmbj5aysrCZzNO3atUsVFRXN3t5abrjhBnXv3l1paWnas2ePnnjiCRmGcdj7NDeJ9j7l5eW67bbbdPXVV+vhhx9WSUnJYZfPzs5uPH/g83Dgto70vB6tuLg43X///SotLW38qays1KWXXnrQsgduc992Y2JijmpbhmHommuu0W233aZ///vf8vHx0dNPP33MmQEAgPkongAAgEu49NJL9dhjj6mwsFBFRUV65JFHDtrF6qGHHlJtba0WLVqkzz//XBdddNEh1+VwOFRdXa36+no5nU5VV1cftxEzZWVl8vf3l6+vrzZt2qRXXnmlye0RERHavn37Ma3z1ltvVUpKit544w2NHz9e119//WGXf/nll5WTk6OSkhI9/vjjjXNJHcrRPK9H49prr9Wrr76qZcuWyTAMVVRU6IsvvlBZWdlBy5555pnasmWL3n//fdXX1+uDDz7Qxo0bddZZZx3Vtl555RUVFRXpvvvuk9Vq1ZtvvqlnnnlGmzZtOubcAADAXBRPAADAJTzwwANKSUlR37591adPHw0cOFAPPPBA4+2RkZEKCgpSdHS0Jk2apFdffVXdu3c/5LreffddeXl56YYbbtCiRYvk5eWla6+99rjk/Mc//qH3339ffn5+uvbaaw8qfR5++GFNmTJFgYGBRzUH1dy5c7VgwYLGAuv555/XqlWrDnvUvssuu0ynn366kpKS1Llz5ybP04GO9LwerZSUFL3++uu6+eabFRQUpOTkZM2YMeOQy4aEhOjzzz/Xc889p5CQED3zzDP6/PPPFRoaesTtZGVl6b777tObb74pd3d3SVLPnj1155136tprrz3i6DIAAOBaLAZ/vQEAgItbuHChJk+erJycHLOjmC4xMVFvvPFGs0eDAwAAcCWMeAIAAAAAAECLoHgCAAAAAABAi2BXOwAAAAAAALQIRjwBAAAAAACgRdjNDtAaQkNDlZiYaHYMAAAAAACAdiMjI0NFRUWHXaZDFE+JiYlKTU01OwYAAAAAAEC7kZKScsRlWnRXuwULFqhbt25KTk7WU089ddDtzz//vHr27Km+ffvqlFNOUWZmpiRpzZo1Gj58uHr16qW+ffvqgw8+aLzP1KlT1alTJ/Xv31/9+/fXmjVrWvIhAAAAAAAA4A9qsRFPDodDN910k7755hvFxsZq8ODBmjBhgnr27Nm4zIABA5Samipvb2+98soruvvuu/XBBx/I29tb77zzjrp06aK8vDwNGjRIY8eOVWBgoCTp2Wef1YUXXthS0QEAAAAAAHActNiIp+XLlys5OVlJSUlyd3fXxIkTNXfu3CbLnHzyyfL29pYkDRs2TDk5OZKkrl27qkuXLpKk6OhohYeHq7CwsKWiAgAAAAAAoAW0WPGUm5uruLi4xsuxsbHKzc1tdvk333xT48aNO+j65cuXq7a2Vp07d2687v7771ffvn11++23q6am5pDrmz59ulJSUpSSkkJpBQAAAAAAYIIWnePpaM2aNUupqam66667mlyfn5+vyy+/XG+//bas1oaoTz75pDZt2qQVK1aopKRETz/99CHXOW3aNKWmpio1NVVhYWEt/hgAAAAAAADQVIsVTzExMcrOzm68nJOTo5iYmIOW+/bbb/X4449r3rx58vDwaLx+z549Gj9+vB5//HENGzas8fqoqChZLBZ5eHjoyiuv1PLly1vqIQAAAAAAAOBPaLHiafDgwUpLS1N6erpqa2s1Z84cTZgwockyq1ev1nXXXad58+YpPDy88fra2lqdd955uuKKKw6aRDw/P1+SZBiGPv30U/Xu3bulHgIAAAAAAAD+hBY7qp3dbtdLL72ksWPHyuFw6KqrrlKvXr304IMPKiUlRRMmTNBdd92l8vJyXXTRRZKk+Ph4zZs3Tx9++KF++uknFRcXa8aMGZKkGTNmqH///po0aZIKCwtlGIb69++vV199taUeAgAAAAAAAP4Ei2EYhtkhWlpKSopSU1PNjgEAAAAALqO6zqFPVuVowfoCDUsK0SWD4xTq63HkOwLAXkfTt7TYiCcAAAAAgOvZXVmnd5dmaMaSDBWV1yo2yEuL0or0r2/TdGafSF0+PEED44NksVjMjgqgHaB4AgAAAIAW5nQaqql3qrrOoao6h7zcbArycW/VDHmlVXrr53TNXp6lilqHRncL0/WjOmtop2BtK6zQrKWZ+mRljj5dk6eeUf66fHiCzukfLW93/tsI4I9jVzsAAAAAOE62F5br9g/WaE91vapqHaqud6iq1qGaemeT5WxWi8b2itCVJ3RSSkLLji7aXFCm137apnlr8mRImtAvWtNGJqlHlP9By1bU1OvTNbl695dMbSook5+nXRcOitUVwxPVKdSnxTICaJvY1Q4AAAAAWtG8tXlal7tbZ/WNlpebVV5uNnm62eThZtt73ipPN5vSiyo0Z3mWvvy1QL2i/XXlCZ10dr8oedhtfzpDbb1T6/N2a0V6iX7eWqRFaUXycrPp8uEJuvrETooN8m72vj4edk0amqDLhsQrNXOX3vklU7OWZur9ZVn66raRSqR8AnCMGPEEAAAAAMfJRa8uUU29U/NuPvGIy1bW1ut/q3M1Y3GG0naWK9TXXZcNidfkYQkK9/c86m1W1NRrdVaplmeUaEV6iVZn71J1XcMIq6RQH507IEaXD0v4w7v2ZRVXasxzC3XF8EQ9eHbPP7QOAO0TI54AAAAAoJWU7y2Arh2ZdFTLe7v/Prpo8dZizViSrn//sFX/WbhN4/tGaUz3cNXWOxvnhqqpd6qmzqHqvZer6xzaXFCm9Xl75HAaslqkntH+unRIvIYkBislMVhhfn/+KHXxId4a3zdKH6Vm647Tu8rXg/9GAjh6vGMAAAAAwHGwPL1Y9U5DJyaHHtP9LBaLTuwSqhO7hCqjqEIzf8nQR6k5mrsm7xDLSh72ht31POxWJQT76PpRSRqcGKxBCUHy83Q7Xg+niakjEjV3TZ7+uypHVwxPbJFtAGifKJ4AAAAA4DhYlFYkD7tVgxKC/vA6EkN99NDZvfR/p3dTXmnV3vmhrPKwN8wP5W6ztuhE5M0ZEB+kfnGBmrEkQ5OHJshqbf0MANomq9kBAAAAAKA9WLy1SEM6BcvT7c9PEO7jYVeXCD/FBXsr3M9TAV5u8rDbTCmd9rlyRKK2F1Zo0dYi0zIAaHsongAAAADgT9q5p1pbdpTrhGPcza4tObNPlML8PDRjcbrZUQC0IRRPAAAAAPAnLd7WMAroWOd3akvc7VZNGhqvHzYXKr2owuw4ANoIiicAAAAA+JN+TitWoLebekb5mx2lRV02NF5uNotmLskwOwqANoLiCQAAAAD+BMMwtHhrkU7oHNruJ90O9/PUWX2j9VFqtsqq68yOA6ANoHgCAAAAgD9hW2GFCvZUt+v5nfY3dUSiKmod+nhljtlRALQBFE8AAAAA8Cf8nFYoSTqpS8convrFBWpAfKBmLsmQ02mYHQeAi6N4AgAAAIA/4eetxYoP9lZcsLfZUVrN1BGJyiiu1I9bCs2OAsDFUTwBAAAAwB9U73Bq6fbiDrOb3T7jekcp3M9DbzPJOIAjoHgCAAAAgD9obc5uldfU68QOVjy5262aPCxBP20p1Nad5WbHAeDCKJ4AAAAA4A9avLVIFos0vHOI2VFa3aVD4uVus+qdXzLMjgLAhVE8AQAAAMAf9PPWIvWK9lewj7vZUVpdmJ+HzuoXpY9X5mhPdZ3ZcQC4KIonAAAAAPgDKmrqtTprV4eb32l/V47opMpahz5KzTE7CgAXRfEEAAAAAH/A8vQS1TmMDje/0/76xAZoUEKQZi7JkMNpmB0HgAuieAIAAACAP+DnrUVyt1s1ODHY7CimmjoiUVkllVq4eafZUQC4oBYtnhYsWKBu3bopOTlZTz311EG3P//88+rZs6f69u2rU045RZmZmY23zZw5U126dFGXLl00c+bMxutXrlypPn36KDk5WbfccosMg1YdAAAAQOtbvLVIgxOD5OlmMzuKqc7oHakIfw/NWJJhdhQALqjFiieHw6GbbrpJ8+fP18aNGzV79mxt3LixyTIDBgxQamqq1q1bpwsvvFB33323JKmkpER///vftWzZMi1fvlx///vftWvXLknSDTfcoNdff11paWlKS0vTggULWuohAAAAAMAh7Syr1qaCsg49v9M+bjarLhgYq8Vbi1RV6zA7DgAX02LF0/Lly5WcnKykpCS5u7tr4sSJmjt3bpNlTj75ZHl7e0uShg0bppychgnpvvrqK5122mkKDg5WUFCQTjvtNC1YsED5+fnas2ePhg0bJovFoiuuuEKffvppSz0EAAAAADikX7YVS1KHnt9pfwPig+Q0pA15u82OAsDFtFjxlJubq7i4uMbLsbGxys3NbXb5N998U+PGjTvsfXNzcxUbG3tU65w+fbpSUlKUkpKiwsLCP/twAAAAAKDRz2lFCvByU6/oALOjuIS+sQ3Pw7ociicATdnNDiBJs2bNUmpqqn788cfjts5p06Zp2rRpkqSUlJTjtl4Af16dw6mi8hrt3FOjwrIa7SxrOC0sr1ZljUN1TkP1DqfqHIYcTqfqnYbqHE7VOww5DEPRAV7qHO6rzmE+6hzmq85hvvJy79hzKwAAgNZjGIYWby3SiM4hslktZsdxCRH+norw99C6nFKzowBwMS1WPMXExCg7O7vxck5OjmJiYg5a7ttvv9Xjjz+uH3/8UR4eHo33XbhwYZP7jh49WjExMY274x1unQBaV2VtvX7cXKiy6nqV1zT8VBxwWl5Tr10VdSosr1FJRe0h1xPk7SZvd7vcbBbZbVbZrRa52ayy2xpOPdysssiiDXm7NX99vvY/Ym9MYEMZlRzmqy4RvhqWFKLEEG9ZLHwYBAAAx9f2ogrl7a7WjSezm93++sYGal0uI54ANNVixdPgwYOVlpam9PR0xcTEaM6cOXr//febLLN69Wpdd911WrBggcLDwxuvHzt2rO67777GCcW//vprPfnkkwoODpa/v7+WLl2qoUOH6p133tFf/vKXlnoIAI6CYRi67t2VWpRW1OR6D7tVvh52+XjY5bv3Jz7EWymJQQrz81C4n+feUw+F+Xko1NdD7vaj3/u3us6hzOJKbSss17ad5dpaWK5theWanV6iqrqGSS1jAr10UpdQndglVCd0DlWQj/txfewAAKBjWry14XPPSV0onvbXLzZA32zcoT3VdfL3dDM7DgAX0WLFk91u10svvaSxY8fK4XDoqquuUq9evfTggw8qJSVFEyZM0F133aXy8nJddNFFkqT4+HjNmzdPwcHB+tvf/qbBgwdLkh588EEFBwdLkv7zn/9o6tSpqqqq0rhx4xrnhQJgjm9/26lFaUX6v9O76twBMY1lk5utxaaQkyR5utnULdJP3SL9mlzvdBrKLKnUz1uL9HNaob74NV9zVmTLYpH6xAToxOSGImpQQpA87OyeBwAAjt3PaUWKDfJSfLC32VFcSp/YQEnS+pzdGsGk6wD2shiGYRx5sbYtJSVFqampZscA2p2aeofG/vMn2W1Wzb/1pBYvm/6IeodTa3N26+e0Iv28tVCrskrlcBoK8HLTTSd31hXDE+XpRgEFAACOTr3DqQGPfqPxfaL01AV9zY7jUnZV1GrAo9/o3nHddf2ozmbHAdAKjqZvcYnJxQG0TTOXZCijuFIzrhzskqWTJNltVg1KCNKghCDdemoXlVXXaen2Es1amqknvtykmUsydefpXXVu/xhZmRwUAAAcwa+5u1VWXa8TGNFzkCAfd8UFezHBOIAmXPN/igBcXmFZjV78bqvGdA/X6G7hR76Di/DzdNNpPSM086ohev+aoQr2cdcdH67V+H//rJ+2FJodDwAAuLh98zuN6BxichLX1Dc2UOtymGAcwO8ongD8Ic99vVnVdQ7dP76H2VH+sBHJoZp70wn618T+Kq+p0xVvLdfkN5ZpPUdjAQAAzfh5a5F6RvkrxNfD7CguqW9MgHJ2Vam4vMbsKABcBMUTgGO2Pne3PkjN1pQRieoc5mt2nD/FarXonP4x+vaOUXrwrJ7akLdbZ/37Z902Z7WySyrNjgcAAFxIZW29VmWW6kSOZtesvnsnGP+VL/IA7EXxBOCYGIahRz7fqCBvd91yShez4xw3Hnabrjqxk368+2TdOLqz5q8v0CnP/6hnFmxSeU292fEAAIAL+GlLkWodTo3qGmZ2FJfVO8ZfFovY3Q5AI4onAMfky18LtDy9RHee3lUBXm5mxznu/D3ddPcZ3bXwrtE6q2+U/rNwm0Y/u1AfrsiWw9nuDwIKAAAOY8H6fAV6u2lIp2Czo7gsP083JYX6MME4gEYUTwCOWnWdQ098+Zu6R/pp4uB4s+O0qKgALz1/cX99etMJig/20t2frNOEl37Wsu3FZkcDAAAmqK136rvfduq0HhEuezRfV9GPCcYB7Id3TABH7Y1F25VbWqUHz+4pm9VidpxW0T8uUJ/cMEIvXjpAuypqdcn0pbph1kplFTP/EwAAHcnibUUqq6nXGb0jzY7i8vrEBmhnWY0KdlebHQWAC6B4AnBUduyp1n8WbtPYXhEa0bljTahpsVg0oV+0vrtztO48rasWbi7Uqc//qKfmb9Ke6jqz4wEAgFaw4NcC+XrYmVj8KOybYJzd7QBIFE8AjtLTCzap3mHo/jN7mh3FNF7uNv3llC764f9G66x+UXr1x20a8vi3um3Oai1KK2QOKAAA2ql6h1Pf/LZDY7qHy8NuMzuOy+sZ5S+b1cLudgAkSXazAwBwfauzdum/q3J1w+jOig/xNjuO6SIDPPX8xf111QmdNHt5lj5bm6dP1+Qp0t9T5w6I0QUDY9Qlws/smAAA4DhZnlGikopadrM7Sl7uNnWN8NO6XIonABRPAI7AMAw98vlGhfl56KaTk82O41J6xwTo8fP66G9n9dT3m3bqk5U5en3Rdr364zb1iQnQBQNjNKF/jIJ93M2OCgAA/oQF6wvk6WbV6G5hZkdpM/rGBOirjQUyDEMWS8eYGxTAobGrHYDD+nrjDq3OKtVdY7vJ14Ou+lA83Ww6s0+U3pw6WMvuO0V/O6unnIahhz/bqCGPf6u7PlqrnF1MRg4AQFvkdBr6akOBRnUNk7c7n4WOVt+4AJVW1im7pMrsKABMxjsngMP6duMOBXi56YKBsWZHaRNCfT109YmddPWJnbSpYI/mLM/W+8uzNHdNni4bGq+bxyQr1NfD7JgAAOAorc4u1Y49Nexmd4z6xgRKktblljJVA9DBMeIJQLMMw9CSbcUanhQim5Uh0seqe6S/Hp7QSwv/b7TOHxijd5dmauQzP+gfX23maHgAALQRC9bny81m0ZjuEWZHaVO6RfrJ3WZlgnEAFE8AmpdZXKnc0iqdkBxidpQ2LTrQS09d0Fff3D5SY7qH66Uftuqkp3/Qqz9uU1Wtw+x4AACgGYZhaMGGAp2QHKoALzez47Qp7narekT7a11OqdlRAJiM4glAsxZvK5IkjUgONTlJ+5AU5quXLhuoz/9yogbEB+qp+Zs06tkf9O7STNU5nGbHAwAAB9iQt0fZJVUax252f0jfmACtz90jp9MwOwoAE1E8AWjWkq3FivT3VFKoj9lR2pXeMQGaceUQfXjdcCWEeOtvn67XWS/+rF+2FZsdDQAA7GfB+gJZLdKpPdjN7o/oGxug8pp6bS+qMDsKABNRPAE4JKfT0JJtRRqRHMIhcFvIkE7B+vC64Zp++SBV1Nbr0teX6i+zVyt/N0d/AQDAFcxfn6+hnUIUwoFB/pC+sYGSxO52QAdH8QTgkH4r2KNdlXU6oTO72bUki8Wi03tF6ts7Rum2U7vo6w0FOuW5H/XKwm2qqWf+JwAAzLJ1Z5m2FVZoXB92s/ujksN95eVmY4JxoIOjeAJwSEu2Nuz2dQLzO7UKTzebbju1q769Y5ROTA7V0ws2adwLi/TjlkKzowEA0CHN/7VAknR6T4qnP8pmtah3DBOMAx0dxROAQ1q8rUidw3wUGeBpdpQOJS7YW9OvSNGMKwfLkDTlreWa9k6qsksqzY4GAECHMn99gQbGB/JZ6E/qGxuoDXl7OJAK0IG1aPG0YMECdevWTcnJyXrqqacOuv2nn37SwIEDZbfb9fHHHzde/8MPP6h///6NP56envr0008lSVOnTlWnTp0ab1uzZk1LPgSgQ6qtd2rZ9hJGO5lodLdwLbjtJN01tpsWpRXp1Od/1NuL0zkqDAAArSCruFIb8/doXO8os6O0eX1jA1RT71TajnKzowAwSYsVTw6HQzfddJPmz5+vjRs3avbs2dq4cWOTZeLj4zVjxgxddtllTa4/+eSTtWbNGq1Zs0bff/+9vL29dfrppzfe/uyzzzbe3r9//5Z6CECHtSa7VFV1Do1gfidTedhtuunkZH135yiN6Byiv3+2UZe/tUx5pUw+DgBAS1qwIV+SdEZvdrP7s5hgHECLFU/Lly9XcnKykpKS5O7urokTJ2ru3LlNlklMTFTfvn1ltTYf4+OPP9a4cePk7e3dUlEBHGDx1iJZLdLwpBCzo0BSdKCX3po6WE+c10ers0o19oWf9L/VOTIMRj8BANAS5q8vUK9of8UF83+QPysxxFt+nnaty2WCcaCjarHiKTc3V3FxcY2XY2NjlZube8zrmTNnji699NIm191///3q27evbr/9dtXU1BzyftOnT1dKSopSUlJUWMjkvMCxWLKtSL1jAhTg7WZ2FOxlsVh02dB4zb/1JHWN8NPtH6zVTe+vUklFrdnRAABoVwp2V2t1VqnGMdrpuLBYLOobG8CIJ6ADc+nJxfPz8/Xrr79q7Nixjdc9+eST2rRpk1asWKGSkhI9/fTTh7zvtGnTlJqaqtTUVIWFhbVWZKDNq6ip1+qsUnazc1EJIT768LrhuvuMbvpm4w6NfeEnfb9ph9mxAABoN77a0HA0O3azO376xgZqU36ZquscZkcBYIIWK55iYmKUnZ3deDknJ0cxMTHHtI4PP/xQ5513ntzcfh91ERUVJYvFIg8PD1155ZVavnz5ccsMQFqeUaJ6p6ETktnNzlXZrBbdODpZc286USE+7rpqRqr++t9fVVFTb3Y0AADavPnr85Uc7qvkcD+zo7QbfWMCVO80tKmgzOwoAEzQYsXT4MGDlZaWpvT0dNXW1mrOnDmaMGHCMa1j9uzZB+1ml5/fMNGfYRj69NNP1bt37+OWGYC0ZGuR3G1WpSQEmx0FR9Az2l9zbz5B141K0pwVWRr/4iJt3ckHOgAA/qji8hotTy9hN7vjrG9coCQmGAc6qhYrnux2u1566SWNHTtWPXr00MUXX6xevXrpwQcf1Lx58yRJK1asUGxsrD766CNdd9116tWrV+P9MzIylJ2drVGjRjVZ76RJk9SnTx/16dNHRUVFeuCBB1rqIQAd0uKtxRqYECgvd5vZUXAUPOw2/XVcD825dpjKaxw67+UlWrh5p9mxAABok77ZuENOQxrbi+LpeIoO8FSIj7vW5TDBONARWYwOcFiklJQUpaammh0DcHklFbUa+Og3+r/Tu+rmMV3MjoNjlFtapWtmpmpzwR49ML6nrjwhURaLxexYAAC0GVPeWq7tReX66a6T+Rt6nF359nLlllbp69tHHXlhAG3G0fQtLj25OIDW9cu2YknSiGQmFm+LYgK99PH1w3Vqjwg98vlG3fe/9apzOM2OBQBAm7BzT7UWby3Smb2jKJ1aQJ/YQG3dWc6clEAHRPEEoNHibUXy87Crb0yA2VHwB/l42PXq5EG6cXRnzV6epcvfXKZdFbVmxwIAwOW9tyxL9U5DE4fEmx2lXeoXGyCnIW3I22N2FACtjOIJQKPFW4s0NClYdhtvDW2Z1WrR3Wd01/MX99OqzFKd+5/F2rqz3OxYAAC4rNp6p95fnqXR3cLUKdTH7DjtUp/Yhi82mWAc6HjsR7NQbm6uMjMzVV//+7DIkSNHtlgoAK0vZ1elMosrNWV4otlRcJycPzBWCSHeuu7dlTrvP4v18mUDNbJrmNmxAABwOfPX56uwrEZTRySaHaXdCvfzVFSAp9YywTjQ4RyxeLrnnnv0wQcfqGfPnrLZGo5yZbFYKJ6AdmbJ1ob5nU5gfqd2ZVBCsD696QRdMzNVU99ersfP66NL2YUAAIAm3l6coU6hPhrZhS9oWtLA+CAtTy+WYRjMowV0IEcsnj799FNt3rxZHh4erZEHgEkWbytSqK+Hukb4mh0Fx1lskLc+uWGEbnhvlf726Xr1iQlQb+bxAgBAkrQ2u1Rrskv10Nk9ZbVShrSkk7qE6otf87VlR7m6RfqZHQdAKzniRC5JSUmqq6trjSwATGIYhpZsK9aIziF8+9RO+XjY9eLE/gr2cdcdH65RdZ3D7EgAALiEmUsy5ONu04WDYs2O0u7t2+X/py2FJicB0JqaHfH0l7/8RRaLRd7e3urfv79OOeWUJqOeXnzxxVYJCKDlpe0sV2FZjU5IDjE7ClpQoLe7nr6wr658e4X++e0W/XVcD7MjAQBgqqLyGn2+Ll8Th8TJz9PN7DjtXnSgl5LDffVTWqGuHZlkdhwAraTZ4iklJUWSNGjQIE2YMKHVAgFofYu3FkmSRnRmfqf27uRu4bp0SJym/7Rdp/WIUEpisNmRAAAwzexlWap1OHUFB1dpNSO7hGnWskxV1Trk5W4zOw6AVtBs8TRlyhRJUkVFhTw9PRsnFnc4HKqpqWmddABaxeKtxUoI8VZcsLfZUdAK7h/fUz9vLdKdH63Vl7ecJB+PozrAKQAA7Uqdw6lZyzJ1UpdQJYczx2VrGdk1VG8tTtey9GKN7hZudhwAreCIczydcsopqqqqarxcVVWlU089tUVDAWg99Q6nlm0vZrRTB+LrYdezF/ZTVkmlnpq/yew4AACY4qsNBdqxp0ZTRySaHaVDGdopRO52q37aUmR2FACt5IjFU3V1tXx9f/8GwNfXV5WVlS0aCkDr+TV3t8pq6pnfqYMZlhSiq07opHeXZmpRGhN8AgA6nhmLMxQf7M2om1bm5W7T0E7B+onPH0CHccTiycfHR6tWrWq8vHLlSnl5ebVoKACtZ8m2YknS8CSKp47mrrHdlBzuq7s/XqfdVRy9FADQcazP3a3UzF26YniCbFaO6NvaRnYJ09ad5corrTrywgDavCMWTy+88IIuuuginXTSSTrxxBN1ySWX6N///ndrZAPQCn5OK1KPKH+F+HoceWG0K55uNj13UT/tLKvR3z/bYHYcAABazcwlGfJys+milDizo3RII7uGSRKjroEO4ogzyvbt21ebNm3S5s2bJUndunWT0+ls8WAAWl51nUMrs3bpimEJZkeBSfrFBeqm0Z314vdbNbZXpMb2ijQ7EgAALaqkolZz1+bpwkGxCvByMztOh9Q1wleR/p76aUuRLhkcb3YcAC3siCOehg8fLjc3N/Xu3Vu9e/eWm5ubhg8f3hrZALSgPdV1uvn9VaqtdzK3QQd385gu6hXtr/v++6uKyzlqKQCgfZuzIku19U4mFTeRxWLRSV1C9fPWIjmchtlxALSwZoungoICrVy5UlVVVVq9erVWrVqlVatWaeHChUwuDrRxaTvKdO5Li7Vwc6EePrsnE4t3cO52q56/uL/Kqut1///WyzD4AAgAaJ/qHU7N+iVTIzqHqGuEn9lxOrSRXcO0u6pOa3NKzY4CoIU1u6vdV199pRkzZignJ0d33HFH4/V+fn564oknWiUcgOPvy1/z9X8frZW3u13vXztMQzoFmx0JLqBbpJ/uOL2rnpq/Se8vz9Kkoex+CQBof779bYfydlfroQm9zI7S4Z2YHCqLRfppS6EGxgeZHQdAC2q2eJoyZYqmTJmiTz75RBdccEFrZgLQAhxOQ//4erNeWbhNA+ID9cqkQYoM8DQ7FlzItSclafHWIt3/v/XKK63Snad1k5Uj/QAA2pG3F2coJtBLp/aIMDtKhxfk466+MQH6aUuhbju1q9lxALSgI04ufsEFF+iLL77Qhg0bVF1d3Xj9gw8+2KLBABw/uypqdcuc1VqUVqTLhsbrobN7ysNuMzsWXIzNatGbUwbroXnr9fIP27RlR7n+eUl/+Xoc8U8FAAAu77f8PVqWXqJ7x3WXjS9WXMLIrmF6+Yet2l1ZpwBvJnoH2qsjTi5+/fXX64MPPtC///1vGYahjz76SJmZma2RDcBxsCFvt85+6Wct216ipy/ooyfO60PphGa526164rw+/9/efYc3VfZvAL8zuvemk1K66KItKZS9l2gZIpQ9RRF+IvgqKorr9RV9HYioiDIVKFOKCIiCbOiglFVGC90tpYPS3aTJ+f1RqPIyWqDhNO39ua5eIScnJ3fKISTfPM/3wXvP+GH/xet49ttjyCxiXz8iItJ9q4+mwUAuxWiFq9hR6JYe3nbQCMDRKwViRyEiLaq38HTs2DGsXbsWVlZWePfdd3H8+HFcvnz5SWQjoscUnZiNZ787BrVGwKYXO3O5WmoQiUSCyV3bYM2Ujsi9WYmIpUdw4mqh2LGIiIgeWXxaETadzERkmCusTPTFjkO3BLtawsxAjkOX88WOQkRaVG/hycjICABgbGyMnJwc6OnpITc3V+vBiOjxZBdXYu7GRAQ5W+LX/+uGYFdLsSORjunmZYvo2d1gZaKP8T/GYH1MhtiRiIiIHlqFsgb/2nwazpZGeG2Qr9hx6B/0ZFJ08bTBocv5XFWXqBmrt/D09NNPo7i4GK+99hpCQ0Ph7u6OMWPGNOjge/bsgY+PDzw9PbFo0aK7bj906BBCQ0Mhl8uxZcuWO26TyWQIDg5GcHAwIiIi6ranpqaiU6dO8PT0xOjRo6FUKhuUhail2ZGYA40AfD6qPWxNDcSOQzqqja0Jts/qiq6etnjrl7N4N/ocVGqN2LGIiIga7NM9l5BWWIFPRwaxb2ET1MPbDjk3q3Alv0zsKESkJfUWnt555x1YWlri2WefRXp6Oi5evIgPP/yw3gOr1WrMmjULu3fvRlJSEjZs2ICkpKQ79nFzc8Pq1asxduzYu+5vZGSExMREJCYmYseOHXXb58+fj7lz5yIlJQVWVlZYsWJFQ54nUYsTnZiNDq2t4GptLHYU0nHmhnpYOTkMz3dvgzXH0zFpZSyS80r5zSQRETV5x68UYvWxNEzu4o4ubW3FjkP30MPLDgBw8DL7PD1IZlEFXt10GtGJ2ahUqsWOQ/RQ6i35q9Vq/Pbbb0hLS0NNTU3d9nnz5j3wfrGxsfD09ISHhwcAIDIyEtHR0fDz86vbx93dHQAgldZb/wIACIKA/fv3Y/369QCASZMm4b333sPMmTMbdH+iluLitRJcvFaKD4b6ix2FmgmZVIIFQ/zg7WCGBb+cQ/8vD8HD1gT9/R0w0L8Vgl0sIeUKQURE1ISUVdfgtS2n4W5jjNcH+Ygdh+7D1doYHrYmOJycj2nd2ogdp8n6en8ytiZkYWtCFkz0ZXgq0BEjQl3QqY0134NRk1dv4emZZ56BoaEhAgMDG1wgAoDs7Gy4uv69YoSLiwtiYmIafP+qqiooFArI5XK88cYbGDZsGAoLC2FpaQm5XF53zOzs7Hvef/ny5Vi+fDkAID+fzeqoZYlOzIFMKsGQQEexo1Az85zCFd297PBH0jXsTcrDisOp+P7gVdiZGaC/nwMG+Dmgc1sbrpxIRESi+8+uC8gursTmFzrDWJ9T7JqyHt52iIrLQJVKDUM9vof4X/ml1dh+Kgfjw93wdJATtiVkYdfZa9h8MgvOlkYYHuKM4aHOaGtnKnZUonuq9xU4KysLZ86ceRJZ7pCeng5nZ2dcvXoVffr0QWBgICwsLBp8/xkzZmDGjBkAAIVCoa2YRE2ORiNgR2IOenjZwoa9nUgLWlkYYkJnd0zo7I6bFSr8dek69iZdw/ZT2VgfkwEzAzm6ednCwdwQxvoymBjIay/15TA2uHWpL4OeXIoqlRpVKjUqlGpUKtWoVNVeVihrt5sayNHF0xbtXSwglzX8yw8iImrZDl3Ox/qYDDzfvQ0U7tZix6F69PC2xepjaYhPu4FuXpwS+b9+OpEOlUaDad080MbWBOEeNng/IgB7k65hW0I2vj2QgqV/paC9qyWmdHHHsBBnsSMT3aHewtPgwYOxd+9eDBgw4KEO7OzsjMzMzLrrWVlZcHZu+D+A2/t6eHigV69eOHXqFJ599lkUFxejpqYGcrn8oY9J1BLEp99AdnElXhvIIeWkfRbGehgW4oxhIc6oUqlx7EoB9p7Pw9ErBTiaUoBypRpqzaP1gjKQS6FUa/D5H5dhZihH17a26O5tix5eduxdRkRE91VSpcL8rWfQ1s4Erw7g+yFdEO5hA32ZFIeS81l4+h9VKjV+PpGOfu0c0MbWpG67kb4MQ4OdMTTYGddLqhCdmINN8Zl4ZWMiWlkYItzDRsTURHeqt/AUHh6O4cOHQ6PRQE9PD4IgQCKRoKSk5IH3CwsLQ3JyMlJTU+Hs7IyoqKi63kz1uXHjBoyNjWFgYICCggIcPXoUr7/+OiQSCXr37o0tW7YgMjISa9aswdChQxv2TIlaiOjEbBjpydDfz0HsKNTCGOrJ0MfXAX18/z73BEGAUq1BRbUa5coaVCjVKK+uvVTWaGCoJ4ORvgzG+jIY3fqzkV7tj1QqwY1yJY5dKcTh5HwcupyPPeevAQDcbYzR3csO3b1s0dXTFiZcpYiIiG758Nck5JVUYdtLXTltS0cY68uhcLfCocv5eOupdmLHaVK2JWSjqFyJ6Q/of2Vvbojne3hgfHhr9PviIBZGn8NvL3eHHkeLUxNR7zv1efPm4fjx4wgMDIRE0vCmZXK5HEuXLsXAgQOhVqsxdepU+Pv7Y+HChVAoFIiIiEBcXByGDx+OGzdu4Ndff8W7776L8+fP48KFC3jhhRcglUqh0Wjwxhtv1DUl/+STTxAZGYm3334bISEhmDZt2qM/e6JmRlmjwW9nc9Hfz4EfxKlJkEgkMJDLYCCXwcpE/6Hvb2WijyFBjhgS5AhBEHC1oByHL+fjcHIBtiZk4acT6bAy1sOs3p4YH96aHzCIiFq4fRfysPlkFmb1botgV0ux49BD6OFth0W7LyKvpAoO5oZix2kSNBoBK45cRaCzBTq2qX/KqJG+DO9F+OP5tfFYdTQVM3q0fQIpieonEepZD7tHjx44cODAQzUWb2oUCgXi4+PFjkGkdX8m5WH62nisnKy4Y9QJUXOkrNEgLq0Iyw5eweHkAjhZGOKVft4YEerMflBERC1QcYUS/b88BBsTfUTP7sqFLnRMUk4JnlpyGP8dGYTnFK7136EF+OvidUxZHYevIoMxNLjhLWamrY7D8auF2PdqTzhaGGkxIVHD6i31Dom43WNp8ODBMDD4u1HxvHnzHj8hETWq6NM5sDLWQ3cvO7GjEGmdvlyKrp61U+2OpRTgk98v4fWtZ/D9oSv41wAfDApo9VAjdYmISLe9u+M8bpQrsXpKGItOOqidoxnszAxwKLmAhadbfjxyFa3MDfHUQ65U/V6EP/p9cRAf7kzCt+M6aCkdUcPV+5VwmzZt0LdvXyiVSpSWltb9EFHTUlZdgz+SrmFIkCPnc1OL08XTFttf6oJl4ztAIpFg5roEDPvmKI6mFIgdjYiInoAtJ7MQnZiD/+vjBX+nhq+ETU2HRCJBdy9bHEnOf+SFSZqTpJwSHE0pxOSu7g/93t7V2hize3ti19lrOHg5X0sJiRqu3hFP77777pPIQUSPae/5a6hSaTDsIYbhEjUnEokEgwJaob+fA7YlZGHxn8kY92MMunra4I1B7RDowg8iRETNTVl1DT78NQkb4zMR5m6Fl3qzp40u6+lth20J2TiXfRPtW3iPrhVHUmGsL8OYMLdHuv+Mnh7Ydiob70afw55XerAPJomKwyKImonoxBy4WBmhQ2srsaMQiUomleA5hSv2/6snFj7thwu5pXhm6RHM25iI3JuVYscjIqJGcjK9CE99dRibT2bipV5tsW56OEd967iunrYA0OJH6eSVVGHH6WyMUrjCwljvkY5hIJfhg6H+SCuswPcHrzZyQqKHw1dmomagoKwaR1IKENHeiT1tiG4xkMswtVsbHHytF2b2aoudZ3PR+7MD+HzvJZRX14gdj4iIHpFKrcFnv1/Cc8uOQyMI2PhCZ7w+yBf6cn600XW2pgbo6G6NbQlZqGcNrGZt7fE01GgETO3a5rGO093LDkOCHPHNgRSkF5Y3Ujqih8dXZ6JmYOfpHKg1AoaFcJod0f8yM9TD/EG+2DevJwb4tcLX+1PQ67MD2BiXwR4SREQ6JuV6GUZ8ewxL/0rBiFAX7J7THWHu9S8zT7pjTCdXpBVW4PjVQrGjiKJCWYN1MRkY6NcKbjbGj328d4b4QU8qwXs7zrfoYh6J65EKTx988EFj5yCixxB9OgftHM3h7WAmdhSiJsvV2hhLxoRg20td4GplhPlbz2LIksM4nNyyh/MTEekCQRCw5lgahiw5jKwbFVg2PhSfPdceZoaPNg2Jmq7BAY6wMNLD+pgMsaOIYmtCNoorVJje/fFGO93WysIQc/t7469L+diblNcoxyR6WPU2F7+XH3/8EQsXLmzsLET0CNILy3EqoxhvDPYVOwqRTgh1s8LWmV2w6+w1LNpzARNWxKKHtx3aOZoBAnD7u0BBECD847qhnhRDAp3g52QuVnQiohalSqVGemEFUgvKsT42A4cu56Ontx3+OzII9uaGYscjLTHUk2FEqDN+PpGOwrJq2JgaiB3pidFoBKw8kor2rpaN2rd1Uhd3bDmZhfd3nEd3L1sY6z9SGYDokd33jDM3v/cba0EQUFnJ5qxETcWOxBwAQER7J5GTEOkOiUSCIUGO6OdnjzXH0vD9was4cbUQkrrbAQkkty5rVddo8M1fVxDiZonxnVpjSJAjV4ghohbtZoUKJVUqaAQBao0AjVD7WUEj4Nb12gK+RFL7I5VIbv3Uvg5LJbULQqjUAjJvVCA1vxypBeVIKyzH1fxy5NysxO2ZQYZ6Unw41B/jw1uzn2ULMLajG1YdTcPWhCzM6NFyVircf/E6UgvK8fWYkEY9z/VkUnw4LADPLTuOr/enYP4gfmFNT9Z9C0+WlpaIi4uDg4PDXbe5urpqNRQRNYwgCNiemI2ObazhZGkkdhwinWMgl2FGj7YNelN7s0KFLQlZWBeTjlc3n8YHO5MwsoMLxnVyg4ed6RNIS0Qkjhq1BlcLynEhtwQXr5XWXuaW4lpJVaM/lpmhHB62Jghzt0IbW1e42xrDw9YUHnYmMDHgKI2WwsvBDGHuVtgQm4nnu3u0mGLjD4evwtnSCIMDWjX6scPcrTGygwt+OHQVz4Y6w9OeLTroybnvq/fEiRORnp5+z8LT2LFjtRqKiBrmfE4JruSXY1o3D7GjEDV7FsZ6mNatDaZ2dceJq0X4OSYda46lYcWRVHRpa4Px4a3R38+BS3kTkc5T1miw+1wuDicX4EJuCZKvl0FZowEA6MkkaGtnis5tbeDbygw2pgaQ3h7NJJX8/edbl7cLBrWjn2pHQ2mEf46OEiCBBC5WRmhjawJrE/0WU2SgBxvT0Q3zNp3G8auF6NLWVuw4Wnc26yZiUovw9pB2kGvpvcSbg33xR1IeRi47Dt9WZnC3MYGbjTHcbUzQ2sYYrW1MYNqAAq9KrYFKreGUPWowidACWtsrFArEx8eLHYOo0X30WxJWH0tD3IJ+sDTWFzsOUYtzvbQKm+OzsD4mA9nFlXC2NMIPExXsA0VEOqm4Qol1MRlYezwNeSXVsDXVRztH81s/ZvBtZY62dqbQl7PATtpXpVKj03/2oYe3Hb4eEyJ2HK17JeoU/rxwHcfe7ANzLTbNj7laiI3xmUgvrEB6YTkKypR33G5raoDWNsYw1JOiUqlGhVKNKlXtZaVKjUqlGjW3VgUeEeKM/4wIZOuBFq4h9RaWKIl0lFojYMfpHPT0tmfRiUgk9maGmNXbEy/2bIuDl69jwS/n8NyyY1g6LhS9fezFjkdE1CBX88uw8mgqtp7MRqVKje5etvjk2SD08LKDVMrRRySOO5uM+zXrJuNZNyqw80wuJnVx12rRCQA6edigk4dN3fXSKhXSCyuQUVSBtMJypBfUXlYq1TDWl8PG1ABGejIY68tgpC+r+3NBmRKrj6UhJb8M30/oAEcLtv2g+2PhiUhHxVwtRF5JNd55mk3FicQmk0rQx9cBv7xkgamr4zB9TTw+GOqPcZ1aix2NiOieBEHA8auFWHE4FfsuXoe+TIphIU6Y2q0NfFtx1CY1DWNaSJPxT/dcglwmwfTubZ74Y5sZ6iHA2QIBzhYPfd8ubW0wd2Minvn6KL6fEIoOra21kJCaA46TJdJR0Yk5MNGXoV+7u/uwEZE4WlkYYtOLndHDyxYLfjmHj3dfgEbT7Ge0E5GOOZJcgKeWHMHYH2KQmFmMOX29cPSNPvh0ZHsWnahJ8XYwg6J1bZPx5tohJiHjBnaczsGM7h46N2pogH8r/DKrK0wMZIhcfgJRsRliR6ImqkGFp4SEBCxZsgRff/01EhIStJ2JiOpRXl2DXWdzMSiAy7kTNTWmBnL8MFGB8eFu+P7gVfzfhlOoUqnFjkVEBLVGwJd/XMaElTGoUqnxybOBOPpGH8zt7w07s+Y7jYl029hObkgtKMfxq4ViR2l0giDg3zuTYGdmgBd66uaILm8HM0TP6opwDxu8se0sFkafg0qtETsWNTH1Fp4++OADTJo0CYWFhSgoKMCUKVPw73//+0lkI6L7+PV0DkqrazCmo6vYUYjoHuQyKT4cGoAFT7XDrnO5GPvDCRSWVYsdi4hasMKyakxeFYuv9iVjeIgzdr3cHaPD3PgFFjV5TwU6wtxQjg2xmWJHaXS/nc1FQkYxXhvgA5MGrCbXVFka62PV5DDM6OGBtcfTMWFFDN/30B3qXdXOx8cHp0+fhqGhIQCgsrISwcHBuHTp0hMJ2Bi4qh01NxFLj6BapcGeV7pzyWGiJm732Vy8sjERDuaGWDUlDG3tTMWOREQtzMn0IsxadwpFFUq8H+GPyDBXvn8gnfLejvNYF5OOE2/2bTZNxqtUavT74iDMDPWw8/+6QdZMGvn/cioL87eehZ2pAZZP7AB/p4fvHUW6pSH1lnpHPDk5OaGqqqruenV1NZydnR8/HRE9kjNZxTiTdRPjwt34ppFIBwwOdMSGGeEor67BiG+P4dDl/Gbbp4KImhZBELDiSCpGf38C+nIpts3sgjEd+f6BdM/YTm5QqQVsTcgSO0qjWX0sDVk3KvH2kHbNpugEAMNDXLD5hc5QawSM/O44dp3NFTsSNQH1Fp4sLCzg7++PyZMnY8qUKQgICIClpSVefvllvPzyy08iIxH9w/qYDBjpyTAshAVgIl0R6maFX17qCltTfUxcGYuIpUexOT6TvZ+ISGtKq1R4aV0CPtyZhN6+9vj1/7o90qpVRE1Bc2syXlBWjW/2p6BfO3t09bQVO06ja+9qiR3/1xW+jmZ4aV0Cvt6X3Cz+3ujR1TuRdPjw4Rg+fHjd9V69emkzDxE9QEmVCjtO5yCivRPMDfXEjkNED8HNxhi//l83bE3IxtpjaXhtyxn8Z9cFRHZ0w/jw1nC21K2VbIio6bqQW4KX1iUgo6gCbw72xYweHhzlRDpvTEc3vLr5NI5fLUSXttot1lwvrcLus9fw25lcmBrWLhrSmKOSFv95GZUqNd58ql2jHbOpsTczxIbnw/HmtrP4/I/LSL5ehk9HBrGvXAtVb+Fp0qRJUCqVuHz5MoDank96evzASySG6FPZqFCqMS7cTewoRPQIjPXlmBDeGuM7ueH4lUKsPpaG7w9ewfcHr6C/nwMmdXFHZw8bfkAkokciCAI2x2fhnehzsDDSw4bnw9GxjbXYsYgaxZAgR7z/63lsiM3USuGpqFyJ3edysfN0LmJSC6ERABcrI2SlVSIqLgPjOrVulMe5nFeK9TEZmBDeutn3fTTUk+GLUe3haW+K//5+CelFFfhhQgfYmxuKHY2esHoLTwcOHMCkSZPg7u4OQRCQmZmJNWvWoEePHk8iHxHdIggC1sVkIMDZHEEulmLHIaLHIJFI0MXTFl08bZFZVIF1MRmIisvA7+fz4O1gis4eNjDUl8FQLoOhngxGelIY6sn+8SOFIAAqtQYqtYAaTe2lSq1Bza1tGkGAmaEcVsb6sDLRh5WxHqyM9WFhpAe5rN6Z9kSkY8qqa/D2L2exPTEHXdraYHFkMOzN+OGOmg9DPRlGhLpgfUwGCsuqG6XJ+M0KFX4/fw2/nsnBsSuFUGsEeNiZYHYfLzwd5Agve1NELj+BT/dcwuAAR1ib6D/2Y/5n1wWYGMgxp5/3Yx9LF0gkEszq7Ym2dqaYuzERQ785ih8mKjj1t4Wpd1W7Dh06YP369fDx8QEAXL58GWPGjMHJkyfrPfiePXswZ84cqNVqTJ8+HW+88cYdtx86dAivvPIKzpw5g6ioKIwcORIAkJiYiJkzZ6KkpAQymQwLFizA6NGjAQCTJ0/GwYMHYWFRe6KuXr0awcHBD8zBVe2oOTiZfgPPfncMH48IxJiOHPFE1NxUqdTYcToH606kI7WgHFU1GihrNFp5LHNDOaxM9OFkYYTIjq4YEujIYhSRDjufcxOz159CemE5XunnjVm9PZtVs2Ki2y5dK8XAxYfw1lO+mNGj7SMfp6y6Bp/vvYSfT6RDpRbgZm2Mp4Mc8XSQE9o5mt0x8vjStVI8teQwRilc8PGIoMfKf/ByPiatjMWCp9rh+R4ej3UsXXQu+yaeXxuP4goVvhzdHoMCHMWORI2gIfWWekc8qVSquqITAHh7e0OlUtX74Gq1GrNmzcIff/wBFxcXhIWFISIiAn5+fnX7uLm5YfXq1fjss8/uuK+xsTHWrl0LLy8v5OTkoEOHDhg4cCAsLS0BAP/973/rilRELcW6mHSYGsgR0d5J7ChEpAWGejKMUrhilMK1bptaI6C6Ro0qlQaVKjWq/vEjkUigL5NCLpNALpX+/WdZ7XaJRIKSShWKK1S4UaGs/SlX4kaFCsUVShRVqHAu+ybmRCXi0z2XMK1bG4wOc4WJQb1vDbQip7gSao0AY30ZTAzkMJBLOeWQqB6CIODnE+n48LcLsDLWw/rnwxHuYSN2LCKt8Wllhg63mow/3/3Repftv5iHt385h9ySKkSGuWJMRzcEOlvc91g+rcwwpYs7VhxNxegwNwS7Wj5S9hq1Bh/9lgQ3a2NM7NI40/Z0TYCzBaJnd8WMtSfx4s8J+NeA2kI5/79v/up9d6lQKDB9+nSMHz8eALBu3TooFIp6DxwbGwtPT094eNRWciMjIxEdHX1H4cnd3R0AIJXe+S2rt/ffww6dnJxgb2+P/Pz8usITUUtTXKHEzjO5GKVwEe1DIRE9eTKpBMb6chg/4sh+CyM9uD6gvYtGI2DfxetYfugKPtiZhMV/Xsb48NaY3NX9iUzRySmuxK+ncxCdmIOk3JI7bqt97jKY6MthbFB7aWOqj8+fa98o0yuIdF1JlQpvbD2DXWevoae3Hb4YxX8b1DKMvdVk/Ms/LmNCZ3fYmTXsvL9eWoX3f03Cb2dy4e1gii1ju6BDa6sG3XdOPy9En87Bwuhz+OWlro80onBTfBYu55Xhu3GhMJC33Abb9maGiJoRjvlbz+CzvbVNx/8zPJCfcZq5ev92v/vuO3zzzTdYsmQJAKB79+6YNWtWvQfOzs6Gq+vf39q6uLggJibmoQPGxsZCqVSibdu/h1IuWLAAH3zwAfr27YtFixbBwODuF5vly5dj+fLlAID8/PyHflyipmRrQjaUNRqM7dgyvx0hIu2QSiXo7+eA/n4OSMi4geUHr+K7g1fw4+FUDA9xxvM9POBp37iNT2+UK7HrXC6iE3MQm1oEoHbZ5beHtIOlsT7Kq2tQrqxBRbX6jsuSqhocuJSPXeeuYUI4XwupZTudWYzZGxKQU1yFNwb7YkZ3D0g5tY5aiCFBjvjlVDaW7E/BtweuoI+vPUYpXNHLx+6e08Y1GgEb4zPx8a4LqKrR4F8DvDGjR1voyxs+xdzMUA9vD2mHOVGJj9RovLRKhS/+uIQwdysMCmj1UPdtjgz1ZFg8OhjeDmb4bO8lnM4sxleRIWj/iKPJqOmrt/C0bNkyzJs3D/Pmzavb9tVXX2HOnDlaDQYAubm5mDBhAtasWVM3Kurjjz9Gq1atoFQqMWPGDHzyySdYuHDhXfedMWMGZsyYAQANGqFF1FTVNhVPR4ibJfyczMWOQ0TNVKibFZZN6IDUgnL8ePgqtpzMwsb4TATeav6pUtf2nKqu0dT++dZ1ZY0GhnoyOJgbwMHcEK3MDeFgYQgHMwO0sjCEg7khbE0NkJBxAzsSc3Dwcj5qNALa2png1f7eeKa9E9xtTerNJwgCen12APsv5LHwRC2WIAhYeTQNi3ZfgL2ZITa90LnBIzaImgtDPRl+nt4JKddLsSk+C9sSsrA3KQ92ZgZ4NtQFzylc6laLS7lehrd+OYvY1CJ0amONj0cEwuMRV5KLaO+E9TEZj9Ro/LsDV1BQpsSKSWGcVnbL7abjoW5WeHVTIp797hhe6eeFmb3Yo645qrfwtGbNmruKTKtXr6638OTs7IzMzMy661lZWXB2dm5wsJKSEgwZMgQfffQRwsPD67Y7OtY2IDMwMMCUKVPu6g9F1NycuFqEq/nl+Oy59mJHIaIWoI2tCT4aHoi5/b3x0/F0nEy/AT2ZBPpyKfRkUujLpTC4/edb1yuUalwvrcK1m1WISS3C9dIqqNR3r13iaGGIad3aICLYCX6O5g/15lsikaCvrwN+jklHhbIGxvockk8tS5VKjTe2nsH2xBz093PAf0cGwfJR5+ESNQOe9mZ466l2eG2gD/66eB2b4rPww+GrWHbwChStrRDgbIH1MRkw0pfh02eD8JzC5bGKPhKJBB8MDcBTSw7jv79fbFCjcUEQsOpoGr4/dBXDQ5w5ouceOre1we45PbBg+1l8tvcyDl0uwBej28PFyljsaNSI7vuubcOGDVi/fj1SU1MRERFRt720tBTW1g9oGHFLWFgYkpOTkZqaCmdnZ0RFRWH9+vUNCqVUKjF8+HBMnDjxribiubm5cHR0hCAI2L59OwICAhp0TCJdtT42A+aGcjwdxFUfiOjJsTU1wNz+j7bUs0YjoKhCiWs3q3C9tAp5JdVoY2uCju7WjzUdqG87e6w8mopjKYXo5+fwyMch0jX5pdV44ad4JGQUsxkv0f/Qk0kxwL8VBvi3wvWSKmw7lY1NcZlYfSwNTwc54t1n/BvcB6o+/2w0PkrhihC3+484rFSq8ea2v4vFHwz1b5QMzZGFsR6+HhOCPr72WBh9HoMXH8a/hwdgaHDDB65Q0yYRBOHuryQBpKenIzU1FW+++SYWLVpUt93MzAxBQUGQy+v/pnHXrl145ZVXoFarMXXqVCxYsAALFy6EQqFAREQE4uLiMHz4cNy4cQOGhoZo1aoVzp8/j59//hlTpkyBv//f/zhXr16N4OBg9OnTB/n5+RAEAcHBwVi2bBlMTR88XLIhy/sRNUUFZdXo/PE+jA9vjXef4X9WRNSyKWs0CP3wDzzT3vGxl7Qm0hVJOSV4fm08Csur8eWoYAwO5BdRRPURBAHFFSpYPcR0uIYqrVKh7+cH4WBuiO2z7t1oPLOoAi/8dBIXrpVgXr/aYjH7sDVMZlEFXtmYiJPpNzA02AkfDguAuaGe2LHoARpSb7lv4ak5YeGJdNWyg1ewaPdF/DmvBzztzcSOQ0QkupfWnUR82g3EvNWXIz6o2fsjKQ9zok7B3FAPP05SIOBWzzUiEld0YjbmRCXio+EBdzUaP3Q5Hy9HnYJGI+CryBD09rUXKaXuqlFr8O2BK/hqXzJamRticWQwwtzrn3VF4mhIvaXhrfyJ6InSaASsj8lAxzbWLDoREd3Sx9cB10urcT6nROwoRFojCAKWHbyCGT/Fw8veFDtmd2XRiagJiWjvhE5trPHpnksoKlcCqP13+92BK5i8KhYOZobYMbsbi06PSC6T4uW+XtjyYmfIZRJELj+BVUdT0QLGzDRbLDwRNVFHUgqQUVSBcZ3cxI5CRNRk9Paxg0QC7LtwXewoRFpRXaPGvzafwaLdFzEk0BEbX+gMe3NDsWMR0T/cbjReVl2D//5+EeXVNZi1PgGf7LmIwYGO2PZSlwat2EoPFuJmhZ3/1w19fO3x/q9J+NfmM6hSqcWORY+gQUvCKJVKXL58GQDg4+MDPT3OsSTStvUxGbA20ceggFZiRyEiajJsTA0Q4mqJfRfzMKefl9hxiBpVYVk1XvjpJOLTb2BuP2+83JdNxImaqn82Gj9+pRAZRRV46ylfPN/dg/9uG5GZoR6+H98BS/YnY/GfyUi5XoplEzrA0cJI7Gj0EOod8XTgwAF4eXlh1qxZeOmll+Dt7Y1Dhw49iWxELVZeSRX+uJCH5zq4wEAuEzsOEVGT0redA85k3cT1kiqxoxA1mmMpBYhYehTncm7im7GhmNPPix9eiZq4Of28YG9mgJuVKvw0rRNm9GjLf7daIJVK8Eo/b3w/oQNSrpfhma+PIj6tSOxY9BDqLTy9+uqr2Lt3Lw4ePIhDhw7h999/x9y5c59ENqIWKyo2E2qNgDEdOc2OiOh/9bnVM+OvS5xuR7qvrLoGC345i7E/xkBfLsWmFzpjSBBXriPSBWaGevh1djfse7UXunraih2n2Rvo3wrbZ3WFqYEMY344gXUx6WJHogaqt/CkUqng4+NTd93b2xsqlUqroYhasms3q/DD4avo62vPueFERPfg28oMzpZG7PNEOu9YSgEGfnkI62MzML1bG+ye0x1BLpZixyKih2BvbghrE32xY7QYXg5miJ7dDV3a2mLBL+fw5razUNZoxI5F9ai3x5NCocD06dMxfvx4AMC6deugUCi0HoyopXpvx3mo1BosfMZP7ChERE2SRCJBH197bE3IQpVKDUM9Tkkm3VJWXYOPd13AupgMeNiaYMuLndGhNZcKJyJqCAsjPaycHIbP9l7Cdweu4HJeKb4bHwp7My7E0FTVW3j67rvv8M0332DJkiUAgO7du2PWrFlaD0bUEv2RlIc956/h9UE+aG3D0U5ERPfTp509fjqRjhNXC9HLh8tVk+44llKA17acQc7NSkzv1gb/GujD4ikR0UOSSSWYP8gX/k7meG3zGTz11RF8Pqo9enrbPdLxBEHAqcxiSCUSOJgbwNbUAHqyeieINYhaIyCvpAqZRRXIvFGJjKIKyKUSvNy35SySUm/hadmyZZg3bx7mzZtXt+2rr77CnDlztBqMqKUpq67Bwuhz8G1lhue7e4gdh4ioSevsYQMjPRn2X7zOwhPpBI5yIiJqfE8HOcHT3hQvbziFSStjMb1bG7w2yOehFmhKKyjHO9HncDi5oG6bRALYmOjD3swQ9uYGcDAzhIO5AWxMDSCVSgBBgHBrX0G4fVn7hwqVGlk3KmsLTUUVyC6uhEot3HHsIGeLFlV4kgi3fzv3ERoaioSEhDu2hYSE4NSpU1oN1pgUCgXi4+PFjkH0QO//eh6rj6Vh68wuCHWzEjsOEVGTN31NPC7kluDI/N5cRYiatH0X8rAw+jxyblZiWleOciIiamxVKjX+s+sC1h5Ph5+jOZaMCYGnvekD71Ndo8ayA1fxzYEUGMikmNvfG61tjJFXUo28kipcL63G9ZIq5JVW4XpJNQrKqqF5YPXkb9Ym+nC1MoKLtTFcrYzham1069IYTpaGzWrl8obUW+474mnDhg1Yv349UlNTERERUbe9tLQU1tb8doaoMZ3JKsaaY2kY36k1i05ERA3Ur509/ryQh8t5ZfBpZSZ2HKK7XLtZhfd/PY/d567B28GUo5yIiLTEUE+GD4YGoLuXHV7fchrPfH0E7z7jh9Fhrvf8cupYSgHe3n4OVwvK8XSQI9552g8O5g/uEVWj1qC4UlU3wkkiAW4f+fZjSADoy6UwMah3clmLct/fRpcuXeDo6IiCggK8+uqrddvNzMwQFBT0RMIRtQQ1ag3e2HoWtqYGeG2QT/13ICIiAEBv39opdn9eyGPhiZoUtUbAzyfS8d/fL0Gl1uD1QT6Y3s0D+vLG6RdCRET31t/PAXte6YF5mxLxxrazOHg5Hx+PCISlce3Kg/ml1fjPrgv45VQ23KyNsWZqxwb3hZLLpLA1NdBm/GbrvoWn1q1bo3Xr1jh+/PiTzEPU4qw6moak3BJ8Oy4U5oZ6YschItIZDuaGCHS2wP6L1zGrt6fYcYgAAOdzbuKtbWdxOusmunvZ4t/DArhgCBHRE+RgboifpnbCD4ev4r+/X0JiZjE+H9UeqQXl+GT3RVSq1Pi/Pp6Y1duT056fEI7/IhJRZlEFvvjjMvr62mNwQCux4xAR6Zw+vvZYsj8ZReVKWJvoix2HWrDy6hos/vMyVh5Ng5WxHr6KDEZEeyf2HyMiEoFUKsELPduic1sbvLzhFMb+EAMACPewxr+HBdbb/4kaFwtPRCIRBAELo89BIgE+GBbAN6ZERI+gXzsHfLUvGQcuXceIUBex41ALdTSlAK9vOYPs4kqM6eiGNwb5wsKYo5iJiMQW5GKJ317ujqV/pcDbwRTDgp35uUsE9U40/+qrrxq0jYgezm9nc/HXpXzM6+8NZ0sjseMQEekkfydz2JsZYN/F62JHoRZqc3wmJq2MhaGeFFte7IyPRwSy6ERE1ISYGMgxf5Avhoe4sOgkknoLT2vWrLlr2+rVq7WRhajFuFmpwvu/JiHA2RyTu7iLHYeISGdJpRL08bXHoUv5UNZoxI5DLYggCFi6PxmvbTmDTh7W2D6rKxTuXLGOiIjof913qt2GDRuwfv16pKamIiIiom57SUkJrK35nyrR4/hkz0UUllVj1eQwyGVc4YaI6HH08bVHVFwm4tOK0MXTVuw41AKoNbXT5dfFZGBYsBM+HdmeK9YRERHdx30LT126dIGjoyMKCgrw6quv1m03MzNDUFDQEwlH1BydTL+B9TEZmNatDQKcLcSOQ0Sk87p52UJfLsW+i9dZeCKtq1Sq8XLUKfyRlIcXe7bF6wN9IJVy6gYREdH93Lfw1Lp1a7Ru3Rp//vknjIyMIJVKcfnyZVy8eBGBgYFPMiNRs7Ls4BXYmupjXn9vsaMQETULxvpydGlrg/0Xr+Odp/3EjkPNWFG5EtPWxCExsxjvR/hjEqfLExER1aveMcE9evRAVVUVsrOzMWDAAPz000+YPHnyE4hG1PxcL6nC/ovXMbKDK0wMuKgkEVFj6etrj9SCclzJLxM7CjVTmUUVGPndMZzPKcF340JZdCIiImqgegtPgiDA2NgY27Ztw0svvYTNmzfj/PnzTyIbUbOzJSELao2A0WGuYkchImpWevvaAwD2X+DqdtT4zmXfxPBvj6GwXIl10zthUICj2JGIiIh0RoMKT8ePH8e6deswZMgQAIBarW7Qwffs2QMfHx94enpi0aJFd91+6NAhhIaGQi6XY8uWLXfctmbNGnh5ecHLy+uOlfVOnjyJwMBAeHp64uWXX4YgCA3KQiQ2QRCwKS4THdtYo42tidhxiIiaFRcrY/i2MsO+i3liR6FmRBAE/HYmF6O/Pw4DuRRbZ3ZGGFeuIyIieij1Fp4WL16Mjz/+GMOHD4e/vz+uXr2K3r1713tgtVqNWbNmYffu3UhKSsKGDRuQlJR0xz5ubm5YvXo1xo4de8f2oqIivP/++4iJiUFsbCzef/993LhxAwAwc+ZM/PDDD0hOTkZycjL27NnzMM+XSDQxqUVIK6xAJEc7ERFpRb92DohLu4Htp7LFjkLNQF5JFV746SRmrU+Ap70ptr3UBZ72ZmLHIiIi0jn1Npnp2bMnevbsWXfdw8MDS5YsqffAsbGx8PT0hIeHBwAgMjIS0dHR8PP7u+mnu7s7AEAqvbP+9fvvv6N///6wtq79Rql///7Ys2cPevXqhZKSEoSHhwMAJk6ciO3bt2Pw4MH15iES28a4TJgZyjGYw/OJiLTi+e4eiE0rwisbE3HhWgleH+gLGVcbo4ckCAI2xWfi379dgLJGgzcH+2JatzaQy+r9vpaIiIju4b6Fp1deeQWLFy/GM888A4nk7jdtO3bseOCBs7Oz4er698gOFxcXxMTENCjUve6bnZ2N7OxsuLi43LX9XpYvX47ly5cDAPLz8xv0uETacrNShV1nc/GcwgVG+jKx4xARNUsWxnr4eVonvP/reXx/8CouXyvFV2NCYG6oJ3Y00hHpheV4c9tZHLtSiE5trLHo2SBOjyciInpM9y08TZgwAQDwr3/964mFaUwzZszAjBkzAAAKhULkNNTS7UjMRnWNBpFhbmJHISJq1vTlUnw0PBC+juZ4f8d5DP/mKH6cFMbiAT2QWiNg1dFUfLb3EuRSKT4aHoAxYW6QcsQcERHRY7tv4alDhw4Aaqfa3R4xZGdn1+ADOzs7IzMzs+56VlYWnJ2dG3zfAwcO3HHfXr16wdnZGVlZWY90TCIxRcVlwt/JHAHOFmJHISJqESaEt0ZbOxPMWpeAoUuP4Jtxoeju1fD3MdRyXLxWgvlbz+J0ZjH6+trj38MD4GhhJHYsIiKiZuOBk9Xfe+892NrawsfHB97e3rCzs8MHH3zQoAOHhYUhOTkZqampUCqViIqKQkRERIPuO3DgQOzduxc3btzAjRs3sHfvXgwcOBCOjo4wNzfHiRMnIAgC1q5di6FDhzbomERiOZd9E+dzSjCaTcWJiJ6oLm1tsWN2NzhaGGHSylisOJLK1XAJGo2Ac9k38d2BKxiz/ASeXnIEmUUVWDImBD9OUrDoRERE1MjuO+Lpiy++wNGjRxEXF4c2bdoAAK5evYqZM2fiyy+/xNy5cx98YLkcS5cuxcCBA6FWqzF16lT4+/tj4cKFUCgUiIiIQFxcHIYPH44bN27g119/xbvvvovz58/D2toa77zzDsLCwgAACxcurGs0/u2332Ly5MmorKzE4MGD2VicmryNcZkwkEsxtD1H5xERPWmu1sbY+lIXzNuYiA93JuFibgn+PTwABnL222tJ8kurcSQlH4cuF+Bwcj4KypQAAN9WZpje3QMzenjA2kRf5JRERETNk0S4z1d/ISEh+OOPP2Bra3vH9vz8fAwYMACnTp16IgEbg0KhQHx8vNgxqAWqVKrR8T9/ol87B3w5OljsOERELZZGI2Dxn5exZH8K3KyNoXC3QoCTBQJdLODnaA4Tg3oX+iUdIggCzmbfxJ5z13DgUj6ScksAANYm+ujmaYse3nbo7mULB3NDkZMSERHptobUW+77LkulUt1VdAJq+zypVKrHT0fUAuw+l4vSqhqMUnCaHRGRmKRSCeYN8IG/swWiYjNw6HIBtiXUrowrkQBtbE0Q6GyBACcLBDhbwM/JHBZGXA1Pl9wuNv12Nhe7zuYis6gSMqkEHVpb4bWBPujuZYsAJws2DCciInrC7lt40te//3DjB91GRH/bGJcJdxtjhHtYix2FiIgADPRvhYH+rQAAeSVVOJd9E2ezb+JcdgliU4sQnZhTt6+zpRH8nMzRztEcfo5m8HO0gIuVEQsXTci9ik1yqQRdPW3xf729MMDfAZbGfN9KREQkpvsWnk6fPg1zc/O7tguCgKqqKq2GImoOruaXISa1CK8P8oFEwg8pRERNjYO5IRzMDdG3nUPdtvzSapzLuYmknBJcyK392XchD5pbjQlMDeRo52iGdo7mGBzgiHAPa77G/8OF3BL8dek6qlUa1Gg0qFELUKprL2s0GqjUAmrUGqgFQILa0WZSiQQSAPjHn6USCe71a/3nthq1gBOphSw2ERERNXH3LTyp1eonmYOo2dkUnwWZVIKRoS5iRyEiogayMzNAbx979Paxr9tWqVTjUl5pXSEqKacEW09mYe3xdLR3tcTMnm0xwM+hxY6EUqk12Hs+D2uOpyE2tahuu0wqgZ5MAj2pFHKZBHKZFHpSCfTkUkglEgiCAAGAIAAaQcDtrqMaQYDmHi1I79WVtJ2jOf6vjxcG+LHYRERE1FSxkyaRFqjUGmxNyEJvH3vYs3EpEZFOM9KXIdjVEsGulnXbqlRqbDmZheWHruLFn0/Cw84EL/TwwLAQ5xazYl5BWTU2xGRgXUwGrpVUwdXaCAueaodnO7jAyliPI8GIiIgIAAtPRFrx18XryC+tRmQYm4oTETVHhnoyjA9vjcgwV+w+dw3LDl7B/K1n8cUflzGtWxuM6egGM8Pm2Zw8MbMYa4+lYeeZXCjVGnT3ssW/hwWgt689ZC101BcRERHdHwtPRFqwMS4T9mYG6OVjJ3YUIiLSIrlMimfaO+HpIEccTi7AsoNX8J9dF/H1/hRM7Nwas3p7wli/ebzdyiupwsyfTyIhoxgm+jKM6eiKCZ3d4WlvKnY0IiIiasKaxzshoibk2s0q/HXpOl7s2RZymVTsOERE9ARIJBL08LZDD287nM4sxrKDV/DtgSuIS7uBVZPDYGKg22+5NBoB/9p8GhdyS/F+hD9GhDo32xFdRERE1Lj4qZiokW1NyIJGAEYpOM2OiKglau9qie/Gd8BXkSGITyvClNVxqFDWiB3rsaw6lobDyQV4++l2mNTFnUUnIiIiajAWnogakUYjYGNcJjp72MDd1kTsOEREJKKI9k5YfLv4tEp3i08Xr5Xgkz0X0dfXHmM7uokdh4iIiHQMC09EjaS8ugaf/H4RGUUVGM2m4kREhNri05ejgxGXVoSpOjjyqUqlxitRiTA3lOOTkUFcqY6IiIgemm43HCBqAtQaAVsTsvDZ75dwvbQaQ4OdMDiwldixiIioiRga7AwAmLsxEdNWx2Pl5DAY6ctETtUwn++9hIvXSrFysgK2pgZixyEiIiIdxMIT0WM4dqUA/955AUm5JQi+1dOjQ2srsWMREVETMzTYGYIAzNuUiKmr43Si+HQ0pQA/HE7F+HA39PF1EDsOERER6SgWnogewdX8Mny8+yL+SMqDs6URlowJwTNBjpyCQERE9zUsxBkCBLy66TSmrYnDiklNt/h0s0KFVzedhoedCRY85Sd2HCIiItJhLDwRPYTiCiWW7EvB2uNpMNST4fVBPpjatQ0M9ZrmBwciImpahoe4AADmbTqN6Wvj8OPEpld8EgQBb20/i4Kyamyb2KXJ5SMiIiLdwsITUQMdSynAS+sTUFKpwugwN8zr7w07M/a7ICKihzM8xAWCALy6+TSeXxuPVVPCoCdrOuu9bE/Mxm9ncvHaQB8EuViKHYeIiIh0HAtPRA2wKT4Tb207Cw87E0TNCIdvK3OxIxERkQ4bEeqCKpUGb/1yFnvP52FIkKPYkQAAmUUVWLj9PBStrfBiz7ZixyEiIqJmoOl8vUbUBAmCgM9+v4TXt5xB57Y22DKzC4tORETUKEaHucLZ0ggbYjPEjgKgdpXWVzedhgDgy9HBkEnZt5CIiIgeHwtPRPdRpVJjTlQilv6VgsgwV6ycHAZzQz2xYxERUTMhk0oQGeaKIykFSC8sFzsOvj90BbFpRXg/wh+u1sZixyEiIqJmgoUnonsoKldi/I8x2HE6B/MH+eLjEYFNqv8GERE1D88pXCGVABvjMkXNcb2kCl/+cRlPBbbCiFBnUbMQERFR88JP0kT/42p+GUZ8exRnsm/im7GhmNmrLSQSTjcgIqLG18rCEH18HbApPgsqtUa0HL+cyoZKLeDVAT78P4+IiIgaFQtP1KSVVKnw18XriE8rQsr1MhSVK6HWCFp7vNjUIoz47hhKqmqw4fnwJtPslYiImq+xnVxRUFaNfRfyRHl8QRCw+WQWQt0s0dbOVJQMRERE1HxxVTtqkgRBwPbEbHz020UUlFXfcZtEAlgY6cHaWB+WxnqwNtGHpbE+LI30YGWiDwsjPVga68HK+M4/y6QSVKnUqFSpUalUo0qlQaVKjapbP6kF5fh0zyW4WBth9eSOcLNhfwsiItK+nt72cLQwxIbYTAwKePJfeCRmFiPlehk+HhH4xB+biIiImj+tFp727NmDOXPmQK1WY/r06XjjjTfuuL26uhoTJ07EyZMnYWNjg40bN8Ld3R3r1q3Df//737r9zpw5g4SEBAQHB6NXr17Izc2FkZERAGDv3r2wt7fX5tOgJ+xyXine2X4OMalFaO9qic9HtYcEwI0KJW6UK1FUoUJxhRJF5UrcqFAip7gK53NKUFyhQqVK/ViP3amNNb6f0AGWxvqN82SIiIjqIZNKMErhiiX7k5FZVPHEG3tvPpkFQz0pnuYoXyIiItICrRWe1Go1Zs2ahT/++AMuLi4ICwtDREQE/Pz86vZZsWIFrKyskJKSgqioKMyfPx8bN27EuHHjMG7cOADA2bNnMWzYMAQHB9fdb926dVAoFNqKTiIpr67BV/uSsfJIKkwN5fjP8EBEhrlC+hDLOVep1LhZqULxreLUjQoVblbWXmoEAUZ6MhjpyWB468dIXwZDuRRG+jIY68vgYWv6UI9HRETUGEaFueLr/cnYFJ+JVwf4PLHHrVKp8evpHAwOcIQZV24lIiIiLdBa4Sk2Nhaenp7w8PAAAERGRiI6OvqOwlN0dDTee+89AMDIkSMxe/ZsCIJwR1PLDRs2IDIyUlsxqQkQBAG7zl7DhzuTcK2kCqMVrpg/2BfWJg8/6uh2QcnB3FALSYmIiLTD2dIIPb3tsCk+E3P6ekH+hFZS/f38NZRW1WBkB5cn8nhERETU8mjtXU12djZcXV3rrru4uCA7O/u++8jlclhYWKCwsPCOfTZu3IgxY8bcsW3KlCkIDg7Ghx9+CEG4d6Pp5cuXQ6FQQKFQID8/vzGeEmnBlfwyTFwZi1nrE2Bjqo9tL3XBJyODHqnoREREpMvGdHRDXkk1/rr05N63bDmZBWdLI3T2sHlij0lEREQtS5Ne1S4mJgbGxsYICAio27Zu3TqcPXsWhw8fxuHDh/HTTz/d874zZsxAfHw84uPjYWdn96Qi00M4fqUQgxcfRmJmMd6P8MeO2d0Q6mYldiwiIiJR9PG1h72ZATbEZjyRx8sursSRlAI828GF08yJiIhIa7RWeHJ2dkZmZmbd9aysLDg7O993n5qaGty8eRM2Nn9/4xYVFXXXaKfbxzAzM8PYsWMRGxurradAWlRSpcKrmxLhbGWEfa/2xKQu7pDxTS8REbVgcpkUo8NcceDSdeQUV2r98badzIIgAM9xmh0RERFpkdYKT2FhYUhOTkZqaiqUSiWioqIQERFxxz4RERFYs2YNAGDLli3o06dPXX8njUaDTZs23dHfqaamBgUFBQAAlUqFnTt33jEainTHe9HnkVdajS9GtYe9GfsxERERAcAohSsEAJviM+vd93EIgoAtCVkI97B+4qvoERERUcuitcKTXC7H0qVLMXDgQLRr1w6jRo2Cv78/Fi5ciB07dgAApk2bhsLCQnh6euKLL77AokWL6u5/6NAhuLq61jUnB4Dq6moMHDgQQUFBCA4OhrOzM55//nltPQXSkt1nc7HtVDZm9fZECKfWERER1XG1NkZ3LztsjMuEWnPvPpaNIS7tBtILK/BcB9f6dyYiIiJ6DBLhft25mxGFQoH4+HixYxCA6yVVGLj4EFytjbF1ZhfoPaFVe4iIiHTFnnO5ePHnBKycrEAfXwetPMZrm09j19lcxL3dD8b6WlvkmIiIiJq5htRb+KmfnhhBEDB/6xlUKNX4YlQwi05ERET30LedA2xNDbAhVjvT7cqra/Db2VwMCXJk0YmIiIi0jp/86YnZEJuJvy7l443BvvC0NxU7DhERUZOkJ5PiOYUL9l+8jms3qxr9+LvO