diff --git a/examples/transformations/catch22.ipynb b/examples/transformations/catch22.ipynb index a551f67ef6..1a921944c9 100644 --- a/examples/transformations/catch22.ipynb +++ b/examples/transformations/catch22.ipynb @@ -276,7 +276,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You may find that some time series cannot extract certain features from it. This may happen when division by zero occurs, or the input value is zero. Simply, it means we cannot extract the feature from the time series. However, we may still want a number for calculations and therefore 'replace_nans' allows us to replace NaN with zero." + "You may find that some time series cannot extract certain features from it. This may happen when division by zero occurs, or the input value is zero. Simply, it means we cannot extract the feature from the time series. However, we may still want a number for calculations and therefore ``'replace_nans'`` allows us to replace ``NaN`` with zero." ] }, { @@ -323,7 +323,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Pycatch22 is the original implementation of catch22 based on \\[1\\]. Aeon allows you to use pycatch22 by setting the parameter 'use_pycatch22' to true. The difference of the two is that pycatch22 uses C as their backend while python uses the Numba library, which assembles python code into C. Aeon also regularly maintains their catch22 library, and therefore there should be barely any discrepancy between outputs. Pycatch22 has a few issues with their implementation such as at times struggling to run on windows. If you are using the aeon library for a certain task, but want to use pycatch22 for transformation of the data, it is recommended to use aeon's catch22 with the parameter 'use_pycatch22' set to true. If you do that, you may encounter a warning that pycatch22 has not been installed and therefore will use aeon's catch22, if that happens just install the pycatch22 library.\n", + "Pycatch22 is the original implementation of catch22 based on \\[1\\]. Aeon allows you to use pycatch22 by setting the parameter ``'use_pycatch22'`` to true. The difference of the two is that pycatch22 uses C as their backend while python uses the Numba library, which assembles python code into C. Aeon also regularly maintains their catch22 library, and therefore there should be barely any discrepancy between outputs. Pycatch22 has a few issues with their implementation such as at times struggling to run on windows. If you are using the aeon library for a certain task, but want to use pycatch22 for transformation of the data, it is recommended to use aeon's catch22 with the parameter ``'use_pycatch22'`` set to true. If you do that, you may encounter a warning that pycatch22 has not been installed and therefore will use aeon's catch22, if that happens just install the pycatch22 library.\n", "\n", "Currently, pycatch22 has an issue where the output features extracted using Python yield different values compared to those extracted using the native C code. Aeon's catch22 implementation extracts the same results as pycatch22's C code. Therefore, the extracted results may differ." ] diff --git a/examples/transformations/minirocket.ipynb b/examples/transformations/minirocket.ipynb index c23d15623a..457350c211 100644 --- a/examples/transformations/minirocket.ipynb +++ b/examples/transformations/minirocket.ipynb @@ -19,10 +19,10 @@ "\n", "### 1.1 Imports\n", "\n", - "Import example data, `MiniRocket`, `MiniRocketClassifier`, `MiniRocketRegressor`,\n", - "`RidgeClassifierCV` (scikit-learn), and ``numpy``.\n", + "Import example data, ``MiniRocket``, ``MiniRocketClassifier``, ``MiniRocketRegressor``,\n", + "``RidgeClassifierCV`` (scikit-learn), and ``numpy``.\n", "\n", - "You can use the `MiniRocket`transform directly, in a pipeline, or in our baked in `MiniRocketClassifier` or `MiniRocketRegressor`.\n", + "You can use the ``MiniRocket``transform directly, in a pipeline, or in our baked in ``MiniRocketClassifier`` or ``MiniRocketRegressor``.\n", "\n", "**Note**: ``MiniRocket`` is compiled by ``numba`` on import. The compiled functions are\n", "cached, so this should only happen once (i.e., the first time you import ``MiniRocket``)." @@ -30,32 +30,34 @@ }, { "cell_type": "code", + "execution_count": 1, "metadata": { + "ExecuteTime": { + "end_time": "2024-11-25T11:08:58.368462Z", + "start_time": "2024-11-25T11:08:58.349939Z" + }, "execution": { "iopub.execute_input": "2020-10-12T17:43:03.214929Z", "iopub.status.busy": "2020-10-12T17:43:03.214184Z", "iopub.status.idle": "2020-10-12T17:43:03.216304Z", "shell.execute_reply": "2020-10-12T17:43:03.216990Z" - }, - "ExecuteTime": { - "end_time": "2024-11-25T11:08:58.368462Z", - "start_time": "2024-11-25T11:08:58.349939Z" } }, + "outputs": [], "source": [ "# !pip install --upgrade numba" - ], - "outputs": [], - "execution_count": 1 + ] }, { + "cell_type": "code", + "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2024-11-25T11:10:18.327182Z", "start_time": "2024-11-25T11:08:59.095253Z" } }, - "cell_type": "code", + "outputs": [], "source": [ "import numpy as np\n", "from sklearn.linear_model import RidgeClassifierCV\n", @@ -66,26 +68,17 @@ "from aeon.datasets import load_basic_motions # multivariate dataset\n", "from aeon.regression.convolution_based import MiniRocketRegressor\n", "from aeon.transformations.collection.convolution_based import MiniRocket" - ], - "outputs": [], - "execution_count": 2 + ] }, { + "cell_type": "code", + "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2024-11-25T11:10:23.328664Z", "start_time": "2024-11-25T11:10:23.234728Z" } }, - "cell_type": "code", - "source": [ - "X_train, y_train = load_arrow_head(split=\"train\")\n", - "minirocket = MiniRocket() # by default, MiniRocket uses ~10_000 kernels\n", - "minirocket.fit(X_train)\n", - "X_train_transform = minirocket.transform(X_train)\n", - "# test shape of transformed training data -> (n_cases, 9_996)\n", - "X_train_transform.shape" - ], "outputs": [ { "data": { @@ -98,48 +91,45 @@ "output_type": "execute_result" } ], - "execution_count": 5 + "source": [ + "X_train, y_train = load_arrow_head(split=\"train\")\n", + "minirocket = MiniRocket() # by default, MiniRocket uses ~10_000 kernels\n", + "minirocket.fit(X_train)\n", + "X_train_transform = minirocket.transform(X_train)\n", + "# test shape of transformed training data -> (n_cases, 9_996)\n", + "X_train_transform.shape" + ] }, { - "metadata": {}, "cell_type": "markdown", + "metadata": {}, "source": [ "### 1.4 Fit a Classifier" ] }, { - "metadata": {}, "cell_type": "markdown", + "metadata": {}, "source": [ - "We suggest using `RidgeClassifierCV` (scikit-learn) for smaller datasets (fewer than ~10,000 training examples), and using logistic regression trained using stochastic gradient descent for larger datasets.\n", + "We suggest using ``RidgeClassifierCV`` (scikit-learn) for smaller datasets (fewer than ~10,000 training examples), and using logistic regression trained using stochastic gradient descent for larger datasets.\n", "\n", - "**Note**: For larger datasets, this means integrating MiniRocket with stochastic gradient descent such that the transform is performed per minibatch, *not* simply substituting `RidgeClassifierCV` for, e.g., `LogisticRegression`.\n", + "**Note**: For larger datasets, this means integrating MiniRocket with stochastic gradient descent such that the transform is performed per minibatch, *not* simply substituting ``RidgeClassifierCV`` for, e.g., ``LogisticRegression``.\n", "\n", - "**Note**: While the input time-series of MiniRocket is unscaled, the output features of MiniRocket may need to be adjusted for following models. E.g. for `RidgeClassifierCV`, we scale the features using the sklearn StandardScaler." + "**Note**: While the input time-series of MiniRocket is unscaled, the output features of MiniRocket may need to be adjusted for following models. E.g. for ``RidgeClassifierCV``, we scale the features using the sklearn StandardScaler." ] }, { + "cell_type": "code", + "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2024-11-25T11:10:26.380394Z", "start_time": "2024-11-25T11:10:26.343196Z" } }, - "cell_type": "code", - "source": [ - "scaler = StandardScaler(with_mean=False)\n", - "classifier = RidgeClassifierCV(alphas=np.logspace(-3, 3, 10))\n", - "X_train_scaled_transform = scaler.fit_transform(X_train_transform)\n", - "classifier.fit(X_train_scaled_transform, y_train)" - ], "outputs": [ { "data": { - "text/plain": [ - "RidgeClassifierCV(alphas=array([1.00000000e-03, 4.64158883e-03, 2.15443469e-02, 1.00000000e-01,\n", - " 4.64158883e-01, 2.15443469e+00, 1.00000000e+01, 4.64158883e+01,\n", - " 2.15443469e+02, 1.00000000e+03]))" - ], "text/html": [ "
MiniRocketClassifier()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "MiniRocketClassifier()" ] }, "execution_count": 7, @@ -998,40 +995,43 @@ "output_type": "execute_result" } ], - "execution_count": 7 + "source": [ + "mr = MiniRocketClassifier()\n", + "mr.fit(X_train, y_train)" + ] }, { - "metadata": {}, "cell_type": "markdown", + "metadata": {}, "source": [ "### 1.5 Load and Transform the Test Data" ] }, { + "cell_type": "code", + "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2024-11-25T11:10:36.310828Z", "start_time": "2024-11-25T11:10:36.188643Z" } }, - "cell_type": "code", + "outputs": [], "source": [ "X_test, y_test = load_arrow_head(split=\"test\")\n", "X_test_transform = minirocket.transform(X_test)" - ], - "outputs": [], - "execution_count": 8 + ] }, { - "metadata": {}, "cell_type": "markdown", + "metadata": {}, "source": [ "### 1.6 Classify the Test Data" ] }, { - "metadata": {}, "cell_type": "markdown", + "metadata": {}, "source": [ "## 2 Multivariate Time Series\n", "\n", @@ -1039,18 +1039,14 @@ ] }, { + "cell_type": "code", + "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2024-11-25T11:10:40.698690Z", "start_time": "2024-11-25T11:10:40.561965Z" } }, - "cell_type": "code", - "source": [ - "X_test_scaled_transform = scaler.transform(X_test_transform)\n", - "print(\" Score =\", classifier.score(X_test_scaled_transform, y_test))\n", - "print(\" Score = \", mr.score(X_test, y_test))" - ], "outputs": [ { "name": "stdout", @@ -1061,7 +1057,11 @@ ] } ], - "execution_count": 9 + "source": [ + "X_test_scaled_transform = scaler.transform(X_test_transform)\n", + "print(\" Score =\", classifier.score(X_test_scaled_transform, y_test))\n", + "print(\" Score = \", mr.score(X_test, y_test))" + ] }, { "cell_type": "markdown", @@ -1070,28 +1070,28 @@ "### Load the Training Data\n", "\n", "**Note**: Input time series must be *at least* of length 9. Pad shorter time series\n", - "using, e.g., `Padder` (`aeon.transformers.collection`)." + "using, e.g., ``Padder`` (``aeon.transformers.collection``)." ] }, { "cell_type": "code", + "execution_count": 10, "metadata": { + "ExecuteTime": { + "end_time": "2024-11-25T11:10:43.874489Z", + "start_time": "2024-11-25T11:10:43.846456Z" + }, "execution": { "iopub.execute_input": "2020-10-12T17:43:10.054652Z", "iopub.status.busy": "2020-10-12T17:43:10.034190Z", "iopub.status.idle": "2020-10-12T17:43:10.394311Z", "shell.execute_reply": "2020-10-12T17:43:10.394905Z" - }, - "ExecuteTime": { - "end_time": "2024-11-25T11:10:43.874489Z", - "start_time": "2024-11-25T11:10:43.846456Z" } }, + "outputs": [], "source": [ "X_train, y_train = load_basic_motions(split=\"train\")" - ], - "outputs": [], - "execution_count": 10 + ] }, { "cell_type": "markdown", @@ -1102,25 +1102,25 @@ }, { "cell_type": "code", + "execution_count": 11, "metadata": { + "ExecuteTime": { + "end_time": "2024-11-25T11:10:45.517801Z", + "start_time": "2024-11-25T11:10:45.415754Z" + }, "execution": { "iopub.execute_input": "2020-10-12T17:43:10.410718Z", "iopub.status.busy": "2020-10-12T17:43:10.410103Z", "iopub.status.idle": "2020-10-12T17:43:11.186318Z", "shell.execute_reply": "2020-10-12T17:43:11.186801Z" - }, - "ExecuteTime": { - "end_time": "2024-11-25T11:10:45.517801Z", - "start_time": "2024-11-25T11:10:45.415754Z" } }, + "outputs": [], "source": [ "mr = MiniRocket()\n", "mr.fit(X_train)\n", "X_train_transform = mr.transform(X_train)" - ], - "outputs": [], - "execution_count": 11 + ] }, { "cell_type": "markdown", @@ -1131,33 +1131,22 @@ }, { "cell_type": "code", + "execution_count": 12, "metadata": { + "ExecuteTime": { + "end_time": "2024-11-25T11:10:48.940610Z", + "start_time": "2024-11-25T11:10:48.898236Z" + }, "execution": { "iopub.execute_input": "2020-10-12T17:43:11.190556Z", "iopub.status.busy": "2020-10-12T17:43:11.190017Z", "iopub.status.idle": "2020-10-12T17:43:11.396461Z", "shell.execute_reply": "2020-10-12T17:43:11.397135Z" - }, - "ExecuteTime": { - "end_time": "2024-11-25T11:10:48.940610Z", - "start_time": "2024-11-25T11:10:48.898236Z" } }, - "source": [ - "scaler = StandardScaler(with_mean=False)\n", - "X_train_scaled_transform = scaler.fit_transform(X_train_transform)\n", - "\n", - "classifier = RidgeClassifierCV(alphas=np.logspace(-3, 3, 10))\n", - "classifier.fit(X_train_scaled_transform, y_train)" - ], "outputs": [ { "data": { - "text/plain": [ - "RidgeClassifierCV(alphas=array([1.00000000e-03, 4.64158883e-03, 2.15443469e-02, 1.00000000e-01,\n", - " 4.64158883e-01, 2.15443469e+00, 1.00000000e+01, 4.64158883e+01,\n", - " 2.15443469e+02, 1.00000000e+03]))" - ], "text/html": [ "
SASTClassifier(seed=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "SASTClassifier(seed=42)" ] }, "execution_count": 10, @@ -1657,7 +1654,10 @@ "output_type": "execute_result" } ], - "execution_count": 10 + "source": [ + "clf = SASTClassifier(seed=42)\n", + "clf" + ] }, { "cell_type": "markdown", @@ -1668,21 +1668,16 @@ }, { "cell_type": "code", + "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2025-02-19T16:46:23.825075Z", "start_time": "2025-02-19T16:46:23.805052Z" } }, - "source": [ - "clf.fit(X_train, y_train)" - ], "outputs": [ { "data": { - "text/plain": [ - "SASTClassifier(seed=42)" - ], "text/html": [ "
SASTClassifier(seed=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "SASTClassifier(seed=42)" ] }, "execution_count": 11, @@ -2107,7 +2105,9 @@ "output_type": "execute_result" } ], - "execution_count": 11 + "source": [ + "clf.fit(X_train, y_train)" + ] }, { "cell_type": "markdown", @@ -2118,15 +2118,13 @@ }, { "cell_type": "code", + "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2025-02-19T16:46:23.851369Z", "start_time": "2025-02-19T16:46:23.833347Z" } }, - "source": [ - "clf.score(X_test, y_test)" - ], "outputs": [ { "data": { @@ -2139,7 +2137,9 @@ "output_type": "execute_result" } ], - "execution_count": 12 + "source": [ + "clf.score(X_test, y_test)" + ] }, { "cell_type": "markdown", @@ -2147,73 +2147,73 @@ "source": [ "### 4.4 Interpretability\n", "\n", - "SASTClassifier's interpretability can be achieved by visualizing the most important subsequences used for the transformation.\n", + "``SASTClassifier``'s interpretability can be achieved by visualizing the most important subsequences used for the transformation.\n", "\n", "The importance of features can be computed by different means. In this demo, we considere the absolute values of the weights of the ridge classifier as the feature importances.\n", "\n", - "#### 4.4.1 Interpretability of class `1`" + "#### 4.4.1 Interpretability of class ``1``" ] }, { "cell_type": "code", + "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2025-02-19T16:46:24.377310Z", "start_time": "2025-02-19T16:46:23.859834Z" } }, - "source": [ - "fig = clf.plot_most_important_feature_on_ts(\n", - " X_test[y_test == \"1\"][0, 0], clf._classifier.coef_\n", - ")" - ], "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAEiCAYAAAAWHJuuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACotElEQVR4nOzdd3hUZf7+8fekUlIgQBJC76GDoIjSVpAiqKhYUezormVtW9yvsvtTV3fXstZVsRewCyIqiihiofceOoGQRkiF9Pn9cZIpaaTMzJlyv64rF8/MnEw+sdw855lzPo/FarVaERERERERERERERGRaoLMLkBERERERERERERExFtpEV1EREREREREREREpBZaRBcRERERERERERERqYUW0UVEREREREREREREaqFFdBERERERERERERGRWmgRXURERERERERERESkFlpEFxERERERERERERGphRbRRURERERERERERERqoUV0EREREREREREREZFaaBFd3Gbt2rWcc845tGzZEovFwqZNm8wuSUQCiDJIRMykDBIRMymDRMRMyiDxR1pEF7coKSnh8ssvJysri//+97+89957dOnSxeU/JyUlhX/84x8+Fcj5+fn8/e9/Z/LkycTExGCxWHj77bfNLkvEryiDard27VruvPNO+vfvT8uWLencuTNXXHEFSUlJZpcm4jeUQbXbvn07l19+Od27d6dFixa0bduWMWPG8OWXX5pdmojfUAbV3z//+U8sFgsDBgwwuxQRv6EMqt3y5cuxWCw1fq1atcrs8uQ0QswuQPzTvn37OHToEK+99hq33HKL235OSkoK/+///T+6du3KkCFD3PZzXCkzM5NHHnmEzp07M3jwYJYvX252SSJ+RxlUu3//+9/8+uuvXH755QwaNIjU1FRefPFFzjjjDFatWqWTSBEXUAbV7tChQ+Tl5XH99deTkJDAyZMn+eyzz7jooot49dVXmT17ttklivg8ZVD9HDlyhMcff5yWLVuaXYqIX1EGnd7dd9/NmWee6fRcz549TapG6kuL6OIW6enpALRq1crcQhqpsLCQsLAwgoJcf7NG+/btOXbsGPHx8axbt65acIpI0ymDanffffcxf/58wsLCbM9deeWVDBw4kH/961+8//77Lv+ZIoFGGVS7Cy64gAsuuMDpuTvvvJNhw4bxzDPPaBFdxAWUQfXzwAMPcPbZZ1NWVkZmZqZbf5ZIIFEGnd7o0aOZMWOG295f3EPtXMTlbrjhBsaOHQvA5ZdfjsViYdy4cbbXd+3axYwZM4iJiaFZs2YMHz6cRYsWOb1HVlYWDzzwAAMHDiQiIoKoqCimTJnC5s2bbccsX77ctgB944032m6BqWyN0rVrV2644YZq9Y0bN86pnsrbaT788EMeeughOnToQIsWLcjNzQVg9erVTJ48mejoaFq0aMHYsWP59ddfq73vrl27OHz48Gn/+YSHhxMfH3/a40SkcZRBdTvnnHOcFtABevXqRf/+/dm5c+dpv19E6qYMarjg4GA6depEdnZ2o75fROyUQfWzYsUKPv30U5599tl6f4+InJ4yqP7y8vIoLS1t0PeIuXQlurjcbbfdRocOHXj88cdtt6jExcUBRh/Mc889lw4dOvDXv/6Vli1b8vHHHzN9+nQ+++wzLrnkEgD279/PwoULufzyy+nWrRtpaWm8+uqrjB07lh07dpCQkEDfvn155JFHmDNnDrNnz2b06NGAsUDUGI8++ihhYWE88MADFBUVERYWxg8//MCUKVMYNmwYf//73wkKCuKtt97ivPPO4+eff+ass86yfX/fvn0ZO3as2rOImEwZtLzBP9tqtZKWlkb//v0bVbuI2CmDltfr5xUUFHDq1ClycnJYtGgR33zzDVdeeWWjahcRO2XQ8tP+rLKyMu666y5uueUWBg4c2Kh6RaRmyqDl9fp5N954I/n5+QQHBzN69GiefPJJhg8f3qjaxYOsIm7w448/WgHrJ5984vT8+PHjrQMHDrQWFhbanisvL7eec8451l69etmeKywstJaVlTl974EDB6zh4eHWRx55xPbc2rVrrYD1rbfeqlZDly5drNdff32158eOHWsdO3ZstVq7d+9uPXnypFNdvXr1sk6aNMlaXl5ue/7kyZPWbt26Wc8//3yn9wWc3rc+6qpfRBpPGdQw7733nhWwvvHGG436fhFxpgw6vdtuu80KWAFrUFCQdcaMGdasrKx6f7+I1E4ZVLcXX3zRGh0dbU1PT7fV1L9//3p9r4icnjKodr/++qv1sssus77xxhvWL774wvrEE09Y27RpY23WrJl1w4YNp/1+MZfauYjHZGVl8cMPP3DFFVeQl5dHZmYmmZmZHD9+nEmTJrFnzx6OHj0KGC1PKvtPlZWVcfz4cSIiIujTpw8bNmxwS33XX389zZs3tz3etGkTe/bs4ZprruH48eO2egsKChg/fjwrVqygvLzcdrzVatVV6CJeTBlUs127dnHHHXcwcuRIrr/+elf8KiJSA2WQs3vuuYelS5fyzjvvMGXKFMrKyiguLnblryQiDpRBhuPHjzNnzhwefvhh2rVr545fRURqoAwynHPOOXz66afcdNNNXHTRRfz1r39l1apVWCwWHnzwQXf8auJCauciHrN3716sVisPP/wwDz/8cI3HpKen06FDB8rLy3nuuef43//+x4EDBygrK7Md06ZNG7fU161bN6fHe/bsAahzUSknJ4fWrVu7pR4RcS1lUHWpqalMnTqV6OhoPv30U4KDgxv9XiJSN2WQs8TERBITEwGYNWsWEydO5MILL2T16tVYLJZGvaeI1E4ZZHjooYeIiYnhrrvuaniRItJoyqDa9ezZk4svvpjPP/+csrIynZN5MS2ii8dUfkr3wAMPMGnSpBqP6dmzJwCPP/44Dz/8MDfddBOPPvooMTExBAUFcc899zh92leX2k7Aagslx08dHet98sknGTJkSI3vFRERUa9aRMR8yiBnOTk5TJkyhezsbH7++WcSEhIa/V4icnrKoLrNmDGD2267jaSkJPr06eOy9xURgzLIWBSbO3cuzz77LCkpKbbnCwsLKSkp4eDBg0RFRRETE9Og9xWR01MG1a1Tp04UFxdTUFBAVFSUy95XXEuL6OIx3bt3ByA0NJQJEybUeeynn37K7373O9544w2n57Ozs2nbtq3tcV1XKrVu3Zrs7Oxqzx86dMhWS1169OgBQFRU1GnrFRHvpwyyKyws5MILLyQpKYnvv/+efv36ufT9RaQ6ZVDdTp06BRgf8ImI6ymD4OjRo5SXl3P33Xdz9913V3u9W7du/PGPf+TZZ591yc8TETtlUN32799Ps2bNdKGml1NPdPGY2NhYxo0bx6uvvsqxY8eqvZ6RkWEbBwcHY7VanV7/5JNPbD2yKrVs2RKgxnDs0aMHq1atcuqvuXjxYpKTk+tV77Bhw+jRowdPPfUU+fn5ddYLRl/hw4cP1+u9RcTzlEGGsrIyrrzySlauXMknn3zCyJEj61WPiDSNMsiQnp5e7bmSkhLeffddmjdvrg/1RNxEGQQDBgxgwYIF1b769+9P586dWbBgATfffHO96hORhlEG1fx9AJs3b2bRokVMnDjR1gtevJOuRBePeumllxg1ahQDBw7k1ltvpXv37qSlpbFy5UqOHDnC5s2bAZg2bRqPPPIIN954I+eccw5bt25l3rx51T4x7NGjB61ateKVV14hMjKSli1bMmLECLp168Ytt9zCp59+yuTJk7niiivYt28f77//vu0TxdMJCgri9ddfZ8qUKfTv358bb7yRDh06cPToUX788UeioqL48ssvbcf37duXsWPH1msziRdffJHs7GzbbYRffvklR44cAeCuu+4iOjq6XjWKSMMog+D+++9n0aJFXHjhhWRlZfH+++87vX7ttdfWqz4RaThlENx2223k5uYyZswYOnToQGpqKvPmzWPXrl08/fTTugJLxI0CPYPatm3L9OnTqz1feeV5Ta+JiOsEegYBXHnllTRv3pxzzjmH2NhYduzYwdy5c2nRogX/+te/GvYPVDzPKuIGP/74oxWwfvLJJ9Ve27dvn3XWrFnW+Ph4a2hoqLVDhw7WadOmWT/99FPbMYWFhdb777/f2r59e2vz5s2t5557rnXlypXWsWPHWseOHev0fl988YW1X79+1pCQECtgfeutt2yvPf3009YOHTpYw8PDreeee6513bp11d6jrlqtVqt148aN1ksvvdTapk0ba3h4uLVLly7WK664wrps2TKn44BqtdWmS5cuVqDGrwMHDtTrPUSkdsqg2o0dO7bW/NG0QMQ1lEG1++CDD6wTJkywxsXFWUNCQqytW7e2TpgwwfrFF1+c9ntFpH6UQQ0zduxYa//+/Rv1vSJSnTKods8995z1rLPOssbExFhDQkKs7du3t1577bXWPXv2nPZ7xXwWq7XKPRIiIiIiIiIiIiIiIgKoJ7qIiIiIiIiIiIiISK20iC4iIiIiIiIiIiIiUgstoouIiIiIiIiIiIiI1EKL6CIiIiIiIiIiIiIitdAiuoiIiIiIiIiIiIhILbSILiIiIiIiIiIiIiJSixCzC3CX8vJyUlJSiIyMxGKxmF2OiHg5q9VKXl4eCQkJBAU1/fNFZZCINIQySETMpAwSETMpg0TETPXNIL9dRE9JSaFTp05mlyEiPiY5OZmOHTs2+X2UQSLSGMogETGTMkhEzKQMEhEznS6D/HYRPTIyEjD+AURFRZlcjYh4u9zcXDp16mTLjqZSBolIQyiDRMRMyiARMZMySETMVN8M8ttF9MpbdqKiohSaIlJvrrrdTxkkIo2hDBIRMymDRMRMyiARMdPpMkgbi4qIiIiIiIiIiIiI1EKL6CIiIiIiIiIiIiIitdAiuoiIiIiIiIiIiIhILbSILiIiIiIiIiIiIiJSCy2ii4iIiIiIiIiIiIjUQovoIiIiIiIiIiIiIiK10CK6SEOsfR3enAzJa8yuREQC0do3jAw6vNrsSkQkEK19A96YpAwSEXOse7Mig1aZXYmIBKJ1bymDAlyDF9FXrFjBhRdeSEJCAhaLhYULF9Z67O23347FYuHZZ591ej4rK4uZM2cSFRVFq1atuPnmm8nPz3c6ZsuWLYwePZpmzZrRqVMn/vOf/zS0VBHXykuFrx6AwythwW1gtZpdkYgEkrw0+FoZJCImqcyg5FWwYDaUl5tdkYgEkrw0+Or+igy6TRkkIp6Vnw5f3Wdk0OeaBwWqBi+iFxQUMHjwYF566aU6j1uwYAGrVq0iISGh2mszZ85k+/btLF26lMWLF7NixQpmz55tez03N5eJEyfSpUsX1q9fz5NPPsk//vEP5s6d29ByRVxnxyKgYtEqa7+xkCUi4ik7F4G1YrJ24gAc+s3cekQksDhl0EE4rAwSEQ9SBomImRwzKPsQHPrV3HrEFA1eRJ8yZQqPPfYYl1xySa3HHD16lLvuuot58+YRGhrq9NrOnTtZsmQJr7/+OiNGjGDUqFG88MILfPjhh6SkpAAwb948iouLefPNN+nfvz9XXXUVd999N88880xDyxVxne0LnB9vnGdOHSISmKpm0CZlkIh4kOZBImKm7QudHyuDRMSTqmaQzsUCkst7opeXl3Pdddfxpz/9if79+1d7feXKlbRq1Yrhw4fbnpswYQJBQUGsXr3adsyYMWMICwuzHTNp0iR2797NiRMnavy5RUVF5ObmOn2JuEzusepXnm9fAEV55tQjXkcZJG6Vl1r9ynNlkDhQBolb1ZRBOxZCof47E4MySNwqL7X6VZ/KIHGgDBK3ykuDg784P7d9oTIoALl8Ef3f//43ISEh3H333TW+npqaSmxsrNNzISEhxMTEkJqaajsmLi7O6ZjKx5XHVPXEE08QHR1t++rUqVNTfxURu50OrVxCWxp/lhRU/zRSApYySNxqR00ZdLL6laESsJRB4lbKIDkNZZC41c4vUQZJXZRB4lY1rQeVnoLtn5tWkpjDpYvo69ev57nnnuPtt9/GYrG48q1P68EHHyQnJ8f2lZyc7NGfL37OcYJ2gcMmtxvf93wt4pWUQeJWyiA5DWWQuFVtGaRbmaWCMkjcSvMgOQ1lkLiV48WTyqCA5tJF9J9//pn09HQ6d+5MSEgIISEhHDp0iPvvv5+uXbsCEB8fT3p6utP3lZaWkpWVRXx8vO2YtLQ0p2MqH1ceU1V4eDhRUVFOXyIukZtib+XStg8MmQnt+hqPk1dB5l7zahOvoQwSt6kpg2L7GY+TV0PmHvNqE6+hDBK3ccqg3tUzKCPJvNrEayiDxG1yj9nbSbXpVZFBFW1jj6xRBgmgDBI3cmwn1aankUFxA4zHR9ZCxm7zahOPc+ki+nXXXceWLVvYtGmT7SshIYE//elPfPvttwCMHDmS7Oxs1q9fb/u+H374gfLyckaMGGE7ZsWKFZSUlNiOWbp0KX369KF169auLFnk9HZ8YR/3vwQsFhh6rf25Tfr0UUTcyLGNQv/p1TNIV0CIiDs5ZZDmQSLiYTuVQSJiotPNg3QuFlAavIien59vWyAHOHDgAJs2beLw4cO0adOGAQMGOH2FhoYSHx9Pnz59AOjbty+TJ0/m1ltvZc2aNfz666/ceeedXHXVVSQkJABwzTXXEBYWxs0338z27dv56KOPeO6557jvvvtc95uL1JfjrTv9pxt/DroSgkKM8aYPoKzU01WJSKDYsdA+7n+J8adjBm1WBomIG502gz5UBomI+zidi1Vm0BVVzsVKqn2biIhL1DQPGngFBIUa480fKoMCSIMX0detW8fQoUMZOnQoAPfddx9Dhw5lzpw59X6PefPmkZiYyPjx47ngggsYNWoUc+fOtb0eHR3Nd999x4EDBxg2bBj3338/c+bMYfbs2Q0tV6Rpco4aLVvAaOESW9HGJaId9J5sjPNTYd8yc+oTEf/m2EahXaI9g1q2dcigNNj7vTn1iYh/UwaJiJmqtrRzzKA+U4xxQboySETcw7GdVNve9nZ2Lds4Z9CepebUJx4X0tBvGDduHFartd7HHzx4sNpzMTExzJ8/v87vGzRoED///HNDyxNxLadWLtOdXxt6LexabIw3vg+9J3msLBEJEFXbSTkaep09gza9D30me64uEQkMjhnUb7rza44ZtPE9ZZCIuF5NLe0qDb0Odn5pjDe+b1/QEhFxFcd2Uv2m15BBi4zxpnmQeIGnqxMTuLQnuojfcbx1p+rJY8/zoWWsMd79DRRkeqoqEQkU2xfYx9UyaAJExBljZZCIuENNLe0qOWZQ0hLIz/BUVSISKGpqo1Cpx3iIiDfGyiARcQfHc7FqGXRelQxK91xdYhotoovUJucIJK82xrH9IDbR+fXgEBh8lTEuL4EtH3u2PhHxb44Z1K7vaTKoFLZ85Nn6RMS/1dbSrlJwCAy+2hiXl8JWzYNExIVqaydVSfMgEXGn2tpJVQoOgSEO8yBlUEDQIrpIbepqo1Cp6q7MDWh1JCJSpx2L7OPaMmiIYwbNUwaJiOs0dB604T1lkIi4js7FRMRMVc/FHFu5VBqiDAo0WkQXqU1dbRQqtesDHc8yxunb4dgmd1clIoHC6fbB6TUf0643dBphjNO3Q8pGt5clIgGiPhnUtpc9gzJ2QsoGt5clIgGiPudibXtBp7ONsTJIRFypXvOgntB5pDHO2AVHlUH+TovoIjXJToYja41xbH9joao2Q2faxxvfd29dIhIYspPhyBpjHNvf+MCuNkOUQSLiYjlHHDKoX90ZNLTKHTEiIk2Vc7TulnaOdC4mIq7m1NKuhnZSjpzOxd5zb11iOi2ii9SkPrcP2l6/FEKaG+Otn0BJofvqEpHA4JRB0+s+tv8lENrCGG/9FEpOua0sEQkQDZoHKYNExMUanUGfKYNEpOkalEHTIbSlMd72GRSfdFtZYj4toovUpD637lRqFmU/pjAHdi12V1UiEih2LLSPa7uFuVKzKPsxRTmw6ys3FSUiAaM+bRQqhUc6Z9BOzYNEpIkaci4WHmlf5FIGiYgrNORczCmDcrUe5Oe0iC5SVfZhOLrOGMcNMHrtnY7aKYiIq2QftreTihtQdzupSkN1G6GIuEhDWtpVcmzpsknzIBFpgoa0k6qkdgoi4io5R+rfTqqSzsUChhbRRapqSBuFSl3OhdZdjfH+5cYimIhIYzQ6g7oZ4/0/wYlDLi9LRAJEQ25hrtTlHIjpboyVQSLSFE3NoAPKIBFpgsZkUOeRDhm0Ak4cdHlZ4h20iC5SldMtzPUMzaAgGFJ5FZYVNn3g8rJEJEA0JoMsFocrIKywWRkkIo3UkDYKlSwWhytBlUEi0gQNaSdVySmDgE3zXVqSiASQxs6DnO7KUwb5Ky2iizg6cQiOrjfG8QOhbc/6f++QqwGLMd40D8rLXV6eiPg5xwyKa2AGDb4GZZCINIlTS7uB9WtpV2nw1WCpOLVQBolIYzi2k6pvS7tKThk0XxkkIg1XraVdPdpJVVIGBQQtoos4crx1p75XPlSK7gg9fmeMsw/BoV9cVpaIBIjGtHKpFN0BepxnjLMPw8GfXVaWiAQIpwy6uGHfqwwSkaZq0rmYQwblHIaDK1xWlogEiKaci0UlQI/xxjgn2WgtJX5Hi+gijpxu3alnGwVHjrfw+NIGo1ar2RWICCiDRMRcjWkn5UgZJCJN0Zg2Co6UQSLSFI1pJ+VIGeT3tIguUunEQUjZYIzjB0GbHg1/jz5ToVkrY7xjERTmuKo69ygvg+8egsfi4KsHzK5GJLA5ZdDAxmVQ4lRo3toY7/ShDPpnPHx1vyZwImZqSku7Sn0ucM6gU9kuK88tysvgu4eVQSLe4MShxreTquSUQV/6QAaVw9I5RgYtvk8ZJGImp5Z2DWwnVanPFGgeY4x3fgmnTriuPndwyqB7lUH1oEV0kUrbF9rHjbnyASC0GQy6whiXnoJtnze1KvcpOQUfz4LfXoCyIlj7mvMnryLiWY3ZCb6qkHAYWJlBhbDts6bX5S4lp+CT640MKi2Eta8rg0TMtGOhfdyYq6+gegZt9/J50Cc3wG/PK4NEvEFT2klVCgmHQVcaY1+ZB/36nFHruje8OzNF/F1T2klVcsygsiIfy6A3vbteLxFidgEiXsMVJ49g7Ay/Zq4x3viecUVEUR4U5Vb86fhV8VxZMfS9CLqMbMpvUH8Fx+GDq+DIGufnv7ofuo6Glm09U4eI2DX19sFKQ2fCmleN8Yb3jDtkvC2DTmYZGZS82vn5rx8wMiiinWfqEBE7p4sJGvlBHhi3Mjckg4rzobTIhAy6GpJXOT+vDBIxj9O5WBMyaMhMWP2KMd74HiROq2cGXQhdzmnSr1BvtWXQVw9A1zHKIBEzNLWdVKWhM2H1y8Z4w3uQeGHtGVRc8ae3ZNDXf4JuYyAi1jN1+CAtoosAZB2AlI3GuP3gxrVRqNR+sHELYtpW47bop+t5G9C6t+CudcYGpe6UdQDmzYDje43HYREQ289YUD953DiBvPxt99YgIs5cnUHxAyF1q9Eextsy6MRBeP+yujPoinfcW4OIOHNFS7tK7QcZ75G6peEZdOdaaNWp8T+7Pk4chPdnwPE9xmNlkIj5XNFOqpJTBm1sQAa9WZFBnRv/s+ujrgw6lQVf3w9XvOveGkTEmWMGNbadVKX4gcb52LHNcGyT92dQaEuIH2Bc3HQqC766D654DywW99bho9TORQScr3xoytVXYITNGdc1/PtKT8GyR5r2s0/n6Hp443z74lVEPNz4DVw1z94/cPsC56vRRMT9XJlBAEO9NYM2wOsTHDIoDm78uiKDKvoH7liolgoinuaqq9AreXUGnW8/cVQGiXgHV8+DzpjV8O8pLXR/BqVsrJ5BN3wFV813yKAvlEEinuaUQdOb/n6NmgeZkEEtY4150JXzoEUb47mdXyqD6tDgK9FXrFjBk08+yfr16zl27BgLFixg+vTpAJSUlPDQQw/x9ddfs3//fqKjo5kwYQL/+te/SEhIsL1HVlYWd911F19++SVBQUFcdtllPPfcc0RERNiO2bJlC3fccQdr166lXbt23HXXXfz5z39u+m8sUhPHk8emtFGoNOxGY5EofSeER0F4ZA1fURAeASHN4LObjU0ntnwEI26DDsOaXkNVSd8avT9LThqP2/aBaz+1f9J5wVNGHeDQ1qWN6+sQkepMz6BbjCsP3JpB3xl992rNoCcdMugBtZYS8SRXnzwOu8E4Qaszgyq+QpvDpzcbGbT1YxhxO3R0VwbdACUFxmNlkIj3cPk86AbITGpEBn1SkUHDm15DVXuWwsfXO2RQb5j5KbTuYjye+hR8epMxVotNEc9y9cUEw26AzD2QvqN+GfTZLcbdcJ7MoDa94NrP7Bl0wVPw6Y3GWO3tatXgRfSCggIGDx7MTTfdxKWXXur02smTJ9mwYQMPP/wwgwcP5sSJE/zxj3/koosuYt26dbbjZs6cybFjx1i6dCklJSXceOONzJ49m/nz5wOQm5vLxIkTmTBhAq+88gpbt27lpptuolWrVsyePbuJv7JIFVn7jdtsANoPgZhuTX/PkDDjZKy+xj0I31R8SPTt/xlXh7vy9pl1bxm35VjLjcddznW++hxgwGXGJ467FsPJTPjmTzDjTdfVICI185oM+pMxdkcGrX8bFt8H1jLjcedzjAxqEWM/pmoGff0nuPwt19UgIjWr2k4qpnvT37OhGfS7vxknbADf/g1uWuLiDHoHFt+rDBLxRq5sJ1UpOLSJGfStazNow7vw5T0OGTTSuPrcMYP6X2pk0M4v1WJTxJOcMmigCzPoP/U/ftyDns2gTmfD1R9UyaBLKjJokdrb1aHB7VymTJnCY489xiWXVP90Jjo6mqVLl3LFFVfQp08fzj77bF588UXWr1/P4cOHAdi5cydLlizh9ddfZ8SIEYwaNYoXXniBDz/8kJSUFADmzZtHcXExb775Jv379+eqq67i7rvv5plnnmnirytSA1d/6tgYw2+CNhW9/w6vNILLFaxW+OExWHyPfQG9/yVw7efOC+hghPTUZ6BZK+Pxts+MSZyIuJdXZNCNxtUI4IYM+id8+Uf7pK3fdLhugfOkDewZZGst9TnscFEdIlI7V7dRaIxhNxhXZYKxydWOL1zzvlYr/Pg4fHl3IzPIRXWISO28YR7klEGrnXOxKSozaNFdDhl0MVy3sB4ZtEAZJOIJXpFBNxp3yIH7M6jvRTDri1oy6Okq7e1cVIcfcXtP9JycHCwWC61atQJg5cqVtGrViuHD7bcnTJgwgaCgIFavXm07ZsyYMYSFhdmOmTRpErt37+bEiRM1/pyioiJyc3OdvkTq5dBv9nHfC82pITgUJj5mf7x0jrFDc1OUFsPC38MKh6swRt4Jl70Joc1q/p7IOOerNhbfZ+zcLKelDJJGO7zSPvanDCorgYV/gBUOV2GMvBNmvFV3Bk1xyKCvlEH1pQySRnOaB11kTg3uyqAv7oCf/m1/rsEZdD8UHG9aHQFCGSSN5pUZ9HcoKWzae9aUQWffATPerj2DImKNlgqVlEH1pgySRnM6FzMrg0LclEF3VsmgP8Dl75wmgzQPqotbF9ELCwv5y1/+wtVXX01UVBQAqampxMbGOh0XEhJCTEwMqamptmPi4uKcjql8XHlMVU888QTR0dG2r06dOrn61xF/lbHL+DM8yjW3MDdW78nQbYwxPnEQ1sxt/HsV5cP8K2DzBxVPWGDyv2DSPyHoNP/bD7wc+lxgjAvS4Zu/NL6OAKIMkkZL95YMmgTdxhpjl2XQ/IonLDDpiXpm0AzoM9UYF2TYW11JnZRB0mjekkG9JkL3ccY4+xCsfrXx71VcYGTQpnkVTyiD3E0ZJI2WsdP4MyzSNW0UGqtqBq1xdQY9DpMfP30GDbgMEqcZY2VQvSmDpNHSKzMowt4dwAy9zofuvzPGLsmgK2HT+xVPVGbQEw3LoMo2v2LjtkX0kpISrrjiCqxWKy+//LK7fozNgw8+SE5Oju0rOTnZ7T9T/EBRHuRU/LfSLtG1facaymKBif8EKmr46cnGfepXVmJs3rf/R+NxcLjRy+rs39e/jmn/hWbRxuOtH8OurxpeR4BRBkmjFOVDjtHuzCsyaJKrMugG2PeD8Tg43OjpOfIP9a9jmkNrqa2fwM7FDa8jwCiDpFGcMqiP+RnkOA9a8SQUZDb8fcpKXZtB2z5Ve7t6UAZJoxQXQLa3ZtBTLsygt2DkHfWvY6oyqKGUQdIo3pZBk/4Jlopl2iZn0DLjcWMzqLK11LbP1GLTgVsW0SsX0A8dOsTSpUttV6EDxMfHk56e7nR8aWkpWVlZxMfH245JS0tzOqbyceUxVYWHhxMVFeX0JXJaGUn2cbs+5tVRqf0gGDrTGBflwE//atj3W63GhhF7vzceh0fD9YuM3nsNERkPkx1u+1l8r1oqnIYySBolc7d97A0ZFD8Qhl5rjBubQYvvgb1Ljcfh0UbPvf7TG/Y+kfEwRRnUEMogaRSvy6ABcMZ1xrgoF5Y3MoP2fGc8blIGObSiUnu701IGSaNkOGZQonl1VKqWQU807PutVvjqXocMioJZCxveZzkyThnUQMogaZTMJMBqjL0hg+L6w1AvzCC12LRx+SJ65QL6nj17+P7772nTpo3T6yNHjiQ7O5v169fbnvvhhx8oLy9nxIgRtmNWrFhBSUmJ7ZilS5fSp08fWreushmiSFNU3j4IENvXvDoc/e4hCG1hjNe+4bzQfzrLn7DfshMcBlfPh85nN66OwVdBr0nGOD8NljzYuPcRkdpVtlEA78mg8x6C0JbGuMEZ9C/Y6JBBV82DLiMbV8egK402V2C0llry18a9j4jUzjGD2nlJBv3OIYPWvem8yHY6P/0bNr5njJucQVdA7ynGWO3tRNwjw3Ee5AULWFAlg95yzsnT+enfsOFdY2zLoHMaV4cySMT9nOZB3pJB/2e0loFGZNB/7BkUFNq0DHJq86vWUpUavIien5/Ppk2b2LRpEwAHDhxg06ZNHD58mJKSEmbMmMG6deuYN28eZWVlpKamkpqaSnFxMQB9+/Zl8uTJ3HrrraxZs4Zff/2VO++8k6uuuoqEhAQArrnmGsLCwrj55pvZvn07H330Ec899xz33Xef635zEXCeuHlLaEa1h3PvMcbWMlj6cP2+b91bzptGXPIqdB3V+DosFrjwWeMqLoAtH8Lubxr/fiJSnTdmUGQ8jLrHGDckg9a/7Xzl+iWvQLfRja/DYoFpz9pbS235CHZ93fj3E5HqvHEBKzIORt1rjK1l8F19M+gd5yu2XJJBam8n4lYZXvhBXtUMqu88aMO7zhk0/WX7fleNoQwScb8ML7ygKTKucediG96F5Y/bH1/yioszSC02oRGL6OvWrWPo0KEMHToUgPvuu4+hQ4cyZ84cjh49yqJFizhy5AhDhgyhffv2tq/ffrPvuj1v3jwSExMZP348F1xwAaNGjWLuXPsGZtHR0Xz33XccOHCAYcOGcf/99zNnzhxmz57tgl9ZxIE3fvIIcM6dEGl8qETSEti/vO7jdy8xbrGpNOlxGHBp0+uISjA2n6j05T1w6kTT31dEDN64iA4wskoG7fux7uOTvjVuNa408Z/GpjRNFdXe2BS50uJ7dCuhiCt5bQbdAVEdjPGeb+29hWuT9J3R9qmSSzNIraVE3MbpXMwLWkpVcsqg7+qXQV/eY3888TFjk+KmUgaJuFeGt2bQnRDV0Rjv+Q72Lqv7+KoZdP6jrsmgau3tlEENXkQfN24cVqu12tfbb79N165da3zNarUybtw423vExMQwf/588vLyyMnJ4c033yQiIsLp5wwaNIiff/6ZwsJCjhw5wl/+otuXxA0qQzM8ylgw9hZhLWH8HPvjbx+C8rKajz2yHj69EazlxuORd9Z/04j6GHIN9DzfGOenwpK/ue69RQJdurdmUAuY8Hf74+/qyKCj643Na6wVr599h/FBoKsMvhp6TTTG+WnwrTJIxGWcMqiDubU4CmsB4x0yqK550NH1xobqbssgtbcTcZvK1pphkRDd0dxaHDUpg/5gnI+5ijJIxH3SKzMoAqI7mVuLo9DmDTgX2+CcQSN+D+fc5bpa1GLTiVs2FhXxCUV5kFOxa3e7RHN3Yq7JoCuh/WBjnLYVNs2vfszxfTD/cig5aTzuf6nxqaMrWSxw4XPGCTbA5vn2jUtFpPGK8iGncjd4L8yggVdA+yHGOG0bbJpX/Zjj+2DeFQ4ZdIlx9ZUr2TKo4lbCzR/AHmWQSJM5ZVAfL8ygyyHBuPOV9O32/RYcZe33UAY969zebs9S1/4MkUBUXADZfpZB/aYbd8K48ndRBom4h7dn0IAZkHCGMU7fYd/zxVHWfpjvmEEXG10JXJ1BVVtsJn3nuvf3MVpEl8DluFmeN926UykoyAjASj88apzwVsrPgPcvg5PHjcddRhl9r4Lc8L91dAeY9E/74zWvu/5niASaTIfN8nwigx4zPnysZMugTONxl3NhupsyKCrBOYPWKoNEmszXM6gg07MZNNmhFmWQSNM5bhrsTe2kKjUmgy551TMZtOY11/8MkUCTmQRYjbEvZ1BBhvG48zlwyVw3ZVB7mOTQ5ndt4GaQFtElcFXePgjes4lEVV1HQeI0Y5yfBr8+Z4yLC4xPHE8cMB6362vsvBwS7r5ahlwLEXHGeP+PRg0i0njpXriRTVVdz4W+Fxrj+mRQaDP31TJkJkTEG2NlkEjTOfUi9tIM6nIO9L3IGBekwy/PGuPKDMrabzz2RAYNvsYhg5Yrg0Sayhs3Nq6q3hmU6PkMcry4SkQazlv3x3PUZaRxdTkYi+W//NcYF5+E+Vc6Z9DV892cQVdDZHtjvP+ngM0gLaJL4PLWzbSqOv8RCAo1xr+9ACcOGf2HUzYYz0UmwLWfQvNW7q0jKMjeC6u08PQbDYpI3Rw/yPPmDJrw/6pk0EH45MYaMqi1e+sICoI+yiARl/GFBSyA8x0yaOWLRgZ9epPRhxg8nEFTjHFp4ek3GhSRumX4wAd5UI8Mag/XfubZDCorUgaJNFWGD1zQBDDhHxAcZox/exGyDlRk0Drjucj2MNPD86CyIth3ms1O/ZQW0SVw+cInjwBtesBZs41x6SmYO87YoRmMPuXXfuq5jXgSp9rHu7/2zM8U8VfefhtzpTY9YMRtxri0EOb+DvZ8azz2dAb1UQaJuIyvXEwQ0716BiUtMR6bOQ/apQwSaRKnczEvbClV6XQZNFPnYiI+KcMHM6isCF47D5K+MR6HRcLMT6CVhzZF7aN5kBbRJXBVhmZ4lNFnzpuN/ZP9k8VTWcafwWHGbYNx/T1XR7exENrSGCctqX2HaBE5vXQfyqAxD1TPoKBQEzJojDJIxFWcMqiDubWczpg/QfMYY2x2BoVFGOOkJVBW6rmfLeJvKu/IC4v03CJ0Y9WWQVe+D/EDPFeHMkjEddIrMygCoj20CN1Yox+oZR70PsQP9Fwd3UYbmQ3GRVUBmEFaRJfAVJQHOcnGuF2i9+3EXFXz1jD2r87PTX/ZmEh5Umgz6HmeMT55HJJXe/bni/iLonzIqdwN3kcyaNyDzs9d8opJGTTeGCuDRBrPKYP6+EAGtfKODAoJt2fQqSxlkEhjFRdAto9n0PSXoftYz9bhlEEnIHmVZ3++iL/wxQz63d+cn5v+P+g+zrN1VM2gwys9+/O9gBbRJTBlJNnH3nzrjqMzb4Yuo4xPHKc8CQNnmFOH0y08X5lTg4ivy3Rs5eIjGTT8Jug6uiKD/mNeBiUqg0SazCcz6EbvyCC1lRJpOl9paeeoagYNutycOtROQaTpMpMAqzH2lQwadoNx8UBQKEz+Nwy6wpw6ArytVIjZBYiYwnFDP2/eRMJRcCjcsBhKi9y76/Lp9J4ElmCwlhmhOfEx7//kVsTbpPvIRjaOgkPh+i/Nz6BeE5VBIk3l1ItYGdQgvc63Z9Cur5RBIo3hKxsbO/LGDNr9FUz6pzJIpKF8ZX88R8GhMGuRd2XQrq9g0uMBlUG6El0Ck69splWVxWJuYAK0iIHOI41x1v6KT3FFpEEcP8hTBjVMixjoco4xztrvfDWbiNSPLy5ggfdl0IkDzv8sRaR+Mnzwgzzwwgw6aO/rLCL1l+GDFzSBd2RQ89bQ9VxjnH0o4DJIi+gSmHzxk0dvkniBfax2CiIN54u3MXuTPg4ZtFsZJNJgvnoxgbdQWymRpnE6F/ORllLexKmdgjJIpMEylEFN0idwM0iL6BKYKkMzPAqiEsytxRc5LWAFXh8skSZLVwY1ieMHebu/Ma8OEV/llEEdzK3FF/VRBok0SeUdeWGREN3R3Fp8kTJIpGkqr54Oi4DoTubW4oucLqoMrPUgLaJL4CnKg5xkY9wuMaD6N7lMTDeI7WeMj6yDvDRz6xHxJUX5kFO5G7wyqFFad4XY/sZYGSTSME4Z1EcZ1Bitu0DcAGN8dB3kpZpbj4gvKS6AbGVQkzhl0HrIPWZuPSK+RBnUdK06Q9xAY5yyIaAySIvoEngyHHp469adxrNdAWGFJF0BIVJvmY6tXJRBjZaoDBJpFGWQa+hKUJHGUUs713DMIM2DROovMwmwGmNlUOMlBmZ3Ai2iS+Bx3NDPlzaR8DZ9AvcWHpEmSffRjWy8TZ8p9rEySKT+0n10Qz9v45hBAXTyKNJkvrqxsbfRPEikcbQ/nmsE6DxIi+gSeLSZlmskDIWIeGO8f7lxe7iInJ7jB3m6CrTx2g+FyPbGWBkkUn9awHKNhKEQWbGnxf6flEEi9ZWhD/JcwjGDDvxktCwVkdPL0AVNLtF+iH1fnQMrAiaDtIgugUdXgbpGUJD908eyItj3g7n1iPgKp9uYlUGNpgwSaRwtYLmGxVIlg5aZW4+Ir0jXB3ku4ZRBxbBXGSRSL7qo0jWqZdD35tbjIVpEl8BTGZrhUfarGKVxEqfaxwF0C49Ik6Q7ZFBUgrm1+Lo+yiCRBlMGuU6iWtuJNFjlHXlhkfarGKVxArQnsUiTpFdmUAREdzS3Fl8XgC1+G7yIvmLFCi688EISEhKwWCwsXLjQ6XWr1cqcOXNo3749zZs3Z8KECezZs8fpmKysLGbOnElUVBStWrXi5ptvJj/f+RbILVu2MHr0aJo1a0anTp34z3/+0/DfTqSqojzISTbG7RK1E3NTdRtj/OUDkPQtlJWaW4+ItyvKhxztBu8y3UYbJ+EASUuUQSKnowxyra4OGbRH8yCR0yougGxlkMs4ZlDSt1BWYm49It5OGeRaXUcbF2VAxTzI/zOowYvoBQUFDB48mJdeeqnG1//zn//w/PPP88orr7B69WpatmzJpEmTKCwstB0zc+ZMtm/fztKlS1m8eDErVqxg9uzZttdzc3OZOHEiXbp0Yf369Tz55JP84x//YO7cuY34FUUcZCTZx7p9sOlCwqHneGN8KguSV5tbj4i3c2rlogxqMqcMOgHJq8ytR8TbZSqDXCokHHpNMManTsDhlebWI+LtHOdBOhdrOscMKsxWBomcTmYSYDXGamnXdCFh0LMyg3ICIoMavIg+ZcoUHnvsMS655JJqr1mtVp599lkeeughLr74YgYNGsS7775LSkqK7Yr1nTt3smTJEl5//XVGjBjBqFGjeOGFF/jwww9JSUkBYN68eRQXF/Pmm2/Sv39/rrrqKu6++26eeeaZpv22Ik4b+mni5hJqpyBSf9rIxvUc20oFyG2EIo2Wrj6gLqd5kEj9qRex6/XRPEik3pzmQX3Mq8OfBNi5mEt7oh84cIDU1FQmTJhgey46OpoRI0awcqXxicTKlStp1aoVw4cPtx0zYcIEgoKCWL16te2YMWPGEBYWZjtm0qRJ7N69mxMnTtT4s4uKisjNzXX6EqlGEzfX63U+WIKN8a6vwGo1tx6TKIOkXpw+yNPEzSUcM2i3MkgZJHXK0IZ+LtfrfAgKMcaaBymDpG7a2Nj1HDNI8yBlkNRNFzS5Xs8JAZVBLl1ET01NBSAuLs7p+bi4ONtrqampxMbGOr0eEhJCTEyM0zE1vYfjz6jqiSeeIDo62vbVqVOnpv9C4n/SFZou1yIGupxjjE8ccP6LKYAog6Re0nXy6HLNW0PXc43xiYP2zYICjDJI6kULWK7XvBV0qcig7EOQvsPUcsyiDJJ6SdcHeS7nlEGHIW27qeWYRRkk9aKLKl2veSvoOsoYB0AGuXQR3UwPPvggOTk5tq/k5GSzSxJvVBma4VEQ2d7cWvyJ0y08X5lXh4mUQVIvlb1Aw6MgKsHcWvyJUzsFZZAySGqV7jAPUga5ToDdylwTZZDUS+UdeWGRENXB3Fr8SaLaSimDpF4qL7YJi4DojubW4k8CqLWdSxfR4+PjAUhLS3N6Pi0tzfZafHw86enpTq+XlpaSlZXldExN7+H4M6oKDw8nKirK6UvESVEe5FT8ZdouUTsxu1KfC+xjPw/N2iiD5LSK8iFHu8G7RaJjBn1jXh0mUgbJaSmD3KfPFPtY8yBlkNSsuMC4ShGUQa6mDFIGyekpg9zHMYP8/KJKly6id+vWjfj4eJYtW2Z7Ljc3l9WrVzNy5EgARo4cSXZ2NuvXr7cd88MPP1BeXs6IESNsx6xYsYKSkhLbMUuXLqVPnz60bt3alSVLIMlIso91+6Brte4CcQOM8dH1kHvM3HpEvFHlVeig2wddrVVniBtojJVBIjXLVAa5TavOEF+RQSkblEEiNXGcB+lczLWcMmgj5KaYW4+IN8pMAir6daulnWu16gTxg4zxsU2Qc9TUctypwYvo+fn5bNq0iU2bNgHGZqKbNm3i8OHDWCwW7rnnHh577DEWLVrE1q1bmTVrFgkJCUyfPh2Avn37MnnyZG699VbWrFnDr7/+yp133slVV11FQoJxW+k111xDWFgYN998M9u3b+ejjz7iueee47777nPZLy4ByGlDP03cXM7xavSkwLwSVKRO2sjGvRKVQSJ1SlcfULcKoFuZRRpFvYjdSxkkUjeneVAf8+rwVwHSVqrBi+jr1q1j6NChDB06FID77ruPoUOHMmfOHAD+/Oc/c9dddzF79mzOPPNM8vPzWbJkCc2aNbO9x7x580hMTGT8+PFccMEFjBo1irlz59pej46O5rvvvuPAgQMMGzaM+++/nzlz5jB79uym/r4SyDRxcy+1UxCpm9MHeZq4uZzjB3kB2pNYpE4Z2tDPrRLV2k6kTtrY2L0SNQ8SqZMuaHKvPoGxHhTS0G8YN24cVqu11tctFguPPPIIjzzySK3HxMTEMH/+/Dp/zqBBg/j5558bWp5I7dIVmm7VfghEJkBeCuz/yei9Gh5hdlUi3iNdJ49u1X6wsUlZ7lE48JOxD0Z4pNlViXgPLWC5V/wgiOoIuUfgwAplkEhV6fogz62qZlBhLjRTX3ARG11U6V7xAyG6k7EPoR9nkEt7oot4tcrQDI+CyPbm1uKPLBb7hhJlRbBvWd3HiwSayl6g4VEQlWBuLf7IKYOKYa8ySMRJusM8SBnketUy6Htz6xHxNpV35IVFGh96i2s5ZlB5iTJIpKr0ygyKgOiO5tbijwIkg7SILoGhKM/4RAyMTx21E7N76DZCkZoV5UOOdoN3uz5qpyBSI2WQZ2geJFKz4gLIVga5ndpKidRMGeQZAXAupkV0CQwZSfaxbh90n66jjatLAPZ8C2Wl5tYj4i0qr0IH3T7oTl1HG1fZAiR9C2Ul5tYj4i0ylUEe0WWUPYP2KINEbBznQToXcx+nDPpOGSRSKTMJqGhLrZZ27tN1FIRHG2M/zSAtoktgcNrQTxM3twkJh14TjPGpE3B4pbn1iHgLbWTjGSFh0LMigwqzlUEildLVB9QjQsKg1/nGuDAHDv1mbj0i3kK9iD2jWgb9am49It7CaR7Ux7w6/F1wqN9nkBbRJTBo4uY5fabax356C49Igzl9kKeJm1slOmSQ2imIGDK0oZ/HBMCtzCINpo2NPaeP2kqJVKMLmjzHz1vbaRFdAkO6QtNjep0PQSHGeNdXYLWaW4+IN0jXyaPH9Jxgz6DdyiARQAtYntTrfAgKNca7vlYGiUCVczF9kOdWjhm0WxkkAuiiSk/q6d8ZpEV0CQyVoRkeBZHtza3F3zVvBV3ONcbZhyBtu6nliHiFyl6g4VEQlWBuLf6ueSujHx8YGwilbTO1HBGvkO4wD1IGuVezaHsG5RyG1K3m1iPiDSrvyAuLhKgO5tbi75wyKBlSt5hbj4g3SK/MoAiI7mhuLf6uWRR0G22M/TCDtIgu/q8oz/ifF4xPHbUTs/v1vdA+3r7AvDpEvEFRvrGQAtoN3lMSp9nHyiAJdMogz+urDBKxKS4wPtQGZZCnKINE7JRBnufH52JaRBf/l5FkH+v2Qc/odzFYKuJl22d+dwuPSINUXoUOun3QU/pNVwaJVMpUBnlcX82DRGwc50E6F/OMvheDJdgYK4Mk0GUmARX/D6ilnWf0898M0iK6+D+nDf00cfOIiFjoWnELz4kDkLLR3HpEzOSYQdqTwTMi2kG3Mcb4xEFI2WBqOSKmSlcfUI+LaAfdxhrj7ENwVBkkAUy9iD3PcR6UfRiOrje3HhEzOc2D+phXRyBp2Ra6V86D/CuDtIgu/k8TN3MMuMw+3vaZeXWImC1DEzdTOGXQ5+bVIWK2DG3oZwrNg0QM2tjYHMogEYPTPEgZ5DF+mkFaRBf/l67QNEXfCyEoxBhvXwjl5aaWI2KadJ08miJxmn1n+O0LlEESuLSAZY6+yiARoMq5mD7I8xhlkIhBF1Waw0/PxbSILv6vMjTDoyCyvbm1BJIWMdDjPGOcewSOrDG3HhGzOGZQVIK5tQQSpww6Csmrza1HxCzpyiBTNG8NPccb47wUSF5lbj0iZqlsaxcWCVEdzK0lkDhl0DE4vNLcekTMkl6ZQREQ3dHcWgJJ81bQc4Ix9qMM0iK6+LeiPMhJNsbtErUTs6f56S08IvXmlEHaDd7jlEES6IryIeewMVYGeZ4ySAJdcYHRDxeUQWZQBkmgUwaZyw8zSIvo4t8ykuxj3T7oeX0ugOBwY7x9IZSXmVqOiMc5ZpBuH/S8PlMgpJkx3rEQykpNLUfE4zJ328fKIM9zyqAvlEESeDIcMkjnYp6nDJJAl5kEWI2xWtp5Xp8pENLcGPtJBmkRXfxb5e2DoJNHMzSLgt4TjXFBOhz8xdx6RDzNMYO0J4PnNYuCXpUZlAGHlEESYNLVB9RU4ZHOGXTwZ3PrEfE09SI2V3gk9J5kjE9mwsEV5tYj4mlO86A+5tURqMIj/C6DtIgu/k0TN/P1v9Q+9pNbeETqLUMTN9MNUAZJAMvQhn6m88NbmUXqTRsbm0/nYhLInOZByiBT+Nm5mBbRxb+lKzRN13sShLY0xjsXQWmxufWIeFK6Th5N18shg3YogyTAaAHLfL0mGpuZgeZBEnjS9UGe6Zwy6EtlkAQWXVRpvmoZVGRuPU3k8kX0srIyHn74Ybp160bz5s3p0aMHjz76KFar1XaM1Wplzpw5tG/fnubNmzNhwgT27Nnj9D5ZWVnMnDmTqKgoWrVqxc0330x+fr6ryxV/Vxma4VEQ2d7cWgJVWEujFxbAqROwf7mp5Yh4lGMGRSWYW0ugCmsBiRcY48Js2P+jqeWIeFS6Msh0YS3s86DCHGWQBJbKtnZhkRDVwdxaAlVYC2OfKjAyaN8P5tYj4knplRkUAdEdza0lUIU2h8SpxtgPMsjli+j//ve/efnll3nxxRfZuXMn//73v/nPf/7DCy+8YDvmP//5D88//zyvvPIKq1evpmXLlkyaNInCwkLbMTNnzmT79u0sXbqUxYsXs2LFCmbPnu3qcsWfFeVBTrIxbpeonZjN5Hgr8/bPzatDxJOcMki7wZvKqZ2CMkgCRFE+5Bw2xsogc6mliwSi4gLIVgZ5BWWQBCJlkPfwo3Mxly+i//bbb1x88cVMnTqVrl27MmPGDCZOnMiaNWsA4yr0Z599loceeoiLL76YQYMG8e6775KSksLChQsB2LlzJ0uWLOH1119nxIgRjBo1ihdeeIEPP/yQlJQUV5cs/iojyT7W7YPm6jkewqON8c7FUFJY9/Ei/sAxg3T7oLl6nGfPoF1fQckpc+sR8YTM3faxMshcPc6DZsogCTAZDhmkczFzOWbQ7q+VQRIYMpOAio4Yamlnru6/g2atjPHur6H4pKnlNIXLF9HPOeccli1bRlKSsXiwefNmfvnlF6ZMMW5jPHDgAKmpqUyYMMH2PdHR0YwYMYKVK1cCsHLlSlq1asXw4cNtx0yYMIGgoCBWr15d488tKioiNzfX6UsCXOXtg6CTR7OFhEPfaca4OA/2LjW3HjdQBkk1jhmkPRnMFRIOfS80xsV5sEcZJAEgXX1AvYZTBuUrgyQwqBex9wgJq5JB35lbjxsog6Qap3lQH/PqEL/KIJcvov/1r3/lqquuIjExkdDQUIYOHco999zDzJkzAUhNTQUgLi7O6fvi4uJsr6WmphIbG+v0ekhICDExMbZjqnriiSeIjo62fXXq1MnVv5r4Gk3cvIuf7cpclTJIqsnQxM2rKIMk0GRoQz+v0l8ZJAFGGxt7Fz9v6aIMkmqc5kHKINP5SQa5fBH9448/Zt68ecyfP58NGzbwzjvv8NRTT/HOO++4+kc5efDBB8nJybF9JScnu/XniQ9IV2h6lW5joUUbY5z0rdGjzI8og6SadJ08epWqGVTkX5uVK4OkGi1geRdlkASadH2Q51W6joEWbY1x0rfG3j1+RBkk1eiiSu/SdTS0bGeM93znsxnk8kX0P/3pT7ar0QcOHMh1113HvffeyxNPPAFAfHw8AGlpaU7fl5aWZnstPj6e9PR0p9dLS0vJysqyHVNVeHg4UVFRTl8S4CpDMzwKItubW4tAcCj0vcgYl5yE3d+YW4+LKYOkGscMikowtxaB4BDod7ExLj0FSUvMrcfFlEFSTboyyKsEh0C/6cZYGSSBoLKtXVgkRHUwtxapMg8qhN3KIPFz6ZUZFAHRHc2tRWrIIN9cD3L5IvrJkycJCnJ+2+DgYMrLywHo1q0b8fHxLFu2zPZ6bm4uq1evZuTIkQCMHDmS7Oxs1q9fbzvmhx9+oLy8nBEjRri6ZPFHRXmQU/Hpc7tE7cTsLfxoV2aROjllkHaD9xp+chuhyGkV5UPOYWOsDPIeft5WSsSmuACylUFeR/MgCRTKIO/kBxnk8kX0Cy+8kH/+85989dVXHDx4kAULFvDMM89wySWXAGCxWLjnnnt47LHHWLRoEVu3bmXWrFkkJCQwffp0APr27cvkyZO59dZbWbNmDb/++it33nknV111FQkJupJG6iEjyT7W7YPeo8s5EFFxN8nepXAq29RyRNzGMYN0+6D36DzSfmfSHmWQ+LHM3faxMsh7VMugE+bWI+IuGQ4ZpHMx7+GYQXu/VwaJ/8pMAqzGWC3tvEensyGyYk137zKfzCCXL6K/8MILzJgxgz/84Q/07duXBx54gNtuu41HH33Udsyf//xn7rrrLmbPns2ZZ55Jfn4+S5YsoVmzZrZj5s2bR2JiIuPHj+eCCy5g1KhRzJ0719Xlir9K3Wwfx/Yzrw5xFhQM/acb47Ji2P21qeWIuI0yyDsFBdvbKZSXwK6vTC1HxG2ObbGPlUHeIygY+hsXFimDxK+lKoO8UlCQcwbtXGxuPSLu4jQP0iK61/CDDHL5InpkZCTPPvsshw4d4tSpU+zbt4/HHnuMsLAw2zEWi4VHHnmE1NRUCgsL+f777+ndu7fT+8TExDB//nzy8vLIycnhzTffJCIiwtXlir86usE+TjjDvDqkOj+4hUfktBwzqIMyyKsogyQQpCiDvFZ/x5Yuam0nfkrnYt7LcR60XRkkfkrzIO/l4+diLl9EF/EKKZuMPy3BED/Q1FKkio5nQnRnY7zvRyg4bm49Iu5gy6AgZZC36TjcnkH7l0NBpqnliLjaiYJiyo5sNB4og7yPMkgCQYpDBrUfZG4t4qzDMGhVmUE/QX6GufWIuINjBsUrg7xKhzOgVRdjfMD3MkiL6OJ/ik9C+g5jHNsXwlqYW484s1hgQMUtPNYy2PmFufWIuJpjBrXrC2Etza1HnFks9s39rGWwQxkk/uW9FTuxpm0HILNFd7ZnlmK1Wk2uSmyUQeLvSgod5kGJmgd5G4vFfiWozsXEH5UUQsU8iLZ9IFwdLbyKUwaVw46FppbTUFpEF/+Tts2YEAAkDDG1FKmFbmUWf+aUQUPNrUVqNsAhg7YvMK8OETdI3rWWEEs5AD/kdGDq879w1uPLuP/jzezPyDe5OgGqtFNQBomfSdsG5aXGWPMg7+R0LqYMEj+Ttl0Z5O18+FxMi+jif9SDz/u1HwwxPYzxwV8gL9XcekRcyakfuiZuXil+ELTpaYwP/gK5x8ytR8RFMvOLaJFp30xri7U7ABl5RXy24QgWi8Ws0sRR/EBlkPgvp3MxzYO8UvxAaNPLGB/6FXJTzK1HxJXUD937xQ2AthX7Yh76DXKOmltPA2gRXfxPZf8r0MTNWznewoMVti80sxoR11IGeb+qGeRjtxGK1OaXPZkMCtpve7ylvLtt3KVNC7q1VVsFr6AMEn/mNA/SApZX0rmY+DOdi3k/H54HaRFd/E/lJ4/BYRDX39xapHbaGV78VWUGBYUan7KLd1JbKfFDPyVlMMhiLKIXW4PZZe1se21s73ZmlSU1ccqgz8yrQ8TVHOdB8ZoHea0ByiDxU5V3wwSF6FzMm/nouZgW0cW/FOZC5h5jHNcfQsLNrUdqF5sIsf2McfJqyD5sbj0irqAM8h2xiRBb8UHrkTVw4pC59Yg0UXm5lXW7D9PDYtyWv8vamWJCba9rEd3LOGXQWmWQ+IeiPMjYbYzj+mke5M3a9bEvMB5dBycOmlqOiEsU5UNmRQbF9oPQZubWI7Vr1xviBhpjH8ogLaKLfzm2GbAaY90+6P18eEMJkRo5ZpB68Hk/ZZD4kW0pOSScSiLIYmSQYyuXsOAgRvZoY1ZpUhtlkPibY1vQuZgPUQaJv0ndAlZjc3Wdi/mAAb53NboW0cW/pGgjG5/ieAuPevGJP1AG+RbHiZsP9eITqclPuzMYFLTP9rhyU1GAs7rF0CIsxIyypC5awBJ/o3mQb9G5mPgbbWzsW3zwXEyL6OJfHDeR0CeP3q9ND/utzMc2QWGOqeWINJk20/ItMd3ttzKnbIJT2WZWI9Iky5Myqmwq2sM2VisXL+WYQcc2w6kT5tYj0lQ6F/MtMd3s7RSUQeIPdC7mW1p3hfjKDNriExmkRXTxL5WfPIa2gLZ9zK1F6qfrKONPazkcXm1uLSJNVZlBIc2hXaK5tUj9VGYQVmN/BhEflHOyhI2HT9g2FT1lDWOPtYPt9bF9tIjutRwzSPMg8XW2eVAzaNfX3FqkfpRB4k9SHDIoVhnkE7qOrhhY4fAqU0upDy2ii/84mQXZFZsyxQ+CYN227BO6nGMfH/rVvDpEmsoxg9org3yGMkj8wC97M4m05tMlKB2A7daulBEMQEJ0M3rFRphZntRFGST+4tQJOHHAGOtczHcog8RfnDoBWRV35MUPhODQuo8X7+BjGaRFdPEfjj34dPug73AKzd/Mq0OkqZz6gCqDfEZnZZD4vp+S0p1auWwt72Ybj+3TDovFYkZZUh/KIPEXauXim3QuJv4iZZN9rHMx39F5pH3sAxmkRXTxH079r7SJhM+IiIU2vYxxygYoPmluPSKNpQzyTRHtoG1vY5yyEYoLzK1HpIGsVis/JWUw0GJfRN+sfui+wzGDjm2ConxTyxFpNM2DfFPLtvY2qMog8WXKIN/Usq29DWrKJq/PIC2ii/84qk0kfFblFRDlpXBkrbm1iDTWUV2B5bOUQeLDdqXmkZZbxGDHK9GtxpXoIUEWzunZ1qzSpL6UQeIPjuqOPJ+lDBJ/oM4Evqsyg6xlcGSNubWchhbRxX9UfvIYHgUx3c2tRRqmy7n2sQ/cwiNSI6cM6lH3seJdlEHiw35KygBgYMUieq61Ofut7QE4o0tropqpJ6jXUwaJP6hspRAWCW16mlqKNJAySPyBLYMilEG+xocySIvo4h/yUiEvxRgnDIEg/aftU3xsMwmRahwzqP1gZZCvUT9Q8WE/7c6gHdkkWLIA2FbeDWvFFF+tXHyEMkh8XX465B4xxjoX8z1dfKsnsUg1+RmQk2yM2w+BoGBTy5EG8qG+6G752+3o0aNce+21tGnThubNmzNw4EDWrVtne91qtTJnzhzat29P8+bNmTBhAnv27HF6j6ysLGbOnElUVBStWrXi5ptvJj/fu3vjiInU/8q3teoE0Z2N8ZG1UFpsbj0iDaUM8m3RHaGVYwYVmVuPSD3lF5Wy7lCW7Sp0gC1W+914WkT3Ecog8XVO86AhppUhjRTdEVp1McbKIPFFyiDfFt0BWnc1xkfWQUmhqeXUxeWL6CdOnODcc88lNDSUb775hh07dvD000/TunVr2zH/+c9/eP7553nllVdYvXo1LVu2ZNKkSRQW2v9BzZw5k+3bt7N06VIWL17MihUrmD17tqvLFX+hHny+r/IqrNJC578ERXzBUfXg83mVtxEqg8SH/LY3k5Iyq1M/9C3lxiJ624hw+rWPMqs0aajKDCorcv47RcQX6FzM9ymDxJepH7rvc8ygFO/NIJcvov/73/+mU6dOvPXWW5x11ll069aNiRMn0qOH0R/WarXy7LPP8tBDD3HxxRczaNAg3n33XVJSUli4cCEAO3fuZMmSJbz++uuMGDGCUaNG8cILL/Dhhx+SkpLi6pLFHzj+T6arQH2TWrqIL1MG+T5lkPigyn7ogyz7bM9VXok+tnc7goIsptQljaAMEl+meZDvUwaJLzuqDPJ5PpJBLl9EX7RoEcOHD+fyyy8nNjaWoUOH8tprr9leP3DgAKmpqUyYMMH2XHR0NCNGjGDlypUArFy5klatWjF8+HDbMRMmTCAoKIjVq1e7umTxdVar/arBFm3st8OKb/GhzSREnDhmUPMY++2w4luUQeJjrFZrxSK6lYFBBwDIskZwxGq0cBnbR61cfIoySHxV1XlQ5S354lu0N4P4KqcMag2tu5lbjzSOj2RQiKvfcP/+/bz88svcd999/O1vf2Pt2rXcfffdhIWFcf3115OamgpAXFyc0/fFxcXZXktNTSU2Nta50JAQYmJibMdUVVRURFGRvXdXbm6uK38t8WbZh+HkcWOccAZYdNWVT2rTA1rGQkE6HF4F5WU+tSGIMiiAOWZQB2WQz4rpDhFxkJ8Gh1dDWSkEu3ya5DbKoMCzL6OAIydO0YFM2lqMf99by7sDFoIsMLpnW3MLlIaJ6Q4R8ZCfCsnKIPEhOUegwLgrhoShmgf5qpjuENke8o4pg8S35B411hBAGeTLWnezZ5AXn4u5/Er08vJyzjjjDB5//HGGDh3K7NmzufXWW3nllVdc/aOcPPHEE0RHR9u+OnXq5NafJ15EG/r5B4vF/uljcR6kbjW3ngZSBgUwZZB/qJpBacog8W6VrVwqr0IH2FzRymVwp1a0bhlmSl3SSE4ZlA+pW8ytp4GUQQFM8yD/oAwSX6UM8g+OGVRSAKmbza2nFi5fRG/fvj39+vVzeq5v374cPnwYgPj4eADS0tKcjklLS7O9Fh8fT3p6utPrpaWlZGVl2Y6p6sEHHyQnJ8f2lZyc7JLfR3yANpHwHz58K7MyKIClaDMtv6EMEh9SuYg+OMjeD31rub0fuvggH7mVuSbKoACmczH/oQwSX6SNjf2HD2SQyxfRzz33XHbv3u30XFJSEl26GD1iu3XrRnx8PMuWLbO9npuby+rVqxk5ciQAI0eOJDs7m/Xr19uO+eGHHygvL2fEiBE1/tzw8HCioqKcviRA6JNH/+Ejm0nURBkUwJRB/sMHJm61UQYFllPFZazab7SRGmjZb3t+c3kPQIvoPsuHP8hTBgUwzYP8hzJIfJEyyH/4QAa5fBH93nvvZdWqVTz++OPs3buX+fPnM3fuXO644w4ALBYL99xzD4899hiLFi1i69atzJo1i4SEBKZPnw4YV65PnjyZW2+9lTVr1vDrr79y5513ctVVV5GQkODqksWXlZdDyiZjHJkAkTXfqSA+IrYfNIs2xod+MzYJEfFmThnUHqLam1qONFG7vtCslTE+9Jvx71fEC606cJzi0nIslDOoop1LmrUV6bSmdYtQBnVsZW6B0jjtEo1N0QAOK4PEBzhu6BcRD1E6V/dpbfsYm8OCMkh8g1MGxSmDfJ1jBnnpuZjLF9HPPPNMFixYwAcffMCAAQN49NFHefbZZ5k5c6btmD//+c/cddddzJ49mzPPPJP8/HyWLFlCs2bNbMfMmzePxMRExo8fzwUXXMCoUaOYO3euq8sVX5e1H4oqNg3Rp46+LygIOldcCXoqCzJ21328iNmUQf4lKMh+NfqpLMhUBol3+mm30cqliyWNKMtJALZUXIU+ulc7goO0qZZPcpoHnYCMXebWI3I6WfuhMMcYax7k+5zmQcog8QEnDkBhtjHWpqK+zzGDCrMhY6ep5dTE5YvoANOmTWPr1q0UFhayc+dObr31VqfXLRYLjzzyCKmpqRQWFvL999/Tu3dvp2NiYmKYP38+eXl55OTk8OabbxIREeGOcm1KyrzvUw45DacefJq4+QUfbukiAUj90P1PAGeQ5kG+Y0VFP/RBDq1ctpR3A9TKxecFcAaJD3Jso6B+6P4hgDNI8yAfpH7o/sfL22u6ZRHdF607mMV5Ty9n29Ecs0uRhlD/K//jA32wRGyUQf7Hyydu7lI5D9p6RPMgb3f4+En2ZxYAMCjIYRHdalyJPkaL6L4tQDNIfJTmQf4nQDNo/SFjHrQ5OdvsUqQhlEH+x8s/yAv4RXSr1crbvx7gqrmrSM46xW3vredEQbHZZUl96ZNH/9N+MIS2NMbqiy7ezimDNHHzC/GDIazizrcAyKCq86Db39c8yNv9lJRuGzstopd3Y0CHKNpFhptRlrhK/KCAyiDxcZoH+Z+4gRAWaYwDIIOsVivvrjxomwf9Yd4GsjQP8h1aRPc/8YO8OoMCehH9ZHEp9360iX98uYPScuNfzNHsU9z94UbKyr3rX5TUoKwUUrcY41ZdoEWMufWIawSHQOcRxjgvBU4cNLUckVo5ZVBnaNnG3HrENYJDoFNlBh0zei36qVPFZdz38WbNg3zMTxWtXIIoZ4DlIADJ5e04QZRaufgDxwzKTzV6Tot4o/IyOLbZGEd3hpZtza1HXMPxXMzPM+hUcRn3f7yZOV9sp6TMYR70geZBPsEpgzpBhOZAfiEoGDqfbYzz07wugwJ2Ef1gZgGX/u83Fm5Kqfbaz3syefb7JBOqkgbJ3A0lxmZa6sHnZwL0NkLxMY4ZpDth/EsAZNCh4wVc8r9fWbDxaLXXft6TyX+Xah7kjYpKy/ht33EAelqO0sJSBMAWa2U/9FjTahMXCoAMEj+QmQQlRmsp7U3lZwIggw4fP8mlL//G5zXMg37Zm8nT32lzea+XuQeK842xrkL3L17c0iVgF9E/33iUXal5tb7+wg97WbojzYMVSYOplYv/Ul908QWOGaQP8vxLAGTQ5xvqnge9+ONevtue6sGKpD7WHTzByeIyAAYH7bM9v6W8B5HhIQzt3MqkysSlAiCDxA/oXMx/BUAGLdh4lJ3Hcmt9/X/L9/Gt5kHeLUXnYn7LizMoYBfR7z6vJ+f2rPvW+/s+2sSBio2bxAup/5X/SjgDgit6uh76xdxaRGqjDPJfHRwy6KB/ZtDd43sxqmfdt97f//Fm9mfke6giqY/KVi4AAy32VkNbrN0Z1astocEBO7X3Lx00DxIfoHmQ/0oYCiHNjLGfZtCd5/VkdC/Ng3yaMsh/OWbQQV2J7hVCgoN4/qqhJEQb/2JiyOX64G+xUG47Jq+olNvfW8/J4lKzypS62D55tBibUYr/CG0GHYcb4xMHIaf6bXZ+pyATVr8K5eWnP1a8g+PVD+2HmFaGuEFIOHQ80xhnH4KcI+bW4wbBQRaev3ooHVo1B6B1bfOg9zUP8iY/7bYvog9yuBJ9W3k39UP3J04ZdBiyk82txxMKjsOqV4wet+IbHOdBCUNMK0PcIAAyKDjIwvNXOc+DbgheQpDDPCi/qJTb3ltPQZHmQV7pqM7F/FZImD2Dcg4bOeQlAnYRHaBNRDgvXzuM20O/ZmX4Xfy/0HcYG7TZ6ZjdaXn89bOtWL1sR9iAV1oEqduMcdte0CzK3HrE9Rz7YB1eaV4dnvDbi/BMP/jmz7D3e7OrkfpwzKA2yiC/5NSLzz8zKKZlGP+beQazQ79hVcU8aFyVeVBSWj5/0TzIKxzLOcXuNKMFTyil9LUYJxT7ytuTRwvGaBHdvwTSPGjlS/BMX1jyF9iz1OxqpD5Kix3mQT2hWbS59YjrBUAGtW4ZxivXDuPW0CWsCr+Lf4S+y7igTU7H7EnP58+fbdE8yNuUlUDqVmMc0wOatzK1HHEDp5Yu3pNBAb2IDjC4UyvOOXM44ZYSAG4I/q7aMYs2p/DWrwc9XJnUKW07lBv/ztSDz0958WYSLhfTDcqMzeFY86q5tUj9OGaQevD5pwDJoMGdWjHqrDMd5kHfVjvmy80pvKl5kOkcr0LvYzlMuMW4Mm6LtTu94yJIqLiaTvxEgGQQAK01D/I56Tvs/850LuafAiSDBnaMZsyIs+qcB3215Rhv/HKg2vNiIscM0rmYf/LSDAr4RXSAMdNmkRUaD8C44M10sxyrdszjX+9kzYEsT5cmtVH/K//X8SywBBtjL9tMwuV6T4ZWnY3x3u8hc6+59cjpKYP8X6ezICjEGPt5Bo2Zei1Zoe0BGBu8he6WlGrHaB5kPsd+6IOCHPqhl3dnXJ9YM0oSdwqgDKL3JPs8aN8PkLnH3Hrk9DQP8n8dzwyYDBp9wTVkhRnzoDHBW2ucBz3xzS5W7T/u6dKkNsog/+elGaRFdICgYCJH3257OKuGq9FLy63cMX8D6bmFnqxMHDz3/R5WJGVQUlaunZgDQXiEvb9ixi6jZ7i/CgqGM2+xP177mnm1SP049QFVBvmlsJb2/oqZuyE/o87DfVpQMJFj7POg64Krt1MoK7fyh3kbSNM8yBQlZeX8ssf+9+Agi70f+pby7uqH7o+cMijJ7zOIM2+1P14z17xapH50Lub/wlraFycDIIOixvze9rCm9aCycit3zt9Aao7mQV7hqM7F/F5YC/u/2+N7ID/d3HoqaBG9Qujw67EGG5uMzgheQUtOVTsmI6+IP8zbQHGpNv7ztMPHT/Lf75OY9eYazvrn9xzbafREslqCIW6AydWJ2wRALz6boddBSMWt+BvnQVGeufVI3VI2GX9agiF+oKmliBsFUAaFDptFeUjd86DMfM2DzLLxcDZ5DhubVV6JXma1cCC0B8O7tjarNHGnrg79QA97z1VYbjH0Wvs8aNN8KMw1tx6pW+VVoJYgzYP8WZfAyaCQYbMor8igGcEriOBktWMy84v5w7z1mgd5A8cMaj/I3FrEfZxaunhHBmkRvVKLGCyDLgcg0nKKS4N/rvGwdYdO8PjXOz1ZmQBfbbW32Dl1Mp92p4yTxyRrJ55dccSsssTdnDaT8I7QdJsWMVCRQRTnweYPza1Hald8EtIr/h6I7Wt8Si7+KcAyKGjQlYAxD7oseEWNh63XPMgUPyXZr75pRhG9LckAJFk7ckaPBMJDgs0qTdwpwDKIQVcY4+J82PyBufVI7UpOQdoOY9yur3HFsvinQMqg5q0JGmzMgyIshVxWy3rQhsPZPPbVDk9WJlWVFBo90QHaJSqD/JkXZpAW0R2NuM02vD74O6DmHZjf/u0gX2w66qGiBOCrrfa+ZP0shwixGJ/+bijtRpE+CfZfnc8GLMbYizaTcJuz7BnEmrmgXeC9U+pWsJYZY/Xg82+dRxBQGVRlHmSh5r9f3/7tIAs26gNsT1rusKmo4zxoS3kPtXLxZ50CN4NYMxfKNcf3Sqnb7POgDpoH+bVAmwedNds2nFXHPOjdlYf4fIPmQaZJ2wblFXfnqZWLf3PKIC2ie5/4gdDZuF2gZ1AKo4K21XroXz7bws5jus3QEw4dL2DbUfs/68FB9j6gW63dmTqwvRlliSc0bw1x/Y1x6lYozDG3HneLH2D/tDUzCfb/aG49UjOnfug6efRrzVvbW4YFQgbF9YcuowDoEXSsznnQg59vZUeK5kGekJx1ku0O/6wHBe23jbdauzG2tzYV9VvNWxlzAzAWLk9lm1mN+zlkEMf3wv4fzK1HaqZ5UOBoFm1v1xMoGdR1NGDMg0YHba310L8t0DzINE790IeYVoZ4gGMGpW2DUyfMrQctolc3wv7p4++bf1/rYYUl5dz+/npyTpV4oqqA5tjKBWBgRR9QgPTIfvRPiPJ0SeJJlX2wrOWQvMbcWjzB4QoIVmtjLa/kuBu8NtPyf7ZefFY4vNrUUjzCYR70h+bLaj3MNg86qXmQu1WfB9kX0TOi+tO5jVpK+TXbrcxWSA6sDNI8yEs5zoN0Faj/C7QMOstxPUjzIK+kc7HA4phBXnAupkX0qhKnQWQCAOeUraNXaGathx46fpL/t2i7pyoLWF9tcT55HGwxrkQvsoaQOGgEFovFjLLEU5w2kwiA2wgTp0FUB2OctASyDtR9vHhe5dUPwWEQ29/cWsT9Ai2D+kyFqI4AnF22jt5htc+DDmed5B9fah7kbtXnQcYierE1mF4DR5hRknhSAGcQe76DrP11Hy+eVzkPCgq13zEq/ivgMugCh3nQevqEZdR66OGsk/x9Ue137YmbpDhm0ABzaxH387IM0iJ6VcGhcOZNAFiw8kqfjXUe/vnGoxzMLPBEZQHpYGaB0y3MkZykR5BxMrnT2oUpQzqbVZp4Smfv25HZrYJDYPhNFQ+ssPZ1U8uRKgpz4PgeYxw3AELCzK1H3M8Ld4V3q+AQp3nQy7031Hn4go1HOaB5kNscPn6SrUftbYQiOEl3i30eNHlwF7NKE08JxHnQmQ7zoDWaB3mVojyj5SAYrYZCws2tR9wvIOdBNwP1mwct3JSieZAnFeVBxm5jHNdfGRQIvCyD3L6I/q9//QuLxcI999xje66wsJA77riDNm3aEBERwWWXXUZaWprT9x0+fJipU6fSokULYmNj+dOf/kRpaam7yzUMuxGCjf8Zexz5nNtHxtd5+AdrD3uiqoBU9RbmAQ6tXA6G96Zfe7Vy8XuRcdCmpzE+ugGKT5pbjycMu8GWQWx8D4o1MfMaxzbbx+oDGhgiYqFNL2OcEiAZdMYNDvOgBfz+NPOgD9doHuQu1edBBwmyGJtOHwzrrZZ2gSCiHbTtbYxTNgbGnMAhg9j4PhTlm1qOODi2GajY+F7zoMDQsi207WOMAyaDroeQZgB0T17IH86Jq/PwDzQP8pxjW1AGBRjHDDq2yfQ5gVsX0deuXcurr77KoEGDnJ6/9957+fLLL/nkk0/46aefSElJ4dJLL7W9XlZWxtSpUykuLua3337jnXfe4e2332bOnDnuLNeuZVsYcJkxLszhgYTNnNUtptbDP113hOJS7R7vDlVvYR5ksd/SGdZ5uFq5BIrKTx/LS+DoOnNr8YSWbWHgDGNcmANbPja3HrFz3MhGPfgChy2DSuHIWnNr8YSWbZwy6IH2m+qcB32y/ghFpWUeKi6wfLU1xenxIIt9c/WwzsM0DwoUAZlBlxvjohzY8pG59Yid04Z+mgcFjIDMoIp5UFEO98dvYkRd60GaB3lOis7FApIXZZDbFtHz8/OZOXMmr732Gq1bt7Y9n5OTwxtvvMEzzzzDeeedx7Bhw3jrrbf47bffWLVqFQDfffcdO3bs4P3332fIkCFMmTKFRx99lJdeeoni4mJ3lezMYVObkLWv8cQltfdaOl5QzLfbUz1RVUA5kFnAjmPOO147bqbVZ+gYT5ckZrFtJoFX3MLjEY4bjK6ZC1arebWIndNmWrr6IWAEeAYFr32Nf9UxD8oqKObb7Wm1vi6NczCzgG1HnedBgxzuyOuleVDgCMQMctxgdM1rmgd5C82DAlMgZtBZt9mGwWtfr3M9KKugmCXbtB7kEcqgwORFGeS2RfQ77riDqVOnMmHCBKfn169fT0lJidPziYmJdO7cmZUrVwKwcuVKBg4cSFyc/baZSZMmkZuby/btHtrAKmEodDzLGKfvoEfBJs7uXvunj/NX6xYeV/u6yi3MYOWMIKMX8SnC6d5XnzwGDC/bTMIjEoZAp4oN49J3wMFfTC1HME7gKz/5Dm1hv61M/F+gZ1DGTroXbGRk9za1Hj5/9SHP1BVAqrZyAStDK+ZBhYTRo98wzxcl5vCyfqAe0X4wdDrbGGfshAMrzK1HnOdBIc2hXaK59YjndBlpHwdMBg2CzhW/d8ZOuudv4Jwedc2DtB7kdlYrJFdmUDNo19fcesRzvCiD3LKI/uGHH7JhwwaeeOKJaq+lpqYSFhZGq1atnJ6Pi4sjNTXVdozjAnrl65Wv1aSoqIjc3FynryYbYf/0kTWvcs2I2jdvWrn/OPsz1K/PlRZXaeVydtBOEixZAKRGD8ESHGJGWWKGVp0hupMxTl4LpR66I6UB3JJBTlejv9r095OmOfgL5B41xp3PNjYeksDQqhNEV2xkfSRAM2j1q1wzovbNvFftz2Kf5kEuVfVighGWXXSwHAcq50GhZpQlZojuaMyFoCKDisytpwbuORercleemOvQb5CTbIw7j9A8KJBEd4RWFWshgZRBVe4MrmsetPpAFnvTNQ9yq8MrIafiw4pOyqCA4kUZ5PJF9OTkZP74xz8yb948mjVr5uq3r9UTTzxBdHS07atTp05Nf9O+F0FExWL+rq+Y1LGEmJZhtR6uDSVcZ39GPjurtHK5Ini5bRw2/FrPFiTmq7wKq/SUsaGEl3FLBvW7GCIqNvTb9RVkJzf9PaXxNr5vHw+ZaV4dYg5bBhU630rqJdyeQbu/ZlKHYtrUNQ/SVVgucyCzgO0pVeZBIctt45BhmgcFnMpbmQMpg/peBJHtjfHuryFbGWOqje/Zx5oHBZ6AzKALITLBGO/+mokJxbSN0HqQaTYogwJaZQaVFTnvz+FhLl9EX79+Penp6ZxxxhmEhIQQEhLCTz/9xPPPP09ISAhxcXEUFxeTnZ3t9H1paWnExxsnavHx8aSlpVV7vfK1mjz44IPk5OTYvpKTXbDYFBIGw28yxtZywje+xeXDOtZ6+Kfrj1BYog0lXKHq1VeRnOSCoNUA5BJBwtmXm1GWmMnxVuZ9P5pXRy3ckkHBoU4ZxNrXm/6e0jiFObDjC2PcrBUkTjO1HDGBYwbtD8wMCtv4FjOG1zEP2qB5kKvUNQ/KoyUdNA8KPJoHaR5kpsJc2L7QGIdHG4uLEliUQYRteIMZw2pfnP9M8yD3KcyFHQuNcXg09LvI1HLEBF5yLubyRfTx48ezdetWNm3aZPsaPnw4M2fOtI1DQ0NZtmyZ7Xt2797N4cOHGTnS6HMzcuRItm7dSnp6uu2YpUuXEhUVRb9+/Wr8ueHh4URFRTl9ucSwGyGo4nbZ9e9wzRntaj30xMkSbTDqIlVbuVwU/BvNLCUA7IufgiW0uRlliZl6jAcsxnjLh163wZT7MugGewZteAdKTrnmfaVhtn5q3AUBMOgKCPXcnVbiJXqchy2DNgduBl0ztPZ5UPbJEm2s5SJV50EXBq+kucVoI7Q37gIsYS3MKEvM5JhBWz6E8nJTy6nKrRkUXHHl54Z3NQ8yy7bPHOZBl4POxQKPMgg2vMs1Q2vvi559soRvtlXdz0RcYvvnUHLSGA+coQwKRFXPxUzKIJcvokdGRjJgwACnr5YtW9KmTRsGDBhAdHQ0N998M/fddx8//vgj69ev58Ybb2TkyJGcfbaxeczEiRPp168f1113HZs3b+bbb7/loYce4o477iA8PNzVJZ/mF4qD/tON8aksuhxbwrk9aw/OebqVucn2puezKzXP6TnHVi6tRt3s2YLEO7TqBN3HGuOs/UZPtEAQGQf9LzHGp04Yi7nieY63MA+9zrw6xDyOGXTigOmb2nhMlQzqkvINo3q2rfVwbazVdDW3tLNfcRM96iZPlyTeILojdB9njE8chMMBkkERsVXmQZ+YW0+g0jxIojtAj98Z44DKoHbQ/1JjXJhN56NfM7pX7fOgeas0D3ILx1YuZyiDApJjBmUfgkO/mlKGWzYWPZ3//ve/TJs2jcsuu4wxY8YQHx/P559/bns9ODiYxYsXExwczMiRI7n22muZNWsWjzzyiBnlwlkOG4yufpVrzqx9Q4k1B7LYm55X6+tyelVvYU60HGZw0H4AkoJ60LX/2WaUJd5giEMPWMf+1P6uyibH3nYFrN9L3Wbv/Rg/CNoPMrceMY8yyNho/azab2VeczCLPWmaBzVF1XlQH8thhlTMg/YEdaPbgJFmlCXeYGiAZpDTudhczYM8LW0HHF1vjOMGQvvB5tYj5nHsQx1IGVRlk+Nrzqx9HrTu0AmSNA9yrfSdcHSdMY4bCO2HmFqOmMgLMsgji+jLly/n2WeftT1u1qwZL730EllZWRQUFPD5559X63XepUsXvv76a06ePElGRgZPPfUUISEm7b7bcTgkDDXGqVuYGHWwzg0l5q/W5n9NUfXk0fEq9OSul2KxWDxbkHiPvtOMHmhg9GUsCpAd0DsOh4QzjHHqVji8ytx6Ao3jX9BnzDKvDjGfYwbtWAhFAXKSVCWDJkYeoG1E7XcGztfGWk1StZXLFcE/2cbJXS7TPCiQJU51yKAvAiiDhkGHYcY4bWvg3I3oLZzmQdeBMihwJU6DZgGYQR2GQYfhxjhtG+dH7KNdZB3zIN2V51qOGTT0WmVQIKuaQYW5dR/vBqZcie5zLBanKyBC173G5cO1oYQ77E3Pc2rlEkYJlwT/AkCRNZTOY683qzTxBqHNYUDF7XQlBfbNRQJB1avRxTNKi4y+jwDB4UYPPglcThl00r7JWiBwyKCQda9xRR0bjH6mjdYbbV9Gfg3zoJ8BYx7UcZzmQQEttDkMvMwYl5yE7QvMrceTqtwZLB5SWlxlHqRNjQNaaDMYUDEXDrQMasg8aMMRThVrHuQSpcWw+QNjHBxm7E0lgcsxg0pPmZJBWkSvrwGXQouK3lc7F3Ft39qvRM85VVLtamqpn6+2OG9Idn7QelpbjKuNfwk9h56da//LSgKE063M88yrw9P6XwItKzb027EIclPMrSdQ7P7a6MEKxi7wzVubW4+Yz7EX7KbAzaBr+4XWeiFQbmEpX23RPKgxvq7yz2180AZibPOgkfTqXPtFHBIgAnYeNN2eQTu/hJyjppYTMHZ/DSePG+O+06BFjLn1iPmGOrZTCKAM6jcdWsYa452LmZkYXOs8KK+wlMVbdK7mEknf2DMoURkkOM+DTDgX0yJ6fYWEGzszA5SX0mHfB3VuKKFbeBqn6ocPVzpspHWiz5W6hVmM2+naJRrjw7/B8X3m1uMpjhlkLYN1b5paTsBw3MTG8S9sCVwdznDIoJWQudfcejylSgYl7P2A0b3a1Xq4Wro0zlfV5kHLbeMTfa7QPEiM1krt+hrj5FUBlkE3GmPNgzxno+ZBUkXCGRDbzxgnr4LMPebW4ykhYTDcnkEJez9gbG/Ng9xOG4pKVQlDHTJoNWQkefTHaxG9IYbfBJZgY7z+La4bVntorjt0gt2pAdIjzEX2pOWx22ETjgQyGRW0DYDD5e0YNHqaWaWJN7FYnDeUCKQrQYffBEEVe0OsewuKT5pbj7/LToZ9PxjjVl2g6xhz6xHvoAwyxuve4tozap8HrT90gl2pnu9T6MuqtrRrz3HGBG0BILm8HYNGX2RWaeJNLBbnK0E3BdDmfo4ZtP5tKC4wtRy/l3ME9i4zxtGdods4M6sRbxHI86BhNzpl0HVn1H5R5cbD2ew8pnlQk+QchX2VGdRJGSQGkzNIi+gNEd3BuJ0foCCD8TmfnWZDiUMeKsw/VL36akbwCoIsVgB+aH4+veOjzShLvNGgK+0faG36AMoDpOdcVAL0rcigk5mw6iVz6/F3m+YDRgYx9FoI0l+ZUsExgzZ/GLAZND77E2K1sZbLVG1pNyP4J9s8aJnmQeIoYDOoPfS72BifzISV/zO3Hn+36QPs86CZmgeJ3aAr7YvJAZdB043xyeOMy/qE+KhmtR6ueVATbZ4P1nJjPEQZJA6qZlBZqcd+tP4rbKixfwWL8Y8t+NfnuHFwy1oP/XzjUW0o0QCO/VMtlHN58E8AlFstlA662qyyxBtFxkGvicY4LwX2/1j38f5k3F/tJ86/PAv56aaW47fKyx2u7rPAkGtMLUe8TGQc9J5kjPNSYF9gZlDwb89x4+AWtR66YMNRThZ7blLr6xxb2lWbBw3UPEgcRMRC78nGOO+Y/a6pQDD2L/Z50K/Pah7kLuXlDq1cNA+SKiLaQa/KeVDgZlDwb89xw+DmtR66cKPmQY1WXg4bHc7FHO/AEoloZ58H5ad6NIO0iN5QsYlwxvXGuDiPWcUf1rmhxJfaUKJektLy2JOeb3t8TtB2OgVlALCifBBjhw81qzTxVk6b2gTQrczt+sCwygzKh+X/Mrcef3VwBWRXXD3S4zyI1qbGUoXjbYSOPWP9XZUMuq6ojnlQUSmLN2uD0fqo2tLu7KCddK6YB/1SPoAxZ2oeJFUE9DzoBmNcnA/LnzC1HL918GfIrriruvs4aNXZ1HLECw0N1HlQb3tv9JICriv8gKA65kFfbtZ6UKMc+gVOHDTGyiCpiUnnYlpEb4xxD0JYBAARW9/jqm6naj1Ut/DUj+NV6ABXVFx9BfBz5GR6xUV6uiTxdr0mQYuKPnS7voKTWebW40kOGcT6tyFjt6nl+CVtYiOn09shg3Z/HbAZFLHtfa6pYx40Txtr1Uv1DUXtdzf8FDGF3poHSVW9JkLLin0JAjKDKv6fWP8OpO8ytx5/5PjBjOZBUhOnDPomsDJo7F9tGdTyNPMgrQc1kjJITqfX+c4ZVHDcIz9Wi+iNERkH595jjK1l3Mv8Wg/dlJzNjhRtKFEXq9XqdPIYRT6Tg9YCkGWNoPWQi80qTbxZSJjRCwugrBi2fWZuPZ4UEQuj7jHG1jJY+ndTy/E7p07Azi+NcfMY6HOBufWIdwoOdc6grZ+aW48nVcmge6h9Q5/NydlsT8nxTF0+zPFigijymeIwD2o1VPMgqUG1DPrE3Ho8KaKd8zzoe82DXOpUNuxcZIybt4bEaaaWI14q0DNo9L3G2FrOPdbar4LdfCSHbUc1D2qQU9mw4wtj3KwV9JlqZjXirRwzqLzEYxmkRfTGGnkHRLYHIDZlGRdE7K310PlrtMFoXZLS8tnr0MplevCvhFtKAFhQNprJQ3TrjtQiUG9lBjj7DohMMMZJ38CBFebW40+2fgplRcZ48FUQUvvGiRLgHDNoU+BmULuUH5gauafWQ3UVVt2qtrS7KHilbR60sGwUkwd3Mas08XZDAnke9AeHedAS2P9T3cdL/W39BEoLjfGgKzUPktoNvdY+DsQMiuoAQNtjy7kwMqnWQ+dpHtQw2z51zqDQ2jdvlQDnmEEeOhfTInpjhbWA8x6yPfx7+AdYKK/x0IUbUygo0oYStal+C/Ny23hN66n0jNUtzFKLuP7QfogxPrYJUreZWY1nVckgvnvI2IBFmm7Du/ax41/MIlXF9YeEil7VxzZD6lZz6/GkKhk0J6z2edAXmzQPqkvVlnaOrVzWtLpALe2kdnH9IOEMY5y6JfAyaPzD9seaB7mOY29ZzYOkLrF9nTPo2BZz6/Gk0OZwnj2DHq5jHrRo01HyNQ+qP7XVlPqK7Qsdhhnj1K3G+ZibaRG9KQZfDXEDAIgr2MnFwStrPCxfG0rUymq18pXD5qv9LQfpH2Rcub+pvAf9h5xtVmniK5w+fay9pYBfGnwVxA00xsc2G5/aA4UlZVitVhML82HHNhsnAWCcFMT1N7ce8X5OV4IGbgbFFexievBvNR6WX1TKIs2DalS1pV0/y0EGBh0EYHN5d/oOOcekysRnDA3gDBp0JcRXzINSt9hu5dY8qAmObbEvQrQfYv/nK1Ibp7vyAjeDYgt2c2lIzfOgguIyvth01JOV+a7UrcbFcaAMkvrx8LmYFtGbIigYJj5qe/hws08Ip7jGQ1/7eT/vrzrEsp1pbDuaw/H8Ik3ugN1peezLKLA9vsLh6quPysZxwcD2ZpQlvmTAZRBccZvplo+gtOb/B/1SlQxi2SNQcoor566i/9+/5bynlzPz9VXc//Fmnvp2N++tOsT3O5RBddImNtJQA2fYM2jrxwGdQQ81+1TzoAaq2tLucoeN1T8uG8fUQfFmlCW+xHEeFJAZ9Jj9ccU86OrXqs+Dnvx2l+ZB9VC6XleASgMNmAEhFe02tgRaBgXBxH/aHv5feO3rQW/8fID3lUGnVbrO4Y5gZZDUx4DL7Bm09WMoLXLrjwtx67sHgh7nQc8JsPd72pSlc0Pwt7xadmG1w/ZlFPDQQudWE2EhQcRHNTO+opvRMzaC6UM60LlNC09Vb7qvHW5hDqeY6cG/AnDKGsbutufTMzbCrNLEV7SIgcSpsP1zOHkc9nwLfav/P+i3evwOep4Pe5dCTjKsfoXUnIGcLC5jf0YB+x0+pKqqpgy6eEgCXdq09OAv4EVKCo3JP0BIc+MvZJHTad7aOYOSlkC/i8yuynMcMqhNWTo3Bi/hlbLqv//+es6DAi2DHK9CD6eYS4J/AaDQGsrOthPV0k5Or3lr6DvN2GA9EDOo+zjoNRH2fAe5R2DVy6TmDK7fPCg4iLjocNpHNQ/YDKq07mAWLy/bwXNH5hMBxoLEgBlmlyW+oHkrY/PZbZ/CqSxjr6Z+AbQhdvex0GsS7PmWmLIMbg7+hv+VVf/992fWMA9SBtmsO5jF/5bt4LkjHxAJyiCpP6cMOgG7v4H+093243Qluiuc/whYjH+Ud4V+QWty6/VtxaXlHM46yZqDWSzanMIzS5MY8+SPfLr+iDur9RpWq5XFDiePk4LWEm05CcDX5SP43aCeZpUmviaQb2UGpwyy/vw0ZXkZ9fq2mjJo7JPL+WRdsjur9V67FkNhtjHudzE0iza1HPEhgdxWCpwy6M7QRcQ0YR4USBlUtaXdxKB1tLIYC35fl49gnOZBUl+BvLkfVJkHPUNpfedBZeUkZ52qlkEfB1AG/bYvk6vnrmLGKytpse8bIqwVd8b0vchYmBCpD52L2TLojtBFtCGnXt+mDLKyct9xhwxaQqQ1z3hRGSQN4cFzMS2iu0Jcf1sfnghOcnfIgia93V8/28LOY/U7AfVFVquV5bvTmfHKSqerQ64IXm4bf1Q6jgsGqZWL1FP339l2R2fPd5CXZm49nhbXz/YXh6UojzuDP2/S2z34+Va/zqBabdDtg9JI3cdVyaBUU8vxuLh+MNT4f8aYBzU9g3ak+G8GWa1WfkrK4PJXVlZpabfcNv5YLe2kIbqNhaiOxnjv0sDLoNi+tgyyFOdxZ9CnTXq7v32+le0p9VsE80WOGXTNa6tZuf844NxOSvMgaZCqGZR7rO7j/U1sIpwxC4CWnOKPTZwHBUIGrUjK4IpXV3L1a6tsGeQ4D1IGSYN0GwvRnYzx3u8h1317MWkR3VV+938QarRhuTb4e7paGv8XR2m5leeX7XFVZV7DarWydEca01/6lRveWsv6Qydsr3W0pDMqeDsA+8vjyYs7ix7t1MpF6iko2NjgDsBaBls+NLceMzhk0MzgZXRTBjXMiUNwoOLkMaY7dDnX3HrEtwQFG5uNA1jLYXMgZtDfINS4/VgZVDOr1cr3O9KY/r/fuP7NNaxzmgdlcG6QMQ86WB5Hdruz1NJO6i8oGIYogyoz6JrgH+huafwJdCBmUAcyGBVktJo4VB7LhiBtrC4NUDWDAvFcbJxjBi1TBtXAarWybKeRQbPeXMPag8ogcZGgII+di2kR3VWi2sM5dwMQainjLyFN+5f2zbZUdqX6x1VY5eVWvt56jAue/4Vb313H5iPVP1V1vPLhk7JxTBuc4MkSxR9U3ZU50DZqiYyHc/8IKIMqnSwupay8nv8dON72NfRasFjcU5T4ryHX2MebAjWDXDcPWrI91W/uiCkvt/LN1mNMff4Xbnl3HZuTs6sdMyP4J4Isxn8zH5eN1TxIGk4Z5NJ50Lfb0wIqgy4Pccygcbzwwz4PVyk+zzGDAvJcLA5G3QNAiKWcv4Z80KS387cMWrLtGNNe+IWb36ltHrRCGSRN46F5kMsX0Z944gnOPPNMIiMjiY2NZfr06ezevdvpmMLCQu644w7atGlDREQEl112GWlpzu0XDh8+zNSpU2nRogWxsbH86U9/orS01NXlutY5d0FEHABTgtdyVtCuen2bhXL6Ww7QxeJ86+ULP+x1eYmeVFZu5YtNR5n83Ar+MG9DrX8JBFFuW0Qvs1pYUD6aaWrlIg3Vpgd0PscYZ+6Go+vNrccM59zFqfB2AEwOXsuZlsDNoOLScm59dx1/mLeewpKyug8uL7P3b7Q4fIot0hBtetjvYMhMgiPrzK3HDOfcBRHxgJFBI4J3n+YbDLVl0Is+nEFgzIMWbU5h8nMr+P28DeyoYx40I3iF8T1WCwvKxzBtkBbRpYFiukOXUcY4YDPoTts8aFLwOs6y7KzXt9U+D/LtK0Ebm0GflY3mx90ZbK3hwieRWjlm0PE9cGStufWYYeQdEGmsY0wMXs/IYGXQos0pTHnuZ25/fwPba2nVZ6Gcy0Ps60HKIGmUmG7QdbQxPr4Xkte45ceEuPoNf/rpJ+644w7OPPNMSktL+dvf/sbEiRPZsWMHLVsat7fce++9fPXVV3zyySdER0dz5513cumll/Lrr78CUFZWxtSpU4mPj+e3337j2LFjzJo1i9DQUB5//HFXl+w64RHGrYRfGldBzO+ymLXjryc1r5BjOYWk5tj/zMrJpdfJDUwMWsf5wRtoZ8mhyBrC1cUPscHaG4Cvtx5jT1oeveIizfytGuXb7an8+5td7M8sOO2xY4M2k2DJAuDH8iFMHjk0IHekFhcYOhMO/2aMN74PHYebW4+nhbWk+cSH4UvjatD3Oy1iw8RZpOYV1TuDrin+P9Zb+wC+m0Hl5Vb+/Olmft1r9Neb+fpqXp81nNYtw2r+hr3LILdiQ+ee50OUFq+kkYbMhEPGXIZN70OnM82tx9PCWsJ5/weL7gJgXqdFrJ3wiVMGpeYUkppbyPHsXHqf2sD5FucMmln8N9ZZEwH4etsxktLy6O1jGQTw3fZU/rVkl9PeL7UZE7SFjpZMAH4qH8zEs4fSta3mQdIIQ2fCoV+M8cb3AjKDmk+aY8ug9zp9yYaJ11ebB6XVkkHF1mCuKf4/ewZtTWV3ah594gMng1aUDyInNJZbRnQmPrqZu8sUf+OUQe9Dp7PMrcfTwloaLTYX3QkYGbR2gj2D0irPxXILyczOo/epDUy0rOP84PV+l0FLd6TxxDc765lBW5VB4hpDZsLBn43xpveh8wiX/wiL1ere+2wyMjKIjY3lp59+YsyYMeTk5NCuXTvmz5/PjBkzANi1axd9+/Zl5cqVnH322XzzzTdMmzaNlJQU4uKMK7tfeeUV/vKXv5CRkUFYWC0LIQ5yc3OJjo4mJyeHqKgod/6KzspK4ZVRkFHxqeOMN2HAZcb4VDbsWQq7FhvN7ovzq337yrJ+XF3ykO3xRYMTeP7qoR4o3HX+uzSJ5+rZw6ujJYPPw/5OrCUbgG/6P82ky24mKEitFKQRivLhqd5QUgDhUXD/bghrUa9vdXVmmJZB5WVGBqXvMB5f9gYMNLK2Phm0qrwvVxU/bHvsixn0r2928cpPzrcAdm/XknduPItOMVX+ezhxCN44H/Ir7oa68n3oe6GHKhW/45hBYZHwQJIyqIEZtLo8kSuL59geXzg4gRd8LIOe/T6JZ7+v3zyoAxksCLfPg5b0f5KJl92qeZA0TnGBkUHF+cogF2XQtEHtefGaMzxQuOs89/0e/vt9Ur2OrZpBC3o9wZiLb6ZNRLgbKxS/VS2DdhsLy/XgXxk0GtKNfU649HUYdLkxrsyg3V8ZfyqD6EAGn4f/nThlkLhCcQE81QeK8yAsomIe5NoMcntP9Jwc4xaMmJgYANavX09JSQkTJkywHZOYmEjnzp1ZuXIlACtXrmTgwIG2BXSASZMmkZuby/bt291dctMEh8DER+2Pv/9/sOY1ePdieLIHfH4L7FjoFJjFlnByrMYEd2TwDoY7tGD4cksKe9Orh6u3enflwXovoLcij3dC/2WbtJV2OIspl96gE0dpvPAI6H+JMS7KNU6SAk1QMJzvkEHLKjNoer0y6OygnU5tYHwxg6ouoAPszyjgkv/9xrajDrcFnsyC9y+zL6B3Oht6T/FQpeKXHDOoOA92fmluPWYICnaeBzUwg0YE7XJqwbB4Swp70/M8VHzTvbfyYL0X0KPJ552wfzvMg85k8qU3aR4kjRfWEvpPN8bKIMP3TcugryruyvMV7606VO/Fq2oZlHAml1w1W4tX0nhhLTUPqjYPeqR6Bm1f4JRBJZYwpwwaEUAZ9HbYf2wL6MogaTKneVA+7Fjk8h/h1kX08vJy7rnnHs4991wGDBgAQGpqKmFhYbRq1crp2Li4OFJTU23HOC6gV75e+VpNioqKyM3NdfoyTc8J0H2cMc4+BF8/APuXQ7lDT/fmMcatBlfNJ+22HTxWNsv20t0hC2xjqxVe+tE3eoIu2ZbK3xfV70OOcIp5p9nT9Ag6ZjzRphchMz8yPoQQaYqhjhuMvu+xH+tdGTQeuv/OGGcfrsigH2vNoPTbd/Bo2fW2l+6qkkEv+kg/vtNlUGZ+Efd+tMnYbLTkFHxwldGzEaBNL7j6A2WQNN3Qa+3jTYGaQROgx3nGuN4ZdIPtpTtDFtrGVqvv7M/w7fZU5jRgHvR2s6fpGZRiPNGmFyEzP1YGSdMNvc4+VgZBTsMzqOo8yFcy6Lvtqfz9i231OrZ6BvXUuZi4huM8KJDPxXqMN8a1ZlBrGHwNXDmPtNt38ohTBn1uG/tzBr3V7Bl6BR01nlAGias4zYPmufzt3bqIfscdd7Bt2zY+/LBpu6PXxxNPPEF0dLTtq1OnTm7/mbWyWCquBK1yJVGrznD2HXDDV/DAHpj+P0icSqf4tlgGXcHhcmMjnDHBWxlssQflF5uOsj/Du68EXX8oiz9+uLFeG+DGtgxhScd3GEzFJ5QRcXDtZ9Aixr1FSmDoPNLY2AbgwAqjXYcHeF0GTawtg/5QLYM6xrUleNDlHCqPBYwMGuKQQYs2p3h9Bq07ePoMimoWwv9mnkEw5fDZLZC82nhBGSSu1PlsiOlhjAM1g6COeVDNGRQyeAYHy40LJqpm0JebU9jn5Rm0/lAWd3/QgHlQp3cZSsXGqy1j4dpPlUHiGp1GQJuexlgZ5PxcPTNodPA2hlrsFxD4wl156w+d4K4PNlJerwwK5ptqGfQZtGzj3iIlMDhm0MGf4cRBj/xYr8ugiY+CpcpyW2UGXb8YHtgLl7wMfafRMa4tYYMvt2XQqODtnGGxX83tnxn0HmdQcfezMkhcqdNZxgVyYGRQ1gGXvr3bFtHvvPNOFi9ezI8//kjHjh1tz8fHx1NcXEx2drbT8WlpacTHx9uOSUtLq/Z65Ws1efDBB8nJybF9JScnu/C3aYT2g+DiF6HXJBj3N7j9V/jjFpj8OHQdVe0Ttj+cl8gr5RfbHjtehVVuhZd+rN6ewFvsTc/n5nfWUVRaXudx8VHN+Pu0vvw25Du6Zf5oPBkWATM/gdZdPFCpBASLBYZcY4yDwyBlo0d+rNdlUPxAuPilGjLoiZozaHzVDLJfhVVuhRe9+I6Y+mRQWHAQr80aTq/YCPjmL/ZWP8ogcTWnDAqHlA0e+bHel0EDHDLoQbj9lzoz6PdV5kF3Vcmgl7z4Kqx9GfWbB8VFhRvzoKFL6Zbxg/GkLYO6ur9QCQzKIEMDM+gP5/Wt9VzM2+8M3peRzy3vrK1XBs2Z2pffhi6je2UGhbaEmR8rg8R1qmbQ0QDNoLj+tWdQt9E1zoNe9tEM2t+oDFpmPKkMElerth7k2gxy+b0SVquVu+66iwULFrB8+XK6devm9PqwYcMIDQ1l2bJlXHaZseHm7t27OXz4MCNHjgRg5MiR/POf/yQ9PZ3YWOPKyKVLlxIVFUW/fv1q/Lnh4eGEh3tZ76Sh1zrfzlSHrm1bUjLgSlJ2fk6CJYvzgzfQr/QgO6xdAVi46Sh3j+9Jlzb1a4rvKem5hVz/5hqyT5bUeozFAv93QV+uG9mF8FXPw/rXjReCQuCKd6H9YA9VKwFjyEzjFrkBlxl/eoB3ZtBM5/Y2dejSpiVlA6/i6I7P6WA5zoTgjfQvPcj2igz6YlMKd5/Xi65tvTODck7VnUH/vXIII7q3gV/+C2tfM15QBom7DLkGmkUbm9kpg+p1aJc2LSkfeCVHdnxOR0sm44M30r/0ANutxjzSmAd5YQbl1X8edO3ZXWi2+gVY55hB70DCEM8UK4Fj8DXGBuvKoHpnUOc2LbDWkUFfVGRQNy/NoBN1ZBDYz8WarXkR1s01nqycByX41ubN4gOUQYYh19gX806jc5sWWBwy6LzgTQwo3c82q3GHtVdn0FuNzCBLsDJI3GPw1RAeaawHufhOT5dfiX7HHXfw/vvvM3/+fCIjI0lNTSU1NZVTp04BEB0dzc0338x9993Hjz/+yPr167nxxhsZOXIkZ599NgATJ06kX79+XHfddWzevJlvv/2Whx56iDvuuMP7gtGFfj++H6+WXmh77PjpY1m51es+fcwvKuXGt9dyNPtUncfNmdaPW0Z3J3z7p/D9P+wvXPSi0S9MxNWiEuDMWzw2afMXvx/fl7lOGWS/EtSXM+jhqf2YOqg9bPlYGSSeEZUAZ92qDGqgqhl0V5W78rztjpj8olJufGstR07UnUEPTTXmQc12fg7f/93+wkUvGL2bRVwtqr0yqBFuH9/X6VysWgZ52R0x+UWl3PR2fTKoL7eOqcigpXPsL1z4PPRSBokbKIMa5fbxfXm17CLbY1/JoOSsRmbQRS8og8Q9KjPIDa0SXb6I/vLLL5OTk8O4ceNo37697eujjz6yHfPf//6XadOmcdlllzFmzBji4+P5/HP75gnBwcEsXryY4OBgRo4cybXXXsusWbN45JFHXF2uV+neLoKT/a8h3doKgAuC19DLcsT2+ucbjpKcddKk6pwVl5bz+/fXsz2l7g07Zo/pzo3ndoN9P8IXf7C/MH4ODLnazVWKSEN0a9uSkwOuIa0ig6YEr6W3xX4r5OcbfS+Dbh3djZtGVWTQQocMOu9hZZCIl+nWtiWnBlxty6DJwWvpYzlse33BxqMcPu4dGVRSVr8MumVUN24e1c3YYH7h7+0vnPdQva9OExHP6Na2JUV1ZNDCTUc5dLzApOqclZSV84d5G9h29PQZdMvo7jVnUD2v0hcRz+jatiVFA64i1Wp8+DApeB2JPp5BN9sy6CfnDPqdMkh8k8sX0a1Wa41fN9xwg+2YZs2a8dJLL5GVlUVBQQGff/55tV7nXbp04euvv+bkyZNkZGTw1FNPERLi/zv13jahP3PLptoeO16NXlpu5X/Lzf/00Wq18tfPt/Dznsw6j7tocAJ/nZwIx7bAR9fZd6MefjOMus8DlYpIQ902vj9zy6bZHnvjHTH1zaALByfw4JS+DhlUcZvh8Jtg9P0eqFREGur2Cf15tcy778qzWq385bPTZ9C0Qe352wV9IXUrfHitPYOG3QijH/BApSLSUMa5mPdn0F8/28qKpIw6j7Nn0DbneZAySMRr3e4j52IPfn76DJo6qD3/Z8sgx3nQDTBGGSS+yW0bi0rj9IyN5ETfazlujQRgWtBKulmO2V7/ZN0Rjpww9yqsp77bzecbjtZ5zMjubXjy8kEE5SbDvMuhOM94oc9UuOBJo0GoiHidnrERZPe9lkxrFADTglbR3ZJie/3T9UdMvxq9Phl0dvcYnqo1g55SBol4qR7tIsjpO5OMigyaGrSaHhb7/++fbTA/g57+LqleGfT0FYMJyj1SJYMuUAaJeLEe7SLI6Vd7BnnDncHPLE3isw1H6jxmRDfHDJoBRRVXi/aeogwS8WLd20WQ55BBF3hhBv13aRKfrj99Bj1TawY9rQwSn6VFdC9024SBvF5xNXqwxcodIV/YXistt/Ly8n1mlcb7qw7x0o91//zE+EhenTWM8OIceH8G5KcaL3Q8Cy57HYKCPVCpiDTW7RMG8HrZBQAE1ZRBP3l3BvWJi+TV64bXkEFnKoNEfMDvzx/AGxXzoCCLlT9UyaD/mTgPmrf60Gl7sztn0GWQV3ExRMcz4bI3INj/76wU8WW3TzhdBpl3Jei81Yd44TR9kXvHRTB31nDCS3KNxavKDOowHGa8qQwS8XKO60E1nYuZmUHzVx/meWWQBDAtonuh3nGRpPW5jmyrsfPy9KBf6GRJs73+8bpkUk6zkZ47fLc9lTlfbKvzmPbRzXjrxjOJKs+DD66CzN3GC216wjUfQVgLD1QqIk3RKy6S9MTrOGGNAODioF+dMuiTdcmn3czTHeqbQW/fdCbR1ioZFNMDrlYGifiCnrGRZCRe65BBv9HZIYM+XW9OBi3dkcbDC+vOoPgoYx4UTT58cLUySMQHnS6DzLoz+Pt6ZtDbN55lz6CMXcYLMT3gmo+VQSI+oGdsBJl9ryPL4VysiyXV9rqZGfTQwq11HlN7BnXXepD4BS2ie6nZ5w/izdIpAIRYyvl98CLbayVlVl7x8JWgm5KzueuDjZRbaz8mslkI79x0Fu2LDsJr50HyauOFlrFw7Wdu2RlXRNzjtgmDebN0MmBk0B+qZpCHrwStbwa9fWNNGdTOyKCWbTxSq4g03ewJg3mjjnnQyx6+CmtzcjZ3fbCh7gwKD+Htm84kofhQRQatMl5QBon4nNvOd86gPwSbe2fw5uRs7mxoBh1eabygDBLxObdNGMSbFXcGB1usTudiZmTQliOuyKC2nilWxI20iO6lEuOjSO41i1xrcwBmBK8gAfsGVh+uSSY1p9AjtaRkn+LWd9dRVFpe6zFhwUG8Nms4vU+sgNcnwIkDxgst2sLMT6B1V4/UKiKu0Sc+kqO97Rl0WZUM+mhtMsdyPHMlaH0zaO51w+mTXVMGfQox3TxSq4i4Rp/4SFL6XEeu1bhiqWoGfbz2iMcy6FjOKW55dx2FJXVn0KuzhpGY/Qu8Ph6y9hsvVM6DlEEiPqV3XNUM+pkO2DfR8+SdwcdyjHlQvTIo51djHqQMEvFpveMiOdbbnkGXBv9MR4s5GZSaU8gt79SdQaHBlloyqI1xF0xMd4/UKuJuWkT3YrdOHMq7ZRMBCLOUcVvIl7bXisvKPXI1ekFRKbe8s46MvKI6j3vmikGcnfwmfHgNFOcbT8YPgtnLIWGI2+sUEde7deJQ3imbBBgZdHuVDHr1p/1ur6G+GfT05YMYeUQZJOJPbj1/KG87zIOqZpAn7og5WVy/DHrq8kGcc/StWjJoqNvrFBHXmz1xKG9VzINCq2SQp+4Mrsyg9Hpl0NtG+4TKjYzjB8LsH5VBIj7q1olDnDPIhO4EJ4tLueXdtafNoKcvH1w9g+IGGvOgDme4vU4RT9EiuhfrlxDF/h7XU2ANB+Cq4OW044Tt9Q/WHGbV/uNYrXXcU9ME5eVW7v1oEzuO5dZ53D8md2Xa7gfhx8fsT/a/FG76Flp1ckttIuJ+fdtHcaDnLFsGXRm8nFiHDJq/5jAr93lHBl2YpAwS8Td920dxsOcs8q3NgOoZ9MHaZI9k0PaUujPo75O6clHS3+CHx4CKWpRBIj4vMT6KQz2vt2XQFcHLiSPL9vqHa5L5bV+mWzPovo82NyCDHsWeQZdUZFBnt9QmIu6XGB/F4V72DLo8+CePZ9D9H29m29G6M2jOpC7VM6jfdLhZGST+R4voXu6micN5v2wCAOGWEm4LWWx7rai0nKvmrmLsk8v579IkDh0vcOnPfuq73Xy3I63OY+47sxk37JwNOyr7BFpg/Bxj12VtGiHi8246fzjvlZ0PVM+g4tJyrn7NyKBnliZxMNPzGXTvcGWQiD+7eeJw3j9NBo158ke3ZNDTS3fz7fa6M+ie4eHcsGs27FhY8YwySMSf3DzxDId5UKlzBpWVc81rq92WQc8sTWLJ9tQ6j7lneDg37L7NOYPOexhmvAVhLV1aj4h43s3nD3PKoKp35bkzg/77fRLfbKs7g/44LJwbd99ePYMuf1sZJH5Ji+hebkCHaHZ3u55CaygAM4OX0YYcp2MOZ53kuWV7GPvkci57+TfmrT5EzsmSJv3czzcc4X+nuU36jm6p3LXvVkir2CU+LBKu/hBG3w8WS5N+voh4hwEdoknqfj2nrGEAXFNLBj2/bA/jnjIy6P1Vh8g+Wdykn1ufDPpD11Tu3q8MEvFn/ROiSepRdwYlZ52yZdCl//vVJRm0YOMRXvrx9Bn0x/2zsSiDRPxW/4Ro9lTJoLYeyKCFG4/y4o91b6D8+65pRgalbjWeCIuEqz+AMQ8og0T8RL+EKPY6ZNDVwT/QjmynY9yRQV9sOsoLP5wug1K554AySAKLFtF9wA2TRvBB2XkANLcUc3PIN7Ueu/7QCf5vwTbO/Of3/P799SzdkUZxHZvx1WTdwSz++tnWOo6w8kDrn3kg7c9YTh43norpAbcugz6TG/SzRMT73TjROYNuCfm61mPXHzrBQwu3cdY/l7k9g/6UrgwSCQQ3nn8W88vGA0YG3VpHBm04nO2UQd9tT21wBq0/lMVfPq0rg+D+ahnUXRkk4qduPP8s5lVkUDNLSZ3zINdk0An+/NmWOo+5r/Uv/Dn9T84ZdMv30GdKg36WiHi/Gyc6Z9DN9cyg299rfAb96dP6ZNCflUEScLSI7gMGdWzFli43UGQNAWBW8HdEk1/n9xSXlfPNtlRufXcd5/xrGS/9uJecU6e/Oj056yS3vbee4rKagzaUUp5p/jZ3nnoZS3mp8WSP8caJY7s+DfvFRMQnDOwYzbau9gy6Lngprcir83uUQSLiKgM7RrOj6/UUVdyVd20DMmj2e+sblEFHTpxk9rt1Z9DTzd/iLqcMOg9u/UEZJOKnjAy6wZZB1wV/59YMuu29dbUuelVm0N2n/lc9g2ITG/aLiYhPGNAhmp3dHDNoKa2pu095cVk5S7YbGTTyiWW8+MMeZZCIC2gR3Ufce+k4Flp+B0CEpZCb6rgavarM/GKe/HY3o/71A/9ZsovM/Jp3Vs4vMnZ/P15Q860/Iyw7WRz+f1xqXWp/8py7YeYn0Lx1/X8ZEfE59146loUW42p078qgu5RBIgHgnkvHssAF86B/L9lFRl7jMugsy06+DH+Iy6pm0DXKIBF/d++lY/i8Yh7U0lJU553BVTU0gzLzG5BBI+9UBokEgHsuGcOCRmbQ8YJinvouiXP/9QP/+qb2DCpQBomclsXqrq18TZabm0t0dDQ5OTlERUWZXY5LJO/fTcK7IwmmjDKrhbll0/hv6QyKCW3Q+4SHBHHVmZ24dUx3OrY2Nr0qK7cy+911LNuVXu34WE7wt9B5TA/+zf5kcDhc9AIMvrJJv5OIt3B1ZgRCBr1WNo3/ll5GEWENeh9lkEh1yqDTSz6wm/bvnEMIpV6SQc/D4Kua9DuJeAtl0Ok5ZlC51cLcsqn8t3RGozLoyjM7MbtKBt323nq+31l9M+N2nOBvofO5JPhX+5PB4XDhczDk6ib9TiLeQhl0ekcOJhH/9kiXZdCto7vTKcbIoPJyK7OVQRLA6psZWkT3Nd/8FVa/bHu4u7wj95fczjZr9wa/VUiQhYuHdOD343rw0drDvPbzAefXKeWG4G+5J+QzIiyF9hfaDzECM2FII38JEe+jiVs9LXkQVv3P9jCpvAP3lfzewxk0GC58XhkkfkUZVE9L/garXrI9dE0GdefjdUeYu2K/8+t1ZtBzkDC00b+GiLdRBtWTmzLok3VHeLWGDLo++FvuCfmcSMsp+wvKIPFDyqB6+vb/YOWLtodJ5R24v+T3bG1EBv3/9u49OMp6v+P4ZxOScE+ASC6SQFAuU4FwDCZSq9Mp4dZqQS2COjVSBwsSPYCeGek5AnZ6jIoyFIpw+oekzqGIOAcZtYcZDSQeIYSKOToCpmAzEk4uSCgkAiFk99c/EhaCWZLsbvJc9v2a2Rl49jLfXx7n7fLLk2x0lEdzJqfqmb+8TTsPn9JvSmgQIheb6G6Nps8rHdgg7XtF8rb+mI3XE62tUQ/r1Qv3q0V9uv2SHo90438FU6OO6J/7FGpM1J/8x0y/IfJMWyXdmSdFRYe0DMBueOPWRR00yKdovR1Ng4BQ0KAu8nmlAxulfb/u8Qa93KdQY69vUN8EeXJX0yC4Eg3qIp+3dQNr77+0a9DWtgZd6ekGTVslZT1Jg+A6NKiLAjSoMPohFVx4IKgGdeTuqKN6uU+hxkWd8h+jQXAzNtHdGs2r6o5IuxZLtdc+NfnHoXdoc8IvtPVEP11s9gb1ssmq169itun+6IP+Yz555PtZnvpMXy31Hxry6IAd8catm+qOSrv+sX2DhtyhzUN6qEGTn1CfGWtoEFyLBnVTwAa9oK0n+ofUoF/GbNMDNzTIO/kJxUxfLQ0YFvLogB3RoG6qOyp9sFiq+cp/6GqDCk/014UgG5Sks/pVzG9pECIODeqm08da3we1a9CfacvQX2jr8dAa9MuYbfrb6FL/sdZ/i/29+kxfQ4PgWmyiuz2aktTSLP3hDemzNyTTFsnoWDXft1IfDXxY/1Fapa9One/SS8WoRU9F/5ee7bNLAzzXPmjiG88YJS/4NyWOu7snVgDYBm/cguC90tqfz9be0KAX9fGgv1PhARoEdBUNCoL3ivSHN1sb5GtpPRZCg/4h+vd6rs/vOmjQBiWO+/OeWAFgGzQoCJ01qPSUvqo616WXokGIdDQoCB01KCpGzfe9qN8Pmqe3D4beoCOe25W0YCMNguuxiR4J0bzqT19KHyyRfvj22rER2TJzN2v//yXoreITOvBdfdsdRolqUIanRhlRNRrtab1NiKpUques/+n1ZpDWmUe1YNE/aWIan7QM9+ONWwiqy1t/MuYnDXpLB84N0aZ9wTdo/qKVmpTG1edwPxoUgupyadcS6Ydj146NuEtm7uagG3TWDNSbvsf0yKKVykynQXA/GhSC6j+2vQ/quEFvFZ/Q/hOBGlSr0Z5qGoSIR4NCcJMGlZ4bok2dNCij7X3QrZ56/9NpECKNKzbRN23apLVr16q2tlaZmZnauHGjsrOzu/TciIqmJF1pkopfkfZvkNR2Svv0k/5iuSTpbNVRna86pmGXT2rw9R8KcQOv8ei33lyta5mngsfv019PTOmF4QHr8cYtRF1p0KljGtZUpcGeiwFfxms82ubN1Zst8/TKY/fpbybRIEQGGhSigA1aJskTVIN+/di9un9Sam9MD1iOBoWo5XLr58Uc2CAZX+uxIBrkMx5t807TGy2P0CBEFBoUopbLUnGBtP9fr2tQ37Z/i9EgoDOO30TfsWOHnnjiCW3ZskU5OTlav369du7cqYqKCg0fPrzT50dcNK86ebD1qvSz/9v5Y69z2cSozDder7U8qiNmlJ6fPlbPThvTQ0MC9sMbtzAJoUGHfOP0astjOmJGacX0sXqOBiGC0KAwOVnW+nuKQ2zQ8tyx+nkuDULkoEFhEnKDHtURk0GDEHFoUJhUHWq9Kv3sd9162mUTo//2jVVBy2M6YjK0LHeMluWO7aEhAfvpajPC89G9PWDdunVatGiRFi5cKEnasmWLPv74Y7399tt68cUXLZ7OxtLvlhZ/Ln26Rjr07zfc6ZES0qRhY9Q4YJSK6wfrd9/31f+0JKtaw2QUJUmaPyVN+X91e6+PDsAFwtCgR6aM0LM0CEAw0nPaGvSydOg3N9x5tUG3q3FARmuDTvbV8ZZkVZth8rU1aF7WCD03jQYBCEJ6jrR4v1T0slS25YY7r2vQwAwVn6FBAMIsLbv1fVBnDRowSsX18QEb9HMuZgI6ZMsr0Zubm9W/f3+9//77mjt3rv94Xl6ezp07p927d3f6GhH7ncfrVZe3fidycKo07HZpSIYU07fdQ+oamvSfZSdVVlmvfjHRmj0xRfOyRsjj8Vg0NGANrn7oAVcbNChFShzTYYNONzRp2/UNmpCieVNoECIPDeoBNAjoMhrUA2gQ0GU0qAdU/1GqKmtt0LDbpaGjO23QrAnJemRKGg1CxHH0lehnzpyR1+tVUlJSu+NJSUn69ttvO3zO5cuXdfnytU8Rbmho6NEZHSH1Z623m0ga3FfLp/NjOkCoaFAHutCg4TQICAsa1AEaBPQaGtQBGgT0GhrUgdTJrbeboEFA90RZPUC4FBQUKD4+3n9LS0uzeiQAEYQGAbASDQJgJRoEwEo0CEBvsOUmemJioqKjo1VXV9fueF1dnZKTkzt8zsqVK3X+/Hn/raqqqjdGBQBJNAiAtWgQACvRIABWokEAeoMtf51LbGyssrKyVFRU5P+d6D6fT0VFRcrPz+/wOXFxcYqLi+vFKQHgGhoEwEo0CICVaBAAK9EgAL3BlpvokrRixQrl5eVpypQpys7O1vr163XhwgUtXLjQ6tEAAAAAAAAAABHCtpvo8+fP1w8//KBVq1aptrZWkydP1p49e37yYaMAAAAAAAAAAPQU226iS1J+fn7AX98CAAAAAAAAAEBPs/UmeiiMMZKkhoYGiycB4ARXW3G1HaGiQQC6gwYBsBINAmAlGgTASl1tkGs30RsbGyVJaWlpFk8CwEkaGxsVHx8flteRaBCA7qFBAKxEgwBYiQYBsFJnDfKYcH2rz2Z8Pp+qq6s1aNAgeTyeTh/f0NCgtLQ0VVVVafDgwb0wYc9jTc7hxnU5bU3GGDU2Nio1NVVRUVEhvx4NYk1O4sZ1OW1NNCj8WJNzuHFdTlsTDQo/1uQcblyX09ZEg8KPNTmHG9fltDV1tUGuvRI9KipKI0aM6PbzBg8e7IgT3B2syTncuC4nrSkcVz1cRYOuYU3O4cZ1OWlNNKhnsCbncOO6nLQmGtQzWJNzuHFdTloTDeoZrMk53LguJ62pKw0K/Vt8AAAAAAAAAAC4FJvoAAAAAAAAAAAEwCZ6m7i4OK1evVpxcXFWjxI2rMk53LguN66pJ7nx68WanMON63LjmnqSG79erMk53LguN66pJ7nx68WanMON63LjmnqSG79erMk53LguN65JcvEHiwIAAAAAAAAAECquRAcAAAAAAAAAIAA20QEAAAAAAAAACIBNdAAAAAAAAAAAAmATHQAAAAAAAACAANhEb7Np0yaNGjVKffv2VU5Ojg4dOmT1SEFbs2aNPB5Pu9v48eOtHqtbPvvsMz3wwANKTU2Vx+PRBx980O5+Y4xWrVqllJQU9evXT7m5uTp+/Lg1w3ZRZ2t68sknf3LeZs2aZc2wXVRQUKC77rpLgwYN0vDhwzV37lxVVFS0e0xTU5OWLl2qYcOGaeDAgXr44YdVV1dn0cT2RYPshQbRoEhDg+yFBtGgSEOD7IUG0aBIQ4PshQbRILtiE13Sjh07tGLFCq1evVpffvmlMjMzNXPmTJ0+fdrq0YJ2xx13qKamxn/7/PPPrR6pWy5cuKDMzExt2rSpw/tff/11bdiwQVu2bFFZWZkGDBigmTNnqqmpqZcn7brO1iRJs2bNanfetm/f3osTdl9JSYmWLl2qgwcP6pNPPtGVK1c0Y8YMXbhwwf+Y5cuX68MPP9TOnTtVUlKi6upqPfTQQxZObT80yH5oEA2KJDTIfmgQDYokNMh+aBANiiQ0yH5oEA2yLQOTnZ1tli5d6v+71+s1qamppqCgwMKpgrd69WqTmZlp9RhhI8ns2rXL/3efz2eSk5PN2rVr/cfOnTtn4uLizPbt2y2YsPtuXJMxxuTl5Zk5c+ZYMk+4nD592kgyJSUlxpjW8xITE2N27tzpf8yxY8eMJFNaWmrVmLZDg+yNBjkHDQoODbI3GuQcNCg4NMjeaJBz0KDg0CB7o0HOEQkNivgr0Zubm3X48GHl5ub6j0VFRSk3N1elpaUWThaa48ePKzU1VaNHj9bjjz+ukydPWj1S2FRWVqq2trbdOYuPj1dOTo6jz5kkFRcXa/jw4Ro3bpyWLFmi+vp6q0fqlvPnz0uShg4dKkk6fPiwrly50u5cjR8/Xunp6Y4/V+FCg5yHBtkXDeo+GuQ8NMi+aFD30SDnoUH2RYO6jwY5Dw2yr0hoUMRvop85c0Zer1dJSUntjiclJam2ttaiqUKTk5OjwsJC7dmzR5s3b1ZlZaXuvfdeNTY2Wj1aWFw9L246Z1Lrj+688847Kioq0muvvaaSkhLNnj1bXq/X6tG6xOfzadmyZbrnnns0YcIESa3nKjY2VgkJCe0e6/RzFU40yHlokD3RoODQIOehQfZEg4JDg5yHBtkTDQoODXIeGmRPkdKgPlYPgPCbPXu2/8+TJk1STk6ORo4cqffee09PPfWUhZPhZhYsWOD/88SJEzVp0iTddtttKi4u1rRp0yycrGuWLl2qb775xnG/bw3hR4OciQbBLWiQM9EguAUNciYaBLegQc5Eg5wh4q9ET0xMVHR09E8+Hbaurk7JyckWTRVeCQkJGjt2rE6cOGH1KGFx9by4+ZxJ0ujRo5WYmOiI85afn6+PPvpI+/bt04gRI/zHk5OT1dzcrHPnzrV7vNvOVShokPPQIPuhQcGjQc5Dg+yHBgWPBjkPDbIfGhQ8GuQ8NMh+IqlBEb+JHhsbq6ysLBUVFfmP+Xw+FRUVaerUqRZOFj4//vijvvvuO6WkpFg9SlhkZGQoOTm53TlraGhQWVmZa86ZJJ06dUr19fW2Pm/GGOXn52vXrl3au3evMjIy2t2flZWlmJiYdueqoqJCJ0+edNW5CgUNch4aZB80KHQ0yHlokH3QoNDRIOehQfZBg0JHg5yHBtlHRDbI0o81tYl3333XxMXFmcLCQnP06FHz9NNPm4SEBFNbW2v1aEF5/vnnTXFxsamsrDT79+83ubm5JjEx0Zw+fdrq0bqssbHRlJeXm/LyciPJrFu3zpSXl5vvv//eGGPMq6++ahISEszu3bvN119/bebMmWMyMjLMpUuXLJ48sJutqbGx0bzwwgumtLTUVFZWmk8//dTceeedZsyYMaapqcnq0QNasmSJiY+PN8XFxaampsZ/u3jxov8xixcvNunp6Wbv3r3miy++MFOnTjVTp061cGr7oUH2Q4NoUCShQfZDg2hQJKFB9kODaFAkoUH2Q4NokF2xid5m48aNJj093cTGxprs7Gxz8OBBq0cK2vz5801KSoqJjY01t956q5k/f745ceKE1WN1y759+4ykn9zy8vKMMcb4fD7z0ksvmaSkJBMXF2emTZtmKioqrB26Ezdb08WLF82MGTPMLbfcYmJiYszIkSPNokWLbP8/7o7WI8ls3brV/5hLly6ZZ555xgwZMsT079/fPPjgg6ampsa6oW2KBtkLDaJBkYYG2QsNokGRhgbZCw2iQZGGBtkLDaJBduUxxpiuXrUOAAAAAAAAAEAkifjfiQ4AAAAAAAAAQCBsogMAAAAAAAAAEACb6AAAAAAAAAAABMAmOgAAAAAAAAAAAbCJDgAAAAAAAABAAGyiAwAAAAAAAAAQAJvoAAAAAAAAAAAEwCY6AAAAAAAAAAABsIkOAAAAAAAAAEAAbKIDAAAAAAAAABAAm+gAAAAAAAAAAATAJjoAAAAAAAAAAAH8Pxfe3QoZofJSAAAAAElFTkSuQmCC", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAEiCAYAAAAWHJuuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACotElEQVR4nOzdd3hUZf7+8fekUlIgQBJC76GDoIjSVpAiqKhYUezormVtW9yvsvtTV3fXstZVsRewCyIqiihiofceOoGQRkiF9Pn9cZIpaaTMzJlyv64rF8/MnEw+sdw855lzPo/FarVaERERERERERERERGRaoLMLkBERERERERERERExFtpEV1EREREREREREREpBZaRBcRERERERERERERqYUW0UVEREREREREREREaqFFdBERERERERERERGRWmgRXURERERERERERESkFlpEFxERERERERERERGphRbRRURERERERERERERqoUV0EREREREREREREZFaaBFd3Gbt2rWcc845tGzZEovFwqZNm8wuSUQCiDJIRMykDBIRMymDRMRMyiDxR1pEF7coKSnh8ssvJysri//+97+89957dOnSxeU/JyUlhX/84x8+Fcj5+fn8/e9/Z/LkycTExGCxWHj77bfNLkvEryiDard27VruvPNO+vfvT8uWLencuTNXXHEFSUlJZpcm4jeUQbXbvn07l19+Od27d6dFixa0bduWMWPG8OWXX5pdmojfUAbV3z//+U8sFgsDBgwwuxQRv6EMqt3y5cuxWCw1fq1atcrs8uQ0QswuQPzTvn37OHToEK+99hq33HKL235OSkoK/+///T+6du3KkCFD3PZzXCkzM5NHHnmEzp07M3jwYJYvX252SSJ+RxlUu3//+9/8+uuvXH755QwaNIjU1FRefPFFzjjjDFatWqWTSBEXUAbV7tChQ+Tl5XH99deTkJDAyZMn+eyzz7jooot49dVXmT17ttklivg8ZVD9HDlyhMcff5yWLVuaXYqIX1EGnd7dd9/NmWee6fRcz549TapG6kuL6OIW6enpALRq1crcQhqpsLCQsLAwgoJcf7NG+/btOXbsGPHx8axbt65acIpI0ymDanffffcxf/58wsLCbM9deeWVDBw4kH/961+8//77Lv+ZIoFGGVS7Cy64gAsuuMDpuTvvvJNhw4bxzDPPaBFdxAWUQfXzwAMPcPbZZ1NWVkZmZqZbf5ZIIFEGnd7o0aOZMWOG295f3EPtXMTlbrjhBsaOHQvA5ZdfjsViYdy4cbbXd+3axYwZM4iJiaFZs2YMHz6cRYsWOb1HVlYWDzzwAAMHDiQiIoKoqCimTJnC5s2bbccsX77ctgB944032m6BqWyN0rVrV2644YZq9Y0bN86pnsrbaT788EMeeughOnToQIsWLcjNzQVg9erVTJ48mejoaFq0aMHYsWP59ddfq73vrl27OHz48Gn/+YSHhxMfH3/a40SkcZRBdTvnnHOcFtABevXqRf/+/dm5c+dpv19E6qYMarjg4GA6depEdnZ2o75fROyUQfWzYsUKPv30U5599tl6f4+InJ4yqP7y8vIoLS1t0PeIuXQlurjcbbfdRocOHXj88cdtt6jExcUBRh/Mc889lw4dOvDXv/6Vli1b8vHHHzN9+nQ+++wzLrnkEgD279/PwoULufzyy+nWrRtpaWm8+uqrjB07lh07dpCQkEDfvn155JFHmDNnDrNnz2b06NGAsUDUGI8++ihhYWE88MADFBUVERYWxg8//MCUKVMYNmwYf//73wkKCuKtt97ivPPO4+eff+ass86yfX/fvn0ZO3as2rOImEwZtLzBP9tqtZKWlkb//v0bVbuI2CmDltfr5xUUFHDq1ClycnJYtGgR33zzDVdeeWWjahcRO2XQ8tP+rLKyMu666y5uueUWBg4c2Kh6RaRmyqDl9fp5N954I/n5+QQHBzN69GiefPJJhg8f3qjaxYOsIm7w448/WgHrJ5984vT8+PHjrQMHDrQWFhbanisvL7eec8451l69etmeKywstJaVlTl974EDB6zh4eHWRx55xPbc2rVrrYD1rbfeqlZDly5drNdff32158eOHWsdO3ZstVq7d+9uPXnypFNdvXr1sk6aNMlaXl5ue/7kyZPWbt26Wc8//3yn9wWc3rc+6qpfRBpPGdQw7733nhWwvvHGG436fhFxpgw6vdtuu80KWAFrUFCQdcaMGdasrKx6f7+I1E4ZVLcXX3zRGh0dbU1PT7fV1L9//3p9r4icnjKodr/++qv1sssus77xxhvWL774wvrEE09Y27RpY23WrJl1w4YNp/1+MZfauYjHZGVl8cMPP3DFFVeQl5dHZmYmmZmZHD9+nEmTJrFnzx6OHj0KGC1PKvtPlZWVcfz4cSIiIujTpw8bNmxwS33XX389zZs3tz3etGkTe/bs4ZprruH48eO2egsKChg/fjwrVqygvLzcdrzVatVV6CJeTBlUs127dnHHHXcwcuRIrr/+elf8KiJSA2WQs3vuuYelS5fyzjvvMGXKFMrKyiguLnblryQiDpRBhuPHjzNnzhwefvhh2rVr545fRURqoAwynHPOOXz66afcdNNNXHTRRfz1r39l1apVWCwWHnzwQXf8auJCauciHrN3716sVisPP/wwDz/8cI3HpKen06FDB8rLy3nuuef43//+x4EDBygrK7Md06ZNG7fU161bN6fHe/bsAahzUSknJ4fWrVu7pR4RcS1lUHWpqalMnTqV6OhoPv30U4KDgxv9XiJSN2WQs8TERBITEwGYNWsWEydO5MILL2T16tVYLJZGvaeI1E4ZZHjooYeIiYnhrrvuaniRItJoyqDa9ezZk4svvpjPP/+csrIynZN5MS2ii8dUfkr3wAMPMGnSpBqP6dmzJwCPP/44Dz/8MDfddBOPPvooMTExBAUFcc899zh92leX2k7Aagslx08dHet98sknGTJkSI3vFRERUa9aRMR8yiBnOTk5TJkyhezsbH7++WcSEhIa/V4icnrKoLrNmDGD2267jaSkJPr06eOy9xURgzLIWBSbO3cuzz77LCkpKbbnCwsLKSkp4eDBg0RFRRETE9Og9xWR01MG1a1Tp04UFxdTUFBAVFSUy95XXEuL6OIx3bt3ByA0NJQJEybUeeynn37K7373O9544w2n57Ozs2nbtq3tcV1XKrVu3Zrs7Oxqzx86dMhWS1169OgBQFRU1GnrFRHvpwyyKyws5MILLyQpKYnvv/+efv36ufT9RaQ6ZVDdTp06BRgf8ImI6ymD4OjRo5SXl3P33Xdz9913V3u9W7du/PGPf+TZZ591yc8TETtlUN32799Ps2bNdKGml1NPdPGY2NhYxo0bx6uvvsqxY8eqvZ6RkWEbBwcHY7VanV7/5JNPbD2yKrVs2RKgxnDs0aMHq1atcuqvuXjxYpKTk+tV77Bhw+jRowdPPfUU+fn5ddYLRl/hw4cP1+u9RcTzlEGGsrIyrrzySlauXMknn3zCyJEj61WPiDSNMsiQnp5e7bmSkhLeffddmjdvrg/1RNxEGQQDBgxgwYIF1b769+9P586dWbBgATfffHO96hORhlEG1fx9AJs3b2bRokVMnDjR1gtevJOuRBePeumllxg1ahQDBw7k1ltvpXv37qSlpbFy5UqOHDnC5s2bAZg2bRqPPPIIN954I+eccw5bt25l3rx51T4x7NGjB61ateKVV14hMjKSli1bMmLECLp168Ytt9zCp59+yuTJk7niiivYt28f77//vu0TxdMJCgri9ddfZ8qUKfTv358bb7yRDh06cPToUX788UeioqL48ssvbcf37duXsWPH1msziRdffJHs7GzbbYRffvklR44cAeCuu+4iOjq6XjWKSMMog+D+++9n0aJFXHjhhWRlZfH+++87vX7ttdfWqz4RaThlENx2223k5uYyZswYOnToQGpqKvPmzWPXrl08/fTTugJLxI0CPYPatm3L9OnTqz1feeV5Ta+JiOsEegYBXHnllTRv3pxzzjmH2NhYduzYwdy5c2nRogX/+te/GvYPVDzPKuIGP/74oxWwfvLJJ9Ve27dvn3XWrFnW+Ph4a2hoqLVDhw7WadOmWT/99FPbMYWFhdb777/f2r59e2vz5s2t5557rnXlypXWsWPHWseOHev0fl988YW1X79+1pCQECtgfeutt2yvPf3009YOHTpYw8PDreeee6513bp11d6jrlqtVqt148aN1ksvvdTapk0ba3h4uLVLly7WK664wrps2TKn44BqtdWmS5cuVqDGrwMHDtTrPUSkdsqg2o0dO7bW/NG0QMQ1lEG1++CDD6wTJkywxsXFWUNCQqytW7e2TpgwwfrFF1+c9ntFpH6UQQ0zduxYa//+/Rv1vSJSnTKods8995z1rLPOssbExFhDQkKs7du3t1577bXWPXv2nPZ7xXwWq7XKPRIiIiIiIiIiIiIiIgKoJ7qIiIiIiIiIiIiISK20iC4iIiIiIiIiIiIiUgstoouIiIiIiIiIiIiI1EKL6CIiIiIiIiIiIiIitdAiuoiIiIiIiIiIiIhILbSILiIiIiIiIiIiIiJSixCzC3CX8vJyUlJSiIyMxGKxmF2OiHg5q9VKXl4eCQkJBAU1/fNFZZCINIQySETMpAwSETMpg0TETPXNIL9dRE9JSaFTp05mlyEiPiY5OZmOHTs2+X2UQSLSGMogETGTMkhEzKQMEhEznS6D/HYRPTIyEjD+AURFRZlcjYh4u9zcXDp16mTLjqZSBolIQyiDRMRMyiARMZMySETMVN8M8ttF9MpbdqKiohSaIlJvrrrdTxkkIo2hDBIRMymDRMRMyiARMdPpMkgbi4qIiIiIiIiIiIiI1EKL6CIiIiIiIiIiIiIitdAiuoiIiIiIiIiIiIhILbSILiIiIiIiIiIiIiJSCy2ii4iIiIiIiIiIiIjUQovoIiIiIiIiIiIiIiK10CK6SEOsfR3enAzJa8yuREQC0do3jAw6vNrsSkQkEK19A96YpAwSEXOse7Mig1aZXYmIBKJ1bymDAlyDF9FXrFjBhRdeSEJCAhaLhYULF9Z67O23347FYuHZZ591ej4rK4uZM2cSFRVFq1atuPnmm8nPz3c6ZsuWLYwePZpmzZrRqVMn/vOf/zS0VBHXykuFrx6AwythwW1gtZpdkYgEkrw0+FoZJCImqcyg5FWwYDaUl5tdkYgEkrw0+Or+igy6TRkkIp6Vnw5f3Wdk0OeaBwWqBi+iFxQUMHjwYF566aU6j1uwYAGrVq0iISGh2mszZ85k+/btLF26lMWLF7NixQpmz55tez03N5eJEyfSpUsX1q9fz5NPPsk//vEP5s6d29ByRVxnxyKgYtEqa7+xkCUi4ik7F4G1YrJ24gAc+s3cekQksDhl0EE4rAwSEQ9SBomImRwzKPsQHPrV3HrEFA1eRJ8yZQqPPfYYl1xySa3HHD16lLvuuot58+YRGhrq9NrOnTtZsmQJr7/+OiNGjGDUqFG88MILfPjhh6SkpAAwb948iouLefPNN+nfvz9XXXUVd999N88880xDyxVxne0LnB9vnGdOHSISmKpm0CZlkIh4kOZBImKm7QudHyuDRMSTqmaQzsUCkst7opeXl3Pdddfxpz/9if79+1d7feXKlbRq1Yrhw4fbnpswYQJBQUGsXr3adsyYMWMICwuzHTNp0iR2797NiRMnavy5RUVF5ObmOn2JuEzusepXnm9fAEV55tQjXkcZJG6Vl1r9ynNlkDhQBolb1ZRBOxZCof47E4MySNwqL7X6VZ/KIHGgDBK3ykuDg784P7d9oTIoALl8Ef3f//43ISEh3H333TW+npqaSmxsrNNzISEhxMTEkJqaajsmLi7O6ZjKx5XHVPXEE08QHR1t++rUqVNTfxURu50OrVxCWxp/lhRU/zRSApYySNxqR00ZdLL6laESsJRB4lbKIDkNZZC41c4vUQZJXZRB4lY1rQeVnoLtn5tWkpjDpYvo69ev57nnnuPtt9/GYrG48q1P68EHHyQnJ8f2lZyc7NGfL37OcYJ2gcMmtxvf93wt4pWUQeJWyiA5DWWQuFVtGaRbmaWCMkjcSvMgOQ1lkLiV48WTyqCA5tJF9J9//pn09HQ6d+5MSEgIISEhHDp0iPvvv5+uXbsCEB8fT3p6utP3lZaWkpWVRXx8vO2YtLQ0p2MqH1ceU1V4eDhRUVFOXyIukZtib+XStg8MmQnt+hqPk1dB5l7zahOvoQwSt6kpg2L7GY+TV0PmHvNqE6+hDBK3ccqg3tUzKCPJvNrEayiDxG1yj9nbSbXpVZFBFW1jj6xRBgmgDBI3cmwn1aankUFxA4zHR9ZCxm7zahOPc+ki+nXXXceWLVvYtGmT7SshIYE//elPfPvttwCMHDmS7Oxs1q9fb/u+H374gfLyckaMGGE7ZsWKFZSUlNiOWbp0KX369KF169auLFnk9HZ8YR/3vwQsFhh6rf25Tfr0UUTcyLGNQv/p1TNIV0CIiDs5ZZDmQSLiYTuVQSJiotPNg3QuFlAavIien59vWyAHOHDgAJs2beLw4cO0adOGAQMGOH2FhoYSHx9Pnz59AOjbty+TJ0/m1ltvZc2aNfz666/ceeedXHXVVSQkJABwzTXXEBYWxs0338z27dv56KOPeO6557jvvvtc95uL1JfjrTv9pxt/DroSgkKM8aYPoKzU01WJSKDYsdA+7n+J8adjBm1WBomIG502gz5UBomI+zidi1Vm0BVVzsVKqn2biIhL1DQPGngFBIUa480fKoMCSIMX0detW8fQoUMZOnQoAPfddx9Dhw5lzpw59X6PefPmkZiYyPjx47ngggsYNWoUc+fOtb0eHR3Nd999x4EDBxg2bBj3338/c+bMYfbs2Q0tV6Rpco4aLVvAaOESW9HGJaId9J5sjPNTYd8yc+oTEf/m2EahXaI9g1q2dcigNNj7vTn1iYh/UwaJiJmqtrRzzKA+U4xxQboySETcw7GdVNve9nZ2Lds4Z9CepebUJx4X0tBvGDduHFartd7HHzx4sNpzMTExzJ8/v87vGzRoED///HNDyxNxLadWLtOdXxt6LexabIw3vg+9J3msLBEJEFXbSTkaep09gza9D30me64uEQkMjhnUb7rza44ZtPE9ZZCIuF5NLe0qDb0Odn5pjDe+b1/QEhFxFcd2Uv2m15BBi4zxpnmQeIGnqxMTuLQnuojfcbx1p+rJY8/zoWWsMd79DRRkeqoqEQkU2xfYx9UyaAJExBljZZCIuENNLe0qOWZQ0hLIz/BUVSISKGpqo1Cpx3iIiDfGyiARcQfHc7FqGXRelQxK91xdYhotoovUJucIJK82xrH9IDbR+fXgEBh8lTEuL4EtH3u2PhHxb44Z1K7vaTKoFLZ85Nn6RMS/1dbSrlJwCAy+2hiXl8JWzYNExIVqaydVSfMgEXGn2tpJVQoOgSEO8yBlUEDQIrpIbepqo1Cp6q7MDWh1JCJSpx2L7OPaMmiIYwbNUwaJiOs0dB604T1lkIi4js7FRMRMVc/FHFu5VBqiDAo0WkQXqU1dbRQqtesDHc8yxunb4dgmd1clIoHC6fbB6TUf0643dBphjNO3Q8pGt5clIgGiPhnUtpc9gzJ2QsoGt5clIgGiPudibXtBp7ONsTJIRFypXvOgntB5pDHO2AVHlUH+TovoIjXJToYja41xbH9joao2Q2faxxvfd29dIhIYspPhyBpjHNvf+MCuNkOUQSLiYjlHHDKoX90ZNLTKHTEiIk2Vc7TulnaOdC4mIq7m1NKuhnZSjpzOxd5zb11iOi2ii9SkPrcP2l6/FEKaG+Otn0BJofvqEpHA4JRB0+s+tv8lENrCGG/9FEpOua0sEQkQDZoHKYNExMUanUGfKYNEpOkalEHTIbSlMd72GRSfdFtZYj4toovUpD637lRqFmU/pjAHdi12V1UiEih2LLSPa7uFuVKzKPsxRTmw6ys3FSUiAaM+bRQqhUc6Z9BOzYNEpIkaci4WHmlf5FIGiYgrNORczCmDcrUe5Oe0iC5SVfZhOLrOGMcNMHrtnY7aKYiIq2QftreTihtQdzupSkN1G6GIuEhDWtpVcmzpsknzIBFpgoa0k6qkdgoi4io5R+rfTqqSzsUChhbRRapqSBuFSl3OhdZdjfH+5cYimIhIYzQ6g7oZ4/0/wYlDLi9LRAJEQ25hrtTlHIjpboyVQSLSFE3NoAPKIBFpgsZkUOeRDhm0Ak4cdHlZ4h20iC5SldMtzPUMzaAgGFJ5FZYVNn3g8rJEJEA0JoMsFocrIKywWRkkIo3UkDYKlSwWhytBlUEi0gQNaSdVySmDgE3zXVqSiASQxs6DnO7KUwb5Ky2iizg6cQiOrjfG8QOhbc/6f++QqwGLMd40D8rLXV6eiPg5xwyKa2AGDb4GZZCINIlTS7uB9WtpV2nw1WCpOLVQBolIYzi2k6pvS7tKThk0XxkkIg1XraVdPdpJVVIGBQQtoos4crx1p75XPlSK7gg9fmeMsw/BoV9cVpaIBIjGtHKpFN0BepxnjLMPw8GfXVaWiAQIpwy6uGHfqwwSkaZq0rmYQwblHIaDK1xWlogEiKaci0UlQI/xxjgn2WgtJX5Hi+gijpxu3alnGwVHjrfw+NIGo1ar2RWICCiDRMRcjWkn5UgZJCJN0Zg2Co6UQSLSFI1pJ+VIGeT3tIguUunEQUjZYIzjB0GbHg1/jz5ToVkrY7xjERTmuKo69ygvg+8egsfi4KsHzK5GJLA5ZdDAxmVQ4lRo3toY7/ShDPpnPHx1vyZwImZqSku7Sn0ucM6gU9kuK88tysvgu4eVQSLe4MShxreTquSUQV/6QAaVw9I5RgYtvk8ZJGImp5Z2DWwnVanPFGgeY4x3fgmnTriuPndwyqB7lUH1oEV0kUrbF9rHjbnyASC0GQy6whiXnoJtnze1KvcpOQUfz4LfXoCyIlj7mvMnryLiWY3ZCb6qkHAYWJlBhbDts6bX5S4lp+CT640MKi2Eta8rg0TMtGOhfdyYq6+gegZt9/J50Cc3wG/PK4NEvEFT2klVCgmHQVcaY1+ZB/36nFHruje8OzNF/F1T2klVcsygsiIfy6A3vbteLxFidgEiXsMVJ49g7Ay/Zq4x3viecUVEUR4U5Vb86fhV8VxZMfS9CLqMbMpvUH8Fx+GDq+DIGufnv7ofuo6Glm09U4eI2DX19sFKQ2fCmleN8Yb3jDtkvC2DTmYZGZS82vn5rx8wMiiinWfqEBE7p4sJGvlBHhi3Mjckg4rzobTIhAy6GpJXOT+vDBIxj9O5WBMyaMhMWP2KMd74HiROq2cGXQhdzmnSr1BvtWXQVw9A1zHKIBEzNLWdVKWhM2H1y8Z4w3uQeGHtGVRc8ae3ZNDXf4JuYyAi1jN1+CAtoosAZB2AlI3GuP3gxrVRqNR+sHELYtpW47bop+t5G9C6t+CudcYGpe6UdQDmzYDje43HYREQ289YUD953DiBvPxt99YgIs5cnUHxAyF1q9Eextsy6MRBeP+yujPoinfcW4OIOHNFS7tK7QcZ75G6peEZdOdaaNWp8T+7Pk4chPdnwPE9xmNlkIj5XNFOqpJTBm1sQAa9WZFBnRv/s+ujrgw6lQVf3w9XvOveGkTEmWMGNbadVKX4gcb52LHNcGyT92dQaEuIH2Bc3HQqC766D654DywW99bho9TORQScr3xoytVXYITNGdc1/PtKT8GyR5r2s0/n6Hp443z74lVEPNz4DVw1z94/cPsC56vRRMT9XJlBAEO9NYM2wOsTHDIoDm78uiKDKvoH7liolgoinuaqq9AreXUGnW8/cVQGiXgHV8+DzpjV8O8pLXR/BqVsrJ5BN3wFV813yKAvlEEinuaUQdOb/n6NmgeZkEEtY4150JXzoEUb47mdXyqD6tDgK9FXrFjBk08+yfr16zl27BgLFixg+vTpAJSUlPDQQw/x9ddfs3//fqKjo5kwYQL/+te/SEhIsL1HVlYWd911F19++SVBQUFcdtllPPfcc0RERNiO2bJlC3fccQdr166lXbt23HXXXfz5z39u+m8sUhPHk8emtFGoNOxGY5EofSeER0F4ZA1fURAeASHN4LObjU0ntnwEI26DDsOaXkNVSd8avT9LThqP2/aBaz+1f9J5wVNGHeDQ1qWN6+sQkepMz6BbjCsP3JpB3xl992rNoCcdMugBtZYS8SRXnzwOu8E4Qaszgyq+QpvDpzcbGbT1YxhxO3R0VwbdACUFxmNlkIj3cPk86AbITGpEBn1SkUHDm15DVXuWwsfXO2RQb5j5KbTuYjye+hR8epMxVotNEc9y9cUEw26AzD2QvqN+GfTZLcbdcJ7MoDa94NrP7Bl0wVPw6Y3GWO3tatXgRfSCggIGDx7MTTfdxKWXXur02smTJ9mwYQMPP/wwgwcP5sSJE/zxj3/koosuYt26dbbjZs6cybFjx1i6dCklJSXceOONzJ49m/nz5wOQm5vLxIkTmTBhAq+88gpbt27lpptuolWrVsyePbuJv7JIFVn7jdtsANoPgZhuTX/PkDDjZKy+xj0I31R8SPTt/xlXh7vy9pl1bxm35VjLjcddznW++hxgwGXGJ467FsPJTPjmTzDjTdfVICI185oM+pMxdkcGrX8bFt8H1jLjcedzjAxqEWM/pmoGff0nuPwt19UgIjWr2k4qpnvT37OhGfS7vxknbADf/g1uWuLiDHoHFt+rDBLxRq5sJ1UpOLSJGfStazNow7vw5T0OGTTSuPrcMYP6X2pk0M4v1WJTxJOcMmigCzPoP/U/ftyDns2gTmfD1R9UyaBLKjJokdrb1aHB7VymTJnCY489xiWXVP90Jjo6mqVLl3LFFVfQp08fzj77bF588UXWr1/P4cOHAdi5cydLlizh9ddfZ8SIEYwaNYoXXniBDz/8kJSUFADmzZtHcXExb775Jv379+eqq67i7rvv5plnnmnirytSA1d/6tgYw2+CNhW9/w6vNILLFaxW+OExWHyPfQG9/yVw7efOC+hghPTUZ6BZK+Pxts+MSZyIuJdXZNCNxtUI4IYM+id8+Uf7pK3fdLhugfOkDewZZGst9TnscFEdIlI7V7dRaIxhNxhXZYKxydWOL1zzvlYr/Pg4fHl3IzPIRXWISO28YR7klEGrnXOxKSozaNFdDhl0MVy3sB4ZtEAZJOIJXpFBNxp3yIH7M6jvRTDri1oy6Okq7e1cVIcfcXtP9JycHCwWC61atQJg5cqVtGrViuHD7bcnTJgwgaCgIFavXm07ZsyYMYSFhdmOmTRpErt37+bEiRM1/pyioiJyc3OdvkTq5dBv9nHfC82pITgUJj5mf7x0jrFDc1OUFsPC38MKh6swRt4Jl70Joc1q/p7IOOerNhbfZ+zcLKelDJJGO7zSPvanDCorgYV/gBUOV2GMvBNmvFV3Bk1xyKCvlEH1pQySRnOaB11kTg3uyqAv7oCf/m1/rsEZdD8UHG9aHQFCGSSN5pUZ9HcoKWzae9aUQWffATPerj2DImKNlgqVlEH1pgySRnM6FzMrg0LclEF3VsmgP8Dl75wmgzQPqotbF9ELCwv5y1/+wtVXX01UVBQAqampxMbGOh0XEhJCTEwMqamptmPi4uKcjql8XHlMVU888QTR0dG2r06dOrn61xF/lbHL+DM8yjW3MDdW78nQbYwxPnEQ1sxt/HsV5cP8K2DzBxVPWGDyv2DSPyHoNP/bD7wc+lxgjAvS4Zu/NL6OAKIMkkZL95YMmgTdxhpjl2XQ/IonLDDpiXpm0AzoM9UYF2TYW11JnZRB0mjekkG9JkL3ccY4+xCsfrXx71VcYGTQpnkVTyiD3E0ZJI2WsdP4MyzSNW0UGqtqBq1xdQY9DpMfP30GDbgMEqcZY2VQvSmDpNHSKzMowt4dwAy9zofuvzPGLsmgK2HT+xVPVGbQEw3LoMo2v2LjtkX0kpISrrjiCqxWKy+//LK7fozNgw8+SE5Oju0rOTnZ7T9T/EBRHuRU/LfSLtG1facaymKBif8EKmr46cnGfepXVmJs3rf/R+NxcLjRy+rs39e/jmn/hWbRxuOtH8OurxpeR4BRBkmjFOVDjtHuzCsyaJKrMugG2PeD8Tg43OjpOfIP9a9jmkNrqa2fwM7FDa8jwCiDpFGcMqiP+RnkOA9a8SQUZDb8fcpKXZtB2z5Ve7t6UAZJoxQXQLa3ZtBTLsygt2DkHfWvY6oyqKGUQdIo3pZBk/4Jlopl2iZn0DLjcWMzqLK11LbP1GLTgVsW0SsX0A8dOsTSpUttV6EDxMfHk56e7nR8aWkpWVlZxMfH245JS0tzOqbyceUxVYWHhxMVFeX0JXJaGUn2cbs+5tVRqf0gGDrTGBflwE//atj3W63GhhF7vzceh0fD9YuM3nsNERkPkx1u+1l8r1oqnIYySBolc7d97A0ZFD8Qhl5rjBubQYvvgb1Ljcfh0UbPvf7TG/Y+kfEwRRnUEMogaRSvy6ABcMZ1xrgoF5Y3MoP2fGc8blIGObSiUnu701IGSaNkOGZQonl1VKqWQU807PutVvjqXocMioJZCxveZzkyThnUQMogaZTMJMBqjL0hg+L6w1AvzCC12LRx+SJ65QL6nj17+P7772nTpo3T6yNHjiQ7O5v169fbnvvhhx8oLy9nxIgRtmNWrFhBSUmJ7ZilS5fSp08fWreushmiSFNU3j4IENvXvDoc/e4hCG1hjNe+4bzQfzrLn7DfshMcBlfPh85nN66OwVdBr0nGOD8NljzYuPcRkdpVtlEA78mg8x6C0JbGuMEZ9C/Y6JBBV82DLiMbV8egK402V2C0llry18a9j4jUzjGD2nlJBv3OIYPWvem8yHY6P/0bNr5njJucQVdA7ynGWO3tRNwjw3Ee5AULWFAlg95yzsnT+enfsOFdY2zLoHMaV4cySMT9nOZB3pJB/2e0loFGZNB/7BkUFNq0DHJq86vWUpUavIien5/Ppk2b2LRpEwAHDhxg06ZNHD58mJKSEmbMmMG6deuYN28eZWVlpKamkpqaSnFxMQB9+/Zl8uTJ3HrrraxZs4Zff/2VO++8k6uuuoqEhAQArrnmGsLCwrj55pvZvn07H330Ec899xz33Xef635zEXCeuHlLaEa1h3PvMcbWMlj6cP2+b91bzptGXPIqdB3V+DosFrjwWeMqLoAtH8Lubxr/fiJSnTdmUGQ8jLrHGDckg9a/7Xzl+iWvQLfRja/DYoFpz9pbS235CHZ93fj3E5HqvHEBKzIORt1rjK1l8F19M+gd5yu2XJJBam8n4lYZXvhBXtUMqu88aMO7zhk0/WX7fleNoQwScb8ML7ygKTKucediG96F5Y/bH1/yioszSC02oRGL6OvWrWPo0KEMHToUgPvuu4+hQ4cyZ84cjh49yqJFizhy5AhDhgyhffv2tq/ffrPvuj1v3jwSExMZP348F1xwAaNGjWLuXPsGZtHR0Xz33XccOHCAYcOGcf/99zNnzhxmz57tgl9ZxIE3fvIIcM6dEGl8qETSEti/vO7jdy8xbrGpNOlxGHBp0+uISjA2n6j05T1w6kTT31dEDN64iA4wskoG7fux7uOTvjVuNa408Z/GpjRNFdXe2BS50uJ7dCuhiCt5bQbdAVEdjPGeb+29hWuT9J3R9qmSSzNIraVE3MbpXMwLWkpVcsqg7+qXQV/eY3888TFjk+KmUgaJuFeGt2bQnRDV0Rjv+Q72Lqv7+KoZdP6jrsmgau3tlEENXkQfN24cVqu12tfbb79N165da3zNarUybtw423vExMQwf/588vLyyMnJ4c033yQiIsLp5wwaNIiff/6ZwsJCjhw5wl/+otuXxA0qQzM8ylgw9hZhLWH8HPvjbx+C8rKajz2yHj69EazlxuORd9Z/04j6GHIN9DzfGOenwpK/ue69RQJdurdmUAuY8Hf74+/qyKCj643Na6wVr599h/FBoKsMvhp6TTTG+WnwrTJIxGWcMqiDubU4CmsB4x0yqK550NH1xobqbssgtbcTcZvK1pphkRDd0dxaHDUpg/5gnI+5ijJIxH3SKzMoAqI7mVuLo9DmDTgX2+CcQSN+D+fc5bpa1GLTiVs2FhXxCUV5kFOxa3e7RHN3Yq7JoCuh/WBjnLYVNs2vfszxfTD/cig5aTzuf6nxqaMrWSxw4XPGCTbA5vn2jUtFpPGK8iGncjd4L8yggVdA+yHGOG0bbJpX/Zjj+2DeFQ4ZdIlx9ZUr2TKo4lbCzR/AHmWQSJM5ZVAfL8ygyyHBuPOV9O32/RYcZe33UAY969zebs9S1/4MkUBUXADZfpZB/aYbd8K48ndRBom4h7dn0IAZkHCGMU7fYd/zxVHWfpjvmEEXG10JXJ1BVVtsJn3nuvf3MVpEl8DluFmeN926UykoyAjASj88apzwVsrPgPcvg5PHjcddRhl9r4Lc8L91dAeY9E/74zWvu/5niASaTIfN8nwigx4zPnysZMugTONxl3NhupsyKCrBOYPWKoNEmszXM6gg07MZNNmhFmWQSNM5bhrsTe2kKjUmgy551TMZtOY11/8MkUCTmQRYjbEvZ1BBhvG48zlwyVw3ZVB7mOTQ5ndt4GaQFtElcFXePgjes4lEVV1HQeI0Y5yfBr8+Z4yLC4xPHE8cMB6362vsvBwS7r5ahlwLEXHGeP+PRg0i0njpXriRTVVdz4W+Fxrj+mRQaDP31TJkJkTEG2NlkEjTOfUi9tIM6nIO9L3IGBekwy/PGuPKDMrabzz2RAYNvsYhg5Yrg0Sayhs3Nq6q3hmU6PkMcry4SkQazlv3x3PUZaRxdTkYi+W//NcYF5+E+Vc6Z9DV892cQVdDZHtjvP+ngM0gLaJL4PLWzbSqOv8RCAo1xr+9ACcOGf2HUzYYz0UmwLWfQvNW7q0jKMjeC6u08PQbDYpI3Rw/yPPmDJrw/6pk0EH45MYaMqi1e+sICoI+yiARl/GFBSyA8x0yaOWLRgZ9epPRhxg8nEFTjHFp4ek3GhSRumX4wAd5UI8Mag/XfubZDCorUgaJNFWGD1zQBDDhHxAcZox/exGyDlRk0Drjucj2MNPD86CyIth3ms1O/ZQW0SVw+cInjwBtesBZs41x6SmYO87YoRmMPuXXfuq5jXgSp9rHu7/2zM8U8VfefhtzpTY9YMRtxri0EOb+DvZ8azz2dAb1UQaJuIyvXEwQ0716BiUtMR6bOQ/apQwSaRKnczEvbClV6XQZNFPnYiI+KcMHM6isCF47D5K+MR6HRcLMT6CVhzZF7aN5kBbRJXBVhmZ4lNFnzpuN/ZP9k8VTWcafwWHGbYNx/T1XR7exENrSGCctqX2HaBE5vXQfyqAxD1TPoKBQEzJojDJIxFWcMqiDubWczpg/QfMYY2x2BoVFGOOkJVBW6rmfLeJvKu/IC4v03CJ0Y9WWQVe+D/EDPFeHMkjEddIrMygCoj20CN1Yox+oZR70PsQP9Fwd3UYbmQ3GRVUBmEFaRJfAVJQHOcnGuF2i9+3EXFXz1jD2r87PTX/ZmEh5Umgz6HmeMT55HJJXe/bni/iLonzIqdwN3kcyaNyDzs9d8opJGTTeGCuDRBrPKYP6+EAGtfKODAoJt2fQqSxlkEhjFRdAto9n0PSXoftYz9bhlEEnIHmVZ3++iL/wxQz63d+cn5v+P+g+zrN1VM2gwys9+/O9gBbRJTBlJNnH3nzrjqMzb4Yuo4xPHKc8CQNnmFOH0y08X5lTg4ivy3Rs5eIjGTT8Jug6uiKD/mNeBiUqg0SazCcz6EbvyCC1lRJpOl9paeeoagYNutycOtROQaTpMpMAqzH2lQwadoNx8UBQKEz+Nwy6wpw6ArytVIjZBYiYwnFDP2/eRMJRcCjcsBhKi9y76/Lp9J4ElmCwlhmhOfEx7//kVsTbpPvIRjaOgkPh+i/Nz6BeE5VBIk3l1ItYGdQgvc63Z9Cur5RBIo3hKxsbO/LGDNr9FUz6pzJIpKF8ZX88R8GhMGuRd2XQrq9g0uMBlUG6El0Ck69splWVxWJuYAK0iIHOI41x1v6KT3FFpEEcP8hTBjVMixjoco4xztrvfDWbiNSPLy5ggfdl0IkDzv8sRaR+Mnzwgzzwwgw6aO/rLCL1l+GDFzSBd2RQ89bQ9VxjnH0o4DJIi+gSmHzxk0dvkniBfax2CiIN54u3MXuTPg4ZtFsZJNJgvnoxgbdQWymRpnE6F/ORllLexKmdgjJIpMEylEFN0idwM0iL6BKYKkMzPAqiEsytxRc5LWAFXh8skSZLVwY1ieMHebu/Ma8OEV/llEEdzK3FF/VRBok0SeUdeWGREN3R3Fp8kTJIpGkqr54Oi4DoTubW4oucLqoMrPUgLaJL4CnKg5xkY9wuMaD6N7lMTDeI7WeMj6yDvDRz6xHxJUX5kFO5G7wyqFFad4XY/sZYGSTSME4Z1EcZ1Bitu0DcAGN8dB3kpZpbj4gvKS6AbGVQkzhl0HrIPWZuPSK+RBnUdK06Q9xAY5yyIaAySIvoEngyHHp469adxrNdAWGFJF0BIVJvmY6tXJRBjZaoDBJpFGWQa+hKUJHGUUs713DMIM2DROovMwmwGmNlUOMlBmZ3Ai2iS+Bx3NDPlzaR8DZ9AvcWHpEmSffRjWy8TZ8p9rEySKT+0n10Qz9v45hBAXTyKNJkvrqxsbfRPEikcbQ/nmsE6DxIi+gSeLSZlmskDIWIeGO8f7lxe7iInJ7jB3m6CrTx2g+FyPbGWBkkUn9awHKNhKEQWbGnxf6flEEi9ZWhD/JcwjGDDvxktCwVkdPL0AVNLtF+iH1fnQMrAiaDtIgugUdXgbpGUJD908eyItj3g7n1iPgKp9uYlUGNpgwSaRwtYLmGxVIlg5aZW4+Ir0jXB3ku4ZRBxbBXGSRSL7qo0jWqZdD35tbjIVpEl8BTGZrhUfarGKVxEqfaxwF0C49Ik6Q7ZFBUgrm1+Lo+yiCRBlMGuU6iWtuJNFjlHXlhkfarGKVxArQnsUiTpFdmUAREdzS3Fl8XgC1+G7yIvmLFCi688EISEhKwWCwsXLjQ6XWr1cqcOXNo3749zZs3Z8KECezZs8fpmKysLGbOnElUVBStWrXi5ptvJj/f+RbILVu2MHr0aJo1a0anTp34z3/+0/DfTqSqojzISTbG7RK1E3NTdRtj/OUDkPQtlJWaW4+ItyvKhxztBu8y3UYbJ+EASUuUQSKnowxyra4OGbRH8yCR0yougGxlkMs4ZlDSt1BWYm49It5OGeRaXUcbF2VAxTzI/zOowYvoBQUFDB48mJdeeqnG1//zn//w/PPP88orr7B69WpatmzJpEmTKCwstB0zc+ZMtm/fztKlS1m8eDErVqxg9uzZttdzc3OZOHEiXbp0Yf369Tz55JP84x//YO7cuY34FUUcZCTZx7p9sOlCwqHneGN8KguSV5tbj4i3c2rlogxqMqcMOgHJq8ytR8TbZSqDXCokHHpNMManTsDhlebWI+LtHOdBOhdrOscMKsxWBomcTmYSYDXGamnXdCFh0LMyg3ICIoMavIg+ZcoUHnvsMS655JJqr1mtVp599lkeeughLr74YgYNGsS7775LSkqK7Yr1nTt3smTJEl5//XVGjBjBqFGjeOGFF/jwww9JSUkBYN68eRQXF/Pmm2/Sv39/rrrqKu6++26eeeaZpv22Ik4b+mni5hJqpyBSf9rIxvUc20oFyG2EIo2Wrj6gLqd5kEj9qRex6/XRPEik3pzmQX3Mq8OfBNi5mEt7oh84cIDU1FQmTJhgey46OpoRI0awcqXxicTKlStp1aoVw4cPtx0zYcIEgoKCWL16te2YMWPGEBYWZjtm0qRJ7N69mxMnTtT4s4uKisjNzXX6EqlGEzfX63U+WIKN8a6vwGo1tx6TKIOkXpw+yNPEzSUcM2i3MkgZJHXK0IZ+LtfrfAgKMcaaBymDpG7a2Nj1HDNI8yBlkNRNFzS5Xs8JAZVBLl1ET01NBSAuLs7p+bi4ONtrqampxMbGOr0eEhJCTEyM0zE1vYfjz6jqiSeeIDo62vbVqVOnpv9C4n/SFZou1yIGupxjjE8ccP6LKYAog6Re0nXy6HLNW0PXc43xiYP2zYICjDJI6kULWK7XvBV0qcig7EOQvsPUcsyiDJJ6SdcHeS7nlEGHIW27qeWYRRkk9aKLKl2veSvoOsoYB0AGuXQR3UwPPvggOTk5tq/k5GSzSxJvVBma4VEQ2d7cWvyJ0y08X5lXh4mUQVIvlb1Aw6MgKsHcWvyJUzsFZZAySGqV7jAPUga5ToDdylwTZZDUS+UdeWGRENXB3Fr8SaLaSimDpF4qL7YJi4DojubW4k8CqLWdSxfR4+PjAUhLS3N6Pi0tzfZafHw86enpTq+XlpaSlZXldExN7+H4M6oKDw8nKirK6UvESVEe5FT8ZdouUTsxu1KfC+xjPw/N2iiD5LSK8iFHu8G7RaJjBn1jXh0mUgbJaSmD3KfPFPtY8yBlkNSsuMC4ShGUQa6mDFIGyekpg9zHMYP8/KJKly6id+vWjfj4eJYtW2Z7Ljc3l9WrVzNy5EgARo4cSXZ2NuvXr7cd88MPP1BeXs6IESNsx6xYsYKSkhLbMUuXLqVPnz60bt3alSVLIMlIso91+6Brte4CcQOM8dH1kHvM3HpEvFHlVeig2wddrVVniBtojJVBIjXLVAa5TavOEF+RQSkblEEiNXGcB+lczLWcMmgj5KaYW4+IN8pMAir6daulnWu16gTxg4zxsU2Qc9TUctypwYvo+fn5bNq0iU2bNgHGZqKbNm3i8OHDWCwW7rnnHh577DEWLVrE1q1bmTVrFgkJCUyfPh2Avn37MnnyZG699VbWrFnDr7/+yp133slVV11FQoJxW+k111xDWFgYN998M9u3b+ejjz7iueee47777nPZLy4ByGlDP03cXM7xavSkwLwSVKRO2sjGvRKVQSJ1SlcfULcKoFuZRRpFvYjdSxkkUjeneVAf8+rwVwHSVqrBi+jr1q1j6NChDB06FID77ruPoUOHMmfOHAD+/Oc/c9dddzF79mzOPPNM8vPzWbJkCc2aNbO9x7x580hMTGT8+PFccMEFjBo1irlz59pej46O5rvvvuPAgQMMGzaM+++/nzlz5jB79uym/r4SyDRxcy+1UxCpm9MHeZq4uZzjB3kB2pNYpE4Z2tDPrRLV2k6kTtrY2L0SNQ8SqZMuaHKvPoGxHhTS0G8YN24cVqu11tctFguPPPIIjzzySK3HxMTEMH/+/Dp/zqBBg/j5558bWp5I7dIVmm7VfghEJkBeCuz/yei9Gh5hdlUi3iNdJ49u1X6wsUlZ7lE48JOxD0Z4pNlViXgPLWC5V/wgiOoIuUfgwAplkEhV6fogz62qZlBhLjRTX3ARG11U6V7xAyG6k7EPoR9nkEt7oot4tcrQDI+CyPbm1uKPLBb7hhJlRbBvWd3HiwSayl6g4VEQlWBuLf7IKYOKYa8ySMRJusM8SBnketUy6Htz6xHxNpV35IVFGh96i2s5ZlB5iTJIpKr0ygyKgOiO5tbijwIkg7SILoGhKM/4RAyMTx21E7N76DZCkZoV5UOOdoN3uz5qpyBSI2WQZ2geJFKz4gLIVga5ndpKidRMGeQZAXAupkV0CQwZSfaxbh90n66jjatLAPZ8C2Wl5tYj4i0qr0IH3T7oTl1HG1fZAiR9C2Ul5tYj4i0ylUEe0WWUPYP2KINEbBznQToXcx+nDPpOGSRSKTMJqGhLrZZ27tN1FIRHG2M/zSAtoktgcNrQTxM3twkJh14TjPGpE3B4pbn1iHgLbWTjGSFh0LMigwqzlUEildLVB9QjQsKg1/nGuDAHDv1mbj0i3kK9iD2jWgb9am49It7CaR7Ux7w6/F1wqN9nkBbRJTBo4uY5fabax356C49Igzl9kKeJm1slOmSQ2imIGDK0oZ/HBMCtzCINpo2NPaeP2kqJVKMLmjzHz1vbaRFdAkO6QtNjep0PQSHGeNdXYLWaW4+IN0jXyaPH9Jxgz6DdyiARQAtYntTrfAgKNca7vlYGiUCVczF9kOdWjhm0WxkkAuiiSk/q6d8ZpEV0CQyVoRkeBZHtza3F3zVvBV3ONcbZhyBtu6nliHiFyl6g4VEQlWBuLf6ueSujHx8YGwilbTO1HBGvkO4wD1IGuVezaHsG5RyG1K3m1iPiDSrvyAuLhKgO5tbi75wyKBlSt5hbj4g3SK/MoAiI7mhuLf6uWRR0G22M/TCDtIgu/q8oz/ifF4xPHbUTs/v1vdA+3r7AvDpEvEFRvrGQAtoN3lMSp9nHyiAJdMogz+urDBKxKS4wPtQGZZCnKINE7JRBnufH52JaRBf/l5FkH+v2Qc/odzFYKuJl22d+dwuPSINUXoUOun3QU/pNVwaJVMpUBnlcX82DRGwc50E6F/OMvheDJdgYK4Mk0GUmARX/D6ilnWf0898M0iK6+D+nDf00cfOIiFjoWnELz4kDkLLR3HpEzOSYQdqTwTMi2kG3Mcb4xEFI2WBqOSKmSlcfUI+LaAfdxhrj7ENwVBkkAUy9iD3PcR6UfRiOrje3HhEzOc2D+phXRyBp2Ra6V86D/CuDtIgu/k8TN3MMuMw+3vaZeXWImC1DEzdTOGXQ5+bVIWK2DG3oZwrNg0QM2tjYHMogEYPTPEgZ5DF+mkFaRBf/l67QNEXfCyEoxBhvXwjl5aaWI2KadJ08miJxmn1n+O0LlEESuLSAZY6+yiARoMq5mD7I8xhlkIhBF1Waw0/PxbSILv6vMjTDoyCyvbm1BJIWMdDjPGOcewSOrDG3HhGzOGZQVIK5tQQSpww6Csmrza1HxCzpyiBTNG8NPccb47wUSF5lbj0iZqlsaxcWCVEdzK0lkDhl0DE4vNLcekTMkl6ZQREQ3dHcWgJJ81bQc4Ix9qMM0iK6+LeiPMhJNsbtErUTs6f56S08IvXmlEHaDd7jlEES6IryIeewMVYGeZ4ySAJdcYHRDxeUQWZQBkmgUwaZyw8zSIvo4t8ykuxj3T7oeX0ugOBwY7x9IZSXmVqOiMc5ZpBuH/S8PlMgpJkx3rEQykpNLUfE4zJ328fKIM9zyqAvlEESeDIcMkjnYp6nDJJAl5kEWI2xWtp5Xp8pENLcGPtJBmkRXfxb5e2DoJNHMzSLgt4TjXFBOhz8xdx6RDzNMYO0J4PnNYuCXpUZlAGHlEESYNLVB9RU4ZHOGXTwZ3PrEfE09SI2V3gk9J5kjE9mwsEV5tYj4mlO86A+5tURqMIj/C6DtIgu/k0TN/P1v9Q+9pNbeETqLUMTN9MNUAZJAMvQhn6m88NbmUXqTRsbm0/nYhLInOZByiBT+Nm5mBbRxb+lKzRN13sShLY0xjsXQWmxufWIeFK6Th5N18shg3YogyTAaAHLfL0mGpuZgeZBEnjS9UGe6Zwy6EtlkAQWXVRpvmoZVGRuPU3k8kX0srIyHn74Ybp160bz5s3p0aMHjz76KFar1XaM1Wplzpw5tG/fnubNmzNhwgT27Nnj9D5ZWVnMnDmTqKgoWrVqxc0330x+fr6ryxV/Vxma4VEQ2d7cWgJVWEujFxbAqROwf7mp5Yh4lGMGRSWYW0ugCmsBiRcY48Js2P+jqeWIeFS6Msh0YS3s86DCHGWQBJbKtnZhkRDVwdxaAlVYC2OfKjAyaN8P5tYj4knplRkUAdEdza0lUIU2h8SpxtgPMsjli+j//ve/efnll3nxxRfZuXMn//73v/nPf/7DCy+8YDvmP//5D88//zyvvPIKq1evpmXLlkyaNInCwkLbMTNnzmT79u0sXbqUxYsXs2LFCmbPnu3qcsWfFeVBTrIxbpeonZjN5Hgr8/bPzatDxJOcMki7wZvKqZ2CMkgCRFE+5Bw2xsogc6mliwSi4gLIVgZ5BWWQBCJlkPfwo3Mxly+i//bbb1x88cVMnTqVrl27MmPGDCZOnMiaNWsA4yr0Z599loceeoiLL76YQYMG8e6775KSksLChQsB2LlzJ0uWLOH1119nxIgRjBo1ihdeeIEPP/yQlJQUV5cs/iojyT7W7YPm6jkewqON8c7FUFJY9/Ei/sAxg3T7oLl6nGfPoF1fQckpc+sR8YTM3faxMshcPc6DZsogCTAZDhmkczFzOWbQ7q+VQRIYMpOAio4Yamlnru6/g2atjPHur6H4pKnlNIXLF9HPOeccli1bRlKSsXiwefNmfvnlF6ZMMW5jPHDgAKmpqUyYMMH2PdHR0YwYMYKVK1cCsHLlSlq1asXw4cNtx0yYMIGgoCBWr15d488tKioiNzfX6UsCXOXtg6CTR7OFhEPfaca4OA/2LjW3HjdQBkk1jhmkPRnMFRIOfS80xsV5sEcZJAEgXX1AvYZTBuUrgyQwqBex9wgJq5JB35lbjxsog6Qap3lQH/PqEL/KIJcvov/1r3/lqquuIjExkdDQUIYOHco999zDzJkzAUhNTQUgLi7O6fvi4uJsr6WmphIbG+v0ekhICDExMbZjqnriiSeIjo62fXXq1MnVv5r4Gk3cvIuf7cpclTJIqsnQxM2rKIMk0GRoQz+v0l8ZJAFGGxt7Fz9v6aIMkmqc5kHKINP5SQa5fBH9448/Zt68ecyfP58NGzbwzjvv8NRTT/HOO++4+kc5efDBB8nJybF9JScnu/XniQ9IV2h6lW5joUUbY5z0rdGjzI8og6SadJ08epWqGVTkX5uVK4OkGi1geRdlkASadH2Q51W6joEWbY1x0rfG3j1+RBkk1eiiSu/SdTS0bGeM93znsxnk8kX0P/3pT7ar0QcOHMh1113HvffeyxNPPAFAfHw8AGlpaU7fl5aWZnstPj6e9PR0p9dLS0vJysqyHVNVeHg4UVFRTl8S4CpDMzwKItubW4tAcCj0vcgYl5yE3d+YW4+LKYOkGscMikowtxaB4BDod7ExLj0FSUvMrcfFlEFSTboyyKsEh0C/6cZYGSSBoLKtXVgkRHUwtxapMg8qhN3KIPFz6ZUZFAHRHc2tRWrIIN9cD3L5IvrJkycJCnJ+2+DgYMrLywHo1q0b8fHxLFu2zPZ6bm4uq1evZuTIkQCMHDmS7Oxs1q9fbzvmhx9+oLy8nBEjRri6ZPFHRXmQU/Hpc7tE7cTsLfxoV2aROjllkHaD9xp+chuhyGkV5UPOYWOsDPIeft5WSsSmuACylUFeR/MgCRTKIO/kBxnk8kX0Cy+8kH/+85989dVXHDx4kAULFvDMM89wySWXAGCxWLjnnnt47LHHWLRoEVu3bmXWrFkkJCQwffp0APr27cvkyZO59dZbWbNmDb/++it33nknV111FQkJupJG6iEjyT7W7YPeo8s5EFFxN8nepXAq29RyRNzGMYN0+6D36DzSfmfSHmWQ+LHM3faxMsh7VMugE+bWI+IuGQ4ZpHMx7+GYQXu/VwaJ/8pMAqzGWC3tvEensyGyYk137zKfzCCXL6K/8MILzJgxgz/84Q/07duXBx54gNtuu41HH33Udsyf//xn7rrrLmbPns2ZZ55Jfn4+S5YsoVmzZrZj5s2bR2JiIuPHj+eCCy5g1KhRzJ0719Xlir9K3Wwfx/Yzrw5xFhQM/acb47Ji2P21qeWIuI0yyDsFBdvbKZSXwK6vTC1HxG2ObbGPlUHeIygY+hsXFimDxK+lKoO8UlCQcwbtXGxuPSLu4jQP0iK61/CDDHL5InpkZCTPPvsshw4d4tSpU+zbt4/HHnuMsLAw2zEWi4VHHnmE1NRUCgsL+f777+ndu7fT+8TExDB//nzy8vLIycnhzTffJCIiwtXlir86usE+TjjDvDqkOj+4hUfktBwzqIMyyKsogyQQpCiDvFZ/x5Yuam0nfkrnYt7LcR60XRkkfkrzIO/l4+diLl9EF/EKKZuMPy3BED/Q1FKkio5nQnRnY7zvRyg4bm49Iu5gy6AgZZC36TjcnkH7l0NBpqnliLjaiYJiyo5sNB4og7yPMkgCQYpDBrUfZG4t4qzDMGhVmUE/QX6GufWIuINjBsUrg7xKhzOgVRdjfMD3MkiL6OJ/ik9C+g5jHNsXwlqYW484s1hgQMUtPNYy2PmFufWIuJpjBrXrC2Etza1HnFks9s39rGWwQxkk/uW9FTuxpm0HILNFd7ZnlmK1Wk2uSmyUQeLvSgod5kGJmgd5G4vFfiWozsXEH5UUQsU8iLZ9IFwdLbyKUwaVw46FppbTUFpEF/+Tts2YEAAkDDG1FKmFbmUWf+aUQUPNrUVqNsAhg7YvMK8OETdI3rWWEEs5AD/kdGDq879w1uPLuP/jzezPyDe5OgGqtFNQBomfSdsG5aXGWPMg7+R0LqYMEj+Ttl0Z5O18+FxMi+jif9SDz/u1HwwxPYzxwV8gL9XcekRcyakfuiZuXil+ELTpaYwP/gK5x8ytR8RFMvOLaJFp30xri7U7ABl5RXy24QgWi8Ws0sRR/EBlkPgvp3MxzYO8UvxAaNPLGB/6FXJTzK1HxJXUD937xQ2AthX7Yh76DXKOmltPA2gRXfxPZf8r0MTNWznewoMVti80sxoR11IGeb+qGeRjtxGK1OaXPZkMCtpve7ylvLtt3KVNC7q1VVsFr6AMEn/mNA/SApZX0rmY+DOdi3k/H54HaRFd/E/lJ4/BYRDX39xapHbaGV78VWUGBYUan7KLd1JbKfFDPyVlMMhiLKIXW4PZZe1se21s73ZmlSU1ccqgz8yrQ8TVHOdB8ZoHea0ByiDxU5V3wwSF6FzMm/nouZgW0cW/FOZC5h5jHNcfQsLNrUdqF5sIsf2McfJqyD5sbj0irqAM8h2xiRBb8UHrkTVw4pC59Yg0UXm5lXW7D9PDYtyWv8vamWJCba9rEd3LOGXQWmWQ+IeiPMjYbYzj+mke5M3a9bEvMB5dBycOmlqOiEsU5UNmRQbF9oPQZubWI7Vr1xviBhpjH8ogLaKLfzm2GbAaY90+6P18eEMJkRo5ZpB68Hk/ZZD4kW0pOSScSiLIYmSQYyuXsOAgRvZoY1ZpUhtlkPibY1vQuZgPUQaJv0ndAlZjc3Wdi/mAAb53NboW0cW/pGgjG5/ieAuPevGJP1AG+RbHiZsP9eITqclPuzMYFLTP9rhyU1GAs7rF0CIsxIyypC5awBJ/o3mQb9G5mPgbbWzsW3zwXEyL6OJfHDeR0CeP3q9ND/utzMc2QWGOqeWINJk20/ItMd3ttzKnbIJT2WZWI9Iky5Myqmwq2sM2VisXL+WYQcc2w6kT5tYj0lQ6F/MtMd3s7RSUQeIPdC7mW1p3hfjKDNriExmkRXTxL5WfPIa2gLZ9zK1F6qfrKONPazkcXm1uLSJNVZlBIc2hXaK5tUj9VGYQVmN/BhEflHOyhI2HT9g2FT1lDWOPtYPt9bF9tIjutRwzSPMg8XW2eVAzaNfX3FqkfpRB4k9SHDIoVhnkE7qOrhhY4fAqU0upDy2ii/84mQXZFZsyxQ+CYN227BO6nGMfH/rVvDpEmsoxg9org3yGMkj8wC97M4m05tMlKB2A7daulBEMQEJ0M3rFRphZntRFGST+4tQJOHHAGOtczHcog8RfnDoBWRV35MUPhODQuo8X7+BjGaRFdPEfjj34dPug73AKzd/Mq0OkqZz6gCqDfEZnZZD4vp+S0p1auWwt72Ybj+3TDovFYkZZUh/KIPEXauXim3QuJv4iZZN9rHMx39F5pH3sAxmkRXTxH079r7SJhM+IiIU2vYxxygYoPmluPSKNpQzyTRHtoG1vY5yyEYoLzK1HpIGsVis/JWUw0GJfRN+sfui+wzGDjm2ConxTyxFpNM2DfFPLtvY2qMog8WXKIN/Usq29DWrKJq/PIC2ii/84qk0kfFblFRDlpXBkrbm1iDTWUV2B5bOUQeLDdqXmkZZbxGDHK9GtxpXoIUEWzunZ1qzSpL6UQeIPjuqOPJ+lDBJ/oM4Evqsyg6xlcGSNubWchhbRxX9UfvIYHgUx3c2tRRqmy7n2sQ/cwiNSI6cM6lH3seJdlEHiw35KygBgYMUieq61Ofut7QE4o0tropqpJ6jXUwaJP6hspRAWCW16mlqKNJAySPyBLYMilEG+xocySIvo4h/yUiEvxRgnDIEg/aftU3xsMwmRahwzqP1gZZCvUT9Q8WE/7c6gHdkkWLIA2FbeDWvFFF+tXHyEMkh8XX465B4xxjoX8z1dfKsnsUg1+RmQk2yM2w+BoGBTy5EG8qG+6G752+3o0aNce+21tGnThubNmzNw4EDWrVtne91qtTJnzhzat29P8+bNmTBhAnv27HF6j6ysLGbOnElUVBStWrXi5ptvJj/fu3vjiInU/8q3teoE0Z2N8ZG1UFpsbj0iDaUM8m3RHaGVYwYVmVuPSD3lF5Wy7lCW7Sp0gC1W+914WkT3Ecog8XVO86AhppUhjRTdEVp1McbKIPFFyiDfFt0BWnc1xkfWQUmhqeXUxeWL6CdOnODcc88lNDSUb775hh07dvD000/TunVr2zH/+c9/eP7553nllVdYvXo1LVu2ZNKkSRQW2v9BzZw5k+3bt7N06VIWL17MihUrmD17tqvLFX+hHny+r/IqrNJC578ERXzBUfXg83mVtxEqg8SH/LY3k5Iyq1M/9C3lxiJ624hw+rWPMqs0aajKDCorcv47RcQX6FzM9ymDxJepH7rvc8ygFO/NIJcvov/73/+mU6dOvPXWW5x11ll069aNiRMn0qOH0R/WarXy7LPP8tBDD3HxxRczaNAg3n33XVJSUli4cCEAO3fuZMmSJbz++uuMGDGCUaNG8cILL/Dhhx+SkpLi6pLFHzj+T6arQH2TWrqIL1MG+T5lkPigyn7ogyz7bM9VXok+tnc7goIsptQljaAMEl+meZDvUwaJLzuqDPJ5PpJBLl9EX7RoEcOHD+fyyy8nNjaWoUOH8tprr9leP3DgAKmpqUyYMMH2XHR0NCNGjGDlypUArFy5klatWjF8+HDbMRMmTCAoKIjVq1e7umTxdVar/arBFm3st8OKb/GhzSREnDhmUPMY++2w4luUQeJjrFZrxSK6lYFBBwDIskZwxGq0cBnbR61cfIoySHxV1XlQ5S354lu0N4P4KqcMag2tu5lbjzSOj2RQiKvfcP/+/bz88svcd999/O1vf2Pt2rXcfffdhIWFcf3115OamgpAXFyc0/fFxcXZXktNTSU2Nta50JAQYmJibMdUVVRURFGRvXdXbm6uK38t8WbZh+HkcWOccAZYdNWVT2rTA1rGQkE6HF4F5WU+tSGIMiiAOWZQB2WQz4rpDhFxkJ8Gh1dDWSkEu3ya5DbKoMCzL6OAIydO0YFM2lqMf99by7sDFoIsMLpnW3MLlIaJ6Q4R8ZCfCsnKIPEhOUegwLgrhoShmgf5qpjuENke8o4pg8S35B411hBAGeTLWnezZ5AXn4u5/Er08vJyzjjjDB5//HGGDh3K7NmzufXWW3nllVdc/aOcPPHEE0RHR9u+OnXq5NafJ15EG/r5B4vF/uljcR6kbjW3ngZSBgUwZZB/qJpBacog8W6VrVwqr0IH2FzRymVwp1a0bhlmSl3SSE4ZlA+pW8ytp4GUQQFM8yD/oAwSX6UM8g+OGVRSAKmbza2nFi5fRG/fvj39+vVzeq5v374cPnwYgPj4eADS0tKcjklLS7O9Fh8fT3p6utPrpaWlZGVl2Y6p6sEHHyQnJ8f2lZyc7JLfR3yANpHwHz58K7MyKIClaDMtv6EMEh9SuYg+OMjeD31rub0fuvggH7mVuSbKoACmczH/oQwSX6SNjf2HD2SQyxfRzz33XHbv3u30XFJSEl26GD1iu3XrRnx8PMuWLbO9npuby+rVqxk5ciQAI0eOJDs7m/Xr19uO+eGHHygvL2fEiBE1/tzw8HCioqKcviRA6JNH/+Ejm0nURBkUwJRB/sMHJm61UQYFllPFZazab7SRGmjZb3t+c3kPQIvoPsuHP8hTBgUwzYP8hzJIfJEyyH/4QAa5fBH93nvvZdWqVTz++OPs3buX+fPnM3fuXO644w4ALBYL99xzD4899hiLFi1i69atzJo1i4SEBKZPnw4YV65PnjyZW2+9lTVr1vDrr79y5513ctVVV5GQkODqksWXlZdDyiZjHJkAkTXfqSA+IrYfNIs2xod+MzYJEfFmThnUHqLam1qONFG7vtCslTE+9Jvx71fEC606cJzi0nIslDOoop1LmrUV6bSmdYtQBnVsZW6B0jjtEo1N0QAOK4PEBzhu6BcRD1E6V/dpbfsYm8OCMkh8g1MGxSmDfJ1jBnnpuZjLF9HPPPNMFixYwAcffMCAAQN49NFHefbZZ5k5c6btmD//+c/cddddzJ49mzPPPJP8/HyWLFlCs2bNbMfMmzePxMRExo8fzwUXXMCoUaOYO3euq8sVX5e1H4oqNg3Rp46+LygIOldcCXoqCzJ21328iNmUQf4lKMh+NfqpLMhUBol3+mm30cqliyWNKMtJALZUXIU+ulc7goO0qZZPcpoHnYCMXebWI3I6WfuhMMcYax7k+5zmQcog8QEnDkBhtjHWpqK+zzGDCrMhY6ep5dTE5YvoANOmTWPr1q0UFhayc+dObr31VqfXLRYLjzzyCKmpqRQWFvL999/Tu3dvp2NiYmKYP38+eXl55OTk8OabbxIREeGOcm1KyrzvUw45DacefJq4+QUfbukiAUj90P1PAGeQ5kG+Y0VFP/RBDq1ctpR3A9TKxecFcAaJD3Jso6B+6P4hgDNI8yAfpH7o/sfL22u6ZRHdF607mMV5Ty9n29Ecs0uRhlD/K//jA32wRGyUQf7Hyydu7lI5D9p6RPMgb3f4+En2ZxYAMCjIYRHdalyJPkaL6L4tQDNIfJTmQf4nQDNo/SFjHrQ5OdvsUqQhlEH+x8s/yAv4RXSr1crbvx7gqrmrSM46xW3vredEQbHZZUl96ZNH/9N+MIS2NMbqiy7ezimDNHHzC/GDIazizrcAyKCq86Db39c8yNv9lJRuGzstopd3Y0CHKNpFhptRlrhK/KCAyiDxcZoH+Z+4gRAWaYwDIIOsVivvrjxomwf9Yd4GsjQP8h1aRPc/8YO8OoMCehH9ZHEp9360iX98uYPScuNfzNHsU9z94UbKyr3rX5TUoKwUUrcY41ZdoEWMufWIawSHQOcRxjgvBU4cNLUckVo5ZVBnaNnG3HrENYJDoFNlBh0zei36qVPFZdz38WbNg3zMTxWtXIIoZ4DlIADJ5e04QZRaufgDxwzKTzV6Tot4o/IyOLbZGEd3hpZtza1HXMPxXMzPM+hUcRn3f7yZOV9sp6TMYR70geZBPsEpgzpBhOZAfiEoGDqfbYzz07wugwJ2Ef1gZgGX/u83Fm5Kqfbaz3syefb7JBOqkgbJ3A0lxmZa6sHnZwL0NkLxMY4ZpDth/EsAZNCh4wVc8r9fWbDxaLXXft6TyX+Xah7kjYpKy/ht33EAelqO0sJSBMAWa2U/9FjTahMXCoAMEj+QmQQlRmsp7U3lZwIggw4fP8mlL//G5zXMg37Zm8nT32lzea+XuQeK842xrkL3L17c0iVgF9E/33iUXal5tb7+wg97WbojzYMVSYOplYv/Ul908QWOGaQP8vxLAGTQ5xvqnge9+ONevtue6sGKpD7WHTzByeIyAAYH7bM9v6W8B5HhIQzt3MqkysSlAiCDxA/oXMx/BUAGLdh4lJ3Hcmt9/X/L9/Gt5kHeLUXnYn7LizMoYBfR7z6vJ+f2rPvW+/s+2sSBio2bxAup/5X/SjgDgit6uh76xdxaRGqjDPJfHRwy6KB/ZtDd43sxqmfdt97f//Fm9mfke6giqY/KVi4AAy32VkNbrN0Z1astocEBO7X3Lx00DxIfoHmQ/0oYCiHNjLGfZtCd5/VkdC/Ng3yaMsh/OWbQQV2J7hVCgoN4/qqhJEQb/2JiyOX64G+xUG47Jq+olNvfW8/J4lKzypS62D55tBibUYr/CG0GHYcb4xMHIaf6bXZ+pyATVr8K5eWnP1a8g+PVD+2HmFaGuEFIOHQ80xhnH4KcI+bW4wbBQRaev3ooHVo1B6B1bfOg9zUP8iY/7bYvog9yuBJ9W3k39UP3J04ZdBiyk82txxMKjsOqV4wet+IbHOdBCUNMK0PcIAAyKDjIwvNXOc+DbgheQpDDPCi/qJTb3ltPQZHmQV7pqM7F/FZImD2Dcg4bOeQlAnYRHaBNRDgvXzuM20O/ZmX4Xfy/0HcYG7TZ6ZjdaXn89bOtWL1sR9iAV1oEqduMcdte0CzK3HrE9Rz7YB1eaV4dnvDbi/BMP/jmz7D3e7OrkfpwzKA2yiC/5NSLzz8zKKZlGP+beQazQ79hVcU8aFyVeVBSWj5/0TzIKxzLOcXuNKMFTyil9LUYJxT7ytuTRwvGaBHdvwTSPGjlS/BMX1jyF9iz1OxqpD5Kix3mQT2hWbS59YjrBUAGtW4ZxivXDuPW0CWsCr+Lf4S+y7igTU7H7EnP58+fbdE8yNuUlUDqVmMc0wOatzK1HHEDp5Yu3pNBAb2IDjC4UyvOOXM44ZYSAG4I/q7aMYs2p/DWrwc9XJnUKW07lBv/ztSDz0958WYSLhfTDcqMzeFY86q5tUj9OGaQevD5pwDJoMGdWjHqrDMd5kHfVjvmy80pvKl5kOkcr0LvYzlMuMW4Mm6LtTu94yJIqLiaTvxEgGQQAK01D/I56Tvs/850LuafAiSDBnaMZsyIs+qcB3215Rhv/HKg2vNiIscM0rmYf/LSDAr4RXSAMdNmkRUaD8C44M10sxyrdszjX+9kzYEsT5cmtVH/K//X8SywBBtjL9tMwuV6T4ZWnY3x3u8hc6+59cjpKYP8X6ezICjEGPt5Bo2Zei1Zoe0BGBu8he6WlGrHaB5kPsd+6IOCHPqhl3dnXJ9YM0oSdwqgDKL3JPs8aN8PkLnH3Hrk9DQP8n8dzwyYDBp9wTVkhRnzoDHBW2ucBz3xzS5W7T/u6dKkNsog/+elGaRFdICgYCJH3257OKuGq9FLy63cMX8D6bmFnqxMHDz3/R5WJGVQUlaunZgDQXiEvb9ixi6jZ7i/CgqGM2+xP177mnm1SP049QFVBvmlsJb2/oqZuyE/o87DfVpQMJFj7POg64Krt1MoK7fyh3kbSNM8yBQlZeX8ssf+9+Agi70f+pby7uqH7o+cMijJ7zOIM2+1P14z17xapH50Lub/wlraFycDIIOixvze9rCm9aCycit3zt9Aao7mQV7hqM7F/F5YC/u/2+N7ID/d3HoqaBG9Qujw67EGG5uMzgheQUtOVTsmI6+IP8zbQHGpNv7ztMPHT/Lf75OY9eYazvrn9xzbafREslqCIW6AydWJ2wRALz6boddBSMWt+BvnQVGeufVI3VI2GX9agiF+oKmliBsFUAaFDptFeUjd86DMfM2DzLLxcDZ5DhubVV6JXma1cCC0B8O7tjarNHGnrg79QA97z1VYbjH0Wvs8aNN8KMw1tx6pW+VVoJYgzYP8WZfAyaCQYbMor8igGcEriOBktWMy84v5w7z1mgd5A8cMaj/I3FrEfZxaunhHBmkRvVKLGCyDLgcg0nKKS4N/rvGwdYdO8PjXOz1ZmQBfbbW32Dl1Mp92p4yTxyRrJ55dccSsssTdnDaT8I7QdJsWMVCRQRTnweYPza1Hald8EtIr/h6I7Wt8Si7+KcAyKGjQlYAxD7oseEWNh63XPMgUPyXZr75pRhG9LckAJFk7ckaPBMJDgs0qTdwpwDKIQVcY4+J82PyBufVI7UpOQdoOY9yur3HFsvinQMqg5q0JGmzMgyIshVxWy3rQhsPZPPbVDk9WJlWVFBo90QHaJSqD/JkXZpAW0R2NuM02vD74O6DmHZjf/u0gX2w66qGiBOCrrfa+ZP0shwixGJ/+bijtRpE+CfZfnc8GLMbYizaTcJuz7BnEmrmgXeC9U+pWsJYZY/Xg82+dRxBQGVRlHmSh5r9f3/7tIAs26gNsT1rusKmo4zxoS3kPtXLxZ50CN4NYMxfKNcf3Sqnb7POgDpoH+bVAmwedNds2nFXHPOjdlYf4fIPmQaZJ2wblFXfnqZWLf3PKIC2ie5/4gdDZuF2gZ1AKo4K21XroXz7bws5jus3QEw4dL2DbUfs/68FB9j6gW63dmTqwvRlliSc0bw1x/Y1x6lYozDG3HneLH2D/tDUzCfb/aG49UjOnfug6efRrzVvbW4YFQgbF9YcuowDoEXSsznnQg59vZUeK5kGekJx1ku0O/6wHBe23jbdauzG2tzYV9VvNWxlzAzAWLk9lm1mN+zlkEMf3wv4fzK1HaqZ5UOBoFm1v1xMoGdR1NGDMg0YHba310L8t0DzINE790IeYVoZ4gGMGpW2DUyfMrQctolc3wv7p4++bf1/rYYUl5dz+/npyTpV4oqqA5tjKBWBgRR9QgPTIfvRPiPJ0SeJJlX2wrOWQvMbcWjzB4QoIVmtjLa/kuBu8NtPyf7ZefFY4vNrUUjzCYR70h+bLaj3MNg86qXmQu1WfB9kX0TOi+tO5jVpK+TXbrcxWSA6sDNI8yEs5zoN0Faj/C7QMOstxPUjzIK+kc7HA4phBXnAupkX0qhKnQWQCAOeUraNXaGathx46fpL/t2i7pyoLWF9tcT55HGwxrkQvsoaQOGgEFovFjLLEU5w2kwiA2wgTp0FUB2OctASyDtR9vHhe5dUPwWEQ29/cWsT9Ai2D+kyFqI4AnF22jt5htc+DDmed5B9fah7kbtXnQcYierE1mF4DR5hRknhSAGcQe76DrP11Hy+eVzkPCgq13zEq/ivgMugCh3nQevqEZdR66OGsk/x9Ue137YmbpDhm0ABzaxH387IM0iJ6VcGhcOZNAFiw8kqfjXUe/vnGoxzMLPBEZQHpYGaB0y3MkZykR5BxMrnT2oUpQzqbVZp4Smfv25HZrYJDYPhNFQ+ssPZ1U8uRKgpz4PgeYxw3AELCzK1H3M8Ld4V3q+AQp3nQy7031Hn4go1HOaB5kNscPn6SrUftbYQiOEl3i30eNHlwF7NKE08JxHnQmQ7zoDWaB3mVojyj5SAYrYZCws2tR9wvIOdBNwP1mwct3JSieZAnFeVBxm5jHNdfGRQIvCyD3L6I/q9//QuLxcI999xje66wsJA77riDNm3aEBERwWWXXUZaWprT9x0+fJipU6fSokULYmNj+dOf/kRpaam7yzUMuxGCjf8Zexz5nNtHxtd5+AdrD3uiqoBU9RbmAQ6tXA6G96Zfe7Vy8XuRcdCmpzE+ugGKT5pbjycMu8GWQWx8D4o1MfMaxzbbx+oDGhgiYqFNL2OcEiAZdMYNDvOgBfz+NPOgD9doHuQu1edBBwmyGJtOHwzrrZZ2gSCiHbTtbYxTNgbGnMAhg9j4PhTlm1qOODi2GajY+F7zoMDQsi207WOMAyaDroeQZgB0T17IH86Jq/PwDzQP8pxjW1AGBRjHDDq2yfQ5gVsX0deuXcurr77KoEGDnJ6/9957+fLLL/nkk0/46aefSElJ4dJLL7W9XlZWxtSpUykuLua3337jnXfe4e2332bOnDnuLNeuZVsYcJkxLszhgYTNnNUtptbDP113hOJS7R7vDlVvYR5ksd/SGdZ5uFq5BIrKTx/LS+DoOnNr8YSWbWHgDGNcmANbPja3HrFz3MhGPfgChy2DSuHIWnNr8YSWbZwy6IH2m+qcB32y/ghFpWUeKi6wfLU1xenxIIt9c/WwzsM0DwoUAZlBlxvjohzY8pG59Yid04Z+mgcFjIDMoIp5UFEO98dvYkRd60GaB3lOis7FApIXZZDbFtHz8/OZOXMmr732Gq1bt7Y9n5OTwxtvvMEzzzzDeeedx7Bhw3jrrbf47bffWLVqFQDfffcdO3bs4P3332fIkCFMmTKFRx99lJdeeoni4mJ3lezMYVObkLWv8cQltfdaOl5QzLfbUz1RVUA5kFnAjmPOO147bqbVZ+gYT5ckZrFtJoFX3MLjEY4bjK6ZC1arebWIndNmWrr6IWAEeAYFr32Nf9UxD8oqKObb7Wm1vi6NczCzgG1HnedBgxzuyOuleVDgCMQMctxgdM1rmgd5C82DAlMgZtBZt9mGwWtfr3M9KKugmCXbtB7kEcqgwORFGeS2RfQ77riDqVOnMmHCBKfn169fT0lJidPziYmJdO7cmZUrVwKwcuVKBg4cSFyc/baZSZMmkZuby/btHtrAKmEodDzLGKfvoEfBJs7uXvunj/NX6xYeV/u6yi3MYOWMIKMX8SnC6d5XnzwGDC/bTMIjEoZAp4oN49J3wMFfTC1HME7gKz/5Dm1hv61M/F+gZ1DGTroXbGRk9za1Hj5/9SHP1BVAqrZyAStDK+ZBhYTRo98wzxcl5vCyfqAe0X4wdDrbGGfshAMrzK1HnOdBIc2hXaK59YjndBlpHwdMBg2CzhW/d8ZOuudv4Jwedc2DtB7kdlYrJFdmUDNo19fcesRzvCiD3LKI/uGHH7JhwwaeeOKJaq+lpqYSFhZGq1atnJ6Pi4sjNTXVdozjAnrl65Wv1aSoqIjc3FynryYbYf/0kTWvcs2I2jdvWrn/OPsz1K/PlRZXaeVydtBOEixZAKRGD8ESHGJGWWKGVp0hupMxTl4LpR66I6UB3JJBTlejv9r095OmOfgL5B41xp3PNjYeksDQqhNEV2xkfSRAM2j1q1wzovbNvFftz2Kf5kEuVfVighGWXXSwHAcq50GhZpQlZojuaMyFoCKDisytpwbuORercleemOvQb5CTbIw7j9A8KJBEd4RWFWshgZRBVe4MrmsetPpAFnvTNQ9yq8MrIafiw4pOyqCA4kUZ5PJF9OTkZP74xz8yb948mjVr5uq3r9UTTzxBdHS07atTp05Nf9O+F0FExWL+rq+Y1LGEmJZhtR6uDSVcZ39GPjurtHK5Ini5bRw2/FrPFiTmq7wKq/SUsaGEl3FLBvW7GCIqNvTb9RVkJzf9PaXxNr5vHw+ZaV4dYg5bBhU630rqJdyeQbu/ZlKHYtrUNQ/SVVgucyCzgO0pVeZBIctt45BhmgcFnMpbmQMpg/peBJHtjfHuryFbGWOqje/Zx5oHBZ6AzKALITLBGO/+mokJxbSN0HqQaTYogwJaZQaVFTnvz+FhLl9EX79+Penp6ZxxxhmEhIQQEhLCTz/9xPPPP09ISAhxcXEUFxeTnZ3t9H1paWnExxsnavHx8aSlpVV7vfK1mjz44IPk5OTYvpKTXbDYFBIGw28yxtZywje+xeXDOtZ6+Kfrj1BYog0lXKHq1VeRnOSCoNUA5BJBwtmXm1GWmMnxVuZ9P5pXRy3ckkHBoU4ZxNrXm/6e0jiFObDjC2PcrBUkTjO1HDGBYwbtD8wMCtv4FjOG1zEP2qB5kKvUNQ/KoyUdNA8KPJoHaR5kpsJc2L7QGIdHG4uLEliUQYRteIMZw2pfnP9M8yD3KcyFHQuNcXg09LvI1HLEBF5yLubyRfTx48ezdetWNm3aZPsaPnw4M2fOtI1DQ0NZtmyZ7Xt2797N4cOHGTnS6HMzcuRItm7dSnp6uu2YpUuXEhUVRb9+/Wr8ueHh4URFRTl9ucSwGyGo4nbZ9e9wzRntaj30xMkSbTDqIlVbuVwU/BvNLCUA7IufgiW0uRlliZl6jAcsxnjLh163wZT7MugGewZteAdKTrnmfaVhtn5q3AUBMOgKCPXcnVbiJXqchy2DNgduBl0ztPZ5UPbJEm2s5SJV50EXBq+kucVoI7Q37gIsYS3MKEvM5JhBWz6E8nJTy6nKrRkUXHHl54Z3NQ8yy7bPHOZBl4POxQKPMgg2vMs1Q2vvi559soRvtlXdz0RcYvvnUHLSGA+coQwKRFXPxUzKIJcvokdGRjJgwACnr5YtW9KmTRsGDBhAdHQ0N998M/fddx8//vgj69ev58Ybb2TkyJGcfbaxeczEiRPp168f1113HZs3b+bbb7/loYce4o477iA8PNzVJZ/mF4qD/tON8aksuhxbwrk9aw/OebqVucn2puezKzXP6TnHVi6tRt3s2YLEO7TqBN3HGuOs/UZPtEAQGQf9LzHGp04Yi7nieY63MA+9zrw6xDyOGXTigOmb2nhMlQzqkvINo3q2rfVwbazVdDW3tLNfcRM96iZPlyTeILojdB9njE8chMMBkkERsVXmQZ+YW0+g0jxIojtAj98Z44DKoHbQ/1JjXJhN56NfM7pX7fOgeas0D3ILx1YuZyiDApJjBmUfgkO/mlKGWzYWPZ3//ve/TJs2jcsuu4wxY8YQHx/P559/bns9ODiYxYsXExwczMiRI7n22muZNWsWjzzyiBnlwlkOG4yufpVrzqx9Q4k1B7LYm55X6+tyelVvYU60HGZw0H4AkoJ60LX/2WaUJd5giEMPWMf+1P6uyibH3nYFrN9L3Wbv/Rg/CNoPMrceMY8yyNho/azab2VeczCLPWmaBzVF1XlQH8thhlTMg/YEdaPbgJFmlCXeYGiAZpDTudhczYM8LW0HHF1vjOMGQvvB5tYj5nHsQx1IGVRlk+Nrzqx9HrTu0AmSNA9yrfSdcHSdMY4bCO2HmFqOmMgLMsgji+jLly/n2WeftT1u1qwZL730EllZWRQUFPD5559X63XepUsXvv76a06ePElGRgZPPfUUISEm7b7bcTgkDDXGqVuYGHWwzg0l5q/W5n9NUfXk0fEq9OSul2KxWDxbkHiPvtOMHmhg9GUsCpAd0DsOh4QzjHHqVji8ytx6Ao3jX9BnzDKvDjGfYwbtWAhFAXKSVCWDJkYeoG1E7XcGztfGWk1StZXLFcE/2cbJXS7TPCiQJU51yKAvAiiDhkGHYcY4bWvg3I3oLZzmQdeBMihwJU6DZgGYQR2GQYfhxjhtG+dH7KNdZB3zIN2V51qOGTT0WmVQIKuaQYW5dR/vBqZcie5zLBanKyBC173G5cO1oYQ77E3Pc2rlEkYJlwT/AkCRNZTOY683qzTxBqHNYUDF7XQlBfbNRQJB1avRxTNKi4y+jwDB4UYPPglcThl00r7JWiBwyKCQda9xRR0bjH6mjdYbbV9Gfg3zoJ8BYx7UcZzmQQEttDkMvMwYl5yE7QvMrceTqtwZLB5SWlxlHqRNjQNaaDMYUDEXDrQMasg8aMMRThVrHuQSpcWw+QNjHBxm7E0lgcsxg0pPmZJBWkSvrwGXQouK3lc7F3Ft39qvRM85VVLtamqpn6+2OG9Idn7QelpbjKuNfwk9h56da//LSgKE063M88yrw9P6XwItKzb027EIclPMrSdQ7P7a6MEKxi7wzVubW4+Yz7EX7KbAzaBr+4XWeiFQbmEpX23RPKgxvq7yz2180AZibPOgkfTqXPtFHBIgAnYeNN2eQTu/hJyjppYTMHZ/DSePG+O+06BFjLn1iPmGOrZTCKAM6jcdWsYa452LmZkYXOs8KK+wlMVbdK7mEknf2DMoURkkOM+DTDgX0yJ6fYWEGzszA5SX0mHfB3VuKKFbeBqn6ocPVzpspHWiz5W6hVmM2+naJRrjw7/B8X3m1uMpjhlkLYN1b5paTsBw3MTG8S9sCVwdznDIoJWQudfcejylSgYl7P2A0b3a1Xq4Wro0zlfV5kHLbeMTfa7QPEiM1krt+hrj5FUBlkE3GmPNgzxno+ZBUkXCGRDbzxgnr4LMPebW4ykhYTDcnkEJez9gbG/Ng9xOG4pKVQlDHTJoNWQkefTHaxG9IYbfBJZgY7z+La4bVntorjt0gt2pAdIjzEX2pOWx22ETjgQyGRW0DYDD5e0YNHqaWaWJN7FYnDeUCKQrQYffBEEVe0OsewuKT5pbj7/LToZ9PxjjVl2g6xhz6xHvoAwyxuve4tozap8HrT90gl2pnu9T6MuqtrRrz3HGBG0BILm8HYNGX2RWaeJNLBbnK0E3BdDmfo4ZtP5tKC4wtRy/l3ME9i4zxtGdods4M6sRbxHI86BhNzpl0HVn1H5R5cbD2ew8pnlQk+QchX2VGdRJGSQGkzNIi+gNEd3BuJ0foCCD8TmfnWZDiUMeKsw/VL36akbwCoIsVgB+aH4+veOjzShLvNGgK+0faG36AMoDpOdcVAL0rcigk5mw6iVz6/F3m+YDRgYx9FoI0l+ZUsExgzZ/GLAZND77E2K1sZbLVG1pNyP4J9s8aJnmQeIoYDOoPfS72BifzISV/zO3Hn+36QPs86CZmgeJ3aAr7YvJAZdB043xyeOMy/qE+KhmtR6ueVATbZ4P1nJjPEQZJA6qZlBZqcd+tP4rbKixfwWL8Y8t+NfnuHFwy1oP/XzjUW0o0QCO/VMtlHN58E8AlFstlA662qyyxBtFxkGvicY4LwX2/1j38f5k3F/tJ86/PAv56aaW47fKyx2u7rPAkGtMLUe8TGQc9J5kjPNSYF9gZlDwb89x4+AWtR66YMNRThZ7blLr6xxb2lWbBw3UPEgcRMRC78nGOO+Y/a6pQDD2L/Z50K/Pah7kLuXlDq1cNA+SKiLaQa/KeVDgZlDwb89xw+DmtR66cKPmQY1WXg4bHc7FHO/AEoloZ58H5ad6NIO0iN5QsYlwxvXGuDiPWcUf1rmhxJfaUKJektLy2JOeb3t8TtB2OgVlALCifBBjhw81qzTxVk6b2gTQrczt+sCwygzKh+X/Mrcef3VwBWRXXD3S4zyI1qbGUoXjbYSOPWP9XZUMuq6ojnlQUSmLN2uD0fqo2tLu7KCddK6YB/1SPoAxZ2oeJFUE9DzoBmNcnA/LnzC1HL918GfIrriruvs4aNXZ1HLECw0N1HlQb3tv9JICriv8gKA65kFfbtZ6UKMc+gVOHDTGyiCpiUnnYlpEb4xxD0JYBAARW9/jqm6naj1Ut/DUj+NV6ABXVFx9BfBz5GR6xUV6uiTxdr0mQYuKPnS7voKTWebW40kOGcT6tyFjt6nl+CVtYiOn09shg3Z/HbAZFLHtfa6pYx40Txtr1Uv1DUXtdzf8FDGF3poHSVW9JkLLin0JAjKDKv6fWP8OpO8ytx5/5PjBjOZBUhOnDPomsDJo7F9tGdTyNPMgrQc1kjJITqfX+c4ZVHDcIz9Wi+iNERkH595jjK1l3Mv8Wg/dlJzNjhRtKFEXq9XqdPIYRT6Tg9YCkGWNoPWQi80qTbxZSJjRCwugrBi2fWZuPZ4UEQuj7jHG1jJY+ndTy/E7p07Azi+NcfMY6HOBufWIdwoOdc6grZ+aW48nVcmge6h9Q5/NydlsT8nxTF0+zPFigijymeIwD2o1VPMgqUG1DPrE3Ho8KaKd8zzoe82DXOpUNuxcZIybt4bEaaaWI14q0DNo9L3G2FrOPdbar4LdfCSHbUc1D2qQU9mw4wtj3KwV9JlqZjXirRwzqLzEYxmkRfTGGnkHRLYHIDZlGRdE7K310PlrtMFoXZLS8tnr0MplevCvhFtKAFhQNprJQ3TrjtQiUG9lBjj7DohMMMZJ38CBFebW40+2fgplRcZ48FUQUvvGiRLgHDNoU+BmULuUH5gauafWQ3UVVt2qtrS7KHilbR60sGwUkwd3Mas08XZDAnke9AeHedAS2P9T3cdL/W39BEoLjfGgKzUPktoNvdY+DsQMiuoAQNtjy7kwMqnWQ+dpHtQw2z51zqDQ2jdvlQDnmEEeOhfTInpjhbWA8x6yPfx7+AdYKK/x0IUbUygo0oYStal+C/Ny23hN66n0jNUtzFKLuP7QfogxPrYJUreZWY1nVckgvnvI2IBFmm7Du/ax41/MIlXF9YeEil7VxzZD6lZz6/GkKhk0J6z2edAXmzQPqkvVlnaOrVzWtLpALe2kdnH9IOEMY5y6JfAyaPzD9seaB7mOY29ZzYOkLrF9nTPo2BZz6/Gk0OZwnj2DHq5jHrRo01HyNQ+qP7XVlPqK7Qsdhhnj1K3G+ZibaRG9KQZfDXEDAIgr2MnFwStrPCxfG0rUymq18pXD5qv9LQfpH2Rcub+pvAf9h5xtVmniK5w+fay9pYBfGnwVxA00xsc2G5/aA4UlZVitVhML82HHNhsnAWCcFMT1N7ce8X5OV4IGbgbFFexievBvNR6WX1TKIs2DalS1pV0/y0EGBh0EYHN5d/oOOcekysRnDA3gDBp0JcRXzINSt9hu5dY8qAmObbEvQrQfYv/nK1Ibp7vyAjeDYgt2c2lIzfOgguIyvth01JOV+a7UrcbFcaAMkvrx8LmYFtGbIigYJj5qe/hws08Ip7jGQ1/7eT/vrzrEsp1pbDuaw/H8Ik3ugN1peezLKLA9vsLh6quPysZxwcD2ZpQlvmTAZRBccZvplo+gtOb/B/1SlQxi2SNQcoor566i/9+/5bynlzPz9VXc//Fmnvp2N++tOsT3O5RBddImNtJQA2fYM2jrxwGdQQ81+1TzoAaq2tLucoeN1T8uG8fUQfFmlCW+xHEeFJAZ9Jj9ccU86OrXqs+Dnvx2l+ZB9VC6XleASgMNmAEhFe02tgRaBgXBxH/aHv5feO3rQW/8fID3lUGnVbrO4Y5gZZDUx4DL7Bm09WMoLXLrjwtx67sHgh7nQc8JsPd72pSlc0Pwt7xadmG1w/ZlFPDQQudWE2EhQcRHNTO+opvRMzaC6UM60LlNC09Vb7qvHW5hDqeY6cG/AnDKGsbutufTMzbCrNLEV7SIgcSpsP1zOHkc9nwLfav/P+i3evwOep4Pe5dCTjKsfoXUnIGcLC5jf0YB+x0+pKqqpgy6eEgCXdq09OAv4EVKCo3JP0BIc+MvZJHTad7aOYOSlkC/i8yuynMcMqhNWTo3Bi/hlbLqv//+es6DAi2DHK9CD6eYS4J/AaDQGsrOthPV0k5Or3lr6DvN2GA9EDOo+zjoNRH2fAe5R2DVy6TmDK7fPCg4iLjocNpHNQ/YDKq07mAWLy/bwXNH5hMBxoLEgBlmlyW+oHkrY/PZbZ/CqSxjr6Z+AbQhdvex0GsS7PmWmLIMbg7+hv+VVf/992fWMA9SBtmsO5jF/5bt4LkjHxAJyiCpP6cMOgG7v4H+093243Qluiuc/whYjH+Ud4V+QWty6/VtxaXlHM46yZqDWSzanMIzS5MY8+SPfLr+iDur9RpWq5XFDiePk4LWEm05CcDX5SP43aCeZpUmviaQb2UGpwyy/vw0ZXkZ9fq2mjJo7JPL+WRdsjur9V67FkNhtjHudzE0iza1HPEhgdxWCpwy6M7QRcQ0YR4USBlUtaXdxKB1tLIYC35fl49gnOZBUl+BvLkfVJkHPUNpfedBZeUkZ52qlkEfB1AG/bYvk6vnrmLGKytpse8bIqwVd8b0vchYmBCpD52L2TLojtBFtCGnXt+mDLKyct9xhwxaQqQ1z3hRGSQN4cFzMS2iu0Jcf1sfnghOcnfIgia93V8/28LOY/U7AfVFVquV5bvTmfHKSqerQ64IXm4bf1Q6jgsGqZWL1FP339l2R2fPd5CXZm49nhbXz/YXh6UojzuDP2/S2z34+Va/zqBabdDtg9JI3cdVyaBUU8vxuLh+MNT4f8aYBzU9g3ak+G8GWa1WfkrK4PJXVlZpabfcNv5YLe2kIbqNhaiOxnjv0sDLoNi+tgyyFOdxZ9CnTXq7v32+le0p9VsE80WOGXTNa6tZuf844NxOSvMgaZCqGZR7rO7j/U1sIpwxC4CWnOKPTZwHBUIGrUjK4IpXV3L1a6tsGeQ4D1IGSYN0GwvRnYzx3u8h1317MWkR3VV+938QarRhuTb4e7paGv8XR2m5leeX7XFVZV7DarWydEca01/6lRveWsv6Qydsr3W0pDMqeDsA+8vjyYs7ix7t1MpF6iko2NjgDsBaBls+NLceMzhk0MzgZXRTBjXMiUNwoOLkMaY7dDnX3HrEtwQFG5uNA1jLYXMgZtDfINS4/VgZVDOr1cr3O9KY/r/fuP7NNaxzmgdlcG6QMQ86WB5Hdruz1NJO6i8oGIYogyoz6JrgH+huafwJdCBmUAcyGBVktJo4VB7LhiBtrC4NUDWDAvFcbJxjBi1TBtXAarWybKeRQbPeXMPag8ogcZGgII+di2kR3VWi2sM5dwMQainjLyFN+5f2zbZUdqX6x1VY5eVWvt56jAue/4Vb313H5iPVP1V1vPLhk7JxTBuc4MkSxR9U3ZU50DZqiYyHc/8IKIMqnSwupay8nv8dON72NfRasFjcU5T4ryHX2MebAjWDXDcPWrI91W/uiCkvt/LN1mNMff4Xbnl3HZuTs6sdMyP4J4Isxn8zH5eN1TxIGk4Z5NJ50Lfb0wIqgy4Pccygcbzwwz4PVyk+zzGDAvJcLA5G3QNAiKWcv4Z80KS387cMWrLtGNNe+IWb36ltHrRCGSRN46F5kMsX0Z944gnOPPNMIiMjiY2NZfr06ezevdvpmMLCQu644w7atGlDREQEl112GWlpzu0XDh8+zNSpU2nRogWxsbH86U9/orS01NXlutY5d0FEHABTgtdyVtCuen2bhXL6Ww7QxeJ86+ULP+x1eYmeVFZu5YtNR5n83Ar+MG9DrX8JBFFuW0Qvs1pYUD6aaWrlIg3Vpgd0PscYZ+6Go+vNrccM59zFqfB2AEwOXsuZlsDNoOLScm59dx1/mLeewpKyug8uL7P3b7Q4fIot0hBtetjvYMhMgiPrzK3HDOfcBRHxgJFBI4J3n+YbDLVl0Is+nEFgzIMWbU5h8nMr+P28DeyoYx40I3iF8T1WCwvKxzBtkBbRpYFiukOXUcY4YDPoTts8aFLwOs6y7KzXt9U+D/LtK0Ebm0GflY3mx90ZbK3hwieRWjlm0PE9cGStufWYYeQdEGmsY0wMXs/IYGXQos0pTHnuZ25/fwPba2nVZ6Gcy0Ps60HKIGmUmG7QdbQxPr4Xkte45ceEuPoNf/rpJ+644w7OPPNMSktL+dvf/sbEiRPZsWMHLVsat7fce++9fPXVV3zyySdER0dz5513cumll/Lrr78CUFZWxtSpU4mPj+e3337j2LFjzJo1i9DQUB5//HFXl+w64RHGrYRfGldBzO+ymLXjryc1r5BjOYWk5tj/zMrJpdfJDUwMWsf5wRtoZ8mhyBrC1cUPscHaG4Cvtx5jT1oeveIizfytGuXb7an8+5td7M8sOO2xY4M2k2DJAuDH8iFMHjk0IHekFhcYOhMO/2aMN74PHYebW4+nhbWk+cSH4UvjatD3Oy1iw8RZpOYV1TuDrin+P9Zb+wC+m0Hl5Vb+/Olmft1r9Neb+fpqXp81nNYtw2r+hr3LILdiQ+ee50OUFq+kkYbMhEPGXIZN70OnM82tx9PCWsJ5/weL7gJgXqdFrJ3wiVMGpeYUkppbyPHsXHqf2sD5FucMmln8N9ZZEwH4etsxktLy6O1jGQTw3fZU/rVkl9PeL7UZE7SFjpZMAH4qH8zEs4fSta3mQdIIQ2fCoV+M8cb3AjKDmk+aY8ug9zp9yYaJ11ebB6XVkkHF1mCuKf4/ewZtTWV3ah594gMng1aUDyInNJZbRnQmPrqZu8sUf+OUQe9Dp7PMrcfTwloaLTYX3QkYGbR2gj2D0irPxXILyczOo/epDUy0rOP84PV+l0FLd6TxxDc765lBW5VB4hpDZsLBn43xpveh8wiX/wiL1ere+2wyMjKIjY3lp59+YsyYMeTk5NCuXTvmz5/PjBkzANi1axd9+/Zl5cqVnH322XzzzTdMmzaNlJQU4uKMK7tfeeUV/vKXv5CRkUFYWC0LIQ5yc3OJjo4mJyeHqKgod/6KzspK4ZVRkFHxqeOMN2HAZcb4VDbsWQq7FhvN7ovzq337yrJ+XF3ykO3xRYMTeP7qoR4o3HX+uzSJ5+rZw6ujJYPPw/5OrCUbgG/6P82ky24mKEitFKQRivLhqd5QUgDhUXD/bghrUa9vdXVmmJZB5WVGBqXvMB5f9gYMNLK2Phm0qrwvVxU/bHvsixn0r2928cpPzrcAdm/XknduPItOMVX+ezhxCN44H/Ir7oa68n3oe6GHKhW/45hBYZHwQJIyqIEZtLo8kSuL59geXzg4gRd8LIOe/T6JZ7+v3zyoAxksCLfPg5b0f5KJl92qeZA0TnGBkUHF+cogF2XQtEHtefGaMzxQuOs89/0e/vt9Ur2OrZpBC3o9wZiLb6ZNRLgbKxS/VS2DdhsLy/XgXxk0GtKNfU649HUYdLkxrsyg3V8ZfyqD6EAGn4f/nThlkLhCcQE81QeK8yAsomIe5NoMcntP9Jwc4xaMmJgYANavX09JSQkTJkywHZOYmEjnzp1ZuXIlACtXrmTgwIG2BXSASZMmkZuby/bt291dctMEh8DER+2Pv/9/sOY1ePdieLIHfH4L7FjoFJjFlnByrMYEd2TwDoY7tGD4cksKe9Orh6u3enflwXovoLcij3dC/2WbtJV2OIspl96gE0dpvPAI6H+JMS7KNU6SAk1QMJzvkEHLKjNoer0y6OygnU5tYHwxg6ouoAPszyjgkv/9xrajDrcFnsyC9y+zL6B3Oht6T/FQpeKXHDOoOA92fmluPWYICnaeBzUwg0YE7XJqwbB4Swp70/M8VHzTvbfyYL0X0KPJ552wfzvMg85k8qU3aR4kjRfWEvpPN8bKIMP3TcugryruyvMV7606VO/Fq2oZlHAml1w1W4tX0nhhLTUPqjYPeqR6Bm1f4JRBJZYwpwwaEUAZ9HbYf2wL6MogaTKneVA+7Fjk8h/h1kX08vJy7rnnHs4991wGDBgAQGpqKmFhYbRq1crp2Li4OFJTU23HOC6gV75e+VpNioqKyM3NdfoyTc8J0H2cMc4+BF8/APuXQ7lDT/fmMcatBlfNJ+22HTxWNsv20t0hC2xjqxVe+tE3eoIu2ZbK3xfV70OOcIp5p9nT9Ag6ZjzRphchMz8yPoQQaYqhjhuMvu+xH+tdGTQeuv/OGGcfrsigH2vNoPTbd/Bo2fW2l+6qkkEv+kg/vtNlUGZ+Efd+tMnYbLTkFHxwldGzEaBNL7j6A2WQNN3Qa+3jTYGaQROgx3nGuN4ZdIPtpTtDFtrGVqvv7M/w7fZU5jRgHvR2s6fpGZRiPNGmFyEzP1YGSdMNvc4+VgZBTsMzqOo8yFcy6Lvtqfz9i231OrZ6BvXUuZi4huM8KJDPxXqMN8a1ZlBrGHwNXDmPtNt38ohTBn1uG/tzBr3V7Bl6BR01nlAGias4zYPmufzt3bqIfscdd7Bt2zY+/LBpu6PXxxNPPEF0dLTtq1OnTm7/mbWyWCquBK1yJVGrznD2HXDDV/DAHpj+P0icSqf4tlgGXcHhcmMjnDHBWxlssQflF5uOsj/Du68EXX8oiz9+uLFeG+DGtgxhScd3GEzFJ5QRcXDtZ9Aixr1FSmDoPNLY2AbgwAqjXYcHeF0GTawtg/5QLYM6xrUleNDlHCqPBYwMGuKQQYs2p3h9Bq07ePoMimoWwv9mnkEw5fDZLZC82nhBGSSu1PlsiOlhjAM1g6COeVDNGRQyeAYHy40LJqpm0JebU9jn5Rm0/lAWd3/QgHlQp3cZSsXGqy1j4dpPlUHiGp1GQJuexlgZ5PxcPTNodPA2hlrsFxD4wl156w+d4K4PNlJerwwK5ptqGfQZtGzj3iIlMDhm0MGf4cRBj/xYr8ugiY+CpcpyW2UGXb8YHtgLl7wMfafRMa4tYYMvt2XQqODtnGGxX83tnxn0HmdQcfezMkhcqdNZxgVyYGRQ1gGXvr3bFtHvvPNOFi9ezI8//kjHjh1tz8fHx1NcXEx2drbT8WlpacTHx9uOSUtLq/Z65Ws1efDBB8nJybF9JScnu/C3aYT2g+DiF6HXJBj3N7j9V/jjFpj8OHQdVe0Ttj+cl8gr5RfbHjtehVVuhZd+rN6ewFvsTc/n5nfWUVRaXudx8VHN+Pu0vvw25Du6Zf5oPBkWATM/gdZdPFCpBASLBYZcY4yDwyBlo0d+rNdlUPxAuPilGjLoiZozaHzVDLJfhVVuhRe9+I6Y+mRQWHAQr80aTq/YCPjmL/ZWP8ogcTWnDAqHlA0e+bHel0EDHDLoQbj9lzoz6PdV5kF3Vcmgl7z4Kqx9GfWbB8VFhRvzoKFL6Zbxg/GkLYO6ur9QCQzKIEMDM+gP5/Wt9VzM2+8M3peRzy3vrK1XBs2Z2pffhi6je2UGhbaEmR8rg8R1qmbQ0QDNoLj+tWdQt9E1zoNe9tEM2t+oDFpmPKkMElerth7k2gxy+b0SVquVu+66iwULFrB8+XK6devm9PqwYcMIDQ1l2bJlXHaZseHm7t27OXz4MCNHjgRg5MiR/POf/yQ9PZ3YWOPKyKVLlxIVFUW/fv1q/Lnh4eGEh3tZ76Sh1zrfzlSHrm1bUjLgSlJ2fk6CJYvzgzfQr/QgO6xdAVi46Sh3j+9Jlzb1a4rvKem5hVz/5hqyT5bUeozFAv93QV+uG9mF8FXPw/rXjReCQuCKd6H9YA9VKwFjyEzjFrkBlxl/eoB3ZtBM5/Y2dejSpiVlA6/i6I7P6WA5zoTgjfQvPcj2igz6YlMKd5/Xi65tvTODck7VnUH/vXIII7q3gV/+C2tfM15QBom7DLkGmkUbm9kpg+p1aJc2LSkfeCVHdnxOR0sm44M30r/0ANutxjzSmAd5YQbl1X8edO3ZXWi2+gVY55hB70DCEM8UK4Fj8DXGBuvKoHpnUOc2LbDWkUFfVGRQNy/NoBN1ZBDYz8WarXkR1s01nqycByX41ubN4gOUQYYh19gX806jc5sWWBwy6LzgTQwo3c82q3GHtVdn0FuNzCBLsDJI3GPw1RAeaawHufhOT5dfiX7HHXfw/vvvM3/+fCIjI0lNTSU1NZVTp04BEB0dzc0338x9993Hjz/+yPr167nxxhsZOXIkZ599NgATJ06kX79+XHfddWzevJlvv/2Whx56iDvuuMP7gtGFfj++H6+WXmh77PjpY1m51es+fcwvKuXGt9dyNPtUncfNmdaPW0Z3J3z7p/D9P+wvXPSi0S9MxNWiEuDMWzw2afMXvx/fl7lOGWS/EtSXM+jhqf2YOqg9bPlYGSSeEZUAZ92qDGqgqhl0V5W78rztjpj8olJufGstR07UnUEPTTXmQc12fg7f/93+wkUvGL2bRVwtqr0yqBFuH9/X6VysWgZ52R0x+UWl3PR2fTKoL7eOqcigpXPsL1z4PPRSBokbKIMa5fbxfXm17CLbY1/JoOSsRmbQRS8og8Q9KjPIDa0SXb6I/vLLL5OTk8O4ceNo37697eujjz6yHfPf//6XadOmcdlllzFmzBji4+P5/HP75gnBwcEsXryY4OBgRo4cybXXXsusWbN45JFHXF2uV+neLoKT/a8h3doKgAuC19DLcsT2+ucbjpKcddKk6pwVl5bz+/fXsz2l7g07Zo/pzo3ndoN9P8IXf7C/MH4ODLnazVWKSEN0a9uSkwOuIa0ig6YEr6W3xX4r5OcbfS+Dbh3djZtGVWTQQocMOu9hZZCIl+nWtiWnBlxty6DJwWvpYzlse33BxqMcPu4dGVRSVr8MumVUN24e1c3YYH7h7+0vnPdQva9OExHP6Na2JUV1ZNDCTUc5dLzApOqclZSV84d5G9h29PQZdMvo7jVnUD2v0hcRz+jatiVFA64i1Wp8+DApeB2JPp5BN9sy6CfnDPqdMkh8k8sX0a1Wa41fN9xwg+2YZs2a8dJLL5GVlUVBQQGff/55tV7nXbp04euvv+bkyZNkZGTw1FNPERLi/zv13jahP3PLptoeO16NXlpu5X/Lzf/00Wq18tfPt/Dznsw6j7tocAJ/nZwIx7bAR9fZd6MefjOMus8DlYpIQ902vj9zy6bZHnvjHTH1zaALByfw4JS+DhlUcZvh8Jtg9P0eqFREGur2Cf15tcy778qzWq385bPTZ9C0Qe352wV9IXUrfHitPYOG3QijH/BApSLSUMa5mPdn0F8/28qKpIw6j7Nn0DbneZAySMRr3e4j52IPfn76DJo6qD3/Z8sgx3nQDTBGGSS+yW0bi0rj9IyN5ETfazlujQRgWtBKulmO2V7/ZN0Rjpww9yqsp77bzecbjtZ5zMjubXjy8kEE5SbDvMuhOM94oc9UuOBJo0GoiHidnrERZPe9lkxrFADTglbR3ZJie/3T9UdMvxq9Phl0dvcYnqo1g55SBol4qR7tIsjpO5OMigyaGrSaHhb7/++fbTA/g57+LqleGfT0FYMJyj1SJYMuUAaJeLEe7SLI6Vd7BnnDncHPLE3isw1H6jxmRDfHDJoBRRVXi/aeogwS8WLd20WQ55BBF3hhBv13aRKfrj99Bj1TawY9rQwSn6VFdC9024SBvF5xNXqwxcodIV/YXistt/Ly8n1mlcb7qw7x0o91//zE+EhenTWM8OIceH8G5KcaL3Q8Cy57HYKCPVCpiDTW7RMG8HrZBQAE1ZRBP3l3BvWJi+TV64bXkEFnKoNEfMDvzx/AGxXzoCCLlT9UyaD/mTgPmrf60Gl7sztn0GWQV3ExRMcz4bI3INj/76wU8WW3TzhdBpl3Jei81Yd44TR9kXvHRTB31nDCS3KNxavKDOowHGa8qQwS8XKO60E1nYuZmUHzVx/meWWQBDAtonuh3nGRpPW5jmyrsfPy9KBf6GRJs73+8bpkUk6zkZ47fLc9lTlfbKvzmPbRzXjrxjOJKs+DD66CzN3GC216wjUfQVgLD1QqIk3RKy6S9MTrOGGNAODioF+dMuiTdcmn3czTHeqbQW/fdCbR1ioZFNMDrlYGifiCnrGRZCRe65BBv9HZIYM+XW9OBi3dkcbDC+vOoPgoYx4UTT58cLUySMQHnS6DzLoz+Pt6ZtDbN55lz6CMXcYLMT3gmo+VQSI+oGdsBJl9ryPL4VysiyXV9rqZGfTQwq11HlN7BnXXepD4BS2ie6nZ5w/izdIpAIRYyvl98CLbayVlVl7x8JWgm5KzueuDjZRbaz8mslkI79x0Fu2LDsJr50HyauOFlrFw7Wdu2RlXRNzjtgmDebN0MmBk0B+qZpCHrwStbwa9fWNNGdTOyKCWbTxSq4g03ewJg3mjjnnQyx6+CmtzcjZ3fbCh7gwKD+Htm84kofhQRQatMl5QBon4nNvOd86gPwSbe2fw5uRs7mxoBh1eabygDBLxObdNGMSbFXcGB1usTudiZmTQliOuyKC2nilWxI20iO6lEuOjSO41i1xrcwBmBK8gAfsGVh+uSSY1p9AjtaRkn+LWd9dRVFpe6zFhwUG8Nms4vU+sgNcnwIkDxgst2sLMT6B1V4/UKiKu0Sc+kqO97Rl0WZUM+mhtMsdyPHMlaH0zaO51w+mTXVMGfQox3TxSq4i4Rp/4SFL6XEeu1bhiqWoGfbz2iMcy6FjOKW55dx2FJXVn0KuzhpGY/Qu8Ph6y9hsvVM6DlEEiPqV3XNUM+pkO2DfR8+SdwcdyjHlQvTIo51djHqQMEvFpveMiOdbbnkGXBv9MR4s5GZSaU8gt79SdQaHBlloyqI1xF0xMd4/UKuJuWkT3YrdOHMq7ZRMBCLOUcVvIl7bXisvKPXI1ekFRKbe8s46MvKI6j3vmikGcnfwmfHgNFOcbT8YPgtnLIWGI2+sUEde7deJQ3imbBBgZdHuVDHr1p/1ur6G+GfT05YMYeUQZJOJPbj1/KG87zIOqZpAn7og5WVy/DHrq8kGcc/StWjJoqNvrFBHXmz1xKG9VzINCq2SQp+4Mrsyg9Hpl0NtG+4TKjYzjB8LsH5VBIj7q1olDnDPIhO4EJ4tLueXdtafNoKcvH1w9g+IGGvOgDme4vU4RT9EiuhfrlxDF/h7XU2ANB+Cq4OW044Tt9Q/WHGbV/uNYrXXcU9ME5eVW7v1oEzuO5dZ53D8md2Xa7gfhx8fsT/a/FG76Flp1ckttIuJ+fdtHcaDnLFsGXRm8nFiHDJq/5jAr93lHBl2YpAwS8Td920dxsOcs8q3NgOoZ9MHaZI9k0PaUujPo75O6clHS3+CHx4CKWpRBIj4vMT6KQz2vt2XQFcHLiSPL9vqHa5L5bV+mWzPovo82NyCDHsWeQZdUZFBnt9QmIu6XGB/F4V72DLo8+CePZ9D9H29m29G6M2jOpC7VM6jfdLhZGST+R4voXu6micN5v2wCAOGWEm4LWWx7rai0nKvmrmLsk8v579IkDh0vcOnPfuq73Xy3I63OY+47sxk37JwNOyr7BFpg/Bxj12VtGiHi8246fzjvlZ0PVM+g4tJyrn7NyKBnliZxMNPzGXTvcGWQiD+7eeJw3j9NBo158ke3ZNDTS3fz7fa6M+ie4eHcsGs27FhY8YwySMSf3DzxDId5UKlzBpWVc81rq92WQc8sTWLJ9tQ6j7lneDg37L7NOYPOexhmvAVhLV1aj4h43s3nD3PKoKp35bkzg/77fRLfbKs7g/44LJwbd99ePYMuf1sZJH5Ji+hebkCHaHZ3u55CaygAM4OX0YYcp2MOZ53kuWV7GPvkci57+TfmrT5EzsmSJv3czzcc4X+nuU36jm6p3LXvVkir2CU+LBKu/hBG3w8WS5N+voh4hwEdoknqfj2nrGEAXFNLBj2/bA/jnjIy6P1Vh8g+Wdykn1ufDPpD11Tu3q8MEvFn/ROiSepRdwYlZ52yZdCl//vVJRm0YOMRXvrx9Bn0x/2zsSiDRPxW/4Ro9lTJoLYeyKCFG4/y4o91b6D8+65pRgalbjWeCIuEqz+AMQ8og0T8RL+EKPY6ZNDVwT/QjmynY9yRQV9sOsoLP5wug1K554AySAKLFtF9wA2TRvBB2XkANLcUc3PIN7Ueu/7QCf5vwTbO/Of3/P799SzdkUZxHZvx1WTdwSz++tnWOo6w8kDrn3kg7c9YTh43norpAbcugz6TG/SzRMT73TjROYNuCfm61mPXHzrBQwu3cdY/l7k9g/6UrgwSCQQ3nn8W88vGA0YG3VpHBm04nO2UQd9tT21wBq0/lMVfPq0rg+D+ahnUXRkk4qduPP8s5lVkUDNLSZ3zINdk0An+/NmWOo+5r/Uv/Dn9T84ZdMv30GdKg36WiHi/Gyc6Z9DN9cyg299rfAb96dP6ZNCflUEScLSI7gMGdWzFli43UGQNAWBW8HdEk1/n9xSXlfPNtlRufXcd5/xrGS/9uJecU6e/Oj056yS3vbee4rKagzaUUp5p/jZ3nnoZS3mp8WSP8caJY7s+DfvFRMQnDOwYzbau9gy6Lngprcir83uUQSLiKgM7RrOj6/UUVdyVd20DMmj2e+sblEFHTpxk9rt1Z9DTzd/iLqcMOg9u/UEZJOKnjAy6wZZB1wV/59YMuu29dbUuelVm0N2n/lc9g2ITG/aLiYhPGNAhmp3dHDNoKa2pu095cVk5S7YbGTTyiWW8+MMeZZCIC2gR3Ufce+k4Flp+B0CEpZCb6rgavarM/GKe/HY3o/71A/9ZsovM/Jp3Vs4vMnZ/P15Q860/Iyw7WRz+f1xqXWp/8py7YeYn0Lx1/X8ZEfE59146loUW42p078qgu5RBIgHgnkvHssAF86B/L9lFRl7jMugsy06+DH+Iy6pm0DXKIBF/d++lY/i8Yh7U0lJU553BVTU0gzLzG5BBI+9UBokEgHsuGcOCRmbQ8YJinvouiXP/9QP/+qb2DCpQBomclsXqrq18TZabm0t0dDQ5OTlERUWZXY5LJO/fTcK7IwmmjDKrhbll0/hv6QyKCW3Q+4SHBHHVmZ24dUx3OrY2Nr0qK7cy+911LNuVXu34WE7wt9B5TA/+zf5kcDhc9AIMvrJJv5OIt3B1ZgRCBr1WNo3/ll5GEWENeh9lkEh1yqDTSz6wm/bvnEMIpV6SQc/D4Kua9DuJeAtl0Ok5ZlC51cLcsqn8t3RGozLoyjM7MbtKBt323nq+31l9M+N2nOBvofO5JPhX+5PB4XDhczDk6ib9TiLeQhl0ekcOJhH/9kiXZdCto7vTKcbIoPJyK7OVQRLA6psZWkT3Nd/8FVa/bHu4u7wj95fczjZr9wa/VUiQhYuHdOD343rw0drDvPbzAefXKeWG4G+5J+QzIiyF9hfaDzECM2FII38JEe+jiVs9LXkQVv3P9jCpvAP3lfzewxk0GC58XhkkfkUZVE9L/garXrI9dE0GdefjdUeYu2K/8+t1ZtBzkDC00b+GiLdRBtWTmzLok3VHeLWGDLo++FvuCfmcSMsp+wvKIPFDyqB6+vb/YOWLtodJ5R24v+T3bG1EBv3/9u49OMp6v+P4ZxOScE+ASC6SQFAuU4FwDCZSq9Mp4dZqQS2COjVSBwsSPYCeGek5AnZ6jIoyFIpw+oekzqGIOAcZtYcZDSQeIYSKOToCpmAzEk4uSCgkAiFk99c/EhaCWZLsbvJc9v2a2Rl49jLfXx7n7fLLk2x0lEdzJqfqmb+8TTsPn9JvSmgQIheb6G6Nps8rHdgg7XtF8rb+mI3XE62tUQ/r1Qv3q0V9uv2SHo90438FU6OO6J/7FGpM1J/8x0y/IfJMWyXdmSdFRYe0DMBueOPWRR00yKdovR1Ng4BQ0KAu8nmlAxulfb/u8Qa93KdQY69vUN8EeXJX0yC4Eg3qIp+3dQNr77+0a9DWtgZd6ekGTVslZT1Jg+A6NKiLAjSoMPohFVx4IKgGdeTuqKN6uU+hxkWd8h+jQXAzNtHdGs2r6o5IuxZLtdc+NfnHoXdoc8IvtPVEP11s9gb1ssmq169itun+6IP+Yz555PtZnvpMXy31Hxry6IAd8catm+qOSrv+sX2DhtyhzUN6qEGTn1CfGWtoEFyLBnVTwAa9oK0n+ofUoF/GbNMDNzTIO/kJxUxfLQ0YFvLogB3RoG6qOyp9sFiq+cp/6GqDCk/014UgG5Sks/pVzG9pECIODeqm08da3we1a9CfacvQX2jr8dAa9MuYbfrb6FL/sdZ/i/29+kxfQ4PgWmyiuz2aktTSLP3hDemzNyTTFsnoWDXft1IfDXxY/1Fapa9One/SS8WoRU9F/5ee7bNLAzzXPmjiG88YJS/4NyWOu7snVgDYBm/cguC90tqfz9be0KAX9fGgv1PhARoEdBUNCoL3ivSHN1sb5GtpPRZCg/4h+vd6rs/vOmjQBiWO+/OeWAFgGzQoCJ01qPSUvqo616WXokGIdDQoCB01KCpGzfe9qN8Pmqe3D4beoCOe25W0YCMNguuxiR4J0bzqT19KHyyRfvj22rER2TJzN2v//yXoreITOvBdfdsdRolqUIanRhlRNRrtab1NiKpUques/+n1ZpDWmUe1YNE/aWIan7QM9+ONWwiqy1t/MuYnDXpLB84N0aZ9wTdo/qKVmpTG1edwPxoUgupyadcS6Ydj146NuEtm7uagG3TWDNSbvsf0yKKVykynQXA/GhSC6j+2vQ/quEFvFZ/Q/hOBGlSr0Z5qGoSIR4NCcJMGlZ4bok2dNCij7X3QrZ56/9NpECKNKzbRN23apLVr16q2tlaZmZnauHGjsrOzu/TciIqmJF1pkopfkfZvkNR2Svv0k/5iuSTpbNVRna86pmGXT2rw9R8KcQOv8ei33lyta5mngsfv019PTOmF4QHr8cYtRF1p0KljGtZUpcGeiwFfxms82ubN1Zst8/TKY/fpbybRIEQGGhSigA1aJskTVIN+/di9un9Sam9MD1iOBoWo5XLr58Uc2CAZX+uxIBrkMx5t807TGy2P0CBEFBoUopbLUnGBtP9fr2tQ37Z/i9EgoDOO30TfsWOHnnjiCW3ZskU5OTlav369du7cqYqKCg0fPrzT50dcNK86ebD1qvSz/9v5Y69z2cSozDder7U8qiNmlJ6fPlbPThvTQ0MC9sMbtzAJoUGHfOP0astjOmJGacX0sXqOBiGC0KAwOVnW+nuKQ2zQ8tyx+nkuDULkoEFhEnKDHtURk0GDEHFoUJhUHWq9Kv3sd9162mUTo//2jVVBy2M6YjK0LHeMluWO7aEhAfvpajPC89G9PWDdunVatGiRFi5cKEnasmWLPv74Y7399tt68cUXLZ7OxtLvlhZ/Ln26Rjr07zfc6ZES0qRhY9Q4YJSK6wfrd9/31f+0JKtaw2QUJUmaPyVN+X91e6+PDsAFwtCgR6aM0LM0CEAw0nPaGvSydOg3N9x5tUG3q3FARmuDTvbV8ZZkVZth8rU1aF7WCD03jQYBCEJ6jrR4v1T0slS25YY7r2vQwAwVn6FBAMIsLbv1fVBnDRowSsX18QEb9HMuZgI6ZMsr0Zubm9W/f3+9//77mjt3rv94Xl6ezp07p927d3f6GhH7ncfrVZe3fidycKo07HZpSIYU07fdQ+oamvSfZSdVVlmvfjHRmj0xRfOyRsjj8Vg0NGANrn7oAVcbNChFShzTYYNONzRp2/UNmpCieVNoECIPDeoBNAjoMhrUA2gQ0GU0qAdU/1GqKmtt0LDbpaGjO23QrAnJemRKGg1CxHH0lehnzpyR1+tVUlJSu+NJSUn69ttvO3zO5cuXdfnytU8Rbmho6NEZHSH1Z623m0ga3FfLp/NjOkCoaFAHutCg4TQICAsa1AEaBPQaGtQBGgT0GhrUgdTJrbeboEFA90RZPUC4FBQUKD4+3n9LS0uzeiQAEYQGAbASDQJgJRoEwEo0CEBvsOUmemJioqKjo1VXV9fueF1dnZKTkzt8zsqVK3X+/Hn/raqqqjdGBQBJNAiAtWgQACvRIABWokEAeoMtf51LbGyssrKyVFRU5P+d6D6fT0VFRcrPz+/wOXFxcYqLi+vFKQHgGhoEwEo0CICVaBAAK9EgAL3BlpvokrRixQrl5eVpypQpys7O1vr163XhwgUtXLjQ6tEAAAAAAAAAABHCtpvo8+fP1w8//KBVq1aptrZWkydP1p49e37yYaMAAAAAAAAAAPQU226iS1J+fn7AX98CAAAAAAAAAEBPs/UmeiiMMZKkhoYGiycB4ARXW3G1HaGiQQC6gwYBsBINAmAlGgTASl1tkGs30RsbGyVJaWlpFk8CwEkaGxsVHx8flteRaBCA7qFBAKxEgwBYiQYBsFJnDfKYcH2rz2Z8Pp+qq6s1aNAgeTyeTh/f0NCgtLQ0VVVVafDgwb0wYc9jTc7hxnU5bU3GGDU2Nio1NVVRUVEhvx4NYk1O4sZ1OW1NNCj8WJNzuHFdTlsTDQo/1uQcblyX09ZEg8KPNTmHG9fltDV1tUGuvRI9KipKI0aM6PbzBg8e7IgT3B2syTncuC4nrSkcVz1cRYOuYU3O4cZ1OWlNNKhnsCbncOO6nLQmGtQzWJNzuHFdTloTDeoZrMk53LguJ62pKw0K/Vt8AAAAAAAAAAC4FJvoAAAAAAAAAAAEwCZ6m7i4OK1evVpxcXFWjxI2rMk53LguN66pJ7nx68WanMON63LjmnqSG79erMk53LguN66pJ7nx68WanMON63LjmnqSG79erMk53LguN65JcvEHiwIAAAAAAAAAECquRAcAAAAAAAAAIAA20QEAAAAAAAAACIBNdAAAAAAAAAAAAmATHQAAAAAAAACAANhEb7Np0yaNGjVKffv2VU5Ojg4dOmT1SEFbs2aNPB5Pu9v48eOtHqtbPvvsMz3wwANKTU2Vx+PRBx980O5+Y4xWrVqllJQU9evXT7m5uTp+/Lg1w3ZRZ2t68sknf3LeZs2aZc2wXVRQUKC77rpLgwYN0vDhwzV37lxVVFS0e0xTU5OWLl2qYcOGaeDAgXr44YdVV1dn0cT2RYPshQbRoEhDg+yFBtGgSEOD7IUG0aBIQ4PshQbRILtiE13Sjh07tGLFCq1evVpffvmlMjMzNXPmTJ0+fdrq0YJ2xx13qKamxn/7/PPPrR6pWy5cuKDMzExt2rSpw/tff/11bdiwQVu2bFFZWZkGDBigmTNnqqmpqZcn7brO1iRJs2bNanfetm/f3osTdl9JSYmWLl2qgwcP6pNPPtGVK1c0Y8YMXbhwwf+Y5cuX68MPP9TOnTtVUlKi6upqPfTQQxZObT80yH5oEA2KJDTIfmgQDYokNMh+aBANiiQ0yH5oEA2yLQOTnZ1tli5d6v+71+s1qamppqCgwMKpgrd69WqTmZlp9RhhI8ns2rXL/3efz2eSk5PN2rVr/cfOnTtn4uLizPbt2y2YsPtuXJMxxuTl5Zk5c+ZYMk+4nD592kgyJSUlxpjW8xITE2N27tzpf8yxY8eMJFNaWmrVmLZDg+yNBjkHDQoODbI3GuQcNCg4NMjeaJBz0KDg0CB7o0HOEQkNivgr0Zubm3X48GHl5ub6j0VFRSk3N1elpaUWThaa48ePKzU1VaNHj9bjjz+ukydPWj1S2FRWVqq2trbdOYuPj1dOTo6jz5kkFRcXa/jw4Ro3bpyWLFmi+vp6q0fqlvPnz0uShg4dKkk6fPiwrly50u5cjR8/Xunp6Y4/V+FCg5yHBtkXDeo+GuQ8NMi+aFD30SDnoUH2RYO6jwY5Dw2yr0hoUMRvop85c0Zer1dJSUntjiclJam2ttaiqUKTk5OjwsJC7dmzR5s3b1ZlZaXuvfdeNTY2Wj1aWFw9L246Z1Lrj+688847Kioq0muvvaaSkhLNnj1bXq/X6tG6xOfzadmyZbrnnns0YcIESa3nKjY2VgkJCe0e6/RzFU40yHlokD3RoODQIOehQfZEg4JDg5yHBtkTDQoODXIeGmRPkdKgPlYPgPCbPXu2/8+TJk1STk6ORo4cqffee09PPfWUhZPhZhYsWOD/88SJEzVp0iTddtttKi4u1rRp0yycrGuWLl2qb775xnG/bw3hR4OciQbBLWiQM9EguAUNciYaBLegQc5Eg5wh4q9ET0xMVHR09E8+Hbaurk7JyckWTRVeCQkJGjt2rE6cOGH1KGFx9by4+ZxJ0ujRo5WYmOiI85afn6+PPvpI+/bt04gRI/zHk5OT1dzcrHPnzrV7vNvOVShokPPQIPuhQcGjQc5Dg+yHBgWPBjkPDbIfGhQ8GuQ8NMh+IqlBEb+JHhsbq6ysLBUVFfmP+Xw+FRUVaerUqRZOFj4//vijvvvuO6WkpFg9SlhkZGQoOTm53TlraGhQWVmZa86ZJJ06dUr19fW2Pm/GGOXn52vXrl3au3evMjIy2t2flZWlmJiYdueqoqJCJ0+edNW5CgUNch4aZB80KHQ0yHlokH3QoNDRIOehQfZBg0JHg5yHBtlHRDbI0o81tYl3333XxMXFmcLCQnP06FHz9NNPm4SEBFNbW2v1aEF5/vnnTXFxsamsrDT79+83ubm5JjEx0Zw+fdrq0bqssbHRlJeXm/LyciPJrFu3zpSXl5vvv//eGGPMq6++ahISEszu3bvN119/bebMmWMyMjLMpUuXLJ48sJutqbGx0bzwwgumtLTUVFZWmk8//dTceeedZsyYMaapqcnq0QNasmSJiY+PN8XFxaampsZ/u3jxov8xixcvNunp6Wbv3r3miy++MFOnTjVTp061cGr7oUH2Q4NoUCShQfZDg2hQJKFB9kODaFAkoUH2Q4NokF2xid5m48aNJj093cTGxprs7Gxz8OBBq0cK2vz5801KSoqJjY01t956q5k/f745ceKE1WN1y759+4ykn9zy8vKMMcb4fD7z0ksvmaSkJBMXF2emTZtmKioqrB26Ezdb08WLF82MGTPMLbfcYmJiYszIkSPNokWLbP8/7o7WI8ls3brV/5hLly6ZZ555xgwZMsT079/fPPjgg6ampsa6oW2KBtkLDaJBkYYG2QsNokGRhgbZCw2iQZGGBtkLDaJBduUxxpiuXrUOAAAAAAAAAEAkifjfiQ4AAAAAAAAAQCBsogMAAAAAAAAAEACb6AAAAAAAAAAABMAmOgAAAAAAAAAAAbCJDgAAAAAAAABAAGyiAwAAAAAAAAAQAJvoAAAAAAAAAAAEwCY6AAAAAAAAAAABsIkOAAAAAAAAAEAAbKIDAAAAAAAAABAAm+gAAAAAAAAAAATAJjoAAAAAAAAAAAH8Pxfe3QoZofJSAAAAAElFTkSuQmCC" + ] }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 13 + "source": [ + "fig = clf.plot_most_important_feature_on_ts(\n", + " X_test[y_test == \"1\"][0, 0], clf._classifier.coef_\n", + ")" + ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### 4.4.2 Interpretability of class `2`" + "#### 4.4.2 Interpretability of class ``2``" ] }, { "cell_type": "code", + "execution_count": 14, "metadata": { "ExecuteTime": { "end_time": "2025-02-19T16:46:24.666511Z", "start_time": "2025-02-19T16:46:24.387533Z" } }, - "source": [ - "fig = clf.plot_most_important_feature_on_ts(\n", - " X_test[y_test == \"2\"][0, 0], clf._classifier.coef_\n", - ")" - ], "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAEiCAYAAAAWHJuuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1w0lEQVR4nOzdd3gU1f4G8HdLeiWBVELoLfTeuxTBhmDDXn/3iopd77ViQb0WbNd+7QiCDVFROkhvofeSSjrpfXd+f0yS3U12N212p+z7eR4ez+5Mdg+KL99zZuYcnSAIAoiIiIiIiIiIiIiIqAG93B0gIiIiIiIiIiIiIlIqTqITERERERERERERETnASXQiIiIiIiIiIiIiIgc4iU5ERERERERERERE5AAn0YmIiIiIiIiIiIiIHOAkOhERERERERERERGRA5xEJyIiIiIiIiIiIiJygJPoREREREREREREREQOcBKdiIiIiIiIiIiIiMgBTqKTy+zevRujRo1CQEAAdDodEhMT5e4SEXkQZhARyYkZRERyYgYRkZyYQaRFnEQnl6iqqsLcuXORl5eHt956C19//TXi4+Ml/5709HQ899xzqgrk4uJiPPvss5g+fTrCwsKg0+nwxRdfyN0tIk1hBjm2e/duzJ8/HwkJCQgICECHDh1wzTXX4OTJk3J3jUgzmEGOHTlyBHPnzkXnzp3h7++Ptm3bYty4cfj111/l7hqRZjCDmu6ll16CTqdDnz595O4KkWYwgxzbuHEjdDqd3V87duyQu3vUCKPcHSBtOnPmDJKSkvDJJ5/gzjvvdNn3pKen4/nnn0fHjh0xYMAAl32PlHJycrBw4UJ06NAB/fv3x8aNG+XuEpHmMIMce/XVV7F161bMnTsX/fr1Q0ZGBt577z0MGjQIO3bs4CCSSALMIMeSkpJQVFSEW265BTExMSgtLcUPP/yAyy+/HB999BHuvvtuubtIpHrMoKZJTU3Fyy+/jICAALm7QqQpzKDG3X///Rg6dKjNe127dpWpN9RUnEQnl8jKygIAhIaGytuRFiovL4e3tzf0eukf1oiOjsaFCxcQFRWFPXv2NAhOImo9ZpBjDz30EJYsWQJvb++696699lr07dsXr7zyCr755hvJv5PI0zCDHLv00ktx6aWX2rw3f/58DB48GG+++SYn0YkkwAxqmkceeQQjRoyAyWRCTk6OS7+LyJMwgxo3duxYzJkzx2WfT67B5VxIcrfeeivGjx8PAJg7dy50Oh0mTJhQd/z48eOYM2cOwsLC4OvriyFDhmDlypU2n5GXl4dHHnkEffv2RWBgIIKDgzFjxgwcOHCg7pyNGzfWTUDfdtttdY/A1C6N0rFjR9x6660N+jdhwgSb/tQ+TrN06VI89dRTiI2Nhb+/PwoLCwEAO3fuxPTp0xESEgJ/f3+MHz8eW7dubfC5x48fR3JycqP/fnx8fBAVFdXoeUTUMswg50aNGmUzgQ4A3bp1Q0JCAo4dO9bozxORc8yg5jMYDIiLi0N+fn6Lfp6ILJhBTbN582asWLECixcvbvLPEFHjmEFNV1RUhOrq6mb9DMmLd6KT5O655x7Exsbi5ZdfrntEJTIyEoC4Dubo0aMRGxuLJ554AgEBAfj+++9x5ZVX4ocffsBVV10FADh79ix+/vlnzJ07F506dUJmZiY++ugjjB8/HkePHkVMTAx69eqFhQsX4plnnsHdd9+NsWPHAhAniFrihRdegLe3Nx555BFUVFTA29sb69evx4wZMzB48GA8++yz0Ov1+PzzzzFp0iRs2bIFw4YNq/v5Xr16Yfz48VyehUhmzKCNzf5uQRCQmZmJhISEFvWdiCyYQRub9H0lJSUoKytDQUEBVq5ciT/++APXXntti/pORBbMoI2NfpfJZMJ9992HO++8E3379m1Rf4nIPmbQxiZ932233Ybi4mIYDAaMHTsW//nPfzBkyJAW9Z3cSCBygQ0bNggAhOXLl9u8P3nyZKFv375CeXl53Xtms1kYNWqU0K1bt7r3ysvLBZPJZPOz586dE3x8fISFCxfWvbd7924BgPD555836EN8fLxwyy23NHh//Pjxwvjx4xv0tXPnzkJpaalNv7p16yZMmzZNMJvNde+XlpYKnTp1Ei655BKbzwVg87lN4az/RNRyzKDm+frrrwUAwmeffdainyciW8ygxt1zzz0CAAGAoNfrhTlz5gh5eXlN/nkicowZ5Nx7770nhISECFlZWXV9SkhIaNLPElHjmEGObd26Vbj66quFzz77TPjll1+ERYsWCeHh4YKvr6+wb9++Rn+e5MXlXMht8vLysH79elxzzTUoKipCTk4OcnJykJubi2nTpuHUqVNIS0sDIC55Urv+lMlkQm5uLgIDA9GjRw/s27fPJf275ZZb4OfnV/c6MTERp06dwg033IDc3Ny6/paUlGDy5MnYvHkzzGZz3fmCIPAudCIFYwbZd/z4cdx7770YOXIkbrnlFil+K0RkBzPI1oIFC7BmzRp8+eWXmDFjBkwmEyorK6X8LRGRFWaQKDc3F8888wyefvpptGvXzhW/FSKygxkkGjVqFFasWIHbb78dl19+OZ544gns2LEDOp0OTz75pCt+ayQhLudCbnP69GkIgoCnn34aTz/9tN1zsrKyEBsbC7PZjLfffhv//e9/ce7cOZhMprpzwsPDXdK/Tp062bw+deoUADidVCooKECbNm1c0h8ikhYzqKGMjAzMnDkTISEhWLFiBQwGQ4s/i4icYwbZ6tmzJ3r27AkAuPnmmzF16lRcdtll2LlzJ3Q6XYs+k4gcYwaJnnrqKYSFheG+++5rfieJqMWYQY517doVV1xxBX788UeYTCaOyRSMk+jkNrVX6R555BFMmzbN7jldu3YFALz88st4+umncfvtt+OFF15AWFgY9Ho9FixYYHO1zxlHAzBHoWR91dG6v//5z38wYMAAu58VGBjYpL4QkfyYQbYKCgowY8YM5OfnY8uWLYiJiWnxZxFR45hBzs2ZMwf33HMPTp48iR49ekj2uUQkYgaJk2Iff/wxFi9ejPT09Lr3y8vLUVVVhfPnzyM4OBhhYWHN+lwiahwzyLm4uDhUVlaipKQEwcHBkn0uSYuT6OQ2nTt3BgB4eXlhypQpTs9dsWIFJk6ciM8++8zm/fz8fLRt27butbM7ldq0aYP8/PwG7yclJdX1xZkuXboAAIKDgxvtLxEpHzPIory8HJdddhlOnjyJtWvXonfv3pJ+PhE1xAxyrqysDIB4gY+IpMcMAtLS0mA2m3H//ffj/vvvb3C8U6dOeOCBB7B48WJJvo+ILJhBzp09exa+vr68UVPhuCY6uU1ERAQmTJiAjz76CBcuXGhwPDs7u65tMBggCILN8eXLl9etkVUrICAAAOyGY5cuXbBjxw6b9TVXrVqFlJSUJvV38ODB6NKlC15//XUUFxc77S8griucnJzcpM8mIvdjBolMJhOuvfZabN++HcuXL8fIkSOb1B8iah1mkCgrK6vBe1VVVfjqq6/g5+fHi3pELsIMAvr06YOffvqpwa+EhAR06NABP/30E+64444m9Y+ImocZZP/nAODAgQNYuXIlpk6dWrcWPCkT70Qnt3r//fcxZswY9O3bF3fddRc6d+6MzMxMbN++HampqThw4AAAYNasWVi4cCFuu+02jBo1CocOHcK3337b4Iphly5dEBoaig8//BBBQUEICAjA8OHD0alTJ9x5551YsWIFpk+fjmuuuQZnzpzBN998U3dFsTF6vR6ffvopZsyYgYSEBNx2222IjY1FWloaNmzYgODgYPz666915/fq1Qvjx49v0mYS7733HvLz8+seI/z111+RmpoKALjvvvsQEhLSpD4SUfMwg4CHH34YK1euxGWXXYa8vDx88803NsdvvPHGJvWPiJqPGQTcc889KCwsxLhx4xAbG4uMjAx8++23OH78ON544w3egUXkQp6eQW3btsWVV17Z4P3aO8/tHSMi6Xh6BgHAtddeCz8/P4waNQoRERE4evQoPv74Y/j7++OVV15p3r9Qcj+ByAU2bNggABCWL1/e4NiZM2eEm2++WYiKihK8vLyE2NhYYdasWcKKFSvqzikvLxcefvhhITo6WvDz8xNGjx4tbN++XRg/frwwfvx4m8/75ZdfhN69ewtGo1EAIHz++ed1x9544w0hNjZW8PHxEUaPHi3s2bOnwWc466sgCML+/fuF2bNnC+Hh4YKPj48QHx8vXHPNNcK6detszgPQoG+OxMfHCwDs/jp37lyTPoOIHGMGOTZ+/HiH+cOygEgazCDHvvvuO2HKlClCZGSkYDQahTZt2ghTpkwRfvnll0Z/loiahhnUPOPHjxcSEhJa9LNE1BAzyLG3335bGDZsmBAWFiYYjUYhOjpauPHGG4VTp041+rMkP50g1HtGgoiIiIiIiIiIiIiIAHBNdCIiIiIiIiIiIiIihziJTkRERERERERERETkACfRiYiIiIiIiIiIiIgc4CQ6EREREREREREREZEDnEQnIiIiIiIiIiIiInKAk+hERERERERERERERA4Y5e6Aq5jNZqSnpyMoKAg6nU7u7hCRwgmCgKKiIsTExECvb/31RWYQETUHM4iI5MQMIiI5MYOISE5NzSDNTqKnp6cjLi5O7m4QkcqkpKSgffv2rf4cZhARtQQziIjkxAwiIjkxg4hITo1lkGYn0YOCggCI/wKCg4Nl7g0RKV1hYSHi4uLqsqO1mEFE1BzMICKSEzOIiOTEDCIiOTU1gzQ7iV77yE5wcDBDk4iaTKrH/ZhBRNQSzCAikhMziIjkxAwiIjk1lkHcWJSIiIiIiIiIiIiIyAFOohMREREREREREREROcBJdCIiIiIiIiIiIiIiBziJTkRERERERERERETkACfRiYiIiIiIiIiIiIgc4CQ6EREREREREREREZEDnEQnao7sE8DOj4GSXLl7Ip1Ta4FPJgN7v5S7J0TUGGYQEckp+6T2Muh0bQZ9IXdPiKgxWs6gPZ/L3RMiaowmM2gdM6gZjHJ3gEg1TNXA11cBhWlA6i7g6k/l7lHrmaqBX/4JFGcCaXuBqD5A7GC5e0VE9phNwNezgcJUIGUnMOczuXvUeqZq4Jd7geIMZhCR0plNNXVQKpCyA5jzP7l71HpmE/DLfKDogphBkX2B9swgIkUym4BvZgMFKdrNoKh+zCAipbLOoOTtwFwNTDrXZVA6M6iJeCc6UVPlnBAn0AHxap0gyNsfKZzdIE6gAwAE4NcF4qQWESlP9glx8goAzmglgzaKE+gAmEFECmeTQes1kkEbxMkrAIAArHqAGUSkVDknxckrQLsZ9CsziEixck5pMIM2ihPoAJhBTcNJdKKmSttnaZflAflJ8vVFKolLbF9nHAR2fSRPX4jIuXTrDLoIXDwvW1ckc4AZRKQaDTLonHx9kUrid7avMw4BOz+Upy9E5FyaB2RQ5iFg5wfy9IWInLOug8rzgbyzsnVFMgeYQc3FSXSiprIOTUB83EXNyvKB47+Jbe9AADqxvf4loCBVrl4RkSNpGsug8gJmEJGaNMigffbPU4vyAuD4KrFtnUEbXgbyU2TrFhE50GAsxgwiIjfSXB1UCByrySCvANhmULJs3VI6TqITNZXWQvPIT4CpQmwPmAcMvlVsV5UAfzwuW7eIyIH6g8f0/fL0QypHfgKqy8X2gBuAIbeJ7aoS4PfH5OsXEdmntQmsIz9bMqj/9cCQ28U26yAiZdLcWOxnBxlUCvz+qDaWiiDSkgZjMZVn0NGfgeoysT3gemDoHWK7qlQcizGD7OIkOlFTVFcAmUds31P7BJb1ozsDrgemPAsERIivj6+y3CFKRPKrrgAyDtu+p/bBo/UjzP2vByZbZdCJ3yx3RhCR/OxlkNoHj/XroMnPAIGR4mtmEJGyVFcCmVrLoKWWdv0MOvmH5S51IpJfdaW45Js1TY3FbmAGNREn0YmaIuMwYK6yfS89UdzNWI1yzwApO8V2u15A9ADArw0wfZHlnN8fBSqKZOkeEdWTaSeDLiSqd+OXvLNAyg6x3a4nEDMQ8Au1zaA/HmMGESmFvQxKT1R3BiVvF9ttewAxg5hBREqWeRgwVdq+p+oMOgckbxPbjjLod2YQkWJkHWmYQRcOaCSDugOxgwDfEGD6K5ZzmEF2cRKdqCms73TQGcR/VpUA2Sfk6U9r1b/zQVez/lWfq4Euk8R2YRqwYVHDnyUi90uzl0GlQI4GMqh//QyaLLaZQUTKYS+DqsuA7OPy9Ke1DiyztK3roITZ9TLoZff3jYgasjcWU3UGORiLJcwGuk4R20Xp4j4xRCQ/h3XQMXn601oHreog67FYwlVA10vENjPILk6iEzWFdWj2nGlpq/ExQrPZUrjp9EC/ay3HdDpg5huA0Vd8vfMD8QorEcnLevko6wxS42OEZrNlGQVmEJE6pCda2pqog5qaQR/a/t6JSB6O6iAtZtClr1syaNdHzCAiJUh3MB+kxrGYIFgtaaezUwe9Dhj9xNe7PlL/MsYS4yQ6UVPUhqbeCAy6xfJ+2l55+tMaSVuBgprdlrtMAoKibI+HdQbGPSK2BTPw6wL1LltDpBVpVhk0WOUZlLzNsuN754lAcLTt8bBOwLhHxbZgBn59gBlEJLd0LWXQdiA/SWx3ngAEx9geD+sEjK/Z3FgwA6sWMIOI5JZWM4njiRnEOohIfrUZpDNoI4MunhfbnScAIbG2x9t0rJdBC5hBVjiJTtSYiiLLsi2RCUCH4QBqHndR45VH6420+l9v/5xRD4jr8wHiwHn3Z67vFxHZV1FsWbYlojcQZ5VBarwDy3oTmwE32D9n1P3iWumAePcDM4hIPpUlliUTInoBcSPEuycBldZBSyzt/g4yaOR99TLoU9f3i4jsqyyxLJmgiQxqwlhs5H3ivlWAuAfOrk9c3i0icsAmg3oDHUZaMkiVYzHrOsjRfNB94u8VYAbVw0l0osZcOAhAENsxgwCfIHHzBQDIPAJUlcvWtWarLAGO/iK2fYJtH0WyZvQGLltseb1uIVB4weXdIyI7Mg6KdwEA4qYvPkFAu5qLXKrMoJ/FtncQ0ONS++cZvYFZiy2v1y0ECtNd3TsisufCAUsGxQwCfAItF9qzjqosg0qBIzV1kHeQ8zrIJoNeYAYRyeXCwUYyqEy+vjVXZSlw5Gex7R0E9Jxl/7z6Y7H1LzKDiOSScchqLDYQ8A6wXGjPVHMGBQK9HGSQwcu2Dlr/AlCQ5ureqQIn0YkaY311MXaQ7T/NVeJu8WpxbBVQWSy2E64EvPwcnxs/Chh4k9iuLAJWP+Hy7hGRHdZ3WcUMsv2nuVos7NTi+G+2GeTt7/jc+JHAoJvFNjOISD5pzuogNWZQkdhOuIIZRKQGTsdiGs6gDiMsy4hWFgF/PO76/hFRQ87GYoKp5qZLlTjxuyWDel8pXhBwpMNwYPCtYruyGFjNDAI4iU7UOJvQHCj+M3aw/eNK15RHmK1dshDwDxfbR38GTv7lkm4RkRPp9jJokP3jSmf9+KCjpVysTXke8G8rto/+Apz80zX9IiLH0u0MHq0zSE3rgTa3DmIGEcnP7lhskP3jStfsDHrOkkHHVgInVrukW0TkhGbHYg6WcrE25TkgoJ3YPvYrcOIPl3RLTTiJTtSY2lA0+lnWpotRYWgWpAJnN4ntNh3Fuxsa4x8GTHvZ8vq3h8XlGIjIfWoHh0ZfcS1QQJ2Dx4I04OxGsd2mo7ieYGMaZNAjzCAid7OXQWqsgwrTLRkUGs8MIlKLdOsMqlmj15MyaPoiy+vfmUFEbldbBxl8xD3yAHWOxQovAGc3iO3QDkCHUY3/jF8bYJp1Bj3q8RnESXQiZ0rzLDsXR/cDDEaxHdUH0HuJbbXcgXVwGerWdu9/PaDTNe3n+l0LdBontguSgU2vuqR7RGRHaR5w8ZzYjuonrk8HAJGelEHXAJ3Gi21mEJF7Ocsgg7fYVsvg8eAyy5qm/a8H9E0cBtXPoI2vuKZ/RNRQ2UUg76zYjurrIIPUUgd9b5VB1zU9g/rOBTpPENsFKcDGRU5PJyIJleUDeWfEtnUGRSSoMIOs6qB+zcmgOcwgK5xEJ3LG3iPMAGD0ESfSASDnFFBe6N5+NZcgAInWO8Ff1/Sf1emAmW9a/pLY/r64mSERuV76fks7tn4G9RXbuaeA8gL39qu5BAE4IFEGbXsPyFDRXhREamadQbWPMAPipnfWGVSW79ZuNZvUdRAziMg9bDLIug6yzqDT6sigVtdBPuLr7f9V1zrwRGrmcCzmLd5cAIiT7Mwgj8FJdCJn0hyEJmBVyAnAhUR39ahl0vaKg1wAiB8tLqXQHG27AWMfFtvmamDTa5J2j4gccHQhD6i3Fl+iW7rTYmn7gJyTYrtFGdQVGPuI2BZMwOb/SNo9InLA3oZ+tawzSel1UPo+IOeE2O4wCgjr1Lyfb5BBrIOI3MLexsa1VJVB+4Hs42K7w0ggrHPzfj68CzDOKoM4FiNyjyaPxfZD0awzKG6EmCnNEd4FGPeo2BZMHv1kMCfRiZxpamgq/REem6uOTdhAwp7RCyybShxfBRRntbpbRNSIJl3Ig8oyqBl3Plgbs4AZRORuaQ7uAgXUtR7ogaWWtiQZ9BtQlNnqbhFRIxzdiQ544FjsASAgQmyf+J0ZROQOTb2Qp/gMsqqDmrKhqD2j7wcCI8X28d+BoozW90uFOIlO5ExtaPqENLxjIHZww/OUqLoCOLRCbBv9gN5XtOxzvHyBAfPEtrka2P+NNP0jIsdqL+T5BANh9e4YsM4gJW+qVV0BHLbOoCtb9jlGH2DgjWKbGUTkHtYZFN7V9phNHaTgwWN1pVUd5AskXNmyz6mfQYnMICKXS2tqBim5DnJRBu3/WpLuEZETtRfyvIOA8G62x2zGYgq+E726Eji0XGwbfICEq1r2OdYZJJg8NoM4iU7kSGE6UFxzdS1mQMONF9p2B7wCxLaSQ/PkaqA8X2z3mgX4Brf8swbfamnv/QIwm1vRMSJyqvACUHRBbNvNoG6Ad6DYTlNyBv0pbgwGtD6DBt0CoGZDUmYQkWtZZ1B0/4YZFN5NHFQCyq6DTv0JlOWJ7Z6zAN+Qln8WM4jIfYoygKJ0sa3qDPrLKoNmti6DBltl0L4vAbOp1d0jIgeKMoHCNLFtbywW3lW8wAco+0KelBlkUwd95ZEZ1OxJ9M2bN+Oyyy5DTEwMdDodfv75Z5vjgiDgmWeeQXR0NPz8/DBlyhScOnXK5py8vDzMmzcPwcHBCA0NxR133IHi4mKbcw4ePIixY8fC19cXcXFxeO01rvtFbubs0R0A0BvEMAXEXYqVurRAogSPD9YK6wR0mSS285OAs+tb93lE5Jiz5aQAMYOiB4jtwlTlPtYrxSPMtZhBRO7jbD10QBxM1tZBhWnKzSDrOqiljzDXssmgZOAMM4jIZRodi9XPIIUuLWBTB93Qus9q0xHoOllsM4OIXMtmLDaw4XG9XrzAB4gX/AovuKdfzWWdQQNam0HxQNcpYrsgGTi9rnWfp0LNnkQvKSlB//798f7779s9/tprr+Gdd97Bhx9+iJ07dyIgIADTpk1DeXl53Tnz5s3DkSNHsGbNGqxatQqbN2/G3XffXXe8sLAQU6dORXx8PPbu3Yv//Oc/eO655/Dxxx+34LdI1EKNTWAByl8PtDgbOL1GbAfFAJ0ntP4zB99mae/5vPWfR0T2NTZ4rP++Epd0KckR734ApMugIcwgIrdIa2YdpNgM+lNsB0UDnSe2/jOtM2gvM4jIZbQwFivJFZ/IA4DAKKCLBBnEsRiRezRpLKbw5TVtMiiSdZAEmj2JPmPGDLz44ou46qqG6+gIgoDFixfjqaeewhVXXIF+/frhq6++Qnp6et0d68eOHcPq1avx6aefYvjw4RgzZgzeffddLF26FOnp4uNa3377LSorK/G///0PCQkJuO6663D//ffjzTffbN3vlqg5mhKaMQofPB5aLq6ZBwD9rhHvXG2tHjPEIhAATvyh3CuuRGqnhcGjKzKo+3RmEJE7pDvZ2LiW0jfVOrTCNRkUFC22T/whLv9HRNJrbgYpcSx2eAVgrhLbrsigk6uBgrTWfyYRNaSFsVj9DDIYW/+Z3aaJN0cBHplBkq6Jfu7cOWRkZGDKlCl174WEhGD48OHYvn07AGD79u0IDQ3FkCFD6s6ZMmUK9Ho9du7cWXfOuHHj4O3tXXfOtGnTcOLECVy8eNHud1dUVKCwsNDmF1GLCYKlcAuIAIJj7Z+n9F3hpVxGoZbBCxh0k9j24A0l6mMGkaRsMqgdENLe/nlKn8ByWQbdLLaZQXWYQSQpQbAMHv3bAiFx9s9T+uDRVRk00KoO2scMAphBJDFBsGRKkzNIgXVQ4hJLW7IMMrIOsoMZRJKyyaBwILSD/fNUNRZr5VIutWwyyAzs+0qaz1UJSSfRMzLEdcgiIyNt3o+MjKw7lpGRgYiICJvjRqMRYWFhNufY+wzr76hv0aJFCAkJqfsVF+fgL1qipsg7a9mMM3YQoNPZPy80XgxVQAxZQXBL95ok8wiQcVBsxwwEInpK99mDboZlQwluagMwg0hiF89ZNuOMcZZBHcTBJSBOeCkqg44CFw6IbVdkkK6mhGEGAWAGkcQunrdkkLM6KCROvNAHKC+Dso4BFxLFdvQAIKKXdJ9tnUH7PHNjrfqYQSSp/CTLRnhNzqD9Cs6g/kBkb+k+u34Gmaql+2yVYgaRpKwzyNlYLKS9eNMloMAMOm65KSuqHzNIIpJOosvpySefREFBQd2vlJQUubtEamb9+KCjR3cAMUxrj5fliWGrFDZ3Pkh01bFWaAeg21SxXZgKnF4r7eerEDOIJNWU5aQAMYNqj5ddFCe+lOKAKzMoDuh6idguTAVOrZH281WIGUSSasojzEC9OuiieAFQKazroNZupFVfaJxtHcQMYgaRtJqyJwOg7AxyxR2gtULai0sqAOKmqqeZQcwgklRLxmLl+eLNmEpxwIV1UEisJYOK0i17YHkASSfRo6LENUozMzNt3s/MzKw7FhUVhaysLJvj1dXVyMvLsznH3mdYf0d9Pj4+CA4OtvlF1GJNDc36x5XyKLOpGjj4vdjWewF950j/HTab+/1P+s9XGWYQSaqpF/LqH1fKeqBuyaDbLW0P3NSmPmYQSUprdVAfF2TQYNZB1phBJKl0lWeQ2WSVQUaOxdyAGUSSaurNBPWPW4/h5NQgg+ZK/x3WYzEPyiBJJ9E7deqEqKgorFu3ru69wsJC7Ny5EyNHjgQAjBw5Evn5+di717Je0Pr162E2mzF8+PC6czZv3oyqqqq6c9asWYMePXqgTZs2UnaZyD6b0Bzo/FzrHZmVsg7WmXVASc3Fqu7TAP8w6b+j6yWWteJP/QUUpEr/HUSeKq2lGaSQweOZ9UBxzcVwV2VQt0uA4Jq14k/9BeTzjiMiyTTnQp51Bill8Hh2A1BcswRk92lAQLj032GdQafXMIOIpJRmnUFqrIM2AEU1G593mwYEtJX+O7pOsawVf2oNkJ8s/XcQeaoWZ5BS5oOsM2iqizJosiWDTq8FLipoVQYXavYkenFxMRITE5GYmAhA3Ew0MTERycnJ0Ol0WLBgAV588UWsXLkShw4dws0334yYmBhceeWVAIBevXph+vTpuOuuu7Br1y5s3boV8+fPx3XXXYeYGHGH1xtuuAHe3t644447cOTIESxbtgxvv/02HnroIcl+40QOmaot6/iGdGg8cJR45XHbu5a21I/u1DIYgUG3iG0P3FCCyGXMJqsMigMC2zk/X4l3YG13QwbpDR69qQ2Ry5hNQHqi2G5KBilxUy3rOkiqzfzq0xuAwayDiCRnNlnWEg9uDwRGOD1dkU/k2dRBLsyg2rEYBGYQkVRsMigWCIp0errNJLsSx2KurIM8MIOaPYm+Z88eDBw4EAMHin9QHnroIQwcOBDPPPMMAOCxxx7Dfffdh7vvvhtDhw5FcXExVq9eDV9f37rP+Pbbb9GzZ09MnjwZl156KcaMGYOPP/647nhISAj++usvnDt3DoMHD8bDDz+MZ555BnfffXdrf79Ejcs5AVSViu3YRq46AuLgsvYKXHqi/JtLpewCzm8R22FdgO7TXfddg24CdAax7WEbShC5TPYJoKpEbDd25wMgXugLqdkx/kKi/P8fpuwGzm0W22Gd3ZdB+7+W//dOpAU5J5uZQeHiXimAeAFQ7v8PU/cA5zaJ7bDOQI8ZrvuugfXroCrn5xNR43JOAZXFYrspYzHFZdBe4OxGsd2mE9DdlRl0IzOISGrWGdTkOihebCsxg3pc6rrvss6g/V97RAY1exJ9woQJEAShwa8vvvgCAKDT6bBw4UJkZGSgvLwca9euRffu3W0+IywsDEuWLEFRUREKCgrwv//9D4GBgTbn9OvXD1u2bEF5eTlSU1Px+OOPt/x3SdQcTd3IxlptuFaViBNgctrypqU95kHxCqGrBMdYJsiKLgAnV7vuu4g8RXPWAa07rzaDSsULgXL6280ZVDtBxgwikkZz1kOvVVsvKSGDrOug0QtcnEHRlgwqzmAGEUmhOWsR1z+vqhTIPi59n5rDpg5aID696yo2GZQJnPjDdd9F5ClaNBarOa+6DMg+Jn2fmsPdGdSzZpK+OBM48bvrvkshJF0TnUgTrJdkaXJoWq8HKuMjPJlHgJM1xVNwLNDvWtd/Jzf3I5JWc9YirqWU9UAzj1qKp+BYoN91rv9Obu5HJK2WTGApJYOyjgEnfhPbQTFAfzdkkM3mfqyDiFqtJRfylDIWyzoOHF8ltoOiXbeMgjWOxYikpeaxmBwZNNiz6iBOohPVV1d46YDoAU37GaWsSfz3W5b2qPsBo7frv7PLJMsjlKfXARfPu/47ibTM5mmYAU37GaWsB2qTQfe5P4POrGcGEbVWSzLIpg6ScV30Bhnk4/rv7DzJ8hj3mXVA3jnXfyeRllnXMaoei7krgyYCbTqK7TPrgbyzrv9OIi2zqYOasJwLoOCxmJsz6OwGIPeM679TRpxEJ7JWXQFkHBbbbbsBvsFN+7noAQB0YluuwWPeWeDwD2LbP9yy4Z6r6fW2G0rs/dI930ukRdWVQGZNBoV3A3xDmvZzMQMgfwadAw6vENt+Ye7NoMG31rxgBhG1SkszKLo/6jJIrsFj3jngkFUG1W766Wp6ve137WMGEbVYdSWQcUhsh3cF/EKb9nPWGSRXHXTxPHBoudj2C7MaH7mYzVgMrIOIWsM6g8K6NC+DdDXTq4rIoDbuzaC6sRg0XwdxEp3IWuZhwFyzGUJTH90BxMn2tjVr/2ceESfj3W3r24BgFtsj/gF4+7vvuwfeBOhr1tra/41HbChB5BKZhwFTpdhu6iPMAOATBLTrUfMZR4Cqcun71hibDPon4B3gvu8ecKNVBn0tFsBE1HytyqCeNZ8hUwZtewcQajZ3H/EP92ZQ/TqIGUTUMllHLBnUnLGYdQZlHZWpDrLKoOH/B/gEOj9fSgNvBPReYjvxW2YQUUtlHQVMNXM5zaqDAq3qoKNAVZn0fWuMTQb9w70ZNMAqg/ZrO4M4iU5krSVr8NU/31xluZvdXQovAIlLxLZ3EDD0Lvd+f1Ak0HOm2C7JAo7/5t7vJ9KKlqxFXP98c7XlTlJ3KbwgDtoAMYOG3ene77fJoGzLmshE1DytyaBYqwyqvYvLXYoyxMlrAPAOBIa5uQ4KjAB6zhLbzCCilpNkLCZHBmXKn0G9rDKodk1kImoeKcZigskDM6idJYNKc4Djv7r3+92Ik+hE1lqyiYS98939CM/29yx3bQy7s+mPHUmJm/sRtV5aCzY2tne+uzNox/uWDBp6h/gIobtZb6zFDCJqmdZkkPW6oe5e0mW7EjKIdRBRq7VqAssqg2Spg2ruXh1yO+Af5t7vBzgWI5JCqy7keXgG2YzFtLvBKCfRiazVhqbeCET1bd7PyrUrfGmeJaSMvuIyCnLoNB4I6yy2z23S/IYSRC6R3poMkmlTrdI8YHfNYM3gI18GdRxnlUGbmUFELVF7M4HO0Lo6yN0ZtMc6g+5133db6zhOXD8VYAYRtVR6ovjP1maQO8diZReB3Z+JbYMPMFKmDOo0TlxHHgDObwFyTsvTDyI1s6mD+jXvZ+Wqg5SSQR3H1sugU/L0w8U4iU5Uq6IYyDkhtiN6A16+zfv5qD6WdaDcGZo7PwKqSsT2wJvEx/nkUH9Dib1fyNMPIrWqLAGyj4vtiF6Al1/zfj7SKoPcOXjc9bElgwbdJC6tIocGGaTdOyCIXKKyBMg+JrYjercsgwzeYtudd2Dt+gSoLBbbzCAi9aosBbKsMqi5+zvZZJA76yCrDBp4IxAU5b7vtqbTMYOIWsMmg3o1P4MiEiwZ5NaxmHUGzVNQBn0hTz9cjJPoRLUuHLBsitfcR3cAwOgDRCaI7ZyTQHmhdH1zpKII2Pmh2NYbgdH3u/47nRkwz/IXR+K38mywSqRW1hnU3EeYATGDovqI7ZyTQHmBdH1zpKII2PGB2NYZgFEKyqD938qzsRiRWl04aFUHDXR+rj1Gb3ESCwByT7kpg4qBncwgIk3IOGjZFE+KDCrLl6xrDlUUAzv+K7Z1BvnHYv1vsB2LMYOIms46g2JamEG1T9DknpYng+SugzwggziJTlSrNWvw1ap7hEcALiS2tkeN2/sFUJ4vtvteA4R2cP13OhPQFuh1udguzQWOaXdDCSLJtWYNvrqfs36UObFV3WkS6wzqdw3QJt713+mMdQaV5TGDiJpD0joI7sugsotiu+9cBWRQOND7CrHNDCJqnjSJM8gdY7F9X1pl0BygTUfXf6czAeFA7yvFdtlF4NhKWbtDpCqSj8X2Oz5PKvUzKKyT67/TmfoZdPQXWbvjCpxEJ6olSWi6cU3iqnJg23s1L3TAmAWu/b6mstlYi48REjWZFBNY1j/n6scIqyvqZdCDrv2+prLOID7KTNR0UtdB7sig7e9ZXislgwYzg4haJF1lY7HqCmDbu5bXSskgjsWIWkaVYzGFZ5AG6yBOohPVqg05oy/QrlfLPsM6NF29HuiBJUBxhtjuNQto18O139dU8aOBtt3FdtLfwJn18vaHSC3SrDIoooUZFOvGDEq0yqCeMxWaQVuZQURNZV0HRfRu2We4tQ76Dii6ILZ7zgIierr2+5oqfhTQtiYPmUFETVdbBxl8VJJBS+tlUAtrN6l1GGnJoORtwOl18vaHSC2kyCB3XsizzqAeMxWaQduB02vl7Y/EOIlOBAClecDF82I7qh9gMLbsc9r1ALwCxLYrH98xVQNb37a8HvOQ676ruXQ6YPg9ltcr7gAuJsnXHyI1KM0DLp4T21F9AYNXyz6nbXfAO1Bsp7k6gxZbXo9VcgbdzgwiakzZRSDvrNhuVQZ1A7yDxLarM+jvxZbXzCAidSvLB/LOiG2pMsjVY7G/37K8VtpYbMT/WV7/cIdlnEtE9tlkUB9xffOWCLeug1w4iV4/g5RWB1ln0AptZRAn0YkAaR4fBAC9AYgZILYLUoDirFZ1y6EjP1mCqMuk1vXZFQbfDnSbKrbL8oDvbwKqyuTtE5GSWQ/0Wvr4ICBmUPQAsV2YChRltqpbDllnUOeJtuv/KcHg24Hu08V22UVg2Y3MICJnpMyg2jrIlRl09GfLhUdFZtBtzCCi5rDOIKnGYoVpQFFGq7rlkE0GTQDaKyyDBt0KdJ8htmszqLJU1i4RKZpkdZDekkFF6UDhhVZ1yyHrDOo0Hmg/xDXf01LWGVSer6kM4iQ6EWB7t1RrQhOw3cnZFVcfzWbg7zctr8c+LP13tJZeD8z+GGhTs7HFhQPAqocAQZC3X0RKJdWFPACItcogV6zFp5YMuuojIKyz+DrjILDqQWYQkSNSrIdeK8YNGbTlDctrZhCR+kmxFnHdz7t4LCYIwBYV1EGzPwLCuoivMw4xg4ickXQs5uJ10ZlBsuIkOhEgcWha78jsgtA8uRrIOiq244aL6/8qkV8b4LpvAS9/8fWBJcDuT+XtE5FSSXkhzzqDXDF4tM6g9sOAjmOk/w4p+IUC11pn0HfMICJHpLoDC3B9Bp360yqDhqogg2qW+WMGETkm5YU8l4/F/gSyjtR81xCg41jpv0MKviE1Y7GaDDq4FNj1ibx9IlKqNAkv5Ll8LFYvgzqNk/47pGA3gz6Wt08S4CQ6EWAJN59gy9WylnLlZhKCYHv31ZiHxDWnlCoyAbjcasfo1U8AyTvk6w+RUqVbZVB419Z9lit3ha+fQWOVnkG9gSves7xmBhHZlyZhBrnyDqwGGfSw+jIoabt8/SFSqtoLed5B4prCreHOsZjSMyiiF3Dl+5bXfz4JJG2Trz9ESlWXQYHi3gqtwbGYRYMM+pfqM4iT6ESF6UBxzXp5MQPER09aIzQe8AsT2+n7pH1k5fwWIG2P2I7sA3SfJt1nu0rfOcDI+WLbXA18f7Pr1ickUqPCC5ad1aP7S5BBHQD/cLGd5sIMikgAuqkgg/pc3TCDXLU+IZEaFWWI63YC0mRQSBzg31Zsp+2VOIP+BlJ3i23VZNBsYNR9YttcDSy/hRlEZK0oU1y/HJBmLGadQVKPxZK2Aqm7xHZEb8veB0qWcBUw6n6xba4GvmcGEdmwzqDoAeLeCq0R0h4IaCe2pR6LWWdQu16WdceVzG4Gpcvbp1bgJDqRlI/uAOKVwNo7IEpzgfyk1n8mIIbv5v9YXo95UNlXHa1Ned7yqGNxpjiJVV0pb5+IlELK5aQAMRdqs6wsT7rd0Otn0NiHWj/QdZf6GbT8FmYQUS0pl1EAbOugsovMIACY/JzlcWtmEJEtm/XQBzo+r6kaZNC51n8mYGcspqYMelbcfBAASrI4FiOyZjMWkyiDasdi5flA3tnWfyag8jrIXgZVyNunFlLJv3EiF5J6AguwXQdr1yetv/ooCMBfTwHnNouvwzqLV/TUwmAE5nwOBMeKr1N2io/yEJH0F/IA2wza/an0GdSmE9D7ytZ9pjsZjMDcL4Dg9uJrZhCRhZQb+tVyWQZtEl+rMYPmfF4vg56Ut09ESiH1hTyg3lhMogxa8zRwdqP4uk1HFY7F/ifepQ+Id7KufkLePhEphVrGYtYZFBoPJMxu3We6U20dVJdBu4HV6qyDOIlOlHnE0o4eIM1nWj/at/09YMNLrQvODS+LnwMA0AFTX2z9Y0buFtgOuPZrwOAtvt79CZC4RN4+ESmBdQbFDJDmM3vUy6D1L0qbQdNeEoshNQloW5NBPuJrZhCRyBUZVL8Oam0GbVzUsA5SfQZ9Cuz/Vt4+ESmBq8diO94H1r/Qygx6BdhWu8+TDpiqgTpoz2fA/m/k7RORErh6LLbjv8C6hdJmkCrHYuGayCBOohPlnhH/afSzXBlrrdhBwKWvW15v/o8YfC2x5U1g82uW15e/A/Sc2br+ySV2MDDTaiOMVQ8C6YmydYdIEfJqM8gXCOkgzWfGDLTNoC2vi5NQLaGpDBpkm0G/LmAGEeW6IoMGSJdBf78FbHrV8vqyt4Fes1rVPdnEDgJmvWl5vepBy2ZmRJ6qtg4y+Ih3V0ohZoDt3/db3mj5TU1/LwY2WY3jLlus3gyKGQjMesvyetVD0m++SqQ2rsig6P7ATKu/7/9+s+U3FNjNoMta20N5aCCDOIlOns1UbVknL7yLtGtKDbsLmGE18bTpleZPpO/4EFj3vOX1jNeAQTdL0z+5DLoZGHyb2K4uB5bdBJTkytsnIrmYqoG8mgwKc0UGWa2bt+lVZhAADLoJGHK72DZVMIPIs5lNlrU6lZhBOz8C1j5neT39VWDwLZJ0TzYDb2QGEdWyziCpx2JD72z9TU07PwbWPmt5Pf0VYPCtknRPNgPnAUPuENt1GZQjb5+I5GJTB3WW9mn/oXe0/oYCrWbQ0DvFtgoziJPo5Nnyk8QdggExNKU2/B4x6GptXARs+o/j863t/QJY/bjl9ZTnxc/TghmvAu2Hiu2CZOCH28XJRCJPU5AMmKvEdrgrMuhucdKp1sZFwKbXHJ9vbe+X9TLoOe1k0PRXmEFEAJAvQwZtfNXx+db2fQX88Zjl9eRngRH/J23/5GKTQSnAituYQeSZClIAU80Gl64Yi7XmpqZ9XwN/PGp5PflZYMQ/pO2fXKa/ArQfJrYLU5lB5LmsMyi8i/Sf35obChpk0DPayaBpi4C44WJbZRnESXTybLWPMANAeFfXfMeIfwDTXra83vAisPl1x+cDwIFl4jIDtcY/DoxZ4Ohs9TH6ANd8BQS0E1+f3Wi70zSRp3BLBv2fWKjU2vBS4/+/Hfwe+PUBy+vxjwNjHnRN/+RQl0ER4uuzG22XrCHyFO7KIJsbCl5u/IaCg8uBlfdbXo97DBj7kGv6J4f6GXRuEzOIPFPuaUvbVRlk96amRv5/O7QCWHmf5fW4RzWWQd71Mmiz7bJZRJ7CJoNcMIkOtOymJrsZ9LBr+icHozcw90sgMFJ8fW6z7ZI1Cib5JLrJZMLTTz+NTp06wc/PD126dMELL7wAwWrtH0EQ8MwzzyA6Ohp+fn6YMmUKTp06ZfM5eXl5mDdvHoKDgxEaGoo77rgDxcXFUneXPF2eGwaPADDyXnEDmlrrXxDXGbbn6C/Az/8HoOb/mVH3ARPUuXOxU8ExYnDqazbE2P1J63etJlIbd0xgAcDIf9pezFv/org+qD1HfwF+8pAMusYqg3Yxg8gDuasOas4NBUdXAj/dg7oMGjkfmPgv1/VNLswgIiD3rKXt1gxyckPBsV+BH++GbQb923V9k0twtDiRzrEYeTK3ZVAzbmrypAyaq746SPJJ9FdffRUffPAB3nvvPRw7dgyvvvoqXnvtNbz77rt157z22mt455138OGHH2Lnzp0ICAjAtGnTUF5eXnfOvHnzcOTIEaxZswarVq3C5s2bcffdd0vdXfJ07rj7odao+cAlL1her3te3CTC2sk/gRV3AIJZfD30TvFndDrX9k0uHUcDXSaJ7dJcy3pkRJ7CnRk08l5g6ouW1+sWihv2WTv5V00GmcTXWs+g+FFAl8liuyyPGUSex+0Z1MgNBSf/AlbcbsmgIXeIucUMItImWTPIzg0Fp9YAy2+zyqDbNZ5BI4GuU8R22UXbmzuIPIFbM6gJNzV5ZAZdIrbL823/eyiU5JPo27ZtwxVXXIGZM2eiY8eOmDNnDqZOnYpdu3YBEO9CX7x4MZ566ilcccUV6NevH7766iukp6fj559/BgAcO3YMq1evxqefforhw4djzJgxePfdd7F06VKkp6dL3WXyZO54fMfa6PvFtc1rrX0W2PqO2D67UdxUoXZt0gHzxPWztBqYtWrX4wOA1D3y9YNIDtYZFOaGDBp1H3DJQsvrtc8BW98W22c3Astu9LwMihtqaafulq8fRHJwewY5uaHg7Cbge6s6qP8N4oZczCAi7XL3WKxBBlndUHBus20d1P8G4NI3tJ9B7ZlB5MHcXQc5u6mpQQZd7xkZpLI6SPJJ9FGjRmHdunU4efIkAODAgQP4+++/MWPGDADAuXPnkJGRgSlTptT9TEhICIYPH47t27cDALZv347Q0FAMGTKk7pwpU6ZAr9dj586ddr+3oqIChYWFNr+IGlV7td03BPAPd893jlkgbkxTa83TwG8PA99dL+5ODAAJs4HL35V2h3qlam/5/1wNoekIM4hapDaDfEKAgLbu+c7RD4ibhNZa8wyw6iEPziB1FW6OMIOoRWoHj27NIDs3FNRmUHXNU6kJVwFXvMcMUhFmELVIXQYFW/ZKcrUGGfScmEFLrrPNINZBqsIMohapzSDvICAwwj3fae+mpvoZ1PtK4HLWQUok+X+RJ554Atdddx169uwJLy8vDBw4EAsWLMC8efMAABkZGQCAyMhIm5+LjIysO5aRkYGICNs/wEajEWFhYXXn1Ldo0SKEhITU/YqLi5P6t0ZaU1UGFKSK7fCu7r3CN/YhYNLTlte7PwWqSsV2j5nA7I8BvcF9/ZFT7CAANf/uVRCajjCDqNmqysUd4QHx7it3ZtCYB8Ud3mvt+cxzMyiGGUQeqroCyJcrgxbY3lCw5zOgqkRs97gUmP0JM0hlmEHUbNUVMtZBCxrPIIPRff2RE8di5KnkzKD6NzVZZ1D3GZ6VQTEDAV3N1LQKMkjySfTvv/8e3377LZYsWYJ9+/bhyy+/xOuvv44vv/xS6q+y8eSTT6KgoKDuV0pKiku/jzQg7xzqNmtw9fpX9ox7BJj4lO17XSYDcz8HDF7u749cfEOAdj3FduZhoLJU3v60EDOImu2izBk09mFgUv0MmuSBGRQMRPQS2xnMIPIgNnWQGx5hrq/+DQUA0HkiMIcZpEbMIGq2i+ct+0DJUgcxgwAAPkFARG+xnXkEqCyRtz8txAyiZpM7g+rf1ASIGTT3C8Do7f7+yEVlGST5pY1HH3207m50AOjbty+SkpKwaNEi3HLLLYiKigIAZGZmIjo6uu7nMjMzMWDAAABAVFQUsrKybD63uroaeXl5dT9fn4+PD3x8fKT+7ZCWuXv9K3vGPyoWaVveALpMBK78EDB64J/j9kOA7GOAuRq4cEDcYEJlmEHUbO5eB9SecY8CBm9g8+tA5wnAVR95bgZlHRU38bmQKG72pzLMIGo2d26m5ci4R2oy6D9A5/HAVR8DXr7y9EVOzCDyREoYizGDRO2HAFlHxAxKTwQ6jpa7R83GDKJmU8JYbOzDYgZteq0mgz7y3AzKPCxe1EjfD3QcI3ePHJL8TvTS0lLo663bYzAYYDaLV3g6deqEqKgorFu3ru54YWEhdu7ciZEjxYmzkSNHIj8/H3v37q07Z/369TCbzRg+fLjUXSZPpYTQBMTHCR8/D1zzFeDtL18/5KSydbCIJKGECSxAfJzw8fPAtV8zgwBmEHkOxWTQ/TUZ9A0zCGAGkedgBikHM4g8kVIyaNR9VhkUIF8/5KSiDJL8TvTLLrsML730Ejp06ICEhATs378fb775Jm6//XYAgE6nw4IFC/Diiy+iW7du6NSpE55++mnExMTgyiuvBAD06tUL06dPx1133YUPP/wQVVVVmD9/Pq677jrExMRI3WXyVHlnLG05QxPwnHU/HVFRaBJJJtc6g2S8kAcwg5hB5InymEGKYZ1BKbvk6weRO7EOUg7WQeSJmEHKYZNBe+TrRxNIPon+7rvv4umnn8Y///lPZGVlISYmBvfccw+eecay1s9jjz2GkpIS3H333cjPz8eYMWOwevVq+PpaHlv49ttvMX/+fEyePBl6vR5XX3013nnnHam7S55MSaHp6dr1EHfErixSfGgSScY6g+R6jJlEbXsAPsFARSGQshsQBPduLkQkB2aQclhnUCoziDwEx2LK0bY7M4g8D+sg5QjvBviEABUFis8gySfRg4KCsHjxYixevNjhOTqdDgsXLsTChQsdnhMWFoYlS5ZI3T0ii9rHdwIjxc0MSD56g7gz/LlNQFE6UJAKhLSXu1dErlWbQQER4sZyJB+9XsygsxuB4gwxg0Lj5O4VkWsxg5TDJoMymUHkGeoyqB3gGyJvXzydXg/EDgbObqjJoBQgtIPcvSJyrdoM8m8L+IXK2hWPp9cD7QcDZ9aLGZSfDLSJl7tXdkm+JjqRKpQXACXZYlvupVxIFDfM0uZjhKR15YVASc0G2swgZWjPDCIPUlEkDlIAZpBSMIPIk1QUiRetAWaQUnAsRp6kopgZpDQqqYM4iU6eiY8PKo+K1sEiajUlrUVMImYQeRKbOqizfP0gC2YQeZK8s5Y26yBlYAaRJ1HS/ngkUkkGcRKdPBPXv1Ke2CGWtoKvPBJJghfylKc9M4g8SO0jzAAHj0rBDCJPYp1BHIspQ+xgS5sZRFpnUwfxZgJFiB1kaSs4gziJTp6Jg0flCQgHwmr+AktPBKorZe0OkUsxg5THP8wykL9wAKiukLc/RK6UyzuwFIcZRJ6EGaQ8/mGW/xbMINI6ZpDy+IeJG4wCQMZBxWYQJ9HJM/HxHWWqfYTHVAFkHpK3L0SuxMJNmawzKOOwvH0haqGf9qfii63ncCi1AFUms/2TWAcpEzOIPAVvJlCmugyqBDI4FiMN41hMmawz6MJBefviACfRyTPVFW46IKyTrF0hKypZB4uo1awzqA0zSDG4nAJpwBfbkvDcr0dx2Xt/o+9zf+Kaj7bj1dXHseZoJkorq8WTmEHKZJNBu+TrB5Gr1U1gcSymKKyDyFPYLCnF5VwUQwUZxEl08jyCYCncQuMAo4+8/SELFYQmUatZZ1BIHODlK29/yMLmQh4ziNSnvMqEo+kFVq/N2HUuDx9sPIO7vtqDgrKqmgyqGTwyg5SFGUSeQBCA3FNiO6Q94OUnb3/IghlEnsA6g4KZQYqiggziJDp5npJsoKJQbPPRHWWJ7AMYawbzCg1NolYryQEqaia5uKmoskQmAMaaQpoZRCp0KK0AVSbB7rHoEF9Eh/gBpblAOTNIkZhB5AlK85hBShXBDCIPwAxSrojegJe/2FboygScRCfPw/WvlMvgBcQMFNsXzwPF2bJ2h8gluBaxcllnUH4SUJwlb3+Immlf0kWHxwZ1aCM2WAcpl00GJQNFmfL2h8gVuB66chmMQOwgsc0MIq3iWEy5DEYgpiaDCpKBogx5+2MHJ9HJ87BwUzYVPMJD1CrMIGWLYwaReu11NokeXzuJbp1BvANLcawzKE2Zd2ERtQonsJSNYzHSOo7FlE3hYzFOopPnsdlEgoNHxWHhRlrHCSxlYwaRSgmCgH3J+Q6PD+oQKjY4eFQ2ZhBpHcdiysYMIq3jWEzZFJ5BnEQnz8PQVDaFhyZRqzGDlC3WeoNj3gVK6pF6sQw5xRV2j3kb9UiICRFfMIOUjRlEWscMUrb2zCDSON5MoGwKr4M4iU6eJ++s+E+9FxDaQd6+UEPB0eIu2QCQtg8wm+TtD5HUcq0yKIQZpDjB0UBInNhO2weYquXtD1ETOVvKpV9sCLyNNWV/XR1kZAYpETOItK52Xwa9EQiNl7cv1FBQlOXvhnRmEGlQrlUdxPkg5QmKtPx3UWAdxEl08ixms6VwC+sM6A3y9ofsq70DoqoEyDomb1+IpGQ2W9YCDeskbp5CymOdQdnMIFKHfclNWA/dug5qwwxSLJs66Ki8fSGSktlsuZDHDFKuugwqZQaRtliPxdp0FDf0JuWpXZ2gugzIOiJvX+rhJDp5lsJUwFTzqDMfH1QuLulCWlWYBlSXi22uA6pczCBSIaebinaomUQvShcHJAAfYVYyZhBpVdEFcWIW4FhMyZhBpFXWGcSxmHIpOIM4iU6ehWvwqYNNaCpvHSyiFmMGqQMziFSmtLIaxzOKHB4fFB8qNphB6sAMIq3iWsTqwAwirWIGqYOCM4iT6ORZah9hBhiaShbdT1wvGlDclUeiVsljBqlCFDOI1OVASgFMZsHusbgwP0QE+YovbOogTqIrFjOItIoX8tQhuh9g8BbbzCDSkjzWQaoQ1VexGcRJdPIsnERXBy8/MTgBIOcEUOb4EXUiVWEGqYOXrziABICck0Bpnrz9IWqE0/XQa5dyAZhBamGdQbmnmEGkHbXroQPMICUz+ogX8wBmEGkL6yB1MPoA0f3Fdu5pRWUQJ9HJs1jf/cA1sJQtbpilnbZXvn4QSYl3YKlHe+sM2idfP4iaYF9T1kMH+BizmjCDSIs4FlMPjsVIizgWUw/rOkhBS7pwEp08S+3jO14BQFCUvH0h5xS8DhZRi9Xe/eDlDwRFy9sXcq79EEtbYY8RElkTBMHpneiD460m0fOYQarBDCItqp3AYgYpHzOItKh2LGb0A4Ji5O0LOafQDOIkOnmO6krgYpLYDu8C6HTy9oecU2hoErWYqQq4eF5sM4OUT8G7whNZO5dTgoulVXaP+XkZ0DMqSHxhnUFhzCDFs8mgXfL1g0gqpmrbDNJzKkLRWAeR1piqgYvnxHY4M0jxFJpB/FNDniM/CRBMYpuPMCtfaDwQ0E5sp+4BzGZ5+0PUWheZQaoS2gEIiBDbacwgUq59yfkOj/WPC4HRUFPu5ycD5mqxzUeYlc86g1L3MoNI/fKTmEFqEhIHBEaKbWYQaQEzSF1C2gOBNatHpCkngziJTp6D61+pi05nufpYnm+7kzaRGnEdUHWxyaAC2/9+RAqyl+uha5N1BlUUiJv7EamZzYZ+rIMUjxlEWmOdQRyLKZ9OZ1mdoKIQyDkpb39qcBKdPAd3YlYfLulCWpLHDFIdZhCpwP6mrofOCSz1YQaRlvBCnvowg0hLOBZTHwUu6cJJdPIcLNzUR4GhSdRizCD1YQaRwhWWV+FEZpHD4wN5J7q6MYNIS5hB6sMMIi1hBqmPAjPIJZPoaWlpuPHGGxEeHg4/Pz/07dsXe/bsqTsuCAKeeeYZREdHw8/PD1OmTMGpU7aPB+Xl5WHevHkIDg5GaGgo7rjjDhQXF7uiu+QpbJZS6CxfP6jpYgYCupqYUkhoErUYl5RSH5sM2uP8XCIZHEjJhyDYP9apbQDCArwtb3DwqD7MINIS3gWqPswg0hLWQeoTMwDQGcS2QjJI8kn0ixcvYvTo0fDy8sIff/yBo0eP4o033kCbNpY7YV577TW88847+PDDD7Fz504EBARg2rRpKC8vrztn3rx5OHLkCNasWYNVq1Zh8+bNuPvuu6XuLnmS2seY/cIA/zB5+0JN4xMERPQW25lHgApeSCMVq8ugNswgtfAJBCISxHbWEaDC8R2/RHLYl5Tv8JjNeugAM0iNbDLoKDOI1K02g3xDmUFq4R0ARDKDSCPqMiiEGaQW9TOovFDe/sAFk+ivvvoq4uLi8Pnnn2PYsGHo1KkTpk6dii5dxLvuBEHA4sWL8dRTT+GKK65Av3798NVXXyE9PR0///wzAODYsWNYvXo1Pv30UwwfPhxjxozBu+++i6VLlyI9PV3qLpMnqCwBimr+7PCqo7rUPsIjmIH0/fL2hailKkuBwjSxzQxSlzhmECnXXifroQ+KD7W8qCoDClPFNjfTUhdmEGlBVRlQkCK2WQepS/th4j8FM5C2T96+ELVUVRlQUFMHhXcVN60kdYirySAIQLr8GST5JPrKlSsxZMgQzJ07FxERERg4cCA++eSTuuPnzp1DRkYGpkyZUvdeSEgIhg8fju3btwMAtm/fjtDQUAwZYtnIYsqUKdDr9di5c6fUXSZPkHfW0mbhpi4KXAeLqNmYQerFDCKFMpuFpm8qygxSL+sMStklXz+IWoMZpF6sg0gL8s4BqFn/jhmkLgrLIKPUH3j27Fl88MEHeOihh/Cvf/0Lu3fvxv333w9vb2/ccsstyMjIAABERkba/FxkZGTdsYyMDERERNh21GhEWFhY3Tn1VVRUoKKiou51YaH8t/mTgtisf8X10FXFJjSVsQ6WPcwgcspmTwbeBaoqzCBSqNPZxSgqr7Z7LNDHiG4RQZY3uA6oejGDSAtyrddDZx2kKswg0gKOxdRLYRkk+Z3oZrMZgwYNwssvv4yBAwfi7rvvxl133YUPP/xQ6q+ysWjRIoSEhNT9iouLc+n3kcpw8Khe4V3FdcsA8cqjox3UZMYMIqe4qah6hXUR128FmEGkKPuSHN+FPiAuFAa91aPKzCD1YgaRFjCD1CucGUQawAxSr7DO4n4+gCIySPJJ9OjoaPTu3dvmvV69eiE5ORkAEBUVBQDIzMy0OSczM7PuWFRUFLKysmyOV1dXIy8vr+6c+p588kkUFBTU/UpJSZHk90MakctHCFVLrwdia5Z2KskC8pPl7Y8DzCByio8xq5deD7SvzaBsID9J3v44wAzyPPucrodef1NR6wzi4FFVrDOoNAe4eF7W7jjCDCKnbO5EZx2kKjqd5U5QZhCpVR4zSLVsMigXuHhO1u5IPok+evRonDhxwua9kydPIj4+HgDQqVMnREVFYd26dXXHCwsLsXPnTowcORIAMHLkSOTn52Pv3r1156xfvx5msxnDhw+3+70+Pj4IDg62+UVUx+bxHS7nojoKWwfLHmYQOcUMUjeFPUZoDzPI8+x1cif6oA6htm/wMWZ1YwaR2jGD1I0ZRGrHJaXUTUEZJPkk+oMPPogdO3bg5ZdfxunTp7FkyRJ8/PHHuPfeewEAOp0OCxYswIsvvoiVK1fi0KFDuPnmmxETE4Mrr7wSgHjn+vTp03HXXXdh165d2Lp1K+bPn4/rrrsOMTExUneZPEFt4RYUA3gHyNsXaj4FhSZRi9RlUDTgEyhvX6j52ls2OlfqhTzyLPmllTiTXeLw+MAO9e9EZwapGjOI1K72LtDAKGaQGjGDSO1q66DASMAnyPm5pDwKyiDJNxYdOnQofvrpJzz55JNYuHAhOnXqhMWLF2PevHl15zz22GMoKSnB3Xffjfz8fIwZMwarV6+Gr69v3Tnffvst5s+fj8mTJ0Ov1+Pqq6/GO++8I3V3yROU5gFleWKbVx3Vqf1gS5uFG6lN2UXx0TOAjw+qVSwziJRlf3K+w2PdIgIR4udleaMsX3wEH+AdoGrFDCI1K8sXl0MDWAepFTOI1Ky8gBmkdrGDAegACLJnkOST6AAwa9YszJo1y+FxnU6HhQsXYuHChQ7PCQsLw5IlS1zRPfI0XItY/fzaAG27AzkngQsHgKpywMu38Z8jUgKuRax+fm2Atj2AnBPAhYPMIJKds/XQB9dfDz2PjzCrnnUGZRwEqsoALz+5e0XUNMwg9fMLBdr1BLKPM4NIfbiUi/r5htRk0DEg45CsGST5ci5EimOzEzMn0VWrdkkXc5VYvBGpBTNIG6wz6MIBeftCHs/5euj1l3LhZlqaUJdB1cwgUhdmkDbULqfADCK1YQZpg3UGpSfK1g1OopP22Uxg8cqjalmvg5WyU75+EDUXN9PSBmYQKYTJLOBASr7D44PiQ23f4IU8bWAGkVrxLlBtsN6jihlEasKxmDYoJIM4iW6lsLwK6fllcneDpMYrj9rQYZSlffJP+fpB1Fx5zCBNiLfKoFN/ydcPF2IdpA4nMopQUmmyeyzEzwud29bbtI8TWNpgnUEntZlBpFG8kKcNHbSfQayDNIpjMW1QyFiMk+gABEHAqoPpmPzGJjz0fSIEQZC7SySl2sJNZwBC4+XtC7Vcux5AWGexnbRN3DCWSA3qMkgPtOkoa1eoFdp2t9y9krRVUxkkCAJ+O3gBU97YhAeXsQ5Sur1O1kMf2CEUer3O9k1mkDZYZ1DyNqAkV97+EDUVM0gb2nazTEBqLIOs66AFrIO0p+5Cng4I6yRrV6gV2nYDwruJ7eTtsmWQx0+iJ+eW4tbPd2P+kv3ILqrAjrN5+GFfmtzdIqkIguUOrDbxgNFb3v5Qy+l0QI9LxbZg0uydoKQx1hkUygxSNZ0O6FmbQWbNPBGTkleK277YjXuX7ENWUQV2nsvDir2pcneLnNjvZD30wfXXQ7fJoA6A0ceFPSOXqp9Bp7SRQaRxzCDtsBmLaSeDUvJKcbtVHbTrXB6Wsw7SDmaQttiMxVbL0gWPnUSvrDbj/Q2ncclbm7DpZLbNsZd/P4aLJZUy9YwkVZQBVJWIba5/pX49Z1rax3+Trx9ETVWcCVQWi20uo6B+Pawy6IS6M6jKZMZ/N4p10MYTDeugPNZBiuXsTvRB8fUm0YuzgMoisc1HmNWvB+sgUpmSbEsGcSymfhoai1WZzPhg4xlc8tYmbKhXBy1iHaQdJdlARaHY5lhM/WzGYr/L0gWPnUT/ePMZ/OfPE6ioNjc4lldSiUV/HJOhVyQ5rn+lLXHDAf9wsX16HVBVLm9/iBrDPRm0JW4Y4N9WbJ9eD1Spd93MjzefxWurT6C8qmEddLG0Cot+Zx2kRDnFFUjKLbV7TK8D+seF2r5pXQdxAkv9rDPojLoziDwE10PXlvZDNZNBn2w5i1dXH3dYB73MOkgbOBbTlvZDgIB2Yvv0OqDSfk3sSh47iX7LqI6IDHb8KMf3e1Kx86x21vnyWDaFGwePqqc3AN1niO2qEuDcJnn7Q9QYDh61RW8AekwX21UlwFn1ZtAtozoiKtjX4fHle1Oxg3WQ4uxPznd4rEdUMAJ9jLZvMoO0xSaDSoGzG2XtDlGjmEHaojcAPWrHYurOoJtHdkR0iOM6aMXeVGw/wzpI9ZhB2mKdQdVlsmSQx06iB/l64bnLEpye86+fDqGi2uSmHpFLMDS1p3YdLED1jxGSB+CFPO3RyJIugT5GPHe58zro36yDFGevk/XQB3UIbfgmM0h7uKQLqQkzSHs0sqRLk+qgn1kHqR4zSHtkHot57CQ6AEzvE4VJPSMcHj+TXYKPN511Y49IcjaP7zA0NaHzRMDoJ7ZPrgbMDR/BI1KMXC6loDmdJ1gy6IS6M2haQiSm9HJeB33EOkhR9jlZD31w/fXQAdZBWmSdQSdXA2ZO8JCCMYO0p/MEwMtfbKs8g6YlRGFKr0iHx89ml+DDjayDVM16Ep1jMW3oPN6SQSfcn0EePYmu0+nw/OUJ8PMyODzn3Q2ncT6nxI29IknVFm4GHyC4vbx9IWl4+wNdJort4kwgba+8/SFyJs8qg0KYQZrg7Q90mSS2S7KAtD3y9qcVdDodnmukDnpvw2mcYx2kCFUmMw6m5js8PqiDk0l0gzcQEueajpF72WRQNpCq3gwiD8AM0h4vP01l0PNXJMDf23Ed9P5G1kGqlldzEUTvBYR2kLcvJA3rDCrNAVJ3u/XrPXoSHQDiwvyxYEo3h8crq814+pfDEATBjb0iSZhNltAM7wLoPf6Pu3bYPEa4Sr5+EDljnUFhncU13EgbNJRB7dv446FLujs8XlltxtM/sw5SgmMXCu1ugAYAYQHeiA/3t32TGaRdGsog0jBmkHZpKINiQ/0arYOe+vkQ6yA1MpstF/KYQdrSc5al7eYM4qwigNvHdELPqCCHx7ecysHKA+lu7BFJIj8ZMFeJbT4+qC3dpwO6mvg68bu8fSFypCAFMFWKbWaQtlhn0HH1Z9BtozuiV3Sww+N/n87BL4msg+S2z+l66G2g0+ls3yxIBUwVYpv7wmgL6yBSA2aQdnWbpqkMunVUR/R2UgdtPZ2LnxPT3NgjkkQhM0izuk8DdDUXRY7/DrjxIhcn0QF4GfR46aq+qD/2sPbCqqMoKK1yX6eo9bgWsXYFtAXihovtnJNAzil5+0NkDzey0a6AcCBuhNjOPQVkn5S3P61kNOjx8lV9nNZBL/52FPmlle7rFDWwNznf4bFB8aEN37RZB7Sz5P0hGdlk0GnVZxBpVJ71WIwZpCkB4UCHkWJbAxlkNOjx8mzn80EvrjrGOkhtbMZizCBN8Q+zZFDeGXFOyE04iV5jcHwb3DDM8RpJOcWVeGX1cTf2iFrNunDjlUft6XGppa3ineFJw3KtNiJiBmlPT6sMkmFneKkN7NAGNw6Pd3g8p7gSr7IOkpWzO9EH21sPPY8ZpGnWGaTy5RRIo3I5FtO0HtrKoAFxobhphOM6KLekEq/8wTpIVZhB2iZTHcRJdCuPTe+JtoE+Do9/tysZe5Py3NgjqlVtMuPYhUKYzc14TMPmyiNDU3Os1+LTwGOEpEHMIG2zGTxqI4Mend4D7YKc1UEp2HOedZAcMgvLkZZfZveYUa9Dv/ahDQ8wg7TNOoNYB5ESMYO0raf2MuiRaT0Q4aQOWro7BbtZB6kHJ9G1TaaxGCfRrYT4eeGZy3o7PedfPx5Glcn+pk7kOgfTCjDj7S0Y9vJa3P/dfny/O8XhYLIOl1LQtvAuQLueYjtlF1CcJW9/iOqzWUqBGaQ54V2Adr3EdupuTWRQsK8XnpnlvA7690+sg+Tg7C703jHB8PO2s1kWJ7C0zSaD9gBFmfL2h6g+jsW0LawzEFFTM2gkg4J9vfDsZQlOz/n3T4dQWc06SBU4FtO2sE5ARM3/r2l7gKIMt3wtJ9HruaxfNMZ2a+vw+InMIny65Zwbe0QAsPVUDgDxcfKVB9Lx2A8HMfqV9Zj4+kZ8syPJ/g/VXnn0CQYC2rmpp+RWdVcfBeDkalm7QtRA7ZJS3kFAYIS8fSHX6GmVQSf+kLUrUpnVLxrjuzv+O/NEZhE+2XLW4XFyjX3JzjcVtau2DvIOZAZplXUGndRGBpGG2GRQpLx9Idfoob0MurRvFCb0cFwHncwsZh2kFrVjMa8AIChK3r6Qa9g8EeOeDOIkej06nQ4vXtkHPkbH/2reXncSKXmlbuwV/X06x+7753JKUGHvSnB1BZCfLLbDu8DpLiGkXj1nWdpcF52UhBnkGayXldJIBul0OrxwhfM66J11p5CcyzrInfY6uRN9YIfQhm9WVwL5NTcZMIO0S4MZRBrBDPIMGsyg2jrI14t1kKpVVwIXmUGaJ0MGcRLdjvjwANw/uZvD4+VVZjz9y2EIQjPW56YWK62sdnoHlt0nB/LOAaj578NHmLUrZiAQWHNV+exGoLJE1u4Q1bl4HhBqLvAxg7QreiAQFC22z24EKopl7Y5UOoT744EprIOUorSyGofTCh0eHxxv5050ZpBnsMmgTZrJINIAZpBniBkIBMWIbQ1lUFyYPx6Y3N3h8YpqM55iHaRs+UmAYBLbzCDtih4ABMeK7XObgIoil38lJ9EduGtsZ3SLCHR4fOOJbPx+yD1r7ni6XefyUGWy/xdUuyAf+/+dzm2ytMMdTwSQyun1QI8ZYru6HDizXt7+ENU6a5VBbZlBmmWdQaYKTWXQXWM7o3uk4zpo08ls/Hboght75Ll2n7+ISgfr0EcE+SA21K/hAdZBnqFBBq2Ttz9EtZhBnkGn02wG3Tm2E3pEBjk8vvlkNlYdZB2kWGc3Wtoci2mXTQZVAqddn0GcRHfA26jHy7P7Oj3n+V+PoLC8yk098lxbHSzlAgBjuraFrv6jOWYzsOtjy+tes0AaZvMIjzZ2hieVq59BPZlBmtbDKoNOaCeDvAx6vHxVY3XQUdZBbuCsDhrVJbxhHSQIrIM8SQ/WQaQwzCDPYr0msYYyyMugx8uz+zg9Z+GqoygoYx2kOIIA7PrE8ppjMW3rYb0uuusziJPoTgztGIZrh8Q5PJ5VVIE3/zrpxh55pi2nHA8eR3e1s5TL2fWWnZg7jgUine+wTSrXaZy4YREgbmhjqpa3P0RnNwC5p8R2/BggynkBTirXaay4eSwgbnCsoQwa0jEM1w9zXAdlF1XgjT9PuLFHnunvZtdBG4Ccmvo0fjQQ5fxiCKlcgwzihA7JjBnkWTqOA3yCxbbGMmhwfBiuH9bB4fHsogq88RfrIMU5uxHIqfnv0mEUEN1P1u6Qi3Uc69YM4iR6I568tCfCA7wdHl+yMxn5pZVu7JFnyS6qwPEMx+saje4a3vDNnVZ3Pgy/xwW9IkUx+gBdp4jtsotAyg55+0O0ixnkUYw+QDerDEreLm9/JPb4dOd10He7UnCxhHWQq+QUV+DoBcfrodudRGcd5FmsM6g8X3MZRCrEDPIsRm/LWEyDGfTE9J5oG+isDkpGHusgZeFYzLMYvYFul4jt8gIgaZtLv46T6I0I9ffGv2f2cni80mTG2mNZbuyRZ9l2xvHdV13aBSA6pN46oLlngFN/ie2QOKD7DBf2jhSDS7qQUuSdBU7+KbaD29s+XkbapdElXQCxDnpqVmN1UKYbe+RZtp3JdXisc7sAxNRfDz3vnHgXDlCTQTMb/iBpD5d0IaVgBnkmDY/FQvy98PSs3g6PV5kErD3KOkgx8s4BJ/4Q28GxXMrFU7hxSRdOojfBVQNjMaqLnTuea6w+zA1GXaWx9dAb2P0pgJpNSIfeARiMrukYKUu3SwCdQWwfXyWug0Ykh13MII/U7RJAX/PfWoMZdOWAWPtPftX48wjrIFfZ6mQpl8broNuZQZ7CJoN+01wGkYowgzxT1ymazqDL+8dgbDc7f+fWWM06SDmsM2gIM8hjdLsE0HuJbRdnkMsn0V955RXodDosWLCg7r3y8nLce++9CA8PR2BgIK6++mpkZtpevUtOTsbMmTPh7++PiIgIPProo6iulmedUZ1Oh7vHdXZ4fPOpbJRUaGcNVKUQBKF564BWFAP7vxHbRl9g0C0u7B0pil8boOMYsZ2fBGQdlbc/5JmYQZ7LL9Qqg5KBzCOydkdqYh3UxeHxzadyUMw6SHKCIOBvJzcT2K2D9n0ttg0+wKBbXdc5UhbrDCpIBjIPy9od8lDMIM/lFyquSwxoMoMamw/6+1QOirjRuvwqS4D9Vhk0+FZZu0Nu5Bsi7hEDAAUpQMYhl32VSyfRd+/ejY8++gj9+tku5P/ggw/i119/xfLly7Fp0yakp6dj9uzZdcdNJhNmzpyJyspKbNu2DV9++SW++OILPPPMM67srlOjurRFkI/9q1iV1WZsOpnt5h5p3/ncUqQXlNs9ptcBI+o/HXDgO6CiZt3QvnMB/zAX95AURcOPEZJKHFwKVBSI7b5zgADHd+6SBml4SRcAGNk5HEG+TuqgE6yDpJaUW4q0/DK7x/Q6YETnehlzcJlVBs1lBnkaLulCcmMGeTaNj8VGdA5HsKM6yGTGRtZB8ju4TFwTG6gZizl+eoA0yE1LurhsEr24uBjz5s3DJ598gjZt2tS9X1BQgM8++wxvvvkmJk2ahMGDB+Pzzz/Htm3bsGOHuCHgX3/9haNHj+Kbb77BgAEDMGPGDLzwwgt4//33UVkpz6YN3kY9JvWKcHicS7pIz9ndV/3jQhHs62V5QxCAXZ9YXnMDCc/Tw2r9+xO/ydcP8kz1M2gYM8jjWGfQce1lkLdRj8k9ndRBfJRZcs7qoH7tQxHi56wOutuFPSNFYh1EcmIGkcYzyMugx5RekQ6Psw6SmSDYbmo8jBnkcawn0V04FnPZJPq9996LmTNnYsqUKTbv7927F1VVVTbv9+zZEx06dMD27eJOztu3b0ffvn0RGWkJqWnTpqGwsBBHjth/RLqiogKFhYU2v6Q2PSHK4bH1x7NQUW2S/Ds9mbN1QMfWf4T57EYg54TYjh8NRPV1XcdImUI7AFE1T72k7wcK0tz69e7IIFKwc5uA7ONiu8MoILqf8/NJe0LjgOj+YvtCIlCQ6tavd0sd1MdJHXQsE+VVrIOk5GxfmAZrs57bDGQfE9sdRlr+LJLnsMmgA0B+ilu/nnWQh2MGUUh7IHqA2NZoBk1zUgdtOJ7FOkhO57dYMihuBBAzQNbukAxCYoGYgWI746C4xKYLuGQSfenSpdi3bx8WLVrU4FhGRga8vb0RGhpq835kZCQyMjLqzrGeQK89XnvMnkWLFiEkJKTuV1xcnAS/E1vje7SDj9H+v7LiimpsO50r+Xd6KpNZwLYzzVgHdOdHljavOnqunvItp+CODCIFs84g3n3luWyWdPnDrV/tjgwa170dfL3s10EllSanf29T84h1kOO6knUQ2aXxDCIFYwYRUG8spr0MGtetHfy8DHaPlVaanO7nRi7GsRgBbqmDJJ9ET0lJwQMPPIBvv/0Wvr6+Un+8Q08++SQKCgrqfqWkSH/l09/biPHd2zk8ziVdpHM4rQCF5fY3KfPzMmBgB8sSQcg7B5xcLbaDY4Ges9zQQ1IkN62DZY87MogU6uJ5y1/SQTHMIE/W0z2PEdrDOkhbjqQXoKDM/iZlYh0Uannj4nngpFUG9brM5f0jhbLOIDcvp8A6yIMxg6hWD21nkJ+3ARN6OKmDuKSLPC4mWcb+QdFAr8vl7Q/Jxw1jMckn0ffu3YusrCwMGjQIRqMRRqMRmzZtwjvvvAOj0YjIyEhUVlYiPz/f5ucyMzMRFSU+HhMVFYXMzMwGx2uP2ePj44Pg4GCbX67g7FHmNccyUW0yu+R7PY2zdUCHdw6Dt/UTAbs/BSCI7aF3AAb7G36QB4jqC4R0ENvntlg2FnEDd2UQKdCuT2CbQV5OTycNi+xjyaDzW4CyfLd9tSLqoKOsg6SyxcndbMM6hcHHaHUn3O5PAaHm3/vQ25lBnswmg/7WZAaRAjGDqFZkgrjEJqDZDHJWB63lfJA8rDNoCMdiHi2iNxAaL7aTtgJlFyX/Cskn0SdPnoxDhw4hMTGx7teQIUMwb968uraXlxfWrVtX9zMnTpxAcnIyRo4cCQAYOXIkDh06hKysrLpz1qxZg+DgYPTu3VvqLjfL5J6RMOp1do/llVRiT5L0/5E8kbNHocZYP8JcWQLs/1psG3yAQbe6tmOkbDqd5eqjuQo4tUbe/pD21c+gwbfK2h2SmU5neZTZXA2cXitvf1xgkpM66GJpFXadz3Nzj7TJ2XrotnVQKbDPOoNuc3HPSNHqZxDrIHI1mwzy5ljM0+l0licyNZpBE3tGwMtgvw7KL63CrnOsg9yqshTY95XYNnhzLObp3JBBkk+iBwUFoU+fPja/AgICEB4ejj59+iAkJAR33HEHHnroIWzYsAF79+7FbbfdhpEjR2LEiBEAgKlTp6J379646aabcODAAfz555946qmncO+998LHx0fqLjdLiL8XRnYJd3icjzK3XlmlCXudXIywWQf04DLL3cZ95wABjv/bkIeQcUkX8kAHv7dkUJ+rgYC2zs8n7ZNxSRd3CPHzwqj663Fb+ZN1UKuVVZqw53wT66BD3wPl+WKbGUSArEu6kAeqn0GBjpe6IA8h45Iu7hDs69VwXxIrXNLFzQ4tt2RQwmxmELl8LOaSjUUb89Zbb2HWrFm4+uqrMW7cOERFReHHH3+sO24wGLBq1SoYDAaMHDkSN954I26++WYsXLhQju42MC3B8SM8fx7JgCAIbuyN9uw+n4dKB49BtQ30Ro/IIPGFIAA7P7Yc5CY2BADxowDfELF9ag1QXSlvf0i7BIGb2FBDHUYBvqFi+9QaoLpC1u64wrSESIfH/jySCbOZdVBr7ElyXAeFB3ijZ5R1HcQMonpsMmitJjOIFKJBBt0jX19IOTqMBPxq9i/TaAY1Nh/EOshNWAeRPXEjLBl0WvoMcssk+saNG7F48eK6176+vnj//feRl5eHkpIS/Pjjjw3WOo+Pj8fvv/+O0tJSZGdn4/XXX4fRqIy1rqf2joTO/hM8uFBQjoOp7luHWYucPcI8qktb6GsfIz+3Gcg+JrbjRgAxA1zfOVI+gxfQbZrYrigU1yUmcoXzW6wyaDgQM1De/pAyGIxA95oMqizSZAZd4qQOyigsx8E01kGt4WxfmFFdreqg838DWUfFNjOIatXPoHPayyBSCOsMaj+MGUQig9EyFtNoBjmrgzILK5CYmu/W/nispK1A1hGx3X4oEDtY3v6QMhiMQPfpYruyWJw3lJAsd6KrXUSwLwZ3aOPwOB/haR1ng0ebdUB3Wd2FzquOZK3nTKBdL2Dsw0BYJ7l7Q1plfecDn4QhazYZ1Fnu3kguIsgXQ+Kd1EFc0qVVnK+HbrVs3S5mEDnQcybQrqeYQeHayyBSiF28C50c0HgGtQ30wdCOYQ6Pc2k7N7EZizGDyEptBo15SPKxmDJu7Vah6X2iHG4iuvpwBh6b1gM6R5cnyaG8kkocSS90eHx0t5pJ9ItJlvWug6KBXpe7oXekGr2vABKulLsXpGX5ybYZ1PsKeftDytLrcs3/mZiWEIXdDtbtXn34Ah6fzjqoJRqtg2pvJshPtqzzGBil+T9v1EwekEEks/oZxLEYWet1GdBb238mpidEOdxEdPWRDDwxoyfrIFfKTwGOrxLbgZH8O49s9Zwl5pAL8E70FnK2Dta5nBKcyip2Y2+0Y9sZx3dfdW4bgNhQP/HF7k8BoWa90CF3iEt4ENViwUKuZpNBtzODyJYHZJCzOuh8bilOZrIOaontZ3LhaGudTm0D0L6Nv/hi92eWDBrKOojq8YAMIplZZ9CQ2wGjt7z9IWXxgAya1sdxHZSUW4rjGUVu7I0H2sMMIidcmEGcRG+huDB/JMQEOzzOR3haxtkjzHV3X1WWAvu+EtsGb2Dwra7vGBFRLWYQEeLC/NEn1nEdxCVdWsbZknaja5dyqSoD9n0ptplBRORu1hmk92IGkUeKDfVDv/YhDo//ySV+XaeqDNhrnUG3ydsf8iicRG+F6U7uwuK66M0nCAK2nGrCJPqh74HyfLHd52ogsJ3rO0dEVOvQcqCsZhmLhNlAYIS8/SGSCesg6f19Otvhsbp9YZhBRCQn6wzqMxsIipS3P0QycfZUHm8mcKFDK4CymqV0Eq5iBpFbcRK9FaY7eYTnSHohUvJK3dgb9UvOK0XqxTK7x/Q6YGTncEAQgJ1WG4pyIy0icidB4KbGRDWc1UHHLhQiKbfEjb1Rv+TcUqTk2a+DdDpgZOe2DesgZhARuVODsRg38yPP5awOOp5RhPM5rIMkJwjc1JhkxUn0VugaEYjObQMcHucjPM3j7BHmvu1DEeLvBSRtBbKOiG+2HwrEDnJT74iIACRtAzIPi+3YIUDsYHn7QySjrhFB6NyOdZBUnNVB/WJDxDooeTuQeUh8kxlERO5mk0GDgfbMIPJcXdoFomtEoMPjrINcIHkHkFGTQTGDgPZD5O0PeRxOoreCTqdzuqEEH+FpHmfroY+pXQd0xweWN4f/n4t7RERUz47/WtrMICKnS7r8eSTTjT1RvybtC8MMIiI5MYOIbHBpOzdjBpHMOIneSs5Cc2/yRWQVlbuxN+plMgvYdibX4fHRXdsCp9cCx1eJbwRGAr0ud1PviIgAnF5nm0G9r5C3P0QK4OxR5r1JF5FVyDqoKcxmAVvPOLuZoC1wZj1w7FfxDWYQEbmbdQYFRAC9r5S1O0RK4KwO2p+cj4wC1kGSObMBOLZSbAe0AxKulLU75Jk4id5K/dqHIDrE1+4xQQDWHOVdWE1xNL0Q+aVVdo/5eukxKNII/LrA8ubEfwNGb/d0joioorheBv2LGUQEoG9sCGIc1EEA8CfroCY5esFxHeRj1GNQtBfw6wOWNyc8yQwiIvepKLbNINZBRACAhJhgxIb6OTy+5ijvRpdEZQnw6/2W1xP/BRh95OsPeSxOoreSTqfjrswScLYO6NCOYfDd/BJQkCK+0WkcMOhmN/WMiAjAuoVAQbLY7jgWGHSLvP0hUojGlrb7k3VQkzirg4Z1CoPv5peBfKsMGnyrezpGRAQA619gBhHZodPpnN6NziVdJLKuXgYNulXW7pDn4iS6BJyF5vYzuShwcGcRWThbB3RO2xRg1yfiC6MfcNk7gE7npp4RkcdL3gHs+lhsG/2Ay5lBRNacLW23/Wwu8ksr3dgbdXJWB13dNhXY+ZH4ghlERO6WvNM2gy57mxlEZMXZfNCOs3m4WMI6qFVSdgE7PxTbRl8xg/ScyiR58E+eBIZ2DEN4gP3H2arNAtYd56PMzpRXmbDrfJ7dYz6oxPSzLwMQxDcmPw2EdXJf54jIs1WVA7/Mh20GdZa1S0RKM8RJHWQyC1h7LMvNPVKX8ioTdp1zUgeds6qDJj3FDCIi96kqB1Za1UGT/g2Ed5G1S0RKM6hDG7QNtL+0iFgHcT6oxaorbMdiE5lBJC9OokvAoNfhkt6RDo9zSRfn9py/iMpqs91jj/v9Ap+CM+KL2CHcgZmI3GvTq0DuKbHNDCKyy6DXYWoC66CW2pd0ERUO6qBHfX+Bb/5p8UXsYGDEP9zYMyLyeJv/A+ScFNuxg4ER/5S3P0QK1Fgd9CeXdGm5zf8Bck6I7ZhBzCCSHSfRJeJsXfRNJ7NRWlntxt6oi6N1QBN053CL8Iv4Qu8FXPEeoDe4sWdE5NEuHAC2vi22mUFETk11UgdtPpWNkgrWQY5scVAH9dadx22wqoMuZwYRkRtdOAj8/ZbYZgYROeVsPmjzqRwUsw5qvoxDthl0xXuAwShvn8jjcRJdIqO6hiPQx/7/0BXVZmw6ke3mHqmHvXVAjajGa14fw4CaO7PGPwZE9HJzz4jIY5mqgF/uBQST+Hrco8wgIidGdQlHkIM6qLLajE0nWQc50qQ6aNwjQGRvN/eMiDyWqbpeHcQMInJmZOdwBPk6roM2nuDSds1Sm0HmmosPYx8GIhPk7RMROIkuGR+jAZN6Rjg8zkd47LtYUonD6QUN3r/bsAoJ+iTxRUQCMHqBeztGpDBllSZuUuxO294R734AxAwa86C8/SFSOB+jAZN6Oa6DuKSLffmllTiU1rAOusvwO/roz4svInoDYx5yb8eI3CSrsBxmsyB3N6i+be8AGQfFNjOIqFHeRj2m9HK2pAvXRW+W7e+KTwUDQLte4iQ6kQLwWQgJTe8ThZUH0u0eW3csC78dvID4cH90CPdHsK+Xm3unTNvP5kKoVzd30aXhAeOP4gudXnxsx2h/wzIiT7HmWCbu/24/Qvy8xBwJ80d8uD/iwwLQIVxsRwb5Qq/Xyd1V9cs+CWx8VWzr9MAV7zKDiJpgekIUfkm0XwetP56FVQfT6zIrxI91EABsP9OwDuqsS8cC4w/iC9ZBpGFms4Axr20ABKB9mB/iw/wRHx5gqXHC/dG+jT98vbiEiFvlnAI2viK2dXpxGRdmEFGjpiVE4af9aXaPrT+WyTqoqXJOAxsWiW2dHrjifWYQKQYn0SU0vns7+Bj1djeHKqqoxr1L9tW9buPvhQ5h/ugQHoD4MHFivVtEIPq3D/WoSbD666HrYcarXp/AR1fz2M7I+UDsIBl6RqQsybklAICCsiocTC3AwdSGdy76GPWIC/Ovy5T4MH/Etw3AkPg2COKFu6Yxm4GV8wFThfh65HxxIy0iatT4Ho7roOKKasxfsr/udai/V01WsQ6ypoMZr3p9DB9dzZNHI+9lBpFmZRaVo7ImL85ml+BsdgkA26WfdDogKtjXamJdnGTvGxuCjm0DZOi1/M5mF+O9Dafx0pV94ect8QUGsxlYeZ+lDhrxT6A9M4ioKcZ3bwdfLz3KqxrWQSWVpibVQf3ah8LgQXVQraLyKry55iRmD4hB3zXzmUGkWJxEl1CAjxHjurfDmqONP6pzsbQKF0sLcKDeRFhcmB/eu34Q+seFuqiXylJ/HdCbDGswRC/uAF8SEI+Aif+So1tEipOUW9roORXVZpzOKsbprGKb970Neiy4pBv+Mb4LdDrPK8qaZfcnQMpOsR3WGZjwpLz9IVIRf28jxndvh7+aUAfll1Yh304d1L6NH967YRAGeHAdNNS6DprAOoi0qym1jSAAFwrKcaGgHDvP5dkcG9utLRZfOwDhgT6u6qKilFeZ8N+NZ/DhxjOoNJkRFeyLx6b3lPZL9nwGJG8X2206ARP/Le3nE2mYn7cBE7pHYHUTlvJlHSQSBAG/HbqAhb8eRVZRBSKOf42+JbUZ1JEZRIrDNdElNt3JrsxNkZJXhju/2oPCcu2vfXw4rcCmeG6vy8ZjxqV1r82XvQ14+cnRNSLFScprfKDpSKXJjNdWn8AfXJPYuYtJwNrnLa8vfxfw9pevP0QqNL1P6+qg1ItluPPL3Sgo034ddCS9AOet6qBYZONxqzrINOttZhBpWnITJtGd2XIqB4//cFCi3ijbppPZmLZ4M95ZdwqVJvEu1483n8WpzCLpviQ/GVj7nOX15e8wg4iaSbI6yAP2wkrKLcEtn+/G/CX7kVVUgRjk4Kbizy0ncCxGCsRJdIlN7hUBL0Pr7vTMLqrAsl0pEvVIecqrTFi89iRmf7DN6l0BLxs/RYBOfGznd59LEdRzojwdJFKg1g40AeCddacg1F98l0SCAPz6AFAlLpuDIbcDHcfI2yciFZrcM7LVdVBOcSWW7U6WqEfKU1FtwttrT+Gq/9rWQYu8LHXQHz7TEdyLdRBpW1JeSas/Y+2xLBxJb7jEnVZkFpbj3iX7cMv/djW4c7/aLOCpnw9LU9sJAvDrAqCy5mnGwbcCnca1/nOJPMzEnhHwNrRumi2nuBLfeUAddMlbm7H5ZO0SXgJe9voMgbpyAEBZ3xuZQaRInESXWKi/N24Y1qHVn/Pd7mRNTnb9fSoHM97egsVrT9WtgQgAcwybMc5wCACQLoThRF/uvkxUq7zKhIzC8lZ/zvGMIrtrqROAxCXA2Q1iOzgWmPK88/OJyK4Qfy/MGx7f6s9ZujtFs3XQ9MVb8NbakzZ10NX6LTZ10LE+j8rVRSK3acpyLk2xbLf2bj6qNpnx+dZzmPzGJvx28ILD83aey8OP++xvZNgsB5YCZ9aJ7aAY4JKFrf9MIg8U4ueFeSNaPx+0TKN10NbTOZhhpw66Sv83JhgOAAAyhDZ4rvw6ubpI5BQn0V3gyUt74Zoh7Vu1IcTZ7BLsSbooYa/klVVUjvu/248bP9uJcznWd50IGKo7jqeNX9e986+qOzCsZ0e395FIqfJLq9A7OhiBPq3fxmKpBgearSIIQNI24E+rtc9nLQZ8g2XrEpHaPTGjJ64dEtfqOmj3ec+og4bojuNpL0sd9G/WQeQhgny9EBnc+vXMf9qfhvIqkwQ9UobElHxc8f5WPP/rURRXVDd6/ku/H0N+aWXLvkwQgKTtwOonLO/NegvwDWnZ5xERnpjRE9cNjYOxFXXQuZySBvtAqFlWUTkeWLof8z7dibP16qDBuhN4xqYOuh3LDhXi71M5DT+ISGbcWNQFfL0MeG1OfzwxoxeOpIvrfifnlSIpt6SuXVrZeKH33a5kDO0Y5oYeu47JLODbnUn4z+oTKLIqAsNQiKsMW3CdYSO66S13T/xoGoPk8DEY0Tlcht4SKVNUiC9+f2AsBEFAXkklkvJKkZxbiqTcUiTllYjtvFJkF1U0+lkrE9Pw1MxeCJBgQl4OKXmliAz2hbexldeAS3KBA98B+74Cck5Y3u93LdB9aus+m8jD+XoZ8OqcfnhiRk8cbkUdtHRXMoZ10kgd9OcJFJVb6qA2KMRsO3XQT6bRSAofg5FdWAeR9i2a3RdAX5RVmpBysaauyS2pyQsxK1IvlqLK5PxuzKLyavx+6AJmD2rvno67SEFZFf7z53F8uzMZTb0BVacDZvWLbv5Fy5Jc4OBSsQ7KPm55v+9coMf05n0WEdnwMRrwytX98Pj01tdBap8XMZkFLNmZhNfs1kF/41rDBnS3qoN+MY3COvNgjOgchuhQXzm6TOSU5LMoixYtwo8//ojjx4/Dz88Po0aNwquvvooePXrUnVNeXo6HH34YS5cuRUVFBaZNm4b//ve/iIyMrDsnOTkZ//jHP7BhwwYEBgbilltuwaJFi2A0qmfiJyzAG2O7tcPYbrbvC4KAnOJKJOeV4Of96fh6R5Ldn//90AU8e1kCQvy83NBb6R1MzcdTPx+uWz5CBzNG6Y/gesMGTNXvhrfO9i+OM+ZofOR7Jz6YN7hVd68RaZVOp0N4oA/CA30wqEObBsdLK6uRnFeKM1kluH/pfpjMDUdgJZUm/HbwAq4ZGueOLkuqpKIaN322E0G+Xlh83QB0aRfYvA8wm4Fzm4B9XwLHVgHmehv2hHcDpi2SrsNEHq5NE+qgXxLT8dV2+3XQb4cu4NnL1VsHHUotwL9/PtSgDrrOsAFT9Xvgo7O9w/SMORof+t7FOog8jp+3Ad0jg9A9MqjBMZNZQHp+GZLzSvHWmpMOn9RdujtFtZPogiDgl8R0vPjbMeQUN35DRK2+sSF46ao+6Nc+tGk/UFcHfQUcXwWY6t29Ht4VmP5K0ztORE45q4NySyqRlFuKlYlp+NJBHfT74Qw8X1qFEH/11kFP/XwIB6zqoJH6o7jesN5hHfSO1x1486r+uGpgLHQ61kKkPJLPSG/atAn33nsvhg4diurqavzrX//C1KlTcfToUQQEBAAAHnzwQfz2229Yvnw5QkJCMH/+fMyePRtbt24FAJhMJsycORNRUVHYtm0bLly4gJtvvhleXl54+eWXpe6y2+l0OrQL8kG7IB90ahuIZbtT6nZZt1ZeZcbKxDTcNLKj+zvZCiazgEW/H8NnW89BEIAIXMRcwyZca9iADvrsBufvNPfEUtMkhA6eg+9n9FPtYJlIbv7eRvSMCkbPqGD8kpiGv45m2j3vu93JqpxEf2HVUZyvWT915jtb8NTM3pg3vEPjBVbhBSDxG2Df10C+nSI1fjQw6Bag9+WAl58Lek5E1qzroM5tA7F0l/06qKLajF8S03CzSuug/209B3NNHTTHsAnXGjYiXp/V4Pyd5p5YZpqIoEFz8P2M/qodLBO5gkGvQ1yYP+LC/FFUXo09SXvtnrfrXB7OZBc3/wK7zHKKK/DA0v3Yejq3yT8T5GPEI9N64MYR8U274FZ4AUj8Ftj/NXDxfMPjHUYBg28Bel0OePs3vfNE1CI6nQ5tA33QNtAHXdoF4LvdKTbrg9eqrDbjp/2puHV0Jxl62XIms4BX/jiGz/4W66B2dfNBjuug700TEDhoDn6cMYB1ECma5JPoq1evtnn9xRdfICIiAnv37sW4ceNQUFCAzz77DEuWLMGkSZMAAJ9//jl69eqFHTt2YMSIEfjrr79w9OhRrF27FpGRkRgwYABeeOEFPP7443juuefg7e0tdbdlExbgjakJkVjlYMOY73al4MYR8aq5CicIAh5ZfgA/7U/DQN0p/NPrF0zS74dBZ3tHbI4QjBWmcfjeNAF+0T3x0lV9MSAuVJ5OE2nQdcPiHE6i70/Ox4mMIvSIanjHl1L9eSTDZj338ioznvr5MDYcz8Krc/qhbaCdNVVT9wBb3gBO/gkI9R6Z9G8LDLgBGHQz0LZbw58lIrdoE+CNaX2i8OuBdLvHv9uVgptUVgc9uvwAftyfhgG607jX6xdM1O+HUWc7OM4RgvGDaSyWmSbCN6onXrqqDwbaecKIiCwm94pA20Afh3drf787BU9e2svNvWq5gtIqXPPRdpzNLmn85BqX9Y/B0zN7ISK4CcscNFoHXS/eRMA6iEg2of7emNEnCr8k2q+Dlu5OwS2jOqqqDnpsxUH8sC8V/XWnMd9BHZQrBNXNB/lE9WIdRKrh8rVRCgrERzfCwsQ1Lffu3YuqqipMmTKl7pyePXuiQ4cO2L59O0aMGIHt27ejb9++Nsu7TJs2Df/4xz9w5MgRDBw4sMH3VFRUoKLCUlAVFha66rckueuHdXA4iX70QiEOpxWib3t1bO6yfE8qftqfhm66VCz1fhE+OstyCWZBhy3mvlhqmoi15sHw8fHFwzO646YR8TAauMctqZvSMmh89whEBfsio7Dc7vGlu5Px7GUJbu5Vy2QVluOJHw7aPbbueBamL96M7+8Zic7Wd59lHQM+vxQwWQ+0dUCXSeLEeY9LAaN2LsgSKS2DmuP6oXEOJ9GPXSjEobSCpi9XILPle1PxY00dtMz7hQZ10N/mPvjONKmuDnpoenfcPJJ1EKmfOzLIy6DHnMHt8eGmM3aPr9ibioen9mj9viluIAgCnvrlcJMn0DuG++OFK/tgbLd2TfuCrOMO6qCJ4sQ56yDSGDXXQdcN7eBwEv14RhEOpBao5obDH/al4Yd9qeiqS8X3DuqgpaaJWGMeAm9vHzw0vQduYR1EKuLSSXSz2YwFCxZg9OjR6NOnDwAgIyMD3t7eCA0NtTk3MjISGRkZdedYT6DXHq89Zs+iRYvw/PPPS/w7cI+RncMRF+aHlLwyu8e/252Mvu37urlXzZeUW4Lnfj0CAHjYuLwuMC8IYfjeNB7LTROQKoiF38x+0XhmVm9ENuUuCiIVUFoGGfQ6XDOkPd5Zf9ru8Z/2p+Hx6T3h62Vwc8+ax2wW8MiKg7hYWuXwnI7hAYgPD7B9c/2LloFjUAww8EbxV5t4F/aWSD5Ky6DmGNE5HB3C/JGcV2r3+He7UlQxiZ6UW4LnV4p10EON1UF9o/H0rN6ICmEdRNrgrgy6dmicw0n03JJKrDuWiRl9o13ej9b6JTHd4cVDa94GPf45sQv+b3yX5tVsG15iHUQeRd11UBg6hvvXLVtZ39JdyaqYRE/OLcWzvxwGADxkXFFXB2UIbfC9aTy+N01AqhABALi0bxSemZXAOohUx6WXe+69914cPnwYS5cudeXXAACefPJJFBQU1P1KSUlp/IcUQq/X4bqhHRweX5mYjtLKaofHlaDaZMaCZYkorTShj+4spht2AwAyhVBMrHgDb1XPRarQDvHh/vjy9mF4/4ZBnEAnTVFiBs0dEgdHT/7ll1bhzyP2L0oqyVfbz2PzyYZ7KdQK9DHirWsH2K4Jmr5f3DALAAKjgPv2ApP+zYEjaZoSM6ip9HodrnWyT8PKxDSUVCi/DnpwWSJKauqgGTV1UFa9OqhDmD++uG0o3p83iANH0hR3ZVCntgEY0TnM4fHvdis/+1LySvH0z4cbPW9st7b488FxWDCle/Mm0NMTgWMrxXZABHDfHtZBpHlqroN0Oh2udTYfdCAdxWqog74X66AE3TlcatgFAMgWQjCx4g28WX0NUoUIdAjzx+e3DcV/5w1mHUSq5LJJ9Pnz52PVqlXYsGED2re37JQeFRWFyspK5Ofn25yfmZmJqKiounMyMzMbHK89Zo+Pjw+Cg4NtfqnJnMHtHW4MU1xR7XC5F6V4b8Np7E/OBwA8Ylxueb/6SpTDB94GPe6f1BV/LhiH8d2b+BgikYooMYPiwvwxpmtbh8eX7lJ2cXkyswgv/3Hc6TkLr0hAXFi9TbDWv2hpj3uEm2SRR1BiBjXHXCd1UEmlCb8pvA56f8MZ7Kupgx62qYOuQDl84GXQ4f5JXfHXg+MwoUeETL0kch13ZpCzm4+2nMpG6kX7d3Mqgcks4OHvD6DIyYRYuyAfvHv9QHx1+zB0ahvg8DyHNrxkaY97BPBuwWcQqYza66CrB8fC6KAOKq00YVUTnlyR0383nsHepIsAbOug96uvQBl84WXQ4b6aOmgi6yBSMckn0QVBwPz58/HTTz9h/fr16NTJdifhwYMHw8vLC+vWrat778SJE0hOTsbIkSMBACNHjsShQ4eQlWXZuXfNmjUIDg5G7969pe6yIkQG+zoNk2UKvqtiX/JFvFuzZMQQ3XFMMBwAAKQKbbHUJG4e+/68QXhoag/FLx1BpDXXD3M80Nx+Nhfnc5q+mZU7VVSb8MDSRLs71dea2S8aVw2MtX0zaTtweq3YDukgrvtJRIoXEeyLST0d10FLdye7sTfNsy/5It5ZfwoAMFh3AhPt1UE3sA4iksr0PlEI8fOye0wQgO/3pLq5R0334aYz2HU+z+HxUH8v/Dp/DC7rH9OyjQSTdwKn/hLbIXHA4Ftb1lEicquIIF9M7uWsDlLufFBiSj7eXifWQYN0JzHJkAgASBPCscQ0GQDw3g2D8DDrINIAySfR7733XnzzzTdYsmQJgoKCkJGRgYyMDJSViet9h4SE4I477sBDDz2EDRs2YO/evbjtttswcuRIjBgxAgAwdepU9O7dGzfddBMOHDiAP//8E0899RTuvfde+Pj4SN1lxbjOyaPMe5Mu4mRmkRt70zTFFdV4cFkiTGYBgIBHvb6vO/Z29WxUwYgbhnfAJb0jHX8IEbnMlF6RCA9wvHHUsj3KLMje+Oskjl1wvCFQdIgvXr6yr+0AUxCA9S9YXk94nJtmEamIszpoX3K+IuugkkbqoEp44fphHTA1wf6TlETUfL5ehoYX0a0s35NS8/+kshxKLcBba046PWfRVX1bt8SBdR00/jHAqN2xM5HWOHvKJjElH8czlLdZaklFNRYs3V+XuY8YLXXQO3V1UBymsQ4ijZB8Ev2DDz5AQUEBJkyYgOjo6Lpfy5YtqzvnrbfewqxZs3D11Vdj3LhxiIqKwo8//lh33GAwYNWqVTAYDBg5ciRuvPFG3HzzzVi4cKHU3VWUCT3aITLYcaGjxLvRF/56BEk1G2CM0R/GcL249MIZczR+NI1F57YBeGpmLzm7SOTRvI16XD24vcPjK/amosrk+G5vOWw7nYNPtpx1eFynA96Y2x8h/vXuQju7AUjaKrbDuwL9rnNhL4lIauO7t0OUk/1SlLgE1cJfj9bVQaP1hzFCfwwAcNYchR9NY9GpbQCensU6iEhqzvZRuFBQ7nQ/FTmUVZrwwLL9qHYyuT93cPvWbYp6diNwfovYDusM9L++5Z9FRG43rns7RDu5iKbEOujF347WbYg6Sn8YowxHAQDnzZH4oa4O0uZqEuSZXLKci71ft956a905vr6+eP/995GXl4eSkhL8+OOPDdY6j4+Px++//47S0lJkZ2fj9ddfh9FolLq7imI06DF3sOOC8Md9qaioNrmxR86tPnzB6nFJweaq4+Lqq6HTG7H4ugHw99b2fzcipbtmiONcyS6qwPrjWQ6Pu1tBaRUeXn4AgpMbyO4a2xmj6q/1Lgi2a6FPeBIwMHuI1MRo0GPuEMcX/X7cn4ryKiXVQRlWT/MINnvCLK6eI9ZB17IOInKFXtHB6B8X6vC40paAeun3ozib7XgJvQ5h/nj28oSWf0GDOuhfgMH+kjdEpEwGvQ5znYzbftqfpqg66M8jGfhul3UdZJkPeqv6agh6L7zFOog0xmUbi1LLOLur4mJpFf48kunwuDtlFpbjiR8P1b2eot+HAfozAIBj5jisMo/Ag5d0R7/2oTL1kIhqdY0IxLCOYQ6PL92ljIGmIAj418+HcKGg3OE5vaKD8fDU7g0PnPgDSNsrtiMSgITZLuolEbnSNUPi4GgZ4PzSKvx5JMO9HXIgs7AcT/54sO71ZP0+DNSL+8McN8fhV/MILJjSzekkHxG1zvVOxk3rjmUhq8hxPeFO645l4psdjmstvQ5469oBCPRpxUTTyT+B1N1iu10voA/rICI1umZIe4d1UEFZFVYfVkYdlFVYjid+sNRBk/T7MaimDjppjsWv5lFYMLkbBrAOIo3hJLrCxIX5Y2y3tg6PL1PAXRVms4BHlh9AfmkVAEAHs80OzG9Wz8WQjuH4v/Fd5OoiEdVz3TDHA81NJ7ORnl/mxt7Y99P+NPx28ILD495GPd6+bgB8jPU2pDGbgQ0vWV5P+jeg519vRGoUF+aPMfWfNLGihKXtauugizZ10Iq6429Wz8Hg+HD8Y0JXubpI5BEu6x+DAG/7m9RVmwX8sDfNzT1qKLuoAo+tOOj0nPmTumFwfJuWf4nZDGywugt90r8BPTfvI1Kj9m38Ma5bO4fHlfCUjSAIeHTFwXp1kGU+6I3quRgYH45/TOB8EGkPZxkUyNnd6FtP5yIp1/GjgO7wxbbz2HIqp+71TP1O9NKLYZ5o7owdXsPx5jUDYNC3YEd5InKJGX2iEeRr/w4nswAsr1uaSR4peaV45pcjTs95ckZPdI8Manjg6E9A5mGxHTMI6HGpC3pIRO7ibGOtbWfkr4O+3G5bB12q34Xe+iQAwAFzZ2zzGoG3rmUdRORqAT5GXNY/xuHxZbuTIThbH87FBEHA4z8cRG5JpcNzBsSF4r5JrbzgduwXIKPmCeHoAUDPWa37PCKSlbON1neczcO5HJnroG3nsclq34kZ+l1IqKmDDpk7YqvXSCy+dgCMBk43kvbwT7UCXdI7EmEB3g6Pf79HvruwTmQU4ZXVx+teG2DCg1Z3X71RfQ0WXtkHcWH+cnSPiBzw8zbgqoGxDo9/vyelbld1dzOZBTy4LBHFFdUOzxnbrS1uGdnRzg9XAxtetrye9BQcPgNJRKrQWB0k593oJzOLsOgP2zrooXp3Xz1/OesgIne5bpjji27nc0ux/WyuG3tj69udyU73nfH3NmDxtQPg1ZqJJrOpXh30NOsgIpWb3CsSbQPVUQfpYcZD9eaDnmMdRBrGSfRa57cCxcrYxd3HaMBsJ5Ndy/ekotpkdmOPRBXVJjywdD8qqy3ffZXhb3TRi8sv7DT3REjCVFw5wHHficiB81uBYtdu8OnsKZe0/DL8fTrH4XFX+mDjaexJuujweBt/L7w+tz/09u7qPLgMyBXX30P8aKDLJBf1kkjjkra5PIOaytuox9WDnNRBe1NRJVMddP93tnXQlfqtNnVQUMI0zHbSdyJyoIUZ1L99CHpG2XlKrYZck02ns4rx4m9HnZ7z7GW90bFtQOu+6OD3QM5Jsd1hJNB1cus+j8hTKa4OcrzR+goZ66AHliaiwqYO+htd9ekAgN3m7gjoPd1pDUekdpxEB8TJ82XzgPeHAgeWibuby8zZ+sVZRRXYcML9E/6v/3kCxzOK6l57oRoPGH6se/25z4146ap+0PHuB6LmKc4Glt0IvD/MpRmUEBOCfu1DHB6XY8+FAyn5WLz2lNNzFs3uh8hg34YHqiuBTa9YXvMudKKWKc4Gls6ryaCliqiDrnWypEt2UQU2OLm701Xe+OtkgzpogfGHutefe8/DS1f1ZR1E1FwlOS3OIJ1O53Tpgz8OZyC/1PFyKq5QWW3GgmX7UV7leJJrau9IXDPEcb+bpLoS2LjI8pp1EFHLlOSIY7H3hgKJ3ymkDnKcDznFFVh3zP110Jt/ncSxC4V1rxvWQTfipdmsg0jbOIkOAOsXAmUXxV8/3Q0suQYokHd94K4RQRjiZIOZpbvcO9m17XQOPtlyzua9aw0bEKcXJ/M3mfvh5uuuR4i/l1v7RaQJ618AyvIsGfTtXCDfNXdOOSvI1hzNRE5xhUu+156yShMeXJaIaifLyFw7JA7T+0TZP7j/KyC/Jgu7TAbiR7mgl0QewCaD7nFpBjVV14hADO3opA5y892l287k4JMtZ23eu8awsa4O2mzqi5uvuwGh/o4fvyYiB1qZQVcOjIW30f6wtrLajJ/2u3eD0bfXncThtEKHx9sF+eCVqyW48SjxGyBfXIcYnScCHce07vOIPNX6F4HSXKA8H/j5/4Bv58heB3VuF4hhncIcHnf3BqPbz+Ti43p10FzDJnSoqYO2mPpg3nXzWAeR5nESHQAmPQMkzLa8PvUX8P4IYPen4m7nMnG2xt+GE1nIKCh3Sz+KK6rxaL1d5X1QifnGn+ten+uzAKO6tHVLf4g0Z9LTQJ+rLa9PrwH+OwLY9YnkGXR5/xj4eRnsHqsyCfhxn/suIP7nzxM462RjnPhwfzxzWW/7B6vKgM2vW15P+rfEvSPyIG7MoOZwtsHoxhNZuFBQ5pZ+FFdU49HlB21uTPNBJe4z/lT3+kyfBzCqK+sgohZpZQaF+nvjUkcX3AEs3ZXitg1GD6Tk44ONZ5ye8/rc/k73fWiSqnJg038sryc93brPI/Jkk54C+syxvD69VhF10PVOVifYdDIb6fnuqYNKKqrx6IoDTuugUwkLMJp1EHkATqIDQGA7YO7nwHVLgKBo8b3KIuC3h4EvZgI5p2Xp1qV9oxDkY7R7zCwAy920wegrfxxDWr2AvsmwBlE6cQ3jbV4jcP3sK93SFyJNCmwHzPkfcN13VhlUDPz+iOQZFOTrhVn9oh0eX7rbPQPN3efz8Pm2cw6PG/Q6vHXtAAQ4yEDs/hQoEtchRs9ZQOxgF/SSyEM0mkHOl1xylUv7RiPI11kd5J6Lfq/+cbxBHXSjdR1kHI4brp5t70eJqCkC2jrJoEublEHOloA6kVmExJR8iTrrWEW1CY8sPwBn+7TfOqojxndv1/ov2/MZUCSuQ4welwLtWQcRtVhAW2DOZ8D1S4GgGPG9ZmaQK8zoE41gB3WQIADfu2k+6NXVx5F6sX4dtBbRujwAwA7jMMybwzqIPAMn0a31nAn8cwcw6BbLe8nbgA9HA38vBkzVbu2Ov7cRVwyMcXh82Z4UmJ1VaRLYdjoH3+ywfVQoAGX4h3ElAMAs6BB71QvwMdq/s5WImqHnpcC9Oxtm0AejgL/fkiyDnD3lcja7BLvO5UnyPY6UVZrw2IqDTpcbvG9SVwzq4GAph4oi8d8HAEAHTPyX5H0k8kgOM2g0sOVNt9dBft4Gp5uVL9vthjroTA6+3pFk854/yvFPqzooZvaLrIOIpFCbQYNvtbyXvN0qg6oc/uiIzmHo5GSTzqW7XD/Z9M66UziVVezwePfIQDwxo2frv6iiWPz3UWsin8YjkkSPGcC9O4DBt1nea2IGuYKvlwFXDXRcB32/OwUmF9dB28/k4qvtDeug2vkgAIi6knUQeQ5OotfnFwpc/g5w80qgTUfxvepyYO2zwKeTgIxDbu2Os0eZUy+WYdWhCy777pKKajz2w8EG799mWI1wnbix1rnoaYjvPcxlfSDyOL4hDTPIVAGsfU7MoAsN/59srkEdQtE9MtDh8c/+PoeKalOrv8eR1/86gXNOlnEZEBeK+RO7Ov6AHR+K6xYC4uPfkQkS95DIgznKoHXPS5ZBzeFso/W0/DL8ejDdZd9dUlGNx1Y0UgdFTUNH1kFE0vENAS57G7jlV6BNJ/G92gz6ZBJw4YDdH9PpdE73ffn1YDpS8kpd0WMAwMHUfHy46azD48aaJ+x8HSyp1yw7PwRKc8R2wmwgqk/rP5OIRL4hwGWLm51BruLs5qf0gnL8esB1dVBpZTUe+6Hh7/dWw2q01Yn7PpyNmIqOfYa7rA9ESsNJdEc6jwf+sQ0YOR/Q1fxrunAA+HgCsO4FcR06N+gTG4I+scEOj9//3X5c8+F2rDuWKfndWK/80fCxnWAU427jbwAAE/TodPWLkn4nEdXoPB74x3YHGbSwVRkkDjQdF2R/Hc3EmFc34IONZ1BYLu0dF3vO5+F/Wx0v4+Jt1OP1uf1hNDj466nsIrDtXbGtMwATnpS0f0RUw4UZ1BwJMSHoGxvi8PgDSxMx98NtLqmD7D2+HIxi3GNcBQAwQ49Oc1gHEblEp3ENx2IZB4GPJzrMoKsHtYdRb3+zztJKEya+vhEPLUvE8QzHm362RO0yLs7uCL1vUjckxDjOsiYrywe2vSO2dXo+jUfkKrUZNOq+hhm09nm31UG9ooPRv73j7FiwLBFzPtiGtUelr4NeW30CKXn166ASmzqoI+sg8jCcRHfGOwCY9hJwxxqgXS/xPXM1sOV1cRCZddwt3XB2NzoA7Dqfhzu+3INpizdj+Z4UVFa3fvMLe48vAwIeNP6AYJ14F0dZ72ugb9et1d9FRA54+9dk0FogomaDTcEEbHmj1Rk0e2AsvB1NVAPILqrAq6uPY9Si9Vj0+zFJNjIurzLh0UaWcXn4ku7oGuHgLnlBADa+AlQUiK8HXA+0dXLHOhG1jtMMGu++OsjJ3egAsPv8RcnrIHuPLwMCFhh/rKuDSnrNZR1E5EqNZtAxm9PbBflgSq9Ihx9XbRbw4/40TF+8Bbd+vgvbz+RKsg/Mu+tO42Sm42VcekcH458Tu7T6eyAIwKZXgfKaOqj/9UBbZhCRy3j7A1NfBO5cC0TUPPkqmIC/37SbQa7i7G50ANiTdBF3frUHUxdvxvd7UiR5onjH2Vx8se18vXcFPGD8ESG1dVDPOdBH9Gj1dxGpCSfRm6L9EOCezcD4JwC9l/he9jHgk4lA4ncu//rLB8TArwmP/p3KKsajKw5i3Gsb8Mnmsyhq4R2kJRXVeLzeMi56mPG88QvcZvwTAGDSGRE4levvEblF+8HA3ZvEu64lyqA2Ad6Y1ieq0fOKK6rx0eazGPvaejy6/ABOZRa16PsA4I0mLONy59jO9g+aTcAfj4mPMAPiv4fxj7e4L0TUDHUZ9C+rDDruvjqof/ProI83n2lxHWTv8WU9zHjW+BVuN64GINZBQayDiNzDYQZNAhKX2Jx6bSMX3WptPJGN6z/ZgSvf34rfD11o8brCh1IL8MGmMw6PG/U6vD63P7yc3LjQJGYT8MfjwI7/iq9ZBxG5T+xg4O6NDTPo44nA/m9d/vWX9Y+Bv3fjddDprGI8VlMHfbSp5U8Ul1Y2XM6utg66w/gHgJo6aBrrIPI8nERvKqM3MPFJ4J5NljshqkqBn/8P+OVeoNJ1a+wF+3rhSicbStSXUViOl34/hlGvrMerq48jq7B5d5C+uvq4zWM7PqjEf73exi3GNXXv6aa+AIQ6vyJKRBIyegMTnhAv6NXeCdHKDLp5ZHyTz60yCVi+NxWXvLUZd365G7vP5zXr7q29SXn49O/GlnHpB4O9x7CryoDvbwZ2fWx575KFzCAidzJ6AxMet59BP7u2Dgry9cJVg5pXB738u/gkzSt/tKAO+qNhHfS+19t1NxIAgO6ShUCbpmcoEbWSwwz6B/DzP+syaFy3dogP92/yxx5ILcA/v92HyW9sxLc7k1Be1fQ7OJuyjMv8SV3RO8bx0pxNUlUGLL8V2PWR5b1LnmcGEblTbQb93xYgsmYfguoy4Jd/1mSQ4xuFWivQx4jZzaiDMgsrsOiP4xi9aD0W/XEMmc2sg15bfQLJVntI+KAS73m9Y1sHTXnOsncOkQfhJHpzRSYAd64DBt5keW//N8Cnk4Hsky772kemdkdsqF+zfqaovBofbDyDMa9twGurj6O0srrRn6n/+HIoivCt98uYbtgNAKgSDMievBj6kf9s3m+AiKQR2Vt8pHDQzZb39n8j3o2VfaJZHzW0YxhuGN78iei1x7Iw98PtuPGznU26M728yoRHlztfxuXBKd3RNSKo4YHSPOCrK4Dj4tp70BuBK/4LMIOI5BHZG7hrHTDoFst7iS3LoOZ4ZGqP5tdBFdX4cNMZjHl1A15tYh2042wuvrSqg0JQjG+8X8YMmzroLehH3du83wARScNuBn0rZlDWcRj0Orx8VV94G5s3zD2fW4p//3QYY1/bgB/3pTbpRoH31p/GCSd1UK/oYPxzQiuXnSvNA76+Cji2UnytM9TUQcwgIllE9BLHYoNvtbxnlUGu8vAlLauDPtp0FmNf3YBX/jiOkorG66Cd9ZZxCUExvvZehEsNuwAA1YIeWZPehH70fc3qC5FWcBK9Jbz9gSveA676CPCqudMh66i4RvGBZS75yvBAH/x+/1jcNCIePs0sCiurzfjvxjOY8sYm/H7ogsOisP7jy+112fjB+zkM0YsXB4oFX6wb9C7ajb2t5b8RImo9b3/g8neBqz62ZFD2MfGRwmZm0EtX9sFrV/dDXFjzijIA2Ho6FzPe3oKXfjuKYidF2ZtrTuKsk2Vc+seF4q6xnRoeuJgEfDYVSNkpvvYOBG5YBgyc1+y+EpGEvPyAy98BZn8CeAWI72Ufq6mDlrrkK8MCvFteB5nM+GDjGUx+YxN+O9hIHWT1+HIsxDpoaE0dVCL41NRBt7f8N0JErecogz6ZCBxYitFd22Ll/NGY2KNdsz86u6gCD31/ANd8tB1H0x1vQHo4rQD/3djYMi79mj2Zb+P/27vzqCiufA/g3+5mcQcjAqKiuC8RFxSGuMQEXDCLms3MMxFnHJMYiCbGZPTNJJq8eUejc4zRmBizuMzkGcXEDY0TRcENNSpqjEoQEVwABYMgKEv3fX9Ud0MDDTQ0dlX193MO50h1d3l/Vs43Py5V9+ZlAN+MBTISpe9dmwOTN7EPInI016bAU59UyqDGXeautbEPmhLaCU1cbe+DViWkInxpAmLP3rDaB90r0ePd7y37oM1uHyBYK90kUSjcsXfgcniPmFb/QogUTiPssZuKDOXn58PDwwN37txBq1YNfISuJreSgU2RUuNmMmgKELFYCtdGkHO3GOuPXMG6xHTcuWf7OlfDunlhwdN9q2zet2D7r+bfOvbRXMFat8Xw1uQBAG4KT/zT6x9YFPUStFZ2vSdSMntnxgPNoJip0i/yTAa+DIxbYlMGlekN+PFcFr44kIpz163/0GiNd0t3/O2J3ni6vx80mvKMOJn+O55fdQTWnnR202mxc+YwdPepdBd65lng2+eAu9nS9829gckxgN8Am8dGpATKzaDfgJjIqhkUsVj6hV8jyL1bjHWJ6VifeAV5RY3XB61xWwwfYx90S3hgSZv/wcLoKdUvO0WkcOrKoJeAiCWAWzNczMrH6gOXsf30DZTZuO65VgNMCe2Mt0b1gEdTV/PxkjIDnv70EC5mWb8LfVZYd7w1qofN5Zhl/QL8+zngbpb0fXNvaQLdb2D9z0kkY4rNoJwUaT7o5q/lxypkUGPIvVuM9YnpWFfPPmhotzb44Om+VZ4C/nDHeXxzWFp+s7cmHWvdPqrQB7XC4jb/wCL2QaRSdc0MTqLbQ0kR8OM70pIKJt59gefXAm0b0DzVorC4DJtOXMVXB9NwPe9e7R+owFWnwZ+HBWDm493R3N0FRy/n4sXVRwEAw7S/YJXrx2ihkdbOSjW0wytiHr6a9RwCvJrbvQ4iOVBs4wbYNYOEEDiSmotVCak4mJJj81BCAh7Ch+MfRk/flrhfqse45Qdx+Zb1u9DfHduz6qPOqfuAjVOAEuMPp226AS99z3X3SNWUn0HvAkn/Kj/m3Qd4fl2j9kFFJWXY9PNVfGmHPujY5VxMMvZBQ7W/YJXrMrTUSOdMNbTDK4Z5+HLWs+jStkVNpyVSLLVn0PW8e/jmUBo2HM9AUUnd1z0HAK8Wbpgb0RvPDGwPrVaDpT8lY/m+S1bf38u3JbZHD6v/XeiX44HvXmIfRE5F8Rm0+6/AqfXlxx5QHxRz4hq+PHgZ1363rQ9y0Rr7oLDuaOHuguNptzFpdSKEAB7RnsMXrh+b+6DLBl9MN8zD6lnPoSv7IFIpTqI/yNA0Ob0B2Dlb2uQGkB7teeoTIPD5Rv1rS/UG7PolE6sSLuNCpm13kPq2aoJ3x/bEsr0pyLhdhInag1jsuhquGqm5PGnojmklc/DGkyGYNqya5RaIVELRjZuJnTPo1xt3sPrAZcSezaxx06zKdFoNpj7SGWV6g8XawpX17+CB72c8AhddhR8yz3wnbZRqMC4P0yEY+ON3QPM29aqBSCnUm0HLgMAXGvWvLdMbsLOBfdAncSlIzy3CBO0hLHH9wtwHnTJ0w7SSOYh6IgR/Gd6lMYZPJAuqyKAz3wGxb1lm0JMfA/0nmd9yp6gU/z6WjjWH05Bzt8Sm0wd1ao3JIf54Z/NZq32Ri1aDrVFD8XB7j/rVcHaTtEmhwXh3aYchwB83sg8i1VNHBm0EYt+sMYMag6kP+iLhMs7b2Af5tHLHu2N6YcW+FFzJLcJ4Yx/kZuyDkgzd8OeSOXh9XAimj2AfROrFSXRHhCYgbSYREymtiWXS60kgfAHg1b1h575/BziyQmqu2gUCwa8CnYcBxqUThBA4mJKDLw6k4vClXBtPLvC6bjvedS1fT/k/+sGYWRqNfp18sPHVUD62Q6qmisYNaJQMunq7CF8fSsPOn5PxstiGCdrD+FV0xjr9GBw19AZgeza46bSInTkMPUzLuAgBHPoYiPug/E09nwCe/arRHoUkkhPVZFB1y9z1fAIY9YGd+qBPgbMbjX3QK0Dn4Xbrg17T7cBc1/I13ffog/BGaTT6dvLFJvZBpHKqz6DwBRZ3hN4v1eOHU9fx5cHLSKth35aKWqIIf3HZiYnaQzgvOmOdfjQSDX1QsQ+aGdYds+uzjIsQwOFPgL3zK4x7HPDs1+yDyCmoKoMqL7VZTQbVS8U+yLef1AcFjLDogw5dysEXCZdx6JKtTxQLvKqLxTzX8jXdTX1Qb38fbH7tEfZBpGqcRHdUaAJASSGwcw5w5v/Kj2l00g7OI+cCLbxtO1/pPeD4l8ChpcC93y1f8+4jhWfgJIsG68zVPHwYex4n0yu9vxodNLcwQ7cdk13izMfWl43CgrJIuLq44MdZw/n4Mqmeaho3QMqgXe9IO8Wb2CGDDAeXQnvfMlMuGjpinX40tuiH4T7c63zKd8b0RNRjxmVc8jKAg0uBk2vK3zB4mrSuu1Zn21iJFEp9GfQucLrCElMaHRAUCTw6F2jpY9v56tQHvQC4lS85Z0sf1B63MMNlO16q0Af9uywM88umwsXFFbtmDefjy6R66sqgImMfVHsG6Q0CsWdvYOGui8jKv1/t6dxRgpd1e/C6yzY8pLlr8dpFQ0es14/GFv1QdPJtW79lXPIygEPLgBNflx8b/GdpTWWdi23nIlIo1WVQ5aU2G9oH/fyV9PPSvduWr7XtDYSY5oPK+6Cz1/Lw4Y7zOFHHPug1lx142WWv+di3ZWF4v2wqdC6u2DVzeJV9ZIjUhpPojgxNkzMbgT3vlW+MBwBuLYBHZgKhUYB7LUGkL5Oav/iPgIIbNb+3iScw6GVgyHSgdScAgMEg8P2pa1j040XkFpY/ruiCMgzW/obHtEl4THsaPbTXLU61uHQSPtM/DUCDvz/Rm48vk1NQVeNmcnYT8NN75ZtSAdJjhUNn2T2D8kRzbNSPxL/0o3BN1DxJP7B9c2wep4UudQ+Q8pPlXfMA8Ph7wPC3zXdVEDkD58qgmUBodB0z6FsgflEd+iAPaUPT4OnmdYMNBoEfkq5j0Y8XLJZtMPVBI7Wn8bg2qZo+6AV8ph8PQIO/jevNx5fJKTh7BhUWl2H5vhR8fTDNvAGpDno8pzuAWS7fw09zu/LZLdwRzVEaOBlej0fVvna5vhTIOCr1QCl7LO+aB9gHkVNSZwbFAD/9veF9UMJHQP71mt9bTR8khMAPp65jYTV9UJAmBY/ppPmgntprFqdaUvoCVhr7oP8e1wuvjOhqQ9FEysRJdDmEJiDdjZW4Uno8r6TCnQstfICR86Sgq3yHgcEAnN8K7P9fILfipjUa6TeMI94BMk8Dx1cDV49ZflajBXpESL+NDHgU0Ghw514pvtx1BDdPxWKk9jSGaX9BK03VjSdKhQ5/LZ2OHwwjAEjr/vHxZXIWqmzcAGMGfQYcXmZbBl3YBuz7h9UMEplncHv/CrS5nWT5UaFBnGEQ1ujH4IihL0yPOLdFHkbqTuNx3RmMbnIeOtNmWRVpXYCnVwAD/ssupRMpidNlUHNv4LF5wMApNmbQC1IflHUWOLYauHq00l+oAXpGSHendxlZoQ9KxM1TO/Co9jSG19AHzS2dju+NfdAgf0/E8PFlchLMIMmlm3exYNs5tEzbhTkum9BVm2l+zSA02GoYik/LJqCPJh2RLv/BEO1vlf7CqhkEACjIBi4Zbx5I3Q8UV7NusdYFeGo5MHCy3conUgpVZ9DRz4BDn5RvFgzU3AcJAZw39UEpFV6oYx/UYywQ8mqVPij7VCxGapOs9kFlQou5ZdOxWf8oAGCgvyeXcSGnwUl0uYSmyd2b0m8QT6wBRIUd4b16AOEfSM0WAKTGAXEfAplnLD/fc5x0V4JPH8vjN5Kk8Dy3GdBX2hynbS+gaxiQfqjq+Yz0QoMk0R379QOw0xCCK6IdAMDdRcvHl8mpqLZxM7l7S8qgk2vKN+0EqsmgfdK65NVm0N8Bn74Whwuv/IxLO5aiV85PcNeUWbz2m6E9DhgCEay9iEBtWvXj0milTbO6jwL6TAS8ujW0UiJFcu4MWiBlDGDMoA+lmwUq6hEBhL1XJYNw47R0U8EvmwF9seVrXj2BbuFA+uGq5zMyCA2SRDfs0w/ELkMI0ox9kJuLFj+yDyIn4rQZ1Ka7tGeDKYMu74fY+wE0lTJjj34Q/ln2ApKFv8Xxvpo0zGq5D6P0h6CpRwYBGmMfNBroyz6InJdTZNCBxcCJb2rNIOz94IH3QdJ80B8s+qBdM4ehm3fLepdMpCSqmERfuXIllixZgqysLPTv3x8rVqxAcHBwnT4ru9A0yUmRJqgu7LA87v+ItPbvlYOWxzsNlX647FhL3XdvAafWAj9/U+sjz8WunogrC8Tu4n44YAhEHqoGIx9fJmej+sbNJOeSMYO2Wx73D5XugKoug8LmA/4hNZ429coV/Pz9x3g0fzva1fLIM5q2BrqNkn5g7BYGNHuoHoUQqQszyEoG+T8i9UG1ZBAKc4CTa4Gfv65DH+SBfWWB+LE4EAcN/fA7qv778PFlcjZOn0Ed/wC4uAFpBywOX205AHN+n4BjZdVvCKjTarD19aHo17pUyqAT39S+7ELT1tLEVvfR0g1Pzds0oCAidXCaDMpNlTLo/DbL41YySOqD5gP+f6j5vKY+qA4ZVGLug6T5oOr6oLkRvfDao+yDyHkofhJ948aNmDJlClatWoWQkBAsW7YMMTExSE5Ohrd37ZviyTY0TTKOSeulV16OxcQ3UJq46hZm23p4+lJpgv74aiAj0fJ8PcZIzVr7IOSXGPDxnt+wPjEdeoPlfwKP9miLb6YO4WM75FScpnEzqTWD+gFhC2zKICEEYk9n4MjOdZhYEotgbbL5tQsIgHfQ02gz4EmgfRA3DCWqxOky6Opxaa3iKo8hG/n2M/ZB4bb3QRdjpaf0Mo5UOF+g1AP1GGPug5btScG6xCtV+qARPdpiDfsgcjLMoEoqZFBqTiEWbP8VB1NyqrxtXkQvvFpxoklfZsygL6rPoO6jgQ6D2QcRVcIMqsSnnzR5bnMfVLcMKigxYNneFKw9UrUPGt7dC2umDoGLzsZNkokUTPGT6CEhIRgyZAg+/fRTAIDBYEDHjh3xxhtvYO7cubV+XvahCUhrXV2MBfYuKF/z86GuwON/k5Y10DYwtLJ/BW6nSRNWrdpV+5YLmflYlZCKhN9uoVUTV4T39sHciF627ypPpHBO17gBxgzaCeydXyGDukjLtjQgg+4Wl+HLA5dx4Uwimt7NgPALwqyJI7gsAlENmEEVMuixvwF9n3kgfdDFrHysipf6oBZNXBDe2wfzInqzDyKnwwwyZlDrAKkPqpRBQgj859dsfHssHSeu/I4ubZtjSmgnTBrib+XkqFMGEZHEaTMoeRewZ3752udWMqhess8Dty/XmEHJWQX4PP4S+yByeoqeRC8pKUGzZs2wefNmTJgwwXw8MjISeXl52LZtm/UPGykiNE30peWP8/QZD+hcH/gQhBDQcAd4cmJO2biZNGIGMVuI6oYZxD6IyJGYQXXPIOYFkf05dwaVAee3Sn9mH0TkEHXNDBerrzhQTk4O9Ho9fHx8LI77+Pjg4sWL1X6muLgYxcXlGynk51ez47lc6VyBfs85dAgMTKKGYQZVj9lC9GAwgxqGWUXUMM6UQcwLIvlRdga5sA8iUgjVPKOxcOFCeHh4mL86duzo6CERkRNhBhGRIzGDiMiRmEFE5EjMICJ6EGQ5ie7l5QWdTofs7GyL49nZ2fD19a32M/PmzcOdO3fMX1evXn0QQyUiAsAMIiLHYgYRkSMxg4jIkZhBRPQgyHI5Fzc3NwQFBSEuLs68JrrBYEBcXByio6Or/Yy7uzvc3d0f4CiJiMoxg4jIkZhBRORIzCAiciRmEBE9CLKcRAeA2bNnIzIyEoMHD0ZwcDCWLVuGwsJC/OlPf3L00IiIiIiIiIiIiIjISch2En3SpEm4desW3n//fWRlZWHAgAHYvXt3lc1GiYiIiIiIiIiIiIgai2wn0QEgOjra6vItRERERERERERERESNTdaT6A0hhAAA5OfnO3gkRKQEpqwwZUdDMYOIyBbMICJyJGYQETkSM4iIHKmuGaTaSfSCggIAQMeOHR08EiJSkoKCAnh4eNjlPAAziIhswwwiIkdiBhGRIzGDiMiRassgjbDXr/pkxmAw4MaNG2jZsiU0Gk2t78/Pz0fHjh1x9epVtGrV6gGMsPGxJuVQY11Kq0kIgYKCAvj5+UGr1Tb4fMwg1qQkaqxLaTUxg+yPNSmHGutSWk3MIPtjTcqhxrqUVhMzyP5Yk3KosS6l1VTXDFLtneharRYdOnSw+XOtWrVSxAW2BWtSDjXWpaSa7HHXgwkzqBxrUg411qWkmphBjYM1KYca61JSTcygxsGalEONdSmpJmZQ42BNyqHGupRUU10yqOG/4iMiIiIiIiIiIiIiUilOohMRERERERERERERWcFJdCN3d3fMnz8f7u7ujh6K3bAm5VBjXWqsqTGp8d+LNSmHGutSY02NSY3/XqxJOdRYlxprakxq/PdiTcqhxrrUWFNjUuO/F2tSDjXWpcaaABVvLEpERERERERERERE1FC8E52IiIiIiIiIiIiIyApOohMRERERERERERERWcFJdCIiIiIiIiIiIiIiKziJTkRERERERERERERkBSfRjVauXInOnTujSZMmCAkJwfHjxx09pHpbsGABNBqNxVevXr0cPSybHDhwAE899RT8/Pyg0WiwdetWi9eFEHj//ffRrl07NG3aFOHh4UhJSXHMYOuotpqmTp1a5bqNHTvWMYOto4ULF2LIkCFo2bIlvL29MWHCBCQnJ1u85/79+4iKikKbNm3QokULPPvss8jOznbQiOWLGSQvzCBmkLNhBskLM4gZ5GyYQfLCDGIGORtmkLwwg5hBcsVJdAAbN27E7NmzMX/+fJw6dQr9+/fHmDFjcPPmTUcPrd769u2LzMxM89ehQ4ccPSSbFBYWon///li5cmW1ry9evBjLly/HqlWrcOzYMTRv3hxjxozB/fv3H/BI6662mgBg7NixFtdtw4YND3CEtktISEBUVBSOHj2KPXv2oLS0FKNHj0ZhYaH5PW+99RZ27NiBmJgYJCQk4MaNG3jmmWccOGr5YQbJDzOIGeRMmEHywwxiBjkTZpD8MIOYQc6EGSQ/zCBmkGwJEsHBwSIqKsr8vV6vF35+fmLhwoUOHFX9zZ8/X/Tv39/Rw7AbAGLLli3m7w0Gg/D19RVLliwxH8vLyxPu7u5iw4YNDhih7SrXJIQQkZGRYvz48Q4Zj73cvHlTABAJCQlCCOm6uLq6ipiYGPN7Lly4IACIxMRERw1TdphB8sYMUg5mUP0wg+SNGaQczKD6YQbJGzNIOZhB9cMMkjdmkHI4QwY5/Z3oJSUlOHnyJMLDw83HtFotwsPDkZiY6MCRNUxKSgr8/PzQpUsXTJ48GRkZGY4ekt2kpaUhKyvL4pp5eHggJCRE0dcMAOLj4+Ht7Y2ePXtixowZyM3NdfSQbHLnzh0AwEMPPQQAOHnyJEpLSy2uVa9eveDv76/4a2UvzCDlYQbJFzPIdswg5WEGyRczyHbMIOVhBskXM8h2zCDlYQbJlzNkkNNPoufk5ECv18PHx8fiuI+PD7Kyshw0qoYJCQnB2rVrsXv3bnz++edIS0vD8OHDUVBQ4Oih2YXpuqjpmgHSozvr169HXFwcPvroIyQkJCAiIgJ6vd7RQ6sTg8GAN998E0OHDsXDDz8MQLpWbm5u8PT0tHiv0q+VPTGDlIcZJE/MoPphBikPM0iemEH1wwxSHmaQPDGD6ocZpDzMIHlylgxycfQAyP4iIiLMfw4MDERISAg6deqETZs2Ydq0aQ4cGdXkxRdfNP+5X79+CAwMRNeuXREfH4+wsDAHjqxuoqKicO7cOcWtt0b2xwxSJmYQqQUzSJmYQaQWzCBlYgaRWjCDlIkZpAxOfye6l5cXdDpdld1hs7Oz4evr66BR2Zenpyd69OiBS5cuOXoodmG6Lmq+ZgDQpUsXeHl5KeK6RUdHIzY2Fvv370eHDh3Mx319fVFSUoK8vDyL96vtWjUEM0h5mEHywwyqP2aQ8jCD5IcZVH/MIOVhBskPM6j+mEHKwwySH2fKIKefRHdzc0NQUBDi4uLMxwwGA+Li4hAaGurAkdnP3bt3kZqainbt2jl6KHYREBAAX19fi2uWn5+PY8eOqeaaAcC1a9eQm5sr6+smhEB0dDS2bNmCffv2ISAgwOL1oKAguLq6Wlyr5ORkZGRkqOpaNQQzSHmYQfLBDGo4ZpDyMIPkgxnUcMwg5WEGyQczqOGYQcrDDJIPp8wgh25rKhPfffedcHd3F2vXrhXnz58Xr7zyivD09BRZWVmOHlq9vP322yI+Pl6kpaWJw4cPi/DwcOHl5SVu3rzp6KHVWUFBgUhKShJJSUkCgFi6dKlISkoS6enpQgghFi1aJDw9PcW2bdvE2bNnxfjx40VAQIC4d++eg0duXU01FRQUiDlz5ojExESRlpYm9u7dKwYNGiS6d+8u7t+/7+ihWzVjxgzh4eEh4uPjRWZmpvmrqKjI/J7XXntN+Pv7i3379okTJ06I0NBQERoa6sBRyw8zSH6YQcwgZ8IMkh9mEDPImTCD5IcZxAxyJswg+WEGMYPkipPoRitWrBD+/v7Czc1NBAcHi6NHjzp6SPU2adIk0a5dO+Hm5ibat28vJk2aJC5duuToYdlk//79AkCVr8jISCGEEAaDQbz33nvCx8dHuLu7i7CwMJGcnOzYQdeippqKiorE6NGjRdu2bYWrq6vo1KmTmD59uuz/x11dPQDEmjVrzO+5d++eeP3110Xr1q1Fs2bNxMSJE0VmZqbjBi1TzCB5YQYxg5wNM0hemEHMIGfDDJIXZhAzyNkwg+SFGcQMkiuNEELU9a51IiIiIiIiIiIiIiJn4vRrohMRERERERERERERWcNJdCIiIiIiIiIiIiIiKziJTkRERERERERERERkBSfRiYiIiIiIiIiIiIis4CQ6EREREREREREREZEVnEQnIiIiIiIiIiIiIrKCk+hERERERERERERERFZwEp2IiIiIiIiIiIiIyApOohMRERERERERERERWcFJdCIiIiIiIiIiIiIiKziJTkRERERERERERERkBSfRiYiIiIiIiIiIiIis+H/T7X/CKLcyqAAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAEiCAYAAAAWHJuuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1w0lEQVR4nOzdd3gU1f4G8HdLeiWBVELoLfTeuxTBhmDDXn/3iopd77ViQb0WbNd+7QiCDVFROkhvofeSSjrpfXd+f0yS3U12N212p+z7eR4ez+5Mdg+KL99zZuYcnSAIAoiIiIiIiIiIiIiIqAG93B0gIiIiIiIiIiIiIlIqTqITERERERERERERETnASXQiIiIiIiIiIiIiIgc4iU5ERERERERERERE5AAn0YmIiIiIiIiIiIiIHOAkOhERERERERERERGRA5xEJyIiIiIiIiIiIiJygJPoREREREREREREREQOcBKdiIiIiIiIiIiIiMgBTqKTy+zevRujRo1CQEAAdDodEhMT5e4SEXkQZhARyYkZRERyYgYRkZyYQaRFnEQnl6iqqsLcuXORl5eHt956C19//TXi4+Ml/5709HQ899xzqgrk4uJiPPvss5g+fTrCwsKg0+nwxRdfyN0tIk1hBjm2e/duzJ8/HwkJCQgICECHDh1wzTXX4OTJk3J3jUgzmEGOHTlyBHPnzkXnzp3h7++Ptm3bYty4cfj111/l7hqRZjCDmu6ll16CTqdDnz595O4KkWYwgxzbuHEjdDqd3V87duyQu3vUCKPcHSBtOnPmDJKSkvDJJ5/gzjvvdNn3pKen4/nnn0fHjh0xYMAAl32PlHJycrBw4UJ06NAB/fv3x8aNG+XuEpHmMIMce/XVV7F161bMnTsX/fr1Q0ZGBt577z0MGjQIO3bs4CCSSALMIMeSkpJQVFSEW265BTExMSgtLcUPP/yAyy+/HB999BHuvvtuubtIpHrMoKZJTU3Fyy+/jICAALm7QqQpzKDG3X///Rg6dKjNe127dpWpN9RUnEQnl8jKygIAhIaGytuRFiovL4e3tzf0eukf1oiOjsaFCxcQFRWFPXv2NAhOImo9ZpBjDz30EJYsWQJvb++696699lr07dsXr7zyCr755hvJv5PI0zCDHLv00ktx6aWX2rw3f/58DB48GG+++SYn0YkkwAxqmkceeQQjRoyAyWRCTk6OS7+LyJMwgxo3duxYzJkzx2WfT67B5VxIcrfeeivGjx8PAJg7dy50Oh0mTJhQd/z48eOYM2cOwsLC4OvriyFDhmDlypU2n5GXl4dHHnkEffv2RWBgIIKDgzFjxgwcOHCg7pyNGzfWTUDfdtttdY/A1C6N0rFjR9x6660N+jdhwgSb/tQ+TrN06VI89dRTiI2Nhb+/PwoLCwEAO3fuxPTp0xESEgJ/f3+MHz8eW7dubfC5x48fR3JycqP/fnx8fBAVFdXoeUTUMswg50aNGmUzgQ4A3bp1Q0JCAo4dO9bozxORc8yg5jMYDIiLi0N+fn6Lfp6ILJhBTbN582asWLECixcvbvLPEFHjmEFNV1RUhOrq6mb9DMmLd6KT5O655x7Exsbi5ZdfrntEJTIyEoC4Dubo0aMRGxuLJ554AgEBAfj+++9x5ZVX4ocffsBVV10FADh79ix+/vlnzJ07F506dUJmZiY++ugjjB8/HkePHkVMTAx69eqFhQsX4plnnsHdd9+NsWPHAhAniFrihRdegLe3Nx555BFUVFTA29sb69evx4wZMzB48GA8++yz0Ov1+PzzzzFp0iRs2bIFw4YNq/v5Xr16Yfz48VyehUhmzKCNzf5uQRCQmZmJhISEFvWdiCyYQRub9H0lJSUoKytDQUEBVq5ciT/++APXXntti/pORBbMoI2NfpfJZMJ9992HO++8E3379m1Rf4nIPmbQxiZ932233Ybi4mIYDAaMHTsW//nPfzBkyJAW9Z3cSCBygQ0bNggAhOXLl9u8P3nyZKFv375CeXl53Xtms1kYNWqU0K1bt7r3ysvLBZPJZPOz586dE3x8fISFCxfWvbd7924BgPD555836EN8fLxwyy23NHh//Pjxwvjx4xv0tXPnzkJpaalNv7p16yZMmzZNMJvNde+XlpYKnTp1Ei655BKbzwVg87lN4az/RNRyzKDm+frrrwUAwmeffdainyciW8ygxt1zzz0CAAGAoNfrhTlz5gh5eXlN/nkicowZ5Nx7770nhISECFlZWXV9SkhIaNLPElHjmEGObd26Vbj66quFzz77TPjll1+ERYsWCeHh4YKvr6+wb9++Rn+e5MXlXMht8vLysH79elxzzTUoKipCTk4OcnJykJubi2nTpuHUqVNIS0sDIC55Urv+lMlkQm5uLgIDA9GjRw/s27fPJf275ZZb4OfnV/c6MTERp06dwg033IDc3Ny6/paUlGDy5MnYvHkzzGZz3fmCIPAudCIFYwbZd/z4cdx7770YOXIkbrnlFil+K0RkBzPI1oIFC7BmzRp8+eWXmDFjBkwmEyorK6X8LRGRFWaQKDc3F8888wyefvpptGvXzhW/FSKygxkkGjVqFFasWIHbb78dl19+OZ544gns2LEDOp0OTz75pCt+ayQhLudCbnP69GkIgoCnn34aTz/9tN1zsrKyEBsbC7PZjLfffhv//e9/ce7cOZhMprpzwsPDXdK/Tp062bw+deoUADidVCooKECbNm1c0h8ikhYzqKGMjAzMnDkTISEhWLFiBQwGQ4s/i4icYwbZ6tmzJ3r27AkAuPnmmzF16lRcdtll2LlzJ3Q6XYs+k4gcYwaJnnrqKYSFheG+++5rfieJqMWYQY517doVV1xxBX788UeYTCaOyRSMk+jkNrVX6R555BFMmzbN7jldu3YFALz88st4+umncfvtt+OFF15AWFgY9Ho9FixYYHO1zxlHAzBHoWR91dG6v//5z38wYMAAu58VGBjYpL4QkfyYQbYKCgowY8YM5OfnY8uWLYiJiWnxZxFR45hBzs2ZMwf33HMPTp48iR49ekj2uUQkYgaJk2Iff/wxFi9ejPT09Lr3y8vLUVVVhfPnzyM4OBhhYWHN+lwiahwzyLm4uDhUVlaipKQEwcHBkn0uSYuT6OQ2nTt3BgB4eXlhypQpTs9dsWIFJk6ciM8++8zm/fz8fLRt27butbM7ldq0aYP8/PwG7yclJdX1xZkuXboAAIKDgxvtLxEpHzPIory8HJdddhlOnjyJtWvXonfv3pJ+PhE1xAxyrqysDIB4gY+IpMcMAtLS0mA2m3H//ffj/vvvb3C8U6dOeOCBB7B48WJJvo+ILJhBzp09exa+vr68UVPhuCY6uU1ERAQmTJiAjz76CBcuXGhwPDs7u65tMBggCILN8eXLl9etkVUrICAAAOyGY5cuXbBjxw6b9TVXrVqFlJSUJvV38ODB6NKlC15//XUUFxc77S8griucnJzcpM8mIvdjBolMJhOuvfZabN++HcuXL8fIkSOb1B8iah1mkCgrK6vBe1VVVfjqq6/g5+fHi3pELsIMAvr06YOffvqpwa+EhAR06NABP/30E+64444m9Y+ImocZZP/nAODAgQNYuXIlpk6dWrcWPCkT70Qnt3r//fcxZswY9O3bF3fddRc6d+6MzMxMbN++HampqThw4AAAYNasWVi4cCFuu+02jBo1CocOHcK3337b4Iphly5dEBoaig8//BBBQUEICAjA8OHD0alTJ9x5551YsWIFpk+fjmuuuQZnzpzBN998U3dFsTF6vR6ffvopZsyYgYSEBNx2222IjY1FWloaNmzYgODgYPz666915/fq1Qvjx49v0mYS7733HvLz8+seI/z111+RmpoKALjvvvsQEhLSpD4SUfMwg4CHH34YK1euxGWXXYa8vDx88803NsdvvPHGJvWPiJqPGQTcc889KCwsxLhx4xAbG4uMjAx8++23OH78ON544w3egUXkQp6eQW3btsWVV17Z4P3aO8/tHSMi6Xh6BgHAtddeCz8/P4waNQoRERE4evQoPv74Y/j7++OVV15p3r9Qcj+ByAU2bNggABCWL1/e4NiZM2eEm2++WYiKihK8vLyE2NhYYdasWcKKFSvqzikvLxcefvhhITo6WvDz8xNGjx4tbN++XRg/frwwfvx4m8/75ZdfhN69ewtGo1EAIHz++ed1x9544w0hNjZW8PHxEUaPHi3s2bOnwWc466sgCML+/fuF2bNnC+Hh4YKPj48QHx8vXHPNNcK6detszgPQoG+OxMfHCwDs/jp37lyTPoOIHGMGOTZ+/HiH+cOygEgazCDHvvvuO2HKlClCZGSkYDQahTZt2ghTpkwRfvnll0Z/loiahhnUPOPHjxcSEhJa9LNE1BAzyLG3335bGDZsmBAWFiYYjUYhOjpauPHGG4VTp041+rMkP50g1HtGgoiIiIiIiIiIiIiIAHBNdCIiIiIiIiIiIiIihziJTkRERERERERERETkACfRiYiIiIiIiIiIiIgc4CQ6EREREREREREREZEDnEQnIiIiIiIiIiIiInKAk+hERERERERERERERA4Y5e6Aq5jNZqSnpyMoKAg6nU7u7hCRwgmCgKKiIsTExECvb/31RWYQETUHM4iI5MQMIiI5MYOISE5NzSDNTqKnp6cjLi5O7m4QkcqkpKSgffv2rf4cZhARtQQziIjkxAwiIjkxg4hITo1lkGYn0YOCggCI/wKCg4Nl7g0RKV1hYSHi4uLqsqO1mEFE1BzMICKSEzOIiOTEDCIiOTU1gzQ7iV77yE5wcDBDk4iaTKrH/ZhBRNQSzCAikhMziIjkxAwiIjk1lkHcWJSIiIiIiIiIiIiIyAFOohMREREREREREREROcBJdCIiIiIiIiIiIiIiBziJTkRERERERERERETkACfRiYiIiIiIiIiIiIgc4CQ6EREREREREREREZEDnEQnao7sE8DOj4GSXLl7Ip1Ta4FPJgN7v5S7J0TUGGYQEckp+6T2Muh0bQZ9IXdPiKgxWs6gPZ/L3RMiaowmM2gdM6gZjHJ3gEg1TNXA11cBhWlA6i7g6k/l7lHrmaqBX/4JFGcCaXuBqD5A7GC5e0VE9phNwNezgcJUIGUnMOczuXvUeqZq4Jd7geIMZhCR0plNNXVQKpCyA5jzP7l71HpmE/DLfKDogphBkX2B9swgIkUym4BvZgMFKdrNoKh+zCAipbLOoOTtwFwNTDrXZVA6M6iJeCc6UVPlnBAn0AHxap0gyNsfKZzdIE6gAwAE4NcF4qQWESlP9glx8goAzmglgzaKE+gAmEFECmeTQes1kkEbxMkrAIAArHqAGUSkVDknxckrQLsZ9CsziEixck5pMIM2ihPoAJhBTcNJdKKmSttnaZflAflJ8vVFKolLbF9nHAR2fSRPX4jIuXTrDLoIXDwvW1ckc4AZRKQaDTLonHx9kUrid7avMw4BOz+Upy9E5FyaB2RQ5iFg5wfy9IWInLOug8rzgbyzsnVFMgeYQc3FSXSiprIOTUB83EXNyvKB47+Jbe9AADqxvf4loCBVrl4RkSNpGsug8gJmEJGaNMigffbPU4vyAuD4KrFtnUEbXgbyU2TrFhE50GAsxgwiIjfSXB1UCByrySCvANhmULJs3VI6TqITNZXWQvPIT4CpQmwPmAcMvlVsV5UAfzwuW7eIyIH6g8f0/fL0QypHfgKqy8X2gBuAIbeJ7aoS4PfH5OsXEdmntQmsIz9bMqj/9cCQ28U26yAiZdLcWOxnBxlUCvz+qDaWiiDSkgZjMZVn0NGfgeoysT3gemDoHWK7qlQcizGD7OIkOlFTVFcAmUds31P7BJb1ozsDrgemPAsERIivj6+y3CFKRPKrrgAyDtu+p/bBo/UjzP2vByZbZdCJ3yx3RhCR/OxlkNoHj/XroMnPAIGR4mtmEJGyVFcCmVrLoKWWdv0MOvmH5S51IpJfdaW45Js1TY3FbmAGNREn0YmaIuMwYK6yfS89UdzNWI1yzwApO8V2u15A9ADArw0wfZHlnN8fBSqKZOkeEdWTaSeDLiSqd+OXvLNAyg6x3a4nEDMQ8Au1zaA/HmMGESmFvQxKT1R3BiVvF9ttewAxg5hBREqWeRgwVdq+p+oMOgckbxPbjjLod2YQkWJkHWmYQRcOaCSDugOxgwDfEGD6K5ZzmEF2cRKdqCms73TQGcR/VpUA2Sfk6U9r1b/zQVez/lWfq4Euk8R2YRqwYVHDnyUi90uzl0GlQI4GMqh//QyaLLaZQUTKYS+DqsuA7OPy9Ke1DiyztK3roITZ9TLoZff3jYgasjcWU3UGORiLJcwGuk4R20Xp4j4xRCQ/h3XQMXn601oHreog67FYwlVA10vENjPILk6iEzWFdWj2nGlpq/ExQrPZUrjp9EC/ay3HdDpg5huA0Vd8vfMD8QorEcnLevko6wxS42OEZrNlGQVmEJE6pCda2pqog5qaQR/a/t6JSB6O6iAtZtClr1syaNdHzCAiJUh3MB+kxrGYIFgtaaezUwe9Dhj9xNe7PlL/MsYS4yQ6UVPUhqbeCAy6xfJ+2l55+tMaSVuBgprdlrtMAoKibI+HdQbGPSK2BTPw6wL1LltDpBVpVhk0WOUZlLzNsuN754lAcLTt8bBOwLhHxbZgBn59gBlEJLd0LWXQdiA/SWx3ngAEx9geD+sEjK/Z3FgwA6sWMIOI5JZWM4njiRnEOohIfrUZpDNoI4MunhfbnScAIbG2x9t0rJdBC5hBVjiJTtSYiiLLsi2RCUCH4QBqHndR45VH6420+l9v/5xRD4jr8wHiwHn3Z67vFxHZV1FsWbYlojcQZ5VBarwDy3oTmwE32D9n1P3iWumAePcDM4hIPpUlliUTInoBcSPEuycBldZBSyzt/g4yaOR99TLoU9f3i4jsqyyxLJmgiQxqwlhs5H3ivlWAuAfOrk9c3i0icsAmg3oDHUZaMkiVYzHrOsjRfNB94u8VYAbVw0l0osZcOAhAENsxgwCfIHHzBQDIPAJUlcvWtWarLAGO/iK2fYJtH0WyZvQGLltseb1uIVB4weXdIyI7Mg6KdwEA4qYvPkFAu5qLXKrMoJ/FtncQ0ONS++cZvYFZiy2v1y0ECtNd3TsisufCAUsGxQwCfAItF9qzjqosg0qBIzV1kHeQ8zrIJoNeYAYRyeXCwUYyqEy+vjVXZSlw5Gex7R0E9Jxl/7z6Y7H1LzKDiOSScchqLDYQ8A6wXGjPVHMGBQK9HGSQwcu2Dlr/AlCQ5ureqQIn0YkaY311MXaQ7T/NVeJu8WpxbBVQWSy2E64EvPwcnxs/Chh4k9iuLAJWP+Hy7hGRHdZ3WcUMsv2nuVos7NTi+G+2GeTt7/jc+JHAoJvFNjOISD5pzuogNWZQkdhOuIIZRKQGTsdiGs6gDiMsy4hWFgF/PO76/hFRQ87GYoKp5qZLlTjxuyWDel8pXhBwpMNwYPCtYruyGFjNDAI4iU7UOJvQHCj+M3aw/eNK15RHmK1dshDwDxfbR38GTv7lkm4RkRPp9jJokP3jSmf9+KCjpVysTXke8G8rto/+Apz80zX9IiLH0u0MHq0zSE3rgTa3DmIGEcnP7lhskP3jStfsDHrOkkHHVgInVrukW0TkhGbHYg6WcrE25TkgoJ3YPvYrcOIPl3RLTTiJTtSY2lA0+lnWpotRYWgWpAJnN4ntNh3Fuxsa4x8GTHvZ8vq3h8XlGIjIfWoHh0ZfcS1QQJ2Dx4I04OxGsd2mo7ieYGMaZNAjzCAid7OXQWqsgwrTLRkUGs8MIlKLdOsMqlmj15MyaPoiy+vfmUFEbldbBxl8xD3yAHWOxQovAGc3iO3QDkCHUY3/jF8bYJp1Bj3q8RnESXQiZ0rzLDsXR/cDDEaxHdUH0HuJbbXcgXVwGerWdu9/PaDTNe3n+l0LdBontguSgU2vuqR7RGRHaR5w8ZzYjuonrk8HAJGelEHXAJ3Gi21mEJF7Ocsgg7fYVsvg8eAyy5qm/a8H9E0cBtXPoI2vuKZ/RNRQ2UUg76zYjurrIIPUUgd9b5VB1zU9g/rOBTpPENsFKcDGRU5PJyIJleUDeWfEtnUGRSSoMIOs6qB+zcmgOcwgK5xEJ3LG3iPMAGD0ESfSASDnFFBe6N5+NZcgAInWO8Ff1/Sf1emAmW9a/pLY/r64mSERuV76fks7tn4G9RXbuaeA8gL39qu5BAE4IFEGbXsPyFDRXhREamadQbWPMAPipnfWGVSW79ZuNZvUdRAziMg9bDLIug6yzqDT6sigVtdBPuLr7f9V1zrwRGrmcCzmLd5cAIiT7Mwgj8FJdCJn0hyEJmBVyAnAhUR39ahl0vaKg1wAiB8tLqXQHG27AWMfFtvmamDTa5J2j4gccHQhD6i3Fl+iW7rTYmn7gJyTYrtFGdQVGPuI2BZMwOb/SNo9InLA3oZ+tawzSel1UPo+IOeE2O4wCgjr1Lyfb5BBrIOI3MLexsa1VJVB+4Hs42K7w0ggrHPzfj68CzDOKoM4FiNyjyaPxfZD0awzKG6EmCnNEd4FGPeo2BZMHv1kMCfRiZxpamgq/REem6uOTdhAwp7RCyybShxfBRRntbpbRNSIJl3Ig8oyqBl3Plgbs4AZRORuaQ7uAgXUtR7ogaWWtiQZ9BtQlNnqbhFRIxzdiQ544FjsASAgQmyf+J0ZROQOTb2Qp/gMsqqDmrKhqD2j7wcCI8X28d+BoozW90uFOIlO5ExtaPqENLxjIHZww/OUqLoCOLRCbBv9gN5XtOxzvHyBAfPEtrka2P+NNP0jIsdqL+T5BANh9e4YsM4gJW+qVV0BHLbOoCtb9jlGH2DgjWKbGUTkHtYZFN7V9phNHaTgwWN1pVUd5AskXNmyz6mfQYnMICKXS2tqBim5DnJRBu3/WpLuEZETtRfyvIOA8G62x2zGYgq+E726Eji0XGwbfICEq1r2OdYZJJg8NoM4iU7kSGE6UFxzdS1mQMONF9p2B7wCxLaSQ/PkaqA8X2z3mgX4Brf8swbfamnv/QIwm1vRMSJyqvACUHRBbNvNoG6Ad6DYTlNyBv0pbgwGtD6DBt0CoGZDUmYQkWtZZ1B0/4YZFN5NHFQCyq6DTv0JlOWJ7Z6zAN+Qln8WM4jIfYoygKJ0sa3qDPrLKoNmti6DBltl0L4vAbOp1d0jIgeKMoHCNLFtbywW3lW8wAco+0KelBlkUwd95ZEZ1OxJ9M2bN+Oyyy5DTEwMdDodfv75Z5vjgiDgmWeeQXR0NPz8/DBlyhScOnXK5py8vDzMmzcPwcHBCA0NxR133IHi4mKbcw4ePIixY8fC19cXcXFxeO01rvtFbubs0R0A0BvEMAXEXYqVurRAogSPD9YK6wR0mSS285OAs+tb93lE5Jiz5aQAMYOiB4jtwlTlPtYrxSPMtZhBRO7jbD10QBxM1tZBhWnKzSDrOqiljzDXssmgZOAMM4jIZRodi9XPIIUuLWBTB93Qus9q0xHoOllsM4OIXMtmLDaw4XG9XrzAB4gX/AovuKdfzWWdQQNam0HxQNcpYrsgGTi9rnWfp0LNnkQvKSlB//798f7779s9/tprr+Gdd97Bhx9+iJ07dyIgIADTpk1DeXl53Tnz5s3DkSNHsGbNGqxatQqbN2/G3XffXXe8sLAQU6dORXx8PPbu3Yv//Oc/eO655/Dxxx+34LdI1EKNTWAByl8PtDgbOL1GbAfFAJ0ntP4zB99mae/5vPWfR0T2NTZ4rP++Epd0KckR734ApMugIcwgIrdIa2YdpNgM+lNsB0UDnSe2/jOtM2gvM4jIZbQwFivJFZ/IA4DAKKCLBBnEsRiRezRpLKbw5TVtMiiSdZAEmj2JPmPGDLz44ou46qqG6+gIgoDFixfjqaeewhVXXIF+/frhq6++Qnp6et0d68eOHcPq1avx6aefYvjw4RgzZgzeffddLF26FOnp4uNa3377LSorK/G///0PCQkJuO6663D//ffjzTffbN3vlqg5mhKaMQofPB5aLq6ZBwD9rhHvXG2tHjPEIhAATvyh3CuuRGqnhcGjKzKo+3RmEJE7pDvZ2LiW0jfVOrTCNRkUFC22T/whLv9HRNJrbgYpcSx2eAVgrhLbrsigk6uBgrTWfyYRNaSFsVj9DDIYW/+Z3aaJN0cBHplBkq6Jfu7cOWRkZGDKlCl174WEhGD48OHYvn07AGD79u0IDQ3FkCFD6s6ZMmUK9Ho9du7cWXfOuHHj4O3tXXfOtGnTcOLECVy8eNHud1dUVKCwsNDmF1GLCYKlcAuIAIJj7Z+n9F3hpVxGoZbBCxh0k9j24A0l6mMGkaRsMqgdENLe/nlKn8ByWQbdLLaZQXWYQSQpQbAMHv3bAiFx9s9T+uDRVRk00KoO2scMAphBJDFBsGRKkzNIgXVQ4hJLW7IMMrIOsoMZRJKyyaBwILSD/fNUNRZr5VIutWwyyAzs+0qaz1UJSSfRMzLEdcgiIyNt3o+MjKw7lpGRgYiICJvjRqMRYWFhNufY+wzr76hv0aJFCAkJqfsVF+fgL1qipsg7a9mMM3YQoNPZPy80XgxVQAxZQXBL95ok8wiQcVBsxwwEInpK99mDboZlQwluagMwg0hiF89ZNuOMcZZBHcTBJSBOeCkqg44CFw6IbVdkkK6mhGEGAWAGkcQunrdkkLM6KCROvNAHKC+Dso4BFxLFdvQAIKKXdJ9tnUH7PHNjrfqYQSSp/CTLRnhNzqD9Cs6g/kBkb+k+u34Gmaql+2yVYgaRpKwzyNlYLKS9eNMloMAMOm65KSuqHzNIIpJOosvpySefREFBQd2vlJQUubtEamb9+KCjR3cAMUxrj5fliWGrFDZ3Pkh01bFWaAeg21SxXZgKnF4r7eerEDOIJNWU5aQAMYNqj5ddFCe+lOKAKzMoDuh6idguTAVOrZH281WIGUSSasojzEC9OuiieAFQKazroNZupFVfaJxtHcQMYgaRtJqyJwOg7AxyxR2gtULai0sqAOKmqqeZQcwgklRLxmLl+eLNmEpxwIV1UEisJYOK0i17YHkASSfRo6LENUozMzNt3s/MzKw7FhUVhaysLJvj1dXVyMvLsznH3mdYf0d9Pj4+CA4OtvlF1GJNDc36x5XyKLOpGjj4vdjWewF950j/HTab+/1P+s9XGWYQSaqpF/LqH1fKeqBuyaDbLW0P3NSmPmYQSUprdVAfF2TQYNZB1phBJKl0lWeQ2WSVQUaOxdyAGUSSaurNBPWPW4/h5NQgg+ZK/x3WYzEPyiBJJ9E7deqEqKgorFu3ru69wsJC7Ny5EyNHjgQAjBw5Evn5+di717Je0Pr162E2mzF8+PC6czZv3oyqqqq6c9asWYMePXqgTZs2UnaZyD6b0Bzo/FzrHZmVsg7WmXVASc3Fqu7TAP8w6b+j6yWWteJP/QUUpEr/HUSeKq2lGaSQweOZ9UBxzcVwV2VQt0uA4Jq14k/9BeTzjiMiyTTnQp51Bill8Hh2A1BcswRk92lAQLj032GdQafXMIOIpJRmnUFqrIM2AEU1G593mwYEtJX+O7pOsawVf2oNkJ8s/XcQeaoWZ5BS5oOsM2iqizJosiWDTq8FLipoVQYXavYkenFxMRITE5GYmAhA3Ew0MTERycnJ0Ol0WLBgAV588UWsXLkShw4dws0334yYmBhceeWVAIBevXph+vTpuOuuu7Br1y5s3boV8+fPx3XXXYeYGHGH1xtuuAHe3t644447cOTIESxbtgxvv/02HnroIcl+40QOmaot6/iGdGg8cJR45XHbu5a21I/u1DIYgUG3iG0P3FCCyGXMJqsMigMC2zk/X4l3YG13QwbpDR69qQ2Ry5hNQHqi2G5KBilxUy3rOkiqzfzq0xuAwayDiCRnNlnWEg9uDwRGOD1dkU/k2dRBLsyg2rEYBGYQkVRsMigWCIp0errNJLsSx2KurIM8MIOaPYm+Z88eDBw4EAMHin9QHnroIQwcOBDPPPMMAOCxxx7Dfffdh7vvvhtDhw5FcXExVq9eDV9f37rP+Pbbb9GzZ09MnjwZl156KcaMGYOPP/647nhISAj++usvnDt3DoMHD8bDDz+MZ555BnfffXdrf79Ejcs5AVSViu3YRq46AuLgsvYKXHqi/JtLpewCzm8R22FdgO7TXfddg24CdAax7WEbShC5TPYJoKpEbDd25wMgXugLqdkx/kKi/P8fpuwGzm0W22Gd3ZdB+7+W//dOpAU5J5uZQeHiXimAeAFQ7v8PU/cA5zaJ7bDOQI8ZrvuugfXroCrn5xNR43JOAZXFYrspYzHFZdBe4OxGsd2mE9DdlRl0IzOISGrWGdTkOihebCsxg3pc6rrvss6g/V97RAY1exJ9woQJEAShwa8vvvgCAKDT6bBw4UJkZGSgvLwca9euRffu3W0+IywsDEuWLEFRUREKCgrwv//9D4GBgTbn9OvXD1u2bEF5eTlSU1Px+OOPt/x3SdQcTd3IxlptuFaViBNgctrypqU95kHxCqGrBMdYJsiKLgAnV7vuu4g8RXPWAa07rzaDSsULgXL6280ZVDtBxgwikkZz1kOvVVsvKSGDrOug0QtcnEHRlgwqzmAGEUmhOWsR1z+vqhTIPi59n5rDpg5aID696yo2GZQJnPjDdd9F5ClaNBarOa+6DMg+Jn2fmsPdGdSzZpK+OBM48bvrvkshJF0TnUgTrJdkaXJoWq8HKuMjPJlHgJM1xVNwLNDvWtd/Jzf3I5JWc9YirqWU9UAzj1qKp+BYoN91rv9Obu5HJK2WTGApJYOyjgEnfhPbQTFAfzdkkM3mfqyDiFqtJRfylDIWyzoOHF8ltoOiXbeMgjWOxYikpeaxmBwZNNiz6iBOohPVV1d46YDoAU37GaWsSfz3W5b2qPsBo7frv7PLJMsjlKfXARfPu/47ibTM5mmYAU37GaWsB2qTQfe5P4POrGcGEbVWSzLIpg6ScV30Bhnk4/rv7DzJ8hj3mXVA3jnXfyeRllnXMaoei7krgyYCbTqK7TPrgbyzrv9OIi2zqYOasJwLoOCxmJsz6OwGIPeM679TRpxEJ7JWXQFkHBbbbbsBvsFN+7noAQB0YluuwWPeWeDwD2LbP9yy4Z6r6fW2G0rs/dI930ukRdWVQGZNBoV3A3xDmvZzMQMgfwadAw6vENt+Ye7NoMG31rxgBhG1SkszKLo/6jJIrsFj3jngkFUG1W766Wp6ve137WMGEbVYdSWQcUhsh3cF/EKb9nPWGSRXHXTxPHBoudj2C7MaH7mYzVgMrIOIWsM6g8K6NC+DdDXTq4rIoDbuzaC6sRg0XwdxEp3IWuZhwFyzGUJTH90BxMn2tjVr/2ceESfj3W3r24BgFtsj/gF4+7vvuwfeBOhr1tra/41HbChB5BKZhwFTpdhu6iPMAOATBLTrUfMZR4Cqcun71hibDPon4B3gvu8ecKNVBn0tFsBE1HytyqCeNZ8hUwZtewcQajZ3H/EP92ZQ/TqIGUTUMllHLBnUnLGYdQZlHZWpDrLKoOH/B/gEOj9fSgNvBPReYjvxW2YQUUtlHQVMNXM5zaqDAq3qoKNAVZn0fWuMTQb9w70ZNMAqg/ZrO4M4iU5krSVr8NU/31xluZvdXQovAIlLxLZ3EDD0Lvd+f1Ak0HOm2C7JAo7/5t7vJ9KKlqxFXP98c7XlTlJ3KbwgDtoAMYOG3ene77fJoGzLmshE1DytyaBYqwyqvYvLXYoyxMlrAPAOBIa5uQ4KjAB6zhLbzCCilpNkLCZHBmXKn0G9rDKodk1kImoeKcZigskDM6idJYNKc4Djv7r3+92Ik+hE1lqyiYS98939CM/29yx3bQy7s+mPHUmJm/sRtV5aCzY2tne+uzNox/uWDBp6h/gIobtZb6zFDCJqmdZkkPW6oe5e0mW7EjKIdRBRq7VqAssqg2Spg2ruXh1yO+Af5t7vBzgWI5JCqy7keXgG2YzFtLvBKCfRiazVhqbeCET1bd7PyrUrfGmeJaSMvuIyCnLoNB4I6yy2z23S/IYSRC6R3poMkmlTrdI8YHfNYM3gI18GdRxnlUGbmUFELVF7M4HO0Lo6yN0ZtMc6g+5133db6zhOXD8VYAYRtVR6ovjP1maQO8diZReB3Z+JbYMPMFKmDOo0TlxHHgDObwFyTsvTDyI1s6mD+jXvZ+Wqg5SSQR3H1sugU/L0w8U4iU5Uq6IYyDkhtiN6A16+zfv5qD6WdaDcGZo7PwKqSsT2wJvEx/nkUH9Dib1fyNMPIrWqLAGyj4vtiF6Al1/zfj7SKoPcOXjc9bElgwbdJC6tIocGGaTdOyCIXKKyBMg+JrYjercsgwzeYtudd2Dt+gSoLBbbzCAi9aosBbKsMqi5+zvZZJA76yCrDBp4IxAU5b7vtqbTMYOIWsMmg3o1P4MiEiwZ5NaxmHUGzVNQBn0hTz9cjJPoRLUuHLBsitfcR3cAwOgDRCaI7ZyTQHmhdH1zpKII2Pmh2NYbgdH3u/47nRkwz/IXR+K38mywSqRW1hnU3EeYATGDovqI7ZyTQHmBdH1zpKII2PGB2NYZgFEKyqD938qzsRiRWl04aFUHDXR+rj1Gb3ESCwByT7kpg4qBncwgIk3IOGjZFE+KDCrLl6xrDlUUAzv+K7Z1BvnHYv1vsB2LMYOIms46g2JamEG1T9DknpYng+SugzwggziJTlSrNWvw1ap7hEcALiS2tkeN2/sFUJ4vtvteA4R2cP13OhPQFuh1udguzQWOaXdDCSLJtWYNvrqfs36UObFV3WkS6wzqdw3QJt713+mMdQaV5TGDiJpD0joI7sugsotiu+9cBWRQOND7CrHNDCJqnjSJM8gdY7F9X1pl0BygTUfXf6czAeFA7yvFdtlF4NhKWbtDpCqSj8X2Oz5PKvUzKKyT67/TmfoZdPQXWbvjCpxEJ6olSWi6cU3iqnJg23s1L3TAmAWu/b6mstlYi48REjWZFBNY1j/n6scIqyvqZdCDrv2+prLOID7KTNR0UtdB7sig7e9ZXislgwYzg4haJF1lY7HqCmDbu5bXSskgjsWIWkaVYzGFZ5AG6yBOohPVqg05oy/QrlfLPsM6NF29HuiBJUBxhtjuNQto18O139dU8aOBtt3FdtLfwJn18vaHSC3SrDIoooUZFOvGDEq0yqCeMxWaQVuZQURNZV0HRfRu2We4tQ76Dii6ILZ7zgIierr2+5oqfhTQtiYPmUFETVdbBxl8VJJBS+tlUAtrN6l1GGnJoORtwOl18vaHSC2kyCB3XsizzqAeMxWaQduB02vl7Y/EOIlOBAClecDF82I7qh9gMLbsc9r1ALwCxLYrH98xVQNb37a8HvOQ676ruXQ6YPg9ltcr7gAuJsnXHyI1KM0DLp4T21F9AYNXyz6nbXfAO1Bsp7k6gxZbXo9VcgbdzgwiakzZRSDvrNhuVQZ1A7yDxLarM+jvxZbXzCAidSvLB/LOiG2pMsjVY7G/37K8VtpYbMT/WV7/cIdlnEtE9tlkUB9xffOWCLeug1w4iV4/g5RWB1ln0AptZRAn0YkAaR4fBAC9AYgZILYLUoDirFZ1y6EjP1mCqMuk1vXZFQbfDnSbKrbL8oDvbwKqyuTtE5GSWQ/0Wvr4ICBmUPQAsV2YChRltqpbDllnUOeJtuv/KcHg24Hu08V22UVg2Y3MICJnpMyg2jrIlRl09GfLhUdFZtBtzCCi5rDOIKnGYoVpQFFGq7rlkE0GTQDaKyyDBt0KdJ8htmszqLJU1i4RKZpkdZDekkFF6UDhhVZ1yyHrDOo0Hmg/xDXf01LWGVSer6kM4iQ6EWB7t1RrQhOw3cnZFVcfzWbg7zctr8c+LP13tJZeD8z+GGhTs7HFhQPAqocAQZC3X0RKJdWFPACItcogV6zFp5YMuuojIKyz+DrjILDqQWYQkSNSrIdeK8YNGbTlDctrZhCR+kmxFnHdz7t4LCYIwBYV1EGzPwLCuoivMw4xg4ickXQs5uJ10ZlBsuIkOhEgcWha78jsgtA8uRrIOiq244aL6/8qkV8b4LpvAS9/8fWBJcDuT+XtE5FSSXkhzzqDXDF4tM6g9sOAjmOk/w4p+IUC11pn0HfMICJHpLoDC3B9Bp360yqDhqogg2qW+WMGETkm5YU8l4/F/gSyjtR81xCg41jpv0MKviE1Y7GaDDq4FNj1ibx9IlKqNAkv5Ll8LFYvgzqNk/47pGA3gz6Wt08S4CQ6EWAJN59gy9WylnLlZhKCYHv31ZiHxDWnlCoyAbjcasfo1U8AyTvk6w+RUqVbZVB419Z9lit3ha+fQWOVnkG9gSves7xmBhHZlyZhBrnyDqwGGfSw+jIoabt8/SFSqtoLed5B4prCreHOsZjSMyiiF3Dl+5bXfz4JJG2Trz9ESlWXQYHi3gqtwbGYRYMM+pfqM4iT6ESF6UBxzXp5MQPER09aIzQe8AsT2+n7pH1k5fwWIG2P2I7sA3SfJt1nu0rfOcDI+WLbXA18f7Pr1ickUqPCC5ad1aP7S5BBHQD/cLGd5sIMikgAuqkgg/pc3TCDXLU+IZEaFWWI63YC0mRQSBzg31Zsp+2VOIP+BlJ3i23VZNBsYNR9YttcDSy/hRlEZK0oU1y/HJBmLGadQVKPxZK2Aqm7xHZEb8veB0qWcBUw6n6xba4GvmcGEdmwzqDoAeLeCq0R0h4IaCe2pR6LWWdQu16WdceVzG4Gpcvbp1bgJDqRlI/uAOKVwNo7IEpzgfyk1n8mIIbv5v9YXo95UNlXHa1Ned7yqGNxpjiJVV0pb5+IlELK5aQAMRdqs6wsT7rd0Otn0NiHWj/QdZf6GbT8FmYQUS0pl1EAbOugsovMIACY/JzlcWtmEJEtm/XQBzo+r6kaZNC51n8mYGcspqYMelbcfBAASrI4FiOyZjMWkyiDasdi5flA3tnWfyag8jrIXgZVyNunFlLJv3EiF5J6AguwXQdr1yetv/ooCMBfTwHnNouvwzqLV/TUwmAE5nwOBMeKr1N2io/yEJH0F/IA2wza/an0GdSmE9D7ytZ9pjsZjMDcL4Dg9uJrZhCRhZQb+tVyWQZtEl+rMYPmfF4vg56Ut09ESiH1hTyg3lhMogxa8zRwdqP4uk1HFY7F/ifepQ+Id7KufkLePhEphVrGYtYZFBoPJMxu3We6U20dVJdBu4HV6qyDOIlOlHnE0o4eIM1nWj/at/09YMNLrQvODS+LnwMA0AFTX2z9Y0buFtgOuPZrwOAtvt79CZC4RN4+ESmBdQbFDJDmM3vUy6D1L0qbQdNeEoshNQloW5NBPuJrZhCRyBUZVL8Oam0GbVzUsA5SfQZ9Cuz/Vt4+ESmBq8diO94H1r/Qygx6BdhWu8+TDpiqgTpoz2fA/m/k7RORErh6LLbjv8C6hdJmkCrHYuGayCBOohPlnhH/afSzXBlrrdhBwKWvW15v/o8YfC2x5U1g82uW15e/A/Sc2br+ySV2MDDTaiOMVQ8C6YmydYdIEfJqM8gXCOkgzWfGDLTNoC2vi5NQLaGpDBpkm0G/LmAGEeW6IoMGSJdBf78FbHrV8vqyt4Fes1rVPdnEDgJmvWl5vepBy2ZmRJ6qtg4y+Ih3V0ohZoDt3/db3mj5TU1/LwY2WY3jLlus3gyKGQjMesvyetVD0m++SqQ2rsig6P7ATKu/7/9+s+U3FNjNoMta20N5aCCDOIlOns1UbVknL7yLtGtKDbsLmGE18bTpleZPpO/4EFj3vOX1jNeAQTdL0z+5DLoZGHyb2K4uB5bdBJTkytsnIrmYqoG8mgwKc0UGWa2bt+lVZhAADLoJGHK72DZVMIPIs5lNlrU6lZhBOz8C1j5neT39VWDwLZJ0TzYDb2QGEdWyziCpx2JD72z9TU07PwbWPmt5Pf0VYPCtknRPNgPnAUPuENt1GZQjb5+I5GJTB3WW9mn/oXe0/oYCrWbQ0DvFtgoziJPo5Nnyk8QdggExNKU2/B4x6GptXARs+o/j863t/QJY/bjl9ZTnxc/TghmvAu2Hiu2CZOCH28XJRCJPU5AMmKvEdrgrMuhucdKp1sZFwKbXHJ9vbe+X9TLoOe1k0PRXmEFEAJAvQwZtfNXx+db2fQX88Zjl9eRngRH/J23/5GKTQSnAituYQeSZClIAU80Gl64Yi7XmpqZ9XwN/PGp5PflZYMQ/pO2fXKa/ArQfJrYLU5lB5LmsMyi8i/Sf35obChpk0DPayaBpi4C44WJbZRnESXTybLWPMANAeFfXfMeIfwDTXra83vAisPl1x+cDwIFl4jIDtcY/DoxZ4Ohs9TH6ANd8BQS0E1+f3Wi70zSRp3BLBv2fWKjU2vBS4/+/Hfwe+PUBy+vxjwNjHnRN/+RQl0ER4uuzG22XrCHyFO7KIJsbCl5u/IaCg8uBlfdbXo97DBj7kGv6J4f6GXRuEzOIPFPuaUvbVRlk96amRv5/O7QCWHmf5fW4RzWWQd71Mmiz7bJZRJ7CJoNcMIkOtOymJrsZ9LBr+icHozcw90sgMFJ8fW6z7ZI1Cib5JLrJZMLTTz+NTp06wc/PD126dMELL7wAwWrtH0EQ8MwzzyA6Ohp+fn6YMmUKTp06ZfM5eXl5mDdvHoKDgxEaGoo77rgDxcXFUneXPF2eGwaPADDyXnEDmlrrXxDXGbbn6C/Az/8HoOb/mVH3ARPUuXOxU8ExYnDqazbE2P1J63etJlIbd0xgAcDIf9pezFv/org+qD1HfwF+8pAMusYqg3Yxg8gDuasOas4NBUdXAj/dg7oMGjkfmPgv1/VNLswgIiD3rKXt1gxyckPBsV+BH++GbQb923V9k0twtDiRzrEYeTK3ZVAzbmrypAyaq746SPJJ9FdffRUffPAB3nvvPRw7dgyvvvoqXnvtNbz77rt157z22mt455138OGHH2Lnzp0ICAjAtGnTUF5eXnfOvHnzcOTIEaxZswarVq3C5s2bcffdd0vdXfJ07rj7odao+cAlL1her3te3CTC2sk/gRV3AIJZfD30TvFndDrX9k0uHUcDXSaJ7dJcy3pkRJ7CnRk08l5g6ouW1+sWihv2WTv5V00GmcTXWs+g+FFAl8liuyyPGUSex+0Z1MgNBSf/AlbcbsmgIXeIucUMItImWTPIzg0Fp9YAy2+zyqDbNZ5BI4GuU8R22UXbmzuIPIFbM6gJNzV5ZAZdIrbL823/eyiU5JPo27ZtwxVXXIGZM2eiY8eOmDNnDqZOnYpdu3YBEO9CX7x4MZ566ilcccUV6NevH7766iukp6fj559/BgAcO3YMq1evxqefforhw4djzJgxePfdd7F06VKkp6dL3WXyZO54fMfa6PvFtc1rrX0W2PqO2D67UdxUoXZt0gHzxPWztBqYtWrX4wOA1D3y9YNIDtYZFOaGDBp1H3DJQsvrtc8BW98W22c3Astu9LwMihtqaafulq8fRHJwewY5uaHg7Cbge6s6qP8N4oZczCAi7XL3WKxBBlndUHBus20d1P8G4NI3tJ9B7ZlB5MHcXQc5u6mpQQZd7xkZpLI6SPJJ9FGjRmHdunU4efIkAODAgQP4+++/MWPGDADAuXPnkJGRgSlTptT9TEhICIYPH47t27cDALZv347Q0FAMGTKk7pwpU6ZAr9dj586ddr+3oqIChYWFNr+IGlV7td03BPAPd893jlkgbkxTa83TwG8PA99dL+5ODAAJs4HL35V2h3qlam/5/1wNoekIM4hapDaDfEKAgLbu+c7RD4ibhNZa8wyw6iEPziB1FW6OMIOoRWoHj27NIDs3FNRmUHXNU6kJVwFXvMcMUhFmELVIXQYFW/ZKcrUGGfScmEFLrrPNINZBqsIMohapzSDvICAwwj3fae+mpvoZ1PtK4HLWQUok+X+RJ554Atdddx169uwJLy8vDBw4EAsWLMC8efMAABkZGQCAyMhIm5+LjIysO5aRkYGICNs/wEajEWFhYXXn1Ldo0SKEhITU/YqLi5P6t0ZaU1UGFKSK7fCu7r3CN/YhYNLTlte7PwWqSsV2j5nA7I8BvcF9/ZFT7CAANf/uVRCajjCDqNmqysUd4QHx7it3ZtCYB8Ud3mvt+cxzMyiGGUQeqroCyJcrgxbY3lCw5zOgqkRs97gUmP0JM0hlmEHUbNUVMtZBCxrPIIPRff2RE8di5KnkzKD6NzVZZ1D3GZ6VQTEDAV3N1LQKMkjySfTvv/8e3377LZYsWYJ9+/bhyy+/xOuvv44vv/xS6q+y8eSTT6KgoKDuV0pKiku/jzQg7xzqNmtw9fpX9ox7BJj4lO17XSYDcz8HDF7u749cfEOAdj3FduZhoLJU3v60EDOImu2izBk09mFgUv0MmuSBGRQMRPQS2xnMIPIgNnWQGx5hrq/+DQUA0HkiMIcZpEbMIGq2i+ct+0DJUgcxgwAAPkFARG+xnXkEqCyRtz8txAyiZpM7g+rf1ASIGTT3C8Do7f7+yEVlGST5pY1HH3207m50AOjbty+SkpKwaNEi3HLLLYiKigIAZGZmIjo6uu7nMjMzMWDAAABAVFQUsrKybD63uroaeXl5dT9fn4+PD3x8fKT+7ZCWuXv9K3vGPyoWaVveALpMBK78EDB64J/j9kOA7GOAuRq4cEDcYEJlmEHUbO5eB9SecY8CBm9g8+tA5wnAVR95bgZlHRU38bmQKG72pzLMIGo2d26m5ci4R2oy6D9A5/HAVR8DXr7y9EVOzCDyREoYizGDRO2HAFlHxAxKTwQ6jpa7R83GDKJmU8JYbOzDYgZteq0mgz7y3AzKPCxe1EjfD3QcI3ePHJL8TvTS0lLo663bYzAYYDaLV3g6deqEqKgorFu3ru54YWEhdu7ciZEjxYmzkSNHIj8/H3v37q07Z/369TCbzRg+fLjUXSZPpYTQBMTHCR8/D1zzFeDtL18/5KSydbCIJKGECSxAfJzw8fPAtV8zgwBmEHkOxWTQ/TUZ9A0zCGAGkedgBikHM4g8kVIyaNR9VhkUIF8/5KSiDJL8TvTLLrsML730Ejp06ICEhATs378fb775Jm6//XYAgE6nw4IFC/Diiy+iW7du6NSpE55++mnExMTgyiuvBAD06tUL06dPx1133YUPP/wQVVVVmD9/Pq677jrExMRI3WXyVHlnLG05QxPwnHU/HVFRaBJJJtc6g2S8kAcwg5hB5InymEGKYZ1BKbvk6weRO7EOUg7WQeSJmEHKYZNBe+TrRxNIPon+7rvv4umnn8Y///lPZGVlISYmBvfccw+eecay1s9jjz2GkpIS3H333cjPz8eYMWOwevVq+PpaHlv49ttvMX/+fEyePBl6vR5XX3013nnnHam7S55MSaHp6dr1EHfErixSfGgSScY6g+R6jJlEbXsAPsFARSGQshsQBPduLkQkB2aQclhnUCoziDwEx2LK0bY7M4g8D+sg5QjvBviEABUFis8gySfRg4KCsHjxYixevNjhOTqdDgsXLsTChQsdnhMWFoYlS5ZI3T0ii9rHdwIjxc0MSD56g7gz/LlNQFE6UJAKhLSXu1dErlWbQQER4sZyJB+9XsygsxuB4gwxg0Lj5O4VkWsxg5TDJoMymUHkGeoyqB3gGyJvXzydXg/EDgbObqjJoBQgtIPcvSJyrdoM8m8L+IXK2hWPp9cD7QcDZ9aLGZSfDLSJl7tXdkm+JjqRKpQXACXZYlvupVxIFDfM0uZjhKR15YVASc0G2swgZWjPDCIPUlEkDlIAZpBSMIPIk1QUiRetAWaQUnAsRp6kopgZpDQqqYM4iU6eiY8PKo+K1sEiajUlrUVMImYQeRKbOqizfP0gC2YQeZK8s5Y26yBlYAaRJ1HS/ngkUkkGcRKdPBPXv1Ke2CGWtoKvPBJJghfylKc9M4g8SO0jzAAHj0rBDCJPYp1BHIspQ+xgS5sZRFpnUwfxZgJFiB1kaSs4gziJTp6Jg0flCQgHwmr+AktPBKorZe0OkUsxg5THP8wykL9wAKiukLc/RK6UyzuwFIcZRJ6EGaQ8/mGW/xbMINI6ZpDy+IeJG4wCQMZBxWYQJ9HJM/HxHWWqfYTHVAFkHpK3L0SuxMJNmawzKOOwvH0haqGf9qfii63ncCi1AFUms/2TWAcpEzOIPAVvJlCmugyqBDI4FiMN41hMmawz6MJBefviACfRyTPVFW46IKyTrF0hKypZB4uo1awzqA0zSDG4nAJpwBfbkvDcr0dx2Xt/o+9zf+Kaj7bj1dXHseZoJkorq8WTmEHKZJNBu+TrB5Gr1U1gcSymKKyDyFPYLCnF5VwUQwUZxEl08jyCYCncQuMAo4+8/SELFYQmUatZZ1BIHODlK29/yMLmQh4ziNSnvMqEo+kFVq/N2HUuDx9sPIO7vtqDgrKqmgyqGTwyg5SFGUSeQBCA3FNiO6Q94OUnb3/IghlEnsA6g4KZQYqiggziJDp5npJsoKJQbPPRHWWJ7AMYawbzCg1NolYryQEqaia5uKmoskQmAMaaQpoZRCp0KK0AVSbB7rHoEF9Eh/gBpblAOTNIkZhB5AlK85hBShXBDCIPwAxSrojegJe/2FboygScRCfPw/WvlMvgBcQMFNsXzwPF2bJ2h8gluBaxcllnUH4SUJwlb3+Immlf0kWHxwZ1aCM2WAcpl00GJQNFmfL2h8gVuB66chmMQOwgsc0MIq3iWEy5DEYgpiaDCpKBogx5+2MHJ9HJ87BwUzYVPMJD1CrMIGWLYwaReu11NokeXzuJbp1BvANLcawzKE2Zd2ERtQonsJSNYzHSOo7FlE3hYzFOopPnsdlEgoNHxWHhRlrHCSxlYwaRSgmCgH3J+Q6PD+oQKjY4eFQ2ZhBpHcdiysYMIq3jWEzZFJ5BnEQnz8PQVDaFhyZRqzGDlC3WeoNj3gVK6pF6sQw5xRV2j3kb9UiICRFfMIOUjRlEWscMUrb2zCDSON5MoGwKr4M4iU6eJ++s+E+9FxDaQd6+UEPB0eIu2QCQtg8wm+TtD5HUcq0yKIQZpDjB0UBInNhO2weYquXtD1ETOVvKpV9sCLyNNWV/XR1kZAYpETOItK52Xwa9EQiNl7cv1FBQlOXvhnRmEGlQrlUdxPkg5QmKtPx3UWAdxEl08ixms6VwC+sM6A3y9ofsq70DoqoEyDomb1+IpGQ2W9YCDeskbp5CymOdQdnMIFKHfclNWA/dug5qwwxSLJs66Ki8fSGSktlsuZDHDFKuugwqZQaRtliPxdp0FDf0JuWpXZ2gugzIOiJvX+rhJDp5lsJUwFTzqDMfH1QuLulCWlWYBlSXi22uA6pczCBSIaebinaomUQvShcHJAAfYVYyZhBpVdEFcWIW4FhMyZhBpFXWGcSxmHIpOIM4iU6ehWvwqYNNaCpvHSyiFmMGqQMziFSmtLIaxzOKHB4fFB8qNphB6sAMIq3iWsTqwAwirWIGqYOCM4iT6ORZah9hBhiaShbdT1wvGlDclUeiVsljBqlCFDOI1OVASgFMZsHusbgwP0QE+YovbOogTqIrFjOItIoX8tQhuh9g8BbbzCDSkjzWQaoQ1VexGcRJdPIsnERXBy8/MTgBIOcEUOb4EXUiVWEGqYOXrziABICck0Bpnrz9IWqE0/XQa5dyAZhBamGdQbmnmEGkHbXroQPMICUz+ogX8wBmEGkL6yB1MPoA0f3Fdu5pRWUQJ9HJs1jf/cA1sJQtbpilnbZXvn4QSYl3YKlHe+sM2idfP4iaYF9T1kMH+BizmjCDSIs4FlMPjsVIizgWUw/rOkhBS7pwEp08S+3jO14BQFCUvH0h5xS8DhZRi9Xe/eDlDwRFy9sXcq79EEtbYY8RElkTBMHpneiD460m0fOYQarBDCItqp3AYgYpHzOItKh2LGb0A4Ji5O0LOafQDOIkOnmO6krgYpLYDu8C6HTy9oecU2hoErWYqQq4eF5sM4OUT8G7whNZO5dTgoulVXaP+XkZ0DMqSHxhnUFhzCDFs8mgXfL1g0gqpmrbDNJzKkLRWAeR1piqgYvnxHY4M0jxFJpB/FNDniM/CRBMYpuPMCtfaDwQ0E5sp+4BzGZ5+0PUWheZQaoS2gEIiBDbacwgUq59yfkOj/WPC4HRUFPu5ycD5mqxzUeYlc86g1L3MoNI/fKTmEFqEhIHBEaKbWYQaQEzSF1C2gOBNatHpCkngziJTp6D61+pi05nufpYnm+7kzaRGnEdUHWxyaAC2/9+RAqyl+uha5N1BlUUiJv7EamZzYZ+rIMUjxlEWmOdQRyLKZ9OZ1mdoKIQyDkpb39qcBKdPAd3YlYfLulCWpLHDFIdZhCpwP6mrofOCSz1YQaRlvBCnvowg0hLOBZTHwUu6cJJdPIcLNzUR4GhSdRizCD1YQaRwhWWV+FEZpHD4wN5J7q6MYNIS5hB6sMMIi1hBqmPAjPIJZPoaWlpuPHGGxEeHg4/Pz/07dsXe/bsqTsuCAKeeeYZREdHw8/PD1OmTMGpU7aPB+Xl5WHevHkIDg5GaGgo7rjjDhQXF7uiu+QpbJZS6CxfP6jpYgYCupqYUkhoErUYl5RSH5sM2uP8XCIZHEjJhyDYP9apbQDCArwtb3DwqD7MINIS3gWqPswg0hLWQeoTMwDQGcS2QjJI8kn0ixcvYvTo0fDy8sIff/yBo0eP4o033kCbNpY7YV577TW88847+PDDD7Fz504EBARg2rRpKC8vrztn3rx5OHLkCNasWYNVq1Zh8+bNuPvuu6XuLnmS2seY/cIA/zB5+0JN4xMERPQW25lHgApeSCMVq8ugNswgtfAJBCISxHbWEaDC8R2/RHLYl5Tv8JjNeugAM0iNbDLoKDOI1K02g3xDmUFq4R0ARDKDSCPqMiiEGaQW9TOovFDe/sAFk+ivvvoq4uLi8Pnnn2PYsGHo1KkTpk6dii5dxLvuBEHA4sWL8dRTT+GKK65Av3798NVXXyE9PR0///wzAODYsWNYvXo1Pv30UwwfPhxjxozBu+++i6VLlyI9PV3qLpMnqCwBimr+7PCqo7rUPsIjmIH0/fL2hailKkuBwjSxzQxSlzhmECnXXifroQ+KD7W8qCoDClPFNjfTUhdmEGlBVRlQkCK2WQepS/th4j8FM5C2T96+ELVUVRlQUFMHhXcVN60kdYirySAIQLr8GST5JPrKlSsxZMgQzJ07FxERERg4cCA++eSTuuPnzp1DRkYGpkyZUvdeSEgIhg8fju3btwMAtm/fjtDQUAwZYtnIYsqUKdDr9di5c6fUXSZPkHfW0mbhpi4KXAeLqNmYQerFDCKFMpuFpm8qygxSL+sMStklXz+IWoMZpF6sg0gL8s4BqFn/jhmkLgrLIKPUH3j27Fl88MEHeOihh/Cvf/0Lu3fvxv333w9vb2/ccsstyMjIAABERkba/FxkZGTdsYyMDERERNh21GhEWFhY3Tn1VVRUoKKiou51YaH8t/mTgtisf8X10FXFJjSVsQ6WPcwgcspmTwbeBaoqzCBSqNPZxSgqr7Z7LNDHiG4RQZY3uA6oejGDSAtyrddDZx2kKswg0gKOxdRLYRkk+Z3oZrMZgwYNwssvv4yBAwfi7rvvxl133YUPP/xQ6q+ysWjRIoSEhNT9iouLc+n3kcpw8Khe4V3FdcsA8cqjox3UZMYMIqe4qah6hXUR128FmEGkKPuSHN+FPiAuFAa91aPKzCD1YgaRFjCD1CucGUQawAxSr7DO4n4+gCIySPJJ9OjoaPTu3dvmvV69eiE5ORkAEBUVBQDIzMy0OSczM7PuWFRUFLKysmyOV1dXIy8vr+6c+p588kkUFBTU/UpJSZHk90MakctHCFVLrwdia5Z2KskC8pPl7Y8DzCByio8xq5deD7SvzaBsID9J3v44wAzyPPucrodef1NR6wzi4FFVrDOoNAe4eF7W7jjCDCKnbO5EZx2kKjqd5U5QZhCpVR4zSLVsMigXuHhO1u5IPok+evRonDhxwua9kydPIj4+HgDQqVMnREVFYd26dXXHCwsLsXPnTowcORIAMHLkSOTn52Pv3r1156xfvx5msxnDhw+3+70+Pj4IDg62+UVUx+bxHS7nojoKWwfLHmYQOcUMUjeFPUZoDzPI8+x1cif6oA6htm/wMWZ1YwaR2jGD1I0ZRGrHJaXUTUEZJPkk+oMPPogdO3bg5ZdfxunTp7FkyRJ8/PHHuPfeewEAOp0OCxYswIsvvoiVK1fi0KFDuPnmmxETE4Mrr7wSgHjn+vTp03HXXXdh165d2Lp1K+bPn4/rrrsOMTExUneZPEFt4RYUA3gHyNsXaj4FhSZRi9RlUDTgEyhvX6j52ls2OlfqhTzyLPmllTiTXeLw+MAO9e9EZwapGjOI1K72LtDAKGaQGjGDSO1q66DASMAnyPm5pDwKyiDJNxYdOnQofvrpJzz55JNYuHAhOnXqhMWLF2PevHl15zz22GMoKSnB3Xffjfz8fIwZMwarV6+Gr69v3Tnffvst5s+fj8mTJ0Ov1+Pqq6/GO++8I3V3yROU5gFleWKbVx3Vqf1gS5uFG6lN2UXx0TOAjw+qVSwziJRlf3K+w2PdIgIR4udleaMsX3wEH+AdoGrFDCI1K8sXl0MDWAepFTOI1Ky8gBmkdrGDAegACLJnkOST6AAwa9YszJo1y+FxnU6HhQsXYuHChQ7PCQsLw5IlS1zRPfI0XItY/fzaAG27AzkngQsHgKpywMu38Z8jUgKuRax+fm2Atj2AnBPAhYPMIJKds/XQB9dfDz2PjzCrnnUGZRwEqsoALz+5e0XUNMwg9fMLBdr1BLKPM4NIfbiUi/r5htRk0DEg45CsGST5ci5EimOzEzMn0VWrdkkXc5VYvBGpBTNIG6wz6MIBeftCHs/5euj1l3LhZlqaUJdB1cwgUhdmkDbULqfADCK1YQZpg3UGpSfK1g1OopP22Uxg8cqjalmvg5WyU75+EDUXN9PSBmYQKYTJLOBASr7D44PiQ23f4IU8bWAGkVrxLlBtsN6jihlEasKxmDYoJIM4iW6lsLwK6fllcneDpMYrj9rQYZSlffJP+fpB1Fx5zCBNiLfKoFN/ydcPF2IdpA4nMopQUmmyeyzEzwud29bbtI8TWNpgnUEntZlBpFG8kKcNHbSfQayDNIpjMW1QyFiMk+gABEHAqoPpmPzGJjz0fSIEQZC7SySl2sJNZwBC4+XtC7Vcux5AWGexnbRN3DCWSA3qMkgPtOkoa1eoFdp2t9y9krRVUxkkCAJ+O3gBU97YhAeXsQ5Sur1O1kMf2CEUer3O9k1mkDZYZ1DyNqAkV97+EDUVM0gb2nazTEBqLIOs66AFrIO0p+5Cng4I6yRrV6gV2nYDwruJ7eTtsmWQx0+iJ+eW4tbPd2P+kv3ILqrAjrN5+GFfmtzdIqkIguUOrDbxgNFb3v5Qy+l0QI9LxbZg0uydoKQx1hkUygxSNZ0O6FmbQWbNPBGTkleK277YjXuX7ENWUQV2nsvDir2pcneLnNjvZD30wfXXQ7fJoA6A0ceFPSOXqp9Bp7SRQaRxzCDtsBmLaSeDUvJKcbtVHbTrXB6Wsw7SDmaQttiMxVbL0gWPnUSvrDbj/Q2ncclbm7DpZLbNsZd/P4aLJZUy9YwkVZQBVJWIba5/pX49Z1rax3+Trx9ETVWcCVQWi20uo6B+Pawy6IS6M6jKZMZ/N4p10MYTDeugPNZBiuXsTvRB8fUm0YuzgMoisc1HmNWvB+sgUpmSbEsGcSymfhoai1WZzPhg4xlc8tYmbKhXBy1iHaQdJdlARaHY5lhM/WzGYr/L0gWPnUT/ePMZ/OfPE6ioNjc4lldSiUV/HJOhVyQ5rn+lLXHDAf9wsX16HVBVLm9/iBrDPRm0JW4Y4N9WbJ9eD1Spd93MjzefxWurT6C8qmEddLG0Cot+Zx2kRDnFFUjKLbV7TK8D+seF2r5pXQdxAkv9rDPojLoziDwE10PXlvZDNZNBn2w5i1dXH3dYB73MOkgbOBbTlvZDgIB2Yvv0OqDSfk3sSh47iX7LqI6IDHb8KMf3e1Kx86x21vnyWDaFGwePqqc3AN1niO2qEuDcJnn7Q9QYDh61RW8AekwX21UlwFn1ZtAtozoiKtjX4fHle1Oxg3WQ4uxPznd4rEdUMAJ9jLZvMoO0xSaDSoGzG2XtDlGjmEHaojcAPWrHYurOoJtHdkR0iOM6aMXeVGw/wzpI9ZhB2mKdQdVlsmSQx06iB/l64bnLEpye86+fDqGi2uSmHpFLMDS1p3YdLED1jxGSB+CFPO3RyJIugT5GPHe58zro36yDFGevk/XQB3UIbfgmM0h7uKQLqQkzSHs0sqRLk+qgn1kHqR4zSHtkHot57CQ6AEzvE4VJPSMcHj+TXYKPN511Y49IcjaP7zA0NaHzRMDoJ7ZPrgbMDR/BI1KMXC6loDmdJ1gy6IS6M2haQiSm9HJeB33EOkhR9jlZD31w/fXQAdZBWmSdQSdXA2ZO8JCCMYO0p/MEwMtfbKs8g6YlRGFKr0iHx89ml+DDjayDVM16Ep1jMW3oPN6SQSfcn0EePYmu0+nw/OUJ8PMyODzn3Q2ncT6nxI29IknVFm4GHyC4vbx9IWl4+wNdJort4kwgba+8/SFyJs8qg0KYQZrg7Q90mSS2S7KAtD3y9qcVdDodnmukDnpvw2mcYx2kCFUmMw6m5js8PqiDk0l0gzcQEueajpF72WRQNpCq3gwiD8AM0h4vP01l0PNXJMDf23Ed9P5G1kGqlldzEUTvBYR2kLcvJA3rDCrNAVJ3u/XrPXoSHQDiwvyxYEo3h8crq814+pfDEATBjb0iSZhNltAM7wLoPf6Pu3bYPEa4Sr5+EDljnUFhncU13EgbNJRB7dv446FLujs8XlltxtM/sw5SgmMXCu1ugAYAYQHeiA/3t32TGaRdGsog0jBmkHZpKINiQ/0arYOe+vkQ6yA1MpstF/KYQdrSc5al7eYM4qwigNvHdELPqCCHx7ecysHKA+lu7BFJIj8ZMFeJbT4+qC3dpwO6mvg68bu8fSFypCAFMFWKbWaQtlhn0HH1Z9BtozuiV3Sww+N/n87BL4msg+S2z+l66G2g0+ls3yxIBUwVYpv7wmgL6yBSA2aQdnWbpqkMunVUR/R2UgdtPZ2LnxPT3NgjkkQhM0izuk8DdDUXRY7/DrjxIhcn0QF4GfR46aq+qD/2sPbCqqMoKK1yX6eo9bgWsXYFtAXihovtnJNAzil5+0NkDzey0a6AcCBuhNjOPQVkn5S3P61kNOjx8lV9nNZBL/52FPmlle7rFDWwNznf4bFB8aEN37RZB7Sz5P0hGdlk0GnVZxBpVJ71WIwZpCkB4UCHkWJbAxlkNOjx8mzn80EvrjrGOkhtbMZizCBN8Q+zZFDeGXFOyE04iV5jcHwb3DDM8RpJOcWVeGX1cTf2iFrNunDjlUft6XGppa3ineFJw3KtNiJiBmlPT6sMkmFneKkN7NAGNw6Pd3g8p7gSr7IOkpWzO9EH21sPPY8ZpGnWGaTy5RRIo3I5FtO0HtrKoAFxobhphOM6KLekEq/8wTpIVZhB2iZTHcRJdCuPTe+JtoE+Do9/tysZe5Py3NgjqlVtMuPYhUKYzc14TMPmyiNDU3Os1+LTwGOEpEHMIG2zGTxqI4Mend4D7YKc1UEp2HOedZAcMgvLkZZfZveYUa9Dv/ahDQ8wg7TNOoNYB5ESMYO0raf2MuiRaT0Q4aQOWro7BbtZB6kHJ9G1TaaxGCfRrYT4eeGZy3o7PedfPx5Glcn+pk7kOgfTCjDj7S0Y9vJa3P/dfny/O8XhYLIOl1LQtvAuQLueYjtlF1CcJW9/iOqzWUqBGaQ54V2Adr3EdupuTWRQsK8XnpnlvA7690+sg+Tg7C703jHB8PO2s1kWJ7C0zSaD9gBFmfL2h6g+jsW0LawzEFFTM2gkg4J9vfDsZQlOz/n3T4dQWc06SBU4FtO2sE5ARM3/r2l7gKIMt3wtJ9HruaxfNMZ2a+vw+InMIny65Zwbe0QAsPVUDgDxcfKVB9Lx2A8HMfqV9Zj4+kZ8syPJ/g/VXnn0CQYC2rmpp+RWdVcfBeDkalm7QtRA7ZJS3kFAYIS8fSHX6GmVQSf+kLUrUpnVLxrjuzv+O/NEZhE+2XLW4XFyjX3JzjcVtau2DvIOZAZplXUGndRGBpGG2GRQpLx9Idfoob0MurRvFCb0cFwHncwsZh2kFrVjMa8AIChK3r6Qa9g8EeOeDOIkej06nQ4vXtkHPkbH/2reXncSKXmlbuwV/X06x+7753JKUGHvSnB1BZCfLLbDu8DpLiGkXj1nWdpcF52UhBnkGayXldJIBul0OrxwhfM66J11p5CcyzrInfY6uRN9YIfQhm9WVwL5NTcZMIO0S4MZRBrBDPIMGsyg2jrI14t1kKpVVwIXmUGaJ0MGcRLdjvjwANw/uZvD4+VVZjz9y2EIQjPW56YWK62sdnoHlt0nB/LOAaj578NHmLUrZiAQWHNV+exGoLJE1u4Q1bl4HhBqLvAxg7QreiAQFC22z24EKopl7Y5UOoT744EprIOUorSyGofTCh0eHxxv5050ZpBnsMmgTZrJINIAZpBniBkIBMWIbQ1lUFyYPx6Y3N3h8YpqM55iHaRs+UmAYBLbzCDtih4ABMeK7XObgIoil38lJ9EduGtsZ3SLCHR4fOOJbPx+yD1r7ni6XefyUGWy/xdUuyAf+/+dzm2ytMMdTwSQyun1QI8ZYru6HDizXt7+ENU6a5VBbZlBmmWdQaYKTWXQXWM7o3uk4zpo08ls/Hboght75Ll2n7+ISgfr0EcE+SA21K/hAdZBnqFBBq2Ttz9EtZhBnkGn02wG3Tm2E3pEBjk8vvlkNlYdZB2kWGc3Wtoci2mXTQZVAqddn0GcRHfA26jHy7P7Oj3n+V+PoLC8yk098lxbHSzlAgBjuraFrv6jOWYzsOtjy+tes0AaZvMIjzZ2hieVq59BPZlBmtbDKoNOaCeDvAx6vHxVY3XQUdZBbuCsDhrVJbxhHSQIrIM8SQ/WQaQwzCDPYr0msYYyyMugx8uz+zg9Z+GqoygoYx2kOIIA7PrE8ppjMW3rYb0uuusziJPoTgztGIZrh8Q5PJ5VVIE3/zrpxh55pi2nHA8eR3e1s5TL2fWWnZg7jgUine+wTSrXaZy4YREgbmhjqpa3P0RnNwC5p8R2/BggynkBTirXaay4eSwgbnCsoQwa0jEM1w9zXAdlF1XgjT9PuLFHnunvZtdBG4Ccmvo0fjQQ5fxiCKlcgwzihA7JjBnkWTqOA3yCxbbGMmhwfBiuH9bB4fHsogq88RfrIMU5uxHIqfnv0mEUEN1P1u6Qi3Uc69YM4iR6I568tCfCA7wdHl+yMxn5pZVu7JFnyS6qwPEMx+saje4a3vDNnVZ3Pgy/xwW9IkUx+gBdp4jtsotAyg55+0O0ixnkUYw+QDerDEreLm9/JPb4dOd10He7UnCxhHWQq+QUV+DoBcfrodudRGcd5FmsM6g8X3MZRCrEDPIsRm/LWEyDGfTE9J5oG+isDkpGHusgZeFYzLMYvYFul4jt8gIgaZtLv46T6I0I9ffGv2f2cni80mTG2mNZbuyRZ9l2xvHdV13aBSA6pN46oLlngFN/ie2QOKD7DBf2jhSDS7qQUuSdBU7+KbaD29s+XkbapdElXQCxDnpqVmN1UKYbe+RZtp3JdXisc7sAxNRfDz3vnHgXDlCTQTMb/iBpD5d0IaVgBnkmDY/FQvy98PSs3g6PV5kErD3KOkgx8s4BJ/4Q28GxXMrFU7hxSRdOojfBVQNjMaqLnTuea6w+zA1GXaWx9dAb2P0pgJpNSIfeARiMrukYKUu3SwCdQWwfXyWug0Ykh13MII/U7RJAX/PfWoMZdOWAWPtPftX48wjrIFfZ6mQpl8broNuZQZ7CJoN+01wGkYowgzxT1ymazqDL+8dgbDc7f+fWWM06SDmsM2gIM8hjdLsE0HuJbRdnkMsn0V955RXodDosWLCg7r3y8nLce++9CA8PR2BgIK6++mpkZtpevUtOTsbMmTPh7++PiIgIPProo6iulmedUZ1Oh7vHdXZ4fPOpbJRUaGcNVKUQBKF564BWFAP7vxHbRl9g0C0u7B0pil8boOMYsZ2fBGQdlbc/5JmYQZ7LL9Qqg5KBzCOydkdqYh3UxeHxzadyUMw6SHKCIOBvJzcT2K2D9n0ttg0+wKBbXdc5UhbrDCpIBjIPy9od8lDMIM/lFyquSwxoMoMamw/6+1QOirjRuvwqS4D9Vhk0+FZZu0Nu5Bsi7hEDAAUpQMYhl32VSyfRd+/ejY8++gj9+tku5P/ggw/i119/xfLly7Fp0yakp6dj9uzZdcdNJhNmzpyJyspKbNu2DV9++SW++OILPPPMM67srlOjurRFkI/9q1iV1WZsOpnt5h5p3/ncUqQXlNs9ptcBI+o/HXDgO6CiZt3QvnMB/zAX95AURcOPEZJKHFwKVBSI7b5zgADHd+6SBml4SRcAGNk5HEG+TuqgE6yDpJaUW4q0/DK7x/Q6YETnehlzcJlVBs1lBnkaLulCcmMGeTaNj8VGdA5HsKM6yGTGRtZB8ju4TFwTG6gZizl+eoA0yE1LurhsEr24uBjz5s3DJ598gjZt2tS9X1BQgM8++wxvvvkmJk2ahMGDB+Pzzz/Htm3bsGOHuCHgX3/9haNHj+Kbb77BgAEDMGPGDLzwwgt4//33UVkpz6YN3kY9JvWKcHicS7pIz9ndV/3jQhHs62V5QxCAXZ9YXnMDCc/Tw2r9+xO/ydcP8kz1M2gYM8jjWGfQce1lkLdRj8k9ndRBfJRZcs7qoH7tQxHi56wOutuFPSNFYh1EcmIGkcYzyMugx5RekQ6Psw6SmSDYbmo8jBnkcawn0V04FnPZJPq9996LmTNnYsqUKTbv7927F1VVVTbv9+zZEx06dMD27eJOztu3b0ffvn0RGWkJqWnTpqGwsBBHjth/RLqiogKFhYU2v6Q2PSHK4bH1x7NQUW2S/Ds9mbN1QMfWf4T57EYg54TYjh8NRPV1XcdImUI7AFE1T72k7wcK0tz69e7IIFKwc5uA7ONiu8MoILqf8/NJe0LjgOj+YvtCIlCQ6tavd0sd1MdJHXQsE+VVrIOk5GxfmAZrs57bDGQfE9sdRlr+LJLnsMmgA0B+ilu/nnWQh2MGUUh7IHqA2NZoBk1zUgdtOJ7FOkhO57dYMihuBBAzQNbukAxCYoGYgWI746C4xKYLuGQSfenSpdi3bx8WLVrU4FhGRga8vb0RGhpq835kZCQyMjLqzrGeQK89XnvMnkWLFiEkJKTuV1xcnAS/E1vje7SDj9H+v7LiimpsO50r+Xd6KpNZwLYzzVgHdOdHljavOnqunvItp+CODCIFs84g3n3luWyWdPnDrV/tjgwa170dfL3s10EllSanf29T84h1kOO6knUQ2aXxDCIFYwYRUG8spr0MGtetHfy8DHaPlVaanO7nRi7GsRgBbqmDJJ9ET0lJwQMPPIBvv/0Wvr6+Un+8Q08++SQKCgrqfqWkSH/l09/biPHd2zk8ziVdpHM4rQCF5fY3KfPzMmBgB8sSQcg7B5xcLbaDY4Ges9zQQ1IkN62DZY87MogU6uJ5y1/SQTHMIE/W0z2PEdrDOkhbjqQXoKDM/iZlYh0Uannj4nngpFUG9brM5f0jhbLOIDcvp8A6yIMxg6hWD21nkJ+3ARN6OKmDuKSLPC4mWcb+QdFAr8vl7Q/Jxw1jMckn0ffu3YusrCwMGjQIRqMRRqMRmzZtwjvvvAOj0YjIyEhUVlYiPz/f5ucyMzMRFSU+HhMVFYXMzMwGx2uP2ePj44Pg4GCbX67g7FHmNccyUW0yu+R7PY2zdUCHdw6Dt/UTAbs/BSCI7aF3AAb7G36QB4jqC4R0ENvntlg2FnEDd2UQKdCuT2CbQV5OTycNi+xjyaDzW4CyfLd9tSLqoKOsg6SyxcndbMM6hcHHaHUn3O5PAaHm3/vQ25lBnswmg/7WZAaRAjGDqFZkgrjEJqDZDHJWB63lfJA8rDNoCMdiHi2iNxAaL7aTtgJlFyX/Cskn0SdPnoxDhw4hMTGx7teQIUMwb968uraXlxfWrVtX9zMnTpxAcnIyRo4cCQAYOXIkDh06hKysrLpz1qxZg+DgYPTu3VvqLjfL5J6RMOp1do/llVRiT5L0/5E8kbNHocZYP8JcWQLs/1psG3yAQbe6tmOkbDqd5eqjuQo4tUbe/pD21c+gwbfK2h2SmU5neZTZXA2cXitvf1xgkpM66GJpFXadz3Nzj7TJ2XrotnVQKbDPOoNuc3HPSNHqZxDrIHI1mwzy5ljM0+l0licyNZpBE3tGwMtgvw7KL63CrnOsg9yqshTY95XYNnhzLObp3JBBkk+iBwUFoU+fPja/AgICEB4ejj59+iAkJAR33HEHHnroIWzYsAF79+7FbbfdhpEjR2LEiBEAgKlTp6J379646aabcODAAfz555946qmncO+998LHx0fqLjdLiL8XRnYJd3icjzK3XlmlCXudXIywWQf04DLL3cZ95wABjv/bkIeQcUkX8kAHv7dkUJ+rgYC2zs8n7ZNxSRd3CPHzwqj663Fb+ZN1UKuVVZqw53wT66BD3wPl+WKbGUSArEu6kAeqn0GBjpe6IA8h45Iu7hDs69VwXxIrXNLFzQ4tt2RQwmxmELl8LOaSjUUb89Zbb2HWrFm4+uqrMW7cOERFReHHH3+sO24wGLBq1SoYDAaMHDkSN954I26++WYsXLhQju42MC3B8SM8fx7JgCAIbuyN9uw+n4dKB49BtQ30Ro/IIPGFIAA7P7Yc5CY2BADxowDfELF9ag1QXSlvf0i7BIGb2FBDHUYBvqFi+9QaoLpC1u64wrSESIfH/jySCbOZdVBr7ElyXAeFB3ijZ5R1HcQMonpsMmitJjOIFKJBBt0jX19IOTqMBPxq9i/TaAY1Nh/EOshNWAeRPXEjLBl0WvoMcssk+saNG7F48eK6176+vnj//feRl5eHkpIS/Pjjjw3WOo+Pj8fvv/+O0tJSZGdn4/XXX4fRqIy1rqf2joTO/hM8uFBQjoOp7luHWYucPcI8qktb6GsfIz+3Gcg+JrbjRgAxA1zfOVI+gxfQbZrYrigU1yUmcoXzW6wyaDgQM1De/pAyGIxA95oMqizSZAZd4qQOyigsx8E01kGt4WxfmFFdreqg838DWUfFNjOIatXPoHPayyBSCOsMaj+MGUQig9EyFtNoBjmrgzILK5CYmu/W/nispK1A1hGx3X4oEDtY3v6QMhiMQPfpYruyWJw3lJAsd6KrXUSwLwZ3aOPwOB/haR1ng0ebdUB3Wd2FzquOZK3nTKBdL2Dsw0BYJ7l7Q1plfecDn4QhazYZ1Fnu3kguIsgXQ+Kd1EFc0qVVnK+HbrVs3S5mEDnQcybQrqeYQeHayyBSiF28C50c0HgGtQ30wdCOYQ6Pc2k7N7EZizGDyEptBo15SPKxmDJu7Vah6X2iHG4iuvpwBh6b1gM6R5cnyaG8kkocSS90eHx0t5pJ9ItJlvWug6KBXpe7oXekGr2vABKulLsXpGX5ybYZ1PsKeftDytLrcs3/mZiWEIXdDtbtXn34Ah6fzjqoJRqtg2pvJshPtqzzGBil+T9v1EwekEEks/oZxLEYWet1GdBb238mpidEOdxEdPWRDDwxoyfrIFfKTwGOrxLbgZH8O49s9Zwl5pAL8E70FnK2Dta5nBKcyip2Y2+0Y9sZx3dfdW4bgNhQP/HF7k8BoWa90CF3iEt4ENViwUKuZpNBtzODyJYHZJCzOuh8bilOZrIOaontZ3LhaGudTm0D0L6Nv/hi92eWDBrKOojq8YAMIplZZ9CQ2wGjt7z9IWXxgAya1sdxHZSUW4rjGUVu7I0H2sMMIidcmEGcRG+huDB/JMQEOzzOR3haxtkjzHV3X1WWAvu+EtsGb2Dwra7vGBFRLWYQEeLC/NEn1nEdxCVdWsbZknaja5dyqSoD9n0ptplBRORu1hmk92IGkUeKDfVDv/YhDo//ySV+XaeqDNhrnUG3ydsf8iicRG+F6U7uwuK66M0nCAK2nGrCJPqh74HyfLHd52ogsJ3rO0dEVOvQcqCsZhmLhNlAYIS8/SGSCesg6f19Otvhsbp9YZhBRCQn6wzqMxsIipS3P0QycfZUHm8mcKFDK4CymqV0Eq5iBpFbcRK9FaY7eYTnSHohUvJK3dgb9UvOK0XqxTK7x/Q6YGTncEAQgJ1WG4pyIy0icidB4KbGRDWc1UHHLhQiKbfEjb1Rv+TcUqTk2a+DdDpgZOe2DesgZhARuVODsRg38yPP5awOOp5RhPM5rIMkJwjc1JhkxUn0VugaEYjObQMcHucjPM3j7BHmvu1DEeLvBSRtBbKOiG+2HwrEDnJT74iIACRtAzIPi+3YIUDsYHn7QySjrhFB6NyOdZBUnNVB/WJDxDooeTuQeUh8kxlERO5mk0GDgfbMIPJcXdoFomtEoMPjrINcIHkHkFGTQTGDgPZD5O0PeRxOoreCTqdzuqEEH+FpHmfroY+pXQd0xweWN4f/n4t7RERUz47/WtrMICKnS7r8eSTTjT1RvybtC8MMIiI5MYOIbHBpOzdjBpHMOIneSs5Cc2/yRWQVlbuxN+plMgvYdibX4fHRXdsCp9cCx1eJbwRGAr0ud1PviIgAnF5nm0G9r5C3P0QK4OxR5r1JF5FVyDqoKcxmAVvPOLuZoC1wZj1w7FfxDWYQEbmbdQYFRAC9r5S1O0RK4KwO2p+cj4wC1kGSObMBOLZSbAe0AxKulLU75Jk4id5K/dqHIDrE1+4xQQDWHOVdWE1xNL0Q+aVVdo/5eukxKNII/LrA8ubEfwNGb/d0joioorheBv2LGUQEoG9sCGIc1EEA8CfroCY5esFxHeRj1GNQtBfw6wOWNyc8yQwiIvepKLbNINZBRACAhJhgxIb6OTy+5ijvRpdEZQnw6/2W1xP/BRh95OsPeSxOoreSTqfjrswScLYO6NCOYfDd/BJQkCK+0WkcMOhmN/WMiAjAuoVAQbLY7jgWGHSLvP0hUojGlrb7k3VQkzirg4Z1CoPv5peBfKsMGnyrezpGRAQA619gBhHZodPpnN6NziVdJLKuXgYNulXW7pDn4iS6BJyF5vYzuShwcGcRWThbB3RO2xRg1yfiC6MfcNk7gE7npp4RkcdL3gHs+lhsG/2Ay5lBRNacLW23/Wwu8ksr3dgbdXJWB13dNhXY+ZH4ghlERO6WvNM2gy57mxlEZMXZfNCOs3m4WMI6qFVSdgE7PxTbRl8xg/ScyiR58E+eBIZ2DEN4gP3H2arNAtYd56PMzpRXmbDrfJ7dYz6oxPSzLwMQxDcmPw2EdXJf54jIs1WVA7/Mh20GdZa1S0RKM8RJHWQyC1h7LMvNPVKX8ioTdp1zUgeds6qDJj3FDCIi96kqB1Za1UGT/g2Ed5G1S0RKM6hDG7QNtL+0iFgHcT6oxaorbMdiE5lBJC9OokvAoNfhkt6RDo9zSRfn9py/iMpqs91jj/v9Ap+CM+KL2CHcgZmI3GvTq0DuKbHNDCKyy6DXYWoC66CW2pd0ERUO6qBHfX+Bb/5p8UXsYGDEP9zYMyLyeJv/A+ScFNuxg4ER/5S3P0QK1Fgd9CeXdGm5zf8Bck6I7ZhBzCCSHSfRJeJsXfRNJ7NRWlntxt6oi6N1QBN053CL8Iv4Qu8FXPEeoDe4sWdE5NEuHAC2vi22mUFETk11UgdtPpWNkgrWQY5scVAH9dadx22wqoMuZwYRkRtdOAj8/ZbYZgYROeVsPmjzqRwUsw5qvoxDthl0xXuAwShvn8jjcRJdIqO6hiPQx/7/0BXVZmw6ke3mHqmHvXVAjajGa14fw4CaO7PGPwZE9HJzz4jIY5mqgF/uBQST+Hrco8wgIidGdQlHkIM6qLLajE0nWQc50qQ6aNwjQGRvN/eMiDyWqbpeHcQMInJmZOdwBPk6roM2nuDSds1Sm0HmmosPYx8GIhPk7RMROIkuGR+jAZN6Rjg8zkd47LtYUonD6QUN3r/bsAoJ+iTxRUQCMHqBeztGpDBllSZuUuxO294R734AxAwa86C8/SFSOB+jAZN6Oa6DuKSLffmllTiU1rAOusvwO/roz4svInoDYx5yb8eI3CSrsBxmsyB3N6i+be8AGQfFNjOIqFHeRj2m9HK2pAvXRW+W7e+KTwUDQLte4iQ6kQLwWQgJTe8ThZUH0u0eW3csC78dvID4cH90CPdHsK+Xm3unTNvP5kKoVzd30aXhAeOP4gudXnxsx2h/wzIiT7HmWCbu/24/Qvy8xBwJ80d8uD/iwwLQIVxsRwb5Qq/Xyd1V9cs+CWx8VWzr9MAV7zKDiJpgekIUfkm0XwetP56FVQfT6zIrxI91EABsP9OwDuqsS8cC4w/iC9ZBpGFms4Axr20ABKB9mB/iw/wRHx5gqXHC/dG+jT98vbiEiFvlnAI2viK2dXpxGRdmEFGjpiVE4af9aXaPrT+WyTqoqXJOAxsWiW2dHrjifWYQKQYn0SU0vns7+Bj1djeHKqqoxr1L9tW9buPvhQ5h/ugQHoD4MHFivVtEIPq3D/WoSbD666HrYcarXp/AR1fz2M7I+UDsIBl6RqQsybklAICCsiocTC3AwdSGdy76GPWIC/Ovy5T4MH/Etw3AkPg2COKFu6Yxm4GV8wFThfh65HxxIy0iatT4Ho7roOKKasxfsr/udai/V01WsQ6ypoMZr3p9DB9dzZNHI+9lBpFmZRaVo7ImL85ml+BsdgkA26WfdDogKtjXamJdnGTvGxuCjm0DZOi1/M5mF+O9Dafx0pV94ect8QUGsxlYeZ+lDhrxT6A9M4ioKcZ3bwdfLz3KqxrWQSWVpibVQf3ah8LgQXVQraLyKry55iRmD4hB3zXzmUGkWJxEl1CAjxHjurfDmqONP6pzsbQKF0sLcKDeRFhcmB/eu34Q+seFuqiXylJ/HdCbDGswRC/uAF8SEI+Aif+So1tEipOUW9roORXVZpzOKsbprGKb970Neiy4pBv+Mb4LdDrPK8qaZfcnQMpOsR3WGZjwpLz9IVIRf28jxndvh7+aUAfll1Yh304d1L6NH967YRAGeHAdNNS6DprAOoi0qym1jSAAFwrKcaGgHDvP5dkcG9utLRZfOwDhgT6u6qKilFeZ8N+NZ/DhxjOoNJkRFeyLx6b3lPZL9nwGJG8X2206ARP/Le3nE2mYn7cBE7pHYHUTlvJlHSQSBAG/HbqAhb8eRVZRBSKOf42+JbUZ1JEZRIrDNdElNt3JrsxNkZJXhju/2oPCcu2vfXw4rcCmeG6vy8ZjxqV1r82XvQ14+cnRNSLFScprfKDpSKXJjNdWn8AfXJPYuYtJwNrnLa8vfxfw9pevP0QqNL1P6+qg1ItluPPL3Sgo034ddCS9AOet6qBYZONxqzrINOttZhBpWnITJtGd2XIqB4//cFCi3ijbppPZmLZ4M95ZdwqVJvEu1483n8WpzCLpviQ/GVj7nOX15e8wg4iaSbI6yAP2wkrKLcEtn+/G/CX7kVVUgRjk4Kbizy0ncCxGCsRJdIlN7hUBL0Pr7vTMLqrAsl0pEvVIecqrTFi89iRmf7DN6l0BLxs/RYBOfGznd59LEdRzojwdJFKg1g40AeCddacg1F98l0SCAPz6AFAlLpuDIbcDHcfI2yciFZrcM7LVdVBOcSWW7U6WqEfKU1FtwttrT+Gq/9rWQYu8LHXQHz7TEdyLdRBpW1JeSas/Y+2xLBxJb7jEnVZkFpbj3iX7cMv/djW4c7/aLOCpnw9LU9sJAvDrAqCy5mnGwbcCnca1/nOJPMzEnhHwNrRumi2nuBLfeUAddMlbm7H5ZO0SXgJe9voMgbpyAEBZ3xuZQaRInESXWKi/N24Y1qHVn/Pd7mRNTnb9fSoHM97egsVrT9WtgQgAcwybMc5wCACQLoThRF/uvkxUq7zKhIzC8lZ/zvGMIrtrqROAxCXA2Q1iOzgWmPK88/OJyK4Qfy/MGx7f6s9ZujtFs3XQ9MVb8NbakzZ10NX6LTZ10LE+j8rVRSK3acpyLk2xbLf2bj6qNpnx+dZzmPzGJvx28ILD83aey8OP++xvZNgsB5YCZ9aJ7aAY4JKFrf9MIg8U4ueFeSNaPx+0TKN10NbTOZhhpw66Sv83JhgOAAAyhDZ4rvw6ubpI5BQn0V3gyUt74Zoh7Vu1IcTZ7BLsSbooYa/klVVUjvu/248bP9uJcznWd50IGKo7jqeNX9e986+qOzCsZ0e395FIqfJLq9A7OhiBPq3fxmKpBgearSIIQNI24E+rtc9nLQZ8g2XrEpHaPTGjJ64dEtfqOmj3ec+og4bojuNpL0sd9G/WQeQhgny9EBnc+vXMf9qfhvIqkwQ9UobElHxc8f5WPP/rURRXVDd6/ku/H0N+aWXLvkwQgKTtwOonLO/NegvwDWnZ5xERnpjRE9cNjYOxFXXQuZySBvtAqFlWUTkeWLof8z7dibP16qDBuhN4xqYOuh3LDhXi71M5DT+ISGbcWNQFfL0MeG1OfzwxoxeOpIvrfifnlSIpt6SuXVrZeKH33a5kDO0Y5oYeu47JLODbnUn4z+oTKLIqAsNQiKsMW3CdYSO66S13T/xoGoPk8DEY0Tlcht4SKVNUiC9+f2AsBEFAXkklkvJKkZxbiqTcUiTllYjtvFJkF1U0+lkrE9Pw1MxeCJBgQl4OKXmliAz2hbexldeAS3KBA98B+74Cck5Y3u93LdB9aus+m8jD+XoZ8OqcfnhiRk8cbkUdtHRXMoZ10kgd9OcJFJVb6qA2KMRsO3XQT6bRSAofg5FdWAeR9i2a3RdAX5RVmpBysaauyS2pyQsxK1IvlqLK5PxuzKLyavx+6AJmD2rvno67SEFZFf7z53F8uzMZTb0BVacDZvWLbv5Fy5Jc4OBSsQ7KPm55v+9coMf05n0WEdnwMRrwytX98Pj01tdBap8XMZkFLNmZhNfs1kF/41rDBnS3qoN+MY3COvNgjOgchuhQXzm6TOSU5LMoixYtwo8//ojjx4/Dz88Po0aNwquvvooePXrUnVNeXo6HH34YS5cuRUVFBaZNm4b//ve/iIyMrDsnOTkZ//jHP7BhwwYEBgbilltuwaJFi2A0qmfiJyzAG2O7tcPYbrbvC4KAnOJKJOeV4Of96fh6R5Ldn//90AU8e1kCQvy83NBb6R1MzcdTPx+uWz5CBzNG6Y/gesMGTNXvhrfO9i+OM+ZofOR7Jz6YN7hVd68RaZVOp0N4oA/CA30wqEObBsdLK6uRnFeKM1kluH/pfpjMDUdgJZUm/HbwAq4ZGueOLkuqpKIaN322E0G+Xlh83QB0aRfYvA8wm4Fzm4B9XwLHVgHmehv2hHcDpi2SrsNEHq5NE+qgXxLT8dV2+3XQb4cu4NnL1VsHHUotwL9/PtSgDrrOsAFT9Xvgo7O9w/SMORof+t7FOog8jp+3Ad0jg9A9MqjBMZNZQHp+GZLzSvHWmpMOn9RdujtFtZPogiDgl8R0vPjbMeQUN35DRK2+sSF46ao+6Nc+tGk/UFcHfQUcXwWY6t29Ht4VmP5K0ztORE45q4NySyqRlFuKlYlp+NJBHfT74Qw8X1qFEH/11kFP/XwIB6zqoJH6o7jesN5hHfSO1x1486r+uGpgLHQ61kKkPJLPSG/atAn33nsvhg4diurqavzrX//C1KlTcfToUQQEBAAAHnzwQfz2229Yvnw5QkJCMH/+fMyePRtbt24FAJhMJsycORNRUVHYtm0bLly4gJtvvhleXl54+eWXpe6y2+l0OrQL8kG7IB90ahuIZbtT6nZZt1ZeZcbKxDTcNLKj+zvZCiazgEW/H8NnW89BEIAIXMRcwyZca9iADvrsBufvNPfEUtMkhA6eg+9n9FPtYJlIbv7eRvSMCkbPqGD8kpiGv45m2j3vu93JqpxEf2HVUZyvWT915jtb8NTM3pg3vEPjBVbhBSDxG2Df10C+nSI1fjQw6Bag9+WAl58Lek5E1qzroM5tA7F0l/06qKLajF8S03CzSuug/209B3NNHTTHsAnXGjYiXp/V4Pyd5p5YZpqIoEFz8P2M/qodLBO5gkGvQ1yYP+LC/FFUXo09SXvtnrfrXB7OZBc3/wK7zHKKK/DA0v3Yejq3yT8T5GPEI9N64MYR8U274FZ4AUj8Ftj/NXDxfMPjHUYBg28Bel0OePs3vfNE1CI6nQ5tA33QNtAHXdoF4LvdKTbrg9eqrDbjp/2puHV0Jxl62XIms4BX/jiGz/4W66B2dfNBjuug700TEDhoDn6cMYB1ECma5JPoq1evtnn9xRdfICIiAnv37sW4ceNQUFCAzz77DEuWLMGkSZMAAJ9//jl69eqFHTt2YMSIEfjrr79w9OhRrF27FpGRkRgwYABeeOEFPP7443juuefg7e0tdbdlExbgjakJkVjlYMOY73al4MYR8aq5CicIAh5ZfgA/7U/DQN0p/NPrF0zS74dBZ3tHbI4QjBWmcfjeNAF+0T3x0lV9MSAuVJ5OE2nQdcPiHE6i70/Ox4mMIvSIanjHl1L9eSTDZj338ioznvr5MDYcz8Krc/qhbaCdNVVT9wBb3gBO/gkI9R6Z9G8LDLgBGHQz0LZbw58lIrdoE+CNaX2i8OuBdLvHv9uVgptUVgc9uvwAftyfhgG607jX6xdM1O+HUWc7OM4RgvGDaSyWmSbCN6onXrqqDwbaecKIiCwm94pA20Afh3drf787BU9e2svNvWq5gtIqXPPRdpzNLmn85BqX9Y/B0zN7ISK4CcscNFoHXS/eRMA6iEg2of7emNEnCr8k2q+Dlu5OwS2jOqqqDnpsxUH8sC8V/XWnMd9BHZQrBNXNB/lE9WIdRKrh8rVRCgrERzfCwsQ1Lffu3YuqqipMmTKl7pyePXuiQ4cO2L59O0aMGIHt27ejb9++Nsu7TJs2Df/4xz9w5MgRDBw4sMH3VFRUoKLCUlAVFha66rckueuHdXA4iX70QiEOpxWib3t1bO6yfE8qftqfhm66VCz1fhE+OstyCWZBhy3mvlhqmoi15sHw8fHFwzO646YR8TAauMctqZvSMmh89whEBfsio7Dc7vGlu5Px7GUJbu5Vy2QVluOJHw7aPbbueBamL96M7+8Zic7Wd59lHQM+vxQwWQ+0dUCXSeLEeY9LAaN2LsgSKS2DmuP6oXEOJ9GPXSjEobSCpi9XILPle1PxY00dtMz7hQZ10N/mPvjONKmuDnpoenfcPJJ1EKmfOzLIy6DHnMHt8eGmM3aPr9ibioen9mj9viluIAgCnvrlcJMn0DuG++OFK/tgbLd2TfuCrOMO6qCJ4sQ56yDSGDXXQdcN7eBwEv14RhEOpBao5obDH/al4Yd9qeiqS8X3DuqgpaaJWGMeAm9vHzw0vQduYR1EKuLSSXSz2YwFCxZg9OjR6NOnDwAgIyMD3t7eCA0NtTk3MjISGRkZdedYT6DXHq89Zs+iRYvw/PPPS/w7cI+RncMRF+aHlLwyu8e/252Mvu37urlXzZeUW4Lnfj0CAHjYuLwuMC8IYfjeNB7LTROQKoiF38x+0XhmVm9ENuUuCiIVUFoGGfQ6XDOkPd5Zf9ru8Z/2p+Hx6T3h62Vwc8+ax2wW8MiKg7hYWuXwnI7hAYgPD7B9c/2LloFjUAww8EbxV5t4F/aWSD5Ky6DmGNE5HB3C/JGcV2r3+He7UlQxiZ6UW4LnV4p10EON1UF9o/H0rN6ICmEdRNrgrgy6dmicw0n03JJKrDuWiRl9o13ej9b6JTHd4cVDa94GPf45sQv+b3yX5tVsG15iHUQeRd11UBg6hvvXLVtZ39JdyaqYRE/OLcWzvxwGADxkXFFXB2UIbfC9aTy+N01AqhABALi0bxSemZXAOohUx6WXe+69914cPnwYS5cudeXXAACefPJJFBQU1P1KSUlp/IcUQq/X4bqhHRweX5mYjtLKaofHlaDaZMaCZYkorTShj+4spht2AwAyhVBMrHgDb1XPRarQDvHh/vjy9mF4/4ZBnEAnTVFiBs0dEgdHT/7ll1bhzyP2L0oqyVfbz2PzyYZ7KdQK9DHirWsH2K4Jmr5f3DALAAKjgPv2ApP+zYEjaZoSM6ip9HodrnWyT8PKxDSUVCi/DnpwWSJKauqgGTV1UFa9OqhDmD++uG0o3p83iANH0hR3ZVCntgEY0TnM4fHvdis/+1LySvH0z4cbPW9st7b488FxWDCle/Mm0NMTgWMrxXZABHDfHtZBpHlqroN0Oh2udTYfdCAdxWqog74X66AE3TlcatgFAMgWQjCx4g28WX0NUoUIdAjzx+e3DcV/5w1mHUSq5LJJ9Pnz52PVqlXYsGED2re37JQeFRWFyspK5Ofn25yfmZmJqKiounMyMzMbHK89Zo+Pjw+Cg4NtfqnJnMHtHW4MU1xR7XC5F6V4b8Np7E/OBwA8Ylxueb/6SpTDB94GPe6f1BV/LhiH8d2b+BgikYooMYPiwvwxpmtbh8eX7lJ2cXkyswgv/3Hc6TkLr0hAXFi9TbDWv2hpj3uEm2SRR1BiBjXHXCd1UEmlCb8pvA56f8MZ7Kupgx62qYOuQDl84GXQ4f5JXfHXg+MwoUeETL0kch13ZpCzm4+2nMpG6kX7d3Mqgcks4OHvD6DIyYRYuyAfvHv9QHx1+zB0ahvg8DyHNrxkaY97BPBuwWcQqYza66CrB8fC6KAOKq00YVUTnlyR0383nsHepIsAbOug96uvQBl84WXQ4b6aOmgi6yBSMckn0QVBwPz58/HTTz9h/fr16NTJdifhwYMHw8vLC+vWrat778SJE0hOTsbIkSMBACNHjsShQ4eQlWXZuXfNmjUIDg5G7969pe6yIkQG+zoNk2UKvqtiX/JFvFuzZMQQ3XFMMBwAAKQKbbHUJG4e+/68QXhoag/FLx1BpDXXD3M80Nx+Nhfnc5q+mZU7VVSb8MDSRLs71dea2S8aVw2MtX0zaTtweq3YDukgrvtJRIoXEeyLST0d10FLdye7sTfNsy/5It5ZfwoAMFh3AhPt1UE3sA4iksr0PlEI8fOye0wQgO/3pLq5R0334aYz2HU+z+HxUH8v/Dp/DC7rH9OyjQSTdwKn/hLbIXHA4Ftb1lEicquIIF9M7uWsDlLufFBiSj7eXifWQYN0JzHJkAgASBPCscQ0GQDw3g2D8DDrINIAySfR7733XnzzzTdYsmQJgoKCkJGRgYyMDJSViet9h4SE4I477sBDDz2EDRs2YO/evbjtttswcuRIjBgxAgAwdepU9O7dGzfddBMOHDiAP//8E0899RTuvfde+Pj4SN1lxbjOyaPMe5Mu4mRmkRt70zTFFdV4cFkiTGYBgIBHvb6vO/Z29WxUwYgbhnfAJb0jHX8IEbnMlF6RCA9wvHHUsj3KLMje+Oskjl1wvCFQdIgvXr6yr+0AUxCA9S9YXk94nJtmEamIszpoX3K+IuugkkbqoEp44fphHTA1wf6TlETUfL5ehoYX0a0s35NS8/+kshxKLcBba046PWfRVX1bt8SBdR00/jHAqN2xM5HWOHvKJjElH8czlLdZaklFNRYs3V+XuY8YLXXQO3V1UBymsQ4ijZB8Ev2DDz5AQUEBJkyYgOjo6Lpfy5YtqzvnrbfewqxZs3D11Vdj3LhxiIqKwo8//lh33GAwYNWqVTAYDBg5ciRuvPFG3HzzzVi4cKHU3VWUCT3aITLYcaGjxLvRF/56BEk1G2CM0R/GcL249MIZczR+NI1F57YBeGpmLzm7SOTRvI16XD24vcPjK/amosrk+G5vOWw7nYNPtpx1eFynA96Y2x8h/vXuQju7AUjaKrbDuwL9rnNhL4lIauO7t0OUk/1SlLgE1cJfj9bVQaP1hzFCfwwAcNYchR9NY9GpbQCensU6iEhqzvZRuFBQ7nQ/FTmUVZrwwLL9qHYyuT93cPvWbYp6diNwfovYDusM9L++5Z9FRG43rns7RDu5iKbEOujF347WbYg6Sn8YowxHAQDnzZH4oa4O0uZqEuSZXLKci71ft956a905vr6+eP/995GXl4eSkhL8+OOPDdY6j4+Px++//47S0lJkZ2fj9ddfh9FolLq7imI06DF3sOOC8Md9qaioNrmxR86tPnzB6nFJweaq4+Lqq6HTG7H4ugHw99b2fzcipbtmiONcyS6qwPrjWQ6Pu1tBaRUeXn4AgpMbyO4a2xmj6q/1Lgi2a6FPeBIwMHuI1MRo0GPuEMcX/X7cn4ryKiXVQRlWT/MINnvCLK6eI9ZB17IOInKFXtHB6B8X6vC40paAeun3ozib7XgJvQ5h/nj28oSWf0GDOuhfgMH+kjdEpEwGvQ5znYzbftqfpqg66M8jGfhul3UdZJkPeqv6agh6L7zFOog0xmUbi1LLOLur4mJpFf48kunwuDtlFpbjiR8P1b2eot+HAfozAIBj5jisMo/Ag5d0R7/2oTL1kIhqdY0IxLCOYQ6PL92ljIGmIAj418+HcKGg3OE5vaKD8fDU7g0PnPgDSNsrtiMSgITZLuolEbnSNUPi4GgZ4PzSKvx5JMO9HXIgs7AcT/54sO71ZP0+DNSL+8McN8fhV/MILJjSzekkHxG1zvVOxk3rjmUhq8hxPeFO645l4psdjmstvQ5469oBCPRpxUTTyT+B1N1iu10voA/rICI1umZIe4d1UEFZFVYfVkYdlFVYjid+sNRBk/T7MaimDjppjsWv5lFYMLkbBrAOIo3hJLrCxIX5Y2y3tg6PL1PAXRVms4BHlh9AfmkVAEAHs80OzG9Wz8WQjuH4v/Fd5OoiEdVz3TDHA81NJ7ORnl/mxt7Y99P+NPx28ILD495GPd6+bgB8jPU2pDGbgQ0vWV5P+jeg519vRGoUF+aPMfWfNLGihKXtauugizZ10Iq6429Wz8Hg+HD8Y0JXubpI5BEu6x+DAG/7m9RVmwX8sDfNzT1qKLuoAo+tOOj0nPmTumFwfJuWf4nZDGywugt90r8BPTfvI1Kj9m38Ma5bO4fHlfCUjSAIeHTFwXp1kGU+6I3quRgYH45/TOB8EGkPZxkUyNnd6FtP5yIp1/GjgO7wxbbz2HIqp+71TP1O9NKLYZ5o7owdXsPx5jUDYNC3YEd5InKJGX2iEeRr/w4nswAsr1uaSR4peaV45pcjTs95ckZPdI8Manjg6E9A5mGxHTMI6HGpC3pIRO7ibGOtbWfkr4O+3G5bB12q34Xe+iQAwAFzZ2zzGoG3rmUdRORqAT5GXNY/xuHxZbuTIThbH87FBEHA4z8cRG5JpcNzBsSF4r5JrbzgduwXIKPmCeHoAUDPWa37PCKSlbON1neczcO5HJnroG3nsclq34kZ+l1IqKmDDpk7YqvXSCy+dgCMBk43kvbwT7UCXdI7EmEB3g6Pf79HvruwTmQU4ZXVx+teG2DCg1Z3X71RfQ0WXtkHcWH+cnSPiBzw8zbgqoGxDo9/vyelbld1dzOZBTy4LBHFFdUOzxnbrS1uGdnRzg9XAxtetrye9BQcPgNJRKrQWB0k593oJzOLsOgP2zrooXp3Xz1/OesgIne5bpjji27nc0ux/WyuG3tj69udyU73nfH3NmDxtQPg1ZqJJrOpXh30NOsgIpWb3CsSbQPVUQfpYcZD9eaDnmMdRBrGSfRa57cCxcrYxd3HaMBsJ5Ndy/ekotpkdmOPRBXVJjywdD8qqy3ffZXhb3TRi8sv7DT3REjCVFw5wHHficiB81uBYtdu8OnsKZe0/DL8fTrH4XFX+mDjaexJuujweBt/L7w+tz/09u7qPLgMyBXX30P8aKDLJBf1kkjjkra5PIOaytuox9WDnNRBe1NRJVMddP93tnXQlfqtNnVQUMI0zHbSdyJyoIUZ1L99CHpG2XlKrYZck02ns4rx4m9HnZ7z7GW90bFtQOu+6OD3QM5Jsd1hJNB1cus+j8hTKa4OcrzR+goZ66AHliaiwqYO+htd9ekAgN3m7gjoPd1pDUekdpxEB8TJ82XzgPeHAgeWibuby8zZ+sVZRRXYcML9E/6v/3kCxzOK6l57oRoPGH6se/25z4146ap+0PHuB6LmKc4Glt0IvD/MpRmUEBOCfu1DHB6XY8+FAyn5WLz2lNNzFs3uh8hg34YHqiuBTa9YXvMudKKWKc4Gls6ryaCliqiDrnWypEt2UQU2OLm701Xe+OtkgzpogfGHutefe8/DS1f1ZR1E1FwlOS3OIJ1O53Tpgz8OZyC/1PFyKq5QWW3GgmX7UV7leJJrau9IXDPEcb+bpLoS2LjI8pp1EFHLlOSIY7H3hgKJ3ymkDnKcDznFFVh3zP110Jt/ncSxC4V1rxvWQTfipdmsg0jbOIkOAOsXAmUXxV8/3Q0suQYokHd94K4RQRjiZIOZpbvcO9m17XQOPtlyzua9aw0bEKcXJ/M3mfvh5uuuR4i/l1v7RaQJ618AyvIsGfTtXCDfNXdOOSvI1hzNRE5xhUu+156yShMeXJaIaifLyFw7JA7T+0TZP7j/KyC/Jgu7TAbiR7mgl0QewCaD7nFpBjVV14hADO3opA5y892l287k4JMtZ23eu8awsa4O2mzqi5uvuwGh/o4fvyYiB1qZQVcOjIW30f6wtrLajJ/2u3eD0bfXncThtEKHx9sF+eCVqyW48SjxGyBfXIcYnScCHce07vOIPNX6F4HSXKA8H/j5/4Bv58heB3VuF4hhncIcHnf3BqPbz+Ti43p10FzDJnSoqYO2mPpg3nXzWAeR5nESHQAmPQMkzLa8PvUX8P4IYPen4m7nMnG2xt+GE1nIKCh3Sz+KK6rxaL1d5X1QifnGn+ten+uzAKO6tHVLf4g0Z9LTQJ+rLa9PrwH+OwLY9YnkGXR5/xj4eRnsHqsyCfhxn/suIP7nzxM462RjnPhwfzxzWW/7B6vKgM2vW15P+rfEvSPyIG7MoOZwtsHoxhNZuFBQ5pZ+FFdU49HlB21uTPNBJe4z/lT3+kyfBzCqK+sgohZpZQaF+nvjUkcX3AEs3ZXitg1GD6Tk44ONZ5ye8/rc/k73fWiSqnJg038sryc93brPI/Jkk54C+syxvD69VhF10PVOVifYdDIb6fnuqYNKKqrx6IoDTuugUwkLMJp1EHkATqIDQGA7YO7nwHVLgKBo8b3KIuC3h4EvZgI5p2Xp1qV9oxDkY7R7zCwAy920wegrfxxDWr2AvsmwBlE6cQ3jbV4jcP3sK93SFyJNCmwHzPkfcN13VhlUDPz+iOQZFOTrhVn9oh0eX7rbPQPN3efz8Pm2cw6PG/Q6vHXtAAQ4yEDs/hQoEtchRs9ZQOxgF/SSyEM0mkHOl1xylUv7RiPI11kd5J6Lfq/+cbxBHXSjdR1kHI4brp5t70eJqCkC2jrJoEublEHOloA6kVmExJR8iTrrWEW1CY8sPwBn+7TfOqojxndv1/ov2/MZUCSuQ4welwLtWQcRtVhAW2DOZ8D1S4GgGPG9ZmaQK8zoE41gB3WQIADfu2k+6NXVx5F6sX4dtBbRujwAwA7jMMybwzqIPAMn0a31nAn8cwcw6BbLe8nbgA9HA38vBkzVbu2Ov7cRVwyMcXh82Z4UmJ1VaRLYdjoH3+ywfVQoAGX4h3ElAMAs6BB71QvwMdq/s5WImqHnpcC9Oxtm0AejgL/fkiyDnD3lcja7BLvO5UnyPY6UVZrw2IqDTpcbvG9SVwzq4GAph4oi8d8HAEAHTPyX5H0k8kgOM2g0sOVNt9dBft4Gp5uVL9vthjroTA6+3pFk854/yvFPqzooZvaLrIOIpFCbQYNvtbyXvN0qg6oc/uiIzmHo5GSTzqW7XD/Z9M66UziVVezwePfIQDwxo2frv6iiWPz3UWsin8YjkkSPGcC9O4DBt1nea2IGuYKvlwFXDXRcB32/OwUmF9dB28/k4qvtDeug2vkgAIi6knUQeQ5OotfnFwpc/g5w80qgTUfxvepyYO2zwKeTgIxDbu2Os0eZUy+WYdWhCy777pKKajz2w8EG799mWI1wnbix1rnoaYjvPcxlfSDyOL4hDTPIVAGsfU7MoAsN/59srkEdQtE9MtDh8c/+PoeKalOrv8eR1/86gXNOlnEZEBeK+RO7Ov6AHR+K6xYC4uPfkQkS95DIgznKoHXPS5ZBzeFso/W0/DL8ejDdZd9dUlGNx1Y0UgdFTUNH1kFE0vENAS57G7jlV6BNJ/G92gz6ZBJw4YDdH9PpdE73ffn1YDpS8kpd0WMAwMHUfHy46azD48aaJ+x8HSyp1yw7PwRKc8R2wmwgqk/rP5OIRL4hwGWLm51BruLs5qf0gnL8esB1dVBpZTUe+6Hh7/dWw2q01Yn7PpyNmIqOfYa7rA9ESsNJdEc6jwf+sQ0YOR/Q1fxrunAA+HgCsO4FcR06N+gTG4I+scEOj9//3X5c8+F2rDuWKfndWK/80fCxnWAU427jbwAAE/TodPWLkn4nEdXoPB74x3YHGbSwVRkkDjQdF2R/Hc3EmFc34IONZ1BYLu0dF3vO5+F/Wx0v4+Jt1OP1uf1hNDj466nsIrDtXbGtMwATnpS0f0RUw4UZ1BwJMSHoGxvi8PgDSxMx98NtLqmD7D2+HIxi3GNcBQAwQ49Oc1gHEblEp3ENx2IZB4GPJzrMoKsHtYdRb3+zztJKEya+vhEPLUvE8QzHm362RO0yLs7uCL1vUjckxDjOsiYrywe2vSO2dXo+jUfkKrUZNOq+hhm09nm31UG9ooPRv73j7FiwLBFzPtiGtUelr4NeW30CKXn166ASmzqoI+sg8jCcRHfGOwCY9hJwxxqgXS/xPXM1sOV1cRCZddwt3XB2NzoA7Dqfhzu+3INpizdj+Z4UVFa3fvMLe48vAwIeNP6AYJ14F0dZ72ugb9et1d9FRA54+9dk0FogomaDTcEEbHmj1Rk0e2AsvB1NVAPILqrAq6uPY9Si9Vj0+zFJNjIurzLh0UaWcXn4ku7oGuHgLnlBADa+AlQUiK8HXA+0dXLHOhG1jtMMGu++OsjJ3egAsPv8RcnrIHuPLwMCFhh/rKuDSnrNZR1E5EqNZtAxm9PbBflgSq9Ihx9XbRbw4/40TF+8Bbd+vgvbz+RKsg/Mu+tO42Sm42VcekcH458Tu7T6eyAIwKZXgfKaOqj/9UBbZhCRy3j7A1NfBO5cC0TUPPkqmIC/37SbQa7i7G50ANiTdBF3frUHUxdvxvd7UiR5onjH2Vx8se18vXcFPGD8ESG1dVDPOdBH9Gj1dxGpCSfRm6L9EOCezcD4JwC9l/he9jHgk4lA4ncu//rLB8TArwmP/p3KKsajKw5i3Gsb8Mnmsyhq4R2kJRXVeLzeMi56mPG88QvcZvwTAGDSGRE4levvEblF+8HA3ZvEu64lyqA2Ad6Y1ieq0fOKK6rx0eazGPvaejy6/ABOZRa16PsA4I0mLONy59jO9g+aTcAfj4mPMAPiv4fxj7e4L0TUDHUZ9C+rDDruvjqof/ProI83n2lxHWTv8WU9zHjW+BVuN64GINZBQayDiNzDYQZNAhKX2Jx6bSMX3WptPJGN6z/ZgSvf34rfD11o8brCh1IL8MGmMw6PG/U6vD63P7yc3LjQJGYT8MfjwI7/iq9ZBxG5T+xg4O6NDTPo44nA/m9d/vWX9Y+Bv3fjddDprGI8VlMHfbSp5U8Ul1Y2XM6utg66w/gHgJo6aBrrIPI8nERvKqM3MPFJ4J5NljshqkqBn/8P+OVeoNJ1a+wF+3rhSicbStSXUViOl34/hlGvrMerq48jq7B5d5C+uvq4zWM7PqjEf73exi3GNXXv6aa+AIQ6vyJKRBIyegMTnhAv6NXeCdHKDLp5ZHyTz60yCVi+NxWXvLUZd365G7vP5zXr7q29SXn49O/GlnHpB4O9x7CryoDvbwZ2fWx575KFzCAidzJ6AxMet59BP7u2Dgry9cJVg5pXB738u/gkzSt/tKAO+qNhHfS+19t1NxIAgO6ShUCbpmcoEbWSwwz6B/DzP+syaFy3dogP92/yxx5ILcA/v92HyW9sxLc7k1Be1fQ7OJuyjMv8SV3RO8bx0pxNUlUGLL8V2PWR5b1LnmcGEblTbQb93xYgsmYfguoy4Jd/1mSQ4xuFWivQx4jZzaiDMgsrsOiP4xi9aD0W/XEMmc2sg15bfQLJVntI+KAS73m9Y1sHTXnOsncOkQfhJHpzRSYAd64DBt5keW//N8Cnk4Hsky772kemdkdsqF+zfqaovBofbDyDMa9twGurj6O0srrRn6n/+HIoivCt98uYbtgNAKgSDMievBj6kf9s3m+AiKQR2Vt8pHDQzZb39n8j3o2VfaJZHzW0YxhuGN78iei1x7Iw98PtuPGznU26M728yoRHlztfxuXBKd3RNSKo4YHSPOCrK4Dj4tp70BuBK/4LMIOI5BHZG7hrHTDoFst7iS3LoOZ4ZGqP5tdBFdX4cNMZjHl1A15tYh2042wuvrSqg0JQjG+8X8YMmzroLehH3du83wARScNuBn0rZlDWcRj0Orx8VV94G5s3zD2fW4p//3QYY1/bgB/3pTbpRoH31p/GCSd1UK/oYPxzQiuXnSvNA76+Cji2UnytM9TUQcwgIllE9BLHYoNvtbxnlUGu8vAlLauDPtp0FmNf3YBX/jiOkorG66Cd9ZZxCUExvvZehEsNuwAA1YIeWZPehH70fc3qC5FWcBK9Jbz9gSveA676CPCqudMh66i4RvGBZS75yvBAH/x+/1jcNCIePs0sCiurzfjvxjOY8sYm/H7ogsOisP7jy+112fjB+zkM0YsXB4oFX6wb9C7ajb2t5b8RImo9b3/g8neBqz62ZFD2MfGRwmZm0EtX9sFrV/dDXFjzijIA2Ho6FzPe3oKXfjuKYidF2ZtrTuKsk2Vc+seF4q6xnRoeuJgEfDYVSNkpvvYOBG5YBgyc1+y+EpGEvPyAy98BZn8CeAWI72Ufq6mDlrrkK8MCvFteB5nM+GDjGUx+YxN+O9hIHWT1+HIsxDpoaE0dVCL41NRBt7f8N0JErecogz6ZCBxYitFd22Ll/NGY2KNdsz86u6gCD31/ANd8tB1H0x1vQHo4rQD/3djYMi79mj2Zb+P/27vzqCiufA/g3+5mcQcjAqKiuC8RFxSGuMQEXDCLms3MMxFnHJMYiCbGZPTNJJq8eUejc4zRmBizuMzkGcXEDY0TRcENNSpqjEoQEVwABYMgKEv3fX9Ud0MDDTQ0dlX193MO50h1d3l/Vs43Py5V9+ZlAN+MBTISpe9dmwOTN7EPInI016bAU59UyqDGXeautbEPmhLaCU1cbe+DViWkInxpAmLP3rDaB90r0ePd7y37oM1uHyBYK90kUSjcsXfgcniPmFb/QogUTiPssZuKDOXn58PDwwN37txBq1YNfISuJreSgU2RUuNmMmgKELFYCtdGkHO3GOuPXMG6xHTcuWf7OlfDunlhwdN9q2zet2D7r+bfOvbRXMFat8Xw1uQBAG4KT/zT6x9YFPUStFZ2vSdSMntnxgPNoJip0i/yTAa+DIxbYlMGlekN+PFcFr44kIpz163/0GiNd0t3/O2J3ni6vx80mvKMOJn+O55fdQTWnnR202mxc+YwdPepdBd65lng2+eAu9nS9829gckxgN8Am8dGpATKzaDfgJjIqhkUsVj6hV8jyL1bjHWJ6VifeAV5RY3XB61xWwwfYx90S3hgSZv/wcLoKdUvO0WkcOrKoJeAiCWAWzNczMrH6gOXsf30DZTZuO65VgNMCe2Mt0b1gEdTV/PxkjIDnv70EC5mWb8LfVZYd7w1qofN5Zhl/QL8+zngbpb0fXNvaQLdb2D9z0kkY4rNoJwUaT7o5q/lxypkUGPIvVuM9YnpWFfPPmhotzb44Om+VZ4C/nDHeXxzWFp+s7cmHWvdPqrQB7XC4jb/wCL2QaRSdc0MTqLbQ0kR8OM70pIKJt59gefXAm0b0DzVorC4DJtOXMVXB9NwPe9e7R+owFWnwZ+HBWDm493R3N0FRy/n4sXVRwEAw7S/YJXrx2ihkdbOSjW0wytiHr6a9RwCvJrbvQ4iOVBs4wbYNYOEEDiSmotVCak4mJJj81BCAh7Ch+MfRk/flrhfqse45Qdx+Zb1u9DfHduz6qPOqfuAjVOAEuMPp226AS99z3X3SNWUn0HvAkn/Kj/m3Qd4fl2j9kFFJWXY9PNVfGmHPujY5VxMMvZBQ7W/YJXrMrTUSOdMNbTDK4Z5+HLWs+jStkVNpyVSLLVn0PW8e/jmUBo2HM9AUUnd1z0HAK8Wbpgb0RvPDGwPrVaDpT8lY/m+S1bf38u3JbZHD6v/XeiX44HvXmIfRE5F8Rm0+6/AqfXlxx5QHxRz4hq+PHgZ1363rQ9y0Rr7oLDuaOHuguNptzFpdSKEAB7RnsMXrh+b+6DLBl9MN8zD6lnPoSv7IFIpTqI/yNA0Ob0B2Dlb2uQGkB7teeoTIPD5Rv1rS/UG7PolE6sSLuNCpm13kPq2aoJ3x/bEsr0pyLhdhInag1jsuhquGqm5PGnojmklc/DGkyGYNqya5RaIVELRjZuJnTPo1xt3sPrAZcSezaxx06zKdFoNpj7SGWV6g8XawpX17+CB72c8AhddhR8yz3wnbZRqMC4P0yEY+ON3QPM29aqBSCnUm0HLgMAXGvWvLdMbsLOBfdAncSlIzy3CBO0hLHH9wtwHnTJ0w7SSOYh6IgR/Gd6lMYZPJAuqyKAz3wGxb1lm0JMfA/0nmd9yp6gU/z6WjjWH05Bzt8Sm0wd1ao3JIf54Z/NZq32Ri1aDrVFD8XB7j/rVcHaTtEmhwXh3aYchwB83sg8i1VNHBm0EYt+sMYMag6kP+iLhMs7b2Af5tHLHu2N6YcW+FFzJLcJ4Yx/kZuyDkgzd8OeSOXh9XAimj2AfROrFSXRHhCYgbSYREymtiWXS60kgfAHg1b1h575/BziyQmqu2gUCwa8CnYcBxqUThBA4mJKDLw6k4vClXBtPLvC6bjvedS1fT/k/+sGYWRqNfp18sPHVUD62Q6qmisYNaJQMunq7CF8fSsPOn5PxstiGCdrD+FV0xjr9GBw19AZgeza46bSInTkMPUzLuAgBHPoYiPug/E09nwCe/arRHoUkkhPVZFB1y9z1fAIY9YGd+qBPgbMbjX3QK0Dn4Xbrg17T7cBc1/I13ffog/BGaTT6dvLFJvZBpHKqz6DwBRZ3hN4v1eOHU9fx5cHLSKth35aKWqIIf3HZiYnaQzgvOmOdfjQSDX1QsQ+aGdYds+uzjIsQwOFPgL3zK4x7HPDs1+yDyCmoKoMqL7VZTQbVS8U+yLef1AcFjLDogw5dysEXCZdx6JKtTxQLvKqLxTzX8jXdTX1Qb38fbH7tEfZBpGqcRHdUaAJASSGwcw5w5v/Kj2l00g7OI+cCLbxtO1/pPeD4l8ChpcC93y1f8+4jhWfgJIsG68zVPHwYex4n0yu9vxodNLcwQ7cdk13izMfWl43CgrJIuLq44MdZw/n4Mqmeaho3QMqgXe9IO8Wb2CGDDAeXQnvfMlMuGjpinX40tuiH4T7c63zKd8b0RNRjxmVc8jKAg0uBk2vK3zB4mrSuu1Zn21iJFEp9GfQucLrCElMaHRAUCTw6F2jpY9v56tQHvQC4lS85Z0sf1B63MMNlO16q0Af9uywM88umwsXFFbtmDefjy6R66sqgImMfVHsG6Q0CsWdvYOGui8jKv1/t6dxRgpd1e/C6yzY8pLlr8dpFQ0es14/GFv1QdPJtW79lXPIygEPLgBNflx8b/GdpTWWdi23nIlIo1WVQ5aU2G9oH/fyV9PPSvduWr7XtDYSY5oPK+6Cz1/Lw4Y7zOFHHPug1lx142WWv+di3ZWF4v2wqdC6u2DVzeJV9ZIjUhpPojgxNkzMbgT3vlW+MBwBuLYBHZgKhUYB7LUGkL5Oav/iPgIIbNb+3iScw6GVgyHSgdScAgMEg8P2pa1j040XkFpY/ruiCMgzW/obHtEl4THsaPbTXLU61uHQSPtM/DUCDvz/Rm48vk1NQVeNmcnYT8NN75ZtSAdJjhUNn2T2D8kRzbNSPxL/0o3BN1DxJP7B9c2wep4UudQ+Q8pPlXfMA8Ph7wPC3zXdVEDkD58qgmUBodB0z6FsgflEd+iAPaUPT4OnmdYMNBoEfkq5j0Y8XLJZtMPVBI7Wn8bg2qZo+6AV8ph8PQIO/jevNx5fJKTh7BhUWl2H5vhR8fTDNvAGpDno8pzuAWS7fw09zu/LZLdwRzVEaOBlej0fVvna5vhTIOCr1QCl7LO+aB9gHkVNSZwbFAD/9veF9UMJHQP71mt9bTR8khMAPp65jYTV9UJAmBY/ppPmgntprFqdaUvoCVhr7oP8e1wuvjOhqQ9FEysRJdDmEJiDdjZW4Uno8r6TCnQstfICR86Sgq3yHgcEAnN8K7P9fILfipjUa6TeMI94BMk8Dx1cDV49ZflajBXpESL+NDHgU0Ghw514pvtx1BDdPxWKk9jSGaX9BK03VjSdKhQ5/LZ2OHwwjAEjr/vHxZXIWqmzcAGMGfQYcXmZbBl3YBuz7h9UMEplncHv/CrS5nWT5UaFBnGEQ1ujH4IihL0yPOLdFHkbqTuNx3RmMbnIeOtNmWRVpXYCnVwAD/ssupRMpidNlUHNv4LF5wMApNmbQC1IflHUWOLYauHq00l+oAXpGSHendxlZoQ9KxM1TO/Co9jSG19AHzS2dju+NfdAgf0/E8PFlchLMIMmlm3exYNs5tEzbhTkum9BVm2l+zSA02GoYik/LJqCPJh2RLv/BEO1vlf7CqhkEACjIBi4Zbx5I3Q8UV7NusdYFeGo5MHCy3conUgpVZ9DRz4BDn5RvFgzU3AcJAZw39UEpFV6oYx/UYywQ8mqVPij7VCxGapOs9kFlQou5ZdOxWf8oAGCgvyeXcSGnwUl0uYSmyd2b0m8QT6wBRIUd4b16AOEfSM0WAKTGAXEfAplnLD/fc5x0V4JPH8vjN5Kk8Dy3GdBX2hynbS+gaxiQfqjq+Yz0QoMk0R379QOw0xCCK6IdAMDdRcvHl8mpqLZxM7l7S8qgk2vKN+0EqsmgfdK65NVm0N8Bn74Whwuv/IxLO5aiV85PcNeUWbz2m6E9DhgCEay9iEBtWvXj0milTbO6jwL6TAS8ujW0UiJFcu4MWiBlDGDMoA+lmwUq6hEBhL1XJYNw47R0U8EvmwF9seVrXj2BbuFA+uGq5zMyCA2SRDfs0w/ELkMI0ox9kJuLFj+yDyIn4rQZ1Ka7tGeDKYMu74fY+wE0lTJjj34Q/ln2ApKFv8Xxvpo0zGq5D6P0h6CpRwYBGmMfNBroyz6InJdTZNCBxcCJb2rNIOz94IH3QdJ80B8s+qBdM4ehm3fLepdMpCSqmERfuXIllixZgqysLPTv3x8rVqxAcHBwnT4ru9A0yUmRJqgu7LA87v+ItPbvlYOWxzsNlX647FhL3XdvAafWAj9/U+sjz8WunogrC8Tu4n44YAhEHqoGIx9fJmej+sbNJOeSMYO2Wx73D5XugKoug8LmA/4hNZ429coV/Pz9x3g0fzva1fLIM5q2BrqNkn5g7BYGNHuoHoUQqQszyEoG+T8i9UG1ZBAKc4CTa4Gfv65DH+SBfWWB+LE4EAcN/fA7qv778PFlcjZOn0Ed/wC4uAFpBywOX205AHN+n4BjZdVvCKjTarD19aHo17pUyqAT39S+7ELT1tLEVvfR0g1Pzds0oCAidXCaDMpNlTLo/DbL41YySOqD5gP+f6j5vKY+qA4ZVGLug6T5oOr6oLkRvfDao+yDyHkofhJ948aNmDJlClatWoWQkBAsW7YMMTExSE5Ohrd37ZviyTY0TTKOSeulV16OxcQ3UJq46hZm23p4+lJpgv74aiAj0fJ8PcZIzVr7IOSXGPDxnt+wPjEdeoPlfwKP9miLb6YO4WM75FScpnEzqTWD+gFhC2zKICEEYk9n4MjOdZhYEotgbbL5tQsIgHfQ02gz4EmgfRA3DCWqxOky6Opxaa3iKo8hG/n2M/ZB4bb3QRdjpaf0Mo5UOF+g1AP1GGPug5btScG6xCtV+qARPdpiDfsgcjLMoEoqZFBqTiEWbP8VB1NyqrxtXkQvvFpxoklfZsygL6rPoO6jgQ6D2QcRVcIMqsSnnzR5bnMfVLcMKigxYNneFKw9UrUPGt7dC2umDoGLzsZNkokUTPGT6CEhIRgyZAg+/fRTAIDBYEDHjh3xxhtvYO7cubV+XvahCUhrXV2MBfYuKF/z86GuwON/k5Y10DYwtLJ/BW6nSRNWrdpV+5YLmflYlZCKhN9uoVUTV4T39sHciF627ypPpHBO17gBxgzaCeydXyGDukjLtjQgg+4Wl+HLA5dx4Uwimt7NgPALwqyJI7gsAlENmEEVMuixvwF9n3kgfdDFrHysipf6oBZNXBDe2wfzInqzDyKnwwwyZlDrAKkPqpRBQgj859dsfHssHSeu/I4ubZtjSmgnTBrib+XkqFMGEZHEaTMoeRewZ3752udWMqhess8Dty/XmEHJWQX4PP4S+yByeoqeRC8pKUGzZs2wefNmTJgwwXw8MjISeXl52LZtm/UPGykiNE30peWP8/QZD+hcH/gQhBDQcAd4cmJO2biZNGIGMVuI6oYZxD6IyJGYQXXPIOYFkf05dwaVAee3Sn9mH0TkEHXNDBerrzhQTk4O9Ho9fHx8LI77+Pjg4sWL1X6muLgYxcXlGynk51ez47lc6VyBfs85dAgMTKKGYQZVj9lC9GAwgxqGWUXUMM6UQcwLIvlRdga5sA8iUgjVPKOxcOFCeHh4mL86duzo6CERkRNhBhGRIzGDiMiRmEFE5EjMICJ6EGQ5ie7l5QWdTofs7GyL49nZ2fD19a32M/PmzcOdO3fMX1evXn0QQyUiAsAMIiLHYgYRkSMxg4jIkZhBRPQgyHI5Fzc3NwQFBSEuLs68JrrBYEBcXByio6Or/Yy7uzvc3d0f4CiJiMoxg4jIkZhBRORIzCAiciRmEBE9CLKcRAeA2bNnIzIyEoMHD0ZwcDCWLVuGwsJC/OlPf3L00IiIiIiIiIiIiIjISch2En3SpEm4desW3n//fWRlZWHAgAHYvXt3lc1GiYiIiIiIiIiIiIgai2wn0QEgOjra6vItRERERERERERERESNTdaT6A0hhAAA5OfnO3gkRKQEpqwwZUdDMYOIyBbMICJyJGYQETkSM4iIHKmuGaTaSfSCggIAQMeOHR08EiJSkoKCAnh4eNjlPAAziIhswwwiIkdiBhGRIzGDiMiRassgjbDXr/pkxmAw4MaNG2jZsiU0Gk2t78/Pz0fHjh1x9epVtGrV6gGMsPGxJuVQY11Kq0kIgYKCAvj5+UGr1Tb4fMwg1qQkaqxLaTUxg+yPNSmHGutSWk3MIPtjTcqhxrqUVhMzyP5Yk3KosS6l1VTXDFLtneharRYdOnSw+XOtWrVSxAW2BWtSDjXWpaSa7HHXgwkzqBxrUg411qWkmphBjYM1KYca61JSTcygxsGalEONdSmpJmZQ42BNyqHGupRUU10yqOG/4iMiIiIiIiIiIiIiUilOohMRERERERERERERWcFJdCN3d3fMnz8f7u7ujh6K3bAm5VBjXWqsqTGp8d+LNSmHGutSY02NSY3/XqxJOdRYlxprakxq/PdiTcqhxrrUWFNjUuO/F2tSDjXWpcaaABVvLEpERERERERERERE1FC8E52IiIiIiIiIiIiIyApOohMRERERERERERERWcFJdCIiIiIiIiIiIiIiKziJTkRERERERERERERkBSfRjVauXInOnTujSZMmCAkJwfHjxx09pHpbsGABNBqNxVevXr0cPSybHDhwAE899RT8/Pyg0WiwdetWi9eFEHj//ffRrl07NG3aFOHh4UhJSXHMYOuotpqmTp1a5bqNHTvWMYOto4ULF2LIkCFo2bIlvL29MWHCBCQnJ1u85/79+4iKikKbNm3QokULPPvss8jOznbQiOWLGSQvzCBmkLNhBskLM4gZ5GyYQfLCDGIGORtmkLwwg5hBcsVJdAAbN27E7NmzMX/+fJw6dQr9+/fHmDFjcPPmTUcPrd769u2LzMxM89ehQ4ccPSSbFBYWon///li5cmW1ry9evBjLly/HqlWrcOzYMTRv3hxjxozB/fv3H/BI6662mgBg7NixFtdtw4YND3CEtktISEBUVBSOHj2KPXv2oLS0FKNHj0ZhYaH5PW+99RZ27NiBmJgYJCQk4MaNG3jmmWccOGr5YQbJDzOIGeRMmEHywwxiBjkTZpD8MIOYQc6EGSQ/zCBmkGwJEsHBwSIqKsr8vV6vF35+fmLhwoUOHFX9zZ8/X/Tv39/Rw7AbAGLLli3m7w0Gg/D19RVLliwxH8vLyxPu7u5iw4YNDhih7SrXJIQQkZGRYvz48Q4Zj73cvHlTABAJCQlCCOm6uLq6ipiYGPN7Lly4IACIxMRERw1TdphB8sYMUg5mUP0wg+SNGaQczKD6YQbJGzNIOZhB9cMMkjdmkHI4QwY5/Z3oJSUlOHnyJMLDw83HtFotwsPDkZiY6MCRNUxKSgr8/PzQpUsXTJ48GRkZGY4ekt2kpaUhKyvL4pp5eHggJCRE0dcMAOLj4+Ht7Y2ePXtixowZyM3NdfSQbHLnzh0AwEMPPQQAOHnyJEpLSy2uVa9eveDv76/4a2UvzCDlYQbJFzPIdswg5WEGyRczyHbMIOVhBskXM8h2zCDlYQbJlzNkkNNPoufk5ECv18PHx8fiuI+PD7Kyshw0qoYJCQnB2rVrsXv3bnz++edIS0vD8OHDUVBQ4Oih2YXpuqjpmgHSozvr169HXFwcPvroIyQkJCAiIgJ6vd7RQ6sTg8GAN998E0OHDsXDDz8MQLpWbm5u8PT0tHiv0q+VPTGDlIcZJE/MoPphBikPM0iemEH1wwxSHmaQPDGD6ocZpDzMIHlylgxycfQAyP4iIiLMfw4MDERISAg6deqETZs2Ydq0aQ4cGdXkxRdfNP+5X79+CAwMRNeuXREfH4+wsDAHjqxuoqKicO7cOcWtt0b2xwxSJmYQqQUzSJmYQaQWzCBlYgaRWjCDlIkZpAxOfye6l5cXdDpdld1hs7Oz4evr66BR2Zenpyd69OiBS5cuOXoodmG6Lmq+ZgDQpUsXeHl5KeK6RUdHIzY2Fvv370eHDh3Mx319fVFSUoK8vDyL96vtWjUEM0h5mEHywwyqP2aQ8jCD5IcZVH/MIOVhBskPM6j+mEHKwwySH2fKIKefRHdzc0NQUBDi4uLMxwwGA+Li4hAaGurAkdnP3bt3kZqainbt2jl6KHYREBAAX19fi2uWn5+PY8eOqeaaAcC1a9eQm5sr6+smhEB0dDS2bNmCffv2ISAgwOL1oKAguLq6Wlyr5ORkZGRkqOpaNQQzSHmYQfLBDGo4ZpDyMIPkgxnUcMwg5WEGyQczqOGYQcrDDJIPp8wgh25rKhPfffedcHd3F2vXrhXnz58Xr7zyivD09BRZWVmOHlq9vP322yI+Pl6kpaWJw4cPi/DwcOHl5SVu3rzp6KHVWUFBgUhKShJJSUkCgFi6dKlISkoS6enpQgghFi1aJDw9PcW2bdvE2bNnxfjx40VAQIC4d++eg0duXU01FRQUiDlz5ojExESRlpYm9u7dKwYNGiS6d+8u7t+/7+ihWzVjxgzh4eEh4uPjRWZmpvmrqKjI/J7XXntN+Pv7i3379okTJ06I0NBQERoa6sBRyw8zSH6YQcwgZ8IMkh9mEDPImTCD5IcZxAxyJswg+WEGMYPkipPoRitWrBD+/v7Czc1NBAcHi6NHjzp6SPU2adIk0a5dO+Hm5ibat28vJk2aJC5duuToYdlk//79AkCVr8jISCGEEAaDQbz33nvCx8dHuLu7i7CwMJGcnOzYQdeippqKiorE6NGjRdu2bYWrq6vo1KmTmD59uuz/x11dPQDEmjVrzO+5d++eeP3110Xr1q1Fs2bNxMSJE0VmZqbjBi1TzCB5YQYxg5wNM0hemEHMIGfDDJIXZhAzyNkwg+SFGcQMkiuNEELU9a51IiIiIiIiIiIiIiJn4vRrohMRERERERERERERWcNJdCIiIiIiIiIiIiIiKziJTkRERERERERERERkBSfRiYiIiIiIiIiIiIis4CQ6EREREREREREREZEVnEQnIiIiIiIiIiIiIrKCk+hERERERERERERERFZwEp2IiIiIiIiIiIiIyApOohMRERERERERERERWcFJdCIiIiIiIiIiIiIiKziJTkRERERERERERERkBSfRiYiIiIiIiIiIiIis+H/T7X/CKLcyqAAAAABJRU5ErkJggg==" + ] }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 14 + "source": [ + "fig = clf.plot_most_important_feature_on_ts(\n", + " X_test[y_test == \"2\"][0, 0], clf._classifier.coef_\n", + ")" + ] }, { "cell_type": "markdown", @@ -2221,8 +2221,8 @@ "source": [ "#### 4.4.3 Interpretability summary\n", "\n", - "We can see that the most important subsequences matche the instance from class `1` quite exactly, meaning that these subsequences are characteristic of this class.\n", - "On the contrary, they failed to match the instance from class `2`. These subsequences can be called Shapelets for this dataset.\n", + "We can see that the most important subsequences matche the instance from class ``1`` quite exactly, meaning that these subsequences are characteristic of this class.\n", + "On the contrary, they failed to match the instance from class ``2``. These subsequences can be called Shapelets for this dataset.\n", "\n", "Feel free to play with different time series from the dataset, or with a different dataset" ] diff --git a/examples/transformations/signature_method.ipynb b/examples/transformations/signature_method.ipynb index 81d6d4b866..ae0c480763 100644 --- a/examples/transformations/signature_method.ipynb +++ b/examples/transformations/signature_method.ipynb @@ -8,7 +8,7 @@ "\n", "The ‘signature method’ refers to a collection of feature extraction techniques for multimodal sequential data, derived from the theory of controlled differential equations. In recent years, a large number of modifications have been suggested to the signature method so as to improve some aspect of it.\n", "\n", - "In the paper [\"A Generalised Signature Method for Time-Series\"](https://arxiv.org/abs/2006.00873) [1] the authors collated the vast majority of these modifications into a single document and ran a large hyper-parameter study over the multivariate UEA datasets to build a generic signature algorithm that is expected to work well on a wide range of datasets. We implement the best practice results from this study as the default starting values for our hyperparameters in the `SignatureClassifier` module.\n" + "In the paper [\"A Generalised Signature Method for Time-Series\"](https://arxiv.org/abs/2006.00873) [1] the authors collated the vast majority of these modifications into a single document and ran a large hyper-parameter study over the multivariate UEA datasets to build a generic signature algorithm that is expected to work well on a wide range of datasets. We implement the best practice results from this study as the default starting values for our hyperparameters in the ``SignatureClassifier`` module.\n" ] }, { @@ -147,7 +147,7 @@ "### Overview\n", "We provide the following:\n", "- **aeon.transformers.panel.signature_based.SignatureTransformer** - An sklearn transformer that provides the functionality to apply the signature method with some choice of variations as noted above.\n", - "- **aeon.classification.feature_based.SignatureClassifier** - This provides a simple interface to append a classifier to the SignatureTransformer class." + "- **aeon.classification.feature_based.SignatureClassifier** - This provides a simple interface to append a classifier to the ``SignatureTransformer`` class." ] }, { @@ -176,7 +176,7 @@ "metadata": {}, "source": [ "### Example 1: Sequential Data -> Signature Features.\n", - "Here we will give a very simple example of converting the sequential 3D GunPoint data of shape [num_batch, n_timepoints, num_features] -> [num_batch, signature_features]." + "Here we will give a very simple example of converting the sequential 3D GunPoint data of shape ``[num_batch, n_timepoints, num_features] -> [num_batch, signature_features]``." ] }, { @@ -263,9 +263,9 @@ "source": [ "### Example 2: Fine Tuning the Generalised Model\n", "As previously mentioned, in [1] the authors performed a large hyperparameter search over the signature variations on the full UEA archive to develop a 'Best Practices' approach to building a model. This required some fine tuning over the following parameters, as they were found to be very dataset specific:\n", - "- `depth` over [1, 2, 3, 4, 5, 6]\n", - "- `window_depth` over [2, 3, 4]\n", - "- `RandomForestClassifier` hyperparamters.\n", + "- ``depth`` over [1, 2, 3, 4, 5, 6]\n", + "- ``window_depth`` over [2, 3, 4]\n", + "- ``RandomForestClassifier`` hyperparamters.\n", "\n", "Here we show a simplified version of the tuning." ] @@ -354,7 +354,7 @@ "metadata": {}, "source": [ "## A Full Description of the Parameters\n", - "We conclude by giving further explanation of each of the parameters in the `SignatureClassifier` module and what values they can take." + "We conclude by giving further explanation of each of the parameters in the ``SignatureClassifier`` module and what values they can take." ] }, { @@ -366,37 +366,37 @@ "Below we list each parameter and the values that they can take. For further details about what the options mean refer to [1].\n", "\n", "\n", - "**classifier** Needs to be any sklearn estimator. Defaults to `RandomForestClassifier()`.\n", + "**classifier**: Needs to be any sklearn estimator. Defaults to ``RandomForestClassifier()``.\n", "\n", "**augmentation_list**: list of tuple of strings, List of augmentations to be applied before the signature transform is applied. These can be any from:\n", - "- 'addtime' - Add an equally spaced time channel.\n", - "- 'leadlag' - The leadlag transform.\n", - "- 'ir' - Perform the invisibility reset transform.\n", - "- 'cumsum' - Perform a cumulative sum transform.\n", - "- 'basepoint' - Append zero to the start of the path to remove translational invariance.\n", + "- ``'addtime'`` - Add an equally spaced time channel.\n", + "- ``'leadlag'`` - The leadlag transform.\n", + "- ``'ir'`` - Perform the invisibility reset transform.\n", + "- ``'cumsum'`` - Perform a cumulative sum transform.\n", + "- ``'basepoint'`` - Append zero to the start of the path to remove translational invariance.\n", "\n", - "**window_name** str, The name of the window transform to apply. Can be any of:\n", - "- 'global' - A single window over all the data.\n", - "- 'expanding' - Multiple windows starting at the first datapoint that extend over the data (increasing width).\n", - "- 'sliding' - Multiple windows that slide along the data (fixed width).\n", - "- 'dyadic' - Partition the data into dyadic windows.\n", + "**window_name**: ``str``, The name of the window transform to apply. Can be any of:\n", + "- ``'global'`` - A single window over all the data.\n", + "- ``'expanding'`` - Multiple windows starting at the first datapoint that extend over the data (increasing width).\n", + "- ``'sliding'`` - Multiple windows that slide along the data (fixed width).\n", + "- ``'dyadic'`` - Partition the data into dyadic windows.\n", "\n", - "**window_depth**: int, The depth of the dyadic window. (Active only if `window_name == 'dyadic']`).\n", + "**window_depth**: ``int``, The depth of the dyadic window. (Active only if ``window_name == 'dyadic']``).\n", "\n", - "**window_length**: int, The length of the sliding/expanding window. (Active only if `window_name in ['sliding, 'expanding'].`)\n", + "**window_length**: ``int``, The length of the sliding/expanding window. (Active only if ``window_name in ['sliding, 'expanding'].``)\n", "\n", - "**window_step**: int, The step of the sliding/expanding window. (Active only if `window_name in ['sliding, 'expanding'].`)\n", + "**window_step**: ``int``, The step of the sliding/expanding window. (Active only if ``window_name in ['sliding, 'expanding'].``)\n", "\n", - "**rescaling**: str, The method of signature rescaling. Any of:\n", - "- 'pre' - Rescale the path before the signature transform.\n", - "- 'post' - Rescale the path after the signature transform.\n", + "**rescaling**: ``str``, The method of signature rescaling. Any of:\n", + "- ``'pre'`` - Rescale the path before the signature transform.\n", + "- ``'post'`` - Rescale the path after the signature transform.\n", "- None - No rescaling.\n", "\n", - "**sig_tfm**: str, String to specify the type of signature transform. Either of: ['signature', 'logsignature'].\n", + "**sig_tfm**: ``str``, String to specify the type of signature transform. Either of: [``'signature'``, ``'logsignature'``].\n", "\n", - "**depth**: int, Signature truncation depth.\n", + "**depth**: ``int``, Signature truncation depth.\n", "\n", - "**random_state**: int, Random state initialisation." + "**random_state**: ``int``, Random state initialisation." ] }, { diff --git a/examples/transformations/smoothing_filters.ipynb b/examples/transformations/smoothing_filters.ipynb index 6a7776f04e..089b389617 100644 --- a/examples/transformations/smoothing_filters.ipynb +++ b/examples/transformations/smoothing_filters.ipynb @@ -9,8 +9,7 @@ "\n", "> In statistics and image processing, to smooth a data set is to create an\n", "approximating function that attempts to capture important patterns in the data,\n", - "while leaving out noise or other fine-scale structures/rapid phenomena.\n", - "(https://en.wikipedia.org/wiki/Smoothing)\n", + "while leaving out noise or other fine-scale structures/rapid phenomena. Read more [here](https://en.wikipedia.org/wiki/Smoothing).\n", "\n", "In this notebook, we demonstrate the usage and results of different smoothing\n", "transformations." diff --git a/examples/transformations/transformations.ipynb b/examples/transformations/transformations.ipynb index 7d88735104..c46ca1dc26 100644 --- a/examples/transformations/transformations.ipynb +++ b/examples/transformations/transformations.ipynb @@ -2,6 +2,9 @@ "cells": [ { "cell_type": "markdown", + "metadata": { + "collapsed": false + }, "source": [ "# Transforming time series\n", "\n", @@ -9,24 +12,24 @@ "series machine learning. Transformation can involve extracting features that\n", "characterize the time series, such as mean and variance or changing the series into,\n", "for example, first order differences. We use the term transformer in the\n", - "`scikit-learn` sense, not to be confused with deep learning Transformers that employ\n", + "``scikit-learn`` sense, not to be confused with deep learning Transformers that employ\n", "an attention mechanism. We call transformers that extract features\n", - "`series-to-vector` transformers and those that change the series into a different\n", - "representation that is still ordered `series-to-series` transformers.\n", + "``series-to-vector`` transformers and those that change the series into a different\n", + "representation that is still ordered ``series-to-series`` transformers.\n", "\n", "We further differentiate between transformers that act on a single series and those\n", "that transform a collection of series. Single series transformers are located in\n", - "transformations/series directory and inherit from `BaseSeriesTransformer`. For\n", - "example, `AutoCorrelationSeriesTransformer` is a `series-to-series` transformer that\n", + "transformations/series directory and inherit from ``BaseSeriesTransformer``. For\n", + "example, ``AutoCorrelationSeriesTransformer`` is a ``series-to-series`` transformer that\n", "finds the auto correlation function for a single series." - ], - "metadata": { - "collapsed": false - } + ] }, { "cell_type": "code", "execution_count": 23, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -45,25 +48,25 @@ "transformer = AutoCorrelationSeriesTransformer(n_lags=10)\n", "acf = transformer.fit_transform(series)\n", "print(acf)" - ], - "metadata": { - "collapsed": false - } + ] }, { "cell_type": "markdown", + "metadata": { + "collapsed": false + }, "source": [ "Collection transformers are located in the transformations/collection directory and\n", - "inherit from `BaseCollectionTransformer`. For example, `Truncator` truncates all time\n", + "inherit from ``BaseCollectionTransformer``. For example, ``Truncator`` truncates all time\n", " series in a collection to the same length." - ], - "metadata": { - "collapsed": false - } + ] }, { "cell_type": "code", "execution_count": 24, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -83,25 +86,25 @@ "trunc = Truncator(truncated_length=100)\n", "X2 = trunc.fit_transform(X)\n", "print(\"Truncated collection shape =\", X2.shape)" - ], - "metadata": { - "collapsed": false - } + ] }, { "cell_type": "markdown", + "metadata": { + "collapsed": false + }, "source": [ - "`Truncator` is a `series-to-series` transformer\n", + "``Truncator`` is a ``series-to-series`` transformer\n", " that returns a new collection of time series of the same length. This can then be\n", " used, for example, by a classifier that only works with equal length series:" - ], - "metadata": { - "collapsed": false - } + ] }, { "cell_type": "code", "execution_count": 25, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -112,8 +115,416 @@ }, { "data": { - "text/plain": "SummaryClassifier()", - "text/html": "
SummaryClassifier()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "text/html": [ + "
SummaryClassifier()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "SummaryClassifier()" + ] }, "execution_count": 25, "metadata": {}, @@ -130,26 +541,26 @@ " print(e)\n", "\n", "summary.fit(X2, y)" - ], - "metadata": { - "collapsed": false - } + ] }, { "cell_type": "markdown", + "metadata": { + "collapsed": false + }, "source": [ "Some collection transformers are supervised, meaning they fit a transform based on\n", "the class labels. For example, the shapelet transform finds shapelets that are good\n", - "at separating classes. This is a `series-to-vector` transformer that produces tabular\n", - " output shape `(n_cases, n_shapelets)`.\n" - ], - "metadata": { - "collapsed": false - } + "at separating classes. This is a ``series-to-vector`` transformer that produces tabular\n", + " output shape ``(n_cases, n_shapelets)``.\n" + ] }, { "cell_type": "code", "execution_count": 26, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -165,24 +576,24 @@ "st = RandomShapeletTransform(max_shapelets=10, n_shapelet_samples=100)\n", "X2 = st.fit_transform(X, y)\n", "print(X2.shape)" - ], - "metadata": { - "collapsed": false - } + ] }, { "cell_type": "markdown", - "source": [ - "`series-to-vector` transformers produce output that is compatible with `scikit-learn`\n", - " estimators" - ], "metadata": { "collapsed": false - } + }, + "source": [ + "``series-to-vector`` transformers produce output that is compatible with ``scikit-learn``\n", + " estimators" + ] }, { "cell_type": "code", "execution_count": 27, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -193,8 +604,416 @@ }, { "data": { - "text/plain": "RandomForestClassifier()", - "text/html": "
RandomForestClassifier()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "text/html": [ + "
RandomForestClassifier()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "RandomForestClassifier()" + ] }, "execution_count": 27, "metadata": {}, @@ -210,13 +1029,13 @@ "except ValueError as e:\n", " print(e)\n", "rf.fit(X2, y)" - ], - "metadata": { - "collapsed": false - } + ] }, { "cell_type": "markdown", + "metadata": { + "collapsed": false + }, "source": [ "A list of all the available transformers can be found in the [API](https://www.aeon-toolkit.org/en/latest/api_reference/transformations.html). We currently have\n", "specific notebooks for the following transformers:\n", @@ -231,19 +1050,16 @@ "- [signature method](signature_method.ipynb)\n", "- [tsfresh](tsfresh.ipynb)\n", "\n" - ], - "metadata": { - "collapsed": false - } + ] }, { "cell_type": "code", "execution_count": null, - "outputs": [], - "source": [], "metadata": { "collapsed": false - } + }, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/examples/transformations/tsfresh.ipynb b/examples/transformations/tsfresh.ipynb index d1d37d1761..4809cb8b48 100644 --- a/examples/transformations/tsfresh.ipynb +++ b/examples/transformations/tsfresh.ipynb @@ -17,47 +17,47 @@ }, { "cell_type": "code", + "execution_count": 1, "metadata": { + "ExecuteTime": { + "end_time": "2024-11-25T14:07:05.457198Z", + "start_time": "2024-11-25T14:07:05.449815Z" + }, "execution": { "iopub.execute_input": "2020-12-19T14:30:39.713903Z", "iopub.status.busy": "2020-12-19T14:30:39.713342Z", "iopub.status.idle": "2020-12-19T14:30:39.715128Z", "shell.execute_reply": "2020-12-19T14:30:39.715641Z" - }, - "ExecuteTime": { - "end_time": "2024-11-25T14:07:05.457198Z", - "start_time": "2024-11-25T14:07:05.449815Z" } }, + "outputs": [], "source": [ "# !pip install --upgrade tsfresh" - ], - "outputs": [], - "execution_count": 1 + ] }, { "cell_type": "code", + "execution_count": 2, "metadata": { + "ExecuteTime": { + "end_time": "2024-11-25T14:07:07.829632Z", + "start_time": "2024-11-25T14:07:06.056664Z" + }, "execution": { "iopub.execute_input": "2020-12-19T14:30:39.719083Z", "iopub.status.busy": "2020-12-19T14:30:39.718586Z", "iopub.status.idle": "2020-12-19T14:30:40.743724Z", "shell.execute_reply": "2020-12-19T14:30:40.744213Z" - }, - "ExecuteTime": { - "end_time": "2024-11-25T14:07:07.829632Z", - "start_time": "2024-11-25T14:07:06.056664Z" } }, + "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.pipeline import make_pipeline\n", "\n", "from aeon.datasets import load_arrow_head, load_basic_motions\n", "from aeon.transformations.collection.feature_based import TSFresh, TSFreshRelevant" - ], - "outputs": [], - "execution_count": 2 + ] }, { "cell_type": "markdown", @@ -73,27 +73,19 @@ }, { "cell_type": "code", + "execution_count": 3, "metadata": { + "ExecuteTime": { + "end_time": "2024-11-25T14:07:09.120656Z", + "start_time": "2024-11-25T14:07:09.090118Z" + }, "execution": { "iopub.execute_input": "2020-12-19T14:30:40.748159Z", "iopub.status.busy": "2020-12-19T14:30:40.747656Z", "iopub.status.idle": "2020-12-19T14:30:40.795200Z", "shell.execute_reply": "2020-12-19T14:30:40.795889Z" - }, - "ExecuteTime": { - "end_time": "2024-11-25T14:07:09.120656Z", - "start_time": "2024-11-25T14:07:09.090118Z" } }, - "source": [ - "X, y = load_arrow_head()\n", - "n_cases = 24\n", - "X_train = X[:n_cases, :, :]\n", - "y_train = y[:n_cases]\n", - "X_test = X[n_cases : 2 * n_cases, :, :]\n", - "y_test = y[n_cases : 2 * n_cases]\n", - "print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)" - ], "outputs": [ { "name": "stdout", @@ -103,7 +95,15 @@ ] } ], - "execution_count": 3 + "source": [ + "X, y = load_arrow_head()\n", + "n_cases = 24\n", + "X_train = X[:n_cases, :, :]\n", + "y_train = y[:n_cases]\n", + "X_test = X[n_cases : 2 * n_cases, :, :]\n", + "y_test = y[n_cases : 2 * n_cases]\n", + "print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)" + ] }, { "cell_type": "markdown", @@ -113,30 +113,25 @@ "\n", "There are two versions of TSFresh feature extractors wrapped in aeon. The\n", "first is the unsupervised\n", - "`TSFresh` which by default extracts all 4662 features. See the\n", + "``TSFresh`` which by default extracts all 4662 features. See the\n", "documentation for parameter configuration." ] }, { "cell_type": "code", + "execution_count": 4, "metadata": { + "ExecuteTime": { + "end_time": "2024-11-25T14:07:16.339473Z", + "start_time": "2024-11-25T14:07:11.573523Z" + }, "execution": { "iopub.execute_input": "2020-12-19T14:30:40.829452Z", "iopub.status.busy": "2020-12-19T14:30:40.828907Z", "iopub.status.idle": "2020-12-19T14:30:53.049755Z", "shell.execute_reply": "2020-12-19T14:30:53.050249Z" - }, - "ExecuteTime": { - "end_time": "2024-11-25T14:07:16.339473Z", - "start_time": "2024-11-25T14:07:11.573523Z" } }, - "source": [ - "t = TSFresh()\n", - "Xt = t.fit_transform(X_train)\n", - "Xt2 = t.transform(X_test)\n", - "print(f\"Train shape = {Xt.shape} test shape = {Xt2.shape}\")" - ], "outputs": [ { "name": "stdout", @@ -146,32 +141,32 @@ ] } ], - "execution_count": 4 + "source": [ + "t = TSFresh()\n", + "Xt = t.fit_transform(X_train)\n", + "Xt2 = t.transform(X_test)\n", + "print(f\"Train shape = {Xt.shape} test shape = {Xt2.shape}\")" + ] }, { "cell_type": "markdown", - "source": [ - "The second is `TSFreshRelevant` which uses `y` to select the most\n", - "relevant features." - ], "metadata": { "collapsed": false - } + }, + "source": [ + "The second is ``TSFreshRelevant`` which uses ``y`` to select the most\n", + "relevant features." + ] }, { "cell_type": "code", - "source": [ - "t = TSFreshRelevant()\n", - "t.fit(X_train, y_train)\n", - "Xt = t.transform(X_test)\n", - "Xt.shape" - ], + "execution_count": 5, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-11-25T14:07:32.455607Z", "start_time": "2024-11-25T14:07:26.124172Z" - } + }, + "collapsed": false }, "outputs": [ { @@ -185,7 +180,12 @@ "output_type": "execute_result" } ], - "execution_count": 5 + "source": [ + "t = TSFreshRelevant()\n", + "t.fit(X_train, y_train)\n", + "Xt = t.transform(X_test)\n", + "Xt.shape" + ] }, { "cell_type": "markdown", @@ -198,26 +198,19 @@ }, { "cell_type": "code", + "execution_count": 6, "metadata": { + "ExecuteTime": { + "end_time": "2024-11-25T14:07:41.090159Z", + "start_time": "2024-11-25T14:07:36.403997Z" + }, "execution": { "iopub.execute_input": "2020-12-19T14:30:53.062147Z", "iopub.status.busy": "2020-12-19T14:30:53.061631Z", "iopub.status.idle": "2020-12-19T14:31:09.307275Z", "shell.execute_reply": "2020-12-19T14:31:09.307781Z" - }, - "ExecuteTime": { - "end_time": "2024-11-25T14:07:41.090159Z", - "start_time": "2024-11-25T14:07:36.403997Z" } }, - "source": [ - "classifier = make_pipeline(\n", - " TSFresh(default_fc_parameters=\"efficient\", show_warnings=False),\n", - " RandomForestClassifier(),\n", - ")\n", - "classifier.fit(X_train, y_train)\n", - "classifier.score(X_test, y_test)" - ], "outputs": [ { "data": { @@ -230,39 +223,34 @@ "output_type": "execute_result" } ], - "execution_count": 6 + "source": [ + "classifier = make_pipeline(\n", + " TSFresh(default_fc_parameters=\"efficient\", show_warnings=False),\n", + " RandomForestClassifier(),\n", + ")\n", + "classifier.fit(X_train, y_train)\n", + "classifier.score(X_test, y_test)" + ] }, { "cell_type": "markdown", + "metadata": { + "collapsed": false + }, "source": [ "For convenience and consistency of use we also have hard coded TSFresh classifier,\n", "regressor and clusterer." - ], - "metadata": { - "collapsed": false - } + ] }, { "cell_type": "code", - "source": [ - "from aeon.classification.feature_based import TSFreshClassifier\n", - "from aeon.clustering.feature_based import TSFreshClusterer\n", - "\n", - "cls = TSFreshClassifier(relevant_feature_extractor=False)\n", - "clst = TSFreshClusterer(n_clusters=2)\n", - "\n", - "cls.fit(X_train, y_train)\n", - "cls.score(X_test, y_test)\n", - "clst.fit(X_train)\n", - "print(cls.predict(X_test))\n", - "print(clst.predict(X_test))" - ], + "execution_count": 7, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-11-25T14:08:02.405107Z", "start_time": "2024-11-25T14:07:50.878523Z" - } + }, + "collapsed": false }, "outputs": [ { @@ -275,35 +263,41 @@ ] } ], - "execution_count": 7 + "source": [ + "from aeon.classification.feature_based import TSFreshClassifier\n", + "from aeon.clustering.feature_based import TSFreshClusterer\n", + "\n", + "cls = TSFreshClassifier(relevant_feature_extractor=False)\n", + "clst = TSFreshClusterer(n_clusters=2)\n", + "\n", + "cls.fit(X_train, y_train)\n", + "cls.score(X_test, y_test)\n", + "clst.fit(X_train)\n", + "print(cls.predict(X_test))\n", + "print(clst.predict(X_test))" + ] }, { "cell_type": "markdown", + "metadata": { + "collapsed": false + }, "source": [ - "By default, the `TSFreshClassifier` uses the supervised\n", - "`TSFreshRelevant` and the scitkit `RandomForestClassifier`.\n", + "By default, the ``TSFreshClassifier`` uses the supervised\n", + "``TSFreshRelevant`` and the scitkit ``RandomForestClassifier``.\n", " You can\n", "change this through the constructor" - ], - "metadata": { - "collapsed": false - } + ] }, { "cell_type": "code", - "source": [ - "from aeon.classification.sklearn import RotationForestClassifier\n", - "\n", - "cls = TSFreshClassifier(estimator=RotationForestClassifier(n_estimators=5))\n", - "cls.fit(X_train, y_train)\n", - "cls.score(X_test, y_test)" - ], + "execution_count": 8, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-11-25T14:08:13.304452Z", "start_time": "2024-11-25T14:08:06.677532Z" - } + }, + "collapsed": false }, "outputs": [ { @@ -317,34 +311,34 @@ "output_type": "execute_result" } ], - "execution_count": 8 + "source": [ + "from aeon.classification.sklearn import RotationForestClassifier\n", + "\n", + "cls = TSFreshClassifier(estimator=RotationForestClassifier(n_estimators=5))\n", + "cls.fit(X_train, y_train)\n", + "cls.score(X_test, y_test)" + ] }, { "cell_type": "markdown", - "source": [ - "By default, the `TSFreshClusterer` uses the unsupervised `TSFresh`\n", - "and the `sklearn` clusterer `KMeans` with default parameters (which fits 8 clusters).\n", - " You can also configure this through the constructor." - ], "metadata": { "collapsed": false - } + }, + "source": [ + "By default, the ``TSFreshClusterer`` uses the unsupervised ``TSFresh``\n", + "and the ``sklearn`` clusterer ``KMeans`` with default parameters (which fits 8 clusters).\n", + " You can also configure this through the constructor." + ] }, { "cell_type": "code", - "source": [ - "from sklearn.cluster import KMeans\n", - "\n", - "clst = TSFreshClusterer(estimator=KMeans(n_clusters=3))\n", - "clst.fit(X_train)\n", - "print(clst.predict(X_test))" - ], + "execution_count": 9, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-11-25T14:08:38.025066Z", "start_time": "2024-11-25T14:08:33.300907Z" - } + }, + "collapsed": false }, "outputs": [ { @@ -355,42 +349,37 @@ ] } ], - "execution_count": 9 + "source": [ + "from sklearn.cluster import KMeans\n", + "\n", + "clst = TSFreshClusterer(estimator=KMeans(n_clusters=3))\n", + "clst.fit(X_train)\n", + "print(clst.predict(X_test))" + ] }, { "cell_type": "markdown", - "source": [ - "The `TSFreshRegressor` uses the supervised\n", - "`TSFreshRelevant` and the scitkit `RandomForestRegressor`." - ], "metadata": { "collapsed": false - } + }, + "source": [ + "The ``TSFreshRegressor`` uses the supervised\n", + "``TSFreshRelevant`` and the scitkit ``RandomForestRegressor``." + ] }, { "cell_type": "code", - "source": [ - "from aeon.regression.feature_based import TSFreshRegressor\n", - "\n", - "reg = TSFreshRegressor(relevant_feature_extractor=False)\n", - "from aeon.datasets import load_covid_3month\n", - "\n", - "X, y = load_covid_3month(split=\"train\")\n", - "reg.fit(X, y)" - ], + "execution_count": 10, "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-11-25T14:09:11.745540Z", "start_time": "2024-11-25T14:08:56.573376Z" - } + }, + "collapsed": false }, "outputs": [ { "data": { - "text/plain": [ - "TSFreshRegressor(relevant_feature_extractor=False)" - ], "text/html": [ "
TSFreshRegressor(relevant_feature_extractor=False)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "TSFreshRegressor(relevant_feature_extractor=False)" ] }, "execution_count": 10, @@ -804,14 +796,22 @@ "output_type": "execute_result" } ], - "execution_count": 10 + "source": [ + "from aeon.regression.feature_based import TSFreshRegressor\n", + "\n", + "reg = TSFreshRegressor(relevant_feature_extractor=False)\n", + "from aeon.datasets import load_covid_3month\n", + "\n", + "X, y = load_covid_3month(split=\"train\")\n", + "reg.fit(X, y)" + ] }, { "cell_type": "markdown", - "source": [], "metadata": { "collapsed": false - } + }, + "source": [] }, { "cell_type": "markdown", @@ -821,29 +821,25 @@ "\n", "``TSFresh`` transformers and all three estimators can be used with multivariate time \n", "series. The transform calculates the features on each channel independently then \n", - "concatenate the results. The full transform creates `777*n_channels` features." + "concatenate the results. The full transform creates ``777*n_channels`` features." ] }, { "cell_type": "code", + "execution_count": 14, "metadata": { + "ExecuteTime": { + "end_time": "2024-11-25T14:11:57.583864Z", + "start_time": "2024-11-25T14:11:57.545946Z" + }, "execution": { "iopub.execute_input": "2020-12-19T14:31:09.311742Z", "iopub.status.busy": "2020-12-19T14:31:09.311092Z", "iopub.status.idle": "2020-12-19T14:31:09.380791Z", "shell.execute_reply": "2020-12-19T14:31:09.381304Z" }, - "scrolled": true, - "ExecuteTime": { - "end_time": "2024-11-25T14:11:57.583864Z", - "start_time": "2024-11-25T14:11:57.545946Z" - } + "scrolled": true }, - "source": [ - "X_train, y_train = load_basic_motions(split=\"train\")\n", - "X_test, y_test = load_basic_motions(split=\"test\")\n", - "print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)" - ], "outputs": [ { "name": "stdout", @@ -853,23 +849,23 @@ ] } ], - "execution_count": 14 + "source": [ + "X_train, y_train = load_basic_motions(split=\"train\")\n", + "X_test, y_test = load_basic_motions(split=\"test\")\n", + "print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)" + ] }, { "cell_type": "code", - "source": [ - "tsfresh = TSFresh()\n", - "X = tsfresh.fit_transform(X_train, y_train)\n", - "X.shape" - ], + "execution_count": 15, "metadata": { - "collapsed": false, - "pycharm": { - "is_executing": true - }, "ExecuteTime": { "end_time": "2024-11-25T14:12:19.453228Z", "start_time": "2024-11-25T14:11:58.795027Z" + }, + "collapsed": false, + "pycharm": { + "is_executing": true } }, "outputs": [ @@ -884,14 +880,18 @@ "output_type": "execute_result" } ], - "execution_count": 15 + "source": [ + "tsfresh = TSFresh()\n", + "X = tsfresh.fit_transform(X_train, y_train)\n", + "X.shape" + ] }, { - "metadata": {}, "cell_type": "code", - "outputs": [], "execution_count": null, - "source": "" + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": {