@@ -8,8 +8,9 @@ open import Categories.Category
88open import Categories.Functor
99open import Categories.Functor.Properties
1010open import Categories.NaturalTransformation
11- open import Categories.Diagram.Cone.Properties
11+ open import Categories.Diagram.Cone.Properties using (F-map-Coneʳ; F-map-Cone⇒ʳ; nat-map-Cone; nat-map-Cone⇒)
1212open import Categories.Diagram.Duality
13+ open import Categories.Category.Construction.Cocones using (Cocones)
1314
1415import Categories.Diagram.Cocone as Coc
1516import Categories.Morphism.Reasoning as MR
@@ -45,6 +46,15 @@ module _ {F : Functor J C} (G : Functor C D) where
4546 }
4647 where open CF.Cocone⇒ f
4748
49+ mapˡ : Functor (Cocones F) (Cocones (G ∘F F))
50+ mapˡ = record
51+ { F₀ = F-map-Coconeˡ
52+ ; F₁ = F-map-Cocone⇒ˡ
53+ ; identity = G.identity
54+ ; homomorphism = G.homomorphism
55+ ; F-resp-≈ = G.F-resp-≈
56+ }
57+
4858module _ {F : Functor J C} (G : Functor J′ J) where
4959 private
5060 module C = Category C
@@ -61,8 +71,19 @@ module _ {F : Functor J C} (G : Functor J′ J) where
6171 F-map-Cocone⇒ʳ : ∀ {K K′} (f : CF.Cocone⇒ K K′) → CFG.Cocone⇒ (F-map-Coconeʳ K) (F-map-Coconeʳ K′)
6272 F-map-Cocone⇒ʳ f = coCone⇒⇒Cocone⇒ C (F-map-Cone⇒ʳ G.op (Cocone⇒⇒coCone⇒ C f))
6373
74+ mapʳ : Functor (Cocones F) (Cocones (F ∘F G))
75+ mapʳ = record
76+ { F₀ = F-map-Coconeʳ
77+ ; F₁ = F-map-Cocone⇒ʳ
78+ ; identity = C.Equiv.refl
79+ ; homomorphism = C.Equiv.refl
80+ ; F-resp-≈ = λ f≈g → f≈g
81+ }
82+
83+
6484module _ {F G : Functor J C} (α : NaturalTransformation F G) where
6585 private
86+ module C = Category C
6687 module α = NaturalTransformation α
6788 module CF = Coc F
6889 module CG = Coc G
@@ -72,3 +93,12 @@ module _ {F G : Functor J C} (α : NaturalTransformation F G) where
7293
7394 nat-map-Cocone⇒ : ∀ {K K′} (f : CG.Cocone⇒ K K′) → CF.Cocone⇒ (nat-map-Cocone K) (nat-map-Cocone K′)
7495 nat-map-Cocone⇒ f = coCone⇒⇒Cocone⇒ C (nat-map-Cone⇒ α.op (Cocone⇒⇒coCone⇒ C f))
96+
97+ nat-map : Functor (Cocones G) (Cocones F)
98+ nat-map = record
99+ { F₀ = nat-map-Cocone
100+ ; F₁ = nat-map-Cocone⇒
101+ ; identity = C.Equiv.refl
102+ ; homomorphism = C.Equiv.refl
103+ ; F-resp-≈ = λ f≈g → f≈g
104+ }
0 commit comments