5qJCqcZzCk6zIyIiIu1j4YmeiLSCcvz7tyR09bTBpM7uYschIiJq0iLDXKHWCNishSbjm09moY2tCRSt2WeRiIiItI+FJ9K6GrUG8zYlQiaV4L8j20MqlYgdiYiIqElrbWOCrp42iIrLhKYRm4ynF5YjNrUIIzu41K0kTERERKRNLDyR1n1/6CoSMorx4dAAOFkaiR2HiIhIJ4zp6Ibs4kocTilotGNuPZkFiQQYHuLcaMckIiIiehAWnkirzmXfxJd/XMaQIEcMDXYSOw4REZHOGODXCjYm+tgQk9Eox9NoBGxNyEY3T1t+EURERERPDAtPpDVVKjXmbkyEtYk+PhoWwCH9RERED0FfLsWoMFf8nnQN0YnZj328Y1cKkV1cyabiRERE9ESx8ERa89nvl5B8vQyfjgyCpbG+2HGIiIh0zpy+Xujobo1XN53G/ot5j3WszSczYW4oxwA/h0ZKR0RERFQ/Fp5IK1Kul2HF0VSM6+SGXj72YschIiLSSYZ6Mvw4SQE/J3PM/DkBJ64WPtJxSqpU2HPuGiKCnWCoJ2vklERERET3x8ITacWaY2nQk0oxt7+32FGIiIh0mpmhHlZP6Qg3a2NMXxOPM1nFD32MnadzUV2jwcgOnGZHRERETxYLT9ToblaqsDUhC8+0d4KtqYHYcYiIiHSetYk+fprWCZbGepi0MhbJeaUNvu+ZrGL8cPgqvOxN0d7FQospiYiIiO7GwhM1us3xmahQqjG5i7vYUYiIiJqNVhaGWDe9E+QyKcaviEFmUcUD988prsS8jYmIWHoUJZUqvP20Hxf6ICIioieOhSdqVGqNgLXH06FobYVAfqtKRETUqFrbmODnaZ1QpdJg/IoYXC+pumuf8uoafL73Enp/dgA7z+ZiZq+2+Ou1XujpbSdCYiIiImrpWHiiRvXXxevIKKrA5K7uYkchIiJqlnxamWH1lDDkl1ZjwopYFFcoAdR++RMVm4Fenx3A1/tTMNC/FfbN64n5g3xhbqgncmoiIiJqqeRiB6DmZfWxNLQyN8RA/1ZiRyEiImq2Qtys8ONEBSavjsPkVXGY3dsTn+29hIvXShHqZonvJ3RAqJuV2DGJiIiIOOKJGk9yXimOpBRgQufW0JPx1CIiItKmLp62WDomBGezb2L62niUVddg6dgQbJ3ZhUUnIiIiajI44okazepjadCXSxEZxqWaiYiInoQB/q2wfEIHZBZVILKjGwz1ZGJHIiIiIroDC0/UKG5WqLAtIRtD2zvBxtRA7DhEREQtRt92DmJHICIiIrovzoeiRrEpPhOVKjWbihMRERERERFRHRae6LGpNQLWHE9DxzbW8HeyEDsOERERERERETURLDzRY9t3IQ9ZNyoxpYu72FGIiIiIiIiIqAlh4Yke2+pjaXCyMER/P/aYICIiIiIiIqK/sfBEj+XStVIcu1KICZ3dIZfxdCIiIiIiIiKiv2m1UrBnzx74+PjA09MTixYtuuv26upqjB49Gp6enujUqRPS0tIAAGlpaTAyMkJwcDCCg4Px4osv1t3n5MmTCAwMhKenJ15++WUIgqDNp0D1WH0sDQZyKSLDXMWOQkRERERERERNjNYKT2q1GrNmzcLu3buRlJSEDRs2ICkp6Y59VqxYASsrK6SkpGDu3LmYP39+3W1t27ZFYmIiEhMTsWzZsrrtM2fOxA8//IDk5GQkJydjz5492noKVI/iCiV+OZWF4SHOsDLRFzsOERERERERETUxWis8xcbGwtPTEx4eHtDX10dkZCSio6Pv2Cc6OhqTJk0CAIwcORL79u174Aim3NxclJSUIDw8HBKJBBMnTsT27du19RSoHhvjMlGl0mASm4oTERERERER0T1orfCUnZ0NV9e/p1+5uLggOzv7vvvI5XJYWFigsLAQAJCamoqQkBD07NkThw8frtvfxcXlgce8bfny5VAoFFAoFMjPz2/U50ZAjVqDtcfTEe5hjXaO5mLHISIiIiIiIqImSC52gHtxdHRERkYGbGxscPLkSQwbNgznz59/qGPMmDEDM2bMAAAoFAptxGzR/ryQh+ziSrzztJ/YUYiIiIiIiIioidLaiCdnZ2dkZmbWXc/KyoKzs/N996mpqcHNmzdhY2MDAwMD2NjYAAA6dOiAtm3b4vLly3B2dkZWVtYDj0nad+1mFZb+lQJnSyP0a2cvdhwiIiIiIiIiaqK0VngKCwtDcnIyUlNToVQqERUVhYiIiDv2iYiIwJo1awAAW7ZsQZ8+fSCRSJCfnw+1Wg0AuHr1KpKTk+Hh4QFHR0eYm5vjxIkTEAQBa9euxdChQ7X1FOh/VKnUWLo/Gb0/O4DLeWWYP9gXcplWF0YkIiIiIiIiIh2mtal2crkcS5cuxcCBA6FWqzF16lT4+/tj4cKFUCgUiIiIwLRp0zBhwgR4enrC2toaUVFRAIBDhw5h4cKF0NPTg1QqxbJly2BtbQ0A+PbbbzF58mRUVlZi8ODBGDx4sLaeAt0iCAJ+P5+Hj3YlIbOoEoP8W+Gtp9rBzcZY7GhERERERERE1IRJhActI9dMKBQKxMfHix1DJyXnleL9X5NwJKUA3g6mePcZf3T1tBU7FhERERERERGJrCH1libZXJzuVlyhxK+nc2BragAbUwPYmOrD1tQA5oZySCSSRn+8mxUqfPnnZfx0Ih2mBnK8H+GPcZ3cOLWOiIiIiIiIiBqMhScdcbWgHO9E372yn55MAhuTvwtR1ib6MDWQw8RADlMD2a1Led02EwM59GQSVCjVqFSqUa6sQUW1GhXKGpQray/Lqmqw43QOblaqMLaTG+b194G1ib4Iz5qIiIiIiIiIdBkLTzqivYslYhf0RWGZEoVlShSUVaOgrBqF5UoUlNZeFpZV40p+Gcqra1BWXQOV+uFnUcqkEhjry9DexRJvPdUOfk7mWng2RERERERERNQSsPCkI2RSCezNDGFvZtjg+1TXqFFera4rRP2zIGWiL4OxgRwm+jIY6ctgoi+HsYEM+jKpVqbuEREREREREVHLw8JTM2Ygl8FALuM0OSIiIiIiIiISBTtFExERERERERGRVrDwREREREREREREWsHCExERERERERERaQULT0REREREREREpBUsPBERERERERERkVaw8ERERERERERERFrBwhMREREREREREWkFC09ERERERERERKQVLDwREREREREREZFWSARBEMQOoW22trZwd3cXO0ajyM/Ph52dndgxiB4Jz1/SZTx/SdfxHCZdxvOXdB3PYdJlDzp/09LSUFBQ8MD7t4jCU3OiUCgQHx8vdgyiR8Lzl3QZz1/SdTyHSZfx/CVdx3OYdNnjnr+cakdERERERERERFrBwhMREREREREREWkFC086ZsaMGWJHIHpkPH9Jl/H8JV3Hc5h0Gc9f0nU8h0mXPe75yx5PRERERERERESkFRzxREREREREREREWsHCExERERERERERaQULTzpiz5498PHxgaenJxYtWiR2HKIHyszMRO/eveHn5wd/f3989dVXAICioiL0798fXl5e6N+/P27cuCFyUqIHU6vVCAkJwdNPPw0ASE1NRadOneDp6YnRo0dDqVSKnJDo3oqLizFy5Ej4+vqiXbt2OH78OF+DSad8+eWX8Pf3R0BAAMaMGYOqqiq+BlOTNXXqVNjb2yMgIKBu2/1ecwVBwMsvvwxPT08EBQUhISFBrNhEde51Dr/22mvw9fVFUFAQhg8fjuLi4rrbPv74Y3h6esLHxwe///57vcdn4UkHqNVqzJo1C7t370ZSUhI2bNiApKQksWMR3ZdcLsfnn3+OpKQknDhxAt988w2SkpKwaNEi9O3bF8nJyejbty+LqNTkffXVV2jXrl3d9fnz52Pu3LlISUmBlZUVVqxYIWI6ovubM2cOBg0ahIsXL+L06dNo164dX4NJZ2RnZ2PJkiWIj4/HuXPnoFarERUVxddgarImT56MPXv23LHtfq+5u3fvRnJyMpKTk7F8+XLMnDlTjMhEd7jXOdy/f3+cO3cOZ86cgbe3Nz7++GMAQFJSEqKionD+/Hns2bMHL730EtRq9QOPz8KTDoiNjYWnpyc8PDygr6+PyMhIREdHix2L6L4cHR0RGhoKADAzM0O7du2QnZ2N6OhoTJo0CQAwadIkbN++XcSURA+WlZWF3377DdOnTwdQ+w3l/v37MXLkSAA8h6npunnzJg4dOoRp06YBAPT19WFpacnXYNIpNTU1qKysRE1NDSoqKuDo6MjXYGqyevToAWtr6zu23e81Nzo6GhMnToREIkF4eDiKi4uRm5v7pCMT3eFe5/CAAQMgl8sBAOHh4cjKygJQew5HRkbCwMAAbdq0gaenJ2JjYx94fBaedEB2djZcXV3rrru4uCA7O1vEREQNl5aWhlOnTqFTp07Iy8uDo6MjAKBVq1bIy8sTOR3R/b3yyiv49NNPIZXW/ldZWFgIS0vLuv+A+VpMTVVqairs7OwwZcoUhISEYPr06SgvL+drMOkMZ2dn/Otf/4KbmxscHR1hYWGBDh068DWYdMr9XnP52Y500cqVKzF48GAAj3YOs/BERFpTVlaGZ599FosXL4a5ufkdt0kkEkgkEpGSET3Yzp07YW9vjw4dOogdheih1dTUICEhATNnzsSpU6dgYmJy17Q6vgZTU3bjxg1ER0cjNTUVOTk5KC8vv2sKCJEu4Wsu6bKPPvoIcrkc48aNe+RjsPCkA5ydnZGZmVl3PSsrC87OziImIqqfSqXCs88+i3HjxmHEiBEAAAcHh7qhxLm5ubC3txczItF9HT16FDt27IC7uzsiIyOxf/9+zJkzB8XFxaipqQHA12JqulxcXODi4oJOnToBAEaOHImEhAS+BpPO+PPPP9GmTRvY2dlBT08PI0aMwNGjR/kaTDrlfq+5/GxHumT16tXYuXMn1q1bV1c8fZRzmIUnHRAWFobk5GSkpqZCqVQiKioKERERYsciui9BEDBt2jS0a9cO8+bNq9seERGBNWvWAADWrFmDoUOHihWR6IE+/vhjZGVlIS0tDVFRUejTpw/WrVuH3r17Y8uWLQB4DlPT1apVK7i6uuLSpUsAgH379sHPz4+vwaQz3NzccOLECVRUVEAQhLpzmK/BpEvu95obERGBtWvXQhAEnDhxAhYWFnVT8oiakj179uDTTz/Fjh07YGxsXLc9IiICUVFRqK6uRmpqKpKTk9GxY8cHHksiCIKg7cD0+Hbt2oVXXnkFarUaU6dOxYIFC8SORHRfR44cQffu3REYGFjXH+c///kPOnXqhFGjRiEjIwOtW7fGpk2b7mpiR9TUHDhwAJ999hl27tyJq1evIjIyEkVFRQgJCcHPP/8MAwMDsSMS3SUxMRHTp0+HUqmEh4cHVq1aBY1Gw9dg0hnvvvsuNm7cCLlcjpCQEPz444/Izs7mazA1SWPGjMGBAwdQUFAABwcHvP/++xg2bNg9X3MFQcDs2bOxZ88eGBsbY9WqVVAoFGI/BWrh7nUOf/zxx6iuroaNjQ2A2gbjy5YtA1A7/W7lypWQy+VYvHhxXf+n+2HhiYiIiIiIiIiItIJT7YiIiIiIiIiISCtYeCIiIiIiIiIiIq1g4YmIiIiIiIiIiLSChSciIiIiIiIiItIKFp6IiIiIiIiIiEgrWHgiIiIirfjoo4/g7++PoKAgBAcHIyYmBgCwePFiVFRUPPTxVq9ejZycnLrr06dPR1JSUqNk7dKly0Ptf+DAATz99NON8tj3Ul1djX79+iE4OBgbN26847b//T24u7ujoKBAa1m0KScnByNHjmzw/mq1Gh06dMChQ4fqtg0YMACbN2/WRjwiIiJqBHKxAxAREVHzc/z4cezcuRMJCQkwMDBAQUEBlEolgNrC0/jx42FsbNzg46nVaqxevRoBAQFwcnICAPz444+NlvfYsWONdqzGcOrUKQBAYmLiXbf97++hKaqpqYFcXv/bTCcnJ2zZsqXBx5XJZPj222/x/PPP4+TJk9iyZQukUimee+65x4lLREREWsQRT0RERNTocnNzYWtrCwMDAwCAra0tnJycsGTJEuTk5KB3797o3bs3AGDmzJlQKBTw9/fHu+++W3cMd3d3zJ8/H6GhodiwYQPi4+Mxbtw4BAcHo7KyEr169UJ8fDwAwNTUFAsWLED79u0RHh6OvLw8AMCVK1cQHh6OwMBAvP322zA1Nb1n3tvbDxw4gF69emHkyJHw9fXFuHHjIAgCAGDPnj3w9fVFaGgotm3bVnff8vJyTJ06FR07dkRISAiio6MBAHPmzMEHH3wAAPj999/Ro0cPaDSaOx63qKgIw4YNQ1BQEMLDw3HmzBlcv34d48ePR1xcHIKDg3HlypW6/bds2XLX7wEAvv76a4SGhiIwMBAXL158YK5/EgQBs2fPho+PD/r164ennnqqrhD0z5FU8fHx6NWr1wOPu3r1akRERKBPnz7o27cvJk6ciO3bt9c91rhx4+7KkJaWhoCAgLr7jxgxAoMGDYKXlxdef/31e/5dderUCZ07d8Z7772Ht956C0uXLr3nfkRERNRECERERESNrLS0VGjfvr3g5eUlzJw5Uzhw4EDdba1btxby8/PrrhcWFgqCIAg1NTVCz549hdOnT9ft98knn9Tt17NnTyEuLu6e1wEIO3bsEARBEF577TXhww8/FARBEIYMGSKsX79eEARB+O677wQTE5N75r29/a+//hLMzc2FzMxMQa1WC+Hh4cLhw4eFyspKwcXFRbh8+bKg0WiE5557ThgyZIggCILw5ptvCj/99JMgCIJw48YNwcvLSygrKxPKy8sFPz8/Yf/+/YK3t7eQkpJy1+POnj1beO+99wRBEIR9+/YJ7du3r8tx+/j/639/D61btxaWLFkiCIIgfPPNN8K0adMemOuftm7dKvTr10+oqakRsrOzBQsLC2Hz5s11x7399xQXFyf07NnzgcddtWqV4OzsXPf3eeDAAWHo0KGCIAhCcXGx4O7uLqhUqjsePzU1VfD39xcEQRBWrVoltGnTRiguLhYqKysFNzc3ISMj456/g8LCQsHY2Fh466237nk7ERERNR0c8URERESNztTUFCdPnsTy5cthZ2eH0aNHY/Xq1ffcd9OmTQgNDUVISAjOnz9/R9+m0aNHN+jx9PX163oudejQAWlpaQBqp/zdnoY1duzYBh2rY8eOcHFxgVQqRXBwMNLS0nDx4kW0adMGXl5ekEgkGD9+fN3+e/fuxaJFixAcHIxevXqhqqoKGRkZMDY2xg8//ID+/ftj9uzZaNu27V2PdeTIEUyYMAEA0KdPHxQWFqKkpKRBOf9pxIgRdz33++X6p0OHDmHMmDGQyWRwcnJCnz596n2sBx23f//+sLa2BgD07NkTycnJyM/Px4YNG/Dss8/WO/2ub9++sLCwgKGhIfz8/JCenn7P/Q4dOgQLCwucO3eu3rxEREQkLvZ4IiIiIq2QyWTo1asXevXqhcDAQKxZswaTJ0++Y5/U1FR89tlniIuLg5WVFSZPnoyqqqq6201MTBr0WHp6epBIJHWPW1NT88i5b08PbOixBEHA1q1b4ePjc9dtZ8+ehY2NzR3NwLXhduZ/5n1QroaQy+V1UwP/+Xdyv+PGxMTc9fc1ceJE/Pzzz4iKisKqVasa/Dz+97n8U3l5OV5//XXs378fU6ZMwa5du/DUU0891HMjIiKiJ4cjnoiIiKjRXbp0CcnJyXXXExMT0bp1awCAmZkZSktLAQAlJSUwMTGBhYUF8vLysHv37vse85/3a6jw8HBs3boVABAVFfWwT6OOr68v0tLS6votbdiwoe62gQMH4uuvv67rBXW7MXh6ejo+//xznDp1Crt3765b1e+funfvjnXr1gGo7S9la2sLc3PzB2Zp6O/hfrn+qUePHti4cSPUajVyc3Px119/1d3m7u6OkydPAkDd77Chx71t8uTJWLx4MQDAz8+v3swN8cEHH2DUqFHw9fXFt99+i7lz595RGCMiIqKmhYUnIiIianRlZWWYNGkS/Pz8EBQUhKSkJLz33nsAgBkzZmDQoEHo3bs32rdvj5CQEPj6+mLs2LHo2rXrfY85efJkvPjii3c01a7P4sWL8cUXXyAoKAgpKSmwsLB4pOdjaGiI5cuXY8iQIQgNDYW9vX3dbe+88w5UKhWCgoLg7++Pd955B4IgYNq0afjss8/g5OSEFStWYPr06XcVSN577z2cPHkSQUFBeOONN7BmzZp6szT093CvXP9r+PDh8PLygp+fHyZOnIjOnTvX3fbuu+9izpw5UCgUkMlkD3Xc2xwcHNCuXTtMmTKl3ufVEOfPn8cvv/yCBQsWAABCQkIwcOBAfPLJJ41yfCIiImp8EuH211VEREREzUxFRQWMjIwgkUgQFRWFDRs23HN1N6o1efJkPP300xg5cmSjHK+iogKBgYFISEh45KIfERER6Tb2eCIiIqJm6+TJk5g9ezYEQYClpSVWrlwpdqQW488//8S0adMwd+5cFp2IiIhaMI54IiIiIiIiIiIirWCPJyIiIiIiIiIi0goWnoiIiIiIiIiISCtYeCIiIiIiIiIiIq1g4YmIiIiIiIiIiLSChSciIiIiIiIiItKK/wcXVvsFS0BwogAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABk0AAAHDCAYAAACJcV3vAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd8VOeVPv5Hmhn13ntFCIneDZhijE1xwb3H3U7b32Y3yW422U3b/k92UzabZJ1mOy4x7hVsmsEYMB0BQggJ9d57HY3+n/NezZ0ZlUECCbXnuzuR7twp98po9N73vOccl97e3l4QERERERERERERERFNc67jfQBEREREREREREREREQTAYMmREREREREREREREREDJoQERERERERERERERFpGDQhIiIiIiIiIiIiIiJi0ISIiIiIiIiIiIiIiEjDoAkRERERERERERERERGDJkRERERERERERERERBoGTYiIiIiIiIiIiIiIiBg0ISIiIiIiIiIiIiIi0jBoQkREREREyo9+9CO4uLigpqZmvA9l0tu3b5/6Wb755pvjfShERERERDQCDJoQEREREdG4+vd//3e8++67mGh+85vf4IUXXhi39+/s7MR3vvMdREVFwdPTE8uXL8euXbvG7XiIiIiIiKYDBk2IiIiIiGhcMWgyuMcffxw/+9nP8PDDD+OXv/wlDAYDtmzZgs8//3zcjomIiIiIaKozjvcBEBERERERkaOjR4/itddew09/+lN8+9vfVvc9+uijmDNnDv7+7/8ehw4dGu9DJCIiIiKakphpQkREREREDqSnyX333Qc/Pz8EBwfjG9/4Bjo6OgY87uWXX8bixYtV6aigoCA88MADKC4udnhMTk4O7r77bkRERMDDwwMxMTHqcY2NjWq/9P1obW3Fiy++qL6Xm2RYXK5XyOuvv44f//jHiI6Ohq+vL+655x71mlLS6m/+5m8QFhYGHx8fPPHEE+o+e88//zzWr1+vHuPu7o709HT89re/dXhMQkICMjMzsX//fv241q1bp+9vaGjA3/7t36rHyWvIeUlQo38/GIvFgn/7t39T++X8b7zxRuTm5l72v4H0QpHMkmeffVa/T57/1FNP4fDhwwN+zkRERERENDqYaUJERERERA4kYCLBgP/4j//AF198gf/5n/9BfX09/vznP+uPkUDA97//ffXYp59+GtXV1fjVr36FNWvW4NSpUwgICEBXVxc2btyoghb/7//9PxU4KS0txYcffqiCDv7+/njppZfU85ctW6YHCJKTky97jHJsEqz5h3/4BxWEkPc2mUxwdXVVxypN7eXYpbxWYmIifvCDH+jPlQDJ7Nmzcfvtt8NoNOKDDz7A1772NRXg+PrXv64e84tf/EIdswRe/vEf/1HdFx4err62tLRg9erVyMrKwpNPPolFixapYMn777+PkpIShISE6O/1n//5n+qYJFtEgjo/+clPVLmtI0eOOD0/+RnOnDlTBa7syc9JnD59GrGxscP670lERERERMPn0tvb2zuCxxMRERER0RQlgQbJ3pBgwnvvvaffL4EE6e+RkZGBefPmobCwUAU2/vmf/xnf+9739MedO3cOCxcuVK8h98vEvmy/8cYbKhNkKBKYkP3D6R8imSY33HCDKlN18uRJFSgRDz30kCpntWnTJmzfvl1//MqVK1FWVoaCggL9vvb2dhVwsSfPk6yYS5cu6ffJe0gARN7T3g9/+EN17m+//TbuvPNOh31yeSVZKdbjTEtLUz8HNzc3tV8CUJK5c/bsWfX6Q5F9EqTZs2ePw/3nz59XAZ//+7//w5e//OXL/ryIiIiIiGhkWJ6LiIiIiIgcWLMtrCTjQliDERIskKwMyTKRDAvrTTJJUlJS8Omnn6rHSSaJ+OSTT9DW1jaqxyilsKwBE7F8+XIVsJDMD3tyv5SyMpvN+n32ARPJ/pBjX7t2LfLy8vSyYc689dZbmD9//oCAiZCAiT0pD2YNmAjJUBHyXs5IYEfKfvUnJbqs+4mIiIiIaPQxaEJERERERA4k8GFPskqkxJQ1W0MyMiRAIY8LDQ11uEnJqqqqKvU4KYv1zW9+E3/4wx9UxoaU6vr1r389rMDE5cTFxTlsWwM0/UtWyf0S4LF/z4MHD2LDhg3w9vZWZcTkuK0ZM8M5NslGcZYl4uw4AwMD1VcpIeaMBHb692IR1t4y/TNliIiIiIhodLCnCREREREROdU/e0KCEHLfjh07VLPywcptWf33f/+3auwu5b527tyJv/7rv9Z7pUhz9Cs12Ps6u99alVgCHtKMfdasWfjZz36mgiySCSJZND//+c/VuY2myx3PUCIjI1X/l/7Ky8vV16ioqFE6QiIiIiIissegCREREREROZBMEskSsZJG6xJMkObw1swTmfSXx0iz8suZO3euuv3TP/0TDh06hFWrVqmeHP/6r/86aFBmLEnTd8ngkKbt9lkg1pJi9oY6Ljl/6d8ylhYsWKCOqampyaEZvLWBvOwnIiIiIqLRx/JcRERERETkQEpo2fvVr36lvm7evFl9veuuu1QGhTR8758xIdu1tbXqe5nwt+8lIiR4IqW+7EtPSZmshoYGXAvWzA/745aSXM8///yAxw51XHfffTcyMjLwzjvvjDiDZLjuuece9PT04He/+51+n/zM5DilT0v/MmRERERERDQ6mGlCREREREQO8vPzcfvtt2PTpk04fPgwXn75ZTz00EOq+bk100KyRL773e+qPid33HEHfH191fMkkPDss8/i29/+Nvbu3Yu/+qu/wr333qsyUiSA8tJLL6nAhQQerBYvXozdu3ercllSdkoyWCQwMBZuvvlmVY7rtttuw5e//GW0tLTg97//PcLCwvTSV/bH9dvf/lad64wZM9Rj1q9fj7/7u7/Dm2++qc5LGs/L4+rq6lT2imTQWH9OV0POX15ffsbSI0be/8UXX1Q/7z/+8Y9X/fpERERERDQ4Bk2IiIiIiMjBtm3b8IMf/AD/8A//AKPRqAIfP/3pTx0eI/skECJ9QCTjREj2gwQlJOAiJHggzd+lJJb05/Dy8lL3SS+U6667Tn8tCZZIoEXKd7W3t+Oxxx4bs6BJamqqCnjIe0lgJyIiAl/96ldVM3gJgNiTn0FhYSF+8pOfoLm5GWvXrlVBE+nZcuDAAfzwhz9UQSIJZkhARXqlXE2flv7+/Oc/4/vf/74KNEnj+Hnz5uHDDz/EmjVrRu09iIiIiIjIkUvvaOWPExERERERERERERERTWLsaUJERERERERERERERMSgCRERERERERERERERkYZBEyIiIiIiIiIiIiIiIgZNiIiIiIiIiIiIiIiINAyaEBERERERERERERERMWhCRERERERERERERESkMWKKsVgsKCsrg6+vL1xcXMb7cIiIiIiIiIiIiIiIaBz19vaiubkZUVFRcHV1nV5BEwmYxMbGjvdhEBERERERERERERHRBFJcXIyYmJjpFTSRDBPryfv5+Y334RARERERERERERER0ThqampSyRbW+MG0CppYS3JJwIRBEyIiIiIiIiIiIiIiEsNp6cFG8ERERERERERERERERAyaEBERERERERERERERaRg0ISIiIiIiIiIiIiIimoo9TYiIiIiIiIiIiIjIUU9PD7q7u8f7MIjGjJubG1xdrz5PhEETIiIiIiIiIiIioimqt7cXFRUVaGhoGO9DIRpTEjBJTExUwZOrwaAJERERERERERER0RRlDZiEhYXBy8sLLi4u431IRKPOYrGgrKwM5eXliIuLu6p/5wyaEBEREREREREREU3RklzWgElwcPB4Hw7RmAoNDVWBE7PZDJPJdMWvw0bwRERERERERERERFOQtYeJZJgQTXVufWW5JFh4NRg0ISIiIiIiIiIiIprCWJKLpgOXUfp3zqAJERERERERERERERERgyZERERERERERERENNGsW7cOf/M3fzPehzGhFBQUqGyK06dPj+h58px3330X4y0hIQG/+MUvMNGxETwREREREREREY2+xkbgxAnta2gosHAh4O093kdFNC29fPZltFnaMJH4u/vjsQWPjdv779u3DzfccAPq6+sREBAw7d5/LL3wwgsq4NXQ0OBw/7Fjx+A9Cf4OMGhCRERERERERESjp7cXOHIE2LNHulDb7v/8c2DTJmD+fFn2PJ5HSDTtNHY2otncPN6HQdNcqATQJwGW5yIiIiIiIiIiotFRVydLjIGPP3YMmIiODkDKw7zyCtBv9TER0WDMZjP+6q/+Cv7+/ggJCcH3v/999Epgtk9nZye+/e1vIzo6WmUwLF++XGVwWBUWFuK2225DYGCg2j979mxs375dlbmSLA8h+6R81eOPPz5k1oRkgnz44YdITU2Fl5cX7rnnHrS1teHFF19UJafkNf76r/8aPT09+vNeeuklLFmyBL6+voiIiMBDDz2Eqqoqtc/Z+1ssFvzkJz/BjBkz4O7ujri4OPzbv/2bwzHl5eWp58uxzJ8/H4cPHx7Rz/Xs2bNYv349PD09ERwcjGeffRYtLS0Oj/nTn/6kfl5yDJGRkeq/g9XPfvYzzJ07V/1MY2Nj8bWvfU1/vvz8n3jiCTQ2NqrzktuPfvSjQctzFRUVYevWrfDx8YGfnx/uu+8+VFZW6vvleQsWLFA/S3mu/Dt44IEH0Nw8tgFABk2IiIiIiIiIiGh0skt++1uZpXT+2Nxc4De/AY4e1Z5HRDQECUoYjUYcPXoUv/zlL9Vk/R/+8Ad9v0zkS8Dgtddew5kzZ3Dvvfdi06ZNyMnJUfu//vWvq8DKZ599pgIF/9//9/+pCXqZ6H/rrbfUY7Kzs1FeXq5efygSIPmf//kf9T4ff/yxCgzceeedKgAjN5nUf+655/Dmm2/qz+nu7sa//Mu/ICMjQ/UTkUCJNTDi7P2/+93v4j//8z9VgOj8+fN49dVXER4e7nA8//iP/6iCRdLbZObMmXjwwQdVgGk4WltbsXHjRhWskXJZb7zxBnbv3u0QFPntb3+rfnYSTJGf2/vvv6+COFaurq7q55GZman+G+3duxd///d/r/atXLlSBUYkCCLnJTc51v4kOCQBk7q6Ouzfvx+7du1SwaD777/f4XGXLl1SPz8JWslNHis/n7HE8lxERERERERERGTT1SWzeMCFC0B1tSz1tgU35Kv1Zr8tq6vb20f2Htu3A+fOAVu3AsHBY3MuRDSpSXDh5z//ucpWkCwPmcCX7WeeeUZlKTz//PPqa1RUlHq8TM5LUEPu//d//3e17+6771ZZESIpKUl/7aCgIPU1LCzssj1FJAAigYTk5GS1LZkmEiiRrAgJwqSnp6vMj08//VSf9H/yySf158v7SpBh6dKlKiNDnjPY+0sGhQRP/vd//xePPab1e5H3vP766x2OR87zlltuUd//+Mc/Vhkhubm5mDVr1mV/phKE6ejowJ///Ge9v4i8n2TkSFApPDwc//qv/4pvfetb+MY3vqE/T47dSvqVWEkGiDz+K1/5Cn7zm9/Azc1NZYTIfzPJsBnKnj171H/P/Px89d9ZyDHJuUgwx/p+ElyRbB/J2BFf+tKX1HP7Z9+MJgZNiIiIiIiIiIimOwmMSAbI2bPAxYsDS2uNlaIiLTtl3TpZnizLl6/N+xLRpHDdddepyXerFStW4L//+79VGSyZcJevkmlhTzJLpOSUkJJZX/3qV7Fz505s2LBBBVDmzZs34uOQMljWgImQwIIECyT4YX+ftfyWOHHihCovJZkm0uxdJv+FBHIkyDKYrKwsdfw33nij0+OxPwcpnSXkvYcTNJH3kJJe9g3ZV61apY5Psl5cXFxQVlbm9BgkM+U//uM/cOHCBTQ1NaksFwnESEaO/KyGQ45DgiXWgImQn4sEkGSfNWgiP2drwMR6vvY/57HAoAkRERERERER0XTV2grs3w9kZMhM4/gFbHbvBs6f17JO+pWhISIajGRsGAwGFZyQr/aswYynn35alaL66KOPVOBEJvol6PL//t//G9F7mUwmh20JLAx2nzUwYi2BJbdXXnlFNUCXYIlsd0mm3RCkx8hIj8caVLK+99XyvMwxSJmxW2+9VQWjJNtDMmY+//xzPPXUU+rchhs0GS5nP+exwvA9EREREREREdF0lJkJ/PrXWm+R8QqY2CsrA557TgugSMaL/S0ri83jiaahI9Iryc4XX3yBlJQUFSRZuHChyjSRrAPpt2F/sy8LJZkMUjrq7bffViWnfv/736v7pYyUsG/ePlokA6O2tlb13li9erXKAOmfHTHY+8u5SdBCyk+NlbS0NJX9IoEdq4MHD6o+JVICzdfXV2V3DHUMEqSSoIUEnyQTSDJ9JDOl/7ld7ucqx1FcXKxuVtLDpaGhYchMnGuFmSZERERERERERNOJTJR99JGW2THWpLyK1OLftw84deryj5fVw59/Pvg+WU29YAFw882yFHrUD5WIJh7JzvjmN7+JL3/5yzh58iR+9atfqcl6IZP1Dz/8MB599FF1nwRRqqur1WS/lK+Snh/Se2Pz5s3qsVIiS3qOyGS9iI+PV1kL0lx8y5YtKlhhX27rasTFxanAgRyvBGzOnTunmsLbG+r9v/Od76im6vJ8KZsl5yQN1yWTYzTIz+yHP/yh6pki5cPk9SXzRnqFWBvO/+hHP1LHLf1W5OcnvVYksCKPk6CU9HiRc5M+KHL///3f/zm8hwRdJBNI/ltIKTDJPumfgSLl0qTXjByPNI6XEl9f+9rXsHbtWixZsgTjiUETIiIiIiIiIqLpQgIlEjCxW2E8Jvz9tVJb1qbL8v2cOcAHH1x5xog0nJfAi/Rc2bwZmD1bC6QQ0WX5u/sPKHM0EY7pciQg0t7ejmXLlqnsEmlM/uyzz+r7peG7tWl5aWkpQkJCVPaDlI8Sku3w9a9/HSUlJfDz88OmTZtUI3kRHR2tmqj/wz/8A5544gn1XtJwfDRIOS55re9973uqAfyiRYvwX//1X7j99tv1xwz1/t///vdhNBrxgx/8QGVwSA8PCWCMFglefPLJJ+pnKX1DZFt6vfzsZz/TH/PYY4+pHiXys5Km8/Jzveeee9Q+CYLIY6Vp/He/+12sWbNGlT2T47dauXKlOub7779fZdxIkEYCMfYkYPTee++pQIy8hmS6yH8fCcaMN5feXvmLM3VI4xl/f380NjaqXwQiIiIiIiIiommtrU1qxWhlrvLzx/a9JANEskGksbu7+8D9UstfSr5ISbCrnZKS5s+33KIFaIhoUDLxnZ+fj8TERHh4eIz34RCN27/3kcQNmGlCREQ0VUldaqmZ2t0tucGAkX/2iYiIiKaN9nYtUCJ9S/LytLJXIyEr0lNTteyQmBgto8Oa1eHsexlzOsv+kBr+1iyR998Hamqu9Ay1jJOCAlmu7Xi/qysg/QwWLgRCQq789YmIaFri7AkREdFU0tEBZGdrZRcuXQLMZtuKvzVrgOXLtYtIIiIiIpq6Y0EJlMhY8EqaGycna8EGyeLoa1I8JmRRj5SbkV4nhw6NPKhjn7kyWPaMnP/x48ADDwCJiVd9uERENH0waEJERDRZyEVvYSFQVqZdHPZXXq6tIhzs4lhWGn7yiXYBLfWkQ0OvySETERER0eiw9FpQ3lyOdnO76gMQ4hWi6sGrcaE1oyQ3F71mM1q6WtDQ0YDW7lb1PCsXDJ0BYvFwR/OGNQhcshQzQ1K11x5rkpWyYYOWdfLee0BFxehnXr/+OvDlLwMBAaP72kRENGUxaEJERDSRSaaIrJLLytJWDUrw42qUlAD/93/A2rXAqlWAwTBaR0pEREREY0ACIF+UfIETZSdUwMTKx80HS2s9MPtkMYIs7uju6UZlayUqWypVsGQkauJCcHFFDLo8S4DM1xDpE4k70+5EmHcYronISEAaO0u2tIxXpbysvbq6K+/FIuPnN94AnniC5WqJiGhY+NeCiIhoopGLxJwcLVAidZplhdwIyYrC+vZ6NHc1o7e3V11UB3oGwuhq1DJR9u7VLkplZZ+UK2DwhIiIiGhCqW2rxaHiQ8iozIDZ0ldytY+xy4zY/UfRm1+FcwAMLgb09I68FFe3uxE5y1NQlRjm0IekvKUcvz/xe9w681bMj5iPa0JKyEr/FLn1Jw3jz50DPv4YaB1ZQEgpLQV27gS2bBmVQyUioqmNQRMiIqKJQAIjEiCRQIkETPqvrhvBSsSKlgq1wrDb4vgari6uCPYMRrhPOII8g+Aq5Q9efhnw8NBqVqelaTWsx7J2NRERERE5JSW4DhQdQFZ1FnrRO2B/QEUDZh3IgkerbWHNYAETWTjTabbAIgGHfro83FAWH4q82ZJd4g60davCXX6eJhhcteCJjCXfufAOChsLsXnGZpgMJowbCejMnauNVSX4cfr0yF/j6FGtj8pgQRkiIiI7DJoQERGNFykVYN+0/UoadcoFbU83qlqrVLBEMkucZZ9Ut1Wrm2ScSLmFcO9w+PX2wuXMGUBuJpN2MSoBFAmkSAN5IiIiIhpzTZ1N2JO3R2WWDKausR3YnYmgC6Uodzci0Mukghyu/XqPdHT3oKalEzXNnegw2/qZtJkMuBjsj6xQfxQFeKO32wU4Xe7wXE+TATfPDkdiiI9+38nykyhrLsO96fci2CsY48rLC7jjDi2AIlkn1dUje/777wPh4ezvR0RETrn0ytKDKaSpqQn+/v5obGyEn5/feB8OERGRIyknII06JVAidZkttgvZkZA/39LcU0on1LTVODT47P844ayRp6+bL2L9YxHqFer4OCmRIKW7JICSmgr4+l7RsRIRERGR8wUwB4sP4mDRwQGZwqK0oR2Z2ZVYuv88Ilsc+9tJVkiAlwlBXm7osfSiuqUTzR22Ul7tRgNygv1UoKQwwBsWGd8Nw5KEIKxMCoZrX9aJcDe4Y1HkIiyIWKAyl8edjHPr6x17/sl9Ehipqhr6eRIweeYZZlfTtNHR0YH8/HwkJibCQ6oMEE3Tf+9NI4gbMGhCRER0LTQ1aaUEMjO1izk7PZYetHW3OQQ+7Esx2P+plvtlFaKUbejsGbzXSbebEReD/fCZuzsOdfVieWElNtQ1IdTbDYFebg4Xv/Y8jB6I8YtBhE+E1vvEngRTYmK0AMqsWUBQ0JX+JIiIiIiob4x3tuosduftVuO7/vvyalpxvKAeDTXNeCgjH6FtHcN63Q5roCTMH+aEUPh5u9uPLPte3+69+r42tXerAI1VdIAntsyNhLf7wCIl0ih+YeRCRPlG6WNV6/g1wCNALcpxtmhHxr+17bXqa6h36MCx59WoqQF+9zugq2vox8ybB9x5p0MfF6KpikETmk4YNBkCgyZERDThyEq3F190aFopzTytJbX6XyQ7Y3F1QX1kIBoiAtBrcFwp2Gq2IKPLgv0dFtTarTAUUU1t2HKxBOEdXQjydkOIjzv8PIyDXszKRatcCEsAxd3oPviBhIejV4In6elwkRIHRERERDSiPnRvnX8L+Q35A/aVN7bjs4vVKG/sgLu5Bw+cyVcZJm4GV0QGeCDY2x3NHd2oa+tCQ1u3yjCxZpXsTo5EVXwoZsYEYFaEL3w9ht+HRKaHThU14PNcyWLWXtPLzYDNcyIRG+Q1ovPzcfPB3LC5Dlkp8voFDQU4XXEa56vP61k10ncvJShFNZyfGTxzdAIo0jT+zTedP2bpUq0xPAMnNMUxaELTSQeDJoNj0ISIiCYC+fMq2SMuFZUwvvwq0N7m0KjdWUmt/iwGV9RFB6E6PhS1scEwu9kuJOUiOb+mFefLGpFf2+aQlSLcjK4wurqircsMg8WClUXVWFZSA5PFAnejKyL9PRDq66E3/LTnAhfV90SCJ77uvug0d6KuvU7dJNDT1dMFg6sBbkuWI+H+LyMsOO6qf25EREREU11jRyNezHhRjansSSDkYG4NLlRoPepMPT24/2wBUto7ERXgiWAftwH9SyS4IRkiWd6eOLwwGdEJQQjzdXea5XE5ZQ3t2H62HC2d2iIcean0SH/MjvJTY8eRvrYsxokPiEd2TTbqO+qdPtbT6Ik5YXNUsEWyWK7mPLB9u9b83ZlFi4Bbb9XK0hJNUQya0HTSwaDJ4Bg0ISKi8SRNMj/N/1StovOoqsO8XRkw9V1wjkSP0YDaGC1QUhcTjB6TwWF/bUsnMsuakFXehPbugQ3kpZzC7Ch/pIT7qIBISV07siqacKm6Ba7tXZhZ24SU2iYk1rdAcknC/TwQ4eehgiyDkRrWQ5UDE82h/nB//GmsSb1JlfkiIiIiosEDJi+cfsEheNDdY1FluE4U1cHco03RyGKXx3JLcX1vj2r4PlTwQLKQ8xYnoSQ9ZlQzJmTBzSeZlSistWVKCyn1mh7lh7RIP/gMUrZrNIV4hajgybzwefBzv4L5HbMZeP55oLTU+ePmzwe2bmXghKYsBk1GrqurC27sezQpMWgyBAZNiIhoPEjWyIHCA9hXsE/Vc/arasS8XWdgHCSgYa/LbEFNSyca27vRYXBFfqg/LoUHoDjID92q/Favqjlt/WMt38uFdX3bwBrNcuGaHumnLmQDvAYf4Mlz86pbkVnWiKK6NriZe5BU34KZNY2YUd+CKA+jWkE4WO3qy2kM88elW1bgxtTN6uL2qlYGEhEREU0xDR0NePH0iw4Bk7rWLrxzqlRlmVh5GlzxrZpaLGppG5BZIrxMXioDuMnPHefXpqM1yGfIDA8peTUrZBbcDG4D+uTZK2kqwXsX3kO72dbTRB5/rKAexwrq1BjSnhyWLLoxDHJ8khEjQRVZkDPYeNBi6UVBbSuyK5vR09OL5DAfzAjzgalf6Vn9veCCpMAkdS5pIWkwGYZfcgwNDcBzzzk2ix/MnDlajxOD40Iloik5ifzv/w70OL9OvSbk9+1737vsw1pbW/HVr34Vb7/9Nnx9ffHtb38bH3zwARYsWIBf/OIX6nPmnXfewR133KE/JyAgQO17/PHH1XZxcTG+9a1vYefOnXB1dcXq1avxy1/+EgkJCWq/PK6hoQFLly7Fr3/9a7i7u+OJJ57A66+/jnNS7s+OvO9tt92Gf/mXfxn1HwlNnKDJ2C4LICIimgak5NbbWW8jrz5PbQdUNGDu7rMwmAcfiEoZhYa2LlQ1d6K8uxcXg32RHRWGggBvWKwr3FqGzuqwJ1kkSSE+qlxCXLDXoBfW9uRiNDXCV92qmztxsqge2W5GXAj1Vysa4xtakVrTiGU1bUj0MsLfc+DKRrloliBPe1cPfD2MeoDGv6oRiTu+wHvdrThedhxbUrYg0jdyWOdBRERENNUDJpJhIl+t6lo78eaJUpXVIWQctzjCF49XVCO6tX1A5kigRyDi/ONUo3VLSBAK7rgBve1FuFh7Ue+RJ4+ZHTZbLWCRMqvDJYGViCUReCPzDZQ2a5kZMgZclhiEBbEByK1qUYturI3iJf5S0Th4Y3p5zJmSRpWVIsGTtEitt4oEiOQ1ssqb9XMWudUt2HvBFSlhPurxMYGeDuNPCfBcqr+kbpL9nBaapvqlJAYmqn4oTgUEAPfeC7z6qpZ5MhSZFJVJ5HvuYeCEpj75tz4RgibD9Hd/93fYv38/3nvvPYSFheF73/seTp48qYIXw9Hd3Y2NGzdixYoVOHDgAIxGI/71X/8VmzZtwpkzZ/SMkj179qiJ9F27dqltmVz/8Y9/jGPHjqlgijh16pR6jgRwaGpj0ISIiOgq5Nfn463zb6K3shIJRTUIKayGd12LuiiUwEL/dE5ZsScNO3P9vHF4RgyK/L3RO9yMDBf1/2q1nazgk6ySWRF+8HQb/MJOHpcSnAJfN1/VbNN+5aAI9XXHxtkRWDUjBBnFDThT2oi8IF91+7i3F7GNrVjc2o613V0INpvVcTe0d6O1X7mxAC8TEoK94WEyILCiAXP2nsO5G13w+5O/x83JN+O6mOtG9kMlIiIimuCkH8mh4kO4VHdJTepLKamlUUtVI/P+C07q2+tVwKSxs9Gh1OpbJ20BkxAfd9wf44tVR3Pg1eQ4ZgvyDEJiQKLqMacEBMDw2BNI9vNDMuapuzrMHWqc6WnyvOJzkmDMkwufxK68Xfii5Av9finfKpnMcpOFPxL0OF/e5JAdMxjJjD50qQaH8moQ6Ok2aKa0/aIceU25SYAlPdJXBVD6Z09LuVhpJC83aTY/O3S26oHi7+Hv8DgJpnibvLX/FklJwIMPAn/5i/PASVYWsG0bcN99gJHTZUQTQUtLC/74xz/i5Zdfxo033qjue/HFFxETEzPs19i2bRssFgv+8Ic/6J/Pzz//vMpG2bdvH26++WZ1n7e3t3qMfVkuCbbIY61BE/l+7dq1SJLPFZrS+FeAiIjoCsiF6ZGLn6Lgk21Iz6/UL26lMbuslqttHfqiMCfYF++mxaHH1VWV1NJW4PnBz8PYFxiR/7MFSdS3Iyh1FewZjIWRCzE/fL5+cS1ZHzl1OThTeQYXai44NKGXY5DAiawklD4pp4rqVcCnKMBH3d7p7UVESztm1jQhtbMJwXC82JRgSkZ7A6L8PVWT0qCyeszeew6Z6+fg49yPVcP4NfFrRvYDJiIiIpqgJLPjrfNvOfR7kwyS3LpcVUbqtpm3IdAzUAUxZOHK9pztaO229QaR0qxvnyxBW5e20jvUxw3f8HZB+t6zcLX0OpThmhE0QwVNdL6+wKOPAv3KioxWTzmDqwGbZmxCQkCCGsfZZ8YICWKsSA7GdUlBatyr9I1fhdliwaWqVpwvb0RJfV/wp1cLoFi5SqZ0sDdmR/vBzWhQPfouVjarsrVCgjFH8uvUTcaXaVF+mBnuA3ejYUC295HSI+o2GClJFusXi7nhc5EWnwb3hx/WMk66nQR7Ll4EXnsNuP9+wDSCMmBENCYuXbqk+ossX75cvy8oKAipqanDfo2MjAzk5uaq0l79yzjJ61vNnTt3QB+TZ555Bk8++SR+9rOfqbJer776Kn7+859f1TnR5MCgCRER0TBJoEFWE2ZUnEbdkX1IPJKNeLusC8nAyKlqQYeTPiYXQvzxUXosksP9VEmt2KDLl9QaDrkolJV2EiyRi8P+QRa5AJayC3KT8g1HS4+qEloS/LEv3SXlF+bF+COvugUnChtQ3qiVhqjw9VK3zxIjkGrpUY1Jg7rNKGtoR1ePRZVokFIMUvIrPtgLQSW1WPb2EZSnROJg6w612u/6uOuv+jyJiIiIxpOUY912bht6enuG3P+bY79RC0akT0h2bba+z7XHgs6SOhw5XYqQ7h4VZgjxcsdTTR2IulCnP87kalJBiyjfKMcxnZeXFjAJsguijBEZM0rARgJEp8pPqYCQfR8UOS6jYeAYVsac1qwUWYST1Zc90tTerbJp5P5ZEb7wcrNNR0UHeGLdzFBcqpZgSxOK6lrV2FKUNbar277sKiSHSvkuX8QFeasStZcjC3esZb0+cv1IndPi21Yj7sPP4do19AIn5OZqwRXJTmEjaKIJTz6P+rfslpJc9tkqixcvxiuvvDLguaGhofr3kmnSn/Qukf4m0jNFAiryuvdIGT+a8hg0ISIi6tPc2YzM6kx1gSslF6xU5oeLi1pp111Xg9TDFzGz1LZfBmjSn0QaWlrHanIhJyWrvN1tK+LK4kPhtyIVz3i5qTIHo0HqWi+MWKhqV0vgZDj83P2wIWmDupiXi2Apv2DfkFSCODPCfNVNgiaZpU0wW3oRG+SJ+CBv+HgY0XxdApI/Pq1KfEmwRB4n5y4BFAkcSePPeACJpwuQkFGAii8u4tT6Yiyce5N2wS8N2az9W4iIiIgmARkjvnbuNYeAiSwgkeCA9OMw9jUy77Z0Y0/+HtsTe3uRdCIPAacLcbGkAXf3ZWh4S8ZxhK/+PGuJLFkIM6DZubs78KUvyQwfrhWjqxHpoenqJuNkyVg+VXEKNW01w3q+9Ma7LikYyxO1rBQZHw+VPW2067vX0mnGhfImFXCxZm/L8yUbRW5SElZ+3lKmNipg8Gbz/cl/k7NVZ3EWQES6GTd8XooIY4AaFw/6/Px8QCZYH3pI+9kT0bhITk6GyWTCkSNHEBcXp+6rr6/HxYsXVZksa+CjvLxcf05OTg7a2tr07UWLFqkSXdIP5XLNv/uT/iePPfaYKsslQZMHHngAnp5XXgaRJg8GTYiIaFrr7ulW5aoyKjP0mtSD6u1F9IUydcFr3+Bd6i8X1LQ6lOPydjMgJdxXXdBZVcyIQOnKVAQNsSpOSmrJ6je5QLaWN7BewFmDNvbfywW1rD6Ur1dKgizLY5ZjafRS9TOQutwyGWAv0t9T3fpr9/PE6Y3zsfDj04hzdUGoj7sKGsmkgTrfJi2DRbJO5JhDimvR+OJzKAnagxi/GK2xqQw2JYASEQGsWgVEsmk8ERERTUxVrVV45cwrKnvBSib1P8msUN8fyTPhxrRwlUXcX+LRXLgeykFWg7bIxFoedVakL4x2i0hkXCcNziVbw4EsNpHSUuM4VpKSr6viVmFl7EpUtlaivLlcL91lH3Qoay5DTm3OsLJSJKNGxr5t3bbJTevPZklCEBbHB6qFSfJzvlDRrGdzy9ezpY3q5utuRFSgJ1z1orbW9wQi/D0ws9+YXFQEGPHhdUGYtysDPmYDQr1DEeoVOjCAUlgIvPyy9rOX/wZEU4Vh8J6YE/E4fHx88NRTT6lm8MHBwSrw8Y//+I+qVJbV+vXr8b//+7+q0XtPTw++853vqECL1cMPP4yf/vSn2Lp1K/75n/9Z9UMpLCxUzdz//u///rL9UZ5++mmkpaWp7w8ePHhVp0yTB4MmREQ07UhmSGFjITIqMlSdaft61P15NLcjpKgG4Zcq4VvXou6z9PaivrVL1aOWfh72YZZwybAItpXckibvRXNikb8oUbt66xe0kMaVCyIWDFpS61qR0lnWVYTFjcU4XHIYWdVZQweQ+rT7e6nAyYKPT0PCKlJqQcpz5dW06oETOaW4IC/93KS0g1CBE1n9I7eaGuD8eWDzZqCvwR4RERHRRCGN3F/KeAntZluD9ktVLdh5vlLfbmjvxlsnSzAnyh/Xp4ToE/Wd2eVo2JmJdrvyrYMFTAI9AtW4cEDAJDYWuPtu1fx9IpAxXYRPhLoNRbJSJKtDmrVLsKk/GfdKSVnJqJFsFhkfymOlFJh9Fo+8l4yt5bY6JRSFta0qeJJX0wJzjzZObe40I7uiedDjkFJf+y9WIzHYG7Mi/ZAYYivr1Rzii4yNCzD/kwx0NpWohUOeRk9VFi3MO8w2Li8uBl54AbjjDm2hz3iSkmJSOkzGzXJc7bZ/jzo5bvm3Ik2qU1KA+PiJM0FOE8f3vofJRAIeUmJLSmVJX5JvfetbaGxs1Pf/93//N5544gmsXr0aUVFR+OUvf4kTJ07o+728vPDZZ5+pYMpdd92F5uZmREdHq8byw8k8SUlJwcqVK1FXV+fQW4WmNpfe/kXfJrmmpib4+/urX56RplwREdE4kD9D1dVAdrZ2EVBfDwQHA6tXa4P9UVTbVqsySqS0QP+mlvbHY6lohFt2GaJK6hDQKAEAWzBDMilqWzpVuSp7cgGWFOKNYB8tfb/V3ws18aHomJ2K0LhZDo+VVWyRPpFICU4Zdkmta03Kkx0pOaIueK2r/6z1taW+dXJQsgqw7M7bDVRWYsEnGTB1alkmVc0dyKu2NTuVBp5S2ss+KCRZMtIoVS6UHSxbBmzaxNJdRERENCFIAOBPp/7kUMq0uK4N754u1RuhSxBESkpZSb+ONTNDUFPdiqUfHIN/R7fDuChGMiPsso8HDZjIuOn664F16ybtpLdMN1W0VKCosUiNvYO9gtVYMsQrZNDHy5jzXNU5FUCRjJWhSMN46b8nAZTCurYBvQyGIoEsaSgv2SfSR0XGpt71rZi/MwNu7V0OGeCpIamO43RXV5iXLEb50lkwG13VOUj2zZiyWLTAiJQKk0BJTo7zJvaDkdJick01cyYgjbMly5umHWl4np+fj8TERHhMkaypdevWYcGCBfjFL34x5u8lnzESOPna176Gb37zm2P+fjR2/95HEjdg0ISIiMZOTw9QUSEfztokuFzwWW8y4JcgiQRL6mz9QRxs2aJNog9STiunLgfVrdUqS0QyJQwuBvXVepOLTvvt1q5WlDaXDv4+vb1wr2hA95kSGLLKYOjLKBkON4MrQnzdEe7nju4wf1THh6I6PgRtAd5q9dxtqbfBwzh5B6YyTKhtr1XBDV833wGrH6WR/Kf5nyLz7F6k78+EV6MWYKlq6tAzTkRUgCdiAx0DJ+4Gd3VBGuTZr5mpXNjde69WvouIiIhonMg4RwIm9tkSFY0dKqNESrSiL9P25vQIVSrq4KUaNaFvtTGnFAvLtXGut5sRSaHS785xwYiMgyRgIuNVnY8PcNddo76AaDKRcb4ET2SxU3PX4JkkotPcg7YuW3aKlZTwuljZorJQ2rpsAS0rbzcjUvoCKMmwYMHODLi32QInEjCR0rkS0JKAT3lLuerl0uZlQu7yFNTGhaos7ZuSNiDA5KsFOKQc0OUyx1tbgYICQFbJd3QAnZ3a18Fusm80yfFJSVxZnDZJA3F0ZRg0uXLV1dV47bXX8N3vfhfFxcUIDAwc0/ejq8egyRAYNCEiGmcywLcGQ2Q1lGxfjU2bYFm+DPn1+eqiKasmy6GWtK63F94NbQgsq4Nnc4eWweLigl5XF1VkSr6qbbvv5fKqqbIJLhfK0VnXoteYvhx5epC3G0J83FWDy24vd+QsT0F1gtaYUwI4m2ZswpKoJeNWcutay67JxpsZf0FIbhmiLpbDt7YZlU0dyLcLnMiKPllZ2f9nIuUdkgOTHRueSraRNN6Ur0RERETXmEyVvHH+DVXK1Uqyjd84UaL31pByT7fOi7KVfOroxqcXqtTCkfj6Fjx4Nl+VbJWFI9Jfo/8YSPpopIWmOQZMZswA7rwT8Pa+Vqc6oVl6LZe/DnD2fEsviurakFXRhEvVtrJe9iRT6Do/Nzx5oQhedhkn1uDJYO/ZYzTAxWKBqddVZY+He4fDRbI6EhK0jA7J7PDty0Qxm4GLF4GMDO36SAIs40l640hQLlS7dqGpj0GTKyef2yEhIark10NyfUoTHoMmQ2DQhIhoHEjWiFwEZGZqDRNH4UJA/jy1dLWoRpNH0/1xcdbAQb1rjwUBFQ0ILq5FcEktPFqGF6Bp7TSrfiQ1LV36KsH+qfvB3m76BXCv3f+4GQ0I9DbpNailwXvu0mSY3U36asF70+9FpO/0a2ouGUCvZ76uLm59aptV8KTnVCFKK5r0x/h5mNQqy/4NOeWCVMp1qQtO64SCDHCkz8ncuSzXRURERNeUlIl68/ybDiVa3zherJfhksUgdy6MhtHgOmAMm1/agNTXDiO0p0f1dus/7pEM3tg5qxAXkQoXWfEvYx8Z90gPilmzLp+tME1Jxrn0PZHysdJs3r7/yXCosl41LbhY0YLCula9vJpVgivwTxVVCBkkM+VyJAA2M3im4yKg6GggJERbTHa1C8lGm9EI3HgjcN11/Pc2DUzFoAnRUBg0GQKDJkRE15D8CblwAfj4Yy3FfBS0d7erEggSLLH20hD5CxNROC9OlX8KLKuHb0ktXPKq4dJlVpPsMtaX4b76vq8MtHynvvZdBzR3aMGSwVL4ja4uqh9JqI87vN0Nl80Q6fDxQPaKmaiPDtKDJUujlmJp9NKBfTqmEVmNKRMMEjgRhu4e1H5xCdVnSuDb2Q3PbjN8eixI9XVDtI/bgJ+zt8kbiYGJqpa0vi8sDNiwQZtI4EUdERERjTFZuPPro7/WG7/L5PpfjhapcaQI83XH3Ytj4G4cvMTRzEPZavHIYKTJeNKCG+Dx9Fc4rrnKawYp11vZ4njNIGQcWtBQgMbORqdlvaQH38XKZhTWtsHSNzUW0NWNf6ioRqpLr8M4VfY3tHWjurkTPRYLYoK81GIge1J6VpX08pxE5XskM+b224GgfuVyaUph0ISmkw4GTQbHoAkR0TVSWwvs2KGV4rpKneZOVLdVq2BJU6ctK6G/DncT2utaUd3Sifq2rmGX0xqKXAcFeLoh1NcdAV4mVT7hssfq5Y7ymZEonh0Lo4eXqkE9P2I+Yv1ip00prsvJrMrEW1lv6YETUVjbit1ZVapshdXKzk58taoWvoP82Pzd/dWkgqwgNFvM6tYcHojWtSsQnrZUreTjz5uIiIhGm0yRbMvcpjJorQ5fqsWR/Fr1faCXG+5dEqOavVtJH7sAjwAcLjmMgJIazNt1ZsDryoS6jF+C/SOAr36Vk9TX4L9jYWMhMioy1KIe6YM4FCm7tuNchR4UM/ZYcGd9E+5pa4XFbEFVc8egGepRfaVn+19DSB8UGceGeoeO/WKq/uPhK71AkqwYyXKSm2THcJw9pTBoQtNJB4Mmg2PQhIhojHV1AQcOAIcOaY3er2J1mARKpMmjs+aOqkxXXzmt2pYumPul0V8JqVss/UiCfdxg6ldSwZ71Iqfdzws1fQ3eERWFcJ8I1fhRVpI5pOCTQ0mLt86/hV6trpleEuFgbg0yShr0+yLbOvCN0mqkuLvq5dAupy4qEF3LFuPGDc8i1CdsTI6fiIiIpqezlWfV4g+rqqYOvHasWGUayOT4A8tiEeZrm4SZETQDD855EAZXAyrzz6HoV/+K1roKfb/0uovyjUJCQIJ6DLZsAZYtu+bnNd3LemXXZquFPZKdIotx+jNbLDiUW4uTRfX6fREdndhwoQQxTY6ZLPa83QyYEeYDT7sgmpVkvQd7BasAimSlj0oAxc1N65eSnq71v5Fte01NWt8UueXladduIyU9BdPSgKVLAX//qz9mmjCTyPHx8fDy8hrvwyEaU+3t7SgoKGDQpD8GTYiIxkB7u5ZRIg0M5atsX4EOc4fKJpGblD2w1xzsi5YgH0TmaKUM2rt6+vqOdKLTbBmynJaXm0Fr7i5/znoB9chebape3aXu7lVfjQYXBHu7w9Nt8FIK1t4a0lcjdMY8+C1Yrl0wcLXVFZFVfe9kvYNuiy27RJTUt2H3+Uo0tGv3e3d14/7sEix1tSDcz2NYGT+iI9AX8Rvvx6z198Gl/wUjERER0SiX5VqeGIwVycH64yXT+NH5j2qLaPLzgW3bVO8KKRclC4QkK1ayZ1WwxFoK6bHHOK4cR5Lhbg2g5NblDuiLItnROzMr0Wrta9Lbi3mV9VifX4koN1eVod7W2aPGs9bJNPnPGR/kjXA/9yEzoSWAItlIEkSRMrSeJs/LH6yMb2XCz9NTa94uWSDJyYBpmIu2pAG9/LvcuROorsYV9T1ZvhxYvVo7Dpq0LBYLcnJyYDAYEBoaCje3gWWSiaaC3t5eVFdXo62tDSkpKerf/IQMmnz22Wf46U9/ihMnTqC8vBzvvPMO7rjjDqfP2bdvH775zW8iMzMTsbGx+Kd/+ic8/vjjw35PBk2IiEZImhIeOwaUlGiZIzI4loG4fJVbVRVQXHzFzd07XSwoDnRFYWcV6lqq4WKxwMXSC1dLL7o8TGgM90dtbAg6vd1V6aaeo3lIOnABbX1NNu1JIoKURAjxdYe/5/DKaQ2Hq4srQrzDEJK6ECFLVsM1LR0ICBiV157uattq8X72+6o8gj0pb/BFXi1OFTWolZsGiwWbcsqwpLYRMYFeCOnrdyLDFEkuktV/MnEhjVT7/3cPCo7BrE2PwG3VGoArp4iIiGjUynLV4Eh+nfpespQfXBanZ8Z6mbzwtaVfg4+bD3D6NPD++87HyzIBLmW5AidRv4sprrWrFR9e/BBZNVkO98virb0XKpFT1aIWXM2O9sO8AE+kZRYhPK8Sxu4elQl/sboVLT0WmF1dYLT0IsioBVWCvJ1ns5tNBnTNnIGwxDlIj10IL98gLShhf3N3B/pN9l0xCZ7s3QscPnxl5bskaLNmjZZ5IteHNCl1dXWpuVmZTCaaylxcXBATEwMfH58B+yZM0GTHjh04ePAgFi9ejLvuuuuyQRNJFZszZw6+8pWv4Omnn8aePXvwN3/zN/joo4+wcePGYb0ngyZERCMgWSPvvQc0D10e60q0u7miKMIT5wPNOOfThh7T0AP+hrYu5Fa1qFtFU4e6b3ZlPW7NLlEN3YUESORCVS5AnJVw6nUBmkP8UBsdpBq1q4bwMuPe2yt/8ODSl35i/T7KO0KVVIiPmwe3lFRgkD+qdPVkqHG87Dh25e1CV0/XgP/+hy7Vqiac8t9mdlUD1hZUItjco54ngZLefhlGyWE+Knhmz8PogVmxCxGw6Q5gyZLRu8gkIiKiKU3GG5WtlWqsIjf7slx/OVas9g9Wluue9HswJ3S2rPwE9u+//Bvdeqs2RqEJRf77nqo4hR05OwZkR8siHxl7OqzIl38Pll5YXF3QbenF5zla6VlXiwWxTW2YUduEmXXNiEevyoq3Xr/0urigLjoIFcnhqI0NhsWojVVNribcmHQjlkcvH/uV/wUFwLvvAg22UrkjIovKbrwRmDOH2VKT+N+72WxGz1WU2Saa6Ewm04AMkwkXNHF4IxeXywZNvvOd76gAyblz5/T7HnjgATQ0NODjjz8e1vswaEJENAxS23bXLi3D5ApqAkvpgsFqATcazTg5Jxjno0xOB9IyUZ5d0axWb1nLHfS3qrUdDxWWI9TLDW7GoVdqubh5oDk2FHWxISpY0ulpUg3Ieyw96qv9lLtclEhNYelFMjd8rkqRp2unoaMBH2R/gEv1lwbsk4mJg5dqVUkEyTpZVFaHFcVV8OoefEAf4e+BuCCvQRtvhsSnI+yuR2BKTRuzcyEiIqLJramzCWcqz6iblI61178s13VJwepmlRaShvtS74LLBx8AZwY2fR9Aek88/DAnmid4drT0silrLhvxcwtqW7E/uxr1bX2Lg3p7EdLWiaT6ZgR0mWGK8EdvehSiYoLg4zF4pka8fzy2ztqqep+Mqc5O4JNPgJMnr/w1pHzxnXcO7KdCRDTBTdqgyZo1a7Bo0SL84he/0O97/vnnVbaJnMxwMGhCRHQZUobr7beBOq3UwEiCJXn1eahoqXAIRFgzPMpSo5G/MAFm98Fr7LZ0mFU2QXZlMyr7Mkr6k2yS5FAfpEb4qlVZIUU1mHkoG24dtlVfskqrLTwI/ukLEbtwHWLTlsPVOHRdX628k0XVK5agCWu3TozVfLsu7dLrhdsrrmtTZbtqWrvg29uL68pqsLSkBp69vWq1X3OH2bHxZrgvPAfJZJJGm97pCxB5z+OISJgz5udFREREk4Ms/NlXsA9flHwx6CIgcehSDY72leUK9XHHA/3Lcs19Ej5vf6it3L+cxERZDaqVW6IJTRZd7S/cj0PFhwb825D+NQsjF6rgxse5H6uG8v3HuFXNndr1TkWzKt81GCnflRTijRlhvup7e3KtclPyTVgatXTsr1kqKoCMDODCBaC+fuTPlx4rDz4IcN6NiCaRSRs0mTlzJp544gl897vf1e/bvn07brnlFlVzz1PqKPbT2dmpbvYnL71QGDQhIrIj9ZVLSwHJ5Dt6dMS1bGvaanCx9uKA0kqiMdQPOdeloCXYd8A+6VGSV92KnKpmlDS0q0bt/Unj7xlhPurWv+SSMHaZEVpQDUMvEBGViqQFNyAlao7WcJMmrQ5zBw4WHVQTFv1LIfTn1t6F2LNFiMwpR01NCwrr2vR/wpJpkhjiPeCi00qVTrjpRiy/86+YWURERDTNNXY04vXM11HaXDpgn0yNSKnYC+XNOFPaqJflkj4m9uOM+2M3I23nSaCy8vJvuGABcNttLBs6yUhWfVZ1Fho7G9X4MSEgASFeIQNKz+68tHPQcazsL2vswMW+zPo2a1P5fuZE+2NNSuiArHp5v5WxK5EUmKQWAo0pGVRLD0sJnsitvHz4z/X1BR56SAugEBFNAtMqaPKjH/0IP/7xjwfcz6AJEU17UoIrLw/IzgYuXgRaW0f8ErLCKrcuV2WX2LMYXFEfEYCKGRGoTgjVSw3In5Tqlk4VKMmrblGrrQYjF56zInyREu4LPw/nwY84/zjMDZuL2WGz1co+mlqaO5vVir6T5SdVRpAzhi4zInMr4H+qAKV5NeiwK93l425U/66CfdxgdB1Yzq18cSqWP/z3SApKHpPzICIioolNMqbfPP8m2rodmyBLSSUJlFyoaEJju+MEeP+yXAsNMdh6vFkmHC7/hjfcoDXPZpbzlCULyyTrRK6XhmLNQJHro/yaVlQ1O2bc+3qYcFN6uCo725/07EsNTkV6aLoq2yWLjjp7OrWv5k64uriq6yNvN294m7zVVzfDVZbMKivTyjjn5w/v8SYTcPfdwKxZV/e+RETXwLQqz8VMEyKifqSp2+efA4cOaTVrh0n+HMhKKckmkZsMxgsbCtXAXHR6uaE2JhiXgnzxfosZ1V0DJ7i7zJYhV1JJFsnMcF+99JYz4d7hKkgiwZJAz8BhnwNN7jrSnxZ8isyqzAHl3/pzsfTCL78KbZ9mwVBU67BPKmcEeburAIqfh9GhtEFpWgziH/gyVsVdzzJtRERE04SMcT8v+hx78/c6jDFkzLrrfKWayO5PSnHNjfbH6pRQvSxXeF0XnrrgCbeuyzRQlqySrVuBefNG/2RoQqpsqcTZqrM4V3VO9fBzRsp2SQbK4bxaVXrWal5MAK6fEeK0l+NwSImvSN9I1cNxfvh8FUgZMZkmzM3VgieShXI5Mq7esAFYuZJBQiKa0CZ1I3jJLDl79qx+30MPPYS6ujo2giciGg7JJnnjjeHVV5YgR08XypvL1SqpRksb8hYlojXAG649Fu1m7kGvqwvaArzRFOCFk0UNaoAvzTGHI0xq9ob6ICnUW9WDdjZRHe0bjbTQNNVYM9jLtqKPpl/mSWFjoQrauRvc1Qo7T5Onuv+jnI9UuQR7TaeL4L/3PNwbBk54eJgMSA71Viv4rCqSw+F6+x3YOvsuuBtZW5yIiGgqa+9ux3vZ7+FCzQWH+8sb2/HRmXLHvhMuQGygl8qGnuNpQGBrJzybO+DR3A7Plg6s7opCuMdlmnRLdQzpXxIfP0ZnRBOZTK9J6bezlWeRWZ05YNxqT7KaJGhXUm/LfPLzNGFNSggSQrwHzZweKRlHr41fi2XRy2BwNVxZieczZ7TgyXCqFixbBmzezMAJEU1YEyZo0tLSglyJTksa68KF+NnPfoYbbrgBQUFBiIuLU2W4SktL8ec//1k9Jj8/H3PmzMHXv/51PPnkk9i7dy/++q//Gh999BE2btw4rPdk0ISIpi2pP/vaa6pcgFwgVrZWqmaGkrYtK4x83HzgafRUgQuZgC5pKkFVa5VacdcU6oes62eh3X/w8ldStmBnZgXKG23p5CaDq77yzkq2ZIV/cl+gxH6yeqhAyZywOSrl3N/Df5R+EDRVyYXnO1nv4FL9Jccd5h54nSqA/6EcNNW3OQT15JotIdhbBfCsQbua2GBUbV6De+c/hFDv0Gt9GkRERDTGZJrjVMUp7M7b7VCOS+4/W9qIfRerYekbL3i5GbEoLgCzIvwQX9WAxNMF8KlznOyO8YvBjKAZzt80IAB45BEgxNb7gqYvKTsr11vSF1Juct3Vn/x7zChpxOe5NTDbZZ1ItklSiA9Swn0QH+QFo+HqAijBnsHYOGMjUoJSrizbWiq/vPrq8Pr4zJkD3Hkn+/gQ0YQ0YYIm+/btU0GS/h577DG88MILePzxx1FQUKAeZ/+cv/3bv8X58+cRExOD73//++pxw8WgCRFNS7IC6P330dvdrWrqDtbcUkgARVbvt5vb1XaviwvyFyageE6cyigZdCBf3IDPL8lAvu/PhQuwOC4QK5KCr2gAH+oVirnhc1WwRGrzEo2E/Js8VHwIe/L3DOiBYuroRuyJPHidKkRFY7vD6lHJdJKG8a59/84bIgKQuWE+ViSvxeq41TAZnAf4iIiIaHIoay7DRxc/GjAellJIey9UIau8Sb8vKsATt8yNRHC3GTOO5CCk2LHspzThlqbcstDH6WRzRATw8MNaY2yiQUjZLgmeyDi2fwmvBlmgdr4SZQ3aNZo9CaBIBpRciXWZe9BptqiSyHKTf5NebgZ185SbyQBvdyOSQrwR7DMwozo5MFkFT8K8w0Z+AlL2+a23tF6ZlzNjBnDffYDbVfZXISKaqkGT8cCgCRFNK5IyLenShw+rzfz6fFXaaDikkfulpcloCfZVmSRSW7epw4z2LjNau3rQpm5mh1X7AZ4m3Dw7Ql1gjoT0KEkNScXs0NlqkM5+EnS1pKzcrrxdqqlrf2F5lUj9LAvFta2osMuO8nYzICXcV5XtUq8xIwLZ189CgEcANiZvVLWf+W+TiIhocmrtalV9S06WnxzQH62utQvbz5ajpsXW729hXCBWJwYh/kIpEjIKYDBrizFc4KIW9oT7hKsV+pcta5SUBNx/P+DOsp80vPLIuy7twrGyYw73y9RcQW0rLla24FJ1iwqKXCkZzs6J8seK5GCVSWXP4GLAbam3YUHEgiu79ty5E/jii8s/NiZGCyRKyToiogmCQRMGTYhoOigqArZvByoq1GZTZ5O6SHRo7N7TC6PBBa4uLiqrpD4yALWxIaiNDUa7tzsK69pwuqhBDdAvZ740J0wJUWW5LkcyWuL941WgJDU4lc3cacxUt1bjdMVpZFRmONSNDiqpxZxPM1HX2I686lZY+oY7RlcXJIf5INBLW/l2/PYlaAny0VffbUnZwp46REREk6wJ95HSIzhTeQZmi12PErUy34Kj+XU4WVyvl+OSseyGtHAsdbUg9dBFePf1RfMyeSHKN0ot8HEzDHOF/Ny5gPRtZSkiGiFZ+PPehffQ2Nk4YJ/ZYkFxXdugARRZ4ONudFUZKL2WXrR19wzZb1Iec11iMObHBgwoq3x76u1YFLnoyg7++HHtOlSCKM6EhWkl6zg3R0QTBIMmDJoQ0VTW3Kxll0hJrj7yUS4Bk+auZn1bBtmSQdLo6YaM9Fi0xYfAP8gbIT7uqG3tUmW3ZP+gXABPo5bqLQ0JF8UFIjbIsd+JlPm6Pu56dYGpP83FRa3aj/SJVM27ia4VKdUlpemOlx1XpQ+Ef2Uj5u45i66WDmRXNKtyBlZB3m6ID/ZCY0okzq9Nd1h9t3XWVswLnzcu50FERESXp8a6tRfxRckXyG/IH3x/ZQsO5FQ7lOuURRO3zovEzLpmzN6XCde+yeYInwjV72FEzbJXrgRuuolNr+mKdZo7sfPSTpwoPzHkYyQg0tzRrYJ9EgSRBUD2mdHyb72rx4L2vkoBJfXtOFZQp8rR2f+7X50SgqRQbaGQdZHbg3MeREpwypUdvPQv3rYN6O6+fK+fxx4DArmIjojGH4MmDJoQ0VRkNmup0J99BnR1DajdbJ0oFlJ6ILeqBfmBPnh/VizaTY5p2f1Jw/b5Mf6ID/bWauKaDHrvh8EkBSZha+pWNm+nCUeGNXLhuSNnB3p6e1Qj13k7M+Da2onc6hY0tNku7CQDKyrQE0WPrUFXoLfD68i/74WRC8fhDIiIiMiZS3WXsCN3B2raagbdL+PgfdlVavLYSlbZL4kPxJKEIPi2dWLpe8dhMPeoUlwyaSwLfoZdolMava9ZA8zjAgsavbKzki11oeYCOsy20rJXqrXTjEOXapAp/XvsZvyWJwZhRXKIvi0ZVY8veFxlWF2R4mKtQXz7wF4sAwIn0qtYvhIRjSMGTRg0IaKpJicH+PhjoNaxOaW1Lu7R0qN6OQJJ584obsSByCDsT4yAv7c7Gtu7MNinfUygFxbEBqhmgc6CJFYmVxNuTr4ZS6KWsPcDTWglTSV4PfN1VbbOq7ENS947BpceC6qbO1FU1wazXRmDS/GhMN+xWAUN7TNOHlvwGOL848bpDIiIiKi/s5Vn8XbW2wN6lsi0hgRJThU1IK+2xWGiODHEG2tnhiJASnP29mL+JxkIrGhQWdOzw2bDz32IeQPpxTB7NhAUpK2Sl5tM+np4jPFZ0nTVY+lRZbsyqzNHJYBS2dSB/RerHRrMr58VhnkxtuCFj5sPnlr41JWXU66qAl56SauG4AwDJ0Q0ATBowqAJEU0VdXXAJ58A2dlDPkQG1BUtWl8TkVvfjj+GByMrLADJoT64bX4UzD0W1LR0obqlEzXNnarPSVqknyrVNRyyCi8tNA0bkjaoxphEk4H0OHnz/JsoaChA6sFsROaUq/vl96G4vl1dSIoeFxc8t3Qm0tIiVcNMK2+TN55d/CwzqoiIiCaA0qZSPH/6eYe+JfI3XUpwnipucGjyLvw9TSpYYl+SKDqrFClHchDoEYj00HSYDKbB32zhQq30lpdjeVqiaxlAkdJzkoXS0NGgSsdJoM/D6AF3o/ZVHtPa3arGvK1drShsLFSPtafKOBfV40COlpkl695umxfl8HsR7BmMpxY95VB2eUTq67XAiVy7OsPACRGNMwZNGDQhoslOym99/jlw6JBWlmsIjR2NOFVxSt+ucjfh+16+qPT2UIGRL12XoC4Yh0vqOcf6xaoVR95u3tpXk7dqiCmDc6LJ2Otkd95unDq3G8vePQqXXsfSBQU1rWjuNONYdDD2JEdh05wIzIrwc/ideHLhk8NvCEtERESjTiaFnzv+nN6/T5wtaVQliNq7exwe6+NuVJnUcjMaXPX7PZvasfKjM5jpm6DGtoNmTYeGArfeCsTHj+0JEY0BCSgeLj6MA0UHVDUCe9Lf50RhvfperhPvWRSLCH8PhzGv9KucGTzzysa9LS3Ayy8DFbbFfINi4ISIxhGDJgyaENFklpcHvPce0Ng4rN4NchHZY3RFwdw4/KLdBcV9q+xWJgdjWaJt1fxQpAlgWkgalscsVwETlt2iqaiosQhZv/0XuF/IGfB7VNbYgbyGDvx2WSo6PUy4d7HjRaSsRL03/V7+bhAREY3TRPCLp19EcVOxft/FymZsP6tlkFrJ3+6FsYGYEeajepjYc4UL7jrShFmtnjC6DtHrT3qUbN0KGEbQDJ5oAmrubMbe/L04XXFaL2UnY94d5yrU746QHpb3L43VytbZkYDJrJBZmBM2B8mBySrDZdg6OoBXXtF6nTgjAZONG4GZM/n7RkTXFIMmDJoQ0WQlZbi2bQMslmH1bMity0VVYhguLU7CqaYu7DyvreyRwe8j18XB6GpbXRftG4269jq0m7WatgEeAZgbNlf1J2H5IZoOLBXlKPvJ95Ffn6+axFvJUCi/phXvBvrhs4QIeLsZ8eCyOPh42CZVJLAoK/CsWVjyvfwOERER0dj6IPsDtVDISvqTbTterEpziZQwHyyKD0Skv+egz08MSMTt9WEI3H9k6Dfx9we+9jXAnZnVNHUcLzuODy9+qG9L78t3TpaitK/HiVQkkMCJl9vggUQpY7clZQtSglOG/6adnVrGyeUCJ9a+QXPnAvPnA1FRWu0wIqIxxKAJgyZENBlJDdjnntMGmpchtWqPdOUja1kiGiIC0NHdgxcPFejlCe5YGI0Eu6bW982+T62Wl498aSgoK46uuGYt0WT26qvoyjqnmmza9wKy9PYio7oV/zkvGZ1GA8L9PHDv4hiHsh79SWmPW1JuQXwAS3gQERFdi0nf9q4e/OVoEZo6utW29Oi7OT180GzQcO9wrE1YizSXMLjIGLtbe86gHn0USEoam5MgGkd78vaocl1Wct34xvFi1LZq5bukx+Xi+EDVC9PN6Dpob8t70u/B7LDZYxM4sS+Nt2aNFkQhIhojDJowaEJEk41cxP3xj5etASsf2SVdNdgZ142S1Ej09pUe+PRCFTJKtKZ/UpLg1nlR+nMkrfqReY+wtBCRkIs3+V3rK9klwROr7h4LnnP3wu6IILWdGu6repw4+90xuBhwZ9qdqoQBERERXRlpaJ1Znan+NsvioKbOJlViyJohLSyWXrxzqhTF9W1qe7AFDjLBKz0Zrou5DgkBCTLhATz/vPPJ2yVLtD4mRFOQXD++e+FdZFRm6PdJ0HHbsWLV389KStolhfggNcIXCSFeDhULpKTdEwueQLRf9NgGTsTNNwMrV47sOUREYxA3GKKYJxERXVMff3zZgEkPenE83Izdif7o9rTVnpX06jOlWsBELhrXzgx1mNCVlGoGTIj6xMYCCQlAQYHq4dPa1YrK1kq1y2RwxZNtLUg7Wo0qTzdUX/JAZXUDPOfFwujrAU83A1z7/S5JmS+5EJXyBSO6kCQiIiLlUt0llU1S36E1qR7KgdwaPWAi5YRunRfpEDBZELEAa+LXIMhTW/ygyt2++67zSVvprXDTTaN0JkQTj1wH3p56O5q7mvXFQn4eJty5MBofnSlHfZuWcdJj6UVOVbO6ScbJ9TNCMC8mQO8r9Nq51/DM4mfg5z7MxclS6u6RR0YeONm9WxurS7kuIqJxxEwTIqLxlpEBvPOO04e0hwfj7YR25HhqF4pW58uasOdCpRrkilUzQrA0oe9CEcDquNW4MenGMTpwoknq0iXgpZfUt5Zei2qSKStarepau/QmmaLL4IrtM2NwIcwfnkYDfNyNWBgXiPQo2zhDLiC/vPjLqt8JERERXV5bdxs+yf3EYQX8UGTMa+3d5+rqgnsWxSAqwNbDZHbobFVCSF8oJAETGV+fPev8hR97DEhMvMozIZr4pETz86ee1xcLCZkOLGvsQHZFM3Iqm/VSz1a3zI1ESrivvh3lG6UyTkwG09iX6nr2WcA0gvchIhoGludi0ISIJovKSuAPf3BaY7lhVgL+EFuNlu5W/T4JkhzIqcbpYi3DREQHeOKuRTEqtVr4u/vjr5b91cgGtUTTgQx9fv97oKxMbXb1dOFE2Ql09tj6CZXWt+urWdVTpBHtrFicD7M1f98yNxIz7S4kpQzIl+Z9SX0vgZizVWdR0lQCk6tJ9T1ZFbsKsf6x1+gkiYiIJiaZgpBSXDtydqDVbnwruswW1LR0oqXTrG5SPqilw4zc6hZ9kdD6WWH6Cnhr75KnFj0FN0NfJnZPD/D220BmpvMDWbYM2LJlDM6QaGKSRUJ/OvUnVQKvP/n9Kq5rQ2ZZI3KqWtR9ksl13+IYhPl5DB2gHA6zGThwAPjii2H171RWrAA2bhz+exARDQODJgyaENFkIANGmbitqRnyIR3B/vjt/G40WmyTt21dZpVKLWW5rOZG+2NdapgeMBEPzHkAs0JmjeEJEE1iWVnAtm36ptRNP1VxSmWeCBkeNbZ3o6nDrHqdyK2rpxfvp8bgeICvXs7r/qWxqoGmldRRr2ypRGNn44C3dHVxxR2z7sC88HnX5BSJiIgm4qStlOK6WHvR4X5Lby/OFDfg4KVa9Td3KDLmvTEtXN/2NHri2cXPItAz0BYweest4Px55wcSGAh89auAm63kLdF0+R18J+sd5DfkD7pfxsA7MyuRVaFlYUuG9YPL4uDtbqvuf0PCDVibsHbkby4LBS9c0CotSOa3s+lICcpIJpiU6iIiGiUMmjBoQkQTXW8vOra9gqoje9HSpa3kkZ4I4T7hamJV9LiZ8Op13rjkalsJVNXUgQ/OlKO5o1svT3BDapi6gLS3OHIxbp15K3uZEA1Fhj/PPefQS6iqtQrnq51PslhcgD9Eh2F7X1s4f0+TupD0MBmG9bby+/3o/EdVVgoREdF0UtZchlfOvDIgu6S2pRO7sipR0djh9PmzInxxU3qEvkhImr5/af6XkBSYZJuQlYCJTMo6I4ESmYyNZi8ymr5Km0pVVvS5qnP69aiVuceCN0+W6L+TEX4euGdxjEMPIck4kYVAM4JmwOA6vHGwg+ZmYN8+4MQJ5z2HJLgp/VGIiEYBgyYMmhDRBFe8733kv/gLfVW7lZQVSA1OVQ0sP10ehs+8qvV9Vc0deON4ib76ztoA076es5gfPh9bZ23Vgy9ENIS6Oq08Xpstk6u8uVytfu1VBbkGJ9We/ys4EIc9td+9hGBv3L4gakCT+PauHtUbRVbmzQjz0e/3Nnnjy0u+PPxGmkRERJOcNKCWRtJSEtPKbLHgWH49jhXWwdJXekukhvsi1Ndd/f306bvJ99Kc2t7G5I1YEbtCK/0jE6+ff65NxDojARNpTh0XN/onSTQJyfVoQUOBKlUrZfOspDTea0eL0Nxp1oOWG2dHDFiU52XyUgEUuX6Va1nrzd3ornqg6GXzBiOZYX/8o14yd1CLFgG33z4KZ0pEBAZNGDQhoomsvOAcLvzb38LFSR+TrmWLcSjd16Ek11+OFusZJhH+Hrh1XpS6iLSSIMnNyTdjefRyZpgQjaRM3pkzQGEhUFUF1Naiqa1erYata69zmNyx19Fjwb/6B+BcgBYMWZYYhJXJIXqw5GRRveo5ZA1ybkgLxxy7jLBYv1g8vuDxK1uZR0RENIlkVmXi7ay30dNrazItK9ilsXtdq+3vbKCXG25MC0NMoNdlX3NhxELcnrwFLqdOab0SLhcsEbJaXQImsewvRtSfTA2+lfWWyjyxX7T3+vESlXkiVs0IwdKEoGG/psHFoPr6XR93vS0jrL/qai37W4KfQ3noIWDmzBGcDRHR4Bg0YdCEiCYoc3cnDvzwCbjYrabp6O6B0dVFT3duDPXD6U0L0Nu3LU353jlVgpJ6rYdJuJ8H7u2XHi0rfO5NvxeJgYnX/JyIphSLRctAOX1arViV1XfdPd3otnSrVXg1bbYeRPWdZvx7YABygrTxxk3p4Whs68bpkgbVyNaelBK5b0ms+v21kgDn5pTN1/DkiIiIrq1jpcewPWe7QwZnXnULPjpbrjd2l0zNxfGBWJ4Y5DC+HYyU5FoTvwbrWkLgsmuXTAAM70A8PLSASUzM1Z0Q0RQmY97nTz+vFg9Z5VY148Mz5dqGC5AU7IO0SF8khnhf9vfVXnJgMjYkbUCkb+TAnYcPA598MvSTfXy0Ml3e3iM7ISKifhg0YdCEiCao06/+DA0733eo4Zxb1aIGoLGBXggJ98WJ25ei09tWt3VfdpVasW4tyfXQsjj4eNgyTCJ8IlTT9wCPgGt8NkRT3KefAvv365tmixkny0+irdtWzqukqRM/Dw/GpeCBYw7pORTq447KJq0etK+HSf3+errZskvuTrsbc8PnjvmpEBERXUsyzfBZ4Wf4tOBTh/vPlzWp/iXWaYgwXw+16EDKcfVfoS5jW193X1XO0tfNF2HeYUgJToHX50cc/j4PK2Dy6KNAVNTonBzRFNbc2Yzfnfgdmrts2VtH8mpxOK/W4XFSLm9mmC9mRfoi0t9T7zV0OXPD5mJ94noEegba7pTPgxdfBAoKhn6iNIT/0pcAA7O0iejKMWjCoAkRTUA1WSeQ+ZO/Q29fHxMp25NR3ACzXQ3nAytTkbouFX4eJrWdWdaIXecr9QnYexbFOPQwkf4n96TfA5NBezwRjSIZIkng5LPP9LskYCI1n60lRmQYlV3Tht/FRyAvyFf/XZ0d6YeliUHwdjPijRPFeiPN+GBvbLXrf2JyNeG21NsQ7RutLh7Zi4iIiCY7+du4I3cHjpYedbj/ZGE9Psux9eubGa71SOg/2SqNpW+deevgC4KkFNeePcM/GOk/JgGTyEFWtxPRkE3iJeNEFgxZf6dPFNbjVHGD6nUyGPk9Nhlc+24u8DQZMCvST42JZWzs8FgXgyrZtS5hna2sdEMD8JvfAF2Dl8ZVli0DtmwZxTMloummiUETBk2IaGKxtLfhyPefRGdNhX5fTmUzau3qOJ+MDMLOlGi1amf9rDD4e5rw5okSvXRB/54IkmHy5MInnTfXI6KrI8MkmZyR5rJ9pESXfb1n+R09X92Cl2bEwD09SgVLrIFPIb2IXj1ShPZuLdCyPDEYK5KDB7yVBFBCvUNV+YIFEQsQ7DXwMURERBNZj6UH71x4x+HvpEw5HMytxfHCOv2++TEBWJca6tCHT8rNbpqxSa1EH7Q/3+VK+PQXEQHcfTcQGnoVZ0Q0Pcnv8Jvn33S4z9Lbi5K6dmRVNKlqCdbefc5IryLphZIc6j3g93pO2BzcOetOW4+/kyeB921VGQYlTeGlOTwR0RVg0IRBEyKaYLJ//58oP/ixvl3f2oXsSi3lWfqZhCSG4MfxUai364Mgq3WsAZN5MQEqkGJ/Ufns4mdZkovoWpCh0u7dwMGD+l3S30Rutof0wmJwxbkN81AfZVduoE9xXRvePlWiXkrK8W2dH61qQQ9FVuDdMesOlu4iIqJJo6unC9vObcOl+kv6fRZLL/ZcqERmma33yHVJwap/if0EanpoOm5JuQXebkP8bTx2DPjoo+EdiARJ1q4FZs8GBgu+ENGwfF70OXbn7R50nwRMLlW3qOBJW2cPunqkD6Dcevu+OgZUIvw9sHpGKKIDbVUThGScSK8TRQbKr70GZGcPfVBSnuvxx4HY2FE4QyKabpoYNGHQhIgmiN5eNO/ZgVOv/JdqKC3MFgvOFDeqgaVIDPdF8QMrUOPnhU+zq5BdYasfK6IDPHHXohi9dIGU7/nSvC+x6TvRtSTDpZ07tVWufUGSzOpMh8bwQgInZzbMRUPkwMDJsYI6HMzVHu9uMuDOBdEI83UfULLAnvQrmhUya9RPh4iIaDRJ+cpXzryC0uZS/T5zjwXbz1Woxu+KC3BDapjKMrG3KnaVmjQdNLtEnDoFvPfe5Q8iJARYtw5IT5damVd3QkSknK8+jz15e1Db7tjT5HLKGtrxeW6N+movKdQHN6eHw8Nk600i17bJQcnaRlsb8PvfA/X1zhvDP/sswDk/IhohBk0YNCGiiaCtDb3vvIMzB95EfYdt0CcXjlXNnep7KcFlunU+SubG6/svVDRh74UqdJktqnH0g8tiVQN4q80zNmN5zPJrfDJEpAInUhbkiy/UpgRCc2pzUN5S7vAwVzd3eDz2NGLnXY8XTr+Azh7t912GXB+eKVer8qwkGBrs7YZgH3fVNF5W34X7eej7PYwe+PLiLzs2yyQiIpogWrta1d/Bj3M/dlhI0Gnuwfuny1DaN2EqCwQ2zY5QfUzs3ZR0E1bFrRr6Dc6eBd5+W/sbPBQJttxyi1ayh8ESolEnY9jipmJkVGSoRUMd5o5hPy+/plUFT+rsylInh/rg1nmReqDU2+SNryz5Cnzd+z4fKiuBP/7ReX+T6GjgiScAo+06mYjochg0YdCEiMZbYSFa//JnFBSdQXWbreFlU3s3zpdr5QmkEXTMknhcvHXRgNIB0mCvqK4NCcHe8HSzrcKRPgdbU7cOvRKPiMaWDJs+/hg4ckS/q727HXXtdao5vFz0Sdk8g6eXajyb5daEbZnbHCaR/nK0GA1tQ18ErkkJxaJ4W5Ak0icSTy16CkZXXhQSEdH4aulqUROnRY1FKljS1Gkru2U/jn3nVClqWrRFA9IY+rZ5UYgL9tIfI5nTt6fersa2Qzp/HnjzTanxNfRjZEx8553AvHlXeWZENBzSHF4WDZ2pPIOcuhy9Wbwz0gslq7wJn+XUoLOvx9+6maFYEGcb7yYGJOJL87+kPhuUrCxgm20MPagFC4CtW1mGj4iGjUETBk2IaLz09qJ1z8coee8lVDSXoxe9DjWdz5Q2oqNvoBgZ6YeyR9eg09t9WC8d7RuNJxY+wYlTovEmQ6ft27X66s54eKiay7vbzqma0FbyGXCmpBHVzZ1qQqmhvcthAa0ERe9eFI2YQNvk0pKoJbh15q1jcjpERETD6VciJXqOlx1XiwSGIosCJGDS2N6ttj1NBmxdEK36GVjJWPbe9HuRGpI69BtevKj1NnAWMBFsCk00bnosPapslywgks8I6036/klQxf5a2Fpx4f2MMj3b+v4lsQizy7Ben7gea+LX2J7w6afA/v3OD0KCJgsXjvKZEdFUxaAJgyZENA7MXR3I+s0/oz7jC71/iZV81ErmSHmjlsrs425E74PXoTYpXG3LynRp+vzhxQ8H9EgQMX4xeHDOg0M3xySia0uGT9KQ9vhx54/z8oLl8cfwUtnHyG/IH/QhUvO9trVLNck9U9KgPc3NiIeXx8Hb3RYkvSvtLswL50paIiK6tgobCvHuhXcdys32J2PdiqYOfJBRjrYubeW5lJm9c2E0grzdHMpOypg2PsBWmnaAS5eAV18FeoYOzihbtgDLll3BGRHRWKtsqVRN5CUbxd5nF6txskj7LAnwNOGh5fFwM2rZJS5wweMLHrd9Psh4W7JNLlwY+o1MJuCZZ4CwsDE8GyKaKhg0YdCEiK6xzu4O7Pvl38L9XNaAfbLSrriuDS2dfanLLi4w3r4QLYsTBzS/k/RmWZVzqvyUaqjpZfJCemi6WmVuMpiu5SkR0eXIEOrDD4ETJ5w/ztcX7Y88gNfKdqKwsdBp6YJ3T5WqAKuQTJO7FkWrUn7C5GrCs4ufRah36OieBxERkZPskqOlRwesGK9v7UJlcweqmjpVr77q5g50mm2LhqRf150LY+DjYQv++7j5qDFvuI+2aGhQBQXAK68A3VqmypBuvhlYufIqzo6IroW8+jz85exf0G3Rfqd7LL14/XgxKpu0xYSpEb6q35G1/LSfux+eXvS0+qp0dgJ/+ANQbSt5PUBoqBY4cbMFaImIBsOgCYMmRHSN7XvtP7U+B3ZaOsworm/TyxOo+9yMKN00H/FLEvT75ofPx51pd17T4yWiUSLDqHffBTIynD/O3x/mO27HCVMNMiozUN6vfJ+VrM595UiRqgcvliUEYeWMEH1/iFcInln0DNyNwyvrR0REdCWkZ4lkl0jPLntNHd3Yfb5SD/APJtLfQ5Xk8jDZ+vIFeQapgEmgp62HwQDFxcBLLzlv/ixuuAFYu3YEZ0NE4+lE2Ql8cPEDfbuxrRuvHC1EV1+g9aa0cMyO9nfISNs8Y7PKsFbBlLo64He/Azo6nPc3ueOOsT0RIpr0GDRh0ISIrqGyjM+R/Yvvyweq2pbBX0FtK+paHS/4qiIC0XTbQsTE2i4WpWn015d9XWWUENEkJfXW33oLyMy8/GNTUoD162EOD0V1azUqWyuRVZ2F7Nps/SGlDe1480SJKnUiZOIpMcRWmi/QI1A1z00MtGWrERERjRb5u/TG+Tccys3K3yQpI/lZTrU+0WlPykmG+bojOsAT82MDVPN3qwifCDwy7xGVaTKk8nLghRe0VeXOrF6t/o6y8TPR5CGfH29lvYVzVef0+y5WNmP72XL1vdHgggeXxiHYx3FRUGpwKm5LvU377MjOBv7yF+dvdOedwPz5Y3MSRDQlMGjCoAkRXSO9dXU4+sOn0d5c53BBqZfiUmVWDWhcnQqsSYWrq+0CUtw/+36khaZd8+MmolEmdddff127oBuO2bO1SZ/gYFWW70+n/oSyZq0xpjhRWIcDOVp/I1mp+9DyOPh5OJboWxy5GDcl36RW4xEREY1WhsmLp190aPbeLNklWVUorG3V75P+fHOj/VUTZwmW2PfgspcQkIAH5jzg/G+VBEp+8xugsdH5wa1YoZXlYsCEaNLpNHfiuRPPOWSv7c6qxLlS7ffe39OEzXMiEeHv+FnhafTElpQtmBM2By47dwKHDzvvb/Lss1q5LiKiq4wbOM7eERHR8HV1oeR3/6UHTERNS5ceMDG6uiA6wg+WZ9bBdV2aQ8DE1cVVpRwzYEI0RRgMwL33AsnJw3u8ZKX8+tfAvn0wuhhwb/q9DhNKi+ICkRSqrcjt6O7BhxllaLIr9SdOlJ/Ab479Bjm1jg02iYiIrkSPpQcfZH/gEDDJLGvES18UOgRM0iP98Mh18VieFKwyIYcKmEhfPskwuWxw/7PPLh8wWbqUAROiSUxKy96Tfg8MLrayfetmhiLYW8sukZLW244X42BuDcySxd2n3dyuslQ+yvkIvTfeCERHD/0m0gvpjTcu3xOJiGgYGDQhIroSvb3ofusNFOcc1++Spnb29Z1nhPuifutitEYEODx1ZvBMfHnxl7E8Zvk1PWQiGmNGI/DAA0CCrWeRU3JBuG8fsHu3qvF+5yxbbyOp33xzejj8PLXsEmmyK5NWGcUNetku0dTZhFfOvoI3z7+J5s7m0T8nIiKaNo6UHkF1m63Z8tnSRuw6X6mX45LgiJSMvHl2hEO/kv6ifKNwx6w71IIAo+vgARVdbS3wxRfOH7NwIbBlCwMmRJOcfDZIlrSV0eCK2xdEIcxXC6zKGPdYQR3+csTWKN7qeNlxfFF+DLjnHsDDSSC2qgp4+WWgvX3sToSIpgWW5yIiuhL79yPv7T+qEgZWxXVtqheBCPRyg/GW+SieG6fvj/ePx41JNyLO33YfEU1BUmbklVeAItvnw2Xdfz+QloZdl3bhYPFB/e7q5k68d7rUoeSf1Iu/KT0cAV5uDi/hbnDH+sT1WBq9VGWzERERDZcE3n919Ffo6tF68rV39eCFwwXo7O7Rs0vWzAwdECyRBu+xfrGI9I1EpE+k6l8iK8qH7dVXgYsXh94/d67Wp6BfiVsimpxkCvK1c6859POTxYdSmvaL/DpYLL36AqJlCYFYlhgMg6uLPtb9xnXfgFduIbBtm/M3CgkBHnkECHBcwEhE01sTe5owaEJEYygvD+1/+h2OlR7VG2RK+ZyMElkBri2CC70+BUUb5qoNSUG+f879SAlKUYM/IpomPU4OHAAOHVKl/C7L3V3VYLYEBapa8oWNhfquTnOP6m9irflsbZi5MikEC+IC4Nrvc0UmrW6deSui/ZyULyAiIrLzdtbbOFN5ZtBeA7Mi/LBpToTD4yWDRAL118Vcd+WBegmWSNBkKHFxwOOPM2BCNMW0d7fj5TMvo7S51OF+WSy0M7MC1S2d+n3SO+nGtHB9e0XMCmycsRHYvh04etT5G/n4AA8/DERGjv5JENGkxJ4mRERjpaUFeOst5NVd0gMmQspyWUPQbrHBKLlhtl5CQMpwSUkuBkyIplmPk3XrgG98A7juOm37ctkpr78OV3OPqvcsK3et3I0GbEgLx12LYvRm8OaeXnyWU41txwaWLyhvKccfTv4B23O2qybzREREzhQ2FDoETOTvyrkyLWDiZnTF6pQQh8fH+MWoUrMrY1deecDEbAY++WTo/TJulpJcDJgQTTmeJk88Ov9R1dzdXqivOx5YFofrkoL1RUHyWVRrF0Q5WnoUjR2NWo+jywVD5Nr9+eeB3NyxOREimtI4AiEiGi6LBb1vvonqqgKHes/SnLmuVVtJ3u1hQuO9S2ExahOk3iZvrIlfM26HTETjzNsb2LQJ+Ou/BhYtcl6PvbIS+Ogj+Lr54IkFT6hyJ/bigrxU490FsQGAi21i6y/HirD3QpXKeLPqRa+6qHz17KsOAV4iIiJ78jdCguxWUoji0wtV8odEuS4x2KHR+/Lo5Xhy4ZMI9Q69ujc+ckTrZzKUJUuACMfsFiKaeo3h75t9n7pmtpJSXBI0WZEcrLZlYeKhS7bPip7eHuwr2Kf1Erz3Xm2s7YxkfEtGW0bG2J0MEU1JDJoQEQ1DS1cLzr75Gxw7+DoyqzMdLiwLalvV9xYXF5TeshDwtw3cpGyBh9FJozoimh78/YHbbwe2bnX+uNOngVOn4OvuiycWPoFNMzbB5Kpll1hX/K5LDcN9i2MR7N3X06QXOFPSgD8fLkBWeZNDo/i8+jwcKz02ZqdFRESTmzRXrmyt1LfPlzehoi+DMcjbDfMlUN8n0CNQNXG+6r5Zzc2qP+CQPD2BG264uvcgokkhPTQdX1v6NcwOne1wvywSsgZsL1W3oLzR1tj9dMVpVLdWA0FBwBNPAIGBzt/EYgHeew8oLh6bkyCiKYlBEyKiyzTFfOv8W/jj299HzY430dbd5rC/qrkTbV3a6u6Tc+IQNi9G3yeNMBdGLrzmx0xEE9iCBVrGiTNSo7m8XE1KSa34ry79KhICEhweEhXgiYeWx6uSKSaDNpyTz6JPMivw9qlS1QfF6kDRAXT3dI/N+RAR0aTV2tWKvfl79W3JWPw8p0bfviE1TG/ALDanbFa9TK7a7t3O+32tXw94eV39+xDRpODt5o17Z9+LLSlb9PtkfCuZblby2WRdGCQZ1fpnlzR8f+opICrq8oGTjz/WUleIiIaBQRMioiHICu1fH/s1LhSewKzPMuFiN76SAVt9WxeK67QgSnaIHwJvTHdoyCwrxK96JR4RTT1So91ZDWap8/7660BH30pfzyA8Nv8x3JJyC9wMbg7lCxbHB+HRFfFIDvXR75fPpcN2ZQwkU+5k+cmxOhsiIpqk9uTvQYfZ1hfri7xatPeVekwJ90VskC1wIf355HZV5O/anj3Oy+SEhwOLF1/d+xDRpLQ0aimifG3Bj/QoPwR4aWPf0oZ2FPZde4usmiyUNJXYGr4//jgw8zKfUaWlwPnzY3T0RDTVcDaPiGgQ2TXZeOXMK+jobkfagSy4t3XpK/BkQvJUUQOyK5phtvSi0cOEnJWzEG13YSlpxv1XhhMRKVKD+b77AA8npfvq64H339dXw7m4uGBp9FJ8fenXkRqc6vBQXw8Tbpsfha0LomA02JpmtnXZmsAfLD7IpvBEROQw1rUPqFc3dyKjpEF9bzS4Yo1d83eDi0EtBrpishjg0CHgl78EDhxw/tjNm9n8nWiakvHujYk3OiwQWtnX20QczLVlm4jdebtt225uwAMPaP2QnJHAbY8tI5uIaCgcjRAR9ZNZlYltmdtUk7mE0wUIKqtHY3s3zpc14XRxg1rl0tVj0fuY7FuYjOVzbI0qpWzBzck3j+MZENGEJ7WX77zT+WNkJdwxx34k/h7+eHDug3hwzoMI8LDVmReJIT6YG6XdZ+7pxYnCen1fU2cTMirYAJOIiIDGjka8e+FdfVsmHfdlV+lVa5YlBKmAvNWquFUq63HE5AWlV9evfgXs3Am023oSDGr2bCCBi46IprOkwCQkBiTq2ylhPgjzddeDuxcrW/R9BQ0F+LTgU5Q3l2vBEwm43nILsGLF0G9QVwccPz62J0FEUwKDJkREdqSp3Jvn34Sl14LIi+VIyChETXOnaq7c1OHYEyDQy4Tum+Zgw8Z0hwvLlbErB0xmEhENkJoKXH+988d88onqbzLgqSGpqmnm9XHXO5QBXJwQqNefP1PSiPa+nkvW3iY9Fq6sIyKazmSM+1bWW2g32wIYEmSXRUEiwNOERfG2cay/u7/6WzPyN+prvPzuu0Bj4+UfbzIBN3PREdF0J9kmG5I2OGyvmmHLfDt8qQY9Flu2yWeFn+G5E8/hJwd/gtczX0deQz56160DfH2HfpP9+4HOzrE7CSKaEhg0ISLqc6z0mFp1J43lgkpqMfPwRVQ2dSC32raaxcNkUPWdF8UFInhpInpXpTg0yJQarKvjVo/TGRDRpCPNbp2tqpXyAW+8MeiFnfQ3kYtK+wtLH3cjZkf5qe+7eyw4VWzLNmnoaMDZqrOjfQZERDSJ7CvYh6LGIn27vLEdh6x9sFyA9WnhMNqVx9o4Y6NDP61h+/RTLctkuNasAfz9R/4+RDTlRPtFq3LXVnFBXogJ1EphN7R3I7NsYCBWAsHnq8/jzxl/xivZb8C8xkmwt60NOHhwbA6eiKYMBk2IiGTFSvFhfJTzkfret6YZs/dloqKhDfk1rfpjwv3cMT/GH9EBnrD4e+LC9bNk6Yu+PyUoRZXMMRlsWSdERE7JxNTddwPe3s7LCHzwgd7fpL8lUUvgZbL1VFoSHwTXvs8mKSkovZisDhQeUKuMiYho+smrz1N/B6zk78P2sxWw9P19WRofpCYn7cvkpIWkjfyNcnMv37vEnvQgWLVq5O9DRFPW+sT1cJFIbl+2yfV22SZf5NUhs7RRldAeTG5dLt7zLEJvsK0fygCHDwPNzaN/4EQ0ZTBoQkTT3sXai/jk0ifqe4/mdszdfQYV1S0orG3THxPp74GEYG81YOt1ccH5tekwu5tU/5K5YXPx+ILH8dDch+Dr7iQNmIhoMFI+4K67HIKwA5w7B5w4MeguWQG8IsZWu9nP04S0SC3bpMtsQUax1thX1LbXqr5NREQ0vbR0teDtrLdVRrWQ+v+7zleiua/8bJS/J1YkBTv8bbl15q1q7DsiTU3A228P77GSafn008Ctt7L5OxE5CPEKwcLIhfp2hL8HZoT6qO/buszYlVWJ5w/mq9vurEpkVzTDLGUB+5ytyUTBkhlDv0F3N7Bv39ieBBFNahyZENG01mnuxAfZH6jvTe1dmLfzDCrKGlFcb6vzLJklsurOetEoGSbeSbOwJWULvrXiW7g7/W4kBCSM/KKSiMgqORlYfZnSfh9/DFRUDLprWfQyeBo99e2lCYH6Z9Kp4gYVPLGv/ayaZRIR0bQgn/nvZL2jAidW0vfqUl8JWik/u3luBFztSs5KwGTEzd+lpOSbb2qlb5wJDwcefhh47DEgJmaEZ0NE08Xa+LVqkaLV9Skh8HazbQvJNjlX2ogd58rx5okSh34n7yMbPTHRQ7/ByZNAdfWYHDsRTX4MmhDRtLa/cD+au5rh2mPB3L3n0FBch7K+RphCgiXSw8Q6+Zi3OAlzNjyELy/5sjZJabJNUhIRXRVpWhkfP/R+s1lbvWu3is7K3eiO5THL9e0ALzfMCvfVy6+cKbFlm1S3VSOrJmu0j56IiCaog8UHcan+kr5d1dyBz3JsE4U3pYfD18NWXnZhxELMC5838jfauxcosvVLGcBgAO68E/jKV4CUFOcZlkQ07fl7+Ktrbvvx7ZPXJ+K+JbEqM04WN9r3F61o7FClaa3qOxtwfHbg0G8gi4h27RqyBC4RTW/XJGjy61//GgkJCfDw8MDy5ctx9OjRIR/7wgsvqMlJ+5s8j4hotFW1VuGLki/U9/GnC+BWVo/ietvKOCnHFRVgC4qUzopG+h3PYHU8G70T0Rj2N/Gy1ZMfoKpKK9U1iOXRy+FucNe3lyYGqaa+4mRRvWoMb98IuLtn8DrQREQ0dZQ1l2Fv/l59WzIPd5yt0FdjL4gNQHJfyRsR6hWKzSmbR/5GFy9evrHypk3A/PkMlhDRsK1LWIdIn0h9W4Ikco2+PCkY9y6JxVfWJuOWuZH6mPdIfi1aO83643d3Z6MtJcH5Z9cQJXCJaHob86DJtm3b8M1vfhM//OEPcfLkScyfPx8bN25ElVz0D8HPzw/l5eX6rbCwcKwPk4imYZmCjy5+pBoie9e1IO5cMQprW/VFJlIzVW5WNXGhmPXI3+C6WFvfACKiUefnp63CdWb//kGzTSTzzX41XpC3G1LCtGyTtq4eVbrAPmisattzZR0R0ZQlwXH5rJfxrtWn2VWob+tS34f5uqtyN1ZSBuee9HtUP5MRaWwE3nnH+WPmzNEavhMRjYB8Hj0490EkBiQOut9kcEVKuC/mRPnrgeHPc2v0/d2WbuyRpzrrm7RjB1BWNvoHT0ST2pgHTX72s5/hmWeewRNPPIH09HT83//9H7y8vPCnP/1pyOdIdklERIR+C5eap0REo+hs1VkUNhaqVNzUwxfR0NKJ+rZufeAVG2hb6d0U5o+Zz/4DFscsHccjJqJpQ0qWrFo19P7aWuDs2UF3XRdzHUyuthIryyXbpM+xgnqHlXdSomtX3q7ROmoiIppgdl7aiZo22+ThxcpmZJU3qe/djK7YMjcSRruJxM0zNiPcJ/zK+pi028rbDhAcDNx2GzNMiOiK+Ln74bEFj+HJhU9iRcwKhHsP/JxamRwMd6P2eSafc+WNts+kE10FqEqNdf459vrrzj/HiGjaGdOgSVdXF06cOIENGzbY3tDVVW0fPnx4yOe1tLQgPj4esbGx2Lp1KzIzM4d8bGdnJ5qamhxuRETOdJg71EWkiMoug3dlIwpqW/X98cFeem3UNj9PRD37LcyLWTxux0tE09ANNwD+2oq5kWSbeLt5Y2m0LcAb4uOul11p6zLj/YwyhzJdh4oP4VjpsdE+eiIiGmcXay/iWJnt8725oxt7sir17RtSw1R/AKvZobOxKHLRyN9o3z6guHjo/UYjcN99gLutfCQR0ZWI84/Dxhkb8dWlX8Xfrfw7rIq1LTLycjNiRbItc25fdrVDRvV7kY2weDrpR9rQALz7LvubENG1CZrU1NSgp6dnQKaIbFdUVAz6nNTUVJWF8t577+Hll1+GxWLBypUrUVJSMujj/+M//gP+/v76TQItRETOfJr/KVq6WuDW1omkE3mq8XunWZtE9PMwIdhbu4DsdXFB3S03YlHy9eN8xEQ07cgk02on/ZPq6oCMjEF3rYxdqUqsWN0wKww+7tp2ZVMHPjlX4XARuT1nO3Jqc0bz6ImIaBzJOPe9C+/p2/KZ/0lmpT7enRnui1kRWvlGEegRiNtSb1MVH0YkLw/4/HPnj9myRSYARngGRETOyUKh9YnrEeJlC5TMi/ZHsLe7PubNLLMtqi61NODcyhnOXzQ7Gzh0aOwOmogmlWvSCH4kVqxYgUcffRQLFizA2rVr8fbbbyM0NBTPPffcoI//7ne/i8bGRv1W7GyVCxFNexUtFThaelR9n3IkF91tXSjrS92V68TEEG/9grFkdizWr3wIri4T7qOSiKaDhQuBgICh93/2mVZOoB8fNx9Vpkvfdjdi64JoVYpF5Fa34ECOrVxLL3rxxvk31OcjERFNbhIgkYBJa7cti/pkUT1K6tvU977uRqyfFaaPd2Wce3f63fAw2nr5DUtrK/D2285XZc+bp/0tIyIaAwZXAzbN2KRvu7q6YF1qqL59MLcGHd22sfIOl1x0rLT1/xvUnj1AQcHYHDARTSpjOhMYEhICg8GAykpbGrCQbelVMhwmkwkLFy5Ebm7uoPvd3d1V43j7GxGRs+bvMkEYXFSDkIIqFNTYmr9H+nnC082gvm/38UDw5rsR5Rs1vgdNRNOXweA826S+fshsk7XxaxHpE6lvh/q6q9r11kkymUDLKGnQ93f1dOGVM6+gubN5NM+AiIiuseNlx5FTZ8serGruwMFLtdqGC3Dz7Ah4mLTxrvXvRYxfzMjeRAbPUsampWXox4SEALfeyj4mRDSmZgTNwKyQWfp2bJCXagwv2rt78EVe3+efbJvbsT26DUgcvKm8IuVvpU9TM8fERNPdmAZN3NzcsHjxYuyRSG0fKbcl25JRMhxS3uvs2bOIjLRd+BMRXQmp3V/cVAxDlxkzv8hBfVsXGtu15u9uBldEB9pqnBavnocbZt48jkdLRARgwYIryjYxGUx4aO5DqnGmVUKwN9anhunb+7KrkF9jW4nc3NWM97PfdyjdRUREk0dde53et0+Yeyz4+FwFLBbtc31xXKCaULSK9YvF6ngnwfmhSH/SnBznQf977pEJgZG/NhHRCG1M3uhQmnZ1SgiMBi1gm1HSiJqWTn3fmepzOL8mDfC1lSgcQALCr74qTZTH9sCJaEIb85oz3/zmN/H73/8eL774IrKysvDVr34Vra2teOKJJ9R+KcUlJbas/vmf/xk7d+5EXl4eTp48iUceeQSFhYV4+umnx/pQiWgKK2kqwZ58LYCbeLoAxpYOFNRoZQpEQoit+XtlYhiWrnkQniYnjeKIiK4FmXhau9Z508rTpwfd5evui4fnPgx3g6357twYfyyOD1TfS2xk+9lytQrZSlYnn6s6N5pnQERE18iuS7vQbdEWBAkpxVjX2qW+D/Vxx4rkYH2fm8ENd6XdNfIytGVlWvkaZ26+GRhmZQkioqsV6BmoevpZSZ/SpfFB6ntZDLTrfCV6+oLH4v3SvWi69Wap5zX0i5aXA6+/PujiJCKaHsY8aHL//ffjv/7rv/CDH/xA9Sk5ffo0Pv74Y705fFFREcrlw6hPfX09nnnmGaSlpWHLli1oamrCoUOHkJ6ePtaHSkRTVIe5A2+dfwuWXgu8GloRnVWiynJ19WjNMP09TQj00lbCdbsb0XHjWiyIWDDOR01EZFcTPlALdAyZbTLESrhwn3DcO/teh0mx62eEICVMW13X3WPBjrMVMEspgj47cnegrdsWVCYioomvsKEQWTVZ+nZxXZtehlEWBm2eGwGj3QThlpQtaqJxRORvjZStcTaJmJoKLLtMzwAiolF2fdz1DhnWskgooO8aX5rCH82vdZgfeLv9BCzrb3D+opcuAe+957x3ExFNWS69U6wGgwRZ/P39VVN49jchIvmIeyvrLX3ldPq+TLieK0FulVaD2dXFBfNi/PXaztkrU7H1oR8jwoer44hoApFsEqkfPxRvb2DdOmDx4kFXzZ0oO4EPLn7gULLl9eMlepbJ8sQgrEgO0ffPC5+nViATEdHkGO/+4eQfUNpcqrYtvb149UiRXpJmXWoYFsTaSj2mh6bj3vR79T5Xw/bRR8CxY0Pvl+vvr3wF8LKVACMiulbkmv/N82/q2xWNHdh2vFh9RsrH3b2LYxEVYKsmsSHxRlx/qATIznb+wqtWATfdNJaHTkQTMG4w5pkmRETj6XTFaT1g4l3XAr+cCoca/okh3nrApCHcH3HrtjJgQkQTM9skSCszMKjWVm0y6ze/0S78+q2JWRy1GKtiV+nbRoMrbkoPV4Fjcayg3rHec+UZ5NbljsWZEBHRKJOxrjVgIrLKm/TP9DBfd8yP8df3+br54taZt448YCLVIY4fH3q/vN5ddzFgQkTjZnbobCQHJuvbEf4euC7RWqYLqsdTp9mWKfdpwT6Ub7gOCLP1/BvUwYPAF1+M3YET0YTEoAkRTVnVrdXYnrNd344/mY+cqha9nmmIjztCfbVa/70uLqhctxQ3JK0ft+MlIhqSZI84621iVVMD/OUvwJ//rDWxtLMhaQPSQtL0bfn8W5IQqK9KlnrP8tXqg+wP0GlmA0wioonMbDHrffusZRcPXbKVoVmdEuoQILlj1h3wMo0wsCF/G3bscF6iZs0aICFhhEdPRDR65LNu66yt8DTaskmWJgYhyl/bburoxr7san1fT28P3sr/CN0P3KdlyjnzySfAOfb9I5pOGDQhoil7ASmpudZmmL41zWjPKEJrp1ltS3aJZJlYVaZE4pZVj8PD6DFux0xE5NTcuUCIrYSWU/n5wB//CLS1OVxI3pZ6m8Nk2bKEIL2nk9R7Pl2s1b8XjZ2N2Ju/dzTPgIiIRtmRkiNo6LB9dp8srNfHu0kh3ogN8nIoy5UcZFuFPWxnz0oz0qH3x8UNL7BPRDTGpK+JjHetJKt645wIuBld9Uy8i5XN+v6athrsrDkCPPII4OFkLkCCxu+8o/U5IaJpgUETIpqSdl3ahcrWSn3b+8AFlDdqtftlsV1KmI9qiiksri6Iv+1LiPGLGbfjJSIaVrbJbbcBRuPwHl9fP6B5pQRMNs3Y5FCma0N6uL4tq5Mb27VgszhaehTFjcWjdQZERDSKWrta8VnhZ7btTjOOF9brgfLrU0L1fQYXg8o4HDFp/r5z59D7DQZg69ZB+2kREY0HCRAvjFiob/t7mnBDqq0E156sSjR32Ma7x8qO4ZKxGXjwQefj7J4eYNs2oKRk7A6eiCYMjmyIaMrJr8/HkdIj+raxpA4tGbZJv7ggL3i72wZDvQsX4ro5tklEIqIJKz4eeOopIDZ2eI+X/ib9mvbODZuLlKAUfTs6wBPzYgL0BvFyISkNM0UvevF+9vss00VENAHtL9yPzh7b5/PhvFpVnkvMi/ZHkLeWSSiWRS9DkGfQFbzJ/gHlHh2sWAEEB4/8dYmIxpAsErL/zJsV4YuZ4b7q+06zBZ9kVujjXaHGu9ERwN13a6ssh9LVBbzyClBVNbYnQETjjkETIppSZGLv3Qvv6tsyEGrfngFzXx+TAC8TIvxsabcGkweWPfCtkTfDJCIaL5GRwJNPAvffP7yJKlkhXFGhb8rnnTQBdjPYJtNWzQiGT18wuaiuDVnltrIF1W3VeOP8G+ix2BpnEhHR+JKSMsfLbI3ZpfF7Zlmj+l7K0CxPsk0WSn3/NfFrruBNapw3P5YeANLLhIhognE3uuOutLvg6uKqj3/XzwqDb994t6S+fUBZ2l15u4C0NGDzZucv3t4OvPQS0GB7PhFNPQyaENGU8smlT9SAx6r8VDF8S+rU9yaDK5JDfRwCJMk33wff0OhxOVYioismn2NyUfe1rwFbtgBeTpr6ms3Am29qK+P6+Hv4O5RpcTcacGOarWzB/pxqtHRoNfFFbl0uPrj4gcOKPCIiGh/Sw+T1zNdh6dWySsSBnBq9GuPShCB4udmyqiVg4mmyNUYeUfN3i+09BrjpJsDNFoAnIppIpPy2fcBY+prePDtC3z54qRYNbbbxsQSipWoFli0DVq92/uLNzcCf/+w8E4+IJjUGTYhoyrhYexEny0/q2w2tnfDYl6VvJ4d6q8CJVXRwAqI233fNj5OIaNRILXm5sJPgiY+P89XCH3/scNeSqCWI9bOV+UoM8UGqtWxBdw/ePV2KTrMtu+R0xWnsK9g3FmdBRETDJH2mfn/i96hqtZWGKaxtVTfh62HCwlit5KKQ8jRSmmvEpLyjs4bHUi5yzpyRvy4R0TUkQRP78W5skJdDWdrddmVprWW6unq6gPXrgcWLnb94XR3w8stAh9Y7lYimFgZNiGhKaOtuUwMcK0tvL7IO5CKqQVv5Ee7njgAv20o4XzdfJN38gPNJRiKiyUI+y+66y3kN5pMngXPn9E0pV3B76u2qObDVutQw+Hma9FIvH54pR09feUNr/fwTZSfG6iyIiMiJM5Vn8MLpF9DarQVIRFNHNz7NrnYot2i0WyQkWYUGV9vn/GVJVuK+fcDbbw/9GPlbI1mOLG9LRBOcjHfvTLsTJldtfCuunxGiAszWMl1nSm2VKuo76rEnb4/2+XbLLcDs2c7fQErgvmsrD05EUweDJkQ0JezI2YGWLltq7Jm8Gsw7la++dze6Ii7I22HgNCt6PgyrWYOZiKaQpCRg1Srnj/ngA6C+Xt8M9Q51KFvg6WbAHQuiVfkCUVzXhl3nHVfgfZTzkcrsIyKia0M+g/fm78XbWW+jp9eWAVje2I7Xjhbr5WXC/Tz0jEEhq6vTQtKG9yZShuv4ceB//kcLmtiVdBxg6VIgPPwqzoiI6NqRjDv7srTS9+mmNNtn2Oc5NWhs79a3j5QeQWFDIeDqCtx5J5Cc7PwNLlwA8rW5ByKaOhg0IaJJTWo5Hy09irNVZ/X7als64bkrE8HtnWpb+pgYXG0r4ZICk+C95kbnPQCIiCajG24AYmKG3t/ZCbz3nlarvs/1cdc7lC0I8nbD7fOj9M/NCxVNOHSp1uFz943MN1DeXD5WZ0FERHafuRIs+azwM4f7syua8eaJErR1af2n/D1N2DwnwqF338YZGx22hyRluH7zG+DDDy9fn1/Gz/K3hohoEpEyhfH+8fp2XLAX5kT7q++7eyzY069M13vZ76G7pxswGoH773c+vhZ79zqMr4lo8mPQhIgmbTmuz4s+xy+/+CW252zX75cyMhf3XcT8Mm2CL9LfQy81IwI8AhAdmgysWDEux01ENOY9Tu6+G3B3H/oxBQVAlq3fk5RteWDOA2oVnlVUgCc2z4kE+ubajhXUIaOkQd/fbenGW1lvocdiW/FMRESjSybwZJxrvzhI7jt8qRY7ztnKJ0YHeOKBpXEOpWjnhc9TTZAv69Qp4KWXtN5Xw3HjjYDnCJvKExGNMwkgb5211aFM1+qUEPi6G9X3RXVtOFfWpO+ra6/DS2deUvMOcHMDHn4YCAsb+g2Ki4Hc3LE9CSK6phg0IaJJRUpwfXjxQ/z88M+xO283Gjtt9UfF2QsVWHYqT33vaTIgNtCWTSJ1+2eFzILL6tWAh8c1P3YiomsiMBC47Tbnj9m5EzBrq5OFt5s3Hpn3CLxMts/MGWE+uGGm7eJwX3YVLlXZViDXtNXgWNmx0T56IiLqIwuEjpcd17elafGOcxU4km/L/psd5Ye7FsWo8opW4d7huHXmrZd/g+ZmYMeO4R+QNH9fuHAEZ0BENHHIAqH1iev1bXejATem28p0HcipVn2irIoai/D7E79XY14VLH7kEecLk5htQjSlMGhCRJNGSVMJ/vfo/6qLR1nlbK/LbEFGUT3Cd56Fd7dZL8vlaleWa0bQDHjEM8uEiKaBOXOcT2w1NACHDw+4kHxo7kMOK/DmxwZgcXyg+l6uAT85X6GXghH7C/ajw9wxFmdARDStna44jT35e/RtySr58Ew5LlY2a3e4aKukN6SFO5ShjfOPw6PzH4WbwZZ1MqRPP3Xeu8SeNEN+4AGtxj8R0SS1PGa5Q1nahGBvFXy2zilsP1uO9q4eh8bwfzj5B+TV5wF+fs7nEsrLHbK5iWhy44iHiCaF1q5W/OXsXwZMzknDts8uVuMPn+eh8dMLSKxr1ssU+HhoqbbWycCIoDitbI2UryEimuo2bQJ8fIbef+CAtsrYjpRyuSf9HrhY63JJz5MZIUgJ89EvJo/k1en72s3tOFB4YCyOnoho2sqty8X72e87NoK/UImC2la1bTK44rZ5UVgcH+TQs2RBxAIVMJHswcuqrNRKc11ObCzw5JPAvfeyLBcRTXquLq6qTJfR1TZXsDolFD59ZboqGjvw2rEi1LXaAsoyB/HymZe1zL/rrnP+WSjBaItlbE+CiK4JBk2IaFLYeWknWru1C0VR2dSBDzLK8MKhfJwsqodfYxvW55frTYyjA20DGRkQpQanwmXLFiDIVrOfiGhKk/IBUnt+KLK6WMoI9JMakopbZt6ib8uE3LrUMBgN2rDxbGkj6u0uJL8o+QINHbZ+J0REdOXKmsvweubrqgG81Rd5dcjsq7UvWSW3z49SGdVWEujekLQBW1MdJwKd2rXLeRkZGTPfd58WMImLu4ozIiKaWEK8QnBDwg36tofJoD5XvdyM+sLMbceKUFzXpj9GPpOlTPiBymPAqlVDv3h1NXDu3NieABFdEwyaENGEl1+fj4zKDH27qrkDrx8vxqXqFnWt52qxYOvFEkR6uWFutD9mhvvC1W7VXUpQCtznLgAWLBinMyAiGifz5wORkUPvP31aKyXQz5KoJVgVa7sg9HY3YnGcVqbL0tuLg7m2hsE9vT3Yk2crIUNERFemvr0er5x5BV09tsC0BKrte5jcnB6B2CBb/ykpqXjf7Ptwfdz1DlknTkmzYmcNi1NTga9/HUhPl8j5FZ4NEdHEtSJ2hcqwtgrz88ADy2IR4qP1LOk0W/DOqVKcK3XsoSplEy8mBzjP5t63D+ixlfgiosmJQRMimtDMFjM+yvnIsTxBVpWq62ydyHsSZmwK8kBymI/athfpE4mwiGStKTIv+ohoupHa81KmaygSef7440FXG69LWAd/d399W3qbWFfg5Va3oLShXd93tuqsWh1NRERXpsfSg22Z2xwyq/OqW1RZLqs1KaFIjfDVtz2Nnnhy4ZNIC00b/htJ2RjJMhmKlLHduJHlbIloypfpkoCzn7vWz0T4eZhw35JYJIZ46wuFdmdVqgbxMg9htb1wN8yrnPQ2qasDMmyLPolocmLQhIgmtEPFh1DTVuOw2q6iqUMvw/XMkmhsqmlQtZ3tSZkCaYQ5M3gmXO66C/CyrcgjIppW4uO11cJDKSwctGmlyWDCjUm28l5uRlesSA7Wtw9cdLyAlDKK9ttERDR8x8qOoaKlQt8ub2zH9nPlekx7UVwgFsVrGX9CynA9OPdBRPo6ySYcKsNQ+pkMZelSlrMlomlBAiYSeA7zDnMY7942PwoL+zKsxYnCehwrqNe3pSztkXCz1hh+KPv3A2bz2B08EY05Bk2IaMKqa6/DZ4Wf6dutnWaHkjDrZ4UhKbMExi6zwwVkrF8slscsR1JgElxWrgSSkq75sRMRTSg33eR81fDOnYNe2M0Nm6sy9qxmR/qpgLWQAHZOVYu+r6ChABdrL472kRMRTYssE1koZD/mff90Gcw9WsRESs+uTglxWBx0d9rdaoHQiEgvK2lSPBQPD2Dt2is4AyKiySnAIwBPLXxKlfS2klLfa2eGqvkGa7GKYwV16rPZ6rPSQ2hfuWzoF25sBE6cGNNjJ6KxxaAJEU1Islp5e852VZ7L6kBOjaotKtIi/ZBsckVMVqlenkCySlbErEByUDI8jB5AWJjzJshERNNFYCCwwkkZgYaGQcu1SH38m5Nv1rddXV0cJu4kkG2WUi99duXtcmheTERElyclDps6tUbv4mRRPdq7tXr4MYGeuHl2uEO/ks0pm0dWksvq0CGguXno/RIw8fQc+esSEU1i7kZ3lbm3PHq5w/3zYgJUz1TR3WPB4Txbf6nOnk58GlCvjbGH8sUXWklEIpqUGDQhogkpqyYLuXW2BpXFdW24UKFdTLqbDGrSLuF0AVx7LKoe6bzweYjyjYLB1W4l9c03A0bHHidERNPW6tXOm1YeOaKVbeknMTBRBaWtEoK9ERuolTxsbO/GmRJbg0wpp3i87PhoHzkR0ZReKHSw6KC+3dHdo8rRCoOrCzbPiYRR+lP1kYbvy6KdrG4eigRLDtreZwCZ+JPSXERE05DMKUhA+paUW9T3VtclBauSXSKzrBE1LZ36vuOVp1C/fP7QL1pfD+TkjO2BE9GYYdCEiCacTnMnduTs0LdlFfPeC1X69vUzQhDa2omIS1rd53j/eHia+q2KS0wEkpOv3UETEU107u7A+vXOH/Phh0CplsFn76akm1Q5GCGrne2zTY7k16lJPqs9eXscVkwTEdHQpKxhdVu1vi2B6K6+zOr0SD94u9sWAMkioRsTrzCLWspydXcPvX/DBi42IqJpb2n0UmxI2qBve7kZsTRB6/MkPaY+u2j7vJbs6h2eJUBo6NAvePTo2B4wEY0ZBk2IaMLZm78XzV220gEnCupR39alvo/098CcKD8knciDSy/gZfJCrH/s4Bd+dmUMiIgIwIIFQKSTpsHS12TbNqDF1qtEhHqHYlHkIn07zM8DsyK05ped3T34ol+5gg8vfsim8EREw/B50ef69+YeC04Xa82GZRi72K7xu4x5b5t5m0OZrmGrrgZOnRp6f0wMkJ4+8tclIpqCJJsv0MP2+bswNgC+Hib1fVFdGwpqWvV9F+tzUZo+yHyE1aVLQI2tLysRTR4MmhDRhJJfn48jpUf07Ya2LhwtqFPfy0Xi+lnhCKhsRHCJNkEnJWPs02eV2bOB6Ohre+BERJOBlHi54w7ApF34DaqpCXjjDaDHlj0ibki8AW4GrQm8WDkjWJWOEadLGlDe2O6wcjqzOnMszoCIaMooaixCcVOxvn2+vAltXdpn74wwXwR42T5zpda+yeDks9uZPXu0JdJD2biRi42IiPoYXY24Kfkm27bBVVW7sDqQUw2LxfaZ+pFHESyS0T2UY8fG7mCJaMwwaEJEE0aHuQPvXnhX35ZVylKWq6dvQCIrPEJ93JB8Ik9tR/hEIMAjYOCEIJu/ExENLTxcC5w4U1gIfPKJw10+bj5YFbtK3/bzMGFFUrC20QvsOl/p0BR+e852tHW3jfLBExFNzSwTS28vThRqWSZiqV2WiQSsr6iPiSguBi5cGHq/ZJjEOlklTUQ0DaWFpCHOP07fnhnugwg/D/V9bWsXMstspWjLOmuQl6BlYA9KegZ22nqhENHkwKAJEU0Yn+R+gsZOW0PhM6WNKv1V+LgbVRO2kKIa+FU3qdUfSYFJA19kyRIgSKs5SkREQ5CMvOuvd/4YqcHcr5zLitgV8HO3XRQuigtEmK92AVnX2oVj+bYJPwmY2PenIiIim6rWKpWVZ5Vb1YLGdq3nSFyQlyqDaCXlEQf07xsOyS7ZtWvo/VxsREQ0KKlysTF5o8P2mpm23iWH82rQabZlZe8IqEF7zxCBEQmYnDkztgdMRKOOQRMimhCya7JxquKUQ1muAzm22p8b0sPh29mNGUdz1bYETOzLxChubsDatdfuoImIJjNpCj9jhvPHbN8ONNqC2fK5e0vKLfq2q6sLbkoPh2tfWZdjBXWobrZdMJ6tOuswKUhERJqDRQcdsquP95WjFUvibQuApAztipgVV/YmFy8CRUVD71+0CAjuyxgkIiIH0X7RmBs2V9+OCvBESpiP+l5KKR4vsC0WqvXsxeemcnT3aMHvQRcjsd8f0aTCoAkRjbvWrla8n/2+Q3mCTzIrVDNMMTfaHzN83DBv1xl4tHaqVc6RPoM0Ml65EvD2vpaHTkQ0eckK47vvdp6d190N7N3rcFdqSKrDBWSorzuWJATqn9+7syod6jxLU/hOM0sSEBFZNXY0qqCyVXFdO6r6As5hvu6IDbJllcjnrb+H/8jfRMol7t499H7pbbVu3chfl4hoGrkx6UZV5cJq1YwQvaffyaJ6VDZ16PuyknxxruocLL22crW66mqgoODaHDQRjQoGTYhoXMnKOplQa+1u1e+Tes7ljdrgw9/ThLWJQZi7+yy8G1rVartZIbNUeqwDCZZI0ISIiIbP0xN44AEtU28oUk6gosLhrk0zNsHL5KVvL0sMQmBfw2K5eDxV3KDva+pswq48J+VhiIimmcMlhx0m1Y4V2mWZJAQ5jHNXxdl6SY1IRoY2STcUGTf7aCumiYhocNJD9bqY62zbXm5YEKv1VZXeq++dLkVjm5ZdUhcdhAq3LmRVZ6l5jkGzTYho0mDQhIjGlayyy6rJ0relrMvhvFptwwXYNCsMCz+/AP/qJr0sl/1EnU5Wyjmb9CMiosGFhQF33jn0frno67da2dvNG5tnbNa3ja6uqkyXfG5b6zxLmUWr42XHUdZcNgYHT0Q0uTR0NOBE2Ql9WwLNxX09/GSx0Iy+0i8iNTgVYd5hI38TyRL89NOh93t5cbEREdEwrY5bDW+TraLFiqRgRAd46mW63jldivauHml8gtK0aFS3VeNS/aWBL3ThgkPZWyKa2Bg0IaJxI6uPt+ds17fNFosqy2Ut67I4NgA3nC9CcEmtvsoj2jd64AslJgKLF1+7AycimmrS0oC5tpJbA+TmAnl5DnfNCZuDmcEzHeo8L4jRVt6Ze7QyXfar7PYV7BuLIycimjTkM1HGvt0WW817+14mi+MD9R5RV5VlIquZm7QFR4OSHoDu7lf22kRE04y70R0bkjbo20aDK26bH4Ugb23RpiwUej+jVJUXr5gRgR6jK0qaStTNgYyLjx271odPRFeIQRMiGjdy0dhhttUAPZJXh5oWrZ5zsLc7vtTQiIhLlWrb4GIYvCxXRARw//1abX4iIrq6xvAGw9D7d+1yaGApn8fSFN7dYJt4W5kcAl8Pk/q+pL4duVUt+j5pCF/eXD5WR09ENOFdqLmgPgutSurbkNP3OenlZkR6pJ++L84/Tt1GrK0NOHBg6P2BgVxsREQ0QgsiFmBe+Dx928NkwB0LotVnt5Dy4jvOVaDLZEBlcoS6L7cuF7VtfVU0rE6eBMzma3vwRHRFOMtIRONC6nzKhaNVeWM7jvfVc3Z1dcHTnr1IOF+q708JToGH0cPxRaR58SOPAB797iciopGTibRly4beX14OnDvncJc0J7ZfeedmdMUNqaH69pH8Oodsk/2F+0f7qImIJoVOcyd25O7Qt6UW/t4LVfr28qQgtXrZalXsFWaZ7N0LdNgWJQ0aIDfamhoTEdHlyWKh21NvR2JAon6fn6cJdyyIgqnvs/tSdQs+u1iNktQo/THZtdkwW8yOge0TthKNRDRxMWhCRNecZJfYl+WSi8bd56v0Bcw3hXpi2bkifX+IVwjCvcMdX0QaV37pS2xgSUQ0mlavdh6I3rNnwOq4JVFLEO8fr28nhngj3E97DckezKtu1fdJsLyixbGpPBHRdCAlCqU0rdWJwnrUtWq9n+Qzc260v75Pxr325Q+HrazM+WScZGjPmTPy1yUiIhhdjbh/zv0OvabC/Dxw67xIvbTi6eIGHGzpRkOEVrK2q6cLBQ0Fji+0f7/z4DYRTQgMmhDRNbcnbw+au5odLhprW7WyXBHeJjxUUAmD2aK2Ta4mddHoUJZLajBLhomsiiYiotHz/7N3H9BxnfeZ8B9MxWAaBr13kGABwSqKFCmSEiWqWMWWZEsusp3E9maTzWaTTdbZk5OySU7OZpN86cWxHduyLFlWs3qhCiWxdxIkQBC99zKD6e07772Ye2cIgEUiBu35nYPD+84Aoxc2OXPv/TcxHHjHjtmfHx+f1otZvD/fV31fwnpreYayPto2klBt8lHHRzd710REC5poTXik+4iynvAEpfdGQZzi3lmTkzDL5J6qe6a3pL0W8T77xhsJbRSnuesu+T9IRESfiuh+8ZXar8BqsCqPlWaacecqNZDySfMwGsvUdY+zB5OByetvo0hECwKDJkSUVF0TXTjRe0JZj3kCCReN/yUcgH1EDaiIgIlBKw9Yk4h2Ak88IWfKERHRzbd1K2BT++pP89FH07Ljci25WJW1KqHaJNsqzzoZdPnRPqJWm1wcuohBt9qShohoKYtEI3it6TVEIQczRBD5g0uDUqW1sL7IIWUqx4ie+eUOtf3LdTt9Gui+YuhwvOpqoKLiU/wGRER0ZXvar677asJcvzUFdqwvlqtLxPv7c54I3PY0aS3e/y+PXE5IIsKRI3IyEhEtWAyaEFHShCNhvNr0asJF4/sN6kXjPrMOdS3qkGBR9pptVnvjS77wBaCsLLkbJyJaTvR6YM+e2Z/3eoFXXgHC4YSHd5XtuqLaJFNZH2lNnG3CahMiWi5O9Z1Cj0ud09c8OKkEki1GHbZVZiZkMN9defeN/0fE+/L+/bM/r9UC997LKhMioptEJAyJVl2aFPW26vbKLJiN8syo1lEPPixXEz0n/BMYcA+oLyDOo6/2vk1E845BEyJKmkNdhxKyixv6XOga80jHmToNvto5gJSo2i+0KqMq8QXEgOLVq5O6ZyKiZamuDshR2wpMc/Ei8MwzQEDuxy/kWfKwMnOlsq7MNiPLImfgDTh96ByV3++FC4MXMOwZnqvdExEtCOO+cexvVW+KBUIRfNg0pKx3rciGQadeku+t2AuLwfLphr+Ldi+zue02IENtm0hERJ9dhaMC91bdq6zF+7l4X4951hXCcK46r6pltAXBcFB9gfr6q1cIEtG8YtCEiJJixDOCAx0HlLUnEMJHl9WLxv/unoTFI881ESodlYltubKy5D7MREQ09zSaa7/nNjcDTz0lZzjPUm1yS9xsk/hqE1Fx+HEHezkT0dLl8rvwk7M/gS+ktjM83DICtz8kHZdlmlGVowZIimxF2JS/6cb/Q319wAm19e006enAzp03/rpERHRNmws2o9BaqKyrcywoyZDbcrn8IfwiOwPRqSK/YCSItvG2xBd4552rz6IionnDoAkRJaWX8yuXXkEoIl8kCh83DcMXlFu73BMJYt2Q2s/TbrRLGcsJLQUeeURuGUNERMlRVQWUX6OvflcX8J//CbjkWVQF1gJUZ1QnXDhmmOUAeN+EF91jaoDl3MA5NI82J/Z3JiJaAtwBtxQwGfWOKo/1T/hwpntMOtZqUrCnJkcZ9i7au3xuxefmZvj7vn08hyYimiPiffv+FfcjBSnKes/KHOl9XnjXGUBLgdqGsdfVC6ffqb5AZyfQ2Jj8jRPRNTFoQkRz7t2Wd9Ex0aGsO0c8aOiXTxQckQi+NiAPghfEycbKrJWJF4133AHk5yd300REy514H77/fsCoDrmc0eAg8IMfAKPyzcHbS2+/SrWJ+n4vqk1+eu6n+NGZH6FtrI3BEyJaErxBL5469xSGPGpF9ag7gFfO9iixDTHzyW5SAxlbC7cmJgxdrzNn5OD11YLfNTU3/rpERHTdRNLQlsItytphNmBTqUM6jkSi+H6aGeGpIIowbSj8u+9OmxVIRPOPQRMimlNn+8/icPdhZe0PhfFeozoA7esIwRyOKOvS9FKk6eVyVokY+r5tW/I2TEREia0Rv/pVwGS6+veNjysVJ8X2YqnFYsyKXCscaXK1Sc+4qDZJ7Lsvguo/PvtjKXjS7WRfZyJavPwhP54+/zT6J/uVxyY8Qbx4qhuegHxDLM+eqtxME2xGG3aX7f50bblElclsOPydiChp7ii/I2Em1S1lGbBNBccbvSEciqs2cQVciW26ROLRYfWeCREtDAyaENGcEaWnrza9qqxFNsVb9f2Y8MrDz0qtRmwfUdtyiWBJib1EfYHUVODzn5d76xMR0fwoLga++U3Aar3694kWXS+8IFLqEmabaK6oNnn7wgAu9jqlzLsrgyc/PP1DHOo6dPN/ByKiOSaG+z5T/0xC8NflC+KFU92YnJpjkm0x4uH1hUrbFkEMETbqrlHRd6XJSeCZZ4Bg3EDhK23fDmSqN+mIiGjupOpScXfl3cpap9Vgd9xQ+B9ojPAYdMq6c6ITQ261IhH79wMnTyZvw0R0TbwTSURzYjIwiWfrn02YYyLasrQNu6Vjo16LJ00aGKYuIoUVmSukns6Kz30OsNuTu3EiIpouJwf4lV8BMtTgx4za24GPPpIC4OXp6jyUlXHVJuIm4jsX+/Hjw+3TgidiBtY7Le+gfbx97n4XIqI58FrTawnvXWLg+4uneuD0yYENMd/p8xsLkarXKt+zLncdarJusH1WKAQ8+yzgjOuJfyVx/szh70RESVWbU4uy9DJlXZFtkb6E8UgUz9qsCW25GocbpRlYildfBY4fT+6miWhWDJoQ0U0XjoTxiwu/SBhw1jzowtE2ud+96BJw35pc1LSqrQvyLflIT01XX6S0FFi7NrkbJyKi2TkccuAk7xp99w8ckIInCdUmmhQ8tL4AxRlq+0VRdRgLnjT0Jd78e7v5bc44IaJFo2W0BWcHziprbyAsBUzGPAFpLeaXPLKxCGlxWcYVjgo8uPLBGxv+Lt4XxU217mu0MhRtuQxyoJqIiJI4FL76/oREUFFtYtDJ61eNqWiIqO/54WgY9YP1CYmmeP114Nix5G6ciGbEoAkR3XRvt7ydMPh9eNIvtWOJ2VGVjfWBIMzjclaFSWdCZYba/15y663J2zAREV0fiwX4xjfkwPbVbuq98AJKdVmozqhWHk5PM0g3DR/bVDwtePL2hX6c61bbNfZN9qHLeZXhxkREC8hHHR8px+FIFC+f6cGI2y+trUad9N5nNqoBE1GN9/jax6HTqI9dl0OHgLNqcGZGYhYgh78TEc2LbHM2thWpM1nFXJN71+YBKUA0JQX/brdhfCqgLnhDXjQMNSQmC4l5VUeOJHvrRDQfQZN//ud/RllZGVJTU7F161Ycu0bU9Be/+AVqamqk76+trcUbVxtwR0QLisiUONaj/hv3BcN49WwvglPD3lfmWbGxJB2FDXKGnDZFi9rc2sSLxvR0YOXK5G+eiIiuTcybeuIJufJkNi4XUn75Szy08kE4UhO/r9BhmjF4cqJ9DJG4C8b4zxIiooVKzDCJTxYSlXMDTp90LCpLHtlUpAwDFgqsBfhK7Vdg0F5nJYh4XxwYkKv4RM/7q6mqAu6661P+JkREdDOIausMk9rStjzLglvL5RlTHekW/IfNJt0niRnxjiR8jkjeeovD4YmWetDk5z//OX7nd34Hf/zHf4xTp06hrq4O+/btw+Dg4Izff+jQITzxxBP41V/9VZw+fRoPP/yw9FVfXz/XWyWiz8gX8uHNy28qa3Hz6824we/ZViP2rspFmsuHzO4R6bFV2aukAfAJtm7l8HciooUeOHn00au/V1++DMvJ8/jO5u9gY/7GxJlVccGT0kyztBZ9/9uG1L7OF4cuwuV3zd3vQER0ExzsPKgci0zhkx1jyvpz6/KlKruYXHMuvrbua9ce/O5yAeL69+WXgb/9W+Bf/xX44AM5gDKbrKxrvy8TEdGcE0HxL635EvQaNWC+tTwDFVnyfJODeRn4vt0mVSbGiJlYIx75HoninXfkeYFENC/m/Izqb//2b/Gtb30L3/zmN7F69Wr827/9G9LS0vDDH/5wxu//+7//e9xzzz34vd/7PaxatQp/9md/ho0bN+Kf/umf5nqrRHQTWhO4g+oNr6Oto+gYmWrBpdfigXUF0Gs1UpVJShTSkLSstKzEFxH9lzdsSPbWiYjoRhUWAnv3Xv179u9H6sCI1Lf/N2/5TWzI2zAteLK+2K4cn4lr0SWGwp/oPXHz901EdJOIG1xikG9M65BbmWNS5DChIN2kPCfOeb9W9zWY9OpjkkhEriQRw39ffBH4u78D/uZvgOefB86ckQMo12IyyRWAIqBNRETzLteSi4dqHkqYd7JvbS4cU4H0/Rl2PJWTkdCW69LIpcT5JuK5d9+9esCciBZn0CQQCODkyZPYG3dBrdFopPXhWcrMxOPx3y+IypTZvp+IFs5F49Huo8pa9Ok80REb/J6C+2rzpdYEukAI+Zf7pQvHUvsMPfFFwIQXfEREi4PonV+tzi2ZRtwM/MUvAK9XalMgLh5F8CT+/b8s0ywNSRa6Rj0YnZoDIIigScLFIxHRAnKo6xCiUG9mnYirMtlUqrZmEcHiL9d+GRaDnGWMYBBobJQrSf7f/5MrScTw33PngHE1eHxdRGXJY48BmXLrFyIiWhjW5qzF9uLtytqo0+KBunwpkVR4OdWEV8vylecD4QD6XH2JL9LTA3Rxzh/RkguaDA8PIxwOIzc3N+Fxse7v75/xZ8TjN/L9fr8fTqcz4YuI5mf4eziq9uX8qGlYKTfdXOpQ+tbnXe6DNcWImqwaKZiSQKxvuSW5Gyciok9PvG9//vOA1Tr794gbgCJ7eipLTgRP7qpUe+6Lz4K6onRlfaZrQjkW1YuiTRcR0UIzGZjE2QF1KHvPuBd9E17pONNsRFmm2n52TfYaZGjMwPnzwHPPyYGSZ5+VK0m88s98avfeC1RUfLbXICKiObG3Yi8qHOp7dIbZiH1r8pT1jyJanN6kPt/j6kkcCi8wiZxoXiz6hqd/+Zd/CbvdrnwVFxfP95aIlp3m0WY0jTQpa9GSq3V4Ujo2G3TYUiZn2qVEoihrGkRtzhWD32NEtjKz5IiIFpe0NOCRR+QAymwuXwY+/lhZFtmKUGgtVNarC2zQTWXdiSHK/pAahOdAeCJaiESFdXwl3Ml2ucJa2FzmSEgOut3pAP6//w944QXg4kXRkuHmbGLLFvmLiIgWJFFp+OjqR5GeqiYIVeVYsKHEocyBfcOUhva6UmVOrBgMn0BUJo6qnzFEtASCJllZWdBqtRgQPVrjiHVenhpZjScev5Hv/4M/+ANMTEwoX10sWyNKqnAkjLea34pbR3GgaUhZ76jOgkEnv9WI4e9rdAXTeznH3Hrr3G+YiIhuvrIyYNeuq3+PGGLc0qIsbylUKwtT9VqsypOrVYLhCC72qpXD3c5u9Dh75mLXRESfij/kx/He48p6ZNKP1mF5jp/VqMOKXLX6br3Lguy3PwZ8vpu3AYsFuOsu4L77bt5rEhHRnEjTp0mD4eMTR0U3Ds1UcP18zwQ6VhQgPHXfZNp5r6g8OXIkuZsmorkNmhgMBmzatAnvvfee8lgkEpHW20QP7BmIx+O/X3j33Xdn/X6j0QibzZbwRUTJIy4Yhz3Dyvp89zhG3XL2XJ4tFTVTN8HEB/3aFhfyLDMHQJGTA5SXJ2XPREQ0B26//erv4+KCT2RZT8jtt9bkrIFZb1aeXl+sZuCd7Z5IaE3AahMiWkhO9Z2SsoFjTsbNMhHZw1qNfCMsddKHnSeHPvsQXzG3pLQUuPNO4DvfAX73d4Hbbrt6hR8RES0Y+dZ83Fl+p7I2G3WozpXnXPmCYdSP+9BfKd8rGfONwR2QA/GK06c/eztHIlpY7bl+53d+B//xH/+BH//4x2hoaMCv//qvw+1245vf/Kb0/JNPPilVi8T89//+3/HWW2/hb/7mb9DY2Ig/+ZM/wYkTJ/Cbv/mbc71VIrpB4oP8w/YPlbU3EMbhVrWUdNfKbKU1QXb7EDb4M6bPMYnZupUXfkREi5m4qffoo1efb+LxyP38QyEp225TwSblqUyLEcUOeQbAuCeAjhGP8lz9YP30i0cionmqsj7crfaXn/SF0Djgko6NOg3WFtqlY004gu2HupERTf1076f5+fL58eOPA//rfwHi+nnnTvlxnjMTES06G/M3wqg1zpgwdLprHF2rChFNUWebJAgGgZMnk7ZXIkpC0ORLX/oS/vqv/xp/9Ed/hPXr1+PMmTNSUCQ27L2zsxN9fX3K92/fvh0/+9nP8L3vfQ91dXV4/vnn8fLLL2Pt2rVzvVUiukEftH+QkGV3uHUY/lBEOl6Vb0O+XW7DpQ2EsLPBA3uqfBE5Yz/8deuSs2kiIpo7ZjPwxS/KN/xm09MDvPOOdLi5YLPU6zmmLu7i8UzXuHIcjoZxso8XikQ0/0QQ1+lXWwie7hpDJCJXkqwrSlfa0lYea0ZN0DZ7wlA8rRaorAT27BFZhcB3vytXlIgh7zU1or3C3P1CRESUFEadERvyNyhrcb9EdOcQhif9aI6mYKRInvHaP9mPYDiY+AJHjwJhde4fEc2tGSYx33yiSmS2SpEPP1Sz1GMee+wx6YuIFi7xIX6yV72BNeTyS704Bb1Wgx1VWcpz1We6sNJQMPuLbdoE6PVzu2EiIkqO4mJg3z7gzTdn/55jx4CSEtjWrsWqrFW4MHRBergiywxrqh4uXxDto26p4iQ9zSA9d6L3BG4rvg1ajTZZvwkRUYJINIKDXQeVtWipEjv/FS25YlnDuS0DqGwZRXZh9ewvZjAA1dXAqlXynwyMEBEteWKm39Huo4hCDravL0nHW/X9SsLQmjXFyOoakT5vxD2XYnux+sMuF1BfD9TVzdf2iZaVOa80IaKl6YO2D5QPetF3Xgx/j7VrvqU8Q+rRKViHXbi1TytlVcyalbx9e9L2TURESXDLLcC1qoTfeENq1xU/EF6jScG6oqmqxKg82yRGZHY3DjfO2ZaJiK7l/MB5DLoH1XXPBAJTVdar823S+a95zI0Vhy+h2FY8e5WJeH/8vd8T2YLyMQMmRETLQoYpA9WZakC9OseKNIN876RlaBJdtjS4Mq1Ki674GX+Sw4c/+5wsIrouDJoQ0Q3rcfbg0sglZd065Eb3mNx73m7SY8NUll1KJIq6E10othbO/mIiG9kkt/EiIqIlQtwofPBBIDv76vNN3n4bJfYS5FnkwZfC2gK7MkT5Qq96Q1KInyNARJRMoUhIak0bI96bTsUGwKcAG0sd0AVCWPPhBaRGtAnvawnE+6J4f2SVNRHRsrS1cKtyrI1LGBKxkLM9E+haUyStRSv0Ea86M1bS3w+0tyd3w0TLFIMmRHTD4i8YReZD/PD3ndXZ0Gnlt5aCxh7UhbNnb6VSXg7U1s79homIKPlE65kvfUn+czZnzyKltTWh2sRk0KImz6rclGzoU2cHdDu70TXRNbf7JiKagWhLO+5TZy2d6hyDNyj3ll+ZZcHqrmHc8uJRpE14UGgrnPn893reF4mIaEmrcFQgO01NLKottEvV1kJ9rxO9RZnwpxmVc99pDh1K3maJljEGTYjohoibVc2jzcq6eXBSGlom5NpSUZltlo4NHj82NowjK02dbTJt4OX998vZyEREtDRlZQEPPHD173ntNdQ6amDSqVWH64sdyvHpzjFE4toQHOk+Mjd7JSKahT/kx0cdHylrTyCEk1NVJmXjbvxuUydWHm6CwReEJkWDwtmqrB96SH5fJCKiZUu0boxPGBKtHVfmyAlD/mAYDaKTx2q52kQE6ycDk4kvcPkyMDSU3E0TLUMMmhDRp64yiVxRZbKtIlPu3RyNoupYM1Zay2bv5bxjBy8aiYiWA9Gvf+XK2Z8fG4P+o0+wqWCT8lC21YjijDTpeNwbRNuQW3nu4tDFhGxvIqK5JloDuoPq+9CxtlGkuX34woUO/FZbD3LcPuW5IlsR9NoZWm9t3QqsWZOsLRMR0QJWl1eHVF2qshYD4WPOdI6jtzoPYZ1WaY8+zREmERHNNQZNiOi6dYx3oHWsVVk3Dbgw6g5Ix/l2E0oz06D3BbH6wEWsGQQsBsvML5SRAezcmaxtExHRfBLB8/vuu3o7msOHsVVTImVox2wscSS0wYmJIoqj3Ufnbr9ERHHcATcOdamtUCa8QXRfHsQ3TjWjZtSJIocc4BV0Gp00p2ma4mLg7ruTtWUiIlrgDFoDNuZvVNaia4e4pyKMuP1odwfRtyJfWvdP9sMTlGfIKs6eBdxqMJ+Ibj4GTYjouojZJe+3va+sI5EojraOKuttlZnI6h7Fll8eR077EMrSy2Z/MdGWS6eb6y0TEdFCYbcDe/fO/nw0CuvbH2BN5irlobLMNDjS5EBLz7gXg041k/tU3ympXQ4R0VwTbbkCYTlJSDjSOoK9TT0whcLIs5tg0KmX1CJgIgInCaxW4LHH5Na0REREU7YUbEEK1M4c64vVapMTHWPoXlWIqGjkgSjaxtoSfzgUAo4fT+Z2iZYdBk2I6Lq0j7ejY6JDWV8acGHMI19AllkM2HuxE7XvnYfBG0COOQdmgzzbZBox+L2yMlnbJiKihWLzZqBI7s88o74+7H3tIureOoOaTxpRfqYdD2jDMITkQcunOtWWXP6wH6f7Tydj10S0jI15x3Ci94SyFnP8xpv6UTY+Ca0mBQV2tbWKUWucPsuktBT4tV8DbLZkbpuIiBYBh8mBlVlqC9uqHAusqXJ7x44RNy4HoxgqlQfGD3mG4PQ7E19ABE1E8ISI5gSDJkR0XVUmCbNMIlEpy05wePz4blMnCpr7lednrTJJTQX27Zv7DRMR0cKj0QAPPnjVbGu7L4qysSjymvtRdrYDD13oxK+fbkaB0yO1hJz0hRIGwkeikSRtnoiWow/bP0Q4KgduhYPNw7i1Sx6+W5hugk6rSTj/1Wqm3t8cDuCLXwS+8Q250o6IiGgGWwu3KsciGL+9MlNZf3x5GF1TA+GFltEW6d6MQrTnOncueZslWmYYNCGia2oZa0HnRKeybuhzSv2cU4MhfKe1B3kR9aZVrjkXaXq1t3NCT/sHHgAss8w5ISKipS8nB9ix46rfUmwvTrh4rDJq8fj5NuRPTOJst1ptIobBNw43zul2iWj5GpgcwLkB9WaUaBPo7BjBymEnDFoN8mxqlYk4982z5AFGI3DXXcBv/AawerV8/ktERDQLEXAvtqnnvjV5VmRZjNLxoMuH45EUTGTL1YoT/gmMeOXkVcXhw1KbWyK6+Rg0IaJrV5m0qVUmYTHLpE2eZXJL9zDWpKoZw6If54xVJmlpcrbdmjXJ2TQRES1cO3cCWVmzPp1pykSqLjVhMKYxEsEXz7djsKEPwbAaqD/cdXjOt0tEy3eWiegjHzsfPnh5GLd2D0vrIocJGo0aEClPL0eKXg/81/8K3HYbZ/cREdF1SUlJwV2VdyWsd1ar58mHWkbQvkpt/dg61ppYbTI0BDQ3J2/DRMsIgyZEdFWXRi6hx9WjrC/2OuH0BWEKhrB33KX03BRyLbkw6U2JL7BihXwBuUod7ktERMuYuJkoKg9nIS4Wi2xqKwIxZDnTbIQxHMHnT7eg72Kv8lyXswvdzu453zIRLS+ib3zDcIOybh9xY3JgAmsGx5Gq1yLbKmcBC1aDFVlpWcCGDWzFRUREN6zEXoKarBplXZppRkmG3L3D6Q3ifY0eXoucUOQJetA/qbZGV6pNiOimY9CEiGYlesW/1/qesg6FIzjWJpeDbu0aQkXcBaOoMim1l6o/bDAADz0EPPEEW3IREdH04ch79sz6dL4lHzqNmqmdPzVsOTUUxorXT8M84lKeY7UJEd1sx3uOJ8xMOtkxLlVYa6JRlGSYpOBuTIWjAiliVtP27fO0WyIiWuz2VuyFJkW9RbujSq02OdoxhtYVBcq6bbwN4Yg6bwutrUD/FYEUIvrMGDQholmd7T+LIY887FI41z0Blz+EtEAIeydcsKTG3dCy5qtVJnl5cnWJyLhjL2ciIprJrl3Ao48ClZXTgutimLIInMSYjTrYYpWNngCKXzoO8+iktLw4dBFDbvWziojoswiGgzjZd1JZD0/6MTrgRF3/mFRl4kgzKM9lmDLgMDmAtWvl4e9ERESfgqhY3Ji/UVnn2FJRkyfPMvEFw3jVYETIIN9/CYQD0yutjxxJ7oaJlgEGTYhoRqFICB+0q7NM/KEwjrXLs0y2dg+hPG74pagyESWlinvvBdLTk7thIiJafMSNxq99Dfif/xP4wz8Efuu3gK9/XZqBVWgrlD5frqw2EUYGXah7+4wUOBEzBz5s/3CefgEiWmrqB+ul9icxZ7rGsal3BPpIRBr+Hl9loszyE3NMiIiIPoPdZbth0KqB+e2VmdBOzc863utES1mO8lznRKcUPFGcPw+41EpsIvrsGDQhohkd6zkm9XOOOdk+JmU4mANB7HO5pazfmAJrgTq0t6JCbrtCRER0o7NOMjKA8nLgkUeQWrcJ2eZs5en0NL2U5S24fCF4xjxY//YZWEZcuDB0YXp/ZyKiGySG6x7tOaqsvYEwWrvHpKCJuHEVP8vEZrRJX9L8vtzcedoxEREtFRaDBduKtilrm0mPuiI5GTUcieIXhlREpwL34WgYl0cuqz8cDgPHjiV/00RLGIMmRDSNL+TDxx0fK2u3P4RTXePS8fbuYZTZ1AtGbYoWpelxQZLdu5O7WSIiWno0GuALX0De5j2JA+IdJnUI/JgXOl8Q698+C+uQEx+0qdWRRESfhsjcjQ/AXuidwNqeEWmeUrbFqGT8CkW2Ivlg58752CoRES1B24u3w6w3K+tbyjNg1Mm3bk9M+HA5T+3oIVqpJ7SoPXECCMRVnxDRZ8KgCRFNc7DzILwhr7I+2jYqDYG3+IO4x+1RMn1jF4xKCWlVFVAS16aLiIjo09JqkfHkt6FZtVp5KNNsgGnqM0gE9Mc8QegCIdS9cxZ9Dcem93cmIroB8VUmkUgU9R1j0gB4IS+uRaA49xX956Xq6uLiedkrEREtPUadUWrTFSPuvYjAiSQK/CjFgEg0qjzfNNIkzeKSeL3AmTNJ3zPRUsWgCRElcPldONKtDhEb9wRQ3zMhHe/oGUZJXJWJXqNHsT3uQpFVJkREdDNptaj41u9jpChTqTYpzkhTnu4e80jtdHTBMOreOYejB5+bx80S0WI24ZtA43Cjsm4dnkRx1zAsgVBCe0Ch0FoITYqGVSZERHTTiYHwmSb53FdYX+xAplm+D3NRo8VprV55LhgJonm0OXEgfCSS3A0TLVEMmhBRggMdB6QP3phDLSNSJoPVH8S9Hi/0WvVtQ7Tl0mmmZptUVwNFU20KiIiIbpKijDIEHnlYCZw40vTKXC1PIIwRt9yGQBsKI/2F19B9Vm0vSUR0vY73Hkckqt5oOt05jrWDY9KxGAAfk4IU5Fvzgbw8oLJyXvZKRERLl1ajxd6KvXHrFNy9JldKHhJ+nmqCJxBSnh9wD2DYI1dFYnQUaGpK/qaJliAGTYhIMeIZwam+U8p60OlD04BLOt7VO4yiuCoTMfhdDIBX7FH7zhMREd1Me6rvQv2eNRguyZKrTeJmm3SPeaVqE0EbiqD/B3+P6Lg8h4uI6HqI1iYne08q6yGXH84BJ0rG3VKFid2kZvXmWnLl1rQ7dojyt3naMRERLWU1WTXSV0yuLRWbSh3ScZPDgpPukHL+O61N1+HDyd8w0RLEoAkRKd5vez8hw+6TZjlbwe4N4F6fL2H4ZVl6mdyWQFi5EiiIC6AQERHdRHmWPKzOq8WFXasxWJYt3cC0psrVJr5gGEOTfuV7J53D6H/pqXncLREtNucHzyfM8zvTNY7Vg+NImaoyiWX3xlpzwWwGVqvzloiIiG4m8blzf/X9UrJqzK3lGXCkGaSA/XuZdvRN+JTnAuEAWsZa5EVHB9DTMx/bJlpSGDQhIkmvqxcXhi4o665RDzpHPdLxvt5h5Fumhr0DMOvNyDXnqj/MWSZERDTHpKGYWi0abl+NwYpcFDvU2SY9Y96EoZi9h99BtGXqwpGI6CpEpu7RbnUAvDcQRmO/E2sGx6WEoWyrWmltN9phNVqB2lpAw0tpIiKaO+Lz5p6qe5S1TqvBXatzRZ9I1Oc60DQZkD6zYvon+6XuIRJWmxB9ZjzTIyLJ/tb9CRePsSqT7Ekv7gr6oYnLsKtwVKgZdzU1QH5+8jdMRETLSrY5G+ty1yGqSUHjzlXw1BYrLXP8oQgGXWq1iSvgQtsz/wqE1QtJIqKZfNj+odQPPqa+dwIZTg9y3D4pYBJfaV1oK5QP1q2bj60SEdEyU5dbh+qMamVdkG7CxmIHQloNTuU50DI0mdCm6/LoZbl7yMWLwMTEPO2aaGlg0ISI0DrWKn3FNA9OYsApl3p+rn8UWWZDQoZdhilDXojACWeZEBFREqtNRGtIKXBy20ro1hUnVptE1IvGzuYT6Hj7uXnaKREtBg1DDTjQcUBZB8MRnO0SA+DHpw2AN2qNyErLArKymDBERERJIZJVH1j5gPQZFLOtMhPpJj1OFmRiIhBGf1ybLl/IJ3URQSQCHFWrKInoxjFoQrTMiayE+CoTccPpUItc0lk04cbtkWBCH+eEKhORZZcb16aLiIhoDjlMDmzM3ygvUlIwtGc1zDaTcrOzfcSdkG3X+tIP0d97eb62S0QL2KB7EC81vqSsxXvHOxcH4PYFpdZc6Wl6aQh8TIG1QJ7nJ85/OQCeiIiSxGa0YV/VPmWt12qwd3Uu3AY9LuSko2vMi0BInU3bMd6BcCQMnDwJ+NVKbCK6MQyaEC1zF4cuypkIUy70OTHmCYgrRzw8MCplMMRkmjJhT7XLC62Ws0yIiCjpbi+9HTqNPAQ+kGZEYHeNcv9StOjqn6qUFFKCQRz90V/A6XfO13aJaAHyBr145vwz0uDcmBMdY7g84ELJuBv2UBilGWblOREsybdOVZewNRcRESXZhrwNUgJrTJEjDbWFdhwrypLm+vWOe5XngpEgup3dcsDk1Kl52jHR4segCdEyJrIP3m97X1mLLN0jrXKVSeWoC1s1kWlVJorNmwGHI7kbJiKiZU9k220u2KysJzeUIas8W1l3jHgw6lZvhNqb2vHKO/8If4iZdkQEqdf78xefx5hvTHmsbdiNgy3yPD/Rmqsy2wKTQa0yybfkw6A1AKWlQHr6vOybiIiWL3Ff5sGVD8qfRVNurcjEuM2ENocFAy4f/CF1ll+XswvBcBA4cgQIheZp10SLG4MmRMvY6f7TGPHKQRLhTNc43P4QUqJRPDo8DmuqWmWSZ8mD2TCVcWcwADt3zseWiYiIpGoTi8EiHUe1Grj21aIwXW7TFZvNJT7PYtLfP4QXLvxCHoxJRMvae63voWWsRVmLCus36/uAKKALR7A3EkRG3Dy/VF0qytLL5AWrTIiIaJ6kp6ZL8/1izEYd1hc5cLQoSzQKkeb7xYQiISlwIg2D/4//AAYH52nXRIsXgyZEy5TIOjjQrg6+9AXDONE+Kh2vGRpHnRovQQpS1ItFYds2wCLfrCIiIkq2NH0aHl39KLQpcib4eL4Dhg2lyJy60SnaFDT2u5SMO8uYG96PP8AHbR/M676JaH41DjfiYNdBZS3eI14926v0gr8jGkKZxZDQlmttzlrotXq5Ne3q1fOybyIiImFLwRap6jpmc5kDvVk2DKWlSm1qvQG12kS06JLaUA4MAN/7njwYPm72HxFdHYMmRMvUke4jcAVcyvp4+yj8oQg0kQgeHZ1AmkHuFy8U2gqlLDtJWpocNCEiIppHIpj/wMoHlHXrlkqU5dtgMeqUlpOX+l0IR+SLw4qTLWj8+CVp+DMRLT8i6/bNy28mDH5/+8KA0s5PBF0f0YQTWtPWZNUoVW1YsQIwqRVtREREySaC+KLiOiZVr8Wm0gwcL8qU1t1jHuU5UWEthsJLRIuuN98Enn4acKn3gYhodgyaEC1DYiBufJadyxeUWnMJGwfHsSpV7eEssnhL7aXqD4u2XKlTARQiIqJ5tD5vvXLh6LekomtDOVbmWWHUyae4nkBYatUlbo6mRIFVBy7g+Mc/n+ddE9F8ONV3ChP+iYTB761Dk9KxeM94ZGUWcvrk82Gh2FaMHHOO+gJszUVERAtkKLwjVZ0vu6HEgdaCTLiMeoy4AwktantdvfCFfOoPNzcD//qvQHd3srdNtOgwaEK0DNtyPVv/bMIH59HWUTkTNxrFQ5NuGHVq0KTEXiK3JBBsNmDLlvnYNhER0Yz2lO2R2ucI3auLEHSYUZNng1aToswrmPAGpWNNJIrU51/G0KXT87pnIkr++e9HHR8pa08ghGNtcltaUVhyb20+qvvHpbl+QoYpAxWOCvUFRMJQdXXyN05ERHQFrUaLPeV7lLVBp8HGyiy8trIIQY0modokiqhabRLj8QA//zkQkCstiWhmDJoQLSMi0/aVS69I2QYxA04fLvTJWXc1Tjdq9GpLAoPWgCJbkfoCe/YAOrVtFxER0XwTrXQernlYygqPaDW4fOsKmAxaVGSZle/pGvNKn4GCNhRG77/9Pw7EJFpGjvcex2RArioRTrSPSS38hNrCdJRlmpHbOiCtTToTVmWtSmjThTVreA5MREQLhkgYiq+GXFdkx0huOn68oRKNKVqpm0hM32QfxrxjiS8gWnSdZhIR0dUwaEK0jBzqOoTzg+eVtSjbFMMvY7PAHvV6odeqbwuiLZfIYpBkZgJ1dUnfMxER0bXoNDo8vvZxqVXBWIEDLZsqkGE2IM2gVT7vxqeqTYSxsV44v/8vwLjaioeIliYxBPeTzk+UtXg/ONst/9sXFWm3lGfA5PTCNuyS2tIqg9/jsTUXEREtIJoUDe4ov0NZ67QabC3PxLA5FT/ZUIlXbdaE7z83cA49zh4liUhy5AgQkRMIiGg6Bk2IlonLI5exv3W/sg5FInjtXC8mp/pdrtUAG4NqeabIssu35qsvcOutgIZvGUREtDCZDWY8svoR6birtgRd60pR5FCHNnfHVZsInd31wE9+Avji+jwT0ZJztPsoPEG1Vcnx9qm2tFJmbjosRh2yOoakdWl6qfRekiA9HSgpSe6miYiIrmFl5koUWguV9eoCG+wmPcIaDZ7LycArW6rhTzMqbbouj15G00iTNCBeMjYGNDbO1/aJFjzeASVaBoY9w3j+4vPSB6Ugbhp90DiIvgn5RpG4WPw1TRCauDYEoo+zyF5Q+jizyoSIiBY40VKyOkOeO9C6sRze9aWJ1SaeYMJno6uvA/jgg3nbLxHNLTHDT1Raxzh9QZzvmVCycreUyYN0szuGpLa08TefFLW18uATIiKiBUS0kbyz4k5lLaont1VmKusfDXjw4y0r4LGnJbTqOtN/RqrClBxSPyOJKBGDJkTL4GLxmfPPwB/2K4+d6RrHhV6n8sH6yMoslHSNKM/nmnORlZalvsimTYDBkNyNExERfQq7y3bLBykpaN62EqgtnrXapH28HThxAnDKn4lEtLQc6T4Cb8irrMXw91iVyfridKQZdEid9EmtuUrsJWpb2nirVydzy0RERNetPL0cZellynplrlWa0yVEIlG80TKCF81mROLOf51+J072npSrMLu7ga6uedk70ULHoAnREvfqpVcx4lUDIp2jHnx0eVhZ37U6F+t7R6GZGoZpNVixInOFOvxStOS65Zbkb5yIiOhTKLQVSp9jQlSTgtH712M4X84mdwdCGIurNhGfjy7POHDw4Lztl4jmhjfoxeGuw8p6whPExamkIYNOg00l8vuCaM1l1BpRYC2Y/iIOB5CXl7xNExER3Wi1SfmdCesH6wqkxICYl6DF6REvglP3fASRVCvmnIQjYVabEM2CQROiJezS8CVcGLqgrMc9Abx+vk/Jst1cmoHV2RYUXuqV1qItgRh+mZBlJ7Lr7Pbkb56IiOhT2lO2R13otBh+eBN6rfJ8k+4xz/Rqk5MnAZdrPrZKRHNEtOWKr7Q+2jaiZNpuKHbANNW6L7t9SJplorSljSfOg9mai4iIFrBiezF2le5S1hpNCnavzMFdq3KlYzHj5H2HDfU9E/AE5Jm2sa4kPa4eea7J6Og87Z5o4WLQhGiJ8of8eP3y68patCJ4/Vwf/MGwtC7PMmN7VSay2wZh8AaQghQpYGLUyYPCEgbAExERLSL51nzUZNUo69I8G06tr5COPYHwtGoTp3uU1SZES4g74MbRnqPKetQdQEO/XGVi1GuxoUTOwDW6/cgdCyDPMks1CVtzERHRIiDa024u2Jzw2JpCOx7dWCS1ojydnwF3JCq1afeH5HtCQo+zB9FIBDhyZB52TbSwMWhCtER90P6B1Ksy5nTnGIYm5Ww7R5oB96zNk94Aii52S4+tzFoJm9GW+CJFRfIXERHRYp1tMtWqoGJ9ES5nWmesNukY75Bnm7DahGjJzDJRhtyKKpPWEcT+yYu2XKl6rdKaq9Q+S5WJqLQumKFlFxER0QIjznXvr75f+or/TCtIN+GJW4phybTgfK5DSqbtn/Apz4uKTKmd++nTgFedAUZEDJoQLUm9rl4c7Vaz6ya8QRxpk+eaiA4D+9bkwajTwj4wAevoJIpsRTNn2LHKhIiIFinxubYqa5WyFhWWTWtK4qpN1Buq4mLR43Wy2oRoCQhFQjjZd1JZj0z6cWlQDoia9NqEPu9lfZ6rV5mwNRcRES2iwMmWwi14su5JpOnTlMetqXo8vKEAp4qzpPWgyy8FT+KrTRAMyglERKRg0IRoiYlEI9Lw9yjkD0GRSft+4yBCYXldV5SOPHuqdCyqTBypDlQ6Kqe/kM0GrFJvNhERES3+apNiNGfI1SY9476EahPpglFcLE5OzsteiejmqB+shyfoUdanO8cxdVqMzWUOaQi8INrT1vrSpfeGGbE1FxERLUJl6WX41sZvIdecqzwmWnRllWVLVdciYCISCmLGfGNSW0scPQqE1JknRMsdgyZES8yxnmPom+xT1k0Dk+gYcUvHFqMO2yozpePc5n7kdY1JPd9nvFi85RZAGzcQnoiIaJHJteRidbZ647MsMw2Nq+W2k25/CJN+9cKwf7IfoYCP1SZEi5gIhIpz4RhfMIzGAbldrQiW1BaqVSbVAyHkpmXP/EIieYgtaomIaJFymBz4lQ2/glSdnDAr1BWn41iR/LnX70xMHhLdSqTEofr6edkv0ULEoAnREjLhm8D7be8nXCgeaBpS1rtX5khtuTJ6RlFz8BIqHBXTB78Lej2waVOytk1ERDRndpXuUo5FkkD+2kK0TFWbxPd0DkfDUuCE1SZEi1ePq0e+8TNFDLyNVVuvzrcpVSbCrU7b7FUmotqarbmIiGgRE/d6NuRtUNai40igKAN9FpPUqnZa8lAkBHzyCSAGwxMRgyZES4XIEnjj8hsJQy8PNg/DE5A/CCuyLajKscA65MSaDy7AbrCiwDrLcMu6OsBkStbWiYiI5rTaJL4N5cpcK05WyDMMRt0BBEKRhBZd0UAAOHRoXvZKRJ9NfJVJJBrF2e5xZb2uSK0ycYQNKBwNzv5CbM1FRERLgJhxEm99iQPHirJmTx4aHgbOn0/6PokWIgZNiJaISyOXpK+Y3nEvzvdMSMd6rQZ7VmbD5PSi9r3z0IUiWJG5YubsOp0O2L49mVsnIiKaU1uLtirHOq0GWasL0OqwSGMOBpzqBaM35MWodxQ4fhxwy60tiWhxmAxM4sLgBWXdPuyG0ysHRkoy0pBhNijP7fBkQYNZKkksFqC4eO43TERENMcyTBmozqhW1tW5FnTkZ8Bp1M+cPCRadn34IRAOz9OOiZZJ0GR0dBRf+cpXYLPZkJ6ejl/91V/F5DXaHezevVu6kRv/9V/+y3+Zy20SLYnh7/tb9ytrMdjrvYYBZb29MhOZ0SjWvXMWBl8QxfZiWAyWmV/s/vuBjIxkbJuIiCgpxMWiuGiMzzg/VCoPxxx0+aSM9Pj2PggGgdOn52WvRPTpnOw9KWXKxpztlpOHhPXFapWJNkWLNcNXab0lWnNpmFtIRERLwy2FtyjHOo0Ga4vTcaQoe8bkITEUHmNjwNmz87RbooVjTs8GRcDkwoULePfdd/Haa6/ho48+wre//e1r/ty3vvUt9PX1KV9/9Vd/NZfbJFr0RFbdsGdYWZ/pGseIW27TlWtLxcY8K2rfPQfTpE8aBFZqL535he64A9ig9rwkIiJaCkQSTvwFoyVVB1N1LtocFgTDUYxMqq0tRaWJJ+iRZ5uwpzPRohCOhHGi94SyFtmzHSNytZjNpEdZlll5bq21EqldfbO/GFtzERHRElKVUZWQPFRbZMe5ArnaZNDlT0wecvbIBwcOACF15gnRcjRnQZOGhga89dZb+P73v4+tW7dix44d+Md//Ec8++yz6O1Vh/PNJC0tDXl5ecqXqFQhotmrTA50HFDWorzyRPuodCy6b91Zk4PqEy2wjspVXqItl1ajnf5CW7YAO3cmb+NERERJtD5vPQxatT3PhuJ0HCzJkY77nT65HUH8BeP4ONDSMi97JaIb0zjcCFfApazPxc0yqSuyQxPXknabO2P2gGhaGlA6S3IRERHRIk0e2lKgzjaxpupRlmuVzoOD4YiUaBAz4h2BN+gFJiaAU6fmacdESzxocvjwYakl1+bNm5XH9u7dC41Gg6NHj171Z59++mlkZWVh7dq1+IM/+AN4PJ5Zv9fv98PpdCZ8ES3nKhMx8NIbDCvDbssiYeRflrPpcsw5CRkGCW0I7r1XjrIQEREtQaLSUgROYvLtqQgUOjBgToXbH8KkX82mE4MwQ5GQXG1CRItqALxIILrYJ18T6rQpWFNgV54rNGYj95Q6A3AatuYiIqIlaEP+Bug1+oS2ledz0zGeakgYCC/0uqYS3T/+WG5ZS7RMzdkZYX9/P3Jy5Oy9GJ1Oh4yMDOm52Xz5y1/GT3/6U3zwwQdSwOSpp57CV7/61Vm//y//8i9ht9uVr2IO7aNlXmVysmNMOhbxj1vKM1Fxqg0pUbl/syjLnEZk0z3yCC8QiYhoyYtv0SWy7taXZOB0vpxMEH/BKOYiiMAJmprkTDsiWrDEv9WOiQ5l3dDnVAbb1uTakKpXK6zvaI0iRfRqnw1bcxER0RJNHqrLq1PWhekmOKwmfFKaIyUOiQSimL7JPgTCAcDlYgIRLWs3fJf0u9/97rRB7Vd+NTY2fuoNiZkn+/btQ21trTQT5Sc/+QleeukltMzSHkEEViYmJpSvrq6uT/3fJlps6gfrp1WZ+JQqExvKPD5kdcrPF9oKE9qSSERg8/HHRUQzuRsnIiKaB1lpWah0VCrrFbkWtBZmwq/VSK0JYjdaYy26oqKFz8mT87RbIrrRKhPRZk+cD8fUxQ2Azx/yoezSwOwvJFpzlZXN3UaJiIjmUXyLLnHvtq7Yjgs56RgxGROSh0S19eWRy2q1SUBt30W0nNxw0OR3f/d3pXklV/uqqKiQZpEMDg4m/GwoFMLo6Kj03PUS81CE5ubmGZ83Go3SzJP4L6JlU2XSPnuVydYyBypOtkprUWVSbLuiCktUlnzpS4DJlNyNExERzaOtRfK5paDTalBTmiFdMIqJJgNO9YLRG/JKQ+Glfs5hOSGBiBYWT9CD8wPnlXX3mFfpzS6yaLOtRulYGwhh9znnzHP9YsRsP+1VniciIlrEci25KEtXkwNW5dug12vxcVkuhib9CdUmQ54hjHhGADEu4RojFoiWqhtOL8/Ozpa+rmXbtm0YHx/HyZMnsWnTJumx999/H5FIRAmEXI8zZ85If+bn59/oVomWNHGBKIZ0xZzpUqtMRCuCygk30vvHlSoTvVbtXynZuBHIzEzupomIiOZZdUa1NN9LCogAWFeUjlcKMrGxbxSDLh8KHSZlaHTnRKf0vSmiinrNmnneORFd6Uj3EQQjwYTz4ZmqTKqOt6A0epUB70VFIltv7jZKRES0QFrVto+3S8d6rQabSzNwKBjGoDkVLUOTqC20S1UoQtNIE7akboHu0CFgyxYgNXWed0+UXHM2xGDVqlW455578K1vfQvHjh3DwYMH8Zu/+Zt4/PHHUVBQIH1PT08PampqpOcF0YLrz/7sz6RAS3t7O1555RU8+eSTuP3227Fu3bq52irRoqwy+ajjI2XtD4VxqjNulkmZA+VXqzLR64Fdu5K7aSIiogVAXAjGzzaxpOpgr8hGty0NwXAUwy6/8tyEf0L6Yj9nooXHG/TiaLea/TrmDqB1eFI6Nht1qMy2SMcZ3SOo7QlK/dxnJM6LP/95zvcjIqIlryarBo5Uh7LeVOpApiUVH5fmwhMIoy+uTZc/7EfbWBvg9QJT922JlpM5PTN8+umnpaDInXfeifvuuw87duzA9773PeX5YDCIS5cuwSPKvQAYDAbs378fd999t/RzohXYI488gldffXUut0m06KtMzsZXmeTZsHJoAtZR+aKxyFY0vcrk1lsBqzW5myYiIlog1uetT5jztbEkXRkI3zPuleYixEjZeG1twLA6Q4yI5t/RnqPSDZ2YY+2jiP3TXV+cDq0mBTp/ECsPXUKhtXD2F9q7l9XXRES0LGhSNLi78m5lLT4r967OweUsK/osJnSPeZR7S0KPqwdOv1Nu0RVUKzuJloM5nf6ckZGBn/3sZ7M+X1ZWlnBRWlxcjAMH1BkNRDTLLJOOAwlVJic7x5Xs2VtL0lH+zlmlykQETRKIGSa33ZbcTRMRES0gIuNcBE5iA6Tz7SYcW5EPT2sfEAxjeDKgzEIY941LX+mi2uSee+Z550Qk+EI+qTVXzLgngMZ+l3ScqteirkhuzVV9tBmOoA7pqWqrrgRi8PstauUZERHRcqg2EV+Nw43KefD6Ygc+Gs3Fl+rb0TbsRk2eVWnTdWn4EjYZLNCI8QmiTRfRMsEaZKJF5tzAOaUPu3Cmcxx+pcrEilW9ozC5vLNXmezYwV6URES07G0v3i5l28VsrsrGuVzHjNUmHeMdYtAeM+yIFggR8BSBE2XdNqr8m91QnA6DTgPbkBO5rQMotZcqN34SGAzAww/LvW2JiIiWCfGZeF/1fTBq5QQhYXtlFoby0tFrNWHCG5QSiGLcQTe6JroAMdskEpmnXRMlH4MmRIt9lsnUwEvxwbet2I7Ss+2zV5mIllzMpiMiIpIyz+ty65S1GAA/uEpu4SPaEoy41YvFMd8YJsYHgPr6edkrEan8IT8Odx1W1uLmTsNUlYlRp8H6ErmqpPBiN0w6E3LMOTO/0L59QPosFShERERLmM1ow96KvcpaJBvcsSoXR4qzpXXHiBvBsBog6ZjogGewB7hwYV72SzQfGDQhWiJVJqvyrFjbMQSjJzB7lcnu3fKwSyIiIsLO0p1IgZplvmpNAVod8vDonrErqk0mOjgQnmiBVJl4Q3JVtXC8Pa7KpMQBo04LgzeA7I4hlKbPUmVSVQVs3JjMbRMRES0omws2o9hWrKwrsi2IrirEiMmIUCSKjhF5/nQsgVcaCn/wIJQBYkRLHIMmRItEOBLGgXZ1lonIgj3VOSYdi4vB2wqsKDnfOXuViRhwuX59cjdNRES0gGWYMrAud52yLnKY0LOyQDr2BsMYjas2EUkLrtZGoK9vXvZKREAgHMDhbrXKxOkN4mKfU8mSFQPghfymPqRpjMg1505/EZ0OePBBtuUiIqJlTdxHenDlg9L9o5jdNTk4VSZXaA5P+jHhUVvTDnmG4O5sAVpa5mW/RMnGoAnRIqoyEe1BYs50jcMfiihVJrWtA9AFQrNXmdxxB6BVPwyJiIgosdpEXDzmbimHy6ifcbZJ+3g7cOrUvO2VaLk73nMcnqAnocokEpH/jYqAiRgCnxKJouBS7+yzTNauBWy2ZG6biIhoQco2Z2NHyQ5lbTbqkHlbNSYNOmndOeaZfi78ySfzsleiZGPQhGiRVJnEzzK5ssrk9lwLChu6pbVOo0OxXS2xlOTnA6tXJ3fTREREi0BWWhbW5qxV1sVZZnRW5knHnkAYY3EZdiPeETiPHwQCagUKESVHMBzEoa5DytrlC+LCVJWJXqvBxhKHdJzVOQx7IAW5lhmqTIQtW5KzYSIiokWSQCTOh2NWFafjUrVcee32h6TZYQnVJk0XgG75/hPRUsagCdEirDI53TmOwFSVyep8K9Zd7oV2ai2qTETgJMHevWxBQEREdJ3VJmnbqxDLqeu+IsOuc7CJQzCJ5sGJ3hNwB93qun1sWpWJUNDYgxJ7CTQpM1zqFhbKX0RERCQR948eWPGAspbOhW+rgk8nf652zzTnT8w2IVriGDQhWoRVJqe75ACKJiUFuzNNUt/m2IfdtFkm5eVARUVyN01ERLSI5JhzsDpbrcjMK3ZgsDBTqTYZj6s2GfYMw3nog3nZJ9FyPh+OrzKZ9IdQ3zsxrcokbdyNvCEv8ixytdg0rDIhIiKapjS9FCsyVyjrssJ0tJTnKp+5Tp/cCl4YdA/Cff4UMDw8L3slShYGTYgWuLMDZ69SZWJDXWMPUqai/qwyISIi+nRuL709IcNOd6uacNB9xWyT3oZjwMBA0vdItFzVD9bDFXAp65MdYwhPVZmsK7LDZJCzYQsbe2evMklLk+eZEBER0TXPhbU7VyCkSZm58nqsndUmtOQxaEK0iKtM7rQbkNM2OHuVyapVbEFARER0HcT8g5qsGmVtXluEiNWk9HOOz7AbmByA58jH87JPouVG3KSJrzIR58P1PXKViVaTgk2lcpWJNhBCafsY8q35M7/Qxo2A7orkIiIiIpKI+0lVGVXKuqQ0A60lOdKxyze92sRz4ggwOjoveyVKBgZNiBawU32nMO4bV9anO8fUKpMCG+oudinPTasyEdUld9yR3A0TEREtYrtKd6kLrQbhjaXKsnfcqxxHEUX3J28AQbVtFxHNjdaxVgy41cqu8z0TCIbl8+E1BTakGeTz37yWAZSlFcxcZSLOizdvTt6miYiIFvm5sEjUTdm5Qpnz1zOWeC7cOdYG7N8/D7skSg4GTYgWqKaRJrzZ/OYVVSbjyofXvlQNMnpGZ68yWb8eyM5O7qaJiIgWMZGhHt/PWbOlAoap4dIT3qBUcRIzMNwB35mT87JPouUkvspEtOQ60zmVUJQCbJiaZYJoFOWXh5FvmaXKZMUKID09GdslIiJatIrtxahwqC1qCyuz0Vkkz/lz+oJweoMJldfesyeBLjWZl2gpYdCEaIFm1D134TlEonIWnXCiPa7KJN969SoT0Xpg9+7kbpqIiGgJuK34NuU4aDMhZUXejNUm4WgYnR++nPT9ES0n/ZP9aBlrUdaX+l1wB+TgZWWWBY40g3Sc3j+OqogdWo0c5JyGA+CJiIhuvNpEk4Lgzhq12uSKyuvOiU7gnXek5AWipYZBE6IFpmO8A8+cfwahiJrNeqFnAic6RpUPrfv1gG3IOXuVibgwtNuTu3EiIqIlQAyRjv9cTbmlArqpIZgj7oBU+Rkz1HASwb6eedkn0XJwuOtwwmyTU53ybD8hNstEKL7Uj0LrLHP8MjKAysq53SgREdESUZpeirL0MmVdsDIXzSXZSuW1y6dWm/RN9qH34lGgoWFe9ko0lxg0IVpAup3dePr80whG1A+hxn4n3m1U+zhvLXWgtqFbWRfbihOrTIxGYOfO5G2aiIhoCUlJScGOkh3KeqIkC/Zcm7Lum/Apx+Lzuu39F5K+R6LlwOl34vzgeWXdOerB8KRfOs63p6Ig3SQdp427UTuqg16rn/mFRDKRmGlCREREn6raJLB7FYIa+RZyd9xsk1hr+c4X/hMIq4lFREsBgyZEC0Sfqw8/PfdTBMIB5bHmQRfevjAg6h4lom/z/SlhWEYnpbVeo0eh7Yqsuu3bgbS0pO6diIhoKVmZuRJZaVnScVSrATaVSfPEhCGXTxlCLa0P7UckIN/IJaKb52j30YRWtSc7Zq4yKT/TgaLZqkz0ennOHxEREV03UWkiqq+VdUUWzlfkKdUm3WOehO9vbTmOxjeeSvo+ieYSgyZEC4A74MbPzv8MvpCavdo27MYb9f1SKwKhttCOXZWZKD/boXyPGFabUGUigiW33prczRMRES3BapPtxduV9ciqQmTbUqXjSBToj682cTvR8drP5mWfREuVP+THid4TynrI5ZcqTQS7SY+KbIt0bB6dxKrBCNL0syQMrVsHmOSKFCIiIrr+c+H4ahOtJgX6O2owadAp1SZXBk66XvspTrUcTPpeieYKgyZEC8C7re/CFXApa3FR+Nq5XkTEnRlp8LsNd9TkILd9COYJ+YOp0lGJbLPcV1KxY4fcnouIiIg+k3W562A1WKVjn9UEw6p8xBr89Dt9CE99Rgujb72I6An1Bi8RfTan+k7BH1YruE7FVZlsLHEolV9lZ9qlVrUzEm1ExLkxERER3bAKR0XCZ2x1kQOTO2uU9ZWBE70/hAsv/htO9p5M+l6J5gKDJkTzbGByAGf7zyrrQZcPr5ztVW7GrMi1Yu/qXGgiUenCMFYqWWy/4gLRapV7NhMREdFnJio5by1SqzfH1hQh0yInJojPaPF5HSMSHwZ+/gOgsXFe9kq0lIQjYRzpPqKsxcDZSwNyclGqXovVBfKMIcuIC5UDAdiM6syhBKItl0Nt40VEREQ3Vm1y/4r7oU3RKo85dq6AvTRz1sBJYUM39p94Dm1jbUnfL9HNxqAJ0Tzb37of0amhJaIV14FLQwhN9UqvzLZg35o8KZsur2UAJpdX6itZai+d/kJi+Lvo20xEREQ3xaaCTTBq5UDJSFEm0ovSEwbCR6ZaaAqNQw3o/MHfAp2d87JXoqVAnAv/8tIvMeGfUB470zWu/FtbV2SHXswZiqsyETd1ptFqgdtvT97GiYiIlqA8Sx4eXPkgUqbqraOaFITurkVJRtqMgROR7Fu7/xxeP/ksQpHQvO2b6GZg0IRoHono++XRy+p62I2eca907Egz4N7aPKl3pCYcQenZdhTZilCeXj794tBuBzZuTPb2iYiIlrRUXSq2FG5RBsJ337EWdrNBWgdCEQw61WoToXWoCZf+8U8QHRiYl/0SLYVkonMD55S1LxjG+R45gCLOieumApfWISeK+tzISsua+YXEeXG6GuQkIiKiT6curw4P1TykBE5GijJgqsmfFjjpm5DvZaU5vSh/9WOc4XwTWuQYNCGax0w6McskRswv+aR5WFnfVpUJnejFDCC/qQ8VmkxpjsmM2XS7dgG6uIHwREREdFNsLdyqtCUYz0vHwN21ynPtIx70jnulz/SYvqFWnP2b30NobGRe9ku0WB3tPoqDXeoNllAkIs34EwFKYVWeDWajfL5bfq0qE1GBTURERDfF+rz1auAkJQUtWyqR7zAlBE66Rr0ITnVNEbN4x773DwhOOudx10SfDYMmRPPkwtAF9Lp6lfXFPidG3QHpON+eKrXmEjShMDZcdqE6o3rmC8OMDKCuLnkbJyIiWkasRqt0oRgTXV+Kzq3Vyrpz1CMFT+IDJ+ODnTjyt78DX0Dt8UxEs7sweAFvNb+lrMW/p7cvDEiZq4JJr8Ut5RnSsW1wAjl9TqllyIw2bwZss8w5ISIios8cOJnMtKK/Mg8F6SbkWOVWtqKVpkgmitEPjaDrX/4S8PvncddEnx6DJkTzNODyvdb3lLWIxh9uVTNSd1RnKwGSwoYerDQWzhwwEXbvljPqiIiIaE7cVnIb9Bp5bpj4PM6+rxauzRXK8wNOH5oGJqWq0ZhQVwfefumvE4IpRDRd+3g7Xmx4MWHG30dNw7g8Nfxdp9XgofWFsJnkf4Plp+WWtVrNDOe/ovJ6x47k/gJERETLMHDSfEsVXJlWFDnSRPGJZMDpVypEhf5LJxF66idAQE4QJlpMGDQhmgcnek9gzDemrE93jsPtl4dkVWRbUJhuko71viC2tgWkLNcZZWcDa9cmZ9NERETLVIYpA/dV36esReBE/8B66DaVTXV3BsY8AalqNNaWQDB8fAj1fWfnYcdEi8OwZxjP1j+LcDSsPHaqcwynu8aUf2v31+Yjz54qrTN6RlE47EeJvWTmF9yyBbDOct5MRERENyVwckf5HQgbdDh79zoEsq3ItaYq1Sax2SZCIBxA34UjwC9+IbIi5nHXRDeOQROiJPOH/DjQcUBZewNhnOgYlY5FdH5HVabyXMWZDlSlFc3+Ynv2AFNzT4iIiGhuLxDvLL9TfSAlBe7PbYBjfbE0oFqY9IdwodeJ8FTFiWnSh5YPXpivLRMtaJFoRKow8YV8ymONfU58fFmd8be3JgflWWbpONXlxfqDLajNqYUmZYbzX72eVSZERERJsLVoK8x6M0JGPc7eXQd7aaZSbdLv9CVUm3ROdCJ8qRE4f37+Nkz0KfBuK1GSiQGXnqDa4/xo24jygbKmwI4Ms9wP0jzmxpa+FKTq5Ij9NHl5wKpVydk0ERHRMicy3neW7sQXVn1BGQwf1Wow8MAmlFdlQ6+VT6t9wTCGXOpNYNPBYxia6Ju3fRMtVBeHLibM9+sc8eCdhgFlva0iE2sK7cqMv7oDjdhgr4FJL1dkT7N1K2CWAyxEREQ0dwxaA3aUyIkKQZMBDfdvQFp+urQWBSXxs02CkSB6XD3AgQNARA2mEC10DJoQJZHL78LhrsPKesITxLmeCelYp03BrRVTVSbRKGpOdqDUNkvrAeGuu+TSFCIiIkqadbnr8JV1X4FRKyc5hPVajNxShZo8tSXQoMuvzDIxevxoefe5edsv0UIkqkw+bP9QWYu2dm9d6FPmAtUW2pXB79J58eHL2Kotnb1lrcEAbN+elL0TERERsLlgMywGi3QcSDNi8Itb4TIZpPWAK7HapGuiC+GhQaC+ft72S3SjGDQhSqJPOj+Rouwxh1qGlYvDjcUOWIw6pV9zndsCvVYeeDnNihVAZWVyNk1EREQJKhwV+JUNvwKb0Sat+6vyoMmyKp/jnkBYatUV4/3gHYR8apUp0XJXP1gvzTOJOds1Lv27EUozzdizMkeq7hKKGnqwa8IhzRaa1Z13Amlpc79xIiIikoj7VTtLdiprbYYF9feux6RBJ1Wb9LDahBY5Bk2IkmTCNyENgI8ZdPlwacAlHZv0Wmwqc0jHKeEI1p7uQaG1cOYXEjNM7r47OZsmIiKiGeVacvH1uq8jBSmIalLQtqEMOTa5+iRWbRKT4najcz9nmxDFqkwOtKvz/UQm6omO2OB3YNeKbGim5gSl94/j7hb539usamuBW26Z+40TERFRgk0Fm2A1qFWgK1fn42hZnnLPyx+SEyJis01CQwOsNqFFg0EToiT5qOMjhKPqB8aRlhHlWLQfMOrk/ugFl3qxCtnQauT1NOKiMCtr7jdMREREV5WZlonKDLnyc6gsB6mFGcpQ+JHJgDIQXhjb/xrgU2edEC1X5wbOYcSrngef6RqXZgEJK3OtyDDLrT2Mkz7cfWoCxZZZEoliM/4efJAta4mIiOaBTqOTZv7FpBl0SNlSDpdRP222SSgSQrezm9UmtGgwaEKUBGPeMZzuP62s+yd8aB12S8eilYfo2yzo/EGsvTiMPIscmZ/GZAJ27UrOpomIiOiaNuZvlP4U1Sadm8qROXXDNxKNYnhSrTZxjQ/AeeCdedsn0UIQjoSlRKIYkYF6slOtMtlaLs/3s4xOYvPb51FtLFDadM14XvylLwH6WdrZEhERUVLOhWMta4UN5Zk4VpqrVF77pxIjYtUmvoEeVpvQosCgCVESHOg4ILUiiJ9lEl9lotPK/xTLzrSjOq1o9ovD3bvlC0QiIiJaEFZmroRZb5aOh0uyYCzNmrFFl7Te/0vAw9kmtLyrTEa9o8r6TOe4cjOlJs8Gh9mA7PYhbHjjFKo0WbPP9xPnyo8+Cjjk9rZEREQ0j9UmcbNNTAYttFvK4ZyqNukaU899xX2x1rFWVpvQosCgCdEcE0Muz/afVdY9Y150jsofGrZUPdYU2CE+SYoudKGm1YlMk5xhN41oybV5c7K2TURERNdBtNNcn7deXqSkYGR7NdIMcotNtz8kfcUMjnYh8snH87VVonmvMhGJRDGiJZdaZZKCrWUOlJ9qw5oPL8AQTkGRrejqg98r5dZ4RERENL825G+A3Sh3UBHWV2TiZLncQWV4MgCXL6g8N+gexERPK6tNaMFj0IRojn3Y/iGikHuaR6PRhCqTrRUZ0AGoOtaMquMtqEgvn73KZN8+QDvLnBMiIiKa9xZdwmhhBjRlM1ebBMIBjHzwOjCsngsQLRdn+s9g3DeurE93jktD4IW6LDN2HGlC6bkOaS0CJrNWmaxeDdx2W3I2TURERNdVbXJ76e3KOlWvhWV7lVRtIrSPeKT7YTHNo82Ifvghq01oQWPQhGgODUwOoH5QjZ53jXnRMzUIy5FmwJoss5RNV9TQI0XlHamztBioqpK/iIiIaEEOhC9LL5MXKSnw7KrB1Dx4aa5JJG4gfP94D/Dmm1KVKdFyIYa/xs8yEVUmp7vkKhNTOILfuNyJrK4R5cZLsb149sHvDz/Mwe9EREQLjKi8zk7LVtZrShy4uKJAOhaV16LiJMYVcGGg8yKrTWhBY9CEaI6rTGKurDK5vcCKje+cRVan/Fi5Y5YqE40GuPtuXhwSEREtkmoTT3EW/CVytUk4EsWIW71IHPGOwH/pItDQMC/7JJoPp/tOY8I/oaxPdowpVSbfHhxB9qRPeU5UmYjAyTTl5cCTTwIGQ3I2TURERDfUsnZf1T5lrdGkIHPXSqXaRLSpF+fFMWK2SWj/O4A/cQYg0ULBoAnRHOl19aJhWL0hIsoR+yfkC8JSbQoeP3EZtmGXtE5PTZe+ZiQCJjk5ydk0ERERfSqrslYhVZeqrCfuWD3VnFO06FJvCAt9k33A228DATWYQrRUBcPBhCoTbyCMM11ym65Spwfb/eq/DxEsmXGWya23Al/7GpCWlpxNExER0Q2ryqjCiswVyro4x4qO2hLpOBiOoHeq80qsbW1Xx3n5nJhoAWLQhGgOiKqSd1veTVgfnqoySYlG8Vt9gzDFZdSVp5dPfxFRWXL//fJFIhERES1oYv5CXW6dsjaXZeFyRa507PKFpBvFMf2T/YiOjwMfcyg8LX3He49LbThiTnSMSjdORIu6L4+Ow6hTZ/YV24oTq0zEPD/Rjuuee+TqayIiIlrQ7q68G5oU9TM7e08NXKlylWjvhBf+oHpO3OXsgu/YIaCpaV72SnQ1PPMkmgOn+0+jbbxNWbcMuZVBsHvHnajwq5mlGaYM2FPtiS+g1wNPPAFs2ZK8TRMREdFNa9ElWm5O3LYSbr1uWrWJL+STq00OHQJG5DkOREuRP+THxx1qcHDSH8LZbrnKZPWoC+uh3jjRa/QotBWqP2y1At/8JrB+fXI3TURERJ9aVloWthZuVdbp1lQM31IpHYuRfh2jHuW5SDSCltEW4JVXAI/6ONFCwKAJ0U3m9DvxdrNaXigy6T6+PCQdW/1BfHHMmTC7ZFqVidksXyCuUEsaiYiIaOHLteSi0Kre9K0qzcBHlfnSsUieCIns+int4+0IBwPAG29wKDwtWYe7D8MbUltxHGsbRSgchSYSwRNjE4lVJva4KhMxt+TXfg0omqFVFxERES1ou8p2IU2vttR03L4CfRlW6XjUHYDTG1SeG/IMYWyoC3jtNZ4T04LCoAnRTSTacL3e9Dr8YXWQ1eGWEUxMfSA81j+MLL0mIQJvNcofHPIDWfIFYkFBcjdOREREN8Wmgk3KscmgRXBdMXpsadLgy95xX0If525nN9DSwqHwtCR5gh4c6jqkrCc8QdT3yMPgNw+Oo0afklhlEhdwxG23AfYrKrGJiIhoURBz/u4ov0NdG3QYubcOAa18P6xjxC3dP4tpGmlC5EI9UF8/L/slmgmDJkQ30YWhC7g0cklZi8Hvp7vGpOMVYy7cFQ4lVJmUpZepP5yZCfzqrwIOR3I3TURERDfN2py1MGqNyvrWqiy8V10oDYXvc3rhD6ntiDonOqXgCV58Ua44mZBvKBMtBZ90fiL//Z5ypG0EkWgUhlAYj024oJ+6cSKUppdCq5mqOrFYgG3b5mPLREREdBPb1uaa5fl+QsWKHJxcWyoduwNhDEy1sBdEVWrXRBfw+uuA0zkv+yW6EoMmRDcxm+7Ny28qa5FR+u7Ffqm6UBeO4NfGJqSM05h8Sz4sBov6AmLou8mU7G0TERHRTWTQGrCtWL3ha0vVI391Pk4VZErnBN2jaquicDSMjvEOIBQCjh0D/uEfgFdfBcSQeKJF3q72WM8xZT0y6UdDv3wTZGf/KMpN6jmxCDIWWOOqrHfvlttzERER0aIlhsHfU3VP3DoFOXtq0DzVpqtr1INASG1d2zHRAa9rDPjlL9mmixYEBk2IbpK3mt+CO+hO6Nk84paz6+4fHkN1XAsCcUOlMkMehCVZtw6oqEjuhomIiGhObC/eDrPerKy3lGXgWGWeNBR+aNIPTyCkPNfr6oU3OBVICYeBkyfl4Ino6+xVAyxEi8lHHR8hFAkltKsV5VYWfxAPuSah02gSKq/FjRWlVe2GDfOxZSIiIrrJyh3lqMmqUdaFGWlovX0VPHqtlGjcecVQ+MujlxFtbgZOn56nHROpGDQhugkuDV/CuYFzynp40o/jHaPScbbHj0c9noS2XCsyV6iDLlNTgbvvTv6miYiIaE6I5IjdZbuVdapei9rqHBwol1sUxF8gRhFF23hb4gtEIsCJE8A//zNw8WLyNk50E4x6R3Gq71RCu9rmoUnp+I7eERSa1SoSk86EPEue+sN33glo1SoUIiIiWtxEtYmYXRazeW0+PqgpVu6dxWYAx84hhj3DwHvvAT51FiDRfGDQhOgzEH2a3215Fz+/8HPlsYjUlmtA+lOUFH5nbBxWvXrxl2POkQbAK/bulXs3ExER0ZLq45xpylTW64vT0VqSjY50M8Y9QTjjLhAH3YNw+V3TX2RyEnjuOeDnPwdcMzxPtAB92P6hlC0ac6hlWPqzwOnBvT4vtJqUhAxUJbGouBioUbNRiYiIaPFLT03H7aW3K+s0gw4526pwISddWrcPu6WZZzHNo80Iu5zAgQPzsl+iOQ+a/MVf/AW2b9+OtLQ0pKfL/xCuJRqN4o/+6I+Qn58Pk8mEvXv34vLly3O1RaLPRLyR/8vxf8HBroMJF4anu8Yx4JQj4tudbmwMq60JRHS9KqNKfZGiImDTpuRunIiIiOacGGp9Z8Wdylqn1WBbVRZeWlWCxiw7OkY90rlvTMtYS8I6QUODXHVy6hR7PNOCNjA5gPMD55W16FcuKqvsvgC+0tSFXItaZSJm+2WnZas/LCqv4yqziYiIaGkQrWvjk4fXFtpwbkM5XEY9vMEw+ibUqhJ/2I/28Xbg6FFgaGiedkw0h0GTQCCAxx57DL/+679+3T/zV3/1V/iHf/gH/Nu//RuOHj0Ks9mMffv2wceSLFpA3AE3nr/4PH567qcY96mDWsWNjssDLhxulbPp9JEwvulyQROXTScCJqJlh0RcFH7uc7w4JCIiWqJWZa1Cka1IXefbYE434+XVJfjn1aWoT1crTcU5xZhvbPYXE+fDr7wiV50E1SoVooVkf+t+qeVc7Nz4UMsIjKEwHqtvxwqzQRoCG1OeHldlIipMRKUJERERLclkovur71fW4vP/ttoC7K/Kl9Y9Yx74gmHl+W5nN0Ymh4C33mLCEC29oMmf/umf4n/8j/+B2tra6/p+cVL9d3/3d/jDP/xDPPTQQ1i3bh1+8pOfoLe3Fy+//PJcbZPohojWGf955j9RP1if+LgviFfP9uL1830IheU39K95vcieumgUMkwZUmsuxa23AnlxPZyJiIhoSREXhHdV3KWsxQ3jHdVyy65+axr+JjcbRz+3CUOlcrZ9y+hVqk1iGhsBcW7MC0haYFrHWqUBrjFtw24MjLnx+YudKA6GkBVXZWI32qVzY4kYCi/a1RIREdGSJVpyrstdp6xzbKkw1ZVIrWtFd/uOEbfynEjAOD94Ht2nDyB66dI87ZiWuwUz06StrQ39/f1SS64Yu92OrVu34vDhw7P+nN/vh9PpTPgimguhSAhPnXtKHko1RfRdPNU5hp8c7kDrsPoGv86sx73jau9xbYpWGv6uZNPZbMBudUAsERERLU2l6aXSOUBMWaYZhekm6XjcE8ARbxgX9qzB8Ye2oCvHiL7Jvmu/6IULwPvvz+W2iW6ICPaJOX8xYrbfJ5eHsK+5F2XjkyjOMKnnwVfOMtmxA8iKm/dHRERES9LdlXcjVZeqrEXr2oM1xYikpGDME5QGw1/ZFv/CT/8W4UDi40TLKmgiAiZCbm5uwuNiHXtuJn/5l38pBVdiX8Us66Y5cqD9gDSoNUa8mf/8eBc+ahpCMCzPNDEbdLi/Nh+/4fNAH5cBWplRmfDBIPVsNhqTun8iIiKaH3sr9iIF8g1icaN4Z7U6x+FI6wj8oTDcDjPO7a3FO3UWhFLVjPxZffwxcObMXG6b6LqJKuz4gN+FPieqL/Wirn8MFqMOjjT177SoMBFDYZW2XEwkIiIiWhbEPLM7y9WZf0adFms2luBUvlx92jw4if64+SbCcHcT3v3Zn8Eb9CZ9v7S83VDQ5Lvf/a50oXe1r0bRMiCJ/uAP/gATExPKV1dXV1L/+7Q89Ln6pIHvMW5/CL842a0MfBf3QdYV2fHk9lJsjoaR26EOqyqwFiDfIvdplJSUAGvWJHX/RERENH9Ee871eeuVdZ49FStyrdKxGH55vG1qlklKCtpLbPjkgTrgelrcvvoq0N4+Z/smut5q7Pfa3lPWIplo6Egr9rTJiW+lmWmJVSbp5fJBQQHwhS/I7bmIiIhoWdhUsEm6TxazIteCwS2V8Oi10rp9xC21+IxvWav/5DB+/PE/JswVJpprN3SG+ru/+7toaGi46ldFRcWn2kje1GyHgYGBhMfFOvbcTIxGI2w2W8IX0c0UjoTxy0u/RCQqV5OIN+73GwfhnxpSlWk24IubinFHTS5SNRpUHWuWHhcZpaX2UlRnVCdcKOKeezj8nYiIaJnZU74Heo1eWd9WlQWtRj4fON01hgmvOtz94MgZOD93F/DlLwNpabO/aDgsD4YfGZnbzRNdxfGe4wk3MZou9uHOejmYJypMrKnq3/tccy6sRqvowww88QRguI6qKiIiIloyNCkafG7F5xKqsHdvLMLQrdXK94gE5cZ+F0JTXV20oTAK3vgYL777D/CFEitRiBZE0CQ7Oxs1NTVX/TJ8yhPf8vJyKTjy3ntqlpKYT3L06FFs27btU70m0c1wuPsw+ifVFnGiXLBlaFI6TjNo8eimYhRM9SbPbemHdXQSVoMVG/M3JvZrFtavl7PqiIiIaFmxGW3YVqye09pNeqwvllsUhSNRHGpWZ6YFI0G83/Y+sGKFfGNZp5v9hb1e4OmnAY9nbn8BohmIVhkfdXykrn1BFL57HsapmxwlGWrQT9wcEefGUotaERC0ytVWREREtLyIShORUBSjSUlB3p2rkVGVo+QYi4Si+l4nfFMJy7ZhFypeeB/n/+EPgSG1uwvRXJmzWujOzk6cOXNG+jMcDkvH4mtyUr7ZLIggy0svvSQdixvLv/3bv40///M/xyuvvILz58/jySefREFBAR5++OG52ibRVYmh7x+2f6isxZv1B5fUuSa7V+bAZJBLCLWBEKpPd6Iqo0oKmEhZdPFEQPFOtXcjERERLS+3Fd8m9XKOuaU8A6apVgSXBlzom1B7NZ/tPyu1B4WY1/fQQ1d/4dFR4LnnxPTtuds80Qw+6fwE3pD699b3Tj3yxt3ScY7VqJwnC0W2IqQa0oDHHhODK+dlv0RERLQw7CzZie3F25V1VJMC9921WJVng26qGlvcg6vvmZDa2ca4z53A8F//GfDKK0DcPWaiRRM0+aM/+iNs2LABf/zHfywFSsSx+Dpx4oTyPZcuXZLmkMT8/u//Pv7bf/tv+Pa3v40tW7ZIP/fWW28hNTVugDZRkog2XK9cekXq0xxzoGkInoD8Zl2ZbUF1jnrjo+6yC7dl1EkXhAnVJTE7dzKjjoiIaBkz6ozYU7YnYfjlrRWZyt97IRwAAEq5SURBVPqjpmGlf3MUUbzT8o68FvNN9qg/NyMx2+RDNdGDaK6NeEZwtOeo+kD7EPJPtikZo0UOtcpEp9GhxF4C3HcfUFU1H9slIiKiBUTcN7u78m48uPJBqWWXMJGXDt/qQqwttCuJRaFIFC2DkwkzTpqGGxE8fhT4/vfZppYWX9DkRz/6kfQX+sqv3bt3K98j1t/4xjcS/sH8n//zf9Df3w+fz4f9+/djhWhLQDQPjvceR+dEp7JuH3ajoc8pHRt0GuypyVGCI2kuH/b0GZGqmyXAl54OsM0cERHRsrchf4M0GD5GXBSKuQ+CqDQRbUBj2sbb0DTSJC9uvx1Yt+7qL/7xx0CbfNOaaC5dGLyA/zj1H0pykS4Qgu2VU+ICT1rn21Ol8+UYMedPv2UrsHnzvO2ZiIiIFh7RqeXJuidh0slt71s2VUCXZsCaQhtSp84lJv0h9E2os0wC4QAuj14GxseBn/0MCKnJzkQLPmhCtJhN+Cawv3W/sg6EInivUW3LdXt1NizGqf7i0Sjua4rCqrvKoNa77756P3IiIiJaFkQmnciqixHD4HdWZynrT5qHEYprs/Vy48toG2sT2UXAgw8CJSWzv7i4Yf3ii5xvQnNG3KT4ZeMv8YuLv0gYxJr1Xj0Cw3LAT6/VKPP+BKPWiILyWuCee+Zlz0RERLSwlaWX4VubvoWstCz4Lamov2MtImlGVMZ1d+ka88ATUIMjg+5BDLmH5EqTj9T5akQ3C4MmRFcQFVDiBoW4KIw52DwMly8oHRdnpGFNgU15rrovgFUTcobojEpLgVWr5nbTREREtGiI+WfiK6Y8y6y0MhJDL891qe1rxbyIp849haPdRxHVaoHHHwccjtlf3OUCXn5Zyfgnull6Xb349xP/jtP9pxMeTznTAc9xtcKpyGGSgoEx5ZmV0D76RXm+HxEREdEMMkwZ+LWNv4ZiWzHG8x049oWtGN1SiewM+RxZnNq2DLkT23SNNMn37j75BBhUE52JbgYGTYiucLj7sNQOI6Zn3Iuz3ePSsU6rwd6aXKUtl2hFcF+LBlqNOuQygfg+kVU304wTIiIiWrbuqrgLKZDPD8R5xe2i2mTqdOFI24h0/hETiUbwZvObeLXpVYRSDcAXvwiIAMpsmpqAo3GzJog+o/MD5/GDUz/AiFftGx4NhjH67gVofnlKqsoWRP/xbKtR+R6LwYLcB54ACgrmZd9ERES0eIiW94+uflSqUg0ZdGjbVIGeX92Ny2U5iKSkwO0PJZwjByNBKXASDYflwfBMGqKbiEETojj9k/14r/U9ZS0uAN+50K+st1dmwp6mV9Z3d+jgCKvraUTf5vz8udswERERLUq5llxpvklMji0Vq/NsyvnHC6e6cb5HrTgRTvWdwo/P/BiTmVbgrruu/h94912gr29uNk/LSp+rDy82vIhwNKw8pm8egO6f96Pg40bow3LAxJqqQ02+VRoCH1NStwspO3bMy76JiIho8bGn2rGvap+yjlhN0D+yBd/fXI1Bc6oUNBHBk5hhz7DUqgvd3cDx4/O0a1qKGDQhmhIMB/HCxRcSLgg/vDQotckQ8u0mrC9OV54rcAIbu9XvncZiAe68c243TURERIvWHeV3wKBVWxbtWpmN4qk2XZFIFO81DOCDxkGEI2rWXJezCz88/UO4N6wFqqtnf3GRcff880BAbTdK9Gm82/ouopD/DqZNeJD1/DEYfnoQ+lF5hkmsJdfqfBuMOrUCKiOjEDlf+w4rromIiOiGbMjbgOoM9Tw3z56KylX5eGNFIcRpccvQJCJxVSXNo83SPT289x7gdM7TrmmpYdCEaIoY/D7kGVLWlwdcuNjnVAZa3rMmT8mcS4lE8VCzFrqUq7TG2LcPSE2d+40TERHRoiRaF+0q3aWsxQ3nz28oTEjSEC1CXzrdDW9ATdQY9Y7i+YYXEH3oIcBqnf0/IAZjvvXW3P0CtCyqTFrHWqXjvMt9KH/6ICbPdSmBPKNOI836EzN5Yu1rBbvRjlXf/H3Aps4BJCIiIroe4pziwZUPSu26YrZWZCAkZp0UZcETCKNnLLFNl3S+4vcDr7/ONl10UzBoQjQVlT7ao/b+nvSF8F6jOkRq98rshLZcu4bNyHVepcqkogJYu3buNkxERERLwvbi7ViTvUZZazQp2L0yB3etzlWGaXePefHMsU6MTPqV7xPz105MNABf+MLVM/lPnQJa5ZveRDfqUNch6c+ctkGs/KQRvSNu5blMiwG1RXZYUxNb1eZb8rH23iehr61L+n6JiIhoabAarbiv+j5lrdNocPeaXBwqy8VEqh694154Amqbrr7JPjj9TuDSJaChYZ52TUsJgya07LkDbrzc+LKyjkajeOdiP3xBOShSnWOR2g3E5IRN2HFZvWkxjRjMev/9bEVARERE15VJ94VVX8Cm/E0Jj68psOORjUVIM+iktdMXxC/P9ioDt2Ntk8bzHcC1ZkaIwZhs00U3aNw3jgtDF2AbnEDNJ41Sy1rv1PmxxahDVbZFuoERo9PopADgyrseh/6Bh+dx50RERLQU1ObUoiarRlnnWFOxvjIbb1YXSo1D24bd0j28GGkovFi/8QbgVStRiD4NBk1oWRNvpq82vYrJgNqT+XTXODpHPdKx2ajDHTW5SrsB87gHj5/0QTd1wTgjceMiM3PuN09ERERLglajxedWfE7KptOkqKfnBekmPHFLMbIsRmnt9AZxqGVYeT4QDuCVS68gumsXUFQ0+39gfBz44IO5/SVoyTnafRQGpxtr36+HJhxB77hPea4gPXVaO65NtfuQ/Z3/AYi2cSKJiIiIiOgzEOca4hw5TS/P/BO2lDkwVpCBCznpcPlCGJ5UE4PEvb1eVy8wOckWtfSZMWhCy1r9YD0ahxuV9fCkHweb1ZsR+1bnwWSQL/qyOofxhYNjyPBcpTdiRgawc+fcbpqIiIiW5EXhLYW34Mm6JxMuDEXro8+ty4dOK9+gPtM1ju4xOblDEP2bTw2eBR55BDCoQ+WnOXIE6O6e21+ClgxfyIcz7UdQu/88DL4g3P6QVO0kpOo0cKSpf9fs9lzUffO7MP3W7wBVVfO4ayIiIlqKMwDvrbpXWeu0GqmV7XsV+fDotegcdSMUjiScG4vEIpw9yzZd9JkwaELLljfoxVvNauQ5FIngrfp+ZbDlhhIHSjLTpAFSZWfase2TDpSn5V/9RUVbLp3cRoOIiIjoRpWll+Hbm76NXHOu8lh6mgHbK7OU9bsXBxCMuzh8p+UdTJg0wJ13zv7ColWBaNMVvkq1LNGUE11HseK9MzBPyAE60Tc8Jj/dpFSZ9KwsQPZ3/wyaW7exuoSIiIjmxNqctShPL1fW5Vlm5Bem4/2KfATDUXTFDYUPR8NoGW2RF6+9BrjVeWxEN4JBE1q2RB9wd1B98zzeNiZVmgiiDcZtlZnQBkJY+8EFVJztxKrsVQktM6YRg98rK5OxdSIiIlrC0lPT8c0N34TNqM5UW1+cjny7SToWsyUOtYwoz/nDfqndaHTzZqC4ePYXHhwEPvlkbjdPi14oHMTQcz+Co29MWos5fyNuufWFTpOC7Kl2cZ21JfDfsxdF+Svmdb9ERES0tIlkjftX3A9tipqgsWtlNhrzM9DqsGDA6ZOqYmMG3APSbDYpYCICJ3FzT4iuF4MmtCx1jHfgVN8pZT3q9uN4x6h0rElJwb41eUgNR7D+rTNSW66qjKqEVhnTiBkm992XjK0TERHRMpCqS8UDKx5Q1uL85K7VudBq5Az/011jCdn/zaPNODN4Dnjwwatn/H/0ETA0NLebp8UrGkXbCz+Ao6FNeah/Qp1lkmdPhUaTgqHSbLRuLMf24u3ztFEiIiJaTrLSshLOO2ypemytyMRb1YXw6bRonWEofCQakVt0nT8/T7umxYxBE1p2QpEQXmt6TVmLN9X3GgYRmWrLtbHUgRyzAas/vADr6KT0xpxvuUpbrpIS4JvfBNKuElQhIiIiukHVmdVYn7deWWeYRZuuTHkRldt0xfdwfrvlbbhsqcDtt8/+oqI91y9/CUTUnyOSRKOIvv46xt59RXlI/P0adMmV2CJel2tLhTPLioadNcgyZ2Nl5sp53DAREREtJztLd8JutCvrjSUO6DIt2F+ZL1WaxM5ZBE/Qg/bxdnnxxhuA0zkfW6ZFjEETWnYOdh7EkEfNsLzQ60TPVKam3aTHreUZqDrWjIzeMeg1eqzIXKH0bZ5GtMH4+tcBiyVZ2yciIqJlZF/lPlgNVmUtZq7licAIgDFPAIdbRxKGd7/f9j6wYweQq85EmUYMhP/gg7ndOC0uIpj24osY/eht6SZDzIDTj8hU1ma2NRVhexrq76xFRKfFtqJts58jExEREd1kBq0B91arQ+FFBfaelTmoz0lHU6YNXaOehLl/nROdGHIPAT6fPNuPbbroBjBoQsvKiGcEH3d+rKw9gRA+bh5W1nfU5KC0qQ+FjT3SujKjUnpTnka0vXjgAeBzn+PQSyIiIpozJr0JD6ycvU3Xqc6xhPZJZwfOYsQ/LrfputoN7Y8/Bs6cmdvN0+IQDALPPiu1ruhydikPiyrsfqf6dys7y4Lzd9YiYDLArDejLq9unjZMREREy5WochXJzTHFGWmoybfh7eoCOLUatA4ltulqHG6EO+AGmpuBkyfnade0GDFoQsuGeNMUbblEe66YA01D8AfD0nFNnhUbfH5UHbusDGHNNc+QpSmqSkR1yaZNyds8ERERLVviwnBd7jplnWkx4tYKuU2XuCY81KImgIjezQc6DgCFhcC2bVd/4VdfBdqn2hbQ8iQyL596Crh8GaPeUXlo6pThSb+SremwGNF6Vy3cDrO03lq0FTqNbt62TURERMuTqHK9t+rehPOQndXZCKUZ8XZVoVSJHT/3LxwNo36wHsFwUG7T1dQ0TzunxYZBE1o2zvSfQdu4OtSyfcSNS/0u6ThVr8W9OWnSHJOUqMji1MzclstuB771LXmOCREREVGSiItDi8GS0MNZtBUVOkc9UjuCmPMD5zHoHgT27AEcjqu3ZPr5z4ERtcUXLSNeL/CjHwGdnQhHwtLA1Phko96pCqZwSgr6763DaGGGtBbtazcXbJ63bRMREdHy5jA5sLNkp7I2G3W4Z20eLuXYcSEnHV1jXil4EuMNedEw3IBo7Ny3tXWedk6LCYMmtCz0OHvw+uXXlbXImnu/cVBZ7y2y45aPGqCbqjoptZciTX/FYHeDAXjiCTlwQkRERJTkNl33V9+vrEV7rli1iXC4ZURpRRBFFB+2fwjo9cAjjwA63dVvnP/sZ/KftLxacj3zDNDfLy07JjqkmTgxoi2XLxhGUKPBJ9tWIlpbrDy3MX/j9PNkIiIioiS6reQ2ZKVlKevyLAu2lWfi3cp8TBp0aB6chHfqHp8gKmqlRGoROBHnQJ2d87RzWiwYNKElb8I3gWfqn0loy3WkdQROb1A6LrMY8FhDB0yT8oWiuAgstqsXhhJRcSJuOuTlJXfzRERERFNqsmqkxI6YlXlWZJjl2Wu9E150jKjVJheHLqLP1QcUFQEPPXT1FxaVJs89J19E0tIXiQDPP6/cLJgMTKJrQp1l4g+F0TXqhU+nxbPrylB8a4XyXApScGvRrfOybSIiIqIY0Z7rsdWPJcwhvqU8A4UF6XhjRRHCkSia+l3Sn/GD4aVqbJE88vTTQI88z5hoJgya0JIWCAekgIm4GIy5PODCyY4x6dgYjeJ/Dg7DPiy36YoNlRLtuRLcdRewcmXyNk5ERER0BdE29I7yOxKGwm+LqzY5FFdtInzQ/oF8UFsL7N599RdvawN+8ANm3S114u/Ha68Bly5NLaNSWy5RnRTTPuyBU6/F0+vK4VhVgIJ0k/Lc2py1UksMIiIiovmWa8nFQysfSjhX3rcmD+PFmfikNEeqNGkZnEw4P740fAneoBfw+4Gf/hQYGJin3dNCx6AJLVliEOoLF19A/6TcdkAYcPrw9kV5rYlE8HvDoygaVQMq+ZZ82FOvaL+1ceO1B6kSERERJUFpeikqHZXKuirHgmyLUToedPnQMuRWnhM3w5UKgl275ODJ1fT2Aj/8IfCLXwDj6kBwWkI++AA4dUpZ9rp64fQ7lfWoO4C2CPDTugq4M6zYUaW2vRCZnHsr9iZ9y0RERESzWZOzBjtKdihrg06DB+oKcKwiD8cKszA6w2B4UZEt7hkq893OnZMTS4jiMGhCS9Z7re/h0oicRSdM+kJ45WwvQuEoUqJR/PrACDb5fAkXghUOtf2ApKwMuP9+uT0XERER0QIQX20iMuq2Vc482ySh2kScy4g2XcVXtCCdyYULwD/9E/Dee3IWHi0Nx44BH32kLP0hP1rH1EGooUgEZ91BPF1XgXGTEbtWZCNVr1We31O2Z3pyEREREdECODeuyqhS1o40A+6tLcD7lXk4nZ8hDYafmGrRL7gCLnSMd8gLETh58UW5XReThigOgya05IgbBcd6juFg18GEwe+vnO2B2x+Sosdf7R7CnaGAdKMhZkXmCui1evWFMjKAL34R0KoXi0RERETzrdBWKLUTjSnPMiPPliodj7j9aBpQq2jFTfG2sTZ5IQbCP/44kJ5+7f9IKAR8/DHw7/8uzzyhxU0Ewt58M+Gh5tFmKdsy5rI7iB+vKoHLqEdZphkrci0J1dhbi7YmdctERERE10O02H9k1SNwpDoSzo+3V2bh7aoC1OekS226xL3BmI6JDoz74oIkzc3Av/wLcOSIPP+Nlj0GTWhJcQfceO7Cc3jj8hsJQZS36/sx6PJLAZOHugbxYCQg9QGPKUsvQ1aa2n4ANhvw5JNAWlqyfwUiIiKiG642EReFMUdaRxCJG3r5ftv7avWJ2Qx85SuAUW7pdU2jo8BPfgI41RZOtMiImwAigzKuAmnYM4whz5CyHg9F8XfFeVKFiU6rwZ6aHCW5SAx/f3Dlg9Nn/hEREREtECa9CY+vfTxhMPyWsgyUZJrx+soinM2wom3InVCR3TDUgFAkpL5IIAC89ZY8529MnoVMyxfPfGnJEG92/3L8X9Aw3JDwuBiK2jwkZ1zu7B3Bl0J+6LXqX/0ccw5K7aXqD4ibCV//+vVlYRIRERHN0+BLMZQ7pjjDhMKpgd1jngAa+tUgR5ezC0d7jqo/nJ0NfOMb13+uMzEBPPWU3L6AFpeODuDnPwfCakWJuDkg5t3EhFNS8PcF2RiwyH9/tlVkwG5Sq69vLboV+db8JG+ciIiI6MbPjx+ueVhZiwSQu9fkwWjQ4dWVRTiWasSQSKie4g/7pXOi+ECKpKdHDpywXdeyxqAJLXq+kA8vNryIn1/4OdxBd0Jf5k+ah3G8fVRaV4y58CseN9IMOuV7bEYbarJq1DZdJpNcYZKp9gYnIiIiWoh2l+2WqgBmrjYZTWhBsL91PwYmB9Qfzs8HfuM3gD17AH1ce9LZDA3JvZ5FBh4tDr29wM9+BgTVHt6xtlyBsPz/YzQFeLGyAKcNclZmlsWI9cVqawu70Y495XuSvHEiIiKiT2d19mrcUniLsrYYddi7KhcRjQYvrS7Bm1oDvAE1mWTQPYi+yb7pgZPJSeCZZ3juu4wxaEKL2ph3DP9+4t9xbuBcwuMicvzssS6cmAqYpHv9+O2hUTjisuaMWqOUoam0GhAXi1/9KpCbm9xfgoiIiOhTEK1F6/LqlHWhw4TSTLN07PIFcaBpKKG64IWGFxJbEIhgya5dwH/7b8D69df+D3Z3A889l1C1QAuUCHL99KeAX82mFEY8I+if7FfWp2pL8WzsXkAKpJsKWo3awvb+FfcntLkgIiIiWujuqrgL2WnZyroqx4K1hXaEReBkRSH+KS8LPqN6f1BUm4iqbDELULT9VwwMAC+9lNDilJYPBk1o0fIGvfjx2R9jzKf2GRT9u4+1jeKZ450YnpQvEo3RCH5/aATFJrXCRJuiRW1urXoRKAajfvnLQGFh8n8RIiIiok9pV+muhFkTu1dmK21I63smpKGX8Zl0ouJkGjHL7eGHgW9/GygouPZ8jJdf5sXjQiZ6cIs5NB5PwsNXtuVqqy3B98M6hKfm32wociDPnpqQqbkic0USN05ERET02em1ejy6+lHp3l/MrhXZcKQZRHk2DqaZ8I91leirykvoYtM50YnjvcdxvOe4dN4sVZ80NAAffDBPvwnNJwZNaFESb1wvN76McZ/aX3DMHcBzJ7twqGVYGX6aZTbgL0J+rNbIbSviLwItBou80GiAxx8HysqS/4sQERERfQYOkwOb8jep6zSDdFEYs79hAG6/Wl1ypPsIWkZbZn4xETARc91E666rOX8e+OEPgdOnp1Uy0DwSF/b19cCPfgS4XNOeFv+/i97dQk9NIV7KTEffhDynJt2kx/aqzISK7Hur7k3i5omIiIhu7nyTuyrvUtYiqejetXnQTFXUHuxz4rXqQpy5ax28VnmuW4xo/X9x6KI67+Sjj+RzLFpWGDShRUmUzV0auaSsR90Bqbqkf8InrUV8ZEtZBn7fnIKqAbUSRRAZc5lpcTNL9u0DqqqSt3kiIiKim+jOijul2RMxawpsqMyWk0O8wTDeuTiQ0KdZJJ54golVCAqjEfjKV4CMjKv/R7u6gF/+EvjrvwZefBFoaRElvzfpN6IbEsuC/Nd/BZ5/HpiYmPYto95RqV+30F+Zi2O1JTjYOiI/mQLctTpPqVAS7q68G1ajNXm/AxEREdFNtrVwK6oy1Pt9ObZUbK+Yuh8YBV4/34e/aR3H360uRW9a6rS5JuLcSVSfSESltZgXR8sGgya06PQ4e/Buy7vKOhSO4I3zfQiEIkqG5Rc3F+MBkwbVp9uU79Nr9NIMkwJrXNsJ0b/7FnVAFBEREdFik6pLxRdWfSFhKLyYTWE2yK1JO0bcONOlVue6Ai784NQPcLDzIFz+6RUJsFiAJ58ErNdx01wMGT93DnjqKfmmfXv7zfvF6OrEhX1TE/C97wE//zkwODjjtwXDQVwalpONhkqy0LB9Jd69OKi05VpflC7Nw4mpcFRgY/7GJP0SRERERHNDnBM/tPIhpOnTlMc2lTpQNjUDUHD5Qzja48R30yw4MuhGz7gXkbjgSdt4mzRPGaEQ8OyzM1bz0tKUEr0yjLbIOZ1O2O12TExMwCb6M9OSInoMisHv8XNMRNsJ0bNbyDQb8NXafKw834H8pl6kRNVBqaLCJGGQpWhB8c1vykNQiYiIiBa591rfw8edHytrESx56XSPdCyGez9xSwmyLMaEnxGBFnGTXAyUX5W1SuoBrRA34UUbLp9cyXvdNm0C7roLSFXnY9BNJi7cRaWPaJU2A3GJJ4Jjfa4+qSd3OBrGaIED9XfW4mTPBA40DUnfZzfp8dVbS5UqE3Gu/F+3/Fekp6Yn9dchIiIimisieeSZ+meUtUgcaRpw4VK/C52jHiVIUuh048tn25BrNqAy26y0+RdJ2JsLNsOoM8r3Er/xDcAQd3+RlmTcgEETWjTEX9VfXPyF1FcwRrzBvVkvtxrQa4DfTzdg/aVu6Kd6d+s0OqkUL9ecmzDTBGlpwHe+A9jVVhZEREREi1k4EsYPTv8AvS61dcCHlwaVKhMRMHn8lmLoxDy3GYgsvA15G7ClcIt601y04RJDxUVFyY0QVSr33w/U1HyG34hmFAjImY6trdOeikQjUqCkx9WT0IJtIseOc3etw0gwjJ8e7UAoLF8CPrqpCEUONfvycys+J90UICIiIlpK3rj8Bo71HJv2uDcQxuVBOYAiqkxq+8dwf1M3yrPMyLWpCUCiFa5IMtKkaOQW/088AWjVQfO0ODBowqDJknS85zhev/y6sh73BPCzY51SW66iCTd+yz2JFZFwwhvaquxVUsuKBOJGwde+BpSXJ3P7RERERHNu2DMsVeUGI0Gljekzx7ow4vYrA79r8m1YlW+TqgxmIqpPRIXuLYW3SFUoKeLm/AsvAJ5Z5qBczerVwH33yS2/6LMTVT9PPy0Hs64QCAdwtv+sNLw03niuXaowmUxJwatne6UbAkJdUTr21OQo31eeXo4n655MTDQiIiIiWgJEYskvG3+JswNnZ/0eUX0i2v/f0dKHrb3DWFNgh8Uot7sVimxF6oyUujrg4Yflocq0aDBowqDJkiMy5r5/6vtSawEhFIng58e7MOz0YUfHIB4cnUBVXOmcUWuUsuQSWkzE3HMPcOutyf4ViIiIiJLiRO8JvNb0mrIenvTjmWOdygyLmMJ0kxRAqc6xIFU/c6Zcdlo27qu+D+WGHODQIXl+yY32chYVvo88AlRWfrpfiGRutzw7pr9/xhsBp/pOYTIwqTzmTzOgvbYER7PScaHfheahSeXvgE205dpaCoNObcv165t/HQ6TI4m/EBEREVFytY214WjPUVweuazcY4wnqrTPdo7hsfp21Lg8WFdoh26qjamwJnsNss3Z8mLHDmDv3mRunz4jBk0YNFlSRGuB7538HsZ96gDTDxoH0dQ2jAcbu7Bq0ovaQrvUqzuWHbk+bz3sqTO03hKD3x96iJFgIiIiWrLE6f2z9c/i0og8/FvoGfPiSOsIusY9wBVn/zptCmpybVhXbEeOdfocEtGG4NHVj2J19mogEgFaWoCzZ4HGRnm2xvUQ51579gA7d/I87NNwOuU2acPDs/bq7puUW9YGUvVoWlWEN1JNOD/khsuX2FpNnDN/fkNhQluu+6vvl9qyERERES2XmckNQw04P3heCqREp06QRYLJ8ye7MDrixtfOtKAKEazMtSpJ2toULTYVbFKHy997L7B163z+KnQDGDRh0GTJEFlzT519Cm3jbcpjzYMunPqkBQ83dMIeCGJtgR3muHI50VqgNL008YVEn8Hbb5e/eKFORERES5w74Ma/nvjXhMoDQdxAb+x3oaHPiVF3YNrPFdhNUvCkOseqJKTE5sR9c/03UWgrVL/Z6wVOngQOHLj+mScrVgCf/zxgMn2G326ZCIflNlxNTfLA91kqfPon+9E43IiQQYeO2hJcLs/FT0/3YHJqxl+MqCaqybNiXZEdGWaj8nhZehm+Xvd1tuUiIiKiZenKKm1xvvyzo53Qu7x48kwLVpkNKHSo565iMHxtbi1sRpt8j/HRR4E1a+Zp93QjGDRh0GTJeLv5bRzuPqysRyf9aPzlGexq6oE2Gp02mMmR6sC63HWJF33i4ly05MrISPb2iYiIiOZNj7MHPzn7E/jD8jyTeOISYNDlx8VeJxr6ndKMuHhpBh1uq8qUejnHWA1WfGvTt+QLxHhjY8Crr844mHxGDgfwxS8C+fmf8jdbwkTlTkMDcOkS0NwszzC5ChEUE225vCY9zu6rw6TVhBdP96B7TJ4/I06JSzPMWFNgQ3m2GTox2y+OmP33nU3fYVsuIiIiWrbEefFLjS/h3MA55bGOETdeOtODbJcXXz3XhvXZ5oR5gKISuyarBjnmHDlR+/HHgerqefoN6HoxaMKgyZIgBlmKN62YgD+IkZ8cQnmX3JYg02xAVY5FCZCIXsxijon4UyKCJCJYIoImRERERMvQiGcE77e9j4bhBqmCdyYiYNLY78TZrnGMXFF9cn9tPqpzrcq6wFogVZxMmxsnLilEy66335YrUK5FnL8VFABlZfJXSQlgVKsflh3xv9/Fi8C77wLjakvaqwlFQjjZexKjqVEpYOKzmnCweRjH20el580GHb64pTjhAj+eaCvx+NrHUWIvuZm/CREREdGiEwgHpFnKg+5B5THR2lZ8lYxP4isXO7A6xwJrauJ5leh2I86lUnQ6OSlo5cp52D1dLwZNGDRZ9Hpdvfjh6R9KF4NCSigM708OIr19SFqnGbRS5mN824i63Do5S05EeHftArZvB8SbFhEREdEyJyoS6gfrpaSU2OyLK4nLgu4xL053jaN1SG7rJQZffnFTEXLiKnvX5qzFI6sembmd0+Qk8MYbcgDgRogKCBFE2bBBnkEnzueWCzHY/c03gY6O6/4R8f/VxaGLaNe7pYBJIM0o/X/2ytle6Xnx/82jm4pQmD69DZqoFBLz/7YVbYNJzzZpRERERMKwZ1iaqSwCKLHzrZfP9EpVJzVDE3i4sQvV2WZkWhITfXLNuViZtRIarQ547DFg1ap5+g3oWhg0YdBk0ffgFm9SE/4Jaa0JR2B49jBwqV9a6zQpWFtol/oyx/diFl+w2+XIbmFcv20iIiIiUogMOtF+QARQXIHpczLE5cHbFwak6hPBYtThiVtKEmbI7Snbg11lu2b+D4jLi2PH5KoTMTj+RolqYTE0fu3axTWLzu8HRkYAjwdITZXbkKWlzfw7iP+NJiaAjz8GTp2S19dJXMh3TnSiQTeOc3fXIZiqx4RX9N7ugH+qzdrO6mxsKlVbbomhpaKFxIb8DahwVEgtJYiIiIgo0YXBC/jFxV8oa18wjNfO9UqJRZt6hnFXSx+KHWkoSE9NSCBKT01HbU4ttDo98MgjnHGyQDFowqDJoiUqS8Tg944JOdNOEwoj++UTmDjXrXzPqnxbQpuBTFOmlPGYUlUlvzGJi1MiIiIiuqpwJCwNED/Wc0w594oJhSN4/lQ3+ifkmRp5tlSpckFUnsRsyt+Eurw6FNuKZ6466ewEfvGLWQeYX1NeHnDnnYA4x1sIwRMxb0T8LrEvp1MOkoiv4eGZf0/RckwET8SXOBaBEtF+S/ysGPR+AzxBD7omujDgHsBojhX1d9ZKw99DkQieO96NQZf8/1VltgWfW5ev/H9i0pmkWTQZJs73IyIiIrqWNy+/iaM9R5V1OBLFew0DuNjnxK62fmzrGkK2xSjNi9PEnaOKcy1xf1KqOPn854Ha2nn6DWg2DJowaLIoib+KLza8iPOD56W1NhhG2Run0XeqE5Gpv6alGWnIj2szIHoxb8zfCN2eO+WWXFcMtyQiIiKiaxuYHMAnnZ8o52GC2x/CM8c6MemX26XW5Nmwb03utACJyKxblbUKWo0W/pBfqoQQw+dFMow1kIIVH5yDY2BCGjoubuCL+XMzBllmI9p2FRUB2dlAVpb8p9l844EUUfXS0wNcvgx0d8tD1sW5Y+xLtAQTrymCGSJAIr5ix2JOy/XMarnJxBwaMZemf7IfI94RTGZY0LOyAP3V+YhOtakVF/Hne+QKbZFY9OWtJTDq1IrsL9d+GSsyOeOPiIiI6HoTi56tfxaXRy8n3LM80TGGg5eHsLelD5t7R2BN1WFlrjUhqUi06hLVvSni3FK0nb31ViAnZ55+E7oSgyYMmixK+1v3SxfrgjYQQs07Z9F9qlNpM5BlMUiZc7GLbNFmYGP5dpifeBKorp7XvRMREREtduKy4IWGF6TZJzGDTh+eO9ktVZ4It1VlYUvZjVUspESiKD/VipL6LmktWkNZDBbYjXbYU+3Sn9MGy1+LqNowmeQ2WOJY/Cm+xGMioCIqj2N/iqqOpiaguVlunbWA/vcOR8PSn+J/E/ElznPFWrSpFYGsAf8IhnKtGCnOxEhhBvwWdbbMmDuAk51jqJ8KmIhZf49vKUG2Ve2zvbNkJ+6suHNefj8iIiKixUok/7x66VWcHTib8HjTgAtv1/fh9pY+bO0elmYury6wQReXxC2qsCszKtUfqqiQgyfi3uVCqJ5expwMmjBostiIthBvXH5DOtZ7A1jz7jn01PfA5ZMzG81Tg981cYPf15RuQfav/67cuoGIiIiIPrNgOIj/PPOf6HXJA8WFywMuvH5+anh8CrA6zya1Sy10mBJaElyLZXQShQ09SO8bg2lSbiUVXz0sgifZ5mw4Uh03VolyE7IJpZZX3lGpBZZRa4TVaEVWWhasButn3ou43HL6nXAH3fAGvfCGvNKfvpBPCprESxH/A4vxKKk6tG2swEBFDiJxVSPitXrGvTjVMY7WkUkg7krurtW50vlyjJj392Tdk5xfQkRERPQpiPOujzs/xvtt7yc83jfhxatnerGlqUdq1WVL1aMm35pwXlzpqESxvXhpzO1bQhg0YdBkUWkYasBzF55DFFGYJjxY9+45dLUMYdQdkJ7Xa+XB7/FtBorzV6Hyt/8EyM2dx50TERERLT3iBv9/nPyPhCHxR1tHcLh1JOH7xGB40ZKgJs8qVTcEw1EEQhEEwhHpTzFrQwyRt6bqpSqIeKmTPqT3j0tfjt4xGD1+5TlRhSIuNB0mdZD5XBBtxHqcPehx9UjZhDMRARQRPBFfog3ZjQRQRGstMbC9z9UntSu7rp/RpKB7dRE61pUibNApjwfDETQPTuJM1zgGnIkBJ71Wg1vKMxIqgESw5zubvyP9b0lEREREn204/EuNLyWcL4p7ls8d78SW5j7c1jmIDLMB1TlqdxxBtK/Ntcxw33LTJuC+++TWsLT8giZ/8Rd/gddffx1nzpyBwWDAuBh4eA3f+MY38OMf/zjhsX379uGtt9667v8ugyaLg/hrN+YbQ8d4B16//Lr0xmMbnEDte/Xo7R1H39TQURGlFWVu4oI7Jj2rCHW//7dIYU9AIiIiojkhggmi4iR2cSjO3UTQRNy0FwGRGyEuHkXP53STXpq54UgzID89FTnWVCmYItp35TX3o+xMe0LwRAQqKhwVUhWKCHCM+8alL1ENIgISIjCQY86BzWibMZghKkhEdYeo6Ii/5BGJOuJ1RPsrcXy9dBqdFDiJfZn15lmDKGPeMTSNNElVJddruDgTLZsr4bWnSetIJIrOUQ8a+11oGZqUAifxxPnx+uJ0KbkoVa9edIvKkq/XfR2l6aXX/d8mIiIiotl1O7vxzPlnpHPL+IqTF051Y2vrAHZ2DCDXloqyzDTl/FBUEIvK3yJbkTT7L0FlJfDYY3J7WVpeQZM//uM/Rnp6Orq7u/GDH/zguoMmAwMD+M///E/lMaPRCIfj+rPMGDRZuIbcQzg3cA5dzq5pGXfZ7UNY9XEDBkbd6BhRe02vzLNKF9YxensGNv/BP8KYV5j0/RMREREtJ2K2yfMXn094TMw2aR12o7HPhfZRt3Rj/9MSQzPzbakoSDehMN2EIosepU19KKnvhH5q+Ly42BQD5K8WfBDVFOJiVARQBNFma9A9KA1Qv7L91dWIoITLF4RBp5Vaw16rqiQWRBHBGxHYMZts0GbloN7fhd7+y0id9Cq/R0w4EoU/FIYvGMGYVosRnRbDtjR0FGViONsmBZG0KSnwBMK4POiS/rxStsWIjaUOrMi1TqvgEe6rvg+3FN5y3b83EREREV2bSLr58ZkfS0ngMW3Dk3jlbB+2dA1id9sASsV5rcOU8HN6jR4l9hIUWAsSgyciGfzLXwbS05P5ayxrzoUQNIn50Y9+hN/+7d++7qCJ+L6XX375U//3GDRZeMRfsY86PsKH7R9Oy+bTBsMobOhG+ek2jLr8uDw4qTxXkWVGjk2NuEZtNmz87t/DXlCe1P0TERERLVfiHO7KPs4x3qkb+6JtlKg+Meg0Uqso8adBq5Fm0U36ghj3BjHhDV6zQkUM0txWmYW6rDSU1nchv7kfBq/crvV6iAtSUYFyI4ES+fcISVXOQ5N+xK6MxP5FmwXxJapkRAAlrNPAn2ZEIM0Iv8kg/2k2wmMzwWNPg9+ciugVQQydP4jIyCQaLvZjcNyDYaRg3GiAy6hDJG5g6LUYdRpU51ilftkiwDRTQEdU3Oyr3Ic1OWtu6PcnIiIiousjknN+cOoHCRUnF3udeOdiP3JdXtzaPYT7EEau1TjtZw1aA0rtpci35qsz58xmOXBSyOTwZLiRuIHa82iB+PDDD5GTkyNVl9xxxx348z//c2RmZs73tugzBEzebH5TGvQeL23Cg4JLvVIrBo0/iHFPEM1DasBEXAzGB0z86VbU/e5fMWBCRERElES3l94uVVKIwEn8jBPBZNBiXVG69HU954SiukIETwZdPmmYee+YF664SgxRVfFewwDOWoy4fUUeSjeUS7NP0sbd0rmjecID4+gkIoNO6INhJZgRE4wEr2tmyHheOkYKM3Ah1YizPU70jLqhyY5CG41CEwXCKSkIacSXRvpTZ9SjJMeCvBwLijLMCW1jr/U7nxpy45PmEQSgBdKtuBGiiqQ8y4yaPBvKstKgmyXIkmvOxfbi7Vibs3Z66wciIiIiumkyTBn4yrqv4EdnfiS1jxXEWAF3IISDzcP45aoSfOgP4PN+H/ZOumGJq8oW33959LI0T29F5gqpYhluNyA6Ln3+88AaJr4sJAuq0uTZZ59FWloaysvL0dLSgv/9v/83LBYLDh8+DO0sw3H8fr/0FR8xKi4uZqXJAiD+ar3V/BaO9hyNPYCszmFYT7fD2DkCjz8Etz8ETzCsZPXFWg5UZKs9op256VjzW3+OysK18/SbEBERES1vYrZJ82gzzg+cx6WRS7MOTr9RTl9QCp6IamMxtyOeqDoWlSfeYBjdYx50j3nR7/RJLcE0kQiy9RpsyjFjbUYazJEodIEQ9P4gDL4gNB4/xocmMTo0CZc3gFGTEW0ZVnQ4LAjqtFKbLPG68USFjBhqP+ENoWvMM2vrMdE6VrRdKHKYkG83wXZF8EYYmfRjf8Og1Os6/vUzzQakmwywp8nzXcSXqM4JRSLSnmJf4uXEa8fPKrlSdUY1thVvQ3l6+Q0NqCciIiKiz6Z1rBVPn3taqXCWuuw0DeN0l9q6KzUawcPhIB4cGEXaDLff8y350vw+vVYvP7BtG7B3LwfEL8b2XN/97nfxf//v/73q9zQ0NKCmpuZTBU2u1NraisrKSuzfvx933nnnjN/zJ3/yJ/jTP/3TaY8zaDK/xF+rt1vexpHuI9LaOOlDzYGLGLnQi+FJNch1JXHhKOaYiAHwwmBZNlb82v/C+qLNSds7EREREc3OH/KjYbhBmlXXNtZ2Q8PUr0ZUn3zUNIQBp++Gfk6nTZGqMdYV2qXKlaYBF1qH3NMGp8/GmqrHhuJ0rCm0waiTL1LF3JG2YbfUeqx9xCPNcpmNPq6VlwiKiIqaU11jCUGX1fk27KzOlqpzPgsxfF6039pcsFmZ4UJERERE8z//T9wLPd4+hhMdowltafO9Pvz/7d17cJxV/cfxz16STTabe9LckyZNm16ACsVefkKpgBVEtNDxgvz8FexURXQUFBwdsTo60xn4x9FxZH6/P5AZlVEcqlKpiFBrwZZLodPSe0qaa3Np7vfL7vObc9JNu01aNpXc3y9YNtnn2eV5OsnpeZ7POd/zjepGLfQNl7K9uLxsaVqp7dfZQTAFBcMLxHNPe2aFJk1NTWpubr7sPiUlJYqNjf1AQhMjMzPTluj6yle+MuZ2ZppMP+ZH6u+n/q69NXvt92Z2Sdmeozpd06bm7tF1qeNjPErweewFa2aibyQwqbqqQEUbN+um4nWTfg4AAAB4f6bMgKnt3DvYa+s0+7y+4WePz174mQUzW3tb7T5m0cym7ibVdNRcspSW6UcePdOp106dtTOSL5bij1V+SrwNRyqbz9eSvhxzcWoetofpsv+ODNZZXpCi0syAXX/lUkxgUtfeN2q2SzRS4mN0y5IsFaT5o9p/zON3x2hxxmJdk3WNHY1ICS4AAIDpwQwWN1V2Ll73b39Vqw5Ut40MvAn0D+rzx6q1Mkb23ufFs4RT41Jtf8/0peX3Sxs3SgsWTOq5zAUdE7WmiQkwzGOy1NTU2JAmJyfnkvv4fD77wPRgLnRfeu8lG5i4gyEtePOUco/W2PVKwoGJDU5T/bYOtT/Wa+s1R3yGSypfuVBZN9+ptfNvmqIzAQAAwPsxAUl2IPuS282ouYtnRARDQZ3pOqOq9ir7MGW/wuW+zAWkqQu9MCugtytbbUhhSlmZUlj5KX4F4s5fvrR0D+hgTZuOnOkYtci8WTi9dF5Ai7ISlZ/qH9XfHA+vx63CNL99GGYGi1k4vra1R01dA2rp6ldb36AunHBjBgGtKErVquI0+/6LmcU/k33Jti52nDfOlnYwfwbmz8Y8m+0Z/gwVpRTZC2jz5wwAAIDpZXX+ajuIyKz/F2ZmFt9QmmFnMr9V2Wr7q12+GD19VZFajtVoxZkOW4Y2PvZ8v9YMLtp/Zr+unne17Cp4v/mNdNNN0tq10iXWtcMMXdOkqqpKLS0t+stf/qInnnhCe/bssa+XlpbadUoMU8Zr27Ztuuuuu9TV1WXLbG3cuFHZ2dl2TZNHH31UnZ2dOnToUNTByHgSI3ywGrsbtfPkTlW0VSi+vUfLdh9RQnOnTjV1j5TkMoHJonmJSk0Y+8KvNxCnE2sWqWjFzfpU2afsBSMAAABmLzMb5R/v/cOWOLgSppSWmZ1iymn5Yz02KDEBx3iDktzEXHvhaxxtOmrDnGgWlzfMKEIT4phBQmatlPnpfqUlRF6/eN1erZu/Tkszl9rAhBkjAAAAs8PJ5pN64eQLNvy4WFffkF4tb9Kx+k673vNHK+q1uvascpPjlZcSHzHj2ePy2FKsZmCNlZcnfepTUlbWZJ7OrDVh5bnG47777tPTTz896vVdu3Zp3bp1IyPJnnrqKbtvb2+vNmzYoHfeeceW8srNzdX69ev1k5/8RFnj+MEgNJl8fUN92lWxS29V7VNa9VnNe69B6TXNcgVDUQUmZmZJa26a6pcUKLDsWl2Xd72WZS5jQUsAAIA5xMw6ebH8RdV21k7a/9Mll8oyyrQmf40Kkwsj+p+DwUEbnJxqPaXTbad1tufsFf9/FqQu0B2L7jh/AQwAAIBZxcwYPlB/QLsrd6ujv2PUdlNa9pVjjWrvHdTV9a1aX16nRI/Lloq9cDa16Z8uSl+knMRzlZfMTJMbbhiedeIdV9EoTMfQZKoQmkyekBPSgTPv6M3XnlXS8dPKrDor78BwaYWQ46iiqVtN4cBE0sKsRLtA5sj74+IUWH2j4lfdoHkFi20JAkbcAQAAzF3m0uRQ4yG9VvWaGrobRl6P98Zrfsp8+8hLytOpllN6q+4tdQ50XvbzzPvMzI78pHwbiNh/zgUjSb4kO7sk2tJXnf2dqmyvtAFKtCGKP8av20pvs6UWGBAEAAAw+5lSq/vr9mtP1R51DXRFbguG9HpFi/ZXtiq9s0d3Ha1WRl+/Fo4xyNz0e4uSi873Ic2SGWbWiVksHleE0ITQZMLDksONh7X/9e1K/+cbSmyJbABauwd0urlb/edqS48VmDSX5un6LVtVlLVo0o8fAAAA058JJfqH+u2aH2aGxsWhgxnNd6TpiN6ofUPVHdUjr5v9l2QssaUNilOKJ2xQjqlfbRa2NyVqm3qa7Nfm2Vwom2MwC7dfn3u9DU4AAAAwt5i+4t7qvTY8Ca/fF2aq8vzjSINaWrp128laLW1qV3FGgrKS4iL2y0rIUklqyfAC8YbpDxcXSwsXmjUwpIyM4dcQFUITQpMJDUv2Hv6bUva8qXkVjRHbeweCdqpZW+/52s/DgUlgpKZz0OtWxZql+tjd31FR6vxJPwcAAADMPr2DvTa8CMQGlBKXwuxlAAAATAvNPc3acWKHXQP6QkOhkP5+uEEn6jt0XV2LbnnvjAqT45SfGh8xWMjMlM4OZKsguWD0YJyUlOHwZMkSqaSEAOV9EJoQmnygTD3nw02H9e/3div+zQMqPFQpz7lZJEYw5KimtUf1HX1mPaMRiXFezU9PUIJvuN5eV2qCTnx0ue5e+2U7xQwAAAAAAAAAZjNz+/1gw0G9eOpF9Qz2RLy+5+RZvV3VqpyOHt15vEZlHqk4M0HuMQIQs7SBGSTkdrntovFmoJDX7VVCTILiixZIt946HJ5gTIQmhCYfiPquer1z6jXVHnxV/up6pde0yNczvEZJOCwxQcmZtl4Nhc7/GMV63CpM9ys9IXYkGa0ty1XVqsW657r/ITABAAAAAAAAMKeYwOSvJ/5qB6df6J2qVu0+2STvUEgfqWrU+uZ2FafFyx8b/cLvqXGpKk0rVULZVcPhSV7eBJzBzEZoQmhyZRxHA2cbVH54j04ffk3BU+UKtHbJddFPyKXCEpOP5CbHKzclXh63S0GvR01FGapbnKdQXq4+u+yzKkwunPzzAgAAAAAAAIApZm7Fv1zxsl6tejXi9ZMNnfrb4Xp73zWrs1efOFGjMido77MmxcVE9dlmBsqC1AXKTcyVa+lS6eabhxeQh0VoQmhyXmWl+UORQqHIRzB4/uuuLrWePqr6E+/obGutgk5wzI8aCobU0Nk/KiwxMgKxyk/1yxfrVXN+mhpLsnS2IF2O16vrcq7TzcU3KyE2YZJOGgAAAAAAAACmpzdq39DOkzvl6Pw91tq2Xv31YJ16BoJyh0JaWdusGyoblBLjOReeeOV2m1VOzOD1S69fkhafpsUZixVrFpBfvlxat254/ZM5roPQhNBkxG9+I5WX20Xcg6GghkJD9mGCEfPcN9Rny3B1DXSN+Xbz49HZN6TGzn41d/dHrFkSDkvyUvyK9ceo6uoi1ZXlavBc+lmQVKDbF95u000AAAAAAAAAwLBjZ4/pj0f+aO/Rhg0GQ3q3tl1vV7aqs39IKb39Wl19Voua2+UfHB7obuISE56YdU98XrfyUuOV6o+N+OwYd4wNTtL96ZLHI23cKJnZJ3NYB6EJocnpttN6/vjzKt65T0mVZ2xoMh7mF7Sps9+GJX3nfiHHCkviYz1qKMnSeytK1J/gs9vMgkQfK/mYrsm65rKpJwAAAAAAAADMVdXt1Xrm3WciFog3TJmuEw2deut0qx3Ibkay53T2qqS1SyWtncrt6LHhSVhWUpyK0vw2TLlQXmKeSuaVyfPQw1IgoLmsYxy5QfSryWBGMVlYc2+zckL9CkQZmJj3dJhZJR19aukZGDWrxKxTkhnw2V9CE5Z0pifq7VWl6piXbLfHemK1Km+Vbii8QT4z/QsAAAAAAAAAMKaC5AJtvnazth/brpqOmoj7sEtykrQ4O1Gnm7t1vL5LfRkBnS5M18lgSJ7eQZVVN+lDFQ2KGwqqoaNPHb2DKp0XUILv/C3/2s5aHVmcrlXqUrbmdmgyHoQms1Q4tHCimOkxMBRSU1e/mjr61Dc0OmBJjPMqKzFOaQmxcnlcNiypXJxnZ5g4btdIWLKmYI38Mf4JOR8AAAAAAAAAmG1MCa0vXfslW67LLBBf11k3ss1U8SnOCNjHxRxngY5WNGvwlaO6rqZJvYNBvVvXrsJUv7KT4+x7B31eHVqYpIP7/0+3ltyq1fmrqQwUBUKTWcrnGQ5NQuemZJlSW519g3Zql3mYhdzDXw8ERwclXjOrJNGneYlxcjICastJ1dGcVLXmpGjIN7xmCWEJAAAAAAAAAPxn3C63lmYu1ZKMJapoq7DhyXut7132PSb8WFKSoZaslfrjW9UqO1Kt5fWtqmzpUVvvoBZkBlS9olBDsV7JCerFUy/a95jgBJdHaDJLxXnj7LOZCWJ09A3a4OR935cYJ19RuuLnp6snPUkHspLVHxj+rLAkX5Kuy7lOK/NWEpYAAAAAAAAAwAfAhBolqSX2YWac7KvZp/KW8lFrnlwoLcGnT95Yor25yfrfY/VaW9mopY1tOtk3pOYleSP7Zfgz7D1dvD9Ck1lenqstO0Uhj1vliR062dStkMuloNslxyW5PB55PG55Yr1KzE1WVlmW+uYlmd/OUZ/nkkuL0hdpRe4KlaaV2vQTAAAAAAAAAPDBy03M1d1L7rbrULf1tak/2K+B4IB9dA106ZWKV9TR32H39brdunFhporSEvRiSoKOdPfpnsWZCnk9drvH5dHGJRtt5SC8P0KTWcrr9tpfhvqFOfbR3zeorMGQYr1u+bxuxXrccp+bhXI5KXEpNoH8UPaH7AwTAAAAAAAAAMDkzT5JjU8d9boZ4L7jxA4daToy8lphul//vapIPQND6gwMD6o3bi6+WTmJOZN2zDMdocksL9HVPdhtv06Ki5Eiq2xdkplFUpZeZmeVmKlgzCoBAAAAAAAAgOnDLJvwmaWf0YH6A9pZvtPOQDHiYz32EVacUqz/KvivKTzSmYfQZJaX6AqHJtFIi08bmVUSiA1M6LEBAAAAAAAAAP6zWSjX5lyrwuRCPXf0OdV21kZsj/fGa8PiDXY/RI/QZBZLj0+3JbpMeOLz+OzMk0t9nR3ItqW4+AUCAAAAAAAAgJkj3Z+uL137Je2u3K09lXvkyLGvf3LRJ5UclzzVhzfjEJrMYvdec+9UHwIAAAAAAAAAYIJ53B67dsmC1AV21olZdmHZvGVTfVgzEqEJAAAAAAAAAACzQFFKkR748ANyiYpCV4rQBAAAAAAAAACAWcIsx4Ar5/4P3gsAAAAAAAAAADBrEJoAAAAAAAAAAAAQmgAAAAAAAAAAAAwjNAEAAAAAAAAAACA0AQAAAAAAAAAAGEZoAgAAAAAAAAAAQGgCAAAAAAAAAAAwjNAEAAAAAAAAAABAklezjOM49rmjo2OqDwUAAAAAAAAAAEyxcF4Qzg/mVGjS2dlpnwsKCqb6UAAAAAAAAAAAwDTKD5KTky+7j8uJJlqZQUKhkOrq6pSYmCiXyzXVhzPt0jQTJlVXVyspKWmqDwfALEQ7A2Ai0cYAmGi0MwAmGu0MgIlGOzM2E4OYwCQ3N1dut3tuzTQxJ5yfnz/VhzGtmV8WfmEATCTaGQATiTYGwESjnQEw0WhnAEw02pnR3m+GSRgLwQMAAAAAAAAAABCaAAAAAAAAAAAADCM0mUN8Pp+2bt1qnwFgItDOAJhItDEAJhrtDICJRjsDYKLRzvznZt1C8AAAAAAAAAAAAFeCmSYAAAAAAAAAAACEJgAAAAAAAAAAAMMITQAAAAAAAAAAAAhNAAAAAAAAAAAAhhGazBG//OUvNX/+fMXFxWnVqlV64403pvqQAMxQP/rRj+RyuSIeixcvHtne19enBx98UOnp6QoEAtq4caMaGhqm9JgBTG//+te/dOeddyo3N9e2KX/6058itjuOox/+8IfKyclRfHy8br31Vp08eTJin5aWFt17771KSkpSSkqKNm/erK6urkk+EwAztZ257777RvVvbrvttoh9aGcAXMq2bdv04Q9/WImJiZo3b542bNig48ePR+wTzXVSVVWV7rjjDvn9fvs5jzzyiIaGhib5bADM1HZm3bp1o/ozX/3qVyP2oZ2JDqHJHPD73/9eDz/8sLZu3aq3335by5cv18c//nE1NjZO9aEBmKGWLVumM2fOjDxeffXVkW0PPfSQnn/+eT377LPavXu36urqdPfdd0/p8QKY3rq7u23/xAzyGMvjjz+un//853ryySf1+uuvKyEhwfZlzM2HMHMj8/Dhw3rppZe0Y8cOe4P0y1/+8iSeBYCZ3M4YJiS5sH/zzDPPRGynnQFwKea6xwQi+/bts23E4OCg1q9fb9ueaK+TgsGgvZE5MDCgf//733r66af161//2g4cAYBo2hljy5YtEf0Zcy0VRjszDg5mvZUrVzoPPvjgyPfBYNDJzc11tm3bNqXHBWBm2rp1q7N8+fIxt7W1tTkxMTHOs88+O/La0aNHHfPXzd69eyfxKAHMVKa92L59+8j3oVDIyc7Odp544omItsbn8znPPPOM/f7IkSP2fW+++ebIPjt37nRcLpdTW1s7yWcAYKa1M8amTZucT3/605d8D+0MgPFobGy0bcbu3bujvk564YUXHLfb7dTX14/s86tf/cpJSkpy+vv7p+AsAMykdsa46aabnG9+85uXfA/tTPSYaTLLmeRw//79toxFmNvttt/v3bt3So8NwMxlyuKY8hYlJSV21KWZ3mmY9saMdriwzTGluwoLC2lzAFyRiooK1dfXR7QrycnJttxouF0xz6ZUzvXXXz+yj9nf9HnMzBQAiMY///lPW6airKxMDzzwgJqbm0e20c4AGI/29nb7nJaWFvV1knm++uqrlZWVNbKPmVnb0dFhZ7kBwOXambDf/va3ysjI0FVXXaXvfe976unpGdlGOxM97zj2xQx09uxZO/Xqwl8Gw3x/7NixKTsuADOXuVFppm+aGwpmquePf/xj3XjjjXr33Xftjc3Y2Fh7U+HiNsdsA4DxCrcdY/VlwtvMs7nReSGv12svIGh7AETDlOYyZXKKi4t16tQpff/739ftt99uby54PB7aGQBRC4VC+ta3vqWPfOQj9qalEc11knkeq78T3gYAl2tnjC984QsqKiqyg1wPHjyo7373u3bdk+eee85up52JHqEJAGBczA2EsGuuucaGKOYv5T/84Q92gWYAAICZ5vOf//zI12YEpunjLFiwwM4+ueWWW6b02ADMLGbNATOg7MJ1HwFgMtqZC9daM/2ZnJwc248xA0JMvwbRozzXLGemY5mRUQ0NDRGvm++zs7On7LgAzB5mtNSiRYtUXl5u2xVTFrCtrS1iH9ocAFcq3HZcri9jnhsbGyO2Dw0NqaWlhbYHwBUxJUjNtZTp3xi0MwCi8fWvf107duzQrl27lJ+fP/J6NNdJ5nms/k54GwBcrp0ZixnkalzYn6GdiQ6hySxnpn+uWLFCL7/8csQULvP9mjVrpvTYAMwOXV1ddtSCGcFg2puYmJiINsdMBTVrntDmALgSplSO6cBf2K6YmrtmDYFwu2KezU0IUy887JVXXrF9nvCFAgCMR01NjV3TxPRvDNoZAJfjOI69kbl9+3bbNpj+y4WiuU4yz4cOHYoIaF966SUlJSVp6dKlk3g2AGZiOzOWAwcO2OcL+zO0M9GhPNcc8PDDD2vTpk120cKVK1fqZz/7mbq7u3X//fdP9aEBmIG+853v6M4777Qluerq6rR161Y7o+2ee+6xizNv3rzZtjumxrf5i/cb3/iG/Yt59erVU33oAKZx+Boe/RRe/N108E07YhZINfV6f/rTn2rhwoX24uCxxx6zdXo3bNhg91+yZIldj2DLli168skn7UKr5oLClNsx+wHA5doZ8zBrtG3cuNGGtGYwyKOPPqrS0lK7OKpBOwPg/Url/O53v9Of//xnJSYmjqwNYK6PTAnjaK6T1q9fb29afvGLX9Tjjz9uP+MHP/iB/WyfzzfFZwhgurczpv9itn/iE59Qenq6XdPkoYce0tq1a23ZUYN2ZhwczAm/+MUvnMLCQic2NtZZuXKls2/fvqk+JAAz1Oc+9zknJyfHtid5eXn2+/Ly8pHtvb29zte+9jUnNTXV8fv9zl133eWcOXNmSo8ZwPS2a9cux3RLL35s2rTJbg+FQs5jjz3mZGVlOT6fz7nllluc48ePR3xGc3Ozc8899ziBQMBJSkpy7r//fqezs3OKzgjATGpnenp6nPXr1zuZmZlOTEyMU1RU5GzZssWpr6+P+AzaGQCXMlb7Yh5PPfXUuK6TTp8+7dx+++1OfHy8k5GR4Xz72992BgcHp+CMAMy0dqaqqspZu3atk5aWZq+ZSktLnUceecRpb2+P+Bzamei4zH/GE7IAAAAAAAAAAADMRqxpAgAAAAAAAAAAQGgCAAAAAAAAAAAwjNAEAAAAAAAAAACA0AQAAAAAAAAAAGAYoQkAAAAAAAAAAAChCQAAAAAAAAAAwDBCEwAAAAAAAAAAAEITAAAAAAAAAACAYYQmAAAAAAAAAAAAhCYAAAAAAAAAAADDCE0AAAAAAAAAAAAITQAAAAAAAAAAAGT9Px2G7XxMpSLrAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -470,45 +612,56 @@ "name": "stdout", "output_type": "stream", "text": [ - "Index of the 20-th query best matches : [[195 26]]\n" + "match 1 : 190 with distance 13.0\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABk0AAAHDCAYAAACJcV3vAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4G9eVNuCPAEiAYO+9SBRFUb1axZYtWYol996rnMSpm+wm2c0mu2nb/82u0zY9jnvvVZYtybJsy1bvlWLvvYIkKv/n3BEGgFhEyez8Xj94yBmAwAxkgnfuueecoJ6enh4QERERERERERERERFNcobRPgAiIiIiIiIiIiIiIqKxgEETIiIiIiIiIiIiIiIiBk2IiIiIiIiIiIiIiIg0DJoQERERERERERERERExaEJERERERERERERERKRh0ISIiIiIiIiIiIiIiIhBEyIiIiIiIiIiIiIiIg2DJkRERERERERERERERAyaEBERERERERERERERaRg0ISIiIiIi5ac//SmCgoLQ0NAw2ocy7m3btk29ly+99NJoHwoREREREZ0HBk2IiIiIiGhU/cd//Adee+01jDW/+93v8Nhjj43a69vtdnz/+99HamoqQkNDsXTpUrz//vujdjxERERERJMBgyZERERERDSqGDTp2wMPPICHH34Yd999N371q1/BaDTiqquuwscffzxqx0RERERENNGZRvsAiIiIiIiIKNCuXbvw3HPP4ec//zm+973vqX333XcfZs+ejX/4h3/Ajh07RvsQiYiIiIgmJGaaEBERERFRAOlpcttttyEyMhJxcXH49re/je7u7l6Pe+qpp7Bo0SJVOio2NhZ33HEHysvLAx5TUFCAm2++GcnJybBYLEhPT1ePa21tVfdL3w+bzYbHH39cfS83ybA4V6+QF154AT/72c+QlpaGiIgI3HLLLeo5paTV3/7t3yIxMRHh4eHYsGGD2ufv0UcfxeWXX64eYzabMXPmTPz+978PeEx2djaOHj2KDz/8UD+uVatW6fe3tLTg7/7u79Tj5DnkvCSocXY/GI/Hg3//939X98v5r1mzBqdPnz7nv4H0QpHMkoceekjfJz//xS9+EZ9++mmv95mIiIiIiIYGM02IiIiIiCiABEwkGPCf//mf+Oyzz/DrX/8azc3NeOKJJ/THSCDgRz/6kXrsl770JdTX1+M3v/kNLr30Uuzfvx/R0dFwOBxYt26dClr8zd/8jQqcVFZW4q233lJBh6ioKDz55JPq5y+66CI9QJCTk3POY5Rjk2DNP/7jP6oghLx2cHAwDAaDOlZpai/HLuW1pkyZgh//+Mf6z0qAZNasWbjuuutgMpnw5ptv4utf/7oKcHzjG99Qj/nlL3+pjlkCL//0T/+k9iUlJamvHR0dWLlyJY4fP44HH3wQCxcuVMGSN954AxUVFYiPj9df67/+67/UMUm2iAR1/vu//1uV29q5c+eA5yfv4fTp01Xgyp+8T+LAgQPIyMgY1L8nERERERENXlBPT0/PeTyeiIiIiIgmKAk0SPaGBBNef/11fb8EEqS/x8GDBzF37lyUlpaqwMa//Mu/4Ic//KH+uCNHjmDBggXqOWS/TOzL9osvvqgyQfojgQm5fzD9QyTTZPXq1apM1b59+1SgRNx1112qnNX69evxzjvv6I9fsWIFqqqqUFJSou/r6upSARd/8nOSFVNYWKjvk9eQAIi8pr+f/OQn6txfeeUV3HjjjQH3yeWVZKV4jzM/P1+9DyEhIep+CUBJ5s7hw4fV8/dH7pMgzZYtWwL2Hzt2TAV8/vCHP+ArX/nKOd8vIiIiIiI6PyzPRUREREREAbzZFl6ScSG8wQgJFkhWhmSZSIaF9yaZJLm5ufjggw/U4ySTRGzatAmdnZ1DeoxSCssbMBFLly5VAQvJ/PAn+6WUlcvl0vf5B0wk+0OO/bLLLkNRUZFeNmwgL7/8MubNm9crYCIkYOJPyoN5AyZCMlSEvNZAJLAjZb/OJiW6vPcTEREREdHQY9CEiIiIiIgCSODDn2SVSIkpb7aGZGRIgEIel5CQEHCTklV1dXXqcVIW6zvf+Q7+8pe/qIwNKdX129/+dlCBiXPJzMwM2PYGaM4uWSX7JcDj/5qffPIJ1q5di7CwMFVGTI7bmzEzmGOTbJSBskQGOs6YmBj1VUqIDUQCO2f3YhHe3jJnZ8oQEREREdHQYE8TIiIiIiIa0NnZExKEkH0bN25Uzcr7Krfl9b//+7+qsbuU+3rvvffwrW99S++VIs3RL1RfrzvQfm9VYgl4SDP2GTNm4OGHH1ZBFskEkSyaX/ziF+rchtK5jqc/KSkpqv/L2aqrq9XX1NTUITpCIiIiIiLyx6AJEREREREFkEwSyRLxkkbrEkyQ5vDezBOZ9JfHSLPyc5kzZ466/fM//zN27NiBiy++WPXk+Ld/+7c+gzLDSZq+SwaHNG33zwLxlhTz199xyflL/5bhNH/+fHVMbW1tAc3gvQ3k5X4iIiIiIhp6LM9FREREREQBpISWv9/85jfq65VXXqm+3nTTTSqDQhq+n50xIduNjY3qe5nw9+8lIiR4IqW+/EtPSZmslpYWjARv5of/cUtJrkcffbTXY/s7rptvvhkHDx7Eq6++et4ZJIN1yy23wO12409/+pO+T94zOU7p03J2GTIiIiIiIhoazDQhIiIiIqIAxcXFuO6667B+/Xp8+umneOqpp3DXXXep5ufeTAvJEvnBD36g+pzccMMNiIiIUD8ngYSHHnoI3/ve97B161Z885vfxK233qoyUiSA8uSTT6rAhQQevBYtWoTNmzercllSdkoyWCQwMByuuOIKVY7r2muvxVe+8hV0dHTgz3/+MxITE/XSV/7H9fvf/16d67Rp09RjLr/8cvz93/89XnrpJXVe0nheHtfU1KSyVySDxvs+fR5y/vL88h5Ljxh5/ccff1y934888sjnfn4iIiIiIuobgyZERERERBTg+eefx49//GP84z/+I0wmkwp8/PznPw94jNwngRDpAyIZJ0KyHyQoIQEXIcEDaf4uJbGkP4fValX7pBfKsmXL9OeSYIkEWqR8V1dXF+6///5hC5rk5eWpgIe8lgR2kpOT8bWvfU01g5cAiD95D0pLS/Hf//3faG9vx2WXXaaCJtKz5aOPPsJPfvITFSSSYIYEVKRXyufp03K2J554Aj/60Y9UoEkax8+dOxdvvfUWLr300iF7DSIiIiIiChTUM1T540REREREREREREREROMYe5oQERERERERERERERExaEJERERERERERERERKRh0ISIiIiIiIiIiIiIiIhBEyIiIiIiIiIiIiIiIg2DJkRERERERERERERERAyaEBERERERERERERERaUyYYDweD6qqqhAREYGgoKDRPhwiIiIiIiIiIiIiIhpFPT09aG9vR2pqKgwGw+QKmkjAJCMjY7QPg4iIiIiIiIiIiIiIxpDy8nKkp6dPrqCJZJh4Tz4yMnK0D4eIiIiIiIiIiIiIiEZRW1ubSrbwxg8mVdDEW5JLAiYMmhARERERERERERERkRhMSw82giciIiIiIiIiIiIiImLQhIiIiIiIiIiIiIiISMOgCRERERERERERERER0UTsaUJEREREREREREREgdxuN5xO52gfBtGwCQkJgcHw+fNEGDQhIiIiIiIiIiIimqB6enpQU1ODlpaW0T4UomElAZMpU6ao4MnnwaAJERERERERERER0QTlDZgkJibCarUiKChotA+JaMh5PB5UVVWhuroamZmZn+v/cwZNiIiIiIiIiIiIiCZoSS5vwCQuLm60D4doWCUkJKjAicvlQnBw8AU/DxvBExEREREREREREU1A3h4mkmFCNNGFnCnLJcHCz4NBEyIiIiIiIiIiIqIJjCW5aDIIGqL/zxk0ISIiIiIiIiIiIiIiYtCEiIiIiIiIiIiIiMaaVatW4W//9m9H+zDGlJKSEpVNceDAgfP6OfmZ1157DaMtOzsbv/zlLzHWsRE8ERERERERERENvdZWYO9e7WtCArBgARAWNtpHRTQpPXX4KXR6OjGWRJmjcP/8+0ft9bdt24bVq1ejubkZ0dHRk+71h9Njjz2mAl4tLS0B+3fv3o2wcfB3gEETIiIiIiIiIiIaOj09wK5dwObN0oXat/+TT4D164G5c2XZ82geIdGk02pvRburfbQPgya5BAmgjwMsz0VEREREREREREOjuRl4/HFg48bAgIno6gJefRV45hkt+4SI6BxcLhe++c1vIioqCvHx8fjRj36EHgnMnmG32/G9730PaWlpKoNh6dKlKoPDq7S0FNdeey1iYmLU/bNmzcI777yjylxJloeQ+6R81QMPPNBv1oRkgrz11lvIy8uD1WrFLbfcgs7OTjz++OOq5JQ8x7e+9S243W7955588kksXrwYERERSE5Oxl133YW6ujp130Cv7/F48N///d+YNm0azGYzMjMz8e///u8Bx1RUVKR+Xo5l3rx5+PTTT8/rfT18+DAuv/xyhIaGIi4uDg899BA6OjoCHvPXv/5VvV9yDCkpKerfwevhhx/GnDlz1HuakZGBr3/96/rPy/u/YcMGtLa2qvOS209/+tM+y3OVlZXh+uuvR3h4OCIjI3HbbbehtrZWv19+bv78+eq9lJ+V/w/uuOMOtLcPbwCQQRMiIiIiIiIiIvp8ZBJTSnH9/vcyGzjwYwsKgN/9Tnu83+QnEdHZJChhMpmwa9cu/OpXv1KT9X/5y1/0+2UiXwIGzz33HA4dOoRbb70V69evR4F8zgD4xje+oQIr27dvV4GC//f//p+aoJeJ/pdfflk95uTJk6iurlbP3x8JkPz6179Wr/Puu++qwMCNN96oAjByk0n9P/7xj3jppZf0n3E6nfjXf/1XHDx4UPUTkUCJNzAy0Ov/4Ac/wH/913+pANGxY8fwzDPPICkpKeB4/umf/kkFi6S3yfTp03HnnXeqANNg2Gw2rFu3TgVrpFzWiy++iM2bNwcERX7/+9+r906CKfK+vfHGGyqI42UwGNT7cfToUfVvtHXrVvzDP/yDum/FihUqMCJBEDkvucmxnk2CQxIwaWpqwocffoj3339fBYNuv/32gMcVFhaq90+CVnKTx8r7M5xYnouIiIiIiIiIiHxk4k0mHE+cAOrrtW1vcEO+em/+27K6+nxW/trtwJtvAkePAtdeK0uth+dciGhck+DCL37xC5WtIFkeMoEv21/+8pdVlsKjjz6qvqampqrHy+S8BDVk/3/8x3+o+26++WaVFSGmTp2qP3dsbKz6mpiYeM6eIhIAkUBCTk6O2pZMEwmUSFaEBGFmzpypMj8++OADfdL/wQcf1H9eXleCDEuWLFEZGfIzfb2+ZFBI8OT//u//cP/9Wr8Xec1LLrkk4HjkPK+++mr1/c9+9jOVEXL69GnMmDHjnO+pBGG6u7vxxBNP6P1F5PUkI0eCSklJSfi3f/s3fPe738W3v/1t/efk2L2kX4mXZIDI47/61a/id7/7HUJCQlRGiPybSYZNf7Zs2aL+PYuLi9W/s5BjknORYI739SS4Itk+krEj7r33XvWzZ2ffDCUGTYiIiIiIiIiIJjuPBygulpotwPHjWlBjJBQVaVkna9cCF13EXidEFGDZsmVq8t1r+fLl+N///V9VBksm3OWrZFr4k8wSKTklpGTW1772Nbz33ntYu3atCqDMlb5K50nKYHkDJkICCxIskOCH/z5v+S2xd+9eVV5KMk2k2btM/gsJ5EiQpS/Hjx9Xx79mzZoBj8f/HKR0lpDXHkzQRF5DSnr5N2S/+OKL1fFJ1ktQUBCqqqoGPAbJTPnP//xPnDhxAm1tbSrLRQIxkpEj79VgyHFIsMQbMBHyvkgASe7zBk3kffYGTLzn6/8+DwcGTYiIiIiIiIiIJivpM/Lxx8CBA1KzZXSOQXqfSA8UyTq5/nrgzGQnEdFAJGPDaDSq4IR89ecNZnzpS19SpajefvttFTiRiX4JuvzN3/zNeb1WcHBwwLYEFvra5w2MeEtgye3pp59WDdAlWCLbDoej39eRHiPnezzeoJL3tT+v0HMcg5QZu+aaa1QwSrI9JGPm448/xhe/+EV1boMNmgzWQO/zcGFPEyIiIiIiIiKiycjbW+STT0YvYOKvrEzrifLRR9qx+d8kI2UsHCMRjaidO3cGbH/22WfIzc1VQZIFCxaoTBPJOpB+G/43/7JQkskgpaNeeeUVVXLqz3/+s9ovZaSEf/P2oSIZGI2Njar3xsqVK1UGyNnZEX29vpybBC2k/NRwyc/PV9kvEtjx+uSTT1SfEimBFhERobI7+jsGCVJJ0EKCT5IJJJk+kply9rmd632V4ygvL1c3L+nh0tLS0m8mzkhhpgkRERERERER0WTS3Q1s2gTs3z/8r7VoEbByJfDBB8DBg+d+vPRP6W+yUFaSS7mWyy+XGbkhP1QiGnskO+M73/kOvvKVr2Dfvn34zW9+oybrhUzW33333bjvvvvUPgmi1NfXq8l+KV8lPT+k98aVV16pHislsqTniEzWi6ysLJW1IM3Fr7rqKhWs8C+39XlkZmaqwIEcrwRsjhw5oprC++vv9b///e+rpury81I2S85JGq5LJsdQkPfsJz/5ieqZIuXD5Pkl80Z6hXgbzv/0pz9Vxy39VuT9k14rEliRx0lQSnq8yLlJHxTZ/4c//CHgNSToIplA8m8hpcAk++TsDBQplya9ZuR4pHG8lPj6+te/jssuuwyLFy/GaGLQhIiIiIiIiIhospCMjddfB1pbh/d1IiOB664Dpk3Ttm+8EZg9W2v+3tZ2Yc8pq5Y/+0xrUC/N4/36CxDRwKLMUb3KHI2FYzoXCYh0dXXhoosuUtkl0pj8oYce0u+Xhu/epuWVlZWIj49X2Q9SPkpItsM3vvENVFRUIDIyEuvXr1eN5EVaWppqov6P//iP2LBhg3otaTg+FKQclzzXD3/4Q9UAfuHChfif//kfXCefi2f09/o/+tGPYDKZ8OMf/1hlcEgPDwlgDBUJXmzatEm9l9I3RLal18vDDz+sP+b+++9XPUrkvZKm8/K+3nLLLeo+CYLIY6Vp/A9+8ANceumlquyZHL/XihUr1DHffvvtKuNGgjQSiPEnAaPXX39dBWLkOSTTRf59JBgz2oJ6enp6MIFI45moqCi0traqXwQiIiIiIiIioklNsjdOn9aavEvfkOEkGSDz52vZIBZL31ku778v9V0+/2vNmwesWyczgJ//uYgmKJn4Li4uxpQpU2Dp63eSaJL8/952HnEDZpoQERFNVNIYraVFa6yZmCjLOEb7iIiIiIhopEhWRmGhFiSRzAy7/fx+XkphSZbInDlAero2lvSOJ73f97VtNg887pRJLMkSmTULeOMNbbx6oaTclwSDpkwJ3G8wANLPQI49IuLCn5+IiCYlBk2IiIgm2sVxSYl0T9Mujr2N3WJitNV+UhKBwRMiIiKiibtoprgYOHJEGwt2dZ3/c2RkAAsWSIdeIDQUw2bqVODrX9f6l5zV6Pm8yHhXzvdshw4BO3YAd90FpKZ+rkMlIqLJhUETIiKi8UIqajY0AFVVgMPR+37Z39/FcXMz8PLL2krDq6/mijsiIiKiiRQoKS3VxnmycKaz88LLakmpq4ULR26RjbzmlVcCM2dqfVaamob2+Ts6gGefBaQXQFjY0D43ERFNWAyaEBHRpOXp8cDtcavmYyaDaewGSmprtQtguTU06Md9tkGdhwRVJBNl/XqtBjSzToiIiIjGL8kqefttbWHN5yHlra6/HoiOxqjIygK+9jUtO6S8XOvB4q+xEaiuvrDnbm/XFg/dc49WtouIiOgcxugMERER0fDpdHZiR/kOHKw5iHZHOwxBBuTG5mJ5xnJkR2ePjUCJXBSeCZR4GhvQ3NWMxq5GNHU1odvV3e+PBhuCEW2JRrw1HrGhsQg2BvfdfPO117QyBrKaMCFheM+HiIiIiIa+JOvWrVr5KRk7XqjgYOALXwCWLBn9xTRyLIsWabezyTnu2aM1kO8r4/pcioqA7duBVauG5FCJiGhiY9CEiIgmjZ6eHuyr3ofNRZvR5fKVsJLMjZONJ9VtbtJcXJFzBcJDwgN+ToIVdbY6lc2RGJaoAhLn+9oS9Ki31cPu7qMJZ08PQqrqYC4oguVUEYxt7SqbpLm7Wb22HONgOD1O1HfWq5uIMkchzhoHs9Hc67Ehh5sReeokjEnJWs1quUnDzNG+YCYiIiKi/klWiWROXGjmhTdAIWM/CSLEnt+4dlTI+FQCO9OnA2+9BRQUnP9zfPih1q8lJ2c4jpCIiCYQBk2IiGhSqGqvwtun3kZle+WAjztUewgnG07i8imXq+DIqcZTKpgigQt/ksmRF5eHvPg8pEemq2yVs0nQo7S1VD2fPEdLd0vA/UGeHkTWtSKhtB4JpQ0wd/YRTPmcWu2t6tYfKeeV3paOzLpaGGT1nZRk8AZQ5KKSARQiIiKisUGyLfbuBTZtApzO8/95oxHIzQVmzQLy8rR+IuNNVJTW2F0ypt97Tyu9dT7v3yuvAF/5ChAZOZxHSURE41xQjyx9nUDa2toQFRWF1tZWRPKPIBHRpCZ/4ho6G7Crchf2VO1BDwL/5DV22HG4shUJEWbMTIlUWSQXwhpsRUZkBowGo77P6XairLWsV1aJBEqialuQUFKPhLIGhHQNvryAp6cHbV1OtHY54fb0/vMtxx9hMSHaGgzTedZrDjWFYlrsNJWVogsP9wVQpM60XGgTERER0ciTklSvvgocP35+PyfjN8ms8AZKLBZMqBJlVVVAV1dgYOSdd4DW/hcNITMTeOAB9jehSaO7uxvFxcWYMmUKLBPpM4DoPP9/P5+4ATNNiIhoQvFmd0iGiNzOzhARDpcHnxU1Yn95iwqsiEMVrbh8RiKSIi0X1CNFMkkGYnC5kXm4DKknqxDSPfiVgU63By2dTjR3OvoNlvirbQN6goLQlh6L7rwUhE1PxpyTlUgqrhvw56Rc2eG6wyqDRoInFpMF6OgAdu/WbqGh2oW2BFCmTtVKOhARERHR8JOm6M8+qzV9HwwJBkhj99mzgRkztHHcRCQBIcmMPltYGPDoo1pQpS9lZcCWLVovFyIioj4waEJERBOC3WXHx2Ufq6ySPnuGnMk8OVXbge0F9bDZXQH31bZ147ndZZibFo3lOXGwBBv17I6a1m4U1dtQ2mRDEIKQHWfF1IRwJEWaB5WdYuroxpQ39sBV3YrjnU64zhH4ODtocrbaMAvKosPgPuu1PYYgNFgtKIoJR3ewCZAkliO1sIZYkBsZhTWnKhFuPxOwCQKiLMHIiLUixORbZSeZORJoSotIQ0JYAiJCIrRzlBV8Bw5oNynlIKUdJIAiX829+6UQERER0RCQif8XXxxcwMRk0nqULFigBQ4mq/R04IorgI0b+3/MJ59oWdXLl4/kkRER0TjB8lxERDTuVbRV4Lkjz6HD0dHvYxo67PjwVD3Kmzr1fUZDEOalR6Ok0YYmm69MljXEiIWZMWi0OVDSYEOXs+9VatYQE6bGh2FKQhjCzb3XIUiGSG15E5Z9cASRHd2f6xyrw0NRnByjskfis+MQY+1dg7rT4UJxgw1FDTZVxutsFqcLlxfVYG5tc8B7kB4TiuRIS58BoBBjiGp6LxkoMZaYgBJkimScyMW5XHCyxAERERHR0JHpGinJdejQuR+bmAjcfDOQlDQSRzY+3jsJNh07NvDj1q4FLrlkpI6KaFSwPBdNJt1DVJ6LQRMiIhrXpATXi0dfhNMTGCTweHpQ3SYZIh0qkOAfFBFT4sOwanoioqzBquTV/rJmfFbcBFcfmR06iSmcx1/NyG4H7jxcjJiz+paEGA3ac/nr43mro6woSY6FY0YyErLikBoVCoPh3Jkt8qddzrew3qbOvf2scmAxtm5MrW5GTl0LEm3deqBI3pMIS/9lt4xBRqRFpiErKqt38ETKP9x0EwMnRERERENBpmrefhvYs+fcj126VJv8Z/nUQN3dwJ/+BDT1Ltcb4PLLgUsvHamjIhpxDJqcP4fDgRCpsEDjDnuaEBHRpLe/ej/ePPUmPD2+QEddezf2lbao7JHuPjJEJCiwKi9BZYh4Mysk22JxdizykiPw4cl6nK73ZawEGw3IirWqbBIJKsj1q8rmqO9AWXMnXO6+oyhREjA5VIzobod6/qjQYJUdIk3a5Tn70hMEtCVEoT47AfWZ8QgLt2DWBbwvcl5x4WZ1u2hKbJ+P6XK48UlhAyoL6jC9sQ3TG9rQWdWGhHAzkqMsKohyduaJu8etmtvX2eowPW66ykDRHTmi1ZW+4QY5gAs4aiIiIiLSSc+NcwVMpASXjL2kXOrn1OXsUmVavWVupSSt+npmXNfXttlkVuNByUweSLerGy3dvl6C/s/T33NHW6IRbPycQSCZLLvtNuAvf9H6wvRn61ZZcQVcdhnHsTQ5/Md/9N/zZyTJ9eMPf3jOh9lsNnzta1/DK6+8goiICHzve9/Dm2++ifnz5+OXv/yl+ux49dVXcYN8Hp4RHR2t7nvggQfUdnl5Ob773e/ivffeg8FgwMqVK/GrX/0K2dnZ6n55XEtLC5YsWYLf/va3MJvN2LBhA1544QUckWtdP/K61157Lf71X/91yN8SGjsYNCEionFHLrg+KvsIW4u3BuwvrOvAO0eqezdLDwJSIkMxLTEcc9Oj+g1aSEDlmnmpKGvsREVLJ1KjQ1XpKtNZ2ROz06LUTfqNSLmviuaugNcMt9mx/rNSRJmNiIqORESoCYZ+LsAkUNKSFI2GrATUZ8XDYT13fxCz0Yzs6OyAC0l5T8rbytFmb8NghIYYsTY/CdWpkdh6og472+0qMya3sQ15DW3IsbUjRgI9YSGq94l/hotc+B6qPYSksCTVNF4/joMHtVra11zDC04iIiKiCyGBhQ8/BD7++NwBkw0bgPj4C3yZHrUQ5mTjSZW5XdlWiZ7zSak+wxBkQGZUJmbEz1A3CXbIgiZ5Pnnukw0nUd9Zf97PK4GT9Mh0rJ+2XmU6X7DkZODaa7UyZwPZtk0LnKxezXEsTXwSMBkLQZNB+vu//3t8+OGHeP3115GYmIgf/vCH2LdvnwpeDIbT6cS6deuwfPlyfPTRRzCZTPi3f/s3rF+/HocOHdIzSrZs2aKyD95//321LRkJP/vZz7B7924VTBH79+9XPyMBHJrYGDQhIqJxRS7CNhZsxO6q3QH7D1W04IOTdeo6U0hzc5UhEh+O7Hir6j/S10Xe/OT5KGouUqvfvDLjrOp2LhJ8kYbwcjO4PYipbEJCaT3iyxthCgsG5NaPzigrymemoyEzHs7Qc6f9ygVoXlwe8uLz+i6Pdebit6ajRr/4rWqvOufzpkSF4s6LMnG4olVlnuy1hGBvWjysDpcKoEgWytT6FsRbTOo9MZt8r1trq1VN46VhvJTukmMybi2Hva0E4dfdgsTwJPUeExEREdEgdHYCr70GnDp17gyKe+9VARMZw55uOq0CIJIt4p+t0d/3kj1c0lISMP79PGNzeS65vXv6XSSGJao+g51OXx/BCyEBHFkQ9Jd9f1GBk6XpSy/8yebNQ0dXK7pffREutxOhplBEmCN6j1O3b9cmkqXUGQMnRGNCR0cHHnnkETz11FNYs2aN2vf4448jPT190M/x/PPPw+Px4C9/+Yv+Wfjoo4+qbJRt27bhiiuuUPvCwsLUY/zLckmwRR7rDZrI95dddhmmTp06xGdKYw2DJkRENG64PC68fOxlHG84HhAo+KyoCTuLG/V9M5IjVBaFqZ+MEiGBh6unX60u7JxuJ7aXbseO8h3qIrIvJoMJU2OmqteTIIt6XE8P4sobkVRcp74aXQOv1pELMylhEJ6Vi47bbkSGNdR3Hv2s7JNyBwnWBPVzfTVq9yf3p0SkqNuq7FVot7erwIbNYQt4nFwgf1L+CRxurdeKZMHMy4jG9KQInKprR3G9DeXNnTiYEqtuZpcbOU3tmNnUjlVwIC0sWD8W6SXTKzjzfiHKq3ah4eIFWJS2GAtTFiI8JHzAYyciIiKa1EpLgZdfloLrAz7MYzKh5trVON55FKd2v6rGemOJBG+GkoyRN57eqIIwMr4913i4r8VEku1S3V2N5Fwn8j45gaAebWwv4+t4a7z6KtvKJ59oGScyicrACdGoKywsVP1FlkrvpjNiY2ORl5c36Oc4ePAgTp8+rUp7nd37Qp7fa86cOb36mHz5y1/Ggw8+iIcffliV9XrmmWfwi1/84nOdE40PDJoQEdG4ICvnnjvyHEpbSwOavUtpqSNVrfq+RVkxuGRafL8XVBmRGViWvgwzE2bqj5HyUmumrsG85HnYU7UHR+qOwO1xIywkTAVXpH+HBEy8ZajsLjtKT+6C7eVn0V1aqNd+7ousZIsJjUFcaJz6akhL11YGhvoCJsNFVtDJrS8LUhZg0+lNOFp/1HesIUbMS49WN4fLg7KmTtW7pajBhmOJ0er2mtuD5XY7vtzQhMgBmtJnHC2HtbUTB/JLsC3tA+QnzMSStCXq/RzsxS4RERHRhCMT8nKT9Gjv7bPPtPJQfj0/zibjz3JbFT5YnoLK+o1DekhNNoca85U2daLb4ValbfW8FL9hm/rW7z5LsAHZcWGYmhCmytz2WQKs3Y6iehtq27rh6ek5q5eJ33P7bciCntzEcNVv0Pv4D0s/hM1pw1W5V6lsGSn5VdBYoIJGUjr27NeV/WeXra2ZloyeoCDM+Pi4WowlAR65eXuoxFnjVBDF8umn2r/R+vX6gclzSSa3BGIkk6YvskgoJTxFXTv0NwYnoqEnnxP+PZO8Jbn8s1UWLVqEp59+utfPJiQk6N9LpsnZpHeJ9DeRnikSUJHnveWWW4b8HGjsYdCEiIjGPLlIeerQUwEr16SfyDuHq1VTdq9LpydgYWZMwM8GG4JVwEPKWuXG5g54ASMXSZL+L7d+ud0wf/wppn/0EeBJBDISVVkC/2b0/pklAWn/kkJ8zz1aSYVRFmmOxK2zbsXCpoV4p+AdNHb5MnW85c2kB4zc7C43Pi5owOHKVriMBnxkDUVpVAz+rqIGydZgGIOCIPET6Xvi37slrqJR3brDLajOLcEzufsQnZCBa6Zfo2pfExEREU0aR48CO3YAVVUDBkfOJhOB1R3VON1ShEOX5qEhse9xZKfDhU6HWwUitOGYt7m6LzjhK9EFtHY51ThaFse0dGrZxxdCnuODk0BihAU5CWGYEh+GDrtLPa9kL9scAzRgH0BhfYcKuKzM9S2GksVNcj0g2dTN3c0X9Ly1OUnoMQQhf/txBJ35d5BsFnk+uUmps7DgMMS/WwxLSwVOLcvFyabBlb31lxqRqoInUl43OTyZi4aILlBOTg6Cg4Oxc+dOZGZq15DNzc04deqUKpPlDXxUV1frP1NQUIBOKXd4xsKFC1WJLumHIj1Lzof0P7n//vtVWS4Jmtxxxx0IHYEFkDT6GDQhIqIxrd5WjycPPRmwUqzL4cbrBytR06qtKpPJ+nUzk9VqNH8rM1fi0qxLAxqmfy6VlcDrrwN1dQMHR/oiA7y77wbM5270PpJyYnPw9SVfx+G6wzhYc1Bl8pwdAJI+JmvykzAjORKbj9eiudOBsigrftmTiFuPlMDk8V34y/VgsMGAuPAQJEVaYAk2wtLRjSn7i9XNFbIbR81vwp4+F7kZ8wCrFUhJAaSJ3xh7b4iIiIiGxP792hjyPElJKikt1eJoxYmLZ6AhKyEgmFIvWRwSnGjQMjmGgtEQpBWNlSQY7ZX07YHUtXer26dFgQtxPo99Zc3ocrpV2V05LlHWWnZezyHvU6PKpJH3qUMFllKjQ7FyThauOFgCUx+xDMlosbXagE2lqC5KQdWK6eddqkuCLHLbVrJNLVaSAIrcpkRPGbprE6ILZezdH3OsHkd4eDi++MUvqmbwcXFxKvDxT//0T6pUltfll1+O//u//1ON3t1uN77//e+rQIvX3XffjZ///Oe4/vrr8S//8i+qH0ppaalq5v4P//AP5+yP8qUvfQn5+fnq+0+khB9NCgyaEBHRiJGLFulHsrtyt0pt9/bUkJVX/TWrlH4j/n1GZFXca/sr1cS9NyPi2rmpyIj1NW6Xn5fUfSkHNQQHra0IPHgQ2L37vFYG6nJzAUnhHaNBAWngPj95vrpJeYPCpkJV/1lKHnS5uvTHpcWE4u6lmdhd0oTdpc0ojQ7HyzOzcMvRUhi9K/V6AIfbg+rWbnWLCg1WwZMYq9YHxeRwqVvl8Z2w1DQgIyoDOHAA+Phj4I47gLS0UXwniIiIiIZYUxPwzjvn9SOygKW8tVwtZukKNeH4FfPQkqJlU0twRLJ/JVBis19YFoc/GZ+lRlkwNSEcU+PDEBMWWM//bN4SOPJFghGSESI3CeCcTQIdmbFWTI0PR1a8FWaTNsl59nDau+3t8Xe6rgMfnKxT+49Xt6Hb6cZVc1IQ3Ee/QsmSkUDI2ewuD0obtUyati5fmR7v9YR0SNweFo57i2sQH2pCjDVEXVecLaWgGga3R2WcuENMKqNHfr4v0aEhqtzt2WTxl2TJyM0/C16CKOfd96+9HTh+HCgvB/xW0uvkGiomBpAm1XIbo9cfNMp++EOMJxLwkBJbUipL+pJ897vfRWurr0T3//7v/2LDhg1YuXIlUlNT8atf/Qp79+7V77dardi+fbsKptx0001ob29HWlqaaiw/mMyT3NxcrFixAk1NTQG9VWhiC+o5u+jbONfW1oaoqCj1y3O+KVdERDR8qturVRPHvlaHBXl6EFnfhtiKRpWV0BUZiqoZaXCEBl60ycWYBEy8af7WEBNuWJCqygF4SRPHm/NvRn6CthLkgkgN47Iy7YJEbudoyNnvqhm5UFm4EJgxY1w2kpQLdglwbSneoge4vBo77DhS1aayftKqmrBmXyF6PB64PT1qReDZo4sQowHJURakRFkCyhPIxaKUL1BMJuCGG4DZs0fk/IiIiIiGlQyIHntMa/I+yMwSKT9V21GrFq40pcXi+CUz4AwNUf3mdhQ24EBFS59ZHwnhZiRGms8KQvgyRlRAQv9eMoODkBlnVT1JJDP482rrdqpsjormTlhMRkxJCFMBk74CHYNxuq4dG4/UqLGlkOyQ6+alqjFlVWvXmcwRm76QarAkkON9TpHT2IabjpWpBUBhISbEhAWrAIo1xKj3SZCxbaUnCK9kJOBTKbPb3yxaEJASGap6vEgAKjYs5JxludIi0vQASlJYUt+Pl8lhuSY5dkwLlgx2Gk+uR7KztQVc06dL9+zB/RxNONLwvLi4GFOmTIFlDJSKHgqrVq3C/Pnz8ctf/nLYX0s+ByRw8vWvfx3f+c53hv31aPj+fz+fuAGDJkRENKxs9g58cGIjDtQegscYBI+k1ksPDJcbMVXNiC9rUH0vQroDV2w5zcE4vGY22hKj1HZ5UyfePFSlLhiFXMzcsCBNZTJ4WUwW3Dn7TmRFZ53/gbpcQHGxdkFy4kTfK7fORVKAp00DZs7ULk4myIC0pbsFb596GwVNBf0+Jr60HvkfnYDR5Vb9ZiTAJSshZZWfv+RIC7LirAEXhDMTZiIxLNH3IKlNu2rVuAw0EREREel27gQ2Dty0XRameAMl7Y52tU+alRctmoryWelqPFTSYMOWE3Vo9xsvy+R/RoxVTdBLH5G+GrGPd2eP/+UcZZwpmSeDJf32JFtaghiSTRNmNqKiWQu6FNV3qP4rU5racfOx0oCSsxKciQg1oaPbFTCePRUXic05KWizDJyRIyJDg7XXjQ9Xx+AtMRbc5YDFZtczsL23qB4zMi2JyAhJQKIxEkaHU7smaWjAkEhNBdau1RZ20aTCoMmFq6+vx3PPPYcf/OAHKC8vR4xkctGYxqBJPxg0ISIaAzo60H54L6p2b0XNkc/Q4whM15c8kYYOO5xnUun958b19pRBgMtkwLblM1AZHYa9pc36qjCZeL9+flpA+rvUCr5nzt1I7OiRznDaCix5Yql1qjpg+n3vv6+jQwuUnDoF2HuXFRgUeb4VK4BLLwVCzn0BNR7JcOFI3RG8e/pdVee5L5b2LmQeLkNSUZ0KnsjPSPmC2jZ7wCrAtOjQXuXUZifORpw1zvdks2ZpWSd+tWiJiIiIxlVZrt//HnA6+83oLWouQmVbpV6WSnSHW3DssploS4hUGb0fnqrHiRpf1rPJGIRlU+IwLyP6grM4+iLjsfTIdNXvLsQYEliKy9vdxG/b7rKrpum1ttpzPrcxyIjs6GykRKQEPM/Zzy3vyb7qfXB6fO9ZXVs3Xt1fqbI9eh1zEJAaFYrESIve7N7/PslGl8U6/WXS+PeFcZ6owupdBQGBk76EBhsRGm5GTUIkjJ4eGN0eGOR83B5Uuntw3GJWgZWW0MCyWDEeN1Z32bG8rR3ZDuc5/+3kPYsJjUFcaJwaI3v/TYaElBeS4AnH2ZMGgyYXThb7xcfHq5Jfd91117C+Fg0NBk36waAJEdHocNbVoHb3B2g5uBOdxadUeYGzyZ+cJpsDpU2d+oqxc3EYDXhxdjbKo8LUtqyk869pbHS6MbUZuCEoH2GlVVoQZCQlJQHXX6+t3JoE5N/1k7JPcLD2IDocfb/XRocLScV1SDlZhYimDv2CVy5IvbJirUiJDtW3DUEGzEmcoy4OddLfRHrBcDUPERERTaCyXG6PGwdbT6LB0YIeNdsfBKfZhKb0OJTNyUStw40TNe04UtkaECyQzJI1+YmItg7NBLrZaNb7a+TG5iIsRBtvn4/mrmbVC+9EwwlVhlcCH8IabFXPKc+dE5MDs2lwvTXkOZ45/Izqs6e/RqdDBU6kN4n0HcmK08pfSWmxvnqIXKjgknpkv70fbW3dqtyYWoN1JsPFW7brXKXMJAtGjrcoyIg9oaGot4ZgRn0rpjZ3aMGVMyIsWh8V6fsnz3muMl6yQEwCKLGhsaoPyrkef07x8cBNN02aa5jJbiIGTYj6w6BJPxg0ISIaGWplVmc9SkoPoeud1xF09Kh+kdQXaVRZ0mhDe/f5N6x0GiRwkoWImWlYk5eA8I5uVdpLeqBMaQHmxOYj2DjCK6WkRrBkllxyifb9JCQXs7LKUFYDOt1OVV6iobNBNbms7qhWj4loaFcNNKNrWtBY1YLKWq3shDcAJk3i/QMnM+JnBJbqkvd28WLtvQ47/wt5IiIiorFUlktlU3QVY+MXsuH2m4CX0lsna9pVsEQysv1JoODS3ATMSo3sNVku4yfJ4pCeGNNipyHUFKqyN/yzQvr6XsbOYcFhn3/y3Y+MB5u6mlSARCb55dguhJQre/Lgk3q5Mu25PWi2ORAXbtbLXJ1vJk1mVKZaoCMZMv0t/omqacGcLYcRZHepTB9LsAGmC8zocXk8aOl0qmb1zZ3OgF4q/swmgxZACQtRwRQpKTYQyTqR4Inc5N9bejrKv6dkp5zXv6dky0tZ3JUrte9pwmLQhCaTbgZN+sagCRHR8JGLvILGArWarLD+FCIPHEf2gRJViqk/klEiDSHr2gMv/qQXiZTZknG9/ofIv2mld9eZP1MmSzC6cpMRXdeqagCLeGs88uPzYTSMcNBC6gCvXw8k+k3uU8C/WVV7FXZX7cYh6WXjF0zbXVCPQ6fqEOp0YWZ9C+6xdyM+PHDloZSGkFWPARfaUvbs4ouB5csnbAk0IiIimthluWRMdKz+GDavTENLSoyembDpaI1qan42GSfnJkbgsukJCDObAu6ToMTaqWtVsET6+k000lNPAieNXY0X/BzyHsm4Mi8uD7lxuSr7xX+sKtc0JxtO9ioxFtraibwdJxFd24qhIq8pi8eazwRQ+uvLIgGh6FAtqyXaGnzeARsJoEgwTAIqcu6Duk6SrBMpjTtjBpCczL6CExCDJjSZdDNo0jcGTYiIhp78qZCLivcK31Orx2QF1vTPChDWYuv7gsDuQqusqupyqgyTs1dSSSq9XAR8npVtqRGpKuV/KFfH9UteIyMDyM/XbtHRw/+aE8TRuqN46dhLAfWqPz7doHrUiLm1LfhWWyviQwMzhaLMUapBfK9SDpJtItk9CxcC5sGVeSAiIiIaERIoefJJoKys110yBjrecBz7000oWD5d7bO73HhlXyVq23ylqIQsLMpLjsD0pIhewRKxJHWJCpgMtuTVeGVz2PDy8ZdV75ezBRuCVf8Vb0BEMi78yTXCYDNdvCXGJIBS2lqqLfjp6UHy6Rrk7ClE8JnrGRmfyqIt6TEipc3OzsCWAE9jZyNa7ecOtkjZtRabBFAcaBsgE7+vMl52qxn12QloTIuFOyTw/w9zRzfiKptURn6MO0T1DQwNDnxvBhQVpQVPZs4EMjMZQJlgk8hZWVmwWn29JYkmoq6uLpSUlDBocjYGTYiIhlZNR41q/l1RW4DYyiYklNQjoawh4DF2GfR3OVWgpLW779RzSTNPjwlFcpSlz5TznqAgdEWGwtrauxfK2an1U2KmICMyY3gDJpKiPmWKFiSRC4fw8OF7rQluf/V+vH7ydX1bhh5bTtSpOt0ivc2Gv61uQI7VFPBvKqUHJJMooM+JlwRMFi3SGlnKxR0RERHRaLLZgGefBSoq+l2AVIIW7L5+iSrLJeWmpE9HVUuX3mB8fka0Cpb017NEJuyvy7tOlZmaLLzvXWFTIWxOG6It0ZgSPUWVJBuO8rxdzi5VvkuCJ63drSrwkL+/AunFDYN+PSlT5g2gyIIzd0//WfnC5faoaykpPyZf+7qWarGEoCIlBl0zUhE+LQHpsWEDNpMP8vQgorEdWdVduKo5DqE9vYNv5yT9Tq64AsjOPv+fpTHF4/GgoKAARqMRCQkJCAkJGZnFh0SjUUa+vh6dnZ3Izc1V/8/7Y9CEQRMiovNTWwtUVgJuN2AyqZvNY8en1btRenoP4sobEFXXJn801MM9nh7VHFHV6O3qP71cWEOMCIuwIDEhHJagIAR5POp5DO4eOENDYMqeirbsVLRmJqoLyMxtBxB7qkwvyyUkS0FSzaXpoWSYeFPrh5yc+7RpWqBk+nQg9DxWZdGAPqv4TAXfvDw9PXjvaC1O1LSp7aguB75aUo0lVmOvMgRSWiElPEX1OulVYkCCW7ISTsp2SeN4IiIiopHW2Ag89RTQrGXS+pMxbUFTgSoHdWDdPFWWSybJXz9QhfJmbbGQZBDcsii9V8lS/4Uky9OXY2XWSjUmplFQXAy88w5QX39ePyZZKxJ8kb5/EkjxNrjvCregMzoMrhBTwM1uMqLK7kJxhwMF7Q7UOd3oCtb2n13GKyHcrP7fkUx+c7ARFpMBoSHGXhlKqfYQ3FcYAUvdBZY6y8sD1q4FEhIu7OdpTHA4HKiurlaTyUQTWZAs2E1PR3gfC1/HTNBk+/bt+PnPf469e/eqX8xXX30VN9xww4A/s23bNnznO9/B0aNHkZGRgX/+53/GAw88MOjXZNCEiOg8dHUBb78NHDmiNuVPQnN3s8oukYH92Y3dZaK7prUblS1d/TYyNBmCVL8SU3w43Hkp6MhJQmtiFHrOmgiXnhXrp60PbPqtHQTw5pvAvn0Xdk4yiS6p5FJCS55Lbh5P/1+FZCrk5AC5ueyXMYw+LPkQH5R8oG/L/297Spuxo7BB/XOEuNy4trwON/Y4EX5WqQEhkwRJYUkqcBYW0kdTeAl0rVsHxMUN96kQERERaaQUl2SYyLj6LA63Q/Uwkf4clXmpqiyXjKHfPFiFkkab3uT9loXpSIzs3WcgKyoLc5LmYFbCrPMrsUTDQwasNTVaVpGsXpabLLqSrw4HUFAAnDypLUjr68fNZrROS8epDCsOBzejor1SL2HbnyabAyUNNhQ32tQ1mCxeOxcJoMj/UwkRviBckiUeGzqmwbJjl7oGknG4y6OVBRtUBo1cY0l53FWrmIE/jql/d5cLblksSTRBBQcH98owGXNBk40bN+KTTz7BokWLcNNNN50zaCL19WbPno2vfvWr+NKXvoQtW7bgb//2b/H2229jnUyCDAKDJkREg1RYCLz2GjxtrapesDRArLPVqYu7s8mfChmwlzV1wu4KDKSICLMJUdZgRIeGoCM/FeVzMmGLCeuzBq6k1K/LWYcZ8TP6TwmWP01vvQXs3Tu4c5GMEAl4yKS5ZIqwud2YJP8fvV/0PnaU7wjYL/9fbTxcrWo7i+TObnytuwtzbZ39/j+SFpGmAm+9Mk9kcCQluy69lP8fEBER0fCShUevvqpla59FAiUSMJGxdXe4BbuvWwyHyYh3DlejsL5DPUbKK920MA0pUb6ASERIBJamL1W9KGTcTOOQZBxJ8OT0aaC1VcvQkMxoydgI9gUo5BpMspBONZ5SJcH6ug7z53B51LhZAm6ljZ1o73YOmO1/y6IMxIb5FoRJ5vb07jBY3twIZ121vkBOGsdLubOEsEFkksgCs6uuAubPH9x7QUQ0hoyZoEnACwUFnTNo8v3vf18FSI6cWfEs7rjjDrS0tODdd30lPQbCoAkRUf9kIF5SXwDHu2/DsHuPGqh3OjsHXOHUYXehtNGG9rMaFMaHS0PCEC2rxGiALcqKgmW5quRAX+JC47A4dbG6DWo1k/x5ks/+nTv7XukkpZgkO2TqVCA9XdtHY54MOyTbZHvp9oD9ctH31qHqgEaocxwO3NbQjHyns1fJLm/ZrjmJc/r+/0kaxq9ZAyxYwAaWRERENPR27ADee6/PsU5ZaxmKW4rVtsMSjINXzENTZKgqTeoNmJiMQbhhfhrSY6wBAZMNCzYgNjR2BE+ExgLJ+ihtKVX9WySIIkG3c5GsE1nQZne51VcpmfxpUaOqDCDCzSbcujhDXa/5M7jcSDtRheSCaoT59ZOURUnTYqcNrtfFJZdoY22Os4loHBm3QZNLL70UCxcuxC9/+Ut936OPPqqyTeRk+mK329XN/+SlrBeDJkREPm6PGx8Ub8XxvZuQ88mxczZblzJc0q+kvt2O5s7AFU+RlmBkxVn1OrlukwGl87JRPjM9oASX1F6WFUsy8JbbBV/8Sf3g3bu1FXzeMlrSjFAagdO4dbz+OF478Rrsbt/fcJfHg+2n6nGowu9vfk8P8pvacVNjK/IMHpXV5H8hJyvj5ibNhdlk7r+B5U03AfHxw3o+RERENEnIFIoESz79tM8G4Mcbjqvm36IzMhSH185FaVAQ3jlUrXoBevtRXDcvFVlxYQFjGgmYSLN3mtxkmk4qAEjwRG4VbRXnLOPlJYGTl/dWoL5DG2NHhgbjtkUZCLf03QsntLUT8WUN6hZV34YEawLyE/JhCBrEgjTJnrnxxoDsGSKisWzcBk2mT5+ODRs24Ac/+IG+75133sHVV1+tGhWF9tGQ96c//Sl+9rOf9drPoAkRkcxCu+AoPIXt7/0Z7uPHYO70TVCfTf4cSFZJQ4cdjR0OuM6qlytNBjNjrYixBqvPdI/RgLopiSienw17uFYGKTk8GTkxOSpIkhGVwUaVNKDGzkY8f/R5dVHor7CuA/vKmlXdZl1PD6Y0d+CKpjasDe5R5Sy8LCYL5iXN67/Wt4wf7r5by0giIiIiulCyiOe114DDh3vd1W5vx9H6o3qj75akKBxePQsHGruw7WSd3g9QephcNTsF2fG+gEmoKRQPzH8ASeFJI3gyNF5IZYDCpkJVwkvKecn2gI93uPDS3gpVXllIdYBbF6fDKs3m3R4VUKlts6sFcpKFsjgrBgZDEEI67Ug5VY15hR2YGzNjcNdykv1/553sc0JE48KkCpow04SIqA/19cD27XCeOIbDZbvRZm8LuFs++iWFu8vhRqe6uVTApK9+JTI5nRptQVKkBc4wMxrT49StOTUGJnMo8uLykBObo4IlEeaIETxJmigl4944+QaO1PlKc3o1dthxpLINx2raYD/T70RM87jxtWAPplQ0wuD26JlNknESHhLef/3lO+7QyrkRERERnS+Zd3jhBa0v4Fmq26vVZLa3R4QsLDq0bDo2FzTgRI1vHJ4YYcbVc1JVL0D/xR/3zbsPqRGpI3QiNJ7J/2Py/1tNRw06HB0qSNfl6lL7pEelV0e3Cy/uLUfrmewmCY7IdV2jzaGuBf1NjQ/HlXOS9UVJIV0OzD/ZijXNMTAHDSJwItUAZIFSYuJQny4R0agFTcbUEuDk5GTU1vo+5IVsy0n0FTARZrNZ3YiI6Ey5AGme/s47cDi7caj2kBpMe8nKouIGmyoN4F3t5q80Ogz1VgvM6EFahBlZkWbEhVvQFROG/elxaI8LV3Vr5b+FKQuxesrq/iepiQZBgh0359+MjMgMbCrcpE82iLhwMy7LS8DF0+JQUNeBT043qODeaYMRPzGZcceVC7CgoBqpp6pU8OVAzQHMTJjZdyk4hwN4+mng1luBGTNG9iSJiIhofOru1pp6y+3jj4GqqoC7Zdwiq/+r2n37S+dkYm9eKt7a51vpL+amR+PS3PiAPm1moxl3z7mbARMaNCmblRaZpm7+ZCz81KGnVD8dIeW4blqYjhf3lKvxszd40peihg68uq8S181PVdUFHKEh2DU/AeXdwbi7LgnhRRUDH5SU03/kEeD227lAiYgmjDHXCF4ySw77pbreddddaGpqYiN4IqJzcbmAjRtV0MTusuNg7cGA1G2n24Pj1W0qs+RsToMB26aloG5GGmakRiI3MUKVDujL1JipWJezjuUDaMjV2+qxtXgrTjSc6LNuc1u3U13QefvsyEWdNFCd5nZh2q7TiK7RGmZKLXDJfOqzXJfBAFx/PTBv3vCfEBEREY2/bBJZgHT8ONDQAHR19f9Ql12V4/JmdPcEAaeWTcf26Ai8d6xWjb2FrN5fm5+EvOTAjOy40DjcNus2jqlpyEjWyeMHHkd1R7W+TwJ30uPE5nCpnu1xYWaV8SRVBOR6b+uJOv3/1biwENywIA0RFl8mlCyQe8i8ApEbt2rXmwMxGoFbbgHy84fvJImIJkJ5ro6ODpw+fVp9v2DBAjz88MNYvXo1YmNjkZmZqcpwVVZW4oknnlCPKS4uxuzZs/GNb3wDDz74ILZu3YpvfetbePvtt7Fu3bpBvSaDJkQ0KbW3q3IBnrJStHS3oKCxQKVpezlcHhyrblONAb3NJyMtJoSGmNCdFIXC1bMQkhyl9vcnMSwRa6euRW5sbkAjbqKhJpMP+6r3qdvZpeWklNxr+ytR127XJyKkkWpGTCgSShuQs6cQlo5ulQ2VHpmOrOisvusxX3UVcNFFI3VKRERENJbJtIgESmQBkoyrB9GXTRZ5OD3a6n3p9XdkZT5edwJ7S5v1x8WHSzmuFMSEhQT8/KyEWbgu7zqYTayaQUNLFs09duCxgJ6Bcg3Y1uVU/x/69wUUdW3deO1Apb6wLsJswo0L0xAb5vt/MyU8BV9OXA/D8y8ANtvAByDXidddJ5OAQ31qREQTJ2iybds2FSQ52/3334/HHnsMDzzwAEpKStTj/H/m7/7u73Ds2DGkp6fjRz/6kXrcYDFoQkSTTVfJaTQ99ju01JWjqasJ7p7ATBIZJEuGibdfSYjRgPzUSJjNJpTNzULp3Cz09BMskZIBsxJnqV4RWVFZDJbQiPKWvNhctDngws/ucuONA1V6o3gJ9q2anohZaZEwuT2Y8fEJJJbUq/uCDcFICEtAjCUGMaExgQGUm24C5s4d+RMjIiKisaOlBXj7baCgYFBjE2nIXdleqe9zhZiw69J8PFvXhfImX5a3ZJZIhon/JLUxyIh109ZhSeoSjqtp2Eh55r/u/6u6NhyMlk4HXt1fqZfwkmzu6+enIiXKl7V9Rc4VWBGeDzzzjNY/81xk4fPy5Rd+EkREEzloMhoYNCGiyaKruwO7Xv0/eDa/jyC3u+/HOLSAicPbLDvYiJS56ejMSULt1EQ4rOY+6+RKaaN5yfNUk/dgoy89m2g0dDm78MzhZ1DeVh7Qn+edwzWqBrNXQrgZl05PQGZ0KKZ/egopBb7SBF6R5kg9gBIZlQTD3/0dYLGM2LkQERHRGCHj508/BT78EHD23+/By+aw4Vj9MdicvpX2dqsZW5ZNx7NlbWjv1p7DEBSElbnxmJ8RHRAYibZE49aZt/bqRUE0HCRb+8WjLwaMnwdis7tUxkn9mWxua4gJ9y3PUgEU70Kkry/5OmKCQlWFAxQVnftJL70UkIXUDBAS0RjBoAmDJkQ0wbWdOIi9j/wbgvpZ5ePp6VEp2KfrOuD09KAgLhK16XGYt3YGQqKsAY+VC7iksCRVfis5PBnZ0dkICwkboTMhGhxpbvnC0RdU5omXx9ODrSfrcKSyNeCxUxPCsXJaHBYfq0DG0f4vFCXrxLX6MsRecT2mxU6DNTjwd4OIiIgmqM5O4KmnejV274tMmUhmSVFzkco08bJFWfHkjEy8X90Ot6dHn2iWclxpMYF91abHTceNM27su98a0TBxe9yqjJyMn10elxrrpkakqpuMg58+/DQaOhv6zeaenRqFtTN9PXdkYd09c+9BkMcDvPUWsH//uQ9iyRKtLC4DJ0Q0BjBowqAJEU1UbW1oe/MlHN36POxubRWQ/8r7li4nmm0O9VUu3uxGA96YkYG2rARVm1Yu5LwkSCKDXll5TzReLvxePfEqjtQdCdhf0dyJ7afq9T4nwmAIwpyUSFzZ2IqLCirVqs++OCzB+OyWZegxmVQPlMWpi1U5OpbMICIimsAZJn/9K1DpK7HVH5lolkln/4llUZ0YhYfjYlDQ7tD3pURZcPXcVISbfeNt6bG2KnsVLs26lGMLGpP9TySbu6KtQt/X0e3CE5+VqJ6Y4uaF6ciI9S0suin/JjVWVn2ANm8GPvnk3C+0cCFw7bUMnBDRqGPQhEETIppoXC7gs8/Q/t5bOFSxV2866S3BVdJo02vQejWGmvHyrCyEpEThhvlpemq1kNVFEjDhynoab2SF58aCjdhdtTtgvwxnjlW3YcfpRtgcroD7LqpuxI0V9YgKDVY3a4gxYOKiYGkuKvPTAlaD3jLzFoQYA5u2EhER0QSwfTuwdes5H9bt6sbBpuOot7jRFW5Bd0QouiIsOBxkxIvVHeg+M6ksFmXFYEVOvOqz5hVqClUTzLlxucN2KkRDkc0tZbwKmnw9fQ6Wt+CDk1o/wWhrCO5ZmgnTmd48cv34zYu+6buO/PhjLXhyLosWAddcw8AJEY0qBk0YNCGiieT0aWDjRrRWFuFQ7aGARu9Se1Z6lrjOlATwKkmIxNGLZyA9NRrTEsMDLuAyozJx15y7YDGxjwONTzJ02Vm5E+8Xvh/w+yBkVdze0ibsKW3WS2XISrj79xcipUMrNSANWaNDgxFtDUaUNRiuiFDsvGkpevwatWZFZanfE7Opd98fIiIiGqdqa4E//UnLNhlAs8GB1zO7UJIVqU/yOt0efFRQj0MVvrKgYSEmrJuVjMy4wIVIUvL29lm3qx5qRGOd0+3E7/f8Xm8cL2PtF/ZUoLpVGzsvyY7FxdPi9cfPS5qHG/Nv9D3B3r1aua5zTS8uXgxcfTUDJ0Q0ahg0YdCEiCaC5mZg0ybgxAk1gJWSRP51lKXZ5IkaXw3lEKMBsWEhaFg8FW2X5MFg8k0Ae02NmYo7Zt/BFfQ0ITR3NWNz0WYcrT/a6z7JwCptsqGssRNlTZ1IrWzETcfKej1OLtkiLCacWJmP8OXTEOL3eyPluu6eczfrjxMREU0EEij5y1+A6uoBH1Y0JRrPJzfCbjYGjLul10N9hz2gh9oX8pMQGuJ7nJDSRddOvxbBxuBhOAmi4VHcXIzHDz6ubzd22PH0rjLVQ1DK3N55USYSInyLie6dey9yYnN8T3D0KPDKK+cMSLLHCRGNJgZNGDQhovHM6dRqw0qqs8uFxs5GFTDpge/juqXTgVO1Harhu5DayRl5SShZkYfm1L5XtM1OnI0bZtygmv4RTSRlrWV49/S7qGrvu5mrDHWk18/sFz5DT10rWrtc+u+OV4PVjNdXzcZNCzMCJj9kpahcFIaFhA37eRAREdHoleXyREXh40Xx2OopDNgvq+3fPFiNzjPlP03GIFyWm4jZaZEB5T5lUdKV067E/OT57F9C49LrJ17H/hpfc/dPCxuxs7hRfZ8UacHtSzL0PoExlhh8bcnXAhfjFRYCzz2nXc8O5KKLgCuvZOCEiEYcgyYMmhDReNXZCTz9tN6YssvZhT1VewJKEMmqn9P1HXr2szXcDPP6OaiZlRFQXkjIIDYnJgcLUxZiWuw0XsDRhCXDGSlfJ5kn7Y72Ph+TfLoGMz4+oVbMtXU70dLpRHOnA/YzNclfmZmJxqwE3LQwHWF+TVwTrAm4b959iDBHjNj5EBER0ciV5bJ7nHjj4ngcNftKbwkpg7v5eK2e2S290a6bl4q48MDynWkRaap/SZw1bhhPgmj4G8P/dtdvYXPa1LbL48HTn5Wp8bK4bHoCFmT6FujlxeXh9tm3wxDkdw1aXAw888y5AydRUcD8+cC8eUBs7DCdERFRIAZNGDQhovHI4wGeegooKlKb8vF8oOYAWu2+i7f6djsK6zv07cZpyYi4aSE84b7yQVHmKOTF56lm1tnR2cwsoUlXk/lY/TGcaDiB4pZi1cTVK8jtwdJXdsJi85XWkN8zm8ONkzXtKLWa8cT8HMSEmXHTwjREWHxlNcJDwlX95jlJc5AUlsQAJBER0QQpyyVlcDendOHY/LSA8cGOwkbsLtF6PIj0mFBcPSc1ICM1CEG4JPMSrMpeBaMhsEwX0Xh0uPYwXj7+sr5d2dyFF/eW630B712WhchQ3xh5adpSXJl7ZeCTyPWsBE5cWnbWOWVmagGUuXMBE69diWj4MGjCoAkRjUfbtmk3v5JDRc1aAEW0djnVajdRF2ZB8YrpmHPxNBj8mrznx+fj5pk3M1BCJHHIHo8q2SW/R3Irby1H8tFS5O463eux3U43jlW34fH8LJTGhKuLwZsXpqsVpWeTzBMJnkgQJcoSNUJnQ0RERENZlkumQkpaSnAcDdhz3SJ4zmRs211uvHe0NmCh0py0KKzKS4TRb9wdaY5U2SWySIloopDfi2cOP4OCpgJ9n2RbHanUFvJJX5NbF2UE9AGUsnRL05d+vsCJiI4G7r0XiGPGFhENDwZNGDQhovFG6r9KlsmZj+QORwf2Vu3V+5hIavShila0IQgfZSXCvSQHl+UnBqx2lwnc62dcH5geTUQ6h9uBorqT8PziYbQ0Vqptf3anG9vbnfgsLhINYRZ0RYfhymXZiDmrBIeX/K5dnHExVk9Zzd87IiKisai0FHjiCb0sl0x/2N12tHS3oLq9Gi2OVuy/aiHaErS5g7q2brxzuBotXVppIRlqX5abgHkZ0QHj7qyoLNw26zb2PKMJSX4/frf7d/pYWRYXPbOzTJW3FVPiw3DtvFS9v4lkXN0x+w5V7aDXNe6zz55f4CQ+HvjKV4Dg3guXiIg+LwZNGDQhovGkrQ344x8Bm01fHS8BE28tWXG6rgNbw6zYNiUZMYkRuHlRuj5IFRelXaRW+LBkENEgbN+Oni1bVHDyeMNxVb/Zy+HyqIwTuTgUdksIbDNSYbt0BuLjrH3+ji1IXoDr8q7j7x8REdEYoYIjhafgePIx2DvbVLlO6XnW2t2qgiZeZbMzULQ4R+uNVtGK7QX1ev8SWUl/9ZwUZMWF9fq7f830a1iOiya0zyo+w7un3w3oq/n8nnI1VhbzM6JV9pVXsCEYGxZsQGpEauATnT6tBU766SfUp+XLgXXrhuAsiIgCMWjCoAkRjac+Jo89BpSV6btON51GRVuFvl3uAf4zOhpVkVZ18XbP0sA6spdmXYrV2as5YUs0WN3dwC9+AdjtagXdwZqDAUFKp9ujSuF1OnwXd7VhFry9dDqmZMQgLzkCsWGB2SeLUhapCRT+HhIREY2O5q5mHKo9pPqauYsKkffeXhhd/U/U2qKs2HvdYnR6erD5WC1O+5XjSoq04KrZKYiy+sbcspr+CzlfwPL05fx7TxOeLOR77MBjqmS0V3lTJ17dXwnPmWnEsxvDR4REqMbw6ZHpgU8mzeFffVVbLDgY8vv1wANAVtYQnQ0RkYZBEwZNiGi82LwZ+PjjgIu9g7UH9W27pwffT4hHSag2QbtuVjLyUyIDJmqvzbt2hA+aaAJ4/33gk0/05vEyySIrUL1cbg+KG2xo6nR4q+ahOjwUz82dArvJiOlJEer30b+2OTO+iIiIRp4sgNhWsk2tjJeJ3uiaFszZfAjGMyvi+9ITBOy8Yj6OmUzYdrJeLzskZBL4kmnxAX/jzUYzbpl5C3Ljcof9fIjGCsnK/su+v6hyXV5Hq1rx/rFabSMIuHZuKnISwgOCiwtTFmLt1LUIDQ71PZndDhw6BBw4AFRWnvvFY2KAr30NCAkZ2pMiokmtjUETBk2IaBw4dUprjneGDEaP1x/XSwbIx/MjMdF4K1wrCZCbGI6r5qToE7KxobH46uKvIsTIgSTReevoAH75S73GssvjUoGTNnvgCjgJnjTZHGjocKgJlcoIK56fkw2HyaguEOV30n9SRVafXpFzBQMnREREQ0T+RtscNtU/LDwkXP8bK2NlySrZeHqj/vc7uroZc7Yc7hUwkcc63T1o73aivduFD1Li8EZynNrvZQ424oqZSQETwN4xt/RrSAzzlSIimizqbfV4ZP8jqsSd147TDdhV0qS+NxkNuHVRusrO8hcWHKbGxHOT5vYeF9fXAwcPagEUGZP3Z/Fi4JprhviMiGgya2PQhEETIhrjJDX5978Hurpgd9lR1FyEWtuZFTtn7I6w4t8jo1R6cliICfcsy0JoiFFfwfPFhV/snfpMRIP32WfAu75azW6PG4frDgespvMnNZylnvNnniA8OzNLBU5yEyNw5exkGPwCJ5dkXoI1U9YwcEJERPQ5yCTt5qLNOFx7WF9UZDKYVBBDbpJhImNoYXB7kHKyClP3FaGzw46ObhfsLg/sLveZrx69V8mRxGi8nZeOHr+/0ylRFlw5JwWRlsDm07MTZ+Pa6dfCbAosy0k0mcjv2VOHnlKZXEKmEd89UoOTtVqWtiXYiEtzE5CfEtFr/JsdnY2b8m9CpLmP+TkJnkhvz4Eaxd9zDzBt2hCfERFNVm0MmjBoQkRjmHzsPvkkPIWnUdlWiZKWErh7AustN5qD8a34ONiCDGr7hvlpyI73NaG8LOsyrJ6yesQPnWjC/S7u2gV8+inQogVKZFhU2V6J4ubiXr+XXq2dTmzuduO5WVlwGo2qx4mU6jL4XSTmx+djzdQ1iLfGj9jpEBERTRSygOGJg0+gqUtbzd4fFSw5VY3Mw6Xoae1CaaMNzZ2+UltnO5wUg3emp6mASVyYGanRFmTEWlV2iX/mqARnpOSmlBniIggiYH/1frx+8vWAbOxX9lWiqrVL35ceE4rLZyT26v0XZY7CffPuQ5w1rvcTyzh806b+X1jm9aRMV6hfqS8iogvEoAmDJkQ0ln36KTrfehXH6o+pOrH+5CO5ptOJ/8xKRZlFK7s1Lz0aq2f4ygGkRqTiiwu+CKNByzohos9JhkKtrdpqN7nV1cFVcAoNtUWos9WpXkM9CBwutXQ68L69B8/PzILLaFC9hqSkh//EimSEzUueh1XZqxBtiR6FEyMiIhp/GjobVMDk7JKZ/oIkWHK6BpmHShHS0Y3q1m5UNnfiTDJJ4GODpCeJAUXZiTi2NBepsVakRoeq1fF9kQUPt868FUnhSUN5WkTj3tbirdheul3f7na6seV4HQrqfH0BJft6cWYMLpoSq0p3eSVYE/DlRV/uXVra4wEefxwoLe3/hefNA268cYjPhogmozYGTRg0IaIxqrYW7b/5Xxyq2g+nJ3AVXIfdhZIGG17MTMLBlFi1L8YagruWZiL4zIBTVr1JHxOuXicaZhJEeewxoLlZlf+Qes7FLcWqrrpXs82BTQ7gxVmZcBsMmJ0ahTX5ib1WpBqDjFiUukgFT6zB1lE4GSIiovGhtqNWBUxsTlvA31vpnyCZINGhwUjtcWP1nkIktnfBZnehuMGGLqcvO1TGzWnRobCajTCbDAgxGlAzPRUnV0zXIigDmJ88H1flXsWegUR9kOnDl4+/jCN1RwL2y+/gByfr0Nblu76NDA1WJWxTonwZInMS56hSXb2yt5qagD/8AXA4+n/xm28G5swZwrMhosmojUETBk2IaAxyudD8q/+Ho0c/CJh4ldTmsqZO1LXbcSwxGm/kpasLuulJEbhsegLCzCb9sXIRd1HaRaN0AkSTjJTsksDJmdJdsuL1YM3BgLJdTTY7NjmD8NJMLXAiTTBX5MQhM9ba64JQajnfNus29iIiIiLqg5Stlb4JXS5fuZ+69m68uq9SD4pE2J24+2ARorv7nlxNjrQgPTYUJoNvhXt1bsqAARNZ0DAtdhqWpy9HSkTKkJ8X0UQi17HPH3keBU0FgfvdHuwqbsKesmZ4zqR8STaXLAD07xV0de7VWJK2pPcT79kDvPVW/y8cHAw8+CCQwt9RIrpwDJowaEJEY1DtS4/j1NtPBEy4ymqcU7XtcHl60GYOxiOLchEWFYrVeYmqvrI/uZi7e87drKtMNJKam4FHH5UBhtps7W7FodpDAb/HDR12bHIH4eX8THjOTNLICteLp8Wr8h/+zEYz7p9/vyqzR0RERJrSllI8c/gZveG7qG7twmv7K1UTdxHmcOKug8WI6/I9xksWGU2NDwtYbCQqZ6ShYOm0gIBJjCUGmVGZ6pYVnYW40DiOr4nOgzSE/7DkQ3xc9nGvHoCyoOj9Y7WqZJ6QBUW3Lc7QewZJBvaDCx5EWmRa4JPK1ORTTwGFhf2/cFQU8NBDQJiv1ycR0flg0IRBEyIaY0r3bkXp//2bGmD6N5M+Wdumai/LB/ELC3KQvjAL8zOiAxpRipyYHNw++3aWCiAaDVIyQAIn7e16c1oJnJz9+7zFFIynspP1wInIjgtTwZOECHPAitYN8zcgISxhhE+EiIhobJG+YTLxeqDmQMDka3lTJ944WAWnW/tbm20Nxt+XVcPc0K76KHQ7PbA73ZB7EyPM6uYf+LBFWdF6yWKEz12s+op5b7GhsQgPCR+VcyWaiP2H3jr1FkpaSgL2y+/oM7vK9HJdcn27Ks/Xo1N+F7+y6CsIDT6rubssUvrd74BuLeDSpylTgHvuAYzs70lE549BEwZNiGgMOVV2AKX/9Y8I7uwOqM18qq5dLagRhTPTEXXDIoRbAlfHSQ+TizMuxsqslep7IholDQ1aqa6ODn2S53Dd4YDAiQypDsZE4lfxsWjudgY0xLx2biqmxIcFlOqSVXZsEE9ERJN1svWj0o96/S319kd461AV3GdK/OSEh+CfaxsQ06z9DR5IZ5QVVYumY97qO7EofQkMQb6FDEQ09GT8K7/Hm05vCuhFVNfWjef3lOu/x1fOTkFecoR+/5ToKarnn2R6xVnjfIsDjxwBXnpp4BddtgxYv36YzoiIJrI2Bk0YNCGiseHUke0o/PN/IbS1U9/X2GHH6boOlV0i3MnR6P7yZTAGBwZFcmNzcWXulWpFHBGNAfX1WuDEpl0QNnU14Vj9sYAeRaImOxEv56Tis5ImtNu1+0zGINy4IF2V7fKSi8QNCzZwxSsREU1IHY4OnGg4gfLWcvW99Crpcnapr92uvleSF9S2Y+PRGr0nQm60BT+oaUBsg1Ymsz9dEaEomZ+NpGVrcEXuev5tJRph8rv97JFnUdZapu87XNGKLSdq1ffBRgPuvCgTsWF9V06Qa978+HwsS1+GiA8/BXbsGPgFb7gBmD9/aE+CiCa8NgZNGDQholHW04Oyra+h8Jn/Q5DbV2qgvt2OwnrfKrmoSAtavrgK9hjfCnRZeX7ltCsxPW466ysTjTV1dVrgpLNTv0A83XQajV2NAQ+rnpaMo8tyselYLQrqtN/5EJMBtyxKR2KERX9ccngyHpj/ACwm3z4iIqLx7nj9cbxx8o2Apu4DqWrpws7iJpQ2+laqz4gLw9/X1iOupkXfJ6vRnW4nevTlR0B7bDgabr0aq2asx5SYKUN8JkQ0WO32dvxhzx/0jBOZbnzvWC2OV2tBz7iwENxxUaYKoPQnIiQCd826AymvbwGKivp/MZMJ2LABSDurNwoR0QAYNGHQhIhGk92Ouuf/ihMfvBhQbqC2rVuVG/BKCDfDee181OSn6/vmJc3DNdOvQbAxeMQPm4gGqaYGePxxoMs3EdRmb0NRc5Hqd+JVkZ+GE4un4o2D1Shr0oIsocFG1Qwzxm+VnTSivXfuvfy9JyKiCUH6k7x+4vWAwEZfZCqiolkLllQ0+7KyxeykcHy7tgEJFU36vsSwRMyIn4EgBKlMFbm54mOBBx5AQkLWsJ0PEQ1ecXMxnjj4hP77L32JnttVjkabXW1PT4rAipw4RFqCVQnbvoQFh+FLM+5CzFMvAc3N/b+YzPl99auA1To8J0NEEw6DJgyaENFoqa1F8xN/wpFj2wKaWda1d6Oo3hcwSYq0IGJeBo6snQOcySZZnLoYV+dezewSovGguloLnJzVqFJ6nRS3FKsgiiidk4lT87Pxyr4KVLdqj42wBOO2xenqq9e02Gm4c/adMBrY1JKIiMavgzUH8dqJ1wICJja7C82dDr15e7fLoxpFS8CkujUwE0X+Ni7NjMFthRVILG3Q96eEp/TOwo6L01aah7MUF9FYIv2KthRv0bebbA48u6tMBVC8JGASHRqMGGuIWkw0MyUyoHRXgjUBX0y7BpbHngKcvl6BvUyfDtx5p35NTUQ0EAZNGDQhotFQU4P2P/waB8t2BfQ4kB4m3vI8IiXKgsSsOOy/eiEcodrAcHn6clyRcwUDJkTjSWUl8MQTKrvMnwytTjaeRE1HjdouWjgFp/LT8dLeCjR0aI+VC8RbF6fDGuLrZTQ7cTZuyr+JTWuJiGhcOlR7CK8efzUgYLK3tBmfnG6A5xzTDtHWECzJjsGMpAjM2nESyYVaHwSRHpmOnJicwHFydLQWMImKGp6TIaILJmNh6W9yqvGUvu9UbTveOVzd788YDUGqjG1KVGjAoqK7DPNgeOnlgV9QmsJLc3gioiGMG/CqnIhoKNhs6Hj8zzhUtjsgYNJsc6im717JkRZEz0jBgSsX6AGTS7MuZcCEaDySGsr33AOEBDa0lN/lvLg8xFvj1fbUfcWYVlCNGxekISpUyy6RFbev7a+C3eXLSDtSdwRvn3pbXWgSERGNJ4drD/cZMPmooH7AgIn0OLhydgruW56FWSmRyN91OiBgkh2d3TtgEhEB3H8/AyZEY5T8vt4440bVq9NLynLdviQDS7JjMS0hXP3uS6DEy+3pwZsHq9DW5csqkb6Bm8wVwMqVA7/g++8DVVXDczJENGkx04SI6PNyu9H051/jxO6NcLgd+u7WTidO1LZJT3glIcIM06oZKFk4FT1nmt+tmbIGK7POMQgkorGtpAR46inA5QuYCulpJJNIzd1aLeaanCQcykvD4ycbVKkSkRYdqoIpJr+GmJdkXoK1U9eO8EkQERFdGAn6v3zs5YCAyb7SZmwvqNe381MiVZalJdgAS7BR3awhRjVxqgIiPT2YtrsQ6ccq9GbQObE5AZOuSliYlmESry1MIKKxq6q9Co/seySgbLU/Cai2d7nw/vEaVa5PxIWZcduSdJhNvpK1V+Wsx0UfngZOn+7/xWJigK98BbBYhv5EiGjCYHkuBk2IaAQVPfM7lL/3YsCFYlu3Eyeq2/WVdWExVrhvWYKWDN8F3hemfgEXZ148KsdMREOsoAB47jkVRPXn9rhxsPag3uPEYwjCycwE/NxhQJNBC5RMjQ/D1XNTA1bb8fOBiIjGg+P1x/HisRfVQgGv/WXN+PCUL2AiTZ8vmhI34PNkHSzFlP3FiDJHqewSCZb0ysIODVVN35GUNPQnQkTDQrJFXjj6QsDiwrNJj6PndpejpVN7THZcGK6bnwrDmc+AIAThnpwbkfPC+0B7e/8vNmsWcMst7G9CRP1ieS4iohEgF4efvvl7lL33QkDApL3biZM1voCJPS0WrV9cFRAwWZW9ihOiRBNJbi5w8829LtKksfucxDkICw5T2wZPD/JL6vBwWTVWl9UhxOVGUYMN7x+rDSjL9X7R+9hbtXfET4OIiGiwpHfXK8dfCQiYHChvCQiYLJt67oBJeGM7Fp5oxfzk+ViQsgAxoTG9AyZmM3DvvQyYEI0z0pfkoUUPqR6evTLHzpDMs+vnpcIcrGWXlDTa8NGpBv1+udZ+vuQtFFw2Z+CAyNGjwL59Q38SRDQpMdOEiOgCdLu68c4Hf0b0c6/C4PZdKEqT58L6Dr0kV3t6LAwbVsIY7Gv2vCJjhVpFzh4mRBPQoUPAq6+qMiP+7C479tfsV58dXq1dTnzU7sQLMzPRZgnBvPRorMpL0D8bpCH8lxd+GSkRKSN+GkRERAPpdHbiT3v/hJbuFn3fwYoWfHCiTt9eOiUOy3MCAyaSSRIaHIpQU6j6mhaeitlv70ZUXWv/LxYcrAVMMjOH52SIaMRIxklTVxMaOhuws2InytvK9fvKmzrx6v5KffHh5TMSMTc9MNByXWUEFpxq6/9a2mTSSvhJ70EiorOwPBeDJkQ0jIO8gzUHsevkVkx7aSvMnXa1Xz5Ky5u7UNWi1WJV+2LCYH9oNRBm1vctTl2Mq3OvZsCEaCLbswd4661eu7ucXSpw4l+eoMnmwEc2F56YPxVug6HXBFNGZAYeXPAgPzOIiGjMkMySpw49haLmIn2fLBqSJs5eS6fEqiwT/79f10y/Ro2FAxw5Arz0Uv8vJhOgd90FTJ06xGdBRGMh+PqXfX9RQRSvI5Wt2Hy8Vn0vnx/XzE1BTkK4fn+QpwdXfFyNxc4EBBuD+37ikBDg1lu1THAiIj8sz0VENMTa7e3YUrQFv/j0F3jn5FtI27RDD5i4PT04VdsREDCJiQoF7l0REDCZlzSPAROiyWDxYuC667SJHj+yonZu0lyYDL79sWEhWBFqxNrCarW9s7gRJ2q0/idCVt8VNheO4METERENbHPR5oCAiSwA2HS0Rt9ekt07YCJj4F4BE6cTeP/9/l9Ien/ddhsDJkQTlDXYirvm3AWLyde8fXZaFBZlxegLE988VIVdxU16GdseQxC2LYrDzuYj6HB09P3EDgfw7LMs1UVEnwuDJkRE51j98vqJ1/HLz36Jj8o+QperC9n7ixFd26o3rTta1YrmM03rRFasFc4bF8Ee74taz0yYietnXM+ACdFksXAh8I1vAHPnBtReDg8JV4ETKb3llRBhxo2ObsyqbVbbO043qmCs1wfFHwT0OyEiIhoth2sPY0f5Dn3b7nKrDBOHSytXOz0pQjV+9x/zXpV7FZakLen9ZJ98ArQOUJZrxQpg+vQhPgMiGkvirfG4bdZtAWPji6fFq88SpQfYUdiAtw9V658z9jAz9i3LxJ6qPaoKhJT66jVW9niAN94Atm3rVTaXiGgwGDQhIupHRVsFfrf7d6qcjrvHrfbFVDYh80iZGrBJzdXDla3odGj3GQ1BmJEcAcfKPDRM9TWplAnSm/NvDhgIEtEkEBMD3HQT8NWvAnl5+u5IcyRmJ85GEHwTSslRobijsh5xtm60dTtxrMqXbVLZXomCpoIRP3wiIqKzG7+/cfINfVsmKd89UqMvHooPN+MLM5MCAiZXTrsSF6Vd1PvJWlqAjz/u/8UiIoCVK4f4DIhoLJoaM1Vlo3kZgoJw5exkLJ8aB+9w+XR9B57bXaZ/3jSlx6F8Vgaau5txpO4IPqv4DKUtpQFlcBUJmrz5phZEISI6D+xpQkTUh/LWclWr2e7WSnCJkC4H8l/8DE21barhu/+npyXYiLykCHROScCRNXNU2rD8t2bqGlyccTEzTIgIKCvTVrw1NKjNels9jtYf1e/u6HZhW0s3Hl+QA4vVjPsvzoZJSpMASAlPwUOLHuJnCRERjQr5m/X04acDGr9/WtioykoKc7ARdy3JRJTV12Pg0qxLcfmUy/t+whdfBI76/gb2cuONwLx5Q3gGRDTWvVf4XkAmmyhu6MDGIzV6lkmIyYD1s5IxNSEcQW4PZn54DAll2thaGIOMyI7ORnpkeuC4eeZMlF+xDDsqPkWtrVaVy5XxtVSEyInNCSifS0QTFxvBM2hCRJ9DWWuZCpj4r1Kpae5E3Is7EVHha1LnJavqsuOscEaHYe+1i+AKMSHEGKKyS/LifavLiYjQ2Aj86U+AXQvInmo8hap2X+Nc6WeyIzwMb+SlY/WMJMzLiNbvu2P2HZgRP2NUDpuIiCZ3Sa43T70ZMDY+XdeBtw5pf79kXvKG+WnIigvT758eNx13zr6z72B/SQnw2GP9v2BaGvClLwWUtySiiU+mJ7cWb1Vlsf1JdomUAZT+SV5JkRbMTY9CXkI48vcUIu2kbzwtEqwJatxsNBjh9rhxuuk0ts8KR2V+Wq/XlZ4q+fH5KhN8SswUVoggmsDaziNuwFAqEdE5AibFDTY0vnkA2X4BEynFlRhhRnKUBWaTER5DEI6umqkCJjGWGNw5504khiWO0lkQ0ZgVF6c1iZcVtgAyozJR3V6NHinYDCAjxoqZlS0oi7RilyUYs1IjYTIa9N4meXF5zDYhIqIR4fK48O7pd1XfAH9NNjveO+Zr/H5xTnxAwCQuNA435d/U998rKZHz7rsDv/CVVzJgQjQJyWeGVGpIDk/Gaydeg9PjVPtjrCG4Y0kmNh2tQWG91vy9tq0b7x/rxvbgBsxMjsYNM42Yd6xcf676znp01XQhJyZHBUxsThuyDwSjJicJ7pDAqdBuV7cqyS23sOAw1YNpRcYKtRCSiCYvhk+JiM6QGqi9AyYdOLC9ABcXaxeGZpMBWXFWLMyMUReHEjARhUumoSMuQqUCf3nRlxkwIaL+zZoFLF2qr2xLjUjV7wozm9SF4RcKqxHe0I5Dlb4GuVJK4Fj9sVE5ZCIimlyau5rxyL5HegVMShpseGFPRUDj90VZMfr9MskomZHy9y2AFLg4dQr4wx+AGl/ApRcpyZWePsRnQ0TjyazEWfjSwi+pxYheUpbrmrkpqm9SQrhZ3293urG/vAU/aXPjkeQEuPyep8PRgYO1B1XARATbnUg/XIZTte0q+OJy9+5zIo/dVrINf9jzB3Q6O4f5TIloLGOmCRHRmYCJ1Gn2D5gU1Xdgy75yPHC8TPWfiw0LwbTEcNWYzl99ZjzqZ2VjbfZlWJ6+XKUAExEN6IorgMpKoKJCyzbpqIanR7twS48JVWUIbjhRhuejQjEnLQrBZ7JN5CIuPyGfZQOIiGhYe/vJuFhWX3t5enrwWVEjdpU04UxyZJ+N3yXDJCEsIfAJKyqA998HSksHfuGQEGDt2qE9GSIal5LCk1Q/v5ePv6wyRYR81sxKjcLMlEjUtHXjUHkrTtW1w+3RPpTeNAWjKikB361rgLWPTgQS7G3bfBTbZ09FhzlYBWJy4sMxPTkCmbFWVU3Cq6mrCS8dewn3zr2XWd5EkxR7mhDRpFdnq8Nf9v0lIGAiK082HqzErYeKkdViQ9yZgEmvAVN0NCzf+DbmT1nee0UdEdFAWlu1FbddXepisKKtQr9LVsBJ3eZjidFovmY+FmXH6fdJv6Q5SXNG6aCJiGgia+hsUONi/4CJze5SjZgrmn2rrqfEh2HdrGRYgn2LhS7Lugyrp6z2PVlnJ/DWW8CxQWZJSsDkkkuG6EyIaCKQRUXS5+Tjso/7vL/L4cbRqlbsLG6C80zmyLw2G/6hvlFlcHu1dDpULyaXpwf7U2KxKTewt4k52IjchHAsmxqHcIvv526bdZtqFk9Eky9uwGWKRITJXqtZVpAEBEzqOvD2oSpceaKi34BJREgEZibNxqXf/TWW5a5mwISIzl9UFHDTTepbyTbxzx6RbBMxs64F3Z8V6WVQhNSXl1XAREREQ0nWU75x8o2AgIkESp7eWaYHTGQ8fMm0eFw3LzUgYCKN31dlr/I9WUcH8Mgjgw+YxMYCy5YN4dkQ0UQg4+O1U9eqcl1TY6b2uj80xIjF2bG4bXEGIizBat/BCCs22Vyq/5JkyZU1deJETbsKmIgl9a1YFqFlmviX+TpS1YoX95YHlO16v/B91UieiCYfBk2IaFLbXLRZZZr412l++3A1Limqway6FsSF9w6YpEWkYWHKQiRedycMGZmjdORENCHk5gIrV6oa8PLZ4mUNManPH3HpiQoUH60KqLX82IHHsL96/6gcMhERTUzSBLmstUzfLmm04eV9leh0aF0CwkJMuHlhmpqg9B8bT4megltm3uLbJ8UsXn0VaGwc3AvLz11zDWBi9XAi6lt6ZDrum3cfvnnRN7EsfVmvRYsJEWbcsSQDKVEW9ZmyJTsJp2o7cKiiFVUtXfrjoq3BmJcWiS92duKhS6fi2nmpyEuKgOlMKdzWLqfqkeLV3N2MXZW7RvBMiWisYNCEiCatwqZCfFbxWUDpgXeP1mBuZQNWlNcjXgImCb0DJtNipyFIJjpXrBilIyeiCWX1aiAzExlRGTAG+Vbtpkdb1ddgjweZ7x1CXaPWxFK4e9x4/eTr2FiwUe+FQkREdKGkYfJ7he/p25LhuOV4nco+ERmxVty9LBPpMdrfJq8VGStwz9x7VPBf99FHQGHh4F44Ohq46y5gau8V5EREZ4u3xmP9tPX47vLv4vq86xFp9pXXkXJcNy9Mx4zkSFRGhuFUXCS6nVqWiFzRS98SCZBIr8CE0nrENnYgJyEcV85JUQEX72X/7pImPVgstpduR5fTF3ghosmBQRMimpQ6nZ147cRr+rZcEL53rBbpNc1Yd7oKMdZgNYDqM2ASEwPceKO2Ko6I6PMyGICbb0ZIeBTSItMCyg1Ik10R096F1hd24URNW8CP7qzciacOPaU+04iIiC6UBEz8y3JJ0/f2bqceMLlxQZrKgvSSVd53zL4DV+RcAaPBF/BHSQnwwQfnfsHQUGDdOuCb39SyLomIzkOwMRgLUhbgywu/HJCtLRkj62YlYUVOPLZNSYaEfaUM18zUSKRGhwZc30/dU6hlxkkwJtyMWSlRetB4Z1GT/rguV5cKnBDR5MKgCRFNOhIgefPkm2h3tOv7DpS3wFFcj+uPlyPEaMDUswImkg6sAiZWK3D33UBY2CgdPRFN2P4mN9yAjMjAbJPsOCsizjSxnFPdhNKtJ/BRQb2qz+xV1FyER/c/ysAJERFdcPb1odpD+nZdW7densZoCMKaGYkw+I2LUyNS8ZVFX8GM+BmBT2SzAS+/rE9C9ik4WJWlxLe/DSxfzpJcRPS5RJgj8MD8BzA7cba+T67jL5oSi7WXToNn8RTMTYvS+534f47ldViQWNWq71ueE6eyUMShylY02Xx9T6VEV1OXL5BCRBMfgyZENCnrNR9vOK5vN3TYceBoNW45WqrK4OQkhOmDJSErV3JichAkF3V33AEkJIzSkRPRhJaXh+CLVyIrOitgtVx+aiQSI7SMkytOV+FIYQPeOFAFu8vXlLK+sx4vHXtJL6NCREQ0GE63E28XvK1vS1B+ywlfWa6lU2IRbfWV3pKJyQcXPIiY0JjAJ5LHv/IK0O5blNTnAoG/+RtgzRrAEtiPgIjo82Sd3Jx/M1Znrw7YrzJL1s5C0JkFSMJkMGFO4hxMj5uO/IR8rCsywHBmTC3lvRZnaZ9t8hn4cUF9QGlc6YdKRJPHiARNfvvb3yI7OxsWiwVLly7Frl39N1F67LHHVFTY/yY/R0Q0FBo6G/Du6Xf1bZfHg3eP1ODygkqEOV1IjrQEXBhGhEQgJzZHyzq56SYgyzeZSUQ05L7wBWTMWKrqNXvJ6t4p8WHIjgtDqMuNRVWNqjnvc7vK0dLpCMg48e/TREREdC4flX0UsHpamibXtmllumLDQrAoKzZgXHzN9GvUpGMvH388cB8TKUV5yy1ApK//ABHRUJHr9cuyL8OtM29FsMGXVeKwmlGRn66+jzJHYUnqEsRZ4/T7p7jCMW9/tb69MCtGBU9EUYMN5U2+TO5j9cdQ1lo2QmdERBM+aPL888/jO9/5Dn7yk59g3759mDdvHtatW4e6urp+fyYyMhLV1dX6rbS0dLgPk4gmOLfHjY9KP8If9/wRDrdvknHH6UbElNQjr6ENocFG1RzOyxBkUKtP5CuuuAKYNWuUjp6IJg2jEUG33or89AVICksKuBBMjrIgPyUSK6qbYHa50dzpwGv7K1XdZS9ZAVfTUTNKB09ERONJna0On5R9om93dLuwo7BB314zI0mV5/K6MvdK1cukF7le37p14BdbuxbIyBiiIyci6tusxFn49rJvY1n6MsSGxqpASdDFlyA/czHmJ8+H2aRlb3vJtf6y2mAkFdaqbak4sSLHF1SRsrj+mdzS/4mZ3USTw7AHTR5++GF8+ctfxoYNGzBz5kz84Q9/gNVqxV//+td+f0ZNDCQn67ekJN+kARHR+ZLV17/f83tsKd4Cp0draCnKGjtxpKgBVxRWqZ7u0xLDYfC7MJQeJtZgK7B0qVZzmYhoJMTGwnjtdapWvJQG9BcVGozFiWFY3ajVX27pcmL7qcDSAS8fe1mVWyEiIuqPp8eDt069pf5ueG07VacH4menRiEtJlS/T5Wyic/v/USdnefuY5KXx7E0EY2Y8JBwrJ+2Ht9a+i383fK/w33LHkLSVbcE9Cz1lxiWiMV7q2FtsaltWaSUEK4FV+ra7The7Ss7WNFWgSN1R0boTIhowgZNHA4H9u7di7WyqsT7ggaD2v7000/7/bmOjg5kZWUhIyMD119/PY4ePdrvY+12O9ra2gJuRESi3d6uavw/cfAJVZbLX2VLFzYdrcElpXWIsDuRGWPV03BFXGgcUsJTtIu8deskmjsKZ0BEk9bs2QjKyEBGVIaqu+xfCsUSbMTdTjvCz0xQHalqxem69oD+Ju8XvT8qh01EROPDx2UfB5SZKarvwOm6DvW9ZF9fkusrEymlbq7Kvar3hKP8HXrjDWCga3DpY3LDDRxLE9HoWrIESE7u8y75bJseOQWzPjgKo9OtSuOunO7rYyoZeE63L7N7U+EmdLu0MoZENHENa9CkoaEBbre7V6aIbNfU9F06Ii8vT2WhvP7663jqqafg8XiwYsUKVFRU9Pn4//zP/0RUVJR+k0ALEU1uki57oOYAfrv7t71WgXQ6XCpY8uKecoQ3tmNJZYNauS1lb7xCjCHIi89DkNUKXHedVoOZiGgkyeTSqlXqW6m7vDBlIUJNvhW/EejBFw0ufXvz8TpVVsVrV+UunGo8NcIHTURE44GslN5Wsk3ftrvc+OCkL2vxsukJKkDvtXrKakRbons/0Z49wIkT5+5jEur7+0VENCqMRuDWWwFzYHkuryhLFLKcVuR+dkoFhKVst/QUFB12F/aWNuuP7XB0YEvRlhE7dCIaHWNuJnD58uW47777MH/+fFx22WV45ZVXkJCQgD/+8Y99Pv4HP/gBWltb9Vt5efmIHzMRjR2t3a14+vDTeO3EawGrPzw9PThY3oLHd5TgeHUbgnp6sL6gEuFmE3ISwgNWzuXF5anAiepjEqYNlIiIRlxODpCuNa6UUoESOPGvJX9JTRNmxWjb3U43Nh2rCaix/PqJ19VFHRERkZfdZVdlHKU8l9cHJ+rQ3q2VdZSJwrzkCP2+5PBk1Rugl9paYNOmgV+MfUyIaCyJi9MWRfZjasxUpBTWIaVAW+S9MjdenyfYXdKk+gl67anag8q2yhE4aCKakEGT+Ph4GI1G1MqAyo9sS6+SwQgODsaCBQtw+vTpPu83m82qcbz/jYgmH5kolIHL73b/DqebAj8vatu68dyucnxwsg72M3Wal9Y2Y7nZgNmpkQgx+T4K0yLS1KpuZGUB8+eP+HkQEfWVbSKCjcEB9eSDnW7cB5cK/orypk7sK2vR77c5bXj1+KtweXwZKERENLltPL0Rzd2+FdOymOhEjVbiUcbEa/KT9EnCIATh2unXqkbJAZxOrY+Ja4C/L7m57GNCRGPPrFlaz9I+yCKltMg05O4sUFUpYsPMWJipZdm5PT3YeqJOX6DUgx68eerNgAA0EU0swxo0CQkJwaJFi7Bliy9tTcptybZklAyGlPc6fPgwUlJShvFIiWg8a7O3qb4l0szS7rbr+11uDz4qqMdzu8tQ1+7LOlkUbcG33XZVkss/wyTGEqNWl6jU3WuuYe1lIhpT2SZ66YCoLN/dJ6twtdSdP/Nx9UlhQ8DnXWFzIZ4+9LRaWUxERJOblK2VErZerZ1OtajI6/IZiapsrdeStCVqArEXyTCp8/1cL+Hh7GNCRGPXF74ApPXx2QaocXZIjwFzNx+GpaMby6bGIcISrC9QOnkmyCxqOmqws2LniB02EU2w8lzf+c538Oc//xmPP/44jh8/jq997Wuw2WzYsGGDul9KcUmJLa9/+Zd/wXvvvYeioiLs27cP99xzD0pLS/GlL31puA+ViMahkpYS/HHPH1HcUhywv6qlC0/vLFO1R73VauLCzLh1UQa+2taGUL8SNiIpLAlzkubAaDACF18MJPgavxERjZVsE5EVnYVIs5ZZa3K4sKymCYsyY9S2x9ODjYdrAppVyufjYwceY6kuIqJJrKW7RS0w8pK/F+8erYbjTBZ2fnIkZiT7qjbEhcZh7dS1vZ/o+HGtl8lAbryRJW6JaOwymbT+JhZf2Vv/zO6cmByEdDkw9/1DsDrdWJ3nmxvYXlCvyuJ6fVDygSoRTkQTz7AHTW6//Xb8z//8D3784x+rPiUHDhzAu+++qzeHLysrQ3V1tf745uZmfPnLX0Z+fj6uuuoqtLW1YceOHZg5c+ZwHyoRjSOSFvtp+acqw0RK0HjJROGHJ+vxwt5yveao0RCEFTlxuGtpJmba7Ugoa9AfL42V5ybNRX5CvlZ6IDYWWLlyVM6JiKjfbBO/mvDyWSVluoxBWpPejGMVuDw+FAkRWmNL+ex7ZV9lwAVddUc1/rr/r2ju8pVkISKiyUHKx7xy/JWAfn87i5tQ3aptS3bJqhkJAX9nbsq/Sevx56+1FXjjjYFfTBYfyd8tIqKxLDpaC/D2QXo5RZmjYG3txOwthzEtJhTTEsLVfZ0ONz4+7ZtPcLgdquwhEU08QT3+HUMnAAmyREVFqabw7G9CNDE53U68cfINHK47HLC/prUbG49Uo7VLa2QpkiItuGJmEuLCtcnE+e8eQHRNi7oYlNTbjKiMwDrN990HTJ06cidDRDQYhYXAk08G7JKSACcaTqjve4KCcCI7Ef/lCELrmc+0uLAQ3LggHeEWreeJCA8Jx71z70VSuLZ4hYiIJv64+aVjL+Fk40l9X2VLF17aW66ysaVU7W2L05ESFarfLxkml2Re0vvJnn0WOOl7nl5SU4EvflErdUtENB68/z7wySe9dtscNtUzVXqX1GfGY+ey6Xh8Z5mezX3b4gykRvs+N++YfQdmxM8Y0UMnouGNGwx7pgkR0VCSVdKP7H+kV8DkSGUrXtxbrgdMJLtkZW48bl+coQdMoqubVcAk3hqPi9IuUiVuAgImc+cyYEJEY5N8Nvllm3jLCiZYtZXBQT09yC+uxa/Lq3FZTROMHg8abQ48v6ccTTYt605Iia5HDzyKqvaqET8FIiIaWV3OLjx56MmAgIlkIb57pEYvX7tsSmxAwCQ7OhsrMlb0frLTpwcOmISEADffzIAJEY0va9YA06f32h0WEqYWWAqpVLHgUClWTI3V799yvE41h/faWLBRBamJaOJg0ISIxo2Gzgb8ae+f1OpqL5fHgy3Ha7H5eK0+aJEG7/cszcKirFgYDGcaUPb0YMbhasxKmIXZibNhMVl6X+hdccWIng8R0efpbSKrg6fHTQ/4PIsyBOFrXTb8zcEixNu60d7txIt7ylUmnpeUZ3n28LNqBR0REU1M7fZ2FSQvay3T90n/krcPV6u/DSItOhRLpsQGlK2VslwBi4qE2w28++7AL3j11UBc3BCfBRHRMDMYgFtu6bMxvFSm8I6z005U4tqWdr0cbqPNjv1lvrK3rfZWHKw9OIIHTkTDjUETIhoXvJN8Xa4ufV9Htwsv7a3A4Upf47V56dGq2XtMWGAN5hWOZKwx5iIhrJ8G70uXAuFanVIiojGbbZKV1atZpfRlMhu1CzhhCTZiRYwFXzleiqguB7qcbry8rwKljb4gSbujHa+deE31hyIioomlsbNRZWbX2er0fZ0Ol/pbUN7UqbZDTAasm5UMgwTlz7g271pEmvsoVbFzJ9Dgq+Hfy5w5WsY2EdF4JAso77pL62/qx2gwqgVKXtP2F+MBmWY487H5WXEjbHaXfv/uyt0cWxNNIAyaENG48EnZJ2jsatS3K5u78MyuMn31tJTjumJmMlbPSFTfe0WEROCu2XfiivJgNbnYJ7MZWNFHGQIiorFEJrauuw6IiAjYbQ22YkHKAvXVSybDFiSG4f6yGhg8HlV/+c1DVWjosOuPKWgqwKcVn47oKRAR0fA63XQaf93/V7R0t+j72rok67ACtW3auNlsMuCG+WmIDPWNjRemLMTMhJm9n7CjA/jww/5f0GIB1q/X/kYREY1XYWHAPfdoX/3EhsYiMSxR315xqBjXGLXAiMvdg6NVbfp9tbZaVLRVjOBBE9FwYtCEiMY8qcG/s3Knvt3S6cCrByrUijkRYQlWjdhmpgaujJPV19+46BuY3mwAKgYYvCxfDoT6ajkTEY1ZUvrkq18FFi0KmKCS0gELkheoQLGXyWDAqlAjbmtt1y/s3jlcrTewFJuLNvPijohogvQvkQzCpw49BZvTl1kowXLpb9XcqfW3CjObcOtZDYzjQuOwftr6vp9482bA7gu497J6da9JRiKicUkyTSTjJDhwsWVOTA6MQVq/pqAe4K6iKmS2dqhtqXrh8csukebxRDQxMGhCRGPex2Ufw+H2NTL+tKhRTf6JjBgr7rwoA0mRvpr+Uof5qtyrcOOMG2GRkjUffDDw6rhly4b3BIiIhpJMTl17LfC1rwG5ufpuyaabnzwfMZYYfZ/0dbq1owPzHdpnqDSF/+CEr1yLp8eDF4++qCbbiIhofDpWfwy/3f1bHKg5ELC/qqVL9bXylo+JsYbg9sUZiA/3lXSULMU759yJEGNgaVtFFh0dCHzOAImJwOLFQ3gmRESjTHqb3Hab1uvkDLPJjKxoX4lcqyEIXyqqRlJ7l+oR5V8C92j9UXQ6tTKIRDS+MWhCRGNaa3erqg3qv1ruZK22ajo02Ihr56XCGmLS7w8PCcf98+7HRWkXqSbJOHkSqKrq/wWkLJcEToiIxhuZrLr7buC++4DkZL328pykOQFlBIxBQfh2UwsiPVqGybHqNhyvbgtoXPn6yddZg5mIaJyxOWx44egL6iaZ2V6y6nlfabPqYWJ3aZ/9ssDo1sXpASW5oi3R+OKCLyLeGt/7yeVvwsaNAx+AlOUyaquviYgmDFmUJAuU/CSHJyPI28wEQLo1GLcdKUFMpx2HKnw9Vl0eV68ANhGNTwyaENGY9mHph3D3uPXtHYWNwJl5vcXZsapuv1d6ZDoeWvSQbxWIXOxt29b/k0tJLmkAT0Q03hvEP/ggEB+vZ9vlx+cHTILFuFz4bnu79rkIYOuJOpV14nWi4QR2Ve4ahYMnIqILIU3e/7T3TyrLxF9jhx0v7CnH9oJ6uD3aZ35mrBU3L0wPWGgkwfUHFzyIOGtc3y8gGSaVlf0fwMyZ2t8fIqKJaMECYO1afVOy8RLCEvTtGGswYjwe3HGkGPVVLap3lH+JLi5GIhr/GDQhojGrsbMxYJVGdWsXiuo79HrM89Kj9PsSrAl4YP4DiDT79TU5fhyoqen/BS6+WGsCT0Q03oWEALfcoq/4lUy7vLg81evEa167DTc7tbr00tdE+pu4/PqbvFf4Hoqbi0fh4ImI6HxIk/cnDz6pMgW9JECys6gRz+wqQ02r1vBdzM+IxvXz0wIWGmVGZWLD/A2B42b/xu9vvgm88Ub/B2AyAVdcMYRnREQ0Bsl8gVSmOCMtIk3/XsbaiZFmRHU7cd3xchypaNHva+pqQlFz0YgfLhENLQZNiGjM2layTdXb9/pUskzOWDolFiaj7yPs8imXw2TwrZ5DdzewadPAPQEuumgYjpqIaJRIia4vfCGgx8nMhJkBpQTuqG9G7pnsPSl3+OGpev0+yep75vAzKG0pHeEDJyKi8ynJJQGTdodWrlbUt9vx3K4y1ffPm10i/Uuk4fuqvEQYDb6/A9PjpuPeufciNNjXCF6R3lcffgj8+tfA3r16ZmKfLrkEiI4ehrMjIhpDpNy3jK3nz1ebEmgOCw7T706MsKhRdmarDV2HK/TPX8GG8ETjH4MmRDQm1XbU4kjdEX27vKkTZU1aQ7Wo0GDMSvVlmaRGpGJG/IzAJ3j7baDVt/quz4s9WZlNRDSRSMlBv+bwcnE3JWaKvh3c04PvtrTCu+D4cGVrQH8Tp8eJpw8/jbLWspE9biIiOie7y64+oxu7fAuJatu6VTmu+g67Pse3OCsWdy/NRFp0YGBkfvJ83DH7DhVUD3D4MPCb3wAffKAFTwYSFaWtviYimgzkQ/W664C8PJVdInMPXpLBFxOmzSksLqhCYZ0vmH2y8STa7L4xNhGNPwyaENGYtLV4K3rONC+ReqA7Chv0+5ZNjQtYMSdZJqrpu/+Fn9z6Ex4OLF48TEdORDSK5LPwhhu0z7kzMiIzEBsaq28n27qxweL7zHzvWC1O+13kOdwOPHXoKZS3lo/ggRMR0UCkufDzR59HVXuVvq+504HX9leqkosiPtyMO5Zk4pLc+ICMbKnFf3Xu1bg+73rV9yrAp58CL78MSN+rwZCyXMFnBV2IiCYyg0Erg5uVhaTwpIDP0aRIrRRukq0btr2+bG2pmLGvet+oHC4RDQ0GTYhozKloq1ArM7yKG2yoPlObOTYsBHnJEfp9WVFZyInJ8f2wZJdIlslAVq3ixR4RTVxSfvDGG/VNCSpLY3iZNPNaW1aH+UnhemD6ncM1KDzTM8o/cFLZNkATYCIiGhEy+fbaidcCauR32F14dV8lupxaycXU6FDcviRDn8DzknHy15d8HUvSlgQuMhLNzcDmzYM/kLw8rQE8EdFkI/MHd94JU3gkksKS9N2RFhMswVpPwdzDpWhu17L+hARN/MuNE9H4wqAJEY0pMnm3pWhLwPYOv14mK3LiYPC74FszdY3vAtDjAV59Vetn0p+cHGDRomE6eiKiMUI+6/waV3r7m3iZu52439GN/BStCbCnpwdvH65GcYMvcGJ32/HkoSdR3V49wgdPRET+Y+GNBRsDytZ2O90qw6St26m248LMuG5eKoL9skssJgtumHED7pl7D6It/fQf2boVcGtBl3Ousl62TFtpfXbghYhosrBYVJlv/xJdMheRFGFW38d32tGxyxfclvJcpxpPjcqhEtHnx6AJEY0pMqgobin2bdd2qGbF3kZrOQm+kjPTYqchMyozsLxASUn/Tx4aqpWt4cUeEU0Gl18e0KhXJs2mxkzVt7OOVeCazCg9e8/j6cFbh6pR0mjTH9Pt6sazR55Fp1PrKUVERCNHZQIWvIPdVbv1fS63B28erNLHxxGWYNy4ME1f6ewdI39jyTdUD5Ne2SVeVVUDl7P1ys8HvvENYP16ZmoTES1Zgoi4FESE+KpfJESY9SmG5D2FcJ3JABSbTm9Ca/cAvVaJaMxi0ISIxgy3x433Ct/z2+7Bp0V+WSbT4gIu/KSXia6mRlstN5BrrwUifIMbIqIJzWQC1q4N2CX9TeQmDG4Ppu0rxrqZyZieFKF/7spkXFljZ8AquW0l20b44ImIJjcp6fL6ydcDAiYS3H7nSA0qW7rUdmiwETctSEO42aQ/Zkr0FNXsPcI8wJi3pwd4zzfm7lNaGrBhA3D77UBc3BCcERHRBCDB45UrkRaZpu+SHlKS8ScibHbYd/uyTZq7m/HogUfR3NU8KodLRBeOQRMiGjPkorCxyxckOVjegpZOh/o+LToUWbFW/T4pM6OnxbpcWgPLgcoLzJ/PGsxENPnMmgVkaEESIYFnyTZJj0xX20nFdYhubMf6WcnITQzXAydvHKrUVzGLPVV70Njp+3wmIqLhIwuJXjn+Cg7UHAgImGw6VoOiM/2npBTXDQvSEBPm61clY2MJmJgMviBKn06dGjg7e84c4EtfUk2PiYjoLIsWISFlWsBnbVKkFjQR1o9OobnNVzK8pbtFBU44liYaXxg0IaIxQUq/fFjyob7d5XBjZ/GZQUUQcOn0BD3LJAhBWJ29OrAsV319/08eEwNceeXwHTwR0Vgln5tSUiVgV5BqDJwWoa2Qy9l1GgZ52OwUvQSiy92DjwoaAlY8by46j2bBRER0QVweF144+kJADxOXx6P6Tp2saVfbBkMQrp2bGtD0PS40DnfPuRtmk2/irk/SA/D998+dpchytkREfTOZYFy1GsnhyfouyfiLsGhBlFBbN069fTBgAZJkbkvgpN42wLwFEY0pDJoQ0ZggAZMul1ZqQHxW1Ai7y6O+n5kcGXBRKPWZE8IStI3OTuCTT/p/Yrngu/FGwHyOC0gioolKSqzMndsrcCI172VVclR9GxJL6mE0BOHK2cmqPr4obbQFlOk63nAcZa1lI374RESThdPtxLOHn8XJxpMBPUzeOliNwjMZJvJZffWcFGTG+TKwpba+NHwPCwk794vs2wc0+ILivUjD96ioz3kmREQT3Pz5SM7IDxhbS7lba4jWX2pRYQ1e21WGOr+Mkw5HBx478BhqO2pH5ZCJ6PwwaEJEo66hsyGgXnNjhx2HKlv10gMrpsXr94UYQwJ7mXz8MdDtG4j0snIlkOnXLJ6IaDJas6ZXA1+5uMuNzUVKeAqm7imEweVWNZkvzvHVrv+ooF41IvaSvlP+20RENDTks/XFYy+isLlQ3+dwefDagSqUNNrUtskYhOvmpepZgcJisqiASUxozLlfxG4Htg3Qo8pqBS655HOeCRHRJGA0IvwLV+u9Ar1zFzNTIhFmNiHc4cKM8nq8vK8CNa2++Qqb04bnjz4Ph1srQ05EYxeDJkQ06mQSTkq/eElJGO+k3OKsmIDmlpdkXuJrbNnaCuza1f8TJycDl102jEdORDROyKrhFSt67Var4uKmI9FlRs4erWllXnIEEiO07Lz6DjuOV2vlYERFW4XKOCEioqG1o3wHTjWe0rftLjde3V+JiuZOXw+T+WnIigsLWEx015y7kBSeNMgX2QF0aBkrfZJxs8WX3U1ERAOYOxfZ0xYhyuzLzpMFSPkpEWoOY0llAxxON17ZX4GqFl9VjaauJmwrGSCATURjAoMmRDSqCpsKAy4QSxps+mq6CLMJi7J8q+ZkMLI8fbnvh2WlnDSB788VV6gVIEREBODii4GIM0HnvnqcnKhE8ukatb0yN8HXNqqwQZWH8ZLeJtKkmIiIhkZVexW2FG8JyDB5eW8lqlu1STazyYCbF6YjPcYakGFy79x7kRk1yIzq9nYtaNKf2Fhg8eLPcRZERJOMwQDj5WsxN2kuoi3R+m6TQQInkchAD3Ka2tVnugTB/Xuc7K3aC7vLt01EYw+DJkQ0qo0uNxVu0rc9nh5sL/A1Rrs4N16t1PD6Qs4XEGw8U16mrg44cKD/J8/JAaZOHaYjJyIah0JCtDJdfYiyRCHBmoDpn55CREM7MmKtyD6zmrnd7sL+8paA1XF7qvaM2GETEU1kUqLlpWMvBWRdf3CyDnXtWjmX0GAjbl6UjuQoXwaINdiK++fdj4woX1mYc5LFRk5n//dL83cuNiIiOj+zZsGYnII5iXMQGxqr75b+U3nJkbiiVcvYdro92F3cpN9vd9txqPbQqBwyEQ0OgyZENGoXiM8cfgZ1tjp93+HKVjTZtNqeyZEW5CX5VkRLrdBZCbN8T7BlixR/HvjCj4iIAs2bB6Sm9nnXlJgpMLp7MOuDIwjucuCS3HgEBWn37S5pQpfDl13yYemH6HYN0E+KiIgG5Z2Cd1Qw2utETRuOV7ep70NMBtyyKB2JEb6ASXhIOB6Y/wBSIlIG/yLS+H3//v7vz8gA8n0NjYmIaJBksLxsGYwGI2YnzkZcaFxA4GSNCUhxatUxCuo7YLP7KmXsqtzFXoFEYxiDJkQ04mSi7cmDT6Kouci3z+nGp0WN+vZleQmqRIzXumnrfNtlZcDJk/2/wOzZQMp5XEgSEU0W8jl6ww1a1slZZOVyakQqLDY7Zn14DAnWEMxM0Wo0S1mBncW+z+hOZyc+Lvt4RA+diGiiOVJ3BAdqfJnTrV1ObD3hW1C0Oi8RceFajykRaY7EhvkbkBiWeH4vJIuNPL5Mlj5L2vqNu4mI6DzMmaP6QRmCDJiVOEtlb/sHTm6wd+mVNY5Utur31XfWo6SlZFQOmYjOjUETIhpRMtH2+IHHUd5WHhAwef1ApfoqJMMkJSpUv19qhKZHpmsbshJj8+b+X8BgAC6/fBjPgIhonEtM1AInfciOzoYxyIjomhZM3VOI5TlxepnEQxWtaOnUsgHFZxWfBayOJiKiwWvpbsFbp97St2Uy7d0jNSpILWYkR6ia+P69/SRgEmf1rWIelIoK4Pjx/u+fOVPLNCEiogsTHAwsWKC+lcDJzISZqu+U18WtHQg50w/wUGUr3J6egGwTIhqbGDQhohHTbm/Ho/sfRXVHtb6v0+HCy3srUN2qlXkxBxtVLxOvYEMw1kzxq8F/6pSWadKfRYu0RpZERDTwJNkll/TaLX2jsqKz1PcZxyqQU9GIRZlaY0tPTw8+Od0Q2JfqtK8vFRERDY70L3nl+CsBZQ53Fjfpjd8jQ4OxeoYvm0Qm4W6ddStiQmPO74UGs9ion15XRER0HpYs0b+VChlpEWn6dnhPD75g1xYeSXmuwvoO/b4TDSfQ2u3LPiGisYNBEyIasYDJX/f/VaWgenV0u/DingrUd9j1Rpe3LExHpOVMs3cAKzJWqAbFis0GvPtu/y8i5WYuu2wYz4KIaAKRrLycnF675SLPbNTKwUhj+BXxYbCGaM2BC+o6UN7UqT/2ZONJnGo8NYIHTUQ0vrk9brx24jWUtfoWAVU2d2FXSaM+2bZ+VjLMJl9T9lXZq3xZ1+ejsBAoGaD0i6yMjjvPzBUiIupNFm5Om6ZvJocnq4C317r2Dr0n68HyFn1/D3qwp2rPCB8sEQ0GgyZENGKr6Zq7mwNqNr+wtxzNZ0q9hJtNuHVxBhIifHWbpV7zxZkXaxt2O/D000Cz7zl6Wb4cCA8fxjMhIppAZIXxLbcAMYErl6WRpTSFV9+73Jh+pAwrcnwZgNtO1gWUFdhYsFFlnRAR0cAcbgeeOfwMDtUe0vdJedp3j1R759KwbEosUqN9ZWqzorJwSWbvzMDPnWUi5WRWrTr/5yUior5ddFFA9nZSWJK+nWF3YLbDqb6vbOlCw5mFo2Jv9V6OpYnGIAZNiGhEmlwWtxTr2002O17YU462Lm3QEBUarAImsWEhAXWb75h9B0KMIYDbDbzwAlBV1f+LWK3AihXDeyJERBNNaChw++3a5JkfucgLD9GC0Mmnq7HEakRSpFabudHmCFghJwHxHeU7RvjAiYjGF5vDhscOPIbC5kJ9n8vjwaajNWi3a5NladGhWDLFV2Y21BSKm/JvClitPGhHjgA1Nf3fv3QpEBFx/s9LRER9k0wTv8VIqRGp+veSRXhdt1aCUfiPpaXv69G6oyN4oEQ0GAyaENGwZ5lsL92ub9tdbry8t1LV8hQSKJGAiQROvGJDY7FhwQb1Va2Se+01rbzAQC69FDD7slSIiGiQkpOB664L2CUXdtNitRIDQT1Azv4SrM5LBIK0+z8rbtQ/x8VHpR+ppsZERNRbc1czHtn/CKraqwLGxK/tr0Rxg01tm00GrJst5VzOfNACuDbvWl+Z2vMhC462bh04YN5HXysiIvqcWdyLF+ubEeYItRjUa0FbB6JdWkP44zXtKtPQa3fV7hE+WCI6FwZNiGhYHas/hoZOX+Pgg+WtsDm0iTYpxXXLonRVmsu/JNeG+RsQbYnWAibSw+Tw4YFfJDMzIBWWiIjO05w5WnN4P/I5LJ/JIr6sAXnddsxO1S78HC4PPi7wfbY7PU42hSci6kNNR40KmDR1Nen7JOgsff0qmrVVxyajAVfNSQno67coZRFmJgR+Lg/a3r0Dl7SVgIlFyx4kIqIhJL2iTKY+s02Cg4JwvaNbfe9ye3Csuk2/r6KtApVtlSN8sEQ0EAZNiGjY9PT0BGSZyCTbvjLtAk4W0cnFoTUkcEDxwPwH1IoM5ZNPgJ07B36RhATgjju0VR1ERHTh1qzp9VmaE5MDY5DWjHjq3iJcPDUO5mBt+3hNm6rJ7HW84ThON50e4YMmIhrbJbmkh0mHo0Pf12xz4Pnd5Xo9e0uwETcvTENWXJj+mHhrPNZNW3dhLyp9AD/8sP/7IyO52IiIaLhI2XBZjHRGQliCVnL8jFWt7TB4POr7Q+Utas7Ei9kmRGMLZxmJaNjIBFqdrU7fPlTRoqeg5iVFIMbqGzxkRmXivnn3wRps1XYcOzZw80rvRd8992gDEyIi+nzi4oCFCwN2mU1mZEdnq++j6lqRUduCFTlx+v0fnKiDh03hiYj69E7BO2iz+1YS17R2a339urW+fhGWYNy2OAMpUb7G7xaTBbfNui1gku28SMDEppX86pM0fz+rjxUREQ0hv8C09KRKCU/Rt2PcHqzp1rJNWrqcKG3sDOgFK8F2IhobGDQhomEhKyY+LPGtcnO6PdhbeqZMQBBwkV+TS7kovHP2neoiUWlrA958c+AXkFrMEjCJuoA6z0RENOjJtLTIND2gPWVvEeamRCIxQushJSulD1W26o9t/P/s/Qd0XFd2J3r/UTkBhZwzwACCYM6KVKJSt6RWK7TUbndw+7nn2Z/97DUztpeXPTO2n9d4vZnxeGxPu91jd1B3K7ZyDiQlZoIRBAGQyDkVgEqoXPjWubfq3ioiiKKI/P+tVYv3VAEXBxJZde/ZZ+/tc+Bk7+dkCBIRrQID7gE0jqiNfQecPrxythe+2AaibJsRT+0skfr7xVn1Vvzm5t9USiN+YaOjwIkTs7+enQ1s2XJj5yYioutTUAAUFydV1EiJNwYE8OjIBHQROdvkQq/aE1BsPBKBEyJaGhg0IaJ50eJowZB3SBk39DqVm8S1uanItKpN23cX7YZZH9thF2/87lNLvkwjFvSeeQbIvcEbSiIimpnNBuzbl/SU2CG3JnONdGx1TqKwbQh3iqbwMcfaRjEZ61UlHOk+gkBYLjtDRLRafdLxSdJmooPNI9ImIqEo3Tytr1+mORPf2/Y9FKSqO5K/EHEN/c47QKzsy/WWYSQiovnNNhGZ26LsYlyhZgp3DssbSjscXrhj2YfxnrBEtDTwiomI5j3LRDQ5q49nmWB6lsnekr3qN4seJu3ts59c3Oh9/etASck8zJyIiKSgyTVlDzPMGcix5EjH5ec7UGwzYENBmtKv6nibQ/laX9iH+v76BZ40EdHS0e3sxtWxq8q4bcSDYbdfyTB5bGuR1MskTpRu+e7W70qBkxvW3Dz3NXRZGbB+/Y2fn4iIrl9tLZCenpS5HZeSkoKHxl2wBkPAFNA67En6/HAH3As+XSKajkETIrrpRCPgAc+AMr7U71J2IVfn2KSbxbgdhTvUPibDw5/fx+Thh4F16+Zp5kREBKMRuOOOaU9XZVZJWSfGySCq6ttxa3UWDDr5UvLygCtpl9yxnmMIRdQxEdFq2jz0cfvHyjg6NYVjCYFl0RdKp1VvwyszKvHtLd+GzWC78R8aCgHvvTf3pqMHHxQrdTf+M4iI6PpptcA99yhDu9GurnsAyDNpcUuX3P/16pAaNJnCFLNNiJYIBk2I6OZnmXQlZJlEo6jvHFPGuyrVHXQ6jQ77SmJlYMJh4Ne/lv+cTV3dtCbFREQ0D3bsADIykp4SfafiTeGLmvuwtb4dWwrlvlKR6JTatwqAN+RltgkRrUrt4+3ocnYp45ZBN8a8Qem4wG5CRbY1KWDybN2zUumWL+XIEcCp9peaZudOIC/vy/0MIiL64tkmRUVKdklivyqLQYe9DhcyJwPod/rg8avrIAyaEC0NDJoQ0U2/Uex19Srjy/0ueALyBUBltg25qaakLBNlV93Bg8Dg4OwnTkuTd8gREdHC7I4Tte+vUZxWDKNWXtwruDqAb3UPwhTbuNzQ54Q39n4vHO05ymwTIlp9WSYdapaJCCifaE/MMsmWFs4E0RT4QNUBaDVqma4bMj4OHD06++tWK7B//5f7GURE9MWJ9/v77lOG8VK3cdkWPfZ3yBU6rg6rJblYootoaWDQhIhu6o3ioc5DSTeKpzvVnce7r8kyuaXkFnnQ2QkcOzb3xcZjjwHmWLN4IiJamN1xhYVJT4nyXGXpZcq4uNeB3+8bhj4SmZZt4gl6cG7w3IJOmYhoMTWPNqPf3a+MG/udcPrk4HFppgUlmWpplo25G5FnuwnZH6Is11yZ2qI8jEndtERERAtI9JOKlRe3Gqyw6tVswyybAWscbpROeKaV6GoabVqU6RKRikETIrqpvUx6XD3KuCmhxn15lhV5aeoN27aCbUg1pgLBIPDaayLiMvuJ9+4FKirmd/JERDQ9YP3QQ3LWSYJ8W76SbSJsDwbx7KVOmEJhXOybUHpYCUe6jyAcnWMxj4hohYhORfFJxyfKOByJ4mTHWFKWSWIAen/FTcj+uHoVaGmZ/fXiYmDLli//c4iI6Mbde6/cW0pkm1hzkkp0mfVa7G8fRP/EZFKJrsbhxkWZKhGpGDQhonkpRyB6mSTeKO6qULNMtClaNcukvh6YmJj9xKL+8l13zdOsiYhoTqIO8xNPJAVOxGJfib1EGYtm8FumovjGxQ5oAuGkbBNXwIXzg+cXfNpERAvt0vAljEyOKOOLvWrJwsocG/Lt6uahrflbkWlWr41viOhhIjYezRX4ZvN3IqLFl50NbN8+Y4muTKsBBR4faocnWKKLaIlh0ISIbgrRrGzQo/YkaexTs0zKsqwoTFdLa23J3wK7yQ5Eo8CpU7OfVCzSfe1rgE43v5MnIqLZrV8PPPssYDAoTxXYCmDQqmPxHp8/6cd9rf3SQqEvGEnKNolE1TER0Uoj3uMOdhxUxsFwFKc7Y5uHUkSWSVbS5qHby27/cj9QZGr/6leA1zv712zbNq3EIhERLZI77pCupWcq0SXcf7UfvstqeUeW6CJafAyaENFNL0cQmlaOICtph/KtpbfKA1FOYK4sE1GDWWSaEBHR4qqsBH7zN5XeUqJxcUlacrZJbqoJG4cnsK7fgXPdarbJhH8Cx3uPS58VREQrUeNII8b96vueeA/0heRg8bq8VGTb1JKGO4t2ypuHbpQoafv668CgullpGvFefffdN/4ziIjo5rLZgFtvnbVElz4axe0nWmDoUDMWWaKLaHExaEJEX5ooveLwOdRxj1rTvjrXNq2XSYY5Qx6cPDn7SUWwZM+eeZw1ERF94VJd3/0ukJoqDQtTC6HX6JWXC9NNUhUYkW3SdWUI/tiCofBR+0f4Xyf/F070nkAgHFiU6RMRzZdzA+eUY/HedyYWOE5JScHeSnXzkMjQu630ti/3wz77DGj8nIU0UdrWojadJyKiJUD0ak1NnbFEl6CLTqH0rbPI6Jc/Q1iii2hxMWhCRF+KaPB7uPNw0o1ifayevVg8S7xR1Gl0ajmCoSGgs3P2E+/ezRrMRERLTU4O8L3vAZmZcrZJQm8To06LHJsRhkgUDzZ04mK8NE2M2IX9Xut7+O/H/7sURAlF5BKORETLmdPvROeEek17ZcgtlecSagvSkG5RSxnuKd4jlWa5YU1NwCdqdveMNmwAduy48Z9BRETzQ6+XmsLPVqJLcLr9qPu4ARl9YyzRRbQagib/+I//iPLycphMJuzevRun5uphAOCll17C+vXrpa+vq6vDO++8sxDTJKIbUN9fD2fAqYzPdo8jENtdvD4/DVkJ5Qh2Fe1CmjFNHpw4MftJxc64urp5nDUREd2w9HSlVJfINhEB8bh4/6o8rx9phy6joc+JcCS5LFcgEpD6nPzzmX+GNzhHPX4iomXg4tBFaWEr7vKASzneXJKuHJt0Juwr2XdjPyQSAa5eBV59de6vy88HHn2UG4+IiJYqsc6xY8eMJboEtz+McCCMuk8uSYETlugiWsFBkxdeeAF/+Id/iL/4i7/A2bNnsXnzZhw4cADDw8Mzfv2xY8fwjW98A9/73vdw7tw5PProo9Lj0qVL8z1VIvqCgpEgPuv6TBmLklznuuUeJRpNCvYkZJkYtUa1l8nkJNDQMPuJt2+Xd2EQEdHSZLcDX/2qFDApTitWnjbp5WwTYUvPKLqOXMWPj3TgaOsoPH65bGPc6OQo3mh5A1OiPj8R0TIk3r8uDF1QxuPeIAadfulY9DHJSU3oZVK4UwqcXDfR96++Hnj+eeC//lfgF7+QG8DPxmoFnn5aajRMRERLlAhqP/QQMm65Z8YSXYLDG4AmEsXGg5cw0t3MEl1EKzVo8t//+3/H97//fXznO9/Bhg0b8MMf/hAWiwX/+q//OuPX/8//+T9x//3349//+3+Pmpoa/OVf/iW2bduGf/iHf5jvqRLRFyRq03tD6i7hUx1jUhN4oa7QDrtZDXzsLdkLiz5WW/nMGSCcvHim0GiAnTvneeZERPSl1dRI79ciaJKYbVKaZUFa7P3/oZZe6D1+nO4cw78e7cC7lwbg9qtluVocLVK9ZiKi5ajP3ScFgOOaErJMNhTEsqtjNudvnv1E0ajc2F1UZHjlFeB//A/g7/4OeOstoLl57mBJ/Pr5ySflTEAiIlraUlJg//qz8GxaP2OJrjGv/J6vDUdRWd/KEl1EKzFoEgwGcebMGdxzjxpB1Wg00vj48eMzfo94PvHrBZGZMtvXE9Hi8IV8ONZzTBm7/CGpDIug06ZgV0Wm8poIluwt3quWFzh9eu46zGnJN5lERLREHTgAXUERStLU3iZ6rUZaLNxYZEeJSYdHmnuQMjWF6NQUWgbd+PXZPkSjanZJ4mcJEdFycmHwQlLWSdOgW9lIvC4/VXlNBJezLdnJ3+zxyBuJRAaJyCT54Q8BUZZaZGM71dK31+Whh4Cysi/52xAR0YJJSYHtsafQt65QGoryXIkluuK9sbJ6HWi9cnJRp0q0WqnbAufB6OgoIpEI8vLykp4X42axY2YGg4ODM369eH4mgUBAesS5XOruHiKaP0d7jsIflssPCCfbxxCJLYJtKcmA1ai+vYiyXEadUW1gOde/U9EAnoiIlgedDvj611Hyz6Nw+BxwBdT3d5tRh+pcG0rDUdh8k/iJPQ3+UATjk0G0jniwNi9VyTYZ8Y4k1XYmIlrqwtEwLg2rJaR7x31KJl1ZpjXpWnhzXizLRARDxLWweHR3i0jLl5/Irl1yaVsiIlpWNuTW4tCeNdJxUUu/VKKrb8KnlOgqsJuRMgVMnTyB8T3fRIY5Y5FnTLS6LEgj+Pn0N3/zN7Db7cqjpETd6UhE80PU1DzZezIpfTTe9NKg02BHmfphLhq/ixrOipNz7JIoLASK1dr4RES0DOTkQPPQw9KioGgMfy3xuXD/mBPfzVDLDpzpGk/qZXK8lxnFRLS8XHVchS8sL25dW5qrJqE0lzZFi43IBX76U7ns1nvvAV1dNydgUlEhZfwREdHyk2vNRY41F1f3rMFQRW5Sia5Rj1qWMb91AOc6mJlNtKKCJtnZ2dBqtRgaGkp6Xozz8/Nn/B7x/Bf5+j/5kz+B0+lUHj09PTfxNyCimXzW/RlCUbUm/Yl2h7L4JQImohFw3B1ld0CvjfU26esD5vo3umePXM+AiIiWly1boN20GWuz1mJ30W6pFI1YKEy0v6ET1bErzyGXX9lJFy9x4wl6FnrWREQ3LLEBvOjpd3XYowSKq3Ksymt1ukKYn3se6Oi4uROorZUbv2uT32uJiGj5qM2tldZAOrdWwGzQwWKQ39O9gbD0iPc2GTz0NiLRyCLPlmh1mdegicFgwPbt2/Hxxx8rz0WjUWm8d2+sv8E1xPOJXy98+OGHs3690WhEWlpa0oOI5s+4bxxn+s8o42G3H1eG5PrNoganKM0Vl2nOxJb8LdeXZWKzyTd/RES0/IiA91e+AmRmwqw3ozqzGntL9qIqo0r5En0ogt/pG4IuElWyTeIiU5GkDEYioqXMG/TiiuOKMm4d9kiBE0GUHtRp5dtsTTiCvcd6AJ8aJL5hBgOwfj3w8MPAH/wB8MQT4mb4y5+XiIgWzcbcjdKfvjQzHKXZyE0zKa+JTUZxWZda0TzUuChzJFqt5r081x/+4R/iX/7lX/DTn/4UTU1N+MEPfgCv14vvfOc70uvf+ta3pGyRuN///d/He++9h//23/6b1PfkP/2n/4T6+nr87u/+7nxPlYiuw+Guw9LiVtzxNodyLJq/i911cfvL90Orie1+E32JRGPL2ezcyZ1yRETLmVi8e/JJuc+JaHei0aHEXiIF0OMqw2F8tVvOKO4Y9cLhUfvS1ffXIxhRSxEQES1VopdJdEoOksxVmmtjfTdyPOrXfSEaDVBUBNx6K/DtbwP/8T/KmSU7dgDp6V/uFyAioiUh25KN8vRy6bhnQzGybQZoYtU3HN6g0jfWOBlE25E3FnWuRKvNvDaCF5566imMjIzgz//8z6Vm7lu2bJGCIvFm793d3dCIC8KYffv24Ze//CX+7M/+DH/6p3+KNWvW4LXXXsPGjXL0lYgWj2jUK0qoxPVP+KRFLyHVqENdkV15Lc+ap+yakGo2v/XW7LWbRbCEDSyJiJY/UU71oYeA119XnipJK8GYb0w6FjeB93oncXVwHA35GVK2yX21cglW0Rvg3MA57C7evWjTJyL6oqW5RPP37vFJ6dhu1qPQLu8Szr86gLq+MDRZ17lP0WSSe/uVlsoPETDRx0rcEhHRirW9YDs6JzrhzLPDl2NHtmMSw+6AFDAZ9QSQF8s+STl+Ao4HR5FlzV7sKROtCvMeNBFElshsmSKHDh2a9twTTzwhPYhoaTnYeRBTkAMfoofJ0dZR5bU9lVlKKQLhroq7kBLvT3L2LNDbO/uJRVBUlOciIqLlb+tWsSsGOHdOGqab0mEz2JSeJaLswIPt/Ri0mdA8lIJbqrNhNeqUhvA7i3ZCkzLvydBERDe8iajf3a+MmwfdiF0eS1km4vrXNubB2hNXkZ+7de6TpaYCNTXyo6xMzi4hIqJVpSanBpZWCyZDk+jdUIyS/nEpaCIMu9SgSeqYB41n3sXtt//GIs+YaHXgVRkRXRdxc3h55LIy7hqbVJr4ZlgMSaUIRANg0QxY4vUCH300+4lFlsltt83jzImIaME9+CAQyyoWC4il9lLlJa0mBUVWIx660oepSBTneiaU1yb8E0mfNURESznLRGwiSirNlZ8GbTCMDYcakaoxSwHjWbPyfuu3RC1r+f2yooIBEyKiVUqUtI33gh0uz4E+wwqrQd5Q5A2G4Yk1hBcmDr6LcFQdE9H84ZUZEV2XTzo+SbpBPJaQZbK3KgsaTSyrBMDdFXerWSYffDB388t9+4BsppcSEa0ooqTMU08pTYpzLDkw6dTGlvl2Ewq8Puzoc+Bi7wSCYbXm/9Huo9LnDBHRUiP6mFwcuqiMxU7gMa/ci6kw3Qy7WYf1R1tgcfmQZ8tTr4evLcMl+j+JUlwzvU5ERKuyRJcwpdWgr6YIuWnyNbQwnNAQPrWzH1eunFiUORKtNgyaENHnEvU1W8dalXHrsEdJF82xGbEmV91FV5lRiYqMitg3dgIX1N1404gmlrffPo8zJyKiRZOZCTz6qHQoFg5FFmKcQadBttWI2zuHYPb4canPqbw24BmQPneIiJZiA3hXQM0sudyvHu9IM6D20GXkdI0o/f1mJN4XxfsjERFRTJYlS1pLEfrXFiDDbpays4VRTxDhqLzBKGUK6PvwlUWdK9FqwaAJEX3ujrqP2tXyWlGRZdLmUMb7qrOTdtGJLBNJJAK8/fbcJxflCNjgkoho5RJ1+kVGIYACW4FUfiCuIN0EfTSKA1f7cK57XGp2Gfdxx8fMNiGiJUW8J33W9ZkyDoQjaBp0QR+J4M6uIXzzeJMSMMkwZcCoU3cJK8T74fr1CzltIiJaZtkmYaMeI+sKkWU1KGswInASp7lwEaOOnkWbJ9FqwaAJEc3peM9x9LrUJu7NA26MT8bKENjNKM+yKK+tz16PorSi2DceB0bkG8dZF9LWxvqeEBHRynXXXUBWFrQaLQpTC5WnLQYd0i16VI57UNwziitDbuU18blzfvD8Ik2YiGi6FkcLRibVa9sL3RNY1+vA/3X6Cr4y5oQhIc6bb8uffoLSUuDu2OYiIiKia4j1FKveKh33ihJddlNSia74hiJtOIK2j15atHkSrRYMmhDRrAbcA0m9TMSOuuPtiVkmWUqWSQpScFfFXfILjY3A4cOzn9hgAO6/fx5nTkRES4ZOB3zlK9JhUWqR9HkRJ4Lvwj1tAzjTNJjU2+TD9g/hC83RE4uIaJGyTCKBECrfOouHrvTCFgxL/UziREZdtuWafn1WK/D1rwNa7UJOm4iIlhGxwWhrwVbp2Ge3wF+VB6tRztKeDEaSGsJ7P/sEoaDa64SIbj4GTYhoRqFICK80vYLIVER57lDLCNz+kHRclmVFcYaaZVKXV4dcTSrwyivASy8BIfnrZnTnnYDdPr+/ABERLR3l5cC2bVK5msQd2KkmHdLNelhDYexs7sXJDjUwPxmaTArcExEtlo6JDvS5+5Sx9qNGFI/K/UxE+RSzXg2GiP5NYuFLITYYPf44kJa2sJMmIqJlW6JL6K0tQV5qYkN4ua+soPF4UP/RzxZ8fkSrCYMmRDSjD9o+wOjkqDIWZVOaBlxKA9+71uUqr2lSNLgrWgb80z8BDQ1znzgvD9i9e/4mTkRES9O990q7rUvsJUq2ichWLM+2SmuKmwfHkX6wCZYLXcjoG4PFOYkzPSelrEciosWUmGWi9QZgPdupjBOzTLQpWimjLim7+qmngEq5uS8REdFcMswZqM6slo4n8uwwlIkSt/J1s8MbQDiiZmWPfvwmzvWfXbS5Eq10ajdOIqKYltEWnO4/rYxFdsnHzcPK+M61ubBb5AbuKZEoHmgD0g++eX0nf+ghliYgIlqNzGbggQdgefllqf9VvF+WSa+VynT1Tfiws3cENscEavJTpYBKRKfBxYZx5P/g/0OKcYamykRE86zH2SNlmsRFj15BJCRnYou+TPHSKYLo26TXytfI2LxZ7mHCDBMiIvqC2SatY61SpuLAxlJkXx3GkMuP6BTQPurFmlybdJ2c6nDj08+eQ8aBTJSnly/2tIlWHGaaEFEST9CDN1reSKrh/H7jEAKxm8M1eamoKUiNv4jtp/uwtVetrTmnXbvkJphERLQ61dYCa9ZIN3YGrSFpp7bIYhRcvhDGvEHpWBuOwni+Ad3/8P8CQfk5IqKFdKT7iHKcEgjBdEbNMilKyDIRGXSiNBdKSoDvfx947DEGTIiI6Atbm7UWqQZ5zWW4PAeZ+XYl20RcI/eMqz3/Chu78cKlF+CYVEvcEtHNwaAJESUFSF5rfg3ekFd57kzXOHrHJ6Vjm1GHu9fnKs3f8zpHcdtEmtTw8nNt2cLm70REq534/HjoIeiMZlRlVClPixvB8iyrMu5yTCIittPF9DYeQ/Bn/8bACREtqCHPEFocLeoTJ9sw5QsqPZlSTbGsEgAFqQUwPv4k8N3vAkUJJbqIiIi+ANEXa2fRTul4SquBY1MJqnNtyuv9Ez6MuOX+Jtk9o8DYGH7Z8Ev4QmowhYi+PAZNiEhxbvCcnAYaM+zy41h7bMdCCnCgNl8qoyINo1O4p1sHu8n++eVYvv514NFHAQ3fcoiIVr30dGD/fuRac2E3qp8hGRa91BReCEai6EvYRReKhtB54TDw/PNAKLQo0yaiVZ5lEo7AeLJtxiwTobBuH7B1qxwcJiIi+hL2Fu9FpjlTOu5fV4i0NBPKsyzK6+2jHik7O2UKKGrqhcPnwIuNLyISlSuEENGXxxVMIpKID9dDnYeUcSgSxXuNg4jGdvpuL81ASab6IV03okF1NH3uk1ZXAz/4AbBx4/xNnIiIlp89e5BSWoo1WWtmbAovDLh88AXVG79+dz8mWy4BL7wAhK+zLCQR0Q0IR8P4qP0jXBq+pDwXFWW53H7p2GrQwR4L8goiCGy7ixnVRER0c4j+WE/VPiWVsw0b9Risykdemkl6CFNTwJUhN/yhCAquDkIXDEv9txLXdIjoy2HQhIgkDcMNcAVcyvhk+5hSUz431Yh9VdnKa4YUHe7vMytluqbR6+WG788+y1rOREQ0ncg8fPZZ2DbtQKG9WHk63hQ+fjPY6fBKpSPj+lx9QGsr8OKLQIQ76Yjo5hMB2h+d+ZGUZTKFKSXD2nBczcYuyjAlXQcXr90BVKklB4mIiL6sPFsevr7h69IGo94NxfIGoyyLErQPR6fQPOjGVCCEgpZ+6bljPccw7htf5JkTrQwMmhCRtCAlPlzjxG6FC70TSp35+zcWKI3HhK9F18HikvuczOjee4GdO1megIiIZmcyAU8/jZL/8ne48pV9aLp1PTq2VgC7KhGyGqUvcfpC8ATUrJJh7zCiU1HgyhXgpZcYOCGim551/eOzP5beaxKvk8fqO6Ad8yjB3QyLQXk9y5yFtLsf5HUvERHNS1P4A9UH4LNb4CjOkgIna3JtMMfKpou1m9YRD4qa+5ASiSIyFUF9f/1iT5toRWDQhIikPiaJN4cNfU6pPJewoSANmVb1xrA2qwbrLg3OfjKRWbJt2/xOmIiIVgyTPQt7bn0aQ9X56NpchrZb16P9sV3wGHTS68OxRpfx3iaOyVivreZmBk6I6KaYDE3iJ+d/IgVNpMBsjDcQxpvn+4FDzcpzhenJWSYlFZuBDRsWfM5ERLQ67C7ajR2FO9BTK2dn67QarMtPhS62sXViMoTImBc53aNKr1pRZpKIvhwGTYgIR3uOKsfhaBTnu+UsE1FmfltZhvKaRW/BV4IVSHHEFqxmcuutgE5e6CIiIroedbl1KLWXKuPCqmy8vK1KCpw4PEFEYv21hAHPgPqNInDCHidE9CWITJKXGl9Cj6sn6fmWQTd+fqILkdYhFHh80nM5qUbk2ORMOCHdlI70ux6USw4SERHNAxGof6D6AWTWbIMn06ZkPSb2nB1y+VHc2CPVtxUbAS6PXF7EGROtDLy6I1rlRN3mzonOpBtEb1BefKrOtiWVH9hdsBOmYydnPxmzTIiI6AZvBvcW71XGeq0G2RU5+FVdBdw6LRxeNdtkzDeGQFgdS6W6GDghohvU4miRmufG+YIRvN0wgHcvDUhlT/b2jECvTcHavFRU5diSskzKimqBLVsWaeZERLRaaDVaPLnxKbi3bVSey7YZlTLqo54gLMNO2IflPrWn+04v2lyJVgoGTYhWuaPdR5N22p3pUpuGbS9Xs0z0Gj12jVuAubJMbruNWSZERHTDNZuteqsyri1Mg8NqwvN15ej1J5fgGvRcUyby6lXgV78CQqGFmi4RrRAne9UNQaI87Yv1Pbg65JbG+e5JbAsFsak4PalcrVCcVoyM/Q/w2peIiBaESWfCprufQSC2sVUETETgRIhOTWHUHZCzTQApe3LIM7So8yVa7hg0IVrFxn3jSWmbHaNejHmD0nFRuhkFdrPy2ta8zTAfOzX7yex2YOvW+Z0wERGt6B10m/I2KeP8NJO0SDliM+Ofq4vhStjdLYImItCfpK0N+OUvgaD8OUZE9HnEglJilknzoBvjk0Gl9Ml3jXKGich+i0tBCiozKlGVvwHYsWNR5k1ERKvT+rxajG+sVsZ5aWrJyCFXANndozC55ZKSp/uZbUL0ZTBoQrSKHe89jimoi05JWSYJvUzEzeGtE3ZmmRAR0bzaWqAG30UJHJFtIgylmvGL2nKEjPLnjC/sgzPgnH6Cjg7gxReBqNrImYhoNqf61A1BIhCr9PUD8FhdAbY65YyTOJvBhu2F26UeTCm7dgEm04LOl4iIVjexySj/zocR0cnLuRaDDqmm2PVxKAKXL4Tipj5pfHHoYnJJWyL6Qhg0IVqlRHOwcwPnlPGg04++CXlHguhjUpGtlkjZkLkeaSfVr50xy4T1nImI6EvKteaiKLVIGa/PT1P6BxzxRXDuvs0IGfUzl+iKa20Fzs3xmUVEFLsWvjB0QRn3jvuU/kki23qDZxL6QFjZQFRmL8O2gm1S4ERq/L5796LNnYiIVq+tlbdgqCpfGeelmZIawhdcGYAuGEYwEpQCJ0R0Yxg0IVqlRGOwUFSt/X6maywpyySxyeUdY6nAmPr6NMwyISKiecg2sRp1qMiSg/jeQBiNUxqcv38LgiY9hr3DCEdnaf7+8ceAT94IQEQ0k7MDZ5PeQ873qFkmW0rSkdeu1oLfkr8FFRkV0KTEbp8rK4HU1IWdMBERkdizarLDeMsdyliUs9XFGsKPe4OI+ENS4ESo76+fXtKWiK4LgyZEq1AoEkoqRzAxGUTriEdJ71xfoN4EVliLkXumafaTsZcJERHdRBtzN0KnUQPx8RJdwuV+F7wZVilw4jfpMOIdmfkkk5PAJ58sxHSJaBmKTkWlDURxTl8I7aMeJVi7Lt2E7B65LG2WOUtaoEqySe2/REREtNA2b7wbjuIs6ViTkoLcVDnbRIRHRtx+FDX1IiU6hSHvkNQUnoi+OAZNiFahhuEGeENeZXy2ewLxzQdiZ51OlByI2T9iBdzJ9ZyT3H47oNXO63yJiGj1MOlM2JCzQRmXZ1thMcifM22jHviCEUymy4GTnqjai2ua+npgcJYSXkS0qjWPNif1RbrQo14Lby62I7/XAU1E7o1UnFac/M16PbB+/YLOl4iIKFFVRhVc22qVcW5iQ3h3AEaPH9ldI0q2CRF9cQyaEK1CiXUtxeLT5QH5plGv1WBTsbqTLl+bjpKLXbOfKDOTvUyIiOimE6Vw4rSaFNQUyNkm0egUmgdd0vGk3YKTW3OlvgQzEiug77wj/0lElOBk70nlOBiO4lK/U3m/2VhkR16bXJrLqrci3ZSe/M01NYDBsLATJiIiSiDKqa/dfh88GXIZW5Nei3SzXvlcm5gMoaSxR7oObhxuhDeobpolouvDoAnRKuMJetA1oQZCWobcCEfkBaWNhXbpwzbuniELUvz+2U92113MMiEiopuuIr0iaaFyQyxoIjT2u5TazI6SLLRlqj24punuBhoa5neyRLSsDHoG0eVUr4VFIFYsMAnr8lKRHo4gfVDOYitKK0rq8yepq1vYCRMREc1gS8FW9NeWzdoQPm3UjbQRFyJTEZwfPL9IsyRavhg0IVplmkaaMCVVupRdHVJLb9UWqYtSmWEDKluGZz9Rfj5Qq6aDEhER3SxikTIx2yTLZkR+7EZw1BPAiDsQ/0K8tyYFjqDawHmaDz8EArGvJ6JVLzHLRARgpzeAH0bKFKTeSnnWvORvtlqBqqqFnC4REdGMrAYrcnbvR9AsZz+mW/Qw6ORl3glfCP5QBCWNvdL4dP9pqZ8XEV0/Bk2IVpnGkUbl2BMIo8/pk44zLAZkWdVSA3f0aKAJhWc/0d13S4tVRERE80EETVKgfs7UFqrlIy/2qr0IvGkmvJ/tgjswS/8t0Zfr00/nd7JEtCyI8iSit19cz5gPY96gdFyUbkZumgm57XJprgJbAbSaazKqN24EEnr/ERERLabtpbvRt75I2XSUF2sIH882ye4eQW7HMCb8E1KZLiK6frziI1rFpblaRZZJLOlkbV6qUn7A5PGjqn2OXbulpUB19bzPl4iIVi9Rnqsio0IZr823QaeVP6dE/4FLfWrgpG1jIerdLfCF5I0A05w4AYyOzv+kiWhJOztwFuGouinoXI9chiueZWId9yJ1zKOU5ppm06aFmSgREdF1KEkrQXjbFkS18vJuTqpR2ds67A4gEoliw+HLWH+kGcfbDiklbono8zFoQrSKXB65nFyaa1i+KRTW5NmU401NY7Bp1R0K09xzD7NMiIho3m3N36ocG3Va7KvKVsYfNw+jY1T+HIsYdGjaVoKLQxcRjMi7xpNEIsCvfw0EZ3iNiFaFUCSEU32nlPHEZBAdDrkxrs2oQ1WOTckyybZkw6S75lo4MxMoLFzYSRMREX1eSdvKfRiskstJivJc2TajdByJTmHYJZeozW8dRMkv30bXpaOLOl+i5YRBE6JVFjSZqTRXplUtzWWZ8KKmPzT7SdaskTNNiIiI5llNTg0yzZnKeGtJOraWZEjHYqfc2w0DGIh9lg1X5GIgy4CGoQZEopHpJ+vvB154AQjPUXqSiFas+v56uINqGT+pl0lsL9HmknRoUoC8DrmfX3Fa8cxZJtw0RERES8zm/M0YrVMrgRTa1aD/oNOPaCy7xOzxY+J//w+5bC0zTog+F4MmRKuEqPU+W2muNblqaa7Shm7kmtWdvDP2MiEiIloAohHzQ2seUnqbiM+q29dmSyUlhXBkCq+f75d7EqSkoHX3GrhCbjmzcqabwbY24NVXgSgbYRKtJiID7Uj3EWXsDYSlMn+CVpOCjYV22IecUolaq94Ku1HtoaRgaS4iIlqCDFoDNm7cj4HqfGlsNuiQYdFLx8FIFA6Pmmk9MemA+93XgXfeWbT5Ei0XDJoQrRJNo02zluZaGyvNZfAFUdHrhdVgnfkkovllvvxBTEREtBCqMqtwf/X9ylgETu6rzUNxhkUa+0MRvHauT1oE9WTa0L+uCA6fAyOTIzOfsLFRvlHkDjuiVUOU5fKG5FJcwunOMSnoKmwqSofZoE3KMolvJlIUF8vluYiIiJagXUW70L6vBoOxwElBull5rX/Cl7SZqMfVA5w+DQwMLMpciZYLBk2IVonG4cbZS3PFal4WtvQjb7YsE40G2L9/YSZLRESUYHfxbtxaeqsy1mk0+MrmAqVms8sfkgInwXAU7dsqMGm3SNmVsza7rK8HDh5cqOkT0SIKhAM42q3WcHf7Q2jok7NMdFoNdpRnICUSRU7nsLRbN9eaO/0kdXULOWUiIqIvxGawYXPxdjTfuh6X79gAc6pJ6tcl+EIRTPjUEuwj3hH4w37g+PFFnDHR0segCdEqKc3V7eyetTSXoIlEUdjchxxLzuxZJllZCzJfIiKia91dcTc2521Oagz/6NYipJrk8gMjngDO94xLTeEv3rsJY/pwUv+CaUQ95xMnFmLqRLSITvSegC8sbxYSTnWMSc1xhc3FdliNOmQMjEMfCKPUXgqtRjt945C4DiYiIlrC9hbvlUraij5/9Y/shKFabg4vDEyon4OiAkmPswe4dAlwuRZptkRLH4MmRKuwNNeVGUpz5XYMIyNimL0015498z9RIiKiWYhyOV9d91VUZVQpz4kddI9sKUSs5Qku9bmk7BK/zYQL921Cb2hs7pO+9x7Q2TnPMyeixeIL+XC8V91J6/SF0DggLxAZdBrsKJNLbuV0jcKoNaIwtXD6SaqqAOss18dERERLRJYlC+uz10vHAZsJfV/fhbPri6WVIJc/DI8/rHztgGcAoVAAOHVqEWdMtLQxaEK02kpz+cPov7Y019QUii73Isc6S5ZJSQlQOMNNJBER0QISO8CfrH0yaWFTlOgqy7QqZbp6xuXPuMl0Kz7em4ew7ppd49f64AP2NyFaoUTARCpBEnOqw4FoLMtka4ncyyQlOoXs7lEpy0STMsPtcW3tQk6ZiIjoht1SeotynKLVIHLHejTmpkvj+DqQEJ2Kot/dL5esDaqN4olIxaAJ0SorzXV1eHppLvuQE6ljntlLczHLhIiIlgijzohvbPwGtClqMGRjYZpyfCnWq0BwZJnRcvdmQDtH4KS/H2htnb8JE9GimAxNSqW54iYmg7g8IJfsM+o02FqaIR2nD04gNaJFQWrB9JOI0lzr1i3cpImIiL6E4rRilNnLlHFNfiouVchlusa8QfhDEeW1XlcvIpNe4Pz5RZkr0VLHoAnRKivNdXWG0lzFTX2w6q0zl+ay24GamoWZLBER0XVINaYq5QeEyhwbzHo5MNI24oEvqN4QnjCOAF/7mqjvNfsJDx9mtgnRCiOavwcj6u7ZE+1jUvk+YVtpBkyx94zsrhFpgWnGLJPKSsBsXrhJExER3cRsE51Wg8INhehKl9d6Bpxq9mUoGsKQd0ju8ReNLspciZYyBk2IVltpronk0lwmjx/Z3SOzl+bauVPeZUdERLSEbCvYphxrNSmoKZCzTUSD5+ZBtallj6sHI+W5wB13zH6y3l6gvX1+J0xEC2bcN45TfWqd9jFvAM1D8vuCCJbEs0xEsLR0YBJ5NrVZbhJuHCIiomVmTeaapCoim4rtOFuaKx2PuP0IRdQAyaBnEBgbA65cWZS5Ei1lXAklWsFcAdf00lxILs1V1NSHlCnMXJpLrwe2b1+YyRIREX0BlRmVSDfJNZqFjUWJJbrkhvBxZwfOAnv3zr1jnNkmRCumLNdzF5+TdtDGHW8fU8rT7ijLkJrAC/ZhF9YY8mfOMhHZaevVjDYiIqLlICUlBftK9iljsVnAsrEYDrMRoq3XqCeQtGYkPjdx7NgizZZo6WLQhGgFOz94Prk011ByaS5tKIKCqwOzl+batIklCYiIaMneEG7N36qMM61GFNrlzyyHN4BBl1p+4MLQBYRFKR4ROJlNdzfQ2Tm/kyaieRWKhPCrhl/B4XMoz4ks66tD8sYhi0GLzSVqsLVqMIA86yxZJmVlgHWG62MiIqIlri6vDqmGVHVcko7TRVnS8YhbDZoIQ54h+Tq4r2/B50m0lDFoQrRCRaeiONN/RhmPe4PodyaX5sprG4QuGJ69NBcbwBMR0RK2JX8LUqD2KqlNyDZp7FNLdIkddC2jLcCuXYDJNHe2CREt22vfXzf9WirJl9j8/c0L/cp4R3km9NrYLfDUFHY6bVIAdkYbNsz7nImIiOaDTqPDjsIdylisAY2sKcCkXovJYATeQDipRJeUoX38+CLNlmhpYtCEaIVqG2uDM+BUxg196nFtoR2acATFl3ul8YyluaqqgJxZgilERERLgN1kR3VmtTJem5eqlN1pGXIjGI4ml+gSAZO5NgSITBNmmxAtO2Kx573W99A02qQ8NxkM49VzffCFItK4OMOMzcVqlknlpAn5kTkyqtnPhIiIlrHN+ZuTxmuL03GuQM42SSzRFYgEMOGfAC5fBpzquhHRasegCdEKVd9frxyHI1FcHnApzXJr81Kx4dMmWFw+KWVzxtJcu3cv5HSJiIi+dEN4sYN8XZ5cikA0ubwSK8kjtI+3yzeE4vPNaJz9hJ9+Or8TJqKb7njv8aTG7+Lf/+vn++H0yX1NsqwGPLypULoOjrvLnz97lklJCZCqljUhIiJabkTvv/L0cmW8Lj8VF4qzEElJwagnmNT/T2oIH40CJ04s0myJlh4GTYhWINHM64rjijJuHfHAH9tlV51jRd25dmR3j0rjwtTC6SfIygLWrFm4CRMREd2gtVlrpd5ccRuL7MrxpX51t5zo8XVu4Jzcq2uujQHt7XJdZyJaFppHm/FB2wfKOBqdwjsNAxiK9TWyGXV4dGuR1Ag3bmveFhT3qiX8pmFpLiIiWiGlbOPE52BuYToac9OlzQUTsY0FwujkKCLRCFBfD3i9izRboqWFQROiFUiUIElsAN/Qqy4afc3lQVGLXNtZm6JFrjV3+gnEYtJsO++IiIiWEK1Gm3RDmJtqRLZNziQZdPqTyg+cGzwn9T2QSnQZDLOflL1NiJYFf9iPt668pYzFrtmDLcPoGJUXfES5PhEwSTXpla+pzKjEw/adwPj47CdmaS4iIloBarJroNeon4EbCtJwqjh7WkP4yFQEI5MjQCgEHDmyKHMlWlVBk7GxMTz77LNIS0tDeno6vve978Hj8cz5PXfeeaeUJp34+J3f+Z35nCbRiiIWg6S67TFj3gD6JuQG8PsmPNh1pU95Lc+WJy02JRF9TLappU6IiIiWuq0FW5Vjce2YmG2S2BBeZGKKnl+wWOSm8LNpawP61ebRRLQ0nek/A09Qvb+s7xpX+vhpNCn4yqZCJYgq5Fnz8GTtk9A2t8x+0sJCIF3tfUJERLRcGXVGbMhRsyfLsqzwplvRkWHD+GRQKuWeVKJLOH0acKslbolWq3kNmoiASWNjIz788EO89dZb+PTTT/Hbv/3bn/t93//+9zEwMKA8/vZv/3Y+p0m0olx1XJUWheIaYqUHKsbceLZ/OKl287TSXFYr8I1vADrdwk2YiIjoS8q2ZKPMXqaM1+enKr0LmgZdCIsazTHKxoK9ewG9uvNuGlGegIiWLFFG5GTfSWXs8odwrM2hjO+ryUNJpkUZ2412PLvpWZh0JqBJbRg/DUtzERHRCm0IL66P1+en4WhpLkRLk1FvUHlN9P4TGZwIh5ltQjSfQZOmpia89957+PGPf4zdu3fj1ltvxf/6X/8Lzz//PPo/Z+eexWJBfn6+8hCZKkR0fc4MnEluAD/oQo7Hh8ebe5BnVUuRpBnTYDPY1G8UZUqefRbIzFzoKRMREd3UhvCiZnN1rvwZJ3p6tQ2rtZlbHC3yznSxUWDnztlP2NAA+OWeCES09FweuZy0Ueh894TS1HZ7WQbWF6j3kCJQIgIm4voXIyPyYzYszUVERCtIRXqFtHEgrqYwFb12K9ozbBhNKNElDHmG1M1Drjl6fxGtAvMWNDl+/LhUkmvHjh3Kc/fccw80Gg1OnlR3BM3kF7/4BbKzs7Fx40b8yZ/8CSYnJ+drmkQritPvlDJN4q4OexAIhvHA1T7km3TQadV/8gW2AvUbNRrgiSfkcgRERETLkCg9YNSqZXg2FiaU6EpoCC/KWF4YvKBmm4jPwJmIms4XL87jjInoRongyPHe48o4EI7gUuzfudhFK4ImcaKH39Mbn1b7+F26NPuJ8/KArKx5nDkREdHCEtVGNuVtUsa5qSapdOVnZXnwBMLwBSNJJbqkDQiRCPDpp4s0Y6IVHjQZHBxEbm5yg2mdTofMzEzptdk888wzeO6553Dw4EEpYPLzn/8c3/zmN2f9+kAgAJfLlfQgWq1magC/btSFQrcPuWnqQpJOo0tuAP/VrwJr1iz0dImIiG4avVaPurw6ZVycYYbdLJff6h6bhNMXSv68FDeEqanA+vWzn1TssovtXCeipaPb2Y1+t1q9oLHfhWBYLsNXk58Gi0EtNXtv1b0oTy+XBw4HcOzY7CdmaS4iIlrhJbriDeEH0ixozUzFiEfNNvGFfWoW57lzwMTEQk+VaPkGTf74j/94WqP2ax/Nzc03PCHR8+TAgQOoq6uTeqL87Gc/w6uvvoo20ZBzBn/zN38Du92uPEpKSm74ZxOtpAbwDk8AAxOTuL1zCGa9FqlGXVITTKUB/F13AVu2LMaUiYiI5q1El7gmrZ0l28Thc6DH1SMPErKipxkeBnpiX0dES0Zilkk0OiWV5orbWqo2cTfrzNhesD3+hcBrr8lZZLNhaS4iIlqh/f+K04qV8br8VOlaWWSbiBJd8fKWSQ3hmW1Cq9wXDpr80R/9kdSvZK5HZWWl1ItkWNxoJgiHwxgbG5Neu16iH4rQ2to64+siG8XpdCqPHt7Y0irVMtoCd9CtjBv6nKgbGkeWLyBlmczYAH77duC22xZjukRERDedKD2Zb1OvMzcUpimff5f7XdLiapyy0aCiYu5yPGwIT7SkjPnGpOveuLYRj9QEXijLsiLLpmZX7yzaKWWhSU6cmDsIWlAA5OTM48yJiIgWz5Z8dbOs1ahDeZYFQ6lmNGTY4PKFldeGvENqtsn588DY2GJMl2j5BU1ycnKwfv36OR8GgwF79+7FxMQEzpxRm1J/8skniEajSiDkepwX/0Cla9iE/gsJjEaj1Cg+8UG02rgDbrxz9R1lHIpE0dI3gVu7hiHWinISbh5FA0yrwQrYbMCBA2Ir7iLNmoiI6OYSAZLEbBObUYeKLKt0LGo2d42pDeEbhxvhD/vlz0GxiWA2jY0A++sRLRknek8klaM92z2uHG9LyDIRvUx2Fu6UB6Lx+yefzH1iXhcTEdEKVptTK5VqTyzRJRwpzcWwx59UxeTS8CUEwgE5S/Pw4UWZL9GK7WlSU1OD+++/H9///vdx6tQpHD16FL/7u7+Lp59+GoWxZtN9fX1SkEW8LogSXH/5l38pBVo6Ozvxxhtv4Fvf+hZuv/12bNqkNi0iIlU4GsYLjS8kZZk0DbhQ2zOKtEAIWVZjUgN4Jcvk9tsBg2ExpkxERDRv6nLrkm4INxapG2ou9am970LRkHRDKBFlKnXq9yQRpQlim3iIaHH5Qj6cGzinjPsnfBhwygs9oqltaaZFeU30OEo1pqplucLqLtppxKa+8ljfEyIiohXIrDdjXdY6ZVyRY4VRr8WIzYwjZrNU4j0uGAlK18kigIKLF4HR0UWaNdEKDJoIv/jFL6SgyN13340HH3wQt956K370ox8pr4dCIbS0tGAytntPZKh89NFHuO+++6TvE6XAHn/8cbz55pvzOU2iZUvUnXzrylvodfUqzw27/TjRNIi93SPSOO+aBvA5lhwgPX3uXbVERETL+IZwQ47azLk8ywprrCl0x6gX3kB4eokui2XuBtBsCE+0JJwZOCMFPOPOJWSZiF4mieVo9xTvkQ+OHhW79WY/aWYmcPfd8zRjIiKipVmiS6fRYHdFppJt0nrNdbLYmCvKYU6JzQfis5RolZllS93NkZmZiV/+8pezvl5eXp7UbEg0cT/MtC+i63ay7yTOD6q7XyeDYbx5YQBbu0dhDYWlHXepJv30BvD79wPaWCN4IiKiFUaU6Lo4dFE61mhSpN4mpzvHEJ2akrIxd5TLN4j97n4MuAdQkFogN4QXO+lmImo5d3QAlZUL+WsQUYJINIKTvSeVsdMXQuuIRzq2GHRSU9u4yoxKub/R0BBw6NDsJxVBlkceYfY1ERGtClWZVVJT+NFJOXNka0k6hl0BNA8Cl7Lt0A+5UFdkhz5WrUT0N7EZbCi5qJPXkdgSgVaRec00IaL50z7ejvdb31fGkegU3r44gLDbh129I1Jjr8psuY67oEnRoDitGMjNBerqFmnWRERE86/MXoZMsxwYEWoLE0p09buSNu2cG4yV+ikpkT8jZ8OG8ESLqnGkMakc7fnuCSUBbHOxXdoxG7e3eK9alkuU2JvNnj1AWdm8zpuIiGipEOtCD1Q/oIxFhuY9NbnISzNJ2SaBcBRXhtzSRqO4tvE2ONzDwEl14wLRasCgCdEyNOYbw0uNLyU1wTx8ZRh9Ez7s6RmBDcC6vFRpd21ceXq5VLIEd90ltt0u0syJiIgWviF8usWAkgy518HEZFD6vIwTGSmhSEjecS6yTWbT3Ay41QVbIlo4ItB5tFstDRIIR3Cp3ykdazUp2FSsNoAXpWirM6uBpiZgYGD2k2ZlydfFREREqyzb5K4K9fNP9MD9yuZCBNOtaMqxw+0Po3PUm7TJqGm0CYETRwG/2jCeaKXjyinRMiMacb18+WX4wgkLPr0TuNjrRGoghJ0DY1ibZ4NBp0m6eSxJKwGKi4F1auMvIiKilVyzWeymi6tNaAjfmNAQ3h/24/LIZXmwaROgV8taJhG71s+pDaiJaOE0jzZLJULiLvU5EYpEpeMNBWkwG7RJvUyk3ianTs1+QvH6Y4/N/u+diIhoBbut9DbU5tQqY5tRJwVO6kvlrOthdwBDLrUxfDgaRvtgEzOvaVVh0IRomWkYapBqsMf1jftwqEVu+n5L1zDWZFqS+piI+pPrs9fLN4+iyWVCg0wiIqKVSnz+rc1aq4yrc2ww6uWF1SvDbvhDasmejzs+htPvBEymuUtYnjkjB0+IaMGIna6Hu9S+l+FIFGe6JpTx1tIM5diit2BT3iZgeBjo6pr9pPv2yZuJiIiIViGxPvTI+kdQYCtQnsu3m1C3qxwdGaJ2CdDp8MLtDymvD3uHEThyGAirzeKJVjIGTYiW2U3jid4Tylgs+Lzd0C/Vm8yYDOCA34ecVKPyul6jx8bcjXLz96oqoKJikWZORES08BJLdInSAzWxRtGiD1jzoFpqyxVw4bmLz8EX8s1dosvpBNra5nfSRJSkxdGCQc+gMm7oc2IyKC/YVOfakGlVm7jvLNwJvVYPnD49+wmtVuDOO+d30kREREucQWvA0xufhlWv9sKtKUiDd3eVMu4dVyuciPLwA4NXgYsXF3yuRIuBQROiZaTP3YcBz0BSaYLJoLxT9muOCZRnmJXXUpCC2txamHQm+QmRZUJERLSKiL4GaUa1LFdtoV05Pto6imGXWpd5ZHIEv7r0K4TycoDCwtlPevbs/E2YiKZnmXQmZ5nUd44r490VWUmbhXYW7QQCAeDChdlPum0by3IREREBsJvseGrjU9CmqGUuK/dUwhnLNnH6QvDF1pwEUfUkeuQzZl7TqsCgCdEycqrvVNJN5MU+uQFmntuHe0JBuQRXzJqsNUg3xZpibtgw9wIQERHRCiR6mojeJnEiG3NNnpxtIvohvHa+H85JtexAt7MbrzS9gui2rbOftKUF8Hjmd+JEJLniuDJtw5A3lmVSlWNLyrDeUbhDKssnBUyCwZlPKK6Vt2+f/4kTEREtE6X2Ujy09iFlrNFo4ErINhlK2GQUjAQx2tMiXw8TrXAMmhAtE96gF43Djcq40zEJl09e6HlsdDypAaaoS1mYWqjeHO7fv/ATJiIiWgK2F2yXdqDHHdiQhwK7nJkpSvy8er5PKfUTbzj9nqkXU3M1hD9/fv4nTrTKiQ1ChzoPJWWZnO5KyDKpzFSOdRodbim9RXzT3KW51q4F0mObioiIiEiyNX+ruoYEIG17OVwWufzliCcglbaN63P1AUePyp+5RCsYgyZEy8TZgbOITKlpkRd65AaYJU4vdiXsphNluSoyEnqXbNkC5OQs7GSJiIiWUNmB28tuT+pt8siWQmTEbgQnJoN4/Xy/lHkSd2r0Ai7naeYu0cUbRaJ5dXXsanKWSb8L3oCaZZKbapqeZSKav4+MzH7SXbvmd9JERETLkKhasqtI/Yw0GnUY3lwuHYuAyagnoLzmDDjhaW8GursXZa5EC4VBE6JlIDoVRX1/vTIWpUQ6x7zSgs2B3hFkWNTdsDnWHKmhl0SrZaNLIiJa9W4tvRW1ObXK2KTX4rGtRbAadUrZgbcvDiTtonvfPooJv7xBYZqxMaCzc/4nTrRKTcsyiYpeJmPKeHfFNVkmJbfIg7myTDIzgcrKeZoxERHR8iaulS16izI27amEVy9fKw86/dJnc1K2yZEjizJPooXCoAnRMnDVcVWK5sdd7JsApoCqMTe2RiNJvUyKUovUb9y5E7CrTW+JiIhWI/E5+VjNYyhPl3fMCWlmvRQ4Mejky+FOhxcfNw0pN4SubBvOTw1IGxdmdObMwkyeaJVmmYhms3GNfS54Ylkmldk25KaZkkrwpRpTAbcbaGqa/aTiujjhmpmIiIhUeq0e2wq2KePsDCu61hRIx75QBC6/Ws52yDuEUPNloKdnUeZKtBAYNCFaZg3gRT3nxn6XlGVyZ/cwctPUBphWvRVpxjR5YDAAt922GNMlIiJacsRu9Kc3Po08a57yXLbNiK9sKoRWIy+kXh5wyZ+xQkoKrpanSc3hZyQWZycnF2TuRKuJCFwe7jyclGVyOiHLZM81vUxEJplSNk/0HJqJ6FEkStYSERHRrES5S1HyXbGvGiGNZlpDeLGpaNAzCHzwAUvW0orFoAnREueYdKBtvE0Ztwy54Q9FsGHEiZqpKPRa9Z9xUVqRmnWydy9gtS7GlImIiJYkk86EZzc9C7tRzcIsybTgvg35yvizqyNK34Shylx0uHvgDXqnnywSAS5cWJiJE60i4rq3z92njEUgU80ysc6cZSL+PdarpWyn2bgRMJvnd+JERETLXLopHeuy1ynjsuIMNJVkS8dj3iACYbXPrsgInRJ9TZqbF2WuRPONQROiJe50/+mknXcXepzQRKO4rWsIeQlZJmKnnbJ7VtwUiqAJERERJREZmd/c9E2YdeoC6rr8VKzPlzM1A+EoDl+RG0mHjXoMlWfjiuNKUh1nBRvCE910x3qOJfcy6UjoZVKZpRxrU7S4pTTWy6SlRS7PNRs2gCciIrouiQ3hRTb25B4122TYpTaE94V9GPONAR99JG9eIFphGDQhWsKCkSDOD55XxkOuAIbdftQNTaA4EoEt1sBWyLflQ6vRygNRlsuk7sIjIiIiVY41B9+o+4a04SDu9rXZUoN44cqQGx2jcnbJwJoCqa/YgGdg+olGRljLmegmGvYOo328XRm3DLrhjmWZVGRbkZeYZVK4XS1Le0otZTtNcTFQINdkJyIiorlVpFcg2yJnlwjV1TmoL85WSnRFExvCi8xQh4O9/mhFYtCEaAlrGGqAP6zWjbzQOyFlmezrGZZuGhMbwBemFsoHaWlyo0siIiKaVam9FHeU3aGMLQYdbl+To4w/aR5GMByFM8+OSbtFWsgNhNXddUnZJkR0U5zoPaEci+yuc90TynhXRWZSlonSy0SUBunsnP2kvC4mIiK6bmKdKTHbRGzWHd1WAa9eh3B0Cg5PUHlNZJr4Qj7g8GEgMMN1MtEyxqAJ0RIlbhQTS3P5ghFp5+vmwXFkBsPIsqmluTJMGbDoLfLgjjvkZpdEREQ0p30l+5BrzVXGNQWpUo8Twe0P4Xi7Q2oIL7JNwtEwWsdap5+ksRHwqxsciOjGiN5BF4cuKuPecR9GPfICTL7dhAK7WlJvW8E2Ncvk0KHZT2qxALW18zhrIiKilWdz3mYYtAZlvKEyC0fKcqc1hBd6Xb2A1wscPbrg8ySaTwyaEC1RHRMdGPQMKuNL/U4gHMG+nhHkphql2pKJDeAlGRnAli2LMV0iIqJlR5S1/MraryAFKcrOurvX5yqfsed7xqUbw8GqPEQ1KRiZHMHo5GjySUIh4P332duE6Euq76+XgpNx57rHleOtJRnKsfj3urck1ruvqwtoV8t5TbNtG6BTy/ARERHR5zPqjNiSr64tFdpN6KvOx5jZCE8gLG0uihMlbEOREHD8OOByLdKMiW4+Bk2IlkETzEh0Chd7ndg6MIbUQCipnrNRa0SWOUvNMtHG+poQERHR5yqxl2BnkVq+J91iwJ5Ys2kRB/no8hACRj1GS+VazlcdVxGdiiaf5Ny5uXe7E9GcRLAkMcN6fDKIdofcVyjVqMOaXJvy2tqstcg0x0p1HTw4+0kNBmBvLLhCREREX8jOQvX6WGws2lSWiYMV+dJ4wKlmm4jr4n53v7yRaK7PZaJlhkEToiVoyDOUVALk6pAbPm8Ae3pGkG7RK41q471MpN4mWVnApk2LNGMiIqLl6+6Ku9VSP2JzemkGsmNlMEc8AZzrGcfAWrl3WCASSMoEVYhazvX1CzdpohWkcbgRnqBHGZ8XvUxiyVubS9KhSciwVrJMOjrm7mWyaxdgtc7fpImIiFawHGuO1BQ+bn1+KvoKMtCbZsGYNwh/KJLUEF7aVHT+PDAwsEgzJrq5GDQhWoKO9hxN6m1S3zWObQMO2IJhFCbUcxblCQpSC+TBnXcCGv6TJiIiupESBA+ueVAZi/Jc99TkiQ9ayYn2MfRnpcKdKe9273H2SJ/P07z9NtDcvGDzJloJxL+l473HlbFYhGkckMt76LQabCyyK6/l2/JRZi+T08Dmyu4SWSb79s3vxImIiFZB/7848Zm8pTQdn1TKa1CDCdkmwUhQ2vwrfT7/4heAw7Eo8yW6mbjCSrTEOP1OXBq+pIy7xybhmpiUskysRh1STbqkG0epOVduLptcEhERfQnrs9ejJrtGGYvG03WF8mJtKBLF+V4nmm9dj7BeC1/YJ/U3mUbcKL78MtDdvZBTJ1rWupxdyX38+pwIR+QSeBsK0pIyrPcU75EzrEWWiehnMpvdu+Um8ERERHTDqjOrkWPJUcZ1RekYzrChKceOYXdA+bwWelyxTUUeD/DTnwITE4s0a6Kbg0EToiXmRO+JpFrpZ7rGsb3fAUsoIjXfkm4UE+qwS5hlQkRE9KU9sOYBqVdY3M7yTGhS1Kbw42kWNO7fKDWF75romjnbJBwGfvUrYGSGoAoRzXjtGxeNTuFCj7rIsrUkXTm2GWzYmLvx87NMjEZmmRAREd0EYv1JKYsJwGzQorYgDYfL8yBawQ+5Asprk6FJjPnG5IFoCC8CJ2wMT8sYV1mJlhBfyIczA2eU8bDLj6FhN3b1jsKk0yDTalBey7Zkw6K3APn5QI26M5aIiIhujOhrcmvprerYrJfqNwuBcBQNfRMYL8xA82018Ia86o3htXw+4MUXgYha65mIphP/hlpGW5Rx64gH7kBYOq7ItiIj4dpXNKTVaXRAe/vc2Vx79gBmtZwtERER3bhNeZukjQtxW0vTMWEx4nRRFgZdfkQTNhGJbBPF+Djws58BXu9CT5nopmDQhGgJqe+vl2pBJmaZiICJORxBQbo5OcskLZZlsn+/CP8vxnSJiIhWnJ1FO5OyTXaUZyq9Tc50TUhlCIYrctG6s0oqKzRjtokgMk3Onl2gWRMtT8d6jmEq3vEdwLnuceV4a2mGciyCJTsKd8hZJgcPzn5Ck0kOmhAREdFNIT6DdxXtUsbpFgOqc2z4tDwPzXYrRj1qtsmEfwLugFv95tFROXAiNhQRLTMMmhAtEeFoGCf7Tipjpy+EgR45aKLTpCDHZkzaCWs32YHCQmDt2kWaMRER0cpj0pmSbgxFlqe4MRQmg2FcjjWo7q0tQWNVGpwB5+wn++wzuVwXEU1ztPuotGEobsDpw0CsqWy2zYiSDDVbpC63DlaDFbh8Gejtnf2kzDIhIiK66cTGBb1Gr4y3l2UgqtHg1ZpSnNLokjYRJWWbCENDwPPPixqcCzlloi+NQROiJeLi0EV4gp6knXa3dQxCH41KzWg1GjWbpNReKh8wy4SIiOimE82mE28MRW+TuPrOcanvgtC2swoXcua4ARR1nOvVRWEikh3vOY4P2z9UxmKxRfzbSuxlkphhLf5NSrtV33hj9pMyy4SIiGheiNLwWwu2KuMCuxmFdjPCWg1+Wl2Edou6YWHEOwJ/WN4EoejqAs6fX8gpE31pDJoQLQHiRlGUJ4jzBSMYbRlE3dC41IA2L82U9GGVZc4CSkqA6upFmjEREdHKJXa0byvYpozF53BZllU6dvlDaBmKlR1IScGhLelwWnVzZ5sE1dKbRKudaPz+ftv7SdfBn10dRduIvHnIrNdiXayXkFCZUYk8fbq8SzWglgCZZu9eOXBCREREN53YwJASr1kLYFuZXEYzpNXin8ry4c6UM7NF2c1e1wxZoZ9+yn5/tKwwaEK0BFxxXMHo5Kgyvtgzjjuu9kvHualG6LWapF4m0s67e+9llgkREdE82VeyD5oU9fN3Z7naX6G+c0wpQzCl1eB4lVpCcxrR/PL06fmdLNEycbL3JN5rfU8Zi39HR1pHcTahl8kda3OgS7j23VO0G3jtNTnTZDaiJBezTIiIiOZNpjkTNTk1yrgyxyr1NxHaPEF8tHcdvOnyJqMB90BSv17JxARw4cLCTproS2DQhGgJON57XDkWDWa957pR4vRKY1GaK86gNSDPlgfU1gKlsRJdREREdNOJ3mGb8zYr46J0s1SKQHB4g2gfkT+nhRMZHrhjr83o6NG5d8gTrQKn+07j3dZ3kwImR1sdONOlBkzursnD+oI0ZZxvy8eapmGgqWnukx84ABjnCF4SERHRTdlUFCeqomwtTVfGxwc9uHBgM/xWIyJTEXQ7u2fOwGa2CS0TDJoQLbJh7zA6JzqVcUuvE3uv9knHWVYDTHqt8lpRahE0Oj1wzz2LMlciIqLV5JbSW5QyBCLLc1eFmm1yKiHbRGR+nlxjmf1Ek5PAyZPzPl+ipUpc675z9Z3k0rRtDtR3jSnP3b0+D3VFdmWsTdHiccMWpHzyydwn37ED2LJlfiZOREREiuK0YrXHLoANBWlSWU3hyrAb/ZEpdG4pl8Z9rr7pvU3Gx4GLFxd20kQ3iEEToiWw6y5OWnw50YoMn5zGWJBuTrpxLEwtlEsPZKiLNkRERDQ/si3Z2JCzQRmXZ1mRbZN3sw+5/OgZ9ymvHbONYTJbXfCd5tgxwKd+PdFqEY6G8UbLG1KN8/j17vF2B053qgGT/etzUVes/vsRpfGeKroPOe8eFt8w+8mLi4H775/fX4CIiIhmzDYRpeR3xEvYTkHaEDFUmQefzSR97ndNdM2cbRKNLuCMiW4MgyZEiygQDuDCkFrTcXTIjdoWOcvEZtRJj7iC1ALo09KB225blLkSERGtRreW3qoci2yTneWZyjhx0TeKKZxaI9dxnpHfDxxXy3ESrRZHuo9gzKf+W2noc+JUR0LAZF0uNhenJwVMvpF1J9a++TmBRqsVePJJQKdeLxMREdH8Wpu1FjmWHGUsPsOtsbWr9hEP+j0BdG0uk8aDnkFMhiaTTzA2xmwTWhYYNCFaRCJgktgcS3+oCaawXN8xP03tZRIvzYX9+wFT8vNEREQ0f8SmhTWZa5Txmjwb0s166bhnbBIDTnVR94hpCP787NlPduKEXKqLaJVwTDrwWddnytgTCEuN3+PuXJuDzSXJAZNnNVuw5vXPAKdz9hNrNHLAJE3tf0JERETzT3xW76/Yr4x1Wg12V6ibiq7NNkksR6/49FNmm9CSx6AJ0SIRpQmU0lxTU8g+14mCy73SUKdJQabNoHxtljkL5qIyYNu2xZouERHRqnVb2W1JTS93JGWbqE2sw1MRnFk3xyJuMAgcOTJ/EyVaYte6b199W2oGG/fplREEw/IiSW1hGraUqiVnNUjBt0aLUfXxWSAUmvvk990HlMm7WImIiGhh1WTXyOXjY2oL7bAnbCrqcvrRvalM6ePrCXqmZ5s0NCzspIm+IAZNiBaJiLaPTI4gJTqF6tNtSD90OVbpGchNM0mLMnHSh5G4ORS76oiIiGhBiYaXZXZ1gXZ9QapSQlOUIRj1BJTXPtX2IlhcMPvJREP4UXWnPdFKdWn4EtrH25Vxl8OLK0Nu6dik1+LWarW0hy4YwXdaLChv6P78E9fVAbt3z8+kiYiI6HOJkrV3VdyljLWaFOytzFLGR1tHMVCZC79NrpTSMd4x/STMNqEljiuwRIvkVN8paMIRbDjUiMLGHgy51AWXvDS5yaxg1pmRuWk3UF29SDMlIiKixN4mOo0G28rUHfL1Cb1NAtEgzq1Xyw1NE4kA7747d3NromXOH/bj/bb3lXE4EsUnzcPK+LY12TAbtNKxLhjGN+r9KBnwfv6JCwqAr3xFrNbMz8SJiIjoulRlVKE8vVwZr81PRZZVXssacvnRNuZDV12pNHb4HHD6rym76XAAly4t7KSJvgAGTYgWgSvgQltfAza/fwE53aMY9wYRisgR9gyLAUadfBMpFNiLkHLgwCLOloiIiKozq5Fvy1fGdUV2abe80DLkgXNSLSd0OKUL4XL5JnFGbW1AS8v8TphoEX3c/nFSKQ5Rxs7pk/+NFKWbsaFALWO388wgKgLmzz9pVRXwrW8BBrWELRERES2NbBNRLWVfdVZSb5P+qjz4Y4EUkX0anboms+STT+TytURLEIMmRIvg3JVPseXtM7CPuJQofFxiA3jRYCv3a78B5KjlC4iIiGhxbgxvK1V7m+i1GmyNNbAWvRvqu9Rsk8nQJC5sypt7N/x7731+3waiZajP1Yf6/nplPOYNKv8+xILKXetzpX9Pgn3IiT3OVOmad0579wLPPguYryO4QkRERAtWwnZt1lplXJltVda0HN4Amke8Sm8TZ8CJC4MXEAirVVYwMQF88MHCT5zoOjBoQrTAIuEQ/L/4KSwunzSeDIbh8oelY7FjNc0s10ifSgGmHnwQplvuWNT5EhERkawmpwZZZnUH3eaSdCl4IlwecMEbkD/PhcOBFkS2b5v9ZOImkU3haYURO0jfuvIWpmKd+kRA8WDzMCJReSzK2mXZYmVop6ZwZ1sEdpN99hNqtcCjjwIi65q9/YiIiJacxGwTsSnilupsZXyi3YHeSjXbRAROzgycwYR/Qj1BfT3Q2rqwkya6DrzyJFpgHR+9DOPgiDK+tpeJ+JCJ6DS4tH8j1t7/7CLNkoiIiK4ldsMn9jYRmx02FcsLvmJR+Gz3eFIpzosbsgCLZfYTHj0KjKvfQ7TcnR04iwHPgDJuGXKjZ3xSOk4z6bG7IlN5rXhwEht9qbOfzGYDvv1tYMuW+Z00ERER3TBRvnZj7kZlXJJpkR6CKM35ZuMgrm4oUV4PRoI4P3ge3c5uaXOF5I03AJ+8sZhoqWDQhGgBTbndGH/7ZWUcjkYx4g4o5QpyUo0ImvQ4f2ALLBu3oiC1YBFnS0RERNfalLcJdqO6M35baQa0GrnU0MVeJ/yhiPLaZyP1CN55++wnC4flMl1EK6T5+ycdn6jjUASfXlE3Cu1fn6NkZqVEp3B/pw56rX7mk+n1wG/9FlCiLrIQERHR0rS/fH9Sqc1bq7OlNS6hY9SL/28siJ605I1EosfJ5ZHLcuDE5eI1MS05DJoQLRDxQXD+Z38Lr9uhPDfqDiIai6xn2wwI2a049+A2uHPSsLNo5yLOloiIiGai1Wixr2SfMrYadagtlJtahyJRnO9Ryw2M+cbwM20DQvm5s59QNIS/enV+J020AA53Hpb6+cSd6hjDZFAOIlbl2FCRbVNe2zqYgiK/Ye4eJulyzyAiIiJa2rIsWdiSr2aG5qWZ8MiWQikrW3AGwvhPRgv6J0NqdgmAkckRtI23yYMLF4CmpoWfPNEsGDQhWiAnjzwP5+nPlLEIlgwmNIBPK0rH2Qe3wpdmhlVvxYacDYs0UyIiIprLtoJtsOjV3XLbyzKVxtYiaCL6lcX1uvvwQpkboaj63DQvvwwcPMiyBLRsjU6O4mTfSWU87g0qAUSRiXXH2hzlNV1kCnd1a5R/M9OIkna33DL/kyYiIqKb2tskzShvJBLKsqx4Znep2hjeaMCPbDa0j3gRjfU6E3pdvRj3xcrVvvUW4PUu/OSJZsCgCdECONb5GcZe/rkyFpH11mGPUsIj1aRD/+01CJkNymKMTiM3hCciIqKlRZQU2lu8VxnbzXqsz5N7M4jP9lfO9CY1hW81+/CR3YFQJDTzCQMB4PBh4O/+DvjkE2BS3a1PtBy83/q+1AQ+7tOrI0o29Y6yDKSZ1TJcBxwZsPnVr53mjjsAY6xZPBERES0LNoMN39j4DRi16me46Gf2xI4SbC6Ws0fPF2TilF6PywOupIyTjokOeSwCJiJwkvAa0WJh0IRonp3pP4PmN/4VFqe8ACI+CNpHvRjzBqWx2GSn31yKseIseYwU7CjcsahzJiIiormJMpqJN4V7q7NgM8obHhzeIF4+0wtPQuDk7IYMnBlvlJpfzkoETz79VA6eiMyT0CxBFqIlpHWsFVfH1BJznQ6vVL9cEP8mdpSrzd8zpkzY2jrHDtKMDGAHr4OJiIiWI9GX9/vbv48ci5phKjJO96/Pxf0b86HTafHO2mKMRqaU/r6CK+CCwxcrZS9KdDU2Lsb0iZIwaEI0jxqGGvDRmZdQfqFLCZh0OSaVDwcRMKksSofjTrUUV11eHewmtcEsERERLT0mnQl7S/Ym7aT7+vZipJrkHfXjk0G8XN8Dt18OfIhs0obaHJwfPI/wXKW6hGBQzjz54Q+BLvkagmgpikQjeK9VbdwaiU4lNX8XjWDjzd+Fh4fs0AXnCAbedRegleufExER0fKTbcmWAid1uXVJz6/PT8OjWwrhNurxUVUBesd9SWW6OsZj2SbCBx9w8xAtOgZNiOZJn6sPrzb9GtUnr0ITkUsQiA+FxD4m1Tk2OG9Zi4BV3qkq6qMfqDqwaHMmIiKi63db6W0osBUo43SLQQqcxEsRTfhCeOlML5w++aavf10hBu1atIy2XN8PcDiAf/s34O235SwUoiXmdP9pqZ9JXEPvhJJNnW83YV2+XLZOqIrYUXlV/dppCgqAjRvnd8JEREQ07wxaA75W8zU8uOZBaFPUzRDFGRZUZFtxKTcdl9JtGHKr62PekBfD3mF54HIBR48uxtSJ5j9o8td//dfYt28fLBYL0tPl2nWfR0QU//zP/xwFBQUwm8245557cPWqmupNtFyIms6vt7yOzO4RZPXKKYb9Ez70TagNXitzrDCWZKKvplj5UHm27llYDdZFmzcRERFdP61Gi2fqnpF21CX2N3liezHSY4ETly8kleqamAxiSpOCS3dtxBV7WG14eT1Onwb+6Z+A1tb5+DWIbshkaBKHOg8pY18wguMdY8r4zrW5SrN3vT+Er9S7kBKR+/nN6N575TRsIiIiWvbENcCuol349pZvJwVO9lZlSZ/3768pRKsnJGWpJvY2UXqkHTkCOJ2LMXWi+Q2aBINBPPHEE/jBD35w3d/zt3/7t/j7v/97/PCHP8TJkydhtVpx4MAB+P1q5JFoOWgcbsSoaxBVp+TFDVGOq3tMbepalmVBbqoJV/aulRZQRNN3sehSlFa0iLMmIiKiLyrVmCrdDOZac9XnRKmuHSXIsBiksSjR9eaFfqkEQdBixIX7NuG9fbmYKim5/h8kbhqfew545x0gOkcTbaIFcrDjIPxh9T7tRLsDgZAcFKkpSJMyTQSRcf1AvRPpvjmaulZVAZWV8z9pIiIiWlAl9hJsL9yujMVa2Nq8VHgNerxfnocBp7q5WFxXDHoG5UE4DHz44WJMmWh+gyb/+T//Z/w//8//g7q65Bp2c2WZ/N3f/R3+7M/+DI888gg2bdqEn/3sZ+jv78drr702X9MkuulEVPxw12EUXe6F2eOXouZdDrXhZUmGGQV2MwbWFMCVa5ci7k/VPoXy9PJFnTcRERHdGJvBht/c/JvIt+Wrzxl1UqmuTKtBaQ7fOOCSX0xJQYs9hMaHdwG/+ZtA+Re4Bjh1Cnj//Zv+OxB9EQPuAdT31yvjUU8AF/vk3aCih8kt1bHsq6kpbDjeilq/WqZrRvfcM6/zJSIiosVze9nt0GvkLGxhb2WWlIkiynSdmdIgHCtpL3ROdEo90ySXLrG/Hy2aJdPTpKOjA4ODg1JJrji73Y7du3fj+PHjizo3oi/i0vAlOB39KLsov7GLHibhWLqhWDgpTDcjZNSjfXslUpAi1Xlck7VmkWdNREREX4YorykCJ4WphepzRh3uqclTxifaHAgl3BR+3PEJImWlwLe/LT8K1e+d08mTcskuokUgNru9c/UdTGFKGR++MqI0b91ZnikFDYWyC13YOWqEUSf375vRzp1yPxMiIiJasRuMdhfvVsYZVgNqC9LkMl3l+Uml7IORIPrd/eo3v/ces6xpdQdNRMBEyMtTbyzj4/hrMwkEAnC5XEkPokXNMuk8jIrzndCFIlKWyUDCm39JhkWKprdvq0DIpMdX130Vtbm1izpnIiIiujnMejO+tflbKEpVy22KzRJVOTbp2BsM41y32stk3D+u7tYX2Sa/9VvAffcBOnnBeU7vvsseJ7QoLgxdQI+rRxm3DnvQEytDm2bSY1up3M8yt30INZcGUZwm9++bkfh7f//98z9pIiIiWlS3lNwCk04u3SnsrsyEVpOC/jQLPraYEQyrgZEuZxfC0bA8GBgAzp9fjCnTKveFgiZ//Md/LC34zvVobm7GQvqbv/kbKSMl/ij5IrWhiW6yhqEG+Pu6UHBFjooPOtUsk2ybEWaDFp4MKwbXFGBfyT5sLdi6yDMmIiKim0ncDD5R+0RSw0tRqijeELu+a1xqmB0nSnoGwgF5oNEA+/YB/+7ffX7JLrHj7qWXgJGRefpNiKYTtcY/bFPri4vMqU+vqH8Hb1+bA51Wg7RhJ9YfaUZlRiW0GvXfQpKsLODJJwHtLK8TERHRitpcJAIniT0ANxXLGy0+Kc1Dpzt2PSzamUTD6HGqGzTw8ccA+13TUg6a/NEf/RGamprmfFTeYAO//Hy5BvTQ0FDS82Icf20mf/InfwKn06k8enoS/lERLXiWySFUn25DypR4k4+iP6GhVVG6WfqzbWc19Hojbi29dRFnS0RERPMl3ZSOXUW7lLEoz1lbmCYdi110JzscymuToUkc7TmafILMTLnXycMPA3q1/vM0gQDwy18CXrV3GtF8N3/3htS/b6c6xuAOyDtBy7KsqMqxQu8PofZQIzL0acix5Mx8IrMZeOYZwGJZqKkTERHRIhMluqx6qzLeWZ4h9ULzGPV4LT0N/pC6sUhktSobi8S17uuvA273YkybVqkvFDTJycnB+vXr53wYDHKzyy+qoqJCCo58LKKHMaLU1smTJ7F3795Zv89oNCItLS3pQbQYLg5dRMrVVmQMjCtZJqI8V2KWyWhJFsYLM7C7aDcset4kEhERrVS3ld2WVIJANLwUO/AF0TDbORlSXjvecxzuwDU3gSIzZccO4PHH5ePZjI8DL7wAhGMlDIjmyZBnCKf6TinjcW8QZ2Ll5kR5jTvX5UD8TV17rAWmyZDUsy+eYZVEZJY89ZScaUJERESrhkFrkJrCx1kMOmwrzZCOTxZl4XIgkrQxuX28Xf3mpibg7/8e+OQTZp3Q8u5p0t3djfPnz0t/RiIR6Vg8PB6P8jUiyPLqq69Kx+KC+g/+4A/wV3/1V3jjjTfQ0NCAb33rWygsLMSjjz46X9MkuinEm/ln7YdQdVquLS6yTAac6pt4UYYZUykpaNtRBaPWKJXmIiIiopVLbI5IzCoVTeHjvR6i0SkcaxtVXgtFQzjUeWjmE61fD9x779w/rLsbePNN0ZH7Js2eKJlo8v721beTmr8fujIi/V0WxIJHhsWAgquDyOkeRVFakdT0dUZf+crnl58jIiKiFWl74XYpKztuW1k6THotIhoNns/OgMevbgQa8g7BFUjoXR0KAZ9+KgdPjh/npiFankGTP//zP8fWrVvxF3/xF1KgRByLR319rNklgJaWFqmkVtx/+A//Ab/3e7+H3/7t38bOnTul73vvvfdgMqm79IiWoguDF2A+fwkWl2/mLBO9Fn01RfDZLVI6oqjlSERERCubyCxNM6pZ0NvLMqRrAqFlyI0hl7rB4uzAWYx4Z+lPIrKut22b+4dduACcO3eTZk6UrGG4Ad3ObmXcNuJFl0Mu05Vq1GFXRSbMzklUn2qFXqNHefosQZHbbgO2bFmoaRMREdESo9PocGf5ncrYqNNiT6WcfXolKw1HplKkzRlxbWNtSWPJ5CTw/vvAT3/KrBNafkGTn/zkJ9Jf6msfd96p/sMQ429/+9vKWGSb/Jf/8l8wODgIv9+Pjz76CGvXrp2vKRLdFJFoBMdaPkLZhU5pHI4kZ5kUZ5gRMurQublMyjLZWzx7uTkiIiJaOfRaPfaX70+6KRSLy3FHWkeVm0Cxg//V5lel64ppRImjhx76/N35774LjKoZLEQ3gzfoxQdtHyQ1fz98TfN3UaC55rMmaMMRVGVWSQsi06xZA9x110JNm4iIiJaoTXmbkvqe1RXZpR6A4pr3lYJsjCaUsXUGnBiZnGVjkehr/fzzzLam5RU0IVpNvUwyj5yBPtYEc9ClZpnk2IxSmmHnlgqEjXrsKd7DLBMiIqJVZHP+ZuRac5XxpuJ02M1yc/eesUl0OiaV1/rd/TjYeXDmE11PHwhRsuDll1mqgG4af9iP5y4+B09QLbFc3zkOt19ezCAPtvAAAEgrSURBVCjNtKA614byC11IG3VLmVV51rzpJ7JagUcembs/DxEREa0KmhQNDlQfUMaiN9pta+QgyojNjB/nZiGccMkgepuIsvgz6uxktjXNCwZNiL4E8aZ94fSbKGgdnJZlkhLrZeK1W9C/tkBqBru3hFkmREREq+2m8J7Ke5JuCvdVZSvjjy4PwRdUs0uOdh9NbnqZyGwGnnlG/nM2g4PARx/dpNnTahaKhPDLhl9iwDOQ1Py9vmtMOtakiObvuUgfdqG0oUt6bm3W2pmbv4uAiW2WHidERES06lRnVmNN5hplXJFtRVmWVTo+mZGKH29dg5HSbGUTR4+zZ/aTffABkNBDm+hmYNCE6EtoGbqM7IMnlXFilkl2qpxl0razClNajZRlIgInREREtLqIG8Iye5kyXptnk3boC95gGB9eHkou09X0KiZDagZKEpFp8uijc//AEyeAq1dv4m9Aq40oE/dC4wtJfUxEY9ZXz/Up17pbS9NR7vWh5tPLSJkCClMLZ27+vnMnwJLLREREdI37qu6TNhjF3b4mW9l88bHDh1O3rMfZB7fCmWuXrkmCkeDMJxJ9Td57b6GmTasEgyZEN0gsblx59znYxuUmmOIGUjSAjytKN8NRnIWx4iwpWCKCJkRERLT6iJu/e6vuTRofqM1XmsK3j3pwsc+pvO4OuvFGyxvTm17GrVsH7N499w997TXA7b5JvwGttkzqV5peQetYq/KcyIb69bleuOJlubTAd3uHse2dczB5A1Lz94r0iukny84G7rtvIadPREREy0SONQc7Cnco4yybUepvEu+hdqxtFK5cO849sAXn79qAq0G5ysuMLl3ipiG6qRg0IbpBXd0NsB09rYxH3AGEYzvvsqwG6M16XN0jpxqK5u/MMiEiIlq9itOKsbtIDXRYjTrcu0Ht/fDplRE4PAFl3DzajPr++tlPeO+9QN4MvSPivF45cMLGmPQFiEDdmy1v4vLIZeW5QDgiZZiMeYPQRaK4d3AM/7WrH0VdalPWyoxK6LVyr56kPjyPPw7or3meiIiIKObO8juT1sv2VmbBoJOXqxsHXBh2+aWeaI6SLBystWLCPzH7yd5+GwjOko1C9AUxaEJ0g7pf+BG0YbkGeXRqCv1On/JaYboZXZvK4LeZYNAasKto1yLOlIiIiJYCkW2S2CS7MseGzcXpSsbqu5cGpf5oce+3vY9h7/DMJ9PpgK9/fe4F6bY24Pjxm/gb0Ep3sPMgzg2qzVTFLs83zvdj2O1HvnsS/+5CG77n8yKxq06mORP5tvzpJ7vrLqCgYGEmTkRERMuSRW/BHWV3KGOzQYvdFVnyYAo4fGVEyb4eLc3CZ1bH7GW6JiaAQ4cWZN608jFoQnQDhs8fQ/TyJWU85gkiGJYXOdLNeqTkpqGntkQai1RDs36Ohq1ERES0Kug0Ojy+4XHpz7jb1mQjy2qUjkc9ARxpHVVeC0fDePnyy7PfGObkAPffP/cP/eQTwOG4Sb8BrWSdE534rOszZSwCeW9dHEDfhA+5Hh++dakLe9Llnn1xqYZUbMjZML35e3k5sHfvQk6fiIiIlimx0TjLHAuUANhSki6trQniOuRyv0t5rWF7MRomrs5exlZsGBoYmP9J04rHoAnRFxUKoe+Ff1GG4o1avIknZplc2bNGav6uTdFKpbmIiIiIhFxrLg5UHVDGOq0GD9TlQ6uRF53P90ygY9SjvC4yTebsb7JtG1BTM/sPDIeBN99kmS6aUyAcwOvNr2NKbOmMXd++3ziILocXtkAITzd1Y1OuFRaDLmln6Ka8TUlBQElhIfDEE4CGt5pERET0+bQardQUXh2n4La1Ocr4k5ZhqSS+ELQYcWZjhrTZY0bimldc+0bV7G2iG8ErWaIvIhiE54WfwznQoTw14QvBF5LLdNmMOkxuKMJEQYY03py/GanG1EWbLhERES09Igt1XdY6ZZxtM+L2NeqN4QeNQ3DHGm4Ll4Yv4XjvLGW2xA7/r34VsMtNM2fU2QmcPXuTZk8r0QdtH2DcP66ML/W5cGXILfUweaKpGzvSTdJ1bpyoPb45b3NyHxNRKu7OO4HvfAewWhf6VyAiIqJlbG3WWlSkVyjjqhyb0hReZL++fbFf6rMm9K8twEXDOByTs2RT9/ezRC19aQyaEF0vURvxX/8V/Sc/Snq6PyHLJCfHhvZd1dJxClJwS8ktCz5NIiIiWtpEKaNH1j8ilTaK21RsR2W2vNAsNmOIskjhhB1yH7Z9iI5xddNGErMZ+NrX5ADKbD78EHC7b+JvQStF61grzgycUcbOyRA+vToi7dR8uKUXt5m1SIuVyBBEvz4RMDHq5LJyko0bgd/9XTlowsbvREREdAPXxw+seUCq2BJ3x9oc5KaalA3LHzYOydnXKSm4sm8dLo+1wB/2z16idniW3oBE14FBE6LrIXZo/uhHCPZ1Y9AzqDwtdoG6/WHp2KzXYuK2dQiaDdK4JqcGWRa1JiMRERFRYmmjx2oekzZZxG8U792QjzSTvOA85PLjUMuI8vWibNJLl1+C0++c+YRlZcDOnbP/QL8feOedm/xb0HLnC/mkslxxYiHig8uDUgP42zuHcHvAj0yrfG0r6DV6KWCi9OsTjd6/+13g61+fO9uJiIiI6DrK2N5bdW9SGduHNhXAqJOXr1tHPDjXPSEdezOsaN9QgItDF6V1ukhUzkJRRCLAa6/JfxLdAAZNiD7P6dPAz34GTE6i19WL6FR0xiwTU0U2BtcVKWNmmRAREdFcKjMqcUuper1gNmjx8KYCpb/JpT4nGvrUIMlkaBIvNL4gNYif0d13A2lps//Apib5QRTzbuu7cAfVDCSxECF69dUNjmP/gANlWWqZLU2KRuphYjXEnquqAr7/faC0dDGmTkRERCvQ7qLd2JCzQRnbzXocqM1XxkdaR5W1uK7NZRg1T6F5tFkqZSuyZ71Bb3KZriNHFvYXoBWDQROi2YiUv3ffBd5+W2ogFYwE0efqU16eDIYxPhmrN27QYeL+zZiKLXKIOoxFaWoAhYiIiGgm+8v3o9SuLjrnpplwT02eMj7UMowBp7pJo9/dj7euvJW0iUNhNAIPPzz3DxTZJiLrhFa9ppEmaXdm3Jg3gKNtoygb9+D+q32ozLEpAbx4kE/p1ZeTw2bvREREND9lbNc9giyzWrlFXJPsKM+UjqNTU3i7YUBak4tqNWi5ZT2mUiBtKhIbnU/3n5b6AQbCcuN4HD4MDAws1q9Dyxivcolm8+mnwMmTyrBtrA2RKTWtr39CXnCY1Gtx9cEt8GWrdclvLb11gSdLREREy5FWo8UTG55I6m9SU5CGLSXpCY0vB+ANqNkl5wfP42cXfgZXwDX9hGvXyv0lZiP6moj+JrSqeYIeKfgWF41O4f3GIVQOO/FEYyeKUo3Szs64dFM6ilJjG4JEk/dnngFMco1xIiIioptJ9E17svZJqSxo3L7KLBRnyOVBxXXxi/W9ON89jqFMG3o3lCR9/+jkKM4NnpMDJ6JHoCjTFZ4lU5toFgyaEM2ksRE4eFAZjvvGMeQdUsbiDXrUE8CQ1YTnd65D3ib1DbrAViDtxCMiIiK6HmL3vrgxTGx8eduaHBSlyzeGnkAY7zQMSAGUuM6JTvzv0/9byhaY5oEH5ObwszlzBrh69Sb/FrSc+pj8/MLP4Q2p5Svqu8aQc3UAjzV1w6bVoCTTorwm/l6uy1on7fyETgc8/TSQkbFIsyciIqLVIM+Wh4fXqhnUGk0KHthYAItBJ40nJoM4dGUEPz7Sjh8ZzRgw6uUm8TGiQXzTaJP83NCQnHFC9AUwaEJ0rb4+4NVXlaEof3HFcUUZizfc9lEvmnLseG5LJarX5cEQa0oVzzKRbiqJiIiIrlOJvQT3V9+vjEVZpAfrCmA1yjeGos/E+42DCIbVsly+sE/qcfJmy5tSGVGFyAS4Xz3XjF5+GRgenoffhJYysePyuYvPJW0GGnb7ETxyBQ+39EIzNYWqHGtSWa6qzCq18fsjjwAlybs5iYiIiObD5vzN2F6wXRmL6+LHthahwK5uDgpHptAw7MF/MVpxsd8lle2Km/BPoMvZJQ9EbxOx3kd0nRg0IUrkcgHPP5+Uttft7JYWJeIG3QG8U5CF19eXIDXNjO1l6k67THMmanJqFnzaREREtPztKNyBLflbkm4MH6orkHbWCVeG3PjFya6kHifCmYEz+NGZH0mZsYpNm+RG3bMJBIBf/hLwJjTLpBVNBNZ+0fAL9LnVBQPXZBDDr5/HPVf7pXFhuhmpJn3Sta3IopbceSdQV7fwEyciIqJV64E1D6jXIqKtWqoRT+0swTf3lGFzcbqyiXkgzYKP8zLQMuhGWJTkSsjOFsETqW/xSy/J635E14FBE6K4UAj41a/kWt8xk6FJdE10qesL0Sn8fWEujpfmiu5UuGt9btJOvHsq74Emhf+siIiI6IsTmaoPrXko6cZQLGI/uDFfuSF0+kJSDedTHQ6pEWZi7eZ/O/9vcAdi1zEi61U0hderC+DTTExM2yxCK5Nojvr8peelzUBxXn8IIy+exo4rchDFYtAqtcIFnUanluXavh24445FmTsRERGtXuJ65KmNT8FutCc9n20zYv/6XHz/tkrcuyEPGRYDjpTmosdoQPuIN6lU1+WRy3JWtrj2/dnPuGmIrgtXd4kE8WYqSnINDCQ8NSWV5ZqC+kb78/xsNKXbpOMNBWkozlDrPa/NWouabGaZEBER0Y3Ta/XSjaFFr15jVOem4tldZci3m5RrlGNtDrxyphduf0j5OtEY/pWmV6TSohLRd+K+++b+gT09wBtvyNdCtCJFohG82Pgi2sfbledE6YreV86gtn1QGpv0WqzPT4MmocTsmsw1UiNW7NsnB+BYfpaIiIgWQbopHd/b9j1szN2IFCRfj+i1GtQW2vHo1iLoDTq8ta4Yo5MhDLsDyteIgEnzaLMcSBkdBX7+c8CXnLlNdC0GTYiETz4BLl9OekrUepZS+GJOl+TgLYNRubEUDVrj9Bo9HlzzIHuZEBER0U25MXyq9ikYtAblObtFjye2l2B3Raaydi36nDx3shvDLn9SCYLDnQmNLnfskLME5nLxolznmVYcsTjwavOrSf35/KEIrrx5AZtb5AwTkcVUU5Ca1KMvx5KDXGsucPfdwL33MmBCREREiyrNmIavb/g6fn/P7+P2stuRakhNet1u1ksZJ8M2M46W5qLT4U3qbzLmG0OPq0ceDA4Cv/iFXK6WaBYMmhAdOwZ89lnSU6IsV9tYmzIeLszAPxrUcgW3rcmG2aBVxneW3yktcBARERHdDGXpZfj2lm8jw6T2ThMlQfdWZePr20qUvhOBUARvNwwgEI4oX/dp16dqVoFY7H7wQaCiYu4f+PHHcuAkop6Hlj/xd+HS8CVlHAxHcfGDRuy+0KnszhTZ00adel0rFiHWZa9Disguue02BkyIiIhoyRBrb3dV3IU/2PMH0iajxGtlkZ0t+pwcL8lGV5oVV4Y8iETVbOqO8Q4pM1vS2yuX6Bel+olmwKAJrW5nzgAffJD0lGPSgTP9ZxCKym+c3nQrflKSj4mAHKEuSjdLN5dxedY87Cnes8ATJyIiopWuMLUQv7Pjd5KawwtFGWY8u7sUeWkmpc/JR5eHldrNorTor5t+DU/QI3+DVgs8+SSQlTX3D/zoI+Cf/gloaWG5rhWgaaQJBzsPKuNwJIpTh65g3+lWqbCFTpMiXdOKDOo4m8GGTQVboPv6k8DOnYs0cyIiIqK5aTVa1OTUSGVttSnapE3OWWlmvFJbhg6jAZ2jav8ScY3cONwo9zcROjvl/n6Tk4vxK9ASx6AJrV4NDcBbbylDsdAgSlo0DDcgMiXvsgya9Di0Zy1ODMiRaI0mBXfX5CaV4Xp47cPSmzURERHRzSZ6Sjy6/lGpHIFRK5cJFcRC94N1BUpJpavDblzscyqvi4DJK5cT+puYzcAzz8h/zsXhkHfdPfccMDw8T78VzbdBz6AUOEu8zq0/1YVbjjVDF52SspZqCtKSMqdFH51NhVuhf+abwKZNizRzIiIiouuXb8vHgeoDylin1UjXyFGjHi/WleNyNAWjCf1NApGAFDhRrpHb2oB/+Ad5jZCbhigBgya0OokdlKLxe+wNMRwNo3GkUQqaxEU1KfhwaxV+3jKKaCydb0dpBjKt6oLF9oLtKLGXLMIvQERERKuJaHz5g50/QElaSVLt5vs25CvjT6+MJPU36ZjokMozKUSmicg40VzHLYC4gfzf/xv48EMgGruppGXBG/TiVw2/UrKmhcvNQ9j2SQPM4YjU7L0mPw1Wo0553awzY3PeZhgefxJYt26RZk5ERET0xe0s3Ima7BplnGE14K71ufDpdXihrhxnvaGk/ibOgBNXHVeVLG0p0+SVV+SNQ051ExKtbgya0OrT0QG89JKyAOAP+3F24CxGJ0eVLxFvm7+uKsKPe11Ss0why2rEropM5WuseivuqbxnEX4BIiIiWq01nL+56ZvIMqtltqpzbdhSIvdVEzWb37mmv4loCt861qqeRPQ2Eb0qroe4kTx6FHj9de68WyYi0QhebHxRWgyI6+sbR9kb9UgLyEGU6lwrbCY1YCIymDbnb4bxoa8CdXWLMm8iIiKiGyWqwXx13VeTeg2LjFpRhtRj1OMXG8tRPxFAKKJuBBrwDKDP3Zd8oitX5FK1p0/z2pcYNKFVpr9fjhyHw0qGyYXBC1Lj9zix4PCTvCw854sq75HlWVY8saNYSvOLE+l/Zv3nlLggIiIiusnlup6ofQI6jbrofeuabOSmyv1NJnwhfNyU3N9EZB1cHrmsnmTbNuDuu6//h164IGec0JImyky8ffVtdDm7lOdcE16kPn8S2V65LEVxhjkpa9qgNUgBE9PtdwF79y7KvImIiIi+LLE+93jN49CkqOt2+9fnIifVCKfJgH9bX4oLEwFEE4IhYmPRmG8s+USBAPD228Cvf81s61WOQRNaPbxe4IUXgKDc8EksJrSMtsAX9ilfIrJKfmi14XW9ejO5qzwTX91SmNQkU6T91eVyJx4REREtTu3m+6vvV8Y6jQYPJfQ3uTLkRkNCfxPRq+2lxpdwuu+0epLbbgO+9S0gN/f6fuixY3LWCS1JHeMd+Of6f5ayp+OC/hDw8+PIdcoNUDOtBhSlqxt+xKKCuJ61bNsN3HvvosybiIiI6GYR5fPvqrhLGeu1GnxlcyEsBi3GLUb8sLoIzR61fKkgNhYlbqRWiB4nH3+8ENOmJYpBE1odRHT45ZeTahOKVLyRyZGkgMmP9CZ8mGVX3lwf3lSAfdXZUu3nuIr0Cnyt5mtJzeCJiIiIFpLoqyb6nMTZLXrcW5OnjA+2jKBpwKWMRcaJyEI41HlIrd9cWQn8zu8ADz0EWCyf/0NFtsn58zf5N6EvQ+yOfP7S8/jphZ9iyDukPD8ViiD83DHkjsjXvmKxoCrHlnT9uj57PVJrNgOPPirqWizK/ImIiIhupltKbsG6LLU/W5pJj4c3FUKrScGo1YT/t7IIZ63qJhJRgebS8CXpz2nEhqGLFxdq6rTEMGhCK5pYFBj3jSP8/ntyL5MYT9CTVN9bpOe9aLLgk6JsaZxu1uPpnSWozk1NOt+e4j1SLXG9Vr+AvwURERFRMrH4/ZW1X0GmWe23tiYvVelvIq6B3m8cxNmu8aTvE0GTd66+I5Vykoim8Dt3Ar/3e8CePZ/fJP6NN+R6z7SoxI39h20f4h9P/SOaR5uTXguEwgi8eBKZ3XK/Pp0mBevyU6XFgrhSeylyqzcDTz0FaNVsaiIiIqLlfo0sNjrnWtVs6sJ0s9QYXhA9Tv4qIwMfb6lE0CSv7YlMExE4Ua6Pr7327bum9wmtCilTylazlcHlcsFut8PpdCItLW2xp0OLxBVw4Uj3ETSNNMHc0oYNhy/DrDMjz5aHHEsOGkcak9LvPrCY8U8Z6dIuuwyLAU/tLEkqxyXqhouFCVHzmYiIiGipGHAP4MdnfyyV4IpvBDnUMoKLvRPK1+woy8Qt1VlJWQYiS0XcUCbWfZZ0dQE//7nS/21GOh3w1a8CGzbIx7Sg/GE/fnHxF+hx9SQ9L/7fN3VPwPT+RdT2ygET8b9cNEIVuyzjssxZ2FhzB1K+9z3Aal3w+RMRERHNN7GB+l/O/kvS2t+nV0ZwtlveUCTW/L5VV4BtjV3Ib5OzdcV64YacDdMry6SmAr/92/KftGriBgya0Iq7iRTBkhO9J6QdeNZxL7a9fQba8OzNm5psFvyp3Y6plBRpB54ImMSbqQp2ox1Pb3waBakFC/RbEBEREV2/+v56vHXlLWUsLu9PdozhRLtDea62MA13r8+DJiHbYGv+Vnx13Ven3xg2N8t94D7vNsFsBjZuBLZsAQoLWeJpAQQjQfz8ws+nBUx6RzwYPdyC2pY+pAbkWt3if0dVtg3ZqWqvPqveiq3r7oTu+78N2OWStEREREQrUedEJ3524WdKBonYYPL6+X50OdR+b0/uKEHh0AQ2HmyEJhJFUWoRqjOrp18fFxUB3/kONwwtcwyaMGiy6ogAiVgw+LTrUyWKrAuGsf3NMzC71Ubv15ow6vEH2VmYiO2y3L8+F5uL5bIWQklaiRQwsRq4C4+IiIiWJnE5/3HHx9LGkUQXeidwsGVYNDSRVGbb8GBdPnRaNbvk1tJbcU/lPdNPevasXI7geuXkALt3A9u2fX6JL7rh612RYdIxoZacnfSF0PNJM8oudCLdH1Sez7IaUJppgfGazOlt1bfB8n/9LpCVteDzJyIiIlrszUWin/ELp3swPilfNxXYzfjatiIUdY1gw6dNSi/jsvSy6SfbzF5wyx2DJgyarHgiSjzkGZJ22fU4e6TosTvoVl4XGSbrjrVA0zOGQZcfem0KclONMBvUiHBYk4L/XJyHhqh8Y1+da8NDdQVKNNlmsOF3dvyO9CcRERHRUne0+yg+bP8w6bkrQ26pt0kkKl/yl2VZ8dXNcjPMuANVB7C3ZO/0E372GfDxx19sEmIXnijdlac2pacvLxKN4MXGF9HiaFGeM/Q6EHjhFMxOteyE1ahDeZYFqQnluARRhm1j6Q5k/uAPgfz8BZ07ERER0WIS/fxO9Z1Sxs7JEF6o78FkMKxsLHp4UwGqz3WgtKFbek40k5+x4sy99wK33LJwk6ebikETBk1WJPFX9YrjCk73n0a3s1sqT3AtkV1Sdr4T2Re70ePwYsyb/DWpRh1y0ozIshrxfEUBXorIARNR5/mZ3aVKH5MUpOA3Nv8GKjMqF+i3IyIiIvryzg2cw5tX3kxqZNk9Nok3L/QjFJGfE03B76/NTyo78Nj6x6b3bhO3Ce+/D5w48cUmITJNbrtNfrCEwZcm/l/+uunXUoPSuLTWQaS8cAqBWCkuvVYjZZZk2wzTykkYtUZsKNwC+/f/b6C0dMHnT0RERLTYm0+eu/hcUrbusMuPl8/2Ihgr57+x0I571uWg7mAjsnod0rqgWBMsSiua3gPw8ceBurqF/jXoJmDQhEGTFccx6ZBuFvvcfTN/wdQU8tqGUHKyFSMDTunNb66/2OdLsvFehRwx1qSkSDUM8+1qH5M7yu7A/or9N/vXICIiIpp3LaMteOnyS1I5p7i+CR9+fbZXyTjZUpKOO9bmKAvs4mZQlCRdm7U2+WTiVuHVV4GLF7/4RETJLpF1UlLyJX+j1Uvcqokg2NmBs8pzmS39SHnlNLx++f+vQauRetYkluKK/z8VpWZLMiuge/abQHX1gs+fiIiIaCnwhXz413P/ipHJkaSNRa+d70M0dn28uyITt5akY9vbZ2GNZfKKzSfl6eXItyVsONJqgW9+E6ioWJxfhm4YgyYMmqwY4q/nucFzeK/1vRkzS4TImAclH16CoceBYXdAauwUp9OkoDjDgilMYdgVgC8UQY/dil/VlSMaq7d9+5ocbCvLUL6nzF6G39zym9MjyURERETLRNdEF3516Vfwh/3Kc+0jHrx5cUC6vhL2VWVjV0Wm8rpeo8ed5XdiV9Eu6LUJ5Z3E158+DXzyCeBXz3ddxM3lnj3APffIN5h03cT/J3ENfLLvpPJcXmMvpl4/C5c/nmGSgg0FdpgNyf9tc6250u5IU0GJXHtblE0jIiIiWsWcfif+z7n/A1fApTzXMujGu5cGlLHodbwnzYhtb5+BPqBuQDLrzKjIqECOJbbpyGgEvvtdlqRdZhg0YdBkRRAN3d9oeQPNo81JzwfCEVwZ9KDf6YOubRj7L7TDEookfY3IHimwm1CYblZqdou/6qMaDX5UV4XzTr9UouLaPiYWvUXqY5Jm5N8dIiIiWt5E/7efXvipdE0V19jvxIeXh5Tx3TV5qCuyJ32f6OcmGsTvKNwhNQ9XhMNASwtw/jzQ2ioHU66XyDZ58kkgNfVL/larg7hu/aDtAxzvPa48V9jQjejb5zExKQdMxDXuhoI0qY9JnLiWFTW47YUVwP79QG2tXC6NiIiIiDDsHZYyThI3Fp3rHsfhK7EMlBRgS3E6DhhTsOfwZbFwnvT9GaYM1OTUwKA1yNe1v/VbgD35WpqWLgZNGDRZ9lrHWvFa82vwBD1Jz3c7JvH+5UF4/SHs6xnBbZ1D4v0siWj4LrJLDLrkG0S/1YiGezbBm2GVahY6faFpdZ+fqXtmelkKIiIiomWqz9UnBU4SM3brO8dwpHVUOhaXQWIDSXXu9GCG2ERye9nt2FawbXoGrtstl+yqrwfGx69vMjYb8MQTQFnZl/ytVjZxe/ZR+0c42nNUGuv9IRQ1dCP4yWWlX5/YICQCJjaTLmkH5Jb1d8J4933A5s0MlhARERHNkpH984s/Typle+TqKOq7xpSx6Bf3ZDSIxzoHodMmX1OJa65NeZtg1pvlcrQi48RsXtDfgW4MgyYMmixb4q/jp12f4mDnwaTnw9EojrU6cLZ7HMZwBA+39GCNwy3d6NuMOumRatIj1aST3tiSzpmSgt6aInRuKUfEMHsz0ltKbsG9VffO2+9GREREtBjaxtrwy4ZfIjKlZuZ+dnUEZ7rGlQX4jUV27CrPTFqETyxd+mTtk7AarNNPHgoBhw8Dx44BUbX5/KzEQv6998olu65pWE7ytfAn7R/jTMP7yO5xIKvHgdRhJ9qH3Rj1yAET8Z+tJj8NaWa1hJqot73paz+A9f6vsAwaERER0edoGmnCi40vSuX849dgpzrGcLprHOGIek17d88wvuZ0Iz/NpFSyEUSmiQiciAxtaUOQ6HGiTyhvS0sSgyYMmixL0ako3rryVlKjS2HUE8B7lwalP3M8PnytqRvlmEJxhlkqRyBu9GcTKClE0VO/hZzyWpwfPI8LQxeSSlQkNn4XNbwTs06IiIiIVoqGoQb8uunXSTeGH1weQtOAWtNZ3AhuKk7HzvIMWK7ZaJJtycZvbPoN2E2zlB/o7wfeeAMYHLy+Ca1fD2zbJt9kiprQJAWd6t/8EYY/fh0Wl0/5/9Q24pWugwVxqbo2LxUZFkPSTXvt0/8/2O99eNGmTkRERLTc1PfXS+uQibyBME53juFin1NuED81hYeu9GGHw4n1+WlJfeREGduNuRuRbkqXm8I/8wwDJ0scgyYMmiw7omTEy5dfxhXHFeU58VfzfM+EVD4iEp1C6YQHT17uRlWaEfl205wBjojNisxHnkbdXU9Dl9DIVKTeiZ/R7+6HY9IhNckU5biK0tgck4iIiFa2k70n8W7ru8pYXF+JHXUik1f0eosTJQhELecd5Rkw6dUbQ7vRjm9t/hayLFkz/4BIRM44EZknov/J9RCZJwUF8o1m/LHKykqJjUM9Fz7D6CvPwd1zNelauH3UixF3LGACYE1eKjKthqSb9Zrf+CNk7X9gUeZOREREtJwd6T4ilUW9lijpf7LdgaZBF1IiUXy9sQtrnV4pcJKYmS1K2G7I2SBtMEJ5uRw4MajXarS0MGjCoMmy4g16pZIRfe6+pJv4j5rU3Y9l4x5862ovarIt03Y+xpl0Jqn2tmnrLhR947dhtPL/PxEREVGigx0HcbjrcNJzk8GwVKpLbFYR12BxovTp49uKkJ6Q1SBKEIiMkzxb3uw/ZHgYeOEFwOH44hNMTwfuvBPYtGlFB08i0QhGJkfQ3HoC7rdfRerVrqTXxS1ax6gXw7GAibA2z4ZMq5qVo9XosO47/x65tx1Y0LkTERERrSQtoy14++rbcAXUDOy4MW8A7zYMYsI5iWcudKDI65euyRKvj1OQIm3ILkgtkLOon32WgZMlikETBk2WjTHfGJ67+Jz0Z5xo0v52wwC6HF5pXD7uxu/1DqPCboImoX6gkG/LR5Y5SwqWGA1m4MABYNcu1sgmIiIimoG49P+w/UMc6zk27bV4OYKGPqcSPBGbVb62rQjZNmPSRpVvbvomitOKZ/9BgQDw2mtAU9ONTTQ3F7jnHmDNmqV9XefzycGh0VH5IY69XrkZaEaG9PDajOjVejEcdsI51A3PSC98o4MwOb3Iax+CJiHLJ/7/qNPhxZBLDZisybUhK+H/gUarw5rf+o8o2Mt+fERERERfVigSksp1fdb92bSy/oFwBG+c78fEsAu/cb4dGYEgqnOSr82EkrQSVGZUIiUeOGEJ2iWHQRMGTZY8URpL3KyLPiOJTUnFzfrr5/uUXXXVEx78xxEHchIaXcZrN6/LWqeWh0hNBZ54AigtXdhfhIiIiGgZujxyGe+3vg9nwDntNZcvhNfP98Phla/HjHotHt1SiAK7Oela7JF1j0jlCGYtmSpuM44eBT7+WD6+EeLaTmSeFBffvB17onSYyIbx++VslvhDNFAXv4soMya+RjzixyI44narD5dLfkxO75Unbq/cQbd0vevwOeAJeq5rWtGpKUxMhjDs8mPCF1Ker861JQWtAnYbar/zH1C85fab89+DiIiIiCSBcAAnek9Ia5aBiLqBRTSHf/fSIMa6HHj2YjtswTDKs61Sg/hEmeZM6fpYV1YBPPmkvF5JSwaDJgyaLFkD7gGpXqC4UY83Io0b9wbx6vk+6UZdqHF68R8dY0hPaLIkiMySddnrpJt1iYjgioCJzbZwvwgRERHRMid6vZ0dOIvPuj6TFvkT+UMRvHquD0MuvzTWazX46uZClGRakr6uOrMaD655ULpBnFV7O/DyyzMGGL4Qux3IyUEwMx0emx4aiw1aiwU6sw06i/xIsVjk4Me1RKDj6lXgyhWgrQ0IqUGJa4nbI/HfJvEhiGtPs94s1a6+9ut9YR+cficm/BNSBnUoOvv5r/3eyWBE6lsimr2HE8qjCVU5NuSkGhGwGOEoycJEaS4eOPC7qMiuvr7/ZkRERET0hYlsk183/RqtY63Kc6Ix/MfNwxhoHcYzscBJUboZxRnmpE1EFr0Fdbl1MJtsQG0tsGcPUFi4SL8JJWLQhEGTJdfkXQRJRFZJ50TnjF/TP+HDGxf6pRt0YbN7Ev/BMQarTr0pFTeo4sa8wFagvhlt3Qo8/PDMN8dEREREdMPlCETJ1Dcv9KNnXH5Oq0nBg3UF0kJ+ItGM/NbSW6WHOJ6R0wm8/z5w+fIN7/rrd/dj2DssBShmI64Xo0YDomYTomYzolYzLJMhZDtDyDBlSMEdvVY/rb+e6C8y7huHN+RVgiQzETWrReBE3AybdWb4w34pW0dc734ecdvlD0fhC0akx2QoDG8golz/JhJBqqyyTExtLZeCJZ4MK3RaPb6x8Ruoyqz63J9FRERERF++B91rza+hYbgh6XruaJsDbZcHlIyTDItBygwW18px4pq4NqcWGeYMdcO3CJ6sW7ei+/YtdQyaMGiy6MRfqy5nlxQoEQGT2W4kRbBE1M4WjS7j7nC68e8mnDBq1TcRvUaPurw6qXeJYvt2OWCylOtcExERES0TIjDx/KXn0THRkVSK4J2GAbTHrtXExpW9lZnYVpYB3TU3fCIgsaNwB9Znr58980QETzo6gM5O6eEd7pMCFiJwIQIeIiBh1VthNViloITIgOlz9UnBkmuzlG+ECHrYTXYpc1mUiBXnvbZu9c0SzyIRJbcmJoPwBMNzVikTl7TipjsjwwLnnmr015YgGrse1qZo8Y26b0gbiIiIiIhoYYjruXdb38WpvlNJz5/rHsfFi71Sc/jUQAgWgxZr81Jh0muTrjsrMiqkXifK5u+iIuDxx4HMObK0ad4waMKgyaIRf51EoOTTrk8x7h+f9WtEc8vTneNS0CThBTzucOIbk56km3DRbHRT3iZpR59i507gwQcZMCEiIiK6yVknL19+GS2OFuU50RT+w8uDaB5US3iJxf3963NRek25rrhca64UPFmbtRY5lhwYdWpPDrGZ5tLwJak02GjfVWT2jaG0oRumWA+VpKyRqeQm6UtdOBqFyxeWgiQiWBK8psn7TGxGnVSCK8tqwOi6QrRvq0DQYkzaqfhU7VNYk7VmnmdPRERERDOtY4p1zoOdB5Oe7xz14ujpTjxxtg1pgRB0mhQpcJJ2TV9msZmoJrtGzXYW5WS/8Q2gpGQhfw3CEgma/PVf/zXefvttnD9/HgaDARMTE5/7Pd/+9rfx05/+NOm5AwcO4L333rvun8ugyeIRNZxfb349aXdiIlF6oGXIjYZep1SzOZFdr8HvOCaw2+mGJiEQYjPYpICJ0r9E2L0buP9+BkyIiIiIFrIUQasDZ7rHkrIl1uWl4va1ObAaZynLFSOyR0R5AnFt1z7ePi0LWROJorC5D2UXu6EPzN4PZDIYxrArAH84Il0zyg8RYEmBRpNwHH9ekyKVSkg16aZlxsx0bqcvhFBkSsqwEcEi0WNE6jMyBZj0GpgNWpj1Wmk3oVGvRTgyBbc/BJc/LP0pMktmY9RpYDXo5HMY5HOI3YhirhN5drTvqIIrJ/n+RexMfGT9I8i2ZM85dyIiIiKaX6f7TuOdq+8kZT+PeYM4dKITD51sht0fglipFA3i865pEG/UGlGTU4N0U7r8hE4HPPaY3POEVlfQ5C/+4i+Qnp6O3t5e/J//83+uO2gyNDSEf/u3f1OeMxqNyMiI1X+7DgyaLF52yXut7yEQSQ6GiCZJXWOTuDzgQvuIR7r5TJRpNWBPYRq+1tyD7IHxaZHYDTkbkmtji/p/Bw4wYEJEREQ0j0SGh7gpFL1OEg27/TgoGmA65QbxgkGnwY6yTKzLT4X9mp1113stOT4ZkoIcmdoUlDX2ovhyD7ThqPL6hC+EQadfCmrcCHHpmGbSy+WvrHoYdVq5gXsoAocnKN3wiuMvKqTRYMxsgMNixLjZKP3pNOlhCUaQFQiiWpeCKg1QljIFizZFyiDxW43w20wIWE3Sn6JfScCm3liLzULiGnhL/haU2cuSGosSERER0eJpGW3BK02vJG0AEpvED53uwsZTragekzOzc2xGKXiS2OdElOsqTy9Hqb1Uvb67915g3z6uc66moEncT37yE/zBH/zBdQdNxNe99tprN/zzGDRZWO6AG29eeRNXHFeSnheNQ+s7x9DY74I3OL2ZZr7dhD1Fduxxe1B6uQ8WZ3ItadHsXZQgEGUZFOJNRLyZ8I2EiIiIaN6J24SPOz7Gke4j054X13hHWkenNTHPthmlRvFVuVbpZnGuBX/RDL1pwIVL/U4paCHotCnIshpRrEvBtnE3ssfc8PaMw+SchOYm3rboLAb0pVngDkak82qmAK305xQiKSkIa8RDo/wZ0abAbdDDY9Apf3qMevh0WvXaNAXIsRpRmG5GaZZFKl0mGrpfj3jN6815m6VdiElZ1kRERES0ZIieeL9q+FVSWwKxafyzq6MYuNyHnX0OrB9xwqbTYE2eDRZDcka26NsssohFOVuReZKyYwfw0ENsEL8AvkjcYO48+kVw6NAh5ObmStkld911F/7qr/4KWVlZs359IBCQHom/PM0/cbN8ceiilF3iCyf0JQHQN+HDB42D03YCilIG6/PTsMOmxea+MeQfaoDumoBKqiFVirpmWa75f37ffcDevQyYEBERES0QEfC4p/IeqSeJaIDpD/uV5zcW2aXgiAicNPY7le8RJVjF42SHA6kmPXJTjVL2SbpFL/9pNkjXiCJQ0jZDFrIodzXk8mMIwBlxqyIyzjMyoIlGke4PoSISxi6bHpVmPXTBEFL8YWiDIWgC4hGGzh+CJhiGOG10akp6+ENRjE8GMaTX4WpmGtoyU9FjtyCaeGOaAhTazViTa5OCNka9BladKMGlkTJpxHmckyE4vHJWil4EeSaDyNRqpCBJUboZBekmKYPlc/+7IkW6QRY3yjnWHOlPcf2bZuSGLyIiIqKlTly7fX/79/Fi44vonOiUnhMlYe9Yl4OmNCPea7bh4GQA2wYcmBgcR43dmLSZKBQNYcAzID3ERpmcsVbkDXYh7dnvyv1OaElYUpkmzz//PCwWCyoqKtDW1oY//dM//f+3d+fBVdV3H8c/WW9u9n0PgSQgm+ICKNqiLR3U+vAI0uepyzjoWKqt7bTaarVTi047w1Sn02069T/rH63T2qm2pdoOKuIG6CNakX0JhOwhIftClvPM93e9IZeEeIOEkPB+zRxP7j0nN+eMyZdzzvf3+36VmJioLVu2KCpq5BuQxx9/XE888cSw95lpMn5q2mrcjXNFS0XI+1b7+Z2Djdp+9Lir+2ysRvOMzATNzU/WfA1o5gflSq8e3iA+LS7NTU9zGdahiRH7/241/ubPH/fzAgAAwMg6TnRo46GNriTrqSyJcKC+3SVBLOFxJizpYP09LCnR3HVi8FoyqDAtXpcVpWpGVkJI/7uRRPb1K7a7VzFuCcxg6Uzy62hklCsXe+hYR+A4I6QCS5TkJKksO9E1ZB8PNnParnNnps90s0ksCTXYCBQAAACTtg+gPR89tZytXRu/tKPGDSSK6e/XTXur9Lnubvd8dGi5rlNl5Zaq5N5H5J8x8xwc/YWpdbzKcz3yyCP62c9+Nuo+u3fv1uzZs88oaXKqQ4cOqbS0VK+88oqWLVsW9kyToqIikibjoKu3S6+Vv+aCwdCmR8ZuPP+9s3awtIKx0XrL5+Uo1R+jwl2VKv2/Q/YLF/J9dtNoN5FJvqThPzAuTrr1Vmn69PE7KQAAAITtSPMR/XP/P11ZgpG0d/fp4LF2Haxvd7OPT51JcuosZBtYMy8/xfW5C+rtH3DXlHajaSW8ijMSlJXkO6vnYZ9ruRdL1IwHa3hfmlaqWRmzVJpeqrjo0GagAAAAmDoN4i15Yj0Bhw4s37yvQTuqWqxcj64rr9XnqhvdNa/Nak72R49YxjY6xqecW+5U2fW3K4JyXZMnadLQ0KDGxsZR9ykpKVFsbOxZSZqYrKwsV6Lr3nvvDWt/epqcffYrsr1mu6tp3dkb2nvEbmrfLW/S/x057vYzljVdUpKhy4vT5Ovp0+y39iij8uTvjS/Kp9zEXLf4Y/wj/9CUFOmOO6Ts7PE9OQAAAIx5VN22qm16/fDrIU0wT2Ulrdq6+1w5LittZTNIbG03iLNyElWSlTjqaLvR5CflqyCpwJU36BvoU29/b8jXbj3Q60qKBcuKhcNKZ9lnW6ksS3TYtaqt7TMbOhvU0NGgpq6mYQOIMvwZbiBQcWqxW9ssahq4AwAAXBiOthzVX3b9RS09J8vWmr21bXp1T53r/XxpdaOWH6xxPfSiIyNcAsX6ASbFjZBAmTdf87/2qDLTCs7tiUxxrePV08QSGLacK5WVlS5Jk5eXd85+JkLVttdqw74NqmytDHnfEiRWhuGNfQ1q6znZl8TqVl8/L1cZiT6l1LVo7uZd8nX2uLIENqvEEiXDSnCdKjdXuv12iaQXAADAeScqMkpXF13tmpbbwJrdx3aruq162H5WRsv6mNii9M/+c+16ck7mHF1VeJUKkwvDSkrYNavVi957bK/2Nu5117YjJUos2TE3a677/BFnQA9hCRlLnFjJsujIaKX509zMEgAAAFyYilKKdN/C+/TinhfdNWfQRblJykn2acuhRu2MilRLXKxW7a6wUUiqb+txiyVNSjIT5B/aMH7nx3rv8XuVeOudWrxopXzRZ3fWNSawp0lFRYWampr097//XU899ZTefPNN935ZWZnrU2KsjNf69eu1atUqtbe3u94kq1evVm5urutp8vDDD6utrU07duyQzxfeLwczTc4OGzW4qXyTG0U4dHqZaWzv0ev7GnS06eSsE2t4tKg4XYtnpCvuRJ/y91Rp+n+OuHJceYl5riyB3VSOKjVVuvJKafHiQC8TAAAATAot3S3uBnHPsT2uIeap14+jsQE1l+Ve5vp9NHY2utJfttjMjp6+HqXEpeiijIu0MH+h+/qzaO5u1v7G/e6zjQ3osRJaJD0AAADwWdljdnuWuvHgRvV7/cOq9Rw+1qHG/XVa+OZuJVofv0/YWCBrc2B9/uwZ6+DnRUSofkGZpt+8RlcUX/Xpz1YxMeW5xuKuu+7Ss88+O+z9TZs26brrrgv88IgIPfPMM27frq4urVy5Uh988IEr5ZWfn6/ly5frJz/5iXJycsL+uSRNPju72X15/8vDppT19PVr26EmfXi02ZVbCJqWHq8vlmZoZlObcsrrlV7ZqMgBT7FRse4GNyM+4/Q/zKJCWZm0aFFgTb0+AACASd8Hr7y5fLCU1fHu427dfqJ9cB+74bNkxRV5V7hkic0iAQAAAKaCqtYqV67LroNH4rX3KOvlD9W7u1o9fScHG/miI13D+NT4k60vTGeyXzVfWKSFS1br4pyLuXaezEmTiULS5MxZWQVr9H6g6cCIpbhsdknHkFJcyXEx+q/seH2u/riyjzQouvdkBjU7IVsz02cqJirm9MmS4KyS9LNQrwEAAADn/Uxmm5Fio+4y4zMZKQcAAIApy2ZMv330bW2r3Kae/p7hO3ieCj84rNjNu1XT3GUvB1m/ExukHhcTWomnanaBOpcs1Bcv/m9X1QdjQ9KEpMmYWG1nK8U1tOZekDXu3LSnXocbOwbfs4adn8tL0uqmFhUdqFHEkN+gmMgYzcyY6ZImp5WUJK1eLU2fftbPBQAAAAAAAADOB739vW6A+s6Gna7PXu9Ab8j2tKomTX9lhyqrmtXW3Rcy3jwnKU4FaX7FRIXOLGnLSFLCnAW6bOn/Kq1sPpV7wkTShKSJy2baH6PVkw4u/QP9Ia9tsXrOVo7rVP0DnrZXHNe28kb19Z/8FZmRFq87o/t18a6jihky68QaaOYn5bvyCqOOGrQSXKtWSQkJZ/+kAQAAAAAAAOA8nXlt/fXeq37P9QEM8rV3a+7rO3Wi/JiONHaob+Dks9jIiAjlp8YpL8XvBrIPZc9j87JKNH3JDYpd+gUpM/Ocns9kQ9KEpImOdx3Xr7b9aszfFyzFteVQo5o6TjYkSoiN0v+k+bTsUI2Sjp+cdRJs3lmWXjZ6A03LeC5bJl19dSBVCgAAAAAAAAAXGHv+uqN+h/594N/q6A08Z43oH1DxR0dU8OFh1R7vUk1Ld0hP6ejICBWmxSsn2ef6hA9llX8yE7MVfflCJS1focy8EvqejICkCUkTVy/6F1t/Efb+9mtw6FiHth5sVEN7oM5eStcJzWhp17WRnq7y+uQf0rPEWKN3S5ZkxWcN+2MNkZ0trVghFRWd+QkBAAAAAAAAwBTR1dulVw69ovdr3h98L6GpXbPf3itfXYuqmjtV39qjoQ/v/TFRKs6IH9YsPmggKlK1c4vVe/WVysmaroKkAlcdKN2fPvrz2wtAK0kTkiZtPW36+ZafD3vf/nfb/3HLVA58srbM5Qd76xRR3azc9i7ltHcpv61Lhd6ApmcmKNEXPWzqV0FygWakzlBUZGhDokE+nzR3rnTJJVJxMbX1AAAAAAAAAOAUR1uOasO+DarrqHOvIwY8Fe48qhkfHlZPd6+ONnWGVAQyqfExKk5PkD925GezfbHRqphfpKo5heqPiVJcdJyuLb5WS4qW6ELVOoa8wSjNJzCZBZMZ03ZUKLGxTbsqW1TZ2GFZMkV6nqIGAmtr4p7f26s53SebECX4olWY5leqP2ZYBjLZl6xZGbNGLsVliZGZMwOJklmzpJiY8T9RAAAAAAAAAJikilKKdO/Ce/VR3UfaVL5JLT0tOnrxNB2blqmLtuzTrJgotXX36nBjpzo+6THd3Nmrls5m5STHKS0hVgm+KEUPGbQefaJPJdvLVbi7Socvna6aslz5on0TeJaTC0mTKSpYty61tlnpVU3qONauuNZA2a3TiY+NcrXx0uKHJ0usubvNLLHpXCNO5bJkyQ03SBkZZ/dEAAAAAAAAAGCKP8u9NPdSzc+er3er3tWbR95UV4r04fULlFrXoswjDSqtbFRHdYsqmjrV2z/gynbVtna7xcTFRLmKQZZAcevYaMV2ndCsLfs0EBmhgisLJvo0Jw2SJlM8aWJ/ECY2Oso1c7eEh71jeY/g15GREcpIiFV6QuyICZGchByVppe6HibDpKcHkiWWNLnA6+IBAAAAAAAAwJmygetXF12ty/Mu19sVb2tr5VY156a6RVfOlL+1S8kVx9Tynwp5++tcKa+g7t5+txxrD7y23id5KX51JcapqaxQWQlZE3dikwxJkymeNPE+SWQUpPrdMhbW4L04tXjkUlxWemvpUmnJEimaXyMAAAAAAAAAOBusB8mykmVamL/QNYvfUb/Dvd+V7FfX/CJpfpEG6luV8vZepR+sU3tPvzpP9Lle1kHBPtXll89QTkr+4PNifDqedk9RURGBnibeJzNNxiLDn6HpqdOV5EsK3WDJEWvqXloa6FuSOEIyBQAAAAAAAADwmaXEpWj13NVaXLBY/zrwL1W1VQ1ui8xOVtuqRVJDq+tfklLdpM4T/Wrv6VNHd58rz9Wenqj6Gdm6KpnSXGNB0mSKCpTeihicafKp+ytCGfEZmpYyzTV7/+RDpLw8qaQksEybxqwSAAAAAAAAADjHzeK/dvnXXLN4m3nSdqJtcFtbVrL+c/0CpVUfV8n7h5Tb2CZ98nj30OUz3DNe61ON8PEEfAr7ytyvKPlwmvwd+1xSJJhIsbVNxxr6tS/Gr6ic3ECSJD8/sM7JkWJH6GMCAAAAAAAAADhn7DnugtwFmpM1Rzvrd2pnw05VtVapq6/LbT+en6b38y5X1uEGzfigXCfifWoqSHfbCpKYaTIWJE2msHnZ86QbMqRr2qzbe+gSFRX6dUoKs0gAAAAAAAAA4DwWGxWry/Iuc4vneWrubnZlu6rbql0SpabMp/emZSqmp9fNMrH+KOn+QPIE4eEp+VSXmxtYAAAAAAAAAABTavZJmj/NLfOz57v3BrwBNXY2DiZSgtWGED6SJgAAAAAAAAAATAHWiiErIcstl+ZeOtGHMylFTvQBAAAAAAAAAAAAnA9ImgAAAAAAAAAAAJA0AQAAAAAAAAAACCBpAgAAAAAAAAAAQNIEAAAAAAAAAAAggKQJAAAAAAAAAAAASRMAAAAAAAAAAIAAkiYAAAAAAAAAAAAkTQAAAAAAAAAAAAJImgAAAAAAAAAAAEiK1hTjeZ5bt7a2TvShAAAAAAAAAACACRbMFwTzBxdU0qStrc2ti4qKJvpQAAAAAAAAAADAeZQ/SElJGXWfCC+c1MokMjAwoOrqaiUlJSkiImKiD+e8y6ZZMuno0aNKTk6e6MMBMAURZwCMJ2IMgPFGnAEw3ogzAMYbcWZklgaxhEl+fr4iIyMvrJkmdsKFhYUTfRjnNftj4Q8GwHgizgAYT8QYAOONOANgvBFnAIw34sxwnzbDJIhG8AAAAAAAAAAAACRNAAAAAAAAAAAAAkiaXEB8Pp/WrVvn1gAwHogzAMYTMQbAeCPOABhvxBkA440489lNuUbwAAAAAAAAAAAAZ4KZJgAAAAAAAAAAACRNAAAAAAAAAAAAAkiaAAAAAAAAAAAAkDQBAAAAAAAAAAAIIGlygfjtb3+r6dOnKy4uTldeeaXefffdiT4kAJPU448/roiIiJBl9uzZg9u7u7t1//33KyMjQ4mJiVq9erXq6uom9JgBnN/eeOMNrVixQvn5+S6mvPjiiyHbPc/Tj3/8Y+Xl5cnv9+tLX/qS9u/fH7JPU1OT7rjjDiUnJys1NVX33HOP2tvbz/GZAJisceauu+4adn1zww03hOxDnAFwOuvXr9eiRYuUlJSk7OxsrVy5Unv37g3ZJ5z7pIqKCt10002Kj493n/PQQw+pr6/vHJ8NgMkaZ6677rph1zP33XdfyD7EmfCQNLkA/OlPf9KDDz6odevWafv27VqwYIGuv/561dfXT/ShAZik5s2bp5qamsHlrbfeGtz2wAMP6B//+Ieef/55bd68WdXV1brlllsm9HgBnN86Ojrc9YkN8hjJk08+qV//+td6+umntW3bNiUkJLhrGXv4EGQPMnfu3KmNGzdqw4YN7gHp17/+9XN4FgAmc5wxliQZen3z3HPPhWwnzgA4HbvvsYTI1q1bXYzo7e3V8uXLXewJ9z6pv7/fPcg8ceKE3nnnHT377LP6/e9/7waOAEA4ccasXbs25HrG7qWCiDNj4GHKW7x4sXf//fcPvu7v7/fy8/O99evXT+hxAZic1q1b5y1YsGDEbc3NzV5MTIz3/PPPD763e/duz/652bJlyzk8SgCTlcWLF154YfD1wMCAl5ub6z311FMhscbn83nPPfece71r1y73fe+9997gPi+//LIXERHhVVVVneMzADDZ4oxZs2aNd/PNN5/2e4gzAMaivr7exYzNmzeHfZ/00ksveZGRkV5tbe3gPr/73e+85ORkr6enZwLOAsBkijPm2muv9b7zne+c9nuIM+FjpskUZ5nD999/35WxCIqMjHSvt2zZMqHHBmDysrI4Vt6ipKTEjbq06Z3G4o2Ndhgac6x017Rp04g5AM5IeXm5amtrQ+JKSkqKKzcajCu2tlI5CxcuHNzH9rdrHpuZAgDheP31112Ziosuukjf+MY31NjYOLiNOANgLFpaWtw6PT097PskW1988cXKyckZ3Mdm1ra2trpZbgAwWpwJ+sMf/qDMzEzNnz9fjz76qDo7Owe3EWfCFz2GfTEJHTt2zE29GvrHYOz1nj17Juy4AExe9qDSpm/aAwWb6vnEE0/o85//vD7++GP3YDM2NtY9VDg15tg2ABirYOwY6VomuM3W9qBzqOjoaHcDQewBEA4rzWVlcmbMmKGDBw/qhz/8oW688Ub3cCEqKoo4AyBsAwMD+u53v6trrrnGPbQ04dwn2Xqk653gNgAYLc6Y22+/XcXFxW6Q60cffaQf/OAHru/JX//6V7edOBM+kiYAgDGxBwhBl1xyiUui2D/Kf/7zn12DZgAAgMnm1ltvHfzaRmDaNU5paambfbJs2bIJPTYAk4v1HLABZUP7PgLAuYgzQ3ut2fVMXl6eu46xASF2XYPwUZ5rirPpWDYyqq6uLuR9e52bmzthxwVg6rDRUrNmzdKBAwdcXLGygM3NzSH7EHMAnKlg7BjtWsbW9fX1Idv7+vrU1NRE7AFwRqwEqd1L2fWNIc4ACMe3vvUtbdiwQZs2bVJhYeHg++HcJ9l6pOud4DYAGC3OjMQGuZqh1zPEmfCQNJnibPrnFVdcoVdffTVkCpe9XrJkyYQeG4Cpob293Y1asBEMFm9iYmJCYo5NBbWeJ8QcAGfCSuXYBfzQuGI1d62HQDCu2NoeQli98KDXXnvNXfMEbxQAYCwqKytdTxO7vjHEGQCj8TzPPch84YUXXGyw65ehwrlPsvWOHTtCErQbN25UcnKy5s6dew7PBsBkjDMj+fDDD9166PUMcSY8lOe6ADz44INas2aNa1q4ePFi/fKXv1RHR4fuvvvuiT40AJPQ97//fa1YscKV5Kqurta6devcjLbbbrvNNWe+5557XNyxGt/2D++3v/1t9w/zVVddNdGHDuA8Tr4GRz8Fm7/bBb7FEWuQavV6f/rTn2rmzJnu5uCxxx5zdXpXrlzp9p8zZ47rR7B27Vo9/fTTrtGq3VBYuR3bDwBGizO2WI+21atXuyStDQZ5+OGHVVZW5pqjGuIMgE8rlfPHP/5Rf/vb35SUlDTYG8Duj6yEcTj3ScuXL3cPLe+88049+eST7jN+9KMfuc/2+XwTfIYAzvc4Y9cvtv3LX/6yMjIyXE+TBx54QEuXLnVlRw1xZgw8XBB+85vfeNOmTfNiY2O9xYsXe1u3bp3oQwIwSX31q1/18vLyXDwpKChwrw8cODC4vaury/vmN7/ppaWlefHx8d6qVau8mpqaCT1mAOe3TZs2eXZZeuqyZs0at31gYMB77LHHvJycHM/n83nLli3z9u7dG/IZjY2N3m233eYlJiZ6ycnJ3t133+21tbVN0BkBmExxprOz01u+fLmXlZXlxcTEeMXFxd7atWu92trakM8gzgA4nZHiiy3PPPPMmO6TDh8+7N14442e3+/3MjMzve9973teb2/vBJwRgMkWZyoqKrylS5d66enp7p6prKzMe+ihh7yWlpaQzyHOhCfC/jOWJAsAAAAAAAAAAMBURE8TAAAAAAAAAAAAkiYAAAAAAAAAAAABJE0AAAAAAAAAAABImgAAAAAAAAAAAASQNAEAAAAAAAAAACBpAgAAAAAAAAAAEEDSBAAAAAAAAAAAgKQJAAAAAAAAAABAAEkTAAAAAAAAAAAAkiYAAAAAAAAAAAABJE0AAAAAAAAAAABImgAAAAAAAAAAAMj5fxBbbPR4LoioAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "from aeon.similarity_search import SeriesSearch\n", + "index = RandomProjectionIndexANN(n_hash_funcs=512, hash_func_coverage=0.75).fit(X_fit)\n", + "indexes, distances = index.predict(X_predict, k=2)\n", "\n", - "query_length = 35\n", - "estimator = SeriesSearch(distance=\"euclidean\").fit(X_train) # X_test is a 3D array\n", - "mp, ip = estimator.predict(X_test, query_length) # X_test is a 2D array\n", - "plot_matrix_profile(X_test, mp, 0)\n", - "print(f\"Index of the 20-th query best matches : {ip[20]}\")" + "indexes = indexes[0]\n", + "distances = distances[0]\n", + "\n", + "for i in range(len(indexes)):\n", + " print(f\"match {i} : {indexes[i]} with distance {distances[i]}\")\n", + " # A bit of hacking of the function defined for series estimator to show best mathces\n", + " plot_best_matches(X_fit[indexes[i]], X_predict, 0, [0], X_predict.shape[1])" ] }, { "cell_type": "markdown", - "id": "0dca5122", + "id": "7828c48c-abdb-4807-bc94-d9b8414b5282", "metadata": {}, "source": [ - "Notice that we find the same best match for the 20-ith query, which was the query that we used for `QuerySearch` !\n", - "\n", - "`SeriesSearch` returns two lists, `mp` and `ip`, which respectively contain the distances to the best matches of all queries of size `query_length` in `X_test` (the `i-th` query being `X_test[:, i : i + query_length]`) and the indexes of these best matches in `X_train` in the `(ix_case, ix_timepoint)` format, such as `X_train[ix_case, :, ix_timepoint : ix_timepoint + query_length]` will be the matching subsquence.\n", - "\n", - "Most of the options (`k`, `threshold`, `inverse_distance`, etc.) from `QuerySearch` are also available for `SeriesSearch`." + "This type of method is mostly interesting where speed of the search is paramount, or when the dataset size grows large (> 10k samples)." ] }, { - "cell_type": "code", - "execution_count": null, - "id": "ff23faf5-2941-441a-8c4c-0cf66eaca121", + "cell_type": "markdown", + "id": "1610adf3-5cb1-466e-9cad-fb248148fd5a", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "## References\n", + "[1] Patrick Schäfer and Ulf Leser. 2022. Motiflets: Simple and Accurate Detection\n", + " of Motifs in Time Series. Proc. VLDB Endow. 16, 4 (December 2022), 725–737." + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3 (Spyder)", - "language": "python3", + "display_name": "Python 3 (ipykernel)", + "language": "python", "name": "python3" }, "language_info": { @@ -521,7 +674,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.11.11" } }, "nbformat": 4,